
HAL Id: tel-00862069
https://theses.hal.science/tel-00862069

Submitted on 23 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Contributions to Computational Molecular
Biology

Stéphane Vialette

To cite this version:
Stéphane Vialette. Algorithmic Contributions to Computational Molecular Biology. Data Structures
and Algorithms [cs.DS]. Université Paris-Est, 2010. �tel-00862069�

https://theses.hal.science/tel-00862069
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE

INSTITUT GASPARD MONGE

HABILITATION DIRIGER DES RECHERCHES

prsente par
Stphane VIALETTE

Algorithmic Contributions to
Computational Molecular Biology

Soutenue publiquement le 1 Juin 2010
devant le jury compos de

Marie-Pierre Béal Professeur, Universit Paris-Est, Examinateur
Christian Choffrut Professeur, Universit Paris 7, Examinateur
Maxime Crochemore Professeur, Universit Paris-Est, Examinateur
Alain Denise Professeur, Universit Paris-Sud 11, Examinateur
Gregory Kucherov Directeur de Recherche CNRS, Rapporteur
András Sebő Directeur de Recherche CNRS, Rapporteur

Contents

I Structures: from 2-intervals to annotated sequences . . . throught permutations 1

1 Algorithmic aspects of 2-interval sets 5
1.1 Introduction . 5
1.2 Bestiary and definitions . 6
1.3 Recognizing multidimensional interval graphs . 7
1.4 Combinatorial problems on 2-intervals . 10

2 From linear graphs to permutations 17
2.1 Introduction . 17
2.2 Definitions . 17
2.3 From linear graphs to permutations . . . and back . 18
2.4 Pattern matching . 19
2.5 Finding common structures . 23
2.6 Separable patterns . 31

3 Arc-annotated sequences 33
3.1 Introduction . 33
3.2 Definitions . 34
3.3 Maximum common patterns . 36
3.4 Pattern matching . 37
3.5 Extending the standard model . 38

II Pattern Matching in Graphs 39

4 Pattern matching in graphs 43
4.1 Introduction . 43
4.2 Definitions . 43
4.3 Finding exact occurrences . 44
4.4 Approximate occurrences . 46
4.5 Replacing lists by colors . 47

i

ii

5 Searching for connected occurrences 51
5.1 Introduction . 51
5.2 Definitions . 52
5.3 Searching for exact connected occurrences . 52
5.4 Minimizing the number of connected components . 55
5.5 Maximizing the size of the connected occurrence . 58
5.6 Further variants . 60

6 Querying PPI Networks 63
6.1 Introduction . 63
6.2 A feedback vertex set approach . 64
6.3 Practical issues . 64

III Genome Rearrangements 67

7 Genome rearrangements with duplicate genes 71
7.1 Introduction . 71
7.2 From genomes to permutations . . . and back . 72
7.3 Comparing two compatible genomes . 75
7.4 Exact algorithms and heuristics . 80

8 Exemplar common subsequences 85
8.1 Introduction . 85
8.2 Definitions . 85
8.3 Key results . 86

IV Additional topics 89

9 Selenocysteine-like insertion 93
9.1 Introduction . 93
9.2 Preliminaries . 94
9.3 Key results . 96

10 How many words are needed to build up all words ? 99
10.1 Introduction . 99
10.2 Approximation and inapproximation results . 101
10.3 Jumping to numbers . 102

Bibliographie 127

Index 112

Remerciements

Gad Landau, Gregory Kucherov et András Sebő m’ont honor en acceptant d’łtre les rapporteurs de ce
mmoire. Je les en remercie vivement.

Je remercie sincrement Marie-Pierre Bal, Alain Denise, Maxime Crochemore et Christian Choffrut de
m’avoir fait l’honneur de participer au jury.

Merci Marie-Piere Bal de m’avoir chaleureusement accueilli mon arrive Marne-la-Valle et y avoir favoris
le dveloppement de l’algorithmique pour la biologie. Toujours disponible pour m’couter et m’encourager
malgr le peu de temps que lui laisse ses responsabilits.

Je me rappelle trs bien ma premire rencontre avec Alain Denise. Dbut 2002, il m’avait demand une copie
de mes transparents la suite d’un expos l’ENS o je venais de commencer mon postdoc. Qu’il puisse trouver
quelque intrłt mes travaux m’avait alors la fois tonn et enthousiasm. Hasard (ou pas?), je le rejoignais au
LRI l’anne suivante. J’ai normment appris ses cots, bien plus qu’il pourrait le penser.

Maxime Crochemore tait dj membre du jury de ma thse, il en tait en fait rapporteur. Sa bonne humeur et
ses qualits humaines font de nos (trop rares !) rencontres des moments des plus agrables.

Christian Choffrut. Que dire . . . ? Je sais tout ce que je lui dois.

Mon parcours est jalonn de rencontres et d’expriences qui seront dterminantes. Merci donc . . .

tous les membres du LIGM pour leur accueil. Un merci tout particulier Line Fonfrde et Gabrielle Brossard
pour leur aide et leur disponibilit.

l’quipe Bioinformatique du LRI, Christine Froidevaux et Alain Denise (encore lui !) en tłte, pour m’avoir
donn ma chance.

Claude Jacq pour m’avoir donn l’opportunit de travailler dans un laboratoire de gntique. Ces deux annes
de postdoc ont t – et reste – une exprience extraordinaire (pour łtre tout fait honnłte, je pouvais mettre une
blouse si l’envie m’en prenait mais il m’tait interdit de toucher quoi que ce soit sur les paillasses !).

Guillaume Fertin pour les heures de discussion, le travail en commun, les coups de fil hebdomadaires
(pas forcment pour parler travail), les voyages (malheureusement bien moins frquents depuis 2006), . . . mon
collaborateur prfr en somme!

iii

iv

Guillaume Blin pour toutes ces petites choses qui font de notre bureau un endroit particulirement agrable
. . . en n’oubliant pas les musiques improbables qu’il m’inflige (j’ai bien failli ne pas survivre la compil’
spciale annes 80).

Romeo – incredible reduction – Rizzi et Danny Hermelin, collgues et amis, pour tout le travail en commun
et le temps pass ensemble. C’est toujours un rel plaisir de les retrouver.

mes (autres) co-auteurs et/ou amis : Gaëlle Brevier, Riccardo Dondi, Mike Fellows, Isabelle Fagnot,
Philippe Gambette, Sylvain Guillemot, Anthony Labarre, Matthieu Raffinot, Dror Rawitz, Irena Rusu, Éric
Tannier, . . .

Annelyse Thvenin et Florian Sikora qui ont support mes techniques exprimentales de direction de thse et
de pdagogie.

Merci Patricia, Jeanne et Nathan sans qui, tout simplement, rien ne serait possible.

Foreword

The time has come to write it! For most of us, writing our habilitation thesis is not an easy matter, and I did
not depart from the rule. How to expose our works? How to establish a logical link between our works?
Some of many questions that should be answered before anything else.

So first the haunting question: What should be the best format? Fortunately or not (I would go for not
here), there are as many answers as people! Answers go from “extended abstract”to “PhD-like manuscript”,
and, as for what should be in, “cumulative”(based on previous research) or “monographical”(specific
unpublished results) . . . well, answers do not help much here. The most appropriate format is often the
simplest but I guess it varies from person to person and depends on what you are expecting or looking for in
that exercise. So what am I expecting from this writing exercise? To cut a long story short, something useful
(at least for me). Therefore, to avoid a tedious and useless exercise, my choice has been to write a survey of
my works together with a brief exposition of the related results; something to which I can refer to for further
research. This should explain the rather long form of the present manuscript.

As for this famous “logical link”, quite naturally, I decided to focus on algorithms, and more specifically
on computational molecular biology, i.e., those algorithmic and combinatorial topics that are connected to
molecular biology. With this in mind, I have wilfully chosen to move some of my published papers apart
from my habilitation. It is not that there are too many of them but some definitively do not fit in the scope of
this manuscript. First, some are clearly totally (I did not want to write “too”here) biologically oriented and
have very little algorithmic content (and actually I am not really involved anymore in this activity). This
includes [Lelandais et al., 2004a,b, 2006; Margeot et al., 2002; Sylvestre et al., 2003]. I shall not discuss this
part here. Neither shall I discuss about my interest in graph labelings and our recent works on alliances
and secure sets in graphs. Whereas my interest in these topics is clearly algorithmic, they are not related
in any way to any of the four parts of the present manuscript. This includes [Fertin and Vialette, 2009;
Vialette, 2006] as well as [Blin et al., 2009a]. One may argue that some parts of this habilitation thesis are
quite far from any combinatorial topic connected to molecular biology (still this famous “logical link”). I
have, for example, in mind Section 2.3, Section 2.4, Section 2.6, Section 10.3, . . . , and I do agree these topics
are very far – not to say independent – from any computational molecular biology consideration. However,
I came across these topics as special cases or relaxations of combinatorial objects that are, from my point
of view, clearly connected to exploring molecular biology (I do no claim practical applications for all of
them): d-intervals, linear graphs, exon shuffling, . . . My opinion is thus that these topics have their rightful
places in my manuscript and, even more important from my point of view, gathering together these topics
with more practical issues such as “querying PPI network”or “designing fast heuristics for comparative
genomics”clearly reflects my way of doing research.

v

vi

Introduction

Computational biology is (should be?) an interdisciplinary field that applies the techniques of computer
science, applied mathematics and statistics to address biological problems. It encompasses many fields,
ranging from Computational biomodeling to Computational biochemistry. If I would really have to place myself
in this field (always such a difficult question for me, my preferred answer would be just algorithmic as I
never have laid down myself to restrict to this area) I would say: Bioinformatics (in the very very precise
sense of designing algorithms to the interpretation, classification and understanding of biological datasets)
and Comparative genomics (as a part of Computational genomics).

For the prerequisites, the reader is expected to be familiar with basic graph theory, classical complexity
theory and parameterized complexity theory. We only recall some basic definitions (the two following
paragraphs should constitute sufficient preparation).

In computer science and operations research, approximation algorithms are algorithms used to find ap-
proximate solutions to optimization problems (the best general references are [Vazirani, 2002] and [Ausiello
et al., 1999]). Approximation algorithms are often associated with NP-hard problems since it is unlikely
that there can ever be efficient polynomial-time exact algorithms solving NP-hard problems, one settles
for polynomial-time sub-optimal solutions. Unlike heuristics, which usually only find reasonably good
solutions reasonably fast, one wants provable solution quality and provable run time bounds. Ideally, the
approximation is optimal up to a small constant factor. Given an instance x of an optimization problem P,
the performance guarantee (or approximation ratio) R(x, y) of a solution y to the instance x is defined as

R(x, y) = max
(

opt(x)
f(y)

,
f(y)

opt(x)

)
,

where opt(x) is the value of an optimum solution for the instance x and f(y) is the value of the solution
y for the instance x. Clearly, the performance guarantee is greater than or equal to 1 (and equal to 1 if
and only if y is an optimal solution). If an algorithm A guarantees to return solutions with a performance
guarantee of at most r(n), then A is said to be an r(n)-approximation algorithm and has an approximation
ratio of r(n). Likewise, a problem with an r(n)-approximation algorithm is said to be r(n)-approximable or
have an approximation ratio of r(n). The class APX (an abbreviation of “approximable”) is the set of (NPO)

vii

viii

optimization problems that allow polynomial-time approximation algorithms with approximation ratio
bounded by a constant (or constant-factor approximation algorithms for short). In simple terms, problems
in this class have efficient algorithms that can find an answer within some fixed percentage of the optimal
answer. A PTAS is an algorithm which takes an instance of an optimization problem and a parameter
ε > 0 and, in polynomial-time, produces a solution that is within a factor ε of being optimal. Notice that
the running time of a PTAS is required to be polynomial in n for every fixed ε but can be different for
different ε. Thus, an algorithm, running in O(n1/ε) time or even O(nexp(1/ε)) time counts as a PTAS. A
practical problem with PTAS algorithms is that the exponent of the polynomial could increase dramatically
as ε shrinks, for example if the runtime is O(n1/ε). One way of addressing this is to define the efficient
polynomial-time approximation scheme or EPTAS, in which the running time is required to be O(nc) for a
constant c independent of ε. This ensures that an increase in problem size has the same relative effect on
runtime regardless of what ε is being used; however, the constant under the big-O can still depend on ε
arbitrarily.

For many applications the trade-offs inherent to approximation algorithms and heuristics are not satis-
factory. Fixed-parameter algorithms can provide an alternative by providing optimal solutions with useful
runtime guarantees (the best general references are [Downey and Fellows, 1999; Flum and Grohe, 2006;
Niedermeier, 2006]). The core concept is formalized as follows: An instance of a parameterized problem
consists of a problem instance x and a parameter k. A parameterized problem is fixed-parameter tractable if
it can be solved in f(k)|x|O(1)) time, where f is a computable function solely depending on the parameter
k, not on the input size |x|. For NP-hard problems, f(k) will of course not be polynomialsince otherwise
we would have an overall polynomial-time algorithm – but typically be exponential like 2k . Clearly, fixed-
parameter tractability captures the notion of “efficient for small parameter values”: for any constant k, we
obtain a polynomial-time algorithm. Moreover, the exponent of the polynomial must be independent of
k, which means that the combinatorial explosion is completely confined to the parameter. The standard
parameterization of an optimization problem such as VERTEX COVER or CLIQUE takes the size of the solution
as the parameter. Accompanying the work on designing efficient and practical parameterized algorithms, a
theory of parameterized intractability has been developed (Downey and Fellows 1999 monograph [Downey
and Fellows, 1999] gives a fairly complete picture of the theory then). In parameterized complexity, to
classify fixed-parameter intractable problems, a hierarchy, the so-called W[-]hierarchy

⋃
t≥0W[t], where

W[t] ⊆W[t + 1] for all t ≥ 0 has been introduced, in which the 0-th level W[0] is the class FPT. The hardness
and completeness have been defined for each level W[t] of the W[-]hierarchy for t ≥ 1, and a large number
of W [i]-hard parameterized problems have been identified [Downey and Fellows, 1999]. For example, the
VERTEX COVER problem is known to be fixed-parameterized tractable for the standard parameterization
whereas the CLIQUE problem has been proved to W[1]-complete. The fundamental conjecture FPT 6= W[1] is
very much analogous (but clearly weaker) to the conjecture that P 6= NP. Notice that, from an algorithmic
point of view, it is usually sufficient to distinguish between W[1]-hardness and membership in FPT.

This habilitation thesis is organized in four parts. I would say (i) algorithmic of (not so) linear structures,
(ii) pattern matching in graphs, (iii) comparative genomics, and (iv) what is left and does not fit well in any
of the three first parts. If I would have to give a chronology, Part I contains the problems I was first interested
in as I came across 2-intervals as early as during my PhD thesis (actually as a naive attempt to build an
abstract model for autocatalytic group I introns). Part II and Part IV follow. My interest in comparative
genomics (Part III) is more recent; as far as I remember my first research activity in this field dates back to
2005. Let me now introduce briefly these four parts (to facilitate access to the individual topics, the chapters
are rendered as self-contained as possible).

ix

Part I is concerned with families of high-dimensional intervals, linear graphs, permutations and arc-
annotated sequences, all those graph-like combinatorial objects I can draw from left to right, align and
search for a pattern in. It is composed of three chapters. Chapter 1 is devoted to algorithmic aspects of high-
dimensional intervals and more specifically to algorithmic aspects of 2-intervals. This chapter encompasses
recognition of restricted 2-interval graphs and combinatorial problems on families of 2-intervals. Chapter 2
focuses on linear graphs and linear matchings, those graph with linearly ordered vertices. This chapter can
be seen as a follow-up of Chapter 1 as most questions could have been raised in the general framework of
2-intervals (for disjoint interval ground sets). However, as we shall see, linear graphs and linear matchings
deserve a separate chapter as they raise specific and important (and hard!) questions about permutation
patterns. In Chapter 3, we consider some algorithmic issues of arc-annotated sequences, a popular object
to represent RNA sequences. Common to these three chapters is the notion of relative positioning: for any
two disjoint objects, either one precedes the other, is included in the other, or they are crossing each over.
I have tried to develop in this manuscript a general and common framework (including notations) that
encompasses 2-intervals, linear graphs and arc-annotated sequences. Clearly, this is the part of my research
that was the most followed [Li and Li, 2006, 2009a; Jiang, 2007b, 2008, 2007a; Chen et al., 2007a; Gramm,
2004a,b; Gramm et al., 2002; P. Thébault et al., 2006].

Part II is devoted to pattern matching issues (in the broad sense) in graphs. It is composed of three
chapters. Chapter 4 is concerned with pattern matching in the common sense: finding an exact or an
approximate occurrence of a motif (given in the form of a graph) in a target graph. We focus in Chapter 4
on edge-conservation and injective mappings. With protein-protein interaction (PPI) networks in mind,
we consider additional restrictions: (i) each vertex of the pattern is associated to a (small) set of vertices of
the target graph it can be mapped to, and (ii) both the motif and the target graphs are vertex-colored and
any vertex of the motif must be mapped to a vertex of the target graph with the same color. We do believe
that a better approach would consist in using a set of colors instead of one color (thereby allowing for a
greater flexibly in the design) but we will not develop this point in this manuscript. Chapter 5 differs from
Chapter 4 by renouncing to topology conservation (this is actually a weak renouncement as we shall see),
we only require the occurrences to be connected. This recent problem (introduced in the context of metabolic
networks [Lacroix et al., 2006]) raises new, elegant and original questions. Finally, brief Chapter 6 is devoted
to presenting our contribution to a somewhat more classical view of pattern matching in PPI networks where
one is allowed to insert and delete vertices in the occurrence. Most of the interest in our contribution (based
on feedback vertex sets) is the PADA1 software that performs as well as QNet (the state-of-the-art software
to query PPI networks) on tree patterns while allowing for general graph patterns (the tree decomposition
based approach of QNet for dealing with general graph patterns has never been implemented due to its
complexity).

Part III is concerned with comparative genomics. Comparative genomics is a field by itself and we shall
only consider genome rearrangements with duplicate genes. It is composed of two chapters. Chapter 7
is by far the longest of the two. In this chapter we consider the problem of computing a distance (or a
(dis)similarity) between two genomes with duplicate genes from a pure algorithmic point of view. As we
shall see, most – not to say all - problems are intractable and sometimes even hard to approximate within
any ratio. Again, I have tried in this chapter to develop a common general framework (in the form of
permutations associated to matchings) that encompasses all these problems and allows me give a unified
exposition. Chapter 8 is devoted to presenting and analyzing a simple LCS-like problem that aims at
overcoming the difficulties I have raised in Chapter 7.

Part IV is actually concerned with two different topics. Chapter 9 is devoted to algorithmic aspects
of selenocysteine insertion and could be seen as a follow-up of [Backofen et al., 2002] where the problem
of computing an mRNA sequence of maximum codon-wise similarity to a given mRNA (and hence, to a
given protein) that additionally satisfies some secondary structure constraints was introduced. Chapter 10

x

is devoted to a covering problem. My initial motivation for studying this problem came from a paper by
Bodlaender et al. [Bodlaender et al., 1995], who described an application in the context of protein folding (the
authors actually referred to this problem as the DICTIONARY GENERATION problem). Indeed, many proteins
seem to be composed of relatively small regions which fold independently of other regions, and the theory
of exon shuffling proposes that all proteins are concatenations of such regions, where the regions are drawn
from a common ancestral dictionary [Dorit and Gilbert, 1991; Patthy, 1991].

To avoid any confusion, the citations of external items (algorithms, theorem, . . .) appear in the body
of the text as references whereas my results are – most of time, I have tried to stick to this rule as much as
possible – given in the form of propositions. Notable exceptions for this rule are pages 28 (a lemma by Noga
Alon) and 101 (the Local-Ratio lemma [Bar-Yehuda and Even, 1985]).

Finally, all along this document, I use thinking notes or perspective notes (sometimes also referred to as
headache notes in the text for obvious reasons) in the following form

to point out facts, important questions or even perspectives. It is not about all problems or special cases left
open in this manuscript (I would have to put such a note on each page I guess), but to shed light on points I
am particularly interested in. Therefore, it is worth keeping in mind that these notes are concerned with
both problems I have spent weeks (sometimes months) on . . . without much success, and perspectives for
further research.

Last point, some new results are announced in this manuscript, most without proof. Two notable
exceptions are Proposition 2.4.1 (page 20) and Proposition 10.3.2 (page 103).

Part I

Structures: from 2-intervals to annotated
sequences . . . throught permutations

1

Introduction

This part is devoted to presenting our works on (not so) linear structures. Well, what are those (not so) linear
structures? In our context these will be all those combinatorial objects that I can draw from left to right, align
and search for a pattern in. More specifically, we will be concern with high-dimensional intervals, linear
graphs, linear matchings, permutations and arc-annotated sequences. The rationale for bringing together
these combinatorial objects is a common notion of relative positioning I am particularly interested in: for any
two disjoint objects, either one precedes the other, one is included in the other, or they are crossing each over.
My interest in such a property started with 2-intervals. It turns out that this property is also at the heart of
the algorithmic of linear graphs and arc-annotated sequences. This manuscript gave me the opportunity to
develop a general and common framework (including notations) that encompasses 2-intervals, linear graphs
and arc-annotated sequences: an family of objects is typeM if any two objects in it are comparable for a
binary relation inM.

High-dimensional (or multi-dimensional, or d-interval) intervals are the union of disjoint intervals, and a
multi-dimensional interval graph is the intersection graph of a family of multi-dimensional intervals. Multi-
dimensional intervals together with multi-dimensional interval graphs constitute a natural generalization of
intervals and interval graphs (one of the most studied class of intersection graphs). We shall be interested
mainly on 2-intervals, i.e., unions of pairs of disjoint intervals. Our concern is twofold: recognition of some
restricted 2-interval graphs and algorithmic aspects of 2-intervals.

Linear graphs are graphs with linearly ordered vertices. These graphs certainly constitute a special case
of 2-intervals. Adopting the same strategy as for 2-intervals, we will be concerned with finding motifs in
linear graphs. This general problem includes both finding an occurrence of a linear graph in another linear
graph and finding a common motif (a linear graph here) that occurs in each input linear graph. Of particular
importance, linear graphs are a generalization of permutations, and hence a portion of this chapter will be
devoted to the problem of finding motifs in permutations. Indeed, as we shall see, hardness of finding motifs
in linear graphs (and in 2-intervals) originates from permutations.

Arc-annotated sequences can be seen both as a generalization of standard sequences (a string together
with some edges) and as a special case of linear graphs (a vertex-labeled linear graph). Arc-annotated
sequences have recently proved to be useful for modeling RNA structures. Again, we will adopt the very
same strategy as for 2-intervals and linear graphs.

3

4

1
Algorithmic aspects of 2-interval sets

Contents
1.1 Introduction . 5
1.2 Bestiary and definitions . 6
1.3 Recognizing multidimensional interval graphs . 7
1.4 Combinatorial problems on 2-intervals . 10

1.4.1 Introduction . 10
1.4.2 The 2-INTERVAL PATTERN problem . 10
1.4.3 Algorithms and complexity . 12
1.4.4 Approximation . 13
1.4.5 Parameterized complexity . 14

1.1 Introduction

Let F = {S1, S2, . . . , Sn} be a family of sets. The intersection graph of F , usually denotedΩ(F), is the graph
having F as vertex set with Si adjacent to Sj if and only if i 6= j and Si ∩ Sj = ∅ ([McKee and McMorris,
1999] and [Brandstädt et al., 1999] are our favorite references here). A graph G is an intersection graph
if there exists a family F such that Ω(F) ' G, where we typically display this isomorphism by writing
V(G) = {u1, u2, . . . , un} with each ui corresponding to Si and {ui, uj} ∈ E(G) if and only if Si ∩ Sj 6= ∅.
When Ω(F) ' G, the family F is called a representation if G. Notice that every graph is an intersection graph
(this property is ascribed to Marczewski in [McKee and McMorris, 1999]) Therefore, while every graph has a
set representation, intersection graph theory uses properties of the set representations and various conditions
imposed thereon, rather than the conventional graph-theoretic approach that, in some sense, forgets the sets.

We shall be concerned in this chapter with high-order intervals (also referred as multidimensional intervals).
Notice, however, that, whereas we will present all definitions in the general setting of d-dimensional intervals,
most of out our concern will be 2-dimensional intervals. The term “d-dimensional interval”originated in the
late 1970s [Trotter and Harary, 1979; Griggs and West, 1979; Scheinerman and West, 1983], where the focus
was on determining how small d can be so that a given graph is a d-interval graph. The first references
devoted to algorithmic aspects of d-interval graphs are [Golumbic, 1980] (actually in the form of an exercise)
and [West and Shmoys, 1984]. For an up-to-date survey of the algorithmic aspects of 2-intervals, we refer the
reader to our recent entry in the Encyclopedia of Algorithms [Vialette, 2008].

5

6

1.2 Bestiary and definitions

Let us start by presenting some intersection graphs we will be concerned with in this manuscript (d-box
graphs are presented for the sake of completeness – as another way to generalize interval graphs – but we
shall not consider them in the sequel).

A d-interval (or multiple interval) is a set of the real line which can be written as the union of d disjoint
closed intervals [ai, bi]. Clearly, 1-intervals are the intervals. The intersection graph of a family of d-intervals
is a d-interval graph. The smallest d for which G is a d-interval graph is the interval number i(G).

A d-track interval is a union of d intervals, one each from d parallel lines (actually separate lines would
be a better definition as, for example, defining piercing sets for d-track intervals by vertical lines is a bit
confusing if they are defined on parallel lines). A graph is a d-track interval graph if it is the intersection graph
of d-track intervals. The intervals graphs are precisely the 1-track interval graphs (and also the 1-interval
graphs). The multitrack interval number of a graph G is the smallest d for which G is a d-track interval graph.
Notice that a d-track interval graph is the union of d interval graphs with the same vertex set.

Closely related are d-boxes and d-box graphs. A d-box is the Cartesian product of intervals [ai, bi],
1 ≤ i ≤ d. A graph is a d-box graph if it is the intersection graph of d-boxes. Hence interval graphs are
precisely the 1-box graphs. Of interest in our context, a d-box graph is the intersection of d interval graphs
with the same vertex set. Notice that d-box graphs are not contained in d-interval graphs, neither d-interval
graphs are included in d-box graphs. Indeed, K3,6 is a 2-box graph but not a 2-interval graph, and the graph
obtained by subdivising edge each of K5 is a 2-interval graph but not a 2-box graph. The boxicity of a graph
G is the minimum d for which G is a d-box graph. We shall not develop d-box graphs in the sequel.

For a d-interval (resp, d-track interval, d-box) graph G, a d-interval (resp, d-track interval, d-box) representa-
tion of G is a family of d-intervals (resp, d-track intervals, d-boxes) F for which G is the intersection graph
of.

Example 1 Let G be the graph defined as follows:

u1

u4

u5

u3

u2

A 2-interval representation of G is given by

u4
u1 u1

u2
u3

u5
u4

u3
u2u5

a 2-track interval representation of G is given by:

track 1: u1
u2

u3
u5

u4

track 2: u2 u1
u4

u3
u5

and a 2-box representation of G is given by:

7

u1

u2

u3

u4

u5

For algorithmic considerations, convenient d-intervals are needed. For the sake of brevity, we define
restricted d-interval object but the same definitions do apply in a natural way for d-track intervals as well.

A d-interval I = (I1, I2, . . . , Id) is balanced if |I1| = |I2| = . . . = |Id|. Notice that this restriction has been
introduce for RNA considerations [Crochemore et al., 2008]. A balanced d-interval graph is the intersection
graph of a family of balanced d-intervals.

A d-interval I = (I1, I2, . . . , Id) is unit if it is composed of d intervals of length 1. A unit d-interval graph is
the intersection graph of a family of unit d-intervals. Clearly, unit d-interval graphs are balanced d-interval
graphs whereas the converse is not necessarily true.

A d-interval I = (I1, I2, . . . , Id) with integer endpoints is type (l1, l2, . . . , ld) if |Ii| = li for all 1 ≤ i ≤ d.
A d-interval graph type (l1, l2, . . . , ld) is the intersection graph of a family of d-intervals type (l1, l2, . . . , ld)
. Notice that unit d-intervals are d-intervals type (1, 1, . . . , 1) and that d-intervals type (l, l, . . . , l), l ∈ N∗,
are balanced d-intervals. We can also notice that 2-interval graphs type (1, 1) are exactly line graphs: each
interval of length 1 of the ground set can be considered as the vertex of a root graph and each 2-interval
as an edge in the root graph. This implies, for example, that the coloration problem is also NP-complete
for 2-interval graphs type (2, 2) and wider classes of graphs. It is also known that the complexity of the
MAXIMUM INDEPENDENT SET problem is NP-complete on 2-interval graphs type (2, 2) [Bafna et al., 1996].
Recognition of 2-union graphs type (1, 2), a related class (restriction of multitrack interval graphs), has been
also proved to be NP-complete [Halldórsson and Karlsson, 2006].

The depth of a family of d-intervals is the maximum number of intervals that share a common point. The
representation depth of a d-interval graph is the minimum depth of any d-interval representation of the graph.
Notice that any d-interval (or d-track interval) representation of a triangle-free graph must have depth at
most 2. On the other hand, for any constant d ≥ 2, it is easy to construct a d-interval (or d-track interval)
representation of depth 2 of a triangle.

1.3 Recognizing multidimensional interval graphs

In this section, we shall mostly focus on d = 2. We study some restrictions of 2-interval graphs, and their
position in the hierarchy of graph classes as illustrated Figure 1.1.

Recognizing restricted graph classes in an ubiquitous problem in intersection graph theory, and indeed
there has been considerable interest in recognizing d-interval graphs (and related graph classes). The first
explicit reference to this question we are aware of is in [Golumbic, 1980]. A classical result of West and
Shmoys [West and Shmoys, 1984] states that, for any constant d ≥ 2, recognizing d-interval graphs is
NP-complete (moreover, for any constants d ≥ 2 and r ≥ 3, recognizing d-interval graphs of representation
depth at most r is also NP-complete). The class of d-track interval graphs is clearly contained in the class of
d-interval graphs. Notice that the containment is proper as the complete bipartite graph Kd2+d−1,d+1 is a

8

Figure 1.1: Graph classes related to 2-interval graphs and its restrictions. A class pointing towards another
strictly contains it, and the dashed lines mean that there is no inclusion relationship between the two. Dark
classes correspond to classes not yet present in the ISGCI Database.

.

d-interval graph but is not a d-track interval graph [West and Shmoys, 1984]. Gyárfás and West [Gyárfás and
West, 1995] have however proved that recognizing 2-track interval graphs is NP-complete (their proof also
implies that, for any constant r ≥ 3, recognizing 2-track interval graphs of representation depth at most r is
NP-complete). It is still an open problem (but conjectured to be true) to prove that, for any constant d ≥ 2,
recognizing d-track interval graph is NP-complete . . . To be honest, the problem is not really open any longer
as M. Jiang has recently communicated us a – correct as far as we can assess – NP-hardness proof for this
problem.

Our contributions for balanced 2-interval graphs is two-fold. We have shown that the class of balanced
2-interval graphs is strictly included in the class of 2-interval graphs. The rationale for this question was
concerned with approximation: does any approximation result for balanced 2-intervals propagate to (general)
2-intervals? The answer is No, unfortunately. Moreover, we have settled the complexity of recognizing
balanced 2-interval graphs.

Proposition 1.3.1 ([Gambette and Vialette, 2007]). The class of balanced 2-interval graphs is strictly included in
the class of 2-interval graphs.

Our proof is by exhibiting a 2-interval graph that has no balanced 2-interval realization (this latter point
being of course the hardest part of the proof). Without going into the details, the construction is by connecting
a bunch of gadgets K5,3 (the complete bipartite graph K5,3 is indeed not a unit 2-interval graph) together
with additional vertices to enforce an unbalanced 2-interval representation. Notice that we also proved that
the class of balanced 2-interval graphs strictly contains circular-arc graphs (see [Brandstädt et al., 1999] for
definitions).

Proposition 1.3.2 ([Gambette and Vialette, 2007]). Recognizing balanced 2-interval graphs is NP-complete.

To prove Proposition 1.3.2, we have adapted the proofs of [West and Shmoys, 1984] and [Gyárfás and
West, 1995], and gave a reduction from the HAMILTONIAN CYCLE problem for 2-regular triangle-free graphs, a
problem which has been proved to be NP-complete in [West and Shmoys, 1984]. Moreover, it is easy enough

9

to check that Gyárfás and West’s proof of NP-hardness of recognizing 2-track interval graphs [Gyárfás and
West, 1995] can be adapted, by adjusting the interval lengths in the representation (more or less as we did for
2-interval graphs [Gambette and Vialette, 2007]), to show that recognizing balanced 2-track interval graphs
is NP-complete as well.

As for 2-interval graphs type (l, l), we have obtained the following results.

Proposition 1.3.3 ([Gambette and Vialette, 2007]). For any l ∈ N∗, l ≥ 2, the class of 2-interval graphs type (l, l)
is strictly contained in the class of 2-interval graphs type (l+ 1, l+ 1).

Proper containment of 2-interval graphs type (l, l) in 2-interval graphs type (l+ 1, l+ 1) is illustrated in
Figure 1.2.

(a)

(b)

Figure 1.2: The graph K ′4 (a) is (5,5)-interval but not (4,4)-interval.

Proposition 1.3.4 ([Gambette and Vialette, 2007]).

{unit 2-interval graphs} =
⋃
l∈N∗

{2-interval graphs type (l, l)}.

According to Proposition 1.3.4, if recognizing 2-interval graphs type (l, l) is polynomial-time solvable for
any l ∈ N∗, then recognizing unit 2-interval graphs is polynomial-time solvable. This problem has not been
settled yet.

Aiming at further deciphering the precise nature of unit 2-interval graphs, we have obtained the following
inclusion between proper circular-arc graphs (circular-arc graphs such that no arc is included in another in
the representation) and 2-interval graphs (recall that circular-arc graphs are balanced 2-interval graphs but
that circular-arc graphs are not necessarily unit 2-interval graphs).

Proposition 1.3.5 ([Gambette and Vialette, 2007]). The class of proper circular-arc graphs is strictly included in
the class of unit 2-interval graphs.

10

Determining the complexity of recognizing unit 2-interval graphs is still an open problem. More
generally, what is the complexity of recognizing d-interval graphs type (2, 2, . . . , 2)? The question
is also open for 2-interval graphs type (l, l). A first step could be to focus on 2-track interval
graphs type (l, l). Indeed, 2-track interval graphs type (l, l) are subclasses on unit 2-interval
graphs.

In [Gambette and Vialette, 2007], we have considered a class of graphs that generalizes quasi-line graphs
and contains unit 2-interval graphs. Quasi-line graphs are those graphs whose vertices are bisimplicial, i.e.,
the closed neighborhood of each vertex is the union of two cliques. This graph class has been introduced
as a generalization of line graphs and as a useful subclass of claw-free graphs [Ben Rebea, 1981; Faudree
et al., 1997; Chudnovsky and Seymour, 2005; King and Reed, 2007]. Let k ∈ N∗. A graph G is all-k-simplicial
if the neighborhood of each vertex u ∈ V(G) can be partitioned into at most k cliques. The class of quasi-line
graphs is thus exactly the class of all-2-simplicial graphs.

Proposition 1.3.6 ([Gambette and Vialette, 2007]). The class of unit 2-interval graphs is strictly included in the
class of all-4-simplicial graphs.

1.4 Combinatorial problems on 2-intervals

1.4.1 Introduction

Multiple-interval graphs are a natural generalization of interval graphs, and hence there is a natural interest
in studying standard combinatorial problems for multiple-intervals (and multiple-interval graphs, the
distinction is important since computing a multiple-interval representation of a graph is NP-complete). Of
particular interest, three standard graph problems, namely MINIMUM VERTEX COVER, MINIMUM DOMINATING
SET and MAXIMUM CLIQUE, for d-intervals are considered in [Butman et al., 2007]. Their results can be
summarized as follows: the MINIMUM VERTEX COVER problem is approximable within ratio (2− 1/d) (a
ratio which equals the best known ratio for 2d1 bounded degree graphs), the MINIMUM DOMINATING SET
problem is approximable within ratio d2, and the MAXIMUM CLIQUE problem is approximable within ratio
(d2d+ 1)/2.

We present here two contributions in this area. First, we discuss the 2-INTERVAL PATTERN problem which
can be seen as a generalization of the MAXIMUM INDEPENDENT SET for 2-intervals. Standard complexity and
approximation are considered. Second, we consider parameterized issues of some natural combinatorial
problems for 2-intervals. Parameterized issues of the 2-INTERVAL PATTERN problem are part of an ongoing
work with S. Guilemot and D. Hermelin, we shall only mention them briefly.

1.4.2 The 2-INTERVAL PATTERN problem

The 2-INTERVAL PATTERN problem is concerned with finding large constrained patterns in families of 2-
intervals. Given a single-stranded RNA molecule, a sequence of contiguous bases of the molecule can
be represented as an interval on a single line, and a possible pairing between two disjoint sequences can
be represented as a 2-interval, which is merely the union of two disjoint intervals. Therefore, 2-interval
representation considers thus only the bonds between the bases and the pattern of the bonds, such as hairpin
structures, knots and pseudoknots. A maximum cardinality pairwise disjoint subfamily of a candidate family

11

Does there exist a polynomial-time algorithm for finding a maximum cardinality clique in a
family of 2-intervals? In other words, given an family of 2-intervals F = {D1, D2, . . . , Dn}, is the
problem of finding a maximum cardinality subset F ′ ⊆ F of pairwise intersecting 2-intervals
in P? The MAXIMUM CLIQUE problem in its natural decision setting is NP-complete for families
of 3-intervals [Butman et al., 2007], approximable within ratio (d2 − d + 1)/2 for families of
d-intervals (and hence within ratio 3/2 for families of 2-intervals) [Butman et al., 2007], and
fixed-parameter tractable for families of d-intervals for parameters d and k (k is the size of the
clique we are looking for) [Fellows et al., 2007].
The MAXIMUM CLIQUE problem for families of d-intervals is (or is likely to be) strongly related to
the interval piercing number. Let F be a family of d-intervals. A piercing set for F is a set of points P
on the real line such that, for any d-intervalD ∈ F ,D∩P 6= ∅. The piercing number of F , denoted
τ(F), is the size of a minimum cardinality piercing set of F . Gyárfás has proved that, for any
family of pairwise intersecting 2-intervals F , it holds that τ(F) ≤ 3. [Gyárfás and Lehel, 1970]
(see also [Gyárfás, 2003]).
A stronger result holds for families of 2-track intervals and has proved to be useful. Indeed,
if F is a set of pairwise intersecting 2-track interval set, then τ(F) ≤ 2 and there is a piercing
set {p1, p2} of F with p1 on track one and p2 on track two [Gyárfás and Lehel, 1970] (see also
[Gyárfás, 2003]). Starting from this property, we can prove that the MAXIMUM CLIQUE problem for
2-track intervals is in P (D. Hermelin, R. Rizzi and S. Vialette, Unpublished result). As another
step towards determining the complexity of the MAXIMUM CLIQUE problem for 2-intervals, we
announce the following result: The MAXIMUM CLIQUE problem for 3-track intervals is APX-hard
(D. Hermelin, M. Jiang and S. Vialette, Unpublished result).

of 2-intervals restricted to certain prespecified geometrical constraints can provide useful valid approximation
for RNA secondary structure determination. Therefore, the geometric properties of 2-intervals provide
a possible guide for understanding the computational complexity of finding structured patterns in RNA
sequences. Using a model to represent non sequential information allows us for varying restrictions on the
complexity of the pattern structure. Indeed, two disjoint 2-intervals, i.e., two 2-intervals that do not intersect
in any point, can be in precedence order (<), be allowed to nest (@) or be allowed to cross (G). Furthermore,
the family of 2-intervals and the pattern can have different restrictions, e.g., all intervals have the same
length or all the intervals are disjoint. These different combinations of restrictions alter the computational
complexity of the problems, and need to be examined separately. This examination produces efficient
algorithms for more restrictive structured patterns, and hardness results for those less restrictive.

Let I = [a, b] be an interval on the line. Write start(I) = a and end(I) = b. A 2-interval is the union of
two disjoint intervals defined over a single line and is thus denoted by D = (I, J), I is completely to the
left of J. Write left(D) = I and right(D) = J. Two 2-intervals D1 = (I1, J1) and D2 = (I2, J2) are said to be
disjoint (or non-intersecting) if the two 2-intervals share no common point, i.e., (I1 ∪ J1) ∩ (I2 ∪ J2) = ∅. For
such disjoint pairs of 2-intervals, three natural binary relations, denoted <, @ and G, are of special interest
(these three relations will be recurrent in the first part of this manuscript):

• D1 < D2 (D1 precedes D2), if I1 ≺ J1 ≺ I2 ≺ J2,

• D1 @ D2 (D1 is nested in D2), if I2 ≺ I1 ≺ J1 ≺ J2, and

• D1 G D2 (D1 crosses D2), if I1 ≺ I2 ≺ J1 ≺ J2,

12

where ≺ denotes the usual precedence between (1-)intervals.
A pair of 2-intervals D1 and D2 is said to be R-comparable for some R ∈ {<,@, G}, if either D1RD2 or

D2RD1, i.e., D1 and D2 are comparable by R. Note that any two disjoint 2-intervals are R-comparable for
some R ∈ {<,@, G} (good, we shall not miss something). A family of pairwise disjoint 2-intervals F is said to
be typeM for someM⊆ {<,@, G},M 6= ∅, if any pair of distinct 2-intervals in F is R-comparable for some
R ∈ M. The non-empty subsetR is usually called a model for F . It is implicitly assumed here thatR is as
small as possible.

Given a family of 2-intervals, the 2-INTERVAL PATTERN problem asks to find in a maximum cardinality
subset of pairwise compatible 2-intervals. In the present context, compatibility denotes the fact that any two
2-intervals in the solution are (i) non-intersecting and (ii) satisfy some prespecified geometrical constraints.
The 2-INTERVAL PATTERN problem is formally defined as follows.

2-INTERVAL PATTERN

• Input : A family of 2-intervals F and a modelM⊆ {<,@, G}.
• Solution : A subfamily F ′ ⊆ F (of pairwise disjoint 2-intervals) typeM.
• Measure : The size of F ′, i.e., |F ′|.

Some additional definitions are needed for further algorithmic analysis. Let F be a family of 2-intervals.
The width (resp. height, depth) is the size of a maximum cardinality subset F ′ ⊆ F type {<} (resp {@}, {G}). The
interleaving distance of a 2-interval Di ∈ F is defined to be the distance between the two intervals of Di, i.e.,
start(right(Di)) − end(left(Di)). The total interleaving distance of the family of 2-intervals F , written L(F), is
the sum of all interleaving distances, i.e., L(F) =

∑
Di∈F start(right(Di)) − end(left(Di)). The density of F ,

written d(F), is the maximum number of 2-intervals in F over a single point. Formally,

d(F) = max
x∈X(F)

{D ∈ F : end(left(D) ≤ x < start(right(D))}.

The structure of the set of all (simple) intervals involved in a family of 2-intervals F turns out to be of
particular importance for algorithmic analysis of the 2-INTERVAL PATTERN problem. The interval ground set
of F , denoted I(F), is the set of all intervals involved in F , i.e., I(F) = {left(Di) : Di ∈ F } ∪ {right < (Di) :
Di ∈ F }. In [Vialette, 2004; Crochemore et al., 2008], we have introduced four types of interval ground sets:

• UNLIMITED: no restriction on the structure,

• BALANCED: each 2-interval Di ∈ F is composed of two intervals having the same length, i.e.,
| left(Di)| = | right(Di)|,

• UNIT: the interval ground set I(F) is solely composed of unit length intervals,

• DISJOINT: no two distinct intervals in the interval ground set I(F) intersect.

Recall that family of unit 2-intervals is balanced, while the converse is not necessarily true. Furthermore,
for most applications, one may assume that a family of pairwise disjoint 2-intervals is unit. Observe that in
this latter case, a family of 2-intervals reduces to a graph G equipped with a numbering of its vertices from 1
to |V | (see Chapter 2 for a complete treatment of this restriction). Considering additional restrictions such as
(i) bounding the width, the height or the depth of either the input family of 2-intervals or the solution subset,
or (ii) bounding the interleaving distances are also of interest for practical applications.

13

Before going to algorithms, I would like to take the opportunity of this manuscript to clarify one
point about 2-intervals I never explicitly stated. This is the right place I guess. Indeed, I was
asked many times whether 2-intervals (and actually the same question would make sense for
linear graphs) would ever yield any competitive algorithm for RNA structure prediction. The
answer is No, and actually I did not ever think the answer could be Yes. Biology is of course too
complicated for such a simplistic solution (“Biology easily has 500 years of exciting problems to work
on, it’s at that level”, D. Knuth, Computer Literacy Bookshops Interview, 1993). Nobody would
think that 2-intervals and linear graphs are accurate models for RNA structure, ever! There are so
many parameters here, so many exceptions, so many exceptions to exceptions, . . . “Parfois, mais
pas toujours, oui, non, enfin parfois, a dpend, pas toujours, non, voil, pas toujours”would say Jean-Pierre
Rousset. But this is precisely for this reason that I believe simple enough combinatorial objects are
needed to deal with specific issues involved in the big picture (I have for example in mind the
algorithmic impact of crossing structures). This was my guideline for introducing and studying
2-intervals in computational biology.

1.4.3 Algorithms and complexity

Let us start with some easy observations and statements. For one, the 2-INTERVAL PATTERN problem for
M = {<,@, G} is related to the MAXIMUM INDEPENDENT SET problem in 2-interval graphs with a given
2-interval representation (recall that, as we have seen, recognizing 2-interval graphs, and hence computing
a 2-interval representation, is NP-complete). For another, graphs of maximum degree ∆ are d(∆+ 1)/2e-
interval graphs [Griggs and West, 1979], and hence any graph with maximum degree 3 is a 2-interval graph.
Therefore, since the MAXIMUM INDEPENDENT SET problem in its natural decision setting is NP-complete
for planar graphs with maximum degree 3 [Garey et al., 1976] (we note in passing that any planar graph
is a 3-interval graph [Scheinerman and West, 1983]), it follows that the 2-INTERVAL PATTERN problem is
NP-complete in its whole generality. This is actually not very surprising (but we know what one is letting
oneself in for).

The best complexity results for the 2-INTERVAL PATTERN problem are given in Table 1.3 for various
models and interval ground sets, and we shall only discuss some very specific points in the sequel.

First, the O(n log(n) + L) time algorithm of [Chen et al., 2007a] forM = {@, G} and disjoint interval
ground set now supersedes our O(n2 log(n)) time algorithm [Blin et al., 2007c]. However, the techniques are
quite comparable and are based on the following property. For a 2-interval D, define its covering interval to
be c(D) = [start(left(D)), end(right(D))], i.e., the least interval that coversD. Let F be a family of 2-intervals
and let G be the intersection graph of the intervals {c(D) : D ∈ F }; G is certainly an interval graph. Moreover,
any subfamily F ′ ⊆ F type {@, G} induces a clique in G. It is thus enough to focus on the maximal cliques of
G. But an interval graph G is a chordal graph and as such has at most |V(G)| maximal cliques [Fulkerson
and Gross, 1965]. Furthermore, all the maximal cliques of a chordal graph can be found in O(n+m) time,
where n = |V(G)| and m = |E(G)|, by a modification of Maximum Cardinality Search (MCS) [Tarjan and
Yannakakis, 1984; Blair and Peyton, 1993]. The O(n2 log(n)) time algorithm follows.

Second, if the 2-INTERVAL PATTERN problem is solvable in O(n log(n)) time for both M = {<} (the
algorithm is trivial) andM = {@}, the two algorithms actually use different geometrical objects: intervals for
the former and trapezoids [Felsner et al., 1997] for the latter (a structure which will prove extremely useful in
the sequel).

14

Interval Ground Set I(F)
ModelM

Unlimited, Balanced, Unit Disjoint
{<,@, G} APX-hard [Bar-Yehuda et al., 2002] O(n

√
n) [Micali and Vazirani, 1980]

{<, G} NP-complete [Blin et al., 2007c] NP-complete [Li and Li, 2009a]
{@, G} APX-hard [Vialette, 2004] O(n log(n) + L) [Chen et al., 2007a]
{<,@} O(n log(n) + nd) [Chen et al., 2007a]
{<} O(n log(n)) [Vialette, 2004]
{@} O(n log(n)) [Blin et al., 2007c]
{G} O(n log(n) + L) [Chen et al., 2007a]

Figure 1.3: Best complexity results for the 2-INTERVAL PATTERN problem for all combinations of models and
interval ground sets. For the polynomial-time cases, n = |F |, L = L(F) and d = d(F).

Interval Ground Set I(F)
ModelM

Unlimited Balanced Unit Disjoint
{<,@, G} 4 1 [Bar-Yehuda et al., 2002] 4 2 [Crochemore et al., 2008] 3 2 [Bar-Yehuda et al., 2002] N/A
{@, G} 4 1 [Bar-Yehuda et al., 2002] 4 3 [Crochemore et al., 2008] 3 3 [Crochemore et al., 2008] N/A
{<, G} PTAS [Jiang, 2007b] (or effective 2 4 [Jiang, 2007a])

Figure 1.4: Performance ratios for hard instances of the 2-INTERVAL PATTERN problem (the 2-INTERVAL
PATTERN problem for disjoint interval ground set and modelsM = {<,@, G} andM = {@, G} is polynomial-
time solvable).

1.4.4 Approximation

The best approximation ratio for the 2-INTERVAL PATTERN problem are given Figure 1.4 for various models
and interval ground sets, and, once again, we shall only discuss specific points.

First, we paid special attention to efficient approximation algorithms, and most of the results presented
Figure 1.4 support implementation. However, the 4-approximation for unlimited 2-intervals is by linear
programming and we are still not able to design a simple and practical approximation algorithm with the
very same performance ratio.

Second, the PTAS of Jiang [Jiang, 2007b] forM = {<, G} supersedes our results [Crochemore et al., 2008],
i.e., an approximation ratio (i) 6 for general 2-intervals, (ii) 4 for balanced 2-intervals, (iii) 3 for unit 2-intervals,
and (iv) 2 when the 2-intervals reduce to a linear graph (see next chapter). It is worth noticing that, like most
PTAS, Jiang’s algorithm does not support implementation (however, Jiang has proposed an approximation
algorithm with performance ratio 2well-suited for practical applications).

Third, we considered in [Crochemore et al., 2008] a weighted variant of the 2-INTERVAL PATTERN problem:
each 2-interval is associated to a weight and the goal is to find a maximum weight subfamily of pairwise
disjoint 2-intervals with respect to a prespecified modelM. Here, one can for instance weight a 2-interval
by the total sum of the lengths of its intervals, thereby allowing more refined solutions in the biological
application of the problem. We have shown in [Crochemore et al., 2008] that our results can be extended to
the weighted variant, while still maintaining the same approximation factors.

1.4.5 Parameterized complexity

We have considered in [Hermelin et al., 2009] the parameterized issues of some standard combinatorial
problems restricted to d-intervals. It is understood here that, even if the considered problems are defined for
graphs, we consider these problems on families of 2-intervals in terms of the associated 2-interval graphs.
For example, the MINIMUM DOMINATING SET problem (given a graph G, find a minimum cardinality set of

15

vertices V ′ ⊆ V(G) such that any vertex in V(G) \ V ′ has at least one neighbor in V ′) reduces for a family of
2-intervals F to finding a subfamily of 2-intervals F ′ ⊆ F such that any 2-interval in F \ F ′ intersects at
least one 2-interval in F ′. Our results (negative and positive) can be summarized as follows.

According to Proposition 1.4.3, the 2-INTERVAL PATTERN problem forM = {@, G} is W[1]-hard
for its standard parameterization The parameterized complexity (standard parameterization)
of the 2-INTERVAL PATTERN problem forM = {<, G} is more intriguing. So far, we are still not
able to determine the parameterized complexity of this problem. Recall that the 2-INTERVAL
PATTERN problem forM = {<, G} has a polynomial-time approximation scheme (PTAS) [Jiang,
2007b], and hence proving that it is W[1]-hard would show that, in some sense, a PTAS is the best
approximation one can obtain (i.e., no efficient PTAS) for this problem.

Conjecture 1. The 2-INTERVAL PATTERN problem forM = {<, G} is W[1]-hard for its standard parame-
terization.

Proposition 1.4.1 ([Hermelin et al., 2009]). The following problems are W[1]-hard for 2-interval graphs (assuming
a 2-interval representation is given along with the graph):

• the MAXIMUM INDEPENDENT SET problem parameterized by the size of the solution,

• the MINIMUM DOMINATING SET problem parameterized by the size of the solution, and

• the INDEPENDENT MINIMUM DOMINATING SET problem parameterized by the size of the solution.

It is worth noticing that [Hermelin et al., 2009] has rapidly become a well-cited paper, not in reason of
Proposition 1.4.1 but for the multicolored clique technique we have introduced. In a nutshell, the multicolored
clique technique allows for an almost systematic gadget-construction and helps in eliminating several
technical details (see [Hermelin et al., 2009] where a large portion is devoted to presenting this general
technique).

Proposition 1.4.2 ([Hermelin et al., 2009]). The MAXIMUM CLIQUE problem for d-intervals is fixed-parameter
tractable when parameterized by d and k (k is the size of the clique we are looking for).

Central in the proof of Proposition 1.4.2 is the fact a d-interval graphs with no clique of size k has a vertex
of degree less than 2k. However, the algorithm is of limited practical interest due to the huge exponential
term in the running time, i.e., O

(
k2
(
2dk
k

))
. Notice, however, that Jiang has recently proposed a better a

max{dO(k), 2O(klogk)} · poly(n) time algorithm for MAXIMUM CLIQUE problem for d-intervals, where n is
the number of vertices in the graph Jiang [2010]. Designing a practical fixed-parameter algorithm for the
CLIQUE problem for d-intervals remains a challenging problem.

We conclude this chapter by discussing briefly parameterized issues of the 2-INTERVAL PATTERN problem.
First, according to Proposition 1.4.1 forM = {<,@, G} is W[1]-hard for its standard parameterization. To
complement this result, the following proposition is announced with proof.

Proposition 1.4.3. The 2-INTERVAL PATTERN problem forM = {@, G} is W[1]-hard for its standard parameteriza-
tion

16

2
From linear graphs to permutations

Contents
2.1 Introduction . 17
2.2 Definitions . 17
2.3 From linear graphs to permutations . . . and back . 18
2.4 Pattern matching . 19
2.5 Finding common structures . 23

2.5.1 Introduction . 23
2.5.2 Structured patterns type {<,@} . 25
2.5.3 Structured patterns type {<, G} . 27
2.5.4 Structured patterns type {@, G} . 27
2.5.5 Putting everything together . 28
2.5.6 Towards biologically sounding models . 29

2.6 Separable patterns . 31

2.1 Introduction

This chapter is devoted to algorithmic aspects of linear graphs and is a natural follow-up of Chapter 1 as
linear graphs can be viewed as families of 2-intervals over a disjoint ground set (this was actually our initial
motivation for studying linear graphs). In Section 2.2 we set up notation and terminology. Section 2.3 is
devoted to introducing the relationship between permutations and linear matchings. The three following
sections are devoted to algorithmic considerations: In Section 2.4 we consider the pattern matching for
permutations problem, Section 2.5 is concerned with finding large common patterns in linear graphs whereas
Section 2.6 aims at bringing together common patterns and permutations.

2.2 Definitions

We follow standard notations in graph theory (see for example [Diestel, 2000]). The order (resp. size) of a
graph G is defined as the number of vertices (resp. edges) of G.

17

18

Definition 2.2.1 (Linear graph). A linear graph of order n is a vertex-labeled graph where each vertex is labeled by
a distinct label from {1, 2, . . . , n}.

It is worth mentioning that we shall always assume in this chapter that a linear graph has no degree 0
vertices (see also note Page 30).

A linear graph can be thus viewed as a graph with vertices embedded on the integral line, yielding a
total order amongst them. In case of linear graphs, we write an edge between vertices i and j, i < j, as the
pair (i, j). By convention, if G is a linear graph, we let G[i . . . j], 1 ≤ i ≤ j ≤ |V(G)|, denote the subgraph
induced by all vertices labeled kwith i ≤ k ≤ j. Two edges of a linear graph are disjoint if they do not share a
common vertex. Of particular interest in our context are edge-disjoint linear graphs.

Definition 2.2.2 (Linear matching). A linear matching is an edge-disjoint linear graph.

A linear matching with 2n vertices (should be indeed even) has thus n edges. Similarly to 2-intervals,
relative positioning of disjoint edges is of particular interest. Let e = (i, j) and e ′ = (i ′, j ′) be two disjoint
edges in a linear graph or a linear matching G. We write:

• e < e ′ (e precedes e ′) if i < j < i ′ < j ′,

• e @ e ′ (e is nested in e ′) if i ′ < i < j < j ′, and

• e G e ′ (e and e ′ cross) if i < i ′ < j < j ′.

Two edges e and e ′ are R-comparable, for some R ∈ {<,@, G}, if eRe ′ or e ′Re. For a subsetM⊆ {<,@, G},
M 6= ∅, edges e and e ′ are said to beM-comparable if e and e ′ are R-comparable for some R ∈ M. A set of
edges E isM-comparable if any pair of distinct edges e, e ′ ∈ E areM-comparable. A linear matching whose
edge set isM-comparable is said to be typeM. A subgraph of a linear graph G is a linear graph H which
can be obtained from G by a series of vertex and edge deletions, where the deletion of vertex i results in
removing vertex i and all edges incident to it from the graph, and then relabeling all vertices j with j > i to
j− 1. In our context, an edge-disjoint subgraph of a linear graph is also called a structured pattern.

2.3 From linear graphs to permutations . . . and back

It is folklore that linear matchings type {<,@, G} of order 2n are in bijection with fixed-point free (fpf)
involutions, i.e., permutations of S2n with n cycles, each of length 2. The number of fpf involutions of S2n
is the double factorial number (2n− 1)!! = 1 · 3 · · · (2n− 1) (see the On-Line Encyclopedia of Integer Sequences
for references).

It is also a simple observation that linear matchings type {@, G} of size n are in bijection with permutations
of Sn. To see this, let us consider a linear matching G type {@, G} of size n. Then the vertices in G which
are left endpoints of edges are labeled {1, 2, . . . , n} and the right endpoints are labeled {n+ 1, n+ 2, . . . , 2n}.
The permutation πG corresponding to G is defined by πG(j− n) = i if and only if (i, j) ∈ E(G). Clearly, all
linear matchings type {@, G} have corresponding permutations, and vice versa. It follows from this bijective
correspondence that the number of different linear matchings type {@, G} of G of size n is n!. Interestingly
enough, notice that increasing subsequences in πG correspond to subgraphs type {G} of G, while decreasing
subsequences correspond to subgraphs type {@}. See Figure 2.1 for an illustration.

Both linear matchings type {<,@} and {<, G} of order 2n are in bijection with Dyck words of length 2n
(should we call a linear matching type {<, G} an anti-Dyck pattern?). Recall that a Dyck word of length 2n
is a string consisting of n a’s and n b’s such that no initial segment of the string has more b’s than a’s (for
example, the following are the Dyck words of length 6: aaabbb, abaabba, ababab, aabbab, aababb). The
number of Dyck words of length 2n is n-th Catalan number Cn =

(
2n
n

)
/(n+ 1) (the best general reference

here is [Stanley, 1999]).

19

G
1 2 3 4 5 6 7 8 9 5 9 4 7 6 3 2 1 8

πG = 5 9 4 7 6 3 2 1 8

1 2 3 6 7 94 5 8 9 6 3 2 15 4 7 8

Decreasing subsequence 9 6 3 2 1

1 2 3 4 6 95 7 8 9 4 6 3 2 15 7 8

Increasing subsequence 5 7 8

Figure 2.1: A linear matching G type {@, G} and the corresponding permutation πG = 5 9 4 7 6 3 2 1 8. Also
illustrated is the bijective correspondence between decreasing subsequences (resp. increasing subsequences)
of πG and patterns of G type {@} (resp. type {G}).

2.4 Pattern matching

We consider in this section the pattern matching problem for linear matchings: Given a pattern (in the form
of a linear matching) and a target linear matching, decide whether there is an occurrence of the motif in the
target. We refer to this problem as the PATTERN MATCHING FOR LINEAR MATCHINGS problem. According
to the preceeding section, if both the pattern and the target are linear matching type {@, G} we are left with
the pattern matching problem for permutations (the bijection is indeed pattern-preserving). We refer to this
later problem as the PERMUTATION PATTERN problem. As we shall see, most of the difficulties in trying to
solve the PATTERN MATCHING FOR LINEAR MATCHINGS problem originate from the PERMUTATION PATTERN
problem.

Let us embed the PATTERN MATCHING FOR LINEAR MATCHINGS problem into permutations. A permuta-
tion π is said to contain the pattern (shorter permutation) σ, in symbols σ � π, if there exists a subsequence
of entries of π that has the same relative order as σ (alternatively, σ is involved in π). Otherwise, π avoids
σ. For example, 3215674 contains the pattern 132 since the subsequence 154 is ordered in the same way
as 132. Pattern involvement in permutations has become a very active area of research. For one, pattern
containment restrictions are often used to describe classes of permutations that are sortable under various
conditions [Knuth, 1973]. For another, a great deal of study has been devoted to counting pattern-avoiding
permutations [Bóna, 2004], probably culminating in the proof of the Stanley-Wilf conjecture [Marcus and

20

Tardos, 2004].

Does there exist a fixed-parameter algorithm (standard parameterization) for finding an occur-
rence of a permutation σ ∈ Sk in a permutation π ∈ Sn? In other words, does there exist an
algorithm for finding an occurrence of σ in π is f(k)nO(1) time, where f is an arbitrary function
depending only on k?
We thought for ages that the answer should be just No, unless FPT = W[1]. We changed our mind
radically about this issue. Every attempt to design a parameterized reduction leaded us to – more
or less – the same cul-de-sac.

Conjecture 2. The pattern matching for permutations problem is fixed-parameter tractable for its standard
parameterization.

We, however, do believe that proving this conjecture is quite a difficult difficult task . . . far beyond
the reach of our arms for the time being.

Given two permutations σ and π, the PERMUTATION PATTERN problem is thus to decide whether σ � π
(this problem is ascribed to H. Wilf in [Bose et al., 1998]). The PERMUTATION PATTERN problem is NP-hard
[Bose et al., 1998] (see [Vialette, 2004] for an alternate proof), but is clearly polynomial-time solvable if σ
has bounded size. Indeed, if σ has size k and π has size n, a straightforward brute-force algorithm solves
the problem in O(nk) time. Improvements to this algorithm were presented in [Albert et al., 2001] and [?],
the latter describing a O(n0.47k+o(k)) time algorithm. Also, the problem is known to be polynomial-time
solvable (in k and n) if σ is separable, i.e., σ contains neither the pattern 2413 nor 3142 [Bose et al., 1998; Ibarra,
1997]. In case σ is monotone, i.e., σ = 1 . . . k or σ = k . . . 1, a nice O(n log log(n)) time algorithm is known
[Hunt and Szymanski, 1977a].

Is the PERMUTATION PATTERN problem fixed-parameter tractable for its standard parameterization? If
only one question were to be asked in this manuscript this has to be this one. We still don’t have any answer
here. Could it be the case that the PERMUTATION PATTERN problem is a special case of a more general
problem in FPT? Or in other words, does there exist a FPT proof for free? Since the PERMUTATION PATTERN
problem is a special case of the general PATTERN MATCHING FOR LINEAR MATCHINGS problem, one can
naturally reduces this question (in our context) to: is the PATTERN MATCHING FOR LINEAR MATCHINGS
fixed-parameter tractable for its standard parameterization? We answer this latter question in the negative
(unless FPT = W[1], a fairly unexpected event) by proving the following new result (observe that this
does not, however, rule out the existence of another simpler problem in FPT containing the PERMUTATION
PATTERN problem . . . hence the main question remains asked).

Proposition 2.4.1. The PATTERN MATCHING FOR LINEAR MATCHINGS problem is W[1]-hard for its standard
parameterization, i.e, the size of the pattern we are looking for.

Here is a sketch of the proof.

Proof. We propose a parameterized reduction from the CLIQUE problem which is known to be W[1]-hard
when parameterized by the size of the clique we are looking for [Downey and Fellows, 1999].

Let (G, k) be an arbitrary instance of the CLIQUE problem. Write V(G) = {u1, u2, . . . , un} and E(G) =
{e1, e2, . . . , em). Furthermore, let us write di for the degree of ui ∈ V(G), and for convenience let d0 = 0.
For each 1 ≤ i ≤ n, write Di for d1 + d2 + . . . + di−1. Finally, for 1 ≤ i, j ≤ n, write li,j for the number of

21

The following items might be useful tools towards proving fixed-parameter tractability of the
PERMUTATION PATTERN problem (Join work with S. Guillemot).
The all 1’s k×k binary matrix is denoted Jk. LetA = [ai,j] be am×n binary matrix. It is said to be
pruned if it contains neither a all 0’s row nor a all 0’s column. For now on, we assume A is pruned.
A (p/m, q/n)-partition P is (i) a partition of {1, 2, . . . ,m} into p intervals R1, R2, . . . , Rp, and (ii) a
partition of {1, 2, . . . , n} into q intervals C1, C2, . . . , cq. The quotient of A by P, in symbols A/P,
is the p× q binary matrix A/P = [a/pi,j] defined by a/pi,j = 1 if and only if ak,l = 1 for some
k ∈ Ri and l ∈ Cj. Given two pruned binary matricesA and B of sizem×n and p×q, respectively,
we say that B is contained in A, denoted by B � A, if there exists a (p/m, q/n)-partition P such
that B ≤ A/P (this latter notation means that a/pi,j = 1 whenever bi,j = 1 for 1 ≤ i ≤ p and
A ≤ j ≤ q) .
For am× n pruned binary matrix A = [ai,j], it will be convenient to define ones(A) as follows

ones(A) = {(i, j) ∈ {1, 2, . . . ,m}× {1, 2, . . . , n} : ai,j = 1}.

For any e = (i, j) ∈ ones(A) and e ′ = (i ′, j ′) ∈ ones(A), define the distance between e and e ′,
denoted dA(e, e ′), by dA(e, e ′) = max{|i− i ′|, |j− j ′|}. The matrix A is k-locally-dense if there exists
distinct e, e ′ ∈ ones(A) such that dA(e, e ′) ≤ k (by convention A is k-dense if | ones(A)| ≤ 1).
Define the local-density of A, simply denoted d(A), to be the minimum k for which A is k-locally-
dense.

Conjecture 3. For any permutation matrix π, if d(π) ≥ k then Jk � π.

Although at first odd, no counter-example has yet been found. Notice that the above conjecture
holds for k = 2 since non-separable permutations contain 3142 or 3142 and hence does contain
J2. It also holds for |π| = k2 (details omitted). Finally, observe that, if True, the above conjecture
would imply D(π) ≤ ∆(π), where D(π) = max{d(σ) : σ � pi} and ∆(π) is the maximum k for
which Jk � π holds.

neighbors ux of ui such that x < j, i.e.,

li,j = |{ux : {ui, ux} ∈ E(G) ∧ x < j}|.

We construct the corresponding instance (Gtarget, Gpattern) of the PATTERN MATCHING FOR LINEAR MATCH-
INGS problem as follows. The linear matching Gtarget has order 4n + 8m + 4 and its edge set E(Gtarget) is
defined by

E(Gtarget) = E
1
target ∪ E2target ∪ E3target ∪ E4target ∪ E5target ∪ E6target

22

where

E1target = {(i, 4m+ 4n+ 4i+ 1) : 1 ≤ i ≤ m}

E2target = {(i+ 1, 4m+ 4n+ 4i+ 4) : 1 ≤ i ≤ m}

E3target = {(2m+ 2i− 1, 2m+ 2n+ 2i+Di + 1) : 1 ≤ i ≤ n}

E4target = {(2m+ 2i, 2m+ 2n+ 2i+Di+1 + 2) : 1 ≤ i ≤ n}

E5target = {(2m+ 2n+ 1, 2m+ 2n+ 2), (4m+ 4n+ 3, 4m+ 4n+ 4)}.

Let us now describe E6target which is the only part of Gtarget that depends on the input (apart from m and
n of course). We add two edges to E6target for each edge of G. More precisely, if ei = {up, uq}, p < q,
is an edge of G, we add to E6target the two edges (2m + 2n + 2i + Dp + lp,q + 2, 4m + 4n + 4i + 2) and
(2m+ 2n+ 2i+Dp + lq,p + 2, 4m+ 4n+ 4i+ 2). This completes the construction of Gtarget.

We now turn to constructing Gpattern. The linear matching Gpattern has order 4k2 + 4 (depending solely of
k, good!) and its edge set E(Gtarget) is defined by

E(Gpattern) = E
1
pattern ∪ E2pattern ∪ E3pattern ∪ E4pattern ∪ E5pattern ∪ E6pattern

using the very same construction as for Gtarget but considering as input the complete graph Kk on k vertices
(and 1

2
k(k− 1) edges) instead of G.

It can be proved that there is an occurrence of Gpattern in Gtarget if and only if G has a clique of size k. One
direction is trivial (by construction). For the other direction, we only mention that the following observation
is crucial for correctness (and for reducing the proof to a sequence of easy steps): the two edges of E5pattern

must match the two edges of E5target. Indeed, a careful observation of Gpattern shows that, for any two edges
ei, ej ∈ E(Gpattern), ei < ej if and only if ei = (2m+2n+1, 2m+2n+2) and ej = (4m+4n+3, 4m+4n+4).
Similarly, for any two edges ei, ej ∈ E(Gtarget), ei < ej if and only if ei = (2m + 2n + 1, 2m + 2n + 2) and
ej = (4m+4n+3, 4m+4n+4). This property allows us to draw the following crucial property: for 1 ≤ i ≤ 6,
all edges of Eipattern are matched to edges in Eitarget. From this point, the rest of the proof is just a sequence of
easy readings of the construction.

In the light of the present situation (the parameterized complexity of the PERMUTATION PATTERN
for its natural parameterization is still open), we have considered in [Guillemot and Vialette, 2009] the
PERMUTATION PATTERN problem in case σ (possibly σ and π) avoids a pattern of length 3. Recall that Knuth
proved in [Knuth, 1998] that for all six of the patterns of length 3 it is true that the number of permutations
of size n that avoid the pattern is the Catalan number Cn =

(
2n
n

)
/(n + 1). First, it is easy to see that the

PERMUTATION PATTERN problem is polynomial-time solvable if the pattern σ avoids 132, 312, 213 or 231
since σ is clearly separable in this case. Monotone patterns, i.e., 123 and 321, however, deserve separate
consideration (we focus here on 321-avoiding permutations but if a permutation avoids 123 then its reverse
avoids 321). The rest of this section is devoted to presenting our results.

First, combining ordered forest embeddings with labeled DAG morphisms, we have shown that the
PERMUTATION PATTERN problem is polynomial-time solvable if both π and σ are 321-avoiding.

Proposition 2.4.2 ([Guillemot and Vialette, 2009]). In case both π and σ are 321-avoiding, the PERMUTATION
PATTERN problem is solvable in O(k2n6) time, where k = |σ| and n = |π|.

Second, if we relax the problem to only one 321-avoiding permutation (and it has to be σ of course), we
have obtained the following result.

Proposition 2.4.3 ([Guillemot and Vialette, 2009]). In case only σ (the pattern) is 321-avoiding, the PERMUTATION

PATTERN problem is solvable in O(kn4
√
k+12) time, where k = |σ| and n = |π|.

23

Notice that the above proposition does not settle the complexity of the PERMUTATION PATTERN problem
in case only σ is 321-avoiding. In [Guillemot and Vialette, 2009], we have conjectured this problem to be
NP-complete. Unfortunately (or fortunately, we were not wrong!) this conjecture is true as shown in the
following proposition (definitively too long proof omitted).

Proposition 2.4.4. The PERMUTATION PATTERN problem is NP-complete even if σ is 321-avoiding.

We close this section by mentioning a generalization of the PERMUTATION PATTERN problem that may be
of independent interest. The c-COLORED PERMUTATION PATTERN problem is defined as follows: given two
permutations σ and π, and a stair decompositionD of σ (see [Atkinson et al., 2005] and [Guillemot and Vialette,
2009] for details), where σ and π are c-colored permutations (i.e., a color in {1, 2, . . . , c} is associated to each
point of the permutation), find a color-preserving embedding of σ into π. We have obtained the following
result (recall that the Exponential-Time Hypothesis (ETH) is the assumption that the 3-SAT problem cannot
be solved in 2o(n) time, where n is the number of variables).

Proposition 2.4.5 ([Guillemot and Vialette, 2009]). The 2-COLORED PERMUTATION PATTERN problem parame-
terized by k is W[1]-hard and cannot be solved in no(

√
k) time assuming ETH.

We also refer the reader to [Guillemot and Vialette, 2009] for WNL-hardness issues of Proposition 2.4.5
(the parameterized class WNL was introduced in [Guillemot, 2008] to capture the parameterized complexity
of problems solvable by k-dimensional dynamic programming).

2.5 Finding common structures

2.5.1 Introduction

This section is devoted to finding common structures in linear graphs and linear matchings. We begin by
presenting this problem in its original setting. RNA and proteins exhibit a three-dimensional structure
that determines most of their functionality. This three dimensional structure can be modeled (at the
price of simplifications!) in two dimensions by a linear graphs. The corresponding structure-similarity or
structure-prediction problems that arise in such contexts usually translate to finding common linear matching
subgraphs, or common structured patterns, that occur in a family of general linear graphs. Examples of such
problems are the LONGEST COMMON SUBSEQUENCE problem [Hirschberg, 1977; Hunt and Szymanski,
1977b], the MAXIMUM COMMON ORDERED TREE INCLUSION problem [Alonso and Schott, 1993; Chung, 1998;
Kilpeläinen and Mannila, 1995], the ARC-PRESERVING SUBSEQUENCE problem [Blin et al., 2005b; Evans,
1999c; Gramm et al., 2002], and the MAXIMUM CONTACT MAP OVERLAP problem [Goldman et al., 1999]
problem (more on this in the perspective note Page 30). A general framework for such problems is known as
the e MAXIMUM COMMON STRUCTURED PATTERN (MCSP) problem.

The MCSP problem was originally introduced (under a different name) by Davydov and Batzoglou
[Davydov and Batzoglou, 2006] in the context of non-coding RNA secondary structure prediction via multiple
structural alignment. There, an RNA sequence of n nucleotides is represented by a linear graph with n
vertices, and an edge connects two vertices if and only if their corresponding nucleotides are complementary.
A family of linear graphs is then used to represent a family of functionally-related RNAs, and a common
structured pattern in such a family is considered to be a putative common secondary structure element of
the family.

The MAXIMUM COMMON STRUCTURED PATTERN (MCSP) problem is formally defined as follows (see
Figure 2.2 for an illustrative example).

24

(a) Linear graph G1

(b) Linear graph G2

(c) Linear graph G3

(d) Linear graph G4

e1 e2 e3 e4 e5

(e) Linear matching Gsol

Figure 2.2: Four linear graphs G1, G2, G3 and G4 and a common structured pattern (depicted as Gsol. The
occurrence of the structured pattern Gsol in each graph is emphasized in bold. Edges e2, e3, e4 and e5 are
nested in edge e1 ; edges e2 and e3 precede edge e5 ; edge e2 precedes edge e4 and crosses edge e3, while
edge e3 crosses both edges e2 and e4.

MCSP

• Input : A family of linear graphs G = {G1, G2, . . . , Gn} and a non-empty subsetM⊆ {<,@, G}.
• Solution : A common structured pattern Gsol typeM of G, i.e., a linear matching typeM that
occurs in each input linear graph of G.
• Measure : The size of Gsol, i.e., |E(Gsol)|.

25

It will be convenient to introduce some special linear matching. A linear matching type {<} (resp. {@}, {G})
is called a sequence (resp. tower, staircase). Define the width (resp. height, depth) of a linear graph to be the size
of a maximum cardinality sequence (resp. tower, staircase) subgraph of the graph. A linear matching type
{<,@} with the additional property that any two maximal towers in it do not share an edge is called a sequence
of towers . Similarly, a linear matching type {<, G} is a sequence of staircases if any two maximal staircases do
not share an edge. A tower of staircases is a linear matching type {@, G} where any pair of maximal staircases
do not share an edge, and a staircase of towers is a comparable linear matching type {@, G} where any pair of
maximal towers do not share an edge. A sequence of towers (resp. sequence of staircases, tower of staircases,
staircase of towers) is balanced if all of its maximal towers (resp. staircases, staircases, towers) are of equal
size. Figure 2.3 illustrates an example of the above types of linear graphs.

(a) A {<,@}-structured pattern of width 4
and height 4

(b) A {<, G}-structured pattern of width 4
and depth 4.

(c) A {@, G}-structured pattern of height 6
and depth 3

(d) A sequence of towers of width 5 and
height 3.

(e) A sequence of balanced towers of width
3 and height 3.

(f) A sequence of staircases of width 4 and
depth 4.

(g) A sequence of balanced staircases of
width 3 and depth 3.

(h) A tower of staircases of height 4 and
depth 3.

(i) A tower of balanced staircases of height
3 and depth 3.

(j) A staircase of towers of height 3 and
depth 4.

(k) A staircase of balanced towers of height
3 and depth 3.

Figure 2.3: Some restricted structured patterns. Edges are drawn above or below the vertices with no
particular signification.

The MCSP problem is relatively easy for simpleM. Indeed, it is solvable in O(nm) time forM = {<}
[Gupta et al., 1982], in O(nm log log(m)) time forM = {@} [Whang and Wang, 1992], and in O(nm1.5) time
forM = {G} [Tiskin, 2006], where n = |G| andm = maxG∈G |E(G)|.

We briefly review some related results. Valiente gave a dynamic programming algorithm for finding a
largest nested linear graph that occurs in two nested linear graphs [Lozano and Valiente, 2004] (see also
[Zhang and Shasha, 1989]). In a totally different context, Felsner et al. considered the matching problem
regardless of precise pattern definition and proved that given a linear graph G of sizem, a maximum size

26

nested subgraph of G can be found in O(m2) time [Felsner et al., 1997]. The general problem of finding a
maximum size edge-independent subgraph of G is the well-known maximum matching problem [Diestel,
2000].

2.5.2 Structured patterns type {<,@}

Of particular importance in the context of computational molecular biology, is the fact that the MCSP
problem for structured patterns type {<,@} has been shown to be NP-complete [Davydov and Batzoglou,
2006]. We have strengthen this result in a drastic way.

Proposition 2.5.1 ([Kubica et al., 2006]). The MCSP problem for structured patterns type {<,@} is NP-hard even
if each input linear matching is a sequence of towers of height at most 2.

Notice, however, that we have proved the MCSP problem to be polynomial-time solvable in case the
number of input linear graphs is a fixed integer [Kubica et al., 2006]. As for the approximation, the MCSP
problem for structured patterns type {<,@} was proved to be approximable with ratio O(log2(k)) [Davydov
and Batzoglou, 2006], where k is the size of an optimal solution. We have improved this result in [Kubica
et al., 2006]

Proposition 2.5.2 ([Kubica et al., 2006]). The MCSP problem for structured patterns type {<,@} is approximable
within ratio O(logk) in O(nm2) time, where k is the size of an optimal solution, n = |G|, and m is the maximum
size of any linear graph in G.

2.5.3 Structured patterns type {<, G}

Focusing onM = {<, G}, we have obtained the following results (the first one is a straightforward conse-
quence of Proposition 2.5.1 whereas the second one requires two ingredients: (i) any structured pattern
type {<, G} contains a sequence of staircases of substantial size and (ii) any sequence of staircases contains a
balanced subgraph of substantial size, details omitted).

Proposition 2.5.3 ([Fertin et al., 2007]). The MCSP problem for structured patterns type {<, G} is NP-hard even if
each input linear graph is a sequence of staircases of depth at most 2.

Notice that a recent result in [Li and Li, 2009b] implies that the MCSP problem for structured patterns
type {<, G} is hard even if G consists of only two linear graphs. However, the input linear graphs used in [Li
and Li, 2009b] are of unlimited structure, unlike Proposition 2.5.3. Interestingly enough, the case |G| = 1 has
been recently proved to be NP-hard [Li and Li, 2009b].

Proposition 2.5.4 ([Fertin et al., 2007]). The MCSP problem for structured patterns type {<, G} is approximable
within ratio 2H(k) inO(nm3.5 log(m)) time, where k is the size of an optimal solution, n = |G|,m = maxG∈G |E(G)|,
and H(k) =

∑k
i=1 1/i is the k-th harmonic number.

2.5.4 Structured patterns type {@, G}

Not surprisingly, the MCSP problem for structured patterns type {@, G} is hard even for quite simple instance.

Proposition 2.5.5 ([Fertin et al., 2007]). The MCSP problem for structured patterns type {@, G} is NP-hard even if
each input linear graph is a tower of staircases of depth at most 2. The same result applies for staircases of towers

As the reader might have guessed, the above result is an easy consequence of Proposition 2.5.1. As
observed before, this case in strongly related to pattern matching for permutations. The well-known Erdős-
Szekeres Theorem [Erdős and Szekeres, 1935] states that any permutation of Sk contains either an increasing

27

Proposition 2.5.1 raises the following entertaining problem. Let A = [ai,j] be a m × n matrix
with non-negative entries. Define a run r in A to be a mapping r : m → n. The weight of the
run r is defined by ω(r) = min{ai,r(i) : 1 ≤ i ≤ m}. Let r1 and r2 be two runs of A. The run r1
precedes the run r2, in symbols r1 < r2, if r1(i) < r2(i) for all 1 ≤ i ≤ m. We consider the problem
defined as follows: Given a m × n matrix with non-negative entries, find a sequence of runs
r1 < r2 < . . . < rk with maximum total weight

∑k
i=1ω(ri). Observe that the number of runs in

the solution is not part of the input, one is only interested in maximizing the total weight of the
solution. Below is an illustration for a 5× 6 matrix with three runs r1 < r2 < r3 of total weight
ω(r1) +ω(r2) +ω(r3) = 2+ 2+ 5 = 9.

r1 r2 r3

4 1 3 2 6 0

2 1 4 2 7 9

4 3 1 6 1 2

3 9 2 5 7 1

3 3 3 2 1 5

According to Proposition 2.5.1, the above problem is NP-complete even if every entry of the
matrix is one of the integers 0, 1 and 2 (each row denotes a sequence of tower and each entry
denotes the height of a tower). Moreover, it is easy to show that the problem is polynomial-time
solvable if every entry of the matrix is one of the integers 0 and 1 (Proposition 2.5.1 is tight). How
approximable is the general problem? Is it APX-hard? We would be very surprised if the answer
to this latter question for a fixed number of distinct non-negative integers was Yes. In other words,
we believe a PTAS exists for this special case. Notice that the straighforward greedy algorithm
(repeatedly select a maximum weight run) does not yield any approximation result. To see this,
consider them×mmatrix A = [ai,j] defined by ai,j = 2 if i = j and ai,j = 1 otherwise.

According to [Li and Li, 2009b], the PATTERN MATCHING FOR LINEAR MATCHINGS problem is
NP-complete is the pattern is type {<, G}. What about the complexity if both the target graph and
the pattern are linear matchings type {<, G}?

Conjecture 4. Finding an occurrence of a linear matching type {<, G} in another linear matching type
{<, G} is polynomial-time solvable.

28

or a decreasing subsequence of size at least
√
k. It is worth noticing that extremal Erdős-Szekeres (EES)

permutations, i.e., permutations that do not contain monotone subsequences longer than
√
k, are known

to exist (for example, there are 4 EES permutations of length 4: 2 1 4 3, 2 4 1 3, 3 1 4 2 and 3 4 1 2). Combining
this with algorithms for finding a largest common structured pattern type {@} or {G}, we have obtained the
following result.

Proposition 2.5.6 ([Fertin et al., 2007]). The MCSP problem for modelM = {@, G} is approximable within ratio√
k in O(nm1.5) time, where k is the size of an optimal solution n = |G|, andm = maxG∈G |E(G)|.

How tight Proposition 2.5.6 is? Central in Proposition 2.5.6 is the use of family of patterns to probe the
input. Can we use more complicated families of patterns to improve the approximation (notice that there
is tradeoff to be made here, the family should be large enough, but only polynomially large if we want to
possibly consider each member)? Unfortunately, the answer is negative. For k ∈ N, let Πk ⊆ Sk be a set of
|Πk| permutations on k elements. Each permutation in Πk can be equivalently regarded as a linear matching
type {@, G}. Alon recently communicated us a proof of essentially the following lemma.

Lemma 2.5.7 (N. Alon, Private communication). For every family of permutationsΠk ⊆ Sk, k ∈ N and |Πk| ≤ 2k,
there exists a permutation π ∈ SK, K = Ω(k2), which avoids all permutations in Πk.

Notice that Alon’s lemma shows that there exists a linear matching type {@, G} of size K = Ω(k2) which
does not contain any linear matching type {@, G} out of a family of at most 2k such graphs. Hence, even
using more involved or interesting families of linear matchings type {@, G} to be used to probe our input
graphs, no approximation guarantee better than O(

√
k) for maximum common structured patterns type

{@, G} can be possibly achieved.

2.5.5 Putting everything together

We now consider structured patterns type {<,@, G}. We gave in [Fertin et al., 2007] three approximation
algorithms with increasing time complexities but decreasing approximation ratios. Roughly speaking, these
three algorithms rely on sufficiently large sub-patterns that occur in any structured pattern type {<,@, G},
and the fact that finding maximum common structured patterns of these types is polynomial-time solvable.

Our first approximation algorithm is based on Dilworth’s Theorem [Dilworth, 1950] and uses the
following simple structure lemma.

Lemma 2.5.8 ([Fertin et al., 2007]). Let G be a linear matching type {<,@, G} of size k. Then H contains a simple
(i.e.,M = {<},M = {@} orM = {G}) structured pattern of size at least k1/3.

It is easily seen, however, that Lemma 2.5.8 is tight. One way to obtain an extremal example of this is as
follows: take k1/3 balanced towers of staircases, each one of depth k1/3 and height k1/3, and concatenate
them one next to the other into one supergraph of size k, reassigning labels accordingly. Combining the above
lemma with the fact that a maximum common simple structured pattern of G can be found in O(nm1.5)
time, we have obtained the following approximation algorithm for general structured patterns.

Proposition 2.5.9 ([Fertin et al., 2007]). The MCSP problem for patterns type {<,@, G} is approximable within
ratio O(k2/3) in O(nm1.5) time, where k is the size of an optimal solution, n = |G|, andm = maxG∈G |E(G)|.

Our second approximation algorithm is based on [Kostochka, 1988] (see also [Kostochka and Kratocvil,
1997]). It uses the following structure lemma.

Lemma 2.5.10 ([Fertin et al., 2007]). Let G be a linear matching type {<,@, G} of size k. Then G contains a subgraph
of sizeΩ

(√
k/ log(k)

)
which is either type {<,@} or type {G}.

29

Combining the above lemma with an algorithm for finding a maximum structured pattern type {G} and
the O(log(n))-approximation algorithm for structured patterns type {<,@}, we have obtained the following
result.

Proposition 2.5.11 ([Fertin et al., 2007]). The MCSP problem for structured patterns type {<,@, G} is approximable

within ratio O(
√
k log2(k)) in O(nm2) time, where k is the size of an optimal solution, n = |G|, and m =

maxG∈G |E(G)|.

We now turn to our third approximation algorithm. It uses the following structure lemma.

Lemma 2.5.12 ([Fertin et al., 2007]). Let G be a linear matching type {<,@, G} of size k. Then G contains either a
tower or a balanced sequence of staircases of sizeΩ

(√
k/ log(k)

)
.

Combining the above lemma with algorithms for finding a maximum common tower and a balanced
sequence of staircases in G (see [Fertin et al., 2007] for details) we have obtained the following results.

Proposition 2.5.13 ([Fertin et al., 2007]). The MCSP problem for structured patterns type {<,@, G} is approximable
within ratio O(

√
k log(k)) in O(nm3.5 logm) time, where k is the size of an optimal solution, n = |G|, and

m = maxG∈G |E(G)|.

It remains a challenging problem to improve the approximation ratio for the MCSP problem for struc-
tured patterns type {<,@, G}.

Let us consider here subgraphs of linear matchings typeM for someM⊆ {<,@, G} with |M| = 2.
Prove or disprove the following (we would go for prove): Any linear matching type {<,@, G} of
size k contains either a type {<,@} subgraph of size k2/3, a type {<, G} subgraph of size k2/3, or a type
{@, G} subgraph of size k2/3. Notice that, unfortunately, true or false, this cannot be applied for
approximation purposes (approximating the MCSP problem for patterns type {@, G} definitively
remains the bottleneck).
Let us put this problem in perspective. For one, we have shown in [Fertin et al., 2007] that any
linear matching type {<,@, G} of size k contains a subgraph of size ε k2/3, where ε = (

√
17−1)/8 ≈

0.39, which is either type {<,@}, type {<, G}, or type {@, G}. For another, let k be an integer such
that k1/3 is an integer. A simple construction shows that there exists a linear matching type
{<,@, G} of size k that contains neither a subgraph type {<,@}, nor a subgraph type {<, G}, nor
a subgraph type {@, G} of size least ε k2/3 for any ε > 1. Indeed, assuming the contrary, then
any linear matching type {<,@, G} of size k contains a subgraph with at least

√
ε k2/3 = ε1/2 k1/3

edges which is either type {<}, type {@}, or type {G}. A patent contradiction since it can be proved
(see [Fertin et al., 2007]) that there exists a linear matching type {<,@, G} of size k that does not
contain a simple structured pattern of size ε k1/3 for any ε > 1.

2.5.6 Towards biologically sounding models

As we have observed in [Herrbach and Vialette, 2005], the MCSP problem does not completely succeed
in accurately modeling RNA structures. To this end, we have proposed in [Herrbach and Vialette, 2005] to
consider the MCSP problem together with a simple RNA stacking-pair scoring scheme.

30

A contact map is a useful graph-theoretic abstraction (and two-dimensional depiction) of the
structure of a protein. For a protein of size n, and a given threshold ε, the contact map Mε =
[mε(i, j)] is an n × n 0–1 matrix whose entry mε(i, j) equals 1 if the distance between amino
acids i and j is less than or equal to ε, and 0 otherwise [Goldman et al., 1999]. Of particular
importance in our context, the contact map can also be viewed as a Hamiltonian path (usually
depicted horizontally) with nodes representing the amin acids and with edges added that join
pairs of nodes whose centers of gravity have been found to be closer to each other than a fixed
threshold ε. Contact maps are thus linear graphs. Contact maps have been used for secondary
structure prediction, fold assignment, protein structure alignment, and threading (see [Goldman
et al., 1999] and references therein). A Contact map overlap is a measure of similarity of protein
structures based on maximum size common subgraphs in contact maps) [Goldman et al., 1999].
In their pioneered work, Goldman et al. [Goldman et al., 1999] have laid the foundations of the
algorithmic issues of contact map overlap: the general problem is NP-complete and approximable
within a constant ratio for some restricted but interesting special cases. Also, they have introduces
special structures (stacks, queues and staircases) that are of particular importance for proteins. A
notable breakthrough in algorithmic aspects of contact map overlap is a recent paper of Xu et al.
[Xu et al., 2007] where some preliminary fixed-parameter algorithms are presented. Below are
some lines of research we plan to explore.

• Of particular importance, there exists a O(n6) time algorithm for finding the maximum
overlap of two degree 2 contact maps, one of which is either a stack or a staircase [Goldman
et al., 1999]. However, due to the high degree of complexity, it is not practical. Improving
the time complexity of this problem is a challenging and important problem.

• It is intuitively clear – and widely accepted – that contact maps of real proteins are far from
being arbitrary collections of edges since they have a specialized structure reflecting the
geometry of proteins. To this end, Goldman et al. [Goldman et al., 1999] have introduced a
special class of contact maps (self-avoiding walk on the 2D grid) that seem to be a long way
toward capturing this structure (the problem of computing the maximum overlap remains,
however, hard for self-avoiding walks on the 2D grid . . . not a real surprise as self-avoiding
walks do capture the complexity of real instances). Interesting questions include:

� Computing the maximum overlap between two self-avoiding walks on the 2D grid
is known to be approximable within ratio 4. Improving this ratio is crucial to bridge
the theory–practice gap. A promising line of research could be to improve the decom-
position of self-avoiding walks on the 2D grid (it is only known that a self-avoiding
walk can be decomposed into 2 stacks and 1 queue). Notice that it is not even known
whether this problem is APX-hard (self-avoiding walks on the 2D grid enjoy some
degree of planarity).

� Parameterized issues of self-avoiding walks on the 2D grid are completely unexplored.
Obtaining efficient fixed-parameter algorithms would be of particular interest for
practical perspectives.

� It would be of particular interest to discover favorable properties of 3-dimensional
self-avoid walks. Current approaches seem inherently 2-dimensional in that they
exploit topological properties of the plane. These aspects (properties, algorithmic
issues, . . .) are completely unexplored yet.

31

If we assume that the secondary structure of an RNA contains no pseudoknots, the secondary structure
can be decomposed into a few types of loops: stacking pairs, hairpins, bulges, internal loops and multiple
loops [Waterman, 1995]. A stacking-pair is a loop formed by two pairs of consecutive bases (i, j) and
(i+ 1, j− 1). By definition, a stacking-pair contains no unpaired bases, and any other kinds of loops contain
one or more unpaired bases. Since unpaired bases are destabilizing and have positive free energy, staking
pairs are the only type of loops that have negative free energy and stabilize the secondary structure, see
[Ieong et al., 2003] for a nice application of the stacking-pair scoring scheme to RNA secondary structures.
We need some new easy definitions.

Definition 2.5.14 (SP scoring scheme). Let G be a linear matching type {<,@}. The SP-score of G, denoted SP(G),
is defined by

SP(G) = |{(i, j) : i+ 1 < j− 1 ∧ (i, j) ∈ E(G) ∧ (i+ 1, j− 1) ∈ E(G)}|.

Definition 2.5.15 (SP-Trim linear matching). A linear matching graph G type {<,@} is called a SP-trim nested
linear graph provided that SP(G) > SP(G[E(G) − e]) for all e ∈ E(G).

The MCSP for pseudoknot-free RNA under the stacking-pair scoring scheme can be rephrased as follows.

MCSP-SP

• Input : A family of linear graphs G = {G1, G2, . . . , Gn}.
• Solution : A common SP-Trim pattern Gsol type {<,@} of G, i.e., a SP-Trim pattern Gsol type
{<,@} that occurs in each input linear graph of G.
• Measure : The SP-score of Gsol, i.e., SP(Gsol).

We briefly review the results we have obtained for the MCSP-SP problem. Not surprisingly (in the light
of Proposition 2.5.1), the MCSP-SP problem is computationally hard even for quite simple instances (notice
that Proposition 2.5.1 does not apply here as it is concerned with towers of height 1 or 2).

Proposition 2.5.16 ([Herrbach and Vialette, 2005]). The MCSP-SP problem – in its natural decision form – is
NP-complete even if G is composed of SP-trim linear matchings type {<,@}.

The above proposition may be contrasted with the following positive result.

Proposition 2.5.17 ([Herrbach and Vialette, 2005]). The MCSP-SP problem is solvable inO(4kk
√
knm4 log(m))

time, where n = |G|, m = max{|E(Gi) : Gi ∈ G}, and k is the SP-score of the sought common SP-Trim structured
pattern type {<,@}.

The proof of Proposition 2.5.17 is by enumeration and dynamic programming. The following result,
well-suited for fixed |G|, complements Proposition 2.5.17.

Proposition 2.5.18 ([Herrbach and Vialette, 2005]). The MCSP-SP problem is solvable in O(m2n logn−1(mn))
time, where n = |G|, m = max{|E(Gi)| : Gi ∈ G}, and k is the SP-score of the sought common SP-Trim structured
pattern type {<,@}.

Interestingly enough, the proof of Proposition 2.5.18 is by a combination of high-dimensional trapezoids
diagrams and high-dimensional trapezoids graphs [Felsner et al., 1997]. Crucial in our algorithm is a
procedure to compute a maximum weighted disjoint subset of high-dimensional trapezoids (in terms of
disjoint induced closed polygons).

According to Proposition 2.5.18, the MCSP-SP problem is polynomial-time solvable for fixed |G|. Fur-
thermore, as we have seen, the MCSP-SP problem is NP-complete even if G is composed of linear matchings
type {<,@}. Therefore, there is very little hope that a polynomial-time algorithm exists for this restricted case.
However, this raises the important question of whether there exists a more efficient algorithm, although
exponential in n, for fixed |G| in case G is composed of linear matchings type {<,@}. The answer is positive.

32

Proposition 2.5.19 ([Herrbach and Vialette, 2005]). The MCSP-SP problem for linear matchings type {<,@} is
solvable in O(nm2n) time, where n = |G| andm = max{|E(Gi) : Gi ∈ G}.

As the reader might have guessed, there is strong relationships between tree alignment problems and the
MCSP-SP problem in case G is composed of linear matchings type {<,@}, and this similarity is indeed at
the heart of Proposition 2.5.19. First, observe that a linear matching type {<,@} can easily be mapped to an
ordered tree structure. Second, grouping together stacking edges, we can assume that the ordered trees are
vertex weighted by the number of stacking edges, i.e., thickness. The goal is thus clearly to find a common
homeomorphic ordered subtree with additional constraints on the weights (see [Herrbach and Vialette, 2005]
for details).

2.6 Separable patterns

The preceding sections were concerned with two problems: (i) searching for an occurrence of a permutation
in another one and (ii) finding a maximum size common pattern in a collection of linear graphs. But, as we
have observed, a permutation is nothing but a special linear graph, and hence there is a natural interest
in combining the two above-mentioned problems, i.e., finding a maximum size common permutation in a
collection of permutation. But the general problem of finding an occurrence of a permutation in another
one is NP-complete [Bose et al., 1998], and hence, for algorithmic purposes, we need to restrict ourselves to
classes of permutations for which the PERMUTATION PROBLEM problem is polynomial-time solvable. We
focus in this section on separable permutations (this is actually not really a choice as, as far as we are aware of,
separable permutations constitute the only non-trivial class of permutations for which the PERMUTATION
PATTERN problem is polynomial-time solvable).

Recall that a permutation is separable if it contains neither the subpattern 3142 nor 2413 [Bose et al.,
1998; Ibarra, 1997] and that the PERMUTATION PATTERN problem is polynomial-time solvable for separable
patterns. There are actually numerous characterizations of separable permutations, for example in terms of
permutation graphs [Bose et al., 1998], of interval decomposition [Bui-Xuan et al., 2005; Bergeron et al., 2005;
Rossin and Bouvel, 2006], or with ad-hoc structures [Bose et al., 1998]. Our results can be stated as follows.

We are not aware of any finitely based pattern-avoiding permutation classes C for which the
recognition problem (i.e., π ∈ C?) is NP-hard. This remarks motivates the following problem: Is
the problem of finding a maximum size C-pattern in a collection of n permutations polynomial-
time solvable for any finitely based C? If not, exhibit such a class C for which this problem is
NP-hard. As far as we know, this problem is completely open.

Proposition 2.6.1 ([Bouvel et al., 2007]). The problem of finding a common maximum size separable permutation in
a collection ofm permutations, each of size at most n, is solvable in O(n6m+1) time.

Being exponential in the number of permutation is roughly the best one can obtain as shown in the
following proposition (we cannot exclude, however, a O(nO(

√
m) time algorithm).

Proposition 2.6.2 ([Bouvel et al., 2007]). The problem of finding a common maximum size separable permutation in
a collection of permutations is NP-complete, even if each input permutation is separable.

33

We end this section with a first attempt to address the following question: How much finding a common
maximum size separable permutation does help when looking for a common maximum size (general) pattern
in a collection of permutations. Put it in our context, is a common maximum size separable permutation a
good approximation of a common maximum size permutation? We have obtained the following – somewhat
negative – general result.

Proposition 2.6.3 ([Bouvel et al., 2007]). Let Π be a set of permutations and C be any pattern avoiding permutation
class. Furthermore, let k (resp. kC) be the maximum size of a common pattern (resp. maximum size of a common C
pattern) in Π. Then, k/kC ≤

√
k, and the inequality is tight.

In other words, the problem of finding a common maximum size pattern in a collection of permutations
cannot be approximated within a performance ratio better than

√
opt by the problem of finding a common

maximum size C-pattern, where opt is the size of an optimal solution and C is any pattern-avoiding
permutation class.

34

3
Arc-annotated sequences

Contents
3.1 Introduction . 33

3.2 Definitions . 34

3.3 Maximum common patterns . 36

3.4 Pattern matching . 37

3.5 Extending the standard model . 38

3.1 Introduction

Structure comparison for RNA has become a central computational problem bearing many computer science
challenging questions. Indeed, RNA secondary structure comparison is essential for (i) identification of
highly conserved structures during evolution (which cannot always be detected in the primary sequence,
since it is often unpreserved) which suggest a significant common function for the studied RNA molecules,
(ii) RNA classification of various species (phylogeny), (iii) RNA folding prediction by considering a set of
already known secondary structures and (iv) identification of a consensus structure and consequently of a
common role for molecules.

From an algorithmic point of view, RNA structure comparison was first considered in the framework
of ordered trees [Shasha and Zhang, 1989]. More recently, it has also been considered in the framework of
arc-annotated sequences [Evans, 1999c]. An arc-annotated sequence is a pair (u, P) where u is a sequence of
RNA bases and P represents hydrogen bonds between pairs of elements of u. From a purely combinatorial
point of view, arc-annotated sequences are a natural extension of simple sequences. However, using arcs for
modeling non-sequential information together with restrictions on the relative positioning of arcs allow for
varying restrictions on the structure of arc-annotated sequences.

Different pattern matching and motif search problems have been considered in the context of arc-
annotated sequences among which we can mention the Longest Arc-Annotated Subsequence (LAPCS)
problem, the Arc Preserving Subsequence (APS) problem, the Maximum Arc-Preserving Common Subse-
quence (MAPCS) problem, and the Edit-distance for arc-annotated sequence (EDIT) problem [Evans, 1999a;
Jiang et al., 2000b; Alber et al., 2004; Gramm et al., 2006]. For an up-to-date survey of this area we refer the
reader to our chapter [Blin et al., 2010a].

35

36

This chapter is devoted to presenting our algorithmic results for arc-annotated based problems. It is
organized as follows. Section 3.2 presents some preliminaries. Section 3.3 deals with the problem of finding
a common arc-annotated sequence (the LAPCS problem) whereas Section 3.4 is concerned with pattern
matching issues in arc-annotated sequences. In Section 3.5, we extend the standard model with RNA
applications in mind.

3.2 Definitions

Definition 3.2.1 (Arc-annotated sequence). An arc-annotated sequence over alphabet A is a pair (u, P), where
u (the sequence) is a string over A∗ and P (the annotation) is a set of arcs {(i, j) : 1 ≤ i < j ≤ |u|}.

Notice that even if these objects are described in terms of arcs, the orientation is not relevant and we
are actually concerned with edges (but we follow the standard terminology here). In the context of RNA
structures, we have A = {A,C,G,U}, and u and P represent the nucleotide sequence and the hydrogen
bonds of the RNA structure, respectively. Characters in u are thus often referred to as bases. A letter of u is
said to be free if it is no incident to an arc of P (this point is crucial if one compare arc-annotated sequences
with linear graphs as the latters do not allow for free vertices). Two arcs of P are independent if they do not
share a vertex.

Definition 3.2.2 (Occurrence). Let (u, P) and (v,Q) be two arc-annotated sequences. The arc-annotated sequence
(v,Q) occurs in (u, P) if (v,Q) can be obtained from (u, P) by letter deletions.

Notice that the above definition does not allow for edge deletion, i.e., a a does not occurs in a b a .
The definition 3.2.2 is illustrated Figure 3.1.

(u, p) = a b c d b a c a c a d c b

(v, q) = b c a c d

Figure 3.1: Occurrence of an arc-annotated sequence in another arc-annotated sequence.

Again, the relative positioning of arcs is of particular importance for arc-annotated sequences. Following
the example of 2-intervals and linear graphs, this relative positioning is completely described by three binary
relations: (i) the precedence, denoted <, (ii) the inclusion, denoted @, and (iii) the crossing, denoted G. For the
sake of consistency, we choose to adopt this general framework for presenting our results.

Definition 3.2.3. Let (u, P) be an arc-annotated sequence, and (i, j) and (k, l) be two independent arcs of P. The
binary relations <, @ and G are defined as follows:

37

• precedence: (i, j) < (k, l) if and only if j < k,

• inclusion: (k, l) @ (i, j) if and only if i < k and l < j, and

• crossing: (i, j) G (k, l) if and only if i < k < j < l.

The notations (k, l) @ (i, j) and (i, j) A (k, l), and (i, j) < (k, l) and (k, l) > (i, j) are of course equivalent
(note, however, that there does not exist an equivalent for the relation G). The binary relations <, @ et G are
illustrated Figure 3.2.

(i, j) < (k, l) ui uj uk ul

(k, l) @ (i, j) ui uk ul uj

(i, j) G (k, l) ui uk uj ul

Figure 3.2: The binary relations <, G, G.

For the sake of presentation, for two arcs (i, j), (k, l) ∈ p, we write

• (i, j) ∼< (k, l) if and only if (i, j) < (k, l) or (i, j) > (k, l),

• (i, j) ∼@ (k, l) if and only if (i, j) @ (k, l) or (i, j) A (k, l), and

• (i, j) ∼G (k, l) if and only if (i, j) G (k, l) or (k, l) G (i, j).

In her pioneering work [Evans, 1999a], Evans has introduced a five level hierarchy for arc-annotated
sequences that is described as follows

• UNLIMITED: No restriction.

• CROSSING: for any two arcs (i, j), (k, l) ∈ p, either (i, j) ∼< (k, l), (i, j) ∼@ (k, l), or (i, j) ∼G (k, l).

• NESTED: for any two arcs (i, j), (k, l) ∈ p, either (i, j) ∼< (k, l) or (i, j) ∼@ (k, l).

• CHAIN: for any two arcs (i, j), (k, l) ∈ p, (i, j) ∼< (k, l).

• PLAIN: No arc, i.e., p = ∅.

The PLAIN level thus corresponds to sequences in the usual sense. This hierarchy is clearly organized
according to the following chain of inclusions:

PLAIN ⊂ CHAIN ⊂ NESTED ⊂ CROSSING ⊂ UNLIMITED.

The hierarchy introduced by Evans is clearly incomplete (with respect to the combinatorics induced by
the three binary relations <, @ and G). In particular, in the context of RNA secondary structures, the above
hierarchy does not allow to precisely describe stems. To this end, a first refinement of the NESTED level has
been proposed [Guignon et al., 2005]: for any two arcs (i, j), (k, l) ∈ p, (i, j) ∼@ (k, l).

Extending our works on 2-intervals and linear graphs, we have proposed in [Blin et al., 2005a] a clear
unified framework for arc-annotated sequences. While we claim no novelty at all, we do believe this general

38

PLAIN

Type {<}Type {G} Type {@}

Type {<, G} Type {@, G} Type {<,@}

Type {<,@, G}

UNLIMITED

Figure 3.3: The refined arc-annotated sequences hierarchy.

framework allows us for varying restrictions in a clear and precise way. We give an outline of this approach.
LetM ⊆ {<,@, G},M 6= ∅. An arc-annotated sequence (u, P) is typeM if for any two arcs (i, j), (k, l) ∈ p,
there exists a binary relation R ∈ M such that (i, j) ∼R (k, l). According to this definition, CROSSING
corresponds to type {<,@, G}, NESTED correspond to type {<,@}, and PLAIN is type {<}. If we define the
PLAIN level as the class of all arc-annotated sequences with at most one arc, we are left with the refined
hierarchy given Figure 3.3. It is this hierarchy we have chosen to adopt in the sequel.

3.3 Maximum common patterns

Evans has introduced in [Evans, 1999b] the natural extension of longest common subsequences [Bergroth
et al., 2000; Crochemore et al., 2007] to arc-annotated sequences. This problem is known as the LAPCS
(LONGEST ARC-PRESERVING COMMON SUBSEQUENCE) problem.

LAPCS

• Input : Two arc-annotated sequences (u, p) and (v,Q).
• Solution : An arc-annotated sequence (w,R) that occurs in both (u, P) and (v,Q).
• Measure : The number of letters of (w,R), i.e., |w|.

For two subsetsM,M ′ ∈ {<,@, G},M 6= ∅,M ′ 6= ∅, we let LAPCS(M,M ′) stand for the LAPCS problem
where (u, P) (resp. (v,Q)) is an arc-annotated sequence typeM (resp.M ′).

The complexity (standard, approximation and parameterized) has been studied in numerous papers
and manuscripts [Evans, 1999b,c; Jiang et al., 2000b; Lin et al., 2002; Guo, 2002; Hamel et al., 2010]. Evans

39

[Evans, 1999b] was the first to prove that the LAPCS({<,@, G}, PLAIN) problem is NP-complete. On the
positive side, she proved that the LAPCS({<}, {<}) problem is polynomial-time solvable. Jiang et al. [Jiang
et al., 2000b] have proposed aO(nm3) time algorithm for both the LAPCS({<,@}, {<}) and LAPCS({<}, {<})
problems. Of particular importance for pseudoknot-free RNA secondary structures, Lin et al. [Lin et al., 2002]
have proved (such a clever reduction!) that the LAPCS({<,@}, {<,@}) problem is NP-complete even if (u, P)
and (v,Q) are built over a one letter alphabet. This latter result leaves the possibility of a polynomial-time
algorithm for the LAPCS({@}, {@}) problem computational biologists are particularly interested in (see also
[Guignon et al., 2005]). Unfortunately (and surprisingly I would say . . . I used to think that the problem was
polynomial-time solvable), our recent result rules out such a positive issue.

Proposition 3.3.1 ([Hamel et al., 2010]). The LAPCS({@}, {@}) problem is NP-complete.

The complexity of the LAPCS({@}, {@}) problem remains, however, open if the two arc-annotated
sequences are built over a fixed-size alphabet (quite a natural restriction for practical applications). Never-
theless, we conjecture that the LAPCS({@}, {@}) problem remains NP-complete for a fixed-size alphabet (we
also conjecture that it would not be a piece of cake to prove hardness of this restriction).

It is shown in [Alber et al., 2002] that a simple enumerative brute-force algorithm solves the
LAPCS({<,@}, {<,@}) in O((3|A|)l n l) time, where l is the length of the common subsequence
and |A| is the size of the underlying alphabet. Central in this approach is a dynamic programming
algorithm [Gramm et al., 2006] that determines, given two arc-annotated sequences (u, P) and
(v, q)), in O(|u| |v|) time whether (v,Q) is an arc-preserving subsequence of (u, v).
Clearly, the above presented result only leads to an efficient exact algorithm if parameter l
(subsequence length) is small. To get round this limitation, a more involved – and probably
more practical – algorithm in presented in [Alber et al., 2002] to determine in O(3.31k1+k2 n)
time whether an arc-preserving common subsequence can be obtained by deleting (together with
incident arcs) k1 letters from (u, v) and k2 from (v,Q). It is a challenging problem to adapt this
search tree based algorithm or to develop a new approach for the NP-complete LAPCS({@}, {@})
problem. This problem deserves deep consideration.

3.4 Pattern matching

The APS (ARC-PRESERVING SUBSEQUENCE) problem is the natural extension of the usual pattern matching
[Crochemore et al., 2007] to arc-annotated sequences.

APS

• Input : Two arc-annotated sequences (u, p) and (v,Q).

• Question : Does there exist an occurrence of (u, P) in (v,Q)?

Notice that, oppositely to the LAPCS problem, the APS problem is a pure decision problem. Again, for two
setsM,M ′ ∈ {<,@, G},M 6= ∅,M ′ 6= ∅, we let APS(M,M ′) stand for the APS problem where (u, P) (resp.
(v,Q)) is an arc-annotated sequence typeM (resp.M ′).

40

Guo [Guo, 2002] has shown that the APS({<,@, G}, {<}) problem is NP-complete. He has also observed in
[Gramm et al., 2002, 2006] that the hardness of both the APS({<,@, G}, {<,@, G}) and APS(UNLIMITED, PLAIN)
problems are direct consequences of Evans’ works on the LAPCS problem [Evans, 1999b]. Algorithms with
O(nm) and O(n+m) running times, n = |u| etm = |v|, are described in [Gramm et al., 2002, 2006] for the
APS({<,@}, {<,@}) and APS({<}, PLAIN) problem, respectively.

Trying to precisely confine the intractability of the APS problem, quite arduous polynomial reductions
have allowed us to refine and complete the results of Guo [Guo, 2002].

Proposition 3.4.1 ([Blin et al., 2005a]). The APS({@, G}, PLAIN) and the APS({<, G}, PLAIN) problems are
NP-complete.

In other words, using the binary relation G in conjunction with < or @ is enough to get intractability. This
negative result is confirmed by the following easy proposition that shows that the binary relation G alone
does not result in intractability.

Proposition 3.4.2 ([Blin et al., 2005a]). The APS({G}, {G}) problem is solvable in O(nm2) time, where n = |u| and
m = |v|.

3.5 Extending the standard model

Whereas clearly defined, one may naturally argues that the objective function of the LAPCS problem
considers letters only. If this definition makes sense, undoubtedly, for the standard pattern matching
framework, one may reasonably doubt about the adequacy and the accuracy of this model for RNA where
the weight of the arcs cannot be neglected. On that account, we have proposed in [Blin et al., 2007a] a simple
extension of the LAPCS problem, referred hereafter as the MAPCS (MAXIMUM ARC-PRESERVING COMMON
SUBSEQUENCE) problem, where the objective function is concerned with both the number of letters and the
number of arcs in a solution.

MAPCS

• Input : Two arc-annotated sequences (u, p) and (v,Q) built over alphabet A, and functions
f : A→ N∗ and g : A2 → N∗.
• Solution : An arc-annotated sequence (w,R) that occurs both in (u, P) and in (v,Q).
•Measure : The score s((w, r)) =

∑
a∈w f(a)+

∑
(i,j)∈r g(w[i], w[j]) of the arc-annotated sequence

(w,R).

Once again, for any two setsM,M ′ ∈ {<,@, G},M 6= ∅,M ′ 6= ∅, we simply let MAPS(M,M ′) stand for
the MAPS problem where (u, P) (resp. (v,Q)) is an arc-annotated sequence typeM (resp.M ′).

Observe that the LAPCS problem is nothing but the MAPCS problem for zero everywhere g, i.e.,
g((x, y)) = 0 for all (x, y) ∈ A2, and hence all negative results of the LAPCS problem directly propagate to
the MAPCS problem. Focusing on zero everywhere f, i.e., f(x) = 0 for all x ∈ A, results in a more interesting
problem that deserves separate consideration. Our positive and negative contributions are given in the
following propositions (the first two are concerned with zero everywhere f).

Not surprisingly, the MAPCS problem is hard for simple instance.

Proposition 3.5.1 ([Blin et al., 2007a]). The MAPCS({<,@}, {<,@}) and MAPCS({<,@, G}, PLAIN) problems
are NP-complete.

Proposition 3.5.2 ([Blin et al., 2007a]). The MAPCS({<,@, G}, {<,@, G}) problem is NP-complete even for zero
everywhere f.

41

The two following propositions give some positive results.

Proposition 3.5.3 ([Blin et al., 2007a]). For zero everywhere f, the MAPCS({<,@}, {<,@}), MAPCS({<,@}, {<}),
and MAPCS({<}, {<}) problems are solvable in O(n2m2), O(m2, n) and O(nm) time, respectively, where n = |u|
andm = |v|.

Proposition 3.5.4 ([Blin et al., 2007a]). The MAPCS({<,@}, {<}) and MAPCS ({<}, {<}) problems are solvable
in O(nm3) and O(nm) time, respectively, where n = |u| andm = |v|.

42

Part II

Pattern Matching in Graphs

43

Introduction

High-throughput analysis makes possible the study of protein-protein interactions at a genome-wise scale
[Gavin et al., 2002; Ho et al., 2002; Uetz et al., 2000], and comparative analysis tries to determine the extent to
which protein networks are conserved among species. Indeed, mounting evidence suggests that proteins
that function together in a pathway or a structural complex are likely to evolve in a correlated fashion, and,
during evolution, all such functionally linked proteins tend to be either preserved or eliminated in a new
species [Pellegrini et al., 1999].

Protein interactions identified on a genome-wide scale are commonly visualized as protein interaction
graphs, where proteins are vertices and interactions are edges [Titz et al., 2004]. Experimentally derived
interaction networks can be extremely complex, so that it is a challenging problem to extract biological
functions or pathways from them. However, biological systems are hierarchically organized into functional
modules. Several methods have been proposed for identifying functional modules in protein-protein
interaction graphs. As observed in [Pereira-Leal et al., 2004], cluster analysis is an obvious choice of
methodology for the extraction of functional modules from protein interaction networks. Comparative
analysis of protein-protein interaction graphs aims at finding complexes that are common to different
species. Kelley et al. [Kelley et al., 2003] developed the program PathBlast, which aligns two protein-protein
interaction graphs combining topology and sequence similarity. Sharan et al. [Sharan et al., 2004] studied the
conservation of complexes (they focused on dense, clique-like interaction patterns) that are conserved in
Saccharomyces cerevisae (a species of budding yeast) and Helicobacter pylori (a gram-negative, microaerophilic
bacterium that infects various areas of the stomach and duodenum), and found 11 significantly conserved
complexes (several of these complexes match very well with prior experimental knowledge on complexes
in yeast only). They actually recasted the problem of searching for conserved complexes as a problem of
searching for heavy subgraphs in an edge- and node-weighted graph, whose vertices are orthologous protein
pairs. A promising computational framework for alignment and comparison of more than one protein
network together with a three-way alignment of the protein-protein interaction networks of Caenorhabditis
elegans, Drosophila melanogaster and Saccharomyces cerevisae is presented in [Sharan et al., 2005].

This part is devoted to graph-based algorithmic aspects of this topic. We have divided our presentation
into three chapters. Chapter 4 is devoted to graph homomorphisms-like aspects. The rationale for this
research is that graph-homomorphisms do preserve adjacencies and hence are a natural choice for pattern
matching problems in biological networks (as long as injectivity is also required!). Chapter 5 is concerned
with a more recent view of graph motifs in biological networks. Here, topology is of lesser importance but
the functionalities of network nodes (expressed by colors) form the governing principle. Finally, we present
in Chapter 6 our contribution to a somewhat more classical view of pattern matching in biological networks.

45

46

4
Pattern matching in graphs

Contents
4.1 Introduction . 43
4.2 Definitions . 43
4.3 Finding exact occurrences . 44

4.3.1 Polynomial cases, hardness and coping with hardness 44
4.3.2 The corresponding number . 45

4.4 Approximate occurrences . 46
4.5 Replacing lists by colors . 47

4.1 Introduction

We consider in this chapter two edge-preserving pattern matching problems in graphs (one being a restriction
of the other). Common to these two problems are the fact that each vertex of the motif (given in the form of a
graph) is allowed to match to only few vertices of the target graph. First, we shall consider the case where
each vertex of the motif is associated with the list of vertices of the target graph it is allowed to match. Notice
that we shall only discuss about “lists”whereas we actually mean “sets”as order is not relevant here . . . but
most – not to say all – references in this area use the term list. Our interest in this problem will be for fixed
cardinality lists. Second, we shall consider a natural restriction on lists: any two intersecting lists are equal.
It will be more convenient to use colors instead of lists for this particular problem.

This chapter is organized as follows. Section 4.2 presents some preliminaries. Section 4.3 is devoted to
list graph matching and we consider in Section 4.4 approximate occurrences. Section 4.5 is concerned with
the relaxation to colors.

4.2 Definitions

A graph homomorphism θ from a graph G to a graph H, written θ : G → H, is a mapping θ : V(G) → V(H)
from the vertex set of G to the vertex set of H such that {u, v} ∈ E(G) implies {θ(u), θ(v)} ∈ E(H). A graph
homomorphism is thus a mapping between two graphs that respects their structure; more concretely it maps
adjacent vertices to adjacent vertices. If θ : G→ H, G is said to be homomorphic to H or H-colorable. Indeed,

47

48

in terms of graph coloring, k-colorings of G are precisely homomorphisms θ : G → Kk, where Kk is the
complete graph with k vertices. As a consequence if G→ H, the chromatic number of G is at most that of H.
The best general reference is [Hell and Nešetřil, 2004]. If the homomorphism θ : G→ H is a bijection whose
inverse function is also a graph homomorphism, then θ is a graph isomorphism. Determining whether there
is an isomorphism between two graphs is an important (but hard!) problem in computational complexity
theory (see [Garey and Johnson, 1979]).

Given graphs G and H, and lists L(u) ⊆ V(H), u ∈ V(G), a list homomorphism of G to Hwith respect to
the lists L(u), u ∈ V(G), is an homomorphism θ : G→ H such that θ(u) ∈ L(u) for all u ∈ V(G). By abuse
of notation, for any v ∈ V(H), we let L−1(v) stand for {u ∈ V(G) : v ∈ L(u)}. Recall that the degree of a vertex
δ(u) is the number of vertices adjacent to u and that the degree of G is ∆(G) = max{δ(u) : u ∈ V(G)}. A
graph is regular of degree ∆ or ∆-regular if the degree of all vertices equal ∆.

4.3 Finding exact occurrences

4.3.1 Polynomial cases, hardness and coping with hardness

The problem we are interested in is formally defined as follows.

Exact-(µG, µH)-Matching

• Input : Two graphs G and H, and the lists L(u) ⊆ V(H), u ∈ V(G), such that (i) max{|L(u)| :
u ∈ V(G)} ≤ µG and (ii) max{|L−1(v)| : v ∈ V(H)} ≤ µH.

• Question : Does there exist an injective list homomorphism θ : G→ H with respect to the lists
L(u), u ∈ V(G)?

Clearly, we may assume |L(u)| > 0 for all u ∈ V(G), and |L−1(v)| > 0 for all ∈ V(H) (a trivial clean-up
procedure would apply otherwise). For now on, unless explicitly stated, we assume µG and µH to be
fixed constant. Indeed, observe that for unbounded µG and µH, the EXACT-(µH, µG)-MATCHING problem
trivially contains the CLIQUE problem, and hence is NP-complete [Garey and Johnson, 1979]. Furthermore,
to avoid heavy notations, we will let n andm stand for the number of vertices and the number of edges of G,
respectively, and p and q stand for the number of vertices and the number of edges of H, respectively.

As sketched above, most on our interest in the EXACT-(µH, µG)-MATCHING problem is concerned with
small (and actually fixed) µG and µH. We have proved in [Fagnot et al., 2008] that the problem we are
interested in is polynomial-time for µG ≤ 2.

Proposition 4.3.1 ([Fagnot et al., 2008]). The EXACT-(2, µH)-MATCHING is solvable in O(n3 + q) time. This
reduces to O(n+ q) time if µH = O(1).

Notice that the counting problem associated to EXACT-(2, µH)-MATCHING is #P-complete and is solvable
in O(1.3247n) time [Fagnot et al., 2008]. We have completed the above proposition in [Fertin et al., 2009b].

Proposition 4.3.2 ([Fertin et al., 2009b]). The EXACT-(µG, 1)-MATCHING is solvable in linear time for ∆(G) ≤ 2,
for any constant µG.

One may argue, however, that the above proposition is too constrained to be of interest (each vertex
u ∈ V(G) has private vertices in H and G is collection of paths and cycles). Unfortunately, despite the
simplicity of Proposition 4.3.2, the result is quite tight - taking into consideration both ∆(G) and ∆(H) - as
shown in the following proposition that summarize our negative results.

49

Proposition 4.3.3 ([Fagnot et al., 2008; Fertin et al., 2009b]). The following problems are NP-completes:

• the EXACT-(3, 2)-MATCHING problem for ∆(G) ≤ 1 and ∆(H) ≤ 2,

• the EXACT-(3, 1)-MATCHING problem for bipartite G and H, and

• the EXACT-(3, 1)-MATCHING for ∆(G) ≤ 3 and ∆(H) ≤ 4.

In the light of the negative results presented in Proposition 4.3.3, a substantial part of our work presented
[Fagnot et al., 2008] was devoted to coping with hardness by means of exponential-time algorithms.

Proposition 4.3.4 ([Fagnot et al., 2008]). The EXACT-(µG, µH)-MATCHING problem is solvable

• in O(1.1889n) time and exponential space,

• in O(1.2025n) time and polynomial-space,

• in O(1.2388n+m) time, and

• in (2− 2/(µG + 1))n time within a polynomial factor.

Parameterized complexity issues of the EXACT-(µG, µH)-MATCHING problem have been initiated in
[Fagnot et al., 2004] and further investigated in [Fagnot et al., 2008]. We have considered two natural
parameters: (i) the number of ambiguous vertices in G (those vertices that can match different vertices in H),
and (ii) an objective with respect to a weight function. It turns out that the first parameterization yields to
fixed-parameter tractability whereas the second yields to parameterized intractability.

Proposition 4.3.5 ([Fagnot et al., 2008]). The EXACT-(µG, µH)-MATCHING problem is solvable inO(k (µG)k (n+
m)) time, where k = |{u ∈ V(G) : |L(u)| > 1}|.

Proposition 4.3.6 ([Fagnot et al., 2008]). Let G and H be two graphs, L(u) ⊆ V(H), u ∈ V(G) be lists, and
ω : (V(G)×V(H)) → N+ be a scoring such that ω(u, v) > 0 only if v ∈ L(u). Deciding whether there exists an
injective homomorphism θ : G→ H with respect to the lists L(u), u ∈ V(G), such that

∑
u∈V(G)ω(u, θ(u)) ≥ k is

a W[1]-hard problem with respect to parameter k.

In other words, under a reasonable and commonly accepted complexity hypothesis Downey and Fellows
[1999], there does not exist an algorithm exponential in k only to determine whether there exists an injective
homomorphism θ : G→ Hwith respect to the lists L(u), u ∈ V(G), such that

∑
u∈V(G)ω(u, θ(u)) ≥ k It is

worth noticing that Proposition 4.3.6 holds even ifω(u, v) ∈ {0, 1} for all (u, v) ∈ (V(G)×V(H)).

4.3.2 The corresponding number

Aiming at separating Yes instances from possibly No instances (and hence speeding-up our algorithms for
some special instances), we have introduced in [Fertin et al., 2009b] the correspondence number C(G,H,L) of
any instance of the EXACT-(µG, 1)-MATCHING problem. It is defined as follow:

C(G,H,L) = min
{
|{u ′, v ′} : u ′ ∈ L(u) ∧ v ′ ∈ L(v) ∧ {u ′, v ′} ∈ E(H)}|

|L(u)| |L(v)|
: {u, v} ∈ E(G)

}
.

For now on, we assume that, for each edge {u, v} ∈ E(G), there exists an edge {u ′, v ′} ∈ E(H) such that
u ′ ∈ L(u) and v ′ ∈ L(v) (see [Fertin et al., 2009b] for details). The rationale for introducing the corresponding
number C(G,H,L) stems from the following observations. For one (µG)

−2 ≤ C(G,H,L) ≤ 1. For another,
if C(G,H,L) = 1, then there exists an injective homomorphism θ : G → H with respect to the lists L(u),
u ∈ V(G). Indeed, any injective mapping of G to H with respect to the lists L(u), u ∈ V(G), is a solution

50

(recall that µH = 1). Ideally, one would like to determine a bound c∗ as small as possible, µG−2 < c∗ < 1,
such that if C(G,H,L) > c∗ then (G,H,L) is a Yes instance and if C(G,H,L) ≤ c∗ then (G,H,L) is possibly
a No instance. Unfortunately, we did not succeed in obtaining such a precise bound and we have thus
focused in [Fertin et al., 2009b] on the determination of two bounds clow and cup, clow ≤ cup, such that if
C(G,H,L) > cup then (G,H,L) is a Yes instance, and if C(G,H,L) ≤ clow then (G,H,L) is possibly a No
instance. Of course, the smaller cup and cup − clow are, the better our estimation is.

Proposition 4.3.7 ([Fertin et al., 2009b]). Let (G,H,L) be any instance of the EXACT-(µG, 1)-MATCHING problem.
If C(G,H,L) > 2∆(G)−1−e−1

2∆(G)−1 then there exists an injective homomorphism θ of G to H with respect to the lists L(u),
u ∈ V(G). If C(G,H,L) ≤ ∆(G)−1

∆(G) then an injective homomorphism θ of G to H with respect to the lists L(u),
u ∈ V(G), might not exist.

The upper-bound is by the Lovász local lemma [Erdös and Lovász, 1975]. According to this bound, if
∆(G) = 1 (resp. ∆(G) = 2, ∆(G) = 3) and C(G,H,L) > 0.633 (resp. C(G,H,L) > 0.878, C(G,H,L) > 0.927)
then there exists an injective homomorphism θ ofG toHwith respect to the listsL(u). As for the lower-bound,
for any d > 1, we provided a generic construction of an instance (G,H,L) of the EXACT-(µG, 1)-MATCHING

problem with ∆(G) = d and C(G,H,L) ≤ ∆(G)−1
∆(G) for which there does not exist an injective homomorphism

θ of G to Hwith respect to the lists L(u), u ∈ V(G).

Subsection 4.3.2 is concerned exclusively with the EXACT-(µG, 1)-MATCHING problem. The ratio-
nale for considering µh = 1 is that the problem of finding an injective homomorphism θ : G→ H
with respect to the lists L(u), u ∈ V(G), enjoys some “degree of independence”. Indeed, for any
distinct u, v ∈ V(G), we have θ(u) 6= θ(v) in any solution θ since L(u) ∩ L(v) = ∅. Extending
Proposition 4.3.7 to any instance of the EXACT-(µG, µH)-MATCHING problem would be of particu-
lar interest. In particular, does there exist a constant c∗ (possibly depending on µG and µH) such
that if C(G,H,L) > c∗ then there exists an injective homomorphism θ of G to Hwith respect to
the lists L(u), u ∈ V(G)? Most of these issues are completely unexplored.

4.4 Approximate occurrences

Requiring an injective homomorphism, i.e., an injective mapping that preserves all edges of G, might result
in an over-constrained problem, though it may exist good approximate solutions, i.e., solutions that match
many but not all edges of G. This remark is just common sense for practical considerations. We considered
in [Fertin et al., 2009b] one possible approach to deal with approximate occurrences (see also upcoming
Section 4.5 for a – from our point of view – more practical approach). We refer to this optimization problem
as the MAX-(µG, µH)-MATCHING problem.

51

Max-(µG, µH)-Matching

• Input : Two graphs G and H, and the lists L(u) ⊆ V(H), u ∈ V(G), such that (i) max{|L(u)| :
u ∈ V(G)} ≤ µG and (ii) max{|L−1(v)| : v ∈ V(H)} ≤ µH.
•Solution : A mapping θ : V(G)→ V(H) with respect to the listsL(u), u ∈ V(G), i.e., θ(u) ∈ L(u)
for all u ∈ V(G).
• Measure : The number of edges conserved by θ, i.e., |{{u, v} ∈ E(G) : {θ(u), θ(v)} ∈ E(H)}|.

Notice that for the MAX-(µG, µH)-MATCHING problem the solution mapping θmay not be (and in general
is not) an injective graph homomorphism as it is not required to preserve all edges. Being a natural but mere
restriction of the EXACT-(µG, µH)-MATCHING problem, the MAX-(µG, µH)-MATCHING problem inherits of
all the negative results of it (see Section 4.3). Therefore, we focus on approximation and (unfortunately) on
hardness of approximation. Indeed (and not surprisingly, I admit it), as we have shown in [Fertin et al.,
2009b], turning the pure decision EXACT-(µG, µH)-MATCHING problem into an optimization one results in a
harder problem (considering parameters µG and µH).

Proposition 4.4.1 ([Fertin et al., 2009b]). The MAX-(1, 2)-MATCHING is APX-hard even if G and H are bipartite
graphs with ∆(G) ≤ 3 and ∆(H) ≤ 2.

The above proposition gains in interest if we compare it with Proposition 4.3.1 and Proposition 4.3.2.
Actually, it is an immediate consequence of Proposition 4.4.1 that the MAX-(1, 2)-MATCHING problem for
∆(G) = 3 and ∆(H) = 2 (resp. ∆(G) = 6 and ∆(H) = 5) is not approximable within ratio 1.0005 (resp.
1.0014), unless P = NP.

Proposition 4.4.2 ([Fertin et al., 2009b]). The MAX-(µG, 1)-MATCHING problem is approximable within ratio
2 d3∆(G)/5e if ∆(G) is even and within ratio 2 d(3∆(G) + 2)/5e if ∆(G) is odd.

Actually, we have shown a somewhat stronger result in [Fertin et al., 2009b]: if the linear arboricity
conjecture (see [Akiyama et al., 1981]) is true, then the MAX-(µG, 1)-MATCHING is approximable within ratio
∆(G) + 2 if ∆(G) is even and within ratio ∆(G) + 1 if ∆(G) is odd, for any ∆(H) and any fixed µG. Notice
that the linear arboricity conjecture has been shown to be asymptotically correct as d→∞ [Alon, 1988]

Using a straightforward application of the probabilistic method [Alon and Spencer, 1992] – a powerful
tool for demonstrating the existence of combinatorial objects – we gave in [Fertin et al., 2005] a linear-time
randomized (µG)

2-approximation algorithm for the MAX-(µG, 1)-MATCHING problem. We have improved
this result in [Fertin et al., 2009b].

Proposition 4.4.3 ([Fertin et al., 2009b]). There exists a randomized 2µG-approximation algorithm for the MAX-
(µG, 1)-MATCHING problem, for any µG.

We close this section by discussing exponential issues of the MAX-(µG, 1)-MATCHING problem. For any
instance (G,H,L) of the MAX-(µG, 1)-MATCHING problem, we have shown in [Fertin et al., 2009b] that one
may construct in polynomial-time a (unfortunately complicated) graph I[G,H,L], called the incompatibility
graph of the instance, that satisfies the following properties:

1. there exists an injective mapping θ : V(G)→ V(H) with respect to the lists L(u), u ∈ V(G), such that
|{{u, v} ∈ E(G) : {θ(u), θ(v)} ∈ E(H)}| ≥ k if and only if the stability number of I[G,H,L] is at least k,
and

2. ∆(I[G,H,L]) ≤ (µG − 1)(2µG ∆(G) − µG + 1).

Combining these properties, we have obtained the following result.

52

Proposition 4.4.4 ([Fertin et al., 2009b]). The MAX-(µG, 1)-MATCHING problem is solvable in O(m (D + 1)k)
time, wherem is the number of edges of G and D = ∆(I[G,H,L]).

Notice that D is fixed as long as ∆(G), µG and µH are fixed. Therefore, the MAX-(µG, 1)-MATCHING
problem is fixed-parameter tractable for parameter “number of conserved edges”.

As the reader may have noticed, the approximation of the general MAX-(µG, µH)-MATCHING
problem is almost completely unexplored. Indeed, we are still not be able to tackle the case
µH > 1. As noticed in the headache note Page 46, in case µH = 1, any injective mapping
θ : G→ Hwith respect to the lists L(u), u ∈ V(G), enjoys some “degree of independence” that we do
use for approximation design. Overcoming this difficulty remains a totally open but challenging
problem.

4.5 Replacing lists by colors

We consider in this section a restriction of the MAX-(µG, µH)-MATCHING problem well-suited for better
modeling specific applications. Indeed, one may argue that using lists L(u), u ∈ V(G), to represent the
putative correspondences is not restrictive enough for most practical applications (although allowing a
large degree of freedom in the design!). One very important objection is that one may reasonably asks for
L(u) = L(v) as soon as L(u) ∩ L(v) 6= ∅ as a golden rule. This objection becomes evident in the context of
protein-protein interaction networks where it is folklore to construct the putative correspondences (the lists)
by (i) (BLAST) comparing the sequences two by two, (ii) adjusting a cutoff to construct a correspondence
graph, and finally (iii) computing the connected components of the correspondence graph. See [Brevier
et al., 2007] and [Brevier et al., 2009]. This additional constraint is better taken into account by using
colored-vertices instead of the lists L(u), u ∈ V(G), in the MAX-(µG, µH)-MATCHING problem.

Let col be a set of colors and G equipped with a coloring mapping λ : V(G)→ col. For any color ci ∈ col,
we denote by colG(ci) the set of vertices of G that are colored with color ci, i.e., colG(ci) = {u ∈ V(G) :
λ(u) = ci}. The multiplicity of λ in G, written mult(G, λ), is the maximum number of occurrences of a color
in G, i.e., mult(G, λ) = max{| colG(ci)| : ci ∈ col}. Let G and H be two graphs and let θ : V(G) → V(H) be
an injective mapping. The set of edges of G that are preserved in H by θ is denoted by match(G,H, θ), i.e.,
match(G,H, θ) = {{u, v} ∈ E(G) : {θ(u), θ(v)} ∈ E(H)}. If both G and H are equipped with some colorings
λG : V(G)→ col and λH : V(H)→ col of their vertices, a mapping θ : V(G)→ V(H) is said to be with respect
to λG and λH if λG(u) = λH(θ(u)) for every u ∈ V(G), i.e., θ is a color-preserving mapping. For simplicity,

we shall usually abbreviate such a mapping as θ : V(G)
λG,λH−−−−→ V(H).

Max-(ρ, σ)-Matching-Colors

• Input : Two graphs G and H together with the coloring mappings λG : V(G) → col and
λH : V(H)→ col with mult(G, λG) = ρ and mult(H, λH) = σ.
• Solution : An injective mapping θ : V(G)

λG,λH−−−−→ V(H).
•Measure : The number of edges of Gmatched by the injective mapping θ, i.e., |match(G,H, θ)|.

53

We let EXACT-(ρ, σ)-MATCHING-COLORS stand for the extremal problem of finding an injective mapping

θ : V(G)
λG,λH−−−−→ V(H) that matches all the edges of G, i.e., θ is required to be an injective graph homomor-

phism as we have considered in Section 4.3. Also, we call an instance of both MAX-(ρ, σ)-MATCHING-COLORS
and EXACT-(ρ, σ)-MATCHING-COLORS colorful if ρ = 1, i.e., each color occurs once in the motif graph G.

Clearly, MAX-(1, σ)-MATCHING–COLORS and MAX–(µG, 1)–MATCHING are equivalent problems (colorful
instances and disjoint lists do represent the same configuration). Then it follows that the MAX-(1, σ)-
MATCHING-COLORS is approximable within ratio 2 d3∆(G)/5e if ∆(G) is even and within ratio 2 d(3∆(G) +
2)/5e if ∆(G) is odd, for any ∆(H) and any fixed σH (see Proposition 4.4.2).

We have proposed in [Brevier et al., 2009] a random walk algorithm to deal with exact colorful instances
(recall that theO∗ notation suppresses polynomial terms) Observe that the EXACT-(1, σ)-MATCHING-COLORS
problem is easily solvable in O∗(σn) time (n is the order of G): the easy brute-force algorithm tries all

possible injective mappings θ : V(G)
λG,λH−−−−→ V(H) and returns the best one.

Proposition 4.5.1 ([Brevier et al., 2009]). There exists a randomized algorithm that, given any instance (G,H) of
the EXACT-(1, σ)-MATCHING-COLORS problem, returns an injective homomorphism θ : V(G)

λG,λH−−−−→ V(H) (if
such a mapping exists) in O(f(σ)n) expected time (ignoring polynomial factors), where

f(σ) =
4σ(2σ− 2)3

4(2σ− 2)3 + 27(2σ− 3)
.

Recall that the MAX-(1, 2)-MATCHING-COLORS problem for bipartite graphs G and H with ∆(G) = 3 and
∆(H) = 2 (resp. with ∆(G) = 6 and ∆(H) = 5) is APX-hard and is not approximable within ratio 1.0005
(resp. 1.0014), unless P = NP [Fertin et al., 2009b]. Therefore, there is a natural interest to investigate the
complexity issues of MAX-(ρ, σ)-MATCHING-COLORS for restricted graph classes. Our results are technical
but quite negative.

Proposition 4.5.2 ([Brevier et al., 2009]). The MAX-(3, 3)-MATCHING-COLORS (resp. MAX-(2, 2)-MATCHING-
COLORS) problem is APX-hard even if both G and H are linear forests (resp. trees with maximum degree 3).

It remains open, however, whether the MAX-(ρ, σ)-MATCHING-COLORS problem for linear forests G and
H is polynomial-time solvable in case ρ < 3. In the light of the negative results of Proposition 4.5.2, there is a
natural interest on approximating the MAX-(ρ, σ)-MATCHING-COLORS problem for bounded-degree graphs.
We have shown the following result.

Proposition 4.5.3 ([Brevier et al., 2009]). For any ρ and σ, the MAX-(ρ, σ)-MATCHING-COLORS problem is
approximable within ratio 3/2(∆min + 1) + ε for any ε > 0, where ∆min = min{∆(G), ∆(H)}.

Central in the above result is a (3/2+ ε)-approximation algorithm, for any ε > 0, for a new combinatorial
problem that may be of independent interest [Brevier et al., 2009]: Given a graph G and a symmetric matrix
A = [ai,j] of ordermwhose entries are natural integers, find a maximum cardinality matchingM⊆ E(G)
subject to the constraint that, for 1 ≤ i ≤ j ≤ m, the number of edges inM having one end-vertex colored ci
and one end-vertex colored cj is at most ai,j.

Combining a random 2-labeling procedure (together with its induced cut) and a weighted bipartite
matching algorithm, we have obtained in [Brevier et al., 2009] the following result.

Proposition 4.5.4 ([Brevier et al., 2009]). There exists a randomized algorithm for the MAX-(ρ, σ)-MATCHING-
COLORS problem with expected performance ratio 4σ.

We have already mentioned that the MAX-(3, 3)-MATCHING-COLORS problem is APX-hard even if both
G and H are linear forests. Furthermore, according to Proposition 4.5.3, the MAX-(ρ, σ)-MATCHING-COLORS
problem for linear forests is approximable within ratio 2(∆min + 1) = 6. This is strengthened by the following
proposition (it is worth mentioning that the technique is based on 2-interval patterns).

54

Proposition 4.5.5 ([Brevier et al., 2009]). For any ρ and σ, the MAX-(ρ, σ)-MATCHING-COLORS problem is
approximable within ratio 4 in case both G and H are linear forests.

We close this chapter by mentioning that we have proposed a better approximation for the MAX-(2, 2)-
MATCHING-COLORS problem.

Proposition 4.5.6 ([Brevier et al., 2009]). MAX-(2, 2)-MATCHING-COLORS is approximable within ratio 1.1442.

5
Searching for connected occurrences

Contents
5.1 Introduction . 51
5.2 Definitions . 52
5.3 Searching for exact connected occurrences . 52

5.3.1 Polynomial-time and hardness results . 52
5.3.2 Parameterized complexity . 53

5.4 Minimizing the number of connected components . 55
5.4.1 Algorithms and hardness . 56
5.4.2 Parameterized complexity . 57

5.5 Maximizing the size of the connected occurrence . 58
5.5.1 Algorithms and hardness . 59
5.5.2 Algorithms and parameterized complexity . 60

5.6 Further variants . 60
5.6.1 Practical issues . 61

5.1 Introduction

With the advent of network biology [Sharan and Ideker, 2006; Alm and Arkin, 2003] and complex network
analysis in general, the study of pattern matching problems in graphs has become more and more important.
In this context, the term “graph motif ”plays a central role.

Roughly speaking, there are two views of graph (or network) motifs. The older is the topological
view where one basically ends up with certain subgraph isomorphism problems. For instance, the term
“network motif ” has been used to represent patterns of interconnections that occur in a network at frequencies
much higher than those found in random networks [Shen-Orr et al., 2002; Wernicke, 2006] (Chapter 4 was
concerned with such a view). By way of contrast, the second and more recent view on graph motifs takes a
more “functional approach”. Here, topology is of lesser importance but the functionalities of network nodes
(expressed by colors) form the governing principle. This approach has been propagated by Lacroix et al.
[Lacroix et al., 2006].

This chapter is organized as follows. Section 5.2 presents some preliminaries. Section 5.3 is devoted
to studying algorithmic aspects of the problem of finding a connected occurrence of a motif in a graph.

55

56

Section 5.4 and Section 5.5 are concerned with optimization issues of this topic, and we briefly present in
Section 5.6 further variants of this problem we are particularly interested in.

5.2 Definitions

A multiset (or bag) is a pair (A,mult), whereA is some set and mult : A→ N∗ The setA is called the underlying
set of elements. For each a ∈ A, the multiplicity (that is, the number of occurrences) of a is the number
mult(a). The maximum multiplicity of (A,mult) is defined to be max{mult(a) : a ∈ A}. It is common to write
the function mult as a set of ordered pairs {(a,mult(a)) : a ∈ A}. For example, {(a, 2), (b, 3), (c, 1)} is the
multiset ({a, b, c, d},mult), where mult : A→ N∗ is defined by mult(a) = 2, mult(b) = 3, and mult(c) = 1.

We shall consider here motifs given in the form of multisets of colors and we writeM = (col,mult). A
motifM is called colorful if it has maximum multiplicity 1, i.e.,M reduces to a set.

The problem we are interested in is formally defined as follows.

Color-Matching

• Input : A set of colors col, a motifM = (col,mult), and a vertex colored graph (G, λ), where
λ : V(G)→ col is the coloring mapping.

• Question : Does there exist a connected induced subgraph of G colored byM, i.e., a subset
V ′ ⊆ V(G) such that (i) G[V ′] is connected, and (ii) λ(V ′) =M ?

In other words, we are asked to find a connected subgraph of Gwith |M| vertices which is exactly colored
with the colors ofM (including multiplicities, if any). See Figure 5.1 for an illustration.

The different vertex colors are used to model different functionalities. Although originally introduced in
a biological context [Lacroix et al., 2006; Fellows et al., 2007], it is conceivable that the GRAPH MOTIF is an
interesting problem not only for biological networks, but also may prove useful when studying complex
social or technical networks (this remark is also in Betzler et al. [2008]).

5.3 Searching for exact connected occurrences

5.3.1 Polynomial-time and hardness results

The GRAPH MOTIF problem has been shown to be NP-complete even if the target graphG is a tree in [Lacroix
et al., 2006]. The following proposition complete this result (one may easily notice that the GRAPH MOTIF
problem is polynomial-time solvable if ∆(G) ≤ 2).

Proposition 5.3.1 ([Fellows et al., 2007]). The two following variants of the GRAPH MOTIF problem are NP-complete:

1. the target G is a bipartite graph, ∆(G) = 4, and λ is a proper 2-coloring of G, and

2. the target G is a tree, ∆(G) = 3, each color occurs at most three times in G, andM is a colorful motif.

We did not succeed in proving that the GRAPH MOTIF problem is NP-complete if the targetG is a bipartite
graph, ∆(G) = 3, and λ is a (not necessarily) proper 2-coloring of G. However, we conjecture this restriction
to be NP-complete.

Defining the precise tractability landscape of the GRAPH MOTIF is of particular interest to strengthen
hardness results. The following proposition shows that the jump in complexity is sudden and confirms that
the second item of Proposition 5.3.1 is the best possible.

57

c1

c2

c1 c2

c2

c2

c3 c2

c3c1

c4c3

c6c1

c4 c3

c6

c1 c3

c2

c1

c3c5

c1

Figure 5.1: A vertex-colored graph (the pancake network of order 4) together with an occurrence (in bold) of
the motifM = {c1, c1, c2, c3, c3, c3, c4, c5, c6, c6}.

Proposition 5.3.2 ([Fellows et al., 2007]). The GRAPH MOTIF problem is solvable in polynomial-time if the target
G is a tree, each color occurs at most two times in G, andM is a colorful motif.

5.3.2 Parameterized complexity

In their pioneered work [Lacroix et al., 2006], the GRAPH MOTIF problem was proved to fixed-parameter
tractable when parameterized by the size of the given motif (i.e., |M|), in case the target graph is a tree.
However, as observed in [Lacroix et al., 2006], their fixed-parameter algorithm does not apply when the
vertex-colored graph is a general graph. For this case, they only provided a heuristic algorithm which works
well in practice. This motivates us to further investigate the tractability landscape of the GRAPH MOTIF
problem. From our point of view, a notable breakthrough in the study of the GRAPH MOTIF problem for
general graphs is that it is, as we shall see soon, fixed-parameter tractable when parameterized by the size
of the motifM [Fellows et al., 2007]. This result is important in many ways. For one, it rests on a firm
foundation and paves the way to further fixed-parameter algorithms (current approaches are still limited
to motifs of size about 15 whereas practical applications do ask for motifs of size about 25–30 [Bruckner
et al., 2009b], not an order of magnitude difference). For another, it motivates the investigation of the GRAPH
MOTIF problem under different parameters which govern the structure of its input.

At the heart of our approach is the color-coding technique introduced by Alon et al. [Alon et al., 1995],
whose derandomized version crucially relies on the notion of perfect hash families.

Definition 5.3.3 (Perfect Hash Family [Alon et al., 1995]). Let G be a graph. A family F of functions from V(G)
to {1, 2, . . . , k} is perfect if for any subset V ′ ⊆ V(G) of k vertices there is a function f ∈ F which is one-to-one on
V ′.

58

Aiming at accurate models, variants of the GRAPH MOTIF problem are greatly needed. To this aim,
Betzler et al. [Betzler et al., 2008] replaced connectedness demand by more robust requirements,
and proved the problem of finding a biconnected occurrence ofM inG to be W[1]-complete when
the parameter is the size of the motif. This result is of particular importance as it sheds light on
the fact that a seemingly small step towards motif topology results in parameterized intractability.
What about replacing the connectedness demand by modularity? Recall that a module in a graph
G is a subset V ′ ⊆ V(G) such that the neighborhoods outside the module of the vertices within
the module are all equal [McConnell and Spinrad, 1999]. The problem now becomes: Given a
vertex-colored graph G and a motifM, find a subset V ′ ⊆ V(G) such that (i) V ′ is colored by
M, and (ii) V ′ is a module in G? We do believe this direction is a promising line of research that
we plan to expand in future works (this is actually a direction we are currently pursuing with
F. Sikora). For one, considering modules makes sense in the general setting of graphs motifs.
Indeed, a module is a set of vertices such that each vertex not in the module has a uniform
relationship to all members of the module, i.e., vertices of the module are indistinguishable from
the outside. For another, the notion of modules is shipped with modular decomposition trees, i.e.,
an organization in a tree of the strong modules. Below is an example of a graph together with its
modular decomposition tree

1

4

2

3

5

6

7

8

10

9

11

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

{1} {2, 3, 4}

{2, 3}

{2} {3}

{4}

{6, 7}

{6} {7}

{8, 9, 10, 11}

{8} {9} {10, 11}

{10} {11}

Modular decomposition trees should certainly help for algorithm design. Sure enough, replacing
connectedness by the notion of modules is not a strong enough relaxation (is it a relaxation?) to
push the GRAPH MOTIF problem towards tractability (actually, definitively not!). However, we
expect the modular tree decomposition to be a useful structure to design efficient fixed-parameter
algorithms. At a more general level, there does not exist any precise definition of what a motif is
(or should be) in a biological network, and hence we think that providing a parameterized toolbox
incorporating several definitions of graph motifs could be of particular interest for practical
applications.

Our result can be stated as follows.

Proposition 5.3.4 ([Fellows et al., 2007]). The GRAPH MOTIF problem is solvable in 2O(k) n2 log(n) time, where
k = |M| and n is the number of vertices in the target graph G.

The GRAPH MOTIF problem is thus fixed-parameter tractable when parameterized by |M|. We only
sketch the main ideas to prove Proposition 5.3.4. Suppose M has an occurrence V ′ in G, and suppose

59

we are provided with a perfect family F of functions from V(G) to {1, 2, . . . , k}. Since F is perfect, we are
guaranteed that at least one function in F assigns V ′ with k distinct labels. Let f ∈ F be such a function.
For a given L ⊆ {1, 2, . . . , k}, we defineML(v) to be the family of all motifsM ′ ⊆M, |M ′| = |L|, for which
there exists an occurrence V ′′ with v ∈ V ′, such that the set of (unique) labels that f assigns to V ′′ is exactly
L. SinceM occurs in G, we know thatM ∈ M{1,2,...,k}(v) for some v ∈ V(G). To determine whetherM
occurs in G, we apply a dynamic programming to computeML(v) for all v ∈ V(G) and L ⊆ {1, 2, . . . , k}.
Now, fix L to be some subset of {1, 2, . . . , k}, and let v be any vertex of G. Our goal is thus to computeML(v)
assumingML ′(u) has been previously computed for every vertex u ∈ V(G) and any L ′ ⊆ L \ {f(v)}. The
straightforward approach is to consider small motifs occurring at neighbors of v. However, a motif occurring
at v might be the union of motifs occurring at any number of neighbors of v, and so this approach might
require exponential running time in n. We have shown in [Fellows et al., 2007] that there exists an alternative
method for computingML(v) that uses an even more naive approach, but one that requires exponential-time
only with respect to k. Notice that while the motifs computed by our algorithm are in general multisets of
colors, the procedure always considers sets of distinct labels.

The tree-width parameter of graphs [Robertson and Seymour, 1986] plays a central role in designing exact
algorithms for many NP-hard graph problems [Arnborg and Proskurowski, 1989; Bodlaender, 1993]. Using
tree decompositions and nice tree decompositions of arbitrary graphs (in a somewhat nonstandard way to
tailor-fit our purposes), we have shown that the GRAPH MOTIF problem is polynomial-time solvable when
the target graph G has constant tree-width andM consists of a constant number of colors (but arbitrary
number of elements). This should be compared with the sharp hardness result of Proposition 5.3.1 which
states that there are rather restricted classes of graphs, such as bounded degree bipartite graphs, where the
GRAPH MOTIF problem is NP-complete even whenM is built over only two colors.

Proposition 5.3.5 ([Fellows et al., 2007]). The GRAPH MOTIF problem is solvable in O∗
(
2ω22c

)
time, where ω is

the tree-width of the target graph G, and c is the number of distinct colors in the motif |M|.

Although Proposition 5.3.5 gives a nice complementary result to the sharp hardness result of Proposi-
tion 5.3.1, it still leaves a certain gap. The following proposition closes this gap (by the negative).

Proposition 5.3.6 ([Fellows et al., 2007]). The GRAPH MOTIF problem, parameterized by the number of distinct
colors c in the motifM, is W[1]-hard for trees.

Even if we do believe that the GRAPH MOTIF problem introduced by Lacroix et al. [Lacroix et al., 2006] has
shed new light on graph motifs, it suffers from much the same weaknesses as all pure decision problem: it
does not allow for approximate occurrences. The rest of this chapter is devoted to analyzing natural variants
of the GRAPH MOTIF problem that deal with approximate occurrences. As we shall see, the GRAPH MOTIF
problem enjoys several variants (reflecting different points of view) that deserve separate considerations.

5.4 Minimizing the number of connected components

We consider in this section the problem of finding an occurrence of a motifM in a vertex-colored graph that
results in a minimum number of connected components. This problem has been first considered in [Dondi
et al., 2007], and [Betzler et al., 2008] presents some additional interesting results. We refer to this problem as
the MINIMUM CC problem (MINIMIZING THE NUMBER OF CONNECTED COMPONENTS). It is formally defined
as follows.

Minimum CC

• Input : A set of colors col, a motifM = (col,mult), and a vertex colored graph (G, λ).
• Solution : A subset V ′ ⊆ V(G) such that λ(V ′) =M.
• Measure : The number of connected components in the induced subgraph G[V ′].

60

In other words, we are asked to find a subgraph of G with |M| vertices which is exactly colored with the
colors ofM (including multiplicities, if any) that induces a minimum number of connected components. See
Figure 5.3 for an illustration.

c1

c2

c1 c2

c2

c2

c3 c2

c3c1

c4c3

c6c1

c4 c3

c6

c1 c3

c2

c1

c3c5

c1

Figure 5.2: A vertex-colored graph together with an occurrence (in bold) of the motif M =
{c1, c1, c2, c3, c3, c4, c5, c6} that results in two connected components, i.e., {c1, c2, c3, c4, c6} and {c3, c3, c5}.

5.4.1 Algorithms and hardness

It turns out that the MINIMUM CC problem is the most difficult variant of the GRAPH MOTIF problem if one
focuses on graph classes. Let us explain this point. We need some new definitions. Define an isogram to be a
word in which no letter is used more than once, and a pair isogram to be a word in which each letter occurs
exactly twice. A cover of size k of a word u is an ordered collection of words C = (v1, v2, . . . , vk) such that
u = w1v1w2v2 . . . wkvkwk+1 for some words w1, w2, . . . , wk+1 and v = v1v2 . . . vk is an isogram The cover
is called prefix (resp. suffix) if w1 (resp. wk+1) is the empty word. Strongly related are proper 2-colorings. A
proper 2-coloring of a pair isogram u is an assignment f of colors c1 and c2 to the letters of u such that every
letter of u is colored with color c1 once and colored with color c2 once. If two adjacent letters x and y are
colored with different colors we say that there is a color change between x and y.

Example 2 Consider the pair-isogram u = abb cdd e e ca f g g f hh. A cover C of u of size 4 is given by
C = (ab, de, c, gfh) and the associated proper 2-coloration of u is given by

u = a b b c d d e e c a f g g f h h.

61

A word u is said to be crossing-free (resp. inclusion-free) if there do not exist indices 1 ≤ i1 <
i2 < i3 < i4 ≤ |u| such that u[i1] = u[i3] 6= u[i2] = u[i4] (resp. u[i1] = u[i4] 6= u[i2] = u[i3]).
Does there exist a polynomial-time for computing a minimum cardinality cover of a crossing-free
pair isogram? What about inclusion-free pair isograms?

How approximable is the MINIMUM CC problem for paths?

The 1-REGULAR-2-COLORS-PAINT-SHOP problem is defined as follows (see [Bonsma et al., 2006; Bonsma,
2003; Epping and Oertel, 2004] for the general PAINTSHOP-FOR-WORDS problem): Given a pair isogram
u, find a 2-coloring f of u that minimizes the number of color changes in (u, f). Bonsma [Bonsma, 2003]
proved that the 1-REGULAR-2-COLORS-PAINT-SHOP problem is APX-hard. Combining this with the fact
that a minimum cardinality cover of a pair isogram cannot be both prefix and suffix (see [Dondi et al., 2007]),
we have obtained the following result.

Proposition 5.4.1 ([Dondi et al., 2007]). The MINIMUM CC problem is APX-hard even ifM is colorful and the
target graph G is a path in which each color appears at most twice.

Quite a negative result! The following proposition moderates the above proposition.

Proposition 5.4.2 ([Dondi et al., 2007]). The MINIMUM CC problem for paths is solvable inO(nc+4) time, where n
is the number of vertices in the path and c is the number of distinct colors in the motifM.

Focusing on trees, we have obtained the following positive and negative results (the positive results
being actually exponential-time algorithms).

Proposition 5.4.3 ([Dondi et al., 2007]). There exists a constant c > 0 such that the MINIMUM CC problem for trees
cannot be approximated within performance ratio c log(n), where n is the number of vertices in the tree.

Proposition 5.4.4. The MINIMUM CC problem for trees is solvable in O(n2k(c+1)
2+1) time, where n is the number

of vertices in the tree, k is the size of the motifM, and c is the number of distinct colors inM.

Proposition 5.4.5 ([Dondi et al., 2007]). The MINIMUM CC problem for trees is solvable in O(n22
2n
3) time, where

n is the number of vertices in the tree.

5.4.2 Parameterized complexity

Extending our result (Proposition 5.3.4), we have shown the MINIMUM CC problem for its standard parame-
terization to be fixed-parameter tractable as well.

Proposition 5.4.6 ([Dondi et al., 2007]). The MINIMUM CC problem is fixed-parameter tractable when parameterized
by the size of the motif.

62

The O(4.32kk2m | log(ε)|) time algorithm of [Betzler et al., 2008] uses (to speed-up the dynamic
programming procedure) the technique of fast subset convolution. This novel technique was
developed by Björklund et al. [Björklund et al., 2007], who used it to speed-up several dynamic
programming algorithms including the algorithm by Scott et al. [Ideker et al., 2006] for computing
minimum weight size k trees in signaling networks.
From our point of view, fixed-parameter algorithmic results should support implementation
and experimental work. It would be of particular interest to investigate whether the recently
introduced subset convolution technique, which so far has been studied purely from a theoretical
point of view, also yields a significant speed-up in practice.
A similar question may be asked as to how much color coding techniques [Alon et al., 1995]
support implementation. (indeed, it turns out that the O(4.32kk2m | log(ε)|) time algorithm of
[Betzler et al., 2008] increases the number of colors that are used for color-coding in order to
increase the probability of an occurrence ofM to receive a colorful recoloring, see [Huffner et al.,
2007]). Is anybody aware of any implementation of perfect hash families to derandomize this
approach? I suspect there isn’t one, most approaches use a randomized color procedure and not
perfect hash families. However, recent research on implementation on (randomized) color-coding
based graph algorithms [Dost et al., 2007; Huffner et al., 2007; Ideker et al., 2006] are, undoubtly,
positive experiences.

Our result is now superseded by [Betzler et al., 2008] where it is shown (in a clever way) that the MINIMUM
CC problem can be solved with error probability ε in O(4.32kk2m | log(ε)|) time, where k is the size of the
motifM andm is the number of edges in the target graph (see thinking note page 58).

The following proposition shows a sharp contrast in complexity if one considers the number of connected
components as the parameter of interest.

Proposition 5.4.7 ([Dondi et al., 2007]). The MINIMUM CC problem is W[2]-hard when parameterized by the
number of connected components, even if the target graph G is a tree.

It is worth mentioning that, answering an question we have raised in [Dondi et al., 2007], N. Betzler et al.
[Betzler et al., 2008] have recently proved the MINIMUM CC problem to be W[1]-hard only for paths (proof
from the W[1]-hard PERFECT CODE problem).

5.5 Maximizing the size of the connected occurrence

We now turn to another variant of the GRAPH MOTIF problem where one is interested in obtaining a single
connected component (as in the original GRAPH MOTIF problem) at the cost of “loosing”some colors. Several
definitions actually would perfectly fit to this. We focus here on finding a connected occurrence that uses as
much as possible colors from the motif (see next section for other possible definitions). We have introduced
this variant of the GRAPH MOTIF in [Dondi et al., 2009] and we refer to it as the MAXIMUM MOTIF problem.

63

c1

c2

c1 c2

c2

c2

c3 c2

c3c1

c4c3

c6c1

c4 c3

c6

c1 c3

c2

c1

c3c5

c1

Figure 5.3: A vertex-colored graph together with an maximum cardinality occurrence (in bold) of a submotif
M ′ = {c1, c1, c2, c3, c3, c4, c5, c6, c6, } of the motifM = {c1, c1, c2, c3, c3, c4, c4, c5, c6, c6, }.

Maximum Motif

• Input : A set of colors col, a motifM = (col,mult), and a vertex colored graph (G, λ).
• Solution : A subset V ′ ⊆ V(G) such that (i) G[V ′] is connected, and (ii) λ(V ′) =M ′ for some
submotifM ′ ⊆M.
• Measure : The size ofM ′, i.e., |M ′|.

Intuitively, the MAXIMUM MOTIF problem thus asks for the largest submotifM ′ ⊆ M that occurs in G as
a connected component. See Figure 5.3 for an illustration. Being a mere restriction of the GRAPH MOTIF
problem, the MAXIMUM MOTIF problem is NP-complete as well [Lacroix et al., 2006].

5.5.1 Algorithms and hardness

Not surprisingly, the MAXIMUM MOTIF problem is hard to approximate. The following proposition prove
that the MAXIMUM MOTIF problem does not enjoy a PTAS even for trees and colorful motifs.

Proposition 5.5.1 ([Dondi et al., 2009]). The MAXIMUM MOTIF problem is APX-hard even if the motif is colorful,
the target graph is a tree with maximum degree 3, and each color occurs at most twice in the tree.

It is worth mentioning that we do believe Proposition 5.5.1 not to be tight since we seriously doubt the
MAXIMUM MOTIF problem for colorful motifs and trees with bounded number of occurrences of colors to
be even in APX. The following proposition supports this sentiment (the rather technical proof is by the

64

self-improvement technique, see for example [Hein et al., 1996; Jiang and Li, 1995; Karger et al., 1995] to see
this powerful technique in action).

Proposition 5.5.2 ([Dondi et al., 2009]). For any constant δ < 1, the MAXIMUM MOTIF problem for trees and
colorful motifs cannot be approximated within performance ratio 2logδ n, unless NP ⊆ DTIME[2poly logn].

First, notice that NP 6⊆ DTIME[2poly logn] is considered to be a reasonable complexity hypothesis (and is
actually widely believed to be true). It is also worth noticing that, as we have shown in [Dondi et al., 2009],
substituting the complexity hypothesis NP ⊆ DTIME[2poly logn] by the classical P = NP yields inapproxima-
bility within a constant ratio. Second, the only difference in the instances between Proposition 5.5.1 and
Proposition 5.5.2 is that the number of occurrences of each color is fixed in the former. Although at first odd,
we believe that this restriction is not stronger enough to imply membership to APX.

5.5.2 Algorithms and parameterized complexity

In the light of the negative results for approximating the MAXIMUM MOTIF problem, we turn to exponential-
time algorithms and parameterized complexity. We gave in [Dondi et al., 2009] two exact branch-and-bound
algorithms for the MAXIMUM MOTIF problem in case the target graph is a tree. The two results are summarized
in the following proposition.

Proposition 5.5.3 ([Dondi et al., 2009]). The MAXIMUM MOTIF problem for trees of size n can be solved in
O(1.62n poly(n)) time. In case the motif is colorful, the time complexity reduces to O(1.33n poly(n)).

Based on the color-coding technique and perfect hash families [Alon et al., 1995], we have considered
in [Dondi et al., 2009] parameterized issues of the MAXIMUM MOTIF problem. Our results can be stated as
follows.

Proposition 5.5.4 ([Dondi et al., 2009]). The MAXIMUM MOTIF problem for trees with n vertices is solvable in
O(k2kn3 logn) 2O(k) time, where k is the size of the submotif occurring in the tree. For general graphs of order n, the
MAXIMUM MOTIF problem is solvable in O(25kkn2 log2 n) 4O(k) time, where k is the size of the submotif occurring
in the graph.

One should admit that our parameterized results are still far from being able to support implementation.
However, we believe that the color coding approach reaches its limits here and that improving the running-
time of our algorithms requires different techniques.

5.6 Further variants

This short section is devoted to briefly presenting further variants of the GRAPH MOTIF problem we are
interested in. Indeed, as stated in the preceding section, relaxing the GRAPH MOTIF problem to allow for
approximate solutions may lead to distinct combinatorial problems (the MINIMUM CC and MAXIMUM MOTIFS
problems are two such possibilities). We are especially interested in variants where one is searching for
a single connected component at the cost of loosing/adding/modifying some colors as it seems that this
requirement is well-suited for practical applications.

• The MINIMUM DELETE MOTIF problem: Find a submotifM ′ ⊆M that occurs as a connected component
in the target graph. The optimization is concerned with deleting a minimum number of colors inM.

• The MINIMUM ADD MOTIF problem: Find a supermotifM ′ ⊇M that occurs as a connected component
in the target graph. The optimization is concerned with adding a minimum number of colors toM, or
equivalently minimizing |M ′|.

65

• The MINIMUM SUBSTITUTION MOTIF problem: Find a motifM ′ (related toM) that occurs as a connected
component in the target graph. The optimization is concerned with modifying a minimum number of
colors inM to obtainM ′.

Being mere variants of the GRAPH MOTIF problem, all these variants are of course NP-complete (actually, it
turns out that they are all APX-hard or not approximable). However, they correspond to different questions
one may ask for connected motifs. Hereafter we mention some thoughts about these three problems.

• In terms of optimal solutions, the MAXIMUM MOTIF and the MINIMUM DELETE MOTIF problems are
clearly equivalent. The comparison stops there. Indeed, considering approximation, dual combinatorial
problems usually enjoys opposite properties (this is not a rule, I admit, only a trend). As for the
parameterized complexity, the two problems seem to behave radically differently. Without going into
the details, we just mention that, oppositely to the MAXIMUM MOTIF problem, the MINIMUM DELETE
MOTIF problem for its standard parameterization is not fixed-parameter tractable.

• The MINIMUM ADD MOTIF problem seems to be more well-suited than the MINIMUM CC problem for
most applications. Indeed, in the MINIMUM CC problem, the focus is on the number of connected
components, regardless whether these connected components are arbitrary far in the graph. In some
sense, the MINIMUM ADD MOTIF problem allows us to control this aspect by putting the focus on the
number of colors to add to the motif to connect all those connected components into a single one.

• Although being a natural variant of the GRAPH MOTIF problem, the MINIMUM SUBSTITUTION MOTIF
problem is quite intriguing from an algorithmic point of view as it seems to add one level of freedom.
Interestingly enough (but unfortunately), the MINIMUM SUBSTITUTION MOTIF problem parameterized
by the number of substitutions is W[2]-hard.

5.6.1 Practical issues

As we have seen in this chapter, we are still far from being able to provide a complete algorithmic toolbox
to deal with the many flavors of the GRAPH MOTIF problem. Most fixed-parameter algorithms (including
ours) do not support implementation yet. However, bridging the gap between theory and practice is greatly
needed for practical applications.

A first step towards providing an integrated algorithmic solution is the TORQUE web server [Bruckner
et al., 2009b] (it implements the algorithms in [Bruckner et al., 2009a] for querying protein sets across species).
TORQUE combines three approaches: a dynamic programming method utilizing color coding, integer linear
programming and a fast heuristic based on shortest paths. Quoting the authors [Bruckner et al., 2009a]:
“TORQUE automatically selects the best method to apply at each stage and outputs the highest scoring match”.
Actually, there is no magical trick, TORQUE relies on color coding if the motif is small enough (about 15
elements) and switches to linear programming otherwise.

In collaboration with G. Blin and F. Sikora, we have also developed an integrated algorithmic toolbox,
named GraMoFoNe, to deal with the many flavors of the GRAPH MOTIF problem [Blin et al., 2010b]. Notice
that, oppositely to TORQUE, GraMoFoNe is not a web server but a plugin for the popular cytoscape
open source platform (http://www.cytoscape.org/). Another notable difference with TORQUE is that
GraMoFoNe does not combine two techniques (color coding and linear programming) but uses boolean linear
programming. The rationale for this choice is twofold. For one, equipped with such a framework, TORQUE
is superseded by GraMoFoNe in terms of modeling as it allows to consider most variant of the GRAPH MOTIF
problem (TORQUE is indeed limited to colorful motifs). Without going into the details, it is worth noticing
that TORQUE and GraMoFoNe notably differ in the consideration of the connectedness property: whereas
TORQUE simulates a flow algorithm and hence does need linear programming, GraMoFoNe simulates a
breadth first search (BFS) procedure that can be performed by boolean linear programming. For another,

66

Figure 5.4: Screenshot of the GraMoFoNe software: Querying the mouse DNA synthesome complex in the
yeast PPI network (see [Bruckner et al., 2009b]).

GraMoFoNe uses a pure pseudo-boolean programming engine together with some data reduction rules to
speed-up the computations. See Figure 5.4 for a screenshot of GraMoFoNe in action.

TORQUE and GraMoFoNe perform more or less the same in terms of performances for moderate size tree
motifs (GraMoFoNe is, however, not limited to trees). They also suffer from the same drawbacks: they are
not able to deal with large motifs. However, GraMoFoNe is by far more scalable and is completely integrated
in the cytoscape software (and hence can be easily used in combination with other cytoscape plugins). It is
a challenging and important problem to improve GraMoFoNe so that it can tackle motifs of size about 30.

6
Querying PPI Networks

Contents
6.1 Introduction . 63
6.2 A feedback vertex set approach . 64
6.3 Practical issues . 64

6.1 Introduction

This short chapter is devoted to a somewhat more classical view of pattern matching in protein-protein
interaction (PPI) networks. Comparative analysis of PPI tries to determine the extent to which protein
networks are conserved among species. Indeed, it was observed that proteins functioning together in
a pathway (i.e., a path in the interactions graph) or a structural complex (i.e., an assembling of strongly
connected proteins) are likely to evolve in a correlated fashion and during evolution, all such functionally
linked proteins tend to be either preserved or eliminated in a new species [Pellegrini et al., 1999].

The classical view of PPI network querying is as follows: Given a PPI network and a pattern with a
graph topology, find a subnetwork of the PPI network that is as similar as possible to the pattern, in respect
to the initial topology. Similarity is measured both in terms of sequence similarity and graph topology
conservation.

Unfortunately, this problem is clearly equivalent to the NP-complete SUBGRAPH HOMEOMORPHISM
problem [Garey and Johnson, 1979]. Recently, several techniques have been proposed to overcome the
difficulty of this problem. By restricting the query to a path of length less than five, Kelley et al. [Kelley
et al., 2003] developped PathBlast, an exponential-time algorithm which allows one consecutive mismatch.
Later on, Shlomi et al. [Shlomi et al., 2006] proposed an alternative, called QPath, for querying paths in a PPI
network (the algorithm is based on the color coding technique [Alon et al., 1995]). By restricting the query to
a tree, Pinter et al. [Pinter et al., 2005] proposed an algorithm that is restricted to forest PPI networks, i.e.,
collection of trees. Finally, Dost et al. [Dost et al., 2007] developed QNet, a software to handle tree query in
the general context of PPI networks. Of particular importance, [Dost et al., 2007] proposed an algorithm
based on tree-decomposition for querying general graphs.

Indisputably, QNet is the state-of-the-art software to query PPI networks. Let us thus present it briefly
(more precisely, let us present the implemented part of QNet since, as we shall see soon, this distinction
is crucial in the present context). QNet is a fixed-parameter tractable randomized algorithm for querying

67

68

trees in (general) PPI networks. The complexity ism2O(k) log(ε−1) time, where k is the number of proteins
in the query, m the number of edges of the PPI network and 1 − ε is the probability of success (for any
ε > 0). Following the example of QPath, QNet combines (in a non-trivial way) a dynamic programming
procedure together with the color-coding technique. This completely described the implemented part of
QNet. However, QNet is shipped with an additional algorithm to query general graphs in PPI networks.
At the heart of this algorithm is a procedure to transform the query graph into a tree (the technique is by
tree-decomposition [Bodlaender, 1993]). The running time is 2O(k)nω+1, whereω is the tree-width of the
query graph (recall, however, that computing the tree-width of a graph is NP-complete [Arnborg et al.,
1987]). A word of caution is necessary here. Indeed, the authors were not be able to implement this algorithm
(this is probably due to its inherent difficulties at dealing with tree-decomposition). Nevertheless, even
if they would succeed in implementing it, we highly suspected the huge constants hidden by the big-O
notation to make it useless.

This chapter is devoted to presenting an effective alternative to QNet called PADA1 (I am not being held
responsible for this Star Wars name!). It is organized as follows. Chapter 6.2 is intended to motivate our
investigation. Chapter 6.3 is devoted to practical considerations of our contribution.

6.2 A feedback vertex set approach

PADA1 [Blin et al., 2009c] is an effective network querying algorithm that extends QNet to more general
query graphs. Following the example of QNet, PADA1 is a two-step procedure: it first transforms the query
graph into a tree and next uses that tree to effectively perform the query. Notice that it allows for insertions
and deletions in the occurrence. While both QNet and PADA1 use a tree-like query, the two algorithms use
totally different approaches. Indeed, whereas QNet is based on tree-decomposition, PADA1 focuses on the
fact that most query graphs have relatively small feedback vertex set in practice (recall that a feedback vertex
set is subset of vertices whose removal leaves us with a cycle-free graph).

Finding a smallest feedback vertex set is a well-known NP-complete problem [Garey and Johnson, 1979].
The current implementation of PADA1 transforms the query graph into a tree by iteratively finding a cycle,
duplicating (and storing) a node on that cycle and finally breaking the cycle by edge deletion. More efficient
approaches, including iterative compression [Guo et al., 2006] and reduction to kernel [Thomasse, 2009], may
be used to identify a feedback vertex set and transform the query graph into a tree, but experimentations
show that our “brute-force”algorithm turns out to be the fastest in practice. Indeed, (i) iteratively finding
cycles relies on a fast BFS search (a O(n + m) time procedure), (ii) the feedback vertex set of most real
instances is very small, and finally (iii) finding an occurrence of the constructed tree into the PPI network is
definitively the most time-consuming part of our approach.

The second step of PADA1 consists in finding an occurrence (allowing insertions and deletions) of
the constructed tree into the PPI network. Our approach is by combining random coloring and dynamic
programming (see [Blin et al., 2009c] for details). The main difficulty in this second step is to take into
account all those duplicated vertices, and more precisely to group process all the copies of a same vertex
(done by dynamic programming in the current implementation).

On the whole, the complexity of PADA1 is O(mn|f|Ndel2
O(k+Nins) log(ε−1)) time, where k is the number

of proteins in the query,m the number of edges of the PPI network, 1− ε is the probability of success (for
any ε > 0),Nins is the maximum number of insertionsNdel is the maximum number of deletions, and f is the
feedback vertex identifies in the very first part of the algorithm. Of particular importance, observe that the
time complexity does not depend on the total number of duplicated nodes but on the size of the identified
feedback vertex set (good, exactly what we were looking for).

69

6.3 Practical issues

We briefly discuss practical issues of PADA1. Since we wanted PADA1 to be an effective alternative to QNet,
we have confronted our results in [Blin et al., 2009c] with thoses obtained by QNet. PADA1 has proved to
perform as well as QNet (we refer the reader to [Blin et al., 2009c] for details). For example, our second
experiment was performed across species. The Mitogen-Activated Protein Kinase (MAPK) is a collection
of signal transduction queries. According to [Dent et al., 2003], they have a critical function in the cellular
response to extracellular stimuli. They are known to be conserved through different species. We obtained the
human MAPK from the KEGG database [Kanehisa et al., 2004] and tried to retrieve them in the fly network
as done in QNet. While QNet uses only trees, we were able to query general graphs (See Figure 6.1 for an
illustrative output of PADA1). The results were quite satisfying since we retrieved all of them, with only few
modifications.

Figure 6.1: An automatic dot file generated by PADA1 (verbose output omitted). Left: A MAPK human query
[Kanehisa et al., 2004]. Right: The alignment graph given provide by PADA1 in the fly PPI network. Dashed
lines denotes the BLAST homology scores between the proteins. See [Dost et al., 2007] for a discussion on
this particular query.

70

Part III

Genome Rearrangements

71

Introduction

The third part of this manuscript is concerned with comparative genomics. The combinatorial study
of genome rearrangements started with permutations, but permutations lack the possibility of taking
duplications into account. Duplications are however a major evolutionary event, believed to be one of the
most important mechanisms for novel generations in evolution, and almost all datasets on eukaryotes
contain duplicated genes (see e.g. [Ohno, 1970]). An appropriate tool for studying genomes with duplicated
genes was therefore needed, and strings are a very natural generalization of permutations that fit this purpose
well. It allows to add two possible rearrangement events: duplications and deletions. We shall see in this part
that NP-completeness and even inapproximability results are very numerous. The subject was surveyed in
2005 by El-Mabrouk [2005]. The most up-to-date reference to this field is our recent monograph [Fertin et al.,
2009a].

Biological motivations

Duplications can occur at several levels, ranging from the duplication of a single gene or small segment of
DNA to the duplication of a whole chromosome, and even whole genome duplications are known to occur.
These evolutionary events result in genomes in which where some markers are undifferentiable, and we call
them duplicated genes.

Given a set of genomes, all copies of a given gene among those genomes are said to be homologous, which
means that they originate from a common ancestral gene, and form a gene family. The presence of two copies
of a gene in a set of genome may be explained by speciation events, that is, the apparition of two distinct
species, each genome carrying the gene; it can also be explained by duplication events, which result in two
copies of a gene in the same genome. The relationships of the copies of a gene in a gene family can thus be
of several type. Two copies of a gene are said to be orthologous if they derive from a speciation event, and
Paralogous if they derive from a duplication event. Given two genomes and a gene family, a distinction is
made between out-paralogs, which are paralogous gene copies which derive from a duplication that occured
before the last common ancestor of the two genomes, and in-paralogs, that derive from a duplication that
occured after the last common ancestor. Note that the name gene is classically a bit ambiguous, as it refers
either to a family (there are several copies of a same gene in the genomes), or to copies (two genes may
derive from a duplication).

Those different situations motivate and justify the use of the models we will consider in this part. Indeed,
when comparing two sequences under the assumption that all copies of a given element in a single string are

73

74

in-paralogs, the goal will be to identify the position of the unique ancestor. If there can be out-paralogs, then
the goal will be to detect orthologs by matching some copies. The distances between two strings will vary
according to which model is chosen. Every combinatorial problem we have seen so far can be reformulated
in terms of strings, but the algorithmic treatment is usually completely different. For instance, the breakpoint
graph, which is a ubiquitous objects when dealing with permutations, is not used on strings, in spite of some
attempts to define them in the case of whole genome duplications by [Alekseyev and Pevzner, 2007].

How to deal with multiple copies?

Two strings on the same alphabet that contain the same number of occurrences of each gene family are said
to be balanced. Two balanced strings obviously have same length. This property ensures that it is possible to
transform one string into another without deletions and duplications as rearrangements.

It is not equally difficult to take into account multiple copies when considering two balanced or two
general (that is, not necessarily balanced) strings. By convention, balanced strings are supposed to contain
only out-paralogs, which means that each of the hmembers of some gene family present on each string S and
T originates from one of the hmembers of the same gene family present on their last common ancestor. The
difficulty is then to identify (that is, to match) the pairs of members, one on each string, which originate from
the same member of the last common ancestor (i.e. are orthologous). On the contrary, general strings allow
to assume the existence of both out-paralogs and in-paralogs on each string, so that deletion and insertion
events have to be considered additionally to the rearrangement events when comparing general strings. The
assignation of ortholog pairs of genes given two strings reduces to finding a matching between them.

While comparing two strings u and v, a matching between u and v is aimed at representing the common
composition of the strings, as supported by their last common ancestor and regardless of (but without losing
touch with) the order of the characters. Any pair of matched characters is then assumed to correspond to
orthologous genes, while the unmatched characters are supposed to be in-paralogs. Here rearrangement
studies meet the important problem of ortholog identifications. The members of the same gene family
present on the same string and which are matched are out-paralogs. In order to distinguish out-paralogs
from each other, a relabeling may be performed, which gives new and distinct names. to out-paralogs and
renames the orthologous of each out-paralog accordingly. The last step of such a treatment of the strings is
the obtention of a pruning. The good news at this stage is that if we assume the relabeling is done such that
the characters in the pruned strings are integers, both strings are permutations and may be compared using
the usual distances on permutations.

Now, going back to our initial question “How to deal with multiple copies?”two answers are available: either
define a collection of possible rearrangement and compute the minimum number of operations needed to
transform one genome into the other, or reduce genomes to permutations using matchings and pruning and
then compute the distance (or (dis)similarity) between the permutations. We refer to these two approaches
as the block edit model and the match-an-prune model , respectively. Part III of this manuscript is devoted
to the match-and-prune model. For a thorough introduction to the block edit model we refer the reader to
[Fertin et al., 2009a].

7
Genome rearrangements with duplicate genes

Contents
7.1 Introduction . 71
7.2 From genomes to permutations . . . and back . 72

7.2.1 Genomes . 72
7.2.2 Permutations . 72
7.2.3 Turning a genome into a permutation . 73

7.3 Comparing two compatible genomes . 75
7.3.1 Introduction . 75
7.3.2 Breakpoint distance . 76
7.3.3 Signed reversal distance . 77
7.3.4 Adjacency similarity . 78
7.3.5 Common intervals similarity . 78
7.3.6 Dissimilarity measures MAD and SAD . 79

7.4 Exact algorithms and heuristics . 80
7.4.1 Boolean linear programming . 80
7.4.2 Heuristic approaches . 81

7.1 Introduction

This chapter is devoted to algorithmic aspects of the match-an-prune model for genome rearrangements.
All problems follow the same guideline: start with two genomes with duplicate genes, i.e., strings, and
transform them into two permutations (by means of some special matching between the two genomes)
so as to optimize a given distance or (dis)similarity measure. The rationale for this guideline is that most
distances and (dis)similarity measures (more precisely those that are of interest in comparative genomics)
are computable in polynomial-time for permutations. The difficulty of the problem is thus to compute a
“good”transformation.

This chapter is organized as follows. Section 7.2 presents the relevant material thus making our exposition
self-contained. Section 7.3 is concerned with complexity issues of genome comparisons and we discuss in
Section 7.4 a family of fast general heuristics to cope with intractability.

75

76

7.2 From genomes to permutations . . . and back

7.2.1 Genomes

A signed genome G is a string over the alphabet of integers (excluding 0, to avoid having to write +0 and
−0). An unsigned genome is defined analogously by forbidding negative integers, this is a thus string over
the alphabet of positive integers. In the context of comparative genomics, we refer to the letters of G as
genes (the sign denotes the orientation of the gene). We follow standard string terminology and the size of a
genome G is denoted |G|. We write G[i] for the gene at position i in G, 1 ≤ i ≤ |G|, and we denote its sign
by sign(G[i]). A gene family of G is a positive integer that occurs in G regardless of its sign (here are those
famous duplications we are interested in). We will denote by F(G) the set of gene families that occur in G.
For simplicity of notation, we write g ∈ G if g ∈ F(G) (thus we may write g ∈ G even if the gene g occurs
only negatively in G). We will denote by |G|g the number of occurrences of a gene family g ∈ G, and we let
deg(G) stand for the maximum number of occurrences of a gene family in G, i.e., deg(G) = max{|G|g : g ∈ G}.
Of particular importance, notice that deg(G) is computed independently of the signs of the genes. A genome
G is duplication-free if |G[i]| 6= |G[j]| for all 1 ≤ i < j ≤ |G|. In other words, a genome is duplication-free if any
gene occurs exactly once, regardless of its sign.

Example 3 For genome G = 1 − 4 2 3 − 1 2, we have F(G) = {1, 2, 3, 4}, |G|1 = 2, |G|2 = 2, |G|3 = 1, |G|4 = 1,
and hence deg(G) = 2. On the other hand, genome H = −2 − 1 3 5 4 is duplication-free.

Let G be a duplication-free genome of size n, and i and j, 1 ≤ i < j ≤ n. If g = G[i] and g ′ = G[j], the
distance between gene g and gene g ′ in G, denoted dist(G, g, g ′), is defined by dist(G, g, g ′) = j− i.

Definition 7.2.1 (Pegged genome). A genome G is pegged if each interval between two genes in the same gene
family contains at least one singleton (a gene that occurs exactly once in G).

Pegged genomes have the interesting property that singletons act as markers helping to uniquely identify
each occurrence of a non-singleton by its position with respect to these markers.

7.2.2 Permutations

The symmetric group on set {1, 2, . . . , n} is written Sn = S({1, 2, . . . , n}), and we let S0n = S({0, 1, . . . , n})
stand for the symmetric groups on {0, 1, . . . , n}. A permutation π of size n is a bijection π : Sn → Sn. A
classical notation used in combinatorics to denote a permutation π is the two-row notation , where one
arranges the “natural”ordering of the elements being permuted on a row, and the new ordering on another
row. For example,

π =

(
1 2 3 4 5
2 5 4 3 1

)
stands for the permutation π of the set {1, 2, 3, 4, 5} defined by π(1) = 2, π(2) = 5, π(3) = 4, π(4) = 3, and
π(5) = 1. We will, however, adopt the more convenient – and standard – one-row notation that keeps only
the second row. Going back to our example, π = (2 5 4 3 1). The identity permutation (1 2 . . . n) is denoted ι,
regardless of n.

The composition of two permutations π, σ ∈ Sn, denoted π ◦ σ, is defined by π ◦ σ = (πσ1 πσ2 . . . πσn).
For example for π = (3 1 4 2) and σ = (4 1 3 2), we have π ◦ σ = (2 3 4 1). The inverse permutation of π ∈ Sn
is the permutation π−1 defined by π−1i = i for all 1 ≤ i ≤ n.

Signed permutations model the organization of genomes better than unsigned permutations, because they
take into account the double helix structure of DNA. A signed permutation on {1, 2, . . . , n} is a permutation π
of the set {−n, . . . ,−2,−1, 1, 2, . . . , n} such that π−i = −πi for all 1 ≤ i ≤ n. The one-row notation is also
used for signed permutations. For example, the permutation

π =

(
−5 −4 −3 −2 −1 1 2 3 4 5
−5 3 −1 4 2 −2 −4 1 −3 5

)

77

is simply written π = (−2 − 4 1 − 3 5).
We recall here some basic definitions about permutations (we refer the reader to [Bóna, 2004] for general

combinatorial aspects of permutations and to [Fertin et al., 2009a; Estivill-Castro and Wood, 1992] for
applications to comparative genomics).

Definition 7.2.2 (linear extension). The linear extension of a (signed or unsigned) permutation π ∈ Sn is the
permutation πl ∈ S0n+1 defined by πl = (0 π1 π2 . . . πn n+ 1).

Definition 7.2.3. Let πl be the linear extension of a (signed or unsigned) permutation π ∈ Sn. A point is an ordered
pair (πli, π

l
i+1), 0 ≤ i ≤ n. This point is called

• an adjacency if πli+1 = π
l
i + 1,

• a reverse adjacency if πli+1 = π
l
i − 1,

• a breakpoint if it is not an adjacency, and

• a strong breakpoint if it is neither an adjacency nor a reverse adjacency.

Definition 7.2.4 (Interval (in a permutation)). An interval in a (signed or unsigned) permutation π ∈ Sn is a set
I = {|πi|, |πi+1|, . . . , |πj|}, 1 ≤ i ≤ j ≤ n. The elements πi and πj of I are called the extremities of the interval.

Definition 7.2.5 (Common interval). An interval I is a common interval of permutations π, σ ∈ Sn if it is an
interval of both π and σ.

In case σ = ι, an interval I = {|πi|, |πi+1|, . . . , |πj|}, 1 ≤ i ≤ j ≤ n, is a common interval of π and ι if I is
a set of consecutive integers. The number of common intervals of two permutations π and σ is denoted
CI(π, σ). For π, σ ∈ Sn, it is easily seen that n + 1 ≤ CI(π, σ) ≤

(
n
2

)
+ n, The lower bound is attained, for

example, if we take π = (1 2 3 4) and σ = (2 4 1 3) or σ = (3 1 4 2) (the excluded patterns of separable
permutations [Bose et al., 1998]!). The upper bound is attained for π = σ or σ = (πn . . . π2 π1).

7.2.3 Turning a genome into a permutation

How to deal with multiple copies? The match-and-prune model addresses the following question, which
arises naturally when trying to discover the relationships between two genomes G and H: how can we take
into account, when comparing genomes with duplicates, that the structure of the last common ancestor of G
and H plays an important role in the evolutionary distance between the two genomes? As this structure is
unknown, unless we have very good reasons to conclude we can afford to keep it unknown, the solution is
to attempt to model it.

Three (sub)models are used to this aim. They have essential differences and essential common points. The
differences come from different assumptions with respect to composition of the last common ancestor. The
main common point is the method to compute measures (distances and similarities) between strings, which
only takes into account their common composition, as identified by the composition of the last common
ancestor. Speaking about the differences, the three models have the following features. In the exemplar
model , the last common ancestor is assumed to contain exactly one member of each gene family which has
members both on G and H. In the intermediate model , the last common ancestor is assumed to contain at least
one members of each gene family which is common to G and H. Finally, in the full model, the last common
ancestor is assumed to contain as many members as possible from any gene family.

We want to draw the attention of the reader on the fact that the intermediate introduce a level of difficulty.
Indeed, observe that for the exemplar and full models, we know in advance the size of the resulting
permutations as we keep exactly one gene or as many genes as possible from each gene family. The situation
is different for the intermediate model as we do not know in advance how many genes of each gene family
will be kept in an optimal solution.

78

The history of these three models starts with Sankoff’s paper [Sankoff, 1999], who put the basis of
the exemplar model and, in the same time, of the most general match-and-prune model. Besides its
biological motivations, Sankoff’s idea has two important features, that make it attractive. Reducing to one
the cardinality of each gene family in each string implies that (1) the resulting strings are permutations, and
computing distances on permutations is both already studied and often polynomial; and (2) the one-to-one
correspondence of genes in the same family on the two strings is obvious, and thus may avoid further
complications. The next model to be defined was the full model, whose first ideas are suggested in Sankoff’s
paper [Sankoff, 1999] and that was more precisely defined by [Tang and Moret, 2003] for balanced strings.
The most recent one is the intermediate model we have introduced in [Angibaud et al., 2006].

Definition 7.2.6 (Matching). Let G and H be two genomes. A matchingM between G and H is a set of pairs

M = {(i1, j1), (i2, j2), . . . , (ik, jk)} ⊆ P({1, 2, . . . , |G|}× {1, 2, . . . , |H|})

such that

1. |G[i]| = |H[j]| for all pairs (i, j) ∈M, and

2. if (il, jl) and (il ′ , jl ′) are two distinct pairs ofM, then l 6= l ′.

The 2k genes G[i1],G[i2], . . .G[ik],H[i1],H[i2], . . .H[ik] are said to be saturated by the matchingM.

Notice here that we do allow G[i] and H[j], (i, j) ∈ M, to have opposite signs. In the sequel, it will be
enough to focus on compatible genomes as defined below.

Definition 7.2.7 (Compatible genomes). Two genomes G and H are said to be compatible if F(G) = F(H).

Definition 7.2.8 (Exemplar, intermediate and full matching). A matchingM between two compatible genomes
G and H is an intermediate matching ifM saturates at least one gene of each gene family of F(G) = F(H). An
intermediate matching is called an exemplar matching (resp. full matching) if it is of minimum (resp. maximum)
cardinality.

Roughly speaking, intermediate matchings correspond to standard matchings in graphs (in bipartite
graphs here) whereas exemplar and full matchings have additional constraints. In other words, exemplar
and full matchings are in intermediate matchings.

Example 4 Consider the two following compatible genomes G and H:

G = 1 2 − 4 − 2 3 1 4 − 3 4

H = 4 1 − 3 − 2 2 1 2 4.

with F(G) = {1, 2, 3, 4} = F(H).

1. The matchingM = {(1, 2), (2, 4), (5, 3), (6, 6), (7, 8)} is an intermediate matching, and the pruned genomes
GM and HM induced byM reduce to (indices a and b are used to disambiguate the induced mapping and
clarify the presentation):

GM = 1a 2 3 1b 4

HM = 1a − 3 − 2 1b 4.

The associated permutations (according to a relabeling so that πG,M = ι) are thus given by:

πG,M = (1 2 3 4 5)

πH,M = (1 − 3 − 2 4 5).

79

2. The matchingM ′ = {(1, 2), (2, 4), (5, 3), (9, 8)} is an exemplar matching. The pruned genomes GM ′ and
HM ′ induced byM ′ reduce to:

GM ′ = 1 2 3 4

HM ′ = 1 − 3 − 2 4.

The associated permutations (according to a relabeling so that πG,M ′ = ι) are thus given by:

πG,M ′ = (1 2 3 4)

πH,M ′ = (1 − 3 − 2 4).

3. The matchingM ′′ = {(1, 6), (2, 7), (3, 1), (4, 5), (5, 3), (6, 2), (9, 8)} is a full matching. The pruned genomes
GM‘ ′ and HM‘ ′ induced byM‘ ′ reduce to (once again, indices a and b are used to disambiguate the induced
mapping):

GM ′′ = 1a 2a − 4a − 2b 3 1b 4b

HM ′′ = 4b 1b − 3 2b 1a 2a 4a

The associated permutations (according to a relabeling so that πG,M ′′ = ι) are thus given by:

πG,M ′′ = (1 2 − 3 − 4 5 6 7)

πH,M ′′ = (7 6 5 4 1 2 3).

It is now a simple matter to see that exemplar, intermediate and full matchings coincide if deg(G) = 1 or
deg(H) = 1, i.e., G or H are duplication-free.

Definition 7.2.9 (Mexpl(G,H),Mint(G,H), andMfull(G,H)). For any two compatible genomes G and H, we let
Mexpl(G,H) (resp. Mint(G,H),Mfull(G,H)) stand for the set of all exemplar (resp. intermediate, full) matchings
between G and H.

The following definition will facilitate the exposition of subsequent sections.

Definition 7.2.10 (Πexpl(G,H), Πint(G,H), and Πfull(G,H)). For any two compatible genomes G and H, we define
Πexpl(G,H), Πint(G,H) and Πfull(G,H) by:

Πexpl(G,H) = {(πG,M, πH,M) :M∈Mexpl(G,H)},

Πint(G,H) = {(πG,M, πH,M) :M∈Mint(G,H)}, and
Πfull(G,H) = {(πG,M, πH,M) :M∈Mfull(G,H)}.

The set Πexpl(G,H) (resp. Πint(G,H), Πfull(G,H)) is thus the set of all permutations that correspond to
valid exemplar (resp. intermediate, full) matchings between G and H.

7.3 Comparing two compatible genomes

7.3.1 Introduction

We are now ready to compare genomes with respect to the match-and-prune model. Given two genome G
and H, our steps will be

1. find an matching (exemplar, intermediate or full)M between G and H,

80

2. Construct the associated permutations πG,M and πH,M, and

3. Compute the distance, similarity or dissimilarity measure we are interested in between πG,M and
πH,M.

Let π and σ be two signed permutations. We will focus in this section on the following standard measures:

• the breakpoint distance between π and σ, denoted BK(π, σ), is the number of breakpoints between πl

and σl.

• the signed reversal distance between π and σ, denoted SR(π, σ), is the minimum number of signed
reversals to transform π into σ, where a signed reversal is the operation of reversing an interval of π
(together with signs).

• the adjacency similarity between π and σ, denoted ADJ(π, σ), is the number of adjacencies between πl

and σl.

• the common intervals similarity between π and σ, denoted CI(π, σ), is the number of common intervals
between π and σ.

• the MAD and SAD numbers whose precise definitions are deferred to the related subsection.

7.3.2 Breakpoint distance

Together with the signed reversal distance, the breakpoint distance is one of the first applications of Sankoff’s
exemplar model. The two distances are defined on different bases: the reversal distance counts a minimum
number of operations to transform one genome into another one, whereas the breakpoint distance counts
the structural differences between the two genomes. However, as we shall see soon, they are closely related.

Computing the breakpoint distance between two compatible signed genomes G and H reduces to finding
a (exemplar, intermediate or full) matching between these two genomes that induces a minimum number of
breakpoints between the two associated permutations πG and πH.

Definition 7.3.1. Let G and H be two signed compatible genomes. The measures BKexpl, BKint and BKfull of G and H
are defined by:

BKexpl(G,H) = min{BK(πG, πH) : (πG, πH) ∈ Πexpl(G,H)},

BKint(G,H) = min{BK(πG, πH) : (πG, πH) ∈ Πint(G,H)}, and
BKfull(G,H) = min{BK(πG, πH) : (πG, πH) ∈ Πfull(G,H)}.

The measure BKexpl(G,H) has been introduced in [Sankoff, 1999], and the measure BKfull(G,H) in [Blin
et al., 2004]. As for the measure BKint(G,H), we have introduced it in [Angibaud et al., 2006]. In 2000, Bryant
has shown that computing any of BKexpl(G,H), BKint(G,H) and BKfull(G,H) is an NP-complete problem,
even for pegged genomes G and H [Bryant, 2000]. Notice that Bryant‘s proof does not actually need to
consider three separate cases as it holds even if deg(G) = 1 and deg(H) = 2. Nguyen has strengthened these
results by proving that computing any of BKexpl(G,H) and BKint(G,H) is an NP-complete problem even if
both G and H are unsigned pegged genomes [Nguyen, 2005]. The strongest inapproximability result known
so far is ours.

Proposition 7.3.2 ([Angibaud et al., 2008b]). Computing any of the three measures BKexpl(G,H), BKint(G,H) and
BKfull(G,H) is an APX-hard problem.

81

The proof of Proposition 7.3.2 actually holds for deg(G) = 1 and deg(H) = 2, and hence does not need to
consider three separate cases.

Chen et al. [Chen et al., 2006] have shown that there exists a constant c > 0 such that there does not exist a
polynomial-time algorithm with performance guarantee c log(n), n = max{|G|, |H|}, to compute BKexpl(G,H)
and BKint(G,H). Of particular importance in this context, they have also shown that deciding whether
BKexpl(G,H) = 0 is an NP-complete problem even if deg(G) = 3 and deg(H) = 3. The same result holds if
we replace BKexpl(G,H) = 0 by BKint(G,H) = 0. We have first completed the result of [Chen et al., 2006] in
[Angibaud et al., 2008b] before proving a stronger result.

Proposition 7.3.3 ([Blin et al., 2009b]). Deciding whether equality BKexpl(G,H) = 0 holds is an NP-complete
problem even if deg(G) = 2 and deg(H) = 2.

Notice that the above Proposition holds if we replace BKexpl(G,H) = 0 by BKint(G,H) = 0. The above
proposition carries definitive implications for research design in the form of the following corollary.

Corollary 7.3.4 ([Blin et al., 2009b]). There does not exist any approximation algorithm to compute BKexpl(G,H) or
BKint(G,H), even if deg(G) = 2 and deg(H) = 2.

The above corollary gains in interest if we notice that it precisely defines the inapproximability landscape.
Indeed, if deg(G =) = 1 or deg(H) = 1, it can be shown that deciding whether equality BKexpl(G,H) = 0
holds is linear-time solvable. In other words, Proposition 7.3.3 is tight.

We mention to finish two results in this context that may be of independent interest. We have shown in
[Angibaud et al., 2008b] that (i) deciding whether BKfull(G,H) = 0 holds is solvable in O(nm log log(nm))
time, where n = |G| and m = |H|, and that (ii) computing BKexpl(G,H) and BKint(G,H) for two genomes
G and H such that deg(G) = 2 and deg(H) = 2 is solvable in O(poly(k) 1.61822k) time, where k is upper-
bounded by the number of gene families that occur exactly twice in G and in H.

7.3.3 Signed reversal distance

The signed reversal distance is the second distance considered by [Sankoff, 1999] to illustrate his theory of
exemplar distances. Under the full model, the signed reversal distance is very well studied on balanced
strings and not studied at all on general strings.

Computing the signed reversal distance between two compatible signed genomes G and H reduces to
finding a (exemplar, intermediate or full) matching between these two genomes that induces a minimum
signed reversal distance between the two associated permutations πG and πH.

Definition 7.3.5. Let G and H be two signed compatible genomes. The distances SRexpl, SRint and SRfull of G and H
are defined by:

SRexpl(G,H) = min{SR(πG, πH) : (πG, πH) ∈ Πexpl(G,H)},

SRint(G,H) = min{SR(πG, πH) : (πG, πH) ∈ Πint(G,H)}, and
SRfull(G,H) = min{SR(πG, πH) : (πG, πH) ∈ Πfull(G,H)}.

The distance SRexpl has been introduced in [Sankoff, 1999], and the distance SRfull in [Chen et al., 2005].
As far as we know, no specific result exists for the intermediate model.

Bryant has shown that computing DRexpl(G,H) is an NP-complete problem even if G and H are pegged,
and deg(G) = 2 and deg(H) = 2 [Bryant, 2000]. It turns out that the inapproximability results we gave for
the breakpoint distance propagate to the signed reversal distance. Indeed, if G and H are two compatible
genomes, then 2 SRexpl(G,H) ≤ BKexpl(G,H) ≤ SRexpl(G,H) (we refer the reader to our monograph [Fertin
et al., 2009a] for an elementary proof).

82

7.3.4 Adjacency similarity

We consider in this subsection a similarity measure which is the complement of the breakpoint distance. The
basis of this measure is the preserved adjacency between two consecutive characters in G and H.

Computing the adjacency similarity between two compatible signed genomes G and H reduces to finding
a (exemplar, intermediate or full) matching between these two genomes that induces a maximum number of
adjacencies between the two associated permutations πG and πH.

Definition 7.3.6. Let G and H be two signed compatible genomes. The measures ADJexpl, ADJint and ADJfull of G
and H are defined by:

ADJexpl(G,H) = min{ADJ(πG, πH) : (πG, πH) ∈ Πexpl(G,H)},

ADJint(G,H) = min{ADJ(πG, πH) : (πG, πH) ∈ Πint(G,H)}, and
ADJfull(G,H) = min{ADJ(πG, πH) : (πG, πH) ∈ Πfull(G,H)}.

We have introduced the similarities ADJexpl and ADJfull in [Angibaud et al., 2007a] and ADJint in [An-
gibaud et al., 2008a]. Chen et al. [Chen et al., 2007b] have proved that computing any of ADJexpl(G,H),
ADJint(G,H) and ADJfull(G,H) is an NP-complete problem and is not approximable within ratio n1−ε even
when deg(G) = 1 and deg(H) = 2. The problem is also known to W[1]-hard. For restricted instances (i.e.,
full matching and balanced genomes), we have obtained the following approximation results.

Proposition 7.3.7 ([Angibaud et al., 2008b]). Let G and H be two balanced genomes with deg(G) = deg(H) = k.
If k = 2, there exists an algorithm to compute ADJfull(G,H) with performance ratio 1.1442. If k = 3, there exists an
algorithm to compute ADJfull(G,H) with performance ratio 3+ ε for any ε > 0. Finally, for general k, there exists an
algorithm to compute ADJfull(G,H) with performance ratio 4.

It is worth noticing that the above ratio 4 uses 2-intervals (more precisely a result of [Crochemore et al.,
2008]) thereby fueling our arguments on the importance of 2-intervals in the design of approximation
algorithms.

7.3.5 Common intervals similarity

Common intervals are a natural generalization of adjacencies, as they identify subsets of characters that
appear contiguously, but possibly in a different order, in both genomes.

Computing the common intervals similarity between two compatible signed genomes G and H reduces
to finding a (exemplar, intermediate or full) matching between these two genomes that induces a maximum
number of common intervals between the two associated permutations πG and πH.

Definition 7.3.8. Let G and H be two signed compatible genomes. The similarities CIexpl, CIint and CIfull of G and H
are defined by:

CIexpl(G,H) = min{CI(πG, πH) : (πG, πH) ∈ Πexpl(G,H)},

CIint(G,H) = min{CI(πG, πH) : (πG, πH) ∈ Πint(G,H)}, and
CIfull(G,H) = min{CI(πG, πH) : (πG, πH) ∈ Πfull(G,H)}.

Computing the number of common intervals of two permutations on n elements is done inO(n+k) time
by [Uno and Yagiura, 2000], where k is the number of common intervals. Notice that [Heber and Stoye, 2001]
achieve the same running time for q ≥ 3 permutations (in this case, n is the total size of the q permutations).

We have introduced the similarities CIexpl and CIfull in [Blin et al., 2007b] and CIint in [Angibaud et al.,
2008b] (common intervals are indeed quite common in comparative genomics). Unfortunately, we are only
able to prove inapproximability.

83

Proposition 7.3.9 ([Blin et al., 2007b]). Computing any of the two three measures CIexpl(G,H), CIint(G,H) and
CIfull(G,H)S is an APX-hard problem.

Notice that the above (negative) result holds even if deg(G) = 1 and deg(G) = 2. No positive results are
known.

7.3.6 Dissimilarity measures MAD and SAD

The measures to estimate the (dis)similarity between two permutations that we have mentioned so far fall
into two categories: they estimate either the distance or the similarity between the two permutations. The
two measures considered here (MAD and SAD), both defined by Sankoff and Haque [Sankoff and Haque,
2005], belong to neither category. Unlike distances, their value is never zero, and unlike similarities, their
value grows as the dissimilarity of the permutations grows.

Intuitively, MAD and SAD measure how far genes have to move from their initial position in one genome
in order to yield the other genome, and this measure focuses either on each gene (MAD) or on all genes
altogether (SAD).

For the sake of presentation, we introduce a new notation. For any two permutations π, σ ∈ Sn, we let
πσ stand for the permutation obtained from σ by renaming the elements of π so as to obtain the identity
permutation ι, and then renaming the elements of σ accordingly.

Example 5 For π = (1 3 5 2 4) and σ = (5 3 2 1 4), we obtain πσ = (4 2 1 3 5) and σπ = (3 2 4 1 5).

Definition 7.3.10 (Maximum Adjacency Disruption (MAD)). The dissimilarity measure MAD between two
permutations π, σ ∈ Sn, denoted MAD(π, σ), is defined by:

MAD(π, σ) = max
1≤i≤n−1

max{|σπi − σπi+1|, |π
σ
i − πσi+1|}.

Intuitively, the MAD dissimilarity measure of two permutations π and σ is the largest gap between two
consecutive elements in σπ and πσ. Notice that MAD(π, π) = 1 for all π ∈ Sn.

Example 6 Pursuing Example 5, i.e., π = (1 3 5 2 4) and σ = (5 3 2 1 4), we get MAD(π, σ) =
max{max{1, 2},max{2, 1},max{3, 2},max{4, 2}} = 4.

Definition 7.3.11. Let G and H be two compatible genomes. The dissimilarity measures MADexpl, MADint and
MADfull of G and H are defined by:

MADexpl(G,H) = min{MAD(πG, πH) : (πG, πH) ∈ Πexpl(S, T)},

MADint(G,H) = min{MAD(πG, πH) : (πG, πH) ∈ Πint(S, T)}, et
MADfull(G,H) = min{MAD(πG, πH) : (πG, πH) ∈ Πfull(S, T)}.

We have obtained the following result.

Proposition 7.3.12 ([Blin et al., 2007b]). Unless P = NP, there does not exist an approximation algorithm with
performance guarantee 2− ε, for any ε > 0, to compute the dissimilarity measures MADexpl(G,H), MADint(G,H)
and MADfull(G,H).

The above proposition holds even if deg(G) = 1 and deg(H) = 9. It is worth mentioning that 2 − ε is
not the best bound. Indeed, for the sake of proof simplicity, the proof of Proposition 7.3.12, as presented in
[Blin et al., 2007b], does not use the PCP theorem. However, resorting to the PCP theorem (more precisely,
resorting to the non-approximation of a restriction of the MAX 3-SAT problem), we can show that there exists
a constant c > 2 such that there does not exist an approximation algorithm with performance guarantee c
to compute the dissimilarity measures MADexpl(G,H), MADint(G,H) and MADfull(G,H) (the exact value

84

of c has not been precisely computed). No algorithmic positive result to compute the MAD dissimilarity
measure is known so far, but we conjecture Proposition 7.3.12 to be far from being tight.

We now turn to considering the SAD dissimilarity measure that takes into account all differences between
consecutive elements.

Definition 7.3.13 (Summed Adjacency Disruption (SAD)). The SAD dissimilarity measure of two permutations
π, σ ∈ Sn, denoted SAD(π, σ), is defined by:

SAD(π, σ) =

n−1∑
i=1

(
|σπi − σπi+1|+ |πσi − πσi+1|

)
.

Intuitively, the SAD dissimilarity measure is the sum of all gaps between two consecutive elements in σπ

and πσ. Notice that SAD(π, π) = 2(n− 1) for all π ∈ Sn.

Example 7 For π = (1 3 5 2 4) and σ = (5 3 2 1 4), we obtain SAD(π, σ) = (1+2)+(2+1)+(3+2)+(4+2) = 17.

Definition 7.3.14. Let G and H be two compatible genomes. The dissimilarity measures SADexpl, SADint and SADfull
of G and H are defined by:

SADexpl(G,H) = min{SAD(πG, πH) : (πG, πH) ∈ Πexpl(S, T)},

SADint(G,H) = min{SAD(πG, πH) : (πG, πH) ∈ Πint(S, T)}, et
SADfull(G,H) = min{SAD(πG, πH) : (πG, πH) ∈ Πfull(S, T)}.

Not surprisingly, computing the SAD dissimilarity measure turns out the be more difficult than com-
puting the MAD dissimilarity measure (as long as we cannot prove stronger inapproximability for the
latter).

Proposition 7.3.15 ([Blin et al., 2007b]). Unless P = NP, there exists a constant c > 0 such that no approximation
algorithm with performance guarantee c logn is achievable to compute the dissimilarity measures SADexpl(G,H),
SADint(G,H) and SADfull(G,H).

Once again, no positive algorithmic result to compute the dissimilarity measure SAD is known so
far. Whereas Sankoff and Haque [Sankoff and Haque, 2005] claim that MAD and SAD are relevant for
comparative genomics, algorithmic cannot help much here.

How related are the different measures discussed in Section 7.3? Do they answer different
questions? Do they answer different parts of a research question? There are some of many
important questions left open. Our woks [Angibaud et al., 2008a, 2007a,b] only provide partial
answers.
At a more general level, our contributions are only algorithmic and actually we didn’t introduce
any new measure but express in our terms measures that are used by the comparative genomics
community. We might regret this abundance of measures to the detriment of comparative analyses.
As an example, MAD and SAD turn out to be very complicated measures (from an algorithmic
point of view) but, to the best of our knowledge, no evidence has proved or disprove the benefit
of such tortuous measures.

85

7.4 Exact algorithms and heuristics

7.4.1 Boolean linear programming

We have considered in [Angibaud et al., 2006], [Angibaud et al., 2007a] and [Angibaud et al., 2008a] exact
algorithms for computing various genome rearrangement distances. It is worth noticing that the rational
for considering such an approach was not to propose efficient general algorithms but to compute for a
reference dataset a bunch of exact results new heuristic approaches can confront with. Our approach was
by pseudo-boolean programming (linear integer programming where all variables are restricted to take
values of either 0 or 1). All our experiments were conducted with Minisat+ [Eén and Sörensson., 2006] and
ILOG CPLEX (http://www.ilog.com/products/cplex). This part was the subject of the PhD thesis
of Annelyse Thevenin (defended November 2009).

To illustrate our approach, we present in Figure 7.1 a pseudo-boolean program to compute the minimum
number of breakpoints between two genomes under the full matching viewpoint [Angibaud et al., 2007a]. We
refer the reader to [Angibaud et al., 2006], [Angibaud et al., 2007a] and [Angibaud et al., 2008a] for a thorough
discussion on pseudo-boolean-programming for genome comparison. In particular, we investigated in these
papers the impact of the choice of the matching (exemplar, covering or maximum) on a γ-proteobacteria
dataset [Lerat et al., 2003].

7.4.2 Heuristic approaches

We focus in this subsection on heuristics to deal with the aforementioned problems, and the motivation
for our choice to present heuristics rather than exact algorithms (or rather than both heuristics and exact
algorithms) relies on their universality. These heuristics are identical for all distances and need only minor
changes to go from one model to another one.

The three heuristics presented here use the notion of a longest common substring, up to a complete reversal
and are all based on the following easy idea. Assuming temporarily that one aims at finding a full matching
between G and H which intuitively preserves the most conserved regions between the two strings, an easy
way to have such a matching is given by Algorithm ILCS where we assume that each longest common
substring found on G and H is identified by one precise occurrence on each of G and H. Figure 7.2 shows an
example.

Algorithm 1: ILCS Heuristic (full matching)
Data: Two genomes G and H.
Result: A matching between G and H.
1 Compute a longest common substring L of G and H, up to a complete reversal, exclusively made of unmatched
characters from G and H.
2 Match the characters of G and H belonging to the occurrences of L according to their positions in L.
3 Iterate the process until all possible characters have been matched.
4 Remove all unmatched characters.
return The required distance on the resulting permutations

As far as we know, this idea appeared in [Tichy, 1984] and was often used since. In [Angibaud et al., 2007b]
and [Angibaud et al., 2008a] we proceeded to a large number of time consuming distance computations, and
noticed that even small changes in the ILCS algorithm might improve both the execution time, the quality of
the result and its applicability to various models. The Algorithm IILCS we proposed in [Angibaud et al.,
2007b] is such a variant of ILCS where the removal of characters which cannot be matched is done before

86

starting a new iteration.

Algorithm 2: IILCS Heuristic (exemplar/intermediate/full matching)
Data: Two genomes G and H.
Result: A matching between G and H.
1 Compute a longest common substring L of G and H, up to a complete reversal, exclusively made of unmatched
characters from G and H.
2 Match (all or part of) the characters of G and H belonging to the occurrences of L according to their positions in L,
so as to fit the exemplar/intermediate/full model constraints.
3 Iterate the process until all possible characters have been matched.
4 Remove all unmatched characters.
return The required distance on the resulting permutations

This new heuristic allows to obtain in step 2 one or several pairs of matched characters in each gene
family, according to the model, and to discard in step 3 all characters which become useless. Behind the
flexibility introduced by this variant of ILCS in regard to the model, an improvement of the results may
also be expected as IILCS better takes into account the final goal of matching characters, which is to identify
as many conserved regions as possible in the resulting pruning, and not in G and H. Indeed, the resulting
pruning has consecutive characters which were not consecutive in the initial strings, and thus has conserved
regions which were possibly not conserved in the initial strings. The early removal of characters by IILCS
allows non-neighboring characters on G and H to become neighbors at the end of some iteration, if the
characters between them are not matched. New longest common substrings may then be formed in this way,
thus improving the identification of common regions in the final pruning.

The argument these heuristics relies on is that long common substrings are strongly conserved regions
that strongly affect the values of all measures, either distances or similarities. Such an argument is supported
by the good performances of these heuristics (see below), but cannot be invoked when the longest common
substrings are short, i.e., not exceeding some given length `. Consequently, it could be a reasonable idea
to stop the execution of the IILCS heuristic when the threshold ` is reached for the length of the longest
common substring, and then to apply some exact (and thus exponential) algorithm to optimally match the
remaining characters according to the problem P to solve. Problem P is defined by the measure to compute,
and the model to use. This idea yields the hybrid method we have developed in [Angibaud et al., 2007b].

The IILCS and hybrid heuristics were systematically evaluated together with ILCS in [Angibaud et al.,
2007b] and [Angibaud et al., 2008a] on several problems and data sets for which exact results are known
(these results are actually ours, see 7.4.1). These evaluations show that our heuristics perform very well on
experimental data.

87

Program Max-Matching-Breakpoint

Objective :

Maximize
∑

0≤i<nG

∑
i<j≤nG

∑
0≤k<nH

∑
k<l≤nH

d(i, j, k, l)

Constraints :

(C.01) ∀ 1 ≤ i ≤ nG,
∑

1≤k≤nH

|G[i]|=|H[k]|

a(i, k) = bG(i)

∀ 1 ≤ k ≤ nH,
∑

1≤i≤nG

|G[i]|=|H[k]|

a(i, k) = bH(k)

(C.02) ∀ X ∈ {G,H}, ∀ g ∈ A,
∑

1≤i≤nX
|X[i]|=|g|

bX(i) = min{|G|g, |H|g}

(C.03) ∀ X ∈ {G,H}, ∀1 ≤ i ≤ j − 1 < nX, cX(i, j) +
∑

i<p<j

bX(p) ≥ 1

(C.04) ∀ X ∈ {G,H}, ∀ 1 ≤ i < p < j ≤ nX, cX(i, j) + bX(p) ≤ 1

(C.05) ∀ 1 ≤ i < j ≤ nG, ∀ 1 ≤ k < l ≤ nH,

such that G[i] = H[k] and G[j] = H[l],
a(i, k) + a(j, l) + cG(i, j) + cH(k, l) − d(i, j, k, l) ≤ 3

(C.06) ∀ 1 ≤ i < j ≤ nG, ∀ 1 ≤ k < l ≤ nH,

such that G[i] = H[k] and G[j] = H[l],
a(i, k) − d(i, j, k, l) ≥ 0
a(j, l) − d(i, j, k, l) ≥ 0
cG(i, j) − d(i, j, k, l) ≥ 0
cH(k, l) − d(i, j, k, l) ≥ 0

(C.07) ∀ 1 ≤ i < j ≤ nG, ∀ 1 ≤ k < l ≤ nH,

such that G[i] = −H[l] and G[j] = −H[k],
a(i, l) + a(j, k) + cG(i, j) + cH(k, l) − d(i, j, k, l) ≤ 3

(C.08) ∀ 1 ≤ i < j ≤ nG, ∀ 1 ≤ k < l ≤ nH,

such that G[i] = −H[l] and G[j] = −H[k],
a(i, l) − d(i, j, k, l) ≥ 0
a(j, k) − d(i, j, k, l) ≥ 0
cG(i, j) − d(i, j, k, l) ≥ 0
cH(k, l) − d(i, j, k, l) ≥ 0

(C.09) ∀ 1 ≤ i < j ≤ nG, ∀ 1 ≤ k < l ≤ nH,

such that {|G[i]|, |G[j]|} 6= {|H[k]|, |H[l]|} ou G[i] − G[j] 6= H[k] −H[l],
d(i, j, k, l) = 0

(C.10) ∀ 1 ≤ i < j ≤ nG,
∑

1≤k<nH

∑
k<l≤nH

d(i, j, k, l) ≤ 1

Domains :

∀ X ∈ {G,H}, ∀ 1 ≤ i < j ≤ nG,∀ 1 ≤ k < l ≤ nH,

a(i, k), bX(i), cX(i, k), d(i, j, k, l) ∈ {0, 1}

Figure 7.1: Program Max-Matching-Breakpoint to compute ADJfull(G,H), where nG and nH denote the
size of G and H, respectively.

88

ILCS: G = −1 2 5 3 5 −3 −2 −1 4

H = −3 −2 −5 −2 1 3 −3 −2 1 −1 −4

1 3 2 4 5

2 1 3 4 5

Result: G ′ = −1 2 5 3 ′ −3 −2 ′ −1 4

H ′ = −3 −2 ′ −5 −2 1 3 ′ 1 ′ −4

IILCS: G = −1 2 5 3 5 −3 −2 −1 4

H = −3 −2 −5 −2 1 3 −3 −2 1 −1 −4

1 2 3 4

1 2 3 4

Result: G ′ = −1 2 5 3 −3 ′ −2 ′ −1 ′ 4

G ′ = −5 −2 1 3 −3 ′ −2 ′ 1 ′ −4

HYBP(2): G = −1 2 5 3 5 −3 −2 −1 4

H = −3 −2 −5 −2 1 3 −3 −2 1 −1 −4

1 2 3 3

1 2 3 3

Result: G ′ = −1 2 5 3 −3 ′ −2 ′ −1 ′ 4

H ′ = −5 −2 1 3 −3 ′ −2 ′ −1 ′ −4

Figure 7.2: Execution and results of the three heuristics, seeking for a full matching, on the strings G =
−1 2 5 3 5 − 3 − 2 − 1 4 and H = −3 − 2 − 5 − 2 1 3 − 3 − 2 1 − 1 − 4. As an example, the problem P in
the HYB heuristic asks to compute the conserved intervals similarity. The circled numbers indicate in which
order the LCS were identified, except for the 3© in the HYB heuristic which signifies that the matchings were
decided simultaneously by the exact algorithm evoked in the last step of the HYB heuristic.

8
Exemplar common subsequences

8.1 Introduction

This short chapter is devoted to presenting some results on exemplar longest common subsequences.
In the genome rearrangement domain, gene duplication is rarely considered as, as we have seen, it

usually makes the problem at hand harder (see Chapter 7 for a patent illustration). Sankoff [Sankoff, 1999]
proposed the so-called exemplar model, which consists in searching, for each family of duplicated genes,
an exemplar representative in each genome. In biological terms, the exemplar gene may correspond to
the original copy of the gene, which later originated all other copies. Following the parsimony principle,
the choices of exemplars should be made so as to minimize the reversal distance between the two simpler
versions of both genomes, composed only by the exemplar genes. An alternative to the exemplar model
is the multigene family model, which consists in maximizing the number of paired genes among a family.
Again, the gene pairs should be chosen so as to minimize the reversal distance between the genomes. Both
exemplar and multigene models were proven to lead to NP-hard problems [Bryant, 2000; Blin et al., 2004].

To compare two sequences, we have proposed in [Bonizzoni et al., 2007] to study a similarity measure
that takes into account the concept of exemplar genes. Observe that a repetition-free LCS can be seen as the
edit distance between two sequences where only deletions are allowed and, furthermore, for each family
with k duplicated genes, at least k1 of them must be deleted [Sadique Adi et al., 2008]. At a more general
level, we considered both mandatory and optional letters and the measure we have proposed is the length of
a constrained common subsequence (LCS) (see [Bergroth et al., 2000; Crochemore et al., 2007]) subject to two
constraints: (i) the common LCS is required to contains exactly or at least one occurrence of each mandatory
letter, and (ii) the common LCS is required to contains at most one occurrence of each optional letter (this
constraint may be relaxed). Additional restrictions on optional letters allow us for varying restriction on
the solution we are looking for. Notice that a complete treatment of pure exemplar LCS has been recently
proposed in [Sadique Adi et al., 2008].

8.2 Definitions

We define four variants of the EXEMPLAR-LCS problem we are interested in. These different variants consider
different situations: each mandatory letter is required to occur exactly or at most once in the common LCS,
and the number of occurrences of each optional letter in the common LCS may be upper-bounded.

89

90

Exemplar-LCS-i

• Input : Two strings u and v over alphabet A = Ao∪̇Am, where Ao is the set of optional letters
and Am is the set of mandatory letters.
• Solution : A common subsequence w of u and v such that (depending on i):

i = 1: w contains exactly one occurrence of each letter in Am and at most one occurrence of
each letter in Ao,

i = 2: w contains at least one occurrence of each letter in Am and at most one occurrence of
each letter in Ao,

i = 3: w contains exactly one occurrence of each letter in Am,

i = 4: w contains at least one occurrence of each letter in Am.

• Measure : The length of the common subsequence, i.e., |w|.

Notice, that, as we shall see soon, whereas the classical LCS problem is well-known to be polynomial-
time solvable for two stings [Bergroth et al., 2000; Crochemore et al., 2007], adding various constraints on
mandatory and optional letters result in much harder problems (not a big surprise).

8.3 Key results

We summarize in this section the results we have obtained for the EXEMPLAR-LCS-i, 1 ≤ i ≤ 4, problem.

Proposition 8.3.1 ([Bonizzoni et al., 2007]). Both the EXEMPLAR-LCS-1 problem and the EXEMPLAR-LCS-2
problem are APX-hard.

It is worth noticing that Proposition 8.3.1 holds even if each letter occurs at most twice in both u and
v. Observe that, even if these two problems are very similar in their definition, two distinct proofs were
needed.

Strongly related to the the EXEMPLAR-LCS-i, 1 ≤ i ≤ 4, problems are the one of determining whether
any feasible solution does exist. Let us focus on the EXEMPLAR-LCS-4 problem, i.e., find for a common
subsequence w that contains at least one occurrence of each mandatory letter. Clearly, optimality aside,
the existence of a solution for the EXEMPLAR-LCS-4 problem implies the existence of a solution for all
EXEMPLAR-LCS-i problems.

Proposition 8.3.2 ([Bonizzoni et al., 2007]). Let (u, v) be an instance of the EXEMPLAR-LCS-i problem, 1 ≤ i ≤ 4.
If |u|a + |v|a ≤ 3 for each letter a ∈ A, then there exists a polynomial-time algorithm to decide whether there exists a
feasible solution.

Proposition 8.3.3 ([Bonizzoni et al., 2007]). Let (u, v) be an instance of the EXEMPLAR-LCS-i problem, 1 ≤ i ≤ 4.
If |u|a + |v|a ≤ 3 for each letter a ∈ A, deciding whether there exists any feasible solution is NP-complete.

This latter result have a definitive consequence on the approximability of the EXEMPLAR-LCS-i problem
when each mandatory letter occurs at most 3 times in each input string as it rules out any polynomial-time
approximation algorithm.

In the light of the above negative results, we have considered in [Bonizzoni et al., 2007] parameterized
issues of the EXEMPLAR-LCS-3 and EXEMPLAR-LCS-4 problems when the parameter is the number of
mandatory letters, i.e., |Am|.

91

Proposition 8.3.4 ([Bonizzoni et al., 2007]). Both the EXEMPLAR-LCS-3 and the EXEMPLAR-LCS-4 problems
are solvable in O(m2mn2) time, wherem = |Am| and n = max{|u|, |v|}.

Our fixed-parameter algorithm for the EXEMPLAR-LCS-3 problem has been implemented and tested
on randomly generated strings. Whereas the running time is acceptable, the space complexity (that grows
exponentially in the size of Am) makes the algorithm not practical for |Am| ≥ 20.

92

Part IV

Additional topics

93

Introduction

This part is devoted to presenting two additional contributions to computational molecular biology. The
first one is concerned with selenocysteine-like insertion and more precisely the problem of computing an
mRNA sequence of maximum codon-wise similarity to a given mRNA (and hence, to a given protein) that
additionally satisfies some structure constraints. We do not write secondary structure, i.e., pseudoknot-free
secondary structures, intentionally as we shall consider pseudoknoted structures. The second problem is
devoted to covering strings by substrings. Our initial motivation came from a paper by Bodlaender et al.
[Bodlaender et al., 1995], who described an application for this problem in the context of protein folding.

This part is organized as follows. Chapter 9 is devoted generalized selenocysteine insertion and Chap-
ter 10 with covering strings by substrings. The two following chapters are independent and as self-contained
as possible.

95

96

9
Selenocysteine-like insertion

Contents
9.1 Introduction . 93
9.2 Preliminaries . 94
9.3 Key results . 96

9.1 Introduction

Perhaps the most significant process in molecular biology known today is the transformation of genetic
information encoded in DNA into proteins. In this process, segments of DNA are transcribed into messenger
RNA (mRNA), which in turn serve as blueprints for manufacturing proteins. This protein blueprint is
provided by triplets of nucleotides known as codons, which compose the mRNA nucleotide sequence, where
each codon encodes a specific amino acid. An mRNA is thus translated into a protein by reading each
of its codons in sequential fashion, and creating a chain of amino acids which forms the target protein.
Recently, biologists found out that according to the folding structure of an mRNA molecule, a certain codon
might encode for different amino acids. This folding structure is captured in many ways, in what is called
the mRNA secondary structure, the set of all hydrogen bonds, or base pairings, formed by the molecule’s
nucleotides.

In [Backofen et al., 2002], Backofen et al. introduced the problem of computing an mRNA sequence of
maximum codon-wise similarity to a given mRNA (and consequently, to a given protein) that additionally
satisfies some secondary structure constraints, the so-called mRNA Structure Optimization (MRSO) problem.
The initial motivation of the MRSO problem is concerned with selenocysteine insertion, i.e. generating new
amino acid sequences containing selenocysteine. This rare amino acid was discovered as the 21-st amino acid
[Böch et al., 1991], giving another clue to the complexity and flexibility of the mRNA translation mechanism.
Selenocysteine is encoded by the UGA codon, which is usually a stop codon encoding the end of translation.
It has been shown [Böch et al., 1991] that in case of selenocysteine, termination of translation is inhibited in
the presence of a sequence of nucleotides, the SECIS element, which forms a hairpin-like structure in the
3 ′-region after the UGA codon (see Figure 9.1). It is even argued in [Backofen et al., 2002] that modifying
existing proteins by incorporating selenocysteine instead of a catalytic cysteine is an important problem for
catalytic activity enhancement and X-ray crystallography.

Selenocysteine insertion is concerned with a restricted type of secondary structure, i.e., a secondary

97

98

Figure 9.1: The translation of UGA into selenocysteine. Termination of translation is inhibited in the presence
of the SECIS element.

structure without pseudoknots, and for this type of structure the linear-time algorithm presented in [Backofen
et al., 2002] provides an optimal solution. However, it is reasonable to assume that the discovery of
selenocysteine will lead to the discovery of several other amino acids of similar kind, some of which are
likely to require more complex secondary structures. Even today, similar problems occur in programmed
frameshifts which allow to encode two different amino acid sequences in one mRNA sequence [Jacks et al.,
1988; Jacks and Varmus, 1985]. This motivates the investigation of the MRSO problem for more elaborate
secondary structures (actually, this issues have been suggested in [Backofen et al., 2002; Bongartz, 2004]).

9.2 Preliminaries

An mRNA molecule is viewed as a string over the alphabet A = {A,C,G,U}, where A represents the four
different types of nucleotides in the molecule. The pairs {A,U}, {G,C}, and {G,U} are known as complementary
nucleotide pairs. Hydrogen bonds can only be formed between complementary nucleotides in an mRNA
folding. A codon of an mRNA sequence is a segment of three nucleotides, i.e., a string in A3. Thus, an
mRNA sequence S = s1s2 . . . s3n is a concatenation of n consecutive codons, where the i-th codon of S is
s3i−2s3i−1s3i.

Given a source mRNA sequence S = s1s2 . . . s3n, we consider the problem of evaluating the codon-wise
similarity between S and another target mRNA sequence T = t1t2 . . . t3n. For this, we are provided with
a set of n functions, F = f1, f2 . . . , fn, called similarity functions of S, such that for all i, 1 ≤ i ≤ n, each
function fi is of the form fi : Σ

3 → Q. Thus, fi assigns a value to the i-th codon of T according to its level of
similarity in comparison with the i-th codon of S. The total level of similarity between S and T is then given
by
∑n
i=1 fi(t3i−2t3i−1t3i). Note that given a set of similarity functions F = f1, f2, . . . , fn for S, one does not

need to know anything else about S in order to compute the similarity score of S and T .
The structure constraints Γ ⊆ {{i, j} : 1 ≤ i < j ≤ 3n} for a target mRNA sequence T of length 3n, are

pairings between distinct integers in {1, 2, . . . , 3n}. These represent necessary hydrogen bonds in the folding
of T . It is assumed that each nucleotide can pair with at most one other nucleotide in any folding, hence each
integer appears in at most one pair in Γ . Furthermore, there are no pairs of the form {i, i+ 1} or {i, i+ 2} in
Γ , for all i, 1 ≤ i ≤ 3n− 2. Given a set of structure constraints Γ ⊆ {{i, j} : 1 ≤ i < j ≤ 3n}, and an arbitrary
target mRNA sequence T = t1t2 . . . t3n, we say that nucleotides ti and tj in T are compatible with respect
to Γ , if either {ti, tj} is a complementary nucleotide pair or {i, j} /∈ Γ . The entire sequence T is compatible
with respect to Γ , if all pairs of nucleotides in T are compatible with respect to Γ . We are now in position to
formally define the MRNA STRUCTURE OPTIMIZATION (MRSO) problem we are interested in (see [Backofen

99

et al., 2002]).

MRSO

• Input : A set F of n similarity functions for a source mRNA sequence of length 3n, and and a
set of structure constraints Γ ⊆ {{i, j} : 1 ≤ i < j ≤ 3n}. .
• Solution : A target mRNA sequence which is compatible with respect to Γ .
• Measure : The similarity score of the target mRNA sequence with respect to F .

It will convenient to formalize the MRSO problem in a slightly different manner using graph-theoretic
concepts, as we shall consider Γ as a linear graph (see Definition 2.2.1 page 18) with 3n vertices which has a
maximum degree of one. However, since we are really interested in codon-wise similarity, we use a more
suitable representation of Γ :

Definition 9.2.1 (Implied structure graph [Backofen et al., 2002]). Let Γ ⊆ {{i, j} : 1 ≤ i < j ≤ 3n} be a set of
structure constraints for a target mRNA sequence of length 3n. The implied structure graph of Γ is the linear graph
GΓ defined by:

V(GΓ) = {1, 2, . . . , n}, and
E(GΓ) = {{i, j} : ∃{x, y} ∈ Γ : x ∈ {3i− 2, 3i− 1, 3i} ∧ y ∈ {3j− 2, 3j− 1, 3j}} .

In this way, a vertex i in V(GΓ) corresponds to the i-th codon of the target mRNA sequence, and
i, j ∈ V(GΓ) are connected in E(GΓ) if there are any structure constraints in Γ between the i-th and j-th
codons of the sequence. Note that there can be at most three structure constraints between any pair of
codons, therefore GΓ has maximum degree of three, i.e., it is a subcubic graph. Also note that, while this
representation may seem lossy, Γ can be retained from GΓ by adding up to three labels for each edge in
E(GΓ).

Given a subset of vertices V ⊆ V(GΓ), we let GΓ [V] denote the subgraph of GΓ induced by V , i.e., the
subgraph with V as its vertex set, and E(GΓ) ∩ (V×V) as its edge set. Similarly, given a subset of edges
E ⊆ E(GΓ), GΓ [E] denotes the subgraph of GΓ with vertex set {i | {i, j} ∈ E} and edge set E. Also, we use
GΓ [i, . . . , j] to denote the subgraph of GΓ induced by {i, . . . , j} ⊆ V(GΓ). Two edges {i, j} and {i ′, j ′} cross
in GΓ if either i < i ′ < j < j ′ or i ′ < i < j ′ < j. Note that two crossing edges might not cross under a
different ordering of V(GΓ). If there exists an ordering of V(GΓ) which introduces no edge crossings then
GΓ is outerplanar. Recall that if GΓ is outerplanar, the MRSO problem is solvable O(n) time [Backofen et al.,
2002].

A codon assignment for GΓ is a mapping from some V ⊆ V(GΓ) to Σ3. An assignment for a pair of vertices
i, j ∈ V(GΓ), i→ t3i−2t3i−1t3i and j→ t3j−2t3j−1t3j, is compatible with respect toGΓ , if either {i, j} /∈ E(GΓ)
or ti ′ and tj ′ are complementary nucleotides for any {i ′, j ′} ∈ Γ ∩ {3i− 2, 3i− 1, 3i}× {3j− 2, 3j− 1, 3j}. More
generally, an assignment φ : V → Σ3 for some V ⊆ V(GΓ) is compatible with respect to GΓ , if for any i, j ∈ V ,
the assignment i→φ(i) and j→φ(j) is compatible with respect to GΓ . Henceforth, we consider instances for
the MRSO problem of the form (GΓ ,F). Our goal in this setting is to find an assignment φ : V(GΓ)→ Σ3

(i.e., a target mRNA sequence T = φ(1)φ(2) . . . φ(n)), which is compatible with GΓ , and which maximizes∑n
i=1 fi(φ(i)).
For the MRSO problem, it has been shown in [Backofen et al., 2002] that there exists a linear-time

algorithm if the considered secondary structure corresponds to an outerplanar graph (as it is the case for
selenocysteine insertion). In this sequel, we refer to this algorithm as AOP. For the general case, the problem
was proved to be NP-complete [Backofen et al., 2002], and Bongartz showed that in fact the problem is
APX-hard [Bongartz, 2004]. An algorithm for approximating the MRSO problem within ratio 2 is given
in [Backofen et al., 2002]. A slightly slower but somewhat simpler 4-approximation algorithm is given in
[Bongartz, 2004]. We mention also that an extension of the MRSO problem, where insertions and deletions
are allowed in the amino acid sequence is presented in [Backofen and Busch, 2004].

100

9.3 Key results

We shall be concerned with two natural parameters for the MRSO problem. These are the number of
crossings edges in GΓ , and the number of degree three vertices in GΓ , denoted p(GΓ) and q(GΓ), respectively.

Our initial interest in parameters p(GΓ) and q(GΓ) stems from the fact that we strongly believe them to
be small for most practical applications. Consider parameter p(GΓ), the number of edge crossings in GΓ
(this parameter was previously suggested in [Bongartz, 2004]). Indeed, almost all currently known mRNAs
have secondary structures which induce outerplanar formations, i.e., formations with no edge crossings.
Furthermore, many secondary structure prediction algorithms restrict their search space to structures with
bounded edge crossings, since prediction with unbounded edge crossings usually becomes NP-hard, and
is anyhow assumed unnatural (see for instance [Akutsu, 2000]). As for parameter q(GΓ), the number of
degree three vertices, recall that a vertex of degree three in GΓ represents a codon with three nucleotides,
each pairing with complementary nucleotides in three different codons. Although this situation can occur in
a folding of an mRNA molecule, it can be expected to be quite rare due to the geometric constraints imposed
on any such folding. Also, pairs of hydrogen bonds of the form {i, j} and {i+ 1, j− 1}, called stacking pairs,
tend to contribute quite substantially to the overall stability of the folding structure of the mRNA [Ieong
et al., 2003; Lyngsø and Pedersen, 2000]. A secondary structure is hence expected to have a relatively high
number of stacking pairs, and therefore to induce an implied structure graph with a relatively small number
of degree three vertices.

It turns out that the MRSO problem is polynomial-time solvable when either p(GΓ) or q(GΓ) are fixed.
The notion of edge bipartition plays a central role in this setting.

Definition 9.3.1 ((Nice) Edge bipartition). Let GΓ be an implied structure graph with n vertices. An edge
bipartition P = (Et, Eb) of GΓ is a partitioning of the edges in GΓ into Et and Eb, the top and bottom edges of P
respectively, such that Et ∪ Eb = E(GΓ), Et ∩ Eb = ∅ and Et 6= ∅. Furthermore, P is said to be nice , if the subgraph
GΓ [Et] is outerplanar.

Recall that a graph is called outerplanar if it has an embedding in the plane such that the vertices lie on a
fixed circle and the edges lie inside the disk of the circle and don’t intersect.

Central in our approach is Algorithm ANEB (page 97). We shall use Algorithm ANEB only for a nice edge
bipartition of GΓ with a fixed number of bottom edges. At the heart of algorithm ANEB lies the following
simple observation. Suppose we want to find the highest-scoring compatible mRNA sequence which starts
with codon AAA. For this, we can replace the similarity function f1 ∈ F by a different function f ′, where
f ′(AAA) = f1(AAA) and f ′(C) = −∞ for all codons C 6= AAA. Solving the MRSO problem for the instance
(GΓ ,F ′), whereF ′ = f ′, f2, . . . , fn, will then give us our desired mRNA. The following definition generalizes
this example.

Definition 9.3.2 (Corresponding similarity functions). Let (GΓ ,F) be an instance of the MRSO problem with
F = f1, f2, . . . , fn. Also, let φ : V → Σ3 be a codon assignment for some V ⊆ V(GΓ). The corresponding set of
similarity functions of assignment φ, denoted Fφ = fφ1 , . . . , f

φ
n , is defined as follows:

• For all i ∈ V : fφi (φ(i)) = fi(φ(i)), and fφi (C) = −∞ for any C 6= φ(i).

• For all j ∈ V(GΓ) − V : fφj = fj.

Algorithm ANEB uses Algorithm AOP, the algorithm given in [Backofen et al., 2002] for outerplanar
implied structure graphs, as a subprocedure in its computation. At its core, Algorithm ANEB is basically
an exhaustive search procedure that searches through all possible codon assignments for vertices which
are incident to edges in Eb. For each such assignment, Algorithm ANEB first checks if the assignment is
compatible with respect to GΓ [Eb], and if so, it invokes Algorithm AOP with the set of similarity functions
corresponding to this assignment. Any solution returned by Algorithm AOP is guaranteed to be compatible

101

Algorithm 3: Algorithm ANEB(GΓ ,F ,P)
Data: An implied structure graphGΓ of order n, a set of similarity functions F = f1, f2, . . . , fn and a

nice edge bipartition P = (Et, Eb).
Result: An optimal target mRNA sequence T which is compatible with respect to GΓ .
foreach codon assignment φ to vertices incident to edges in Eb do

if φ is compatible with respect to GΓ [Eb] then
(a) Construct Fφ, the similarity functions corresponding to φ.
(b) Invoke AOP(GΓ [Et],Fφ).

end
end
return the target mRNA sequence found in Step (b) with the highest similarity score.

with GΓ since it is simultaneously compatible with both GΓ [Eb] and GΓ [Et]. Finally, Algorithm ANEB
terminates by outputting the maximum solution over all target mRNAs returned by Algorithm AOP. Most of
our interest in Algorithm ANEB stems from the following lemma.

Lemma 9.3.3 ([Blin et al., 2008]). Given an instance (GΓ ,F) for the MRSO problem accompanied by a nice edge
bipartition P = (Et, Eb) of GΓ , ANEB computes an optimal target mRNA sequence for this instance in O(212mn)
time, where n = |V(GΓ)| andm = |Eb|.

Thanks to this general lemma, we have obtained the following results (details omitted).

Proposition 9.3.4 ([Blin et al., 2008]). The MRSO problem is solvable in O(212p(GΓ)n) time.

Proposition 9.3.5 ([Blin et al., 2008]). The MRSO problem is solvable in O(212q(GΓ)n) time.

Also, omitted here are our results that the MRSO problem is solvable in polynomial-time if GΓ has
bounded cutwidth (although cutwidth is perhaps not as natural as the two previously discussed parameters,
it has been studied quite considerably for other problems dealing with RNAs Evans [1999c]; Evans and
Wareham [2001]; Jiang et al. [2000a]) or bounded treewidth (see [Blin et al., 2008] for details). Finally, notice
that in a recent paper, the cliquewidth of GΓ was also argued to be an interesting parameter for the MRSO
problem [Gurski, 2008].

102

10
How many words are needed to build up all words ?

Contents
10.1 Introduction . 99
10.2 Approximation and inapproximation results . 101
10.3 Jumping to numbers . 102

10.3.1 Introduction . 102
10.3.2 Hardness . 103
10.3.3 Put the blame on rk2(S) . 105

10.1 Introduction

In a covering problem we are faced with the following situation: We are given two (not necessarily disjoint)
sets of elements, the base elements and the covering elements, and the goal is to find a minimum (weight) subset
of covering elements that “covers”all the base elements. The exact notion of covering differs from problem to
problem, yet this abstract setting is common to many classical combinatorial problems in various application
areas. Two famous examples are (i) the MINIMUM SET COVER problem where the covering elements are
subsets of the base elements and the notion of covering corresponds to set inclusion, and (ii) the MINIMUM
VERTEX COVER problem where the setting is graph-theoretic and the notion of covering corresponds to
incidence between vertices and edges. Ever since the early days of combinatorial optimization, research on
covering problems such as the two examples above proved extremely fruitful in laying down fundamental
techniques and ideas. The early work of Johnson [Johnson, 1974] and Lovász [Lovász, 1974] on the MINIMUM
SET COVER problem pioneered the greedy analysis approach, while Chvátal [Chvátal, 1979] gave the
first analysis based on linear programming (LP) while tackling the same problem. The first LP-rounding
algorithm by Hochbaum [Hochbaum, 1982] was also designed for MINIMUM SET COVER, while Bar-Yehuda
and Even gave the first Primal-Dual [Bar-Yehuda and Even, 1981] and Local-Ratio [Bar-Yehuda and Even,
1985] algorithms for the MINIMUM VERTEX COVER problem.

In this chapter we introduce a new covering problem which resides in the realm of strings. A string u is a
substring of a string v, if u can be obtained by deleting any number of consecutive letters from both ends of
v. In our covering problem, the base elements are strings and the covering elements are their substrings.
The notion of covering corresponds to string-factorization, or to the generation of strings by substring
concatenation. More formally, for a given set of strings S, let C(S) denote the set of all substrings of strings in

103

104

S. We define a cover of S to be a subset C ⊆ C(S) such that any string s ∈ S can be written as a concatenation
of strings in C. If each string in S can be written as a concatenation of at most ` strings in C, we say that C is
an `-cover of S. Given a weight function w : C(S)→ Q+, we are interested in computing an `-cover of S with
minimum possible weight.

The problem is formally defined as follows.

Minimum Substring Cover

• Input : A set of strings S, a weight functionω : C(S)→ Q+, and an integer ` ≥ 2.
• Solution : An `-cover C of S. That is, a set of strings C ⊆ C(S), where for each s ∈ S there exist
c1, . . . , cp ∈ C, p ≤ `, with s = c1 · · · cp.
• Measure : The total weight of the cover, i.e.,ω(C) =

∑
c∈Cw(c).

Example 8 Consider the set of strings S = {a, aab, aba}. Then

C(S) = {a, b, aa, ab, ba, aab, aba}

and C1 = {a, b} and C2 = {a, ab} are covers of S. The cover C1 is a 3-cover of S, while C2 is a 2-cover.

Throughout this chapter, we use n to denote the number of strings in S, andm to denote the maximum
length of any string in S, i.e., n = |S| andm = max{|s| : s ∈ S}.

Note that in case ` ≥ m, there is no actual bound on the concatenation length of the required cover, and
this case is denoted by ` = ∞. An ∞-cover is referred to simply as a cover. Another interesting special
case is when ` = 2. In this case, we are required to cover Swith a set of prefixes and suffixes in S, where a
prefix (resp. suffix) of a string s is a substring of s which is obtained by removing consecutive letters only
from the end (resp. beginning) of s. As we will see, these two extremal cases both give a certain amount of
combinatorial leverage, and therefore deserve particular consideration. We also wish to point out that our
use of general weight functionsω : C(S)→ Q+ allows for more robustness in modeling different scenarios.
For instance, whenω is the unitary function, i.e.,ω(c) = 1 for every c ∈ C(S), this corresponds to the situation
where we want to minimize the size of a cover of S. Whenω(c) = |c|, i.e., the weight of every substring is its
length (w is the length-weighted function), this corresponds to the case where we want to minimize the total
length of the cover. Often some sort of middle ground between these two situations might also be desirable.

Example 9 Consider the two coversC1 andC2 of the set of strings S in Example 8. Ifω is the unitary function,
thenω(C1) = ω(C2) = 2. However, ifω is the length-weighted function, we haveω(C1) = 2 < ω(C2) = 3.

Our initial inspiration for studying the MINIMUM SUBSTRING COVER problem came from a paper by
Bodlaender et al. [Bodlaender et al., 1995], who described an application for this problem in the context of
protein folding (The authors of [Bodlaender et al., 1995] actually referred to our problem as the DICTIONARY
GENERATION problem, and considered its unweighted variant under the parameterized complexity frame-
work.) Protein folding is the problem of determining the folding structure of proteins using their amino-acid
sequential description. This problem is extremely important, since most of the functionally of a protein is
determined by its folding structure, and because current biological methods for extracting the sequential
description of a given protein exceed by far the methods for extracting the folding structure of the protein.
In [Bodlaender et al., 1995], it is argued that since all known approaches for protein folding are NP-hard, a
possible heuristic for this problem is to break the protein sequence into small segments, small enough for
allowing efficient folding computation. This heuristic is justified by the fact that many proteins seem to be
composed of relatively small regions which fold independently of other regions. The theory of exon shuffling
proposes that all proteins are concatenations of such regions, where the regions are drawn from a common
ancestral dictionary [Dorit and Gilbert, 1991; Patthy, 1991].

105

The MINIMUM SUBSTRING COVER problem can also model interesting computational issues which
arise in formal language theory, and in particular, in the area of combinatorics of words. Our notion of∞-cover actually corresponds to the notion of combinatorial rank, an important parameter of a set of words
(the best general reference here is [Choffrut and Karhumäki, 1997]). Néraud [Néraud, 1990] studied the
problem of determining whether a given set of words is elementary, where a set of strings is said to be
elementary if it does not have a cover of size strictly less than its own. Neraud describes a direct application
of this notion to the famous D0L-sequence equivalence problem (see [Rozenberg and Salomaa, 1980]) via
so-called elementary morphisms [Ehrenfeucht and Rozenberg, 1978]. He also argues that this notion appears
frequently in numerous sub-areas such as test sets, code theory, representation of formal languages, and
the theory of equations in free monoids. His main result is in showing that deciding whether a given set of
words is elementary is coNP-complete, which implies that MINIMUM SUBSTRING COVER is NP-hard.

Apart from the work of Bodlaender et al. [Bodlaender et al., 1995] and Néraud [Néraud, 1990], there
has also been some recent work on problems closely related to MINIMUM SUBSTRING COVER, especially
for the case of ` = 2. The MINIMUM SET COVER WITH PAIRS problem introduced by Hassin and Segev in
[Hassin and Segev, 2005], is a variant of the MINIMUM SET COVER problem where base elements are now
covered by pairs of sets, and the goal is to cover all base elements using a minimum weight collection of sets.
Hassin and Segev gave an O(

√
n log(n)) approximation algorithm for this problem, along with a few other

algorithms for special cases of this problem. Another closely related problem is the HAPLOTYPE INFERENCE
BY MAXIMUM PARSIMONY problem, an important problem in computational molecular biology. Huang et al.
[Huang et al., 2005] gave an algorithm for this problem, which translates to an O(m log(n)) algorithm for
the MINIMUM SUBSTRING COVER problem with ` = 2. Hajiaghayi et al. [Hajiaghayi et al., 2006] introduced
the MINIMUM MULTICOLORED SUBGRAPH problem within the same context, and gave an algorithm which in
our terms obtains a performance guarantee of O(

√
m log(n)) with high probability.

10.2 Approximation and inapproximation results

We begin the presentation by giving some negative results (to fix the context). Combining an approximation
preserving reduction from the MINIMUM HYPERGRAPH VERTEX COVER problem to the MINIMUM SUBSTRING
COVER problem together with the results of [Raz and Safra, 1997] and [Dinur et al., 2005], we have obtained
the following inapproximability result.

Proposition 10.2.1 ([Hermelin et al., 2008]). It is NP-hard to approximate the MINIMUM SUBSTRING COVER
problem (i) within ratio c log(n) for some constant c, and (ii) within ratio bm/2c− 1− ε for any ε > 0.

It is worth noticing that the above proposition relies (i) on a somewhat unnatural weight functionω, and
(ii) on the fact that the strings in S are allowed to be fairly long. The following proposition relaxes both these
conditions at the cost of reducing the lower bounds to only a constant.

Proposition 10.2.2 ([Hermelin et al., 2008]). The MINIMUM SUBSTRING COVER problem is NP-hard to approxi-
mate (i) within ratio c log(n) for some constant c, (ii) within ratio bm/2c− 1− ε for any ε > 0, and (iii) within some
constant c, whenm and ` are constant, andω is either the unitary or the length-weighted function.

We now turn to presenting some positive results in the form of approximations algorithms with per-
formance ratios depending on the length of the longest word in S. We first apply the local-ratio technique
[Bar-Yehuda, 2000; Bar-Yehuda and Even, 1985], and next linear programming techniques. The local-ratio
technique [Bar-Yehuda, 2000] is based on the Local-Ratio Lemma [Bar-Yehuda and Even, 1985], which in our
terms is stated as follows.

Lemma 10.2.3 (Local-Ratio). Let C be a cover for S, and let ω1 and ω2 be weight functions for C(S). If C is an
α-approximate solution, both with respect tow1 and with respect tow2, then C is also an α-approximate solution with
respect toω1 +ω2.

106

We need a new definition. Given a weight function ω : C(S) → Q+, we say that ω is proper if for any
c, c1 ∈ C(S),ω(c1) ≤ ω(c) whenever c1 is a prefix or a suffix of c. For example, unitary and length-weighted
functions are proper. Based on the local-ratio technique, we have obtained the following positive results.

Proposition 10.2.4 ([Hermelin et al., 2008]). The MINIMUM SUBSTRING COVER problem is approximable (i)
within ratio

(
m+1
2

)
− 1 for general values of `, (ii) within ratio m − 1 for ` = 2, and (iii) within ratio m for ` =∞

and proper weight functionω.

Is the MINIMUM SUBSTRING COVER problem approximable within ratiom for ` =∞ if the weight
function is not proper?

We now consider the MINIMUM SUBSTRING COVER problem from a linear programming point of view.
We have shown in [Hermelin et al., 2008] that the MINIMUM SUBSTRING COVER problem can be formulated
as follows:

minimize
m∑
i=1

(1+ xi)
2

4

subject to
∑

vp vq=ui

(1+ xp)(1+ xq)

4
≥ 1, i = 1, 2, . . . , n

xi ∈ {−1,+1}, j = 1, 2, . . . ,m

(10.1)

By combining the above linear program with a randomized rounding procedure we have obtained the
following approximation result.

Proposition 10.2.5 ([Hermelin et al., 2008]). With high probability, the MINIMUM SUBSTRING COVER problem is
approximable within ratio O(m(`−1)2/` log1/`(n)).

10.3 Jumping to numbers

10.3.1 Introduction

What is the complexity of the MINIMUM SET COVER problem for a one-letter alphabet? If ` = 2 in addition?
Unfortunately, we don’t have any answer for that, even for ` = 2. The problem is, however, known to be
APX-hard for a binary alphabet (D. Hermelin, and S. Vialette, Unpublished result), but none of our attempts
succeeded in proving either NP-hardness or membership to P for a one-letter alphabet. We consider in this
section the MINIMUM SET COVER problem for a one-letter alphabet . . . in quite a relaxed form. More precisely,
what about the complexity of the MINIMUM SET COVER problem for a one-letter alphabet in case the strings
are given by their length? Indeed, in the special case of a one-letter alphabet, there is no ambiguity in giving
either the string or their length. Observe that the two problems are, however, different from an algorithmic
theory point of view. Indeed, if S is composed of n strings, each of length at most m, the size of the input is
O(nm) whereas it reduces to O(n log(m)) if the strings are presented by their length (assuming a natural
binary encoding). This section is devoted to investigating this problem, referred hereafter as the MINIMUM
k-GENERATING SET problem.

We use N∗ to refer to the set of all natural numbers excluding zero, i.e., N∗ = {1, 2, . . .}. Let S =
{s1, s2, . . . , sn} ⊂ N∗. For any k ∈ N∗, we write kS for the set of all integers that can be expressed as the

107

What is the complexity of the MINIMUM SET COVER problem for a one-letter alphabet and ` = 2?
This question to equivalent to deciding whether the MINIMUM 2-GENERATING SET problem is
strongly NP-complete.

sum of exactly k non necessarily distinct integers of S, i.e., kS = {si1 + si2 + . . . + sik : si1 , si2 , . . . , sik ∈ S}.
According to this definition, for any set S, S = 1S. A set X ⊂ N∗ is a k-generating set of S (or k-generates S)
if S ⊆

⋃k
i=1 iX. (Notice here that we do not require the additional constraint

⋃k
i=1 iX ⊆ S.) It is called a

minimum k-generating set of S if X is a k-generating set of S of minimum cardinality. The k-rank of S, denoted
rkk(S), is the cardinality of a minimum k-generating set of S. A set S ⊂ N∗ is k-elementary if rkk(S) = |S|. Let
min(S) and max(S) stand for min{si : si ∈ S} and max{si : si ∈ S}, respectively.

MINIMUM k-GENERATING SET

• Input : A set S = {s1, s2, . . . , sn} ⊂ N∗, and a positive integer k.
• Solution : A k-generating set X of S, i.e., a set X ⊂ N∗ such that S ⊆

⋃
1≤i≤k iX.

• Measure : The cardinality of X.

Notice that it has been shown (in the context of conformal radiotherapy and Intensity Modulated
Radiation Therapy) that computing the k-ranks of a set of integers for unbounded k is NP-complete [Collins
et al., 2007].

We focus here only on the case k = 2. In [Fagnot et al., 2009], some easy properties (including expansion,
contraction and shift) of minimum 2-generating sets are given. Actually, from our point of view, the only
property that does not follow intuition is that, for any S ⊂ N∗ and any c ∈ N∗ common divisor of S, we have
rk2(S/c) = rk2(S) if c is odd and rk2(S) ≤ rk2(S/c) ≤ 2 rk2(S) if c is even, where S/c = {si/c : si ∈ S}. In
other words, dividing the elements of S by a common divisor does not reduce the 2-rank (thereby ruling out
this approach for approximation considerations), and the result is quite tight (see [Fagnot et al., 2009]).

10.3.2 Hardness

The complexity of the MINIMUM 2-GENERATING SET problem is settled in [Fagnot et al., 2009].

Proposition 10.3.1 ([Fagnot et al., 2009]). The MINIMUM 2-GENERATING SET problem is APX-hard.

The proof is from the VERTEX COVER problem for cubic graphs and uses combinatorial properties (more
precisely matching properties) of intervals [Gyárfás, 2003].

It remains open, however, whether the MINIMUM 2-GENERATING SET problem is NP-complete if every
integer in S is bounded by a polynomial in the length of the input. We now complement the above hardness
result by presenting a new result that shows intractability of finding any non-trivial 2-generating set. We
need a new definition. A set S ⊂ N∗ is said to be k-simplifiable , k ∈ N∗, if there exists a k-generating set X of
S such that |X| < |S|. In other words, S is k-simplifiable if rkk(S) < |S|.

Proposition 10.3.2. Deciding whether a set S ⊂ N∗ is 2-simplifiable is coNP-hard.

Proof. The reduction if from the EQUAL SUM SUBSET OF EQUAL CARDINALITY problem: Given a set T ⊂ N∗,
are there two disjoint nonempty subsets A,B ⊆ T with |A| = |B| such that

∑
a∈A a =

∑
b∈B b? The EQUAL

SUM SUBSET OF EQUAL CARDINALITY problem has been shown to be NP-complete in [Cieliebak et al., 2008].

108

Computing a minimum 2-generating set of {1, 2, . . . , n} turns out to be a special case of the
POSTAGE STAMP problem ([Alter and Barnett, 1980; Tripathi, 2006]). The POSTAGE STAMP
problem is defined as follows: for fixed positive integers h, k ∈ N∗, find N(h, k), i.e., the
largest n for which a h-generating set of {1, 2, . . . , n} of size k exists. It is easily seen that
N(1, k) = k (for {1, 2, . . . , k}) and N(h, 1) = h (for {1}). Stöhr [Stöhr, 1955a,b] proved that
N(h, 2) =

⌊
(h2 + 6h+ 1)/4

⌋
(Tripathi gives an alternate proof in [Tripathi, 2006]). Surprisingly

enough, no other closed-form formula is known for any other pair (h, k) where one of h and
k is fixed [Tripathi, 2006]. Computing a closed-form formula for N(2, k) (or, going back to our
vocabulary, “computing rk2({1, 2, . . . , n}”) remains a challenging open problem (an asymptotic
bound for N(2, k) is given in [Moser, 1960]).
To give some insights of the context, we give the minimum size of of each 2-generating set of
{1, 2, . . . , n}, i.e., rk2({1, 2, . . . , n}), for n from 1 to 64 (notice that rk2({1, 2, . . . , 65}) = 13).

n rk2({1, 2, . . . , n}) length of the slot
1, 2 1 2

3, 4 2 2

5, 6, 7, 8 3 4

9, 10, 11, 12 4 4

13, 14, 15, 16 5 4

17, 18, 19, 20 6 4

21, 22, . . . , 26 7 6

27, 28, . . . , 32 8 6

33, 34, . . . , 40 9 8

41, 42, . . . , 46 10 6

47, 48, . . . , 54 11 8

55, 56, . . . , 64 12 10

Let n ∈ N∗, and X be a minimum 2-generating set of {1, 2, . . . , n}. We certainly have max(X) ≥
⌈
n
2

⌉
(indeed, (

⌈
n
2

⌉
− 1) + (

⌈
n
2

⌉
− 1) < n). We conjecture that max(X) ≤

⌈
n
2

⌉
is actually enough.

Conjecture 5. For every n ∈ N∗, there exists a minimum 2-generating set X of {1, 2, . . . , n} such that
max(X) =

⌈
n
2

⌉
.

A computer-aided verification (linear programming) shows the conjecture to be correct for 1 ≤
n ≤ 80. If True, this property might help in better understanding the structure of optimal 2-
generating sets (more precisely, the structure of some interesting optimal 2-generating sets) of
consecutive integers.

Let T = {t1, t2, . . . tn} ⊂ N∗ be an arbitrary instance of the EQUAL SUM SUBSET OF EQUAL CARDINALITY
problem. We are due to find out whether this set contains two disjoint subsets with the same cardinality and
with the same sum. We take a rather big natural B (B = 1+

∑n
i=1 ti is actually enough) and define the set

S = {s0, s1, . . . , sn} ⊂ N∗ by s0 = 1 and si = (2(ti +B) + 1, 1 ≤ i ≤ n. We claim that S is 2-simplifiable if and
only if the original set T admits two disjoint subsets of equal sum and cardinality.

Assume for simplicity that t1+ t3+ . . .+ t2k−1 = t2+ t4+ . . .+ t2k for some k. This is clearly equivalent
to assuming that s1 + s3 + . . .+ s2k−1 = s2 + s4 + . . .+ s2k. Assume further that t2i−1 ≤ t2j−1 and t2i ≥ t2j

109

for all 1 ≤ i < j ≤ k. This can be safely assumed through a relabeling of the indexes of t1, t3, . . . , t2k−1 (and
of s1, s3, . . . , s2k−1) and a relabeling of the indexes of t2, t4, . . . , t2k (and of s2, s4, . . . , s2k). Now, we have
that

s1 + s3 + . . .+ s2q−1 ≤ s2 + s4 + . . .+ s2q (10.2)

for every 1 ≤ q ≤ k. Consider now the 2k naturals d0, d1, d2, . . . , d2k−1 defined by d0 = 1 and di = si−di−1
for 1 ≤ i ≤ 2k− 1. We claim that each di, 1 ≤ i ≤ 2k− 1, is a positive integer. Indeed, for 1 ≤ i ≤ k− 1, we
have

d2i+1 = s2i+1 − d2i

= (s1 + s3 + . . .+ s2i+1) − s0 − (s2 + s4 + . . .+ s2i)

= 2(t1 + t2 + . . .+ t2i+1) + 2B(i+ 1) + (i+ 1) − s0 − 2(t2 + t4 + . . .+ t2i) − 2Bi− i

= 2(t1 + t2 + . . .+ t2i+1) − 2(t2 + t4 + . . .+ t2i) + 2B+ 1

> 0

for B >
∑n
i=1 ti, and

d2i = s2i − d2i−1

= (s2 + s4 + . . .+ s2i) + s0 − (s1 + s3 + . . .+ s2i−1)

≥ s0
= 1

by (10.2). Notice that it follows from the above that

d2k−1 = (s1 + s3 + . . .+ s2k−1) − s0 − (s2 + s4 + . . .+ s2k−2).

Combining this with our hypothesis

s2k = (s1 + s3 + . . .+ s2k−1) − (s2 + s4 + . . .+ sk−2)

yields s2k = d2k−1 + s0 = d2k−1 + d0, and hence si = di−1 + di mod 2k holds for 1 ≤ i ≤ 2k. Then it follows
that X = {di : 0 ≤ i ≤ 2k− 1} ∪ {si : 2k+ 1 ≤ i ≤ n} is a 2-generating set of S. But |X| = n− 1 < n = |S|, and
hence S is 2-simplifiable.

For the other direction, assume the set S = {s0, s1, . . . sn} is 2-simplifiable and let D = {d1, d2, . . . , dk},
k ≤ n, be a 2-generating set for S. Let us represent this situation with a graph G (for the very first time in
this manuscript we shall allow for loops in a graph). The graph G has k + 1 vertices labeled 0, d1, . . . dk.
As for the edges, for every 0 ≤ i ≤ n, we have an edge labeled si between two vertices dp and dq such
that si = dp + dq (if there exists severals possibilities for 2-generating si with D we choose one arbitrarily).
Notice that, we have a loop labeled si if si = dp + dp for some dp ∈ D, and en edge labeled si with an
endpoint labeled 0 allows us to conveniently represent the case si = dp as si = dp + 0, dp ∈ D.

Since G has k+ 1 ≤ n+ 1 vertices and n+ 1 edges then Gmust contain some cycle C. Furthermore, the
sum of the labels on the edges of C is twice the sum of the labels on the nodes of C, and must therefore be
an even number. Now, remembering that the si‘s are all odd (by construction from the ti‘s) it follows that
C is an even cycle. Moreover, the edges of C can be partitioned into two matchingsM1 andM2. Notice
now that the sum of the labels on the edges ofM1 equals the sum of the labels on the edges ofM2. From
this, and since B is so big, we can exclude the possibility that one edge of C is labelled with s0 = 1. Then it
follows that the edges ofM1 and the edges ofM2 give two disjoint subsets of T = {t1, t2, . . . , tn} with equal
sum and cardinality.

Observe, however, that Proposition 10.3.2 does rule out the existence of an approximation algorithm for
finding a minimum 2-generating set. Quite a surprising fact at first glance!

110

10.3.3 Put the blame on rk2(S)

Write n = |S|,m = max(S) and k = rk2(S). We now consider the problem of finding a minimum cardinality
2-generating set of S from an effective computational point of view [Downey and Fellows, 1999; Niedermeier,
2006]. As a first attempt, let us consider the brute-force approach (we do think it is good practices to always
begin with the naive brute-force algorithm): generate all k-subsets X of {1, 2, . . . ,m} and check for each of
them whether 2-generates S, i.e., S ⊆ X ∪ 2X. Correctness of this algorithm is of course immediate. There
are

(
m
k

)
such subsets and each subset X can be identified as a 2-generating set of S in O(k2 log(k)) time

(assuming a unit-cost RAM model with log(m) word size). Therefore, the brute-force algorithm is, as a whole,
a O(mkk2 log(k)) time procedure. Butm (and even log(m)) can be arbitrarily large compared to n = O(k2)
and this naturally leads us to the problem of trying to confine the seemingly inevitable combinatorial
explosion of computational difficulty to a function of k only [Downey and Fellows, 1999; Niedermeier, 2006].
We prove here that such an algorithm does exist for finding a minimum cardinality 2-generating set of S.
The following lemma is central in our approach.

Lemma 10.3.3 ([Fagnot et al., 2009]). Let S = {si : 1 ≤ i ≤ n} ⊂ N∗ and X be a minimum 2-generating set of S.
There exist rationals αi,j ∈ {−1,−2−1, 0, 2−1, 1}, 1 ≤ i ≤ rk2(S) and 1 ≤ j ≤ n, such that

X =

n∑
j=1

αi,j sj : 1 ≤ i ≤ rk2(S)

 .

Combining Lemma 10.3.3 with a brute-force algorithm for finding a (representation of a) minimum
cardinality 2-generating set of a set S ∈ N∗ yields the following result.

Proposition 10.3.4. Assuming a unit-cost RAM model with log(m) word size (m = max(S)), there exists a

O(5
k2(k+3)

2 k2 log(k)) time algorithm for finding a minimum cardinality 2-generating set of S, where k = rk2(S).

Let us conclude by clarifying a point that we think some people have found confusing: Can integer
linear programming techniques cope here with trying to confine the seemingly inevitable combinatorial
explosion to a function of k only? For one a classical result in parameterized algorithms is that the INTEGER
LINEAR PROGRAMMING problem parametrized by the number of variables is fixed-parameter tractable. This
powerful result, first proved by Lenstra in [Lenstra, 1983] (this paper received Fulkerson Prize in 1985 for an
outstanding contribution in the area of discrete mathematics) and later improved by Kannan [Kannan, 1987].
For another, it is not hard to design an integer linear program for finding a minimum cardinality 2-generating
set of a set of integers. Therefore, integer linear programming seems to be an appealing approach in our
context, and Yes this is indeed a good question. However, as long as our integer linear program uses a
number of variables depending – at least linearly – on max(S), Lenstra’s result does not apply since max(S)
can be arbitrarily big compared to |S|. We did not succeed in obtaining such an integer linear program (and
actually we doubt such an approach is possible).

111

Before concluding, we would like to address the following question: does there exist a better
representation lemma to improve Proposition 10.3.4 ? To this end, consider the set A ⊂ P(Q)
defined as follows: A ∈ A if and only if, for any set S = {si : 1 ≤ i ≤ n} ⊂ Z+, rk2(S) = k, there
exist rationals αi,j ∈ A, 1 ≤ i ≤ n and 1 ≤ j ≤ k, such that X =

{∑n
j=1 αi,jsj : 1 ≤ i ≤ k

}
is a

(necessarily minimum) 2-generating set of S. According to Lemma 10.3.3, A is not empty as it
contains {−1,−1/2, 0, 1/2, 1}. Furthermore, as shown in Proposition 10.3.4, the time complexity of
our algorithm to compute a minimum 2-generating set depends - in an exponential way - on the
size of the minimum cardinality set in A. For any i ∈ Z+, define Ai ⊆ A to be the set of those sets
of A of cardinality i. Our question thus reduces to finding the minimum i ∈ Z+ such that Ai 6= ∅.
Lemma 10.3.3 shows that A5 6= ∅. Proving or disproving Ai 6= ∅ for some 1 ≤ i < 5 remains a
challenging problem.
Here are some lines of thought to reduce the above problem to “Is A4 empty?”. Let A ∈ A. We first
observe that 0 ∈ A (it is enough to consider the set S = {1, n}, for any unbounded n). Furthermore,
we must have 1 ∈ A (it is enough here to consider the set S = {1}). As an immediate consequence,
A1 = ∅ since |A| ≥ 2. We now show that A2 = ∅, i.e., {0, 1} /∈ A2. Indeed, the set S1 = {4, 5, 6}
has a unique minimum cardinality 2-generating set, namely X1 = {2, 3}. But 2 6=

∑
i∈S1 αi i for

αi ∈ {0, 1}, i ∈ S1, and hence {0, 1} /∈ A2. Therefore, A2 = ∅. We now turn to proving that A3 = ∅.
Suppose, aiming at a contradiction, that A3 6= ∅, and let A ∈ A3. According to the above, A has
the general form {0, 1, x} for some x ∈ Q. For one, as we already noticed, the set S1 = {4, 5, 6} has
a unique minimum cardinality 2-generating set, namely X1 = {2, 3}. Considering the pair (S1, X1),
an exhaustive computation now shows that A ∈ A3 ⊆ AS1 , where

AS1 = { {−1, 0, 1} , {−3/4, 0, 1} , {−1/2, 0, 1} , {−1/3, 0, 1} , {0, 1/5, 1} ,

{0, 1/3, 1} , {0, 1/2, 1} } .

For another, the set S2 = {6, 7, 8} has a unique minimum cardinality 2-generating set, namely X2 =
{3, 4}. Considering the pair (S2, X2), an exhaustive computation shows that A ∈ A3 ⊆ AS2 ,where

AS2 = {{−3/8, 0, 1} , {−1/2, 0, 1} , {−2/3, 0, 1} , {−2/7, 0, 1} , {0, 1/2, 1}} .

Then it follows that A ∈ A3 ⊆ AS1 ∩ AS2 = {{−1/2, 0, 1}, {0, 1/2, 1}}. We now proceed to show
that neither {−1/2, 0, 1} nor {0, 1/2, 1} belongs to A3, thereby proving A3 = ∅. Indeed, consider
first the set S ′ = {3, 4, 6, 7, 8, 10, 14, 15, 16, 18, 22, 30}. It has a unique minimum cardinality 2-
generating set, namely X ′ = {1, 3, 7, 15}. But 1 6=

∑
i∈S ′ αi i for αi ∈ {0, 1/2, 1}, i ∈ S ′, since

1 < min(S ′) and all rationals in {0, 1/2, 1} are positive. Then it follows that {0, 1/2, 1} /∈ A3.
Consider now the set S ′′ = {4, 9, 11}. It has a unique minimum cardinality 2-generating set,
namely X ′′ = {2, 9}. But 2 6=

∑
i∈S ′′ i αi for αi ∈ {−1/2, 0, 1}, i ∈ S ′′. Indeed, we must have

αi = −1/2 for some i ∈ S ′′ since 2 < min{i : i ∈ S ′′}. We now need to consider three cases. First,
if α9 = −1/2 then we must have α11 = −1/2 since 9 and 11 are odd integers and 4 is even. But
−9+11

2
+ 4 = −6 < 2, a contradiction. Second, if α11 = −1/2, we also end up with a contradiction

by a symmetric argument to one from the previous case. Third, if α4 = −1/2, α9 ∈ {0, 1} and
α11 ∈ {0, 1}, we obtain 4 = 9α9 + 11α11 for α9 ∈ {0, 1} and α11 ∈ {0, 1}, which is impossible. Then
it follows that {−1/2, 0, 1} /∈ A3. Combining A3 ⊆ {{−1/2, 0, 1}, {0, 1/2, 1}} with {0, 1/2, 1} /∈ A3
and {−1/2, 0, 1} /∈ A3, we obtain A3 = ∅.
Finally, notice that, according to the above, if any setA ∈ A has to be symmetric around zero (note
that since our solution subset {−1,−1/2, 0, 1/2,+1} is, this may be an intrinsic property), then
we would immediately obtain the desired result A4 = ∅. Proving or disproving this symmetry
property remains an intriguing open problem as well.

112

Perspectives

Thanks to my thinking notes along this manuscript, I think I have already pointed out most of the problems
and questions related to my exposition I am interested in. I hope I have succeeded in trying to convince
the reader that multidimensional intervals, linear matchings, permutations, connected occurrences and
k-generating sets are nice, interesting and useful (and fun? quite an important point for me) combinatorial
objects for algorithmic investigations. It is thus understood that the above-mentioned topics will constitute
definitively a large part of my research in the coming years. Therefore I shall not reproduce nor discuss any
longer any of them here, and I shall focus instead on some new additional topics.

In the sequel, I present and briefly discuss four research topics I am particularly interested in and on
which I plan to work in the very near future. Let me first put these different topics in their context. Both the
MINIMUM COMMON STRING PARTITION problem and the Tandem duplication-random loss model are related
to comparative genomics. Actually, I think that these two problems (together with algorithmic aspects of
next generation sequencing) will constitute in a short-term – not to say are now – my main research activity
in comparative genomics (I am now left with the feeling that heuristic approaches is the best we can do for
the match-an-prune model). The MEDIAN problem for the Kendall-Tau distance is related to rank aggregation.
Finally, I present one combinatorial problem on graphs that has recently caught most of our attention.

The MAXIMUM COMMON STRING PARTITION problem

A partition of a string u is a sequence P = (p1, p2, . . . , pm) of strings, called the blocks, whose concatenation
is equal to u, i.e., u = p1 p2 . . . pm. Given a partition P of a string u and a partition Q of a string v, the pair
(P,Q) is a common partition of u and v if Q is a permutation of P. The MINIMUM COMMON STRING PARTITION
(MCSP) problem is to find a common partition of two strings u and v with the minimum number of blocks.
The restricted version of MCSP where each letter occurs at most k times in each input string, is denoted by
k-MCSP. It has been shown that the 2-MCSP problem is NP-hard and, moreover, even APX-hard [Kolman
et al., 2005]. The 2-MCSP and 3-MCSP problems are approximable within ratio 1.1037 and 4, respectively
[Kolman et al., 2005]. The MCSP problem is approximable within ratio O(k), where k is the maximum
number of occurrences of a letter, and within ratio O(log(n) log∗(n)) in the general case [Kaplan and Shafrir,
2006].

Let us embed the MCSP problem into multidimensional interval graphs. Recall that the MINIMUM
INDEPENDENT DOMINATING SET problem is to find in a graph G is minimum cardinality subset V ′ ⊆ V(G)
such that (i) V ′ is an independent set and (ii) for each u ∈ V(G) \V ′,NG(u)∩V ′ 6= ∅. Most of our interest in

113

114

the MINIMUM INDEPENDENT DOMINATING SET problem stems from the following easy observation: Given
two strings u and v, both of length n, built over some alphabetA such that |u|a = |v|a for all a ∈ A, one can construct
in polynomial-time a 2-track interval graph G = Ω(D) with at most n(n + 1)/2 vertices such that independent
dominating sets of size k of G are in one-to-one correspondence with common partitions of size k of u and v. What
about approximating the MINIMUM INDEPENDENT DOMINATING SET problem for 2-track interval graphs?
The nice results of [Butman et al., 2007] do not help much here as it seems impossible (let me moderate
this, D. Rawitz and I did not succeed) to push up the local-ratio based approximation for the MINIMUM
DOMINATING SET problem in d-interval graphs, d ≥ 2, to the MINIMUM INDEPENDENT DOMINATING SET
problem for d-interval (or even d-track interval) graphs. However, it is conceivable that this problem is in
APX for d-track interval (and actually even for d-interval) graphs (even if we have proved this problem to be
W[1]-hard for 2-interval graphs [Hermelin et al., 2009]). Notice that, even if most – not to say all – standard
combinatorial graph problems remain NP-complete for 2-interval graphs, they usually belong to APX. In
any case, I believe this point of view might shed some new light upon the approximation of the MCSP
problem.

Tandem duplication-random loss model

In the Tandem duplication-random loss model, a genome (given in the form of a permutation) evolves via
the tandem duplication of a contiguous segment of genes (i.e., the duplicated copy is inserted immediately
after the original copy), followed by the loss of one copy of each of the duplicated genes. In most, though
not all cases, this process will result in a genome rearrangement [Chaudhuri et al., 2006]. See Figure 10.1
for an illustration; the goal is to find a minimum cost sequence of duplication-loss steps to transform the
identity into a target permutation.

1 2 3 4 5 6

1 2 3 4 5 2 3 4 5 6

1 2/3 4/5 2 3/4 5/6 = 1 3 5 2 4 6

1 3 5 1 3 5 2 4 6

1/3 5 1 3/5/2 4 6 = 3 5 1 2 4 6

duplication 2 3 4 5

loss

duplication 1 3 5

loss

Figure 10.1: Example of a genome rearrangement caused by two rounds of tandem duplication and random
loss.

Although it seems intuitively clear that the cost of a duplication event should be some non-decreasing
function of the length of the duplication, it is not clear what functional form this cost duplication should
take. If the cost of a duplication of a segment of k genes is αk for some constant parameter α ≥ 1, it has been

115

proved in [Chaudhuri et al., 2006] that computing a minimum cost sequence of duplication-loss steps to
transform the identity into a target permutation is solvable in linear-time if α = 1 and inO(n log(n)) time for
any α ≥ 2 (in the latter case, the problem reduces to computing the Kendall-Tau distance). The complexity
is open for 1 < α < 2. More important, the complexity of computing this distance is unknown for affine
functions.

The MEDIAN problem for the Kendall-Tau distance

In the traditional (undirected) version of the MEDIAN problem, we are given k genomes and we are asked
to find the genome which minimizes the sum of the distances to the other k genomes (see our monograph
[Fertin et al., 2009a] for an up-to-date survey of this field). The MEDIAN problem for the Kendall-Tau distance
has also been studied in the context of social choice theory and rank aggregation. It has been shown to
be NP-complete for k = 4 [Dwork et al., 2001] (actually, it is claimed in [Dwork et al., 2001] that the result
holds for k ≥ 4 but it is not clear that the hardness propagates upwards to odd n, they had no success at
all in convincing us), and to be approximable within ratio 1.57 [Ailon et al., 2005]. For k = 3, the case of
most interest in the context of phylogeny since it is often use as a subroutine in phylogenetic reconstruction,
NP-hardness has been established and nothing but a trivial 4/3 approximation ratio is known. What about
other distances? We have presented some preliminary results of this topic in [Blin et al., 2009a].

Security in graphs

Given a graph G, a subset S ⊆ V(G) is a defensive alliance if for all u ∈ S, |NG[u] ∩ S| ≥ |NG[u] \ S|, i.e., every
vertex u ∈ S has as many neighbors, including u itself, in S as those in V(G) \ S [Kristiansen et al., 2004] The
various concepts of alliances in graphs are motivated from a security issue that whether defenders of u ∈ S
can defeat the attackers of v ∈ V(G) \ S. Brigham et al. have described a global concept of alliances based on
the idea that defensive alliances do not accurately model real-world situations [Brigham et al., 2007]. Given
a graph G, a subset S ⊆ V(G) is a secure set if for all X ⊆ S, |NG[X] ∩ S| ≥ |NG[X] \ S|, i.e., every subset X ⊆ S
has as many neighbors, including X, in S as those in V(G) \ S. The security number of G is the cardinality of a
minimum secure set of G. The complexity of determining the security number of a graph is completely open
(it has, however, be found for some families of graphs). In fact, there is no known polynomial algorithm for
determining if a given set S ⊆ V(G) is a secure set [Dutton, 2009].

Recently, security in graphs has caught most of our attention, both from the standard complexity and the
parameterized point of view. Our recent results (collaboration with R. Rizzi, Univ. Udine, Italy) suggest that
(i) determining if a given set S ⊆ V(G) is a secure set is coNP-hard, and that (ii) the problem of computing
the security number is not approximable but is fixed-parameter tractable for the standard parameterization
(quite an unusual situation in parameterized complexity theory). Determining the security number of
bipartite and bounded degree graphs is still completely open. More generally, very little is known about
approximation issues of the various concepts of alliances in graphs [Rodrı́guez-Velázquez and Sigarreta,
2009; Favaron et al., 2004].

116

Bibliography

Ailon, N., Charikar, M., and Newman, A. (2005). Aggregating inconsistent information. In Gabow, H. and
Fagin, R., editors, Proc. of the 37th Annual ACM Symposium on Theory of Computing (STOC), Baltimore, MD,
USA, pages 684–693. ACM.

Akiyama, J., Exoo, G., and Harary, F. (1981). Covering and packing in graphs IV: Linear arboricity. Networks,
11:69–72.

Akutsu, T. (2000). Dynamic programming algorithms for RNA secondary structure prediction with pseudo-
knots. Discrete Applied Mathematics, 104:45–62.

Alber, J., Gramm, J., Guo, J., and Niedermeier, R. (2002). Towards optimally solving the longest common
subsequence problem for sequences with nested arc annotations in linear time. In Apostolico, A. and
Takeda, M., editors, Proc. 13th Annual Symposium on Combinatorial Pattern Matching (CPM), Fukuoka, Japan,
volume 2373 of Lecture Notes in Computer Science, pages 99–114. Springer.

Alber, J., Gramm, J., Guo, J., and Niedermeier, R. (2004). Computing the similarity of two sequences with
nested arc annotations. Theoretical Computer Science, 312(2-3):337–358.

Albert, M., Aldred, R., Atkinson, M., and Holton, D. (2001). Algorithms for pattern involvement in
permutations. In Proc. International Symposium on Algorithms and Computation (ISAAC), volume 2223 of
Lecture Notes in Computer Science, pages 355–366.

Alekseyev, M. and Pevzner, P. (2007). Colored de Bruijn graphs and the genome halving problem. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 4(1):98–107.

Alm, E. and Arkin, A. (2003). Biological networks. Curr. Opin. Struct. Biol., 13(2):193–202.

Alon, N. (1988). The linear arboricity of graphs. Israel J. of Mathematics, 62(3):311–325.

Alon, N. and Spencer, J. (1992). The Probabilistic Method. Wiley.

Alon, N., Yuster, R., and Zwick, U. (1995). Color coding. Journal of the ACM, 42(4):844–856.

Alonso, L. and Schott, R. (1993). On the tree inclusion problem. In Borzyszkowski, A. and Sokolowski, S.,
editors, Proc. 18th Mathematical Foundations of Computer Science (MFCS), Gdansk, Poland, volume 711 of
Lecture Notes in Computer Science, pages 211–221.

117

118

Alter, R. and Barnett, J. (1980). A postage stamp problem. Amer. Math. Montly, 87:206–210.

Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., and Vialette, S. (2007a). A pseudo-boolean programming
approach for computing the breakpoint distance between two genomes with duplicate genes. In Proc.
5th RECOMB Comparative Genomics Satellite Workshop (RECOMB-CG), volume 4751 of Lecture Notes in
Bioinformatics, pages 16–29. Springer.

Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., and Vialette, S. (2008a). Efficient tools for computing the
number of breakpoints and the number of adjacencies between two genomes with duplicate genes. Journal
of Computational Biology. To appear.

Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., and Vialette, S. (2008b). On the approximability of comparing
genomes with duplicates. Journal of Graph Algorithms and Applications, 13(1):19–53.

Angibaud, S., Fertin, G., Rusu, I., and Vialette, S. (2006). How pseudo-boolean programming can help
genome rearrangement distance computation. In Proc. 4th RECOMB Comparative Genomics Satellite Workshop
(RECOMB-CG), Montreal, Canada, volume 4205 of Lecture Notes in Bioinformatics, pages 75–86.

Angibaud, S., Fertin, G., Rusu, I., and Vialette, S. (2007b). A general framework for computing rearrangement
distances between genomes with duplicates. Journal of Computational Biology, 14(4):379–393.

Arnborg, S., Corneil, D., and Proskurowski, A. (1987). Complexity of finding embeddings in a k-tree. Journal
on Algebraic and Discrete Methods, 8(2):277–284.

Arnborg, S. and Proskurowski, A. (1989). Linear time algorithms for NP-hard problems restricted to partial
k-trees. Discrete Applied Mathematics, 23:11–24.

Atkinson, M., Murphy, M., and Ruskuc, N. (2005). Pattern Avoidance Classes and Subpermutations. European
Journal of Combinatorics, 12(1).

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M. (1999). Complexity
and Approximation: Cominatorial optimization problems and their approximability properties. Springer-Verlag.

Backofen, R. and Busch, A. (2004). Computational design of new and recombinant selenoproteins. In Sahinalp,
S. C., Muthukrishnan, S., and Dogrusöz, U., editors, Proc. 15th Annual Symposium on Combinatorial Pattern
Matching (CPM), Istanbul, Turkey, volume 3109 of Lecture Notes in Computer Science, pages 270–284.

Backofen, R., Narayanaswamy, N., and Swidan, F. (2002). Protein similarity search under mRNA structural
constraints: application to targeted selenocystein insertion. In Silico Biology, 2(3):275–290.

Bafna, V., Narayanan, B., and Ravi., R. (1996). Non-overlapping local alignments (weighted independent
sets of axis-parallel rectangles). Discrete Applied Mathematics, 71(1):41–54.

Bar-Yehuda, R. (2000). One for the price of two: A unified approach for approximating covering problems.
Algorithmica, 27(2):131–144.

Bar-Yehuda, R. and Even, S. (1981). A linear time approximation algorithm for the weighted vertex cover
problem. Journal of Algorithms, 2:198–203.

Bar-Yehuda, R. and Even, S. (1985). A local-ratio theorem for approximating the weighted vertex cover
problem. Annals of Discrete Mathematics, 25:27–46.

Bar-Yehuda, R., Halldorsson, M., Naor, J., Shachnai, H., and Shapira, I. (2002). Scheduling split intervals. In
Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 732–741.

Ben Rebea, A. (1981). Étude des stables dans les graphes quasi-adjoints. PhD thesis, Université de Grenoble.

119

Bergeron, A., Chauve, C., de Montgolfier, F., and Raffinot, M. (2005). Computing common intervals of k
permutations, with applications to modular decomposition of graphs. In Brodal, G. S. and Leonardi, S.,
editors, Proc. 13th Annual European Symposium, Palma de Mallorca, Spain, volume 3669 of Lecture Notes in
Computer Science, pages 779–790.

Bergroth, L., Hakonen, H., and Raita, T. (2000). A survey of longest common subsequence algorithms. In
Proc. of the 7th International Symposium on String Processing Information Retrieval (SPIRE), Coruña, Spain,
pages 39–48. IEEE Computer Society.

Betzler, N., Fellows, M., Komusiewicz, C., and Niedermeier, R. (2008). Parameterized algorithms and
hardness results for some graph motif problems. In Proc. 19th Annual Symposium on Combinatorial Pattern
Matching (CPM), Pisa, Italy, volume 5029 of Lecture Notes in Computer Science, pages 31–43. Springer.

Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. (2007). Fourier meets möbius: fast subset convolution.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 67–74. ACM New
York, NY, USA.

Blair, J. and Peyton, B. (1993). An introduction to chordal graphs and clique trees. Graph Theory and Sparse
Matrix Computation, 56:1–29.

Blin, G., , Fertin, G., Herry, G., and Vialette, S. (2007a). Comparing RNA structures: towards an intermediate
model between the edit and the lapcs problems. In Sagot, M.-F., Walter, W. T., and Maria, E., editors,
1st Brazilian Symposium on Bioinformatics (BSB), Angra dos Reis, Brazil, volume 4643 of Lecture Notes in
Bioinformatics, pages 101–112. Springer.

Blin, G., Chauve, C., and Fertin, G. (2004). The breakpoint distance for signed sequences. In Proc. 1st
Algorithms and Computational Methods for Biochemical and Evolutionary Networks (CompBioNets), Recife, Brazil,
pages 3–16. KCL publications.

Blin, G., Chauve, C., Fertin, G., Rizzi, R., and Vialette, S. (2007b). Comparing genomes with duplications:
a computational complexity point of view. ACM/IEEE Trans. Computational Biology and Bioinformatics,
14(4):523–534.

Blin, G., Crochemore, M., Hamel, S., and Vialette, S. (2009a). Finding the median of three permutations
under the Kendall-Tau distance. In Proc. 7th annual international conference on Permutation Patterns, Firenze,
Italy. electronic version (6 pp).

Blin, G., Crochemore, M., and Vialette, S. (2010a). Algorithms in Computational Molecular Biology: Techniques,
Approaches and Applications, chapter Algorithmic Aspects of Arc-Annotated Sequences. Wiley. To appear.

Blin, G., Fertin, G., Hermelin, D., and Vialette, S. (2008). Fixed-parameter algorithms for protein similarity
search under mrna structure constraints. Journal of Discrete Algorithms, 6(4):618–626.

Blin, G., Fertin, G., Rizzi, R., and Vialette, S. (2005a). What makes the arc-preserving subsequence problem
hard ? T. Comp. Sys. Biology, 2:1–36.

Blin, G., Fertin, G., Sikora, F., and Vialette, S. (2009b). The exemplar breakpoint distance for non-trivial
genomes cannot be approximated. In Das, S. and Uehara, R., editors, Proc. 3rd Annual Workshop on
Algorithms and Computation (WALCOM’09), Kolkata, India, volume 5431 of Lecture Notes in Computer Science,
pages 357–368. Springer.

Blin, G., Fertin, G., and Vialette, S. (2005b). What makes the arc-preserving subsequence problem hard ?
LNCS Transactions on Computational Systems Biology, 2:1–36.

120

Blin, G., Fertin, G., and Vialette, S. (2007c). Extracting constrained 2-interval subsets in 2-interval sets.
Theoretical Computer Science, 385(1-3):241–263.

Blin, G., Sikora, F., and Vialette, S. (2009c). Querying Protein-Protein Interaction Networks. In Istrail,
S., Pevzner, P., and Waterman, M., editors, 5th International Symposium on Bioinformatics Research and
Applications (ISBRA’09), volume 5542 of LNBI, pages 52–62, Fort Lauderdale, FL, USA. Springer-Verlag.

Blin, G., Sikora, F., and Vialette, S. (2010b). GraMoFoNe: a cytoscape plugin for querying motifs without
topology in protein-protein interactions networks. In Al-Mubaid, H., editor, 2nd International Conference on
Bioinformatics and Computational Biology (BICoB-2010), page 3843, Honolulu, USA. International Society for
Computers and their Applications (ISCA).

Böch, A., Forchhammer, K., Heider, J., and Baron, C. (1991). Selenoprotein synthesis: a review. Trends in
Biochemical Sciences, 16(2):463–467.

Bodlaender, H. (1993). A tourist guide through treewidth. Acta Cybernetica, 11:1–23.

Bodlaender, H., Downey, R., Fellows, M., Hallett, M., and Wareham, H. (1995). Parameterized complexity
analysis in computational biology. Computer Applications in the Biosciences, 11(1):49–57.

Bóna, M. (2004). Combinatorics of permutations. Discrete Mathematics and its Applications. Chapman &
Hall/CRC.

Bongartz, D. (2004). Some notes on the complexity of protein similarity search under mRNA structure
constraints. In Proc. of the 30th Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), pages 174–183.

Bonizzoni, P., Vedova, G. D., Dondi, R., Fertin, G., Rizzi, R., and Vialette, S. (2007). Exemplar longest common
subsequences. IEEE/ACM Transactions on Computational Biology and Bionformatics, 4(4):535–543.

Bonsma, P. (2003). Complexity results for restricted instances of a paint shop problem. Technical Report
1681, Dep. of Applied Mathematics, Univ. of Twente.

Bonsma, P., Epping, T., and Hochstättler, W. (2006). Complexity results on restricted instances of a paint
shop problem for words. Discrete Applied Mathematics, 154(9):1335–1343.

Bose, P., J.F.Buss, and Lubiw, A. (1998). Pattern matching for permutations. Information Processing Letters,
65(5):277–283.

Bouvel, M., Rossin, D., and Vialette, S. (2007). Longest common separable pattern between permutations.
In Ma, B. and Zhang, K., editors, Proc. Symposium on Combinatorial Pattern Matching (CPM’07), London,
Ontario, Canada, volume 4580 of Lecture Notes in Computer Science, pages 316–327.

Brandstädt, A., Le, V. B., and Spinrad, J. (1999). Graph Classes: A Survey. volume of the SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia.

Brevier, G., Rizzi, R., and Vialette, S. (2007). Pattern matching in protein-protein interaction graphs. In
Csuhaj-Varjú, E. and Ésik, Z., editors, Proc. 16th Fundamentals of Computation Theory, 16th International
Symposium (FCT), Budapest, Hungary, Lecture Notes in Computer Science, pages 137–148. Springer.

Brevier, G., Rizzi, R., and Vialette, S. (2009). Complexity issues in color-preserving graph embeddings.
Theoretical Computer Science. In press.

Brigham, R., Dutton, R., and Hedetniemi, S. (2007). Security in graphs. Discrete Applied Mathematics,
155(13):1708–1714.

121

Bruckner, S., Hüffner, F., Karp, R., Shamir, R., and Sharan, R. (2009a). Topology-free querying of protein
interaction networks. In Proc. 13th Annual International Conference on Computational Molecular Biology
(RECOMB), Tucson, USA, page 74. Springer.

Bruckner, S., Hüffner, F., Karp, R., Shamir, R., and Sharan, R. (2009b). Torque: topology-free querying of
protein interaction networks. Nucleic Acids Research, 37 (Web-Server-Issue:106–108.

Bryant, D. (2000). The complexity of calculating exemplar distances. In Sankoff, D. and Nadeau, J., editors,
Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the
Evolution of Gene Families, volume 1, pages 207–212. Kluwer Academic Publisher.

Bui-Xuan, B.-M., Habib, M., and Paul, C. (2005). Revisiting t. uno and m. yagiura’s algorithm. In Deng, X.
and Du, D.-Z., editors, Proc. 16th International Symposium on Algorithms and Computation (ISAAC), Sanya,
Hainan, China, volume 3827 of Lecture Notes in Computer Science, pages 156–165.

Butman, A., Hermelin, D., Lewenstein, M., and Rawitz, D. (2007). Optimization problems in multiple-interval
graphs. In Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). To appear.

Chaudhuri, K., Chen, K., Mihaescu, R., and Rao, S. (2006). On the tandem duplication-random loss model
of genome rearrangement. In Giancarlo, R. and Sankoff, D., editors, Proc. of the 17th annual ACM-SIAM
symposium on Discrete algorithm (SODA), Miami, Florida, USA, pages 564–570.

Chen, E., Yang, L., and Yuan, H. (2007a). Improved algorithms for largest cardinality 2-interval pattern
problem. Journal of Combinatorial Optimization, 13(3):262–275.

Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., and Jiang, T. (2005). Assignment of orthologous
genes via genome rearrangement. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2(4):302–315.

Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., and Zhu, B. (2007b). Non-breaking similarity of genomes with
gene repetitions. In Ma, B. and Zhang, K., editors, Proc. Symposium on Combinatorial Pattern Matching
(CPM’07), London, Ontario, Canada, volume 4580 of Lecture Notes in Computer Science, pages 119–130.

Chen, Z., Fu, B., and Zhu, B. (2006). The approximability of the exemplar breakpoint distance problem. In
2nd International Conference on Algorithmic Aspects in Information and Management (AAIM), volume 4041 of
Lecture Notes in Computer Science, pages 291–302. Springer.

Choffrut, C. and Karhumäki, J. (1997). Combinatorics of Words, in G. Rozenberg and A. Salomaa (eds), Handbook
of Formal Languages. Springer-Verlag.

Chudnovsky, M. and Seymour, P. (2005). The structure of claw-free graphs. In Surveys in Combinatorics,
volume 327 of London. Math. Soc. Lecture Notes, pages 153–172. Cambridge University Press.

Chung, M.-J. (1998). More efficient algorithm for ordered tree inclusion. Journal of Algorithms, 26(2):370–385.

Chvátal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations Research,
4(3):233–235.

Cieliebak, M., Eidenbenz, S., Pagourtzis, A., and Schlude, K. (2008). On the complexity of variations of equal
sum subsets. Nordic Journal of Computing, 14(3):151–172.

Collins, M., Kempe, D., Saia, J., and Young, M. (2007). Nonnegative integral subset representations of integer
sets. Information Processing Letters, 101(3):129–133.

Crochemore, M., Hancart, C., and Lecroq, T. (2007). Algorithms on Strings. Cambridge.

122

Crochemore, M., Hermelin, D., Landau, G., Rawitz, D., and Vialette, S. (2008). Approximating the 2-interval
pattern problem. Theoretical Computer Science, 395(2-3):283–297. (special issue for Alberto Apostolico).

Davydov, E. and Batzoglou, S. (2006). A computational model for rna multiple structural alignment.
Theoretical Computer Science, 368(3):205–216.

Dent, P., Yacoub, A., Fisher, P., Hagan, M., and Grant, S. (2003). MAPK pathways in radiation responses.
Oncogene, 22:5885–5896.

Diestel, R. (2000). Graph Theory. Number 173 in Graduate texts in Mathematics. Springer-Verlag, second
edition.

Dilworth, R. (1950). A decomposition theorem for partially ordered sets. Ann. Math., 51:161–166.

Dinur, I., Guruswami, V., Khot, S., and Regev, O. (2005). A new multilayered PCP and the hardness of
hypergraph vertex cover. SIAM Journal on Computing, 34(5):1129–1146.

Dondi, R., Fertin, G., and Vialette, S. (2007). Weak pattern matching in colored graphs: Minimizing the
number of connected components. In Proc.10th Italian Conference on Theoretical Computer Science (ICTCS),
Roma, Italy, pages 27–38. World-Scientific.

Dondi, R., Fertin, G., and Vialette, S. (2009). Maximum motif problem in vertex-colored graphs. In Kucherov,
G. and Ukkonen, E., editors, Proc. 20th Annual Symposium on Combinatorial Pattern Matching (CPM’09), Lille,
France, volume 5577 of Lecture Notes in Computer Science, pages 221–235.

Dorit, R. and Gilbert, W. (1991). The limited universe of exons. Current Opinions in Structural Biology,
1:973–977.

Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., and Sharan, R. (2007). QNet: A Tool for Querying
Protein Interaction Networks. RECOMB, pages 1–15.

Downey, R. and Fellows, M. (1999). Parameterized Complexity. Springer-Verlag.

Dutton, R. (2009). On a graph’s security number. Discrete Mathematics, 309:4443–4447.

Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. (2001). Rank aggregation methods for the web. In Proc.
of the 10th international conference on World Wide Web (WWW), Hong Kong, Hong Kong, pages 613–622.

Eén, N. and Sörensson., N. (2006). Translating pseudo-boolean constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation, 2:1–26.

Ehrenfeucht, A. and Rozenberg, G. (1978). Elementary homomorphisms and a solution of the D0L sequence
equivalence problem. Theoretical Computer Science, 7:169–183.

El-Mabrouk, N. (2005). Genome rearrangements with gene families. In Mathematics of evolution and phylogeny,
pages 291–320. Oxford University Press.

Epping, W. H. T. and Oertel, P. (2004). Complexity results on a paint shop problem. Discrete Applied
Mathematics, 136(2-3):217–226.

Erdős, P. and Szekeres, G. (1935). A combinatorial problem in geometry. Compositio Mathematica, 2:463–470.

Erdös, P. and Lovász, L. (1975). Problems and results on 3-chromatic hypergraphs and some related questions.
In Hajnal, A., Rado, R., and Sós, V., editors, Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P.
Erdös on his 60th birthday), volume 2 of Coll. Math. Soc. J. Bolyai, pages 609–627. North-Holland, Amsterdam.

123

Estivill-Castro, S. and Wood, D. (1992). A survey of adaptive sorting algorithms. ACM Computing Surveys,
24(9):441–476.

Evans, P. (1999a). Algorithms and complexity for annotated sequence analysis. PhD thesis, University of Victoria.

Evans, P. (1999b). Algorithms and Complexity for Annotated Sequences Analysis. PhD thesis, University of
Victoria.

Evans, P. and Wareham, H. (2001). Exact algorithms for computing d pairwise alignments and 3-medians
from structure-annotated sequences (extended abstract). In Proc. of the 6th Pacific Symposium on Biocomputing
(PSB), pages 559–570.

Evans, P. A. (1999c). Finding common subsequences with arcs and pseudoknots. In Crochemore, M.
and Paterson, M., editors, Proc. 10th Annual Symposium Combinatorial Pattern Matching (CPM), Warwick
University, UK, volume 1645 of Lecture Notes in Computer Science, pages 270–280. Springer.

Fagnot, I., Fertin, G., and Vialette, S. (2009). On finding small 2-generating sets. In Ngo, H., editor, Proc.
15th Annual International Conference (COCOON), Niagara Falls, NY, USA, volume 5609 of Lecture Notes in
Computer Science, pages 378–387. Springer.

Fagnot, I., Lelandais, G., and Vialette, S. (2004). Bounded list injective homomorphism for comparative
analysis of protein-protein interaction graphs. In Proc. 1st Algorithms and Computational Methods for
Biochemical and Evolutionary Networks (CompBioNets), Recife, Brazil, pages 45–70. KCL publications.

Fagnot, I., Lelandais, G., and Vialette, S. (2008). Bounded list injective homomorphism for comparative
analysis of protein-protein interaction graphs. Journal of Discrete Algorithms, 6(2):178–191.

Faudree, R., Flandrin, E., and Ryjáček, Z. (1997). Claw-free graphs - a survey. Discrete Mathematics, 164:87–147.

Favaron, O., Fricke, G., Goddard, W., Hedetniemi, S., Hedetniemi, S., Kristiansen, P., Laskar, R., and Skaggs,
R. (2004). Offensive alliances in graphs. Discussiones Mathematicae Graph Theory, 24(2):263–275.

Fellows, M., Fertin, G., Hermelin, D., and Vialette, S. (2007). Sharp tractability borderlines for finding
connected motifs in vertex-colored graphs. In Proc. 34th International Colloquium on Automata, Languages
and Programming (ICALP), Wroclaw, Poland, volume 4596 of Lecture Notes in Computer Science, pages 340–351.
Springer.

Felsner, S., Müller, R., and Wernisch, L. (1997). Trapezoid graphs and generalizations: Geometry and
algorithms. Discrete Applied Math., 74:13–32.

Fertin, G., Hermelin, D., Rizzi, R., and Vialette, S. (2007). Common structured patterns in linear graphs:
Approximations and combinatorics. In Ma, B. and Zhang, K., editors, Proc. Symposium on Combinatorial
Pattern Matching (CPM’07), London, Ontario, Canada, volume 4580 of Lecture Notes in Computer Science,
pages 241–252.

Fertin, G., Labarre, A., Rusu, I., Tannier, É., and Vialette, S. (2009a). Combinatorics of Genome Rearrangements.
MIT press.

Fertin, G., Rizzi, R., and Vialette, S. (2005). Finding exact and maximum occurrences of protein complexes in
protein-protein interaction graphs. In Jedrzejowicz, J. and Szepietowski, A., editors, Proc. 30th International
Symposium on Mathematical Foundations of Computer Science (MFCS), Gdansk, Poland, volume 3618 of Lecture
Notes in Computer Science, pages 328–339. Springer.

Fertin, G., Rizzi, R., and Vialette, S. (2009b). Finding occurrences of protein complexes in protein-protein
interaction graphs. Journal of Discrete Algorithms, 7(1):90–101.

124

Fertin, G. and Vialette, S. (2009). On the s-labeling problem. In Proc. 5th European conference on Combinatorics,
Graph Theory and Applications (EuroComb), Bordeaux, France, volume 34 of Electronic Notes on Discrete
Mathematics, pages 273–277.

Flum, J. and Grohe, M. (2006). Parameterized Complexity Theory. Springer Verlag.

Fulkerson, D. and Gross, O. (1965). Incidence matrices and interval graphs. Pacific Journal of Mathematics,
15:835–855.

Gambette, P. and Vialette, S. (2007). On restrictions of balanced 2-interval graphs. In Brandstädt, A., Kratsch,
D., and Müller, H., editors, 33rd International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’07), volume 4769 of Lecture Notes in Computer Science, pages 55–65.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A guide to the theory of NP-completeness.
W.H. Freeman, San Francisco.

Garey, M., Johnson, D., and Stockmeyer, L. (1976). Some simplified NP-complete graph problems. Theoretical
Computer Science, 1:237–267.

Gavin, A., Boshe, M., et al. (2002). Functional organization of the yeast proteome by systematic analysis of
protein complexes. Nature, 414(6868):141–147.

Goldman, D., Istrail, S., and Papadimitriou, C. (1999). Algorithmic aspects of protein structure similarity. In
Proc. 40th Annual Symposium of Foundations of Computer Science (FOCS), New York, NY, USA, pages 512–522.
IEEE Computer Society.

Golumbic, M. (1980). Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.

Gramm, J. (2004a). A polynomial-time algorithm for the matching of crossing contact-map patterns.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(1):171–180.

Gramm, J. (2004b). A polynomial-time algorithm for the matching of crossing contact-map patterns.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(4):171–180.

Gramm, J., Guo, J., and Niedermeier, R. (2002). Pattern matching for arc-annotated sequences. In Agrawal,
M. and Seth, A., editors, Proc. 22nd Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), Kanpur, India, Lecture Notes in Computer Science, pages 182–193.

Gramm, J., Guo, J., and Niedermeier, R. (2006). Pattern matching for arc-annotated sequences. ACM
Transactions on Algorithms, 2(1):44–65.

Griggs, J. and West, D. (1979). Extremal values of the interval number of a graph, I. SIAM Journal on Algebraic
and Discrete Methods, 1:1–7.

Guignon, V., Chauve, C., and Hamel, S. (2005). An edit distance between rna stem-loops. In Consens, M. P.
and Navarro, G., editors, 12th International Conference SPIRE, volume 3772 of LNCS, pages 335–347.

Guillemot, S. (2008). Parameterized complexity and approximability of the SLCS problem. In Proc. Interna-
tional Workshop on Parameterized and Exact Computation (IWPEC), volume 5018 of Lecture Notes in Computer
Science, pages 115–128. Springer.

Guillemot, S. and Vialette, S. (2009). Pattern matching for 321-avoiding permutations. In Dong, Y., Du, D.-Z.,
and Ibarra, O., editors, Proc. 20-th International Symposium on Algorithms and Computation (ISAAC), Hawaii,
USA, volume 5878 of Lecture Notes in Computer Science, page 10641073.

125

Guo, J. (2002). Exact algorithms for the longest common subsequence problem for arc-annotated sequences.
Master’s thesis, Univeristy of Tübingen.

Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., and Wernicke, S. (2006). Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer and System
Sciences, 72(8):1386–1396.

Gupta, U., Lee, D., and Leung, J.-T. (1982). Efficient algorithms for interval graph and circular-arc graphs.
Networks, 12:459–467.

Gurski, F. (2008). Polynomial algorithms for protein similarity search for restricted mrna structures. Informa-
tion Processing Letters, 105(5):170–176.

Gyárfás, A. (2003). Combinatorics of intervals, preliminary version. Institute for Mathematics and its
Applications (IMA) Summer Workshop on Combinatorics and Its Applications. available online at
http://www.math.gatech.edu/news/events/ima/newag.pdf.

Gyárfás, A. and Lehel, J. (1970). A helly-type problem in trees. In ös, P. E., Rényi, A., and Sós, V., editors,
Combinatorial Theory and its Application, pages 571–584. North-Holland.

Gyárfás, A. and West, D. (1995). Multitrack interval graphs. Congressus Numerantium, 109:109–116.

Hajiaghayi, M., Jain, K., Lau, L., Mandoiu, I., Russell, A., and Vazirani, V. (2006). Minimum multicolored
subgraph problem in multiplex PCR primer set selection and population haplotyping. In Proceedings of the
6th International Conference on Computational Science (ICCS), pages 758–766.

Halldórsson, M. and Karlsson, R. (2006). Strip graphs: Recognition and scheduling. In Fomin, F., editor, Proc.
32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG), Bergen, Norway, volume
4271 of Lecture Notes in Computer Science, pages 137–146.

Hamel, S., Blin, G., and Vialette, S. (2010). Comparing RNA structures with biologically relevant operations
cannot be done without strong combinatorial restrictions. In Fujita, S. and Rahman, S., editors, Proc. 4th
Workshop on Algorithms and Computation (WALCOM’10), Dhaka, Bangladesh, Lecture Notes in Computer
Science. To appear.

Hassin, R. and Segev, D. (2005). The set cover with pairs problem. In Ramanujam, R. and .Sen, S., editors,
Proceedings of the 25th international conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), Hyderabad, India, pages 164–176.

Heber, S. and Stoye, J. (2001). Finding all common intervals of k permutations. In Amir, A. and Landau, G.,
editors, Proc. Annual Symposium on Combinatorial Pattern Matching (CPM), Jerusalem, Israel, volume 2089 of
Lecture Notes in Computer Science, pages 207–218. Springer.

Hein, J., Jiang, T., Wang, L., and Zhang, K. (1996). On the complexity of comparing evolutionary trees.
Discrete Applied Mathematics, 71:153–169.

Hell, P. and Nešetřil, J. (2004). Graphs and Homomorphisms. Lecture Series in Mathematics and Its Applications.
Oxford University Press.

Hermelin, D., Fellows, M., Rosamond, F., and Vialette, S. (2009). On the parameterized complexity of
multiple-interval graph problems. Theoretical Computer Science, 410(1):53–61.

Hermelin, D., Rawitz, D., Rizzi, R., and Vialette, S. (2008). The minimum substring cover problem. Information
and Computation, 206(11):1303–1312.

126

Herrbach, C. and Vialette, S. (2005). Linear graph non-crossing structural alignment under the rna stacking-
pair scoring scheme. In Proc. 2nd Algorithms and Computational Methods for Biochemical and Evolutionary
Networks (CompBioNets), Lyon, France. KCL publications.

Hirschberg, D. (1977). Algorithms for the longest common subsequence problem. Journal of the ACM,
24(4):664–675.

Ho, Y., Gruhler, A., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisae
by mass spectrometry. Nature, 415(6868):180–183.

Hochbaum, D. (1982). Approximation algorithms for the set covering and vertex cover problems. SIAM
Journal on Computing, 11(3):555–556.

Huang, Y.-T., Chao, K.-M., and Chen, T. (2005). An approximation algorithm for haplotype inference by
maximum parsimony. In Proceedings of the 20-th ACM Symposium on Applied Computing (SAC), pages
146–150.

Huffner, F., Wernicke, S., and Zichner, T. (2007). Algorithm Engineering For Color-Coding To Facilitate
Signaling Pathway Detection. In Proceedings of the 5th Asia-Pacific Bioinformatics Conference. Imperial College
Press.

Hunt, J. and Szymanski, T. (1977a). A fast algorithm for computing longest common subsequences. Commu-
nications of the ACM, 20:350353.

Hunt, J. and Szymanski, T. (1977b). A fast algorithm for computing longest common subsequences. Commu-
nications of the ACM, 20:350–353.

Ibarra, L. (1997). Finding pattern matchings for permutations. Information Processing Letters, 61(6):293–295.

Ideker, T., Karp, R., Scott, J., and Sharan, R. (2006). Efficient algorithms for detecting signaling pathways in
protein interaction networks. Journal of Computational Biology, 13(2):133–144.

Ieong, S., Kao, M.-Y., Lam, T.-W., Sung, W.-., and Yiu, S.-. (2003). Predicting RNA secondary structures
with arbitrary pseudoknots by maximizing the number of stacking pairs. Journal of Computational Biology,
10(6):981–995.

Jacks, T., Masiarz, M. P. F., Luciw, P., Barr, P., and Varmus, H. (1988). Characterization of ribosomal
frameshifting in HIV-1 gag-pol expression. Nature, 331:280–283.

Jacks, T. and Varmus, H. (1985). Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting.
Science, 230:1237–1242.

Jiang, M. (2007a). A 2-approximation for the preceding-and-crossing structured 2-interval pattern problem.
Journal of Combinatorial Optimization, 13:217–221. Special Issue on Bioinformatics.

Jiang, M. (2007b). A PTAS for the weighted 2-interval pattern problem over the preceding-and-crossing
model. In Dress, A., Xu, Y., and Zhu, B., editors, 1st Annual International Conference on Combinatorial
Optimization and Applications (COCOA’07), Xi’an, Shaanxi, China, volume 4616 of Lecture Notes in Computer
Science, pages 378–387.

Jiang, M. (2008). Approximation algorithms for predicting RNA secondary structures with arbitrary pseudo-
knots. IEEE/ACM Transactions on Computational Biology and Bioinformatics. To appear.

Jiang, M. (2010). On the parameterized complexity of some optimization problems related to multiple-
interval graphs. In Proc. 21th Annual Symposium on Combinatorial Pattern Matching (CPM), New York, USA,
volume 6129 of Lecture Notes in Computer Science, pages 125–137. Springer.

127

Jiang, T. and Li, M. (1995). On the approximation of shortest common supersequences and longest common
subsequences. SIAM Journal on Computing, 24:1122–1139.

Jiang, T., Lin, G., Ma, B., and Zhang, K. (2000a). The longest common subsequence problem for arc-annotated
sequences. In Giancarlo, R. and Sankoff, D., editors, Proc. of the 11th annual symposium on Combinatorial
Pattern Matching (CPM), Montreal, Canada, pages 154–165.

Jiang, T., Lin, G.-H., Ma, B., and Zhang, K. (2000b). The longest common subsequence problem for arc-
annotated sequences. In Giancarlo, R. and Sankoff, D., editors, Proc. 11th Annual Symposium on Combinatorial
Pattern Matching (CPM), Montreal, Canada, volume 1848 of Lecture Notes in Computer Science, pages 154–165.
Springer.

Johnson, D. (1974). Approximation algorithms for combinatorial problems. Journal of Computer and System
Sciences, 9:256–278.

Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG resource for deciphering
the genome. Nucleic acids research, 32:277–280.

Kannan, R. (1987). Minkowskis convex body theorem and integer programming. Mathematics of Operations
Research, 12:415–440.

Kaplan, H. and Shafrir, N. (2006). The greedy algorithm for edit distance with moves. Information Processing
Letters, 97(1):27–37.

Karger, D., Motwani, R., and Ramkumar, G. (1995). On approximating the longest path in a graph. SIAM
Journal on Computing, 24:1122–1139.

Kelley, B., Sharan, R., Karp, R., Sittler, T., Root, D. E., Stockwell, B., and Ideker, T. (2003). Conserved pathways
within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National
Academy of Sciences, 100(20):11394–11399.

Kilpeläinen, P. and Mannila, H. (1995). Ordered and unordered tree inclusion. SIAM J. Comp., 24(2):340–356.

King, A. and Reed, B. (2007). Bounding χ in terms ofω ans δ for quasi-line graphs. Article in preparation.

Knuth, D. (1973). Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley,
Reading MA, 3rd edition.

Knuth, D. (1998). Sorting and Searching, The Art of Computer Programming Vol. 3 (Second Edition). Addison-
Wesley.

Kolman, P., Goldstein, A., and Zheng, J. (2005). Minimum common string partition problem: Hardness and
approximations. The Electronic Journal of Combinatorics, 12(1). Paper R50.

Kostochka, A. (1988). On upper bounds on the chromatic numbers of graphs. Transactions of the Institute of
Mathematics (Siberian Branch of the Academy of Sciences in USSR), 10:204–226.

Kostochka, A. and Kratocvil, J. (1997). Covering and coloring polygon-circle graphs. Discrete Mathematics,
163:299–305.

Kristiansen, P., Hedetniemi, S., and Hedetniemi, S. (2004). Alliances in graphs. Journal of Combinatorial
Mathematics and Combinatorial Computing, 48:157–177.

Kubica, M., Rizzi, R., Vialette, S., and Waleń, T. (2006). Approximation of RNA multiple structural alignment.
In Lewenstein, M. and Valiente, G., editors, Proc. 17th Annual Symposium on Combinatorial Pattern Matching
(CPM),Barcelona, Spain, volume 4009 of Lecture Notes in Computer Science. Springer.

128

Lacroix, V., Fernandes, C., and Sagot, M.-F. (2006). Motif search in graphs: application to metabolic networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 3(4):360–368.

Lelandais, G., Crom, S. L., Devaux, F., Vialette, S., Church, G., Jacq, C., and Marc, P. (2004a). yMGV: a
cross-species expression data mining tool. Nucl. Acids. Res., 32:D323–D325.

Lelandais, G., Marc, P., Vincens, P., Jacq, C., and Vialette, S. (2004b). MiCoViTo: a tool for gene-centric
comparison and visualization of yeast transcriptome states. BMC Bioinformatics, 5(20).

Lelandais, G., Vincens, P., Badel-Chagnon, A., Vialette, S., Jacq, C., and Hazout, S. (2006). Comparing gene
expression networks in multi-dimensional space to extract similarities and differences between organisms.
Bioinformatics, 22(11):1359–1366.

Lenstra, H. (1983). Integer programming with a fixed number of variables. Mathematics of Operations Research,
8:538–548.

Lerat, E., Daubin, V., and Moran, N. (2003). From gene trees to organismal phylogeny in prokaryotes: the
case of the γ-proteobacteria. PLoS biology, 1(1):101–109.

Li, S. and Li, M. (2006). On the complexity of the crossing contact map pattern matching problem. In Proc.
Proc. of 6th Workshop on Algorithms in Bioinformatics (WABI), volume 4175 of Lecture Notes in Computer
Science, pages 231–241.

Li, S. and Li, M. (2009a). On two open problems of 2-interval patterns. Theoretical Computer Science, 410(24-
25):2410–2423.

Li, S. and Li, M. (2009b). On two open problems of 2-interval patterns. Theoretical Computer Science,
410(24-25):2410–2423.

Lin, G., Chen, Z.-Z., Jiang, T., and Wen, J. (2002). The longest common subsequence problem for sequences
with nested arc annotations. Journal of Computer and System Sciences, 65(3):465–480. Special issue on
computational biology.

Lovász, L. (1974). On the ratio of optimal integeral and fractional solutions. Discrete Mathematics, 13:383–390.

Lozano, A. and Valiente, G. (2004). On the maximum common embedded subtree problem for ordered trees.
In Iliopoulos, C. and Lecroq, T., editors, String Algorithmics, chapter 7. King’s College London Publications.

Lyngsø R. and Pedersen, C. (2000). RNA pseudoknot prediction in energy-based models. Journal of
Computational Biology, 7(3-4):409–427.

Marcus, A. and Tardos, G. (2004). Excluded permutation matrices and the Stanley-Wilf conjecture. Journal of
Combinatorial Series A, 107(1):153–160.

Margeot, E., Blugeon, C., Sylvestre, J., Vialette, S., Jacq, C., and Corral-Debrinski, M. (2002). In saccharomyces
cerevisae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function. EMBO
Journal, 21(24):6893–6904.

McConnell, R. and Spinrad, J. (1999). Modular decomposition and transitive orientation. Discrete Mathematics,
201:189–241.

McKee, T. and McMorris, F. (1999). Topics in intersection graph theory. SIAM monographs on discrete
mathematics and applications.

Micali, S. and Vazirani, V. (1980). AnO(
√

|V ||E|) algorithm for finding maximum matching in general graphs.
In Proc. 21st Annual Symposium on Foundation of Computer Science (FOCS), pages 17–27. IEEE.

129

Moser, L. (1960). On the representation of 1, 2, . . . , n by sums. Acta Arith., 6:11–13.

Néraud, J. (1990). Elementariness of a finite set of words is co-NP-complete. Theoretical Informatics and
Applications, 24(5):459–470.

Nguyen, C. (2005). Algorithms for calculating exemplar distances. Technical report, National University of
Singapore. Honours Year Project.

Niedermeier, R. (2006). Invitation to Fixed Parameter Algorithms. Lecture Series in Mathematics and Its
Applications. Oxford University Press.

Ohno, S. (1970). Evolution by gene duplication. Springer-Verlag.

P. Thébault, S. d. G., Schiex, T., and Gaspin, C. (2006). Searching rna motifs and their intermolecular contacts
with constraint networks. Bioinformatics, 22(17):2074–2080.

Patthy, L. (1991). Exons - original building blocks of proteins? BioEssays, 13(4):187–192.

Pellegrini, M., Marcotte, E., Thompson, M., Eisenberg, D., and Yeates, T. (1999). Assigning protein functions
by comparative genome analysis: protein phylogenetic profiles. PNAS, 96(8):4285–4288.

Pereira-Leal, J., Enright, A., and Ouzounis, C. (2004). Detection of functional modules from protein interaction
networks. Proteins, 54(1):49–57.

Pinter, R., Rokhlenko, O., Yeger-Lotem, E., and Ziv-Ukelson, M. (2005). Alignment of metabolic pathways.
Bioinformatics, 21(16):3401–3408.

Raz, R. and Safra, S. (1997). A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In Proceedings of the 29th ACM Symposium on the Theory Of
Computing (STOC), pages 475–484.

Robertson, N. and Seymour, P. (1986). Graph minors. II. Algorithmic aspects of tree-width. SIAM Journal of
Algorithms, 7:309–322.

Rodrı́guez-Velázquez, J. A. and Sigarreta, J. (2009). Global defensive k-alliances in graphs. Discrete Applied
Mathematics, 157(2):211–218.

Rossin, D. and Bouvel, M. (2006). The longest common pattern problem for two permutations. Pure
Mathematics and Applications, 17:55–69.

Rozenberg, G. and Salomaa, A. (1980). The Mathematical Theory of L Systems. Academic Press, New York.

Sadique Adi, S., Braga, M., Fernandes, C., Eduardo Ferreira, C., Viduani Martinez, F., M.-F Sagot, M. S.,
Tjandraatmadja, C., and Wakabayashi, Y. (2008). Repetition-free longest common subsequence. Electronic
Notes in Discrete Mathematics, 30:243–248.

Sankoff, D. (1999). Genome rearrangement with gene families. Bioinformatics, 15(11):909–917.

Sankoff, D. and Haque, L. (2005). Power boosts for cluster tests. In Proc. 3rd RECOMB Comparative Genomics
Satellite Workshop, Dublin, Ireland, volume 3678 of Lecture Notes in Bioinformatics, pages 11–20.

Scheinerman, E. and West, D. (1983). The interval number of a planar graph: three intervals suffice. Journal
of Combinatorial Theory - Series B, 35:224–239.

Sharan, R. and Ideker, T. (2006). Modeling cellular machinery through biological network comparison.
Nature Biotechnology, 24:427–433.

130

Sharan, R., Ideker, T., Kelley, B., Shamir, R., and Karp, R. (2004). Identification of protein complexes by
comparative analysis of yeast and bacterial protein interaction data. In Proc. 8th annual international
conference on Computational molecular biology (RECOMB), San Diego, California, USA, pages 282–289. ACM
Press.

Sharan, R., Suthram, S., Kelley, R., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R., and Ideker, T. (2005).
Conserved patterns of protein interaction in multiple species. Proc. Natl Acad. Sci. USA, 102(6):1974–1979.

Shasha, D. and Zhang, K. (1989). Simple fast algorithms for the editing distance between trees and related
problems. SIAM Journal on Computing, 18(6):1245–1262.

Shen-Orr, S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation
network of escherichia coli. Nature Genetics, 31(1):64–68.

Shlomi, T., Segal, D., Ruppin, E., and Sharan, R. (2006). QPath: a method for querying pathways in a
protein-protein interaction network. BMC Bioinformatics, 7:199.

Stanley, R. (1999). Enumerative Combinatorics, volume 2. Cambridge University Press, Cambridge.

Stöhr, A. (1955a). Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe, i. J. reine Angew.
Math., 194:40–65.

Stöhr, A. (1955b). Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe, ii. J. reine Angew.
Math., 194:111–140.

Sylvestre, J., Vialette, S., Corral-Debrinski, M., and Jacq, C. (2003). Long mRNA coding for yeast mitochon-
drial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biology,
4(7):1–9.

Tang, J. and Moret, B. (2003). Phylogenetic reconstruction from gene-rearrangement data with unequal gene
content. In Dehne, F., Sack, J.-R., and Smid, M., editors, Proc. 8-th International Workshop on Algorithms and
Data Structures (WADS), Ottawa, Ontario, Canada, volume 2748 of Lecture Notes in Computer Science, pages
37–46. Springer.

Tarjan, R. and Yannakakis, M. (1984). Simple linear-time algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput., 13:566–579.

Thomasse, S. (2009). A quadratic kernel for feedback vertex set. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms.

Tichy, W. (1984). The string-to-string correction problem with block moves. ACM Transactions on Computer
Systems, 2(4):309–321.

Tiskin, A. (2006). Longest common subsequences in permutations and maximum cliques in circle graphs. In
Lewenstein, M. and Valiente, G., editors, Proc. 17th Combinatorial Pattern Matching (CPM), Barcelona, Spain,
volume 4009 of Lecture Notes in Computer Science, pages 270–281.

Titz, B., Schlesner, M., and Uetz, P. (2004). What do we learn from high-throughput protein interaction data?
Expert Review of Anticancer Therapy, 1(1):111–121.

Tripathi, A. (2006). A note on the postage stamp problem. Journal of Integer Sequences, 9. 06.013.

Trotter, W. and Harary, F. (1979). On double and multiple interval graphs. J. Graph Theory, 3:205–211.

Uetz, P., Giot, L., et al. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces
cerevisae. Nature, 403(6770):623–627.

131

Uno, T. and Yagiura, M. (2000). Fast algorithms to enumerate all common intervals of two permutations.
Algorithmica, 26(2).

Vazirani, V. (2002). Approximation Algorithms. Springer. 1st ed. 2001. Corr. 2nd printing, 2002.

Vialette, S. (2004). On the computational complexity of 2-interval pattern matching problems. Theoretical
Computer Science, 312(2-3):223–249.

Vialette, S. (2006). Packing of (0, 1)-matrices. Theoretical Informatics and Applications RAIRO, 40(4):519–536.

Vialette, S. (2008). Two-interval pattern problems. In Kao, M.-Y., editor, Encyclopedia of Algorithms, pages
985–989. Springer.

Waterman, M. (1995). Introduction to computational biology - Maps, sequences and genomes. Chapman and Hall,
London.

Wernicke, S. (2006). Efficient detection of network motifs. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 3(4):347–359.

West, D. and Shmoys, D. (1984). Recognizing graphs with fixed interval number is NP-complete. Discrete
Applied Mathematics, 8:295–305.

Whang, M.-S. and Wang, G.-H. (1992). Efficient algorithms for the maximum weight clique and maximum
weight independent set problems on permutation graphs. Information Processing Letters, 43:293–295.

Xu, J., Jiao, F., and Berger, B. (2007). A parameterized algorithm for protein structure alignment. Journal of
Computational Biology, 14(5):564–577.

Zhang, K. and Shasha, D. (1989). Simple fast algorithms for the editing distance between trees and related
problems. SIAM journal of computing, 18(6):1245–1262.

132

	I Structures: from 2-intervals to annotated sequences …throught permutations
	Algorithmic aspects of 2-interval sets
	Introduction
	Bestiary and definitions
	Recognizing multidimensional interval graphs
	Combinatorial problems on 2-intervals

	From linear graphs to permutations
	Introduction
	Definitions
	From linear graphs to permutations …and back
	Pattern matching
	Finding common structures
	Separable patterns

	Arc-annotated sequences
	Introduction
	Definitions
	Maximum common patterns
	Pattern matching
	Extending the standard model

	II Pattern Matching in Graphs
	Pattern matching in graphs
	Introduction
	Definitions
	Finding exact occurrences
	Approximate occurrences
	Replacing lists by colors

	Searching for connected occurrences
	Introduction
	Definitions
	Searching for exact connected occurrences
	Minimizing the number of connected components
	Maximizing the size of the connected occurrence
	Further variants

	Querying PPI Networks
	Introduction
	A feedback vertex set approach
	Practical issues

	III Genome Rearrangements
	Genome rearrangements with duplicate genes
	Introduction
	From genomes to permutations …and back
	Comparing two compatible genomes
	Exact algorithms and heuristics

	Exemplar common subsequences
	Introduction
	Definitions
	Key results

	IV Additional topics
	Selenocysteine-like insertion
	Introduction
	Preliminaries
	Key results

	How many words are needed to build up all words ?
	Introduction
	Approximation and inapproximation results
	Jumping to numbers

	Index
	Bibliographie

