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Stabilisation et approximation de certains systémes distribués par amortis-

sement dissipatif et de signe indéfini

Dans cette thése, nous étudions 'approximation et la stabilisation de certaines équations
d’évolution, en utilisant la théorie des semi-groups et l'analyse spectrale. Cette theése est
divisée en deux parties principales. Dans la premiére partie, comme dans |3,4], nous consi-
dérons 'approximation des équations d’évolution du deuxiéme ordre modélisant les vibra-
tions de structures élastiques. Il est bien connu que le systéme approchée par éléments finis
ou différences finies n’est pas uniformément exponentiellement ou polynomialement stable
par rapport au paramétre de discrétisation, méme si le systéme continu a cette propriété.
Dans la premiére partie, notre objectif est d’amortir les modes parasites & haute fréquence
en introduisant des termes de viscosité numérique dans le schéma d’approximation. Avec
ces termes de viscosité, nous montrons la décroissance exponentielle ou polynomiale du
schéma discret lorsque le probléme continu a une telle décroissance et quand le spectre de
Popérateur spatial associé au probléme conservatif satisfait la condition du gap générali-
sée. En utilisant le Théoréme de Trotter-Kato, nous montrons la convergence de la solution
discréte vers la solution continue. Quelques exemples sont également présentés.

Dans la deuxiéme partie, comme dans [1,2], nous étudions la stabilisation des équations
des ondes avec amortissement de signe indéterminée. Tout d’abord, nous considérons deux
probléemes des ondes dont les termes d’amortissement peuvent changer de signe. En utili-
sant ’analyse du spectre, on trouve des valeurs critiques des coefficients d’amortissement
pour lesquels le probléme devient exponentiellement ou polynomialement stable jusqu’a
ces valeurs critiques. Ensuite, nous généralisons ’analyse des deux derniers problémes pour
étudier la stabilité des équations des ondes sur un réseau en forme d’étoile en présence de
termes d’amortissement de signe indéterminée. Pour ce probléme, nous constatons que la
condition intuitive sur la positivité de la moyenne ne suffit pas. Que la norme L*° des co-
efficients d’amortissement soit grande ou petite, nous cherchons des conditions suffisantes

sur les coefficients d’amortissement pour lesquels le probléme devient exponentiellement



stable.

Mots-clés : Stabilité, semi-discrétisation, terme de viscosité, gap généralisé, amortisse-
ment de signe indéterminée, comportement asymptotique, base de Riesz, réseau en forme

d’étoile.

Stabilization and approximation of some distributed systems by either dis-

sipative or indefinite sign damping

In this thesis, we study the approximation and stabilization of some evolution equations,
using semigroup theory and some spectral analysis. This Ph.D. thesis is divided into two
main parts. In the first part, as in |3, 4], we consider the approximation of second order
evolution equations modeling the vibrations of elastic structures. It is well known that the
approximated system by finite elements or finite differences is not uniformly exponentially
or polynomially stable with respect to the discretization parameter, even if the continuous
system has this property. Therefore, our goal is to damp the spurious high frequency
modes by introducing numerical viscosity terms in the approximation scheme. With these
viscosity terms, we show the exponential or polynomial decay of the discrete scheme when
the continuous problem has such a decay and when the spectrum of the spatial operator
associated with the undamped problem satisfies the generalized gap condition. By using
the Trotter-Kato Theorem, we further show the convergence of the discrete solution to the

continuous one. Some illustrative examples are also presented.

In the second part, as in [1,2], we study the stabilization of wave equations with inde-
finite sign damping. Here we search for sufficient conditions on the damping coefficients so
that the wave equations are either exponentially or polynomially stable. First, we consider
two damped wave problems which are either internally or boundary damped and for which
the damping terms are allowed to change their sign. Using a careful spectral analysis, we
find critical values of the damping coefficients for which the problem becomes exponentially

or polynomially stable up to these critical values. Afterwards, we generalize the analysis



of the previous two problems to the case of wave equations on a star shaped network in
the presence of indefinite sign damping terms. For this problem, we find that the intuitive
condition on the positivity of the mean is not sufficient. Whether the L* norm of the
damping coefficients is large or small, we search for sufficient conditions on the damping

coefficients for which the problem becomes exponentially stable.

Key words : Stability, semi-discretization, viscosity terms, generalized gap condition,
indefinite sign damping, asymptotic behavior, Riesz basis, star-shaped network.
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Introduction

Control theory can be described as the process of influencing the behavior of
a physical system to achieve a desired goal, primarily through the use of feedback
which monitors the effect of a system and modifies its output. It is applied in a
diverse range of scientific and engineering disciplines such as the reduction of noise,
the vibration of structures like seismic waves and earthquakes, the regulation of
biological systems like human cardiovascular system, the design of robotic systems,

laser control in quantum mechanical and molecular systems.

In this thesis, we implement the semigroup theory in the spirit of spectral theory
to study the approximations and stabilization of some evolution equations. In gene-
ral, stability results are obtained using different methods like the multipliers method,
the frequency domain method, the microlocal analysis, the differential geometry or
a combination of them [47,50,77,78|. In this thesis, we use detailed spectral analysis.
In fact, this thesis is divided into two parts. In the first part, we consider the ap-
proximations of second order evolution equations. Studies and researches have shown
that the approximated system by finite element or finite difference is not uniformly
exponentially or polynomially stable with respect to the discretization parameter
even if the continuous system has this property (see [25,27,43,55,72, 73,76, 78]).
Therefore, our aim in the first part is to search for a suitable discrete system which

approximates the continuous system and most importantly restores the decay rate
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0.1 Outline of the thesis TABLE DES MATIERES

properties of the continuous one. In the presence of the generalized gap condition,
our strategy is based on adding numerical viscosity terms in the approximation

schemes to damp out the effect of the high frequencies.

In the second part, we study the stabilization of wave equations with indefinite
sign damping. Here, we use a detailed spectral analysis to study the behavior of
the spectrum out of which we search for critical values of the damping coefficients
so that the wave equations are either exponentially or polynomially stable. First,
we consider one dimensional internally and boundary damped wave problems and
afterwards we generalize the analysis of indefinite sign damped wave equations to a

star shaped network where we find extra conditions to get stability.

0.1 Outline of the thesis

This thesis is divided into four main chapters. In the first chapter, we recall some

basic definitions and theorems about the semigroup and spectral analysis theories.

In the second chapter, as in [3] and [4], we consider the approximation of linear
equations modeling the vibrations of elastic structures with feedback control. More
precisely, let H be a complex Hilbert space with norm and inner product denoted
respectively by |.|| and (.,.). Let A : D(A) — H be a densely defined self-adjoint
and positive operator with a compact inverse in H. Let V = D(A%) be the domain
of A2. Denote by D(A2)’ the dual space of D(A2) obtained by means of the inner

product in H.

Furthermore, let U be a complex Hilbert space (which will be identified to its

dual space) with norm and inner product denoted respectively by |.||; and (.,.)y

8



TABLE DES MATIERES 0.1 Outline of the thesis

and let B € L(U, H). We consider the closed loop system

W(t) + Aw(t) + BB*(t) = 0, (0.1.1)
w(0) = wo, w(0) = wy,

where ¢ € [0, co) represents the time and w : [0, co) — H is the state of the system.

We define the energy of system (0.1.1) at time ¢ by
L/ 2 1 2
B(t) = 5 (lo@IP + |Atw)|| ).
Simple formal calculations give
t
E0)— E(t) = / (BB*w(s), w(s))ds, Vt>0.
0

This obviously means that the energy is non-increasing. In the second chapter, our
goal is to search for a suitable discrete system which first approximates (0.1.1) and
second has the same stability properties as (0.1.1). However, in many applications,
most of the classical numerical approximation schemes do not possess the same decay
rate as that of the continuous problem although the convergence is preserved. At
the discrete level, spurious high frequency oscillations are generated and therefore
bad behavior of the approximate solution is clearly observed causing a non-uniform
decay rate (see [14,19,20,25,27,33,34,43,55,58,72,73,76,78|). For instance, we start
the second chapter by considering the vibrations of a flexible string joined at each
of its ends. Although the continuous problem is exponentially stable, we show that
the finite difference semi-discrete problem is not uniformly exponentially stable;
i.e., there does not exist constants M and § > 0 independent of the discretization
parameter such that

Ey(t) < Me P as t — +o0,
where Fj,(t) represents the energy of the semi-discrete system.

9



0.1 Outline of the thesis TABLE DES MATIERES

Several remedies are proposed to restore the uniform decay rate of the discrete
problems like Tychonoff regularization [34, 35,64, 72|, a bi-grid algorithm [32, 58],
a mixed finite element method [14, 19, 20, 33, 56|, or filtering the high frequen-
cies [43,49,76]. As in [64, 72|, we introduce artificial numerical viscosity terms in
the approximation schemes to rule out the high frequency spurious numerical oscil-
lations and hence restore the uniform decay rate of the discrete scheme. However,
contrary to [64] where the standard gap condition is required, we only assume that
the spectrum of the operator A'/? satisfies the generalized gap condition. Indeed, if
{Ak}x>1 denotes the set of eigenvalues of A? counted with their multiplicities, then

we assume that the following generalized gap condition holds :
dM € N*, 3’)/0 >0,Vk >1, >\k+M — A > M~yp.

The standard gap condition is satisfied for the particular case when M = 1. There-
fore, in the second chapter, we treat more general concrete systems.

After recalling the suitable conditions and observability inequalities which lead
to the exponential or the polynomial stability of the solution of problem (0.1.1),
we search for a suitable discrete system which has the same decay properties under
these conditions. For this reason, after finding the suitable discrete system, we use the
discrete result of [52] which gives the necessary and sufficient conditions for which an
approximate solution is exponentially stable. As for the uniform polynomial stability,
we prove a result which gives necessary and sufficient conditions for which a family
of semigroups of operators is uniformly polynomially stable. To our knowledge, our
work in the second chapter is the first one which addresses the uniform polynomial
stability of the discrete schemes.

As for the convergence of the chosen approximate system, we use a general version
of the Trotter-Kato Theorem proved in [45] to show that the discrete solution tends

to the solution of (0.1.1) as the discretization parameter goes to zero and if the

10



TABLE DES MATIERES 0.1 Outline of the thesis

discrete initial data are well chosen. Finally, we end up the second chapter by some
illustrative examples which show the limits of the previous work done concerning
the approximations and values the attained results of the second chapter.

In the third chapter, we move on to another subject which treats the stabilization
of wave equations with indefinite sign damping. As in [1]|, we analyze the stability of
two problems. We consider a one-dimensional wave equation with an indefinite sign

damping and a zero order potential term which is internally damped of the form

utt(x7t) - sz(ﬂi,t) + 2X(0,1)(x)ut<x7t) + 20[)((_1’0) (Q?)Ut(ﬂf, t) = 07 S (_17 1)7 t> 07
u(l,t) =u(—1,t) =0,t >0,

u(z,0) = ug(x), u(z,0) = uy (),
(0.1.2)

where « is a given constant. Besides, we consider a one-dimensional wave equation
with an indefinite sign damping and which is both internally and boundary damped

under the form

Ut (2, 1) — U (2, 1) + aug(z,t) =0, x€(0,1),t >0,
w(0,t) =0, u.(1,t) = —buy(1,1), t >0, (0.1.3)

u(z,0) = ug(x), w(z,0) = uy(x),

where a,b € R.

It is well known that problem (0.1.2) is exponentially stable if the damping
term « is non-negative (see [23|). Similarly, if the coefficients @ and b are both
positive, then, using for instance integral inequalities, one can prove that (0.1.3) is
also exponentially stable. In the third chapter, we are interested in the case when
the damping terms are allowed to change their sign. Our aim is to analyze to what

extent the variation of the sign affects the stability of the problem.

Problem (0.1.2) can be written as a system of the form U; = A,U where U =

11



0.1 Outline of the thesis TABLE DES MATIERES

(u,u;)" and the operator A, : D(A,) — X is defined by

0 I
d2

7 —2X(0,1) — 20X (~1,0)

where the energy space X = Hj(—1,1) x L?*(—1,1) is equipped with the usual inner
product defined by

< () (o) > (/(fu+gw

and

D(A,) = (H*(—1,1) N Hy(=1,1)) x Hy(—1,1).
In this case, the energy associated with problem (0.1.2), at time t, is given by

5 = 3 [ (st + g 0702

1

with

El(t) = —2 (/01 g (2, 1) [2dz + a/i |ut(x,t)|2dm) . Y(up,u1) € D(Ay).

Therefore, when o < 0, the dissipation of the energy is not trivial. Moreover, the
classical techniques which are normally employed to study the stabilization like
multipliers method, energy and resolvent methods cannot be well invoked in this
case since these methods are based on estimations which involve the absolute value
of the damping coefficients. Therefore, the question of the stability of the solution
of (0.1.2) in the case of @ < 0 becomes more involved.

The main motivation behind this question started with a conjecture in [21] by
Chen et al. who considered the internally indefinite sign damped wave equation of
the form

Uy — Uy + 2a(x)uy =0, x € (0,1), t >0, (0.1.4)

12



TABLE DES MATIERES 0.1 Outline of the thesis

with standard initial conditions and Dirichlet boundary conditions.
It was conjectured that if there exists some + > 0 such that for every n € N the

following condition is satisfied
1
I, = / a(r)sin®(nmz)dr > 7, (0.1.5)
0

then the energy decays exponentially. The hypothesis imposed on the uniform po-
sitivity of I, in (0.1.5) yields the positivity of the average aq of a since I,, — ayg, as
n — +oo. However, Freitas in [28] disproves the conjecture of Chen et al. He shows
that (0.1.5) is not sufficient to guarantee the exponential stability. He finds out that
if ||al/z~ is large then there may exist some positive real eigenvalues (see Theorem
3.6 of [28]). So later on, Freitas and Zuazua in [30]| suggest replacing the function
a(x) in (0.1.4) by ea(z) with € > 0 small enough. In this case, the exponential stabi-
lity is proved under condition (0.1.5) and the additional condition a € L*(0,1)NBV
so that its derivative is defined in the weak sense. Furthermore, in |51], the authors
find an upper bound of € for which the problem becomes exponentially stable under
condition (0.1.5) and the assumption that a € L>°(0, 1) without the need for the as-
sumption that a € BV. On the other hand, in [57], Racke and Rivera have removed
the factor € and considered the wave equation uy; — Uz, + a(z)u; = 0 on (0, L) for
some L > 0 where a € L*(0, L) is allowed to change its sign such that its mean
value ag remains positive. In [57], the exponential stability is proved under one of
these conditions : Either ||a|[z~ is possibly large with sufficiently small |ja — agl| 12
or ||al| L is sufficiently small but the pair (a, L) has to satisfy some estimates where
it is possible to get a negative moment [j.

In the third chapter, our work differs from the previous results since we do not
want to impose neither a small value of the damping factor a nor a small value of
|la — ag||z2. Indeed for system (0.1.2), this mean value is equal to v/2|1 — a| which

we do not need to be sufficiently small. Moreover, the upper bound of € found in |51]

13



0.1 Outline of the thesis TABLE DES MATIERES

is not easy to check for system (0.1.2).

From the asymptotic behavior of the spectrum of A,, we find that, according
to the value of «, problem (0.1.2) is either unstable or exponentially stable. Using
detailed spectral analysis, we find the characteristic equation satisfied by the eigen-
values of A, and then we show that the root vectors of A, form a Riesz basis of the
energy space. Finally, we find a critical value of a for which the solution of (0.1.2)
becomes exponentially stable. Although the critical value which we find for « is not
optimal, this value remains coherent with that given by the perturbation theory of
semigroups.

In the third chapter, we perform a similar analysis for problem (0.1.3). As usual,
by the standard reduction of order method, we can rewrite formally (0.1.3) in the
simpler form U, = A,U, with U = (u,u;)" and the operator A, : D(A,) — X is
defined by

0 I
A= | (0.1.6)
L —a

where the energy space X = H;(0,1) x L?(0,1) is equipped with the usual inner
product defined by

<(f,9) (o) > / (f'T + gv) do

where H;(0,1) = {u € H*(0,1); u(0) = 0} and therefore, D(A,) = {(u,v)" €
H?(0,1) N Hy(0,1) x Hy(0,1); ugy(1) = —bv(1)}.
The energy of (0.1.3) is given by

1 1
E2<t)—§/0 (Juf? + o) do

and hence formally

1
5(t) = —a/ || ?dx — blug(1)[2.
0
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From this identity, we remark that A, is not necessarily dissipative when ab < 0.
Therefore, we are interested in the case when a and b are of opposite signs. Note that
for such a problem, perturbation theory of contractive semigroups cannot be well
invoked. Using detailed spectral analysis, we find the conditions that a and b must
satisfy so that problem (0.1.3) becomes exponentially or polynomially stable. The
particular case b € (—1,0) and a > 0 retains our attention where we find optimal
results for which (0.1.3) is exponentially or polynomially stable.

Finally in the fourth chapter, as in [2|, we generalize the analysis of the third
chapter to study the exponential stability of the wave equation on a star shaped
network with indefinite sign damping which is of the form

(

ugy (2, 1) =t (2,1) + 2ea;(x)ui(x, 1) =0, z € (0,Li), t >0,
’U/Z(Ll,t) = O,
u'(0,t) =4/ (0,t), Vi#j,

Zui(o, t) =0,
u'(2,0) =up(x), x€(0,L),
ul(z,0) =wui(x), x€(0,L).

\

where L; € R, and a; € WH>(0, L;). We further consider the following hypothesis
on the geometry of the domain :

(H) There exists ¢ € N* such that for all ¢ = 2, ..., N, there exists p; € N* where

Li=21,
q

In the first part of the fourth chapter, we study the stability of system (.S7) when
¢ = 1. We give necessary and sufficient conditions for which system (.S;) becomes
exponentially stable up to a finite dimensional space. The idea is inspired from [65]
where the characteristic equation of (S;) is approximated by another function using

the shooting method. This approximation allows us to detect the behavior of the
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high frequencies and hence deduce the conditions on the damping coefficients a; for
which the high frequencies are situated to the left of the imaginary axis. Finally, after
we prove that the generalized root vectors form a Riesz basis with parentheses, we
deduce the exponential stability of (S7) up to a finite dimensional space generated
by the roots vectors of the low frequencies. In the first part, when N = 2, we recover
the result of Theorem 3.2.1 of this thesis.

In the second part, we consider system (S7) with e positive but small enough so
that we extend the results of Freitas and Zuazua in [30] where N = 2. In fact, for
e > 0 small enough, unlike |30|, we deal with multiple eigenvalues when splitting
may occur as € increases. First, we consider a; € R and L; =1 foralli =1,...,. N
and then we consider a; € L*°(0, 1). In fact, when € > 0 small enough, the study of
the exponential stability of (S7) enters in the framework of the abstract theory done
in |51]. Using the concepts introduced in [46] about the behavior of the spectrum,
we shall interpret the hypothesis imposed in [51] to find explicit conditions on the
damping coefficients for which (.S;) is exponentially stable. In the presence of a Riesz
basis with parenthesis, we search for sufficient conditions for which the eigenvalues
are situated strictly to the left of the imaginary axis. We find out that the positivity
of the mean of the damping coefficients is not enough to guarantee the exponential
stability of (S7) in the whole energy space. In this second part, we recover the
result of Theorem 2.1 of [30] when the damping coefficient is piecewise constant but
without the assumption on the positivity of the integrals I,, given in (0.1.5). Finally,

we end up the fourth chapter by giving some concrete examples of {a;}Y, and N.

16
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0.2 Aims and achieved results

For more coherence, we summarize the main goals and the new results attained

in this Ph.D. thesis into the following points :

(i)

(iii)

(vi)

(vii)

Search for a suitable approximate system which converges towards problem
(0.1.1) and has the same decay properties as (0.1.1) in the presence of the

generalized gap condition.

Analyze the polynomial decay of the discrete schemes when the continuous
problem has such a decay and prove a result about uniform polynomial stability

for a family of semigroups of operators.

Use a general version of the Trotter-Kato Theorem proved in [45] to prove
the convergence of the discrete solution towards the solution of (0.1.1) as the
discretization parameter goes to zero and if the discrete initial data are well

chosen.

Study the stability of wave equations in the presence of indefinite sign damping
where the classical methods for studying the stabilization fail to treat such

problems.

Consider indefinite sign damping coefficients whose L norm is not necessarily

small.

Use detailed spectral analysis to find critical values of the damping coefficients

for which wave equations with indefinite sign damping become stable.

Generalize the analysis of the stability of wave equations with indefinite sign

damping terms over a star shaped network.

17
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Chapitre 1

Preliminaries

As the analysis done in this Ph.D. thesis is based on the semigroup and spectral
analysis theories, we recall, in this chapter, some basic definitions and theorems

which will be used in the following chapters. We refer to [8,18,24,36,37,42,62,63].

1.1 Semigroups

Most of the evolution equations can be reduced to the form

z(t) = Az(t), t>0,

z(0) = o,
where A is the infinitesimal generator of a Cy semigroup 7'(¢) over a Hilbert space H.
Therefore, we start by introducing some basic concepts concerning the semigroups.
Definition 1.1.1. Let X be a Banach space.

1) A one parameter family T(t), t > 0, of bounded linear operators from X into

X is a semigroup of bounded linear operators on X if
(i) T(0) =1;
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Chapter 1 Preliminaries

(11) T(t+s) =T(t)T(s) for every s,t > 0.

2) A semigroup of bounded linear operators, T(t), is uniformly continuous if

lim||T(t) — I|| = 0.

t—0

3) A semigroup T(t) of bounded linear operators on X is a strongly continuous

semigroup of bounded linear operators or a Cy semigroup if

ImT (t)x = x.

t—0

4) The linear operator A defined by

Av = limw, Ve € D(A),

t—0
where
T(t)x —
D(A) = {x € X; limM em’sts}
t—0 t

is the infinitesimal generator of the semigroup T'(t).

Theorem 1.1.2. Let T(t) be a Cy semigroup. Then there exist constants w > 0 and
M > 1 such that
|T(#)|| < Me*t, ¥t > 0.

In the above theorem, if w = 0, then T'(¢) is called uniformly bounded and if

moreover M = 1, then T'(¢) is called a Cy semigroup of contractions.

For the existence of solutions, we normally use the following Lumer-Phillips

Theorem or Hille-Yosida Theorem.

Theorem 1.1.3. (Lumer-Phillips Theorem) Let A be a linear operator with dense
domain D(A) in a Hilbert space X. If
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(i) A is dissipative ; i.e., R < Az,z >x< 0, Vz € D(A)
and if
(1) there exists a Ao > 0 such that the range R(Aol — A) = X,

then A generates a Cy semigroup of contractions on X.

Theorem 1.1.4. (Hille-Yosida Theorem) Let A be a linear operator on a Banach
space X and let w € R, M > 1 be constants. Denote by p(A) the resolvent set of A.

Then the following properties are equivalent

i) A generates a Cy semigroup T'(t), t > 0 satisfyin
(i) Ag 9 ying
|7 < Me=t, vt >0,
i1) A is closed, densely defined, and for every A > w one has A € p(A) and
P
[A=w)"A=A)T[ <M, VneN

(iii) A is closed, densely defined, and for every A\ € C with R\ > w, one has
A€ p(A) and

. M
0= A" € = VneEN.

If the conditions of the previous two theorems are not clearly satisfied, we may
use the following theorem about perturbations by bounded linear operators (see

Theorem III.1.1 of [62]).

Theorem 1.1.5. Let X be a Banach space and let A be the infinitesimal generator
of a Cy semigroup T(t) on X, satisfying ||T(t)|| < Me“". If B is a bounded linear
operator on X, then A+ B is the infinitesimal generator of a Cy semigroup S(t) on
X, satisfying ||S(t)| < Me@+MIBIDL

Now we recall a result in [42,63] which gives necessary and sufficient conditions

for which a semigroup is exponentially stable.
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Theorem 1.1.6. Let T'(t) be a Cy semigroup on a Hilbert space H and A be its infi-
nitesimal generator. T'(t) is exponentially stable; i.e., there exists M and a positive

constants such that ||T(t)| < Me™*" if and only if

(1) iR C p(A), where p(A) denotes the resolvent set of A

and
(ii) sup||(iw — A)7Y| < oco.
weR

When the exponential stability is attained, we search for the optimal exponential

decay rate; mainly for the spectrum determined growth condition.

Definition 1.1.7. Let A be the infinitesimal generator of a Cy semigroup, T(t) ,
on a Hilbert space H. Consider

1
w(A) :==inf{a € R; |T(t)]| < Me*'} = Jim i log |T(t)]],
—00
the growth exponent bound of T'(t), and
p(A) = sup{RA; A € o(A)},

the spectral abscissa of the operator A where o(A) denotes its spectrum. If w(A) =
w(A), then we say that the spectrum determined growth condition holds.

Remark 1.1.8. From the Hille-Yosida Theorem, we know that u(A) < w(A) for
any infinitesimal generator of a strongly continuous semigroup. However, in general,

w(A) < u(A) is not always true.

If the semigroup fails to be exponentially stable, we search for another type
of decay rate like the polynomial stability which is characterized by the following
Theorem in [18].
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Theorem 1.1.9. Let (T'(t)),>, be a bounded Cy semigroup on a Hilbert space H with
a generator A such that iR C p(A). Then for a fized o > 0, the following conditions

are equivalent :
(i)
I(is — A)7Hl = O(ls|*), s — oo
(i)
IT(HA =0F™), t— oo
ITHA™ = 0(t=), t— .
Note that the notation A = O(B) means that there exists ¢ > 0 such that
|A| < ¢|BJ.

1.2 Riesz basis

In the second part, we show that the generalized eigenvectors form a Riesz basis
of the energy space. Consequently, we recall basic definitions and theorems needed

for Riesz basis generation. We refer to |8,36,37|.

Definition 1.2.1. (i) A non-zero element ¢ in a Hilbert space H is called a gene-
ralized eigenvector of a closed linear operator A, corresponding to an eigenvalue

A of A, if there exists n € N* such that
M —A)"0=0 and (M —A)"p#0.

If n =1, then  is an eigenvector.

(i) The root subspace of A corresponding to an eigenvalue X\ is defined by

Na(A) = | ker (AT = A)").

n=1
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(iii) The closed subspace spanned by all the generalized eigenvectors of A is called

the root subspace of A.

Remark 1.2.2. The family of generalized eigenvectors of A corresponding to \
forms a basis for the subspace N\(A). Denote by my the algebraic multiplicity of
A. In general, these generalized eigenvectors, denoted by {¢;, 1 < j < my}, are

constructed by the following procedure :

Apr = Ap
./490] - >\90]+S0]—17 j :27"'7m)\-
Now, we introduce the Riesz basis and then we recall some theorems which help

us prove that a family forms a Riesz basis.

Definition 1.2.3. Let ® = {¢, }nen be an arbitrary family of vectors in a Hilbert
space H.

(i) The family ® is said to be a Riesz basis in the closure of its linear span (no-

tation ® € (LB)) if ® is an image by an isomorphic mapping of some ortho-

normal family. ® is said to be a Riesz basis if & € (LB) and ® is a complete

family ; i.e., Span{p,; n € N} =H.

(i) The family ® is said to be w—linearly independent if whenever Zangpn =0
neN
for Z|a"|2 < oo then a, =0 for every n € N.
neN
(11i) The family ® is minimal if, for any n € N, the element o, does not belong to

the span of all the remaining elements; i.e., v, & Span{y;; i # n}.
Remark 1.2.4. (i) If ® € (LB), then ® is minimal and hence w—linearly inde-
pendent.
(i1) If ® is minimal, then there exists a family ¥ = {1, }nen biorthogonal to P ;
z'.e., < @j,wi >y = 51]
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The following proposition and theorems give necessary and sufficient condition

so that a family ® forms a Riesz basis.

Proposition 1.2.5. (Bari’s Theorem, Bari 1951; Gokhberg and krein 1965; Ni-
kolski 1980)
® € (LB) if and only if there ezists positive constants Cy and Cy such that for any

sequence {auy, fnen, we have

CIZ|anI2 S

neN

2
S 022|an|2‘

neN

neN

In this case, each element f € Span{e,, n € N} is written as
f:Z<f7¢n > P,
neN

where W = {1, }nen is biorthogonal to ® = {p, }nen-

In this thesis, we mainly use the following theorems to prove that the generalized

eigenvectors form a Riesz basis of the energy space.

Theorem 1.2.6. (Theorem 2.1 of Chapter VI in [36])
{én} is a Riesz basis of a Hilbert space H if and only if {¢n} is complete in H
and there corresponds to it a complete biorthogonal sequence {1} such that for any

f € H one has

Y I< tu f =P <00, Y |< i f > < 0. (1.2.1)

n

Theorem 1.2.7. (Classical Bari’s Theorem)

If {on}nen is a Riesz basis of a Hilbert space H and another w—linearly independent
family {1 }nen is quadratically close to {@, }nen in the sense that Zngn — 1, |]? <

n=1
00, then {1y, tnen also forms a Riesz basis of H.
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Normally, there is difficulty in understanding the number of generalized eigen-
functions corresponding to low eigenvalues. This severely limits the application of
the above classical Bari’s Theorem even if the behavior of the high eigenvalues and
their corresponding multiplicities are clearly known. Consequently, in case the be-
havior of the low eigenvalues is vague, we suggest using Theorem 6.3 of |37| which

is a new form of Bari’s Theorem (see Theorem 2.3 of Chapter VI in [36]) :

Theorem 1.2.8. Let A be a densely defined operator in a Hilbert space H with a
compact resolvent. Let {p,} -, be a Riesz basis of H. If there are an integer N > 0

and a sequence of generalized eigenvectors {wn}zo:NH of A such that

[e.e]

S [l on — tin < 00,
n=N-+1

S
n=1’

then the set of generalized eigenvectors of A, {i,} forms a Riesz basis of H.

Despite that the proof of Theorem 1.2.8 is found in [37], we give another proof

which clarifies the relation between the families {¢,} >, and {i,}

o0
n=

_,. First, we

recall Lemma 6.2 of |37].

Lemma 1.2.9. Let {¢,};2, be a Riesz basis of a Hilbert space H. Let N > 0 and
{n}o nyq e another family such that

o0

Z | én — ¥n H2< 0.

n=N+1
Then there exists M > N such that

n=1

(1) {dn 1 U {0} sy is a Riesz basis of H.

(i) The set {gpn AL, U{pn}22 su1 is w—linearly independent.

Proof: Once (i) is proved, (ii) follows from Theorem 1.2.7. To prove (i), let M > N
and {c,}, € [*(N*) such that

M 00
ch¢n + Z ann = 0.
n=1

n=M+1
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Then
n=1 n=M+1
Since {¢,}2, is a Riesz basis, there exists ¢; > 0 such that
o0 o0 2
CIZ|C7L|2 < chgbn (1.2.3)
n=1 n=1
Using Cauchy-Schwarz inequality, we get
o0 2 o0 o [e.9]
C1
S a6 £ Y 6l 3 - el <SS ll 024
n=M+1 n=M+1 n=M+1 n=1
provided M is chosen great enough.
Combining (1.2.2), (1.2.3), and (1.2.4) we get ¢, = 0, Vn € N*. n

The following theorem clarifies the results of Theorem 1.2.8.

Theorem 1.2.10. Let A be a densely defined operator in a Hilbert space H with
a compact resolvent. Let {¢,}.~, be a Riesz basis of H. If there are two integers

Ny, Ny > 0 and a sequence of generalized eigenvectors {@/Jn}zo:NH of A such that

D Prany = Yngw, [17< 00, (1.2.5)
n=1

then the set of generalized eigenvectors (or root vectors) of A, {1n} -, forms a Riesz

basis of H.

Proof: The proof is divided into five steps.
First step.
For all n > 1, we set Xn+n, = Unin,. Thus, we have x,, = VN, —Ny, VI >

Ny +1. (1.2.5) means that

oo

> Xa — ¢ |IP< o0 (1.2.6)

n=Na+1
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Consequently, by Lemma 1.2.9, there exists M > Ny such that {&, }2L U{0n 122 s v - Not
is a Riesz basis of H.
We can assume that the eigenvalues corresponding to {1, } for n < M + Ny — Ny
are different from those of {1, } for n > M + Ny — Ny + 1.
Second step.

Now, let V' = span{t, }72 1,4 v, n,+1, then the set of roots vectors {4y, YA N =N,
is independent and does not belong to V.

We denote by 7y, the orthogonal projection on the space V' and define
Hy = span{¢, }, M=,

where 1; = ; —my;, i = 1, ..., M+ N; — Ny. Clearly, {wn}M+N1 2 are independent
and dlmHO =M+ Nl — NQ.
Let P be the orthogonal projector on Hy,. We have

P,=;, i=1,..M+N, —N, and Pi¢;=0, Vi>M+ N, — N,

By the first step, for each ¢ € N*, there exists {a’,}°°; with a!, € C such that

o

M
=Y agi+ > d
n=1

n=M+N1—No+1

Hence, for i = 1,..., M + Ny — N5, we get

= P = Za Pg;.

This shows that M > M + N; — N, or equivalently Ny > Nj.
Third step.
If we assume that Ny > Ny, then Hy C V4. Thus, let ¢ # 0 € V- N Hy and

assume for the moment that the set {1, }°°, is complete in H. We can write

Y= anthy
n=1
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Therefore,
[e%e] M+N1—N»
0=PY=> aPvy= > a,Pi.
n=1 n=1

But for n < M + N; — N5, we have

Py = P({y + i) = .

Consequently, we deduce that

M+N1—N»

0= Z anqjjn;

n=1
ie,a,=0,i=1,... M+ Ny — Ns. It follows that

oo

1/): Z an@Z)nGVLﬂV:{O},

M+N;—Na+1
which is a contradiction. Consequently, N; = N.
Fourth step.
By the first step, {¢, 1AL, U {¢,}52 ., forms a Riesz basis of H. Therefore, it
remains to prove that {1, }°, is w—linearly independent so that we can deduce by

Theorem 1.2.7 that {1, }°°, forms a Riesz basis of H. Indeed, suppose that

Z anwn = 0.
n=1
Hence,

M 00
O = Za,ﬂﬁn + Z an¢n'
n=1

M+1
By the first step, we can write

M M 00
Z 6Ln’@Dn - Z bn¢n + Z bn¢na
n=1 n=1 M+1

where for every n € N*, b, € C. Therefore,

M 0o
n=1

n=M+1
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which implies that b, = 0 for all n = 1, ..., M. Finally, from

M 00
>t =Y bathn,
n=1

M+1

we deduce that ian@/)n = 0 since {¢, }. | does not belong to V. Hence a,, = 0,Vn €
N*. -
Last step.

It remains to prove that {¢,}°°, is complete in H. If it is not the case, by the
first and second steps, we only know that the family {«,}7°, is a Riesz basis for the
subspace Hi = M, the closed subspace spanned by all generalized eigenvectors
{n}5°, of A, and that its codimension is finite.

Let Hy = Hit. Thus, H = H,;® H, and dim(H,) < oo. Without loss of generality,
we may assume that 0 € o(A); i.e., A has a compact inverse A~! = B.

Since H is stable by B, then H, is stable by B*. Consequently B|*H2 admits at
least one eigenvalue u because Hs is finite dimensional. Thus, there exists © £ 0 € Hy
such that B*x = uzx.

We start by proving that necessarily p = 0. If © # 0 then the complex A # 0 such
that p = % isin o(A). Let H) be the root subspace of A associated to A and n be the
algebraic multiplicity of A; i.e., the smallest integer such that Hy = ker(I — AB)".

Since B is a compact operator, I — (I — AB)" is also a compact operator and by

the Fredholm alternative
ker(I — [I — (I = AB)"))* = R(I — [I — (I — AB)"))*;

ie.,
Hy = (ker(I — AB)")* = R(I — \B*)".
But H, C H, implies that x € Hy. Consequently, there exists y € H, y # 0,
such that x = (I — AB*)"y.
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As (I = AB*)x = 0, we get 0 = (I — AB*)"*!'y with y # 0. Hence, we get a
1 1
contradiction since 3 € o(B) and 3 € o(B*) have the same algebraic multiplicity.

Therefore, we have p = 0, but this contradicts the well-known fact that H =

R(B) @ ker(B*) and the assumption R(B) = D(A) = H. u

1.3 Riesz basis with parenthesis

Sometimes we fail to prove the existence of a Riesz basis of the energy space or
we need some supplementary hypothesis to find a Riesz basis. However, as in the
fourth chapter, we can neglect these hypothesis and find a more general basis of the
energy space which is called a Riesz basis with parenthesis. According to |75], we

recall the definition of a Riesz basis of subspaces and a Riesz basis with parenthesis.

Definition 1.3.1. — A family of subspaces {Wy}ren is called a Riesz basis of
subspaces of H if
(1) for every f € H, and every k € N, there is a unique fr, € Wy such that

f=> fi and

keN
(i) there are positive constants Cy and Cy such that

> h

keN

2
<Oy |l

keN

O P <

keN

— A sequence {y;}ien is called a Riesz basis with parenthesis of H if there is a
family {Wy}ken of finite-dimensional spaces spanned by some y; with Wy N
W; = {0} for k # j that forms a Riesz basis of subspaces of H. The spaces

Wi are called the parentheses.

Now, we recall a Theorem which can be proved exactly as Theorem 2 in [71]

which gives sufficient conditions for which the generalized eigenfunctions of some
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operator A form a Riesz basis with parenthesis. For this aim, we need to group the
eigenvalues of A by packets made of a finite number of eigenvalues and in such a
way that the packets remain at a positive distance from each other. Namely for
any r > 0, we introduce the sets G(r),p € Z as the connected components of the
set Uy ¢, 4 Da(r),where Dy(r) is the disc with center A and radius 7, as well as the
packets of eigenvalues A, (r) = G,(r) No(A). The following Theorem gives sufficient

conditions for which the generalized eigenfunctions of a bounded perturbation of a

selfadjoint operator form a Riesz basis with parenthesis.

Theorem 1.3.2. Let T be a selfadjoint operator over a Hilbert space H with discrete
spectrum {py }rez which satisfies the generalized gap condition, i.e, there exists ko >
0 and c > 0 such that

Hktko — HE > G, Vk € Z.

Let B be a bounded operator from H into itself. Then the root vectors of the per-
turbation A = T + B form a Riesz basis with parenthesis of H. In this case, only
terms corresponding to merging eigenvalues should be put in parenthesis, i.e, there

exist v > 0 and N € N* such that if we set
Ap = Ap(r),

then
#A\, < N,Vp € Z,

o(T + B) = Upezly,

and we can take as parenthesis W,, p € Z, the space spanned by the root vectors of
T + B corresponding to the eigenvalues in A, where for any f € H, f, =P, f is the
the Riesz projection of T + B, i.e.,

fo=Puf =5 [ A=T=B)fan

Tp
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where vy, is a contour surrounding N,.
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Chapitre 2

Uniformly exponentially or
polynomially stable approximations
for second order evolution equations

and some applications

2.1 Introduction and Motivation

Recently, the approximation of second order evolution equations has been ex-
tensively studied where misbehavior of the discrete solutions has been remarkably
observed (see |25,27,55,72,73|). Indeed, the discrete schemes, obtained by finite
difference, finite element, or finite volume discretization, introduce spurious high
oscillations which do not exist at the continuous level and which propagate with
group velocity of the order of the mesh size. As a result, even though the numerical
scheme converges in the classical sense towards the continuous problem, observabi-

lity inequalities do not hold uniformly with respect to the discretization parameter
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and hence, the decay rate of the discrete system turns out to depend on the mesh
size. In fact, the uniform decay rate is equivalent to some observability inequalities
which estimate the discrete energy by the velocity of the propagation of the oscilla-
tions. However, in the presence of high frequency discrete solutions whose velocity
is of the order of the mesh size, the observability constants blow up as the mesh
size tends to zero (see [55,73]). Consequently, most of the classical numerical ap-
proximation schemes do not possess the same decay rate as that of the continuous
problem.

For more coherence, we start with a simple example which studies the approxima-
tion properties of a 1-d internally damped wave equation which models the vibrations

of a flexible string clamped at each of its ends of the form

y"—ym+ay’:0 (:Cat> € (071) X (0,00),
y(0,t) =y(1,¢) =0 t>0, (2.1.1)
y(z,0) =1°, ¥/(2,0) =y', z€(0,1),

where a > 0 such that a € L*>(0,1) and a(z) > ay > 0 for all x € I C (0,1). The

symbol * denotes the partial differentiation with respect to time.

It is well known that for such a choice of a, (2.1.1) is exponentially stable (see
[23]). However, referring to |26], we show that for the classical finite difference scheme
of (2.1.1), the exponential decay of the discretized energy is non-uniform. For this
purpose, given N € N*, set h = and consider the subdivision of (0, 1) given

by

N +1

0:$0<JZ1<...<1’N<$N+1:1

where z; = jh for j € {0,..., N + 1}

Therefore, the classical finite difference space semi-discretization of problem
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(2.1.1) is given by

v Yirl — 2y HYia

+a;y;=0 t>0, j=1,..,N,

J B2
y;(t) =0, t>0, j=0,N+1, (2.1.2)
y;(0) =95, y;(0) = y; j=1,...N,

where the function y;(¢) provides an approximation of y(xz;,t) and a; = a(jh) for
all 7 = 1,..., N. For simplification, we introduce the vector notation where we let

un(t) = (1 (), ., yn ()" and apyn(t) = (a1y1 (), ..., anyn(t)) . Moreover, we define

the matrix

2 —1 0 0

1| =1 0
A, = —

S ) ~1

0 0 -1 2

Then system (2.1.2) reads as

y}{ + Ahyh<t) + ahyﬁl =0 t> O,
yn(0) = 2, y,(0) = y}.

The energy of system (2.1.2) is given by

h N
7=0

y]—l—l Y

I

which is a natural discretization of the continuous energy and the discrete dissipation

law is expressed by

B} (yn,t) = —hzaj|y]|2 (2.1.3)

Theorem 2.1.1. The exponential decay of Eyn(yn,t) to zero is non-uniform with

respect to the mesh size h ; i.e., there do not exist positive constants M and w which

37



Chapter 2 Uniformly exponentially or polynomially stable approximations

are independent of h such that for all h > 0, and for all initial data (y?)j, and
(y}); € RN, we have
Eh(yh,t) S Me_“tEh(yh, O)

To prove the above theorem, we need the following two lemmas :

Lemma 2.1.2. If there exists some positive constants M and w independent of h

such that for all (y);, and (y;); € RY, we have
Ep(yn,t) < Me " Ey(yp, 0) Yt >0, (2.1.4)

then there exists Ty and Cy, bounded with respect to h, such that for all (ug)j and

(Ul)j m RN

J
2Eh Uh, = hz

where (u;); solves the conservative semi-discrete system given by

_02
“j

<Coh2/ a;[u;(t))%dt,  (2.1.5)

|u1| +

iy Uir — 2U5 U
ul — 2
u;(t) =0, t>0, j=0,N+1, (2.1.6)

uj(0) =ud =99, W (0) =ul =y}, j=1,., N.

=0, t>0, j=1,...N,

Proof: The idea of the proof is found in [73]. According to the dissipation law
(2.1.3), we have for all 7" > 0,

N T
En(yn, 0) = En(yn, T) = hZ/ a; |y} dt. (2.1.7)
— 70

If we choose T > (In(%!)) /w, then (2.1.4) implies that

3 3
En(yn, T) < ZEh(ymO) = ZEh(Uh,O)-
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Hence,
N T 1
2
hjgo/o a;ly;|*dt > ZEh(UmO)- (2.1.8)

Let v, = uy, + v, where vy, solves the complementary semi-discrete system given by

y_ Vil — 20+ Ui
v — 2
v (t) =0, t>0,j=0N+1, (2.1.9)

v;(0) = v}(0) =0, j=1,.. N.

+a;(vi+u}) =0, t>0, j=1,.,N,

Since Ej(vp,0) = 0, then

N T N T
En(on, T) + 1Y / a; [0 ()] dt = —h>" / ayed, (D)t
j=0 "0 j=0 "0
Hence,

N T N T
hZ/ a |v;(t)}2dt§h2/ a; [ ()| dt, (2.1.10)
j=0"0 =090

which implies that

N .7 N .7 N T
hZ/ a; }y}(t)|2dt < QhZ/ a; ‘U;(Zf)‘th—l-QhZ/ a; |u;(t)|2dt
j=0 "0 j=0 "0 j=0 "0

N T )
§4h2/ a; |u(t)]” dt.
j=0 "0

Using the above inequality in (2.1.8) yields

N T
1
4hZ/0 a; [ ()] dt > 7w, 0).
j=0
| ]

The following lemma shows that the observability constant Cj in the discrete
observability inequality (2.1.5) blows up as h — 0 and hence the uniform observa-
bility fails to hold which implies the lack of a uniform exponential decay rate which

completes the proof of Theorem 2.1.1.
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Lemma 2.1.3. For any T' > 0, we have

I inf
. " hZ/ a; [y ()P dt =0.  (2.1.11)

h — 0 wupsolution of (2.1.6) Ep(un, 0

Proof: First, we analyze the spectrum of the matrix Ay, ; i.e., we consider the eigen-

value problem

1 .
—ﬁ<wj+1 —2wj+wj_1) :)\wj, ] = 1,,N, Wy = WN+1 = 0. (2112)

According to |44, the spectrum is explicitly given by

and the corresponding eigenvectors are given by

wlli = (wlf,ha "'>w§€Vh>T; wf}h = sin(lmrjh), k’j = 1’ ’N

)

Obviously, \f — M = k272 as h — 0 for each k > 1 where \¥ is the kth eigenvalue of
the continuous wave equation (2.1.1). Moreover, the eigenvectors wf of the discrete
system coincide with the restriction to the mesh points of the eigenfunctions w*(z) =
sin(kmzx) of the continuous wave equation (2.1.1). Furthermore, we notice that the
gap between \/W and \/F is of the order h while, in the continuous case, the
gap between any two consecutive eigenvalues is independent of k (see Figure (a) of
2.1 taken from |26| which shows the square roots of the eigenvalues in the continuous
and discrete case via finite difference semi-discretization on the left and the piecewise
linear finite element space semi-discretization on the right).

Therefore, according to Theorem 6.9.3 of [74], we choose a discrete solution wy, as
a wave package or a superposition of semi-discrete waves Corresponding to the last

eigenfrequencies of Ay ; i.e., we choose u;, € Span {ei\/rﬁtw’ﬁ ok~ E 0<y< 1}
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N T
such that Ej(up,0) ~ 1 and hZ/ a; }u;(t)|2dt ~ k%, L >> 1 so that the proof
j=0"0

of (2.1.11) is complete. We remark that the wave package, u;, does not penetrate
the subinterval I, where the damping coefficient a(.) is effective (see Figure (b) of
2.1 taken from [26] which shows a wave package propagating outside the interval I).

In this chapter, as in [4], we consider the approximations of more general abstract
second order evolution equations. In other words, let H be a complex Hilbert space
with norm and inner product denoted respectively by ||.|| and (.,.). Let A : D(A) —
H be a densely defined self-adjoint and positive operator with a compact inverse in
H.Let V = D(A2) be the domain of A2. Denote by D(A2)’ the dual space of D(A?)
obtained by means of the inner product in H.

Furthermore, let U be a complex Hilbert space (which will be identified to its
dual space) with norm and inner product denoted respectively by ||.||, and (.,.)y

and let B € L(U, H). We consider the closed loop system

WO(t) + Aw(t) + BB*w(t) =0, (2.1.13)

w(0) = wp, w(0) = wy,
where ¢ € [0, 00) represents the time, w : [0, co) — H is the state of the system.
Most of the linear equations modeling the vibrations of elastic structures with feed-
back control (corresponding to collocated actuators and sensors) can be written in

the form (2.1.13), where w represents the displacement field.
We define the energy of system (2.1.13) at time ¢ by

I N 1 2
B(t) = 5 (lo@IP + |atw)| ).
Simple formal calculations give

E(0) - E(t) = /0 t (BB*u(s), w(s))ds, Vt>0.
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Chapter 2 Uniformly exponentially or polynomially stable approximations

This obviously means that the energy is non-increasing.

In many applications, the system (2.1.13) is approximated by finite dimensional
systems but usually, as the above simple example shows, if the continuous system
is exponentially or polynomially stable, the discrete ones do no more inherit this
property due to spurious high frequency modes. Several remedies have been proposed
and analyzed to overcome these difficulties. Let us quote the Tychonoff regularization
[34,35,64,72|, a bi-grid algorithm [32,58], a mixed finite element method [14,19, 20,
33, 56], or filtering the high frequencies [43, 49, 76]. These methods provide good

numerical results.

As in [64,72] our goal is to damp the spurious high frequency modes by intro-
ducing numerical viscosity terms in the approximation schemes. Though our work

in |4] is inspired from [64], it differs from that paper on the following points :

(1) Contrary to [64] where the standard gap condition is required, we only assume
that the spectrum of the operator A'/? satisfies the generalized gap condition,
allowing to treat more general concrete systems,

(ii) we analyze the polynomial decay of the discrete schemes when the continuous
problem has such a decay,

(111) we prove a result about uniform polynomial stability for a family of semi-
groups of operators,

(iv) by using a general version of the Trotter-Kato theorem proved in [45], we
show that the discrete solution tends to the solution of (2.1.13) as the discre-

tization parameter goes to zero and if the discrete initial data are well chosen.

Consequently, this chapter is divided as follows : After we precise the proper
functional setting of the continuous problem (2.1.13) in Section 2.2, we recall some
results concerning the stability of (2.1.13) in Section 2.3. In Section 2.4, we introduce

the suitable discrete systems and the main results of this chapter. Section 2.5 consi-
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ders the well-posedness of the discrete systems. Next, in Section 2.6, we show that
the generalized gap condition and the observability conditions (2.4.7) and (2.4.8)
remain valid for filtered eigenvalues. Section 2.7 first recalls a result about uniform
exponential stability for a family of semigroup of operators, and then extends such a
result to the case of uniform polynomial stability. Some technical lemmas are proved
in Section 2.8. Sections 2.9 and 2.10 are devoted to the proof of Theorem 2.4.1 and
2.4.4 respectively. In Section 2.11, we show that the chosen discrete systems converge
towards (2.1.13), as the mesh size goes to zero and if the discrete initial data are well
chosen. Finally, we illustrate our results by presenting different examples in Section

2.12. The first application is found in [3].

2.2 The proper functional setting of problem (2.1.13)

Before stating the main results of this chapter, we rewrite problem (2.1.13) in a

simplified form. Let X :=V x H be equipped with the inner product
(u, )", (u*, 0 N x = alu,u*) + (v,0%) Y(u,0)", (09" € X,
where a(.,.) is the sesquilinear form on V' x V' defined by
a(u,u”) = (A%u, A%u*), V(u,u*) e V x V.

Then (2.1.13) is equivalent to

H(t) = Az(t) in X, 2(0) = (wo,w1) ",
where z(t) = (w(t),w(t))T and A : D(A) — X is defined by

0 I
—A —BB*

A:
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with D(A) = D(A)x V. It is easy to check that A is a maximal dissipative operator in
X. Therefore, according to Lumer-Phillips Theorem, problem (2.1.13) is well-posed.
We will denote by T'(t), t > 0, the strongly continuous semi-group of contractions

generated by A.

2.3 Stability of the continuous problem (2.1.13)

Before displaying the suitable approximate system which converges towards (2.1.13)
and shares the same stability properties of (2.1.13), we recall some properties concer-
ning the stability of (2.1.13). For this purpose, we start by analyzing the spectrum
of the operator Az,

2.3.1 Spectral Analysis of (2.1.13)

Denote by {A,}rs1 the set of eigenvalues of A2 counted with their multiplicities
(i.e. we repeat the eigenvalues according to their multiplicities). We further rewrite

the sequence of eigenvalues {\}xr>1 as follows :
Moy < Ay < oon < Ay <o

where k1 = 1, ko is the lowest index of the second distinct eigenvalue, k3 is the lowest
index of the third distinct eigenvalue, etc. For all i« € N*, let [; be the multiplicity

of the eigenvalue Ay, i.e.

/\ki—1 < /\kz - )‘kH—l = Aki-i-li—l < /\ki-‘rli = )\ki+1'
We have /{31 = 1, k’g =1+ ll, ]{33 =1+ ll + 12, etc. Let {Spki“!‘j}ofjgli_l be the
orthonormal eigenvectors associated with the eigenvalue \,.

Now, we assume that the following generalized gap condition holds :
dM e N*, 3’)/0 > 0, Vk > 1, >\k+M . M’}/(). (2.3.1)
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Fix a positive real number 7, < 79 and denote by Ay, k = 1,..., M the set of natural
numbers k,, satisfying (see for instance [13])

)\k'm - )\km—l Z ’}/6

Ny — N1 <Y form+1<n<m-+k-—1,

/\km+k - /\km+k—1 > 7(/)‘

Then one easily checks that
{kmyj +Ukm € Ax, ke {1,... . M},j€{0,...k —1},1€{0,....lny; — 1} } = N".

Notice that some sets A, may be empty because, for the generalized gap condition,
the choice of M takes into account multiple eigenvalues.

For k,, € Ay, we define By, = (By, ij)1<i, j< the matrix of size k x k by

( n+j—1
[T Qv = M) i<, (0 4) # (1, 1),
Bknﬂjj — Q¢Zl:3—1
1 if (i, j) = (1, 1),
0 else .

\

More explicitly, we have

1 1 1 o 1
L (Mepy =Mk 1) Ak, =Ny o) A RD B CVRED VI
1 1 L. 1
M1 =M Mgy =M ) Xk 1 =AMy y0) T o R GV VN N
B, =1 0 0 1 .. 1
" (Akn+2_)\kn)(>\kn+2_)\kn+l) (Akn+2_Akn).“(AkﬂH»Z_)\kn#»kfl)
0 0 0 - 1

(/\kn+k717)\k”)...()\kn+k:717Akn+k72)
Lemma 2.3.1. The inverse matriz of By, is given by

( n+i—2

IT ks = Aey) ifi<gii#1,
-1 _ qa=n
ol 1 ifi=1,

0 else,

\
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that s to say

1 1 e 1
0 <)\kn+1 - )\kn) e ()\knﬁ»kfl - )\kn)
Zgéj = 0 0 e (Akn+k—1-_ Akn)(Akn+k—l-_>Akn+l) ’
0 0 o (Akn+k71<_'Akn). ..(Akn+k—l<_'Akn+k72)
and therefore
11 1
B 00 --- 0
By — _ ' | » when n — +o0.
0 0

Proof:The form of Bk_n1 is obtained by induction on the size k of By, . The generalized
gap condition (2.3.1) implies that Ag,,, — A, — 0asn — 400, V0 < j < k — 1.

n

This leads to the convergence of Bk_nl. [ ]

Remark 2.3.2. The structure of the matriz By, comes from Ingham’s inequality in
a Hilbert space H under the generalized gap condition (2.5.1). Indeed, according to
Corollary 6.4 of [61], if the sequence {\,}n>1 satisfies (2.3.1), then for all sequence
{an}nezs in H, the function

— § O./new\k"t,

nez*

satisfies the estimate

JRICRES S LA

k=1|kn|€ Ay

2

for T > —7T, where Xy, = —Mg,., Cr, = (n, oy @nip1)” € HF and ||.||g2 is the
7o

norm in HF.
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2.3.2 Exponential Stability of the energy of (2.1.13)

We recall a sufficient condition for which the energy of (2.1.13) is exponentially
stable. Indeed, the approach is based on observability inequalities found in [7] and

|61]. For this aim, for k, € A, we define the matrix &, with coefficients in U and
k

size k x L,,, where L, = Zlnﬂ'—l’ as follows : for all . =1, ..., k, we set
i=1

(CI) ) B*¢kn+i71+j*Ln,¢71*1 if Ln,ifl <j < Lnyi’
kn)ij =
0 else,

where

Lno=0, Lyi=Y Ly fori>1. (2.3.2)
i'=1

For a vector ¢ = (¢;)i; in U™, we set [|c[|;; , its norm in U™ defined by

m
leliz =D lledlzs
=1

Now, we recall Theorem 2.2 of [7] which links the exponential stability of (2.1.13)

with some observability property of the associated conservative problem.

Theorem 2.3.3. Let ¢ be the solution of the undamped problem

B(t) + Ap(t) = 0, 033
£(0) = o, $(0) = .

If there exists a time T > 0 and a constant ¢ = c¢(T') > 0 such that the observability

estimate
T
1 . -
A2 w0l + [lwnl|F < 0/ |1 B*&(t)||7dt (2.3.4)
0

holds, then problem (2.1.13) is exponentially stable in the energy space; i.e., there

exist a constant k > 0 and v > 0 such that for all initial data in X =V x H,
E(t) <kE(0)e™, Vt>0.
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We also recall Proposition 6.5 of [61] which gives necessary and sufficient spectral

conditions so that the observability estimate (2.3.4) holds.

Proposition 2.3.4. Assume that the generalized gap condition (2.3.1) holds. There
exists a time T > 0 and a constant ¢ = ¢(T') > 0 such that the observability estimate

(2.8.4) holds if and only if

Jag > 0, Yk € {1,..., M}, Vk, € A, ¥C € RE,

B 1#,, 0|, , > a0 Il

(2.3.5)
where ||.||, is the euclidian norm.
Remark 2.3.5. If the standard gap condition
3’)/0 > 0, Vn > 1, )\knJrl — /\kn > Y% (236)

holds, then A; = N* and B; = 1. In this case, the assumption (2.3.5) becomes
Jag > 0, Vk, > 1, VO € R ||, Ol > a0 ||C], -

Moreover, if the standard gap condition (2.3.6) holds and if the eigenvalues are

simple, the assumption (2.3.5) becomes
dog >0, Vk > 1, || B il > ao. (2.3.7)
These assumptions are assumed in |64].

In conclusion, if (2.3.5) holds, then problem (2.1.13) is exponentially stable.

2.3.3 Polynomial Stability of the energy of (2.1.13)

Similar to the exponential stability case, we recall a sufficient condition for which

the energy of (2.1.13) is polynomially stable. First, we recall Theorem 2.4 of |7]
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or Theorem 5.3 of |61] which gives the polynomial stability of (2.1.13) based on
some observability property of the conservative problem (2.3.3). Then, we recall
Proposition 6.8 of [61] which gives necessary and sufficient spectral conditions so

that the observability estimate holds.

Theorem 2.3.6. Let ¢ be the solution of (2.3.3). If there exists | € N*, a time
T >0 and a constant ¢ = ¢(T') > 0 such that

T
* . 2 2 2
[ st e (lalf, o+ ol ) 235)

holds, then the energy of problem (2.1.18) decays polynomially; i.e., there exists a

constant k = k(1) > 0 such that for all initial data in D(A),

k
(1+1t)7

E(t) < I(wo,wi) "5z, V¢ >0

Proposition 2.3.7. Assume that the generalized gap condition (2.5.1) holds and
(wo,w1)" € X. There exists | € N*, a time T > 0 and a constant ¢ = ¢(T) > 0 such
that (2.5.8) holds if and only if

Jag > 0, VE € {1,..., M}, Vk, € Ay, VO € RE,

_ Qo
Bknlq)knC”U’Q > N 1C1l, -
T (2.3.9)

Remark 2.3.8. If the standard gap condition (2.3.6) holds, the assumption (2.3.9)

becomes
* n Qo
3l € N*, Jag > 0, Vk,, > 1, VC € R ||y, C|,, > N 1Cl, -

Moreover, if the standard gap condition (2.3.6) holds and if the eigenvalues are

simple, the assumption (2.3.9) becomes

)

3l € N*, 3ag > 0, Yk > 1, | B*gxll, > R (2.3.10)
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Remark 2.3.9. Note that the assumption (H) from |[7| here holds since A is a
positive selfadjoint operator with a compact resolvent and B is bounded. In fact,

assumption (H) states that if 5 > 0is fixed and Cz = {\ € C; R\ = [}, the function
AeCL={\eC; RA> 01— H\) = AB*(\L + A)"'B e L(U)

is bounded on Cj. Indeed, if A = 3+ 4, then |} + N[> = (\f — &2 + 0%)? + 45%¢%
However,

[T+ A) 7 ) < sup Ap+ AL
>1
Hence, if || > € for some € > 0, then

_FPre

IAL||(NT + A)_1||L(H) =08

3 2
which is bounded for every || > €. On the other hand, if || < ¢, then [A\2+\?| > VR

for e < g Therefore,

<2\/S

A H()‘ZIJFA)AHc(H) = %

which is bounded on Cj.

In conclusion, if (2.3.9) holds, then problem (2.1.13) is polynomially stable with

a decay rate of the order -
7

(1+1)

2.4 Approximate system and main results

In this section, we display the suitable discrete system which approximates
(2.1.13) and has the same stability properties as (2.1.13). Before stating our main

results, let us introduce some notations and assumptions.
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We denote by ||.||;, the norm
lolly, =/ (Azp, Azp), Vp € V.

Remark that
el = v (Ag, ¢), Vo € D(A).

We now assume that (V},)n=0 is a sequence of finite dimensional subspaces of D(A?).
The inner product in V}, is the restriction of the inner product of H and it is still
denoted by (.,.) (since V}, can be seen as a subspace of H). We define the operator
Ay 2 Vi =V, by

(Anon, n) = (A2, AZP), Yoo, ¥y € V. (2.4.1)
Let a(.,.) be the sesquilinear form on Vj, x V}, defined by
a(on, ¥n) = (A2pn, A24), V(pn, ¥n) € Vi x Vi (2.4.2)
We also define the operators By, : U — V}, by
Byu = j,Bu, Yue U, (2.4.3)

where j;, is the orthogonal projection of H into V}, with respect to the inner product
in H.
The adjoint B; of By, is then given by the relation

Byon = B pp,  Yop € V.

We also suppose that the family of spaces (V},), approximates the space V =
D(A%). More precisely, if 7, denotes the orthogonal projection of V' = D(A%) onto
Vi, we suppose that there exist 6 > 0, h* > 0 and Cy > 0 such that, for all
h € (0, h*), we have :

I = ¢lly, < Coh” | Ag]l, Vio € D(A), (2.4.4)
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I — Il < Coh® || Agl|, Vo € D(A). (2.4.5)

Assumptions (2.4.4) and (2.4.5) are, in particular, satisfied in the case of standard

finite element approximations of Sobolev spaces.

In this section, we prove two results. The first result gives a necessary and suffi-

cient condition to have the exponential stability of the family of systems
wh(t) + Ahwh(t) + BhB,’;wh(t) + heAhwh(t) =0 (2 4 6)
wh(O) = Wop € Vh, wh(O) = Wip € Vh,

in the absence of the standard gap condition assumed in [64]. Here and below wqp,
(resp. wyy) is an approximation of wy (resp. wy) in Vj,. For that purpose, we need to

make the following assumption

Jag > 0, Yk € {1,..., M}, Vk, € A, ¥C € R,

Bl;qu)knCHMQ 2 Qo ||CH2 )
(2.4.7)

where |||, is the euclidian norm. The first main result is the following

Theorem 2.4.1. Suppose that the generalized gap condition (2.3.1) and the assump-
tion (2.4.7) are verified. Assume that the family of subspaces (V3,) satisfies (2.4.4)
and (2.4.5). Then the family of systems (2.4.6) is uniformly exponentially stable, in
the sense that there exist constants M, a, h* > 0 (independent of h, won, wip) such

that for all h € (0, h*) :
lon(®)]” + a(wn(t), wa(t)) < Me*([lwinl|® + alwon, wor)), ¥t > 0.

Remark 2.4.2. Note that Theorem 2.4.1 is the discrete counterpart of the exponen-
tial decay of the solution of the continuous problem (2.1.13) under the assumptions
(2.3.1) and (2.4.7), which follows from Theorem 2.3.3 and Proposition 2.3.4 or Theo-
rem 2.2 of |7] and Proposition 6.5 of |61].
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Remark 2.4.3. The uniform exponential stability of the family of systems (2.4.6)
has been already proved in Theorem 7.1 of [25] without any assumption on the
spectrum of A. The proof of this theorem is based on decoupling of low and high
frequencies. More precisely, the author combines a uniform observability estimate for
filtered initial data corresponding to low frequencies (see Theorem 1.3 of [25]) toge-
ther with a result of [27|. Indeed, in |27, after adding the numerical viscosity term,
another uniform observability estimate is obtained for the high frequency compo-
nents. The two established observability inequalities yield the uniform exponential

decay of (2.4.6).

If the condition (2.4.7) is not satisfied, we may look at a weaker version. Namely

if we assume that

3l € N*, 3oy > 0, Vk € {1,..., M}, Vk, € Ay, VC € R,

Bi1#1,Clly,, 2 57~ 11,
(2.4.8)
then we will obtain a polynomial stability for the family of systems
(1) + (14 RO)2(1 + hPAZ)? Apeon (1)
(I BOADY(ByB; + WA+ hOAZ) (1) = 0, (2.4.9)
wn(0) = won € Viy on(0) = (1 4+ W) 1L + K0 A )arp € V.

The structure of the above discrete system has been inspired from the one intro-
duced in [64] for the exponential stability case where the authors have used system
(2.4.6) corresponding to [ = 0. In both cases, this choice is motivated by the corres-
ponding observability estimates. The numerical viscosity term ([ + thé)(BhB;: +
h(’A;f%)([ + heAé)_lwh(t) is added to damp the high frequency modes and as the
set of high frequency modes is larger in the polynomial case, the viscosity term is
naturally stronger. In the case [ > 0 the powers of (I + heA,%) have been added
to guarantee the uniform boundedness of the resolvent of fll,h (defined below) near

zero. The question of the optimality of these viscosity terms remains open.
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The second main result of this chapter is the following one.

Theorem 2.4.4. Suppose that the generalized gap condition (2.3.1) and the as-
sumption (2.4.8) are verified with | € N* even. Assume that the family of subspaces
(Vi) satisfies (2.4.4) and (2.4.5). Then the family of systems (2.4.9) is uniformly
polynomially stable, in the sense that there exist constants C, h* > 0 (independent

of h, won, win) such that for all h € (0, h*) :

1 ) 2 C
|+ 0240 )|+ aln®), wn®) < S llon winlid ),

Lo 2 C
H([ + heAfL) lwh(t)H + a(wh(t)> wh(t)) < t_1||(w0h’w1h>||2D(Az,h)’
VYt > 0, V(th,wlh) S Vh X viw

where for g € N*, H‘HD(A?h) is the graph norm of the matriz operator flgh given in

(2.5.1) of Section 2.5 below.

For a technical reason, we assume [ to be even (see Lemma 2.8.4). If (2.4.8) holds
for [ odd, then we can still apply the results of Theorem 2.4.4 (see Remark 2.10.1
below).

Remark 2.4.5. As before, Theorem 2.4.4 is the discrete counterpart of the polyno-
mial decay of the solution of the continuous problem (2.1.13) under the assumptions
(2.3.1) and (2.4.8), that follows from Theorem 2.3.6 and Proposition 2.3.7 or Theo-
rem 2.4 of |7] and Proposition 6.8 of |61].

2.5 Well-posedness of the discretized problem

From now on, we fix [ € N, [ even. We introduce the Hilbert space X, =V, xV},
and the operator flm : X — X, defined by
1
0 (1+h%)"1 (I +hA})

Al,h: o1 0 1% 0 41+% X
—(1+h®)H(I+hAD)A,  —hPA,"® — B,B;

(2.5.1)
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The space X}, is here equipped with the inner product

Up Up, ~ ~ ~ B
, = a(up, Up)+(vn, On),  Y(un, vg), (Up, 0p) € Xp, (2.5.2)

Up, Uh 0%
h

with associated norm |||y, . Therefore, the system (2.4.9) is equivalent to the follo-

wing first order system in X, :

Z(t) = Al,hzh(t), 21,(0) = 2op,

wp (t Woh
®) and zg, = . Note that we

1
(1 =+ h0)<] —+ hoAi)flwh(t) W1h
recover the system (2.4.6) in the particular case [ = 0.

where z,(t) =

Lemma 2.5.1. flm 18 maximal dissipative in Xy, ; hence, it follows from Lumer-
Phillips Theorem that, for every h > 0, fll,h generates a Cy semigroup of contractions

in Xp. We will denote this Cy semigroup by T;(t) .

Proof: For the dissipativity of Ahh, it is easy to check that %(AMU, U) < 0 for
every U € Xj,. As for the maximality, fll,h is bijective since 0 € p(fll,h) (see Lemma
2.8.1 below). Therefore, /L,h becomes maximal. Indeed, let F' € X} and define the
operator T" on X}, such that TU = /uuzll_y,}U — AZ_}}F For every U, V € X}, we have

|70 =TV = |pAi U — wAZ VI < Wl AU = V.

As Al_}} is bounded since it is linear over a finite dimensional space, we choose

0<p< so that 7" becomes a contraction and hence admits a fixed point

[E
U. Therefore, there exists U € Xj and g > 0 such that ,ufll’,}}U = flf,%F =U or
(ul — Ayp)U = F.
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We shall note here that the discrete energy of system (2.4.9) is given by

Bu(t) = g len(), = 5 (o) + 50+ 12 (74 AR () anr))

)

We notice the additional second term on the right hand side of the above dissipation

Therefore, for any ¢t > 0, we have

EL(t) = —(1+ h?)? (HB;;(I v h(’A,%)lwh(t)Hz L HA:T“(I FROAR) ()

equality. In fact, this viscosity term helps increase the decay rate of the discrete

energy.

2.6 Spectral analysis of the discretized problem

The eigenvalue problem of the discretized problem is the following one : find

M, n €]0, +00[, ¢k, n € Vi, such that

a(r,ny n) = Mg 1 (P ns Un), Yibu € Vi, (2.6.1)

Let N(h) be the dimension of V},. We denote by {)\i,h}lngN(h) the set of eigenvalues
of (2.6.1) counted with their multiplicities. Let {1 }1<r<n(n) be the orthonormal
eigenvectors associated with the eigenvalue )\%7,1. We define the sesquilinear form

a'(.,.) on Vj, by

1
al(uh, Uh) = (A;L+2uh, Uh) s V(uh, Uh) € Vh X Vh;

ie.,
N(h)
al(uh, Uh) = chdk)\zﬁf,
k=1
N(h) N(h)
for u;, = chgphh and v, = deg%h. Remark that a°(.,.) = a(.,.) defined in
k=1 k=1
(2.4.2).
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Chapter 2 Uniformly exponentially or polynomially stable approximations

In this Section, we show that the generalized gap condition (2.3.1) and the ob-
servability conditions (2.4.7) and (2.4.8) still hold for the approximate problem (uni-
formly in h), provided that we consider only “low frequencies”. More precisely, we

have the following first result :

Proposition 2.6.1. Suppose that the generalized gap condition (2.5.1) and the as-
sumption (2.4.7) are verified. Then, there exist two constants € > 0 and h* > 0,
such that, for all 0 < h < h* and for all k € {1,..., N(h)} satisfying

hONZ <, (2.6.2)
we have
aM € N*, 37 > O, /\k-i—M,h — Akvh > M’Y (263)
and
Ja>0,Vp e {l,... M}, Yk, € App, VC € R || B @y, 1C|,, = @ [IC],,
(2.6.4)

where « is independent of h, and where the matriz @y, , € M, 1, (U), with coeffi-

cients in U, 1s defined as follows : for all v =1, ..., p, we set

Bykpiiti—Lnio1-1,h W Lnjic1 <J < L,
(P, )i =
0 else,

where Ly, ;1 is defined by (2.3.2) and
A, =A{k, € A, satisfying (2.6.2) and s.t. kyip—1 + loip1 — 1 < N(h)}.

For the proof of this proposition, we need a result proved by Babuska and Osborn

in [12]. For that purpose, we introduce €(n, j) such that

en(n, j) = we&?&nwil@% [l = vnlly
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where M;(A,) = {¢ € M(X\,) : alp, ©k,.n) = ... = aly, g, +j—2,,) = 0} and
M(\,,) = {¢: pis an eigenvector of Az corresponding to Ay, |l¢|| = 1}. The res-
trictions a(y, @k, n) = ... = a(®, @i, +j—2,n) = 0 are not imposed if j = 1. Then,
we have the following estimate about the eigenvalue and eigenvector errors for the

Galerkin method in terms of the approximability quantities €,(n, j).

Theorem 2.6.2. There are positive constants C' and hg such that

Newtih — Ments < Cen(n, j), YO<h<hg, j=0,..,0,—1, k,+j<N(h),neN
(2.6.5)

. 1
and such that the eigenvectors {py, +;}o<j<i,—1 of A2 can be chosen so that

|Chntjsh — Crntilly < Cenln, j), Y0 <h<hg,j=0,.., 1,—1, k,4j < N(h), n € N
(2.6.6)

This result is proved by Babuska and Osborn in [12, p. 702| because
Meviih = Mewts = Mot = Meutd) Nugn + Abnti) = 20 Moo — Mens)-

Remark 2.6.3. Notice that for every ¢ € M;()\,) we have

en(n, j) < virel‘f/h llo — wvnlly
< Goh? | Ap| by (2.4.4) (2.6.7)

< Cohe)\in llo|l = C’Oh(’)\znﬂ.
Proof of Proposition 2.6.1. We begin with the proof of the generalized gap
condition for the approximate eigenvalues ) j. First, we use the Min-Max principle
(see [67]) to obtain
e < Apens Ve €{1,...,N(h)}. (2.6.8)

Second, we use the estimates (2.6.5) and (2.6.7) and we have
Moo < M+ C(Coh?22)? < \p, + O (Coe)* < \p, + CCPe, (2.6.9)
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for all k € {1,...,N(h)} verifying (2.6.2) and e < 1. Therefore, we may write

)\k+M’h - )\k,h Z )\k+M — )\k — CCSG Z M”}’o — CCgE Z M% =: M’}/

for all k € {1, ..., N(h)} satisfying (2.6.2) and for ¢ < 2419

20CF "

Now, we prove the estimate (2.6.4) which is the approximated version of (2.4.7).

Notice that

1Php,n — Pr |l <

Thus, by (2.6.2), we get

ln+i_1

C’._max Z HB*SOan—&-j,h - B*(pkn+i+j||U
=0

lp4i—1
Ci:(r)na;(_l Z HB*HL(H, U) H901<:7L+i+j7h — SpknJrH-jH
,,,,, —
ln]ﬂ—l
Ci:gla;{l Z 1B || 2,07 ngk,,h%+j7h — (pknﬂ‘ﬂ'Hv
77777 —
ln]+i—1
C _max | ]2; en(n+1i, j) by (2.6.6)
ln+7,‘*1
02
Ci:g_l,?ig_l Z{) h Akn+i+j by (267)
]:
[Pk, 1 — P, ||, < Ce. (2.6.10)

Therefore the triangular inequality leads to

HBlznlq)kthHU,z

by (2.4.7). But, as B.' =

= || Bgl®k.C + Bl @k, 0 — @1,)C,,

2 ||Bi 2w Clly, = [1Be (Prn = 21)C
> aol|Clly, = || By, (@ho,n — Pr)C 1
11 - 1
+ Ry, with Ry, — 0, when &, — +o00
0 .. 0
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(see Lemma 2.3.1), we obtain

1 1 1
HBk_nl(q)kmh - (I)kn)CHU,2 < ) . . (®kn7h - ®,)C
0 o0
U,2

+ [ Rr, (Prn — Pr, )Cly
< Cl®rnn = Prully 1€y + 70 [[Phon = Prlly 1€,
< Ce(l+m) 1€,

(2.6.11)
where 1, = || Ry, || — 0. Thus

_ Qp
| B1, @1, nC| ;5 2 (a0 = Ce(1+ 1)) Ol > - ICll;

< 20
for € < 2c(1+ max(1 +1n,))
For the polynomial stability, we have the same kind of result, but more filtering

is necessary in order to have the discrete counterpart of the observability condition

(2.4.8) (uniformly in h).

Proposition 2.6.4. Suppose that the generalized gap condition (2.3.1) and the as-
sumption (2.4.8) are verified. Then, there exist two constants ¢ > 0 and h* > 0,

such that, for all 0 < h < h* and for all k € {1,..., N(h)}, satisfying

€
hoNZ < e (2.6.12)
k

we have (2.6.3) and
Ja > 0, ¥p € {1,..., M}, ¥k, € AU, vC € ™, || Bilay, uC|,, , > % ICll,,
’ k

p,h?
(2.6.13)
where Ag}h = {k, € A, satisfying (2.6.12) and s.t. knpip—1 + lpsp-1 — 1 < N(h)}.
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Proof: The generalized gap condition for the approximate eigenvalues Ay, is a
consequence of Proposition 2.6.1, because A\, > Ay > 0.

To prove the estimate (2.6.13) we notice that

lpti—1
|Pr,.n — Pr,ll,, < C max hoN? <C WA
kn,h knlly = =0, p—1 kntitj — kntp—1-
b ). ]:0

Moreover by the triangular inequality and (2.4.8), we have

”Bk_nlq)kthHU,Q = ,\O;Ti 1Cl, — HBk_nl((I)kmh N (I)kn)CHU,2 :

By (2.6.11) and (2.6.12), we obtain

— C(1+nn
|Ba @ rClly s = G = S 1,
> G = s A m) IO, with o = A = X, =0
> -l

for an appropriate choice of € > 0.

Remark 2.6.5. Proposition 2.6.1 in case | = 0 and Proposition 2.6.4 for | € N*
show that if he/\iﬂ < ¢, then the discrete version of the observability inequalities is
still preserved uniformly in h and hence no problems with the stability of the discrete
systems are expected. On the other hand, if he)\?l > ¢, then the wviscosity term,

1+4 . ) . . . . S .
h(’Ah 2wn(t), plays its role in damping the spurious high oscillations. Indeed, if we

write
N(h)
On(t) =, ns
k=1
then
L N(h)
thh 20:.)}1(25) = hQZak,h)\iﬁfgok,h.
k=1
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Hence, if h(’)\iﬂ > €, then
1+4 . 2 .
|4y 2ant)]| = @,

. . . . . 144 .
Therefore, in the presence of high frequencies, the viscosity term h%A," 2wy (t) can

be viewed as an additional damping term.

2.7 Uniform stability results

2.7.1 Exponential stability result

The proof of Theorem 2.4.1 is based on the following result (see Theorem 7.1.3
in [52]) :

Theorem 2.7.1. Let (T})n~0 be a family of semigroups of contractions on the Hilbert
spaces (Xp)n>o and let (Ah)h>0 be the corresponding infinitesimal generators. The
family (Ty)n>o is uniformly exponentially stable, that is to say there exist constants

M >0, a >0 (independent of h € (0, h*)) such that
IT0 ()]l o,y < Me™®", ¥t >0,

if and only if the two following conditions are satisfied :
i) For all h € (0, h*), iR is contained in the resolvent set p(Ay) of Ay,

(iw — Ah)_l . < +00.

Xn)

ii)  sup
he(0,h*),weER

2.7.2 Polynomial stability result

The proof of Theorem 2.4.4 is based on the results presented in this section
by adapting the results from [18] and from [48] to obtain the (uniform) polynomial

stability of the discretized problem (2.4.9). Throughout this section, let (T}, (t)) o
he(0,h*)
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be a family of uniformly bounded Cj semigroups on the associated Hilbert spaces
(Xn)neqopey (i-e; IM >0, VA € (0,h%), | Tu(t)llcix,) < M ) and let (Ap)ne(one) be
the corresponding infinitesimal generators.

In the following, for shortness, we denote by R(A\, flh) the resolvent (A — Ah)*l :
moreover, for any operator mapping X}, into Xj, we skip the index £(X},) in its

norm, since in the whole section we work in X,

Definition 2.7.2. Assuming that
iR C p(Ay), Yhe (0,hY), (2.7.1)
and that for all m > 1, there ezists ¢ = ¢(m) > 0 such that

sup || R(is, Ap)||cex,) < ¢, (2.7.2)
oi<m’

we define the fractional power /L:o‘ for a > 0 and h € (0,h*), according to [6]
and [24], as

~ 1 ~

A= — [ XA = Ap) A 2.7.3
where \™% = e~*198A and RT is taken as the cut branch of the complex log function

and where the curve I' =11 U1y is given by
I={—e+te? tc[0,+oo)lU{—e—te ™ te (—o0,0]} (2.7.4)
for some € > 0 small enough independent of h and 0 is a fized angle in (0, %)

In the sequel, the constant ¢ > 0 is generic, independent of h, and may change

from one line to another.

Remark 2.7.3. Throughout this section, whenever 121,:0‘ s mentioned, the assump-
tions (2.7.1) and (2.7.2) are directly taken into consideration since otherwise A;°

1s not well defined.
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In fact, under the assumptions (2.7.1) and (2.7.2), for all m > 0 there exists

¢ = €(m) > 0 such that

—pu+if € p(Ap), Yhe (0,h*), Y0 < pu<eVB <m.
Indeed, for all m > 0 such that |3] < m, we have

(—p+iB — Ap) ™ = (i — Ap) "M In — p(if — Ay)

and
|p(iB — Ap) 7| < pe.

Hence, if |8] < m and p < e < o, then (—p+if — Ay) is invertible and we have

(= + 38 — Ap) Y| < 2|1 — Ap) Y| < 2¢, YR € (0, h%). (2.7.5)

We choose m = J(—e + te”) = etan when R(—e + te”) = 0, i.e. when t = —<.
Therefore, by (2.7.5), assumptions (2.7.1) and (2.7.2) imply that there exists € > 0
independent of h such that the curve I is included in p(Ay) for any h € (0, h*),
and hence A;a is well defined. In fact, if £ € ' such that ¢ > 0, then, by the

Hille-Yosida Theorem, & € p(Ay), while if —e < & < 0, then, by (2.7.5), & € p(Ap).

Proposition 2.7.4. If the assumptions (2.7.1) and (2.7.2) are satisfied, then fl,;o‘
is bounded independent of h € (0, h*).

Proof: We have

. 1 +oo ) . N .
AT — o tz@ —af tz@_A -1 z@dt
N omi ), (—e+te”) Y (—e+te h) €
(2.7.6)
0
L ety o (e — e — Ay (—e it
21 ) _ o
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Since (Th(t)) >0 is bounded, then by Hille-Yosida Theorem (see Theorem 1.3.1
he(0,h*)
of [62]) we get

. M
< — .
IR\, Ap)|| < Fon VRe\ > 0

For —e < ReX < 0, we have |IA| < m and therefore, by (2.7.5), we get

IR\, Ap)|| < 2c.

Let o > 0 be such that —e < Re(—e +te?) < 0,V0 < t < ty = 66 and
cos

Re(—e +te') > 0, Vt > 1o and let ¢ = _L@ < 0 be such that Re(—e — te™¥) <
coS
0,Vt; <t <0and Re(—e—te ) >0, Vt < ;. Therefore,

- 1 [ho

At = i 0 (—e+te®) (=€ + te — flh)’lewdt
Lo i0\—a 0 F \—1if
+ — (—e+te”) Y (—e+te” — Ap) edt
270 Jy,
1 2 . , _ A
+ — (—e— te_w)_o‘(—e —te™ — Ah)_l(—e_w)dt
2m J_ o
o et et = ) e
21 Jy, :
Hence,
~ to 0 +oo 1
A < 2 — te” |TYdt+ M . dt
H h < C/O | —e + te” | + /to | —€ + te?® | (—e + tcosh)
h 1 0 ;
M ~ dt + 2 T
- /_oo|€+t6_“9 | (—e — tcosh) + C/tl [e+te™ | ’
which is uniformly bounded with respect to h. ]

The proof of the polynomial stability of (73,(t)),s, (see Theorem 2.7.9 below) is

based on the following three lemmas. The first lemma is the discretized version of
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Lemma 3.2 in [48] and the other ones are the discrete versions of similar results of

Lemmas 2.1 and 2.3 in [18|.

Lemma 2.7.5. Let S = {\ € C: a < Re\ < b} be a subset of p(Ay) for all
h € (0,h*) where 0 < a <b. Then if (2.7.1) and (2.7.2) are satisfied and if for some

positive constants a and M we have

1RO AV _

he(0,h*) 1+ ’)\|a o ’
AES

then there exists a constant ¢ > 0 independent of h such that

sup HR(A,AM[X;“H <e.
he(0,h*)
AES

Proof: There exists ¢ > 0 and ¢, 0 < ¢o < g, such that
| — ¥ > clul, YpeT, Yoo < lp| <7 —go (2.7.7)
where the curve T is given by (2.7.4). Indeed, if = —e + te for some t > 0, then
| — > =1+ e+ 1% — 2tcos(0 + ) — 2etcost + 2ecosp

and

lu|? = €+t — 2etcos.

Therefore, whether ¢ > 0 is large enough or small | (2.7.7) holds true. Now, Since b
is finite, choose N large enough such that whenever A\ € S and |A\| > N we get both
wo < larg\| < m — ¢ and A does not belong to the sector bounded by the curve
IAIT = {—€|\| + t|M[e?, t € [0,+00)} U {—€|A| —t|Ae ™, t € (—0,0]}.

For all such choice of A\ € S, we have according to (2.7.7)
| — €9 > c|u| YpeT. (2.7.8)
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Consider the following integral for all A € S with |A\| > N

By the above choice of A\, we have A\ ¢ T" and A ¢ |A|T". Consequently, the integral

has no singular points between I" and |A|T". Therefore, by the Cauchy Theorem, we

p 1 p
A= A Al Jp p — eiargr

Therefore, by (2.7.8), we get

have

C
|| < —.
|\l

Now, for |A| > N with A € S, we have by the resolvent identity

-~ 1 ~ ~
R()‘aAh)A]:a = 2_71'2 F:uiaR()‘aAh)R(,u?Ah)d:u
1 [ ~ 1 u ~
= — R(A\, Ap)dp — — R(p, Ap)d
1 : 1 [ o .
= —LRNAL — — Ap)dp.
s RO = 5 [ R Ay

On the other hand, similar to the proof of Proposition 2.7.4,

:u_a A 1 A /
R(p, A d,u’ﬁc/—R,u,A dp <,
[ L5 A < ¢ [ RGe A

where ¢ is independent of h. Therefore for all A € S, with |A\| > N, we have

c

1+ ‘)\|a / /!
+c <c.
Al

Al B

IR A AL < m RO A +¢ < e
Now, for A € S such that |A\| < N, we have
1RO A A2 1< RO, AIIAL] < e(1+ A%) < e(1+ N,

which completes the proof of Lemma 2.7.5. ]
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Lemma 2.7.6. If (2.7.1), (2.7.2) and
sup || R(is, An)lexy) = O(s1%), Is] = oo, (2.7.9)
he(0,h*)
are satisfied, then there exists ¢ > 0 independent of h such that
sup ||R(\, Ap)A 2| < e (2.7.10)

he(0,h*)
ReA>0

Proof: For all h € (0,h*), m > 0, and B > max{2m,1}, consider Fy(\) =
~ B
RN\, Ap)A—(1 — 2—22) on the domain D = {)\ €C: Red>0, m< |\ < 5}

B
F},, by the maximum principle, attains its maximum for |\| = 5 Therefore,

C
FE ) < —.
B < o

If there exists € > 0 such that Re\ > ¢, then |Fj,(\)| < c.
Otherwise, for 0 < Re) < ¢, using the resolvent identity

R(\, Ay) = R(iImA, Ay) — ReAR(iImA, Ay)R(\, Ay) (2.7.11)
then, as [ImA| > m — e for all m > 0, we have
IR, Ap)[| < e[ TmAl“.

Therefore,
)\2
L5

Hence, in all cases, there exists ¢ > 0 independent of B such that

IE, (V)| < el ImA[e |~ <ec

F)| <.
As a result, for all A € D,
5 NE
1RO A <~ < ale < o1+ AP,

f— )\2
|t~ %]
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If 0 < ReA < |A] < m, then by (2.7.11) and assumption (2.7.2), we get
1RO A < el R(iTmA, Ap)|| < ¢ < e(1+ [A[*).
Letting B — 400 yields
|RON, AR)|| < e(1+ M%), YReA > 0.

Applying Lemma 2.7.5, we get for 0 < Re\ < m,

In addition, if Re\ > m, by the Hille-Yosida theorem and Proposition 2.7.4, there

exists some positive constants ¢; and ¢y such that

[l
Re\

HR()‘M’Zlh)A];aH < < cs.

In all cases, we get (2.7.10). n

The last lemma in this section gives the necessary and sufficient conditions for

the boundedness of any family of Cj semigroups (Si(t)) w0 -
he(0,h*)
Lemma 2.7.7. Let (Si(t)) 0 be a family of Cy semigroups on the associated
he(0.h%)
Hilbert spaces (Yh)he(o pey and let (Eh)he(ons) be the corresponding infinitesimal ge-

nerators. Then (Sp(t)) >0 is uniformly bounded if and only if
he(0,h*)

(i) {\ € C: ReX >0} C p(E)), Vh € (0, h*)
(ii) There exists ¢ > 0 independent of h such that

sup ¢ [ (IR(E +in, B + | RE + in, B) [)dn <
ey
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Proof: First, we assume that (Sp,(¢)) is uniformly bounded. Then (i) holds by the

Hille-Yosida theorem. As for (ii), we only need to prove that

sup & [ ||R(E +in, Ep)ay||*dn < cl|ln|?, Yo, € Vi, (2.7.12)
heohe)
because according to the theory of adjoint semigroups, (see [62]), S*(¢) is a Cy
semigroup with the same properties as S(t).
Similar to the proof of Lemma 1 of [42]|, we have for all h € (0,h*), x;, € Y},

|R(§ + in, Eh)xh||2 = /Re_"’sfh(s)ds,

where

+o0
fn(s) = / eS8 < G, (u + )y, Sh(u)zy >y, y, du.
max{0,—s}

For s > 0, since (Si(t)ne(on+) is uniformly bounded, ie. sup [[Sy(t)|| < M, we

h he(0,h*)
ave
o M?|| ]2 M2z 12
Sl 0 M?||ap P82 du = %655 < %
For s < 0, we have
o M2|zpl2e8 M2y
|fu(s)| < M|z |2e 86+ gy — Hng e - !ghu

Hence, f;, € L1(R) N L>(R) and

U = = IR(E +in B

Using Lemma 21.50 in [40], it follows that

cM? ||z |2

1 ~ 1
3= [ IR+ Bl = —= [ S(3)r)r < ellfll= < S8

Hence, (2.7.12) is verified.
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As for the sufficient condition, since {A € C: Re\ > 0} C p(Eh), with o = %,

we get for all z;, € Y},

1 o+100 _
Sh(t)l’h = 2—7” ‘ 6>\t<>\—Eh)_1£Bhd)\,
1 o+1i00 e)\t _ 6)\t _ .
= — = (\N—E. )2 Z(\N— EN! oico.
omi ) (A = Ep)"ndA + — (A = Bn) " an | i

o—100

But (A — Ey) ' |71 = 0 since according to Lemma 2.1 of [69], under condition

(i), we have ||R(\, Ey)zp|| — 0 as |A| = 400 whenever ReX > 0. Therefore,

1 o+1i00 »
(Su®)xn, yn)y, y, = < / e/\t()‘_Eh>2~Thd>\vyh>

21t ) y_ino Y, ¥
1 o+ico \ B )
S A — By) 2, > X,
21t J o oo <( BT U Yi,Yn

Let A = % +in with n € R. Then

e

. 1 -
<Sh(t)9€h,yh>Yh,Yh - /Remt <R2(¥ + Z77>Eh)xhayh> dn.
)/}L7Yh

Holder’s inequality yields

e . 1 . ~ 1 . %
(SO | = |og [ € (RG +in Eon BG +in B ) dn
, 7t Je ¢ t _—
€ L. 2 : Lo ey 12 :
< 3 [R(= +in, Ep)as|["dn [R(= +in, Ep)yn||"dn
Tt R t R t

A\

< cllzallllyall-
Therefore
|1Sh(®)|| < ¢, Yh € (0,h").
]
Before we give the necessary and sufficient conditions to get the uniform poly-
nomial stability of the discretized problem, we recall Theorem I1.5.34 of [24] about

the moment inequality.
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Theorem 2.7.8. Let E be the generator of a strongly continuous semigroup and
let « < < 7. Then there exists a constant L = L(a, B,7) such that, for every
xr € D(E), we have

|E2|| < L[| E“z|F== | EVxl "= . (2.7.13)

Now, we display the main theorem which leads to the uniform polynomial sta-

bility of the discretized problem (2.4.9).

Theorem 2.7.9. Let (Ty(t)) o0 be a family of uniformly bounded Cy semigroups
he(0,h*)

on the associated Hilbert spaces (Xh)h€(07h*) and let (flh)he(o’h*) be the corresponding
infinitesimal generators such that (2.7.1) and (2.7.2) are satisfied. Then for a fized

a > 0, the following statements are equivalent :

(i)
sup [|R(is, Ay)| = O(|s|*), |s] = oo

he(0,h*)
(ii)

sup HTh(t)fl,:O‘H = O(t_l), t — +o00
he(0,h*)

(iii)

sup | Th(O)A | =O0(t=), t— +oo.
he(0,h*)

Proof: We begin to prove (ii) < (iii). We adapt the proof found in Proposition 3.1

of [15] without the discretization parameter h. Given (ii), we have
A—an t A—o !
Az =| (L) &

According to the moment inequality (2.7.13), we remark that there exists a positive

<c(§) et v eN, he (0, t - +oc.
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constant L independent of h such that, for all v € (0,1), we have

HTh(t)A}:anuth _ HAZn(lfV)Th@)A;ana:hH

_ HAﬁlAzn(l‘”)‘ﬂlTh(t)A,;“"azhH

v1—B81 B1—ag
S I HAZlyh Y11 Azlyh Y1—a1
< L HAz1+an(1—V)—51Th(t)A}:anxhH

1—v

HAzl+an(1_y)_61Th(t)lzl}:oml’hH :
where vy, = flz"(l_y)_ﬁlTh(t)A;a"xh. Now, we choose aq, 31, and ~; such that

M —pF+an(l—v)=an
a; +an(l —v)— p; =0;
ie.,
ag =0 —an(l—v) <
=B +anv > p.
Therefore,
Y1 — Q= an
11— B = anv.
Finally, we get

1—v

IN

|| < L) AT Ao

Ti(0) A7 "
< LMY&re’(n)t=™|lzyll, Vv e (0,1).

1 1
Choose v = — with n > — to get
an o

Tt A < et =
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Conversely, assume that (7i7) holds. Then

t
n

_ _ t\ o -
| Th(t) A | = ||[Th ( ) A;l]"H <c (E) < cnet o, Vn € N*.

Therefore,

I A™ ] < el RTO A II T A1
cM*Ve(n)vt—'«, Vv e (0,1).

IN

o
Take v = — with n > « to get
n

sup ||Th(t)/~lgo‘|| =0 (t_l) )

he(0,h*)
Now, we prove the implication (iii) = (¢) (for the continuous case, see [16]).
Given (iii), define
ma(t) = sup ||Ti(s)A,".

he(0,h*)
s>t

Notice that mq(t) is non increasing. Let ug, € D(flh), fon = (—flh +iT)uon, T € R,

and let vy, (t) = e ug,. We have

0tvh — flhvh = iT@itTUOh — Ah(eitTUOh) = eitTth
vp(0) = wuop.

By the Duhamel formula,
N ¢ o
v, = g, + / e(t_S)Ahe”Sthds.
0
By the boundedness of the semigroup (7}(t)) and the definition of m;, we have

luonll = lon®)1 < 1w (0) A Apuonl + ¢ ¢l fon
()| Anon]| + ¢ t]] fonl|
@)Ul forll |7l lluonll) + ¢ tl] fonll-

IN

may
ma
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Apply the above inequality with ¢ = G(|7|) where

- 1 . 1
mh,l <m) Zf 5 > (0 and @ S ml(O),

0 @'f§>0andm

G(&) =

where my,! is the right inverse of m;. Therefore,

T 1
(@] = m(G(rIr] < 5l < 5
Hence,
slluonll < ma (G forll + ¢ G fonll
[ for]|
< _IJORIL
— 2(|T| + 1) +c G(‘T’)HthH
< (3 +c G forll-
Consequently,
(im — Ap) M| < 1+ 2¢ G(|7]),
i.e.,

sup ||(iT — flh)_lﬂ < 14 2c G(|1]).
he(0,h*)

Since, by (ii7),
sup | Th(t)A Y < Mte, t— +o0,
he(0,h*)
then, as m; is non-increasing, we get

mi(t) < Mts, t— +oc.

Besides, as the inverse of ta is =, then

G(€) <my, (2(51 1)> <C (ﬁ) L C2(E+1)* < et &€ — +o0.

Finally, we get

sup ||(iT — flh)_lH <1427 < c|7|%, |7] = 4o0.
he(0,h*)
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It remains to prove that (i) = (i7). For this aim, for all h € (0, h*), let X}, =

X5, x Xp, and consider the operator An given by the operator matrix
i A, /IM;O‘
0 A
where D(Ay) = D(A4,) x D(A,). For all h € (0, h*) and all A, € p(Ay), we have

R\, Ap) R2(\, Ap)A°
0 R(\n, Ap)

R(Ap, Ay) =

Indeed,

I, 0
0 I

R, Ap) (A — Ap) = (M — Ap)R(\y, Ay) =

Therefore, p(Ay) = p(A,) and for all h € (0, h*), the operator Ay, is the generator
of the Cy semigroup (Ty(%))i>0 on Xy, defined by

Ty () = Ty(t) tTh(t )f)l

0 Tyt

In fact,
T To(t) tTh(H)A
0 Tn(t)
R, Ap) R2(\, Ap)A,°
0 R(\n, Ap)
= R(\, Ap),

—

where T, () is the Laplace transform of Ty, (¢). Since for all h € (0, h*) we have

1R(is, Ay)|| = O(|s|). as [s| — +oc,
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then by Lemma 2.7.6 we get

Hence, for all x;, = (214, 22n) € Xp, and Re\;, > 0, we have

2

R\, Ap)ayy + R2(n, Ap) Ay “aa,
R(M, Ap)zan
< e (IROw Aeunl? + 1RO, Anwanll?)

IR, Ap)za|? =

Similarly, we have
1RO, AR )anl® < e(l RO AR)zanl® + | R, Ap)an ).
Indeed, we have
[ A A
0o A
In order to get

sup ||[R(A, A)(A3) [ < ¢,
he(0,h*)
ReA>0

we must have at least
| R(is, A})|| = O(|s]*), as |s| = +o0.

Actually, we have

R(is, /12) = [(is — A}kl)]_l = [(is — Ap)*] "t = R(is, Ap)*.
Therefore, we get

1R(is, A7) < || R(is, A)l| = O(|s|*), as |s| = +o0.
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Now, by Lemma 2.7.7, since for all h € (0, h*), Tj,(t) is a uniformly bounded family

of Cy semigroups, we get

sup € | (|R(E +in, Ap)anl®) + (1R(E + in, Ap)an|*)dn < o0, Yy € X

sup & [ (R + in, An)an]®) + (| R(E +in, Af)zalP)dy < 0o, iy € Xy

&0 JR
he(0,h*)
Therefore, (Tw(t)) o is uniformly bounded over (Xn),cq - by Lemma 2.7.7.
he(0,h*) ’
Since (Tj,(t)) >0 is uniformly bounded over (Xz),e (-, the definition of Th(?)
he(0,h*) ’

implies that
sup |[tTh(t) A, 2| < 4-o00.

t>0
he(0,h*)

2.8 Preliminary lemmas

In this section, we prove that the family (A;)ne(n defined in (2.5.1) satisfies
condition i) in Theorem 2.7.1 and the properties (2.7.1) and (2.7.2) of Subsection
2.7.2. Condition i) in Theorem 2.7.1 or (2.7.1) in Subsection 2.7.2 is satisfied due to

the following lemma, :

Lemma 2.8.1. The spectrum of the operator fll,h contains no point on the imaginary

axis.
$h
Proof: Suppose that € Xj and w € R are such that
U
Ahh Ph — i “h
Un Un
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Then, by using the definition (2.5.1) of A, we have

Qﬁh = @w(l + h9)<] + h@AE)flth
12 12 1
—(1 + hg)fl([ + heA}QL)AhQOh — zw(l + he)(h9A2+2 + BhB;;)(I + heA;L)*l(ph

1
= —w 1+ h) (I +h0A2) Loy
(2.8.1)

L
Let x5 = (1 + h%)(I + hPA?)~1py then the second relation of (2.8.1) becomes
L L
(14 ) 2(1 + W A2)2Apxn + iw(BP A, 72 + ByBl)xn = wXa. (2.8.2)

If w = 0, then taking the inner product of (2.8.2) with x, € Vj, we get (I +
heA,%)A%Xh = 0 and hence x;, = 0 which implies by the definition of y; that
on = p = 0.

It then remains to consider the case w # 0. In that case, we take the imaginary

part of the inner product (in H) of (2.8.2) with x;, € V} to obtain

1+ *
0 = wh’ (Ah * Xhs xh> +w (BrBjXn, Xn)
l+£ 1+L " %
= wh’ (Aﬁ "Xy Aj, 4Xh> + w (Bhxns Brxn)y -
that is to say
ol 45+ |7 x 112
h HA;QL 4XhH + | Brxall;; = 0.

This leads to x, = 0, and hence ¢, = 1, = 0. u

Our main goal is to prove condition ii) of Theorem 2.7.1 in the case [ = 0 and
condition i) of Theorem 2.7.9 as well as (2.7.2) in the case [ > 2 and a = 2. In that
last case (I > 2), these two conditions are equivalent to

sup (14 |s|*) | R(is, Ap)ll e,y < oo (2.8.3)

he(0,h*), seR
To prove this above property, we use a contradiction argument. More precisely, we
will assume that, for all n € N; there exist h,, € (0, h*), w, € Rand z, = o €

Un
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Xp,, such that
Hzn‘@(hn = a(Pn, Pn) + HwnH2 =1,VneN, (2.8.4)
and

(1 + |wn|2l) sznzn - Al,hnzn

— 0, as n — oo, (2.8.5)
X

where [ = 0 in the setting of Theorem 2.7.1.

Lemma 2.8.2. Assume that the sequences (hy,), (wn), (2,) satisfy (2.8.4) and (2.8.5).

Then, we have

(1+ Jwn ™) (REa! (1, ) + HBannHQU) — 0, asn — 00 (2.8.6)
and
. L , 1
Jim a(pn, @) = lim [[9a]]” = 3. (2.8.7)

Proof:For (2.8.6), we take the inner product in X}, of iw,z, — fll’hnzn with z,, and

take the real part. We obtain

R <anzn - Al,hnzny Zn)

th
N
- (L4+h8)"M I + A} )iy Pn
= — ! L !
—(1+RO)HI + hSAZ VA, o — hflA,ll:%n — By, B}, ¥n Un

L L
— R (4 R8T+ READ) Aty 9n) + (L4 ) (14 REA ) Ao, )
1
HBY AT 6+ B B, 00))
1
= (WA + Bu B, tn).

Then
(1+ |wn|21)§R (iwnzn — fll,hnzn, zn>

= (1 + wa ™Y (R0 (W, ) + || B, wa|2) — Oy (2.8.5).

In order to prove (2.8.7), we introduce the operator

0\—1 0 43 0 I
A, = (14 hp) (I +hy A7) : (2.8.8)
— A, 0

80



Chapter 2 Uniformly exponentially or polynomially stable approximations

We have

= Pn Pn 0
Aip, = Ay, —

1
Un Un h A, 24, + By, By

.V on e X,

Un

0
We take the norm |||y, of iw,2, — Aip, 2, + . to obtain
n* “hn n

0
(1 fwnl™) |fiwnzn = Amza+ |
2
ho A, ? .
2
. 0
= (1 =+ |wn‘2l) Z.ann - Al,hnzn -
B, By, ¥n

Xh,,
2 . 9
o 1Bl

2 . 9
Bl o

< 2(1+ Jwnl)(

1WnZn — Alhn#n

< O+ Jwn®)([|iwnza — Aup, 2

by (2.8.5) and (2.8.6). Therefore

2

0
(14 [wn|™) |[iwn2n — Arp, 20 + hﬂAH%w — 0. (2.8.9)
n hn n

X}Ln
We can now prove (2.8.7). By Lemma 2.8.3 below, there exists ng € N such that

the sequence (|wy|)n>n, is bounded away from zero. Hence, we may write

0 @
. 1 n
S| twnzn — A, 2n + ) 1L o
2
h/nAhn 77Z)TL _77Z)n X,
N Pn ¥n
- ’
n n X,

and so, by (2.8.9) and (2.8.4), we have

lim (a(en, @n) = I¢nll7, ) = 0.
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This relation and (2.8.4) lead to (2.8.7). n

Lemma 2.8.3. Assume that (2.8.4) and (2.8.5) hold. Then there exists ng € N such

that the sequence (|wy|)n>n, @8 uniformly bounded away from zero.

Proof: By a contradiction argument, we show that the sequence (w,,), contains no
subsequence converging to zero. Namely suppose that such a subsequence exists. For

the sake of simplicity, we still denote it by (w,),. Hence (2.8.9) implies that
L
0 —(L4+ 1) (I + AT )b
L 1 L
B A (U BT+ BT ) Anpn + WA

— 0 in th.

_Alhn Zn +

(2.8.10)

Taking the inner product of first component in (2.8.10) with ,,, we get

(1 18) "0 (T4 HEAR o, 00) = (L BE) 7 (althn, ) + B! (G, 1)) = 0.

As h,, < h*, then, by (2.8.6), we get

2

‘Mi% — (4, ) — 0. (2.8.11)

The convergence of the first component in (2.8.10) implies that

1 2
|4k, (2 + w4z || .

Therefore, (2.8.11) yields

(141

)
A, 2 4h, — 0 in H. 2.8.12
n*hyp

1
The second component in (2.8.10) and the fact that «of|z||? < ||AZz|]* = a(x,z) for

all z € Vj, imply that
1 1 1+1
(L+n0) " (I + oA YA @+ h0 A2 ¥, — 0 in H,
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which, by (2.8.12), yields
Lo
(1+R0) ™ (I +h)AZ YA 0, — 0 in H.
Thus, as h,, < h*, we get
a(on, ©n) — 0.
This above relation and (2.8.11) contradict (2.8.4). n

According to the above lemma, we note that the coefficient 1 + |wn|2l becomes

equivalent to \wn]m. Now, we introduce the operator Dy, defined by

Note that Ay, = (1 + k%)Y + hﬁAéﬂ)Dlhn. We then use the following spectral
basis of the operator Dyj;,. Namely, we extend the definitions of Ay , and of ¢y 5,
for k € {—1,..., —N(h,)} by setting Mg p, = —A_g n, and @i p, = @—k n,. Then an
orthonormal basis of X} formed by the eigenvectors of Dy, is given by

7

1 - .
U = — | Rem TG <k < N(h), (2.8.13)

2\ e

of associated eigenvalue i)\ 5, , that is to say
Din, Vi by, = Pk, by Vi by
Consequently, for all n € N, there exist complex coefficients (¢} )o<|rj<n(n,) such that

= > G, (2.8.14)
0<|k|<N(hn)
The normalization condition (2.8.4) implies that

> gl =1

0<|k|<N (hn)
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Chapter 2
Let € be the constant from Proposition 2.6.4 (if [ = 0, we recover the condition from

Proposition 2.6.1). For any n € N, we define
< } (2.8.15)

M;(h,) = max {k e{1,..,

if by (A1)? < 5 and M;(hy) = 0 otherwise.

Lemma 2.8.4. Suppose that the sequences (hy), (wy), (z,) satisfy (2.8.4) and (2.8.5)

Then, we have
1 NAn)
Un \/_ Z (& + ")k s (2.8.16)
Z || | + c’jk‘ — 0, (2.8.17)

M (hn)<k<N(hn)

and
— (14 B0 N + RN = 0. (2.8.18)

2l

0<|k|<M;(hn)
Proof: Relation (2.8.16) follows directly by taking the second component in (2.8.14)
and by using (2.8.13) and the fact that ¢y ) = @_j 5.
From (2.8.6) and (2.8.16), it follows that
lwn| 2 BY L (1, b)) = Z RENZHL (o, | |e2 4 ¢y | = . (2.8.19)

As we have A\, < \g p, for all k € {1,..., N(h,)} and by the definition (2.8.15), we

obtain (2.8.17).
On the other hand, we use (2.8.14) and the fact that W, ; is an eigenvector of

Dy, associated with eigenvalue i)\ 5, to obtain for all v, € X}

(iwnzn - Alhn Zns "Z}hn>
. e . . (2.8.20)
= Z v (w” - (1 + hn)_ ()\’% hn + hn)\k:,hn)) CZ (lpk,hrm Q»Z}hn>X .
0<[k|<N(hn) hn
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By (2.6.9), we have

ROX: b < oA+ (CRIAD)?)? < 2h0N; +2C K0 (RO X)* < S o= - < <0<

AL Ay AL

(2.8.51)
for h9 (\)? < i So, by using (2.8.19) and again (2.6.9), there exists a constant C'
independent of h,, such that

My(hn) ) My(hn) )
Y Y At el [ e T <O Y ehdNT Twnl™ [ 4+ ey
k=1 k=1

< Ce Y RN Jwa ! [ep + e[ 0.

(2.8.22)
We also have for all ¢, € X,
0 ~ he -
— _n)\2+l n n <\I/ >
heAl‘i’QQ/} ’ /l'bhn Z 2 ]C, hn (ck + C*k‘) kyh’ﬂ7 ,l/}hn th
n N 0<|k|<N (hn)
hn
(2.8.23)
because [ is even. Relation (2.8.23) implies that for all Un, € X,
0 RS 241 n n T
§ 14k - Z o /\k:,hn (Ck + C_k>\11k, has Vho,
B Ay My(hn) <K <N ()
Xnp
= > BN (e + ) Whns ),
0<|k|§Ml(hn)
However,
2
0
" D RN (),
0<|k|<M;(hn)
21 Z h20 A2 2 Z h29 ptani 2
= |wy] khlck+ck|+|wn’ A |G+
2 n 2 n
0<|k|<M;(hn) (2\/52)6 0<|k|<M;(hn) (2\/5)
h
=2wa* Y AL lcn 4 ey
2 n
0<|k|§Ml(hn) (2\/5)
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Therefore, by (2.8.22), for all ¢, € X,

0 o )
1 n n n
|wn| J - E - /\z+}5n(ck + )k by Un,, — 0.
0 1+2 2 ’
hy Ay, 2 n My (hn) <[F|<N (hn)

X,
So, we obtain with (2.8.9), (2.8.20) and the above relation, for all v, € X, , that
the inner product in X, of 1, with

Y ilwal (wa = (AT N, +RENTE)) ¥,

0<|K|<N (hn)

34 1y 241
+ E 2 Jwnl ApT, (G + )W,
M; (hn)<|k|<N (hn)

tends to zero. As the family (W¥y, 5, ) is orthogonal, the above relation implies (2.8.18).

2.9 Proof of Theorem 2.4.1

We use the results of the previous section with [ = 0 and set, for shortness,
Ay, = flo,h and M (h,) := My(h,).

Proof of Theorem 2.4.1 This proof is based on Theorem 2.7.1. First, for all h €
(0, h*), the family (¢'4) forms a contraction semigroup. The family (A),) satisfies the
condition i) in Theorem 2.7.1 owing to Lemma 2.8.1. To show that the family (A,)
also satisfies the condition ii) in Theorem 2.7.1, we use a contradiction argument.
Let (hy)n, (wn)n and z, = o € D(Ap,) be three sequences satisfying (2.8.4)

Un
and (2.8.5). Notice that for k,, € Ay, we have

)\kmyhn - Ak'mfl‘i’lmfl*Lhn Z )\km - )\k'm—1+lm71*1 — Ce
/
= Mgy — My, — CE > — CE
YW o)
> g =
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for e < g—‘g by (2.6.8) and (2.6.9). We now introduce the set

={n eN|3k(n) € {1,.... M}, Fkn() € Akn)s |km(m)| < M(hy) and

/
|km(n)+k( —1 + bn(n)+k(n) 1‘ < N(h,,) such that < %} . (2.9.1)

Wn — )\km(n)7hn

We distinguish two cases.

First case : The set F is infinite. Then, without loss of generality, we can suppose
that 7 = N (otherwise we take a subsequence of (w,,)). Then, by reducing the value
of 7/ if needed, we can assume that for all n € N, we have that for all k,, € Ay, k' =
1,..., M with m # m(n),

/
(R VT % Vi= 0,0 K — 1, V=0, ) sy — 1.
By using (2.8.18), we obtain that
SED I 3
T okeea =0
m#mn) 0 <[knij+ lngy — 1] < M(hy)

H
3
+
.
L

—0. (292

Define now

k(n) —1lm(n)+
:0 =0

We have, by (2.8.16),

Ly j—1

k—1
W \/_Z Z Z (st T oy 40) Phim s+, s

k=1km €Ay, 1=0
J=0
and so, by (2.9.2) and (2.8.17), we obtain
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Thus, since ([|B; || £y, 17))ne(o, n+) is bounded, we deduce that

HB;;n(z;n — || —o0. (2.9.5)

The above relation and (2.8.6) imply that

HB;;nz;n — 0. (2.9.6)
U
But
k(n)—1lm(n)+
* _ 1
j=0 =0
U

—_— 1 * *

Y ( Bhn%m(n)vhn Bhn(’Okm(’ﬂ)Jrk(")*1+lm(n)+k(n)*1_17hn)c HU

= L .

= T
where €' = ( Chingn) " Chanuy =L Chmgmypr " Chan(uyrim)—1 Hom(ay k(-1 1)
So, we have
11 1
x 1 00
HB WP v V2 Py, 1 ©
0 -0
U,2
We now use Lemma 2.3.1 to have
HB* Un > HBk h"CH for nlarge enough
’ o e B g (2.9.7)

> ca||C||, by Proposition 2.6.1.

Gathering (2.9.3), (2.9.6) and (2.9.7), we obtain that 1, — 0 in H. Therefore, by
(2.9.4), ¥, — 0, which contradicts (2.8.7).
Second case : The set F is finite. Then, we can assume, without loss of generality,

that F is empty (otherwise we take off the finite number of (w,)); i.e., that for all
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n € N, we have that
,Y/

Thus, by (2.8.18) and the above relation, we obtain that
> gl —o.
0<[k|<M (hn)
Therefore, by (2.8.16), (2.8.17) and the above relation, we have ,, — 0 in H, which
contradicts (2.8.7).

In conclusion, the family (A) satisfies the condition ii) in Theorem 2.7.1 and so

the family of systems (2.4.6) is uniformly exponentially stable. B

2.10 Proof of Theorem 2.4.4

Here we use the results of Section 2.8 with [ > 0 and [ even. Without loss of
generality, we may assume that 0 < h < h* = 1.
Proof of Theorem 2.4.4 and of condition (2.7.2) This proof is based on Theo-
rem 2.7.9. First, for all h € (0, h*), (e“ilvh) forms a family of contraction semigroups
and the family (A, ), satisfies (2.7.1). To apply the results of Theorem 2.7.9, the fa-
mily (A, ;) must also satisfy condition i) of Theorem 2.7.9 with a = 21 and condition
(2.7.2) or equivalently condition (2.8.3) . We again use a contradiction argument to
prove this last condition. Let (h,)n, (wn), and z, = o € X, be three se-

Un
quences satisfying (2.8.4) and (2.8.5). Notice that for k,, € Ay, we have

v

)\km - )\km—1+lm—1_1 - >\210—6

)\k'mah - )\km—1+lm—1_1vh A

m—1

)\km _)\km—l — o 2 76 — 3o

21 21
a a2

v

/

IV
KIS
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for e < 0/\’“1 by (2.6.8), (2.6.9) and because A\, > Ay, > 0. We introduce the set F
like

Fo={neN|Fk(n) € {1,....M}, Fkmw) € Arm), |kmw)| < Mi(hy,) and

| Km(n)i(m)—1 + bn(my+hm)—1| < N(hy) such that

/

< VZ} (2.10.1)

—(1+ hfl)_l(Akm(m,hn + A )

We distinguish two cases.

First case : The set F5 is infinite. Then, without loss of generality, we can suppose
that 75 = N (otherwise we take a subsequence of (w,,),). Then, by reducing the value
of 7/ if needed, we can assume that for all n € N, we have that for all k,, € Ay, k' =
1, ..., M with m # m(n), and for all |k,,; + 1| < M;(hy,)

/
> %, Vi =0,y K—1, V1 =0, ..., Lysj—1.
(2.10.2)

—(1+ hfl)_l(/\k‘m-&-]‘i‘l hy T he)\liij+l,hn)

Indeed, similar to (2.8.21), we have

— (L4 20) " Nt + 1 )‘II{H—H )
Z (]- _I_ h/z)il ‘)\k‘m+j+l hn — )\k - (]- _I_ h’fL)il()\k‘m(n)ahn + h9 )\]1€+l(n) hn)

—(L+hf)~ (he)‘ilgH( yohn T he/\lmﬂﬂ o)
- YooY 206‘
= 24
/
A
So choose again € < % to get (2.10.2). By using (2.8.18), we obtain that
M k—1 lerj,l
!
Z Z Z |Wn|2 Ckaerrl’ — 0.
k=1 =0
Fm € A =0
m # m(n) 0 < |kmj + lntj — 1| < Mi(hy)
(2.10.3)
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Define now
k(n) 1l m(n)+j

1 TL
Un 2 Z i) 45+ P lomn) 45+ b (2'10'4)
7=0 =0
We have, by (2.8.16),
k—1 l'm+j71
Un Z Z Z (CZMHH + CT—L(kaH))SOkaH,hm
k Lkm €A, _ 1=0
j —=
and so, by (2.10.3) and (2.8.17), we obtain
— (2.10.5)
Thus, since (|| Byl z(v;,.1))he(o,n+) is bounded, we deduce that
jwn HBZ,L(% — )| =0 (2.10.6)
The above relation and (2.8.6) imply that
' HB;n@ZH ) (2.10.7)
U
But
l k(n)—=1lm(n)+5—1
l * _ wnl
|Wn’ HB nwn U = |\/§ Z Z m(n)_H_H hngpk n)45 1+ hn
Jj=0 U
— |Wn|l * *
o \/i ( Bhntpkm(n)vhn e Bhn(pk'm(n)+k(n)71+lm(n>+k(n)71_17hn)c HU
_ el H
7 ||( 1 D5, C -
Where C - ( ckm<n) T Ckm(n)‘i’lm(n)*l Ckm(n)Jrl U ckm(n)+k(n)71+lm<”)+k(n)*171)T'
So, we have
11 1
1 " ~ |0Jn|l 0 0
S LA B C
0 -0
U2
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We now use Lemma 2.3.1 to have

! ~

km ( n)

> ¢lwy| HB C’H for n large enough

> a‘w”‘ C|, by Proposmon 2.6.4.

m(n)

But, w, verifies

W = (1 )™ N e + RN )] < 2 by definition (2.10.1)

of Fy , thus |w,| > <1+h2)_1<)‘km(n),hn+hz)‘llczin),hn>_’YZ > 5 Moo i — - Therefore,

we have

e S
2 T

wnl' || B, 5
U

m(n)

l
Q@ Moy i (2.10.8)

> ﬁ I\ |C|, for n large enough
knL(n)
> 221 ||C'| by (2.6.8).

Gathering (2.10.4), (2.10.7) and (2.10.8), we obtain that ¢, — 0 in H. Therefore,
by (2.10.5), ¥, — 0, which contradicts (2.8.7).

Second case : The set F is finite. We proceed similar to the proof of the second
case of Theorem 2.4.1.

In conclusion, the family (A, ;) satisfies (2.8.3) ; i.e., the condition (i) in Theorem

2.7.9 with o = 2] when [ is even and property (2.7.2) of Subsection 2.7.2.

Remark 2.10.1. The previous analysis has been held in case | € N* is even. Ho-
wever, in case | 1s odd, we can still adapt the same analysis to get the same results.

Indeed, we consider problem (2.4.9) with powers of [ 4+ 1 instead if l. Besides, whe-

_ o
knl(PknCHM2 > e ICl, and hPA% < _)\l+1’ then
kn k
HB;¢mmﬂu2_Alnmb,
and
9 2 C )
H(I +h A Do) + alwn(t), wa(t)) < t_%H(WOh’Wlh)HD(A,,h)'
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2.11 Convergence of the discretized problem

Here we want to prove that the solution wy, of the discrete problem (2.4.9) tends
to the solution w of the continuous problem (2.1.13) in X := V x H as h goes to zero
and if the discrete initial data are well chosen. This is obtained with the help of a
general version of the Trotter-Kato Theorem proved in [45] that is appropriated when
the approximated semi-groups are defined in proper subspaces of the limit one. The
basic idea is that the convergence of the semi-groups is equivalent to the convergence
of the resolvent, hence we prove such a convergence result for the resolvents.

First, we recall the Trotter-Kato Theorem proved in [45]. Let Z and X,, be
Banach spaces with norms ||.||, ||.|l., n = 1,2, ..., respectively, and X be a closed
linear subspace of Z. On X a Cy-semigroup 7T'(.) with infinitesimal generator A is
given and on the spaces X,,, the Cyp-semigroups 7),(.) are generated by A,. Suppose
that, for every n € N*, there exists bounded linear operators P, : Z — X, and
E, : X,, — Z such that the following assumptions hold :

(A1) ||P.| £ My, ||E,|| < My, where My, M, are independent of n,

(A2) ||E,P.x—z| — 0asn — oo forall x € X,

(A3) P,E, = I,, where I, is the identity operator on X,,.

For all n € N*, let Z, = range E,, m, = E,P,, To(t) = E,T,(t)P,|z,, A, =
E,A,P,|z,, and I, = E.1,P,|z,. The Trotter-Kato Theorem given in Theorem 2.1
of [45] states the following :

Theorem 2.11.1. (Trotter-Kato). Assume that (Ay) — (As) are satisfied. Then the

following statements are equivalent :

(a) There exists a Mg € p(A) N ﬂp(/ln) such that, for all x € X,
n=1

H()\oln — Ap) "t — (Mol — A)_le — 0, asn — oo.
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(b) For every x € X and t > 0,
| T ()T — T(t)z]| = 0, asn — oo
uniformly on bounded t—intervals.

Our aim is to prove that condition (a) of Theorem 2.11.1 holds true in order to

get the convergence of the solutions. Let us start with some preliminary results.

Lemma 2.11.2. Let [ € N,I > 2. If f € V = D(Az), then

1l
11+ WY (I + hPAZ) " f — maflle < ChE[|flv, (2.11.1)
for some C' > 0.
Proof: We write
N(h)
mf = ka@k ha

with f; € C. Hence
on = (1K) + WA ",

can be written

N(h)
Up = E Vi Pk,h»
k=1

with v, = (1 + h%)(1 + h9>\§€7h)_1fk. Consequently we have

2
lon = m Il = Zm (@A + 10X = 1)

B h%z'f' <1+h9/\l )2

N(h) )‘Zlh

< Y Kl
; (14 hOX,,)?
N(h)

<

ch 302 felP(gOn))?
k=1
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for some ¢ > 0 independent of h, where the function ¢ : [0,00) +— R is given by

[
g(\) = As the maximum of ¢ is attained at Ay > 0 given by

(L4 AN
N =11,
we get that
lvn — T fl3 < cc3h™ Z|fk| Non
since \g = clh*§ and g(A\g) = CQh*w% with ¢1,co two positive constants inde-

pendent of h. This proves the first estimate since

N(h)

EJﬁwxhzwémﬂ@:awﬁmuvswﬁﬁ=WA%mf

[
Corollary 2.11.3. Let l € N, > 2, then for any f, € V), we have
0 0 g2)~-1
_ < 11,
10+ BT+ A = Fill, oy, < ChT Al (2112)
for some C' > 0.
Proof: As in the previous lemma, we have
9 0 42)-1 -3 9 0 42)-1
IR+ AD T o= fll2 = 14 (0RO +RAD ™ fu = )
N(h) l
1—A 2
120 -2 2 k,h
= h Z)‘k,h\fk\ <Hh—%>
N(h
< hzaz\fk I Akn))7
when
Jn= ka%f?k,h-
k=1
We then conclude as before. [
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Lemma 2.11.4. Let l € N[ > 2 and let f € D(A), then
o) A1t5 0 43\-2 0
WA+ RAD Pl < ChE I o (2.11.3)
h
for some C' > 0.
Proof: We easily see that

L L _1L L L
WA AT g = A ATI R P Iy
h

N(h) \2l+2

= WY il
kz:; (1 + RoN )
N(h)

< P 1AM (9Oen))?,
k=1

and we conclude as before. ]

Lemma 2.11.5. Let l € N;I > 2 and let f € V, then

L L
[+ +H AR BB (LR L+ 1 AR o f = BuBima )y, < ORI v,
h
(2.11.4)

for some C' > 0.
Proof: As in Lemma 2.11.2, we set
on = (14 W) + hPAZ) " f.
First, we notice that
1BuBy (v = mnf )l < Cllon — mn fla,
and by Lemma 2.11.2 we get

BB (vn — m )i < ChT| flv.

96



Chapter 2 Uniformly exponentially or polynomially stable approximations

Second, by Corollary 2.11.3, we have

0
ChT ”BhB;;UhHH

IN

_1
2
h

1
Hﬂ+%ﬂ+ﬁﬁr%ﬂmﬁ3ﬁm%m
Cht (|| BuBi(on — mnf)|l i + | BuBimn flz)
< ChT|fllv,

IN

where we use the fact that ||m,f|lg < c||mnfllv < ¢|[f]lv. The conclusion follows

from the two above estimates. ]

Theorem 2.11.6. If z = (f,g)" € D(A) x D(A), then
1(An)  (mnf,mng) T — A7 (f,9) llx — 0 as h— 0.
Proof: By the definition of fll,h and fl, we have

(un, Uh)T = (Az,h)_l(ﬂhf, Whg)T7
and
(u7v)T - "Zl_l(fa g)T7

if and only if

- — (L W) (I + A2, f
“Apun = (1 RO+ hOAT) (RO ATE & BB yop + (1+ W) (I + W A2) g,

and
v=f
—Au= BB*v+g.

Therefore, we can write

—Apup, = mhg + Bp By f + 1,
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where 7, € V}, is given by

1
o= (L+h)(I+h°A2) 1,9 — g
l l
b (L+ BRI + P AZ) A, 2y,
+

1
(1+hY(I + K A7) ' ByBivy, — ByBimnf.
By the previous Lemmas, r, satisfies

Il -ty < CREICE ) oay (2.11.5)
Therefore, u, € Vj, can be seen as the unique solution of

a(up, wp) = —(mpg, wp) — (B By f,wy) — (rp;wp)  Ywy, € Vi, (2.11.6)
where (;) denotes the dual product in D(A,:%). Since u € V' is solution of

a(u,w) = —(g,w) — (BB*f,w) Yw €V,
we get (recalling that v}, C V)
a(u, wy) = —(g,wy) — (BB* f,wy) Ywy, € Vj,.
Hence, taking the difference of this identity with (2.11.6), we obtain
a(u — up, wp) = (Thg — g, wp) + (B (mnf — f), B'wn)u + (rp;wp)  Vwp, € Vi

Consequently, taking w, = mpu — uy, we get

a(u —up,u—up) = alu—up,u—mpu) + alu — up, THU — Up)
= a(u—up,u —mpu) + (Thg — g, THU — Uup)
+ (B(mnf = ), B*(mpu — un))u + (rp; mhu — up).
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Hence, by Cauchy-Schwarz’s inequality and the boundedness of B*, we obtain

lu—unlly = alu—un,u—u)

< = wlivlle = mulv + Climg = glla + llmf = flla + llral ;-3 )limnw = wnlly.

D(A,

Now, using the triangle inequality, we get

-2
h

lu —unlly < C((Hu = mnullv 4 lmng = glla + lmnf = Flla +llrwll -y e = unlly

+ (lmag = gl + 1w = Tl + el -y Dl = ).

n

Hence, by Young’s inequality, we arrive at

1

n’)

+ (lmng = gl + lmnf = fllg + 1l 3 lu— 7Thlbllv>~
D(A, #)

u—ually < C (0= mal + g = gl + lmaf = £+ Il

The estimates (2.4.4), (2.4.5), and (2.11.5) then yield

20
lu — unlf} < C(h%IIUII%(A)+h4‘9||f||%(,4)+h49||g||%(,4>+hlII(fag)TH%@)lW)

0
+ (|| fllocay + 2 ||gllpeay + AT I(f, g)T||D(A)xv)h9HU||D(A))'
For v — vy, we notice that
5 L
v=wvp=f= QI+ RAR)  mf = f—mnf +mf — (L+ R+ AR T f,

and we conclude that it tends to zero in H due to the estimate (2.4.4) and Lemma

2.11.2. [

Corollary 2.11.7. If z = (f,g)" € V x H, recalling that jj, is the projection from

H into V}, we have

H(/L,h)_l(ﬂhfa jhg)T - A_l(ﬁ Q)THX — 0 as h — 0.
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Proof: First for z = (f,g)" € D(A) x D(A), then

||(/~1l,h)71(7Thf> Jng) " — Afl(ﬁ 9)'llx < ||(Al,h)71(77hfa mhg) ' — Afl(f, 9) " llx
+[(Ap) 10, jng — Th9) |-

The first term of this right-hand side tends to zero as h goes to zero by the previous
Theorem. On the other hand for the second term, as A, satisfies (2.7.2) (see Section
2.10), there exists C' > 0 (independent of h) such that for all h < h*

1(A1n) (0, jng — m9) Tl x < Clljng — m9llar-

Hence, by the triangle inequality and the property ||g — jrgllg < g — mnglla (as jn

in the projection on V}, in H), we get

1(Aup) 70, jng — mh9) Tllx < 2C|lg — Thgllmr-

By the estimate (2.4.5), we then conclude that this second term tends also to zero
as h goes to zero.

If z=(f,g)" is only in V x H, then for an arbitrary ¢ > 0, we use the density
of D(A) x D(A) into V x H to get (F,G)" € D(A) x D(A) such that

I(f,9)" = (F.G)'Ix <e.

Now, by the triangle inequality, we have

1(An)  (mf, gng) " — AN E9) T Ix < 11 Ags) " (m(f = F)jn(g — G)) Tllx
+ A= Fg-G) x
+ (A) (T F nG) T — ATNF.G) T |x

By the first step, there exists h. small enough such that
1(Ai0) ™ (T F,5nG) T = AHE,G)Tlx < e,Y0 < h < e
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For the second term, by the boundedness of AL we may write
1A (f = Flg = G)'lIx < CII(f = F,g = G)||x < Ce.

Finally for the first term, using the property (2.7.2) and the fact that m, (resp. jp)

is a projection from V (resp. from H) into V},, we get for all h < h*
1(Au) ™ (T (f=F), n(9—G)) TlIx < Cll(mn(f=F), dn(9—G)) T x < CI(f=F,9—G) || x < Ce,
All together we have obtained that

1(Aun) (T fodng) T — AN, 9) T lx < (1+20)e, V0 < h < min{h.,h*}.

This proves the result. [

We are now ready to state the convergence result.

Theorem 2.11.8. If (wy,w;)" € V x H, then
T3 () (mhwo, jnwn) T — T(t) (wo, w1) "l x — 0 as h — 0. (2.11.8)

Proof: We use Theorem 2.1 of [45] or Theorem 2.11.1 with X = Z =V x H,
X, =V, xVy, and P, : X — X,, defined by

Pn(fa g)T = (th,jhg)T,V(f, g)T € X7

and E, = P; that here is the canonical injection of V}, x V}, into V' x H. The

assumptions (A1) and (A3) of [45] are trivially satisfied, while the assumption (A2)

is a consequence of (2.4.4), (2.4.5) and the density of D(A) x D(A) into V' x H.
Since Corollary 2.11.7 shows that condition (a) of Theorem 2.11.1 holds with

M =0¢p(A)n ﬂp(fll’h), we conclude that condition (b) of this Theorem, namely

h
(2.11.8), holds.
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Remark 2.11.9. In case [ =0, we can still apply the Trotter-Kato Theorem to get
the convergence of the discrete problem (2.4.6) towards the continuous one (2.1.13).
Indeed, similar to Lemma 2.11.4, we have for f € D(A), B?||Apmnfllu < BP|| fllpay-

Moreover, in the proof of Theorem 2.11.6, we get v, = hPApmnf, |lu — wp|lv <

ch’||(f, 9)|Ipayxpeay, and |[v —villa < ch®||(f, 9)|lpayxpeay-

2.12 Examples

2.12.1 Two coupled wave equations

We consider the following system of |3] given by

(

U (2, 1) — Uge (2, 1) + ay(x,t) + B(z)ue(z,t) =0 in (0,1) x Ry,
Y (2, 1) — Yoo, t) + au(z, t) + y(x)ye(z,t) =0  in (0,1) x Ry,
uw(0,t) =u(l,t) =y(0,t) = y(1,t) =0 vt >0,

| ul(,0) = w0, ui(+,0) = w1, y(+ 0) = yo, 4u( 0) = yo in (0, 1),

when a € R such that @ > 0 is small enough (see below), 8 and ~ are two non-

(2.12.1)

negative bounded functions such that 5(z) > g > 0 for z € Ig C (0,1) and v(z) >
v > 0forz € I, C (0,1) where I3 and I, are two open sets such that their measures
do not vanish simultaneously. Hence, (2.12.1) is written in the form (2.1.13) with

the following choices : Take H = L?(0,1)?, the operator B as follows :

u 0
Bw =+/5(.) + /() , (2.12.2)
0 y
u
when w = , which is a bounded operator from H into itself (i.e. U = H) and

Y
the operator A defined by

D(A) =V N H*0,1)?
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when V = H{(0,1)? and
—Ugy +
Aw = Y
“Yzx + au
If v is small enough, namely if o < 72, this operator A is a positive selfadjoint

operator in H, since it is the Friedrichs extension of the triple (H,V,a), where the

sesquilinear form a is defined by

L _ _ _ u u
a(w,w”) = / (tz () o4y (V) pFayu*+auy*) doe, Yw = LW = cV.
0 y Y

Indeed a is clearly a continuous symmetric sesquilinear form on V' and is coercive if

a < 72 due to Poincaré’s inequality

1 1
/ |ug|? dz > w2/ lul*dz, Yu e Hy(0,1).
0 0
Furthermore, A has a compact resolvent since D(A) is compactly embedded into H.

Let us now check that the generalized gap condition (2.3.1) and the assumptions

(2.4.7) or (2.4.8) are satisfied for our system (2.12.1). We start by the determination
of the spectrum of the operator A. Hence we are looking for w = (u,y)" € V. n

H?(0,1)? different from 0 and A\* > 0 solution of

Uy + oy = N in (0, 1),

~ Yz + au = Ny in (0,1).

If such a pair exists, we can set

and notice that s and d belong to Hj(0,1) N H*(0,1) and are solution of

—540 +as = Nsin (0,1),

—~dye — ad = N?d in (0,1).
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Hence s (resp. d) is an eigenvector of the Laplace operator —# with Dirichlet
boundary condition of eigenvalue \> —« (resp. A +«). A first choice is then to have
for all k € N* : \2 = k*7% + «, s = sin(k7+) and d = 0. Coming back to (u,y), we
find (since u = s 4+ d and y = s — d) a sequence of eigenvalues A\ ; = k*7* + « of
associated eigenvector

wi i = (sin(kn-), sin(km)).

Note that each eigenvalue is simple and that wy ; is of norm 1 in H.
A second choice is to take for all & € N* : A\ = k*1% — o (which is meaningful
since a < 72), s = 0 and d = sin(kn-). Again coming back to (u,y), we find a

sequence of eigenvalues \* ; = k*1% — a of associated eigenvector
w_j = (sin(kn-), —sin(kn-)).

As before each eigenvalue is simple and w_ j is of norm 1 in H.

Now we remark that the sequence {wy j}ren U {w_ t}ren+ is an orthonormal
basis of H (because w,  + w_j; = 2(sin(kn),0) and w, p — w_ = 2(0,sin(kn-)))
and therefore we have found all possible eigenvectors of A. We have then shown that

the spectrum of A is given by

Sp(A) = {A%  eens U LA 1 Jhen,

2 implies that

and that each eigenvalue is simple (because the assumption o < 7
Br?+a < (k+1)*7% — «).
We now need to estimate the distance between the consecutive eigenvalues of
A% We have two different cases to consider :
1. For all £ € N*, we need to look at the distance between A, ; and A_ ;. Since
2c0
VE T +a+ V2 r? — o

Mg — A =VEm+a—VEn? —a=
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Chapter 2 Uniformly exponentially or polynomially stable approximations

we see that this distance goes to zero as k goes to infinity.

2. For all £ € N*, we look at the distance between Ay ; and A_ ;,;. Here we have

2km? + 7% — 2a
V1202 —a+VERZ F o

At —Ar = V(E+ 1212 —a — ViR +a =

which tends to 7 as k goes to infinity.

This shows that the generalized gap condition (2.3.1) is satisfied with M = 2.
Hence, we see that A; = () and A, = N*.

In order to check (2.4.7) or (2.4.8), for all k € N*, we set

A — )‘+,k - )\_Jg,

that behaves like k=! or equivalently like A:lk. We further need to use the matrix

(see Lemma 2.3.1)

1 1
B '= ,
0 e

as well as the matrix ®; which here takes the form

B*w_yk 0
0 B*CLLF’]Q

Oy, =

Hence for all C' = (c1,¢5)" € R?, we have

o B*w_ + coB*wy i
—1 ) )
B, ®,.C = ,
apco B wy g,

and consequently

1B @kCllEs = lleiB w— o + caB wipll3 + la*[ea|*| B wo k13
1 1
= |+ CQ|2/ B(x) sin?(krx)dz + |cy — cl|2/ v(z) sin? (krz)da
0 0
1

+|0zk|2|02|2/0 (B(x) + ~(x)) sin®(krz)d.
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We have two different cases to consider :
First case : Iy # () and I, # 0.

In this case, we have
||Bk_1q)kc||2U,2

> min {5, v} min {/ sin2(k7m)dx,/ sinQ(kmc)dx} ((c1 + 2)* + (ca — 1)?)

Is I,

= 2min {f, v} min {/ sinQ(knTx)dx,/ sin2(k7m:)da:} (3 +c3)

Ig I,

and hence (2.4.7) holds since min / sin2(k7m)dx,/ sinQ(kwx)d:c} is uniformly
Is I,
bounded from below. Indeed, as I, # (), there exists a € (0,1) and € > 0 such that
(a,a+¢€) C I,, and therefore
1
/ sin?(krx)dr > Sy (sin(2kma) — sin(2kmw(a + €))) >
7 2 dkrm

~

2
for £ > —. On the other hand, we clearly have
em

min2 / sin?(kma)dx > 0,

I

which shows that / sin?(krz)dx is uniformly bounded from below.
1y
Second case : Iz = () or I, = () (but not empty together). For instance, suppose

that I3 = () and I, # 0.

As |ay| ~ /\:}k, we deduce that
1B}, ' ®xClu2 > 050)\:71/§HC||27

for a positive constant «p, and shows that (2.4.8) holds with [ = 1.
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As stated before, in the first case the system (2.12.1) is exponentially stable,
while in the second case (2.12.1) is polynomially stable. We refer to Theorem 2.4
of [7] or to [5,61] for the proof of these results.

As approximated space V},, we use the standard one based on P1 finite ele-

ments. More precisely, for N € N and h = we define the points z; = jh, j =

1
N+1°
0,1,..., N+1. The space V}, is the linear span of the family of hat functions (e;, €;); jeqn

such that
|z — 1]

+
ej(z) = {1— - ] , for j=1,...,N.

Then, we define the operators A, and Bj, by (2.4.1) and (2.4.3). It is well-known

(see [22]) that the operator A and the space V}, satisfy conditions (2.4.4) and (2.4.5)
with 6 = 1.

Consequently, in the first case ( Iz # () and I, # (), we can apply Theorem 2.4.1
and thus the family of systems (2.4.6) is uniformly exponentially stable, in the sense

that there exist constants M, «, h* > 0 (independent of h, uop, u1n, Yon, Y1n) such

that for all h € (0, h*) :
lin(@)I* + alwn(t), wa(t)) < Me™(Jwinll® + alwon, won)), ¥t = 0,

where wy, = (upn, yn), and wop, = (Uon, Yor) € Vi (resp. wip = (uin, v1n) € Vi) is an
approximation of wy = (ug, o) (resp. w1 = (u1,y1))-

In the second case (I3 = 0 and I, # (), we can apply Theorem 2.4.4 and
Remark 2.10.1 with [ = 1 and thus the family of systems (2.4.9) is uniformly poly-
nomially stable, in the sense that, there exist constants C, h* > 0 (independent of

h, uon, Uin, Yon, y1n) such that for all h € (0, h*) :
1. 2 C 2
H([ + hAh) wh(t)H + a(wh(t), wh(t)) S ?H(th,wlh)HD(ALh)Vt > O, (2123)

where A, is given as in (2.5.1) with [ = 1, # = 1, and the the graph norm |- [P
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is defined by
1(won, wi) 14, ,y = 1 (won, win) Ik, + [[Asn(won, win)II%, -

2.12.2 Two boundary coupled wave equations

We consider the following system

(

Upy — Uy = 0 in (0,1) x Ry,

Yt = Yoo + By =0 in (0,1) x Ry,

u(0,t) = y(0,¢) =0 vVt > 0, (2.12.4)
Yo(1,t) = au(l,1) Vit > 0,

uz(1,t) = ay(1,t) vt > 0,

u(-,0) = 0,u(,0) = u1,y(-,0) = 0,5:(-,0) =y in (0,1),

when «, f € R with § > 0 and « > 0 small enough (see below). Hence it is written
in the form (2.1.13) with the following choices : Take H = L*(0,1)?, the operator B

as follows :
0
Bw= /B ,
Y
u
when w = , which is a bounded operator from H into itself (i.e. U = H) and

Y
the operator A defined by

D(A) = {(u,y) € VN H?(0,1)*: y,(1) = au(1); u,(1) = ay(1)}
when V = {w € H'(0,1)*: w(0) = 0} and

—Ugy

Aw =
“Yza
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If « is small enough, namely if o < 1, this operator A is a positive selfadjoint
operator in H, since it is the Friedrichs extension of the triple (H,V,a), where the

sesquilinear form a is defined by

afw,w”) = / (e ()2 + (7)) iz — au(DFF(L) — 0t (1)y(1),

U *

u
for all w = ,wh = € V. Indeed a is clearly a continuous symmetric

*

Y Yy
sesquilinear form on V' and is coercive if a < 1 due to the trace theorem

1
u(1)? S/ lug|? dz, Yu €V.
0

In addition to that, the operator A admits a compact resolvent as D(A) is compactly

embedded in H.

Let us now check that the generalized gap condition (2.3.1) and the assumption
(2.4.8) are satisfied for our system (2.12.4). We start by the determination of the
spectrum of the operator A. Hence we are looking for w = (u,y)" € D(A) different

from 0 and A% > 0 solution of
—Ugy = Nu in (0,1),
—Yow = Ay in (0,1).
Then
u(z) = asin(Ax) in (0, 1),
y(x) = bsin(Az) in (0, 1).
The coupling condition in (2.12.4) gives

alcos A = absin \

bAcos A = aasin \.
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Since it is not possible to have sin A = 0 (otherwise a = b = 0), we obtain

b\ cos A
— 2.12.5
“ asin \’ ( )
and then
A
tan A = +—, (2.12.6)
«

because b # 0 (otherwise u =y = 0).

We then have two sequences of eigenvalues defined by

)\,Jg = g + km — €k

with limy_,;€e_; =0 and e_; > 0 for all £k € N, and

™

5 +ET+ e g

)\+’k -

with limy_, 1o €4 = 0 and e, ;, > 0 for all £ € N. Moreover as A_ ; and A\ j satisfies

(2.12.6), we can verify that

o o
€_j = arctan (—> and €4 j = arctan (—> )
A Nk

By (2.12.5) and (2.12.6), the eigenvector associated with the eigenvalue A, is
given by

wi g = by psin(Ap ) (=1, 17,

and the eigenvector associated with the eigenvalue A_ ; is given by
W = b_’k Sin()\_’k')<1, 1)T,

where by i, b_ ; are chosen to normalize the eigenvectors.
Since we have found all possible eigenvectors of A, we have shown that the

spectrum of A is given by

SP(A) = {\% 1 kens U{A? b eer,
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and that each eigenvalue is simple.
We again need to estimate the distance between the consecutive eigenvalues of
AY? and as before we consider two different cases :

1. For all £ € N*, we need to look at the distance between A, j; and A_ ;. Since

a a
Ak — A_p = €4 +€_ = arctan <—) + arctan <—) ,
Atk Ak

we see that this distance goes to zero as k goes to infinity.

2. For all & € N*, we look at the distance between A, ; and A_ ;.. Here we have

A1 — App =T — (€4 + € kt1),

which tends to 7 as k goes to infinity.
This shows that the generalized gap condition (2.3.1) is satisfied with M = 2.

In order to check (2.4.8), for all £ € N*, we set
ap = Mg — Ak,

that behaves like k=1 or equivalently like )\:}k. As in the previous subsection for all

C = (c1,¢9)" € R?, we have

aB*w_ i+ coB*wy
—1 ) ’
B, ®,.C = ,
apca B wy p,

and consequently

IBROCIE, = B w s+ eBw sl + x| Bl
1

- 5/ (b_ persin(A_px) + by gea sin(Ay )’ da
0

1
+5|Oék|2|02|251,k/ sin®( Ay px)dz.
0

111



Chapter 2 Uniformly exponentially or polynomially stable approximations

By using Young’s inequality with ¢ > 0 and the fact that the eigenvectors are

normalized (by the choice of by 1), we obtain

1 1 1
1B, ®:C7, > B (1 — Z) c?bik/(f sin®(A_pz)dx + B (1 —€) cgbik/o sin®( Ay p)dx

+ﬂ|0zk!2\02[2biyk sin*(\y pz)dx

0
= g((l-%)ﬁ%—(l—l—az—e)cg).

We then take € = 1 + a3 /2, which implies

2 2
o 1 o
£ and 1--> -k

l+a; —e= ,
BTE € 4

(since a2 < 2). Consequently

1B 940l > S0t + )

As |ag| ~ AZl, we deduce that
1B, ' ®1Clua > oA=L [ICl,

for a positive constant ag, and shows that (2.4.8) holds with [ = 1.

We construct the space V}, like in the previous subsection, i.e. it is the span of

(€i,€))ijeq,....N+1}, that still satisfies (2.4.4) and (2.4.5) with 6 = 1.

Consequently, we can apply Theorem 2.4.4 and Remark 2.10.1 with [ = 1 and
thus the family of systems (2.4.9) is uniformly polynomially stable, in the sense that
the estimate (2.12.3) holds.
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2.12.3 A more general wave type system

We consider the following more general system : let w = (wy, -+ ,wy)? be a

solution of
Wit — Wee + Mw + BB*w; =0 in (0, 1) x Ry,

w(0,t) =w(l,t) =0 vt > 0, (2.12.7)
w(+0) = w® w(-,0) =w® in (0,1),
where M € My (R) is symmetric and such that Ay + M is positive definite in
H = L*(0,1)Y, when A is the operator of domain D(Ay) = HZ(0,1)Y N H2(0,1)V
and such that Agu = —uy,, for all u € D(Ay); B € L(U, H), with U a complex
Hilbert space.

Hence, it is written in the form (2.1.13) with the self-adjoint positive operator A
defined by A = Ay + M and D(A) = D(Ay) =V N H?(0,1)", when V = H}(0,1)".
We remark that A admits a compact resolvent since D(A) is compactly embedded
into H.

As M is symmetric, M can be diagonalized by an orthogonal matrix, i.e. there
exist a real orthogonal matrix O and a diagonal matrix D such that OTMO = D.
We denote by d; (i = 1,---, N) the coefficients of the diagonal matrix D.

We start by the determination of the spectrum of the operator A. Hence we are

looking for w € V. H?(0,1)" different from 0 and A% > 0 solution of
W + Mw = Nw.

If we denote by U = OTw, then U = (uy,--- ,uy)? satisfies
—U,, + DU = \*U,

which is equivalent to

d2

“ZE

(A —d;)u;, in (0,1), Vi=1,--- N.
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Hence there exists ¢; € C such that
u; = V2¢; sin(kr.), Npy=kKn+d;, i=1-- N.
Therefore we have found N families of eigenvectors and eigenvalues :
Ur = V2f;sin(kn.), A, =kr*+d;, i=1,--,N,

where (f;)ieq1,.- v} is the canonical basis of CV. Coming back to the initial eigenvalue

problem, we have N families of eigenvectors given by
wir=0U, i=1---, N, (2.12.8)
and the spectrum of A is given by
SP(A) = {A7 phkene U=+ U AR 1 Fhene
For simplicity, we now assume that all d; are different and, for instance that
dy <dy < - <dy.

We still have to estimate the distance between the consecutive eigenvalues of
A2
1. For all £ € N*, we need to look at the distance between A, ;, and \;; (i # j). Since
Aik — Aipg = VE*m2 +d; — \/K*m2 +d; = di — d
A VR £ d 4 /Rt d;

we see that this distance goes to zero as k goes to infinity.

2. For all k € N*, we look at the distance between Ay and Ay ;41. Here we have

2km? + 12 4+ dy —dy

A —Ave =V (k+ 122+ di—/E*m2+dy = )
v =g = V(E+ 1) v Y VEFD R+ d + VR + dy

which tends to 7 as k goes to infinity.
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This shows that the generalized gap condition (2.3.1) is satisfied with M = N.
With the terminology of Section 1, we see that Ay = --- = Ay_; = () and Ay = N*.
Hence, for N > 1, our previous results will allow to obtain stability results for system
(2.12.7).

If the eigenvalues are simple (a necessary condition is that all d; are different),
then in order to verify (2.4.7) or (2.4.8), we have to bound from below HBk_IQDkC’”;Q
with C' = (¢1,- -+ ,cy) € RV, B! defined in Lemma 2.3.1 and ®,, given by

Bwi -+ 0
o, = :

0 cee B*WN,IC
Such a lower bound can only be made on some particular examples.

Note that, if N =2, B is defined by (2.12.2) and
M=«

with @ > 0, then we are back to the setting of Subsection 2.12.1. Indeed M is
symmetric with Ag + M positive definite for a small enough, and diagonalized by

the orthogonal matrix

o- L1 (with D Lo )
= — WI1TU = .
V2l 1 1 0 1

We then finish this subsection by considering another example. Take N = 3 and

w1 w1 0 0
Bl w | = \/B 0 VY we |+ Vel o )
w3 0 0 w3
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with non negative real numbers [, v, d, which is a bounded operator from H into

itself (i.e. U = H). We chose the matrix M defined by

010
M=ol 1 01|, a>0
010
which is obviously symmetric. As previously we can verify that Ay + M is positive

definite if o < 7%/2. Moreover M can be diagonalized by the orthogonal matrix

1 V2 1
0= % -2 0 V2,
1 V2 1
into
—V2a 0 0
D = 0 0 0
0 0 V2a
Then the spectrum of A = Ay + M is given by

Sp(A) = {k*1? — V2a}ken U {k*7% }ren U {K*7% + V2 }ren,

and the eigenvalues are simple (because the assumption a < 72/2 implies that
1% 4+ V2a < (k + 1)*12 — V/2a). Moreover, as we have shown previously, the
generalized gap condition (2.3.1) is satisfied with M = 3. Thanks to (2.12.8) the
normalized eigenvectors are given by
1 V2
Wik = \/Lﬁ —V/2 | sin(kn), Wk = \/LE 0 sin(km-),
1 —V2
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We set
1,2 1,3 2,3
Oé](C ) = )\Z,k — )\Lk, Ckl(€ ) = )\S,k — )\Lk, Oé,(g ) = )\Sk — )\2 k-

) )

Therefore, for all C' = (¢, co, c3)7 € R3, we have

| B @l
1 1 Bwiy 0 0 o\ [
- 0 041(61’2) oggcl’S) 0 B*wa 0 2
0 041(5’3)%(3’3) 0 0 B ws €8 U2
= |leB*wig + 2 B*wa g + CgB*UJB,kHi[ + HCQal(:’Q)B*wzk + 63a12173)B*W3,k“H
e [aff 20 15 sl

After some calculations, we obtain

_ 2
”Bqu)kCHU,Q =8(ci+ V2 +c3)* + L(es — 1) + ‘5( —V/2¢y + ¢3)?
+2 (\/_a(1202+0413) 3)° + 3 (1.9)|* + (- \/_ak”c —|—a(13) 3)?

c3y,
)

Hence different decay results can be obtained for system (2.12.7) according to the

values of 3, v and 9.

First if 8,7,0 > 0, then we have
1B @kC|);, > C(E + G+ &)

for C' > 0, which shows that (2.4.7) holds and therefore system (2.12.7) is exponen-
tially stable.
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Second if v =0 and 5,0 > 0, we have

) 2
B eClf, > mnied (2&{ +4ch+ 263 + derey + min { o, oV} (4 + 268)
4
+min {a,(gl’?’), oz,(f’g)} cg)
>

. 2
minifd} ((2 -2 +4 (1 + min {a,(gl’Q), 041(4:1’3)} ) 3

2
+ (2 — 2e + 2min {a,&lg), a,gl’3)} ) c%) ,

2
by Young’s inequality with € > 0. We then take ¢ = 14+min {a,(cl’Q), oz,(gl’g)} /2, which

implies
. 12 (1,32
A G A ) 12) (1,32 . 12 (13>
2——> 5 , 2—26+2m1n{a ay } :mm{ak’ 0y } ,
€

if k is large enough. Consequently if £ is large enough, we have obtained that

2

2
+ min {a,&l’z), oz,(fl’3)} c%)

2
min{ 3,0 . 1,2 1,3
> =8 min {a*, o} (d+ G+ ),

1%, |2 g} [ min{el ol } w2 139\
— miny o, ’ : ) ’
HBk <I>kC||U72 > i cl—|—4m1n{ak , 0y } e

| h = 1 i NN e
which shows that (2.4.8) holds with [ = 1, since min { ;" o, ~ Al g

We construct the space V}, like in the previous subsection, i.e. it is the span of
(€i,€j,ex)ijkeq1,. N}, that still satisfies (2.4.4) and (2.4.5) with 6 = 1.

Consequently, in the first case (5,7,0 > 0), we can apply Theorem 2.4.1 and
thus the family of systems (2.4.6) is uniformly exponentially stable. In the second
case (3,9 > 0 and v = 0), we can apply Theorem 2.4.4 and Remark 2.10.1 with
[ = 1 and thus the family of systems (2.4.9) is uniformly polynomially stable, in the
sense that (2.12.3) holds.
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2.13 Open problem

In this chapter, the stability results of the approximate systems have been studied
when the control term B is bounded. The boundedness of the control B is used in
(2.9.5) for the proof of Theorem 2.4.1 and in (2.10.6) for the proof of Theorem
2.4.4. An open question here is how we can handle the case when the control B is
unbounded. Does the analysis in this chapter after adding suitable viscosity terms

remain valid or do we have to search for another method ?
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Fig. (a) Left: Square roots of the eigenvalues in the continuous and discrete cases (finite difference
semidiscretization). The gaps are clearly independent of & in the continuous case and of order / for
large & in the discrete one. Right: Dispersion diagram for the piecewise linear finite element space
semidiscretization versus the continuous wave equation.
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Fig. (b) A discrete wave packet and its propagation. In the horizontal axis we represent the time
variable, varying between 0 and 2, and the vertical one the space variable x ranging from 0 to 1.
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Chapitre 3

Spectral analysis and exponential or
polynomial stability of some

indefinite sign damped problems

3.1 Introduction and Historical background

Systems with indefinite sign damping terms arise in studying the nature of wind
loads and their effect on dynamic response. This includes aircraft, buildings, tele-
graph wires and bridges. For instance, in an air craft, as the speed of the wind
increases there may be a point at which structural damping is insufficient to damp
out the vibratory motions which are increasing due to aerodynamic energy being
added to the structure. The resulting vibrations can cause structural failure. The-
refore, in this chapter, our aim is to find critical values of the damping term for
which structural failure does not occur. More precisely, as in [1], we consider a

one-dimensional wave equation with an indefinite sign damping and a zero order
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potential term which is either internally damped of the form

U (2,1) — Ugz (2, 1) + 2X(0,0) (@) ue (2, 1) + 200x(—1,0)(x)ue (2, t) = 0, x € (—1,1), ¢t > 0,
u(l,t) =u(—=1,t) =0, ¢t >0,

u(z,0) = ug(x), u(z,0) = uy (),
(3.1.1)

where « is a given constant or with both internally and boundary damped terms

under the form

Ut (2, 1) — U (2, 1) + aug(x, t) =0, x€(0,1),t>0,
w(0,t) =0, u.(1,t) = —buy(1,1), t >0, (3.1.2)

u(z,0) = ug(x), u(z,0) = uy(x),

where a,b € R.

It is well known that problem (3.1.1) is exponentially stable if the damping
term « is non-negative (see [23|). Similarly, if the coefficients a and b are both
positive, then, using for instance integral inequalities, one can prove that (3.1.2) is
also exponentially stable.

In this chapter or in [1], we are interested in the case when the damping terms are
allowed to change their sign. As mentioned before, such a case occurs, for example,
in wind induced oscillations. Problems (3.1.1) and (3.1.2) model the vibrations of
flexible structures subject to aerodynamic forces. Our aim is to analyze to what
extent the variation of the sign affects the stability of the problem. However, the
techniques which are normally employed in the definite case, such as multipliers
and resolvent methods cannot be well invoked in case of indefinite sign damping
coefficients. Consequently, when the damping coefficients are allowed to change their
sign, the question of stability of the solution becomes more interesting.

Such a question was first exposed in a conjecture in |[21] by Chen et al. who
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considered the internally indefinite sign damped wave equation of the form
Ut — Uz + 2a(x)uy =0, x € (0,1), t >0, (3.1.3)

with standard initial conditions and Dirichlet boundary conditions.
It was conjectured that if there exists some ¢ > 0 such that for every n € N* the

following condition is satisfied
1
I, = / a(x) sin®(nmz)dr > c, (3.1.4)
0

then, when the function a € L>(0,1) has an indefinite sign, the energy decays ex-
ponentially. The idea of the conjecture is that once the damping term ia allowed to
be more positive than negative, then the solution decays as time goes to infinity.
The condition on I,, can be interpreted as some sort of positivity condition on the
damping term a(.) since I, — ag, as n — +oo, where aq is the average of af(.).
In fact, problem (3.1.3) can be considered as a perturbation of an undamped pro-
blem. Therefore, for a small enough perturbation, the eigenvalues of the associated
eigenvalue problem of (3.1.3) are expected to move to the left of the imaginary axis.
However, it turns out that this is not enough to ensure stability since the eigenvalues
which are to the left for small perturbations may move to the right as perturbation
increases. Therefore, Freitas in [28] disproves the conjecture of Chen et al. He shows
that (3.1.4) is insufficient to guarantee the exponential stability. Indeed, he finds
out that if ||a||z~ is large, then there may exist some positive real eigenvalues (see
Theorem 3.6 of [28]). Actually, Freitas in [28] considers the more general wave equa-
tion with an additional potential term b(z)u where b € L>°(0,1) and replaces af(.)

by €ea(.) where € is a positive parameter ; i.e, Freitas considers the following problem

uy — Au — b(x)u + ea(x)uy =0, x € Q, t >0,
u =0, x € 09,

(3.1.5)
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where 2 C R" is bounded with smooth boundary 0f).

Freitas shows that, under the conditions imposed in the conjecture, the associated
eigenvalue problem may admit real positive eigenvalues for € > ¢; > 0, which shows
that the solution of (3.1.5) blows up exponentially as time goes to infinity. The idea
of Freitas is based on replacing the eigenvalue problem associated with (3.1.5) by
an eigenvalue problem of a selfadjoint operator L, = A + pa(z) + b(x), where p is a
real parameter. This method is presented in [29] and [66]. The asymptotic behavior
of the eigenvalues of L, as [p| goes to infinity, is studied and characterized. Then
a relation is found between the spectrum of L, and the real eigenvalues associated
with problem (3.1.5). Indeed, the eigenvalue problem associated with (3.1.5) is given
by

Au — ea(z) u +b(x)u = Nu, 1€Q, €>0
u=70 x € 0f.

(3.1.6)

Hence, Freitas finds that a real number ) is an eigenvalue associated to the eigenvalue

problem (3.1.6) if and only if 7 is an eigenvalue of L, and

T = 2
Therefore, the real eigenvalues associated to the eigenvalue problem (3.1.6) corres-

2

pond to the intersections of the parabola, with the eigencurves associated with

5
the operator L,. As € becomes large, the eige€ncurves intersect the parabola in at least
two points and hence a positive eigenvalue A appears which prevents the solution of
(3.1.5) from being stable (see Theorem 3.6 and Corollary 3.7 of [28]).

However, the results of Freitas do not clarify what happens for small values of e.
Consequently, later on, Freitas and Zuazua in [30] treat the case when the L° norm

of the damping term, ea(.), with indefinite sign is not large. For € > 0 small enough,

they prove that the solution of (3.1.3) is exponentially stable under condition (3.1.4)
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and the additional condition a € BV (0,1) so that the derivative of a is defined in
the weak sense. Their idea is based on the ansatz suggested by Horn in [41] where
the eigenvectors are written in a series form in order to find an approximation of
the eigenvalue problem and hence the asymptotic behavior of the large eigenvalues.
After using the shooting method and Rouché’s Theorem inspired from [23], they
prove that there exists ¢, > 0 such that, for every € € (0,¢;), the eigenvalues are
asymptotically close to —eag, where aq is the average of a(.) and therefore the high
frequencies admit negative real parts since the hypothesis imposed on the uniform
positivity of 7, in (3.1.4) yields the positivity of the average ay of a(.). Moreover,
the positivity of the integrals I,, ensures that the low frequencies are to the left of
the imaginary axis for € € (0, ¢y). Finally, by proving that the root vectors form a
Riesz basis of the energy space, the exponential stability is established for e € (0, €3)

where € = min{eg, €; }.

This result is extended in [17] to the case where, in the wave equation, there
is an additional zero order potential term b(z)u(z,t) with b € L'(0,1). However,
the ansatz in Horn does not work any more in this case. Therefore, the authors
adapt a shooting method employed in [65] to construct an explicit approximation
of the characteristic equation of the underlying system and to find the asymptotic
expansion of the eigenvalues and eigenvectors. Under the same assumptions used
in [30] on the damping term, ea(.), and on the integrals, I,, the authors in [17]

establish the exponential stability for € > 0 small enough.

Furthermore, in [51], the authors consider an abstract linear system with per-
turbation of the form %y = Ay + eBy on a Hilbert space, where A is a skewadjoint
operator, B is bounded, and € is a positive parameter. Using an abstract pertur-
bation result and under the hypothesis that the damping operator B is uniformly

effective for all normalized linear combinations of eigenvectors corresponding to the
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eigenvalues located in a neighborhood of any eigenvalue, the authors find an upper
bound for e for which the abstract system is exponentially stable. In particular, the
authors in [51] find an upper bound of € for which problem (3.1.5) is exponentially
stable under condition (3.1.4) and the assumption that a € L*(0,1) without the
need for the assumption that a € BV. On the other hand, for problem (3.1.1), it
seems to us that the upper bound of € found in [51] is not easy to check.

Later on, in [57], Racke and Rivera have removed the factor ¢ and considered the
wave equation uy — Uy, + a(x)u; = 0 on (0, L) for some L > 0 where a € L*>(0, L)
is allowed to change its sign such that its mean value ag remains positive. In [57],
the exponential stability is proved under one of these conditions : Either ||al|e~ is
possibly large with sufficiently small ||a — agl[z2 or ||a||r~ is sufficiently small but
the pair (a, L) has to satisfy some estimates where it is possible to get a negative
moment [,,. Note that the second condition in |[57| does not contradict the result
from [30], because in that case the admissible pairs (a, L), leading to exponential
decay, are not independent and, according to Racke and Rivera, the solution is not
exponentially decaying if one replaces a(.) by ea(.). The method in [57] is based on
the spectral criteria characterizing exponentially stable semigroups in terms of the
spectrum of the generator of the semigroup (see [42]). For instance, for possibly large
L> norm of a(.) and small ||a — agl| 12, using the fixed point argument, the authors

prove that for e > 0,

ng{e—i—a—kzﬂ; a>%<—%+\/<%>2—<%>2> andﬁER} C p(4)

and that

sup [[(AL — A)7!| < oo,
Xer!

where A is the generator of the associated semigroup. Furthermore, for the second

case, the authors prove that for small ¢¢ > 0 and any €; > ¢y, we have for all
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€ € e, €1]

FfI:{e—%—l—in; nER}Cp(A)

and

sup (A — A)_IH < 00,

AeT | e€lep,e1]

on the conditions that
sinh (TTO)
sinh (2) + e%“e%%>

la() ||l zee(o,L) < (

where, for any given 79 > 0 and v; > 0, we have

L
Yo < / a(z)dz < La()l|~o1 < 1
0

and

Yo Ba!
- <<
||a(~)HL°°(0,L) ||a(~)HL°°(o,L)

Finally, Menz in [54] generalizes the work done in [57] by adding a potential term
b(x)u. He proves that if the average ag is positive, then, for a(.), b(.) € L*>(0, L),
the exponential stability is proved for small ||a — ag||z2 but not necessarily for small
la(.)||z0,r). Using Gearheart and Huang result, Menz obtains the resolvent esti-
mate for the system where the function a(.) is replaced by its mean value, ag. Then
using a fixed point argument, the exponential stability result is transferred to the

original problem with potential term.

3.2 Main results

In this chapter or in [1], our work differs from the previous studies because we do
not want to impose neither a small value of the damping factor a nor a small value of

|a—ag|| 2. Indeed for system (3.1.1), this mean value is equal to /2|1 — | which we
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do not need to be sufficiently small. Indeed we will show later on that for o < —1,
problem (3.1.1) is never exponentially stable (even up to a finite dimensional space),
while for « > —1, problem (3.1.1) is exponentially stable up to a finite dimensional
space. We even show that there exists a critical value a3 ~ —0.2823 such that if
« > «g, then problem (3.1.1) is exponentially stable. Our method takes advantage
of the one-dimensional setting that allows to perform a precise spectral analysis.
Note that these results are coherent with those given by the perturbation theory
of contractive semigroups (see [62]). Actually, for system (3.1.1) defined in an appro-
priate Hilbert setting, we can write the generator of the semigroup as Ayg+ B_ + B

where Ay is the skew-adjoint operator given by

4 0 I
0= )
d2
2= 0
and By are bounded operators given by
0 0 0 0
B, = . B_=
0 —2x0,1) 0 —2ax(-10)

Then applying the perturbation theory of contractive semigroups, in order to get
an exponential stability, the condition ||B_| < |w(A + B,)| should be imposed.
However, according to 23|, u(A+By) = w(A+ By) ~ —0.45 where the approximate
value is found numerically. Here, 1(.A) denotes the spectral abscissa of the operator
A;

p(A) =sup{RA: A € o(A)},
o(A) being the spectrum of A, while w(.A) denotes the growth rate of the evolution

equation associated with A in the Hilbert space X ;

w(A) = inf{w : IC(w) > 0s. t. [|U®)||5 < C(W)||U0)|5e*", vt > 0,
for every solution U of U,(t) = AU(t),Vt > 0}.
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Therefore ||B_| = 2|a| < |(A + By)| yields the condition that o > oy, where
a1 ~ —0.225. Our spectral analysis improves this condition and yields a larger range
of values of « for which problem (3.1.1) is exponentially stable. However, this result
is not optimal since numerical results show that a > «s, where as ~ —0.77, yields
the exponential stability of (3.1.1) (see Figure 1).

By a similar approach, we find some exponential or polynomial stability results
for the second problem (3.1.2) where a and b are of opposite signs; the particular
case b € (—1,0) and a > 0 retains our attention. Note that for such a problem,
perturbation theory of contractive semigroups cannot be invoked.

This chapter is divided into two main parts. In the first one, we analyze the
spectral problem associated with (3.1.1) in order to find a possible range of « for

which (3.1.1) is stable. We find and prove the following results of [1] :

Theorem 3.2.1. o > —1 if and only if problem (3.1.1) is exponentially stable up

to a finite dimensional space.

Theorem 3.2.2. If a > a3, where ag ~ —0.2823, then the solution of problem
(5.1.1) is exponentially stable.

In the second part, we analyze problem (3.1.2) in order to find some conditions
that a and b must satisfy to get the stability of (3.1.2). We find out the following
results of [1] :

1 b+1
Theorem 3.2.3. Ifb ¢ {—1,0,1}, then a > —2R tanh™" 7= —In 2 i .

if problem (5.1.2) is exponentially stable up to a finite dimensional space.

if and only

Theorem 3.2.4. Ifb € (—1,0), then a > —2tanh™ " b if and only if problem (3.1.2)

18 exponentially stable.
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Theorem 3.2.5. Ifb € (—1,0) and a = —2tanh™' b, then there exists C > 0 such
that for all U(0) = (ug,u1) € D(A,), we have

1V (0)117

By(t) < C 4o) vt >0,

where Ey(t) is the energy of the solution of problem (3.1.2) and A, is defined in
(3.4.2) below.

Note that a statement similar to the one of Theorem 3.2.4 cannot hold in the
case b < —1 because there exists some a > —2R tanh ™" % such that some eigenvalues
A of A, are in RA > 0 (see Figure 3.6 in the case b = —2 and a = 1.1).

Before we start our analysis, we introduce some notations used in the remainder
of this chapter : On D, the L?(D)-norm will be denoted by || - || p. Similarly (-,-)p
means the L?(D) inner product. Finally, the notation A < B and A ~ B means the
existence of positive constants C; and Cs, which are independent of A and B such

that A < (9B and C1B < A < (5B, respectively.

3.3 Exponential stability for the indefinite sign in-
ternally damped problem (3.1.1)

Since problem (3.1.1) is exponentially stable if the damping term « is non-
negative (see [23]), from now on we assume that a < 0.
We start by writing problem (3.1.1) as a system of the form U, = A,U where
U = (u,us)" and the operator A, : D(A4,) — X is defined by
A 0 1

% —QX(O,l) - 2aX(—1,0)
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where the energy space X = Hj(—1,1) x L*(—1,1) is equipped with the usual inner
product defined by

< ()T (w0)T > /Xﬂwww

and

D(A,) = (H*(=1,1) N Hy(—1,1)) x Hy(—1,1).

In this case, the energy associated with problem (3.1.1), at time t, is given by

Bu) = 3 [ (a0 + g 02300

1

with

‘() = —2 (/01 g (2, 1) [2dz + oz/i |ut(x,t)|2dx> . Y(up,u1) € D(Ay).

Notice that problem (3.1.1) is well posed since A, can be written as a sum of the
m-dissipative operator Ay with a bounded operator (see Theorem 1.1.5).
In this section, we start by analyzing the spectrum of the generator A,. First, we

find the asymptotic development of the large eigenvalues. This development shows

1
ot (see (3.3.7)). Second, we

that the high frequencies approach the line z = —
determine the critical value ag of « for which all the eigenvalues of A, are situated to
the left of the imaginary axis for any a > a3. Finally, we show that the generalized
eigenvectors of A, form a Riesz basis of the energy space from which we deduce the

exponential stability of problem (3.1.1) for a > as.

3.3.1 Spectral analysis of problem (3.1.1)

First, we determine the characteristic equation related to problem (3.1.1). If

U= (y,2)" € D(A,) is an eigenvector of A, associated with the eigenvalue ), then
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2z = Ay and the eigenvalue problem is given by

Yoz — N2y — 2X(0,)AY — 2ax(—1.0Ay = 0 in (—1,1),
y(~1) = y(1) = 0.

(3.3.1)

Clearly A = 0 cannot be an eigenvalue of A,. Similarly the same calculations as
below allow to show that A = —2 and A\ = —2« are not eigenvalues of A,. Now for

A€ {0, -2, —2a}, setting y* = y0.1) and Yy~ = yj_1,0), We get
yh = (A2 + 2Nyt in (0,1),
y* (1) =0,
and consequently,
yt(x) = ¢t sinh[VA2 + 2\ (z — 1)], (3.3.2)
for some ¢t € C. Similarly, we have
Yrw = (A2 +2aN\)y~ in (—1,0),
y_(_l) - 07
which implies that
Yy~ (x) = ¢~ sinh[V A% 4 2aA(z + 1)], (3.3.3)

for some ¢~ € C. As the differential equation in (3.3.1) yields y € H?*(0,1) and due
to the Sobolev embedding theorem H?(0,1) — C1[0, 1], we get

or equivalently

ctsinh(VA? + 2)) = —c¢™ sinh(VA? 4 2a)),

(3.3.4)
TV AZ 4+ 2X cosh(V A2 + 2)) = ¢ VA2 + 2aX cosh(V A2 + 2a)),
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Do (M) (ct,e) =(0,0)T, (3.3.5)
where
D)) = sinh(vAZ + 2) sinh(v' A% + 2a)

VAZ 42X cosh(VAZ +20)  —V/ A2 4+ 2a cosh(V A2 + 2a))

As (3.3.5) admits a non zero solution if and only if det D,(\) = 0, the complex
number A & {0, —2, —2a} is an eigenvalue of A, if and only if it is the root of the
characteristic equation

det D, (N) = 0.
Direct calculations yield

det Dy(N) = —F,(N)
= —V A2 4 2aA sinh (v A% 4 20) cosh(vV A? + 2a\)
—VA? + 2Xsinh(V A% + 2a\) cosh(vV A2 + 2)).

Note further that
2F,(A\) = ga(A) = to(A) sinh to(N) — t1(A) sinh ¢4 (\),

where

t1(A) = VA2 +2) — VA2 + 20,

and

ta(A) = VA2 42X + VA2 4 20

We have proved the next result.

Lemma 3.3.1. A, has a compact inverse and therefore the spectrum of A, is dis-

crete and its eigenvalues are of finite algebraic multiplicity. Furthermore
o(A,) ={A e C\{0,-2,—2a} : g,(N\) =0}.
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Remark 3.3.2. Note that the eigenvalues of A, depend continuously on «. Indeed,

fir v and an eigenvalue Ao of An. Then as N\ is isolated, there exists p > 0 such that
ga(z)#O,VzE(C:O< |Z—)\O| Sp

In particular, as g, is a continuous function of z, setting D = {z € C : |z— Xo| = p},

there exists a positive real number k such that
|ga(2)| > K,Vz € D.
For a fized positive real number €y we consider the mapping of two variables
H:[0,6] x D— C:(€2) = ga(2) — gatre(2).

Since it is a uniformly continuous function and since H(0,z) = 0 for all z, we deduce

the existence of a positive real number 6 such that
|H (e, 2)| < k,V(e,2) €10,8] x D.
The two last estimates imply that
196(2) = Gare(2)] < |9a(2)],Y(e, 2) € [0,6] x D,

Hence, Rouché’s theorem allows to conclude that g... has the same number of roots

at go for all € € [0, 9].

The following Lemma shows the boundedness of the real part of the eigenvalues

of the operator A, and proves that its eigenvalues cannot be real.

Lemma 3.3.3. Let \ be an eigenvalue of the operator A,, and U = y(x, \)(1,\)"

be an associated eigenvector. Then A € C\R with

1 0
- [t Pds = a [ e s
%)\: 0 - -1
JCRE
—1

Y
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and,
2

1 0
/mwzxklmx ‘/ImaAN%x+a/|MaAN%x
0 —1
1
/ (i, \)|2dz / (i, \) 2
-1

Proof: As A, is real, in the sense that A,U = AU for all U € D(4,), it follows

that U = y(z, \)(1,)) is an eigenvector of A, corresponding to the eigenvalue .
Integrating (3.3.1) against y(z, \) gives

1 1 1 0
/|%R“+A2 MW@”QA(/lm%x+a/IMM{):Q
1 1 0 1
1 1 3
(/ IyIde+a/ Y| dx) —/ \yx|2dx/ ly|dx
1 1

Hence,

/ |y dx—a/ |y[ dx £+

/ jyl2dz

If X is real, then by the Poincaré-Friedrich’s inequality

2 1 1
%/ |w[2d:c§/ w2, Vo € HY(=1,1), (3.3.6)
-1 -1
we get
1 0
o < ([wraer e [ wiar) - [ e [ e
0 -1
1 2 9
< (/ \yl2dx) - (E> (/ lyl dw)
1 2
72 1 2
=(1—-— %d 0
(=) (f ) <
which is impossible. Consequently, A\ € C\R and the result follows. [ ]

Remark 3.3.4. Note that
2
1. (RN + (SN2 > % by Poincaré-Friedrich’s inequality (3.5.6).
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2. [RA| < max{l, |o|}.
3. Denote by { A }rez+ the spectrum of A,. Since A, is real, without loss of ge-

nerality we can assume that for all k € Z*, \_j, = A

3.3.1.1 Asymptotic behavior of large eigenvalues

In the sequel, we study the asymptotic behavior of the eigenvalues {\g }rez+ of A,
as |Ag| = 400. According to the previous remark, since R\ is uniformly bounded,
then |A\y| — +o0 is equivalent to |S\g| — +00. Moreover, we can restrict our study

to the case k — +o0.

Lemma 3.3.5. The large eigenvalues of A, are simple. Moreover there exist m € 7
and ko € N, such that

—a—1 1
N = 0‘2 +ilk+ m)g +0 (-) . Yk > k. (3.3.7)

k
Proof: Let A be an eigenvalue of A, or equivalently a root of g,. For the sake of
simplicity, we assume that VA2 = A, if this is not the case, the next arguments hold
but with ¢, and ¢, replaced by their opposites.

First, we prove that
t1(A) > 1 —aand to(A) =2 \+ 1+ a+o(1) as || = +o0.

Indeed, we write

(VAZ 42X — VA2 + 2a0) (VA2 + 2 + VA2 + 2a))

ti(A) =
1) VAT F 2 + VA2 + 2000
201 —-a)
ta(A)
Therefore, we get !
2M(1 —
t1(A) ~ % =1l—a, as SN\ — +o0. (3.3.8)

1. as usual the notation h(\) ~ g()) as |IA| — +oo means that limgx|— 400 % =1
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On the other hand,

2 2«
= 14— 14+ —.
s fi 2
{1+ 2—1—1— +0 !
A A
1—|— + !
Vit )\ - °\N)-
1+«

tg()\)—)\(2+ i >+0(1)—2)\+1+a+0(1) as [SA| = +oo.  (3.3.9)

As [A| = +oo, we write

and

Therefore,

Since t3(A) # 0 for |IA| large enough, then from the characteristic equation we

can write

() = (V) [sinh(tQ(A)) _ 283 sinh(t;(\)| = 0,

or equivalently

ha(\) = 0, (3.3.10)
where
ha(A) = sinh(f>())) — 28% sinh(t1(\). (3.3.11)

Now the conclusion follows by using Rouché’s Theorem. For this aim, for N large

enough, define the curve

1+ o nm Co
Iy, ={z: —| = —1, N,
I {z:]z+ 5 $22 n} n >

where (Cj is a positive constant fixed later on in Lemma 3.3.7.
Lemma 3.3.7 below shows, by Rouché’s Theorem, that h,(z) given in (3.3.11)
has the same roots as sinh(#3(z)) in the curve I'y,, for every n > N where N is

large enough. Consequently, we deduce that the large eigenvalues are simple since
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the roots of sinh(t5(2)) are simple for |z| large and are situated inside I'y,, for some

n large, which yields (3.3.7). ]
The next Figures 3.1 and 3.2 illustrate the roots of F, for « = —0.75 and
a = —0.2 computed using a Newton method, namely a sufficiently large box is

decomposed in a relatively fine mesh and each node of the mesh is used as initial
value for the Newton method. In these Figures, the asymptotic behavior from the

previous lemma is clearly visible.

L L L
-0.126 -0.125 -0.124 -0.123

F1GURE 3.1 Eigenvalues for a = —0.75

Remark 3.3.6. (Increasing the order of the finite expansion)

If we write \,, = — +i(k + m)g + Bk iy, where By, e, € R are such that £, =

1 1
0O, (E) and g, = Oy (E)’ and we substitute this value into ta(Ag), sinh(ta(Ag)),
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I I I I
—0.401 —0.400 -0.399 —0.398 -0.397

FIGURE 3.2 Eigenvalues for o = —0.2

nd 28’3 sinh(t1(\,), then increasing the order of the finite expansion, we get
ta(M) = i(k -+ )T + 28, + ey — Qi(lkioqu)w (1+ 0‘2)2212)2;3(1 ) o (%)
sinh(t(\g)) = (—1)F+™ (wk 1 ey — i(; i :;W (1+ az)ﬁ i 072)2—;(1 a9, (%))
N

et ()
From the equality sinh(ts(\)) = 28’3 sinh(ty(Ag)), we conclude
5 — 21 +a’) = (1+a)(1+a?)
(1ybm (%(Ekat)?i@a —a)  (1—a?)(1 —a)cosh(l — a)} o (i)
? ((k +m)m)? ((k +m)m)? k)

The (—1)k™ factor appearing in the expression of By shows that, according to the

parity of k + m, there are eigenvalues to the left and to the right of the aris v =
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1
—%. Hence if 1 + « < 0, then problem (8.1.1) is never stable, while if 1 +

« > 0, then we can hope that (3.1.1) is either exponentially stable or unstable but

exponentially stable up to a finite dimensional space.

Lemma 3.3.7. There exists N € N large enough such that for every n > N and for

all z € I'y,,, we have
|ha(z) — sinh(t2(2))] < [sinh(ta(2))] .

Proof: The proof is divided into two steps. In the first step, for every n > N where

C
N is large enough, we show that if z € T'y,,, then [sinh(ty(2))| > ﬁ. In fact, it is
z
enough to consider the case where z € I'), since the eigenvalues appear in conjugate
Il+a  nm ” Co
5 + i + ppe’’ where 0 € [0,27) and p, = —.
n

Since n is large enough, then by (3.3.9), we have

pairs. If z € I',,, then z = —

to(2) =22+ 14 a+ o1(1) +ios(1),

and
Isinh(t2(2))]* = sin? (2p, sin 6 + 04(1)) + sinh? (2p,, cos 6 + 01(1))
= (2pnsin 0 4 0(1))* + (2p, cos 0 + o(1))?
= 4p2 + o(1).
Hence,
C? C? 4C2 ( 1 ) 4CE , 5
—< = +o|—= | <—+0(1) = [sinh(ta(z .
S o =)t G 0 \) S e o) = binh(a()

Now (3.3.8) and (3.3.9) imply that there exists C, > 0 such that

[t1(2)] <211 — a|,Vz 1 |S2| > Cf,

[ta(2)| > |2], V2 : |S2]| > Ch,
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and therefore there exists Cy > 0 such that
[t1(z) sinh(t1(2))| < Co, Vz : [Sz| > Ch.

As for z € '), with n > 1, we have

we need to chose N large enough so that

Nm Cb
- "N o

With this constraint and by (3.3.11) we see that for z € I',,, where n > N, we have

t1(2) sinh(t1(2))
tQ(Z)

|ha(2) — sinh(ty(2))] <

‘ < Co < |sinh(t2(2))] .

||

3.3.1.2 Critical value of o

We finish this section by looking for a critical value of a for which we will get an
exponential stability of problem (3.1.1). Numerically, as the Figure 3.3 below shows
(see also Figures 3.1 and 3.2), for 0 > a > ag, with g &~ —0.77, the eigenvalues
{ Ak }rez+ of the operator A, are all situated to the left of the imaginary axis. Howe-
ver, theoretically we could not hit this range of «a. Instead, we prove such a result
for a € (a3, 0) with a3 &~ —0.2823. In fact, as the value of o € (—1,0) decreases, the

a
is shifted to the right and therefore the eigenvalues are shifted near

axis r = —
the imaginary axis. Consequently, we try to study the behavior of the eigenvalues
on the imaginary axis and then find a critical value of « for which the characteristic

equation (3.3.10) has no roots on the imaginary axis.
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02

-1.0 -0.8 -0.6 -0.4 -0.2

—04+

FIGURE 3.3 — Numerical value of max{R\ : A € 0(A,)} versus .

To state properly our result, we introduce the functions

fi + (=00,0] = (0,00)
a— % [Cosh (2%(@(%))) - 1} ,
fa i (=00,0] = (0,00)
1 (1= )* + (3(11(i5)))°] [eosh (2(1 = ) = cos (23(41(i5)))]
’ 5] |

It is easy to check that f; (resp. f3) is increasing (resp. decreasing) and that f;(0) >

f2(0) (see Figure 3.4), hence there exists a unique negative real number a3 such that

fi(az) = fo(as). Numerically we find that a3 ~ —0.2823.
Theorem 3.3.8. For all o > as, any eigenvalue A of A, satisfies RA < 0.

Proof: Let A = iy with ¥y € R be a purely imaginary eigenvalue of A,. As the
complex eigenvalues appear in conjugate pairs, it is enough to consider the case

y > 0. According to Remark 3.3.4, y > g We start by writing
M2a + A) = =y + 2iay.
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Let
\/y2 + yy/4a? + y?
hy, o) = :
V2
. ay . 2
then, by expanding | ——— + ih(y, @) | , we have
h(y, o)
; ay .
vV —y? + 2iay = ——— +ih(y, ).
Wy, a) )

We note that h(y, ) is non decreasing as a function of y since

2 2 y?
1 2y + /4o +y* + Hary

0
_h(yaa) = = 5
y V2 2\/y2+y /4% 1 42

is decreasing since

Y, &

Y

while

9 hy, o) —V/2a?

W Y iyl + AT+ )

Moreover, t5(iy) is given by

oy Yy
h(y,a) ~ hly,1)

ta(iy) = +i (h(y, ) + h(y, 1))

and t,(iy) is given by

. ay Yy .
t(1y) = — + +i(—=h(y,a) + h(y,1)).
i) = = 4 s+ (<) + Ao, 1)
.. . . 2 t1(iy) . . 2
In the sequel, our aim is to find some bounds for |sinh(¢s(iy))|” and b (i) sinh(; (1y))| -
21y

We start by finding a lower bound for |sinh(ty(iy))|* with y > g We have

lcosh (2R(ta(iy))) — 1]

DO | —

sinh (£ (iy))[? = %[cosh (2R(ta(iy))) — cos (23 (ta(iy)))] >

But R(t2(iy)) is a positive and increasing function of y. In fact,

h(y, a)
hy 1) O‘}
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h(y, @)
h(y, 1)
is increasing. Indeed, since |af <1

0 (h(y,oz))2 _ VA ) (VA = Vi )

Since is positive then we prove that it is increasing by proving that its square

dy \ h(y. 1) VA +y2/4a2 + 2 (y + /4 + 32)
Since
. h(y,a) o
1 f—
v0 Ay, 1) ol
then
h(y, o)

+a>0, Yy>0.
h(y, 1)

Finally, we conclude that R(t2(iy)) is positive and an increasing function of y so

R(ta(iy)) > %(tg(ig)). (3.3.12)

Therefore,
Isinh (£, (iy))|® > % [cosh (2%(@(@%))) - 1] — f1(). (3.3.13)
In the second step, we find an upper bound for ZEZ; sinh(t(ig)| . S(taliy) is o

non decreasing function of y since h(y, «) is non decreasing. So
S(ta(iyy)) > %(tQ(zg)). (3.3.14)

Both (3.3.12) and (3.3.14) yield
2
(i) = 1205 (3.3.15)

Next, we find an upper bound for |¢;(iy)|. We have
0 0 0
—S(t1(iy)) = =—h(y,1) — —h .

Knowing that h(y,a) is non decreasing, we compare the difference between the

square of 2h(y, 1) and 2h(y,a). We find that

0y dy
0 2 + /4a? +y?)?
—h(y,Oé> = (y 2 :;y) :S0<a2>7
dy 8(4ay + y3)
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where

() = W VAP
8(48y + v*)
Deriving with respect to 3, we get

S(p) = W VAT PGy~ 2y AE )

4y(48 + y?)3
2 2 2 2
Therefore, ¢'(8) < 0if y > ﬁ = %. But y > g > 3 > % which implies that

¢'(B) < 0. Hence, for all y > 5

(%h(y, 1))2 - ((%h(y,a))2 <0,

and so, for all y > g, we get

0 0
—h(y,1) — —h .
gy W) — 5, My ) <0
Therefore, (1 (iy)) is decreasing and
: T
()] < (3621 (3:3.16)

On the other hand, we prove that R(¢1(iy)) is non decreasing and since R (¢ (iy)) —

1 —a as y — 400, we obtain
IR(t1(iy))| < 1 — v (3.3.17)
Consequently, by (3.3.16) and (3.3.17), we get
jsinht(i9)? = = [cosh (2R(t1(i9)) — cos (23(t1(iy))]

<3 [cosh (2(1 — a)) — cos (2%1(@%)))} .
Finally, (3.3.15), (3.3.16), (3.3.17), and (3.3.18) yield

[(1 —a)*+ (%(tl(zg)))Q] [cosh (2(1 — «)) — cos (2%(t1(2%)))]

(3.3.18)

t1(iyy) 2

<

() sinh(¢; (iy))

1
2 |t2(i5)[°
fao(a).

(3.3.19)

147



Chapter 3 Indefinite sign damped problems

-1.0 -0.8 -0.6 -0.4 -0.2

FIGURE 3.4 Curves of f; (blue) and fs (red).

In conclusion, using (3.3.13) and (3.3.19) and according to the properties of
f1 and fy mentioned before (see Figure 3.4), we find out that if @ > ag, then
ti(iy) ’

h (i) sinh(t1(iy))| < |sinh(t5(iy))|” and therefore the characteristic equation (3.3.10)
21y

has no roots on the imaginary axis due to (3.3.11). We deduce that for every

0 > a > ag, there does not exist any pure imaginary eigenvalue. By the conti-
nuity of the eigenvalues as a function of «, all the eigenvalues are situated to the left
of the imaginary axis for every 0 > a > a3. Indeed, if we suppose the contrary, na-
mely that there exists & € [ag, 0] such that there exists some A\ (&) with Rz (&) > 0.
Since for a = 0, all the eigenvalues are to the left of the imaginary axis because of
the exponential stability, we deduce by continuity of the eigenvalues as a function
of a that there exists & € [as, 0] with @ < & < 0 such that there exists some pure

imaginary eigenvalue associated with & which is a contradiction. [ ]
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3.3.2 Root vectors, Riesz basis, and proof of Theorems 3.2.1

and 3.2.2
3.3.2.1 Root vectors

We start by introducing the root vectors of A, and A, the adjoint of A,. We
notice that A, has a compact resolvent, the geometric multiplicity of each eigenvalue
is one, and, from Lemma 3.3.7, the large eigenvalues are simple.

Therefore, as in Section 6 of [23|, for any n € Z*, we denote the algebraic
multiplicity of A\, by m,,. To \,, define the associated Jordan chain of root vectors
{Un,j }?1:71071 by

Uno = yla A)(LA)T
AJUn; =NUn; +U, o1, j=0,...,m, —1withU,_; =0.
As usual we choose the generalized eigenvectors such that < U, ;,U,o >= 0, j =
1,...,m, — 1. Notice that for |n| large, m, = 1 and the root vectors are limited
to the eigenvector U, o. According to Theorem 10.1 of Chapter V of [36], the root
vectors of A, are complete in X since A, is a bounded perturbation of a skew
symmetric operator. Moreover, the root vectors form a basis of the root subspace
L, ={U € D(A,); (As — \)™U = 0}.
We now consider the root vectors of the adjoint of A, given by

0 -1
AZ = 82
— =2 — 200 (—
02 X(0,1) X (~1,0)
Since o(A%) = 0(A,) = 0(A,), we associate to \, the root vectors of A* as
Wn,O = y(l‘;)\_n) (17 _)\_n)—ra
AZWn,j = /\_anJ' -+ Wn,jfl, < WnJ‘, Un,mnfl >= 0, j = 1, ey My — 1.
Wi is an eigenvector of A’ and, by completeness, W, ; are uniquely determined

since < W, 0, Uy m,—1 >7 0. Other wise, U, ,,,—1 = 0 which is impossible.
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3.3.2.2 Riesz basis

Here we adapt the results of Section 6 in [23] to prove that the root vectors of the
operator A, form a Riesz basis of the energy space X ; i.e., we prove the following

theorem.

Theorem 3.3.9. The root vectors of the operator A, form a Riesz basis of the

enerqgy space X.

Proof: of Theorem 3.3.9.

We use the Bari’s Theorem given by Theorem 1.2.6 (see Theorem 2.1 of Chapter VI
in [36]). First, the completeness in X of the root vectors of A, follows from Theorem
10.1 of Chapter V of [36]. So it remains to search for a biorthogonal sequence. For
that purpose, we can follow the proof of Lemma 6.2 of [23]. From the proof of Lemma

6.2 of 23|, we have
< Un,p» Wk,j >=< Un,pa Wn,mn—l—p > 6n,k5mn—1—p,j7

forallp=0,...,m,—1,7 =0,...,m;—1,and for all n, k € Z*, with < U,, ,, Wy, sn,,_1—p >F#
0. Indeed, for all n # k, we have

< AU, Wio >= Xy < Up o, Wio >= Ay < Upo, Wio > .
Hence, < U, o, Wi >= 0. Next,
< AU o, Wiy >= Ay < Upno, Wi1 >= A < Uy, W1 >+ < Uy, Wio > .

Hence, (A, — i) < Uy 0, Wi1 >= 0 and so < U, o, Wy1 >= 0. Proceeding similarly,
we prove that

<Upno,Wi,; >=0, Vj=0,...,m, —1

Finally, by iteration, we can prove that
< Un,p7Wk,j >= 07 vp?j:()w"vmn_lv vn%k’i
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Now, if n = k, then Fredholm Alternative implies that
<UpjWho>=0, Vj=0,...,m,—2.
Hence, by completeness, it follows that
< Upmyp—1,Wno ># 0.

Similarly,
< Un,OaWn,j >= 0, VJ =0,....m, — 2

and

< Un,Oa Wn,mnfl >7é 0.

After comparing < A U, 1, Wy, — > with < U, 1, AX W, ., — >, we find that
< Un,la Wn,mnfkfl >=< Un,Oa Wn,mnfk > .

Therefore, U, ; is orthogonal to each W, ; except when j = m, — 2. Finally, by
iteration, we find that U, , is orthogonal to each W, ; except when j =m, —p — 1.
In conclusion, we have

<U Wn,mn—l—j
n,ps
< Un,ja Wn,mn—l—j >

>=10,5, Vp,j=0,...,m,—1

However, the arguments above are sufficient for the low frequencies but for the

Who
high frequencies, in order to replace : by W, o in (1.2.1), we still need
o P Wy 5 Y o (L2

to show that < U, o, W, o > does not degenerate as n becomes large. This is our
next aim.

According to (3.3.2) and (3.3.3), we choose U, such that

+

b .
Uno01) = ¥(@, Aoy (1, An) T = \/ﬁ sinh(v/A2 4+ 2\, (z — 1))(L,A,)
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and

b- .
Unol (-1.0) = Y(2, M) (—1.0) (1, An) T = —==L——=sinh (/A2 + 20, (z+1)) (1, \,) T,

where b and b, are chosen such that (see (3.3.4))

b — VA2 42\, sinh (/A2 + 2a), (3.3.20)
" /A2 200, sinh /A2 + 2), -

with b, fixed such that < U, o, U, >= 1.

But we have
< Un,Oa Wn,O >

= [ (WP = Rt AP o

= [ (cost(VREF 2 = 1)) = 2 s/ 20,0 - 1) ) d
+(bn)2/01 (coshz(\/)\,% + 20\, (z + 1)) — Agﬁ—zaxn sinh? (/A2 + 20\, ( + 1))) d.
Furthermore as R\, is uniformly bounded, sinh(24/A2 4 2\, (z — 1)) and
sinh(24/A2 4 2a\,(x + 1)) are bounded (for —1 <z < 1). Hence,
2

1
/ <cosh2(\//\,21 + 2\, (z —1)) — /\21—712)\ sinh? (/A2 + 2\, (v — 1))> dx
0 n

n

= 1+4+0(1),
/j (CoshQ(\/M(x +1)) — )\%:\—éa)\nsinhQ(\/M(x + 1))) dx
= 14 09(1).
Therefore,
< Unyos Wao >= (b))?(1+ 01(1)) + (b, )*(1 + 02(1)). (3.3.21)

But owing to (3.3.7), we see that

1-— 1

VAL 2N, = Ta—i-i(n—i-m)g—i—Ol(ﬁ), (3.3.22)
—1 1

VX2 1 2an, = %+¢(n+m>g+02(g). (3.3.23)
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Therefore if n + m is even we deduce that

1—

sinh \/A2 + 2\, = sinh(Ta + 03(1)) cos((n + m)g),
—1

sinh /A2 + 20\, = sinh(aT +04(1)) cos((n + m>g)>

and therefore

sinh /A7 + 20\,
sinh /A2 +2X,
Similarly if n + m is odd we show that
sinh /A2 + 2a, 1
sinh /A2 + 2\,

These asymptotic behaviors in (3.3.20) lead to

-1+ 05(1).

+06(1>.

(b5)? = (b,)*(1 4 0r(1)), (3.3.24)
and inserting this identity in (3.3.21) we arrive at

< Un,Oa Wn,O >= 2<b;)2<1 + 08(1>>

Wn,O
2(bn )?(1+08(1))

to show that b, does not tend to zero as n tends to infinity. Actually by similar

So we choose instead of W), o, but as mentioned before we have

calculations as before, we check that
< Un0:Uno >= [b[7(6 + 09(1)) + [b [(6 + 010(1)),

where

5_sinh(1—oz)
 l-a

that is positive since av < 0. Therefore with the help of (3.3.24) we get

< Unos Unp >= 2/, |*(6 4+ o11(1)),
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and consequently

1
b, | = ST 012(1).

In summary, by fixing N large enough such that for |n| > N, m, = 1, we have

proved that the family

{ Wn,mn—l—j }mn_l U { Wn,O }
< U"»j’ Wn:mnflfj > 7=0 0<|n|<N 2(65)2(1 + 08(1)) In|>N

is biorthogonal to the set of root vectors of A,.

It remains to prove (1.2.1). We first prove that for any (f,g) € X and for all N
large, the sum S = Z |< Upo, (f,g) >|" is finite. Tn fact,

n>N
S = Z] / 1b; (cosh(\/)\i 20 (z — 1) F(2)
n>N 70
—i—ﬁ sinh(/A2 4+ 2\, (x — 1))§(x)> dx

of by (cosh(v/R F 2k + 1)) (o)

2

An

A
NOtin That S = 1 + O — and —_—
&N Lo 1) md e

order to prove that the sum S is finite, we will only prove that

Si=>_ /0 cosh(v/A2 4 2\, (z — 1)) f/(z) d

n>N
since the convergence of the other terms appearing in S follows similarly. According

1
= 1+ O4(—); hence, in
n

< 00,

to (3.3.22), we have
VAL +2\, =y +i(n+ m)g + Oy

1-— 1
@ and 0, = O1(—). Therefore, we can write
n

where v =

COSh(‘ /)\% + 2An(x — 1)) — %(6(’7+i(n+m)g+5")($_l) + 6_(7+i(n+m)%+5n)($_1)>‘
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So in order to prove that S is finite, we will only prove that

2.

n>N

1 2
0

since the convergence of the other term appearing in S; follows similarly. But the
convergence of this series is a simple application of Lemma 3.2 of [70] (see also [38,
Lemma 4.1]) since the sequence (v +i(n + m)3 + d,),>n satisfies the conditions
of this Lemma and since f € H'(0,1). Therefore, ¢0HintmZ+on)@=1) 45 5 Begsel
sequence. We can also use the mean value Theorem and Fourier series to prove the

convergence of this series. Indeed,

>

2

1
/ (Bt ) 1) 7

n>N 0 )
(n+m)7r p—1)—
=2 / — 1 1) g
n>N )
<Z/} §(z1 ewa: 1f/ |+Z/ a:l)e'yx 1)f,()
n>N n>N
< Sl [ 1 =PI + N
n>N
S M@ DR 0D 167 + |
n>N 1
N HeW(m_l)f’H?o,nZﬁ + 17 11T -
n>N

The convergence of Z |< Who, (f,g) >|” for any (f,g) € X and for all N large

n>N
is proved in the same manner since

< Wn,Oa (f> g) >=< Un,Oa (fa g) >= < Un,07 (f? g) >.

Therefore, the conditions of Theorem 1.2.6 are all fulfilled and hence the root

vectors of A, form a Riesz basis of X. [
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3.3.2.3 Proof of Theorems 3.2.1 and 3.2.2

Since the generalized eigenvectors, {U,, ;}, ;. of A, form a Riesz basis of X, then

given the initial datum

+oo0 mp—1

= Z Z/Yn,jUn,ja

n=41 5=0
we can write
mn—l j t-] k
)= )" = 3 2 mid U
n==+1 j= ’

Since the low frequencies are of finite multiplicity, then denoting the maximum

multiplicity by m, we get for any € > 0
Ei(t) < B (0)(1 + t?™)e?Ae)t < B (0)erAa)tat, (3.3.25)

As pu(Ay) < 0 for a €]as, 0] (a3 &~ —0.2823), we can choose 0 < € < —u(A,) to get
the exponential stability of problem (3.1.1) and hence the proof of Theorem 3.2.2 is
complete.

The proof of Theorem 3.2.1 is similar since for o« + 1 > 0, by Remark 3.3.4 and
Lemma 3.3.5, at most a finite number of eigenvalues of A, may be situated on the
imaginary axis or to its right ; consequently, excluding the finite dimensional space

spanned by the corresponding root vectors, we obtain an exponential decay.

3.4 Exponential stability for an indefinite sign in-

ternally and boundary damped problem

In this section, we perform a similar analysis for problem (3.1.2) which contains

both an internal and a boundary indefinite sign damping term. Recall that (3.1.2)
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is the problem

U (T, 1) — U (2, t) + auy(x,t) =0, x€(0,1),¢t>0,

uw(0,t) =0, u,(1,t) = —buy(1,1), t>0, (3.4.1)

u(z,0) = ug(x), w(z,0) = uy(x),
where a,b € R. If a and b are both non negative and one of them is positive, then,
using integral inequalities for instance, one can show that (3.4.1) is exponentially
stable. Our aim is to find sufficient conditions on a and b so that (3.4.1) is exponen-
tially or polynomially stable whatever the sign of a and b.

The energy of (3.4.1) is given by

Ey(t) = %/01 (Jue]? + |ual?) de,
and hence formally
Ey(t) = —a /1 g 2 — blug(1)[2.
0

From this identity, we see that if @ < 0 and b < 0, then E(t) > 0. Therefore, the
energy increases and no stability can be hoped. Therefore, the only case of interest
is the case when a and b are of opposite signs. We, therefore, assume that ab < 0.
We further assume that b ¢ {—1,0,1}. Indeed the case b = 0 has no interest since

only the case a > 0 yields stability results; while the case b = 1 or —1 is excluded

for technical reasons (see Subsection 3.4.3).

3.4.1 Well-posedness of problem (3.4.1)

As usual, by the standard reduction of order method, we can rewrite formally
(3.4.1) in the simpler form U; = A,U, where U = (u,u;)" and the operator A, :
D(A,) — X is defined by

0 I

A, = (3.4.2)
d2
az @
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where the energy space X = H;(0,1) x L?(0,1) is equipped with the usual inner
product defined by

<(,9) (w,0) > / (fT + gv) do

where H;(0,1) = {u € H*(0,1); u(0) = 0} and therefore, D(A,) = {(u,v)" €
H?(0,1) N Hy(0,1) x Hy(0,1); ugy(1) = —bv(1)}.
First, we remark that A, is not necessarily dissipative so we propose to write

A, = Ao — aB where

0 I
Ag = £ g (3.4.3)
=
and ~
0 0
B p—
01

Therefore, A, is a bounded perturbation of a non skew adjoint operator Agy. Never-
theless, we will prove in Subsection 3.4.4 that if b # —1, then A, generates a Cj
semigroup and since aB € L(X), A, will be also a generator of a C semigroup ac-
cording to Theorem 3.1.1 in [62]. Therefore problem (3.4.1) is a well posed problem
(see Theorem 3.4.7).

3.4.2 Eigenvalue Problem

In this part, we find the characteristic equation of the eigenvalues associated
with (3.4.1). Let (y,2)" € D(A,), (y,2) # (0,0), such that A,(y,2)" = A(y,2)"

then z = Ay and
Yor — Ny —aly =0 in (0,1),

First, it is easy to see that A = 0 is not an eigenvalue of A,. Furthermore, if A = —a,

(3.4.4)

then y = cx with ¢ = abc which satisfies the boundary condition at 1. Since y # 0,
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we have ¢ # 0, and get ab = 1 which is impossible since we have assumed that
ab < 0.
Now if A # 0 and A # —a, then there exists ¢; € C* such that

y(r) = ¢ sinh VA2 + a)\x.

Hence, the boundary condition at 1 becomes
y-(1) = c1VAZ + a)cosh VA2 + aX = —bAcy sinh VA2 + a).
As ¢; # 0 then ) is an eigenvalue of A, if it satisfies the characteristic equation
F,(\) = VA2 + aXcosh VA2 + aX + bAsinh VA + a) = 0. (3.4.5)
Integrating (3.4.4) against m and performing an integration by parts, we get

1 1 1
2 [lyPds - P + o [ o+ [ JuPde =0,
0 0 0

Therefore,

oo [ i) +

s« ([ ) ()]

/ jyPda
- ([ i)

If A € C\R, then

R\ = - (3.4.6)
2 [ Wy
0
and since y € {u € H'(0,1) : u(0) = 0}, we get
1
’yx‘Qdic 2
(SA)? + (RA)? = L0 > WZ (3.4.7)
ly|*dx
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Remark 3.4.1. If b < 0 and a > 0, then whenever A\ € C\R, from (3.4.6), we
deduce that R\ > —g. This estimate can be even extended to all eigenvalues of A,.

Indeed, for (u,v)" € D(A,), by integration by parts, we check that
1
2R < Ay(u,v)’, (u,0)" >= —a/ |v* dz — blu(1)]2.
0

In particular, if A is an eigenvalue of A, with associated normalized eigenvector
(u,v)T, we will get

1
RN — —a/ (o2 dz — blo(1)[2.
0

1
Since / > de << (u,v)", (u,v)" >= 1, and recalling that we here assume that
0

b < 0, we then conclude that
1
2R\ > —a/ |v|? dz > —a.
0
In summary we have proved the next result.

Lemma 3.4.2. A;! is compact. Hence the spectrum of A, consists of discrete ei-

genvalues with finite algebraic multiplicity. Furthermore
0(A,) ={A e C\{0,—a} : Xis a root of (3.4.5)}.
Concerning the multiplicity of the eigenvalues, we show the following Lemma :

Lemma 3.4.3. The high frequencies of A, are simple and there exists at most two

double low frequency eigenvalues.

Proof: We derive (3.4.5) with respect to \ to get

VAZ + aA(2X\ + a + 2b) sinh VA2 + aX + (2A + a) (DA + 1) cosh VA2 + aA
2V 2+ a)
0

WVET Y

() =
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If F,(\) =0, then

bAsinh v/ A2 + a)\
cosh VA2 +a)\ = — .
VA2 +a)

Substituting into g(\), we get

_ Asinhy/ A2+ a)

g(\) Nty (21 = )N + a3 = )X +ala+1b)).

Since A # 0 and A\ # —a, then g(\) = 0 is equivalent to 2(1 — 0*)A\? + a(3 — b*)\ +
a(a + b) = 0 which only has two roots. n

3.4.3 Asymptotic Development of the High Frequencies

In this subsection, using Taylor expansions, we prove that the high frequencies

1
approach the axis z = —g — Rtanh™* 5 In fact, (3.4.5) implies that for b # 0

VA2 A
—% = tanh(V A2 4 a)\); (3.4.8)
hence,
U2

VA2 +a)\ = — tanh_l <¥) + iklﬂ', ki € 7. (349)

For large A, we write

a a® 1

\/>\2+aA:/\+§—8—/\+0(X). (3.4.10)
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Moreover, for large A, there exists ko € Z such that we have

VAZ 4+ a) 1 a 1
-1 [ VAT T aA _ (L, a 1
tanh ( 3 tanh (b+2b)\+0()\)>

g (1 ) w g (1oL
—2® b)) T2 T o T\

1 1 1 a 1
—=1 1——)—=1 l— —~ < Tk
20g( b) 2og< 2(b—1))\+0()\>)+m2
1

:tanh11+i ! + + imks + 0 !
b 4x|(b+1) (b—1) A
1 ab 1
—tanh ™' = +imhky + —— — .
an b+z7r 2+2/\(b2—1)+0<)\>
(3.4.11)

Substituting (3.4.10) and (3.4.11) into (3.4.9), we get that for A € o(A,) with ||

large enough, there exists k € Z such that

a 1 a? ab 1
A= —— —tanh ' — + ik —t — — . 4.12
5 — tan b—l—z 7r+8)\+2)\(1—62)+0()\) (3 )
In order to get RA < 0 for \ large, we need that
a 1

As before we illustrate in Figures 3.5 and 3.6, the roots of Fj, fora =1,b = —0.5
and a = 1.1,b = —2 respectively, computed using the same scheme as before. In
both cases, —g — %tanh_lé is negative and the asymptotic behavior (3.4.12) is
clearly confirmed. Note that in the first case, all eigenvalues are in the left of the
imaginary axis, which is in accordance with Theorem 3.2.4. On the other hand, the
second example does not enter in the framework of Theorem 3.2.4 and shows that
an exponential stability result cannot hold if b < —1 but confirms Theorem 3.2.3.

Note that in Figure 3.6, some eigenvalues with positive real part like

A = 0.6910478014752763 or A = 0.012396324184610901 + 2.97112517556328861,
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L L L L
-0.0770 -0.0765 -0.0760 -0.0755

F1GURE 3.5 — Eigenvalues for a =1, b = —0.5

are not represented because they are too far from the other eigenvalues. A repre-
sentation in a larger scale is possible but would avoid to see the main part of the

spectrum.

3.4.4 Riesz Basis of X and a note on the well-posedness of

problem (3.4.1)

In this part, we prove that the eigenvectors associated with the problem with

a = 0 form a Riesz basis of X if b ¢ {—1,0, 1}. In other words, consider the problem

U (2, 1) — Uyy(x,t) = 0, z € (0,1),t>0,
w(0,t) = 0, u,(1,t) = —buy(1,1), t>0, (3.4.14)
u(z,0) = ug(x), w(z,0) = uy(x).

(3.4.14) is equivalent to U, = AU with U, = (@,%)7 and Aq is given by (3.4.3).
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L L L L L
-0.0015 -0.0010 -0.0005 0.0005 0.0010

F1GURE 3.6 — Eigenvalues for a = 1.1, b = —2

By the previous analysis, we know that \is an eigenvalue of Ay if and only if
~ 1
tanh A = ——;
an A

or equivalently

- 1
A=)\, = —tanh™* (3) + ikm = ¢(b) + ikm, for some k € Z. (3.4.15)

Notice that the root vectors of Ag are restricted to its eigenvectors since the eigen-

values Xk are simple. In the sequel, we prove the next Riesz basis property.

Theorem 3.4.4. The family

{@rtrez = { (@ M) Yrez = { (% sinh(e-). Sinh(xk.)) }kez

k
forms a Riesz basis of X = H;(0,1) x L*(0,1).
For this aim, we again use Bari’s criterion stated in Theorem 1.2.6.

164



Chapter 3 Indefinite sign damped problems

Lemma 3.4.5. The sequence {¢y,}y, is complete in X.

Proof: It suffices to show that any element of X orthogonal to all the @; is zero.

Hence let (f,g)" € X be such that < (f,g)", <$k >x=0 for all k € Z. Then we get

0 = 2/01 <Ecosh(xkx) +§sinh(xkx)) dx

1
= / ((fe + g)e®Ome*™ 4 (F, — g)e O~ *) dz Wk € Z. (3.4.16)
0

In particular, for £ = 0, we have

/ 1 ((fa + 9)e " + (fo = g)e ") da = 0. (3.4.17)
0

Moreover, for k < 0, we write k = —k’ with £’ € N* to obtain

1
/ <(fa: + g)ec(b)v’ve—ik’ﬂx + (.fx . g)e—c(b)ﬂfeik/na:> dr = O, Vk,'/ c N*. (3418)
0

Adding (3.4.16) for k = k' > 0 with (3.4.18) yields

1 ikmx —ikmx
/ h@) (%) dr =0, VkeN,
0

where
h(z) = (fo + 9)(@)e @ + (f, - g)(x)eDx,

Since {cos(kmx)}ren is a basis of L*(0,1), we get
h=0. (3.4.19)

Subtracting (3.4.16) from (3.4.18), we get

1 ez’kmc _ e—ikmﬂ
[T (2 ae o e,
0

where

K(z) = (fo + 9)(@)e®” — (f, — g)(w)e—D,
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Since {sin(k7x)}ren+ forms a basis of L%(0,1), we get
K =0. (3.4.20)

(3.4.19) and (3.4.20) imply that f, = ¢ =0 and so f = 0 since f(0) = 0. n

In a second step, we search for a sequence {1y} ez biorthogonal to {gk}kez. Here

1 B~ =

we choose {¥y brez = { <~: sinh(\g-), — sinh()\k-)> where )y is the conjugate
_ Ak keZ

of A\x. The same arguments as before show that this set is complete. Indeed, for

k € 7, 4. is an eigenvector of the adjoint of Aj.
Lemma 3.4.6. The set {1 }rez is biorthogonal to {(Ek}kez-

Proof: By definition, we have

1
< 51@, Y >x = / (Cosh(xkx) COSh(X;[E) — sinh(Xk:E) sinh(X;x)) dx
0

— /O1 cosh <(X;€ - Xﬂx) dx

= /0 cos ((k — l)mz) de = .

Finally, in order to apply Bari’s Theorem, it remains to prove (1.2.1). Let (f,g)' €

X and consider the following sum
. 2 ~ 2 . 2
Z ‘< (f,9) . o >X’ < Z ‘(f:vaCOSh()‘k'))(O,l)‘ + Z ’(%Slnh()\k'))(o,l)
kEZ keZ keZ
(3.4.21)
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By (3.4.15) and Parseval’s identity, we have

2 - . 2 [ . 2
> )(fxaCOSh()‘k DICRY ‘ <Y ‘(fxec(b)}@zkﬂ')(o,l) Y )(fxefc(b)',eflk”')(o,l)
keZ keZ keZ

< (1@ 1y + 1 foe= 2,
S £l
(3.4.22)
and
Y 2 " 2
Z‘(g,smh()\k.))(om < Z‘ gec®) ¢tk Vo) +Z‘ ge—<®) ¢~ ™) o)
kEZ kEZ
< (g 113, + llge %))
< gl
(3.4.23)

(3.4.22) and (3.4.23) imply that the right-hand side of (3.4.21) is finite. Similarly,

we prove that

d < (fg)” o >x|” < oo

kEZ
In conclusion, by Theorem 1.2.6, the family {ng}kez forms a Riesz basis of X.

Theorem 3.4.4 is then proved.
Theorem 3.4.7. Ifb ¢ {—1,0,1}, then problem (3.4.1) is well posed.

Proof: If we consider the problem associated with Ag; i.e.,

Ui(t) = AU (1), t>0,
U(0) = U,

(3.4.24)
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then writing U(0) = Zaquk yields

keZ

U(t) = Zexktak@.

kEZ
Therefore, by the Riesz property of the sequence {ggk}k and (3.4.15), we get

~ 2 1/1
OIS \ekktozk\ < e PR ()1 7(0) |12 (3.4.25)
kEZ

Hence, if V' = Zﬁk@ is given, then we define
kEZ

S(t)V = Zexktﬁkggk, Vvt > 0.

kEZ

According to (3.4.25), we have S(t) € £(X) with
IS() 2oy < Me R (3)t,

for some positive constant M. Hence we deduce that (S(t)):>o is a Cj semigroup (not
necessarily uniformly bounded). As we can write A, = Ay + aB where Aj generates
the Cy semigroup (S(¢)):>o and B is bounded, then, by Theorem 3.1.1 in [62], A,

also generates a C semigroup (S,(t)):>o that satisfies
150 ()| £0x) < Me(*%tanh*l(%)ﬂamB”)t? Vi > 0.

By standard semigroup theory, problem (3.4.1) becomes well posed. [

Remark 3.4.8. If b = —1, our previous considerations show that Ay has an empty
spectrum. Therefore, our method does not allow to prove that it generates a Cy se-
migroup and hence, the well posedness of problem (3.4.1) becomes an open question.
On the other hand, if b =1, the operator Ay generates a Cy semigroup (S(t))i>o
that satisfies
1S®)|lcex) < Me™,
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for some positive constants M and w. Therefore, by the previous arquments, problem
(3.4.1) is well posed and is stable if a < 0 is small enough by perturbation theory

but the question of its stability for a < 0 "large” is an open question.

3.4.5 Link between problems (3.1.2) and (3.4.14) and end of
the Proof of Theorem 3.2.3

In this part, we prove that the root vectors of A, form a Riesz basis of X if b ¢
{—1,0,1}. For this aim, we will apply Theorem 1.2.8 with the set {akz}kez the Riesz
basis associated with problem (3.4.14) and for an appropriate set of eigenvectors of
A, (corresponding to large eigenvalues). Indeed in view of Lemma 3.4.3 and (3.4.12),

we split up the spectrum of A, into the small and large eigenvalues :

o(Ay) = {11 U { etk (3.4.26)

where N € N is chosen large enough such that, for every k € Z* with |k| > N,

1
%+tanh’1 5 ikm| < g and )y is simple. Consequently the remaining part of

the spectrum {)\,}, is clearly bounded. According to our previous considerations

e+

for |k| > N, the eigenvector ¢y is of the form

Ok = (ks MeUk) |

with

1
1) = ————-sinh ( \/A? + a) x),V:EE 0,1).

For |k| > N, by (3.4.9) and (3.4.11), we have

1 1 - 1
VA2 +a\y = —tanh ™ —+ikn + O — ) =M +O [ — ).
b A Ak
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Hence, by the mean value theorem, for all = € (0, 1), there exists 6, € (0,1) (depen-

ding also on k) such that

cosh(\/A2 + arpz) — cosh(Axz)
= <\/)\i +a\, — 5\k> x sinh (ka + 0, (/A2 + a), — Xk)x) )

Hence, by the previous identity, we find that for all z € (0,1)

cosh(y/ A2 & adpz) — coshNez)| < [Ael ™Y sinh (Az + 0,(1 /A2 4+ aX, — M) ).
k ~ k

Moreover, since we assume that [b| # 1, then ‘ﬂ%tanh_l %| is finite and therefore,

R\, remains bounded (independently of k). This implies that

cosh(1/A2 + adpz) — cosh(A,z)

This estimate implies that

<l Ve € (0,1).

~\ 2 1
H(yk):r - (yk)x”(o,l) 5 |)\k’2 (3.4.27)
Similarly, we can prove that
A Ml <
— Akl . 3.4.28
H kYK kka(O,l) ~ |)\k‘2 ( )

The estimates (3.4.27) and (3.4.28) yield

> o=l s X s D<o

|k|>N |k|>N |k|>N

In conclusion, according to Theorem 1.2.8, the root vectors of A, form a Riesz basis
of X.

Similar to (3.3.25), we conclude the proof of Theorem 3.2.3 for all a« € R, b &
{=1,0, 1} such that —g — Rtanh™! % < 0 since the high frequencies are situated to

the left of the imaginary axis.
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3.4.5.1 Further Comments

Theorem 1.2.8 improves Bari’'s Theorem as it shows that we can neglect any
information concerning the low frequencies. However, in the sequel, as we are inter-
ested in studying the behavior of the eigenvalues, we give an additional analysis to
show that indeed the root vectors corresponding to the low eigenvalues of A, are in
bijection with those of Ag.

For the low frequency modes (|k| < N), we fix a sufficiently large rectangle T'
which includes all the low frequencies of A, for all a’ between zero and a and whose
edges do not contain any eigenvalue of A, for any a’ between zero and a. This choice
of the rectangle is possible by the following arguments. First for the horizontal edges

we notice that, by (3.4.12), the horizontal lines

Yy = —%tanh_l 1 :l: M

2 5 , for |ko| > N

are free of eigenvalues of A, for all |a’| < |a| if N is large enough (depending on a).

For an upper vertical line, by Theorem 3.4.7, any eigenvalue \ of A, satisfies
1
RN < —%tanhfl(g) + ||| B]|.
Hence, the vertical line
1
xr =1— Rtanh (3) + |a||| B||

does not contain any eigenvalues of A, for all |a/| < |al.

Finally, for the lower vertical line, for a fixed a, we denote by
m(a) = min{RA : A € 0(A,)},
that is clearly finite. We now show that for a fixed a, we have
I:= |a;1|1%f|a|m(a') > —00.
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Indeed, if it would be false, then we would find a sequence (ay,)neny with |a,| < |a
for all n and such that

m(a,) — —o0 as n — 0. (3.4.29)

Up to a subsequence, still denoted by (a,)nen, (@n)neny converges to some a' €
[—|al, |a|]. Furthermore, there exists m € N such that for all n > m, there exists an

eigenvalue )\, € 0(A,,) such that
m(a,) = R\,.

Indeed, if we assume that for all m € N, there exists n,, > m such that for all

A€ o(A,,,). m(an,) # R, then necessarily m(an,,) = —%= — Rtanh™" ; which is

Qny,
impossible since in this case, as m — +o0, m(a,,,) tends to —% —Rtanh™' 1 which
is finite and this contradicts (3.4.29). Therefore, there exists m € N such that for

all n > m, there exists an eigenvalue \, € o(A4,,) such that
RN, — —0o0 as n — 0o.

At this stage we can apply (3.4.12) to A\, and by taking the real part of this identity
we find

2

a 1 a anb 1 1
A\, = —— — Rtanh™ ! = Bt — — — . 3.4.30
i 5 I tan b+(8+2(1—62))%)\n+0()\n) ( )

Here above o (/\i) depends on a, but it is easy to see that

1
O(A—>—>Oasn—>oo.

because the sequence a, is bounded. Passing to the limit in (3.4.30), we find that
the left-hand side tends to —oo while the right-hand side tends to —%' — Rtanh ™ %

which is a contradiction.
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Accordingly, the line
r=—-14+1

does not contain any eigenvalues of A, for all |a/| < |al.
Having chosen I', we define the operator

Pd) = 1 jg(g — Ag)7ldE. (3.4.31)

©2mi
According to Theorem II1.6.17 of [46] or Theorem XIL.5 of [68], the above operator
is a projection (called eigenprojection) and its range is the set of the generalized
eigenspace corresponding to the eigenvalues of A, inside I'. Besides, we remark that
Ay is closed for any a'.
In the sequel, we prove that the mapping F' defined by F(a’) = dim(P(a’)X) for

all @’ between zero and « is continuous.

Lemma 3.4.9. Fiz ay between zero and a and let & € p(Aq,) NI. Then & € p(Ay)

for any a' near ag and
(E—Ay) ™t = (6= A, asd — ag.

Proof: Without loss of generality, assume that ay = 0 and let £ € p(A4g) NT". We
have

E—Apy=E6—Ay—adB=(6£— A —d(€— Ay B

Since a’ — 0, then we can choose a’' such that ||a’(§¢ — Ag)™'B|| < 1 and hence
I—d' (£ — Ay)~'B is invertible. Consequently, £ — A, is invertible which implies that
¢ € p(Ay) and as @’ — 0,

H(§ - Aa’)_l (S AO)_IHE(X) < ”(I B a’(f B AU)_lB)_l o ]Hﬁ(X) ||(§ o AO)_lHE(X) — 0.
[

Now, we recall a result of Kato and Rellich, see the Lemma in page 14 of |68|.
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Lemma 3.4.10. If P and Q are two (not necessarily orthogonal) projections in a

Hilbert space H and dim(PH) # dim(QH ), then |P — Q|| > 1.

Lemma 3.4.9 shows that P(a’) is a continuous function of @’ while the above

Lemma shows that the mapping
{Q € L(X); Q is a projection} — N : Q — dim(QX)

is continuous. Therefore, the mapping o’ — P(d’) — dim(P(a’)X) is continuous
and hence dim(P(a’)X) is constant for every a’ between zero and a. Knowing that
the eigenvalues of Ay inside I' are of finite multiplicity, then we get dim P(a)X =
dim P(0)X. Therefore, we conclude that the number of eigenvalues of A, is equal to
the number of eigenvalues of A inside I' with the same total number of multiplicity.
Consequently, the root vectors corresponding to the eigenvalues of A, inside I' are

in bijection with those of Ag.

3.5 Proof of Theorem 3.2.4

In this section, we consider the case b € (—1,0) and a > —2tanh™~' b. We prove
that all the eigenvalues of A, are situated to the left of the axis © = —% — Rtanh ™! % =
—g — tanh™' b. Consequently, in the case a > —2tanh™' b, by the arguments of the
previous section, we immediately deduce that problem (3.1.2) is exponentially stable

in X. In the case a = —2tanh™' b, due to (3.4.12) no exponential decay can be ex-

pected but we will show in the last section that a polynomial decay is available.

Lemma 3.5.1. If b € (—1,0) and a > —2tanh™'b, then any eigenvalue \ of A,
satisfies

RN < —g — tanh~'b.
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Proof: Recall that from Remark 3.4.1 any eigenvalue A of A, satisfies X\ > —g
(since by our assumptions b < 0 and a > 0).
First, according to the characteristic equation (3.4.8), we can write
u
A= — . 3.9.1
btanhu ( )
where u = VA% 4 a\. Using the identity tanhu = ;‘L%, with 2z = €2, (3.5.1) is
equivalent to
1
A= —@ with z = e?*.
b(z—1)
Substituting this identity into u? = A\* + a\ yields u = ¢(z), where
C1 Cy
—abl el — _
g(Z) “ (CO Z+b1 Z‘l‘bg) '
1 1 1 1+0 1-0b
ithcy = ——=,c = = ——,b = ——, and b, = ——. Replaci
withcy = 75, a1 (1—b)2’62 e T And by = 7 - Replacing

2 by €%, we obtain

u=ab <co a = ) . (3.5.2)

- 62u+b1 - 62u+b2
Remark that for b € (—1,0), 0 < by < 1 < by. Note further that the case e*+b; =0
1

(resp. €"+by = 0) cannot hold ; indeed, we then have tanh u = § (resp. tanhu = —7)

and therefore, by (3.5.1), A = —u (resp. A = u) which yields
A =N+ al,

and hence X\ = 0. This is impossible since 0 is not an eigenvalue of A,.

Writing u = U 44V, with U,V € R, we can suppose that U > 0 and V' > 0 since
the complex eigenvalues appear in conjugate pairs. Indeed, u?> = A2 + a) implies
that y(2x +a) = 2UV where A =z +iy. As z > —g so if y > 0 then U and V have
the same sign. Otherwise, we choose A = x — iy to get U > 0 and V > 0.

In a first step, we prove that

1
U==Ru< nsz = —tanh™'b. (3.5.3)
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For this aim, by setting for j = 1, 2,

1 b 1 1
¥ = 5 @D, = §tanh (u - 5111 bj) : (3.5.4)

we notice that (3.5.2) implies that

ab

Simple calculations show that
w2 inh(2U — In b,
RS, = 9= sinh(2U — Inb;) (3.5.6)

- 2l + b2 2(cos(2V) + cosh(2U — Inb;))’

Hence, by the property 0 < b; < 1, we directly see that R>; > 0.

Inb
Now if we suppose that (3.5.3) does not hold, then U > % > 0 and by (3.5.6),

we get Ry > 0. But from (3.5.5) and this property, we deduce that

ab

Uz?)‘Elel_b2

(%21 + %22) < 0,

which is a contradiction. Hence (3.5.3) holds.
In a second step, we check that U # 0. Indeed if U = 0, then A € R since by

(3.5.1) we find out that
Vv
A= Tty (3:5.7)

with V' € R\ {0} (because A = 0 and A\ = —a are not eigenvalues of A,) such that
VA2 +a\ =iV,

Hence, we see that

—at @ —AV?

A= 9

that is always non positive. This is in contradiction with (3.5.7) because its right-

hand side is positive.
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In a third step, we show that the eigenvalues of A, are situated to the left of the

b
Substituting (3.5.2) into (3.5.1), we find, after simple calculations, that

1
axis —g — Rtanh™ ' = = _% — tanh ™' b.

a ab

Aha i gyl

S — B). (3.5.8)

Hence, summing (3.5.8) with (3.5.5) and subtracting (3.5.8) with (3.5.5), we obtain

1 b —1
Y, = —— - 5.
1 2b+ ) (A —u), (3.5.9)
1 1 —b?
Yo = — A . 5.1
2 2b+ 5ab (A +u) (3.5.10)

Now coming back to (3.5.6), we can write (note that RE; £ 0, thanks to (3.5.3))

sinh(2U — Inb;)
2RY;

cos(2V) = —cosh(2U — Inb;) + , for j=1,2.
This implies that
R, ( sinh(2U —In by ) —2R%,; cosh(2U —In bl)) _ ( sinh(20 —In by) — 2R, cosh (20U —In bg)).

Using (3.5.9) and (3.5.10), we get, again after simple calculations, the following

’

relation between z = R\ and U = Ru :
2% ko sinh(2U) + xky sinh(2U) + ho(U) = 0, (3.5.11)
where ky = 4b(b — 1)(1 + b) > 0, k; = 2ab(b* — 3) > 0, and
ho(U) = —2b ((a® — 2U* 4 2b*U?) sinh(2U) + 2abU cosh(2U)) .
As by the second step, U # 0, we can divide (3.5.11) by sinh(2U) and find
kow® + kyx + ko(U) = 0, (3.5.12)

where
. ho(U) B 2 2 2772
ko(U) = T 2b (a 20° + 2b°U* + 2ab
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It turns out that ko(U) > 0 for 0 < U < —tanh™'b since ko is a non increasing
function on (0,00) and ko(—tanh™'b) > 0. As the coefficients in (3.5.12) are all
positive, x = R\ has to be negative. In fact, (3.5.12) yields two distinct roots x4 (U)
given by

—ky + k% — Akoko (U
z4(U) = ! \/21k2 2ol ),

such that z_(U) < x,(U). Again as kg is a non increasing function on (0, 00) and

recalling (3.5.3), we get

k4 /K — dkoko(— tanh ! D)
2k (3.5.13)
= —g — tanh ™' b.

v (U)<z,(U) <z, (—tanh ') =

Remark 3.5.2. Increasing the order of the asymptotic development of the large
eigenvalues, we find that for some N > 0 large enough and for every k € Z* such
that |k| > N

a T c C 1
)‘k :—§—tanh é—l—lk”ﬂ'—i-x—i—ﬁ—i—O(ﬁ) 1 i 1
_a 1 . ic c a 1 c
_—a—tanh g—i-’l]{]ﬂ'—g— ]{;271'2 §—|—tanh g) — ]{;27]'2 +O<ﬁ),
a? ab _ o a? b(b* — 3) a
where ¢ = 3 + m and ¢ = 3 ((1 — (14 b — 5) We can check that,

in case a > 0 and b € (—1,0), the large eigenvalues approach the aris x = 5

1
Rtanh™* 7= —g — tanh™ b from the left. Indeed, when a > 0 and b € (—1,0) we

can prove that

. ic c a 1 c
R (zlm s e (5 + tanh 5) — k;27r2)

1 1
=5 (c (% + Rtanh™! g) + 6) <0.
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3.6 Polynomial Stability of problem (3.1.2) and Proof
of Theorem 3.2.5

We end up by proving the polynomial stability of problem (3.1.2) in the case
b € (—1,0) and @ = —2tanh™'b. By Lemma 3.5.1, the spectrum of A, is at the
left of the imaginary axis, but approaches this axis. Hence, the decay of the energy
depends on the way the large eigenvalues approach this axis. Therefore, we need to
precise the asymptotic behavior (3.4.12). Again we use the splitting (3.4.26) of the
spectrum of A, into the small and large eigenvalue.

As before, using Taylor expansion for every k € Z* with |k| > N, \; is simple

and is given by

_a T ic c a 1 ¢ 1
>\k = —5 — tanh 6 + Zk’ﬂ' — E — k271'2 (5 + tanh g) — k27'('2 —+ o0 (ﬁ),
a? ab . a? b(b? — 3) a\ .. 1
where ¢ = §+mandc: 3 ((1—b)2(1+b)2 — 5).Smcea: —2tanh™ " b,
taking the real part of this expression, we find that
¢ 1

Note that we can prove that ¢ > 0 for every b € (—1,0) and a = —2tanh™ ' b.

If my, denotes the multiplicity of A, for every ¢« =1, ..., M, then we denote by
{{apkhj}g&_l}f‘il U {¢k}k>n the Riesz basis of X formed of the normalized root
vectors of A, (recall that my, is one or two). Hence, if we write the initial datum

U(0) in this basis

M g1
UO) =D > YiiPrg + D WPrs (3.6.2)
=1 j=0 |k|>N

then the solution U(t) is given by
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Therefore, for ¢ > 0 and § = 2—02, by (3.6.1) we get
T

mk —1

( ) - 2||U< )HQ < Z 2Rt Z h/kuj
_I_ Z 2§R)\kt|’yk|2

mk —1

M
§ 2R, t

j=0

|k|>N
mk -1
26
S WS 0
=1 |k|>N
m —1
_ 1 M Mk, , ,
N Z Z ko |” + Zk |V
i=1 j=0 |k|>N
_ Ty,
~Y t )
because
k?
izt S V> 0keN.

In the last step above we also use the equivalence

M My —1
10O Iban = IUOI% + 14UO) 15 = > > bl + Y Kl
i=1 j=0 |k|>N

mkf

that follows from the Riesz basis property of {{er,;} ;20 2L, U {@k}ksn- Indeed,

by (3.6.2), we may write

M Mk —1
Z)\k Vi 0Pk;,0 + Z Z Vr g Ak Phi g + Phij—1) Z VAR Pk
i= 1 j=1 |k|>N
= Z)\k Vri,0Pki0 Z)\k Vi, —1Pkimy, —1 T Z%l,ﬂ%,o
=1
M M —2
+Z Z (Vi Ak F Vhijt1) Prsg + Z VAR Pk
= |k|>N
M ™M, —2
- Z)‘k f}/kumk —130k1,mk -1+ Z Z ’Ykz,])\k + ’Ykz,j—H Pk j + Z 'Yk)\k@k
=1 j=0 |k|>N
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As {{goki,j}?:’“{l}f\il U {©k }kj>n is a Riesz basis of X, we get

M mki—l
WO = Y P+ > Il
i=1  j=0 |k|>N
M Mg, —2
AT ()] =~ Z|>\k Vkism, f? +Z Z | Vi Ak +”quj+1’ + Z ROARILE
=1 j=0 |k|>N
These equivalences directly yield
M M~
IO 2D I%,j P Rl

i=1 j=0 |k|>N
while the converse estimate follows from the fact that the set of "small" eigenvalues

is bounded.
Remark 3.6.1. Ifb e (—1,0) and a = —2tanh ' b, then, given U(0) = (ug,u1)" €
D(A?) for some n € N*, we get

sty < 10Oy

~Y tn

(3.6.4)

Consequently, the more reqular the initial data is chosen, the faster is the rate of

polynomial decay.

Proof: As before we can show that

M mki—l
1U(0) 11 ) Z [ERAOIFESS N PR EET N b
i=1 =0 k>N

Now, as in (3.6.3), we have

my, —1

< Zeﬂ?)\kt Z h/k“j

+ Z e,

|k|>N

and since

k
€i2<t—n Vt>0,k€N*,

we obtain (3.6.4). n
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3.7 Open questions

The critical value of o found in Theorem 3.3.8, a3 ~ —0.2823, for which problem
(3.1.1) becomes exponentially stable for v > «3 shows that the result given by
the perturbation theory of contractive semigroups is not optimal. However, as the
numerical result yields a wider range of this critical value, a > as where ay >~ —0.77,
the question of the optimality of « appearing in (3.1.1) remains an open problem.

As for the second problem (3.1.2), necessary and sufficient conditions are found
so that (3.1.2) is exponentially or polynomially stable. Optimal results are attained
for b € (—1,0). If b < —1, then the question of the stability becomes an open
question. Furthermore, the analysis done for problem (3.1.2) can be well adapted to

study the stability of the solution of

U (2, 1) — Uy (2, 1) + u + auy(x, t) = 0, re (0,1),t>0,
uz(0,1) = bous(0,1), u.(1,t) = —buy(1,1), t >0,
u(z,0) = up(x), u(x,0) = uy (z),

where bby < 0 and a € R.
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Chapitre 4

Exponential stability of the wave
equation on a star shaped network

with indefinite sign damping

4.1 Introduction

As in [2], for N > 2, we consider the following wave equation on a star shaped
network :

7

i (7, 8) = g, (2, 1) + 20(x)uy (2, 1)
u'(0,t) =u/(0,t), Vi#j,

N
Zu;(o, t) =0,
i=1

u'(z,0) =uh(z), z€(0,L),
1

0, ze(0,L;), t>0,ie{l,-- N},
0,
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Chapter 4 Star shaped network with indefinite sign damping

where L; € R}, and a; € W1>(0, L;). This system models the vibrations of a group
N

of strings attached at one extremity. The Kirchoff law Zui(o, t) = 0 follows from
i=1
the principle of stationary action [53,59].

The main goal of this work is to study the stability of system (.S7) but also to
give more precise results when we replace in the system the damping coefficients
a;(x) by ea;(x), where the parameter € is positive and small enough. In this case, we
will denote this modified system by (S.) and we only need that a; € L*>(0, L;) for
allie {1,---,N}.

Using observability inequalities, the stability of the wave equations over a net-
work with positive damping coefficients has been studied in [60]. In the case of one
interval, the stability of a wave equation with an indefinite sign damping coefficient
has been studied in [1,28,30,51,54,57|, where it was found that the stability of the
wave equation is related to the mean of the damping coefficient. In this chapter, as
in [2|, using spectral analysis, we find (sufficient) conditions on the damping coef-
ficients to get the exponential stability of (S51) and (S). In fact, we find necessary
and sufficient conditions for which () is exponentially stable up to a finite dimen-
sional space. The idea is inspired from [65] where the characteristic equation of (.51)
is approximated by another one using the shooting method. This approximation
allows us to determine the behavior of the high frequencies and hence to deduce
the conditions on the damping coefficients {a;}~, for which the high frequencies
are situated to the left of the imaginary axis. In a second step, we prove that the
generalized root vectors form a Riesz basis with parentheses and then deduce the
exponential stability of (S7) up to a finite dimensional space generated by the roots
vectors corresponding to the low frequencies. Note that the shooting method in [23]
based on the ansatz of Horn in [41] and used to analyze the high frequencies can-

not be easily adapted to our problem as long as the solution in [23| is written in
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a power series form with unknown coefficients. On the other hand, when {a;}¥,

is replaced by {ea;}}¥; with the parameter e small enough, we search for sufficient
conditions for which (S;) is exponentially stable in the whole energy space. In this
case, we note that the positivity of the mean of the damping coefficients in addition
to another condition are required (see Theorem 4.1.4 below). In fact, for € > 0 small
enough, unlike [23|, we deal with multiple eigenvalues. Note that the study of the
exponential stability of (S,) enters in the framework of the abstract theory done
in [51]. Using the concepts introduced in [46] about the behavior of the spectrum,
we shall interpret the hypothesis imposed in |51] to find explicit conditions on the

damping coefficients for which (S,) is exponentially stable.

Throughout this chapter, we make the following hypothesis on the geometry of

the domain :

(H) There exists ¢ € N* such that for all i = 2,--- | N, there exists p; € N* for
which L; = 2L,
q

In applications, the above hypothesis is more realistic. From a mathematical point of
view, this above hypothesis is considered since otherwise when some of the lengths
take irrational values, then we can find examples for which numerically we see that
the spectrum is not structured (for instance there is no asymptotes) and an infinite
number of eigenvalues are situated to the right of the imaginary axis (see Figure
4.1). Moreover, hypothesis (H) allows us to find an equivalent and algebraic form of

the approximated characteristic equation (see Lemma 4.3.7).

This chapter is divided into three main parts. In the first part, we prove the

following theorem :

Theorem 4.1.1. Under the hypothesis (H), system (S1) is exponentially stable up
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to a finite dimensional space if and only if the roots of the polynomial G defined by

N N
G(Z) = Z (efOLi ai(x)dzzpz‘ +e fOLi ai(z)d$> H (efOLk ak(m)dlzpk e fOLk ak(x)dx>
i=1 ki k=1
(4.1.1)

are inside the unitary open disk.

If N = 2, then according to Theorem 4.1.1, system (.S7) is exponentially stable

up to a finite dimensional space if and only if

Ll L2
/ ai(x)dx —i—/ as(x)dz > 0.
0 0

Clearly this condition depends only on fOLi a;(x)dzx, hence for N > 3, we may state

the following conjecture :

Conjecture 4.1.2. Although the degree of the polynomial G depends on the lengths

L;, and the coefficients are functions of the parameters a; and L; for alli =1,--- | N,
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the fact that the roots of G' are inside the open unitary disk depends only on the values

L;
of/ a;(x)dx for alli=1,--- | N (see the examples of Section 4.7).
0

Remark 4.1.3. If N =2, a1 =1, a0 =a € R, and Ly = Ly = 1, then we recover
the result of Theorem 1.1 of [1] which states that (Sy) is exponentially stable up
to a finite dimensional space if and only if o > —1. Indeed, in this case, G(z) =
2e!t22 — 2717 and hence G(2) = 0 yields |z| = e~ F®). Therefore, by Theorem
4.1.1 above, (S1) is exponentially stable up to a finite dimensional space if and only

if a > —1.

In the second part, we consider system (S.) with € > 0 and prove the following

theorem :

Theorem 4.1.4. Under the hypothesis (H), when a;(x) = a; € R and L; =1 for all
i=1,--- N, there exists ¢g > 0 such that, for all € € (0,¢p), (Se) is exponentially
stable if one of the following two conditions holds :
(i) There exists at most one jo € {1,---, N} such that aj, =0 and a; > 0 for
all i # jo.

(ii) There exists only one negative damping coefficient a;, such that a; > 0 for
N N
1
all i # 1, a; >0, and — < 0.

Remark 4.1.5. If N = 2, then we recover the result of Theorem 2.1 of [30] when
the damping coefficient is piecewise constant. However, in this case, Theorem 4.1.J

yields the result of [30] without the assumption on the integrals I defined in [30].

Finally, in the third part, we look at some concrete examples of networks and
specific values of a;.

In the whole chapter, we shall use the notation A < B (resp. A = O(B)) for the
existence of a positive constant ¢ > 0 independent of A and B such that A < ¢B

(resp. |A| < ¢|B|) and for shortness we will write ||.|[o for ||.||zec(0,2,)-
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4.2 Formulation of the problem

We start by determining the suitable functional setting of system (S7). If u is a
regular solution of (S5;), then the energy of (.S;) is formally given by

1 = b L2 L |2
=52 [ e
i=1
and
Z [ awipar

Since the signs of the a; are not spemﬁed, the decay of the energy is not guaranteed.
N

As an energy space, let H =V x H where H = HLz(O, L;) and

i=1

N
Vo= {U = (u17 T 7uN>T € HHl(Ole)v ul<0) = uj(o) Vi # ju
i=1
and v'(L;) =0, Vi=1,--- ,N}.
The Hilbert space H is endowed with the inner product
< ()" (f.9)" >= Z/ (s FE + v W) T, (F.9)T

Define the operator A : D(A) — H by

D(A) = {(u,v)T €V xV; ue [[H0, L) and > ui(0) = 0} ,

i=1 i=1

and for all (u,v)" € D(A)

with Agw = (O‘iafw")fil for a = (ai)f\il = HZN:1 L>®(0,L;) and w = (wi)f\il c
Hi\il H*(0, L;), for k =0 or 2.
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If u is a sufficiently smooth solution of (S}), then U = (u,u;)" € H satisfies the

first order evolution equation

Ut :AU,

(4.2.1)
U(O) = (uo, Ul)T.

Using standard semigroup theory, we get the following theorem on the existence,

uniqueness, and regularity of the solution of (.5}).

Theorem 4.2.1. The operator A generates a Cy semigroup on H and hence pro-
blem (4.2.1) admits a unique solution which implies that (Sy) is well-posed. Mo-
reover, if U(0) € H, then U € C°([0,400); H) and if U(0) € D (A), then U €
CH([0,+00); H) N CO([0, +00); D (A)).

Proof: The well-posedness of (4.2.1) follows from the fact that the operator A is a
bounded perturbation of a skew adjoint operator (see Theorem II1.1.1 of [62]), hence
it generates a strongly continuous semigroup on H. The regularity results are then

a direct consequence of Theorem 1.2.4 of [62]. n

Remark 4.2.2. Since D (A) is compactly embedded in the energy space H, the

spectrum o (A) is discrete and the eigenvalues of A have a finite algebraic multiplicity.

4.3 High frequencies

In this section, we shall determine the asymptotic behavior of the eigenvalues of
the operator A. For this aim, we will adapt the shooting method to our system.

Let A be an eigenvalue of A and U = (y, z) be an associated eigenfunction. Then,
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z= Ay and, forall: =1,--- | N, we have

yi, — 2a;(x) Ayt — Nyt = 0, z € (0, L),
v(0) = 4(0), Vi#j (4.3.1)
N .
> yi(0) = 0.
\ =1

It is easy to see that A = 0 is not an eigenvalue of A.

Remark 4.3.1. We have
RA <2 m illoo } - 4.3.2
RN Z,G{L?}}’(N}{Ha [; ( )

Indeed, if we multiply the first identity of (4.3.1) by ¢’ and then integrate by

parts, we get

)‘22/ |y [*da + 2)\2/ a;(x)]y'[Pdx + Z/ |yt |?dz = 0.
i=1 70 i—1 Y0 i—1 Y0

Hence, we have

-3 [l rde )}
i=1 Y0
A= ~ o ,
Z/ 'z
=1 0

with
) = (i [ <>yd) - (i [ |y;|2dx) (i [ |yi|2dw>

and deduce the estimate (4.3.2) by distinguishing the case r(y) > 0 or not.
Now, we start by searching for the characteristic equation using the shooting

method. In order to adapt the shooting method to problem (4.3.1), we first consider
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the the following separated initial value problems : for all i = 1,---, N, let y¢ and

yé be the solution of

, 1
W) = 1, (433)

Yi.(0) = 0.
yi(0) = 0, (4.3.4)

Yo, (0) = L
The initial conditions are chosen such that the solutions y{ and 3’ are linearly

independent. Hence, 3, the solution of (4.3.1), can be written as y* = c;y} + a;ys,

where a;,¢; € C. By the continuity condition at zero, we get ¢; = ¢ for all i =

1,---, N, hence

y'(7) = ey (@) + (o). (4.3.5)
N N

Moreover, from the transmission condition, Zy;((]) = 0, we have Zai = 0 and
i=1 i=1

from the boundary condition, y* (L;) = 0, we get

yi (L1)  y3 (Lq) 0 0 0 c
y% (L2) 0 ?J% (L2) 0 0 o1
: 0 0 0 a
1 =o.
0 0 0
yt' (Ly) 0 0 w5 (Ln)
0 1 1 1 1 an

Hence a non-zero eigenvector exists if and only if the determinant of the above

matrix vanishes, or after some elementary calculations if and only if

Y =Yy (L) ] vh(z)=0. (4.3.6)

Ik 1=1
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Recall that G is defined by (4.1.1) and set d := degree G, the degree of G. Then
let rje?i,1 < j < d be the roots of G repeated according to their multiplicity.

Without loss of generality we can suppose that the ¢; are non decreasing, namely

Now we can state the following main result :

Theorem 4.3.2. There exists ko € N such that for all j =1,--- ,d and all k € Z
such that |k| > ko, the operator A has an eigenvalue X, such that

q q q
)\j,k = 2_Ll lOg ] + 22—[/1(,0]' + Zkﬂ'L—l —+ Ok(l), (437)

where oy(1) — 0 as |k| — oo. Moreover the set o(A) \ Upjsk, U=y Ajk s compact.
Therefore, if rj < 1, for all j = 1,--- ,d, then the large eigenvalues of A are situated

to the left of the imaginary axis.

Corollary 4.3.3. There exists { € N and oy > 0 such that for all k € N with

k > ko, we have

S(A ke — Aak) = o,

S(M,—k — Ad—k—e) > Q.

This corollary shows that we can group the eigenvalues of A by packets made
of a finite number of eigenvalues and in such a way that the packets remain at
a positive distance to each other (see section 4.4 below). Namely for any r > 0,
we can introduce the sets G,(r),p € Z as the connected components of the set
Uxeo(a)Da(r) (where Dy(r) is the disc with center A and radius r), as well as the
packets of eigenvalues A,(r) = G,(r) No(A).

Before we prove Theorem 4.3.2, we search for an approximation of the characte-
ristic equation (4.3.6) for all A large enough. For this aim, the next lemma gives an

estimation of 3! and g} for alli =1,---, N.
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Lemma 4.3.4. Fori=1,--- N and X € o(A) large enough, we have

A 1 . 1
1 00 S IRVE d 5 [ee] S N
Proof: First, fori = 1,--- | N and X € o(A), we consider the homogenous equation
Ha(T) = N2i(x) = 0, z€(0,L),

0 = 1
4.0 = 0

, 1
which yields z}(z) = Xcosh()\:c). Hence, for large enough A, Remark 4.3.1 yields

, 1
|2t c0 S —. Now, by the variation of constants formula, we find that
1 ~ |A|

yi(z) = 2i(z) + 2/: sinh (A\(x — 5)) a;(s)y’(s)ds,Vx € (0, L;).

Therefore, by the integral form of Gronwall’s Lemma, we get
\yi(m)| < \zi(x)H—Q/ [|z}(s)H sinh (A(z — s)) a;(s)| exp (2/ | sinh(A(x — r))ai(r)|d7“>} ds.
0 s

, 1
The above inequality and Remark 4.3.1 imply that, for A large enough, ||9}]|c < o

. o1
A similar estimate for g is obtained by introducing 2 = " sinh (Az), the solution

of
2oy (1) = N25(x) = 0, x€(0,Ly),

%(0) = 0,
2 =1,
. - 1
and using that ||z4|. < o for A large enough. u
Next, we find suitable approximations for 3 and 3 for i = 1,--- | N. For this

aim we define over (0, L;), the function
0'(z) = \x +/ a;(s)ds,Vx € (0, L;),
0
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and the functions v} and v} as linear combination of sinh #*(z) and cosh ¢*(x) such
that v¢ satisfies the initial conditions in (4.3.3) and v} satisfies those in (4.3.4). Note
that, for |A| > M with M > max|/a;(.)|/c, we have

7

A 1 , A 1 A
vi(z) = 3 cosh@'(z), and vy(x)= a0 sinh ' (z),Vx € (0, L;).

Note that the functions v} and v} depend on .

Lemma 4.3.5. For alli=1,--- /N and \ € o(A) large enough, we have

i i 1 i i 1
||”1 - ylHOO S W and HU2 - yzHoo S W

Proof: For i = 1,--- N and ¢' € H*(0, L;), define the function L'(p") = ! —
2a;\p" — A2¢". Then, for all x € (0, L;), we have

L' (vi(z)) = aix)f:v) sinh 0 (x) + (al()\m)) cosh 0'(z),

and

L (@) = )\af—c(j()()) sinh 0" (z) + % cosh 0 ().

Therefore, by Remark 4.3.1, we get that for A large enough

1

[l s g and LD S o7

Since we have

vl = 2a; 08 — N2t = Li(vh),
UiI(O) = 0,
) 1
Ui (0) = X’

by the variation of constants formula, we get for all z € (0, L;)

mwzm@+AEwwgﬂw@u&
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Therefore, by Lemma 4.3.4, we have

. ) 1
Jot = sl i

Similarly, for all x € (0, L;), we have

which implies that

. . 1
ot = il % 1y

Now, we can find an approximation of the characteristic equation (4.3.6) from

which we deduce the behavior of the high frequencies. For this aim, we introduce

N N
V() = va (L) H vh (Ly)
k=1 £k 1=1
and
N N N N
F(A) = A" cosh 6" (\)] [ sinh 6 (), (4.3.8)
k=1 1#k

-~ Ly
where, for z € C, 0(2) = 2L, +/ ay(s)ds, forall [ =1,---  N.
0

Proposition 4.3.6. For A\ € o(A) large enough, we have the following estimate

1

Y )= F O£

(4.3.9)

Proof: Let X\ be a large eigenvalue of A. The estimates in Lemmas 4.3.4 and 4.3.5
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imply that
[Y(A) = V(N
N N N
= Z(ylf (Li) [T b (L) —of (L) J] & (Lz)>‘
k=1 I#k,l=1 l;ékl 1
N
- Z(%(Lk H Y LZ+ZU1 (L) (H Yo (Ln) — H vy (L)
k=1 I#k,l=1 I#k,l=1 I#k,l=1
< L
~ A
(4.3.10)
On the other hand, we readily check that
N N 1
V) - 1x cosh 6% (Ly) [ [ sinh 6'(Ly)| < S (4.3.11)
k=1 I#k
Hence, by (4.3.10) and (4.3.11), we get (4.3.9) since 6%(L;) = 5’“()\) u

Estimation (4.3.9) suggests to apply Rouché’s Theorem. Therefore, we are first
interested in the roots of F' that will be expressed in terms of the roots of the

polynomial G given in (4.1.1).

2L
Lemma 4.3.7. v € C is a root of F' if and only if 2 = e eV is a root of the

polynomial G defined in (4.1.1). Consequently, if v = x+1y is a root of F' and r;e'#i
q

5L, —p; + er L for some

s a root of G for 1 < j < d, then x = ilogrj and y =
2L1 Ll

keZ.

Proof: The proof of Lemma 4.3.7 is based on writing F' in an exponential form and

noting that
NN 4 F(v)

N N
Z <€f0 a;(x d:vzpl +e fO a; a:)dm) H (efo ay(z) dxzpk —e fo ay(z)d :v) )

i=1 ki k=1
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Remark 4.3.8. In the applications, the degree of the polynomial G is high, hence
we use the algorithm given by the transformation of Schur (see [31]) that gives a
criterion that guarantees that the roots of a given polynomial can be outside the

1
closed unitary disk. Therefore, in applications, we use G (—) instead of G(z).
z

Before giving the proof of Theorem 4.3.2, we show that Y has the same number of
roots as F' in a well chosen domain. Knowing that o < R\ < 3 where X is an eigen-

1
value of A, we consider the rectangle R; with vertices oz—i—zigpj +1lk—= Wi,
’ 2L1 2 Ll
q

q 1 1 1

—; k+ - k— = d k+ - )m—
a+22L1g0J+z( —|—2) ,ﬁ—l—zQL goj—i—z( 2> oo ,an B+Z2L <pj—|—z< —|—2>7TL1
where we recall that rje w;) j=1,---,d, are the roots of G.

Proposition 4.3.9. There exists ko > 0 such that for all |k| > ko and z € OR;,
Y (2) — F(2)| < |F(2)]. (4.3.12)

Proof: Let z € OR;, and |k| > k¢ for some ko > 0 large enough. Similar to (4.3.9),
we can show that there exists C' > 0 such that

C

‘Z’NJrl

Y (z) - F(2)] <

Therefore, in order to complete the proof, it is enough to show that for z € OR;

<
2]

N N

Fy(z) = Zcosh 5’“(2)1—[ sinh 6! (z). (4.3.13)

k=1 14k

< [Fo(2)],

where

We remark that |Fp| is iWLi periodic, hence, r%}%n |Fo(2)| = my; is independent of
1 2€0N; k

k. Moreover, for ky > 1, there exists C > 0 such that for |k| > ko and z € OR;j, we

have
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Choosing kj large enough, we deduce that

£<—<m
2| ||

and the proof follows. [ ]

Proof: of Theorem 4.3.2 We shall prove that the large eigenvalues of A are
asymptotically close to the roots of F.
First Lemma 4.3.7 yields that all the roots of F' are given by

Zjk = L logr; + ZQL ©; + zkan—l
forall1 <j<d, keZ.
Let 0 < p < mjin{ 2i[/1g0j +m g 2L1 log r; } so that B(z;y, p) contains only

one root of F. From Proposition 4.3.6, in order to prove that |Y(z) — F(2)| < |F(z)|

C
7l < |Fy(z)| where Fy was defined by

for 2 € 0B(zjy, p), it is enough to show that —
(4.3.13).
Let hjr(p) = min |Fy(z)|. Since |Fpl is ir-L periodic, then h;(p) is inde-
ZGaB(Zj’k,p) Ll
pendent of k; i.e., hjr(p) = hjo(p) = h;(p). We denote by h(p) = 121‘121 h;(p). It is
)=
clear that h(p) > 0 and h(p) — 0 as p — 0. Therefore, there exists ko > 0 such that

for |k| > ko, |C’ < ’—i’ < h(p). Consequently, we define p; by

C
Pk = mln {m < h(p )} (4.3.14)

We notice that pp — O as |k| — +oo. Therefore, for every [k| > ko and z €

C
O0B(%j i, pr), we have ﬂ < — T < h(pr) < |Fo(2)].
By Rouché’s Theorem, we conclude that Y and F' have the same roots inside
B(%;k, pr)- As Proposition 4.3.9 and again the application of Rouché’s theorem imply

that Y and F has the same number of roots in R, forall j =1,--- ,d and |k| > ko,
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we deduce that all eigenvalues of A in R;, are inside B(zjy, pi). This completes the

proof since Ujy>k, 21 covers the possible set of large eigenvalues of A. [

Remark 4.3.10. Using Taylor expansion in p, we find that h(p) = O(p™) for some
ng € N*. Therefore, according to the definition of py in (4.3.14), we conclude that

C =
Pr = — for some C' > 0. Consequently, there exists some kg € N* large enough
|| o
such that

q q q 1
N = —logr; +1——p; +1kt— + O Ykl > ko.
dk = gp 08T G @ T ART <|]{;|nlo)7 k1> ko

4.4 Riesz basis with parentheses of H and sine-type
functions

In this section, we first prove that the root vectors of A form a Riesz basis with

parentheses of H. A direct consequence of Theorem 1.3.2 concerns our operator A :

Proposition 4.4.1. The family of root vectors of A forms a Riesz basis with pa-
rentheses of H, which means that the statements of Theorem 1.3.2 are valid for

1A.

Proof: It suffices to apply Theorem 1.3.2 with the choice

‘ 0 A9 [0 0
T=1 and B =1
A2 A0 0 A2,
that clearly satisfies the assumptions of Theorem 1.3.2. ]

Another consequence of the previous results is that the packet A, can be splitted

up into subpackets, namely there exists N, € N* with [V, < N such that
N,
Ap = szpl{)‘p,j}a
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where each \,; € 0(A) are different and of multiplicity m,, ; (uniformly bounded in

p) and therefore
Np
]P)pf - Z Pp,jfy
j=1
with

1
2T

Yp.j

Vp,; being a contour surrounding A, ; and small enough so that only the eigenvalue
Ap; of A is inside 7, ;.
In the next section, we also need to show that Y defined in (4.3.6) is a sine-type

function in the following sense :

Definition 4.4.2. Let f be an entire complex valued function. f is said to be of
sine-type if
(a) There exists | > 0 such that for all z € C, |f(z)| < el
(b) The zeros of f lie in a strip {z € C; |Rz| < ¢} for some ¢ > 0.
(¢) There exist constants c1,co > 0 and xo € R such that for, all y € R, ¢; <
| f(zo +iy)| < ca.

The class of sine-type functions is used to deal with problems of the Riesz ba-
sis property of the complex exponentials in L?(0,T) space, with T" > 0. When f
is a sine-type function, then we can write the explicit expression of f as f(z) =

lim (1 — i), where {Xk}kez is the set of zeros of f (see [8]). If Xk =0,
R—>+OO|X <R /\k
k>

z
then we replace the term (1 — X_) by z.
k
In our problem, we remark that the function F' defined in the approximated
characteristic equation (4.3.8) is a sine-type function. In order to deduce the same

property for Y defined in (4.3.6), we recall a Corollary of Section 2 of [11] :
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z
Lemma 4.4.3. Given S(z) = Rlim <1 — X_) a sine-type function, where
—+00
IARI<R F

{Netrez is the set of zeros of S(z). Then So(z) = lim H (1 = ) is also
R—H—oo'XkKR )\k + wkz

a sine-type function if {1y }rez € P, for some p > 1.

Lemma 4.4.4. Y defined in (4.5.6) is sine-type, or equivalently the eigenvalues of

A are the zeros of a sine-type function.

Proof: According to Theorem 4.3.2 and Remark 4.3.10, the large eigenvalues A are

close to the ones of F' with a remainder {1y }xez such that

¢k:O< 11>a
|| 7o

for |k| > ko that then belongs to ¢"*?, m

4.5 Exponential stability of (S1) and proof of Theo-
rem 4.1.1

Taking advantage of the fact that the root vectors of A form a Riesz basis with
parenthesis of H, our aim is now to prove that problem (.S;) is exponentially stable
up to a finite dimensional space.

For our proof we recall the following lemma that can be found in Lemma 3.1

of [39].

Lemma 4.5.1. Let H be a separable Hilbert space. Suppose that {e,(t)}nes forms a
Riesz basis for the closed subspace spanned by itself in L*(0,T), T > 0. Then for any
o(t) = Zen(lf)gf)n € L*(0,T; H), there exist two positive constants C,(T), Co(T)

neJ
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such that
CUT)Y Nnlltr < Il Feomm < Co(T)D lbnllfr

neJ neJ
To apply the above lemma, we need to search for a Riesz basis in L?*(0,T'). Since
the eigenvalues are not necessary simple, the family {e*!},cz does not form a Riesz
basis in L?(0,T) for any T' > 0. However, as o(A) is a discrete union of separated and

finite sets, hence we can use the family of generalized divided differences (see |9,39]).

Definition 4.5.2. Let M € N* be fized and let vy, k = 1,--- , M, be arbitrary
complex numbers, not necessarily distinct. Then the generalized divided differences
(denoted by GDD) of order m =0,--- , M — 1 are defined by recurrence as follows :
the GDD of order zero is defined as [v1](t) = €', the GDD of order m—1,1 < m <
M s defined as

ey V1] (8) = [0, 03, -+, o] (¢
[v1, V2. V=1 (F) — [v2, v v ]()7 .
[0171}27"' 7Um](t> = a U1 — Um
%[Uav%"' 7Um—1](t> |v:v1 s U1 = Uy

An equivalent expression is given by
1 rm Tm—2
[’Ul, Vo, ,Um]<t) = tm1/ / / €t(v1+ﬁ(U27U1)+'"+Tm_1(Umivm_l))dTmfl...dTQdTl.
o Jo 0
Hence, if Rv,, < Rv,,—1 < ... < Roq, then for all t > 0
[v1, Va...y U] (£)] <t LRI (4.5.1)

Now as some v; can be repeated, we write {vy,vo, -, vy} = {wy, we,- -+, w,}

such that w; # w; for all 1 <4, j < n such that ¢ # j. Supposing that each w; is

repeated n; times, i.e, an = M, then we can recall Proposition 3.1 of [39] which

j=1
shows that for any 1 < k < ny, tF=le®!, [ = 1,--- ,n is a linear combination of
(1] (@), [V, v2](#), <+ s [vr, 02, -+ ] (2)-
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n g
Proposition 4.5.3. Any (t) = ZewitZaijti’l with a;; € H can be rewritten as
=1 =1
M
p(t) = ZGi[Ul'U% T vv%](t)7
i=1

with some G; € H, in particular G{ = Zalj.
j=1

If we go back to our problem, for every p € Z, we construct the family of GDD

of the form

Ep(t) - {P‘p,l](t)’ [)‘p717 /\p,2]7 Ty P‘p,h /\p,27 T ’/\ILMpKt)} ,

associated with the set A, 1,---, A, n, but the eigenvalues being repeated according
NP

to their multiplicity (and consequently M, = » . m,, ;).
Proposition 4.5.4. There exists T > 0 such that the family of GDD {E,(t)}pez

forms a Riesz basis for the closed subspace spanned by itself in L*(0,T).

Proof: According to Lemma 4.4.4, the eigenvalues of A are roots of a sine-type
function. Hence, the proof becomes a direct consequence of Theorem 3 of [10]| where
T > 0 is chosen large enough (note also that a sine-type function automatically
satisfies the Helson-Szego condition due to its equivalent form (condition ( As) page

2 in |9]) and the condition (c) in our definition 4.4.2). u

Proof: of Theorem 4.1.1. Given an initial datum U(0) € #, by Proposition

4.4.1, it can be written as

U©0)=> > P, (U(0)),

pEZ j=1
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where we recall that Py, denotes the Riesz projection of A corresponding to the

eigenvalue ), ;, then, for any ¢ > 0, we have

D.J>

Mp,j

etAU ZZ p.j Z A Z j\plj = 1IP> (U(O))

per il (4.5.2)

mpJ

BRI 2 ot

pEZ j=1

(A=)
(i—1)

where a;;, = Py, (U(0)). By Proposition 4.5.3, we get

MP
U 0) =YY Grilhpa, Apase -+ Al (1) (4.5.3)

pEZ =1

Lemma 4.5.1 and Proposition 4.5.4 yield for some 7" > 0

Mp T
2
>3 1Gul S [ v a

PEZ i=1

By the semigroup property, we know that there are C,w > 0 such that for all t > 0
e ey < Ce.

Therefore, the previous estimate becomes

Mp 02
D X lGyilli S 5 (e =D U3 (4.5.4)
peEZ =1

Finally, since the root vectors of A form a Riesz basis with parenthesis of H, then

by (4.5.1), (4.5.3), and (4.5.4) we get for t > 1

W = >

PEZL

> ey Q“PtZIIGpZIIH,

PEZL

M,
e U0 ZGP,Z.[A,,J, Ap2s s Apal (1) (4.5.5)

H

AN
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where p, = maxi<j<n, %A, ;.
Now, by Theorem 4.3.2, we know that if the roots of the polynomial G are in
the open unit disk, then there exists ;4 < 0 and py € N such that

tp < < 0,V|p| > po.

Hence by (4.5.5), we deduce the exponential stability of problem (S;) up to the
finite dimensional space spanned by the roots vectors of A corresponding to the

eigenvalues \, ; such that |p| < po. The proof of Theorem 4.1.1 is complete. [

4.6 Exponential stability of (S.) for small values of
¢ and proof of Theorem 4.1.4

In this section, we consider constant damping coefficients and equal lengths L; =
1, for all ¢+ = 1,---, N. Without loss of generality we can assume that the a; are
non decreasing, i.e., a; < ay < --- < ay. In the sequel, we replace the damping
coefficients a; by ea;, where the parameter € is positive. Our goal is to find sufficient
conditions for which (S) is exponentially stable in the whole energy space for every
e small enough.

Based on the results of the previous section, it seems enough to find sufficient
conditions on the damping coefficients so that the low eigenvalues have negative real
parts for every e small enough. However, we remark that Rouché’s Theorem used
in the proof of Theorem 4.3.2 yields a constant ky dependent of € (mainly of order
%) Consequently, it seems difficult to separate the large eigenvalues from the low
eigenvalues uniformly in e for all e small enough.

As previously mentioned, the exponential stability of (S¢) has been studied in [51]

under some abstract hypothesis. Consequently, our aim is to interpret the hypothesis
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from [51| to find explicit conditions on the damping coefficients. Our strategy is
based on the asymptotic behavior of the spectrum of the generator A = A(e) as a
function of €. In the sequel, we use some notations from [46] and we refer the reader
to this book for the exact definitions. First, we notice that the generator A = A(e)
is holomorphic of type (A) in the parameter € in the sense of (2.1) of chapter VII.2
in [46]. Indeed, we simply have

Ae) = A(0) + eB,

where A(0) is a skewadjoint operator and B is a bounded selfadjoint operator defi-

ned by

A(0) = 0 A and B = o0
A2 0 0 A%,

Since A(0) is a skew adjoint operator with a compact resolvent, there is an
orthonormal system of eigenvectors of A(0) which is complete in H. The eigenvalues
of A(0) are Ay 4(0) = z(lm—i—g) with multiplicity one, for all k € Z, and Ay ;(0) = k7
with geometric and algebraic multiplicity N — 1, for all £ € Z*. For shortness we
write {Ai(0)}rez = {0k}, cpn U {z(lmr + g)}keZ and we set my, the multiplity of
Ak(0) (hence my =1 or my, = N — 1).

Now according to Section VII.2.4 in [46], there exists €5 > 0 such that for all
€ € (0,€6), A(e) has exactly my eigenvalues (algebraic multiplicity counted) in
B(A(0), p), with p > 0 fixed small enough. This set of eigenvalues is called the
Ak(0)-group eigenvalues of A(e€) generated by the splitting from the common eigen-
value A\, (0) of the unperturbed operator A(0) (see page 74 in [46]). Consequently as
e increases, a splitting of the eigenvalues may occur and the eigenvalues of A(e) can

go to the left or to the right of the imaginary axis (or both). Hence, our aim is to
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find some sufficient conditions for which each A\ (0)-group is strictly to the left of
the imaginary axis.
For further use, for € € (0, ¢p) and all k € Z, the A\, (0)-group eigenvalues of A(e)
will be denoted by {A;(€)}72;.
In a first step, consider I'y , a positively-oriented circle around A, (0) with radius

p < % such that A\, (0) is isolated. For ¢ € 'y ,, we denote by R(¢) = (A(0) — ).

The following lemma gives a uniform estimate of ||R(()|| for all ¢ € I'y,.
Lemma 4.6.1. For all ( € I'y ,, we have

RO = VCEFM (4.6.1)

Proof: For convenience and for a moment, we rename {i/3; }rez+ the set of eigenva-
lues of A(0) and arrange it in increasing order (i.e ... 01 < By < Bri1...). We denote
by { ¢ }rez the associated system of eigenvectors which forms an orthonormal basis

of H. Let f = ka¢k € H, then by the spectral theorem, for all ( € I';, ,, we can

kezZx
write

01 =Y

keZ*

ﬁ

Since |ify — | = p, for all k € Z*, we deduce that

IRQOAP =3 A2 'f‘“ = AR = I

keZ* Zﬂ keZ*

This proves (4.6.1) by taking f corresponding to one eigenvector associated with the

eigenvalue \;(0). n

Now we characterize the asymptotic behaviour of the real parts of the A(0)-

group eigenvalues of A(e).
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Lemma 4.6.2. There exists ¢, > 0 and ¢ > 0 such that for all € € (0,¢1), all k € Z
and all j =1,--- ,my,

2
Rj(€) < e max py; + ce,
1<j<my

when {5152 denotes the set of eigenvalues of P,(0)BP;(0) and Py (0) denotes the

1
eigenprojection corresponding to Ag(0), i.e., Py(0) = ~57 R(&)dE.
Tip

Proof: Step 1. Let A\.(0) be an eigenvalue of A(0). Define the space M (e) =
Pi(e)H, where Py(e) is the eigenprojection (see (1.16) page 67 of [46]) defined by

Pu(e) = ——— [ (Ale) — o) de.

21 Jr,.,

_ 1 p
Notice that (A(e) — &)~ is well defined for ¢ € T, when € < = .
’ BRI Bl

Indeed, according to (1.13) and (1.14) page 67 of |[46], we have by the second Neu-

mann series for the resolvent

(A(e) =)' = R(&) (1 + eBR(€)) ™" = R()) _(—eBR(E))" = R(§) + Y _"R{" (),
i " 462)

where
R{"(€) = R(€)(~BR(€))". (4.6.3)

Hence the series on the right-hand side of (4.6.2) converges if € < BT (thanks to

Lemma 4.6.1, we notice that the upper bound of ¢ is independent of k£ € Z) and we

get
Pi(e) = Pu(0) + > P,
n=1
1
where P = 5 / R™M(€)d¢ and P = P,(0).
T Jr

k,p
As already said before if € is sufficiently small, the eigenvalues of A(e) lying in

'y, form exactly the A;(0)-group eigenvalues. Therefore, since \;(0) is semisimple
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(since it is an eigenvalue of a skewadjoint operator), then according to the identities

(5.13) and (5.14) of [46, p. 112], the A\x(0)-group eigenvalues of A(e) are of the form
Mg (€) = M(0) + e )(e),  j=1,- ,my, (4.6.4)

where {u,(:])(e) it are the eigenvalues of the operator

~ 6_1

AW (e) = e (A(e) — A(0)Prle) = —— [ (€ = Me(0)) (A(e) — &)1 de, (4.6.5)

2mi Jr,.,

in the subspace My(e) = Py(e)H. The second equality in (4.6.5) follows from the
fact that

(A(e) = M(0)) (A(e) =€) =1+ (€ = M(0)) (Ae) =€) "

Step 2. We estimate the difference between ﬁlgl)(e) and Py (0)BP;(0). According
to the identity (2.16) page 77 of [46], we have

(A(e) = Ae(0) Pe(e) = (A(0) — Ap(0) P(0) + Y _e" ALY, (4.6.6)
where
AP = 1yt [ REBREOE - M) (467

in particular (see (2.19) page 77 of [46])
AW — P (0)BP;(0). (4.6.8)

Since A\x(0) is semisimple, then A(0)P(0) = A\x(0)Px(0). Thus (4.6.6) implies that

o0

Zil)(e) = Ze”;ﬁfnﬂ).

n=0
On the other hand, from (4.6.7) and Lemma 4.6.1, we have for all n > 1

— Bln
gy < 121

1
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Therefore, for € small enough, there exists ¢ > 0 independent of k£ such that

1B
() — AV B Bl (€
A () — AL H<§ P 1_:”3” < ce. (4.6.9)
p

Step 3. We compare the eigenvalues {,u,(glj)(e) i of A )(¢) with the eigenva-
lues of A Py(0)BP,(0). Consider ,u,(:])(e) and gbk’j(e) an associated normalized

eigenvector, then
1 1 1
b (€1 (6) = iy ()i (6)-

From (4.6.9), we have
e 1 ~(1) (1
|47 ()01 (6) = Ao (e)ll < ce.
Thus, by Cauchy-Schwarz’s inequality, we have
(1) (1) A (1) (1)
| < 1, (€)0y 5 (€) — Ay oy s(€), by, 5(€) > | < ce,

or equivalently

|N1(¢1])( )— A(l)ﬁb(l)( ), ¢(J)(€) > | < ce.

Therefore,
R(uhy(0)) << A 01(6), 0)(6) > +ee,
or
R(pg) () < Jax g+ ce.
We conclude by using this estimate and (4.6.4). n

According to Lemma 4.6.2, to prove that the spectrum of A(e) is situated to the
left of the imaginary axis for ¢ > 0 small enough, we have to prove that, for every
k € 7Z, the eigenvalues of A Py(0)BP,(0) are strictly to the left of the imaginary

axis independently of k& € Z and € > 0. In fact, the hypothesis imposed in [51] to get
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the exponential stability of (S¢) can be interpreted as a condition on the negativity
of the eigenvalues of P;(0)BP;(0). Therefore, our aim in the next two lemmas is to
find the eigenvalues of P;(0)BP;(0) and to investigate the conditions for which their

real parts are negative independently of k € Z and € > 0.

Lemma 4.6.3. If uy o denotes the eigenvalue of Py,(0)BP(0), where Py(0) is the ei-

1
genprojection corresponding to A\,(0) = z(/mr—i-g), with k € Z, then pyo = —NZai.
i=1

Proof: We recall that A\,(0) = «(km + g) is simple for all k& € Z. Some elementary

calculations show that the associated normalized eigenvector is of the form

(u,v)",

~ VN
sinh (A

where, for all x € (0,1) and i = 1,--- | N, w;(z) = l;\ 0
k

sinh (A;(0)(1 — x)). For any ¢ € H, we find that

Pk(O)BPk =% (Z az) w ¢0 ®o,

N
1
hence ¢y is the eigenvector of P;(0)BP;(0) of eigenvalue N Z a;. n
i=1
Lemma 4.6.4. If {,ukyj}é\f:_ll denotes the set of eigenvalues of Py(0)BP;(0), where
Py(0) is the eigenprojection corresponding to Ap(0) = km, with k € Z*, then
{,ukd-}év:_ll is the set of zeros of the polynomial Q) defined by

~IN-1 N-1
Qz)=(z+a))(z+an ZH z 4 ) +H z4+a)(2z+ a1 +ay)  (4.6.10)
1=2 1#i =2
1=2

Proof: First, we notice that, for all £ € Z*, A\;(0) = kx is of multiplicity N — 1
N

and that the associated eigenvectors are of the form (u,v)" where, for i =1,---
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and x € (O,l)a ul(x) = 12;

N

(a;)Y, € CV such that Zai = 0. As a basis of the subspace P;(0)H, we can choose
i=1

the system of eigenvectors {gb(i)}i:lw.w_l corresponding to the choice

(km(1 —2)) and v;(z) = aysin (kn(1 — x)) with a =

o) — (1,-1,0--- ’0)’04(2) =(1,0,-1,0---,0),--- LoD =(1,0,---,0,—1).

N—-1
Therefore, for all i = 1,--- N — 1, Py(0)BP:(0)¢) = > ayo™ where ay € C.

k=1
Moreover, for all 4,5 =1,--- /N — 1,

(P(0)BPL(0)6), 69)) = (Bo, 67 Zam

Hence, P;(0)BP;(0) = TG™', where I' = ((B¢",¢1))),; and G is the Gramian
matrix defined by G = ((¢V, ¢()}); ;. But some elementary calculations yield

—a; — a2 —a —ap - —a
—a —ap—az —ap - —
I =
—ay
- —a Tt Tar —ap —an
and
2 1 1 1
1 2 1 1
G =
1
1 1 1 2
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Since
N -1 —1 —1 —1
1 - -1
—1 N—-1 -1 —1
1 1 1 1
G =— =I-— ,
N N
—1
1 - o1
—1 —1 -1 N-1
we get
P(0)BP;(0)
—ay — (N —1)ay —ay + ap —ay + ap E —ay + ap
—aq + as —a1 — (N — 1)&3 —a + as —ay -+ as
1
- N
—a1+aN —a1+aN —a1+aN —al—(N—l)aN

Therefore, {1 }é\f:_ll are the roots of the characteristic polynomial det (21 — P, (0) BP;(0))

or equivalently

2+ ay 0 —Zz—ay
0 z+az O —z—an
Q(z) = det : 0
0 0 z4an_1 —zZ —an
z4+a1 z4+a -+ z4+a 2z24a; +ay

Developing with respect to the last line, we find (4.6.10). [

Before going on let us notice that the above lemmas show that the eigenvalues
ti,j of P(0)BP;(0) are independent of k. In the first case we directly find a condition

on the damping coefficients to have p o < 0, for the second case we need that the
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roots of () are negative. For this aim, we first localize the roots of (). Before doing
so let us introduce the following notation : as the a; are not necessarily different, we
denote by M < N the number of different a;’s and denote by {b;}}L, the set of the

different coefficients in increasing order, which means that

{6375 = {aidily,

and

by < by < -+ < by.

Further for all j = 1,--- M, denote by k; the number of repeated values of b; in

the initial set of coefficients a;, namely
by = #{i € {1, N} :b; = a;)

Lemma 4.6.5. If Q is the polynomial defined by (4.6.10), then its has N — 1 real

roots pi, i =1,--+ N — 1, in [—ay, —a1] such that
—Yi+1 <MJ < —bj,\V/]:l, JM_]‘7
the other roots are —b; of multiplicity k; — 1, for all j =1,--- , M such that k; > 2.

Proof: We first notice that

Q(-a;) = [ [(a - ay).

i

-

N

Hence we see that —a; is a root of () if and only if there exists at least one ¢ # i
such that a; = a,. But for a complex number p such that p & {—a;}Y |, we notice

that

Q) = [T +a) (Zuia> (4.6.11)

=1 i=1
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Therefore p & {—a;}Y | is a root of Q if and only if

A=Y ——=0

o M

As @ has vertical asymptotes u = —b;, for all j = 1,..., M and is a decreasing
function on (—b;41, —b;), for all j =1,--- .M — 1 (see Figure 4.2 for the graph of
@ when N =M =4, a; = -2, ay =2, a3 =3, ag = 4), we deduce that @) has one
and only one real root between two consecutive vertical asymptotes.

Now for j =1,--- , M such that k; > 2, we take ;1 # —b; but close to it and use

the expression (4.6.11) to find that

k; 1
Qp) = o+ ap) (p -+ ;)% . 4.6.12
( ) &gbj( l)( ]) lH‘bj an b, W+ a; ( )
= (uAo) I (et a) (ki+ (+0) D (4.6.13)

a.
C:ap#b; i:a;#b; T ai

Since [T,.q, 2, (1+ar) (kj + (1 +05) D, W%g) is holomorphic in a neighborhood
of —b;, we deduce that —b; is a root of ) of multiplicity k; — 1. [ ]

Corollary 4.6.6. The polynomial Q) defined by (4.6.10) has negative roots if and

only if one of the following two conditions is satisfied :
(i) a1 >0 and a; > 0, for alli=2,--- N,

(i1)) a3 <0, a; >0, foralli=2,--- N and

Proof: According to the previous lemma, if —by > 0, then ) has a positive root,

hence by has to be positive. Now if b; = a; is positive, all roots are trivially negative.
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FIGURE 4.2 -N=4,a1 = —2,a9 =2,a3 =3,a4 = 4

On the other hand, if by < 0 with k; > 1, then ) has a non negative root —b;. Hence
k1 has to be equal to 1. This covers the first item. For the second item, we have
by < 0 with k& = 1 and therefore again according to the previous lemma, () has a

root p (or equivalently @) between —as < 0 and —a; > 0 that potentially could be

positive, but since QNQ is decreasing on (—ag, —ay) the condition

iy}
0) = — <0
Q) =3
=1
is a necessary and sufficient condition to get p < 0. [

Summing up the results of Lemmas 4.6.2, 4.6.3, and Corollary 4.6.6, we give the

proof of Theorem 4.1.4.

Proof: of Theorem 4.1.4 : According to Lemma 4.6.2, if max max [ip; =
S J=Lyymg
—C' < 0, then there exists €5 > 0 such that for all € € (0,¢), and all k € Z,

RAi(€) < —Se. Using Lemmas 4.6.3 and Corollary 4.6.6, this is satisfied if either
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one of the two conditions is satisfied :
(i) ag > 0and a; > 0, for all i =2,--- | N,

(i) a3 <0,a; >0, forall i =2,--- /N and

N N 4
i >0 11 — < 0.
;a as well as Z-Zlai

Since the root vectors of A(e) form a Riesz basis with parenthesis (see Proposition
4.4.1), we deduce the exponential stability of the solution of (.S,) for all € € (0, ¢)

under one of the conditions (i) or (ii) stated above. u

N
Remark 4.6.7. (i) Owing to Lemma 4.6.3 and Corollary 4.6.6, if Zai <0 or
i=1
if Q has a positive root, then (S.) is unstable for all € > 0 small enough.
N

(i) If Zai =0 or if QQ has a root equal to zero, then the exponential stability

of (S ) for e > 0 small enough is an open question. For example, in the case
1
N=3,a,=ay=1, and as = 5 Figure 4.6 shows that there are eigenvalues

to the right of the imaginary axis when ¢ = 0.1.

Remark 4.6.8. The previous analysis can be adapted to the case when a; € L*(0,1)
and L; =1 for alli=1,--- | N. As before we can prove that the solution of (S.) is
exponentially stable for all € € (0,€y) for e > 0 small enough if there exists co > 0
and c¢; > 0 such that for all k € Z, one of the following two conditions holds :

(a) 1There exists at most one jo € {1,1' -+, N} such that

/ ajo(x) sin®(kmw(1 — z))dz = 0, / a;(z)sin®(kr(1 — x))dx > ¢ for all i # jo

0 0
and Z/ ) sin?((kr + 2)(1 —z))dx > c.
(b) There exists only one iy € {1,--- N} such that
1 |
/ ai, (z) sin®(km(1—z))dx < 0, / ai(z)sin®(kr(1 —z))dz > co for all i # iy,

0 0
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N
Z/ a;(x) sin®((kr + g)(l —x))dx > ¢y, and

N

Z 1 ! < —C.
=1 /0 a;(z)sin®(kn (1 — z))dx

Indeed, the results of Lemma 4.6.2 still hold. Lemma 4.6.3 also holds but in

N
2
this case, for all k € Z, pyo = —NZ:/O a;(z) sin®((km + g)(l — x))dz. Similarly,
in Lemma 4.6.4, we can repeat the same analysis and find that, for all £ € Z*,

{um}jv:’ll is the set of zeros of

—1N-1 N-1
Q(z) = (z+ 1) z+INZH s+ 1)+ [[(e+ 1)@z + I+ Iy),
1=2 1#i =2

=2

1

where foralli=1,--- /N, [, = 2/ i(x) sin?(kn(1 — x))dx (which here depends on
0

k). As Lemma 4.6.5 can be used for Q, we find the same results but with a; replaced

by I; for all i = 1,--- , N. Therefore, thanks to Lemma 4.6.2 and under one of the

conditions (a) or (b) stated above, we deduce the existence of C' > 0 such that for

all k € Z, R\(€) < —eC for all € € (0, ).

4.7 Examples

In order to illustrate our general results we present some concrete examples where
we can give explicit conditions on the damping coefficients to get exponential decay
(up to a finite-dimensional space) for both problems (.S7) and (Se). In the first case,
this is reduced to the calculation of the roots of the polynomial G defined by (4.1.1),
in the second one since the conditions from Theorem 4.1.4 are easy to check, we
concentrate on a limit case (see Remark 4.6.7) and on the characterization of the

limit values of € for which the global stability is lost.
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4.7.1 Examples for (5))

We consider (S;) with three edges (N = 3) of length L, = 1 and a;(.) €
1 1 1

Whe(0,1) such that / ai(x)dx = / as(x)dxr =1 and / as(z)dr = a < 0. Using
0 0 0

Theorem 4.1.1, we will find the critical value of « for which (57) is exponentially

stable up to a finite dimensional space. Indeed, for this example, the polynomial G

is given by
G(z) = 3e*92% — (2™ +2e%)2? — (721 +2e )z + 3e 27,

The roots of G are given by

21 —e 7,
—2 —2« —2—2«
Zo = SRR Vet + el 4 342120
26 2 6 2 26
e e ™ __a\/ 4 1 plo | 346242
Z3 ——— + + e e .
G 6 6

Recall that according to Theorem 4.1.1, (S;) is exponentially stable up to a finite
dimensional space if and only if |z;| < 1 for all i = 1,2, 3. Hence we need to analyze
the behavior of the z; with respect to . Clearly z; < 1 is independent of «, while
the two other ones depend on a. For 29, we easily check that zo < 0 is an increasing
function of o with oél_i}moozg = —3e¢ 3 > —1. Hence, —1 < 2z, < 0 for all & < 0. Next,
we notice that |zo||z3] = e7272% So, if a < —1, then |2y||23| > 1 which means that
|z3| > 1. Therefore, to get the exponential stability of (S;), we must have o > —1.
In this case, z3 is a decreasing function of a and for oy = 3 In (fi—;;) we get
z3 > 1ifa < apand 0 < 23 < 1if @ > ap. In conclusion, (S7) is exponentially
stable up to a finite dimensional space if and only if a € («y,0].

As a second example, we still take three edges, but consider L; = Ly, = 1 and

1 1 2

Ls = 2 with / aj(x)dx = / as(x)dr = 1 and / az(x)dr = «. With this choice,
0 0 0

the polynomial G is given by

G(z) = (ez — e ')p(2).
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where

p(z) = el o3 4 e ltay2 _plma, _ ge-l-a

As the roots of the first factor is e=2 < 1, we only have to consider the roots of the
second factor p. Let z; = z;(«) for i = 1,2,3 be the roots of p and define ¢(«) =
max |z;(«)|. With the help of a formal computation software (Mathematica), we

i€{1,2,3}
can find the roots z;(«) for i = 1,2, 3 as well as p(«).

0.6 -

021

-1.0 -0.8 -0.6 -0.4 =02

1 1 2
FIGURE 4.3 — Graph of p(a) — 1 when / ay(x)dx = / as(x)dx =1, / az(x)dx =
0 0 0

Q.

1 3+ é?
The explicit form of ¢ allows to check that when o > ap = = 1In re
2 1+ 3e?
then p(a) < 1 (see Figure 4.3). Hence (5) is exponentially stable up to a finite
dimensional space if and only if o € (a, 0].
1
The same study can be done when changing L3, namely by taking L3 = 5 or
L3 = 3 and we surprisingly obtain the same critical value ag of « so that (5) is

exponentially stable up to a finite dimensional space. Moreover, if we choose L; = 1

1 2
and Ly = 2 such that / ai(x)dr = / as(x)dx = 1, then for Ly = 1 or L3 = 2,
0 0

2 1+ 3e?
stability of (S7) up to a finite dimensional space. Furthermore, if we change the

: : . 1 3+ ¢? :
we still obtain the same condition, a > ap = = In ( ) to get the exponential

222



Chapter 4 Star shaped network with indefinite sign damping

out[10]= F
0.5F

710 708 706 \

1 1
FIGURE 4.4 — Graph of ¢(a) — 1 when / ai(x)dr =1, / as(x)dr =2, Ly = 2.
0 0

1 1

mean values, by considering L; = Ly = 1, but / ai(x)dxr =1 and / as(x)dx = 2,
0 0

then whether L3 = 1 or L3 = 2, we still obtain the same critical value «a; with

0.45 < ay < 0.46 such that (S7) is exponentially stable up to a finite dimensional

space if and only if & > o (see Figure 4.4).

L
In conclusion, we find that the critical value of o depends on / ay(z)dz and
0

Lo
/ as(x)dx and not on the choice of the lengths. This opens the question whether
0
the abstract condition given in Theorem 4.1.1 can be expressed explicitly in terms

L;
of/ a;(z)dx for all i € {1,---, N}, see Conjecture 4.1.2.
0

4.7.2 Examples for problem (5;)

We start with a limit case in Theorem 4.1.4, namely we take N =3, a; = as =1,

1
as = —5 and L; = Ly = L3 = 1. Hence neither the first condition holds nor the
N N
second one since Zzl a u ; m
But Lemma 4.6.2 yields that for all ¢ > 0 small enough, the eigenvalues are of
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the form
Mi(e) = —e+ikm+o(e),
Xai(€) = 1km+ o(e),
€ 2k + 1)
Asp(€) = —=+ zg + o(e),
2 2
Hence the problem of stability would come from X;;(€) but a more precise
3
asymptotic analysis yields Ry x(e) = % + o(€®), hence the problem is not ex-

ponentially stable for ¢ small. Figure 4.6 shows the existence of a positive asymp-
tote when € = 0.1, since the asymptotes are 1 = —0.1, zo ~ —0.0500833, and
x3 ~ 0.000083333 .

Note that for e = 1, then by Theorem 4.1.1 there is a positive asymptote, since
the asymptotes are 1 = —1, 25 & —0.580322, and x3 ~ 0.0803219 (see Figure 4.5).

. ° 20; o
L] o : L]
L] L L]

L]
° 10F o

. I
L] L]

L]
L] L]

Out[34]= L L \. L L L L L

-1.0 -0.8 e —0.6 -0.4 -0.2 L 0.2
L] L L]
L] ° r L]

L] L
L] ~10- L]

e L
L] L]

. i
L] L L]

L] L
. . a0l °
L] + L[]

L]
L] L]

1

FIGURE 4.5 a1 =ay=1, a3 = 5 e=1.

In general, if we consider a; = ay = a and a3 # a, then according to Theorem
4.1.4, the problem becomes exponentially stable for all € small enough if one of the

following two conditions holds :
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¢ L]
° 20
L]
L]
L]
o L]
o ° 10
o L]
L]
L]
L I I I L I I I L I .\ L I I I L I
—-0.10 —-0.08 —0.06 ° —0.04 -0.02
¢ L]
¢ L]
° o -10
L]
o [ ]
° . 20
L]
L]
1
FIGURE 4.6 —a; =ay =1, a3 = 5 e=0.1.

(i) a>0and a3 >0

(ii) @ > 0 and a3 < 0 such that 2a + a3 > 0 and a + 2a3 > 0.

These results are coherent with the numerical results shown in Figure 4.9 with
ap = ay = 1, az = 1 and ¢ = 1—10 where the asymptotes (z; = —0.1, zo ~
—0.0166184, and x3 ~ —0.0583816) are to the left of the imaginary axis. If we
increase € and take ¢ = 1, then Figure 4.7 still shows the exponential stability in
the whole energy space where the asymptotes are r1 = —1, x5 =~ —0.630695, and
r3 ~ —0.119305. But for € = 1.5, then Figure 4.8 shows the exponential stability up
to a finite dimensional space. Indeed, the asymptotes found in Figure 4.8 are z; =
—1.5, x9 = —1.02451, and 23 ~ —0.100488 which show that the large eigenvalues
are to the left of the imaginary axis although there are some low eigenvalues with
positive real parts. In fact, in the case ay = ay = 1, a3 = —}1, all the eigenvalues

are to the left of the imaginary axis for all € < ¢;, where numerically we have found

that 1.30 < ¢y < 1.31.
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FIGURE4.7T—a1 =ay =1, a3 = T e=1.
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Perspective

As a future study, we would like to extend our work about the stability of wave
equations with indefinite sign damping over a multi-dimensional space. For instance,
let Q2 =(—1,1) x (0,1) be partitioned into ; = (0,1) x (0,1) and Qs = (—1,0) x
(0,1). We are interested in studying the stability of the following system

(

utt—Au+a1ut =0 in Ql XR,
utt—Au—i—agut =0 in QQ XR,

u =0 ond) xR,

(4.7.1)

L U($»y70) = Uo, ut(xay70) =u in Qa

where a; > 0 and a, < 0. We write the solution as a Fourier series of the form

u(z,y) = 2Zuk(x) sin(kry), V(z,y) € Q.

Then
Ukt — Ukpe + B2T2uy +a(@)uyy =0 (z,t) € (=1,1) X R,
up(=1,t) =ur(1,t) =0 teR, (4.7.2)
ug(x,0) = uro, uge(x,0) = x € (—1,1),
where a(x) = a1 if x € (0,1) and a(z) = as if € (—1,0). The energy associated
with (4.7.2) is given by
Ey(t) = 1/1 (Jure” + B2 72 ug]® + |ue]?) da.

1
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Using Parseval’s equality, the energy associated with (4.7.1) is given by

Hence,

stable. If v, = -

Blt) = %/Q (IVul? + [u?) do = 3 Ew(t)

Our aim is to find ¢ > 0 independent of k£ and v > 0 such that

Ek (t) S Ce_yktEk(O) .

t) < e e Ey(0)
k=1

If v, > v > 0, then E(t) < ce " E(0) and hence system (4.7.1) is exponentially

1
= for some [ > 0, then

E(t) < ieJEk(O)
S f:——e’j (0
Zk: B, (0

D(AZ)’

where the operator A is the generator of the semigroup associated with system

(4.7.1).

We are also interested in studying both internally and boundary damped pro-

blems of the form

.

u(z,y,0)

U — Au + auy

Uy

= Uy, Ut(ZE, Y, 0)

230
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in €,

(4.7.3)
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where I'y = { = 1} x (0,1) and I'p = 9Q/I"y. We are interested in studying the
stability of (4.7.3) when ab < 0. If @ = 0 and b > 0 or @ > 0 and b = 0, problem
(4.7.3) is polynomially stable and not exponentially stable. Therefore, we expect to
find conditions on a and b for which problem (4.7.3) is polynomially stable.
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Stabilisation et approximation de certains systémes distribués par amortis-

sement dissipatif et de signe indéfini

Dans cette thése, nous étudions 'approximation et la stabilisation de certaines équations
d’évolution, en utilisant la théorie des semi-groups et l'analyse spectrale. Cette theése est
divisée en deux parties principales. Dans la premiére partie, comme dans |3,4], nous consi-
dérons 'approximation des équations d’évolution du deuxiéme ordre modélisant les vibra-
tions de structures élastiques. Il est bien connu que le systéme approchée par éléments finis
ou différences finies n’est pas uniformément exponentiellement ou polynomialement stable
par rapport au paramétre de discrétisation, méme si le systéme continu a cette propriété.
Dans la premiére partie, notre objectif est d’amortir les modes parasites & haute fréquence
en introduisant des termes de viscosité numérique dans le schéma d’approximation. Avec
ces termes de viscosité, nous montrons la décroissance exponentielle ou polynomiale du
schéma discret lorsque le probléme continu a une telle décroissance et quand le spectre de
Popérateur spatial associé au probléme conservatif satisfait la condition du gap générali-
sée. En utilisant le Théoréme de Trotter-Kato, nous montrons la convergence de la solution
discréte vers la solution continue. Quelques exemples sont également présentés.

Dans la deuxiéme partie, comme dans [1,2], nous étudions la stabilisation des équations
des ondes avec amortissement de signe indéterminée. Tout d’abord, nous considérons deux
probléemes des ondes dont les termes d’amortissement peuvent changer de signe. En utili-
sant ’analyse du spectre, on trouve des valeurs critiques des coefficients d’amortissement
pour lesquels le probléme devient exponentiellement ou polynomialement stable jusqu’a
ces valeurs critiques. Ensuite, nous généralisons ’analyse des deux derniers problémes pour
étudier la stabilité des équations des ondes sur un réseau en forme d’étoile en présence de
termes d’amortissement de signe indéterminée. Pour ce probléme, nous constatons que la
condition intuitive sur la positivité de la moyenne ne suffit pas. Que la norme L*° des co-
efficients d’amortissement soit grande ou petite, nous cherchons des conditions suffisantes

sur les coefficients d’amortissement pour lesquels le probléme devient exponentiellement



stable.

Mots-clés : Stabilité, semi-discrétisation, terme de viscosité, gap généralisé, amortisse-
ment de signe indéterminée, comportement asymptotique, base de Riesz, réseau en forme

d’étoile.

Stabilization and approximation of some distributed systems by either dis-

sipative or indefinite sign damping

In this thesis, we study the approximation and stabilization of some evolution equations,
using semigroup theory and some spectral analysis. This Ph.D. thesis is divided into two
main parts. In the first part, as in |3, 4], we consider the approximation of second order
evolution equations modeling the vibrations of elastic structures. It is well known that the
approximated system by finite elements or finite differences is not uniformly exponentially
or polynomially stable with respect to the discretization parameter, even if the continuous
system has this property. Therefore, our goal is to damp the spurious high frequency
modes by introducing numerical viscosity terms in the approximation scheme. With these
viscosity terms, we show the exponential or polynomial decay of the discrete scheme when
the continuous problem has such a decay and when the spectrum of the spatial operator
associated with the undamped problem satisfies the generalized gap condition. By using
the Trotter-Kato Theorem, we further show the convergence of the discrete solution to the

continuous one. Some illustrative examples are also presented.

In the second part, as in [1,2], we study the stabilization of wave equations with inde-
finite sign damping. Here we search for sufficient conditions on the damping coefficients so
that the wave equations are either exponentially or polynomially stable. First, we consider
two damped wave problems which are either internally or boundary damped and for which
the damping terms are allowed to change their sign. Using a careful spectral analysis, we
find critical values of the damping coefficients for which the problem becomes exponentially

or polynomially stable up to these critical values. Afterwards, we generalize the analysis



of the previous two problems to the case of wave equations on a star shaped network in
the presence of indefinite sign damping terms. For this problem, we find that the intuitive
condition on the positivity of the mean is not sufficient. Whether the L* norm of the
damping coefficients is large or small, we search for sufficient conditions on the damping

coefficients for which the problem becomes exponentially stable.

Key words : Stability, semi-discretization, viscosity terms, generalized gap condition,
indefinite sign damping, asymptotic behavior, Riesz basis, star-shaped network.
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Introduction

Control theory can be described as the process of influencing the behavior of
a physical system to achieve a desired goal, primarily through the use of feedback
which monitors the effect of a system and modifies its output. It is applied in a
diverse range of scientific and engineering disciplines such as the reduction of noise,
the vibration of structures like seismic waves and earthquakes, the regulation of
biological systems like human cardiovascular system, the design of robotic systems,

laser control in quantum mechanical and molecular systems.

In this thesis, we implement the semigroup theory in the spirit of spectral theory
to study the approximations and stabilization of some evolution equations. In gene-
ral, stability results are obtained using different methods like the multipliers method,
the frequency domain method, the microlocal analysis, the differential geometry or
a combination of them [47,50,77,78|. In this thesis, we use detailed spectral analysis.
In fact, this thesis is divided into two parts. In the first part, we consider the ap-
proximations of second order evolution equations. Studies and researches have shown
that the approximated system by finite element or finite difference is not uniformly
exponentially or polynomially stable with respect to the discretization parameter
even if the continuous system has this property (see [25,27,43,55,72, 73,76, 78]).
Therefore, our aim in the first part is to search for a suitable discrete system which

approximates the continuous system and most importantly restores the decay rate
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properties of the continuous one. In the presence of the generalized gap condition,
our strategy is based on adding numerical viscosity terms in the approximation

schemes to damp out the effect of the high frequencies.

In the second part, we study the stabilization of wave equations with indefinite
sign damping. Here, we use a detailed spectral analysis to study the behavior of
the spectrum out of which we search for critical values of the damping coefficients
so that the wave equations are either exponentially or polynomially stable. First,
we consider one dimensional internally and boundary damped wave problems and
afterwards we generalize the analysis of indefinite sign damped wave equations to a

star shaped network where we find extra conditions to get stability.

0.1 Outline of the thesis

This thesis is divided into four main chapters. In the first chapter, we recall some

basic definitions and theorems about the semigroup and spectral analysis theories.

In the second chapter, as in [3] and [4], we consider the approximation of linear
equations modeling the vibrations of elastic structures with feedback control. More
precisely, let H be a complex Hilbert space with norm and inner product denoted
respectively by |.|| and (.,.). Let A : D(A) — H be a densely defined self-adjoint
and positive operator with a compact inverse in H. Let V = D(A%) be the domain
of A2. Denote by D(A2)’ the dual space of D(A2) obtained by means of the inner

product in H.

Furthermore, let U be a complex Hilbert space (which will be identified to its

dual space) with norm and inner product denoted respectively by |.||; and (.,.)y

8



TABLE DES MATIERES 0.1 Outline of the thesis

and let B € L(U, H). We consider the closed loop system

W(t) + Aw(t) + BB*(t) = 0, (0.1.1)
w(0) = wo, w(0) = wy,

where ¢ € [0, co) represents the time and w : [0, co) — H is the state of the system.

We define the energy of system (0.1.1) at time ¢ by
L/ 2 1 2
B(t) = 5 (lo@IP + |Atw)|| ).
Simple formal calculations give
t
E0)— E(t) = / (BB*w(s), w(s))ds, Vt>0.
0

This obviously means that the energy is non-increasing. In the second chapter, our
goal is to search for a suitable discrete system which first approximates (0.1.1) and
second has the same stability properties as (0.1.1). However, in many applications,
most of the classical numerical approximation schemes do not possess the same decay
rate as that of the continuous problem although the convergence is preserved. At
the discrete level, spurious high frequency oscillations are generated and therefore
bad behavior of the approximate solution is clearly observed causing a non-uniform
decay rate (see [14,19,20,25,27,33,34,43,55,58,72,73,76,78|). For instance, we start
the second chapter by considering the vibrations of a flexible string joined at each
of its ends. Although the continuous problem is exponentially stable, we show that
the finite difference semi-discrete problem is not uniformly exponentially stable;
i.e., there does not exist constants M and § > 0 independent of the discretization
parameter such that

Ey(t) < Me P as t — +o0,
where Fj,(t) represents the energy of the semi-discrete system.

9
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Several remedies are proposed to restore the uniform decay rate of the discrete
problems like Tychonoff regularization [34, 35,64, 72|, a bi-grid algorithm [32, 58],
a mixed finite element method [14, 19, 20, 33, 56|, or filtering the high frequen-
cies [43,49,76]. As in [64, 72|, we introduce artificial numerical viscosity terms in
the approximation schemes to rule out the high frequency spurious numerical oscil-
lations and hence restore the uniform decay rate of the discrete scheme. However,
contrary to [64] where the standard gap condition is required, we only assume that
the spectrum of the operator A'/? satisfies the generalized gap condition. Indeed, if
{Ak}x>1 denotes the set of eigenvalues of A? counted with their multiplicities, then

we assume that the following generalized gap condition holds :
dM € N*, 3’)/0 >0,Vk >1, >\k+M — A > M~yp.

The standard gap condition is satisfied for the particular case when M = 1. There-
fore, in the second chapter, we treat more general concrete systems.

After recalling the suitable conditions and observability inequalities which lead
to the exponential or the polynomial stability of the solution of problem (0.1.1),
we search for a suitable discrete system which has the same decay properties under
these conditions. For this reason, after finding the suitable discrete system, we use the
discrete result of [52] which gives the necessary and sufficient conditions for which an
approximate solution is exponentially stable. As for the uniform polynomial stability,
we prove a result which gives necessary and sufficient conditions for which a family
of semigroups of operators is uniformly polynomially stable. To our knowledge, our
work in the second chapter is the first one which addresses the uniform polynomial
stability of the discrete schemes.

As for the convergence of the chosen approximate system, we use a general version
of the Trotter-Kato Theorem proved in [45] to show that the discrete solution tends

to the solution of (0.1.1) as the discretization parameter goes to zero and if the

10
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discrete initial data are well chosen. Finally, we end up the second chapter by some
illustrative examples which show the limits of the previous work done concerning
the approximations and values the attained results of the second chapter.

In the third chapter, we move on to another subject which treats the stabilization
of wave equations with indefinite sign damping. As in [1]|, we analyze the stability of
two problems. We consider a one-dimensional wave equation with an indefinite sign

damping and a zero order potential term which is internally damped of the form

utt(x7t) - sz(ﬂi,t) + 2X(0,1)(x)ut<x7t) + 20[)((_1’0) (Q?)Ut(ﬂf, t) = 07 S (_17 1)7 t> 07
u(l,t) =u(—1,t) =0,t >0,

u(z,0) = ug(x), u(z,0) = uy (),
(0.1.2)

where « is a given constant. Besides, we consider a one-dimensional wave equation
with an indefinite sign damping and which is both internally and boundary damped

under the form

Ut (2, 1) — U (2, 1) + aug(z,t) =0, x€(0,1),t >0,
w(0,t) =0, u.(1,t) = —buy(1,1), t >0, (0.1.3)

u(z,0) = ug(x), w(z,0) = uy(x),

where a,b € R.

It is well known that problem (0.1.2) is exponentially stable if the damping
term « is non-negative (see [23|). Similarly, if the coefficients @ and b are both
positive, then, using for instance integral inequalities, one can prove that (0.1.3) is
also exponentially stable. In the third chapter, we are interested in the case when
the damping terms are allowed to change their sign. Our aim is to analyze to what

extent the variation of the sign affects the stability of the problem.

Problem (0.1.2) can be written as a system of the form U; = A,U where U =

11
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(u,u;)" and the operator A, : D(A,) — X is defined by

0 I
d2

7 —2X(0,1) — 20X (~1,0)

where the energy space X = Hj(—1,1) x L?*(—1,1) is equipped with the usual inner
product defined by

< () (o) > (/(fu+gw

and

D(A,) = (H*(—1,1) N Hy(=1,1)) x Hy(—1,1).
In this case, the energy associated with problem (0.1.2), at time t, is given by

5 = 3 [ (st + g 0702

1

with

El(t) = —2 (/01 g (2, 1) [2dz + a/i |ut(x,t)|2dm) . Y(up,u1) € D(Ay).

Therefore, when o < 0, the dissipation of the energy is not trivial. Moreover, the
classical techniques which are normally employed to study the stabilization like
multipliers method, energy and resolvent methods cannot be well invoked in this
case since these methods are based on estimations which involve the absolute value
of the damping coefficients. Therefore, the question of the stability of the solution
of (0.1.2) in the case of @ < 0 becomes more involved.

The main motivation behind this question started with a conjecture in [21] by
Chen et al. who considered the internally indefinite sign damped wave equation of
the form

Uy — Uy + 2a(x)uy =0, x € (0,1), t >0, (0.1.4)

12
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with standard initial conditions and Dirichlet boundary conditions.
It was conjectured that if there exists some + > 0 such that for every n € N the

following condition is satisfied
1
I, = / a(r)sin®(nmz)dr > 7, (0.1.5)
0

then the energy decays exponentially. The hypothesis imposed on the uniform po-
sitivity of I, in (0.1.5) yields the positivity of the average aq of a since I,, — ayg, as
n — +oo. However, Freitas in [28] disproves the conjecture of Chen et al. He shows
that (0.1.5) is not sufficient to guarantee the exponential stability. He finds out that
if ||al/z~ is large then there may exist some positive real eigenvalues (see Theorem
3.6 of [28]). So later on, Freitas and Zuazua in [30]| suggest replacing the function
a(x) in (0.1.4) by ea(z) with € > 0 small enough. In this case, the exponential stabi-
lity is proved under condition (0.1.5) and the additional condition a € L*(0,1)NBV
so that its derivative is defined in the weak sense. Furthermore, in |51], the authors
find an upper bound of € for which the problem becomes exponentially stable under
condition (0.1.5) and the assumption that a € L>°(0, 1) without the need for the as-
sumption that a € BV. On the other hand, in [57], Racke and Rivera have removed
the factor € and considered the wave equation uy; — Uz, + a(z)u; = 0 on (0, L) for
some L > 0 where a € L*(0, L) is allowed to change its sign such that its mean
value ag remains positive. In [57], the exponential stability is proved under one of
these conditions : Either ||a|[z~ is possibly large with sufficiently small |ja — agl| 12
or ||al| L is sufficiently small but the pair (a, L) has to satisfy some estimates where
it is possible to get a negative moment [j.

In the third chapter, our work differs from the previous results since we do not
want to impose neither a small value of the damping factor a nor a small value of
|la — ag||z2. Indeed for system (0.1.2), this mean value is equal to v/2|1 — a| which

we do not need to be sufficiently small. Moreover, the upper bound of € found in |51]

13
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is not easy to check for system (0.1.2).

From the asymptotic behavior of the spectrum of A,, we find that, according
to the value of «, problem (0.1.2) is either unstable or exponentially stable. Using
detailed spectral analysis, we find the characteristic equation satisfied by the eigen-
values of A, and then we show that the root vectors of A, form a Riesz basis of the
energy space. Finally, we find a critical value of a for which the solution of (0.1.2)
becomes exponentially stable. Although the critical value which we find for « is not
optimal, this value remains coherent with that given by the perturbation theory of
semigroups.

In the third chapter, we perform a similar analysis for problem (0.1.3). As usual,
by the standard reduction of order method, we can rewrite formally (0.1.3) in the
simpler form U, = A,U, with U = (u,u;)" and the operator A, : D(A,) — X is
defined by

0 I
A= | (0.1.6)
L —a

where the energy space X = H;(0,1) x L?(0,1) is equipped with the usual inner
product defined by

<(f,9) (o) > / (f'T + gv) do

where H;(0,1) = {u € H*(0,1); u(0) = 0} and therefore, D(A,) = {(u,v)" €
H?(0,1) N Hy(0,1) x Hy(0,1); ugy(1) = —bv(1)}.
The energy of (0.1.3) is given by

1 1
E2<t)—§/0 (Juf? + o) do

and hence formally

1
5(t) = —a/ || ?dx — blug(1)[2.
0
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From this identity, we remark that A, is not necessarily dissipative when ab < 0.
Therefore, we are interested in the case when a and b are of opposite signs. Note that
for such a problem, perturbation theory of contractive semigroups cannot be well
invoked. Using detailed spectral analysis, we find the conditions that a and b must
satisfy so that problem (0.1.3) becomes exponentially or polynomially stable. The
particular case b € (—1,0) and a > 0 retains our attention where we find optimal
results for which (0.1.3) is exponentially or polynomially stable.

Finally in the fourth chapter, as in [2|, we generalize the analysis of the third
chapter to study the exponential stability of the wave equation on a star shaped
network with indefinite sign damping which is of the form

(

ugy (2, 1) =t (2,1) + 2ea;(x)ui(x, 1) =0, z € (0,Li), t >0,
’U/Z(Ll,t) = O,
u'(0,t) =4/ (0,t), Vi#j,

Zui(o, t) =0,
u'(2,0) =up(x), x€(0,L),
ul(z,0) =wui(x), x€(0,L).

\

where L; € R, and a; € WH>(0, L;). We further consider the following hypothesis
on the geometry of the domain :

(H) There exists ¢ € N* such that for all ¢ = 2, ..., N, there exists p; € N* where

Li=21,
q

In the first part of the fourth chapter, we study the stability of system (.S7) when
¢ = 1. We give necessary and sufficient conditions for which system (.S;) becomes
exponentially stable up to a finite dimensional space. The idea is inspired from [65]
where the characteristic equation of (S;) is approximated by another function using

the shooting method. This approximation allows us to detect the behavior of the

15
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high frequencies and hence deduce the conditions on the damping coefficients a; for
which the high frequencies are situated to the left of the imaginary axis. Finally, after
we prove that the generalized root vectors form a Riesz basis with parentheses, we
deduce the exponential stability of (S7) up to a finite dimensional space generated
by the roots vectors of the low frequencies. In the first part, when N = 2, we recover
the result of Theorem 3.2.1 of this thesis.

In the second part, we consider system (S7) with e positive but small enough so
that we extend the results of Freitas and Zuazua in [30] where N = 2. In fact, for
e > 0 small enough, unlike |30|, we deal with multiple eigenvalues when splitting
may occur as € increases. First, we consider a; € R and L; =1 foralli =1,...,. N
and then we consider a; € L*°(0, 1). In fact, when € > 0 small enough, the study of
the exponential stability of (S7) enters in the framework of the abstract theory done
in |51]. Using the concepts introduced in [46] about the behavior of the spectrum,
we shall interpret the hypothesis imposed in [51] to find explicit conditions on the
damping coefficients for which (.S;) is exponentially stable. In the presence of a Riesz
basis with parenthesis, we search for sufficient conditions for which the eigenvalues
are situated strictly to the left of the imaginary axis. We find out that the positivity
of the mean of the damping coefficients is not enough to guarantee the exponential
stability of (S7) in the whole energy space. In this second part, we recover the
result of Theorem 2.1 of [30] when the damping coefficient is piecewise constant but
without the assumption on the positivity of the integrals I,, given in (0.1.5). Finally,

we end up the fourth chapter by giving some concrete examples of {a;}Y, and N.

16
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0.2 Aims and achieved results

For more coherence, we summarize the main goals and the new results attained

in this Ph.D. thesis into the following points :

(i)

(iii)

(vi)

(vii)

Search for a suitable approximate system which converges towards problem
(0.1.1) and has the same decay properties as (0.1.1) in the presence of the

generalized gap condition.

Analyze the polynomial decay of the discrete schemes when the continuous
problem has such a decay and prove a result about uniform polynomial stability

for a family of semigroups of operators.

Use a general version of the Trotter-Kato Theorem proved in [45] to prove
the convergence of the discrete solution towards the solution of (0.1.1) as the
discretization parameter goes to zero and if the discrete initial data are well

chosen.

Study the stability of wave equations in the presence of indefinite sign damping
where the classical methods for studying the stabilization fail to treat such

problems.

Consider indefinite sign damping coefficients whose L norm is not necessarily

small.

Use detailed spectral analysis to find critical values of the damping coefficients

for which wave equations with indefinite sign damping become stable.

Generalize the analysis of the stability of wave equations with indefinite sign

damping terms over a star shaped network.

17
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Chapitre 1

Preliminaries

As the analysis done in this Ph.D. thesis is based on the semigroup and spectral
analysis theories, we recall, in this chapter, some basic definitions and theorems

which will be used in the following chapters. We refer to [8,18,24,36,37,42,62,63].

1.1 Semigroups

Most of the evolution equations can be reduced to the form

z(t) = Az(t), t>0,

z(0) = o,
where A is the infinitesimal generator of a Cy semigroup 7'(¢) over a Hilbert space H.
Therefore, we start by introducing some basic concepts concerning the semigroups.
Definition 1.1.1. Let X be a Banach space.

1) A one parameter family T(t), t > 0, of bounded linear operators from X into

X is a semigroup of bounded linear operators on X if
(i) T(0) =1;

19



Chapter 1 Preliminaries

(11) T(t+s) =T(t)T(s) for every s,t > 0.

2) A semigroup of bounded linear operators, T(t), is uniformly continuous if

lim||T(t) — I|| = 0.

t—0

3) A semigroup T(t) of bounded linear operators on X is a strongly continuous

semigroup of bounded linear operators or a Cy semigroup if

ImT (t)x = x.

t—0

4) The linear operator A defined by

Av = limw, Ve € D(A),

t—0
where
T(t)x —
D(A) = {x € X; limM em’sts}
t—0 t

is the infinitesimal generator of the semigroup T'(t).

Theorem 1.1.2. Let T(t) be a Cy semigroup. Then there exist constants w > 0 and
M > 1 such that
|T(#)|| < Me*t, ¥t > 0.

In the above theorem, if w = 0, then T'(¢) is called uniformly bounded and if

moreover M = 1, then T'(¢) is called a Cy semigroup of contractions.

For the existence of solutions, we normally use the following Lumer-Phillips

Theorem or Hille-Yosida Theorem.

Theorem 1.1.3. (Lumer-Phillips Theorem) Let A be a linear operator with dense
domain D(A) in a Hilbert space X. If

20
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(i) A is dissipative ; i.e., R < Az,z >x< 0, Vz € D(A)
and if
(1) there exists a Ao > 0 such that the range R(Aol — A) = X,

then A generates a Cy semigroup of contractions on X.

Theorem 1.1.4. (Hille-Yosida Theorem) Let A be a linear operator on a Banach
space X and let w € R, M > 1 be constants. Denote by p(A) the resolvent set of A.

Then the following properties are equivalent

i) A generates a Cy semigroup T'(t), t > 0 satisfyin
(i) Ag 9 ying
|7 < Me=t, vt >0,
i1) A is closed, densely defined, and for every A > w one has A € p(A) and
P
[A=w)"A=A)T[ <M, VneN

(iii) A is closed, densely defined, and for every A\ € C with R\ > w, one has
A€ p(A) and

. M
0= A" € = VneEN.

If the conditions of the previous two theorems are not clearly satisfied, we may
use the following theorem about perturbations by bounded linear operators (see

Theorem III.1.1 of [62]).

Theorem 1.1.5. Let X be a Banach space and let A be the infinitesimal generator
of a Cy semigroup T(t) on X, satisfying ||T(t)|| < Me“". If B is a bounded linear
operator on X, then A+ B is the infinitesimal generator of a Cy semigroup S(t) on
X, satisfying ||S(t)| < Me@+MIBIDL

Now we recall a result in [42,63] which gives necessary and sufficient conditions

for which a semigroup is exponentially stable.
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Theorem 1.1.6. Let T'(t) be a Cy semigroup on a Hilbert space H and A be its infi-
nitesimal generator. T'(t) is exponentially stable; i.e., there exists M and a positive

constants such that ||T(t)| < Me™*" if and only if

(1) iR C p(A), where p(A) denotes the resolvent set of A

and
(ii) sup||(iw — A)7Y| < oco.
weR

When the exponential stability is attained, we search for the optimal exponential

decay rate; mainly for the spectrum determined growth condition.

Definition 1.1.7. Let A be the infinitesimal generator of a Cy semigroup, T(t) ,
on a Hilbert space H. Consider

1
w(A) :==inf{a € R; |T(t)]| < Me*'} = Jim i log |T(t)]],
—00
the growth exponent bound of T'(t), and
p(A) = sup{RA; A € o(A)},

the spectral abscissa of the operator A where o(A) denotes its spectrum. If w(A) =
w(A), then we say that the spectrum determined growth condition holds.

Remark 1.1.8. From the Hille-Yosida Theorem, we know that u(A) < w(A) for
any infinitesimal generator of a strongly continuous semigroup. However, in general,

w(A) < u(A) is not always true.

If the semigroup fails to be exponentially stable, we search for another type
of decay rate like the polynomial stability which is characterized by the following
Theorem in [18].
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Theorem 1.1.9. Let (T'(t)),>, be a bounded Cy semigroup on a Hilbert space H with
a generator A such that iR C p(A). Then for a fized o > 0, the following conditions

are equivalent :
(i)
I(is — A)7Hl = O(ls|*), s — oo
(i)
IT(HA =0F™), t— oo
ITHA™ = 0(t=), t— .
Note that the notation A = O(B) means that there exists ¢ > 0 such that
|A| < ¢|BJ.

1.2 Riesz basis

In the second part, we show that the generalized eigenvectors form a Riesz basis
of the energy space. Consequently, we recall basic definitions and theorems needed

for Riesz basis generation. We refer to |8,36,37|.

Definition 1.2.1. (i) A non-zero element ¢ in a Hilbert space H is called a gene-
ralized eigenvector of a closed linear operator A, corresponding to an eigenvalue

A of A, if there exists n € N* such that
M —A)"0=0 and (M —A)"p#0.

If n =1, then  is an eigenvector.

(i) The root subspace of A corresponding to an eigenvalue X\ is defined by

Na(A) = | ker (AT = A)").

n=1
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(iii) The closed subspace spanned by all the generalized eigenvectors of A is called

the root subspace of A.

Remark 1.2.2. The family of generalized eigenvectors of A corresponding to \
forms a basis for the subspace N\(A). Denote by my the algebraic multiplicity of
A. In general, these generalized eigenvectors, denoted by {¢;, 1 < j < my}, are

constructed by the following procedure :

Apr = Ap
./490] - >\90]+S0]—17 j :27"'7m)\-
Now, we introduce the Riesz basis and then we recall some theorems which help

us prove that a family forms a Riesz basis.

Definition 1.2.3. Let ® = {¢, }nen be an arbitrary family of vectors in a Hilbert
space H.

(i) The family ® is said to be a Riesz basis in the closure of its linear span (no-

tation ® € (LB)) if ® is an image by an isomorphic mapping of some ortho-

normal family. ® is said to be a Riesz basis if & € (LB) and ® is a complete

family ; i.e., Span{p,; n € N} =H.

(i) The family ® is said to be w—linearly independent if whenever Zangpn =0
neN
for Z|a"|2 < oo then a, =0 for every n € N.
neN
(11i) The family ® is minimal if, for any n € N, the element o, does not belong to

the span of all the remaining elements; i.e., v, & Span{y;; i # n}.
Remark 1.2.4. (i) If ® € (LB), then ® is minimal and hence w—linearly inde-
pendent.
(i1) If ® is minimal, then there exists a family ¥ = {1, }nen biorthogonal to P ;
z'.e., < @j,wi >y = 51]

24



Chapter 1 Preliminaries

The following proposition and theorems give necessary and sufficient condition

so that a family ® forms a Riesz basis.

Proposition 1.2.5. (Bari’s Theorem, Bari 1951; Gokhberg and krein 1965; Ni-
kolski 1980)
® € (LB) if and only if there ezists positive constants Cy and Cy such that for any

sequence {auy, fnen, we have

CIZ|anI2 S

neN

2
S 022|an|2‘

neN

neN

In this case, each element f € Span{e,, n € N} is written as
f:Z<f7¢n > P,
neN

where W = {1, }nen is biorthogonal to ® = {p, }nen-

In this thesis, we mainly use the following theorems to prove that the generalized

eigenvectors form a Riesz basis of the energy space.

Theorem 1.2.6. (Theorem 2.1 of Chapter VI in [36])
{én} is a Riesz basis of a Hilbert space H if and only if {¢n} is complete in H
and there corresponds to it a complete biorthogonal sequence {1} such that for any

f € H one has

Y I< tu f =P <00, Y |< i f > < 0. (1.2.1)

n

Theorem 1.2.7. (Classical Bari’s Theorem)

If {on}nen is a Riesz basis of a Hilbert space H and another w—linearly independent
family {1 }nen is quadratically close to {@, }nen in the sense that Zngn — 1, |]? <

n=1
00, then {1y, tnen also forms a Riesz basis of H.
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Normally, there is difficulty in understanding the number of generalized eigen-
functions corresponding to low eigenvalues. This severely limits the application of
the above classical Bari’s Theorem even if the behavior of the high eigenvalues and
their corresponding multiplicities are clearly known. Consequently, in case the be-
havior of the low eigenvalues is vague, we suggest using Theorem 6.3 of |37| which

is a new form of Bari’s Theorem (see Theorem 2.3 of Chapter VI in [36]) :

Theorem 1.2.8. Let A be a densely defined operator in a Hilbert space H with a
compact resolvent. Let {p,} -, be a Riesz basis of H. If there are an integer N > 0

and a sequence of generalized eigenvectors {wn}zo:NH of A such that

[e.e]

S [l on — tin < 00,
n=N-+1

S
n=1’

then the set of generalized eigenvectors of A, {i,} forms a Riesz basis of H.

Despite that the proof of Theorem 1.2.8 is found in [37], we give another proof

which clarifies the relation between the families {¢,} >, and {i,}

o0
n=

_,. First, we

recall Lemma 6.2 of |37].

Lemma 1.2.9. Let {¢,};2, be a Riesz basis of a Hilbert space H. Let N > 0 and
{n}o nyq e another family such that

o0

Z | én — ¥n H2< 0.

n=N+1
Then there exists M > N such that

n=1

(1) {dn 1 U {0} sy is a Riesz basis of H.

(i) The set {gpn AL, U{pn}22 su1 is w—linearly independent.

Proof: Once (i) is proved, (ii) follows from Theorem 1.2.7. To prove (i), let M > N
and {c,}, € [*(N*) such that

M 00
ch¢n + Z ann = 0.
n=1

n=M+1
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Then
n=1 n=M+1
Since {¢,}2, is a Riesz basis, there exists ¢; > 0 such that
o0 o0 2
CIZ|C7L|2 < chgbn (1.2.3)
n=1 n=1
Using Cauchy-Schwarz inequality, we get
o0 2 o0 o [e.9]
C1
S a6 £ Y 6l 3 - el <SS ll 024
n=M+1 n=M+1 n=M+1 n=1
provided M is chosen great enough.
Combining (1.2.2), (1.2.3), and (1.2.4) we get ¢, = 0, Vn € N*. n

The following theorem clarifies the results of Theorem 1.2.8.

Theorem 1.2.10. Let A be a densely defined operator in a Hilbert space H with
a compact resolvent. Let {¢,}.~, be a Riesz basis of H. If there are two integers

Ny, Ny > 0 and a sequence of generalized eigenvectors {@/Jn}zo:NH of A such that

D Prany = Yngw, [17< 00, (1.2.5)
n=1

then the set of generalized eigenvectors (or root vectors) of A, {1n} -, forms a Riesz

basis of H.

Proof: The proof is divided into five steps.
First step.
For all n > 1, we set Xn+n, = Unin,. Thus, we have x,, = VN, —Ny, VI >

Ny +1. (1.2.5) means that

oo

> Xa — ¢ |IP< o0 (1.2.6)

n=Na+1
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Consequently, by Lemma 1.2.9, there exists M > Ny such that {&, }2L U{0n 122 s v - Not
is a Riesz basis of H.
We can assume that the eigenvalues corresponding to {1, } for n < M + Ny — Ny
are different from those of {1, } for n > M + Ny — Ny + 1.
Second step.

Now, let V' = span{t, }72 1,4 v, n,+1, then the set of roots vectors {4y, YA N =N,
is independent and does not belong to V.

We denote by 7y, the orthogonal projection on the space V' and define
Hy = span{¢, }, M=,

where 1; = ; —my;, i = 1, ..., M+ N; — Ny. Clearly, {wn}M+N1 2 are independent
and dlmHO =M+ Nl — NQ.
Let P be the orthogonal projector on Hy,. We have

P,=;, i=1,..M+N, —N, and Pi¢;=0, Vi>M+ N, — N,

By the first step, for each ¢ € N*, there exists {a’,}°°; with a!, € C such that

o

M
=Y agi+ > d
n=1

n=M+N1—No+1

Hence, for i = 1,..., M + Ny — N5, we get

= P = Za Pg;.

This shows that M > M + N; — N, or equivalently Ny > Nj.
Third step.
If we assume that Ny > Ny, then Hy C V4. Thus, let ¢ # 0 € V- N Hy and

assume for the moment that the set {1, }°°, is complete in H. We can write

Y= anthy
n=1
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Therefore,
[e%e] M+N1—N»
0=PY=> aPvy= > a,Pi.
n=1 n=1

But for n < M + N; — N5, we have

Py = P({y + i) = .

Consequently, we deduce that

M+N1—N»

0= Z anqjjn;

n=1
ie,a,=0,i=1,... M+ Ny — Ns. It follows that

oo

1/): Z an@Z)nGVLﬂV:{O},

M+N;—Na+1
which is a contradiction. Consequently, N; = N.
Fourth step.
By the first step, {¢, 1AL, U {¢,}52 ., forms a Riesz basis of H. Therefore, it
remains to prove that {1, }°, is w—linearly independent so that we can deduce by

Theorem 1.2.7 that {1, }°°, forms a Riesz basis of H. Indeed, suppose that

Z anwn = 0.
n=1
Hence,

M 00
O = Za,ﬂﬁn + Z an¢n'
n=1

M+1
By the first step, we can write

M M 00
Z 6Ln’@Dn - Z bn¢n + Z bn¢na
n=1 n=1 M+1

where for every n € N*, b, € C. Therefore,

M 0o
n=1

n=M+1
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which implies that b, = 0 for all n = 1, ..., M. Finally, from

M 00
>t =Y bathn,
n=1

M+1

we deduce that ian@/)n = 0 since {¢, }. | does not belong to V. Hence a,, = 0,Vn €
N*. -
Last step.

It remains to prove that {¢,}°°, is complete in H. If it is not the case, by the
first and second steps, we only know that the family {«,}7°, is a Riesz basis for the
subspace Hi = M, the closed subspace spanned by all generalized eigenvectors
{n}5°, of A, and that its codimension is finite.

Let Hy = Hit. Thus, H = H,;® H, and dim(H,) < oo. Without loss of generality,
we may assume that 0 € o(A); i.e., A has a compact inverse A~! = B.

Since H is stable by B, then H, is stable by B*. Consequently B|*H2 admits at
least one eigenvalue u because Hs is finite dimensional. Thus, there exists © £ 0 € Hy
such that B*x = uzx.

We start by proving that necessarily p = 0. If © # 0 then the complex A # 0 such
that p = % isin o(A). Let H) be the root subspace of A associated to A and n be the
algebraic multiplicity of A; i.e., the smallest integer such that Hy = ker(I — AB)".

Since B is a compact operator, I — (I — AB)" is also a compact operator and by

the Fredholm alternative
ker(I — [I — (I = AB)"))* = R(I — [I — (I — AB)"))*;

ie.,
Hy = (ker(I — AB)")* = R(I — \B*)".
But H, C H, implies that x € Hy. Consequently, there exists y € H, y # 0,
such that x = (I — AB*)"y.
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As (I = AB*)x = 0, we get 0 = (I — AB*)"*!'y with y # 0. Hence, we get a
1 1
contradiction since 3 € o(B) and 3 € o(B*) have the same algebraic multiplicity.

Therefore, we have p = 0, but this contradicts the well-known fact that H =

R(B) @ ker(B*) and the assumption R(B) = D(A) = H. u

1.3 Riesz basis with parenthesis

Sometimes we fail to prove the existence of a Riesz basis of the energy space or
we need some supplementary hypothesis to find a Riesz basis. However, as in the
fourth chapter, we can neglect these hypothesis and find a more general basis of the
energy space which is called a Riesz basis with parenthesis. According to |75], we

recall the definition of a Riesz basis of subspaces and a Riesz basis with parenthesis.

Definition 1.3.1. — A family of subspaces {Wy}ren is called a Riesz basis of
subspaces of H if
(1) for every f € H, and every k € N, there is a unique fr, € Wy such that

f=> fi and

keN
(i) there are positive constants Cy and Cy such that

> h

keN

2
<Oy |l

keN

O P <

keN

— A sequence {y;}ien is called a Riesz basis with parenthesis of H if there is a
family {Wy}ken of finite-dimensional spaces spanned by some y; with Wy N
W; = {0} for k # j that forms a Riesz basis of subspaces of H. The spaces

Wi are called the parentheses.

Now, we recall a Theorem which can be proved exactly as Theorem 2 in [71]

which gives sufficient conditions for which the generalized eigenfunctions of some
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operator A form a Riesz basis with parenthesis. For this aim, we need to group the
eigenvalues of A by packets made of a finite number of eigenvalues and in such a
way that the packets remain at a positive distance from each other. Namely for
any r > 0, we introduce the sets G(r),p € Z as the connected components of the
set Uy ¢, 4 Da(r),where Dy(r) is the disc with center A and radius 7, as well as the
packets of eigenvalues A, (r) = G,(r) No(A). The following Theorem gives sufficient

conditions for which the generalized eigenfunctions of a bounded perturbation of a

selfadjoint operator form a Riesz basis with parenthesis.

Theorem 1.3.2. Let T be a selfadjoint operator over a Hilbert space H with discrete
spectrum {py }rez which satisfies the generalized gap condition, i.e, there exists ko >
0 and c > 0 such that

Hktko — HE > G, Vk € Z.

Let B be a bounded operator from H into itself. Then the root vectors of the per-
turbation A = T + B form a Riesz basis with parenthesis of H. In this case, only
terms corresponding to merging eigenvalues should be put in parenthesis, i.e, there

exist v > 0 and N € N* such that if we set
Ap = Ap(r),

then
#A\, < N,Vp € Z,

o(T + B) = Upezly,

and we can take as parenthesis W,, p € Z, the space spanned by the root vectors of
T + B corresponding to the eigenvalues in A, where for any f € H, f, =P, f is the
the Riesz projection of T + B, i.e.,

fo=Puf =5 [ A=T=B)fan

Tp
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where vy, is a contour surrounding N,.
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Chapitre 2

Uniformly exponentially or
polynomially stable approximations
for second order evolution equations

and some applications

2.1 Introduction and Motivation

Recently, the approximation of second order evolution equations has been ex-
tensively studied where misbehavior of the discrete solutions has been remarkably
observed (see |25,27,55,72,73|). Indeed, the discrete schemes, obtained by finite
difference, finite element, or finite volume discretization, introduce spurious high
oscillations which do not exist at the continuous level and which propagate with
group velocity of the order of the mesh size. As a result, even though the numerical
scheme converges in the classical sense towards the continuous problem, observabi-

lity inequalities do not hold uniformly with respect to the discretization parameter
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and hence, the decay rate of the discrete system turns out to depend on the mesh
size. In fact, the uniform decay rate is equivalent to some observability inequalities
which estimate the discrete energy by the velocity of the propagation of the oscilla-
tions. However, in the presence of high frequency discrete solutions whose velocity
is of the order of the mesh size, the observability constants blow up as the mesh
size tends to zero (see [55,73]). Consequently, most of the classical numerical ap-
proximation schemes do not possess the same decay rate as that of the continuous
problem.

For more coherence, we start with a simple example which studies the approxima-
tion properties of a 1-d internally damped wave equation which models the vibrations

of a flexible string clamped at each of its ends of the form

y"—ym+ay’:0 (:Cat> € (071) X (0,00),
y(0,t) =y(1,¢) =0 t>0, (2.1.1)
y(z,0) =1°, ¥/(2,0) =y', z€(0,1),

where a > 0 such that a € L*>(0,1) and a(z) > ay > 0 for all x € I C (0,1). The

symbol * denotes the partial differentiation with respect to time.

It is well known that for such a choice of a, (2.1.1) is exponentially stable (see
[23]). However, referring to |26], we show that for the classical finite difference scheme
of (2.1.1), the exponential decay of the discretized energy is non-uniform. For this
purpose, given N € N*, set h = and consider the subdivision of (0, 1) given

by

N +1

0:$0<JZ1<...<1’N<$N+1:1

where z; = jh for j € {0,..., N + 1}

Therefore, the classical finite difference space semi-discretization of problem
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(2.1.1) is given by

v Yirl — 2y HYia

+a;y;=0 t>0, j=1,..,N,

J B2
y;(t) =0, t>0, j=0,N+1, (2.1.2)
y;(0) =95, y;(0) = y; j=1,...N,

where the function y;(¢) provides an approximation of y(xz;,t) and a; = a(jh) for
all 7 = 1,..., N. For simplification, we introduce the vector notation where we let

un(t) = (1 (), ., yn ()" and apyn(t) = (a1y1 (), ..., anyn(t)) . Moreover, we define

the matrix

2 —1 0 0

1| =1 0
A, = —

S ) ~1

0 0 -1 2

Then system (2.1.2) reads as

y}{ + Ahyh<t) + ahyﬁl =0 t> O,
yn(0) = 2, y,(0) = y}.

The energy of system (2.1.2) is given by

h N
7=0

y]—l—l Y

I

which is a natural discretization of the continuous energy and the discrete dissipation

law is expressed by

B} (yn,t) = —hzaj|y]|2 (2.1.3)

Theorem 2.1.1. The exponential decay of Eyn(yn,t) to zero is non-uniform with

respect to the mesh size h ; i.e., there do not exist positive constants M and w which
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are independent of h such that for all h > 0, and for all initial data (y?)j, and
(y}); € RN, we have
Eh(yh,t) S Me_“tEh(yh, O)

To prove the above theorem, we need the following two lemmas :

Lemma 2.1.2. If there exists some positive constants M and w independent of h

such that for all (y);, and (y;); € RY, we have
Ep(yn,t) < Me " Ey(yp, 0) Yt >0, (2.1.4)

then there exists Ty and Cy, bounded with respect to h, such that for all (ug)j and

(Ul)j m RN

J
2Eh Uh, = hz

where (u;); solves the conservative semi-discrete system given by

_02
“j

<Coh2/ a;[u;(t))%dt,  (2.1.5)

|u1| +

iy Uir — 2U5 U
ul — 2
u;(t) =0, t>0, j=0,N+1, (2.1.6)

uj(0) =ud =99, W (0) =ul =y}, j=1,., N.

=0, t>0, j=1,...N,

Proof: The idea of the proof is found in [73]. According to the dissipation law
(2.1.3), we have for all 7" > 0,

N T
En(yn, 0) = En(yn, T) = hZ/ a; |y} dt. (2.1.7)
— 70

If we choose T > (In(%!)) /w, then (2.1.4) implies that

3 3
En(yn, T) < ZEh(ymO) = ZEh(Uh,O)-
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Hence,
N T 1
2
hjgo/o a;ly;|*dt > ZEh(UmO)- (2.1.8)

Let v, = uy, + v, where vy, solves the complementary semi-discrete system given by

y_ Vil — 20+ Ui
v — 2
v (t) =0, t>0,j=0N+1, (2.1.9)

v;(0) = v}(0) =0, j=1,.. N.

+a;(vi+u}) =0, t>0, j=1,.,N,

Since Ej(vp,0) = 0, then

N T N T
En(on, T) + 1Y / a; [0 ()] dt = —h>" / ayed, (D)t
j=0 "0 j=0 "0
Hence,

N T N T
hZ/ a |v;(t)}2dt§h2/ a; [ ()| dt, (2.1.10)
j=0"0 =090

which implies that

N .7 N .7 N T
hZ/ a; }y}(t)|2dt < QhZ/ a; ‘U;(Zf)‘th—l-QhZ/ a; |u;(t)|2dt
j=0 "0 j=0 "0 j=0 "0

N T )
§4h2/ a; |u(t)]” dt.
j=0 "0

Using the above inequality in (2.1.8) yields

N T
1
4hZ/0 a; [ ()] dt > 7w, 0).
j=0
| ]

The following lemma shows that the observability constant Cj in the discrete
observability inequality (2.1.5) blows up as h — 0 and hence the uniform observa-
bility fails to hold which implies the lack of a uniform exponential decay rate which

completes the proof of Theorem 2.1.1.
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Lemma 2.1.3. For any T' > 0, we have

I inf
. " hZ/ a; [y ()P dt =0.  (2.1.11)

h — 0 wupsolution of (2.1.6) Ep(un, 0

Proof: First, we analyze the spectrum of the matrix Ay, ; i.e., we consider the eigen-

value problem

1 .
—ﬁ<wj+1 —2wj+wj_1) :)\wj, ] = 1,,N, Wy = WN+1 = 0. (2112)

According to |44, the spectrum is explicitly given by

and the corresponding eigenvectors are given by

wlli = (wlf,ha "'>w§€Vh>T; wf}h = sin(lmrjh), k’j = 1’ ’N

)

Obviously, \f — M = k272 as h — 0 for each k > 1 where \¥ is the kth eigenvalue of
the continuous wave equation (2.1.1). Moreover, the eigenvectors wf of the discrete
system coincide with the restriction to the mesh points of the eigenfunctions w*(z) =
sin(kmzx) of the continuous wave equation (2.1.1). Furthermore, we notice that the
gap between \/W and \/F is of the order h while, in the continuous case, the
gap between any two consecutive eigenvalues is independent of k (see Figure (a) of
2.1 taken from |26| which shows the square roots of the eigenvalues in the continuous
and discrete case via finite difference semi-discretization on the left and the piecewise
linear finite element space semi-discretization on the right).

Therefore, according to Theorem 6.9.3 of [74], we choose a discrete solution wy, as
a wave package or a superposition of semi-discrete waves Corresponding to the last

eigenfrequencies of Ay ; i.e., we choose u;, € Span {ei\/rﬁtw’ﬁ ok~ E 0<y< 1}
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N T
such that Ej(up,0) ~ 1 and hZ/ a; }u;(t)|2dt ~ k%, L >> 1 so that the proof
j=0"0

of (2.1.11) is complete. We remark that the wave package, u;, does not penetrate
the subinterval I, where the damping coefficient a(.) is effective (see Figure (b) of
2.1 taken from [26] which shows a wave package propagating outside the interval I).

In this chapter, as in [4], we consider the approximations of more general abstract
second order evolution equations. In other words, let H be a complex Hilbert space
with norm and inner product denoted respectively by ||.|| and (.,.). Let A : D(A) —
H be a densely defined self-adjoint and positive operator with a compact inverse in
H.Let V = D(A2) be the domain of A2. Denote by D(A2)’ the dual space of D(A?)
obtained by means of the inner product in H.

Furthermore, let U be a complex Hilbert space (which will be identified to its
dual space) with norm and inner product denoted respectively by ||.||, and (.,.)y

and let B € L(U, H). We consider the closed loop system

WO(t) + Aw(t) + BB*w(t) =0, (2.1.13)

w(0) = wp, w(0) = wy,
where ¢ € [0, 00) represents the time, w : [0, co) — H is the state of the system.
Most of the linear equations modeling the vibrations of elastic structures with feed-
back control (corresponding to collocated actuators and sensors) can be written in

the form (2.1.13), where w represents the displacement field.
We define the energy of system (2.1.13) at time ¢ by

I N 1 2
B(t) = 5 (lo@IP + |atw)| ).
Simple formal calculations give

E(0) - E(t) = /0 t (BB*u(s), w(s))ds, Vt>0.
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This obviously means that the energy is non-increasing.

In many applications, the system (2.1.13) is approximated by finite dimensional
systems but usually, as the above simple example shows, if the continuous system
is exponentially or polynomially stable, the discrete ones do no more inherit this
property due to spurious high frequency modes. Several remedies have been proposed
and analyzed to overcome these difficulties. Let us quote the Tychonoff regularization
[34,35,64,72|, a bi-grid algorithm [32,58], a mixed finite element method [14,19, 20,
33, 56], or filtering the high frequencies [43, 49, 76]. These methods provide good

numerical results.

As in [64,72] our goal is to damp the spurious high frequency modes by intro-
ducing numerical viscosity terms in the approximation schemes. Though our work

in |4] is inspired from [64], it differs from that paper on the following points :

(1) Contrary to [64] where the standard gap condition is required, we only assume
that the spectrum of the operator A'/? satisfies the generalized gap condition,
allowing to treat more general concrete systems,

(ii) we analyze the polynomial decay of the discrete schemes when the continuous
problem has such a decay,

(111) we prove a result about uniform polynomial stability for a family of semi-
groups of operators,

(iv) by using a general version of the Trotter-Kato theorem proved in [45], we
show that the discrete solution tends to the solution of (2.1.13) as the discre-

tization parameter goes to zero and if the discrete initial data are well chosen.

Consequently, this chapter is divided as follows : After we precise the proper
functional setting of the continuous problem (2.1.13) in Section 2.2, we recall some
results concerning the stability of (2.1.13) in Section 2.3. In Section 2.4, we introduce

the suitable discrete systems and the main results of this chapter. Section 2.5 consi-
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ders the well-posedness of the discrete systems. Next, in Section 2.6, we show that
the generalized gap condition and the observability conditions (2.4.7) and (2.4.8)
remain valid for filtered eigenvalues. Section 2.7 first recalls a result about uniform
exponential stability for a family of semigroup of operators, and then extends such a
result to the case of uniform polynomial stability. Some technical lemmas are proved
in Section 2.8. Sections 2.9 and 2.10 are devoted to the proof of Theorem 2.4.1 and
2.4.4 respectively. In Section 2.11, we show that the chosen discrete systems converge
towards (2.1.13), as the mesh size goes to zero and if the discrete initial data are well
chosen. Finally, we illustrate our results by presenting different examples in Section

2.12. The first application is found in [3].

2.2 The proper functional setting of problem (2.1.13)

Before stating the main results of this chapter, we rewrite problem (2.1.13) in a

simplified form. Let X :=V x H be equipped with the inner product
(u, )", (u*, 0 N x = alu,u*) + (v,0%) Y(u,0)", (09" € X,
where a(.,.) is the sesquilinear form on V' x V' defined by
a(u,u”) = (A%u, A%u*), V(u,u*) e V x V.

Then (2.1.13) is equivalent to

H(t) = Az(t) in X, 2(0) = (wo,w1) ",
where z(t) = (w(t),w(t))T and A : D(A) — X is defined by

0 I
—A —BB*

A:
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with D(A) = D(A)x V. It is easy to check that A is a maximal dissipative operator in
X. Therefore, according to Lumer-Phillips Theorem, problem (2.1.13) is well-posed.
We will denote by T'(t), t > 0, the strongly continuous semi-group of contractions

generated by A.

2.3 Stability of the continuous problem (2.1.13)

Before displaying the suitable approximate system which converges towards (2.1.13)
and shares the same stability properties of (2.1.13), we recall some properties concer-
ning the stability of (2.1.13). For this purpose, we start by analyzing the spectrum
of the operator Az,

2.3.1 Spectral Analysis of (2.1.13)

Denote by {A,}rs1 the set of eigenvalues of A2 counted with their multiplicities
(i.e. we repeat the eigenvalues according to their multiplicities). We further rewrite

the sequence of eigenvalues {\}xr>1 as follows :
Moy < Ay < oon < Ay <o

where k1 = 1, ko is the lowest index of the second distinct eigenvalue, k3 is the lowest
index of the third distinct eigenvalue, etc. For all i« € N*, let [; be the multiplicity

of the eigenvalue Ay, i.e.

/\ki—1 < /\kz - )‘kH—l = Aki-i-li—l < /\ki-‘rli = )\ki+1'
We have /{31 = 1, k’g =1+ ll, ]{33 =1+ ll + 12, etc. Let {Spki“!‘j}ofjgli_l be the
orthonormal eigenvectors associated with the eigenvalue \,.

Now, we assume that the following generalized gap condition holds :
dM e N*, 3’)/0 > 0, Vk > 1, >\k+M . M’}/(). (2.3.1)
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Fix a positive real number 7, < 79 and denote by Ay, k = 1,..., M the set of natural
numbers k,, satisfying (see for instance [13])

)\k'm - )\km—l Z ’}/6

Ny — N1 <Y form+1<n<m-+k-—1,

/\km+k - /\km+k—1 > 7(/)‘

Then one easily checks that
{kmyj +Ukm € Ax, ke {1,... . M},j€{0,...k —1},1€{0,....lny; — 1} } = N".

Notice that some sets A, may be empty because, for the generalized gap condition,
the choice of M takes into account multiple eigenvalues.

For k,, € Ay, we define By, = (By, ij)1<i, j< the matrix of size k x k by

( n+j—1
[T Qv = M) i<, (0 4) # (1, 1),
Bknﬂjj — Q¢Zl:3—1
1 if (i, j) = (1, 1),
0 else .

\

More explicitly, we have

1 1 1 o 1
L (Mepy =Mk 1) Ak, =Ny o) A RD B CVRED VI
1 1 L. 1
M1 =M Mgy =M ) Xk 1 =AMy y0) T o R GV VN N
B, =1 0 0 1 .. 1
" (Akn+2_)\kn)(>\kn+2_)\kn+l) (Akn+2_Akn).“(AkﬂH»Z_)\kn#»kfl)
0 0 0 - 1

(/\kn+k717)\k”)...()\kn+k:717Akn+k72)
Lemma 2.3.1. The inverse matriz of By, is given by

( n+i—2

IT ks = Aey) ifi<gii#1,
-1 _ qa=n
ol 1 ifi=1,

0 else,

\
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that s to say

1 1 e 1
0 <)\kn+1 - )\kn) e ()\knﬁ»kfl - )\kn)
Zgéj = 0 0 e (Akn+k—1-_ Akn)(Akn+k—l-_>Akn+l) ’
0 0 o (Akn+k71<_'Akn). ..(Akn+k—l<_'Akn+k72)
and therefore
11 1
B 00 --- 0
By — _ ' | » when n — +o0.
0 0

Proof:The form of Bk_n1 is obtained by induction on the size k of By, . The generalized
gap condition (2.3.1) implies that Ag,,, — A, — 0asn — 400, V0 < j < k — 1.

n

This leads to the convergence of Bk_nl. [ ]

Remark 2.3.2. The structure of the matriz By, comes from Ingham’s inequality in
a Hilbert space H under the generalized gap condition (2.5.1). Indeed, according to
Corollary 6.4 of [61], if the sequence {\,}n>1 satisfies (2.3.1), then for all sequence
{an}nezs in H, the function

— § O./new\k"t,

nez*

satisfies the estimate

JRICRES S LA

k=1|kn|€ Ay

2

for T > —7T, where Xy, = —Mg,., Cr, = (n, oy @nip1)” € HF and ||.||g2 is the
7o

norm in HF.
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2.3.2 Exponential Stability of the energy of (2.1.13)

We recall a sufficient condition for which the energy of (2.1.13) is exponentially
stable. Indeed, the approach is based on observability inequalities found in [7] and

|61]. For this aim, for k, € A, we define the matrix &, with coefficients in U and
k

size k x L,,, where L, = Zlnﬂ'—l’ as follows : for all . =1, ..., k, we set
i=1

(CI) ) B*¢kn+i71+j*Ln,¢71*1 if Ln,ifl <j < Lnyi’
kn)ij =
0 else,

where

Lno=0, Lyi=Y Ly fori>1. (2.3.2)
i'=1

For a vector ¢ = (¢;)i; in U™, we set [|c[|;; , its norm in U™ defined by

m
leliz =D lledlzs
=1

Now, we recall Theorem 2.2 of [7] which links the exponential stability of (2.1.13)

with some observability property of the associated conservative problem.

Theorem 2.3.3. Let ¢ be the solution of the undamped problem

B(t) + Ap(t) = 0, 033
£(0) = o, $(0) = .

If there exists a time T > 0 and a constant ¢ = c¢(T') > 0 such that the observability

estimate
T
1 . -
A2 w0l + [lwnl|F < 0/ |1 B*&(t)||7dt (2.3.4)
0

holds, then problem (2.1.13) is exponentially stable in the energy space; i.e., there

exist a constant k > 0 and v > 0 such that for all initial data in X =V x H,
E(t) <kE(0)e™, Vt>0.
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We also recall Proposition 6.5 of [61] which gives necessary and sufficient spectral

conditions so that the observability estimate (2.3.4) holds.

Proposition 2.3.4. Assume that the generalized gap condition (2.3.1) holds. There
exists a time T > 0 and a constant ¢ = ¢(T') > 0 such that the observability estimate

(2.8.4) holds if and only if

Jag > 0, Yk € {1,..., M}, Vk, € A, ¥C € RE,

B 1#,, 0|, , > a0 Il

(2.3.5)
where ||.||, is the euclidian norm.
Remark 2.3.5. If the standard gap condition
3’)/0 > 0, Vn > 1, )\knJrl — /\kn > Y% (236)

holds, then A; = N* and B; = 1. In this case, the assumption (2.3.5) becomes
Jag > 0, Vk, > 1, VO € R ||, Ol > a0 ||C], -

Moreover, if the standard gap condition (2.3.6) holds and if the eigenvalues are

simple, the assumption (2.3.5) becomes
dog >0, Vk > 1, || B il > ao. (2.3.7)
These assumptions are assumed in |64].

In conclusion, if (2.3.5) holds, then problem (2.1.13) is exponentially stable.

2.3.3 Polynomial Stability of the energy of (2.1.13)

Similar to the exponential stability case, we recall a sufficient condition for which

the energy of (2.1.13) is polynomially stable. First, we recall Theorem 2.4 of |7]
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or Theorem 5.3 of |61] which gives the polynomial stability of (2.1.13) based on
some observability property of the conservative problem (2.3.3). Then, we recall
Proposition 6.8 of [61] which gives necessary and sufficient spectral conditions so

that the observability estimate holds.

Theorem 2.3.6. Let ¢ be the solution of (2.3.3). If there exists | € N*, a time
T >0 and a constant ¢ = ¢(T') > 0 such that

T
* . 2 2 2
[ st e (lalf, o+ ol ) 235)

holds, then the energy of problem (2.1.18) decays polynomially; i.e., there exists a

constant k = k(1) > 0 such that for all initial data in D(A),

k
(1+1t)7

E(t) < I(wo,wi) "5z, V¢ >0

Proposition 2.3.7. Assume that the generalized gap condition (2.5.1) holds and
(wo,w1)" € X. There exists | € N*, a time T > 0 and a constant ¢ = ¢(T) > 0 such
that (2.5.8) holds if and only if

Jag > 0, VE € {1,..., M}, Vk, € Ay, VO € RE,

_ Qo
Bknlq)knC”U’Q > N 1C1l, -
T (2.3.9)

Remark 2.3.8. If the standard gap condition (2.3.6) holds, the assumption (2.3.9)

becomes
* n Qo
3l € N*, Jag > 0, Vk,, > 1, VC € R ||y, C|,, > N 1Cl, -

Moreover, if the standard gap condition (2.3.6) holds and if the eigenvalues are

simple, the assumption (2.3.9) becomes

)

3l € N*, 3ag > 0, Yk > 1, | B*gxll, > R (2.3.10)
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Remark 2.3.9. Note that the assumption (H) from |[7| here holds since A is a
positive selfadjoint operator with a compact resolvent and B is bounded. In fact,

assumption (H) states that if 5 > 0is fixed and Cz = {\ € C; R\ = [}, the function
AeCL={\eC; RA> 01— H\) = AB*(\L + A)"'B e L(U)

is bounded on Cj. Indeed, if A = 3+ 4, then |} + N[> = (\f — &2 + 0%)? + 45%¢%
However,

[T+ A) 7 ) < sup Ap+ AL
>1
Hence, if || > € for some € > 0, then

_FPre

IAL||(NT + A)_1||L(H) =08

3 2
which is bounded for every || > €. On the other hand, if || < ¢, then [A\2+\?| > VR

for e < g Therefore,

<2\/S

A H()‘ZIJFA)AHc(H) = %

which is bounded on Cj.

In conclusion, if (2.3.9) holds, then problem (2.1.13) is polynomially stable with

a decay rate of the order -
7

(1+1)

2.4 Approximate system and main results

In this section, we display the suitable discrete system which approximates
(2.1.13) and has the same stability properties as (2.1.13). Before stating our main

results, let us introduce some notations and assumptions.
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We denote by ||.||;, the norm
lolly, =/ (Azp, Azp), Vp € V.

Remark that
el = v (Ag, ¢), Vo € D(A).

We now assume that (V},)n=0 is a sequence of finite dimensional subspaces of D(A?).
The inner product in V}, is the restriction of the inner product of H and it is still
denoted by (.,.) (since V}, can be seen as a subspace of H). We define the operator
Ay 2 Vi =V, by

(Anon, n) = (A2, AZP), Yoo, ¥y € V. (2.4.1)
Let a(.,.) be the sesquilinear form on Vj, x V}, defined by
a(on, ¥n) = (A2pn, A24), V(pn, ¥n) € Vi x Vi (2.4.2)
We also define the operators By, : U — V}, by
Byu = j,Bu, Yue U, (2.4.3)

where j;, is the orthogonal projection of H into V}, with respect to the inner product
in H.
The adjoint B; of By, is then given by the relation

Byon = B pp,  Yop € V.

We also suppose that the family of spaces (V},), approximates the space V =
D(A%). More precisely, if 7, denotes the orthogonal projection of V' = D(A%) onto
Vi, we suppose that there exist 6 > 0, h* > 0 and Cy > 0 such that, for all
h € (0, h*), we have :

I = ¢lly, < Coh” | Ag]l, Vio € D(A), (2.4.4)
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I — Il < Coh® || Agl|, Vo € D(A). (2.4.5)

Assumptions (2.4.4) and (2.4.5) are, in particular, satisfied in the case of standard

finite element approximations of Sobolev spaces.

In this section, we prove two results. The first result gives a necessary and suffi-

cient condition to have the exponential stability of the family of systems
wh(t) + Ahwh(t) + BhB,’;wh(t) + heAhwh(t) =0 (2 4 6)
wh(O) = Wop € Vh, wh(O) = Wip € Vh,

in the absence of the standard gap condition assumed in [64]. Here and below wqp,
(resp. wyy) is an approximation of wy (resp. wy) in Vj,. For that purpose, we need to

make the following assumption

Jag > 0, Yk € {1,..., M}, Vk, € A, ¥C € R,

Bl;qu)knCHMQ 2 Qo ||CH2 )
(2.4.7)

where |||, is the euclidian norm. The first main result is the following

Theorem 2.4.1. Suppose that the generalized gap condition (2.3.1) and the assump-
tion (2.4.7) are verified. Assume that the family of subspaces (V3,) satisfies (2.4.4)
and (2.4.5). Then the family of systems (2.4.6) is uniformly exponentially stable, in
the sense that there exist constants M, a, h* > 0 (independent of h, won, wip) such

that for all h € (0, h*) :
lon(®)]” + a(wn(t), wa(t)) < Me*([lwinl|® + alwon, wor)), ¥t > 0.

Remark 2.4.2. Note that Theorem 2.4.1 is the discrete counterpart of the exponen-
tial decay of the solution of the continuous problem (2.1.13) under the assumptions
(2.3.1) and (2.4.7), which follows from Theorem 2.3.3 and Proposition 2.3.4 or Theo-
rem 2.2 of |7] and Proposition 6.5 of |61].
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Remark 2.4.3. The uniform exponential stability of the family of systems (2.4.6)
has been already proved in Theorem 7.1 of [25] without any assumption on the
spectrum of A. The proof of this theorem is based on decoupling of low and high
frequencies. More precisely, the author combines a uniform observability estimate for
filtered initial data corresponding to low frequencies (see Theorem 1.3 of [25]) toge-
ther with a result of [27|. Indeed, in |27, after adding the numerical viscosity term,
another uniform observability estimate is obtained for the high frequency compo-
nents. The two established observability inequalities yield the uniform exponential

decay of (2.4.6).

If the condition (2.4.7) is not satisfied, we may look at a weaker version. Namely

if we assume that

3l € N*, 3oy > 0, Vk € {1,..., M}, Vk, € Ay, VC € R,

Bi1#1,Clly,, 2 57~ 11,
(2.4.8)
then we will obtain a polynomial stability for the family of systems
(1) + (14 RO)2(1 + hPAZ)? Apeon (1)
(I BOADY(ByB; + WA+ hOAZ) (1) = 0, (2.4.9)
wn(0) = won € Viy on(0) = (1 4+ W) 1L + K0 A )arp € V.

The structure of the above discrete system has been inspired from the one intro-
duced in [64] for the exponential stability case where the authors have used system
(2.4.6) corresponding to [ = 0. In both cases, this choice is motivated by the corres-
ponding observability estimates. The numerical viscosity term ([ + thé)(BhB;: +
h(’A;f%)([ + heAé)_lwh(t) is added to damp the high frequency modes and as the
set of high frequency modes is larger in the polynomial case, the viscosity term is
naturally stronger. In the case [ > 0 the powers of (I + heA,%) have been added
to guarantee the uniform boundedness of the resolvent of fll,h (defined below) near

zero. The question of the optimality of these viscosity terms remains open.
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The second main result of this chapter is the following one.

Theorem 2.4.4. Suppose that the generalized gap condition (2.3.1) and the as-
sumption (2.4.8) are verified with | € N* even. Assume that the family of subspaces
(Vi) satisfies (2.4.4) and (2.4.5). Then the family of systems (2.4.9) is uniformly
polynomially stable, in the sense that there exist constants C, h* > 0 (independent

of h, won, win) such that for all h € (0, h*) :

1 ) 2 C
|+ 0240 )|+ aln®), wn®) < S llon winlid ),

Lo 2 C
H([ + heAfL) lwh(t)H + a(wh(t)> wh(t)) < t_1||(w0h’w1h>||2D(Az,h)’
VYt > 0, V(th,wlh) S Vh X viw

where for g € N*, H‘HD(A?h) is the graph norm of the matriz operator flgh given in

(2.5.1) of Section 2.5 below.

For a technical reason, we assume [ to be even (see Lemma 2.8.4). If (2.4.8) holds
for [ odd, then we can still apply the results of Theorem 2.4.4 (see Remark 2.10.1
below).

Remark 2.4.5. As before, Theorem 2.4.4 is the discrete counterpart of the polyno-
mial decay of the solution of the continuous problem (2.1.13) under the assumptions
(2.3.1) and (2.4.8), that follows from Theorem 2.3.6 and Proposition 2.3.7 or Theo-
rem 2.4 of |7] and Proposition 6.8 of |61].

2.5 Well-posedness of the discretized problem

From now on, we fix [ € N, [ even. We introduce the Hilbert space X, =V, xV},
and the operator flm : X — X, defined by
1
0 (1+h%)"1 (I +hA})

Al,h: o1 0 1% 0 41+% X
—(1+h®)H(I+hAD)A,  —hPA,"® — B,B;

(2.5.1)
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The space X}, is here equipped with the inner product

Up Up, ~ ~ ~ B
, = a(up, Up)+(vn, On),  Y(un, vg), (Up, 0p) € Xp, (2.5.2)

Up, Uh 0%
h

with associated norm |||y, . Therefore, the system (2.4.9) is equivalent to the follo-

wing first order system in X, :

Z(t) = Al,hzh(t), 21,(0) = 2op,

wp (t Woh
®) and zg, = . Note that we

1
(1 =+ h0)<] —+ hoAi)flwh(t) W1h
recover the system (2.4.6) in the particular case [ = 0.

where z,(t) =

Lemma 2.5.1. flm 18 maximal dissipative in Xy, ; hence, it follows from Lumer-
Phillips Theorem that, for every h > 0, fll,h generates a Cy semigroup of contractions

in Xp. We will denote this Cy semigroup by T;(t) .

Proof: For the dissipativity of Ahh, it is easy to check that %(AMU, U) < 0 for
every U € Xj,. As for the maximality, fll,h is bijective since 0 € p(fll,h) (see Lemma
2.8.1 below). Therefore, /L,h becomes maximal. Indeed, let F' € X} and define the
operator T" on X}, such that TU = /uuzll_y,}U — AZ_}}F For every U, V € X}, we have

|70 =TV = |pAi U — wAZ VI < Wl AU = V.

As Al_}} is bounded since it is linear over a finite dimensional space, we choose

0<p< so that 7" becomes a contraction and hence admits a fixed point

[E
U. Therefore, there exists U € Xj and g > 0 such that ,ufll’,}}U = flf,%F =U or
(ul — Ayp)U = F.
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We shall note here that the discrete energy of system (2.4.9) is given by

Bu(t) = g len(), = 5 (o) + 50+ 12 (74 AR () anr))

)

We notice the additional second term on the right hand side of the above dissipation

Therefore, for any ¢t > 0, we have

EL(t) = —(1+ h?)? (HB;;(I v h(’A,%)lwh(t)Hz L HA:T“(I FROAR) ()

equality. In fact, this viscosity term helps increase the decay rate of the discrete

energy.

2.6 Spectral analysis of the discretized problem

The eigenvalue problem of the discretized problem is the following one : find

M, n €]0, +00[, ¢k, n € Vi, such that

a(r,ny n) = Mg 1 (P ns Un), Yibu € Vi, (2.6.1)

Let N(h) be the dimension of V},. We denote by {)\i,h}lngN(h) the set of eigenvalues
of (2.6.1) counted with their multiplicities. Let {1 }1<r<n(n) be the orthonormal
eigenvectors associated with the eigenvalue )\%7,1. We define the sesquilinear form

a'(.,.) on Vj, by

1
al(uh, Uh) = (A;L+2uh, Uh) s V(uh, Uh) € Vh X Vh;

ie.,
N(h)
al(uh, Uh) = chdk)\zﬁf,
k=1
N(h) N(h)
for u;, = chgphh and v, = deg%h. Remark that a°(.,.) = a(.,.) defined in
k=1 k=1
(2.4.2).
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In this Section, we show that the generalized gap condition (2.3.1) and the ob-
servability conditions (2.4.7) and (2.4.8) still hold for the approximate problem (uni-
formly in h), provided that we consider only “low frequencies”. More precisely, we

have the following first result :

Proposition 2.6.1. Suppose that the generalized gap condition (2.5.1) and the as-
sumption (2.4.7) are verified. Then, there exist two constants € > 0 and h* > 0,
such that, for all 0 < h < h* and for all k € {1,..., N(h)} satisfying

hONZ <, (2.6.2)
we have
aM € N*, 37 > O, /\k-i—M,h — Akvh > M’Y (263)
and
Ja>0,Vp e {l,... M}, Yk, € App, VC € R || B @y, 1C|,, = @ [IC],,
(2.6.4)

where « is independent of h, and where the matriz @y, , € M, 1, (U), with coeffi-

cients in U, 1s defined as follows : for all v =1, ..., p, we set

Bykpiiti—Lnio1-1,h W Lnjic1 <J < L,
(P, )i =
0 else,

where Ly, ;1 is defined by (2.3.2) and
A, =A{k, € A, satisfying (2.6.2) and s.t. kyip—1 + loip1 — 1 < N(h)}.

For the proof of this proposition, we need a result proved by Babuska and Osborn

in [12]. For that purpose, we introduce €(n, j) such that

en(n, j) = we&?&nwil@% [l = vnlly
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where M;(A,) = {¢ € M(X\,) : alp, ©k,.n) = ... = aly, g, +j—2,,) = 0} and
M(\,,) = {¢: pis an eigenvector of Az corresponding to Ay, |l¢|| = 1}. The res-
trictions a(y, @k, n) = ... = a(®, @i, +j—2,n) = 0 are not imposed if j = 1. Then,
we have the following estimate about the eigenvalue and eigenvector errors for the

Galerkin method in terms of the approximability quantities €,(n, j).

Theorem 2.6.2. There are positive constants C' and hg such that

Newtih — Ments < Cen(n, j), YO<h<hg, j=0,..,0,—1, k,+j<N(h),neN
(2.6.5)

. 1
and such that the eigenvectors {py, +;}o<j<i,—1 of A2 can be chosen so that

|Chntjsh — Crntilly < Cenln, j), Y0 <h<hg,j=0,.., 1,—1, k,4j < N(h), n € N
(2.6.6)

This result is proved by Babuska and Osborn in [12, p. 702| because
Meviih = Mewts = Mot = Meutd) Nugn + Abnti) = 20 Moo — Mens)-

Remark 2.6.3. Notice that for every ¢ € M;()\,) we have

en(n, j) < virel‘f/h llo — wvnlly
< Goh? | Ap| by (2.4.4) (2.6.7)

< Cohe)\in llo|l = C’Oh(’)\znﬂ.
Proof of Proposition 2.6.1. We begin with the proof of the generalized gap
condition for the approximate eigenvalues ) j. First, we use the Min-Max principle
(see [67]) to obtain
e < Apens Ve €{1,...,N(h)}. (2.6.8)

Second, we use the estimates (2.6.5) and (2.6.7) and we have
Moo < M+ C(Coh?22)? < \p, + O (Coe)* < \p, + CCPe, (2.6.9)
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for all k € {1,...,N(h)} verifying (2.6.2) and e < 1. Therefore, we may write

)\k+M’h - )\k,h Z )\k+M — )\k — CCSG Z M”}’o — CCgE Z M% =: M’}/

for all k € {1, ..., N(h)} satisfying (2.6.2) and for ¢ < 2419

20CF "

Now, we prove the estimate (2.6.4) which is the approximated version of (2.4.7).

Notice that

1Php,n — Pr |l <

Thus, by (2.6.2), we get

ln+i_1

C’._max Z HB*SOan—&-j,h - B*(pkn+i+j||U
=0

lp4i—1
Ci:(r)na;(_l Z HB*HL(H, U) H901<:7L+i+j7h — SpknJrH-jH
,,,,, —
ln]ﬂ—l
Ci:gla;{l Z 1B || 2,07 ngk,,h%+j7h — (pknﬂ‘ﬂ'Hv
77777 —
ln]+i—1
C _max | ]2; en(n+1i, j) by (2.6.6)
ln+7,‘*1
02
Ci:g_l,?ig_l Z{) h Akn+i+j by (267)
]:
[Pk, 1 — P, ||, < Ce. (2.6.10)

Therefore the triangular inequality leads to

HBlznlq)kthHU,z

by (2.4.7). But, as B.' =

= || Bgl®k.C + Bl @k, 0 — @1,)C,,

2 ||Bi 2w Clly, = [1Be (Prn = 21)C
> aol|Clly, = || By, (@ho,n — Pr)C 1
11 - 1
+ Ry, with Ry, — 0, when &, — +o00
0 .. 0
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(see Lemma 2.3.1), we obtain

1 1 1
HBk_nl(q)kmh - (I)kn)CHU,2 < ) . . (®kn7h - ®,)C
0 o0
U,2

+ [ Rr, (Prn — Pr, )Cly
< Cl®rnn = Prully 1€y + 70 [[Phon = Prlly 1€,
< Ce(l+m) 1€,

(2.6.11)
where 1, = || Ry, || — 0. Thus

_ Qp
| B1, @1, nC| ;5 2 (a0 = Ce(1+ 1)) Ol > - ICll;

< 20
for € < 2c(1+ max(1 +1n,))
For the polynomial stability, we have the same kind of result, but more filtering

is necessary in order to have the discrete counterpart of the observability condition

(2.4.8) (uniformly in h).

Proposition 2.6.4. Suppose that the generalized gap condition (2.3.1) and the as-
sumption (2.4.8) are verified. Then, there exist two constants ¢ > 0 and h* > 0,

such that, for all 0 < h < h* and for all k € {1,..., N(h)}, satisfying

€
hoNZ < e (2.6.12)
k

we have (2.6.3) and
Ja > 0, ¥p € {1,..., M}, ¥k, € AU, vC € ™, || Bilay, uC|,, , > % ICll,,
’ k

p,h?
(2.6.13)
where Ag}h = {k, € A, satisfying (2.6.12) and s.t. knpip—1 + lpsp-1 — 1 < N(h)}.
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Proof: The generalized gap condition for the approximate eigenvalues Ay, is a
consequence of Proposition 2.6.1, because A\, > Ay > 0.

To prove the estimate (2.6.13) we notice that

lpti—1
|Pr,.n — Pr,ll,, < C max hoN? <C WA
kn,h knlly = =0, p—1 kntitj — kntp—1-
b ). ]:0

Moreover by the triangular inequality and (2.4.8), we have

”Bk_nlq)kthHU,Q = ,\O;Ti 1Cl, — HBk_nl((I)kmh N (I)kn)CHU,2 :

By (2.6.11) and (2.6.12), we obtain

— C(1+nn
|Ba @ rClly s = G = S 1,
> G = s A m) IO, with o = A = X, =0
> -l

for an appropriate choice of € > 0.

Remark 2.6.5. Proposition 2.6.1 in case | = 0 and Proposition 2.6.4 for | € N*
show that if he/\iﬂ < ¢, then the discrete version of the observability inequalities is
still preserved uniformly in h and hence no problems with the stability of the discrete
systems are expected. On the other hand, if he)\?l > ¢, then the wviscosity term,

1+4 . ) . . . . S .
h(’Ah 2wn(t), plays its role in damping the spurious high oscillations. Indeed, if we

write
N(h)
On(t) =, ns
k=1
then
L N(h)
thh 20:.)}1(25) = hQZak,h)\iﬁfgok,h.
k=1
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Hence, if h(’)\iﬂ > €, then
1+4 . 2 .
|4y 2ant)]| = @,

. . . . . 144 .
Therefore, in the presence of high frequencies, the viscosity term h%A," 2wy (t) can

be viewed as an additional damping term.

2.7 Uniform stability results

2.7.1 Exponential stability result

The proof of Theorem 2.4.1 is based on the following result (see Theorem 7.1.3
in [52]) :

Theorem 2.7.1. Let (T})n~0 be a family of semigroups of contractions on the Hilbert
spaces (Xp)n>o and let (Ah)h>0 be the corresponding infinitesimal generators. The
family (Ty)n>o is uniformly exponentially stable, that is to say there exist constants

M >0, a >0 (independent of h € (0, h*)) such that
IT0 ()]l o,y < Me™®", ¥t >0,

if and only if the two following conditions are satisfied :
i) For all h € (0, h*), iR is contained in the resolvent set p(Ay) of Ay,

(iw — Ah)_l . < +00.

Xn)

ii)  sup
he(0,h*),weER

2.7.2 Polynomial stability result

The proof of Theorem 2.4.4 is based on the results presented in this section
by adapting the results from [18] and from [48] to obtain the (uniform) polynomial

stability of the discretized problem (2.4.9). Throughout this section, let (T}, (t)) o
he(0,h*)
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be a family of uniformly bounded Cj semigroups on the associated Hilbert spaces
(Xn)neqopey (i-e; IM >0, VA € (0,h%), | Tu(t)llcix,) < M ) and let (Ap)ne(one) be
the corresponding infinitesimal generators.

In the following, for shortness, we denote by R(A\, flh) the resolvent (A — Ah)*l :
moreover, for any operator mapping X}, into Xj, we skip the index £(X},) in its

norm, since in the whole section we work in X,

Definition 2.7.2. Assuming that
iR C p(Ay), Yhe (0,hY), (2.7.1)
and that for all m > 1, there ezists ¢ = ¢(m) > 0 such that

sup || R(is, Ap)||cex,) < ¢, (2.7.2)
oi<m’

we define the fractional power /L:o‘ for a > 0 and h € (0,h*), according to [6]
and [24], as

~ 1 ~

A= — [ XA = Ap) A 2.7.3
where \™% = e~*198A and RT is taken as the cut branch of the complex log function

and where the curve I' =11 U1y is given by
I={—e+te? tc[0,+oo)lU{—e—te ™ te (—o0,0]} (2.7.4)
for some € > 0 small enough independent of h and 0 is a fized angle in (0, %)

In the sequel, the constant ¢ > 0 is generic, independent of h, and may change

from one line to another.

Remark 2.7.3. Throughout this section, whenever 121,:0‘ s mentioned, the assump-
tions (2.7.1) and (2.7.2) are directly taken into consideration since otherwise A;°

1s not well defined.
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In fact, under the assumptions (2.7.1) and (2.7.2), for all m > 0 there exists

¢ = €(m) > 0 such that

—pu+if € p(Ap), Yhe (0,h*), Y0 < pu<eVB <m.
Indeed, for all m > 0 such that |3] < m, we have

(—p+iB — Ap) ™ = (i — Ap) "M In — p(if — Ay)

and
|p(iB — Ap) 7| < pe.

Hence, if |8] < m and p < e < o, then (—p+if — Ay) is invertible and we have

(= + 38 — Ap) Y| < 2|1 — Ap) Y| < 2¢, YR € (0, h%). (2.7.5)

We choose m = J(—e + te”) = etan when R(—e + te”) = 0, i.e. when t = —<.
Therefore, by (2.7.5), assumptions (2.7.1) and (2.7.2) imply that there exists € > 0
independent of h such that the curve I is included in p(Ay) for any h € (0, h*),
and hence A;a is well defined. In fact, if £ € ' such that ¢ > 0, then, by the

Hille-Yosida Theorem, & € p(Ay), while if —e < & < 0, then, by (2.7.5), & € p(Ap).

Proposition 2.7.4. If the assumptions (2.7.1) and (2.7.2) are satisfied, then fl,;o‘
is bounded independent of h € (0, h*).

Proof: We have

. 1 +oo ) . N .
AT — o tz@ —af tz@_A -1 z@dt
N omi ), (—e+te”) Y (—e+te h) €
(2.7.6)
0
L ety o (e — e — Ay (—e it
21 ) _ o
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Since (Th(t)) >0 is bounded, then by Hille-Yosida Theorem (see Theorem 1.3.1
he(0,h*)
of [62]) we get

. M
< — .
IR\, Ap)|| < Fon VRe\ > 0

For —e < ReX < 0, we have |IA| < m and therefore, by (2.7.5), we get

IR\, Ap)|| < 2c.

Let o > 0 be such that —e < Re(—e +te?) < 0,V0 < t < ty = 66 and
cos

Re(—e +te') > 0, Vt > 1o and let ¢ = _L@ < 0 be such that Re(—e — te™¥) <
coS
0,Vt; <t <0and Re(—e—te ) >0, Vt < ;. Therefore,

- 1 [ho

At = i 0 (—e+te®) (=€ + te — flh)’lewdt
Lo i0\—a 0 F \—1if
+ — (—e+te”) Y (—e+te” — Ap) edt
270 Jy,
1 2 . , _ A
+ — (—e— te_w)_o‘(—e —te™ — Ah)_l(—e_w)dt
2m J_ o
o et et = ) e
21 Jy, :
Hence,
~ to 0 +oo 1
A < 2 — te” |TYdt+ M . dt
H h < C/O | —e + te” | + /to | —€ + te?® | (—e + tcosh)
h 1 0 ;
M ~ dt + 2 T
- /_oo|€+t6_“9 | (—e — tcosh) + C/tl [e+te™ | ’
which is uniformly bounded with respect to h. ]

The proof of the polynomial stability of (73,(t)),s, (see Theorem 2.7.9 below) is

based on the following three lemmas. The first lemma is the discretized version of
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Lemma 3.2 in [48] and the other ones are the discrete versions of similar results of

Lemmas 2.1 and 2.3 in [18|.

Lemma 2.7.5. Let S = {\ € C: a < Re\ < b} be a subset of p(Ay) for all
h € (0,h*) where 0 < a <b. Then if (2.7.1) and (2.7.2) are satisfied and if for some

positive constants a and M we have

1RO AV _

he(0,h*) 1+ ’)\|a o ’
AES

then there exists a constant ¢ > 0 independent of h such that

sup HR(A,AM[X;“H <e.
he(0,h*)
AES

Proof: There exists ¢ > 0 and ¢, 0 < ¢o < g, such that
| — ¥ > clul, YpeT, Yoo < lp| <7 —go (2.7.7)
where the curve T is given by (2.7.4). Indeed, if = —e + te for some t > 0, then
| — > =1+ e+ 1% — 2tcos(0 + ) — 2etcost + 2ecosp

and

lu|? = €+t — 2etcos.

Therefore, whether ¢ > 0 is large enough or small | (2.7.7) holds true. Now, Since b
is finite, choose N large enough such that whenever A\ € S and |A\| > N we get both
wo < larg\| < m — ¢ and A does not belong to the sector bounded by the curve
IAIT = {—€|\| + t|M[e?, t € [0,+00)} U {—€|A| —t|Ae ™, t € (—0,0]}.

For all such choice of A\ € S, we have according to (2.7.7)
| — €9 > c|u| YpeT. (2.7.8)
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Consider the following integral for all A € S with |A\| > N

By the above choice of A\, we have A\ ¢ T" and A ¢ |A|T". Consequently, the integral

has no singular points between I" and |A|T". Therefore, by the Cauchy Theorem, we

p 1 p
A= A Al Jp p — eiargr

Therefore, by (2.7.8), we get

have

C
|| < —.
|\l

Now, for |A| > N with A € S, we have by the resolvent identity

-~ 1 ~ ~
R()‘aAh)A]:a = 2_71'2 F:uiaR()‘aAh)R(,u?Ah)d:u
1 [ ~ 1 u ~
= — R(A\, Ap)dp — — R(p, Ap)d
1 : 1 [ o .
= —LRNAL — — Ap)dp.
s RO = 5 [ R Ay

On the other hand, similar to the proof of Proposition 2.7.4,

:u_a A 1 A /
R(p, A d,u’ﬁc/—R,u,A dp <,
[ L5 A < ¢ [ RGe A

where ¢ is independent of h. Therefore for all A € S, with |A\| > N, we have

c

1+ ‘)\|a / /!
+c <c.
Al

Al B

IR A AL < m RO A +¢ < e
Now, for A € S such that |A\| < N, we have
1RO A A2 1< RO, AIIAL] < e(1+ A%) < e(1+ N,

which completes the proof of Lemma 2.7.5. ]
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Lemma 2.7.6. If (2.7.1), (2.7.2) and
sup || R(is, An)lexy) = O(s1%), Is] = oo, (2.7.9)
he(0,h*)
are satisfied, then there exists ¢ > 0 independent of h such that
sup ||R(\, Ap)A 2| < e (2.7.10)

he(0,h*)
ReA>0

Proof: For all h € (0,h*), m > 0, and B > max{2m,1}, consider Fy(\) =
~ B
RN\, Ap)A—(1 — 2—22) on the domain D = {)\ €C: Red>0, m< |\ < 5}

B
F},, by the maximum principle, attains its maximum for |\| = 5 Therefore,

C
FE ) < —.
B < o

If there exists € > 0 such that Re\ > ¢, then |Fj,(\)| < c.
Otherwise, for 0 < Re) < ¢, using the resolvent identity

R(\, Ay) = R(iImA, Ay) — ReAR(iImA, Ay)R(\, Ay) (2.7.11)
then, as [ImA| > m — e for all m > 0, we have
IR, Ap)[| < e[ TmAl“.

Therefore,
)\2
L5

Hence, in all cases, there exists ¢ > 0 independent of B such that

IE, (V)| < el ImA[e |~ <ec

F)| <.
As a result, for all A € D,
5 NE
1RO A <~ < ale < o1+ AP,

f— )\2
|t~ %]
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If 0 < ReA < |A] < m, then by (2.7.11) and assumption (2.7.2), we get
1RO A < el R(iTmA, Ap)|| < ¢ < e(1+ [A[*).
Letting B — 400 yields
|RON, AR)|| < e(1+ M%), YReA > 0.

Applying Lemma 2.7.5, we get for 0 < Re\ < m,

In addition, if Re\ > m, by the Hille-Yosida theorem and Proposition 2.7.4, there

exists some positive constants ¢; and ¢y such that

[l
Re\

HR()‘M’Zlh)A];aH < < cs.

In all cases, we get (2.7.10). n

The last lemma in this section gives the necessary and sufficient conditions for

the boundedness of any family of Cj semigroups (Si(t)) w0 -
he(0,h*)
Lemma 2.7.7. Let (Si(t)) 0 be a family of Cy semigroups on the associated
he(0.h%)
Hilbert spaces (Yh)he(o pey and let (Eh)he(ons) be the corresponding infinitesimal ge-

nerators. Then (Sp(t)) >0 is uniformly bounded if and only if
he(0,h*)

(i) {\ € C: ReX >0} C p(E)), Vh € (0, h*)
(ii) There exists ¢ > 0 independent of h such that

sup ¢ [ (IR(E +in, B + | RE + in, B) [)dn <
ey
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Proof: First, we assume that (Sp,(¢)) is uniformly bounded. Then (i) holds by the

Hille-Yosida theorem. As for (ii), we only need to prove that

sup & [ ||R(E +in, Ep)ay||*dn < cl|ln|?, Yo, € Vi, (2.7.12)
heohe)
because according to the theory of adjoint semigroups, (see [62]), S*(¢) is a Cy
semigroup with the same properties as S(t).
Similar to the proof of Lemma 1 of [42]|, we have for all h € (0,h*), x;, € Y},

|R(§ + in, Eh)xh||2 = /Re_"’sfh(s)ds,

where

+o0
fn(s) = / eS8 < G, (u + )y, Sh(u)zy >y, y, du.
max{0,—s}

For s > 0, since (Si(t)ne(on+) is uniformly bounded, ie. sup [[Sy(t)|| < M, we

h he(0,h*)
ave
o M?|| ]2 M2z 12
Sl 0 M?||ap P82 du = %655 < %
For s < 0, we have
o M2|zpl2e8 M2y
|fu(s)| < M|z |2e 86+ gy — Hng e - !ghu

Hence, f;, € L1(R) N L>(R) and

U = = IR(E +in B

Using Lemma 21.50 in [40], it follows that

cM? ||z |2

1 ~ 1
3= [ IR+ Bl = —= [ S(3)r)r < ellfll= < S8

Hence, (2.7.12) is verified.
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As for the sufficient condition, since {A € C: Re\ > 0} C p(Eh), with o = %,

we get for all z;, € Y},

1 o+100 _
Sh(t)l’h = 2—7” ‘ 6>\t<>\—Eh)_1£Bhd)\,
1 o+1i00 e)\t _ 6)\t _ .
= — = (\N—E. )2 Z(\N— EN! oico.
omi ) (A = Ep)"ndA + — (A = Bn) " an | i

o—100

But (A — Ey) ' |71 = 0 since according to Lemma 2.1 of [69], under condition

(i), we have ||R(\, Ey)zp|| — 0 as |A| = 400 whenever ReX > 0. Therefore,

1 o+1i00 »
(Su®)xn, yn)y, y, = < / e/\t()‘_Eh>2~Thd>\vyh>

21t ) y_ino Y, ¥
1 o+ico \ B )
S A — By) 2, > X,
21t J o oo <( BT U Yi,Yn

Let A = % +in with n € R. Then

e

. 1 -
<Sh(t)9€h,yh>Yh,Yh - /Remt <R2(¥ + Z77>Eh)xhayh> dn.
)/}L7Yh

Holder’s inequality yields

e . 1 . ~ 1 . %
(SO | = |og [ € (RG +in Eon BG +in B ) dn
, 7t Je ¢ t _—
€ L. 2 : Lo ey 12 :
< 3 [R(= +in, Ep)as|["dn [R(= +in, Ep)yn||"dn
Tt R t R t

A\

< cllzallllyall-
Therefore
|1Sh(®)|| < ¢, Yh € (0,h").
]
Before we give the necessary and sufficient conditions to get the uniform poly-
nomial stability of the discretized problem, we recall Theorem I1.5.34 of [24] about

the moment inequality.
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Theorem 2.7.8. Let E be the generator of a strongly continuous semigroup and
let « < < 7. Then there exists a constant L = L(a, B,7) such that, for every
xr € D(E), we have

|E2|| < L[| E“z|F== | EVxl "= . (2.7.13)

Now, we display the main theorem which leads to the uniform polynomial sta-

bility of the discretized problem (2.4.9).

Theorem 2.7.9. Let (Ty(t)) o0 be a family of uniformly bounded Cy semigroups
he(0,h*)

on the associated Hilbert spaces (Xh)h€(07h*) and let (flh)he(o’h*) be the corresponding
infinitesimal generators such that (2.7.1) and (2.7.2) are satisfied. Then for a fized

a > 0, the following statements are equivalent :

(i)
sup [|R(is, Ay)| = O(|s|*), |s] = oo

he(0,h*)
(ii)

sup HTh(t)fl,:O‘H = O(t_l), t — +o00
he(0,h*)

(iii)

sup | Th(O)A | =O0(t=), t— +oo.
he(0,h*)

Proof: We begin to prove (ii) < (iii). We adapt the proof found in Proposition 3.1

of [15] without the discretization parameter h. Given (ii), we have
A—an t A—o !
Az =| (L) &

According to the moment inequality (2.7.13), we remark that there exists a positive

<c(§) et v eN, he (0, t - +oc.
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constant L independent of h such that, for all v € (0,1), we have

HTh(t)A}:anuth _ HAZn(lfV)Th@)A;ana:hH

_ HAﬁlAzn(l‘”)‘ﬂlTh(t)A,;“"azhH

v1—B81 B1—ag
S I HAZlyh Y11 Azlyh Y1—a1
< L HAz1+an(1—V)—51Th(t)A}:anxhH

1—v

HAzl+an(1_y)_61Th(t)lzl}:oml’hH :
where vy, = flz"(l_y)_ﬁlTh(t)A;a"xh. Now, we choose aq, 31, and ~; such that

M —pF+an(l—v)=an
a; +an(l —v)— p; =0;
ie.,
ag =0 —an(l—v) <
=B +anv > p.
Therefore,
Y1 — Q= an
11— B = anv.
Finally, we get

1—v

IN

|| < L) AT Ao

Ti(0) A7 "
< LMY&re’(n)t=™|lzyll, Vv e (0,1).

1 1
Choose v = — with n > — to get
an o

Tt A < et =
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Conversely, assume that (7i7) holds. Then

t
n

_ _ t\ o -
| Th(t) A | = ||[Th ( ) A;l]"H <c (E) < cnet o, Vn € N*.

Therefore,

I A™ ] < el RTO A II T A1
cM*Ve(n)vt—'«, Vv e (0,1).

IN

o
Take v = — with n > « to get
n

sup ||Th(t)/~lgo‘|| =0 (t_l) )

he(0,h*)
Now, we prove the implication (iii) = (¢) (for the continuous case, see [16]).
Given (iii), define
ma(t) = sup ||Ti(s)A,".

he(0,h*)
s>t

Notice that mq(t) is non increasing. Let ug, € D(flh), fon = (—flh +iT)uon, T € R,

and let vy, (t) = e ug,. We have

0tvh — flhvh = iT@itTUOh — Ah(eitTUOh) = eitTth
vp(0) = wuop.

By the Duhamel formula,
N ¢ o
v, = g, + / e(t_S)Ahe”Sthds.
0
By the boundedness of the semigroup (7}(t)) and the definition of m;, we have

luonll = lon®)1 < 1w (0) A Apuonl + ¢ ¢l fon
()| Anon]| + ¢ t]] fonl|
@)Ul forll |7l lluonll) + ¢ tl] fonll-

IN

may
ma
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Apply the above inequality with ¢ = G(|7|) where

- 1 . 1
mh,l <m) Zf 5 > (0 and @ S ml(O),

0 @'f§>0andm

G(&) =

where my,! is the right inverse of m;. Therefore,

T 1
(@] = m(G(rIr] < 5l < 5
Hence,
slluonll < ma (G forll + ¢ G fonll
[ for]|
< _IJORIL
— 2(|T| + 1) +c G(‘T’)HthH
< (3 +c G forll-
Consequently,
(im — Ap) M| < 1+ 2¢ G(|7]),
i.e.,

sup ||(iT — flh)_lﬂ < 14 2c G(|1]).
he(0,h*)

Since, by (ii7),
sup | Th(t)A Y < Mte, t— +o0,
he(0,h*)
then, as m; is non-increasing, we get

mi(t) < Mts, t— +oc.

Besides, as the inverse of ta is =, then

G(€) <my, (2(51 1)> <C (ﬁ) L C2(E+1)* < et &€ — +o0.

Finally, we get

sup ||(iT — flh)_lH <1427 < c|7|%, |7] = 4o0.
he(0,h*)
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It remains to prove that (i) = (i7). For this aim, for all h € (0, h*), let X}, =

X5, x Xp, and consider the operator An given by the operator matrix
i A, /IM;O‘
0 A
where D(Ay) = D(A4,) x D(A,). For all h € (0, h*) and all A, € p(Ay), we have

R\, Ap) R2(\, Ap)A°
0 R(\n, Ap)

R(Ap, Ay) =

Indeed,

I, 0
0 I

R, Ap) (A — Ap) = (M — Ap)R(\y, Ay) =

Therefore, p(Ay) = p(A,) and for all h € (0, h*), the operator Ay, is the generator
of the Cy semigroup (Ty(%))i>0 on Xy, defined by

Ty () = Ty(t) tTh(t )f)l

0 Tyt

In fact,
T To(t) tTh(H)A
0 Tn(t)
R, Ap) R2(\, Ap)A,°
0 R(\n, Ap)
= R(\, Ap),

—

where T, () is the Laplace transform of Ty, (¢). Since for all h € (0, h*) we have

1R(is, Ay)|| = O(|s|). as [s| — +oc,
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then by Lemma 2.7.6 we get

Hence, for all x;, = (214, 22n) € Xp, and Re\;, > 0, we have

2

R\, Ap)ayy + R2(n, Ap) Ay “aa,
R(M, Ap)zan
< e (IROw Aeunl? + 1RO, Anwanll?)

IR, Ap)za|? =

Similarly, we have
1RO, AR )anl® < e(l RO AR)zanl® + | R, Ap)an ).
Indeed, we have
[ A A
0o A
In order to get

sup ||[R(A, A)(A3) [ < ¢,
he(0,h*)
ReA>0

we must have at least
| R(is, A})|| = O(|s]*), as |s| = +o0.

Actually, we have

R(is, /12) = [(is — A}kl)]_l = [(is — Ap)*] "t = R(is, Ap)*.
Therefore, we get

1R(is, A7) < || R(is, A)l| = O(|s|*), as |s| = +o0.
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Now, by Lemma 2.7.7, since for all h € (0, h*), Tj,(t) is a uniformly bounded family

of Cy semigroups, we get

sup € | (|R(E +in, Ap)anl®) + (1R(E + in, Ap)an|*)dn < o0, Yy € X

sup & [ (R + in, An)an]®) + (| R(E +in, Af)zalP)dy < 0o, iy € Xy

&0 JR
he(0,h*)
Therefore, (Tw(t)) o is uniformly bounded over (Xn),cq - by Lemma 2.7.7.
he(0,h*) ’
Since (Tj,(t)) >0 is uniformly bounded over (Xz),e (-, the definition of Th(?)
he(0,h*) ’

implies that
sup |[tTh(t) A, 2| < 4-o00.

t>0
he(0,h*)

2.8 Preliminary lemmas

In this section, we prove that the family (A;)ne(n defined in (2.5.1) satisfies
condition i) in Theorem 2.7.1 and the properties (2.7.1) and (2.7.2) of Subsection
2.7.2. Condition i) in Theorem 2.7.1 or (2.7.1) in Subsection 2.7.2 is satisfied due to

the following lemma, :

Lemma 2.8.1. The spectrum of the operator fll,h contains no point on the imaginary

axis.
$h
Proof: Suppose that € Xj and w € R are such that
U
Ahh Ph — i “h
Un Un
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Then, by using the definition (2.5.1) of A, we have

Qﬁh = @w(l + h9)<] + h@AE)flth
12 12 1
—(1 + hg)fl([ + heA}QL)AhQOh — zw(l + he)(h9A2+2 + BhB;;)(I + heA;L)*l(ph

1
= —w 1+ h) (I +h0A2) Loy
(2.8.1)

L
Let x5 = (1 + h%)(I + hPA?)~1py then the second relation of (2.8.1) becomes
L L
(14 ) 2(1 + W A2)2Apxn + iw(BP A, 72 + ByBl)xn = wXa. (2.8.2)

If w = 0, then taking the inner product of (2.8.2) with x, € Vj, we get (I +
heA,%)A%Xh = 0 and hence x;, = 0 which implies by the definition of y; that
on = p = 0.

It then remains to consider the case w # 0. In that case, we take the imaginary

part of the inner product (in H) of (2.8.2) with x;, € V} to obtain

1+ *
0 = wh’ (Ah * Xhs xh> +w (BrBjXn, Xn)
l+£ 1+L " %
= wh’ (Aﬁ "Xy Aj, 4Xh> + w (Bhxns Brxn)y -
that is to say
ol 45+ |7 x 112
h HA;QL 4XhH + | Brxall;; = 0.

This leads to x, = 0, and hence ¢, = 1, = 0. u

Our main goal is to prove condition ii) of Theorem 2.7.1 in the case [ = 0 and
condition i) of Theorem 2.7.9 as well as (2.7.2) in the case [ > 2 and a = 2. In that
last case (I > 2), these two conditions are equivalent to

sup (14 |s|*) | R(is, Ap)ll e,y < oo (2.8.3)

he(0,h*), seR
To prove this above property, we use a contradiction argument. More precisely, we
will assume that, for all n € N; there exist h,, € (0, h*), w, € Rand z, = o €

Un
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Xp,, such that
Hzn‘@(hn = a(Pn, Pn) + HwnH2 =1,VneN, (2.8.4)
and

(1 + |wn|2l) sznzn - Al,hnzn

— 0, as n — oo, (2.8.5)
X

where [ = 0 in the setting of Theorem 2.7.1.

Lemma 2.8.2. Assume that the sequences (hy,), (wn), (2,) satisfy (2.8.4) and (2.8.5).

Then, we have

(1+ Jwn ™) (REa! (1, ) + HBannHQU) — 0, asn — 00 (2.8.6)
and
. L , 1
Jim a(pn, @) = lim [[9a]]” = 3. (2.8.7)

Proof:For (2.8.6), we take the inner product in X}, of iw,z, — fll’hnzn with z,, and

take the real part. We obtain

R <anzn - Al,hnzny Zn)

th
N
- (L4+h8)"M I + A} )iy Pn
= — ! L !
—(1+RO)HI + hSAZ VA, o — hflA,ll:%n — By, B}, ¥n Un

L L
— R (4 R8T+ READ) Aty 9n) + (L4 ) (14 REA ) Ao, )
1
HBY AT 6+ B B, 00))
1
= (WA + Bu B, tn).

Then
(1+ |wn|21)§R (iwnzn — fll,hnzn, zn>

= (1 + wa ™Y (R0 (W, ) + || B, wa|2) — Oy (2.8.5).

In order to prove (2.8.7), we introduce the operator

0\—1 0 43 0 I
A, = (14 hp) (I +hy A7) : (2.8.8)
— A, 0
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We have

= Pn Pn 0
Aip, = Ay, —

1
Un Un h A, 24, + By, By

.V on e X,

Un

0
We take the norm |||y, of iw,2, — Aip, 2, + . to obtain
n* “hn n

0
(1 fwnl™) |fiwnzn = Amza+ |
2
ho A, ? .
2
. 0
= (1 =+ |wn‘2l) Z.ann - Al,hnzn -
B, By, ¥n

Xh,,
2 . 9
o 1Bl

2 . 9
Bl o

< 2(1+ Jwnl)(

1WnZn — Alhn#n

< O+ Jwn®)([|iwnza — Aup, 2

by (2.8.5) and (2.8.6). Therefore

2

0
(14 [wn|™) |[iwn2n — Arp, 20 + hﬂAH%w — 0. (2.8.9)
n hn n

X}Ln
We can now prove (2.8.7). By Lemma 2.8.3 below, there exists ng € N such that

the sequence (|wy|)n>n, is bounded away from zero. Hence, we may write

0 @
. 1 n
S| twnzn — A, 2n + ) 1L o
2
h/nAhn 77Z)TL _77Z)n X,
N Pn ¥n
- ’
n n X,

and so, by (2.8.9) and (2.8.4), we have

lim (a(en, @n) = I¢nll7, ) = 0.
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This relation and (2.8.4) lead to (2.8.7). n

Lemma 2.8.3. Assume that (2.8.4) and (2.8.5) hold. Then there exists ng € N such

that the sequence (|wy|)n>n, @8 uniformly bounded away from zero.

Proof: By a contradiction argument, we show that the sequence (w,,), contains no
subsequence converging to zero. Namely suppose that such a subsequence exists. For

the sake of simplicity, we still denote it by (w,),. Hence (2.8.9) implies that
L
0 —(L4+ 1) (I + AT )b
L 1 L
B A (U BT+ BT ) Anpn + WA

— 0 in th.

_Alhn Zn +

(2.8.10)

Taking the inner product of first component in (2.8.10) with ,,, we get

(1 18) "0 (T4 HEAR o, 00) = (L BE) 7 (althn, ) + B! (G, 1)) = 0.

As h,, < h*, then, by (2.8.6), we get

2

‘Mi% — (4, ) — 0. (2.8.11)

The convergence of the first component in (2.8.10) implies that

1 2
|4k, (2 + w4z || .

Therefore, (2.8.11) yields

(141

)
A, 2 4h, — 0 in H. 2.8.12
n*hyp

1
The second component in (2.8.10) and the fact that «of|z||? < ||AZz|]* = a(x,z) for

all z € Vj, imply that
1 1 1+1
(L+n0) " (I + oA YA @+ h0 A2 ¥, — 0 in H,
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which, by (2.8.12), yields
Lo
(1+R0) ™ (I +h)AZ YA 0, — 0 in H.
Thus, as h,, < h*, we get
a(on, ©n) — 0.
This above relation and (2.8.11) contradict (2.8.4). n

According to the above lemma, we note that the coefficient 1 + |wn|2l becomes

equivalent to \wn]m. Now, we introduce the operator Dy, defined by

Note that Ay, = (1 + k%)Y + hﬁAéﬂ)Dlhn. We then use the following spectral
basis of the operator Dyj;,. Namely, we extend the definitions of Ay , and of ¢y 5,
for k € {—1,..., —N(h,)} by setting Mg p, = —A_g n, and @i p, = @—k n,. Then an
orthonormal basis of X} formed by the eigenvectors of Dy, is given by

7

1 - .
U = — | Rem TG <k < N(h), (2.8.13)

2\ e

of associated eigenvalue i)\ 5, , that is to say
Din, Vi by, = Pk, by Vi by
Consequently, for all n € N, there exist complex coefficients (¢} )o<|rj<n(n,) such that

= > G, (2.8.14)
0<|k|<N(hn)
The normalization condition (2.8.4) implies that

> gl =1

0<|k|<N (hn)
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Let € be the constant from Proposition 2.6.4 (if [ = 0, we recover the condition from

Proposition 2.6.1). For any n € N, we define
< } (2.8.15)

M;(h,) = max {k e{1,..,

if by (A1)? < 5 and M;(hy) = 0 otherwise.

Lemma 2.8.4. Suppose that the sequences (hy), (wy), (z,) satisfy (2.8.4) and (2.8.5)

Then, we have
1 NAn)
Un \/_ Z (& + ")k s (2.8.16)
Z || | + c’jk‘ — 0, (2.8.17)

M (hn)<k<N(hn)

and
— (14 B0 N + RN = 0. (2.8.18)

2l

0<|k|<M;(hn)
Proof: Relation (2.8.16) follows directly by taking the second component in (2.8.14)
and by using (2.8.13) and the fact that ¢y ) = @_j 5.
From (2.8.6) and (2.8.16), it follows that
lwn| 2 BY L (1, b)) = Z RENZHL (o, | |e2 4 ¢y | = . (2.8.19)

As we have A\, < \g p, for all k € {1,..., N(h,)} and by the definition (2.8.15), we

obtain (2.8.17).
On the other hand, we use (2.8.14) and the fact that W, ; is an eigenvector of

Dy, associated with eigenvalue i)\ 5, to obtain for all v, € X}

(iwnzn - Alhn Zns "Z}hn>
. e . . (2.8.20)
= Z v (w” - (1 + hn)_ ()\’% hn + hn)\k:,hn)) CZ (lpk,hrm Q»Z}hn>X .
0<[k|<N(hn) hn
84



Chapter 2 Uniformly exponentially or polynomially stable approximations

By (2.6.9), we have

ROX: b < oA+ (CRIAD)?)? < 2h0N; +2C K0 (RO X)* < S o= - < <0<

AL Ay AL

(2.8.51)
for h9 (\)? < i So, by using (2.8.19) and again (2.6.9), there exists a constant C'
independent of h,, such that

My(hn) ) My(hn) )
Y Y At el [ e T <O Y ehdNT Twnl™ [ 4+ ey
k=1 k=1

< Ce Y RN Jwa ! [ep + e[ 0.

(2.8.22)
We also have for all ¢, € X,
0 ~ he -
— _n)\2+l n n <\I/ >
heAl‘i’QQ/} ’ /l'bhn Z 2 ]C, hn (ck + C*k‘) kyh’ﬂ7 ,l/}hn th
n N 0<|k|<N (hn)
hn
(2.8.23)
because [ is even. Relation (2.8.23) implies that for all Un, € X,
0 RS 241 n n T
§ 14k - Z o /\k:,hn (Ck + C_k>\11k, has Vho,
B Ay My(hn) <K <N ()
Xnp
= > BN (e + ) Whns ),
0<|k|§Ml(hn)
However,
2
0
" D RN (),
0<|k|<M;(hn)
21 Z h20 A2 2 Z h29 ptani 2
= |wy] khlck+ck|+|wn’ A |G+
2 n 2 n
0<|k|<M;(hn) (2\/52)6 0<|k|<M;(hn) (2\/5)
h
=2wa* Y AL lcn 4 ey
2 n
0<|k|§Ml(hn) (2\/5)
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Therefore, by (2.8.22), for all ¢, € X,

0 o )
1 n n n
|wn| J - E - /\z+}5n(ck + )k by Un,, — 0.
0 1+2 2 ’
hy Ay, 2 n My (hn) <[F|<N (hn)

X,
So, we obtain with (2.8.9), (2.8.20) and the above relation, for all v, € X, , that
the inner product in X, of 1, with

Y ilwal (wa = (AT N, +RENTE)) ¥,

0<|K|<N (hn)

34 1y 241
+ E 2 Jwnl ApT, (G + )W,
M; (hn)<|k|<N (hn)

tends to zero. As the family (W¥y, 5, ) is orthogonal, the above relation implies (2.8.18).

2.9 Proof of Theorem 2.4.1

We use the results of the previous section with [ = 0 and set, for shortness,
Ay, = flo,h and M (h,) := My(h,).

Proof of Theorem 2.4.1 This proof is based on Theorem 2.7.1. First, for all h €
(0, h*), the family (¢'4) forms a contraction semigroup. The family (A),) satisfies the
condition i) in Theorem 2.7.1 owing to Lemma 2.8.1. To show that the family (A,)
also satisfies the condition ii) in Theorem 2.7.1, we use a contradiction argument.
Let (hy)n, (wn)n and z, = o € D(Ap,) be three sequences satisfying (2.8.4)

Un
and (2.8.5). Notice that for k,, € Ay, we have

)\kmyhn - Ak'mfl‘i’lmfl*Lhn Z )\km - )\k'm—1+lm71*1 — Ce
/
= Mgy — My, — CE > — CE
YW o)
> g =
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for e < g—‘g by (2.6.8) and (2.6.9). We now introduce the set

={n eN|3k(n) € {1,.... M}, Fkn() € Akn)s |km(m)| < M(hy) and

/
|km(n)+k( —1 + bn(n)+k(n) 1‘ < N(h,,) such that < %} . (2.9.1)

Wn — )\km(n)7hn

We distinguish two cases.

First case : The set F is infinite. Then, without loss of generality, we can suppose
that 7 = N (otherwise we take a subsequence of (w,,)). Then, by reducing the value
of 7/ if needed, we can assume that for all n € N, we have that for all k,, € Ay, k' =
1,..., M with m # m(n),

/
(R VT % Vi= 0,0 K — 1, V=0, ) sy — 1.
By using (2.8.18), we obtain that
SED I 3
T okeea =0
m#mn) 0 <[knij+ lngy — 1] < M(hy)

H
3
+
.
L

—0. (292

Define now

k(n) —1lm(n)+
:0 =0

We have, by (2.8.16),

Ly j—1

k—1
W \/_Z Z Z (st T oy 40) Phim s+, s

k=1km €Ay, 1=0
J=0
and so, by (2.9.2) and (2.8.17), we obtain
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Thus, since ([|B; || £y, 17))ne(o, n+) is bounded, we deduce that

HB;;n(z;n — || —o0. (2.9.5)

The above relation and (2.8.6) imply that

HB;;nz;n — 0. (2.9.6)
U
But
k(n)—1lm(n)+
* _ 1
j=0 =0
U

—_— 1 * *

Y ( Bhn%m(n)vhn Bhn(’Okm(’ﬂ)Jrk(")*1+lm(n)+k(n)*1_17hn)c HU

= L .

= T
where €' = ( Chingn) " Chanuy =L Chmgmypr " Chan(uyrim)—1 Hom(ay k(-1 1)
So, we have
11 1
x 1 00
HB WP v V2 Py, 1 ©
0 -0
U,2
We now use Lemma 2.3.1 to have
HB* Un > HBk h"CH for nlarge enough
’ o e B g (2.9.7)

> ca||C||, by Proposition 2.6.1.

Gathering (2.9.3), (2.9.6) and (2.9.7), we obtain that 1, — 0 in H. Therefore, by
(2.9.4), ¥, — 0, which contradicts (2.8.7).
Second case : The set F is finite. Then, we can assume, without loss of generality,

that F is empty (otherwise we take off the finite number of (w,)); i.e., that for all
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n € N, we have that
,Y/

Thus, by (2.8.18) and the above relation, we obtain that
> gl —o.
0<[k|<M (hn)
Therefore, by (2.8.16), (2.8.17) and the above relation, we have ,, — 0 in H, which
contradicts (2.8.7).

In conclusion, the family (A) satisfies the condition ii) in Theorem 2.7.1 and so

the family of systems (2.4.6) is uniformly exponentially stable. B

2.10 Proof of Theorem 2.4.4

Here we use the results of Section 2.8 with [ > 0 and [ even. Without loss of
generality, we may assume that 0 < h < h* = 1.
Proof of Theorem 2.4.4 and of condition (2.7.2) This proof is based on Theo-
rem 2.7.9. First, for all h € (0, h*), (e“ilvh) forms a family of contraction semigroups
and the family (A, ), satisfies (2.7.1). To apply the results of Theorem 2.7.9, the fa-
mily (A, ;) must also satisfy condition i) of Theorem 2.7.9 with a = 21 and condition
(2.7.2) or equivalently condition (2.8.3) . We again use a contradiction argument to
prove this last condition. Let (h,)n, (wn), and z, = o € X, be three se-

Un
quences satisfying (2.8.4) and (2.8.5). Notice that for k,, € Ay, we have

v

)\km - )\km—1+lm—1_1 - >\210—6

)\k'mah - )\km—1+lm—1_1vh A

m—1

)\km _)\km—l — o 2 76 — 3o

21 21
a a2

v

/

IV
KIS
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for e < 0/\’“1 by (2.6.8), (2.6.9) and because A\, > Ay, > 0. We introduce the set F
like

Fo={neN|Fk(n) € {1,....M}, Fkmw) € Arm), |kmw)| < Mi(hy,) and

| Km(n)i(m)—1 + bn(my+hm)—1| < N(hy) such that

/

< VZ} (2.10.1)

—(1+ hfl)_l(Akm(m,hn + A )

We distinguish two cases.

First case : The set F5 is infinite. Then, without loss of generality, we can suppose
that 75 = N (otherwise we take a subsequence of (w,,),). Then, by reducing the value
of 7/ if needed, we can assume that for all n € N, we have that for all k,, € Ay, k' =
1, ..., M with m # m(n), and for all |k,,; + 1| < M;(hy,)

/
> %, Vi =0,y K—1, V1 =0, ..., Lysj—1.
(2.10.2)

—(1+ hfl)_l(/\k‘m-&-]‘i‘l hy T he)\liij+l,hn)

Indeed, similar to (2.8.21), we have

— (L4 20) " Nt + 1 )‘II{H—H )
Z (]- _I_ h/z)il ‘)\k‘m+j+l hn — )\k - (]- _I_ h’fL)il()\k‘m(n)ahn + h9 )\]1€+l(n) hn)

—(L+hf)~ (he)‘ilgH( yohn T he/\lmﬂﬂ o)
- YooY 206‘
= 24
/
A
So choose again € < % to get (2.10.2). By using (2.8.18), we obtain that
M k—1 lerj,l
!
Z Z Z |Wn|2 Ckaerrl’ — 0.
k=1 =0
Fm € A =0
m # m(n) 0 < |kmj + lntj — 1| < Mi(hy)
(2.10.3)

90



Chapter 2 Uniformly exponentially or polynomially stable approximations

Define now
k(n) 1l m(n)+j

1 TL
Un 2 Z i) 45+ P lomn) 45+ b (2'10'4)
7=0 =0
We have, by (2.8.16),
k—1 l'm+j71
Un Z Z Z (CZMHH + CT—L(kaH))SOkaH,hm
k Lkm €A, _ 1=0
j —=
and so, by (2.10.3) and (2.8.17), we obtain
— (2.10.5)
Thus, since (|| Byl z(v;,.1))he(o,n+) is bounded, we deduce that
jwn HBZ,L(% — )| =0 (2.10.6)
The above relation and (2.8.6) imply that
' HB;n@ZH ) (2.10.7)
U
But
l k(n)—=1lm(n)+5—1
l * _ wnl
|Wn’ HB nwn U = |\/§ Z Z m(n)_H_H hngpk n)45 1+ hn
Jj=0 U
— |Wn|l * *
o \/i ( Bhntpkm(n)vhn e Bhn(pk'm(n)+k(n)71+lm(n>+k(n)71_17hn)c HU
_ el H
7 ||( 1 D5, C -
Where C - ( ckm<n) T Ckm(n)‘i’lm(n)*l Ckm(n)Jrl U ckm(n)+k(n)71+lm<”)+k(n)*171)T'
So, we have
11 1
1 " ~ |0Jn|l 0 0
S LA B C
0 -0
U2
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We now use Lemma 2.3.1 to have

! ~

km ( n)

> ¢lwy| HB C’H for n large enough

> a‘w”‘ C|, by Proposmon 2.6.4.

m(n)

But, w, verifies

W = (1 )™ N e + RN )] < 2 by definition (2.10.1)

of Fy , thus |w,| > <1+h2)_1<)‘km(n),hn+hz)‘llczin),hn>_’YZ > 5 Moo i — - Therefore,

we have

e S
2 T

wnl' || B, 5
U

m(n)

l
Q@ Moy i (2.10.8)

> ﬁ I\ |C|, for n large enough
knL(n)
> 221 ||C'| by (2.6.8).

Gathering (2.10.4), (2.10.7) and (2.10.8), we obtain that ¢, — 0 in H. Therefore,
by (2.10.5), ¥, — 0, which contradicts (2.8.7).

Second case : The set F is finite. We proceed similar to the proof of the second
case of Theorem 2.4.1.

In conclusion, the family (A, ;) satisfies (2.8.3) ; i.e., the condition (i) in Theorem

2.7.9 with o = 2] when [ is even and property (2.7.2) of Subsection 2.7.2.

Remark 2.10.1. The previous analysis has been held in case | € N* is even. Ho-
wever, in case | 1s odd, we can still adapt the same analysis to get the same results.

Indeed, we consider problem (2.4.9) with powers of [ 4+ 1 instead if l. Besides, whe-

_ o
knl(PknCHM2 > e ICl, and hPA% < _)\l+1’ then
kn k
HB;¢mmﬂu2_Alnmb,
and
9 2 C )
H(I +h A Do) + alwn(t), wa(t)) < t_%H(WOh’Wlh)HD(A,,h)'
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2.11 Convergence of the discretized problem

Here we want to prove that the solution wy, of the discrete problem (2.4.9) tends
to the solution w of the continuous problem (2.1.13) in X := V x H as h goes to zero
and if the discrete initial data are well chosen. This is obtained with the help of a
general version of the Trotter-Kato Theorem proved in [45] that is appropriated when
the approximated semi-groups are defined in proper subspaces of the limit one. The
basic idea is that the convergence of the semi-groups is equivalent to the convergence
of the resolvent, hence we prove such a convergence result for the resolvents.

First, we recall the Trotter-Kato Theorem proved in [45]. Let Z and X,, be
Banach spaces with norms ||.||, ||.|l., n = 1,2, ..., respectively, and X be a closed
linear subspace of Z. On X a Cy-semigroup 7T'(.) with infinitesimal generator A is
given and on the spaces X,,, the Cyp-semigroups 7),(.) are generated by A,. Suppose
that, for every n € N*, there exists bounded linear operators P, : Z — X, and
E, : X,, — Z such that the following assumptions hold :

(A1) ||P.| £ My, ||E,|| < My, where My, M, are independent of n,

(A2) ||E,P.x—z| — 0asn — oo forall x € X,

(A3) P,E, = I,, where I, is the identity operator on X,,.

For all n € N*, let Z, = range E,, m, = E,P,, To(t) = E,T,(t)P,|z,, A, =
E,A,P,|z,, and I, = E.1,P,|z,. The Trotter-Kato Theorem given in Theorem 2.1
of [45] states the following :

Theorem 2.11.1. (Trotter-Kato). Assume that (Ay) — (As) are satisfied. Then the

following statements are equivalent :

(a) There exists a Mg € p(A) N ﬂp(/ln) such that, for all x € X,
n=1

H()\oln — Ap) "t — (Mol — A)_le — 0, asn — oo.
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(b) For every x € X and t > 0,
| T ()T — T(t)z]| = 0, asn — oo
uniformly on bounded t—intervals.

Our aim is to prove that condition (a) of Theorem 2.11.1 holds true in order to

get the convergence of the solutions. Let us start with some preliminary results.

Lemma 2.11.2. Let [ € N,I > 2. If f € V = D(Az), then

1l
11+ WY (I + hPAZ) " f — maflle < ChE[|flv, (2.11.1)
for some C' > 0.
Proof: We write
N(h)
mf = ka@k ha

with f; € C. Hence
on = (1K) + WA ",

can be written

N(h)
Up = E Vi Pk,h»
k=1

with v, = (1 + h%)(1 + h9>\§€7h)_1fk. Consequently we have

2
lon = m Il = Zm (@A + 10X = 1)

B h%z'f' <1+h9/\l )2

N(h) )‘Zlh

< Y Kl
; (14 hOX,,)?
N(h)

<

ch 302 felP(gOn))?
k=1

94



Chapter 2 Uniformly exponentially or polynomially stable approximations

for some ¢ > 0 independent of h, where the function ¢ : [0,00) +— R is given by

[
g(\) = As the maximum of ¢ is attained at Ay > 0 given by

(L4 AN
N =11,
we get that
lvn — T fl3 < cc3h™ Z|fk| Non
since \g = clh*§ and g(A\g) = CQh*w% with ¢1,co two positive constants inde-

pendent of h. This proves the first estimate since

N(h)

EJﬁwxhzwémﬂ@:awﬁmuvswﬁﬁ=WA%mf

[
Corollary 2.11.3. Let l € N, > 2, then for any f, € V), we have
0 0 g2)~-1
_ < 11,
10+ BT+ A = Fill, oy, < ChT Al (2112)
for some C' > 0.
Proof: As in the previous lemma, we have
9 0 42)-1 -3 9 0 42)-1
IR+ AD T o= fll2 = 14 (0RO +RAD ™ fu = )
N(h) l
1—A 2
120 -2 2 k,h
= h Z)‘k,h\fk\ <Hh—%>
N(h
< hzaz\fk I Akn))7
when
Jn= ka%f?k,h-
k=1
We then conclude as before. [
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Lemma 2.11.4. Let l € N[ > 2 and let f € D(A), then
o) A1t5 0 43\-2 0
WA+ RAD Pl < ChE I o (2.11.3)
h
for some C' > 0.
Proof: We easily see that

L L _1L L L
WA AT g = A ATI R P Iy
h

N(h) \2l+2

= WY il
kz:; (1 + RoN )
N(h)

< P 1AM (9Oen))?,
k=1

and we conclude as before. ]

Lemma 2.11.5. Let l € N;I > 2 and let f € V, then

L L
[+ +H AR BB (LR L+ 1 AR o f = BuBima )y, < ORI v,
h
(2.11.4)

for some C' > 0.
Proof: As in Lemma 2.11.2, we set
on = (14 W) + hPAZ) " f.
First, we notice that
1BuBy (v = mnf )l < Cllon — mn fla,
and by Lemma 2.11.2 we get

BB (vn — m )i < ChT| flv.
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Second, by Corollary 2.11.3, we have

0
ChT ”BhB;;UhHH

IN

_1
2
h

1
Hﬂ+%ﬂ+ﬁﬁr%ﬂmﬁ3ﬁm%m
Cht (|| BuBi(on — mnf)|l i + | BuBimn flz)
< ChT|fllv,

IN

where we use the fact that ||m,f|lg < c||mnfllv < ¢|[f]lv. The conclusion follows

from the two above estimates. ]

Theorem 2.11.6. If z = (f,g)" € D(A) x D(A), then
1(An)  (mnf,mng) T — A7 (f,9) llx — 0 as h— 0.
Proof: By the definition of fll,h and fl, we have

(un, Uh)T = (Az,h)_l(ﬂhf, Whg)T7
and
(u7v)T - "Zl_l(fa g)T7

if and only if

- — (L W) (I + A2, f
“Apun = (1 RO+ hOAT) (RO ATE & BB yop + (1+ W) (I + W A2) g,

and
v=f
—Au= BB*v+g.

Therefore, we can write

—Apup, = mhg + Bp By f + 1,
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where 7, € V}, is given by

1
o= (L+h)(I+h°A2) 1,9 — g
l l
b (L+ BRI + P AZ) A, 2y,
+

1
(1+hY(I + K A7) ' ByBivy, — ByBimnf.
By the previous Lemmas, r, satisfies

Il -ty < CREICE ) oay (2.11.5)
Therefore, u, € Vj, can be seen as the unique solution of

a(up, wp) = —(mpg, wp) — (B By f,wy) — (rp;wp)  Ywy, € Vi, (2.11.6)
where (;) denotes the dual product in D(A,:%). Since u € V' is solution of

a(u,w) = —(g,w) — (BB*f,w) Yw €V,
we get (recalling that v}, C V)
a(u, wy) = —(g,wy) — (BB* f,wy) Ywy, € Vj,.
Hence, taking the difference of this identity with (2.11.6), we obtain
a(u — up, wp) = (Thg — g, wp) + (B (mnf — f), B'wn)u + (rp;wp)  Vwp, € Vi

Consequently, taking w, = mpu — uy, we get

a(u —up,u—up) = alu—up,u—mpu) + alu — up, THU — Up)
= a(u—up,u —mpu) + (Thg — g, THU — Uup)
+ (B(mnf = ), B*(mpu — un))u + (rp; mhu — up).
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Hence, by Cauchy-Schwarz’s inequality and the boundedness of B*, we obtain

lu—unlly = alu—un,u—u)

< = wlivlle = mulv + Climg = glla + llmf = flla + llral ;-3 )limnw = wnlly.

D(A,

Now, using the triangle inequality, we get

-2
h

lu —unlly < C((Hu = mnullv 4 lmng = glla + lmnf = Flla +llrwll -y e = unlly

+ (lmag = gl + 1w = Tl + el -y Dl = ).

n

Hence, by Young’s inequality, we arrive at

1

n’)

+ (lmng = gl + lmnf = fllg + 1l 3 lu— 7Thlbllv>~
D(A, #)

u—ually < C (0= mal + g = gl + lmaf = £+ Il

The estimates (2.4.4), (2.4.5), and (2.11.5) then yield

20
lu — unlf} < C(h%IIUII%(A)+h4‘9||f||%(,4)+h49||g||%(,4>+hlII(fag)TH%@)lW)

0
+ (|| fllocay + 2 ||gllpeay + AT I(f, g)T||D(A)xv)h9HU||D(A))'
For v — vy, we notice that
5 L
v=wvp=f= QI+ RAR)  mf = f—mnf +mf — (L+ R+ AR T f,

and we conclude that it tends to zero in H due to the estimate (2.4.4) and Lemma

2.11.2. [

Corollary 2.11.7. If z = (f,g)" € V x H, recalling that jj, is the projection from

H into V}, we have

H(/L,h)_l(ﬂhfa jhg)T - A_l(ﬁ Q)THX — 0 as h — 0.
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Proof: First for z = (f,g)" € D(A) x D(A), then

||(/~1l,h)71(7Thf> Jng) " — Afl(ﬁ 9)'llx < ||(Al,h)71(77hfa mhg) ' — Afl(f, 9) " llx
+[(Ap) 10, jng — Th9) |-

The first term of this right-hand side tends to zero as h goes to zero by the previous
Theorem. On the other hand for the second term, as A, satisfies (2.7.2) (see Section
2.10), there exists C' > 0 (independent of h) such that for all h < h*

1(A1n) (0, jng — m9) Tl x < Clljng — m9llar-

Hence, by the triangle inequality and the property ||g — jrgllg < g — mnglla (as jn

in the projection on V}, in H), we get

1(Aup) 70, jng — mh9) Tllx < 2C|lg — Thgllmr-

By the estimate (2.4.5), we then conclude that this second term tends also to zero
as h goes to zero.

If z=(f,g)" is only in V x H, then for an arbitrary ¢ > 0, we use the density
of D(A) x D(A) into V x H to get (F,G)" € D(A) x D(A) such that

I(f,9)" = (F.G)'Ix <e.

Now, by the triangle inequality, we have

1(An)  (mf, gng) " — AN E9) T Ix < 11 Ags) " (m(f = F)jn(g — G)) Tllx
+ A= Fg-G) x
+ (A) (T F nG) T — ATNF.G) T |x

By the first step, there exists h. small enough such that
1(Ai0) ™ (T F,5nG) T = AHE,G)Tlx < e,Y0 < h < e
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For the second term, by the boundedness of AL we may write
1A (f = Flg = G)'lIx < CII(f = F,g = G)||x < Ce.

Finally for the first term, using the property (2.7.2) and the fact that m, (resp. jp)

is a projection from V (resp. from H) into V},, we get for all h < h*
1(Au) ™ (T (f=F), n(9—G)) TlIx < Cll(mn(f=F), dn(9—G)) T x < CI(f=F,9—G) || x < Ce,
All together we have obtained that

1(Aun) (T fodng) T — AN, 9) T lx < (1+20)e, V0 < h < min{h.,h*}.

This proves the result. [

We are now ready to state the convergence result.

Theorem 2.11.8. If (wy,w;)" € V x H, then
T3 () (mhwo, jnwn) T — T(t) (wo, w1) "l x — 0 as h — 0. (2.11.8)

Proof: We use Theorem 2.1 of [45] or Theorem 2.11.1 with X = Z =V x H,
X, =V, xVy, and P, : X — X,, defined by

Pn(fa g)T = (th,jhg)T,V(f, g)T € X7

and E, = P; that here is the canonical injection of V}, x V}, into V' x H. The

assumptions (A1) and (A3) of [45] are trivially satisfied, while the assumption (A2)

is a consequence of (2.4.4), (2.4.5) and the density of D(A) x D(A) into V' x H.
Since Corollary 2.11.7 shows that condition (a) of Theorem 2.11.1 holds with

M =0¢p(A)n ﬂp(fll’h), we conclude that condition (b) of this Theorem, namely

h
(2.11.8), holds.

101



Chapter 2 Uniformly exponentially or polynomially stable approximations

Remark 2.11.9. In case [ =0, we can still apply the Trotter-Kato Theorem to get
the convergence of the discrete problem (2.4.6) towards the continuous one (2.1.13).
Indeed, similar to Lemma 2.11.4, we have for f € D(A), B?||Apmnfllu < BP|| fllpay-

Moreover, in the proof of Theorem 2.11.6, we get v, = hPApmnf, |lu — wp|lv <

ch’||(f, 9)|Ipayxpeay, and |[v —villa < ch®||(f, 9)|lpayxpeay-

2.12 Examples

2.12.1 Two coupled wave equations

We consider the following system of |3] given by

(

U (2, 1) — Uge (2, 1) + ay(x,t) + B(z)ue(z,t) =0 in (0,1) x Ry,
Y (2, 1) — Yoo, t) + au(z, t) + y(x)ye(z,t) =0  in (0,1) x Ry,
uw(0,t) =u(l,t) =y(0,t) = y(1,t) =0 vt >0,

| ul(,0) = w0, ui(+,0) = w1, y(+ 0) = yo, 4u( 0) = yo in (0, 1),

when a € R such that @ > 0 is small enough (see below), 8 and ~ are two non-

(2.12.1)

negative bounded functions such that 5(z) > g > 0 for z € Ig C (0,1) and v(z) >
v > 0forz € I, C (0,1) where I3 and I, are two open sets such that their measures
do not vanish simultaneously. Hence, (2.12.1) is written in the form (2.1.13) with

the following choices : Take H = L?(0,1)?, the operator B as follows :

u 0
Bw =+/5(.) + /() , (2.12.2)
0 y
u
when w = , which is a bounded operator from H into itself (i.e. U = H) and

Y
the operator A defined by

D(A) =V N H*0,1)?
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when V = H{(0,1)? and
—Ugy +
Aw = Y
“Yzx + au
If v is small enough, namely if o < 72, this operator A is a positive selfadjoint

operator in H, since it is the Friedrichs extension of the triple (H,V,a), where the

sesquilinear form a is defined by

L _ _ _ u u
a(w,w”) = / (tz () o4y (V) pFayu*+auy*) doe, Yw = LW = cV.
0 y Y

Indeed a is clearly a continuous symmetric sesquilinear form on V' and is coercive if

a < 72 due to Poincaré’s inequality

1 1
/ |ug|? dz > w2/ lul*dz, Yu e Hy(0,1).
0 0
Furthermore, A has a compact resolvent since D(A) is compactly embedded into H.

Let us now check that the generalized gap condition (2.3.1) and the assumptions

(2.4.7) or (2.4.8) are satisfied for our system (2.12.1). We start by the determination
of the spectrum of the operator A. Hence we are looking for w = (u,y)" € V. n

H?(0,1)? different from 0 and A\* > 0 solution of

Uy + oy = N in (0, 1),

~ Yz + au = Ny in (0,1).

If such a pair exists, we can set

and notice that s and d belong to Hj(0,1) N H*(0,1) and are solution of

—540 +as = Nsin (0,1),

—~dye — ad = N?d in (0,1).
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Hence s (resp. d) is an eigenvector of the Laplace operator —# with Dirichlet
boundary condition of eigenvalue \> —« (resp. A +«). A first choice is then to have
for all k € N* : \2 = k*7% + «, s = sin(k7+) and d = 0. Coming back to (u,y), we
find (since u = s 4+ d and y = s — d) a sequence of eigenvalues A\ ; = k*7* + « of
associated eigenvector

wi i = (sin(kn-), sin(km)).

Note that each eigenvalue is simple and that wy ; is of norm 1 in H.
A second choice is to take for all & € N* : A\ = k*1% — o (which is meaningful
since a < 72), s = 0 and d = sin(kn-). Again coming back to (u,y), we find a

sequence of eigenvalues \* ; = k*1% — a of associated eigenvector
w_j = (sin(kn-), —sin(kn-)).

As before each eigenvalue is simple and w_ j is of norm 1 in H.

Now we remark that the sequence {wy j}ren U {w_ t}ren+ is an orthonormal
basis of H (because w,  + w_j; = 2(sin(kn),0) and w, p — w_ = 2(0,sin(kn-)))
and therefore we have found all possible eigenvectors of A. We have then shown that

the spectrum of A is given by

Sp(A) = {A%  eens U LA 1 Jhen,

2 implies that

and that each eigenvalue is simple (because the assumption o < 7
Br?+a < (k+1)*7% — «).
We now need to estimate the distance between the consecutive eigenvalues of
A% We have two different cases to consider :
1. For all £ € N*, we need to look at the distance between A, ; and A_ ;. Since
2c0
VE T +a+ V2 r? — o

Mg — A =VEm+a—VEn? —a=
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we see that this distance goes to zero as k goes to infinity.

2. For all £ € N*, we look at the distance between Ay ; and A_ ;,;. Here we have

2km? + 7% — 2a
V1202 —a+VERZ F o

At —Ar = V(E+ 1212 —a — ViR +a =

which tends to 7 as k goes to infinity.

This shows that the generalized gap condition (2.3.1) is satisfied with M = 2.
Hence, we see that A; = () and A, = N*.

In order to check (2.4.7) or (2.4.8), for all k € N*, we set

A — )‘+,k - )\_Jg,

that behaves like k=! or equivalently like A:lk. We further need to use the matrix

(see Lemma 2.3.1)

1 1
B '= ,
0 e

as well as the matrix ®; which here takes the form

B*w_yk 0
0 B*CLLF’]Q

Oy, =

Hence for all C' = (c1,¢5)" € R?, we have

o B*w_ + coB*wy i
—1 ) )
B, ®,.C = ,
apco B wy g,

and consequently

1B @kCllEs = lleiB w— o + caB wipll3 + la*[ea|*| B wo k13
1 1
= |+ CQ|2/ B(x) sin?(krx)dz + |cy — cl|2/ v(z) sin? (krz)da
0 0
1

+|0zk|2|02|2/0 (B(x) + ~(x)) sin®(krz)d.
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We have two different cases to consider :
First case : Iy # () and I, # 0.

In this case, we have
||Bk_1q)kc||2U,2

> min {5, v} min {/ sin2(k7m)dx,/ sinQ(kmc)dx} ((c1 + 2)* + (ca — 1)?)

Is I,

= 2min {f, v} min {/ sinQ(knTx)dx,/ sin2(k7m:)da:} (3 +c3)

Ig I,

and hence (2.4.7) holds since min / sin2(k7m)dx,/ sinQ(kwx)d:c} is uniformly
Is I,
bounded from below. Indeed, as I, # (), there exists a € (0,1) and € > 0 such that
(a,a+¢€) C I,, and therefore
1
/ sin?(krx)dr > Sy (sin(2kma) — sin(2kmw(a + €))) >
7 2 dkrm

~

2
for £ > —. On the other hand, we clearly have
em

min2 / sin?(kma)dx > 0,

I

which shows that / sin?(krz)dx is uniformly bounded from below.
1y
Second case : Iz = () or I, = () (but not empty together). For instance, suppose

that I3 = () and I, # 0.

As |ay| ~ /\:}k, we deduce that
1B}, ' ®xClu2 > 050)\:71/§HC||27

for a positive constant «p, and shows that (2.4.8) holds with [ = 1.
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As stated before, in the first case the system (2.12.1) is exponentially stable,
while in the second case (2.12.1) is polynomially stable. We refer to Theorem 2.4
of [7] or to [5,61] for the proof of these results.

As approximated space V},, we use the standard one based on P1 finite ele-

ments. More precisely, for N € N and h = we define the points z; = jh, j =

1
N+1°
0,1,..., N+1. The space V}, is the linear span of the family of hat functions (e;, €;); jeqn

such that
|z — 1]

+
ej(z) = {1— - ] , for j=1,...,N.

Then, we define the operators A, and Bj, by (2.4.1) and (2.4.3). It is well-known

(see [22]) that the operator A and the space V}, satisfy conditions (2.4.4) and (2.4.5)
with 6 = 1.

Consequently, in the first case ( Iz # () and I, # (), we can apply Theorem 2.4.1
and thus the family of systems (2.4.6) is uniformly exponentially stable, in the sense

that there exist constants M, «, h* > 0 (independent of h, uop, u1n, Yon, Y1n) such

that for all h € (0, h*) :
lin(@)I* + alwn(t), wa(t)) < Me™(Jwinll® + alwon, won)), ¥t = 0,

where wy, = (upn, yn), and wop, = (Uon, Yor) € Vi (resp. wip = (uin, v1n) € Vi) is an
approximation of wy = (ug, o) (resp. w1 = (u1,y1))-

In the second case (I3 = 0 and I, # (), we can apply Theorem 2.4.4 and
Remark 2.10.1 with [ = 1 and thus the family of systems (2.4.9) is uniformly poly-
nomially stable, in the sense that, there exist constants C, h* > 0 (independent of

h, uon, Uin, Yon, y1n) such that for all h € (0, h*) :
1. 2 C 2
H([ + hAh) wh(t)H + a(wh(t), wh(t)) S ?H(th,wlh)HD(ALh)Vt > O, (2123)

where A, is given as in (2.5.1) with [ = 1, # = 1, and the the graph norm |- [P
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is defined by
1(won, wi) 14, ,y = 1 (won, win) Ik, + [[Asn(won, win)II%, -

2.12.2 Two boundary coupled wave equations

We consider the following system

(

Upy — Uy = 0 in (0,1) x Ry,

Yt = Yoo + By =0 in (0,1) x Ry,

u(0,t) = y(0,¢) =0 vVt > 0, (2.12.4)
Yo(1,t) = au(l,1) Vit > 0,

uz(1,t) = ay(1,t) vt > 0,

u(-,0) = 0,u(,0) = u1,y(-,0) = 0,5:(-,0) =y in (0,1),

when «, f € R with § > 0 and « > 0 small enough (see below). Hence it is written
in the form (2.1.13) with the following choices : Take H = L*(0,1)?, the operator B

as follows :
0
Bw= /B ,
Y
u
when w = , which is a bounded operator from H into itself (i.e. U = H) and

Y
the operator A defined by

D(A) = {(u,y) € VN H?(0,1)*: y,(1) = au(1); u,(1) = ay(1)}
when V = {w € H'(0,1)*: w(0) = 0} and

—Ugy

Aw =
“Yza
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If « is small enough, namely if o < 1, this operator A is a positive selfadjoint
operator in H, since it is the Friedrichs extension of the triple (H,V,a), where the

sesquilinear form a is defined by

afw,w”) = / (e ()2 + (7)) iz — au(DFF(L) — 0t (1)y(1),

U *

u
for all w = ,wh = € V. Indeed a is clearly a continuous symmetric

*

Y Yy
sesquilinear form on V' and is coercive if a < 1 due to the trace theorem

1
u(1)? S/ lug|? dz, Yu €V.
0

In addition to that, the operator A admits a compact resolvent as D(A) is compactly

embedded in H.

Let us now check that the generalized gap condition (2.3.1) and the assumption
(2.4.8) are satisfied for our system (2.12.4). We start by the determination of the
spectrum of the operator A. Hence we are looking for w = (u,y)" € D(A) different

from 0 and A% > 0 solution of
—Ugy = Nu in (0,1),
—Yow = Ay in (0,1).
Then
u(z) = asin(Ax) in (0, 1),
y(x) = bsin(Az) in (0, 1).
The coupling condition in (2.12.4) gives

alcos A = absin \

bAcos A = aasin \.
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Since it is not possible to have sin A = 0 (otherwise a = b = 0), we obtain

b\ cos A
— 2.12.5
“ asin \’ ( )
and then
A
tan A = +—, (2.12.6)
«

because b # 0 (otherwise u =y = 0).

We then have two sequences of eigenvalues defined by

)\,Jg = g + km — €k

with limy_,;€e_; =0 and e_; > 0 for all £k € N, and

™

5 +ET+ e g

)\+’k -

with limy_, 1o €4 = 0 and e, ;, > 0 for all £ € N. Moreover as A_ ; and A\ j satisfies

(2.12.6), we can verify that

o o
€_j = arctan (—> and €4 j = arctan (—> )
A Nk

By (2.12.5) and (2.12.6), the eigenvector associated with the eigenvalue A, is
given by

wi g = by psin(Ap ) (=1, 17,

and the eigenvector associated with the eigenvalue A_ ; is given by
W = b_’k Sin()\_’k')<1, 1)T,

where by i, b_ ; are chosen to normalize the eigenvectors.
Since we have found all possible eigenvectors of A, we have shown that the

spectrum of A is given by

SP(A) = {\% 1 kens U{A? b eer,
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and that each eigenvalue is simple.
We again need to estimate the distance between the consecutive eigenvalues of
AY? and as before we consider two different cases :

1. For all £ € N*, we need to look at the distance between A, j; and A_ ;. Since

a a
Ak — A_p = €4 +€_ = arctan <—) + arctan <—) ,
Atk Ak

we see that this distance goes to zero as k goes to infinity.

2. For all & € N*, we look at the distance between A, ; and A_ ;.. Here we have

A1 — App =T — (€4 + € kt1),

which tends to 7 as k goes to infinity.
This shows that the generalized gap condition (2.3.1) is satisfied with M = 2.

In order to check (2.4.8), for all £ € N*, we set
ap = Mg — Ak,

that behaves like k=1 or equivalently like )\:}k. As in the previous subsection for all

C = (c1,¢9)" € R?, we have

aB*w_ i+ coB*wy
—1 ) ’
B, ®,.C = ,
apca B wy p,

and consequently

IBROCIE, = B w s+ eBw sl + x| Bl
1

- 5/ (b_ persin(A_px) + by gea sin(Ay )’ da
0

1
+5|Oék|2|02|251,k/ sin®( Ay px)dz.
0
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By using Young’s inequality with ¢ > 0 and the fact that the eigenvectors are

normalized (by the choice of by 1), we obtain

1 1 1
1B, ®:C7, > B (1 — Z) c?bik/(f sin®(A_pz)dx + B (1 —€) cgbik/o sin®( Ay p)dx

+ﬂ|0zk!2\02[2biyk sin*(\y pz)dx

0
= g((l-%)ﬁ%—(l—l—az—e)cg).

We then take € = 1 + a3 /2, which implies

2 2
o 1 o
£ and 1--> -k

l+a; —e= ,
BTE € 4

(since a2 < 2). Consequently

1B 940l > S0t + )

As |ag| ~ AZl, we deduce that
1B, ' ®1Clua > oA=L [ICl,

for a positive constant ag, and shows that (2.4.8) holds with [ = 1.

We construct the space V}, like in the previous subsection, i.e. it is the span of

(€i,€))ijeq,....N+1}, that still satisfies (2.4.4) and (2.4.5) with 6 = 1.

Consequently, we can apply Theorem 2.4.4 and Remark 2.10.1 with [ = 1 and
thus the family of systems (2.4.9) is uniformly polynomially stable, in the sense that
the estimate (2.12.3) holds.
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2.12.3 A more general wave type system

We consider the following more general system : let w = (wy, -+ ,wy)? be a

solution of
Wit — Wee + Mw + BB*w; =0 in (0, 1) x Ry,

w(0,t) =w(l,t) =0 vt > 0, (2.12.7)
w(+0) = w® w(-,0) =w® in (0,1),
where M € My (R) is symmetric and such that Ay + M is positive definite in
H = L*(0,1)Y, when A is the operator of domain D(Ay) = HZ(0,1)Y N H2(0,1)V
and such that Agu = —uy,, for all u € D(Ay); B € L(U, H), with U a complex
Hilbert space.

Hence, it is written in the form (2.1.13) with the self-adjoint positive operator A
defined by A = Ay + M and D(A) = D(Ay) =V N H?(0,1)", when V = H}(0,1)".
We remark that A admits a compact resolvent since D(A) is compactly embedded
into H.

As M is symmetric, M can be diagonalized by an orthogonal matrix, i.e. there
exist a real orthogonal matrix O and a diagonal matrix D such that OTMO = D.
We denote by d; (i = 1,---, N) the coefficients of the diagonal matrix D.

We start by the determination of the spectrum of the operator A. Hence we are

looking for w € V. H?(0,1)" different from 0 and A% > 0 solution of
W + Mw = Nw.

If we denote by U = OTw, then U = (uy,--- ,uy)? satisfies
—U,, + DU = \*U,

which is equivalent to

d2

“ZE

(A —d;)u;, in (0,1), Vi=1,--- N.
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Hence there exists ¢; € C such that
u; = V2¢; sin(kr.), Npy=kKn+d;, i=1-- N.
Therefore we have found N families of eigenvectors and eigenvalues :
Ur = V2f;sin(kn.), A, =kr*+d;, i=1,--,N,

where (f;)ieq1,.- v} is the canonical basis of CV. Coming back to the initial eigenvalue

problem, we have N families of eigenvectors given by
wir=0U, i=1---, N, (2.12.8)
and the spectrum of A is given by
SP(A) = {A7 phkene U=+ U AR 1 Fhene
For simplicity, we now assume that all d; are different and, for instance that
dy <dy < - <dy.

We still have to estimate the distance between the consecutive eigenvalues of
A2
1. For all £ € N*, we need to look at the distance between A, ;, and \;; (i # j). Since
Aik — Aipg = VE*m2 +d; — \/K*m2 +d; = di — d
A VR £ d 4 /Rt d;

we see that this distance goes to zero as k goes to infinity.

2. For all k € N*, we look at the distance between Ay and Ay ;41. Here we have

2km? + 12 4+ dy —dy

A —Ave =V (k+ 122+ di—/E*m2+dy = )
v =g = V(E+ 1) v Y VEFD R+ d + VR + dy

which tends to 7 as k goes to infinity.
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This shows that the generalized gap condition (2.3.1) is satisfied with M = N.
With the terminology of Section 1, we see that Ay = --- = Ay_; = () and Ay = N*.
Hence, for N > 1, our previous results will allow to obtain stability results for system
(2.12.7).

If the eigenvalues are simple (a necessary condition is that all d; are different),
then in order to verify (2.4.7) or (2.4.8), we have to bound from below HBk_IQDkC’”;Q
with C' = (¢1,- -+ ,cy) € RV, B! defined in Lemma 2.3.1 and ®,, given by

Bwi -+ 0
o, = :

0 cee B*WN,IC
Such a lower bound can only be made on some particular examples.

Note that, if N =2, B is defined by (2.12.2) and
M=«

with @ > 0, then we are back to the setting of Subsection 2.12.1. Indeed M is
symmetric with Ag + M positive definite for a small enough, and diagonalized by

the orthogonal matrix

o- L1 (with D Lo )
= — WI1TU = .
V2l 1 1 0 1

We then finish this subsection by considering another example. Take N = 3 and

w1 w1 0 0
Bl w | = \/B 0 VY we |+ Vel o )
w3 0 0 w3
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with non negative real numbers [, v, d, which is a bounded operator from H into

itself (i.e. U = H). We chose the matrix M defined by

010
M=ol 1 01|, a>0
010
which is obviously symmetric. As previously we can verify that Ay + M is positive

definite if o < 7%/2. Moreover M can be diagonalized by the orthogonal matrix

1 V2 1
0= % -2 0 V2,
1 V2 1
into
—V2a 0 0
D = 0 0 0
0 0 V2a
Then the spectrum of A = Ay + M is given by

Sp(A) = {k*1? — V2a}ken U {k*7% }ren U {K*7% + V2 }ren,

and the eigenvalues are simple (because the assumption a < 72/2 implies that
1% 4+ V2a < (k + 1)*12 — V/2a). Moreover, as we have shown previously, the
generalized gap condition (2.3.1) is satisfied with M = 3. Thanks to (2.12.8) the
normalized eigenvectors are given by
1 V2
Wik = \/Lﬁ —V/2 | sin(kn), Wk = \/LE 0 sin(km-),
1 —V2
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We set
1,2 1,3 2,3
Oé](C ) = )\Z,k — )\Lk, Ckl(€ ) = )\S,k — )\Lk, Oé,(g ) = )\Sk — )\2 k-

) )

Therefore, for all C' = (¢, co, c3)7 € R3, we have

| B @l
1 1 Bwiy 0 0 o\ [
- 0 041(61’2) oggcl’S) 0 B*wa 0 2
0 041(5’3)%(3’3) 0 0 B ws €8 U2
= |leB*wig + 2 B*wa g + CgB*UJB,kHi[ + HCQal(:’Q)B*wzk + 63a12173)B*W3,k“H
e [aff 20 15 sl

After some calculations, we obtain

_ 2
”Bqu)kCHU,Q =8(ci+ V2 +c3)* + L(es — 1) + ‘5( —V/2¢y + ¢3)?
+2 (\/_a(1202+0413) 3)° + 3 (1.9)|* + (- \/_ak”c —|—a(13) 3)?

c3y,
)

Hence different decay results can be obtained for system (2.12.7) according to the

values of 3, v and 9.

First if 8,7,0 > 0, then we have
1B @kC|);, > C(E + G+ &)

for C' > 0, which shows that (2.4.7) holds and therefore system (2.12.7) is exponen-
tially stable.
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Second if v =0 and 5,0 > 0, we have

) 2
B eClf, > mnied (2&{ +4ch+ 263 + derey + min { o, oV} (4 + 268)
4
+min {a,(gl’?’), oz,(f’g)} cg)
>

. 2
minifd} ((2 -2 +4 (1 + min {a,(gl’Q), 041(4:1’3)} ) 3

2
+ (2 — 2e + 2min {a,&lg), a,gl’3)} ) c%) ,

2
by Young’s inequality with € > 0. We then take ¢ = 14+min {a,(cl’Q), oz,(gl’g)} /2, which

implies
. 12 (1,32
A G A ) 12) (1,32 . 12 (13>
2——> 5 , 2—26+2m1n{a ay } :mm{ak’ 0y } ,
€

if k is large enough. Consequently if £ is large enough, we have obtained that

2

2
+ min {a,&l’z), oz,(fl’3)} c%)

2
min{ 3,0 . 1,2 1,3
> =8 min {a*, o} (d+ G+ ),

1%, |2 g} [ min{el ol } w2 139\
— miny o, ’ : ) ’
HBk <I>kC||U72 > i cl—|—4m1n{ak , 0y } e

| h = 1 i NN e
which shows that (2.4.8) holds with [ = 1, since min { ;" o, ~ Al g

We construct the space V}, like in the previous subsection, i.e. it is the span of
(€i,€j,ex)ijkeq1,. N}, that still satisfies (2.4.4) and (2.4.5) with 6 = 1.

Consequently, in the first case (5,7,0 > 0), we can apply Theorem 2.4.1 and
thus the family of systems (2.4.6) is uniformly exponentially stable. In the second
case (3,9 > 0 and v = 0), we can apply Theorem 2.4.4 and Remark 2.10.1 with
[ = 1 and thus the family of systems (2.4.9) is uniformly polynomially stable, in the
sense that (2.12.3) holds.
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2.13 Open problem

In this chapter, the stability results of the approximate systems have been studied
when the control term B is bounded. The boundedness of the control B is used in
(2.9.5) for the proof of Theorem 2.4.1 and in (2.10.6) for the proof of Theorem
2.4.4. An open question here is how we can handle the case when the control B is
unbounded. Does the analysis in this chapter after adding suitable viscosity terms

remain valid or do we have to search for another method ?
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Fig. (a) Left: Square roots of the eigenvalues in the continuous and discrete cases (finite difference
semidiscretization). The gaps are clearly independent of & in the continuous case and of order / for
large & in the discrete one. Right: Dispersion diagram for the piecewise linear finite element space
semidiscretization versus the continuous wave equation.
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Fig. (b) A discrete wave packet and its propagation. In the horizontal axis we represent the time
variable, varying between 0 and 2, and the vertical one the space variable x ranging from 0 to 1.
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Chapitre 3

Spectral analysis and exponential or
polynomial stability of some

indefinite sign damped problems

3.1 Introduction and Historical background

Systems with indefinite sign damping terms arise in studying the nature of wind
loads and their effect on dynamic response. This includes aircraft, buildings, tele-
graph wires and bridges. For instance, in an air craft, as the speed of the wind
increases there may be a point at which structural damping is insufficient to damp
out the vibratory motions which are increasing due to aerodynamic energy being
added to the structure. The resulting vibrations can cause structural failure. The-
refore, in this chapter, our aim is to find critical values of the damping term for
which structural failure does not occur. More precisely, as in [1], we consider a

one-dimensional wave equation with an indefinite sign damping and a zero order
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Chapter 3 Indefinite sign damped problems

potential term which is either internally damped of the form

U (2,1) — Ugz (2, 1) + 2X(0,0) (@) ue (2, 1) + 200x(—1,0)(x)ue (2, t) = 0, x € (—1,1), ¢t > 0,
u(l,t) =u(—=1,t) =0, ¢t >0,

u(z,0) = ug(x), u(z,0) = uy (),
(3.1.1)

where « is a given constant or with both internally and boundary damped terms

under the form

Ut (2, 1) — U (2, 1) + aug(x, t) =0, x€(0,1),t>0,
w(0,t) =0, u.(1,t) = —buy(1,1), t >0, (3.1.2)

u(z,0) = ug(x), u(z,0) = uy(x),

where a,b € R.

It is well known that problem (3.1.1) is exponentially stable if the damping
term « is non-negative (see [23|). Similarly, if the coefficients a and b are both
positive, then, using for instance integral inequalities, one can prove that (3.1.2) is
also exponentially stable.

In this chapter or in [1], we are interested in the case when the damping terms are
allowed to change their sign. As mentioned before, such a case occurs, for example,
in wind induced oscillations. Problems (3.1.1) and (3.1.2) model the vibrations of
flexible structures subject to aerodynamic forces. Our aim is to analyze to what
extent the variation of the sign affects the stability of the problem. However, the
techniques which are normally employed in the definite case, such as multipliers
and resolvent methods cannot be well invoked in case of indefinite sign damping
coefficients. Consequently, when the damping coefficients are allowed to change their
sign, the question of stability of the solution becomes more interesting.

Such a question was first exposed in a conjecture in |[21] by Chen et al. who
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Chapter 3 Indefinite sign damped problems

considered the internally indefinite sign damped wave equation of the form
Ut — Uz + 2a(x)uy =0, x € (0,1), t >0, (3.1.3)

with standard initial conditions and Dirichlet boundary conditions.
It was conjectured that if there exists some ¢ > 0 such that for every n € N* the

following condition is satisfied
1
I, = / a(x) sin®(nmz)dr > c, (3.1.4)
0

then, when the function a € L>(0,1) has an indefinite sign, the energy decays ex-
ponentially. The idea of the conjecture is that once the damping term ia allowed to
be more positive than negative, then the solution decays as time goes to infinity.
The condition on I,, can be interpreted as some sort of positivity condition on the
damping term a(.) since I, — ag, as n — +oo, where aq is the average of af(.).
In fact, problem (3.1.3) can be considered as a perturbation of an undamped pro-
blem. Therefore, for a small enough perturbation, the eigenvalues of the associated
eigenvalue problem of (3.1.3) are expected to move to the left of the imaginary axis.
However, it turns out that this is not enough to ensure stability since the eigenvalues
which are to the left for small perturbations may move to the right as perturbation
increases. Therefore, Freitas in [28] disproves the conjecture of Chen et al. He shows
that (3.1.4) is insufficient to guarantee the exponential stability. Indeed, he finds
out that if ||a||z~ is large, then there may exist some positive real eigenvalues (see
Theorem 3.6 of [28]). Actually, Freitas in [28] considers the more general wave equa-
tion with an additional potential term b(z)u where b € L>°(0,1) and replaces af(.)

by €ea(.) where € is a positive parameter ; i.e, Freitas considers the following problem

uy — Au — b(x)u + ea(x)uy =0, x € Q, t >0,
u =0, x € 09,

(3.1.5)
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where 2 C R" is bounded with smooth boundary 0f).

Freitas shows that, under the conditions imposed in the conjecture, the associated
eigenvalue problem may admit real positive eigenvalues for € > ¢; > 0, which shows
that the solution of (3.1.5) blows up exponentially as time goes to infinity. The idea
of Freitas is based on replacing the eigenvalue problem associated with (3.1.5) by
an eigenvalue problem of a selfadjoint operator L, = A + pa(z) + b(x), where p is a
real parameter. This method is presented in [29] and [66]. The asymptotic behavior
of the eigenvalues of L, as [p| goes to infinity, is studied and characterized. Then
a relation is found between the spectrum of L, and the real eigenvalues associated
with problem (3.1.5). Indeed, the eigenvalue problem associated with (3.1.5) is given
by

Au — ea(z) u +b(x)u = Nu, 1€Q, €>0
u=70 x € 0f.

(3.1.6)

Hence, Freitas finds that a real number ) is an eigenvalue associated to the eigenvalue

problem (3.1.6) if and only if 7 is an eigenvalue of L, and

T = 2
Therefore, the real eigenvalues associated to the eigenvalue problem (3.1.6) corres-

2

pond to the intersections of the parabola, with the eigencurves associated with

5
the operator L,. As € becomes large, the eige€ncurves intersect the parabola in at least
two points and hence a positive eigenvalue A appears which prevents the solution of
(3.1.5) from being stable (see Theorem 3.6 and Corollary 3.7 of [28]).

However, the results of Freitas do not clarify what happens for small values of e.
Consequently, later on, Freitas and Zuazua in [30] treat the case when the L° norm

of the damping term, ea(.), with indefinite sign is not large. For € > 0 small enough,

they prove that the solution of (3.1.3) is exponentially stable under condition (3.1.4)
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and the additional condition a € BV (0,1) so that the derivative of a is defined in
the weak sense. Their idea is based on the ansatz suggested by Horn in [41] where
the eigenvectors are written in a series form in order to find an approximation of
the eigenvalue problem and hence the asymptotic behavior of the large eigenvalues.
After using the shooting method and Rouché’s Theorem inspired from [23], they
prove that there exists ¢, > 0 such that, for every € € (0,¢;), the eigenvalues are
asymptotically close to —eag, where aq is the average of a(.) and therefore the high
frequencies admit negative real parts since the hypothesis imposed on the uniform
positivity of 7, in (3.1.4) yields the positivity of the average ay of a(.). Moreover,
the positivity of the integrals I,, ensures that the low frequencies are to the left of
the imaginary axis for € € (0, ¢y). Finally, by proving that the root vectors form a
Riesz basis of the energy space, the exponential stability is established for e € (0, €3)

where € = min{eg, €; }.

This result is extended in [17] to the case where, in the wave equation, there
is an additional zero order potential term b(z)u(z,t) with b € L'(0,1). However,
the ansatz in Horn does not work any more in this case. Therefore, the authors
adapt a shooting method employed in [65] to construct an explicit approximation
of the characteristic equation of the underlying system and to find the asymptotic
expansion of the eigenvalues and eigenvectors. Under the same assumptions used
in [30] on the damping term, ea(.), and on the integrals, I,, the authors in [17]

establish the exponential stability for € > 0 small enough.

Furthermore, in [51], the authors consider an abstract linear system with per-
turbation of the form %y = Ay + eBy on a Hilbert space, where A is a skewadjoint
operator, B is bounded, and € is a positive parameter. Using an abstract pertur-
bation result and under the hypothesis that the damping operator B is uniformly

effective for all normalized linear combinations of eigenvectors corresponding to the
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eigenvalues located in a neighborhood of any eigenvalue, the authors find an upper
bound for e for which the abstract system is exponentially stable. In particular, the
authors in [51] find an upper bound of € for which problem (3.1.5) is exponentially
stable under condition (3.1.4) and the assumption that a € L*(0,1) without the
need for the assumption that a € BV. On the other hand, for problem (3.1.1), it
seems to us that the upper bound of € found in [51] is not easy to check.

Later on, in [57], Racke and Rivera have removed the factor ¢ and considered the
wave equation uy — Uy, + a(x)u; = 0 on (0, L) for some L > 0 where a € L*>(0, L)
is allowed to change its sign such that its mean value ag remains positive. In [57],
the exponential stability is proved under one of these conditions : Either ||al|e~ is
possibly large with sufficiently small ||a — agl[z2 or ||a||r~ is sufficiently small but
the pair (a, L) has to satisfy some estimates where it is possible to get a negative
moment [,,. Note that the second condition in |[57| does not contradict the result
from [30], because in that case the admissible pairs (a, L), leading to exponential
decay, are not independent and, according to Racke and Rivera, the solution is not
exponentially decaying if one replaces a(.) by ea(.). The method in [57] is based on
the spectral criteria characterizing exponentially stable semigroups in terms of the
spectrum of the generator of the semigroup (see [42]). For instance, for possibly large
L> norm of a(.) and small ||a — agl| 12, using the fixed point argument, the authors

prove that for e > 0,

ng{e—i—a—kzﬂ; a>%<—%+\/<%>2—<%>2> andﬁER} C p(4)

and that

sup [[(AL — A)7!| < oo,
Xer!

where A is the generator of the associated semigroup. Furthermore, for the second

case, the authors prove that for small ¢¢ > 0 and any €; > ¢y, we have for all
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€ € e, €1]

FfI:{e—%—l—in; nER}Cp(A)

and

sup (A — A)_IH < 00,

AeT | e€lep,e1]

on the conditions that
sinh (TTO)
sinh (2) + e%“e%%>

la() ||l zee(o,L) < (

where, for any given 79 > 0 and v; > 0, we have

L
Yo < / a(z)dz < La()l|~o1 < 1
0

and

Yo Ba!
- <<
||a(~)HL°°(0,L) ||a(~)HL°°(o,L)

Finally, Menz in [54] generalizes the work done in [57] by adding a potential term
b(x)u. He proves that if the average ag is positive, then, for a(.), b(.) € L*>(0, L),
the exponential stability is proved for small ||a — ag||z2 but not necessarily for small
la(.)||z0,r). Using Gearheart and Huang result, Menz obtains the resolvent esti-
mate for the system where the function a(.) is replaced by its mean value, ag. Then
using a fixed point argument, the exponential stability result is transferred to the

original problem with potential term.

3.2 Main results

In this chapter or in [1], our work differs from the previous studies because we do
not want to impose neither a small value of the damping factor a nor a small value of

|a—ag|| 2. Indeed for system (3.1.1), this mean value is equal to /2|1 — | which we
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do not need to be sufficiently small. Indeed we will show later on that for o < —1,
problem (3.1.1) is never exponentially stable (even up to a finite dimensional space),
while for « > —1, problem (3.1.1) is exponentially stable up to a finite dimensional
space. We even show that there exists a critical value a3 ~ —0.2823 such that if
« > «g, then problem (3.1.1) is exponentially stable. Our method takes advantage
of the one-dimensional setting that allows to perform a precise spectral analysis.
Note that these results are coherent with those given by the perturbation theory
of contractive semigroups (see [62]). Actually, for system (3.1.1) defined in an appro-
priate Hilbert setting, we can write the generator of the semigroup as Ayg+ B_ + B

where Ay is the skew-adjoint operator given by

4 0 I
0= )
d2
2= 0
and By are bounded operators given by
0 0 0 0
B, = . B_=
0 —2x0,1) 0 —2ax(-10)

Then applying the perturbation theory of contractive semigroups, in order to get
an exponential stability, the condition ||B_| < |w(A + B,)| should be imposed.
However, according to 23|, u(A+By) = w(A+ By) ~ —0.45 where the approximate
value is found numerically. Here, 1(.A) denotes the spectral abscissa of the operator
A;

p(A) =sup{RA: A € o(A)},
o(A) being the spectrum of A, while w(.A) denotes the growth rate of the evolution

equation associated with A in the Hilbert space X ;

w(A) = inf{w : IC(w) > 0s. t. [|U®)||5 < C(W)||U0)|5e*", vt > 0,
for every solution U of U,(t) = AU(t),Vt > 0}.
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Therefore ||B_| = 2|a| < |(A + By)| yields the condition that o > oy, where
a1 ~ —0.225. Our spectral analysis improves this condition and yields a larger range
of values of « for which problem (3.1.1) is exponentially stable. However, this result
is not optimal since numerical results show that a > «s, where as ~ —0.77, yields
the exponential stability of (3.1.1) (see Figure 1).

By a similar approach, we find some exponential or polynomial stability results
for the second problem (3.1.2) where a and b are of opposite signs; the particular
case b € (—1,0) and a > 0 retains our attention. Note that for such a problem,
perturbation theory of contractive semigroups cannot be invoked.

This chapter is divided into two main parts. In the first one, we analyze the
spectral problem associated with (3.1.1) in order to find a possible range of « for

which (3.1.1) is stable. We find and prove the following results of [1] :

Theorem 3.2.1. o > —1 if and only if problem (3.1.1) is exponentially stable up

to a finite dimensional space.

Theorem 3.2.2. If a > a3, where ag ~ —0.2823, then the solution of problem
(5.1.1) is exponentially stable.

In the second part, we analyze problem (3.1.2) in order to find some conditions
that a and b must satisfy to get the stability of (3.1.2). We find out the following
results of [1] :

1 b+1
Theorem 3.2.3. Ifb ¢ {—1,0,1}, then a > —2R tanh™" 7= —In 2 i .

if problem (5.1.2) is exponentially stable up to a finite dimensional space.

if and only

Theorem 3.2.4. Ifb € (—1,0), then a > —2tanh™ " b if and only if problem (3.1.2)

18 exponentially stable.
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Theorem 3.2.5. Ifb € (—1,0) and a = —2tanh™' b, then there exists C > 0 such
that for all U(0) = (ug,u1) € D(A,), we have

1V (0)117

By(t) < C 4o) vt >0,

where Ey(t) is the energy of the solution of problem (3.1.2) and A, is defined in
(3.4.2) below.

Note that a statement similar to the one of Theorem 3.2.4 cannot hold in the
case b < —1 because there exists some a > —2R tanh ™" % such that some eigenvalues
A of A, are in RA > 0 (see Figure 3.6 in the case b = —2 and a = 1.1).

Before we start our analysis, we introduce some notations used in the remainder
of this chapter : On D, the L?(D)-norm will be denoted by || - || p. Similarly (-,-)p
means the L?(D) inner product. Finally, the notation A < B and A ~ B means the
existence of positive constants C; and Cs, which are independent of A and B such

that A < (9B and C1B < A < (5B, respectively.

3.3 Exponential stability for the indefinite sign in-
ternally damped problem (3.1.1)

Since problem (3.1.1) is exponentially stable if the damping term « is non-
negative (see [23]), from now on we assume that a < 0.
We start by writing problem (3.1.1) as a system of the form U, = A,U where
U = (u,us)" and the operator A, : D(A4,) — X is defined by
A 0 1

% —QX(O,l) - 2aX(—1,0)
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where the energy space X = Hj(—1,1) x L*(—1,1) is equipped with the usual inner
product defined by

< ()T (w0)T > /Xﬂwww

and

D(A,) = (H*(=1,1) N Hy(—1,1)) x Hy(—1,1).

In this case, the energy associated with problem (3.1.1), at time t, is given by

Bu) = 3 [ (a0 + g 02300

1

with

‘() = —2 (/01 g (2, 1) [2dz + oz/i |ut(x,t)|2dx> . Y(up,u1) € D(Ay).

Notice that problem (3.1.1) is well posed since A, can be written as a sum of the
m-dissipative operator Ay with a bounded operator (see Theorem 1.1.5).
In this section, we start by analyzing the spectrum of the generator A,. First, we

find the asymptotic development of the large eigenvalues. This development shows

1
ot (see (3.3.7)). Second, we

that the high frequencies approach the line z = —
determine the critical value ag of « for which all the eigenvalues of A, are situated to
the left of the imaginary axis for any a > a3. Finally, we show that the generalized
eigenvectors of A, form a Riesz basis of the energy space from which we deduce the

exponential stability of problem (3.1.1) for a > as.

3.3.1 Spectral analysis of problem (3.1.1)

First, we determine the characteristic equation related to problem (3.1.1). If

U= (y,2)" € D(A,) is an eigenvector of A, associated with the eigenvalue ), then
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2z = Ay and the eigenvalue problem is given by

Yoz — N2y — 2X(0,)AY — 2ax(—1.0Ay = 0 in (—1,1),
y(~1) = y(1) = 0.

(3.3.1)

Clearly A = 0 cannot be an eigenvalue of A,. Similarly the same calculations as
below allow to show that A = —2 and A\ = —2« are not eigenvalues of A,. Now for

A€ {0, -2, —2a}, setting y* = y0.1) and Yy~ = yj_1,0), We get
yh = (A2 + 2Nyt in (0,1),
y* (1) =0,
and consequently,
yt(x) = ¢t sinh[VA2 + 2\ (z — 1)], (3.3.2)
for some ¢t € C. Similarly, we have
Yrw = (A2 +2aN\)y~ in (—1,0),
y_(_l) - 07
which implies that
Yy~ (x) = ¢~ sinh[V A% 4 2aA(z + 1)], (3.3.3)

for some ¢~ € C. As the differential equation in (3.3.1) yields y € H?*(0,1) and due
to the Sobolev embedding theorem H?(0,1) — C1[0, 1], we get

or equivalently

ctsinh(VA? + 2)) = —c¢™ sinh(VA? 4 2a)),

(3.3.4)
TV AZ 4+ 2X cosh(V A2 + 2)) = ¢ VA2 + 2aX cosh(V A2 + 2a)),
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Do (M) (ct,e) =(0,0)T, (3.3.5)
where
D)) = sinh(vAZ + 2) sinh(v' A% + 2a)

VAZ 42X cosh(VAZ +20)  —V/ A2 4+ 2a cosh(V A2 + 2a))

As (3.3.5) admits a non zero solution if and only if det D,(\) = 0, the complex
number A & {0, —2, —2a} is an eigenvalue of A, if and only if it is the root of the
characteristic equation

det D, (N) = 0.
Direct calculations yield

det Dy(N) = —F,(N)
= —V A2 4 2aA sinh (v A% 4 20) cosh(vV A? + 2a\)
—VA? + 2Xsinh(V A% + 2a\) cosh(vV A2 + 2)).

Note further that
2F,(A\) = ga(A) = to(A) sinh to(N) — t1(A) sinh ¢4 (\),

where

t1(A) = VA2 +2) — VA2 + 20,

and

ta(A) = VA2 42X + VA2 4 20

We have proved the next result.

Lemma 3.3.1. A, has a compact inverse and therefore the spectrum of A, is dis-

crete and its eigenvalues are of finite algebraic multiplicity. Furthermore
o(A,) ={A e C\{0,-2,—2a} : g,(N\) =0}.
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Remark 3.3.2. Note that the eigenvalues of A, depend continuously on «. Indeed,

fir v and an eigenvalue g of An. Then as N\ is isolated, there exists p > 0 such that
ga(z)#O,VzE(C:O< |Z—)\O| Sp

In particular, as g, is a continuous function of z, setting D = {z € C : |z— Xo| = p},

there exists a positive real number k such that
|ga(2)| > K,Vz € D.
For a fized positive real number €y we consider the mapping of two variables
H:[0,6] x D— C:(€2) = ga(2) — gatre(2).

Since it is a uniformly continuous function and since H(0,z) = 0 for all z, we deduce

the existence of a positive real number 6 such that
|H (e, 2)| < k,V(e,2) €10,8] x D.
The two last estimates imply that
196(2) = Gare(2)] < |9a(2)],Y(e, 2) € [0,6] x D,

Hence, Rouché’s theorem allows to conclude that g... has the same number of roots

at go for all € € [0, 9].

The following Lemma shows the boundedness of the real part of the eigenvalues

of the operator A, and proves that its eigenvalues cannot be real.

Lemma 3.3.3. Let \ be an eigenvalue of the operator A,, and U = y(x, \)(1,\)"

be an associated eigenvector. Then A € C\R with

1 0
- [t Pds = a [ e s
%)\: 0 - -1
JCRE
—1

Y
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and,
2

1 0
/mwzxklmx ‘/ImaAN%x+a/|MaAN%x
0 —1
1
/ (i, \)|2dz / (i, \) 2
-1

Proof: As A, is real, in the sense that A,U = AU for all U € D(4,), it follows

that U = y(z, \)(1,)) is an eigenvector of A, corresponding to the eigenvalue .
Integrating (3.3.1) against y(z, \) gives

1 1 1 0
/|%R“+A2 MW@”QA(/lm%x+a/IMM{):Q
1 1 0 1
1 1 3
(/ IyIde+a/ Y| dx) —/ \yx|2dx/ ly|dx
1 1

Hence,

/ |y dx—a/ |y[ dx £+

/ jyl2dz

If X is real, then by the Poincaré-Friedrich’s inequality

2 1 1
%/ |w[2d:c§/ w2, Vo € HY(=1,1), (3.3.6)
-1 -1
we get
1 0
o < ([wraer e [ wiar) - [ e [ e
0 -1
1 2 9
< (/ \yl2dx) - (E> (/ lyl dw)
1 2
72 1 2
=(1—-— %d 0
(=) (f ) <
which is impossible. Consequently, A\ € C\R and the result follows. [ ]

Remark 3.3.4. Note that
2
1. (RN + (SN2 > % by Poincaré-Friedrich’s inequality (3.5.6).
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2. [RA| < max{l, |o|}.
3. Denote by { A }rez+ the spectrum of A,. Since A, is real, without loss of ge-

nerality we can assume that for all k € Z*, \_j, = A

3.3.1.1 Asymptotic behavior of large eigenvalues

In the sequel, we study the asymptotic behavior of the eigenvalues {\g }rez+ of A,
as |Ag| = 400. According to the previous remark, since R\ is uniformly bounded,
then |A\y| — +o0 is equivalent to |S\g| — +00. Moreover, we can restrict our study

to the case k — +o0.

Lemma 3.3.5. The large eigenvalues of A, are simple. Moreover there exist m € 7
and ko € N, such that

—a—1 1
N = 0‘2 +ilk+ m)g +0 (-) . Yk > k. (3.3.7)

k
Proof: Let A be an eigenvalue of A, or equivalently a root of g,. For the sake of
simplicity, we assume that VA2 = A, if this is not the case, the next arguments hold
but with ¢, and ¢, replaced by their opposites.

First, we prove that
t1(A) > 1 —aand to(A) =2 \+ 1+ a+o(1) as || = +o0.

Indeed, we write

(VAZ 42X — VA2 + 2a0) (VA2 + 2 + VA2 + 2a))

ti(A) =
1) VAT F 2 + VA2 + 2000
201 —-a)
ta(A)
Therefore, we get !
2M(1 —
t1(A) ~ % =1l—a, as SN\ — +o0. (3.3.8)

1. as usual the notation h(\) ~ g()) as |IA| — +oo means that limgx|— 400 % =1
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On the other hand,

2 2«
= 14— 14+ —.
s fi 2
{1+ 2—1—1— +0 !
A A
1—|— + !
Vit )\ - °\N)-
1+«

tg()\)—)\(2+ i >+0(1)—2)\+1+a+0(1) as [SA| = +oo.  (3.3.9)

As [A| = +oo, we write

and

Therefore,

Since t3(A) # 0 for |IA| large enough, then from the characteristic equation we

can write

() = (V) [sinh(tQ(A)) _ 283 sinh(t;(\)| = 0,

or equivalently

ha(\) = 0, (3.3.10)
where
ha(A) = sinh(f>())) — 28% sinh(t1(\). (3.3.11)

Now the conclusion follows by using Rouché’s Theorem. For this aim, for N large

enough, define the curve

1+ o nm Co
Iy, ={z: —| = —1, N,
I {z:]z+ 5 $22 n} n >

where (Cj is a positive constant fixed later on in Lemma 3.3.7.
Lemma 3.3.7 below shows, by Rouché’s Theorem, that h,(z) given in (3.3.11)
has the same roots as sinh(#3(z)) in the curve I'y,, for every n > N where N is

large enough. Consequently, we deduce that the large eigenvalues are simple since
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the roots of sinh(t5(2)) are simple for |z| large and are situated inside I'y,, for some

n large, which yields (3.3.7). ]
The next Figures 3.1 and 3.2 illustrate the roots of F, for « = —0.75 and
a = —0.2 computed using a Newton method, namely a sufficiently large box is

decomposed in a relatively fine mesh and each node of the mesh is used as initial
value for the Newton method. In these Figures, the asymptotic behavior from the

previous lemma is clearly visible.

L L L
-0.126 -0.125 -0.124 -0.123

F1GURE 3.1 Eigenvalues for a = —0.75

Remark 3.3.6. (Increasing the order of the finite expansion)

If we write \,, = — +i(k + m)g + Bk iy, where By, e, € R are such that £, =

1 1
0O, (E) and g, = Oy (E)’ and we substitute this value into ta(Ag), sinh(ta(Ag)),
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I I I I
—0.401 —0.400 -0.399 —0.398 -0.397

FIGURE 3.2 Eigenvalues for o = —0.2

nd 28’3 sinh(t1(\,), then increasing the order of the finite expansion, we get
ta(M) = i(k -+ )T + 28, + ey — Qi(lkioqu)w (1+ 0‘2)2212)2;3(1 ) o (%)
sinh(t(\g)) = (—1)F+™ (wk 1 ey — i(; i :;W (1+ az)ﬁ i 072)2—;(1 a9, (%))
N

et ()
From the equality sinh(ts(\)) = 28’3 sinh(ty(Ag)), we conclude
5 — 21 +a’) = (1+a)(1+a?)
(1ybm (%(Ekat)?i@a —a)  (1—a?)(1 —a)cosh(l — a)} o (i)
? ((k +m)m)? ((k +m)m)? k)

The (—1)k™ factor appearing in the expression of By shows that, according to the

parity of k + m, there are eigenvalues to the left and to the right of the aris v =
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1
—%. Hence if 1 + « < 0, then problem (8.1.1) is never stable, while if 1 +

« > 0, then we can hope that (3.1.1) is either exponentially stable or unstable but

exponentially stable up to a finite dimensional space.

Lemma 3.3.7. There exists N € N large enough such that for every n > N and for

all z € I'y,,, we have
|ha(z) — sinh(t2(2))] < [sinh(ta(2))] .

Proof: The proof is divided into two steps. In the first step, for every n > N where

C
N is large enough, we show that if z € T'y,,, then [sinh(ty(2))| > ﬁ. In fact, it is
z
enough to consider the case where z € I'), since the eigenvalues appear in conjugate
Il+a  nm ” Co
5 + i + ppe’’ where 0 € [0,27) and p, = —.
n

Since n is large enough, then by (3.3.9), we have

pairs. If z € I',,, then z = —

to(2) =22+ 14 a+ o1(1) +ios(1),

and
Isinh(t2(2))]* = sin? (2p, sin 6 + 04(1)) + sinh? (2p,, cos 6 + 01(1))
= (2pnsin 0 4 0(1))* + (2p, cos 0 + o(1))?
= 4p2 + o(1).
Hence,
C? C? 4C2 ( 1 ) 4CE , 5
—< = +o|—= | <—+0(1) = [sinh(ta(z .
S o =)t G 0 \) S e o) = binh(a()

Now (3.3.8) and (3.3.9) imply that there exists C, > 0 such that

[t1(2)] <211 — a|,Vz 1 |S2| > Cf,

[ta(2)| > |2], V2 : |S2]| > Ch,
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and therefore there exists Cy > 0 such that
[t1(z) sinh(t1(2))| < Co, Vz : [Sz| > Ch.

As for z € '), with n > 1, we have

we need to chose N large enough so that

Nm Cb
- "N o

With this constraint and by (3.3.11) we see that for z € I',,, where n > N, we have

t1(2) sinh(t1(2))
tQ(Z)

|ha(2) — sinh(ty(2))] <

‘ < Co < |sinh(t2(2))] .

||

3.3.1.2 Critical value of o

We finish this section by looking for a critical value of a for which we will get an
exponential stability of problem (3.1.1). Numerically, as the Figure 3.3 below shows
(see also Figures 3.1 and 3.2), for 0 > a > ag, with g &~ —0.77, the eigenvalues
{ Ak }rez+ of the operator A, are all situated to the left of the imaginary axis. Howe-
ver, theoretically we could not hit this range of «a. Instead, we prove such a result
for a € (a3, 0) with a3 &~ —0.2823. In fact, as the value of o € (—1,0) decreases, the

a
is shifted to the right and therefore the eigenvalues are shifted near

axis r = —
the imaginary axis. Consequently, we try to study the behavior of the eigenvalues
on the imaginary axis and then find a critical value of « for which the characteristic

equation (3.3.10) has no roots on the imaginary axis.
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02

-1.0 -0.8 -0.6 -0.4 -0.2

—04+

FIGURE 3.3 — Numerical value of max{R\ : A € 0(A,)} versus .

To state properly our result, we introduce the functions

fi + (=00,0] = (0,00)
a— % [Cosh (2%(@(%))) - 1} ,
fa i (=00,0] = (0,00)
1 (1= )* + (3(11(i5)))°] [eosh (2(1 = ) = cos (23(41(i5)))]
’ 5] |

It is easy to check that f; (resp. f3) is increasing (resp. decreasing) and that f;(0) >

f2(0) (see Figure 3.4), hence there exists a unique negative real number a3 such that

fi(az) = fo(as). Numerically we find that a3 ~ —0.2823.
Theorem 3.3.8. For all o > as, any eigenvalue A of A, satisfies RA < 0.

Proof: Let A = iy with ¥y € R be a purely imaginary eigenvalue of A,. As the
complex eigenvalues appear in conjugate pairs, it is enough to consider the case

y > 0. According to Remark 3.3.4, y > g We start by writing
M2a + A) = =y + 2iay.
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Let
\/y2 + yy/4a? + y?
hy, o) = :
V2
. ay . 2
then, by expanding | ——— + ih(y, @) | , we have
h(y, o)
; ay .
vV —y? + 2iay = ——— +ih(y, ).
Wy, a) )

We note that h(y, ) is non decreasing as a function of y since

2 2 y?
1 2y + /4o +y* + Hary

0
_h(yaa) = = 5
y V2 2\/y2+y /4% 1 42

is decreasing since

Y, &

Y

while

9 hy, o) —V/2a?

W Y iyl + AT+ )

Moreover, t5(iy) is given by

oy Yy
h(y,a) ~ hly,1)

ta(iy) = +i (h(y, ) + h(y, 1))

and t,(iy) is given by

. ay Yy .
t(1y) = — + +i(—=h(y,a) + h(y,1)).
i) = = 4 s+ (<) + Ao, 1)
.. . . 2 t1(iy) . . 2
In the sequel, our aim is to find some bounds for |sinh(¢s(iy))|” and b (i) sinh(; (1y))| -
21y

We start by finding a lower bound for |sinh(ty(iy))|* with y > g We have

lcosh (2R(ta(iy))) — 1]

DO | —

sinh (£ (iy))[? = %[cosh (2R(ta(iy))) — cos (23 (ta(iy)))] >

But R(t2(iy)) is a positive and increasing function of y. In fact,

h(y, a)
hy 1) O‘}
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h(y, @)
h(y, 1)
is increasing. Indeed, since |af <1

0 (h(y,oz))2 _ VA ) (VA = Vi )

Since is positive then we prove that it is increasing by proving that its square

dy \ h(y. 1) VA +y2/4a2 + 2 (y + /4 + 32)
Since
. h(y,a) o
1 f—
v0 Ay, 1) ol
then
h(y, o)

+a>0, Yy>0.
h(y, 1)

Finally, we conclude that R(t2(iy)) is positive and an increasing function of y so

R(ta(iy)) > %(tg(ig)). (3.3.12)

Therefore,
Isinh (£, (iy))|® > % [cosh (2%(@(@%))) - 1] — f1(). (3.3.13)
In the second step, we find an upper bound for ZEZ; sinh(t(ig)| . S(taliy) is o

non decreasing function of y since h(y, «) is non decreasing. So
S(ta(iyy)) > %(tQ(zg)). (3.3.14)

Both (3.3.12) and (3.3.14) yield
2
(i) = 1205 (3.3.15)

Next, we find an upper bound for |¢;(iy)|. We have
0 0 0
—S(t1(iy)) = =—h(y,1) — —h .

Knowing that h(y,a) is non decreasing, we compare the difference between the

square of 2h(y, 1) and 2h(y,a). We find that

0y dy
0 2 + /4a? +y?)?
—h(y,Oé> = (y 2 :;y) :S0<a2>7
dy 8(4ay + y3)
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where

() = W VAP
8(48y + v*)
Deriving with respect to 3, we get

S(p) = W VAT PGy~ 2y AE )

4y(48 + y?)3
2 2 2 2
Therefore, ¢'(8) < 0if y > ﬁ = %. But y > g > 3 > % which implies that

¢'(B) < 0. Hence, for all y > 5

(%h(y, 1))2 - ((%h(y,a))2 <0,

and so, for all y > g, we get

0 0
—h(y,1) — —h .
gy W) — 5, My ) <0
Therefore, (1 (iy)) is decreasing and
: T
()] < (3621 (3:3.16)

On the other hand, we prove that R(¢1(iy)) is non decreasing and since R (¢ (iy)) —

1 —a as y — 400, we obtain
IR(t1(iy))| < 1 — v (3.3.17)
Consequently, by (3.3.16) and (3.3.17), we get
jsinht(i9)? = = [cosh (2R(t1(i9)) — cos (23(t1(iy))]

<3 [cosh (2(1 — a)) — cos (2%1(@%)))} .
Finally, (3.3.15), (3.3.16), (3.3.17), and (3.3.18) yield

[(1 —a)*+ (%(tl(zg)))Q] [cosh (2(1 — «)) — cos (2%(t1(2%)))]

(3.3.18)

t1(iyy) 2

<

() sinh(¢; (iy))

1
2 |t2(i5)[°
fao(a).

(3.3.19)
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-1.0 -0.8 -0.6 -0.4 -0.2

FIGURE 3.4 Curves of f; (blue) and fs (red).

In conclusion, using (3.3.13) and (3.3.19) and according to the properties of
f1 and fy mentioned before (see Figure 3.4), we find out that if @ > ag, then
ti(iy) ’

h (i) sinh(t1(iy))| < |sinh(t5(iy))|” and therefore the characteristic equation (3.3.10)
21y

has no roots on the imaginary axis due to (3.3.11). We deduce that for every

0 > a > ag, there does not exist any pure imaginary eigenvalue. By the conti-
nuity of the eigenvalues as a function of «, all the eigenvalues are situated to the left
of the imaginary axis for every 0 > a > a3. Indeed, if we suppose the contrary, na-
mely that there exists & € [ag, 0] such that there exists some A\ (&) with Rz (&) > 0.
Since for a = 0, all the eigenvalues are to the left of the imaginary axis because of
the exponential stability, we deduce by continuity of the eigenvalues as a function
of a that there exists & € [as, 0] with @ < & < 0 such that there exists some pure

imaginary eigenvalue associated with & which is a contradiction. [ ]
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3.3.2 Root vectors, Riesz basis, and proof of Theorems 3.2.1

and 3.2.2
3.3.2.1 Root vectors

We start by introducing the root vectors of A, and A, the adjoint of A,. We
notice that A, has a compact resolvent, the geometric multiplicity of each eigenvalue
is one, and, from Lemma 3.3.7, the large eigenvalues are simple.

Therefore, as in Section 6 of [23|, for any n € Z*, we denote the algebraic
multiplicity of A\, by m,,. To \,, define the associated Jordan chain of root vectors
{Un,j }?1:71071 by

Uno = yla A)(LA)T
AJUn; =NUn; +U, o1, j=0,...,m, —1withU,_; =0.
As usual we choose the generalized eigenvectors such that < U, ;,U,o >= 0, j =
1,...,m, — 1. Notice that for |n| large, m, = 1 and the root vectors are limited
to the eigenvector U, o. According to Theorem 10.1 of Chapter V of [36], the root
vectors of A, are complete in X since A, is a bounded perturbation of a skew
symmetric operator. Moreover, the root vectors form a basis of the root subspace
L, ={U € D(A,); (As — \)™U = 0}.
We now consider the root vectors of the adjoint of A, given by

0 -1
AZ = 82
— =2 — 200 (—
02 X(0,1) X (~1,0)
Since o(A%) = 0(A,) = 0(A,), we associate to \, the root vectors of A* as
Wn,O = y(l‘;)\_n) (17 _)\_n)—ra
AZWn,j = /\_anJ' -+ Wn,jfl, < WnJ‘, Un,mnfl >= 0, j = 1, ey My — 1.
Wi is an eigenvector of A’ and, by completeness, W, ; are uniquely determined

since < W, 0, Uy m,—1 >7 0. Other wise, U, ,,,—1 = 0 which is impossible.
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3.3.2.2 Riesz basis

Here we adapt the results of Section 6 in [23] to prove that the root vectors of the
operator A, form a Riesz basis of the energy space X ; i.e., we prove the following

theorem.

Theorem 3.3.9. The root vectors of the operator A, form a Riesz basis of the

enerqgy space X.

Proof: of Theorem 3.3.9.

We use the Bari’s Theorem given by Theorem 1.2.6 (see Theorem 2.1 of Chapter VI
in [36]). First, the completeness in X of the root vectors of A, follows from Theorem
10.1 of Chapter V of [36]. So it remains to search for a biorthogonal sequence. For
that purpose, we can follow the proof of Lemma 6.2 of [23]. From the proof of Lemma

6.2 of 23|, we have
< Un,p» Wk,j >=< Un,pa Wn,mn—l—p > 6n,k5mn—1—p,j7

forallp=0,...,m,—1,7 =0,...,m;—1,and for all n, k € Z*, with < U,, ,, Wy, sn,,_1—p >F#
0. Indeed, for all n # k, we have

< AU, Wio >= Xy < Up o, Wio >= Ay < Upo, Wio > .
Hence, < U, o, Wi >= 0. Next,
< AU o, Wiy >= Ay < Upno, Wi1 >= A < Uy, W1 >+ < Uy, Wio > .

Hence, (A, — i) < Uy 0, Wi1 >= 0 and so < U, o, Wy1 >= 0. Proceeding similarly,
we prove that

<Upno,Wi,; >=0, Vj=0,...,m, —1

Finally, by iteration, we can prove that
< Un,p7Wk,j >= 07 vp?j:()w"vmn_lv vn%k’i
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Now, if n = k, then Fredholm Alternative implies that
<UpjWho>=0, Vj=0,...,m,—2.
Hence, by completeness, it follows that
< Upmyp—1,Wno ># 0.

Similarly,
< Un,OaWn,j >= 0, VJ =0,....m, — 2

and

< Un,Oa Wn,mnfl >7é 0.

After comparing < A U, 1, Wy, — > with < U, 1, AX W, ., — >, we find that
< Un,la Wn,mnfkfl >=< Un,Oa Wn,mnfk > .

Therefore, U, ; is orthogonal to each W, ; except when j = m, — 2. Finally, by
iteration, we find that U, , is orthogonal to each W, ; except when j =m, —p — 1.
In conclusion, we have

<U Wn,mn—l—j
n,ps
< Un,ja Wn,mn—l—j >

>=10,5, Vp,j=0,...,m,—1

However, the arguments above are sufficient for the low frequencies but for the

Who
high frequencies, in order to replace : by W, o in (1.2.1), we still need
o P Wy 5 Y o (L2

to show that < U, o, W, o > does not degenerate as n becomes large. This is our
next aim.

According to (3.3.2) and (3.3.3), we choose U, such that

+

b .
Uno01) = ¥(@, Aoy (1, An) T = \/ﬁ sinh(v/A2 4+ 2\, (z — 1))(L,A,)
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and

b- .
Unol (-1.0) = Y(2, M) (—1.0) (1, An) T = —==L——=sinh (/A2 + 20, (z+1)) (1, \,) T,

where b and b, are chosen such that (see (3.3.4))

b — VA2 42\, sinh (/A2 + 2a), (3.3.20)
" /A2 200, sinh /A2 + 2), -

with b, fixed such that < U, o, U, >= 1.

But we have
< Un,Oa Wn,O >

= [ (WP = Rt AP o

= [ (cost(VREF 2 = 1)) = 2 s/ 20,0 - 1) ) d
+(bn)2/01 (coshz(\/)\,% + 20\, (z + 1)) — Agﬁ—zaxn sinh? (/A2 + 20\, ( + 1))) d.
Furthermore as R\, is uniformly bounded, sinh(24/A2 4 2\, (z — 1)) and
sinh(24/A2 4 2a\,(x + 1)) are bounded (for —1 <z < 1). Hence,
2

1
/ <cosh2(\//\,21 + 2\, (z —1)) — /\21—712)\ sinh? (/A2 + 2\, (v — 1))> dx
0 n

n

= 1+4+0(1),
/j (CoshQ(\/M(x +1)) — )\%:\—éa)\nsinhQ(\/M(x + 1))) dx
= 14 09(1).
Therefore,
< Unyos Wao >= (b))?(1+ 01(1)) + (b, )*(1 + 02(1)). (3.3.21)

But owing to (3.3.7), we see that

1-— 1

VAL 2N, = Ta—i-i(n—i-m)g—i—Ol(ﬁ), (3.3.22)
—1 1

VX2 1 2an, = %+¢(n+m>g+02(g). (3.3.23)
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Therefore if n + m is even we deduce that

1—

sinh \/A2 + 2\, = sinh(Ta + 03(1)) cos((n + m)g),
—1

sinh /A2 + 20\, = sinh(aT +04(1)) cos((n + m>g)>

and therefore

sinh /A7 + 20\,
sinh /A2 +2X,
Similarly if n + m is odd we show that
sinh /A2 + 2a, 1
sinh /A2 + 2\,

These asymptotic behaviors in (3.3.20) lead to

-1+ 05(1).

+06(1>.

(b5)? = (b,)*(1 4 0r(1)), (3.3.24)
and inserting this identity in (3.3.21) we arrive at

< Un,Oa Wn,O >= 2<b;)2<1 + 08(1>>

Wn,O
2(bn )?(1+08(1))

to show that b, does not tend to zero as n tends to infinity. Actually by similar

So we choose instead of W), o, but as mentioned before we have

calculations as before, we check that
< Un0:Uno >= [b[7(6 + 09(1)) + [b [(6 + 010(1)),

where

5_sinh(1—oz)
 l-a

that is positive since av < 0. Therefore with the help of (3.3.24) we get

< Unos Unp >= 2/, |*(6 4+ o11(1)),
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and consequently

1
b, | = ST 012(1).

In summary, by fixing N large enough such that for |n| > N, m, = 1, we have

proved that the family

{ Wn,mn—l—j }mn_l U { Wn,O }
< U"»j’ Wn:mnflfj > 7=0 0<|n|<N 2(65)2(1 + 08(1)) In|>N

is biorthogonal to the set of root vectors of A,.

It remains to prove (1.2.1). We first prove that for any (f,g) € X and for all N
large, the sum S = Z |< Upo, (f,g) >|" is finite. Tn fact,

n>N
S = Z] / 1b; (cosh(\/)\i 20 (z — 1) F(2)
n>N 70
—i—ﬁ sinh(/A2 4+ 2\, (x — 1))§(x)> dx

of by (cosh(v/R F 2k + 1)) (o)

2

An

A
NOtin That S = 1 + O — and —_—
&N Lo 1) md e

order to prove that the sum S is finite, we will only prove that

Si=>_ /0 cosh(v/A2 4 2\, (z — 1)) f/(z) d

n>N
since the convergence of the other terms appearing in S follows similarly. According

1
= 1+ O4(—); hence, in
n

< 00,

to (3.3.22), we have
VAL +2\, =y +i(n+ m)g + Oy

1-— 1
@ and 0, = O1(—). Therefore, we can write
n

where v =

COSh(‘ /)\% + 2An(x — 1)) — %(6(’7+i(n+m)g+5")($_l) + 6_(7+i(n+m)%+5n)($_1)>‘
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So in order to prove that S is finite, we will only prove that

2.

n>N

1 2
0

since the convergence of the other term appearing in S; follows similarly. But the
convergence of this series is a simple application of Lemma 3.2 of [70] (see also [38,
Lemma 4.1]) since the sequence (v +i(n + m)3 + d,),>n satisfies the conditions
of this Lemma and since f € H'(0,1). Therefore, ¢0HintmZ+on)@=1) 45 5 Begsel
sequence. We can also use the mean value Theorem and Fourier series to prove the

convergence of this series. Indeed,

>

2

1
/ (Bt ) 1) 7

n>N 0 )
(n+m)7r p—1)—
=2 / — 1 1) g
n>N )
<Z/} §(z1 ewa: 1f/ |+Z/ a:l)e'yx 1)f,()
n>N n>N
< Sl [ 1 =PI + N
n>N
S M@ DR 0D 167 + |
n>N 1
N HeW(m_l)f’H?o,nZﬁ + 17 11T -
n>N

The convergence of Z |< Who, (f,g) >|” for any (f,g) € X and for all N large

n>N
is proved in the same manner since

< Wn,Oa (f> g) >=< Un,Oa (fa g) >= < Un,07 (f? g) >.

Therefore, the conditions of Theorem 1.2.6 are all fulfilled and hence the root

vectors of A, form a Riesz basis of X. [
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3.3.2.3 Proof of Theorems 3.2.1 and 3.2.2

Since the generalized eigenvectors, {U,, ;}, ;. of A, form a Riesz basis of X, then

given the initial datum

+oo0 mp—1

= Z Z/Yn,jUn,ja

n=41 5=0
we can write
mn—l j t-] k
)= )" = 3 2 mid U
n==+1 j= ’

Since the low frequencies are of finite multiplicity, then denoting the maximum

multiplicity by m, we get for any € > 0
Ei(t) < B (0)(1 + t?™)e?Ae)t < B (0)erAa)tat, (3.3.25)

As pu(Ay) < 0 for a €]as, 0] (a3 &~ —0.2823), we can choose 0 < € < —u(A,) to get
the exponential stability of problem (3.1.1) and hence the proof of Theorem 3.2.2 is
complete.

The proof of Theorem 3.2.1 is similar since for o« + 1 > 0, by Remark 3.3.4 and
Lemma 3.3.5, at most a finite number of eigenvalues of A, may be situated on the
imaginary axis or to its right ; consequently, excluding the finite dimensional space

spanned by the corresponding root vectors, we obtain an exponential decay.

3.4 Exponential stability for an indefinite sign in-

ternally and boundary damped problem

In this section, we perform a similar analysis for problem (3.1.2) which contains

both an internal and a boundary indefinite sign damping term. Recall that (3.1.2)
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is the problem

U (T, 1) — U (2, t) + auy(x,t) =0, x€(0,1),¢t>0,

uw(0,t) =0, u,(1,t) = —buy(1,1), t>0, (3.4.1)

u(z,0) = ug(x), w(z,0) = uy(x),
where a,b € R. If a and b are both non negative and one of them is positive, then,
using integral inequalities for instance, one can show that (3.4.1) is exponentially
stable. Our aim is to find sufficient conditions on a and b so that (3.4.1) is exponen-
tially or polynomially stable whatever the sign of a and b.

The energy of (3.4.1) is given by

Ey(t) = %/01 (Jue]? + |ual?) de,
and hence formally
Ey(t) = —a /1 g 2 — blug(1)[2.
0

From this identity, we see that if @ < 0 and b < 0, then E(t) > 0. Therefore, the
energy increases and no stability can be hoped. Therefore, the only case of interest
is the case when a and b are of opposite signs. We, therefore, assume that ab < 0.
We further assume that b ¢ {—1,0,1}. Indeed the case b = 0 has no interest since

only the case a > 0 yields stability results; while the case b = 1 or —1 is excluded

for technical reasons (see Subsection 3.4.3).

3.4.1 Well-posedness of problem (3.4.1)

As usual, by the standard reduction of order method, we can rewrite formally
(3.4.1) in the simpler form U; = A,U, where U = (u,u;)" and the operator A, :
D(A,) — X is defined by

0 I

A, = (3.4.2)
d2
az @
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where the energy space X = H;(0,1) x L?(0,1) is equipped with the usual inner
product defined by

<(,9) (w,0) > / (fT + gv) do

where H;(0,1) = {u € H*(0,1); u(0) = 0} and therefore, D(A,) = {(u,v)" €
H?(0,1) N Hy(0,1) x Hy(0,1); ugy(1) = —bv(1)}.
First, we remark that A, is not necessarily dissipative so we propose to write

A, = Ao — aB where

0 I
Ag = £ g (3.4.3)
=
and ~
0 0
B p—
01

Therefore, A, is a bounded perturbation of a non skew adjoint operator Agy. Never-
theless, we will prove in Subsection 3.4.4 that if b # —1, then A, generates a Cj
semigroup and since aB € L(X), A, will be also a generator of a C semigroup ac-
cording to Theorem 3.1.1 in [62]. Therefore problem (3.4.1) is a well posed problem
(see Theorem 3.4.7).

3.4.2 Eigenvalue Problem

In this part, we find the characteristic equation of the eigenvalues associated
with (3.4.1). Let (y,2)" € D(A,), (y,2) # (0,0), such that A,(y,2)" = A(y,2)"

then z = Ay and
Yor — Ny —aly =0 in (0,1),

First, it is easy to see that A = 0 is not an eigenvalue of A,. Furthermore, if A = —a,

(3.4.4)

then y = cx with ¢ = abc which satisfies the boundary condition at 1. Since y # 0,
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we have ¢ # 0, and get ab = 1 which is impossible since we have assumed that
ab < 0.
Now if A # 0 and A # —a, then there exists ¢; € C* such that

y(r) = ¢ sinh VA2 + a)\x.

Hence, the boundary condition at 1 becomes
y-(1) = c1VAZ + a)cosh VA2 + aX = —bAcy sinh VA2 + a).
As ¢; # 0 then ) is an eigenvalue of A, if it satisfies the characteristic equation
F,(\) = VA2 + aXcosh VA2 + aX + bAsinh VA + a) = 0. (3.4.5)
Integrating (3.4.4) against m and performing an integration by parts, we get

1 1 1
2 [lyPds - P + o [ o+ [ JuPde =0,
0 0 0

Therefore,

oo [ i) +

s« ([ ) ()]

/ jyPda
- ([ i)

If A € C\R, then

R\ = - (3.4.6)
2 [ Wy
0
and since y € {u € H'(0,1) : u(0) = 0}, we get
1
’yx‘Qdic 2
(SA)? + (RA)? = L0 > WZ (3.4.7)
ly|*dx
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Remark 3.4.1. If b < 0 and a > 0, then whenever A\ € C\R, from (3.4.6), we
deduce that R\ > —g. This estimate can be even extended to all eigenvalues of A,.

Indeed, for (u,v)" € D(A,), by integration by parts, we check that
1
2R < Ay(u,v)’, (u,0)" >= —a/ |v* dz — blu(1)]2.
0

In particular, if A is an eigenvalue of A, with associated normalized eigenvector
(u,v)T, we will get

1
RN — —a/ (o2 dz — blo(1)[2.
0

1
Since / > de << (u,v)", (u,v)" >= 1, and recalling that we here assume that
0

b < 0, we then conclude that
1
2R\ > —a/ |v|? dz > —a.
0
In summary we have proved the next result.

Lemma 3.4.2. A;! is compact. Hence the spectrum of A, consists of discrete ei-

genvalues with finite algebraic multiplicity. Furthermore
0(A,) ={A e C\{0,—a} : Xis a root of (3.4.5)}.
Concerning the multiplicity of the eigenvalues, we show the following Lemma :

Lemma 3.4.3. The high frequencies of A, are simple and there exists at most two

double low frequency eigenvalues.

Proof: We derive (3.4.5) with respect to \ to get

VAZ + aA(2X\ + a + 2b) sinh VA2 + aX + (2A + a) (DA + 1) cosh VA2 + aA
2V 2+ a)
0

WVET Y

() =
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If F,(\) =0, then

bAsinh v/ A2 + a)\
cosh VA2 +a)\ = — .
VA2 +a)

Substituting into g(\), we get

_ Asinhy/ A2+ a)

g(\) Nty (21 = )N + a3 = )X +ala+1b)).

Since A # 0 and A\ # —a, then g(\) = 0 is equivalent to 2(1 — 0*)A\? + a(3 — b*)\ +
a(a + b) = 0 which only has two roots. n

3.4.3 Asymptotic Development of the High Frequencies

In this subsection, using Taylor expansions, we prove that the high frequencies

1
approach the axis z = —g — Rtanh™* 5 In fact, (3.4.5) implies that for b # 0

VA2 A
—% = tanh(V A2 4 a)\); (3.4.8)
hence,
U2

VA2 +a)\ = — tanh_l <¥) + iklﬂ', ki € 7. (349)

For large A, we write

a a® 1

\/>\2+aA:/\+§—8—/\+0(X). (3.4.10)
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Moreover, for large A, there exists ko € Z such that we have

VAZ 4+ a) 1 a 1
-1 [ VAT T aA _ (L, a 1
tanh ( 3 tanh (b+2b)\+0()\)>

g (1 ) w g (1oL
—2® b)) T2 T o T\

1 1 1 a 1
—=1 1——)—=1 l— —~ < Tk
20g( b) 2og< 2(b—1))\+0()\>)+m2
1

:tanh11+i ! + + imks + 0 !
b 4x|(b+1) (b—1) A
1 ab 1
—tanh ™' = +imhky + —— — .
an b+z7r 2+2/\(b2—1)+0<)\>
(3.4.11)

Substituting (3.4.10) and (3.4.11) into (3.4.9), we get that for A € o(A,) with ||

large enough, there exists k € Z such that

a 1 a? ab 1
A= —— —tanh ' — + ik —t — — . 4.12
5 — tan b—l—z 7r+8)\+2)\(1—62)+0()\) (3 )
In order to get RA < 0 for \ large, we need that
a 1

As before we illustrate in Figures 3.5 and 3.6, the roots of Fj, fora =1,b = —0.5
and a = 1.1,b = —2 respectively, computed using the same scheme as before. In
both cases, —g — %tanh_lé is negative and the asymptotic behavior (3.4.12) is
clearly confirmed. Note that in the first case, all eigenvalues are in the left of the
imaginary axis, which is in accordance with Theorem 3.2.4. On the other hand, the
second example does not enter in the framework of Theorem 3.2.4 and shows that
an exponential stability result cannot hold if b < —1 but confirms Theorem 3.2.3.

Note that in Figure 3.6, some eigenvalues with positive real part like

A = 0.6910478014752763 or A = 0.012396324184610901 + 2.97112517556328861,
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L L L L
-0.0770 -0.0765 -0.0760 -0.0755

F1GURE 3.5 — Eigenvalues for a =1, b = —0.5

are not represented because they are too far from the other eigenvalues. A repre-
sentation in a larger scale is possible but would avoid to see the main part of the

spectrum.

3.4.4 Riesz Basis of X and a note on the well-posedness of

problem (3.4.1)

In this part, we prove that the eigenvectors associated with the problem with

a = 0 form a Riesz basis of X if b ¢ {—1,0, 1}. In other words, consider the problem

U (2, 1) — Uyy(x,t) = 0, z € (0,1),t>0,
w(0,t) = 0, u,(1,t) = —buy(1,1), t>0, (3.4.14)
u(z,0) = ug(x), w(z,0) = uy(x).

(3.4.14) is equivalent to U, = AU with U, = (@,%)7 and Aq is given by (3.4.3).
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L L L L L
-0.0015 -0.0010 -0.0005 0.0005 0.0010

F1GURE 3.6 — Eigenvalues for a = 1.1, b = —2

By the previous analysis, we know that \is an eigenvalue of Ay if and only if
~ 1
tanh A = ——;
an A

or equivalently

- 1
A=)\, = —tanh™* (3) + ikm = ¢(b) + ikm, for some k € Z. (3.4.15)

Notice that the root vectors of Ag are restricted to its eigenvectors since the eigen-

values Xk are simple. In the sequel, we prove the next Riesz basis property.

Theorem 3.4.4. The family

{@rtrez = { (@ M) Yrez = { (% sinh(e-). Sinh(xk.)) }kez

k
forms a Riesz basis of X = H;(0,1) x L*(0,1).
For this aim, we again use Bari’s criterion stated in Theorem 1.2.6.
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Lemma 3.4.5. The sequence {¢y,}y, is complete in X.

Proof: It suffices to show that any element of X orthogonal to all the @; is zero.

Hence let (f,g)" € X be such that < (f,g)", <$k >x=0 for all k € Z. Then we get

0 = 2/01 <Ecosh(xkx) +§sinh(xkx)) dx

1
= / ((fe + g)e®Ome*™ 4 (F, — g)e O~ *) dz Wk € Z. (3.4.16)
0

In particular, for £ = 0, we have

/ 1 ((fa + 9)e " + (fo = g)e ") da = 0. (3.4.17)
0

Moreover, for k < 0, we write k = —k’ with £’ € N* to obtain

1
/ <(fa: + g)ec(b)v’ve—ik’ﬂx + (.fx . g)e—c(b)ﬂfeik/na:> dr = O, Vk,'/ c N*. (3418)
0

Adding (3.4.16) for k = k' > 0 with (3.4.18) yields

1 ikmx —ikmx
/ h@) (%) dr =0, VkeN,
0

where
h(z) = (fo + 9)(@)e @ + (f, - g)(x)eDx,

Since {cos(kmx)}ren is a basis of L*(0,1), we get
h=0. (3.4.19)

Subtracting (3.4.16) from (3.4.18), we get

1 ez’kmc _ e—ikmﬂ
[T (2 ae o e,
0

where

K(z) = (fo + 9)(@)e®” — (f, — g)(w)e—D,
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Since {sin(k7x)}ren+ forms a basis of L%(0,1), we get
K =0. (3.4.20)

(3.4.19) and (3.4.20) imply that f, = ¢ =0 and so f = 0 since f(0) = 0. n

In a second step, we search for a sequence {1y} ez biorthogonal to {gk}kez. Here

1 B~ =

we choose {¥y brez = { <~: sinh(\g-), — sinh()\k-)> where )y is the conjugate
_ Ak keZ

of A\x. The same arguments as before show that this set is complete. Indeed, for

k € 7, 4. is an eigenvector of the adjoint of Aj.
Lemma 3.4.6. The set {1 }rez is biorthogonal to {(Ek}kez-

Proof: By definition, we have

1
< 51@, Y >x = / (Cosh(xkx) COSh(X;[E) — sinh(Xk:E) sinh(X;x)) dx
0

— /O1 cosh <(X;€ - Xﬂx) dx

= /0 cos ((k — l)mz) de = .

Finally, in order to apply Bari’s Theorem, it remains to prove (1.2.1). Let (f,g)' €

X and consider the following sum
. 2 ~ 2 . 2
Z ‘< (f,9) . o >X’ < Z ‘(f:vaCOSh()‘k'))(O,l)‘ + Z ’(%Slnh()\k'))(o,l)
kEZ keZ keZ
(3.4.21)
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By (3.4.15) and Parseval’s identity, we have

2 - . 2 [ . 2
> )(fxaCOSh()‘k DICRY ‘ <Y ‘(fxec(b)}@zkﬂ')(o,l) Y )(fxefc(b)',eflk”')(o,l)
keZ keZ keZ

< (1@ 1y + 1 foe= 2,
S £l
(3.4.22)
and
Y 2 " 2
Z‘(g,smh()\k.))(om < Z‘ gec®) ¢tk Vo) +Z‘ ge—<®) ¢~ ™) o)
kEZ kEZ
< (g 113, + llge %))
< gl
(3.4.23)

(3.4.22) and (3.4.23) imply that the right-hand side of (3.4.21) is finite. Similarly,

we prove that

d < (fg)” o >x|” < oo

kEZ
In conclusion, by Theorem 1.2.6, the family {ng}kez forms a Riesz basis of X.

Theorem 3.4.4 is then proved.
Theorem 3.4.7. Ifb ¢ {—1,0,1}, then problem (3.4.1) is well posed.

Proof: If we consider the problem associated with Ag; i.e.,

Ui(t) = AU (1), t>0,
U(0) = U,

(3.4.24)
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then writing U(0) = Zaquk yields

keZ

U(t) = Zexktak@.

kEZ
Therefore, by the Riesz property of the sequence {ggk}k and (3.4.15), we get

~ 2 1/1
OIS \ekktozk\ < e PR ()1 7(0) |12 (3.4.25)
kEZ

Hence, if V' = Zﬁk@ is given, then we define
kEZ

S(t)V = Zexktﬁkggk, Vvt > 0.

kEZ

According to (3.4.25), we have S(t) € £(X) with
IS() 2oy < Me R (3)t,

for some positive constant M. Hence we deduce that (S(t)):>o is a Cj semigroup (not
necessarily uniformly bounded). As we can write A, = Ay + aB where Aj generates
the Cy semigroup (S(¢)):>o and B is bounded, then, by Theorem 3.1.1 in [62], A,

also generates a C semigroup (S,(t)):>o that satisfies
150 ()| £0x) < Me(*%tanh*l(%)ﬂamB”)t? Vi > 0.

By standard semigroup theory, problem (3.4.1) becomes well posed. [

Remark 3.4.8. If b = —1, our previous considerations show that Ay has an empty
spectrum. Therefore, our method does not allow to prove that it generates a Cy se-
migroup and hence, the well posedness of problem (3.4.1) becomes an open question.
On the other hand, if b =1, the operator Ay generates a Cy semigroup (S(t))i>o
that satisfies
1S®)|lcex) < Me™,
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for some positive constants M and w. Therefore, by the previous arquments, problem
(3.4.1) is well posed and is stable if a < 0 is small enough by perturbation theory

but the question of its stability for a < 0 "large” is an open question.

3.4.5 Link between problems (3.1.2) and (3.4.14) and end of
the Proof of Theorem 3.2.3

In this part, we prove that the root vectors of A, form a Riesz basis of X if b ¢
{—1,0,1}. For this aim, we will apply Theorem 1.2.8 with the set {akz}kez the Riesz
basis associated with problem (3.4.14) and for an appropriate set of eigenvectors of
A, (corresponding to large eigenvalues). Indeed in view of Lemma 3.4.3 and (3.4.12),

we split up the spectrum of A, into the small and large eigenvalues :

o(Ay) = {11 U { etk (3.4.26)

where N € N is chosen large enough such that, for every k € Z* with |k| > N,

1
%+tanh’1 5 ikm| < g and )y is simple. Consequently the remaining part of

the spectrum {)\,}, is clearly bounded. According to our previous considerations

e+

for |k| > N, the eigenvector ¢y is of the form

Ok = (ks MeUk) |

with

1
1) = ————-sinh ( \/A? + a) x),V:EE 0,1).

For |k| > N, by (3.4.9) and (3.4.11), we have

1 1 - 1
VA2 +a\y = —tanh ™ —+ikn + O — ) =M +O [ — ).
b A Ak
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Hence, by the mean value theorem, for all = € (0, 1), there exists 6, € (0,1) (depen-

ding also on k) such that

cosh(\/A2 + arpz) — cosh(Axz)
= <\/)\i +a\, — 5\k> x sinh (ka + 0, (/A2 + a), — Xk)x) )

Hence, by the previous identity, we find that for all z € (0,1)

cosh(y/ A2 & adpz) — coshNez)| < [Ael ™Y sinh (Az + 0,(1 /A2 4+ aX, — M) ).
k ~ k

Moreover, since we assume that [b| # 1, then ‘ﬂ%tanh_l %| is finite and therefore,

R\, remains bounded (independently of k). This implies that

cosh(1/A2 + adpz) — cosh(A,z)

This estimate implies that

<l Ve € (0,1).

~\ 2 1
H(yk):r - (yk)x”(o,l) 5 |)\k’2 (3.4.27)
Similarly, we can prove that
A Ml <
— Akl . 3.4.28
H kYK kka(O,l) ~ |)\k‘2 ( )

The estimates (3.4.27) and (3.4.28) yield

> o=l s X s D<o

|k|>N |k|>N |k|>N

In conclusion, according to Theorem 1.2.8, the root vectors of A, form a Riesz basis
of X.

Similar to (3.3.25), we conclude the proof of Theorem 3.2.3 for all a« € R, b &
{=1,0, 1} such that —g — Rtanh™! % < 0 since the high frequencies are situated to

the left of the imaginary axis.
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3.4.5.1 Further Comments

Theorem 1.2.8 improves Bari’'s Theorem as it shows that we can neglect any
information concerning the low frequencies. However, in the sequel, as we are inter-
ested in studying the behavior of the eigenvalues, we give an additional analysis to
show that indeed the root vectors corresponding to the low eigenvalues of A, are in
bijection with those of Ag.

For the low frequency modes (|k| < N), we fix a sufficiently large rectangle T"
which includes all the low frequencies of A, for all a’ between zero and a and whose
edges do not contain any eigenvalue of A, for any a’ between zero and a. This choice
of the rectangle is possible by the following arguments. First for the horizontal edges

we notice that, by (3.4.12), the horizontal lines

Yy = —%tanh_l 1 :l: M

2 5 , for |ko| > N

are free of eigenvalues of A, for all |a’| < |a| if N is large enough (depending on a).

For an upper vertical line, by Theorem 3.4.7, any eigenvalue \ of A, satisfies
1
RN < —%tanhfl(g) + ||| B]|.
Hence, the vertical line
1
xr =1— Rtanh (3) + |a||| B||

does not contain any eigenvalues of A, for all |a/| < |al.

Finally, for the lower vertical line, for a fixed a, we denote by
m(a) = min{RA : A € 0(A,)},
that is clearly finite. We now show that for a fixed a, we have
I:= |a;1|1%f|a|m(a') > —00.
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Indeed, if it would be false, then we would find a sequence (ay,)neny with |a,| < |a
for all n and such that

m(a,) — —o0 as n — 0. (3.4.29)

Up to a subsequence, still denoted by (a,)nen, (@n)neny converges to some a' €
[—|al, |a|]. Furthermore, there exists m € N such that for all n > m, there exists an

eigenvalue )\, € 0(A,,) such that
m(a,) = R\,.

Indeed, if we assume that for all m € N, there exists n,, > m such that for all

A€ o(A,,,). m(an,) # R, then necessarily m(an,,) = —%= — Rtanh™" ; which is

Qny,
impossible since in this case, as m — +o0, m(a,,,) tends to —% —Rtanh™' 1 which
is finite and this contradicts (3.4.29). Therefore, there exists m € N such that for

all n > m, there exists an eigenvalue \, € o(A4,,) such that
RN, — —0o0 as n — 0o.

At this stage we can apply (3.4.12) to A\, and by taking the real part of this identity
we find

2

a 1 a anb 1 1
A\, = —— — Rtanh™ ! = Bt — — — . 3.4.30
i 5 I tan b+(8+2(1—62))%)\n+0()\n) ( )

Here above o (/\i) depends on a, but it is easy to see that

1
O(A—>—>Oasn—>oo.

because the sequence a, is bounded. Passing to the limit in (3.4.30), we find that
the left-hand side tends to —oo while the right-hand side tends to —%' — Rtanh ™ %

which is a contradiction.
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Accordingly, the line
r=—-14+1

does not contain any eigenvalues of A, for all |a/| < |al.
Having chosen I', we define the operator

Pd) = 1 jg(g — Ag)7ldE. (3.4.31)

©2mi
According to Theorem II1.6.17 of [46] or Theorem XIL.5 of [68], the above operator
is a projection (called eigenprojection) and its range is the set of the generalized
eigenspace corresponding to the eigenvalues of A, inside I'. Besides, we remark that
Ay is closed for any a'.
In the sequel, we prove that the mapping F' defined by F(a’) = dim(P(a’)X) for

all @’ between zero and « is continuous.

Lemma 3.4.9. Fiz ay between zero and a and let & € p(Aq,) NI. Then & € p(Ay)

for any a' near ag and
(E—Ay) ™t = (6= A, asd — ag.

Proof: Without loss of generality, assume that ay = 0 and let £ € p(A4g) NT". We
have

E—Apy=E6—Ay—adB=(6£— A —d(€— Ay B

Since a’ — 0, then we can choose a’' such that ||a’(§¢ — Ag)™'B|| < 1 and hence
I—d' (£ — Ay)~'B is invertible. Consequently, £ — A, is invertible which implies that
¢ € p(Ay) and as @’ — 0,

H(§ - Aa’)_l (S AO)_IHE(X) < ”(I B a’(f B AU)_lB)_l o ]Hﬁ(X) ||(§ o AO)_lHE(X) — 0.
[

Now, we recall a result of Kato and Rellich, see the Lemma in page 14 of |68|.
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Lemma 3.4.10. If P and Q are two (not necessarily orthogonal) projections in a

Hilbert space H and dim(PH) # dim(QH ), then |P — Q|| > 1.

Lemma 3.4.9 shows that P(a’) is a continuous function of @’ while the above

Lemma shows that the mapping
{Q € L(X); Q is a projection} — N : Q — dim(QX)

is continuous. Therefore, the mapping o’ — P(d’) — dim(P(a’)X) is continuous
and hence dim(P(a’)X) is constant for every a’ between zero and a. Knowing that
the eigenvalues of Ay inside I' are of finite multiplicity, then we get dim P(a)X =
dim P(0)X. Therefore, we conclude that the number of eigenvalues of A, is equal to
the number of eigenvalues of A inside I' with the same total number of multiplicity.
Consequently, the root vectors corresponding to the eigenvalues of A, inside I' are

in bijection with those of Ag.

3.5 Proof of Theorem 3.2.4

In this section, we consider the case b € (—1,0) and a > —2tanh™~' b. We prove
that all the eigenvalues of A, are situated to the left of the axis © = —% — Rtanh ™! % =
—g — tanh™' b. Consequently, in the case a > —2tanh™' b, by the arguments of the
previous section, we immediately deduce that problem (3.1.2) is exponentially stable

in X. In the case a = —2tanh™' b, due to (3.4.12) no exponential decay can be ex-

pected but we will show in the last section that a polynomial decay is available.

Lemma 3.5.1. If b € (—1,0) and a > —2tanh™'b, then any eigenvalue \ of A,
satisfies

RN < —g — tanh~'b.
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Proof: Recall that from Remark 3.4.1 any eigenvalue A of A, satisfies X\ > —g
(since by our assumptions b < 0 and a > 0).
First, according to the characteristic equation (3.4.8), we can write
u
A= — . 3.9.1
btanhu ( )
where u = VA% 4 a\. Using the identity tanhu = ;‘L%, with 2z = €2, (3.5.1) is
equivalent to
1
A= —@ with z = e?*.
b(z—1)
Substituting this identity into u? = A\* + a\ yields u = ¢(z), where
C1 Cy
—abl el — _
g(Z) “ (CO Z+b1 Z‘l‘bg) '
1 1 1 1+0 1-0b
ithcy = ——=,c = = ——,b = ——, and b, = ——. Replaci
withcy = 75, a1 (1—b)2’62 e T And by = 7 - Replacing

2 by €%, we obtain

u=ab <co a = ) . (3.5.2)

- 62u+b1 - 62u+b2
Remark that for b € (—1,0), 0 < by < 1 < by. Note further that the case e*+b; =0
1

(resp. €"+by = 0) cannot hold ; indeed, we then have tanh u = § (resp. tanhu = —7)

and therefore, by (3.5.1), A = —u (resp. A = u) which yields
A =N+ al,

and hence X\ = 0. This is impossible since 0 is not an eigenvalue of A,.

Writing u = U 44V, with U,V € R, we can suppose that U > 0 and V' > 0 since
the complex eigenvalues appear in conjugate pairs. Indeed, u?> = A2 + a) implies
that y(2x +a) = 2UV where A =z +iy. As z > —g so if y > 0 then U and V have
the same sign. Otherwise, we choose A = x — iy to get U > 0 and V > 0.

In a first step, we prove that

1
U==Ru< nsz = —tanh™'b. (3.5.3)
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For this aim, by setting for j = 1, 2,

1 b 1 1
¥ = 5 @D, = §tanh (u - 5111 bj) : (3.5.4)

we notice that (3.5.2) implies that

ab

Simple calculations show that
w2 inh(2U — In b,
RS, = 9= sinh(2U — Inb;) (3.5.6)

- 2l + b2 2(cos(2V) + cosh(2U — Inb;))’

Hence, by the property 0 < b; < 1, we directly see that R>; > 0.

Inb
Now if we suppose that (3.5.3) does not hold, then U > % > 0 and by (3.5.6),

we get Ry > 0. But from (3.5.5) and this property, we deduce that

ab

Uz?)‘Elel_b2

(%21 + %22) < 0,

which is a contradiction. Hence (3.5.3) holds.
In a second step, we check that U # 0. Indeed if U = 0, then A € R since by

(3.5.1) we find out that
Vv
A= Tty (3:5.7)

with V' € R\ {0} (because A = 0 and A\ = —a are not eigenvalues of A,) such that
VA2 +a\ =iV,

Hence, we see that

—at @ —AV?

A= 9

that is always non positive. This is in contradiction with (3.5.7) because its right-

hand side is positive.
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In a third step, we show that the eigenvalues of A, are situated to the left of the

b
Substituting (3.5.2) into (3.5.1), we find, after simple calculations, that

1
axis —g — Rtanh™ ' = = _% — tanh ™' b.

a ab

Aha i gyl

S — B). (3.5.8)

Hence, summing (3.5.8) with (3.5.5) and subtracting (3.5.8) with (3.5.5), we obtain

1 b —1
Y, = —— - 5.
1 2b+ ) (A —u), (3.5.9)
1 1 —b?
Yo = — A . 5.1
2 2b+ 5ab (A +u) (3.5.10)

Now coming back to (3.5.6), we can write (note that RE; £ 0, thanks to (3.5.3))

sinh(2U — Inb;)
2RY;

cos(2V) = —cosh(2U — Inb;) + , for j=1,2.
This implies that
R, ( sinh(2U —In by ) —2R%,; cosh(2U —In bl)) _ ( sinh(20 —In by) — 2R, cosh (20U —In bg)).

Using (3.5.9) and (3.5.10), we get, again after simple calculations, the following

’

relation between z = R\ and U = Ru :
2% ko sinh(2U) + xky sinh(2U) + ho(U) = 0, (3.5.11)
where ky = 4b(b — 1)(1 + b) > 0, k; = 2ab(b* — 3) > 0, and
ho(U) = —2b ((a® — 2U* 4 2b*U?) sinh(2U) + 2abU cosh(2U)) .
As by the second step, U # 0, we can divide (3.5.11) by sinh(2U) and find
kow® + kyx + ko(U) = 0, (3.5.12)

where
. ho(U) B 2 2 2772
ko(U) = T 2b (a 20° + 2b°U* + 2ab
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It turns out that ko(U) > 0 for 0 < U < —tanh™'b since ko is a non increasing
function on (0,00) and ko(—tanh™'b) > 0. As the coefficients in (3.5.12) are all
positive, x = R\ has to be negative. In fact, (3.5.12) yields two distinct roots x4 (U)
given by

—ky + k% — Akoko (U
z4(U) = ! \/21k2 2ol ),

such that z_(U) < x,(U). Again as kg is a non increasing function on (0, 00) and

recalling (3.5.3), we get

k4 /K — dkoko(— tanh ! D)
2k (3.5.13)
= —g — tanh ™' b.

v (U)<z,(U) <z, (—tanh ') =

Remark 3.5.2. Increasing the order of the asymptotic development of the large
eigenvalues, we find that for some N > 0 large enough and for every k € Z* such
that |k| > N

a T c C 1
)‘k :—§—tanh é—l—lk”ﬂ'—i-x—i—ﬁ—i—O(ﬁ) 1 i 1
_a 1 . ic c a 1 c
_—a—tanh g—i-’l]{]ﬂ'—g— ]{;271'2 §—|—tanh g) — ]{;27]'2 +O<ﬁ),
a? ab _ o a? b(b* — 3) a
where ¢ = 3 + m and ¢ = 3 ((1 — (14 b — 5) We can check that,

in case a > 0 and b € (—1,0), the large eigenvalues approach the aris x = 5

1
Rtanh™* 7= —g — tanh™ b from the left. Indeed, when a > 0 and b € (—1,0) we

can prove that

. ic c a 1 c
R (zlm s e (5 + tanh 5) — k;27r2)

1 1
=5 (c (% + Rtanh™! g) + 6) <0.
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3.6 Polynomial Stability of problem (3.1.2) and Proof
of Theorem 3.2.5

We end up by proving the polynomial stability of problem (3.1.2) in the case
b € (—1,0) and @ = —2tanh™'b. By Lemma 3.5.1, the spectrum of A, is at the
left of the imaginary axis, but approaches this axis. Hence, the decay of the energy
depends on the way the large eigenvalues approach this axis. Therefore, we need to
precise the asymptotic behavior (3.4.12). Again we use the splitting (3.4.26) of the
spectrum of A, into the small and large eigenvalue.

As before, using Taylor expansion for every k € Z* with |k| > N, \; is simple

and is given by

_a T ic c a 1 ¢ 1
>\k = —5 — tanh 6 + Zk’ﬂ' — E — k271'2 (5 + tanh g) — k27'('2 —+ o0 (ﬁ),
a? ab . a? b(b? — 3) a\ .. 1
where ¢ = §+mandc: 3 ((1—b)2(1+b)2 — 5).Smcea: —2tanh™ " b,
taking the real part of this expression, we find that
¢ 1

Note that we can prove that ¢ > 0 for every b € (—1,0) and a = —2tanh™ ' b.

If my, denotes the multiplicity of A, for every ¢« =1, ..., M, then we denote by
{{apkhj}g&_l}f‘il U {¢k}k>n the Riesz basis of X formed of the normalized root
vectors of A, (recall that my, is one or two). Hence, if we write the initial datum

U(0) in this basis

M g1
UO) =D > YiiPrg + D WPrs (3.6.2)
=1 j=0 |k|>N

then the solution U(t) is given by
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Therefore, for ¢ > 0 and § = 2—02, by (3.6.1) we get
T

mk —1

( ) - 2||U< )HQ < Z 2Rt Z h/kuj
_I_ Z 2§R)\kt|’yk|2

mk —1

M
§ 2R, t

j=0

|k|>N
mk -1
26
S WS 0
=1 |k|>N
m —1
_ 1 M Mk, , ,
N Z Z ko |” + Zk |V
i=1 j=0 |k|>N
_ Ty,
~Y t )
because
k?
izt S V> 0keN.

In the last step above we also use the equivalence

M My —1
10O Iban = IUOI% + 14UO) 15 = > > bl + Y Kl
i=1 j=0 |k|>N

mkf

that follows from the Riesz basis property of {{er,;} ;20 2L, U {@k}ksn- Indeed,

by (3.6.2), we may write

M Mk —1
Z)\k Vi 0Pk;,0 + Z Z Vr g Ak Phi g + Phij—1) Z VAR Pk
i= 1 j=1 |k|>N
= Z)\k Vri,0Pki0 Z)\k Vi, —1Pkimy, —1 T Z%l,ﬂ%,o
=1
M M —2
+Z Z (Vi Ak F Vhijt1) Prsg + Z VAR Pk
= |k|>N
M ™M, —2
- Z)‘k f}/kumk —130k1,mk -1+ Z Z ’Ykz,])\k + ’Ykz,j—H Pk j + Z 'Yk)\k@k
=1 j=0 |k|>N
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As {{goki,j}?:’“{l}f\il U {©k }kj>n is a Riesz basis of X, we get

M mki—l
WO = Y P+ > Il
i=1  j=0 |k|>N
M Mg, —2
AT ()] =~ Z|>\k Vkism, f? +Z Z | Vi Ak +”quj+1’ + Z ROARILE
=1 j=0 |k|>N
These equivalences directly yield
M M~
IO 2D I%,j P Rl

i=1 j=0 |k|>N
while the converse estimate follows from the fact that the set of "small" eigenvalues

is bounded.
Remark 3.6.1. Ifb e (—1,0) and a = —2tanh ' b, then, given U(0) = (ug,u1)" €
D(A?) for some n € N*, we get

sty < 10Oy

~Y tn

(3.6.4)

Consequently, the more reqular the initial data is chosen, the faster is the rate of

polynomial decay.

Proof: As before we can show that

M mki—l
1U(0) 11 ) Z [ERAOIFESS N PR EET N b
i=1 =0 k>N

Now, as in (3.6.3), we have

my, —1

< Zeﬂ?)\kt Z h/k“j

+ Z e,

|k|>N

and since

k
€i2<t—n Vt>0,k€N*,

we obtain (3.6.4). n
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3.7 Open questions

The critical value of o found in Theorem 3.3.8, a3 ~ —0.2823, for which problem
(3.1.1) becomes exponentially stable for v > «3 shows that the result given by
the perturbation theory of contractive semigroups is not optimal. However, as the
numerical result yields a wider range of this critical value, a > as where ay >~ —0.77,
the question of the optimality of « appearing in (3.1.1) remains an open problem.

As for the second problem (3.1.2), necessary and sufficient conditions are found
so that (3.1.2) is exponentially or polynomially stable. Optimal results are attained
for b € (—1,0). If b < —1, then the question of the stability becomes an open
question. Furthermore, the analysis done for problem (3.1.2) can be well adapted to

study the stability of the solution of

U (2, 1) — Uy (2, 1) + u + auy(x, t) = 0, re (0,1),t>0,
uz(0,1) = bous(0,1), u.(1,t) = —buy(1,1), t >0,
u(z,0) = up(x), u(x,0) = uy (z),

where bby < 0 and a € R.
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Chapitre 4

Exponential stability of the wave
equation on a star shaped network

with indefinite sign damping

4.1 Introduction

As in [2], for N > 2, we consider the following wave equation on a star shaped
network :

7

i (7, 8) = g, (2, 1) + 20(x)uy (2, 1)
u'(0,t) =u/(0,t), Vi#j,

N
Zu;(o, t) =0,
i=1

u'(z,0) =uh(z), z€(0,L),
1

0, ze(0,L;), t>0,ie{l,-- N},
0,
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where L; € R}, and a; € W1>(0, L;). This system models the vibrations of a group
N

of strings attached at one extremity. The Kirchoff law Zui(o, t) = 0 follows from
i=1
the principle of stationary action [53,59].

The main goal of this work is to study the stability of system (.S7) but also to
give more precise results when we replace in the system the damping coefficients
a;(x) by ea;(x), where the parameter € is positive and small enough. In this case, we
will denote this modified system by (S.) and we only need that a; € L*>(0, L;) for
allie {1,---,N}.

Using observability inequalities, the stability of the wave equations over a net-
work with positive damping coefficients has been studied in [60]. In the case of one
interval, the stability of a wave equation with an indefinite sign damping coefficient
has been studied in [1,28,30,51,54,57|, where it was found that the stability of the
wave equation is related to the mean of the damping coefficient. In this chapter, as
in [2|, using spectral analysis, we find (sufficient) conditions on the damping coef-
ficients to get the exponential stability of (S51) and (S). In fact, we find necessary
and sufficient conditions for which () is exponentially stable up to a finite dimen-
sional space. The idea is inspired from [65] where the characteristic equation of (.51)
is approximated by another one using the shooting method. This approximation
allows us to determine the behavior of the high frequencies and hence to deduce
the conditions on the damping coefficients {a;}~, for which the high frequencies
are situated to the left of the imaginary axis. In a second step, we prove that the
generalized root vectors form a Riesz basis with parentheses and then deduce the
exponential stability of (S7) up to a finite dimensional space generated by the roots
vectors corresponding to the low frequencies. Note that the shooting method in [23]
based on the ansatz of Horn in [41] and used to analyze the high frequencies can-

not be easily adapted to our problem as long as the solution in [23| is written in
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a power series form with unknown coefficients. On the other hand, when {a;}¥,

is replaced by {ea;}}¥; with the parameter e small enough, we search for sufficient
conditions for which (S;) is exponentially stable in the whole energy space. In this
case, we note that the positivity of the mean of the damping coefficients in addition
to another condition are required (see Theorem 4.1.4 below). In fact, for € > 0 small
enough, unlike [23|, we deal with multiple eigenvalues. Note that the study of the
exponential stability of (S,) enters in the framework of the abstract theory done
in [51]. Using the concepts introduced in [46] about the behavior of the spectrum,
we shall interpret the hypothesis imposed in |51] to find explicit conditions on the

damping coefficients for which (S,) is exponentially stable.

Throughout this chapter, we make the following hypothesis on the geometry of

the domain :

(H) There exists ¢ € N* such that for all i = 2,--- | N, there exists p; € N* for
which L; = 2L,
q

In applications, the above hypothesis is more realistic. From a mathematical point of
view, this above hypothesis is considered since otherwise when some of the lengths
take irrational values, then we can find examples for which numerically we see that
the spectrum is not structured (for instance there is no asymptotes) and an infinite
number of eigenvalues are situated to the right of the imaginary axis (see Figure
4.1). Moreover, hypothesis (H) allows us to find an equivalent and algebraic form of

the approximated characteristic equation (see Lemma 4.3.7).

This chapter is divided into three main parts. In the first part, we prove the

following theorem :

Theorem 4.1.1. Under the hypothesis (H), system (S1) is exponentially stable up
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to a finite dimensional space if and only if the roots of the polynomial G defined by

N N
G(Z) = Z (efOLi ai(x)dzzpz‘ +e fOLi ai(z)d$> H (efOLk ak(m)dlzpk e fOLk ak(x)dx>
i=1 ki k=1
(4.1.1)

are inside the unitary open disk.

If N = 2, then according to Theorem 4.1.1, system (.S7) is exponentially stable

up to a finite dimensional space if and only if

Ll L2
/ ai(x)dx —i—/ as(x)dz > 0.
0 0

Clearly this condition depends only on fOLi a;(x)dzx, hence for N > 3, we may state

the following conjecture :

Conjecture 4.1.2. Although the degree of the polynomial G depends on the lengths

L;, and the coefficients are functions of the parameters a; and L; for alli =1,--- | N,
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the fact that the roots of G' are inside the open unitary disk depends only on the values

L;
of/ a;(x)dx for alli=1,--- | N (see the examples of Section 4.7).
0

Remark 4.1.3. If N =2, a1 =1, a0 =a € R, and Ly = Ly = 1, then we recover
the result of Theorem 1.1 of [1] which states that (Sy) is exponentially stable up
to a finite dimensional space if and only if o > —1. Indeed, in this case, G(z) =
2e!t22 — 2717 and hence G(2) = 0 yields |z| = e~ F®). Therefore, by Theorem
4.1.1 above, (S1) is exponentially stable up to a finite dimensional space if and only

if a > —1.

In the second part, we consider system (S.) with € > 0 and prove the following

theorem :

Theorem 4.1.4. Under the hypothesis (H), when a;(x) = a; € R and L; =1 for all
i=1,--- N, there exists ¢g > 0 such that, for all € € (0,¢p), (Se) is exponentially
stable if one of the following two conditions holds :
(i) There exists at most one jo € {1,---, N} such that aj, =0 and a; > 0 for
all i # jo.

(ii) There exists only one negative damping coefficient a;, such that a; > 0 for
N N
1
all i # 1, a; >0, and — < 0.

Remark 4.1.5. If N = 2, then we recover the result of Theorem 2.1 of [30] when
the damping coefficient is piecewise constant. However, in this case, Theorem 4.1.J

yields the result of [30] without the assumption on the integrals I defined in [30].

Finally, in the third part, we look at some concrete examples of networks and
specific values of a;.

In the whole chapter, we shall use the notation A < B (resp. A = O(B)) for the
existence of a positive constant ¢ > 0 independent of A and B such that A < ¢B

(resp. |A| < ¢|B|) and for shortness we will write ||.|[o for ||.||zec(0,2,)-
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4.2 Formulation of the problem

We start by determining the suitable functional setting of system (S7). If u is a
regular solution of (S5;), then the energy of (.S;) is formally given by

1 = b L2 L |2
=52 [ e
i=1
and
Z [ awipar

Since the signs of the a; are not spemﬁed, the decay of the energy is not guaranteed.
N

As an energy space, let H =V x H where H = HLz(O, L;) and

i=1

N
Vo= {U = (u17 T 7uN>T € HHl(Ole)v ul<0) = uj(o) Vi # ju
i=1
and v'(L;) =0, Vi=1,--- ,N}.
The Hilbert space H is endowed with the inner product
< ()" (f.9)" >= Z/ (s FE + v W) T, (F.9)T

Define the operator A : D(A) — H by

D(A) = {(u,v)T €V xV; ue [[H0, L) and > ui(0) = 0} ,

i=1 i=1

and for all (u,v)" € D(A)

with Agw = (O‘iafw")fil for a = (ai)f\il = HZN:1 L>®(0,L;) and w = (wi)f\il c
Hi\il H*(0, L;), for k =0 or 2.
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If u is a sufficiently smooth solution of (S}), then U = (u,u;)" € H satisfies the

first order evolution equation

Ut :AU,

(4.2.1)
U(O) = (uo, Ul)T.

Using standard semigroup theory, we get the following theorem on the existence,

uniqueness, and regularity of the solution of (.5}).

Theorem 4.2.1. The operator A generates a Cy semigroup on H and hence pro-
blem (4.2.1) admits a unique solution which implies that (Sy) is well-posed. Mo-
reover, if U(0) € H, then U € C°([0,400); H) and if U(0) € D (A), then U €
CH([0,+00); H) N CO([0, +00); D (A)).

Proof: The well-posedness of (4.2.1) follows from the fact that the operator A is a
bounded perturbation of a skew adjoint operator (see Theorem II1.1.1 of [62]), hence
it generates a strongly continuous semigroup on H. The regularity results are then

a direct consequence of Theorem 1.2.4 of [62]. n

Remark 4.2.2. Since D (A) is compactly embedded in the energy space H, the

spectrum o (A) is discrete and the eigenvalues of A have a finite algebraic multiplicity.

4.3 High frequencies

In this section, we shall determine the asymptotic behavior of the eigenvalues of
the operator A. For this aim, we will adapt the shooting method to our system.

Let A be an eigenvalue of A and U = (y, z) be an associated eigenfunction. Then,
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z= Ay and, forall: =1,--- | N, we have

yi, — 2a;(x) Ayt — Nyt = 0, z € (0, L),
v(0) = 4(0), Vi#j (4.3.1)
N .
> yi(0) = 0.
\ =1

It is easy to see that A = 0 is not an eigenvalue of A.

Remark 4.3.1. We have
RA <2 m illoo } - 4.3.2
RN Z,G{L?}}’(N}{Ha [; ( )

Indeed, if we multiply the first identity of (4.3.1) by ¢’ and then integrate by

parts, we get

)‘22/ |y [*da + 2)\2/ a;(x)]y'[Pdx + Z/ |yt |?dz = 0.
i=1 70 i—1 Y0 i—1 Y0

Hence, we have

-3 [l rde )}
i=1 Y0
A= ~ o ,
Z/ 'z
=1 0

with
) = (i [ <>yd) - (i [ |y;|2dx) (i [ |yi|2dw>

and deduce the estimate (4.3.2) by distinguishing the case r(y) > 0 or not.
Now, we start by searching for the characteristic equation using the shooting

method. In order to adapt the shooting method to problem (4.3.1), we first consider
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the the following separated initial value problems : for all i = 1,---, N, let y¢ and

yé be the solution of

, 1
W) = 1, (433)

Yi.(0) = 0.
yi(0) = 0, (4.3.4)

Yo, (0) = L
The initial conditions are chosen such that the solutions y{ and 3’ are linearly

independent. Hence, 3, the solution of (4.3.1), can be written as y* = c;y} + a;ys,

where a;,¢; € C. By the continuity condition at zero, we get ¢; = ¢ for all i =

1,---, N, hence

y'(7) = ey (@) + (o). (4.3.5)
N N

Moreover, from the transmission condition, Zy;((]) = 0, we have Zai = 0 and
i=1 i=1

from the boundary condition, y* (L;) = 0, we get

yi (L1)  y3 (Lq) 0 0 0 c
y% (L2) 0 ?J% (L2) 0 0 o1
: 0 0 0 a
1 =o.
0 0 0
yt' (Ly) 0 0 w5 (Ln)
0 1 1 1 1 an

Hence a non-zero eigenvector exists if and only if the determinant of the above

matrix vanishes, or after some elementary calculations if and only if

Y =Yy (L) ] vh(z)=0. (4.3.6)

Ik 1=1
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Recall that G is defined by (4.1.1) and set d := degree G, the degree of G. Then
let rje?i,1 < j < d be the roots of G repeated according to their multiplicity.

Without loss of generality we can suppose that the ¢; are non decreasing, namely

Now we can state the following main result :

Theorem 4.3.2. There exists ko € N such that for all j =1,--- ,d and all k € Z
such that |k| > ko, the operator A has an eigenvalue X, such that

q q q
)\j,k = 2_Ll lOg ] + 22—[/1(,0]' + Zkﬂ'L—l —+ Ok(l), (437)

where oy(1) — 0 as |k| — oo. Moreover the set o(A) \ Upjsk, U=y Ajk s compact.
Therefore, if rj < 1, for all j = 1,--- ,d, then the large eigenvalues of A are situated

to the left of the imaginary axis.

Corollary 4.3.3. There exists { € N and oy > 0 such that for all k € N with

k > ko, we have

S(A ke — Aak) = o,

S(M,—k — Ad—k—e) > Q.

This corollary shows that we can group the eigenvalues of A by packets made
of a finite number of eigenvalues and in such a way that the packets remain at
a positive distance to each other (see section 4.4 below). Namely for any r > 0,
we can introduce the sets G,(r),p € Z as the connected components of the set
Uxeo(a)Da(r) (where Dy(r) is the disc with center A and radius r), as well as the
packets of eigenvalues A,(r) = G,(r) No(A).

Before we prove Theorem 4.3.2, we search for an approximation of the characte-
ristic equation (4.3.6) for all A large enough. For this aim, the next lemma gives an

estimation of 3! and g} for alli =1,---, N.
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Lemma 4.3.4. Fori=1,--- N and X € o(A) large enough, we have

A 1 . 1
1 00 S IRVE d 5 [ee] S N
Proof: First, fori = 1,--- | N and X € o(A), we consider the homogenous equation
Ha(T) = N2i(x) = 0, z€(0,L),

0 = 1
4.0 = 0

, 1
which yields z}(z) = Xcosh()\:c). Hence, for large enough A, Remark 4.3.1 yields

, 1
|2t c0 S —. Now, by the variation of constants formula, we find that
1 ~ |A|

yi(z) = 2i(z) + 2/: sinh (A\(x — 5)) a;(s)y’(s)ds,Vx € (0, L;).

Therefore, by the integral form of Gronwall’s Lemma, we get
\yi(m)| < \zi(x)H—Q/ [|z}(s)H sinh (A(z — s)) a;(s)| exp (2/ | sinh(A(x — r))ai(r)|d7“>} ds.
0 s

, 1
The above inequality and Remark 4.3.1 imply that, for A large enough, ||9}]|c < o

. o1
A similar estimate for g is obtained by introducing 2 = " sinh (Az), the solution

of
2oy (1) = N25(x) = 0, x€(0,Ly),

%(0) = 0,
2 =1,
. - 1
and using that ||z4|. < o for A large enough. u
Next, we find suitable approximations for 3 and 3 for i = 1,--- | N. For this

aim we define over (0, L;), the function
0'(z) = \x +/ a;(s)ds,Vx € (0, L;),
0
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and the functions v} and v} as linear combination of sinh #*(z) and cosh ¢*(x) such
that v¢ satisfies the initial conditions in (4.3.3) and v} satisfies those in (4.3.4). Note
that, for |A| > M with M > max|/a;(.)|/c, we have

7

A 1 , A 1 A
vi(z) = 3 cosh@'(z), and vy(x)= a0 sinh ' (z),Vx € (0, L;).

Note that the functions v} and v} depend on .

Lemma 4.3.5. For alli=1,--- /N and \ € o(A) large enough, we have

i i 1 i i 1
||”1 - ylHOO S W and HU2 - yzHoo S W

Proof: For i = 1,--- N and ¢' € H*(0, L;), define the function L'(p") = ! —
2a;\p" — A2¢". Then, for all x € (0, L;), we have

L' (vi(z)) = aix)f:v) sinh 0 (x) + (al()\m)) cosh 0'(z),

and

L (@) = )\af—c(j()()) sinh 0" (z) + % cosh 0 ().

Therefore, by Remark 4.3.1, we get that for A large enough

1

[l s g and LD S o7

Since we have

vl = 2a; 08 — N2t = Li(vh),
UiI(O) = 0,
) 1
Ui (0) = X’

by the variation of constants formula, we get for all z € (0, L;)

mwzm@+AEwwgﬂw@u&
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Therefore, by Lemma 4.3.4, we have

. ) 1
Jot = sl i

Similarly, for all x € (0, L;), we have

which implies that

. . 1
ot = il % 1y

Now, we can find an approximation of the characteristic equation (4.3.6) from

which we deduce the behavior of the high frequencies. For this aim, we introduce

N N
V() = va (L) H vh (Ly)
k=1 £k 1=1
and
N N N N
F(A) = A" cosh 6" (\)] [ sinh 6 (), (4.3.8)
k=1 1#k

-~ Ly
where, for z € C, 0(2) = 2L, +/ ay(s)ds, forall [ =1,---  N.
0

Proposition 4.3.6. For A\ € o(A) large enough, we have the following estimate

1

Y )= F O£

(4.3.9)

Proof: Let X\ be a large eigenvalue of A. The estimates in Lemmas 4.3.4 and 4.3.5
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imply that
[Y(A) = V(N
N N N
= Z(ylf (Li) [T b (L) —of (L) J] & (Lz)>‘
k=1 I#k,l=1 l;ékl 1
N
- Z(%(Lk H Y LZ+ZU1 (L) (H Yo (Ln) — H vy (L)
k=1 I#k,l=1 I#k,l=1 I#k,l=1
< L
~ A
(4.3.10)
On the other hand, we readily check that
N N 1
V) - 1x cosh 6% (Ly) [ [ sinh 6'(Ly)| < S (4.3.11)
k=1 I#k
Hence, by (4.3.10) and (4.3.11), we get (4.3.9) since 6%(L;) = 5’“()\) u

Estimation (4.3.9) suggests to apply Rouché’s Theorem. Therefore, we are first
interested in the roots of F' that will be expressed in terms of the roots of the

polynomial G given in (4.1.1).

2L
Lemma 4.3.7. v € C is a root of F' if and only if 2 = e eV is a root of the

polynomial G defined in (4.1.1). Consequently, if v = x+1y is a root of F' and r;e'#i
q

5L, —p; + er L for some

s a root of G for 1 < j < d, then x = ilogrj and y =
2L1 Ll

keZ.

Proof: The proof of Lemma 4.3.7 is based on writing F' in an exponential form and

noting that
NN 4 F(v)

N N
Z <€f0 a;(x d:vzpl +e fO a; a:)dm) H (efo ay(z) dxzpk —e fo ay(z)d :v) )

i=1 ki k=1
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Remark 4.3.8. In the applications, the degree of the polynomial G is high, hence
we use the algorithm given by the transformation of Schur (see [31]) that gives a
criterion that guarantees that the roots of a given polynomial can be outside the

1
closed unitary disk. Therefore, in applications, we use G (—) instead of G(z).
z

Before giving the proof of Theorem 4.3.2, we show that Y has the same number of
roots as F' in a well chosen domain. Knowing that o < R\ < 3 where X is an eigen-

1
value of A, we consider the rectangle R; with vertices oz—i—zigpj +1lk—= Wi,
’ 2L1 2 Ll
q

q 1 1 1

—; k+ - k— = d k+ - )m—
a+22L1g0J+z( —|—2) ,ﬁ—l—zQL goj—i—z( 2> oo ,an B+Z2L <pj—|—z< —|—2>7TL1
where we recall that rje w;) j=1,---,d, are the roots of G.

Proposition 4.3.9. There exists ko > 0 such that for all |k| > ko and z € OR;,
Y (2) — F(2)| < |F(2)]. (4.3.12)

Proof: Let z € OR;, and |k| > k¢ for some ko > 0 large enough. Similar to (4.3.9),
we can show that there exists C' > 0 such that

C

‘Z’NJrl

Y (z) - F(2)] <

Therefore, in order to complete the proof, it is enough to show that for z € OR;

<
2]

N N

Fy(z) = Zcosh 5’“(2)1—[ sinh 6! (z). (4.3.13)

k=1 14k

< [Fo(2)],

where

We remark that |Fp| is iWLi periodic, hence, r%}%n |Fo(2)| = my; is independent of
1 2€0N; k

k. Moreover, for ky > 1, there exists C > 0 such that for |k| > ko and z € OR;j, we

have
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Choosing kj large enough, we deduce that

£<—<m
2| ||

and the proof follows. [ ]

Proof: of Theorem 4.3.2 We shall prove that the large eigenvalues of A are
asymptotically close to the roots of F.
First Lemma 4.3.7 yields that all the roots of F' are given by

Zjk = L logr; + ZQL ©; + zkan—l
forall1 <j<d, keZ.
Let 0 < p < mjin{ 2i[/1g0j +m g 2L1 log r; } so that B(z;y, p) contains only

one root of F. From Proposition 4.3.6, in order to prove that |Y(z) — F(2)| < |F(z)|

C
7l < |Fy(z)| where Fy was defined by

for 2 € 0B(zjy, p), it is enough to show that —
(4.3.13).
Let hjr(p) = min |Fy(z)|. Since |Fpl is ir-L periodic, then h;(p) is inde-
ZGaB(Zj’k,p) Ll
pendent of k; i.e., hjr(p) = hjo(p) = h;(p). We denote by h(p) = 121‘121 h;(p). It is
)=
clear that h(p) > 0 and h(p) — 0 as p — 0. Therefore, there exists ko > 0 such that

for |k| > ko, |C’ < ’—i’ < h(p). Consequently, we define p; by

C
Pk = mln {m < h(p )} (4.3.14)

We notice that pp — O as |k| — +oo. Therefore, for every [k| > ko and z €

C
O0B(%j i, pr), we have ﬂ < — T < h(pr) < |Fo(2)].
By Rouché’s Theorem, we conclude that Y and F' have the same roots inside
B(%;k, pr)- As Proposition 4.3.9 and again the application of Rouché’s theorem imply

that Y and F has the same number of roots in R, forall j =1,--- ,d and |k| > ko,
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we deduce that all eigenvalues of A in R;, are inside B(zjy, pi). This completes the

proof since Ujy>k, 21 covers the possible set of large eigenvalues of A. [

Remark 4.3.10. Using Taylor expansion in p, we find that h(p) = O(p™) for some
ng € N*. Therefore, according to the definition of py in (4.3.14), we conclude that

C =
Pr = — for some C' > 0. Consequently, there exists some kg € N* large enough
|| o
such that

q q q 1
N = —logr; +1——p; +1kt— + O Ykl > ko.
dk = gp 08T G @ T ART <|]{;|nlo)7 k1> ko

4.4 Riesz basis with parentheses of H and sine-type
functions

In this section, we first prove that the root vectors of A form a Riesz basis with

parentheses of H. A direct consequence of Theorem 1.3.2 concerns our operator A :

Proposition 4.4.1. The family of root vectors of A forms a Riesz basis with pa-
rentheses of H, which means that the statements of Theorem 1.3.2 are valid for

1A.

Proof: It suffices to apply Theorem 1.3.2 with the choice

‘ 0 A9 [0 0
T=1 and B =1
A2 A0 0 A2,
that clearly satisfies the assumptions of Theorem 1.3.2. ]

Another consequence of the previous results is that the packet A, can be splitted

up into subpackets, namely there exists N, € N* with [V, < N such that
N,
Ap = szpl{)‘p,j}a
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where each \,; € 0(A) are different and of multiplicity m,, ; (uniformly bounded in

p) and therefore
Np
]P)pf - Z Pp,jfy
j=1
with

1
2T

Yp.j

Vp,; being a contour surrounding A, ; and small enough so that only the eigenvalue
Ap; of A is inside 7, ;.
In the next section, we also need to show that Y defined in (4.3.6) is a sine-type

function in the following sense :

Definition 4.4.2. Let f be an entire complex valued function. f is said to be of
sine-type if
(a) There exists | > 0 such that for all z € C, |f(z)| < el
(b) The zeros of f lie in a strip {z € C; |Rz| < ¢} for some ¢ > 0.
(¢) There exist constants c1,co > 0 and xo € R such that for, all y € R, ¢; <
| f(zo +iy)| < ca.

The class of sine-type functions is used to deal with problems of the Riesz ba-
sis property of the complex exponentials in L?(0,T) space, with T" > 0. When f
is a sine-type function, then we can write the explicit expression of f as f(z) =

lim (1 — i), where {Xk}kez is the set of zeros of f (see [8]). If Xk =0,
R—>+OO|X <R /\k
k>

z
then we replace the term (1 — X_) by z.
k
In our problem, we remark that the function F' defined in the approximated
characteristic equation (4.3.8) is a sine-type function. In order to deduce the same

property for Y defined in (4.3.6), we recall a Corollary of Section 2 of [11] :
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z
Lemma 4.4.3. Given S(z) = Rlim <1 — X_) a sine-type function, where
—+00
IARI<R F

{Netrez is the set of zeros of S(z). Then So(z) = lim H (1 = ) is also
R—H—oo'XkKR )\k + wkz

a sine-type function if {1y }rez € P, for some p > 1.

Lemma 4.4.4. Y defined in (4.5.6) is sine-type, or equivalently the eigenvalues of

A are the zeros of a sine-type function.

Proof: According to Theorem 4.3.2 and Remark 4.3.10, the large eigenvalues A are

close to the ones of F' with a remainder {1y }xez such that

¢k:O< 11>a
|| 7o

for |k| > ko that then belongs to ¢"*?, m

4.5 Exponential stability of (S1) and proof of Theo-
rem 4.1.1

Taking advantage of the fact that the root vectors of A form a Riesz basis with
parenthesis of H, our aim is now to prove that problem (.S;) is exponentially stable
up to a finite dimensional space.

For our proof we recall the following lemma that can be found in Lemma 3.1

of [39].

Lemma 4.5.1. Let H be a separable Hilbert space. Suppose that {e,(t)}nes forms a
Riesz basis for the closed subspace spanned by itself in L*(0,T), T > 0. Then for any
o(t) = Zen(lf)gf)n € L*(0,T; H), there exist two positive constants C,(T), Co(T)

neJ
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such that
CUT)Y Nnlltr < Il Feomm < Co(T)D lbnllfr

neJ neJ
To apply the above lemma, we need to search for a Riesz basis in L?*(0,T'). Since
the eigenvalues are not necessary simple, the family {e*!},cz does not form a Riesz
basis in L?(0,T) for any T' > 0. However, as o(A) is a discrete union of separated and

finite sets, hence we can use the family of generalized divided differences (see |9,39]).

Definition 4.5.2. Let M € N* be fized and let vy, k = 1,--- , M, be arbitrary
complex numbers, not necessarily distinct. Then the generalized divided differences
(denoted by GDD) of order m =0,--- , M — 1 are defined by recurrence as follows :
the GDD of order zero is defined as [v1](t) = €', the GDD of order m—1,1 < m <
M s defined as

ey V1] (8) = [0, 03, -+, o] (¢
[v1, V2. V=1 (F) — [v2, v v ]()7 .
[0171}27"' 7Um](t> = a U1 — Um
%[Uav%"' 7Um—1](t> |v:v1 s U1 = Uy

An equivalent expression is given by
1 rm Tm—2
[’Ul, Vo, ,Um]<t) = tm1/ / / €t(v1+ﬁ(U27U1)+'"+Tm_1(Umivm_l))dTmfl...dTQdTl.
o Jo 0
Hence, if Rv,, < Rv,,—1 < ... < Roq, then for all t > 0
[v1, Va...y U] (£)] <t LRI (4.5.1)

Now as some v; can be repeated, we write {vy,vo, -, vy} = {wy, we,- -+, w,}

such that w; # w; for all 1 <4, j < n such that ¢ # j. Supposing that each w; is

repeated n; times, i.e, an = M, then we can recall Proposition 3.1 of [39] which

j=1
shows that for any 1 < k < ny, tF=le®!, [ = 1,--- ,n is a linear combination of
(1] (@), [V, v2](#), <+ s [vr, 02, -+ ] (2)-
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n g
Proposition 4.5.3. Any (t) = ZewitZaijti’l with a;; € H can be rewritten as
=1 =1
M
p(t) = ZGi[Ul'U% T vv%](t)7
i=1

with some G; € H, in particular G{ = Zalj.
j=1

If we go back to our problem, for every p € Z, we construct the family of GDD

of the form

Ep(t) - {P‘p,l](t)’ [)‘p717 /\p,2]7 Ty P‘p,h /\p,27 T ’/\ILMpKt)} ,

associated with the set A, 1,---, A, n, but the eigenvalues being repeated according
NP

to their multiplicity (and consequently M, = » . m,, ;).
Proposition 4.5.4. There exists T > 0 such that the family of GDD {E,(t)}pez

forms a Riesz basis for the closed subspace spanned by itself in L*(0,T).

Proof: According to Lemma 4.4.4, the eigenvalues of A are roots of a sine-type
function. Hence, the proof becomes a direct consequence of Theorem 3 of [10]| where
T > 0 is chosen large enough (note also that a sine-type function automatically
satisfies the Helson-Szego condition due to its equivalent form (condition ( As) page

2 in |9]) and the condition (c) in our definition 4.4.2). u

Proof: of Theorem 4.1.1. Given an initial datum U(0) € #, by Proposition

4.4.1, it can be written as

U©0)=> > P, (U(0)),

pEZ j=1
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where we recall that Py, denotes the Riesz projection of A corresponding to the

eigenvalue ), ;, then, for any ¢ > 0, we have

D.J>

Mp,j

etAU ZZ p.j Z A Z j\plj = 1IP> (U(O))

per il (4.5.2)

mpJ

BRI 2 ot

pEZ j=1

(A=)
(i—1)

where a;;, = Py, (U(0)). By Proposition 4.5.3, we get

MP
U 0) =YY Grilhpa, Apase -+ Al (1) (4.5.3)

pEZ =1

Lemma 4.5.1 and Proposition 4.5.4 yield for some 7" > 0

Mp T
2
>3 1Gul S [ v a

PEZ i=1

By the semigroup property, we know that there are C,w > 0 such that for all t > 0
e ey < Ce.

Therefore, the previous estimate becomes

Mp 02
D X lGyilli S 5 (e =D U3 (4.5.4)
peEZ =1

Finally, since the root vectors of A form a Riesz basis with parenthesis of H, then

by (4.5.1), (4.5.3), and (4.5.4) we get for t > 1

W = >

PEZL

> ey Q“PtZIIGpZIIH,

PEZL

M,
e U0 ZGP,Z.[A,,J, Ap2s s Apal (1) (4.5.5)

H

AN
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where p, = maxi<j<n, %A, ;.
Now, by Theorem 4.3.2, we know that if the roots of the polynomial G are in
the open unit disk, then there exists ;4 < 0 and py € N such that

tp < < 0,V|p| > po.

Hence by (4.5.5), we deduce the exponential stability of problem (S;) up to the
finite dimensional space spanned by the roots vectors of A corresponding to the

eigenvalues \, ; such that |p| < po. The proof of Theorem 4.1.1 is complete. [

4.6 Exponential stability of (S.) for small values of
¢ and proof of Theorem 4.1.4

In this section, we consider constant damping coefficients and equal lengths L; =
1, for all ¢+ = 1,---, N. Without loss of generality we can assume that the a; are
non decreasing, i.e., a; < ay < --- < ay. In the sequel, we replace the damping
coefficients a; by ea;, where the parameter € is positive. Our goal is to find sufficient
conditions for which (S) is exponentially stable in the whole energy space for every
e small enough.

Based on the results of the previous section, it seems enough to find sufficient
conditions on the damping coefficients so that the low eigenvalues have negative real
parts for every e small enough. However, we remark that Rouché’s Theorem used
in the proof of Theorem 4.3.2 yields a constant ky dependent of € (mainly of order
%) Consequently, it seems difficult to separate the large eigenvalues from the low
eigenvalues uniformly in e for all e small enough.

As previously mentioned, the exponential stability of (S¢) has been studied in [51]

under some abstract hypothesis. Consequently, our aim is to interpret the hypothesis
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from [51| to find explicit conditions on the damping coefficients. Our strategy is
based on the asymptotic behavior of the spectrum of the generator A = A(e) as a
function of €. In the sequel, we use some notations from [46] and we refer the reader
to this book for the exact definitions. First, we notice that the generator A = A(e)
is holomorphic of type (A) in the parameter € in the sense of (2.1) of chapter VII.2
in [46]. Indeed, we simply have

Ae) = A(0) + eB,

where A(0) is a skewadjoint operator and B is a bounded selfadjoint operator defi-

ned by

A(0) = 0 A and B = o0
A2 0 0 A%,

Since A(0) is a skew adjoint operator with a compact resolvent, there is an
orthonormal system of eigenvectors of A(0) which is complete in H. The eigenvalues
of A(0) are Ay 4(0) = z(lm—i—g) with multiplicity one, for all k € Z, and Ay ;(0) = k7
with geometric and algebraic multiplicity N — 1, for all £ € Z*. For shortness we
write {Ai(0)}rez = {0k}, cpn U {z(lmr + g)}keZ and we set my, the multiplity of
Ak(0) (hence my =1 or my, = N — 1).

Now according to Section VII.2.4 in [46], there exists €5 > 0 such that for all
€ € (0,€6), A(e) has exactly my eigenvalues (algebraic multiplicity counted) in
B(A(0), p), with p > 0 fixed small enough. This set of eigenvalues is called the
Ak(0)-group eigenvalues of A(e€) generated by the splitting from the common eigen-
value A\, (0) of the unperturbed operator A(0) (see page 74 in [46]). Consequently as
e increases, a splitting of the eigenvalues may occur and the eigenvalues of A(e) can

go to the left or to the right of the imaginary axis (or both). Hence, our aim is to
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find some sufficient conditions for which each A\ (0)-group is strictly to the left of
the imaginary axis.
For further use, for € € (0, ¢p) and all k € Z, the A\, (0)-group eigenvalues of A(e)
will be denoted by {A;(€)}72;.
In a first step, consider I'y , a positively-oriented circle around A, (0) with radius

p < % such that A\, (0) is isolated. For ¢ € 'y ,, we denote by R(¢) = (A(0) — ).

The following lemma gives a uniform estimate of ||R(()|| for all ¢ € I'y,.
Lemma 4.6.1. For all ( € I'y ,, we have

RO = VCEFM (4.6.1)

Proof: For convenience and for a moment, we rename {i/3; }rez+ the set of eigenva-
lues of A(0) and arrange it in increasing order (i.e ... 01 < By < Bri1...). We denote
by { ¢ }rez the associated system of eigenvectors which forms an orthonormal basis

of H. Let f = ka¢k € H, then by the spectral theorem, for all ( € I';, ,, we can

kezZx
write

01 =Y

keZ*

ﬁ

Since |ify — | = p, for all k € Z*, we deduce that

IRQOAP =3 A2 'f‘“ = AR = I

keZ* Zﬂ keZ*

This proves (4.6.1) by taking f corresponding to one eigenvector associated with the

eigenvalue \;(0). n

Now we characterize the asymptotic behaviour of the real parts of the A(0)-

group eigenvalues of A(e).

209



Chapter 4 Star shaped network with indefinite sign damping

Lemma 4.6.2. There exists ¢, > 0 and ¢ > 0 such that for all € € (0,¢1), all k € Z
and all j =1,--- ,my,

2
Rj(€) < e max py; + ce,
1<j<my

when {5152 denotes the set of eigenvalues of P,(0)BP;(0) and Py (0) denotes the

1
eigenprojection corresponding to Ag(0), i.e., Py(0) = ~57 R(&)dE.
Tip

Proof: Step 1. Let A\.(0) be an eigenvalue of A(0). Define the space M (e) =
Pi(e)H, where Py(e) is the eigenprojection (see (1.16) page 67 of [46]) defined by

Pu(e) = ——— [ (Ale) — o) de.

21 Jr,.,

_ 1 p
Notice that (A(e) — &)~ is well defined for ¢ € T, when € < = .
’ BRI Bl

Indeed, according to (1.13) and (1.14) page 67 of |[46], we have by the second Neu-

mann series for the resolvent

(A(e) =)' = R(&) (1 + eBR(€)) ™" = R()) _(—eBR(E))" = R(§) + Y _"R{" (),
i " 462)

where
R{"(€) = R(€)(~BR(€))". (4.6.3)

Hence the series on the right-hand side of (4.6.2) converges if € < BT (thanks to

Lemma 4.6.1, we notice that the upper bound of ¢ is independent of k£ € Z) and we

get
Pi(e) = Pu(0) + > P,
n=1
1
where P = 5 / R™M(€)d¢ and P = P,(0).
T Jr

k,p
As already said before if € is sufficiently small, the eigenvalues of A(e) lying in

'y, form exactly the A;(0)-group eigenvalues. Therefore, since \;(0) is semisimple
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(since it is an eigenvalue of a skewadjoint operator), then according to the identities

(5.13) and (5.14) of [46, p. 112], the A\x(0)-group eigenvalues of A(e) are of the form
Mg (€) = M(0) + e )(e),  j=1,- ,my, (4.6.4)

where {u,(:])(e) it are the eigenvalues of the operator

~ 6_1

AW (e) = e (A(e) — A(0)Prle) = —— [ (€ = Me(0)) (A(e) — &)1 de, (4.6.5)

2mi Jr,.,

in the subspace My(e) = Py(e)H. The second equality in (4.6.5) follows from the
fact that

(A(e) = M(0)) (A(e) =€) =1+ (€ = M(0)) (Ae) =€) "

Step 2. We estimate the difference between ﬁlgl)(e) and Py (0)BP;(0). According
to the identity (2.16) page 77 of [46], we have

(A(e) = Ae(0) Pe(e) = (A(0) — Ap(0) P(0) + Y _e" ALY, (4.6.6)
where
AP = 1yt [ REBREOE - M) (467

in particular (see (2.19) page 77 of [46])
AW — P (0)BP;(0). (4.6.8)

Since A\x(0) is semisimple, then A(0)P(0) = A\x(0)Px(0). Thus (4.6.6) implies that

o0

Zil)(e) = Ze”;ﬁfnﬂ).

n=0
On the other hand, from (4.6.7) and Lemma 4.6.1, we have for all n > 1

— Bln
gy < 121

1
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Therefore, for € small enough, there exists ¢ > 0 independent of k£ such that

1B
() — AV B Bl (€
A () — AL H<§ P 1_:”3” < ce. (4.6.9)
p

Step 3. We compare the eigenvalues {,u,(glj)(e) i of A )(¢) with the eigenva-
lues of A Py(0)BP,(0). Consider ,u,(:])(e) and gbk’j(e) an associated normalized

eigenvector, then
1 1 1
b (€1 (6) = iy ()i (6)-

From (4.6.9), we have
e 1 ~(1) (1
|47 ()01 (6) = Ao (e)ll < ce.
Thus, by Cauchy-Schwarz’s inequality, we have
(1) (1) A (1) (1)
| < 1, (€)0y 5 (€) — Ay oy s(€), by, 5(€) > | < ce,

or equivalently

|N1(¢1])( )— A(l)ﬁb(l)( ), ¢(J)(€) > | < ce.

Therefore,
R(uhy(0)) << A 01(6), 0)(6) > +ee,
or
R(pg) () < Jax g+ ce.
We conclude by using this estimate and (4.6.4). n

According to Lemma 4.6.2, to prove that the spectrum of A(e) is situated to the
left of the imaginary axis for ¢ > 0 small enough, we have to prove that, for every
k € 7Z, the eigenvalues of A Py(0)BP,(0) are strictly to the left of the imaginary

axis independently of k& € Z and € > 0. In fact, the hypothesis imposed in [51] to get

212



Chapter 4 Star shaped network with indefinite sign damping

the exponential stability of (S¢) can be interpreted as a condition on the negativity
of the eigenvalues of P;(0)BP;(0). Therefore, our aim in the next two lemmas is to
find the eigenvalues of P;(0)BP;(0) and to investigate the conditions for which their

real parts are negative independently of k € Z and € > 0.

Lemma 4.6.3. If uy o denotes the eigenvalue of Py,(0)BP(0), where Py(0) is the ei-

1
genprojection corresponding to A\,(0) = z(/mr—i-g), with k € Z, then pyo = —NZai.
i=1

Proof: We recall that A\,(0) = «(km + g) is simple for all k& € Z. Some elementary

calculations show that the associated normalized eigenvector is of the form

(u,v)",

~ VN
sinh (A

where, for all x € (0,1) and i = 1,--- | N, w;(z) = l;\ 0
k

sinh (A;(0)(1 — x)). For any ¢ € H, we find that

Pk(O)BPk =% (Z az) w ¢0 ®o,

N
1
hence ¢y is the eigenvector of P;(0)BP;(0) of eigenvalue N Z a;. n
i=1
Lemma 4.6.4. If {,ukyj}é\f:_ll denotes the set of eigenvalues of Py(0)BP;(0), where
Py(0) is the eigenprojection corresponding to Ap(0) = km, with k € Z*, then
{,ukd-}év:_ll is the set of zeros of the polynomial Q) defined by

~IN-1 N-1
Qz)=(z+a))(z+an ZH z 4 ) +H z4+a)(2z+ a1 +ay)  (4.6.10)
1=2 1#i =2
1=2

Proof: First, we notice that, for all £ € Z*, A\;(0) = kx is of multiplicity N — 1
N

and that the associated eigenvectors are of the form (u,v)" where, for i =1,---
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and x € (O,l)a ul(x) = 12;

N

(a;)Y, € CV such that Zai = 0. As a basis of the subspace P;(0)H, we can choose
i=1

the system of eigenvectors {gb(i)}i:lw.w_l corresponding to the choice

(km(1 —2)) and v;(z) = aysin (kn(1 — x)) with a =

o) — (1,-1,0--- ’0)’04(2) =(1,0,-1,0---,0),--- LoD =(1,0,---,0,—1).

N—-1
Therefore, for all i = 1,--- N — 1, Py(0)BP:(0)¢) = > ayo™ where ay € C.

k=1
Moreover, for all 4,5 =1,--- /N — 1,

(P(0)BPL(0)6), 69)) = (Bo, 67 Zam

Hence, P;(0)BP;(0) = TG™', where I' = ((B¢",¢1))),; and G is the Gramian
matrix defined by G = ((¢V, ¢()}); ;. But some elementary calculations yield

—a; — a2 —a —ap - —a
—a —ap—az —ap - —
I =
—ay
- —a Tt Tar —ap —an
and
2 1 1 1
1 2 1 1
G =
1
1 1 1 2
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Since
N -1 —1 —1 —1
1 - -1
—1 N—-1 -1 —1
1 1 1 1
G =— =I-— ,
N N
—1
1 - o1
—1 —1 -1 N-1
we get
P(0)BP;(0)
—ay — (N —1)ay —ay + ap —ay + ap E —ay + ap
—aq + as —a1 — (N — 1)&3 —a + as —ay -+ as
1
- N
—a1+aN —a1+aN —a1+aN —al—(N—l)aN

Therefore, {1 }é\f:_ll are the roots of the characteristic polynomial det (21 — P, (0) BP;(0))

or equivalently

2+ ay 0 —Zz—ay
0 z+az O —z—an
Q(z) = det : 0
0 0 z4an_1 —zZ —an
z4+a1 z4+a -+ z4+a 2z24a; +ay

Developing with respect to the last line, we find (4.6.10). [

Before going on let us notice that the above lemmas show that the eigenvalues
ti,j of P(0)BP;(0) are independent of k. In the first case we directly find a condition

on the damping coefficients to have p o < 0, for the second case we need that the
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roots of () are negative. For this aim, we first localize the roots of (). Before doing
so let us introduce the following notation : as the a; are not necessarily different, we
denote by M < N the number of different a;’s and denote by {b;}}L, the set of the

different coefficients in increasing order, which means that

{6375 = {aidily,

and

by < by < -+ < by.

Further for all j = 1,--- M, denote by k; the number of repeated values of b; in

the initial set of coefficients a;, namely
by = #{i € {1, N} :b; = a;)

Lemma 4.6.5. If Q is the polynomial defined by (4.6.10), then its has N — 1 real

roots pi, i =1,--+ N — 1, in [—ay, —a1] such that
—Yi+1 <MJ < —bj,\V/]:l, JM_]‘7
the other roots are —b; of multiplicity k; — 1, for all j =1,--- , M such that k; > 2.

Proof: We first notice that

Q(-a;) = [ [(a - ay).

i

-

N

Hence we see that —a; is a root of () if and only if there exists at least one ¢ # i
such that a; = a,. But for a complex number p such that p & {—a;}Y |, we notice

that

Q) = [T +a) (Zuia> (4.6.11)

=1 i=1
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Therefore p & {—a;}Y | is a root of Q if and only if

A=Y ——=0

o M

As @ has vertical asymptotes u = —b;, for all j = 1,..., M and is a decreasing
function on (—b;41, —b;), for all j =1,--- .M — 1 (see Figure 4.2 for the graph of
@ when N =M =4, a; = -2, ay =2, a3 =3, ag = 4), we deduce that @) has one
and only one real root between two consecutive vertical asymptotes.

Now for j =1,--- , M such that k; > 2, we take ;1 # —b; but close to it and use

the expression (4.6.11) to find that

k; 1
Qp) = o+ ap) (p -+ ;)% . 4.6.12
( ) &gbj( l)( ]) lH‘bj an b, W+ a; ( )
= (uAo) I (et a) (ki+ (+0) D (4.6.13)

a.
C:ap#b; i:a;#b; T ai

Since [T,.q, 2, (1+ar) (kj + (1 +05) D, W%g) is holomorphic in a neighborhood
of —b;, we deduce that —b; is a root of ) of multiplicity k; — 1. [ ]

Corollary 4.6.6. The polynomial Q) defined by (4.6.10) has negative roots if and

only if one of the following two conditions is satisfied :
(i) a1 >0 and a; > 0, for alli=2,--- N,

(i1)) a3 <0, a; >0, foralli=2,--- N and

Proof: According to the previous lemma, if —by > 0, then ) has a positive root,

hence by has to be positive. Now if b; = a; is positive, all roots are trivially negative.
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FIGURE 4.2 -N=4,a1 = —2,a9 =2,a3 =3,a4 = 4

On the other hand, if by < 0 with k; > 1, then ) has a non negative root —b;. Hence
k1 has to be equal to 1. This covers the first item. For the second item, we have
by < 0 with k& = 1 and therefore again according to the previous lemma, () has a

root p (or equivalently @) between —as < 0 and —a; > 0 that potentially could be

positive, but since QNQ is decreasing on (—ag, —ay) the condition

iy}
0) = — <0
Q) =3
=1
is a necessary and sufficient condition to get p < 0. [

Summing up the results of Lemmas 4.6.2, 4.6.3, and Corollary 4.6.6, we give the

proof of Theorem 4.1.4.

Proof: of Theorem 4.1.4 : According to Lemma 4.6.2, if max max [ip; =
S J=Lyymg
—C' < 0, then there exists €5 > 0 such that for all € € (0,¢), and all k € Z,

RAi(€) < —Se. Using Lemmas 4.6.3 and Corollary 4.6.6, this is satisfied if either
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one of the two conditions is satisfied :
(i) ag > 0and a; > 0, for all i =2,--- | N,

(i) a3 <0,a; >0, forall i =2,--- /N and

N N 4
i >0 11 — < 0.
;a as well as Z-Zlai

Since the root vectors of A(e) form a Riesz basis with parenthesis (see Proposition
4.4.1), we deduce the exponential stability of the solution of (.S,) for all € € (0, ¢)

under one of the conditions (i) or (ii) stated above. u

N
Remark 4.6.7. (i) Owing to Lemma 4.6.3 and Corollary 4.6.6, if Zai <0 or
i=1
if Q has a positive root, then (S.) is unstable for all € > 0 small enough.
N

(i) If Zai =0 or if QQ has a root equal to zero, then the exponential stability

of (S ) for e > 0 small enough is an open question. For example, in the case
1
N=3,a,=ay=1, and as = 5 Figure 4.6 shows that there are eigenvalues

to the right of the imaginary axis when ¢ = 0.1.

Remark 4.6.8. The previous analysis can be adapted to the case when a; € L*(0,1)
and L; =1 for alli=1,--- | N. As before we can prove that the solution of (S.) is
exponentially stable for all € € (0,€y) for e > 0 small enough if there exists co > 0
and c¢; > 0 such that for all k € Z, one of the following two conditions holds :

(a) 1There exists at most one jo € {1,1' -+, N} such that

/ ajo(x) sin®(kmw(1 — z))dz = 0, / a;(z)sin®(kr(1 — x))dx > ¢ for all i # jo

0 0
and Z/ ) sin?((kr + 2)(1 —z))dx > c.
(b) There exists only one iy € {1,--- N} such that
1 |
/ ai, (z) sin®(km(1—z))dx < 0, / ai(z)sin®(kr(1 —z))dz > co for all i # iy,

0 0
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N
Z/ a;(x) sin®((kr + g)(l —x))dx > ¢y, and

N

Z 1 ! < —C.
=1 /0 a;(z)sin®(kn (1 — z))dx

Indeed, the results of Lemma 4.6.2 still hold. Lemma 4.6.3 also holds but in

N
2
this case, for all k € Z, pyo = —NZ:/O a;(z) sin®((km + g)(l — x))dz. Similarly,
in Lemma 4.6.4, we can repeat the same analysis and find that, for all £ € Z*,

{um}jv:’ll is the set of zeros of

—1N-1 N-1
Q(z) = (z+ 1) z+INZH s+ 1)+ [[(e+ 1)@z + I+ Iy),
1=2 1#i =2

=2

1

where foralli=1,--- /N, [, = 2/ i(x) sin?(kn(1 — x))dx (which here depends on
0

k). As Lemma 4.6.5 can be used for Q, we find the same results but with a; replaced

by I; for all i = 1,--- , N. Therefore, thanks to Lemma 4.6.2 and under one of the

conditions (a) or (b) stated above, we deduce the existence of C' > 0 such that for

all k € Z, R\(€) < —eC for all € € (0, ).

4.7 Examples

In order to illustrate our general results we present some concrete examples where
we can give explicit conditions on the damping coefficients to get exponential decay
(up to a finite-dimensional space) for both problems (.S7) and (Se). In the first case,
this is reduced to the calculation of the roots of the polynomial G defined by (4.1.1),
in the second one since the conditions from Theorem 4.1.4 are easy to check, we
concentrate on a limit case (see Remark 4.6.7) and on the characterization of the

limit values of € for which the global stability is lost.
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4.7.1 Examples for (5))

We consider (S;) with three edges (N = 3) of length L, = 1 and a;(.) €
1 1 1

Whe(0,1) such that / ai(x)dx = / as(x)dxr =1 and / as(z)dr = a < 0. Using
0 0 0

Theorem 4.1.1, we will find the critical value of « for which (57) is exponentially

stable up to a finite dimensional space. Indeed, for this example, the polynomial G

is given by
G(z) = 3e*92% — (2™ +2e%)2? — (721 +2e )z + 3e 27,

The roots of G are given by

21 —e 7,
—2 —2« —2—2«
Zo = SRR Vet + el 4 342120
26 2 6 2 26
e e ™ __a\/ 4 1 plo | 346242
Z3 ——— + + e e .
G 6 6

Recall that according to Theorem 4.1.1, (S;) is exponentially stable up to a finite
dimensional space if and only if |z;| < 1 for all i = 1,2, 3. Hence we need to analyze
the behavior of the z; with respect to . Clearly z; < 1 is independent of «, while
the two other ones depend on a. For 29, we easily check that zo < 0 is an increasing
function of o with oél_i}moozg = —3e¢ 3 > —1. Hence, —1 < 2z, < 0 for all & < 0. Next,
we notice that |zo||z3] = e7272% So, if a < —1, then |2y||23| > 1 which means that
|z3| > 1. Therefore, to get the exponential stability of (S;), we must have o > —1.
In this case, z3 is a decreasing function of a and for oy = 3 In (fi—;;) we get
z3 > 1ifa < apand 0 < 23 < 1if @ > ap. In conclusion, (S7) is exponentially
stable up to a finite dimensional space if and only if a € («y,0].

As a second example, we still take three edges, but consider L; = Ly, = 1 and

1 1 2

Ls = 2 with / aj(x)dx = / as(x)dr = 1 and / az(x)dr = «. With this choice,
0 0 0

the polynomial G is given by

G(z) = (ez — e ')p(2).
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where

p(z) = el o3 4 e ltay2 _plma, _ ge-l-a

As the roots of the first factor is e=2 < 1, we only have to consider the roots of the
second factor p. Let z; = z;(«) for i = 1,2,3 be the roots of p and define ¢(«) =
max |z;(«)|. With the help of a formal computation software (Mathematica), we

i€{1,2,3}
can find the roots z;(«) for i = 1,2, 3 as well as p(«).

0.6 -

021

-1.0 -0.8 -0.6 -0.4 =02

1 1 2
FIGURE 4.3 — Graph of p(a) — 1 when / ay(x)dx = / as(x)dx =1, / az(x)dx =
0 0 0

Q.

1 3+ é?
The explicit form of ¢ allows to check that when o > ap = = 1In re
2 1+ 3e?
then p(a) < 1 (see Figure 4.3). Hence (5) is exponentially stable up to a finite
dimensional space if and only if o € (a, 0].
1
The same study can be done when changing L3, namely by taking L3 = 5 or
L3 = 3 and we surprisingly obtain the same critical value ag of « so that (5) is

exponentially stable up to a finite dimensional space. Moreover, if we choose L; = 1

1 2
and Ly = 2 such that / ai(x)dr = / as(x)dx = 1, then for Ly = 1 or L3 = 2,
0 0

2 1+ 3e?
stability of (S7) up to a finite dimensional space. Furthermore, if we change the

: : . 1 3+ ¢? :
we still obtain the same condition, a > ap = = In ( ) to get the exponential
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out[10]= F
0.5F

710 708 706 \

1 1
FIGURE 4.4 — Graph of ¢(a) — 1 when / ai(x)dr =1, / as(x)dr =2, Ly = 2.
0 0

1 1

mean values, by considering L; = Ly = 1, but / ai(x)dxr =1 and / as(x)dx = 2,
0 0

then whether L3 = 1 or L3 = 2, we still obtain the same critical value «a; with

0.45 < ay < 0.46 such that (S7) is exponentially stable up to a finite dimensional

space if and only if & > o (see Figure 4.4).

L
In conclusion, we find that the critical value of o depends on / ay(z)dz and
0

Lo
/ as(x)dx and not on the choice of the lengths. This opens the question whether
0
the abstract condition given in Theorem 4.1.1 can be expressed explicitly in terms

L;
of/ a;(z)dx for all i € {1,---, N}, see Conjecture 4.1.2.
0

4.7.2 Examples for problem (5;)

We start with a limit case in Theorem 4.1.4, namely we take N =3, a; = as =1,

1
as = —5 and L; = Ly = L3 = 1. Hence neither the first condition holds nor the
N N
second one since Zzl a u ; m
But Lemma 4.6.2 yields that for all ¢ > 0 small enough, the eigenvalues are of
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the form
Mi(e) = —e+ikm+o(e),
Xai(€) = 1km+ o(e),
€ 2k + 1)
Asp(€) = —=+ zg + o(e),
2 2
Hence the problem of stability would come from X;;(€) but a more precise
3
asymptotic analysis yields Ry x(e) = % + o(€®), hence the problem is not ex-

ponentially stable for ¢ small. Figure 4.6 shows the existence of a positive asymp-
tote when € = 0.1, since the asymptotes are 1 = —0.1, zo ~ —0.0500833, and
x3 ~ 0.000083333 .

Note that for e = 1, then by Theorem 4.1.1 there is a positive asymptote, since
the asymptotes are 1 = —1, 25 & —0.580322, and x3 ~ 0.0803219 (see Figure 4.5).

. ° 20; o
L] o : L]
L] L L]

L]
° 10F o

. I
L] L]

L]
L] L]

Out[34]= L L \. L L L L L

-1.0 -0.8 e —0.6 -0.4 -0.2 L 0.2
L] L L]
L] ° r L]

L] L
L] ~10- L]

e L
L] L]

. i
L] L L]

L] L
. . a0l °
L] + L[]

L]
L] L]

1

FIGURE 4.5 a1 =ay=1, a3 = 5 e=1.

In general, if we consider a; = ay = a and a3 # a, then according to Theorem
4.1.4, the problem becomes exponentially stable for all € small enough if one of the

following two conditions holds :
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¢ L]
° 20
L]
L]
L]
o L]
o ° 10
o L]
L]
L]
L I I I L I I I L I .\ L I I I L I
—-0.10 —-0.08 —0.06 ° —0.04 -0.02
¢ L]
¢ L]
° o -10
L]
o [ ]
° . 20
L]
L]
1
FIGURE 4.6 —a; =ay =1, a3 = 5 e=0.1.

(i) a>0and a3 >0

(ii) @ > 0 and a3 < 0 such that 2a + a3 > 0 and a + 2a3 > 0.

These results are coherent with the numerical results shown in Figure 4.9 with
ap = ay = 1, az = 1 and ¢ = 1—10 where the asymptotes (z; = —0.1, zo ~
—0.0166184, and x3 ~ —0.0583816) are to the left of the imaginary axis. If we
increase € and take ¢ = 1, then Figure 4.7 still shows the exponential stability in
the whole energy space where the asymptotes are r1 = —1, x5 =~ —0.630695, and
r3 ~ —0.119305. But for € = 1.5, then Figure 4.8 shows the exponential stability up
to a finite dimensional space. Indeed, the asymptotes found in Figure 4.8 are z; =
—1.5, x9 = —1.02451, and 23 ~ —0.100488 which show that the large eigenvalues
are to the left of the imaginary axis although there are some low eigenvalues with
positive real parts. In fact, in the case ay = ay = 1, a3 = —}1, all the eigenvalues

are to the left of the imaginary axis for all € < ¢;, where numerically we have found

that 1.30 < ¢y < 1.31.
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FIGURE4.7T—a1 =ay =1, a3 = T e=1.
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Perspective

As a future study, we would like to extend our work about the stability of wave
equations with indefinite sign damping over a multi-dimensional space. For instance,
let Q2 =(—1,1) x (0,1) be partitioned into ; = (0,1) x (0,1) and Qs = (—1,0) x
(0,1). We are interested in studying the stability of the following system

(

utt—Au+a1ut =0 in Ql XR,
utt—Au—i—agut =0 in QQ XR,

u =0 ond) xR,

(4.7.1)

L U($»y70) = Uo, ut(xay70) =u in Qa

where a; > 0 and a, < 0. We write the solution as a Fourier series of the form

u(z,y) = 2Zuk(x) sin(kry), V(z,y) € Q.

Then
Ukt — Ukpe + B2T2uy +a(@)uyy =0 (z,t) € (=1,1) X R,
up(=1,t) =ur(1,t) =0 teR, (4.7.2)
ug(x,0) = uro, uge(x,0) = x € (—1,1),
where a(x) = a1 if x € (0,1) and a(z) = as if € (—1,0). The energy associated
with (4.7.2) is given by
Ey(t) = 1/1 (Jure” + B2 72 ug]® + |ue]?) da.

1
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Using Parseval’s equality, the energy associated with (4.7.1) is given by

Hence,

stable. If v, = -

Blt) = %/Q (IVul? + [u?) do = 3 Ew(t)

Our aim is to find ¢ > 0 independent of k£ and v > 0 such that

Ek (t) S Ce_yktEk(O) .

t) < e e Ey(0)
k=1

If v, > v > 0, then E(t) < ce " E(0) and hence system (4.7.1) is exponentially

1
= for some [ > 0, then

E(t) < ieJEk(O)
S f:——e’j (0
Zk: B, (0

D(AZ)’

where the operator A is the generator of the semigroup associated with system

(4.7.1).

We are also interested in studying both internally and boundary damped pro-

blems of the form

.

u(z,y,0)

U — Au + auy

Uy

= Uy, Ut(ZE, Y, 0)

230
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on 'y X R,

on ['p XR,

in €,

(4.7.3)
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where I'y = { = 1} x (0,1) and I'p = 9Q/I"y. We are interested in studying the
stability of (4.7.3) when ab < 0. If @ = 0 and b > 0 or @ > 0 and b = 0, problem
(4.7.3) is polynomially stable and not exponentially stable. Therefore, we expect to
find conditions on a and b for which problem (4.7.3) is polynomially stable.
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