
HAL Id: tel-00862845
https://theses.hal.science/tel-00862845

Submitted on 17 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the bandwidth utilization in distributed
storage systems

Alexandre van Kempen

To cite this version:
Alexandre van Kempen. Optimizing the bandwidth utilization in distributed storage systems. Other
[cs.OH]. Université de Rennes, 2013. English. �NNT : 2013REN1S024�. �tel-00862845�

https://theses.hal.science/tel-00862845
https://hal.archives-ouvertes.fr

❆◆◆➱❊ ✷✵✶✸

❚❍➮❙❊ ✴ ❯◆■❱❊❘❙■❚➱ ❉❊ ❘❊◆◆❊❙ ✶

 ♦✉ ❧❡ ❝❡❛✉ ❞❡ ❧✬❯♥✐✈❡- ✐./ ❊✉-♦♣/❡♥♥❡ ❞❡ ❇-❡.❛❣♥❡

♣♦✉# ❧❡ ❣#❛❞❡ ❞❡

❉❖❈❚❊❯❘ ❉❊ ▲✬❯◆■❱❊❘❙■❚➱ ❉❊ ❘❊◆◆❊❙ ✶

▼❡♥.✐♦♥ ✿ ■♥❢♦-♠❛.✐9✉❡

❊❝♦❧❡ ❞♦❝7♦8❛❧❡ ▼❆❚■❙❙❊

♣#)*❡♥,)❡ ♣❛#

❆❧❡①❛♥❞'❡ ✈❛♥ ❑❡♠♣❡♥

♣#)♣❛#)❡ - ❧✬✉♥✐,) ❞❡ #❡❝❤❡#❝❤❡ ■◆❘■❆

■◆❘■❆ ❘❡♥♥❡* ✲ ❇#❡,❛❣♥❡ ❆,❧❛♥,✐8✉❡

❯♥✐✈❡#*✐,) ❘❡♥♥❡* ✶

❖♣"✐♠✐%❡' ❧✬✉"✐❧✐%❛"✐♦♥

❞❡ ❧❛ ❜❛♥❞❡ ♣❛%%❛♥"❡

❞❛♥% ❧❡% %②%"1♠❡% ❞❡

%"♦❝❦❛❣❡ ❞✐%"'✐❜✉5

❚❤*+❡ +♦✉/❡♥✉❡ 1 ❘❡♥♥❡+

❧❡ ✽ ▼❛7+ ✷✵✶✸

❞❡✈❛♥% ❧❡ ❥✉)② ❝♦♠♣♦/0 ❞❡ ✿

<❛♦❧♦ ❈♦=7❛

❙❡♥✐♦% %❡&❡❛%❝❤❡%✱ ■♠♣❡%✐❛❧ ❈♦❧❧❡❣❡ ▲♦♥❞♦♥ ✴ %❛♣♣♦%4❡✉%

<❛❜❧♦ ❘♦❞8✐❣✉❡③

❘❡&❡❛%❝❤ ❞✐%❡❝4♦%✱ ❚❡❧❡❢♦♥✐❝❛ ❇❛%❝❡❧♦♥❛ ✴ %❛♣♣♦%4❡✉%

<❛=❝❛❧ ❋❡❧❜❡8

:%♦❢❡&&❡✉%✱ ❯♥✐✈❡%&✐4= ◆❡✉❝❤?4❡❧ ✴ ❡①❛♠✐♥❛4❡✉%

❊8✇❛♥ ▲❡ ▼❡88❡8

❈❤❡%❝❤❡✉%✱ ❚❡❝❤♥✐❝♦❧♦% ❘❡♥♥❡& ✴ ❡①❛♠✐♥❛4❡✉%

●✉✐❧❧❛✉♠❡ <✐❡88❡

:%♦❢❡&&❡✉%✱ ❯♥✐✈❡%&✐4= ❘❡♥♥❡& ✴ ❡①❛♠✐♥❛4❡✉%

❲✐❧❧② ❩✇❛❡♥❡♣♦❡❧

:%♦❢❡&&❡✉%✱ ❊:❋▲ ▲❛✉&❛♥♥❡ ✴ ❡①❛♠✐♥❛4❡✉%

❆♥♥❡✲▼❛8✐❡ ❑❡8♠❛88❡❝

❉✐%❡❝4%✐❝❡ ❞❡ %❡❝❤❡%❝❤❡✱ ■◆❘■❆ ❘❡♥♥❡& ✴

❞✐%❡❝4%✐❝❡ ❞❡ 4❤E&❡

Abstract

Modern storage systems have to face the surge of the amount of data to handle. In
essence, they have to ensure a reliable storage of all their users’ data, while providing
a fast retrieval. At the current scale, it would be an illusion to believe that a single
centralized storage device is able to store and retrieve all its users’ data. While from
the user’s viewpoint the storage system remains a single interlocutor, its underlying
architecture has become necessarily distributed. In others words, storage is no longer
assigned to a centralized storage equipment, but is now distributed between multiple
independent storage devices, connected via a network.

Therefore, when designing networked storage systems, bandwidth
should now be taken into account as a critical resource. In fact, the band-
width of a system is intrinsically a limited resource which should be handled with
care to avoid congestion. In a distributed storage system, the system bandwidth is
mostly consumed by (i) the data backup and restore operations, and (ii) the system
maintenance.

(i) During backup and restore operations, data is exchanged via the network between
users and the system. These exchanges consume a large amount of bandwidth,
proportional to the size of data.

(ii) A storage system inevitably experiences either transient or permanent failures,
typically disk crashes, involving some data loss. Lost data must be restored so
that the system remains in a healthy state. These maintenance operations lead
to multiple data transfers to repair the loss incurred by failures. While being
essential to maintain the system reliability, repairs remain costly in terms of
bandwidth consumption.

The problem of efficient bandwidth utilization becomes even more crit-
ical when designing systems relying on peer-to-peer architectures. In a
peer-to-peer storage system, storage resources are provided by the users. Each of them
share parts of their local storage capacity. The system aggregates this eldorado of
space in order to offer a reliable storage service to its participants. While peer-to-peer
architectures offer appealing properties such as scalability, and fault-tolerance, they
also suffer from important limitations regarding the bandwidth. In fact, the available
bandwidth of the system is dramatically reduced due to churn and failures.

iii

In a peer-to-peer system, users can connect and disconnect from the system at will,
without any warning. This turnover, usually referred to as churn, involves asynchrony
between users’ uptime period. Intuitively, data can be exchanged directly between two
users only if both are connected at the same time. As a result, the effective amount
of data they can transmit is reduced by churn. Churn thus leads to a significant
reduction of the available bandwidth between users, increasing the time to backup
and restore data. In addition, in a peer-to-peer system, the whole available bandwidth
of the system is shared between the "useful data" transmission i.e., backup and restore
operations, and the data transfers related to the system maintenance. Maintenance
operations consume an important part of the system bandwidth. Consequently, these
maintenance operations decrease the amount of available bandwidth for backups and
restores, underlining the importance of minimizing the impact of maintenance on the
system bandwidth.

Contributions

The focus of this thesis is to optimize the available bandwidth of distributed
storage systems, lowering the impact of churn and failures. The objective is twofold,
on the one hand the purpose is to increase the available bandwidth for data exchanges
and on the other hand, to decrease the amount of bandwidth consumed by maintenance.
While addressing bandwidth consumption might be achieved in many ways, we focus
on two specific parts:

• In the first part of this manuscript, we address the reduction of the impact of
asynchrony, resulting from churn, on the available bandwidth during backup
and restore operations. The first contribution of this thesis presents an hybrid
peer-to-peer architecture taking into account the low level topology of the
network i.e., the presence of gateways between the system and the users. In this
gateway-assisted system, the gateways are turned into active components, acting
as a buffering layer to compensate the intrinsic instability of the machines. Due
to their high availability, gateways provide a stable rendez-vous point between
users’ uptime, thus masking the asynchrony between them. This architecture is
evaluated by simulation using real world traces for availability. Results show
that the time required to backup and restore data is greatly reduced due to a
smoother use of the available bandwidth.

• In the second part, we concentrate on the reduction of the impact of maintenance
operations on the system bandwidth. Our contribution is twofold.

The second contribution of this thesis acts at the upstream level of the
maintenance, during the failure detection process. In peer-to-peer systems,
distinguishing permanent failures that require a repair from transient discon-
nections is challenging. In the latter case, a repair may turn out to be useless,

iv

consuming bandwidth unnecessarily. In order to assess whether a repair is
required or not, an adaptive and user-level timeout mechanism is proposed.
This mechanism, based on a Bayesian approach, is evaluated by simulation on
real availability traces. Results show that, compared to classical timeouts, the
number of useless repairs is significantly decreased, thus cutting back on the
unnecessary consumed bandwidth.

The third contribution describes a repair protocol especially designed for
erasure-coded stored data. Erasure codes are a promising way to replace
classical replication in providing redundancy, for their savings in storage space.
Repairing replicated data is straightforward as it only requires the transfer of a
replica. However, it is well-known that repairing erasure-coded data is extremely
bandwidth consuming. Previous works trying to reduce the repair bandwidth
usually do so at the file level. The proposed repair mechanism enables to repair
multiple files simultaneously, thus factorizing the bandwidth costs. The protocol
is implemented and deployed on a public experimental testbed to demonstrate
the savings in a real environment. Compared to most implemented mechanisms,
results reveal that the necessary bandwidth is halved, while repair times are
considerably lowered.

Organization

The remainder of this thesis is organized as follows:
Chapter 1 covers general concepts about storage systems, and provides definitions

used in the following chapters of the manuscript. Chapters 2 and 3 present the three
contributions which form the core of this work. Chapter 2 describes the gateway-
assisted architecture, and presents its simulation results. Chapter 3 is devoted to the
maintenance bandwidth reduction. The first part of Chapter 3 presents the timeout
mechanism as well as its evaluation. The repair protocol and its implementation are
described in the second part of this chapter. Finally, Chapter 4 discusses directions
for future research.

v

Publications

(1) Availability-based methods for distributed storage systems. Anne-Marie
Kermarrec, Erwan Le Merrer, Gilles Straub, Alexandre Van Kempen. In SRDS
2012 : Proceedings of the International Symposium on Reliable Distributed
Systems, 2012.

(2) Regenerating Codes: A System Perspective. Steve Jiekak, Anne-Marie
Kermarrec, Nicolas Le Scouarnec, Gilles Straub, Alexandre Van Kempen. In
DISCCO 2012 : Proceedings of the International workshop on Dependability
Issues in Cloud Computing, 2012.

(3) On The Impact of Users Availability In OSNs. Antoine Boutet, Anne-
Marie Kermarrec, Erwan Le Merrer, Alexandre Van Kempen. In SNS 2012 :
Proceedings of the International workshop on Social Network Systems, 2012.

(4) Efficient peer-to-peer backup services through buffering at the edge.
Serge Defrance, Anne-Marie Kermarrec, Erwan Le Merrer, Nicolas Le Scouarnec,
Gilles Straub, Alexandre Van Kempen. In P2P 2011 : Proceedings of the
International Conference on Peer-to-Peer Computing, 2011.

(5) Clustered Network Coding for maintenance in practical storage sys-
tems. Anne-Marie Kermarrec, Erwan Le Merrer, Gilles Straub, Alexandre Van
Kempen. Technical report available on arXiv (under sumbmission), 2012.

vi

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Preliminaries on storage systems 1
1.1 User’s viewpoint . 1
1.2 System viewpoint . 2

1.2.1 Failures . 2
1.2.2 Data redundancy . 3

Replication . 3
Erasure codes . 4
Reliability model . 4
Summary . 6

1.2.3 Data placement . 6
1.2.4 Maintenance . 7

Detection . 7
Repair . 8

1.2.5 The bandwidth bottleneck . 9
1.3 Architecture . 10

1.3.1 Centralized architectures . 10
1.3.2 Peer-to-Peer . 11

Peer-to-Peer storage system 11
1.3.3 Hybrid . 12

2 Increasing the available bandwidth 13
2.1 Introduction . 13
2.2 A gateway assisted system . 14

2.2.1 Stability of residential gateways 14
2.2.2 System rationale . 15
2.2.3 Gateway-assisted storage system 17

2.3 A comparison framework for backup schemes 19

vii

Contents

2.3.1 Parameters and data sets . 19
2.3.2 Competitors . 20
2.3.3 Simulation setup & Performance Metrics 21

2.4 Results . 23
2.4.1 Time to backup & restore results 23
2.4.2 Influence of targeted availability 25
2.4.3 Influence of code length k . 26
2.4.4 Influence of the network size 27
2.4.5 Influence of the data size . 27
2.4.6 Buffer dimensioning . 27

2.5 Discussion . 29
2.6 Related Work . 30

3 Reducing the maintenance bandwidth 33
3.1 During detection: Adaptive node-level timeout 33

3.1.1 Introduction . 34
3.1.2 Related Work . 34
3.1.3 Leveraging predictability and heterogeneity 35

Availability and Predictability 35
Heterogeneous availability patterns 35

3.1.4 Assumptions . 36
3.1.5 Per-node & adaptive timeout 37

Timeout model . 38
Computing an adaptive per-node timeout 39

3.1.6 Evaluation . 40
3.2 During reparation: Clustered Network Coding 44

3.2.1 Introduction . 44
3.2.2 Related Work . 45
3.2.3 Clustered Network Coding . 45

Random Codes . 46
Encoding . 46
Decoding . 47
A Cluster-based Approach . 48
Maintenance of CNC . 50
An Illustrating Example . 50
CNC: The General Case . 51

3.2.4 Analysis . 55
Transfer Savings . 55
Load Balancing . 57
No Decoding Operations . 58
Reintegration . 58

3.2.5 Evaluation . 59
Scenario . 60

viii

Coding . 61
Transfer Time . 62
Repair Time . 63
Load Balancing . 65

4 Conclusions & Perspectives 67
4.1 Going further with interference alignment 67
4.2 Practical issues . 71

Bibliography 85

List of Figures

1.1 Redundancy creation process. On the left hand side classical replication for
N=3, on the right hand side erasure codes (k=2,n=4). Both can tolerate
the failure of any set of two storage devices. 3

1.2 Probability to lose data depending on the storage overhead introduced for
replication and erasure codes. The probability to fail for each device is
pf = 0.01 . 5

1.3 Geographically dispersed replicas enhances the reliability 6
1.4 Classical repair process of a single block. (k=2, n=4) 8
1.5 Architectures of storage systems. 10

2.1 Availability of residential gateways mesured on a French ISP. The dataset
has been acquired sending pings to a random sample of gateway IPs. . . 14

2.2 A global picture of the network connecting the peers to the service. Those
end-devices are available 6 − 12h/day. If we allow the gateway, which is
available 21h/day, to perform buffering, we can benefit from the speed
difference between local links (7MB/s) and ADSL links (66KB/s). . . . 16

2.3 Backup operation: buffering a block at a random gateway 18
2.4 A global picture of the network connecting peers and CDN, as used in [52].

Note that the CDN (Server) has an infinite capacity and 100% availability.
However, since the bandwidth used at the CDN is billed, the CDN is not
used as a relay but as another kind of end-storage (i.e. it does not upload
content to other peers but only stores content temporarily until the backing
up peers have uploaded content to enough peers.) 21

2.5 CDF of Time to Backup and Time to Restore for the Skype trace 23

ix

List of Figures

2.6 CDF of Time to Backup and Time to Restore for the Jabber trace 24
2.7 Results (Skype trace), as a function of availability target, 90th percentile.

Labels follow the order of the curves. 25
2.8 Results (Skype trace), as a function of k, 90th percentile. 26
2.9 Results (Skype trace), with a varying network size, 90th percentile 27
2.10 Results (Skype trace), with a varying amount of data to backup, 90th

percentile . 28
2.11 Maximal storage measured on gateways at any time (Skype trace) 28
2.12 Average storage measured on gateways (Skype trace) 29

3.1 Availability mean and deviation for various existing systems 36
3.2 Skype results for various code parameters. 41
3.3 Planet Lab results for various code parameters. 42
3.4 Microsoft results for various code parameters. 43
3.5 Creation process of encoded blocks using a random code. All the coefficients

are chosen randomly. Any k = 2 blocks is enough to reconstruct the file X. 47
3.6 Clusters are constructed at a logical level : nodes participating in a given

cluster may span geo-dispersed sites for reliability. 48
3.7 Comparison between CNC (top) and classical maintenance process (bot-

tom), for the repair of a failed node which was storing two blocks of two
different files (X & Y) in a cluster of 4 (with k = 2, n = 4). All stored
blocks as well as transferred blocks and RepairBlocks in the example have
exactly the same size. 49

3.8 Necessary amount of data to transfer to repair a failed node, according to
the selected redundancy scheme (files of 1 GB each). 56

3.9 Natural load balancing for blocks queried when repairing a failed node
(node 5), for 10 blocks to restore. 57

3.10 System overview . 59
3.11 Encoding time depending on file size when using random codes. 61
3.12 Time to transfer the necessary quantity of data to perform a complete repair 62
3.13 Total repair time . 63
3.14 Impact of load balancing on Time To Transfer 64
3.15 Average load on each node in the cluster 65
3.16 Comparison of CNC with most implemented redundancy mechanisms, i.e.

Replication, and Reed-Solomon codes (RS). 66

4.1 Example of an underdetermined linear system i.e., there are more unknowns
than equations. However some unknown can be recovered since interference
are aligned into a smaller subspace. 68

4.2 Example of a repair process combining three files X, Y and Z using in-
terference alignment. Each node carefully chooses the coefficients of the
linear combination in order to align interference. One new block for each
file can thus be recovered without interference. 70

x

4.3 Each interference matrix must not be full rank in order to be able to
recover one block for each file without interference. 71

4.4 Mean quantity of data transferred during a repair for various storage
overhead (k = 16, , FileSize = 1GB) . 74

4.5 Mean quantity of data transferred during a repair for various k. (n = 2 ∗ k,
FileSize = 1GB) . 74

4.6 CDF des temps de sauvegarde et de restitution pour la trace Skype. . . . 77
4.7 Résultats pour la trace Skype selon différents paramètres du code. 78
4.8 Temps pour transférer la quantité de données nécessaires afin d’effectuer

la réparation. 79
4.9 Temps de réparation total. 79

List of Tables

2.1 Additional storage costs induced by various target availabilities, when
compared to our reference target of 0.7 26

3.1 Reduction of the number of repairs (Skype) 40
3.2 Reduction of the number of repairs (Planet Lab) 41
3.3 Reduction of the number of repairs (Microsoft) 42

4.1 Initial coefficients of each encoded block for each file, stored on the four
nodes. 83

4.2 Coefficients of the linear combination between the three encoded blocks
stored on each node . 83

4.3 Resulting coefficients of the RepairedBlocks sent by each node. 83
4.4 Coefficients of the linear combination of RepairedBlocks to cancel interfer-

ence and restore one block for each file. 83
4.5 Coefficients of the new encoded blocks stored for each file. 83

xi

C
h

a
p

t
e

r

1
Preliminaries on storage systems
In this chapter, we review the basics of a storage system. We define the no-
tion of data availability/durability and the concept of data redundancy, data
placement and data maintenance. We provide some insights about their
respective implementation, while underlining their impact on the bandwidth
consumption. Finally we describe the commonly deployed architectures for
storage systems.

A study sponsored by the information storage company EMC [2] estimates that
the world’s data is more than doubling every two years, reaching 1.8 zettabytes1 of
data stored in 2011. Online storage systems that ensure the durability, integrity, and
accessibility of digital data become increasingly important. However, designing a
complete storage system is a challenging task, and requires the study of numerous
tradeoffs depending on the targeted application.

In this thesis we focus on the lower layer of a storage system, below the application
level. In other words, we only deal with how data is stored, and not how it is used
by a potential application sitting on top. First, we define the basic storage services
expected by a user. Second, we describe various concepts related to the design of such
a system from a system viewpoint.

1.1 User’s viewpoint

From the user’s viewpoint, the storage system is seen as a black box and all the
implementation and architectural aspects are ignored. The two basic primitives
between the user and the system are only "store data" and to "retrieve data". Typically,
a user inserts data she wants the system to keep safe, while being able to retrieve it

11 zettabyte = 1021 bytes

1

1. Preliminaries on storage systems

when needed. To achieve this, (i) data has to be effectively stored by the system, (ii)
data can be retrieved at the time of a given request.

(i) The first point relates to the notion of durability. When a user inserts data
into a storage system, she expects this data never to be lost. This means that
eventually, he will be able to retrieve it. This is the main function a storage
system has to ensure.

(ii) The notion of durability is different from the one of availability. Availability only
relates to the ability of retrieving the data upon the user’s request at a given
point in time. Data might be durably stored, while not being available when
requested.

There are numerous reasons for not being able to store or retrieve data upon a
request. Namely, the failure of servers, the congestion of a network link, the crash of
a storage device, or a power outage are common issues.

1.2 System viewpoint

Distributed storage systems are designed to provide a reliable storage service over
unreliable components [22, 37, 49, 75]. This unreliability involves challenging tradeoffs
when designing a storage system.

1.2.1 Failures

To start with, one has to accept the fact that the failures of the underlying components
of a storage system are unavoidable [34,83]. In addition, the more components in a
system, the more failures are to be expected.

A storage system would be 100% safe only if composed of storage devices which never
fail with certainty. Such devices are not available yet (to the best of our knowledge)
so we have to deal with the fact that the probability of losing data exists. In addition,
the more data is kept, and the longer it is kept, the greater the chance that some of it
will be unrecoverable when required [73].

However, the good news is that we do have good insights on how to make this
probability arbitrarily low. The first idea to tolerate a failure is to replicate. Intuitively
we can provide some general facts such as:

• the more copies, the safer;

• the more independent copies, the safer;

• the more frequently audited and replaced if failed, the safer.

2

1.2. System viewpoint

File X

x1 x2

Chunking (k=2)

n1

Encoding (n=4)

n2 n3 n4

File X

Replication (N=3)

File X File X File X

Can tolerate the failure

of any two devices

1 GB

1 GB 1 GB 1 GB

1 Gb

500 Mb 500 Mb

500 Mb 500 Mb 500 Mb 500 Mb

To store 1Gb the system needs 3 Gb To store 1Gb the system needs 2 Gb

R
e
p

li
c
a
ti

o
n

E
ra

s
u

re
 C

o
d

e
s

Figure 1.1: Redundancy creation process. On the left hand side classical replication
for N=3, on the right hand side erasure codes (k=2,n=4). Both can tolerate the
failure of any set of two storage devices.

At the system level, this is respectively related to data redundancy, data placement,
and data maintenance. These three fundamental functions, as well as examples of
their implementation, are discussed in the following three sections.

1.2.2 Data redundancy

A classical way to provide a system fault tolerance is to make its underlying components
redundant. And as one can expect, the more redundancy is added, the more reliability
can be obtained. Replication, i.e., whole copy of data, is the canonical solution
for data fault tolerance and is commonly used in current storage systems. While
replication is the simplest means to obtain reliability with redundancy, it is now widely
acknowledged that erasure codes can dramatically improve the storage efficiency. We
describe hereafter these two redundancy strategies, while underlining the enhanced
reliability of erasure codes.

Replication

Replication is the most intuitive way to introduce redundancy, as it merely requires
copying the data. Typically N instances of the same data are needed to tolerate
N − 1 simultaneous failures. While plain replication is easily implemented, and has

3

1. Preliminaries on storage systems

been proposed in numerous designs so far [20, 21, 37, 49, 50, 55, 75], it suffers from a
high storage overhead. The storage overhead is defined as the total quantity of data
including redundancy over the original quantity of data to store. For example, to
store a 1 Gigabyte (GB) file, the system requires three times that amount so as to
cope with two failures. This storage overhead (N = 3 in the previous example) is the
price to pay to tolerate failures. However this high overhead is a growing concern,
especially as the scale of storage systems keeps increasing.

Erasure codes

Erasure codes have been widely acknowledged as much more efficient than replica-
tion [84] with respect to storage overhead. They have been the focus of many studies,
and numerous codes representing different points in the code design space have been
proposed. In this thesis we only focus on optimal codes, as they provide the best
reliability for a given storage overhead. More specifically, we describe the principles of
Maximum Distance Separable (MDS) codes known as being optimal. The basics of
an MDS code (n, k) are: a file to store is split into k chunks, encoded into n blocks
with the property that any subset of k out of n blocks is sufficient to reconstruct
the file. Thus, to reconstruct a file of M Bytes one needs to download exactly M
Bytes. This corresponds to the same amount of data as if plain replication were used.
Reed-Solomon codes are a classical example of MDS codes and are already deployed
in existing storage systems [17,34].

The name "erasure codes" expresses the ability to sustain up to n − k erasures (i.e.,
failures) without losing any data. For example, for a given code (k = 2, n = 4), a
file is split into k = 2 blocks, x1 and x2, then encoded into n = 4 blocks n1, n2, n3

and n4 with the property that any set of two encoded blocks is sufficient to recover
the original file (See Figure 1.1). In this example, the system can thus tolerate any
n − k = 2 failures before losing data. However, compared to replication, the storage
overhead defined as the ration between n and k is only n

k
= 2 with the code (k = 2,

n = 4). This means that to tolerate two failures when storing a 1 GB file, replication
needs 3 GB while the previous code (k = 2, n = 4) only requires 2 GB. Note that
the replicas, as well as the encoded blocks, need to be stored on distinct storage
components.

In order to better understand this tradeoff between the storage overhead, and the
reliability we describe a commonly used model to compare the efficiency of replication
and erasure codes.

Reliability model

In this section, we describe a commonly used model [56, 84] to estimate the reliability
one can expect depending on the amount of redundancy introduced. This straightfor-
ward model enables to compare the probability to lose data depending on the storage
overhead for replication and erasure codes. In essence, this model only provides an

4

1.2. System viewpoint

������

������

������

������

������

������

������

�

� 	 � A � B �

C
D
ED
F�
�
�
�
F�
��
�
D
�
���
E�
F�
��
�
�
�
D
��
�

�E��D��F������D�

 �����DE��!
"�D�#��F$���F�%&��
"�D�#��F$���F�%&��
"�D�#��F$���F�%&��

Figure 1.2: Probability to lose data depending on the storage overhead introduced for
replication and erasure codes. The probability to fail for each device is pf = 0.01

estimation of the obtained reliability, but it is realistic enough to point out the reasons
why erasure codes are more efficient than replication.

Let pf be the probability that a given storage component fails. In case of replication,
it is easy to see that data are lost if and only if the N replicas fail at the same time. If
we assume, to a first approximation, that the N replicas have the same probability to
fail pf , and that these failures are independent then we can assert that the probability
to lose data ploss is:

Ploss,replication =
N
∏

i=1

pf = (pf)N

As erasure codes can tolerate up to n − k failures, a data loss thus requires the
simultaneous failures of at least, any set of n−k+1 storage components. Assuming, as
previously, a homogeneous and independent failure probability pf , then the probability
to lose data ploss can be expressed as (binomial law):

Ploss,erasurecodes =
n

∑

i=n−k+1

(

n

i

)

pi
f (1 − pf)n−i

In Figure 1.2 we plot the probability to lose data depending on the storage overhead
introduced when using replication or erasure codes. The data loss probability is
dramatically reduced when using erasures codes compared to replication (the y-axis is
in logarithmic scale). In addition, for the same storage overhead, the larger k, the
smaller the probability to lose data. Intuitively, erasure codes spread the redundancy
on many more devices than with replication. This combinatorial effect enhances
the reliability as the loss of data thus involves multiple simultaneous failures. Note

5

1. Preliminaries on storage systems

�� ������	A

�� ���� � �� ���� 	 �� ���� A

B���CD

Figure 1.3: Geographically dispersed replicas enhances the reliability

that the computation of the data loss probability is much more complex in reality.
For example, it is well known that failures in real systems are not independent and
usually exhibit a high degree of correlation [34]. A thorough comparison between the
reliability of replication and erasure codes can be found in [56,84].

Summary

To summarize, for the same storage overhead, erasure codes provide better durability
compared to replication. In other words, to ensure the same level of durability,
erasure codes dramatically reduce the required storage space compared to replication.
Finally, the choice of the type of redundancy is a designer decision. On the one hand,
replication suffers from a high storage overhead but can easily be implemented while
providing fast data accesses. On the other hand, erasures codes are more efficient
but are complex to deploy due to coding and decoding operations [14, 56]. Some
systems [49] propose to leverage the best of both. For instance, they combine erasure
codes for durability and replication for latency reduction.

1.2.3 Data placement

Redundancy is not sufficient on its own to ensure fault tolerance. In fact, it is not
worth making several copies of a file stored on the same disk as it will not enhance the
reliability. The failure of this disk would automatically involve the failure of all the
copies, and consequently the loss of the file. This underlines the interplay between the
redundancy and the way it is spread in the system, namely the placement strategy.

Placement strategies usually aim to maximize a given metric, such as the durability
of data. In this case, the challenge is to place data on storage devices which failures are
as independent as possible. Typically, storage devices can be spread over geographically

6

1.2. System viewpoint

dispersed sites to ward off natural disasters [49]. Durability is not the only metric to
be maximized, as placement strategy can also aim to enhance the data access latency,
or data availability for example [26,28].

Regardless of the metrics, the major concern shared by all placement strategies is to
balance the storage load between all the available storage devices. A classical way to
ensure this load balancing is to randomly assign data to storage devices. This random
solution is straightforward to implement while providing close to evenly loaded devices
and has thus been adopted by numerous systems [13,14,20].

1.2.4 Maintenance

Redundancy and its placement enable the system to carry on working even if the
system experiences failures. However, this must be complemented with a maintenance
mechanism capable of recovering from the loss of data. In fact, failures have to be
repaired to sustain the redundancy policy. Otherwise, redundancy would only delay
the time for data to be lost without preventing it. Maintenance has already been
the focus of numerous storage system designs [13,31,39,79] and rests upon two key
functions. First it requires a monitoring layer able to accurately detect the failures.
Second, the actual repair of data must be performed according to a given repair policy.

Detection

When designing a maintenance mechanism, the crucial challenge is to decide when
to trigger a repair. In other words, how to distinguish permanent failures, requiring
a repair, from temporary errors for which a repair may turn out to be useless. A
clever detection mechanism minimizes the amount of network traffic sent in response
to transient failures while maintaining reliability.

A practical and commonly implemented solution to decide on the nature of a failure
is to use a timeout [13, 20]. Typically, once a node has not replied to a solicitation
after a timeout has expired, it is considered as permanently failed. However, deciding
on a timeout value is a tedious task. On the one hand, short timeouts accurately
detect all the failures but generate a high number of false positives. On the other
hand, longer timeouts decrease durability because the time to recognize permanent
failures increases, thus augmenting the "window of vulnerability".

Authors in [20] show that reintegration of replicas is a key concept to lower the
impact of false positives. The interest of reintegration is to be able to leverage the
fact that nodes which have been wrongfully timedout are reintegrated in the system.
For example, let assume that a given storage device has been incorrectly declared as
faulty. A repair has thus been performed to sustain the redundancy factor while it
turned out not to be necessary in the end. If reintegration is implemented, this means
that the system is now one repair process ahead. Consequently, it can leverage this
unnecessary repair to avoid triggering a new instance of the repair protocol when the
next failure occurs.

7

1. Preliminaries on storage systems

������ ������ ������ ���� 	

A�BB�CDEF� ���B�C��

��C��EF�

��E�EF�B��EB�

�FC��EF�

���D �B�C��

Figure 1.4: Classical repair process of a single block. (k=2, n=4)

Repair

The goal of repairs is to restore the level of fault tolerance by refreshing lost redundancy
before data is lost due to permanent failures. When redundancy is implemented with
plain replication, the repair of a lost replica only consists in the transfer of a new
replica to be stored on a non-faulty device. The amount of consumed bandwidth is
thus equals to the amount of lost data. However, repairing erasure coded data is much
more complex. In fact, as pointed out in [72], one of the major concern of erasure
codes lies in the maintenance process. It incurs an important overhead in terms of
bandwidth utilization as well as in decoding operations as explained below.

Maintenance of Erasure Codes The repair process works as follows (see Fig-
ure 1.4): to repair one block of a given file, the new node first needs to download k
blocks of this file (i.e., corresponding to the size of the file) to be able to decode it.
Once decoded, the new node can re-encode the file and regenerate the lost block. This
must be iterated for all the lost blocks. Three issues arise:

1. Repairing one block (typically a small part of a file) requires the new node to
download enough blocks (i.e. k) to reconstruct the entire file. This is required
for all the blocks previously stored on the faulty node.

8

1.2. System viewpoint

2. The new node must then decode the file, though it does not intend to access
it. Decoding operations are known to be time consuming in particular for large
files.

3. Reintegrating a node which has been wrongfully declared as faulty is almost
useless. This is due to the fact that the new blocks created during the repair
operation have to be strictly identical to the lost ones for this is necessary to
sustain the coding strategy 2. Therefore reintegrating a node results in having
two identical copies of the involved blocks (the reintegrated ones and the new
ones). Such blocks can only be useful if either the reintegrated node or the new
node fails but not in the event of any other node failure.

In order to minimize these drawbacks, various solutions have been suggested. Lazy
repairs for instance as described in [13] consist in deliberately delaying the repairs,
waiting for a successive amount of defects before repairing all the failures together.
This enables to repair multiple failures with the bandwidth (i.e. data transferred) and
decoding overhead needed for repairing one failure. However delaying repairs leaves the
system more vulnerable in case of a burst of failures. Architectural solutions have also
been proposed, as for example the Hybrid strategy [72]. This consists in maintaining
one full replica stored on a single node in addition to multiple encoded blocks. This
extra replica is used for repair avoiding the decoding operation. However maintaining
an extra replica on a single node significantly complicates the design, while incurring
scalability issues. Finally, new classes of codes have been designed [30, 45] which
trade optimality in order to offer a better tradeoff between storage, reliability and
maintenance efficiency.

1.2.5 The bandwidth bottleneck

The way of implementing redundancy, placement and maintenance policies has a strong
impact on the system bandwidth consumption. For instance, while geographically-
spread replication enhances the reliability, it also increases the inter-site bandwidth
consumption. Alternately, the increased reliability provided by erasure codes comes
at the price of a high bandwidth consumption during the maintenance process.

Bandwidth is a crucial element since data durability can only be ensured
if there is sufficient bandwidth to repair lost data. In fact, an efficient main-
tenance mechanism may as well smooth the bandwidth consumption which is known
to be one key aspect in storage systems [14, 79]. In addition, the scarcer the available
bandwidth of the system, the more challenging becomes its management. Peer-to-peer
storage systems are a typical example of such a case, as described in the next section.

2This can be achieved either by a tracker maintaining the global information about all blocks or
by the new node inferring the exact structure of the lost blocks from all existing ones.

9

1. Preliminaries on storage systems

(a) Centralized

Client / Server

Client / Server

Client / Server

Client / Server
Client / Server

Peer-to-Peer Network

(b) Peer-to-Peer

Client / Server

Client / Server

Client / Server

Client / Server
Client / Server

Peer-to-Peer Network

Server

(c) Hybrid

Figure 1.5: Architectures of storage systems.

1.3 Architecture

The architecture of a storage system describes, on the one hand, how the clients
access to the storage service and on the other hand, how the underlying components
of this storage service are organized. In other words, how these storage devices
are interconnected and how they can communicate with each other. Centralized
architecture are opposed to fully decentralized architecture, typically peer-to-peer
networks (See Figure 1.5). We describe these two opposite paradigms in the the
following sections.

1.3.1 Centralized architectures

The classical architecture of an online storage system follows the client-server paradigm,
which consists of two distinct entities:

• The server, which provides the service and all the resources required for the
service.

• The client, which makes use of the service and exploits the resources supplied
by the server.

From the client viewpoint, the storage service is thus assigned to an infrastructure
managed by an external entity. Majors actors such as Google [4], Amazon [1] or
Microsoft [5] already propose storage services for free, or charged depending of the
client storage needs. Note that, while the server appears as a single interlocutor to
the clients, its underlying architecture is necessarily distributed. Typically storage
devices are gathered into large data-centers. Network topologies of these data-centers
are an active research area [7, 11,62] and are outside the scope of this thesis.

While providing efficiency and simplicity from the user viewpoint, centralized
architectures are known to suffer from two major issues, namely scalability and fault
tolerance. Firstly, the service needs to be dimensioned to sustain all the possible clients
and must be upgraded whenever the service demand increases. In other words, the

10

1.3. Architecture

more users to serve, the more resources have to be added. In addition, a centralized
architecture represents a single point of failure. As putting all eggs in one basket is
well known to be unsafe, the centralization of storage devices may involve reliability
issues.

1.3.2 Peer-to-Peer

The peer-to-peer architecture of the system implies that the resources (storage,
bandwidth, and computation) are provided by the users themselves, which collaborate
to provide a reliable service. In a peer-to-peer system, all users, usually referred to as
peers, play the role of both the client and the server. While being a customer of the
service, every peer has to contribute, sharing part of its resources.

Because the resources are contributed by participant peers, a peer-to-peer system can
scale almost arbitrarily, without requiring a "fork-lift upgrade" of existing infrastructure,
for example, the replacement of a server with a more powerful one. In addition, as all
resources are decentralized, the burden of communication is also spread between all
peers, thus avoiding the bandwidth bottleneck of centralized servers.

Decentralization also provides resilience to faults and attacks, as peer-to-peer
architectures are usually independent of dedicated infrastructure and centralized
control, contrary to classical client-server systems. The decentralized organization
of peer-to-peer systems, instead, exploits the independence of the different peers to
provide a good level of reliability. This organization may be either unstructured or
structured depending on the way peers are interconnected. A classical example of a
structured peer-to-peer topology is to implement a distributed hash table (DHT) [70,74,
78], the description of which is outside the scope of this thesis. A thorough description
of peer-to-peer systems as well as their associated topologies can be found in [59,71].

Peer-to-Peer storage system

Several studies [9] show that end user hard drives are on average half empty and
represent a considerable amount of unused storage space available at the edge of the
network. Indeed the authors in [9] reveal, after a five-year study, that the ratio of free
space over the total file system capacity remained constant over the years. Aggregating
this free space, represents therefore a real and scalable Eldorado of available space.
peer-to-peer storage is a typical example of applications where this idle storage space
could be leveraged [21,49,50,52,55,75]. In such a peer-to-peer storage system, each
node is in charge of storing the data of other nodes in exchange for having its own
data stored and made available in a durable way.

While peer-to-peer alternatives can potentially offer virtually unlimited storage [15,
46], they are still not appealing enough performance-wise. It is acknowledged [14, 79]
that those pure peer-to-peer architectures may fail to deliver reliable storage by only
exploiting the resources of peers. Indeed, peer-to-peer storage systems are limited by
the low to medium availabilities of participating peers and by the slow up-links of

11

1. Preliminaries on storage systems

peers’ network connections. This limits the amount of data that peers can transfer
and places peer-to-peer systems way behind datacenter-based systems [52]. Not only
this may impact the reliability of the stored content but also this does not provide a
convenient system for users. For example, retrieval times to store or retrieve data can
be an order of magnitude higher that the time required for direct download [66].

1.3.3 Hybrid

In order to move towards practical system deployment while still leveraging users’
resources, hybrid architectures, where both servers and peers coexist, have been very
recently proposed in various contexts [36]. They add some centralization for reliability
or efficiency while still leveraging the users’ resources at the edge of the network. For
example, a server assisted peer-to-peer storage system is described in [52]. In their
system, which can be referred to as CDN-assisted, the CDN enables to reduce the
time needed to backup data, while the use of peers guarantees that the burden of
storage and communication on the data center remains low. In this last approach, a
peer uploads data to a set of other peers if they are available, and falls back on the
datacenter otherwise, thus using the datacenter as a stable storage provider. However,
a centralized component remains in the system thus incurring scalability issues. The
first contribution of this thesis is precisely to decentralize the stable storage provider
of the hybrid scheme. To this end, we propose an architectural solution described in
the following chapter.

12

C
h

a
p

t
e

r

2
Increasing the available bandwidth

In this chapter, we propose a gateway-assisted architecture for peer-to-
peer storage systems, where residential gateways are turned into a stable
buffering layer in between the peers and the Internet. Due to their high
availability, gateways provide a stable rendez-vous point between users’
uptime, thus masking the asynchrony between them. As a result, the
amount of data they can exchange is greatly increased thus reducing the
time for backup and restore operations. This work has been published in
the proceedings of the IEEE International Conference on Peer-to-Peer
Computing in 2011 (P2P 2011).

2.1 Introduction

Existing peer-to-peer approaches, either hybrid [36,52] of fully decentralized [21,49,50,
55,75] usually do not take into account the low-level structure of the network. Indeed,
most peer-to-peer applications ignore the presence of a gateway in between each peer
and the Internet. As a result they do not leverage the presence of the gateway while
it can greatly improve the overall performance of the system.

We believe that leveraging the gateway storage space may render peer-to-peer
systems viable alternatives for storage. This should provide a reasonable solution even
when peers experience a low availability as long as they connect frequently enough to
the system. The residential gateways are ideal to act as stable buffers: they lay at
the edge of the network between the home network and the Internet, and are highly
available since they remain powered-on most of the time [82].

The remainder of this chapter is structured as follows. In Section 2.2, we remind
the basics about gateways and then detail our architecture. Section 2.3 introduces
a framework for comparison of our proposal to that of competitors, and Section 2.4

13

2. Increasing the available bandwidth

10000

13000

16000

19000

22000

25000

Jul 1
Sep

1

N
ov

1

Jan
1

Feb
11

G
at

ew
ay

s
u

p

School holidays in France

Figure 2.1: Availability of residential gateways mesured on a French ISP. The dataset
has been acquired sending pings to a random sample of gateway IPs.

presents our evaluation study. We discuss respectively some specific points and related
work in Section 2.5 and Section 2.6. Finally, we conclude this chapter in Section 2.6.

2.2 A gateway assisted system

Residential gateways connect home local area networks (LAN) to the Internet. They
act as routers between their WAN interface (Cable or DSL) and their LAN interfaces
(Ethernet and WiFi). They started to be deployed in homes to share Internet access
among different devices and got additional functions as services (VoIP, IPTV) were
delivered over the Internet. It is now fairly common to have home gateways embedding
a hard drive, acting as Network Attached Storage to provide storage services to other
home devices and offering some other ones to the outside world [33,82].

2.2.1 Stability of residential gateways

As residential gateways provide not only Internet connectivity, but also often VoIP,
IPTV and other services to the home, the intuition tells us that they remain perma-
nently powered on. To confirm this assumption, we extracted a trace of residential
gateways of the French ISP Free, using active measurements1. We periodically ping-ed
a set of IP addresses randomly chosen in the address range of this ISP, which has a
static IP addressing scheme. We obtained the uptime patterns of 25, 000 gateways

1This trace and additional information can be found at the following URL http://www.thlab.

net/~lemerrere/trace_gateways/ . To the best of our knowledge, this is the first trace tracking
availability of gateways.

14

2.2. A gateway assisted system

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

C
D

F

Total time spent up in hours

(a) CDF of Total uptime

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

C
D

F

Periods of unavailability in hours

(b) CDF of Dowtime duration

for 7.5 months, covering week-patterns [12,27], and holidays. We plot the availabil-
ity of those devices against time, in the classical representation of availability, on
Figure 2.2.1. Some clear acquisition artifacts appear due to both the unreliability
of the ICMP monitoring and temporary failures on the path between our platform
and the targeted network. Yet, the trace confirms the common intuition about the
stability of those devices, in spite of a few users having power-off habits (on a daily
or a holiday basis, see Figure 2.2b), thus slightly reducing the average availability.
The average availability of gateways in this trace is 86%, which confirms the results
observed in [82], where the authors used traces from a biased sample (only BitTorrent
users) [25]. This has to be contrasted with the low to medium availabilities of peers
generally recorded in the literature, as e.g. 27% in [52], or 50% in [41].

This increased stability makes gateways appealing candidates for backing peer-
to-peer services. The intuition is that data is temporarily stored on gateways to
compensate for peers transient availability. Note that we advocate the use of gateways
as buffers and not storage. This choice is motivated by the increasing number of
devices embedding storage, within the home and attached to a gateway. Dimensioning
the storage of the gateway accordingly would be costly and would break the peer-to-
peer paradigm by creating a central point in charge of hosting resources of attached
devices durably: the contributed resources would no longer scale with the number
of clients. In our buffer model, each device is required to provide a portion of its
available space [15,46], to participate to the global backup system.

2.2.2 System rationale

Our architecture is specifically tailored for the current architecture of residential
Internet access. Indeed, most previous works assume that peers are directly connected
to the network (see Figure 2.2a) while, in most deployments, a residential gateway is
inserted in between the peers in the home network and the Internet. Hence, a realistic
low-level network structure is composed of (i) peers, connected to the gateway through
Ethernet or Wifi, (ii) residential gateways, providing the connection to the Internet,
and (iii) the Internet, which we assume to be over provisioned (architecture depicted
on Figure 2.2b). In our approach, we propose to use storage resources of residential

15

2. Increasing the available bandwidth

Internet
6-12h/24h

66 kB/s

(a) With passive gateways

Internet
7MB/s

6-12h/24h

66 kB/s

21h/24h

(b) With active gateways

Figure 2.2: A global picture of the network connecting the peers to the service. Those
end-devices are available 6 − 12h/day. If we allow the gateway, which is available
21h/day, to perform buffering, we can benefit from the speed difference between local
links (7MB/s) and ADSL links (66KB/s).

gateways, thus creating a highly available and distributed buffer to be coupled with
peers.

Such an architecture is appealing as it takes into account (i) the availability that
differs between peers and gateways, and (ii) the bandwidth that differs between the
LAN and the Internet connection. Firstly, the peers tend to have a low to medium
availability (i.e. from 25% or 6 hours/day on average on a Jabber trace, to 50% on a
Skype trace we introduce later on) while gateways have a high availability (i.e., 86%
or 21 hours/day on average). Secondly, peers are connected to the gateways through
a fast network (at least 7MB/s) while the Internet connection (between gateways
and the Internet) is fairly slow (i.e. 66 kB/s on average for ADSL or Cable). Our
architecture exploits the major difference of throughput between the LAN and the
Internet connection (WAN) by offloading tasks from the peer to the corresponding
gateway quickly, thus using the Internet connection more efficiently (i.e. 21h/day
instead of only 6 − 12h/day on average).

This enables the large-scale deployment of online storage applications by fixing the
issues provoked by the combination of slow up-links and short connection periods (as
in the case of pure peer-to-peer). These issues are becoming increasingly important as
the size of the content to backup increases while ADSL bandwidth has not evolved

16

2.2. A gateway assisted system

significantly over the past years. For example, uploading 1GB (a 300 photo album) to
online storage requires at least 4h30 of continuous uptime. Hence, these applications
require users to change their behavior (e.g let their computers powered for the whole
night to be able to upload large archives); this limits their deployment and makes
automated and seamless backup close to impossible. Our approach precisely aims at
combining peers’ fast but transient connections with gateways’ slow but permanent
connections. Following this logic, if peers upload directly to the Internet, they can
upload on average 1.4-2.8GB/day (Fig. 2.2a); if we consider that the gateway is an
active equipment that can perform buffering, a peer can upload 148-296GB/day to
the gateway and the gateway can upload on average 4.8GB/day (Fig. 2.2b). We then
advocate that turning the gateway into an active device can significantly enhance
online storage services, be they peer-to-peer or cloud systems.

In the last part of this section, we propose the design of a gateway-assisted peer-to-
peer storage system (GWA) based on these observations, and relying on two entities:
(i) users’ gateways, present in homes and providing Internet connectivity, and (ii)
peers, being users’ devices connected to the Internet (through a gateway) and having
some spare resources to contribute to the storage system.

2.2.3 Gateway-assisted storage system

We consider a general setting to backup data to third parties on the Internet, generic
enough for us to compare approaches from related work in the same framework.

The content to be backed up is assumed to be ciphered prior to its introduction in
the system, for privacy concerns. The way on how this content can be located in the
distributed storage system is outside the scope of this work. We consider that users
upload data from one peer, under the form of archives. In order to achieve a sufficient
reliability, the system adds redundancy to the content stored. To this end, it splits
the archive into k blocks, and adds redundancy by expanding this set of k blocks into
a bigger set of n blocks using erasure correcting codes [56] so that any subset of k
out of n blocks allows recovering the original archive. This enables to increase the file
availability as the resulting system-wide availability is

A =
n

∑

i=k

(

n

i

)

p̄i(1 − p̄)n−i (2.1)

where p̄ is the average availability of peers, which is smaller than A. In the rest
of this chapter, we set a target At for the system-wide availability so that n must
be the smallest n ensuring that A > At. Intuitively, the availability targeted by
the application is the portion of time a backed up data is online for restore. High
availability rates have been shown cumbersome to reach in dynamic systems [14], so a
reasonable trade-off should be considered [66].
For a backup operation, the client peer uploads the file and the redundancy blocks to

other peers as follows:

17

2. Increasing the available bandwidth

Peer and
Gateway 1

Gateway 2
(Buffer)

Peer 2

Sent at 8:00AM
while Peer 2
is offline

WAN LAN

Sent at 1:00PM
when Peer 2
comes back

Stored
temporarily

Figure 2.3: Backup operation: buffering a block at a random gateway

• 1. Prepare. As soon as it gets connected, the client peer starts pushing the
archive at LAN speed to its gateway, which buffers the data. At this point, the
data has been partially backed up but the final level of reliability is not yet
guaranteed.

• 2. Backup. In our system, the gateway is in charge of adding the redundancy;
this allows faster transfer from the peer to the gateway as a lower volume of
data is concerned. Once done, it starts uploading data to other gateways, at
WAN speed (left-hand side of Figure 2.3). Gateways are active devices that can
serve peer requests thus ensuring data availability and durability even if data
is not fully pushed to remote peers. Therefore, data can be considered totally
backed up when all blocks have reached the selected set of independent remote
gateways.

• 3. Offload. Finally, remote gateways offload, at LAN speed, the content to
their attached peers (right-hand side on Figure 2.3) as soon as the attached peer
becomes available.

A user can request access to its data at anytime; the success of immediate data
transfer from the storage system to the requesting peer depends on the targeted
availability of the backup, that has been set by the system administrator. To reclaim
backed up data, the role of all elements in the systems are reversed and the restore is
performed as follows:

• 1. Fetch. To access a data, the requesting client peer informs its gateway of the
blocks it is interested in. The client gateway carries on the download on behalf
of the client peer by contacting the remote gateways handling peers where the
data was uploaded. If the data was offloaded to some peer, it is fetched as soon
as possible by the corresponding remote gateway.

• 2. Restore. Then the remote gateway sends the data to the requesting client
gateway.

18

2.3. A comparison framework for backup schemes

• 3. Retrieve When the client gateway has succeeded in getting the whole
content (the data has been restored), it informs the client peer that its retrieval
request has been completed, as soon as it connects back.

2.3 A comparison framework for backup schemes

We extensively evaluate our approach through simulations, taking as inputs execution
traces of large-scale deployed systems. This section first presents the experimental
setup, the competing approaches, namely pure peer-to-peer (noted P2P hereafter)
and CDN-assisted (noted CDNA), and the performance metrics.

2.3.1 Parameters and data sets

The setting we described in previous section comes with the following set of parameters:
Network Bandwidth: On the WAN side (Internet connection), the bandwidth is

heterogeneous and set according to the traces from a study of residential broadband
networks [25]; it exhibits an average of 66 kB/s2. On the LAN side, we assume a
constant bandwidth of 7 MB/s, capturing both wired and WiFi connections in home
environments. The LAN bandwidth only impacts our gateway-assisted approach, as
other approaches suffer from the bottleneck at the WAN interface since they upload
data directly to devices in the WAN (peers or CDN).

Backup and Restore requests: The backup and restore user requests are modeled
with Poisson processes, which are known to match user requests [41], of parameters
λbackup and λrestore that represent the rate of backup and restore requests in the system.
Each request is related to one archive. We assume that all archives have the same
fixed size for all peers, typically representative of some large multimedia content (we
make this size vary). As a result, the behavior of peers is assumed to be homogeneous:
we are not aware of any trace giving hints about the real behavior of users within
peer-to-peer storage/backup systems.

Peer availability: In order to model the up-time of personal computing devices (i.e.
peers), we rely on two instant messaging traces. We only remove from the traces the
peers with an availability lower than 1%, since these have a behavior not compatible
with a backup application running in the background (e.g. people that have tried
Skype only once but never use it again).

• Skype In this trace [41] of about 1269 peers over 28 days, the average availability
of peers is 50%, which represents a medium availability when considering peer-
to-peer systems.

• Jabber In this trace, provided by the authors of [52], the average availability is
27%. We used a slice of 28 days containing 465 peers.

2Note that all amounts of data and bandwidth are given in bytes.

19

2. Increasing the available bandwidth

All peers strictly follow the behavior of the trace. In particular, since our backup
application runs in the background, client peers are not assumed to remain connected
during the whole backup (their presence follows the IM/Skype trace), as opposed
to the assumptions made in [52]. Note that these traces may however over-estimate
uptime period since people using Skype are likely to be online more often than the
average user.

Gateway availability: To model the up-time of residential gateways, we rely on our
gateway trace presented in Section 2.2. Since the gateway and peer traces have been
obtained independently, they do not capture the correlation between the behavior of
a peer and of the associated gateway. Hence, we randomly assign a gateway to each
peer. In order to avoid unrealistic scenarios where the peer is up while the gateway is
down, we assume a gateway to be available when one of its attached peers is up, to
allow communication between them: we rely on the gateway trace only for gateway to
gateway communication.

Redundancy Policy: As explained previously, the redundancy policy is based on
erasure correcting codes and is entirely determined by the number of blocks k each
archive is split into and by the targeted availability At, which is set by the administrator.
The backup is thus considered as complete when there are enough redundancy blocks
n backed up in the network to guarantee a system-wide availability of at least At. The
relation between the availability of peers and the values k and At has been studied in
papers studying in details redundancy policies [14, 56,84].

2.3.2 Competitors

We compare the performance of our GWA scheme against the two main classes of
related backup systems, namely P2P and CDN Assisted, within the same simulation
framework.

P2P The vast majority of peer-to-peer storage protocols historically presents a purely
decentralized system with one-to-one uploads/downloads, without servers [49, 75].
They assume that gateways are passive devices that cannot store and forward but only
route packets. This protocol is similar to the protocol we described in the previous
section but does not have active gateways acting as buffers.

CDNA A possible enhancement consists in introducing a CDN to mitigate the low
availability of peers [52]. The CDN is a central service in the core network, having
unbounded capacity. We consider the most peer-to-peer variant of the protocol in [52]
(i.e. the opportunistic one). In this protocol, the peers upload content to other peers
in priority and upload to the CDN only when the whole bandwidth is not used (i.e.,
not enough remote peers are available). This enables to lower time to backup by
avoiding waiting times. However, the CDN does not upload the content to remote
peers, but client peers eventually upload again to remote peers thus uploading twice
in some cases. Indeed, pricing schemes at CDN implies that uploading from the CDN
should be avoided so as to reduce costs. A schematical view is given in Figure 2.4.
The CDN never fails, hence, a single copy of the content on CDN is enough to ensure

20

2.3. A comparison framework for backup schemes

Internet
6-12h/24h

66 kB/s

Figure 2.4: A global picture of the network connecting peers and CDN, as used in [52].
Note that the CDN (Server) has an infinite capacity and 100% availability. However,
since the bandwidth used at the CDN is billed, the CDN is not used as a relay but
as another kind of end-storage (i.e. it does not upload content to other peers but
only stores content temporarily until the backing up peers have uploaded content to
enough peers.)

an availability of 100%. As a result, a data backup is successful as soon as s fragments
have been uploaded to the storage server and t fragments have been uploaded to the
peers so that the targeted availability is guaranteed, as stated in (2.2).

t
∑

i=k−s

(

t

i

)

p̄i(1 − p̄)t−i > At (2.2)

p̄ is the average availability of a peer and At is the targeted availability.

2.3.3 Simulation setup & Performance Metrics

We implement a cycle-based simulator to compare our GWA architecture with the
two aforementioned alternatives. Depending on the simulated architecture namely
P2P, GWA or CDNA, the system is respectively composed of only peers, peers and
gateways, or peers and a CDN. Devices transfer their data depending on their upload
bandwidth and on their behavior, which are trace-driven for peers and gateways while
CDN is always up. We evaluate the time for each backup or restore request to be
completed, while measuring the storage needs of the system.

In our simulations, the redundancy policy relies on the following values kskype = 16,
kjabber = 8, At = 0.7, p̄skype = 0.5 and p̄jabber = 0.27 leading to nskype = 35 and
njabber = 33. We assign to each peer a set of n distinct remote peers in a uniform
random way, for example using the hashing scheme of a distributed hash table. When
a given peer requests a data backup operation, the n encoded blocks are placed on its
set of n remote peers.

21

2. Increasing the available bandwidth

At each cycle, backup and restore requests are generated among peers according
to the previously defined Poisson processes. Note that a backup request is uniformly
distributed among the set of online peers, while a restore request is uniformly dis-
tributed among the set of peers whose data has already been fully backed-up (i.e. all
blocks have been offloaded on remote peers). The rate of backup requests is set so
that each peer requests to store about three archives of 1GB per month on average
(i.e. λbackup = 0.4 and λrestore = 0.05 for the Skype trace).

Once all backup and restore requests have been distributed among the peers, each
device (i.e. peer or gateway) transfers as much data as its upload bandwidth allows
for the duration of the cycle (i.e. since residential connections are asymmetric, we
assume that the system is bounded by the upload bandwidth of devices). If the remote
device is offline, the client device has to wait until its reconnection.

Our simulations were conducted with a cycle time-step set to 5 minutes. Figures
report the average behavior over 50 simulations. We evaluate the three systems
according to the following four metrics:

Time to backup, noted TTB. A backup request is considered successful when the
data is stored safely. Safe storage is achieved when n blocks have been uploaded to
the CDN and the remote peers for CDNA, to the remote gateways for GWA, and to
the remote peers for the P2P thus satisfying the targeted availability described earlier.
The time to backup is evaluated as the difference between the time the nth block has
been downloaded and the time of the backup request.

Time to offload, shown on the same plots as TTB. A variant measure for both
CDNA and GWA is the time to fully offload an archive to the remote peers. This
means that no data is left on the CDN or on gateways, accordingly. We note this
variant CDNAp and GWAp respectively.

Time to restore, noted TTR. A restore request is considered successful as soon as
the data is restored safely at the user’s place, that is to say when at least k blocks have
been retrieved on the client peer, or on the gateway of the client peer for GWA. The
time to restore is evaluated as the difference between the time the kth block has been
downloaded and the time of the restore request. We measure this time for random
files after a long enough period, so that the selected files have been offloaded to peers.
This represents the worst case for TTR, and this assumption reflects the fact that
restore requests are more likely to happen long after backups.

Data buffered. It describes the size of the buffer that is required on gateways, for
dimensioning purposes. We measured the maximum and the average amount of data
stored on those buffers.

22

2.4. Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
D

F

Hours

CDNAp & P2P

GWA

CDNA

GWAp

CDNAp

P2P

(a) TTB (Skype trace)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
D

F

Hours

CDNA & P2P

GWA

CDNA

P2P

(b) TTR (Skype trace)

Figure 2.5: CDF of Time to Backup and Time to Restore for the Skype trace

2.4 Results

2.4.1 Time to backup & restore results

We first evaluate the performance of our approach to backup and restore data with
regard to time. We plot the experimental cumulative distribution function (CDF) for
TTB and TTR arguably the most critical metrics from the users’ standpoint. CDF(t)
represents the cumulative number of requests that have been completed after t hours.

Figure 4.6a depicts the TTB for the Skype trace. Results show that our gateway
assisted approach improves the TTB over the CDNA approach3. Both considerably
improve the performance over the P2P approach. Our GWA completes 90% of backup
in 30 hours, the CDNA completes 90% of backups in 60 hours and the P2P completes
90% of backups in 140 hours. A consequence of this improvement is that data is
backed up faster, reducing the window of potential losses.

3Note that results for CDNA are consistent with simulations made in [52], with an improvement
factor between 2 and 3 over P2P storage

23

2. Increasing the available bandwidth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
D

F

Hours

CDNAp & P2P

GWA

CDNA

GWAp

CDNAp

P2P

(a) TTB (Jabber trace)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
D

F

Hours

CDNA & P2P

GWA

CDNA

P2P

(b) TTR (Jabber trace)

Figure 2.6: CDF of Time to Backup and Time to Restore for the Jabber trace

Along the performances of P2P , CDNA and GWA, we also indicate those of CDNAp

and GWAp. In GWA and CDNA, once the data is backed up (i.e. it is stored safely at
some place being the remote gateways or the CDN), the backup process continues by
offloading the data hosted on the remote gateways or on the CDN to the remote peers
(i.e. until no data is left on the remote gateways or on the CDN). This process takes
some time and its total duration is shown as GWAp and CDNAp. It is interesting to
observe that while the CDNA does not enhance this time when compared to P2P
(P2P curves and CDNAp curves are superimposed on all plots), our GWA approach
improves this time significantly, reducing it from 140 hours to 90 hours (for 90% of
backups to be offloaded).

We plot the time to restore for the Skype trace on Figure 4.6b. Results show that
the TTR of our GWA approach is significantly reduced when compared to GWA and
P2P approaches. Our GWA allows 90% of restores to be completed in less than 3
hours while both CDNA and P2P require 40 hours to complete 90% of restores. This
makes the system much more user-friendly, when it comes to retrieving lost files.

In order to show that these results are not trace-dependent, we run the same set

24

2.4. Results

20

40

60

80

100

120

140

160

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
T

B
(H

o
u

rs
)

Availability targeted

P2P

CDNAp

GWAp

CDNA

GWA

(a)

0
5

10
15
20
25
30
35
40
45
50
55

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
T

R
(H

o
u

rs
)

Availability targeted

P2P

CDNA

GWA

(b)

Figure 2.7: Results (Skype trace), as a function of availability target, 90th percentile.
Labels follow the order of the curves.

of experiments on a trace exhibiting a lower peer availability, namely the Jabber
trace. We observe similar results. Previous observations hold as the time to backup
(Figure 2.6a) for our GWA is reduced when compared to both CDNA and P2P.
Similarly, the time to restore is also reduced (Figure 2.6b). Overall, the absolute times
are increased when compared to results observed over the Skype trace because of the
lower average availability of peers in this trace (25% instead of 50%).

Note that the absence of full convergence in some cases is due to some peers leaving
the network for good before the backup is complete and because the trace duration is
limited.

In the remaining part of this section, we evaluate the impact of other parameters,
namely the targeted availability At, the number of blocks k, the number of peers
involved in the system and the amount of data to backup and restore (i.e. the archive
sizes) on both the TTB and TTR. We vary parameters one by one, keeping the other
parameters to the values previously defined. Previous results have shown that some
small part of backups may take significantly more time to complete than average;
this somehow introduces a bias in observation of the system. In the following results,
we will then consider the 90th percentile for all approaches, in order to gain clear
insights from systems’ trends (i.e. the times displayed are the time so that 90% of
the operations have been completed). The behavior, for one set of parameters, of the
remaining 10% can be seen on the previously described CDF.

2.4.2 Influence of targeted availability

On Figure 2.7a, we plot the opposed variations of TTB and TTR when the targeted
availability changes. We observe that the TTB increases when the targeted availability
increases. This is due to the fact that achieving a higher availability for the file
requires uploading more data, to introduce more redundancy. However, as shown
on Figure 2.7b, increasing the targeted availability (i.e., the amount of redundancy
introduced) helps to reduce the TTR. As a result the targeted availability is a tradeoff

25

2. Increasing the available bandwidth

Table 2.1: Additional storage costs induced by various target availabilities, when
compared to our reference target of 0.7

Target availability 0.5 0.7 0.9 0.95 0.99 0.995
Jabber (k=8) −12% - 27% 39% 67% 79%
Skype (k=16) −11% - 14% 20% 34% 40%

between having a low TTR and keeping the TTB reasonable. We observe that the
improvement of our GWA approach is very significant over CDNA or P2P approaches.
This is due to the fact that our approach represents a paradigm shift: the data is
now considered as restored when stored in the home of the requester (on its gateway).
Indeed, this prevents exterior factors such as block losses in the system from having
any impact. When the requesting peer comes back online, it can seamlessly fetch
data in order of minutes from its gateway, making this step nearly transparent when
compared to operations at WAN speed.

Another aspect is impacted by the availability setting of the storage system: increas-
ing the targeted availability requires to store more redundancy blocks thus increasing
the storage costs per peer, as shown on Table 2.1. Hence, keeping the targeted
availability reasonably low helps to keep storage costs per peer low thus increasing
the total amount of data that can be backed up. In the remaining simulations, we
choose to use a medium value of 0.7 for that targeted availability.

2.4.3 Influence of code length k

Increasing the code length k (i.e. the number of blocks required to decode) slightly
improves both TTB and TTR, as shown on Figures 2.8a and 2.8b. However, increasing
k also increases some side costs such as coding and decoding costs. As a consequence,
we choose to set k = 16 to leverage the code properties while retaining low coding
and decoding costs.

20
40
60
80

100
120
140
160
180
200
220
240

0 5 10 15 20 25 30 35

T
T

B
(H

o
u

rs
)

k

P2P

CDNAp

GWAp

CDNA

GWA

(a)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

T
T

R
(H

o
u

rs
)

k

P2P

CDNA

GWA

(b)

Figure 2.8: Results (Skype trace), as a function of k, 90th percentile.

26

2.4. Results

20

40

60

80

100

120

140

200 400 600 800 1000 1200

T
T

B
(H

o
u

rs
)

Peers

P2P

CDNAp

GWAp

CDNA

GWA

(a)

0

5

10

15

20

25

30

35

40

45

50

200 400 600 800 1000 1200

T
T

R
(H

o
u

rs
)

Peers

P2P

CDNA

GWA

(b)

Figure 2.9: Results (Skype trace), with a varying network size, 90th percentile

2.4.4 Influence of the network size

Next, we evaluate the influence of the number of peers participating in the system by
varying the number of peers from 200 to 1269 (all the peers of our trace). We also
set the parameters for the restore and backup events so that on average each peer
performs around 3 backup requests per month and 3 restore requests per year, similarly
to what was done for all other simulations. Our results are shown on Figures 2.9a
and 2.9b. Both TTB and TTR remain constant. Our simulations are limited by the
total number of peers present in the trace; yet, we observe on this moderate scale
that our system is likely to be scalable in the number of participating peers, as no
bottleneck occurs at some gateways, which could have increased the TTR. Note that
these constant TTB and TTR are consistent with the fact that the load (backup and
restore requests) per peer is constant.

2.4.5 Influence of the data size

In order to assess the gains with respect to the usability of GWA, we plot the evolution
of the TTB (Figure 2.10a) and the TTR (Figure 2.10b) as the amount of data to
backup increases. Our architecture enables to leverage the difference of bandwidth
between the local network and the Internet connection in order to use the uplink more
efficiently (21h/24h instead of only 12h/24h); clearly, in this case, it enables users to
backup larger amounts of data (here by a factor of 2). Note that our simulations are
limited by the trace length (28 days).

2.4.6 Buffer dimensioning

For dimensioning purposes, we evaluate how much disk space should be provisioned
on the gateways in order to implement our backup service. Figure 2.11 shows the
CDF of maximal storage at gateways resulting from 1GB archive backups, at any
time, on the Skype trace (i.e. the worst case space occupied on any gateway at any
simulation step). Storage needs remain within reasonable bounds: 99% of gateways

27

2. Increasing the available bandwidth

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

T
T

B
(H

o
u

rs
)

Archive size (GB)

GWA

GWAp

CDNAp & P2P

P2P

CDNAp

GWAp

CDNA

GWA

(a)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10

T
T

R
(H

o
u

rs
)

Archive size (GB)

CDNA

P2P

GWA

(b)

Figure 2.10: Results (Skype trace), with a varying amount of data to backup, 90th
percentile

have stored at most 2.5GB of data at anytime. In a deployment scenario, if we limit
the provisioned storage to 2.5GB at each gateway, the remaining 1% of gateways
could ask peers pushing blocks to delay their query until their buffers have emptied,
without impacting performance since it would impact less than 1% of peers and would
occur only exceptionally.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Provisionned Buffer (Max in GB)

Total

Figure 2.11: Maximal storage measured on gateways at any time (Skype trace)

Buffers are used in burst mode for relatively short periods of time, as shown on
Figure 2.12, which plots the average of the same storage functionalities for the whole
trace period: the average is negligible compared to the maximum presented on the
previous figure. Furthermore, we observe that data is effectively offloaded since
nothing remains on buffers when no new backups are requested (on the simulations,

28

2.5. Discussion

we performed backups only for the 13 first days) thus confirming results shown on
previous curves for GWAp.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

B
u

ff
er

C
o

n
su

m
ed

at
ea

ch
p

ee
r

(A
v
er

ag
e

in
M

B
)

Time (Hours)

Total

Figure 2.12: Average storage measured on gateways (Skype trace)

These results are related to our model where each gateway hosts one peer. The
storage requirements would increase if multiple peers are behind each gateway. How-
ever, we study residential gateways, which are shared among a very small number of
users. The storage requirements increase at most linearly with the number of users
and hence would remain rather low as only a few peers are behind each gateway.

2.5 Discussion

Our results clearly indicate that our proposal efficiently distributes the centralized
buffer scheme of [52], while increasing general backup performances and represents a
significant improvement over previous approaches.

The Web architecture, in particular when considering CDN, relies on cache servers
close to clients [54]. However, these servers are located within the Internet and cannot
benefit from the difference of throughput between the local home network and the
Internet: our system relies on the specific place of the gateway in between the home
network and the Internet to leverage this difference. Moreover, cache servers are
generally passive (e.g., HTTP proxy) while in our system, the gateway is not only a
cache but also an active participant that can serve directly other peers when data is
requested.

Additionally, from the user’s standpoint, our storage system could enable the
bandwidth usage to be smoothed to provide users with a more transparent service
(i.e. using the upload for backup when users are not using their computer/Internet

29

2. Increasing the available bandwidth

connection). Indeed, using an important part of the upload bandwidth to quickly
complete the backup operation, may severely affect the user’s experience of Internet
browsing or activity. A user’s gateway is able to upload, as long as there is some
available bandwidth and even if the user’s computer is turned off (typically nightly).
A similar advantage, appealing for Internet and service providers [51], is that such an
architecture enables the implementation of scheduling policies for delaying transfers
from gateways to the Internet so as to smooth the usage of the core network.

Lastly, this method also solves another issue that might appear when the distributed
application operates worldwide. It has been shown that peers’ availability patterns can
vary according to local time (depending on geographical location) [12,27]; in systems
where some resources are insufficiently replicated, this could lead to an asynchrony
of presence between a requesting peer and another peer hosting the resource. At
best, the overlap of presence of both peers is sufficient to download the file, while
it may also require a few sessions to complete, due to insufficient time overlap. As
our GWA proposal relies on the hosting peer to upload the requested file to a more
stable component (its gateway), asynchrony is no longer an issue as gateways provide
stable rendezvous point between requesters and providers. This is of interest for
delay tolerant applications such as backup, allowing the service to be operated with
much lower costs on storage. Beyond the practical problem of using gateways in
home environments, our solution then makes the case for leveraging clouds of stable
components inserted in the network, to make them act as buffers in order to mask
availability issues introduced in dynamic systems.

2.6 Related Work

We compared our approach to the peer-assisted one presented in [52] that leverages
a central server and offloads backed up data to peers when they become available.
Such a server-centric approach is also to be found in [36], where authors propose an
hybrid architecture coupling low I/O bandwidth but high durability storage units
(being an Automated Tape Library or a storage utility such as Amazon S3 [1]) with a
P2P storage system offering high I/O throughput by aggregating the I/O channels
of the participating nodes but low durability due to the device churn. This study
provides a dimensional and system provisioning analysis via an analytical model that
captures the main system characteristics and a simulator for detailed performance
predictions. The simulator does not use real traces but synthetic ones, mainly to be
able to increase the failure density and to reveal the key system trends. This work
explores the trade-offs of this hybrid approach arguing it is providing real benefits
compared to pure P2P systems [21,49,50,55,75]. Durability of the low I/O bandwidth
unit is considered as perfect, but it always comes at a certain cost. In our approach,
we do not assume we have such nodes and show that our approach is sustainable
under real availability traces. Finally, FS2You [58] proposes a BitTorrent-like file
hosting, aiming to mitigate server bandwidth costs; this protocol is not designed to

30

2.6. Related Work

provide persistent data storage.
The increasing power of residential gateways has enabled numerous applications to

be deployed on them. This may allow savings in terms of power. One widely deployed
system is the implementation of BitTorrent clients in those boxes (see e.g. FON [3]),
which avoids the user to let her computer powered on [33]. Another example is the
concept of Nano Data Centers [82], where gateways are used to form a P2P system to
offload data centers. Similarly, some approaches were proposed to move tasks from
computers to static devices as set-top boxes, for VoD [47] and IPTV [19]. Yet, those
applications fully run on gateways while, in our approach, the gateway only acts as
buffering stage.

Summary

This chapter addresses the problem of reducing the impact of churn on the available
bandwidth. It has been widely acknowledged that availability of transient peers is a
key parameter, that can by itself forbid a realistic storage service deployment if too
low. We propose to address this inherently transient behavior of end peers by masking
it through the use of more stable hardware, already present in home environments,
namely gateways. Consequently, the available bandwidth of the system can be used
more efficiently, thus augmenting the amount of data users can exchange. Our
experiments, based on real availability traces, show that this architectural paradigm
shift, significantly improves the user experience of storage systems over previous
approaches, while remaining scalable.

We also provide a new trace of gateway availabilities, which is of interest for
trace-based simulation of systems built upon gateways. As future works, it would
be interesting to acquire a trace of user behaviors with respect to storage demand in
peer-to-peer systems.

31

C
h

a
p

t
e

r

3
Reducing the maintenance

bandwidth
This chapter aims to reduce the maintenance bandwidth and presents
two distinct contributions. In the first one, we propose to act at the
upstream level of the maintenance, during the failure detection process. In
order to avoid unnecessary bandwidth consumption due to incorrect failure
detections, an adaptive and node-level timeout mechanism is described. The
second part of this chapter presents a repair protocol especially designed
for erasure-coded stored data. The proposed repair mechanism enables to
repair multiple files simultaneously, thus factorizing the bandwidth costs.
The first part of this work has been published in the proceedings of the
IEEE International Symposium on Reliable Distributed Systems (SRDS
2012). The last part is under submission to date.

While the work presented in the last chapter aimed at increasing the available
bandwidth to the user, the contributions described in this chapter concentrates on
the reduction of the maintenance bandwidth. As already explained in section 1.2.4, a
storage system has to provide a reliable maintenance mechanism over time so as to
ensure data durability. This maintenance incurs a high bandwidth consumption and
is of particular interest to minimize in order to avoid system congestion.

3.1 During detection: Adaptive node-level

timeout

When designing a repair mechanism, the first crucial challenge is to decide when to
trigger a repair. In other words, how to distinguish permanent failures requiring a
repair from temporary disconnections. In the latter case, a repair may turn out to

33

3. Reducing the maintenance bandwidth

be useless, consuming bandwidth unnecessarily. A common and practical solution to
decide on the nature of a failure is to use a timeout. Typically, once a node has not
replied to a solicitation after a timeout has expired, it is considered as permanently
failed. However deciding on a timeout value is difficult, especially at the scale of
the entire system. More specifically, nodes may exhibit various availability patterns:
defining a systemwide timeout value might not be optimal. Deciding on a value for
an administrator is also a tedious and difficult task.

3.1.1 Introduction

In this chapter we take up the challenge of tackling the question When should the
system conclude on a transient or a permanent failure thus triggering a repair?
We argue that a one-size-fits-all approach is not sufficient and that the statistical
knowledge of every single node availability, as opposed to system-wide parameters,
provides a means to tackle those questions efficiently. In other words, while most
previous works have either assumed that nodes are homogeneous or that simple
averages on behaviors are representative, we account for the heterogeneity of nodes
availability, in order to decide when repairs should be triggered.

Our repair mechanism trades traditional system-level timeout based on network-
wide statistics against a per node timeout, based on the node availability patterns.
Nodes self-organize to compute their adapted timeout in a probabilistic way, according
to their own behavior and to the current redundancy factor.

The rest of this chapter is organized as follows: first we present our main motivations
for this work in Section 2. Section 3 introduces the assumptions we consider. Our
timeout strategie is then detailed in Sections 5 respectively. Then we present related
work and conclude in Sections 7 and 8.

3.1.2 Related Work

Pioneer failure detection mechanisms in storage systems [22] were using eager repair,
i.e. the system immediately repairs the loss of data as soon as a host failure is detected.
However, this repair process is extremely bandwidth consuming as it does not take
into account that failures can be transient. In [13], repairs are deliberately delayed
in an attempt to mask transient failures. In [42], the authors suggest using a high
redundancy level in order not to generate a repair in case of failure, providing data
durability even if correlated failures occur; nevertheless, the counterpart is that the
price in terms of generated storage overhead is very high. In [31], availability knowledge
is used to adjust the repair rate of the system as a whole, not at the node level. The
designers of Carbonite [20] were the first to place reintegration (ie. reintegrate replicas
which have been wrongfully considered as failed) as a key of conceiving a functional
distributed storage system. With regard to the distinction between transient and
permanent failures some authors have recently proposed advanced timeout design. The
authors in [69] analyze the use of timeout in a stochastic model and compare solutions

34

3.1. During detection: Adaptive node-level timeout

with reintegration against standard ones. The approach of [81] is the closest to ours.
However their proposed algorithm mainly focuses on the accuracy of instantaneous
detection but does not consider the impact of the false positive or false negative
errors on the average data availability. The authors of [85] are the first to model
node behavior with a continuous semi-Markov chain, which does not require the
use of exponential distribution. However, they always assume a scalar value and a
homogeneous availability.

3.1.3 Leveraging predictability and heterogeneity

In this section, we review the two motivations of our availability-aware timeout, namely:
(i) leveraging node predictability with respect to availability, and (ii) accounting for
heterogeneous node availability patterns.

Availability and Predictability

Many originally proposed distributed storage systems do not explicitly deal with
specific availabilities of nodes [22]. In quest for performance, some works have
identified trends in the availability of the hosting resources [12, 15, 27, 53]. The
important question of leveraging predictability has then been addressed [53, 60] to
handle transient failures efficiently.

In this chapter, we propose to leverage this observed predictability in the behavior
of nodes to provide an adapted timeout design that overcome availability-agnostic
ones.

Heterogeneous availability patterns

Most of the systems that account for availability of resources rely on a single system-
wide parameter, typically the mean or the distribution of availabilities of all nodes
of the system [13,81,85]. While it is convenient to apply theoretical models such as
Markov models or basic probabilities for the amount of redundancy to create, recent
studies highlight why such models have limited applicability in practice [32,40].

While some storage systems use platforms such as home gateways [82] that have a
homogeneous and high availability, the majority of peer-to-peer deployment platforms
exhibit a non-negligible heterogeneity in practice. To illustrate our claim, we plot on
Figure 3.1 the mean and the standard deviation of availabilities of nodes composing
systems such as Microsoft desktop computers, Skype or PlanetLab. Those availability
traces, from scientific publications, are made available in a repository [6]. The figure
shows a significant variance in node behavior. This is confirmed in a recent storage
system analysis [52]. This trend is even more striking for the two rightmost systems.
This demonstrates that availability cannot be accurately expressed by a basic scalar
mean trying to represent the overall trend of the fraction of time nodes are up.
Furthermore, reducing availability to a mean or a distribution [63] ignores information

35

3. Reducing the maintenance bandwidth

�

���

���

���

���

�

�	A BCDEF�CE �F���E��� ����C���D 	����C A�� C

!
"
�
F��
D
F�F
��
#�
C
�
�

Figure 3.1: Availability mean and deviation for various existing systems

about node availability patterns while such information could be leveraged to increase
the reliability of distributed storage systems [53,60,76]. Finally a recent study [65]
confirms that disregarding heterogeneities in nodes availabilities affects negatively the
performance of peer-to-peer storage systems.

3.1.4 Assumptions

Our availability-aware solution is specifically designed to be applied to any type of
network logic where nodes may exhibit temporary and possibly recurrent, periods of
unavailability. Systems with a near-perfect availability of their components obviously
have no need for such a study. Furthermore, even systems exhibiting unpredictability
of some significant part of nodes of the network can leverage our approach. Note that
there is a direct relation between a repair and the bandwidth consumed to perform it.
In the following, we evaluate the bandwidth consumption as the number of repairs.

In order to exploit information on node availability, our system must keep track
of a limited history of those availability and unavailability periods. In practice, such
availability history can be maintained by one or a few servers, the node itself providing
it on demand, or by a distributed monitoring system if nodes cannot be trusted [61].
This availability history is represented as a vector of a predefined size (acting as a
sliding window of time). For each time unit, the corresponding vector entry is set
to 1 if the particular node was online at that time and −1 otherwise. We assume
one-week history vectors and a one-hour time unit in the following. This length has
been shown to capture most user behaviors accurately (e.g. diurnal and week end
presence patterns) [12, 27,53,60].

36

3.1. During detection: Adaptive node-level timeout

We assume that the set of all storage nodes is partitioned into disjoint clusters,
such that any node belongs to one, and only one cluster. Each file to store is encoded
using an erasure code (k,n), and is randomly assigned to a single cluster. All the n
encoded blocks of a given file are then stored on the n nodes of the same cluster (each
cluster is thus composed of n distinct nodes). All nodes are monitored, either by a
monitoring server, or through gossip for example [53, 76]: each node in a cluster then
monitors other cluster nodes to detect failures.

Finally, as our aim is a pragmatic study of what can be achieved beside purely
theoretical models for placement or timeouts, we use as a basis publicly available
traces, that have been deeply studied in their respective original papers [6]. Those
traces come from a wide range of systems; when applying techniques on them, the
goal is to underline tendencies for the associated kind of availability they exhibit,
more than just proposing a specific improvement for a narrow range of systems.

3.1.5 Per-node & adaptive timeout

This section describes how the timeout value is made both adaptive and per-node.
Remember that in a cluster, all nodes are monitored; therefore for each node disconnec-
tion, a timer is started and runs until reconnection (either on a monitoring server, or
by cluster nodes themselves, as explained in Section 3.1.4). The cluster is then aware
of the unavailability duration of each disconnected node. As in the classical timeout
model, if the unavailability period of a given node exceeds its timeout value, the node
is considered as permanently down and the system provides this cluster with a new
node to be used to repair the lost encoded block. As opposed to most approaches
that set a system-wide timeout, we aim at determining an accurate timeout value
reflecting each node’s behavior with respect to availability. This tends to suggest
that one might analyze node failure detection in a standard model of decision making
under uncertainty. In fact the a priori probability for a given system is too coarse to
provide usable information for each given node.

Contrarily, adding extrinsic information, such as the availability patterns of a given
node, might help when observing a given unavailability time to evaluate the probability
that this node will return, therefore that the disconnection (the failure) is transient.
To illustrate our purpose, let us consider the following example: if a node, usually
always available, is detected unavailable for a few hours, the probability that it will
reconnect is low, and it gets lower as time passes. On the contrary, let us consider a
node subject to a diurnal availability pattern. If such a node is detected unavailable
for a few hours, the probability that it will reconnect is high. Hence, considering
statistical knowledge at a node granularity is useful to determine the probability that a
node will reconnect (i.e. the failure is transient). This motivates the need for per-node
timeouts in heterogeneous systems.

In systems implementing reintegration, it may be the case that a node, wrongfully
declared as permanently failed, is reintegrated after the repair has taken place. This
yields the presence in the cluster of more encoded blocks than the n required. In our

37

3. Reducing the maintenance bandwidth

approach we propose to adapt each node’s timeout dynamically to account for such
situations. In case of an excess of encoded blocks, this is translated in our adaptive
method by setting a less aggressive timeout for each cluster node.

Timeout model

The novelty of our timeout model is to be constructed at the node granularity. The
model described below is then defined for each node, depending on its own attributes.

After the failure of a node, we call H0, the event representing the fact that the node
will return into the system and H1, the event representing the fact the node will not
return into the system. H1 and H0 are two disjoint events then Pr(H1) = 1 − Pr(H0).
Pr(H0) is the a priori probability that the node will return into the system. Pr(H0)

is evaluated as the ratio between transient failures and all failures (either transient
or permanent) in the system directly computed on a server. Note that this a priori
probability could also, for example, be estimated from an aggregation protocol in a
decentralized way. Let tdowntime be the duration of the current downtime of the node
and ttimeout the timeout value associated to this node. Let its downtime distribution
be fd; this distribution verifies

∫ ∞
(t=0) fddt = 1; then

Pr(tdowntime > ttimeout | H0) =
∫ ∞

(t=timeout)
fddt

By definition Pr(tdowntime > ttimeout | H0) ∈ [0, 1] and Pr(H0) ∈ [0, 1]. Pr(tdowntime >

ttimeout | H0) then corresponds to the statistical knowledge on each node behavior.
In fact as the availability history of each node is stored, its downtime probability
distribution can be computed, and then also Pr(tdowntime > ttimeout | H0) depending on
the timeout value. By definition, Pr(tdowntime > ttimeout | H1) = 1 and Pr(tdowntime <

ttimeout | H1) = 0. If the node does not come back into the system, on the one hand
its downtime will be superior to any timeout value, on the other hand its downtime
cannot be inferior to any timeout value. We also note:

PF A = Pr(H0 | tdowntime > ttimeout)

PF A is called the False Alarm probability. PF A represents the probability that a node
comes back in the system while the system has decided that it would not (i.e. the
node has been timed-out). The higher the PF A, the more (probably) useless repairs
are tolerated. According to Bayes’ Theorem:

PF A =
Pr(H0 ∩ (tdowntime > ttimeout))

Pr(tdowntime > ttimeout)

PF A =
Pr(H0) × Pr(tdowntime > ttimeout | H0)

Pr(tdowntime > ttimeout)

38

3.1. During detection: Adaptive node-level timeout

PF A =
Pr(H0) × Pr(tdowntime > ttimeout | H0)

[Pr(H0) × Pr(tdowntime > ttimeout | H0)] + 1 − Pr(H0)

leading to :

PF A =
Pr(H0) × Pr(tdowntime > ttimeout | H0)

1 + Pr(H0) × [Pr(tdowntime > ttimeout | H0) − 1]
(3.1)

The definition interval of PF A is then [0, Pr(H0)].
To sum up, Equation (3.1) expresses the false alarm probability as a function of

the a priori probability that a node will eventually come back into the system and of
its downtime distribution. This expression is necessary to compute per-node timeouts,
as explained in the next section.

Computing an adaptive per-node timeout

The scheme presented hereafter is performed in each cluster at each time unit (order
of hours or days, depending on the stability of the system). Each cluster has to deal
with its departed and returning nodes. Returning nodes reintegrate their cluster. On
the contrary, if a node is timed-out and if the cluster size falls under n, the system
provides this cluster with a new node in order to create a new encoded block. Those
steps are performed periodically within each cluster:

• Update cluster so as to reintegrate wrongfully timed-out nodes & insert new
nodes to replace timed-out ones

• Compute false alarm probability (at the cluster level)

• Compute timeout of each node in the cluster

The false alarm probability varies depending on how critical the situation is, with
regard to the number of alive nodes in the cluster. We propose hereafter a method
used to evaluate this situation (note that this method is not proved as being an
optimal one, but just a practical example that we use for evaluation). At each time
unit, we compare the current number of available encoded blocks against the one
on the previous week. This difference, noted ∆, is positive if there are more blocks
currently than in the past, negative otherwise. Note that the only parameter measured
is the number of available blocks, regardless of which node stores them. If there is no
difference, the false alarm probability is defined as the half of its interval of definition
so PF A = Pr(H0)/2. We define the step of variation as Pr(H0)/n, with n the initial
number of nodes in a cluster. PF A is computed as: PF A = Pr(H0)/2 − (∆ · Pr(H0)/n).
At the end of this step, each cluster has a false alarm probability that is a function of
the measured criticality of the situation.

Once the false alarm probability has been determined in each cluster, each node is
able to specify its own timeout value. According to Equation (3.1) we have:

Pr(tdowntime > ttimeout | H0) =
PF A · (1 − Pr(H0))

Pr(H0) · (1 − PF A)

39

3. Reducing the maintenance bandwidth

(k=8, n=16) (k=8, n=24) (k=16, n=32) (k=16, n=48) mean
Savings 20.4% 32.9% 26.0% 41.6% 30.2%

Table 3.1: Reduction of the number of repairs (Skype)

∫ ∞

(t=timeout)
fddt =

PF A · (1 − Pr(H0))

Pr(H0) · (1 − PF A)
(3.2)

The timeout value is thus set so as to solve Equation (3.2). In practice, the timeout
value is incremented until the integral is greater than the right term.

3.1.6 Evaluation

We evaluate our per-node timeout on public traces. We compare the cost/availability
trade-off of our approach against systems using global timeout from aggressive (low)
to relaxed (high) values. Encoded blocks of false positive nodes are also reintegrated
in the global timeout simulation. We evaluate the trade-off on three different system
traces, namely PlanetLab, Microsoft and Skype. As in Section 2.3 nodes having an
uptime below 1% have been removed from the trace, resulting in a number of alive
nodes respectively equal to 308, 51, 313 and 1, 901. The simulation is performed on
a three-week period. The learning period is the first week, after which the history
window simply slides. In fact an initial availability history must be available so that
each node is able to compute its initial downtime distribution. Data availability mean
and number of repairs are then evaluated during the next two weeks. During these
two weeks downtime distributions of each node are updated following their behavior,
after each new end of a downtime session.

Each of the alive nodes stores one data item. We evaluate our approach and the
global timeout one along the following metrics: mean data availability and number
of repairs generated by timed-out nodes. Results for the Skype, Planet Lab and
Microsoft traces are respectively plotted on Figure 4.7, 3.3 and 3.4 for various code
parameters. The X-axis represents the mean of data unavailability in percent (i.e.
1 − availability). The Y-axis is the number of repairs per data item and per day, it
is equivalent to the number of timed-out nodes, as each of them triggers a repair.
Then unavailability versus the number of repairs is plotted for various values of global
timeout (10 to 80 hours in Figure 4.7a) and for the per-node timeout, in the classic
way of representing timeouts versus repairs, as done in recent papers [81,85].

Table 3.1, 3.2 and 3.3 respectively summarizes the savings on the number of repairs
depending on the code parameters, for the Skype, Planet Lab and Microsoft trace when
using adaptive timeout, compared to global ones. Savings are given in percent and
evaluated for equivalent availability which is linearly interpolated for global timeouts
and for each code parameters. For instance, for (k = 8, n = 16) (Figure 4.7a) the
interpolated point has coordinates (4 , 0.0495). For an equivalent unavailability of 4%

40

3.1. During detection: Adaptive node-level timeout

�����

����

�����

����

�����

����

�����

����

�����

����

	 � � � � � � A B 	� 		 	�

C
D
E
F
�
��
�
��
��
�
�
��
�
��
�
��
�
F
��
�
��
�
�
��
�
�
�

��� ��!�F�!����"#$

%���%������E��D�
&!�F�!���E��D�

	�'

��'

A�'

�����#����D�����

(a) (k=8, n=16)

�����

����

�����

����

�����

����

�����

����

�����

��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��	

A
B
C

D
E
F�
�
��
FE

�
�
�F
�
��

E
F�
�
D
�E

�
��
�
E
F�
�
�
�

��������D������ !"

#EF�#EEF���CE�B�
$��D�����CE�B�

(b) (k=8, n=24)

�����

����

�����

����

�����

����

�����

����

�����

� � � � � � 	 A B ��

C
D
E
F
�
��
�
��
��
�
�
��
�
��
�
��
�
F
��
�
��
�
�
��
�
�
�

��� ��!�F�!����"#$

%���%������E��D�
&!�F�!���E��D�

(c) (k=16, n=32)

����

�����

����

�����

����

�����

����

�����

����

�����

��� ���� ���� ���� ���� ���� ���� ���	 ���A ���B

C
D
E
F
�
��
�
��
��
�
�
��
�
��
�
��
�
F
��
�
��
�
�
��
�
�
�

��� ��!�F�!����"#$

%���%������E��D�
&!�F�!���E��D�

(d) (k=16, n=48)

Figure 3.2: Skype results for various code parameters.

(k=8, n=12) (k=8, n=14) (k=16, n=20) (k=16, n=22) mean
Savings 26.4% 37.8% 27.7% 26.6% 29.6%

Table 3.2: Reduction of the number of repairs (Planet Lab)

the global timeout would lead to 0.0495 repairs by object and by day whereas our
per-node timeout only need 0.0394, thus resulting in a 20.4% saving.

Unsurprisingly, a first observation applicable to all plots is that an aggressive
global timeout value (10H) leads to a low unavailability but produces a high repair
rate, triggering an important bandwidth consumption in practice. On the other
hand, a relaxed timeout value (80H) enables to reduce the number of repairs at the
expense of decreased data availability. A second observation is that regardless of the
global timeout value, our per-node timeout always provides a better trade-off between
availability and the number of repairs. In other words, in all cases for an equivalent
availability (and obviously for the same code parameters), the number of repairs will
always be higher using global timeout than our per-node timeout. Note that both
traces show various levels of node predictability (especially when using a one-week
prediction period) [60]. Our approach thus saves significant bandwidth, resulting from

41

3. Reducing the maintenance bandwidth

�����

�����

�����

����

�����

�����

�����

�����

����

� ��� � ��� � ��� 	 	��

A
B
C

D
E
F�
�
��
FE

�
�
�F
�
��

E
F�
�
D
�E

�
��
�
E
F�
�
�
�

��������D������ !"

#EF�#EEF���CE�B�
$��D�����CE�B�

��%

��%

���%

(a) (k=8, n=12)

�����

�����

�����

����

�����

�����

�����

�����

����

��� ���	 ��� ���	 ��	 ��		 ��� ���	

A
B
C

D
E
F�
�
��
FE

�
�
�F
�
��

E
F�
�
D
�E

�
��
�
E
F�
�
�
�

��������D������ !"

#EF�#EEF���CE�B�
$��D�����CE�B�

(b) (k=8, n=14)

�����

�����

�����

����

�����

�����

�����

�����

� ��� � ��� � ���

	
A
B
C
D
EF
�
�F
ED
�
�
�E
�
F�
D
EF
�
C
�D
�
�F
�
D
EF
�
�
�

��������C�����F� !

"DEF"DDEF��BD�A�
#��C��F��BD�A�

(c) (k=16, n=20)

�����

�����

�����

����

�����

�����

�����

�����

����

� ��� ��� ��� ��� ��	 ��� ��A

B
C

D
E

F
��

�
��

�F
�

�
��

�
��

F
��

�
E

�F
�

��
�

F
��

�
�

�

������ �E� ����!"#

$F��$FF����DF�C�
% �E� ���DF�C�

(d) (k=16, n=22)

Figure 3.3: Planet Lab results for various code parameters.

(k=8, n=12) (k=8, n=14) (k=16, n=20) (k=16, n=22) mean
Savings 20.5% 26.9% 26.1% 29.7% 25.8%

Table 3.3: Reduction of the number of repairs (Microsoft)

the decreased number of repairs. We also emphasize that not only raw performance
on those metrics is greatly improved, but another important benefit of the adaptive
timeout method is that a system administrator does not have to arbitrarily set a
static value for timeout. The system self-organizes for adapted value computation,
suppressing the need for this decision before runtime.

Summary

In this chapter, we aimed to reduce the consumed bandwidth due to wrongfully detected
failures. To this end, we demonstrated the interest of leveraging the knowledge of
node availability patterns, in particular when node exhibit heterogeneous behavior
with regard to uptime. We have advocated an implementation at a fine granularity,
namely on a per node basis. Evaluations conducted on real traces have shown to

42

3.1. During detection: Adaptive node-level timeout

�����

����

�����

�����

�����

�����

����

�����

�����

�����

�����

� � � � � �� �� �� �� ��

�
	
A

B
C
DE
F
�E
DC

�
�
�D
�
E�

C
DE
F
B
�C

�
�E
�
C
DE
�
�
�

��������B�����E��

!CDE!CCDE��ACF	�
"�FB��E��ACF	�

��#

��#

��#

(a) (k=8, n=12)

�����

����

�����

�����

�����

�����

����

�����

�����

�����

��� ���	 ��� ���	 ��	 ��		 ��� ���	 ��A

B
C

D
E

F
��

�
��

�F
�

�
��

�
��

F
��

�
E

�F
�

��
�

F
��

�
�

�

������ �E� ����!"#

$F��$FF����DF�C�
% �E� ���DF�C�

(b) (k=8, n=14)

�����

�����

����

�����

�����

�����

�����

����

�����

�����

�����

� � � � � �� �� �� �� ��

�
	
A

B
C
DE
F
�E
DC

�
�
�D
�
E�

C
DE
F
B
�C

�
�E
�
C
DE
�
�
�

��������B�����E��

!CDE!CCDE��ACF	�
"�FB��E��ACF	�

(c) (k=16, n=20)

�����

�����

����

�����

�����

�����

�����

����

�����

�����

��� ��� ��� ��� � ��� ���

�
	
A

B
C
DE
F
�E
DC

�
�
�D
�
E�

C
DE
F
B
�C

�
�E
�
C
DE
�
�
�

��������B�����E��

!CDE!CCDE��ACF	�
"�FB��E��ACF	�

(d) (k=16, n=22)

Figure 3.4: Microsoft results for various code parameters.

decrease the number of unnecessary repairs. This directly translates into important
savings in terms of the maintenance bandwidth consumption.

43

3. Reducing the maintenance bandwidth

3.2 During reparation: Clustered Network

Coding

Once a failure has been declared as permanent by any failure detection mechanism,
a repair has to be performed to maintain the initial redundancy level of the system.
While repairing a replica is straightforward, as it only requires its single transfer,
repairing erasure coded data is much more challenging. In fact, it incurs a high
overhead in terms of bandwidth utilization as well as decoding operations as reminded
in section 1.2.4.

3.2.1 Introduction

Several major storage systems as those of Microsoft [17], Google [34] or even Face-
book [80] have recently adopted erasure codes, more specifically Reed-Solomon codes.
There is thus a tangible move from replication to erasure coding, allowing a more
efficient use of scalability-critical resources.

Reed-Solomon codes are the de facto standard of code-based redundancy in practice.
However, those codes have been designed and optimized to deal with lossy commu-
nication channels but do not specifically target networked storage systems. Indeed,
Reed-Solomon codes are precisely known to suffer from important overhead in terms of
bandwidth utilization and decoding operations when maintenance has to be triggered.

In order to address these two drawbacks, architectural solutions have been pro-
posed [72], as well as new code designs [30, 45, 48], paving the way for better tradeoffs
between storage, reliability and maintenance efficiency. The optimal tradeoff has been
very recently provided by Dimakis & al [23] with the use of network coding. However
open issues regarding the feasibility of deploying those new codes in practical dis-
tributed storage systems remain. More specifically, most studies focuses on theoretical
results and very few evaluate how hard it is to implement theses codes in a production
system [29]. Moreover those new codes are examined under the simplifying assumption
that only one file is stored per failed machine, thus ignoring practical issues when
dealing with the maintenance of multiple files.

In this chapter, we propose a repair mechanism which makes use of network coding
to repair multiple files simultaneously, without any decoding operations. We call this
approach CNC, for Clustered Network Coding. This mechanism is made as simple as
possible, both in terms of design and implementation with the purpose of leveraging
the power of erasure codes, while reducing its known drawbacks.

The rest of this chapter is organized as follows. Our approach is presented in
Section 3.2.3 and analyzed in Section 3.2.4. We then evaluate our implementation and
compare it against state of the art approaches in Section 3.2.5. Finally, we present
related work in Section 3.2.2 and conclude in Section 3.2.5.

44

3.2. During reparation: Clustered Network Coding

3.2.2 Related Work

The problem of efficiently maintaining erasure-coded content has triggered a novel
research area both in theoretical and practical communities. Design of novel codes
tailored for networked storage system has emerged, with different purposes. For
instance, in a context where partial recovering may be tolerated, priority random
linear codes have been proposed in [57] to offer the property that critical data has a
higher opportunity to survive node failures than data of less importance. Another
point in the code design space is provided by self-repairing codes [64] which have been
especially designed to minimize the number of nodes contacted during a repair thus
enabling faster and parallel replenishment of lost redundancy.

In a context where bandwidth is a scarce resource, network coding has been shown
to be a promising technique which can serve the maintenance process. Network
coding was initially proposed to improve the throughput utilization of a given network
topology [10, 38]. Introduced in distributed storage systems in [23], it has been shown
that the use of network coding techniques can dramatically reduce the maintenance
bandwidth. The authors of [23] derived a class of codes, namely regenerating codes
which achieve the optimal tradeoffs between storage efficiency and repair bandwidth.
In spite of their attractive properties, regenerating codes are mainly studied in an
information theory context and lack of practical insights. Indeed, this seminal paper
provides theoretical bounds on the quantity of data to be transferred during a repair,
without supplying any explicit code constructions. The computational cost of a
random linear implementation of these codes can be found in [29]. A broad overview
of the recent advances in this research area are surveyed in [24].

Very recently, authors in [48] and [68] have designed new code tailored for cloud
systems. In [48], the authors proposed a new class of Reed-Solomon codes, namely
rotated Reed-Solomon codes with the purpose of minimizing I/O for recovery and
degraded read. Simple Regenerating Codes, introduced in [68] reduce the maintenance
bandwidth while providing exact repairs, and simple XOR implementation. Yet this
reduction comes at the price of loosing the optimal storage efficiency and, to the best
of our knowledge, those new codes have not been implemented to date.

Some other recent works [43,44] aim to bring network coding into practical systems.
However they rely on code designs which are not MDS, thus consuming more storage
space, or are only able to handle a single failure hence limiting their application
context.

3.2.3 Clustered Network Coding

The CNC repair mechanism is designed to sustain a predefined level of reliability, i.e.
of data redundancy, by recovering from failures with a limited impact on performance.
We assume that the failure detection is performed by a monitoring layer and that
the system triggers the repair process, assigning new nodes to replace the faulty ones,
in charge of recovering the lost data and store it. The predefined reliability level is

45

3. Reducing the maintenance bandwidth

set by the storage system operator. This reliability level then directly translates into
the redundancy factor to be applied to files to be stored, with parameters k (number
of blocks sufficient to retrieve a file) and n (total number of redundant blocks for a
file). A typical scenario for using CNC is a storage cluster like in the Google File
System [37], where files are streamed into extents of the same size, for example 1GB
as in Windows Azure Storage [17]. These extents are erasure coded in order to save
storage space.

Random Codes

We propose to use random linear codes (random codes for short) as an alternative to
classical Reed-Solomon codes. Interestingly, randomness can provide a very simple and
flexible way to construct MDS codes1 (as are Reed-Solomon codes, see section 1.2.2)
with very good properties. We argue that random codes may offer an appealing
alternative to classical erasure codes in terms of storage efficiency and reliability, while
considerably simplifying the maintenance process. Random codes have been initially
evaluated in the context of distributed storage systems in [8]. Authors showed that
random codes can provide an efficient fault tolerant mechanism with the property that
no synchronization between nodes is required. Instead, the way blocks are generated
on each node is achieved independently in such a way that it fits the coding strategy
with high probability. Avoiding such synchronization is crucial in distributed settings,
as also demonstrated in [38]. We remind the basics about random codes in the
following sections.

Encoding

Encoding a file using random codes is simple: each file is divided into k chunks and
the blocks stored for reliability are created as random linear combinations of these k
blocks (see Figure 3.5). More formally, each file of size M is chunked into k blocks ki

of equal size M
k

with i ∈ [1, k]. Each block ki belongs to F
l
q ie. vectors of size l in a

finite field of size q (usually GF (q) with q = 2p). For all practical implementations
we usually have p = 8 or p = 16.

Each peer j stores a block Xj which is a random linear combination of these ki

blocks:

Xj =
k

∑

d=1

αdkd (3.3)

The αd coefficients are chosen uniformly at random in the field Fq, ie.
Pr(αd = α) = 1

q
, ∀α ∈ Fq. Note that the arithmetic is performed over the

finite field Fq.

1With a probability close to one

46

3.2. During reparation: Clustered Network Coding

File X

2X1+7X2 8X1+3X2 4X1+3X2 9X1+2X2 6X1+5X2

X1 X2

8X1+3X2 4X1 +2X2 6X1+5X9X1+2X9X1+2X4X1+3X24X1+3X8X1+3X2 4X1+3X24X1+3X

n=5 random linear

combinations

File X chunked

into k=2 chuncks

2
9

8
3 4 3 2

7

5
6

Figure 3.5: Creation process of encoded blocks using a random code. All the coefficients
are chosen randomly. Any k = 2 blocks is enough to reconstruct the file X.

In addition to store the block Xj, we also need to store the associated random
coefficients (α1, α2, ..., αk). This is typically a negligible overhead compared to the
size of each block Xj.

Note that this is a different encoding paradigm compared to classical erasure codes,
with a fixed encoding matrix and thus a fixed rate k

n
. In fact when using random codes,

the notion of rate disappears as with the k blocks one can generate as many redundant
blocks as it wants. In fact one just needs to make a new random combinations of the
k blocks. This property makes random codes a rateless code (fountain code).

Decoding

In mathematical terms, each redundant block which has been created as a random
linear combination of the blocks {X1, X2, ..., Xk} can be seen as a random vector of
the subspace spanned by {X1, X2, ..., Xk}. Then the reconstruction of a file boils
down to get k linearly independent vectors in this subspace. In fact every family of
k vectors which is linearly independent forms a non-singular matrix which can be
inverted and thus the file can be recovered. Theory on random matrix over finite
field tells us that if one takes k random vectors of the same subspace, these k vectors
are linearly independent with a probability close to one. More formally, let D be the
random variable denoting the dimension of the subspace spanned by k random vectors
which belong to F

k
q .

Then it can be shown that:

47

3. Reducing the maintenance bandwidth

Figure 3.6: Clusters are constructed at a logical level : nodes participating in a given
cluster may span geo-dispersed sites for reliability.

Pr(D = k) =
(qk − 1)

∏k−1
i=1 (qk − qi − 1)

q(k2)
(3.4)

This equation gives the probability that the dimension of the subspace spanned by
k random vectors is exactly k, and so that the family of these k vectors is linearly
independent. This probability is shown to be very close to one for every k when using
practical field sizes (typically 28 or 216). For example for a field size of 216 and for
k = 16 which are classical and practical values, when contacting exactly k = 16 nodes
the probability to be able to reconstruct the file is 0.999985.

In other words, the property of randomness tells us that with a probability close to
one, an encoded file can be reconstructed with exactly any k redundant blocks (as
mentioned above this is optimal). Note that each file is thus encoded with a different
random generator matrix , and that this matrix is never constructed explicitly and
does not even exist in one place in the network. This is not a problem as the only
requirement is that each block is stored with its associated coefficients.

To summarize, random codes provide a very simple and flexible way to encode data
optimally (MDS codes) with high probability. In addition their rateless property is
very suitable in the context of distributed storage system as it leaves reintegration
possible (see next section).

A Cluster-based Approach

To provide an efficient maintenance, CNC relies on (i) hosting all blocks related to a
set of files on a single cluster of nodes, and (ii) repairing multiple files simultaneously .

48

3.2. During reparation: Clustered Network Coding

Node 1

2X1 + 7X2

5Y1 + 3Y2

Node 2

8X1 + 3X2

6Y1 + 7Y2

Node 3 4X1 + 3X2

8Y1 + 6Y2

Node 4

9X1 + 2X2

3Y1 + 8Y2

Node 3

Node 4

9X1 + 2X2

3Y1 + 8Y2

x2

x3

x1

x2

x2

x3

4X1 + 14X2 + 15Y1 + 9Y2

8X1 + 3X2 + 12Y1 + 14Y2

8X1 + 6X2 + 24Y1 + 18Y2

8X

4X

8X1 + 3X2

4X1 + 3X2

6Y1 + 7Y2

8Y1 + 6Y2

X1

X2

Y1

Y2

9X1 + 2X2

3Y1 + 8Y2

16X1 + 205X2 + 0Y1 + 0Y2

0X1 + 0X2 + 246Y1 + 88Y2

8X

6Y

8Y

4X

New node storage

New node storage

Reconstruct file X

Reconstruct file Y

CNC Repair

Classical Repair

4 Blocks are transmitted

Only 3 RepairBlocks are transmitted

A

B

C

D

E

F

Cluster

Figure 3.7: Comparison between CNC (top) and classical maintenance process (bot-
tom), for the repair of a failed node which was storing two blocks of two different files
(X & Y) in a cluster of 4 (with k = 2, n = 4). All stored blocks as well as transferred
blocks and RepairBlocks in the example have exactly the same size.

To this end, the system is partitioned into disjoint (logical) clusters of n nodes, so
that each node of the storage system belongs to one and only one cluster. Each file
to be stored is encoded using random codes and is randomly associated to a single
cluster, so as to balance the storage load on each cluster evenly. All blocks of a given
file are then stored on the n nodes of the same cluster. In other words, CNC placement
strategy consists in storing blocks of two different files belonging to the same cluster
on the same set of nodes. An analytical evaluation of the mean time to data loss for
this clustering placement can be found in [18]. Note that these clusters are constructed
at a logical level. In practice, nodes of a given cluster may span geo-dispersed sites
to provide an enhanced reliability, as illustrated on Figure 3.6. Obviously, there is a
tradeoff between minimizing inter-site traffic and high reliability, this is outside the
scope of this thesis. In such a setup, the storage system manager (e.g. the master
node in the Google File System [37]) only needs to maintain two data structures: an
index which maps each file to one cluster and an index by cluster which contains the
set of the identifier of nodes in this cluster. This simple data placement scheme leads
to significant data transfer gains and better load balancing, by clustering operations

49

3. Reducing the maintenance bandwidth

on encoded blocks, as explained in the remaining part of this section.

Maintenance of CNC

When a node failure is detected, the maintenance operation must ensure that all the
blocks hosted on the faulty node are repaired in order to preserve the redundancy
factor and hence the predefined reliability level of the system. Repair is usually
performed at the granularity of a file. Yet, a node failure typically leads to the loss of
several blocks, involving several files. This is precisely this characteristic that CNC
leverages. Typically, when a node fails, multiple repairs are triggered, one for each
particular block of one file that the faulty node was storing. Traditional approaches
using erasure codes actually consider a failed node as the failure of all of its blocks.
By contrast, the novelty of CNC is to leverage network coding at the node level, i.e.
between multiple blocks of different files on a particular cluster. This is possible since
CNC placement strategy clusters files so that all nodes of a cluster store the same
files. This technical shift enables to significantly reduce the data to be transferred
during the maintenance process.

An Illustrating Example

Before generalizing in the next section, we first describe a simple example (see
Figure 3.7). This provides the intuition behind CNC while comparing it to a classical
maintenance process. We consider two files X and Y of size M = 1024 MB, encoded
with random codes (k = 2, n = 4), stored on the 4 nodes of the same cluster (i.e.
Nodes 1 to 4). File X is chunked into k = 2 chunks X1, X2 and file Y into chunks
Y1 and Y2. Each node stores two encoded blocks, one related to X and the other Y ,
which are respectively a random linear combination of {X1, X2} and {Y1, Y2}. Each
block is of size M

k
= 512MB. Each node thus stores a total of 2 × 512 = 1024MB. We

now consider the failure of Node 4.

In a classical repair process, the new node asks k = 2 nodes their blocks correspond-
ing to file X and Y and downloads 4 blocks, for a total of 4 × 512 = 2048MB. This
enables the new node to decode the two files independently, and then re-encode each
file to regenerate the lost blocks of X and Y and store them.

Instead, CNC leverages the fact that the encoded blocks related to X and Y are
stored on the same node and restored on the same new node to encode the files
together rather than independently during the repair process. More precisely, if the
nodes are able to compute a linear combination of their encoded blocks, we can prove
that if k = 2, only 3 blocks are sufficient to perform the repair of the two files X
and Y. Thus the transfer of only 3 blocks incurs the download of 3 × 512 = 1536MB,
instead of the 2048MB needed with the classical repair process. In addition, this
repair can be processed without decoding any of the two files. In practice, the new
node has to contact the three remaining nodes to perform the repair. Each of the
three nodes sends the new node a random linear combination of its two blocks with

50

3.2. During reparation: Clustered Network Coding

the associated coefficients. Note that the two files are now intermingled, i.e. encoded
together. However, we want to be able to access each file independently after the
repair. The challenge is thus to create two new random blocks, with the restrictions
that one is only a random linear combination of the X blocks, and the other of the
Y blocks. In this example, finding the appropriate coefficients in order to cancel the
Xi or Yi, comes down to solve for each file X and Y a system of two equations with
three unknowns, respectively (A, B, C) (D, E, F) in Figure 3.7. The new node then
makes two different linear combinations of the three received blocks according to the
previously computed coefficients, (A=-6, B=-22, C=25) and (D=20, E=9, G=-17) in
the example. Thereby it creates two new independent random blocks, related to file X
and Y respectively. The repair is then performed, saving the bandwidth consumed by
the transfer of one block i.e., 512MB in this example. Note that the example is given
over the integers for simplicity, though arithmetic operations would be computed over
a finite field in a real implementation.

CNC: The General Case

We now generalize the previous example for any k. We first define a RepairBlock
object: a RepairBlock is a random linear combination of two encoded blocks of two
different files stored on a given node. RepairBlocks are transient objects which only
exist during the maintenance process i.e., RepairBlocks only transit on the network
and are never stored permanently.

We are now able to formulate the core technical result of this section; the following
proposition applies in a context where different files are encoded using random codes
with the same k, and the encoded blocks are placed according to the cluster placement
described in the previous section.

Proposition 1. In order to repair two different files, downloading k + 1 RepairBlocks
from k + 1 different nodes is a sufficient condition.

Proof. The purpose of the proof is to show that a repair is correct, i.e, new encoded
blocks are random blocks which belong to the initial vector space. Else, if blocks
were random only in a subspace of the initial space, the system will progressively
degenerate with the successive repairs. We start the proof with the following lemma.

Lemma 1. A linear combination of independent random variables chosen uniformly
in a finite field Fq also follows a uniform distribution over Fq.

Proof. Let SN be the random variable defined by the linear combination of N random
variables {X1, X2, ..., XN} . These N random variables are independent and take their
values uniformly in the finite field Fq.

SN =
N

∑

i=1

αiXi

51

3. Reducing the maintenance bandwidth

with ∀i, Xi ∈ Fq, and αi ∈ F
∗
q

We show by recurrence that if ∀i, Pr(Xi = xi) = 1
q

then Pr(SN = sN) = 1
q

The case N = 1 is trivial. Let first show that for N = 2 the proposition is true.

S2 = α1X1 + α2X2

Pr(S2 = s2) = Pr(α1X1 + α2X2 = s2)

=
q−1
∑

x1=0

Pr(X1 = x1)Pr(X2 =
s2 − α1x1

α2

)

=
q−1
∑

x1=0

1

q

1

q
= q

1

q

1

q

=
1

q

The proposition is thus true for N = 2. We suppose that it is true for all N , and
prove that it is true for N + 1.

SN+1 = SN + αN+1XN+1

Pr(SN+1 = sN+1) = Pr(SN + αN+1XN+1 = sN+1)

=
q−1
∑

xN+1=0

[Pr(XN+1 = xN+1)

× Pr(SN = sN+1 − αN+1xN+1)]

=
q−1
∑

xN+1=0

1

q

1

q
= q

1

q

1

q

=
1

q

Definition 1. A random vector þV in a vector space X = span{X1, X2, ..., Xk} where
Xi ∈ F

l
q is defined as :

V =
k

∑

i=1

αiXi

where the αi coefficients are chosen uniformly at random in the field Fq, ie. Pr(αi =
α) = 1

q
, ∀α ∈ Fq.

Let X be the vector space defined as span{X1, X2, ..., Xk}. Let Y be the vector
space defined as span{Y1, Y2, ..., Yk}. No assumptions are made on Xi and Yi except
that they are all in F

l
q. In fact as Xi and Yi are file blocks, it is not possible to ensure

linear independence for example.

52

3.2. During reparation: Clustered Network Coding

Let Bi
x be an encoded block of the file Fx stored on node i. Bi

x is a random linear
combination of the {X1, X2, ..., Xk}, thus Bi

x ∈ span{X1, X2, ..., Xk} = X which is a
subspace of Fl

q of dimension Dim(X) ≤ k.

Lemma 2. ∀ Dim(X), Bi
x is a random vector in X.

Proof. Let B be the largest family of linearly independent vectors of {X1, X2, ..., Xk}
∀l | Xl Ó∈ B, ∃!{bl

1, ..., bl
j} such that Xl =

∑

j|Xj∈B bl
jXj

Bi
x =

k
∑

j=1

ai
jXj

=
∑

j|Xj∈B

ai
jXj +

∑

l|Xl Ó∈B

ai
lXl

=
∑

j|Xj∈B

ai
jXj +

∑

l|Xl Ó∈B

ai
l

∑

j|Xj∈B

bl
jXj

=
∑

j|Xj∈B

(ai
j +

∑

l|Xl Ó∈B

ai
lb

l
j)Xj

From Lemma 1, all the coefficients of the linear combination are random over Fq

thus Bi
x is a random vector in span(B).

As span(B) = span{X1, X2, ..., Xk} = X
Then Bi

x is a random vector in X.

Let Di be the random linear combination of two stored blocks by the node i with
i ∈ [1, k + 1].

Di = δi
xBi

x + δi
yBi

y

= δi
x(

k
∑

j=1

ai
jXj) + δi

y(
k

∑

l=1

ai
lYl)

= Di
x + Di

y

By definition, Di ∈ span{X1, X2, ..., Xk, Y1, ..., Yk}
Di

x =
∑k

j=1 δi
xai

jXj

As δi
x are chosen randomly in Fq, then from Lemma 1, Di

x is a random vector in X.
Let’s take a family {D1

x, ..., Dk+1
x }.

As Dim(X) ≤ k it exists {α1, ..., αk+1} Ó= 0 such that
∑k+1

i=1 αiD
i
x = 0

Thus :

k+1
∑

i=1

αiD
i =

k+1
∑

i=1

αiD
i
x +

k+1
∑

i=1

αiD
i
y

=
k+1
∑

i=1

αiD
i
y

53

3. Reducing the maintenance bandwidth

As αi are chosen independently with Di
y then new vector is a random vector in Y .

The reasoning is identical to get the new vector in X, thus completing the proof.

This proposition implies that instead of having to download 2k blocks as with
Reed-Solomon codes when repairing, CNC decreases that need to only k + 1. Other
implications and analysis are detailed in the next section. Note that the encoded
blocks of the two files do not need to have the same size. In case of different sizes, the
smallest is simply zero-padded during the network coding operations as usually done
in this context; padding is then removed at the end of the repair process. In a real
system, nodes usually store far more than two blocks, implying multiple iterations
of the process previously described. More formally, to restore a failed node which
was storing x blocks, the repair process must be iterated x

2
times. In fact, as two new

blocks are repaired during each iteration, the number of iteration is halved compared
to the classical repair process. Note that in case of an odd number of blocks stored,
the repair process is iterated until only one block remains. The last block is repaired
downloading k blocks of the corresponding file which are then randomly combined to
conclude the repair. The overhead related to the repair of the last block in case of an
odd block number vanishes with a growing number of blocks stored.

The fact that the repair process must be iterated several times can also be leveraged
to balance the bandwidth load over all the nodes in the cluster. Only k + 1 nodes
over the n of the cluster are selected at each iteration of the repair process. As all
nodes of the cluster have a symmetrical role, a different set of k + 1 nodes can be
selected at each iteration. In order to leverage the whole available bandwidth of the
cluster, CNC makes use of a random selection of these k + 1 nodes at each iteration.
In other words, for each round of the repair process, the new node selects k + 1 nodes
uniformly at random over the n cluster nodes. Doing so, we show that every node is
evenly loaded i.e., each node sends the same number of RepairBlocks in expectation.

More formally, let N be the number of RepairBlocks sent by a given node. In a
cluster where n nodes participate in the maintenance operation, for T iterations of
the repair process, the average number of RepairBlocks sent by each node is :

E(N) = T
k + 1

n
(3.5)

Proof. During the repair process, the load on each node can be evaluated using a Balls-
in-Bins model. Balls correspond to a block to be downloaded while bins represents
the nodes which are storing the blocks. For each iteration of the repair protocol, k
different nodes are selected to send a repair block. This corresponds to throwing k
identical balls into n bins, with the constraints that once a bin has received a ball, it
can not receive another ball at this round. In other words exactly k different bins are
chosen at each round.

Lemma 3. At each round i, the probability that a given bin has received one ball is k
n

54

3.2. During reparation: Clustered Network Coding

Proof. Let A be the event "the bin contains one ball at round i". Thus A corresponds
to the event "the bin is empty at round i". Pr(A) is computed as the number of ways
to place the k balls inside the n − 1 remaining bins, over all the possibilities to place
the k balls into the n bins.

Pr(A) = 1 − Pr(A)

= 1 −
Cn−1

k

Cn
k

= 1 −

(n−1)!
k!(n−1−k)!

n!
k!(n−k)!

= 1 −
(n − k)!

n(n − 1 − k)!

= 1 −
(n − k)

n

=
k

n

Let X be the number of balls into a given bin after t rounds. As the selection at
each round are independent, the number of balls into a given bin follows a binomial
law :
X ∼ B (t, p) with p = k

n
(See Lemma 3) The expected value, denoted E(X), of the

Binomial random variable X with parameters t and p is : E(X) = tp = t k
n

An example illustrating this load balancing is provided in the next section.

3.2.4 Analysis

The novel maintenance protocol proposed in the previous section enables (i) to
significantly reduce the amount of data transferred during the repair process; (ii)
to balance the load between the nodes of a cluster; (iii) to avoid computationally
intensive decoding operations and finally (iv) to provide useful node reintegration.
The benefits are detailed below.

Transfer Savings

A direct implication of Proposition 1 is that for large enough values of k, the data to
transfer required to perform a repair is halved; this directly results in a better usage
of available bandwidth. To repair two files in a classical repair process, the new node
needs to download at least 2k blocks to be able to decode each of the two files. Then
the ratio k+1

2k
(CNC over Reed-Solomon) tends to 1/2 as larger values of k are used.

The exact necessary amount of data σ(x, k, s) to repair x blocks of size s encoded
with the same k is given as follows:

55

3. Reducing the maintenance bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

N
e
c
e
s
s
a
ry

 b
a
n
d
w

id
th

 (
G

B
)

Number of files to repair

Replication
RS

CNC (k=8)
CNC (k=16)
CNC (k=32)

Figure 3.8: Necessary amount of data to transfer to repair a failed node, according to
the selected redundancy scheme (files of 1 GB each).

σ(x, k, s) =

{

x
2
s(k + 1) if x is even

x
2
s(k + 1 + k−1

x
) if x is odd

An example of the transfer savings is given in Figure 3.8, for k = 16 and a file size
of 1GB.

From Proposition 1, CNC requires to repair lost files by groups of two. One can
wonder whether there is a benefit in grouping more than two files during the repair.
In fact a simple extension of Proposition 1 reveals that to group G files together, a
sufficient condition is that the new node downloads (G − 1)k + 1 RepairBlocks from
(G − 1)k + 1 distinct nodes over the n nodes of the cluster. Firstly, this implies that
the new node must be able to contact many more nodes than k + 1. Secondly, we can
easily see that the gains made possible by CNC are maximal when grouping the file by
two: savings in data transfer when repairing are expressed by the ratio (G−1)k+1

Gk
. The

minimal value of this ratio (1
2
, which is equivalent to the maximal gain) is obtained

for G = 2 and large value of k.
A second natural question is whether or not downloading fewer than (G − 1)k + 1

RepairBlocks to group G files together is possible. We can positively answer this
question, as the value (G−1)k+1 is only a sufficient condition. In fact, if nodes do not
send random combinations, but carefully choose the coefficients of the combination, it
is theoretically possible to download less RepairBlocks. However, as G grows, finding
such coefficients becomes computationally intractable, especially for large values of k.
These coefficients can be found in some cases using interference alignment techniques
(see for example [24]). Details of these techniques are outside the scope of this section

56

3.2. During reparation: Clustered Network Coding

Node5Node1 Node2 Node3 Node4

Iter 5

Iter 4

Iter 3

Iter 1

Iter 4

Iter 3

Iter 2

Iter 1

Iter 5

Iter 3

Iter 2 Iter 1

Iter 5

Iter 4

Iter 2

ask k+1 = 3 Nodes

10 blocks to repair

with 5 iterations:

15 RepairBlocks to send

T
T

R
 2

 b
lo

ck
s

T
T

R
 w

h
o

le
 n

o
d

e

To repair Node 5:

Figure 3.9: Natural load balancing for blocks queried when repairing a failed node
(node 5), for 10 blocks to restore.

as no efficient algorithm is known to solve this problem to date. This then calls for
the use of the simpler operation i.e., G = 2 as we have presented in this section.

Load Balancing

As previously mentioned, when a node fails, the repair process is iterated as many
times as needed to repair all lost blocks. CNC ensures that the load over remaining
nodes is balanced during maintenance; Figure 3.9 illustrates this. This example
involves a 5 node cluster, storing 10 different files encoded with random codes (k = 2).
Node 5 has failed, involving the loss of 10 blocks of the 10 files stored on that cluster.
Nodes 1 to 4 are available for the repair process.

CNC provides a load-balanced approach, inherent to the random selection of the
k + 1 = 3 nodes at each round. In addition, only T = 5 iterations of the repair process
are necessary to recreate the 10 new blocks, as each iteration enables to repair 2
blocks at the same time. The total number of RepairBlocks sent during the whole
maintenance is T ×(k+1) = 15, whereas the classical repair process needs to download
20 encoded blocks. The random selection ensures in addition that the load is evenly
balanced between the available nodes of the cluster. Here, nodes 1,2 and 4 are selected
during the first repair round, then nodes 2, 3 and 4 during the second round and so
forth. The total number of RepairBlocks is balanced between all available nodes, each
sending T ×(k+1)

n
= 15

4
= 3.75 RepairBlocks on average. As a consequence of using the

whole available bandwidth in parallel, and as opposed to sequentially fetching blocks
for only a subset of nodes, the Time To Repair (TTR) a failed node is also greatly
reduced. This is confirmed experimentally in Section 3.2.5.

57

3. Reducing the maintenance bandwidth

No Decoding Operations

Decoding operations are known to be time consuming and therefore should be done
only in case of file accesses. While the use of classical erasure codes requires such
decoding to take place upon repair, CNC avoids those cost-intensive operations. In
fact, no file needs to be decoded at any time in CNC: repairing two blocks only requires
to compute two linear combinations instead of decoding the two files. However the
output of our repair process is strictly equivalent to the situation where the files are
decoded. This greatly simplifies the repair process over classical approaches. As a
consequence, the time to perform a repair is reduced by orders of magnitude compared
to the classical reparation process, especially when dealing with large files as confirmed
by our experiments (Section 3.2.5).

Reintegration

The decision to declare a node as faulty is usually performed using timeouts; this
is typically an error prone decision [20]. In fact, nodes can be wrongfully timed-out
and can reconnect once the repair is done. While the longer the timeouts, the fewer
errors are made, adopting large timeouts may jeopardize the reliability guarantees,
typically in the event of burst of failures. The interest of reintegration is to be able to
leverage the fact that nodes which have been wrongfully timed-out are reintegrated in
the system. Authors in [20] showed that reintegration of replicas was a key concept to
save maintenance bandwidth. However, reintegration has not been addressed when
using erasure codes.

As previously mentioned, when using classical erasure codes, the repaired blocks
have to be strictly identical to the lost ones. Therefore reintegrating a node which was
suspected as faulty in the system is almost useless since this results in two identical
copies of the lost and the repaired blocks. Such blocks can only be useful in the
event of the failure of two specific nodes, the incorrectly timed-out node and the new
one. Instead, reintegration is always useful when deploying CNC. More precisely,
every single new block can be leveraged to compensate for the loss of any other block
and therefore is useful in the event of the failure of any node. Indeed, new created
blocks are simply new random blocks, thus different from the lost ones while being
functionally equivalent. Therefore each new block contributes to the redundancy
factor of the cluster. Assume that a node which has been incorrectly declared as faulty
returns into the system. A repair has been performed to sustain the redundancy factor
while it turned out not to be necessary. This only means that the system is now one
repair process ahead and can leverage this unnecessary repair to avoid triggering a
new instance of the repair protocol when the next failure occurs.

58

3.2. During reparation: Clustered Network Coding

Tracker Node

Client Node

Cluster of Storage Nodes

New node

ASK_REPAIRBLOCK_MSG

REPAIRBLOCK_MSG

Figure 3.10: System overview

3.2.5 Evaluation

In order to confirm the theoretical savings provided by the CNC repair protocol, in
terms of bandwidth utilization and decoding operations, we deployed CNC over a
public experimental platform. We describe the implementation of the system and
CNC experimental results in this section.

System Overview

We implemented a simple storage cluster with an architecture similar to Hadoop [77]
or the Google File System [37]. This architecture is composed of one tracker node
that manages the metadata of files, and several storage nodes that store the data.
This set of storage nodes forms a cluster as defined in Section 3.2.3. The overview
of the system architecture is depicted in Figure 3.10. Client nodes can PUT/GET
the data directly to the storage nodes, after having obtained their IP addresses from
the tracker. In case of a storage node failure, the tracker initiates the repair process
and schedules the repair jobs. All files to be stored in the system are encoded using
random codes with the same k. Let n be the number of storage nodes in the cluster,
then n encoded blocks are created for each file, one for each storage node. Remind
that the system can thus tolerate n − k storage node failures before files are lost for
good.

PUT/GET and Maintenance Operations In the case of a PUT operation, the
client first encodes blocks. The coefficients of the linear combination associated with
each encoded block are appended at the beginning of the block. Those n encoded
blocks are sent to the n storage nodes of the cluster using a PUT_BLOCK_MSG.
A PUT_BLOCK_MSG contains the encoded information, as well as the hash of the

59

3. Reducing the maintenance bandwidth

corresponding file. Upon receipt of a PUT_BLOCK_MSG, the storage node stores
the encoded block using the hash as filename. To retrieve the file, the client sends
a GET_BLOCK_MSG to at least k nodes, out of the n nodes of the cluster. A
GET_BLOCK_MSG only contains the hash of the file to be retrieved. Upon receipt
of a GET_BLOCK_MSG the storage node sends the block corresponding to the given
hash. As soon as the client has received k blocks, the file can be recovered.

In case of a storage node failure, a new node is selected by the tracker to replace
the failed one. This new node sends a ASK_REPAIRBLOCK_MSG to k + 1 storage
nodes. An ASK_REPAIRBLOCK_MSG contains the two hashes of the two blocks
which have to be combined following the repair protocol described in Section 3.2.3.
Upon receipt of an ASK_REPAIRBLOCK_MSG, the storage node combines the two
encoded blocks corresponding to the two hashes, and sends the resulting block back
to the new node. As soon as k + 1 blocks are received, the new node can regenerate
two lost blocks. This process is iterated until all lost blocks are repaired.

Deployment and Results

We deployed the system previously described on a public testbed, namely GRID’5000.
The GRID’5000 project aims at building an experimental Grid platform gathering
less than a dozen of geographically distributed sites in France combining up to 5000
processors with a certain level of heterogeneity both in terms of processor and network
types. Our experiments ran on 33 nodes connected with a 1GB network. Each node
has 2Intel Xeon L5420 CPUs 2.5 GHz, 32GB RAM and a 320GB hard drive. We
randomly chose 32 storage nodes to form a cluster, as defined in Section 3.2.3. The
last remaining node was elected as the tracker. All files were encoded with k = 16,
and we assumed that the size of each inserted file is 1GB. This size is used in Windows
Azure Storage for sealed extents which are erasure coded [17].

Scenario

In order to evaluate our maintenance protocol, we implemented a first phase of i
files insertion in the cluster, and artificially triggered a repair during the second
phase. According to the protocol previously described, the tracker selects a new node
to replace the faulty one, to which it sends the list of IP addresses of the storage
nodes. The new node then directly asks RepairBlocks to storage nodes, without any
intervention of the tracker, until it recovers as many encoded blocks as the faulty node
was storing. We measured the time to repair a faulty node depending on the number of
blocks it was hosting. The time to repair is defined as the time between the reception
of the list of IPs, and the time all new encoded blocks are effectively stored on the
new node. We compared CNC against a classical maintenance mechanism (called
RS), which would be used with Reed-Solomon codes as described in Section 1.2.4 and
with standard replication. All the presented results are averaged on three independent
experiments. This small number of experiments can be explained by the fact that

60

3.2. During reparation: Clustered Network Coding

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

E
n
c
o
d
in

g
 t
im

e
 (

s
)

Size of file to be encoded (MB)

k=4,n=8
k=8,n=16

k=16,n=32
k=32,n=64
k=4,n=12
k=8,n=24

k=16,n=48
k=32,n=96

Figure 3.11: Encoding time depending on file size when using random codes.

our experimental testbed enables to make a reservation on a whole cluster of nodes
in isolation ensuring that experiments are highly reproducible and we observed a
standard deviation under 2 seconds for all values.

Coding

We developed a Java library to deal with arithmetic operations over a finite field.
In this experiment, arithmetic operations are performed over a finite field with 216

elements as it enables to treat data as a stream of unsigned short integers (16 bits).
Additions and subtractions correspond to XOR operations between two elements.
Multiplications and divisions are performed in the logspace using lookup tables which
are computed offline. This library enabled us to implement classical matrix operations
over finite fields, such as linear combinations, encoding and decoding of files.

We measure the encoding time when using random codes for various code rates,
depending on the size of the file to be encoded. Results are depicted on Figure 3.11.
We show that for a given (k, n) the encoding time is clearly linear with the file size.
For example with (k = 16,n = 32) the encoding time for a file of size 512MB and 1GB
are respectively 143 and 272 seconds. In addition, the encoding time increases with
k and with the code rate, as more encoded blocks have to be created. For instance,
a file of 1GB with k = 16 is encoded in 272 seconds for a code rate 1/2 (n = 32),
whereas 390 seconds are necessary for a code rate 1/3 (n = 48).

61

3. Reducing the maintenance bandwidth

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 9 10

T
ra

n
s
fe

r
ti
m

e
 (

s
)

Number of blocks to repair

CNC
RS

Replication

Figure 3.12: Time to transfer the necessary quantity of data to perform a complete
repair

Transfer Time

In this experiment, we evaluated the time to transfer the whole quantity of data
needed to perform a complete repair for CNC, RS and replication, depending on the
number of blocks to be repaired. In order to quantify the gains provided by CNC in
isolation, we disabled the load balancing part of the protocol in this experiment. In
other words, the same set of nodes is selected for all iterations of the repair process.
The results are depicted on Figure 4.8.

Firstly, we observe that CNC consistently outperforms the two alternative mecha-
nisms. As CNC incurs the transfer of a much smaller amount of data, the time to
transfer the blocks during the repair process is greatly reduced compared to both RS
and replication. For instance, to download the necessary quantity of data to repair
a node which was hosting 10 blocks related to 10 different files, CNC only requires
64 seconds whereas RS and replication requires respectively 95 and 154 seconds on
average. It should also be noted that no coding operations are done in this experiment,
except for CNC as nodes have to compute a random linear combination of their
encoded blocks to create a RepairBlock before sending it. This time is taken into
account, thus explaining why the transfer time for CNC is not exactly halved compared
to RS.

62

3.2. During reparation: Clustered Network Coding

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
R

e
p
a
ir
 T

im
e
 (

s
)

Number of blocks to repair

CNC
RS

Replication

Figure 3.13: Total repair time

A second observation is that CNC also scales better with the number of files to
be repaired. As opposed to CNC, both RS and replication involve transfer times for
multiple files which are strictly proportional to the time to transfer a single file. For
example RS and CNC requires 9 seconds to download a single file, but RS requires
95 seconds to download 10 files, while CNC only requires 64 seconds for the same
operation.

Finally, replication leads to the highest time to transfer. This is mainly due to
the fact that replication does not leverage parallel downloads from several nodes as
opposed to CNC and RS. Yet replication does not suffer from computational costs,
which can dramatically increase the whole repair time of a failure as shown in the
next section.

Repair Time

In this experiment, we measured the total repair time of a failure, depending on the
number of blocks (related to different files) the faulty node was storing. The results,
depicted on Figure 4.9, include both the transfer times, evaluated in the previous
section, as well as coding times. Thereby it represents the effective time between a
failure is detected and the time it has been fully recovered. As replication does not
incur any coding operations, the time to repair is simply the time to transfer the files.

63

3. Reducing the maintenance bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 10

T
ra

n
s
fe

r
ti
m

e
 (

s
)

Number of blocks to repair

CNC-LB

CNC

RS-LB

RS

Figure 3.14: Impact of load balancing on Time To Transfer

Note that for the sake of fairness, we enable the load balancing mechanism both for
CNC and RS.

Figure 4.9 shows that the repair time is dramatically reduced when using CNC
compared to RS, especially with an increasing number of files to be repaired. For
instance to repair a node hosting 10 blocks related to 10 different files, CNC and
replication require respectively 165 and 154 seconds while RS needs 1620 seconds
on average. These time savings are mainly due to the fact that decoding operations
are avoided in CNC. In fact, the transfer time is almost negligible compared to the
computational time for RS. The transfer time only represents 6% of the time to repair
a node hosting 10 blocks related to 10 different files with RS. This clearly emphasizes
the interest of avoiding computationally intensive tasks such as decoding during the
maintenance process.

We also observe that time to repair a failure with CNC is nearly equivalent to the
one needed when using replication. As shown in Figure 4.8, replication transfer times
are much higher than CNC ones, but this is counter-balanced by the fact that some
coding operations are necessary in CNC. In other words, CNC saves time compared
to replication during the data transfer, but these savings are cancelled out due to
linear combination computations. Finally our experiments show that, as opposed to
RS, CNC scales as well as replication with the number of files to be repaired.

64

3.2. During reparation: Clustered Network Coding

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

A
v
e
ra

g
e
 L

o
a
d

Node ID

Standard deviation

Number of blocks sent

Figure 3.15: Average load on each node in the cluster

Load Balancing

As shown in Section 3.2.3, CNC provides a natural load balancing feature. The
random selection of nodes from which to download blocks during the maintenance
process ensures that the load is evenly balanced between nodes. In this section, we
evaluate the impact of this load balancing on the transfer time for both CNC and RS.

Figure 3.14 depicts the transfer time for both RS and CNC depending on the number
of files to be repaired. We compare the transfer time between the load balanced
approach (CNC-LB and RS-LB), and its counterpart which involves a fixed set of
nodes, as done in Section 3.2.5. Results show that transfer times are reduced when
load balancing is enabled, as the whole available bandwidth can be leveraged. In
addition, time savings due to the load balance increases as more files have to repaired.

Figure 3.15 shows the number of blocks sent by each of the 32 nodes of the cluster
for a repair of a node which was storing 100 blocks when using CNC. This involves 50
iterations of the protocol, where at each iteration, k + 1 = 17 distinct nodes send a
RepairBlock. We observe that all nodes send a similar number of blocks i.e., nearly
26, in expectation. This is consistent with the expected value analytically computed,
according to Equation 3.5 as 25×17

32
= 26.5625.

65

3. Reducing the maintenance bandwidth

Summary

While erasure codes, typically Reed-Solomon, have been acknowledged as a sound
alternative to plain replication in the context of reliable distributed storage systems,
they suffer from high costs, both bandwidth and computationally-wise, upon node
repair. This is due to the fact that for each lost block, it is necessary to download
enough blocks of the corresponding file and decode the entire file before repairing.

In this section, we address this issue and provide a novel code-based system providing
high reliability and efficient maintenance for practical distributed storage systems.
The originality of our approach, CNC, stems from a clever cluster-based placement
strategy, assigning a set of files to a specific cluster of nodes combined with the
use of random codes and network coding at the granularity of several files. CNC
leverages network coding and the co-location of blocks of several files to encode files
together during the repair. This provides a significant decrease of the bandwidth
required during repair, avoids file decoding and provides useful node reintegration.
We provide a theoretical analysis of CNC. We also implemented CNC and deployed
it on a public testbed. Our evaluation shows dramatic improvement of CNC with
respect to bandwidth consumption and repair time over both plain replication and
Reed-Solomon-based approaches. Table 3.16 summarizes the properties of CNC and
existing redundancy mechanisms, Replication and Reed-Solomon Codes (RS), clearly
conveying the benefits of CNC.

Replication RS CNC

fault tolerance/storage overhead û ü
(optimal)

Low complexity ü û

Efficient file access/update ü û

Low repair bandwidth overhead ü û
(whole file)

ü
(only half)

Low repair time ü
(only new copy)

û
(decoding cost)

ü
(No decoding cost)

Reintegration ü û ü

Figure 3.16: Comparison of CNC with most implemented redundancy mechanisms,
i.e. Replication, and Reed-Solomon codes (RS).

66

C
h

a
p

t
e

r

4
Conclusions & Perspectives

In the past two chapters, we have explored how to optimize the bandwidth of a
distributed storage system. In the first one, we showed how the available bandwidth of
peer-to-peer storage systems can be increased, by leveraging the presence of gateways
inside the network topology. In the second one, we presented two mechanisms aiming
at reducing the bandwidth consumption during the maintenance process. First, we
proposed an adaptive and per-node timeout in order to decrease the number of repairs
wrongfully triggered. Second, we presented a maintenance protocol which enables
to repair multiple files jointly, thus factorizing the bandwidth costs. However, the
design of this protocol has raised interesting questions in terms of theoretical as well
as practical research directions. We briefly discuss these two aspects in the following
sections.

4.1 Going further with interference alignment

In Section 3.2.3, we showed that, instead of contacting k nodes during the repair
process, contacting k + 1 nodes enables to repair two blocks jointly. This directly
translates into a halved bandwidth consumption compared to classical reparation.

A natural question would be: is it possible to achieve an higher bandwidth reduction
if contacting more than k + 1 is allowed. For example, is it possible to repair three
blocks jointly when contacting k +2 nodes. Note that, instead of halving the necessary
bandwidth as proposed in Section 3.2.3 , repairing three blocks jointly would result in
a bandwidth consumption divided by three.

In this section, we show that it is actually possible and provide some examples
where nodes do not send random combinations of their encoded blocks, but carefully
choose the coefficients of the combination. We experimentally show that for small k

67

4. Conclusions & Perspectives

Ⅰ
┘

 = 3 ⑳
┘

┇┒┇2┇⑳
┙

┇┒┇3┇⑳
┚

┇┒┇1┇⑳
┛┇

Ⅰ
┙

 = 2 ⑳
┘

┇┒┇4┇⑳
┙

┇┒┇1┇⑳
┚

┇┒┇2┇⑳
┛┇

Ⅰ
┚

 = 4 ⑳
┘

┇┒┇6┇⑳
┙

┇┒┇4┇⑳
┚

┇┒┇3┇⑳
┛┇

Interference Space H

(related to ⑳
┘

)

Rank (H) is only 2

(L3 = L1 + L2)

One dimension

free from interference

⑳
┘

┇can be recovered even if there are more unknowns than equations

2 4 6

3 1 4

1 2 3

*

1

1

-1

=

0

0

0

H1 H2 H3

Vector V = [1 1 -1]T is orthogonal to H1, H2 and H3

1Ⅰ
┘┇

 + 1Ⅰ
┙┇

- 1Ⅰ
┚┇

= 3⑳
┘┇

+ 2⑳
┘

 - 4⑳
┘

 = ⑳
┘┇┇

To cancel interference : Project desired unknown ⑳
┘

 into

the NullSpace of H, i.e compute : 1L1 + 1L2 � 1L3

⑳
┘

 is thus recovered from the observed values Ⅰ
┘

┓Ⅰ
┙

┇and Ⅰ
┚

V = [1 1 -1]T NullSpace (HT)

L1:

L2:

L3:

Desired signals

Figure 4.1: Example of an underdetermined linear system i.e., there are more unknowns
than equations. However some unknown can be recovered since interference are aligned
into a smaller subspace.

values, it is possible to find such coefficients using interference alignment techniques
(see for example [24]).

Interference alignment

Interference alignment is a radical idea that has recently emerged out of the study of
the capacity of interference networks [16]. The origins of interference alignment lie in
elementary linear algebra, we briefly provide the intuition of this promising technique
with the following example. Assume a simple system of three linear equations. There
are three observed values, y1, y2 and y3, and four unknowns x1, x2, x3 and x4.

y1 = 3x1 + 2x2 + 3x3 + 1x4

y2 = 2x1 + 4x2 + 1x3 + 2x4

y3 = 4x1 + 6x2 + 4x3 + 3x4

68

4.1. Going further with interference alignment

As there are more unknowns than equations, it is usually impossible to recover the
values of all the unknowns x1, x2, x3 and x4. However in this example, it is actually
possible to recover the value of x1. In fact, all interference terms related to x1, i.e.,
x2, x3 and x4, are aligned in a smaller subspace. In other words, it exists a linear
dependence between the interference vectors H1, H2 and H3 (see Figure 4.1). If the
interfering space does not span the whole space, but only a two-dimensional, over
the three available (the number of equations), this leaves one dimension free from
interference. x1 can thus be projected into this interference-free space to be recovered.
For example, note that the vector V = [1, 1, −1]T is orthogonal to every interference
vector H1, H2 and H3. Applying the row operations 1L1 + 1L2 − 1L3 leads to a single
equation with a single unknown x1 and can thus be solved.

This brings to light why this technique is called interference alignment, as interfer-
ence vectors have to be aligned in a subspace of the whole space in order to let some
dimension interference free. We next show how it can be used for the repair problem
in distributed storage system.

Exhaustive search of solutions

Applying interference alignment in CNC involves that, instead of sending a random
linear combination of the stored blocks, nodes have to carefully choose the coefficients
of the combination. We show a simple example in order to illustrate this technique.

Assume that three files X, Y and Z are stored on a five-node cluster, and each file is
encoded with k = 2 (see Figure 4.2). One node fails, thus leaving four nodes available
for the repair process. Each node sends a (non-random) linear combination of its
three encoded blocks. A proper choice of the coefficients of this linear combination
would let possible to recover three new encoded blocks, one for each file X, Y and Z.
For example, the coefficients of the linear combination sent by node 1 is the alignment
vector (251, 26, 134). The challenge of finding good coefficients relies on the fact that :

• To repair the block related to file X, all the terms related to file Y and file Z
must be cancelled.

• To repair the block related to file Y, all the terms related to file X and file Z
must be cancelled.

• To repair the block related to file Z, all the terms related to file X and file Y
must be cancelled.

More formally, this means that each node has to send a linear combination such
that each interference matrix HX , HY and HZ must not be full rank1 (see Figure 4.3).
Thus, multiple alignment constraints have to be satisfied to be able to cancel all the
interference terms. Note that these multiple alignment constraints make this problem

1It exists a linear dependence between the columns (or rows) vectors of the matrix.

69

4. Conclusions & Perspectives

154Y
2

 + 176Y
3

128Z
2

 + 237Z
3

165[
2

 + 117[
3

213Y
2

 + 171Y
3

42Z
2

 + 233Z
3

123[
2

 + 72[
3

90Y
2

 + 13Y
3

148Z
2

 + 116Z
3

238[
2

 + 48[
3

114Y
2

 + 48Y
3

199Z
2

 + 99Z
3

114[
2

 + 116[
3

51Y
2!

+ 69Y
3

 + 129Z
2

 + 138Z
3

 + 157[
2

 + 59[
3

!

182Y
2!

+ 62Y
3

!+ 42Z
2

 + 233Z
3

 + 14[
2

 + 71[
3

52Y
2

 + 65Y
3

 + 126Z
2

 + 66Z
3

 + 55[
2

 + 215[
3

211Y
2

 + 178Y
3

 + 132Z
2

 + 55Z
3

!+ 65[
2

 + 159[
3

 65

 1

 12

127

 23

 21

 98

234

 37

251

 26

134

70Y
2

 + 10Y
3

55Z
2

 + 226Z
3

121[
2

 + 235[
3

New node

N
o

d
e

 1

N
o

d
e

 2

N
o

d
e

 3

N
o

d
e

 4

Figure 4.2: Example of a repair process combining three files X, Y and Z using
interference alignment. Each node carefully chooses the coefficients of the linear
combination in order to align interference. One new block for each file can thus be
recovered without interference.

much harder than when grouping files by two. Indeed, the fact that theses conditions
must be satisfied at the same time is challenging and boils down to solve a set of
multivariate polynomial equations over a finite field. This problem is not linear any
more, and is known to be, in general, an NP-hard one [35].

In order to check if it was possible to find such coefficients in the previous example,
we performed an exhaustive search among all alignment vectors in F256. In other
words, for each alignment vector, and for all possible values of these vectors, we
checked if the multiple alignment constraints could be satisfied2. We found solutions
for k = 2, k = 3 and k = 4. We provide an example of the coefficients for a complete
repair for k = 2 in Appendix. However, for higher k, performing an exhaustive search
becomes computationally intractable, especially in large finite fields.

To summarize, from a theoretical point of view, interference alignment is a promising
technique to extend the CNC repair mechanism. As explained above, it would enable
to further reduce the bandwidth consumption during the repair process. However,

2Note that the NullSpace of each interference matrix must also be distinct to perform a valid
reparation

70

4.2. Practical issues

51Y
2

 + 69Y
3

 + 129Z
2

 + 138Z
3

 + 157[
2

 + 59[
3

!

182Y
2

 + 62Y
3!

 + 42Z
2

 + 233Z
3

 + 14[
2

 + 71[
3

52Y
2

 + 65Y
3

 + 126Z
2

 + 66Z
3

 + 55[
2

 + 215[
3

211Y
2

 + 178Y
3!

 + 132Z
2

 + 55Z
3

!!!+ 65[
2

 + 159[
3

To recover a block for file X To recover a block for file Y To recover a block for file Z

129Z
2

 + 138Z
3

 + 157[
2

 + 59[
3

!

42Z
2

 + 233Z
3

 + 14[
2

 + 71[
3

126Z
2

 + 66Z
3

 + 55[
2

 + 215[
3

132Z
2

 + 55Z
3

!!+ 65[
2

 + 159[
3

51Y
2

 + 69Y
3

 + 157[
2

 + 59[
3

!

182Y
2

 + 62Y
3!

 + 14[
2

 + 71[
3

52Y
2

 + 65Y
3

 + 55[
2

 + 215[
3

211Y
2

 + 178Y
3!

 + 65[
2

 + 159[
3

51Y
2

 + 69Y
3

 + 129Z
2

 + 138Z
3

182Y
2

 + 62Y
3!

 + 42Z
2

 + 233Z
3

52Y
2

 + 65Y
3

 + 126Z
2

 + 66Z
3

211Y
2

 + 178Y
3!

 + 132Z
2

 + 55Z
3

Interference matrix HX Interference matrix HY Interference matrix HZ

Rank (HX) = 3 D Rank (HY) = 3 D Rank (HZ) = 3

Figure 4.3: Each interference matrix must not be full rank in order to be able to
recover one block for each file without interference.

from a practical point of view, finding good coefficients to align interference terms is a
challenging problem (see for example [24]). In addition, the consequences of contacting
a larger number of nodes during the repair process remain unclear in practical systems.
We discuss this point in the next section.

4.2 Practical issues

While various repair mechanisms has been proposed in the literature, it remains a
huge gap between their design, and the performances of their implementation in real
systems. First of all, most repair models rely on a very strong assumption: they
assume that nodes never fail or disconnect during a repair. This is obviously hard to
ensure in a real system. Studying the impact of these failures on the repair bandwidth
overhead has rarely been tackled yet. To the best of our knowledge, the only technical
report [67] focusing on repair performances, performs it via simulation.

71

4. Conclusions & Perspectives

In addition, numerous repair mechanisms leverage the possibility to contact a larger
number of nodes in order to decrease the repair bandwidth consumption. For example,
in CNC we contact k + 1 nodes instead of k to perform the repair. However the
consequences of contacting more nodes during the repair process are unclear in practice.
Intuitively, the more nodes involved in the repair process, the higher the probability
that one of them fails during the repair. Moreover, being able to contact a larger
number of nodes may not be possible, typically in peer-to-peer systems. Indeed, even
optimal repair mechanisms may become inefficient due to churn. To illustrate our
purpose, we provide a simple example of the impact of node availability when using
regenerating codes.3

Impact of nodes availability on the repair bandwidth

As already said, an important point is to make the difference between the number of
nodes which are effectively failed, and the number of nodes a newcomer can contact
at the moment of the reparation. Typically, in a peer-to-peer storage system, nodes
can simply be temporary disconnected from the system.

Assume a 1GB file is stored using regenerating codes with k = 16 on n = 32 nodes,
such that any 16 out of these 32 nodes suffice to recover the file.

If a failure occurs, it is showed in [23] that it is possible to repair the failed node
downloading only 121MB when the newcomer can contact all the 31 remaining nodes
(ie. d = n − 1). This is an impressive bandwidth reduction. Note that with classical
erasure codes the quantity transferred would be the entire file size, i.e., 1GB. Thus
there is nearly 88% of bandwidth savings compared to the necessary bandwidth when
using classical erasure codes. However on a typical peer-to-peer system, with medium
availability (peers are online only half of the day for example), the probability that a
newcomer can contact all these 31 nodes is nearly zero (7.45 × 10−9). This means that
on the one hand, when accessing to extra nodes, it is possible to greatly reduce the
quantity of data transferred during a repair, but on the other hand the probability to
access these extra nodes and thus to succeed the repair must also be taken into account
in the evaluation. Thereby we argue that the exact improvement of regenerating
codes4 in a practical system has to be evaluated based on the average quantity of data
transferred during a repair.

Hereafter we describe how to compute the expected value of the amount of data
transferred during a repair, depending on the code used (i.e., the value of k and n)
and the availability of nodes participating in this repair. Let D be the discrete random
variable representing the number of nodes a newcomer can contact to be repaired. Let
Pd = P (D = d) with k ≤ d ≤ n − 1. In fact, if there is only one failure, the newcomer
can contact at most all the n − 1 surviving nodes and if d < k it is impossible to repair
as the data is not available (We only consider MDS codes). If we assume homogeneous

3Regenerating codes are optimal in terms of the repair bandwidth consumption.
4As well as every repair mechanisms requiring to contact a larger number of nodes

72

4.2. Practical issues

and independent availability of nodes p̄ , thus the probability that the newcomer can
contact exactly d nodes is given by :

Pd = Cd
n(p̄)d(1 − p̄)n−d (4.1)

Let Xd be the quantity of data transferred when the newcomer can contact D = d
nodes. Then (see [23]):

Xd =
Md

k(d − k + 1)
(4.2)

Let X be the discrete random variable representing the amount of data transferred
during a repair. It takes values Xd with probabilities Pd respectively with d ∈ [k, n − 1].
Then the expected value of this random variable is

E[X] =
1

σ

n−1
∑

d=k

PdXd (4.3)

where σ =
∑n−1

d=k Pd normalizes the distribution (to be a valid distribution,
1
σ

∑n−1
d=k Pd = 1 must be satisfied).

We plot on Figure 4.4 and 4.5 the average amount of data transferred during a
repair depending on the peers availability for various k, and various storage overheads.
Figure 4.4 and 4.5 clearly show that the gain provided when using regenerating codes
highly depends on the availability of nodes as well as the storage overhead. For example,
to repair a file of 1GB with (k = 16, n = 32) when the mean availability of peers is
0.5, the average quantity of data to transfer during the repair is nearly 500MB. This
is much higher than the optimal value i.e., 121MB as explained above. This optimal
value can only be achieved if nodes are always available. Relaxing this assumption
on the peer availability has thus a strong impact on the real quantity of data to be
transferred. The variety of such assumptions, as well as their practical consequences,
call for the design of repair mechanisms tailor-made for networked storage systems,
looking at adapted strategies to carry out the redundancy replenishment.

73

4. Conclusions & Perspectives

�

���

���

���

���

���

���

���

	��

A��

����

� �B� �B� �B� �B� �B� �B� �B� �B	 �BA � �B�

C
D
E
F
��
�
E
F
��
��
��
�E
F
�D
��
D
�

CDEF�E�E��E�����������DD��

F���
F���
F��	

Figure 4.4: Mean quantity of data transferred during a repair for various storage
overhead (k = 16, , FileSize = 1GB)

�

���

���

���

���

���

���

���

	��

A��

����

� �B� �B� �B� �B� �B� �B� �B� �B	 �BA � �B�

C
D
E
F
��
�
E
F
��
��
��
�E
F
�D
��
D
�

CDEF�E�E��E�����������DD��

� 	
� ��
� ��

Figure 4.5: Mean quantity of data transferred during a repair for various k. (n = 2 ∗ k,
FileSize = 1GB)

74

Résumé en français

Les systèmes de stockage actuels font face à une explosion des données à gérer.
Ils doivent d’une part en assurer le stockage de manière fiable et durable tout en
étant capable de les restituer à la demande, et ce, le plus rapidement possible. A
l’échelle actuelle, il serait illusoire d’imaginer une unique entité centralisée capable
de stocker et de restituer les données de tous ses utilisateurs. Bien que du point de
vue de l’utilisateur, le système de stockage apparait tel un unique interlocuteur, son
architecture sous-jacente est nécessairement devenue distribuée. En d’autres termes, le
stockage n’est plus assigné à un équipement centralisé, mais est maintenant distribué
parmi de multiples entités de stockage indépendantes, connectées via un réseau. Par
conséquent, la bande passante inhérente à ce réseau devient une ressource
à prendre en compte dans le design d’un système de stockage distribué.
En effet, la bande passante d’un système est intrinsèquement une ressource limitée,
qui doit être convenablement gérée de manière à éviter toute congestion du système.
Dans un système de stockage distribué, les deux principales fonctions consommatrices
de bande passante sont (i) les opérations de stockage et de restitution, et (ii) la
maintenance du système.

(i) Durant les opérations de stockage et de restitution, les données sont échangées
via le réseau, entre les utilisateurs et le système. Ces échanges consomment une
quantité importante de bande passante, de manière proportionnelle à la taille
des données.

(ii) Un système de stockage subit assurément des défaillances, qu’elles soient tempo-
raires ou permanentes, typiquement le crash d’un disque, impliquant la perte
de données. Ces données perdues doivent être restaurées afin que le système
reste dans un état sain. Ces opérations de maintenance entrainent de multi-
ples transferts de données sur le réseau, afin de réparer les pertes liées à ces
défaillances. Bien qu’essentielles au maintien de la fiabilité du système, ces
réparations demeurent extrêmement couteuses en termes de consommation de
bande passante.

Le problème de la gestion efficace de la bande passante revêt une impor-
tance accrue lorsque le système de stockage repose sur une architecture
pair-à-pair. Dans un système de stockage pair-à-pair, les ressources de stockage

75

4. Conclusions & Perspectives

sont directement fournies par les utilisateurs. Chaque utilisateur met à disposition du
système une partie de son espace de stockage local. Le système aggrège cet eldorado
d’espace de stockage afin d’offrir un service de stockage fiable à ces participants.
Bien que les architectures pair-à-pair offrent d’intéressantes propriétés, telle qu’une
tolérance aux pannes élevée, ou encore un fort potentiel de passage à l’échelle, ils
souffrent cependant d’importantes limitations concernant la bande passante. En effet,
la bande passante disponible dans une architecture pair-à-pair est considérablement
réduite à cause du churn et des défaillances.

Dans un système pair-à-pair, les utilisateurs peuvent se connecter et se déconnecter
du système selon leur bon vouloir, sans aucune forme d’avertissement. Cet inter-
mittence dans leur période de connexion, phénomène communément appelé churn,
provoque une asynchronie entre les périodes de connexion des utilisateurs. Intuitive-
ment, deux utilisateurs ne peuvent échanger des données que si ils sont connectés en
même temps. De ce fait, la quantité effective qu’ils peuvent échanger est réduite par
ce churn. Ceci provoque donc une diminution de la bande passante disponible entre
les utilisateurs, ce qui conduit directement à une augmentation des temps de stockage
et de restitution des données. De plus, dans un système de stockage pair-à-pair, la
totalité de la bande passante disponible est partagée entre la transmission des "données
utiles", (c’est à dire les opérations de stockage et restitution) et les transferts liée aux
opérations de maintenance. Ces opérations de maintenance consomment donc une
part importante de la bande passante disponible. De ce fait, elles réduisent la bande
passante disponible pour les sauvegardes et restitutions, et il devient donc primordial
de limiter leur impact sur la bande passante du système.

Contributions

Cette thèse se propose d’optimiser l’utilisation de la bande passante dans les
systèmes de stockage distribués, en limitant l’impact du churn et des défaillances.
L’objectif est double, le but est d’une part, de maximiser la bande passante disponible
pour les échanges de données, et d’une autre part de réduire la consommation de
bande passante inhérente aux opérations de maintenance. Bien que la réduction de
la consommation de la bande passante puisse être étudiée selon de nombreux angles,
cette thèse se concentre sur deux points spécifiques que sont l’augmentation de la
bande passante disponible entre les utilisateurs, et la réduction de la bande passante
relative aux opérations de maintenance.

Architecture assistée par des gateways

Dans la première partie de ce manuscrit, nous étudions comment réduire l’impact
de l’asynchronie, résultant du churn, sur la bande passante disponible pendant les
opérations de sauvegarde et de restitution. La première contribution de cette thèse
présente une architecture pair-à-pair hybride qui tient compte de la topologie bas-

76

4.2. Practical issues

niveau du réseau, c’est à dire la présence de gateways entre les utilisateurs et le système.
Ces gateways deviennent des composants actifs agissant comme des buffers, afin de
compenser l’intrinsèque instabilité des machines. De par leur disponibilité élevée, les
gateways fournissent un point de rendez-vous stable entre les périodes de connexion
des utilisateurs, masquant de ce fait leur asynchronie. Cette architecture est évaluée
par simulation en utilisant des traces de disponibilité provenant de réels systèmes.
Les résultats montrent que le temps nécessaire aux sauvegardes (voir Figure 4.6a) et
restitutions (voir Figure 4.6b) des données est considérablement réduit du fait d’une
meilleure utilisation de la bande passante disponible.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
D

F

Hours

CDNAp & P2P

GWA

CDNA

GWAp

CDNAp

P2P

(a) Temps de sauvegarde (TTB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
D

F

Hours

CDNA & P2P

GWA

CDNA

P2P

(b) Temps de restitution (TTR)

Figure 4.6: CDF des temps de sauvegarde et de restitution pour la trace Skype.

Mécansime de timeout adaptatif au niveau utilisateur

La seconde contribution de cette thèse se situe en amont des opérations de maintenance,
c’est à dire durant la phase de détection des défaillances. Dans un système pair-à-pair,
distinguer une défaillance permanente, nécessitant une réparation, d’une défaillance
temporaire est particulièrement compliqué. Dans ce dernier cas, une réparation ne

77

4. Conclusions & Perspectives

s’avèrerait pas nécessaire et consommerait donc de la bande passante inutilement. Afin
de décider si une réparation doit être, ou non, effectuée, nous proposons un mécanisme
de timeout adaptatif au niveau utilisateur. Ce mécanisme, basé sur une approche
Bayésienne est évalué en simulation sur des traces de disponibilité tirées de réels
systèmes. Les résultats montrent que, comparé aux mécanismes de timeout classiques,
le nombre de réparations inutiles est réduit de manière significative, diminuant ainsi
la bande passante inutilement consommée (voir Figure 4.7).

�����

����

�����

����

�����

����

�����

����

�����

����

	 � � � � � � A B 	� 		 	�

C
D
E
F
�
��
�
��
��
�
�
��
�
��
�
��
�
F
��
�
��
�
�
��
�
�
�

��� ��!�F�!����"#$

%���%������E��D�
&!�F�!���E��D�

	�'

��'

A�'

�����#����D�����

(a) (k=8, n=16)

�����

����

�����

����

�����

����

�����

����

�����

��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��	

A
B
C
D
E
F�
�
��
FE
�
�
�F
�
��
E
F�
�
D
�E
�
��
�
E
F�
�
�
�

��������D������ !"

#EF�#EEF���CE�B�
$��D�����CE�B�

(b) (k=8, n=24)

�����

����

�����

����

�����

����

�����

����

�����

� � � � � � 	 A B ��

C
D
E
F
�
��
�
��
��
�
�
��
�
��
�
��
�
F
��
�
��
�
�
��
�
�
�

��� ��!�F�!����"#$

%���%������E��D�
&!�F�!���E��D�

(c) (k=16, n=32)

����

�����

����

�����

����

�����

����

�����

����

�����

��� ���� ���� ���� ���� ���� ���� ���	 ���A ���B

C
D
E
F
�
��
�
��
��
�
�
��
�
��
�
��
�
F
��
�
��
�
�
��
�
�
�

��� ��!�F�!����"#$

%���%������E��D�
&!�F�!���E��D�

(d) (k=16, n=48)

Figure 4.7: Résultats pour la trace Skype selon différents paramètres du code.

Protocole de réparation de données encodées

La troisième contribution décrit un protocole permettant la réparation efficace de
données encodées via des codes à effacement. Les codes à effacement fournissent
un moyen prometteur d’introduire de la redondance à moindre cout, en termes
d’espace de stockage. Dans le cas d’une simple réplication de donnée, la réparation
est immédiate puisqu’elle ne nécessite qu’un transfert de la donnée. Cependant, il est
maintenant admis que la réparation de données encodées est extrêmement couteuse en
consommation de bande passante. La plupart des travaux réduisant la bande passante
inhérente à la réparation proposent des mécanismes au niveau fichier. Le mécanisme

78

4.2. Practical issues

que nous proposons permet de réparer de multiples fichiers simultanément, factorisant
ainsi le cout en bande passante. Ce protocole est implémenté et déployé sur un réseau
de test public (GRID5000) afin de montrer ces performances dans un environnement
réel. Comparé aux mécanismes traditionnellement implémentés, les resultats montrent
que la bande passante nécessaire est réduite de moitié (voir Figure 4.8), tout en
réduisant considérablement les temps de réparations (voir Figure 4.9).

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 9 10

T
ra

n
s
fe

r
ti
m

e
 (

s
)

Number of blocks to repair

CNC
RS

Replication

Figure 4.8: Temps pour transférer la quantité de données nécessaires afin d’effectuer
la réparation.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
R

e
p
a
ir
 T

im
e
 (

s
)

Number of blocks to repair

CNC
RS

Replication

Figure 4.9: Temps de réparation total.

79

Appendix

Additional Contributions

The study of nodes availability in section 2 and 3.1, as well as efficient repair mecha-
nisms in section 3.2 has led to additional contributions, not described in this thesis.
As these contributions was not directly related to the bandwidth consumption, we
briefly present them in this section.

Regenerating Codes: A System Perspective

In this work, we studied regenerating codes from a practical viewpoint. Regenerating
codes offer the same properties as erasure correcting codes with respect to storage
and availability. Yet, as opposed to erasure correcting codes, regenerating codes
significantly lower the network traffic upon repairs. The seminal paper on regenerating
codes applies network coding to storage systems and defines the optimal tradeoff
between the amounts of data stored and transferred. Regenerating codes, designed to
be as generic as possible, rely on many parameters, difficult to grasp in practice where
device availability vary from a system to another. Numerous variants of regenerating
codes thus exist.

In this work we provided an analysis of regenerating codes for practitioners to
grasp the various tradeoffs. In order to help choose the right parameters and coding
scheme, we made the following contributions: (i) We studied the influence of the
various parameters at the system level, depending on storage device availability. We
showed that the optimum at device level does not always apply at system level.
(ii) We compared the computational costs of various coding schemes for regenerating
codes (random codes , product-matrix codes, and exact linear codes) to the costs
of classical erasure correcting codes (Reed-Solomon codes). Our goal was to provide
system designers with concrete information to help them choose the best parameters
and design for regenerating codes. This work, in collaboration with Steve Jiekak,
Anne-Marie Kermarrec, Nicolas Le Scouarnec and Gilles Straub has been published
in the proceedings of the international workshop on Dependability Issues in Cloud
Computing, DISCCO 2012.

81

4. Conclusions & Perspectives

On The Impact of Users Availability In OSNs

In this work we studied the impact of users availability in Online Social Networks
(OSNs). While the availability has been extensively measured, studied and leveraged
for computers and application runtimes, we know little about the online presence
patterns of users and their impact on specific features in the case of OSNs. In this
work, we showed that online presence is very heterogeneous among users, and that
complex interactions may influence it. More specifically, we showed the online presence
of users on a given OSN enables to extract finer characteristics and correlations such
as the simultaneous presence of users with respect to their friends. This availability
information can be of particular interest to various practical functionalities such
as efficient information spreading and influence in OSNs, load prediction on the
service provider’s platform, or resource management in distributed social networks.
In addition, while the "who-knows-who" relations of OSN structures are inherently
time varying graphs, extracting at a finer granularity the user presence is interesting.
In this work, we investigated the dynamic nature of OSNs, based on a trace we
have extracted from Myspace. This trace contains both the social network structure
(friendship relations), as well as availability information in each timeslot.

From our analysis, we concluded that the availability of a user is highly correlated
with that of her friends. We then showed that user availability plays an important
role in some algorithms and focused on information spreading. In fact, identifying
central users i.e. those located in central positions in a network, is key to achieve
a fast dissemination and the importance of users in a social graph precisely vary
depending on their availability. This work, in collaboration with Antoine Boutet,
Anne- Marie Kermarrec and Erwan Le Merrer has been published in the proceedings
of the international workshop on Social Network Systems, SNS 2012.

82

4.2. Practical issues

Existence of solutions for k=2 (over F256)

Node 1 Node 2 Node 3 Node 4
File X [154, 176] [213, 171] [90, 13] [114, 48]
File Y [128, 237] [42, 233] [148, 116] [199, 99]
File Z [165, 117] [123, 72] [238, 48] [114, 116]

Table 4.1: Initial coefficients of each encoded block for each file, stored on the four
nodes.

Node 1 Node 2 Node 3 Node 4
Alignment vector [251, 26, 134] [65, 1, 12] [127, 23, 21] [98, 234, 37]

Table 4.2: Coefficients of the linear combination between the three encoded blocks
stored on each node

File X File Y File Z
Node 1 [51, 69] [129, 138] [157, 59]
Node 2 [182, 62] [42, 233] [14, 71]
Node 3 [52, 65] [126, 66] [55, 215]
Node 4 [211, 178] [132, 55] [65, 159]

Table 4.3: Resulting coefficients of the RepairedBlocks sent by each node.

to recover File X to recover FileY to recover File Z
Combination of repairBlocks [171, 4, 15, 1] [31, 16, 130, 1] [206, 203, 210, 1]

Table 4.4: Coefficients of the linear combination of RepairedBlocks to cancel interfer-
ence and restore one block for each file.

block for File X block for FileY block for File Z
Stored blocks [70, 10] [55, 226] [121, 235]

Table 4.5: Coefficients of the new encoded blocks stored for each file.

83

Bibliography

[1] Amazon Web Services. http://s3.amazonaws.com.

[2] EMC Study. http://www.emc.com/about/news/press/2011/20110628-01.htm.

[3] FON. http://corp.fon.com.

[4] Google Drive. http://drive.google.com/.

[5] Microsoft SkyDrive. http://skydrive.live.com/.

[6] Repository. http://www.cs.uiuc.edu/homes/pbg/availability/.

[7] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin
Donnelly. Symbiotic routing in future data centers. SIGCOMM Comput. Commun.
Rev., 41(4):–, August 2010.

[8] Szymon Acedanski, Supratim Deb, Muriel Medard, and Ralf Koetter. How good
is random linear coding based distributed networked storage. In NetCod, 2005.

[9] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A
five-year study of file-system metadata. In ToS, volume 3, 2007.

[10] Rudolf Ahlswede, Ning Cai, Shuo-Yen Li, and Raymond Yeung. Network In-
formation Flow. IEEE Transactions On Information Theory, 46:1204–1216,
2000.

[11] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. In SIGCOMM, 2008.

[12] Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelker. Understanding Availabil-
ity. In IPTPS, 2003.

[13] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Geoffrey M.
Voelker. Total recall: system support for automated availability management. In
NSDI, 2004.

[14] Charles Blake and Rodrigo Rodrigues. High availability, scalable storage, dynamic
peer networks: pick two. In HOTOS, 2003.

85

Bibliography

[15] William J. Bolosky, John R. Douceur, David Ely, , and Marvin Theimer. Fea-
sibility of a Serverless Distributed File System Deployed on an Existing Set of
Desktop PCs. In SIGMETRICS, 2000.

[16] Viveck R. Cadambe and Syed Ali Jafar. Interference alignment and the degrees
of freedom for the K user interference channe. IEEE Trans. Inf. Theory, 54:3425–
3441, 2008.

[17] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Be-
dekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muham-
mad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli,
Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas.
Windows azure storage: a highly available cloud storage service with strong
consistency. In SOSP, 2011.

[18] Stéphane Caron, Frédéric Giroire, Dorian Mazauric, Julian Monteiro, and
Stéphane Pérennes. Data life time for different placement policies in p2p storage
systems. In Globe, 2010.

[19] Meeyoung Cha, Pablo Rodriguez, Sue Moon, and Jon Crowcroft. On next-
generation telco-managed P2P TV architectures. In IPTPS, 2008.

[20] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim Weather-
spoon, Frans Kaashoek, John Kubiatowicz, and Robert Morris. Efficient replica
maintenance for distributed storage systems. In NSDI, 2006.

[21] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: making
backup cheap and easy. SIGOPS Oper. Syst. Rev., 36:285–298, 2002.

[22] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In SOSP, 2001.

[23] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin O. Wainwright,
and Kannan Ramchandran. Network Coding for Distributed Storage Systems.
In INFOCOM, 2007.

[24] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu, and Changho Suh.
A Survey on Network Codes for Distributed Storage. The Proceedings of the
IEEE, 99:476–489, 2010.

[25] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, , and Stefan Saroiu.
Characterizing Residential Broadband Networks. In IMC, 2007.

[26] John Douceur and Roger Wattenhofer. Competitive hill-climbing strategies for
replica placement in a distributed file system. In In DISC, 2001.

86

Bibliography

[27] John R. Douceur. Is remote host availability governed by a universal law? In
SIGMETRICS, 2003.

[28] John R. Douceur and Roger Wattenhofer. Optimizing file availability in a secure
serverless distributed file system. In SRDS, 2001.

[29] Alessandro Duminuco and Ernst Biersack. A Pratical Study of Regenerating
Codes for Peer-to-Peer Backup Systems. In ICDCS, 2009.

[30] Alessandro Duminuco, Ernst Biersack, and Ernst Biersack. Hierarchical codes:
How to make erasure codes attractive for peer-to-peer storage systems. In P2P,
2008.

[31] Alessandro Duminuco, Ernst Biersack, and Taoufik En-Najjary. Proactive repli-
cation in distributed storage systems using machine availability estimation. In
CoNEXT, 2007.

[32] Richard J. Dunn, John Zahorjan, Steven D. Gribble, and Henry M. Levy. Presence-
based availability and p2p systems. In P2P, 2005.

[33] Gilles Fedak, Jean-Patrick Gelas, Thomas Herault, Victor Iniesta, Derrick Kondo,
Laurent Lefevre, Paul Malécot, Lucas Nussbaum, Ala Rezmerita, and Olivier
Richard. DSL-Lab: A Low-Power Lightweight Platform to Experiment on
Domestic Broadband Internet. In ISPDC, 2010.

[34] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in globally
distributed storage systems. In OSDI, 2010.

[35] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences).
W. H. Freeman, first edition edition, 1979.

[36] Abdullah Gharaibeh and Matei Ripeanu. Exploring data reliability tradeoffs in
replicated storage systems. In HPDC, 2009.

[37] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
In SOSP, 2003.

[38] Christos Gkantsidis and P. Rodriguez. Network coding for large scale content
distribution. In INFOCOM, 2005.

[39] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn in dis-
tributed systems. In SIGCOMM, 2006.

[40] Kevin M. Greenan, Parascale Inc, James S. Plank, and Jay J. Wylie. Mean
time to meaningless: MTTDL, markov models, and storage system reliability. In
HotStorage, 2010.

87

Bibliography

[41] Saikat Guha, Neil Daswani, and Ravi Jain. An Experimental Study of the Skype
Peer-to-Peer VoIP System. In IPTPS, 2006.

[42] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: highly durable,
decentralized storage despite massive correlated failures. In NSDI, 2005.

[43] Yuchong Hu, Henry C. H. Chen, Patrick P. C. Lee, and Yang Tang. NCCloud:
Applying Network Coding for the Storage Repair in a Cloud-of-Clouds. In FAST,
2012.

[44] Yuchong Hu, Chiu-Man Yu, Yan Kit Li, P.P.C. Lee, and J.C.S. Lui. Ncfs: On the
practicality and extensibility of a network-coding-based distributed file system.
In NetCod, 2011.

[45] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems. In NCA, 2007.

[46] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: dynamic data replication
in free disk space for improving disk performance and energy consumption. In
SOSP, 2005.

[47] Vaishnav Janardhan and Henning Schulzrinne. Peer assisted VoD for set-top box
based IP network. In P2P-TV, 2007.

[48] Osama Khan, Randal Burns, James Plank, William Pierce, and Cheng Huang.
Rethinking Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads. In FAST, 2012.

[49] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: an architecture for global-scale
persistent storage. SIGPLAN Not., 35:190–201, 2000.

[50] Martin Landers, Han Zhang, and Kian-Lee Tan. PeerStore: Better Performance
by Relaxing in Peer-to-Peer Backup. In P2P, 2004.

[51] Nikolaos Laoutaris, Georgios Smaragdakis, Pablo Rodriguez, and Ravi Sundaram.
Delay Tolerant Bulk Data Transfers on the Internet. In SIGMETRICS, 2009.

[52] Pietro Michiardi Laszlo Toka, Matteo Dell’Amico. Online Data Backup: A
Peer-Assisted Approach. In P2P, 2010.

[53] Stevens Le Blond, Fabrice Le Fessant, and Erwan Le Merrer. Finding good
partners in availability-aware p2p networks. In SSS, 2009.

[54] T. Leighton. Improving Performance on the Internet. CACM, 52, 2009.

88

Bibliography

[55] Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Mike Burrows, and Michael
Isard. A cooperative internet backup scheme. In Usenix ATC, 2003.

[56] W. K. Lin, D. M. Chiu, and Y. B. Lee. Erasure Code Replication Revisited. In
P2P, 2004.

[57] Yunfeng Lin, Ben Liang, and Baochun Li. Priority random linear codes in
distributed storage systems. IEEE Trans. Parallel Distrib. Syst., 20(11):1653–
1667, 2009.

[58] Fangming Liu, Ye Sun, Bo Li, Baochun Li, and Xinyan Zhang. FS2You: Peer-
Assisted Semipersistent Online Hosting at a Large Scale. IEEE Trans. Parallel
Distrib. Syst., 21:1442–1457, 2010.

[59] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A
survey and comparison of peer-to-peer overlay network schemes. IEEE Commu-
nications Surveys and Tutorials, 7:72–93, 2005.

[60] James W. Mickens and Brian D. Noble. Exploiting availability prediction in
distributed systems. In NSDI, 2006.

[61] Ramsés Morales and Indranil Gupta. Avmon: Optimal and scalable discovery of
consistent availability monitoring overlays for distributed systems. IEEE Trans.
Parallel Distrib. Syst., 20(4):446–459, 2009.

[62] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vah-
dat. Portland: a scalable fault-tolerant layer 2 data center network fabric. In
SIGCOMM, 2009.

[63] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling machine availability in
enterprise and wide-area distributed computing environments. In Euro-Par, 2005.

[64] Frédérique E. Oggier and Anwitaman Datta. Self-repairing homomorphic codes
for distributed storage systems. In INFOCOM, 2011.

[65] Lluis Pamies-Juarez, Pedro Garcia-Lopez, and Marc Sanchez-Artigas.
Heterogeneity-aware erasure codes for peer-to-peer storage systems. In ICPP,
2009.

[66] Lluis Pamies-Juarez, Pedro García-López, and Marc Sánchez-Artigas. Availability
and Redundancy in Harmony: Measuring Retrieval Times in P2P Storage Systems.
In P2P, 2010.

[67] Lluis Pamies-Juarez, Frédérique E. Oggier, and Anwitaman Datta. An empirical
study of the repair performance of novel coding schemes for networked distributed
storage systems. CoRR, abs/1206.2187, 2012.

89

Bibliography

[68] Dimitris S. Papailiopoulos, Jianqiang Luo, Alexandros G. Dimakis, Cheng Huang,
and Jin Li. Simple Regenerating Codes: Network Coding for Cloud Storage. In
INFOCOM, 2012.

[69] Sriram Ramabhadran and Joseph Pasquale. Durability of replicated distributed
storage systems. In SIGMETRICS, 2008.

[70] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content-addressable network. In SIGCOMM, 2001.

[71] Rodrigo Rodrigues and Peter Druschel. Peer-to-peer systems. Commun. ACM,
53(10):72–82, October 2010.

[72] Rodrigo Rodrigues and Barbara Liskov. High availability in dhts: Erasure coding
vs. replication. In IPTPS, 2005.

[73] David S. H. Rosenthal. Keeping bits safe: how hard can it be? Commun. ACM,
53(11):47–55, November 2010.

[74] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware, 2001.

[75] Antony Rowstron and Peter Druschel. Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility. In SOSP, 2001.

[76] Krzysztof Rzadca, Anwitaman Datta, and Sonja Buchegger. Replica placement
in p2p storage: Complexity and game theoretic analyses. In ICDCS, 2010.

[77] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In MSST, 2010.

[78] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM, 2001.

[79] Kiran Tati and Geoffrey M. Voelker. On object maintenance in peer-to-peer
systems. In IPTPS, 2006.

[80] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain,
Joydeep Sen Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and
analytics infrastructure at facebook. In SIGMOD, 2010.

[81] Jing Tian, Zhi Yang, Wei Chen, Ben Y. Zhao, and Yafei Dai. Probabilistic failure
detection for efficient distributed storage maintenance. In SRDS, 2008.

[82] Vytautas Valancius, Nikolaos Laoutaris, Laurent Massoulié, Christophe Diot, and
Pablo Rodriguez. Greening the Internet with Nano Data Centers. In CoNext,
2009.

90

Bibliography

[83] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud
computing hardware reliability. In SoCC, 2010.

[84] Hakim Weatherspoon and John Kubiatowicz. Erasure Coding Vs. Replication:
A Quantitative Comparison. In IPTPS, 2002.

[85] Zhi Yang, Yafei Dai, and Zhen Xiao. Exploring the cost-availability tradeoff in
p2p storage systems. In ICPP, 2009.

91

❘!"✉♠!

▲❡" "②"$%♠❡" ❞❡ "$♦❝❦❛❣❡ ❛❝$✉❡❧" ❢♦♥$ ❢❛❝❡ 1 ✉♥❡ ❡①♣❧♦"✐♦♥ ❞❡" ❞♦♥♥5❡" 1 ❣56❡6✳ ❆

❧✬5❝❤❡❧❧❡ ❛❝$✉❡❧❧❡✱ ✐❧ "❡6❛✐$ ✐❧❧✉"♦✐6❡ ❞✬✐♠❛❣✐♥❡6 ✉♥❡ ✉♥✐<✉❡ ❡♥$✐$5 ❝❡♥$6❛❧✐"5❡ ❝❛♣❛❜❧❡ ❞❡ "$♦✲

❝❦❡6 ❡$ ❞❡ 6❡"$✐$✉❡6 ❧❡" ❞♦♥♥5❡" ❞❡ $♦✉" "❡" ✉$✐❧✐"❛$❡✉6"✳ ❇✐❡♥ <✉❡ ❞✉ ♣♦✐♥$ ❞❡ ✈✉❡ ❞❡

❧✬✉$✐❧✐"❛$❡✉6✱ ❧❡ "②"$%♠❡ ❞❡ "$♦❝❦❛❣❡ ❛♣♣❛6❛A$ $❡❧ ✉♥ ✉♥✐<✉❡ ✐♥$❡6❧♦❝✉$❡✉6✱ "♦♥ ❛6❝❤✐$❡❝$✉6❡

"♦✉"✲❥❛❝❡♥$❡ ❡"$ ♥5❝❡""❛✐6❡♠❡♥$ ❞❡✈❡♥✉❡ ❞✐"$6✐❜✉5❡✳ ❊♥ ❞✬❛✉$6❡" $❡6♠❡"✱ ❧❡ "$♦❝❦❛❣❡ ♥✬❡"$

♣❧✉" ❛""✐❣♥5 1 ✉♥ 5<✉✐♣❡♠❡♥$ ❝❡♥$6❛❧✐"5✱ ♠❛✐" ❡"$ ♠❛✐♥$❡♥❛♥$ ❞✐"$6✐❜✉5 ♣❛6♠✐ ❞❡ ♠✉❧$✐♣❧❡"

❡♥$✐$5" ❞❡ "$♦❝❦❛❣❡ ✐♥❞5♣❡♥❞❛♥$❡"✱ ❝♦♥♥❡❝$5❡" ✈✐❛ ✉♥ 65"❡❛✉✳ D❛6 ❝♦♥"5<✉❡♥$✱ ❧❛ ❜❛♥❞❡ ♣❛"✲

"❛♥$❡ ✐♥❤56❡♥$❡ 1 ❝❡ 65"❡❛✉ ❞❡✈✐❡♥$ ✉♥❡ 6❡""♦✉6❝❡ 1 ♣6❡♥❞6❡ ❡♥ ❝♦♠♣$❡ ❞❛♥" ❧❡ ❞❡"✐❣♥ ❞✬✉♥

"②"$%♠❡ ❞❡ "$♦❝❦❛❣❡ ❞✐"$6✐❜✉5✳ ❊♥ ❡✛❡$✱ ❧❛ ❜❛♥❞❡ ♣❛""❛♥$❡ ❞✬✉♥ "②"$%♠❡ ❡"$ ✐♥$6✐♥"%<✉❡✲

♠❡♥$ ✉♥❡ 6❡""♦✉6❝❡ ❧✐♠✐$5❡✱ <✉✐ ❞♦✐$ F$6❡ ❝♦♥✈❡♥❛❜❧❡♠❡♥$ ❣565❡ ❞❡ ♠❛♥✐%6❡ 1 5✈✐$❡6 $♦✉$❡

❝♦♥❣❡"$✐♦♥ ❞✉ "②"$%♠❡✳ ❈❡$$❡ $❤%"❡ "❡ ♣6♦♣♦"❡ ❞✬♦♣$✐♠✐"❡6 ❧✬✉$✐❧✐"❛$✐♦♥ ❞❡ ❧❛ ❜❛♥❞❡ ♣❛""❛♥$❡

❞❛♥" ❧❡" "②"$%♠❡" ❞❡ "$♦❝❦❛❣❡ ❞✐"$6✐❜✉5"✱ ❡♥ ❧✐♠✐$❛♥$ ❧✬✐♠♣❛❝$ ❞✉ ❝❤✉6♥ ❡$ ❞❡" ❞5❢❛✐❧❧❛♥❝❡"✳

▲✬♦❜❥❡❝$✐❢ ❡"$ ❞♦✉❜❧❡✱ ❧❡ ❜✉$ ❡"$ ❞✬✉♥❡ ♣❛6$✱ ❞❡ ♠❛①✐♠✐"❡6 ❧❛ ❜❛♥❞❡ ♣❛""❛♥$❡ ❞✐"♣♦♥✐❜❧❡ ♣♦✉6

❧❡" 5❝❤❛♥❣❡" ❞❡ ❞♦♥♥5❡"✱ ❡$ ❞✬✉♥❡ ❛✉$6❡ ♣❛6$ ❞❡ 65❞✉✐6❡ ❧❛ ❝♦♥"♦♠♠❛$✐♦♥ ❞❡ ❜❛♥❞❡ ♣❛""❛♥$❡

✐♥❤56❡♥$❡ ❛✉① ♦♣56❛$✐♦♥" ❞❡ ♠❛✐♥$❡♥❛♥❝❡✳ D♦✉6 ❝❡ ❢❛✐6❡✱ ♥♦✉" ♣65"❡♥$♦♥" $6♦✐" ❝♦♥$6✐❜✉$✐♦♥"

❞✐"$✐♥❝$❡"✳ ▲❛ ♣6❡♠✐%6❡ ❝♦♥$6✐❜✉$✐♦♥ ♣65"❡♥$❡ ✉♥❡ ❛6❝❤✐$❡❝$✉6❡ ♣❛✐6✲1✲♣❛✐6 ❤②❜6✐❞❡ <✉✐ $✐❡♥$

❝♦♠♣$❡ ❞❡ ❧❛ $♦♣♦❧♦❣✐❡ ❜❛"✲♥✐✈❡❛✉ ❞✉ 65"❡❛✉✱ ❝✬❡"$ 1 ❞✐6❡ ❧❛ ♣65"❡♥❝❡ ❞❡ ❣❛"❡✇❛②& ❡♥$6❡ ❧❡"

✉$✐❧✐"❛$❡✉6" ❡$ ❧❡ "②"$%♠❡✳ ▲❛ "❡❝♦♥❞❡ ❝♦♥$6✐❜✉$✐♦♥ ♣6♦♣♦"❡ ✉♥ ♠5❝❛♥✐"♠❡ ❞❡ $✐♠❡♦✉$ ❛❞❛♣✲

$❛$✐❢ ❛✉ ♥✐✈❡❛✉ ✉$✐❧✐"❛$❡✉6✱ ❜❛"5 "✉6 ✉♥❡ ❛♣♣6♦❝❤❡ ❇❛②5"✐❡♥♥❡✳ ▲❛ $6♦✐"✐%♠❡ ❝♦♥$6✐❜✉$✐♦♥

❞5❝6✐$ ✉♥ ♣6♦$♦❝♦❧❡ ♣❡6♠❡$$❛♥$ ❧❛ 65♣❛6❛$✐♦♥ ❡✣❝❛❝❡ ❞❡ ❞♦♥♥5❡" ❡♥❝♦❞5❡" ✈✐❛ ❞❡" ❝♦❞❡" 1

❡✛❛❝❡♠❡♥$✳ ❊♥✜♥✱ ❝❡$$❡ $❤%"❡ "❡ ❝♦♥❝❧✉$ "✉6 ❧❛ ♣♦""✐❜✐❧✐$5 ❞✬✉$✐❧✐"❡6 ❞❡" $❡❝❤♥✐<✉❡" ❞✬❛❧✐❣♥❡✲

♠❡♥$ ❞✬✐♥$❡6❢56❡♥❝❡✱ ❝♦♠♠✉♥5♠❡♥$ ✉$✐❧✐"5❡" ❡♥ ❝♦♠♠✉♥✐❝❛$✐♦♥ ♥✉♠56✐<✉❡ ❛✜♥ ❞✬❛❝❝6♦✐$6❡

❧✬❡✣❝❛❝✐$5 ❞❡" ♣6♦$♦❝♦❧❡" ❞❡ 65♣❛6❛$✐♦♥ ❞❡ ❞♦♥♥5❡" ❡♥❝♦❞5❡"✳

❆❜"'(❛❝'

▼♦❞❡6♥ "$♦6❛❣❡ "②"$❡♠" ❤❛✈❡ $♦ ❢❛❝❡ $❤❡ "✉6❣❡ ♦❢ $❤❡ ❛♠♦✉♥$ ♦❢ ❞❛$❛ $♦ ❤❛♥❞❧❡✳ ❆$ $❤❡

❝✉66❡♥$ "❝❛❧❡✱ ✐$ ✇♦✉❧❞ ❜❡ ❛♥ ✐❧❧✉"✐♦♥ $♦ ❜❡❧✐❡✈❡ $❤❛$ ❛ "✐♥❣❧❡ ❝❡♥$6❛❧✐③❡❞ "$♦6❛❣❡ ❞❡✈✐❝❡ ✐"

❛❜❧❡ $♦ "$♦6❡ ❛♥❞ 6❡$6✐❡✈❡ ❛❧❧ ✐$" ✉"❡6"✬ ❞❛$❛✳ ❲❤✐❧❡ ❢6♦♠ $❤❡ ✉"❡6✬" ✈✐❡✇♣♦✐♥$ $❤❡ "$♦6❛❣❡

"②"$❡♠ 6❡♠❛✐♥" ❛ "✐♥❣❧❡ ✐♥$❡6❧♦❝✉$♦6✱ ✐$" ✉♥❞❡6❧②✐♥❣ ❛6❝❤✐$❡❝$✉6❡ ❤❛" ❜❡❝♦♠❡ ♥❡❝❡""❛6✐❧②

❞✐"$6✐❜✉$❡❞✳ ■♥ ♦$❤❡6" ✇♦6❞"✱ "$♦6❛❣❡ ✐" ♥♦ ❧♦♥❣❡6 ❛""✐❣♥❡❞ $♦ ❛ ❝❡♥$6❛❧✐③❡❞ "$♦6❛❣❡ ❡<✉✐♣✲

♠❡♥$✱ ❜✉$ ✐" ♥♦✇ ❞✐"$6✐❜✉$❡❞ ❜❡$✇❡❡♥ ♠✉❧$✐♣❧❡ ✐♥❞❡♣❡♥❞❡♥$ "$♦6❛❣❡ ❞❡✈✐❝❡"✱ ❝♦♥♥❡❝$❡❞ ✈✐❛ ❛

♥❡$✇♦6❦✳ ❚❤❡6❡❢♦6❡✱ ✇❤❡♥ ❞❡"✐❣♥✐♥❣ ♥❡$✇♦6❦❡❞ "$♦6❛❣❡ "②"$❡♠"✱ ❜❛♥❞✇✐❞$❤ "❤♦✉❧❞ ♥♦✇ ❜❡

$❛❦❡♥ ✐♥$♦ ❛❝❝♦✉♥$ ❛" ❛ ❝6✐$✐❝❛❧ 6❡"♦✉6❝❡✳ ■♥ ❢❛❝$✱ $❤❡ ❜❛♥❞✇✐❞$❤ ♦❢ ❛ "②"$❡♠ ✐" ✐♥$6✐♥"✐❝❛❧❧②

❛ ❧✐♠✐$❡❞ 6❡"♦✉6❝❡ ✇❤✐❝❤ "❤♦✉❧❞ ❜❡ ❤❛♥❞❧❡❞ ✇✐$❤ ❝❛6❡ $♦ ❛✈♦✐❞ ❝♦♥❣❡"$✐♦♥✳ ❚❤❡ ❢♦❝✉" ♦❢ $❤✐"

$❤❡"✐" ✐" $♦ ♦♣$✐♠✐③❡ $❤❡ ❛✈❛✐❧❛❜❧❡ ❜❛♥❞✇✐❞$❤ ♦❢ ❞✐"$6✐❜✉$❡❞ "$♦6❛❣❡ "②"$❡♠"✱ ❧♦✇❡6✐♥❣ $❤❡

✐♠♣❛❝$ ♦❢ ❝❤✉6♥ ❛♥❞ ❢❛✐❧✉6❡"✳ ❚❤❡ ♦❜❥❡❝$✐✈❡ ✐" $✇♦❢♦❧❞✱ ♦♥ $❤❡ ♦♥❡ ❤❛♥❞ $❤❡ ♣✉6♣♦"❡ ✐" $♦

✐♥❝6❡❛"❡ $❤❡ ❛✈❛✐❧❛❜❧❡ ❜❛♥❞✇✐❞$❤ ❢♦6 ❞❛$❛ ❡①❝❤❛♥❣❡" ❛♥❞ ♦♥ $❤❡ ♦$❤❡6 ❤❛♥❞✱ $♦ ❞❡❝6❡❛"❡ $❤❡

❛♠♦✉♥$ ♦❢ ❜❛♥❞✇✐❞$❤ ❝♦♥"✉♠❡❞ ❜② ♠❛✐♥$❡♥❛♥❝❡✳ ❲❡ ♣6❡"❡♥$ $❤6❡❡ ❞✐"$✐♥❝$ ❝♦♥$6✐❜✉$✐♦♥"

✐♥ $❤✐" ♠❛♥✉"❝6✐♣$✳ ❚❤❡ ✜6"$ ❝♦♥$6✐❜✉$✐♦♥ ♦❢ $❤✐" $❤❡"✐" ♣6❡"❡♥$" ❛♥ ❤②❜6✐❞ ♣❡❡6✲$♦✲♣❡❡6

❛6❝❤✐$❡❝$✉6❡ $❛❦✐♥❣ ✐♥$♦ ❛❝❝♦✉♥$ $❤❡ ❧♦✇ ❧❡✈❡❧ $♦♣♦❧♦❣② ♦❢ $❤❡ ♥❡$✇♦6❦ ✐✳❡✳✱ $❤❡ ♣6❡"❡♥❝❡ ♦❢

❣❛$❡✇❛②" ❜❡$✇❡❡♥ $❤❡ "②"$❡♠ ❛♥❞ $❤❡ ✉"❡6"✳ ❚❤❡ "❡❝♦♥❞ ❝♦♥$6✐❜✉$✐♦♥ ♣6♦♣♦"❡" ❛♥ ❛❞❛♣$✐✈❡

❛♥❞ ✉"❡6✲❧❡✈❡❧ $✐♠❡♦✉$ ♠❡❝❤❛♥✐"♠✱ ❜❛"❡❞ ♦♥ ❛ ❇❛②❡"✐❛♥ ❛♣♣6♦❛❝❤✳ ❚❤❡ $❤✐6❞ ❝♦♥$6✐❜✉$✐♦♥

❞❡"❝6✐❜❡" ❛ 6❡♣❛✐6 ♣6♦$♦❝♦❧ ❡"♣❡❝✐❛❧❧② ❞❡"✐❣♥❡❞ ❢♦6 ❡6❛"✉6❡✲❝♦❞❡❞ "$♦6❡❞ ❞❛$❛✳ ❋✐♥❛❧❧②✱ $❤✐"

$❤❡"✐" ❝♦♥❝❧✉❞❡" ♦♥ $❤❡ ♣♦""✐❜✐❧✐$② ♦❢ ❡♠♣❧♦②✐♥❣ ✐♥$❡6❢❡6❡♥❝❡ ❛❧✐❣♥♠❡♥$ $❡❝❤♥✐<✉❡" ✐♥ ♦6❞❡6

$♦ ✐♥❝6❡❛"❡ $❤❡ ❡✣❝✐❡♥❝② ♦❢ 6❡♣❛✐6 ♣6♦$♦❝♦❧" ❡"♣❡❝✐❛❧❧② ❞❡"✐❣♥❡❞ ❢♦6 ❡♥❝♦❞❡❞ ❞❛$❛✳

