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A B S T R A C T

Hybrid electric vehicle have known a quickly grow in the last 10 years.
Between conventional vehicles which are criticized for their CO2 emission
and electric vehicles which have a big issue about autonomy, hybrid electric
ones seems to be a good trade of. No standard has been set yet, and the archi-
tectures resulting of theses productions vary between brands. Nevertheless,
all of them are design as a thermal vehicle with battery added which leads
to bad sizing of the component, specially internal combustion engine and
battery capacity. Consequently, the control strategy applied to its components
has a lot of constraints and cannot be optimal.
This thesis investigate a new methodology to design and control a hybrid
electric vehicle. Based on statistical description of driving cycle and the gen-
eration of random cycle, a new way of sizing component is presented. The
control associate is then determined and apply for different scenarios : firstly
a heavy vehicle : A truck and then a lightweight vehicle. An offline control
based on the optimization of the power split via a dynamic programming
algorithm is presented to get the optimal results for a given driving cycle.
A real time control strategy is then define with its optimization for a given
patterns and compared to the offline results. Finally, a new control of plug in
hybrid electric vehicle based on destination predictions is presented.
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R E S U M É

Depuis une dizaine d’années, les constructeurs et les grands groupes
du secteur de l’automobile se sont mobilisés autour de la recherche et du
développement de nouveaux prototypes de véhicules économes (moins con-
sommateurs d’énergie) et propres (moins de rejets de polluants) tels que
les véhicules hybrides et tout électriques. C’est une nouvelle mutation. Elle
fait profondément évoluer l’automobile, d’une architecture de propulsion
thermique, devenue maîtrisée mais fortement polluante, vers une traction
électrique ou hybride plus complexe et peu, voire pas du tout, maîtrisée ;
le nombre de composants (sources d’énergie, actionneurs, contrôleurs, cal-
culateurs, ...) devient important, de nature multidisciplinaire et possédant
beaucoup de non linéarités. De plus, faute de maturité dans ce domaine, à
ce jour l’industrie de l’automobile ne possède pas encore les connaissances
suffisantes nécessaires à la modélisation, à la simulation et à la conception
de ces nouveaux véhicules et plus particulièrement les dispositifs relatifs aux
sources d’énergie et aux différents actionneurs de propulsion.

Les travaux de cette thèse visent à donner des méthodes de conception
d’une chaine de traction hybride et d’en gérer la gestion de l’énergie. La
thèse s’appuie sur l’exemple de la conception et la gestion de l’énergie d’un
véhicule hybride basé sur une pile à combustible et des batteries.
Dans un premier temps, un méthode de dimensionnement des composants
de la chaine de traction est présentée : Elle consiste en l’étude statistique de
cycle de conduite générés pseudo aléatoirement représentatif de la conduite
en condition réelle de véhicule. Un générateur de cycle de conduite à été crée
et est présenté, et la méthode de dimensionnement de la source primaire, ici
une pile a combustible, ainsi que le source secondaire de puissance, ici des
batteries, est détaillée. Un exemple est pris pour illustrer cette méthode avec
la conception d’un véhicule de type camion poubelle décrivant des cycles de
conduites urbains à arrêts fréquents.
Dans un second temps, la gestion de l’énergie de la chaine de traction hybride
série est étudiée : une gestion de l’énergie “offline” est présentée, basé sur
l’optimisation par programmation dynamique. Cette optimisation permet
d’avoir le découpage de la puissance par les deux sources de la chaine de
traction de manière optimal pour un cycle précis. De part l’aspect déterministe
de la programmation dynamique, les résultats servent de référence quant au
futurs développements de gestion temps réel.
Un contrôleur temps réel basé sur la logique floue est ainsi exposé et les
résultats sont comparés par rapport à la gestion “offline”. Le contrôleur
est ensuite optimisé et rendu adaptatif par un algorithme génétique et un
algorithme de reconnaissance de type de profil routier.
Enfin, une introduction à la gestion de l’énergie dans les véhicules hybrides de
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type : “plug in” est présentée : Elle repose sur le principe de la détermination
de la distance restante à parcourir par la reconnaissance de la destination à
l’aide d’une matrice de probabilité de Markov.
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G E N E R A L I N T R O D U C T I O N

In the beginning of the 21st century, the environmental dimensions of
sustainable development became a key element of policy-making at inter-
national, regional and national levels. Indeed, the fear that current needs
will compromise the ability of future generations to meet their requirements
is omnipresent. The planet’s natural resources are currently overexploited,
and the constant increase of toxic emissions could result in an ecological
disaster if no actions on the global scale are taken. The necessity to develop
a production as well as a consumption model that spare natural resources
while reducing toxic emissions is evident. However, it requires a tremendous
degree of commitment from all parties involved whether it is government
bodies, business firms or consumers.
The automotive industry, generally perceived as one of the main contributor
to global warming, is well aware of such a responsibility. For many years
now, car manufacturers have invested a colossal amount of money, time and
human resources into Research and Development in order to reconcile mo-
bility and sustainability. In the last 10 years, a numerous vehicle technology
as emerged from manufacturers : Electric , hybrid or fuel cell vehicle are the
most investigated technology todays. On the other hand, internal combustion
engine based vehicle dominate drastically the automotive markets, and still
evolve in term of fuel consumption and embedded electronics.
The last generations of cars has better engine efficiency, consequently their
autonomy is increased, but also brings to the driver a comfort based on
new technologies like air conditioning, global positioning system, reversing
radar... On the opposite side, Electric vehicle (EV) has a lack of autonomy
due to the battery technology who does not have a good Watts per kilogram
ratio, and cannot embed a lot of electronics device, since their are power
consuming which is already limited. In this scenario, fuel cell vehicle appears
to be a good trade off since the autonomy can be closer to conventional
vehicle while producing zero emission (assuming that the hydrogen is made
using renewable energy). But, like EV, the main issue is the lack of charging
stations : For electricity case, the autonomy of EV is so low that charging
stations is required in almost all place (home, work, parking lots...). Never-
theless, some place are equipped with charging station coupled to renewable
energy, specially photo voltaic panel because of the free space in the roof of
industries/buildings. For hydrogen case, the storage of hydrogen is a big
issue : the pressure of the tank is much higher than oil tank, and the hydrogen
need to be kept at low temperatures to allow the flow when charging to be
efficient. Consequently, Big changes need to be done to gasoline station to be
able to provide hydrogen.
For all these reasons, hybrid electric vehicle appears to be the best solution for
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18 general introduction

shot-mid terms : the add of a electric drive train to the internal combustion
engine allow to decrease fuel consumption while keeping the same autonomy.
A lot of manufacturers focused on hybrid electric vehicle in the last ten years,
with different architecture and technology. The best example is Toyota with
the Prius, combining an electric drive to the gasoline motor without the need
to charge the batteries. But the arrival of hybrid technology came during
the internal combustion engine zenith. Consequently, manufacturers did not
switch all their product to hybrid, and kept a huge conventional vehicle mar-
ket which influenced a lot the research and development of hybrid model :
Indeed, to reduce the cost of production and research, manufacturer tried
to keep as more as possible the frame of the vehicle, its electronics and the
internal combustion engine size. It leads to product the a big power of the
internal combustion engine and small batteries, since the free space of the
vehicle is limited. The control strategy of the vehicle, which control the power
split between the engine, and the electric drive, also suffer of this conception.
From this observation, this thesis investigates a new methodology to design
the power train of hybrid electric vehicle and to control it.
The first chapter will draw up a state of arts of the electric and hybrid electric
vehicle and its controls.
The second chapter will focus of the sizing of the components, by analyzing
the vehicle’s utilization, a.k.a the driving patterns that the vehicle do. A new
approach of using this driving cycle is presented, analyzing statistically a
family of driving cycle to build a generator in order to determine the size of
the component on a representative sample of driving patterns rather than
on a single one. The methodology of sizing is the explain and a second part
focus on the optimal control of the vehicle knowing those cycles.
The third chapter will present the real time management of the power split of
the vehicle designed, and new optimization and adaptation features : A fuzzy
logic control for a Fuel cell hybrid electric vehicle is presented, and then
optimized by a genetic algorithm method for a specific driving pattern. Some
tool to implements this features while keeping good results on all patterns
(urban,highway...) is then presented and results are shown experimentally
using a lightweight fuel cell hybrid vehicle. Moreover, a control strategy
based on distance prediction for plug in hybrid vehicle is then explain.



1S TAT E O F A RT : H Y B R I D E L E C T R I C V E H I C L E

1.1 introduction

The automotive industry is well aware of its contribution to air pollution.
Indeed, its estimates that road transportation in the Europe accounts for
nearly a fifth of the Europe total CO2 emissions produced by man. In USA,
transportation accounts for one third of greenhouse gases. In this context,
manufacturers come with new technologies to replace the traditional internal
combustion engine by electric drive, or fuel cell. Figure. 1 represents the CO2

consumption per kilometers using these different technologies in a vehicle :
It clearly appears that improvement due to new technologies can radically
change the CO2 emissions [1]. In this way, manufacturers began to investigate
and develop new products like electric vehicle, hybrid electric vehicle or
fuel cell hybrid electric vehicle to answer to this problematic. The followings
section will described these technologies, pointing out their advantages and
disadvantages. A state of art on energy management of hybrid electric vehicle
is then drawn up and the possibility to increase its efficiency is discussed.

Figure 1. Comparison of CO2 emission for different vehicle’s technology
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20 state of art : hybrid electric vehicle

1.2 electric and hybrid electric vehicles presentation

1.2.1 Electric vehicle

An electric car is composed of two main components : the electric motor
and batteries. The principle of the electric motor has been discovered in
1821 by Michael Faraday, but electric motors became used in 1832, when
the electromagnetic induction principle has been discovered [2]. The electric
motor replace the traditional internal combustion engine and the power
needed is provided by batteries. In the middle of the 19th century, the electric
car was popular but then decline when the internal combustion engine
technology has been improved and the price of the gasoline became cheaper.
Nowadays, environmental issue and the depletion of fossil fuel bring the
renaissance of the electric vehicle.

Electric vehicle history

The first accumulator was created by Volta in 1800. This discovery allows
to embed electricity into mobile application such as vehicles and open the
door to electric car design. The first electric car made with lead acid batteries
has been created in 1881 by G. Trouvé. The vehicle had an autonomy between
16 and 40 kilometers and a maximum speed of 14 km/h.
At the end of the eighteenth century, when the race to speed and distance
records happened, electric vehicle growth in popularity. Among the most
notable of these records was the breaking of the 100 km/h (62 mph) speed
barrier, by Camille Jenatzy on April 29, 1899 in his “rocket-shaped“ vehicle
“Jamais Contente“ [3]. During this time, electric automobiles were compet-
ing with petroleum-fueled cars for urban use of a quality service car : The
companies Electric Carriage and Wagon built the first commercial applica-
tion of electric cars for New York City taxis in 1897. They then built urban
transportation vehicles such as buses and also trucks. The mobility generated
by vehicle has created new needs, with greater distance. As a consequence,
the internal combustion engine began to be predominant compare to electric
motor. Moreover, the cost of thermal vehicle was three time lower than electric
ones (the cost of Century Electric Roadster was 1750 dollars and the Ford T
500 dollars). Consequently, in 1920, electric vehicle almost disappear in favor
of internal combustion engine vehicles [4].

It is only in the middle of the nineteenth, during the energy crises, that
the electric vehicle got a renew. The major difference between electric and
internal combustion engine power train was the autonomy (the evolution of
the internal combustion engine coupled with high tank capacity allowed the
vehicle to travel until 5 times the autonomy of an electric vehicle). Moreover,
the weight of electric car was very big compare to thermal vehicle mainly
due to the weight of the batteries which have a very small specific energy
ration compare to gasoline. Consequently, only small quantity of electric
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car for specific applications has been product during these years. In 1990,
environmental issues due to gaz emission and the non fuel-efficiency of the
internal combustion engine was point out by the California Air Resources
Board (CARB), pushing for more fuel-efficient, lower emissions vehicles. This
idea growth during the end of the century and became a major problematic in
the vehicle industry during the 2000s. The adaptation of the thermal vehicle
to electric such as Peugeot 106, Citroën AX have found their place only on
very specific field like captive fleet (postal delivery) and didn’t succeed in the
consumer market [5]. The consumer was not ready to sacrifice the autonomy
for gaz pollution saving. The industry focused the production for city car only
and bring hybrid power train for standard vehicles. It leads to the design of
small car mainly using lead acid batteries with small autonomy and directly
focused for urban user. Nowadays, lithium-ion has replaced heavy lead-acid
battery technology, and the autonomy reach 100km such has Citroën C-zéro,
Nissan Leaf, Tesla Roadster, making electric vehicles attractive. Nevertheless,
consumers still criticize the autonomy and the charging method which force
the user to charge the battery almost everyday.

Power train

Figure. 2 represents a power train of an electric vehicle : The vehicle
propulsion is provided by a DC or AC electric motor and the electricity
source by batteries (lead-acid, Ni-Cd, Ni-Mh, Li-ion, Zebra ...). The speed
regulation is controlled by an electronic device which interacts via the power
converter. The connection to the grid is necessary to refill the batteries.

Transmission

Electric motor Power 

converter
Battery

Figure 2. Electric vehicle power train
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Existing Electric vehicles

list of hybrid electric vehicles Table. 1 gives a list of sold electric
vehicles in France with their autonomy and battery technology :

Manufacturer Model Autonomy Battery technology

Citroën C-Zero 150 km Lithium ion

Mia Electric Mia 130 km Lithium iron phosphate

Mitsubishi I-MiEV 150 km Lithium ion

Nissan Leaf 160 km Lithium ion

Peugeot iOn 130 km Lithium ion

Piaggio Porter 100 km Lead acid

Renault Fluence ZE 185 km Lithium ion

Renault Kangoo 170 km Lithium ion

Smart Fortwo 145 km Lithium ion

Tesla Roadster 390 km Lithium ion

Venturi Fetish 340 km Lithium polymer

Table 1. List of produced electric vehicles

example : nissan leaf The Nissan Leaf shown in Figure. 3 ("LEAF"
standing for Leading, Environmentally friendly, Affordable, Family car) is an
electric car produced by Nissan and introduced in Japan and the United States
in December 2010. The electric power train with lithium ion battery allows the
vehicle to have 160 km range (on NEDC driving cycle), corresponding to 2.4L
per 100km gasoline equivalent. The vehicle has the following caracteristics :

– Powertrain : The Leaf uses an 80 kW and 280 N·m front-mounted syn-
chronous electric motor driving the wheels.

– Battery : A 24 kWh lithium ion battery pack (presented in Figure. 4)
divided in 48 modules where each module contains four cells, equivalent
to a total of 192 cells.

– Range : The autonomy announced by the producer (Nissan) is 160km,
recorded on ECE driving cycle but the United States environmental
protection agency announced a range of 117 kilometers on US driving
cycle.

– Charge : The Leaf can be charged by two methods : A standard 120/220volts
AC charging and also a fast charging method using a 3.3 kW charger
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(580 Volts). Consequently, the vehicle can be full charged in 8 hours.

Figure 3. Nissan Leaf

Figure 4. Battery pack of Nissan Leaf

1.2.2 Hybrid electric vehicle : general presentation

A hybrid vehicle is composed of two or more energy sources to provide
the vehicle’s power. One of these sources can be electric : in this case the
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denomination of the vehicle is : Hybrid Electric Vehicle (HEV). For instance,
a HEV can be made with internal combustion engine and electric motor with
batteries. In this cases, the power can be provided either by thermal engine,
electric motor or both. The control strategy (or energy management) is the
method to control theses sources regarding the parameters and measures
of the vehicle (speed, batteries’s state of charge...). Due to the different
types of energy included in the power train (mechanic, electricity), severals
architectures of HEV exists [6].

History

The first hybrid power train appear in 1900, made by Ferdinand Porsche.
The vehicle was composed of an internal combustion engine coupled with an
electric motor with lead acid batteries. The torque provided by the electric
motor was mechanically added to the thermal engine. The electric drive
train was also able to run alone, which allowed the vehicle to run in pure
electric mode (the autonomy was around 65 km). This vehicle has been
presented in the Paris Auto Show in 1901. A second vehicle was exposed,
based also on internal combustion engine and electric motor, but the internal
combustion engine was coupled to a generator and the wheels was directly
connected to the electric motor. Theses two motors described the two main
type of architecture, parallel and series, which are still used today. The main
drawback of these vehicles in this period was the electric motor control which
were not mastered. As the same as electric car, HEV became investigated and
produced in the end of the 20th century with the idea of fuel economy and
environmental friendly cars. The main advantage between electric vehicle
and HEV is that hybridization of the power train allows to keep a really
good autonomy while reduce drastically the fuel consumption. The first
mass-produced hybrid vehicle was the Toyota Prius, launched in Japan in
1997, and in 1999 in the United States.

Figure 5. Toyota Hybrid System engine used in Toyota Prius
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As shown in Figure. 5, the vehicle is based on hybridize a gasoline engine
with two electric motor-generator : one between the internal combustion
engine and the battery to charge it and one to provide the electric drive
train. The vehicle has an estimated fuel economy of 4.5 l/100 km in the city
and 5.2 l/100 km in highway driving. Between 1997 and 2010, the Prius
global cumulative sales were estimated at 1.6 million units. In 2010, Peugeot
introduces his hybrid powertrain called Hybrid4 in the 3008 Hybrid (12). The
power train is split in one traditional thermal traction drive (front wheels)
train and an electric propulsion with a 25 kW electric motor (rear wheels)
coupled with 5 kWh nickel metal hydride batteries. A generator is linked
between the internal combustion engine and the battery pack to charge it.

Produced HEV

Table. 2 represents a list of produced model of HEV with the different
technology of hybridization used.

1.2.3 Hybrid electric vehicle technology

The varieties of hybrid electric designs can be differentiated by the structure
of the hybrid vehicle drive train, the fuel type, and the operative mode :

Micro hybrid

Micro hybrid architectures are composed of a small electric motor (gen-
erally around 3 kW) doing a start and stop system (Figure. 6). This system
automatically shuts down and restarts the internal combustion engine to
reduce the amount of time the engine spends idling, thereby reducing fuel
consumption and emissions. This is most advantageous for vehicles which
spend significant amounts of time waiting at traffic lights or frequently come
to a stop in traffic jams. This feature is present in hybrid electric vehicles,
but has also appeared in traditional vehicle to help the internal combustion
engine during starting phases. Fuel economy gains from this technology are
typically in the range of 5 to 10%. Since vehicle accessories like air condition-
ers and water pumps have typically been designed to run off a serpentine
belt on the engine, those systems must be redesigned to function properly
when the engine is turned off. Typically, an electric motor is used to power
these devices instead.

Mild hybrid

Mild hybrids are generally internal combustion engines equipped with an
electric machine allowing the engine to be turned off whenever the car is
coasting, braking, or stopped, yet restart quickly. Mild hybrids may employ
regenerative brake and some level of power assistance to the ICE, but mild
hybrids do not have an exclusive electric propulsion mode.
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Manufacturer/technology name Model Power train Architecture

Audi e-tron A1 Electric traction drive train (pro-
vided by Lithium ion battery
pack) with range extender based
on internal combustion engine

BMW Active hybrid Series 3 Internal combustion engine cou-
pled in parallel with electric mo-
tor and Lithium Ion battery pack

Series 5

Series 7

PSA Peugeot-Citroën Hybrid 4 3008 Internal combustion engine trac-
tion drive train coupled with
electric propulsion drive train
with Ni-Mh battery pack

308

508

DS4

DS5

Toyota Hybrid System (THS) Prius Power split drive train with two
motor-generator

Auris

Yaris

Table 2. List of HEVs technology and models
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Figure 6. Start and stop system

These electric motors ( around 20 kW or less) provide greater efficiency by
replacing the starter and alternator with a single device which assists the
power train and are called mild hybrids also don’t require the same level of
battery power and do not achieve the same levels of fuel economy improve-
ment as compared to full hybrid models. One example is the 2005 Chevrolet
Silverado (Figure. 7), The power train is a hybrid parallel architecture com-
pose of a 7 kW electric motor coupled with the internal combustion engine
by bell-housing. The fuel economy compare to the traditional thermal power
train is estimate to 10 %. However, the vehicle cannot run in pure electric
mode.

Full hybrid vehicle

Full hybrid vehicles are composed of a primary source of energy, ICE or
Fuel cell, hybridized with electric drive. A full hybrid HEV is able to run in
pure electric mode. Three categories can be distinguished :

series hybrid vehicle Series hybrid (Figure. 8) has the particularity to
have the electric motor directly connected to the transmission. The internal
combustion engine (in the case of Figure. 8, the ICE) runs as a range extender
to increase the autonomy by charging the battery [7]. It running at a constant
point, which can be set as the most efficiency point of the ICE if the vehicle is
well designed, and the electric drive absorbs and provides power peaks. Series
hybrid architecture has not very popular due to the major transformation
of the architecture compare to thermal vehicle : The entire drive train is
electric, and the control of electric motor is critical for a good behavior of the
vehicle. Therefore, this architecture allows the ICE speed to be completely
independent of the speed of the vehicle, allowing the motor to run at its
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Figure 7. Chevrolet Silverado mild hybrid
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best efficiency point. Consequently, this architecture offers the best fuel
consumption compare to others.

Figure 8. Series hybrid electric vehicle

Figure. 9 represents the power flow of the series power train for different
scenarios :

– Start : Only the electric motor is used to start the vehicle : all the power
come from the battery via the power converter.

– Acceleration : Both sources are used : the electric motor get power from the
battery and from the ICE which gives electrical power by transforming
the torque in electricity via a generator.

– Steady speed : When the speed is constant, the ICE can charge the battery
by providing all the power needed to the electric motor plus the battery
needs.

– Brake : During braking phases, the power is regenerated by the electric
motor which is used in generator mode, the battery are then charged.
It can be observed that the ICE can still charge the battery at the same
time.

parallel hybrid vehicle Parallel hybrid systems (Figure. 10), add
mechanically the ICE drive train and the electric drive train. The vehicle
is able to run in pure electric mode, specially at low speed where the ICE
is not efficient, the electric motor, which have a good torque at this speed
provide the power needed by the vehicle. At constant speed, the ICE speed
is linked to the speed of the vehicle. Consequently, its efficiency is the same
as a conventional vehicle [8]. The gear adds the both torques to give it to
the transmission. This type of architecture is mainly used by manufacturers
because it enable to start from a thermal vehicle drive train and hybridize it
by adding an electric part. Consequently, electric car model can be directly
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derivated from standard one. The main drawback of this design is that the
ICE is sized for standard use, which is over sized for an hybrid application.

Figure 10. Parallel hybrid electric vehicle

Figure. 11 represents the power flow of the parallel power train for different
scenarios :

– Start : Only the electric motor is used to start the vehicle : all the power
comes from the battery via the power converter, the clutch prevents the
ICE to be connected to the transmission .

– Acceleration : Both sources are used : the electric motor get power from
the battery and the ICE is used : both torque are added to provide the
vehicle power.

– Steady speed : When the speed is constant, the ICE can charge the battery
by providing all the power needed by the vehicle plus the power needed
to charge the battery via the electric motor which is used as a generator.

– Brake : During braking phases, the power is regenerated by the electric
motor which is used in generator mode, the battery are then charged.
It can be observed that the ICE can be disconnected via the clutch to
prevent engine brake.

An alternative parallel hybrid layout is the ”through the road” type. The
architecture is divided into two drive trains : A traction drive train generally
used by ICE and a propulsion drive train used by electric motor. The batteries
can be recharged through regenerative braking, or by loading the electrically
driven wheels during cruise. Power is thus transferred from the engine to
the batteries through the road surface. This layout also has the advantage of
providing four-wheel-drive in some conditions, but the main drawback of
this method is the road dependency : at high speed, the electric motor need
to be disconnected from the road because its running point are not matching
with the speed of the wheel. Figure. 12 shows the power train of the Peugeot



32 state of art : hybrid electric vehicle

Transmission

Battery

Clutch

Power 

converter

Generator Internal combustion 

engine

Start

Transmission

Battery

Clutch

Power 

converter

Generator Internal combustion 

engine

Acceleration

Transmission

Battery

Clutch

Power 

converter

Generator Internal combustion 

engine

Steady speed

Transmission

Battery

Clutch

Power 

converter

Generator Internal combustion 

engine

Brake

Figure 11. Parallel hybrid power train



1.2 electric and hybrid electric vehicles presentation 33

3008 Hybrid4 made in France which has this type of layout. A generator is
linked to the ICE to charge the battery during constant speed phases.

Figure 12. Peugeot 3008 Hybrid4

power-split vehicle Power-split hybrid or series-parallel hybrid (Figure. 13)
are parallel hybrids. The architecture is made with two motor-generators :
One between the internal combustion engine and battery which is used to
charge them and another one to provide the electric power to the wheels. All
three mechanical axis are linked with a planetary gear, which add each torque
to give the power to the transmission. With this architecture, by designing
wisely the size of both motor-generator, one of them can be used to run the
vehicle at low speed (pure electric mode) [9], when the internal combustion
engine cannot provide the power due to the lack of torque at these speed. The
other one can be used to charge the battery while the internal combustion
engine is running at its best efficiency point. The main advantage of this
architecture is that gearbox and clutch are not needed since the electric motor
provide the power when the internal combustion engine is not capable of
due to its speed range limitation.

Figure. 14 represents the power flow of the power-split power train for
different scenarios :

– Start : Only the electric motor is used to start the vehicle : all the power
come from the battery via the power converter.

– Acceleration : Both sources are used : the electric motor gets power from
the battery and the ICE is used : both torque are added to provide the
vehicle power.

– Steady speed : When the speed is constant, the ICE can charge the battery
by providing all the power needed by the vehicle plus the power needed
to charge the battery via the generator. Compared to the parallel archi-
tecture, the use of the specific generator allows the ICE to run at its best
efficiency points
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Figure 13. Power-split hybrid electric vehicle

– Brake : During braking phases, the power is regenerated though the
generator and the battery are then charged.

The Toyota Prius was the first vehicle to used this architecture : A 18 kW
generator motor is used to turn on the ICE and as a generator to charge
the battery and a 33 kW electric motor provides the torque for low speed
and high accelerations. This architecture has the advantage of series archi-
tecture : the internal combustion engine speed is not linked to the speed of
the vehicle, it can run at its best efficiency point. It is also offer the advantage
of the parallel architecture : the power provided to the transmission is me-
chanic. Consequently, commercial model can be directly adapted with this
architecture.

power train comparison Table. 3 shows a comparison with advan-
tages and drawbacks of presented architectures. For each type of power train,
the fuel consumption economy is directly linked to the driving cycle ran by
the vehicle. When running urban pattern, the fuel economy is very good
(around 35%), but for highway parts, almost all the power is provided by the
ICE and the consumption is equal to conventional vehicles, since the electric
motor is used only for accelerations [10].

1.2.4 Fuel cell hybrid electric vehicle

Build a vehicle which does not need gasoline to run is one of the most
focused objective by car’s manufacturers. That’s why the fuel cell technology
is highly studied.
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Hybridization types Pros Cons

Series Good efficiency at low speed Low global energetic efficiency

good control of ICE working
points

can not run with ICE only

Control strategy has low con-
straints

Parallel Good global energetic efficiency The ICE may not work at the best
working points

One electric motor only Complex mechanical parts

Control strategy has more con-
straints

Power-split Very good global energetic effi-
ciency

More than one electric motor
used

Complex mechanical parts

Very good control of ICE work-
ing points

Control strategy has a lot of con-
straints

Table 3. Pros and cons of different power train architectures
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Fuel cell

The fuel cell is a potential candidate for energy storage and conversion.
Indeed, a fuel cell is able to directly convert the chemical energy stored in
hydrogen into electricity, without undergoing different intermediary conver-
sion steps. In the field of mobile and stationary applications, it is considered
to be one of the future energy solutions. The main difference between a fuel
cell and a battery is that the fuel cell requires a constant source of fuel and
oxygen to run. Therefore, the battery needs to be charged to provide energy.

history Welsh Physicist William Grove developed the first fuel cells in
1839. The first commercial use of fuel cells was in NASA space programs to
generate power for probes, satellites and space capsules. Since then, fuel cells
have been used in many other applications. Fuel cells are used for primary
and backup power for commercial, industrial and residential buildings and
in remote or inaccessible areas. Fuel cell are also used in mobile applications
such as vehicle, bus, boats, airplanes... But the difficulty of hydrogen storage
and fuel cell reliability bring heavy constraints to the democratization of the
fuel cell into this type of application [11].

principle The fuel cell principle is the opposite to the electrolysis of water
[12, 13] : The reaction between the fuel (H2) and the oxidant (O2) produce
energy. At the anode, the dihydrogen is split in 2 protons of hydrogen and 2

electrons :

H2 −→ 2H+ + 2e− (1.1)

This reaction requires a catalyst. The catalyst use depends on the tempera-
ture of the reaction : The heater the temperature, the best the efficiency will
be. Consequently, the material used could be made with lower quality. The
free electrons allow to create a current if a load is linked between the anode
and the cathode. The hydrogen protons go through the electrolyte to reach
the cathode. At the cathode, the hydrogen protons and electrons merge to
create water[14] :

1

2
O2 + 2H+ + 2e− −→ H2O (1.2)

pemfc fuel cell Since automotive application requires low range tem-
perature, the Proton Exchange Membrane Fuel Cell (PEMFC) is well suited [15] :
PEMFC operates at temperature under 100 °C, with a stack efficiency of the
order of 50 %. Its low-operating temperature enables the fuel cell to start up
relatively quickly. The typical PEMFC power range is from a few milliwatts
to a few hundred kilwatts [16]. The primary advantages of PEMFC are as
follows :

– The electrolyte is solid : there is no risk of electrolyte leakage ;
– the operating temperature is low, which means that the cell does not

need a long time to warm up before being fully operational ;
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– the specific power is high, and be as high as 1 kW/kg.
However, it has its own drawbacks :

– The membrane must be kept in a good degree of hydration in order to
transfer hydrogen protons. If this condition is not met, there is a risk of
membrane deterioration, which would lead to the degradation of the
fuel cell itself ;

– the necessity of platinium makes the fuel cells susceptible to contamina-
tion from carbon monoxide, which poisons catalytic sites ;

– the fuel cell is very temperature dependent, leading to cold-start in low
temperature condition difficults ;

– heat and Air management of the fuel cell needs to be strictly regulated ;
– the durability of the fuel cell is limited, specially in mobile applications

where environmental perturbations strongly disrupt the fuel cell system.

hydrogen storage Three methods exist to store the hydrogen for fuel
cell applications :

– Store the hydrogen in ambient temperature under high pressure ;
– Store the hydrogen in very low temperature as liquid or solid form ;
– Store the hydrogen by trap it into hydride metal.
For automotive applications, researchers and manufacturers tend to store

the hydrogen into high pressure tanks composed of carbon fiber (superior to
300 bar. Nevertheless, hydride metal tank solutions are coming. This solution
has the advantage to keep the tank at a low pressure (around 10 bars), but
the temperature of the tank needs to be controlled and tanks are heavy.

fuel cell and battery vehicle The main issue of the PEMFC is its
dynamic : The high variations of currents between the cathode and anode
leads to high variation of membrane humidity. Consequently, dewatering or
drowning of the membrane can happen which can be harmful. In automotive
applications, where the dynamic caused by accelerations of the vehicle can be
high, the hybridization of the PEMFC is necessary. The battery can provide
the peak of power during high dynamic phases, letting the fuel cell runs
at a constant current. Moreover, like a standard HEV, the battery allows to
save hydrogen consumption and increases the autonomy of the vehicle. The
following studies will investigate several solutions to design and control an
efficient fuel cell hybrid electric vehicle.

1.3 control strategy of hybrid electric vehicle

The section 1.2.3 described the power flows for some scenarios of different
HEV architectures. These power flows described a general situation and are
not specific at a driving patterns/cycle. In order to determine in real time
the power split between the first and the second sources in a HEV, a control
strategy is determined. The control strategy is based on electronic components
which interact with the power converter to control the electric parts (electric
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motor/battery) or directly the ICE. Each power train architecture brings some
constraints on the control : for example, the parallel architecture requires
the same rotation speed for both ICE and electric motor while the series
architecture allows the ICE to run at every working points [17]. Two kinds of
control strategy can be found [18, 19] :

1.3.1 Offline controls

This type of control is based on optimization methods. The aim is to find
the best power split profile for a selected trip. The driving cycle ran by the
vehicle is assumed to be known, consequently, the power needed by the
vehicle during all the trip is known. Based on this knowledge, optimization
methods are run to find the optimal power split for this selected driving cycle.
Some methods are based on Global optimization points like [20, 21, 22, 23, 24,
25, 26] where finding the best efficiency points of the ICE is investigated. The
methodologies and controls used are really efficient for parallel architecture,
since the control strategy interact to the electric drive to let the ICE runs
the maximum of time to its best working point. Nevertheless, for series
architecture, where the ICE can run at every speed independently of the
vehicle speed, the optimization methods does not get the optimal results.

1.3.2 Online controls

Also called real time control, this control aims to finds a power split which
fit to all situations without knowing the future demands of power. Several
type of controls can be found in the literature [27, 28, 23, 29, 30, 31] which are
simple to implement but specific to the vehicle driving style. Others controls
like [32, 33, 34, 35] use fuzzy logic or neural network to determine the control
of the electric drive based on the constraints of the power needed by the
vehicle, remaining battery state of charge and architecture constraints.

Specific controls for fuel cell hybrid vehicle

Some control are also focus on fuel cell applications like [36, 37, 38]. As
described in section 1.2.4, the fuel cell need slow dynamic to run efficiently.
Consequently, the control has to be adapted with these constraints.

Predictive controls

Some predictive controls can be found in the literature [39, 40, 41, 42, 43, 44].
Most of them are based on the prediction of type of route that the vehicle will
run. This type of control is very efficient for plug-in hybrid electric vehicle.
Indeed, a plug-in vehicle allows to decrease the state of charge of the battery
as far as possible during the cycle. Therefore, the conventional HEV need
to keep the battery state of charge in a good zone, because of the lack of
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connection to the grid to charge the battery. Consequently, the prediction of
the power needed by the vehicle in future trip help the control to minimize
fuel consumption by increasing the power provided by electric drive.

1.3.3 Control used in commercial plug-in hybrid electric vehicles

Most of the plug-in hybrid electric vehicle made by manufacturers runs
with the same control : CD-CS mode. This control is composed of two parts :

– Charge depleting (CD) : The vehicle runs in all electric mode, the ICE is
turned off and only the electric drive provide the power needed.

– Charge sustaining (CS) : The ICE is used to maintain the battery at a
constant state of charge and to provide the power needed by the vehicle.

Figure. 15 shows the control strategy principle : The control is based on
the state of charge of the battery : a first part, charge depleting mode, is run
to decrease the state of charge of the battery. When the state of charge reaches
a critical point, the ICE is turned on to maintain the state of charge constant
and provide the power to the vehicle.
This control is really easy to implement, and really efficient when the driving
distance is very small, since the vehicle will run in electric mode only and
the fuel consumption will be null. Nevertheless, when the charge Sustaining
mode is reached, the fuel consumption is higher than a standard HEV vehicle
because the battery can not absorbs all peak of power due to its low state of
charge. In this mode, two situations brings different results :

– The ICE is big enough to provide all the power needed by the vehicle
while maintain the battery state of charge within working to its best
efficiency point.

– The ICE needs to operate to different points to provide the power to the
vehicle.

In the first case, the fuel consumption is minimized : The ICE runs at its
best efficiency zone during all the charge sustaining mode until the end of
the driving cycle. Nevertheless, this scenario requires to size the engine with
a very good knowledge of the driving patterns. In the second situation, the
ICE does not run at a constant point, the fuel consumption can be higher
than a conventional thermal vehicle since the ICE need to provide the power
needed by the vehicle and also charge the battery.
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Figure 15. Charge Depleting - Charge Sustaining control strategy

1.4 conclusion

In this chapter, hybrid electric vehicles has been presented focusing on the
power train architecture and controls. Some vehicle architecture, like parallel
or power-split, are mostly chosen by manufacturers to produce their cars.
The choice is generally made to adapt a conventional thermal vehicle into an
hybrid one. Moreover, the components sizing follows the same methodology :
the ICE size is usually the same as the thermal vehicle, and the battery pack
choice is limited by the free space in the vehicle.
The control strategy, which is directly linked to the architecture of the vehicle
and the size of components, need to take into account the lack of energy of a
small battery size and best working point of an over sized ICE. As described
in the literature, severals solutions brings really good fuel consumption
results but the control strategy is totally stuck with constraints resulting on
this bad sizing. It leads to real times controls which are very efficient for
urban patterns, but cannot reach offline controls results.
The work done in this thesis described a new methodology to size the
component of an hybrid electric vehicle and the control associate to the
vehicle with optimizations algorithm which allows to be efficient for all
driving patterns.





2H Y B R I D E L E C T R I C V E H I C L E C O N C E P T I O N : S I Z I N G
S O U R C E S A N D O P T I M A L C O N T R O L

2.1 driving cycle analysis

A driving cycle is a series of data points representing the speed of a vehicle
versus time. Most of the time, they are built using data collection : The
procedure involves instrumentation of the test vehicle to collect information
while driving on the test road. There are two major types of data to be
collected, Driver behavior and vehicle vs Road data. The vehicle vs road data
are used to prepare the road drive cycle and the driver data to prepare the
Driver model. This part focus on the road drive cycle which will be used to
determine the power cycle [45].

2.1.1 Standard driving cycle

Driving cycles are produced by different countries and organizations to
assess the performance of vehicles in various ways, as for example fuel
consumption and polluting emissions. Following up on an European Com-
mission strategy adopted in 2007, the EU has put in place a comprehensive
legal framework to reduce CO2 emissions from new light duty vehicles as
part of efforts to ensure it meets its greenhouse gas emission reduction targets
under the Kyoto Protocol and beyond. The legislation sets binding emission
targets for new car and van fleets. As the automotive industry works towards
meeting these targets, average emissions are falling each year. In order to
determine CO2 emissions for each cars, standard driving cycles has been
created [46, 47] :

Figure. 16 shows the ECE cycle which is an urban driving cycle, also
known as UDC. It was devised to represent city driving conditions, e.g. in
Paris or Rome. It is characterized by low vehicle speed, low engine load, and
low exhaust gas temperature.

Figure. 17 shows EUDC (Extra Urban Driving Cycle). A segment has
been added after the fourth ECE cycle to account for more aggressive, high
speed driving modes. The maximum speed of the EUDC cycle is 120 km/h.
Figure. 18 represent an alternative EUDC cycle for low-powered vehicles has
been also defined with a maximum speed limited to 90 km/h.

Figure. 4 includes a summary of selected parameters for the ECE, EUDC
and EUDC for low-powered vehicles cycles. Theses cycles are far away from
real driving pattern in term of dynamic (acceleration and deceleration), stop
time and maximum speed. That leads to very good fuel consumption and
low CO2 emissions when testing commercial cars. Nevertheless, it is still a

43
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Figure 18. EUDC Cycle for Low Power Vehicles

Table 4. Parameters for the ECE, EUDC and EUDC low speed cycles

Characteristics ECE 15 EUDC EUDC low speed

Distance (km) 1.013 6.955 6.243

Duration (s) 195 400 400

Average Speed (km/h) 18.7 62.2 55.6

Maximum Speed (km/h) 50 120 90



46 hybrid electric vehicle conception : sizing sources and optimal control

good base to analyze and compare results between manufacturer and car
models.

2.1.2 Recorded driving cycle

Some driving cycles are not created using approximate acceleration, decel-
eration and maximum speed, but are recorded from real driving condition
[48]. The USA use real driving cycle in order to study the fuel consumption
and gas emission. Severals driving cycle with different patterns are recorded :
Figure. 19 shows a cycle recorded in the city of New York with a truck. This
cycle emphasis the low speed and acceleration when driving an heavy weight
vehicle. In the opposite part, Figure. 20 represents a cycle recorded in the
area Cleveland composed of both urban and highway parts, where traffic
jams are very rare compare to New York. Consequently, the vehicle recorded
has less stops and can reach higher speeds.
The same methodology is used in India : Figure. 21 shows an urban driving
cycle and Figure. 22 a highway recorded cycle. These driving cycles have
strong different patterns than the USA’s ones due to the speed limit in India,
and also to the driving style of driver. Some driving cycle use blended mode :
the cycle is made by both recorded and created parts : Figure. 23 represents
the cycle used in the conception of the Toyota Prius : this cycle is recorded
but the driving pattern is imposed to the driver. the driver try to follow
the ECE cycle pattern : a first acceleration to reach 40 km/h is made, then
the vehicle decelerate to 0 km/h. This protocol is repeated 2 times, then a
new acceleration to reach 70 km/h is made to finally come back to 0. The
advantage of this cycle is to take into account the performance of the car
in terms of dynamic, so the results of fuel consumption and gas emission
is closer to the reality than using simple ECE driving cycle. Nevertheless,
it clearly appears that a single driving cycle cannot characterize the whole
conditions of driving.

2.1.3 Driving cycle generator

Knowing the driving patterns is critical in the process of a hybrid electric
vehicle conception. The process of sizing and control the sources of energy in
the vehicle depends on it. The driving cycles describes previously are good
to compare vehicles between them in terms of fuel consumption and gas
emission but ,in the case of standard cycles, are not enough close to reality
to characterize the power needed by the vehicle during a trip. In the other
part, the recorded driving cycles are too specifics. Consequently, the analyses
of this cycles leads to restrictive specification of the results. In this way, the
study of a family of driving cycle regrouped by patterns (urban for example)
leads to a better reflect of the reality. A driving cycle generator has been
design to create multiple driving cycle from recorded one in order to get a
representative sample of cycle for a family study. The following section will
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Figure 19. New York city recorded cycle with a truck
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Figure 20. Cleveland highway recorded driving cycle
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Figure 21. Urban part in India cycle
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Figure 22. Highway part in India cycle
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Figure 23. Toyota Prius blended cycle

describe the conception and utilization of this generator.

Data recording

The generated cycles are not totally random : They reflect statistically a set
of data recorded. A first work has been made to collect data. The application
chosen is a garbage truck of the city of Belfort, France. The general purpose
of this truck is to do exactly the same trip every day to collect garbages from
house and get it back to the garbage center. this leads to 2 observations :

– The cycle made by the vehicle is the same every day : The driving
generated driving cycle cannot be random, they need to have the same
pattern as the recorded one.

– The mass of the vehicle increases during the cycle : since the truck collect
garbage, the mass of the vehicle increase until the truck is full.

Theses two parameters must appear in the data collected : A GPS logger
is used to record the data of the truck for one week, corresponding to 6

driving cycle (one cycle every day). Figure. 24 shows the recorded used for
this study : the GPS sensor gives information about position, speed, time
and altitude. The frequency is set to 1 Hz. The logger as a memory of 4 Gb
corresponding to more than 200 hours of record. Moreover, the mass of
each garbage collected is weighted by the truck collect system in order to
determine the total weight of the vehicle.

The following parameters are recorded :
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Figure 24. ISAAC recorder

– Position ;
– Time ;
– Speed ;
– mass of the vehicle ;
– altitude.
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Figure 25. Recorded garbage truck cycle
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Figure. 25 shows the driving cycle recorded for one day made by the
garbage truck. The pattern is urban : the speed does not exceed 50 km/h
and a lot of acceleration/deceleration phases can be observed. The 7 days of
data will be analysed in order to collect informations to create new random
driving cycles.

Statistical analysis of driving cycle

The garbage truck’s driving cycle has a specific pattern as described in
Figure. 26 :
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Figure 26. Truck Driving cycle pattern

– Drive-away The truck start empty and goes from base to the first house ;
– mission/work : The truck goes from house to house and stop at each house

to collect garbage ;
– Drive-away back : When the truck is full, it goes back to base ;
– Turnaround : The Turnaround describes the whole cycle (drive-away,

mission and drive-away back
The recorded driving cycle are analyzed and some parameters are ex-

tracted :
– Drive-away distance : distance between the garbage base and the first

house ;
– Drive-away speed : mean drive speed from the base to the first house ;
– Drive-away acceleration/deceleration : mean acceleration/deceleration speed

from the base to the first house ;
– Working speed : drive speed from one house to another ;
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– Working acceleration/deceleration : acceleration/deceleration from one
house to another ;

– Working distance : distance between two houses ;
– Collection time : time to collect the garbage of one house ;
– Stop time : time when the vehicle is stopped to collect garbage ;
– Garbage weight : weight of the garbage of one house that need to be

collected in the truck ;
– Road slope.

Drive-away and driveway back parameters determination

The 3 phases of the cycle (drive-away, mission and drive-away back) cannot
be strictly determined. In this way, a survey has been conducted on all
turnarounds did by all the garbage trucks from the company to determine
the distance between the base and the first house. Figure. 27 shows the
statistical description of those results. The drive-away speed, acceleration
and deceleration are extracted from the cycle within the mean drive-away
distance. Since the truck goes back at the same base at the end of the cycle,
the same results applies for the drive-away back.
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Figure 27. Drive-away distance distribution

Working speed distribution

In order to statistically describe the speed of the vehicle between two
houses, each speed at each time step during the mission phases is analyzed,
except when the speed is 0. Figure. 28 shows the working speed distribution :
the distribution is not a Gaussian distribution because of the mission profile
of the truck : it does a lot of stop and the mean speed is very low. It can
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be observed that speeds inferior to 1 m/s does not appear.Those values are
voluntary exclude because the distribution must represent the mean speed
between two houses. Consequently, a speed lower than 1 m/s is to low to be
considered as a mean speed (the distance run by the trucks will be to low to
consider that it goes from one house to another).
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Figure 28. Drive-away distance distribution

Working acceleration/deceleration distribution

In order to determine the acceleration/deceleration did by the vehicle
during the cycle, the acceleration profile has been created from the driving
cycle using 2.1 :

γ(t) =
dv
dt

(2.1)

Figure. 29 shows the acceleration profile derivate from the driving cy-
cle. From this data, acceleration and deceleration profile are extracted and
distributions are created Figure. 30 and Figure. 31.

Working distance

The working distance describe the distance made by the truck to get
from a house to another. From the driving cycle, the driving distance can
be determined by Figure. 32 where Ts is the sample time of the driving
cycle (1 second) and Distancetot is the total distance between the 2 houses.
Figure. 33 shows the statistical description of the working distance extracted.
The majority of the distance are between 10 and 40 m and the distribution
has a Gaussian shape.
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Figure 30. Working acceleration distribution
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Figure 31. Working deceleration distribution

Stop time

The stop time is the amount of time spend by the vehicle when he is
stopped to collect garbage between 2 houses. This information is extracted
from the driving cycle using methodology described in Figure. 34where Ts
is the sample time of the driving cycle (1 second) and Timestop is the total
stop time. Results are drawn in Figure. 35. It can be observed that for a
small amount of stop time (between 7 and 12 seconds), the probability is
high ( superior to 4 %). This part of the data does not reflect the time spend
collecting garbage but the time stop by traffic light/jams. Indeed, since the
driving cycle is the unique source of information : the algorithm cannot
distinguish between stop caused by traffic or collecting phases.

Generate a driving cycle from statistical description of recorded data

As described in section 2.1.3, The truck runs a specific driving cycle called
Turnaround. The generated driving cycle needs to have the same pattern as
the Turnaround : Drive-away, mission and drive-away-back.
For each parts of the turnaround, the parameters are randomly generated
using distribution as follow :

1. The empty truck goes out of the base : drive-away distance, drive-away
speed and slope values are randomly picked up. As discuss in section
2.1.3, the speed picked corresponds as the mean speed of the vehicle
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Figure 32. Algorithm flowchart to determine the distance between two house
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Figure 34. Algorithm flowchart to determine the distance between two house
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running from base to the first house ; the slope is also considered as the
mean slope.

2. The truck collect the first bin : garbage weight and collection time values
are randomly picked up.

3. If the truck is not full, working distance, working speed, accelera-
tion/deceleration and slope values are randomly picked up : to ensure
the coherence with Figure. 36 :
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Figure 36. Determination of the time ∆t2 spent at speed v

Determination of the time spent at constant speed ∆t2 (2.2) :

d =
1

2
γa∆t1 + v∆ t2 +

1

2
γd∆t3 (2.2)

d =
1

2
γa (

v

tanγa
) + v∆ t2 +

1

2
γd (

v

tanγd
)

v∆ t2 = d−
v2

2 tanγa
−

v2

2 tanγd

∆t2 =
d

v
−

v

2 tanγa
−

v

2 tanγd

If ∆t2 < 0, the picked acceleration, deceleration and total distance does
not fit with the speed chosen. In this case, a new speed v is calculated
(2.3) :
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∆t2 = 0 (2.3)
d

v
−

v

2 tanγa
−

v

2 tanγd
= 0

4 tanγa tanγd − vd2 tanγd − vd2 tanγa
v4 tanγa tanγd

= 0

v =
4 tanγa tanγd

d2 tanγd + d2 tanγa

The cycle continues from the step 2 until the truck is full ;

4. When the truck is full, drive-away distance, driveway speed and slope
values are randomly picked up in the same way as step 1.

Figure. 37 and Figure. 38 show a generated driving cycle with the evolu-
tion of the weight of the vehicle. The 3 phases clearly appear on the driving
cycle and the results in term off acceleration,deceleration,mean speed... re-
spect the original recorded driving cycle.
Many driving cycle can be created with the generator, and the input parame-
ters (statistical distributions) can be tweaked to generate specific scenarios :
For instance, Figure. 39 shows the most power consuming driving cycle that
can be generated : The acceleration/deceleration and speed are maximum
and each weight of bin is minimum. Consequently, the vehicle does a lot of
start stop ( 5 times more than in Figure. 37) with huge dynamics.

Figure 37. Generated driving cycle
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Figure 38. Generated weight driving cycle
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Figure 39. Generated most power consuming driving cycle
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2.2 energy sources sizing

2.2.1 Power profile determination

In a hybrid electric vehicle, the power needed at every time can be provided
either by the primary source of energy (Fuel cell or Internal Combustion
Engine) or by the batteries. The determination of the power needed by the
vehicle during a driving cycle is crucial to determine the size of both energy
sources [49, 50].

vehicle model

The power can be calculated by modeling the vehicle used [51] : The amount
of mechanical energy consumed by a vehicle when driving a specified driving
pattern depends on three effects :

– The aerodynamic friction losses ;
– the rolling friction losses ;
– the energy dissipated in the brakes.
The vehicle model can be describes using the Newton’s second law (2.4) :

mv(t)
d
dt
v(t) = Ft(t) −

(

Fa(t) + Fr(t) + Fg(t) + Fd(t)
)

(2.4)

Pv(t) = v Ft(t) (2.5)

where,

Ft(t) = mv(t)
d
dt
v(t) + Fa(t) + Fr(t) + Fg(t) + Fd(t) (2.6)

where Fa is the drag force, Fr the rolling friction, Fg the force caused by
gravity when driving on non-horizontal roads, Fd the disturbance force that
summarizes all other effects and Ft is the traction force which depends on
speed and acceleration. Figure. 40 shows a schematic representation of this
relationship :

– Aerodynamic Friction Losses : The aerodynamic resistance Fa acting
on a vehicle in motion is caused on one hand by the viscous friction
of the surrounding air on the vehicle surface. On the other hand, the
losses are caused by the pressure difference between the front and the
rear of the vehicle, generated by a separation of the air flow. For a
standard passenger car, the car body causes approximately 65% of the
aerodynamic resistance. The rest is due to the wheel housings (20%), the
exterior mirrors, eave gutters, window housings, antennas, etc. (around
10%) and the engine ventilation (approximately 5%) [52]. Usually, the
aerodynamic resistance force is approximated by simplifying the vehicle
to be a prismatic body with a frontal area Af. The force cause by the
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Figure 40. Schematic representation of the forces acting on a vehicle in motion

stagnation pressure is multiplied by an aerodynamic drag coefficient Cx
that models the actual flow conditions (2.7) :

Fa =
1

2
ρaAf Cx v

2 (2.7)

Where v is the vehicle speed and ρa the density of the ambient air. The
parameter Cx must be estimated using experiments in wind tunnels.

– Tolling Friction Losses : It is often modeled as (2.8) :

Fr = mv(t)Cr g cos(α) (2.8)

where mv is the vehicle mass and g the acceleration due to gravity. The
term cos(α) models the influence of a non-horizontal road. However, the
situation in which the angle α will have a substantial influence is not
often encountered in practice. The rolling friction coefficient Cr depends
on many variables : The most important influencing quantities are vehicle
speed v, tire pressure pt, and road surface conditions. The influence of
the tire pressure is approximately proportional to 1/

√
pt. A wet road

can increase Cr by 20% and driving in extreme conditions (sand instead
of concrete) can easily double that value. The vehicle speed has a small
influence at lower values, but its influence substantially increases when
it approaches a critical value where resonance phenomena start.

– Uphill Driving Force : The force induced by gravity when driving on
a non-horizontal road is conservative and considerably influences the
vehicle behavior. In this text this force will be modeled by the relationship
(2.9) :

Fg = mv(t)g sin(α) (2.9)

For our study, the truck is a hybrid electric vehicle made with fuel cell and
batteries ; and has the following characteristics :
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– Empty weight : 13,000 kg ;
– Mass when fully loaded : 19,000 kg ;
– Front surface (Af) : 7m2 ;
– Drag coefficient (Cx) : 0.8 ;
– Rolling coefficient (Cr) : 0.015 ;
– Drivetrain efficiency : 0.72.
The aim of the study is to determine the power of the fuel cell and the

batteries capacity.

Power profile

The generated driving cycles will be used as an input of the vehicle’s
model in order to determine the power profile at each time step of the cycle.
The vehicle’s model Matlab/Simulink is presented in Figure 41. The model
parameters are : the speed, the slope, the acceleration and the weight of truck
for each step of simulation.

Figure 41. Simulink vehicle’s model

The sequential algorithm used to run the simulation is presented in Fig-
ure. 42. Each generated driving cycle is simulated using the vehicle model
and the instantaneous power P(t) at each time step. Figure. 43 shows the
profile power for the driving cycle recorded Figure. 25.

Then, the mean power P̄ and the total energy E at the end of each cycle can
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Figure 43. Power profile of a generated driving cycle

be computed using (2.10), (2.11) and (2.12), respectively :

P(t) =
Pv(t)

ηd
(2.10)

P̄ =
1

Tturnaround

∫Tturnaround

0

P(t)dt (2.11)

E = P̄ · Tturnaround (2.12)

where ηd is the drive train efficiency and Tturnaround is the total time of the
turnaround including all stops, working and drive-away times.

As each turnaround driving profile is different, the mean power and any
other quantities such as the total time (Tturnaround) for each turnaround will
vary. For example Figure. 44 represents the statistical distribution of the total
time of a turnaround.

After the first simulation, a second simulation is run using the mean power
obtained in the first one with the same driving profile. The second simulation
determines the energy profile along the time of peaking power source(battery)
(2.13) and its corresponding capacity (2.14).

Ebattery(t) =

∫

Pcurrent(t) − P̄(t)dt (2.13)

Cbattery (Wh) = Ebattery max − Ebattery min (2.14)

The results obtained from these two simulations are used to size the energy
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Figure 44. Total time distribution (Tturnaround)

storage sources (fuel cell power, hydrogen mass, battery power and energy
capacity).

2.2.2 Fuel cell stack power needs

Mean power and energy distributions

After a simulation of 5,000 turnarounds, the mean power distribution is
computed and given in Figure. 45. It can be clearly seen that the distribution
of the mean powers is a normal distribution centered on 13 kW.

The high number of simulation (5,000) has been chosen to have more pre-
cise results keeping an acceptable simulation time (about 25 min for 5,000

simulation). However, it has been shown that from a number of 1,000 simula-
tion the results are acceptable. The mean power distribution shows that the
maximum mean power required for one turnaround does not exceed 18 kW.
A 20 kW fuel cell stack will satisfy 100 % of the simulated cases based on the
chosen parameters. These results allows the fuel cell stack and the hydrogen
quantity to be chosen depending on how much turnarounds are planed for
one day. Moreover, if the hydrogen infrastructure is equipped with a fast
recharge station, the hydrogen tank does not need to be sized for the needs
of one day but only for a few turnarounds.

Once the fuel cell power (i.e., mean power) is computed, it is assumed that
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Figure 45. Turnaround mean power distribution

the fuel cell always output the mean power, also during stop phases, when
the truck is collecting garbage. This mean power can be subtracted to the
instantaneous power to determine the power needed by the peaking power
source [53, 54].

2.2.3 Peaking power source energy needs

Once the mean power is determined, a second simulation is run to de-
termine the energy (2.13) and capacity (2.14) of the second power source
by integrating its power. The results are given in Figure. 46. It is assumed
that the truck is not a plug-in vehicle : the initial and final battery’s states
of charges must be the same. The fuel cell recharges the battery when the
power needed by the vehicle is below the mean power (i.e., fuel cell power).
The battery capacity has been calculated based on the battery state of charge
constraints : depending on the technology, the state of charge should be
between a minimum (15 % to 20 % for Lithium-based batteries and Lead-acid
batteries) and a maximum (100 %). The battery capacity is calculated based
on the fact that the fuel cell runs constantly at the mean power of the driving
cycle and the battery gives or absorbs the remaining power. These results
show that the maximum battery capacity does not exceed 23 kWh. A battery
pack with 25 kWh will satisfy 100 % of the simulated cases based on the
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chosen parameters.
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Figure 46. Battery capacity

2.2.4 Practical sizing of both energy sources

Fuel cell and battery capacity for several braking recovery rate

Table 5 shows the mean power of the vehicle and the battery capacity
needed for the truck for several braking recovery rates. For this study due to
repeated starts and stops, it is assumed that the recovery of braking energy
rate is 60 % [55].

Table 5. Fuel cell and Battery capacity for several braking recovery rates

Braking recovery Mean power (W) Battery capacity (Wh)

0 % 21,600 24,800

30 % 19,900 23,100

60 % 18,300 21,900

100 % 16,400 20,600
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2.2.5 Size of the battery pack

Table 6 shows the mass and the volume of different peaking power sources
technologies based on the specific power and energy density given in [56].
This table is based on an energy recovery of 60 %.

Table 6. Size of the peaking power sources for several technologies assuming a 60 %
energy recovery during braking phases.

Type Mass (kg) Volume (l)

Lead-acid 2,500 1,150

Nickel-metal 600 175

Lithium-ion 500 175

Ultracapacitors 2,000 1,000,000

Due to their very low energy density (10 Wh/kg) [57], it is shown that
the ultra-capacitors are not suitable for this application. However, a triple
hybrid vehicle including fuel cell (low dynamics, low power and overall
energy), battery (medium dynamics and medium power, medium energy)
and ultra-capacitors (high dynamics, high power and low energy) could be
interesting but this would increase at the same time the vehicle complexity.

2.2.6 Size of the hydrogen tank

Once the fuel cell power is known, the quantity of hydrogen can be calcu-
lated to satisfy all the cycles. The mass and volume of hydrogen on board are
deduced from the energy provided by the fuel cells. Currently, most of the
hydrogen tanks are pressurized to 300 bar, with a minimum pressure of 30 bar
(i.e., empty tank). Knowing the power of the fuel cell and the duration of one
turnaround, it is possible to calculate the energy needed. The distribution
mass of hydrogen is then determined (Figure 47). The number of moles
nturnaround and subsequently the volume of hydrogen can be deduced from
the mass, as shown in Figure 48.

To ensure a proper hydrogen supply of the fuel cell, the pressure in the
tank has to be higher than 30 bar for a 300 bar tank. Consequently, all the
hydrogen in the tank cannot be used and an extra amount of hydrogen nextra

must be added. This extra amount must be taken into account to compute
the final volume of the hydrogen tank.

From the ideal gas law, we have :

PH2 ·VH2 = nH2 ·R · T (2.15)
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where

mH2 =
E

LHV ·ηFCS
(2.16)

nH2 =
mH2
2 ·MH

(2.17)

nH2 = nturnaround +nextra (2.18)

LHV is the lower heating value of hydrogen (LHV = 120.1MJ/kg), ηFCS is
the fuel cell hydrogen efficiency and MH is the hydrogen molar mass.

Combining equations (2.15) and (2.18) gives :

PH2 ·VH2 = (nturnaround +nextra) ·R · T (2.19)

The pressure at the end of the turnaround is Pextra, so nextra is given by
(2.20)

nextra =
Pextra ·VH2
R · T

(2.20)

Each hydrogen volume can be obtained using (2.20) with (2.19).

nturnaround +nextra =
PH2 ·VH2
R · T

(2.21)

nturnaround =
PH2 ·VH2
R · T

−
Pextra ·VH2
R · T

(2.22)

nturnaround =
(PH2 − Pextra) ·VH2

R · T
(2.23)

VH2 =
nturnaround ·R · T
(PH2 − Pextra)

(2.24)

where PH2 is the hydrogen tank pressure in Pascal (Pa), R is the ideal gas

constant
(

R = 8.314 J · mol−1 · K−1
)

, T is the tank temperature in Kelvin (K),
nH2 is the number of moles of hydrogen for one turnaround and nextra is the
moles of hydrogen at the end of a turnaround.

2.2.7 Conclusion

This section presented a new methodology in the conception of an hybrid
electric vehicle to determine the size of the energy sources. The driving cycle
generator presented with the garbage truck scenario has been upgraded
to be adaptive to every situation : A human machine interface has been
created with Matlab/Simulink in order to use it easily (Figure. 49). This
methodology has been presented on a conference : IEEE Vehicle Power
and Propulsion Conference in 2010, Lille, France [58], and a journal article
has been made : Energy sources sizing methodology for hybrid fuel cell
vehicles based on statistical description of driving cycles : IEEE Transaction
on Vehicular Technology, 2011 [59].
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Figure 49. Driving cycle generator : User interface
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2.3 optimal control of a hybrid electric vehicle

In this section, the control of the vehicle will be discuss. After applying
the methodology of sizing both energy sources on the truck, an optimization
on the energy management will be made using dynamic programming. The
energy management aims to get the lowest hydrogen consumption by the
fuel cell for a given driving cycle. Consequently, optimizing it leads to the
best hydrogen economy.

2.3.1 Components model

Architecture of the vehicle

Figure. 50 shows the drive train topology including the energy manage-
ment system. The vehicle has a series architecture and the energy manage-
ment controller will set the fuel cell current thanks to its associated DC/DC
converter based on the battery state of charge.
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Figure 50. Drivetrain topology including energy management system

The power split between the fuel cell PFC and the batteries Pb is given by
(2.25).

Pv(t) = ηFC PFC(t) + ηb Pb(t) (2.25)

where ηFC is the fuel cell efficiency and ηb is the battery efficiency.

2.3.2 Fuel cell model

The fuel cell is used as the primary source of energy and the objective of
the fuzzy rules is to minimize the hydrogen consumption given by (2.26)



74 hybrid electric vehicle conception : sizing sources and optimal control

[60, 12] :

mH2 =

∫t

0

MH2 nc

2 F
IFC(t)dt (2.26)

where mH2 is the hydrogen mass, MH2 is the hydrogen molar mass, nc
is the number of cells, IFC the fuel cell current and F the Faraday constant
(96, 487C). The fuel cell current IFC permits the fuel cell power to be com-
puted based on a simple fuel cell stack polarization curve Figure. 51. The
fuel cell maximum power is set to 20 kW due to previous results.
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Figure 51. Fuel cell polarization curve

2.3.3 Battery model

The battery model is based on a simple current integration to know the
battery state of charge at each instant time (2.27). The battery voltage is not
considered in this model as the objective of the simulation is to obtain the
energy to be stored in the battery for a turnaround.

SoC(t) = SoCinit −
1

Cinit
·Σi(t) ·∆t (2.27)

Where SoC is the battery state of charge, Cinit is the initial battery capacity,
which is set to 25 kWh due to previous results, and i is the current.
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2.3.4 Optimization : problem formulation

The offline control strategy objective is to find the minimum hydrogen con-
sumption for a known driving cycle [61, 62]. The consumption minimization
problem can be written as a problem of optimal control for discrete system
[63].

The battery’s state of charge x(k) can be considered as a dynamic system.
The system can be written as :

x(k+ 1) = x(k) + Pb ηb Ts (2.28)

ηb =







0.95 if Pb(t) < 0

1 if Pb(t) > 0
(2.29)

where Pb is the battery power level defined by (2.25), ηb the battery
efficiency (0.95 for charge and 1 for discharge) and Ts the sampling time. The
chosen criterion for N samples can be written as :

J =

N−1
∑

k=0

∆mH2(PFC, k) Ts (2.30)

where mH2(PFC, k) is the hydrogen mass consumed for the power PFC
between two sampling times. According to fig 51, the fuel cell power is
obviously limited :

µFC = PFCmin < PFC < PFCmax (2.31)

where PFCmin = 0 kW and PFCmax = 20 kW.

Moreover, the hybrid electric truck studied here is not plug in : the batteries
cannot by charged by the grid. Consequently, the remaining state of charge at
the end of the cycle needs to be the same as the one at the beginning [64], and
the state of charge boundaries on x must be limited by the batteries charge,
and discharge efficiencies. The discrete-time optimal problem can be then
formulated as following :

min
PFC∈µFC

N−1
∑

k=0

∆mH2(PFC, k) Ts (2.32)

x(k+ 1) = x(k) + Pb ηb Ts (2.33)

x0 = SoCinit (2.34)

xN = SoCfinal = SoCinit (2.35)

xk ∈ [0.4 , 0.9] (2.36)

N =
Tdc

Ts
(2.37)
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2.3.5 Optimization problem solving using dynamic programming

To solve this optimisation problem, a dynamic programming algorithm
is used. This algorithm has been proposed by Sundstorm and Guzzella in
[65]. The control input variable PFC is discretized by step of 10 W such that
PFC = [0 , 10 , 20... 19990 , 20000] and the algorithm calculates the minimum
cost-to-go function C = min(mh2) at each node in the discretized state-time
space with the constraint x(k) given by (2.32) and the feasible inputs solutions
give by (2.31).
The algorithm is composed of 2 parts : Firstly, a forward simulation described
in Figure. 52 is run. The algorithm calculates all the possibility from t = 0

to t = maximumtimeofthecycle with each discretized PFC. All the results
are stored in a 4D table including time, power, hydrogen consumption and
batteries state of charge. Since the algorithm check for boundaries and if the
results have not been already calculated from a different set of PFC, t, x(k) ; the
time consuming is really slow compare to the methodology which calculate
all the solutions of the problem. Nevertheless, the memory used is big and
this kind of optimization cannot be applied in embedded system. Secondly, a
backward simulation parse the memory table described in Figure. 53 from
the last result respecting the constraint and find all the results from tfinal
to tinitial by subtracting each time step the best hydrogen consumption
calculated mh2 .

2.3.6 Results on the Hybrid electric truck studied

The Dynamic programming optimization has been applied to the control
of the garbage truck 2.32 : Figure. 54 shows the results for the driving cycle
recorded : it can be observed that the final state of charge is the same as the
initial (70 %), the constraint is respected. The fuel cell current is steady during
most of the cycle but in the last part, it is increased a lot. It can be explained
by observing the driving cycle pattern : the end of the cycle correspond to
the drive-away back of the truck from house to the base, the mean speed
during this phase is higher than the rest of the cycle. Moreover, the truck is
fully loaded, and its weight linked with high speed and strong acceleration
leads to huge peak of power that can be observed in the power profile. The
optimized control results in these phase is a quick augmentation of the fuel
cell current and then it remain steady. It can be explain by the fuel cell model :
Indeed, the fuel cell high dynamic increase a lot the hydrogen consumption.
Consequently, the control aim to keep the fuel cell current steady as most as
possible. Figure. 55 represents the hydrogen consumption during the cycle.
It reflects the results explained previously and the drive-away back phase
clearly appears.
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Get the power needed at time t

Choose a Fuel cell power PFC 

Calculate battery new State of Charge 
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this couple (t,PFC)
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Figure 52. Dynamic programming forward simulation
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Find all t-1 results linked with t

Pick the minimum mH2 of t-1 results
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No

Backward simulation finished
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t=t-1

Figure 53. Dynamic programming backward simulation
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2.3.7 Conclusion

This section has presented an optimal control strategy based on dynamic
programming for hybrid electric vehicle with an application on a garbage
truck. This “offline” control strategy allows to get an optimal results of the
powersplit between the primary source and the peaking power source by
minimizing the hydrogen consumption, in case of a fuel cell as primary source.
The results of this optimisation will be used as reference when building real
time controller. This study has been presented in a conference : Electronique
du Futur 2011, Belfort, France [66].
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Figure 54. Dynamic programming results of the truck on the recorded driving cycle
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Figure 55. Dynamic programming results : hydrogen consumption of the truck on
the recorded driving cycle

2.4 combined optimal sizing and energy management

The methodology of sizing discussed in section 2.2 is really efficient when
working with a family of driving cycle. Nevertheless, since it is assumed to
choose the primary energy source as the mean power of the driving cycle.
For a single driving cycle study, this type of choose can not be the optimal
one. Indeed, the control strategy and the sizing of the component are directly
linked : the control defines the power provided by the primary source at
each step time of the cycle. The results can be far from the mean power. On
an other hand, the control needs the vehicle parameter, a.k.a. the size of
component to calculate the power split. The following section presents a new
methodology to determine the best sizing and control for a specific driving
cycle. The vehicle used in this study is a lightweight vehicle presented in
section 3.

2.4.1 Interlinked optimization problem

The aim of this study is to find the best sizing for the fuel cell (rated power)
and the battery (capacity), assuming an optimal power split and for a specific
driving cycle. Two interlinked optimization loops are run simultaneously, as
shown in Fig. 56. A first optimization is run on sizing, and chooses various
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couples of fuel cell rated power and battery capacity. Each couple is then
used as an input to the vehicle model used in the second optimization,
which determines the optimal energy management strategy that results in
the lowest total hydrogen consumption. In the end, the algorithm returns
the best found sizing and the corresponding optimal energy management
strategy and consumption.

Choose initial solutions

Update vehicle model

Run DP algorithm

Get total mH2

GA algorithm stopping
condition verified?

Return best sizing
and consumption

GA generates
new solutions

Define sizing bounds

Cycle

Best ~IFC

mH2

no

yes

Vehicle model

[PFC;Cbat]

[PFC,min;PFC,max] ; [Cbat,min;Cbat,max]
Genetic algorithm (GA) – Sizing

GA objective function – Energy management

[PFC;Cbat]

Figure 56. Architecture of the algorithm. The objective function is used to evaluate
each solution provided by the genetic algorithm.
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Sizing optimization

The sizing optimization tries to find the best set of fuel cell rated power
and battery capacity, resulting in the lowest total hydrogen consumption. The
total mass mtot of the vehicle is obtained using (2.38) :

mtot = mHEV +
Cbat

Nbat
+ λ(PFC) (2.38)

where mHEV is the vehicle mass without batteries, Cbat is the battery capacity
selected by the sizing algorithm,Nbat is the energy density of the batteries and
λ is the function giving the mass of the fuel cell as a function of its rated power.
This function is determined using data extracted from several constructor
data sheets (Fig. 57), and leads to a quadratic relationship between mass
and rated power. The value of Pmot is recomputed for each sizing couple,
as the algorithm would otherwise tend to choose over-sized batteries. The
vehicle model is thus customizable and adapts to the solutions proposed by
the optimization algorithm.
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Figure 57. Fuel cell mass as a function of its rated power

The discrete state-time problem is then formulated as follows :

min
SFC∈ψFC,Sbat∈ψbat

mH2(SFC, Sbat,mtot) (2.39)

where ψFC ∈ [0, 20000] and ψbat ∈ [0, 30000] are the fuel cell rated power
and battery capacity search domains in W and in Wh, respectively.

The problem is solved using a genetic algorithm, with a population of
30 individuals and 50 generations. Genetic algorithms [67] are a type of
meta-heuristic based on the principles of natural evolution, and that use
the concepts of inheritance, mutation, selection and crossover to make a
population of solutions evolve through a given search space toward the best
solutions. MathWorks’s Matlab’s genetic algorithm function ga is used for
solving this problem.
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Optimal energy management strategy

Using the solutions input by the sizing optimization, the second opti-
mization loop tries to find the optimal control strategy by minimizing the
hydrogen consumption on the selected driving cycle [61, 62]. The optimiza-
tion algorithm is the same as explained in section 2.3.4 and the constraints
are :

x0 = 0.7 (2.40)

xN−1 = x0 (2.41)

x ∈ [0.4; 0.9] (2.42)

PFC(t) ∈ [PFCmin ;PFCmax ] (2.43)

PFCmin = 0W (2.44)

PFCmax = PFC (2.45)

2.4.2 Results

In order to analyze its performance, the proposed methodology is tested on
two standards driving cycles, the ECE and LA92 driving cycles, and results
are then compared with another sizing methodology.

Results on standard driving cycles

As shown in Fig. 58 and 59, the dynamic programming algorithm is able
to find the optimal fuel consumption while ensuring the final SOC is equal
to its initial value at the end of the cycle, as required.

In terms of sizing and consumption, for the ECE cycle, the algorithm finds
that the best sizing is obtained for a 6.5 kW fuel cell and a 75 Wh battery. It
then returns a total hydrogen consumption of 3.0 g. For the LA92 cycle, the
algorithm obtains a 9.0 kW fuel cell and a 72 Wh battery, for a total hydrogen
consumption of 15 g.

Having data available on the entire driving cycle thus enables the control
strategy to maintain an almost fuel cell current that minimizes the hydrogen
consumption and to re-charge the battery during stop phases. Not being
able to access all this information, an on-line control strategy would not be
capable of it.

Comparison with another sizing method

In order to evaluate the performance of the algorithm, results are compared
with sizing method based on a statistical description of driving cycles [? ].
For the ECE driving cycle, this method gives a 3.6 kW fuel cell and a battery
capacity of 96 Wh, with a fuel consumption of 3.3 g. For the LA92 driving
cycle, it returns a 2.6 kW fuel cell, a battery capacity of 221 Wh and a fuel
consumption of 53 g.
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Figure 58. Simulation results for the ECE driving cycle
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Figure 59. Simulation results for the LA92 driving cycle
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A comparison of both methodologies (Table 7) shows that the proposed
algorithm gives a smaller battery (by 22 % for ECE and 67 % for LA92) and
a lower fuel consumption (by 9.1 % for ECE and 72 % for LA92) than the
other one. However, the size of the fuel cell is increased in both cases. Results
are particularly spectacular for the LA92 cycle, as a totally different sizing
strategy is adopted by both algorithms.

Increasing the size of the fuel cell enables the fuel cell system to operate
closer to its optimal operation point, without much impact on the mass of
the vehicle, as fuel cells are much lighter than batteries. This also indicates
that the fuel consumption and the fuel cell size (and the corresponding price)
are contradictory objectives. A compromise could then be found to try to
accommodate both objectives.

Table 7. Comparison of the results obtained by the proposed method with another
one based on the statistical description of driving cycles

Driving cycle Result Unit Reference method Proposed method Comparison

ECE Fuel cell kW 3.6 6.5 +80%

Battery Wh 96 75 −22%

Hydrogen g 3.3 3.0 −9.1%

LA92 Fuel cell kW 2.6 9.0 +246%

Battery Wh 221 72 −67%

Hydrogen g 53 15 −72%

Feasibility map

In order to try to determine how the hydrogen consumption evolves when
selecting different sizing solutions (especially for real applications), a feasibil-
ity map is traced. This map is obtained by computing the optimal hydrogen
consumption for a given driving cycle for a wide range of fuel cell sizes and
battery capacities.

Fig. 60 shows this map for the ECE driving cycle. A color map is used to
indicate the value of the total hydrogen consumption : blue indicate a low
consumption and red a high one. White areas indicate that the algorithm
could not find a feasible solution, e.g. because the SOC cannot be maintained.
Results indicate that choosing a small battery with a large fuel cell returns the
lowest fuel consumption because the fuel cell runs with the best efficiency.

2.4.3 Conclusion

The proposed combined optimization algorithm enables finding the opti-
mal sizing for a given HEV architecture and driving cycle, resulting in the
lowest fuel consumption and enabling to maintain the SOC of the battery.
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Figure 60. Hydrogen consumption map for the ECE driving cycle

This methodology also enables to reduce the size of the energy sources (here
mostly the battery), and consequently the vehicle mass, by selecting their
minimal size so that the lowest fuel consumption is obtained, compared to
other methodologies that often rely on simpler control strategies that tend to
give higher fuel consumptions. However, this methodology is cycle oriented,
and the results can be applied only if the vehicle is used with a predefined
driving style, as for postal services or garbage collection.
This study has been presented on a conference : IEEE Transportation Electrifi-
cation Conference and Expo (ITEC), 2012, Dearborn, USA [68].

2.5 conclusion

This chapter has focused on the conception of the hybrid electric vehicle
and its control knowing the driving cycle. The methodology proposed allows
to reduce the size of the component, and consequently the cost of the vehicle.
It also permits to save study the impact of building an hybrid electric vehicle
rather than a standard one (with Internal Combustion Engine) for specific
driving patterns. Hydrogen consumption, size of the component and tanks
can be determined and compare to standard vehicle’s fuel consumption.
Optimal control strategy gives the best results of the power split control for a
specific driving cycle. it can be used as a reference when building real time
control strategy.



3R E A L T I M E C O N T R O L S T R AT E G Y F O R H Y B R I D
E L E C T R I C V E H I C L E

3.1 introduction

This chapter focus on control strategy of hybrid electric vehicle : in a first
time, a real time controller based on fuzzy logic will be presented : the
controller will be used in 2 scenarios :

– The garbage truck studied in section 2.2
– A lightweight vehicle : This vehicle is an electric vehicle from GEMCAR

manufacturer and has been transformed into a hybrid electric vehicle
based on fuel cell and batteries : Figure. 61 shows the original vehicle :
it is a lightweight vehicle based on lead acid batteries who is built to
run urban patterns. The System and Transport Laboratory modified this
vehicle by adding a fuel cell, tanks, DC/DC converter and controllers
to transform it into a series hybrid. Figure. 62 andFigure. 63 shows the
transformed vehicle which will be used for this study.

Figure 61. GEMCAR electric vehicle

Two sections are then presented aiming on optimizing the controller for
a specific driving cycle with genetic algorithm ; and a layer to the control
is added to distinguish different driving patterns and adapt the controller.
Finally, a study on predictive controller is presented based on a plug-in
hybrid electric vehicle with Global Positioning System (GPS).

87
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Figure 62. SeTcar : hybrid electric vehicle based on a fuel cell as a primary source of
energy

Figure 63. SeTcar : Zoom on the fuel cell system
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3.2 real time control strategy using fuzzy logic

Section 2.3 presented a control based on an optimization with dynamic
programming. This offline control gives the optimal results but require the
knowledge of the driving cycle done. In real application : the control cannot
predict precisely the driving cycle used. Consequently, a real time control
must be adaptive and be enough robust to face all type of driving patterns
[69, 70, 71]. Applying this to our study, the control strategy has to take into
account the following constraints :

1. The fuel cell dynamics and voltage cycling (low voltages) are limited
to increase its lifetime. Ideally, the fuel cell should work at a constant
power corresponding, in this case, to the driving cycle mean power ;

2. The fuel cell should work around its optimal working points, where its
efficiency is the highest. The fuel cell has been designed for that in the
section 2.2 ;

3. The battery State-of-Charge is maintained in a given edge and limits
the cycling (the final state of charge must be as closest as possible as
the initial one) ;

4. The energy is recovered during braking phases.

3.2.1 Fuzzy logic controller

A real time control based on fuzzy logic controller has been chosen to
control the fuel cell : Figure. 50 shows the implementation of the controller
in the vehicle andFigure. 64 shows the input and output of the controller :
The controller imposes the current reference of the fuel cell to the DC/DC
converter. It can be observed that only the state of charge is taken into
account by the controller to determine the current reference. Indeed, since it
is assumed that the vehicle is built with the methodology proposed in section
2.2, the battery can provide enough power to absorb the peaks needed by the
vehicle.

Figure 64. Fuzzy logic controller principle

The parameters of the fuzzy controller are tunable by the user and are rep-
resented by trapezoidal functions :Figure. 65 shows these functions applied
to the 20 kW fuel cell used in the truck study.

4 memberships functions can be distinguished :
– Ze : electric zone : the fuel cell is stopped ;
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– Low zone : the fuel cell work under its optimal zone, the efficiency is not
optimal but the fuel cell current is low ;

– Optimal : the fuel cell run in its optimal zone (in case of the truck study,
13 kW ; corresponding to the results presented in section 2.2) ;

– High zone : Fuel cell maximum current is allowed.

In the same way, the input state of charge is divided into 4 functions :
– Low state of charge : the output needs to operate higher than its optimal

running point ;
– Optimal state of charge : the output can run within its optimal power zone,

the batteries absorb or provide the peaks of power ;
– High state of charge : the output can work under its optimal running zone ;
– Very high state of charge : the output reference can be switch to 0, the

batteries can provide enough energy to run in electric mode.

To link input and output functions, fuzzy logic rules are sets :
1. If (SOC is low) then (IFC is high)
2. If (SOC is good) then (IFC is opt)
3. If (SOC is high) then (IFC is low)
4. If (SOC is very high) then (IFC is 0)

where IFC is the fuel cell reference current.

3.2.2 parameters and results on the hybrid electric truck

fuzzy logic parameters

The parameters of the battery state of charge and fuel cell current references
functions are given in Table. 11 and Table. 12 :

Table 8. Battery state of charge membership function parameters

Description Notation SoC Value

Emergency case SoClimit 0.1

state of charge is considered to be low SoClowmin 0.2

SoClowmax 0.5

state of charge is considered to be good (optimal) SoCgoodmin
0.6

SoCgoodmax
0.85

state of charge is considered to be high (the system can work
in charge depleting mode in this case : only the battery is
working)

SoChighmin
0.95

SoChighmax
1
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Table 9. Fuel cell current membership function parameters

Description Notation Current (A)

Fuel cell maximum current allowed FCcurrentmax 130

Fuel cell current is considered to be low FCcurrent_lowmin 50

FCcurrent_lowmax 80

Fuel cell current for which the fuel cell has been
designed (corresponding to the average power of the
load)

FCcurrent_optmin
90

FCcurrent_optmax
110

Fuel cell current is considered to be high (used in
emergency cases when the battery state of charge is
too low)

FCcurrent_highmin
112

FCcurrent_highmax
120

results on different driving cycles

Three simulations are run :
– A simulation with a real driving cycle. Note that this driving cycle has

not been used to determine the statistical distributions ;
– A simulation with a randomly generated driving cycle based on the

statistical distributions.
– A simulation with the worst scenario case where the average power is

the maximum of the statistical distributions.
For each simulations, it is assumed that the initial state of charge is 80 %.

This will show if the vehicle can start with a state of charge different from
100 %, the controller can manage the recharge of the battery state of charge at
the end of the cycle.

Figure. 66 and Figure. 67 shows respectively the results for the recorded
and generated driving cycle : During the drive-away, the energy consumption
is important (i.e., the instantaneous power demand is higher than the fuel
cell power), the speed and the driving time are relatively high. The fuel cell
operates at its optimal power and the battery discharges significantly, it is
clearly appear in Figure. 68 which described the worst scenario case which
can be generated.

Once the drive-away ends, when the energy consumption is lower, the fuel
cell recharges the battery and works beyond its optimal zone depending on
the state of charge of the battery pack.

The charge of the power source therefore rises rapidly at the beginning of
the collecting phase. During that phase, the fuel cell works most of the time
in its optimal zone.

In some cases, the battery can provide all the required power as its state of
charge is high (see Figure. 66) ; the fuel cell can be turned off during a long
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time.
Finally, when the truck is back at the base after a drive-away back, the

fuel cell continues to operate to recharge the battery until its optimal state of
charge is reached. This operation could be avoided by plugging the vehicle
to the grid which would reduce the vehicle’s overall fuel consumption.
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Figure 66. Real driving cycle

Table. 13 shows the hydrogen consumption along the real cycle, the ran-
domly generated cycle and the worst case scenario of generated driving cycle.
The hydrogen consumption with the fuzzy controller is around 4 kg which
corresponds to the mass of hydrogen given in Figure. 47.

Table 10. hydrogen consumption

Type of driving cycle Average power (kW) Hydrogen consumption (g)

Real 14,3 3800

Random 9,1 3600

Worst case scenario 18,1 4600
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Figure 67. Randomly generated driving cycle
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3.2.3 parameters and results on the lightweight vehicle

fuzzy logic parameters

The parameters of the battery state of charge and fuel cell current references
functions are given in Table. 11 and Table. 12 : The vehicle has a fuel cell
of 5 kW and a battery pack of 2880 Wh. The parameters are lower than the
truck because of the vehicle weight : indeed, the accelerations phases of the
vehicles require less power. Moreover, the urban profile of the vehicle allow
a lot of start/stop phases, where the batteries can be refill (no drive-away
compare to the trucks). Consequently, the all electric zone range is increased
from 100 % to 80 % of the batteries state of charge.

Table 11. Battery state of charge membership function parameters

Description Notation SoC Value

Emergency case SoClimit 0.1

state of charge is considered to be low SoClowmin 0.15

SoClowmax 0.4

state of charge is considered to be good (optimal) SoCgoodmin
0.6

SoCgoodmax
0.7

state of charge is considered to be high (the system can work
in charge depleting mode in this case : only the battery is
working)

SoChighmin
0.8

SoChighmax
1

Table 12. Fuel cell current membership function parameters

Description Notation Current (A)

Fuel cell maximum current allowed FCcurrentmax 130

Fuel cell current is considered to be low FCcurrent_lowmin 8

FCcurrent_lowmax 20

Fuel cell current for which the fuel cell has been
designed (corresponding to the average power of the
load)

FCcurrent_optmin
30

FCcurrent_optmax
40

Fuel cell current is considered to be high (used in
emergency cases when the battery state of charge is
too low)

FCcurrent_highmin
80

FCcurrent_highmax
100
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results : comparison between online and offline controller

The LA92 driving cycle has been used to run the fuzzy controller. It is a
recorded driving cycle in the city of Los Angeles who described an urban
pattern with a lot of acceleration/deceleration phases. Figure. 72 shows
in red the results of the fuzzy controller and in blue the results of the
dynamic programming optimization described in section Figure. 2.3. The
dynamic programming strategy allows to find the optimum fuel economy
while keeping the final state of charge at its initial value. Knowing the driving
cycle allows the strategy to keep a constant fuel cell current value minimizing
the hydrogen consumption and charging the battery during stop phases of
the driving cycle. However, the online strategy cannot predict the power
needed during the cycle and keep the state of charge in its optimal zone,
decreasing the fuel cell when the state of charge is too high. This observation
clearly appears at 400 and 900 seconds of the driving cycle where the speed
increases and stays constant around 20 m/s. During this time, the power
requested by the vehicle is higher than the power provided by the fuel cell
and the batteries, which absorb the peak of power, has its state of charge
decreasing. Consequently, the fuzzy logic controller up the reference of the
fuel cell to keep the state of charge in the optimal zone. Therefore, the
dynamic programming, knowing the entire driving cycle, lets the state of
charge decreases because the end of the cycle does not require a lot of energy,
and the fuel cell will be able to refill the batteries.
Table. 13 shows the hydrogen consumption for both strategies and for a
stand alone fuel cell vehicle without batteries, assuming he is running the
driving cycle. Hybridization and control strategy permit to improve the fuel
cell economy up to 40 % for a fuzzy controller and up to 60 % for dynamic
programming.

Table 13. hydrogen consumption for several architectures and controls

Fuel cell power (kW) Battery capacity (Ah) H2 consumption (g)

Stand alone fuel cell
vehicle

13 0 102

Fuzzy logic con-
troller

5 65 63

Dynamic program-
ming

5 65 40

Conclusion

The fuzzy logic controller used here is not optimal : the final state of
charge is higher than the initial, and the hydrogen consumption is also higher
than the dynamic programing results. However, this strategy allows running
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Figure 69. Fuzzy logic controller and dynamic programming results on LA92 driving
cycle
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other driving cycles by the vehicle with the same results [59] (state of charge
remaining in the optimal zone) compare to the off-line strategy which have
to run the dynamic programing algorithm to find the optimal power split
profile, which is not able to be done on real time. Consequently, the off-line
strategy cannot be applied in vehicle if the driving cycle is not known or
predicted [72]. In the next section, the membership functions of the fuzzy
logic controller will be tuned in order to improve the hydrogen consumption
and approach dynamic programming results.

3.3 fuzzy logic controller optimization

3.3.1 Problem formulation

The previously described fuzzy logic controller focused on maintaining the
state of charge of the battery in the optimal zone (around 70 %) in order to
respect the constraint given in (3.4). In order to reduce the hydrogen consump-
tion, the memberships functions defining the fuel cell current (as described
in Figure. 65), are tuned. Fig 71 gives an example of the configuration of the
four membership functions. Each functions are trapezoidal and four variables
x (i , j) can be associated where i is the number of the function (1 for Ze, 2 for
Low, 3 for Optimal and 4 for High) and j is the number of the variable, as
described in the figure (j ∈ [1 , 4]).

2: Low1: Ze 3: Optimal 4: High

x(1,2) x(1,3) x(1,4)x(1,1) x(2,1) x(2,2) x(2,3) x(2,4) x(3,1) x(3,3)x(3,2) x(3,4) x(4,1) x(4,2) x(4,3) x(4,4)

Figure 71. Fuzzy membership’s variables

The optimization aims at reducing the hydrogen consumption by varying
theses parameters while respecting the following constraint :

x (i , (j− 1)) 6 x (i , j) (3.1)

x ((i− 1) , 3) < x (i , 2) (3.2)

x (i , j) ∈ [0 , 130] (3.3)

SoCfinal = SoCinit (3.4)
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3.3.2 Genetic algorithm

To solve this optimization problem, a genetic algorithm is used. A candidate
solution is composed of the sixteen variables x (i , j) defined previously and
the population is set to a hundred of candidate solutions. The population is
randomly initialized, respecting the constraint given by (3.1) and the number
of iterations is set to 10 000. The fitness function run the fuzzy logic controller
tuned by each candidate solution on the LA92 driving cycle and return the
hydrogen consumption and the SoCfinal.
Figure. 72 shows the results of the optimized fuzzy logic controller by the
best candidate solution compared to the fuzzy controller define in section
Figure. 3.2.3. The optimized fuzzy is very close to the dynamic programming
results, and did not increased the fuel cell current drastically on the two
points of the driving cycle where the speed is high compare to the traditional
fuzzy. Consequently, the fuel cell current is almost steady during all the
driving cycle. Table. 14 shows the hydrogen consumption compare to results
of the section 3.2.3. The consumption with the optimized fuzzy is reduce by
22 % compare to standard one, and is close to offline results.

Table 14. hydrogen consumption comparison with optimized fuzzy controller

Fuel cell power (kW) Battery capacity (Ah) H2 consumption (g)

Stand alone fuel cell
vehicule

13 0 102

Fuzzy logic con-
troller

5 65 63

Optimised Fuzzy
logic controller

5 65 49

Dynamic program-
ming

5 65 40

3.3.3 Conclusion

This section presented a methodology to improve the real time controller
based on fuzzy logic for a specific driving cycle. It as been demonstrated that
22 % of hydrogen consumption can be saved by optimizing the membership
function of the controller. Nevertheless, this optimized controller brings new
issues : the control is aimed for a specific patterns, and can be less efficient
on other patterns, as for example : highway roads.
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3.4 experimental validation on a real fuel cell hybrid elec-
tric vehicle

The designed fuzzy logic controller presented in section 3.2.3 is imple-
mented in the SeTcar vehicle described in 3. The vehicle has the following
characteristics :

– Vehicle mass : 578 kg ;
– Front surface : 2m2 ;
– Drag coefficient : 0.7 ;
– Rolling coefficient : 0.015 ;
– Battery technology : Lead acid ;
– Battery capacity : 40 Ah ;
– Battery cells number : 6 ;
– DC-bus voltage : 72 V ;
– Fuel cell power : 5 kW.

Figure 73. Vehicle architecture

Figure. 62 shows a picture of the vehicle and fig 73 shows the architecture
of the vehicle. The fuel cell current is controlled using a buck DC-DC buck
converter [73, 74] from 120 V to 72 V. The batteries are directly linked to
the DC-bus. Current and voltage sensors give informations to the DSPACE
Microautobox controller where fuzzy logic is implemented, and the analog
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output controls the DC/DC converter. The power needed by the motor is
emulated by an active load running the LA92 driving cycle with vehicle
parameters.

Since lead acid batteries does not have battery management system [75],
the state of charge needs to be evaluated using the current and voltage given
by sensors.

3.4.1 Experimental state of charge determination

The state of charge of the batteries is given by (3.5) :

SoC(t) =
Cbattery

∫t

x0
imotor(t) − iFC(t) dt

(3.5)

Where SoC(t) is the state of charge at each time t, Cbattery is the battery
capacity in Ah, imoto and iFC are the current needed by the motor (active
load) and given by the fuel cell and x0 is the initial battery capacity.
To determine the initial battery capacity, a charge/discharge experimentation
is run in order to determine the relation between the state of charge and the
open circuit voltage. Figure. 74 shows the results of this experimentation for
a discharge at 50 Ah from 100 % to 0 %

Figure 74. Remaining battery capacity as a function of open circuit voltage

When the vehicle start, open circuit voltage is given by the voltmeter and
the initial state of charge is calculated. The state of charge is then computed
at each time step t of the fuzzy controller.
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3.4.2 Fuzzy controller implementation

The fuzzy controller is implemented in a DSPACE microautobox which is
runs at 10kHz. As describe in Figure. 73, the fuzzy controller controls the
DC-DC converter through analog output from 0 V to 10 V corresponding to a
fuel cell current range between 0 A and 30 A. the fuzzy zone is defined as :

– Low state of charge : Below 50 % state of charge, fuel cell is running at
maximum power (5 kW) ;

– Optimal state of charge : from 60 % to 70 % state of charge, fuel cell is
running at optimal point (3,4 kW) ;

– High state of charge : from 70 % to 60 % state of charge, fuel cell is low
(1.7 kW) ;

– Very high state of charge : up to 80 % state of charge, fuel cell is switched
off.

3.4.3 Results : comparison of simulation and experimentation

0 200 400 600 800 1000 1200 1400
0.6

0.7

0.8

0.9

B
a

tt
e

ry
 S

o
C

Battery SoC profile

 

 
experimentation simulation

0 200 400 600 800 1000 1200 1400
0

10

20

F
C

 c
u

rr
e

n
t 

(A
)

Fuel cell current

0 200 400 600 800 1000 1200 1400
0

10

20

time (s)

s
p

e
e

d
 (

m
.s

−
1

) Driving cycle

Fuel cell switch on

Figure 75. Experimental results for fuzzy logic controller with LA92 driving cycle

Figure. 75 shows the results for LA92 driving cycle emulated by the active
load for the experimentation and the results for the simulation with the same
fuzzy logic parameters. The initial state of charge is 80 %. In a first part, the
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fuel cell is switched off in order to decrease the state of charge in its optimal
zone. The state of charge is then in the High zone, the fuel cell running point
(20 A) is under the optimal working point (where the efficiency is the best)
and the state of charge keep decreasing steadily to reach the optimal zone.
Finally the fuzzy logic controller maintains the state of charge in this zone
(between 60 % and 70 %). The simulation results fit with the experimentation :
the fuel cell current is almost the same during all the cycle, but the state
of charge shows some small differences : in fact, the experimental state of
charge determination amplify the measurement errors. However, this error
is acceptable. The hydrogen consumption is 31 g for experimentation and
25 g for simulation. this gap can be explain by the granularity of the fuel cell
model : Indeed, the model used for the simulation does take into account the
system auxiliaries by subtracting a constant power to the output power of the
fuel cell system. Nevertheless, this approximation does not take into account
transient phases like hydrogen purge for example or the increase of the
blower if the fuel cell runs at an high temperature points. This issues appears
in the experimentation and explain the excess of hydrogen consumption
compare to simulation.

3.4.4 Conclusion

The fuzzy logic controller has been implemented and validated in a real
hybrid electric vehicle based on fuel cell. The results show that the simu-
lated hydrogen consumption is equivalent to experimentation, minus the
errors on the model. This study on the conception of the fuzzy controller,
its optimization and comparison with an offline method has been presented
on a conference : IEEE Vehicle Power and Propulsion Conference in 2011,
Chicago, USA [76], and a journal article has been made : Control Strategies
for Fuel-Cell-Based Hybrid Electric Vehicles : From Offline to Online and
Experimental Results : IEEE Transaction on Vehicular Technology, 2012 [77].

3.5 driving cycle recognition

As discussed in section 3.3.3, an optimized controller aims to reduce the
hydrogen consumption for a specific patterns, but can be less efficient in
others ones. In this way, driving cycle recognition can be a good source of
information if an algorithm is able to recognize a driving patterns. Conse-
quently, the real time control can adapt his parameters in order to fit with the
patterns. In the literature, some papers studied driving cycle recognition or
learning algorithm such as : [72, 78, 35]. But all of this studies bring at offline
method, knowing the driving cycle in the control process. The proposed
Driving Cycle Recognition Algorithm (DCRA) is a real time algorithm which
define a driving patterns and give the information to the control strategy.
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3.5.1 Driving cycle recognition algorithm

The algorithm principle is described in Figure. 76 : the algorithm’s input
is based on severals parameters :

stop time

deceleration

acceleration

speed

number of stop

mode

Driving cycle recognition algorithm

outn

Figure 76. Driving cycle recognition algorithm principle

– Vehicle speed ;
– Number of stop ;
– Stop time ;
– Acceleration ;
– Deceleration ;
the output : mode is composed of three states :
– Urban : The mean speed of the vehicle is low (around 30 km/h) but

the dynamic is very high. There are a lot of start/stop, acceleration/de-
celeration phases. Nevertheless, due to long stop durations, the mean
acceleration/deceleration is average ;

– Suburban : The mean speed is medium/high (around 60 km/h) and the
dynamic of the vehicle is average due to the low number of start/stop.

– Highway : The mean speed is high (up to 100 km/h) and the number
of start/stop phases is zero. The dynamic is low because the vehicle is
constantly running at high speed.

For each mode, a specific driving cycle is used to determine the limits of
all inputs to determine the output.
Figure. 77 shows the speeds distribution of different modes for the specific
driving cycle. Each parameters (speed, acceleration, deceleration, stop time
and number of stops) are statistically described and each DCRA boundary is
set to 70 % of the total occurrences.
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Figure 77. Statistical distributions of speeds
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The output is given by (3.6) :

M =

5
∑

k=1

nkik (3.6)

mode = 1 if 0 < M < out1 (3.7)

mode = 2 if out1 < M < out2 (3.8)

mode = 3 if M > out2 (3.9)

where ik is the input vector of the DCRA (average speed, number of stops,
etc), nk is the weight factor of the input vector, M is the sum of all input,
out1 , out2 are the outputs triggers and mode is 1 for urban, 2 for suburban
and 3 for highway.

3.5.2 Results

Figure. 78 shows the results of DCRA for a custom driving cycle. The
driving cycle is composed of urban trips, highway roads and mixed parts.
The DCRA switches between modes with a good reactivity, recognizing the
type of the road. The algorithm has a window of time of 30 s, which is a good
response time for this cycle. Reducing the time frame allows to increase the
response time of the algorithm but decreases the precision.

Figure 78. Driving cycle recognition results on a custom driving cycle
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3.5.3 Fuzzy logic controller including driving cycle recognition

The controller used in section 3.2.3 is modified to get dcra results : Fig-
ure. 79 described the input of the controller : the DCRA information is added
to the fuzzy to modify the optimal power zone (i.e, the fuel cell current
working range) based on the value of mode :

mode = 1 , IFCopt ∈ [20 , 30] (3.10)

mode = 2 , IFCopt ∈ [40 , 60] (3.11)

mode = 3 , IFCopt ∈ [80 , 90] (3.12)

Figure 79. Fuzzy controller with DCRA principle

3.6 simulation of different scenarios

Figure. 80 shows the fuzzy logic controller results for the same driving
cycle used for the DCRA. The batteries’s state of charge is kept in the optimal
zone (around 70 %) during all the cycle due to the switch of mode. In order to
compare results, two fuzzy logic controllers without DCRA are parametrized :

– Urban fuzzy logic controller : The fuel cell membership functions are
parametrized for a specific urban driving cycle : LA92.

– Highway fuzzy logic controller : The fuel cell membership functions are
parametrized to run with a highway driving cycle.

– DCRA fuzzy logic : The results of DCRA mode are used to define the
three types of fuzzy : urban, suburban and highway. The urban and
highway parts have the same parameters as the previously defined fuzzy
controllers.

A first simulation is carried out with LA92 driving cycle : Figure. 82 shows
the comparison for the fuzzy logic tuned for urban and highway. Since the
driving cycle is urban, the DCRA fuzzy logic controller has the same results
than fuzzy logic with urban parameters. The fuzzy controller with highway
parameters aims to run the fuel cell at the optimal points for highway driving
style : between 80 and 90 A, which is too high compare to the power needed
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Figure 80. Fuzzy controller with DCRA results
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by the vehicle. Consequently, the SoC increases and the fuel cell is switched
off several times during the cycle in order to maintain the SoC in the optimal
zone. Therefore, the urban fuzzy controller operates the fuel cell to the best
running point for this driving cycle, allowing to keep the fuel cell current
constant to save hydrogen consumption.

Table 15. Simulations results

Driving cycle Parameters of fuzzy controller Final SoC Hydrogen consumption (g)

LA92 cycle Urban 0.72 73

Highway 0.7 98

DCRA 0.72 73

Custom cycle Urban 0.56 168

Highway 0.62 212

DCRA 0.6 179

Custom cycle ran
5 times

Urban 0.28 1015

Highway 0.6 1252

DCRA 0.45 1143

Custom cycle ran
10 times

Urban Not finished Not finished

Highway 0.6 2556

DCRA 0.4 2365

A second simulation is carried out to point out the interest of fuzzy logic
with DCRA : Figure. 82 shows the simulations of the mixed driving cycle
presented in Figure. 80 run ten times. Results are drawn for fuzzy logic with
DCRA (with red color) and fuzzy logic with urban parameters (with blue
color). The fuzzy logic controller with urban parameters aim to run the fuel
cell in its optimal zone : between 20 and 30 A, but the power needed by the
cycle is greater. The SoC decreases quickly and the controller response time
is too low. After five cycles, the SoC goes under 20 %, and the simulation
stops automatically (20 % SoC is the lower limit in order not to damage the
batteries). Therefore, the fuzzy logic with DCRA anticipates the power needed
during the highway phases and increases the fuel cell current, allowing to
carry out the driving cycle ten time with a final state of charge of 40 %.
Table. 15 shows the final SoC and hydrogen consumption of both simulations
with different scenarios. On the one hand, the fuzzy controller with DCRA
maintains the final SoC close to the initial during the custom driving cycle,
allowing to carry out it ten times. On the other hand, the results of fuzzy
with DCRA on urban cycle are the same as the optimized urban fuzzy logic,
allowing to save hydrogen consumption compared to the fuzzy tuned for
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Figure 81. Comparison of fuzzy logic controller with urban optimisation and high-
way

3.6.1 Conclusion

A driving cycle recognition algorithm has been presented. The proposed
method allows to optimize a fuzzy logic control for a specific driving pattern
(for instance urban), and still runs other patterns (highway) without dropping
to low the battery’s state of charge. This study has been presented on a
conference : IEEE Transportation Electrification Conference and Expo (ITEC),
2012, Dearborn, USA [79].
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mixed driving cycle
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3.7 control strategy of plug in hybrid electric vehicle based

on destination prediction

3.7.1 Problematic : control strategy on standard hybrid electric vehicle versus plug
in hybrid

As discuss in section 3.2.3, the main constraint of a standard hybrid electric
vehicle composed of a primary source (internal combustion engine or fuel
cell) and batteries is to keep the state of charge of the batteries at a good
level. Indeed, no matter of the architecture used : series, parallel or combined ;
the batteries can only be charged using recovery power by the vehicle brake
or by the primary source [80]. This constraint is a big issue for the control
strategy : the battery’s role is limited to absorb the peak of power in order
to run the primary source at is best efficiency point. Therefore, in a plug in
hybrid electric vehicle, the battery can be charged by the grid. It adds a new
degree of freedom in the control strategy : the state of charge at the end of
the driving cycle is not a constraint anymore and can be lowered as most as
possible, assuming that the vehicle will be plugged to the grid. It allows to
focus the control strategy in fuel consumption economy rather than trying to
keep the state of charge in a good zone using the best efficiency point of the
primary source. Moreover, the vehicle can run in pure electric mode when
the batteries energy is enough to run the driving cycle.

To illustrate this, Figure. 83 and Figure. 84 show an example of two
different control strategies for the vehicle studied in section 3, based on a
5 kW fuel cell and 2880 Wh batteries considering two scenarios :

– A standard hybrid electric vehicle : the state of charge of the batteries
need to be keep in a good zone.

– A plug in hybrid electric vehicle : the batteries can be plug to the grid at
the end of the driving cycle.

LA92 driving cycle is used to simulate both scenario : Figure. 83 shows the
control strategy for the first scenario based on fuzzy logic : the fuel cell runs
at a good efficiency point allowing the batteries state of charge to be kept
in around 70%. Figure. 84 shows the control strategy for the same vehicle
assuming that it is plug in. The vehicle runs in pure electric mode during
all the driving cycle, and the state of charge decreases to reach 50%. The
results shows that 49 g are of hydrogen are consumed for the standard hybrid
electric vehicle and 0 g for the plug in.
This new degree of freedom in the control strategy for plug-in vehicle bring
also new problems :

– The all electric mode range : In a charge depleting / charge sustaining
control strategy (section 1.3.3), the range of the electric mode is a big
issue when running a specific driving cycle. for instance, in Figure. 84,
the batteries’s energy is big enough to runs in all electric mode during
all the driving cycle. However, some more dynamic driving cycle require
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more energy than the batteries’s can provide, and the primary source
of energy must be turned on to maintain the batteries’s state of charge.
During this charge sustaining phase, either the primary source of energy
is big enough to provide all the power required by the cycle while
running at its efficiency point ; either the source must runs on high
power point in order to provide the power and recharge the batteries.

– The dynamic of discharge : if the control strategy aim to reach the minimal
state of charge at the end of the driving cycle without entering in charge
sustaining phase, the dynamic of the state of charge is the main problem :
The control must predict the remaining energy in order to control the
coefficient of discharge of the state of charge.
In this section, the second point is developed : Firstly, a destination
prediction algorithm is presented in order to determine the remaining
distance of the driving cycle. Then a control strategy is built based on
the results of the destination prediction. Finally, results are drawn and
shows the improvement of the methodology compared to the charge
traditional charge depleting / charge sustaining control strategy.

3.7.2 Destination prediction algorithm

As shown in section 3.7.1, the control strategy in a plug in hybrid electric
vehicle which focus to minimize the state of charge of batteries at the end of
a trip mainly depend on the prediction of the distance remaining. In order to
determine this distance, a destination prediction algorithm was created.
In the litterature, several studies focus on the distance prediction, where two
major parts can be distinguished :

– The prediction of the destination point [81, 82, 43, 83, 84, 85] : Based on
the past experiences of trips, the algorithm determine the most prorable
final point (where the vehicle will stop at the end of the driving cycle).
Theses studies are based on a learning algorithm which fill memory with
pasts driving cycle and destination point reached. Mainly of them are
composed of a Markov model in order to statistically choose the best
probable destination point knowing the initial point of the trip.

– The prediction of the distance knowing the final point [86, 87, 88, 89, 90,
81, 91] based on Global Positioning System informations and knowing
the actual and final point, an algorithm calculates the distance remaining
by crossing GPS points with a map database containing roads segments,
intersections and traffic flow.

Both parts have its own pros and cons : the prediction of the destination
point allows to determine the most probable point that the vehicle can reach
but since its based on probabilities, the real results can diverge and leads
to huge difference between the predicted distance and the real one. The
prediction of the distance knowing the final point is very accurate, since its
based on a GPS database including all roads that the vehicle can runs, but
the information of the final point must be given by the driver before doing
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the trip. Also, this solution is very memory consuming, since all the database
needs to be embedded in the system, assuming that the algorithm will be
embedded in the vehicle, which is a big constraint in the conception of the
control strategy system. Indeed, the destination prediction algorithm not the
main part of the control strategy, and need to stay as small as possible in
term of memory and time consuming for the system.

In both scenario, GPS points are used as input of the simulation : this
system is necessary in order to determine final point and distance between
actual point and destination.The proposed solution has a learning capability
from past experiences based on a Markov model which build a matrix of
probable points for a given initial position. Each probable points has its
own probability to be reached. Then theses probabilities are updated has the
vehicle moves. The results is a mean distance of each points by probabilities.

Driving cycle survey

In order to simulate the learning part of the algorithm, a survey has been
conducted on 5 drivers in the city of Raleigh in North Carolina, USA. Each
driver’s trip has been logged during 2 months, and each driver was chosen
because of the driving style and the variety of driving cycle that they create.
A GPS logger has been put in each cars of drivers. The logger used is
GPS Tracking System 3100-INT made by LandAirSea, and is described in
Figure. 85.

Figure 85. GPS Tracking System 3100-INT by LandAirSea

The GPS logger has the following characteristics :
– Internal Antenna.
– External 12 Volt power input option.
– Powered by 4 regular AA Batteries which will last up to 1 month with

average driving.
– Records 100 hours of driving data.
– 12 Channel GPS receiver.



3.7 control strategy of plug in hybrid electric vehicle based on destination prediction

– Horizontal Accuracy : 2.5 meters.
– Memory Type : Flash Memory.
– Data Output : USB.
– Sleep Mode Entry : 3.5 minutes of no movement.
– Cold Start GPS Acquisition Time 90 seconds.
– Warm Start 50 seconds.
The logger is autonomous with AA batteries and can be stored in a vehicle

for one month. It also have a sleep mode which is enable when the vehicle is
stop more than 3.5 minutes. This sleep mode is a good way to save batterie’s
life but bring an issue for the survey : Indeed, the Cold start of GPS acquisition
(when leaving sleep mode) is 90 second. Some errors can appear during this
cold start time resulting by missing GPS point. Nevertheless, since the vehicle
stop is recorded, missing points can be interpolated.
The logger has a 4 Gb of memory and come with a software to download
the data from memory to PC. The software can also display the trip traveled
with stops. Figure. 86 shows the software results for a 15 days of record of
a driver : The blue line represent the vehicle’s driving cycle with low speed
(lower than 50 km/h) and the pink lines high speeds (more than 50 km/h).

Extraction of destination and initial points

The algorithm is working with points where the vehicle start or stop. From
the data recorded, the initial point (beginning of the driving cycle) and
destination point (last point of the driving cycle) are extracted by comparing
each time step with a trigger :

If t(k) − t(k− 1) > Ttrig then (3.13)

DestGPSlat = GPSlat(k) (3.14)

DestGPSlong = GPSlong(k) (3.15)

Where Ttrig is the time trigger, GPSlat is the latitude GPS point, GPSlong
is the GPS longitude point and DestGPS is the new destination GPS point.
If the comparison between the time of a step minus the time of last step is
superior to the trigger, the point is define as a Destination point. For our
study, the trigger has been set to 10 minutes. This time has been set to avoid
to get some stop as define as Destination point (for example : stops due to
traffic light/jams).
Figure. 87 shows a report of all destination and initial point for 15 days of
recorded data.

Clustering the points

The principle of the destination prediction algorithm is to determine the
point where the vehicle stop in order to deduce the probability to go from an
initial point to a final point. Since the GPS technology allows the logger to
get GPS points with a precision of 10 meters, every time the vehicle reaches
a final point several times, the GPS coordinates can be different. The most
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Figure 86. LandAirSea software displaying trip recorded

usually scenario to describe this situation is when the vehicle stop at a
parking lot : The vehicle does not park every time on the same spot, and
the GPS coordinates can vary for more than 100 m. As the number of time
when a final point is reached count in the algorithm, a cluster algorithm has
been made : The principle is described in Figure. 88 : where Pn is a new
final point detected, t is a index of the database (from t = 0 to t = tmax,
tmax depends of the number of final point already recorded) Distlong and
Distlat are respectively the longitude and the latitude distance between the
two point Pn and P(t), and Trigger is the trigger distance which define if
the point is within the range to be considered as the same point as the final
point compared. In our study, the Trigger distance has been set to 200 m,
corresponding to the mean surface of a parking lot.

When a new final point Pn is recognized as the same as another one, a
new center is calculated. A center is defined as the GPS coordinate of the
center describing all recorded point considered as the same final point. These
coordinates are linked to the final point and will be used by the destination
prediction algorithm to determine the distance between this point and the
vehicle’s position.

Build the probability matrix

All clustered initial and final points (and their GPS center coordinates) are
recorded in a database. The algorithm create a probability matrix which is
updated every time a new point is added or updated (a new final point is
found corresponding to an already recorded one).The probability matrix has
the following characteristics :

– Each rows represents an initial point, and each columns a final point :
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Figure 87. LandAirSea software report of 15 days of record
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Figure 88. Clustering algorithm principle
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the probabilities are filled in the matrix. Consequently reading a row
correspond to : From a initial point, each final points (column) have x%
probability to be reached.

– A probability is calculated by (3.16) :

P(Fi) =
VFi
Vi

(3.16)

P(Fi) = 0 if VFi < Vtrigger (3.17)
Where P(Fi) is the probability to reach the final point F starting from initial
point i, VFi is the number of visits recorded starting from i and ending to
F, Vi is the number of visits recorded starting from i and Vtrigger is the
minimal number of visits where the probabilities calculation is take into
account. For our study Vtrigger is set to 5, meaning that under 5 number of
visits from point i to point F, the probability P(Fi) is set to 0. This prevent
error on the destination prediction algorithm when the matrix does not have
enough sample to determine a representative probability. Moreover, since
the probability calculation is based on the total number of visit from i Vi,
even if the number of visit for a given final point does not reach the trigger,
theses visits count into the other probability point. Consequently, the sum
of all probabilities

∑

P(Fi(y)), with y the index of the column in the matrix,
can be not equal to 100 %. Thus allow to keep a degree of incertitude in the
destination prediction when the matrix has a low amount of informations.
Consequently, the control strategy linked to the destination prediction will
not decrease the state of charge of the battery to reach the minimum level for
a given final point.

Oblivion algorithm

The matrix built is updated every time a new final point is created or its
visit number is updated. Its leads to huge use of memory since the matrix
grows constantly and informations can become wrong if for instance the
driver change is habits (work, home...) In order to solve these both issues, a
oblivion algorithm is created. Is principle is to simple keep the last 1000 lasts
visits into the matrix. Every time a new visit V(k)is found (corresponding
to either a new final point (first visit) or an update of the number of visit of
a final point), the matrix will delete the V(k− 1000) visit. Final and initial
points are then automatically deleted when their visit number is null. The
choice of the number 1000 has been determined by the memory of the system
used to runs the simulation. Reducing these number allow the matrix to be
more adaptation to the change of habits of the driver but leads to more errors
in the probabilities calculation.

Update probabilities as the vehicle moves

The probability matrix described in section 3.7.2 is updated every time
a new final or initial point is found. Moreover, at each start of the vehicle,
the matrix is parsed to find the corresponding initial point, and collect all
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probable final points regarding the initial one. The probabilities and distance
linked are calculated from this point. But when the vehicle will move, the
results are not valid and need to be updated : At each time step, the GPS
position of the vehicle is measured and the probabilities are updated from
initial point by 3.18 :

P(Ft) = P(Fi)

(

d(Ft)

d(Fi)

)n

(3.18)

Where P(Ft) is the probability starting at point t to go at final point F, P(Fi)
is the probability starting at initial point i to go at final point F, d(Ft) is the
distance between points t and F, d(Fi) is the distance between points i and F
and n is a coefficient allowing the probability update to converge faster on
the final results.

Distance prediction

The final step of the algorithm is the distance prediction : from the proba-
bilities updated linked with the distance for each probable final point, the
mean distance can be determined 3.19 :

dfinal =

nbfpoints
∑

k=0

P(Ft)d(Ft) (3.19)

Where dfinal is the output of the algorithm, the probable distance re-
maining and nbfpoints is the total number of final points in the probability
matrix.

Results

To illustrate the algorithm, 3 scenarios has been simulated :
– Scenario 1 : the vehicle start at initial point A, two final points B and C

have initial 50 % probability each.
– Scenario 2 : the vehicle start at initial point A, two final points B and C

have initial 80 % and 20 % probability each.
– Scenario 3 : the vehicle start at initial point A, six final points have random

probabilities.

scenario 1 Figure. 89 represents the probability update as the vehicles
moves for scenario 1. The vehicle move from initial point A to point B : The
probabilities are equal (50 %) at start. Since the vehicle runs from point A to
point B, the probability of point B quickly increased to reach almost 100 %
at the end of the cycle. Thus allow to have a better precision of the distance
prediction rather than initial probabilities from matrix.
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Figure 89. Probability updates as the vehicle moves for scenario 1

scenario 2 Figure. 90 represents the probability update as the vehicles
moves for scenario 2. The vehicle move from initial point A to point B. This
scenario reflects the interest to update the probabilities as the vehicle moves :
The initial probability was 80 % to go from point A to C, but since the vehicle
goes from A to B, the probability to C drastically decreases during the driving
cycle.

scenario 3 Figure. 91 represents the probability update as the vehicles
moves for scenario 3. The vehicle move from initial point A to point E

distance prediction Figure. 92 represents the distance prediction as
the vehicle moves for scenario 1 versus the real distance remaining (from
point A to B). The estimated distance is very close to the real one. An error can
be observed at the end of the cycle : Indeed the estimated distance increase
instead of decreasing close to 0. It can be explain by looking at the clustering
algorithm : Each same final point in a radius of 200 m are clustered and a
new center is calculated : the matrix calculate the probability and the distance
from the clustered center. The 200 m radius error clearly appear in the figure.
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3.7.3 Conclusion

A destination prediction algorithm has been presented : By combining a
learning part with a Markov probability matrix and a real time algorithm
which update theses probabilities as the vehicle moves, the destination of the
vehicle and the distance remaining can be predicted. these informations allow
the control strategy to be adaptively and control the depth of discharge of
the battery state of charge in a plug in hybrid electric vehicle. Futures works
will aim to build a real time controller based on Equivalent Consumption
Management Strategy including the remaining distance for a series hybrid
electric vehicle based on ICE and battery. This works has been realized in
collaboration with the North Carolina State University (NCSU) and Dr Srdkan
Lukic.

3.8 conclusion

In this chapter, real time control strategy has been presented for several
hybrid electric vehicle configuration. It has been proven than optimized and
adaptive control allows to save fuel consumption. A real time controller
based on fuzzy logic designed for fuel cell hybrid electric vehicle has been
presented, allowing the fuel cell to run at bests efficiency points while keeping
the vehicle able to runs different driving patterns. The controller has been
experimented into a lightweight hybrid series vehicle and simulations results
are been validated. Moreover, a destination prediction algorithm aiming to
determine the remaining distance of a vehicle trip has been presented. The
results allows to build real time control strategy for plug in hybrid vehicle
controlling the depth of discharge of the battery.



G E N E R A L C O N C L U S I O N

The objectives of this thesis was to investigate the new methodologies of
conception of an hybrid electric vehicle and its associate control strategy. A
focus on series architecture has been done, and a new methodology of sizing
regarding the literature and the manufacturer conception process has been
presented. This methodology analysis a family of generated driving cycle
rather than a single one to size the power train component.
Different designs of control strategy regarding the power train built has
been then proposed : An offline strategy based on Dynamic programming
optimization in order to determine the best power split between the two
sources of an hybrid electric vehicle : In the case of the thesis’s study subject : a
fuel cell hybrid electric truck. Then a real time controller based on fuzzy logic
has been presented and validated. Moreover, optimization and adaptation
algorithm has been created in order to optimize the hydrogen consumption
while keeping the controller adaptive to all driving patterns.
Finally, a control strategy on plug in hybrid electric vehicle has been presented,
focusing on a destination prediction algorithm which increase greatly the
fuel economy.

contributions

Regarding the literature, this thesis brought new contributions on the sizing
and controls of hybrid electric vehicles :

– Driving cycle generation : A driving cycle generator has been created,
allowing to create random driving cycle which have the same patterns
as calibrated one.

– Energy sources sizing methodology : based on statistical description of a
driving cycle family, this methodology gives specific informations about
the power and capacity of energy sources in an hybrid electric vehicle.

– Real time controller for fuel cell hybrid electric vehicle and its optimization
for a specific pattern : The fuzzy logic controller presented has been vali-
dated on a real fuel cell hybrid electric vehicle and its optimization by
genetic algorithm allow to save 22 % of hydrogen consumption. More-
over, the driving cycle recognition algorithm allows to implement this
optimization while keeping good results on other patterns like highway.

– Destination prediction algorithm and its associate control strategy : The des-
tination prediction algorithm allow to precisely define the remaining
distance to run by the vehicle and gives useful informations to the control
strategy in order to decrease steadily the state of charge of the battery,
saving fuel consumption.

129
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publications

The thesis’s contributions leads to severals publications :

– International Journal with proceeding :

A. Ravey, N. Watrin, B. Blunier, D. Bouquain, and A. Miraoui : En-

ergy sources sizing methodology for hybrid fuel cell vehicles based

on statistical description of driving cycles. Vehicular Technology, IEEE
Transactions on - 2011.

A. Ravey, B. Blunier, and A. Miraoui : Control strategies for fuel-cell

based hybrid electric vehicles : From offline to online and experimen-

tal results. Vehicular Technology, IEEE Transactions on - 2012.

– International Conference with proceeding :

A. Ravey, N. Watrin, B. Blunier, and A. Miraoui : Energy sources sizing

for hybrid fuel cell vehicles based on statistical description of driving

cycles. Vehicle Power and Propulsion Conference (VPPC), IEEE - Lille, France
- 2010.

A. Ravey, B. Blunier, and A. Miraoui : Control strategies for fuel cell

based hybrid electric vehicles : From offline to online. Vehicle Power
and Propulsion Conference (VPPC), IEEE- 2011.

A. Ravey, R. Roche, B. Blunier, and A. Miraoui : Combined optimal siz-

ing and energy management of hybrid electric vehicles. International
Transportation Electrification Conference (ITEC) - 2012.

A. Ravey, B. Blunier, S. Lukic, and A. Miraoui. Control strategy of fuel

cell hybrid electric vehicle based on driving cycle recognition. Interna-
tional Transportation Electrification Conference (ITEC) - 2012

– National conference with proceeding :

A. Ravey, B. Blunier and A. Miraoui. Dimensionnement et contrôle

d’un véhicule hybride électrique basé sur une pile à combustible. Elec-
trotechnique du Futur - Belfort, France - 2011.

future works

This thesis opened prospers to new improvement in hybrid electric vehicles
domains : Firstly, the new sizing methodology including the driving cycle
generator is applied to a real application, the Mobypost project : This project
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aims to build a fuel cell hybrid vehicle for postal delivery services. The
hydrogen is produce with renewable energy by electrolysis water with the
help of photo voltaic panels. The power train design of the vehicle is build
with the sizing methodology described in section 2.2 by analyzing the postal
deliver driving cycle, using the generator based on recorded data ; to generate
a family of cycle. The sizing methodology is then applied to define the power
of the fuel cell and the battery pack size. This project leads to the conception
of 10 vehicle which will be used by French postal delivery in 2013.
The destination prediction algorithm will be implemented into a real applica-
tion to validate it. Moreover, a new study starting from this control strategy
adding the vehicle to grid layer will be investigated : the control strategy will
adapts the depth of discharge of the battery with taking into account the cost
of electricity charging.
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