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Résumé en français

Dans ce chapitre, nous proposons un résumé en français du manuscrit rédigé en
anglais. Nous conservons, autant que possible, la structure du document.

Ce travail est centré sur l’étude de la fonction cérébrale en Imagerie par Réso-
nance Magnétique (IRM). Le contexte de cette étude est décrit dans la partie 1.
Nos contributions sont ensuite présentées en deux parties. Nous proposons tout
d’abord une analyse de groupe de la dysphasie chez l’enfant en IRM fonctionnelle
BOLD dans la partie 2. Puis, nous nous concentrons sur l’étude de la fonction
cérébrale au niveau de l’individu dans la partie 3. Nous concluons dans la partie 4.

In this chapter, we provide the reader with a summary of the work in French.
The remaining of the document is written in English. The non-French speakers can
easily skip this part.
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1. Contexte xi

1 Contexte

1.1 L’étude de la fonction cérébrale

L’étude du fonctionnement cérébral est depuis longtemps le sujet de recherches
soutenues. L’introduction de la neuroimagerie, permettant d’observer l’anatomie
et la fonction cérébrale in-vivo, a permis l’émergence de nouvelles problématiques
scientifiques.

Dans le domaine de l’étude de la fonction cérébrale, l’Imagerie par Résonance
Magnétique (IRM) tient une place particulièrement importante. L’IRM fonction-
nelle (IRMf) basée sur la mesure de l’oxygénation du sang, appelée IRMf BOLD
(pour “Blood-Oxygen-Level-Dependent”) est ainsi la méthode la plus répandue pour
analyser le fonctionnement du cerveau. Avec cette méthode, il est possible d’étudier
l’activation cérébrale produite en réponse à un stimulus. L’effet observé en IRMf
BOLD est la conséquence de mécanismes physiologiques complexes qui ne sont
aujourd’hui pas complètement compris. Les zones d’activation sont identifiées en
comparant l’activité observée pendant la réalisation d’une tâche, à l’activité au re-
pos. L’IRMf BOLD est donc une technique adaptée à la mesure d’un changement
dans l’activité cérébrale, elle fournit une mesure relative et non absolue.

Il est cependant important de remarquer que la fonction cérébrale est un pro-
cessus qui est principalement spontané, et qu’il serait donc intéressant de pouvoir
mesurer l’activité au repos, aussi appelée activité basale. La perfusion cérébrale
est le processus biologique qui assure l’approvisionnement du cerveau en oxygène
et en nutriments au moyen de la micro-circulation sanguine. En IRM, la technique
historique permettant de mesurer la perfusion est l’imagerie dynamique de suscep-
tibilité magnétique (DSC). Cette technique est basée sur l’injection d’un produit
de contraste et n’est donc pas adaptée pour les sujets sains ou les populations à
risques telles que les femmes enceintes ou les enfants.

L’imagerie de perfusion par marquage de spins (ASL) permet de mesurer la
perfusion cérébrale en utilisant un traceur endogène : les protons du sang mar-
qués avec un pulse radiofréquence. Cette technique ne nécessite pas d’injection
de produit de contraste et peut donc être appliquée à une population plus large
que le DSC. Cet avantage, associé au fait que l’ASL permet d’imager à la fois
l’activité basale et l’activation induite par la présentation d’un stimulus, en fait
une méthode particulièrement intéressante d’un point de vue scientifique mais aussi
clinique. L’utilisation de l’ASL reste cependant assez restreinte et ce, malgré le
fait que son principe ait été introduit à peu près au même moment que l’IRMf
BOLD [Detre 1992]. Une des explications est sans doute le faible rapport signal
sur bruit des images produites par cette séquence ainsi que, initialement, des dif-
ficultés techniques à sa mise en oeuvre. Aujourd’hui, l’ASL a gagné en maturité
et est maintenant disponible en tant que séquence commerciale sur la plupart des
scanners IRM. De nombreuses études ont montré l’utilité de cette séquence, en par-
ticulier dans la prise en charge de l’accident vasculaire cérébral ou dans le suivi des
tumeurs. Il reste cependant encore beaucoup à faire, notamment dans la défini-
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tion de post-traitements standards, pour que cette séquence puisse être utilisable
en routine clinique.

1.2 Des analyses de groupe à l’étude de l’individu

L’étude du fonctionnement cérébral normal ou des dysfonctions induites par une
pathologie est généralement réalisée au niveau du groupe. Ces approches qui visent
à produire des conclusions au niveau d’une population se sont montrées particulière-
ment efficaces par le passé et constituent aujourd’hui la méthode la plus répandue
pour analyser la fonction cérébrale. D’un point de vue clinique cependant, c’est le
patient, individu unique, qui est le centre d’intérêt. Le diagnostic et le choix du
traitement sont des tâches qui sont nécessairement réalisées au niveau de l’individu
et non au niveau du groupe. C’est pourquoi il y a aujourd’hui un intérêt grandis-
sant pour les méthodes individuelles qui visent à produire des conclusions au niveau
d’un sujet.

Dans ce travail, nous proposons tout d’abord une analyse de groupe de la dys-
phasie chez l’enfant en IRMf BOLD. Ensuite, nous nous concentrons sur les analyses
individuelles. Nous proposons une approche robuste pour calculer la mesure de per-
fusion en ASL. Ensuite, nous étudions la validité des hypothèses qui sous-tendent
les analyses statistiques classiques dans le contexte de l’ASL. Nous proposons en-
suite une nouvelle méthode localement multivariée, basée sur l’approche a contrario

et nous l’appliquons dans deux domaines : la détections d’anomalies de perfusion
en ASL et la détection de l’activation cérébrale en IRMf BOLD.

2 Mise en évidence de régions cérébrales présentant
un fonctionnement atypique dans la dysphasie chez
l’enfant : une analyse de groupe en IRM fonction-
nelle BOLD

2.1 La dysphasie

La dysphasie fait partie des troubles développementaux du langage. Elle est ainsi :

• sévère et persistante : la dysphasie n’est pas un retard de langage ;

• spécifique : bien que la dysphasie soit parfois associée à d’autres troubles, elle
n’impacte que le langage (ou des processus liés au langage) ;

• développementale : la dysphasie n’est pas la conséquence d’une lésion cérébrale
acquise.

La dysphasie est donc définie par négation (pas un retard de langage, n’impacte
pas les capacités intellectuelles, n’est pas acquise) ce qui rend son diagnostic par-
ticulièrement complexe. Dans la littérature, la dénomination de dysphasie reste
assez floue et représente un sous-ensemble plus ou moins bien défini des troubles
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développementaux du langage. La fig. 1 fournit un diagramme des principaux trou-
bles langagiers et les liens qui existent entre eux, en accord avec les définitions
utilisées par d’autres auteurs [Brun 2003,Bishop 2006].
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Figure 1: Diagramme des troubles développementaux du langage.

Dans le contexte de ce travail, nous nous sommes restreints à l’étude de la
dysphasie structurale qui impacte les aspects structuraux du langage: la phonologie
(la maîtrise du système de différenciation phonologique), le lexique (la maîtrise du
système de différenciation des mots), la morphologie (formation de mots nouveaux
ou dérivés), la syntaxe (la maîtrise de la construction de la phrase dans l’expression
et la compréhension). Cette pathologie à une prévalence inférieure à 1% dans la
population générale.

2.2 Données

21 enfants dysphasiques et 18 enfants présentant un développement caractéristique,
âgés de 7 à 18 ans, ont participé à cette étude.

Le protocole d’imagerie incluait deux images anatomiques (T1 et T2 FLAIR),
quatre IRMf correspondant aux quatre paradigmes langagiers étudiés et une image
de diffusion. La fig. 2 présente une vision d’ensemble des quatre paradigmes étudiés.
Chaque paradigme se divisait en six phases : trois phases d’action et trois phases
de repos de 27 s chacune en alternance. Deux paradigmes, Catégorie et Dénom-
inations, proviennent de la littérature et sont basés sur l’écoute de stimuli. Les
deux paradigmes restants, Phon-diff et Phon-seg ont été développés dans le cadre
de cette étude et se basent sur des stimuli visuels.

2.3 Résultats

La comparaison inter-groupe des activations (seuil p < 0.05 prenant en compte les
tests multiples avec une correction du risque d’erreur par familles (FWE)) a mis en
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Figure 2: Les quatre paradigmes langagiers inclus dans le protocole Dysphasie.

évidence deux zones de fonctionnement atypique pour deux des quatre paradigmes
étudiés.

Lors de la réalisation des tâches du paradigme Dénomination, les sujets dys-
phasiques ont présenté une activation réduite (hypo-activation) dans la partie postérieure
du gyrus temporal supérieur à la jonction avec le gyrus supramarginal à gauche.
Cette région, parfois dénommée région de Wernicke, est connue comme étant l’une
des aires majeures du traitement du langage dans le cerveau.
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Figure 3: Hypo-activation du groupe dysphasique par rapport au groupe contrôle
pour la tâche Définition (p < 0.05 FWE).

Lors de la réalisation des tâches du paradigme Phon-diff, les sujets dysphasiques
ont présenté un niveau d’activation plus élevé (hyper-activation) que les enfants à
développement caractéristique dans la partie antérieure de l’insula, le gyrus frontal
inférieur adjacent et dans la tête du noyau caudé à droite. La partie corticale de
cette région est l’homologue à droite de la région parfois dénommée Broca, qui est
connue comme étant l’une des aires majeures du traitement du langage dans le
cerveau.
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Figure 4: Hyper-activation du groupe dysphasique par rapport au groupe contrôle
pour la tâche Phon-diff (p < 0.05 FWE).

2.4 Conclusion

Dans ce travail, nous avons étudié la dysphasie structurale, un sous-groupe des
troubles développementaux du langage oral affectant les aspects structuraux du
langage. En IRMf BOLD, nous avons mis en évidence un fonctionnement atypique
de deux régions : une aire temporale dans l’hémisphère gauche connue pour son
implication dans le langage et une aire frontale dans l’hémisphère droit, contra-
latérale à l’aire de Broca qui est elle-aussi impliquée dans le traitement du langage
dans le cerveau.

3 Étude de la fonction cérébrale au niveau de l’individu

3.1 Une estimation robuste du débit sanguin cérébral en ASL

3.1.1 Introduction

L’ASL permet de mesurer le débit sanguin cérébral (CBF) de manière non-invasive.
Cette technique souffre cependant d’un faible rapport signal sur bruit qui affecte
la qualité des cartographies de perfusion. Afin d’obtenir un niveau de signal satis-
faisant, l’acquisition ASL est généralement répétée plusieurs fois. La cartographie
de perfusion est ensuite obtenue en moyennant le signal des différentes répétitions.
La moyenne est cependant un estimateur qui est très sensible aux valeurs atypiques
comme illustré dans la fig. 5. Plusieurs études ont montré que des valeurs atypiques
pouvaient être présentes dans la série ASL.
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Figure 5: Moyenne : exemple d’estimation du débit sanguin cérébral en présence
de valeurs atypiques.
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3.1.2 Méthode

Dans [Tan 2009], les auteurs ont proposé d’éliminer les volumes dont l’intensité ap-
paraît anormale grâce à une mesure basé sur des scores z. Un exemple d’estimation
est donné en fig. 6. Cette méthode utilise cependant des seuils définis de façon
empirique. Par ailleurs, des méthodes statistiques plus robustes que les scores z
sont disponibles dans la littérature.
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Figure 6: Seuillage par score z : exemple d’estimation du débit sanguin cérébral en
présence de valeurs atypiques.

Nous proposons donc d’estimer la cartographie de perfusion au moyen de statis-
tiques robustes : les M-estimateurs. Nous nous concentrons en particulier sur
le M-estimateur de Huber qui est le plus utilisé de cette catégorie. Un exemple
d’estimation est présenté en fig 7.
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Figure 7: M-estimateur de Huber : exemple d’estimation du débit sanguin cérébral
en présence de valeurs atypiques.

3.1.3 Résultats

24 patients atteints de tumeurs cérébrales ont participé à cette étude. La validation
a été réalisée en mesurant la corrélation voxel-à-voxel de la carte de débit sanguin
cérébral produite par chaque estimateur, à partir des données ASL, avec la carte
de débit sanguin cérébral acquise avec la méthode d’imagerie de perfusion la plus
validée en IRM : le DSC. La fig. 8.a présente le niveau de corrélation obtenu pour
chacune des 3 méthodes d’estimation avec des jeux de données de différentes tailles
(de 5 volumes à 50 volumes). Le M-estimateur de Huber et la méthode utilisant les
scores z sont tous les deux plus performants que la moyenne. Le M-estimateur four-
nit une estimation légèrement meilleure que la méthode du score z. La fig. 8.b donne
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a) b)

Figure 8: Corrélation de la cartographie ASL CBF avec la carte DSC CBF estimée
avec la moyenne, le M-estimateur de Huber ou la méthode des scores z (a). Exemple
de résultats sur données réelles (b), les flèches blanches soulignent des artefacts
présents dans la carte obtenue avec moyennage qui sont correctement éliminé avec
le score z et le M-estimateur.

un exemple sur données réelles pour lequel, la méthode du score z et le M-estimateur
corrigent d’importants artefacts visibles sur la carte obtenue par moyennage.

3.2 Modélisation de l’hétérogénéité des variances dans la détection
individuelle d’anomalies perfusionnelles en ASL

3.2.1 Introduction

Dans cette partie, nous nous proposons de détecter des anomalies de perfusion au
niveau individuel en ASL en utilisant la méthode statistique la plus répandue en
neuroimagerie : le Modèle linéaire généralisé (GLM). Un exemple de détections est
proposé en fig. 9.

Figure 9: Exemple de détections individuelles d’anomalies de perfusion chez deux
patients atteints de tumeurs cérébrales. De gauche à droite : T1-Gd, ASL CBF,
détections.
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3.2.2 Méthode

Dans la détection d’anomalies de perfusion, obtenue en comparant un sujet à un
groupe de contrôle, il existe deux composantes qui induisent des variabilités dans
la mesure : la variance intra-sujet (aussi appelée erreur de mesure) et la variance
inter-sujet (aussi appelée variance intra-groupe). En ASL, la variance intra-sujet
mesure la variabilité observée entre les différentes répétitions acquises sur un même
sujet comme illustré dans la fig. 10. La variance inter-sujet mesure la variabilité
entre sujets d’un même groupe comme décrit dans la fig. 11.

. . .

Rép. 1 Rép. 2 Rép. r Moyenne Écart-type

Figure 10: La variance intra-sujet mesure la variabilité entre les répétitions.

. . .

Sujet 1 Sujet 2 Sujet n Moyenne Écart-type

Figure 11: La variance inter-sujets mesure la variabilité entre sujets d’un même
groupe.

Deux approches sont actuellement utilisées pour résoudre ce type de problème :
l’approche homoscédastique, qui fait l’hypothèse d’une variance intra-sujet con-
stante, et l’approche hétéroscédastique. L’approche hétéroscédastique est théorique-
ment plus efficace en présence de variances intra-sujet hétérogènes mais algorith-
miquement plus demandeuse. Dans la pratique, en IRMf la supériorité du modèle
hétéroscédastique est encore remise en question.

En raison du faible rapport signal sur bruit des cartographies produites en ASL,
la variance intra-sujet joue un rôle particulièrement important [Viviani 2009]. Nous
nous proposons donc d’étudier le comportement des modèles homoscédastique et
hétéroscédastique dans la détection d’anomalies de perfusion au niveau individuel
en ASL.

3.2.3 Validation

36 sujets sains et 25 patients ont participé à cette étude.
La validation des détections est particulièrement complexe dans la mesure où,

comme dans de nombreuses applications de neuroimagerie, la vérité terrain n’est pas
connue. Nous avons choisi le contexte des pathologies tumorales car, dans ce cadre,



3. Étude de la fonction cérébrale au niveau de l’individu xix

la perfusion est une information qui a été particulièrement étudiée. Par ailleurs, en
raison de son intérêt clinique, le DSC fait partie des séquences d’imagerie précon-
isées chez ces patients. En prenant appui sur les connaissances cliniques nous avons
construit notre vérité terrain en combinant les informations anatomiques (T1, T2
FLAIR) et perfusionnelles (DSC). En raison de son faible rapport signal sur bruit,
l’ASL n’est pas bien adaptée à la mesure de faibles niveaux de perfusion [Winter-
mark 2005]. Nous avons donc restreint l’analyse de la sensibilité (détection correcte
des anomalies à détecter) aux hyper-perfusions. La fig. 12 fournit un exemple de
vérité terrain chez un sujet représentatif.
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Figure 12: Vérité terrain chez un patient. De gauche à droite : T1-Gd, DSC CBF,
Vérité terrain: hyper-perfusions (à détecter) en rouge et iso-perfusion (à ne pas
détecter) en vert.

Les performances des modèles homoscédastique et hétéroscédastique ont été
comparées à l’aide de courbes ROC (pour “Receiver Operating Characteristic”). En
particulier, nous avons calculé l’aire sous la courbe (pour des taux de faux positifs
compris entre 0% et 10%) afin d’obtenir une mesure de la qualité de la classification
associée à chaque méthode. Le GLM étant généralement appliqué sur des données
lissées avec un noyau Gaussien, nous avons étudié différents jeux de paramètres :
largeur à mi-hauteur du noyau Gaussien égale à 0 mm3 (pas de lissage), 4 mm3,
6 mm3, 8 mm3, 10 mm3 et 12 mm3.

3.2.4 Résultats

La table 1 résume l’aire sous la courbe ROC obtenue pour chacun des jeux de
paramètres testés. Le modèle hétéroscédastique est plus performant que le modèle
homoscédastique avec une aire sous la courbe ROC plus importante. Les meilleurs
performances sont obtenues avec un noyau Gaussien de largeur à-mi hauteur égale
à 8 mm3 pour les deux méthodes.

3.2.5 Conclusion

Nous avons mis en évidence l’hétérogénéité des variance intra-sujets en ASL et
démontré une augmentation du taux de faux positifs si cette hétérogénéité n’est
pas correctement prise en compte. Nous conseillons donc l’utilisation du modèle
hétéroscédastique dans la détection d’anomalies de perfusion au niveau individuel
en ASL.
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Table 1: Aire sous la courbe ROC pour des taux de faux positifs compris entre
0% et 10% avec les modèles homoscédastique et hétéroscédastique. Le modèle
hétéroscédastique est plus performant que le modèle homoscédastique.

Modèle homoscédastique Modèle hétéroscédastique
0 4 6 8 10 12 0 4 6 8 10 12

Aire 0.46 0.49 0.49 0.49 0.48 0.48 0.63 0.70 0.72 0.72 0.69 0.65

3.3 Une approche a contrario pour la détection d’anomalies de
perfusion au niveau individuel et d’activations en IRM fonc-
tionnelle BOLD

3.3.1 Introduction

Dans cette partie, nous proposons un modèle localement multivarié pour la détection
d’anomalies de perfusion au niveau individuel. Ce modèle est basé sur l’approche a

contrario, un cadre statistique venant de la communauté de la vision par ordinateur.
Cette méthode est comparée au GLM, qui est la méthode standard dans l’analyse
des données de neuroimagerie. Le GLM est une approche massivement univariée
car elle traite indépendamment chacun des voxels étudiés.

3.3.2 Méthode

L’approche a contrario [Desolneux 2003] est généralement définie en trois étapes :

1. La définition d’un modèle de fond ;

2. L’estimation d’une probabilité niveau région ;

3. La correction des comparaisons multiples.

Le terme “a contrario” a été initialement choisi dans le but d’illustrer le fait
que cette méthode est basée sur la définition d’un modèle de fond (ce que l’on ne
souhaite pas détecter) au lieu de la modélisation de l’objet à détecter.

Définition d’un modèle de fond La première étape est la définition d’un mod-
èle de fond (cf. fig. 13, 1ère colonne). Ce modèle représente le bruit de fond ou bien
est construit à partir d’une population contrôle.

Les événements rares sont définis comme étant des observations qui ne re-
spectent pas le modèle de fond. Un voxel est associé à un événement rare si la
valeur observée à ce voxel a une probabilité (sous le modèle de fond) inférieure à
un seuil pré-défini noté pPRE.

Estimation d’une probabilité niveau région Dans une seconde étape, les
probabilités calculées au niveau des voxels sont étendues au niveau des régions
(cf. fig. 13, 2ème colonne). Cette étape permet de prendre en compte les voisins de
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Figure 13: Vue d’ensemble de l’approche a contrario : définition du modèle de fond,
estimation d’une probabilité niveau région et correction des comparaisons multiples.

chaque voxel avec une métrique (localement) multivariée. Dans ce but, un ensemble
de régions est défini a priori dans l’image. Si la forme des détections à trouver est
connue alors les régions sont choisies en conséquence. Par exemple, dans la première
application de la méthode a contrario, qui avait pour but la détection de lignes
dans des images, des segments de tailles variables avaient été choisis comme régions
d’analyse. En l’absence d’a priori, deux méthodes ont été proposées : utiliser un
algorithme de clustering [Rousseau 2008] ou définir une sphère (ou un cube) centrée
en chaque voxel [Aguerrebere 2009,Rousseau 2007].

Le nombre d’événements rares est ensuite calculé pour chaque région d’analyse.
Puis, connaissant la loi de probabilité suivie par le nombre d’événements rares par
sphère sous le modèle de fond, une probabilité est affectée à chaque région. Dans
le cas d’un bruit blanc, la loi de probabilité est une Binomiale paramétrée par le
nombre de voxels par sphère et le seuil pPRE. Dans le cas où les régions d’analyse
sont des sphères, la probabilité niveau région peut ensuite être affectée au voxel
central de la sphère.

Correction des comparaisons multiples La troisième et dernière étape con-
siste à seuiller la carte de probabilité niveau région pour faire apparaître les détec-
tions. Ce seuillage doit être réalisé en prenant en compte les multiples tests réalisés
en parallèle (cf. fig. 13, 3ème colonne). Dans l’approche a contrario, une variante de
l’approche de Bonferroni est généralement employée [Rousseau 2008] mais d’autres
types de correction sont envisageables (par exemple le FDR pour “False Discovery
Rate” de [Benjamini 1995]).
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3.3.3 Validation

Les performances de la méthode a contrario et du GLM ont été comparées à l’aide de
courbes ROC. En particulier, nous avons calculé l’aire sous la courbe (pour des taux
de faux positifs compris entre 0% et 10%) afin d’obtenir une mesure de la qualité de
la classification associée à chaque méthode. Le GLM étant généralement appliqué
sur des données lissées avec un noyau Gaussien, nous avons étudié différents jeux
de paramètres : largeur à mi-hauteur du noyau Gaussien égale à 0 mm3 (pas de
lissage), 4 mm3, 6 mm3, 8 mm3, 10 mm3 et 12 mm3. Pour la méthode a contrario,
nous avons étudié 2 tailles de sphère : rayon rd ∈ [1, 2] voxel(s) et 3 valeurs de
seuils pPRE ∈ [0.01, 0.005, 0.001].

3.3.4 Résultats

3.3.5 Résultats quantitatifs

La table 2 résume l’aire sous la courbe ROC obtenue pour chacun des jeux de
paramètres testés. La méthode a contrario est plus performante que le GLM
hétéroscédastique avec une aire sous la courbe ROC plus importante.

Table 2: Aire sous la courbe ROC pour des taux de faux positifs compris entre 0%
et 10% avec le GLM hétéroscédastique et la méthode a contrario. La méthode a

contrario est plus performante que le GLM.

a contrario GLM
rd/w 1 2 0 2 4 6 8 10 12

pPRE 0.01 0.005 0.001 0.01 0.005 0.001

Aire 0.68 0.73 0.79 0.75 0.80 0.87 0.63 0.67 0.70 0.72 0.73 0.70 0.65

3.3.6 Exemples de détections

Afin d’illustrer les avantages procurés par la méthode a contrario, nous avons choisi
2 sujets représentatifs et comparé les deux méthodes avec un taux fixe de faux ou
de vrais positifs. La fig. 14 présente les détections obtenues avec les deux méth-
odes pour les deux patients sélectionnés. Le premier sujet, qui présente une petite
hyper-perfusion, est étudié avec un taux de vrais positifs de 50%. Pour le second
patient, les deux méthodes sont comparées avec un taux de faux positifs de 5%. Le
patient 15 souffre d’un gliosarcome dans l’hémisphère gauche a proximité de la ré-
gion parahippocampique. La lésion est caractérisée par de petites hyper-perfusions
dans sa partie dorsale, de petites hypo-perfusions sont observées dans l’oedème pé-
riphérique. Avec un taux de faux positifs de 50%, le GLM présente un plus grand
nombre de faux positifs que l’approche a contrario. Le patient 7 souffre d’un ménin-
giome des deux lobes occipitaux caractérisé par une grande hyper-perfusion. Avec
un taux de faux positifs de 5%, la plus grande partie d’hyper-perfusion est correcte-
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ment détectée avec les deux méthodes. L’approche a contrario est cependant plus
sensible et détecte une plus large proportion de l’anomalie de perfusion.
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Figure 14: Anomalies de perfusion chez 2 patients avec le GLM et la méthode a

contrario. De gauche à droite : vérité terrain hyper-perfusions (rouge) et hypo-
perfusions (bleu) superposées à la carte T1w-Gd; GLM hyper-perfusions (couleurs
chaudes) et hypo-perfusions (bleu); a contrario hyper-perfusions (couleurs chaudes)
et hypo-perfusions (bleu).

Cette méthode a contrario est par ailleurs transposable à d’autres applications
comme la détection des zones activées en IRMf. Pour des raisons de place nous ne
sommes pas en mesure de traiter cette seconde application en détail dans ce résumé
en français. La fig. 15 présente un exemple d’activations détectées avec la méthode
a contrario et avec un GLM lissé et non-lissé pour un paradigme moteur de la main
droite. Dans cet exemple, seule la méthode a contrario est en mesure de fournir
une détection correcte de l’aire motrice supplémentaire.

3.3.7 Conclusion

Nous avons proposé une nouvelle méthode localement multivariée, basée sur une
approche a contrario, qui présente de meilleures performances dans la détection
d’hypo- et hyper-perfusions en ASL ainsi que dans la détection d’aires activées en
IRMf BOLD.
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Figure 15: Exemple d’activations obtenues avec un taux de faux positifs de 5%.
L’aire motrice primaire de la main (flèche noire sur la 4ème coupe) est correctement
détectée avec le GLM et l’a contrario. L’aire motrice supplémentaire (flèche noire
sur la 5ème coupe) est mieux détectée avec l’approche a contrario.

4 Conclusion

Cette thèse traite de l’analyse de la fonction cérébrale en IRM. En conclusion,
nous proposons une vue d’ensemble de nos contributions, nous discutons ensuite les
limites et perspectives de ces travaux.

4.1 Contributions

À l’aide d’une analyse de groupe mettant en oeuvre un modèle linéaire généralisé,
nous avons mis en évidence des motifs atypiques d’activation et de latéralité dans
la dysphasie chez l’enfant. Nous avons notamment démontré une hypoactivation
de la zone postérieure du gyrus temporal supérieur à la jonction avec le gyrus
supramarginal dans l’hémisphère gauche ainsi qu’une hyperactivation dans la partie
antérieure de l’insula, le gyrus frontal inférieur adjacent et la tête du noyau caudé,
dans l’hémisphère droit.

Ensuite, trois contributions méthodologiques ont été proposées dans le cadre
des analyses individuelles. Tout d’abord, nous avons proposé l’utilisation de M-
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estimateurs pour construire les cartographies de débit sanguin cérébral en ASL.
Ensuite, nous avons étudié l’hétéroscédasticité des données ASL et son impact dans
la détection d’anomalies perfusionnelles au niveau individuel. Nous avons ainsi
montré l’hétérogénéité des variances intra-sujet en ASL. De plus, nous avons mis
en évidence une augmentation du taux de faux positifs si cette variabilité n’est
pas correctement prise en compte. Enfin, nous avons proposé une approche a con-

trario. En accord avec les récents développements dans le domaine des approches
multivariées en neuroimagerie, nous avons souligné la supériorité de notre approche
localement multivariée par rapport au GLM standard massivement univarié. Ce
gain en performance a été illustré dans deux domaines applicatifs : la détection
d’anomalies de perfusion au niveau individuel en ASL et la détection d’activations
en IRMf BOLD.

4.2 Discussion et perspectives

Nos résultats, mettant en évidence un fonctionnement cérébral atypique dans la
dysphasie chez l’enfant, sont particulièrement intéressants dans la mesure où cette
pathologie a été très peu analysée en neuroimagerie. Il serait cependant utile de
re-discuter ces résultats à la lumière d’informations complémentaires fournies par
d’autres séquences ou modalités. Un article centré sur l’anatomie est en cours de
rédaction. Les données de diffusion acquises dans le cadre de cette étude ont aussi
montré de premiers résultats prometteurs. D’autre part, ces analyses pourraient
être reconduites avec une méthode a contrario comme celle proposée précédemment.

Notre utilisation des statistiques robustes a été restreinte à la production de
cartes de débit sanguin cérébral et n’a pas été étendue à l’analyse statistique. Dans
un premier temps, nous avons en effet préféré favoriser le GLM qui est la technique
standard d’analyse des données de neuroimagerie. Les statistiques robustes pour-
raient néanmoins être utiles à des fins de détections dans les analyses individuelles.

Nos expériences en ASL ont été réalisées avec la séquence produit disponible sur
notre machine IRM : une PASL PICORE Q2TIPS. Des séquences plus avancées,
comme l’ASL pseudo-continu, sont aujourd’hui à même de fournir un meilleur rap-
port signal sur bruit. Il serait intéressant de mesurer et de comparer le niveau
d’hétéroscédasticité observé avec des jeux de données obtenus avec différentes séquences
ASL.

Pour finir, une extension possible à ce travail serait l’utilisation d’une approche
a contrario pour réaliser des statistiques de groupe.
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Introduction

For a long time, understanding how the brain works has been the centre of acute
researches. The emergence of functional neuroimaging techniques, allowing for in-
vivo imaging, has opened the field for new scientific questions and methodological
issues.

In particular, Magnetic Resonance Imaging (MRI), thanks to its non-invasiveness,
has been widely used to study brain function. In MRI, the preferred imaging tech-
nique to measure brain function is functional MRI based on the Blood-Oxygen-
Level-Dependent (BOLD) effect. With this technique, a measure of cerebral activa-
tion in response to a stimulus is achieved. However, due to the complex physiological
mechanisms underlying the BOLD effect, this measure is only relative so that basal
activity cannot be studied through this sequence.

While BOLD Functional Magnetic Resonance Imaging (fMRI) is useful to mea-
sure task-based activation, brain function is mainly an intrinsic process and can-
not be confined to task-induced activity. Brain perfusion is the biological process
that insures the delivery of oxygen and nutrients to the cerebral tissues by means
of microcirculation. In MRI, the historical approach to measure perfusion is the
Dynamic Susceptibility weighted Contrast imaging (DSC). This method however
requires the injection of a contrast agent necessitating a good venous access and
inducing a potential risk of allergy that makes it not widely applicable in sensitive
populations such as children and pregnant women or in healthy subjects. Arterial
Spin Labelling (ASL) sequences permit the measurement of perfusion with MRI
using an endogenous contrast agent: the protons of blood water. The absence of in-
jection and the possibility to employ this imaging technique to measure task-based
activity or basal perfusion is very attractive. However, though the principle of this
imaging method were introduced around the same time of BOLD fMRI, the use
of ASL remains much more restricted. The main explanation is probably the low
signal-to-noise ratio of this technique and the initial technical difficulties. Nowa-
days, ASL has gained in maturity and is available as a commercial product on most
clinical scanners. While several studies have shown the potential of ASL for clinical
purposes, in particular in stroke or brain tumours, much still need to be done to
provide standardized post-processing.

In order to study the cerebral dysfunctions associated with a pathology or to un-
derstand the typical brain function in healthy subjects, group analyses have demon-
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strated a great efficiency. Nowadays, group analyses are the standard approach to
uncover the, typical or pathological, brain function mechanisms. However, on the
clinician viewpoint, the individual patient should be at the centre of the analysis.
This is in part driven by the fact that diagnosis and treatment choices are neces-
sarily performed at the patient and not at the group level. This is why there is an
increasing interest towards patient-specific analyses that aim at drawing conclusions
at the level of a single patient.

In this work, we first introduce a group analysis for the study of specific language
impairment, a pathology that was very little studied on the functional viewpoint in
the literature. We then focus our discussion to patient-specific analyses. We anal-
yse the validity of the assumptions underlying standard statistical analyses in the
context of Arterial Spin Labelling. We propose a new locally multivariate statistical
method based on an a contrario approach and apply it to the detection of atypical
patterns of perfusion in ASL and to activation detection in BOLD functional MRI.

This document is organized in three parts. The first part is dedicated to the
presentation of the context and the state of the art. Our contributions are provided
in the second and third parts. The former is a standard group analysis applied in
an innovative context. The latter presents our methodological contributions to the
patient-specific analysis of brain function.

Part I: Context

Chapter 1 presents the general context of our study. A definition of “brain
function” is provided and the focus is made on the two aspects of brain function
that are studied in this document: perfusion and task-evoked activity. An overview
of the possible applications of each technique is presented along with their interest
for clinical purposes. Competing, non Magnetic-Resonance imaging modalities are
briefly exposed with their pros and cons.

Chapter 2 develops the standard pre-processing pipeline employed both for
Arterial Spin Labelling and BOLD functional MRI data. The massively univariate
general linear model is presented as the standard tool for statistical analysis of
neuroimaging data.

Chapter 3 introduces patient-specific analyses. A brief description of the ap-
plications of such studies is provided, followed by the current state of the art.

Part II: Language impaired regions in specific language impairment: a group

study using BOLD functional MRI

Chapter 4 presents the context of this group study on Specific Language Im-
pairment (SLI) entitled the “Neuroimaging of Dysphasia” project. A clinical de-
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scription of specific language impairment is provided along with some key-points
regarding language processing in the brain.

Chapter 5 proposes a panel of four language tasks for language mapping in
children using BOLD functional MRI. A group of eighteen typically developing
children is involved in this study. Special care is taken to insure the feasibility of
each task for young and disordered populations.

Chapter 6 employs the protocol previously proposed in order to outline atypical
patterns of activation and lateralization in children diagnosed with Typical-Specific
Language Impairment, a subtype of dysphasia affecting the core aspects of language.
A group of twenty-one young patients is involved in this study and compared to
typically developing children matched in gender and age.

Part III: Patient-specific analysis of brain function

Chapter 7 presents a robust method based on M-estimators to estimate the
cerebral blood flow in arterial spin labelling. This approach is compared to a z-score
outlier removal technique previously proposed in the literature and to the sample
mean commonly used in arterial spin labelling studies.

Chapter 8 studies the heteroscedasticity of arterial spin labelling data and
its impact on the detection of patient-specific perfusion abnormalities using the
massively univariate general linear model.

Chapter 9 introduces a locally multivariate procedure: the a contrario ap-
proach to detect patient-specific patterns of perfusion abnormalities. This approach
is compared to the standard massively univariate general linear model.

Chapter 10 expands the use of the a contrario approach to the detection of
individual activation patterns in BOLD functional MRI.

Conclusions, including a summary of our contributions along with the future
work, are discussed in a the last chapter.
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Chapter 1

The study of brain function

In this chapter, we present the biological and experimental context of our study.
First, we provide a definition of the term brain function in section 1. Then, we
focus on the two aspects of brain function that are investigated in the context
of this thesis: brain perfusion in section 2 and task-evoked activity in section 3.
For each component, we provide an overview of the clinical and research applica-
tions, along with the imaging techniques that enable its measurement. We also
emphasize the advantages and drawbacks of the two imaging techniques used in
this work: Blood-Oxygen-Level-Dependent (BOLD) functional MRI and Arterial
Spin Labelling (ASL).
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1 Brain function

In this section we present an overview of the aspects covered by the term brain

function and introduce the focus of this thesis.

Figure 1.1: Tag cloud computed from 8559 papers (title and abstract) referring to
brain function indexed in Pubmed1. Created with Wordle2.

1.1 Definition

The study of brain function aims at understanding how the, typical or atypical,
brain works. A large range of biological processes, from cellular chemical exchanges
to cross-brain coordination, are involved in brain function.

In research, this term has been employed in very different contexts and re-
lated to different levels of brain activity. For example, in neuroimaging, studying
brain function can focus on the spatio-temporal patterns of activation associated
with a particular task or stimulus, referred as task-evoked activity (recent exam-
ples include [Li 2009, Musso 2011, de Guibert 2010, de Guibert 2011]), but also
to the study of functional connectivity based on resting-state data (e.g. [Dosen-
bach 2010, Worbe 2012]) or even to the basal metabolism (e.g. [Peskind 2011]) or
basal perfusion (e.g. [Schuff 2011]).

In an attempt to provide a general definition of brain function, Vik described
brain function as one of the following: task-evoked brain activity, brain sponta-
neous biochemical and electrical activity, or neuronal organization and brain con-
nectivity [Vik 2005], as illustrated in fig. 1.2. More recently, Raichle outlined the

1http://www.ncbi.nlm.nih.gov/pubmed
2http://www.wordle.net
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duality of brain function, opposing task-evoked activity to intrinsic brain func-
tion [Raichle 2010].

Figure 1.2: The three components of brain function according to [Vik 2005]. Illus-
tration of connectivity reprinted from [Kaiser 2010]

1.2 An integrative view of brain function

The different components of brain function are clearly interdependent and nowa-
days, the study of brain function becomes more and more integrative, targeting sev-
eral components at the same time. For example, the interest towards resting-state
functional techniques has started to underpin the link between brain connectivity
and spontaneous biochemical and electrical activity (e.g. [Melzer 2011,Worbe 2012]).
In a recent study [Filippini 2012] investigated the relationship between task-evoked
and resting brain function. The emergence of new functional sequences, for in-
stance ASL in MRI, opens the field to a better understanding of the relationship
between different aspects of brain function, such as basal perfusional activity and
task-evoked activity [Tuunanen 2006].

In the context of this thesis, we focus on basal biochemical activity through the
measure of brain perfusion and on task-evoked brain activity.

2 Brain perfusion

In this section, we review the biological process of brain perfusion. We start with a
description of the channels that support blood delivery to the brain in 2.1. The term
brain perfusion is defined in 2.2 and its parameters are described in 2.3. Then, some
examples of how the perfusion information can be useful in research and clinical
practice are provided in 2.4. Finally, the different perfusion imaging approaches are
described in 2.5

2.1 Blood supply to the brain

As other organs of our body, the brain is connected to the heart through an arterial
and a venous system. The inflowing blood brings oxygen, nutrients along with
hormones while the outflow drains out waste products. Four arteries enter the
skull: two carotid and two vertebral arteries as described in figure 1.3.a. These
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arteries then ramify in the cerebral arterial circle (also termed circle of Willis) into
six main vessels: the anterior, middle and posterior arteries in the left and in the
right hemispheres (cf. figure 1.3.b and 1.3.c).

Figure 1.3: Main brain arteries, from [Gray 1918]. Lateral view displaying the
carotid and vertebral arteries entering the skull on the right part of the brain (a).
Ventral view of the artery ramifications at the basis of the brain (b). Close up on
the circle of Willis: the carotid and vertebral arteries ramifies into the anterior,
middle and posterior arteries (c).

In healthy subjects, the blood is supplied to each part of the brain by one of
these arteries as described in fig 1.4. The anterior cerebral artery is responsible
for the blood delivery to the medial part of the frontal and parietal lobes. The
posterior cerebral artery supplies the medial posterior portion of the temporal and
occipital lobes. The middle cerebral artery supplies the remaining parts of the
frontal, temporal, parietal and occipital lobes.

Figure 1.4: Vascular territories of the middle (pink), posterior (yellow) and ante-
rior (blue) brain arteries, from [Gray 1918]. Medial (a) and lateral (b) views.

After exchanging with the brain tissues, the blood circulates into small and then
large cerebral veins until it reaches the sinuses. A sinus is a particular type of vein
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Figure 1.5: Brain veins, from [Gray 1918]. Dorsal (a) and medial (b) views of the
sinuses. The interior jugular vein brings the blood out of the skull (c).

with a non-deformable wall made of dura mater. The sinuses are organized as a
channel as displayed in fig 1.5.a and fig 1.5.b. Finally, the blood exits the skull
through the left and right interior jugular veins fig 1.5.c.

2.2 Definition

Brain perfusion is the biological process that ensures the delivery of oxygen and
nutrients to the cerebral tissues by means of microcirculation. In the vascular tree,
the process of perfusion occurs in small vessels, called the capillaries, as outlined in
figure 1.6.

Figure 1.6: Vascular tree and perfusion. Image courtesy of Isabelle Corouge.

The brain is one of the most energy-demanding organs of our body, consuming
about 20% of the oxygen, and 15% of total body glucose for a total weight of no
more than 3% of the body [Willie 2011]. Simultaneously, there is not much room in
the brain for energy storage making the perfusion process particularly important.
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2.3 Parameters

The perfusion is characterised by a set of complementary parameters. The most
common is the Cerebral Blood Flow (CBF), which is a blood flow (i.e. a volume of
blood delivered per time unit) per mass of tissue and is usually expressed in millilitre
of blood delivered per hundred grams of tissue per minute (mL.100g.−1.min−1). The
Cerebral Blood Volume (CBV) is a volume of blood per mass of tissue, expressed
in millilitre of blood per hundred grams of tissue (mL.100g.−1). Finally, various
transit times through the vasculature expressed in seconds are also of interest. De-
pending on the imaging technique, different transit times can be approached. The
Mean Transit Time (MTT) is defined as the average time spent through the vascu-
lature and calculated by as MTT = CBV /CBF . The Bolus Arrival Time (BAT)
represents the time for a bolus of tracer to reach the voxel of interest and is appli-
cable for bolus-based techniques only. The Time To Peak (TTP) measures the time
necessary to reach a maximum of contrast change in first-pass bolus imaging. Fig-
ure 1.7 gives an example of parameter maps obtained with Dynamic Susceptibility
weighted Contrast imaging (DSC) (more details on this Magnetic Resonance (MR)
technique are provided in 2.5.1). A clear coupling is visible between the CBF and
CBV maps.

Figure 1.7: Perfusion parameters estimated with DSC in a patient diagnosed with
a brain tumour (not visible on the slice displayed): T1w, Cerebral Blood Flow
(CBF), Cerebral Blood Volume (CBV), Mean Transit Time (MTT) and Time To
Peak (TTP) maps.

2.4 Applications

2.4.1 In clinical practice

The level of brain perfusion at rest, referred as basal perfusion, can be disrupted in
the presence of vascular diseases or brain tumours. In this section we present some
clinical contexts in which a measure of perfusion is a useful indicator to help the
clinician in the diagnosis or monitoring of the treatment efficiency.

Diagnosis
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Identifying malignant tumours In the diagnosis of brain tumours, the
level of perfusion is an indicator of the malignancy of the pathology. Malignant
high-grade gliomas induce the creation of new brain vessels around the tumour,
a phenomenon, referred as neoangiogenesis, that is associated with the presence
of hyper-perfusions. In clinics, the hotspot technique [Noguchi 2008] in which the
level of CBV in the most active part of the tumour is compared to the contralateral
perfusion level is common practice. This analysis is usually performed by a clini-
cian who manually locates regions of interest in the tumour and in the contralateral
hemisphere. A cut-off ratio of 1.75 has been proposed at 1.5 T [Law 2003] to
differentiate benign low-grade from malignant high-grade gliomas. Figure 1.8 il-
lustrates how the complementarity of T1 weighted Gadolinium injected (T1w-Gd)
and perfusion imaging can help the clinician differentiating between glioblastomas,
lymphomas and low-grade gliomas.

Figure 1.8: Differentiation between 3 types of brain tumours: glioblastoma, lym-
phoma and low-grade glioma using the complementarity of T1w-Gd and perfusion
imaging. T1w-Gd (A,D) or T2w FLAIR (G) anatomical map (first column) and
DSC CBV map (second column). The malignant glioblastoma is associated with
a contrast enhancement on the T1w-Gd map and a hyper-perfusion on the CBV
map. The lymphoma is characterized by a contrast enhancement on the T1w-Gd
but a low CBV ratio (tumour/normal). The low-grade glioma has also a low CBV
ratio and has no enhancement on the T1w-Gd (T2w FLAIR displayed). Reprinted
from [Ferré 2012], Copyright (2013), with permission from Elsevier.

Indication for thrombolysis in stroke As described in figure 1.9, the early
stage of an ischaemic stroke is characterised by the presence of an ischaemic core in
which the brain tissues are already dead and an area of penumbra that is suffering
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but can recover if reperfused quickly. The main objective of the early stage treat-
ment is therefore the recanalisation of the penumbra before its necrosis. This can
be performed for instance by intra-venous thrombolysis, in which the injection of
a pharmacological agent is performed to the aim of destroying the thrombus. Due
to the risk of bleeding, this kind of treatment is allowed only within the first hours
following the onset of the stroke and when the mismatch between the penumbra and
the ischaemic core is large (indicating that most of the tissue is likely to recover).
Diffusion imaging is considered as a predictive parameter to measure the extent of
the ischaemic core [González 1999] while perfusion imaging is the method of choice
to image the penumbra [Huck 2012, Bokkers 2011, Ferré 2012, Wheeler 2013]. The
combination of both techniques is advised to check the extent of the mismatch be-
fore thrombolysis. This is particularly important when considering a patient more
than three hours after the symptom onset or when the onset in unknown.

Figure 1.9: Ischaemic core and penumbra in stroke from the Stroke Forum website3.
After effective treatment the tissue that was located in the ischaemic penumbra has
recovered.

Post-treatment monitoring After a radiotherapy, a monitoring of the patient
status is performed to ensure that the tumorous process has been stopped. How-
ever, on conventional T1w-Gd imaging, a contrast enhancement is either the con-
sequence of the lesions caused by the radiotherapy (radio-necrosis) or an indicator
of tumour recurrence. In this context, the perfusion level can help differentiating
a pseudo-progression (post-radiation necrosis, characterised by a hypo-perfusion)
from a true progression (tumour recurrence, characterised by a hyper-perfusion
indicating neoangiogenesis) as described in fig 1.10.

2.4.2 Research challenges

Biomarkers of Alzheimer’s disease Reduced perfusion in the temporal lobe
is well-documented in Alzheimer’s disease [Du 2006,Alsop 2010,Wolk 2012] and in
other types of dementias (e.g. [Corouge 2012] in semantic dementia). Figure 1.11
gives an example of reduced metabolism and CBF in the temporal lobe of a patient

3www.strokeforum.com/stroke-background/pathophysiology.html
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Figure 1.10: Differentiation between post-radiation necrosis (pseudo-progression)
and tumour recurrence (true progression) using perfusion imaging. T1w-Gd
anatomical map (first line) and DSC CBV map (second line). In pseudo-progression
(first column) the presence of radio-necrotic lesions is characterised by a low CBV
ratio. In true progression (second column) neoangiogenesis is characterised by
hyper-perfusions (high CBV ratio). Reprinted from [Ferré 2012], Copyright (2013),
with permission from Elsevier.

diagnosed with semantic dementia [Corouge 2012]. Current research focuses on
extracting early biomarkers from the patterns of perfusion and their longitudinal
progression. For example, a current issue is the identification of early biomarkers
to distinguish patients that will or will not convert to Alzheimer’s disease [Klöp-
pel 2012].

Figure 1.11: Reduced glucose metabolism and perfusion (CBF) of the temporal
lobes in a patient suffering from semantic dementia as imaged by FDG-PET (Left)
and ASL (Right). Reprinted from [Corouge 2012], with permission.

Identification of active foci in drug-resistant epilepsy In drug-resistant
epilepsy, where surgical resection is of consideration, locating the source of the
seizure is of great interest. In some patients, where the identified anatomical
anomaly is large, perfusion could help outlining the core affected area that might be
a candidate for surgical resection. Figure 1.12 gives an example of hypoperfusion
resulting from a dysplasia in an epileptic patient [Petr 2013].
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Figure 1.12: Hypoperfusions (in blue) and hyperperfusions (in red) overlaid on
T1w-Gd in a patient suffering from drug-resistant epilepsy. A hypoperfusion is
co-located with the dysplasia observed in the right temporal lobe of this patient.
Reprinted from [Petr 2013], Copyright (2013), with permission from Wiley.

A better understanding of physiological mechanisms in healthy subjects
Imaging normal brain perfusion in conjunction with other biological parameters can
help understanding brain physiological mechanisms. The study of control subjects
is also a way to better understand and define pathologies.

2.5 Imaging

2.5.1 Overview of imaging techniques for brain perfusion

In this section, we briefly describe the main imaging methods allowing the measure
of brain perfusion: Positron Emission Tomography (PET), Single Photon Emis-
sion Computed Tomography (SPECT), Perfusion Computed Tomography (PCT),
Xenon-Computed Tomography (CT), DSC and ASL based on a recent review [Win-
termark 2005].

Nuclear medicine Two main approaches are currently in use to measure perfu-
sion in the field of nuclear medicine: PET and SPECT

Positron Emission Tomography In PET, a radioactive tracer is adminis-
tered to the subject by injection or inhalation. After waiting a short period, in order
to allow for the distribution of the tracer, the radioactive activity of the tissues is
recorded. Different imaging tracers can be used in order to image a large range
of biological process including metabolism and haemodynamics. The measure of
the CBF involves either the injection of H2

15O or the inhalation of C1502. The
haemodynamic parameters that can be estimated include the CBF, CBV, the re-
gional Oxygen Extraction Fraction (rOEF) and regional cerebral oxygen metabolism
(rCMRO2). But 90% of PET examinations use an FDG molecule as a tracer and
therefore measure the metabolism of glucose. The parameter of interest is CMROglu

the consumption rate of glucose. While the metabolism of glucose in not strictly
speaking a measure of the haemodynamics, it has been shown to be tightly coupled
with regional CBF [Fox 1986]. As the radioactive molecules have to be produced by
a cyclotron, the use of PET-scans is limited to specialised centres. PET imaging is
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non-invasive but makes use of a radioactive tracer which precludes its use in young
or sensitive populations in view of the exposure to ionizing radiation. PET imaging
is furthermore impracticable in emergency settings.

Single Photon Emission Computed Tomography Similarly to PET imag-
ing, SPECT is able to image different biological phenomenon depending on the
molecule selected as a tracer. Imaging brain haemodynamics in SPECT involves
the injection of 133Xenon (historical tracer) or retention-tracer. The measurement
of CBF is relative. A potential advantage of SPECT is the fact that the tracer can
be injected before the time of imaging allowing for instance to image seizure for
epileptic patients. The resolution of SPECT is lower than PET, however due to its
lower cost, SPECT imaging is still quite widespread.

Computed Tomography Two main approaches are currently in use to measure
perfusion with CT: Xenon-CT and PCT. CT scanners are widely available and
therefore usable in the emergency setting. However, CT scans involve the use of
ionizing radiation (and intravenous injection of iodinated contrast media for PCT),
which makes them not suitable for children or sensitive populations.

Xenon Computed Tomography Measuring perfusion with Xenon-CT in-
volves the inhalation of a mixture of non-radioactive Xenon gas and oxygen. It
allows to quantitatively measure the level of CBF. This technique however requires
a good cooperation of the patient and specialized equipment [Wintermark 2001].

Perfusion Computed Tomography PCT relies on the monitoring of the
first pass of a bolus of iodinated contrast agent. It allows the measurement of
several perfusion parameters, both qualitatively and quantitatively: CBF, CBV,
MTT [Hoeffner 2004] and is less constraining than a Xenon-CT [Wintermark 2001].
This technique is widely used in clinical centres, in particular for stroke imaging
when MRI is not available.

Magnetic Resonance Imaging The historical approach to measure perfusion
with an MR-scanner is DSC. The increasing robustness and availability of ASL
sequences on clinical scanners opens the field for a more widespread use of this
competing approach.

Dynamic Susceptibility weighted Contrast imaging Similarly to PCT,
DSC relies on the imaging of the first pass of a bolus of contrast agent. Gadolinium
chelates are usually used as a contrast agent and their paramagnetic effect on T2 or
T2* imaging is scanned. Gadolinium chelates are non-ionising molecules and aller-
gies to this product are rare. However, the injection requires a good venous access
that might not be available in children. Also, the need of injection of a contrast
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agent reduces its applicability in pregnant women or in healthy subjects. Quantifi-
cation is possible with DSC but more complex than with PCT. Also leakage of the
blood brain barrier (as often reported in brain tumours) can further complicate the
quantification. Perfusion parameters that can be estimated are the TTP, MTT,
CBV and CBF.

Arterial Spin Labelling ASL is a perfusion imaging technique that uses an
endogenous contrast agent: magnetically labelled protons of blood water. The per-
fusion parameters estimated with this approach vary depending on the imaging
sequence but include: CBF and BAT. This method is currently mainly confined
to research but its use in the clinical settings is growing rapidly [Detre 2012, Al-
sop 2012]. This imaging approach will be described in further details in section 2.5.2.

2.5.2 Arterial Spin Labelling

Basics ASL is an MR technique introduced in the early 1990’s [Detre 1992]. This
sequence allows the measurement of micro-vascular CBF by means of an endogenous
contrast agent: the protons of blood water labelled using radio-frequency pulses. A
schematic view of the sequence is presented in figure 1.13. In short, the signal is
obtained by subtraction of a control and a labelled image. In the labelled image,

Figure 1.13: Schematic view of an ASL acquisition.

the blood magnetization is inverted, while, in the control, the magnetization of
the inflowing blood is not modified. The difference between the two images is



20 Chapter 1. The study of brain function

proportional to the microvascular CBF and is called a perfusion-weighted image
and usually denoted ∆M . As only about 1% of tissue water is replaced by perfusion
every second, the Signal to Noise Ratio (SNR) of this imaging technique is inherently
low. To increase the SNR of the measurement, the acquisition is usually repeated
several times and the perfusion signal averaged across the repetitions.

Imaging sequence There is a large number of implementation of ASL imaging
sequences but they all rely on three buildings blocks: the the preparation of tissue
magnetization, the labelling scheme and the readout, as displayed in fig 1.14.
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Figure 1.14: Building blocks of an ASL sequence: tissue preparation, labelling and
readout.

The tissue preparation focuses on cancelling the magnetization of the static tis-
sues in order to proportionally increase the relative perfusion signal. In practice
the tissue preparation can be performed before of after the labelling. Background
suppression techniques are sometimes used in order to maintain the tissue magne-
tization close to zero at the moment of the readout (as otherwise the signal of the
tissue recovers).

The labelling aims at inverting (or saturating in the very first ASL sequences
nowadays outdated) the magnetization of the inflowing blood in the labelled image
while preserving the blood magnetization in the control image. Labelling the blood
in the labelled scan may inevitably lead to magnetization transfer effects in the im-
aged slice. In order for these unwanted effects to be cancelled out in the subtraction
of the control and labelled scan, the same magnetization transfer effects must be
reproduced in the control scan.

Finally, the readout measures the longitudinal magnetization present in the
slices (or volume) of interest.



2. Brain perfusion 21

Pulsed and Continuous ASL There are two main groups of labelling ap-
proaches that define the two major ASL techniques: Continuous Arterial Spin La-
belling (CASL) and Pulsed Arterial Spin Labelling (PASL). In CASL, the blood is
continuously inverted as it passes through a plane while in PASL a volume of blood
is inverted as described in 1.15. Theoretically, CASL is superior to PASL in terms
of SNR. However in practice, due to the historical need of specialized hardware
and the high level of energy deposited in the tissues for CASL implementation, the
PASL technique remains largely used.
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Figure 1.15: Pulsed and Continuous ASL.

Continuous ASL Since the introduction of the Pseudo-continuous sequences
[Dai 2008] allowing continuous labelling using pulsed radio-frequency pulses, CASL
has started to be more widespread. Pseudo-Continuous Arterial Spin Labelling
(PCASL) was designated as one of the preferred ASL sequences during the white
paper sessions at the ISMRM workshop on perfusion 2012 held in Amsterdam. This
sequence is however not available as a commercial product on all the MR scanners.

Pulsed ASL Different approaches have been proposed in order to achieve
the labelling (and control for magnetization transfer effects) in PASL. The three
most widespread approaches are: Flow-sensitive Alternating Inversion Recovery
(FAIR) [Kim 1995], EPI-Signal Targeting with Alternating Radio-frequency pulses
(EPISTAR) [Edelman 1994] and Proximal Inversion with a Control for Off-Resonance
Effects (PICORE) [Wong 1997]. For more information on these labelling schemes,
the interested reader is referred to the original papers.

In the context of this thesis, we used the commercially available sequence of
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our constructor, namely a PICORE QUIPSS II with Thin-slice Seriodic Saturation
(Q2TIPS) PASL sequence with 2D GRE-EPI readout.

Quantification of CBF from the ASL signal In a typical ASL study, a
perfusion-weighted image is obtained by subtraction of the control and label scan
and averaging across the repetitions. Figure 1.16 gives a quick overview of the dif-
ference signal ∆M observed in a voxel of interest through time. There are basically
three phases in which the signal is respectively zero, increasing and decreasing back
to zero. At the earliest post-labelling times, none of the bolus has reached the tissue
leading to a signal of zero. After a certain period of time, referred as the BAT and
denoted δt , the bolus starts entering the voxel of interest and consequently ∆M

increases. Finally, once all the bolus has reached the voxel of interest, ∆M starts
decreasing mainly as a consequence of T1 relaxation.

� �

���������	
��
�
	�
��� ���������	
��

�������
���

��������	�
����
	
���������
���

����

�
�
��
��
�
�
�

�	 �

Figure 1.16: Schematic view of the difference signal ∆M observed in an ASL ex-
periment.

More formally, the signal ∆M can be expressed as a convolution between an
input function c(t) and a decaying function m(t) [Buxton 1998]:

∆M (t) = c(t) ⊗ m(t). (1.1)

Assuming that the venous outflow is null (due to the fact that the human T1

decay is too fast with respect to vascular transit times in humans) and that the
bolus has not had the chance to start exchanging with the tissue at the time of
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readout we have:

c(t) =





0 0 < t < δt

α2fM0b exp
(

−t
T1b

)
δt ≤ t ≤ δt + τ for PASL

α2fM0b exp
(

−δt

T1b

)
δt ≤ t ≤ δt + τ for CASL

0 t > δt + τ

(1.2)

m(t) = exp

(
−t

T1b

)
(1.3)

where M0b is the longitudinal magnetization of blood at equilibrium, α the labelling
efficiency and f the CBF (parameter of interest), T1b the T1 of blood and τ the
temporal width of the bolus. Figure 1.17 provides a graphical example of c(t) and
m(t) functions for PASL and CASL.
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Figure 1.17: Buxton’s model for ∆M , examples of c(t) and m(t) functions for PASL
and CASL.

Therefore ∆M PASL and ∆M CASL, the difference signal in a PASL and a CASL
experiment, are respectively given by:

∆M PASL(t) =





0 0 < t < δt

α2M0bf(t − δt) exp
(

−t
T1b

)
δt ≤ t ≤ δt + τ

α2M0bfτ exp
(

−t
T1b

)
t > δt + τ

(1.4)

and

∆M CASL(t) =





0 0 < t < δt

α2M0bf exp
(

−δt

T1b

)(
1 − exp

(
δt−t
T1b

))
δt ≤ t ≤ δt + τ

α2M0bf exp
(

τ−t
T1b

)(
1 − exp

(
−τ
T1b

))
t > δt + τ

(1.5)

Single-TI quantification Most of ASL acquisitions are based on the measure
of ∆M at a single time point, called the Inversion time (TI). If we consider that the
T1 of blood, T1b, and the labelling efficiency, α, are known and that the longitudinal
magnetization of blood, M0b, can be estimated from the acquisition, there are three
remaining unknown parameters: the BAT, δt , the bolus width τ and the CBF f .
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In CASL, the temporal width of the bolus corresponds to the duration of the
labelling and is a known parameter of the sequence. In the very first applications of
PASL, while the spatial width of the labelled region was known, the temporal width
was dependent upon the velocity of the flow and the geometry of the vessels. The
bolus width was therefore an unknown subject-dependent parameter. To overcome
this limitation, a modification of the PASL sequence, known as Quantitative Imag-
ing of Perfusion using a Single Subtraction (QUIPSS II) was proposed [Wong 1998].
The QUIPSS II version of the PASL sequence includes additional saturation pulses
in order to “cut” the tail of the labelling and get a sharp shaped bolus. The Q2TIPS
variant was then introduced achieving a better saturation with the use of a train of
saturation pulses [Luh 1999].

Given the temporal width of the bolus, τ , there are two remaining unknown
parameters: the CBF, f , and the BAT, δt . By looking back at equations (1.4)
and (1.5), one can notice that the dependence on the arrival time only affects the
ascending part of the ∆M curve. The quantification of CBF with a single time
point is then achievable as soon as the readout is performed in the decreasing part
of the ∆M curve, i.e. after all the bolus has entered the voxel of interest. This can
be written as: TI > δt + τ , where TI is the readout time. Since the arrival time δt

is unknown, TI is fixed assuming a reasonable upper threshold for δt . The choice
of the inversion time is therefore a trade-off between the possible range of BATs
(the later the inversion time the wider the BATs range) and the SNR (the later the
inversion time the smaller the SNR due to T1 relaxation).

Quantification of CBF, f , using a single readout time TI is therefore based on
the assumption TI > δt + τ , and leads to:

f =
∆M PASL

α2M0bτ exp
(

− TI
T1b

), (1.6)

for PASL, and:

f =
∆M CASL

α2M0b exp
(

τ−TI
T1b

)(
1 − exp

(
−τ
T1b

)), (1.7)

for CASL.

Multi-TI quantification If multiple time points are available then the CBF
and the BAT can both be estimated. While the BAT is a parameter of interest, in
particular in pathological populations, the availability of multi-TI ASL sequences
is still restricted to a few research centres.

Advanced modelling The standard quantification approach presented here-
above (eq. (1.4) and eq. (1.5)) assumes that the bolus is arriving as a uniform plug
flow (no bolus dispersion), that the blood has not exchanged with the tissue at the
time of readout and that the labelled water is in a single compartment (in the vas-
culature). Several advanced approaches have been proposed in which one or several
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of these assumptions are relaxed. For instance a model for bolus dispersion was de-
veloped in [Hrabe 2004]. Two-compartment models, including micro-vascular and
tissue compartments [Parkes 2000], or macro-vascular and micro-vascular compart-
ments [Chappell 2010] have been proposed. More recently, Bayesian and model-free
approaches have gained more attention [Chappell 2012]. The possibility to get si-
multaneous estimates of multiple parameters is quite appealing, however, these
approaches are mainly confined to multi-TI ASL sequences. Most ASL studies are
thus still relying on the standard quantification approach.

2.5.3 Pros and Cons of ASL by comparison to other perfusion imaging
techniques

Advantages of ASL

Non-invasiveness The absence of radiation and the use of an endogenous
tracer, which removes the need of injecting a contrast agent, are clear advantages of
ASL over standard perfusion imaging techniques. Contrary to standard perfusion
imaging, ASL is completely non-invasive and does not require the injection of an
exogenous contrast agent. This non-invasiveness allows the inclusion of sensitive
subjects in ASL studies like healthy controls, pregnant women or children. The
repeatability is also improved.

White temporal noise An important aspect of ASL time series for post-
processing purposes is the fact that they display a noise that is almost white [Agui-
rre 2002,Wang 2003a]. Indeed, the subtraction process that lead to ASL perfusion-
weighted image removes the low frequency noise that is usually observed in other
fMRI images [Friston 1994b,Zarahn 1997]. The practical consequences in terms of
statistical analysis will be developed in chapter 2.

Absolute quantification Arterial Spin Labelling allows for the measurement
of CBF in quantitative units. The quantification is nevertheless dependent upon
the precision of the fixed parameters used for the quantification [Parkes 2002] and
to the model assumptions (e.g. in single-TI sequences, the readout time should be
greater than the time necessary for the full bolus to reach the tissue of interest).

Multi-modality An advantage that is common to all functional MRI tech-
niques, is the possibility to acquire in the same exam session, both anatomical and
functional information.

Drawbacks While ASL presents important advantages over other perfusion imag-
ing techniques and its first application in human beings date of the early 1990’s, its
use in clinical practice is still in an early stage.
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Low signal-to-noise ratio and resolution In ASL, the signal is obtained
by subtraction and the perfusion signal of interest is about 1% of the original signal.
This makes ASL an inherently low SNR approach. In this work, we usually worked
with an in-plane resolution of 3 mm x 3 mm, 7 mm-thick slices with a 0.7 mm gap.

Impractical quantification for very long arterial transit times In some
pathologies, such as stroke, the time needed for the blood to travel from the labelling
region to the imaging region might be much longer than the one typically observed
in controls. Since the labelling of the bolus is decaying with the T1 of blood (approx-
imately equal to 1.5 s at 3 T [Wang 2011]), it is very difficult to measure signal after
one T1 [Kim 2006]. If, due to the pathology the arterial transit time is much longer
than the T1 of arterial blood then quantification using standard ASL approaches
is impractical. One future alternative might be the use of velocity selective ASL
sequences [Wong 2006].

3 Task-evoked brain activity

In this section, we review task-evoked activity. We start with a definition of task-

evoked activity in 3.1. Then, we describe the neurovascular coupling in 3.2, a
biological phenomenon that is at the basis of the main imaging techniques for task-
evoked activity. Some examples of how information on task-evoked activity can be
useful in research and clinical practice are provided in 3.3. Finally, the different
imaging approaches are briefly discussed in 3.4.

3.1 Definition and vocabulary

Figure 1.18: PhonoDif paradigm, as described in [de Guibert 2010]. This block
paradigm is made of 3 alternating periods of rest and action.
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The study of task-evoked activity aims at discovering the spatio-temporal pat-
terns of brain activation changes associated with a particular task or stimulus. The
timing of the task and rest periods along with the type of stimuli presented to the
subject is referred as the paradigm. An example of paradigm is provided in figure
1.18.

3.2 Neurovascular coupling

The neurovascular coupling is a biological process that induces a tight relationship
between the electrical activity observed at the neuron level, the local metabolism
and the haemodynamics in the surrounding micro-vasculature. An increase in ac-
tivity in a group of neurons will induce an increased local metabolic activity and in
turn increase the local cerebral blood flow. The parameters of task-evoked activa-
tion imaging will thus be different depending on the measured biological process.

Figure 1.19: Neurovascular coupling, Reprinted from [Arthurs 2002], Copy-
right (2013), with permission from Elsevier.

As early as the end of 1800’s, Mosso observed blood-flow pulsations related to
cognitive activity in the frontal lobe of a patient presenting an injured skull [Mosso 1881].
A decade later, Sherrington and Roy validated these results in dogs [Roy 1890]. On
physiological ground, however, this neurovascular coupling is still not completely
understood [Obata 2004,Raichle 2010].
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3.3 Applications

3.3.1 In clinical practice: pre-surgical mapping

The main application of task-evoked functional imaging in clinical practice is the
identification of eloquent brain areas during the surgical planning. In view of the
surgery, the aim is to identify the brain areas to be avoided during the surgery
in order to preserve the patient capacities. Eloquent areas usually correspond to
a set of sensorimotor and language regions. Standardized paradigms are used for
these examinations including tasks such as picture-naming or word generation from
letters to outline the language areas or hand motion for motor areas [Hirsch 2006].

3.3.2 Research challenges

Studying brain dysfunction Probably the most widespread application of task-
evoked activity imaging in clinical research is the comparison between groups of
subjects. The aim is then to identify the brain regions that present different patterns
of activation in one group (for instance patients) by comparison to a reference group
(for instance healthy subjects). The atypical patterns of activation in pathological
populations can indicate the foci of brain dysfunction and help understanding the
compensation mechanisms.

Understanding typical brain function Imaging task-evoked activity in healthy
subjects is of interest for several research topics. First, some studies aim at iden-
tifying the brain regions associated with a particular task. Other studies, based
on previous results, focus on the identification of the cognitive processes that are
involved in a particular task (for example the IOWA gambling task in [Li 2009]).
These studies, are based on the assumption that we know that the involvement of
a set of brain regions is specific of a particular cognitive process [Aguirre 2006].
Finally identifying the physiology of neurovascular coupling is still a research topic.
Imaging using several functional techniques can for example help understanding the
physiological mechanism underlying the neurovascular coupling.

3.4 Imaging

3.4.1 Overview of imaging techniques of task-evoked activity

While the neural activity observed in reaction to a stimulus is an electrical and
biochemical process, in neuroimaging, brain activity is usually imaged through the
measurement of a haemodynamic or a metabolic index. This is made possible
thanks to the neurovascular coupling of neural activity with metabolism and local
haemodynamics as described previously (cf. fig. 1.19). Figure 1.20 presents the
three levels of measurement currently in use and the associated imaging modalities.

Measurement of neuronal activity
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Figure 1.20: Three levels of measurements for brain activity and associated imaging
techniques. Studying task-evoked activity can be performed with a measurement
of the neuronal electrical activity (with EEG or MEG) or with a measurement of
change in metabolism (with PET imaging) or haemodynamics (with MRI or PET).

Electroencephalography EEG provides a direct measurement of the electri-
cal activity recorded thanks to a set of electrodes located on the scalp. The recorded
signal presents a very high temporal resolution. However this comes at the cost of
low spatial resolution.

Magnetoencephalography Similarly to EEG, MEG records the magnetic
field produced by the neuronal electrical activity. MEG provides a better local-
isation of the activity than EEG but is much more expensive.

Measurement of metabolism or haemodynamics

Positron Emission Tomography PET-scans can provide measurement of
metabolism or haemodynamics depending on the tracer of interest [Fox 1984]. The
risk induced by the exposure to ionizing radiation and the existence of alternative
non-ionizing approaches have greatly reduced the interest toward PET activation
studies.

Measurement of haemodynamics

Near Infrared Spectroscopy Imaging Near Infrared Spectroscopy imaging
produces a quantitative measurement of both oxyhaemoglobin and deoxyhaemo-
globin. This method provides quantitative measurements but with a low spatial
resolution.

Magnetic Resonance Imaging The most widespread approach for activa-
tion studies is functional MRI using the BOLD effect. The first applications of
functional MRI were developed in the early 1990’s [Ogawa 1990,Belliveau 1992]. Ar-
terial Spin Labelling is a competing approach based on a more direct measurement
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of the haemodynamics [Detre 1992]. More details on BOLD fMRI and functional
Arterial Spin Labelling (fASL) are provided in 3.4.2.

3.4.2 Functional MRI

BOLD fMRI Blood-Oxygen-Level-Dependent (BOLD) fMRI is the most wide-
spread technique for imaging task-evoked activity. It relies on the fact that in
presence of activation (electric neuronal activity) the increase in the quantity of
oxygen provided to the brain is superior to the increase in oxygen requirements.
This leads to an increase of the oxygenation level in the veins and capillaries that
can be measured through MRI. The precise relationship between BOLD signal and
electrical activity is still under study [Singh 2012].

The Haemodynamic Response Function (HRF) is the temporal response of the
BOLD effect to a stimulus. As described in fig. 1.21, the BOLD effect is in fact
influenced by a large set of biological parameters including: the CBF, the CBV and
the Cerebral Metabolic Rate of Oxygen (CMRO2).

Figure 1.21: The balloon model linking the stimulus time-course with the physio-
logical parameters and the observed BOLD (for BOLD fMRI, circled in blue) and
CBF (for fASL, circled in green) effects. Reprinted from [Buxton 2004], Copy-
right (2013), with permission from Elsevier.

fASL Functional Arterial Spin Labelling (fASL) is based on a direct measurement
of the CBF as illustrated in fig. 1.21. More details on ASL sequences are provided
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in section 2.5.2.

3.4.3 Pros and Cons of ASL and BOLD fMRI

MRI versus other imaging approaches Since the development of BOLD fMRI
in the early 1990’s, this method has been the main technique to study task-evoked
activity. This can be explained by the fact that competing approaches are either
invasive or irradiating (PET) or present low spatial resolution (EEG, MEG, Near
Infrared Spectroscopy).

fASL versus BOLD fMRI While BOLD fMRI is clearly the current standard
for imaging task-evoked activity, fASL presents several advantages that we discuss
in the following.

A quantitative approach While relative variations in BOLD signal are of
interest to measure activation, i.e. brain activity related to a particular task, base-
line BOLD values or BOLD increases are not expressed in quantitative units. On
the other hand, fASL can provide a quantitative estimate of CBF. This measure is
not only interesting to study task-evoked activity but also in the study of resting
perfusion (cf. section 2).

Imaging of low-frequency tasks Temporal fluctuations of the BOLD sig-
nal render impossible the measurement of activation related to low-frequency tasks.
Since these patterns of temporal noise are not present in ASL [Aguirre 2002],
it opens the field to new cognitive tests, such as variations due to sport train-
ing [Wang 2003b].

fASL is more directly coupled with the neuronal activation Variations
in CBF as imaged by fASL are more directly coupled with neuronal activation than
the BOLD effect [Buxton 2004]. Furthermore, while the variability of the haemody-
namic response function observed in BOLD is a clear shortcoming [Aguirre 1998],
the fASL response might be less variable [Aguirre 2002].

A better localization of functional activity In the context of imaging of
task-evoked activity, fASL has been shown to provide a better localization of the
foci of activation [Duong 2001,Luh 2000]. The BOLD effect tends to move towards
venous side of the circulatory system.

4 Conclusion

In this chapter, we presented the context of our study. We provided a general
overview of brain function and then focused of the two components that are inves-
tigated in this thesis: brain perfusion and task-evoked activity.





Chapter 2

Pre-processing and statistical
analysis

This chapter presents the standard pre-processing pipeline employed both for ASL
and BOLD functional MRI data.

We first review the standard pre-processing steps applied to functional MRI data
in order to compensate for undesired effects and to prepare the data for subsequent
statistical analysis in 1. Then, we describe the most widespread method to analyse
voxel-wise data in neuroimaging: the General Linear Model (GLM) in 2.
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1 Pre-processing

In this section, we present the pre-processing applied to raw ASL or BOLD fMRI
data in order to prepare the data for the statistical analysis. We start with an
overview of the pre-processing pipeline in 1.1 and then present each step in further
details in 1.2. These typical pre-processing steps are implemented in various soft-
ware including SPM1 and FSL2 and reviewed in greater details in [Poldrack 2011].

1.1 Pipeline overview

An example of pre-processing pipeline is provided in figure 2.1. In this pipeline, slice
timing is first applied to the data followed by 3D spatial realignment. The order of
these first two steps (slice timing and spatial realignment) might be reversed. For
each subject, registration of the functional data (perfusion or task-evoked imaging)
onto the anatomical image is then performed. Registration to a template space is
optional and can be performed in order to compare or merge data from different
subjects. Finally smoothing is often performed.

Figure 2.1: An example of pre-processing pipeline for BOLD fMRI or ASL data
including: slice timing, spatial realignment, registration to the anatomical space,
an optional registration into a population space (for group studies) and finally
smoothing.

1http://www.fil.ion.ucl.ac.uk/spm
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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1.2 Pre-processing steps

1.2.1 Slice timing

In the subsequent statistical analysis, the same model is usually employed through-
out the brain, implicitly considering that all voxels were acquired at a single time-
point. The aim of slice timing is to compensate for differences in acquisition times
between slices [Henson 1999].

In BOLD fMRI, the typical readout time necessary to acquire a slice is in the
order of 100 ms. It is easy to see that the first and last acquired slices will not
correspond to the same time point. Fig. 2.2 illustrates the shifts on the haemody-
namic function for three different slices located at the bottom, middle and top of
the brain in a sequential acquisition (assuming that the same activation is present
in the three observations). In practice, slice timing is performed by interpolating
the available data with sinc interpolation.
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Figure 2.2: Example of slice delays in a sequential acquisition.

In 2D ASL sequences, the readout time per slice is in the order of 50 ms, which
is twice as small as the usual BOLD fMRI slice readout time. In ASL, interpolation
between labelled and control scans must be avoided. The shifting in time between
slices is therefore taken into account in the quantification model (cf. eq. 1.6 and
eq. 1.7) by setting a different readout time TI for each slice (e.g. in [Wang 2011]).

1.2.2 Spatial realignment

A BOLD fMRI or fASL experiment can last from about 5 min to 30 min for more
complex and demanding paradigms. In resting ASL, the acquisition time is around
5 min. During this period of time, though foam padding is usually employed to
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maintain the subject still, subject motion cannot be completely avoided. To com-
pensate for motion between volumes, a rigid realignment is usually performed.

1.2.3 Label/Control subtraction in Arterial Spin Labelling

In basal ASL or in fASL, the perfusion signal comes from the difference between
a control and a label scan. After realignment, a subtraction scheme is applied to
the ASL series in order to obtain the perfusion-weighted series. Several subtraction
procedures have been proposed, the three main variants are: pair-wise subtraction,
surround subtraction and sinc-interpolation.

With pair-wise subtraction, the simplest approach, each labelled image is sub-
tracted to the preceding control image. Surround subtraction and sinc-interpolation
are two alternatives that takes into account the difference in readout times of the
control and labelled scans. This is particularly important in fASL where two succes-
sive volumes might not be in the same state relatively to the paradigm (task-rest).
With surround subtraction, a linear interpolation is performed between two subse-
quent labelled volumes in order to generate a virtual labelled volume with the same
readout time as the control volume lying in the middle. With sinc-interpolation,
similarly to slice timing in BOLD fMRI, the control scans are shifted by one Repe-
tition time (TR) and then pair-wise subtracted with the labels. In fASL, pair-wise
subtraction should not be used as otherwise the perfusion-weighted series is con-
taminated by BOLD contrast [Liu 2005].

In the study of perfusion at rest, the perfusion-weighted series is usually averaged
in order to get a single perfusion-weighted map. While this is common practice, we
will see later, that the standard deviation across the repeated acquisitions can also
be of interest. In fASL, the complete perfusion-weighted series is always kept for
further analysis.

Following the subtraction, the quantification is performed in order to convert the
perfusion-weighted series into a CBF series as described in chapter 1, section 2.5.2.
In single-TI studies, the quantification step is just a rescaling of the perfusion-
weighted series.

1.2.4 Registration onto anatomical space

In order to be able to locate the functional information into the anatomy, a reg-
istration of the functional volumes (usually the transformation is estimated using
the average of all volumes) onto the anatomical volume of the subject is performed.
This is done using a cross-modality cost function such as normalised mutual infor-
mation [Studholme 1999].

1.2.5 Spatial normalisation

When comparison between- or combination across-subjects is of interest, the func-
tional maps must be registered into a common space. Several algorithms have been
proposed for this purpose and this is still an open issue investigated in research.



38 Chapter 2. Pre-processing and statistical analysis

In the context of this work, we applied publicly available registration schemes from
SPM: the standard unified segmentation and registration scheme [Ashburner 2005]
and DARTEL [Ashburner 2007]. While the latter is promising in terms of bet-
ter cross-subject registration, the registration algorithms with the largest degrees
of freedom are not well-suited for the registration of maps presenting large set of
unexpected values, such as the ones of damaged brains [Crinion 2007a].

1.2.6 Smoothing

The last step before the statistical analysis is usually to smooth the data with
a Gaussian kernel. While this clearly reduces the spatial resolution of the out-
put results and cancels out high-frequency information, it provides several advan-
tages [Poldrack 2011]. First, in multi-subject analysis, smoothing the data is a
way to correct for small misregistrations following the spatial normalisation. Sec-
ond, smoothing will inherently increase the SNR of large-scale signal and poten-
tially the sensitivity of the statistical analysis. Third, by increasing the spatial
coherency, smoothing reduces the burden of multiple comparisons via random-field
theory [Nichols 2003]. Fourth, by the central limit theorem, smoothed data will
tend to be more Gaussian than raw data and therefore better complies with the
GLM assumptions. Depending on the expected improvement, the optimal size of
the smoothing kernel differs. In practice, smoothing kernels of Full Width at Half
Maximum (FWHM) from 6 to 12 mm3 are commonly used.

2 Statistical analysis

In 2.1, we review the General Linear Model (GLM) in its general form. Then, in 2.2
and 2.3, we focus on the inference at the subject and group levels and provide some
details on the most common models (one-sample t-test, two-sample t-test). Finally
in 2.4 we discuss the issue of multiple testing. For more general information about
the GLM, the interested reader is referred to a recent book [Poldrack 2011], on-
line materials: SPM course3, FSL course4, MRC Cognition and Brain Sciences
Unit Wiki5 and to a set of references focusing on the application of the GLM in
neuroimaging [Holmes 1998,Woolrich 2004,Cox 1996,Worsley 2002,Mumford 2006,
Mumford 2009,Beckmann 2003].

2.1 Modelling and inference using the General Linear Model

2.1.1 Introduction to the GLM

The GLM is a convenient and versatile way to model a dataset of interest as a
linear combination of a set of pre-defined parameters representing the experimen-
tally controlled factors and the potential confounds. Fig. 2.3 provide an example in

3http://www.translationalneuromodeling.org/spm-course-2013-presentation-slides
4http://fsl.fmrib.ox.ac.uk/fslcourse
5http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesStatistics
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which the time-course of a BOLD acquisition is modelled by a linear combination
of a regressor matching the paradigm blocks and a constant term.

Figure 2.3: Example of use of the GLM to model the time-course of a BOLD
acquisition related to a block paradigm, reprinted from “The General Linear Model
for fMRI analyses” by Klaas Enno Stephan, SPM 2013 Course6.

The aim of any GLM experiment is to provide an estimate of the model param-
eters (β1 and β2 in the example of fig. 2.3) and, most usually, to draw inference
about these estimates.

2.1.2 Modelling

In its more general form, the GLM can be defined by:

Y(v) = X(v)β(v) + ε(v), (2.1)

where Y(v) is a vector of length n containing the observations at voxel v. The p

elements of β(v) represent the underlying effects. X(v) is the n × p design matrix
that defines the relationship between the observations and the predicting parameters
defined in β(v). Finally ε(v), a vector of length n, is the error term that captures the
variability that cannot be explained by the model. Fig. 2.4 provides an illustration
of this matrix representation. The design matrix X(v) is known a priori. The aim
is to estimate the model parameters stored in β(v).

The main assumption behind the GLM is the linearity of the effects. Gaussian
noise is usually assumed. In the standard approach, the GLM is defined indepen-
dently for each voxel, v, which is why this approach is often termed “massively
univariate”.

6http://www.translationalneuromodeling.org/spm2013/slides/Klaas_GLM.pptx
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Figure 2.4: Matrix representation of the GLM, reprinted from “The General Linear
Model for fMRI analyses” by Klaas Enno Stephan, SPM 2013 Course6.

2.1.3 Estimation of the parameters

If the errors are independent and identically distributed, i.e. ε(v) ∼ N (0, σ2
(v)I)

where I is the identity matrix, then the GLM can be solved by Ordinary Least
Squares (OLS):

β̂OLS

(v) = (X(v)
T X(v))

−1X(v)
T Y(v). (2.2)

If the errors are correlated and/or not identically distributed, i.e. ε(v) ∼ N (0, V(v)),
then the GLM can be solved by Weighted Least Squares (WLS):

β̂WLS

(v) = (X(v)
T W(v)X(v))

−1X(v)
T W(v)Y(v) (2.3)

where W(v) = V(v)
−1 is the pre-whitening matrix.

2.1.4 Inference

Now, since we are able to estimate the underlying parameters of our model, we
would like to be able to draw conclusions about these parameters. This part is
known as inference. Inference can be done for a single parameter (e.g. testing if
the first parameter β0 is significantly different from zero using: H0 : β0 = 0) or
for a combination of parameters (e.g. testing if the second and third parameters
β1 and β2 are significantly different from one another: H0 : β1 = β2). Both cases
can be described by a contrast vector c defining a linear combination in the set of
parameters. Then the associated null hypothesis is H0 : cβ(v) = 0.

In order to infer whether H0 is rejected in the current observations, we need to
define the distribution of cβ̂(v) under the null hypothesis with:

cβ̂(v) ∼ N (0, Var(cβ̂(v))). (2.4)

In OLS, the variance is:

Var(cβ̂OLS

(v) ) = c(X(v)
T X(v))

−1cT σ2
(v) (2.5)
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where σ2
(v) is estimated by:

σ̂2
(v) =

eT
(v)e(v)

n − p
where e(v) = Y(v) − X(v)β̂(v).

(2.6)

.
In WLS, the variance is:

Var(cβ̂OLS

(v) ) = c(X(v)
T W(v)X(v))

−1cT (2.7)

where W(v) will be estimated differently depending on the structure of the noise at
hand.

Since Var(cβ̂(v)) is estimated from the data (and is a priori unknown), we have:

t(v) =
cβ̂(v)

V̂ar(cβ̂(v))
∼ Tn−p, (2.8)

where t(v) is the value of the statistics. Then one-sided or two-sided tests can be
performed by looking at Pr(Tn−p ≥ t(v)) or Pr(Tn−p ≥ |t(v)|).

2.2 Subject level (First level)

At the subject level, the GLM can be defined with the following notations. Given
a voxel v, for a subject s we have:

Ys(v) = Xs(v) βs(v) + εs(v), (2.9)

where Ys(v) is a vector containing the n observations (usually along the time), βs(v)

is the set of subject parameters to be estimated, Xs(v) is the subject-level design
matrix and εs(v) contains the residual errors.

2.2.1 Single subject analysis for task-evoked activation

Objective In the analysis of task-evoked activity in a single subject, the aim is
to outline activated (or deactivated) brain areas associated with a given task. At
the end of the analysis, the activated regions are usually overlaid on the anatomical
MRI of the subject under study as illustrated in fig. 2.5.

Modelling In BOLD fMRI at the subject level, the data under study is a 4D
image of n 3D-volumes acquired during the accomplishment of the paradigm. In
fASL at the subject level, the data under study is a 4D perfusion-weighted series
obtained after pair-wise subtraction of the 3D-volumes acquired during the accom-
plishment of the paradigm. The design matrix, Xs(v), is therefore closely related
to the time-course of the paradigm under study. Several tasks (or actions) might
be performed in a single session and modelled by different regressors in the GLM.
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Figure 2.5: Example of subject activations for a language paradigm.

Each task-related regressor is build by convolution of the task time-course with
the Haemodynamic Response Function (HRF) as illustrated in fig. 2.6. While the
HRF is supposed to be different in BOLD fMRI and fASL, for convenience most
fASL analyses rely on the BOLD response function. Including the derivative (tem-
poral and dispersion) is also an option to allow for more flexibility in the response
function [Friston 1998]. Also, a canonical HRF without undershoot is sometimes
used in fASL studies.

Figure 2.6: Creation of a task-related regressor (one column of the design matrix
Xs(v)) by convolution of the paradigm time-course with the HRF. In this example,
a block paradigm with 3 action and rest blocks is presented.

Other regressors, such as the motion parameters estimated in 1.2.2, might be
included to model nuisance effects [Johnstone 2006]. The GLM model for task-
invoked activity of a single subject is therefore defined by:

Ys(v) =




x1,1
s . . . xk,1

s a1,1
s . . . ap−k,1

s
...

... . . .
...

x1,n
s . . . xk,n

s a1,n
s . . . ap−k,n

s







β1
s(v)
...

βk
s(v)

α1
s(v)
...

αp−k
s(v)




+ εs(v) (2.10)

where (βi
s(v))1≤i≤k are the parameters of interest for each of the k paradigm-related
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effects and (αi
s(v))1≤i≤p−k are the nuisance parameters. An example of design matrix

with k = 1 is displayed in fig. 2.7. More complex paradigms, can require more than
one paradigm-related effect. For example, the IOWA Gambling task, a paradigm
in which the subject is required to play cards and receive or loose money at each
run, can be modelled with two paradigm-related effects corresponding to the trials
in which the subject won (or lost) money during the game [Lawrence 2009].

Figure 2.7: Example of design matrix, Xs(v), for a subject analysis of task-evoked
activation (computed with SPM8). The matrix presents a total of 8 regressors, from
left to right: 1 task-related regressor modelling a block paradigm (from fig. 2.6),
6 nuisance motion covariates (3 translations and 3 rotations parameters estimated
during the registration step in the pre-processing) and 1 constant regressor.

In fASL, the pre-processed ASL data before subtraction can also be used as
observations in the Ys(v) vector [Mumford 2006]. As BOLD effect is also present in
fASL series [Wong 1997], the model is then modified so that each paradigm-related
effect is represented by an ASL and a BOLD regressor. An additional regressor
represents basal perfusion. While this modelling approach offers interesting per-
spective, in the context of this thesis we focused on the simpler model, which is
applicable for both BOLD fMRI and fASL.

Noise properties and estimation
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BOLD fMRI In BOLD fMRI, the temporal noise is not a white noise as it
is characterized by autocorrelation and slow frequency drifts [Zarahn 1997, Agui-
rre 1997]. Both phenomena must be taken into account in the statistical analysis.
The reason for low-frequency drifts is still not completely understood but seems to
be inherent to BOLD imaging as it was also observed in phantoms [Smith 1999].
Slow frequency drifts are usually removed from the data by high pass filtering. This
will however affect the potential designs that can be conducted in BOLD fMRI ex-
periments. In practice, due to the noise structure, high-pass filtering of 128 s can
be performed (default value in SPM) making it impossible to detect variations that
occurs more slowly than every two minutes.

Temporal autocorrelation is usually dealt with by pre-whitening the data. This
relies on the fact that the temporal autocorrelation is estimated accurately. Once
the pre-whitening matrix Ws(v) has been estimated, given the original observations
and design matrix, Ys(v) and Xs(v), the data can be updated using:

Y ∗

s(v) = Ws(v)Ys(v)

X∗

s(v) = Ws(v)Xs(v)
(2.11)

and the updated system:

Y ∗

s(v) = X∗

s(v) βs(v) + ε∗

s(v), (2.12)

can be solved by OLS where ε∗

s(v) ∼ N (0, σ2
s(v)I) (direct solving by WLS is equiv-

alent).

fASL Thanks to the subtraction process between label and control scans,
it can be reasonably assumed that ASL sequences are not contaminated by slow
frequency drifts and temporal autocorrelation [Aguirre 2002]. The system (2.10)
can therefore be directly solved by OLS where: εs(v) ∼ N (0, σ2

s(v)I).

2.2.2 Single subject analysis for basal perfusion

Objective In the analysis of basal perfusion in single subjects, the aim is to get
a map of the CBF for the subject of interest. At the end of the analysis, the CBF
map is usually displayed in grey or rainramp colormap as illustrated in fig 2.8.

Figure 2.8: Example of CBF map for a control subject.
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Modelling In ASL, at the subject level, the data under study is a 4D volume
of observed CBF maps containing n volumes (1 per repeated acquisition). The
observations Ys(v) are therefore repeated measurements of a same underlying value
(the CBF) and the Xs(v) matrix is a vector of ones tabulated by nuisance regressors.
The model is therefore:

Ys(v) =




1 a1,1
s . . . ap−1,1

s
...

... . . .
...

1 a1,n
s . . . ap−1,n

s







βs(v)

α1
s(v)
...

αp−1
s(v)




+ εs(v) (2.13)

where βs(v) is the parameter of interest (the CBF) and (αi
s(v))1≤i≤p−1 are the nui-

sance parameters.

Noise properties and estimation Again, in ASL, thanks to the subtraction
process between control and labelled scans, we can reasonably assume white noise [Agui-
rre 2002,Mumford 2006]. The system (2.13) can therefore by solved by OLS given
εs(v) ∼ N (0, σ2

s(v)I).

Example If no nuisance regressors are defined in the model, the OLS estimate of
the subject parameter βs(v) is the sample average across the ASL repeats:

β̂s(v) =
1

n

n∑

i=1

yi
s(v), (2.14)

where yi
s(v) is the ith element of the vector Ys(v). Similarly, the sampling variance

of β̂s(v) is estimated by:

V̂ar(β̂s(v)) =
σ̂2

s(v)

n
where σ̂2

s(v) =
1

n − 1

n∑

i=1

(
yi

s(v) − β̂s(v)

)2
. (2.15)

2.3 Group level (Second level)

We limit our discussion to the case where a single estimate per subject (from the
subject level) is brought to the group level. In a group of n subjects, the subject
parameters (βs(v))1≤s≤n can be combined using the following model:




β1(v)
...

βn(v)


 = XG(v) βG(v) + γG(v), (2.16)

where XG(v) is the group-level design matrix, βG(v) the group parameters and
γG(v) the residual error term (outlining the intra-group variabilities).
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However, the true subject parameters are in fact unknown and, in practice,
their estimates from the first level (i.e. the subject level) are used in the second-
level leading to a slightly different model:




β̂1(v)
...

β̂n(v)


 = XG(v) βG(v) + γGC(v). (2.17)

The new error term γGC(v) is impacted by two combined sources of variations: the
measurement error on the subject parameters (also termed within-subject variance)
and the between-subject variance. Let YG(v) = [β̂1(v) . . . β̂n(v)] denote the vector of
subject-level parameters brought to the second level.

2.3.1 Group analysis

Objective In single group analyses, the aim is to produce a map of the functional
activity representative of the group of subjects under study. In task-evoked activa-
tion, a map of brain areas involved for a given task across the group is produced.
This activation map is obtained through the inference step, by thresholding the es-
timated parameter map to keep only the areas displaying a significant task-related
signal. At the end of the analysis, the activated regions are usually overlaid on the
average anatomical MRI of the subjects under study as illustrated in fig. 2.9. In the

Figure 2.9: Example of group activations for a language paradigm.

study of basal perfusion, the complete (unthresholded) parameter map is of interest
and is a representation of the perfusion information across the group. At the end
of the analysis, the group perfusion map is usually displayed in grey or rainramp
colormap as illustrated in fig 2.10.

Figure 2.10: Example of group perfusion map.
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Group task-evoked activity and group basal perfusion can be estimated with
the same model, as described hereafter.

Modelling In BOLD fMRI and fASL at the group level, the data under study is
a 4D image of n (1 per subject) 3D-volumes representing an estimated task-related
effect. In ASL at the group level, the data under study is a 4D image of n (1
per subject) estimated CBF maps. The observations YG(v) are therefore seen as
samples of a same underlying effect (i.e. the activation level or the CBF) and the
XG(v) matrix is a vector of ones tabulated with nuisance regressors. The model is
therefore:




β̂1(v)
...

β̂n(v)


 =




1 a1,1
G . . . ap−1,1

G
...

... . . .
...

1 a1,t
G . . . ap−1,t

G







βG(v)

α1(v)
...

αp−1(v)




+ γGC(v), (2.18)

where βG(v) is the parameter of interest and (αi(v))1≤i≤p−1 are the nuisance param-
eters.

Noise properties and estimation The error term γGC(v) is impacted by two
combined sources of variations: the measurement error on the subject parameters
(also termed within-subject variance) and the between-subject variance (also termed
intra-group or group variance). γGC(v) therefore follows a normal distribution:

γGC(v) ∼ N
(
0,




σ2
G(v) +

σ2
1(v)

v1
0 . . . . . . 0

0
. . .

...
... σ2

G(v) +
σ2

s(v)

vs

...
...

. . . 0

0 . . . . . . 0 σ2
G(v) +

σ2
n(v)

vn




) (2.19)

where vs is the number of repeated volume at the subject level for subject s and
σ2

s(v) is the within-subject variance (from the subject level).
Depending on the assumptions made on the within-subjects variances, two meth-

ods have been proposed to solve this hierarchical GLM: the random-effects and
mixed-effects approaches.

Random-effects If the subject-level variance is considered either negligible
by comparison to the intra-group variance:

σ2
s(v)

vs(v)
≪ σ2

G(v), ∀ 1 ≤ s ≤ n (2.20)

or constant across subjects:

σ2
s(v)

vs(v)
≈ σ2

SUB(v), ∀ 1 ≤ s ≤ n (2.21)
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then the data is homoscedastic and γGC(v) follows a normal distribution:

γGC(v) ∼ N (0, σ2
GC(v)I) (2.22)

where σ2
GC(v) is the combined within- and between-subject variance. Depending

on the assumption, we have σ2
GC(v) = σ2

G(v) + σ2
SUB(v) or σ2

GC(v) ≈ σ2
G(v). The

sphericity assumption (no heteroscedasticity and no autocorrelation) hence holds
and the system (2.18) can be solved by OLS.

Mixed-effects In case of heteroscedasticity (i.e. when the assumptions of the
random-effects estimation does not hold), the system (2.18) is solved by WLS. This
type of estimation is known as mixed-effects in the neuroimaging community.

Example In a one-sample t-test (i.e. in the absence of nuisance covariates),
XG(v) reduces to a vector of ones and βG(v) contains a single estimate.




β̂1(v)
...

β̂n(v)


 =




1
...
1


 βG(v) + γGC(v), (2.23)

Random-effects In case of homoscedasticity, the OLS estimate of the group
parameter βG(v) is the cross-subject sample average:

β̂RFX

G(v) =
1

n

n∑

s=1

β̂s(v), (2.24)

and the sampling variance of β̂G is estimated by:

V̂ar(β̂RFX

G(v)) =
σ̂2

G(v)

n
where σ̂2

G(v) =
1

n − 1

n∑

i=1

(
β̂i(v) − β̂G(v)

)2
. (2.25)

Mixed-effects In case of heteroscedasticity, the WLS estimate of the group
parameter βG(v) is a weighted average of the subject parameters:

β̂MFX

G(v) =
1∑n

i=1 κi(v)

n∑

i=1

κi(v) β̂i(v),

where κ−1
s(v) = σ2

G(v) +
σ2

s(v)

vs(v)

(2.26)

and the sampling variance of β̂G is estimated by:

V̂ar(β̂MFX

G(v)) =
1∑n

i=1 κi(v)
(2.27)
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2.3.2 Between-group analysis

Objective In between-group analyses, the aim is to find brain areas that have a
different pattern of functional activity in a group by comparison to another group
of subjects. At the end of the analysis, the hyper-activations and hypo-activations
(in the patient group by comparison to the control group) are usually overlaid on
the mean anatomical MRI of the subjects under study as illustrated in fig. 2.11.

Figure 2.11: Example of task-evoked hyper-activations (hot colormap) and hypo-
activations (winter colormap) in a group of children diagnosed with typical specific
language impairment by comparison to typically developing children.

Modelling In the context of between-group analyses, the subjects are part of two
groups: n1 subjects (controls) in the first group and n2 subjects (patients) in the
second. Let βcontrols(v) and βpatients(v) be the first and second group parameters
respectively. Without loss of generality, we assume that subjects 1 to n1 are part
of the first group and subject n1 + 1 to n = n1 + n2 are part of the second group.
Then the second-level model is:




β̂1(v)
...

β̂n1(v)

β̂n1+1(v)
...

β̂n(v)




=




1 0 a1,1 . . . a1,p−2

...
... . . . . . .

1 0 an1,1 . . . an1,p−2

0 1 an1+1,1 . . . an1+1,p−2

...
...

0 1 an,1 . . . an,p−2







βcontrols(v)

βpatients(v)

α1(v)
...

αp−2(v)




+ γGC(v) (2.28)

where βcontrols(v) and βpatients(v) are the parameters of interest and (αi
s(v))1≤i≤p−2

are the nuisance parameters. An example of design matrix is provided in fig. 2.12.

Noise properties and estimation Similarly to single-group analyses, the er-
ror term γGC(v) is impacted by two combined sources of variations: the measure-
ment error on the subject parameters (also termed within-subject variance) and
the between-subject variance (also termed intra-group or group variance). γGC(v)
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Figure 2.12: Example of design matrix, XG(v), for a between-group analysis (com-
puted with SPM8). The matrix presents a total of 3 regressors, from left to right: 2
regressors modelling the group effects and 1 nuisance regressor (age of the subjects).

therefore follows a normal distribution:

γGC(v) ∼ N
(
0,




σ2
G1(v) +

σ2
1(v)

v1(v)
0 . . . . . . 0

0
. . .

...
... σ2

G1(v) +
σ2

n1(v)

vn1(v)

...
... σ2

G2(v) +
σ2

n1+1(v)

vn1+1(v)

...
...

. . . 0

0 . . . . . . 0 σ2
G2(v) +

σ2
n(v)

vn(v)




)

(2.29)
where vs(v) is the number of repeated volume at the subject level for subject s.

Random-effects If the subject-level variances are considered either negligible
by comparison to the intra-group variances:

σ2
s(v)

vs(v)
≪ σ2

G1(v), ∀ 1 ≤ s ≤ n1 and
σ2

s(v)

vs(v)
≪ σ2

G2(v), ∀ n1 + 1 ≤ s ≤ n
(2.30)

or constant across subjects of the same group

σ2
s(v)

vs(v)
≈ σ2

SUB1(v), ∀ 1 ≤ s ≤ n1 and
σ2

s(v)

vs(v)
≈ σ2

SUB2(v), ∀ n1 + 1 ≤ s ≤ n
(2.31)
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then γGC(v) follows a normal distribution:

γGC(v) ∼ N (0,




σ2
Gc1 0 . . . 0

0
. . .

σ2
Gc1

...
... σ2

Gc2
. . . 0

0 . . . 0 σ2
Gc2




) (2.32)

where σ2
GCj(v) is the combined within- and between-subject variance in group j.

Depending on the assumption, we have σ2
GCj(v) = σ2

Gj(v) + σ2
SUBj(v) or σ2

GCj(v) ≈

σ2
Gj(v). The system (2.28) can be solved by WLS. This type of estimation is known

as random-effects in the neuroimaging community.

Mixed-effects When the assumptions of the random-effects estimation does
not hold, the system (2.28) is solved by WLS using the complete variance-covariance
matrix defined in eq. (2.29). This type of estimation is known as mixed-effects in
the neuroimaging community.

Example In a two-sample t-test (i.e. in the absence of covariates), XG(v) reduces
to a n × 2 matrix and βG(v) contains two parameters:




β̂1(v)
...

β̂n1(v)

β̂n1+1(v)
...

β̂n(v)




=




1 0
...

...
1 0

0 1
...

...
0 1




[
βcontrols(v)

βpatients(v)

]
+ γGC(v). (2.33)

Random-effects If the measurement error on the subject parameter estimates
can be considered as constant across subjects or negligible by comparison to the
cross-subject variability, then the system (2.33) can be solved by WLS, giving:

β̂RFX

controls =
1

n1

n1∑

s=1

β̂s

β̂RFX

patients =
1

n2

n∑

s=n1+1

β̂s

(2.34)

and their sample variance:

V̂ar(β̂RFX

controls) =
σ̂2

Gc1

n1

V̂ar(β̂RFX

patients) =
σ̂2

Gc2

n2
.

(2.35)
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The parameter estimate associated with the between-group contrast: c = [−1 1]

is therefore:
b̂RFX = β̂RFX

controls − β̂RFX

patients

=
1

n1

n1∑

s=1

β̂s −
1

n2

n∑

s=n1+1

β̂s
(2.36)

and its sampling variance:

V̂ar(b̂RFX) = V̂ar(β̂RFX

controls) + V̂ar(β̂RFX

patients)

=
σ̂2

Gc1

n1
+

σ̂2
Gc2

n2

(2.37)

Mixed-effects If the measurement error on the subject parameter estimates
is varying across subjects and not negligible by comparison to the cross-subject
variability, then the homoscedasticity assumption is violated and the system (2.33)
can be solved by WLS giving:

β̂MFX

controls(v) =
1∑n1

i=1 κi(v)

n1∑

s=1

κs(v) β̂s(v),

β̂MFX

patients(v) =
1∑n

i=n1+1 κi(v)

n∑

s=n1+1

κs(v) β̂s(v),

where κ−1
s(v) =





σ2
G1(v) +

σ2
s(v)

vs(v)
∀ 1 < s ≤ n1

σ2
G2(v) +

σ2
s(v)

vs(v)
∀ n1 < s ≤ n

(2.38)

and their sample variance:

V̂ar(β̂MFX

controls) =
1∑n1

s=1 κs(v)

V̂ar(β̂MFX

patients) =
1∑n

s=n1+1 κs(v)

(2.39)

The parameter estimate associated with the between-group contrast: c = [1 −1]

is therefore:

b̂MFX = β̂MFX

controls − β̂MFX

patients

=
1∑n1

i=1 κi(v)

n1∑

s=1

κs(v) β̂s(v) −
1∑n

i=n1+1 κi(v)

n∑

s=n1+1

κs(v) β̂s(v)
(2.40)

and its sampling variance:

V̂ar(b̂MFX) = V̂ar(β̂MFX

controls) + V̂ar(β̂MFX

patients)

=
1∑n1

s=1 κs(v)
+

1∑n
s=n1+1 κs(v)

(2.41)
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2.3.3 Fixed effects

In the preceding sections we have presented the difference between mixed-effect
analyses and random-effect group analyses. Both methods are currently in use in
the neuroimaging community and available in different software packages. In the
early years of functional neuroimaging, another type of analysis, known as fixed-
effect GLM, was common practice. In a fixed-effect analysis, several single-subject
analysis were concatenated to build the group-level design matrix. This method was
very sensitive but a given subject would potentially overly influence the overall group
results. Nowadays, it is acknowledged that fixed-effects analyses lack generalisation
and should therefore be confined to analyses in which inference is drawn for the
subjects under study [Penny 2003]. In practice, this fixed-effect group analyses are
almost always avoided.

2.4 Correction for multiple comparisons

In the massively univariate GLM, a test is performed at each voxel. In a typical
GLM study, there is usually no less than 30 000 voxels and the objective is to draw
inference over all voxels. Let’s consider that we are thresholding the tests with a p-
value such as p < 0.05, then we will have 0.05×30 000 = 1 500 voxels falsely detected
on average. While a threshold of p < 0.05 is commonly employed in hypothesis
testing, when it comes to multiple tests, such a threshold is no more appropriate.
This is known as the multiple testing (also termed multiple comparisons) problem.

To overcome this limitation, several corrections have been proposed. Family
Wise Error (FWE) controls the probability to have one false positive per image.
The historical approach was the Bonferroni correction, but this approach is overly
conservative in the presence of spatial autocorrelation of the noise such as the one
observed in MRI (for a complete review of the potential causes of such correlation,
see [Chumbley 2009], Table 1). Random field theory was therefore proposed as an
alternative for FWE correction [Friston 1991, Worsley 1992, Friston 1994c]. While
taking into account the spatial autocorrelation should increase the sensitivity (by
alleviating the correction), it has however been argued that FWE correction based
on random-field theory is usually equivalent to Bonferroni’s correction [Logan 2004].

Also, the conservativeness of FWE correction is sometimes discussed. And a
strong control on the false positive rate, as performed with FWE corrections, often
leads to a reduced sensitivity. To overcome this limitation, the False Discovery
Rate (FDR) has been introduced in [Benjamini 1995] as an alternative correction
method in the context of multiple tests. The FDR controls the percentage of false
positives in the detections.

Both FWE and FDR corrections can be applied at the voxel or the cluster
level, providing a range of concurrent method to threshold a probability map while
handling the multiple testing issue (for a review cf. [Nichols 2003]).
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3 Conclusion

This chapter was dedicated to the description of the standard processing pipeline
commonly used in the analysis of neuroimaging data. We first described the data
preparations steps, known as the pre-processing. Then we focused on the statistical
analysis with a complete description of the general model. We reviewed the main
models at the subject and at the group level.



Chapter 3

From group to patient-specific
analyses

This chapter introduces patient-specific analyses that aim at drawing inference at
the subject level.

We first provide a brief description of the applications of such studies and out-
line their importance in the clinical setting in 1. Then, the current state-of-the-art
approaches are presented divided in two parts: qualitative analyses in 2 and quan-
titative methods in 3.
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1 The need for patient-specific information

While group statistical analyses are of tremendous importance in order to under-
stand the general mechanisms underlying a pathology, they can only reach con-
clusions at the population level. There is today an increasing interest towards
patient-specific analyses [Commowick 2009,Maumet 2012b], also referred as single-

subject studies [Viviani 2007a], single case studies [Scarpazza 2013], individual anal-
yses [Colliot 2006] or single image tests [Viviani 2007b], that aim to draw conclusions
at the patient level.

Inference at the patient level is highly desirable in order to perform a diagnosis
or provide a personalised treatment, both of these operations being necessarily made
at the patient level. On top of this, it is also important to note that some patholo-
gies are intrinsically not well-suited to perform group voxel-wise analyses. It is for
instance the case of brain tumours [Warmuth 2003,Chawla 2007,Weber 2006,Sug-
ahara 2000], stroke [Huck 2012, Bokkers 2011, Ferré 2012, Wheeler 2013], refrac-
tory epilepsy characterised by dysplasia and heterotopia [Colliot 2006,Wilke 2003b,
Focke 2008, Huppertz 2005], or multiple sclerosis lesion [Commowick 2008], that
exhibit a different pattern of spatial abnormalities for each patient.

2 Qualitative analyses

Probably the simplest method to deal with single-subject data, the qualitative ap-
proach is mainly employed by clinicians in case reports and deals with global spatial
patterns (e.g. recent ASL studies: [Chen 2012b, Zaharchuk 2012]). In this type of
analysis, an expert, usually a clinician, discusses the spatial patterns of hyper- and
hypo-signals and links his/her observations with external clinical parameters, such
as the patient outcome. While qualitative observations are interesting as a first
global information, quantitative indices are usually preferred.

3 Quantitative analyses

3.1 Studies without spatial information

The first quantitative approach that can be performed in order to analyse patient-
specific data is to measure a certain index per subject and compare it to a clinical
parameter. For example in brain tumours, the level of CBF or CBV in the most
malignant part of the tumour (manually identified by an expert clinician) has been
proven to be predictive of the tumour grade [Gaa 1996,Weber 2006,Sugahara 2000].

3.2 Comparing one patient to a group of control subjects

The simplest approach to perform a patient-specific analysis while retaining spatial
information is to perform a one-versus-many parametric test in which a single
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patient map is compared to a set of maps from a reference group. The one-versus-

many GLM is simply a sub-type of between-group analysis (described in chapter 2,
section 2.3.2), in which one of the group is made of one subject only (the patient of
interest). This particular model will be developed in greater details in chapter 8.

This approach has mainly been used for the detection of focal cortical dysplasias
in epileptic patients using voxel-based morphometry [Wilke 2003b,Huppertz 2005,
Colliot 2006,Focke 2008,Bannier 2012]. In ASL, [Petr 2013] used a z-score (which
is equivalent to a GLM in which the control group estimate and the variances of
the model are considered as known a priori) to outline perfusion abnormalities in
an epileptic patient.

While, in principle, performing a one-versus-many analysis is no more complex
than dealing with a GLM, special care has to be taken when interpreting the results
of such analyses. Indeed, an inflation of the false positive rate, sometimes leading
to invalidity of the tests has been described [Scarpazza 2013, Viviani 2007a]. This
phenomenon is explained by the fact that unbalanced designs, and in particular one-

versus-many analyses, tend to be more sensitive to deviations from the Gaussianity
assumption [Viviani 2007a]. Indeed, in between-group analyses featuring a large
number of subjects, the averaging across subjects in each group tends to make
the data more Gaussian (thanks to the central limit theorem). Semi-parametric
tests, with a recalibration of the probabilities have been proposed to overcome this
limitation [Viviani 2007b].

In conclusion, the massively univariate comparison of a patient to a group of
reference subjects is an option to study patient-specific atypical patterns. When
using this type of design, and in particular with the GLM, the false positive rate
must be carefully assessed, as violations of the model assumptions are more prone
to induce invalidity.

3.3 Multivariate approaches

As opposed to the mainstream massively univariate statistics approach presented
in the previous section, an emerging field tries to make use of multivariate patterns
to draw inference. Fig. 3.1, from [Klöppel 2012], illustrates the concept of multi-
variate statistics. In this example, the aim is to distinguish the patients suffering
of Alzheimer’s disease from the healthy controls. In this artificial sample, the two
groups are perfectly separable in the 2-dimensional space. It would however be
impossible to differentiate patients from control based on 1-dimensional analyses
(i.e. using only the anterior or posterior volume of the hippocampus). Multivari-
ate approaches can therefore be more sensitive than univariate approaches. But,
this comes at the cost of specific methodological and technical issues that will be
discussed in the following.

Machine learning techniques are more and more used in the field of brain imaging
(for a review, see [Poldrack 2008, Yang 2012]). These methods are particularly
interesting in the context of patient-specific analyses as they aim at maximising the
prediction accuracy for new observations.
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Figure 3.1: Concept of multivariate classification in two dimensions. Reprinted
from [Klöppel 2012], Copyright (2013), with permission from Elsevier.

In multivariate analyses of neuroimaging data, each voxel represents a dimension
and there is usually less than one hundred observations for each dimension (voxel).
Standard multivariate statistics are impractical in whole-brain analyses due to the
large number of dimensions (from 10 000 to 100 000 voxels) by comparison to
the number of observations (from 10 to 100 subjects) [Poldrack 2011, Mourão Mi-
randa 2011]. On the other hand, classifiers from the field of machine learning are
mathematical tools that are particularly suited to deal with a large number of di-
mensions and few observations. In pattern recognition, the dimensions are referred
to as features. Machine learning has been applied to neuroimaging data, and in
particular to fMRI experiments for various purposes, including mental state decod-
ing, stimulus prediction, group memberships prediction [Poldrack 2008,Yang 2012].
In the context of this section, we will restrain our discussion to the identification of
group memberships.

Briefly, in a typical machine learning experiment, the data is first split into a
test set and a training set. The parameters of the selected classifier, most usually a
Support Vector Machine [Yang 2012,Poldrack 2011], are fitted on the training sets
so that the accuracy is maximised in this dataset. The trained classifier is then
used to predict the group labels of the data in the test set. The training and testing
operations are iterated several times using different test and training set and the
final error rate associated with the classifier is averaged across the iterations. The
process of training and testing the classifier on separate datasets is known as cross-
validation and is required in order to achieve a correct estimate of the prediction
accuracy [Kriegeskorte 2009]. A leave-one-out cross-validation refers to the case
where the test set is made of one subject only, and N-fold cross-validation to the
case in which the test set contains 1/N of the initial observation. An illustration of
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a 10-fold cross-validation is displayed in fig. 3.2.
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Figure 3.2: 10-fold cross-validation.

In practice, there is usually a feature selection step that aims at reducing the
dimensionality of the feature space. If the feature selection step is based on an
a priori knowledge, it can be performed prior to the cross-validation. On the
other hand, the whole brain can be considered as the feature space, and a feature
reduction techniques can be embedded with the classifier (for example recursive
feature elimination [Guyon 2002] with the support vector machine) [Poldrack 2011].
With this latter approach, it is very important that the test set is not included in
the feature selection process to avoid a selection bias [Kriegeskorte 2009], an issue
that is not specific to neuroimaging (e.g. in microarray analysis [Ambroise 2002]).

Machine learning has been used in the context of neuroimaging based on different
type of data, including anatomical and functional MRI. Classifiers have outlined
interesting patterns predicting the patient diagnosis [Mourão Miranda 2011,Fu 2008]
or future response to treatment [Costafreda 2009]. For more applicative examples,
the interested reader is referred to a recent review: [Klöppel 2012].

While machine learning classifiers have a great potential for identifying inter-
esting new patterns, the massively univariate approach is still prevailing. Some
methodological issue, in particular, how to appropriately select the features in fMRI
are still under discussion [Mumford 2012]. On top of this, these approaches remain
computationally intensive, in particular when one is interested in multimodal data
analysis, where the number of features is multiplied by the number of modalities.

3.4 Locally multivariate approaches

Lying in between the massively univariate and the fully multivariate approaches,
locally multivariate methods focus on multivariate patterns found in the neigh-
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bourhood of each voxel. The searchlight approach [Kriegeskorte 2006] is the most
recognised in the neuroimaging literature, while the a contrario approach [Desol-
neux 2003] comes from the computer vision community. We will see that these two
approaches have a lot in common.

3.4.1 The searchlight approach

The searchlight approach introduced in [Kriegeskorte 2006] works by computing a
multivariate analysis at each brain location based on its neighbourhood. Fig. 3.3,
from [Kriegeskorte 2007a], illustrates the concept of searchlight. A spherical region
of interest is centred sequentially at each location in the brain in order to compute
a locally multivariate metric that is then affected to the centre voxel.

Figure 3.3: Principle of a searchlight analysis (a, b) and examples of activations
obtained with the searchlight approach (c) and the massively univariate GLM (d).
Reprinted from [Kriegeskorte 2007a], Copyright (2013), with permission from Else-
vier.

At its inception, two multivariate metrics were considered: a Euclidean dis-
tance (computed as the sum of the squared t-statistic in the searchlight) and
a Mahalanobis distance (taking into account the spatial autocorrelation of the
noise) [Kriegeskorte 2006, Kriegeskorte 2007b]. Then this approach was extended
to machine learning classifiers such as the support vector machine (for recent ex-
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amples, see [Uddin 2011,Weygandt 2012]). Recently, the searchlight was also used
to provide regularised estimates [Feng 2013].

As illustrated in fig. 3.3, the searchlight has the potential to provide detec-
tion maps that are spatially more coherent than an unsmoothed massively univari-
ate approach. The authors of the searchlight also make the emphasis on the fact
that this analysis is information-based as opposed to standard activation-based ap-
proaches [Kriegeskorte 2007a,Kriegeskorte 2007b]. The main idea is that smoothing
the data, as usually done in a pre-processing step in massively univariate analyses,
is optimal to increase the SNR of large activation patterns but is detrimental for
fine-activity patterns.

3.4.2 The a contrario approach

The a contrario approach is a statistical framework that comes from the field of
computer vision [Desolneux 2003]. In this context, the a contrario approach is
usually defined by three components:

1. The definition of a background model;

2. The estimation of a region-based probability (under the background model);

3. The correction for multiple comparisons (using the number of false alarms).

Figure 3.4: Overview of the a contrario approach: background model definition,
region-based probability estimation and correction for multiple comparisons.

The term a contrario was chosen in order to outline that the detections are
performed thanks to the definition of a model of the background, i.e. areas that
should not be detected, instead of modelling the object of interest, which is common
practice in the computer vision community.
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Definition of a background model In the first step, a model of the background
is defined (cf. fig. 3.4, 1st panel). This model can represent the background noise or
be learned from a control population. The structures of interest are later detected
as voxels deviating from this model. Let Xv be the random variable representing
the value observed at the voxel v of the image of interest. Under the background
model M, depending on the set of parameters γ, we have:

Xv ∼ M(γv). (3.1)

Given xv, the value observed at voxel v, each voxel of the image can be associated
with a probability under the background model:

π(xv) = Pr(Xv ≥ xv), where Xv ∼ M(γv) (3.2)

Here, we focused on increases with respect to the background model, if, instead,
decreases are of interest Pr(Xv > xv) is substituted by Pr(Xv < xv) in (3.2).

Rare events are defined as observations contradicting the background model. A
rare event occurs at voxel v if the probability (under the background model) to
observe such value, or a more extreme, is smaller than a pre-defined threshold pPRE.
The initial voxel-wise probability map is thus thresholded:

kv =

{
1 if πv ≤ pPRE

0 otherwise
(3.3)

to produce a binary map.

Estimation of a region-based probability In the second step, the probabil-
ity estimation is extended from voxels to regions of the image (cf. fig. 3.4, 2nd

panel). This allows to take into account the spatial neighbourhood of each voxel
in the statistical analysis. To this aim, a grid of regions is specified in the image.
If an a priori on the shape of the structures of interest is known the regions are
selected accordingly. For instance, in the first a contrario application, which aimed
at detecting alignments, segments of variable sizes were chosen as regions of anal-
ysis. In the absence of a priori, two methods have been proposed: either using a
non-supervised clustering algorithm [Rousseau 2008] or defining a sphere (or cube)
centred at each voxel [Aguerrebere 2009, Rousseau 2007]. In the case of spheres,
this set of regions can be viewed as a searchlight.

Then, the number of rare events in region r, l(r), is determined by:

l(r) =
∑

v∈Rr

kv (3.4)

where Rr is the set of voxels belonging to region r. Let L(r) be the random variable
representing the number of rare events observed in region r. Then, we have:

L(r) =
∑

v∈Rr

Kv where Kv ∼ Bern(pPRE) (3.5)
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where Bern(j) is a Bernoulli distribution with probability j.
Each region Rk is made of e voxels. While some attempts have been made in

order to model coloured noise [Grosjean 2008, Myaskouvskey 2013], a white noise
is usually assumed [Desolneux 2003, Veit 2006, Aguerrebere 2009]. In case of in-
dependence, the probability of L(r) is given by the Binomial distribution B with
parameters: e, the number of tests, and ppre the rare event probability. Given yk

the observed number of rare events in region Rk, this region is associated with the
probability:

πRr
= Pr(L(r) ≥ l(r)), where L(r) ∼ B(e, pPRE). (3.6)

In a few papers, a variant was proposed in which the region-based probabilities
πk were directly estimated without the preliminary rare event count computa-
tion [Aguerrebere 2009,Grosjean 2008].

At the end of the second step, each region of the image is associated with a
probability (under the background model). As in the searchlight approach, the
probability associated to each region can be affected to its centre voxel to produce
a voxel-wise probability map.

Correction for multiple comparisons The third and last step aims at outlining
the detections while taking into account multiple comparisons (cf. fig. 3.4, 3rd

panel). Indeed, since a test is performed for each region leading to numReg tests
(numReg being the number of regions), we need to control for the overall number
of false positives. Originally, the a contrario approach controls the expectation of
the number of regions falsely detected in the background. The control is done by
computing the Number of False Alarms (NFA) that corresponds to the average
number of false detections per image, according to the background model:

NFAk = numReg πRr
. (3.7)

Given ε, the average number of false detections tolerated by the user, the regions
which verify

NFAk < ε (3.8)

are finally outlined as detections.
In practice, to alleviate the influence of the preselected ppre parameter in the

second step, a set of p-values {p1, p2, . . . , pα} is usually tested. Then a probability
πRr,j is associated to each region Rr and each p-value pj and the NFA is computed
as:

NFAr = α numReg min
j

(πRr,j) (3.9)

At the end of the third step, each region of the image is detected or undetected
(under the background model). As in the searchlight approach, the detection of
each region can be affected to its centre voxel to produce a voxel-wise detection
map.
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Link with standard hypothesis testing and searchlight approach As out-
lined by [Rousseau 2007], the a contrario approach can be related to standard
hypothesis testing by noting that the definition of the background model is equiv-
alent to the selection of a null hypothesis H0. On top of this, the thresholding on
the NFA is in fact equivalent to a Bonferroni correction where the expected number
of false alarms is expressed in number of regions per image. In the a contrario

approach, it makes sense to set ε > 1 whereas this is impossible with Bonferroni
correction [Rousseau 2007].

The originality of the a contrario approach stands in its capability to integrate
the multivariate information in pre-defined regions of analysis. When spheres are
used as regions of analysis and the region-based probability is affected to its centre
voxel, the a contrario approach can be viewed as a special type of searchlight in
which the multivariate metrics is the size of an excursion set.

4 Conclusion

In this chapter, we introduced patient-specific analyses. We presented the context
that justifies such analyses and we provided a review of the state-of-art methods
to draw inference at the subject level. We outlined the importance of checking
the false positive rate when performing a one-versus-many GLM. Then, we focused
on multivariate approaches and presented machine learning classifiers and locally
multivariate procedures.
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Chapter 4

The “Neuroimaging in
Dysphasia” project

Typical Specific Language Impairment, or structural Dysphasia, is a developmental
language disorder affecting the core aspects of language. The “Neuroimaging of
Dysphasia” project was initiated in 2005, in Rennes taking advantage of a multi-
disciplinary group made of clinicians, research scientists in medical imaging and
linguistic and a methodologist. The primary goal of this project was to investi-
gate the functional aspects of structural dysphasia based on functional MRI. In
this work, I contributed to the methodological choices, programmed the processing
pipelines, applied these tools to the available data, performed the statistical analy-
sis and participated in the writing of the papers. The secondary goal was to study
the anatomy with standard anatomical MRI as well as diffusion MRI.

In this introductory chapter, we present the context of the “Neuroimaging in
Dysphasia” project. The following two chapters present the results obtained on
functional MRI.
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1 Context

1.1 Specific Language Impairment

Specific Language Impairment (SLI), also known as dysphasia, is part of the devel-
opmental language disorders and, as such, is:

• severe and persistent: SLI is not a language delay;

• specific: although SLI may be associated with other disorders, it impacts oral
language (or related processes) only;

• developmental: SLI is not related to an acquired brain injury.

Specific Language Impairment is therefore defined by negation (not a language
delay, not impacting intellectual capacities, not acquired. . . ) which makes it difficult
to diagnose.

In the literature, the denomination Specific Language Impairment is somewhat
loosely defined and used to name a subclass of the developmental language disorders
that can be more or less broad. In order to define the terminology that will be
later used in this manuscript, fig. 4.1 provides a diagram of the main language
disorders and their relationship along with the aspect of language that is affected
by each trouble. This view is in line with the vocabulary employed by other authors
including [Brun 2003,Bishop 2006].
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Figure 4.1: Developmental language disorders diagram.

Developmental language disorders form therefore a broad and heterogeneous
group that includes: affections of the oral language (specific language impairment),
of the fluency (stuttering), of the written language (dyslexia) and motor affections
(dyslalia, dysarthria). Specific Language Impairment forms itself an heterogeneous
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subgroup including affection of the core aspects of language (typical specific lan-
guage impairment), articulatory troubles (dyspraxia), disorders related to the social
aspects of language (pragmatic troubles) and affection of auditory language identi-
fication (verbal agnosia).

In the context of our study, we focused on typical specific language impairment,
also termed structural language impairment. This pathology has a prevalence of
less than 1% in the general population. Typical Specific Language Impairment (T-
SLI) is characterised by an affection of the core aspects of language: phonology
(managing phonological differentiations), lexicon (managing words differentiation),
morphology (formation of derivative words) and syntax (managing sentences con-
struction both for expression and comprehension).

1.2 Brain and language

1.2.1 Cortex

Fig. 4.2 gives an overview of the three major cortex components involved in lan-
guage: Broca’s area, Wernicke’s area and Geschwind’s territory. In his pioneering
work, Broca outlined the importance of the inferior frontal gyrus in speech pro-
duction [Broca 1861]. A decade later, Wernicke’s outlined the importance of the
superior temporal gyrus in speech understanding along with the major role of the
connexions between the so-called Broca’s and Wernicke’s areas [Wernicke 1874].

��������
��	�


	���
�����
�	��
����

�	��
��	���
��	�

Figure 4.2: Main brain areas involved in language, adapted from The Brain From
Top To Bottom website1

1http://thebrain.mcgill.ca/flash/i/i_10/i_10_cr/i_10_cr_lan/i_10_cr_lan.html
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About a century later, Geschwind revisited these works and proposed the Geschwind-
Wernicke’s model as illustrated in fig. 4.3.
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Figure 4.3: Geschwind-Wernicke’s model of language production following an audi-
tory stimulus, adapted from The Brain From Top To Bottom website1

While this pioneering work clearly demonstrated the involvement of the frontal
and parieto-temporal regions in language, the Geschwind-Wernicke’s model was a
simplification and is nowadays outdated. In particular the very serial view pro-
posed by the Geschwind-Wernicke’s model is now replaced by cooperative models
proposing a more parallel view (e.g. [Abrams 2012,Radanovic 2011]).

Figure 4.4: Variability of Broca’s (in the frontal lobe) and Wernicke’s (in the tem-
poral and parietal lobes) areas from The Brain From Top To Bottom website1.

It is also worth noting that the precise anatomical location of these three cortical
areas is highly variable across studies (cf. fig 4.4). In particular, Geschwind’s
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territory and Wernicke’s area are often merged under the denomination Wernicke’s
area. This anatomical variability is probably partly explained by the fact that
these three cortical entities are, in fact, compounded of several sub-units in charge
of different processing (e.g. [Radanovic 2011]).

1.2.2 Lateralisation of language

Figure 4.5: Activation in one subject during a language paradigm (Phon-seg
paradigm described hereafter). The language activation patterns observed in the
IFG (Broca’s area) and STG (Wernicke’s area) are clearly left-lateralised.

Brain lateralisation (or brain dominance) refers to the fact that a particular
function is predominantly taken in charge by one of the two brain hemispheres. In
the case of language, the dominant hemisphere is left in 95% of right-handers and
60% in left-handers [Taylor 1990]. Fig. 4.5 provides an example of left-lateralised
patterns of activation. The degree of lateralisation is however known to be depen-
dent upon the task.

1.2.3 Communication networks

a) b)

Figure 4.6: The arcuate fasciculus: historical view (a) from The Brain From Top To
Bottom website2 and modern three-segment view (b), reprinted from [Catani 2005],
Copyright (2013), with permission from Wiley.

In his early works, Wernicke’s identified the importance of the communication
pathways between brain regions involved in language [Wernicke 1874]. The histor-
ical fasciculus of white matter tracts identified as language-related is the arcuate
fasciculus. This fibre bundle connects the inferior frontal gyrus (Broca’s region) to
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the superior temporal gyrus (Wernicke’s region) passing through the supramarginal
region (Geschwind’s territory) as illustrated in fig. 4.6.

Thanks to modern neuroimaging techniques, the arcuate fasciculus has been di-
vided in three parts: the anterior (Broca’s area ↔ Geschwind’s territory), posterior
(Wernicke’s area ↔ Geschwind’s territory) and long (Wernicke’s area ↔ Broca’s
area) segments [Catani 2005].

The involvement of an additional ventral pathway is nowadays widely accepted [Man-
donnet 2007], and the exact contribution of each pathway in language processing is
still under investigation [Rolheiser 2011].

2 The “Neuroimaging in Dysphasia” project

2.1 A brief chronology

Based on the observation that SLI had been very little studied in neuroimaging
and taking advantage of the multidisciplinary group created in Rennes, the “Neu-
roimaging in Dysphasia” project started in 2005. This multidisciplinary group,
created in Rennes, was composed of four clinicians: Catherine Allaire (neuropedi-
atrics Department, Centre Référent des Troubles Sévères du Langage et des Ap-
prentissages, Pontchaillou Hospital), Jean-Christophe Ferré (Neuroradiology De-
partment, Pontchaillou Hospital), Catherine Tréguier (Radiopediatrics Department,
South Hospital), Arnaud Biraben (Neurology Department, Pontchaillou Hospital),
three research scientists: Elisabeth le Rumeur (Radiology Department, Pontchail-
lou Hospital), Christian Barillot (VisAGeS team, CNRS, University of Rennes 1,
Inria, INSERM) and Pierre Jannin (VisAGeS team, INSERM, University of Rennes
1, Inria), one methodologist: David Veillard (Pontchaillou Hospital) and two engi-
neers: Alexandre Abadie (VisAGeS team, University of Rennes 1, Inria, INSERM)
and myself, under the supervision of a neuropsychologist, research associate in lin-
guistic: Clément de Guibert (University of Rennes 2).

In 2006-2008, Clément de Guibert, the principal investigator on this project,
was appointed on Inria secondment to the VisAGeS team, for two years. During
this period, the imaging protocol was built in collaboration with the other members
of the project. The acquisitions started in the first months of 2008.

Two journal publications, reported in chapters 5 and 6 have arisen from this
fruitful collaboration. These first two communications focus on functional data,
one journal paper based on anatomical data is in preparation. My contribution in
this work was to participate in the methodological choices, program the processing
pipelines, apply these tools to the available data, perform the statistical analysis
and participate in the writing of the papers.

Analysis of the diffusion data was performed during two internships. First,
in 2009, Arnaud Le Cavernnec in a three-months project, under my supervision,
employed the tool available in the VisAGeS team to extract the arcuate fasciculus

2http://thebrain.mcgill.ca/flash/d/d_10/d_10_cr/d_10_cr_lan/d_10_cr_lan.html
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and looked at different metrics along these tracts. Then in 2012, Emmanuel Vallée
did his Masters project on the analysis of the diffusion data. He built a pipeline to
automatically extract diffusion bundles from a set of atlas-based Region of Interests
(ROIs). He outlined interesting between-group differences. I was involved in his
supervision along with Olivier Commowick, Christian Barillot and Aymeric Stamm.

2.2 Imaging protocol

The imaging protocol included a T1 weighted (T1w) and a T2w FLAIR anatomical
images, a set of four fMRI images corresponding to four distinct language paradigms
and a sixteen-direction diffusion image.

Fig. 4.7 provides an overview of the four language paradigms. Each paradigm
was implemented with six blocks (three action blocks / three resting blocks) of 27 s
each. Two paradigms, Category and Denomination, were previously described in
the literature and based on auditory stimuli. The two remaining paradigms were
originally developed in the context of the “Neuroimaging in Dysphasia” project and
based on visual stimuli.
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Figure 4.7: The four language paradigms used in the “Neuroimaging in Dysphasia”
project.

More details on the implementation of this task panel for language mapping
in children are provided in chapter 5. The patterns of activations and language
lateralisation in T-SLI patients by comparison to a group of typically developing
children are studied, using the same protocol, in chapter 6.



Chapter 5

Functional MRI language
mapping in children

This chapter is presented in the form of a paper. This work was realised in collabo-
ration with Clément de Guibert (cf. chapter 4) and was published in Neuroimage [de
Guibert 2010].

Abstract

In the context of presurgical mapping or investigation of neurological and develop-
mental disorders in children, language fMRI raises the issue of the design of a tasks
panel achievable by young disordered children. Most language tasks shown to be
efficient with healthy children require metalinguistic or reading abilities, therefore
adding attentional, cognitive and academic constraints that may be problematic in
this context. This study experimented a panel of four language tasks that did not
require high attentional skills, reading, or metalinguistic abilities. Two reference
tasks involving auditory stimulation (words generation from category, “category”;
auditory responsive naming, “definition”) were compared with two new tasks involv-
ing visual stimulation. The latter were designed to tap spontaneous phonological
production, in which the names of pictures to be named involve a phonological
difference (e.g. in French poule/boule/moule; “phon-diff”) or change of segmen-
tation (e.g. in French car/car-te/car-t-on; “phon-seg”). Eighteen healthy children
participated (mean age: 12.7 ± 3 years). Data processing involved normalizing the
data via a matched pairs paediatric template, and inter-task and region of interest
analyses with laterality assessment. The reference tasks predominantly activated
the left frontal and temporal core language regions, respectively. The new tasks
activated these two regions simultaneously, more strongly for the phon-seg task.
The union and intersection of all tasks provided more sensitive or specific maps.
The study demonstrates that both reference and new tasks highlight core language
regions in children, and that the latter are useful for the mapping of spontaneous
phonological processing.
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1 Introduction

fMRI is a safe and non-invasive method for determining the brain functional lo-
calisation and lateralisation of language in children, which is an important issue
both for paediatric clinical applications and research purposes [Gaillard 2001a,
O’Shaughnessy 2008,Wilke 2003a]. From a clinical perspective, it is considered that
fMRI may replace or serve as an important adjunct to the invasive intracarotid amo-
barbital (Wada test) or direct cortical stimulation mapping procedures, in order to
delineate the eloquent cortex to be spared in children who are candidates for surgical
resection [O’Shaughnessy 2008]. In line with studies showing the utility of presurgi-
cal fMRI language mapping in adults [Binder 1996,Gaillard 2002,Roux 2003,Rut-
ten 2002,Tie 2008,Tie 2009], studies have reported the potential utility of this pro-
cedure in the even more crucial context of childhood [Anderson 2006,Gaillard 2000,
Gaillard 2001b,Hertz-Pannier 1997,Holland 2001,Wilke 2005,Wilke 2006]. For re-
search purposes, fMRI allows to specify the normal functional development of the
brain [Durston 2006] and, particularly, the functional development of language dur-
ing childhood [Holland 2007,Sachs 2008,Sachs 2003,Gaillard 2006]. One promising
perspective is the investigation of the neural bases of developmental disorders, whose
aetiology remains largely unknown [Berl 2006, Frith 2006, O’Shaughnessy 2008,
Wilke 2003a], including childhood developmental language disorders, [Dick 2008,
Friederici 2006a,Rapin 2003].

A major issue of fMRI, in this context as in others, is its sensitivity and speci-
ficity, i.e. the ability to draw a comprehensive as well as selective picture of the
essential language brain network [Medina 2007,Tie 2008,Tie 2009]. The “ideal” pro-
cedure may thus highlight all core language areas but only core language areas, by
minimizing the false negatives and false positives. Therefore, owing to the complex-
ity of language, the choice of activation tasks is crucial, as any single language task
is unlikely to engage all aspects of language and exclusively involve language pro-
cessing [Gaillard 2004,Ramsey 2001,Tie 2008]. One way of bypassing this difficulty
is to use a panel of different tasks targeting distinct aspects of language. First, the
union of activations from several tasks increases the sensitivity by providing a more
comprehensive picture of the overall network [Deblaere 2002, Gaillard 2001b, Gail-
lard 2004,Holland 2007,Ramsey 2001,Roux 2003,Tie 2008,Wilke 2005,Wilke 2006].
Secondly, the intersection of activations across several tasks, as obtained by con-
junction analysis [Friston 2005a,Nichols 2005], increases the specificity by neglecting
non language-specific brain areas that only participate in, but are not essential to
language [Tie 2008]. Furthermore, the use of several tasks allows to focus separately
on particular parts of the language network [Gaillard 2004,Wilke 2005,Wilke 2006].

In the context of paediatric fMRI, another major issue is that many language
paradigms shown to be useful in adult studies are not well suited for children,
and that child-specific tasks have to be specially designed [O’Shaughnessy 2008,
Wilke 2003a, Wilke 2006]. This may be even more problematic for children suf-
fering from neurological or developmental disorders, especially language disorders.
For example, classical tasks such as verbs-to-word, words-to-letter, and words-to-
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phoneme generation, involve an understanding of what is an “action word”, a basic
knowledge of written language, and the ability to explicitly segment oral utterances,
respectively. Such tasks may not be achievable for young and/or disordered chil-
dren. Similar difficulties arise with metalinguistic tasks such as rhyme, syntactic,
or semantic decision tasks. These latter tasks, in addition, require explicit forced-
choice analysis and judgement, as opposed to spontaneous discourse, and are likely
to involve undesired attentional effects even in adults (e.g. [Crinion 2003]).

Following previous fMRI studies using a panel of language tasks with chil-
dren [Gaillard 2001b,Gaillard 2004,Holland 2007,Wilke 2005,Wilke 2006], the aim
of our study was to carry out an fMRI investigation of the essential language brain
network that may be accessible to young disordered children by avoiding reading,
high attentional, or metalinguistic requirements. In addition, we aimed to use audi-
tory and visual stimuli delivery, to solicit language comprehension and production,
and to target lexico-semantic and phonological processing within the whole proce-
dure.

We first choose from the literature two reference lexico-semantic tasks with
auditory stimulation that have been shown to elicit in children distinct and selective
activations within the language network. In the first task (words generation from
category, hereafter “category”; see [Gaillard 2003]), children have to name several
examples of a given category. Gaillard et al. reported, as similarly found in adults,
an activation in the left IFG without consistent activation in the STG and Middle
Temporal Gyrus (MTG). In the second reference task (responsive naming task,
hereafter “definition”; see [Balsamo 2002]), which resembles riddles, children have
to name the concept corresponding to a short verbal description. Balsamo et al.
reported a highly left-lateralised activation of the STG and MTG without consistent
activation of the IFG.

In addition, we aimed to design two new tasks with visual stimulation able
to involve spontaneous phonological processing and highlight distinct parts of the
phonological brain network. According to current knowledge, phonological process-
ing implies a left distributed network encompassing frontal and temporo-parietal
language areas [Buchsbaum 2001, Burton 2001, Démonet 2005, Hickok 2007, Inde-
frey 2004,Vigneau 2006], but some authors have reported that the left IFG may be
involved in phonological segmentation (i.e. sublexical phoneme isolation), as op-
posed to phoneme identification or storage [Paulesu 1993,Burton 2000,Burton 2006].
In this context, [Burton 2000] have reported that same/different judgements about
the first phoneme in pairs of phonologically close words (e.g. dip-tip) and distant
words (e.g. dip-ten) both involved the left STG. However, only the latter condition
– requiring word segmentation in order to isolate the whole phoneme from the word
– involved the left IFG (see also [Gandour 2003,Heim 2003,Zatorre 1996]).

When designing our new tasks, to avoid reading and metalinguistic require-
ments, we first based both tasks on a picture-naming paradigm in which the names
of three familiar objects to be successively named are phonologically close. Glob-
ally, this procedure is inspired by the so-called minimal pairs in linguistics [Jakob-
son 1951, Chomsky 1968] and by procedures largely used in the assessment (e.g.
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in French: [Piérart 2005,Chevrie-Muller 1985]) and remediation (e.g. [Barlow 2002,
Moore 2005]) of phonological disorders in children. This repetitive evocation of
only three familiar but phonologically close words attenuates the lexico-semantic re-
quirement, while stressing the phonological constraints. Secondly, to involve distinct
phonological brain areas, the two tasks were partially different. In the first task, the
three names differ from each others only in one phonological feature (e.g. in French:
poule/boule/moule [hen, ball, tin]; for English equivalent: batch/patch/match). In
the second task, they differ by the number of phonemes (e.g. in French: car/car-
te/car-t-on [car, card, cardboard box]; for English equivalent: car/car-t/car-t-on).
Thus, while the first task (hereafter called “phon-diff”) implies only a difference of
feature in one phoneme (e.g. the voicing between /p/ and /b/ in poule and boule),
the second task (hereafter “phon-seg”) requires a change of segmentation, i.e. the
subtraction or addition of whole phonemes (e.g. from carte to car and inversely).
We expected from both new tasks the inferotemporal activation found in classical
picture naming tasks in adults [Démonet 2005] (see also [DeLeon 2007]) and chil-
dren [Gaillard 2006]. Furthermore, we predicted an activation of the left posterior
language areas for both tasks, but a stronger activation of the left IFG for the task
implying a change of segmentation [Burton 2000,Burton 2001].

Our study tested these four tasks with a group of healthy children. To optimize
the feasibility of the paradigms by children, all tasks were contrasted with rest
condition in four identical block designs. To reduce the bias due to the normalization
of children’s brains with respect to adult standard [Wilke 2002, Wilke 2003d], we
created a customized and matched pairs paediatric template [Wilke 2008]. Task
comparisons, intersections and unions were carried out to highlight the specificity
and sensitivity of the tasks as well as the whole panel [Tie 2008]. ROI analyses
were performed using ROIs adapted to our template from the Anatomic Automatic
Labelling atlas (AAL atlas) [Tzourio-Mazoyer 2002]. Lateralization Indexes (LIs)
in the ROIs were assessed using a recent dedicated toolbox [Wilke 2007].

2 Subject and methods

2.1 Subjects

The study was approved by the local ethics committee (Consultative Committee for
Protection of Persons in Biomedical Research) of the University Hospital (Rennes,
France). Healthy children aged from 8 to 18 were recruited by word of mouth in the
context of a larger study of developmental language disorders. Exclusion criteria in-
cluded non-French native speakers, previous or current neurological, developmental
or psychiatric illness, learning disability and abnormal academic performance, as
well as language delay, MRI contraindication and the presence of orthodontic braces.
Handedness was assessed by a child-modified version of the Edinburgh Handedness
Inventory [Oldfield 1971]. All subjects were pre-screened for any conditions which
would prevent an MRI scan from being acquired. A group of 18 children was re-
cruited (age range = 8.7–17.7, mean age = 12.7 ± 3), with 9 boys (mean age =
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12.3 ± 3.2) and 9 girls (mean age = 13 ± 3). Sixteen children were right-handed
and two children were left-handed (11%), which is within the estimated range of
8–15% left-handers present in the general population [Hardyck 1977]. All parents
and children were informed about the experiment and procedure; parents signed
the informed consent and children gave their verbal assent.

2.2 Experimental paradigms

2.2.1 General technical implementation

A single scanner session included the four paradigms separately implemented with
the same parameters: a simple block design alternated a rest condition as con-
trol and the language task, starting with rest, with a preliminary period of signal
acquisition for MRI signal stabilization which was later discarded during data pro-
cessing. Each paradigm included three 27 s blocks of each condition and had a total
duration of 2 min 48 s. The scanner session, including the anatomical acquisition
and the four language paradigms, had a duration of about 30-35 min. All subjects
performed the tasks in the same order, as during the preparation step, in order to
avoid the mix of auditory and visual tasks and the resulting complication for the
child. Words required by the tasks were one-to-three-syllable words highly frequent
in the lexicon of French 8 years old children [Lambert 2001].

During the rest condition, a red cross was displayed on the projection screen and
children were asked “not to work”, to “think about nothing” and, because of the
complexity of this instruction, to listen to the noise of the scanner and fix attention
on the red cross. Visual stimuli were delivered through a screen placed within the
head-coil (IFIS-SA fMRI system, Invivo, Orlando, FL) just in front of the face,
and synchronised with the scanner. In cases of poor eyesight, the children wore
corrective glasses compatible with the high-magnetic- field environment. Auditory
verbal stimuli were delivered by an experimented member of the staff using the
machine microphone, via specially converted high-fidelity stereo headphones.

2.2.2 Auditory lexico-semantic tasks (reference tasks)

Category task (words generation from category). In this task adapted
from [Gaillard 2003], children heard category names (e.g. animals, colours, things
to eat) and had to silently generate as many as possible verbal examples of these
categories. A category name was delivered every 9 s, with three categories per block
and nine categories for the whole paradigm.

Definition task (auditory responsive naming). In this task adapted from [Bal-
samo 2002], children heard descriptions of concepts (e.g. “a big animal with a
trunk”; “the moment of the day when one wakes up”) and had to find and silently
name the corresponding word (e.g. elephant; morning). Descriptions were deliv-
ered every 9 s, with three definitions per block and nine definitions for the whole
paradigm.
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2.2.3 Visual phonological tasks (new tasks)

The two new tasks are based on picture naming and used black-and-white line draw-
ings of familiar objects. Children had to silently name successively three pictures
one by one (i.e. triplets) whose names are semantically unrelated but exhibit a close
phonological composition. The pictures of the triplets were presented successively
and randomly (without any picture being delivered twice successively) every 1.4 s,
resulting in 19 stimulations within each block, so that the child could not predict the
upcoming picture. One distinct triplet was used for each language block, resulting
in three distinct triplets for the whole task.

Phon-diff task. The names of the objects to be named present a minimal differ-
ence in the phonological distinctive features of the initial phoneme. In the triplet
poule/boule/moule (/pul/–/bul/–/mul/ [hen, ball, tin]), the difference between
poule and boule is the voicing feature of /p/ and /b/ (voiceless vs. voiced). A
similar reasoning applies for the distinctions poule–moule and boule–moule (stop
vs. nasal consonant). Concretely, children successively named for example: “poule,
moule, boule, moule, poule...” for the first block, then: “banc, dent, gant, dent,
banc...” (/bã/, /dã/, /gã/ [bench, tooth, glove]) for the second block, and so on.

Phon-seg task. The names of the objects to be named present a small change in
their phonological length, resulting in phoneme addition or subtraction. For exam-
ple, in the triplet car/car-te/car-t-on (/kar/–/kart/–/kartõ/ [car, card, cardboard
box]), there may be an addition (car towards carte or carton) or a subtraction (car-
ton towards carte or car) of phonemes. Concretely, children successively named for
example: “car, carte, carton, carte, car...” for the first block, then: “croix, roi, oie,
roi, croix...” (/krwa/, /rwa/, /wa/ [cross, king, goose]) for the second block, and so
on.

2.2.4 Preparation before the scanner

Children were prepared extensively just before the scanning session. Each task was
thoroughly explained and practised prior to entering the scanner, using original task
material. Each task was performed several times with the clinician, both aloud
and silently to check for the comprehension of the tasks and to prevent mouth
movements during silent responses. For the phonological visual tasks, the clinician
made sure that the child would use the expected names, e.g. not naming carton as
“bôıte” [box], which would be inconsistent with the logic of the triplet car–carte–
carton in French.

2.3 Data acquisition

Acquisitions were performed on a 3 T whole-body scanner (Achieva, Philips Medical
Systems, Best, The Netherlands) using a 8-channel head coil. Anatomical 3D T1w
images were acquired with a Fast Field Echo sequence. The acquisition parameters
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were as follows: Echo time (TE)/TR/Flip angle: 4.6 ms/9.9 ms/8◦; acquired matrix
size: 256 x 256 mm; Field of View (FOV): 256 mm; voxel size: 1 x 1 x 1 mm;
volume: 160 sagittal 1 mm thickness slices; acquisition time: 3 min 56 s. Functional
images were acquired using a single-shot T2* weighted (T2*w) gradient-echo echo
planar imaging sequence. Twenty-four 4 mm slices were acquired with the following
parameters: TE/TR/Flip angle: 35 ms/3000 ms/90◦; acquired matrix size: 80 x 80;
reconstructed matrix size: 128 x 128; FOV: 230 x 230; acquired voxel size: 2.9
x 2.9 x 4 mm; reconstructed voxel size: 1.8 x 1.8 x 4 mm. Slices were positioned
parallel to the anterior commissure-posterior commissure line, with no gap, and
were interleaved from bottom to top. Each functional run consisted of 56 series of
images acquisition for the 24 slices covering the entire brain volume separated by a
3000 ms delay for a total acquisition time of 2 min 48 s. Children were positioned
supine in the system. The subject’s head motion was minimized using straps and
foam padding.

2.4 Data processing

MRI data preprocessing and analysis were performed using the GLM [Friston 1994a],
as implemented in SPM51 (Statistical Parametric Mapping 5, Wellcome Depart-
ment of Imaging Neuroscience, University College, London). The first two volumes
of fMRI data were discarded to allow for signal stabilization. Slice timing and mo-
tion correction were applied to the remaining 54 volumes. To prevent bias caused by
the normalization of paediatric data on adult templates [Wilke 2002,Wilke 2003d],
we used the Template-O-Matic toolbox [Wilke 2008] to generate a customized pae-
diatric template based on the age and sex of our 18 subjects. The matched pair
option of the toolbox creates a reference map for each subject, based on the Pae-
diatric MRI Data Repository funded by the National Institute of Health (n = 404,
age range = [5;18]), with a final averaging of these individual reference maps. Struc-
tural MRI were rigidly realigned with this template, segmented using unified seg-
mentation [Ashburner 2005], and then normalized. FMRI data were registered on
segmented grey matter, and then normalized and smoothed using an isotropic 8 mm
FWHM 3D Gaussian kernel.

Statistical activation maps were obtained using a mixed effects analysis. At
the subject level, a high-pass filter was applied to fMRI data so as to remove slow
signal drifts due to undesired effects. To model possible delay and dispersion of the
canonical HRF, we used the Informed Basis Set [Friston 1998], including temporal
and dispersion derivatives, to model the haemodynamic response. For each task,
individual and group activations were identified by contrasting out the effect of tem-
poral and dispersion derivative, focusing on the canonical variable, at a threshold of
p < 0.05 FWE corrected at the voxel level, and an extent threshold (k) of 5 voxels
was chosen as the minimal cluster size to reduce the effect of noise. In addition,
since they had never been used before, a prospective less conservative threshold of
p < 0.001 uncorrected, at the voxel level was also applied to the new visual phono-

1www.fil.ion.ucl.ac.uk
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logical paradigms. Exclusion criteria of individual data included motion artefacts
associated with a movement exceeding 3 mm in translation or 3◦ in rotation.

Additional statistical comparisons between the paradigms were carried out by
entering individual contrast files into a three (basis)-by-four (paradigm) Analysis Of
Variance (ANOVA), with a significance threshold set at p < 0.001 (uncorrected).
Comparison and conjunction (intersection) analyses [Friston 2005a, Nichols 2005]
were performed to study the specificity of each paradigm and the whole panel.
Furthermore, to address the sensitivity of the whole protocol, we performed a union
analysis to select the voxels activated by any of the paradigms (logical OR). A
conjunction analysis of auditory tasks union and visual tasks union ([category OR
definition] AND [phon-diff OR phon-seg]) was also performed.

For ROI analyses, thirteen ROIs covering brain areas involved in language were
selected from the literature: the pars opercularis (IFG-oper) and triangularis (IFG-
tri) of the IFG; the precentral gyrus; the rolandic operculum; the STG, MTG,
and Inferior Temporal Gyrus (ITG); the Heschl’s, lingual, fusiform, Supramarginal
Gyrus (SMG) and angular gyri; and the insula. Left and right ROIs as delineated in
the AAL atlas [Tzourio-Mazoyer 2002] were adapted to our customized paediatric
template using an approach suggested by [Wilke 2003c]. Firstly, to match our
template, we performed a non-linear deformation of the structural image on which
the AAL atlas was delineated. The deformation parameters previously determined
were then applied. Finally, each region was smoothed with an isotropic Gaussian
kernel of 6 mm to partially correct for the registration inaccuracy.

LIs were estimated using the LI toolbox [Wilke 2007], based on unsmoothed
regions. For each subject the average t-value within each ROI was measured and
voxels smaller than this threshold were discarded. The LI was then calculated with
the remaining voxels as follows:

li =

∑
ActivationL −

∑
ActivationR∑

ActivationL +
∑

ActivationR
, (5.1)

where
∑

ActivationL and
∑

ActivationR denote the sum of the remaining voxels in
the left and right parts of the ROI, respectively.

Boxplots based on these values were created. Similarly weighted mean acti-
vations within a ROI were estimated using the Marsbar toolbox [Brett 2002] for
each smoothed ROI. Wilcoxon signed rank tests (p < 0.05) were performed on each
ROI to determine significant activations (for all subjects) and group lateralisation
(i.e. left if li significantly greater than zero, right if li significantly smaller than
zero, otherwise bilateral). To highlight laterality differences between paradigms,
the Kruskal-Wallis test was performed on each ROI. A post-hoc non-parametric
Mann-Whitney U-test (p < 0.05) was performed to determine between-paradigm
differences when the Kruskal-Wallis test was significant (p < 0.05).
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3 Results

We first carried out group analysis including statistical comparisons and conjunc-
tions of the tasks within each category (i.e. reference auditory tasks; new visual
tasks). Then, we carried out a comparison of the two categories as well as conjunc-
tion and union analysis of all tasks (i.e. whole panel). The statistical comparisons
aimed to assess the specificity of each task or category. The conjunction (intersec-
tion) aimed to reveal more language-specific activations, while the union analysis
aimed to combine the results of all tasks and to improve the sensitivity of the
procedure.

Figure 5.1: fMRI group effects for each language task. Results are displayed at
p < 0.05 FWE for category and definition tasks, and at p < 0.001 uncorrected
for phon-diff and phon-seg tasks. The functional maps are superimposed onto an
individual brain normalized with respect to our customized paediatric template,
with x-coordinates in MNI space. Left panels display the left hemisphere.

3.1 Reference auditory tasks

These two lexico-semantic tasks with auditory stimulation were chosen from the
literature to highlight a predominant activation of the left IFG (for the category
task) or the left STG (for the definition task). The data from one subject had to
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in brackets. 
  Auditory language tasks Visual language tasks

Left hemisphere Category Definition Phon-Diff Phon-Seg 

 Inf frontal–Oper –– –– ––

(509–4.02)(4)
5–4.78(4)

(1295–5.18)(4)

 Inf frontal–Tri 346–5.31(4) –– ––

 (509–3.91)(4)
––

 Precentral 346–7.02 36–5.38 52–5.74

(509–5.74))

102–5.67 

(1295–5.67) 

 Insula / Inf frontal 357–6.77(2) 29–4.74(2) –– –– 

 SMA 1114–7.72 195–5.76 37–5.30 18–5.16 

 Ant cingulate 1114–5.76 –– –– –– 

 Mid frontal 23–5.07 –– –– –– 

 Supramarginal –– 1038–6.35 –– –– 

 Sup temporal –– 1038–6.56(2)

1038–6.43(3)
––

(22–3.46)(1)
15–5.14(1)

(421–5.14)(1)

 Mid temporal 24–5.32(2) –– –– ––

(421 –4.42)(2)

 Hippocampus –– 28–5.32 –– –– 

 Parahippocampus –– 24–4.70 –– –– 

 Inf parietal cortex –– –– 21–4.83 –– 

 Postcentral –– –– –– 18–5.43 

 Sup parietal –– –– –– 249–6.32 

 Lingual 529–5.67 402–6.09

24–4.91

–– 1296–7.72

 Fusiform –– –– 890–6.53 1296–7.45 

 Inf occipital –– –– 890–>8 1296–7.53 

 Mid occipital –– 22–5.02 890–6.66 ––

Right hemisphere 

 Inf frontal–Oper –– –– ––

(13–3.50)

––

(228–4.28)(4)

 Inf frontal–Tri –– –– ––

(43–3.37))

––

 Ant Cingulate –– 195–4.83 –– –– 

 Med sup frontal  –– 195–5.13 –– –– 

 Insula 137–5.96 –– –– –– 

 Mid Cingulate 1114–6.42 –– –– –– 

 Sup temporal –– 437–6.11(2,3) –– ––

(90–3.31)(1)

 Mid temporal 28–5.27(2) 437–5.60(2) ––

(26–3.50))

––

(90–3.86)(2)

 Parahippocampus –– 20–4.83 –– –– 

 Angular –– –– 67–5.16 ––

 Sup parietal –– –– 67–5.06 24–5.20 

 Lingual –– 402–5.69 –– 1129–7.46

 Fusiform –– –– 760–7.40 1129–7.26 

 Mid occipital –– –– 760–6.89 1129–7.26 

 Sup occipital –– 14–5.04 –– –– 

 Cerebellum 19–5.02 –– 760–5.94 –– 

Clusters in italics correspond to sub-clusters belonging to cluster of the same extent given in the 

Table 5.1: fMRI results for each language task: peak location, cluster extent –
Z-score (p < 0.05 FWE; k = 5). For visual language tasks, additional results
among language areas are reported at p < 0.001 uncorrected in brackets. Clusters
in italics correspond to sub-clusters belonging to cluster of the same extent given
in the column. (1)Posterior part; (2)Middle part; (3)Anterior part; (4)Dorsal part;
(5)Ventral part; (6)Extending in the adjacent IFG. Oper = opercularis; Tri = triangularis;
Inf = inferior; Mid = middle; Sup = superior; Med = medial; Ant = anterior.

be discarded because of a technical problem with sound delivery.
According to group analysis (Table 5.1; Fig. 5.1), the category task elicited a

left-only activation in the caudal and dorsal IFG-triangularis, extending into the
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IFG-opercularis, and a bilateral activation of the insula extending only on the left
in the ventral IFG-opercularis. Only a small and bilateral activation was seen
in the middle part of the Superior Temporal Sulcus (STS), and other activations
appeared in the left precentral and lingual gyri. ROI analyses and LIs (Figs. 5.3
and 5.4) confirmed the significant left-lateralised activation of the IFG-triangularis
and opercularis, as well as of the precentral and lingual gyri, while the activation
of the STG did not appear to be significantly left lateralised.

The definition task yielded a strong bilateral activation along the STS, with a
large and left-only sub-cluster in the posterior STG and adjacent SMG. Small left-
only clusters occurred in the insula / ventral IFG-opercularis and in the precentral
gyrus, and other clusters were located in the left and right lingual and parahip-
pocampus region. ROI analyses and LIs confirmed a significant and left-lateralised
activation of the MTG as well as the SMG and angular gyri, along with the IFG-
opercularis and precentral gyrus.

The statistical comparison of these two tasks (Table 5.2; Fig. 5.2) showed spe-
cific activations in the left precentral gyrus / IFG-opercularis junction for the cat-
egory task compared to the definition task. The reverse comparison (definition >

category) highlighted a strong left-dominant activation extending from the ventral
inferior parietal cortex to the anterior STS. This significant difference is corrobo-
rated by ROI analyses. The conjunction analysis between the two tasks (Table 5.2;
Fig. 5.2) revealed common activations along the left STS, extending posteriorly in
the STG / SMG junction, and in the right middle STS. Left-only common activa-
tions were also found in the dorsal IFG-opercularis and the insula, extending into
the adjacent ventral IFG.

Therefore, as expected, the category task elicited a predominant activation of the
left IFG compared to the left STG, while results from the definition task showed the
inverse pattern. More precisely, in the group analysis, the category task highlighted
the caudal and dorsal left IFG-triangularis, although the location is distinct in the
statistical comparison. By contrast, the definition task specifically involved the left
posterior STG/SMG region. Furthermore, the conjunction of both tasks detected
both left temporal and frontal core language areas.

3.2 New visual tasks

These new phonological tasks with visual stimulation were designed to focus on
the phonological brain network without any requirement for either reading or met-
alinguistic skills. In addition to occipital and inferotemporal activation due to the
picture-naming condition, we expected both tasks to elicit an activation of the
left posterior STG. Furthermore, in the case of the task involving a phonological
change of segmentation, we expected a higher activation of the left IFG. For the
phon-seg task, the last paradigm of the session, the data from two subjects had to
be discarded because of excessive movement.

According to the group analysis (Table 5.1), the phon-diff task elicited activa-
tions centred on the left and right fusiform, the left precentral and the right angular



3. Results 89

gyri (p < 0.05 FWE). At the threshold of p < 0.001 uncorrected (Fig. 5.1), large
clusters appeared in the left precentral gyrus and IFG (opercularis and triangu-
laris), with smaller similar clusters on the right; a small cluster is located at the
left posterior STG / SMG junction. ROI analyses (Fig. 5.3) confirmed a signifi-
cant and left-dominant activation for the precentral gyrus and the IFG-opercularis,
but this did not reach significance for lateralisation. LIs (Fig. 4) showed a signifi-
cant left lateralisation for the rolandic operculum, a region displaying a significant
deactivation during the task (p < 0.001 uncorrected).

The phon-seg task elicited a strong bilateral activation centred on the lingual
gyri, and a left activation along the precentral gyrus / IFG-opercularis junction;
two small left clusters appeared in the dorsal IFG-opercularis and posterior STG
(p < 0.05 FWE). At the threshold of p < 0.001 uncorrected (Fig. 5.1), results
showed a large cluster encompassing the precentral gyrus and the ventral and dorsal
IFG-opercularis, as well as a large cluster centred on the posterior STG / SMG
junction; only small counterparts were seen on the right. ROI analyses confirmed
a significant activation of the left and right IFG and MTG, and LIs revealed a
significant left lateralisation for the precentral and lingual gyri.

The statistical comparison (Table 5.2; Fig. 5.2) showed that the phon-diff task
did not elicit specific activation compared to the phon-seg task. The inverse com-
parison (phon-seg > phon-diff) highlighted the left lingual gyrus, as confirmed by
ROI analyses, as well as the left and right fusiform gyri, the left rolandic operculum
and a small cluster on the right STS. By analysing the conjunction of the two tasks
(Table 5.2; Fig. 5.2), we found a significant common activation in the left precentral
gyrus, as well as in the adjacent IFG-opercularis into its more ventral and caudal
part, associated with smaller counterparts in the right hemisphere. Another left
cluster appeared in the posterior STG.

Therefore, these two new tasks, taken individually, were able to activate core
language areas, namely the left IFG-opercularis and the posterior temporal / SMG
region, even though the LIs did not show significant lateralisation. In the group
analyses, the phon-seg task compared to the other task activated more the left
IFG, as expected. But, contrary to expectations, it also elicited higher activation
in the left posterior temporal/SMG region. This may reflect an overall superiority
of the phon-seg task for the language regions, which nevertheless did not appear in
the statistical comparisons. Finally, the conjunction of the two tasks, as observed
with previous auditory tasks, was able to detect both left temporal and frontal core
language areas.

3.3 Whole panel analysis

When statistically comparing the auditory reference tasks and the new visual tasks
(Table 5.2; Fig. 5.2), the former elicited specific strong and bilateral activations
centred on the middle STG and the Heschl’s gyri, with both areas also showing
significant interparadigm differences in the ROI analysis (Fig. 5.3). Another specific
activation was found bilaterally in the lingual gyri. The reverse comparison (visual
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Fig. 2. Task comparisons, conjunctions, and union (p<0.001 unc.). Functional maps are superimposed onto an 
Figure 5.2: Task comparisons, conjunctions, and union (p < 0.001 uncorrected).
Functional maps are superimposed onto an individual brain normalized with respect
to our customized paediatric template, with x-coordinates in MNI space. Left panels
display the left hemisphere.
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Task comparisons (>) and conjunctions (C). Peak locations, cluster extent–Z-score (p<0.001 unc.; k=10)
 Auditory language tasks Visual language tasks All tasks 
Left Hemisphere Categ >Def Def > Categ Categ C Def Ph-s >Ph-d Ph-s C Ph-d Audit >Vis Vis >Audit All tasks C

 Inf frontal-Oper –– –– 348–4.10(4) –– 825–4.83(4) –– –– 286–4.10(4)

33–3.64(7)

 Precentral 18–3.38(5) –– 348–5.09 –– 825–6.96 –– –– 286–5.09 

 Mid frontal 33–3.66 –– –– –– –– –– –– –– 

 SMA –– –– 1433–5.48 –– 357–6.32 –– –– 289–5.37 

 Cingulate –– –– 1433–5.08(3) –– –– 55–3.92(2) –– –– 

 Med sup frontal 174–4.69 –– –– –– –– –– –– –– 

 Rol operculum –– –– –– 36 – 4.31 –– –– –– –– 

 Insula –– –– 396–4.87(8) –– 58–3.81 –– –– 51–3.81 

 Sup temporal –– –– 351–3.81(1) –– 91–4.54(1) 1588–7.26(123) –– 37–3.8(1)

 Mid temporal –– 1658–4.67(3) 351–5.61(2) –– 10–3.26(2) –– –– –– 

 Inf parietal –– 1658–5.18(6) –– –– –– –– –– –– 

 Sup parietal –– –– –– –– 976–6.50 –– 821–6.50 –– 

 Postcentral –– –– –– –– 976–4.65 –– –– –– 

 Sup occipital –– –– –– –– –– –– –– 41–3.44 

 Mid occipital –– –– –– 146–4.43 1465–>8 –– 1366–>8 41–4.11 

 Inf occipital –– –– –– –– 1465–>8 –– 1366–>8 –– 

 Fusiform –– –– –– 397–5.44 1465–>8 –– 1366 –>8 ––

 Lingual –– –– 3632–6.53 397–4.60 –– 4559–>8 –– 116–5.55 

 Precuneus –– 1060–4.69 –– –– –– –– –– –– 

 Thalamus –– –– –– –– –– 21–3.43 –– –– 

 Caudate –– –– –– –– –– 14–3.73 –– –– 

 Cerebellum –– –– –– –– –– –– –– 116–3.76 

 Hippocampus –– –– –– –– –– –– –– 11–3.42 

Right Hemisphere 

 Inf frontal-Oper –– –– –– –– 14–3.48(5) –– 332–3.98(4 ––

 Mid frontal 34–3.66 –– –– –– 11–3.98 19–3.89 332–4.31 –– 

 Precentral –– –– –– –– 252–4.13 –– –– –– 

 Cingulate –– –– –– –– –– 2037–5.95(3) –– –– 

 Insula –– –– 200–3.88(8) –– 61–3.76 –– –– 38–3.45 

 Rol operculum –– –– –– –– –– 50 – 4.16 –– –– 

 Sup temporal –– 436–4.67(3) 364–5.08(2) 11–3.43(3) –– 1139–7.66(2) 14–3.28(1) –– 

 Mid temporal –– 436–4.71(3) 364–5.04(2) –– 10–3.29(2) –– –– 10–3.29 

 Postcentral –– –– –– 10–3.27 –– –– –– –– 

 Sup parietal –– –– –– –– 800–5.50 –– –– –– 

 Sup Occipital –– –– –– –– 800–4.46 –– –– –– 

 Angular / SMG –– 388–4.22 –– –– –– –– –– –– 

 Fusiform –– –– –– 284–6.33 1266–>8 –– 3118–>8 –– 

 Inf occipital –– –– –– –– 1266–>8 –– 3118–>8 ––

 Mid occipital –– –– –– 225–4.91 –– –– –– –– 

 (Pre)cuneus –– 1060–3.99 –– 225–3.76 –– –– –– –– 

 Lingual gyrus –– –– 3632–5.26 18–3.74 –– 4559–6.99 –– 67–3.68 

 Hippocampus –– –– –– –– 14–3.84 –– –– –– 

 Caudate –– –– –– –– –– 26–3.86 –– –– 

 Cerebellum –– –– –– –– –– –– –– 67–5.06 

Clusters in italics correspond to sub-clusters belonging to cluster of the same extent given in the column. (1)Posterior

Table 5.2: Task comparisons (N) and conjunctions (C). Peak locations, cluster
extent–Z-score (p < 0.001 uncorrected; k = 10). Clusters in italics correspond to
sub-clusters belonging to cluster of the same extent given in the column. (1)Posterior
part; (2)Middle part; (3)Anterior part; (4)Dorsal part; (5)Ventral part; (6)Ventral
part, extending into the SMG, angular, superior temporal gyri; (7)Ventral part, ex-
tending into the adjacent insula; (8)Extending into the adjacent IFG; (9)Overlapping
most of the adjacent dorsal and ventral IFG-Opercularis. Ph-s = Phonol-Seg task; Ph-
d = Phonol-Diff task; Oper = opercularis; Tri = triangularis; Rol = rolandic; Inf = inferior; Mid = middle;
Sup = superior; Med = medial; Ant = anterior; SMG = SMG.

tasks > auditory tasks) revealed specific clusters in the right middle frontal gyrus,
in the right dorsal IFG-opercularis, and in the right posterior and medial STG. In
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Figure 5.3: ROI analyses for each paradigm. Bar plots depict the effect size of acti-
vation (mean ± standard deviation) in each left and right ROI for each paradigm.
Significant activation or deactivation (p < 0.05) are indicated by a double star. In
addition, significant interparadigm differences (p < 0.05) are indicated by brackets.
Oper = opercularis; Tri = triangularis; Rol = rolandic; Inf = inferior; Mid = middle; Sup = superior.

Fig. 4. Laterality indexes (LIs) and significant lateralizations within the ROIs for each paradigm. The box Figure 5.4: LIs and significant lateralisations within the ROIs for each paradigm.
The box plots depict lateralisation for each ROI, with positive LIs (resp. negative)
reflecting left (resp. right). Significant lateralisations (p < 0.05) are indicated by
bold lines. Significant interparadigm differences of LIs are indicated by a bracket.
Oper = opercularis; Tri = triangularis; Rol = rolandic; Inf = inferior; Mid = middle; Sup = superior.
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addition, strong specific activations appeared in the fusiform gyri, as also confirmed
by significant interparadigm differences in the ROI analysis (Fig. 5.3).

The conjunction analysis of the four tasks (Table 5.2; Fig. 5.2) highlighted the
dorsal and ventral parts of the left IFG-opercularis, as well as the left posterior
STG/SMG junction; on the right, only one small cluster appeared in the middle
of the MTG. Additional common clusters were located in the left precentral gyrus,
and, bilaterally, in the lingual gyri and the anterior insula. The conjunction analysis
of the unions of auditory and visual tasks (Fig. 5.2) showed an enlargement of the
same clusters with an extension of the left temporal cluster onto the middle STS.

The union analysis of all tasks (Fig. 5.2) highlighted, on the left, a large cluster
encompassing the precentral gyrus, the dorsal IFG-opercularis/triangularis junc-
tion, the insula and the immediately adjacent ventral IFG-opercularis, as well as a
strong activation extending from the SMG to the anterior STS. Smaller counterparts
were seen on the right.

Therefore, the auditory lexico-semantic tasks showed more activation of the au-
ditory receptive language region (i.e. middle STG, Heschl’s gyrus), whereas the
visual phonological tasks involved more the occipitotemporal visual region (i.e.
fusiform gyrus). For these latter tasks, the stronger contribution of the right IFG
and STG, compared to the reference tasks, reflects a less left-lateralised activation
of these regions, as suggested also by the LIs. Finally, the conjunction of all tasks
highlighted more focused activations in the left language areas, while their union
showed enlarged activations, especially for the posterior STG/SMG region.

4 Discussion

FMRI has an expanding role in the localisation and lateralisation of language in chil-
dren, which is an important issue in clinical and research applications such as presur-
gical mapping [Anderson 2006,O’Shaughnessy 2008,Wilke 2006] and the investiga-
tion of development language disorders [Dick 2008,Friederici 2006a,Rapin 2003]. A
major issue of language fMRI is due to the complexity of language, which means
that it is crucial to choose a panel of language activation tasks able to detect all,
but only, language brain areas (e.g. [Tie 2008]). In the paediatric context, another
specific issue is the need for child-adapted tasks [O’Shaughnessy 2008,Wilke 2003a,
Wilke 2006], which is even more important with impaired children whose achieve-
ment of the task may be compromised by high attentional, reading or metalinguistic
requirements.

In this study, we tested with a group of healthy children a panel of four fMRI
language tasks that could be used with young impaired children. One important
constraint was to avoid reading and metalinguistic requirements, with the aim of
increasing the feasibility and efficiency of the procedure, while reducing the atten-
tional and academic demands. Two reference auditory lexico-semantic tasks were
chosen from the literature, and two new tasks with visual stimulation were designed
to focus on spontaneous (i.e. non-metalinguistic) phonological processing. When
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taken individually, the tasks of each modality aimed to stress distinct language ar-
eas, and the whole panel aimed to be sensitive and specific in the detection of the
language network.

4.1 Methodological issues

FMRI in children implies special methodological precautions due to the risk of
movement, attentional constraints, task design, task preparation and achievement,
as well as appropriate reference brain data [Gaillard 2001a, O’Shaughnessy 2008,
Wilke 2003a].

To optimize the feasibility of the procedure for young disordered children, and
minimize the movement artefacts and the attentional complications, we imple-
mented four identical block-designed paradigms of equal periods, without control
active tasks or motor responses required from the child. These choices reduced
the heterogeneity and complexity of the protocol, as the child did not have to un-
derstand and achieve distinct control tasks, or give motor responses in addition
to understanding and achieving the four language tasks themselves. This may be
particularly crucial for disordered children with lower attentional, cognitive or lan-
guage abilities. Furthermore, while requiring motor responses is well suited for
metalinguistic tasks (i.e. judgement tasks), this is precluded in the investigation of
more natural condition such as word production, whether covert or overt. Finally,
the simplicity and identity of the paradigm parameters for all tasks facilitated the
comparison and combination of the results.

Nevertheless, these choices have some drawbacks. First, the achievement of
the tasks could not be directly checked. Requiring overt responses would have
allowed online performance monitoring, but aloud speech increases the risk of
movement, which is crucial with children and all the more with disordered chil-
dren [O’Shaughnessy 2008]. Therefore, children were intensively prepared before
the scanner session using the same order of tasks and stimuli, allowing to check
that they understood and were able to achieve successfully the task, and they
were questioned after the session. Secondly, the use of a low-level control condi-
tion (listening to the noise of the scanner and fixing a cross) may involve more
non-language-specific coactivations than a more specified control task (e.g. [Hol-
land 2007,Wilke 2006]. Therefore, we used conjunction analysis between the various
tasks to highlight specific language activations.

Moreover, to select a sample representative of the general population and close
to the clinical context for disordered children, we did not only recruit right-handed
children. In this study, the proportion of left-handed children (11%), is within the
normal range estimate (8–15%). To investigate the effect of left-handedness on our
results, we carried out supplementary ROIs and LIs analysis of the data from the
sixteen right-handed children only, focusing on the IFG, STG and SMG. For the
four tasks, results showed no difference concerning the pattern of activation and
lateralisation within these ROIs compared to the whole group.

In data processing, to avoid distortions due to normalisation of the children’s
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data on an adult standard template [Wilke 2002, Wilke 2003d], we used a recent
tool dedicated to the creation of pair- and group-matched normalized templates
based on normative brain data [Wilke 2008]. This enabled to avoid an age-related
bias in the normalization steps by using a customized paediatric template based
on the age and sex of our 18 subjects. To carry out local analyses, ROIs were
based on the non-linear deformation of the AAL atlas [Tzourio-Mazoyer 2002] on
our customized template, as suggested by [Wilke 2003c]. An inherent limitation
of ROIs generated from an atlas is that they cannot adequately model subject
variability, and hence do not allow to focus on sub-regions that might be of interest.
Furthermore, activations may overlap several ROIs (e.g. the posterior STG and the
SMG), so that the actual activations and lateralisations may, in fact, be minimized
within each separated ROI. However, given the context and our objectives, this
approach remains instructive by confirming significant activation and lateralisation
when they are located within the ROIs.

4.2 Reference lexico-semantic auditory tasks

As expected, the words generation from category task (category), when contrasted
with rest, highlighted left frontal rather than temporal language areas. More
precisely, the paradigm elicited a left activation of the dorsal and caudal IFG-
triangularis, at the junction with the pars opercularis, with another cluster of inter-
est extending from the insula to the adjacent ventral IFG-opercularis. By contrast,
there was a weaker and bilateral activation of the middle STS, without activation
in the posterior STG. Thus, our study confirms that this paradigm, easier than
other verbal fluency paradigms (e.g. [Riva 2000,Warburton 1996]), is able to induce
a relatively specific activation of Broca’s area in children.

This result is in line with the study by [Gaillard 2003], who used this paradigm
with a group of 16 children (mean age: 10.2) and reported a left activation of the
IFG without consistent activation of the STG. However, the location within the
IFG is somewhat different from the present results, as these authors reported a
main activation in the ventral pars orbitalis and a weaker activation in the anterior
pars triangularis. Furthermore, no activation in the middle STS was reported. The
task used in our study included three categories in each 27 s active block whereas
Gaillard et al.’s task delivered one category within each 32 s block. Therefore, it is
likely that our task results in a weaker executive demand and a greater receptive
component. Moreover, in adults, the location of semantic processing within the left
IFG remains to be specified. In their systematic review of studies using words gener-
ation from category, [Costafreda 2006] reported a ventral location. However, other
studies of semantic processing have reported a dorsal location (e.g. [Wagner 2001]),
and [Vigneau 2006], in their meta-analysis of studies using various semantic con-
trasts, reported semantic clusters in the dorsal pars opercularis.

In contrast with the category task, the auditory-responsive task (definition)
elicited a strong and left-dominant activation of the temporal language regions
without significant activation in the left IFG. Left and right activations appeared
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along the middle and anterior STS, extending specifically on the left in the posterior
STG and adjacent SMG. Again, one may note a left-only cluster extending from
the insula into the adjacent ventral IFG-opercularis.

This in line with the study by [Balsamo 2002], who used a similar paradigm
with a group of 11 children (mean age: 8.5) and reported a left-dominant activa-
tion centred on the middle STG and MTG, and including the primary auditory
cortex. Furthermore, these results are similar to those obtained in other studies
with children using different language comprehension tasks such as picture/verbal-
description matching [Wilke 2006], story listening [Ahmad 2003], or sentence lis-
tening with correction judgement [Brauer 2007]. Interestingly, a reading variant of
the definition task (i.e. read response naming) has been shown to elicit activations
in the left middle MTG without activation in the posterior STG [Gaillard 2001b].
Thus, the definition task appears to be able to cause a relatively specific activation
in the left temporal region and especially in Wernicke’s area. In line with current
knowledge [Hickok 2007,Vigneau 2006], the bilateral activation of the middle STS
may reflect the phonological-level processing of auditory speech (or written text)
input, whereas the activation of the posterior STG / SMG may reflect the mapping
of phonemes onto articulatory representation.

Our statistical comparison between these two reference tasks confirmed the
specificity of the definition task and highlighted a specific activation for the category
task in the left precentral/IFG junction. Moreover, the conjunction of both tasks
revealed specific core language areas on the left, focusing on the posterior STG, the
middle STS, the insula along with the adjacent ventral IFG-opercularis, and the
dorsal IFG-opercularis.

4.3 New phonological visual tasks

The two new tasks with visual stimulation were designed to investigate spontaneous
phonological processing. In contrast with most studies using metalinguistic tasks
(e.g. rhyme judgements), these tasks are based on a picture-naming condition in
which familiar objects to be named exhibit a close phonological composition.

The first new task (phon-diff) was designed to assess the brain basis of spon-
taneous production of minimal phonological differences (e.g. /pul/–/bul/–/mul/),
and was expected to induce activations in the left IFG and temporo-parietal areas,
as suggested by current knowledge about the brain areas involved in phonological
production (e.g. [Vigneau 2006]). Interestingly, at the threshold of p < 0.001 un-
corrected, this task, when compared to rest, yielded left-dominant activations in
the whole dorsal and ventral IFG-opercularis along the precentral sulcus, in a dor-
sal and more medial part of the IFG-triangularis, and, to a lesser extent, in the
posterior STG.

The second new task (phon-seg) was designed to assess the brain basis of spon-
taneous phonological change of segmentation involved in the subtraction or addition
of phonemes (e.g. /kar/–/kart/–/kartõ/). Compared to the previous task, a higher
activation of the left IFG was expected according to current hypotheses about the
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role of this structure in phonological segmentation [Burton 2001]. In fact, this
paradigm elicited an interesting activation not only in the left IFG-opercularis, ly-
ing along the precentral sulcus, but also an equivalent activation in the left posterior
STG. At the threshold of p < 0.001 uncorrected, our results showed an enlargement
of these clusters, with an extension of the posterior temporal activation into the
middle STS.

Statistical comparisons between the two tasks did not show task-specific acti-
vations in language areas, reflecting the similarity of their global activation pat-
terns. Promising results are provided by the conjunction analysis, which showed
left-dominant common activations in core language areas, namely the dorsal and
ventral IFG-opercularis, lying along the precentral sulcus, and the posterior STG.

Thus, both new visual tasks yielded an interesting and similar activation pat-
tern of core left language areas, in agreement with current knowledge about the
brain basis of phonological processing [Buchsbaum 2001,Burton 2001,Heim 2003,Vi-
gneau 2006]. The location within the left IFG, along the precentral sulcus, is con-
vergent with previous studies of phonological tasks involving phonemes isolation
or sequencing (e.g. [Vigneau 2006]. In addition, according to the group analysis,
the task involving a phonological change of segmentation showed as expected, a
greater activation of the IFG than the other task, in agreement with current hy-
potheses [Burton 2001]. Nevertheless, this task also yielded a higher activation
of the left STG, which requires further explanation (for discussion, see also [Gan-
dour 2003,Heim 2009]). The next step of the work needs to use these new tasks for
disordered children population investigation. In particular, although the phon-diff
task appeared to be less efficient in this study of healthy children, further study
may show more efficiency with disordered children.

4.4 Whole panel

When statistically contrasted with the new visual tasks, the two auditory reference
tasks yielded specific activations of the left and right middle STG, including the
primary auditory cortex, and lingual gyri. The involvement of the middle STG may
reflect auditory verbal processing. The recruitment of the lingual gyri is consistent
with the involvement of ventromedial temporo-occipital regions during semantic
processing, even in non-visual tasks, suggesting mental imagery or visualization
strategies (see e.g. [Abel 2009,Sachs 2008,Vitali 2005,Wise 2000]).

Compared to the reference tasks, the two new visual tasks activated slightly
more the right IFG-opercularis and posterior STG, which suggests less lateralisa-
tion associated with the new tasks in these regions. Moreover, these new tasks
yielded greater activation of the bilateral fusiform gyrus, whose function has been
the subject of much debate and which has been shown to be involved in a number
of tasks, such as picture naming, object processing, reading and amodal conceptual
processing (for discussion, see [Cohen 2004,Price 2003,Hillis 2005,Karnath 2009]).

Although this contrast between the auditory and visual tasks did not show
differences in the left IFG and posterior STG / SMG, the separated conjunction
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analyses of the two groups of tasks provide distinctive results, with the former
leading to a wider activation in the left posterior STG and the latter in the left
IFG.

The dissociation between the lingual and fusiform regions, which are more in-
tensely activated by the auditory and visual language tasks, respectively, may be
surprising. Using a picture-naming task with verbal semantic distracters (interfer-
ence paradigm), [Abel 2009] reported an activation of the left and right lingual gyri.
By contrast, [Balsamo 2006] reported an activation of the left fusiform gyrus in chil-
dren during an auditory semantic decision task. Further work is needed to clarify
the respective contributions of these two regions in object and language processing.

The conjunction analysis across all four tasks was assumed to reveal more spe-
cific and essential language areas. Interestingly, it highlighted left-only common and
focal activations in core language regions, i.e. the dorsal and ventral IFG-opercularis
and the posterior STG. Furthermore, the union analysis of all the paradigms, as-
sumed to be more sensitive for detecting a more comprehensive language network,
showed clusters of slightly distinct but close locations in the left IFG, and an ex-
tended left-dominant parietotemporal activation from the SMG to the anterior STS.
The conjunction of the auditory tasks union and the visual tasks union showed
an intermediate picture more informative than the conjunction and more specific
than the union. Thus, in agreement with previous authors [Gaillard 2004, Ram-
sey 2001, Roux 2003, Tie 2008, Wilke 2006], our study confirms the usefulness of
using a number of language tasks in an fMRI procedure.

In conclusion, out of the four language tasks in our panel, the two reference
tasks (category and definition) demonstrated good abilities to yield selective left
activations in the IFG and STG, respectively. The two new tasks studied here
(phon-diff and phon-seg), which targeted phonological processing without requiring
any metalinguistic or reading abilities, also yielded left-dominant activations in the
dorsal and ventral IFG-opercularis, as well as the posterior STG, with an overall
superiority of the phon-seg task. Compared to the reference tasks, the new tasks
activated simultaneously both left frontal and temporal language regions, but less
strongly and more bilaterally than the category task for the left IFG and than
the definition task for the left posterior STG. When all tasks are taken together,
conjunction and union analyses yielded interesting delineations of similar core lan-
guage regions, with greater sensitivity being obtained from union analysis. This
study confirms that a combination of several tasks tapping different aspects of lan-
guage is useful for language brain mapping in children, and provides new tasks for
the investigation of the brain basis of spontaneous phonological processing. We
believe that such an fMRI panel could be efficient and useful with young children
in the context of presurgical mapping as well as the investigation of acquired or
developmental childhood disorders.



Chapter 6

Abnormal brain function in
Typical-Specific Language Impairment

This chapter is presented in the form of a paper. This work was realised in collab-
oration with Clément de Guibert (cf. chapter 4) and was originally published in
Brain [de Guibert 2011].

Abstract

Atypical functional lateralisation and specialisation for language have been pro-
posed to account for developmental language disorders, yet results from functional
neuroimaging studies are sparse and inconsistent. This functional MRI study com-
pared children with a specific subtype of Specific Language Impairment affecting
structural language (n=21), to a matched group of typically-developing children
using a panel of four language tasks neither requiring reading nor metalinguistic
skills, including two auditory lexico-semantic tasks (category fluency and respon-
sive naming) and two visual phonological tasks based on picture naming. Data
processing involved normalizing the data with respect to a matched pairs paedi-
atric template, groups and between-groups analyses, and laterality indices assess-
ment within regions of interest using single and combined task analysis. Children
with Specific Language Impairment exhibited a significant lack of left lateralisa-
tion in all core language regions (inferior frontal gyrus-opercularis, inferior frontal
gyrus-triangularis, supramarginal gyrus, superior temporal gyrus), across single or
combined task analysis, but no difference of lateralisation for the rest of the brain.
Between-group comparisons revealed a left hypoactivation of Wernicke’s area at the
posterior superior temporal/supramarginal junction during the responsive naming
task, and a right hyperactivation encompassing the anterior insula with adjacent
inferior frontal gyrus and the head of the caudate nucleus during the first phono-
logical task. This study thus provides evidence that this specific subtype of Specific
Language Impairment is associated with atypical lateralisation and functioning of
core language areas.
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1 Introduction

Some children fail to develop typical language for no obvious reason. Their im-
pairment typically reflects difficulties with producing and understanding oral lan-
guage, and cannot be attributed to sensory-motor or intellectual deficits or other
developmental impairment, especially autistic spectrum disorders, and is not the
consequence of evident brain lesion or socio-affective deprivation [Bishop 1997,
Rapin 2003]. It usually leads to literacy difficulties [Bishop 2004b] and, in a
substantial number of cases, to persistent language difficulties through adoles-
cence [Stothard 1998]. This condition is known as developmental dysphasia [Pa-
risse 2009], developmental language disorder [Rapin 2003], or SLI [Bishop 1997].

The current optimal diagnostic procedure of SLI involves both psychometric as-
sessment and clinical appraisal and expertise [Rapin 2003,Bishop 2008], since psy-
chometric criteria alone do not provide sufficient sensitivity, specificity, and clinical
congruence [Dunn 1996, Bishop 2004a]. Psychometric criteria may include a nor-
mal nonverbal intelligence quotient and abnormal language scores [Tomblin 1996].
Nonword repetition, sentence repetition, and syntactic manipulation are known to
be more sensitive and specific than other tests [Conti-Ramsden 2003,Bishop 2004a].

SLI is known to be heterogeneous, encompassing distinct clinical profiles that
may reflect distinct underlying deficits. A convergent trend distinguishes structural
impairments affecting the core components of language (especially morphosyntax
and phonology), from those affecting language reception, articulation or social use
(auditory verbal processing, oro-motor verbal gesture, and pragmatics) [Rapin 1983,
Conti-Ramsden 1997, Rapin 2003, Bishop 2004a]. Structural impairments are re-
ferred to as grammatical SLI [van der Lely 2005], linguistic dysphasia [Parisse 2009],
or T-SLI [Bishop 2004a].

The aetiology of SLI remains largely unknown. There is growing evidence that
SLI has a genetic component and can be inherited, but a complex picture is emerg-
ing of interaction between several genes and environmental risk factors [Fisher 2003,
Bishop 2006]. This interaction may affect the anatomo-functional development and
organization of the brain language network [Bates 1997, Bishop 2000, Rapin 2003,
Friederici 2006a]. In addition, given the left lateralisation of language in most
typically-developing individuals, atypical language lateralisation has been hypothe-
sized to explain literacy and language developmental disorders [Annett 1985,Gesch-
wind 1985]. Moreover, as acquired childhood aphasias show that unilateral lesion
of the dominant hemisphere in childhood rarely leads to a persistent deficit [Van
Hout 1997], the abnormality of brain development in SLI is suspected to be bilat-
eral [VarghaKhadem 1998,Rapin 2003].

Although some studies have reported morphometric and functional brain anoma-
lies in SLI, the results remain inconsistent and heterogeneous [Webster 2004, Frie-
derici 2006a,Herbert 2007].

Volumetric studies have reported abnormal volume and/or asymmetries of the
perisylvian fronto-temporo-parietal region [Plante 1991], inferior frontal region [Jerni-
gan 1991] and posterior perisylvian region or Planum Temporale (PT) [Jernigan 1991,
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Leonard 2002]. However, other studies have reported normal [Gauger 1997,Preis 1998]
and even exaggerated [De Fossé 2004,Herbert 2005] asymmetry of the PT. Further-
more, voxel-based morphometry studies have reported no differences of grey matter
for core language areas [Jäncke 2007] and grey matter increase in the right posterior
Superior Temporal Gyrus (pSTG) [Soriano-Mas 2009].

Studies using SPECT have also detected perisylvian functional anomalies, in-
cluding hypoactivation of the anterior perisylvian region at rest [Lou 1984] and the
left inferior parietal region during phoneme discrimination [Tzourio 1994], as well
as Broca’s area during a dichotic verbal task [Chiron 1999]. However, [Ors 2005]
reported hypoactivation at rest affecting the right parietal region and a right hy-
peractivation with lower left asymmetry involving the temporal lobes.

To our knowledge, three studies have investigated SLI using fMRI. In a study of
8 adolescents with SLI, [Weismer 2005] reported hypoactivation in the left parietal
region and precentral gyrus during sentence comprehension, as well as in the left
“insular portion of the IFG” during final word recognition, without any difference
of lateralisation. [Dibbets 2006], in a study of 4 adolescents with SLI, found hyper-
activations in frontal, temporal and angular regions during a non-verbal executive
paradigm. Finally, based on listening to speech sounds in 5 members of the same
family, [Hugdahl 2004] reported a leftward but smaller and weaker temporal activa-
tion than in controls. Thus, the results from neuroimaging studies of SLI remain in-
consistent, which may be partly due to the heterogeneity of SLI [Rapin 2003,Friede-
rici 2006a,Herbert 2007,Whitehouse 2008]. In addition, although fMRI is promising
for investigating developmental language disorders [Friederici 2006a,Gaillard 2006],
there are as yet very few fMRI studies.

One issue of fMRI language mapping is its sensitivity and specificity, i.e. the
ability to draw a comprehensive and selective picture of the essential language
network [Medina 2007, Tie 2008]. Since any single language task is unlikely to
engage all aspects of language, and be limited to language processing alone, one
strategy is to use several tasks targeting distinct aspects of language [Deblaere 2002,
Roux 2003,Gaillard 2004]. This makes it possible to focus separately on parts of the
network that are distinctly recruited by the tasks, while combined tasks analysis
provides a more robust laterality assessment [Ramsey 2001,Rutten 2002].

FMRI in children requires special precautions due to the risk of movement, at-
tentional constraints, task design, and preparation of the child [O’Shaughnessy 2008,
Leach 2010]. The procedure may be even more problematic with young and language-
disordered children, who may not be able to do classical tasks involving reading or
verbs-to-words and words-to-letter generation, which have been used with typically-
developing children. Similar difficulty arises with metalinguistic tasks, which, in
addition, require explicit forced-choice analysis and are likely to involve undesired
executive effects [Blank 2002,Crinion 2003].

Following fMRI studies that developed task panels for language mapping in
children [Gaillard 2004, Wilke 2006, Holland 2007], we developed and tested with
typically-developing children a four-task panel that was specifically designed to be
feasible for use with young and language-disordered children [de Guibert 2010]. The
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whole procedure avoids reading, metalinguistic or complex executive requirements.
It makes use of auditory and visual stimuli, and involves language comprehension
and production.

In the present fMRI study, we use this task panel to compare a group of children
with T-SLI to a matched group of typically-developing children. All T-SLI children
were referred to a hospital specialized centre and diagnosed on both psychometric
and clinical grounds. Data processing includes single task, group and between-
group analysis, as well as LI assessment and comparison within ROIs using single
tasks and combined tasks analysis.

2 Methods

2.1 Participants

The study was approved by the regional ethics committee of the University Hospi-
tal. Parents and children were informed about the experiment; parents signed the
informed consent and children gave their verbal assent.

Children with T-SLI were native French speakers recruited among children re-
ferred to the Centre for Language and Learning Disorders (University Hospital).
They were diagnosed on psychometric and clinical grounds by the interdisciplinary
team, after neuropediatric, neuroradiological, neuropsychological and language ex-
aminations. Out of the twenty-five children initially recruited, four were finally
excluded, because of associated attention-deficit hyperactivity disorder (n = 1),
non-verbal index within the deficit range (i.e. < 70; n = 1), and fear (n = 1) or
teeth braces (n = 1) preventing the MRI session. This resulted in a group of 21
T-SLI children aged from 7 to 18 years (mean age = 11.4 ± 3.3 years old), with 9
boys (mean age = 11.4 ± 3.7 years old) and 12 girls (mean age = 11.4 ± 3.1 years
old). Three children were left-handed (14.3%), as assessed using the Edinburgh
inventory [Oldfield 1971], which is within the estimation of 8–15% left-handers for
the general population [Hardyck 1977]. None exhibited any neurological anomalies
or auditory deficit, or was affected by communication, behavioural or attentional
disorders. The visual inspection of anatomical 3D T1w and FLAIR images by an
experienced neuroradiologist showed no significant abnormalities.

A matched group of typically-developing children was recruited excluding non-
French native language speakers, previous or current neurological, developmental or
psychiatric illness, as well as learning disability or abnormal academic performance.
They did not undergo psychometric testing. This resulted in a group of 18 children
aged from 8.7 to 17.7 years (mean age = 12.7 ± 3 years old), with 9 boys (mean
age = 12.3 ± 3.2 years old) and 9 girls (mean age = 13.0 ± 3.0 years old). Two
children (11.1%) were left-handed.

The T-SLI and control groups were similar for sex and handedness, and no
significant between-group difference was found for age (two-sample t-test, p = 0.22).
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2.2 Neuropsychological and language assessment

Neuropsychological assessment includes achievement of the full Wechsler Intelli-

gence Scale for Children, Fourth version (WISC-IV; [Wechsler 2003]). This version
provides a Verbal Comprehension Index (VCI) and a Perceptual Reasoning In-
dex (PRI) replacing the previous verbal and nonverbal intelligence quotients. Two
subjects older than 16 years performed the full Wechsler Adult Intelligence Scale,

Third version (WAIS-III; [Wechsler 1997]).
T-SLI children as a group showed a discrepancy between low verbal (VCI) and

higher nonverbal (PRI) indexes (Table 6.1). Individually, nonverbal scores were all
above the intellectual deficit range (i.e. PRI ≥ 70).

The language assessment included subtests from the Langage oral, Langage écrit,

Mémoire, Attention battery (L2MA; [Chevrie-Muller 1997]). Since the L2MA is
standardized from 8 years 7 months, four children below this age performed analo-
gous subtests from the Nouvelles Epreuves pour l’Examen du Langage, standardized
for younger children (N-EEL; [Chevrie-Muller 2001]). All children performed the
6 following subtests: phonology (repetition of complex unfamiliar words); vocab-
ulary (picture naming); morphosyntactic integration and comprehension (sentence
completion; sentence-picture matching); comprehension of complex instructions;
sentence repetition.

Children with T-SLI as a group showed scores lower than 1 standard-deviation
below the normal mean for phonology (repetition of complex unfamiliar words),
sentence repetition, and morpho-syntactic integration (sentence completion) (Ta-
ble 6.1). Individually, all children performed less than 1.5 standard deviation below
the normal mean for at least one of these subtests. Thus, all children demonstrated
impairments of the phonological or morpho-syntactic components of language, or
both, which is characteristic of T-SLI. No child was diagnosed with developmental
verbal dyspraxia, verbal auditory agnosia, or pragmatic language impairment.

2.3 Functional MRI protocol and task panel

The protocol has been previously described [de Guibert 2010] and is summarized
here. The session includes four language tasks separately implemented with the
same parameters, aiming to minimize attentional complications: a simple block
design involves alternating a rest condition with a task, starting with rest. Each
paradigm comprises three 27 s blocks of each condition and has a total duration
of 2 min 48 s. The session has a duration of 30-35 min, including the anatomical
acquisition and the four tasks. All subjects perform the tasks in the same order,
as during the preparation step, to avoid the mixing of auditory and visual tasks.
During the rest condition, children are asked “not to work”, to listen to the noise
of the scanner, while fixing their attention on a red cross displayed on the screen.

The panel of tasks does not involve reading, metalinguistic (i.e. explicit anal-
ysis of language) or high-executive skills, and targets anterior and posterior core
language areas. It uses auditory and visual stimuli delivery, solicits language com-
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Table 6.1: Groups characteristics. Ranges are reported in brackets. Bold font indi-
cates language scores smaller than one standard deviation below the normal mean.
(a) Including scores of the four youngest children who performed equivalent sub-
tests from the Nouvelles Epreuves pour l’Evaluation du Langage (N-EEL; see text).
L2MA = battery Langage oral, Langage écrit, Mémoire, Attention; WISC-IV= Wechsler Intelligence Scale
for Children-Fourth version; VCI and PRI= Verbal Comprehension and Perceptual Reasoning Indexes.

Control group (n = 18)

Age (years) 12.7±3 (8.7–17.7)
Gender (male:female) 9:9
Handedness (left:right) 2:16

T-SLI Group (n = 21)

Age (years) 11.4±3.3 (7–18)
Gender (male:female) 9:12
Handedness (left:right) 3:18
Intellectual indexes (WISC-IV)
Verbal index (VCI) 77.0±15.7 (45 to 112)
Non-verbal index (PRI) 90.0 ± 13.1 (73 to 121)
Language z-scores (L2MA)a

Phonology (complex unfamiliar word repetition) −2.4 ± 1.7 (-6.9 to 0.4)
Vocabulary (picture naming) −0.3 ± 1.0 (-2.6 to 1.3)
Morphosyntactic integration (sentence completion) −1.2 ± 1.5 (-5.0 to 1.3)
Complex instructions comprehension −0.2 ± 1.1 (-2.2 to 1.7)
Morphosyntax-Comprehension (sentence-picture match) −0.5 ± 1.0 (-2.5 to 1.1)
Sentence repetition −1.4 ± 0.8 (-2.5 to 0.8)

prehension and production, and involves lexico-semantic and phonologic processing.

Two auditory lexico-semantic tasks were chosen from the literature because
of their distinct and selective activations of either the left IFG (word generation
from categories, [Gaillard 2003] hereafter category task) or the left STG (auditory
responsive naming, [Balsamo 2002]; hereafter definition task).

In the category task adapted from [Gaillard 2003], children hear category names
(e.g. animals, colours) and have to silently generate examples of these categories.
A category name is delivered every 9 s, with three categories per block and nine
categories for the whole task.

In the definition task adapted from [Balsamo 2002], children hear definitions of
concepts (e.g. “a big animal with a trunk”) and have to find and silently name the
corresponding word (e.g. elephant). Definitions are delivered every 9 s, with three
definitions per block and nine definitions for the whole task.

Two new visual phonological tasks are based on picture naming and require the
child to silently name three objects repetitively (i.e. triplets) one-by-one. Within
the triplets, the names are semantically unrelated, but exhibit a minimal phonolog-
ical change, either, for the first task, a phonological minimal difference (hereafter
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phon-diff task), or, for the second task, a change in segmentation (hereafter phon-seg
task). These tasks are adapted from so-called minimal pairs in linguistics and from
procedures used in the assessment and remediation of phonological disorders. The
repetitive evocation of just three familiar but phonologically close words attenuates
the lexico-semantic requirements, while stressing the phonological constraints.

In both tasks, line-drawings of objects from each triplet are displayed every 1.4 s,
successively and randomly (without any picture being delivered twice in succession),
so that the child could not predict the upcoming picture. Three distinct triplets
(one per block) are used for each task.

In the phon-diff task, children name objects such as “poule, boule and moule”
(/pul/–/bul/–/mul/; [hen, ball, tin]). In the triplets, a difference of distinctive
feature occurs in the first phoneme, e.g. the voicing feature of /p/ and /b/ (voiceless
vs. voiced) for poule and moule. Concretely, children may successively name, for
example: “poule, moule, boule, moule, poule. . . ” in a first block, then: “banc, dent,
gant, dent, banc. . . ” (/bã/, /dã/, /gã/. . . ; [bench, tooth, glove]) in a second block,
and so on.

In the phon-seg task, children name objects such as “car, car-te and car-t-
on” (/kar/–/kart/–/kartõ/; [car, card, cardboard box]). In the triplets, there is a
change of segmentation, with phoneme addition (car and then carte or carton) or
subtraction (carton and then carte or car). Concretely, children may successively
name, for example: “car, carte, carton, carte, car. . . ” in a first block, then: “croix,
roi, oie, roi, croix. . . ” (/krwa/, /rwa/, /wa/. . . ; [cross, king, goose]) in a second
block, and so on.

For all tasks, children were prepared extensively prior to entering the scanner,
with each task being thoroughly explained and practised several times, using orig-
inal task material and both aloud and silently, to check for comprehension and
achievement by the child.

2.4 Data acquisition

Acquisitions were performed on a 3 T whole-body scanner (Achieva, Philips Med-
ical Systems, Best, The Netherlands) using a 8-channel head coil. Anatomical 3D
T1w images were acquired with a Fast Field Echo sequence. The acquisition pa-
rameters were as follows: TE/TR/Flip angle: 4.6 ms/9.9 ms/8◦; acquired matrix
size: 256 mm x 256 mm; FOV: 256 mm; voxel size: 1 mm x 1 mm x 1 mm; volume:
160 sagittal 1 mm thickness slices; acquisition time: 3 min 56 s. Functional images
were acquired using a single-shot T2*w gradient-echo echo planar imaging sequence.
Twenty-four 4 mm slices were acquired with the following parameters: TE/TR/Flip
angle: 35 ms/3000 ms/90◦; acquired matrix size: 80 x 80; reconstructed matrix size:
128 x 128; FOV: 230 x 230; acquired voxel size: 2.9 mm x 2.9 mm x 4 mm; recon-
structed voxel size: 1.8 mm x 1.8 mm x 4 mm. Slices were positioned parallel to the
anterior commissure-posterior commissure line, with no gap, and were interleaved
from bottom to top. Each functional run consisted of 56 series of image acquisi-
tions for the 24 slices covering the entire brain volume separated by a 3000 ms delay,
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with a total acquisition time of 2 min 48 s. Children were positioned supine in the
system. The subject’s head motion was minimized using straps and foam padding.

Visual stimuli were delivered through a screen placed within the head-coil (IFIS-
SA fMRI system, Invivo, Orlando, FL) just in front of the face, and synchronised
with the scanner. If necessary, the children wore corrective glasses compatible with
the high-magnetic-field environment. Auditory verbal stimuli were delivered by
an experienced member of the staff using the machine microphone, via specially
converted high-fidelity stereo headphones.

2.5 Data processing

MRI data were pre-processed and analysed using the GLM [Friston 1994a] with
SPM51 (Statistical Parametric Mapping 5; Wellcome Department of Imaging Neu-
roscience, University College, London). The first two volumes of fMRI data were
discarded to allow for signal stabilization. Slice timing and motion correction were
applied to the remaining 54 volumes. Data were excluded if associated with ex-
cessive motion (more than 3 mm of translation in any direction or 3◦ of rotation
throughout the session). To prevent bias caused by the normalization of paedi-
atric data on adult templates [Wilke 2003d], we used the match pair option of
the Template-O-Matic toolbox [Wilke 2008] to generate a customized paediatric
template based on the age and sex of our 39 subjects. Structural MRI were seg-
mented using unified segmentation [Ashburner 2005], and then normalized. FMRI
data were registered on structural images, normalized and then smoothed using an
isotropic 8-mm FWHM 3D Gaussian kernel.

Statistical activation maps were obtained using a mixed effects analysis. At the
subject level, a high-pass filter was applied to fMRI data to remove slow signal
drifts due to undesired effects. The haemodynamic response was modelled by the
Informed Basis Set [Friston 1998] to account for possible delay and dispersion of the
response from the canonical haemodynamic response function. For each task, group
activations were identified by contrasting out the effect of temporal and dispersion
derivative, focusing on the canonical variable, at a threshold of p < 0.05 FWE
at the cluster level with a cluster-defining threshold of p < 0.001. Between-group
comparisons were considered significant at the cluster level at a threshold of p < 0.05

FWE, with a cluster-defining threshold of p < 0.005.
For regional analyses, ROIs covering brain areas involved in language were se-

lected from the literature: the IFG-opercularis, IFG-triangularis, STG, SMG, and
insula. For laterality assessment, the following extended ROIs were also computed:
“frontal language” (IFG-opercularis, IFG-triangularis, insula), “temporo-parietal
language” (STG, SMG), “language” (i.e. combining the two previous regions) and
“non-language” (i.e. all brain ROIs except the “language ROI”). Left and right
ROIs as delineated in the AAL atlas [Tzourio-Mazoyer 2002] were adapted to our
customized paediatric template using an approach by [Wilke 2003c]. To match our
template, we performed a non-linear deformation of the structural image on which

1www.fil.ion.ucl.ac.uk
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the AAL atlas was delineated. The deformation parameters were then applied to
the ROIs.

LIs were estimated using the LI toolbox [Wilke 2007]. For each subject, the av-
erage t-value within each ROI was measured and voxels smaller than this threshold
were discarded. The LI was then calculated with the remaining voxels as follows:

li =

∑
ActivationL −

∑
ActivationR∑

ActivationL +
∑

ActivationR
, (6.1)

where
∑

ActivationL and
∑

ActivationR denote the sum of the remaining voxels in
the left and right parts of the ROI, respectively.

LIs were calculated for each single task and also using combined task analy-
sis [Ramsey 2001], the latter being known to yield more robust LIs when dealing
with a panel of tasks [Rutten 2002]. Boxplots based on these values were created
for each region and each task. T-tests were performed on each ROI to determine
significant group lateralisation (i.e. left or right if li was significantly greater or
smaller than zero, respectively; otherwise bilateral). Correlation with age was as-
sessed using covariance analysis including the factors group, age and interaction.
When the effect of interaction and age were non-significant, and based on current
hypotheses about SLI, a one-tailed two-sample t-test was performed to highlight
laterality differences in language ROIs, while a two-sided two-sample t-test was
performed in non-language ROIs.

3 Results

The results are reported successively for each single task, focusing on language
areas, including group analysis (fig. 6.1), between-group comparisons (fig. 6.2), as
well as LI measurements and comparison (fig. 6.3). Finally, LIs comparison using
the combined task analysis is reported (fig. 6.4).

3.1 Auditory language tasks

Category task The control group shows left-only activations in the dorsal IFG
as well as in the pSTG with, as expected, a predominance of the former. A left-
dominant activation is situated in the anterior insula and extends into the ventral
IFG. According to the LIs, the left lateralisation is significant in the IFG-opercularis
and -triangularis.

In contrast, the T-SLI group shows small activations in the left dorsal IFG, and
no activation in the most posterior STG. The activation of the anterior insula is
right-dominant and extends into the ventral IFG on the right. According to the
LIs, no ROI is significantly lateralised.

The between-group analysis does not reveal any significant between-group dif-
ferences. However, the LI comparison reveals a significant lack of left lateralisation
of the IFG-opercularis in the T-SLI group (fig. 6.3).
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Figure 6.1: FMRI group effects for each language task (p < 0.05 FWE). The
functional maps are super-imposed onto an individual brain normalized with respect
to our customized paediatric template, with x-coordinates in MNI space. Left slices
are left hemisphere.

Definition task The control group shows left-only activations in the pSTG/adjacent
SMG, and in the dorsal IFG, with an expected predominance of the former. A left-
dominant activation occurs in the anterior insula and extends into the adjacent
ventral IFG. According to the LIs, the SMG and IFG-opercularis are significantly
left-lateralised.

In contrast, the T-SLI group shows no activation in the pSTG/adjacent SMG
or in the dorsal IFG. A bilateral activation is centred on the anterior insula and
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Figure 6.2: FMRI between-group comparisons for definition and phon-diff tasks
(p < 0.05 FWE). Blue and yellow colours indicate the hypo- and hyperactivations,
respectively, for the T-SLI group compared with the control group. The 3D view
focuses on the peak contrasts. Functional maps are superimposed on an individual
brain normalized with respect to our customized paediatric template. Coordinates
are in Montreal Neurological Institute space.

extends, superiorly on the right, into the ventral IFG. According to the LIs, no ROI
is significantly lateralised, although the IFG and the SMG tend towards the right.

The between-group analysis highlights a left hypoactivation centred on the
pSTG/SMG junction in the T-SLI group (fig. 6.2; k = 304; T = 4.42; p = 0.03).
According to the LI comparison, there is a significant lack of left lateralisation of
the SMG, IFG-opercularis and IFG-triangularis in the T-SLI group (fig. 6.3).

3.2 Visual language tasks

Phonological minimal difference task The control group shows left-only acti-
vations in the ventral and dorsal IFG and in the anterior insula, without activation
in the STG. According to the LIs, the IFG-opercularis is significantly left-lateralised.

In contrast, the T-SLI group shows a right-only activation in the IFG and a
right-dominant activation in the anterior insula. According to the LIs, the IFG-
triangularis is significantly right-lateralised.
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Figure 6.3: LIs, significant group lateralisations and between-group comparisons
within the ROIs for each single language task. The box plots depict group laterali-
sation for each ROI, with positive and negative lateralisation indices reflecting left
and right, respectively, and with significant left or right lateralisations (p < 0.05)
outlined by bold lines. The p-values of between-group comparisons are indicated,
with significant between-group differences outlined by a square bracket with an as-
terisk. (a) P-value of the group factor from analysis of covariance with factors age
and group.

Between-group analysis highlights a right hyperactivation centred on the ante-
rior insula, extending into the adjacent ventral IFG (opercularis and triangularis)
and into the head of the caudate nucleus in the T-SLI group (fig. 6.2; k = 362;
T = 4.34; p = 0.02). According to the LIs comparison, there is a significant lack of
left lateralisation of the IFG-opercularis in the T-SLI group (fig. 6.3). A positive
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effect of age on LI is found in the SMG (p = 0.024), but no group difference is
detected in this region.

Phonological change in segmentation task The control group shows a left-
dominant activation in the ventral and dorsal IFG-opercularis, as well as left-only
activations in the pSTG/adjacent SMG and in the anterior insula. According to
the LIs, no region is significantly lateralised.

In contrast, the T-SLI group shows no activation in the IFG, the STG, the SMG
or the insula. According to the LIs, no ROI is significantly lateralised.

The between-group analysis does not reveal any significant between-group differ-
ences. However, the LI comparison highlights a significant lack of left lateralisation
of the IFG-opercularis in the T-SLI group (fig. 6.3).

3.3 Lateralisation index assessment and comparison using the com-
bined task analysis

F
o
r P

eer R
eview

  

 

 

 
 

Figure 6.4: LIs, significant group lateralisations and between-group comparisons us-
ing combined tasks analysis within single (right) and extended (left) ROIs. The box
plots depict group lateralisation for each ROI, with positive and negative laterali-
sation indices reflecting left and right, respectively, and with significant left or right
lateralisations (p < 0.05) outlined by bold lines. The P-values of between-group
comparisons are indicated, with significant between-group differences outlined by
a square bracket with an asterisk. (a) P-value from two-sided two sample t-test.
Temporoparietal language ROI = STG and SMG; frontal language ROI = IFG (opercularis and trian-
gularis) and insula; language ROI = frontal language and temporoparietal language ROIs; non-language
ROI = whole brain (i.e. all AAL atlas ROIs) except the language ROI.

According to the assessment of LIs using the combined task analysis, the control
group exhibits a left lateralisation of the SMG and STG. This is not observed with
the T-SLI group, where no ROI is lateralised. According to the between-group
comparison, the lack of left lateralisation in the T-SLI group is significant for the
SMG and the STG (fig. 6.4).
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Subsequently, the combined task analysis was carried out using extended ROIs:
“frontal language”, “temporo-parietal language, “language” (i.e. combining the two
latter) and “non-language ROI” (i.e. all AAL atlas ROIs except the latter). In the
control group, LIs from the combined task analysis show a left lateralisation in all
these extended ROIs. This is not the case for the T-SLI group, where no lateralisa-
tion appears, despite a right trend for the “frontal language” and “language” ROIs.

The between-group comparison of the LIs highlights a significant lack of left lat-
eralisation in all extended language ROIs (i.e. “temporo-parietal language”, “frontal
language” and “language”), while, inversely, there is no significant difference for the
“non-language” ROI (fig. 6.4).

In summary, our main results highlight a left hypoactivation centred on the
pSTG/SMG junction (definition task), a right hyperactivation of the anterior insula
including the adjacent IFG and extending into the head of caudate (phon-diff task),
and a lack of left lateralisation of core language areas in the T-SLI group. The lack
of left lateralisation is found for the IFG-opercularis (all tasks), the IFG-triangularis
(definition task), the SMG (definition task and combined tasks), the STG (combined
tasks), and in all extended language ROIs when using combined tasks. On the
contrary, there is no difference of lateralisation for the rest of the brain when the
language regions are excluded.

4 Discussion

Although functional neuroimaging may have an expanding role in the investigation
of development language disorders, fMRI studies of SLI are sparse and available
results from functional studies remain inconsistent, in parallel with heterogeneous
morphometric findings. Based on a comparison with typically-developing children,
we studied a group of 21 children with T-SLI, a main form of SLI affecting structural
aspects of language, which was diagnosed on psychometric and clinical grounds.
To apply an appropriate procedure and to improve the mapping by using several
tasks, we set up a panel of tasks without reading, metalinguistic or high attentional
requirements. Three main interesting results arise from our study:

1. The lack of left lateralisation of core language areas;

2. The left hypoactivation centred on the pSTG/SMG junction (definition task);

3. The right hyperactivation of the anterior insula including the adjacent IFG
and extending into the head of caudate (phon-diff task).

4.1 Lack of left lateralisation of core language areas

The study reveals a lack of left functional lateralisation for all single language ROIs
across single or combined tasks, i.e. in the IFG-opercularis (all tasks), the IFG-
triangularis (definition task), the SMG (definition and combined tasks), and the
STG (combined tasks). In addition, when using combined tasks analysis, this lack
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also applies to larger frontal and temporo-parietal language ROIs, while, interest-
ingly, no significant difference appears for the whole brain when language ROIs are
excluded. Thus, our study provides evidence that T-SLI is associated with atypical
lateralisation of language function in core language areas.

No anomaly of lateralisation was found or reported in previous fMRI studies
of SLI [Hugdahl 2004,Weismer 2005,Dibbets 2006], including a study of oro-facial
verbal dyspraxia [Liégeois 2003], which could be due to reduced sample sizes, dis-
tinct activation tasks, and/or distinct clinical subtypes. However, SPECT studies
at rest have reported a reversed asymmetry in Wernicke’s area [Chiron 1999] and
a more symmetric activation in the temporal lobe [Ors 2005]. Furthermore, one
study using functional transcranial Doppler ultrasonography during words-to-letter
generation reported a lack of leftward dominance of blood flow in adults with per-
sisting SLI, a condition more associated with structural language impairment than
transient SLI [Whitehouse 2008].

Our results support the hypothesis of atypical cerebral dominance for liter-
acy and language developmental disorders, although atypical lateralisation is not
in itself either abnormal or specific. Atypical functional lateralisation has been re-
ported in 5% of right-handed and 73–80% of non-right-handed normal subjects [Sza-
flarski 2002] and in other developmental clinical conditions including speech de-
lay [Bernal 2003], stuttering [Brown 2005], autism spectrum disorder [Knaus 2008,
Kleinhans 2008], and dyslexia [Maisog 2008,Heim 2010].

Therefore, our study shows that a well-defined form of SLI affecting structural
aspects of language is more associated with atypical functional lateralisation of
core language areas, but we cannot yet affirm that it is a specific marker of T-
SLI. As argued by [Whitehouse 2008], atypical cerebral lateralisation may be an
indicator, albeit imperfect, of some causal factor that leads together to atypical
cerebral lateralisation and language impairment.

4.2 Left hypoactivation of the posterior superior temporal
gyrus / supramarginal gyrus junction

The second result, provided by the definition task, is the left hypoactivation centred
on the junction of the posterior supratemporal plane (STG) and the SMG, extending
laterally, deeply into the Sylvian fissure, and superiorly in the parietal operculum
and parietal inferior lobule. This region is crucial for language, belonging to the
so-called “Wernicke’s area” or “territory” [Blank 2002,Catani 2005].

The central location of the hypoactivation corresponds to the posterior PT/ventral
SMG region [Price 2010] or “area sylvian parietal-temporal” [Hickok 2007] which
may be a sensorimotor interface translating acoustic speech signals from the pos-
terior temporal sulcus into articulatory representation for the premotor cortex and
posterior IFG. This region is involved in both complex speech perception and pro-
duction (e.g. [Hickok 2003,Price 2010]), and its lesion may be associated with con-
duction aphasia, which exhibits phonemic paraphasias with better preserved com-
prehension [Hillis 2007]. Therefore, on the whole, the putative function of this
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region is in agreement with the task used here involving both speech reception and
(covert) production, and with the linguistic deficit inherent to T-SLI.

In line with our result, SPECT studies of SLI have reported bilateral posterior
perisylvian hypoactivation at rest [Lou 1984], and no activation of the left inferior
parietal region during phonological discrimination [Tzourio 1994]. One fMRI study
has also reported a hypoactivation in the left parietal lobe during sentence compre-
hension [Weismer 2005]. In contrast, using SPECT at rest, [Ors 2005] reported a
hypoactivation of the right parietal region.

One question is whether our result can be linked to morphological anomalies.
Volumetric studies of SLI have shown a reduced volume of the perisylvian tem-
poroparietal region [Jernigan 1991] and reduced left asymmetry of the PT when
compared with reading disability [Leonard 2002]. However, other authors report
normal volume and asymmetry for the PT (leftward) and for the parietal ascend-
ing ramus (rightward) [Gauger 1997, Preis 1998] and even an exaggerated left-
ward asymmetry for the PT [De Fossé 2004, Herbert 2005], without any differ-
ence for the parietal opercule and the SMG [De Fossé 2004]. Using voxel-based
morphometry, [Jäncke 2007] found no grey matter differences for core language
areas, and [Soriano-Mas 2009] reported an increase in grey matter at the right tem-
poroparietal junction. Apart from methodological differences, this heterogeneity
may result from the heterogeneity of SLI.

In summary, the left hypoactivation of the pSTG/SMG junction found in T-SLI
children during the auditory responsive naming task could reflect a dysfunction of
a core region considered as an interface between complex language reception and
production [Hickok 2007,Price 2010]. This result converges with a SPECT study of
SLI using a discrimination task involving phonologically-close words [Tzourio 1994].

4.3 Right hyperactivation of the anterior insula, adjacent inferior
frontal gyrus and head of caudate

The third main result of this study is the right hyperactivation centred on the
anterior insula and extending into the adjacent IFG (opercularis and triangularis),
as well as into the head of caudate, during the phon-diff task. The anterior insula
and adjacent IFG is an important region for language, in continuity with the frontal
operculum and, at the left side, Broca’s area [Keller 2009]. The head of caudate
has already been highlighted in a developmental speech disorder, oro-facial verbal
dyspraxia [VarghaKhadem 2005].

The anterior insula is involved in motor aspects of speech, although its spe-
cific role for speech remains unclear. Overall, this region has been linked with
coordination and motor control of speech articulation, vocal tract and mimic mus-
cles, as well as non-speech orofacial gestures, swallowing and respiratory volun-
tary regulation [Brown 2005, Brown 2009, Ackermann 2010, Price 2010]. Clinical
studies have yielded some controversial results, with one study based on lesion
overlap reporting a correlation of left insular lesion with deficits in motor program-
ming of speech [Dronkers 1996], which was not replicated using neuroimaging at
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stroke onset [Hillis 2004]. Single clinical cases and brain stimulation studies in-
volving the insula have reported aphasic, dysarthric, speech initiation and/or non-
speech oro-motor disturbances, and functional neuroimaging studies have revealed
the involvement of the anterior insula, predominantly on the left, in motor aspects
of speech [Ackermann 2010, Price 2010]. Interestingly, [Bohland 2006] found in-
creased bilateral activation of the insula/IFG junction in proportion to phonological
complexity by requiring triads of syllables of varying complexity (“ta-ta-ta”/“ka-
ru-ti”/“stra-stra-stra”/“kla-stri-splu”), which suggests a function of integration of
low-level motor aspects, abstract speech sounds and prosodic components in speech
planning. The right anterior insula/frontal operculum may specifically mediate
supra-segmental aspects of speech (prosody, intonation contour), as well as vocal
imitation and musical melodies [Brown 2005,Ackermann 2010].

Therefore, the hyperactivation in the right anterior insula/adjacent IFG during
our phonological task could reflect an articulatory and/or prosodic compensatory
mechanism of defective structural phonological function in T-SLI. Such a compen-
sation could be inter-hemispheric (i.e. left to right) and possibly intra-hemispheric
(i.e. lateral IFG to insula). Compensatory interhemispheric recruitment of the
right inferior frontal region is well-known after left acquired lesions associated with
aphasia [Crinion 2007b], and the recruitment of the right insula may compensate
dysfunction of the left counterpart [Duffau 2001]. An intrahemispheric shift of
frontal response towards the anterior insula/frontal operculum, at the right side,
has also been reported in subjects with left temporal lobe epilepsy [Voets 2006]. If
further corroborated, this suggests that the insular structure might be involved in
the compensation of speech/language function [Ackermann 2010].

Previous functional neuroimaging studies of SLI yield results that are heteroge-
neous with respect to the insula. A right hyperactivation has been highlighted in the
anterior part during speech sound listening [Hugdahl 2004] and in the posterior part
during a non-verbal executive paradigm [Dibbets 2006]. This contrasts with hypoac-
tivation on the left during word recognition [Weismer 2005]. While one volumetric
study reports a volume reduction of the left insula [Jernigan 1991], no anomaly of
the insula has been observed using voxel-based morphometry [Jäncke 2007,Soriano-
Mas 2009].

In our study, the right hyperactivation extends into the head of caudate. The
caudate nucleus participates in sensorimotor coordination including response se-
lection and initiation, in executive-related processes, and may support the plan-
ning and execution of correct strategies required for complex goals [Grahn 2008].
With regards to speech, the caudate nucleus is involved in the control and se-
lection of articulatory motor sequences, and may initiate cortical phonological
and controlled processes when automatic processes are not well-suited [Friede-
rici 2006b, Booth 2007]. Furthermore, the bilateral head of caudate is involved
in language-based conflict, suggesting that it participates in the suppression of in-
appropriate responses in a competitive context [Price 2010]. Similarly, the hyperac-
tivation of the right head of caudate during the phon-diff task in our study could re-
flect higher compensatory attempts of initiation of phonological processes in the con-
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text of phonological conflict (e.g. the minimal difference between pain/bain/main).
Regarding previous neuroimaging studies of SLI, the right caudate has been

found to be hyperactive during a non-verbal switch paradigm in four children [Dib-
bets 2006]. Moreover, it was bilaterally reduced in the volumetric study by [Jerni-
gan 1991], but increased on the left in the voxel-based morphometry study by [Soriano-
Mas 2009].

In summary, the right hyperactivation of the anterior insula/adjacent IFG and
the head of caudate in T-SLI, which is highlighted when requiring phonological
differentiation, could reflect compensatory recruitments of non language-specific
functions resulting from the structural phonological deficit. This could be associ-
ated with higher recruitment of orofacial and intonative motor functions for the
anterior insula/adjacent IFG, and response initiation and selection in the context
of interferences for the head of caudate.

4.4 Comparison to other developmental disorders

Another question is whether the functional abnormalities reported in our study are
specific to structural language disorder (i.e. T-SLI) compared to disorders affecting
other aspects of language such as communication, reading or speech.

With regards to the left temporoparietal hypoactivation, in autistic spectrum
disorder, on the contrary, hyperactivation has been detected in the posterior tem-
poral region during a responsive naming task [Knaus 2008] and other language
tasks [Just 2004, Harris 2006]. On the other hand, left temporoparietal hypoac-
tivation appears to be a “neural signature” of dyslexia [Shaywitz 2008], as ob-
tained during reading, rhyme or semantic tasks [Paulesu 1996, Schulz 2008, Rich-
lan 2009]. Phonological disturbances in dyslexia nevertheless concern metalinguistic
tasks (i.e. phonological awareness) rather than direct oral language, likely reflect-
ing a phonological-access deficit [Ramus 2008], and the differentiation from SLI
remains clinically and aetiologically justified [Bishop 2004b]. Finally, with regards
to speech disorders, developmental stuttering has been associated with hypoactiva-
tion of the auditory cortices, but not of the temporoparietal junction [Brown 2005,
Watkins 2008], while oro-facial verbal dyspraxia in the KE family was associated
with hypoactivation near the left pSTG/SMG junction during covert verb gener-
ation [Liégeois 2003]. Although the core deficit in this family is dyspraxic, af-
fected members also exhibit phonological and grammatical impairments, so linguis-
tic deficits cannot be ruled out [VarghaKhadem 2005].

With regards to the right hyperactivation of the anterior insula/adjacent IFG,
in autistic spectrum disorder, the insula has been found to be hypoactive during
tasks involving social processing [Uddin 2009]. In dyslexia, hyperactivation of the
anterior insula has been observed during reading tasks, either on the left or on the
right [Maisog 2008,Richlan 2009]. However, one study reports a bilateral hypoacti-
vation in parallel to higher activation of the adjacent frontal operculum during click
and speech sound listening [Steinbrink 2009]. With regards to speech disorders, the
anterior insula has been found to be hyperactive at the left side during overt words
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repetition in oro-facial verbal dyspraxia [Liégeois 2003]. Nevertheless, it is note-
worthy that hyperactivation of the right frontal operculum/anterior insula during
speech production is considered as a “neural signature” of developmental stutter-
ing [Brown 2005, Watkins 2008]. This suggests that lower skills for speech result
in compensatory hyperactivation of vocal-motor areas, which are right- lateralised
because of left dysfunction of the normal dedicated regions [Preibisch 2003]

With regards to the right hyperactivation of the caudate, no functional anomaly
of the caudate has been found either in autistic spectrum disorder during language
tasks [Harris 2006, Knaus 2008], or in dyslexia [Maisog 2008, Richlan 2009]. Nev-
ertheless, in studies of oro-facial verbal dyspraxia in the KE family, the caudate
was found to be both bilaterally morphologically reduced [VarghaKhadem 1998,
Watkins 2002, Belton 2003], and functionally hyperactive on the left [VarghaKha-
dem 1998]. In this context, these anomalies come under the hypothesis of a dys-
function of the frontostriatal network [VarghaKhadem 2005]. Finally, the activity
of the caudate on both sides has been positively correlated with the severity of
developmental stuttering [Giraud 2008], and a dysfunction of the basal ganglia
has been speculated to underlie the deficit in the timing of speech motor initia-
tion [Alm 2004], or to reflect a secondary dysfunction resulting from a left inferior
frontal anomaly [Kell 2009].

In summary, the left temporoparietal hypoactivation associated with T-SLI is
similar to results obtained by studies of dyslexia [Richlan 2009] and by one study
of oro-facial verbal dyspraxia [Liégeois 2003]. Moreover, in developmental stut-
tering, the hyperactivation of the right anterior insula is regarded as a “neural
signature” [Brown 2005] and the activity of the right caudate is correlated with the
severity of impairment [Giraud 2008]. As these disorders and the activation tasks
used are distinct, further studies are needed to elucidate whether these similarities
reflect common dysfunctions, common atypical compensatory modes of resolution
of language tasks, and/or more task-specific effects.

4.5 Methodological considerations

As described previously [de Guibert 2010], to optimize the feasibility of the pro-
cedure for young disordered children, and minimize motion artefacts as well as
attentional complications, we implemented four identical block-designed paradigms
with a low-level condition as baseline (listening to the noise and fixing a red cross)
and without requiring motor responses. These choices reduced the heterogene-
ity and complexity of the protocol, as the child did not have to understand and
achieve supplementary control tasks and also give motor responses. Furthermore,
although requiring motor responses is well suited for metalinguistic tasks (i.e. judge-
ment tasks with explicit analysis), which may involve additional non-language func-
tions [Blank 2002,Crinion 2003], it is not appropriate for investigations under more
natural conditions such as word production.

However, these choices have some drawbacks. First, the achievement of the tasks
cannot be directly assessed. Requiring overt responses would allow online perfor-
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mance monitoring, but speech increases the risk of movement, which is crucial in
the case of children, and especially with disordered children [O’Shaughnessy 2008].
Therefore, children were intensively prepared before the scanner session using the
same order of tasks and stimuli, allowing us to check that they understood and
were able to achieve the tasks, and were also questioned after the session. Thus,
the design of the tasks and the preparation aimed to ensure high performance for
each child during the scanner session. Secondly, low-level control conditions involve
more non-language-specific coactivations [Wilke 2006, Holland 2007] and, in some
research contexts, it may be important to use high-level control tasks to target
more specific functions. Nevertheless, together with the use of several tasks, a low-
level control condition makes it possible to map a comprehensive and specific left-
lateralised language network in normal children or adults [Ramsey 2001,Tie 2008,de
Guibert 2010], and was appropriate in our study for the comparison with language-
impaired children. Furthermore, we used a combined tasks analysis to provide a
robust assessment of language lateralisation.

Moreover, to select a representative sample of the general population, close to
the clinical context for language-disordered children, we did not solely recruit right-
handed children. In this study, the proportions of left-handed in the T-SLI and
control groups are similar and within the normal range estimate. Furthermore,
additional analyses excluding left-handed children (n=5) were carried out, which
showed no major change of results (e.g. out of 11 LI differences for the whole
group, 8 remained significant and 2 were nearly significant (p = 0.057) when elim-
inating left-handers). Moreover, to avoid distortions due to normalization of the
children’ data with respect to an adult template, we used a tool dedicated to the
creation of pair- and group-matched normalized templates based on normative brain
data [Wilke 2008].

Finally, a well-known issue with the category of SLI is its clinical heterogeneity,
since it encompasses impairments reflecting structural rule-like deficits (i.e. mainly
phonology and morphosyntax), as well as impairments of articulatory, auditory re-
ceptive or pragmatic aspects of language. Since this heterogeneity may be a crucial
source of inconsistency in the neuroimaging results, we focus here on structural lan-
guage impairments, known as T-SLI or linguistic dysphasia. Future studies need
to investigate whether distinct subtypes of SLI are associated with distinct brain
functional anomalies. Secondly, since the current psychometric diagnostic tools are
not totally adequate when used in isolation, because they lack clinical congruence,
we selected T-SLI children on both psychometric and clinical grounds. The T-SLI
children, as a group, failed three subtests (repetition of unfamiliar words, sentence
completion, and sentence repetition) that are acknowledged as being especially sen-
sitive to SLI, and all of the subjects had an early history of selective language
impairment and had been diagnosed in our specialized hospital Centre.

In conclusion, by using fMRI with a panel of distinct language tasks, this study
provides evidence that a well-defined type of SLI affecting structural components of
language is associated with a lack of left functional lateralisation in core language
areas (pars opercularis and triangularis of the IFG; STG; SMG), with hypoactiva-
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tion of the left superior temporoparietal junction, within Wernicke’s area, as well as
with hyperactivation of the right anterior insula, adjacent inferior frontal gyrus and
head of caudate. These results are similar to some findings from studies of devel-
opmental disorders involving other aspects of language such as dyslexia, stuttering
or orofacial verbal dyspraxia, which will require further comparisons.
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Chapter 7

Robust Cerebral Blood Flow Maps in
Arterial Spin Labelling

The introduction of ASL MRI techniques has made feasible a non-invasive mea-
surement of the CBF. However, to date, the low signal-to-noise ratio of ASL gives
us no option but to repeat the acquisition in order to accumulate enough data to
get a reliable signal. The perfusion signal is then usually extracted by averaging
across the repetitions. However, the sample mean is very sensitive to outliers as
a single incorrectly large observation can cause strong detrimental effects on the
sample mean estimate.

We propose to estimate robust ASL CBF maps with M-estimators to overcome
the deleterious effects of outliers. The behaviour of this method is compared to z-
score thresholding as recommended in [Tan 2009]. Validation on simulated and real
data is provided. Quantitative validation is undertaken by measuring the correlation
with the most widespread technique to measure perfusion with MRI: DSC.

Part of this work was published in the Multimodal Brain Image Analysis (MBIA)
workshop of the International conference on Medical Image Computing and Com-
puter Assisted Intervention (MICCAI) in 2012 [Maumet 2012c]. An extension
of this first analysis was then presented at the 21st Annual Meeting & Exhibi-
tion of the International Society for Magnetic Resonance in Medicine (ISMRM) in
2013 [Maumet 2013c].
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1 Introduction

ASL allows a non-invasive quantification of the CBF [Detre 1992]. Due to the low
SNR of the ASL sequence, a single pair of control and label image is not sufficient
to measure perfusion. The acquisition is therefore repeated several times, leading to
r pairs of images (usually r ≥ 30). Perfusion information is then usually extracted
by pair-wise subtracting the control and label images and averaging across the
repetitions.

Though sample average, as an unbiased estimate of mean, ensures convergence
as r grows, it has a breakdown point of 0% (i.e. a single arbitrary large value can
induce an arbitrary large estimate) and is thus very sensitive to outliers as illustrated
in fig. 7.1. And yet it is well-known that instabilities during the acquisition and
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Figure 7.1: Sensitivity of the sample mean to outliers. A single corrupted volume
can induce strong artefact in the final CBF maps computed with the sample mean.

improperly corrected patient motion can cause artefactual values [Tan 2009]. In
particular, sudden subject motion often induces strong corolla-shaped artefacts.

To avoid the detrimental effects that a few abnormal repetitions could have in
the final perfusion map, it is often suggested to ignore the volumes corresponding
to the motion peaks using an appropriate threshold [Sidaros 2005]. Volumes with
(estimated) motion parameters greater than [1−3]◦ or [1−3] mm are thus sometimes
discarded before averaging. However the choice of these thresholds is empirical and
there is no common rule across studies or automatic methods to tune these ad-hoc
parameters. In [Tan 2009], the authors proposed an automatic algorithm for outlier
rejection in ASL perfusion series based on z-score thresholding at the volume (or
slice) level as illustrated in fig. 7.2. Their method produced satisfactory results on
a qualitative validation based on ratings made by medical experts. However, their
approach is based on z-scores, while more robust statistical measures are known
to be better suited to deal with outliers. Also, they rely on empirically tuned
parameters that might limit the generalisation of their procedure to new datasets.
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Figure 7.2: Volume exclusion via z-score thresholding as proposed in [Tan 2009].

How to appropriately deal with outliers has been widely studied in the sta-
tistical literature and a large range of methods has emerged. Z-score is known
to be sensitive upon sample size and is suffering from masking effects when more
than one outliers is present in the series [Shiffler 1988]. Indeed, in a dataset con-
taining more than one outlier, the standard deviation estimate will be artificially
inflated which may prevent z-score based outlier detection. On the other hand,
M-estimators are robust techniques to estimate location and scale in the presence
of outliers [Rousseeuw 2003]. We focus on Huber’s M-estimator [Huber 1964], as it
is the most widely used. An illustration of this method is provided in fig. 7.3.
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Figure 7.3: Robust ASL CBF map via Huber’s M-estimator.

In this chapter, we propose to estimate robust ASL CBF maps with Huber’s
M-estimator. This method is compared to z-thresholding as proposed in [Tan 2009].
Validation is undertaken by measuring the voxel-to-voxel correlation between ASL
CBF maps and DSC CBF maps as an affine relationship is expected between these
estimates of CBF [Warmuth 2003].

Section 3 presents the statistical methods and the validation procedure. Section
4 presents the results on simulated data and on real datasets from patients diagnosed
with brain tumours.

2 Theory

Starting from a perfusion-weighted series, namely a 4D volume made of the r repeti-
tions obtained after pair-wise subtracting the control and label scans, the objective
is to compute a single perfusion-weighted volume. This section presents z-score
thresholding and M-estimators as statistical method to compute robust CBF maps.
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2.0.1 Z-score thresholding

In [Tan 2009], an outlier rejection algorithm based on z-scores is proposed in or-
der to remove outliers from the perfusion-weighted series. The outlier rejection is
performed both on a volume-by-volume and a slice-by-slice basis. For each volume
(respectively slices) v, the mean mv and standard deviation sv of in-brain voxel
intensities is computed. Assuming a Gaussian distribution of mv and sv, a volume
is then rejected if:

|mv| > µ̂m + 2.5 σ̂m, or sv > µ̂s + 1.5 σ̂s (7.1)

where µ̂m =
1

r

r∑

i=1

mi σ̂2
m =

1

r − 1

r∑

i=1

(mi − µ̂m)2

and µ̂s =
1

r

r∑

i=1

si σ̂2
s =

1

r − 1

r∑

i=1

(si − µ̂s)2.

The parameters 1.5 and 2.5 were determined empirically. To avoid over-filtering,
a heuristic is added saying that series verifying ln(max

i
(si) − min

i
(si)) < 1 are not

searched for outliers. Once the outliers are identified, the perfusion map is then
computed by averaging the remaining repetitions.

2.0.2 M-estimators

Another solution to deal with outliers is to employ robust statistics such as M-
estimators, which will not be overly influenced by outliers. In [Huber 1964], M-
estimators are defined, given a function ρ, as solutions θ̂ of:

θ̂ = argmin
θ

( r∑

i=1

ρ(xi, θ)
)
. (7.2)

If ρ is differentiable, and ψ is its derivative then eq. (7.2) can be solved by
finding the root of:

r∑

i=1

ψ(xi, θ) = 0. (7.3)

The sample average can be seen as an M-estimator with ρ(xi, θ) = (xi − θ)2

and ψ(xi, θ) = 2(xi − θ) leading to θ̂ =
1

r

r∑

i=1

xi. Fig. 7.4 illustrates the ψ(xi, θ)

functions for the three estimators of interest.
The M-estimator of location proposed by Huber in [Huber 1964] is defined by:

ψ(xi, θ) = γ
(xi − θ

σ

)
where γ(x) =





−k, x < −k

x, −k < x < k

k, x > k

(7.4)

k will be set to 1.345 throughout this chapter corresponding to 95% efficiency in
Gaussian data [Krasker 1982]. Likewise, σ is estimated by a robust estimator:
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the median absolute deviation divided by 0.6745 [Rousseeuw 2003]. Huber’s M-
estimator is applied voxel by voxel on the perfusion-weighted series to obtain the
robust perfusion-weighted map.
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Figure 7.4: Psy functions for the three estimators: average, z-score thresholding
and Huber’s M estimator.

3 Material and Methods

3.1 Data

3.1.1 Acquisition protocol

26 patients diagnosed with brain tumours were involved in this study. Data acquisi-
tion was performed on a 3T Siemens Verio MR scanner with a 32-channel head-coil.
Patients were scanned in the context of clinical practice. The imaging protocol in-
cluded a 3D T1w anatomical sequence (TR: 1900 ms, TE: 2.27 ms, FOV: 256 mm
x 256 mm x 176 mm, flip angle: 9◦, resolution: 1 mm x 1 mm x 1 mm), a PICORE
Q2TIPS sequence with crusher gradients (TR: 3000 ms, TE: 18 ms, FOV: 192 mm
x 192 mm, flip angle: 90◦, in plane resolution: 3 mm x 3 mm, slice thickness: 7 mm,
inter-slice gap: 0.7 mm, TI: 1700 ms, bolus width: 700 ms, r = 60), a DSC sequence
(GRE EPI, TR: 1500 ms, TE: 30 ms, FOV: 230 mm x 230 mm, flip angle: 90◦, in
plane resolution: 1.8 mm x 1.8 mm, slice thickness: 4 mm, inter-slice gap: 1.2 mm)
and 3D T1-weighted post gadolinium sequence (TR: 1900 ms, TE: 2.27 ms, flip
angle: 9◦, FOV: 250 mm x 250 mm x 176 mm, resolution: 1 mm x 1 mm x 1 mm).

1 healthy subject was involved in this study. The imaging protocol included a
3D T1-weighted anatomical sequence (same parameters as above) and a PICORE
Q2TIPS sequence with crusher gradients (TR: 2500 ms, TE: 19 ms, flip angle: 90◦,
in plane resolution: 3 mm x 3 mm, slice thickness: 7 mm, inter-slice gap: 0.7 mm,
TI: 1800 ms, bolus width: 700 ms, r = 250).

3.1.2 Pre-processing

Image pre-processing was performed using SPM8 (Wellcome Department of Imag-
ing Neuroscience, University College, London) Matlab toolbox. A six-parameter
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rigid-body registration of the ASL volumes was carried out in order to reduce un-
desired effects due to subject motion. Coregistration on grey matter map was then
performed based on normalised mutual information. The average of unlabelled vol-
umes was used to estimate the geometrical transformation to apply to each volume.

The 60 unlabelled and labelled ASL volumes were pair-wise subtracted in order
to obtain a perfusion-weighted series per subject. Robust ASL perfusion-weighted
map was then carried out as described in section 3. A standard kinetic model [Bux-
ton 1998] was then applied in order to obtain quantitative ASL CBF maps.

The DSC images were processed using MR manufacturer software by manually
choosing an arterial input function to calculate CBF and mean transit time maps.
Similarly to ASL, DSC CBF maps were coregistered to grey matter maps.

3.2 Validation

3.2.1 Simulated corruption

In order to assess the efficiency of each technique, we generated simulated data
with a known quantity of outliers based on two real datasets. Outliers were drawn
from a uniform distribution with extrema (-100;100). These values were determined
empirically. Indeed, in an uncorrupted perfusion-weighted map, the values usually
range between -10 and +10 and voxel standard deviation can in fact be up to 50.
Also, by looking at the values of identified outliers in a real dataset, we found values
as big as 300 in absolute value.

As data corruption usually affects multiple voxels per volume [Tan 2009], outlier
simulation was undertaken by corrupting from 0% to 50% of the volumes. We will
later refer to these volumes as outlier volumes. Then, 2%, 20% or 50% of the voxels
in each outlier volume were replaced by random outliers leading to low, medium and
high level of volume corruption respectively. A brief description of the corruption
simulation is provided in fig. 7.5. Each simulation was repeated 30 times in order
to get estimates of the standard deviation.

Simulated data were based on two real datasets as described hereafter. The first
dataset was a perfusion-weighted series with a large number of repetitions, r = 250,
from a healthy subject. The perfusion-weighted map obtained by averaging the 250
repetitions was considered as the ground truth. The 60 first volumes of the series
were extracted and used as dataset for robust CBF map estimation. The quality
of the maps produced by each method was measured in terms of sum of squared
differences with the estimated ground truth.

The second dataset was built on the perfusion-weighted map of one patient
diagnosed with a brain tumour. The original ASL CBF map of this subject pre-
sented few artefacts identified by visual inspection and a very low level of motion
(< 0.5 mm and < 0.2◦ in all directions). As DSC is currently the reference method
to estimate perfusion with MRI, the quality of the maps produced by each method
was measured by computing the Pearson linear correlation coefficient with the DSC
CBF map. This assumes an affine relationship between CBF maps produced by
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Figure 7.5: Simulation: corruption of a given percentage of ASL volumes (from 0%
to 50%) by adding samples drawn from a uniform distribution to a given percentage
of the voxels (2%, 20% or 50%) per volume.

ASL and DSC [Warmuth 2003].

3.2.2 Experiments on real clinical data sets

We compared the performances of the 3 methods on real clinical datasets. The
quality of the estimated ASL CBF map was assessed by computing a linear corre-
lation index with a CBF map extracted from the most validated MR technique for
perfusion: DSC.

Full dataset comparison The efficiency of both algorithms was estimated on a
dataset of 14 perfusion-weighted maps of patients diagnosed with brain tumours.
The quality of the ASL CBF map was assessed by voxel-to-voxel correlation with
the DSC CBF map.

Comparison based on subsets of the available data To investigate the be-
haviour of the different CBF estimators on datasets of various sizes, we further
decimated the data (to get from 5 to 50 volumes) by randomly picking a subset of
the available volumes. The experiment was repeated 20 times.
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4 Results

4.1 Validation on simulated data

4.1.1 Dataset with 250 repetitions:

Fig. 7.6 presents the simulation study based on a healthy subject data. The perfor-
mances of sample average, z-score thresholding [Tan 2009], and Huber’s M-estimator
are assessed by measuring the sum of squared differences of the ASL CBF map with
the ground truth estimated by averaging a large number of repetitions.

As described in fig. 7.6, with a medium or a high level of corruption, z-score
thresholding and Huber’s M-estimator perform equally and better than averaging
until 20% of volumes are corrupted. If more than 20% of the volumes are affected by
outliers, then M-estimators provide better estimates than both z-score thresholding
and averaging. The robust M-estimator CBF map is closer to the ground truth
and less sensitive to an increase in the number of outliers. The same behaviour is
observed with a low number of corrupted voxels per volume except that the sepa-
ration point is at 5% of corrupted volumes instead of 20%. The lower performances
of z-thresholding when the number of corrupted volumes exceeds 20% (or 5% with
low corruption) is a consequence of the masking effect which penalize this estima-
tor when several outliers are present in the series. Moreover, the performance of
Huber’s M-estimator always depicts a smaller variance than z-thresholding.

Both Huber’s M-estimator and z-score thresholding provide better estimates
than the sample average. As the level of corruption per volume decreases, the
separation point between Huber’s M-estimator and z-score thresholding tends to
become lower. This can probably be explained by the fact that the method proposed
in [Tan 2009] is based on a global mean and standard deviation estimate per volume
(or slice) and is therefore less suited to detect sparsely corrupted volumes.

4.1.2 Simulation based on pathological data:

Fig. 7.7 presents the simulation study based on pathological data of a subject suf-
fering from a brain tumour. The performances of sample average, z-score threshold-
ing [Tan 2009], and Huber’s M-estimator are assessed by measuring the correlation
coefficient of ASL CBF with DSC CBF.

The simulation involving a high level of volume corruption leads to very similar
results than the one obtained in the previous section on healthy subject data. Both
Huber’s M-estimator and z-thresholding perform better than averaging until 20%
of corrupted volumes. After this threshold, z-thresholding performances drop until
reaching the same correlation as the sample average for 30% of outlier volumes.
This result suggests that correlation with DSC is a good measure of ASL CBF map
quality. For medium level of volume corruption, the same tendency is observable.

With a low level of volume corruption, the trend is less clear. Overall the
correlation coefficient seems much less affected by the increasing number of outliers.
Z-score thresholding and Huber’s M-estimator are both better estimator of the mean
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Figure 7.6: Healthy subject dataset with simulated outliers: sum of squared dif-
ferences (SSD) of ASL CBF map, computed by M-estimator, z-score threshold-
ing [Tan 2009] and sample average, with the estimated ground truth. Low, medium
and high level of volume corruption, from 0% to 50% of corrupted volumes. In
all configuration Huber’s M-estimators is either better or as good as z-thresholding
to estimate robust CBF maps. In the presence of outliers, Huber’s M-estimator is
always more accurate than the sample average.

than the sample average. Z-score thresholding however displays a higher variance
in its performance estimates. In comparison with the previous simulation study,
there is probably a higher level of noise in the so-called “uncorrupted” pathological
data than in the “uncorrupted” healthy subject data. The inherent higher level of
noise in pathological data might prevent the correct detection of low level of volume
corruption.
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Figure 7.7: Patient dataset with simulated outliers: correlation of ASL CBF map,
computed by M-estimator, z-score thresholding [Tan 2009] and sample average,
with the DSC CBF map. Low, medium and high level of volume corruption, from
0% to 50% of corrupted volumes. The white arrow points the tumour site. A
similar behaviour as for healthy subject simulation (fig. 7.6) is observed outlining
that correlation with DSC CBF is a valuable indicator to measure the quality of
the ASL CBF estimates.

4.2 Validation on real clinical data

Full dataset A subset of 14 patients was studied, as the full dataset (26 patients)
was not available at the moment of the analysis. Table 7.1 presents the correlation
coefficient obtained for the 14 patients diagnosed with brain tumours. Overall,
there is a significant improvement of both Huber’s M-estimator (p=0.007) and z-
score thresholding (p=0.010) over the sample average (paired two sample t-test). In
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this dataset, there was no significant difference between the two filtering methods
(paired t-test p=0.84).

Table 7.1: Real clinical dataset: correlation coefficient with DSC CBF map of ASL
CBF map computed by M-estimator, z-score thresholding [Tan 2009] and sample
average in 14 patients diagnosed with brain tumours. Last column: mean and
standard deviation across subjects.

Patients 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mean ± std.

Huber M-est. .45 .32 .29 .51 .52 .34 .28 .12 .14 .27 .35 .16 .17 .17 .29 ± .13
z-score thresh. .45 .24 .27 .53 .51 .35 .28 .15 .14 .30 .35 .18 .16 .20 .29 ± .13

Average .46 .25 .20 .42 .52 .31 .25 .12 .14 .25 .32 .13 .17 .12 .26 ± .13

Fig. 7.8 presents an example of robust ASL CBF maps in which motion artefacts
are significantly reduced by both Huber’s M-estimator and z-thresholding.

Figure 7.8: Example of robust CBF map in one patient: three contiguous axial
slices are depicted. White arrows outlines large artefacts presents in the averaged
perfusion-weighted map and correctly corrected by both z-score thresholding and
M-estimator.

Comparison based on subsets of the data As displayed in fig. 7.9, both
z-thresholding and Huber’s M-estimator outperform the sample mean. Huber’s
M-estimator appears marginally better than z-thresholding. Fig. 7.10 presents an
example in which we can clearly see the improved quality of both robust ASL CBF
maps.
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Figure 7.9: Real clinical dataset: correlation of ASL CBF map with DSC CBF for
different number of repeats r .

Figure 7.10: DSC CBF estimate (a) and ASL CBF estimates based on 40 repeti-
tions: average (b), z-thresholding (c), Huber’s M-estimator (d).

5 Conclusion

We studied the ability of Huber’s M-estimator to compute robust CBF maps in ASL.
The behaviour of this estimator was studied in both simulated and real clinical
datasets and compared to an outlier removal technique based on z-thresholding
previously introduced in the ASL literature [Tan 2009].

Out of this study, it is confirmed that outlier filtering, either via outlier removal
or M-estimation, provides more robust CBF maps than the sample average. The
simulation study clearly confirmed the superior robustness of M-estimators over
z-score thresholding in the presence of outliers. On the tested clinical cases, the
superiority was less pronounced but still present. Overall, both robust methods
outperform the sample mean on simulated and real data and Huber’s M-estimates
are either as good as or better than z-thresholding and are always less variable.

As M-estimators are able to deal with a broader range of outliers, we recommend
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the use of M-estimators as robust method to compute ASL CBF maps. This study
focused on patients diagnosed with brain tumours, as DSC sequence is part of their
routine clinical protocol. Other pathologies might be related with different outlier
patterns and a larger validation study on real datasets is therefore needed in order
to outline the cases in which M-estimator will have a significantly better behaviour
than z-thresholding.



Chapter 8

Modelling heterogeneous variances in
the detection of patient-specific perfu-
sion abnormalities with ASL

This chapter is presented in the form of a paper. A shorter version of this work is
currently in press at NeuroImage [Maumet 2013d].

Abstract

In this paper, patient-specific perfusion abnormalities in ASL were identified by
comparing a single patient to a group of healthy controls using a mixed-effect hi-
erarchical GLM. Two approaches are currently in use to solve hierarchical GLMs:
(1) the homoscedastic approach assumes homogeneous variances across subjects
and (2) the heteroscedastic approach is theoretically more efficient in the presence
of heterogeneous variances but algorithmically more demanding. In practice, in
functional magnetic resonance imaging studies, the superiority of the heteroscedas-
tic approach is still under debate. Due to the low signal-to-noise ratio of ASL
sequences, within-subject variances have a significant impact on the estimated per-
fusion maps and the heteroscedastic model might be better suited in this context.

In this paper we studied how the homoscedastic and heteroscedastic approaches
behave in terms of specificity and sensitivity in the detection of patient-specific ASL
perfusion abnormalities. Validation was undertaken on a dataset of 25 patients
diagnosed with brain tumours and 36 healthy volunteers. We showed evidence of
heterogeneous within-subject variances in ASL and pointed out an increased false
positive rate of the homoscedastic model. In the detection of patient-specific brain
perfusion abnormalities with ASL, modelling heterogeneous variances increases the
sensitivity at the same specificity level.
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1 Introduction

Brain perfusion is the biological process that ensures the delivery of oxygen and
nutrients to the cerebral tissues by means of micro-circulation. As an indicator
of the well-being of the tissues, perfusion is a useful measurement for diagnosis in
clinical practice. Identifying regions of abnormal perfusion, either hypo-perfusions
or hyper-perfusions, can help understanding the mechanism of a disease and impact
patient care. For instance, for patients diagnosed with tumours, the clinician is in-
terested in hyper-perfusions that would reveal the grade of the tumour [Weber 2006],
or help differentiating between post-radiation necrosis and tumour recurrence [Sug-
ahara 2000]. In strokes, the extent of hypo-perfusion and mismatch with diffusion
imaging provide an insight on the possible recovery of the tissue [Huck 2012].

ASL, a MRI technique introduced in the early 1990’s, allows to measure the level
of perfusion through a quantitative index: the cerebral blood flow (CBF). Contrary
to standard perfusion imaging, including PET and SPECT in nuclear medicine, or
DSC in MRI, ASL is completely non-invasive and does not require the injection of
an exogenous contrast agent. In ASL, blood water, used as an endogenous tracer,
is labelled with a radio-frequency pulse. After a delay called inversion time, a
labelled image of the brain is acquired. A control image is also acquired without
prior labelling. The difference between the labelled and the control image leads to a
perfusion-weighted map. To increase the SNR of the measurement, the acquisition
is repeated several times. The absence of radiation and the use of an endogenous
tracer, which removes the need of injecting a contrast agent, are clear advantages
of ASL over standard perfusion imaging techniques. The ASL sequence however
suffers from a low SNR, which is still a serious obstacle for its use in clinical practice.

Since the introduction of ASL, and despite its low SNR, a large number of stud-
ies have demonstrated its usefulness in identifying patterns of abnormal perfusion
at the group level (e.g. [Pinkham 2011]). To date, identification of individual pat-
terns of hypo- and hyper-perfusions in patients with ASL mainly relies on visual
analysis [Zaharchuk 2012,Chen 2012b]. Very few ASL studies focused on voxelwise
quantitative perfusion abnormality detections at the individual level. In [Petr 2013],
a template-based analysis was presented in order to detect individual activation
patterns in functional ASL data. Interestingly, they also applied their method to
a pathological case in order to detect a hypo-perfusion co-located with a dysplasia
in an epileptic patient. While their approach opens the field to the detection of
patient-specific perfusion abnormalities with ASL, a single pathological case was
presented and no quantitative validation performed. Their detections relied on z-
scores, but in a more general setting, the most widespread approach to compare
voxel-wise maps in neuroimaging is the massively univariate GLM. To detect dif-
ferential patterns between two groups with repeated measurements a subtype of
GLM is employed: a mixed-effect hierarchical two-sample t-test with two levels:
subject and group. In this context, two variance components are of interest: the
within-subject variance (or the measurement error, estimated from the repeated
ASL acquisitions of a single subject) and the between-subject variance.
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In the functional MRI community, where similar statistical models are applied,
two approaches are currently in use to solve hierarchical GLMs. On the one hand,
the homoscedastic approach, also termed “summary statistics” [Penny 2003], or
referred as “ordinary least square estimation” [Mumford 2006, Mumford 2009] or
“conventional group analysis” [Chen 2012a], assumes homogeneous within-subject
variances or negligible within-subject variances by comparison to between-subject
variance. On the other hand, the heteroscedastic approach, also referred as “full
mixed-effect” [Friston 2005b, Thirion 2007, Poldrack 2011], “mixed-effect model”
[Chen 2012a] or “weighted least square estimation” [Mumford 2006,Mumford 2009]
models heterogeneous within-subject variances. There is indeed a large panel of
homonyms to refer to these two approaches, in current practice they are also some-
times referred as “mixed-effect” and “random-effect” approaches [Lindquist 2012].
However, in a statistical sense both the homoscedastic and the heteroscedastic ap-
proaches are mixed-effect models. That is why, in the context of this paper, we chose
to term the two approaches “homoscedastic model” and “heteroscedastic model” to
identify them according to their main difference: the homoscedasticity (constant
within-subject variance across subjects) assumption.

The homoscedastic model is theoretically less efficient in the presence of het-
erogeneous within-subject variances. However, in practice, the true variance com-
ponents are unknown and the superiority of the heteroscedastic model is there-
fore questioned. Whether modelling heterogeneous variances should be preferred
over the homoscedastic model is still under discussion in the fMRI community.
Several authors outlined the benefits of heteroscedastic models including [Wors-
ley 2002,Beckmann 2003,Woolrich 2004,Mumford 2006,Mériaux 2006,Thirion 2007,
Chen 2012a]. However, [Mumford 2009] showed that the homoscedastic approach
is still valid with near optimal sensitivity in the context of one-sample t-tests.
Nonetheless, the same authors acknowledged that, in two-sample t-tests, appro-
priate modelling of heterogeneous within-subject variances might be crucial [Mum-
ford 2009, Poldrack 2011]. Recently the conclusions regarding one-sample t-tests
were revisited leading to opposite conclusions [Chen 2012a]. In the different soft-
ware packages currently available to deal with fMRI data both approaches are repre-
sented: SPM1 favours the homoscedastic approach [Holmes 1998] while FSL2 [Wool-
rich 2004], AFNI3 [Cox 1996] and fmristat4 [Worsley 2002] use the heteroscedastic
model.

In ASL, the importance of the within-subject variance has been outlined by [Vi-
viani 2009]. While we previously investigated the ability to detect hypo- and
hyper-perfused regions using a template of normal perfusion in two conference pa-
pers [Maumet 2012a, Maumet 2012b], here, we focus on the comparison of the ho-
moscedastic and heteroscedastic approaches. We further improve on these papers
by providing quantitative measurements of heterogeneity. Also, a larger database

1http://www.fil.ion.ucl.ac.uk/spm
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
3http://afni.nimh.nih.gov/afni
4http://www.math.mcgill.ca/keith/fmristat
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is studied and a novel quantitative validation is performed.
In this paper, we focus on quantitative detections of pathological brain perfu-

sion abnormalities at the individual level. To this aim, we employ and compare
two GLM-based models: the homoscedastic and heteroscedastic approaches. We
test whether the assumptions underlying the homoscedastic approach are verified
in pulsed ASL datasets. We furthermore study how the homoscedastic and het-
eroscedastic approaches behave in terms of specificity and sensitivity in the detec-
tion of patient-specific perfusion abnormalities.

A quantitative validation is performed on a dataset of 25 patients diagnosed
with brain tumours. Though there is no well-defined ground truth, this pathology
was selected since patterns of hypo- and hyper-perfusions have been widely studied
in this clinical context. The model of normal perfusion is computed out of the data
of 36 healthy volunteers.

Section 2 begins with a presentation of the homoscedastic and heteroscedastic
models employed in the detection of patient-specific brain perfusion abnormali-
ties with ASL. Then, the experiments designed to test the assumptions of the ho-
moscedastic model and measure sensitivity and specificity are presented. Section 3
presents the datasets under study: the acquisition and pre-processing are described.
The results are presented in section 4. Section 5 gives a discussion and concludes.

2 Methods

In 2.1, the homoscedastic and heteroscedastic models and their implementation in
the context of patient-specific detection of perfusion abnormalities in ASL are pre-
sented. Then, in 2.2, the experiments undertaken in order to test the assumptions
of the homoscedastic model and to compare the homoscedastic and heteroscedastic
models are described.

2.1 Detection of patient-specific perfusion abnormalities using a
mixed-effect hierarchical two-sample t-test

This section presents the common massively univariate GLM usually employed for
voxel-based analysis in the neuroimaging community. The main assumption behind
the GLM is the linearity of the effects. Moreover, Gaussian noise is usually assumed.
In the standard approach, the GLM is defined for each voxel, which is why this
approach is often termed “massively univariate”. For ease of notation the voxel
index is omitted in the remainder of the paper.

In the context of this paper, we aim at outlining areas of abnormal perfusion
in the perfusion map of a subject of interest by comparison to a group of healthy
controls. We hence focus on a subtype of GLM: a one-versus-many mixed-effect two-
sample t-test. As several measurements are available for each subject, a hierarchical
model is defined with 2 levels: subject and group.

Since the subject under study is usually an individual suffering of a pathological
condition, the term patient will be used in the following. This approach is never-
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theless suited for the comparison of any single subject (control, patient) to a group
of individuals.

A description of the subject level is proposed in 2.1.1. In 2.1.2 the group level
is presented along with a description of the two main related approaches: the ho-
moscedastic and heteroscedastic models. Lastly, hypothesis testing performed in
order to outline the perfusion abnormalities is discussed in 2.1.3.

2.1.1 Subject level (First level)

Given a voxel, for each subject s we have:

Ys = Xs βs + εs, (8.1)

where Ys is a vector containing the observations at the given voxel, βs is the set
of subject parameters to be estimated, Xs is the subject-level design matrix and
εs contains the residual errors. In the following, we assume that the data can be
described with a single parameter per subject, βs, however more parameters (e.g.
nuisance covariates as in [Wang 2012]) could be considered. In fMRI, Xs is closely
related to the time-course of the paradigm under study. In ASL, at the subject level,
the data under study is a 4D volume of CBF maps containing V volumes (1 per
repeated acquisition). The observations Ys are therefore repeated measurements of
a same underlying value and the Xs matrix is a vector of ones. Then, the model
reduces to:

Ys =




1
...
1


 βs + εs.

Assuming Gaussian noise of the errors, εs follows a normal distribution: εs ∼

N (0, σ2
s). While, in fMRI, temporal autocorrelation must be accounted for [Agui-

rre 1997], in ASL, thanks to the subtraction process between control and labelled
scans, we can reasonably assume white noise [Aguirre 2002, Mumford 2006]. The
subject parameter βs is thus estimated by OLS:

β̂s =
1

V

V∑

i=1

ys,i, (8.2)

where ys,i is the ith element of vector Ys. Similarly, the sampling variance of β̂s is
estimated by:

V̂ar(β̂s) =
σ̂2

s

V
where σ̂2

s =
1

V − 1

V∑

i=1

(
ys,i − β̂s

)2
. (8.3)
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2.1.2 Group level (Second level)

In a general setting, in a group of n subjects, the subject parameters (βs)1≤s≤n can
be combined using the following model:




β1
...

βn


 = XG βG + γG, (8.4)

where XG is the group-level design matrix, βG the group parameters and γG the
residual error term (outlining the intra-group variability). In a one-sample t-test,
XG would be a vector of ones and βG contain a single estimate. In our context,
the subjects are part of two groups (n − 1 controls in the first group and 1 patient
in the second) and βG is a vector with 2 elements. Let βcontrols and βpatient be the
control group and patient parameters. Without loss of generality, we assume that
subjects 1 to n − 1 are part of the control group and subject n is the patient of
interest. Then the second-level model reduces to:




β1
...

βn−1

βn




=




1 0
...

...
1 0

0 1




[
βcontrols

βpatient

]
+ γG. (8.5)

Assuming Gaussian errors, γG follows a normal distribution γG ∼ N (0, σ2
G),

where σ2
G is the common between-subject (also termed “within-group” or even

“group”) variance of both groups. Indeed, since in a one-versus-many study, a
single subject is available in the patient group, estimating a different variance for
each group (control, patient) is impractical.

However, the true subject parameters are in fact unknown and, in practice,
their estimates from the first level are used in the second-level leading to a slightly
different model:




β̂1
...

β̂n−1

β̂n




=




1 0
...

...
1 0

0 1




[
βcontrols

βpatient

]
+ γGC

. (8.6)

The new error term γGC
is impacted by two combined sources of variations: the

error measurement on the subject parameters (also termed within-subject variance)
and the between-subject variance. Each element of γGC

therefore follows a normal

distribution: γs
GC

∼ N
(
0, σ2

G +
σ2

s

V

)
.

Linear combinations of the group parameters can be calculated using a particular
contrast. Here we are interested in the patient versus control group contrast:

b = [1 − 1]

[
βcontrols

βpatient

]
= βcontrols − βpatient . (8.7)
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Two approaches have been proposed in the neuroimaging literature to solve the
system (8.6) and find an estimate of the patient versus control group contrast, b̂, and
its associated sampling variance, V̂ar(b̂). The homoscedastic approach assumes ho-
moscedasticity while the heteroscedastic approach explicitly models heterogeneous
within-subject variances. Both models are described hereafter.

Homoscedastic model The homoscedastic model is based on the assumption
that the within-subject variance is either negligible by comparison to the between-
subject variance (i.e. σ2

s ≪ σ2
G, ∀ 1 ≤ s ≤ n) or, roughly constant across subjects

(i.e. σ2
s ≈ σ2

SUB, ∀ 1 ≤ s ≤ n). Then each element of γGC
follows a normal

distribution:
γs

GC
∼ N (0, σ2

GC
) (8.8)

where σ2
GC

is the combined within- and between-subject variance. Depending on

the assumption, we have σ2
GC

= σ2
G +

σ2
SUB

V
or σ2

GC
≈ σ2

G and the combined within-

and between-subject variance is therefore constant across subjects. The spheric-
ity assumption (no heteroscedasticity and no autocorrelation) hence holds and the
system (8.6) is then solved by OLS to get:

β̂HOMO

controls =
1

n − 1

n−1∑

s=1

β̂s

β̂HOMO

patient = β̂n ,

(8.9)

The associated sampling variances are:

V̂ar(β̂HOMO

controls) =
σ̂2

GC

n − 1
V̂ar(β̂HOMO

patient) = σ̂2
GC

where σ̂2
GC

=
1

(n − 1) − 1

n−1∑

s=1

(
β̂s − β̂HOMO

controls

)2
.

(8.10)

As a consequence, the patient versus control group contrast b is estimated by:

b̂HOMO = β̂HOMO

controls − β̂HOMO

patient =
1

n − 1

n−1∑

s=1

β̂s − β̂n , (8.11)

and the sampling variance of this estimator is:

V̂ar
(
b̂HOMO

)
= σ̂2

GC

( 1

n − 1
+ 1

)
. (8.12)

Heteroscedastic model In the heteroscedastic model, heterogeneous variances
are accounted for. As described earlier, in the general case, each element of γGC

follows a normal distribution:

γs
GC

∼ N (0, σ2
G +

σ2
s

V
). (8.13)
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Due to the non-sphericity of the measurement errors (as a consequence of het-
eroscedasticity), the system (8.6) is solved by using a weighted least square to get:

β̂HETERO

controls =
1

∑n−1
j=1 wj

n−1∑

s=1

ws β̂s

where ws =
1

σ̂2
G + σ̂2

s

β̂HETERO

patient = β̂n .

(8.14)

The associated sampling variances are:

V̂ar(β̂HETERO

controls ) =
1

∑n−1
s=1 ws

V̂ar(β̂HETERO

patient ) = σ̂2
G + σ̂2

n .
(8.15)

The within-subject variance estimates, σ̂2
s , are computed at the subject level as

described in eq. (8.3). In this paper, we compute σ̂2
G using a recent computationally

efficient approach available in the MEMA function of the AFNI software package
and described in [Chen 2012a].

The patient versus control group contrast b is estimated by:

b̂HETERO = β̂HETERO

controls − β̂HETERO

patient

=
1

∑n−1
j=1 wj

n−1∑

s=1

ws β̂s − β̂n

(8.16)

and the sampling variance of this estimator is:

V̂ ar
(
b̂HETERO

)
=

1
∑n−1

s=1 ws

+ σ̂2
G + σ̂2

n . (8.17)

If homoscedasticity is respected then it can easily be proven that this model
reduces to the homoscedastic model. However, in the presence of heteroscedas-
ticity, the heteroscedastic model has two main advantages by comparison to the
homoscedastic model:

1. In the control group, observations with high within-subject variances are
down-weighted in order to provide a more efficient estimate of the control
group parameter, β̂HETERO

controls .

2. While with the homoscedastic model the sampling variance of the patient
group estimate, V̂ar(β̂HOMO

patient), depends solely on variance estimations per-

formed in the control group, the heteroscedastic sampling variance, V̂ar(β̂HETERO

patient ),
takes advantage of both the control group (estimation of σ2

G) and the patient
(estimation of σ2

n) data.

The impact on the efficiency of the control group estimate (point 1) might
be subtle and leads to no substantial improvement in one-sample t-tests if the
homoscedasticity assumption is not overly altered [Mumford 2009]. However, the
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impact on the variance estimate of the patient parameter (point 2) can be large
if the within-subject variance of the patient of interest is very different from the
control subjects. In ASL studies, the large influence of within-subject variance
has been described in [Viviani 2009]. Furthermore, patients are known to be less
cooperative than control subjects which could potentially lead to within-subject
variance inflation due to increased movement. We therefore expect that adjusting
for the proper patient within-subject variance, using the heteroscedastic instead
of the homoscedastic model, will lead to more accurate results in the detection of
patient-specific perfusion abnormalities.

2.1.3 Hypothesis testing

Under the null hypothesis:

H0 : βcontrols = βpatient , (8.18)

the estimated patient versus control group contrast, b̂, divided by its estimated
sampling standard deviation (V̂ar(b̂))

1
2 follows a t-distribution with n − 1 degrees

of freedom.
A probability under the null hypothesis can therefore be calculated for each

voxel with:

P (X < x) where X =
b̂√

V̂ar(b̂)
∼ Tn−1, (8.19)

and x is the value taken by X at the voxel of interest. Equation (8.19) gives the
probability to have a hyper-perfusion, similarly, hypo-perfusions can be detected
by substituting P (X < x) by P (X > x). The thresholding of this probability map
gives the detections.

2.2 Evaluation framework

In this subsection, we first present how the ground truth hypo- and hyper-perfusions
were determined based on anatomical and perfusion information (2.2.1). Then,
the experiments undertaken to verify the assumptions of the homoscedastic model
(2.2.2) and to compare the homoscedastic and heteroscedastic models (2.2.3) are
presented.

2.2.1 Ground truth

Quantitative assessment of the detections and comparison between detection meth-
ods are challenging tasks. This is mainly because, like in many other medical
imaging problems, the ground truth is not clearly stated. We chose to evaluate
this framework on patients diagnosed with tumour pathology because perfusion
abnormalities have been widely studied in this clinical context [Chalela 2000,Suga-
hara 2000,Warmuth 2003,Weber 2006,Chawla 2007]. Also, as perfusion is a useful
clinical information, DSC is part of the clinical routine for these patients. Based
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on clinical knowledge, we used a semi-automatic procedure that took advantage
of the complementary anatomical (T1w-Gd, T2w FLAIR) and perfusion (DSC)
information to get an estimation of the ground truth.

True positives According to clinical knowledge, T1w-Gd hyper-signals are usu-
ally indicative of the presence of hyper-perfusions [Weber 2006]. However, in some
tumour types they are related to a different phenomenon. For instance, in lym-
phomas the hyper-signal identified on the T1w-Gd map does not correspond to a
hyper-perfusion [Weber 2006]. Moreover, neoangiogenesis, which is characterized
by hyper-perfusions in ASL, can spread out of the T1w-Gd hyper-signal in partic-
ular in high grade tumours such as glioblastoma [Hakyemez 2005]. Ground truth
hyper-perfused regions based on the T1w-Gd hyper-signal are therefore imprecise.

To overcome these limitations, we applied a two-step procedure taking advantage
of both the anatomical and perfusional information (delivered by DSC CBF). In
order to get an estimation of the ground truth, we implemented a method inspired
by the hotspot technique [Noguchi 2008] commonly used in clinical practice. To
this aim, the tumour was first segmented using a semi-automated method based on
the T2w and T1w-Gd images and visually inspected by an expert neuro-radiologist.
Then, we compared the tissue segmented as part of the tumour to its controlateral
counterpart in the DSC CBF map. Voxels overtaking the lower and upper deciles
were identified as potential hypo- and hyper-perfusions. Each potential perfusion
abnormality was then visually inspected by an expert neuro-radiologist and man-
ually corrected if needed. Special care was taken in order to avoid inclusion of
hyper-perfusions related to the presence of arteries.

Due to its low SNR, ASL is not well suited to measure low levels of perfu-
sion [Wintermark 2005]. That is why, we focused on hyper-perfusions for sensitivity
estimation. Hypo-perfusions were nevertheless retained for specificity calculations.

Out of the 17 patients included in this study who underwent a DSC sequence,
9 presented hyper-perfusions, 16 hypo-perfusions and 8 both.

False positives According to clinical knowledge, in the absence of metastasis,
the perfusion abnormalities should be confined to the affected tissue (tumour and
oedema) identifiable on T1w-Gd and T2w. The proportion of non-affected tissue
detected as a perfusion abnormality was used as a measure of the false positive rate.

In the control group, in which no detections were expected, an additional esti-
mate of the specificity was calculated by leave-one-out cross-validation.

2.2.2 Validity of the assumptions of the homoscedastic model

The homoscedastic model makes the assumption that within-subject variance is
either negligible by comparison to between-subject variance, or roughly constant
across subjects [Mumford 2009]. In order to test each of these assumptions, we
performed two experiments.
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Negligible within-subject variance First, following [Chen 2012a], we mea-
sured the proportion of total variability that occurred within subjects with the
following index, defined at each voxel for each subject s:

λs =
σ̂2

s

σ̂2
G + σ̂2

s

(8.20)

Values close to 1 mean that the within-subject variance (σ2
s) is preponderant com-

pared to between-subject variance (σ2
G) and values close to 0 mean that between-

subject variance holds the majority of the total variance. This measure is provided
as an output of the MEMA function in AFNI [Chen 2012a].

Constant within-subject variance across subjects In a second experiment,
we focused on the within-subject variance to verify whether it could be assumed
roughly constant across subjects. To this aim, we calculated an average within-
subject variance for each subject. This index was computed as suggested by [Mum-
ford 2009] by averaging the within-subject variance for voxels within the interquar-
tile range of the non-zero between-subject variance. Given this index of within-
subject variance, we searched for outliers in the control group with Rosner’s test
[Rosner 1983], assuming that the distribution of the variance estimate was approx-
imately normal. Then, we checked whether the control and patient groups had
significantly different medians with a non-parametric Kruskal-Wallis test.

2.2.3 Comparison of the homoscedastic and heteroscedastic models

Detections at a fixed threshold In order to assess the difference that het-
eroscedasticity modelling would induce, we compared the sensitivity and specificity
of the homoscedastic and heteroscedastic models. We compared both approaches
in a usual setting, where the detections were identified at a threshold p < 0.05 with
FDR correction for multiple comparisons [Benjamini 1995]. As the data is usually
pre-smoothed with a Gaussian kernel at the end of the pre-processing, we studied
6 kernel sizes defined by their FWHM: 0 mm3 (i.e. no smoothing), 4 mm3, 6 mm3,
8 mm3, 10 mm3, 12 mm3.

ROC analysis In order to further assess the difference that heteroscedasticity
modelling would induce, we compared the sensitivity and specificity of the ho-
moscedastic and heteroscedastic models with ROC curves. In order to draw the
ROC curves, we used 122 p-values (uncorrected), equally spaced in the logarithmic
space. ROC curves provide a way to measure the performance of a classifier with-
out focusing on a single threshold. We calculated the area under the curve as an
indicator of the classification accuracy. Since the size of the expected detections
is much smaller than the number of voxels that must not be detected, the area of
interest in the ROC curve is the one of high specificity. That is why, as previously
proposed in the literature, we focused on the area under the curve corresponding to
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false positive rates ranging from 0% to 10% [Skudlarski 1999]. As in the previous
experiment, different smoothing kernels were studied.

3 Materials

This section starts with a presentation of the datasets under study (3.1). The
pre-processing steps applied to the data before the statistical analysis are then
described (3.2).

3.1 Data acquisition

25 patients diagnosed with brain tumours and 36 healthy volunteers were involved
in this study. One control subject and four patients were excluded because of strong
borderzone signs [Zaharchuk 2009]. The final dataset therefore included 21 patients
(13 males, 8 females, age: 55.2 ± 14.1 years) and 35 healthy volunteers (16 males,
19 females, age: 27.7 ± 6.4 years).

Data acquisition was performed on a 3T Siemens Verio MR scanner with a 32-
channel head-coil. Patients were scanned in the context of clinical practice. The
imaging protocol included a 3D T1w (TR: 1900 ms, TE: 2.27 ms, FOV: 256 mm
× 256 mm × 176 mm, flip angle: 9◦, resolution: 1 mm × 1 mm × 1 mm), a PICORE
Q2TIPS sequence [Wong 1998] with crusher gradients (TR: 3000 ms, TE: 18 ms,
FOV: 192 mm × 192 mm, flip angle: 90◦, resolution: 3 mm × 3 mm, slice thickness:
7 mm, inter-slice gap: 0.7 mm, TI: 1700 ms, bolus width: TI wd = 700 ms, 60 rep-
etitions, mSENSE parallel imaging with accelerating factor of 2). In addition to
these sequences, the patients also underwent a 3D T1w-Gd sequence (TR: 1900 ms,
TE: 2.27 ms, flip angle: 9◦, FOV: 250 mm × 250 mm ×176 mm, resolution: 1 mm
× 1 mm × 1 mm) and a 2D T2w FLAIR sequence (TR: 9000 ms, TE: 90 ms, FOV:
220 mm × 199.4 mm, flip angle: 150◦, resolution: 0.69 mm × 0.69 mm, slice thick-
ness: 4 mm). Out of the 21 patients, 17 subjects also underwent a DSC sequence
(GRE EPI, TR: 1500 ms, TE: 30 ms, FOV: 230 mm× 230 mm, flip angle: 90◦, in
plane resolution: 1.8 mm × 1.8 mm, slice thickness: 4 mm, inter-slice gap: 1.2 mm).

3.2 Pre-processing

In this subsection, we present how raw ASL images were processed in order to
compute CBF maps (3.2.1) and then normalized in intensity (3.2.2). Lastly, DSC
pre-processing is briefly described (3.2.3)

3.2.1 CBF estimation with ASL

Image pre-processing was performed using SPM8 (Statistical Parametric Mapping
8, Wellcome Department of Imaging Neuroscience, University College, London) in
Matlab R2012a (Mathworks, Natick, MA). The anatomical image of each subject
was segmented using the unified segmentation [Ashburner 2005]. A subject-specific
anatomical brain mask was created, excluding voxels with less than 50% of brain
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tissue in subsequent statistical analyses. A six-parameter rigid-body registration
of the ASL volumes was carried out in order to reduce undesired effects due to
subject motion. Rigid coregistration onto the whole-brain anatomical map was
then performed based on mutual information. The average of unlabelled volumes
was used to estimate the geometrical transformation to apply to each volume. Pair-
wise subtraction of the control and labelled scans was then computed. A standard
kinetic model [Buxton 1998] was applied in order to get ASL CBF, according to
the following equation:

f = 6000 ×
λ ∆M

2 M0 α TIwd exp−(TI+idxsl∗TI sl)/T1 b
(8.21)

where f is the 4D CBF map in mL.100g−1.min−1, M0 the acquired M0 map
(first volume of the ASL series), λ = 0.9 mL.g−1 the blood/tissue water partition
coefficient, α = 0.95 the labelling efficiency, ∆M the 4D perfusion-weighted map,
TI = 1.7 s the inversion time [Ferré 2012], idxsl the slice index (0 for the first slice),
TI sl = 0.045 s the duration of acquisition of one slice, TI wd = 0.7 s the temporal
width of the bolus, TI b = 1.5 s the T1 of blood [Wang 2011]. The 6000 factor
allows the conversion from mL.g−1.s−1 to mL.100g−1.min−1 which is the standard
unit for CBF. We bring the attention of the reader to the fact that, contrary to
what is usually done in ASL pre-processing, ∆M represents the set of perfusion-
weighted maps (one volume per repetition) instead of a single perfusion-weighted
map obtained by averaging across the repetitions. This is necessary in order to
allow for the measurement of the within-subject variance.

Spatial normalization parameters estimated during the segmentation step were
then applied to the T1 and ASL CBF maps in order to normalize the subjects into
the ICBM-452 T1 template space [Mazziotta 2001]. This registration algorithm
was selected since it gives good results even in the presence of large anatomical
lesions [Crinion 2007a].

3.2.2 Intensity normalization

Intensity normalization is a common pre-processing step in PET or SPECT anal-
ysis [Arndt 1996] where the measured values are not quantitative. ASL produces
quantitative CBF maps, but the large inter-subject variability in global CBF [Par-
kes 2003] induces a strong correlation across voxels. In voxelwise ASL detection
studies, where the focus is on local variations across the brain, intensity normaliza-
tion is therefore advised to increase the sensitivity [Aslan 2010]. Given CBFs,v, the
original CBF value of subject s at voxel v, Perf s,v, the normalized intensity value
and θs the cross-voxel normalization parameter, we have:

CBFs,v = θs × Perf s,v. (8.22)

The most widespread approach to estimate θs in ASL data processing is to
compute the mean CBF signal found in a given ROI. This ROI is either limited to
an anatomical region, which is known to be avoided by the pathology under study,



3. Materials 151

or covers the whole normal grey matter [Aslan 2010]. A threshold of 70% of grey
matter is often chosen [Petr 2011]. The latter approach was preferred in this study
since, in a general setting, no brain region is free of anomalies across all pathologies.
Unphysiological negative perfusion estimates were excluded from the normalization
mask.

Furthermore, as areas of abnormal perfusion should not be included in the nor-
malization mask, we used an iterative scheme. At the first step, the normalization
parameter was computed based on a mask covering the entire grey matter of the
patient map under study. A first pass outlined the corresponding perfusion ab-
normalities as described in section 2.1.3. On the next step, the detected voxels
were excluded from the intensity normalization estimation. These two steps were
iterated until convergence.

3.2.3 CBF estimation with DSC

The DSC images were processed using MR manufacturer software by manually
choosing an arterial input function to calculate: the CBF, cerebral blood volume,
and mean transit time maps. The method is based on a deconvolution algorithm as
described in [Ostergaard 1996]. Similarly to ASL, DSC CBF maps were coregistered
on anatomical maps and spatially normalized.
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Figure 8.1: Parameter estimates of the homoscedastic and heteroscedastic model
in the control group, computed from 35 healthy subjects. a) Mean perfusion esti-
mate β̂HETERO

controls . b) Combined within- and between-subject standard deviation esti-
mate from the homoscedastic model σ̂GC

. c) Between-subject standard deviation
estimate from the heteroscedastic model σ̂G. d) Square root of the average within-
subject variance in the control group. Perfusion is expressed in normalized units
(ratio to mean grey matter perfusion). Axial slices are displayed in neurological
convention.
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4 Results

In this section we start with a graphical presentation of the parameter estimates
of the homoscedastic and heteroscedastic models in the control group (4.1). Then,
we present the results of the experiments regarding the validity of the assumptions
of the homoscedastic model (4.2). In a last subsection, we display the results of
the quantitative comparison between the homoscedastic and heteroscedastic mod-
els (4.3).

4.1 ASL template: a model of normal perfusion

In fig. 8.1, the parameter estimates of the homoscedastic and heteroscedastic models
are displayed. Each parameter is defined as a voxelwise map. First, an estimate of
the control group parameter is provided (β̂HETERO

controls is displayed, the homoscedastic
estimate β̂HOMO

controls is visually nearly identical). As expected, the CBF is higher in the
cortex and the basal ganglia than in white matter. Then, three standard deviation
estimates are displayed:

• the combined within- and between-subject standard deviation estimate σ̂GC

from the homoscedastic model (8.1 b);

• the between-subject standard deviation estimate σ̂G from the heteroscedastic
model (8.1 c);

• the root square of the average within-subject variance estimates in the control
group ( 1

n−1

∑n−1
s=1 σ̂2

s)
1
2 . This map is not part of the estimated standard devia-

tions but is provided as a visual example of expected within-subject standard
deviation in the control group (8.1 d).

The high variance values observed in the vascular structures, such as the trans-
verse sinus, are in concordance with the findings of [Viviani 2009]. This pattern
is clearly visible in the combined within- and between-subject variance estimate of
the homoscedastic model and captured by the within-subject variance estimate in
the heteroscedastic model. The main variations observed in the between-subject
variance, as estimated in the heteroscedastic model, are related to inter-subject
misregistrations in the cortex. An increased variance is also visible in the occipital
lobe, probably related to increased arterial transit times in these regions [MacIn-
tosh 2010].

4.2 Testing the assumptions of the homoscedastic model

The homoscedastic model stands on one of the following assumptions: either the
within-subject variance is negligible by comparison to between-subject variance, or
the within-subject variance is roughly constant across subjects.
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Figure 8.2: Histogram of the ratio of within-subject variance onto total variance in
the control group. Both variance estimates have a significant impact depending on
the voxels.

4.2.1 Relative weights of between-subject and within-subject variances
in the control group

In order to verify if the within-subject variance can be assumed negligible by com-
parison to between-subject variance, fig. 8.2 presents the histogram of the ratio of
within-subject to total variance in the control group (λs from eq. (8.20)). Overall,
a total of 1 094 790 voxels are considered. Values close to one indicate a pre-
ponderance of the within-subject variance, whereas values close to zero outline a
dominating between-subject variance. Clearly, both components of variance have
an important impact as the λs index spans the complete range of values between
0 and 1. The large peak indicating voxels with a zero between-subject variance
was also observed in [Chen 2012a] and might be the consequence of calculation
inaccuracies. While the true between-subject variance might not be exactly zero,
these voxels nevertheless present a very small between-subject variance, negligible
by comparison to the within-subject variance. The quartiles of the distribution
are 0.23 and 0.78, so that the outermost 25% of the voxels (on each side) have
either a dominant within-subject variance or a dominant between-subject variance.
In the remaining 50% voxels, both variance components have a significant impact.
In conclusion, it cannot be assumed that within-subject variance is negligible in
comparison to between-subject variance.

4.2.2 Cross-subject comparison of within-subject variances

In this experiment, we tested whether within-subject variance could be assumed
roughly constant across subjects. As proposed by [Mumford 2009], we calculated
an average within-subject variance across voxels. This led to an index of within-
subject variance per subject. Fig. 8.3 displays the within-subject variance indexes
in the control and patient groups.
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Figure 8.3: Average estimated within-subject variances in control and patient
groups. For each box, the red line corresponds to the median and the top and
bottom lines of the blue square are the upper and lower quartiles of the distribu-
tion.

In the control group, it is clear that one of the subjects presents an unexpected
high variance by comparison to the other controls. Retrospectively, we found out
that this subject moved substantially more than other controls and was identified
as uncooperative by the MR physicist during the acquisition. As expected from
fig. 8.3, we found one outlier in the control group with Rosner’s test.

The within-subject variance was significantly higher in the patient group than in
the control group (p < 0.05 with Kruskal-Wallis test). This might be explained by
the fact that patients tend to have more difficulties to lie still during the acquisition
due to their pathological condition.

The index proposed by [Mumford 2009] is an average across voxels and therefore
focused on global variations of the within-subject variance. However, strong vari-
ations, sometimes caused by artefacts, that appear locally can also be a concern.
As an example, fig. 8.4a displays the estimated within-subject standard deviation
for a control subject presenting locally atypical patterns. While the high variance
induced by the presence of large vessels is a pattern shared across subjects (as
previously described in fig. 8.1, last panel), the high variance observed bilaterally
in the frontal lobe is specific of this control subject. We hypothesize that these
strong variations are the consequence of motion during the acquisition that was
not correctly compensated during the pre-processing. Even if this subject was not
previously outlined as an outlier, these atypical patterns of variance might have a
detrimental impact on the analysis if not properly taken into account.

In conclusion, variations across subjects of the within-subject variance appear
to be important in ASL. This might be a consequence of the low SNR of this
technique, since small artefacts in the original control and labelled scans can lead
to substantial variations in the perfusion-weighted map after subtraction. In the
next sections we investigate whether modelling heteroscedasticity can improve the
detections of perfusion abnormalities.
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Figure 8.4: a) Estimated within-subject standard deviation in a control subject pre-
senting locally atypical values. b) T1w map with false positive detections (in red) by
leave-one-out cross-validation (smoothing FWHM = 8 mm3) with the homoscedas-
tic model (b) and the heteroscedastic model (c). No false positive detections are
observed with the heteroscedastic model.

Table 8.1: Sensitivity and specificity in the control (first row) and patient (second
and third rows) groups with the homoscedastic and heteroscedastic models for dif-
ferent smoothing kernels (FWHM = [0, 4, 6, 8, 10, 12] mm3), at p < 0.05 FDR
corrected.

Homoscedastic model Heteroscedastic model
0 4 6 8 10 12 0 4 6 8 10 12

Specificity (controls) 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Specificity (patients) 0.92 0.89 0.87 0.86 0.85 0.84 1.00 0.99 0.99 0.99 0.99 0.98
Sensitivity (hyper) 0.49 0.59 0.63 0.66 0.67 0.67 0.51 0.59 0.61 0.58 0.57 0.55

4.3 Comparison of homoscedastic and heteroscedastic models

In this subsection, the homoscedastic and heteroscedastic models are compared in
terms of sensitivity and specificity to detect patient-specific perfusion abnormalities
with ASL (as described in 2.1.3).

4.3.1 Fixed threshold

Quantitative analysis Table 8.1 presents the sensitivity to detect hyper-perfusions
and the specificity both in the patient group and by leave-one-out cross-validation
in the control group with the homoscedastic and heteroscedastic models for different
smoothing kernels (FWHM = [0, 4, 6, 8, 10, 12] mm3), at p < 0.05 FDR corrected.

Overall, the heteroscedastic model leads to a decrease in false positive rate.
This is particularly noticeable in the patient group where the specificity is improved
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Figure 8.5: Detections of perfusion abnormalities with the homoscedastic and het-
eroscedastic models in a patient suffering from a high grade glioma. a) T1w-Gd
map, the tumour site is pointed by a black arrow. b) Patient ASL CBF estimate β̂n .
c) Within-subject standard deviation of ASL CBF σ̂2

n . d) T1w-Gd map with ground
truth overlaid. T1w-Gd map with hypo- (blue colour-map) and hyper-perfusions
(hot colour-map) overlaid for the homoscedastic (e) and heteroscedastic (f) models.
Modelling heterogeneous variances (heteroscedastic model) reduces the false posi-
tive detections while preserving the true detections. Axial slices are displayed in
neurological convention.

for each smoothing studied. As expected, in the control group, this effect is also
observed but to a lesser extent. This is probably due to the fact that the hypothesis
of homoscedasticity is better suited for the control subjects. The increase in false
positive rate, with the homoscedastic model, is accompanied by a relative increase
in sensitivity, which does not seem significant given the specificity loss.

Qualitative analysis At the individual level, as illustrated in fig. 8.4, local atyp-
ical patterns of variance can further lead to a substantial increase in false positives
with the homoscedastic model. The unexpected high standard deviation in the
frontal lobe for the control subject presented in fig. 8.4 leads to false positive hyper-
perfusions with the homoscedastic model whereas the heteroscedastic model does
not get any false positive (smoothing FWHM = 8 mm3). Fig. 8.5 further illustrates
the benefits of the heteroscedastic model compared to the homoscedastic model
in a patient subject. The motion artefacts and hyper-signals induced by arteries
indeed correspond to regions of high within-subject standard deviation. Modelling
heterogeneous variances reduces the artefactual detections in these regions while
preserving the quality of the true detections.

To investigate whether, at a same specificity rate, the sensitivity differs between
the two approaches, we employed a ROC analysis as described in the next section.
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4.3.2 ROC analysis

Figure 8.6: ROC curves for perfusion abnormality detections with the homoscedas-
tic and heteroscedastic models. The average ROC curves across the studied smooth-
ings are plotted in plain line. Dotted lines are plotted one standard deviation away
from the average.

Table 8.2: Area under the ROC curve for false positive rates ranging between 0%
and 10% with the homoscedastic and heteroscedastic models. The heteroscedastic
model outperforms the homoscedastic model.

Homoscedastic model Heteroscedastic model
0 4 6 8 10 12 0 4 6 8 10 12

ROC area 0.46 0.49 0.49 0.49 0.48 0.48 0.63 0.70 0.72 0.72 0.69 0.65

Quantitative comparison Fig. 8.6 presents the ROC curves in the patient group
for the homoscedastic and heteroscedastic models. The average over the studied
smoothing kernels is plotted along with the spread provided by the standard de-
viation over the 6 measurements. The ROC curve of the heteroscedastic model is
substantially closer to the ideal classifier than the homoscedastic curve.

Table 8.2 presents the area under the ROC curves for false positives rates rang-
ing from 0 to 10%, for the homoscedastic and heteroscedastic models with differ-
ent smoothing kernels. The heteroscedastic model outperforms the homoscedas-
tic model with an increased area under the curve. The best values are 0.72 and
0.49 with the heteroscedastic and homoscedastic model respectively. For both ap-
proaches, a maximum area under the curve is reached for a smoothing kernel of
8 mm3.
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Qualitative comparison In order to illustrate the advantage of the heteroscedas-
tic over the homoscedastic model, we chose 3 representative subjects and compared
the methods at fixed false positive rate and true positive rate. To this aim, we
selected the uncorrected p-values that would lead to a pre-specified false positive
rate (respectively true positive rate) from the ROC analysis. We worked with data
smoothed with a Gaussian kernel of 8 mm3 that led to the best area under the curve
with both models. It is worth noting that in the previous section the sensitivity and
specificity were estimated at the group level and that the 3 subjects presented in
this part were chosen so that they would best illustrate the group findings. Fig. 8.7
presents the detections obtained with both methods on the 3 selected patients. The
first subject, which presents a small hyper-perfusion, is studied at a true positive
rate of 50%. In the two remaining patients, the methods are compared at a false
positive rate of 0.1%.

Patient 15 suffers from a gliosarcoma in the left hemisphere close to the parahip-
pocampal region. The lesion displays a small hyper-perfusion in its dorsal part,
small hypo-perfusions are seen in the surrounding oedema. At a true positive rate
of 50%, the homoscedastic model displays a larger number of false positives than the
heteroscedastic model. Patient 16 was diagnosed with a high grade tumour in the
left temporal lobe. The lesion is characterized by a large hyper-perfusion and a sur-
rounding hypo-perfusion. With a false positive rate of 0.1%, the hyper-perfusion is
correctly located with both methods. The extent of the hyper-perfusion is however
better covered by the heteroscedastic model. Patient 6 suffers from a meningioma
partly hyper-perfused. Similarly to patient 16, at a false positive rate of 0.1%, both
methods detect the hyper-perfusion but the heteroscedastic model is clearly more
sensitive.

These 3 cases illustrate the loss of sensitivity of the homoscedastic model by
comparison to the heteroscedastic model at the same specificity level.

5 Discussion and conclusion

We have compared two approaches to quantitatively outline patient-specific patho-
logical patterns of abnormal perfusion in ASL data based on the massively univari-
ate GLM: the homoscedastic and heteroscedastic models.

We demonstrated that the assumptions underlying the homoscedastic model are
not verified in ASL studies. More precisely, the within-subject variance cannot be
considered as negligible by comparison to between-subject variance, nor constant
across subjects. In fMRI data, small deviations from homoscedasticity have shown
to not overly alter the results in one-sample mixed-effects GLM analysis [Mum-
ford 2009]. Here, we showed that modelling heterogeneous within-subject variances
is essential in order to reach a satisfactory level of specificity in a mixed-effect two-
sample t-test comparing a patient to a group of controls in ASL. These results are in
line with a recent study by [Chen 2012a] where heteroscedastic mixed-effects GLM
were shown to provide more accurate results in fMRI.
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Figure 8.7: Perfusion abnormalities detections in 3 patients with homoscedastic and
heteroscedastic models. From left to right: ground truth hyper-perfusions (red)
and hypo-perfusions (blue) overlaid on the T1w-Gd map; detections with the ho-
moscedastic model with a smoothing kernel of FWHM = 8 mm3, hyper-perfusions
(hot colormap) and hypo-perfusions (blue); detections with the heteroscedastic
model with a smoothing kernel of FWHM = 8 mm3, hyper-perfusions (hot col-
ormap) and hypo-perfusions (blue).
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In the context of this paper, we defined a single parameter in the subject-level
design matrix and focused on perfusion-weighted images obtained after pair-wise
subtraction of the control and labelled scans. Other authors have suggested that
taking the complete ASL time-course into account (before subtraction) would lead
to more efficient estimates of perfusion in fMRI [Mumford 2006]. Also, additional
regressors can be introduced as nuisance covariates for denoising purposes in the
subject-level design matrix as suggested in [Wang 2012]. Modifying the subject-level
design matrix would change the estimated subject parameters and their sampling
variances. However, an heteroscedastic model would still be appropriate in this
setting so that the conclusions of this paper remain valid even with a different
subject-level model.

We demonstrated that within-subject variance captures important information
regarding the subject-specific spatial distribution of noise in ASL data. We also out-
lined that patient-specific brain perfusion abnormalities can be correctly detected
using ASL if the heterogeneous within-subject variances are properly modelled. We
therefore advise the use of heteroscedastic models in ASL studies.



Chapter 9

A contrario detection of perfusion ab-
normalities

This chapter is presented in the form of a paper. This work was submitted to
NeuroImage. Preliminary versions of this work were published in the IEEE 9th In-
ternational Symposium on Biomedical Imaging (ISBI) in 2012 [Maumet 2012a] and
in the 15th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) in 2012 [Maumet 2012b]

Abstract

In this paper, we introduce a new locally multivariate procedure to quantitatively
extract individual patterns of abnormal perfusion in ASL. This method, called the
a contrario approach comes from the computer vision community and allows to
take into account the local information without smoothing of the data. To improve
on the standard a contrario approach, which assumes white noise, we introduce a
non-independent a contrario approach which takes into account the noise spatial
coherency to provide the distribution of the statistic.

Validation is undertaken on a dataset of 60 healthy volunteers and 25 patients
diagnosed with brain tumours. The a contrario approach outperforms the mas-
sively General Linear Model usually employed for this type of analysis. The non-
independent a contrario approach provides a statistic that is more valid than the
standard a contrario approach and than the GLM.
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1 Introduction

Brain perfusion is the biological process that ensures the delivery of oxygen and nu-
trients to the cerebral tissues by means of microcirculation. ASL, a MRI technique
introduced in the early 1990’s, allows to measure the level of perfusion through a
quantitative index: the CBF. Contrary to standard perfusion imaging, including
PET and SPECT in nuclear medicine or DSC in MRI, ASL is completely non-
invasive and does not require the injection of an exogenous contrast agent. In ASL,
blood water, used as an endogenous tracer, is labelled with a radio-frequency pulse.
After a delay called inversion time, a labelled image of the brain is acquired. A
control image is also acquired without prior labelling. In ASL with a single readout
time, the difference between the labelled and the control image leads to a perfusion-
weighted map, proportional to the CBF. To increase the SNR of the measure, the
acquisition is repeated several times.

The absence of radiation and the use of an endogenous tracer, which removes
the need for injection of a contrast agent, are clear advantages of ASL over standard
perfusion imaging techniques. The ASL sequence however suffers from a low SNR,
which is still a serious obstacle for its use in clinical practice.

Perfusion is an indicator of the well-being of the tissues and is a useful tool
for diagnosis in clinical practice. Identifying regions of abnormal perfusion, either
hypo-perfusions or hyper-perfusions, can help understanding the mechanism of a
disease and taking care of the patient. For instance, for patients diagnosed with
tumours, the clinician is interested in hyper-perfusions that would reveal the grade
of the tumour [Weber 2006], or help differentiating between post-radiation necrosis
and tumour recurrence [Sugahara 2000]. In strokes, the extent of hypo-perfusion
and mismatch with diffusion imaging provide an insight on the possible recovery of
the tissue [Huck 2012], an indication of tremendous importance to help the clinician
decide on the adequate treatment. Since the introduction of ASL, and despite its
low SNR, a large number of studies have demonstrated its usefulness in identifying
patterns of abnormal perfusion at the group level, for example [Pinkham 2011].
The large majority of these quantitative statistical analyses are based on a GLM,
a massively univariate approach widespread in the brain imaging community. Very
few ASL studies focused on voxelwise quantitative perfusion abnormality detections
at the individual level. In [Petr 2013], a template-based analysis was presented in
order to detect individual activation patterns in functional ASL data. Interestingly,
they also applied their method to a pathological case in order to detect a hypo-
perfusion co-located with a dysplasia in an epileptic patient. While their approach
opens the field to the detection of patient-specific perfusion abnormalities with ASL,
a single pathological case was presented and no quantitative validation performed.

With other perfusion methods such as SPECT, template based perfusion ab-
normality detections at the individual level in patients have demonstrated their
interest [Vik 2005,Stamatakis 2002,Lee 2000]. Thanks to its non-invasiveness, ASL
is more suitable than DSC or SPECT to acquire data in healthy controls. However,
the identification of individual patterns of hypo- and hyper-perfusions in patients
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with ASL mainly relies on visual analysis [Zaharchuk 2012,Chen 2012b].
In this paper, we propose a new statistical framework for the detection of

patient-specific brain perfusion abnormalities with ASL. Our method is based on
an a contrario analysis. This recent statistical approach, first introduced in [Des-
olneux 2003], has later been applied to medical image processing [Rousseau 2007,
Aguerrebere 2009]. It allows to take into account neighbouring voxels without pre-
smoothing the data,

The proposed method is compared to the GLM on quantitative grounds by
means of ROC analyses. The model of normal perfusion is computed out of the
data of 60 healthy volunteers. Quantitative validation is performed on a dataset of
25 patients diagnosed with brain tumours. As a matter of fact, perfusion abnormal-
ities have been widely studied in this context [Chalela 2000, Sugahara 2000, War-
muth 2003,Weber 2006,Chawla 2007].

We previously investigated the ability to detect hypo- and hyper-perfused re-
gions using a template of normal perfusion in two conference papers [Maumet 2012a,
Maumet 2012b]. On the methodological side, we present here a new variant of our
model, which takes into account the spatial autocorrelation of the noise. Further-
more, a larger database is studied, a novel quantitative validation is provided, and
a comprehensive quantitative comparison with the GLM is performed.

In section 2, the principles of a contrario analyses are presented, and the pro-
posed approach for the detection of perfusion abnormalities is introduced. Sec-
tion 3 outlines the experimental context: data acquisition and pre-processing are
described, followed by the quantitative metrics and experiments used for validation.
The results are presented in section 4. Section 5 gives a discussion and concludes.

2 Methods

This section presents the methods developed in order to detect areas of abnormal
perfusion in a patient map by comparison to a group of control subjects. First,
in 2.1, we review the standard massively univariate GLM [Beckmann 2003, Mum-
ford 2009]. Then, in 2.2, we describe the proposed locally multivariate a contrario

approach.

2.1 The massively univariate General Linear Model

The General Linear Model used to detect patterns of abnormal perfusion in a patient
by comparison to a group of subjects can be defined as a hierarchical model with
two levels: subject and group.

At the subject level, we observe a series of n CBF volumes (one per repetition
of the ASL acquisition) and aim at obtaining an estimate of the true CBF for each
voxel v. Thus, we have:

Y (s,v) = X(s,v)β(s,v) + ε(s,v) (9.1)
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where Y (s,v) is a d-dimensional vector of replicated CBF values. X(s,v) is the
subject-level design matrix that reduces to a d-dimensional vector of ones in the
absence of covariate. β(s,v) is the subject parameter, i.e. the actual (unknown)
CBF value of the subject s in the voxel v. Finally, the d-dimensional vector ε(s,v) is
the error term and follows a central Gaussian distribution with standard deviation
σ(s,v) representing the intra-subject variability.

Equation (9.1) can be solved independently for each subject. If no nuisance
regressors are defined in the model, the ordinary-least-square estimate of the subject
parameter β(s,v) is the sample average across the ASL repeats:

β̂(s,v) =
1

n

n∑

i=1

yi
(s,v), (9.2)

where yi
(s,v) is the ith element of the vector Y(s,v). Similarly, the sampling variance

of β̂(s,v) is estimated by:

V̂ar(β̂(s,v)) =
σ̂2

(s,v)

n
where σ̂2

(s,v) =
1

n − 1

n∑

i=1

(
yi

(s,v) − β̂(s,v)

)2
. (9.3)

At the group level, we have an estimated CBF map for each subject, β̂(s,v),
and we want to compare the level of perfusion in the patient map to the level of
perfusion in the control group. The model is thus:

β̂v = XGvβGv + εGv. (9.4)

The n-dimensional vector β̂v contains the subject parameter estimates. The 2-
dimensional vector of group parameters βGv contains the control group and patient
parameters. The n × 2 group design matrix XGv affects each subject to the group
it belongs to. The n-dimensional vector εGv is the error term and follows a central
Gaussian distribution with standard deviation σGv representing the inter-subject
variability.

Without loss of generality, we assume that subjects 1 to n − 1 are part of the
control group. Using an heteroscedastic model, the level of perfusion in the patient
map at voxel v is compared to the level of perfusion in the control group with the
following t-statistic [Maumet 2013a]:

tv =

β̂(n,v) −
1

∑n−1
s=1 w(s,v)

n−1∑

s=1

w(s,v)β̂(s,v)

σ̂2
Gv + σ̂2

(n,v) +
1

∑n−1
s=1 w(s,v)

(9.5)

where 1
w(s,v)

= σ̂2
Gv + σ̂2

(s,v).

σ̂2
Gv is the estimated inter-subject variance and σ̂2

(s,v) the estimated intra-subject
variance (over the ASL repetitions) for subject s.
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Under the null hypothesis H0 that the perfusion value in the patient map is
equal to the control group mean, the t-statistic tv follows a Student distribution
Tn−1 with n − 1 degrees of freedoms. The probability πGLM

v of being in presence of
a hyper-perfusion at voxel v of the patient map is therefore estimated by:

πGLM

v = Pr(Tn−1 ≥ tv). (9.6)

Hypo-perfusions can respectively be studied with Pr(Tn−1 ≤ tv). Valid detections
are then obtained by thresholding the probability map using a correction for mul-
tiple testing.

2.2 The a contrario approach: a locally multivariate procedure

The a contrario approach [Desolneux 2003] is a locally multivariate procedure that
produces region-based probabilities (as opposed to voxel-wise probabilities gener-
ated by the massively univariate GLM). The a contrario probability estimation
is usually based on a two-step procedure. First, a voxel-wise probability map is
computed under a so-called “background model”. Second, voxel-wise probabilities
are converted into region-based probabilities assuming a given type of local noise
(usually white).

In the first step, a model of the background is defined.
This model can represent the background noise or be learned from a control

population. Let Jv be the random variable representing the value observed at the
voxel v of the image of interest. Under the background model M, depending on
the set of parameters γ, we have:

Jv ∼ M(γv). (9.7)

Given xv, the value observed at voxel v, each voxel of the image can be associated
with a probability under the background model:

Pr(Jv ≥ xv), where Jv ∼ M(γv) (9.8)

Rousseau et al. first noticed that the term “background model” commonly
employed in the a contrario literature could be well considered as a null hypothesis
in standard hypothesis testing [Rousseau 2007]. So that the standard massively
univariate GLM (based on unsmoothed data) can in fact be used to produce the
input voxel-wise probability map of the a contrario analysis leading to:

Pr(Jv ≥ xv) = πGLM

v . (9.9)

In the second step, in order to extend the probabilities from voxels to regions
of the image we then need:

1. A partition of the image into sub-regions;

2. A model that link the voxel-based probabilities observed in a region to its
region-based probability.
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2.2.1 Partition of the image into sub-regions

Given an a priori shape of the structures to be detected the regions can be se-
lected accordingly. For instance, in the first a contrario application, which aimed
at detecting alignments, segments of variable sizes were chosen as regions of analy-
sis [Desolneux 2003].

In our case, the shape of the expected detections is unknown and, as it has been
proposed [Rousseau 2007,Aguerrebere 2009], the sub-regions are defined as spheres
centred at each voxel.

2.2.2 From voxel-based to region-based probabilities

The conversion from voxel-based to region-based probabilities involves the notion
of “rare events”. By definition, a rare event occurs at voxel v if the probability
(under the null hypothesis) to observe such value, or a more extreme, is smaller
than a pre-defined threshold pPRE. The initial voxel-wise probability map is thus
thresholded to produce a binary map :

kv =





1, if πGLM

v ≤ pPRE ,

0, otherwise.
(9.10)

Then, the number of rare events in a region R, l(r), is determined by:

l(r) =
∑

v∈R

kv. (9.11)

Let L(r) be the random variable representing the number of rare events observed
in the region R. Then, we have:

L(r) =
∑

v∈R

Kv where Kv ∼ Bern(pPRE) (9.12)

where Bern(pPRE) is a Bernoulli distribution with probability pPRE.
The t-statistic used in the massively univariate GLM, is therefore replaced by a

locally multivariate statistic in the a contrario approach: the number of rare events
l(r). In order to be able to make inference using the a contrario approach, we must
determine the distribution of the statistic l(r) under the null hypothesis.

Independence assumption The standard a contrario approach assumes spatial
independence of the residuals, i.e. the probability (under the background model or
equivalently under the null hypothesis) to observe a rare event at a given voxel is in-
dependent of the probability to observe a rare event at any other voxel in the image,
and in particular in its neighbourhood. As a sum of independent Bernoulli random
variables is a random variable following a Binomial distribution, the region-based
probability π(r) is then estimated using a Binomial distribution parametrized by
the number of voxels in each region, e = card(R), and the pre-defined p-value pPRE:

π(r) = Pr(L(r) ≥ l(r)), where L(r) ∼ B(e, pPRE). (9.13)
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In the context of this paper, the probability associated to each region R is
affected to its centre voxel v to produce a voxel-wise probability map:

πCONT

v = π(r). (9.14)

Non-independence of the residuals The standard a contrario approach as-
sumes spatially white noise in the residuals. However, the presence of spatial auto-
correlation of the noise has been well described in the MRI literature, in particular
when discussing the issue of cluster inference, see for example [Chumbley 2009],
and cannot be ignored. We draw the attention of the reader on the fact that the
dependence of the residuals is not related to the spatial coherency observed in the
perfusion signal. Under the null hypothesis, it is the spatial autocorrelation of the
noise (observable in the residuals) that impacts the locally multivariate probabili-
ties. In order to estimate the region-based probability of observing a given number
of rare events per sphere, we propose to rely on a multivariate normal distribution
as developed hereafter. In the remainder of the paper, this alternative method will
be referred as the non-independent a contrario approach.

Let’s first notice, that the probability of observing l(r) or more rare events can
be calculated as a sum of probabilities:

Pr(L(r) ≥ l(r)) =
e∑

i=l(r)

Pr(L(r) = i) (9.15)

Then, given C
(i)
(r) the set of combinations of i elements among R, we have:

Pr(L(r) = i) =
∑

S∈C
(i)

(r)

Pr
(
K(v) = 1, ∀v ∈ S and K(v) = 0, ∀v Ó∈ S

)
(9.16)

The problem now lies in the calculation of the joint probability to observe a
given combination of “rare”/“not rare” voxels in the region of interest. Also, by
definition of the term “rare event” we have:

Pr
(

K(v) = 1, ∀v ∈ S and K(v) = 0, ∀v Ó∈ S
)

= Pr
(

πv ≤ pPRE, ∀v ∈ S and πv > pPRE, ∀v Ó∈ S
)

= Pr
(

tv ≥ Φ−1
tν

(pPRE), ∀v ∈ S and tv < Φ−1
tν

(pPRE), ∀v Ó∈ S
)
,

(9.17)

where Φ−1
tν

in the inverse cumulative function of a Student distribution with
ν degrees of freedom, outlining that the joint probability can be estimated from
a Student’s t random field. As previously proposed in the neuroimaging literature
regarding the use of random field theory for multiple testing correction [Kiebel 1999,
Zhang 2009], we focus on the Gaussianised t random field:

Zv = Φ−1(Φtν (tv))
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Then we have:

Pr
(

tv ≥ Φ−1
tν

(pPRE), ∀v ∈ S and tv < Φ−1
tν

(pPRE), ∀v Ó∈ S
)

= Pr
(

Zv ≥ Φ−1(pPRE), ∀v ∈ S and Zv < Φ−1(pPRE), ∀v Ó∈ S
)
,

(9.18)

where Φ−1 in the inverse cumulative function of a standard Normal distribution.
As a Gaussian random field, Zv is also representable by a multivariate Gaussian

distribution, we have:




Z(1)
...

Z(e)


 ∼ Ne(




0
...
0


 ,




1 σ2
(1,2) . . . σ2

(1,e)

σ2
(1,2)
...

. . .
σ2

(1,e) . . . 1




). (9.19)

where Ne is a multivariate Gaussian distribution of dimension e and σ2
(i,j) = cov(Z(i), Z(j)).

The problem now lies in the estimation of the covariance between each pair of voxel
σ2

(i,j), i Ó= j. To this aim, we use the great amount of work developed in the con-
text of random field theory. In particular, assuming that Zv can be described
as a stationary homogeneous Gaussian random field, [Worsley 1996] proposed an
estimation of the spatial correlation. This estimate corresponds to the full-width-
at-half-maximum of a Gaussian kernel that, applied to white noise, would lead
to the same amount of autocorrelation. We computed this estimate using SPM8
(Statistical Parametric Mapping 8) on a subset of our subjects and found a full-
width-at-half-maximum approximately equal to 1.5 voxels (in each direction). This
value is in line with previous estimates obtained in ASL data [Wang 2003a]. Given
this estimate of the autocorrelation, σ2

(i,j), i Ó= j is easily computed.
The region-based probability taking into account the correlation between resid-

uals π∗
(r) of the non-independent a contrario approach can therefore be calculated as

the sum of joint probabilities calculated from a multivariate Gaussian distribution:

π∗
(r) =

e∑

i=l(r)

∑

S∈C
(i)

(r)

Pr
(
Zv ≥ Φ−1(pPRE), ∀v ∈ S and Zv < Φ−1(pPRE), ∀v Ó∈ S

)

(9.20)
In the context of this paper, the probability associated to each region R is

affected to its centre voxel v to produce a voxel-wise probability map:

π∗CONT

v = π∗
(r). (9.21)

The standard a contrario approach assuming independence of the residuals can
be seen as a special case where σ(i,j) = 0 ∀(i, j) ∈ (1 . . . e)2, i Ó= j.

3 Material

This section starts with a presentation of the datasets under study in 3.1. The
metrics used for validation purposes are then described in 3.2.
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3.1 Data

3.1.1 Data acquisition

25 patients diagnosed with brain tumours and 61 healthy volunteers were involved
in this study. One control subject and three patients were excluded because of
strong borderzone sign [Zaharchuk 2009]. The final dataset therefore included 22
patients (13 males, 9 females, age: 55.3 ± 15.4 years) and 60 healthy volunteers
(28 males, 32 females, age: 29.4 ± 7.6 years).

Data acquisition was performed on a 3T Siemens Verio MR scanner with a 32-
channel head-coil. Patients were scanned in the context of clinical practice. The
imaging protocol included a 3D T1-weighted anatomical sequence (T1w) (TR: 1900 ms,
TE: 2.27 ms, FOV: 256 mm × 256 mm × 176 mm, flip angle: 9◦, resolution: 1 mm
× 1 mm × 1 mm), a PICORE Q2TIPS sequence [Wong 1998] with crusher gradients
(TR: 3000 ms, TE: 18 ms, FOV: 192 mm × 192 mm, flip angle: 90◦, resolution: 3 mm
× 3 mm, slice thickness: 7 mm, inter-slice gap: 0.7 mm, TI: 1700 ms, TIwd: 700 ms,
60 repetitions (35 subjects) or 30 repetitions (25 subjects), mSENSE parallel imag-
ing with accelerating factor of 2). In addition to these sequences, the patients
also underwent a 3D T1w post gadolinium (T1w-Gd) sequence (TR: 1900 ms,
TE: 2.27 ms, flip angle: 9◦, FOV: 250 mm × 250 mm ×176 mm, resolution: 1 mm
× 1 mm × 1 mm) and a 2D T2w FLAIR sequence (TR: 9000 ms, TE: 90 ms, FOV:
220 mm × 199.4 mm, flip angle: 150◦, resolution: 0.69 mm × 0.69 mm, slice thick-
ness: 4 mm). Out of the 22 patients, 17 subjects also underwent a DSC sequence
(GRE EPI, TR: 1500 ms, TE: 30 ms, FOV: 230 mm× 230 mm, flip angle: 90◦, in
plane resolution: 1.8 mm × 1.8 mm, slice thickness: 4 mm, inter-slice gap: 1.2 mm).

3.1.2 Pre-processing

Arterial Spin Labelling Image pre-processing was performed using SPM8 (Sta-
tistical Parametric Mapping 8, Wellcome Department of Imaging Neuroscience, Uni-
versity College, London) in Matlab R2012a (Mathworks, Natick, MA). The anatom-
ical image of each subject was segmented using the unified segmentation [Ash-
burner 2005]. A subject-specific anatomical brain mask was created, excluding
voxels with less than 50% of brain tissue in subsequent statistical analyses. A six-
parameter rigid-body registration of the ASL volumes was carried out in order to
reduce undesired effects due to subject motion. Pair-wise subtraction of the control
and labelled scans was then computed. Rigid coregistration onto the whole brain
anatomical map was then performed based on mutual information. A standard
kinetic model [Buxton 1998] was then applied in order to get ASL CBF, according
to the following:

f = 6000 ×
λ ∆M

2 M0 α TIwd exp−(TI+idxsl∗TI sl)/T1 b
(9.22)

where f is the CBF map in mL.100g−1.min−1, M0 the acquired M0 map,
λ = 0.9 mL.g−1 the blood/tissue water partition coefficient, α = 0.95 measures
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the labelling efficiency, ∆M is the perfusion-weighted map, TI = 1.7 s the inver-
sion time [Ferré 2012], idxsl the slice index (0 for the first slice), TI sl = 0.045 s
the readout time for one slice, TI wd = 0.7 s the temporal width of the bolus,
T1 b = 1.5 s the T1 of blood [Wang 2011]. The 6000 factor allows the conversion
from mL.g−1.s−1 to mL.100g−1.min−1 which is the standard unit for CBF. We bring
the attention of the reader to the fact that, contrary to what is usually done in ASL
pre-processing, ∆M represents the set of perfusion-weighted maps (one volume per
repetition) instead of a single perfusion-weighted map obtained by averaging across
the repetitions. This is necessary in order to allow for the measurement of the
within-subject variance.

Spatial normalization parameters estimated during the segmentation step were
then applied to the T1 and ASL CBF map in order to normalize the subjects into
the ICBM-452 T1 template space [Mazziotta 2001]. This registration algorithm
was selected since it gives good results even in the presence of large anatomical
lesions [Crinion 2007a]. Normalisation in intensity was then applied to each ASL
CBF map in order to reduce the inter-subject variability [Aslan 2010]. The nor-
malisation parameter was calculated as the average CBF in grey matter similarly
to [Petr 2013].

Dynamic Susceptibility weighted Contrast imaging The DSC images were
processed using MR manufacturer software by manually choosing an arterial input
function to calculate: CBF, cerebral blood volume and mean transit time maps. The
method is based on a deconvolution algorithm as described in [Ostergaard 1996].
Similarly to ASL, DSC CBF maps were co-registered on anatomical maps and
spatially normalized.

3.2 Ground truth

Quantitative assessment of the detections and comparison between detection meth-
ods are challenging tasks. This is mainly because, like in many other medical
imaging problems, the ground truth is not clearly stated. We chose to evaluate this
framework on patients diagnosed with tumour pathology because perfusion abnor-
malities have been widely studied in this context. Also, as perfusion is a useful
clinical information, DSC is part of the clinical routine for these patients. Based
on clinical knowledge, we used a semi-automatic procedure that took advantage
of the complementary anatomical (T1w-Gd, T2w FLAIR) and perfusion (DSC)
information to get an estimation of the ground truth.

Due to its low SNR, ASL is not very well suited to measure low level of perfu-
sion [Wintermark 2005]. That is why we focused on hyper-perfusions for sensitivity
estimation. Hypo-perfusions were nevertheless retained for specificity calculation.
Fig. 9.1 displays an example of ground truth for a representative subject.
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Figure 9.1: Ground truth for a representative subject: T1w-Gd and DSC CBF,
Ground truth: hyper-perfusions (i.e. Ground truth positives) in red and iso-
perfusions (i.e. Ground truth negatives) in green overlaid on the T1w-Gd.

3.2.1 Positives

In order to get an estimation of the positives (hyper-perfusions), we implemented
a method inspired by the hotspot technique [Noguchi 2008] commonly used in clin-
ical practice. First, the affected tissue (tumour and oedema) was segmented using
a semi-automated method based on the T2w and T1w-Gd images and visually
inspected by an expert neuro-radiologist. Second, we compared the segmented re-
gions to their contralateral counterparts in the DSC CBF map. Voxels overtaking
the upper decile were identified as potential hyper-perfusions. Each potential per-
fusion abnormality was then visually inspected by an expert neuro-radiologist and
manually corrected if needed. Special care was taken in order to avoid inclusion of
hyper-perfusions related to the presence of arteries. Out of the 17 patients included
in this study who underwent a DSC sequence, 9 presented hyper-perfusions.

3.2.2 Negatives

According to clinical knowledge, in the absence of metastasis, the perfusion abnor-
malities should be confined to the affected tissue (tumour and oedema) identifiable
on T1w-Gd and T2w. Therefore, the non-affected tissue (brain voxels not segmented
as part of the tumour or oedema) was considered as iso-perfusion (negatives).

Here, all the 22 patients were included, even those without DSC images.
In the control group, in which no detections were expected, an additional esti-

mate of the specificity was calculated by leave-one-out cross-validation.

4 Results

In 4.1, we start with a comparison of the quality of the detections obtained by
our a contrario approach and by the General Linear model. We then focus on the
validation of our a contrario statistical model by checking the distribution of the
p-values under the null hypothesis in 4.2.
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4.1 Comparison of the a contrario approach with the General Lin-
ear Model

In this section, we measure the performance in terms of sensitivity and specificity
of the proposed a contrario approach and the massively univariate GLM. First,
in 4.1.1, the ROC curves corresponding to each individual patient are computed
and compared. Second, in 4.1.2, the average ROC curve is computed for each
method. And finally a qualitative comparison is presented in 4.1.3, in order to
illustrate the typical differences between both approaches.

4.1.1 Individual ROC curves

We first focused on the nine patients presenting hyper-perfusions.
To plot the ROC curve for a given subject s, the true positive rate, TPR(s,punc),

and the false positive rate, FPR(s,punc), are estimated for a range of uncorrected
p-values punc between 0 and 1, using the ground truth defined as described in
section 3.2.

Here, it is interesting to note that, since we focus on the complete set of p-values,
thresholding the probability map in a contrario is equivalent to thresholding the rare
event count map (eq. (9.11)) and is therefore independent of the method selected to
compute the region-based probabilities (standard or non-independent a contrario

). For ease of calculation, the ROC curves were estimated using the standard a

contrario approach.
We studied seven smoothing kernels for the GLM (with full-width-at-half-maximum

w ∈ {0, 2, 4, 6, 8, 10, 12} mm3) and six parameter sets for the a contrario ap-
proach (the pre-defined p-value pPRE ∈ {0.01, 0.005, 0.001} and the sphere radius
rd ∈ {1, 2}). The area under the curve was estimated for false positive rates ranging
from 0 to 10%, as this is the area of interest in detection analysis [Skudlarski 1999].

Best parameters For each subject, the parameter set (pair (pPRE, rd) in a con-

trario or w in GLM) leading to the highest area under the ROC was identified and
used to plot the corresponding “best” ROC curve in fig. 9.2.

Visually, it is clear that the proposed a contrario approach outperforms the
GLM for all subjects. A paired two-sample t-test comparing the a contrario and the
GLM with the best parameter set for each subject outlines a significant difference
(p = 0.004).

Best parameter set across all subjects As statistical analyses are usually
performed using a single set of parameters across all subjects (and not adjusting for
the best parameter set independently for each subject as performed in the previous
paragraph), we also compared the a contrario and GLM methods across all subjects
given a fixed parameter set.

Table 9.1 presents the area under the ROC curves (average over the 9 patients)
for false positives rates ranging from 0 to 10%, for the a contrario approach and the
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GLM. The best area under the curve is obtained for the a contrario approach with
pPRE = 0.001 and rd = 2 and for the GLM with w = 8 mm3. A paired two-sample
t-test between the best configurations outlines the superiority of the a contrario

approach (p < 0.001).

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 3

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 6

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 7

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 10

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 11

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 12

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 15

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 16

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Subject 19

GLM A contrario

Figure 9.2: Best ROC curves for false positive rates ranging between 0% and 10%,
for the massively univariate GLM (red) and the proposed a contrario approach
(blue) in nine patients. Overall, the a contrario approach outperforms the GLM.

Table 9.1: Area under the ROC curve, averaged over the 9 subjects presenting
hyper-perfusions, for false positive rates ranging between 0% and 10%, with the
a contrario approach (with a sphere radius rd ∈ {1, 2} and a pre-defined p-value
pPRE ∈ {0.01, 0.005, 0.001}) and the GLM (smoothed with a Gaussian kernel of full-
width-at-half-maximum w ∈ {0, 2, 4, 6, 8, 10, 12} mm3). The proposed a contrario
approach outperforms all tested configurations of the GLM.

a contrario GLM
rd = 1 rd = 2 w = 0 w = 2 w = 4 w = 6 w = 8 w = 10 w = 12

pPRE 0.01 0.005 0.001 0.01 0.005 0.001

ROC area 0.68 0.73 0.78 0.76 0.81 0.87 0.63 0.68 0.71 0.72 0.72 0.69 0.64
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4.1.2 Group ROC curves

In order to combine the data of all the patients included in this analysis, we com-
puted an average ROC curve (across subjects). Without loss of generality, we
assume that patient 1 to 9 present hyper-perfusions. The average true positive rate
was then estimated by:

TPRG(punc) =
1

9

9∑

s=1

TPR(s,punc) (9.23)

On the other hand, the group false positive rate was estimated across all subjects
by:

FPRG(punc) =
1

22

22∑

s=1

FPR(s,punc) (9.24)
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Figure 9.3: Average ROC curve (based on 22 subjects), for false positive rates
ranging between 0% and 10%, with the GLM (smoothed with a Gaussian ker-
nel of full-width-at-half-maximum w ∈ {0, 2, 4, 6, 8, 10, 12} mm3) and the a con-
trario approach (with a sphere radius rd ∈ {1, 2} and a pre-defined p-value
pPRE ∈ {0.01, 0.005, 0.001})

Fig. 9.3 plots the resulting average ROC curve for each parameter set for the
a contrario approach and the GLM. The corresponding area under the curves are
summarized in table 9.2. The results are very close to the one obtained on the set
of 9 subjects in the previous section, outlining the fact the the false positive rate at
a given uncorrected p-value is not varying much across subjects. As before, the a

contrario approach outperforms the GLM.

4.1.3 Qualitative comparison

In order to illustrate the advantage of the a contrario approach over the GLM, we
chose 3 representative subjects and compared the methods at fixed false positive
rate and true positive rate. To this aim, we selected the uncorrected p-values that
would lead to a pre-specified false positive rate (respectively true positive rate)
from the ROC analysis. We worked with the best set of parameters identified for
each subject. Fig. 9.4 presents the detections obtained with both methods on the
3 selected patients. The first subject, which presents a small hyper-perfusion, is
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Table 9.2: Area under the average ROC curve (based on 22 subjects), for false
positive rates ranging between 0% and 10%, with the a contrario approach (with
a sphere radius rd ∈ {1, 2} and a pre-defined p-value pPRE ∈ {0.01, 0.005, 0.001})
and the GLM (smoothed with a Gaussian kernel of full-width-at-half-maximum
w ∈ {0, 2, 4, 6, 8, 10, 12} mm3). The proposed a contrario approach outperforms the
GLM.

a contrario GLM
rd = 1 rd = 2 w = 0 w = 2 w = 4 w = 6 w = 8 w = 10 w = 12

pPRE 0.01 0.005 0.001 0.01 0.005 0.001

ROC area 0.68 0.73 0.79 0.75 0.80 0.87 0.63 0.67 0.70 0.72 0.73 0.70 0.65

studied at a true positive rate of 50%. In the two remaining patients, the methods
are compared at a false positive rate of 5%.

Patient 15 suffers from a gliosarcoma in the left hemisphere near the parahip-
pocampal region. The lesion displays a small hyper-perfusion in its dorsal part,
small hypo-perfusions are seen in the surrounding oedema. At a true positive rate
of 50%, the GLM displays a larger number of false positives than the a contrario

approach.
Patient 7 presents a meningioma of both occipital lobes characterized by a large

hyper-perfusion. At a false positive rate of 5%, most of the hyper-perfusion was
properly detected by both methods. The a contrario approach is however more
sensitive and detect a larger proportion of the hyper-perfusion.

Patient 11 suffers from a high grade tumour in the left temporal lobe. A hyper-
perfused ring is observed, while the central necrosis of the tumour appears hypo-
perfused. At a false positive rate of 5%, most of the hyper-perfused ring was
properly detected by both the a contrario approach and the GLM. However, the
GLM detection does not cover the most anterior part of the ring.

These 3 cases illustrate the reduced sensitivity of the GLM by comparison to
the a contrario approach at the same specificity level.

4.2 Distribution of the p-values under the null hypothesis

We now focus on the validation of our a contrario statistical model. To this aim, we
checked the distribution of the p-values under the null hypothesis. In the control
group, no hypo- or hyper-perfusion is expected so that all the voxels are supposed
to respect the null hypothesis.

We studied seven smoothing kernels for the GLM (w ∈ {0, 2, 4, 6, 8, 10, 12} mm3).
The procedure to compute π∗

(r) in (9.20) is computationally expensive and we there-
fore restricted our study to the case rd = 1, for this section, focusing on three
parameter sets for the a contrario approach (pPRE ∈ [0.01; 0.005; 0.001], rd = 1).

Fig. 9.5 plots the observed two-tailed probabilities against the expected prob-
abilities for the standard and the non-independent a contrario approaches along
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Figure 9.4: Perfusion abnormalities detections in 3 patients with the GLM and
the a contrario approach using the best parameter set for each method. From left
to right: ground truth hyper-perfusions (red) and hypo-perfusions (blue) overlaid
on the T1w-Gd map; GLM, hyper-perfusions (red) and hypo-perfusions (blue); a

contrario detections hyper-perfusions (red) and hypo-perfusions (blue).

with the GLM for comparison purposes. The expected distribution was estimated
across subjects and voxels, leading to a total of about 15 000 x 60 samples. The
95% confidence interval was plotted as suggested in [Ge 2012].

The non-independent a contrario approach clearly outperforms the standard
a contrario and leads to an observed distribution of the p-values under the null
hypothesis very close to what is expected. The remaining difference might be ac-
counted by potential mis-modelling due to mis-registrations.

The massively univariate GLM without smoothing is markedly anti-conservative
and invalid for p-values smaller than 10−3. This behaviour is coherent with what was
described in single-subject voxel-based morphometry [Scarpazza 2013,Viviani 2007a].
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(a) A contrario

(b) GLM

0 1 2 3 4 5
0

5

10

15

w = 0 mm
3

Expected −log
10

(p−values)

O
b
s
e
rv

e
d
 −

lo
g

1
0
(p

−
v
a
lu

e
s
)

Theoretical 95% confidence interval Theoretical probabilities GLM

0 1 2 3 4 5
0

5

10

15

w = 4 mm
3

Expected −log
10

(p−values)

O
b
s
e
rv

e
d
 −

lo
g

1
0
(p

−
v
a
lu

e
s
)

Theoretical 95% confidence interval Theoretical probabilities GLM

0 1 2 3 4 5
0

5

10

15

w = 6 mm
3

Expected −log
10

(p−values)

O
b
s
e
rv

e
d
 −

lo
g

1
0
(p

−
v
a
lu

e
s
)

Theoretical 95% confidence interval Theoretical probabilities GLM

0 1 2 3 4 5
0

5

10

15

w = 8 mm
3

Expected −log
10

(p−values)

O
b
s
e
rv

e
d
 −

lo
g

1
0
(p

−
v
a
lu

e
s
)

Theoretical 95% confidence interval Theoretical probabilities GLM

0 1 2 3 4 5
0

5

10

15

w = 10 mm
3

Expected −log
10

(p−values)

O
b
s
e
rv

e
d
 −

lo
g

1
0
(p

−
v
a
lu

e
s
)

Theoretical 95% confidence interval Theoretical probabilities GLM

0 1 2 3 4 5
0

5

10

15

w = 12 mm
3

Expected −log
10

(p−values)

O
b
s
e
rv

e
d
 −

lo
g

1
0
(p

−
v
a
lu

e
s
)

Theoretical 95% confidence interval Theoretical probabilities GLM

Figure 9.5: QQ-plot of the (a) region-based probabilities, π(r) and π∗(r), in a con-

trario (for pPRE ∈ [0.01; 0.005; 0.001]), and (b) voxel-wise probabilities for the GLM
πv (for w ∈ {0, 2, 4, 6, 8, 10, 12} mm3). The non-independent a contrario approach
provides a distribution that is closer to the theory than the standard a contrario

and the GLM.

Smoothing helps to provide a more valid estimate, the best models are obtained for
smoothing of 6 mm3 and over.

While the standard a contrario approach clearly leads to invalid under-conservative
statistics due to the spatial correlation of the residuals, the non-independent a

contrario approach is better-behaved under the null hypothesis than the standard
massively univariate GLM. As, in practice, statistical inference is performed using a
single threshold (as opposed to ROC curves analyses), the validity of the approach
is of tremendous importance. Indeed, validity ensures that, at a given threshold,
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the false positive rate will not be arbitrarily inflated.

5 Discussion and conclusion

We have presented an a contrario approach for the detection of patient-specific
perfusion abnormalities in ASL. Using ROC curves, we outlined that this locally
multivariate procedure outperforms the massively univariate GLM, commonly em-
ployed in neuroimaging.

Furthermore, we introduced a non-independent version of this a contrario pro-
cedure in order to deal with the spatial autocorrelation of the noise observed in
MRI. This non-independent a contrario approach corrected the inflation in false
positive rate observed with the standard a contrario . Moreover, the distribution of
the p-values under the null hypothesis of the non-independent a contrario is closer
to the theoretical distribution than the massively univariate GLM.

We evaluated our approach in the context of brain tumours since perfusion
patterns have been widely studied in this clinical context. This allowed us to get an
estimate of the ground truth and perform a quantitative validation. Our approach
is however suitable to a broader range of applications and we plan in the future to
study pathologies presenting more subtle patterns of abnormal perfusion.





Chapter 10

A contrario detection of activation in
single-subject BOLD fMRI

In this chapter, we propose to study the ability of the a contrario approach, previ-
ously adapted for basal perfusion abnormalities detection (cf. chapter 9), to detect
areas of functional activity.

Part of this preliminary work was published in the 21st Annual Meeting & Ex-
hibition of the International Society for Magnetic Resonance in Medicine (ISMRM)
2013 [Maumet 2013b].
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1 Introduction

BOLD fMRI is now a widespread imaging technique to study task-related activity
in the brain. However, getting the areas of activation at the individual subject
level is still an open issue. The standard massively univariate statistical analysis is
usually performed after smoothing the data and makes use of a single p-value for
final thresholding of the results [Gorgolewski 2012]. In group fMRI studies, the need
for compensation of cross-subjects misregistrations clearly justifies the smoothing.
However, at the individual level, where neat delineations of the activated areas
are of interest, the use of Gaussian smoothing as a pre-processing step is more
questionable.

2 Materials and methods

2.1 Data

2.1.1 Acquisition

12 right-handed healthy volunteers were involved in this study (5 males, 7 females,
age: 28.6 ± 2.7 years) and scanned three times, with a one week period between
two consecutive sessions. Data acquisition was performed on a 3T Siemens Verio
MR scanner with a 32-channel head-coil. For each session, the imaging protocol
included a 3D T1w MPRAGE (TR: 1900 ms, TE: 2.98 ms, FOV: 256 mm × 256 mm
× 256 mm, flip angle: 9◦, resolution: 1 mm × 1 mm × 1 mm) and a BOLD fMRI
sequence (TR: 3000 ms, TE: 30 ms, FOV: 192 mm × 192 mm, flip angle: 90◦, in
plane resolution: 3 mm × 3 mm, 36 slices, slice thickness: 3.5 mm).

A block design paradigm made of 7 rest and 7 action blocks lasting 30 s each
was implemented. During the action phases, the subject was asked to perform a
maximum amplitude flexion-extension task of the right hand. For more details
on the acquisition protocol and paradigm implementation, the interested reader is
referred to the original paper presenting this imaging protocol [Raoult 2011].

2.1.2 Pre-processing

MRI data were pre-processed with SPM81 (Statistical Parametric Mapping 8; Well-
come Department of Imaging Neuroscience, University College, London). Slice tim-
ing and motion correction were applied. Structural MRI were segmented using the
unified segmentation [Ashburner 2005], and then normalized. FMRI data were
registered on structural images and normalized. For the statistical analysis, both
fMRI data smoothed using an isotropic 6 mm FWHM 3D Gaussian kernel and
unsmoothed fMRI data was considered.

In view of the statistical analysis, at the subject level, a high-pass filter was
applied to fMRI data to remove slow signal drifts due to undesired effects. In the

1www.fil.ion.ucl.ac.uk
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GLM analyses, the haemodynamic response was modelled by the Informed Basis
Set [Friston 1998] to account for possible delay and dispersion of the response from
the canonical haemodynamic response function.

2.2 Methods

2.2.1 An a contrario approach for activation detection

In the a contrario approach, pre-smoothing of the data is avoided by taking into
account the spatial neighbourhood into the statistical analysis. A brief overview
of the technique is provided here, more details are available in the previous chap-
ters (chapter 9, section 2.2 and chapter 3, section 3.4.2).

Starting from a voxel-wise probability map (obtained from a standard mas-
sively univariate GLM), a region-based probability map is built. To this aim, a grid
of shapes is defined in the image of interest. In this study, we work with grids of
spheres, as we have no a priori shape for the detections. The initial voxel-wise proba-
bility map is thresholded using a set of pre-defined p-values P = {0.01, 0.005, 0.001}

and then, the number of over-threshold voxels is counted for each pre-defined p-value
in each region (sphere). In the general a contrario formulation, the region-based
probability is then estimated, assuming spatial independence of the residuals, using
a binomial distribution parametrized by the number of voxels in each sphere and
the pre-defined p-values.

To account for potential mismodelling, the null distribution used to define the
voxel-wise probabilities was estimated with a non-parametric approach in the back-
ground of the image as illustrated in fig. 10.1. In the t-statistic map obtained
from a standard GLM analysis, we estimated a non-parametric distribution using
solely the out-of-brain voxels (as identified based on the segmentation of grey and
white matter). Then, updated probabilities associated with the t-statistic of the
in-brain voxel was computed using this empirical distribution. This can be seen as
a recalibration of the p-values.

2.2.2 Validation

Distribution of the voxel-wise p-values under the null hypothesis For
each subject, we identified the voxel that contained more than 99% of white matter.
As we did not expected to observe activations in white matter, we considered that
the null hypothesis (no activation) was verified in these voxels. For each subject, we
were therefore able to compare the p-value distribution under the null hypothesis
provided by the standard massively univariate GLM to the updated probabilities
produced using the background information.

Comparison between the a contrario approach and the GLM In order
to compare the performances of the standard massively univariate GLM with the
proposed a contrario approach, we used ROC curves and estimated the area under
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Figure 10.1: Subject-specific rescaling of the p-values using background information

the curve for false positive rates ranging from 0 to 0.1 (as only a small percentage
of the voxels are expected to be active) [Skudlarski 1999].

Validation of fMRI analysis is still challenging due to the lack of ground truth.
We focused on a well-studied right-hand motor paradigm in which the main acti-
vations are expected in the precentral and postcentral sulci (Left and Right) and
in the Supplementary Motor Area (Left and Right) [Raoult 2011]. We studied two
different “ground truths”.

First, as suggested in [Raoult 2011], we targeted the activation of the grey
matter in the right hand motor area as manually delineated by an expert neuro-
radiologist, while the surrounding white matter was expected to be inactive. This
first ground truth benefited from a thorough definition, as it was precisely delineated
by an expert. However it was only able to provide a measurement of the detection
accuracy in a very local region.

Second, in order to capture more global information, we also tested a global
criterion, in which activation in both the hand motor area and part of the Supple-
mentary Motor Area (as defined by the AAL atlas) were activation targets, while
whole-brain white matter (>70%) was expected to be inactive. As we did not ex-
pect an activation of the full Supplementary Motor Area, we considered that the
detection was perfect in this region if at least 20% of the voxels were activated.

We compared the standard massively univariate GLM (no smoothing and smooth-
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ing with a Gaussian FWHM kernel of 6 mm3) with the a contrario approach.

a) b)

Figure 10.2: Local (a) and global (b) delineations of the Ground Truth for a repre-
sentative subject: areas of iso-activity (no detection expected) are in green, areas
of hyper-activity (i.e. activation) are in blue.

3 Results

3.1 Voxel-wise p-values under the null hypothesis

Fig. 10.3 plots, for each subject, the observed probability against the expected prob-
ability. This kind of plot is sometimes referred as a Q-Q plot. In theory, the observed
probability must be equal to the expected probabilities. A confidence interval can
also be estimated (for more details on this procedure please refer to [Ge 2012]).

From fig. 10.3, it is very clear that the updated probabilities are always closer
to the theoretical distribution than the probabilities extracted from the standard
GLM. The anti-conservativeness of the GLM is striking. We guess that this might
be related to a badly estimated temporal autocorrelation structure but further
investigation would be needed in order to identify the precise cause of this invalidity.
The proposed procedure, taking advantage of the background, while very simple,
greatly improve the p-values and will therefore be used in the remainder of the
chapter.

3.2 Comparison between the a contrario approach and the GLM

Fig. 10.4 presents the ROC curves of each subject. The cross-session false positive
rates (respectively true positive rates) were estimated by averaging the false positive
rates (respectively true positive rates) of the three sessions (Day 1, Day 2 and
Day 3). Table 10.1 displays the mean area under the ROC curve (average across
subjects) for each session and each ground truth. First, we can notice that the
performances in terms of area under the curve are lower with the local ground truth
than with the global criterion. We hypothesize that, due to the small extent of its
the activation target (less than 40 voxels per subject), the sensitivity calculated
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Figure 10.3: Subject Q-Q plots of the probabilities provided by the standard Gen-
eral Linear Model and of the updated probabilities (with background information).
The theoretical distribution is displayed by a black line along with its 95% confi-
dence interval in grey. The standard GLM probabilities are markedly invalid. The
updated probabilities always provide more valid probabilities.

using the local ground truth might be more sensitive to mis-registrations between
the anatomical image (on which the ROI was drawn) and the fMRI series.

Table 10.1: Average area under the ROC curves for Day 1, Day 2 and Day 3, using
the local or the global ground truth.

Local Global
Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

a contrario 0.54 0.50 0.50 0.75 0.68 0.73
GLM unsmoothed 0.43 0.46 0.44 0.59 0.62 0.63
GLM smoothed 0.45 0.41 0.37 0.66 0.60 0.60

Fig. 10.5 displays the local and global ROC curves averaged over sessions and
subjects. Overall the a contrario approach outperformed both the unsmoothed
and smoothed massively univariate GLM in terms of area under the curve. Paired
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a) Local
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b) Global
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Figure 10.4: ROC curves for each subject averaged over the 3 sessions.

two sample t-tests were performed in order to detect significant improvement at
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a) Local b) Global

Figure 10.5: Group ROC curves averaged over the 3 sessions for the massively
univariate GLM (unsmoothed and smoothed) and the a contrario approach based
on the local (a) and global (b) ground truths.

the group level (false discovery rate q < 0.05). The a contrario approach with
local ground truth was significantly better than the smoothed GLM for all sessions
(p = 0.023, p = 0.030, p = 0.012) and than the unsmoothed GLM for 1 session out
of 3 (p = 0.002). Moreover, using the global ground truth, the a contrario approach
performed significantly better than the smoothed GLM (p = 0.002, p = 0.007,
p = 0.006) and unsmoothed GLM (p = 0.001, p = 0.026, p = 0.003) for all sessions.

In order to outline qualitatively the improvement that can be provided by the
a contrario approach, we selected two subjects that would best illustrate the quan-
titative findings. In fig. 10.6, the detections in subject 2 with a false positive rate
of 5% based on the global ground truth are provided. For the three methods (a
contrario , smoothed GLM and unsmoothed GLM) the hand motor area is correctly
detected. In the unsmoothed GLM there is a great amount of “salt and pepper”
detections showing spatial incoherency. Regarding the hand motor area, the detec-
tions of the a contrario are very close of the smoothed GLM. Interesting differences
are however observed when focusing on the Supplementary Motor Area. While, for
each approach, a detection of at least a few voxels is located in the Supplementary
Motor Area, only the a contrario approach provides a nicely delineated cluster in
this area.

In fig. 10.7, the detections in subject 7 with a true positive rate of 75% based on
the local ground truth are provided. For the three methods (a contrario , smoothed
GLM and unsmoothed GLM) the hand motor area is correctly detected. With
the unsmoothed GLM there are a couple of “salt and pepper” detections but the
tendency is less pronounced than for subject 2, studied in fig. 10.6. Overall, the
a contrario approach is more specifically located in grey matter than both the
smoothed and the unsmoothed GLM. Though, for this display, the parameters
were selected to get a true positive rate of 75% using the local ground truth, it is
also worth noting that the supplementary motor area is correctly detected with the
a contrario approach and the unsmoothed GLM but not with the smoothed GLM.
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Figure 10.6: Global ground truth: example of detections in subject 2 with a false
positive rate of 5%. The hand motor area (outlined by a black arrow on the fourth
slice) is correctly detected by the three methods. The supplementary motor area
(outlined by a black arrow on the fifth slice) is better detected with the a contrario

approach.

4 Discussion and conclusion

In this preliminary work, we proposed a new a contrario approach to detect fMRI
activations in single subjects. In order to “re-calibrate” the voxel-wise p-values
obtained from the GLM, we used a very simple approach taking into account the
background information. For validation purposes, and since no well defined ground
truth is available in activation studies, we focused on a widely studied hand motor
paradigm and investigated two different ground truths targeting local and global
activation patterns.

The updated voxel-wise p-values were built based on an empirical distribution
estimated in the image background (non-brain voxels). While this method is very
simple, it yielded a clear improvement of the p-values distribution under the null-
hypothesis. While, for consistency with previous studies, we decided to compare
our a contrario approach to the standard GLM, an interesting extension of this
work could investigate the effect of the p-values recalibration on the GLM.

The performances estimated with the local ground truth were lower than the
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Figure 10.7: Local ground truth: example of detections in subject 7 with a true
positive rate of 75%. The hand motor area is correctly detected by the three
methods. There is a larger number of false positive detections with the GLM than
the a contrario approach.

one obtained from the global ground truth. We hypothesize that this effect is a
consequence of the small size of the local activation target, namely the grey matter
located in the primary hand motor area. Indeed, small inaccuracies arising in the
registration of the fMRI series onto the anatomical image can strongly impact the
final estimate of the true positive rate.

Overall, the a contrario approach exhibited better spatially defined activations
with a more interesting trade-off between sensitivity and specificity by comparison
to the standard massively univariate GLM.





Conclusion

In this thesis we have focused on the analysis of brain function in Magnetic Reso-
nance Imaging. In conclusion, we will start with a review of our contributions and
then discuss the limitations and perspective for future work.

Contributions

Using standard group analyses based on a massively univariate general linear model,
we outlined atypical patterns of activation and lateralisation in children diagnosed
with typical specific language impairment by comparison to typically developing
children (chapters 5 and 6). We demonstrated: a hypoactivation in the left hemi-
sphere at the junction of the superior temporal gyrus and supramarginal gyrus; a
hyperactivation in the right hemisphere in the anterior insula and the adjacent infe-
rior frontal gyrus and the head of the caudate; and the absence of left lateralisation
in the core language areas.

Then, three methodological contributions were provided in the context of patient-
specific analyses.

First, we proposed to apply robust M-estimators in the computation of cerebral
blood flow maps from a series of Arterial Spin Labelling acquisitions (chapter 7). On
data corrupted by simulated perturbations, we illustrated the theoretical advantage
of the proposed M-estimators by comparison to z-score thresholding or to the sample
mean that is currently the standard approach. On the tested clinical cases, the
superiority of M-estimates towards z-score thresholding was less pronounced but
still present. Overall, both robust methods outperformed the sample mean on
simulated and real data.

Second, we investigated the presence of heteroscedasticity in Arterial Spin La-
belling data and its impact on patient-specific analyses comparing a single patient
to a group of control subjects (chapter 8). Using metrics from the literature, we
outlined the heteroscedasticity of Arterial Spin Labelling data. We then demon-
strated an inflation in the false positive rate if the heteroscedasticity is not properly
taken into account.

Third, we proposed an a contrario approach, which is a locally multivariate
procedure focusing on the size of an excursion set in the neighbourhood of each
voxel (chapter 9 and 10). In line with current development in the field of multivari-
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ate neuroimaging, we outlined the superiority of this locally multivariate approach
onto the massively univariate general linear model. This superiority was demon-
strated in two different applications: the detection of patient-specific perfusion
abnormalities and the detection of activation patterns in task-evoked analyses.

Discussions and future work

While the first results provided on the atypical brain function in specific language
impairment are promising, it would be of great interest to re-analyse these results in
view of additional information provided by other sequences or modalities. A paper
focusing on the anatomical data is currently in preparation. The diffusion data has
also shown promising preliminary results. Also, it would be interesting to apply the
a contrario analysis proposed for BOLD fMRI in the last chapter to this dataset.

Our use of robust statistics for the production of cerebral blood flow maps in
arterial spin labelling, though validated quantitatively, was confined to qualitative
analyses and not introduced in the next chapters focusing on quantitative detection
of perfusion abnormalities. In our work on quantitative detections, we preferred
to focus on the general linear model with is clearly the most widespread approach.
Robust statistics could nevertheless be used in order to draw inference in patient-
specific analyses.

Our experiments with Arterial Spin Labelling were performed with a PICORE
Q2TIPS PASL sequence commercially available on our scanner. More recent ASL
sequences, such as pseudo-continuous ASL, provide a better signal-to-noise ratio.
It would be interesting to estimate and compare the extent of heteroscedasticity in
a dataset acquired with a different sequence.

An interesting extension would be to perform a group a contrario approach and
check whether the increase in sensitivity observed at the patient level is generalisable
to the group.
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Software

The work presented in this thesis is available as a software called AutoMRI. This
tool, based on SPM82, defines a set of pipelines (cf. fig. 10.8) implemented as loosely
coupled components.
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Figure 10.8: AutoMRI components.

Based on a predefined data organisation, each pipeline automatically access the
data and update the data tree as needed as described in fig. 10.9. The result of
each analysis is summarized in a PDF report.
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Figure 10.9: AutoMRI: workflow.

2www.fil.ion.ucl.ac.uk/spm/software/spm8
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This software, along with its user documentation, is currently distributed in the
Visages team 3 and the Neurinfo platform4 and is available on request. From its
initial application to the study of specific language impairment [de Guibert 2010,de
Guibert 2011], this tool was further expanded and used in multiple clinical (e.g. [Ban-
nier 2012], [Seizeur 2012]) and methodological projects [Maumet 2013d].

3www.irisa.fr/visages
4www.neurinfo.org



Publications

Peer-reviewed journals

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. An a

Contrario Approach for Patient-Specific Detection of Perfusion Abnormalities in

Arterial Spin Labelling. NeuroImage, submitted.

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. Ro-

bust Estimation of the Cerebral Blood Flow in Arterial Spin Labelling. Magnetic
Resonance Imaging, submitted.

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Béatrice Carsin, Christian
Barillot. Patient-Specific Detection of Perfusion Abnormalities Combining Within-

and Between-Subject Variances in Arterial Spin Labelling. NeuroImage, in press.

Clément de Guibert, Camille Maumet, Pierre Jannin, Jean-Christophe Ferré, Cather-
ine Tréguier, Christian Barillot, Elisabeth Le Rumeur, Catherine Allaire, Arnaud
Biraben. Abnormal functional lateralization and activity of language brain areas in

typical specific language impairment (developmental dysphasia). Brain, 2011, 134
(Pt 10), pp. 3044-3058.

Clément de Guibert, Camille Maumet, Jean-Christophe Ferré, Pierre Jannin, Ar-
naud Biraben, Catherine Allaire, Christian Barillot, Elisabeth Le Rumeur. FMRI

language mapping in children: a panel of language tasks using visual and auditory

stimulation without reading or metalinguistic requirements. NeuroImage, 2010, 51
(2), pp. 897-909.

Romuald Seizeur, Nicolas Wiest-Daessle, Sylvain Prima, Camille Maumet, Jean-
Christophe Ferre, Xavier Morandi. Corticospinal tractography with morphological,

functional and diffusion tensor MRI: a comparative study of four deterministic al-

gorithms used in clinical routine. Surg Radiol Anat, 2012, 34 (8), pp. 709-19.



252 Publications

International peer-reviewed conferences

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. A com-

prehensive framework for the detection of individual brain perfusion abnormalities

using Arterial Spin Labelling. International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI), 2012, Nice, France. pp.
542-549.

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. Ro-

bust Cerebral Blood Flow Map Estimation in Arterial Spin Labelling. International
Workshop on Multimodal Brain Image Analysis held in conjunction with MICCAI
2012, 2012, Nice, France. pp. 215-224.

Camille Maumet, Pierre Maurel, Elise Bannier, Jean-Christophe Ferre, Christian
Barillot. A contrario detection of focal brain perfusion abnormalities based on an

Arterial Spin Labelling template. 9th IEEE International Symposium on Biomedical
Imaging (ISBI), 2012, Barcelona, Spain. pp. 1176-1179.

Abstract conferences

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. An a

contrario approach for the detection of activated brain areas in fMRI. International
Society for Magnetic Resonance in Medicine 21st Annual Meeting & Exhibition
(ISMRM), 2013, Salt Lake City, United States.

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. Robust

perfusion maps in Arterial Spin Labelling by means of M-estimators. International
Society for Magnetic Resonance in Medicine 21st Annual Meeting & Exhibition
(ISMRM), 2013, Salt Lake City, United States.

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. Au-

tomatic detection of perfusion abnormalities based on an Arterial Spin Labelling

template. ISMRM scientific workshop on Perfusion MRI, 2012, Netherlands. #8 –
Oral.

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Elise Bannier, Christian
Barillot. Using negative signal in mono-TI pulsed arterial spin labeling to outline

pathological increases in arterial transit times. ISMRM Scientific Workshop on
Perfusion MRI, 2012, Amsterdam, Netherlands. #42.

Software

Camille Maumet. autoMRI 1.2.1 Dépôt à l’Agence pour la Protection des Pro-
grammes, number IDDN.FR.001.130017.000.S.A.2012.000.31230, June 2011.

Updated on September 8, 2013.



Des études de groupe aux analyses individuelles dans l’exploration
de la fonction cérébrale en imagerie de perfusion par marquage de

spins et en IRM fonctionnelle BOLD

Résumé: Cette thèse aborde l’étude de la fonction cérébrale en Imagerie par Résonance Mag-

nétique (IRM) à l’aide de deux séquences : l’IRM fonctionnelle (IRMf) BOLD et l’imagerie de

perfusion par marquage de spins (ASL). Dans ce contexte, les analyses de groupe jouent un rôle

important dans l’identification des dysfonctionnements globaux associés à une pathologie. D’autre

part, les études individuelles, qui fournissent des conclusions au niveau d’un sujet unique, présen-

tent un intérêt croissant. Dans ce travail, nous abordons à la fois les études de groupe et les

analyses individuelles.

Dans un premier temps, nous réalisons une analyse de groupe en IRMf BOLD en vue d’étudier

la dysphasie chez l’enfant, une pathologie peu explorée en neuroimagerie. Nous mettons ainsi en

évidence un fonctionnement et une latéralisation atypiques des aires langagières.

Ensuite, nous nous concentrons sur les analyses individuelles. Nous proposons l’utilisation

d’estimateurs robustes pour calculer les cartographies de débit sanguin cérébral en ASL. Puis,

nous étudions la validité des hypothèses qui sous-tendent les analyses statistiques standard dans

le contexte de l’ASL. Finalement, nous proposons une nouvelle méthode localement multivariée

basée sur une approche a contrario. La validation de cette nouvelle approche est réalisée dans

deux contextes applicatifs : la détection d’anomalies de perfusion en ASL et la détection de zones

d’activation en IRMf BOLD.

Mots clés: Arterial Spin Labelling, IRM fonctionnelle BOLD, Analyses individuelles, Hétéroscé-

dasticité, Modèle linéaire généralisé, Approches localement multivariées, Approche a contrario

From Group to Patient-Specific Analysis of Brain Function in
Arterial Spin Labelling and BOLD Functional MRI

Abstract: This thesis deals with the analysis of brain function in Magnetic Resonance Imag-

ing (MRI) using two sequences: BOLD functional MRI (fMRI) and Arterial Spin Labelling (ASL).

In this context, group statistical analyses are of great importance in order to understand the general

mechanisms underlying a pathology, but there is also an increasing interest towards patient-specific

analyses that draw conclusions at the patient level. Both group and patient-specific analyses are

studied in this thesis.

We first introduce a group analysis in BOLD fMRI for the study of specific language impair-

ment, a pathology that was very little investigated in neuroimaging. We outline atypical patterns

of functional activity and lateralisation in language regions.

Then, we move forward to patient-specific analysis. We propose the use of robust estimators

to compute cerebral blood flow maps in ASL. Then, we analyse the validity of the assumptions

underlying standard statistical analyses in the context of ASL. Finally, we propose a new locally

multivariate statistical method based on an a contrario approach and apply it to the detection of

atypical patterns of perfusion in ASL and to activation detection in BOLD functional MRI.

Keywords: Arterial Spin Labelling, BOLD functional MRI, Patient-specific analysis, Het-

eroscedasticity, General Linear Model, Locally multivariate procedure, a contrario approach
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