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Abstract 

This work aims to characterise fluid flow along faults in time and space. Multi-disciplinary 
and multi-scale investigations of a natural analogue have been carried out in the Colorado 
Plateau area (Utak, USA), from fieldwork to numerical modeling. 
The study of Quaternary travertine calibrated the near-surface mineralization and their 
relationship with the faults. Stable Isotope measurements and U/Th datings of travertine veins 
revealed episodic cycles of CO2-fluid circulation and related calcium carbonate precipitation 
(travertine). These cycles may be linked with seasonal or climatic cycles (annual and 
centennial) and also with seismic cycles of millennial duration. Based on the obtained data, 
escaping CO2 volumes from the fault zone, with time have been calibrated. 
Chemical bleaching of the outcropping sandstones, linked with fluids paleo-circulation at 
depth, has been characterized at basin scale. Two main circulation events have been 
distinguished: a first circulation contemporaneous to maximum burial and a second along-
reservoirs and faults circulation that could be linked with later regional tectonic events, 
contemporaneous of Colorado Plateau rusing. Pulses of different fluids (such as brines, fluids 
enriched in hydrocarbons or CO2) are linked in time and space with the last circulation.  
 
 
 

Résumé 

Cette thèse s’attache à caractériser l'évolution dans le temps et l'espace des circulations de 
fluides le long des failles. Une approche multidisciplinaire et multi-échelle a été mise en place 
sur un exemple naturel dans la région du plateau du Colorado (Utah): du terrain à la 
modélisation et de la proche-surface au bassin. 
L’étude des minéralisations en proche surface et leur lien avec le transfert le long des failles a 
été effectuée sur des travertins récents. L'analyse isotopique et la datation U/Th des veines de 
travertins révèle des cycles de circulation de fluides enrichis en CO2 et de précipitation 
épisodiques de carbonates de calcium (travertin) correspondant à des cycles saisonniers ou 
climatiques (annuels et centennals) ainsi qu'à des cycles qui s’apparentent à des cycles 
sismiques de l’ordre du millier d’années. Ces données permettent de calibrer le volume de 
CO2 qui a fuit par la faille. 
Des zones de paléo-circulation, témoins de l'activité des failles sur le long-terme, sont 
observées sous forme de blanchiment chimique ("bleaching") des grès à l'affleurement, et ont 
été étudiées à l’échelle du bassin. Deux épisodes principaux de circulation de fluides le long 
des failles ont été distingués : une première circulation durant l’enfouissement maximum puis 
une seconde circulation le long des réservoirs et des failles, qui est reliée à des  phénomènes 
tectoniques régionaux, compemporains de la remontée du Plateau du Colorado. La dernière 
circulation s'est découpée en plusieurs pulses avec des circulations de fluides de différente 
nature (tels que des saumures, des fluides riches en hydrocarbures ou en CO2) au cours du 
temps et le long des failles. 
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CHAPTER I : GENERAL INTRODUCTION 

CHAPITRE I. Introduction générale 
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1. Circulation des fluides le long des failles et fractures 

Il est connu depuis longtemps que des fluides circulent le long des failles crustales (McCaig 
and Andrew, 1988). Cependant, l’interaction entre failles, fractures et circulation des fluides 
est un sujet complexe dépendant de nombreux paramètres dont: les caractéristiques des 
couches traversées, la rhéologie de la faille, la nature du fluide ainsi que les conditions 
thermodynamiques du système (Allan, 1989 ; Knipe et al., 1997). 
Un même tronçon faillé peut agir alternativement ou de manière pérenne comme un drain ou 
comme une barrière au passage des fluides profonds vers des réservoirs supérieurs, voire 
jusqu'à la surface (Person, 2007).  Tout au long les lithologies traversées, plus ou moins 
décalées suivant le jeu de la faille, celle-ci peut constituer soit une barrière de perméabilité ou 
une zone de drain guidant le fluide au travers de la faille vers une autre formation (Eichhubl & 
Boles, 2000). 
L’ouverture des failles est liée à des processus catastrophiques tels que des séismes, des 
surpressions à la base des réservoirs générant une fracturation hydraulique ou des dissolutions 
localisées qui activent la perméabilité (Gratier & Gueyden, 2007). La fermeture de ces failles 
peut se traduire par des processus de colmatage mécaniques (Hancock, 1999; Solum et al., 
2010) ou chimiques (Renard et al., 2009) qui progressivement refermeront les chemins de 
circulation. 
 

2. Implication pour le stockage du CO2  

La concentration de CO2 atmosphérique n'a cessé d'augmenter au cours du siècle dernier 
passant de 280 ppm en période préindustrielle aux 380 ppm actuels (Chadwick et al., 2004). 
Une des mesures envisagées pour endiguer cette augmentation est le captage/stockage du CO2 
dans des réservoirs géologiques. Or, le CO2 doit rester confiné dans un réservoir plus de 7 000 
ans (Lindeberg, 2003) pour que l'interêt du stockage soit significatif. Les taux de fuite du CO2 
tolérables dans un site de stockage doivent être inférieurs ou égaux à 0.01%/an pour que le 
CO2 soit stocké suffisamment longtemps (Benson et al., 2003).  
Par conséquent, l’étude, sur le long terme, de la dynamique de failles traversant des réservoirs 
riches en CO2 est un enjeu important pour préparer voire modéliser la pérennité d'un stockage 
sûr et efficace. 
 

3. Implication pour l’Exploration/Production pétrolière 

La problématique de la quantification de fuites à l’aplomb d’un réservoir pétrolier est 
identique à celle d’un stockage efficace de CO2.  La dynamique des circulations de fluides le 
long, ou au travers, de failles ou de fractures traversant des réservoirs pétroliers est un 
paramètre important pour caractériser le réservoir et son évolution dans le temps. De plus, 
dans une zone comportant plusieurs réservoirs à des profondeurs différentes, l’étude des 
fluides qui ont circulé dans les failles, de l’architecture de ces dernières et de l’évolution des 
circulations conduit à la compréhension de la dynamique globale du système et, à terme, à la 
détermination du réservoir présentant des fuites. 
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4. Problématique générale et état de l’art 

Diverses expérimentations sur des réservoirs faillés actuels (Pruess, 2008 ; Vidal-Gilbert et 
al., 2009 ; Wilkinson et al., 2010) enrichissent la connaissance des phénomènes mis en jeu sur 
le court terme (de quelques mois à la dizaine d'années) mais elles ne peuvent pas  apporter de 
réponse sur les impacts à plus long terme (de l'ordre du millier d'années). A ces échelles de 
temps, l’étude d’exemples naturels est une aide précieuse et indispensable. Certaines de ces 
zones, situées dans des contextes tectoniques et géodynamiques particuliers, sont connues 
comme zones de fuite de CO2 : zones de rift actives (Angelone et al., 2005), zones 
volcaniques (Annunziatellis et al., 2008), zones d’avant-pays (Brogi, 2008) ou encore le long 
des failles actives (Dogan et al., 2009; De Leeuw et al., 2010). L’étude de ces exemples 
enrichit considérablement la connaissance du CO2 circulant le long de failles. 
 
Le plateau du Colorado abrite des gisements de CO2 qui sont estimés à 100 Gm3 (Haszeldine 
et al., 2005) mais aussi de nombreux champs pétroliers (Baars, 2000).  Au Nord-Ouest de ce 
plateau, à Green River, les fuites actuelles d’huiles sont visibles le long des failles ainsi que 
des fuites de CO2 révélées par la précipitation de carbonates à l'origine de la formation de 
travertins (Shipton et al., 2004 ; Dockrill, 2005). Des circulations plus anciennes, de 
différentes origines, sont aussi observables le long des failles et de certaines formations 
sédimentaires.  Ainsi, du nord au sud de la zone d’étude, l’accroissement de l'érosion permet 
une observation de plus en plus profonde au sein du système géologique mettant en évidence 
le passage de fluides réactifs en profondeur, ceux-ci ayant notamment blanchi l'encaissant 
Jurassique (Chan et al, 2000 ; Parry et al., 2009).  
 

5. But de la thèse 

Ce travail s’attache à comprendre comment les propriétés de transfert des failles évoluent sur 
le court (échelle quaternaire) et le long terme (du jurassique à nos jours), ainsi que dans le 
temps et l’espace (de l'échelle de l'affleurement à l'échelle du basin), lors de leurs cycles 
d’ouverture/fermeture. Ceci dans le cadre de l’étude d’un exemple naturel.  
 
Dans ce but, Il faut dans un premier temps identifier la nature et l’origine du fluide, l'état dans 
lequel il est transféré, puis comprendre les processus de migration et de précipitation du fluide 
et enfin évaluer les temps caractéristiques de circulation et de cicatrisation des failles.  
 

6. Structure de la thèse 

Les six chapitres de cette thèse s’articulent autour de deux approches pluridisciplinaires 
complémentaires: de l'échelle de la microstructure à celle du bassin sédimentaire  
Suite à ce chapitre d’introduction générale (chapitre I), le chapitre II présente l'histoire 
géologique de la zone étudiée, du contexte géodynamique général, aux données régionales et 
locales jusqu'à la présentation plus détaillée des différentes lithologies traversées par les 
failles étudiées. 
Le chapitre III présente les différentes méthodes analytiques et numériques utilisées au cours 
de ce travail dont la particularité réside en une approche multidisciplinaire alliant études 
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géologiques sur le terrain, pétrographie, géochimie des isotopes stables de l'oxygène et du 
carbone, datations U/Th, paléomagnétisme et modélisation numérique (Fig. I-1). 
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Figure I- 1. Schéma présentant la méthodologie utilisée pour documenter les trois axes de l’étude – 1) Processus de 

circulation et de colmatage, 2) origine et nature des fluides en circulation, 3) temps volumes et taux de fuite 

 

Nous nous sommes attachés à étudier la circulation des fluides le long de failles, tout d'abord 
localement en proche-surface (chapitre IV), puis à l’échelle du bassin, le long de toute la pile 
sédimentaire (chapitre V). Les deux chapitres correspondants ont été écrits sous forme 
d’articles. Le chapitre IV décrit l’épisodicité des fuites quaternaires de CO2 enregistrées en 
proche-surface et à la surface le long de failles normales. Les archives sédimentaires sont 
constituées par des précipitations carbonatées de type travertins, objets auxquels nous nous 
intéresserons tout particulièrement (zone de cristallisation, Fig. I-2). Ce chapitre est axé 
autour de la description et la modélisation i) de l’architecture, ii) des modes de circulation et 
iii) des temps de récurrences et de circulation des fluide riches en CO2, enregistrés dans ces 
précipitations en surface ou en proche-surface. 
 
Le chapitre V décrit l’épisodicité des circulations observées à l’échelle du bassin, le long des 
failles étudiées (zone de circulation, figure 2) et ce sur toute la série sédimentaire visible à 
l’affleurement. Dans ce cas, le fluide ne circule plus nécessairement qu'à l'actuel, mais les 
différentes phases de migration des fluides qui ont précédé la situation actuelle peuvent être 
identifiées. Nous cherchons à préciser la nature du fluide à partir des différentes hypothèses 
envisagées : riches en CO2, mais aussi circulant le long d'aquifères salins ou enrichis en 
hydrocarbures afin d'approcher l’histoire des circulations fossiles. Ce chapitre est axé sur un 
travail de géologie structurale et de pétrographie. 
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Figure I- 2. Schéma des différentes preuves du passage d’un fluide réactif dans une zone de faille, au travers de la pile 

sédimentaire. Le chapitre IV s’attache localement à la zone de cristallisation en surface et proche surface. Le 
chapitre V à la zone de circulation en profondeur et à la connectivité à l’échelle du bassin. 

 
Le dernier chapitre, chapitre VI, est un chapitre de conclusion qui synthèse le travail présenté 
et soulève les questions qui restent à résoudre. 
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CHAPTER II. GEOLOGICAL SETTING AND 

PETROLEUM SYSTEM 

CHAPITRE II. Contexte géologique et système pétrolier 
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1. Introduction 

The area under study is extending over the south-eastern part of Utah (Central America) in 
front of the Western American Sevier Fold-and-Thrust Belt that borders the western part of 
the Colorado Plateau, west of the Rockies Front (Fig. II-1, top). The Colorado Plateau 
structural unit is considered as an intra-orogen foreland mega-block composed of the 
Paleozoic Paradox basin, which subsided on the North American craton. At present, the 
western part of the Colorado Plateau represents the uplifted Palaeozoic Paradox Basin edge. 
This area had endured several compressive tectonic events since the Permo-Triassic up to 
Paleogene times. Starting few million years ago during Paleogene time a progressive, but 
impressive, uplift had induced strong erosion responsible for the incision of the Colorado and 
Green rivers. 
 
The Colorado Plateau-Paradox basin and the frontal part of the Sevier Fold-and-Thrust Belt 
are well studied mainly in relation to hydrocarbon and CO2 exploration. As it is located in the 
transition zone, between the Sevier and Basin-and-Range deformed zone and the Colorado 
Plateau stable (Fig. II-1, bottom), the studied area is very sensitive for studying the dynamics 
of faults in relation to natural hydrocarbons and CO2 storage. Based on the field observations, 
the fluid and gas migration can be analyzed and used for studying the fault transfer properties 
evolution in natural conditions.  
 
A review of the geological setting and the tecto-sedimentological history is essential for the 
evaluation of the impact of several parameters, such as paleostress and paleogeography 
evolution, dynamics of the petroleum systems and finally why and how this area became a 
province rich in carbon dioxide. Due to the spectacular erosion rate, a large part of the fault 
network is particularly well exposed at the surface. The excellent outcrop conditions allow the 
observation at different levels and scales of the fault and fracture networks, in order to 
document the fault architectures, the fluid migration pathways, and the fault transfer 
properties. 
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Figure II- 1. Physiographic and geological location of South East Utah. Top: Map of the physiographic provinces in the 48 

United States (Blij & Muller, 1993), Utah State is outlined in red. Bottom: Simplified geological map of Utah (Hintze 
et al., 2000), with study area outlined in red. 
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2. Geodynamic evolution 

2.1 Evolution of West-central USA  

2.1.1. Present-day tectonic framework 

Utah is located in the western-central part of the American plate (Fig. II-2) and is greatly 
influenced by the geodynamical evolution of the western American active margin. Nowadays, 
the pacific oceanic plate is progressively subducted toward the East below the old American 
craton.  
This long-active plate boundary, registered several tectonic episodes resulting in two different 
processes: (1) classical subduction in the North, where the Kula Juan de Fuca Plate is 
subducted perpendicularly to the American plate, inducing the development of the Rocky 
Mountains, and (2) oblique subduction to pure transform boundary to the South, where the 
Pacific plate is subducted along a transform boundary, now expressed by the San Andreas 
Fault system.  
Numerous modern earthquakes of high magnitude (e.g. 6.6 to 7.6) are linked with the Basin-
and-Range extension. In Utah, the seismic area corresponds to the Wasatch Range (zone 
highlighted in orange, Fig. II-2). 
 

 
Figure II- 2. Simplified present-day plate setting of the Western United States with major tectonic zones and indication of 

some seismic events (Utah Geological Survey, 2011). 

 

2.1.2. Large scale geodynamical evolution  

From Late Proterozoic to Cambrian (1GA-500 Myrs), the dislocation of Rodinia induced the 
formation of the North American passive margin (Scotese, 2001), bordering the Pantalassa 
ocean, responsible for the first compartmentalization, of the future Colorado plateau 
basement, which is composed of early Paleozoic terrane assemblage whereas the western part 
of Utah basement is composed of Achaean cratons (Hintze, 1993; Zhao et al., 2000). Thus, 
the passive margin inheritance, linked to the splitting of Rodinia, is of crucial importance in 
the following tectonic events that affected central North America. The shallow-angle western 
subduction has been active since Ordovician times with the subduction of the giant 
Panthalassa Ocean (Fig. II-3). 



 23 

At Early Triassic times, the continents agglomeration formed the supercontinent Pangea, still 
bordered to the West by the Panthalassa Ocean. During the late Jurassic times, the Pangea 
began to split and progressively deformed along its edges until the present day tectonic 
configuration. 
 

 
Figure II- 3. North-central America geological evolution (red square) - Mid-Ordovician to Mid-Miocene (Scotese, 2000). 

 

The tectonic history of the western subduction zone of the North American plate is linked 
with the history of the Kula/Farallon/Pacific plate motion. The mega oceanic Kula/Farallon 
plate split in two parts (Kula and Farallon), during late Cretaceous, creating independent 
plates that both still continued subducting to the East. During Miocene times, the motion at 
the plate boundaries changed drastically with the subduction of the Pacific plate. 
The oceanic plate subducting eastward has been largely consumed during the last 100 million 
years. Between 69 and 34 million years ago, the subduction of the Farallon plate slowed 
down, after which the angle of subduction started to increase. About 35 million years ago, the 
subduction seems to stop and the slab is fully buried under the American plate (Fig. II-4). The 
structural and magmatic evolution of the Colorado plateau area is correlated with the Farallon 
plate tectonics which triggered the thermo-mechanical lithospheric evolution, and thus 
changing the nature and the migration pathways of the circulating fluids. 
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Figure II- 4. Schematic cross-section of the western United States showing the changes in the geometry of the Farallon 

Plate through time (Modified from Crossey et al., 2009, adapted from Humphreys et al., 2003). 

 

2.2 Tectonic evolution at regional scale  

Our study area is located NW of the Colorado Plateau, in front of the Sevier Thrust Belt and 
Basin & Ranges. The sedimentary and structural units have been strongly influenced by the 
geological history of the now exhumed Paradox Basin. 
 

2.2.1. Present-day situation 

The Colorado Plateau morphological unit (Fig. II-5) is bordered by the Rocky Mountains to 
the North and the East, which have been mainly deformed during the Laramide orogeny (80-
40 Ma). To the South and West, the Laramide Sevier Fold and Thrusts, now dissected by 
active normal faulting resulting in the Basin-and-Range Province formation, bound the 
Colorado Plateau. High extension rates are registered in this area, whereas the Colorado 
Plateau itself stays relatively undeformed. It remains a massive, elevated mega-block 
extending in southwestern US and centered on the "Four Corners" between the states 
Colorado, New Mexico, Utah and Arizona (Fig. II-2). The main deformation is located 
around it, either as flexural foreland basin formation, basement inversions, or along internal 
regional normal to slightly oblique-slip faults probably reactivating paleo-structural trends as 
the Lisbon, Moab and Green river faults.  
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Figure II- 5. Structural framework of the Colorado Plateau (extracted from Jones, 2010). 

  
2.2.2. Past geodynamical evolution 

The western “North American Ranges”, roughly N-S directed and polyphased, are strongly 
segmented at present. The along strike segmentation is untimely linked with the Proterozoic 
and Paleozoic structural heritage, now imprint in the foreland (as Uncompaghre uplift, or as 
Paradox Basin in the area under study). 
The along-dip variations are also spectacular and have been guided by two coeval processes 
since Oligocene times: i.e. the extensional collapse of the Inner Laramide Ranges in the 
Basin-and-Ranges provinces, and the uplift of the Colorado Plateau, formerly developed as 
the Paradox Basin (Fig. II-2 and 5).  
 
The asthenospheric dynamics and the nature/temperature of the Farallon slab already 
described (which is colder than the asthenosphere) now underplated below the North 
American lithosphere may create a thermal anomaly under the Colorado Plateau, responsible 
for its rising up (Levander et al., 2011). Indeed, an erosion of more that 1500 m has been 
estimated by these authors, the amount of erosion calculated by modeling may reach 3000 m 
at some places. The Colorado Plateau beginning of rising, rate and mechanism (continue or 
stepped?) is a current problem. The uplift started at the end of Cretaceous times (Fig. II-6) 
according to several authors (Flowers et al., 2008) or from Mid-Tertiary for others authors 
(Prousevitch et al., 2002; Denniston et al., 2008).  
 

As the reconstruction of the tectonic and paleogeography evolution until the end of the 
Cambrian is uncertain, the basement setting and the super continental tectonic relationships 
has been briefly introduced, but only the tectonic history from Mississippian to Modern era 
will be described in more detail. 
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Figure II- 6. Reconstruction of the Colorado Plateau uplift phases, in Colorado State. (A) 80 Ma, (B) 50-35Ma, (C)16Ma and (D) present day (Flowers et al., 2008). 
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3. Tecto-sedimentary evolution 

Present-day Colorado Plateau outcrops are particularly well adapted for detailed geological 
investigations. Due to the regional uplift, hundreds of millions years of deposits are now 
exposed vertically at surface, due to the deep canyons incisions which progressively cut the 
geological series The tecto-sedimentary history is therefore well preserved with easy access to 
excellent outcrops. Detailed reports of the structure of the Paradox basin and adjacent areas 
have been published by several authors, and integrated in the short synthesis presented here, 
coming from Gregory (1951), Kelley (1955), Shoemaker et al. (1958), Joesting & Case 
(1960), Szabo & Wengerd (1975), Witkind (1975), Gorham (1975), Stone (1977), Sugiura & 
Kitchco (1981), Frahme & Vaughan (1983), Chapin & Cather (1983), Stevenson & Baars 
(1986), Peterson (1989), Hintz (1993), Bardeau, (2003), Trudgill (2011) and others. 
 
In order to better image the structural history and paleogeography, a schematic chronology 
has been synthesised in Fig. II-7, where the local tectonics and deposition processes are 
correlated with the regional tectonics and stress evolution. This schematic chronology will be 
commented from Mississippian to Recent. 
 

 
Figure II- 7.Schematic chronology of Phanerozoïc tectonic evolution of Utah (compiled from Hintze 1995). 

 

3.1 Pre-Laramide tectonic evolution at local scale (Moab to Green River) 

The structural pre-Laramide history of Utah can be summarized in two main tectonic 
episodes: (1) formation of the Umcompaghre Uplift (ancestral Rockies, location on Fig. II-7) 
and associated subsiding basins developed from Mississippian to Permian times as Paradox 
Basin; (2) sedimentary infill as sag basins with layer-cake deposits from Triassic to Early 
Cretaceous times. 
 

3.1.1. Ancestral Rockies, “Uncompaghre" uplift - Mississippian – Permian (360-250 Myrs) 

The collision between Laurentia and Gondwana led to the development of two margins: a 
southeast compressional margin, north-to-southwest directed, along the Appalachian-
Ouachita-Marathon Fold-and-Thrust Belt (Graham et al., 1975; Ross, 1979), and a North-
South directed western margin, under extension (Fig. II-8). The two margins were 
approximately of the same length (Smith and Miller, 1990). 
 
The combination of the south-eastern compression and the western extension units was 
responsible for the formation of some southeast-northwest directed uplifts (e.g. Wichita-
Amarillo Mountains, Umcompahgre Uplift) and basins (e.g. Orogrande Basin, Paradox Basin, 
Oquirrh Basin). To the West, these structures turn progressively to a North-South position 
(Antler overlap Basins, Havanllah Basin) as the influence of the western extensional margin 
increased. At a more local scale, the Uncompaghre uplift (nowadays in Utah and Colorado 
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states), also named "Ancestral Rockies" registered the progressive paleostress lateral 
variation, as this local uplift is located between the passive and active margins (Fig. II-8).  
  

 
Figure II- 8. Late Paleozoïc structural setting of North America (from Smith and Miller, 1990). Colorado Plateau and 

Utah indicated in red. 

 

3.1.2. The Paradox basin, from Carboniferous to Permian (360-250 Myrs) a foreland basin 
formation 

The studied area extends from the future location of Moab and the San Raphael Swell (Fig. II-
9). Thick sediment layers were deposited at the emplacement of the present-day Paradox 
Basin with very high subsidence rates in the north-western part of Utah (Hintze, 1993).  
 

 
Figure II- 9. Location of the study area within the Paradox basin- SW Colorado Plateau, Utah, US. Lacconite intrusions in 

red, basement uplifts in green (Modified from Condon, 1997).  
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The tectonic origin of the Paradox Basin has been largely discussed. Two main hypotheses 
have been proposed for the processes involved (1) Stevenson & Baars (1986) proposed strike-
slip conditions resulting in a Pull-Apart basin formation located in the distal foreland of the 
Ouachita-Marathon Belts, whereas (2) Bardeau (2003) proposed a flexural model resulting in 
a foreland basin development. 
If the pull-apart model is accepted, the subsidence would be due to the strike-slip offset along 
a restraining bend located on the south-western margin of the Uncompaghre uplift. This 
should require an important vertical dominant component for the tectonic subsidence 
(McKenzie, 1978; Pitman & Andrews, 1985), and these processes would be accompanied 
with volcanism. The lack of volcanism leads to the second hypothesis. 
 
The NW-SE foreland basins, associated with the development of the Uncompaghre Uplift, 
have been filled with sediments reflecting alternation of deep marine and very shallow water 
restricted environment cycles. The Paradox Basin developed then, under these conditions 
during the Paleozoic times. 
The Pennsylvanian shales, siltstones and dolostones (now producing reservoirs or aquifers) 
were deposited under confined, sometimes anoxic environment, and are interbedded between 
thick salt layers (Hunton et al., 1999). 
The occurrence of ductile evaporitic layers influenced largely the tectonic style in the Basin 
since Permo-Triassic times, and is expressed by the development of large roll-overs and salt 
diapirs. 
 

 

3.1.3. Eolian to fluvial sedimentation during Triassic-early Cretaceous period. 

At a local scale, Mesozoic sediments were deposited within the Paradox basin, forming 
continuous layers over tens of kilometers thick. These thick layers form later source rocks for 
gas or fluids, or reservoirs and drains at the regional scale (Haszeldine, 2005).  
This layer-cake sedimentology is greatly influenced by the large scale orogen migration 
toward the East (orogen linked with the Farallon plate subduction) and the depositional 
pattern evolved from shallow marine to desert formations during Triassic and Jurassic 
periods.  
 

 

3.2 Early Cretaceous – Paleocene Sevier Fold-and-Thrust Belt and San Rafael 
Swell Formation 

During the Paleozoic/Mesozoic transition period, the western American margin was 
progressively involved in the closure of the super-ocean Panthalassa and registered the 
beginning of the successive subduction episodes of the Kalua and Farallon plates (Fig. II-10) 
along which the western margin became active. Accretion wedges developed and 
progressively emerged while migrating to the East.  
The Sevier/Laramide compressive orogenies that are coeval with the development of a 
western interior sea from Early Cretaceous till Early Tertiary and are marked by early stages 
of volcanism. 
 
Two orogenies are classically distinguished: first the Sevier period (140 - 50 Myrs), and then 
the Laramide period (100 – 66 Myrs) (Craddock and Van der Pluijm, 1999; Hintze, 2005). 
These two orogenies are differentiated by their mechanisms of deformation (Willis, 1999): the 
Sevier Belt was affected by thin-skin processes deforming the upper sedimentary levels, 
whereas in the Laramide Belt the deformation was driven by thick-skin processes affecting 
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the basement. However, the mechanisms of both orogenesis can be considered as a continuum 
correlated to the increase of the Kula or Farallon slab angle, in the western American 
subduction zone (Fig. II-10A, B & C).  
At a large scale, the western margin activity continues with the Pacific plate and the Juan Di 
Fuca plate (e.g. the last piece of the Farallon plate) involved in the subduction zone (Fig. II-10 
D). Differences, such as plate thickness and motion direction, gave rise to a relocating of the  
deformation associated with the Rockies orogeny. 
  

 
Figure II- 10. Schematic and qualitative tectonic history from Late Cretaceous to Present of the western part of Northern 

America (Bird, 2002).  

 
 
3.2.1. Sevier/Laramide orogenies and Western interior Sea development 

Both Sevier and Laramide orogenesis can be considered as a continuum due to the increase of 
the Kula or Farallon slab angle, within the western subduction zone (Fig. II-10A, B & C).  
 
During late Cretaceous to Early Tertiary, the western North American margin has been 
progressively deformed, evolving from accretion wedge to Fold-and-Thrust Belt. The thin-
skin deformation propagated eastward along Paleozoic basal decollement level. During this 
period, the "present-day Colorado plateau area" was only weakly affected by the eastwards 
orogen propagation (Fig. II-11). 
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Figure II- 11. Reconstruction of a synthetic cross-section across the Sevier Fold-and-Thrust belt during the 

Cretaceous (De Celles & Coogan, 2004). 

 

 

3.2.2. Tertiary to Present-day: Rockies formation, volcanism, Basin-and-Range extension 
and coeval uplift of the Colorado Plateau  

During Eocene time, north of the study area, the Rockies front has been transferred to the 
East, along the Uinta Mountains. Extensional processes started in the Sevier Range, inducing 
the progressive collapse of the central units and the formation of Basin-and-Range province. 
As a consequence of the initiation of the crustal extensional processes, this period is 
characterized by abundant magmatism and volcanism episodes. 
Late Eocene times are marked also by the beginning of the Colorado Plateau up-rising. The 
total vertical uplift has been estimated to vary between 1600 m and more than 2000 km 
(Nuccio and Condon, 1996). The intense erosion linked with this uplift is responsible for the 
present-day landscape, characterized by plateaus, mesa, mounts and deep canyons. The total 
vertical uplift has been estimated between 1600 m and more than 2000 km (Nuccio and 
Condon, 1996; Prousevitch et al., 2002; Dennison et al. 2008; Pederson, 2008). The debate 
relates mainly to the uplift reason, starting, timing and uplift rate, and will not be discussed in 
this manuscript. 
To complete the geological history, during Oligocene time, numerous igneous intrusions 
affected the Colorado Plateau, such at La Sal Mountains and Henry Mounts close by the 
studied area.  

3.3 Paleogeographic context and sedimentary units 

The description below will focus on the sedimentary pile observable in the studied area, as the 
sedimentological signatures of the different formation greatly influenced the tectonic pattern 
and the fluid flow pathways (Fig. II-12). 
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Units older than Mississippian and younger than Upper Cretaceous (<65 Ma) do not outcrop 
in the studied area and will not be described. The Mesaverde Group (Fig. II-12), deposited 
during Late Cretaceous-Paleogene period is also not present in the studied zone. 
 

  
Figure II-12. Chronostratigraphic chart of the Paradox Basin, Utah (Molenaar, 1975). 



 33 

 
3.3.1. Carboniferous 

Carboniferous carbonate rocks are the Leadville limestone, the Hermossa and Cutler Groups, 
and the Kaibab Formation. 
Leadville limestone (Mississippian) – thickness ~150m 
Shallow marine carbonate covered the entire shelf of the present-day Paradox and Rocky 
Mountain zone. These carbonates are composed of massive marine oolites, crinoidal 
limestone and crystalline dolomite with variable amounts of chert. As a good reservoir for oil, 
the Leadville is exploited, for instance in Lisbon oil field. The formation may also contain 
major resources of carbon dioxide, particularly at the McElmo Dome, in Colorado (Trudgill, 
2011). 
 

Hermosa Group (Pennsylvanian) – thickness ~1.500m 
Early mid Pennsylvanian (Early Moscovian) active subsidence in the Paradox Basin slowly 
accelerated until mid-Permian. More than 1.500 m of sediments deposition accommodated the 
subsidence in the Paradox Basin. 
 
o Paradox Formation (Mid Pennsylvanian 310 Myrs) 
This heterogeneous formation mostly consists of evaporic deposits (anhydrite, halite and other 
type of salts) interbedded with black shales, and dolostones (Nuccio & Condon, 1996). The 
deposition mode is characterized by more than 35 complete or partial cycles resulting from 
repeated desiccation and flooding cycles in the basin during glacio-eustatic sea level changes 
(Hite & Buckner, 1981). To the southwest, the evaporites laterally change into shelf 
carbonates (Fig. II-13). 
Due to tectonics this formation is outcropping as massive diapir masses intruding the core of 
the collapsed salt-cored Salt Valley and Moab-Spanish Valley anticlines located in the Arches 
National Park/Moab area. 
 
o Honaker Trail Formation (Late Pennsylvanian 300 Myrs) 
Dominantly carbonated, this formation corresponds to the wedge covering the mid 
Pennsylvanian system in the central part of the basin (Fig. II-13). The formation is 
characterized by rapid lateral thickness and facies variations, especially in areas close to the 
top of salt walls. Transgressive and regressive cycles were generated by shifting of the 
shoreline, driven by relative sea level changes on an open marine shelf (Tabor & Poulsen, 
2008; Rasmussen & Rasmussen, 2009) 
These sediments represent the material eroded from the Uncompahgre Plateau to the East. An 
unconformity separates the Honaker Trail Formation and overlying Permian sediments of the 
Cutler Group. The overall thickness of the Honaker Trail Formation ranges from 320 to 800 
m, but it is highly variable due to coeval salt tectonic activity and progressive erosion. In 
Arches National Park area, the maximum thickness is around 100 m (Lawton & Buck, 2006). 
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Figure II- 13. Early and Mid Pennsylvanian Colorado Plateau paleogeography (Blaker, 2011). 

 

Cutler Group (Permian) – Thickness from 0 to 2.450 m 
This Group consists dominantly of sediments deposited in a transition zone between an 
alluvial-fan setting, located along the southwest side of the ancestral Uncompahgre Plateau 
and shallow marine carbonates of Paradox Basin. An angular unconformity is separating the 
Cutler Group from the overlying Moenkopi Formation. The Cutler Group in heterogeneous 
and includes classically four members. The lower Cutler beds (Halgaito shales Formation and 
Elephant Canyon), the Cedar Mesa sandstones, and the Organ Rock Formation correspond to 
alluvial fan deposits along the SW flank of the Uncompaghre uplift, interbedded with eolian 
and shallow marine deposits to the west of Moab. The last Member is the White Rim 
Sandstone composed of coastal dune sediments, intermittently flooded by sea water (Doelling 
& Ross, 1998; Doelling, 2001).  
The Culter Group shows the most dramatic facies thickness variations (from 0 to 2.450m) 
mainly due to coeval salt tectonic activity during sedimentation. 
 

 

3.3.2. Triassic  

During Early Triassic (Fig. II-14), the studied area was covered by shallow marine deposits 
(Moenkopi Formation). Then, the Appalachian uplift induced a progressive regression, 
testified by fluvial deposits (Chinle Formation). 
 

Moenkopi Formation (Lower Triassic) - thickness from 60 to 150m 
This formation is composed of red and brown thinly bedded siltstones and shales interbedded 
with fine-grained sandstones, often presenting cross-laminations and subaqueous ripple marks 
in the eastern part of the studied area. A conglomerate bed containing clasts of angular 
gypsum, sandstone, limestone, and chert was deposited in the lower part of this formation 
around Moab (Deschamps et al., 2009). The Moenkopi Formation series represent deposition 
under mixed marine/terrestrial conditions along the shallow near-shore tidal flats and river 
flood plains. 
The Moenkopi and overlying Chinle Formation are separated by an angular unconformity. 
Thickness is ranging from 60 to 150 m depending on the erosion level. 
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Chinle Formation (Middle-Upper Triassic) – thickness ~190m 
The Chinle Formation is composed of the Shinarump conglomerate, Moss Back member, 
Petrified Forest member, Owl Rock member, and Church Rock member. The Chinle 
Formation has been described in the Canyonlands and San Rafael Swell areas, west of our 
studied area. Depositional environment vary from lacustrine, perennial fluvial, semi-arid 
fluvial to eolian facies (Doelling, 1988). 
 
In the Canyonlands area, the base of the Chinle Formation (Fig. II-14) corresponds to fluvial 
meandering channels of the Moss Back Member. Above, the Petrified Forest member consists 
of small fluvial channels made of fine-grained argillaceous sandstones, interbedded with 
floodplain shales. A tidal influence appears in the Owl Rock member, with sigmoidal cross-
stratifications and bioturbations. The overlying Church Rock member is made of fine-grained 
argillaceous anastomosed channels and floodplain, evolving to silty shales (floodplain and 
lacustrine deposits) toward the top of the Chinle Formation.  Total thickness is 90 m.  
 
In the San Rafael Swell, the base of the Chinle Formation is made of very coarse-grained 
sandstones to conglomerate, with sigmoidal cross stratification, mud clasts and rare 
bioturbation. This interval, corresponding to the Shinarump Conglomerate, is interpreted as 
fan delta deposits, unconformably overlying the marine deposits of the Moenkopi Formation. 
Above this conglomerate, the Moss Back member consists of reddish silts with rippled beds 
deposited in a floodplain setting. The Petrified Forest member corresponds to very coarse 
grained braided channels deposits, with abundant wood debris and almost entire tree trunks 
embedded within the sediments. This is followed by the Owl Rock member, that consists of 
conglomerates reworking abundant wood debris and huge broken tree trunks (interpreted as 
alluvial fan deposits), evolving to braided fluvial channels and floodplain deposits in the 
Church Rock Member at the top. The Chinle Formation is also rich in Uranium deposits. 
 

 
Figure II- 14. Triassic Colorado Plateau paleogeography (Blaker, 2011). Desert in brown-orange, mountain in brown, sea in 

blue vegetation in green. 
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3.3.3. Jurassic (series dominantly involved in our study) 

During the Jurassic, the area was characterized by a desertic to subdesertic depositional 
environment with some fluvial episodes (Fig. II-15), as the main Navajo sandstone reservoirs 
formed of compact dunes, which has been deposited on the Kayenta Formation, formed of 
lacustrine and fluvial deposits. The lateral variations between eolian and fluvial settings are 
well expressed within the Entrada Formation. This study focusses on these formations that are 
part of the Glen Canyon Group. During the late Jurassic, the area subsided, provoking the 
formation of large lake deposits and the sedimentation of the thick fluvial Morrison 
Formation.  
 

3.3.3.1. Lower Jurassic 

Glen Canyon Group (Early Jurassic) – thickness ~250m 
The Triassic-Jurassic boundary is enclosed in this group, but its exact stratigraphic position is 
uncertain due to a lack of appropriate diagnostic fossils (Draut, 2005). The Wingate 
Sandstone and Kayenta Formation have sometimes been mapped as Triassic but are generally 
considered as being dominantly of Lower Jurassic age. These units consist dominantly of 
eolian sandstones with minor fluvial and interdune deposits (particularly in the Kayenta 
Formation), representing a sedimentation context corresponding to a vast, and sandy desert 
environment (Fig. II-15). 
 

o Wingate Sandstone (Lower Jurassic) - thickness: 60 m  
This sandstone forms prominent smooth cliffs of well-indurate, red-brown, massive, cross-
bedded, and fine to very fine-grained sandstones. Its lithology is fairly homogenous over the 
study area. Sedimentary structures include planar stratification and cross-bedding. 
Depositional environment is interpreted to reflect eolian and interdune sediments under humid 
climate.  
 

o Kayenta Formation (Lower Jurassic) - thickness: 60 – 80 m. 
This unit is made up of thinly laminated to thickly bedded red-brown to pale purple fine- to 
medium-grained fluvial sandstones interbedded with siltstone and shale units. Its lower part 
tends to form irregular cliffs while the upper, thinner, beds form topographic slopes. This 
fluvial material was derived from the ancestral Rocky Mountains in eastern Utah and western 
Colorado (Huntoon et al., 1999). Near the top of the Kayenta Formation a characteristic 
smoothly-weathering cliff of well-sorted, cross-bedded, eolian sandstone occurs. The Kayenta 
Formation interbeds with overlying Navajo Sandstone.  
 

o Navajo Sandstone (Lower Jurassic) - Thickness: 75 – 215 m. 
This prominent white to dark-orange unit consists of well sorted, massive, horizontal- to 
cross-bedded, fine to medium-grained eolian sandstones. Locally, it contains pink-gray 
micritic sandy limestone beds with red chert nodules.  
This unit is almost entirely made up of eolian sands with occasional interdune deposits 
(planar-bedded sandstones and cherty, sandy limestones). Horizontally bedded sandstones 
near its base are interpreted as sabkha redeposition of eolian sand. A regional unconformity 
separates the Navajo sandstones and overlying Carmel Formation. 
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3.3.3.2. Middle Jurassic 

Carmel Formation/Dewey Bridge member: thickness: 5 – 40 m. 
The Carmel Formation, mapped in central and western Utah, contains red and purple 
mudstones and cross-bedded shaly and silty sandstones.  
The Dewey Bridge member, red-brown siltstones and fine-to-medium-grained sandstones 
(often with irregular, contorted bedding) which has in the past been mapped as the lowest 
member of the Entrada sandstone, has more recently been recognized as an equivalent to the 
Carmel Formation in eastern Utah and has been informally reclassified as such (Draut, 2005). 
These sediments are interpreted as lagoon to lacustrine and floodplain deposits.  
 

Entrada sandstone - thickness: 70 – 100 m 
The Slick rock member, belonging to the Entrada sandstone, is the only member of this 
formation observable in the studied zone. It occurs as a thick bedded red to orange fine-
grained, massive, well indurated sandstone, forming eolian cross-bedding cliffs. Fluvial and 
floodplain deposits can be identified within the eolian dune deposits. The Entrada sandstone 
was deposited in a huge sandy desert, mostly arid with some humid episodes, corresponding 
to fluvial and floodplain deposits. An unconformity separates the Entrada sandstone from the 
overlying Summerville/Curtis Formation.  
 

Curtis Formation - thickness: 6 -25 m. 
The Moab Member (formerly known as the Moab Tongue), which correlates with the Curtis 
Formation westward of the Moab area, has been described previously as the uppermost 
member of the Entrada sandstone but was later redefined as a separate member with an 
unconformity separating it from the underlying Entrada sandstone (Doelling & Hellmut, 
2002). This well indurated, cliff-forming unit is made up of red and brown thinly bedded, 
locally ripple-laminated mud-rich calcareous fine-grained sandstones and siltstones with low-
angle cross-stratification. The Moab member sediment is dominantly eolian, with a sharp 
transition from floodplain and lacustrine shales of the Summerville Formation to the west. An 
unconformity separates this unit from the overlying Morrison Formation. 
 

Summerville Formation - thickness: ~40 m. 
The Summerville Formation has been observed northeast of Moab, as a thin to medium-
bedded, brown sandstone and slope-forming red sandstone and siltstone. 
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3.3.3.3. Upper Jurassic 

Morrison Formation (Upper Jurassic) – thickness ~ 185 m 
The Morrison Formation occurs over a large area of the western United States and is famous 
for the common occurrence of dinosaur fossils. These sediments resulted from river channels, 
floodplain and lacustrine deposition. In the studied area the Morrison Formation occurs as 
three members: Tidwell, Salt Wash and Brushy Basin members. An unconformity separates 
the Morrison Formation from overlying Cretaceous Cedar Mountain formations.   
  

 
Figure II- 15. Jurassic Colorado Plateau paleogeography- Sea in blue, desert in yellow, western mountain belt in brown. 

(Blaker, 2011). 

 

3.3.4. Cretaceous 

During Cretaceous time, due to marine transgression, the studied area was located in an 
Interior sea (Fig. II-16) occupying the flexural basin developed in response to the Sevier 
tectonic loading. This episode led to the deposition of thick shale deposits (Cedar Mountain, 
Dakota and Mancos Formations). 
Cedar Mountain Formation (Early Cretaceous) – thickness ~150m 
The Formation consists of the lower Buckhorn conglomerate and an upper shale member. The 
Buckhorn conglomerate is composed of conglomeritic sandstones deposited in a fluvial 
environment, which are discontinuous throughout the study area. The sandstones are 
immature, lithic arenites that are commonly silicified and have abundant chert and quartzite 
pebbles and cobbles. The upper shale member is composed of multicoloured, banded 
mudstone, siltstone and subordinate limestone. The unit was deposited in similar floodplain 
and lacustrine conditions to the Brushy Basin member of the Morrison Formation (Trimble 
and Doelling, 1988). 
 

Mancos Formation (Mid Cretaceous) - thickness 1000 to 2000m 
The Mancos Formation was deposited as a part of the large Western Interior sea (Nuccio and 
Condon, 1992). The Late Cretaceous Mancos Formation consists of a thick marine sequence 
of mud- and siltstones with minor amounts of sandstones. In the study area, the Mancos 
Formation is divided into two main members: the lower Tununk shale and the Upper Mancos 
shale. 
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Figure II- 16. Mid Cretaceous North America paleogeography (Blaker, 2000). Sea in blue, mountain in brown and 

vegetation in green. 

 

4. Petroleum and exotic fluid (CO2) systems 

In our study, an overview of the petroleum system is primordial to understand the study of 
fluid flow along faults. 
In Utah substantial fossil resources, such as coal, natural gas and oil reserves are mainly 
located in the Paradox and Uinta basins. Although they account for only around 1% of US 
crude oil production, Utah exhibits also enormous deposits of oil shale rocks, know as 
marlstone. In 2009, the estimates production and reserves of crude oil were calculated around 
20 and 398 Millions Barrels of 42 U.S. Gallons. Then, the natural gas estimation was 
calculated around 447 and 7,257 Billion Cubic Feet at 14.73 psia and 60°F (US Energy 
Information Administration, 2010). 
At present, the Paradox Basin in the Colorado Plateau is a very prolific hydrocarbon, gas and 
CO2 province. CO2 is injected in pilot sites such as the Saint Juan Dome (White et al., 2005). 
 
Based on observations realized in the field by Deschamps et al. (2009), the Fig. II-17 
represents a synthetic section of the different sedimentary formations outcropping. The 
section refers to the sediment succession outcropping in the Moab area (Canyonlands and 
Arches national parks) for the Permian (Cutler Formation) to the Upper Jurassic Morrison 
Formation; the Cretaceous succession being described close to Green river area (Book Cliffs).  
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Figure II- 17. Synthetic section of the Paradox basin with main reservoirs (yellow to red) and seals (green) and 
tectonic events (Deschamps et al., 2009). 
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4.1 Oil, Gas and CO2 source rocks 

4.1.1. Oil and gas source-rocks 

In the Paradox basin, most of the source rocks for hydrocarbons are mainly located inside the 
Paleozoic sequence (Fig. II-17), mainly organic shales interbedded with the evaporitic series. 
 

4.1.2. Origin of the CO2 

In the literature, CO2 occurrences are often associated with Tertiary magmatic or laccolitic 
intrusions (Allis et al., 2001; Gilfilan et al., 2006). For instance, in the Saint John Dome, the 
CO2 may have been produced by 50km-far Springerville magmatic intrusion (Rauzi et al., 
1999). The Sheep Mountains CO2 may have been produced by Sheep Mountains Tertiary 100 
km–far magmatic intrusion (Caffree et al., 1999) and Mc Elmo Dome CO2 by a Tertiary 
magmatic intrusion 40-72 million years ago (Cappa and Rice 1995).  
As the CO2/ 3He values are within or below the range of 109-1010, showing that the CO2 have 
a significant but not dominant magmatic component (Gilfillan, 2008). 
The gas from Green River area, the CO2 along the leaky fault segment of the studied zone, 
contain more that 98% of CO2, with a δ13C (CO2) ranging from -7.6 to -5.7‰ (Jeandel, 2008; 
Jeandel et al., 2010; Gillfillan et al., 2008, 2009) indicating an inorganic origin of the CO2 
that may be the result of reactions within the crust of mantle-derived CO2 input in the system. 
This δ13C range belongs to the overlap between "crustal" and "mantle" CO2 (Wycherley et al., 
1999) and associated helium isotopic ratios (expressed as R/Ra ratios) were measured in order 
to unequivocally determine the CO2 origin. R/Ra ratios range from 0.2 to 0.7, indicating 
resolvable mantle-derived helium. Moreover, the CO2/3He ratio (reaching the crustal CO2 
domain) indicate that both crustal and mantle derived CO2 coexist within the seeps from the 
Green-River area, with a predominance of the crustal end member. 
 

 

4.2 Reservoirs and seals 

4.2.1. Hydrocarbon  

The Paradox basin is part of the three main hydrocarbon production zones of the state. In 
Utah other productive fields, with additional Cretaceous petroleum systems, are also 
producing in the Ferron Valley (East of the San Rafael Anticline), in the Wasatch plateau and 
in the Sevier frontal thrusts (Covenant big oil field discovered in 2004). Other younger very 
prolific provinces are located north of our study area, namely in Uncompaghre Uplift and 
Uinta basin. There, the known petroleum systems are significantly different than in the 
Paradox basin and will not described in this document. 
 
Most of the producing hydrocarbon areas of the Paradox Basin are located in the San Juan sub 
basin, as well as along the Moab and Green River Faults between Arches and Canyonlands 
National parks. The hydrocarbon reservoirs are mainly located within the Mississippian 
(porous limestone such as the Leaderville Formation) and Pennsylvanian strata (carbonates of 
the Honaker Formation), overlaid by the regional thick salt Paradox Formation. 
 

4.2.2. Carbon dioxide 

The Colorado Plateau area also contains at least nine producing or abandoned gas fields (Fig. 
II-18) that contains up to 2800 billion m3 of natural CO2 (Allis et al., 2001). Six fields are 
producing CO2 at a commercial level, primarily for using it in enhanced Oil Recovery and 
chemical industry. The majority of the fields are fault-bounded anticlines and a large range of 
varieties is observable. For instance, at shallow depth (from 200 to 700 m depth) the Saint 
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John Dome Field, a structure of about 1800 m2, is producing from Permian alluvial 
sandstones and containing CO2 under gas form. Deeper (700-1500 m depth) the Sheep 
Mountain field, about 20 km2, is producing from Jurassic Dakota and Entrada sandstones. 
The Mc Elmo Dome, a structure of about 800 m2, contains supercritical CO2 in Mississippian 
carbonates at more than 1800m depth. 
 

  

 
Figure II- 18. Natural CO2 reservoirs and Cenozoic igneous rock intrusions within and around the Colorado 

Plateau (Guilfillan et al., 2008). 
 

4.3 Migration and entrapment 

Mississippian limestones (Leaderville) reservoirs are trapped into fault blocks adjacent to salt 
anticline or swells. Seals are Paradox Formation evaporite beds. 
The hydrocarbon generation began as early as Permian time. Migration into pre-salt reservoirs 
was probably contemporaneous with the growth of salt structures (Doelling, 1988; Trudgil, 
2011). 
 
The Hermosa and Culter reservoirs are localized into stratigraphic and stratigraphic-structural 
traps. These traps are the results of both thinning and permeability pitchouts and are sealed 
along the flanks of the anticline. Hydrocarbon generation in the deeper parts of the Paradox 
basin probably began by Permian time. Migration was coincident with salt movement and 
anticline growth (Peterson, 1989). 
 
The Permo-Jurassic fields, constituted of eolian porous sandstones reservoirs such as the 
Permian White rim and Kaibab Formations, the Triassic Moenkopi Formation, the Jurassic 
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Navajo and Entrada Formations are mainly in structural traps: as the hydrocarbons migrated, 
existing structures would have been charged. Seals are provided by shale beds (Blackett et al., 
1997). Neither the timing of generation or migration is known. 
 

5. Conclusion 

The studied area is located in the North West of the Colorado Plateau within the uplifted 
Paradox Basin and is part of the main oil and CO2 production zone of the United States. The 
differential erosion, linked with the Colorado Plateau uplift, reveals the series from the 
Pennsylvanian to the Cretaceous. 
 
Reservoirs and aquifers are mainly located:  
in the Mississippian limestones (Leadville Formation), under the thick Paradox Salt 
Formation;  
in the Pennsylvanian carbonates of the Honaker Trail Formation and the sandstones of the 
Permian Cutler Formation and  
in the Permo-Jurassic eolian sandstones of the late Permian White rim and Kaibab 
Formations, the Triassic Moenkopi Formation and the Jurassic Navajo and Entrada 
Formations. These formations (in particular the Moenkopi and Navajo Formations) were 
deposited regionally and in "layer cake" and can also act, in consequence, as aquifer or 
hydrocarbon, gas and CO2 vectors (Huntoon et al., 1999).  
 
The Mississippian and Permian reservoirs are mainly located into stratigraphic traps whereas 
the Permo-Jurassic reservoirs are linked with structural traps. The migration and entrapment 
are mainly controlled by the salt tectonics, which began at Permian time, and the Laramide 
tectonic that affected the basement. However, the timing of the migration and entrapment is 
not well constrain, in Chapter V of this thesis new ideas to constrain this phase in the Jurassic 
eolian sandstones are proposed.  
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CHAPTER III. SAMPLING, ANALYTICAL 

METHODS AND NUMERICAL MODELING 

CHAPITRE III. Échantillonnage, méthodes analytiques et 
modèle numérique 
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1. Introduction 

The scientific issues we like to resolve requires a multi-disciplinary approach, since we need 
to unravel all the parameters providing information on fluid flow evolution in the fault: from 
mechanisms of fluid transfer along the fault and fluid leakage at the surface, to fluid nature 
evolution within time and space. 
 
Therefore 3 research stages can be separated, namely: 1) Field work, 2) Analytical work, 3) 
Numerical modeling, and this, from outcrop to basin scale. 
The field work allowed making crucial observations based on which subsequent 
representative sampling was carried out. After each field work campaign, all the gathered 
information was sorted and prepared to initiate fast transition to the analytical phase. 
The analytical work was based on a multidisciplinary approach, using tools from geology and 
geochemistry. This part of the work was the major part of this work. In order to process all 
these analysis, I had the opportunity to collaborate with specialists in each domain.  This 
required some traveling to the different labs from my side. In the second part of this chapter, 
all the methods that have been used are described.  The instruments used are presented as well 
as the protocols, the labs and researchers involved in the work.. 
Finally, two complementary numerical codes for modeling fluid flow circulation in faulted 
zones were used in order to discuss the results obtained in chapters IV and V. In a third 
paragraph of this chapter, we present these codes, as well as our implementations within the 
codes, the tests performed and their usefulness for the resolution of our problem. 
 

2. Field work and Sampling 

In order to study the along fault fluid migration and surface leakage mechanisms, a good 
calibration of fault architecture was necessary. Subsequently, evidences of paleo-fluid 
circulation, such as bleaching and mineralization, were studied and sampled extensively.  
Three field campaigns have been carried out in east-central Utah (Fig. III-1). The study zone 
is located in the Paradox Basin, in the so-called hydrocarbon, gas and CO2 fields' rich-basin. 
We mainly worked along normal faults. The study area is bordered along its western side by 
the present-day Basin-and-Range trust belt and its northern limitation is marked by the Uinta 
uplift and basin, as described in detail in chapter II of this thesis. 
 
The interests of selecting this natural example are multiple, i.e.: the variety of tectonic 
contexts (from basement inversions, e.g. the San Raphael uplift, to normal faulting, e.g. Moab 
fault), the range of fault-related fluid circulation (from closed faults to fossil and modern 
circulation/leakage), the variety of petroleum systems (from modern hydrocarbon field 
monitoring to fossil reservoir and caprock outcrop observations due to high variation in 
erosion) from Cretaceous to Pennsylvanian. The area is also desert, consequently well 
exposed and well documented in literature. 
 
We followed three main research axes during our field work: 
Evaluation of the observations and hypothesis made by others authors 
Collection of architectural information from regional scale (basin scale) to outcrop scale (few 
meters) 
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Sampling of rock and fluids for detailed laboratory analysis. 
 
Back from the field, the data were classified and sorted. An identification database 
incorporating the more than 400 samples was created to enhance sample handling. 
 

 
Figure III- 1. Location of field work area in East-Central Utah (encircled in red). The study zone is located in the Paradox 

Basin, in the so-called hydrocarbon, gas and CO2 fields' rich-basin.  Field work focused on normal faults (in red). 
The zone is bordered along its western side by the present-day Basin-and-Range mountain belt and in the North 
by the Uinta uplift & basin (modified from Hintze et al., 2000). 

 

3. Analytical methods 

Following the field work, different methods were selected to address specific research 
questions: from petrography to relative and absolute dating methods. All these methods are 
summarized in Table III-1 and explained in the following paragraphs. This multidisciplinary 
study was possible thanks to strong collaborations with specialists of the different research 
domains. 
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Table III- 1. Summary of the analytical dataset. The main part of these analyses has been done in collaboration with 
specialists of each respective research domain. 

Methods Labs and collaborations samples 

Petrography: optic 
microscopy and cold 
cathodoluminescence 

Thin-sections made at 1) 
Geosciences Montpellier 

(Christophe Nevado), 2) IFP 
Energies Nouvelles (Herman 

Ravelojaona) and 2) Geo-Instituut 
Leuven (Herman Nijs) 

120 thin-sections 
on carbonate mineralization 

and bleaching 

X-ray diffraction (DRX) IFP Energies Nouvelles, 
collaboration with Dr. Eric Kohler 

15 powders  analysis on 
carbonate mineralization 

and bleaching 
Scanning electron 
microscope (SEM) 

IFP Energies Nouvelles, 
collaboration with Dr.Eric Kohler 4 samples of bleaching fronts 

Whole-rock major and 
traces elements ACME lab (Canada) 30 powders analysis on 

bleaching 

Oxygen and carbon stable 
isotopes study 

1) LSCE Gif-sur-Yvette, 
collaboration with Dr. Dominique 

Blamart. 
2) Friedrich-Alexander-University 
(Germany), by Prof. Joachimski 

team 

more than 300 samples on 
carbonate mineralization 

and 15 on sandstones 
bleaching fronts 

Paleomagnetic relative 
dating 

Cergy University and ENS, 
collaboration with Prof. Charles 

Aubourg 

Analyses made on two 
travertine mounts 

U-Th absolute dating 
CEREGE, Aix-en Provence, 
collaboration with Dr. Pierre 

Deschamps 

14 datings along a travertine 
cross-section 

 

 

3.1 Classical optic microscopy and coloration 

Back from the field, we inspected and selected samples from which thin-sections were made. 
A total of 120 thin-sections were made at the IFP Energies Nouvelles laboratory with Herman 
Ravelojaona, at the Geo-Instituut lab in Leuven with Herman Nijs and at Geosciences 
Montpellier lab with Christophe Nevado.  
The observations where made at IFP Energies Nouvelles with a Nikon Eclipe LV 100 POL 
microscope equipped with a Prog Res C10 Plus camera. We also worked at Geo-Instituut in 
Leuven. 
 
In order to differentiate the carbonates we used a classical alizarine staining. Then, to 
differentiate the calcium carbonate polymorphs we used chemical staining on polished rock 
sections and thin-sections. The Feigl method allows the aragonite identification (Kato et al., 
2003). The solution is prepared according to the original recipe (Feigl & Leitmeier, 1933). 1g 
Ag2SO4 is added to a solution of 11.8g MnSO4 7H2O and 100 ml of distilled water. The 
mixture is then boiled, cooled and filtered. It is very important to neutralize the mixture with 
dilute sodium hydroxide until a black precipitate starts to form. After neutralization, the 
solution must be re-filtered and kept in a dark bottle. Staining was carried out at room 
temperature. The sample was immersed in Fiegl’s solution and surfaces composed of 
aragonite changed gradually with time in colour from white to black. Staining time was 
approximately 10 minutes. Calcite did not stain. 
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3.2 Cold Cathodoluminesecence 

3.2.1. Principe and theory 

Cathodoluminescence reveals precipitation stages based on differences in luminescence which 
are function of trace element incorporation that can be grouped into activators (such as rare 
earth elements, Mn2+) and inhibitors (such as Fe2+, Co2+ and Ni2+) (Miller, 1988; Barnaby and 
Rimstedt, 1989; Machel and Burton, 1991; Machel et al., 1991; Kaufmann et al., 1999; 
Cazenave et al., 2003). The luminescence of carbonates ranges from yellow-orange to black 
colours.  
 
This method involves electron bombardment of uncovered and unstained thin or polished 
sections in a vacuum chamber. The latter results in the emission of an electromagnetic 
radiation of the bombarded material with different wavelength. The emission ranging can be 
in the visible range (400-700 nm), ultraviolet (UV: <400 nm) and infrared (IR: >700 nm).  
 

3.2.2. Objective 

This method allows to identify rapidly different mineral phases, some details of the cement 
that relate to different phases of fluid circulation and precipitation. However, 
cathodoluminescence has to be used with caution as the luminescence of one mineralogical 
phase may vary in function of the emission conditions, such as temperature and quality of the 
vacuum, elemental concentration variation, etc... Consequently, this method must be 
integrated in a complete petrographic study workflow. 
 

3.2.3. Sampling and Work flow 

We worked at KU-Leuven and at IFP Energies Nouvelles with a Nikon Eclipse Cold 
Cathodoluminescence Model ME600, Mark II operating under 10-15kV gun potential and 
600 µA beam current, 0.05 Torr vacuum and 5 mm beam width.  
 
 

3.3 X-ray diffraction 

3.3.1. Principe and theory 

X-ray diffraction on sample powder is generally used to determine the whole-rock 
mineralogy. Each diffraction spectra is characteristic of one mineral crystal lattice 
characteristic, and is identified thanks to software of comparison and identification rooted on 
a huge mineral database. 
 

3.3.2. Objective 

The objective is to determine the sample composition at first order, as we are working with 
rock powder. This methods was use as a reconnaissance method, before more detailed 
analysis (such as the Scanning Election Microscopy), mainly for discriminate different 
mineral generations, were applied.  
 

3.3.3. Sampling and Work flow 

The selected samples were powdered with an agate crusher and then analyzed at IFP Energies 
Nouvelles with a PANalytical XRD XPert PRO. 
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3.4 Scanning electron microscope (SEM) 

3.4.1. Principe and theory 

The scanning electron microscope (SEM) is a type of electron microscope that images a 
sample by scanning it with a high-energy beam of electrons in a raster scan pattern. The 
electrons interact with the atoms of the sample, producing signals that contain information 
about the sample's surface topography, composition, and other properties such as electrical 
conductivity. 
 

The principle is simple. In order to obtain information at a nanometer scale, the electron 
associated wavelength was used. An electron beam is projected on the sample and the impact 
creates the emission of two electrons 1), back-scattered electrons and 2) secondary electrons. 
The secondary electrons were used to map the surface roughness of the sample and the 
backscatter electrons are used to investigate the composition of the sample. 
 
3.4.2. Objective 

We would like to investigate all the observable changes that might affect sandstone 
interacting with an exotic fluid, in order to trace the nature and thermodynamic state of that 
fluid. We apply here an inverse approach, namely by having access to the sandstone before 
and after the fluid circulation, we attempt to deduce the fluid composition that interacted with 
the sandstone.  
 
Consequently, the SEM is useful to study the sample mineral composition, its quantification 
and 2D repartition. Moreover, the SEM allows inferring the relations between cements, grains 
and  porosity, in particular the micro-porosity. 
 

3.4.3. Sampling and Work flow 

We processed the SEM observations at IFP Energies Nouvelles with Dr. Eric Kolher. 
Samples were specially prepared to keep the surface as clean as possible. Then, they had been 
coated with carbon to guarantee a sufficient conductivity that allows carrying out the analyses 
using a Zeiss Scanning Electron EVO MA10. 
 
For each sample, a 0.5 mm2 zone was mapped in back-scattered mode and 2500 to 4000 
scattered punctual analyses were also processed.  
 

 

3.5 Whole-rock major and traces elements 

3.5.1. Principe and theory 

Whole-rock major and trace elemental analysis give the elemental signature of the studied 
sample. 
 
Trace elements, such as rare-earth elements (REE), Th, Sc and Co, are chemical elements 
whose concentration is less than 1000 ppm of the rock composition. They can be substitutes 
for network-forming cations in mineral structures, such as during the precipitation of 
carbonate cement. Carbonate cements incorporate various trace and minor elements 
proportionally to their concentration in the fluid. The incorporation of elements in calcite or 
aragonite, in our case is dominated by substitution for Ca2+ (Banner, 1995).  
 



 51 

3.5.2. Objective 

The major and minor elemental composition of rock sample cements relates to the 
characteristics of the fluid circulation. Consequently, the major and minor composition 
evolution of a rock to a fluid circulation might give information to characterize the fluid 
origin and nature. Moreover, waters from the major diagenetic environments are different in 
trace and minor element composition.  
 
This kind of analysis must be integrated in a diagenetic study and be used with caution. The 
traces elemental signatures can be dramatically affected by i) the composition of the major 
elements, ii) the thermodynamic, iii) the kinetic and iv) the equilibrium state of the reaction 
(Mucci and Morse, 1983; Given and Wilkinson, 1985; Banner, 1995), as well as v) 
subsequent resetting by recrystallization. 
 

3.5.3. Sampling and Work flow 

We performed 30 analyses with this method, mainly on sandstones. 10 g of each sample were 
selected, crushed and then send to the ACME Lab (Canada) to be analyzed. The matrix and 
the cements are consequently not separated from grains and the results will represent an 
average of the sandstones composition without a quantification of the cement and the matrix 
part. 
 
First, total abundances of the major oxides and several minor elements are reported on a 0.1 g 
sample analyzed by ICP-emission spectrometry following a Lithium metaborate / tetrabortate 
fusion and dilute nitric digestion. Loss on ignition (LOI) is by weigh difference after ignition 
at 1000°C. Unique to this laboratory is the addition of total carbon and sulphur analysis by 
Leco. 
 
Then rare earth and refractory elements are determined by ICP mass spectrometry following a 
Lithium metaborate / tetrabortate fusion and nitric acid digestion of a 0.1 g sample (same 
decomposition as above). In addition a separate 0.5 g split is digested in Aqua Regia and 
analyzed by ICP Mass Spectrometry to report the precious and base metals. 
 

 

3.6 Carbon and oxygen stable isotopes 

3.6.1. Principe and theory 

In Greek iso means same and topos means place: Isotopes of a same chemical element are at 
the same position in Mendeleiev table, the difference is the number of neutrons, i.e. the 
atomic weight. A stable isotope is an isotope that not undergoes modifications with time 
(without exterior energy supply) as its nucleus structure is stable. 
The mass difference between two isotopes will result in partial separation of the light isotopes 
from the heavy isotopes during the isotope fractionation. The stable isotope analyses are 
based on this phenomenon. Isotope weigh differences provoke physicochemical properties 
differences (such as molar volume, viscosity...) and so different behavior during chemical 
reactions. 
 
A relative difference function, the δ value, is used for most geological purposes in Earth 
Sciences for reporting stable isotopes abundances and variations: 

310.






 −
=
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x R

RRδ       (Equ. III-1) 
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where R is the atomic ratio between, by convention, the rare and the common isotopes. x 
corresponds to the ratio in the sample, for instance 13C/12C and 18O/16O, and Rstd to the ratio in 
a standard. 
 

In this study, we deal with carbon and oxygen stable isotopes analysis. The corresponding 
standards have been normalized in the end of the 70's to allow universal data comparison (see 
Coplen et al., 1983).  
The carbon standard is the V-PDB. The PDB is the solid carbonate standard of a sample of 
belemnite guard from the Peedee Formation in North Carolina. The prefix V is relative to the 
Vienna where the new definition was made. 
The oxygen stable isotope ratio is expressed relative to V-PDB or to V-SMOW, depending on 
the aim of the study. Sedimentologists preferentially use the V-PDB whereas hydrologists 
often report their results with respect to the V-SMOW standard. The V-SMOW is relative to 
an average sample of ocean water (Craig, 1961). 
 

3.6.2. Objective 

Oxygen and carbon stable isotopes contain the signature of the fluid and the CO2 source, 
except when the system underwent unexpected perturbations or contaminations. The range of 
values of the different reservoirs at the earth surface and in the crust are well calibrated (Fig. 
III-2). For instance, organic carbon has quite low signatures (−24 ‰ V-PDB) compared to the 
oxidized forms of carbon as CO2 (−7‰ V-PDB) or marine carbonate (0 to +4‰ V-PDB). 
 

 
Figure III- 2. Distribution of carbon and oxygen isotopic compositions in carbonate sediments, cements and limestone 

with reference to some of the controlling factors (from Moore, 2001). 
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3.6.3. Sampling and Work flow 

Stable isotopes analysis was used from outcrop up to thin-section scale. 
First, more than 300 micro-drill samples were collected from rocks along outcrop sections 
with Dr. Dominique Blamart, at the LSCE laboratory (Gif-sur-Yvette, France). We micro-
drilled polished sample sections along lines with a 2mm step and sampling 1 mg powder. All 
the samples were scanned in order to obtain a precise localization of the dataset. All values 
were reported in per mil relative to V-PDB with an error of 0.01 ‰ based on replicate 
analysis. 
 
Then, K.U. Leuven, samples at thin section scale were taken and sent for analysis at the 
Friedrich-Alexander-University (Germany) and analyzed under the supervision of Prof. M. 
Joachimski. Carbonate powders were reacted with 100% phosphoric acid at 75°C using a Kiel 
III carbonate preparation line, connected online to a ThermoFinnigan 252 masspectrometer. 
All values were reported in permil relative to V-PDB by assigning a δ13C value of +1.95‰ 
and a δ18O value of -2.20‰ to NBS19. Reproducibility was checked by replicate analyses of 
laboratory standards and is better than.0.04 ‰. 
 

 

3.7 Paleomagnetism relative dating 

3.7.1. Principe and theory 

Paleomagnetic analyses are based on the measurement of natural residual magnetism in rocks, 
in which the paleo-geomagnetic field, recorded at the time of rock formation, can be 
measured and identified with respect to known paleomagnetic timescales.  
 

3.7.2. Objective 

The evolution of the magnetic vector recorded within travertine cross-sections was studied 
where first the existence of these records and their significance was evaluated. The record can 
indeed be affected by secondary events, such as fluid circulation. In that case, these events 
may reset the pristine record. Consequently, in paleomagnetic studies a thorough evaluation 
of the recorded signal is of prime importance. 
This use of paleomagnetic signals as a relative dating tool is often used in paleoclimatology. 
In our work, we tested the current methods on Utah travertines that can be considered as 
archives of CO2 circulation along faults and manifestations of surface leakage and 
crystallization. 
 

Optimally a relative dating of the travertine veins based on the geomagnetic field record 
variations is obtained, at secular variation (Fig. III-3) or geomagnetic field inversion scale. 
For this purpose the residual geomagnetic field intensity and orientation are measured. Of 
importance is that the variation of the geomagnetic field could be observed at different 
timescales:  

• 100 My : dating relative to the magnetic pole displacement 
• 10 My : dating relative to the inversions 

        e.g. 750 000 years ago: Brunhes/Matayama inversion 
• 1 000 -10 000 yrs: secular variations. 
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Figure III- 3. Illustration of secular geomagnetic variations in function of radiocarbon age based on Holocene sediments 

from South-East Oregon (from Butler, 1992). 

 

 

3.7.3. Sampling and Work flow 

Samples were cored in the field, using a gasoline-powered portable drilling apparatus with a 
water-cooled diamond bit.  The diameter of cores is ~2.5 cm. After coring of the outcrop to a 
depth of 6 to 12 cm, an orientation stage is then slipped over the sample to acquire oriented 
samples. 
The accuracy of orientation by such methods is about ±2°. After orientation, the core is 
broken from the outcrop, marked for orientation and identification. 
 
In order to determine their NMR (Nuclear Magnetic Resonance), travertine cores sampled in 
the fields were analyzed in lab with a SQUID. The SQUID (Superconducting QUantum 
Interference Device) is a cryogenic magnetometer that quickly analyses weakly magnetized 
samples using a magnetic field. These superconducting magnetometers can routinely measure 
NMR of rock specimens with 10–10 Am2 accuracy. A major advantage of this technique is 
that measurement time is only about 1 minute. 
 
The paleomagnetic dating are relative and must therefore be calibrate with absolute dating, in 
our study U-Th dating was applied. 
 

 

3.8 U-Th absolute dating 

3.8.1. Principe and theory 

Absolute radiogenic dating methods are based on the nuclide disintegration rate constancy 
with time. This phenomenon is independent from surrounding physic-chemical conditions and 
allows computing the time during which a geological system remained closed by simple 
measurement of the atomic disintegration state. 
 

3.8.2. Objective 

In our study, U-Th dating allows to calibrate the timing and duration of precipitation events. 
The U-Th method limitation is between several yrs and 600 Myrs, and perfectly fits with our 
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Quaternary carbonate study. This type of dating is, for instance, also used for modern 
material, such as fossil corals or speleothems.  It allows calibrating the stable isotopic or 
relative dating dataset and consequently helps to unravel the climatologic Quaternary 
evolution (Bard et al.,1990; Slowey et al., 1996; Henderson & Slowey, 2000 et many others).  
In the case of fault related fluid circulation we may discriminate between tectonic and 
environmental isotopic evolutions preserved in the precipitates based on this tool. 
 

3.8.3. Sampling and Work flow 

2 3 grams of highly pure aragonite were spiked with a 236U-233U-229Th mixture and dissolved 
in nitric acid before separation of U and Th fractions using standard techniques. U-Th 
measurements were performed by Thermo-Ionization Mass Spectrometry (TIMS) using a 
VG-Sector 54-30 mass spectrometer equipped with a 30-cm electrostatic analyzer and an ion-
counting Daly detector at CEREGE (Aix-en-Provence, France) by Dr. Pierre Deschamps. The 
precision of the measurement is of the year to ten years range, and is limited by the Thorium 
isotope measurement. This precision may rapidly decrease in the case of dating older 
material. 
 

4. Numerical Modeling 

4.1 Fault sealing and fluid flow: Percol numerical code 

With the Percol code the time evolution of fluid velocity and associated pressure field in the 
vicinity of a recently slipped fault, where permeability is much greater than the surrounding 
undamaged host rock, can be investigated (Braun et al., 2003). The transient flow of a 
viscous, compressible fluid in a porous compressible matrix is governed by the second-order 
partial differential equation of the transient flow of a viscous, compressible fluid in a porous 
compressible matrix. 
 
The elements used are triangular, six-nodded, quadratic elements. Time stepping is based on 
Belytschko et al. (1979) implicit–explicit algorithm with a mid-point estimate for the time 
derivatives. The code allows tracing realistic fault geometry in the elementary cell and the 
mesh is automatically computed by a subroutine (Fig. III-4). 

 
Figure III- 4. Elementary Percol cell meshing in function of the fault geometry. A fault has been drawn in dark at the center 

of the cell. 
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In collaboration with Jean Braun from ISTerre (Grenoble) and Christelle Loiselet from IFP 
Energies Nouvelles, the code was modified in order to study the fluid flow evolution, within 
and close-by the fault, allowing a self sealing of the fault. This work is explained in the 
chapter IV of this document. 
 

4.2 Reactive transport modeling: Coores software 

Developed by IFP Energies Nouvelles, the Coores software has been designed to evaluate the 
long-term effects of CO2 storage in a geological site.  After several years of development, 
Coores has become a benchmark tool used in several projects. The aim of the European 
Dynamics project (2006-2009), for example, has been to conduct a feasibility study towards 
the combined production of hydrogen and electricity with CO2 capture and storage. IFP 
Energies Nouvelles scientists have used Coores to simulate CO2 injection over a period of 
thirty years, in three different geological structures, namely two different types of aquifers 
and an old oil field, located off the British and Danish coasts. Using the software, it has been 
possible to reproduce the behaviour of CO2 injected into these sites in order to ensure and 
optimize secure storage for 1,000 years. 
 
In our study, the Coores software was used in collaboration with Laurent Trenty in order to 
test hypothesis of fluid circulation in our natural examples. The geological model has been 
previously meshed with Skua software thanks to the help of Jean-Marc Daniel and imported 
in Coores. For this purpose the fault and sediment pile geometries, the porosity and 
permeability of the layers as well as the equilibrium pressure and fluid composition were 
imported. Subsequently injection of a fluid enriched or depleted in CO2 over different periods 
of time was simulated. The preliminary modeling is explained in detail in the chapter V of 
this document. 
 

5. Conclusion 

The techniques used in this multidisciplinary study coming from numerous domains of the 
Earth Sciences were summarized. In the field we made observations, faults and fractures 
descriptions, micro-structural measurements and carried out a detailed sampling. Then, a large 
part of the work related to the application of a broad set of analytical techniques allowing to 
create a large dataset: techniques employed were classical petrography, cold 
cathodoluminescence microscopy, SEM analysis, XRD, whole-rock major and trace element 
analysis, oxygen and carbon stable element analysis as well as paleomagnetic and U-Th 
dating. Except for the whole-rock and trace elements analysis, we carried out these analyses 
in collaboration with specialists of each research domain. Consequently this was a time-
intensive operation which was also demanding a high flexibility in geographical mobility to 
move from one lab to another.  However it was a unique opportunity to apply such a large 
range of advanced techniques.  
Finally, two numerical modeling codes addressing the fault sealing effect on fluid flow 
velocity (Percol numerical code) and on reactive transport (Coores software) have been 
implemented to critically evaluate the dataset in case of along fault circulation (see chapter IV 
and V of this thesis).  
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CHAPTER IV. EPISODIC CO2-FLUIDS 

CIRCULATION ALONG FAULTS AT NEAR 

SURFACE SCALE - from field work to 

numerical modeling 

CHAPITRE IV. Circulation épisodique de fluides riches en 
CO2 le long des failles – du travail de terrain à la 
modélisation numérique 
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A. Episodic circulation of CO2-enriched fluids along faults: 

evidences from the study of travertines in Utah (USA) – 

submitted article1 

1. Frery. E., Gratier, J.P., Ellouz-Zimmermann, N., Deschamps, P., Blamart, D., Loiselet, C., 
Braun, J., Hamelin, B., Swennen, R -  to be submitted to EPSL  Journal 
 

1. Introduction 

It is an acknowledged fact that fluid advection (Cox & Etheridge, 1989), channeled along 
crustal faults, occurs in the Earth's crust (McCaig and Andrew, 1988; Marques, 2010). Faults 
represent the main pathways for fluid flow from deep reservoirs to the surface, but faults can 
also act locally as impermeable barriers (Person, 2007). Consequently, faults may 
successively act as open or closed pathways. Their opening can be triggered by earthquakes, 
fluid overpressures or localized dissolution (Gratier and Gueyden, 2007). Their closure can be 
linked to progressive sealing due to mechanical (Hancock, 1999; Eichhubl et al., 2000; Solum 
et al., 2010), and chemical processes (Renard et al., 2009).  
Consequently, the relative fluid transfer properties changes within natural faults, i.e. porosity 
and permeability variations (Kopf, 2000), are crucial controlling parameters in relation to 
earthquake chronology and frequency (Fitzenz & Miller, 2001; Micklethwaite et al., 2004; 
Gratier et al., 2011). In the context of potential CO2 leakage, the opening-circulation-sealing 
cycles of fault and fracture systems also represent one of the current major challenges in long-
term geological storage of green house gas (Luquot & Gouze, 2009). 
 
Crucial questions therefore need to be addressed such as (i) is episodic discharge 
demonstrated from natural analogues? (ii) if episodic discharge occurs, what are the 
characteristic timescales of the episodicity and the main parameters constraining them? And 
finally, (iii) how can episodic leakage be integrated in the modeling of near-surface CO2 
release with time? 
 
An amazing example located in the Colorado Plateau provides a means of observing the 
natural CO2 circulation along faults and leakage at the surface that has taken place over 
thousands of years. The investigated area has been intensively studied and provides a unique 
opportunity to collect direct data to calibrate fault-related discharge. 
 
A multidisciplinary study focusing on the near-surface evidence of CO2 circulation at outcrop 
scale is presented here. After an overview of the work already done by other teams in the area 
(Shipton et al., 2004, 2005; Dockrill, 2005; Burnside, 2010; Dockrill & Shipton, 2010), 
evidences of episodic circulation events will be presented. These events are attested by the 
deposition of various types of travertine (tectonic and stratigraphic) and by successive 
fluid/rock interaction processes inside these travertines with dissolution/precipitation 
processes along the fluid path. Evidence of fault movement associated with travertine 
formations will be documented. Subsequently, the sealing episodes of travertine veins will be 
dated based on U/Th datings. In addition, stable isotope analyses on veins were performed to 
characterize the fluids involved in the system.  
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Based on these data, the successive occurrence of episodic circulation events will be 
demonstrated. Fault opening and sealing mechanisms will be discussed as well as the average 
time-lapse between two successive episodes and the duration of each episode, in order to 
build a conceptual model of travertine deposition. The role of various parameters of the 
episodic circulation are then compared and investigated including the respective climatic and 
tectonic impacts on the observed sealing cycles. Finally, the observed carbonate cements and 
travertines are used as natural records of former CO2 leakage to calculate the CO2 leak 
volumes with time and a numerical model of episodic fluid flow integrating progressive 
sealing of the fault is presented. 
 

2. Gelogical background 

The Little Grand Wash (LGW) and Salt Wash (SW) faults are located in Utah within the 
northern part of the Paradox Basin (Fig. IV-1A). The study area extends NW-SE over a 
distance of 150 km, from the southern Uinta Basin limit up to the Four Corners. The San 
Rafael Swell, the Uncompaghre, the San Juan Dome and Monument basement uplifts 
surround the study area. Lacconitic intrusion and fault system in the axis of the basin 
elongation characterize the area. 
 
Crystal Geyser and Ten Mile Graben areas (Fig. IV-1B) constitute the main CO2 leakage 
zones attested by dry CO2 gas expel, fossil travertine and CO2 bubbling springs and geysers 
forming modern travertines (Shipton et al., 2004; Allis et al., 2005). Both faults are about 30 
km long (Fig. IV-1C). Juxtaposition of the mid-Jurassic Curtis Formation against Cretaceous 
Shale occurs in the Crystal Geyser area, along the LGW fault (Fig. IV-1C, A-A’ section). 
Thanks to differential erosion, deeper geological series in the Ten Mile Graben zone than in 
the Crystal Geyser can be explored: juxtaposition of the Mid-Jurassic Entrada Formation and 
the upper Cedar Mountain Member of the Upper Jurassic Morrison Formation can be seen 
along the southern SW-trending fault (Fig. IV-1C, B-B’ section).  
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Figure IV- 1 Location  of the studied area. 

A) Location of the Little Grand Wash (LGWF) and Salt Wash faults (SWF) within the Colorado Plateau (modified from Condon, 1997).  

B) Simplified geological map of the faults with indication of cross-sections shown in C; fossil travertines are in yellow (modified from Doelling, 1993; Dockrill, 2005;).  

C) Synthetic cross-section outlining the main studied faults – based on well correlation (Utah Oil and Gas database, 2011) and field observations. Cross-section AA': wells from NW to SE: 
Marland oil company 1 projected 1.150 m eastwards; Glen Ruby #1-X (Crystal Geyser origin); Amerada Petroleum Corp 2 projected 400 m eastwards; Green River Unit 2 projected 
1.450 m eastwards.  Cross section BB', wells from NW to SE: Mt Fuel Skyline Geyser 1-25; Ten Mile Graben Geyser abandoned well; Greentown St 31-362216 projected 1.450 m 
eastward.  Vertical scale in meters. 
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2.1  Travertine and CO2 near Green River 

Paleo-leakage in the study area is shown by the occurrence of fossil travertines (Dockrill, 
2005; Burnside, 2010). Such travertines are the result of calcium carbonate and CO2 enriched 
water rising from the fault to the surface forming fissure ridge travertines associated with 
surface travertines and veins as described by Altunel & Ancock in Turkey (1993).  
Travertines and tufa are both terms used to qualify the product of calcium carbonate 
precipitation under near ambient conditions in continental areas (Pentcost, 2005; Crossey et 
al., 2006; De Filippis et al., 2011). Tufa is defined as freshwater porous deposits, with high 
biological perturbations, whereas the term travertine is currently used in the endogenic 
context (Janssen et al., 1999; Glover & Robertson, 2003). The systems studied have a heavy 
carbon isotope composition (> 4 ‰, Kampman et al., 2009) indicating a thermogenic origin 
based on Pentcosts’definition (2005). The term “thermogenic” here relates to the source rather 
than to the current water temperature: in the studied area the leaky water is cold (17°C have 
been measured in the field).  
Furthermore, the term surface travertine was used for the “stratigraphic” carbonate deposition 
at the surface, whereas the term “travertine veins” corresponds to the “tectonic” travertine 
formed at depth in the close subsurface (Hancock et al., 1999) (Fig. IV-2 & 3). 
 
In nature, the calcium carbonate precipitated most commonly in the form of calcite or 
aragonite (Folk, 1974;). At near-surface conditions, calcite is the most stable polymorph 
although aragonite can be the dominant polymorph in the form of speleothems and biogenic 
calcium carbonate in some systems, such as in caves (Moore, 1956). The factors controlling 
this polymorphism have been intensively studied (Fyfe and Bischoff 1965; Folk 1974; Given 
and Wilkinson 1985, and others). At surface conditions, laboratory experiments show that 
slight changes in a large set of parameters such as temperature, Mg2+ or Mg/Ca ratios, anions 
such as PO4

3- and SO4
2-, organic compounds and acids, CO3

2- controlled kinetics, may change 
the equilibrium from one polymorph to another. These factors and experimental work are 
summarized in De Choudens-Sànchez & Gonzàlez (2009). At depth, aragonite will form 
under high pressure and low temperature: at 15 km-depth if the temperature remains below 
100°C (Johannes & Puhan, 1971). On the opposite, aragonite is not stable at surface 
conditions and therefore may be dissolve or transforms into calcite (Perdikouri et al., 2008), 
the inversion kinetics is strongly influenced by the primary aragonite mineral size (Boettcher, 
1996). 
 
The stable oxygen and carbon isotopic signature of travertine in the Crystal Geyser and Green 
River area (located Fig. IV-1B) has already been studied by several authors (Heath, 2004; 
Dockrill & Shipton 2010). Certain travertines are currently forming by modern CO2 bubbling 
springs and geysers, whereas others formed 5 to 400 ky ago and thus can no longer be linked 
to their original CO2 supply (Burnside, 2010). At depth, the CO2 is dissolved in the water. The 
exsolution takes place within the 100 uppermost meters below the surface (Assayag et al., 
2009) and the CO2 arrives at the surface in two phases, namely dissolved in the water and as 
free gas. The gas from the studied area contains more that 98% of CO2, with a δ13C (CO2) 
ranging from -7.6 to -5.7‰ (Jandel, 2008; Jandel et al., 2010; Gillfillan et al., 2008, 2009) 
indicating an inorganic origin of the CO2 probably resulting from reactions within the crust or 
mantle: this δ13C range indicates an overlap between "crustal" and "mantle" CO2 (Wycherley 
et al., 1999).  
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2.2 Faults and tectonics 

Knowledge of the present-day and the time scale of fault activity is limited and reported data 
give conflicting information. The Little Grand Wash and Salt Wash faults are classified in the 
Fault and Fold Database of the United States as active Quaternary faults, but the seismic 
activity of these faults is difficult to observe. Moreover, the present-day seismic station 
network is not well developed in the area and, therefore, the micro-seismicity record is not 
reliable and there are no reports on historical seismic activity given the low inhabitant density, 
so written historical records are scarce.  
An 40Ar/39Ar dating by ExxonMobil during the 90s of the Little Grand Wash Fault gouge 
illite (this dating is not published but cited in Pevear et al., 1997; Solum et al., 2010) date fault 
activity to 40 My ago +/- 10 Myers. This age correlates with the Paleocene Laramide 
tectonics. According to Dockrill (2005), the fault has been inactive over the last 80 My, as 
evidenced by the lack of any lateral thickness change across the fault from Permian to 
Cretaceous strata and because the river-bed and the Quaternary travertine deposits have not 
been disturbed by any fault displacement.  
 

3. Methods and sampling 

The CO2-fluid flow cannot be unravelled without a good knowledge and understanding of the 
temporal and spatial variation in critical parameters such as: 1) the circulation and sealing 
processes, 2) water and gas composition and origin and 3) time-lapse of the fault 
opening/sealing cycles. The study of these parameters requires a multi-disciplinary approach. 
This approach integrates structural geology, petrographical analysis, oxygen and carbon stable 
isotope geochemistry and U/Th dating in order to develop a conceptual model of the temporal 
and spatial change in fluid flow along faults and to calibrate the CO2 leakage rate. 
The first step consisted in field work and petrographical analyses grouping observations of 
modern and paleo-fluid flow records through the fault zone, from outcrop to thin-section 
scale. The aim is to characterize the architecture of the fluid conduits, the frequency and 
mechanisms of CO2 and fluid release to the surface, and the volume of CO2 ultimately 
released. 
The study focused on the so-called T1 fossil travertine, which is located in the footwall of the 
Little Grand Wash fault (see location in Fig. IV-1B). The results of the oxygen and carbon 
stable isotope analysis were used to characterize the composition of the paleo-fluids and the 
origin of the CO2. About 300 carbonate powders (1 mg) were collected using a dental drill on 
polished sections, documenting a large number of precipitation events observed along a cross-
section corresponding to a 10 m thick section along the travertine. These analyses were 
performed with an optima micromass spectrometer (LSCE, Gif sur Yvette). The uncertainty 
on these isotopic measurements were respectively ±0.6‰ and ±0.4‰ for oxygen and carbon 
isotopic compositions.  
Additional carbonate powders (20-40 µg) were sampled on thin-sections using a drilling 
device with a drill bit of 0,3 mm in diameter. These samples were analysed at the University 
of Erlangen (Germany). The carbonate powders were reacted with 100% phosphoric acid at 
75°C using a Kiel III online carbonate preparation line connected to a ThermoFinnigan 252 
mass-spectrometer. The uncertainties on these isotopic measurements were respectively 
±0.03‰ and ±0.01‰ for oxygen and carbon isotopic compositions. The results are reported 
relative to V-PDB and are given in the classical delta notation (Coplen, 1983).  The oxygen 
data are then converted into SMOW-values (Coplen et al., 1983).  
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The U/Th datings gave an absolute dating of the sealing events. 234U/230Th ages were 
measured with a TIMS mass spectrometer (CEREGE-Aix en Provence). The accuracy of the 
age datings ranges from 27 to 9 years. 
Finally, the inferred sealing time-lapse and variation in permeability deduced from the natural 
example were used as input data for a model of fluid transfer along a fault (Braun et al., 
2003). The objective is to address the change in fluid flow velocity with time, the frequency 
of the leaking events along the fault and the total volume of CO2 leaking during each sealing 
event. These points are then compared with data obtained thanks to the fieldwork. 
 

4. Results 

4.1 General fluid flow along the fault at the outcrop scale  

Field relationships are schematically summarized in Fig. IV-2. Field observations show 
focused fluid flow within and adjacent to the fault zone and document the structural 
relationships between the various paleo-fluid circulation records.  It highlights two distinct 
domains: one at depth where paleo-fluid flow is characterized only by bleaching of the 
sandstone host rock with the development of very thin (<1mm) veins, whereas the second 
domain occurs in the shallow subsurface or at the surface where crystallization accounts for 
the development of thicker veins (ranging from one meter to one mm) and massive 
development of carbonate precipitation. This article focuses on the second domain study. The 
boundary between the two domains is deduced from vertical outcrops and occurs on average 
at a depth of 10-20 meters (Fig. IV-3A&C) below the base of the surface travertine where 
hydraulic fracturing and brecciation can be observed near the fault. 
 

 
Figure IV- 2. Schematic diagram of the fault zone architecture: structural link between the different witnesses of fluid 

circulation at the outcrop scale and separation within a circulation and a crystallization zone. Light brown = 
travertine mount; medium brown = basement; grey = travertine veins; red = breccia; white = bleaching zones. 
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In more detail, the Crystal Geyser and Ten Mile Graben outcrop areas (Fig. IV-3) display 
structural links between paleo- and present-day fluid circulation records along the Little 
Grand Wash and Salt Wash faults, respectively. At each site, six main units can be 
differentiated (from bottom to top): 1) localized bleaching, 2) en-echelon veins, 3) breccia, 4) 
surface travertine 5) horizontal and vertical subsurface carbonate veins, 6) zone with 
dissolution features. The main features of these units are briefly described below before 
providing more detailed descriptions in relation with the evidence of fault activity and fluid-
rock interaction processes.  
 

1) Bleaching of host rock encountered in the sandstones at depth (Fig. IV-3A&C), 
represents the trace of paleo-circulation of a fluid that induced a reduction reaction (Chan et 
al., 2000). The exact nature of this reducing agent is, however, unknown, but the important 
fact is that bleaching results from paleo-fluid flow localized within permeable reservoirs 
adjacent to the fault core.  The fault zone acted as a path for the paleo-fluids within less 
permeable adjacent strata (Dockrill & Shipton, 2010). The CO2 bearing fluids also used this 
fluid paleo-plane. Indeed, the calcium carbonate veins that are indicative of Quaternary CO2 
fluid circulation are all located at the base of the outcrops, within the bleached fracture and 
joint-rich interval.  

2) En-echelon veins (Fig. IV-3C) are observable at the base of the outcrop, 
dominantly in the footwall of the fault because of the sandstone lithology. They are 
compatible with the normal fault movement observed at larger scale based on the offset of the 
stratigraphic layers (Fig. IV-1C). These centimeter-long veins are filled with calcite or 
aragonite cements, recording subsequent paleo-fluid circulation and porosity-plugging coeval 
with the fault activity episode.  

3) Fault breccia (Fig. IV-3B&C) are located within shaly layers in the hanging-wall 
of the fault, just below large carbonate veins. The breccia body is characterized by a shaly 
matrix and is crossed by a 3D network of carbonate veins. The lateral width of the breccia 
ranges from one to ten meters. Additional petrographic and geochemical data of the carbonate 
cements and the relationship with the overall paleo-fluid will be given below. 

4) Surface travertines cap the fault (Fig. IV-3). They are formed of multilayers of 
successive deposits of calcite or aragonite carbonates that precipitate from runoff water 
leaving springs or geysers. They are evidence of CO2 fluid leakage at the surface. They are 
located along the fault trace and can be linked either with fossil or modern CO2 springs (Fig. 
IV-1B).   
 5) Travertine carbonate veins are observed in the subsurface both in the host-rock and 
in the surface travertine. In the three outcrops studied, these horizontal or vertical veins (Fig. 
IV-3) are up to one meter thick. These veins are of major interest for studying the episodicity 
of CO2 fluid leakage because:  
1) they cross the host-rock and surface travertine, attesting of sudden opening events, linked 
with tectonic activity;  
3) their formation at depth preserves the veins from surface alteration, forming a reliable 
archive and; 
2) different families of vein sizes are observed. The frequency and localisation of each vein 
family may give information on the fracturing processes. 
For all these reasons, these veins were studied in detail. 
 6) Dissolution features affect the carbonate vein network and surface travertine. This 
implies a complex evolution of the system, requiring episodic variations in fluid composition 
in time or space.  
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Figure IV- 3. Paleo-fault leakage outcrops along the Little Grand Wash (LGW) and the Salt Wash (SW) faults – pictures are located on Fig. 1B (T1-5) 

A. Travertine 2 (T2) LGW – differential bleaching within the sandstone units and the fault, huge crystallization zone with large carbonate veins and surface travertine. 

 B. Travertine 4 (T4) LGW – outcrop characterized by a large breccia in the main fault footwall within shale unit. The surface travertine and the carbonate veins are lightly expressed. 

C. Ten Mile Graben (T5) SW – the architecture of the fault zone is well documented on this outcrop with a bleaching zone at the base of the sandstone formation and within the fault, more 
and more carbonate horizontal veins towards the surface, and a small fractured breccia in the footwall within the shale unit. 
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4.2  Evidence of dissolution and crystallization in the near-surface travertine 
system (carbonate veins and surface travertine) 

 

4.2.1. Circulation and sealing episodes 

A distinction was made between two main groups of mineralization. The first group contains 
surface travertine (Fig. IV-4A-C), fan-shaped veins (Fig. IV-4D-F), open cavities filled with 
“speleothems-like” features (Fig. IV-4G-J) or euhedral mineralization (Fig. IV-4K). All these 
crystallizations developed in free fluid flowing on the surface or in dissolution holes and open 
spaces still available below the surface or formed by previous dissolution episodes. The 
second group comprises massive calcium carbonate veins (Fig. IV-4L-O) that develop at 
depth. The observations of these groups from outcrop to thin-section scale (Fig. IV-4) provide 
information on their formation mechanisms and environments. 
 

- Surface travertine (Fig. IV-4A&B) is observed at the top of the system and 
corresponds to precipitation undersurface conditions. Modern travertine outcrops (Fig. IV-
4A) are always dirty and darker than the massive veins (Fig. IV-4B). The surface deposition 
environment leads to rapid alteration of their fabric. They are indeed subject to biological 
contamination and alteration due to the presence of surface vegetation and weathering. The 
travertine incorporates mud, sand and/or organic phases from soil and vegetation, explaining 
its dirty outlook. 
Surface travertine deposits are first progressively underlain by subsequent precipitation inputs 
and then, as a result of a second precipitation episode, are cross-cut by horizontal and vertical 
subsurface calcium carbonate veins (Fig. IV-4B). The surface travertine, at thin-section scale, 
consists of laminated fans of calcium carbonate, both calcite and aragonite polymorphs (Fig. 
IV-4 C). As indicated in the section on geological background, the surface travertine is 
formed in ambient conditions and the calcium carbonate polymorphism mainly depends on 
Mg/Ca ratio and water precipitation temperature. Along a profile starting from the spring to 
the external limit of the travertine mount, the composition of the fluid may have changed. The 
influence of bacterial activity, rapid alteration and location within the travertine mount leads 
to the creation of a large number of fabrics that are not described in this article but which are 
amply defined in the bibliography (Pentecost, 2005). Due to the lack of temporal and spatial 
continuity, it was not possible to use this type of travertine to reconstruct the variation in 
precipitation with time.  
 

- Fan-shaped calcium carbonate precipitations form horizontal veins at depth in the 
subsurface (Fig. IV-4D&E). Fan-shaped precipitations can be seen in open and partially filled 
veins (Fig. IV-4D).  Locally the veins are also completely filled (Fig. IV-4E). Colour 
variations indicating episodic fluid composition change with time have been observed in these 
veins (Fig. IV-4D).  
These veins stayed open for most of the time and thus were able to support the weight of the 
overlying travertine. Consequently, they must grow as the surface travertine. They may 
consist of both calcite and aragonite, with the ratio between radius and length of the fan 
ranging between 0.5 and 2.5. At thin-section scale (Fig. IV-4 F), characteristic fan growth in 
an open-system are observable, with evidence of surfaces growing perpendicular to the fiber 
direction, with slight deviations in direction of the aragonite fibers (Fig. 4I). The surface 
travertine and fan-shaped subsurface horizontal veins differ by their material aspect (Fig. IV-
4B&E and C&F): the precipitation at depth is for the most part protected from the 
contaminations by non-carbonate impurities recorded at the surface. This subsurface 
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precipitation is still not as clean as the massive white veins because of its proximity to the 
surface that affects the precipitation. 
 

- Open cavities with speleothem-shaped mineralizations 
Speleothem-shaped mineralizations can be observed in dissolution caves (Fig. IV-4G-H) or at 
the center of open centripetal growth veins (Fig. IV-4J). Successive cycles of speleothem-like 
precipitation may completely fill individual cavities (Fig. IV-4H). The calcite or aragonite 
fabrics are similar to the fan-shaped calcium carbonate precipitations (Fig. IV-4J). 
 

- Open cavities with euhedral mineralization  
These euhedral mineralisations are mainly visible as geodes or located in the center of 
centripetal growth veins (Fig. IV-4K), their precipitation shape could be linked to present-day 
meteoric water circulation or with a change in the elemental concentration in the circulating 
fluid.  
 

- Massive calcium carbonate veins can be observed at depth in the subsurface zone 
and may represent the main part of the travertine mounts (Fig. IV-4K-O). These veins are 
composed of massive aragonite fibers (Fig. IV-4L).  
Being anything from a millimeter (Fig. IV-4M) to a meter thick (Fig. IV-3), the aragonite 
veins can be either horizontal or vertical (Fig. IV-4K-N), with centripetal or unidirectional 
growth orientations, homogeneously white or laminated. The smallest increments of aragonite 
growth that can be measured (Fig. IV-4O) are varying around 40µm. The vertical veins may 
have been opened progressively in the tectonic context related to travertine development. 
Such structures have been used in other regions to reconstruct regional stress tectonic 
movements (Piper et al., 2007; Temiz et al., 2009; Uysal et al., 2007). The horizontal veins 
that develop at depth are more difficult to interpret. The main question concerns the 
mechanism of growth since precipitation must lead to uplift of the rock above the vein and the 
precipitation growth must occur in fluid trapped under the dead weigth of the overlying 
travertine by a possible process like crack-seal mechanism (Ramsay 1980).  
 

4.2.2. Circulation and dissolution episodes 

At outcrop scale, dissolution features are visible in various travertine veins. Although the 
fluid inducing the dissolution subsequently disappeared, the dissolution zones are still easy to 
identify (Fig. IV-4D, E, F&G), forming cavities (ranging from one mm to one meter wide) 
and geodes (from mm to cm scale) within the hanging rock (Fig. IV-4D) or carbonate veins 
(Fig. IV-4E, F&G). These dissolution features can then be completely or partially filled with 
carbonate precipitations, sandstone or mud, or not filled at all. When the cavity is not filled, it 
forms a residual open space in the subsurface.  
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Figure IV- 4. Precipitation and dissolution features at outcrop and thin section scales – mineral growth direction is 

indicated by red arrows. 

A. Modern surface travertine with spring water flow, mud, algae and vegetation remains. 

B. Fossil surface travertine feature crossed by horizontals and vertical carbonate veins. Several episodes of precipitation 
are visible in both directions. The vertical veins system is thinner than the horizontal. 

C. Thin section of surface travertine growth (Located in A). 

D. Several episodes of calcite fan precipitation within an empty space.  

E. Vertical veins with several precipitation episodes crossing cycles of regular aragonite fan growth.  

F. Thin section of open white aragonite vein (location in D) 

G. Speleothem-like precipitation in a dissolution cavity within surface travertine material. 
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H. Cycles of speleothem-like precipitates filling a cavity that occurs within large horizontal aragonite veins. I. Thin section 
of speleothem-like growth (location in H) 

J. Speleothem-like precipitation and dissolution features in the center of an open horizontal centripetal aragonite veins 
system. Notice here that the speleothem-like form is covered by a rimming cement that has uniform thickness, 
thus this was below groundwater and not in the vadose zone when cemented. 

K. Massive horizontal centripetal growth aragonites veins with iso-calcite precipitation within the central hole.  

L. Thin section of massive white aragonite veins (location in K) 

M. Empty geodes within massive millimeter-thick travertine vein network. 

N. Episodes of horizontal aragonite vein precipitation, more or less massive, crossed by a vertical massive centripetal 
aragonite vein. 

O. Thin section of massive laminated white vein with growth increments varying between 40 and 60 µm (Location in O). 

 

Other dissolution zones are assumed to take place at greater depth to supply the currently 
active springs with calcium. An attempt was made to define which formation was likely to 
release Ca in the system with a local mass balance but it quickly became clear that any 
Jurassic and Triassic sandstone intervals are highly cemented by calcite and must be able to 
play this role without any notable depletion. The calcium source cannot therefore be traced by 
the study of the basement and cannot be considered as a limiting chemical factor. 
 
4.2.3. Successive dissolution / precipitation events 

Successive dissolution / precipitation processes can be documented in the same place, where 
they record different time steps. For instance, initial precipitation of surface travertine is 
cross-cut by massive veins (Fig. IV-4B). Speleothem-like precipitations are rooted on 
dissolution features or open sub-vertical and horizontal veins (Fig. IV-4G, H&J). Euhedral 
calcite can fill the center of centripetal growth veins (Fig. IV-4K).  
To sum up, precipitation and dissolution are linked in time and space (Fig. IV-5). Two main 
episodic precipitation processes may have contributed to the development of carbonate veins:  

1) either the mineralization took place in a space already open such as a dissolution 
cavity and could, with time, completely fill the initially open space with “speleothems-like” 
features (Fig. IV-5A) or radial euhedral growth (Fig. IV-5B);  

2) or the veins constitute compact mineralization growth increments (Fig. IV-5C). 
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Figure IV- 5. Synthetic sketch of precipitation and dissolution or fracture mechanisms  

A. Precipitation of speleothem-like features within open horizontal and inclined fractures and within dissolution cavity in 
previous carbonate veins. With time the speleothem-like features can completely fill the cave. 

B. Large fracture opening filled with fan-shaped calcium carbonate within horizontal or vertical largely opened cavities. 

C. Incremental opening with coeval growth of calcium carbonate within horizontal or vertical fractures. 

d1-d2 = initial opening thickness, d3 – d4 = opening linked to crystallization 

 

 

4.3 Evidence of fault activity linked with travertine vein formation 

4.3.1. Opening geometry observed and analysed from the outcrop scale to the thin-section 
scale 

The fracture opening geometry documents the space available for endogenic fluid flow (Fig. 
IV-6). Four main features were studied: 1) spatial variation in vein orientation, 2) breccias 
caused by hydraulic fracturing, 3) contact between veins and wall rock and 4) successive 
precipitation events. 
 

1) Spatial variation in vein orientation: A spatial change in precipitation linked with a 
fluid circulation can be seen (Fig. IV-6A, B&C), vein orientation may change progressively 
from vertical to horizontal. This observation is crucial to understand the co-existance of 
vertical and horizontal veins: they are indicative of the spatial variation of a given episode. 
Vertical and horizontal veins have to be considered as a continuum. There is a common fluid 
feed for these veins and the surface travertine: Individualization of white veins can be 
observed from a common deep vertical pipe (Fig. IV-6A). The individualization of the 
massive veins is indicative of the existence of a former CO2-fluid supply towards the surface. 
Some massive vertical white veins then become progressively horizontal towards the surface 
(Fig. IV-6B) and remain in a horizontal position. Even if several veins may temporarily 
change dip angle, as a local effect of weakness in the wall-rock or micro-fractures (Fig. IV-
6C), the majority of the veins stay in a horizontal position close to the surface. 
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2) Fault breccia: At the bottom of breccia, millimeter-thick veins are grouped together 

in a common pipe (Fig. IV-6D). The breccia are then characterized by an isotropic skeleton of 
carbonate veins (Fig. IV-6E). Thin sections of fault breccia show fiber growth and a 
noticeable demarcation between the silty matrix and the veins (Fig. IV-6F). 
 

3) Contact between veins and wall rock: The contact between the vertical carbonate 
veins and the wall rock is very sharp. The fact was observed from outcrop scale (Fig. IV-6G) 
to thin-section scale (Fig. IV-6H, I & J). This sharp contact may indicate a fracture mode 1 
(structural mode). At outcrop scale, the example of a clear linear demarcation between the 
matrix and a vertical white vein is shown (Fig. IV-6G), that may indicate a rapid opening 
mechanism linked with fracturing events rather than free-face dissolution. At thin-section 
scale this observation is supported by the linearity and sharp contact between the vein and the 
wall-rock (Fig. IV-6H).  
The contact between vertical white veins and matrix is also steep whereas the contact between 
the vertical veins and the horizontal veins is less well defined. An example is shown (Fig. IV-
6I) of a vertical vein initially crossing the first incremental growth of a horizontal vein, the 
contact between both veins is rapidly lost and is difficult to trace a both unify. :. It is clear that 
the white vertical veins are characterized by centripetal growth (Fig. IV-6J) before spreading 
into the horizontal vein. 
 

4) Successive precipitation events: Since in vertical veins, broken pieces of vein 
filling cement phases float in a new cement (Fig. IV-6K), it can be concluded that successive 
paleo-fluid events occurred. Opening of vertical centripetal growth veins is also observed, 
with additional carbonate cementation at their center (Fig. IV-6L) also indicating successive 
events.  
 

 

 

4.3.2. Fault movement observed and analysed  

The “speleothems-like” features, which are directly linked to Quaternary fluid circulations, 
deviated in some cases, as they grew vertically (Fig. IV-7A). Distorsion from the present-day 
vertical position could be interpreted as an effect of a fault or possibly landslides. However, 
the oxygen and carbon stable isotopes signature of the en-echelon carbonate veins (Fig. IV-
7B) correlates with the signature of the Quaternary veins formed in the subsurface (Fig. IV-
7C). This indicates that these en-echelon veins are clearly link to the normal fault movement 
and may have developed at the same time as travertine veins. Quaternary circulation may be 
link with normal fault activity. 
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Figure IV- 6. Fractures, veins and cavity observations- vv: vertical vein, vh: horizontal vein, m: host-rock. 

A. The individualization of white vertical veins within red sandstones suggests that they supply the horizontal veins and 
the surface travertine (for location see Fig. 3B). 

B. Massif vertical white veins in red sandstone becoming progressively horizontal towards the surface – (for location see 
Fig. 3B). 



 73 

C. Vertical centripetal growth white vein: the dip of some veins may temporary, in relation with local weaknesses of the 
wall-rock rocks or presence of micro-fractures (for location see Fig. 3B). 

D. Centimeter-thick white veins grouped into a common pipe at the base of a breccia (for location see Fig. 3B). 

E. Breccia are characterized by an isotropic skeleton of carbonate veins recording a centripetal growth (for location see 
Fig. 3B). 

F. Microphotograph of a breccia.  Note the demarcation between the silty matrix and the veins and fiber growth indicating 
an opening of the veins (for location see Fig. 6E) 

G.  Horizontal white vein in red sandstone matrix (for location see Fig. 3C). 

H. Detail of the contact geometry between the sandstone (m) and the horizontal white vein (vh) at the thin section scale 
showing that the vein mineral growth it rooted on a front parallel to the vein geometry, the texture reflects a 
competitive growth, this front is thin and localized (for location see Fig. 6G). 

I. Detail of the contact geometry between a vertical vein (vv), the matrix (m) and a horizontal white vein (vh). The contact 
between the vertical vein and the matrix is sharp whereas the contact between the vertical vein and the horizontal 
vein is less obvious: the vertical veins crosscuts the first growth increments of the horizontal veins and then the 
contact disappears: the material supplied by the vertical veins is spread into the horizontal vein (for– location see 
Fig. 6A). 

J. Enlargement of picture I showing the mineral centripetal growth mode of the vertical veins (vv) and the sharp contact of 
these veins with the matrix (m). 

K. Broken cements enclosed in vertical veins reflecting different paleo-fluid circulation events (for location see Fig. 3A). 

L. Opening of vertical centripetal growth veins and secondary carbonate cementation in its center indicating 
successive growth events (for location see Fig. 3B). 

  

 

 
Figure IV- 7. Fault movement evidences 

A. Deviation (displacement) of speleothem-like features of a subvertical vein in the footwall of Little Grand Wash Fault (for 
location see Fig. 3A).  

B. En echelon veins filled with calcite, occurring in the hanging wall of Salt Wash Fault (for location see Fig. 3C).  

C. Comparison of stable isotope signature of the breccia, en echelon fractures, travertine veins and host rock – travertine 
4 (for location see Fig. 2): δ13C (‰,V-PDB) versus δ18O (‰,V-PDB). 
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4.4 Geometrical and compositional change in travertine veins 

4.4.1. Vein size and frequency  

An inventory of vein size families along 8 scanlines from 3 outcrops scattered along the two 
faults was carried out. The variation in vein size as a function of their density along the 
scanlines (Fig. IV-8) highlights a dominance of thin veins with an exponential decrease in 
veins of less than 5 cm width: the number of veins with a thickness greater than or equal to 50 
cm is then ten times smaller than the number of veins less than 5 cm thick. Curiously this is 
relationship is similar as that relating the number of earthquakes and their magnitude (Mark, 
1977). But, due to the limited data and observation, this relationship can be coincidence. 
Analysis of vein thickness variations away from the Ten Mile Graben fault (located Fig. IV-
3C) shows that both larger and smaller veins rapidly disappear away from the main fault 
gouge. 
 

 
Figure IV- 8. Log plots of 136 carbonate veins (with thicknesses superior or equal to 1 cm) veins quantity versus veins  

thickness showing that the number of veins decrease exponentially as their thickness increases ( measurements 
from travertine 1 and 2 of Little Grand Wash Fault (LGWF) and from Ten Mile Graben of Salt Wash Fault (SWF) 
(picture of the outcrop see Fig. 2). 

 

4.4.2. Micro-structural observations 

At thin-section scale, several mineralization stages exist, as shown in the representative thin-
section analysis illustrated in Fig. IV-9A. The sample studied comes from a fossil travertine 
called T1 from the Crystal geyser zone, (for its location see Fig. IV-1B).  
The network is composed of millimeter-thick white veins. Up to nine growth stages can be 
recognized in the thin section (Fig. IV-9A), based on differences in mineral growth modes, 
crack seal features and overlapping criteria. These stages are called v1 to v3, h1 to h3, b1, b2 
and s1. The abbreviation “v” refers to a calcium carbonate vertical vein, “h” to a horizontal 
vein, “b” to micrite bearing phases and “s” to sand infill.  
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The following stages can be differentiated: 

- The vertical fibrous vein (Fig. IV-9A, v1) had been sealed by elongated thin 
aragonite minerals (Fig. IV-9B, 1). This vein is almost fully filled by the other mineralization 
stages.  

- It is crossed by a horizontal thin vein with centripetal growth (Fig. IV-9A, h1) 
filled with a euhedral-calcite mineralization with an open space in the middle (Fig. IV-9B, 2).  

- Then, there is another horizontal vein (Fig. IV-9A, h2) of aragonite including 
micritic laminations (Fig. IV-9A, b1) and altered aragonite crystals (Fig. IV-9B, 3).  

-Other centripetal growth nearly vertical veins with subhorizontal mineralization 
(Fig. IV-9A, v2) crosscut the system h1/b1. At the middle, micrite (Fig. IV-9A, b2) and sand 
infill (Fig. IV-9A, s1) are present. This sandstone may originate from the Green River that is 
located near the outcrop.  

- This is cut by other later horizontal veins (Fig. IV-9A, h3). These veins are  
composed of compact aragonite with top-to-bottom growth direction (Fig. IV-9B, 4).  

- The last vertical veins (Fig. IV-9A, v3) cross-cut the entire thin-section. The 
associated precipitations consist of euhedral centripetal growth calcium carbonate with an 
empty space in the middle (Fig. IV-9B, 5). The cathodoluminescence study shows an orange 
colour, reflecting a difference in composition between this vein and the other phases which 
are non-luminescent (Fig. IV-9B, 6).  
Samples of the thin-section veins described were taken and their isotopic signatures compared 
(Fig. IV-9C): the range in δ18O and δ13C variations is narrow, smaller that 1‰ in both cases. 
Consequently, several cementation increments are in fact observed but their isotopic 
signatures remain quite similar.  
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Figure IV- 9. Observation and analysis of micro-veins at the thin-section scale 

A. Reconstruction of different cement stages at thin section scale (travertine T1, little Grand Wash fault (for localization 
see Fig. 1B). Colours match with different (cv: vertical carbonate vein; ch: horizontal carbonate vein; s: sandstone; 
b: micrite). The arrows indicate the mineral growth direction of each stage. The order of apparition of each stage is 
given in the legend: 1 for the oldest and 9 for the youngest. – 

B. Microphotographs (transmitted light (1 to 5) and cathodoluminescence (6) of the different mineralization stage 
observed on the thin-section summarized in A – the mineral growth direction is indicated with red arrows. 1. 
Vertical fibrous vein v1 is composed of elongated thin aragonite crystals and is crossed by a horizontal vein h1. – 
2 Horizontal vein h1 with centripetal growth. – 3. Detail of the horizontal vein h1 with top to bottom growth: altered 
aragonite minerals with micritic laminations b1. – 4. Massive aragonite top to bottom growth of vein h3. – 5 & 6. 
Illustration of last event of mineralization, with centripetal growth of vertical vein v3 crossing the micritic event b2 
the veins v3 are clearly orange luminescent. – 

C. Carbon and oxygen stable isotopes data (‰,V-PDB) from overlapping vein on a thin section, The colour matches with 
the interpretation of the different events made on the thin-section (A).The nature of this events is specified in 
parentheses (cv vertical carbonate vein; ch horizontal carbonate vein; s:sandstone; b:micrite).  
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4.5 Dating of travertine large veins (>10cm) 

U/Th dating of the fossil travertine called T1 located close to the LGW fault trace (Fig. IV-1) 
was carried out (Fig. IV-10). In addition some stable isotopes were analysis.  This travertine 
exposure is cut by the river allowing to study the 3D architecture of the mound. The outcrop 
is 20 m long and 5 m thick. A surface travertine and a conglomeratic river deposit, less then 
1m thick occur in the upper level. Below it the white large veins of subsurface travertine can 
be studied in detail. These veins are numerous, and horizontal or vertical veins cross each 
other. 
In order to unravel the complex succession of leakage episodes, samples reflecting the 
successive growth stages were studied.  
 
 
 
4.5.1. U/Th dating along a travertine outcrop 

The recorded travertine datings vary between 11 508 +/- 15 and 4 559 +/- 23 years ago and as 
can be seen in Fig. IV-11B up to seven Quaternary leakage episodes have been recorded. The 
U/Th dating of the carbonate veins also highlights their tectonic nature since some of the 
oldest veins occur near the top of the outcrop (Fig. IV-11B).  
 
In the two thickest veins, growth occurs by successive increments from top to bottom and 
precipitation lasts about one or two millennia: 2.294 and 979 years respectively for the oldest 
(11.489-9.175 yrs) and the youngest (6.830-5.851 yrs) (Fig. IV-11B). Smaller veins also 
formed during the formation of the youngest large veins and between 6.890 and 9.175 yrs. 
The majority of the travertine records in this site are dated between 4.5 and 7 kyrs ago, which 
suggests a major leakage event at that time (Fig. IV-11B). 
 
A vertical centripetal growth vein is dated 5 924 +/-14y and it crosses the large veins built 
between 6830 +/-14 and 5 851 +/-10 years ago.  
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Figure IV- 10. Picture of the travertine T1 Little Grand Wash Fault (for location see Fig. 1B) and localisation of the samples dated with U/Th method. The outcrop is 20 meter-long and 5 meter 

thick. Different cycles of fluid circulation at outcrop scale can be differentiated. The surface travertine (grey) and a river conglomerate (purple) are observed within upper meter.  

This outcrop allows to study in detail the subsurface travertine white veins. These veins are numerous, horizontal (white) or vertical (yellow), and they cross each other. Three 
pictures document some details.  From left to right: millimeter-thick white veins crossing the wall-rock (red sandstone) present in the travertine mount; vertical fractures 
crossing the outcrop and unconformity (angular discordance) at the top of the mount.
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Figure IV- 11. Stable isotope evolution (A) through dated travertine veins (B) A. Oxygen and carbon stable isotopes evolution (‰, V-PDB). B. Schematic representation of a profile 

along the travertine (for location see Fig. 11) with U/Th datings (Travertine T1, Little Grand Wash Fault, for location see Fig 1B).
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4.5.2. Oxygen and carbon stable isotopes evolution along the travertine outcrop 

With regard to the vertical stable oxygen and carbon isotopic signatures their patterns are 
rather similar, although the oxygen data are more scattered (Fig. IV-11A). The variation range 
is less that 2‰ for both isotopes. 
 
The variations in the isotopic signature were plotted as a function of U/Th age (Fig. IV-12) 
with data from fossil travertine T1 and the Crystal Geyser travertine, (location see Fig. IV-1) 
present-day precipitated. In fact, the modern travertine source relates to an oil well known as 
Glen Ruby #1, drilled in 1936 which was not closed after it had been exploited for a few 
years. Thus the sampled travertine provides data from the last 70 years of leakage. 
Notice that there is a gap in the records between the fossil and “modern” travertine of about 
4.5 kyrs. This implies a migration or a closure of the leakage zone during this period.  
 
The results show two groups I and II with a different isotopic signature. The first group was 
deposited between 12 and 9 kyrs ago and is characterized by δ18O (PDB) values between -
12.7 and -11.5‰ and δ13C (PDB) within the 5 to 5.5‰ range. A possible minor decrease in 
both isotopic signatures with time can be observed. The second group was deposited from 7ky 
till 4.5 kyrs with δ18O (PDB) and δ13C values (PDB) in the range between -13.5 and -12.6‰ 
and 4.4 and 5‰ respectively with a rather stable signature (group IIa) similar to the present 
day signature (group IIb), showing a continuity of the source nature even if a shift or a closure 
of the leaking zone happened some 4000 years ago. 
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Figure IV- 12. Evolution of stable oxygen and carbon isotopes signature (‰,V-PDB)  in function of U/Th datings from Late 

Pleistocene until present-day, data coming from travertine T1 and present day Crystal Geyser travertine.  

Two signatures I and II can be differentiated, reflecting a gradual decrease with time (dotted line)  

 

 

4.5.3. Detailed oxygen and carbon stable isotope study and U/Th dating along two massive 
travertine veins 

The thickest carbonate veins of the outcrop, of which their location is shown in Fig. IV-10 
(veins 42 and 44), were studied in detail (Fig. IV-13) with a punctual analysis each 2 or 5 
millimeters.  
 
The U/Th dating shows a growth rate between 0.08 and 0.7 mm/yr. The oldest vein (44) 
formed between 11.4 and 9.1 years ago, shows two patterns of the stable isotope signatures: 

1. for the period between 11.4 and 10 kyrs, the oxygen and carbon isotopic ratios follow 
a similar decreasing trend; 

2. from 11 to 9.1 kyrs, a correlation between the two isotope ratios is less obvious and 
the average value remains rather constant. 

 
The other vein (42), which dates from 6.8 to 5.8 kyrs, is not characterized by such a 
correlation between δ18O and δ13C (PDB).  
 

Two millennial evolutionary trends were thus observed: 1) decrease and close correlation of 
stable isotope ratios or 2) linear behaviour with time and without a close correlation in δ18O 
and δ13C ratio variations. 
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Figure IV- 13. Evolution of the stable oxygen and carbon isotope signature (‰, V-PDB) and U/Th dating from two 

carbonate veins named 42 and 44 (for location see Fig. 1). Growth rate seems to be regular, comprised between 
0.08 and 0.7 mm/yr, based on U/Th datings from both cases.  

Two millennial evolutionary trends are present: 1) decreasing trend and strong correlation of stable isotopes ratios 
or 2) uniform behaviour without correlation of stable isotopes ratios. 
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5. Discussion 

Travertine mounts are complex structures characterized by two main facies linked with their 
precipitation environment, namely surface travertine and travertine veins (Fig. IV-14). 
Vertical white veins near the fault zone testify of fluid flow from depth.  This fluid circulates 
in open cavities in the subsurface or reaches free openings at the surface (geyser and/or 
bubbling spring).  
 
As seen in present-day settings, with each geyser eruption or leakage at spring bubbling sites, 
precipitation occurs at the surface leading to stratigraphic growth of the travertine from 
bottom-to-top. There is no way to determine accurately the variation in precipitation with time 
based on these stratigraphic travertines due to the contamination of the travertine surface by 
external components and their regular erosion. Therefore, like previous authors, it was 
decided to focus the stable isotope analyses and U/Th datings mainly on travertine veins 
(vertical and horizontal), as this is the only part of the travertine for which the analysis can be 
reliably interpreted with respect to stable isotope analyses and U/Th datings. From these data 
episodic travertine growth has been clearly demonstrated.  
 
Travertine mount development depends on the rate and duration of the leaking fluid flow 
from the fault.  In the following paragraph the parameters that influence the associated 
precipitation, as illustrated by cycle 1 to cycle 4 in Fig. IV-14, will be addressed. Each of 
these leakage cycles is recorded by two types of precipitation. (1) The vertical veins supply a 
self-supporting open cavity network at depth, if the fluid pressure and the amount of fluid 
flow are sufficiently high; the fluid escapes at the surface, forming surface travertines. (2) The 
fluid flow front also reflects the existence of large horizontal massive veins that crystallize at 
depth.  
 
In order to link such an episodic precipitation record with CO2-fluid fluid flow, other 
observations can be added, such as sudden changes in fluid composition (dissolution 
episodes) or sudden changes in fluid pressure (with formation of breccia). 
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Figure IV- 14. Conceptual model of travertine development in relation to fault opening/sealing episodic cycles.  

The travertine mount development is function of the rate and duration of the leaky fluid flow coming from the fault.  Here 4 cycles are shown.   Each leakage cycle gives rise to three ways of 
mineralization: (1) vertical veins that occur in self supporting open cavities at depth.  If the fluid pressure and the amount of fluid flow are sufficient, the fluid escapes at the surface, 
forming surface travertines; (2) self-sealing cavities and (3) the front of fluid flow creates large horizontal massive veins. 
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In the following paragraphs the following issues will be (i) evidence and mechanism of 
episodic fluid flow, (ii) characteristic durations of fluid flow episodicity and the factors like 
climate vs tectonic forces controlling it; and finally (iii) fluid flow rate along the fault with 
episodic circulation calculated by numerical modeling. 
 

 

5.1 Evidence and mechanisms of episodic fluid flow  

Within the fault gouge, some early carbonate mineralization were broken and became 
included in a later mineralization event.  This could be tectonic but also indicative of fast fluid 
flow capable of breaking previous mineralizations. Evidence has been found of changes in 
fluid pressure leading to fault breccia localized near the normal fault and indicating at least 
periods of overpressurizing.  
As reported in the bibliography, carbonate precipitation zones of different ages have been 
dated all along the faults (Burnside, 2010; Dockrill & Shipton, 2010). These initial 
investigations were supplemented in this study by 14 sample U/Th datings from a local 
travertine outcrop in order to study episodic leakage events. It was shown that, unlike the 
surface travertines that grow systematically from bottom to top, travertine veins develop 
episodically without any vertical continuity.  
Younger veins may develop between older ones (Fig. IV-11). Such veins develop only in the 
subsurface at less that about ten meters depth. The larger dated veins develop in a top-to-
bottom growth direction that can be seen in the field by their fainth fan-shaped fibrous growth 
(Fig. IV-4L). This implies that vein precipitation is able to occur supporting (uplift) the 
overlying rock. The U/Th datings clearly demonstrated episodic precipitation pulses, at all 
time scales. Veins can be found that grew during millennia (1 to 2 kyrs) with time lapses of 
the same order (1-2 kyrs). There are also a lot more small veins (Fig. IV-8) which, according 
to the vein growth rate determined from large veins (0.08 - 0.7 mm/y), may have formed 
within no more than a few years.  
The vein density and thickness measurements indicate that the number of veins less than 5 cm 
thick decreases exponentially as the vein thickness increases up to 50 cm (Fig. IV-8). This 
relationship may only be estimated for one order of seismic magnitude but it is of the same 
type as the relationship between the numbers of earthquakes above a given magnitude that 
also decreases exponentially with magnitude. Of course, the similarity in pattern between 
earthquake magnitude and thickness of post-seismic vein sealing may be coincidental.  
However, in terms of volume, the two massive veins represent most of the precipitated 
carbonates. Another problem relates to the relationship between fluid flow and precipitation, 
more specifically, the relationship between vein opening and sealing. From the observations 
made, two types of subsurface precipitation can be highlighted, namely: 1) precipitation in 
open spaces and 2) precipitation while opening cracks/fractures. 
 
5.1.1. Subsurface precipitation growth in open spaces.  

A distinction has been made between three surface travertines (Fig. IV-4A-C), fan-shaped 
veins (Fig. IV-4D-F), open cavities filled with speleothem-like features (Fig. IV-4G-J) or 
euhedral mineralizations (Fig. IV-4K). All these crystallization processes took place in free 
fluid running on the surface or in dissolution cavities and open spaces still available below the 
surface or created by previous dissolution episodes.  
In this case, the fluid flows along near vertical veins connected with the main fault zone at 
depth, and this fluid flow either deviates towards existing cavities that are already open or 
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moves directly to the surface through geysers. Note that in order to support the weight of the 
overlying rock permanently open cavities must be either under lithostatic pressure (pressure 
that balances the weight of the overlying rock) or of a shape that is able to support the vertical 
stress induce by the weight. Based on the episodic “eruption” from geyser manifesting the 
release of high pressure it is more likely that those permanently open cavities have a specific 
shape that allows them to support the weight of the overlying rock. 
 
5.1.2. Subsurface precipitation growth while opening cracks/fractures.  

An example of incremental growth of aragonite fibers was seen in the undulated laminations 
(Fig. IV-4L&O) that look similar to those simulated by Bons (2001) when crystallization 
occurs under stress. Such an undulating shape may match with stylolite dissolution process as 
fibers grow opposite to the maximum stress. This is confirmed by the large horizontal veins 
with top-to-bottom growth direction that necessarily imply an uplift of the rock overlying the 
veins. From a more general point of view, these horizontal veins cross-cut the wall rock and 
former veins. Two possible sealing mechanisms can be considered: 

1. The vein is opened by sublithostatic overpressure that uplifts the rocks but, as 
precipitation requires a decrease in fluid pressure, the mineral growth rate must be 
faster than the decreasing closing rate of the cavity due to the lowering of fluid 
pressure. Such a model is not very realistic and has never been reproduced 
experimentally.  

2. Alternatively, the growth of the crystal may itself open the cavity. This is what 
happens due to the crystallization force of the crystal in a supersaturated solution 
(Weyl, 1959). Several authors have proposed that natural vein growth could be driven 
by the crystallization force (Means & Li, 2001; Bons, 2001; Hilgers & Urai, 2002). 
This process has also been demonstrated experimentally by the development of 
fracture sealing driven by a supersaturated solution that is able to uplift deadweights 
and induce intense fracturing (Noiriel et al., 2010). This mechanism, which is 
described in detail in a related paper (Gratier et al., 2012), will not be discussed here. 
Suffice it to say that it is a plausible model for the episodicity problem that implies 
episodic fluid flow perpendicular to the veins (Fig. IV-14).  

 
To sum up, the travertine mount depends on the rate and duration of the leaky fluid flow 
along the fault zone: these criteria influence the associated precipitation as illustrated by cycle 
1 to cycle 4 (Fig. IV-14). Each leakage cycle is recorded by two types of mineralization, 
either vertical veins that support the open cavity at depth, or surface travertines. Carbonate 
precipitation depends on the fluid saturation but also on fluid flow rates, vein size and 
precipitation kinetics. This will be detailed below in the modeling of fluid flux. Note that 
episodicity in precipitation does not necessarily imply episodicity in circulation. It is possible 
that a simple change in fluid composition could lead to periods of supersaturated reactive 
fluid (that precipitate), periods of understaturated reactive fluid (that dissolve) and why not 
periods of non-reactive fluid flow (in cases where the water does not contain any CO2), see 
equation 1. Furthermore, the CO2 could also be expelled at the surface only as free gas phase. 
This scenario will be discussed later in this paper. 
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5.2 Characteristic times of fluid flow episodicity and controlling factors: climate 
vs tectonic forces 

An attempt was made to understand the processes leading to episodic precipitation and to 
investigate the natural processes triggering the paleo-fluid flow, as well as the dissolution and 
mineralization events. For this purpoe, all possible precipitation cycles recorded in the veins 
were summarized. The climatic and tectonic factors that may have controlled the leaky CO2-
fluid flow composition, the change in precipitation mechanisms and timing were studied. 
Finally, the contribution made by these climatic and tectonic factors is discussed. 
The study of the T1 travertine shows a long record of carbonate precipitation starting more 
than 11.40 kyrs ago for the oldest records, up to episodes as recent as 4.6 kyrs ago, thus 
recording up to about 7 kyrs of precipitation at the same location. During this period, the 
travertine precipitation was not continuous and four main precipitation episodes of variable 
durations can be distinguished. 
In addition, oldest dated veins reflect a 100 kyr cycle, as was investigated by Burnside (2010), 
the T1 travertine indicates at least three time-scale leakage episodes. The main part of the 
record from 11 kyrs to present-day took place between 5.700 and 6.800 years ago. This period 
corresponds to a long period of calcium carbonate formation along the Salt Wash and the 
Little Grand Wash faults (Burnside, 2010). Two well-calibrated large veins were precipitated 
between 9 and 11 kyrs and 5.8 and 6.8 kyrs ago, respectively, and may indicate a millenary 
duration of large vein sealing. Episodes shorter than the millenary duration events are also 
observed with a greater frequency (timescale of about 100 y). Then each vein is linearly 
laminated and records sub-leakage events.  
These changes could be the result of a range of cyclic factors at the earth’s surface that may 
influence the recorded signature, such as climate change or tectonic forces. 
 
 

5.2.1. Climate impact 

The long term time-dependent change in stable isotope measured in this study (Fig. IV-12) 
shows a decreasing trend from 11.5 to at least 9 kyrs ago, with 1 ‰ variation of δ13C and δ18O 
values. Note that this period follows the last glaciation events in the Utah high plateau that 
occurred 17 to 15 kyrs ago (Machetti et al., 2011), but it is outside the scope of this paper to 
discuss this link with our data. Instead, the discussion will be limited to what has happened 
over the past 12 kyrs.  
 

Micro-scale lamination series: at the thin section scale (Fig. IV-4L&O), regular 
laminations of tens of microns were observed based on colour variations. These variations 
may be consistent with seasonal bacterial impact, as the current average seasonal temperature 
variations in the area are important (US Climate data, 2011). 
 

100 yr cycles of stable isotope signature variation (Fig. IV-13): the growth rate 
calculation along the two large veins (Fig. IV-13) varies within 0.08 to 0.71 mm/yr. Samples 
were taken along these veins every 5 mm, corresponding to a time lapse in the range 62.5 to 7 
years, depending on the growth rate. Thus the isotopic change studied can be considered to be 
representative of a 100-year variation. Paleo-temperature reconstruction for the Colorado 
Plateau over the past 2 millennia shows small oscillations in 100-year cycles (Salzer and 
Kipfmueller, 2005). These oscillations could explain the small variations in the isotopic 
record within each vein.  
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1-2 kyr cycles of vein formation: the stable isotope results obtained at outcrop scale 
over the past 12kyrs were separated into, two groups I and II (Fig. IV-12). The observed 
change in trend between group I (from 11.4 kyrs to 9kyrs) with decreasing values and the 
group II (from 7 kyrs to present-day) with more homogeneous values can be compared with 
the climate change over the same period. The climate change can be inferred from, among 
other things, pollen, stable isotopes, absolute dating, as well as macro and micro-botanical 
assemblage studies (Withers & Mead, 1993; Feiler et al., 1997; Salzer & Kipfmueller, 2005). 
11 kyrs ago, the climate was colder and dryer than nowadays. Then, 7 to 5 kyrs ago the 
climate was the warmest and seasonally driest of the entire period, with an increase in 
temperature. If this climate change were to be recorded in our data, considering a simple 
model of stable isotope variation in function of the temperature, a lower δ18O 11 kyrs ago 
would be expected followed by an increase by the mid-Holocene, about 5 kyrs ago. Our data 
set shows an opposite trend, considering a direct link temperature/δ18O signature, whitch is 
not always the case 
Moreover, a major mid-Holocene ground-water table level decrease attested in the 
bibliography (Withers & Mead, 1993) in the Colorado Plateau correlates with the largest 
leakage episodes recorded along LGW and SW faults.  
Finally, no evidence was found of 1kyr climatic cycles that could correlate with the opening 
and sealing durations of large travertine white veins (Fig. IV-13). The longer Holocene cycles 
recorded in our data (from 12 kyrs to present-day) do not seem to be linked to the Colorado 
Plateau climate change. 
 
Decorrelation between sealing record and climate change has also been observed by other 
authors. At vein scale, studies on crack sealing (Uysal et al., 2011) and antiaxial vein growth 
(Barker et al., 2006) underline episodal changes in fracture-controlled flow pathways. Indeed, 
several studies on tufa and travertine show the decorrelation between precipitation and 
dry/cold periods in hydrothermal systems (Rihs et al., 2000; De Filippis et al., 2011). 
 
To sum up, 100-year temperature variations could explain the isotopic variations in white vein 
travertine. Seasonal variations could explain the laminations observed at the mm scale (tens of 
microns) along the veins. However, the climatic variation at millenary scale is not correlated 
with fluid flow changes observed in this study: as the climate was the warmest and driest 
during the late Quaternary (7-5 kyr period), a long period of CO2 fluid leakage has been 
observed. Thus, the millennial events of vein opening and sealing are not explained by 
climatic factors, and thus may have a tectonic origin. 
 

 

5.2.2. Tectonic impact 

The fracturing breccia and the tectonic veins are crucial elements supporting circulation and 
leakage events along the fault, linked with a tectonic origin. The faults are not only pipes for 
the fluid flow, but can also be periodically sealed and opened.  
 
The correlated δ13C and δ18O changing episodes at vein scale may indicate kinetically-driven 
vein precipitation (Kele et al., 2011). The vein samples enriched with heavier δ13C compared 
to the stable carbon isotopic composition of the present-day Crystal Geyser water may be due 
to rapid CO2 degassing (Fouke et al., 2000; Fouke, 2011). The variation in δ13C and δ18O 
correlation may indicate a change in CO2 pressure rate. For instance, the 2kyr large veins 
show two 1kyr domains. This change in CO2 pressure range may correlate with cyclic 
changes in fault transfer properties or a change in fluid pressure at depth. 
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Records show that the leakage point moved along the LGW and SW faults through the 
Quaternary. This leakage was calibrated by U/Th dating on the travertine in place as far back 
as 400 kyrs ago (Burnside 2010), but it is possible that the leakage began much earlier, 
possibly since the Cretaceous (Suarez et al., 2007). All along the fault, the studied en-echelon 
veins are filled with carbonate mineralization: although the fault system has been plugged, 
fluids continue to circulate. This observation is indicative of an active system. 
 
The activity on a fault can in fact be expressed in several ways: 1) a sudden release of stress 
as observed in classical earthquakes, or 2) a slow release with a long period of micro-
seismicity as observed in seismic swarm (Daniel et al., 2011). The modern seismic stations of 
the area have not recorded high magnitude events that may be correlated with fault activity. 
Nonetheless, as the seismic station network is not well developed in the area, the 
microseismicity likely is not well recorded. The episodic fracture opening and mineralization 
events observed during the late Quaternary could link to fluid flow release induced by 
microseismicity over the entire period. Moreover, from the U/Th dating results, possible 
seismic cycles of the order of seismic magnitude of 1 kyr can be inferred and are difficult to 
observe in records covering just tens of years and the classical earthquake hypothesis cannot 
be ruled out.  
 
To sum-up, the long-term cycles of fracturing and sealing (millennial cycles) relate to fault 
activity. Given that the numerous small episodic leakage events observed throughout the late 
Quaternary could be extended to the entire Quaternary period (Dockrill and Shipton, 2010), a 
slow long-term seismicity model, or seismic swarm (Daniel et al., 2011), seems the most 
suitable model to explain the observations. However, the lack of seismic data does not rule 
out the classical seismic model, as episodic earthquakes with a return period measured in 
thousands of years would not have been registered in this context.  
 

 

5.3 Fluid flow rate along faults with episodic circulation: a numerical approach 

The conceptual model, described above (Fig. IV-14), can be used to simulate the episodic 
circulation mechanisms and define its boundary conditions. An evaluation of the volume of 
CO2 is deduced from natural observations and a numerical model for calculating the variation 
in CO2-fluid flow rate will be presented below.  
 

5.3.1. Fluid flow calculated from natural data 

The real total volume of CO2 leakage at the surface can be estimated from the volume of calcium 
carbonate precipitated in the travertines.  
At the Crystal Geyser outlet (location shown on Fig. IV-1), based on hydrologic mass balance 
modeling of the present–day CO2 water composition, some authors (Heath, 2005; Shipton et 
al., 2005) estimated the proportion of the total CO2 flux accounting for travertine mount 
formation. They showed that the volume of CO2 leakage recorded in the calcium carbonate 
precipitations represents between 6.6% (Shipton et al., 2005) and 10% (Heath, 2005) of the 
total dissolved CO2 in the water sample which is only a minor part of the total leakage. 
 
In order to estimate the total leakage in this study we will rely on these data for our 
calculations. This range, however, must be taken with caution as only a minimum value of 
leaked CO2 since: 

1) The assumed proportion of precipitated CO2 with respect to total leaky CO2 
determined from chemical models takes into account only the dissolved part of the CO2 at the 



 90 

surface as an input parameter. However the CO2 also escapes as a free phase, as observed 
during geyser eruptions, and this factor is not considered in the models.  

2) In addition, erosion took place after travertine emplacement. Unconformities are 
visible but the eroded volume of travertine cannot be calculated.  
 
In the case of the fossil travertine T1 studied here (Fig. IV-10), the total mass of precipitated 
CO2 recorded in the outcrop over time was calculated considering the calcium carbonate 
precipitation equation (Eq. IV-1.1):  
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The molar mass ratio of carbon dioxide and calcium carbonate and the volume density of the 
carbon carbonate are considered as constant parameters: 
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Eq. IV-1.1 can therefore be simplified so that the mass of precipitated CO2 is a direct function 
of the volume of calcium carbonate precipitated:  
 
     32 .119 CaCO

edprecipitat
CO Vm =      (Eq. IV-1.2) 

 
In order to calculate  3CaCOV  a 5 m long rectangular section along the travertine with a 1 m2 
surface base was considered (Fig. IV-11B). The dated veins represent 45±10% of the total 
block volume of the travertine mount T1 (Fig. IV-10). This travertine is located in the Crystal 
Geyser area, above the Little Grand Wash fault trace (Fig. IV-1 B&C). The veins are 
considered to be rectangular parallelepipeds with thicknesses as measured in the field and the 
initial surface area of the travertines being extrapolated to its initial value before erosion. This 
initial value has been extrapoled from present-day measurement of travertine T1 surface 
calculation, based on aerial photos (Dockrill, 2005) and our structural analysis. Details of the 
CO2 volume and leakage flow computations are given in Table IV-1.  
 
The total CO2 leakage flow, inferred from the U/Th dated veins (Fig. IV-15), shows an 
interesting evolution though time e.g. from 12 kyrs to 7 kyrs ago. The error in CO2 flow 
computations is about 30% (Table IV-1) for each-U/Th-dated vein. The variation in CO2 flow 
with time is furthermore episodic; the 7-6 kyr period represents the most intense leakage 
period, whereas Late Pleistocene - Early Holocene leakage account for the formation of only a 
single large vein.  
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Table IV- 1. Volume and flux of CO2 leakage calculated based on the travertine vein volume estimations based on their mineral growth rates and  thicknesses  (Fig. IV-12). Two 
cases from bibliography were studied (Heath 2004, Shipton et al., 2005) with estimation of the total CO2 leakage recorded within the calcium carbonate corresponding to 
6.6% and 10%. We calculated the volume of each dated vein (Fig. IV-11), all dated veins, undated veins and the total travertine mount. 

Veins 
fraction 

Fraction of 
the 

travertine 

Veins 
thickness 

Mass CO2 
precipitated 

Mass total of CO2 
leakage 

growth 
rate 

Leakage 
lapstime 

Flux of CO2 
leakage 

(T +/- 30%) (T/ky+/-40%) 

 
 

(%+/-5%) (%+/-5%) (mm+/-5%) (T +/- 30%) 
6.6% 10% 

(mm/yr +/- 
10%) 

(yr +/- 
15%) 6.6% 10% 

A1 15 6,8 203 48 730 482 0,1 2 025 361 238 

A10 15 6,8 203 48 730 482 0,1 2 025 361 238 

A17 15 6,8 203 48 730 482 0,1 2 025 361 238 

39 4 1,8 54 13 195 129 0,7 77 2 524 1 666 

42 20 9,0 270 64 974 643 0,2 - 0,7 988 985 650 

44 23 10,4 311 74 1 120 739 0,08-0,1 2 282 491 324 

46 6 2,7 81 19 292 193 0,4 203 1 442 952 

41 1 0,5 50 0 3 2 0,7 71 38 25 

13 1 0,5 80 0 4 3 0,7 114 38 25 

Tot dated veins 100 45 1 350 321 4 868 3 213 0,4 7 285 668 441 

Tot undated veins 15 600 143 2 164 1 428 0,4 7 285 297 196 

Tot travertine veins 60 1 800 428 6 491 4 284 0,4 7 285 891 588 

Tot carbonate travertine 70 2 100 500 7 573 4 998 0,4 7 285 1 039 686 
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The total CO2 leakage flow inferred from the travertine mass is low, less than 0.9 tonnes per 
year. Even if the total mass of CO2 emissions is difficult to determine, a new minimum value 
of CO2 leakage in natural conditions was calibrated. The present-day monitoring of Crystal 
Geyser gives data on the seepage rate without any effective seal. This geyser results from an 
abandoned well not totally closed after its production and crosses all the natural seals located 
above the main reservoirs. The measurements show a flow of 11 000 t/yr (Gouveia et al., 
2005; Brogen et al., 2006), which is 10 000 times greater than the calculated flow in natural 
conditions, thus highlighting the preponderant role of the seal. For instance, considering 
natural flow (calcuted in this study), the release of the 11 million tons of CO2 stored in the 
Sleipner field, in the North Sea (Hermanrud et al., 2009; Chadwick et al., 2009) would take 
more than 10 My, whereas it would take only 1000 years if an open hole drilled through the 
reservoir were allowed to leak permanently without sealing.  
 
Another observation (Fig. IV-15) is that the main episodic leakage events last between 1 000 
and 2 000 years. It should also be noted that the time between such events is of the order of 
magnitude of their duration (about 1 000 years). It is important to understand what could be 
the controlling factor of the time scale of such large circulation events and the time-dependent 
change in fluid flow along the fault.  
 

 
Figure IV- 15. Evolution of cumulative leaky CO2 flux versus time from the late Pleistocene till the Mid Holocene, computed 

from U/Th dated aragonite veins of travertine T1, Little Grand Wash Fault.  

The flux has been computed from the volume estimation of each vein averaged over the vein thickness. The veins are 
located in Fig. IV-11 and the modeling results are shown table IV-1. 

 

5.3.2. Total CO2 flow from numerical fluid flow modeling 

To gain a better understanding of CO2 release processes and to quantify CO2 release along a 
fault (i.e., fluid flow migration) and related sealing processes, numerical simulations were 
performed in order to test the variation in fluid flow along a permeable fault embedded in a 
less permeable, porous medium. A finite-element numerical model was used to test the 
contribution of 1) Darcy flow and 2) a sealing factor acting in the area around the fault since 
the drainage rate around the fault could be the main parameter governing fluid flow variations 
along the fault (Braun et al., 2003). Fluid motion is driven by an imposed vertical pressure 
gradient. The progressive sealing around the fault has been modelled using a time-dependent 
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decreasing permeability exponential law. All numerical simulations are based on 
adimensional parameters. Finally, the numerical parameters are given dimensions from 
bibliography values and natural observations.  
 

5.3.2.1. Numerical code theory 
A modified 2D finite-element code was used to solve the Darcy fluid flow equation in a 
permeable fault embedded in a less permeable, porous medium (Braun et al., 2003). A normal 
fault segment of length l and hydraulic conductivity Kf was considered. At time t=0 this fault 
was located in a matrix of dimensions L×L and hydraulic conductivity Km (Fig. IV-16). 
Several dip angles of this fault segment were tested. The time-dependent variation in fluid 
flow velocity through a vertical fault segment is shown for different cases of fault sealing 
time lapses (Fig. IV-16). The influence of fault length and dip changes was also tested with an 
example of a fault of half the length in the vertical fault case and with a rotation of 30° (Fig. 
IV-17). 
Fault fluid transfer changes were studied using the sealing factor proposed by Gratier et al. 
(2003) to model changes in fluid flow along the fault. Based on pressure solution crack 
sealing modeling (Renard et al., 2000), the permeability of the fault was found to decrease 
exponentially as indicated in (Eq. IV-2). 
 

              K f (t) = K0e
− t τ s

        (Eq. IV-2) 
 
where Kf is the fault permeability at time t, K0 is the initial permeability of the fault, t is the 
time,τs is the characteristic time of the sealing process, called the “sealing factor” here. This 
sealing factor will be used as a means of changing the permeability with time, not directly in 
the fault but in its surrounding matrix demonstrated that the change in permeability structure 
in the surrounding matrix is the key factor limiting the change in permeability of the fault (see 
below). From a physical point of view, the model simulates the change in post-seismic 
porosity and permeability of the damaged zone around a fault, as shown by geophysical 
observations (Li et al., 2006; Brenguier et al., 2008).  
Without the matrix sealing factorτs, fluid movement is driven by an imposed vertical pressure 
limited by the timescale of Darcy flow τ d, e.g. the diffusive timescale defined by Eq. IV-3: 
 

      
m

d K

lS 2.=τ                   (Eq. IV-3) 

 
where S is the specific storage and l the fault length. 
Eq. IV-4 introduces an adimensional Sealing-Darcy number ( λSD) representing the relative 
influence of the Darcy flow τ d and matrix sealing factor τ s time-lapses: 
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5.3.2.2. Numerical test of sealing rate change through a vertical fault 
In order to test the impact of surrounding fault matrix sealing rate on fault fluid flow velocity 
with time, a series of tests along a fault segment was carried out (Fig. IV-16). The fault 
segment is vertical and located at the centre of the cell (Fig. IV-16, top). The variation in fault 
velocity with time is shown in six cases: without fault sealing (e.g. Darcy simple diffusion) 
and with a Sealing-Darcy number ( λSD) ranging from  10-3 to 104 (Fig. IV-16, bottom). 
 
Without matrix sealing with time, the variation in fluid flow through the fault, characterized 
by the fluid velocity in the center of the fault, passes through three temporal stages, which can 
be described by introducing two time scale parameters: t1 = Sl2/Kf and t2 = Sl2/Km, which 
correspond to the change in the permeability structure (Braun et al., 2003):  

• (S1) the first stage (t < t1) where fluid rapidly travels through the fault, driven by the 
initial vertical pressure gradient at the opening of the fault;  

• (S2) the second stage  (t1 < t < t2) where the fluid flow in the fault leads to pressure 
changes in the rock at both ends of the fault, resulting in a decrease in pressure 
gradient between the ends of the fault and consequently a decrease in fluid velocity; 

• (S3) the third stage (t > t2) where fluid flow in the matrix has adapted to the new 
permeability structure and allows development of a steady-state pressure field around 
the fault and consequently a steady-state fluid velocity along the fault. 

 
This shows that the high fluid velocity that develops just after opening of the fault (at t = 0) is 
a transitory event and that the fluid velocity in the fault decreases even if the fault does not 
seal due to the limited drainage rate in the rock.  
 

In the case of matrix sealing, the fluid flow in the fault changes in a different manner 
depending on the value of this factor: three main configurations were tested: (a) predominance 
of Darcy diffusion ( SDλ >1); (b) equilibrium ( SDλ =1); (c) predominance of sealing on Darcy 
diffusion ( SDλ <1). 

• Case (a): the results are shown for SDλ = 10, 102, 103 and 104 (pink, purple, light blue 
and dark blue curves, Fig. IV-16, bottom). Note that the stages t1 and t2 are the same 
as in the case without matrix sealing. However, a new stage, t3, is indicated which 
shows the effect of matrix sealing: instead of a steady state after t2 at low permeability 
(dotted curve) there is now complete closure of the fault due to the complete 
impermeabilisation of the matrix surrounding the fault. This effect is less and less 
marked (inversely proportional to increasing SDλ  values). For a value of SDλ = 10, the 
t2 and t3 stages are almost the same and the difference between t2 and t3 increases as 
the value of the factor   increases. 

• Case (b): the result is shown for SDλ =1 (black curve, Fig. IV-16, bottom). The sealing 
does not change the duration of stage t1. However, its effects can be seen on the 
duration of stage t2 with a reduction in its duration by a factor 10 and complete 
impermeabilisation that stops any fluid flow in the fault at t3. 

• Case (c): the result is shown for SDλ =10-3 (green curve, Fig. IV-16, bottom). 
Introduction of the fault-sealing factor leads to a reduction in duration of stages t1 and 
t2, with t3, the complete closure time of the fault, being equal to t2. Both times t1 and t2 
are reduced by 10-3. 

 

The effect of the matrix sealing factor is thus both to shorten the duration of the fluid flow in 
the fault and to reduce to zero the circulation in the fault.  
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Figure IV- 16. Numerical tests of sealing timelaps evolution 

Top: Geometry of the scenario being addressed numerically: a normal fault segment of length l with an hydraulic 
conductivity Kf is placed at time t=0+ in a matrix of dimension L×L and hydraulic conductivity Km. Fluid flow is 
driven by an imposed hydraulic head gradient Ψo/L. Example of a vertical fault. 

Bottom: Fault velocity evolution with time in six cases: without fault sealing (e.g. Darcy simple diffusion) and with a 
sealing-Darcy number evolving between 10-6 to 10.  

 

 

 

5.3.2.3. Numerical test of variation in fault length and dip angle 
The effect of a variation in fault length and dip angle was subsequently tested (Fig. IV-17). 
Results are shown for the case of SDλ = 103, i.e., with only a weak sealing effect. Previous 
results for a vertical fault (Fig. IV-17 top, fault A) were compared with results for a 30° 
rotation of the fault (Fig. IV-17 top, fault B).  
Another case with the fault length halved (Fig. IV-17 top, fault A') was also tested. The final 
time-lapse for fault sealing is not affected by the reduction in fault length or dip angle 
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variation as all the time-dependent fault fluid velocity curves reach zero at the same time (Fig. 
IV-17, bottom). This is in agreement with the preceding results as the t3 stage is linked to the 
sealing factor. 
The variation in the vertical fault length (curve A to A') shows a modified duration of t1 and t2 
as these times depend on the square of fault length. The variation in dip angle of the fault has 
another consequence, as the changes in curve shape are a function of the fault angle.  
Even if the final sealing time lapse is not affected by the change in length or dip angle, the 
fault fluid flow velocity varies and this results in a different rate of change of fluid flow for 
the different cases.  
 

 
Figure IV- 17.Numerical tests of fault length and variation in dip. 

Top: Geometry of the scenario. The numerical cell is the same as in Fig. IV-17. We add a fault dipping 30° (B) and a 
vertical fault (A') of initial length (A) divided by two. 

Bottom: Results of the test of the three geometries. 
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5.3.3. Comparison of numerical results with natural data  

The fault parameters may be estimated from the bibliography, considering a sandstone matrix. 
The hydraulic conductivity Km of sandstones ranges from 10-10 to 10-8 ms-1 (Brassington, 
1988; Dominico & Schartz, 1990). The hydraulic conductivity Kf of the fault in this type of 
rock can be estimated to be about 10-6 -10-8 ms-1 (Istok, 1989; Phillip, 1991). Specific storage 
S in sandstone is of the order of 0.1 m-1 (Tokunaga and Kameya, 2003; Istok, 1989).  
 
From natural observations it is known that the two large veins (25 to 30 cm thick and 100 m 
long) of travertine T1 (Fig. IV-10& 11) took one or two thousand years to form: the first vein 
precipitated 11-9 kyrs ago and the second 6.8-5.8 kyrs ago. From these natural data, the final 
sealing time lapse (the time taken for the fluid velocity in the fault to reach 0) can be fixed at 
1.000 – 2.000 years.  
 
Given the various fault lengths considered, 100 m, 1 km and 10 km, two cases without and 
with sealing were analyzed for t1 which is the time at which the fluid velocity along the fault 
begins to decrease, and t2 which is the time at which the fluid velocity along the fault reaches 
zero (Table IV-2). For example, for a fault of 1 km length, with S=0.1, and τ d ranging from 
1011 to 1013 (Equ. IV-4), without the matrix sealing effect, t1 is in the range 1011 – 1013 s (3.3 
kyrs – 333 yrs); t2 1013 - 1015s (333 yrs and 33 Myrs). With the sealing effect in the same 
conditions: S=0.1, τ d ranging from 1013 to 1015 and   from 1010 to 1012, t1 is about  108 – 1010s 
(3.3 yrs – 333 yrs); t2 between 1010 and 1012 s (0.3 Myrs and 33 Myrs). Other calculations are 
given in table IV-2 for different values of fault length: 100 m; 1 km; 10 km which cover the 
minimum and maximum range of the faults length.  
 
From these calculations it can be seen that if the duration of the circulation is fixed at 1.000 or 
2.000 years, the decrease in flow velocity along the fault due to the limitation of the matrix 
drainage can only explain such time scales for very small faults (less than 100 meters long). 
For longer faults a sealing effect is needed. For example, for a 1 to 10 km fault length, values 
of   of 1010 to 1011 (333 – 3.333 years) are fine.  
 

Table IV- 2. Calculation  of  t1 (start of velocity decrease in kyrs)- and  t2 (ending of fluid flow along fault in kyrs)- for 
different values of fault length (from 100m to 10km). 

S = 
storati
vity 

L = 
fault 
length 
(m) 

Kf = fault 
permeabil
ity 

KM= 
matrix 
permeabi
lity 

τ d 
timescale 
of Darcy 
flow (s) 

τ s 
timescale 
of sealing 
factor (s) 

t1 
beginning of 
velocity 
decrease 
(kyears) 

t2 
ending of 
fluid flow 
along fault 
(kyears) 

0.1 100 10-6 -10-8 
10-8 - 10-

10 
1011 to 
1013 

no 0.03 – 3.3 3.3 - 333 

0.1 1000 10-6 -10-8 
10-8 - 10-

10 
1013 to 
1015 

no 3.3 - 333 333 - 33333 

0.1 10000 10-6 -10-8 
10-8 - 10-

10 
1015 to 
1017 

no 333 – 33333 
33333 – 
3x106 

0.1 100 10-6 -10-8 
10-8 - 10-

10 
1011 to 
1013 

108 to 
1010 

0.0003 – 0.003 0.003 – 0.3 

0.1 1000 10-6 -10-8 
10-8 - 10-

10 
1013 to 
1015 

1010 to 
1012 

0.003 – 0.3 0.3 - 33 

0.1 10000 10-6 -10-8 
10-8 - 10-

10 
1015 to 
1017 

1012 to 
1014 

0.3 - 33 33 - 33333 
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6. Conclusions 

A multidisciplinary study was conducted on the travertines of Utah localized along normal 
faults. This included the study of i) circulation and sealing processes, ii) fluid composition 
changes, iii) time-lapse of fault opening/sealing cycles. This work has given important results, 
mainly with regard to the circulation episodicity in the fault. 
 
Localized circulation zones at depth are shown as a network of bleached paths that drive fluid 
from depth to the surface where part of the fluid precipitates as travertines. Near-vertical 
conduits lead to two types of crystallization: (i) precipitation in self-supported open cavities at 
depth and in layered travertines at the surface; (ii) growth of compact veins at depth, driven 
by the crystallization force with top-to-bottom growth direction. The carbonated vein size 
frequency decreases exponentially with vein width. However, in terms of volume, the largest 
veins represent most of the precipitated carbonates.  
 
Episodic dissolution and sealing cycles, that could be related to sudden, events are seen at all 
scales in the travertines, from outcrops (breccia, dissolution and/or deformation of 
speleothem-like features and former veins) till thin section scale (cross-cutting of veins, sand 
injection, etc.). 
 
Calculating the CO2 leakage rate in the travertine and comparing it with modern CO2 storage 
revealed the preponderant role of the fault zone sealing in controlling the time-dependent 
change in circulation. For instance, based on the leakage rate deduced from this work (about 
1t/yr), it would take more that 10 Myrs to empty the Sleipner field in the North Sea. As a 
comparison, an open hole without any sealing will empty the same reservoir in 1.000 years. 
 
U/Th dating and stable isotope analysis provided information on the characteristic times of 
such episodic processes with three main frequencies: 1-2 kyr cycles, 100 yr cycles and 
seasonal cycles. It was inferred that the 1-2 kyr episodicity is mainly linked with sudden 
tectonic events, whereas 100 yr and seasonal cycles may be linked with temperature or 
climate oscillations. Sudden 1.000 yr events with a return period of about 1.000 years open 
fractures to form circulation pathways that close in about 1.000 to 2.000 years. 
 
Numerical tests of the time-dependent change in fluid flow along faults show the crucial role 
of variable permeability around the fault and a weak effect of fault dip on circulation duration. 
It was shown that the simple effect of changing permeability structure in the matrix around 
the fault leads to changes in circulation that are far longer than that observed in the field, 
except for very small faults. It has been shown that, for the main 1.000-yares events, a sealing 
process with characteristic times of about 1.000 years must be added in the damaged zone of 
the fault in order to explain the observed duration of the episodic circulation. 
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B. Paleomagnetic study of travertines 

1. Introduction  

Precipitation cycles study with U/Th dating allows to discuss the impact of climatic and 
tectonic factor from the record of small carbonated veins or travertine cores (Uysal et al., 
2011; Barker et al., 2006). As it is important to investigate other techniques, the use of 
paleomagnetism in this domain has been considered as a new axe of research. A first article of 
Piper et al. (2007) described the first constraint and was encouraging for new investigations. 
We propose to continue this type of exploration with the study of travertines located upon the 
Colorado Plateau. 
Prior U/Th dating, a paleomagnetic study on fault related travertines has been conducted. 
 
Here preliminary results for cross sections sampled over two travertine structures built at 
near-surface and surface are presented as followed: 1) the young travertine, T1, studied with 
U/Th datings (Fig.IV-11) located on Little Grand Wash Fault (LGWF; located Fig. IV-1), and 
2) an older travertine, T5, located on Salt Wash Fault (SWF; located Fig. IV-1). The two 
travertine mounds are located at 6 km distant one from the other, directly above normal fault 
traces. Both travertines represent the range of travertines observable in the area of 
respectively travertine vein and surface travertine (Fig. IV-3). 
 

2. Sampling  

As mentioned in the previous part of the chapter, U/Th datings of white aragonite veins gave 
an estimation of the young travertine T1 formation between 5 and 11 kyrs ago (first part of 
the chapter). The other travertine T5, located on SWF, is above the present-day CO2 source 
elevation. This travertine is darker than T1 and is composed by surface travertine 
precipitation. No datings has been published in the literature. Nevertheless, its vertical 
distance from the present day source is about 40 m (and 100m horizontally). Taking into 
account an erosion rate of 3m/100kyrs, 1.3 Myrs may be inferred as an approximate age. 
 
Travertine cross-sections have been plugged: A1 to A20 on T1 and C1 to C10 on T5, with 
additional hammered and orientated samples in order to complete the study (Fig. IV-18). The 
plugs of T1 have also been studied with oxygen and carbon stable isotopes (Figs IV-11-13). 
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Figure IV- 18. Sampling location on the outcrops (located Fig. IV-1). A- Travertine T1, Little Grand Wash Fault: 20 plugs 

(red) and 10 rock samples (green). B- Travertine T5, Salt Wash Fault: 9 plugs (C1 to C10) and 1 sample (UT-09-116).  

 
Standard paleomagnetic measurements have been processed on orientated cores (AF and 
thermal cleaning) (e.g. Butler, 1992). In addition, the magnetic mineralogy has been 
characterised on representative specimens by using either temperature-dependancy or field-
dependency of isothermal remanent magnetization (Hunt et al., 1995). 
 
The remanence was mesuared using a 2G Squid magnetometer hosted in the Ecole Normale 
Supérieure de Paris (noise level 10−12 A.m2). 
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3. Results 

3.1 Subsurface material study of Crystal Geyser travertine (T 1) 

The travertine veins are composed of primary thin and elongated aragonite minerals with 
evidences of crack seal due to different processes of mineralization (Fig. 4L). This travertine 
is white with no clear evidences of oxidation, on the opposite of what was observed in the 
travertine T5.  
 

3.1.1. Rock magnetism 

Rock magnetism investigation on the specimen A14-a have been lead at the Institute of Rock 
Magnetism (Minneapolis, USA). The bulk hysteresis curve (Fig. IV-19 right) shows the 
contribution of ferromagnetic and diamagnetic minerals. There is no clear evidences of 
paramagnetic contribution (input of clay minerals for instance). When corrected from 
diamagnetic slopes (Fig. IV-19 right), it is clear that the ferromagnetic mineral has a low 
coercivity.  
  

 
Figure IV- 19.Hysteresis curves. Left) Bulk hysteresis curve. Right) Hysteresis curve corrected from diamagnetic slope.  

 

The coercivity distribution is highlighted using First Order Reversal Curve diagram (Fig. IV-
20). The reddish spot between 0 to 20 mT is indicative of non-interacting low coercive 
magnetic minerals within the single domain state (Roberts et al., 2000). This mineral is 
probably magnetite. However, secondary spots at ~50 and ~90 mT suggest the presence of a 
more coercive mineral. 
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Figure IV- 20. FORC (First Order Reversal Curve) diagram (smoothing factor 6), T1, Little Grand Wash Fault. 

 

The monitoring of an isothermal remanent magnetization (IRM) at low-temperature (<400K) 
has been performed. An RT-SIRM is acquired at 300 K within a magnetic field of 2.5 T. The 
monitoring of cooling and warming curves of this RT-SIRM is displayed in Fig. IV-21. The 
RT-SIRM is about 10-4 Am2/kg (0.4 g of rock powder measured). No diagnostic magnetic 
transition has been observed here, like the Verwey transition (~120K). The Verwey transition 
is typical of stoichiometric magnetite (Hunt et al., 1995). This observation is in contradiction 
with our first interpretation that magnetite is the main magnetic mineral of the T1 travertine.  
 
However, it is well known that the suppression of Verwey transition may be an indication of 
oxidation (Özdemir et al., 1992). When comparing the cooling and the warming curves, a 
non-reversible curve was observed, making an open cycle. This is generally taken as an 
indication of maghemite. We then suggest that oxidized magnetite is the main magnetic 
mineral of T1 travertine. Knowing the remanent magnetization of magnetite after saturation 
(~10 Am2/kg), the concentration of magnetite is about 10-5, or 10 ppmv.  
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Figure IV- 21. Cooling and warming curves of an RT-SIRM [monitoring of an isothermal remanent magnetization (IRM) at 

low-temperature (<400K)] 

 

The experiments, presented Fig. IV-22, aims to better define the grain-size fraction of 
magnetite. FORC diagram showed that magnetites are grouped in a single domain (SD). The 
threshold of SD magnetite is about 20 nm. Below this size, magnetites are superparamagnetic 
(SP) and are not capable to endorse a remanence at room temperature.  However, at 10K, a 
fraction of SP magnetite carries a remanence because of the low thermal randomization of the 
magnetic moment.  
Both ZFC and FC curves display a drop between 10K and 300K of about 75% (Fig. IV-22). 
This indicates that a large portion of magnetites, possibly the totality, is nanometric in size.  
 

 
Figure IV- 22. Estimation of magnetite grain-size fraction. Warming curves of an IRM acquired either at 10K (ZFC curve), or 

continuously acquired from room temperature (300K) to 10K (FC curve). 
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3.1.2. Magnetic mineralogy and remanence 

The demagnetisation curves (example Fig. IV-23 left), corresponding to the plugs cycles of 
demagnetisation (SQUID), rarely show a linearly trend attesting for the quality of the 
recorded signal. 
 
The heating demagnetization profiles versus temperature (example Fig. IV-23 right) show a 
rupture of the temperatures between 300 and 400°C. This is due to reaimantation processes 
related to the healing method, phenomenon which does not document the properties of the 
studied rock. 
 

 
Figure IV- 23. Example of AF field and healing demagnetization profile, plug A2a, T1, Little Grand Wash Fault. The field 

intensity is very low, in the order of 10-7 A.m2. 

 

9 of 18 samples reveals component after AF demagnetisation (Table IV-3). In the course of 
AF demagnetization, the direction remains stable or makes a great circle. When it is stable, 
the mean component reflects a characteristic remanent magnetization (ChRM). On the 
contrary, the mean component is labelled B and can be interpretated as a signature of the 
combination of several components. Here, the data are hardly interpretable, the field intensity 
is two light (<10-7A.m2), the main component could be a noisy ChRm. 
 
 

Table IV- 3. Declination and inclination of paleomagnetic field, T1, Little Grand Wash Fault. 

Sample name 
Orientation 

⇒ A' : noisy ChRm? 
 

Declination 
(ISD) 

Inclination 
(ISI) 

A2a A' 341.6 65.9 
A3a A' 34.3 68.4 

A5 A' 350.2 56.2 
A12b A' 344.0 65.3 
A14a A' 19.3 34.0 
A16b A' 313.5 39.4 
A17b A' 332.0 63.3 
A18 A' 323.2 38.9 

A19b A' 291.6 53.8 
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The components A' have been plotted on a stereogram (Fig. IV-24), in geographic 
coordinates, All components have normal polarity.  
 

 
Figure IV- 24. Principal orientation of T1 paleomagnetic record, Little Grand Wash Fault. 

 

 

3.2 Surface material study of Ten Mile Graben travertine (T5) 

3.2.1. Travertine material introduction 

The travertine material is laminated, corresponding to the surface travertine facies. It is thus 
highly alternated by the surface conditions and then could have easily been contaminated by a 
multitude of parameters such as vegetation or mud input (Fig. IV-25). 
 

 
Figure IV- 25. Optical microphotograph of sample 116 (located Fig. IV-18), travertine 5, along Salt Wash Fault. 
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3.2.2. Magnetic mineralogy and remanence 

The presence of hematite may be inferred, as the ChRM signal remains intense during the 
demagnetisation cycles (Fig. IV-26 left), and due to alteration state of the outcrop. The 
demagnetisation curves, corresponding to the plugs cycles of demagnetisation (SQUID), show 
a linear trend, attesting for the quality of the recorded signals (Fig. IV-26 middle). In 
accordance with high unblocking temperature >600°C, this suggests that the magnetic 
minerals are hematite in ous samples (Fig. IV-26 right).  
 
As a whole, the NRM has one order of magnitude more than the white travertine T1. This 
indicates that the yellowish-to-reddish travertine have more magnetic minerals. 
 

  
Figure IV- 26. Two Examples of Zijderveld plot (Orthogonal plot, obtain during AF field demagnetization), AF field and 

healing demagnetization profile, plug 9b & 10b, T5, Salt Wash Fault. The field intensity (NRM) is very low, in the 
order of 10-5 A.m2. The two samples are separated by a magnetic inversion.  
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In this section, the recovery of ChRM is better than in the white travertine T1 (8 on 11 samples). 
In almost all the samples case, the mean component is a characteristic remanent magnetization 
(ChRM), after AF demagnetisation which indicates stable record. In few cases, the mean 
component is labelled B and is a signature of the combination of several components (Table IV-
4).  
 

Table IV- 4. Declination and inclination of paleomagnetic field, T5, Salt Wash Fault. 

Sample name 
Orientation 

⇒ A : principal 
⇒ B : secondary 

Declination 
(ISD) 

Inclination 
(ISI) 

c1b A 19.3 57.5 
c1c A 21.8 57.3 
c3c A 28.7 37.0 
c4b A 33.5 66.5 
c5b B 38.2 73.4 
c5c A 311.9 70.8 
c6b A 11.1 54.1 
c7b B 82.9 60.3 
c8c A 0.0 70.5 
c9b A 16.0 40.1 

c10b B 142.7 -33.0 
 

The components have been plotted in geographic coordinates on a stereogram (Fig. IV-27). In 
the upper section (C10b), for the first time a reverse component has been observed. In order to 
check the validity of this measurement, additional measurement were made on a rock sample 
(UT-09-116) located at the top of the sampling profile and the analysed confirm the trend 
observed with sample C10b and probably points on the occurrence of magnetic inversion. 
 

 
Figure IV- 27. Principal orientation of T5 paleomagnetic record, Salt Wash Fault. 

 

We plot the inclination and declination of the ChRM along a vertical profile. As the surface 
travertine are supposed to be formed from the bottom to the top, with successive material 
input corresponding to the observed laminations, this representation of the result shows a 
direct evolution of the secular variations and inversion cycle of the magnetic field with time 
(Fig. IV-28).  
Variations from the bottom to plug C10b could correlate with secular variation and C10b 
could mark and inversion. 
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Figure IV- 28. Inclination and declination variation along T5 profile, Salt Wash Fault 

4. Conclusion 

To summarize, this magnetic investigation of T1 travertine shows that the magnetic fraction is 
constituted of tens of ppm of nanometric magnetites. Magnetite is partly oxidized into 
maghemite.  
Due to the lack of optical observation, it is difficult to emphasize the origin of magnetite.  
The crux of our magnetic investigation is the SD pattern of non-interacting magnetic 
minerals. SD magnetite can be a signature of biogenic production (Moskowitz, 1993). 
However, we believe that SP magnetite originated from eolian transportation if travertine 
have been deposited in surface conditions. Whatever the origin of magnetite formation is 
related with, the ultra-fined size of magnetite allows a possible mechanical orientation of the 
magnetic moment parallel to the Earth’s magnetic field in the early stage of calcite 
precipitation. Consequently, it is realistic to extract the record of the Earth’s magnetic field in 
surface-deposit travertine. 
 
As Travertine T1 is of Holocene age, observation of the inclination/declination couple values 
close to the present-day magnetic field value is coherent. All the results in this travertine are 
grouped around the main orientation, thus implying two hypotheses:  
1) No secular variation cycles have been recorded during the travertine formation; 
2)  Each plug recorder several secular variation cycles. 
 
As a conclusion, it is suggected that Ten Mile Graben travertine (T5) may have been formed 
continusly or by episodic faults leakage during a large timescale. Several secular variations 
and a magnetic inversion seems indeed to have been recorded, As the last magnetic field 
inversion took place 760 kyrs ago, the travertine began to be formed prior to this date, in 
coherency with the estimation of the age of the travertine top with the estimation of erosion 
rate/ outcrop position calculated to the present-day leakage area (1.3 Myrs). Nevertheless, 
absolute datings and thin-section observations are necessary to evaluate properly the validity 
and the real significance of the paleomagnetic records. For instance, the relative strong 
magnetic signal due to hematite component, could be correlated either to a contamination by 
the host-rock or by a secondary circulation of fluids enriched in iron oxide. 
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CHAPTER V. Fluids circulation along fault 

and reservoirs at basin scale - from field 

work to numerical modeling 

 CHAPITRE V. Circulation de fluides le long des failles et des 
réservoirs à l'échelle du bassin – de l'étude de terrain à la 
modélisation numérique 
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A. Dynamics of fluids circulation along faults and 

reservoirs at basin scale (article in prep.
2
) 

2. Frery. E., Ellouz-Zimmermann, N., Swennen, R., Blamart, D., Gratier, J.P., Kohler, E. , 
Deschamps, R. -  to be submitted to Oil & Gas Science and Technology  Journal 
 

1. Introduction and geological setting 

The evolution of the fault transfer properties with fluid circulation in syn-sedimentary basins 
is a complex domain of research, depending on a multitude of parameters inherent to the 
conditions at depth in each reservoir location, its lithology and on the fault transfers properties 
(Aydin, 2000; Eichlubl et al., 2009). 
 
The goal is to quantify and calibrate the timing of fluid leakage above hydrocarbon or CO2 
reservoirs. Processes responsible for the opening and the closure of a reservoir over time are 
critical points to be determined in a faulted zone. Fault transfer properties are evolving 
through time (Person, 2007), and episodic circulation and evenly leakage events alternate with 
sealing episodes. These episodes are either controlled by chemical or mechanical processes, 
or both together as interdependent parameters (Hancock, 1999; Eichhubl et al., 2000; Gratier 
and Gueyden, 2007; Solum et al., 2010).  
 
Estimation of the along-fault migration/leakage and sealing events on a natural example is the 
clue to understand reservoir properties evolution during CO2 injection, oil production and 
finally to constrain long-term simulating models. Moab (MF), Salt Wash (SW) and Little 
Grand Wash (LGW), basin-scale normal faults in East Central Utah offer a spectacular 
example for studying the fossil and modern fluid-circulation in reservoirs and faults (Fig. V-1 
A&B).  
 
 

1.1 Geological Context  

The studied zone is located at the North West of the Colorado Plateau; close by the Sevier and 
Basin-and-Range units and in front of the Laramide basement inversion of the San Raphael 
Swell (Fig. V-1B). Remarkable structural units (San Raphael Swell, Monument and 
Uncompaghre uplifts), igneous rock intrusions and volcanism (La Sal Mounts) surround the 
studied area, which is located in the western part of the Paradox basin. Tectonic history can be 
summarized in four stages since Paleozoic: 
 
- (1) Paleozoic Basin evolution as a sag basin in restricted conditions  
Formed during Carboniferous period, the Uncompahre uplift, (also named Ancestral Rockies) 
induced the formation of several NW/SE basins as (like) the Paradox Basin. In these basins, 
thick evaporitic series developed, including interbedded source-rock levels (Hunton et al., 
1999). The thick (more than 760m) Lower Pennsylvanian Paradox formation (Fig. V-1C) is 
particularly salt-rich (NaCl and sulfates, whereas the Upper Pennsylvanian Honaker Trail 
Formation is representing a promising, mature source rock for hydrocarbons. During Permian 
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times, the subsidence processes in the Paradox basin (Fig. V-1B) was continuing. This period 
was marked by salt tectonics that strongly affected the Permian formation deposition (Fig. V-
1C), mainly composed of the Culter group formations (Elephant Canyon Formation, Organ 
Rock Shale and White Rim Sandstones).  
 
(2)Triassic-early Cretaceous: eolian to fluvial sedimentation accommodating the subsidence. 
At a local scale, Mesozoic sediments were deposited within the Paradox basin, forming 
continuous layers over tens of kilometers thick, locally potential source rocks for 
hydrocarbons, reservoirs and drains at the regional scale (Haszeldine, 2005). Sediment 
deposition was controlled by the Eastward migration of the large-scale Sevier orogeny and 
depositional pattern evolved from shallow marine to desert environment during Triassic and 
Jurassic periods.  
 
(3) Early Cretaceous – Paleocene Sevier Fold-and-Thrust Belt and San Rafael Swell 
formation. From Early Cretaceous till Early Tertiary, and prograding to the East, both 
Sevier/Laramide compressive orogenies and western interior sea developed 
contemporaneously, as fold-and-thrust Belt and foredeep Basins. This period was marked by 
early stages of volcanism. 
 
(4) Tertiary to Present-day: Rockies formation, volcanism, Basin-and-Range extension and 
coeval uplift of the Colorado Plateau. During Eocene time, North of the study area, the 
Rockies front has been transferred to the East along the Uinta Mountains. Extensional 
processes started in the Sevier range, inducing the progressive collapse of the central units 
and the formation of Basin-and-Ranges province. As a consequence of the crustal extensional 
processes, this period is characterized by abundant magmatism and volcanism episodes, 
registered also in the Colorado Plateau. The Early stages of the Colorado Plateau up-rising 
marked the Late Eocene times The polyphased intense erosion linked with this uplift is 
responsible for the present-day large river incision, giving access to good outcrops for 
sediment and faults analyses.  
The faults analyzed in this study developed in this context, and their evolution was strongly 
controlled by the tectonic heritage registered in the Western Colorado plateau. The faults 
cross stratigraphic levels, ranging from the Pennsylvanian salt to Middle Cretaceous shales 
(Fig. V-1C). The alternation of formations with good reservoir or seal potential (e.g. porosity 
and permeability properties) greatly influenced the fluid flow pathways and the pressure 
repartition. Main reservoirs are located in the Pennsylvanian and Permian formations 
(Honaker Trail Formation, White Rim sandstones) and in the regional  Triassic/Jurassic 
sandstones (Moenkopi, Wingate, Navajo and Entrada sandstones). These reservoirs are 
topped by regional seals such as the Triassic Chinle Formation; the Late Jurassic and 
Cretaceous Brushy-Basin, Cedar Mountains and thick shale Mancos Formations. 
 
 
The faults cross stratigraphic levels, ranging from the Pennsylvanian salt to Middle 
Cretaceous shales (Fig. V-1C). The alternation of formations with good reservoir or seal 
potential (e.g. porosity and permeability properties) greatly influence the fluid flow pathways 
and the pressure repartition. Noticeable reservoirs are the Pennsylvanian and Permian 
formations (Honaker Trail Formation, White Rim sandstones) and the regional extended 
Triassic/Jurassic sandstones (Moenkopi, Wingate, Navajo and Entrada sandstones). These 
reservoirs are underlain by thick seals such as the Triassic Chinle Formation; the Late Jurassic 
and Cretaceous Brushy-Basin, Cedar Mountains and Mancos Formations. 
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1.2 Previous works  

Some of the previous studies were focus on the chronology of the active deformation along 
the basin-scale faults of the Western Colorado Plateau (MF, LGWF, SWF) using absolute 
datings when possible. Resulting analyses across the Moab Fault, coupled with 
characterization of the bed thicknesses, deformation and facies changes outlined that the 
major displacements and fault activity occurred from Triassic to Tertiary (Doeling 1988; 
Foxford, 1996 & 1998). Radiogenic datings (40Ar/39Ar, K/Ar) of the Moab Fault gouges 
confirm the Paleogene ages for the latest movements (Pevear et al, 1997; Solum et al., 2005).  
The knowledge of Salt Wash (SWF) and Little Grand Wash (LGWF) Faults displacement is 
less constrained than in the case of Moab Fault At the end of the 90s, Exxon (unpublished 
data) produced the only absolute dating (K/Ar and Ar/Ar), on illites from the LGW fault 
gouge, indicating that these faults would also have been active during the Paleogene, thus 
being still conducting fluids after the latest activity of the Moab Fault. 
 
Eolian and fluvial sandstones discolorations from red to yellow or white color are common 
along these two last faults. The discoloration zones are localized either along stratigraphic 
layers or along faults and fractures, and the diagenesis due to fluid -rock interaction is called 
"bleaching". Using Landsat interpretation, the bleaching areas has been mapped at a large 
scale around the Glen Canyon Jurassic sandstone (Beitler et al., 2003) and has been especially 
observed close by faulted zones and around Laramide basement uplifts.  
 
Previous studies, focused on the Navajo Formation, identified the importance of diagenetic 
alteration processes in the red sandstones. Different hypothesis have been considered to 
explain this process (Chan et al., 2001, 2004, 2005; Beitler et al., 2003, 2005; Parry et al., 
2004, 2009; Busigny & Dauphas, 2007; Spanbauer et al., 2009; Loope et al., 2010). The 
bleaching may be caused by the chemical reduction and leaching out of the system of the iron 
oxides, responsible for the "early stage" red color of these sandstones (Guscott et al. 1997; 
Chan et al. 2001). The iron could also stay in the system, being incorporated in ferrous 
minerals such as ferroan carbonates (ferroan dolomite) and/or in sulfur mineral like pyrite 
observed in traces (Parry et al., 2009) 
 
As bleaching has been observed also close to known petroleum reservoirs (Moulton, 1926; 
Britton, 1998; Chan et al., 2000), several authors proposed that the diagenetic discoloration is 
due to the migration of fluids being in contact with hydrocarbon, inducing a reduction of the 
iron during their residence time in the reservoir (Foxford et al. 1998; Garden 2001; Eichhubl 
et al., 2002). However, the circulating fluids could also have been contaminated with carbon 
dioxide or hydrogen, also acting as reducing agents (depending of the red-ox state in the 
reservoirs). 
Nowadays, CO2 leakage is observable along the Little Grand Wash and Salt Wash Faults, and 
is marked by CO2 springs sometimes associated with travertine mounds (Shipton et al 2004; 
Dockrill, 2005; Dockrill & Shipton, 2010). Some U/Th datings of the travertine mounds 
scattered along the fault show that they can be as old as 400 000 years (Burnside, 2010). 
 
As this study especially focuses on the faults as pathways for the fluid circulation, 
identification of the fault and reservoir properties variability through time have to be traced by 
studying fluid flows responsible for the observed rock alteration, and local precipitation. 
Gathering multi-scale observations from depth to the surface allow a good understanding of 
the dynamics of the along-fault permeability with time. Frery et al. (submitted) have 
documented the episodicity of the fluid circulations by dating the resulting carbonates at the 
surface. In this study we focus our attention on the geological system as a whole and will 
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document some of the mechanisms involved in the fault hydrodynamics, from deep reservoirs 
to the surface in order to answer to the following questions: 
1) What are the results at a basin scale, of an agressive fluid migration along major faults 
cross-cutting different lithologies?  
2) What are the diagenesis effects, including mineralization, of fluid migrations along faults 
and fractures, but also within the main reservoirs as Entrada and Navajo sandstones? 
3) What are the chronology and space evolution of the circulation events? 
 

 
Figure V- 1. Geological, structural and stratigraphic context of the studied area.  
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A. Utah state (USA) simplified geological map (modified from Hintze et al., 2000): location of the study zone (in blue, in 
South Central Utah, western part of the Colorado Plateau, at the boundary with the Eastern Sevier Mountain belt, 
in the Basin-and-Range province.  

B. Paradox Basin structural representation (modified form Condon, 1997):  study area (in blue) in the northern part of the 
basin, Western limited by a Laramide basement inversion (San Raphael Swell). Location of the three faults that 
have been studied: Moab fault (MF), Salt Wash fault (SWF) and Little Grand Wash fault (LGWF) - Laconnitic 
intrusions in red, basement uplifts in green.  

C. Synthetic stratigraphic section of Central Colorado plateau area with indication of the main tectonics events (modified 
from Vrolijk et al., 2005). 

 

2. Location and selection of four studied outcrops 

The field study (Fig. V-2) extends from South-East close to Moab city to the western border 
of the San Raphael Swell (to the North West). This area has been chosen because of easy 
access to study modern and fossil fluid flow pathways along or across fault zones and at 
different stratigraphic levels of erosion. Four locations have been selected along the faults, 
namely from East to West: Courthouse Canyon (CC), Ten Mile Graben (TM), Crystal Geyser 
(CC) and West Ten Mile (WTM) (Fig. V-3B), located between Moab city and the San 
Raphael Swell uplift, along and at the junctions between the Moab, Salt Wash and Little 
Grand Wash Faults. 
 
Along the Moab Fault, in the southern part of the studied area (Fig. V-2), weak and discrete 
zones of bleaching along the fault and in the sedimentary pile next to the fault are observable, 
mainly close to the northern part of the fault. In this study, only the northern termination of 
the Moab Fault and relay faults in the Courthouse Canyon is described (Fig. V-2). 
 
The Little Grand Wash and Salt Wash Faults, in the northern part of the studied area (Fig. V-
2), present numerous traces of modern and fossil migration of CO2-enriched fluids. Two areas 
have been studied, the Crystal Geyser and Ten Mile Graben areas (Fig. V-2). They are both 
located on a smooth salt anticline structure with N-NW/S-SE orientation dissected by normal 
faults of different age and amplitude. Travertine mounds have been precipitated respectively 
directly above two of normal faults segments. 
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Figure V- 2. Simplified map of the study area from Moab to Green River fault (Compiled from Doelling & Hellmut, 2001; Dockrill, 2005). Cross sections AA' and BB' are presented 

Fig. V-V-3;, CC' and DD' Fig. V-V-4.
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3. Fault related diagenesis: fault reconstruction & structural field 
work 

3.1 Fault architecture 

3.1.1. Moab Fault  

The Moab Fault is a 45 km-long normal fault extensively studied because it borders present-
day oil and gas producing areas, and allows to study easily the salt tectonics as well as 
sandstones fracturing (Doelling, 1988; Foxford et al., 1996&1998; Olig et al., 1996; Berg & 
Skar, 2005; Davatzes et al., 2005; Davatzes & Aydin, 2005; Fossen et al., 2005; Johansen et 
al., 2005; Solum et al., 2005).  
The fault trace has been extremely eroded up to Pennsylvanian Series. The north-dipping fault 
plane registers a maximum offset of 950m close to Moab city (Foxford et al., 1996). This 
offset decreases dramatically towards the N-W extremity of the Moab Fault, close to the 
Courthouse Canyon, where deformation can be observed in different levels of the Jurassic 
sequence (from Navajo to Curtis Formations) (Fig. V-3).  
Main branch part of the Moab Fault is located in the central part of the former Paradox basin 
where thick evaporitic (up to 900 m thick) series developed, enriched in salt, which strongly 
impacted the tectonic style along the fault. The hanging wall of this main fault branch is 
observable in Arches National Park, with the well-known salt roll-over at the entrance of the 
Park involving locally the bleached Navajo and Entrada Formations. The Moab Fault footwall 
can be easily observed in Canyonland National Park where deep incisions reveal layer cake 
deposits. 
 

 
Figure V- 3. Moab Fault cross sections. Top. Cross-section through the north-western segment of the Moab Fault. 

Location of the cross-section indicated in Fig. V-V-2. – Bottom. Cross-section though the central part of the 
Moab Fault, within the Moab anticline. K: Cretaceous, J: Jurassic, T: Triassic, P: Permian, Pp: Pennsylvanian 
(modified from Doelling, 1988; Berg & Skar, 2005).
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3.1.2. Constraints on Salt Wash and Little Grand Wash faults  

Salt Wash and Little Grand Wash Faults are studied since the beginning of the oil exploration 
in the 30’ and are both basin-scale normal faults (Dockrill & Shipton, 2010). The level of 
erosion is lower than in Moab area and there, outcropping stratigraphic section is not older 
than Jurassic Entrada sandstones. Uncertainties about the faults and connection at depth still 
exist. These uncertainties are mainly due to lateral variations of the formation mainly linked 
to the salt tectonics. 
Along the Little Grand Wash Fault, in the Crystal geyser area (Fig. V-2), juxtaposition of the 
mid Jurassic Curtis Formation against Cretaceous Mancos shale occurs with a maximum 
surface throw of 260m immediately East of the Green River. The throw decreases 
systematically toward the faults extremities and becomes limited where the thick Mancos 
shale (>500m) is juxtaposed time-equivalent strata (Dockrill, 2005).  
The northern and southern faults bounding the Salt Wash Graben (Fig. V-2) have maximum 
throws of 366m and 210m, respectively; while the northern and southern faults of the Ten 
Mile Graben have maximum throws of respectively 165m and 154m (Dockrill, 2005) 
 
Synthetic cross-sections (Fig. V-4) have been constructed across the Salt Wash and Little 
Grand Wash Faults. On these cross-sections the difference in dip, displacement and erosion 
amount are illustrated. To establish these new cross sections, data coming from 12 wells 
drilled by different Oil companies (Marland oil company, Exxon, Chevron, see Utah oil and 
gas website for detail) have been also included.   
On the presented cross section (Fig. V-4), the correlation between the formation tops was 
done keeping salt tectonic deformation active until the beginning of the Triassic period. The 
main fault is rooted in the Paradox salt level and could be laterally connected with a basal 
ancient fault.  
Moreover, the cross section was also populated with lithology and relative permeability 
properties (Fig. V-5). To simplify, different members formations of a same formations group 
have been merged (as for example the Cutler group, see Fig. V-1), though these formations 
could have different properties and be alternatively considered as reservoir or seal. 
 
Uncertainties about the structure at depth of the fault still exist: the outcropping fault segment 
may be linked with a basal fault reactivated during the Laramide tectonics. This hypothesis 
has to be adopted as to justify the discontinuous input of Paradox brine water at the surface, as 
observed in the travertine system (Kampman et al., 2009). However, new seismic acquisition 
and/or well data would give access to a more precise interpretation. 
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Figure V- 4. Synthetic cross Sections of Little Grand Wash (CC', top) and Salt Wash Faults (DD', bottom) – located 

Fig. V-2. Compiled from field observation, well data (Utah oil and gas website) and existing cross sections 
(Doelling 1993; Doelling and Hellmut, 2001, Williams, 2004). 
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Figure V- 5. Synthetic cross sections of Little Grand Wash (CC', top) and Salt Wash Faults (DD', bottom) – presented 

Fig. V-4 with seal/reservoir properties (Hood & Patterson, 1984). 
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3.1.3. Sediment lateral variation between the studied outcrops 

The following synthetic logs (Fig. V-6) reflect the lateral evolution of outcropping series 
between the four studied outcrops. In the Courthouse Canyon area, the lower level of erosion 
justified for a good observation of the Navajo Formation at the base of the outcrops. In this 
area, the Jurassic sandstone formations are differentially bleached. 
In Green River and West Ten Mile areas, along the Salt Wash and Little Grand Wash Faults, 
the basal formation is the Jurassic Entrada. In Green River area, the Morrison Formation and 
Cretaceous outcrop as uppermost units. 
 

3.2 Northern termination of Moab Fault: Courthouse Canyon area  

Location 
Courthouse Canyon is located at the northern relay termination along the footwall 
continuation of the Moab Fault (location shown in Fig. V-2). This relay zone exposed in the 
canyon has been mapped by Davatzes et al (2005) and is located south of the intersection 
between the main segment 1 of Moab Fault and segments 4 & 6 (Fig. V-7.A). The main 
segment 1 corresponds to the Moab Fault main branch (Fig. V-3bottom) and the others 
segment to the Moab Faults splay (Fig. V-3 top), all the segment names are written on the 
map (Fig. V-7A).  
Previous studies (Davatzes et al., 2005; Eichhubl et al., 2009) evidenced carbonate cement 
along joint-based faults northward from the studied zone, at the intersection between the 
segment 1 and segments 2, 4 and 5. 
In the studied zone (located Fig. V-7A), in segment 1, Jurassic sandstones are separated from 
Cretaceous shales. This study focuses on the footwall of the northernmost part of the Moab 
Fault (western part) where the fracturing is easily seen along cross-cutting satellite faults, 
fractures and joints running parallel to segment 4. 
Satellite view 
On the satellite interpretation (Fig. V-7B) dense joints and networks of deformation bands are 
clearly visible at the top of the Jurassic Moab Tongue Member, assimilated to the Curtis 
Formation, in the southern part of segment 6, close to segment 1. This network is orientated in 
East-West direction, perpendicularly to the Moab Fault, in direction of the Salt Wash Fault.  
Outcrop description 
At the outcrop scale (Fig. V-7C); a major N80°N dipping normal fault is branched on the 
Moab Fault and cross-cut the whole 100 meter-thick sedimentary pile, down-shifting the 
Jurassic Navajo, Dewey Bridge, Entrada (Slide Rock Member) and Curtis (Moab Tongue) 
Formations toward the North by about 30 meters. This main fault crosses a secondary 
N100°fault, probably rooted inside the more permeable levels of the Navajo sandstones, this 
fault has only been observed in the Dewey Bridge, Entrada Formations and could be continue 
in younger formations, but the fault plane is eroded. 
This outcrop is characterized by three kinds of discolorations, namely: 
1) Localized along the N80° main fault, carbonate mineralization and discoloration lenses 
affect the Entrada Formation only along the fault trace. The Entrada discoloration (Fig. V-
7C&D) disappears progressively few tens of meters away from the fault trace. This 
discoloration seems to be linked with a fluid circulation along the fault. 
2) The fault N100° has been used as a preferential pathway for fluids inside specific levels of 
the Dewey Bridge Formation (Fig. V-7C). The bleaching follow shift imposed by the fault, 
the displacement of about 2m happened before the discoloration (Fig. V-7E). 
3) The Navajo, at the base of the outcrop, and the Curtis Formation, at the top of the outcrop 
are totally bleached (Fig. V-7C). 
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Figure V- 6. Simplified sediments logs of the studied zones: Moab Anticline, Courthouse Canyon, Green River Area (Crystal Geyser and Ten Mile Graben) and West Ten Mile. From field 

observations (this study) and synthetic logs (Hintze, 2005). These logs are in A3 format in Appendix C. 
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Figure V- 7.Description of Courthouse Canyon area (MF termination).  

A. Geological map of the northern Moab Fault system termination (from Davatzes et al., 2005). Figuration of the 
mineralization mapping from a previous study (Eichhubl et al., 2009). 

B. Courthouse Canyon detailed satellite picture, with faults, fractures and joints indicated in black 

C. Picture of the studied outcrop - faults in red, three kinds of bleaching in white (Navajo and Curtis Formations), yellow 
(Dewey Bridge Formation) and red (Entrada Formation). 

D. Detail of the Entrada (Slick Rock Member) bleaching, located along a N80° fault.  

D. Detail of the Dewey Bridge bleaching, following the shift imposed by a N100° fault.   
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3.3 Little Grand Wash Fault in the Crystal Geyser area 

The Little Grand Wash Fault is running E-W and cross the Green River south of the Green 
River Town. Close to the River, three times a day, large amount of CO2 and CO2-enriched 
water are expelled from an artificial geyser (see chapter IV). This geyser corresponds to a 
well drilled for Oil exploration in the 30'. The Crystal Geyser (To, Fig. V-8A) is located on 
the footwall of the main fault of the N100° Little Grand Wash Fault system. This fractured 
system is complex, composed by series of small segments dominantly with dip-slip 
movement but displaying locally a strike slip component. The segments joint in relay zones 
where the evidence of paleoleakage episodes are expressed by the presence of gas springs and 
travertines of different ages (Fig. V-8A). The fluid escape occurs at variable altitudes, as 
observed in the field (Fig. V-8B) and described by Dockrill, 2005. 
 
Due to the normal component of the main faults along a N-S cross section the Jurassic Bushy 
Basin Member of the Morrison Formation and the Summerville Formation are juxtaposed at 
the surface with Cretaceous shales mainly of the Mancos Formations. Along the fault, both 
Summerville and Mancos Formations are bleached along fractures and faults; this is easily 
observable at the base of some of the hills topped with travertines (Fig. V-8A). 
In the footwall of the northern segment (Fig. V-13A&B) the Summerville Formation is highly 
fractured with vertical bands along which diagenesis apparently linked with iron oxide 
reduction can be mapped and studied. Dockrill (2005) also observed some hydrocarbon traces 
with minor aragonite and calcite veins crossing this formation.   
In the hanging wall of the southern segment, the Mancos Formation, well known as a regional 
seal, is crossed by several thin (5 mm-2cm) bleached fractures N110° and N80° with minor 
calcite and aragonite occurrence.  
The iron oxide fronts, characterized by different degree of bleaching have been sampled away 
from the fault and fracture zones, at different distance (Fig. V-8C&D). 
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Figure V- 8. Description of Crystal Geyser area (LGWF).  

A. Detailed aerial picture of the Crystal geyser area, with faults in red, ancient travertine in yellow and modern source and 
travertine in orange (modified from Dockrill, 2005) 

B. Picture of the studied outcrop - faults in red, travertines in yellow (ancient) and orange (modern). 

C & D. Detail of the bleaching of the Summerville (left) and Mancos (right) Formations. 

 

 

3.4 Salt Wash Fault in Ten Mile Graben 

The Ten Mile Graben is located south of the Little Grand Wash Fault along the Salt Wash 
main Fault. Two parallel antithetic faults border the graben, and the study focused on the 
northern fault where a maximum of fluid leakage is concentrated. This segment is 
characterized by a southward dip-slip displacement juxtaposing the Jurassic Entrada 
sandstones in the footwall with the Cretaceous Cedar Mountain shales in the hanging wall. 
 
Present day CO2 springs, modern and ancient travertine and bleaching evidences are 
observable along the main fault plane and close to the Green River anticline that is oblique to 
the SWF direction (Fig. V-9A). The satellite image of the Green River anticline clearly 
expresses the salt coring deformation and related collapse processes expressed by NS directed 
faults and fractures. 
The modern natural CO2 sources are scattered on the deformed footwall of the major northern 
fault, only the Ten Mile Graben Geyser is located on the hanging wall. This spring is of 



 126 

antropic origin. At surface, the Jurassic sandstones have been deformed at the contact with the 
Cretaceous seal, where hydraulic breccias outcrop (Fig. V-9B).  
Ancient (non-active) travertine attesting former natural CO2 leakage are also scattered along 
the northern segment, upon the Entrada Formation 
  
Fault-related diagenesis in the footwall of the fault consists of iron-oxide reduction and 
precipitation either of gypsum or carbonate veins in the Entrada and Curtis sandstones. These 
veins are located in fractures and faults mainly N110° and SN. Two types of bleaching are 
visible: 1) along reservoir lithologies, in the lower part of the Entrada Formation, marked on 
the map in the whole Ten Mile Graben zone 2) along N-S fractures, developed on the eroded 
axis of the Green River Anticline and fault satellites. The NS direction is even visible on the 
satellite pictures scale (Fig. V-9 A&B).  
The surface travertine and travertine veins linked with the Quaternary CO2 circulation 
(Dockrill, 2005) are located above the bleached zones and veins. The structure leads to two 
hypotheses: 1) the bleaching happened prior to the CO2 Quaternary circulation and is the 
witness of another circulation: the fault records episodic circulation events, or 2) the 
bleaching is contemporaneous to the Quaternary CO2 circulation. 
 
Microstructure analysis of the orientations and distribution of the bleached and unbleached 
fractures allowed tracing a stereo-plot of the fracturation (Fig. V-9C). Four main directions 
have been evidenced: NS, N60°, N100°, N150°. Along fault and fracture, bleaching has been 
evidenced dominantly along the NS and N100 directions. 
- along the NS fractures reduction lenses from 2 to 5 cm long are recorded and the circulation 
is particularly well expressed in the Ten Mile Graben Anticline as a dense network observable 
at the surface (Fig. V-9D). Detail pictures of these features (Fig. V-9E) show that they are 
organized around central compacted low permeability sandstone bordered by symmetrical 
bleached fronts.  
- the N100° faults and fractures record also bleaching of more than 10 centimetres to even 6 
meters wide. Mineralization (calcite, aragonite and gypsum) are linked with these directions. 
Along the N100° direction, the majority of fluid-circulation evidences is coeval with the 
normal fault activity of the Salt Wash Fault. The NS direction corresponds to the collapse of 
the anticline. The N150° and N60° fractures are totally dry. The paleo-circulations are only 
observed along NS and N110° direction. 
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Figure V- 9. Description of Ten Mile Graben area (SWF)   

A. Ten Mile Graben satellite picture, with location of the modern and ancient CO2 leakage zones, bleaching zones along 
the fault trace (completed from K. Ogata map and observations –unpublished data- and completed with our field 
work observations) 

B. Ten Mile Graben outcrop view of the SWF, in red, separating the Jurassic Entrada Formation (footwall) from the 
Cretaceous Cedar Mountain Formation. 

C. Stereo-plot of the microstructure analysis, direction of fault, joints and fractures determined in the field – dry 
fractures/joints in black and bleached fractures, joints and faults in red. 

D. Network of NS bleached fractures within the Entrada Formation. 

C. Detail of a NS fracture: zone (lenses) of bleaching surrounding joints in compacted sandstone.  
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3.5 Description of Western Part of the Salt Wash Fault 

The outcrop is located close to the San Raphael Swell along the Salt Wash Fault prolongation 
(Fig. V-2). The Entrada Formation is outcropping and no fault displacement is visible. The 
red sandstones are cross cut by a series of parallel N110° joints, with a regular spacing of 2-10 
m between the joints. These joints could be bleached or unbleached, the bleaching lenses are 
regularly, centimeter to meter wide. The joints act as impermeable barrier to the fluid flow; 
the lenses show fluid concentration along the joints (Fig. V-10). 
 

 
Figure V- 10. View on the western part of the Salt Wash Fault area. - Top. General view of the area with a dense network of 

bleached N110° joints. - Bottom. Details of the general view: A. Discoloured (bleached) joints N110° and oblique to 
this main direction. – B. Discoloured lenses along unbleached joints N110°. 
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3.6 Synthesis of field work observations: four types of discoloration at the 
outcrop scale 

Four different kinds of discoloration structure were described in the field (Fig. V-7-10): 1) 
along the all formation (type 1), 2) large discoloration patch localized in a part of a formation 
(type 2), 3) along main faults, fractures and joints (type 3) and 4) located in a particular 
stratigraphic level and following former fault  displacement (type 4).  
 

o Type 1 
At the outcrop scale, the Navajo sandstones and the Curtis Formation in Courthouse Canyon 
zone (Fig. V-7) are almost fully discoloured (discoloration type 1). This attests a circulation 
along the entire reservoir interval.  
o Type 2 and 3  
Lateral variations affect the Entrada and the Curtis Formations. 
In the case of the Entrada Formation, the lithologies evolve from Aeolian signature in the 
South-East (Courthouse Canyon, Fig.7); with type 3 discoloration, to fluvial signature to the 
North West (Ten Mile Graben to West Ten Mile, Fig. V-9&10), with discoloration type 2 and 
3.  
In the Ten Mile Graben area, the bleaching totally affects the basal part of the formation and 
is only observable along faults and joints into the upper part of the formation (type 2). This 
may be due to 1) a change of porosity between the two parts of the formation or to 2) the 
existence of a paleo–bleaching level into the reservoir. In the Ten Mile Graben area, the 
Curtis Formation (capping the Endrada) is rarely bleached. Consequently, the upper part of 
the Entrada could correspond to a transition zone between the two formations, validating the 
first hypothesis.  
The Curtis Formation is highly fractured and bleached in the Courthouse Canyon site (type 1) 
(Fig. V-8) whereas only thin discoloured fractures cross the formation along the Salt Wash 
Fault (type 2) (Fig.9).   
o Type 4 
The Dewey Bridge, which is a member of the Carmel Formation (a regional seal), is 
characterized by a particular bleaching in courthouse Canyon area. The discoloration followed 
the displacement of a N100° syn-sedimentary fault (discoloration type 4), and is expressed by 
a sharp front (20 cm). 
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4. Preliminary diagenesis analyses 

From the field observations, diagenetic processes can be inferred namely: (1) linked with the 
fluid circulation along a fault or (2) related to fluid circulation along the reservoir before of 
after fault activity. Petrographic and geochemical data will now be presented as the keys to 
constrain the variability of these processes in space and time.  
The following description of the bleaching is bases on analyses coming from a selection 
of thin-sections and powders of unbleached and bleached samples. We doesn't pretend 
to propose quantitative analyses but preliminary results, as the aim of this work is to 
propose a new approach to understand and study bleaching processes at the fault scale. 
With this objective, several methods have been tested, delineating a workflow as a base 
for future detailed studies. 
 

4.1 Preliminary petrographic comparison of unbleached and bleached 
formations 

4.1.1. Initial stage 

Several pre-bleaching diagenetic events were in the case of eolian formations, such as the 
Navajo Formation (CC) and the Entrada Formation (CC) three main features are recognised: 

1. the grains have been damaged during the eolian transport and became surrounded 
by a dark-brown coating. This coating may consist of clays or iron oxides (i.e. hematite, see 
for example Chan et al., 2000).  Iron oxide film has only been observed in the Navajo 
Formation. 

2. micro-stylolites and grains interpenetration evidences indicate pressure-solution 
processes relative to the burial history  

3. a part of the porosity has been plugged by orange luminescent no-ferroan calcite 
cement in the case of the Navajo Formation and by non-luminescent non-ferroan calcite 
cement (not stained by the coloration) in the case of the Entrada Formation.  
 

In the case of the other fluvial Dewey Bridge Formation (Cc), Entrada Formation (TM, 
WTM) and Summerville Formation (Cg), the grain-size of the detrital elements, is smaller 
with a high content of brown clays (absorbing the light), so as a study of the events prior to 
the bleaching is perilous. As in the eolian formation cases, the grains are coating by a dark-
brown film. 
 
4.1.2. Bleaching effect 

All the bleached formations, patches of sediments or fractures and seals are characterised (by 
observation of thin section) by the lack of iron-oxides grains coated and the decreasing of the 
dark-brown agglomerates of clays. However, one can also underline that, depending of the 
formation; the expression of the bleaching is somewhat different with three typical cases: 
- In the case of the Navajo sandstones (Fig.11), an increase of the porosity as well as a 
decrease in the luminescent non-ferroan calcite cement is detected. This cement could be 
dissolved and either removed from the bleached sample by the fluid circulation or precipitated 
under another form. 
- In the case of the Dewey Bridge Formation (Fig.12), a decrease in amount of the orange 
luminescent non-ferroan calcite grains or cement expresses the bleaching.  
- In the case of CC (Crystal Geyser) and TM (Ten Mile Graben) Entrada Formation (Fig.15, 
Fig.16) and CG (Crystal Geyser) Summerville Formation (Fig.16), the porosity is plugged 
with orange luminescent calcite and in the case of WTM (West Ten Mile) Entrada Formation 



 131 

(Fig.15) with non-luminescent calcite cement. The TM Entrada and the CG Summerville 
Formations show particular dense patches of luminescent non-ferroan calcite cements and 
micro-veins of iron-oxide. 
 

4.1.3. Synthesis 

The visible effect of the bleaching is the discoloration of the rocks. The red colour of the 
initial samples can come from the coating and/or from the dark-brown clays, that could be 
enriched in iron oxides, filling the porosity and covering the grains. The coatings have been 
determined as hematite in the case of the Navajo Formation by previous authors (Chan et al., 
2000) but its composition as well as the composition of the dark-brown clays in the case of 
the other formations have been checked with SEM mapping and punctual analysis (see §4.2).  
 
Subsequently, the iron oxide responsible for the red coloration could have been vanished due 
to reaction with circulating fluids and being transported out of the system, but it could also 
have been reduced and incorporated into ferroan carbonates. Considering the existing 
carbonates, coloration does relate to ferroan calcite present in the bleached samples, only low 
content was recorded in the Entrada sandstones at West Ten Mile, others minerals have to be 
considered. 
 
Finally, except the obvious disappearance of the coating around the grains and the visible 
decreasing of the dark-brown clays, the bleaching provokes a different aspect according to the 
affected formations.  
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Figure V- 11. Optical microscope (A1 & B1), cathodoluminescence imaging (A2 &B2) and alizarine staining (A3 & B3) of 
the Navajo Formation, Courthouse Canyon. A1-A4 Initial (unbleached) sample and B1-B3 bleached sample. The 
observations are summarized on A4 and B4 schemes. 

Optical observation of the initial sample (A1) evidences a dominant quartz grains composition with an intergranular 
porosity (Choquette & Pray, 1970) of about 10% (in blue, visual estimation). The quartz grains are well sorted, sub-
rounded with a high sphericity (Folk, 1974), shape- damaged and are surrounded by a dark-brown coating. Micro-
stylolites and grains interpenetrations are visible at the grains contact and the coating is lighter or event absent in 
these zones. Non-luminescent dark-brown clays plug a part of the porosity and cover some grains. Orange 
luminescent calcite cement plugs a part of the porosity (A2), alizarine staining evidence that this cement is non-
ferroan calcite. 

Optical microphotograph of the bleached sample (B1) evidences a slight higher final porosity that can be estimated 
at ~15%. The main differences with the initial sample are the disappearance of the dark-brown grains cutting, 
decreasing of the dark-brown clays (agglomerates) and of the non-ferroan calcite cement.  
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Figure V- 12. Optical microscope (A1, A2, B1 & B2), cathodoluminescence imaging (A3 & B3) and alizarine staining (A4 & 

B3) of the Dewey Bridge Formation, Courthouse Canyon. A1-A4 Initial (unbleached) sample and B1-B4 bleached 
sample. The observations are summarized on A5 and B5 schemes. 

Optical observations of the initial sample (A1) evidence small quartz, calcite and feldspars grains (micrometer size). The 
grains are surrounded by a dark-brown coating. Cathodoluminescence and stained thin section microphotograph 
(A2&A3) evidence orange luminescent non-ferroan calcite grains. The green luminescent spots are due to the 
polishing powder. 

Optical microphotograph of the bleached sample (B1) evidences a rising of the dark-brown (reflecting the light and non 
luminescent) clays and the disappearance of the dark-brown coating around the grains. Cathodoluminescence 
and staining (B2&B3) highlight a decreasing of the orange luminescent non-ferroan calcite grains or cement. 
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Figure V- 13. Optical microscope (A1, A2, B1 & B3), cathodoluminescence imaging (A3 & B3) and alizarine staining (A4 & 

B4) of the Entrada Formation, Courthouse Canyon. A1-A4 Initial (unbleached) sample and B1-B4 bleached sample. 
The observations are summarized on A5 and B5 schemes. 

Optical microphotograph of the initial sample (A1&A3) evidences a dominant quartz grains composition with an 
intergranular porosity (Choquette & Pray, 1970) of 15% (in blue) and a calcite cement. The large quartz grains (50% 
of the grains of more than 150 micrometers) are not well sorted shape-damaged and coated by a dark-brown 
coating. Micro-stylolites and grains interpenetrations are visible at the grains contacts. Small (less than 30 
micrometer) orange luminescent non-ferroan calcite can be evidenced with cathodoluminescence imaging and 
with alizarine staining (A4). 

Optical microphotograph of the bleached sample (B1&B2) evidences the disappearance of the dark-brown coating and the 
plugging of the porosity with non-ferroan calcite cement (B3&B4). 
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Figure V- 14. Optical microscope, cathodoluminescence imaging and alizarine staining of the Entrada Formation, Ten Mile 
Graben. A1-A4 the initial sample is crossed by a bleached zone, and at the center of this zone, there is a zone 
(micro-vein) of iron oxide high contain.  B1-B4. Microphotographs of the center of a bleached fracture. The 
observations are summarized in A4 and B4 schemes. 

Optical observation of the initial sample composition (A1 & A2) evidences a dominant quartz grains composition (less 
than 50 micrometers in diameter) and clays, absorbing most of the light. The grains are coating by a non-
luminescent dark-brown coating. Small (less than 30 micrometer) non-ferroan calcite can be evidenced with 
staining. 

Optical photomicrograph of the a bleached area (A1 &A2) evidences the disappearance of the dark-brown coating and 
concentration of the dark-brown clays in thin veins. 

Photomicrograph of the center of a bleached vein (B1&B2) evidence an orange luminescent non ferroan calcite cement 
(B3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V- 15. Optical microscope (A1-2&B1-2), cathodoluminescence imaging (A3&B3) of the Entrada Formation, West Ten 
Mile. A1-A3 initial (unbleached) sample and B1-B3 bleached sample. The observations are synthesised on A4 and 
B4 schemes. 

Optical observation of the initial sample (A1 & A2) evidences a dominant quartz grains with an intracrystalline porosity 
(Choquette & Pray, 1970) of 5% (in blue) and a calcite cement (non-luminescent). The quartz grains are shape-
damaged and are surrounded by a dark-brown coating. Non-luminescent dark-brown clays plug a part of the 
porosity and cover some grains. Small (less than 30 micrometer) orange luminescent calcite can be evidenced 
with cathodoluminescent imaging (A3). 

Optical microphotograph of the bleached sample (B1&B2) evidences the total plugging of the porosity with a non-
luminescent calcite and the disappearing of the dark-brown coating (B3). 
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Figure V- 16. Optical microscope (1-2), alizarine coloration (3a-3b) and cathodoluminescence imaging (4) of the 

Summerville Formation, Crystal Geyser area. The sample is crossed by a bleached zone and at the center of this 
zone there is a micro-vein of iron oxide high contain. The bleaching zone is separated of the initial zone by a dash 
line in the microphotograph 4. All the observations are summarized on schema 5. 

The initial stage is characterized by tens micrometer sized quartz grains and non-ferroan calcite (A3) surrounded by 
brown clays reflecting the light (A1&A2). The grains are surrounded by a dark brown coating. 

The bleached zones are characterized by the disappearance of the gains coating, a concentration of the iron oxide in 
micro-veins (A1&A2) and patches of non-ferroan luminescent calcite cement (A4). 
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4.2 Preliminary SEM punctual analysis & mapping 

In order to check and improve the information obtained from preliminary petrographic 
analyses, preliminary SEM mapping and punctual analysis have been performed on samples 
from two different formations from the same area, namely the Dewey Bridge and Entrada 
Formations of Courthouse Canyon zone (Fig. V-17 & 18).  
 

 

4.2.1. Dewey Bridge Formation 

The previous observations of the non-bleached sample (Fig. V-12), e.g. occurrence of small 
quartz, grains coated by an undetermined micrometric dark-brown coating, and surrounded by 
clay minerals enriched in iron oxide, are confirmed and enriched by SEM mapping (Fig.17 
A1). In addition, one can observe that there is not higher iron oxide concentration around the 
grains. The grains coating is composed of silicium (Si), aluminum (Al), sodium (Na), and iron 
(Fe). This composition corresponds to clays minerals and not to pure hematite as in the 
Navajo Sandstones case (Chan et al., 2000). The SEM mapping precision is 1 micrometer, the 
film is thinner than this accuracy and consequently this analysis has to be considered with 
caution, particularly in the contact zones between two mineral. 
 
The SEM mapping of the bleached sample (Fig.17 A2) directly shows a new Ca-carbonate 
phase in the cement. Petrographic analyses showed that the bleaching provoked a decrease of 
non-ferroan calcite. SEM mapping confirms this observation and shows that a new calcite 
replaces the clays. Furthermore, the smaller iron oxides have disappeared. 
 
SEM punctual analyses quantify the differences between the initial (Fig. V-17 B1) and the 
bleached sample (Fig. V-17 B2). The bleaching concurs with a rise in Ca that is interpreted as 
Ca-carbonates concentration, a light rising of the Na-feldspar content and a decrease of the 
clay content. The iron total content difference between the two samples can hardly be 
estimated, a slight decrease relating to the decrease in clay content is visible. However the 
major part of the iron is still present into the bleached sample. 
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Figure V- 17. Preliminary SEM analyses of the Dewey Bridge bleaching, Courthouse Canyon.  

A. Local mapping of a 500*400 µm zone selected on the non-bleached (A1) and bleached sample (A2). Compilation of the 
different elemental maps has been processed with Matlab®. 

B. Summing of punctual analyses on the studied thin section surface, non-bleached (B1) and bleached sample (B2) with 
an accuracy of 1 µm.  Consequently several analyses correspond to different “touching” minerals which are 
grouped as" mix". More than 1500 punctual analyses have been performed for each sample. 
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The XRD analysis of a discoloration front (Table V-1) shows a change in clays composition: 
in the non-bleached samples the clays consists of smectite, however in the bleached sample 
illite is present.  
 
Table V- 1. XRD analyses of a Dewey Bridge bleaching front, Courthouse Canyon. A represents the initial sample, B1-B3. 

represent bleached samples, B1. is located 1 meter-away from the bleaching front, B2. 50 centimeter-away and B3 
on the bleaching front. 

 Discolored zone Red 
zone 

 B1  B2 B3 A 
ankerite +    
smectite 
illite 

 
++ 

 
++ 

+ 
+ 

++ 

quartz + + + + 
calcite    + 
ox. IronIII    + 
dolomite + + + + 
feldspath + + + + 
microcline + + + +  

 

 

 

4.2.2. Entrada Formation 

The SEM mapping (Fig. V-18 A) of a thin-section zone confirmed the initial composition of 
the Entrada Formation (Fig. V-13). Then, SEM mapping shows: 

1) the occurrence of iron oxide minerals of ~50µm large; 
2) the grains coating is, as in the Dewey Bridge Formation case, composed of clays; 
3) the occurrence of pure clays and clays mixed with carbonates plugging the porosity; 
4) as in the Dewey Bridge Formation case, the iron oxides are scattered within the clay 

component. This information is less visible on the general maps, for this reason a map of the 
Fe oxide repartition is presented (Fig. V-18 B1).  
The bleaching (Fig. V-18 A2) provoked the disappearance of the coating around the grains, 
which is now porosity. Quantification (Fig. V-18 C1&2) indicates an augmentation of Ca that 
is interpreted as Ca-carbonates present in the cement. 
The iron concentration shows the same tendency as in the Dewey Bridge case, even if the clay 
part is less important. 
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Figure V- 18. Preliminary SEM analyses of bleaching Entrada sandstone, Courthouse Canyon.  

A 1& 12. Mapping of a 500*400 µm zone selected on the initial (A1) and bleached sample (A2). Compilation of the different 
elemental maps has been processed with Matlab®. 

B1. Elemental map of initial sample iron oxide: the iron is scattered between the clays. 

C1 & C2. Cumulative contents of punctual analyses of initial sample (C1) and bleached sample (C2). The punctual 
analysed has an accuracy of 1 µm, consequently several touching minerals are counted together and are grouped 
in the "mix" group. More than 1500 punctual analyses have been performed on each sample. 
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4.3 Goechemistry of major elements- primary analysis 

In order to compare the bleaching evidenced in different formations and zones in the field, a 
representative sample collection has been selected from the studied outcrops. The chemical 
composition of these samples is given in Table 1 to 3 (Appendix B).  
In the Courthouse area, bleached fronts of the Navajo, Dewey Bridge and Entrada Formations 
have been analyzed, as well as the Curtis Formation that is fully bleached in the area.  
In Ten Mile Graben, the Entrada bleaching fronts have been mainly studied together with the 
Curtis Formation.  
In Crystal Geyser, the Summerville and the Mancos Formations were studied. 
Finally, in West Ten Mile, the Entrada Formation has been analyzed. 
 

Fig. V-19 represents the evolution of several oxides present in different diagenetic minerals 
with respect to SiO2 (initial composition before discoloration and final composition after 
bleaching) in several formations and locations. The graph are not normalized in order to keep 
the data range of order, for that reason the y axes are scaled in function of the oxide 
concentration, as the ranges of value are different from one oxide to another, the scales are 
changing from one graphic to another. 
 
Two groups can immediately be differentiated based on the SiO2 content of each sample: 

1) A large part of samples from the different formations ranges between 70 and 100% 
of SiO2, showing the dominance of quartz and the silicoclastic nature of all these 
samples. These samples are from the Navajo sandstones, the Dewey Bridge and 
Entrada Formations, and also from a part of the Curtis Formation. 
2) The Crystal Geyser Mancos shale and a part of the Curtis Formation (Curtis 
Formation from Ten Mile Graben area) samples are characterized by a low SiO2 
concentration, less than 40%; the data show the heterogeneous nature of these 
formations. These formations are also characterised by an important effect of the 
bleaching of the main oxides, this effect is describe below. 

 
Al2SO3 exhibits a negative trend (from the initial, in red, to the bleached sample in white) for 
the first group and a positive global trend for the second group. That suggests a clay mineral 
control on the variation of the major elements composition in the first case, as the 
concentration in Al2SO3 is higher than 10%. Na2O and TiO2 also exhibit opposite trends 
between the two groups. Na2O concentration is negligible and may be indicative of low to 
negligible existence of albitic plagioclases. 
 

Although iron oxide removing (or reduction) associated with the bleaching (Fig. V-12-16) 
seems to be a dominant effect (observation made in the previous item: petrography analysis), 
the total Fe2O3 concentration of the samples is lower than 4% with a gap between the initial 
and bleached samples smaller than 0.5% concerning the majority of the formations. Even 
thought, the general trend is a decrease in iron oxide content with increase in bleaching. 
This negative general trend is also observable in the MgO, K2O and P2O5. This decrease could 
be associated with the decreasing of dolomite (Mg-carbonate) and K-feldspars. However 
these oxides represent minor quantities in the system. Moreover, no dolomite has been 
attested during the petrography study. 
 
Finally, only CaO shows a positive trend (from the initial, in red, to the bleached sample in 
white) for all the formations (excepting the Dewey Brigde Formation), particularly for group 
II formations. This could be an effect of Ca-carbonate precipitation in the system. 
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Figure V- 19. Plots of SiO2 vs major oxides of Navajo, Dewey Bridge, Entrada, Curtis Formations in Courthouse Canyon 

(CC), Green river (TM & CG) and West Ten Mile (WTM) zones. We also report the values for the Mancos shale and 
Summerville Formation in Green River area. 
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5. Discussion 

5.1 Link between discolorations (so called "bleaching" fronts), and degree of 
diagenesis 

In our study, four different kinds of discoloration features were described in the field (V-7-
10): 1) those occurring along the entire formation, 2) large localized discoloration patch 
affecting only part of a formation, 3) along main faults, fractures and joints and 4) located in a 
particular stratigraphical level and following former fault displacement.  
Then, three main bleaching types have been recognized by the induced effects on the rock 
properties (Fig. V-11-19). The resulting processes are supposed to be strongly dependant on 
the initial lithology of the sample, on its former diagenetic history and finally on the fluid 
composition and temperature (Fig. V-20). 
Looking to the consequence on the porosity on the thin sections (Figs. V-11-16), three types 
of bleaching can be distinguished: 
 - Bleaching type I: where porosity can rise with the removing of orange luminescent 
non-ferroan calcite cement  
 - Bleaching type II with two subtypes: IIa. the porosity is plugged by the 
precipitation of a new non-ferroan luminescent calcite cement, or IIb. by a ferroan calcite 
cement, and finally, 
 - Bleaching type III: the porosity is non affected at all. Here, the bleaching processes 
provoked a decrease in amount of the orange luminescent non-ferroan calcite grains or 
cement, the precipitation of a ferroan calcite cement and a illite-smectite transition within the 
clays. 
 

Type I 
The bleaching type I has been observed in the Navajo Formation which was described in the 
field at Courthouse (Fig. V-7) as totally bleached (field discoloration structure type 1). 
The observations of the disappearance of the grains coating of hematite, and the decreasing of 
the content in luminescent calcite cement, is evidenced at the thin section scale (Fig. V-11) 
and points towards oxide mobilization during bleaching. This iron likely is then precipitated 
out of the system, forming marble-shaped rocks known as concretions, which are common at 
the top of Navajo outcrops, in southern Utah (Chan et al., 2004). Following this model, the 
discoloured zones reflect reducing processes using a large volume of fluids. Previous studies 
(Beitler et al.,2003, 2005) proposed that the removal of iron from the system could be linked 
with buoyant, migrating hydrocarbons. However, hydrocarbon traces are only visible along 
faults (Chan et al., 2001; Davatzes et al., 2005), without well expressed and largely 
observable traces along reservoir itself as observable in classical exposed oil reservoirs. 
The Navajo is well known as a regional aquifer and in which many reducing fluids may have 
circulated during the geological burial and uplift history. Depending on the red-ox conditions 
in the reservoir at each period, fluids such as hydrocarbon, CO2 and H2S coming from buried 
reservoirs can be alternatively considered as reducing fluids interacting with rock cements 
and/or fault mineralization. For instance, few kilometers from Courthouse Canyon, under 
Crystal Geyser, the recent transfer of water and CO2 has been proved (see Fig. V-8). At 
geological scale, we must then consider the hypotheses of several events of fluid circulation 
and reduction phases along specific aquifers at the same place. The chronology of the 
different episodes has to be established with much more extensive sampling and detailed 
petrography. 
 

Type IIa 



 149 

The type IIa bleaching has been studied in the Entrada Formation (Fig. V-13 &14) in the 
Courthouse Canyon and in Ten Mile Graben (structure study Fig. V-8&9), as well as in the 
Summerville (Fig. V-16) and Mancos Formation in Crystal Geyser area (see Fig. V-8). It is 
clearly associated with faults, fractures and joints (field discoloration structure type 3), 
where it evolves depending on the lithology: the bleached fractures are thinners as the shale 
composition increases. The fractures are indeed millimetric into the Mancos shale Formation, 
centimetric into Ten Mile Graben fluvial Entrada and metric into the Eolian Courthouse 
Canyon Entrada.  
 
A detailed study of the Entrada Formation in Courthouse Canyon (Fig. V-13, 18) showed it 
has been, initially (red sample) plugged with ferroan calcite cement before the last bleaching 
event. The bleached samples are supposed to have suffered a dissolution phase before/while 
being plugged again with a luminescent non-ferroan calcite. Two interpretations can be 
considered: 
1) This could correspond with a 2 steps bleaching model (Spanbauer et al., 2009 and Loope et 
al., 2011). CO2-fluid circulation leads to the precipitation of iron enriched carbonates initially 
trapped within the sandstone, and then, groundwater circulation bleached the sandstones 
driving out of the system the iron-enriched solution, to the places where oxide concretions 
formed. 
2) On the other hand, calcite cement and hydrocarbon traces have been evidenced by Eichhubl 
et al. (2009), along fractures and joints in Entrada Formation, this could indicate, for these 
authors, the circulation of hydrocarbon bearing fluids. 
 
Type IIb 
The principle is the same as bleaching type IIa, but in this case a new ferroan calcite cement 
plugged the existing porosity on both sides of the low permeability and porous tectonic joints. 
In this case, only the grain coating is removed, and the oxide-enriched clays stay on site. The 
iron could be then trapped in the reservoir thanks to the precipitation of the ferroan calcite 
cement. This could correspond to the first diagenetic episode of the models presented by 
Spanbauer et al. (2009) and Loope et al. (2011). 
 
Type III 
The bleaching type III has only been studied in the Dewey Bridge Formation (Fig. V-12, 17, 
Table V-1) of Courthouse Canyon area and is located within particular shaly stratigraphical 
level (see Fig. V-7). It was following the base of local seals and is distributed along the N100° 
previous fault rooted in the Navajo Sandstones, along which was registered less than one 
meter of displacement (field discoloration structure type 4). The Illite to smectite transition 
(table 1) could indicate that the fluid temperature was exceeding 90°C, and was related to the 
migration of a fluid coming from the Sevier foreland basin, where a maximum of burial was 
reached laterally. However, this is only a hypothesis, the illite-smectite transition need to be 
calibrated in detail, then others factors, such as potassium concentration, infer in the reaction. 
Then, going on with our hypothesis, the precipitation of ferroan calcite cement could correlate 
with the decreasing of the iron oxide contain observed in analyses, which indicates the re-
precipitation of the iron in the carbonates. 
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Figure V- 20. Synthesis of bleaching characteristics of the Jurassic Navajo to Cretaceous Mancos shale along the Moab, Little Grand Wash and Salt Wash Faults, in four different zones 

(Courthouse Canyon-CC, Crystal Geyser-CG, Ten Mile Graben-TM and West Ten Mile-WTM). 

Structural observations are compiled on a synthetic log (left) and formation diagenesis on synthetic schemes (right).  
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5.2 What is the architecture of the fluid circulation along faults from the depth 
to the surface? 

Different types of bleaching are expressed all along the sedimentary pile, depending on the 
lithology and the fracturing or faulting expression in each formation. A similar fluid 
circulation could be then differently expressed, depending 1) on the petrophysical properties 
of each formation, and 2) on the chronology between reservoir diagenetic evolution and 3) on 
the timing of faulting.  
Structural links between the different bleaching types have been observed. For instance, in 
Ten Mile Graben the bleached fractures could originate from the Entrada Formation (bleached 
Entrada base) (Fig. V-8): fluids of a reservoir thus may have migrated along faults, fractures 
and joints.  
The along-fault fluid migration is also observable at larger scale: oil traces have been 
identified both along faults and joints of the Jurassic formations in Courthouse Canyon area 
(Chan et al., 2001; Davatzes et al., 2005), as well as in Green River area along a segment of 
the main fault plane (Little Grand Wash Fault) (Shipton et al., 2004; Dockrill, 2006). As no 
large staining or oil traces are visible along the bleached outcropping reservoirs, the 
hydrocarbons must have migrated from deeper reservoirs, conveyed by the fault and joint 
pathways. In Ten Mile Graben, huge gypsum mineralization, witnesses of brine circulation, 
are also observable within NS fractures (Dockrill, 2005). This gypsum mineralization can be a 
weathering product of pyrite, delivering sulphate and Ca from the cemented sandstones, but 
its can also be witness of a brine paleo-circulation. The gypsum mineralizations are in some 
cases in association with oil traces (Dockrill, 2005). Consequently, if the gypsum indicates a 
brine paleo-circulation, the oil could be originated from source-rocks and reservoirs of the 
thick paradox salt petroleum system (Hitze, 2005). Thus, at present day, an oil seep is located 
upon the Little Grand Wash Fault trace. Oil analyses indicated Phosphoria oil type, which 
point on Pennsylvanian origin (Lillis et al., 2003). The origin of the gypsum could be 
determined with isotopes analyses. 
 
CO2 and water circulation are today active in the Navajo sandstone, bellow the Little Grand 
Wash and Salt Wash Faults, and this aquifer surely acts as a temporary reservoir for fluids 
and CO2 of deeper origin (Kampman et al., 2009; Jeandel, 2008). The CO2 (dry or with water) 
rises up to the surface thanks to the faults low permeability transfer zones and is associated 
with the modern carbonated system: veins and travertines are deposited in near surface and at 
the surface (Shipton et al., 2004; Burnside, 2010; Frery et al., submitted).  
 
In this study, we identified that the fluid circulation link between the different reservoirs 
along the sedimentary pile has been using joints, fractures and faults. The fluids, water, 
hydrocarbons and/or CO2 coming from the depth either be stored and mixed in several 
reservoirs at depth, or could be directly be conveyed to the surface as locally expressed by the 
fault leakage. Different fluid circulations or leakage systems could affect a same zone, during 
several episodes, the determination of the precise nature and origin of each of these paleo-
fluids looking at the present rock diagenesis remains still uncertain without an extensive study 
of each reservoir diagenesis and fluid evaluation. It would be then possible to document 
properly a reactive transfer modeling. 
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5.3 Conceptual fluid transfer modeling at regional scale: Timing of the episodic 
leakage within the tectonic history 

A synthetic scheme (Fig. V-21) summarizes the entire following hypothesis made in order to 
characterize the fluid circulation with respect to the regional tectonic evolution. 
 
a) Moab fault northern termination (CC) 
The analyses on the Dewey Bridge bleaching in CC underlines that the reducing fluid must 
have been at least warmer than 90°C. Considering a geothermal gradient of 3°C/100m, the 
depth of circulation must be > 3km. From thermochronologic data, the erosion rate from 
Jurassic to Eocene was about of 30m/My (Bernet et al., 2002). The uplift of the Colorado 
Plateau has been estimated around 3km during the last 6My (Perderson, 2008), but started 
during the Eocene (Prousevitch et al., 2002; Denniston et al., 2008). Consequently, the Dewey 
Bridge bleaching, corresponding to the Fluid 1 may have happened before the Colorado 
plateau uplift, and the formation diagenesis occurred probably during the Eocene Time. 
 
The N80° normal fault displacement occurred at least after the N100°. This fault is orientated 
in the direction of the Salt Wash Fault and relays the Moab Fault termination towards the 
NW. It can be interpreted as a propagation and re-orientation of the Moab faulting toward the 
west, where the high sediment loading in the Courthouse Syncline would be responsible for 
the re-routing of the faulting. The Moab Fault main displacement stopped during the lower 
Paleocene times (Foxford et al., 1996). Based on paleomagnetism studies along the Moab 
Fault. Guscott et al. (1997) outlined massive fluids circulations from -58 to -53 Myrs and 
from -53 to -47 Myrs. This period is also marked by bituminous and carbonate veins 
evidenced along the Moab Fault roll-over (Foxford et al., 1996).  
 
Consequently, displacement along these two N110° faults could have happened from 
Paleocene to Eocene, which is contemporaneous to the Laramide thick-skin tectonics. 
However fluid circulation along the N80° fault could also have happened latter, at the end of 
the Tertiary, sometime during the uplift of the Colorado Plateau. For instance, some 
precipitation in the Moab Fault has been dated (Ar/Ar method) indicating that that an episode 
of the fluid migration occurred during the Colorado plateau rise, about 25 to 20 yrs ago, and 
may also have corresponded to the observed bleaching. 
In Courthouse, the bleached Navajo Formation and Curtis strata are displaced by the faults: 
the bleaching along these reservoirs happened prior to the along faults bleaching, e.g. before 
the Paleocene. 
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b) Salt Wash and Little Grand Wash Faults 
Very few information is available on the old fluid history in the Salt Wash and Little Grand 
Wash Faults area. Bleaching traces and mineralizations localized along these faults indicate i) 
that the same fluid has provoked and is provoking (as the mineralization are linked with 
present-day CO2-fluid circulation) either effects (bleaching and mineralizations) or ii) that 
different pulses of circulation have been and are localized in the same structure. Field 
observations such as erosion of the bleached sandstones, comparison with Courthouse Canyon 
site, absolute and relative datings issue from previous works in Moab area (Solum et al., 
2005; Chan et al., 2001; Guscott et al., 1997) let infer that the bleaching could have begin 
with Tertiary fluid-circulation, with the Laramide tectonics (Dockrill, 2006) and is continuing 
until the end of the Tertiary, when the formations start to become exhumes.  
 
Circulation along the extrado NS fractures and joints have been developed on salt-core 
anticlines in the area linked with early tectonic episodes (Fig. V-6) and also either with a 
reactivation during the Uinta uplift (age) of late Laramide tectonics during the initiation of the 
Colorado Plateau rising. Consequently, the timing of the bleaching along the NS direction can 
hardly be calibrated. 
 

 
Figure V- 21. Synthetic schema of timing of fluid circulation hypotheses with respect to previous studies. 

 (see references on the figure), with tectonics and faulting history (northern termination of the Moab fault, Salt Wash and 
Little Grand Wash Faults). 
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6. Conclusion 

This study developed an analysis of paleo-circulation at the basin scale. A chronology of 
circulation processes along faults and reservoirs have been proposed with a multidisciplinary 
observation and analysis of the fluid flow architecture path  from the field to the thin-section 
scale. 
Two different episodes of along faults paleo-fluids circulations are clearly distinguished.  

1) A first circulation during the burial history of the formation has been identified 
within the Dewey Bridge member of the Carmel Formation in the northern termination of the 
Moab Fault.  

2) A second circulation is linked with the most observed bleaching type of the red 
Jurassic sandstones. This study show that the along fault circulation could happened during 
the Tertiary, with different episodes during the Laramide uplift and the Colorado rising. This 
circulation is issue from deeper circulation as the along formation circulation observed in the 
Navajo sandstones  
A last circulation, linked with the present day surface leakage of CO2 and hydrocarbon, shows 
the episodicity of the circulation and also that different circulation can be observed along the 
same fault: different segments of the fault could be connected or disconnected with sources 
from the Navajo aquifer or sources from the Permian brines. A number of remaining 
questions are still pending relating to these Quaternary circulations. Are the bleached 
pathways used as a structural heritage? Is the bleaching observed at the base of the travertines 
deposits dominantly linked with the present-day circulation? 
 

The fluids coming from the deep transect series of different lithologies and could 
consequently be affected. Furthermore, the bleaching diagenesis is closely dependent on the 
formation lithology. Consequently, dedicated analyses of each formation are necessary to 
continue the present study. Then, the further step would be to model the evolution of transfer 
properties, such as permeability evolution, in a faulted zone. 
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B. Numerical modeling perspectives 

For approaching the physical and thermodynamic processes involved during along-faults 
circulation, two kinds of modeling have been attempted. 
- In the PERCOL model presented in the Chapter IV, we considered that the fault is defined 
as a plane which can be alternatively open or closed. In this model the physical properties of 
the host rocks and of the fault itself are not a parameter. The model focus on the circulation in 
this free space. The objective was to characterize the phases of fault remediation and their 
timing inside the fault space, with respect to pressure conditions (imposed as a pressure 
gradient), using specific laws for carbonate crystallisation. 
- Another way to model the circulation within the faults is to consider the fault plane itself as 
a fictive volume in which permeability variation and fluid reactivity has to be characterized 
(COORES). For doing that, a realistic meshing of the two (fictive) borders of the fault plane 
have to be documented carefully in permeability, along the different levels cross-cut by the 
fault. The main point is that here the properties of the host rock will be considered, for their 
vertical variation along the fault plane, but also as specific levels which can be considered as 
possible drains or seals, depending on their own lithology and diagenetic stage. 
 
Building COORES model of the Utah faults is described in this manuscript as a preliminary 
work for performing, in the future, reactive transfer modeling along the faults and the 
aquifers. 
The following paragraphs have thus to be considered as preliminary, but not trivial, 
work to characterize in detail the fault transfer properties. It was not possible during 
the time of my thesis to go further than a first simulation of fluid injection. This work is 
proposed as the first resolved step for any future more complex reactive transfer 
modelling to be performed to elucidate the role of the CO2 rich fluids in the fluctuations 
of fault transmissibility in the ongoing project. 
 
The first simulation of along-fault fluid flow using numerical model for reactive transfer 
(COORES, in-house IFPen software) has been tested on a segment of the Little Grand Wash 
Fault. On this segment several episodes of leakage have been identified and documented 
precisely. In this preliminary model, geological model of the fault connection was built 
including; the fault geometry, the sediments lithology, the reservoirs and seal properties, the 
water chemical composition of the aquifers, the well data and our observations, as input data. 
The architectural components including fault planes have been meshed using Skua (Paradigm 
software). The test was designed for simulating either an along-reservoir (lateral), or along-
fault (sub vertical) fluid injection. Two input parameters may change in this model; CO2 
concentration or injection time-laps corresponding practically to different CO2 injection 
velocity.  
The Skua grid is composed of 14 000 cells, with a refining meshing close to the faults and 
into the Navajo aquifer (main circulating reservoir). 
The Skua grid was migrated into Coores software where the fluid composition of the Navajo 
aquifer has been input at the initial chemical balance stage (equilibrium). Then we injected a 
fluid with various composition of CO2, controlling the timing of injection. 
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1. Input data in the model 

1.1 Fault geometry and lithology 

The fault geometry and sediments lithology have been carefully selected from geological data, 
wells and maps used in the cross sections presented in the Fig. V-4. In order to restrain the 
uncertainties regarding the fault geometry at depth, only the upper part of the sedimentary pile 
(Jurassic to Cretaceous) was considered, down-stopping in to Triassic Moenkopi Formation. 
Uncertainties of the formation displacement and lateral thickness variation still exist, in 
particular concerning the depth of the connection of the two faults segments: for this reason 
two hypothesis of fault displacement have been considered (Fig. V-22). The formation seals 
and reservoir properties are outlined by the colour code.   
The structural geometry between the two hypotheses is based on field and satellite 
observations: numerous faults seem to root within the Navajo Formation. Due to the lack of 
wells just close-by the fault, the exact shift between the two faults is still approximate but 
relatively well constrained from local interpretation. Two possibilities are, thus, presented 
here (Fig. V-22 top and bottom): implying different across-fault transmissivity, especially 
related to the position of the very low permeability Kayenta formation on both sides of the 
fault. These two hypotheses involve consequent variations of the faults transfer properties.  
  

 

 
Figure V- 22. Two hypothesis of Little Grand Wash Cross Section reconstruction for the numerical modeling (located fig. 

4).  

Top: the Jurassic Kayenta formation is still present between the two fault segments, smearing the lower intersection 
between them.  

Bottom: the offset is higher and a connection in the porous sandstones of the Jurassic Navajo formation is still possible 

The seals are in green and the reservoirs in red and orange, depending their porosity and permeability.  
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The porosity and permeability values of the formations have been compiled from the 
bibliography (Hood & Patterson, 1984).  
 

1.2 Pressure in the Navajo aquifer 

o Atmospheric pressure 
At sea level the average atmospheric pressure is 1013, 25hPa. Into the lower atmospheric 
layers, the pressure decrease of 1hPa each 8.5 m. In the studied zone, (at present +1200m 
high) the atmospheric pressure (QFE) has been calculated to be 872,07 hPa (0.87207 Bars). 
o Pressure in the Navajo aquifer (at the equilibrium)  
Thanks to the area wells DST shut-in pressure (Fig. V-23), a first calibration of the Navajo 
aquifer pressure state can be infer: 

- pressure in the footwall of the faults (P1): 17 -31 bars 
- pressure in the hanging wall of the faults (P2): 41 -62 bars 

 

 
Figure V- 23. Pressure of the wells - West Green River quadrangle. 

A – Location of wells within the quadrangle for which DST measurements from the Mississippian (and older) strata have 
been used in the pressure trend graph in (B). Sometimes more than one DST is available from a well. (Figure made 
by the Utah Energy and Geosciences Institute, unpublished)  

B – Trend of DST shut-in-pressures in the quadrangle. The dashed line is derived from a composite pressure plot. Note 
that the pressures from DSTs tend to be minimum because of possible lack of complete equilibrium at the end of 
the test. 
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1.3 Equilibrium of the salinity in the Navajo aquifer 

The salinity of the Navajo aquifer is highly variable in the Navajo aquifer: from 50 to 
200mg/L in Washington Country,  SW Utah (Wilkowske et al., 1998). 
In the studied area, we use values of 30g/L proposed by Kampman et al. (in press). 
 

1.4 CO2 pressure/concentration into the Navajo aquifer 

The CO2 pressure is 19 atm (Kampman et al., 2009). In Washington County the avarage 
concentration of CO2 (aq) in the aquifer is about 1.69 -1.89 g/L (Wilkowske et al., 1998). 
 

2. Preliminary test 

This first test (Fig. V-24) of along Navajo aquifer fluid injection allowed to validate the grid 
and the equilibrium composition of the aquifer However, the pressure equilibrium has to be 
checked before going on to the test. Then, we will test along-fault injection, whilechanging 
the injected fluid composition (with water, more or less CO2 and hydrocarbon in solution), as 
well as the timescale of fluid injection and observation of the system. 
  

 
Figure V- 24. First modeling test of injection –Coores software  

Top: injection of water enriched with 2% of CO2 into the Navajo aquifer, rate of 52m3/day, duration:  1 000yrs.  

Bottom: end of the injection time-lapse, the pressure rise bellow the Navajo aquifer, within the Chinle cap rock. 
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CHAPTER VI. GENERAL CONCLUSIONS  

CHAPITRE VI. Conclusions générales 

Ce travail s’est attaché à caractériser les circulations de fluides riches en CO2 le long des 
failles et notamment leur évolution dans le temps. Dans ce but, une approche 
multidisciplinaire a été menée incluant des observations et des analyses qui comprennent 
plusieurs échelles d’observation, de la microstructure au bassin sédimentaire. 
  
1 - Une étude approfondie des travertins situés le long de failles normales a donné lieu à deux 
articles (Frery et al., en soumission, chapitre IV & Gratier et al, article soumis, Annexe A). 
Cette étude inclut l’analyse i) des processus de circulations et de colmatage dans les zones de 
faille, ii) des changements de composition pétrographique et isotopique enregistrés dans les 
précipitations carbonatées construits au débouché des failles et iii) des durées de cycles 
d'ouverture et de fermeture des failles ainsi que leur modélisation. Les principaux résultats 
peuvent être résumés comme suit : 

• 1a - La circulation de fluides riches en CO2 le long des failles donne naissance en 
proche surface à deux types de cristallisations: i) des précipitations à la surface 
(travertins stratigraphiques) ou dans des cavités ouvertes en profondeur et ii) des 
précipitations en profondeur au sein du massif de travertin, ou des roches 
environnantes, dans des veines compactes à croissance sous contrainte. 

 
• 1b - La structure de ces travertins endogènes  est donc complexe. Certaines des veines 

développées en profondeur montrent en effet une croissance vers le bas qui implique 
d’une part qu’elles ont pu soulever les roches au-dessus par l’effet de leur force de 
cristallisation, et d’autre part, qu’elles coupent la continuité stratigraphique des 
travertins rendant toute interprétation en continu de l’évolution de ces travertins 
délicate. 

 

• 1c - La fréquence des veines carbonatées décroit exponentiellement avec 
l'augmentation de la largeur des veines, cette relation s’apparentant à la signature 
d’événements sismiques, des évènements de fracturations étant par ailleurs enregistrés 
au niveau des failles associés à des surpressions de fluides. 

 
• 1d - Des datations U/Th et une étude isotopique (δ18O et δ13C) le long des veines ont 

mis en évidence trois temps caractéristiques de cycles de fuite de CO2 enregistrés dans 
les travertins, i) annuel, ii) centennal et iii) millennal. Les deux premiers types de 
cycles correspondent aux variations isotopiques étudiées dans les veines associées à 
des laminations, indiquant des cycles de remplissage liés à des variations saisonnières 
ou climatiques. Le troisième type de cycle semble être lié à des événements 
tectoniques brutaux qui provoquent l'ouverture de fractures en profondeur et le 
remplissage de veines au sein des travertins pendant des durées (millénaires) qui 
pourraient correspondre à des cycles sismiques.  

 
• 1e - Les fuites de CO2 enregistrées par les travertins sont estimées en moyenne et ce 

sur des milliers d’années à environ 1 tonne par an. Cette valeur reste intrinsèquement 
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faible. Avec un tel rythme, un réservoir de CO2, tel que le champ de Sleipner  en mer 
du Nord, ne serait pas vidé en moins de 10 Ma. Le faible taux de fuite enregistré est 
cependant directement lié à l'épisodicité des phénomènes de circulation. Dans le cas 
d'une fuite continue, le réservoir de Sleiper serait vidé en 1000 ans. 

 
• 1f - Des modélisations numériques de l'évolution de la vitesse de circulation des 

fluides le long des failles montrent le rôle crucial des évolutions épisodiques de 
perméabilité le long des failles. Pour prendre en compte les mesures et observations, il 
est nécessaire d’intégrer dans le modèle une  décroissance exponentielle de la 
perméabilité des failles dans le temps, relative à chaque épisode telle qu’elle a été 
proposée dans l’évolution post-sismique des failles avec un temps caractéristique de 
cicatrisation de l’ordre du millénaire. 

 

• 1g - L'étude du champ magnétique enregistré par les travertins, lors de leur 
précipitation montre que les travertins peuvent être très anciens en révélant un âge de 
plus de 760 Ma. La signature magnétique de ces roches de travertins reste cependant 
extrêmement variable d'un édifice à l'autre: certains travertins se caractérisent par un 
signal très fort porté par de l'hématite alors que d'autre présentent un enregistrement 
magnétique très faible, porté par de la maghemite (magnétite oxydée) à la limite des 
mesures des magnétomètres (107-108 milliTesta). 

 

 

2 - Une étude des paléo-circulations de fluides en profondeur le long des failles et fractures a 
été conduite à l'échelle du basin. Cette étude s'appuie sur des analyses structurales et 
pétrochimiques des traces de blanchiment laissées, par la circulation de ces fluides dans 
plusieurs formations stratigraphiques. Elle s’appuie aussi sur de nouvelles coupes géologiques 
à travers les failles de Little Grand Wash et Ten Mile Graben réalisées sur la base 
d'observations de terrain et d'une synthèse des logs de 12 puits environnants. Le résultat est un 
article en préparation (Frery et al, en préparation, Chap. V). Résultant de cette analyse à 
l'échelle du bassin, des tests d'utilisation d'un modèle numérique de transfert réactif COORES 
permettant d'adapter et intégrer thermodynamique et écoulement réactif le long des failles . 
Les principales conclusions peuvent être résumées comme suit. 

• 2a - Une classification des types de blanchiment en fonction de leur description  à 
l'échelle de l'affleurement et de leur pétrographie amène à distinguer deux grandes 
familles de circulation : la première intervenant pendant l'enfouissement maximum, et 
l’autre intervenant au cours des  différents épisodes tectoniques qui ont affecté la 
région (phase Laramide et remontée du plateau du Colorado). 

 
• 2b - Les circulations de fluides au Tertiaire sont épisodiques, plusieurs épisodes de 

circulation successifs peuvent être enregistrés dans un même lieu. Par ailleurs, une 
même faille peut enregistrer à la même période des fuites de différentes natures 
(hydrocarbure ou CO2) selon le segment considéré. Ce phénomène se produit 
d’ailleurs actuellement le long des segments de la faille de Little Grand Wash par des 
fuites de CO2 et des fuites d'hydrocarbure sur des segments différents. Ceci ouvre la 
discussion sur la connectivité et le rôle des failles satellites au niveau des zones de 
relai entre les différents segments. 

 
• 2c - Chaque formation est caractérisée par un état diagénétique antérieur au 

blanchiment. Cette transformation qui conditionne leurs lithologies sera considérée 
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comme l'état initial (précédant la circulation de fluides). A moins d'une circulation très 
rapide le long d'un faille (séisme), la composition du fluide est modifiée 
progressivement par  la traversée de la pile sédimentaire composée de "pulses" 
successifs dont les effets se cumulent au cours du temps. En conséquence, la 
détermination de la nature du fluide doit s'appuyer sur une description détaillée de 
chaque formation et d’une modélisation du transport réactif dans chacune d'elles. Un 
premier travail de modélisation a été initié avec la réalisation et l'importation de la 
grille géologique dans le modèle et des premiers tests d'injections. La validation du 
modèle doit être poursuivie. 

 

Ces travaux offrent de nouvelles perspectives.  
- L'étude des travertins a abouti à un enregistrement isotopique détaillé de 

l'Holocène qui devrait pouvoir être exploité plus en détail tant sur le plan du résultats de 
l'activité locale des failles étudiées, que sur le plan méthodologique.  

- Les modélisations numériques testées ont démontré à la fois leur pertinence 
et leur capacité à modéliser des cycles de circulation. Des études paramétriques plus détaillées 
permettraient de modéliser plus précisément l’effet des différents paramètres sur cet exemple 
ou d’autres. 

- L'approche pluridisciplinaire et multi-échelle mise en place dans ce travail 
s’est révélée intéressante et pourrait être appliquée à l'aplomb de reservoirs en surpression ou 
confrontée à des failles dont le cycle sismique est déjà connu. 

- Le travail sur la circulation en profondeur a permis de dégager de une 
nouvelle approche (évaluation du trajet du circulation des fluide le long de plusieurs 
formations) qui pourraient être approfondie pour mieux évaluer les paléo-fuites et leur lien 
avec l'histoire géodynamique de la zone. La caractérisation des différents paramètres et le 
type d'évaluation réalisé dans ce travail pourrait être particulièrement utile dans le cadre des 
modélisation de bassin liées à l'injection de gaz en zone profonde ou dans le cadre de 
l'exploration pétrolière. 
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ABSTRACT 15 

Travertine mounds form at the mouth of springs where CO2 degassing drives carbonate 16 

precipitation from water flowing from depth. Building of such mounds commonly involves 17 

the successive “stratigraphic“ deposition of carbonate layers that precipitate from waters 18 

rising from depth along vertical to horizontal open fissures that are episodically sealed by 19 

radiating crystals. Much more intriguing structures can also be observed, such as widespread 20 

horizontal white veins of carbonate with vertical aragonite fibers, parallel or oblique to the 21 

“stratigraphic” travertines, which extend laterally over distances of several tens of meters and 22 

could represent up to 50% of the total volume of the travertine mound. Using highly precise 23 

U-Th dating, the growth direction of these horizontal veins is shown to be from top to bottom 24 

and this fact clearly indicates that they developed within the mound over a period of about 25 

1000 years for the mound analyzed. A vein growth mechanism is proposed that is able to 26 

uplift the rock above the vein thanks to the force of crystallization. The consequences of 27 

reverse growth direction when interpreting travertine data are discussed and more general 28 

view are given on the possible effect of the force of crystallization on the formation of 29 

horizontal veins in such geological settings.   30 
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 2 

INTRODUCTION AND GEOLOGICAL FRAMEWORK  33 

 34 

Travertine mounds are carbonate rocks, which form at the mouth of springs where CO2 35 

degassing drives mineral precipitation from carbonate-supersaturated water flowing from 36 

depth. This study concerns thermogenic travertine mounds that grow along the Little Grand 37 

Wash and Salt Wash normal faults in central Utah (Fig. 1) and bear witness to the past and 38 

present activity of carbonate-rich springs (Dockrill and Shipton, 2010; Kampman et al., 39 

2010). The internal structure of some mounds has been revealed by erosion, providing 40 

evidence of the complex processes that occurred at depth. U-Th ages obtained for these 41 

carbonates vary from 5 000 to 100 000 years (Dockrill, 2005).  Evidences of flow paths are 42 

revealed by the bleaching of the red sandstones below the travertine mounds (Fig. 2A): CO2-43 

rich fluid flows from depth along normal faults and their associated fracture networks. Fig.2 44 

shows a sketch of four processes involved in the building of these travertine mounds. The 45 

best-known process is the successive deposition of carbonate layers that precipitate as a result 46 

of degassing of water exiting springs or geysers. These “stratigraphic“ travertine layers, with 47 

varying dip, develop from bottom to top (Fig. 2B) and are most often mixed with river sand or 48 

wind-blown particles that give them a dark color. Another type of common structure at depth 49 

are vertical fissures (Fig. 2C) filled with banded travertine (Hancock et al., 1999). Such 50 

structures have been studied in other regions to reconstruct regional tectonic stress variations 51 

(Faccenna et al., 2008; Piper et al., 2007; Temiz et al., 2009; Uysal et al., 2007). Most often, 52 

in fissure travertine of this type, crystals can be observed to have grown from the vein/rock 53 

contact to the center of the vein, more or less symmetrically (Fig. 2C). Connected to such 54 

conduits are typical open vertical to horizontal cavities partially sealed with radiating acicular 55 

calcite or aragonite crystals. Paired banded layers and bumpy surfaces face each other toward 56 

the center of the cavity (Fig. 2D) (Shipton et al., 2004). Evidence of dissolution or re-57 

deposition, such as stalactite-like structures (Fig. 2D), reflect the permanent opening of such 58 

cavities with either deposition, or dissolution, or successively both, depending on the degree 59 

of saturation of the fluid.  60 

Much more intriguing structures are observed, such as the widespread horizontal white veins 61 

of pure carbonate that are oriented parallel or obliquely to the “stratigraphic” darker 62 

travertines (Fig. 2E). The thickness of the veins varies from a few centimeters to tens of 63 

centimeters, with incremental growth episodes. These veins extend laterally over distances of 64 

several tens of meters and represent up to 50% of the total volume of the travertine mound 65 

(Fig. 3A). Such horizontal veins are also observed in the sandstone basement, away from the 66 
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travertine (Fig. 2F), always in the vicinity of arrays of bleached paths connected to the normal 67 

faults (Fig. 2A). However, these veins embedded in the sandstone are always located near the 68 

surface at less than 10 meters depth. These structures raise several questions: do they develop 69 

at the surface in continuity with the “stratigraphic” travertine or are they internal structures 70 

that develop within the mound after it has been built?  In this latter case, what could be the 71 

growth mechanism since it must lead to uplifting of the rock above the vein (Fig. 2E)? 72 

 73 

STUDY OF HORIZONTAL TRAVERTINE VEINS 74 

 75 

One of these horizontal veins, 27 cm thick, located in a travertine mound near the Crystal 76 

Geyser along the Little Grand Wash (arrow, Fig. 3A) was thoroughly investigated. Both 77 

micro-structural observations of the successive layers and U-Th dating was performed on four 78 

carbonate samples collected perpendicular to the growth banding (see Fig 3B). 79 

 80 

U-Th dating 81 

Samples weighing 2-3 grams of highly pure aragonite were spiked with mixed 82 

236
U-

233
U-

229
Th spikes and dissolved in nitric acid before separating the U and Th fractions 83 

using standard techniques. U-Th measurements were performed by Thermo-Ionization Mass 84 

Spectrometry (TIMS) using a VG-Sector 54-30 mass spectrometer equipped with a 30-cm 85 

electrostatic analyzer and an ion-counting Daly detector at CEREGE (Aix-en-Provence, 86 

France). The whole analytical procedure, as well as the internal and external reproducibility 87 

achieved by the CEREGE group, are described in (Deschamps et al., 2012). Very high 
238

U 88 

concentrations (7.2 – 9.2 ppm) combined with high (
234

U/
238

U) ratios and low detrital 
232

Th 89 

concentrations result in U-Th age uncertainties of 0.15–0.2% (2). Initial (
234

U/
238

U)0 ratios 90 

are relatively constant, ranging between 4.19 and 4.26 and reflect the broad constancy of the 91 

fluid composition. 92 

The results (Fig. 3B) are surprising. The four dating results indicate a vein growth from top to 93 

bottom: the youngest layer (5851±10 yr) lies at the bottom of the travertine whereas the oldest 94 

(6830±14 yr) is located at the top. Two intermediate samples were dated at 5922±9 yr and 95 

6355±11 yr, respectively. Thanks to the precision of the method, there is no doubt that the 96 

growth occurs from the top downwards. The total vein building duration was about 1000 97 

years over the 270 mm width, with a mean growth rate of 0.27 mm/yr. Note also that the 98 

growth rate varied from 0.2 to 0.92 mm/yr (Fig. 3B). 99 

 100 
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Microstructural analysis 101 

Structural and microstructural observations show both the general continuity of the growth of 102 

aragonite fibers and some slight heterogeneity of the crystallization process at various scales. 103 

Veins banding with slight differences of color are seen at the decimeter scale (Fig. 3B). Stable 104 

isotope composition and trace element content sampled along a profile perpendicular to the 105 

vein (red points on Fig. 3B), that allow slight chemical changes in fluid composition during 106 

the entire vein growth period to be tracked (Frery, 2012), do not show any clear correlation 107 

with structural features related to vein growth. Near horizontal parallel-to-the-vein undulating 108 

surfaces at the centimeter (Fig. 3C) to millimeter scale (Fig. 3D) are locally correlated to 109 

slight changes in aragonite fiber growth direction and locally mark the site of aragonite 110 

replacement by calcite (Fig. 3D). However, some aragonite fibers cross-cut in continuity 111 

through these surfaces. Fan-shaped fibers of both aragonite and calcite indicate the  growth 112 

direction, from top to bottom. Arrays of vertical fractures and vertically-elongated pores 113 

between the fibers are often rooted on subhorizontal surfaces (Fig. 3E-F-G). At a smaller 114 

scale, the development of horizontal stylolites (Fig. 3H) is indicative of a vertical compressive 115 

stress. Altogether, these observations point to a near continuous growth of the aragonite fibers 116 

through the full width of the veins, from top to bottom, indicating that these fibers were able 117 

to lift the rock above them during growth when registering vertical maximum stress.  118 

 119 

DISCUSSION AND CONCLUSION 120 

 121 

The first question to be asked is how can precipitation lead to an uplift of the rock above the 122 

vein. It may be considered that an increase in fluid pressure up to the lithostatic value could 123 

open such horizontal veins. However, carbonate precipitation requires a decrease in fluid 124 

pressure, so it would have to be assumed that the growth rate is faster than the rock collapse 125 

rate when the fluid pressure decreases, which is not realistic. An alternative explanation is that 126 

such veins, growing against gravity, are linked to the force of crystallization (Weyl, 1959), as 127 

suggested by several authors to explain the growth of some particular veins (Fletcher and 128 

Merino, 2001; Hilgers and Urai, 2005; Wiltschko and Morse, 2001). It has also been shown 129 

experimentally that mineral precipitation can uplift a dead weight (Taber, 1916) and can 130 

induce intense fracturing above the precipitation vein (Noiriel et al., 2010). From equilibrium 131 

thermodynamic considerations, it is found that a crystal face subjected to a differential 132 

pressure ∆P (the difference between the surface normal stress and the pore fluid pressure) is 133 

in equilibrium with a solution of supersaturation ratio Ω, defined as the ratio between the ion 134 



 5 

activity product in solution and the solubility product of the solid, through the following 135 

relation (Steiger, 2005):  136 

        (1) 137 

where R is the gas constant, T is the temperature (K), and Vs is the molar volume of the solid. 138 

In this example of a horizontal vein, with top-to-bottom growth direction, precipitation takes 139 

place at the lower vein/rock contact (Fig. 2E), in the thin fluid phase with supersaturation 140 

ratio Ω, which is trapped along the vein seam, and uplifts the rock above the vein if 



P is 141 

greater than the lithostatic pressure cause by the weight of the rock column above the vein. 142 

Using Vs= 3.41 x 10
-5

 m
3
.mol

-1
, R = 8.32 m

3
.Pa.K

-1
.mol

-1
, T = 303° K, and a stress ranging 143 

from 25 to 250 kPa corresponding to the weight of 1 to 10 m of rock respectively, the 144 

required supersaturation ratio Ω ranges from 1.0003 to 1.0034, indicating that a 145 

supersaturation level greater than the range of 0.3 to 3 per mil is sufficient to uplift the 146 

observed mass of rock. 147 

The veins have probably grown at much higher supersaturation levels than this value. This is 148 

supported by the observation that the veins are composed almost entirely of aragonite. At the 149 

low temperature and magnesium concentrations found in this system (Heath, 2004; Kampman 150 

et al., 2009), aragonite is a metastable phase, which may precipitate when the fluid 151 

experiences a large, sudden increase in supersaturation. For example, it forms in surface 152 

travertine deposits when the rate of CO2 degassing is sufficiently high (Pentecost, 2005). 153 

Recent chemical data from nearby springs (Heath, 2004; Kampman et al., 2009) also show 154 

that the fluid supersaturation ratio is much greater than that required for the observed uplift: 155 

the value of Ω calculated for aragonite is about 1.82 for the Crystal Geyser, and it varies from 156 

1.12 to 4.9 for various geysers and bubbling springs in the region. 157 

Both observations and chemical data suggest that the veins form when the carbonate 158 

saturation increased suddenly at depth. This is most likely caused by CO2 degassing. 159 

Chemical data from nearby springs (Heath, 2004; Kampman et al., 2009) show that fluids in 160 

this system have very high concentrations of dissolved CO2: the partial pressure of gaseous 161 

CO2 in equilibrium with the fluids sampled at the surface is PCO2 = 100 kPa in the neighboring 162 

active Crystal Geyser, and ranges from 50 to 150 kPa in the region. For comparison, the 163 

partial pressure of CO2 in dry air at 1 atm is only about 35 Pa, which means that these fluids 164 

are highly supersaturated compared to gaseous CO2. The solubility of CO2 increases with 165 

depth as fluid pressure increases, so that fluids at large depths are in equilibrium with 166 

carbonates. At some critical depth, fluids become metastable with respect to the formation of 167 

CO2 bubbles (Fig. 4A, left). However, if the fluid is confined inside small pores, bubbles will 168 
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not nucleate before a very high supersaturation level is reached (Or and Tuller, 2002). The 169 

isotopic compositions of gases and fluids erupting from the active Crystal Geyser were used 170 

by (Assayag et al., 2009) to calculate the depth of bubble formation. They found that bubbles 171 

must have formed at a depth of less than 100m. However, the Crystal Geyser was formed in 172 

the borehole of an abandoned oil exploration well, and it can therefore be expected that fluids 173 

will be largely unconfined in at least the upper two hundred meters. Conversely, in the 174 

context of the travertine veins, fluids are confined at depth in very small pores, which would 175 

be expected to suppress bubble formation quite considerably (Oldenburg and Lewicki, 2006). 176 

It is therefore likely that CO2 degassing has taken place in the upper 1-10 m, where the veins 177 

have been observed to form. Very high CO2 concentrations raise the carbonate solubility, 178 

producing a high calcium concentration in the pore fluid. When CO2 ebullition occurs, the 179 

fluid suddenly becomes highly supersaturated with carbonate, triggering aragonite formation 180 

and vein development at the point where the CO2 gas is released (see Figure 4A, right). The 181 

progressive development of the veins may be compared to the formation of a subhorizontal 182 

ice-lens in a temperature gradient (Style et al., 2011): assuming that there is some initial crack 183 

porosity in the rock, crystal growth in a small crack could cause it to extend subhorizontally 184 

and form a vein at the near horizontal level of the CO2 degassing.  185 

A kinetics approach is needed in order to integrate the rate of mass transfer added to the vein. 186 

Diffusion in a stagnant fluid cannot produce the fast growth rates observed unless the fluid 187 

concentration (of dissolved calcium) is of the order of 1M, which is unrealistic when 188 

comparing with the actual Ca concentration measured in neighboring geysers and springs, 189 

which ranges from 7 to 192 mM (Heath, 2004; Kampman et al., 2009). This means that 190 

precipitated material must have been supplied to the growing vein by fluid flow (Fig. 4B). If 191 

the growth rate 



h


 of the vein was limited by transport, it would be given by: 192 

   

h
·

=Vs(C¥ -Cv )Q        (2) 
193 

where Vs is the molar volume, Cv is the equilibrium molar concentration of Ca at the base of 194 

the vein; C∞ is the concentration of Ca at depth, and Q is the volume flux. To test the 195 

hypothesis, it was assumed that Q is compatible with a typical desert evaporation rate of 10 196 

m/year, with the idea that all the water that percolates through the veins must evaporate when 197 

reaching the surface. In order to produce the observed growth rate of 0.27 mm/yr the value of 198 

(C∞ - Cv) would need to be 0.8 mM, a value which agrees well with the observed Ca 199 

concentrations and required supersaturation. 200 
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As demonstrated by the dating results, growth occurs at the base of the vein. It may be 201 

considered that most of the excess material is consumed there and that the fluid flowing 202 

through the veins is close to equilibrium with the carbonate in the vein. Observed calcite 203 

growth, at the expense of the initial aragonite fibers (Fig. 3E), may be an effect of such fluid 204 

flow through the veins: it has been shown (Perdikouri et al., 2008) that the transformation of 205 

aragonite to calcite takes place by the dissolution of aragonite and precipitation of calcite in 206 

the presence of a hydrothermal phase, with the presence of such a fluid phase being critical 207 

for such a transformation. The veins display a network of vertical fractures and elongated 208 

pores between the vertical fibers (Fig. 3F-G). Although this aspect of the process has not been 209 

quantified, it is worth noting that this could accommodate the CO2 bubble transport through 210 

the vein. From microstructural observations, growth increments cannot really be separated. 211 

Crystallization is more or less continuous over a duration of about one millennia, even if some 212 

heterogeneities of growth are seen, such as fan-shaped fibers growing from the same 213 

horizontal location or a horizontal alignment of fractures and pores. Horizontal stylolites (Fig. 214 

3H) could be linked to dissolution of the fibers after their growth as predicted when mineral 215 

growth is faster than the fracture opening (Bons, 2001) or when mineral growth increases 216 

stress in its surrounding volume (Merino et al., 2006). 217 

As a conclusion, in order to explain the results obtained from U-Th geochronological dating 218 

which showed that horizontal travertine veins grow from top to bottom, uplifting the rock 219 

above them, it is suggested that such a vein growth process is driven by the carbonate 220 

crystallization force triggered by CO2 degassing at 1 to 10m depth. This mechanism of vein 221 

growth is widespread, as it has produced up to half of the total volume of travertine mounds 222 

along the Little Grand Walsh and Salt Wash faults in Utah. This study also shows that great 223 

care must be taken when interpreting travertine data, for example geochemical change, from 224 

samples removed from drill hole since the ages of successive layers are not necessarily 225 

continuous from top to bottom or in stratigraphic order. Finally, these veins also develop in 226 

the sandstone basement away from the travertine but always at limited distance from the fault 227 

that probably acts as a transitory flow path at regional scale. This may happen in other 228 

geological contexts where CO2-degassing could drive mineral precipitation from carbonate-229 

rich fluid flowing from depth along active faults.   230 

231 
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FIGURE CAPTIONS 232 

 233 

Figure 1 Map of the study area: location of the Little Grand Wash (LGWF) and Salt Wash 234 

(SWF) faults in the Colorado Plateau, and simplified geological map with the location of the 235 

active geysers with fossil and active travertine deposits Crystal Geyser (CG) on the LGWF 236 

and Ten Mile Geyser (TMG) on the SWF. The travertine mound studied is labeled T1. 237 

Adapted from (Dockrill, 2005; Frery, 2012). 238 

 239 

Figure 2 Sketch of a cross-section of the travertine mound studied (A), with the various types 240 

of deposits (above). Normal fault trace is underlined in red, bleaching paths are yellow and 241 

fluid paths are blue. (B) “stratigraphic“ surface travertine with bottom to top growth; (C) 242 

vertical fissure travertine with more or less symmetric banded growth from the vein/rock 243 

contact to the center of the vein; (D) Open self-supported cavities partially sealed with 244 

radiating carbonate crystals with evidence of dissolution and re-deposition (as stalactite-like 245 

structure); (E) horizontal white veins with incremental episodes of growth in the travertine 246 

mounds (T); (F) horizontal white veins extending laterally over large distances (hundred 247 

meters) in the surrounding sandstones (S).  248 

 249 

Figure 3 (A) Horizontal white veins in travertine T1 (see Fig. 1) with the dated vein (arrow). 250 

(B) U-Th ages for four samples: results range from 6830 to 5851 years and indicate a top-to- 251 

bottom growth direction. Red points indicated the location of samples for chemical analysis 252 

(Frery, 2012). Near-horizontal parallel-to-the-vein surfaces at centimeter (C) to millimeter 253 

scale (D) are correlated to some slight changes in the direction of the aragonite fibers (D), 254 

where a fan-shaped fiber structure can be seen to have nucleated at the same horizontal 255 

location. Arrays of vertical fractures and vertically-elongated pores between the fibers rooted 256 

on sub horizontal surfaces at millimeter (E) to micrometer scale (F-G). Horizontal stylolite 257 

(H) indicating vertical compressive stress.  258 

 259 

Figure 4: (A) Model of carbonate precipitation at depth. Note that slopes and values are only 260 

qualitative, for illustration purposes. Red lines show equilibrium concentrations: a 261 

measurement of how much of the dissolved species the fluid can contain before it gets 262 

supersaturated. Black lines show fluid concentrations. When fluid concentration is below the 263 
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red line, the fluid is undersaturated; where the two lines cross, the fluid becomes 264 

supersaturated. The left-hand side shows how the equilibrium concentration of CO2 increases 265 

with depth: the CO2 concentration is assumed to be near constant at depth. At shallow depth, 266 

where the black line crosses the red limit, the fluid becomes metastable with respect to CO2 267 

degassing. When the supersaturation level is sufficiently high for bubble nucleation, 268 

degassing takes place. The fluid concentration above this level will not be much higher than 269 

the equilibrium value, as excess dissolved CO2 can be incorporated into bubbles moving 270 

through the fluid. The right-hand side shows how the fluid is initially undersaturated with 271 

respect to calcium concentration, which is also assumed to be near constant at depth. When 272 

CO2 leaves the system, the equilibrium concentration of calcium decreases dramatically, and 273 

aragonite precipitates. The largest volume precipitates at the base of the vein, where the 274 

supersaturation is highest. A smaller amount of calcite may precipitate at the expense of 275 

aragonite further up in the system. (B) Growth of carbonate crystals with top-to-bottom 276 

growth direction resulting from the carbonate crystallization force triggered by CO2 degassing 277 

at shallow depth. 278 

279 
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Table A2- 1. Major Elements composition of the samples (Values in Weight Percent) of Navajo, Dewey Bridge, Endrada, Curtis, Summerville siliciclastic Formations in Courthouse Canyon, 
Ten Mile Graben, Crystal Geyser and West Ten Mile zones. We also report the values for the Mancos shale Formation in Green River area. We had the aspect of the sample in the 
description of the sedimentary unit: I for initial and B for Bleached. 

analyse 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B
element SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 LOI

unit % % % % % % % % % %
error 0,01 0,01 0,04 0,01 0,01 0,01 0,01 0,01 0,01 -5,1

Navajo I UT-10-12A 93,75 2,39 0,13 0,09 0,51 0,05 1,49 0,04 0,01 1,6
Navajo B UT-10-12B 92,13 2,95 0,15 0,13 0,88 0,06 1,91 0,05 <0,01 1,7

D. Bridge I UT09-66D 69,5 10,31 3,2 1,97 2,92 0,12 4,01 0,5 0,13 7,2
D. Bridge I UT09-66E 67,27 10,53 3,49 2,01 3,75 0,13 4,1 0,44 0,12 8
D. Bridge B UT09-66B 69,95 12,09 2,09 2,3 1,28 0,17 4,58 0,6 0,14 6,6
D. Bridge B UT09-66C 71,92 10,55 1,76 1,9 2,13 0,11 4,09 0,53 0,14 6,6
Entrada I UT-11-11 80,46 4,7 0,74 0,5 5,4 0,06 2,47 0,16 0,04 5,4
Entrada B UT-10-8 74,32 4,59 1,33 1,42 7,48 0,21 1,7 0,18 0,04 8,4
Curtis B UT-11-03 96,07 1,89 0,09 0,1 0,05 0,03 0,93 0,06 0,01 0,8

Entrada I UT-11-07B 73,97 7,21 1,51 1,83 4,9 0,35 2,48 0,33 0,09 7,2
Entrada I UT-11-8C 73,65 4,81 1,21 2,72 6,47 0,19 1,82 0,19 0,05 8,7
Entrada B UT-11-8A 73,11 6,94 1,16 1,52 6,39 0,4 2,44 0,3 0,1 7,5
Entrada B UT-11-01 97,6 1,37 0,05 0,05 0,02 0,02 0,8 0,04 0,01 0,1

Curtis I UT-11-5B 27,39 5,36 3,63 1,78 30,87 0,27 1,86 0,19 0,07 28,3
Curtis B UT-11-5A 18,64 2,76 1,71 1,17 40,61 0,18 1,08 0,11 0,07 33,1
Curtis B UT-11-006 81,49 4,4 0,4 1,44 4,52 0,25 1,29 0,12 0,03 6

Mancos I UT-11-012B 42,15 10,01 2,71 1,83 19,19 0,37 2,02 0,4 0,15 21
Mancos: B UT-11-012A 33,32 8,75 2,47 1,36 25,92 0,31 1,7 0,35 0,1 25,5
Summ. I UT07-CG01-R 72,8 7,71 2 1,58 4,18 0,95 2,88 0,31 0,11 7,3

Summer.B UT07-CG01-W 73,87 7 1,09 1,43 4,92 0,93 2,64 0,26 0,1 7,6
Entrada I SR007C 74,64 6,86 1,54 1,05 5,4 0,78 2,22 0,34 0,11 6,9

Entrada B. SR007A 75,17 6,74 1,08 0,96 5,54 0,78 2,21 0,36 0,1 6,9
Entrada  I-B SR007B 75,43 6,87 1,1 0,96 5,36 0,8 2,24 0,3 0,11 6,7

Location sed. sample name

Courthouse Canyon

Ten Miles Graben

West Ten Mile

Crystal geyser 
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Table A2- 2. Rare Earth  composition (REE) of the samples (Values in Weight Percent) of Navajo, Dewey Bridge, Endrada, Curtis, Summerville siliciclastic Formations in Courthouse Canyon, 

Ten Mile Graben, Crystal Geyser and West Ten Mile zones. We also report the values for the Mancos shale formation in Green River area. We had the aspect of the sample in the 
description of the sedimentary unit: I for initial and B for Bleached. 

analyse 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B
element La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
error 0,1 0,1 0,02 0,3 0,05 0,02 0,05 0,01 0,05 0,02 0,03 0,01 0,05 0,01

Navajo I UT-10-12A 3,1 6,2 0,7 2,7 0,42 0,13 0,39 0,06 0,28 0,06 0,23 0,04 0,28 0,04
Navajo B UT-10-12B 3,1 6,1 0,65 2,4 0,36 0,1 0,32 0,06 0,39 0,07 0,27 0,04 0,31 0,04

D. Bridge I UT09-66D 22,9 49,2 5,19 19,8 3,7 0,79 3,23 0,54 3,14 0,65 2 0,31 2,05 0,35
D. Bridge I UT09-66E 22 46,4 4,88 17,8 3,29 0,73 2,86 0,48 2,78 0,57 1,78 0,28 1,84 0,29
D. Bridge B UT09-66B 27,1 61,1 6,17 23,3 4,16 0,87 3,68 0,62 3,77 0,79 2,39 0,38 2,57 0,43
D. Bridge B UT09-66C 24,5 53,5 5,64 21,8 4 0,83 3,54 0,59 3,54 0,71 2,28 0,36 2,34 0,39
Entrada I UT-11-11 7,6 14,6 1,91 7,2 1,32 0,32 1,25 0,21 1,22 0,25 0,75 0,13 0,85 0,13
Entrada B UT-10-8 8,6 17,3 2,24 9 1,78 0,45 1,6 0,27 1,53 0,27 0,87 0,15 1 0,16
C Curtis B UT-11-03 3,3 5,2 0,75 2,4 0,6 0,17 0,54 0,09 0,58 0,1 0,3 0,05 0,45 0,06
Entrada I UT-11-07B 14 27,2 3,57 13,5 2,54 0,6 2,53 0,41 2,46 0,49 1,39 0,22 1,62 0,24
Entrada I UT-11-8C 9,4 19,3 2,53 10,2 1,94 0,48 1,87 0,32 1,78 0,37 1,16 0,17 1,13 0,17
Entrada B UT-11-8A 13,8 28 3,55 12,8 2,8 0,66 2,49 0,42 2,38 0,48 1,48 0,23 1,43 0,24
Entrada B UT-11-01 2,4 4,8 0,62 2,3 0,45 0,11 0,46 0,08 0,49 0,09 0,27 0,05 0,31 0,04

TM Curtis I UT-11-5B 9,1 16,1 1,98 7,4 1,38 0,33 1,28 0,22 1,41 0,31 0,87 0,14 0,8 0,12
TM Curtis B UT-11-5A 5,2 9,8 1,26 5,4 0,98 0,21 0,91 0,15 0,62 0,13 0,48 0,07 0,47 0,07
TM Curtis B UT-11-006 7,1 15,1 1,92 7,2 1,46 0,37 1,32 0,22 1,08 0,24 0,65 0,11 0,7 0,12

Mancos I UT-11-012B 24,4 47,5 5,95 22,9 4,1 0,81 3,71 0,58 3,32 0,63 1,81 0,27 1,68 0,28
Mancos: B UT-11-012A 22,9 45,8 5,4 20,8 3,57 0,7 3,29 0,49 2,75 0,53 1,51 0,25 1,58 0,24
Summ. I UT07-CG01-R 18 36,8 4,4 16,4 2,95 0,61 2,54 0,43 2,46 0,52 1,51 0,24 1,58 0,25
Summ. B UT07-CG01-W 15,8 34,4 4,15 15,2 2,8 0,59 2,38 0,4 2,3 0,45 1,34 0,2 1,35 0,21
Entrada I SR007C 13,7 27,8 3,38 12,6 2,54 0,58 2,37 0,39 2,39 0,49 1,49 0,24 1,7 0,27

Entrada B. SR007A 13,5 27,1 3,32 13,4 2,48 0,58 2,22 0,38 2,51 0,48 1,5 0,24 1,6 0,27
Entrada  I-B SR007B 12,1 24,5 3,06 11,7 2,32 0,54 2,12 0,35 2,05 0,43 1,29 0,19 1,38 0,22

Location sed. sample name

Courthouse Canyon

Ten Miles Graben

West Ten Mile

Crystal geyser area

 
 

 
Table A2- 3. Trace Elements composition  of the samples (Values in Weight Percent) of Navajo, Dewey Bridge, Endrada, Curtis, Summerville siliciclastic Formations in Courthouse Canyon, 

Ten Mile Graben, Crystal Geyser and West Ten Mile zones. We also report the values for the Mancos shale Formation in Green River area. We had the aspect of the sample in the 
description of the sedimentary unit: I for initial and B for Bleached. 
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analyse 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B 4A-4B
element Ba Co Cs Ga Hf Nb Rb Sr Th U V Zr Y

unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
error 1 0,2 0,1 0,5 0,1 0,1 0,1 0,5 0,2 0,1 8 0,1 0,1

Navajo I UT-10-12A 371 0,4 0,8 2,4 0,8 1,1 36,9 41,6 1 0,3 13 30,5 2
Navajo B UT-10-12B 530 0,6 1 3 1,1 1 46,1 54,2 0,9 0,2 8 33,4 2,2

D. Bridge I UT09-66D 301 8,4 17,9 11,6 7,7 9,8 131,8 135,8 6,8 1,6 40 285,3 19,8
D. Bridge I UT09-66E 298 7,4 18,4 11,6 5,4 8,9 137,7 159 7,6 1,3 42 197,9 17,8
D. Bridge B UT09-66B 354 7,5 19,6 14,5 9,7 12,3 164,7 144,4 9,1 2 69 380,5 24,4
D. Bridge B UT09-66C 1064 7,9 16 11,6 9,4 10,7 143,6 165,2 8,2 1,9 45 364,9 23
Entrada I UT-11-11 398 1,6 2,6 4,7 4,8 3,2 66,7 101,6 2,4 0,6 13 181,4 7,9
Entrada B UT-10-8 1920 3,1 1,1 4,3 6,6 3 42,7 205,7 2,1 2,1 22 251,1 9,5
Curtis B UT-11-03 139 0,8 1 2,5 2,2 1,3 23 27,2 0,9 1,3 48 93,1 3,3
Entrada I UT-11-07B 257 3,3 2,5 7,4 7,1 6,3 66,6 198,4 4,6 1,2 32 262,8 14,7
Entrada I UT-11-8C 450 5,6 1,6 5,1 4,9 3,8 46,9 197,8 2,8 0,8 27 198,4 11,3
Entrada B UT-11-8A 288 3,3 2,6 7,2 7 8,4 64,9 169,5 3,9 1,2 28 269,9 14,3
Entrada B UT-11-01 289 <0,2 0,6 1,4 0,6 1 18,6 27,4 0,8 0,3 14 23,4 2,8

Curtis I UT-11-5B 110 2,3 6 5,6 2,3 3,8 61 620,9 3,4 2,4 42 92,5 8,9
Curtis B UT-11-5A 92 1 2,8 3,2 1 2,3 32,5 1080,8 1,6 12,6 31 47,2 5,6
Curtis B UT-11-006 260 2,1 1,1 4 2,7 2,2 34,9 455,4 1,8 0,6 14 113,3 7,3
Mancos I UT-11-012B 313 7,1 5,6 12,2 4,4 10,4 78,5 388,9 9,4 5 83 160,8 20,3

Mancos: B UT-11-012A 201 7 3,9 9,7 4,1 9,7 61,7 473,5 10,2 6 77 139 16,3
Summ. I. UT07-CG01-R 248 3,6 4,3 7,5 6,5 7,8 79 99,4 5,7 3,1 32 235,7 15,4
Summ. B UT07-CG01-W 239 2,7 3,6 6,1 4 6,6 70,7 94,8 4,4 2,5 27 155,7 13,1
Entrada I SR007C 437 4,1 2,2 7,2 10,4 7 60,3 129,6 4,7 1,7 33 422,6 14,7

Entrada B. SR007A 449 2,7 1,9 7,1 12,7 7 59,5 131 4,4 1,6 30 488,7 14,5
Entrada  I-B SR007B 439 2,7 2,1 7 7,8 5,9 59,9 127,8 4 1,4 29 305,6 12,6

Location sed. sample name

Courthouse Canyon

Ten Miles Graben

Crystal geyser area

West Ten Mile

 
  

 

 

  
Table A2- 4. Trace Elements composition  of the samples (Values in Weight Percent) of Navajo, Dewey Bridge, Endrada, Curtis, Summerville siliciclastic Formations in Courthouse Canyon, , 

Ten Mile Graben, Crystal Geyser and West Ten Mile zones. We also report the values for the Mancos shale Sormation in Green River area. We had the aspect of the sample in the 
description of the sedimentary unit: I for initial and B for Bleached. 
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analyse 1DX 1DX 1DX 1DX 1DX 1DX 1DX 1DX 1DX 1DX 1DX 1DX 1DX 1DX
element Mo Cu Pb Zn Ni As Cd Sb Bi Ag Au Hg Tl Se

unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppb ppm ppm ppm
error 0,1 0,1 0,1 1 0,1 0,5 0,1 0,1 0,1 0,1 0,5 0,01 0,1 0,5

Navajo I UT-10-12A <0,1 5,8 3 3 0,6 1,9 <0,1 0,2 <0,1 <0,1 2,5 0,03 <0,1 <0,5
Navajo B UT-10-12B <0,1 7 2,5 3 0,7 1,3 <0,1 0,1 <0,1 <0,1 2,7 0,04 <0,1 <0,5

D. Bridge I UT09-66D 0,2 4,9 12 14 4,5 3,9 <0,1 2,2 0,2 0,1 9,4 0,07 0,1 <0,5
D. Bridge I UT09-66E 0,2 4,5 13,2 13 3,2 3 <0,1 1,9 0,2 <0,1 0,9 0,04 0,1 <0,5
D. Bridge B UT09-66B <0,1 2,9 23,5 22 3 6,6 <0,1 2,6 0,3 <0,1 1,2 0,04 0,1 <0,5
D. Bridge B UT09-66C 0,2 3,2 17,4 17 4,8 10 0,1 1,8 0,2 0,1 1,3 0,07 0,1 <0,5
Entrada I UT-11-11 <0,1 1,3 2,9 5 0,7 1 <0,1 0,1 <0,1 <0,1 <0,5 0,04 <0,1 <0,5
Entrada B UT-10-8 0,2 3,4 2,7 18 3,6 2,2 <0,1 <0,1 <0,1 0,1 2,2 0,03 <0,1 <0,5
Curtis B UT-11-03 <0,1 245,3 1,6 2 0,3 <0,5 <0,1 <0,1 0,2 0,1 6,8 0,04 <0,1 <0,5

Entrada I UT-11-07B 0,1 1,1 4,8 12 2,5 0,8 <0,1 <0,1 <0,1 <0,1 6 <0,01 <0,1 <0,5
Entrada I UT-11-8C <0,1 0,9 3,8 29 3,6 0,5 <0,1 <0,1 <0,1 <0,1 <0,5 <0,01 <0,1 <0,5
Entrada B UT-11-8A <0,1 1,3 6,2 12 1,4 1 <0,1 <0,1 <0,1 <0,1 0,8 0,01 <0,1 <0,5
Entrada B UT-11-01 <0,1 26,3 0,9 2 0,3 <0,5 <0,1 <0,1 <0,1 <0,1 0,6 0,03 <0,1 <0,5

Curtis I UT-11-5B 0,3 0,7 3,7 15 1,8 0,6 <0,1 <0,1 <0,1 <0,1 5,9 0,01 <0,1 0,8
Curtis B UT-11-5A <0,1 0,6 3 11 1,6 <0,5 <0,1 <0,1 <0,1 <0,1 4,8 0,67 <0,1 2,5
Curtis B UT-11-006 0,1 1,5 2,1 26 1,9 0,5 <0,1 <0,1 <0,1 <0,1 34,8 0,04 <0,1 1,4

Mancos I UT-11-012B 0,3 9,7 10,8 46 14 10,1 0,1 <0,1 0,3 <0,1 7 0,12 0,1 0,8
Mancos: B UT-11-012A 3 11,9 9,5 45 12 22,4 0,2 0,1 0,3 <0,1 4,2 0,22 0,2 6,7
Summ. I UT07-CG01-R <0,1 3,5 6,3 10 54,2 0,9 <0,1 0,3 0,1 <0,1 1,8 <0,01 <0,1 <0,5
Summ. B UT07-CG01-W <0,1 4,5 2,1 8 71,2 0,6 <0,1 <0,1 <0,1 0,2 0,7 <0,01 <0,1 0,7
Entrada I SR007C 0,3 1,8 5,3 10 3,5 1,9 <0,1 0,1 <0,1 <0,1 0,9 0,12 <0,1 <0,5

Entrada B. SR007A 0,8 6,1 2,7 18 2,5 14,1 <0,1 <0,1 <0,1 <0,1 2,4 0,04 <0,1 0,5
Entrada  I-B SR007B 0,4 10,7 3,4 12 3,1 6,4 <0,1 <0,1 <0,1 <0,1 1,3 0,11 <0,1 <0,5

Location sed. sample name

Crystal geyser area

Ten Miles Graben

West Ten Mile

Courthouse Canyon
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Geochemistry of trace elements - primary analyses  
The comparison of trace elements in the non-bleached and bleached samples of each formation 
have been compared, the main results are given here. 
 
The Navajo Formation (Fig. A2-1) does not evidence noticeable differences in REE content 
between the initial and bleached sample. This conparison however must be considered with 
caution, as just two values are available. 
Dewey Bridge Formation (Fig. A2-2) exhibits a difference between the initial and bleached 
sample concerning the Cerium (Ce) and Neodymium (Nd) content.  
However, this difference is not visible in the others formations (Figs. A2-3-A5).  
 
But finally, the differences visible in the rare earth element content of the initial and bleached 
samples of a formation are too chaotic and light to be revealing. A more extensive sampling and 
analytical work should be done before going into detailed interpretation. 
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Figure A2- 1. Traces elements evolution, initial and bleached sample, Navajo Formation 
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Figure A2- 2. Traces elements evolution, initial and bleached sample, Dewey Bridge Formation 
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Figure A2- 3. Traces elements evolution, initial and bleached sample, Entrada Formation 
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Figure A2- 4. Traces elements evolution, initial and bleached sample, Curtis Formation. 
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Figure A2- 5. Traces elements evolution, initial and bleached sample, Summerville Formation. 
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Figure A.6. Traces elements evolution, initial and bleached sample, Mancos formation. 
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Appendix C. Stratigraphic logs  
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