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Abstract

This thesis is a contribution to the nested modelling of complex systems. A global method-
ology to quantify uncertainties and their origins in a workflow composed of several models
that can be intricately linked is proposed. This work is organized along three axes. First,
the dependence structure of the model parameters induced by the nested modelling is
rigorously described thanks to the copula theory. Then, two sensitivity analysis methods
for models with correlated inputs are presented: one is based on the analysis of the model
response distribution and the other one is based on the decomposition of the covariance.
Finally, a framework inspired by the graph theory is proposed for the description of the
imbrication of the models. The proposed methodology is applied to different industrial
applications: a multiscale modelling of the mechanical properties of concrete by homog-
enization method and a multiphysics approach of the damage on the cylinder head of a
diesel engine. The obtained results provide the practitioner with essential informations
for a significant improvement of the performance of the structure.

Keywords: Global sensitivity analysis, correlation, copula theory, graph theory, nested
modelling, multiscale modelling.

Résumé

Cette thèse est une contribution à la modélisation imbriquée de systèmes complexes. Elle
propose une méthodologie globale pour quantifier les incertitudes et leurs origines dans
une chaîne de calcul formée par plusieurs modèles pouvant être reliés les uns aux autres
de façon complexe. Ce travail est organisé selon trois axes. D’abord, la structure de
dépendance des paramètres du modèle, induite par la modélisation imbriquée, est mod-
élisée de façon rigoureuse grâce à la théorie des copules. Puis, deux méthodes d’analyse de
sensibilité adaptées aux modèles à paramètres d’entrée corrélés sont présentées : l’une est
basée sur l’analyse de la distribution de la réponse du modèle, l’autre sur la décomposition
de la covariance. Enfin, un cadre de travail inspiré de la théorie des graphes est proposé
pour la description de l’imbrication des modèles. La méthodologie proposée est appliquée
à des exemples industriels d’envergure : un modèle multiéchelles de calcul des propriétés
mécaniques du béton par une méthode d’homogénéisation et un modèle multiphysique de
calcul de dommage sur la culasse d’un moteur diesel. Les résultats obtenus fournissent
des indications importantes pour une amélioration significative de la performance d’une
structure.

Mots-clés: Analyse de sensibilité globale, corrélation, théorie des copules, théorie des
graphes, modélisation imbriquée, modélisation multiéchelles.



Acknowledgements

Yann Caniou, March 13, 2012

Although my PhD officially started in September 2009 in Paris, the idea came up
much earlier during my third year at the French Institute for Advanced Mechanics where
I achieved research oriented courses in parallel at the Blaise Pascal University, Clermont-
Ferrand. Then came two research internships during my International Year, both proposed
and supervised by Dr. Jean-Marc Bourinet, one semester at the University of Arizona
with Dr. Samy Missoum and one semester at Audi A.G. in Ingolstadt, Germany, with
Dr. Lars Hinke and Dr. Paul Heuler. Once back in France, I achieved the last step of my
curriculum with my graduation project in a local company named PHIMECA Engineering
and founded by former IFMA student and professor with the objective to get funding for
a PhD thesis. It seems that my work in optimization has paid off.

In the long list of persons to thank, I would like to start with the board of PHIMECA
Engineering, Maurice Pendola, CEO, and Thierry Yalamas, Associate director, who hired
me as a research engineer and offered me perfect conditions to carry out my research.

During these three years, Bruno Sudret has been my supervisor. At the beginning, we
worked together in Paris and then I moved back to Clermont-Ferrand but we managed to
have regular webmeetings from Paris and Zürich in the very last months. Bruno guided
me in my research, gave me directions and advices, pushed me to develop my skills and
improve my work and for all of this I would like to thank him gratefully. Once again
I would like to thank Thierry Yalamas as my co-supervisor for directing my work to
potential commercial applications. To end up with my supervision team, I also sincerely
thank Pr. Maurice Lemaire for his wisdom and our scientific discussions.

Although a thesis is an individual work and experience, the work I carried out would
never have been so far without my colleagues. The first of them that I would like to thank
is Vincent. Since he started his PhD one year before I did start mine, he was always good
advice and taught me many tips on Python and LATEXprogramming. Among the team of
coworkers and former coworkers, I also sincerely thank François, Gilles, Alexandre, Pierre,
Emmanuel, Julien and Mathieu.

The contributions of a PhD thesis may also be measured by the quality of its industrial
applications. For providing me the test cases to improve and demonstrate the scope of my



vi

work, I would like to thank Marc Berveiller (EDF), Anthony Hähnel (Renault), Nicolas
Gayton (IFMA) and Laurent Gauvrit (Radiall).

The level of a PhD work may also be assessed by the expertise of its jury. Consequently,
I would like to thank Pr. Zohra Cherfi-Boulanger, Dr. Bertrand Iooss who carefully
reviewed my manuscript and Pr. Clémentine Prieur, Dr. Nicolas Gayton and Pr. Maurice
Lemaire for their positive comments as examiners.

Finally, although they did not contribute directly to this work, I must thank my
parents and girlfriend, Emilie, for their unconditional support.



Contents

Acknowledgements v

Introduction 1

1 Probabilistic modelling 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Probabilistic modelling, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Probability space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Random variable, random vector . . . . . . . . . . . . . . . . . . . 7
1.2.3 Probability distribution . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Joint distribution function . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Moments of a random variable . . . . . . . . . . . . . . . . . . . . . 9

1.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Linear correlation coefficient . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Spearman’s rank correlation coefficient . . . . . . . . . . . . . . . . 12
1.3.3 Kendall’s pair correlation coefficient . . . . . . . . . . . . . . . . . . 14
1.3.4 Correlation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.5 Association measures . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.6 The Fisher transform . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Why should dependence be taken into account? . . . . . . . . . . . . . . . 18
1.5 The copula theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.4 Classes of copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.5 Simulation of a copula . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5.6 Identification of a copula . . . . . . . . . . . . . . . . . . . . . . . . 33
1.5.7 Copula and isoprobabilistic transformations . . . . . . . . . . . . . 37

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Global sensitivity analysis 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Correlation and regression-based methods . . . . . . . . . . . . . . . . . . 43

2.2.1 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



viii

2.2.2 Monotonic models . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3 Variance-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 ANOVA decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Sensitivity analysis for models with correlated inputs . . . . . . . . . . . . 52
2.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.2 Short review on existing methods . . . . . . . . . . . . . . . . . . . 53
2.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 A distribution-based method . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.2 Improvements in the definitions . . . . . . . . . . . . . . . . . . . . 59
2.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 The ANCOVA decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.2 ANCOVA-based sensitivity indices . . . . . . . . . . . . . . . . . . 63
2.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Surrogate modelling 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Overview on existing methods . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 High-dimensional model representation . . . . . . . . . . . . . . . . 76

3.3 Polynomial chaos expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1 Mathematical framework of PC expansions . . . . . . . . . . . . . . 83
3.3.2 Advanced truncature strategies . . . . . . . . . . . . . . . . . . . . 87
3.3.3 Estimation of the coefficients . . . . . . . . . . . . . . . . . . . . . 89
3.3.4 Models with correlated inputs . . . . . . . . . . . . . . . . . . . . . 92
3.3.5 Accuracy of PC expansions . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Computing sensitivity indices using surrogate models 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Postprocessing PC coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Kernel smoothing approximation . . . . . . . . . . . . . . . . . . . 100
4.2.2 Probability density function and statistical moments of the random

response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.3 Sensitivity indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Borgonovo importance measure . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.1 PDF-based estimation scheme . . . . . . . . . . . . . . . . . . . . 105
4.3.2 CDF-based estimation scheme . . . . . . . . . . . . . . . . . . . . 111
4.3.3 A comparison example . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 ANCOVA indices using PC functional decomposition . . . . . . . . . . . . 116
4.4.1 RS-HDMR decomposition . . . . . . . . . . . . . . . . . . . . . . . 118



ix

4.4.2 Polynomial chaos decomposition . . . . . . . . . . . . . . . . . . . . 121
4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.1 Distribution-based importance measure . . . . . . . . . . . . . . . . 128
4.5.2 Ancova Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Nested and multiscale modelling 137
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2 Nested and multiscale modelling . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.1 System robust engineering . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.2 System fault trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Model representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.2 The graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Sensitivity analysis for nested and multiscale modelling . . . . . . . . . . . 145
5.4.1 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.2 Software development . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Industrial applications 153
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2 The Ishigami function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.1 An analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.2 Computation and analysis of the indices . . . . . . . . . . . . . . . 154
6.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Academical mechanical problems . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.1 A rugby scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.2 A composite beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.3 A bracket structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.4 Electrical connectors . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4 Homogenization of concrete . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4.2 Homogenization of concrete . . . . . . . . . . . . . . . . . . . . . . 168
6.4.3 Multiscale modelling of the mechanical properties of concrete . . . . 171
6.4.4 Multiscale modelling of the homogenization . . . . . . . . . . . . . 175
6.4.5 Probabilistic modelling of the parameters . . . . . . . . . . . . . . . 175
6.4.6 Multiscale sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 179
6.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.5 Damage of a cylinder head . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5.1 How do diesel engines work . . . . . . . . . . . . . . . . . . . . . . 185
6.5.2 Multiphysics modelling . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.5.3 Sensitivity of the damage on the cylinder head . . . . . . . . . . . . 189
6.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



x

Conclusion 197

Bibliography 201



Introduction

“If I can see further than anyone else,
it is only because I am standing on the shoulders of giants.”

Isaac Newton

Context

Modern engineering aims at designing increasingly complex structures. The diversity of
the physical fields that are involved (mechanics, electronics, thermodynamics) and the
costs policy lead the designer to build numerical models that mimic physical phenomena
in the most rigorous way. Thanks to the recent improvements in the computing perfor-
mance, one is able to address problems that are always bigger in dimension and precision.
Nonetheless, differences may be observed between simulations and experiments.

Simulations are basically mathematical representations of the response of a model that
is set by a collection of input parameters, e.g. dimensions, material properties, load cases,
environment parameters, etc. The list of possible input parameters may be endless but for
the sake of feasibility, one has to neglect the most probable insignificant parameters to only
retain the leading ones. Therefore, the model may lack accuracy since minor phenomena,
physics or interactions are not taken into account. Although the accuracy of the model
may increase with the number of input parameters, one may not be able to describe the
possible discrepancies between the model response and experimental observations.

Classical modelling of complex structures has to be pushed a step forward where the
deterministic nature of parameters have to give the way to probabilistic modelling. The
principle of this advanced framework is to consider that the exact value of a parameter is
not known but can be described by a probability distribution with central tendency and
dispersion. The arising issue consists in building the probabilistic model of the parameters,
either from a set of observed data, or from the expertise and knowledge in the physical
field of interest.

Over the last decades, probabilistic engineering has become an essential framework
for whom may be concerned by the robustness of his applications. Engineers are now
aware that more than the nominal value of the quantity, the interval (and its boundaries)
it may belong to represents a crucial information to ensure the reliability of the design.
Quantifying the uncertainties in the input parameters of a model is the first step for the
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robust design of a structure. The second one is the propagation of these uncertainties
through the model(s) in order to characterize the output possible variability.

Problem statement

The design of complex structures consists in the implementation of virtual testing plat-
forms that allow one to aggregate design schemes, models or data at different steps of
the project life. These different models may correspond to different scales of modelling,
physical fields, components of the structure but they all are aimed at being related with
each other in the form of an imbrication tree, output variables of one model being the
input variables of a second one which also predict quantities for a third one, etc. The
models form a workflow whose different scales are often related in multiple ways. In this
context, the well-established uncertainty propagation methods cannot be applied directly.

Global sensitivity analysis aims at identifying and prioritizing the input variables of a
model that contribute the most to the variability of its output. These methods are today
well-established when dealing with a single model, especially when they are implemented
in association with surrogate modelling techniques that reduce their computational costs.
However, their application to nested models is neither direct, nor trivial since they are
based on requirements that are not fulfilled by this type of modelling. In particular,
the complex input-output relationships between models sharing input parameters involve
correlation between the intermediate variables of the modelling. Thus, the notion of
sensitivity for dependent input variables constitutes an open problem which is addressed
in this work.

First of all, since no conventions have been established for the nested modelling of
complex structures, a theoretical framework is required with the aim of easing uncertainty
propagation in such models. The derived methodology has to meet the expectations of the
decision maker who needs to quantify which design parameters are the most influent in the
whole workflow and which level of modelling penalizes the most the global performance
of the structure.

Objectives and outline of the thesis

The methodology for addressing global sensitivity analyses in nested models proposed in
this work is designed to meet the following objectives:

(i) Achieving methodological advances in the field of uncertainty propagation using sur-
rogate models (polynomial chaos expansions, HDMR, SVR, Kriging) in the presence
of dependent variables. The copula theory will be used as a mathematical framework
to describe the dependence that may appear between the outputs of nested models;

(ii) Defining sensitivity measures that are computable and interpretable in the context
of input variables having a complex dependence structure, which is typical of nested
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models;

(iii) Validating the proposed methodology on significant industrial applications.

These objectives are fulfilled through the six chapters of this thesis whose content is
now detailed.

Chapter 1 first introduces the basics of the probability theory and the notations used
in this thesis. The emphasis is put on the joint probabilistic modelling of random variables.
After several types of correlation measures are defined, a mathematical framework for
modelling the dependence structure of variables, namely the copula theory, is presented.
For practical applications, methods for simulating and identifying copula functions are
presented.

The statistical field of sensitivity analysis is introduced in Chapter 2. In its first sec-
tion, correlation- and regression-based methods are introduced. Then the well-established
ANOVA decomposition that divides the variance of the model response into shares at-
tributable to the input variables is presented. Due to the usage restriction of these meth-
ods to models with independent inputs, techniques for models with correlated inputs are
presented. After a short review on existing techniques, two major methods are detailed.
The first approach is based on the impact of a variable on the entire distribution of the
model response. The second method, referred to as ANCOVA, proposes to study the
covariance of the model response with the contribution of the input parameters as a gen-
eralization of the variance decomposition. Finally, the generalization of sensitivity indices
to models with correlated input parameters being a topic broadly studied in the recent
literature, a discussion on several competing approaches is proposed.

Like many statistical techniques, sensitivity analyses require a large number of simu-
lations which are often not affordable when one call to the considered model takes more
than a few seconds. To circumvent the issue of computational cost, surrogate modelling
techniques are presented in Chapter 3. Surrogate models are basically mathematical
representations of the physical models built from a limited number of well-chosen design
points and whose computing cost is way cheaper. In the first section, existing techniques,
namely, the Support Vector regression, Gaussian processes (or Kriging) and the high-
dimensional model representation, are presented. In the second section, the focus is put
on a well-established technique referred to polynomial chaos expansions where the model
response is decomposed onto a suitable polynomial basis.

In Chapter 4, methodologies to compute the indices from the two major sensitivity
analysis methods for models with correlated inputs are proposed. They both use the
polynomial chaos expansions to build the corresponding surrogate models. If the poly-
nomial chaos expansions is only used as a response surface for the computation of the
distribution-based indices, one benefits from the functional decomposition it offers to com-
pute the so-called ANCOVA indices. A particular attention is given to the accuracy of the
estimation procedure and the corresponding computational cost. Since the practitioner
is not used to such indices, their interpretation is discussed to help making decisions.
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This work aims at addressing sensitivity analysis for problems involving nested mod-
els. The sensitivity analysis part of the work is treated throughout the first four chapters.
In Chapter 5, nested models are put in the framework of the graph theory. This math-
ematical field helps formalizing the complex relationships between the variables at the
different scales of such a modelling; in particular the notion of kinship of one variable
onto another is defined. A section is also dedicated to the computational issues implied
by such a study. A coupling technique between two softwares, namely OpenTURNS for
the probabilistic modelling and YACS for the physical nested modelling, is carried out.

Chapter 6 is devoted to industrial applications of the methodology. After validat-
ing the sensitivity analysis methods on numerical functions and academical mechanical
problems from the literature, the global methodology is applied to two major industrial
problems. The homogenization of concrete is first treated from a multiscale point of
view. The sensitivity of the mechanical properties of concrete to those of its constituents
and respective proportions are computed and results are discussed. Then the complex
phenomena resulting from the fuel combustion in a diesel engine are modelled by a mul-
tiphysics approach with the aim of determining which design parameters are the most
responsible for the damage in the cylinder head.
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6 Chapter 1. Probabilistic modelling

1.1 Introduction

Modern engineering has to take the uncertainty in the parameters of model into account
in order to ensure the robustness of designed systems. These uncertainties are typically
the dispersion of the properties of a material, the tolerances on one dimension of a part or
the lack of knowledge on the load that is applied to the structure. Then, the uncertainties
are propagated through a computational model so that its output is also represented by a
random variable with possible post-processing such as analysis of dispersion, probability
of exceeding a threshold, etc.

From a mathematical point of view, the input parameters of the model are represented
by random variables that are associated to probability distributions. The probability
distribution describes the very behaviour of a random variable, the range it belongs to
and the probability it has to take one value more than another. In the case of a multiscale
modelling of a structure, the main model is decomposed into submodels that may share
input variables. Consequently their output variables are linked. Thus, the dependence
structure of the probabilistic model has to be considered in order to define an accurate
probabilistic description of the parameters.

This first chapter introduces the basics of probability theory and statistics that are
necessary for the understanding of this thesis. It also defines the notations that will be
used all along the document. For a complete overview on the topic, the reading of Saporta
(2006) is recommended.

While the first section introduces the basics of probability and statistics, the second
section presents tools that are useful for modelling the dependence between the input
parameters of a computational model. Finally, an overview of the copula theory and a
mathematical framework for the dependence modelling are proposed.

1.2 Probabilistic modelling,

1.2.1 Probability space

In probability theory, a probability space is a triplet (Ω, F ,P) composed of a sample set
Ω, a σ-algebra F and a probability measure P such that P : F → [0, 1]. More precisely:

• Ω is the set of all possible outcomes, (x);

• F is the set of events, where each event is a set containing 0 or more outcomes;

• Function P assigns a probability to the events.
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1.2.2 Random variable, random vector

A real-valued random variable X is function that associates to any elementary event ω a
real value:

X : ω → X(ω) ∈ DX ⊂ R (1.1)

where ω is the elementary event in the space of all the possible outcomes Ω and where
DX is the support of X.

A real-valued random vector is a n-dimensional generalization of a real-valued ran-
dom variable. As a real-valued random variable is a function X that associates to any
elementary event a real value, a random vector is a function X that associates to any
elementary event a real vector of Rn:

X : ω → X(ω) = [X1(ω), . . . , Xn(ω)]T ∈ R
n (1.2)

The applications X1, . . . , Xn are random variables referred to as the components of the
random vector X. The following notation will be used : X = [X1, . . . , Xn]T.

1.2.3 Probability distribution

A probability distribution is a function that describes the set of values a random variable
can take and more specifically the probability for this value to belong to any measurable
subset of its support DX . In the case of real-valued random variables, the probability
distribution is fully described by its cumulative distribution function.

1.2.3.1 Cumulative distribution fonction

The cumulative distribution function (or CDF) of a real-valued random variable X is the
function FX that associates to any real number x:

FX(x) = P (X � x) (1.3)

where the right member of the equation represents the probability that the variable takes
a value smaller than or equal to x. The probability that X belongs to the interval ]a, b],
a < b then reads:

P (a < X � b) = FX(b) − FX(a). (1.4)

1.2.3.2 Probability density fonction

The probability density function (or PDF) is a function that enables one to write the
distribution function with integrals. The PDF of a real-valued random variable is defined
as follows.



8 Chapter 1. Probabilistic modelling

Definition 1 A function f is the probability density function of a real-valued random
variable X if, for any real number x:

P (X � x) =
∫ x

inf DX

f(u) du. (1.5)

where inf DX is the lower bound of the support of X, possibly equal to −∞.

Consequently, for any a, b ∈ DX , the probability P (a < X � b) is given by:

P (a < X � b) =
∫ b

a
f(u) du. (1.6)

By plotting the graphical representation of the probability density function, the prob-
ability P (a < X � b) is given by the area under the curve on the interval [a, b]. As a con-
sequence, the cumulative distribution function FX of X is continuous and P (X = a) = 0
for all real number a.

1.2.4 Joint distribution function

The following definitions are given for two random variables for the sake of simplicity but
they are generalizable for any higher dimension n ∈ N.

Let us consider two real-valued random variables X1 and X2. The probability that
X1 takes a numerical value smaller than x1 and that X2 takes a numerical value smaller
than x2 defines the joint cumulative distribution function:

FX1,X2(x1, x2) = P (X1 � x1, X2 � x2) (1.7)

This function is increasing with x1 (respectively x2) between 0 when both variables re-
spectively tend towards inf DX1 and inf DX2 , and 1 when both variables tend towards
sup DX1 and sup DX2 (in the case of continuous random variables). The joint probability
density function is obtained by partial differentiation:

fX1,X2(x1, x2) = ∂FX1,X2(x1, x2)
∂x1∂x2

(1.8)

1.2.4.1 Marginal distribution

Let us consider two random variables X1 and X2 with joint probability density function
fX1,X2 . The marginal distribution of X1 is the probability distribution of X1 ignoring
the information on X2. The marginal probability density function of X1 (resp. X2) is
obtained by integrating the joint distribution function along x2 (resp. x1):

fX1(x1) =
∫

DX2

fX1,X2(x1, x2) dx2 , fX2(x2) =
∫

DX1

fX1,X2(x1, x2) dx1 (1.9)

Two random variables X1 and X2 are independent if and only if:

fX1,X2(x1, x2) = fX1(x1)fX2(x2) (1.10)
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1.2.4.2 Conditional distribution

The conditional probability density function of X1 given X2, is defined by the ratio be-
tween the joint probability density function and the marginal probability density function
of X2:

fX1|X2(x1, x2) = fX1,X2(x1, x2)
fX2(x2)

= fX1,X2(x1, x2)∫
DX1

fX1,X2(x1, x2) dx1
(1.11)

1.2.5 Moments of a random variable

Apart from its probability distribution function, which can be given, approximated or
unknown, a real-valued random variable can be described by its moments.

1.2.5.1 Mathematical expectation

The mathematical expectation (or expected value or first order moment) E [X] of a ran-
dom variable X is the weighted average of all the possible values X can take. For con-
tinuous real-valued random variables, the mathematical expectation, also denoted by the
greek letter μ, reads:

E [X] = μX =
∫

DX

xfX(x) dx (1.12)

1.2.5.2 Variance and standard deviation

The variance of a real-valued random variable describes the dispersion of the possible
values it can take. A high variance indicates that the range of possible values is wide
whereas a low variance indicates that the realizations are more likely close to the expected
value.

Var [X] =
∫

DX

(x − μX)2fX(x) dx = E
[
(X − μx)2

]
(1.13)

A random variable is more usually defined by its standard deviation, denoted by the
greek letter σ, which is nothing but the square root of the variance σX =

√
Var [X].

Another representation of the dispersion is given by the standard deviation normalized
by the expected value, namely the coefficient of variation given by:

CVX = σX

μX

(1.14)

As μX and σX are homogeneous in dimension, CVX can be expressed in terms of percent-
age.

A single realization of X is denoted by x0 ≡ X (ω0). A continuous random variable
is defined by its cumulative distribution function. In this work, finite variance random
variables Var [X] < ∞ are considered. The corresponding Hilbert space is denoted by
L2 (Ω, F ,P) when equipped with the inner product 〈X, Y 〉 = E [XY ], where E [.] indicates
the expected operator.
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1.2.5.3 n-th order moments

In practice, μX and σX are mostly used but the third and fourth order moments can
provide additional information concerning the shape of the probability density function
of X. The general definition of the n-th order centered moment of a real-valued random
variable reads:

μn
X = E [(X − μX)n] =

∫
DX

(x − μX)nfX(x) dx (1.15)

Consequently, the normalized third and fourth order centered moments, namely the skew-
ness coefficient δX and the kurtosis coefficient κX , are respectively defined by:

δX = 1
σX

3

∫
DX

(x − μX)3fX(x) dx (1.16)

and:
κX = 1

σX
4

∫
DX

(x − μX)4fX(x) dx (1.17)

They respectively describe the asymmetry and the peakedness of the probability density
function of X.

1.2.5.4 Gaussian variables

The normal distribution is one of the main distribution in the probability theory. It has
been brought out by Karl Friedrich Gauss in the 19th century with the aim of modelling
biometric parameters. Thus, it is also referred to as the Gaussian distribution. The
probability density function of a Gaussian random variable X with mean μ and variance
σ2 is denoted by X ∼ N (μ, σ) and reads:

fX(x) = 1
σ

√
2π

exp
[
−1

2

(
x − μ

σ

)2]
(1.18)

A standard Gaussian variable X ∼ N (0, 1) is a Gaussian variable with zero mean and
unity variance. The probability density function, denoted by ϕ(x), draws a symmetric
bell curve (or Gaussian curve) centered on 0. Its cumulative distribution function Φ(x)
reads:

Φ(x) =
∫ x

−∞
ϕ(u)du =

∫ x

−∞
1√
2π

exp
(

−x2

2

)
du (1.19)

Φ(x) cannot be expressed in termes of usual functions. Actually, Φ(x) is a usual function,
unavoidable for anyone who deals with probabililty and statistics. It can written using
the error function erf:

Φ(x) = 1
2

(
1 + erf

(
x√
2

))
. (1.20)

Approximated values of Φ(x) are generally given in tables. Most scientific computing
packages such as Matlab, Python, R, etc. provide an implementation of this function.

This section has recalled the basics of the probability theory and introduced the math-
ematical notations for the probabilistic modelling. Before setting the concept of copulas,
different measures of correlation are now presented.
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1.3 Correlation

In statistics, the dependence describes any kind of relationship between two (or more)
data sets. More generally, the dependence corresponds to any link between two random
variables that are not independent. For example, the size and the weights of individuals
in the human population, the risk of observing both habitation and vehicle damage due
to a single natural disaster in insurance or the price of gold and the number of the price
of gold keyword researches in Google are dependent data. The correlation refers to any
specific relationship between two random variables. The correlation can be linear or non
linear. The intensity of the link is measured through several correlation coefficients. The
most common of these is the Bravais-Pearson correlation (or linear correlation) coefficient.

1.3.1 Linear correlation coefficient

The Bravais-Pearson correlation coefficient, denoted by ρ, is the most common correlation
measure. The linear correlation coefficient ρX1,X2 between two random variables X1 and
X2 is defined as the covariance of these variables divided by the product of their standard
deviations σX1 and σX2 , namely:

ρX1,X2 = Cov [X1, X2]
σX1σX2

(1.21)

where:
Cov [X1, X2] = E [(X1 − E [X1])(X2 − E [X2])] (1.22)

This coefficient is only defined if both random variables have finite and non zero standard
deviation. According to the Cauchy-Bunyakovsky-Schwarz inequality given in Eq. (1.23),
the linear correlation coefficient is smaller than 1 in absolute value since:

|Cov [X1, X2] | �
(
E [(X1 − E [X1])]2 E [(X2 − E [X2])]2

) 1
2 (1.23)

If there is an increasing linear relationship between X1 and X2, i.e. X2 = αX1 +β, α > 0,
then ρ(X1, X2) = 1. On the contrary, if the variables have a perfect decreasing linear
relationship, ρ(X1, X2) = −1. This last extreme case is sometimes referred to as anti-
correlation. Finally, the linear correlation coefficient is 0 if X1 and X2 are independent.
It is to be mentioned that the inverse proposition is not true because the linear correla-
tion only evaluates linear relationships between variables. The correlation coefficient ρ
indicates the strength of the link between the variables. As illustrated in Figure 1.1, the
higher the absolute value of the linear correlation coefficient, the stronger the variables
are linked.

Let us now consider a sample X = {X1, X2} of dimension n = 2 and size N , i.e.
xk =

{
x

(i)
k , i = 1, . . . , N

}
, k = 1, 2 . An estimator of the linear correlation coefficient
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between X1 and X2 is given by:

ρ̂(X1, X2) =

N∑
i=1

(x(i)
1 − x̄1)(x(i)

2 − x̄2)√√√√ N∑
i=1

(x(i)
1 − x̄1)2

N∑
i=1

(x(i)
2 − x̄2)2

(1.24)

where x̄1 and x̄2 are the sample means of X1 and X2 respectively. In practice, especially if
N is small, the computed linear correlation coefficient might be non zero for independent
variables.

It is always possible to compute the linear correlation coefficient between two vari-
ables with finite variance. However it must be taken into account that the latter only
describes a linear relationship between the variables. In case of a non linear relationship,
its value can be misinterpreted. In order to avoid erroneous analyses, more appropriate
correlation coefficients such as the Spearman rank correlation coefficient or the Kendall
pair correlation coefficient must be used instead.

1.3.2 Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient, also referred to as Spearman’s rho (or Spear-
man’s ρ), was introduced in Spearman (1904). It is a correlation coefficient no more based
on the value of the individuals but on their rank in the bivariate sample. Therefore, it is
non parametric because the joint distribution of the sample is not taken into account. It
is denoted by ρS where the greek letter ρ is highlighted by the subscript S (for Spearman).

The Spearman’s rho can be described as the Pearson’s correlation coefficient between
the ranks of the observations. Let us denote by r

(i)
1 and r

(i)
2 the rank of x

(i)
1 and x

(i)
2 in

the sample X . An estimator of the Spearman’s rho between X1 and X2 is given by:

ρ̂S(X1, X2) =

N∑
i=1

(r(i)
1 − r̄1)(r(i)

2 − r̄2)√√√√ N∑
i=1

(r(i)
1 − r̄1)2

N∑
i=1

(r(i)
2 − r̄2)2

(1.25)

where the means of the ranks read r̄k = N + 1
2 , k = 1, 2. In case of tied (equal) numerical

values, which may happen when a few number of decimals are used, the rank assigned
to the two (or more) observations is the mean of their positions in the ascending order.
In the absence of tied values in the sample, another expression of the Spearman’s rho is
given by:

ρ̂S(X1, X2) = 1 −
6

N∑
i=1

di
2

N(N2 − 1)
(1.26)

where di = r
(i)
1 − r

(i)
2 .
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Figure 1.1: Scatterplots for samples of size N = 1000 from standard normal random variables
X1, X2 with increasing linear correlation coefficients.
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One advantage of the rank-based correlation coefficient is that it is no longer restricted
to linear effect but handles any monotonic relationship between variables. Indeed, the sign
of the Spearman’s rho indicates the direction of the relationship between the variables
and its value quantifies the strength of the link. According to Eqs. (1.25) and (1.26), if
the second variable is a monotonic function m of the first one, thus ρS(X1, X2 = m(X1))
is equal to 1 for an increasing function and −1 for a decreasing function.

1.3.3 Kendall’s pair correlation coefficient

The Kendall’s pair correlation coefficient, also referred to as Kendall’s tau (or Kendall’s
τ) was introduced by Kendall (1955). It is a correlation coefficient based on pairwise
relationships between the individuals of two samples. It is denoted by the greek letter τ .

Let us first consider two pairs of joint observations (x(i)
1 , x

(i)
2 ) and (x(j)

1 , x
(j)
2 ) from the

same sample X where i and j denotes the position of the observations in the sample.
Two pairs are said concordant if and only if the order of both variables is the same, i.e.
x

(i)
1 > x

(j)
1 and x

(i)
2 > x

(j)
2 , or x

(i)
1 < x

(j)
1 and x

(i)
2 < x

(j)
2 . In the opposite situation, i.e.

x
(i)
1 > x

(j)
1 and x

(i)
2 < x

(j)
2 , or x

(i)
1 < x

(j)
1 and x

(i)
2 > x

(j)
2 , pairs are said discordant. An

estimator of the Kendall’s tau is given by the following equation:

τ̂ = Nc − Nd

1
2N(N − 1)

(1.27)

where Nc and Nd are respectively the numbers of concordant and discordant pairs. The
denominator is equal to the total number of pairs that it is possible to compare. Con-
sequently, the Kendall’s tau belongs to the interval [−1, 1]. A Kendall’s tau equal to 1
corresponds to a perfectly ordered bidimensional sample. On the contrary, a Kendall’s
tau equal to -1 indicates that the order of the second sample is the perfect reverse of the
first one. For two independent variables, the Kendall’s tau is close to 0.

In case of ties, i.e. x
(i)
1 = x

(j)
1 and x

(i)
2 = x

(j)
2 for some i, j ∈ {1, . . . , N}, pairs are said

to be neither concordant nor discordant. Variations of Kendall’s tau allows one to treat
the problem (Laurencelle, 2009):

1. τA: tied pairs count neither for Nc nor Nd;

2. τB: adjustments are made for the correlation coefficient:

τB = Nc − Nd√
(N0 − N1)(N0 − N2)

(1.28)

where:

• N0 = N(N − 1)/2,
• N1 = ∑N

i=1 ti(ti − 1)/2,
• N2 = ∑N

j=1 uj(uj − 1)/2,
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• ti is the number of tied values in the ith group of ties for the first parameter,
• uj is the number of tied values in the jth group of ties for the second parameter.

1.3.4 Correlation matrices

Several correlation coefficients have been defined for couples of variables. A most general
framework to describe the relationship between two or more variables is to use correlation
matrices. A correlation matrix R of n random variables is a n × n positive semi-definite
matrix where Ri,j is the correlation coefficient between the variables Xi and Xj. In the
case of standard normal variables, the Bravais-Pearson correlation matrix corresponds the
covariance matrix Σ. The Bravais-Pearson linear correlation matrix ρ reads:

ρ =

⎡⎢⎢⎢⎢⎢⎣
1 ρ1,1 · · · ρ1,n

ρ1,1 1 . . . ...
... . . . . . . ρn−1,n

ρn,1 · · · ρn,n−1 1

⎤⎥⎥⎥⎥⎥⎦ (1.29)

Similarly, the Spearman’s rank correlation matrix ρS and the Kendall’s pair correlation
matrix τ are respectively defined by:

ρS =

⎡⎢⎢⎢⎢⎢⎣
1 ρS1,1 · · · ρS1,n

ρS1,1 1 . . . ...
... . . . . . . ρSn−1,n

ρSn,1 · · · ρSn,n−1 1

⎤⎥⎥⎥⎥⎥⎦ τ =

⎡⎢⎢⎢⎢⎢⎣
1 τ1,1 · · · τ1,n

τ1,1 1 . . . ...
... . . . . . . τn−1,n

τn,1 · · · τn,n−1 1

⎤⎥⎥⎥⎥⎥⎦ (1.30)

1.3.5 Association measures

An association measure, or measure of association, is a scalar function r which satisfies
the following properties:

• r is defined for any couple of variables (X1, X2).

• r(X1, X2) : L2(Ω, F ,P) × L2(Ω, F ,P) �→ [−1, 1].

• r(X1, X2) = 0 if X1 and X2 are independent.

• r(X1, X1) = 1 and r(X1, −X1) = −1.

• r(X1, X2) = r (g(X1), h(X2)) for any strictly increasing functions g and h.

This last property shows that the linear correlation coefficient ρ is not an association
measure. Indeed it does not satisfy the equality as illustrated by the example in Figure 1.2.
For example, let us consider a pair of standard normally distributed random variables
(X1, X2) ∼ N (0, 1) with linear correlation coefficient ρ = 0.52. Let us now transform the
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Figure 1.2: Linear, rank and pairwise correlation coefficients for samples of size N = 1000
from couples of variables (X1, X2) (left) and (X3

1 , exp(X2)) (right).

variables (X1, X2) using strictly increasing functions g(X) = X3 and h(X) = exp(X).
The transformed couple (X3

1 , exp(X2)) has a linear correlation coefficient ρ = 0.35 whereas
both couples have exactly the same rank correlation coefficient ρS ≈ 0.49 and Kendall’s
tau τ ≈ 0.34.

1.3.6 The Fisher transform

The Fisher transformation F was introduced in Fisher (1915). It is a powerful tool to
estimate a confidence interval on correlation coefficients. Let us consider a normally
distributed bivariate sample X = {X1, X2} composed of N independent pairs (X(i)

1 , X
(i)
2 )

with ρ
(
X

(i)
1 , X

(i)
2

)
= ρ0. The Fisher transform F of the linear correlation coefficient ρ

reads:
z = F (ρ) = 1

2 ln 1 + ρ

1 − ρ
= arctanh(ρ) (1.31)

In Fisher (1921), the author identifies the exact distribution of z for data from a bivariate
normal sample: z is normally distributed with mean μz:

μz = 1
2 ln 1 + ρ

1 − ρ
(1.32)

and standard deviation σz:
σz = 1√

N − 3
(1.33)

Then, a α confidence interval for ρ can be described by:

μz − tα
σz√
N

� arctanh(ρ) � μz + tα
σz√
N

(1.34)

and:
tanh

(
μz − tα

σz√
N

)
� ρ � tanh

(
μz + tα

σz√
N

)
(1.35)
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Figure 1.3: The Fisher transformation of the linear correlation coefficient (red) is approxi-
mately the identity function (blue) for |ρ| � 1

2 .

where tα = Φ(1 − 1−α
2 ), that is the quantile of order α of the standard Gaussian distribu-

tion. Consequently, a 95% confidence interval for ρ is given by:[
tanh

(
μz − 1.96 σz√

N

)
, tanh

(
μz + 1.96 σz√

N

)]
. (1.36)

where −1.96 = Φ−1(0.025) and 1.96 = Φ−1(0.975) are approximately the 2.5% and 97.5%
quantiles of the standard normal distribution N (0, 1).

The Fisher transformation is mainly related to the Bravais-Pearson linear correlation
coefficient but the same transformation can also be used for the Spearman rank correlation
coefficient using a few adjustments (Fieller et al., 1957; Choi, 1977). Let us first recall
the Fisher transformation for the Spearman’s rho:

F (ρS) = 1
2 ln

(
1 + ρS

1 − ρS

)
= arctanh(ρS) (1.37)

Two variables can be defined in order to study the confidence interval of ρS. The first
variable z defined by:

z =
√

n − 3
1.06 F (ρS) (1.38)

follows a standard normal distribution under the null hypothesis of independence between
variables X1 and X2. The second variable t defined by:

t = ρS

√
n − 1

1 − ρS
2 (1.39)
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approximately follows a Student’s t distribution with n − 2 degrees of freedom under the
null hypothesis.

1.4 Why should dependence be taken into account?

Through the following short example, the influence of dependence is illustrated. Let us
consider a 2−dimensional model Y = M(X1, X2) defined by :

Y = X1 + X2 (1.40)
with Xi ∼ U(0, 1), i = 1, 2. The probability that Y exceeds a threshold t = 1.5 is studied.
In the sequel, P (Y > t) is also referred to as the probability of failure (with respect to
exceeding threshold t).

Three correlation configurations are treated, namely ρ1,2 = {0.0, 0.6, −0.6}. In the
first configuration, the input variables X1 and X2 are independent, i.e. X2 is sampled
regardless of the values of X1. The probability that Y exceeds t estimated using N = 103

Monte Carlo simulations is P̂ [Y > t] = 0.12.
In the second configuration, suppose ρ1,2 = 0.6. The variables are positively correlated

meaning that a strong value of X1 implies a strong value of X2. This relationship leads
to a higher probability P̂ [Y > t] = 0.21. Finally, in the third case, the variables are
assumed negatively correlated, namely ρ1,2 = −0.6. X1 and X2 are sampled in an opposite
direction and this results in a lower probability P̂ [Y > t] = 0.03. Scatterplots of the three
configurations are presented in Figure 1.4 for the sake of illustration.

It is to be noticed that in the second case, positive correlation is penalizing because in
comparison with the independence case, it significantly increases the probability of failure.
On the contrary, the negative correlation in the third case benefits to the probability of
failure which is substantially reduced. From this simple example, it is shown that ignoring
the dependence between input variables of a model can lead either to underestimating
the risk or, on the contrary, to oversizing a structure and its related cost.

1.5 The copula theory

It is sometimes said that when the variables are not independent, it is very hard or even
vain to try to identify their joint distribution function. In practice, black-box softwares are
able to characterize the linear correlation between two variables so that the dependence
structure of the data is approximated. Nevertheless, a suitable framework for modelling
the dependence structure of data exists, namely the copula theory. The main concepts
behind this theory are now introduced. For a complete overview on copula theory, the
reading of the reference book by Nelsen (1999) is recommended.

After a brief history, the basics of copula theory are introduced in order to fit the
engineering needs. Then several copulas are presented and methods to identify copulas
from samples of data are described.
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Figure 1.4: Probability of exceeding a threshold in case of independence (top), positive corre-
lation (bottom left) or negative correlation (bottom right) of the input variables.

1.5.1 A brief history

Early works on the dependence measures with linear correlation and uniform marginal
distribution functions defined on

[
−1

2 , 1
2

]
are due to Hoeffding (1940). Except for the

support of the marginal distribution functions, Hoeffding invented copulas which are
defined in the modern way by means of uniform marginal distribution functions defined
on [0, 1]. At the same time, Fréchet (1951) obtained similar and significant results that led
to the Fréchet bounds and the Fréchet classes. For the recognition of both contributions,
these objects are usually referred to as Fréchet-Hoeffding bounds and classes. The word
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copula first appeared with a mathematical purpose in Sklar (1959), more specifically in
the theorem currently named after him. This theorem describes the function that couples
unidimensional distribution functions to build a multivariate distribution function.

The copula theory is exposed in a very comprehensive way in the book by Nelsen
(1999). Since the early 2000s, copulas are famous because of the improvements they
allow in finance, insurance, and more generally in risk analysis. This democratization in
mathematics-related fields is due to Embrechts et al. (1999, 2001), among others. In his
work, Embrechts shows the importance of modelling the dependence structure of financial
model parameters and more particularly for their extreme behaviour. Finally, Fermanian
(2005), Lambert (2007) and Genest et al. (2007) provide methodologies for the inference
of copulas.

The use of copula theory for engineering applications has emerged a few years ago,
especially for reliability and sensivity analysis thanks to the work of Lebrun and Dutfoy
(2009a), Lebrun and Dutfoy (2009c), Lebrun and Dutfoy (2009b) dealing with the Nataf
transformation. The most important steps in the brief history of copula are summarized
in Table 1.1.

Year Author Improvements
1940 Hoeffding Dependence measures, linear correlation, multivariate

distributions with uniform marginals on
[
−1

2 , 1
2

]
.

1951 Fréchet Multivariate distributions with fixed marginals.
1959 Sklar &

Schweizer
Probabilistic metric spaces, first use of the term

copula.
1999 Nelsen Reference book on the copula theory.
1999 Embrechts Risk engineering for finance and insurance.
2007 Genest Inference methods for copulas.

Table 1.1: Important dates in the history of copula theory.

1.5.2 Definitions

A function C has to satisfy some properties in order to be defined as a copula. For the
sake of simplicity, the following properties are given in two dimensions but they can be
generalized for n ∈ N.

Definition 2 A copula is a function C defined on [0, 1]2 and verifying:

1. ∀(x, y) ∈ [0, 1]2, C(x, 0) = C(0, y) = 0,

2. ∀(x, y) ∈ [0, 1]2, |C(x, y)| � M ,

3. C(x, 1) = x and C(1, y) = y,
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4. Let us consider a rectangle with summits (a1, b1), (a1, b2), (a2, b2), (a2, b1) verifying
a1 < a2 and b1 < b2, then:

C(a1, b1) − C(a1, b2) − C(a2, b1) + C(a2, b2) � 0 (1.41)

The first property indicates that C is zero on the lower bounds of its domain of
definition. The second property implies that C is bounded. The third property validates
the uniformity of the marginals. The fourth property shows that C is a 2−increasing
function, i.e. that the probability measure of any rectangle embedded in the unit square
shall be positive. The properties are summarized in Figure 1.5.

00 1

1

C(0, y) = 0

C(x, 0) = 0

C(x, 1) = x

C(1, y) = y

(a1, b1)
•

(a2, b1)
•

(a2, b2)•(a1, b2)•

Figure 1.5: Illustration of the copula properties.

Let us consider two random variables U1 and U2 with uniform distributions on [0, 1]
and let C be the function defined by:

C(u1, u2) = P (U1 � u1, U2 � u2) , ∀(u1, u2) ∈ [0, 1]2 (1.42)

This function which has all the properties previously enounced is a copula. Recipro-
cally, a copula can be considered as what is left of a multivariate distribution once the
influence of the marginals has been removed.

1.5.3 Properties

1.5.3.1 Sklar’s theorem

Sklar’s theorem is a fundamental property of the copula theory. This theorem draws the
link between the joint distribution F of two random variables (X1, X2) and their marginal
distributions F1 and F2.
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Theorem 1 (Sklar’s theorem) Let X = [X1, X2]T be a random vector with joint cu-
mulative distribution function FX and marginal distributions F1 and F2. There exists a
2−dimensional copula C such that:

∀x ∈ R
2, FX(x1, x2) = C (F1(x1), F2(x2)) . (1.43)

If the marginal distributions F1 and F2 are continuous, then the copula C is unique and
reads:

C(u1, u2) = FX

(
F −1

1 (u1), F −1
2 (u2)

)
(1.44)

Otherwise, C is uniquely determined on DX1 × DX2, where DXi
is the support of the

marginal distribution Fi.

This theorem has been first proven in Sklar (1959). It illustrates how the term copula
has been chosen to highlight the way the copula couples the marginal distributions to
build the joint distribution.

1.5.3.2 Fréchet-Hoeffding bounds

Let us first introduce two important copulas M and W . They are respectively defined by:

M(x1, x2) = min(x1, x2) (1.45)

and:

W (x1, x2) = max(x1 + x2 − 1, 0) (1.46)

M and W , as pictured in Figure 1.6 are essential because they define the extremal values
of all copulas. They are referred to as Fréchet-Hoeffding bounds. They verify the following
property.

Property 1 For any copula C and any vector x = [x1, x2]T ∈ [0, 1]2, C satisfies:

W (x1, x2) � C(x1, x2) � M(x1, x2) (1.47)
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(a) W (x1, x2) = max(x1 + x2 − 1, 0) (b) M(x1, x2) = min(x1, x2)

Figure 1.6: Fréchet-Hoeffding bounds.

1.5.3.3 Invariance theorem

A second important theorem of the copula theory is the invariance theorem.

Theorem 2 Let X1 and X2 be two continuous random variables with respective marginal
distributions F1 and F2 and copula CX1,X2. If h1 and h2 are two strictly increasing func-
tions on DX1 and DX2 respectively, then:

Ch1(X1),h2(X2) = CX1,X2 (1.48)

It means that the copula is invariant under strictly increasing transformation of the ran-
dom variables.

1.5.3.4 Tail dependence

The concept of tail dependence is related to the probability of getting simultaneously
extreme (small or large) outcomes. Lower and upper tail dependences are seperately
studied. Let us consider in the sequel a pair of random variables (X1, X2) with uniform
marginals U [0, 1].
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Definition 3 A copula C has a lower tail dependence if:

λL = lim
x→0+

C(x, x)
x

= lim
x→0+

P (X1 � x, X2 � x)
x

(1.49)

exists and λL ∈]0, 1]. If λL = 0, then C has no lower tail dependence.

Definition 4 A copula C has an upper tail dependence if:

λU = lim
x→1−

1 − 2x + C(x, x)
1 − x

= lim
x→1−

P (X1 � x, X2 � x)
1 − x

(1.50)

exists and λU ∈]0, 1]. If λU = 0, then C has no upper tail dependence.

1.5.3.5 Marginal and conditional copulas

Before presenting the marginal and conditional copulas, let us first introduce the notion
of copula density.

Definition 5 The copula density c if it exists, is defined by:

c(u1, u2) = ∂2

∂u1∂u2
C(u1, u2) (1.51)

Conditional copulas are necessary for the building of multidimensional copulas (n > 2).
Let us now introduce the following notations:

∀k ∈ [1, . . . , n], Ck(u1, . . . , uk) = Cn(u1, . . . , uk, 1, . . . , 1) (1.52)

For a random vector with uniform marginals on [0, 1], Ck(u1, . . . , uk) is the cumulative
distribution function of the subvector [u1, . . . , uk] ⊂ [u1, . . . , un]. Then, the conditional
copula of [u1, . . . , uk] knowing [u1, . . . , uk−1] reads:

Ck(uk|u1, . . . , uk−1) = ∂k−1Ck(u1, . . . , uk)
∂k−1Ck−1(u1, . . . , uk−1)

(1.53)

1.5.3.6 Composition of copulas

Let us consider two random vectors X1 and X2 with respective dimension n and m and
respective copula C1 and C2 that are independent, i.e. ∀X1,i ∈ X1, ∀X2,j ∈ X2, X1,i

and X2,j are independent. Then, the copula C of the random vector made of the union
X = [X1, X2]T is the product of the copula C1 and C2:

C (X1, X2) = C1 (X1,1, . . . , X1,n) × C2 (X2,1, . . . , X2,m) (1.54)

The resulting copula C is of dimension n + m. This property enables one to build easily
the copula of a random vector with independent subvectors.
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1.5.3.7 Copulas and dependence measures

It has been shown that the dependence between two random variables can be characterized
by dependence measures such as the Spearman’s ρ or the Kendall’s τ . Nelsen (1999)
shows that these measures can be deduced from the copula of the joint distribution. The
Spearman’s ρ or the Kendall’s τ between two random variables X1 and X2 respectively
read:

ρS (X1, X2) = 12
∫∫

[0,1]2
C(u, v) du dv − 3 (1.55)

and:

τ (X1, X2) = 4
∫∫

[0,1]2
C(u, v) dC(u, v) − 1 (1.56)

Considering all the enounced properties and definitions, copulas enable one to model
the dependence structure of any random vector. The next subsection shows a variety of
copulas commonly used in engineering applications.

1.5.4 Classes of copulas

Many types of copulas have been defined, especially in the past few years, in order to
model extreme values. This subsection presents the most common copula families and
their main properties.

1.5.4.1 The independent copula

The copula theory represents a global framework to model any kind of dependence between
random variables, including the independent case. The independent copula (or product
copula) is defined by:

C(u1, u2) = u1 · u2 (1.57)

It corresponds in the probability theory to the probability product:

P (A ∩ B) = P (A)P (B) (1.58)

when A and B are two independent events. The independent copula is displayed in
Figure 1.7. The first picture (a) represents a scatterplot of a sample with U [0, 1] marginals
and independent copula. The second picture shows a contourplot of the copula density
c(u1, u2). The third picture exhibits the copula distribution c(u1, u2). The same three
representations will be used to illustrate all the copula types.
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(a) (b) (c)

Figure 1.7: Independent copula, scatterplot (a), contourplot (b) and 3D-view (c) of the copula
density c(u1, u2).

1.5.4.2 Elliptical copulas

An elliptical copula CE
R,ψ is the copula of an elliptical distribution Eμ,σ,R,ψ. In general,

the copula CE
R,ψ is not the CDF of Eμ,σ,R,ψ. The elliptical copula family corresponds to

two well-known copulas: the Gaussian copula and the Student copula (or t−copula).

Gaussian copula The Gaussian copula is defined by:

C(u1, u2; ρ) = Φ2
(
Φ−1(u1), Φ−1(u2); ρ

)
(1.59)

where ρ is the linear correlation coefficient and Φ2 (x, y; ρ) is the cumulative distribution
function of the bivariate standard Gaussian distribution with correlation coefficient ρ:

Φ2 (x, y; ρ) = 1
2π

√
1 − ρ2 exp

[
−x2 − 2ρxy + y2

2(1 − ρ2)

]
(1.60)

The Gaussian copula, pictured in Figure 1.8, is asymptotically independent in both
upper and lower tails. This means that no matter how high the correlation coefficient
ρ is, there will be no tail dependence (λL = λU = 0) from a Gaussian copula (except if
ρ = 1). Modelling the dependence structure of a random vector using a Gaussian copula
is consistent with the measure of this dependence with the linear correlation coefficient.
When non linear correlation dependence or extreme value events have to be modelled,
other types of copulas (presented hereinafter) have to be used.
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(a) (b) (c)

Figure 1.8: Gaussian copula with ρ = 0.5, scatterplot (a), contourplot (b) and 3D-view (c) of
the copula density c(u1, u2).

Remark : It is said that the Gaussian copula, presented in the financial world as
Li’s formula (Li, 1999) is partly responsible for the 2008 financial crisis (Salmon, 2009)
(article available here). In that case, the dependence between events was modelled with a
single number, ignoring both the real-world context and the limitations of this supposed
breakthrough in financial models.

Student copula The second elliptical copula is the Student copula (or t−copula) that
is derived from the bivariate Student distribution. It is defined by:

C(u1, u2; ρ, k) = tρ,k(t−1
ρ (u1), t−1

ρ (u2)) (1.61)

where:

tk(x) = 1√
kπ

Γ
(

k + 1
2

)

Γ
(

k

2

) (
1 + x2

k

)−( k+2
2 )

, k � 1 (1.62)

is the probability density function of the Student distribution with k degrees of freedom
and where:

tρ,k(x, y) =
∫ x

−∞

∫ y

−∞
1

2π
√

1 − ρ2

(
1 + x2 − 2ρxy + y2

k(1 − ρ2)

)−( k+2
2 )

dxdy (1.63)

is the bivariate probability density function with linear correlation ρ. The Student copula
is pictured in Figure 1.9.
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(a) (b) (c)

Figure 1.9: Student copula with ρ = 0.5, scatterplot (a), contourplot (b) and 3D-view (c) of
the copula density c(u1, u2).

Unlike the Gaussian copula, the Student copula has both lower and upper tail depen-
dences. They are equal (symmetrical copula) and read:

λL = λU = 2tk+1

(
(k + 1)(1 − ρ)

1 + ρ

)
(1.64)

1.5.4.3 Archimedean copulas

The Archimedean copulas (Genest and MacKay, 1986) are a class of copulas characterized
by a generator function ϕ. The general definition reads:

Definition 6 C is an Archimedean copula if:

C(u1, u2) =
{

ϕ−1(ϕ(u1) + ϕ(u2)) if ϕ(u1) + ϕ(u2) � ϕ(0)
0 either (1.65)

with ϕ verifying ϕ(1) = 0, ϕ′(u) < 0 et ϕ′′(u) > 0, ∀ 0 � u � 1.

In the next pararaphs, three Archimedean copulas are presented, namely, the Gumbel
copula, the Clayton copula and the Frank copula.

Gumbel copula The Gumbel copula corresponds to the generator function ϕ(t) =
[− ln t]θ (see Figure 1.10). It is defined by:

C(u1, u2) = exp
[
−((− ln u1)θ + (− ln u2)θ)

] 1
θ (1.66)

where θ � 1 is the copula parameter.
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Figure 1.10: Generator function of the Gumbel copula with θ = 1 (blue), θ = 2 (red) et θ = 3
(green).

The Gumbel copula is pictured in Figure 1.11. Unlike the elliptical copulas which are
symmetrical, there is a noticeable difference in the behaviour for lower and upper tails.
The Gumbel copula has a non zero upper tail dependence:

λU = 2 − 2 1
θ (1.67)

which, according to this definition, appears only when θ > 1. The lower tail dependence
λL is zero.

(a) (b) (c)

Figure 1.11: Gumbel copula with θ = 3, scatterplot (a), contourplot (b) and 3D-view (c) of the
copula density c(u1, u2).
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Clayton copula The Clayton copula corresponds to the generator function ϕ(t) =
t−θ − 1 (see Figure 1.12). It is defined by:

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)− 1
θ (1.68)

where θ > 0 is the copula parameter.

Figure 1.12: Generator function of the Clayton copula with θ = 1 (blue), θ = 2 (red) et θ = 3
(green).

(a) (b) (c)

Figure 1.13: Clayton copula with θ = 3, scatterplot (a), contourplot (b) and 3D-view (c) of
the copula density c(u1, u2).
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The Clayton copula is pictured in Figure 1.13. A lower tail dependence can be graph-
ically noticed. It reads :

λL = 2− 1
θ (1.69)

The upper tail dependence λU is zero.

Frank copula The Frank copula corresponds to the generator function ϕ(t) =

− ln e−θt − 1
e−θ − 1 (see Figure 1.14). It is defined by:

C(u1, u2) = −1
θ

ln
(

1 + (e−θu1 − 1)(e−θu2 − 1)
e−θ − 1

)
(1.70)

where θ ∈ R
∗ is the copula parameter.
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Figure 1.14: Generator function for the Frank copula with θ = 1 (blue), θ = 2 (red) et θ = 3
(green).

The Frank copula is pictured in Figure 1.15.
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(a) (b) (c)

Figure 1.15: Frank copula with θ = 3, scatterplot (a), contourplot (b) and 3D-view (c) of the
copula density c(u1, u2).

The basics of the copula theory have been presented. In the next subsection, copulas
are seen from a practical point of view. The purpose of the copulas is to model the
dependence structure of a random vector. In order to use it, one must be able to simulate
and identify the copula from a given data set.

1.5.5 Simulation of a copula

1.5.5.1 Simulation of a joint distribution

The simulation of a random vector X with marginal distributions F1, . . . , Fn and copula
Cn can be achieved in two steps:

1. Simulate a sample U from a random vector U with copula C and uniform margins
on [0, 1].

2. Transform the sample U into X by applying the effects of the marginal distributions:

xi = F −1
i (ui), i = 1, . . . , n (1.71)

Consequently, the difficulty relies in simulating realizations from the copula C.

1.5.5.2 Simulation of a copula

The simulation procedure depends on the type of the copula. Here, the case of a bivariate
Gaussian copula is considered. For a given correlation matrix Σ, the algorithm reads:

1. Perform a Cholesky decomposition Σ = LTL.
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2. Generate independent identically distributed (iid) standard normal random vari-
ables X ′

1 and X ′
2.

3. Compute (X1, X2)T = X = LX ′ where X ′ = (X ′
1, X ′

2)T.

4. Return Ui = Φ(Xi), i = 1, 2 where Φ is the standard normal cumulative distribution
function.

For other types of copula, the global algorithm is quite similar but there are changes
in the distributions used to simulate and transform the intermediate samples.

1.5.6 Identification of a copula

Building the probabilistic model of a random vector X from a data sample X corresponds
to identifying:

1. the marginal distributions of each component Xi,

2. the dependence structure, namely the copula C.

The identification techniques for the marginal distributions are well-established
(QQ−plot, maximum-likelihood or kernel smoothing estimation or goodness-of-fit tests
such as the Kolmogorov-Smirnov test). Those for copulas are inspired from them. But,
for a first intuition, it is necessary to visualize the copula.

1.5.6.1 Dependogram of a copula

The dependogram of a bivariate sample X of size N is a modified scatterplot for which
the numerical values of the realizations x

(i)
k are replaced by their normed position r

(i)
k in

the positively ranked marginal sample X1:

r
(i)
k = rank(x(i)

k )
N

, k = 1, . . . , n, i = 1, . . . , N (1.72)

The marginal distributions are transformed into uniform distributions on [0, 1]. The
goal of this operation is to erase the effects of the margins so that only the copula is pre-
served. An illustration of the transformation is given in Figure 1.16. The joint distribution
F (x) = C (F1(x1), F2(x2)) is composed of a standard normal distribution F1 ∼ N (0, 1)
and a lognormal distribution F2 ∼ LN (μ = 4, σ = 2, γ = 0) coupled by a Gaussian copula
Cθ=0.7.
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Figure 1.16: Scatterplot (a) and dependogram (b) of a bivariate sample. On the dependogram,
the effects of the margins have been removed and the copula appears through the
scatterplot.

1.5.6.2 Parametric estimation of a Gaussian copula

Assuming a multivariate sample has a Gaussian copula, the methodology consists in
computing the rank correlation matrix ρS or the Kendall τ matrix from the considered
sample X in order to parameterize the corresponding Gaussian copula. Then the copula
parameter matrix R is defined by:

Rij = 2 sin
(

π

6 ρS,ij

)
= sin

(
π

2 τij

)
(1.73)

It is comparable to the so-called method of moments for estimating the parameters of
univariate distributions.

1.5.6.3 Kendall plot

The Kendall plot is an easy graphical tool whose goal is to test the structure of dependence
of the data (Genest and Boies, 2003). The considered hypotheses are:

H0 : C = C0 versus H1 : C �= C0 (1.74)

where C is the copula of the data and C0 is the tested copula. Like the QQ−plot for
distributions, it compares quantiles. The Kendall plot for any bivariate sample requires
to transform the original sample by removing the effects of the marginals. The numerical
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value of the realizations x1i of X1 (respectively X2) is replaced by its normed rank in X1
(respectively X2). The normed ranks are then referred to as pseudo-observations.

Figure 1.17: Principle of estimation for the Kendall plot’s quantiles. For any pseudo-
observation xi, one has to count the number of pseudo observations xi,i�=j that
respect r1,i > r1,j and r2,i > r2,j. Examples are given for two pseudo-observations.
The empirical quantiles Ĥi are respectively the number of points that belong to
the green-filled or red-filled areas.

Let us consider a bivariate data sample (X1, X2) of size N with uniform margins on
[0, 1], i.e. a sample from a copula. The empirical quantiles Ĥi, calculated from the data
are defined by:

Ĥi ≡ H(X i
1, X i

2) = 1
N − 1#

{
i �= j, Xj

1 � X i
1, Xj

2 � X i
2

}
(1.75)

where # denotes the size of the set {.}. The estimation of the quantile Ĥi consists in
counting the realizations for which both coordinates are smaller than the Xi’s as it is
shown on Figure 1.17.

The theoretical quantiles (corresponding to the copula C0) are defined by Wi =
E [H0(X0

1 , X0
2 )]. In other words, the empirical quantiles Ĥi calculated from a data sample
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with copula C are compared to the expected quantiles of a sample with copula C0 of
the same size. The expected quantiles are estimated from k samples from the copula
C0. In practice, k = 100 samples are used for the estimation of the synthetic theoretical
quantiles Wi. The Kendall plot is the graph of the points (Ĥi, Wi), i = 1, . . . , N . These
pairs tends to concentrate along the main diagonal under the null hypothesis (C = C0),
see Figure 1.18.
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Figure 1.18: Two examples of Kendall Plots. In the subfigure (a), a Gaussian copula Cθ=0.2
is tested (H0 rejected), whereas in the subfigure (b), the true copula Cθ=0.7 is
compared to the sample (H0 accepted).

1.5.6.4 Semi-parametric estimation

Here, two blanket tests are considered. The term blanket refers to the fact that neither
parameter tuning nor strategic choices are required. For a given class of copula C (Gaus-
sian, Gumbel, Clayton), the goal is to determined the copula parameter θ so that the
empirical copula Cθ fits the data. In Genest et al. (2007), the author proposes a review
on a large variety of goodness-of-fit tests for copulas. A particular attention is given to
ranked versions of Cramér-von Mises and Kolmogorov-Smirnov. The associated statis-
tics SN (resp. TN) is given in Eq. (1.76) (resp. Eq. (1.77)). Given a n−variate sample
U = {U 1, . . . , UN} of size N , the idea is to determine a distance between the tested
copula CN and an estimation CθN

of the real copula C ∈ C. These statistics respectively
read:

SN =
∫

[0,1]n
CN(u)2dCN(u) (1.76)
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and
TN = sup

u∈[0,1]n
|CN(u)| (1.77)

with:
CN =

√
N (CN − CθN

) (1.78)

and:
CN(u) = 1

N

N∑
i=1

1 (Ui1 � u1, . . . , Uin � un) (1.79)

Large values of these statistics lead to the rejection of H0. Approximate p−values
can be estimated by bootstraping. Genest and Rémillard (2008) show that these tests
are consistent and the larger the sample is (at least 102 points for a bivariate sample),
the better the results are. For more tests, the reader is referred to Kostadinov (2005),
Fermanian (2005).

1.5.6.5 Non parametric estimation

The main drawback of the previous estimation techniques is that they make hypotheses
on the class of copula. In other words, for a given sample, one has to run one test for each
class of copula that could fit. For instance, a sample with a symmetrical dependogram,
Gaussian, Student, Frank could fit but potentially also any other symmetrical copulas. To
circumvent this difficulty, non parametric techniques have been developped by Charpentier
(2006) (kernel smoothing technique) and Lambert (2007) (Bayesian splines smoothing
techniques for Archimedean copulas).

1.5.7 Copula and isoprobabilistic transformations

In this section, it is shown how isoprobabilistic transformations (i.e. Nataf and Rosenblatt
transform) can be seen from a copula point of view. This observation comes from the
articles by Lebrun and Dutfoy (2009a), Lebrun and Dutfoy (2009c), Lebrun and Dutfoy
(2009b) which is a comprehensive work on isoprobabilistic transformations in three parts.

An isoprobabilistic transformation T is a diffeomorphism from the support DX to R
n

so that U and RU have the same distribution for all rotation R ∈ sOn(R). The Nataf
and Rosenblatt transform have this property.

1.5.7.1 Nataf transformation

The Nataf transformation (Nataf, 1962) allows one to build a multivariate distribution
that fits a collection of marginal distributions and a correlation matrix.

Definition 7 (Nataf tranformation) Let X = (X1, . . . , Xn) ∈ R
n be a random vector

with a joint distribution FX defined by its marginal cumulative distribution functions
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F1, . . . , Fn and its normal copula CR. The Nataf tranformation TN of X reads:

U = TN(X) = T2 ◦ T1(X) (1.80)

where T1 and T2 are respectively defined by:

T1 : R
n → R

n

X �→ Y =

⎛⎜⎜⎝
Φ−1 ◦ F1(X1)

...
Φ−1 ◦ Fn(Xn)

⎞⎟⎟⎠ (1.81)

T2 : R
n → R

n

Y �→ U = ΓY
(1.82)

where Φ is the cumulative distribution function of the univariate standard normal distri-
bution, Γ = L−1 and L is the Cholesky decomposition of R so that R = LLT. R0 · Y is
a Gaussian vector with standard Gaussian marginals and correlation matrix R0. Conse-
quently, U is a Gaussian vector with the same marginals as X but independent.

The space U is defined in Eq. (1.82) is referred to as standard space where all the
variables are independent with standard Gaussian distributions whereas the space of X
is called the physical space. The generalized Nataf tranformation extends the above defi-
nition to any elliptical copula.

1.5.7.2 Rosenblatt transformation

The Rosenblatt tranformation offers an alternative for building a multivariate distribution
with any copula.

Definition 8 (Rosenblatt transformation) Let X = (X1, . . . , Xn) ∈ R
n be a random

vector with joint distribution FX defined by its marginal cumulative distribution functions
F1, . . . , Fn and its copula C. The Rosenblatt tranformation TR of X reads:

U = TR(X) = T2 ◦ T1(X) (1.83)

where T1 and T2 are respectively defined by:

T1 : R
n → R

n

X �→ Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

F1(x1)
...

Fk|1, ... ,k−1(Xk|X1, . . . , Xk−1)
...

Fn|1, ... ,n−1(Xn|X1, . . . , Xn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(1.84)
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T2 : R
n → R

n

Y �→ U =

⎛⎜⎜⎝
E−1(Y1)

...
E−1(Yn)

⎞⎟⎟⎠ (1.85)

where E is the univariate cumulative distribution function of an elliptical distribution.

This transformations has been defined for Gaussian copulas and may be extended to
any elliptical copulas.

One drawback of the Rosenblatt transform is that it is not unique. The transformation
depends on the order of the conditional simulations in T1 (Eq. (1.84)).

1.5.7.3 Link between copulas and isoprobabilistic transforms

The Nataf transform is one way of modelling the dependence structure of a random vector
by a Gaussian copula parametrized by its correlation matrix ρ. Indeed, it is shown that
the Nataf transform is one particular way of modelling the stochastic dependence using the
Gaussian copula. The demonstration is based on the invariance properties of the copula
by increasing transformation of the components of random vector. The generalized Nataf
transform enables one to generalize this principle to any multivariate distribution with
an elliptical copula. However, it is important to pay attention to the parametrization
using the linear correlation matrix because the latter does not take non linear aspects
such as tail dependences into account. Then, the practitioner should rather use the
other dependence measures such as the Spearman’s ρ or the Kendall’s τ . Concerning the
Rosenblatt transform, Lebrun and Dutfoy (2009c) show that it is equivalent to the Nataf
transform in the case of a Gaussian copula. In other cases, that is when the copula is not
Gaussian, the two probabilistic transforms differ in the sense that their standard spaces
are different.

1.6 Conclusion

This chapter has recalled some basics of the probability theory that will be used all along
this manuscript. The mathematical notations have been set up. The tools presented here
put together the mathematical framework to build the probabilistic modelling of data.
First the intrinsic behaviour of the parameters is described by the marginal distributions.
Then interactions between the parameters are taken into account. Therefore, an overview
on correlation measures and the copula theory is proposed. For a more global vision on
copula, Embrechts (2009) recommends the reading of three must-read articles: Embrechts
et al. (2002) on the hazards of using simple dependence measures, Genest and Favre (2007)
on ranked-based inference methods for copulas and Genest and Neslehova (2007) on the
use of copulas for count data. The same author also advises the reading of Genest and
MacKay (1986) on the geometrical interpretation of the Kendall’s τ and Mikosch (2006)
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who proposes an incisive analogy between the sudden craze for copulas and the tale of
Andersen The Emperor’s New Clothes.

Now that all the tools to build a joint probability distribution function have been
developed and that uncertainties in the input parameters are propagated through a model
M, it is time to consider the uncertainties in the output parameter. A particular attention
is given to the identification of the sources of this dispersion. In the next chapter, global
sensitivity analysis is studied.
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2.1 Introduction

Sensitivity analysis (SA) aims at identifying how the uncertain input parameters Xi,
i = 1, . . . , n of a model M contribute to the variability of its output Y . The objectives
of this type of analysis are multiple (Saltelli et al., 2000):

• Analyzing the role of the parameters in the model, i.e. self-contributions and inter-
actions;

• Identifying the less influential parameters in the model in order to reduce the di-
mension of the problem;

• Reducing the dispersion of the model output by minimizing the variability of the
most influent parameters.

Motivations and applications of sensitivity analysis are originally found in biology and
chemistry where the number of possible experiments is limited in time and by their costs.
Nowadays, SA is used in many engineering fields, including mechanical engineering, where
there is a need for optimizing numerical simulations.

Three approaches have to be distinguished. Screening methods (Morris, 1991) quali-
tatively analyze the importance of an input parameter on the model output. They allow
one to rank the input parameters according to their contribution to the output variability
and consequently to easily identify which ones must be studied more precisely and which
ones can be neglected.

Local sensitivity analysis (LSA) is a quantitative method. In addition to an input
parameter ranking, it also defines a parameter importance as a quantity, namely a sen-
sitivity index. LSA methods focus on the effects of an input parameter taking one fixed
value x∗ = [x∗

1, . . . , x∗
n]T, which is often its mean value x̄. The so-called one at a time

(OAT method) consists in computing the following sensitivity indices:

S∗
i = ∂M

∂xi

(x∗
1, . . . , x∗

n) (2.1)

The second approach consists in a more general identification of the contribution of
the parameters. One first family of methods study the simple (linear) relationship that
exists between the input parameter and the output of the model. Therefore, they are
reserved for linear or at least monotonic models. When no hypothesis on the structure
of the model is made, the analysis must consider all the values each input parameter can
take. This approach is referred to as global sensitivity analysis (GSA). The most popular
method is based on the decomposition of the variance of the model output. This powerful
technique provides useful results but requires a large number of calls to the numerical
model.

Sensitivity analysis methods are well defined when the variables are independent but
in the presence of correlation, the results they provide are either erroneous or simply not
calculable. To circumvent this problem, methods derived from the classical ones have been
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recently developped. Different options are explored. As shown later on, authors consider
the independence of the variables as a particular case and search for a generalization
of the methods while others define new quantities to characterize the input parameter
contributions.

This chapter mostly deals with global sensitivity anlaysis. The two first sections de-
scribe general methods in the case of independence of the input parameters while the next
three sections propose new techniques to treat problems with correlated input parameters.
For a general overview on sensitivity analysis, the reading of the book by Saltelli et al.
(2004) is advised.

2.2 Correlation and regression-based methods

In this first section, global sensitivity analysis methods for linear or monotonic models
are presented. They are based on the study of the relation between an input parameter
Xi and the model output Y = M (X) where X is a random vector with independent
components.

2.2.1 Linear models

First, two global sensitivity indices, namely the Standard Regression Coefficients SRC
and the Partial Correlation Coefficients PCC, are introduced.

2.2.1.1 Standard regression coeffcients

Let us first consider the model M as linear. Thus, the model response Y reads:

Y = β0 +
n∑

i=1
βi Xi (2.2)

Thanks to the independence of the Xi’s, the variance of Y can be decomposed as follows:

Var [Y ] =
n∑

i=1
β2

i Var [Xi] (2.3)

where β2
i Var [Xi] is the share of the variance of Y due to Xi. Then, the sensibility of Y

to input variable Xi is given by the Standard Regression Coefficient SRCi:

SRCi = β2
i Var [Xi]
Var [Y ] (2.4)

As the SRCi index represents a share of variance, its value belongs to the interval [0, 1]. A
value close to 1 indicates that the variable Xi has a major contribution to the variability of
Y whereas a value that tends to 0 shows that whatever dispersed Xi is, it has no influence
on the variability of Y .
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Remark: The SRCi index corresponds to the squared linear correlation coefficient
ρY,Xi

between the input parameter Xi and the output parameter Y . Because M is linear,
Cov [Y, Xi] = βi Var [Xi] and:

ρY,Xi
= Cov [Y, Xi]√

Var [Y ] Var [Xi]
= βi

√√√√Var [Xi]
Var [Y ] (2.5)

that is SRCi = ρ2
Y,Xi

.

2.2.1.2 Partial correlation coefficients

One limitation of the SRC indices relies in the correlation that might occur between
the variables due to the simulations and might cause a misinterpretation of the results.
Therefore, another sensitivity index, namely the Partial Correlation Coefficient, has been
proposed to compute the sensitivity of Y to Xi without any effects of the input parameters
Xj,j �=i. It reads:

PCCi = ρY,Xi|X∼i

= Cov [Y, Xi|X∼i]√
Var [Y |X∼i] Var [Xi|X∼i]

= Cov [Y, Xi|X∼i]√
Var [Y |X∼i] Var [Xi]

(2.6)

where X∼i is the input vector derived by cancelling the ith component of X. In practice, a
N−sample Y|X ∼i is computed from a input sample where the jth components realizations,
j �= i, are fixed at a given value x∗

j , namely:

X |X ∼i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗
1 x∗

2 · · · x∗
i−1 x

(1)
i x∗

i+1 · · · x∗
n

x∗
1 x∗

2 · · · x∗
i−1 x

(2)
i x∗

i+1 · · · x∗
n

... ... ... ... ... ... ... ...
x∗

1 x∗
2 · · · x∗

i−1 x
(k)
i x∗

i+1 · · · x∗
n

... ... ... ... ... ... ... ...
x∗

1 x∗
2 · · · x∗

i−1 x
(N)
i x∗

i+1 · · · x∗
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.7)

At the numerator, the quantity Cov [Y, Xi|X∼i] represents the covariance of Y and Xi

when X∼i is know, i.e. fixed at given values and reads:

Cov [Y, Xi|X∼i] = E [(Y |X∼i − E [Y |X∼i])(Xi|X∼i − E [Xi|X∼i])]
= E [(Y |X∼i − E [Y |X∼i])(Xi − E [Xi])]

(2.8)

At the denominator, the conditional variance Var [Y |X∼i] represents the variance of Y
when all the parameters but the ith of X are fixed. Only the uncertainty brought by Xi

is taken into account in the calculation of Y .
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As it is expressed as a correlation coefficient, the sensitivity index PCCi belongs to
the interval [−1, 1] (correlation can be negative). Therefore, the ranking has to be done
on the indices absolute values. According to Eqs. (2.4) and (2.6), SRC and PCC indices
are not equal. However, they provide the same type of parameter ranking.

2.2.2 Monotonic models

When the model M is no longer linear but still monotonic, the previously described sen-
sivity indices cannot be used directly, but they can be modified so that they fit the model
structure. By carrying out a rank transformation on the realizations in the N−sample
X (each realizations xi is replaced by its rank ri in the increasing ordered sample RXi

),
one obtains the Standard Rank Regression Coefficients and the Partial Rank Correlation
Coefficients. Thus, the SRRC and PRCC indices respectively read:

SRRCi = β2
i Var [RXi

]
Var [RY ] (2.9)

and:
PRCCi = ρRY ,RXi

|RX∼i
(2.10)

When no hypothesis can be made on the model structure (linearity, monotonicity), a more
general method is required.

2.3 Variance-based methods

The goal of GSA is to identify the main contributors to the dispersion of the model
response Y . Consequently, the variance of Y is the quantity to be studied.

2.3.1 ANOVA decomposition

2.3.1.1 Introduction

The ANOVA (ANalysis Of VAriance) decomposition has been introduced in Efron and
Stein (1981). In order to appreciate the contribution of the variable Xi to the variance
of the model response Y , let us study how much the variance of Y would decrease if the
value of Xi were known. The reduced variance of Y when Xi is fixed at a value x∗

i is:

Var [Y |Xi = x∗
i ] (2.11)

As this quantity depends on the value x∗
i , it is necessary to compute its expected value

EXi
[Var [Y |Xi]] in order to take all the possible values of Xi into account. The higher

the contribution of Xi, the lower the expected variance of Y |Xi. According to the total
variance theorem:

Var [Y ] = VarXi
[E [Y |Xi]] + EXi

[Var [Y |Xi]] (2.12)
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The share of variance of Y that is due to Xi is the quantity VarXi
[E [Y |Xi]], also denoted

by Vi. EXi
[Var [Y |Xi]] represents what is left of Var [Y ] when Xi is known (deterministic).

A sensitivity index of Y to Xi then reads:

Si = VarXi
[E [Y |Xi]]

Var [Y ] (2.13)

Because the conditional variance is normalized by the total variance, the sensitivity index
Si ∈ [0, 1]. Another popular measure of the contribution of Xi to the variance of Y is the
total effect (first order and interactions) index ST i first introduced in Homma and Saltelli
(1996), namely:

ST i = EX∼i
[Var [Y |X∼i]]
Var [Y ] = 1 − VarX∼i

[E [Y |X∼i]]
Var [Y ] (2.14)

where EXi
[Var [Y |X∼i]] is the expected variance that would be left if all input variables

but Xi were known. According to Eq. (2.14), ST i can also been expressed using the
quantity VarXi

[E [Y |X∼i]] which is the expected reduction of the variance of Y if all the
terms containing Xi were known.

2.3.1.2 Sobol’ decomposition

The indices Si (or S1i) and ST i are often referred to as Sobol first order indices and Sobol
total indices. Sobol’ (1993) introduces these indices by decomposing the model M in a
sum of functions of increasing dimension . Let us first consider that the input variables
Xi are independent and uniform over [0, 1]. Providing M is square-integrable in [0, 1]n,
the model admits a unique decomposition:

M(x) = M0 +
n∑

i=1
Mi(xi) +

∑
1�i<j�n

Mi,j(xi, xj) + . . . + Mi,...,n(x1, . . . , xn) (2.15)

where M0 is a constant and where the other functions verify:

∫ 1

0
Mi1,...,is (xi1 , . . . , xis) dxik

= 0 (2.16)

and: ∫ 1

0
Mi1,...,is (xi1 , . . . , xis) Mj1,...,jt (xj1 , . . . , xjt) dx = 0 (2.17)

∀k ∈ {1, . . . , n} and {i1, . . . , is} ⊆ {1, . . . , n}. The integral of a component of the decom-
position over one of its variable xik

is zero and two components are orthogonal if at least
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one variable is not shared. According to Eqs. (2.16) and (2.17), one obtains:

M0 =
∫ 1

0
M(x)dx

Mi(xi) =
∫ 1

0
M(x)dx∼i − M0

Mi,j(xi, xj) =
∫ 1

0
M(x)dx∼i,j − M0 − Mi(xi) − Mj(xj)

. . .

M1,...,n(x1, . . . , xn) = M(x) − M0 −
n∑

i=1
Mi(xi) − . . .

− ∑
1�i1<...<in−1�n

Mi1,...,in−1(xi1 , . . . , xin−1)

(2.18)

where the last component Mi1,...,in(x1, . . . , xn) verifies the decomposition Eq. (2.15). Con-
sequently, the variance of Y can be decomposed according the following theorem.

Theorem 3 The variance of the model described in Eq. (2.15) can be decomposed as:

Var [Y ] =
n∑

i=1
Vi +

∑
1�i<j�n

Vij + . . . + V1...n (2.19)

where:
Vi = Var [E [Y |Xi]]

Vij = Var [E [Y |Xi, Xj]] − Vi − Vj

. . .

V1...n = Var [Y ] −
n∑

i=1
Vi − ∑

1�i<j�n

Vij − . . . − ∑
1�i1,...,in−1�n

Vi1...in−1

(2.20)

The components of the decomposition of the variance of Y are the variances of the
components of the decomposition of Y = M(X):

Vi1...,is = Var [Mi1...is (xi1 , . . . xis)] {i1, . . . , is} ⊆ {1, . . . , n} (2.21)

Thus, the decomposed effects of the variables (or groups of variables) resulting from
Eq. (2.15) are well transmitted to the variance decomposition in Eq. (2.19).

In this subsection, sensitivity indices for a model Y = M(X) have been defined. In
the next subsection, attention will be given on the computational aspects of GSA.

2.3.2 Computational aspects

The computation of sensitivity indices, and more particularly the evaluation of the con-
ditional moments, involves a very high number of calls to the numerical model M, let us
say 104 to 106. Because one evaluation of M may last more than a second in engineering
applications, there is a need for new methods to compute these indices more efficiently.
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2.3.2.1 Computing sensitivity indices

The most intuitive way of computing Sobol’ sensitivity indices consists in a brute force
Monte Carlo approach. For each index Si given in Eq. (2.13), one has to evaluate as many
conditional expectations E [Y |Xi] as it is needed to estimate their variance. Consequently,
this technique leads to a catastrophically slow convergence.

A summary review of the most efficient ways to compute both first order and total
indices is proposed in Saltelli et al. (2010). Let us introduce two independent sampling
matrices A and B with components aji and bji where i = 1, . . . , n and j = 1, . . . , N ,
denotes jth realization of the ith input variable. Let us now denote by A(i)

B (resp. B(i)
A )

the sampling matrix A (resp. B) where the ith column as been replaced by the one from
B (resp. A) as shown in Eq. (2.23).

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X1 . . . Xi . . . Xn

1 a11 . . . a1i . . . a1n... ... . . .
... . . .

...
j aj1 . . . aji . . . ajn
... ... . . .

... . . .
...

N aN1 . . . aNi . . . aNn

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2.22)

A(i)
B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X1 . . . Xi−1 Xi Xi+1 . . . Xn

1 a11 . . . a1i−1 b1i a1i+1 . . . a1n
... ... . . .

... ... ... . . .
...

j aj1 . . . aji−1 bji aji+1 . . . ajn
... ... . . .

... ... ... . . .
...

N aN1 . . . aNi−1 bNi aNi+1 . . . aNn

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2.23)

The vector M(A) denotes the output sample {M(A)j ≡ M(Aj), j = 1, . . . , N} where
Aj is the jth row of the matrix A. Then, the first order index can be computed from the
couple of matrices A, B(i)

A (resp. B, A(i)
B ):

VarXi
[E [Y |Xi]] = 1

N

N∑
j=1

M(A)j M(B(i)
A )j − M2

0 (2.24)

The computation of the total index ST i reads:

VarXi
[E [Y |X∼i]] = 1

N

N∑
j=1

M(A)j M(A(i)
B )j − M2

0 (2.25)

where M0 is the expected value of Y , namely:

M0 = E [Y ] ≈ 1
N

N∑
j=1

M(Xj) (2.26)

Prooves of Eqs. (2.24) and (2.25) can be found in Saltelli et al. (2010).
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Improvements of the estimator of Si in Eq. (2.24) have been proposed by Saltelli (2002)
and Sobol’ et al. (2007) where:

VarXi
[E [Y |Xi]] = 1

N

N∑
j=1

M(A)j

(
M(B(i)

A )j − M(B)j

)
(2.27)

The estimator of ST i in Eq. (2.25) has also been numerically improved in Sobol’ (2007)
and now reads:

VarX∼i
[E [Y |X∼i]] = Var [Y ] − 1

N

N∑
j=1

M(A)j

(
M(A)j − M(A(i)

B )j

)
(2.28)

Finally, Jansen et al. (1994) and Jansen (1999) offered alternative estimators for Si

and ST i. The so-called Jansen’s formulae respectively read:

Var [E [Y |Xi]] = Var [Y ] − 1
2N

N∑
j=1

(
M(B)j − M(A(i)

B )j

)2
(2.29)

and:

E [Var [Y |X∼i]] = 1
2N

N∑
j=1

(
M(A)j − M(A(i)

B )j

)2
(2.30)

More Recently, Janon et al. (2012) proposed a new estimator TN of Si. Let us first
redefine M as a function of two multidimensional random variables X ∈ R

n1 and Z ∈ R
n2

so that n = n1 + n2. It comes:
Y = M (X, Z) (2.31)

X ′ denotes an independent copy of X and Y X = M (X, Z ′). The author shows that:

SX = Var [E [Y |X]]
Var [Y ] =

Cov
[
Y, Y X

]
Var [Y ] (2.32)

A first estimator SX
N of SX introduced in Homma and Saltelli (1996) reads:

SX
N =

1
N

∑
i

YiY
X

i −
(

1
N

∑
i

Yi

)(
1
N

∑
i

Y X
i

)
1
N

∑
i

Y 2
i −

(
1
N

∑
i

Yi

)2 (2.33)

This natural estimator consists in the simpliest expression of the covariance Cov
[
Y, Y X

]
and the variance Var [Y ].
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A second estimator T X
N of SX is now presented. The improvement consits in involving

the Y X
i , i = 1, . . . , N in the computation of Var [Y ]. That way, the estimator of Var [Y ]

is expected to perform better than using only the Yi, i = 1, . . . , N . T X
N reads:

T X
N =

1
N

∑
i

YiY
X

i −
(

1
N

∑
i

[
Yi + Y X

i

2

])2

1
N

∑
i

⎡⎢⎣Y 2
i +

(
Y X

i

)2

2

⎤⎥⎦−
(

1
N

∑
i

[
Yi + Y X

i

2

])2
(2.34)

The efficiency of these estimators is now studied through the definitions of confidence
intervals.

2.3.2.2 Confidence intervals for sensitivity indices

Let us first introduce the notion of confidence interval. A confidence interval Iα is a
powerful tool to measure the accuracy of an estimator with a confidence degree α, that
is the probability that x belongs to interval [a, b] is P (a � x � b) = 1 − α. Considering
that X has an Gaussian asymptotic behaviour, Iα is defined by:

Iα =
[
x̄ − Φ−1

(
α

2

)
s√
N

; x̄ + Φ−1
(

1 − α

2

)
s√
N

]
(2.35)

where x̄ and s are the estimators of the expected value and standard deviation of the N−
sample X . Φ−1(q) is the qth quantile of the standard Gaussian distribution. For example,
a 95% confidence interval of X, that is α = 5%, reads:

I0.05 =
[
x̄ − 1.96 s√

N
; x̄ + 1.96 s√

N

]
(2.36)

More generally, Iα reads:

Iα =
[
x̄ − tα

s√
N

; x̄ + tα
s√
N

]
(2.37)

where tα is the
(

1−α
2

)th
quantile of the asymptotic distribution of X. Consequently, the

issue consists in identifying the asymptotic distribution of the estimator to be studied.
Since different estimators have been proposed to compute the indices Si and ST i,

it is gainful to know which one performs best in terms accuracy to number of calls to
the model ratio. Several attempts have been proposed to define confidence interval for
sensitivity indices estimators. Martinez (2011) identifies the sensitivity index Si as a linear
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correlation coefficient:

SX
N = Var [E [Y |X]]

Var [Y ] (2.38)

=
Cov

[
Y, Y X

]
√

Var [Y ] Var [Y X ]
(2.39)

= ρ
(
Y, Y X

)
(2.40)

Thus, the methods for computing the confidence interval of a linear correlation coef-
ficient can be applied. Let us denote by ρ̂N the estimator of ρ

(
Y, Y X

)
from a bivariate

N−sample [Y , YX ]. According to the Fisher transformation (Fisher, 1915) zN of ρ̂N , the
asymptotic behaviour of ρ̂N reads:

zN = 1
2 ln

(
1 + ρ̂N

1 − ρ̂N

)
= tanh−1 (ρ̂N) ∼ N

⎛⎝1
2 ln

⎛⎝1 + ρ
(
Y, Y X

)
1 − ρ (Y, Y X)

⎞⎠ ,
1

N − 3

⎞⎠ (2.41)

Thus, a α% confidence interval of ρ̂N , that is the first order index SX
N is given by:

Iα =

⎡⎢⎢⎣tanh

⎛⎜⎜⎝zN −
Φ−1

(
α

2

)
N − 3

⎞⎟⎟⎠ ; tanh

⎛⎜⎜⎝zN +
Φ−1

(
1 − α

2

)
N − 3

⎞⎟⎟⎠
⎤⎥⎥⎦ (2.42)

=

⎡⎢⎢⎣tanh

⎛⎜⎜⎝1
2 ln

(
1 + SX

N

1 − SX
N

)
−

Φ−1
(

α

2

)
N − 3

⎞⎟⎟⎠ ; tanh

⎛⎜⎜⎝1
2 ln

(
1 + SX

N

1 − SX
N

)
+

Φ−1
(

1 − α

2

)
N − 3

⎞⎟⎟⎠
⎤⎥⎥⎦

(2.43)

In the same way, a confidence interval for the total index ST X
N reads:

Iα =

⎡⎢⎢⎣1 − tanh

⎛⎜⎜⎝1
2 ln

(
1 + SZ

N

1 − SZ
N

)
−

Φ−1
(

α

2

)
N − 3

⎞⎟⎟⎠ ; 1 − tanh

⎛⎜⎜⎝1
2 ln

(
1 + SZ

N

1 − SZ
N

)
−

Φ−1
(

1 − α

2

)
N − 3

⎞⎟⎟⎠
⎤⎥⎥⎦

(2.44)
This asymptotic behaviour holds only if Y and Y X have a Gaussian distribution, as
explained in subsection 1.3.6.

To circumvent this issue, Janon et al. (2012) introduces two asymptotic distributions
for the sensitivity indices estimators in Eqs. (2.33) and (2.34). The estimators are con-
sistent, thanks to the strong law of large numbers and noticing that E

[
Y X

]
= E [Y ] and

Var
[
Y X

]
= Var [Y ], namely:

SX
N −→

N→∞
SX (2.45)

T X
N −→

N→∞
SX (2.46)
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and their asymptotic distributions respectively read:

√
N
(
SX

N − SX
)

∼ N
⎛⎝0,

Var
[
(Y − E [Y ])

[(
Y X − E [Y ]

)
− SX (Y − E [Y ])

]]
Var [Y ]2

⎞⎠ (2.47)

and: √
N
(
T X

N − SX
)

∼ N
(
0, σ2

T

)
(2.48)

with:

σ2
T =

Var
[
(Y − E [Y ])

(
Y X − E [Y ]

)
− SX

2

(
(Y − E [Y ])2 +

(
Y X − E [Y ]

)2
)]

Var [Y ]2
(2.49)

Despite encouraging results in terms of convergence rate, the estimator TN appears to
be slightly biased (Owen, 2012b) because identical realizations are contained in both Y
and Y X . Therefore, a bias corrected version of the estimator is proposed. Owen (2012a)
recently introduced a new computation scheme for the estimation of Sobol’ sensitivity
indices that now makes use of three independent sampling matrices instead of two. This
new estimator appears to perform well for small Sobol’ indices but is outperformed by
the 2-matrice scheme for large Sobol’ indices.

Global sensitivity analysis methods such as ANOVA are well-established for models
with independent inputs. When the input parameters are correlated, other techniques
have to be developed.

2.4 Sensitivity analysis for models with correlated in-
puts

From now on in this chapter, attention is given to GSA methods for models with correlated
input parameters. Let us first explain why the dependence structure of the parameters
influences the results of global sensitivity analysis.

2.4.1 Problem statement

When the input variables of a model M are independent, the Sobol’ (1993) functional
decomposition of the variance output allows one to identify the contribution of each input
parameters or group of input parameters to the variance output. For instance, in case of
an additive model, that is in the form of :

Y = M(X) =
n∑

1=1
ai Xi (2.50)

the variance of the model response is entirely decomposed into first order Sobol’ indices.
This case is illustrated in Figure 2.1 (a) with n = 3, a = [3, 2, 1] and Xi ∼ N (0., 1.),



2.4. Sensitivity analysis for models with correlated inputs 53

i = 1, . . . , n. When the input parameters are no longer independent, let us take for
instance the following linear correlation matrix :

R =

⎛⎜⎝ 1 0.8 0.4
0.8 1 0.7
0.4 0.7 1

⎞⎟⎠ (2.51)

the Sobol’ sensitivity indices are still computable but it becomes difficult to interpret the
results as shown in Figure 2.1 (b). Indeed, it is hard to know if the contribution of a
variable Xi is due to its importance in the model structure or to its genuine correlation
with other influent variables Xj,j �=i.

(a) (b)

Figure 2.1: Variance decomposition of an additive model with independent (a) and correlated
input variables (b). In the second case, the dependence structure of the input
random vector implies a mixture of the contributions.

When the dependence structure of the input random vector is ignored, the results
of a GSA performed with a classic method can be misinterpreted and may lead to bad
decisions. Therefore, new techniques have been developed. They are reviewed in the next
subsection.

2.4.2 Short review on existing methods

Early work on this topic is due to Iman and Hora (1990). In order to study uncertainty
propagation in system fault trees, three measures of contribution have been proposed to
quantify how low levels events may influence both the frequency of the top event and
the uncertainty in this frequency. These measures are respectively based on the expected
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reduction in variance of the top event frequency and log frequency and on shifts in the
quantiles of the top event frequency.

The first GSA method for models with correlated inputs is due to Chun et al. (2000).
An importance measure based on a distance metric between cumulative distribution func-
tions is defined. The general form of a metric distance Dk between two functions f1 and
f2, referred to as the Minkowski class of distance, is:

Dk (f1, f2) =
⎛⎝∑

x∈X

|f1(x) − f2(x)|k
⎞⎠ 1

k

(2.52)

When k = 2, D is the Euclidean distance. The so-called Chun-Han-Tak index of the
variable Xi, denoted by CHTi, reads:

CHTi = MD(i : o)
E [Y o] (2.53)

where:
MD(i : o) =

(∫ 1

0

[
yi

p − yo
p

]2
dp
) 1

2
(2.54)

is the quantile-based metric distance measure between the base case and the sensitivity
case. yo

p and yi
p are respectively the pth quantiles of the base case, that is the distribution of

the output computed with all inputs, and of the sensitivity case, that is the distribution
of the output when the input variable Xi is fixed. E [Y o], the mean of the base case
distribution, is introduced for normalization and adimensionality. MD(i : o) represents
the Euclidian metric distance between two CDFs normalized by the mean of the base case
distribution.

In Jacques (2005), an alternative method consisting in building multidimensional in-
dices is exposed. Starting form the observation that in a n−dimensional random vector,
the input parameters are often correlated two by two or three by three, one can decom-
posed the input random vector into independent subvectors, for instance:

X ≡ [[X1, X2] , [X3, X4, X5] , . . . , [Xn−1, Xn]] (2.55)

where the independent subvectors contains correlated components. This approach is re-
lated to the concept of composed copula described in 1.5.3.6, that is the product (inde-
pendence) of multidimensional copulas (dependence). Unfortunately, this solution does
not allow one to decompose the contribution of the variables inside a subvector.

Later, Xu and Gertner (2008) introduced a method based on the variance decomposi-
tion where the principle is to seperate the shares of variance reduction due to uncorrelated
and correlated effects. Considering the share of variance of the model output Y due to
Xi is Vi, it can be decomposed as:

Vi = V U
i + V C

i (2.56)

where V U
i is the share of variance due to the variable Xi itself and V C

i is the share of
variance due the correlation between Xi and Xj,j �=i. If the model is approximately linear,
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the share of variance of Var [Y ] due to Xi can be derived by regressing Y on Xi only:

y = θ0 + θi xi + e (2.57)

and consequently:

V̂i = 1
N − 1

N∑
j=1

(
ŷ

(j)
i − ȳ

)2
(2.58)

with:
ŷ

(j)
i = θ̂0 + θ̂i x

(i)
i (2.59)

Since Xi contains both uncorrelated and correlated effects, the partial variance in
Eq. (2.58) is the total partial variance due to Xi. In order to seperate the different
effects, the regression of Xi to all the other input parameters Xj’s, j �= i is processed.
The residuals zi of this regression defined by:

ẑi = xi − x̂i = xi −
⎛⎝η̂0 +

∑
j,j �=i

η̂j xj

⎞⎠ (2.60)

where the η̂j are the least-square estimates of the regression coefficients of Xi on the Xj’s,
j �= i. Then, the partial variance representing the uncorrelated effects of Xi reads:

V̂ U
i = 1

N − 1

N∑
j=1

(
ŷ

(j)
∼i − ȳ

)2
(2.61)

where ŷ
(j)
∼i = r̂0 + r̂i ẑi is the model response regressed on the residuals in Eq. (2.60). The

partial variance due to correlation between Xi and all the other parameters, denoted by
V C

i is:
V̂ C

i = V̂i − V̂ U
i (2.62)

According to Eqs. (2.58), (2.61) and (2.62), the partial variance of Y due to Xi can
be decomposed by the uncorrelated and correlated effects of the parameter Xi. Thus,
using the ratio between the partial variances and the total variance, a collection of three
first-order sensitivity indices is defined, namely:

Si = Vi

Var [Y ] (2.63)

SU
i = V U

i

Var [Y ] (2.64)

SC
i = V C

i

Var [Y ] (2.65)

Si, SU
i and SC

i respectively represent the total contribution, the uncorrelated contribution
and the correlated contribution of Xi to the variance of the model output Y . The major
limitation of this approach is the hypothesis of linearity of M in Eq. (2.57). The results
remain interpretable as long as M is approximately linear but they cannot be used in all
cases.
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Recent improvement in GSA for models with correlated inputs have been proposed
Mara and Tarantola (2012). Let us first write the joint PDF fX of three correlated input
variables X1, X2 and X3 in terms of conditional PDFs:

fX(x) = f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2) (2.66)

where f2|1 is the conditional marginal PDF of X2 knowing X1. X1 and X2 are dependent
because E [X2|X1] �= E [X2]. Consequently:

f(x1, x2−1, x3−12) = f1(x1)f2−1(x2−1)f3−12(x3−12) (2.67)

where:
x2−1 = x2 − E [x2|x1] and x3−12 = x3 − E [x3|x1, x2] (2.68)

This transformation is the so-called Rosenblatt transformation (Rosenblatt, 1952) where
the random vector [X1, X2−1, X3−12] is independent. Then, the so-called ANOVA decom-
position can be applied. and the following sensitivity indices are computed:

S̄1 =Var [E [Y |X1]]
Var [Y ] = S1 (2.69)

S̄2 =Var [E [Y |X2−1]]
Var [Y ] = S2−1 (2.70)

S̄3 =Var [E [Y |X3−12]]
Var [Y ] = S3−12 (2.71)

The index S̄1 is equivalent to the first order Sobol’ index S1 because it corresponds to
the full marginal contribution of X1 to the variance of Y . On the contrary, the indices S̄2
and S̄3 respectively represents the contribution of X2 knowing X1 and the contribution
X3 knowing X1 and X2. In other words, it corresponds to the conditional marginal
contributions of X2 and X3. The Rosenblatt transformation can be applied in a different
order, for instance by writing fX(x) = f2(x2)f3|2(x3|x2)f1|23(x1|x2, x3), in order to get the
full marginal contribution of X2. Thereby, all the sensitivity indices can be calculated.
The main drawback remains that getting all the full marginal contributions requires as
many analyses as the number n of input parameters.

2.4.3 Conclusion

Along this short review, different GSA methods for dealing with models with correlated
inputs have been presented. The two main ideas are, on the one hand, to build an impor-
tance measure that describes the sensitivity of the model response Y to the input variable
Xi and, on the other hand, an attempt to generalize the Sobol’ decomposition to models
with correlated inputs and distinguish the uncorrelated and correlated contributions. Two
methods, one of each kind, that appeared to be more effective are presented in details in
the next two sections.
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2.5 A distribution-based method

An importance measure characterizes the modification in the model output distribution
when an input parameter is perfectly known (deterministic). This approach has already
been studied in Iman and Hora (1990) and Chun et al. (2000), where a metric distance
between two distributions has been defined. Another solution would have been to use
the so-called Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951). The KL
divergence between two functions p and q of x reads :

DKL(p‖q) =
∫

DX

p(x) log
(

p(x)
q(x)

)
dx (2.72)

According to Eq. (2.72), DKL is a divergence and not a distance because it is not symmet-
rical. This idea has been originally developed in Park and Ahn (1994). One limitation is
also that when q(x) = 0, the logarithm is undefined and it makes the use of DKL more
difficult. The method that is now presented proposes a new importance measure.

2.5.1 Principle

This uncertainty importance measure has been first introduced in Borgonovo (2007). The
objective of this work was to develop an importance measure that would be adapted to
any kind of dependence structure of the input random vector. In order to alleviate the
numerical cost of the analysis, this important measure is moment-free, that is, it does not
require any computation of the moments of the model output Y = M(X). The principle
here is to quantify how fixing one input parameter Xi to a value x∗

i is affecting the entire
distribution of Y and not only its variance, in contrast to the so-called ANOVA-based
methods. Therefore, the modification of the output PDF fY is represented by its shift
s(x∗

i ), namely:
s(x∗

i ) =
∫

DY

∣∣∣fY (y) − fY |Xi=x∗
i
(y)
∣∣∣ dy (2.73)

where fY |Xi=x∗
i

is the PDF of Y conditional to Xi = x∗
i . The shift between fY and fY |Xi=x∗

i

corresponds to the area between the two PDFs illustrated in Figure 2.2.
Eq. (2.73) shows that the shift s(x∗

i ) strongly depends on the value of x∗
i . In order to

take the whole range of values Xi can take into account, the expected shift, namely:

E [s(xi)] =
∫

DXi

fXi
(xi) s(xi) dxi

=
∫

DXi

fXi
(xi)

[∫
DY

∣∣∣fY (y) − fY |Xi
(y)
∣∣∣ dy

]
dxi

(2.74)

is defined. Then the moment-free important measure δi is given by the following definition.

Definition 9 The quantity δi, namely:

δi = 1
2E [s(xi)] (2.75)
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Figure 2.2: The shift between the unconditional PDF fY and the PDF fY |Xi
conditional to Xi

is represented by the blue area between the distributions.

is a moment-free important measure of the sensitivity of the model output Y to the input
parameter Xi. δi is the normalized expected shift of the PDF of Y due to Xi.

The quantity 1
2 is introduced for normalization. The area under one distribution over

its whole support is 1. Consequently, in the case of no intersection between the uncondi-
tional and conditional output PDF, the shift would be 2. One also defines a 2−dimensional
sensitivity index δi,j representing the joint contribution of a pair of variables (Xi, Xj) to
the modification of the output PDF:

δi,j = 1
2

∫
DXi

×DXj

fXi,Xj
(xi, xj)

[∫
DY

∣∣∣fY (y) − fY |Xi,Xj
(y)
∣∣∣ dy

]
dxi dxj (2.76)

This definition is extensible for a higher number of variables. The multi-dimensional index
definition is presented below.

Definition 10 Let us consider a m−dimensional subvector X ′ = [Xi1 , . . . , Xim ] of X,
X ′ ⊂ X, m < n. The normalized expected shift in fY due to X ′ reads:

δi1,...,im = 1
2E [s(X ′)]

= 1
2

∫
DX′

fX′(x′)
[∫

DY

∣∣∣fY (y) − fY |X′(y)
∣∣∣ dy

]
dx′

(2.77)

with dx′ = dxi1 × . . . × dxim.
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In the same way, the conditional δ index is given by the following definition.

Definition 11 The sensitivity measure of Y to Xj conditionally to Xi reads:

δj|i = 1
2

∫
DXi

×DXj

fXi
(xi) fXj

(xj)
[∫

DY

∣∣∣fY |Xi
(y) − fY |Xi,Xj

(y)
∣∣∣ dy

]
dxi dxj (2.78)

δj|i represents the sensitivity measure of the output Y to the input Xj when Xi is known.

The properties of the δi sensitivity measure derivied from Eqs. (2.75), (2.77) and
(2.78) are now described:

1. 0 � δi � 1, the δi sensitivity measure is bounded. When fY = fY |Xi
, s(Xi) is zero.

When fY and fY |Xi
have no intersection, s(Xi) = 2 and δi = 1.

2. If Y does not depend of Xi, then δi = 0. Xi has no effects on fY , fY = fY |Xi
and

s(Xi) = 0.

3. The importance measure of all parameters equals unity : δ1,2,...,n = 1. In this case,
fY |X is a Dirac function, s(X) = 2 and δi = 1.

4. If Y depends on Xi but does not depend on Xj, then δi,j = δi.

5. The bounds of a bidimensional index δi,j are defined by δi � δi,j � δi + δi|j.

The δi importance measure represents the normalized expected shift in the model
output PDF fY due to the input parameter Xi. Therefore, evaluating δi consists in first
approximating the shift, that is the area between the two curves, and then in estimating
its expected value. These two steps evaluation scheme might be numerically expensive,
especially if the distributions are not known and need to be approximated.

2.5.2 Improvements in the definitions

The δ importance measure introduced in Borgonovo (2007) has been improved in Bor-
gonovo et al. (2011). Considering an open interval Ω ∈ R and two PDFs f and g defined
on Ω, the distance between f and g reads:

‖f − g‖ =
∫

Ω
|f(x) − g(x)| dx (2.79)

Then Eqs. (2.79) and (2.73) are equivalent. A piecewise study of Eq. (2.79) leads to:

u(x) =

⎧⎪⎨⎪⎩
f(x) − g(x) x ∈ Ω+

f(x) = g(x) x ∈ Σ
g(x) − f(x) x ∈ Ω−

(2.80)
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where Σ is the set of points where f(x) = g(x) while Ω+ and Ω− are respectively the
domains where f(x) > g(x) and f(x) < g(x). Let us now consider the CDFs F and G
respectively defined by:

F (x) =
∫ x

−∞
f(ξ) dξ and G(x) =

∫ x

−∞
g(ξ) dξ (2.81)

The distance defined in Eq. (2.79) can be rewritten:

‖f − g‖ = 2F
(
Ω+
)

− 2G
(
Ω+
)

= 2G
(
Ω−)− 2F

(
Ω−) (2.82)

The distance ‖f − g‖ is equal to twice the probability that x ∈ Ω+ under F and the same
probability under G. By symmetry, this quantity is also the probability that x ∈ Ω−

under G and under F .
Let us now get back to GSA by denoting Ω = DY , F = FY and G = FY |Xi

. The
support of Y can be decomposed in DY =

{
D+

Y , D−
Y

}
with D+

Y =
{
y : fY (y) > fY |Xi(y)

}
and D−

Y =
{
y : fY (y) < fY |Xi(y)

}
. As the decomposition DY =

{
D+

Y , D−
Y

}
depends on Xi,

the notations D+
Y,Xi

and D−
Y,Xi

will be used for convenience. Thus, the shift defined in
terms of PDFs in Eq. (2.73) can be written in terms of CDFs:

s(Xi = x∗
i ) = 2FY (D+

Y,Xi
) − 2FY |Xi=x∗

i
(D+

Y,Xi
) (2.83)

Consequently, the importance measure δi defined previously in Eq. (2.75) also reads:

δi = EXi

[
FY (D+

Y,Xi
) − FY |Xi

(D+
Y,Xi

)
]

(2.84)

The difficulty now consists in identifying the set of points Σ = {y1, y2; y1 < y2}, that is
the points at which the two PDFs are crossing themselves as illustrated in Figure 2.3.
This will be addressed in details in section 4.3 together with the numerical evaluation of
the integrals associated with the expectation.

2.5.3 Conclusion

The δi moment-free importance measure represents the normalized expected shift in the
model output distribution due to an input parameter Xi. It is defined so that no hypothe-
sis are made neither on the model (linearity for instance) nor on the dependence structure
of the input random vector. This makes δ a very general sensitivity index that not only
focus on the output variance (the ”width” of output PDF) but also on its global shape.
This definition has one main drawback, namely the index does not represent a share of
variance but is more like a bounded distance between the unconditional and conditional
distributions. On top of a different scale of values for the indices, the practitioner will
also have to deal with a ranking of the most important variables that might differ from
the one given by the variance-based methods.

In order to find a link with the ANOVA decomposition, a generalization of the Sobol’
decomposition to models with correlated inputs is presented in the next section.
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Figure 2.3: The shift between the PDFs fY and fY |Xi
(red) is now computed using the CDFs

FY and FY |Xi
(blue). The domain D−

Y where fY < fY |Xi
is colored in yellow. The

values y1 and y2 are the abscissa of the vertical black dashed lines.

2.6 The ANCOVA decomposition

One issue of global sensitivity analysis in engineering for models with correlated inputs
(GSA-MCI) is to define quantities that are easily interpretable by the practitioners. This
is the case for the variance-based methods because the indices represent the shares of the
output variance due to the input parameters. In Jacques (2005) (page 99), the author
examines the decomposition of the variance decomposition of the model output when the
input variables are no longer independent. In this case, the Sobol’ functional decomposi-
tion in Eq. (2.15) still holds since the dependence has no influence on the expected values
E [.]. The Sobol’ decomposition of the variance in Eq. (2.19) is also verified since its last
term V1...n is defined as the difference between the variance of Y and the sum of all the
lower order variances.

However, the partial variances Vi1...is are no longer the variances of the function com-
ponents Ṽi1...is = Var [Mi1...is(Xi1 , . . . , Xis)] since the separation of the effects is not trans-
mitted to the decomposition of the variance of Y . Indeed, Mi1...is(Xi1 , . . . , Xis) represents
the effects of the s−dimensional subvector X i1...is ⊆ X that are not taken into account
by the effects of the strict subsets {Xi1 , . . . , Xis}. Thus, Ṽi1...is represents the the share
of variance of Y that is due to the interaction of the s variables Xi1 , . . . , Xis but Vi1...is

longer does. Although the author establishes a link between Ṽi1...is and Vi1...is , this work
keeps investigating the notion of generalized ANOVA for models with correlated input
parameters. In this section, a generalization of the ANOVA decomposition for models
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with correlated inputs is presented.

2.6.1 Principle

This method has been first introduced in Li and Rabitz (2010) and then rewritten in
Chastaing et al. (2012). The objective is to generalize the variance decomposition of the
model output for models with correlated input parameters. Let us first consider a model
Y = M(X) where X is a n−dimensional random vector. No hypothesis are made on its
dependence structure. In the same manner as in the independent case, the model M can
be expanded as a sum of functions of increasing dimension:

M(X) = M0 +
n∑

i=1
Mi(Xi) +

∑
1�i<j�n

Mi, j(Xi, Xj) + . . . + M1,...,n(X1, . . . , Xn)

= M0 +
∑

u⊆{1,...,n}
Mu(Xu)

(2.85)

where M0 is the mean E [Y ] and where each functions Mu, u ⊆ {1, . . . , n} represents,
for any non empty set u, the combined contribution of the variables Xu to Y .

Let us now rewrite the unconditional variance of the model output Y as follows:

Var [Y ] = E
[
(Y − E [Y ])2

]
(2.86)

= E
⎡⎣(Y − M0)

⎛⎝ ∑
u⊆{1,...,n}

Mu(Xu)
⎞⎠⎤⎦ (2.87)

= Cov
⎡⎣Y,

∑
u⊆{1,...,n}

Mu(Xu)
⎤⎦ (2.88)

The variance of Y can be written as the covariance of Y and its functional decompostion
in Eq. (2.85) minus the zero-order term M0. Thanks to the properties of the covariance,
Eq. (2.88) also reads:

Var [Y ] = Cov
⎡⎣Y,

∑
u⊆{1,...,n}

Mu(Xu)
⎤⎦ (2.89)

=
∑

u⊆{1,...,n}
Cov [Y, Mu(Xu)] (2.90)

Because the left member Y of the covariance also contains the functions Mu(Xu),
Eq. (2.90) also reads:

Var [Y ] =
∑

u⊆{1,...,n}
Cov [Y, Mu(Xu)] (2.91)

=
∑

u⊆{1,...,n}

⎡⎣Var [Mu(Xu)] + Cov
⎡⎣Mu(Xu),

∑
v⊆{1,...,n},v∩u=∅

Mv(Xv)
⎤⎦⎤⎦ (2.92)
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The summands in Eq. (2.91) can be decomposed into the variance of the term Mu(Xu)
which is also contained in Y and the covariance of Mu(Xu) and the Mv(Xv), that is Y
where Mu(Xu) has been removed.

This technique is referred to as the ANCOVA decomposition (ANalysis of COVAriance)
by Li and Rabitz (2010). The partial variances are decomposed into a variance part and a
covariance part. When the input variables of the model are independent, the functions Mu

and Mv are orthogonal. Consequently, the covariance part is zero and only the variance
part remains. Under these conditions, the ANCOVA is equivalent to the ANOVA, which
is then a particular case (independence) of the ANCOVA.

2.6.2 ANCOVA-based sensitivity indices

2.6.2.1 Definition

For models with independent input parameters, a single index Si is used to measure the
contribution of the input variable Xi to the variance of Y . The challenge of GSA-MCI is
to distinguish which part of the contribution is due to Xi itself and which one is due to
its correlation with the other parameters. The ANCOVA decomposition and its variance-
covariance separation of the partial variances allows one to separate the uncorrelated and
the correlated effects. Let us define the following indices:

Su = Cov [Mu(Xu), Y ]
Var [Y ] (2.93)

SU
u = Var [Mu(Xu)]

Var [Y ] (2.94)

SC
u =

Cov
[
Mu(Xu), ∑

v⊆{1,...,n},v∩u=∅
Mv(Xv)

]
Var [Y ] (2.95)

The first index Su represents the total share of variance of Y due to Xu. The second
index SU

u represents the uncorrelated share of variance of Y due to Xu, that is the physical
contribution of Xu. Finally, the third index SC

u represents the correlated share of variance
of Y due to Xu, that is the contribution of the correlation of Xu with the other input
parameters. Due to Eq. (2.92), one gets the following relationship:

Su = SU
u + SC

u (2.96)

Due to its definition, SU
u is always positive. On the contrary, SC

u can be either positive or
negative: it depends on the nature of the correlation between Xu and the Xv’s. There-
fore, Su can be either positive if the physical contribution is higher than the correlated
contribution SU

u > SC
u , or negative in the opposite case SU

u < SC
u , or zero if SU

u = −SC
u .
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2.6.2.2 Interpretation: a negative sensitivity index

Sensitivity indices are supposed to represent a share of the variance of the model output.
Thus, they are supposed to be positive, or zero. The issue of correlation among the
input parameters is that it might couples the effects of the variables. Does one variable
have a high contribution because of its physical role in the model M or because it is
strongly correlated to variables with higher contributions? If the correlation might raise
the contribution of a variable, it might also take it down : this is how the index SC

u

has to be interpreted. It is a corrective term that indicates if the total contribution is
overestimated or underestimated because of the correlation between input parameters.
If |SC

u | is low, Su is close to SU
u , that is the correlation has a weak influence on the

contribution of Xu. On the contrary, if |SC
u | is high, Su is close to SC

u , that is the
correlation has a strong influence on the contribution of Xu.

2.6.2.3 Higher-order indices

In the case of an additive model, namely:

Y =
n∑

i=1
aiXi, ai ∈ R (2.97)

the variance of the model response can be entirely decomposed into the first order contri-
butions since there is no interaction between the variables. Thus the sum of the indices
Si is equal to 1. When the model is no longer additive but multiplicative or event more
complex, interaction arises among the variables. Then, the sum of the indices Si is lower
than 1. Similarly to Sobol’ indices, one defines the second order indices, namely:

Sij = Cov [Mij(Xi, Xj), Y ]
Var [Y ] (2.98)

The same sort of index can be defined for subsets of Xu ⊂ X. Adding the higher-order
indices to the first order index leads to an index ST

i that is consistent with the Sobol’
total index in the case of independent variables. Then the sum of the ST

i indices may be
higher than one because coupling effects are stored in several total indices.

2.6.3 Conclusion

The issue of uncoupling the uncorrelated and correlated effects of correlated input pa-
rameters on the variance of the model output has been circumvented by the ANCOVA
decomposition provided a functional decomposition as in Eq. (2.85) is available. Issues on
the existence and uniqueness of such decompositions are hot topics in the current litera-
ture and not yet solved (Kucherenko et al., 2012; Chastaing et al., 2012). The contribution
of an input variable Xu is now described by a triplet of indices (Xu, XU

u , XC
u ) that re-

spectively represent the total, physical and correlated contribution of Xu to the variance
of Y . The interpretation of these three quantities leads to important observations on the
coupling effects of the physical model M(X) and the probabilistic model FX , that is the
joint distribution of the input random vector, on the dispersion of the model response Y .
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2.7 Conclusion

In this chapter, several methods to carry out global sensitivity analysis have been pre-
sented. The methods for models with independent inputs are today well-established and
their improvements only focus on the optimization of their numerical computing efficiency.
In the presence of correlation among the input parameters of the model, classical meth-
ods cannot be applied directly, therefore, new techniques have been developped along two
directions.

The first direction consists in quantifying the influence of a parameter with an im-
portance measure which is often kind of a normalized distance observed on the output
distribution (Iman and Hora, 1990; Chun et al., 2000; Borgonovo, 2007). Importances
measures are convenient because no hypothesis are made on the input vector dependence
structure, but their interpretation is less attractive because they do not represent a share
of variance.

The second direction is an attempt to generalize the Sobol’ decomposition for models
with correlated inputs. The so-called ANCOVA represents the most advanced work in
this domain. Like Xu and Gertner (2008), it allows one to separate the uncorrelated
and correlated effects of an input parameter (Li and Rabitz, 2010) using the covariance
decomposition of the variance of the model output.

The generalization of the Sobol’ decomposition is also revendicated by Kucherenko
et al. (2012). His estimation technique for the sensitivity indices for models with correlated
input parameters provides results different from Li and Rabitz (2010) but are completely
consistent. In other words, several generalizations of the well-established Sobol’ indices are
available for models involving dependent inputs and the field is still open. The approach
proposed in the present thesis, which relies upon polynomial chaos expansions in order
to derive a functional decomposition as in Eq. (2.85) contributes to this goal. It will be
presented in details in chapter 4.

In any cases, the number of calls to the numerical model M that are necessary to
estimate the variances, covariances or (un)conditional PDFs with accuracy, remains very
high, approximately 104 to 106 calls per index. This issue can be overcome by substituting
a surrogate model M̂ to the real model M. This aspect is developped in the next
chapter.
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3.1 Introduction

Numerical studies such as reliability analysis or sensitivity analysis on physical models
may require a high number of model runs in order to catch the modifications in the
model response due to the values of the input parameters. In the field of mechanical
engineering, the physical models can be analytical when the phenomenon can be modelled
by simple equations, a finite-element analysis when the structure is a more complex or
even real experiments in extreme cases. For time and costs limitations, the model (or the
experiment) cannot reasonably be run, say more than a few hundreds of times, that is far
from the number of calls required for the abovementioned analyses. The solution consists
in substituting the physical model M with a mathematical approximation M̂ built from
a set of data samples. Such an approximation is referred to as a surrogate model (or
metamodel).

In this chapter an overview on existing methods is first addressed. Three of them,
namely the Support Vector Regression, a geostatistics method known as Gaussian pro-
cess modelling and the high-dimensional model representation, are presented. Then, a
particular attention is given to the technique referred to as polynomial chaos expansions.
This last technique provides an efficient tool for uncertainty propagation with respect to
distribution of the variables.

3.2 Overview on existing methods

This first section proposes an overview of three existing metamodelling techniques, namely,
the support vector regression, the Gaussian processes and the high-dimensional model
representation.

3.2.1 Support Vector Regression

The Support Vector (SV) algorithm is a tool from the statistical learning theory, or
Vapnik-Chervonenkis (VC) theory. It describes learning machines that allow one to ob-
serve properties from given data and generalize them to unseen data. Industrial applica-
tions are in the field of optical pattern recognition using SV classifiers but also regression
and time series prediction. In this section, priority is given to regression applications.

3.2.1.1 Linear case

Let us consider a 2-dimensional sample of observations X =
{
(x(k), y(k)), k = 1, . . . , N

}
,

also referred to as training sample. In ε−regression (Vapnik, 1995), the aim is to find a flat
function f(x) so that f(x(k)) has at most ε deviation from the corresponding observation
y(k), for all pairs of observations in the sample. Indeed, in one hand the regression error is
not considered as important as long as it is less than ε, but on the other hand no deviation
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larger than ε will be accepted. Let us begin with linear cases in which the function f
reads:

f(x) = 〈w, x〉 + b with w ∈ X and b ∈ R (3.1)

where 〈. , . 〉 denotes the dot product in the space of the input variables X ⊂ R
n. Flatness

corresponds to small values of w. It is obtained by minimizing the norm ‖w‖2 = 〈w, w〉.
This can be written as a convex optimization problem:

minimize 1
2‖w‖2 (3.2)

subject to
{

y(k) − 〈w, x(k)〉 − b � ε
〈w, x(k)〉 + b − y(k) � ε

(3.3)

Eq. (3.3) implies that the function f approximating the given pairs with maximal devi-
ation ε exists and that the optimization problem is feasible. However, it might sometimes
not be the case, or one may simply want the regression to accept larger errors. Therefore,
similarly to the concept of soft margin loss function for SV machines, one can introduced
slack variables ξ, ξ∗ to circumvent the issue of infeasible optimization problems. The new
formulation then reads:

minimize 1
2‖w‖2 + C

N∑
k=1

(ξk + ξ∗
k) (3.4)

subject to

⎧⎪⎨⎪⎩
y(k) − 〈w, x(k)〉 − b � ε
〈w, x(k)〉 + b − y(k) � ε
ξk, ξ∗

k � 0
(3.5)

The constant C > 0 manages the point up to which deviations larger than ε are accepted
at the expense of flatness. The algorithm then admits a ε−insensitive error, namely:

|ξ|ε :=
{

0 if |ξ| � ε
|ξ| − ε otherwise (3.6)

As it is depicted in Figure 3.1, only the points outside of the shaded area are linearly
penalized.

In order to ease the convergence of the optimization problem in Eq. (3.5), one usually
recasts it in its dual formulation that moreover allows one do deal with nonlinear models.

3.2.1.2 Dual formulation

The principle relies in the construction of a Lagrange function of the objective function
(also denoted primal objective function) and the constraint functions by introducing a
dual set of variables. The primal objective function exhibits a saddle point at the solution
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Figure 3.1: Concept of margin and loss function for the SV machines.

with respect to primal and dual variables. This reads:

L :=1
2‖w‖2 + C

N∑
k=1

(ξ + ξ∗) −
N∑

k=1
(ηkξ + η∗

kξ∗)

−
N∑

k=1
αk

(
ε + ξk − y(k) + 〈w, x(k)〉 + b

)

−
N∑

k=1
α∗

k

(
ε + ξk + y(k) − 〈w, x(k)〉 − b

)
(3.7)

where L is the Lagrangian and ηk, η∗
k, αk, α∗

k are the Lagrange multipliers that must
satisfy the positivity of the constraints functions:

αk, α∗
k, ηk, η∗

k � 0 (3.8)

The saddle point conditions imply the nullity of the derivatives of L with respect to
the primal variables, namely:

∂L

∂b
=

N∑
k=1

(α∗
k − αk) = 0 (3.9)

∂L

∂w
= w −

N∑
k=1

(α∗
k − αk) x(k) = 0 (3.10)

∂L

∂ξk

= C − αk − ηk = 0 (3.11)

∂L

∂ξ∗
k

= C − α∗
k − η∗

k = 0 (3.12)
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By substituting Eqs 3.9 - 3.12 into 3.7, the dual optimization problem reads:

maximize

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1

2

N∑
k=1

N∑
l=1

(αk − α∗
k)(αl − α∗

l )〈x(k), x(l)〉

−ε
N∑

k=1
(αk + α∗

k) + y(k)
N∑

k=1
(αk − α∗

k)
(3.13)

subject to
N∑

k=1
(αk + α∗

k) = 0 and αk, α∗
k ∈ [0, C] (3.14)

Finally, one rewrites Eq. (3.10) as follows:

w =
N∑

k=1
(αk − α∗

k)x(k) (3.15)

and consequently:

f(x) =
N∑

k=1
(αk − α∗

k)〈x(k), x〉 + b (3.16)

Eq. (3.16) is often referred to as Support Vector expansion. w can be fully described
a linear combination of the training data x(k), k = 1, . . . , N . The constant b can be
computed thanks to the so-called Karush-Kuhn-Tucker (KKT) conditions. They stipulate
that the product between the dual variables and constraints is zero at the optimal point:

αi (ε + ξk − y(k) + 〈w, x(k)〉) + b = 0
α∗

i (ε + ξ∗
k + y(k) − 〈w, x(k)〉) − b = 0 (3.17)

and:
(C − αk) ξk = 0
(C − α∗

k) ξ∗
k = 0 (3.18)

As a consequence, only the sample points (x(k), y(k)) with corresponding αk, α∗
k = C

lie outside of the ε−insensitive area. In addition, αk α∗
k = 0, i.e. the dual variables in a

set (αk, α∗
k) cannot be both nonzero. Therefore:

ε − y(k) + 〈w, x(k)〉 + b � 0 and ξk = 0 if αk < C
ε − y(k) + 〈w, x(k)〉 + b � 0 if αk > 0 (3.19)

As the same relationship also holds for α∗
k, b can be bounded by:

max{−ε + y(k) − 〈w, x(k)〉, αk < C or α∗
k > 0}
� b �

min{−ε + y(k) − 〈w, x(k)〉, αk > 0 or α∗
k < C}

(3.20)

If any αk, α∗
k ∈ [0, C], then the inequalities become equalities.

Let us now discuss Eq. (3.17). When |f(x(k)) − y(k)| � ε, i.e. the points outside
the shaded area in Figure 3.1, the Lagrange multipliers may be nonzero, then αk, α∗

k = 0.
When |f(x(k))−y(k)| < ε, the second term in the product in Eq. (3.17) is nonzero, therefore
αk and α∗

k have to be zero so that the KKT conditions are satisfied. The SV provide a
sparse expansion w with respect to the x(k), i.e. one do not need the N sampling points
(x(k), y(k)) to to describe w.
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3.2.1.3 Conclusion

The SVR metamodelling technique allows one to build a robust approximation of a model
M with a reasonable number of data points X = {(x(k), M(x(k))), k = 1, . . . , N}. The
approach consists in solving a quadratic optimization problem. Finally, the metamodel
only depends on a small number of observations referred to as Support Vectors.

3.2.2 Gaussian processes

3.2.2.1 Introduction

Kriging is a well-established prediction method in the field of geostatistics named after the
South-African mining engineer Daniel Krige (Krige, 1951) and formalized by Matheron
(1962). The aim of Kriging is to consider the values of a physical model M(x), x ∈ X as
a sample path of a random field M(x) = M(x, ω), ω ∈ Ω, x ∈ X at any unobserved point
x ∈ X from a set of observed realizations X = {x(1), . . . , x(N)}. This method has lately
been extended to the field of mechanical engineering as a powerful tool for approximating
the response y = M(x) of a deterministic numerical model when assuming that y is a
sample path m(x) of a Gaussian process, x ∈ X. Kriging is also referred to as Gaussian
Process (GP) predictor. The statistical assumptions in GP are useful for modelling the
most probable metamodel M̂(x) given the set of observations X . The GP metamodelling
technique is now developed. For a more detailed review of the topic, the reading of the
books by Santner et al. (2003) and Rasmussen and Williams (2006) is advised. See also
Dubourg (2011), Chapter 1.

3.2.2.2 Stochastic modelling of the model function

Let us consider a physical model M whose response has only been evaluated at a given set
of points so that only the couples {x(k), y(k), k = 1, . . . , N} are known. The true model
response M is assumed to be a sample path of an underlying Gaussian process M . Let
us denote by μ the mean of the random field M and by Z a zero-mean stationary GP.
Then M reads:

M(x) = μ(x) + Z(x), x ∈ X (3.21)
The mean μ is usually defined as a linear combination of deterministic functions
{fj(x), j = 1, . . . , P}, namely:

μ(x) =
P∑

j=1
βj fj(x) ≡ f(x)T β, x ∈ X (3.22)

In Eq. (3.21), the first summand μ represents the global trend of the model response
that can be constant, linear or polynomial for instance, whereas the second summand Z
corresponds to local perturbations of the model response. The limitation of this assump-
tion lies the choice of decoupling large-scale (the mean μ) and small-scale (the supposed
stationary random field Z) effects. Assumptions have to be made on the nature of μ.
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Constant or linear trend is usually retained in practice, while Z is assumed to be a
second-order stationary random field, i.e. Z has a constant finite variance σ2(x) = σ2

and its autocorrelation function R (x, x′) is a function of the shift x − x′ only.

3.2.2.3 Conditional distribution of the model response

Let us first recall a few notations. X = {x(1), . . . , x(N)} is n−dimensional N−sample of
the input random vector x also referred to as a design of experiments (DOE) denoted by
D. The corresponding evaluations of X are stored in a unidimensional sample Y = {y(k) =
M(x(k)), k = 1, . . . , N}. The Gaussian Process approximation consists in building the
distribution of M conditioned on to the N observations in Y . Finding the conditional
distribution of M is not an easy problem. Hence, it can be recast as a constrained
optimization problem using the fundamental theorem of prediction (Santner et al., 2003).
The following matrix notation is used in the sequel:

r(x) =
{
R
(
x, x(1)

)
, . . . , R

(
x, x(N)

)}
, x ∈ X (3.23)

F =
(
fi

(
x(k)

))
1�i�P, 1�k�N

(3.24)

R =
(
R
(
x(k), x(l)

))
1�k�N, 1�l�N

(3.25)

F and R are referred to as the experiments and the autocorrelation matrices. Then it
is shown that the conditional model response at an unevaluated point x has a Gaussian
distribution N (μM(x), σM(x)) with:

μM(x) = fT(x)β + rT(x)R−1(Y − Fβ) (3.26)

σ2
M(x) = σ2 − rT(x)Rr(x) (3.27)

The previous equations involve the properties of M though (mean, autocovariance, etc.)
that are typically unknown in practice. Indeed, the autocorrelation function is selected a
priori. It is usually defined in the form of tensorized stationary functions of the form:

R(x, x′) =
n∏

i=1
Ri(xi − x′

i), x, x′ ∈ X × X (3.28)

As shown in Eq. (3.28), the correlation between two realizations only depends on the
distance between them. This functions can be of several types, namely:

• linear :
R(x − x′, l) =

n∏
i=1

max
(

0, 1 − xi − x′
i

li

)
(3.29)

where {li, i = 1, . . . , n} are the so-called scale parameters.

• exponential:

R(x − x′, l) = exp
(

−
n∑

i=1

|xi − x′
i|

li

)
(3.30)
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• square exponential or Gaussian:

R(x − x′, l) = exp
⎛⎝−

n∑
i=1

(
xi − x′

i

li

)2
⎞⎠ (3.31)

The different autocorrelation functions mentioned above are pictured in Figure 3.2.
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Figure 3.2: Different families of autocorrelation functions for GP metamodelling.

Thereby, identifying a Gaussian process involve estimating its parameters :

• the parameters of the mean function μ, i.e. the regression coefficients in the β
vector,

• the variance σ2,

• the autocorrelation functions parameters l = {li, i = 1, . . . , n}.

3.2.2.4 Estimation of the GP parameters

The GP parameters are then estimated from the data (X , Y) using maximum likelihood
estimation (MLE). The ML estimate β̂ of the regression parameters β is a function of
the autocorrelation function parameters l and reads:

β̂ =
(
FTR−1

l F
)−1

FTR−1
l Y (3.32)
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where the subscript l denotes the dependency of R on the autocorrelation functions
parameters. The ML estimate σ̂2

M of the variance σ2 is also a function of l, namely:

σ̂2
M = 1

N

(
Y − FβT

)T
R−1

l

(
Y − FβT

)
(3.33)

Finally, the ML estimates l̂ of the autocorrelation parameters are obtained by resolving
the following optimization problem:

l̂ = argmin
l

(det Rl)
1
N σ̂2

M (3.34)

As it might be expected, the computational cost for the estimation of the GP parameters
increases with the dimension n of the problem. The choice of an isotropic autocorrelation
functions, i.e. li = l0, i = 1, . . . , n appears not to be a good choice since the variables
may have different autocovariance properties. Nevertheless, it can be a good initial design
for an optimization loop. In practice, the optimization of all the hyperparameters can be
carried out in a single optimization procedure (O’Hagan, 2006), which is not good. The
work by Welch et al. (1992) and more recently by Marrel et al. (2008) based on a variable
selection procedure allows one to chose anisotropic autocorrelation functions for problems
of dimension up to 10.

3.2.2.5 GP metamodel

The last quantity to be estimate is the mean μ of the GP in Eq. (3.26). Its calculation is
based on the estimates of the other GP parameters β̂, σ̂2

M and l̂, namely:

μ̂M(x) = M̂(x)
= fT(x)β̂ + rβ̂(x)TR−1

l̂

(
Y − Fβ̂

) (3.35)

where l̂ is the set of the ML estimates of the autocorrelation function hyperparameters.
M̂(x) interpolates the model response observations in X and thus can be used as a
metamodel. In addition, the estimation variance of the metamodel, also referred to as
Kriging variance, in Eq. (3.27) reads:

σ̂2
M(x) = σ̂2

M − rβ̂(x)TRl̂rβ̂(x) (3.36)

which is useful for deriving confidence intervals on the prediction M̂(x), x /∈ X .
As an example, the method is applied to the so-called Runge function defined by

y = (1 + 25 x2)−1. The approximation is build from a set of observations X =
{−0.8, −0.4, −0.1, 0.5, 0.6, 0.9} with the help of the Python package Scikit-lean presented
in Pedregosa et al. (2011). An illustration is pictured in Figure 3.3. The Kriging vari-
ance provides a precious information for an adaptive design of experiments: the physical
model M is estimated where the σ̂2

M(x) reaches its highest value in order to minimize
the uncertainty on the global estimation wherever it matters most, see also Picheny et al.
(2010) and Dubourg (2011) for a more detailed description.
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Figure 3.3: GP metamodelling technique applied to the Runge function.

3.2.2.6 Conclusion

This subsection has given a short introduction to the Gaussian process metamodelling
technique. Its main concept is to consider the model response as a sample path of a Gaus-
sian random field whose parameters are estimated by maximum likelihood. The derived
metamodel interpolates the design of experiments, i.e. there is no random error when
considering a deterministic model function. Then a confidence interval on the prediction
is provided where the model has not been evaluated. The limitations of GP metamodels
lies in its numerical cost for the estimation of the GP parameters that increases with the
problem dimension. An application on a mechanical example of the computation of the
Sobol’ indices using Gaussian processes has been proposed in Caniou et al. (2011).

3.2.3 High-dimensional model representation

3.2.3.1 Introduction

High-dimensional model representation (HDMR) is a set of tools to build input-output
relationships (Li et al., 2002). In this type of representation, each term represents the in-
dependent or cooperative contribution of each input parameter upon the model response.
A HDMR build from a set of random observations is usually referred to as RS-HDMR,
where the RS stands for random sampling. The components functions that have to be



3.2. Overview on existing methods 77

determined are selected among well-established basis functions such as orthonormal poly-
nomials, cubic B-splines or simple polynomials. This section gives a short overview on
the underlying theory and the computational issues of the HDMR method.

3.2.3.2 Functional decomposition of the model response

Let us consider a physical model M whose response Y depends on n random input param-
eters X = {Xi, i = 1, . . . , n}, X ∈ X. The principle of HDMR consists in decomposing
the model response as a sum of functions of increasing dimension, namely:

M(X) = M0 +
n∑

i=1
Mi(Xi) +

∑
1�i<j�n

Mij(Xi, Xj) + . . . + M1...n(X) (3.37)

where the zero-th order term is a constant representing the mean of the model response,
i.e. M0 = μY . Each unidimensional term Mi(Xi) represents the independent contribu-
tion of the input Xi in the response Y . The second-order terms Mij(Xi, Xj) shows the
crossed contribution of the couples (Xi, Xj)i�=j. Finally, the highest-order term M1...n(X)
corresponds to the cooperative contribution of the n inputs.

As for many families of metamodels, the numerical cost, which corresponds here to
the number of functions to be constructed, rapidly increases with the dimension of the
problem. As it has been noticed that the high-order of interaction terms are often neg-
ligible with respect to the low-order terms, HDMR decomposition are usually truncated
to the second order of interaction, namely:

M(X) ≈ M0 +
n∑

i=1
Mi(Xi) +

∑
1�i<j�n

Mij(Xi, Xj) (3.38)

For the sake of simplicity, the input random variables Xi are first normalized so that
the input random vector X is defined on the unit hypercube K

n. Thus, the component
functions of the decomposition can be estimated by:

M0 =
∫
Kn

M(x) dx (3.39)

Mi(xi) =
∫
Kn−1

M(x) dx∼i − M0 (3.40)

Mij(xi, xj) =
∫
Kn−2

M(x) dx∼ij − Mi(xi) − Mj(xj) − M0 (3.41)

where dx∼i (resp. dx∼ij) is the product of all the dxi except the ith one (resp. the ith

and jth ones). The highest-order term is finally estimated by the subtraction of all the
other component functions to the physical model M(X).

Let us now introduce the multi-index notation XI , I = {i1, . . . , ik} defining a
k−dimensional subvector of X. The HDMR component functions have to satisfy the
following property: ∫ 1

0
Mi1,...,ik

(xi1 , . . . , xik
) dxis , is ∈ {i1, . . . , ik} (3.42)
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The integral of a component function over the domain [0, 1] with respect to any of the vari-
ables Xi1 , . . . , Xik

is zero. From Eq. (3.42) the following orthogonality property between
two component functions not sharing variables holds:∫

Kn
Mi1,...,ik

(xi1 , . . . , xik
) Mj1,...,jk

(xj1 , . . . , xjl
) dx (3.43)

with {i1, . . . , ik} �= {j1, . . . , jl}.

3.2.3.3 Estimation of the component functions by Monte Carlo simulations

In Li et al. (2002), the component functions are first classically obtained by Monte Carlo
simulations. N−samples X = {x(1), . . . , x(N)} are randomly generated uniformly in the
unit hypercube K

n. Components functions values are estimated by evaluating the func-
tions on X , namely:

M0 =
∫
Kn

M(x) dx

≈ 1
N

N∑
m=1

M
(
x(m)

) (3.44)

Mi(xi) =
∫
Kn−1

M(x) dx∼i − M0

≈ 1
N

N∑
m=1

M
(
(xi, x∼i)(m)

)
− 1

N

N∑
m=1

M
(
x(m)

) (3.45)

Mij(xi, xj) =
∫
Kn−2

M(x) dx∼ij − Mi(xi) − Mj(xj) − M0

≈ 1
N

N∑
m=1

M
(
(xi, xj, x∼ij)(m)

)

− 1
N

N∑
m=1

M
(
(xi, x∼i)(m)

)
− 1

N

N∑
m=1

M
(
(xj, x∼j)(m)

)

− 1
N

N∑
m=1

M
(
x(m)

)
(3.46)

Monte Carlo simulations are certainly the most simple and robust method for identify-
ing the component functions of the decomposition but the massive amount of simulations
that are necessary to estimate them with accuracy due to the low convergence rate makes
it hardly achievable for a standard computing device.

3.2.3.4 Approximation of the component functions using basis functions

Due to the numerical burden involved by Monte Carlo simulations (MCS) to estimate each
component functions values, the authors propose to approximate the component functions
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by expansions onto well-established basis functions such as polynomials or splines. The
expression of the component functions can be recast as follows:

Mi(xi) ≈
k∑

r=1
αi

rϕr(xi) (3.47)

Mij(xi, xj) ≈
l∑

p=1

l′∑
q=1

βij
pqϕpq(xi, xj) (3.48)

where the ϕr and ϕpq are one- and two-dimensional basis functions and αr and βpq are
coefficients to be determined. k, l and l′ are integers denoting the size of the basis. The
complete model approximation then reads:

M(x) ≈ M0 +
n∑

i=1

k∑
r=1

αi
rϕr(xi) +

∑
1�i<j�n

l∑
p=1

l′∑
q=1

βij
pqϕpq(xi, xj) (3.49)

The coefficients of the expansions can be determined by minimizing the following func-
tional

∫
Kn [M(x) − M̂(x)]2 dx, namely:

min
αi

r,βij
pq

∫
Kn

⎡⎣M(x) − M0 −
n∑

i=1

k∑
r=1

αi
rϕr(xi) − ∑

1�i<j�n

l∑
p=1

l′∑
q=1

βij
pqϕpq(xi, xj)

⎤⎦2

dx (3.50)

Knowing that basis functions of different dimensions are orthogonal, that is:∫
Kn

ϕr(xi) ϕpq(xi, xj) dx = 0 (3.51)

one can decouple the one- and two-dimensional effects in the minimization in Eq. (3.50).
This is due to the preservation by the approximations in Eqs. (3.47) and (3.48) of the
mutual orthogonality defined in Eq. (3.43). The global minimization problem is trans-
formed into as many local least-squares minimization problems as component functions.
They read:

min
αi

r

∫ 1

0

[
Mi(xi) −

k∑
r=1

αi
rϕr(xi)

]2

dxi (3.52)

min
βij

pq

∫
[0,1]2

⎡⎣M(xi, xj) −
l∑

p=1

l′∑
q=1

βij
pqϕpq(xi, xj)

⎤⎦2

dxi dxj (3.53)

For each variable Xi (resp. couple of variables (Xi, Xj)), the set of coefficients {αi
r, r =

1, . . . , k} (resp. {βij
pq, p = 1, . . . , l, q = 1, . . . , l′ }) can be obtained by solving a linear

equation. As an example, variable Xi, the linear problem is of the form:

Ay = b (3.54)

where A is a constant non singular matrix whose terms Arr′ are defined by:

Arr′ =
∫ 1

0
ϕr(xi) ϕr′(xi) dxi, r = 1, . . . , k (3.55)
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and where b and y are the following vectors:

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1
0 Mi(xi) ϕ1(xi) dxi

...∫ 1
0 Mi(xi) ϕr(xi) dxi

...∫ 1
0 Mi(xi) ϕk(xi) dxi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αi
1
...

αi
r
...

αi
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (3.56)

In order to solve this problem, vector b can be approximated by Eq. (3.45):

b ≈ 1
N

N∑
m=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
(
x(m)

)
ϕ1
(
x

(m)
i

)
...

M
(
x(m)

)
ϕr

(
x

(m)
i

)
...

M
(
x(m)

)
ϕk

(
x

(m)
i

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.57)

Finally, the vector of the k coefficients {αi
r, r = 1, . . . , k} corresponding to the com-

ponent function Mi(xi) are obtained by:

y = A−1b (3.58)

A similar procedure can be applied to approximate the second-order terms Mij(xi, xj) by
computing the set of l × l′ coefficients {βij

pq, p = 1, . . . , l, q = 1, . . . , l′}.

3.2.3.5 Estimation of the component functions

The choice of the basis functions is made among well-established functions such as poly-
nomials or splines. The first family of basis functions are the polynomials. According to
Eqs. (3.47) and (3.48), one writes:

Mi(xi) =
k∑

r=1
αi

r xr
i (3.59)

Mij(xi, xj) =
l∑

p=1

l′∑
q=1

βij
pq xp

i xq
j (3.60)

Then, estimating the coefficients αi
r and βij

pq consists in minimizing the following expres-
sions:

min
αi

r

∫ 1

0

[
Mi(xi) −

k∑
r=1

αi
rx

r
i

]2

dxi (3.61)

min
βij

pq

∫
[0,1]2

⎡⎣M(xi, xj) −
l∑

p=1

l′∑
q=1

βij
pqx

l
ix

l′
j

⎤⎦2

dxi dxj (3.62)
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Using simple polynomials implies dealing with a singular matrix A. Therefore, each
coefficient αi

r or βij
pq has to be determined independently by solving the linear equations

in Eqs. (3.61) and (3.62) one-by-one. To overcome this singularity problem, one rather
opt for orthonormal polynomials, i.e. polynomials ϕk that satisfy the following properties
on the domain D = [a, b]: ∫

D
ϕr(x) dx = 0 (3.63)∫

D
ϕ2

r(x) dx = 1 (3.64)∫
D

ϕr(x) ϕr′(x) dx = 0, r �= r′ (3.65)

Orthonormal polynomials have zero mean (Eq. (3.63)), unit norm (Eq. (3.64)) and are
mutually orthogonal (Eq. (3.65)). For the domain D = [0, 1], the author proposes the
following orthonormal polynomials, which are rescaled Legendre polynomials (the original
Legendre polynomials being defined over D = [−1, 1]):

ϕ1(x) =
√

3(2x − 1) (3.66)

ϕ2(x) = 6
√

5
(

x2 − x + 1
6

)
(3.67)

ϕ3(x) = 20
√

7
(

x3 − 3
2x2 + 3

5x − 1
20

)
(3.68)

Using the orthonormality property in Eq. (3.65), the second order component functions
read:

Mij(xi, xj) = βij
pqϕpq(xi, xj) = βij

pqϕp(xi)ϕq(xj) (3.69)
Consequently, the model M can be approximated by:

M(x) ≈ M0 +
n∑

i=1
αi

rϕr(xi) +
∑

1�i<j�n

l∑
p=1

l′∑
q=1

βij
pqϕp(xi)ϕq(xj) (3.70)

The matrices A in Eq. (3.54) are identity matrices for all αi
r and βij

pq and the coefficients
can be approximated by:

αi
r =

∫
Kn

M(x) ϕr(xi) dx

≈ 1
N

N∑
m=1

M
(
x(m)

)
ϕr

(
x

(m)
i

) (3.71)

βij
pq =

∫
Kn

M(x) ϕp(xi) ϕq(xj) dx

≈ 1
N

N∑
m=1

M
(
x(m)

)
ϕp

(
x

(m)
i

)
ϕq

(
x

(m)
j

) (3.72)

The accuracy of orthonormal polynomials depends on both the degree of the expan-
sions (k, l and l′) and the sampling size N . The higher they are, the more accurate the
metamodel is but attention has to be given to the numerical cost that is implied.
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A third family of basis function that has been tested in Li et al. (2002) are the so called
cubic B−splines named after French automotive engineer Pierre Bézier in the early 60’s.
A cubic B−spline Bk(x), x ∈ D = [a, b], k = −1, 0, 1, . . . , m + 1 is defined in Eq. (3.73).

Bk(x) = 1
h3 ×⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(yk+2 − x)3 yk+1 < x � yk+2
(yk+2 − x)3 − 4(yk+1 − x)3 yk < x � yk+1
(yk+2 − x)3 − 4(yk+1 − x)3 + 6(yk − x)3 yk−1 < x � yk

(yk+2 − x)3 − 4(yk+1 − x)3 + 6(yk − x)3 − 4(yk−1 − x)3 yk−2 < x � yk−1
0 otherwise

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.73)

where:
h = b − a

m
(3.74)

and:
yk = a + kh (3.75)

When D = [0, 1], h = 1
m

and yk = kh. The first- and second-order component functions
then read:

Mi(xi) =
m+1∑
r=−1

αi
r Br(xi) (3.76)

Mij(xi, xj) =
m+1∑
p=−1

m+1∑
q=−1

βij
pq Bp(xi)Bq(xj) (3.77)

Due to the non orthogonality of two B-splines polynomials of different variables, this
family of basis function also provide singular matrices A. Therefore, similarly to simple
polynomials, all the coefficients αi

r and βij
pq cannot be determined in the same numerical

operation.

3.2.3.6 Conclusion

The RS-HDMR method has been developed to model the behavior of high-dimensional
input-output relationships. The method uses a functional decomposition of the physical
model so that the contribution of each input variable or group of variables is described
by a distinct component function. The component function can be estimated by Monte
Carlo simulations but it is numerically more efficient to expand them using an adapted
basis of functions such as simple polynomials, orthonormal polynomials or B−splines
polynomials. The estimation procedure of the coefficients of the expansion capitalizes on
the orthogonality property of orthonormal polynomials to be recast as a linear equation
system to be solved. In practice, the expansion is often truncated to the second-order of
interaction due to the burden of numerical simulations.
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3.3 Polynomial chaos expansion

Spectral expansions are well established methods in the field of numerical analy-
sis. In the more specific context of uncertainty propagation, the method consists in
expanding the random response of a model onto a suitable finite-dimensional basis
{Ψj, j = 0, . . . , P − 1} so that the model approximation reads:

M(X) ≈
P −1∑
j=0

yjΨj(X) (3.78)

This work focuses on spectral expansions onto bases composed of orthonormal polyno-
mials also referred to as polynomials chaos expansions (PCE). Then, the approximation
of the random model response in Eq. (3.78) consists in the estimation of the coefficients
yj’s of the expansion. Two families of methods may be applied to solve such a problem.
The intrusive methods, based on a Galerkin scheme have been introduced in the early 90’s
for solving mechanical problems with spatially random parameters (Ghanem and Spanos,
1991). Their main drawbacks are a high computational cost due to the size of the matrix
systems that have to be solved and the intrusions of the method in the computer code.
Therefore, intrusive methods will not be detailed in this work.

Alternative methods, referred to as non intrusive methods, simply benefits from the
evaluations of the physical model, which can be a finite element analysis for instance, at
soundly chosen points to compute the coefficients of the expansion, without any modifica-
tion of the computational code (Sudret, 2007). Of interest is this last family of methods.
After introducing the general framework of polynomial chaos expansions, the estimation
methods for the coefficients and the associated estimation error are studied. Finally,
attention is given to the issue of models with correlated input parameters.

3.3.1 Mathematical framework of PC expansions

In the Greek mythology, the word chaos is linked to the origin of the world. Chaos is the
son of Chronos, personification of Time, and Ananke, personification of destiny, necessity
and fate. Then came Gaia (Earth), Eros (love), Tartarus (Hell), Erebus (Hell’s darkness)
and Nyx (the night). Ovid, in his Metamophoses, gave to this word its signification in use
to date, describing it as a gross, amorphous and unorganized mass. Thus, the Chaos can
be described by two main aspects:

• the bottomless abyss down which there is an endless fall : Earth then appears, pro-
viding a stable base, which is radically opposed to chaos;

• the space with no possible orientation in which one falls in every direction at the
same time.

Nobody knows who first introduced the word chaos in science models. It may be Poincaré
who was opposed to the perfectly ordered mechanics of Newton. In any cases, it is prior
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to Wiener (1938). Chaos is not necessarily stochastic. There is chaos if the quantity
of information that is necessary to predict a sample path must be very large and if a
very small modification in this information generates deterministic sample paths that are
completely different. Wiener’s chaos then appears as the set of all the possible sample
paths issued from random data. It depicts the apparently disordered aspect of the behavior
of a system as it is originally associated with apparently disordered nature of the Creation
of the Universe in the Greek Mythology.

3.3.1.1 Introduction

Let us consider a physical model M whose random response Y is a function of an input
random vector X = {Xi, i = 1, . . . , n} having independent components. For the sake
of simplicity, a scalar random response Y is assumed but the sequel also holds for each
component of an output random vector. The mathematical framework of the probability
theory, presented in Chapter 1, Section 1.2, introduces the probability space (Ω, F ,P).
Of interest here are continuous random variables X with finite second moment, namely:

E
[
X2
]

=
∫

Ω
X2(ω)dP(ω) =

∫
DX

x2 fX(x) dx < +∞ (3.79)

where DX ⊂ R and fX are respectively the support and the probability density function
of X.

Such variables are defined in the Hilbert space L2 (Ω, F ,P) whose associated inner
product reads:

< X1, X2 >L2= E [X1X2] =
∫

DX1 ×DX2

x1x2 fX1(x1)fX2(x2) dx1dx2 (3.80)

where X1 and X2 are two finite variance random variables. The inner product defines the
L2−norm:

‖X‖L2 =
√

E [X2] (3.81)

In the sequel, the model M under consideration takes an input random vector X
defined by its joint PDF fX . Consequently, its response Y is also a random variable as-
sumed to be square-integrable, i.e. Y ∈ L2 (Ω, F ,P). This work now studies the spectral
decomposition of the model response on bases of L2 (Ω, F ,P) made of orthogonal poly-
nomials. The input random vector X is first assumed to have independent components.
Then, the case of correlated input random variables will be addressed.

3.3.1.2 Independent random variables

Let us consider an independent input random vector X = {Xi, i = 1, . . . , n}. Soize and
Ghanem (2004) show that the model response Y may be expanded onto an orthogonal
polynomial basis:

Y = M(X) =
+∞∑
j=1

yjΨj(X) (3.82)
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Moreover, it is shown that these series converges to the true model response in the sense
of the L2−norm, namely:

lim
P →+∞

⎛⎝∥∥∥∥∥∥M(X) −
P −1∑
j=1

yjΨj(X)
∥∥∥∥∥∥L2

⎞⎠2

= lim
P →+∞

E

⎡⎢⎣
⎛⎝M(X) −

P −1∑
j=1

yjΨj(X)
⎞⎠2
⎤⎥⎦ = 0

(3.83)

where the yj’s are P unknown coefficients to be determined and the Ψj are multivariate
polynomials. Therefore, the series in Eq. (3.82) is usually referred to as polynomial chaos
expansions (PCE). Such expansions require the building of a suitable basis which is now
detailed.

When the input parameters Xi, i = 1, . . . , n are independent, the joint PDF fX of the
input random vector X is simply the product of the n marginal PDF, namely:

fX(x) =
n∏

i=1
fXi

(xi) (3.84)

Let us denote by
{
π

(i)
j , j ∈ N

}
a family of univariate orthonormal polynomials with

respect to fXi
. These polynomials satisfy:

< π
(i)
j (Xi), π

(i)
k (Xi) >L2= E

[
π

(i)
j (Xi) π

(i)
k (Xi)

]
= δj,k (3.85)

where the δj,k is the Kronecker symbol, i.e. δj,k = 1 if j = k and 0 otherwise. The
polynomials π

(i)
j are assumed of degree j for j > 0 and π

(i)
0 = 1 for all Xi ∈ X.

Let us now introduce the multi-index notation α = {α1, . . . , αn}. This notation allows
one to define the set of multivariate polynomials {Ψα, α∈Nn} by tensorizing the n univariate
polynomials families as follows:

Ψα(x) = π(1)
α1 (x1) × . . . × π(n)

αn
(xn) (3.86)

In the original work by Wiener (1938), the bases were made of Hermite polynomi-
als to model stochastic processes from series of Gaussian variables. The first Hermite
polynomials are presented in Figure 3.4. The method was then also called Wiener chaos
expansion. To meet the expectations of the practitioners using not only Gaussian vari-
ables, the method has been extended to the main families of random variables with basis
functions from the Askey-scheme of hypergeometric polynomials (Xiu and Karniadakis,
2003). When different families of random variables are mixed in a joint distribution,
the expansion is referred to as generalized polynomial chaos (gPC) expansion. Table 3.1
provides the polynomial families that are associated with the most popular probabilistic
distributions.

For other types of distributions, the problem may be be recast using an isoprobabilistic
transformation where the gPC expansion is applied on the transformed variables. Finally,
families of orthogonal polynomials that suit uncommon distributions can be generated
numerically. For a more detailed overview on generalized polynomial chaos expansions,
the reading of Blatman (2009) is advised.
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Figure 3.4: Hermite polynomials Hk, k = 0, . . . , 5.

Distribution Support Polynomial
Gaussian R Hermite
Uniform [−1, 1] Legendre
Gamma [0, +∞] Laguerre

Chebyshev [−1, 1] Chebyshev
Beta [−1, 1] Jacobi

Table 3.1: Polynomial families from the Askey-scheme of hypergeometric orthogonal polynomi-
als associated with the main continuous probabilistic distributions.

3.3.1.3 Truncature of the basis

It has been shown in Eq. (3.83) that the approximation converges in the mean-square sense
to the true random response when the size P of the expansion tends to +∞. However,
one only retains in practice the multivariate polynomials Ψα whose total degree ∑n

i=1 αi

is smaller than a degree p. Then the size of the expansion and therefore the number of
unknown coefficients to be estimated reads:

P =
(

n + p
p

)
(3.87)

The polynomial chaos expansion truncated in such a way that no multivariate polynomials
have a total degree greater than p will be denoted by:

Y ≈ M̂p(X) =
∑

|α|�p

yαΨα(X) (3.88)



3.3. Polynomial chaos expansion 87

3.3.2 Advanced truncature strategies

According to Eq. (3.87), the number of coefficients of the expansion rapidly increases with
both the dimension n of the problem and the order p of the expansion. When a variable
selection procedure has already been performed and the complexity of the problem requires
a high order of expansion, the number of coefficients to be estimated might remains to
high with respect to the necessary number of calls to the physical model.

It has been observed that in a complete basis when p is high, the coefficients cor-
responding to the highest orders of interaction are often negligible compared with the
ones corresponding to the inner contribution of each variable. Thus, there is a need for
strategies to reduce the sampling effort, i.e. the number of coefficients to be computed,
by removing from the set of coefficients those who have the lowest contribution in the
expansion. Several strategies have been proposed in Blatman (2009) which are now sum-
marized.

3.3.2.1 Low-rank index sets

Let us recall the notation for the multi-index set α = {α1, . . . , αn} where αi is the degree
of the univariate polynomial corresponding to the ith input variable. The total degree and
the rank of α are respectively defined in Eqs. (3.89) and (3.90).

|α| = ‖α‖1 =
n∑

i=1
αi (3.89)

‖α‖0 =
n∑

i=1
1(αi>0) (3.90)

As mentioned already, it is common practice to retain the multivariate polynomials Ψα

whose total degree is not greater than p. The corresponding index sets are then defined
by:

An,p = {α ∈ N
n, ‖α‖1 � p} (3.91)

with card (An,p) = P = Cn+p
p .

The low-rank index strategy consists in only retaining the multi-index sets α whose
rank is smaller than an integer j � p, i.e. at most j indices αi ∈ α are non zero. The
corresponding index sets reads:

An,p,j = {α ∈ N
n, ‖α‖1 � p, ‖α‖0 � j} (3.92)

with the following property:

card
(
An,p,j

)
� card (An,p) (3.93)

This strategy offers an alternative to high-dimensional models requiring a high order
of expansion but the limitation might come from limiting the interaction order to, let us
say 2 or 3, and therefore neglecting some interaction terms that might exist in complex
physical models.
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3.3.2.2 Hyperbolic index sets

Blatman and Sudret (2009) proposes an index selection based on the so-called q−norm:

‖α‖q =
(

n∑
i=1

αq
i

)1/q

, 0 < q < 1 (3.94)

The corresponding hyperbolic index set reads:

An,p
q =

{
α ∈ N

n, ‖α‖q � p
}

(3.95)

When q = 1, the index set verifies An,p
1 ≡ An,p. When q < 1, the high-order interaction

terms are not retained in the multi-index set and the lowest q is, the less high-order
interaction terms are retained. The name hyperbolic index sets comes from the fact that
graphically speaking, the retained indices are located under a hyperbola parametrized
by q. The advantage of the hyperbolic sets compared to the low-rank sets is that the
PC approximation converges to the true response with respect to the L2−norm when p
increases, whatever the value of q.

In its simplest definition, hyperbolic index sets are isotropic, i.e. the same importance
is given to all the input variables. In order to penalize less the high-order interaction on
those variables who have the highest contribution on the model response, an anisotropic
definition is also proposed by Blatman (2009). The anisotropic norm is defined by:

‖α‖q,w =
(

n∑
i=1

|wiαi|q
)1/q

, ωi � 1 (3.96)

The corresponding anisotropic index set reads

An,p
q,w =

{
α ∈ N

n, ‖α‖q,w � p
}

(3.97)

The definition of the weights wi is related to the total sensitivity index ST
i that rep-

resents the share of variance of Y due to the variable Xi and its interaction with the
variables Xj, j �= i (see Chapter 2, Section 2.3). In other words, ST

i measures the degree
of interaction of Xi in M. A variable with a low total sensitivity index is penalized with
a high weight wi of the form:

wi = 1 + K
ST

max − ST
i

n∑
i=1

ST
i

(3.98)

where ST
max is the highest total sensitivity index ST

max = max{ST
i , i = 1, . . . , n} and K is

a non negative constant. According to the definition in Eq. (3.98), K = 0 leads to the
isotropic index sets, i.e. wi = 1, i = 1, . . . , n whereas a high value of K defines a high
anisotropy in the index set.

Hyperbolic sets and moreover the anisotropic ones lead to a drastic reduction of the
number of expansion coefficients to be computed as demonstrated in Blatman and Sudret
(2010). Nevertheless, the total sensitivity indices have to be computed before building
the PC expansion, inducing a prior sensitivity analysis of the model.
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3.3.2.3 Adaptive sparse polynomial chaos expansion

Adaptive sparse polynomial chaos expansion is due to the recent work of Blatman (2009).
The main idea is to replace the selection rule defined by the q−norm and the anisotropy
coefficient K by an algorithm that is able to define which coefficients must be retained
and which can be neglected. Several strategies might be used, depending on the initial
full basis, the criterion to classify the coefficients, the maximal number of coefficients in
the final basis etc.

Of interest is the most advanced adaptive algorithm based on Least Angle Regression
(LAR) (Efron et al., 2004). Let us consider the data samples X = {x(k), k = 1, . . . , N}
and Y = {y(k) = M(x(k)), k = 1, . . . , N} as the design of experiments and the corre-
sponding physical model evaluations. The PC expansion of Y = M(X) reads:

MA(X) =
∑
α∈A

yαΨα(X) (3.99)

where A is the set of multi-indices. In the case of a p−truncated basis, the coefficients yα,
α ∈ An,p (Eq. (3.91)), are estimated all at the same time by regression. The principle of
the variable selection algorithm is to select step by step the polynomial Ψα(X) that is the
most correlated with the current residual (in the first step, the current residual is the model
response Y ). In practice, the predictors are evaluated on the training sample X and the
correlation between the corresponding evaluations vector {Ψα(x(k)), k = 1, . . . , N}, α ∈
A and the response sample Y is studied. The predictor that has the highest correlation
with the response is added in the expansion and its coefficient is increased until another
predictor has a higher correlation with the residuals. The increase of the coefficients is
ruled by fast mathematical derivations instead of slow incremental procedures such as in
the forward stagewise regression algorithm.

The number of predictors is progressively increased until a stopping criterion (number
of predictors, relative error) is reached. This technique allows one to reach high orders of
expansion and interaction which lead to an accurate approximation of the model response
with less coefficients to compute and consequently less calls to the physical model. The
different truncature strategies are illustrated in Figure 3.5.

Once the optimal basis, i.e. the set of multivariate polynomials Ψα, has been built,
the unknown coefficients of the expansion have to be estimated.

3.3.3 Estimation of the coefficients

The so-called non intrusive methods allows one to estimate the coefficients of the expan-
sions using the evaluations of the physical model at a set of chosen points. Two kinds of
methods are studied here, namely the projection and regression methods. These methods
are non interpolating. The estimation of the coefficients relies upon the minimization of
the mean-square error of the approximation.
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Figure 3.5: Example of index sets. (a) is a full index set with ‖α‖1 � 5. (b) is a hyperbolic
index set with ‖α‖0.5 � 5. (c) is an anisotropic index set with ‖α‖1,w � 5,
w = {1, 2}. (d) is a LAR index set where only the most influent polynomials are
retained.

3.3.3.1 Projection methods

The so-called spectral projection method takes advantage of the orthonormality property
of the truncated basis {Ψα, |α| � p}. The coefficient yα actually equals the expected
value of the series times the associated multivariate polynomial Ψα, namely:

yα = E [Ψα(X) M(X)] =
∫

DX

Ψα(x) M(x) fX(x) dx (3.100)

Practical implementation of the computation scheme requires the approximation of the
expected value in Eq. (3.100). The simplest of the simulation methods is the Monte Carlo
estimation. Considering a n−dimensional N−sample X = {x(k), k = 1, . . . , N}, the
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estimate of the coefficient yα reads:

ŷα ≈ 1
N

N∑
k=1

M
(
x(k)

)
Ψα

(
x(k)

)
(3.101)

Advanced sampling techniques such as latin hypercube sampling (LHS) or quasi-Monte
Carlo (QMC) propose more intelligent space filling strategies compared to the random MC
simulations and therefore provide a better accuracy. Nevertheless, having in mind that
simulation techniques have a quite slow convergence rate and that each of the P coefficients
will require such a computationally heavy procedure, other integration techniques that
make the best use of each physical model estimations have to be carried out.

Quadrature methods select a set of specific points x(k) and associated weights ω(k) so
that the integral in Eq. (3.100) reads:

ŷα =
Nq∑

k=1
ω(k)M

(
x(k)

)
Ψα

(
x(k)

)
(3.102)

The multivariate nature of the input implies to use multidimensional quadrature scheme
such as sparse grids. The main drawback of projection methods is that the coefficients
have to be estimated one by one.

One may have noticed that the HDMR decomposition presented in Section 3.2.3 is
identical to a polynomial chaos expansions of degree p = 2 whose component functions,
which are in both cases multivariate Legendre polynomials, are obtained by projection,
namely:

aj = E [M(X)Ψj(X)] ≈ 1
N

N∑
k=1

M
(
x(k)

)
Ψj

(
x(k)

)
(3.103)

3.3.3.2 Regression methods

Regression methods allow one to reduce the sampling effort of projection methods by
computing all the coefficients at the same time (Berveiller, 2005). Let us introduce the
following vector notation:

y =
{
yα0 , . . . , yαP −1

}T
(3.104)

Ψ(X) =
{
Ψα0(X), . . . , ΨαP −1(X)

}T
(3.105)

The regression problem can be recast as an optimization problem:

y∗ = argmin
y

E
[(

yTΨ(X) − M(X)
)2
]

︸ ︷︷ ︸
I(y)

(3.106)

whose optimality condition:
d

dy
I(y∗) = 0 (3.107)
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leads to:
E
[
Ψ(X) ΨT(X)

]
︸ ︷︷ ︸

I

y∗ = E [Ψ(X) MX] (3.108)

where I is the P × P identity matrix. Indeed, Ψ(X) ΨT(X) is the covariance matrix of
Ψ(X) which has orthogonal components by definition. Finally, the vector of the expansion
coefficients reads:

y∗ = E [Ψ(X) MX] (3.109)
which is nothing but the expression of the projection-based coefficients in Eq. (3.100). In
other words, the theoretical projection-based coefficients minimize the mean-square error
of the approximation.

The estimates of the regression-based coefficients are now studied. Let us consider the
sample X = {x(k), k = 1, . . . , N} and let us define the information matrix Ψ where Ψkj

is the estimation of the jth multivariate polynomial Ψαj
at the kth sampling point x(k),

namely:

Ψ =

⎛⎜⎜⎜⎝
Ψα0

(
x(1)

)
. . . ΨαP −1

(
x(1)

)
... . . . ...

Ψα0

(
x(N)

)
. . . ΨαP −1

(
x(N)

)
⎞⎟⎟⎟⎠ (3.110)

The regression-based estimates of the coefficients y∗ read:

y∗ =
(
ΨTΨ

)−1
ΨTY (3.111)

where Y = {y(k) = M(x(k)), k = 1, . . . N} is the sample of the model response at the
sampling points.

A condition for the estimation of the unknown PC expansion coefficients is that the
size N of the sample must be greater than the number of coefficients P . In practice, one
may use N = 3P sampling points to increase the accuracy of the estimation. Concerning
the sampling techniques, similarly as for projection methods, quasi-random techniques
such as LHS or QMC can be used.

3.3.4 Models with correlated inputs

When the input random vector no longer has independent components, the joint cumula-
tive distribution function FX is defined by the marginal CDFs FXi

, i = 1, . . . , n, and the
copula C (see Chapter 1, Section 1.5), namely:

FX(x1, . . . , xn) = C (FX1(x1), . . . , FXn(xn)) (3.112)

In most cases, the dependence structure of the input random vector is modelled by a
n−dimensional Gaussian copula Cn,Σ where R is the n × n symmetrical matrix that is
linked by Eq. (1.73) to the rank correlation matrix of the components of X. Its joint
distribution then reads:

FX(x1, . . . , xn) = ΦR
(
Φ−1(FX1(x1)), . . . , Φ−1(FXn(xn))

)
(3.113)
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where Φ is the univariate standard Gaussian CDF. The joint CDF in Eq. (3.113) appears
as a function of correlated standard Gaussian variables denoted by:

ξC =
{
ξC

i = Φ−1(FXi
(xi)), i = 1, . . . , n

}
(3.114)

As the polynomial chaos expansion require independent input variables, the ξC
i have to be

transformed into uncorrelated Gaussian variables ξU
i so that a Hermite polynomial chaos

can be processed. The uncorrelated variables read:

ξU = Γ−1ξC (3.115)

where Γ is the Cholesky decomposition of the rank correlation matrix S, namely:

S = ΓΓT (3.116)

The model response is recast as a function of independent standard Gaussian variables
as follows:

Y = M
(
X
(
ξU
))

(3.117)
Finally, the model response can be expanded onto a suitable basis made of orthonormal
Hermite polynomials in ξU as any function of independent Gaussian variables.

When the dependence structure of the input random vector is no longer Gaussian, the
Nataf transformation is no longer relevant. The problem has been addressed in Soize and
Ghanem (2004). A perfect knowledge of the joint distribution of X, that is of the copula
C, is required in order to transform the correlated physical variables into independent
standard Gaussian variables using the Rosenblatt transformation (see Chapter 1, Section
1.5.7.2).

3.3.5 Accuracy of PC expansions

Polynomial chaos expansions represent an efficient way to substitute a numerically expen-
sive model with a cheaper analytical one. However, the worst cases the practitioner may
have a complex response to approximate with a limited number of calls to the physical
model at hand and might want to know what is the approximation error in order to build
a confidence interval for instance. Therefore, the generalization error and the empirical
error are now introduced.

3.3.5.1 Generalization error and empirical error

Let us consider a sample X = {x(k), k = 1, . . . , N} of the input random vector X and
the corresponding response sample Y = {y(k) = M(x(k)), k = 1, . . . , N}. This set (X , Y)
of the experimental points and the evaluations of the physical model M also referred to
as the training sample, constitutes the design of experiments one may use to build the
following p−truncated PC expansion:

Y ≈ M̂p(X) =
∑

|α|�p

yαΨα(X) (3.118)
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Let us now denote by Err the approximation error with respect to the L2−norm, also
referred to as generalization error (Vapnik, 1995), namely:

Err = E
[(

M(X) − M̂p(X)
)2
]

(3.119)

The generalization error may be estimated by computing the mean-squared error at the
design points, or empirical error Erremp defined by:

Erremp = 1
N

N∑
k=1

(
M(x(k)) − M̂p(x(k))

)2
(3.120)

Because the empirical error is estimated from the training sample, it is also referred to
as the training error. At this point, the importance of the training error depends on the
values Y can take. Thus, one may norm the training error by the empirical variance of
the random response σ̂2

Y to define the relative training error, namely:

εemp = Erremp

σ̂2
Y

(3.121)

where σ̂2
Y reads:

σ̂2
Y = 1

N − 1

N∑
k=1

(
y(k) − ȳ

)2
, ȳ = 1

N

N∑
k=1

y(k) (3.122)

Finally, one generally refers to the coefficient of determination R2 (Eq. (3.123)) to evaluate
the accuracy of the metamodel.

R2 = 1 − εemp (3.123)
A R2 close to 1 usually indicates a good accuracy of the metamodel whereas a R2 close
to zero characterizes a poor representation of the model response. The accuracy of PC
expansions is illustrated in Figure 3.6. The Ishigami function Eq. (3.124) is succesively
approximated by PC expansions of order p = 3, 5, 7, 10. Legendre polynomials are used
to be consistent with the uniformly distributed input variables. The PDF of the model
response fY is estimated by kernel smoothing based on a sample of size Nks = 106.

Y = sin(X1) + 7 × sin(X2)2 + 0.1 × X4
3 × sin(X1) (3.124)

with Xi ∼ U [−π, π], i = 1, 2, 3.
Nevertheless, one should not be fooled by the coefficient of determination which is

known for underestimating the generalization error. Indeed, due to its definition in
Eq. (3.120), Erremp decreases when the maximal degree p (and consequently the size
of the DOE) increases while Err may increase. This phenomenon is referred to as over-
fitting. Its most popular example is the so-called Runge effect (Blatman, 2009).

3.3.5.2 Leave-One-Out error

The coefficient of determination R2, which is assumed to overpredict the accuracy, is
based on the same experimental design than the one used to build the PC approximation.
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Figure 3.6: The Ishigami function is approximated by PC expansions of order p = 3, 5, 7, 10
(from left to right and from top to bottom). The PDF of the model response
is estimated by kernel smoothing. The higher the order, the most accurate the
response PDF approximation. The coefficient of determination R2 tends to 1 when
p is increased.

In order to estimate the approximation error more accurately, one might be tempted to
compute the generalization error on a different set of points, referred to as test set or
validation set, but that would lead to extra calls to the physical model.

The numerically most expensive step in building a PC expansion often lies in the calls
to the model that may be a finite element analysis. Then the time to build the polynomial
basis and compute the regression-based estimates of the coefficients might be negligible
compared to the DOE computation time. The so-called leave-one-out (LOO) technique
belongs to the cross-validation methods. The principle is to build the PC expansion M̂(∼k)

p

with the DOE points except the kth one (X , Y)(∼k) and to estimate the corresponding
predicted residual r(k) at the point x(k) that has been removed from the DOE, namely:

r(k) = M
(
x(k)

)
− M̂(∼k)

p

(
x(k)

)
(3.125)

By successively removing the kth experimental points, k = 1, . . . , n from the DOE, one
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computes the leave-one-out error:

ErrLOO = 1
N

N∑
k=1

r(k)2 (3.126)

In the case of linear regression, it is possible to compute the LOO-error analytically.
The predicted residuals read:

r(k) =
M
(
x(k)

)
− M̂p

(
x(k)

)
1 − hk

(3.127)

where hk is the kth term of diag(Ψ
(
ΨTΨ

)−1
ΨT), Ψ being the information matrix in

Eq. (3.110). The leave-one-out error may be recast as follows:

ErrLOO = 1
N

N∑
k=1

M
(
x(k)

)
− M̂p

(
x(k)

)
1 − hk

(3.128)

and similarly to the training error, one also defines the relative LOO-error, namely:

εLOO = ErrLOO

σ̂2
Y

(3.129)

and finally, the coefficient of determination R2 is replaced by Q2:

Q2 = 1 − εLOO (3.130)

The PC expansions equipped with the abovementioned accuracy indicators provide
the practitioner with a powerful tool to build a metamodel from a set of data with an
approximation error that is controlled.

3.4 Conclusion

The first part of this chapter gives an overview on several surrogate modelling techniques.
The Support Vector Regression, based on the wider branch of Machine Learning, consists
in solving a quadratic optimization problem. Its advantage is that the response surface
can be built using only a limited number of data points and offers a low sensitivity to
outliers, i.e. observations far from the global trend. Gaussian processes, also known as
Kriging has been developed for geostatistical applications. It offers the practitioner a
stochastic representation of the data since the model is assumed to be a sample path of a
Gaussian random field. Then the parameters of the process are estimated by maximum
likelihood. Gaussian processes are interesting because they interpolate the data and pro-
vide a approximation error through the Kriging variance. Finally the high-dimensional
model representation has been developed to model the behavior of chemical models with
dozens of input parameters. It consists in a projection of the model on polynomial basis
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whose terms are estimated by projection. Note that when the polynomial basis is orthog-
onal the approach is equivalent to a PC expansions whose coefficients are computed by
projection as seen in from the comparison of Eqs. (3.71, 3.72) and Eq. (3.101).

In the second part, the polynomial chaos expansion is presented. The approach relies
upon the expansion of the model response onto a suitable polynomial basis. In its simplest
form, i.e. when the model response is expanded onto the full basis, computing all the ex-
pansion coefficients by regression is quite a numerical burden. Advanced solutions based
on sparse representations are introduced. The variable selection problem can be solved
by neglecting the high-order interaction terms of the expansion or by using adaptive algo-
rithm that successively add and/or suppress polynomials in the basis in order to reach the
highest accuracy with the minimum number of terms. Finally, the approximation error
is studied through different indicators of accuracy. In this work, the practical implemen-
tation for PC applications has been processed using the Python package OpenTURNS
(2005).

In Chapter 4, it is shown how surrogate models can be used in order to compute
accurately the sensitivity indices that have been introduced in Chapter 2.
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4.1 Introduction

It has been observed in Chapter 2 that computing global sensitivity indices accurately
might be numerically very expensive. The number of calls to the physical model M
approaching 103 for a first approximation of an index value makes it almost impossible
to perform GSA within a reasonable time when the physical model is a time-demanding
process (complex code, finite element simulation). Therefore, several surrogate modelling
techniques have been presented in Chapter 3 and more particularly polynomial chaos
expansions. This chapter now proposes methodologies to compute Sobol’, Borgonovo and
ANCOVA indices using polynomial chaos expansions. This work will be shortly published
in Caniou and Sudret (2012).

4.2 Postprocessing PC coefficients

Polynomial chaos expansions (PCE) allows one to represent a physical model M along a
polynomial basis which is optimal for the probabilistic description of the input random
vector X. The PCE of the random response Y = M(X) reads:

Ŷ =
P −1∑
j=1

yjΨj(X) (4.1)

The random response Y is fully described by the coefficients of the development yj,
j = 1, . . . P − 1 which can be post-processed to compute quantities of interest such as its
probability density function or its statistical moments (Sudret, 2008). Then, it will be
shown how Sobol’ sensitivity indices can be derived from the same coefficients without
large Monte Carlo simulations. Before presenting the exploitation of the PCE coefficients,
a distribution approximation technique referred to as kernel smoothing approximation is
introduced.

4.2.1 Kernel smoothing approximation

The kernel smoothing approximation offers a smoother representation of a random variable
probability density function (PDF) than a basic histogram (Wand and Jones, 1995). It
consists in a superposition of standard distributions at each observation of the sample as
shows Figure 4.1 that is normed in order to verify:∫ +∞

−∞
fX(x) dx = 1 (4.2)

Let us consider a set of N observations
{
y(1), . . . , y(N)

}
of a random variable Y with PDF

fY . The kernel approximation of fY reads:

f̂Y (y) = 1
NhK

N∑
i=1

K

(
y − y(i)

hK

)
(4.3)
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where K is a kernel function and hK its bandwidth parameter. One usually uses the
Gaussian kernel function, namely:

K(x) = 1√
2π

exp
[
−1

2x2
]

(4.4)

which is nothing but the standard Gaussian PDF expression. The optimal bandwith for
the Gaussian kernel is the Silverman bandwidth (Silverman, 1986), namely:

hK = 0.9 m

N
1
5

with m = min
(

σ̂X ,
IQR(X)

1.349

)
(4.5)

where N is the size of the sample, σ̂X the sample standard deviation and IQR(X) its
interquartile range. The Silverman bandwidth is the value that minimizes the mean
integrated squared error (MISE) in the case of an underlying Gaussian distribution f :

MISE
[
f̂(·; h)

]
= E

[∫ (
f̂(x; hK) − f(x)

)2
]

dx (4.6)
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Figure 4.1: Principle of kernel smoothing estimation using the Gaussian kernel.

The drawback of the Gaussian kernel is that it is defined on R. Consequently, sim-
ulating pseudo-observations from the kernel smoothing estimation of a strictly positive
random variable might lead to negative values for at low probabilities which can be in-
convenient. In order to circumvent this issue, one usually prefers the Epanechnikov kernel
Eq. (4.7) which is presented in Figure 4.2.

E(x) =
⎧⎨⎩

3
4(1 − x2) if |x| � 1

0 if |x| > 1
(4.7)
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According to Eq. (4.7), the Epanechnikov kernel is bounded and that property prevents
one from observing negative realizations from the smoothed PDF. The optimal bandwidth
for the Epanechnikov kernel reads:

hE
K = σ̂X

(
40

√
π

N

) 1
5

(4.8)
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Figure 4.2: Principle of kernel smoothing estimation using the Epanechnikov kernel.

Kernel smoothing estimation tends to the true PDF of the random variable when
the size of the sample increases. Therefore, the larger the sample, the more accurate
the estimation. Moreover, when N > 103 − 104, the approximated density is almost
independent of the choice of the kernel function.

4.2.2 Probability density function and statistical moments of
the random response

4.2.2.1 Probability density function

The PDF fY of the model response Y can be computed from a set of observations Y =
{y(1), . . . , y(N)} of the random response obtained by performing MC simulations on the
surrogate model. The kernel smoothing approximation f̂Y of the response PDF reads:

f̂Y (y) = 1
NhK

N∑
i=1

K

(
y − y(i)

hK

)
(4.9)

As the model approximation M̂ is analytical and polynomial, these simulations are far
cheaper than those that could have been performed using the real model M. Therefore,
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large samples (N = 105 − 106) can be used in order to perfectly describe the PDF of the
model response.

4.2.2.2 Statistical moments

The statistical moments of the model response can be estimated by their empirical esti-
mators using the set of pseudo-observations previously described. However, they can also
be obtained directly from the coefficients of the development due to the orthogonality
properties of the polynomial basis functions. The first and second order moments of the
random variable, that is the mean value and the variance, respectively read:

μP C
Y ≡ E [Y ] = y0 (4.10)

σ2,P C
Y ≡ Var [Y ] =

P −1∑
i=1

y2
i (4.11)

The third and fourth order moments of the random variable, that is the skewness and the
kurtosis, can also be directly computed by:

δP C
Y ≡ 1

σ3,P C
Y

E
[
(Y − y0)3

]
= 1

σ3,P C
Y

P −1∑
i=1

P −1∑
j=1

P −1∑
k=1

dijkyi yj yk (4.12)

κP C
Y ≡ 1

σ4,P C
Y

E
[
(Y − y0)4

]
= 1

σ4,P C
Y

P −1∑
i=1

P −1∑
j=1

P −1∑
k=1

P −1∑
k=1

dijklyi yj yk yl (4.13)

with dijk = E [Ψi(x)Ψj(x)Ψk(x)] and dijkl = E [Ψi(x)Ψj(x)Ψk(x)Ψl(x)]. According to
(Sudret, 2008), a second-order PCE allows one to compute the mean and variance accu-
rately, whereas at least a third-order expansion is required for the precise estimation of
the skewness and kurtosis.

4.2.3 Sensitivity indices

This subsection highlights the relationship between the functional decomposition used in
the ANOVA and the polynomial representation provided by the PCE. This results were
originally published in Sudret (2006, 2008).

Let us consider the previously described PC expansion of the model response Y trun-
cated at the degree p:

ŷ =
∑

|α|�p

yαΨα(x) (4.14)

Eq. (4.14) shows a multi-index notation where α = {α1, . . . , αn} ∈ N
n denotes all the

possible n−uplets and:

Ψα(x) =
n∏

i=1
ψi

αi
(xi) (4.15)
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In this equation, the polynomials ψi
αi

are orthogonal with respect to the probability mea-
sure associated with the ith random variable Xi. Let us also define the set of multi-indices
Ii1,...,is by:

Ii1,...,is =
{

α : αk > 0 ∀k = 1, . . . , n k ∈ {i1, . . . , is}
αk = 0 ∀k = 1, . . . , n k /∈ {i1, . . . , is} (4.16)

Ii1,...,is corresponds to the set of α’s for which only the indices i1, . . . , is are non zero.
For example, Ii refers to the polynomials depending only on Xi. Using the notation in
Eq. (4.16), the summands in Eq. (4.14) are no longer functions of the full input random
vector X but are now gathered according to the parameters they only depend on, namely:

M̂(x) = y0

+
n∑

i=1

∑
α∈Ii

yαΨα(xi)

+
∑

1�i1<i2�n

∑
α∈Ii1,i2

yαΨα(xi1 , xi2)

. . .

+
∑

1�i1<...<is�n

∑
α∈Ii1,...,is

yαΨα(xi1 , . . . , xis)

(4.17)

This expression clearly allows one to identify which terms depend on which variables or
set of variables and represents in a certain sense a functional decomposition comparable
to the one from the ANOVA, that is:

Mi1,...,is(xi1 , . . . , xis) ≡ ∑
α∈Ii1,...,is

yαΨα(xi1 , . . . , xis) (4.18)

Due to the uniqueness of the Sobol’ decomposition, the equivalence relationship in
Eq. (4.17) is actually an equality.

Thus, the Sobol’ indices can be directly computed from the previous representation.
The PC-based Sobol’ indices are expressed in terms of the PCE coefficients:

SP C
i1,...,is

= 1
σ2,P C

Y

∑
α∈Ii1,...,is

y2
α (4.19)

where σ2,P C
Y is the total variance of Y . The PC-based first order Sobol’ index SP C

i1,...,is
, which

is the ratio of the partial variance that is due to (Xi1 , . . . , Xis) and the total variance,
is the ratio of the sum of the squared coefficients of the polynomial depending only on
(Xi1 , . . . , Xis) and the sum of all the squared coefficients. The author also defines the
PC-based total indices ST,P C

j1,...,jt
, namely:

ST,P C
j1,...,js

=
∑

{i1,...,is}⊂{j1,...,jt}
SP C

i1,...,is
(4.20)

Note that when the input random vector X has independent components, the PC-
indices are equivalent to the Sobol’ indices but if the independence is not verified, the
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PC-indices reflects the contribution of the decorrelated variables (after applying the Nataf
transformation) which can drastically differ from the input variables.

This section has shown that the PCE provides valuable information on the model
response at a numerical cost that is insignificant compared to MCS on the real model
once the surrogate model has been built. The cost for all these statistical quantities is
limited to the evaluation of the points in the design of experiments.

4.3 Borgonovo importance measure

The Borgonovo importance measure δ has been introduced in section 2.5. This
distribution-based sensitivity index can be calculated in two ways, either using a PDF-
definition or a CDF definition. In this section, computing scheme for both ways are
presented.

4.3.1 PDF-based estimation scheme

This work has been originally published in Caniou and Sudret (2011). The importance
measure δi describing the contribution of the input variable Xi to the distribution of the
model response Y reads:

δi = 1
2E [s(Xi)]

=
∫

DXi

[∫
DY

∣∣∣fY (y) − fY |Xi
(y)
∣∣∣ dy

]
dxi

(4.21)

The estimation of δi consists in the evaluation of two integrals, namely the first one for the
shift s(xi) and the second one for its expected value over the support of Xi. Let us assume
that the unconditional PDF fY (y) and the conditionals PDFs fY |Xi

(y) are not known.
In his original paper, Borgonovo (2007) proposes to identify the different PDFs using
maximum likelihood estimation (MLE) validated by a Kolmogorov-Smirnov goodness-of-
fit test. If this method represents a possible solution for this task, it has to be noticed
that there are no obvious reason for the model response to follow a common distribution
(Gaussian, lognormal, Weibull). For example, the PDF of Y could be bimodal. Kernel
smoothing estimation (see section 4.2.1) is a more general approach whose only hypothesis
requires the PDF to be continuous. In the same paper, the expected value of the shift
E [s(xi)] is estimated by performing 103 MC simulations. In this subsection, an improved
and more robust estimation procedure of δi is proposed.

4.3.1.1 Kernel smoothing estimation of the PDFs

Let us consider two N−samples of pseudo-observations Y = {y(1), . . . , y(N)} and YXi =
{z(1), . . . , z(N)} that have been numerically simulated from a polynomial chaos expansion
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with respectively no parameter fixed and Xi fixed at the value xi. The kernel smoothing
estimation of the unconditional and conditional PDFs respectively read:

f̂Y (y) = 1
NhK

N∑
i=1

K

(
y − y(i)

hK

)
and f̂Y |Xi

(y) = 1
NhK

N∑
i=1

K

(
y − z(i)

hK

)
(4.22)

Figure 4.3: Convergence of the shift between two kernel smoothing estimations of the standard
Gaussian PDF N (0, 1) when the size N of the sample is increased.



4.3. Borgonovo importance measure 107

It has been shown in Subsection 4.2.1 that the accuracy of the kernel smoothing es-
timation (KSE) of the PDFs is logically growing with the size N of the sample. The
convergence of the KSE is illustrated in Figure 4.3. The shift between two kernel smooth-
ing estimations of the same standard Gaussian PDF N (0, 1), thus supposed to be zero, is
studied. If the shift is larger than 0.05 for N = 1000 − 5000 (a and b), it becomes smaller
than 10−2 for N = 105. In the sequel, N = 105 will be used as the kernel smoothing sam-
pling size since the corresponding accuracy is acceptable considering that the quantity of
interest is a sensitivity index.

4.3.1.2 Estimation of the shift

The inner integral in Eq. (4.21) corresponds to the shift s(xi), that is the area between
fY (y) and fY |Xi

(y). An simple illustration for two Gaussian distributions, namely Y ∼
N (0, 1) and Y |Xi ∼ N (1, 2), is given in Figure 4.4.

(a) (b)

Figure 4.4: The area between the two PDFs (a) is flattened (b) to ease the integration scheme.

Classical integration procedures such as trapezoidal rules offer robust solutions but
their convergence rate is quite low. In order to evaluate the shift s(xi) with accuracy, a
more efficient integration scheme, namely the Gaussian quadrature rule, is preferred. A
quadrature rule allows one to approximate an integral I with a weighted sum of function
evaluations at specific points. The Gauss-Legendre quadrature rule reads:

I =
∫ b

a
f(x) dx ≈

Nq∑
k=1

ωk f(xk) (4.23)

where the xk are the integration points and the ωk the corresponding roots. When the
integral in standardized to the domain [−1, 1], the xk’s are the roots of the N th

q Legendre
polynomial. Legendre polynomials are orthogonal polynomials defined by the so-called
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Bonnet recurrence formula:

P0(x) = 0 (4.24)
P1(x) = x (4.25)

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x), ∀n > 0 (4.26)

The six first Legendre polynomials are pictured in Figure 4.5. The weights ωk are defined
by (Abbott, 2005):

ωk = −2
(n + 1)P ′

n(xk)Pn+1(xk) = 4
nPn+2(xk)P ′

n(xk+2)
(4.27)
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Figure 4.5: Legendre polynomials over [−1, 1] for k = 0, . . . , 5.

For a Gauss-Legendre quadrature rule over the domain [−1, 1] with Nq = 3, the
integration points and weights are respectively {−

√
3/5, 0,

√
3/5} and {5/9, 8/9, 5/9}.

For any interval [a, b], the following linear transformation has to be applied:

I =
∫ b

a
f(x) dx = b − a

2

∫ 1

−1
f

(
b − a

2 x + a + b

2

)
dx (4.28)

Then, the integral I can be approximated by:

I ≈ b − a

2

Nq∑
k=1

ωk f

(
b − a

2 xk + a + b

2

)
(4.29)

Thus, the shift s(xi) can be approximated by:

s(xi) ≈ b − a

2

Nq∑
k=1

ωk

∣∣∣∣∣fY

(
b − a

2 yk + a + b

2

)
− fY |Xi

(
b − a

2 yk + a + b

2

)∣∣∣∣∣ (4.30)



4.3. Borgonovo importance measure 109

Figure 4.6: Convergence of the Gauss-Legendre quadrature scheme. The integration error (bot-
tom) at the kth iteration is the difference between the integrals Ik−1 and Ik.

where a and b are respectively defined by the qth and 1 − qth quantiles (q = 10−6 for
instance) of the model response unconditional distribution.

A study of the convergence of the quadrature rule is presented in Figure 4.6. The same
test case as in Figure 4.4 is used with s(xi) = 0.78. This study shows that a quadrature
order Nq = 30 is sufficient to reach a precision of 10−2 for the shift where hundreds of
KSE evaluations would have been necessary to reach the same accuracy with a trapezoidal
rule. In the sequel, Nq = 30 quadrature points will be used for the estimation of the shift.

4.3.1.3 Estimation of the expected shift

The outer integral in Eq. (4.21), that is the expected value of the shift E [s(xi)] can also be
estimated using another second quadrature rule. The quadrature rule for a the estimation
of the expected value of the shift with respect to the probability measure fXi

(xi) dxi reads:

E [s(Xi)] =
∫

s(xi)PXi
(dxi) ≈

Nq∑
k=1

ωk s(xk) (4.31)
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Figure 4.7: Convergence of the quadrature scheme for the expected shift. The integration error
(bottom) at the kth iteration is the difference between the integrals Ik−1 and Ik.

where the integration weights and points are now computed from the polynomials that are
orthogonal to PXi

(dxi) = fXi
(xi) dxi. Alternatively, using the Gauss-Legendre integration

rule, the estimation reads:

E [s(Xi)] = b − a

2

Nq∑
k=1

ωk s

(
b − a

2 xk + a + b

2

)
fXi

(
b − a

2 xk + a + b

2

)
(4.32)

where a and b are now the qth and 1 − qth quantiles of the distribution of Xi. This last
method is preferred to the first one for the sake of computer programming simplicity.

Finally, the global expression of the estimator δ̂i of δi reads:

δ̂i = 1
2

Nq∑
k=1

ωk

Nq∑
l=1

ωl

∣∣∣f̂Y (yl) − f̂Y |Xi=xk
(yl)

∣∣∣ fXi
(xk) (4.33)

The convergence of the quadrature scheme is pictured in Figure 4.7. With Nq = 30, the
estimation of δi requires only 31 KSE of the PDFs (1 unconditional and 30 conditional)
which is already numerically expensive considering each KSE is built from 105 pseudo-
observations.
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Note that the consistence of the estimator δ̂i of δi has been shown in (Plischke et al.,
2012).

4.3.1.4 Diagram of the procedure

To summarize the PDF-based estimation scheme, the procedure is illustrated by the
algorithm in Figure 4.8.

Kernel smoothing estimation of the unconditional PDF
f̂Y (y)

KernelSmoothing(NumericalSample, Bandwidth)

k = 0

Kernel smoothing estimation of the conditional PDF
f̂

Y |Xi=x
(k)
i

(y)
KernelSmoothing(NumericalSample, Bandwidth)

Quadrature estimation of the shift
s
(

x
(k)
i

)
=
∫

DY

∣∣∣fY (y) − f
Y |Xi=x

(k)
i

(y)
∣∣∣ dy :

s = scipy.integrate.quadrature(f1-f2, a, b, tol=5e-3)

k � nquad ?k = k + 1

Computation of the δ index

δi ≈ 1
2

nquad∑
k=1

ωks
(

x
(k)
i

)
no

yes

Figure 4.8: Diagram of the PDF-based estimation of the δ sensitivity measure.

4.3.2 CDF-based estimation scheme

The estimation of Borgonovo δ indices using kernel smoothing estimation of the PDF
is quite expensive due to the large size of the samples involved in the process. A new
estimation procedure based on the cumulative distribution functions has been proposed
in Borgonovo et al. (2011). In this case, the shift reads (see Chapter 2, Section 2.5):

s(Xi = x∗
i ) = 2FY (D+

Y,Xi
) − 2FY |Xi=x∗

i
(D+

Y,Xi
) (4.34)

where D+
Y,Xi

is the domain where fY (y) > fY |Xi
(y).
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Figure 4.9: Kernel smoothing estimation of the cumulative distribution function from a sample.

4.3.2.1 Kernel smoothing estimation of the CDFs

The kernel smoothing estimation of a cumulative distribution function is comparable to
a cumulative histogram representation. The same principle is used but now the kernel
function is a typically a CDF. An example is pictured in Figure 4.9. The kernel function
is the cumulative distribution function of the standard Gaussian distribution:

K(x) = Φ(x)

= 1
2

(
1 + erf

(
x√
2

)) (4.35)

where erf denotes the error function.

4.3.2.2 Estimation of the shift

According to Eq. (4.34), estimating the shift consists in determining the bounds of the
domains D+

Y,Xi
and D−

Y,Xi
, that is the points y1 and y2 at which fY (y) = fY |Xi

(y). Ac-
cording to the relation between the PDF and the CDF of a random variable, one gets for
all interval [a, b]: ∫ a

0
fY (y) dy = FY (a) (4.36)∫ b

a
fY (y) dy = FY (b) − FY (a) (4.37)

These properties are illustrated in Figure 4.10. Thus, the goal is to solve a root-finding
problem for a continuous function g(y) = fY (y) − fY |Xi

(y) on interval [a, b]. Although a
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Figure 4.10: Illustration of the analytical integration of a PDF.

bisection method may converge slower than a Newton-Raphson algorithm, it represents a
robust alternative to find both roots with a controlled accuracy. In order to find good
initial guesses a and b, the support of Y is first discretized with a grid on which the
function g is evaluated. Then, it becomes easy to find two pairs, one for each root, of
consecutive terms with opposite signs.

Once the roots y1, y2, y1 < y2 have been found, the shift is computed by evaluating
the smoothed CDFs F̂Y and F̂Y |Xi

at the roots:

s(Xi) = 2
[
F̂Y (y1) + F̂Y |Xi

(y2) − F̂Y (y2) − F̂Y |Xi
(y1)

]
(4.38)

The principle of the estimation of δ is illustrated in Figure 4.11.

4.3.2.3 Estimation of the expected shift

The last step of the evaluation of δi is the computation of the expected value of the shift
s(Xi). In the same manner as for the PDF-based estimation scheme, a quadrature rule
is preferred to Monte Carlo simulations for the estimation of the expected shift. The
estimator of the sensitivity measure δi finally reads:

δ̂i =
Nq∑

k=1
ωq

[
F̂Y (y1) + F̂Y |Xi=xq(y2) − F̂Y (y2) − F̂Y |Xi=xq(y1)

]
(4.39)

4.3.2.4 Diagram of the procedure

To summarize the CDF-based estimation scheme, the procedure is illustrated by the
algorithm in Figure 4.12.
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Figure 4.11: Principle of the estimation of the δ index using CDFs.

4.3.3 A comparison example

Let us consider a numerical model M defined by:

Y = M(X) = X1 + X2 (4.40)

where X1 ∼ N (0., 1.) and X2 ∼ N (1., 2.). The δ measures are now computed with both
PDF and CDF approaches and for two sizes of sample, i.e. 103 and 104 and Nq = 15.
The results presented in Table 4.1 are also illustrated in Figure 4.13. The relative error
εrel between the estimation based on two different sampling size reads:

εrel = |δ(103) − δ(104)|
δ(104) (4.41)

Indices Nks = 103 Nks = 104 εrel

δP DF
1 0.151 0.161 0.062

δCDF
1 0.153 0.157 0.025

δP DF
2 0.521 0.493 0.057

δCDF
2 0.498 0.506 0.016

Table 4.1: PDF-based and CDF-based estimators of the δ indices for two sizes of sample.

The first observation that can be done is that samples of size Nks = 103 are too small
for an accurate estimation of the PDF whereas it seems sufficient for a CDF estimation.
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Kernel smoothing estimation of the unconditional CDF
F̂Y (y)

KernelSmoothing(NumericalSample, Bandwidth)
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Figure 4.12: Diagram of the CDF-based estimation of the δ sensitivity measure.

The second observation is that the δ indices are less sensitive to Nks when they are
computed with CDF-based scheme than with the PDF-based scheme. The relative error
εrel between the two sampling size is three times lower for the CDF-based estimation than
for the PDF-based estimation. Therefore, because the CDF-based estimation scheme
of the δ indices requires smaller samples for the same accuracy, it is preferred to the
PDF-based estimation scheme in the sequel.

4.4 ANCOVA indices using PC functional decompo-
sition

The so-called ANCOVA indices have been introduced in Li and Rabitz (2010). The
principle relies on the covariance decomposition of the model reponse into partial variances
and covariances. This covariance decomposition requires a functional decomposition that
is a priori unknown for a given model and consequently has to be built. The functional
decomposition of a model M(X) reads:

M(X) = M0 +
n∑

i=1
Mi(Xi) +

∑
1�i,j�n

Mi,j(Xi, Xj) + . . . + M1,...,n(X) (4.42)
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Figure 4.13: Comparison between PDF-based (top) and CDF-based (bottom) estimators of the
δ indices with Nks = 103 (left) and Nks = 104 (right).
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Then, the so-called ANCOVA indices described in 2.6 are defined by the following total
variance-normed sums:

Si = Cov [Mi(xi), Y ]
Var [Y ] (4.43)

SU
i = Var [Mi(xi)]

Var [Y ] (4.44)

SC
i = Cov [Mi(xi), Y − Mi(xi)]

Var [Y ] (4.45)

The challenge is consequently to determine properly the subfunctions Mi, Mij of the de-
composition. In this section, two approaches to compute the summands of the functional
decomposition are presented.

4.4.1 RS-HDMR decomposition

The Random Sampling High Dimensional Model Representation (RS-HDMR) is the solu-
tion that has been proposed in the original paper by Li and Rabitz (2010). The principle
is to decompose the model into functions of increasing dimension as in Eq. (4.42). Expe-
rience shows (Li et al., 2002) that high-order terms are often negligible and therefore a
second-order decomposition can provide a satisfactory description of M(X):

M(X) ≈ M0 +
n∑

i=1
Mi(Xi) +

∑
1�i,j�n

Mi,j(Xi, Xj) (4.46)

The identification of the terms of the decomposition can be made by Monte Carlo integra-
tion. For this purpose, N−samples of the n−dimensional vector X are generated. Then
:

M0 =
∫

DX

M(x)dx ≈ 1
N

N∑
k=1

M(x(k)) (4.47)

Mi(xi) =
∫

DX∼i

M(x)dx∼i − M0

≈ 1
N

N∑
k=1

M((xi, x∼i)(k)) − 1
N

N∑
k=1

M(x(k))
(4.48)

Mi,j(xi, xj) =
∫

DX∼i,j

M(x)dx∼i,j − Mi(xi) − Mj(xj) − M0

≈ 1
N

N∑
k=1

M((xi, xj, x∼i,j)(k)) − 1
N

N∑
k=1

M((xi, x∼i)(k))

− 1
N

N∑
k=1

M((xj, x∼j)(k)) − 1
N

N∑
k=1

M(x(k))

(4.49)
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This strategy is numerically very expensive and the authors recommand in the orig-
inal paper to rather expand the summands on a functional basis that can be orthormal
polynomials, splines or simple polynomials, namely:

Mi(xi) ≈
k∑

r=1
αi

rϕr(xi) (4.50)

Mi,j(xi, xj) ≈
l∑

p=1

l′∑
q=1

βi
pqϕpq(xi, xj) (4.51)

where the αi
r and βij

pq are constant coefficients to be determined and the ϕr and ϕpq are
one and two-dimensional basis functions. Thus, the RS-HDMR approximation of M(X)
reads:

M(x) ≈ M0 +
n∑

i=1

k∑
r=1

αi
rϕr(xi) +

∑
1�i<j�n

l∑
p=1

l′∑
q=1

βij
pqϕpq(xi, xj) (4.52)

Provided the basis functions are orthonormal, the coefficients αi
r and βij

pq can be inde-
pendently determined by minimization:

min
αi

r

∫
DXi

[
Mi(xi) −

k∑
r=1

αi
rϕr(xi)

]
dxi (4.53)

min
βij

pq

∫
DXi

∫
DXj

⎡⎣Mij(xi, xj) −
l∑

p=1

l′∑
q=1

βi
pqϕpq(xi, xj)

⎤⎦ dxidxj (4.54)

Then, the set of coefficients for the decomposition can be obtained by solving a linear
equation:

Ay = b (4.55)

where A is a constant non singular matrix, b is a vector of integrals over a product of
M(X) times the basis functions and y is the vector of the basis functions.

4.4.1.1 Orthonormal polynomial approximation

Polynomials ϕk are referred to as orthonormal on a domain D if they have zero mean
(Eq. (4.56)), unit norm (Eq. (4.57)) and are mutually orthogonal (Eq. (4.58)).

∫
D

ϕk(x) dx = 0, k = 1, . . . , n (4.56)∫
D

ϕ2
k(x) dx = 1, k = 1, . . . , n (4.57)∫

D
ϕk(x) ϕl(x) dx = 0, k �= l (4.58)
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If D is [0, 1], orthonormal polynomials are derived from the Legendre family:

ϕ1(x) =
√

3(2x − 1) (4.59)

ϕ2(x) = 6
√

5
(

x2 − x + 1
6

)
(4.60)

ϕ3(x) = 20
√

7
(

x3 − 3
2x2 + 3

5x − 1
20

)
(4.61)

Using the orthonormality properties, the 2-dimensional basis functions in Eq. (4.51)
read:

ϕpq(xi, xj) = ϕp(xi)ϕq(xj) (4.62)

and consequently:

M(x) ≈ M0 +
n∑

i=1

k∑
r=1

αi
rϕr(xi) +

∑
1�i<j�n

l∑
p=1

l′∑
q=1

βij
pqϕp(xi)ϕq(xj) (4.63)

Matrix A in Eq. (4.55) is equal to identity. Thus, the coefficients αi and βij can be
evaluated by:

αi
r =

∫
D

M(x) ϕr(xi) dx ≈ 1
N

N∑
k=1

M(x(k)) ϕr(x(k)
i ) (4.64)

βij
pq =

∫
D

M(x) ϕp(xi) ϕq(xj) dx ≈ 1
N

N∑
k=1

M(x(k)) ϕp(x(k)
i ) ϕq(x(k)

j ) (4.65)

4.4.1.2 Spline function approximation

Spline polynomials can be used instead of orthonormal polynomials for the approximations
of the component functions. A cubic B−spline Bk(x), (k = −1, 0, . . . , m+1) on an interval
[a, b] reads:

Bk(x) = 1
h3 ×⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(yk+2 − x)3 yk+1 < x � yk+2
(yk+2 − x)3 − 4(yk+1 − x)3 yk < x � yk+1
(yk+2 − x)3 − 4(yk+1 − x)3 + 6(yk − x)3 yk−1 < x � yk

(yk+2 − x)3 − 4(yk+1 − x)3 + 6(yk − x)3 − 4(yk−1 − x)3 yk−2 < x � yk−1
0 otherwise

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.66)

where:
h = b − a

m
(4.67)

and:
yk = a + kh (4.68)
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When a = 0 and b = 1, then h = 1/m and yk = kh. Thus, first and second order basis
functions for RS-HDMR representation can be approximated by:

Mi(xi) ≈
m+1∑
r=−1

αi
rBr(xi) (4.69)

Mij(xi, xj) ≈
m+1∑
p=−1

m+1∑
q=−1

βij
pqBp(xi)Bq(xj) (4.70)

Cubic B−splines of different variables are not mutually orthogonal. Consequently, due to
the singularity of the matrix A, the coefficients αi

r and βi
pqj cannot be estimated at the

same time. The minimization in Eqs. (4.53) and (4.54) are required.

4.4.1.3 Simple polynomial approximation

Simple polynomials can be used as basis functions instead of cubic B−splines or orthonor-
mal polynomials:

Mi(xi) ≈
k∑

r=0
αi

rx
r
i (4.71)

Mij(xi, xj) ≈
l∑

p=0

l′∑
q=0

βi
pqx

p
i xq

j (4.72)

Polynomials allow one to describe the model response with simple basis functions but,
similarly to spline functions, the main difficulty arises from the singularity of the matrix
A that forces one to minimize the integrals in Eqs. (4.73) and (4.74) in order to evaluate
the coefficients.

min
αi

k

∫ 1

0

[
Mi(xi) −

k∑
r=0

αi
rx

r
i

]2

dxi (4.73)

min
βij

ll′

∫∫
[0,1]2

⎡⎣Mij(xi, xj) −
l∑

p=0

l′∑
q=0

βij
pqx

p
i xq

j

⎤⎦2

dxidxj (4.74)

4.4.1.4 Conclusion

The formulas to determine the coefficients of the expansion αi
r and βij

pq are constructed
using the orthogonality of the basis functions Mi and Mij. The evaluation requires large
samples for accurate Monte Carlo integration whose error decreases at the rate 1/

√
N .

Therefore, the performance of a basis for the estimation of RS-HDMR functions strongly
depends on the orthogonality of its components and on the size of the samples involved
in the approximation of the integrals.

As it appears that orthonormal polynomials are the most efficient basis functions for
describing the model response, let us get back to polynomial chaos expansions.
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4.4.2 Polynomial chaos decomposition

Polynomial chaos expansions (see Chapter 3, Section 3.3) allow one to represent the
response of a model on a suitable polynomial basis. The basis depends on both the
marginal distributions of the variables and the maximal degree of the expansion:

Ŷ =
∑

α∈Nn

yαΨα(x) (4.75)

where the Ψα are multivariate polynomials, namely:

Ψα(x) =
n∏

i=1
ψi

αi
(xi) (4.76)

4.4.2.1 Identification of the subfunctions

By writing Eq. (4.75) in the form of the functional decomposition appears. Once again,
the multi-index notation α = {αi, i = 1, . . . , n} is used.

Ŷ = y0

+
n∑

i=1

p∑
αi=1,αj=0,j �=i

yαi
Ψαi

(x)

+
∑

1�i<j�n

p∑
αi=1

p∑
αj=1

yαij
Ψαij

(x)

+ . . .

+ y1,...,nΨi,...,n(x)

(4.77)

The first order terms Ψi(x) are actually univariate polynomials because when α = {αi},
ψj

αj
(xj) = 1, j �= i and Ψi(x) only depends on xi. The second order terms Ψαij

(x) only
depend on xi and xj because ψk

αk
(xk) = 1, j �= i, j. The same procedure is applied for

higher order terms Ψα(x). Note that Eq. (4.77) is identical to Eq. (4.17) with a notation
that is closed to the HDMR one. By identification, one obtains:

M0 = y0 (4.78)

Mi(xi) =
p∑

αi=1,αj=0,j �=i

yαi
ψαi

(xi) =
p∑

αi=1,αj=0,j �=i

yαi
Ψαi

(xi) (4.79)

Mij(xi, xj) =
p∑

αi=1

p∑
αj=1

yαij
ψαi

(xi)ψαj
(xj) =

p∑
αi=1

p∑
αj=1

yαij
Ψαij

(xi, xj) (4.80)

. . . (4.81)

where ψαi
is the basis polynomial of degree αi corresponding to the marginal distribution

of the input variable Xi.
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4.4.2.2 Computation of the sensitivity indices

Once the subfunctions have been identified, the partial variances and covariances shall
be computed. However, when the input variables of the model are dependent, they are
decorrelated before the calculation of the coefficients so that the basis stays orthonormal.
In the case of a Gaussian copula, the Nataf transformation is used, in other cases, the
Rosenblatt transformation, which is non unique, is used instead. Performing an ANCOVA
sensitivity analysis on such a basis would on the one hand lead to zero correlative contri-
butions (the covariance between the decorrelated variables are zero) and on the other hand
provide sensitivity indices with respect to the decorrelated variables that might broadly
differ from the physical variables.

The goal here is to get the terms of the functional decomposition. Whereas the RS-
HDMR makes no hypothesis on the probabilistic model to compute subfunctions, the PCE
takes both the physical and probabilistic models into account. In the case of correlated
input variables, the orthogonality property of the basis functions of the physical variables
is lost due to the isoprobabilistic transformation.

To circumvent the issue of decorrelation, it is proposed to build the metamodel with
a joint distribution featuring an independent copula to preserve the orthogonality of the
basis. The PC expansion thus behaves as a natural response surface that provides a
response y(i) for an input vector x(i).
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Figure 4.14: Probability density function of the response of the Ishigami function.

As an illustration, let us consider the so-called Ishigami function (Ishigami and
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Homma, 1990), namely:

Y = sin X1 + 7 × sin2 X2 + 0.1 × X4
3 sin X1 (4.82)

with Xi ∼ U [−π, π], i = 1, . . . , 3. Although in the original work the variables are indepen-
dent, correlation is added here in order to show that the a PCE built with an independent
copula also holds for the same marginal distributions featured with any copula. Due to
the multimodal shape of the response PDF (Figure 4.14), the Ishigami requires a high
order of expansion (up to p = 10). The accuracy of the response approximation is studied
for both an independent sample and a correlated one with the rank correlation matrix in
Eq. (4.83). Scatterplots of these samples are pictured in Figure 4.15.

S =

⎡⎢⎣ 1 −0.4 0.9
−0.4 1 0
0.9 0 1

⎤⎥⎦ (4.83)
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Figure 4.15: Scatterplots in the independent case (top) and correlated case (bottom) for the
PC accuracy comparison.
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For an increasing expansion order p, the empirical error (or training error) Erremp

Eq. (4.84) and the relative training error εemp Eq. (4.85) are studied in Figure 4.16.

Erremp = 1
N

N∑
k=1

(
M
(
x(i)

)
− M̂

(
x(i)

))2
(4.84)

εemp =

N∑
k=1

(
M
(
x(i)

)
− M̂

(
x(i)

))2

σ̂2
Y

σ̂2
Y =

N∑
k=1

(
M
(
x(i)

)
− ȳ

)
, ȳ = 1

N

N∑
k=1

y(i)

(4.85)

Coefficients of determination R2 = 1 − εemp are also presented for the training sample
or design of experiments, i.e. the points x(i) ∈ X the regression is based on, a independent
sample and a correlated sample, all of size N = 1000. The coefficients of determination
are respectively denoted by R2

YDOE
, R2

Yind
, R2

Ycorr
. Results show that the accuracy of the

metamodel is the same whatever the dependence structure of the sample that is studied.
This observation allows one to use the PCE as a classic response surface for the functional
decomposition of any model for the computation of the sensitivity indices.

4.4.2.3 First order and total indices

In the original paper by Li and Rabitz (2010), the so-called ANCOVA indices are defined
in such a way that:

• the index Si represents the total contribution of the input variable Xi,

• the index SU
i represents the uncorrelated (or structural) contribution of the input

variable Xi,

• the index SC
i represents the correlated contribution of the input variable Xi,

Therefore, the uncorrelated part of the contribution of Xi is carried by the term of the
decomposition Mi(Xi) that only depends on Xi. The correlated part of the contribution
is described by the covariance of Mi(Xi) and the terms that do not depend on Xi, namely
Mu(Xu), i /∈ u. Then the total contribution is the sum of the correlative contribution
and the uncorrelative contribution Si = SU

i + SC
i . This definition is consistent with the

Sobol’ first order indices in the case of independent variables.
Let us now try to extend this definition to describe the total contribution, in the sense

of Sobol’ total indices, of a variable. The terms of the functional decomposition depending
on Xi are:

Mi∈u(x) = Mi(xi) +
n−1∑

j=1,j �=i

Mij(xi, xj) + . . . + M1...n(x) (4.86)
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Figure 4.16: Accuracy of the PC expansion of the Ishigami function for independent and cor-
related samples.

One may be tempted to define the total uncorrelative contribution of Xi by:

SU,T
i = Var [Mi∈u(x)]

Var [Y ] (4.87)

and the total correlative contribution by:

SC,T
i = Cov [Mi∈u(x), Mi/∈v(x)]

Var [Y ] (4.88)

On the one hand, in Eq. (4.87), if Xi and Xj are correlated, the term Mij(Xi, Xj) is stored
in the uncorrelated part of the contribution of Xi although the variables are correlated.
On the other hand, in Eq. (4.88), the covariance may detect the correlation between
Xk∈u,k �=i and Xl∈v although Xi is not correlated neither with Xk nor Xl. There is a
confusion betwwen the interaction and correlation effects.



126 Chapter 4. Computing sensitivity indices using surrogate models

To circumvent this issue, the interaction and correlation effects may be seperated in
the following way:

Si = SU
i + SI

i + SC
i (4.89)

where the indices SU
i , SI

i and SC
i respectively represent the uncorrelative contribution,

the interactive contribution and the correlative contribution. These three indices read:

SU
i = Var [Mi(Xi)]

Var [Y ] (4.90)

SI
i = Cov [Mi(Xi), Mi∈u(X)]

Var [Y ] (4.91)

SC
i = Cov [Mi(Xi), Mi/∈v(X)]

Var [Y ] (4.92)

The interactive contribution is described by the covariance of Mi(Xi) and the component
functions Mi∈u(X) that also depend on Xi except Mi(Xi). The correlative contribution
is described by the covariance of Mi(Xi) and the component functions Mi/∈v(X) that do
not depend on Xi. Thus, SC

i only represent the correlative part of the contribution of Xi.
However, the interactive part may also carry part of the correlation since Xi∈u and Xj∈u

may be correlated.
Defining ANCOVA total indices is not a trivial matter since interactive and correla-

tive contributions may be confused. Therefore, the question of the classification of the
interaction terms in one side or the other or both remains open for total indices.

4.4.2.4 Diagram of the procedure

To summarize the PC-based estimation scheme of the ANCOVA indices, the procedure
is illustrated by the algorithm in Figure 4.17.

4.5 Validation

In this section, the computation scheme that has been proposed here is confronted to the
results from the original papers.

4.5.1 Distribution-based importance measure

The importance measure δ proposed in Borgonovo (2007) has been improved in Borgonovo
et al. (2011). In order to compare the rank and scale of the indices to the one in the
ANOVA, academic examples are presented, namely an additive and a non additive and
non multiplicative models. The results are compared with the computation procedure
proposed in this chapter.
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Build PC expansion of the model response
Y ≈ ∑P −1

j=0 αjΨj(x)
with an independent joint input distribution FX(x)

ComposedDistribution(DistributionCollection,
IndependentCopula(n))

Classify the PC coefficients by index sets
α = {α1, . . . , αn}

Xi_1.append(α, αi �= 0, αj �=i = 0)
Xi_T.append(α, αi �= 0)

Evaluation of the polynomials Ψα

on a sample X = {x(k), k = 1, . . . , N}
from the true distribution FX(x) equipped with the true copula

Information matrix Ψ, Ψkj = Ψαj
(x(k))

Compute the variances Var [Y ] and Var [Mi(Xi)]
Compute the covariances Cov [Mi(Xi), Y ]

and Cov [Mi(Xi), M∼i(X∼i)]
the samples are sets of columns of Ψ iden-
tified by the sets of indices Xi_1 or Xi_T

Compute the ANCOVA indices Si, SU
i , SC

i

Si =
Cov [Mi(Xi), Y ]

Var [Y ]
, Si =

Var [Mi(Xi)]
Var [Y ]

, SC
i = Si − SU

i

Figure 4.17: Diagram of the PC-based estimation of the ANCOVA sensitivity measure.

4.5.1.1 An additive model

The first model consists in a sum of standard Gaussian variables, namely:

y =
n∑

i=1
ai xi (4.93)

with Xi ∼ N (0, 1), i = 1, . . . n. The shift can be analytically evaluated and reads:

s(xi) = 2
[
Φ(y1; mY , σ2

Y ) + Φ(y2; mY |Xi
, σ2

Y |Xi
)

− Φ(y2; mY , σ2
Y ) + Φ(y1; mY |Xi

, σ2
Y |Xi

)
] (4.94)

where mY and σ2
Y are the mean and variance of the model response and (y1, y2) are the

intersection points of the unconditional and conditional PDFs. The different values of the
shift s(xi) for all the values of xi are illustrated in Figure 4.18. When Xi takes extreme
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Figure 4.18: Values of the shift for the additive model (n = 2) depending on the value of Xi.

values, i.e. |xi| > 10, the conditional and unconditional PDFs do not cover each other,
i.e. their respective modes are far away so that they only intersect in their very far tails.
Thus the shift is the sum of the area under both distributions is equal to 2.

lim
x→±∞ s(xi) = 2 (4.95)

Two cases are studied, n = 2 and n = 3. For both cases, ai = 1, i = 1, . . . , n and the
input variables are independent. The total response variance σ2

Y is equally divided between
each input variable. Therefore, the Sobol’ first order indices are equal for each variable
and are worth 1/n : Si = 0.5 (n = 2) and Si = 0.33 (n = 3). The corresponding δ measure
are also logically equal for each variable because each variable is identically distributed
and bring as much variability to the response variance than the other. According to
Borgonovo et al. (2011), the analytical values are δi = 0.306 for n = 2 and δi = 0.224 for
n = 3. The distributions of the δ importance measure for n = 2, 3, based on 100 index
estimations for each sample size, are illustrated in Figure 4.19 and Figure 4.20. It shows
the convergence of the accuracy of the indices estimation when the size of the sample the
kernel smoothing is based on increases. The number of quadrature points used for the
expected value of the shift is nq = 15.

The figure shows that for small samples, the value of δ is underestimated but the gap
between the estimated value and the true value progressively decreases. The final values
are δi = 0.303 and δi = 0.222 for n = 2 and n = 3 respectively. However, the exact value
is not reached even for very large samples (N > 106) but the precision is approximately
10−3. This is probably due to the residual error in the numerical procedure developed in
Section 4.3.
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Figure 4.19: Distributions of the δ importance measure for the additive model with n = 2. The
estimated mean value (dashed grey line) converges to the analytical value (dashed
black line)

4.5.1.2 A non additive and non multiplicative model

Let us now consider a non additive and non multiplicative model with Gamma distributed
input variables X1 ∼ Gamma(α, θ) and X2 ∼ Gamma(β, θ). The model reads:

y = x1

x1 + x2
(4.96)

The domain of definition of Y is [0, 1] and the output distribution is symmetrical when
α = β, θ = 1. The analytical value of δi reads:

δi =
∫ 1

0

[
FY (y1) − FY |Xi

(y2)

+ FY |Xi
(y1) − FY (y2)

]
dxi

(4.97)

where (y1, y2) are the two points at which the conditional PDF fY |Xi
intersect the un-

conditional PDF fY . It is shown in the original paper that when α = β, δ1 = δ2. The
analytical and estimated values of the first order indices when α = β = 1, 2, 3 and 10
and the relative estimation error such as defined in Eq. (4.41) are presented in Table 4.2.
The conditional PDFs are illustrated in Figure 4.21. Results show that for a reasonable
sampling effort, i.e. Nks = 103 and Nq = 30. the estimated values of the indices are very
close to the analytical values with a relative error close to 1%.
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Figure 4.20: Distributions of the δ importance measures for the additive model with n = 3.
The estimated mean value (dashed grey line) converges to the analytical value
(dashed black line)

4.5.1.3 Conclusion

Two analytical cases, an additive model and a non additive and non multiplicative model,
have been studied. The result show that the estimation scheme that have been proposed
in Section 4.3 tends to the analytical value of the indice when the sampling effort, i.e.
the size N of the sample for the kernel smoothing estimation of the distributions and the
number of quadrature points Nq, is increased. However, an estimation error close to 1%
is observed.

4.5.2 Ancova Indices

The so-called ANCOVA indices have been proposed in Li and Rabitz (2010). The numer-
ical estimation procedure proposed in Section 4.4 is applied to numerical examples that
are now exposed.

4.5.2.1 Equal contribution of independent parameters

The model is the sum of five normally distributed input variables Xi ∼ N (0.5, 1) that are
first assumed independent:

y = M(x) = x1 + x2 + x3 + x4 + x5 (4.98)
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α δanalytic δCDF εrel

1 0.330 0.323 0.021
2 0.319 0.319 0.000
3 0.315 0.317 0.006
10 0.309 0.309 0.000

Table 4.2: Analytical and estimated value of the δ indices for the non additive and non multi-
plicative model.
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Figure 4.21: Unconditional and conditionals CDFs for the non additive and non multiplicative
model with (from left to right and from top to bottom) α = 1, 2, 3, and 10.

Due to the polynomial nature of the model, the functional decomposition reads Mi(xi) ≡
xi, i = 1, . . . , 5. The sampling size for the estimation of the variances and covariances
is N = 104. The results of the sensitivity analysis are presented in Table 4.3. The
total contribution of each parameter is Si = 0.20, that is 1/5 and this value is consistent
with the first order Sobol’ indices. The correlative contribution is logically zero due to
the independence of the parameters. Therefore, the uncorrelated contribution equals the
total contribution.
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Xi Si SU
i SC

i

X1 0.20 0.20 0.00
X2 0.20 0.20 0.00
X3 0.20 0.20 0.00
X4 0.20 0.20 0.00
X5 0.20 0.20 0.00∑ 1.00 1.00 0.00

Table 4.3: ANCOVA sensitivity indices with equal structural contribution and independent in-
put parameters.

4.5.2.2 Equal structural contribution of correlated parameters

The second test case keeps the same physical model M and marginal distributions
N (0.5, 1) as the first one but now features a Gaussian copula with linear correlation
matrix:

Σ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0.6 0.2 0 0

0.6 1 0 0 0
0.2 0 1 0 0
0 0 0 1 0.2
0 0 0 0.2 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.99)

The results are given in Table 4.4. The uncorrelative contribution is the same for all
the variables SS

i = 0.13 but the correlative contribution depends on the intensity of the
correlation. For example, X1, which is correlated with both X2 and X3 is the most
correlated input variable, therefore, its correlative contribution is the highest. X2 also
gets a high correlative contribution due the importance of the correlation with X1, namely
ρ1,2 = 0.6. On the other side, X4 and X5 are mutually correlated but because of their low
correlation coefficient ρ4,5 = 0.2, the correlative contribution remains lower than for the
other parameters.

Xi Si SU
i SC

i

X1 0.24 0.13 0.11
X2 0.24 0.13 0.11
X3 0.19 0.13 0.06
X4 0.16 0.13 0.03
X5 0.16 0.13 0.03∑ 1.00 0.65 0.35

Table 4.4: ANCOVA sensitivity indices with equal structural contribution and correlated input
parameters.
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4.5.2.3 Distinct structural contribution of correlated parameters

Let us now add to the previous example distinct structural contributions. The model now
reads:

y = M(x) = 5x1 + 4x2 + 3x3 + 2x4 + x5 (4.100)

The results of the sensitivity analysis are given in Table 4.5. The ranking and the impor-
tance of the contribution is influenced by both the model structure and the correlation
between input parameters. The highest total contribution is associated with X1 which
has both the highest uncorrelative and correlative contributions. At the bottom of the
ranking, X4 and X5 which had equal total contributions in the previous test case are now
tied by distinct uncorrelative contributions.

Xi Si SU
i SC

i

X1 0.44 0.28 0.16
X2 0.33 0.17 0.16
X3 0.17 0.11 0.06
X4 0.04 0.04 0.00
X5 0.02 0.02 0.00∑ 1.00 0.62 0.38

Table 4.5: ANCOVA sensitivity indices with distinct structural contribution and correlated in-
put parameters.

For comparison, the corresponding Sobol’ indices in the case of distinct correlative
contributions but independent input variables are given in Table 4.6. The first order and
total sensitivity indices are equal. Because the model is additive, there is no interaction
between the variables. The ranking of the parameters follows the importance of the cor-
relative contributions but the importance of the indices differs from the total contribution
of the ANCOVA indices. The ANCOVA indices S1 and S2 (0.44 and 0.33) are slightly
smoothed compared to the corresponding Sobol’ indices (0.46 and 0.29) because of the
mutual correlation between the two variables. The same observation can be done for X4
and X5 (0.04 and 0.02 versus 0.07 and 0.02).

4.6 Conclusion

This chapter proposes metamodel-based evaluation procedures for the estimation of sen-
sitivity indices for models with correlated input parameters. A particular attention is
given to polynomial chaos expansions as a mean to reduce the numerical cost. This
metamodelling technique allows one both to substitute efficiently the real model with a
polynomial representation and to provide a functional decomposition for the estimation
of the ANCOVA indices.
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Xi S1 ST

X1 0.46 0.46
X2 0.29 0.29
X3 0.16 0.16
X4 0.07 0.07
X5 0.02 0.02∑ 1.00 1.00

Table 4.6: Sobol’ first order and total sensitivity indices with distinct structural contribution
and independent input parameters.

The estimation of the δ importance measure requires large samples for the kernel
smoothing estimation of the distributions. An improved technique based on the CDF
instead of the PDF has shown better performance with respect to the sampling size.
The estimation of the expected shift can also be enhanced by using a quadrature scheme
instead of Monte Carlo simulations. The δ importance measure offers a different approach
than the ANOVA. The rankings might differ because δ not only focuses on the reponse
variance but on its whole distribution.

The ANCOVA decomposition allows one to distinguish the uncorrelative (or struc-
tural) and correlative contribution of the input parameters. One important feature is
that ANCOVA indices are consistent with ANOVA indices in the case of independence
and represent a generalization of the ANOVA. A functional decomposition is required for
the estimation. Such a decomposition can be directly derived from the PC expansion
avoiding the numerically expensive identification of each terms of the decomposition.

Once sensitivity indices for models with correlated input parameters have been studied,
they will be applied to industrial cases. Before that, the particular case of nested models
and the associated formalism is introduced in the next chapter.
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5.1 Introduction

Model-Based System Engineering (or MBSE for short) is defined by the INCOSE (INter-
national Council On System Engineering) as ”the formalized application of modeling to
support system requirements, design, analysis, verification and validation activities begin-
ning in the conceptual design phase and continuing throughout development and later life
cycle phases”.

The SysML (for Systems Modelling Language) is an extension of the more general
UML (Unified Modelling Language) for model-based engineering. SysML is richer and
more flexible than UML. Contrary to UML software-focused specifications, SysML allows
one to model a wider range of systems such as software, hardware, personnel, information,
processes or facilities.

The issues behind nested and multiscale modelling lie in the communication between
different programs or softwares sharing variables and parameters. The tools that have to
be used differ from a case to another because of the multitude of applications (mechanics,
accoustics, dynamics, etc.). The structure, which is related to the complexity of the
modelling, also requires flexibility. How many scale of description for the modelling? Are
there loops?

MBSE and SysML provide a general theory on what can or has to be done and a
tool for making programs talk to each other but there is a lack of mathematical and
physical framework to treat such problems. In the scope of uncertainty propagation for
mechanical engineering applications for instance, uncertain parameters must be considered
and classified in such a way that the results of the computational workflow are fully
workable.

This chapter first introduces the nested and multiscale modelling aspects. Then, a
framework for nested models, based on the graph theory is introduced. Finally, a method-
ology to assess global sensitivity analysis problems for nested and multiscale problems is
proposed.

5.2 Nested and multiscale modelling

5.2.1 System robust engineering

Uncertainty propagation for reliability analysis is presented in a comprehensive way in
Lemaire (2009). The approach consists in modelling the input parameters X of a model
M by random variables and in studying the dispersion of the model output Y . The
robustness of the system described by the model can be expressed in terms of a probability
of failure, i.e. the probability that Y exceeds a threshold value that is deemed acceptable.
If the methodology to address this kind of problems is nowadays well-established for a
single model M, it has not been much extended to system approaches.
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5.2.2 System fault trees

A first step has been reached by developping fault tree analysis (or FTA). This top down
deductive safety analysis combines series of lower-level events to characterize the upper-
level state of a system using Boolean logic. In Hähnel (2007), the author proposes a
general framework for system reliability engineering. The workflow is modelled by a
chain of models with independent inputs. Therefore, the chain can be represented by a
tree, a special case of graph (see subsection 5.3.2). This type of representation has been
proposed in Sudret et al. (2009).

X1

1.00

X2 X3

0.60 0.40

X4 X5 X6 X7

0.50 (0.30) 0.50 (0.30) 0.20 (0.08) 0.80 (0.32)

Figure 5.1: A tree-graph composed of 7 vertices and 6 edges. Vertex X1 is the root, vertices
X4, X5, X6 and X7 are the leaves of the tree. The contributions of the leaves to
the intermediate nodes (to the root) are mentionned in blue.

An example of tree is pictured in Figure 5.1. In the system-based approach, the
variable X2 and X3 are functions of (X4, X5) and (X6, X7) respectively, and the output
of interest X1 is a function of (X2, X3). The uncertainties are propagated from the lowest
levels (the leaves) to the highest one (the root). From a sensitivity analysis point of view,
the total variance at one node can only be expressed by the shares of the variables at the
previous level and so on. Then, the share of variance of the root variable due to a leaf
variable is the product of the shares at each node on the path connecting the leaf to the
root. For example, the sensitivity of the variable X3 to the variable X7 is 0.80 whereas
the sensitivity of X1 to X7 is 0.80 × 0.40 = 0.32.

This approach is consistent as long as the variables of each level are independent, that
is to say that two nodes from the a level k do not share any entry parameter from the
level k − 1. That would not be the case if X5 and X6 were one single parameter in the
modelling, i.e. a common input for computing X2 and X3. If it is tempting to omit the
correlation between the parameters, it might also lead to substantial errors in the results.
Therefore a model representation accompanied by global sensitivity analysis techniques
for models with correlated parameters is proposed in the next sections.
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5.3 Model representation

In contrast to the algorithm representations, no convention exists in the mechanical engi-
neering field for describing a complex structure. Most of the classical representations are
usually composed of a collection of shapes, colors and arrows of different types for input
or output parameters, the model itself or the links between the elements.

5.3.1 State-of-the-art

A survey of the litterature has shown that there is no well-established convention for
describing nested models as those appearing in mechanical engineering. In the sequel, a
general framework based on the graph theory is proposed for this purpose.

5.3.2 The graph theory

The graph theory is a scientific discipline that lies at the boundaries between mathematics
and computer science. Graphs are mathematical structures intended to model relation-
ships between objects by introducing a collection of vertices and a collection of edges
representing respectively the objects and their relationships. The origin of graph theory
can be found in the paper of Leonard Euler addressing the seven bridges of Königsberg
problem (Euler, 1741). Euler’s theorem was actually proven later by Hierholzer (1873).
A similar problem referred to as the Knight’s tour, introduced by Arabic chess theorician
Al-Adli in Kitab ash-shatranj around 840 (and lost since) has been studied later in Van-
dermonde (1771). A knight, moving according to the rules of chess, must visit only once
every square of a chessboard. Another famous theorem that has been demonstrated using
the graph theory is the four color problem introduced in 1852 by the English cartographer
Francis Guthrie. He noticed that coloring a complex map so that no contiguous have the
same color only require four colors and initiated to verify the validity of this property
for any map. After several attempts (Cayley, 1879; Kempe, 1879; Petersen, 1891), the
theorem was finally demonstrated using a computer in Gonthier (2000). Today, graphs
are broadly used in science to model networks, processes in biology, chemistry or physics
or social networks. For a complete review of the graph theory, the reader is referred to
Bergé (1958). In this section, it is shown how graphs can be employed for the nested
modelling of complex systems.

5.3.2.1 Definitions

A graph is an abstract representation of a collection of objects among which pairs are
connected by links. The objects are called vertices (or nodes, or points) and the links are
called edges (or lines). A general mathematical designation of a graph is:

G = (V, E) (5.1)
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where V is a collection of vertices and E a collection of edges. Edges of a graph can be
either unoriented or oriented. For example, in a graph representing a group of person,
if a person A knows a person B, but B does not know A, the link between A and B is
oriented from A to B. On the contrary, if A and B both know each other, then the link
between A and B is unoriented. In the first case it means that (A, B) �= (B, A) whereas
in the second case (A, B) = (B, A). Oriented edges have an arrow at one end and they
are rather referred to as arches and denoted A. These different cases are pictured on
Figure 5.2.

A

B

A

B
A

Figure 5.2: An edge between 2 vertices (A, B) can be unoriented (left) or oriented (center), in
this case the edge is also called arch. An edge that link a vertex to itself is called
a loop (right).

Loop A loop in a graph is an edge Ei that links a vertex Vi to itself, namely:

Ei = (Vi, Vi) (5.2)

Simple graph An oriented simple graph is a graph with no internal loop and no double
edges (or arches), that is :

A = {(Vi, Vj) ∈ V × V, i �= j} (5.3)

In other words, no arch links a vertex Vi to itself and only one arch links Vi to Vj but
another arch may link Vj to Vi. The edges of an unoriented simple graph read E ⊆ P2(V ),
where P2(V ) is the powerset of cardinality 2 of V (a set of pairs of vertices (Vi, Vj) ∈ E,
i �= j).

Complete graph A complete graph Kn of size n is a graph where each vertex Vi is
linked to all the vertices Vj, j �= i. The total number of edges, i.e. the cardinality of E is
given by:

|E| = n(n − 1)
2 (5.4)

Clique A clique C of an unoriented graph G is a subset of vertices of V such that every
pair of vertices of C are connected by an edge. It is equivalent to say that the subgraph
induced by C is a complete graph. Finding the largest clique of a graph is a NP-complete
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problem, i.e. a problem with computational complexity that exponentially increases with
the size of the graph. The clique number, i.e. the number of vertices in the clique, is
denoted by the ω(C).

1
23

4 5

6

7

Figure 5.3: A graph with 7 vertices. The set {V2, V3, V4, V5} (in red) is a clique C with ω(C) = 4
because every vertex Vi of C is linked to all the other vertices Vj ∈ C, i �= j.

Coloring A coloring of a loopless graph G is a way to label its vertices such that no
two vertices forming an edge has the same color. The terminology refers to the problem
of map coloring and the so called four color problem. The chromatic number χG is the
smallest number of colors needed to color a graph G.

Perfect graph A perfect graph (or Bergé graph) is a graph for which the chromatic
number of every induced subgraph equals the size of the largest clique of the same sub-
graph.

5.3.2.2 Graphs and linear algebra

The collection of edges E of an unoriented graph G induces symmetrical relationships
between the vertices of the collection V . If the edge (A, B) exists, A and B are said to
be adjacent. It is denoted A − B. The adjacency relation of G = (V, E) with a collection
of vertices V of size n can be described by its adjacency matrix AG of size n × n. AG is
defined by:

Aij =
{

1 if Vi − Vj

0 either (5.5)

It is clear that AG has zero entries on its diagonal and is a symmetrical matrix. Let us
now consider the graph G = (V, E) pictured in Figure 5.4 with:

• V = {1, 2, 3, 4, 5, 6}

• E = {(6, 4), (4, 5), (4, 3), (3, 2), (5, 2), (2, 1), (1, 5)}.
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6

4 5

3 2
1

Figure 5.4: A typical graph G with 6 vertices is taken as an example for the whole section.

Its 6 × 6 adjacency matrix AG is given by:

AG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.6)

More informations about a graph can be given by various matrices. The degree matrix
DG of a graph G is n × n diagonal matrix where each diagonal term Dii corresponds to
the number of connexions of the vertex Vi. This value is also referred to as its degree pi.

DG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.7)

The Laplacian matrix LG of a graph G is given by LG = DG − AG. The Laplacian
matrix for the graph pictured on Figure 5.4 is given by:

LG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 −1 0 −1 3 0
0 0 0 −1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.8)

Note that it gathers all the informations contained in AG and DG. By construction, the
sum of each row and each column of LG is zero.

5.3.2.3 Graphs for illustrating sensitivity analysis results

The Ishigami function (Ishigami and Homma, 1990) is defined by:

Y = sin(X1) + 7 sin2(X2) + 0.1 X4
3 sin(X1) (5.9)
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where the Xi, i = 1, 2, 3, are uniformly distributed on [−π, π]. The numerical results of
variance-based sensitivity analysis methods (see section 2.3) are given in Table 5.1.

Parameters S1 ST

X1 0.32 0.56
X2 0.44 0.44
X3 0.00 0.24∑ 0.76 1.24

Table 5.1: Results of variance-based sensitivity analysis for the Ishigami function.

Sobol’ first order indices reveal that the variables with the highest contribution to
the output variance are by order of importance X2 (0.44), X1 (0.32) and X3 who has
no influence when taken alone. The difference with the Sobol’ total indices allow one to
deduce the numerical value of the interaction between X1 and X3, i.e. S13 = 0.24, which
is due to the coupling term 0.1 X4

3 sin(X1). As it represents a collection of figures, it can
be complicated to analyze, especially in higher dimension. A graphical representation
using the graph theory, referred to as FANOVA-graph, has been proposed in Muehlen-
staedt et al. (2012). Each variable Xi is represented by a circle-shaped vertex Vi whose
thickness is proportional to the first order Sobol’ indice S1

i . Second-order indices Sij are
represented by straight lines between the couple of vertices (Vi, Vj). An illustration is
given in Figure 5.5.

X1

X2

X3

Figure 5.5: Representation of the results of global sensitivity analysis for the Ishigami function
using a graph.

These conventions ease the comprehension of the results of sensitivity for high-
dimensional problems. The (at least) third order, or total index of a collection of variables
XI = (Xi1 , . . . , Xin) could also be represented by filling the area defined by the clique CI

of XI with a scale of gray.
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5.4 Sensitivity analysis for nested and multiscale
modelling

In this section, a framework is proposed to represent nested or multiscale modelling of
complex structures and to address sensitivity analysis problems.

5.4.1 Proposed methodology

Ths aim of global sensitivity analysis for nested and multiscale modelling is often to
compute the sensitivity of the global model response, i.e. the output at the end of the
chain, to variables from the lower levels. For such an analysis, it is necessary to map the
positions of the variables in the workflow. The idea behind the mapping of the variables
is to use some tools of the graph linear algebra. Let us consider the oriented graph G
with 8 vertices and 8 edges described in Figure 5.6 representing a nested model. The
variables are graphically organized in 3 levels. The depth D of a graph characterizes the
maximum number of edges an input parameter has to take to reach the final output.
In this case, variable X8 depends on variables X6 and X7 who respectively depend on
variables (X1, X2, X3) and (X3, X4, X5). Consequently, D(G) = 2.

X1

X2

X3

X4

X5

X6

X7

X8

Figure 5.6: A nested modelling of a structure represented by an oriented graph.

Let us now define the matrix IG by:

Iij =
{

1 if Vj → Vi

0 otherwise (5.10)

where Vj → Vi is the arch from Vi to Vj. In other words, Iij = 1 if and only if Vj → Vi

exists. The matrix IG is referred to as the incidence matrix of the oriented graph G. The
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incidence matrix of the graph presented in Figure 5.6 reads:

IG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 0 0 0 0 0 0
X2 0 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 0 0
X4 0 0 0 0 0 0 0 0
X5 0 0 0 0 0 0 0 0
X6 1 1 1 0 0 0 0 0
X7 0 0 1 1 1 0 0 0
X8 0 0 0 0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.11)

When reading a given line l of I, the ones correspond to the variables Xl depends on.
The incidence matrix is derived from the graph linear adjacency and Laplacian matrices
AG and LG. The matrix has been rearranged so that the maximum information lies in
the minimum number of terms. This way, the 8th line of IG indicates that the variable
X8 depends on X6 and X7. For deepest paternity, a simple algorithm can read the matrix
and indicate the analyst that X8 also depends on (X1, X2, X3, X4, X5) at a second level
of modelling.

The steps of the general algorithm for an oriented graph G with input parameter Xi

and output of interest Y are:

1. Read the line that corresponds to Y and store in a list L1 the indices of the columns
that corresponds to the input Xi where IY,Xi

= 1.

2. For each index in L1, read the line that corresponds to Xi and store in a list L2 the
index of the columns that corresponds to the input Xj where IXi,Xj

= 1.

3. Repeat operation until the all the lines to be read contains only zeros, meaning that
the lowest level of the modelling has been reached. The last non-empty list is LD(G).

When reading the matrix IG columnwise, the analyst obtains information on the de-
pendence between variables. Indeed, two (or more) variables with non zero terms on the
same ith column are correlated because they share the same input variable Xi.

As a conclusion, the first reading allows one to identify quickly which variables are
the inputs of the considered output while the second reading provides an overview of the
dependence, e.g. the copulas to be constructed. The abstract representation described
above becomes tractable when linked with specific software for uncertainty modelling.
This softwares are now described.

5.4.2 Software development

The aim of this work is to develop a methodology for the propagation of uncertainties
through nested models. Thus, one component consists in taking into account the uncer-
tainties by modelling the input parameters by a random vector while a second component
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is in charge of modelling the workflow. In this subsection, two softwares corresponding to
the previously described components are introduced. Then a coupling technique for the
propagation of uncertainty through a nested model is proposed.

5.4.2.1 Handling uncertainty using OpenTURNS

OpenTURNS (for Open source initiative to Treat Uncertainties, Risks’N Statistics) is de-
fined as an uncertainty engineering software (OpenTURNS, 2005). OpenTURNS allows
the practitioner to propagate uncertainty in physical models. The computing functionali-
ties are compatible with the Python language. Therefore, a wide range of uses (coupling,
post-processing) are feasible.

More precisely, OpenTURNS provides efficient tools for the joint probabilistic mod-
elling of variables (marginal distributions and copula), kernel smoothing estimation of
model response probability density functions and the computation of response surfaces
such as polynomial chaos expansions. In this particular case, one can decompose the
model approximation into a polynomial basis and associated coefficients.

5.4.2.2 Drawing nested models with YACS

Salome is an open source software platform for numerical simulations. Among various
modules (pre-processing, post-processing), YACS enables one to build and execute a chain
of calculations where each link represents a coupling of computer codes (Python scripts,
run of a software, etc.). YACS is thus a powerful tool to build nested models in a graphical
way. The main tasks are:

1. creating the submodels,

2. defining their respectives input / output parameters,

3. associating a script with each model, which can include a call to any external code,

4. specifying the relationships between the models.

A graphical user interface makes it easy to represent graphically the various submodels
and their links.

The calculation scheme represents the architecture of the nested model. Each model
is represented by a node as shown in Figure 5.7. Then, the relationships between the
models are pictured by arrows connecting the output parameter from a first model to the
corresponding input parameter of a second one (see Figure 5.8). In addition to the nodes,
input and output data modules (see Figure 5.9) can be added for setting the value of the
input parameters and post-processing the response value.
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Figure 5.7: A node figuring a model with 3 input and 1 output parameter in a YACS calculation
scheme.

Figure 5.8: A link between two nodes in YACS.

The graph G of the YACS scheme featured pictured in Figure 5.9 (featuring the input
and output modules) is drawn in Figure 5.10. Its incidence matrix then reads:

AG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 X2 X3 Y1 Y2 Z

X1 0 0 0 0 0 0
X2 0 0 0 0 0 0
X3 0 0 0 0 0 0
Y1 1 1 1 0 0 0
Y2 0 0 0 0 0 0
Z 0 0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.12)

The scheme of calculation can be exported in the XML (eXtensible Markup Language)

Figure 5.9: Input and output data modules in YACS.



5.4. Sensitivity analysis for nested and multiscale modelling 147

X1

X2

X3

Y1

Y2

Z

Figure 5.10: Graph of the example scheme.

format. The XML file is executable from a simple script. This allows one to run the chain
of calculation for any numerical values of the input parameters. Then, providing the input
data and collecting the response values can be carried out using input/output (I/O) files.
Although this solution is not the most efficient one, the reading/writing durations are
often negligible compared to the execution time of the scheme.

5.4.2.3 Run the workflow

On the computational side of multiscale modelling, one may require different softwares.
In this work, the probabilistic modelling of the input random vector is addressed using
OpenTURNS. Each marginal distribution is defined by its moments when they are avail-
able (given or infered) or by kernel smoothing estimation for non usual distributions. The
dependence structure is modelled by a n−dimensional copula which can be independent,
Gaussian or a composition of several copulas (Gaussian, Gumbel, Clayton, etc.).

1 myDi s t r ibut i onCo l l e c t i on = D i s t r i b u t i o n C o l l e c t i o n (n)
2 myDi s t r ibut i onCo l l e c t i on [ 0 ] = D i s t r i b u t i o n (L0)
3 myDi s t r ibut i onCo l l e c t i on [ 1 ] = D i s t r i b u t i o n (L1)
4 . . .
5 myDi s t r ibut i onCo l l e c t i on [ n ] = D i s t r i b u t i o n (Ln)
6
7 myCopula = IndependentCopula (n)
8 myCopula = NormalCopula (R)
9 myCopula = ot . ComposedCopula ( myCopulaCollection )

10
11 myInputDistr ibut ion = ComposedDistr ibution ( myDis t r ibut ionCo l l e c t i on ,

myCopula )

The physical modelling is addressed by the YACS platform. Each model of the nested
scheme is executed by a Python script (or Pyscript) that reads the values of the input
variables x(k) in a text file input.txt. Once all the Pyscripts have been executed, the
scheme writes the corresponding values of all the outputs (intermediary and final) y(k) in
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a second text file output.txt that is read by the OpenTURNSPythonFunction.

1 class myFunction ( OpenTURNSPythonFunction ) :
2
3 def __init__( s e l f ) :
4 OpenTURNSPythonFunction . __init__( s e l f , 14 , 1)
5
6 def f ( s e l f , X) :
7 savetxt ( ’ input . txt ’ , array (X) )
8 os . system ( ’ runSess ion d r i v e r schema_concrete . xml ’ )
9 Y = loadtx t ( ’ output_homog_concrete . txt ’ )

10 return Y

Finally, the PC approximation is build from the data X = {x(k) k = 1, . . . , N} and
Y = {y(k) k = 1, . . . , N}.

1 myModel = NumericalMathFunction ( myFunction ( ) )
2
3 polynomialChaosResult = polynomialChaosAlgorithm ( myInputDistr ibut ion ,

myModel )

The full coupling strategy between OpenTURNS and YACS is summarized in the form
of an algorithm pictured in Figure 5.11.

5.5 Conclusion

In this chapter, a global framework for global sensitivity analysis in nested modelling is
proposed. The methodology is inspired by the graph theory. This branch of mathematics
provides concepts and tools which can be adapted to our concerns in this thesis. First, the
graph representation helps the practitioner build a graphical model of the structure. Each
node is assumed to be a model parameter and the edges between the nodes correspond
to the relationships connecting the parameters, i.e. the submodels. Then, an adapted
version of the adjacency matrix, namely the incidence matrix, is used to map the variables.
From a software development point of view, this matrix helps identifying which variables
are involved in the computation of an output of interest and at which level of modelling,
as well as identifying the dependence between some intermediate variables : this is a
useful information in order to determine which copula function has to be identified in the
context of uncertainty propagation.
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Probabilistic modelling X :
ComposedDistribution(DistributionCollection,

Copula)

Physical model M :
NumericalMathFunction

type : OpenTURNSPythonFunction

1. write x in input.txt

2. execute instruction :
runSession driver schema_concrete.xml

3. read y in output.txt

Polynomial Chaos (response vector) :
PolynomialChaosAlgorithm(M, X , Y)

Post-Treatment :
KernelSmoothing(Y), SobolIndex

OpenTURNS

file schema_concrete.xml generated by YACS

1. read x dans input.txt

2. compute the outputs of each model

3. write y in output.txt

input.txt

output.txt

Figure 5.11: The OpenTURNS / YACS coupling strategy for computing nested models with
random input variables.
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6.1 Introduction

In the first part of this chapter, the sensitivity analysis methods presented in Chapter
2, i.e. the δ sensitivity measure and the decomposition of covariance, are applied using
analytical test functions in order to compare the results obtained with the computational
schemes proposed in Chapter 4 with the reference results in original papers. They are
then applied to academical problems with correlated inputs.

In the second part, the global methodology for addressing global sensitivity analysis
for nested and multiscale modelling is applied to two mechanical problems, namely the
homogenization of concrete material properties and the performance of an automobile
diesel engine. The first problem is a multiscale model. Of interest are the sensitivities
of the mechanical properties of concrete to the constituents from lower scales such as the
mortar or the cement paste and their proportions. In the second problem, the engine is
modelled by a multiphysics approach. The sensitivity of the damage in the cylinder head
to the mechanical and thermal loads is studied.

6.2 The Ishigami function

6.2.1 An analytical model

The Ishigami function (Ishigami and Homma, 1990) is a numerical test case that has been
broadly used to illustrate many global sensitivity analysis methods. The function reads:

Y = sin(X1) + a sin(X2)2 + b X4
3 sin(X1) (6.1)

with a = 7, b = 0.1 and Xi ∼ U [−π, π], i = 1, 2, 3. The PDF of the model response
illustrated in Figure 6.1 shows a bimodal shape which is quite hard to approximate by
kernel smoothing estimation. Indeed, up to Nks = 106 sampling points are necessary to
model the modes accurately. Therefore, trying to compute the δ sensitivity indices by
the PDF-based estimation scheme proposed in Chapter 4, section 4.3.1, with accuracy
is hardly achievable. The CDF-based estimation scheme proposed in Chapter 4, section
4.3.2, is used instead.

6.2.2 Computation and analysis of the indices

For the three input parameters, Nq = 30 conditional CDFs are simulated (see Figure 6.2).
Each of them is estimated by kernel smoothing using Nks = 104 sampling points and a
Gaussian kernel whose bandwidth is the optimal Silverman’s one. The support of the
integration is arbitrary fixed to [−15, 20]. The results are given in Table 6.1.

Let us start by comparing the first two columns. The indices δref have been calcu-
lated in Borgonovo (2007). The original author of this sensitivity measure first proposed
a method using maximum likelihood estimation (MLE) for the estimation of the uncon-
ditional and conditional PDFs, the shift (here the absolute area between the PDFs) is
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Figure 6.1: The Ishigami function response PDF approximated by kernel smoothing with Nks =
103, 104, 105 and 106 sampling points.

computed from a simple numerical integration and the expected value of the shift is cal-
culated with 103 Monte Carlo simulations. In addition to a probably long computational
time, this procedure, and more precisely the estimation of the PDFs might bring inac-
curacies to the computation of the shift and especially on this test case where the PDFs
cannot be modelled by usual distributions. In other words, the values of δref for X1 and
X3 are likely overestimated.

Parameter δref δCDF S1 ST

X1 0.33 0.224 0.314 0.558
X2 0.39 0.394 0.442 0.442
X3 0.28 0.103 0.000 0.244
Σ 1.00 0.721 0.756 1.244

Table 6.1: Results of the distribution-based sensitivity analysis of the Ishigami function. The
δref are taken from the original paper by Borgonovo (2007).
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Figure 6.2: Distribution-based sensitivity analysis of the Ishigami function. Simulations of
Nq = 30 conditional CDFs for the estimation of the δ sensitivity measures.

6.2.3 Discussion

The comparison between the δCDF and the Sobol’ indices brings a more global information
on the sensitivity analysis. The hierarchy for the importance measures δCDF and the
Sobol’ first order indices S1 is the same: X2 comes first, followed by X1 and X3. The
latter has no influence when taken alone. The hierarchy differs when comparing δCDF

and the Sobol’ total indices ST due to the value of S13 = 0.244. The range of the values is
also different. X3 alone does not contribute to the output variance (it does when coupled
with X1) but it modifies the shape of the response distribution as shown in Figure 6.2.
On the one hand, the distribution-based sensitivity analysis appears as a more global
sensitivity measure: the absolute area between the unconditional and conditional output
distribution not only measures the reduction in the variance (the width of the PDF) but
also detects the changes in the whole output distribution such as a mode offset or a shape
modification. On the other hand, it is also a less discriminant method for model reduction
applications.
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6.3 Academical mechanical problems

In this section, the sensitivity analysis methods proposed in this thesis are applied to
models with correlated inputs.

6.3.1 A rugby scrum

Rugby is a popular sport mainly played in Europe and in the Southern Hemisphere in
which one key stage is the scrum. The pack (players from #1 to 8) of one team arranged
in three rows tries to push the opposing pack to get the ball that is introduced between
them by the scrum half (player #9) as illustrated in Figure 6.3. Of interest are the thrust
of the first row (players from #1 to 3) at the shoulders of the loosehead prop #1, the
hooker #2 and the tighthead prop #3.

Figure 6.3: A rugby scrum is composed of three rows of players. The first row is composed of
players #1, 2 and 3. The second row is composed of players #4 and 5. The third
row is composed of players #6, 7 and 8.

The difference in the thrust at the different players of the front row might be used to
rotate the scrum and win the ball. The orientation of the thrust is governed by the player
#8 who indicates to the flankers (players #6 and 7) and the locks (players #4 and 5) in
the second row how to push. As the locks both push the hooker and a prop, the thrust of
the latter is correlated. This correlation is reinforced if the thrust of the third row on the
second row is considered. Finally, as the players in the front and seconds rows are linked
by there shoulders, the thrusts Y1, Y2, Y3 and Y4 , Y5 are also correlated. The graph of the
model is given in Figure 6.4. The inner thrust of the player #i, i = 1, . . . , 8 is modelled
by the input parameter Xi. The resulting thrust at player #j, j = 1, . . . , 5 of the front
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row is modelled by a the output variable Yj.

X6

X8

X7

X4

X5

Y4

Y5

X1

X2

X3

Y1

Y2

Y3

Figure 6.4: Nested modelling of a rugby scrum.

From a mathematical point of view, the model reads:

Y4 = X4 + a46X6 + a48X8 + a45X5 (6.2)
Y5 = X5 + a57X7 + a58X8 + a54X4 (6.3)
Y1 = X1 + a14Y4 + a12X2 (6.4)
Y2 = X2 + a24Y4 + a25Y5 + a21X1 + a23X3 (6.5)
Y3 = X3 + a35Y5 + a32X2 (6.6)

where the coefficients aji indicates the percentage of the inner thrust of the player #i
that is transmitted to the resulting thrust of the player #j. That test case being purely
of fiction, arbitrary values are taken, namely a46 = a48 = a58 = a57 = 0.6, a14 = a24 =
a25 = a35 = 0.8 and a12 = a21 = a32 = a23 = a45 = a54 = 0.2. The input variables are
modelled by normally distributed random variables as mentioned in Table 6.2.

The linear correlation matrices of the resulting thrust in the front row Σ1 and in the
second row Σ2 are given in Eq. (6.7).

Σ1 =

⎡⎢⎣ 1 0.58 0.12
0.58 1 0.58
0.12 0.58 1

⎤⎥⎦ , Σ2 =
[

1 0.42
0.42 1

]
(6.7)

In order to differentiate the uncorrelated (inner contribution of the player) and corre-
lated (interaction with other players) effects, an ANCOVA sensitivity analysis is processed.
The results are given in Table 6.3.

First of all, the uncorrelated contributions are logical due to the additive nature of
the model. One may also notice that the contributions to the resulting thrust Y1 and
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Parameter Distribution Mean CV
X1 Normal 1200 N 10%
X2 Normal 1300 N 10%
X3 Normal 1200 N 10%
X4 Normal 1100 N 10%
X5 Normal 1100 N 10%
X6 Normal 900 N 10%
X7 Normal 900 N 10%
X8 Normal 1000 N 10%

Table 6.2: Probabilistic modelling of the inner thrust of the players.

Xi S SU SC

X1 0.52 0.51 0.01
X2 0.03 0.03 0.00
X3 − − −
Y4 0.45 0.44 0.01
Y5 − − −
Σ 1.00 0.98 0.02

(a) Y1

Xi S SU SC

X1 0.02 0.01 0.01
X2 0.32 0.32 0.00
X3 0.02 0.01 0.01
Y4 0.32 0.22 0.10
Y5 0.32 0.22 0.10
Σ 1.00 0.78 0.22

(b) Y2

Xi S SU SC

X1 − − −
X2 0.03 0.03 0.00
X3 0.52 0.51 0.01
Y4 − − −
Y5 0.45 0.44 0.01
Σ 1.00 0.98 0.02

(c) Y3

Table 6.3: Results of the ANCOVA sensitivity analysis for the rugby scrum. From left to right
is the sensitivity of the resulting thrust in the first row Y1, Y2, Y3 to the inner thrust
of the first row X1, X2, X3 and the resulting thrust in the second row Y4, Y5.

Y3 are symmetrical in this case. For the resulting thrusts of the props Y1 and Y3, the
total contributions are almost entirely carried by the uncorrelated contributions (SC

1 =
SC

3 = 0.01), i.e. the inner thrust of players #1 and 4 and #3 and 5. Concerning the
thrust at the hooker #2, the correlated effects of the locks #4 and 5 is more sensitive
SC

4 = SC
5 = 0.10. As a conclusion, if the resulting thrust on the side of the scrum is mainly

governed by the side prop and lock, the resulting thrust in the middle benefits from the
interaction between all the players. If in this example the model is symmetrical, it is most
of the time not the case, two players having different size and strength. Wittingly, the
coaching is able to control and optimize the resulting thrusts in the first row by choosing
scrum configuration and strategy.
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6.3.2 A composite beam

This problem has been originally assessed in Caniou and Sudret (2010). It deals with a
beam on two supports as illustrated in Figure 6.5. The material is composed of a fraction
f of fibers and a fraction 1 − f of matrix. The respective Young’s modulus and density of
the constituents are Ef , ρf and Em, ρm. The beam is of length L and has a rectangular
section b × h. Of interest is the maximal mid-span deflection v, namely:

v = 5
384

qL4

EhomI
(6.8)

where q is the distributed load:
q = ρhomgbh (6.9)

and where Ehom and ρhom are the homogeneous Young’s modulus and density of the
composite material, namely:

Ehom = fEf + (1 − f)Em (6.10)
ρhom = fρf + (1 − f)ρm (6.11)

The module of bending reads:
I = bh3

12 (6.12)

• •
• •
• •
• •

•
•
•

Er, Em, ρr, ρm, f

L

b

h

q

Figure 6.5: A composite beam on two supports.

The probabilistic modelling of the input parameters is presented in Table 6.4.
The composite can be seen as a multiscale model since its structure is decomposed up

to the constituting parameters of the material. A graph representation of the composite
beam is proposed in Figure 6.6. If L has no input variable at a lower level of modelling,
note that q and Ehom have a common input of level 0 f and that q and I have common
inputs of level 0 b and h. Therefore, the parameter of level 1 q is correlated with both Ehom
and I. Their dependograms are presented in Figure 6.7. The dependence structure of the
variables of level 1 (L, I, q, Ehom) is modelled by a 4−dimensional Gaussian copula whose
parameter matrix is derived from the following Spearman’s rank correlation matrix:
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Parameter Distribution Mean CV
L Lognormal 2 m 1%
b Lognormal 10 cm 3%
h Lognormal 1 cm 3%

Ef Lognormal 300 GPa 15%
Em Lognormal 10 GPa 15%
ρf Lognormal 1800 kgm−3 3%
ρm Lognormal 1200 kgm−3 3%
f Beta[0, 1] 0.5 10%

Table 6.4: Probabilistic modelling of the input parameters for the composite beam.

ρS =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0.71 0
0 0.71 1 0.20
0 0 0.20 1

⎞⎟⎟⎟⎠ (6.13)

Ef

Em

f

ρf

ρm

b

h L

I

q

Ehom

v

Figure 6.6: Nested modelling of the composite beam.

The δ sensitivity measures are computed with Nks = 104 sampling points for the kernel
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Figure 6.7: Dependograms of the couples (q, Ehom) and (q, I).

smoothing estimation and Nq = 30 quadrature points for the computation of the expected
shift. The conditional CDFs are presented in Figure 6.8. An ANCOVA sensitivity analysis
is also performed. The full results are presented in Table 6.5.

Parameter δCDF S SU SC

q 0.015 -0.08 0.09 -0.17
L 0.003 0.01 0.01 0.00

Ehom 0.546 0.89 0.94 -0.05
I 0.129 0.18 0.30 -0.12
Σ 0.693 1.00 1.34 -0.34

Table 6.5: Results of the sensitivity indices for the composite beam.

The analysis of the results clearly shows the domination of the contribution of Ehom
followed by I, q and L. The low contribution of L is more due to its low coefficient of
variation (1%) than to its role in the physical model. In other words, the mechanical
properties of the composite material and the section dimensions have so high dispersions
that they hide the structural contribution of L. When looking at the ANCOVA indices,
the same hierarchy is observed. The correlated contributions are non zero and negative.
This can be explained by the definition of the midspan deflection: q, which is located at
the numerator, is correlated to both Ehom and I which are located at the denominator.
Thus, the positive correlation between them is limited by their relative position in the
fraction, i.e. the correlation tends to reduce the total contribution of the variables. It has
a positive effect on the variability of v.
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Figure 6.8: Distribution-based sensitivity analysis of the composite beam. Simulations of Nq =
30 conditional CDFs for the estimation of the δ sensitivity measures.

6.3.3 A bracket structure

This section proposes a second mechanical example that has already been addressed in
Chateauneuf and Aoues (2008) and Dubourg (2011). The results have been originally
presented in Caniou et al. (2012b).

The bracket structure is composed of two beams of section w × t. On top of the dead
load, a vertical load is applied at the right tip of the upper beam as sketched in Figure 6.9.
The probabilistic modelling of the inputs is given in Table 6.6. Of interest is the bending
stress σB reading:

σB = 6MB

wCDt2 (6.14)

where:
MB = PL

3 + ρgwCDtL2

18 (6.15)

is the bending moment of the structure.
The parameters wCD and t, namely the width and height of the beam CD are supposed
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Figure 6.9: Definition drawing of the bracket structure.

Parameter Unity Distribution Mean μ σ/μ

P kN Gumbel 100 10%
ρ kg.m−3 Weibull 7860 10%
L m Normal 5 5%

wCD mm Normal 125 10%
t mm Normal 250 10%

Table 6.6: Probabilistic modelling of the variables.

correlated (ρ(ωCD, t) = 0.8) due to the manufacturing process. An ANCOVA sensitivity
analysis is carried out using a polynomial chaos expansion of degree p = 7 (1−Q2 ≈ 10−8).
The variances and covariances are computed using samples of size N = 104. The results
are presented in Table 6.7.

The sensitivity analysis reveals that the input parameters with the most important
contribution to the variability of the bending stress σB are the length L of the upper beam
AB and the height t of the beams. Although the correlation between wCD and t is quite
strong, the correlative part of their contribution remains small, i.e. SC

t = SC
wCD

= 0.02.
This is mainly due to the low total contribution of wCD to the variability of σB.

Let us now study the evolution of the uncorrelated and correlated parts of the contri-
butions as a function of the correlation. The computation of the ANCOVA indices is done
for ρ(ωCD, t) varying from -0.9 to 0.9. The results are presented in Figure 6.10. As a con-
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Parameter δCDF S SU SC

P 0.02 0.00 0.00 0.00
ρ 0.01 0.00 0.00 0.00
L 0.27 0.42 0.42 0.00

wCD 0.02 0.02 0.00 0.02
t 0.22 0.56 0.54 0.02
Σ 0.65 1.00 0.96 0.04

Table 6.7: Results of the ANCOVA sensitivity analysis for the bracket structure.

clusion, the correlative part of the contribution of one input parameter depends on both
the strength of the correlation with other parameters and inner (structural) contributions
of the correlated variables.
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Figure 6.10: Evolution of the correlated and uncorrelated parts of the contribution when
ρ(ωCD, t) = 0.8 varies.

6.3.4 Electrical connectors

This problem proposed by the RADIALL Company in Gayton et al. (2011) is a contribu-
tion to the field of manufacturing tolerancing. The issue is to determine the probability
that two electronic connectors, one male and one female cannot assemble. Indeed, the
quality of the connection depends on the backlash between the functional surfaces. On
the one hand this backlash shall not be too large in order to preserve the connection and
on the other hand it shall not be to small or the male connector will not fit with the
female one. The connectors are sketched in Figure 6.11.

Of interest is the variability of the contact length Y of the pin (light gray) in the socket
(light blue) (see Figure 6.11). As a functional requirement, Y shall not exceed a threshold
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Figure 6.11: CAE drawing of the connectors problem.

value t = 1.75 mm otherwise the minimal contact length to enable a good conductivity in
an electrical circuit will not be fulfilled. More precisely, using geometrical considerations,
the contact length Y reads:

c = cm4 + cm8 + cm7

2 (6.16)

i = ima17 + ima19 + ima20

2 (6.17)

h = ima2 + ima3 (6.18)

α = arcos
(

c√
i2 + h2

)
− arcos

(
i√

i2 + h2

)
(6.19)

r2 =

ima19 + ima20/2
2 − cm8 + cm7/2

2 cos(α)
tan(α) (6.20)

z = r2

cos(α) +
(

cm9 + cm10/2
2 + cm7

4

)
tan(α) (6.21)

J1 = (cm1 − cm3 − z) sin(α) (6.22)

J2 = cm7

4 cos(α) (6.23)

J3 = cm5 + cm6

2 cos(α) (6.24)

Y = J1 + J2 + J3 (6.25)

All the dimensions are sketched in Figure 6.12. Because the different surfaces are
machined during the same manufacturing operation, their dimension are highly correlated.
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Figure 6.12: Definition drawing of the connectors problem according to Gayton et al. (2011).

The different Spearman correlation coefficients read:

ρ(cm1, cm3) = 0.8 (6.26)
ρ(cm4, cm8) = ρ(cm4, cm9) = ρ(cm8, cm9) = 0.8 (6.27)

ρ(ima17, ima19) = ρ(ima17, ima20) = ρ(ima19, ima20) = 0.8 (6.28)

The derived Gaussian copula is parameterized by the transformed matrix in Eq. (1.73).
The δ sensitivity measures are computing using Nks = 104 sampling points for the

kernel smoothing of the CDFs and Nq = 30 quadrature points for the estimation of the
expected shift. An ANCOVA sensitivity analysis is also carried out on the model. A
polynomial chaos expansion of degree p = 2 is used. Due to the large dimension of the
problem, i.e. n = 14, the number of coefficients to compute is high, i.e. P = 120.

According to the results presented in Table 6.9, the main contributors to the variability
of Y are by order of importance the dimensions cm7, cm5, ima17, ima19 and ima20. Only
the three last ones have significant correlative contributions. This can be explained by
both the high rank correlation between them (ρ = 0.8) and the substantial uncorrelative
correlation (SU � 5%) of each of them. Note that once again, the δ sensitivity measures
are hierarchically consistent with the Sobol’ indices although their range sensibly differs.
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Parameter Unity Distribution Mean μ σ

cm1 mm Normal 10.530 0.200/6
cm3 mm Normal 0.750 0.040/6
cm4 mm Normal 0.643 0.015/6
cm5 mm Normal 0.100 0.200/6
cm6 mm Normal 0.000 0.060/6
cm7 mm Normal 0.000 0.200/6
cm8 mm Normal 0.720 0.040/6
cm9 mm Normal 1.325 0.050/6
cm10 mm Normal 0.000 0.040/6
ima2 mm Normal 3.020 0.040/6
ima3 mm Normal 0.400 0.040/6
ima17 mm Normal 0.720 0.040/6
ima19 mm Normal 0.970 0.040/6
ima20 mm Normal 0.000 0.040/6

Table 6.8: Probabilistic modelling of the dimensions and their tolerances.

6.4 Homogenization of concrete

6.4.1 Introduction

This main case study aims at understanding the behavior of concrete through the so-called
homogenization modelling (Sanahuja et al., 2007). It has been proposed by EDF R&D
as a multiscale problem, i.e. the material is studied at different scales of modelling, from
the molecules at the nanoscale to the largest aggregates. This work has been originally
presented in Caniou et al. (2012a).

Concrete is a composite material broadly used in civil engineering (earthwork, walls,
columns, foundations). Its is composed of cement paste, water and aggregates such as
sand and gravel. Its fabrication consists in mixing the cement powder with water to form
a paste that is left to dry to obtain a hard material. During the drying, the powder
particles dissolve in the water, ions precipitate to form crystals of gypsum. The hydration
mechanism is of type dissolution-precipitation.

6.4.2 Homogenization of concrete

The hardening mechanism of cement can be decomposed into several stages. The first of
them is the setting phase.
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Parameter δCDF S SU SC

cm1 0.00 0.00 0.00 0.00
cm3 0.00 0.00 0.00 0.00
cm4 0.02 0.02 0.01 0.01
cm5 0.11 0.15 0.15 0.00
cm6 0.01 0.02 0.02 0.00
cm7 0.30 0.52 0.51 0.01
cm8 0.03 0.03 0.02 0.01
cm9 0.00 0.00 0.00 0.00
cm10 0.00 0.00 0.00 0.00
ima2 0.01 0.00 0.00 0.00
ima3 0.01 0.00 0.00 0.00
ima17 0.07 0.11 0.05 0.06
ima19 0.05 0.07 0.02 0.05
ima20 0.07 0.09 0.03 0.06

Σ 0.68 1.00 0.81 0.19

Table 6.9: Results of the sensitivity analysis for the electrical connectors.

6.4.2.1 Setting phase

Hydration starts when anhydrous cement powder is mixed with water. The properties of
the obtained cement paste evolve over time. At the beginning of the hydration mechanism,
the paste is sufficiently malleable to conform to the shape of a mold or a formwork.
Advancing in time, the crystals of hydrate are growing in space, the viscosity increases
and the paste hardens. The setting phase is followed by the hardening phase.

6.4.2.2 Hardening phase

Hydration can last up to several months during which the mechanical properties of the
cement paste such as its Young’s modulus, yield strength and ultimate tensile strength
increase. The hardening mechanism is now described. First the constituents of the cement
paste (or clinker) are presented.

Common cement or Portland cement (Tennis and Jennings, 2000) is composed of
several anhydrous constituents:

- tricalcium silicate (or alite) 3CaO.SiO2 (C3S)
- bicalcium silicate (or belite) 2CaO.SiO2 (C2S)
- tricalcium aluminate (or celite) 3CaO.Al2O3 (C3A)
- tetracalcium aluminoferrite 4CaO.Al2O3.Fe2O3 (C4AF)



168 Chapter 6. Industrial applications

For the sake of a simpler writing, one prefers to use the following equivalences:

CaO = C, SiO2 = S, Al2O3 = A, Fe2O3 = F , SO3 = s, H2O = H

The calcium silicates C2S and C3S (70% of the mass) are the constituents that bring its
strength to the cement paste. C3A and C4AF (20% of the mass) are required as melting
agents, i.e. they help the setting of the calcium silicates.

The first constituent to react during hydration is the Celite C3A. It dissolves and
recrystallizes. It is followed by an hydrolysis reaction of the alite C3S which forms a film
of tobermolite gel around the particles and bring Ca+ ions in the solution. Hydrolysis
and recrystallization of C3A are so fast that they must be slowed down to prevent the
cement to become unstable, and consequently unusable, by a too stiff setting.

When mixing anhydrous cement paste and water, a paste in which the molecules of
water surround each cement particle is obtained. A capillary network is formed. Water
molecules react with the surface of the anhydrous particles to form hydrated compounds.
The calcium silicates C2S and C3S (hydrated lime) progressively dissolve and hexagonal-
shaped Ca(OH)2 crystals settle. The hydrated calcium silicates form a gel composed of
fine needles on the surface of cement particles. These needles grow in size and number
filling the capillary network between the particles. Thus the paste becomes harder.

The more the gel fills the capillary network, the stronger the cement paste becomes.
This strength increases gradually as the gel becomes compact, firstly because the cohe-
sion between the needles strengthens and secondly because they are welded to the cement
grains. Unhydrated cement grains still remain in the hardened cement paste. The hy-
dration continues for months or even years provided the tobermolite gel is surrounded by
water.

6.4.2.3 Principal chemical reactions

Due to the complexity of the hydration reaction of Portland cement, only the princi-
pal chemical reactions are presented in this section for a better comprehension of the
hardening mechanism.

2(3CaO + SiO2) + 6H2O = 3CaO.3SiO2.3H2O + 3Ca(OH)2 (6.29)
2(2CaO + SiO2) + 3H2O = 3CaO.3SiO2.3H2O + 2Ca(OH)2 (6.30)

3CaO.Al2O3 + 6H2O = 3CaO.Al2O3.6H2O (6.31)
4CaO.Al2O3.Fe2O3 + mH2O = 3CaO.Al2O3.6H2O + 3CaO.Fe2O3.nH2O (6.32)

(6.33)

4CaO.Al2O3 + 3(
gypsum︷ ︸︸ ︷

CaSO4.2H20)︸ ︷︷ ︸
Portland cement

+26H2O = 3CaO.Al2O3.3Ca.CaSO4.32H2O︸ ︷︷ ︸
calcium hydrosulfate aluminate

(6.34)
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The two first reactions describe the hydration of calcium silicates C3S (Eq. (6.29))
and C2S (Eq. (6.30)). The third and fourth equations respectively refer to the tricalcium
aluminate C3A (Eq. (6.31)) and C4AF (Eq. (6.32)).

6.4.2.4 Cement, mortar, concrete

Cement paste can be mixed with aggregates to reinforce its structural properties. Mortar
refers to cement paste with sand. When bigger aggregates such as gravel are added
to mortar, the obtain composite material is referred to as concrete. The mechanical
properties of the final product, whether mortar or concrete, strongly depends on the
properties of the constituents and their respective proportions. Similarly, the constitution
of the cement powder plays an important role in the performance of concrete.

The so-called homogenization method, that allows one to compute the mechanical
properties at the different scales of modelling, establishes the framework of this study.

6.4.3 Multiscale modelling of the mechanical properties of con-
crete

The submodels corresponding to the different scales of modelling are introduced. For a
more detailed overview on multiscale modelling of concrete the reading of the book by
Bernard et al. (2003) is advised.

6.4.3.1 Hydration model

The hydration model involves two types of models:

• The Powers model (Powers and Brownyard, 1947) establishes a link between on the
one hand the water / cement ratio and on the other hand the volume fractions of
the constituents that are the anhydrous, the hydrates, the capillary pores, water
and the total pores i.e. including the volume occupied by the gel.

• The Tennis and Jennings model (Tennis and Jennings, 2000) allows one to compute
the volume fractions of the low- and high-density hydrates in terms of water /
cement ratio and hydration degree.

The input parameters of the hydration model are:

• w/c, the water / cement ratio,

• α, the hydration degree,

• φhd, the porosity of the high-density hydrates.

whereas its output parameters are:
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• fa, the volume fraction of the anhydrous,

• fhd, the volume fraction of the hydrates,

• φld, the porosity of the low-density hydrates.

6.4.3.2 Dosing in sand and aggregates model

A formula allows one to determine the volume fraction of sand in mortar and the volume
fraction of aggregates in concrete from the volume fraction of sand and aggregates in
concrete and the ratio between the volume of sand and the volume of sand and aggregates.

The input parameters of the dosing model are:

• fsand/agg, the volume fraction of sand and aggregates in concrete,

• rsand, the ratio between the volume of sand and the volume of sand and aggregates.

whereas its output parameters are:

• fsand, the volume fraction of sand in mortar,

• fagg, the volume fraction of aggregates in concrete.

The output parameters respectively read:

fsand = fsand/agg × rsand

1 − fsand/agg(1 − rsand) (6.35)

fagg = fsand/agg × (1 − rsand) (6.36)

6.4.3.3 Low-density hydrates homogenization model

The low-density hydrates homogenization model allows one to compute the mechanical
properties of the low-density hydrates Eld and νld. The equations are those from the
micro-mechanics. They involve the mechanical properties of the solid hydrates Esh and
νsh, the shape parameter of the flat particles rsld and the porosity of the low-density
hydrates φld. The low-density hydrates homogenization model follows an self-consistent
scheme (Hill, 1965; Bornert et al., 2010).

The input parameters of the low-density hydrates homogenization model are:

• Esh, the Young’s modulus of the solid hydrates,

• νsh, the Poisson’s ratio of the solid hydrates,

• rsld, the shape parameter of the flat particles,

• φld, the porosity of the low-density hydrates.
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whereas its output parameters are:

• Eld, the Young’s modulus of the low-density hydrates,

• νld, the Poisson’s ratio of the low-density hydrates.

6.4.3.4 Cement paste homogenization model

The cement paste homogenization model calls complex equations from the micro-
mechanics. The latter link the mechanical properties of the cement paste Ep and νp
to the mechanical properties of its constituents, i.e. the anhydrous Ea and νa, the high-
density hydrates Ehd and νhd, the low-density hydrates Eld and νld and their respective
volume fractions fa and fhd.

The input parameters of the cement paste homogenization model are:

• Ea, the Young’s modulus of the anhydrous,

• νa, the Poisson’s ratio of the anhydrous,

• Ehd, the Young’s modulus of the high-density hydrates,

• νhd, the Poisson’s ratio of the high-density hydrates,

• Eld, the Young’s modulus of the low-density hydrates,

• νld, the Poisson’s ratio of the low-density hydrates,

• fa, the volume fraction of anhydrous in the cement paste,

• fhd, the volume fraction of hydrates in the cement paste.

whereas its output parameters are:

• Ep, the Young’s modulus of the cement paste,

• νp, the Poisson’s ratio of the cement paste.

The cement paste homogenization model follows a Mori-Tanaka (MT) scheme (Mori
and Tanaka, 1973). More precisely, spherical composite inclusions are considered with an
intermediate density between the kernel of the inclusions and the matrix.
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6.4.3.5 Mortar homogenization model

The mortar homogenization model corresponds to the stage where sand is added to the
cement paste. The mechanical properties of the mortar Em and νm are derived using
the micro-mechanics equations from the mechanical properties of the sand Es and νs, the
mechanical properties of the cement paste Ep and νp and the volume fraction of sand fs
in the mortar.

The input parameters of the mortar homogenization model are:

• Es, the Young’s modulus of the sand,

• νs, the Poisson’s ratio of the sand,

• Ep, the Young’s modulus of the cement paste,

• νp, the Poisson’s ratio of the cement paste,

• fs, the volume fraction of sand in the mortar.

whereas its output parameters are:

• Em, the Young’s modulus of the mortar,

• νm, the Poisson’s ratio of the mortar.

The mortar homogenization model follows a Mori-Tanaka (MT) scheme. More pre-
cisely, spherical inclusions in the matrix are considered.

6.4.3.6 Concrete homogenization model

The concrete homogenization model corresponds to the stage where aggregates are added
to the mortar. The mechanical properties of the concrete Ec and νc are derived using the
micro-mechanics equations from the mechanical properties of the aggregates Eagg and νa,
the mechanical properties of the mortar Em and νm and the volume fraction of aggregates
fagg in the concrete.

The input parameters of the concrete homogenization model are:

• Eagg, the Young’s modulus of the aggregates,

• νagg, the Poisson’s ratio of the aggregates,

• Em, the Young’s modulus of the mortar,

• νm, the Poisson’s ratio of the mortar,

• fagg, the volume fraction of aggregates in the concrete.
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whereas its output parameters are:

• Ec, the Young’s modulus of the concrete,

• νc, the Poisson’s ratio of the concrete.

The concrete homogenization model follows a Mori-Tanaka (MT) scheme. More pre-
cisely, spherical inclusions in the matrix are considered.

6.4.4 Multiscale modelling of the homogenization

The computation of the intermediate and final output variables is carried out using a
coupling between OpenTURNS and YACS. The YACS scheme from which the executable
XML file is obtained is presented in Figure 6.13. The level 0 (lowest scale of modelling)
contains all the input parameters of the model, i.e. mechanical properties of the con-
stituents of the cement paste, volume fractions or porosities. At the level 1 are the mod-
els of hydration and dosing. They provide the intermediate variables for the low-density
homogenization model at the level 2. The latter computes the mechanical properties of
the low-density hydrates which are input parameters for the cement paste homogenization
model at level 3. At levels 4 and 5 are respectively the mortar homogenization model and
the concrete homogenization model.

One may have noticed that for a level n, the model not only uses output variables
from the level n − 1 but also input variables from the level 0. For instance, the mortar
homogenization level at the level 4 uses as input variables the output variables from level
3 (Ep and νp) but also variables from level 0 (Es and νs) and level 1 (fs).

As YACS only works with deterministic values, one has to build the probabilistic
model using OpenTURNS and couple both softwares.

6.4.5 Probabilistic modelling of the parameters

6.4.5.1 Marginal distribution of the variables

The mechanical properties of the constituents of concrete are described by two param-
eters, namely the Young’s modulus and the Poisson’s ratio. The Young’s modules are
modelled by lognormal distributions while the Poisson coefficients are modelled by Beta
distributions over the domain [0, 0.5]. The other ratios denoted by the letter f are mod-
elled by Beta distributions over the domain [0, 1]. The complete probabilistic modelling
of the parameters is given in Table 6.10. The degree of hydration at which the mechanical
properties are calculated is fixed at α = 0.5, i.e. half the water has been consumed by
the reaction. The ratio water / cement powder is assumed to be perfectly known and is
fixed at 0.3, i.e. 30 liters of water for 100 kg of cement paste.



174 Chapter 6. Industrial applications

Parameter Distribution Mean μ σ/μ

Ea Lognormal 135 GPa 10 %
νa Beta [0,0.5] 0.3 10 %

Ehd Lognormal 31 GPa 10 %
νhd Beta [0,0.5] 0.24 10 %
Esh Lognormal 72 GPa 10 %
νsh Beta [0,0.5] 0.27 10 %

Eagg Lognormal 70 GPa 10 %
νagg Beta [0,0.5] 0.23 10 %
Es Lognormal 70 GPa 10 %
νs Beta [0,0.5] 0.23 10 %
α Deterministic 0.5 -

w/c Deterministic 0.3 -
rsld Beta[0,1] 0.033 10 %
φhd Lognormal 0.3 15 %

fsand/agg Beta[0,1] 0.7 7,5 %
rsand Beta[0,1] 0.4 5 %

Table 6.10: Marginal distributions of the parameters.

6.4.5.2 Dependence structure of the variables

The couples formed by the Young’s modulus and the Poisson’s ratio (E, ν) are usually
assumed independent. Their joint PDF is simply defined by the product of the marginal
PDFs, namely:

fE,ν(E, ν) = fE(E) × fν(ν) (6.37)

In theory, the bulk modulus K and the shear modulus G could also be considered as
independent. They can be related to E and ν by the following relationships:

E = 9KG

3K + G

ν = 3K − 2G

2(3K + G)

(6.38)

According to Eq. (6.38), if K and G are assumed independent, thenE and ν are correlated
because they share input variables. Because the distributions of K and G are often
unknown, their densities are estimated by kernel smoothing using the distributions of E
and ν given in Table 6.10 and the relations in Eq. (6.39).

K = E

3(1 − 2ν)

G = E

2(1 + ν)

(6.39)
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Once the marginal distributions of K and G are known, realizations of E and ν can be
sampled using Eq. (6.38). The Spearman’s rank correlation of the pairs (E, ν) in the
constituents are finally calculated at the various levels. They are presented in Table 6.11.
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Figure 6.13: Multiscale modelling for homogenization of concrete featuring 14 input parameters
and 13 output parameters.
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Constituent Rank correlation coefficient ρS

anhydrous −0.57
high-density hydrates −0.48
low-density hydrates −0.56
aggregates −0.54
sand −0.54

Table 6.11: Spearman’s rank correlation coefficients of the pairs (E, ν) when assuming that the
bulk modulus K and the shear modulus G are statistically independent.

The average rank correlation coefficient ρS between E and ν equals −0.55. The de-
pendogram of the mechanical properties of the sand is pictured in Figure 6.14. Due to the
shape of the scatterplot, a Gaussian copula is tested for modelling of the 2-dimensional
dependence structure. Its parameter θ is derived from the rank correlation coefficient ρS

using the following relationship:

θ = 2 sin
(

π

6 ρS

)
(6.40)

The corresponding Kendall Plot is pictured in Figure 6.14. The copula of the full set of
parameters is defined by a global copula, as presented in Chapter 1, Section 1.5.3.6, com-
posed of five 2−dimensional Gaussian copulas and a 4−dimensional independent copula,
namely: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S2×2 02×2 02×2 02×2 02×2 02×4
02×2 S2×2 02×2 02×2 02×2 02×4
02×2 02×2 S2×2 02×2 02×2 02×4
02×2 02×2 02×2 S2×2 02×2 02×4
02×2 02×2 02×2 02×2 S2×2 02×4
04×2 04×2 04×2 04×2 04×2 I4×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.41)

6.4.6 Multiscale sensitivity analysis

Due to the dependence structure of the input variables, classical ANOVA cannot be carried
out. In this work, a sensitivity analysis using the δ indices is carried out. The goal is to
identify which parameters are the main contributors to the variability of the mechanical
properties of concrete Ec and νc in order to reduce their variabilities. Therefore, of
interest are the sensitivities of Ec and νc to the mechanical properties of mortar and
cement paste and more generally to any input parameter in the multiscale modelling.
The distributions of the intermediate and final output parameters are estimated by kernel
smoothing from samples of size Nks = 104. Their PDFs and moments are respectively
reported in Figure 6.15 and Table 6.12.

The sensitivity analysis is decomposed in two subanalyses:
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Figure 6.14: Dependogram of the couple (Es, νs) (left) and Kendall Plot of the sample versus
a Gaussian copula parametrized by deriving ρS = −0.55.

• the couples (E, ν) are assumed independent and the sensitivity of the mechanical
properties of the cement paste, the mortar and the concrete to the parameters of
level 0 is studied;

• the couples (K, G) are assumed independent, i.e. (E, ν) are assumed correlated and
the sensitivity of the mechanical properties of the cement paste, the mortar and the
concrete to the parameters of level n − 1 is studied.

Variable Mean μ Standard deviation σ σ/μ

Ep 20.73 3.56 17 %
νp 0.23 0.01 3 %
Em 35.44 4.73 13 %
νm 0.25 0.01 4 %
Ec 46.51 4.78 10 %
νc 0.27 0.01 4 %

Table 6.12: Mean, standard deviation and coefficient of variation of the ciment paste, mortar
and concrete.
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Figure 6.15: Kernel smoothing estimation of the PDFs of the mechanical properties (E, ν) of
the model output parameters (cement paste, mortar and concrete).

6.4.6.1 Sensitivity to the level 0 parameters

In this section, the sensitivity of the mechanical properties of the cement paste, the mortar
and the concrete to the parameters of level 0 is studied. The couples (E, ν) are assumed
independent, thus a ANOVA is carried out. In addition, the δ sensitivity measures are
also computed.

The results of the sensitivity analysis of the cement paste mechanical properties Ep and
νp to the parameters of level 0 are presented in Table 6.13. The results of the sensitivity
analysis of the mortar mechanical properties Em and νm to the parameters of level 0 are
presented in Table 6.14. The results of the sensitivity analysis of the concrete mechanical
properties Ec and νc to the parameters of level 0 are presented in Table 6.15.

Parameter S1 ST δ

Ea 0.00 0.00 0.00
νa 0.00 0.00 0.00

Ehd 0.03 0.03 0.07
νhd 0.00 0.00 0.00
Esh 0.15 0.15 0.17
νsh 0.00 0.00 0.00
rsld 0.02 0.02 0.00
φhd 0.80 0.81 0.40

Parameter S1 ST δ

Ea 0.07 0.08 0.00
νa 0.07 0.07 0.10

Ehd 0.24 0.25 0.00
νhd 0.30 0.32 0.28
Esh 0.01 0.01 0.00
νsh 0.08 0.08 0.11
rsld 0.01 0.01 0.00
φhd 0.19 0.20 0.11

Table 6.13: Sensitivity indices of Ep (left) and νp (right) to the level 0 parameters.
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Parameter S1 ST δ

Ea 0.00 0.00 0.00
νa 0.00 0.00 0.00

Ehd 0.02 0.02 0.00
νhd 0.00 0.00 0.00
Esh 0.09 0.09 0.06
νsh 0.00 0.00 0.00
Es 0.08 0.09 0.06
νs 0.00 0.00 0.00

rsld 0.00 0.00 0.00
φhd 0.47 0.47 0.21

fsand/agg 0.31 0.31 0.17
rsand 0.01 0.01 0.00

Parameter S1 ST δ

Ea 0.01 0.01 0.00
νa 0.01 0.01 0.00

Ehd 0.01 0.02 0.00
νhd 0.03 0.03 0.06
Esh 0.00 0.00 0.00
νsh 0.01 0.01 0.00
Es 0.01 0.02 0.00
νs 0.71 0.73 0.31

rsld 0.00 0.00 0.00
φhd 0.09 0.10 0.08

fsand/agg 0.08 0.10 0.08
rsand 0.00 0.00 0.00

Table 6.14: Sensitivity indices of Em (left) and νm (right) to the level 0 parameters.

The first important result is that the variability of a Young’s modulus (resp. a Poisson
coefficient) mainly depends on the Young’s modulus (resp. the Poisson coefficient) of the
constituents at the previous scale. The second one is that the deeper (in the sense of the
graph theory) in the modelling a parameter, the lower its contribution to the variability
of the output of interest.

More generally, the level 0 main contributors to the variability of the mechanical
properties of the cement paste, mortar and concrete are the porosity of the high-density
hydrates φhd and the volume ratio fsand/agg between the sand and the sand and gravel. The
porosity φhd is a hardly measurable parameter. Therefore, a high coefficient of variation
(σ/μ = 15%) is set. The ratio fsand/agg behaves as a reinforcement of the cement paste
and consequently determines the strength of mortar and concrete. In order to reduce
the variability of the mechanical properties of concrete, one must seriously pay attention
to the proportion of sand and aggregates in the mixing process. A better knowledge of
the porosity φhd may also provide a more accurate modelling of the homogenization of
concrete.

6.4.6.2 Sensitivity to the level n − 1 parameters

The mechanical properties (E, ν) of the constituents are now assumed correlated, i.e.
K and G are assumed independent. Of interest are the sensitivity of the mechanical
properties of the cement paste, mortar and concrete to the lower level parameters, i.e. the
sensitivity of the mortar mechanical properties to the cement paste and sand mechanical
properties and their relative volume fraction. As the hypothesis of independence of the
model input parameters is not verified anymore, the Sobol’ indices are not applicable and
only the δ sensitivity measures are computed.
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Parameter S1 ST δ

Ea 0.00 0.00 0.00
νa 0.00 0.00 0.00

Ehd 0.01 0.02 0.00
νhd 0.00 0.00 0.00
Esh 0.06 0.06 0.06
νsh 0.00 0.00 0.00

Eagg 0.14 0.15 0.09
νagg 0.00 0.00 0.00
Es 0.05 0.05 0.05
νs 0.00 0.00 0.00

rsld 0.01 0.01 0.00
φhd 0.30 0.30 0.15

fsand/agg 0.42 0.43 0.23
rsand 0.00 0.00 0.00

Parameter S1 ST δ

Ea 0.00 0.00 0.00
νa 0.00 0.00 0.00

Ehd 0.00 0.00 0.00
νhd 0.01 0.01 0.00
Esh 0.00 0.00 0.00
νsh 0.00 0.00 0.00

Eagg 0.29 0.30 0.00
νagg 0.37 0.37 0.31
Es 0.00 0.00 0.00
νs 0.18 0.18 0.14

rsld 0.00 0.00 0.00
φhd 0.04 0.05 0.05

fsand/agg 0.08 0.09 0.07
rsand 0.00 0.00 0.00

Table 6.15: Sensitivity indices of Ec (left) and νc (right) to the level 0 parameters.

The results of the sensitivity analysis of the cement paste mechanical properties Ep and
νp to the lower level parameters are presented in Table 6.16. The results of the sensitivity
analysis of the mortar mechanical properties Em and νm to the lower level parameters are
presented in Table 6.17. The results of the sensitivity analysis of the concrete mechanical
properties Ec and νc to the lower level parameters are presented in Table 6.18.

Parameter δEp δνp

Ea 0.06 0.04
νa 0.06 0.11
Ehd 0.07 0.04
νhd 0.06 0.03
fa 0.06 0.04
fhd 0.13 0.04
Eld 0.55 0.10
νld 0.07 0.16

Table 6.16: Sensitivity indices of Ep and νp to the (n − 1) level parameters.

The sensitivities of the mechanical properties of the cement paste, the mortar and the
concrete to the correlated parameters at the (n − 1) level have been measured by the δ
sensitivity measures. At the scale of the cement paste, the mechanical properties Ep and
νp are mainly sensitive to the properties of the low-density hydrates Eld and νld. At the
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Parameter δEm δνm

Es 0.10 0.05
νs 0.08 0.04
fs 0.24 0.13
Ep 0.37 0.07
νp 0.08 0.10

Table 6.17: Sensitivity indices of Emand νm to the (n − 1) level parameters.

Parameter δEc δνc

Eagg 0.11 0.04
νagg 0.04 0.37
fagg 0.11 0.05
Em 0.49 0.04
νm 0.04 0.22

Table 6.18: Sensitivity indices of Ec and νc to the (n − 1) level parameters.

upper scale, the mechanical properties of the mortar Em and νm are more sensitive to the
mechanical properties of the cement paste Ep and νp than to those of the sand. Finally,
at the highest scale of modelling, the mechanical properties of the concrete Ec and νc are
mainly sensitive to the properties of the mortar Em and νm.

From a global point of view, the mechanical properties of the product, mortar or
concrete, is more sensitive to the lower scale product, i.e. cement paste or mortar, than
to the aggregates that are supposed to increase their strength. Finally, as noticed for the
previous sensitivity analysis in Section 6.4.6.1, the Young’s modules are more sensitive
to Young’s modules and the Poisson’s ratios are more sensitive to Poisson’s ratios. The
fraction of each constituent also plays an important role in the variability of the mechanical
properties but it is almost twice as important for the Young’s modules than for the
Poisson’s ratios. This result has also been observed in the previous sensitivity analysis
where the input fsand/agg exhibits high contributions to the variability of the Young’s
modules.

6.4.7 Conclusion

The problem of finding where the variability of the mechanical properties of concrete
comes from has been addressed by performing two sensitivity analyses. First the method
to compute the quantities of interest referred to as homogenization method has been
decomposed into several stages corresponding to the different phases of the production of
concrete. A specific model with suitable input and output parameters is associated to each
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of these phases. They are linked together to form a multiscale model represented by the
graph in Figure 6.13. Secondly, computing the intermediate and final output distributions
is carried out through a coupling between OpenTURNS (probabilistic modelling) and
YACS (nested modelling). A polynomial chaos expansion with vectorial output, that is
built from the obtained data, provides a powerful tool to perform the sensitivity analyses.

The first sensitivity analysis aims at estimating the sensitivities of the intermediate
and final output parameters to the input parameters of the lowest scale assumed as in-
dependent. The classical variance-based Sobol’ sensitivity indices are compared to the
distribution-based δ sensitivity measures. As mentioned earlier in this thesis, the δ in-
dices are in accordance with the Sobol’ indices concerning the hierarchy of the parameters.
Their scale of values remains less discriminant than the one of the Sobol’ indices.

The second sensitivity analysis focuses on the sensitivity of the output parameters
to the intermediate parameters located at the lower scale of the modelling. Because
several models are sharing input parameters, the intermediate parameters are correlated.
Therefore, only the δ indices are computed. On the computing side, the lower scale input
parameters are identified using the incidence matrix (see Chapter 5, Section 5.3.2.2) of the
graph. The results allows the engineer to determine on which constituent or fraction of
constituent he may pay more attention in order to limit the variability of the mechanical
properties of concrete at the macroscopic scale.

6.5 Damage of a cylinder head

Renault is a French motorist and car manufacturer. Since 75% of the cars are equipped
with diesel engines, Renault aims at ensuring the reliability of its products. The M9R is
the flagship of the diesel engine range. This engine features a displacement of 2 liters and
develops up to 180 horsepower thanks to common rail injection and turbocompression.
The Renault M9R diesel engine is presented in Figure 6.16. This example has been
proposed in Hähnel (2007) to illustrate system reliability analysis. The results have been
originally presented in Caniou and Hähnel (2012).

6.5.1 How do diesel engines work

The diesel engine was invented by Rudolph Diesel in 1858. The internal combustion
engine uses the heat of compression to initiate ignition and burn the fuel injected in the
combustion chamber. Diesel engines has the highest thermal efficiency due to the very
high compression ratio. A diesel engine is constituted of pistons sliding inside cylinders,
closed by a cylinder head connecting the cylinders to the intake and exhaust manifolds by
poppet valves driven by a camshaft.

Air is initially introduced in the combustion chamber and is then compressed with
a very high compression ratio (between 14:1 and 25:1) due the injection pressure. The
compression heats the air up from 700 to 900°C. When the piston reaches its highest
point, fuel is injected into the compressed air in the combustion chamber. The heat of the
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compressed air vaporizes the fuel and ignite it. The expansion of the combustion gases
pushes the piston downward which induces the rotation of the crankshaft through the
rod.

Figure 6.16: Overview of the M9R Renault diesel engine.

The four strokes of a diesel engine are:

1. intake: the piston descends along the cylinder and air is aspirated inside the cylinder
due to the reduction of the internal pressure. The intake valves then close.

2. compression: with both exhaust and intake valves closed, the piston rises up to the
top of the cylinder due to the rotation of the camshaft. The air is compressed inside
the combustion chamber against the cylinder head.

3. power : fuel is injected into the highly compressed air and is instantly ignited due
to the very high temperature. The expansion of the combustion gases pushes the
piston downward.

4. exhaust: the piston once again rises up to the top of the cylinder, expelling the
brunt gases through the opened exhaust valves.

Common rail engines use a unique very high pressure (up to 2000 bars) line for the in-
jection of fuel into the cylinders whereas standard diesel engines had one for each cylinder.
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This technology improves the fuel repartition in the cylinder and consequently increases
the efficiency of the engine. On the other hand, the couple pressure and temperature
(P, T ) in the cylinder is much higher than in the standard diesel engine and causes higher
mechanical and thermal damage to the cylinder head.

In the sequel, the damage of the fire face (the area above the cylinder) and bridge (the
zone between two valve holes) of the cylinder head is studied.

Figure 6.17: Graph representation of the combustion in a diesel engine from a multiphysics
point of view.



186 Chapter 6. Industrial applications

6.5.2 Multiphysics modelling

The modelling of the fuel combustion in a diesel engine is a quite complicated phenomenon
involving multiple physics fields. Therefore, it is decomposed into several submodels
corresponding to the computation of physical quantities. A first model concerns the
combustion of the fuel. It provides input parameters for a second model dealing with the
thermal phenomena in the cylinder head. Then, a third model computes the variables of
interest thanks to a thermomechanical model. The multiphysics modelling of the engine
is described by the graph in Figure 6.17.

The first stage is the mechanical combustion model. It calculates the maximal pressure
Pcylmax in the cylinder from the flows of air and fuel together, respectively denoted by Qair

and Qfuel with the pressure Padm and temperature Tadm in the intake, the pressures in
the manifold Pcoll and in the common rail Prail and the temperature of the exhaust gases
Tech.

The second stage is divided into two thermal models HCOMB and Meisner. The first
one computes the mean exchange coefficient Hmoy and temperature Tmoy in the cylinder
with the pressure curve CP , the flow of air Qair and the intake pressure Padm whereas
the second one computes the exchange coefficient Hech in the exhaust manifold with the
flows of air Qair and fuel Qfuel and the temperatures of the intake (Tadm) and exhaust
(Tech) manifolds.

The thermomechanical model at the third stage computes the temperatures at the two
weak points on the cylinder head, namely the fire face Tface and the bridge Tbridge (see
Figure 6.18) from the exhaust exchange coefficient Hech and temperature Tech and mean
exchange coefficient Hmoy and temperature Tmoy.

Figure 6.18: Thermomechanical stresses on the cylinder head. The fire face is located in the
middle of the four valves whereas a bridge separates two valves (picture supplied
by Renault).

Finally, the damage model computes the damage D in the cylinder head from the
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temperatures Tech and Tmoy computed by the thermomechanical model, the mechanical
properties such the Young’s modulus E, the plastic stress Sy or the ultimate tensile stress
Su and a collection of fatigue parameters (M0, Beta, S10).

6.5.3 Sensitivity of the damage on the cylinder head

Of interest are the sensitivities of the damage D and maximal pressure in the cylinder
Pcylmax to the intermediate parameters in the multiphysics modelling.

6.5.3.1 Computing the responses of the model

A nested model of the fuel combustion is built using YACS. Each model is called from a
Pyscript in a node. The global model is driven from OpenTURNS where the realizations
of the input parameters are simulated according to the probabilistic modelling described
in Table 6.19.

Parameter Unity Distribution Mean μ σ

Qair - Normal μ1 σ1

Pcoll bar Normal μ2 σ2

Qcarb - Normal μ3 σ3

Padm bar Normal μ4 σ4

Tadm °C Normal μ5 σ5

Tech °C Normal μ6 σ6

Prail bar Normal μ7 σ7

Esiege MPa Normal μ8 σ8

Ehead - Normal 0 1
σY - Normal 0 1

αhead - Normal 0 1
C - Normal 0 1
D - Normal 0 1

Rm - Normal 0 1
V AM0 - Normal μ9 σ9

V ABeta - Normal μ10 σ10

V AS10 - Normal μ11 σ11

Table 6.19: Probabilistic modelling of the engine parameters.

The distribution of the parameters are defined either by measures or by experimental
feedback. A polynomial chaos expansion of degree p = 4 with 17 input and 7 output
parameters is built from a set of data samples of size N = 104 as P = 5985 coefficients
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have to be computed. The accuracy of the metamodel is controlled by the coefficient of
determination R2 as illustrated in Figs. 6.19 and 6.20.

Figure 6.19: Histogram comparison and coefficient of determination R2 for the maximum pres-
sure Pcylmax.

Figure 6.20: Histogram comparison and coefficient of determination R2 for the damage D.

6.5.3.2 Global sensitivity analysis

First the sensitivities of the intermediate and final output parameters, i.e. the maximal
pressure Pcylmax and the damage D, to the input parameters of level 0 are computed.
Under the hypothesis of independence of these variables, the Sobol’ first order and total
indices are computed. The results are presented in Table 6.20.
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Parameter Pmax Tmoy Hmoy Hech

Qair 0.36 (0.36) 0.80 (0.80) 0.73 (0.73) 0.97 (0.97)
Pcoll 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)
Qcarb 0.12 (0.12) 0.15 (0.15) 0.18 (0.18) 0.02 (0.02)
Padm 0.52 (0.52) 0.05 (0.05) 0.06 (0.06) 0.00 (0.00)
Tadm 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Tech 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Prail 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Esiege 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Ehead 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
σY 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
αhead 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
D 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Rm 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
V AMO 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
V ABeta 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
V AS10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Parameter Tface Tbridge D

Qair 0.26 (0.30) 0.26 (0.30) 0.00 (0.07)
Pcoll 0.00 (0.00) 0.00 (0.00) 0.00 (0.07)
Qcarb 0.44 (0.48) 0.44 (0.48) 0.00 (0.07)
Padm 0.11 (0.12) 0.11 (0.12) 0.00 (0.09)
Tadm 0.00 (0.00) 0.00 (0.00) 0.00 (0.06)
Tech 0.14 (0.14) 0.14 (0.14) 0.00 (0.09)
Prail 0.00 (0.00) 0.00 (0.00) 0.00 (0.07)
Esiege 0.00 (0.00) 0.00 (0.00) 0.00 (0.05)
Ehead 0.00 (0.00) 0.00 (0.00) 0.00 (0.06)
σY 0.00 (0.00) 0.00 (0.00) 0.00 (0.07)
αhead 0.00 (0.00) 0.00 (0.00) 0.00 (0.06)
C 0.00 (0.00) 0.00 (0.00) 0.00 (0.05)
D 0.00 (0.00) 0.00 (0.00) 0.00 (0.06)
Rm 0.00 (0.00) 0.00 (0.00) 0.02 (0.16)
V AMO 0.00 (0.00) 0.00 (0.00) 0.26 (0.59)
V ABeta 0.00 (0.00) 0.00 (0.00) 0.13 (0.35)
V AS10 0.00 (0.00) 0.00 (0.00) 0.00 (0.06)

Table 6.20: Global sensitivity analysis of the model outputs to the level 0 parameters S1 (ST ).
.
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Concerning the output parameters Pcylmax, Tmoy, Hmoy and Hech, the contributors are
clearly identified: they are the flows of air Qair and fuel Qcarb and the pressure of the
admission gases. In addition comes the temperature of the exhaust gases Tech for the
temperatures at the fire face Tface and bridge Tbridge.

The first order contributors to the damage D are the ultimate tensile stress Rm, and
the fatigue parameters V AMO and V ABeta whose distribution are defined by the state of
the art. It is to be noticed that the total contributions, taking the interactions between
the input variables into account, are non zero for all parameters. It means that complex
relationships exist in the multiphysics modelling and consequently that the sensitivity
analysis has to investigate deeper.

6.5.3.3 Nested sensitivity analysis

Of interest are now the sensitivities of the output parameters to the input parameters of
the lower level. The concerned variables are identified in the graph thanks to the incidence
matrix. Let us begin by studying the temperatures Tface and Tbridge. Due to the nature
of the model, these input parameters, namely Hech, Tech, Hmoy and Tmoy, are correlated.
Their rank correlation matrix reads:

ρS =

⎡⎢⎢⎢⎣
1 0 −0.54 −0.81
0 1 0 0.05

−0.54 0 1 0.92
−0.81 0.05 0.92 1

⎤⎥⎥⎥⎦ (6.42)

An ANCOVA sensitivity analysis is performed in order to distinguish the uncorrelative
and correlative contributions. The results are presented in Table 6.21.

Parameter S SU SC

Hech 1.17 1.83 -0.67
Tech 0.09 0.07 0.01
Hmoy -0.01 0.01 -0.03
Tmoy -0.24 0.29 -0.53
Σ 1.00 2.21 -1.21

Parameter S SU SC

Hech 1.17 1.83 -0.67
Tech 0.09 0.07 0.01
Hmoy -0.01 0.01 -0.03
Tmoy -0.24 0.29 -0.53
Σ 1.00 2.21 -1.21

Table 6.21: ANCOVA sensitivity indices of Tface (left) and Tbridge (right) to the lower level
parameters. Due to the very close location of the zones these temperatures are
measured on, the sensitivities are identical.

Due to the very close proximity of the zones at which the temperatures are measured,
namely the fire face and the bridge, the sensitivities are exactly the same. Based on
the uncorrelative contributions, the most influent variables are the exchange coefficient
of the exhaust gases Hech and the mean temperature in the cylinder Tmoy. By adding
the correlative contributions, the global contributions are lowered. The high and possibly
negative correlations in Eq. (6.42) tends to reduce the inner effects of the main variables.
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A second ANCOVA sensitivity analysis is performed for the damage D in the cylinder
head. The results are presented in Table 6.22. In this case, the first order ANCOVA indices

Parameter S SU SU

Tface 0.02 0.01 0.01
Tbridge 0.02 0.01 0.01
Esiege 0.00 0.00 0.00
uE 0.00 0.00 0.00
uSy 0.00 0.00 0.00
uα 0.00 0.00 0.00
uC 0.00 0.00 0.00
uD 0.00 0.00 0.00
uSu 0.02 0.02 0.00
V AMO 0.20 0.20 0.00
V ABeta 0.12 0.12 0.00
V AS10 0.00 0.00 0.00
Σ 0.38 0.36 0.02

Table 6.22: ANCOVA sensitivity indices of the damage D in the cylinder head to the lower
level parameters.

cannot explain the full variability of the damage D in the cylinder head. It means that
62% of this variability is due to the interactions between the input parameters as observed
in the global sensitivity analysis. Otherwise, the same contributors as for the global
sensitivity analysis are identified, namely the fatigue parameters V AMO and V ABeta.

6.5.4 Conclusion

The combustion of the fuel in an engine is described by a multiphysics modelling. The
workflow composed of mechanical, thermal and thermomechanical models allows the en-
gineer to study the reliability of the engine by measuring the damage in the cylinder head.
The simulations on the model are performed by carrying out a coupling between Open-
TURNS and YACS respectively for the probabilistic ans physical modelling. A polynomial
chaos expansion is built from the data to perform ANCOVA sensitivity analyses.

Firstly the temperatures on the fire face and bridge of the cylinder head are studied.
Their sensitivities to the lower level parameters are computed and the exchange coefficient
of the exhaust gases Hech is identified as the main contributor to the variability of these
temperatures. Secondly, the damage D of the cylinder head is studied. The most influent
variables to the variability of D are the fatigue parameters V AMO and V ABeta which have
high coefficient of variation, respectively 20% and 10%.
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However, in the last case, the variability of the damage D cannot be entirely explained
by the first order effects. This means that the interactions between the variables is
relatively strong and thus complex to explain. Total order ANCOVA indices should be
computed but the interpretation that can be done might mix up the interactive and
correlative contributions.

6.6 Conclusion

A general methodology to address the problems of global sensitivity analysis in nested
models has been proposed in Chapters 2, 3, 4 and 5. The approach aims at computing
the sensitivity of one output parameter to any input parameters, whatever their position
in a complex workflow.

The global sensitivity analysis methods for models with correlated inputs are first
trained on analytical functions (Section 6.2) and academical problems (Section 6.3),
namely a bracket structure, a composite beam, a electrical connector or a rugby scrum.
As shown by the diversity of these examples, the methodology has a wide spectrum of
applications.

The first industrial problem that is addressed deals with a model which predicts the
mechanical properties of concrete through homogenization methods. A multiscale mod-
elling where each submodel corresponds to a specific phase of the fabrication is proposed.
The dependence structure of the input variables and more specifically the couples (E, ν)
of the low level constituents is introduced in order to refine the probabilistic modelling.
Then, thanks to the graph approach developed in Chapter 5, one is able to identify the
input parameters of a quantity of interest throughout the different scales of modelling
and compute the corresponding δ sensitivity indices. The results indicate the engineer
on which parameters (volume fraction, mechanical property) and at which stages of the
fabrication of concrete he must pay attention in order to reduce the variability of the
mechanical properties of concrete so as to ensure the robustness of the structure.

The second industrial problem deals with the reliability of a diesel engine. More specif-
ically, the damage in the cylinder head is studied. Due to the complexity of the different
thermomechanical phenomena, a multiphysics approach is proposed. As in the first indus-
trial application, an OpenTURNS / YACS coupling is carried out in order to propagate
the uncertainty in the input parameters towards the intermediate and final output param-
eters. The objective is to distinguish if the contribution are due to the structural effects
of the variables or to their correlation with other inputs. Therefore, an ANCOVA sensi-
tivity analysis is performed. The latter utilizes the functional decomposition provided by
a polynomial chaos expansion to compute the uncorrelative and correlative contributions
of the variables on the damage D. The results show that only 40% of the variability of
the damage is due to the inner effects and that the correlative contributions are almost
zero. The variability may be explained by the complexity of the interactions between the
parameters in models that represent different fields of physics.

As a conclusion, the uncertainty in the output parameters of complex structures can
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be explained by identifying the most influent input parameters, whether they are inde-
pendent or not. Two methods are proposed. On the one hand, the distribution-based
δ sensitivity measure offers a global information on the contribution but they cannot be
interpreted in terms of shares of variance. On the other hand, the indices based on the
decomposition of the covariance of the model output allow one to distinguish the uncorrel-
ative (structure) and correlative (interaction) contributions. This triplet of indices require
a functional decomposition that can be provided by a surrogate modelling method named
polynomial chaos expansion. However, depending on the nature of the models (additive,
multiplicative), the entire variability may not be explained by first order indices. Total
order indices have been proposed in Chapter 4 but the distinction between interaction
and correlation remains to be discussed.
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Summary and main contributions

This work was intended to develop a global methodology to address sensitivity analysis
problems in nested models. The challenge was to unify different mathematical theories in
order to propose a rigorous framework with a potential compatibility with a forthcoming
automation of the process and high performance computing. The two major industrial
applications that have been treated in Chapter 6, Sections 6.4 and 6.5 exhibit on the one
hand the capabilities of such a method but on the other hand its limitations and possible
improvements.

Surrogate modelling

Several surrogate modelling techniques, namely the Support Vector regression, the Gaus-
sian processes, the high-dimensional model representation and the polynomial chaos ex-
pansions, have been presented in Chapter 3. Among these four, only the last one has
been retained for its suitability for sensitivity analysis. No major improvements of this
technique have been proposed. The key results presented here are taken from the recent
works by Sudret (2007) and Blatman (2009). Nonetheless, the functional decomposition
provided by the PC expansions built from an independent joint distribution has been
exposed with the purpose of computing the ANCOVA sensitivity indices.

Computing sensitivity indices

Over the last ten years, the problem of defining sensitivity indices for models with cor-
related inputs has been addressed with different approaches that have been reviewed
in Chapter 2. Although no new quantities have been defined in this thesis, practical
approaches to compute the so-called δ importance measure and ANCOVA indices respec-
tively introduced in Borgonovo (2007) and Li and Rabitz (2010) have been developed
with the sake of computational efficiency.

The distribution-based importance measure δ can be computed in two ways, whether
the probability distribution function or the cumulative distribution function of the re-
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sponse is considered. In both cases, the distributions are estimated using a kernel smooth-
ing technique and a Gaussian quadrature rule is preferred to Monte Carlo simulations for
the integration.

The so-called ANCOVA decomposition is presented as a generalization of the ANOVA
for correlated input parameters. Both methods require the computation of many sta-
tistical moments, e.g. expected value, variance, covariance, but the ANCOVA adds a
functional decomposition of the model in its prerequisites. Fortunately (this was not
originally the reason why this technique has been retained), one is provided by the PC
expansions. However, the PC expansions must be built with a joint distribution featur-
ing an independent copula in order to preserve the orthogonality of component functions
with respect to the physical variables. Otherwise the component functions will correspond
to the decorrelated variables from the isoprobabilistic transformation. In contrast, the
simulations that are performed with the true copula.

Nested modelling of complex structure

Complex systems can be seen as an imbrication of models corresponding to different
components, physics or scales of modelling. Yet, no established framework stands out
from the literature review. Therefore, an approach based on the graph theory is proposed
in Chapter 5. Although the modelling that is offered by this method may sound like a
simple graphic representation, the linear algebra which is adjoined allows one to map the
whole workflow onto an incidence matrix.

This matrix appears as a key feature of the global methodology since it defines on
the one hand the incidence relationships between the variables from different levels of the
modelling and on the other hand the correlation that may exist between the outputs of
two models sharing one or more inputs. The incidence matrix can easily be read by an
algorithm in order to find all the contributors to an output of interest but so far, it still
has to be filled by the analyst.

Contributions to the industry

So far, when dealing with high-dimensional models of complex structure and probabilistic
modelling, the engineer often neglect the correlation between the variables for the sake of
simplicity or simply due to a lack of adapted methods. As shown in Section 1.4, errors
induced by such simplifying assumptions may lead to harmful mistakes in the interpreta-
tion of the results. The framework proposed in this thesis provides the practitioner with
a suitable methodology for taking the dependence structure into account when designing
a complex structure.

The multiscale modelling involves several models that do not necessarily call the same
softwares. Therefore, running a complete workflow with its corresponding interactions
represents quite a burden for whom is not equipped with a multidisciplinary platform.
The YACS module of the simulation software Salome has been developed for this purpose.
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Its limitation relies in only considering deterministic numerical values of the parameters.
Thus, a coupling with the OpenTURNS Python probabilistic modelling library has been
carried out in order to propagate uncertainties in the workflow.

As shown on two major industrial examples, namely, a multiscale approach for com-
puting the mechanical properties of concrete and a multiphysics modelling of the fuel
combustion in a Diesel engine, the proposed methodology allows one to identify which
parameter or which level of the modelling has the largest influence on the global perfor-
mance of the structure.

Future work

The work presented in this thesis proposes a global methodology that allows one to com-
pute sensitivity indices when the model has correlated inputs and a framework for nested
models at the same time. Its application on academical and industrial problems has
highlighted findings, limitations and possible ways of improvements.

(i) In Chapter 1, emphasis is put on the joint probabilistic modelling of random vari-
ables and more particularly on the corresponding copula functions. There are many
families of copulas, e.g. elliptical, Archimedean, extreme-value copulas, but in prac-
tice, it is clear that in 99% of mechanical applications, a Gaussian copula fits the
dependence structure of the data. Nonetheless, it might not be the case in the fields
of finance and insurance where extreme values are of interest.

(ii) In Chapter 2, the so-called ANCOVA method is presented as a generalization of
the well-established Sobol’ sensitivity indices when the input parameters of a model
are correlated. This technique is also presented from a mathematical point of view
in Chastaing et al. (2012). The same concept of generalization is also claimed
by Kucherenko et al. (2012) although the techniques provide different results on
analytical examples. Both approaches have arguments to oppose to each other.
From the experience of the author, the ANCOVA is a more comprehensive way to
apprehend the sensitivities since it distinguishes the uncorrelative and correlative
parts of the contributions, although the separation between the effects is disputable
(see Section 4.4.2.3). On the other side, the negative correlative contributions may
repel the practitioner until its signification is assimilated.

(iii) In mechanical engineering, and in all scientific fields, more important than the nu-
merical value of a quantity is the confidence that can be attached to it. This is often
seen as error bars, confidence intervals or distributions. Sensitivity indices make no
exception to the rule. Different approaches for computing analytical confidence in-
tervals on the Sobol’ indices are presented in Section 2.3.2.2. In the two major
techniques retained in this work, such confidence intervals are not analytically com-
putable and must be estimated using bootstrapping techniques. In addition, a stack
of approximations is involved on the one side by the surrogate modelling, and on
the other side by the computing scheme of the index (kernel smoothing estimation,
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integration using a Gaussian quadrature rule, etc.). The proposed methodology
aims at providing an efficient accuracy / computing cost ratio in the sense of the
practical implementation. Therefore, the algorithm parameters given throughout
this thesis allow one to compute the sensitivity indices with an error less than 10−2,
that is at the nearliest percent, which is sufficient for decisions based on sensitivity
indices.

(iv) In Chapter 5, the linear algebra that is derived from the graph theory is used to
build the so-called incidence matrix. The latter maps the relationships between
the parameters (contribution, correlation) so that an algorithm is able to find the
contributors of an output of interest and build its joint distribution. Nevertheless,
the practitioner has to fill the incidence matrix by hand because to date, no dispo-
sition has been made for an automatic matrix filling. In the future work, one could
imagine that a initial run of the workflow might be able to detect the relationships
between the variables and to fill the matrix accordingly. From this point, a graphical
representation of the nested model could be drawn for validation at the same time.

(v) One objective of the methodology proposed in the introduction was to define sen-
sitivity indices that are suitable to models with correlated input parameters. This
objective has been fulfilled by the two methods presented in Chapter 2. The con-
tributions of these methods has been demonstrated with success on analytical test
cases. Unfortunately, when dealing with the two proposed industrial applications,
taking the correlation into account when computing sensitivity indices does not
make a much significant difference when comparing the results with the indepen-
dent case. The ANCOVA correlative contribution rarely exceed 10% of the total
contribution. Indeed the global framework suits any kind of problems but it seems
that in some cases the game is not worth the candle. In future research, a measure
of modification of the model response when the correlation is taken into account or
not should determine which sensitivity analysis method is to be carried out.
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Abstract

This thesis is a contribution to the nested modelling of complex systems. A global method-
ology to quantify uncertainties and their origins in a workflow composed of several models
that can be intricately linked is proposed. This work is organized along three axes. First,
the dependence structure of the model parameters induced by the nested modelling is
rigorously described thanks to the copula theory. Then, two sensitivity analysis methods
for models with correlated inputs are presented: one is based on the analysis of the model
response distribution and the other one is based on the decomposition of the covariance.
Finally, a framework inspired by the graph theory is proposed for the description of the
imbrication of the models. The proposed methodology is applied to different industrial
applications: a multiscale modelling of the mechanical properties of concrete by homog-
enization method and a multiphysics approach of the damage on the cylinder head of a
diesel engine. The obtained results provide the practitioner with essential informations
for a significant improvement of the performance of the structure.

Keywords: Global sensitivity analysis, correlation, copula theory, graph theory, nested
modelling, multiscale modelling.

Résumé

Cette thèse est une contribution à la modélisation imbriquée de systèmes complexes. Elle
propose une méthodologie globale pour quantifier les incertitudes et leurs origines dans
une chaîne de calcul formée par plusieurs modèles pouvant être reliés les uns aux autres
de façon complexe. Ce travail est organisé selon trois axes. D’abord, la structure de
dépendance des paramètres du modèle, induite par la modélisation imbriquée, est mod-
élisée de façon rigoureuse grâce à la théorie des copules. Puis, deux méthodes d’analyse de
sensibilité adaptées aux modèles à paramètres d’entrée corrélés sont présentées : l’une est
basée sur l’analyse de la distribution de la réponse du modèle, l’autre sur la décomposition
de la covariance. Enfin, un cadre de travail inspiré de la théorie des graphes est proposé
pour la description de l’imbrication des modèles. La méthodologie proposée est appliquée
à des exemples industriels d’envergure : un modèle multiéchelles de calcul des propriétés
mécaniques du béton par une méthode d’homogénéisation et un modèle multiphysique de
calcul de dommage sur la culasse d’un moteur diesel. Les résultats obtenus fournissent
des indications importantes pour une amélioration significative de la performance d’une
structure.

Mots-clés: Analyse de sensibilité globale, corrélation, théorie des copules, théorie des
graphes, modélisation imbriquée, modélisation multiéchelles.


