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Résumé en français

La commande coopérative des systèmes multi-robots mobiles connait un essor
considérable ces dernières années, en raison des vastes applications, comme le
sauvetage, le déplacement des objets volumineux, la surveillance, les réseaux de
capteurs, le transport coopératif, etc. L’idée est que des véhicules autonomes
qui collaborent peuvent obtenir de meilleurs résultats. Dans cette thèse, nous
nous intéressons à la commande d’un groupe de robots mobiles non-holonomes.
L’objectif est de concevoir des commandes adaptées à chaque robot pour que
le groupe de robots mobiles puisse exécuter une tache prédéfinie ou suivre une
trajectoire désirée, tout en maintenant une configuration géométrique souhaitée.

Cette thèse comporte 5 chapitres résumés ci-dessous:

Le chapitre est consacré à l’état de l’art et rappels des notions utilisés, en
particulier, ceux liés à la théorie des graphes.

Dans le chapitre 2, le problème du leadeur-suiveur pour robots mobiles non-
holonomes a été étudié en se basant sur l’approche backstepping. Le contrôle de
suivi de trajectoire pour un seul robot mobile non-holonome a été étendu à la
commande d’un groupe de robots mobiles non-holonomes. Le suiveur peut suivre
son leadeur en temps réel à l’aide du contrôleur proposé cinématique. En raison
de la contrainte non-holonome de chaque robot et de l’objectif leader-suiveur, un
contrôleur auxiliaire de commande de la vitesse angulaire a été développé pour
garantir la stabilité asymptotique globale des suiveurs et de continuer à garantir
la stabilité asymptotique locale de la formation entière. Ainsi, un contrôleur
asymptotiquement stable a été développé, garantissant à tous les robots mobiles
d’atteindre, et de maintenir, la formation souhaitée, mais aussi à tous les robots
suiveurs de suivre, en temps réel, la trajectoire du robot leadeur.
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RÉSUMÉ EN FRANÇAIS

Comme l’utilisation de la technologie backstepping peut conduire à un saut
de vitesse, en cas d’erreur de suivi, une approche neurodynamique bioinspirĺęe
a été développé pour résoudre le problème de saut de vitesse. Il est démon-
tré que chaque robot possède une vitesse lisse, continue avec une valeur initiale
nulle en utilisant approche neurodynamique bioinspirée. L’analyse de stabilité a
été effectuée en utilisant la théorie de Lyapunov. L’efficacité de l’algorithme de
commande proposé a été démontrée par simulation.

Dans le chapitre 3, le problème de la commande distribuée d’un système multi-
robots mobiles non-holonomes utilisant l’approche basée sur le consensus a été
étudiée. Tout d’abord, une transformation a été effectuée afin de convertir le prob-
lème la commande distribuée d’un système multi-robots mobiles non-holonomes
en un problème de consensus.

Puis les lois de commande, permettant au groupe de robots mobiles non-
holonome de converger vers une configuration géométrique souhaitée tout en se
déplaçant le long de la trajectoire de référence spécifiée, ont été proposées. Dans
ce chapitre, la trajectoire de référence spécifiée a été représentée par l’état d’un
leader virtuel dont l’information en sortie est sa position qui est disponible pour
seulement un sous-ensemble d’un groupe de suiveurs. Comme les lois de com-
mande proposées dans ce chapitre soient distribuées, il n’est pas nécessaire de
connaître l’information globale de l’ensemble des robots et de l’environnement.
En effet, chaque robot peut obtenir des informations provenant uniquement de
ses voisins.

Dans ce chapitre, il a été montré, que la topologie de communication consid-
érée ne possède pas nécessairement une structure en arbre d’informations, et que
nos lois de commande proposées garantissent aux robots mobiles non-holonomes
de converger exponentiellement vers le modèle géométrique souhaitée, ainsi que
le centre de gravité géométrique de la formation qui converge exponentiellement
vers la trajectoire de leadeur virtuel.

Dans le chapitre 3, les lois de commande proposées sont fondées sur des mod-
èles cinématiques, ce qui suppose que la vitesse de suivi est " parfaite ". Mais,
dans de nombreuses situations pratiques, la dynamique du robot ne doit pas
être ignorée et des lois de commande basées sur les modèles cinématique et dy-
namique doivent être mise en œuvre. C’est pour cela, que dans le chapitre 4,
nous abordons le problème de la commande adaptative distribuée d’un système
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RÉSUMÉ EN FRANÇAIS

multi robots mobiles non-holonomes à roues en tenant compte des modèles ciné-
matiques et dynamiques avec des paramètres inconnus. L’objectif est de mettre
au point des lois de commande distribuées, de telle sorte qu’un groupe de robots
mobiles non-holonomes sur roues converge asymptotiquement vers une configu-
ration géométrique souhaitée le long de la trajectoire de référence désirée. Pour
cela, le problème de de la commande d’un système multi robots est transformé en
un problème de consensus. Nous supposons que la trajectoire de référence désirée
peut être considérée comme la trajectoire d’un leadeur virtuel et que l’information
provenant du leadeur est disponible pour seulement un sous-ensemble de ses
suiveurs voisins. Les suiveurs sont supposés n’avoir qu’une seule interaction lo-
cale. Ensuite, parce que les paramètres dynamiques inconnus auront une inci-
dence sur la poursuite de trajectoire, des lois de commande adaptatives ont été
proposées. Des conditions suffisantes sont obtenues afin de garantir la stabilité
asymptotique des systèmes multi robots no holonome à roues Elles sont basés sur
la théorie des graphes, sur la théorie des matrices, et sur l’approche de Lyapunov.
Ces lois de commandes ont été validées par simulation.

Il est bien connu qu’en pratique, les frottements et les perturbations bornées
ne doivent pas être ignorés. Dans le chapitre 5, le modèle dynamique du robot
mobile non holonome à roues considéré, fait apparaitre un coefficient de frotte-
ment et une perturbation bornée. Sous l’hypothèse de la connaissance partielle
de la dynamique du robot mobile, un régulateur de couple asymptotiquement sta-
ble a été proposé en utilisant des techniques robustes de contrôle adaptatif pour
tenir compte de la dynamique des perturbations bornées. Ensuite, toute la dy-
namique du robot mobile a été supposée inconnue, et la propriété d’approximation
universelle des réseaux de neurones a été utilisée pour relaxer l’hypothèse de la
connaissance de la dynamique du système, et une commande asymptotiquement
robuste adaptative augmentée a été proposée afin de garantir un suivi asympto-
tique.
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1.1 Background and Motivation

In the recent years, the cooperation of multiple robots has been extensively re-
searched, which arises from the broad potential applications including many mil-
itary applications such as general marine mine sweeping , exploration, surveil-
lance and tracking, and many civilian applications such as filming motion picture
stunts, mining support, geophysical survey, pipeline and power line patrol, search
and rescue, farm aerial spraying, timber survey, forest fire suppression, off-shore
oil support, etc. Indeed, there are many potential advantages of such systems
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over a single robot, including improving the mission efficiency in terms of time
and quality, achieving tasks not executable by a single robot or proving flexibility
to the tasks execution, also highly adaptive, low cost and easy maintenance, etc
(Gustavi & Hu 2008; Peng et al. 2013; Tanner & Piovesan 2010; Wen et al. 2012).
As a very typical issue in cooperative control, the formation control of multiple
robots systems received significant interest in recent years, which aim at forcing
robots to converge towards, and maintain, a specific geometric pattern.

(a) (b)

(c) (d)

Figure 1.1: Examples of biological systems exhibiting formation behaviors in
nature: (a) flocks of birds, (b) schools of fishes, (c) team of ants, (d) swarms of
bees.

Many systems in nature exhibit stable formation behaviors, such as, e.g.,
flocks of birds, schools of fishes, swarms of insects (see Fig. 1.1). In these highly
robust systems, individuals follow distant leaders without colliding with neigh-
bors. Similarly, as shown in Fig. 1.2, in many multiple robots applications, such
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as Unmanned Air Vehicles (UAVs), Autonomous Underwater Vehicles (AUVs),

Mobile Robots Systems (MRSs), manipulation (see,Chen 2009), using formation

of multiple robots to accomplish an objective offers obvious advantages. These

include increasing feasibility, accuracy, robustness, flexibility, cost and energy

efficiency, and so on.

(a) (b)

(c) (d)

Figure 1.2: Examples of formation in practice applications.(a)Unmanned Air
Vehicles (UAVs);(b) Autonomous Underwater Vehicles (AUVs); (c)Mobile Robots
Systems (MRSs);(d)Manipulation.

Motivated by the above discussions, this dissertation focus on formation con-

trol problems of multiple mobile robots. The general objective is to design some

new control laws for each robot according to different control tasks and different

constraint conditions, such that a group of mobile robots can form and maintain

a desired geometric pattern and follow a desired trajectory (See Fig. 1.3).

19



1. INTRODUCTION

Figure 1.3: Example of the Formation Control Objective

1.2 Overview of Related Works

In the past decade, numerous results for formation control of mobile robots have
been obtained. Based on the reference of Dudek et al. (1996), there are two
fundamental analysis perspectives: control structures and control approaches. In
the following, we shall present an overview of the related works belonging to these
two perspectives.

1.2.1 Control Structures

It is well known that the robustness of multiple mobile robot systems is strictly
related to the control structure used to organize the robots and to obtain the
desired formation behaviors. In the field of mobile robots formation control, the
control structures can be identified as centralized control structure and distributed
control structure.

In the centralized control structure, a single computational unit processes all
the information needed to achieve the desired control objectives. Therefore they
can ideally yield superior performances and optimal decisions for both the in-
dividual members and the formation as a whole (kanjanawanishkul 2005). In
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recent years, many of the related studies on formation control for multiple mobile

robots with centralized control structure have been discussed. In reference of

Egerstedt & Hu (2001), a coordination strategy for moving a group of robots in

a desired formation over a given trajectory was proposed. In reference of Koo

& Shahruz (2001), a centralized path planning method for a group of unmanned

aerial vehicles (UAVs) in a desired formation was proposed. In reference of Belta

& Kumar (2002), a centralized trajectory computation scheme that uses kinetic

energy shaping was developed. The advantages of a centralized structure typ-

ically include faster convergence and enhanced stability. These benefits come

with a greater financial cost due to the required processing and communications

resources needed by the single computational unit. Although these guarantee a

complete solution, centralized control schemes require higher computation power

and are less robust due to the heavy dependence on a single controller. Addi-

tionally, architectures involving a single computational unit typically do not work

well for large systems due to limited communication range and limited processing

power of the single computational unit (see, Abel 2010).

For the same formation control purpose, the multiple mobile robots formation

control can use a distributed control structure. The distributed control structure

is the most used structure to control multi-robot systems, and can be consid-

ered as the opposite of the centralized approach. In a mobile robots system with

distributed control structure, each robot acts based only on knowledge of local

teammates’ state and of environment, which can satisfy some practical require-

ments, for example, limited communication among robots, lack of robot sensing

ability to obtain global information and the need to scale robot formation (ar-

bitrarily increase the number of robots in the formation). There are a lot of

related results about formation control using distributed control structure (see,

Chen et al. 2010; Chen & Wang 2005; Das et al. 2002; Desai et al. 1998, 2001;

Dierks & Jagannathan 2009a,b; Dong 2012; Dong & Farrell 2008, 2009; Mariot-

tini et al. 2007; Park et al. 2011). This approach typically has a smaller financial

cost and works better for larger systems than a centralized structure. However,

this approach can result in reduced stability and slower convergence.
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1.2.2 Control Approaches

There are various strategies and approaches, which can be roughly categorized
as behavior-based approach, leader-follower approach, virtual-structure, artificial
potential , and graph theory, have been emerged for the formation control of
multiple mobile robots (Chen & Wang 2005; Fax & Murray 2004, 2002; Olfati-
Saber 2006; Shi et al. 2009; Tanner et al. 2003a,b; Wang et al. 2013).

In the behavior-based approach (Balch & Arkin 1998; Brooks 1985; Brunete
et al. 2012; Dougherty et al. 2004; Lawton et al. 2003; Long et al. 2005; Zhao
2010), several desired behaviors (e.g. obstacle avoidance, collision avoidance, tar-
get attraction, to name a few) are assigned to each robot, and the final control
is derived from a weighting of the relative importance of each behavior. In the
behavior-based controller, each individual behavior is actually a sub-controller
for achieving a certain goal (usually in an elemental level), for example, "form
to a specified geometric pattern" can be a behavior, and "avoid obstacles" can
be another behavior. If a robot runs on these two behaviors, eventually it will
achieve a combination of goals i.e.: "forming to a specified geometric pattern
while avoiding obstacles". This method is suitable for a large group of mobile
robots. The behavior-based approach is first introduced by Brooks (1985), and
is generally used in behavioral robotics applications. Antonelli et al. (2008) pro-
posed a control method based on the NSB (Null-Space based behavior) to solve
the flocking problem for mobile robots. Monteiro & Bicho (2010) used a nonlinear
attractor dynamics to design dynamic control structure, where desired behaviors
are generated as an asymptotically stable time series, which further made the
entire system asymptotically stable. The advantages of this kind of approach are
its parallel, distributed and real-time characteristics, and less information needs
to be communicated among robots. Therefore, it is very useful to guide a mul-
tiple mobile robots system in an unknown or dynamical changing environment.
However, it might be difficult to describe the dynamics of the group and to guar-
antee the stability of the whole system, and it is difficult to analyze its behavioral
performance mathematically.

In the virtual structure approach (Chen & Wang 2005; Egerstedt & Hu 2001;
Lewis & Tan 1997; Tan & Lewis 1996), the entire formation is treated as a single
entity. The control laws for robots are derived in three steps. First, the dynamics
of the victual structure is defined. Then the motion of the virtual structure is
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Figure 1.4: l − ϕ controller (Desai et al. (1998))

translated into the desired motion for each robot. Finally, the individual tracking
controllers for robots are derived. Since Tan & Lewis (1996) proposed the con-
cept of virtual structure,there are already many literatures on formation control
using this approach. Ren & Beard (2004) used this approach to implement UAV
control. Lalish et al. (2006) studied a formation control problem, primarily for
a group of aircrafts, and in the first instance introduced a completely decoupled
control scheme for robots in formation. Dong & Farrell (2008) studied two for-
mation control problems for nonholonomic mobile robots, in which only constant
formation shapes were considered. Kostic et al. (2010) studied the time-varying
formation shapes control problem using virtual structure approach and proposed
a saturated control law where all mobile robots in the formation communicate
with all other robots to perform the formation task. Ghommam et al. (2010) used
a combination of the virtual structure and path following approaches to derive a
control strategy for multiple mobile robots coordination. The advantage of this
approach is that it is easier to describe the coordinated behavior for the group
of formation. However, the controller is not in distributed architecture and may
encounter difficulties for solving some formation applications.

In the leader-follower approach (Chen & Wang 2005; Das et al. 2002; Desai
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et al. 1998, 2001; Mariottini et al. 2007), one robot acts as leader that generates

the reference trajectory for the group of robots, and the rest of robots in the group

act as followers that must keep the desired separation and relative bearing with

respect to the leader. In fact, once the motion of the leader is given, the desired

separation and the desired relative bearing of the follower with the leader can be

achieved by choosing a local control law on each follower based on its relative

position dynamics. Then the stability of the formation is also guaranteed, i.e.

the entire group can achieve and maintain the desired formation. Based on the

above observation, formation control problem can be essentially viewed as a nat-

ural extension of the traditional trajectory tracking problem. To the best of my

knowledge, just few researchers have considered the trajectory tracking problem

when dealing with the multi-robot formation problem. Desai et al. (1998, 2001)

presented a feedback linear control method for the formation of nonholonomic

mobile robots using the leader-follower approach, and proposed two control algo-

rithm: l − ϕ control and l − l control. The l − ϕ control aimed to control and

maintain the desired separation ld12 and relative bearing ϕd12 between the leader

and the follower robot as shown in Fig. 1.4 for two nonholonomic wheeled mobile

robots. The l − l control considered the relative position of three mobile robots,

a follower and two leaders, by keeping the desired separation to its two leaders.

The aim is to control and maintain the desired separations ld13 and ld23 between

the follower and its two leaders, as shown in Fig. 1.5.

In the artificial potential approach, the obstacle in the environment produces

a repulsive force that pushes the robot away from obstacles, the target point

produces an attractive force that pulls the robot toward the target point. The

repulsive force and attractive force are described as a repulsive potential func-

tion and an attractive potential function. Generally, these two kinds of potential

functions are used together in practical applications to satisfy the convergence,

collision-free and obstacle-free. In fact, the robot will move along the direction

that minimizes the potential energy. To the best of my knowledge, the concept of

artificial potential is first proposed by Khatib (1986). Since then, a lot of results

are obtained. Olfati-Saber (2006) studied the flocking problem using a set of

potential functions. Hsieh & Kumar (2006) investigated the pattern generation

problem for multiple mobile robots in a potential field framework. Kumar et al.

24



1.2 Overview of Related Works

Figure 1.5: l − l controller (Desai et al. (1998))

(2008) implemented the group segregation in a potential field framework. Sabat-
tini et al. (2009) proposed appropriate control strategies based on the interaction
of some artificial potential fields to realize formation of mobile robots with an
arbitrary shape. Bennet & McInnes (2010) considered the pattern formation and
reconfigurability in a multiple mobile robots system using bifurcation potential
field to achieve various patterns through a simple free parameter change. The
advantages of this approach are that it requires less calculation, and can be used
for real-time control applications. The drawbacks is that it is difficult to design
potential field functions satisfying local minimums.

In the graph theory approach, each robot is considered as a node, and each
communication or sensing information link between robots is considered as an
edge. The research approach uses graph theory, control theory, and dynamics
systems theory together to study the formation controller and its stability. God-
sil & Royle (2001) made a connection between control theory and graph theory
to analyze the formation stabilization. Gazi & Passino (2003) showed the rank of
graph Laplacian which is related to connectivity. Olfati-Saber & Murray (2003)
considered a spatial adjacency matrix for obtaining the formation among a group
of agents which are equipped with limited range sensor. Recently, the graph
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rigidity and persistence are used in the formation control problem. Since Eren
et al. (2004) proposed the use of graph rigidity theory for modeling information
structure of the formation, numerous results about rigid formation and persistent
formation were obtained (See, Anderson et al. 2008; Hendrickx et al. 2008; Sum-
mers et al. 2011; Yu et al. 2007 ). The advantage of this approach is that it is
easy to represent any formation by using graph, which has well-developed theory
results. The disadvantage is that it is difficult to consider the limitation of the
real robot configuration.

Besides the above listed approaches, some other approaches are also used to
formation control, i.e., Model predictive control (MPC) approach (Kanjanawan-
ishkul 2009; Phan & Barlow 2008), Reinforcement learning (Zuo et al. 2010), and
hybrid system (McClintock & Fierro 2008), and so on.

1.3 Preliminaries

In this section, some preliminaries about graph theory and the nonholonomic
mobile robots are given, which serve as a basis for the following several chapters.
Notations: Let Im denote them×m identity matrix, 0m×m denote them×m zero
matrix, and 1m = [1, 1, . . . , 1]T ∈ Rm (1 for short, when there is no confusion).
λmin(·) and λmax(·) are the smallest and the largest eigenvalues of the matrix
respectively. For any y = (y1, y2, . . . , ym)T ∈ Rm, we denote that sign(y) =[
sign(y1), sign(y2), . . . , sign(ym)

]T .
1.3.1 Graph Theory

Graph theory has proved to be an important tool in the stability analysis of the
formations. A graph is a natural presentation of the interconnection of coordi-
nated robots for information exchange. The characterization of the topology of a
graph can be used in the analysis of robot formations stability and controllability
. It can also be used to choose an appropriate controller for a specific formation
pattern or even decide if such a controller exists, see for example, Diestel (1997)
and Godsil & Royle (2001).

A weighted graph is used to represent the communication or sensing links
among robots because it can represent both the existence and information com-
munication of each links. Let the weighted graph G = (V,E,A) be a weighted
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graph consisting of the finite nonempty set of nodes V = {ν1, ..., νm}, the set of

edges E ⊆ V×V, and a weighted adjacency matrix A = (aij)m×m. The quantities

|V| and |E| are, respectively, called order and size of the graph. Suppose that

|V| = m. The edge (νi, νj) ∈ E means that the node i get the information from

the node j through an information link.

Figure 1.6: Information flow from j to i

Definition 1.1 The weighted graph G = (V,E,A) is undirected, if for all νi, νj ∈
V,

(νi, νj) ∈ E⇐⇒ (νj, νi) ∈ E,

otherwise it is directed.

Definition 1.2 The weighted adjacency matrix A of a weighted graph G is rep-
resented as

A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

... . . . ...
am1 am2 . . . amm

 ∈ Rm×m,

where aji is the weight of the link (νj, νi), andajj = 0 for any νj ∈ V,

aji = 1 for (νj, νi) ∈ E and i 6= j.

Note that here aji = aij, ∀j 6= i, since (νj, νi) ∈ E implies (νi, νj) ∈ E. We can

say νj is a neighbor vertex of νi, if (νj, νi) ∈ E. The neighbor set of node j is

defined as

Nj = {i ∈ V : aji 6= 0} = {i ∈ V : (j, i) ∈ E}.
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Definition 1.3 The degree matrix of the weighted graph G is a diagonal matrix

D = diag{d1, . . . , dm} ∈ Rm×m, where dj =
m∑

i∈Nj
aji.

Definition 1.4 The Laplacian matrix L = (lji)m×m ∈ Rm×m of the weighted
graph G is defined as

lji =



m∑
k∈Nj

ajk for i = j,

−aji for (νj, νi) ∈ E and i 6= j

0 otherwise.

The Laplacian matrix L ∈ Rm×m can be expressed as

L = D−A. (1.1)

It also can express as the following form

L =



m∑
k∈N1

a1k −a12 . . . −a1m

−a21
m∑

k∈N2

a2k . . . −a2m
...

... . . . ...

−am1 −am2 . . .
m∑

k∈Nm
amk


.

Hence, we can easily obtain the following equation,

L1m = 0. (1.2)

Example 1.5 From Fig.1.7, the edge set E of the graph G is E = {(1, 2), (1, 4), (1, 6),

(2, 3), (2, 5), (3, 4), (3, 5), (4, 5), (5, 6)}. The adjacency matrix, the degree matrix
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and the Laplacian matrix of the graph shown in Fig.1.7 can be written as:

A =



0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 1 0

1 0 1 0 1 0

0 1 1 1 0 1

1 0 0 0 1 0


, D =



3

3

3

3

4

2


,

L = D−A =



3 −1 0 −1 0 −1

−1 3 −1 0 −1 0

0 1 3 −1 −1 0

−1 0 −1 3 −1 0

0 −1 −1 −1 4 −1

−1 0 0 0 −1 2


.

Figure 1.7: A graph G = (V,E) with V = {1, 2, 3, 4, 5, 6}.

Lemma 1.6 (Chung 1997): Assume G is a weighted undirected graph with Lapla-
cian matrix L, then the following two statements are equivalent:

(1) The matrix L has an eigenvalue zero with multiplicity 1 and corresponding
eigenvector 1, and all other eigenvalues are positive;
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(2) G is connected.

1.3.2 Nonsmooth analysis

In what follows, we introduce some elements from nonsmooth analysis that we use
in the next sections. For a differential equation with a discontinuous right-hand
side, we have the following definition.

Consider the vector differential equation given by

ẋ = f(t, x), (1.3)

where f(t, x) is measurable and essentially locally bounded. the vector func-
tion x(·) is called a Filippov solution of (1.3)Cortes (2008), if x(·) is absolutely
continuous and satisfies

ẋ ∈ K[f ](t, x)

almost everywhere where

K[f ](t, x) ≡ co{limxi→xf(xi)|xi 6∈ Ωv},

where the Ωv denotes is the set of measure zero that contains the set of points
where f is not differentiable. and co denotes the convex closure.

Lemma 1.7 (Cortes (2008)) The Filippov set-value map has the following useful
properties:
(1) Consistency: If f : Rd → Rm is continuous at x ∈ Rd, then

K[f ](x) = {f(x)}.

(2) Sum Rule : If founction f1, f2 : Rd → Rm are locally bounded at x ∈ Rd, then

K[f1 + f2](x) ⊆ K[f1](x) + K[f2](x).

Moreover, if either f1 or f2 is continuous at x, then equality holds.

Lyapunov theorems have been extended to nonsmooth systems. The following
chain rule provides a calculus for the time derivative of the energy function in the
nonsmooth case.
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Definition 1.8 Paden & Sastry (1987) Let V (x) be a locally Lipschitz continuous
function. The generalized gradient of V (x) is given by

∂V (x) , co{lim∇V (x)|xi → x, xi ∈ Ωv ∩ N̄},

where co denotes the convex hull, Ωv is the set of Lebesgue measure zero, where
∇V does not exist, and N̄ is an arbitrary set of zero measure.

From the definition, the candidate Lyapunov function V we use is smooth and
hence regular, while its generalized gradient is a singleton which is equal to its
usual gradient everywhere in the state space: ∂V (x) = {∇V (x)}.

Definition 1.9 (Cortes (2008)) Consider the vector differential equation (1.3),
a set-valued map K : Rd → B(R), the set-valued Lie derivative of V with respect
to (1.3) is defined as

˙̃V ,
⋂
ξ∈∂V

ξTK[f ](t, x).

A Lyapunov stability theorem in terms of the set-valued map ˙̃V is stated as
follows.

Lemma 1.10 Shevitz & Paden (1994) For , let f(t, x) be locally essentially
bounded and 0 ∈ K[f ](t, 0) in a region Q ⊃ {t|t0 ≤ t ≤ ∞} × {x ∈ Rd|‖x‖ < r},
where r > 0. Also, let V : Rd → R be a regular function satisfying

V (t, 0) = 0, and 0 < V1(‖x‖) ≤ V (t, x) ≤ V2(‖x‖), for x 6= 0,

in Q for some V1 and V2 belonging to class K. If there exists a class K function
w(·) in Q such that the set-valued Lie derivative of V (x) satisfies

max ˙̃V (t, x) ≤ −w(x) < 0, for x 6= 0,

then the solution x ≡ 0 is asymptotically stable.

1.3.3 Nonholonomic Systems

The control design for a nonholonomic system has been discussed over the last
decade. The nonholonomic system can be described by the nonholonomic con-
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straints, These so-called nonholonomic constraints most commonly arise in me-
chanical systems where some constraints are imposed on the motion. These kinds
of nonholonomic systems are broadly used in real life, in all kinds of intelligent
mechanical systems like manipulators, mobile robots, surface vessels, underwater
vehicles, helicopters, spacecrafts, etc (Xiang et al. 2009).

In this section, the definitions of nonholonomic system and some related con-
cepts will be introduced (Goldstein 1980; Xiang et al. 2009).

1) Holonomic Systems: Consider a system of generalized coordinates q, with
the dynamics q̈ = f(q, q̇, u), where u is a vector of external generalized inputs. If
the conditions of constraints limiting the motion of the system, can be expressed
as the time-derivative of some functions of the generalized coordinates with the
form Φ(q, t) = 0, then the constraints are said to be holonomic. This type of
constraint is socalled integrated, since the holonomic constraint can be solved by
integration.

2) Nonholonomic Systems : In classic mechanics, systems with nonholonomic
constraints, which are defined as linear constraints w.r.t. generalized coordinates
q, having the form Φ(q, t)q̇(t) = 0. This means the equations of motion constraints
are irreducible, and cannot be expressed as time derivative of state function.
Therefore, the constraints non-integrable are called nonholonomic constraints.
Within nonholonomic systems, the generalized coordinates are not independent
from each other.

X

Y

x

y

θ

Figure 1.8: A unicycle mobile robot.
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The unicycle mobile robot (shown in Fig. 1.8) is a typical nonholonomic
system, which can be describe by the nonholonomic constraints. In general, there
are two type of constraints: the rolling constraint and the sliding constraint. From
the Fig.1.8, the state vector q = (x, y, θ) denotes posture of the robot. (x, y) of the
centre of mass of the robot; And θ is the orientation with respect to the horizontal
axis; v and w are the forward velocity and the angular velocity, respectively.

The rolling constraint for the wheel means that all motion along the direction
of the wheel plane, which can be expressed as

ẋ cos θ + ẏ cos θ − rϕ̇ = 0.

where ϕ̇ is the angular velocity of the wheel, r is the radius of the wheel.
In contrast, the sliding constraint means the wheel’s motion orthogonal to the

wheel plane must be zero

ẋ sin θ − ẏ cos θ = 0, (1.4)

And the kinematic model of a mobile robot, which can be obtained from the
nonholonomic constraints, can be described as

ẋ = v cos θ, (1.5)

ẏ = v sin θ, (1.6)

θ̇ = w. (1.7)

It can be shown that the kinematic constraints given by (1.3.3) and (1.4)
cannot be integrated, i.e. there does not exist a function f(x, y, θ, w) such that
the constraints are equivalent to df(x, y, θ, w)/dt = 0. This kind of constraints
is called nonholonomic. Conversely, if constraints can be integrated, they are
named holonomic constraints.

1.3.4 Lyapunov Theory

Before presenting the feedback control laws for the global tracking problem sta-
bilization discussed above, we list two useful lemmas that will be used in the
following proof of the main theory.

Assume that f is function of time t only. It should be noted that:
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1. Having ḟ(t)→ 0 does not imply that f(t) has a limit at t→∞.

2. Having f(t) approaching a limit as t→∞ does not imply that ḟ(t)→ 0.

3. Having f(t) lower bounded and decreasing ḟ(t) ≤ 0 implies it converges to
a limit. But it does not say whether or not ḟ(t)→ 0 as t→∞.

Theorem 1.11 (Barbalat’s lemma) (Slotine & Li 1991) If f(t) has a finite limit
as t→∞ and if ḟ(t) is uniformly continuous (or f̈(t)is bounded), then ḟ(t)→ 0

as t→∞.

Usually, it is difficult to analyze the asymptotic stability of time-varying sys-
tems because it is very difficult to find Lyapunov functions with a negative definite
derivative.

Lemma 1.12 (Lyapunov-Like Lemma) (Slotine & Li 1991) If a scalar function
V (x, t) satisfies the following conditions:

1. V (x, t) is lower bounded.

2. V̇ (x, t) is negative semi-definite.

3. V̇ (x, t) is uniformly continuous in time (satisfied if V̈ is finite).

then V̇ (x, t)→ 0 as t→∞.

Example 1.13 (Slotine & Li 1991) Consider a non-autonomous system

ė =− e+ g · w(t)

ġ =− e · w(t).

where w(t) is the input of the system. Assume that the input w(t) is bounded.
Choose the Lyapunov function of the system as

V (t) = e2 + g2.

Taking the derivation of the V (t) obtains V̇ (t) = −2e2 ≤ 0. It means that
V (t) is bounded and V (t) ≤ V (0). Hence, e and g are bounded. But it does
not say anything about the convergence e of to zero. Moreover, the invariant set
theorem cannot be applied, because the dynamics is non-autonomous.
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Using Barbalat’s lemma:

V̈ = −4e(−e+ g · w).

This is bounded because e and g and w are bounded. This implies V̇ → 0 as
t→∞ and hence e→ 0. This proves that the error converges.

1.4 Contributions and Outline of Dissertation

This dissertation considers the formation control of multiple nonholonomic mobile
robots. The distributed control structure is been used to research the multiple
mobile robots formation control problem. The main contributions of this disser-
tation are summarized as follows:

Chapter 2 investigates the leader-follower formation control problem for non-
holonomic mobile robots using a bioinspired neurodynamics based approach. The
contribution of this chapter is threefold. First, note from the previous literatures
that, in tracking problem for a single robot, the robot tracks the desired trajectory
which has been predefined. However, in the leader-follower formation system, the
trajectories of the followers are usually not predefined, which are decided by its
real-time leader. This chapter extends the trajectory tracking control for a single
nonholonomic mobile robot to the formation control for multiple nonholonomic
mobile robots based on backstepping technique, in which follower can track its
real-time leader using the proposed kinematic controller. And the kinematic con-
troller is proposed according to its leader’s information, and desired relative sep-
aration and bearing with its leader. Second, due to the nonholonomic constraint
of each robot and the leader-follower formation control objective, an auxiliary
angular velocity control law is developed to guarantee the global asymptotic sta-
bility of the followers and to further guarantee the local asymptotic stability of
the entire formation. Finally, it is well known that mobile robot will start with
a very large velocity value by using the backstepping technique, and can suffer
from impractical velocity jumps when tracking errors suddenly occur. There-
fore, a bioinspired neurodynamics based approach according to the backstepping
technique is developed to control the leader-follower formation to solve the im-
practical velocity jumps problem. In comparison to the previous backstepping
control technique, the proposed neurodynamics based tracking controller in this
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chapter is simple and efficient. It is not necessary to use the torque controllers

for resolving the velocity jumps.

Chapter 3 investigates the distributed formation control problem for multiple

nonholonomic mobile robots using consensus-based approach. The contributions

of this chapter are fourfold. Firstly, a transformation is given to convert the

formation control problem for multiple nonholonomic mobile robots into a state

consensus problem. Secondly, the control laws are established by using the re-

sult from graph theory and Lyapunov techniques for accomplishing our formation

control objectives: a group of noholonomic mobile robots converge to a desired ge-

ometric pattern with its centroid moving along the specified reference trajectory.

In this chapter, the specified reference trajectory is represented by the state of a

virtual leader whose outputs is only its position information that is available to

only a subset of a group of followers. Thirdly, the distributed kinematic controller

is design by the its neighbors’ information. It is not necessary for each robot to

know the global information. In fact, each robot can obtain information only from

its neighbors. Moreover, different with the traditional leader-follower approach,

the communication topology does not necessary need to be tree information sens-

ing structures. Finally, our control laws guaranty that the nonholonomic mobile

robots can at least exponentially converge to the desired geometric pattern, as

well as the geometric centroid of the formation at least exponentially converges

to the trajectory of virtual leader.

In the previous Chapter 3, the formation control of nonholonomic wheeled mo-

bile robots is based on kinematic models, which requires “perfect velocity track-

ing". However, in many practical situations, the dynamics of robot should not

be ignored and practical control strategies accounting for both the kinematic and

dynamic effect should be implemented. Hence, Chapter 4 investigates the dis-

tributed adaptive formation control problem for multiple nonholonomic wheeled

mobile robots. The objective is to develop distributed controllers based on the

combination of both kinematic model and dynamics systems with unknown pa-

rameters, such that a group of noholonomic wheeled mobile robots asymptotically

converge to a desired geometric pattern with its centroid moving along the spec-

ified reference trajectory. To achieve this goal, a variable transformation is first

given to convert the formation control problem into a state consensus problem.
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Distributed kinematic controllers are then developed. We assume that the spec-
ified reference trajectory can be considered as the trajectory of a virtual leader
whose information is available to only a subset of the followers. Also the followers
are assumed to have only local interaction. Next, it is well known in practice that
the dynamics model of the wheel mobile robot has unknown dynamical param-
eters, which will affect the robust trajectory tracking of the system. Therefore,
adaptive computed-torque controllers for mobile robots are developed. Sufficient
conditions are derived for accomplishing the asymptotically stability of the sys-
tems based on algebraic graph theory, matrix theory, and Lyapunov control ap-
proach. Finally, simulation examples illustrate the effectiveness of the proposed
controllers.

In the previous Chapter 4, we consider the dynamics model of the wheeled
mobile robot without the friction term and bounded disturbance term. In some
practical applications, the friction term and bounded disturbance term should
not be ignored and practical control strategies accounting for the friction term
and bounded disturbance term should be implemented. Therefore, in Chapter 5,
we shall consider the formation control problem for the wheeled mobile robots, in
which the dynamics model of the wheeled mobile robot has the friction term and
bounded disturbance term. First, we consider that the partial knowledge of the
mobile robot dynamics is available. An asymptotically stable torque controller
is proposed by using robust adaptive control techniques to account for unmolded
dynamics and bounded disturbances. Next, we consider that the dynamics of the
mobile robot are all unknown. Note from the previous cited literatures the neural
network controller can relax the knowledge of the dynamics. Thus the universal
approximation property of neural network is used to relax the knowledge of the
dynamics system, and an asymptotically robust adaptive controller augmented
with the neural network is derived to achieve asymptotic tracking.
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Leader-Follower Formation Control
of Multiple Nonholonomic Mobile
Robots Using a Bioinspired
Neurodynamic based Approach
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2.1 Introduction

Note from the discussions in Chapter 1 that, in some applications the formation
control problem can be essentially viewed as a natural extension of the traditional
trajectory tracking problem. To the best of my knowledge, just few researchers
have considered the trajectory tracking problem when dealing with the multi-
robot formation problem. In this chapter, we will extent the traditional trajectory
tracking control problem for single robot to formation control problem for multiple
mobile robots.

In the literature, the trajectory tracking control problem for a single mobile
robot has been studied in recent years (Blažič 2011; Boukattaya et al. 2012; Gu
& Hu 2006; Jiang & Nijmeijer 1997; Kanayama et al. 1990; Yang et al. 2012).
Kanayama et al. (1990) proposed an classic error-based tracking model and de-
signed a stable tracking controller for a single nonholonomic mobile robot. Jiang
& Nijmeijer (1997) proposed a backstepping approach to the trajectory tracking
control, and studied tracking problems locally and globally trajectory. Fierro
& Lewis (1998) introduced a novel torque controller for a mobile robot, and
integrated a kinematic controller and a neural network torque controller for non-
holonomic mobile robot. However, this method must consider the dynamics of
the mobile robot,which is complicated. Gu & Hu (2006) proposed the receding
horizon tracking control on the wheeled mobile robots, which uses the optimized
method to accelerate the convergence speed of errors.

Various tracking control methods for mobile robot have been mentioned in the
literature, such as sliding mode, linearization, neural networks, fuzzy systems and
backstepping. Among the above methods, the backstepping method is preferred.
By using the backstepping technique, the tracking controllers can be simple, and
the system stability can be guaranteed by Lyapunov stability theory. Moreover,
some of the backstepping based controllers can deal with arbitrarily large initial
errors.
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2.2 Mathematical Model of a Nonholonomic Mobile Robot

In this Chapter, we further investigate the leader-follower formation control
problem for nonholonomic mobile robots using a bioinspired neurodynamic based
approach. The contribution of this chapter is threefold. First, note from the lit-
eratures (Blažič 2011; Boukattaya et al. 2012; Fierro & Lewis 1998; Gu & Hu
2006; Jiang & Nijmeijer 1997; Kanayama et al. 1990; Yang et al. 2012) that,
in tracking problem for a single robot, the robot tracks the desired trajectory
which has been predefined. However, in the leader-follower formation system,
the trajectories of the followers are usually not predefined, which are decided
by its real-time leader. Inspired by the above literatures, this chapter extends
the trajectory tracking control for a single nonholonomic mobile robot to the
formation control for multiple nonholonomic mobile robots based on backstep-
ping technique, in which follower can track its real-time leader by the proposed
kinematic controller. Second, due to the nonholonomic constraint of each robot
and the leader-follower formation control objective, an auxiliary angular veloc-
ity control law is developed to guarantee the global asymptotic stability of the
followers and to further guarantee the local asymptotic stability of the entire for-
mation. Finally, it is well known that mobile robot will start with a very large
velocity value by using the backstepping technique, and can suffer from impracti-
cal velocity jumps when tracking errors suddenly occur. Therefore, a bioinspired
neurodynamics based approach according to the backstepping technique is de-
veloped to control the leader-follower formation to solve the impractical velocity
jumps problem. In comparison to the previous backstepping control technique,
the proposed neurodynamics based tracking controller in this chapter is simple
and efficient. It is not necessary to use the torque controllers for resolving the
velocity jumps.

2.2 Mathematical Model of a Nonholonomic Mo-
bile Robot

Consider a group of n nonholonomic mobile robots. For simplicity, we assume
that each robot has the same mechanical structure as shown in Fig. 2.1. The
posture of the i-th(1 ≤ i ≤ n) robot (named robot Ri) in a cartesian frame OXY
is specified by pi = [xi, yi, θi]

T , where (xi, yi) denotes the front coordinate of the
robot Ri, θi is the heading angle.
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Figure 2.1: A nonholonomic mobile robot.

The mobile robot with two driven wheels shown in Fig. 2.1 is a typical example

of nonholonomic mechanical systems. Under the hypothesis of pure rolling and

nonslipping Fierro & Lewis (1998), the kinematic constraint of the nonholonomic

mobile robot Ri is given as

ẏi cos θi − ẋi sin θi = dθ̇i, (2.1)

where d is the distance from the rear axle to the front of the robot.

From the kinematic constraint (2.1), the kinematics model of the nonholo-

nomic mobile robot Ri can be written as

ṗi =

 ẋi
ẏi
θ̇i

 =

 cos θi −d sin θi
sin θi d cos θi

0 1

[ vi
wi

]
, (2.2)

where vi and wi are the linear velocity and the angular velocity.
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2.3 Leader-Follower Formation Control

2.3.1 A Leader-Follower Formation Model
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Figure 2.2: A leader-follower formation scheme.

From the formation control scheme shown in Fig. 2.2, the robot Rj follows its

leader Ri with desired separation Ldij, desired bearing ψdij and desired orientation

θdj . Here θdj = θi. Note that pi = [xi, yi, θi]
T is the actual posture of leader robot

Ri, pj = [xj, yj, θj]
T is the actual posture of follower robot Rj, pdj =

[
xdj , y

d
j , θ

d
j

]T
is the desired posture of follower robot Rj, Lij and ψij are the actual separation

and the actual bearing between follower Rj and its leader Ri, and Ldij and ψdij

represent the desired separation and the desired relative bearing respectively,

Through the geometrical relation between robots, it is easy to obtain that the

desired posture pdj of the follower robot satisfies

pdj =
[
xdj , y

d
j , θ

d
j

]T
=

 xi − d cos θi + Ldij cos
(
ψdij + θi

)
yi − d sin θi + Ldij sin

(
ψdij + θi

)
θi

 , (2.3)
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The actual posture pj of the follower Rj satisfies

pj = [xj, yj, θj]
T

=

 xi − d cos θi + Lij cos (ψij + θi)
yi − d sin θi + Lij sin (ψij + θi)
θj

 . (2.4)

Project the relative distance Lij along the X and Y directions by cartesian
coordinates as

Lij =
√
L2
ijx + L2

ijy, (2.5)

where Lijx(t) and Lijy(t) denote that the actual relative separations between
leader and follower project along X and Y direction by cartesian coordinates
respectively, and satisfy

Lijx = xi − xj − d cos θi = −Lij cos(ψij + θi),
Lijy = yi − yj − d sin θi = −Lij sin(ψij + θi).

(2.6)

Taking the derivative of (2.6) along (2.2) gives

L̇ijx = ẋi − ẋj + dθ̇i sin θi

= vi cos θi − vj cos θj + dwj sin θj,

L̇ijy = ẏi − ẏj − dθ̇i cos θi

= vi sin θi − vj sin θj − dwj cos θj,

where vi and wi denote the linear velocity and angular velocity of the leader Ri,
vj and wj denote the linear velocity and angular velocity of the follower Rj.

Taking the derivative of (2.5) along (2.2) yields

L̇ij =
1√

L2
ijx + L2

ijy

(
Lijx · L̇ijx + Lijy · L̇ijy

)
=

1

Lij
{vi (Lijx cos θi + Lijy sin θi)}

− 1

Lij
{vj (Lijx cos θj + Lijy sin θj)}

+
1

Lij
{−dwj (−Lijx sin θj + Lijy cos θj)}

=− vi cosψij + vj cos γij + dwj sin γij, (2.7)
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where γij = ψij + θi − θj, and

Lijx cos θi + Lijy sin θi = −Lij cosψij,

−Lijx sin θi + Lijy cos θi = −Lij sinψij,

Lijx cos θj + Lijy sin θj = −Lij cos γij,

−Lijx sin θj + Lijy cos θj = −Lij sin γij.

From Fig. 2.2, ψij = arctan (Lijy/Lijx) − θi + π. Let’s take the derivative of
the relative bearing,

ψ̇ij =

[
arctan

(
Lijy
Lijx

)
− θi + π

]′
=

1

Lij
{vi sinψij − vj sin γij + dwj cos γij} − wi. (2.8)

Hence, the kinematic model of the leader-follower formation is

L̇ij =− vi cosψij + vj cos γij + dwj sin γij, (2.9)

ψ̇ij =
1

Lij
{vi sinψij − vj sin γij + dwj cos γij} − wi. (2.10)

2.3.2 Formation Control Objective

Our objective is to achieve and maintain the desired leader-follower formation, i.e.
maintaining the desired separation-separation and separation-bearing between
the leader and follower. Therefore, the control task is to design the control inputs
vj and wj for the follower robot Rj (1 ≤ j ≤ n) such that

lim
t→∞

(
Ldij − Lij

)
= 0 lim

t→∞

(
ψdij − ψij

)
= 0, (2.11)

i.e.
lim
t→∞

(
pdj − pj

)
= 0.

Before proceeding, the following assumptions are needed.

Assumption 2.1 Assume that the separation distance Lij and bearing ψij are
available. The linear velocity and angular velocity and its orientations of each
robot are also available.
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Assumption 2.2 The angular velocity of the robot are bounded for all t, and
−wmax ≤ wj ≤ wmax, where wmax is a positive constant.

Assumption 2.3 The perfect velocity tracking holds.

2.3.3 The Error Dynamics of Leader-Follower Formation

In the leader-follower approach, the angular and linear velocity of the leader

are given, we will only need to control the follower’s angular and linear velocity

to keep the relative separation and relative bearing between them to make the

desired formation satisfied. Therefore, the leader following based multiple mobile

robots formation control can be considered as an extension of tracking problem

of nonholonomic mobile robot Li et al. (2005).

Using the equations (2.3), (2.4) and applying simple trigonometric identities,

the tracking error for leader-follower formation is obtained as

ej =

 xje
yje
θje


=

 cos θj sin θj 0
− sin θj cos θj 0

0 0 1

 xdj − xj
ydj − yj
θdj − θj


=

 Ldij cos(ψdij + θij)− Lij cos(ψij + θij)
Ldij sin(ψdij + θij)− Lij sin(ψij + θij)

θdj − θj

 , (2.12)

where θij = θi − θj.

Assume that the desired separation Ldij and the desired bearing ψdij are con-

stants. It then follows that L̇dij = 0, ψ̇dij = 0. Taking the time derivative of (2.12)
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along (2.3) and (2.4) have

ẋje =− Ldij sin(ψdij + θij)θ̇ij − L̇ij cos(ψij + θij) + Lij sin(ψij + θij)(ψ̇ij + θ̇ij)

=− Ldij sin(ψdij + θij)(wi − wj)− L̇ij cos(ψij + θij)

+ Lij sin(ψij + θij)(ψ̇ij + wi − wj)
=− Ldij sin(ψdij + θij)(wi − wj)− cos(ψij + θij){−vi cosψij + vj cos γij + dwj sin γij}

+ Lij sin(ψij + θij) · {
1

Lij
(vi sinψij − vj sin γij + dwj cos γij)− wi}

=− Ldijwi sin
(
ψdij + θij

)
+ Ldijwj sin

(
ψdij + θij

)
+ vi cos γij cosψij − vj cos2 γij

− dwj cos γij sin γij + vi sin γij sinψij − vj sin2 γij

− Lijwi sin γij + dwj cos γij sin γij + Lij sin γij (wi − wj)
=− vj − Ldijwi sin

(
ψdij + θij

)
+ vi cos γij cosψij + vi sin γij sinψij

+ Ldijwj sin(ψdij + θij)− Lijwj sin γij

=vi cos θij + wjyje − vj − Ldijwi sin(ψdij + θij),

and

ẏje =Ldij cos(ψdij + θij)θ̇ij − L̇ij sin γij − Lij cos γij

(
ψ̇ij + wi − wj

)
=Ldij cos(ψdij + θij)(wi − wj)− sin γij {−vi cosψij + vj cos γij + dwj sin γij}

− Lij cos γij · {
1

Lij
(vi sinψij − vj sin γij + dwj cos γij)− wi}

+ Lij cos γij(wi − wj)
=Ldijwi cos(ψdij + θij)− Ldijwj sin

(
ψdij + θij

)
+ vi sin γij cosψij − vj sin γij cos γij

− dwj sin2 γij − vi cos γij sinψij + vj cos γij sin γij

− dwj cos2 γij + Lijwi cos γij − Lij cos γijwi + Lij cos γijwj

=Ldijwi cos(ψdij + θij) + vi sin γij cosψij − vi cos γij sinψij − dwj
− Ldijwj sin(ψdij + θij) + Lijwj cos γij

=vi sin θij − wjxje − dwj + Ldijwi cos(ψdij + θij).

Thus, one can obtain the error dynamics of mobile robot can be described as

ẋje = vi cos θij + wjyje − vj − Ldijwi sin(ψdij + θij),
ẏje = vi sin θij − wjxje − dwj + Ldijwi cos(ψdij + θij),

θ̇je = wdj − wj.
(2.13)
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2.4 Backstepping Control Algorithm

Due to the characteristics of the error dynamic system (2.13), the input-output

feedback control cannot be used to tackle this model (2.13). Also due to the

nonholonomic constraint of each robot and the leader-follower formation control

objective, the orientations of each follower will not be equal while the formation

is turning, and thus, the reference orientation cannot be chosen as θdj = θi. Here,

we choose the derivative of the reference orientation as follows

θ̇dj =
(
vi sin θij + Ldijwi cos

(
ψdij + θij

)
+ 2k2yje

)
/d. (2.14)

By choosing (2.14), the asymptotic stability of all error states can be found.

Hence, the error dynamic system becomes

ẋje = wjyje − vj + vi cos θij − Ldijwi sin
(
ψdij + θij

)
,

ẏje = −wjxje − dwj + vi sin θij + Ldijwi cos
(
ψdij + θij

)
,

θ̇je =
(
vi sin θij + Ldijwi cos

(
ψdij + θij

)
+ 2k2yje

)
/d− wj.

(2.15)

Consider the following backstepping control inputs (2.16),

vj = k1xje + vi cos θij − Ldijwi sin
(
ψdij + θij

)
,

wj =
(
vi sin θij + Ldijwi cos

(
ψdij + θij

)
+ k2yje + k3θje

)
/d, (2.16)

where k1 > 0, k2 > 0, k3 > 0. Hence, the closed-loop kinematics error dynamic

becomes
ẋje = wjyje − k1xje,
ẏje = −wjxje − k2yje − k3θje,
θ̇je = (−k3θje + k2yje) /d.

(2.17)

To prove that the trajectory tracking control system (2.17) under the con-

troller laws (2.16) is asymptotically stable and the tracking errors converge to

zeros, we choose the following Lyapunov function candidate as

V (t) =
1

2

(
x2je + y2je

)
+
dk3θ

2
je

2k2
. (2.18)

It’s obvious that V (t) ≥ 0, and V (t) = 0 if and only if xje = 0, yje = 0, θje = 0.
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The derivative of the Lyapunov function (2.18) is given by

V̇ (t) = xje ˙xje + yje ˙yje +
dk3θje ˙θje

k2
. (2.19)

Substituting (2.17) into (2.19), we have

V̇ (t) =− k1x2je − k2y2je − k3θjeyje − k23θ2je/k2 + k3θjeyje

=− k1x2je − k2y2je − k3θ2je ≤ 0.

Since V̇ (t) ≤ 0 and V (t) ≥ 0, the tracking controller (2.16) for the follower
Rj is stable. It then infers that xje, yje and θje are bounded. Therefore, we
have ‖V̈ (t)‖ < ∞. Thus it then follows that V (t) is uniformly continuous.
From V̇ (t) ≤ 0 and V (t) ≥ 0, it also follows that V (t) does not increase, i.e.,
V (t) ≤ V (0). By Barbalat’s Lemma, V̇ → 0 as t → ∞, from which it can be
deduced that xje → 0, yje → 0 and θje → 0 as t → ∞. Therefore, the track-
ing controller (2.16) can guarantee the closed-loop dynamics system (2.17) to be
globally asymptotically stable. Hence, the closed-loop error dynamic system is
asymptotically stable, and the tracking errors converge to zero.

2.5 The Bioinspired Neurodynamics Applying to
Backstepping Control Algorithm

It is well known that various tracking control methods have been used for mobile
robot tracking control, such as sliding mode, linearization, neural networks, fuzzy
systems and backstepping. Among the above methods, the backstepping method
is preferred. By using the backstepping technique, the tracking controllers can be
stable and simple. Moreover, some of the backstepping based controllers can deal
with arbitrarily large initial errors. However, the disadvantage is quite obvious
(Fierro & Lewis (1998); Yang et al. (2012)): The velocity control law is directly
related to the state errors, so large velocities can be generated in large initial
error conditions, and it will suffer from impractical velocity jumps when the
tracking errors suddenly change. This implies that the initial linear acceleration
and angular acceleration are very large, that is to say, the force and torque of
follower are very large, which does not hold in practice. To resolve the impractical
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velocity jump problem, a novel tracking controller will be proposed in this section

by incorporating the bioinspired neurodynamics into the backstepping technique.

2.5.1 The Bioinspired Neurodynamics Model

A typical biological neural model is the shunting model Ogmen & Gagné (1990),

which is derived from Hodgkin and Hulexy’s membrane model Hodgkin & Hux-

ley (1952), and can be used to solve the problem of sudden speed jumps. The

Shunting Neural Dynamic Model is described as

dxj
dt

= −Ajxj + (Bj − xj)S+
j (t)− (Dj + xj)S

−
j (t), (2.20)

where xj is the neural activity of the j-th neuron in the neural network, the

parameters Aj, Bj, and Dj are nonnegative constants representing the passive

decay rate, the upper and lower bounds of the neural activity respectively, and

the variables S+
j and S−j are the excitatory and inhibitory inputs to the neuron.

By analyzing the backstepping technology based tracking controller proposed

in Dierks & Jagannathan 2007; Fierro & Lewis 1998; Tsai et al. 2004; Zhang et al.

1999, it is well known that the velocity-jumps are caused by the suddenly changes

in tracking error, particular xje and yje. Inspired by the smooth neural dynamics

of the shunting neural model, a biological tracking controller is proposed to solve

the velocity-jumps problem.

Substituting Aj = A, Bj = B, Dj = D, xj = αj, S+
j (t) = f1j(xje), S−j (t) =

g1j(xje) into (2.20), a velocity dynamic equation with the error in longitudinal

direction is obtained as

dαj/dt = −Aαj + (B − αj) f1j (xje)− (D + αj) g1j (xje) . (2.21)

Similarly, substituting xj = βj, S+
j (t) = f2j(yje), S−j (t) = g2j(yje) into (2.20), a

velocity dynamic equation with the error in traverse direction is obtained as

dβj/dt = −Aβj + (B − βj) f2j (yje)− (D + βj) g2j (yje) , (2.22)
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where the functions f1j, g1j, f2j and g2j are defined as

f1j (xje) = max{k1xje, 0}, g1j (xje) = max{−k1xje, 0}, (2.23)

f2j (yje) = max{k2yje, 0}, g2j (yje) = max{−k2yje, 0}. (2.24)

where k1 and k2 are positive constants.

2.5.2 Backstepping-based Algorithm with a Bioinspired Neu-
rodynamics Model

Using αj and βj to replace the tracking error xje and yje in the backstepping model
(2.16), the tracking controller for the follower Rj can be obtained as follows

vj = k1αj + vi cos θij − Ldijwi sin
(
ψdij + θij

)
,

wj =
(
vi sin θij + Ldijwi cos

(
ψdij + θij

)
+ k2βj + k3θje

)
/d. (2.25)

The differentiation of the reference orientation of the follower Rj relative to its
leader is redefined as

θ̇dj =
(
vi sin θij + Ldijwi cos

(
ψdij + θij

)
+ k2yje + k2βj

)
/d. (2.26)

From (2.21) and (2.22), αj and βj are the function of the tracking errors xje and
yje respectively, and the output of the shunting model is chosen as the input of
tracking controller, i.e., the outputs αj and βj of the shunting model change as
the inputs xje and yje change. Due to the dynamics behavior of the shunting
model, the new proposed tracking controller (2.25) become a smooth function of
the position errors, and the outputs of the shunting model will change smoothly
without any jumps even when sudden sharp change in the inputs occur.

Substituting the (2.25) into (2.13), the closed-loop error dynamic can be
rewritten as

ẋje = wjyje − k1αj,
ẏje = −wjxje − k2βj − k3θje,
θ̇je = (−k3θje + k2yje)/d.

(2.27)

A Lyapunov function candidate is chosen as

V (t) =
1

2

(
x2je + y2je +

dk3
k2
θ2je

)
+

1

2B

(
α2
j + β2

j

)
. (2.28)
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It’s obvious that V (t) ≥ 0 and V (t) = 0 if and only if αj = 0, βj = 0, ej = 0.

Taking the derivative of the Lyapunov function (2.28) along (2.27) gives

V̇ (t) =xjeẋje + yjeẏje +
dk3
k2
θ̇jeθje +

1

B

(
αjα̇j + βjβ̇j

)
=− k1xjeαj − k2yjeβj −

k23
k2
θ2je

+
1

B
{−Aα2

j − f1j (xje)α
2
j − g1j (xje)α

2
j +Bf1j (xje)αj −Dg1j (xje)αj}

+
1

B
{−Aβ2

j − f2j (yje) β
2
j − g2j (yje) β

2
j +Bf2j (yje) βj −Dg2j (yje) βj}

=− k23
k2
θ2je +

1

B
{−A− f1j (xje)− g1j (xje)}α2

j

+
1

B
{Bf1j (xje)−Dg1j (xje)−Bk1xje}αj

+
1

B
{−A− f2j (yje)− g2j (yje)}β2

j

+
1

B
{Bf2j (yje)−Dg2j (yje)−Bk2yje}βj.

Choosing the constant B = D in the shunting equations (2.21) and (2.22), we
have

V̇ (t) =− k23
k2
θ2je +

1

B
{−A− f1j (xje)− g1j (xje)}α2

j

+ {f1j (xje)− g1j (xje)− k1xje}αj
+

1

B
{−A− f2j (yje)− g2j (yje)}β2

j + {f2j (yje)− g2j (yje)− k2yje}βj.

Based on the definitions of f1j (xje) and g1j (xje) in (2.23), whatever xje ≥ 0 or
xje < 0, we have

f1j (xje)− g1j (xje)− k1xje = 0. (2.29)

Similarly, it is easy to obtain that

f2j (yje)− g2j (yje)− k2yje = 0. (2.30)

From the definitions of the functions of f1j (xje) and g1j (xje) in (2.23), f1j (xje) ≥
0 and g1j (xje) ≥ 0. Also since A and B are nonnegative constants, it follows that

{−A− f1j (xje)− g1j (xje)}/B ≤ 0 (2.31)
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Similarly, we have f2j (xje) ≥ 0 and g2j (xje) ≥ 0, and

{−A− f2j (yje)− g2j (yje)}/B ≤ 0. (2.32)

Hence, the Lyapunov function becomes

V̇ (t) =− k23
k2
θ2je +

1

B
{−A− f1j (xje)− g1j (xje)}α2

j

+
1

B
{−A− f2j (yje)− g2j (yje)}β2

j ≤ 0.

Since V̇ (t) ≤ 0 and V (t) ≥ 0, the biological tracking controller (2.25) for the
follower Rj is stable. It then infers that ‖ej‖, ‖αj‖, and ‖βj‖ are bounded.
Therefore, we have ‖V̈ (t)‖ < ∞. Thus, V (t) is uniformly continuous. From
V̇ (t) ≤ 0 and V (t) ≥ 0, it follows that V (t) does not increase, i.e., V (t) ≤ V (0).
By Barbalat’s Lemma, V̇ → 0 as t → ∞, from which it can be deduced that
αj → 0, βj → 0 and θje → 0 as t → ∞. By using (2.21), (2.22) and the input-
output property of the shunting model, it infers that if the output converges to
certain constant values (zero), the input is supposed to go to a constant value
(zero), that is to say, xje → 0 and yje → 0 while αj → 0 and βj → 0. Therefore,
the tracking controller (2.25) can guarantee the closed-loop dynamics system
(2.27) to be globally asymptotically stable.

2.6 Simulations Results

2.6.1 Validation and Comparison of the Proposed Back-
stepping Controllers (2.16) and (2.25)

In this simulation, the effectiveness of the proposed tracking controllers (2.16) and
(2.25) will be verified, a comparison of this two tracking controllers will also be
given. Consider one leader and one follower. Assume that the distance d from the
rear axle to the front of robot is 0.1, the linear velocity and the angular velocity
of the leader robot are 1 and 1 respectively, and the initial posture of the leader
robot is at (0, 0, π/2). In order to keep the leader-follower formation, the follower
must keep the desired separation l0 = 1 and the desired bearing ψdij = 4π/3

with its leader. By calculation, it is easy to obtain that the desired posture of
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the follower is at (0.866,−0.6, π/2). Assume that the initial actual posture of

the follower is at (2.566,−1.7, π/2). Then, the initial error is (1.1, 1.7, 0). The

control gains for the robot are selected as k1 = 10, k2 = 2, k3 = 1, A = 50, and

B = D = 5.
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Figure 2.3: The real-time trajectories of robots: (a) by using the controller(2.16);
(b) by using the controller (2.25).
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Figure 2.4: The tracking errors of the follower: (a) by using the controller(2.16);
(b) by using the controller (2.25).
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Figure 2.5: The linear velocities and angular velocities of follower: (a) by using
the controller(2.16); (b) by using the controller (2.25).
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Figure 2.6: The reference angular velocities of follower and the angular velocities
of the leader: (a) by using the controller(2.16); (b) by using the controller (2.25).

Figs. 2.3(a) and 2.3(b) are the real-time trajectories of robots by using the
controllers (2.16) and (2.25) respectively. Fig. 2.3 shows that the follower can
well track the leader, and maintain the desired separation and the desired bearing
with the leader. Figs. 2.4(a) and 2.4(b) are the tracking errors of follower by using
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the controllers (2.16) and (2.25) respectively. Fig. 2.4 shows that the tracking

errors of follower converge to zero over time. Figs. 2.5(a) and 2.5(b) are the

angular velocity and linear velocity of follower by using the controllers (2.16)

and (2.25) respectively. From Fig. 2.5(a), the follower starts with a large linear

velocity and a large angular velocity, and change suddenly. This implies that

the initial linear acceleration and angular acceleration are very large, that is to

say, the force and torque of follower are very large, which is impractical. From

Fig. 2.5(b), the velocity commands are smooth and reasonable by using the

bioinspired neurodynamics technique, and change gradually from zero at initial

time t = 0. Fig. 2.6(a) is the reference angular velocity wdj of follower and the

angle velocity of the leader by using the controllers (2.16), and Fig. 2.6(b) is the

reference angular velocity wdj of follower and the angular velocity of the leader

by using the controller (2.25). It shows from Fig. 2.6 that the defined reference

angular velocities for follower can converge to the angular velocity of leader over

time.

2.6.2 Validation for Leader-Follower Formation Control Based
on Bioinspired Neurodynamics

L

F2

F4

F1

F3

Figure 2.7: Leader-follower formation with five mobile robots.
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In the Fig.2.7, F1 and F2 follow the leader L, F4 follows F2, F3 follows F1, that
is to say, F2 is the leader of F4, F1 is the leader of F3. Suppose that the robot
axle d = 0.1. The control gains for the robots F1, F2, F3 and F4 are selected as
k1 = 8, k2 = 1, k3 = 0.25, A = 10, and B = D = 1. Suppose that the trajectory
of the leader L is

x = t3/1000

y = t. (2.33)

and the initial posture of the leader is at (0, 0, π/2). The follower F1 keeps
the desired separation ldi1 = 2 and the desired bearing ψdi1 = 4π/3 with the
leader L. Hence, the initial desired posture of F1 is at (1.7321,−1.1, π/2). Sup-
pose that the actual posture of F1 is at (2, 1, π/4). It then follows that the
initial error of F1 is (−1.6744,−1.2955, π/4). The follower F2 keeps the de-
sired separation ldi2 = 2 and bearing ψdi2 = 2π/3 with the leader L. Then, the
initial desired posture of F2 is at (−1.7321,−1.1, π/2). Suppose that the ini-
tial actual posture of the F2 is (−1.5,−3, 0). Hence, the initial error of F2 is
(1.5294, 1.1510, π/2). The follower F3 keeps the desired separation ld13 = 2 and
bearing ψd13 = 4π/3 with its leader F1. Then, the initial desired posture of F3

is at (2.4469,−1.0026, π/4). The initial actual posture of F3 is (3, 1.5, 0). The
initial error of F3 is (−0.5531,−2.5026, π/4). The follower F4 keeps the desired
separation ld13 = 2 and bearing ψd13 = 2π/3 with its leader F2. Then, the initial
desired posture of F4 is at (−3.5500,−3.0866, π/3). The initial actual posture of
F4 is at (−2,−3.5, π/6). The initial error of F4 is (−1.1356, 1.133, π/6).
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Figure 2.8: The trajectory of Leader-Follower formation.
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Figure 2.10: The angular velocities and linear velocities of robots.
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Figure 2.11: The tracking errors of the follower in Leader-follower Formation .

Fig. 2.8 shows the trajectory of the Leader-Follower formation. It is shown
that the desired leader-follower formation is maintained. Fig. 2.9 shows the errors
between the angular velocity of leader L and the reference angular velocity wdj of
each follower Fj. It shows that the defined reference angular velocities of each
follower can converge to the angular velocity of leader over time. Fig. 2.10(a)
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shows the angular velocities of robots, and Fig. 2.10(b) shows the linear velocities
of robots. It is shown from Fig. 2.10 that the velocity commands are smooth and
reasonable, and change gradually from zero at initial time t = 0. Figs. 2.11(a),
2.11(b), 2.11(c) and 2.11(d) are tracking errors of the followers F1, F2, F3 and
F4, respectively. It is shown that the tracking errors of followers converge to zero
over time.

2.7 Conclusion

In this chapter, the leader-follower formation control problem for nonholonomic
mobile robots based on the backstepping approach has been investigated. The
trajectory tracking control for a single nonholonomic mobile robot has been ex-
tended to the formation control for multiple nonholonomic mobile robots based
on backstepping technique, in which follower can track its real-time leader by the
proposed kinematic controller. Due to the nonholonomic constraint of each robot
and the leader-follower formation control objective, an auxiliary angular velocity
control law has been developed to guarantee the global asymptotic stability of
the followers and to further guarantee the local asymptotic stability of the entire
formation. Then an asymptotically stable control law for the formation control
of multiple mobile robots has been developed by using backstepping technology,
which not only guarantee all mobile robots achieve and maintain the desired for-
mation, but also guarantee all follower robots track the time-varying trajectory of
the leader robot. Finally, a bioinspired neurodynamics based approach has been
developed to solve the impractical velocity jumps problem. It is shown that each
robot has smooth and continuous velocities with zero initial value by using the
bioinspired neurodynamics based approach. Stability analysis has been provided
by using Lyapunov theory. The effectiveness of the proposed control scheme has
been demonstrated by simulation results.
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Distributed Consensus-Based
Formation Control for Multiple
Nonholonomic Mobile Robots with
A Specified Reference Trajectory
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3.1 Introduction

Numerous of previous works assume that multiple mobile robot systems have tree
sensing structures. The tree sensing structures generally lead to cascade inter-
connections of the closed-loop systems(Desai et al. 1998). Some researchers have
attempted to relax the assumption of tree sensing structures at the cost of using
global position measurements. However, in some application scenarios, robots

65
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can have limited communication ability. Generally speaking, it is very difficult
to get all the global information to be available for each robot. A centralized
controller usually is not assumed to exist. The design of the controller for each
robot has to be based on the local information. Therefore, from a practical point
of view, using relative local positions make the control laws more realistic.

In recent years, due to the development of consensus theory in the dynamical
network system, consensus strategies have been applied to achieve the formation
control of multiple mobile robots, which focus on driving the kinematics of all
mobile robots to a common value. In Jadbabaie et al. (2003), a formal mathe-
matical analysis for consensus is first presented. Lately, the research on consensus
problems for multiple systems was also extended to the case of directed topology
(Lu & Chen 2009; Ren & Beard 2005; Wen et al. 2013; Wu et al. 2012; Yu &
Wang 2012). However, the robot system models in these papers are all linear.
In practice, many robot system models are nonlinear and have nonholonomic
constraints. Therefore, it is natural to study the formation control problem for
nonholonomic mobile robots. Dong & Farrell (2008, 2009) proposed some forma-
tion control laws to nonholonomic mobile robot systems. Dong (2012) studied the
tracking control problem for nonholonomic mobile robots with limited informa-
tion of a desired of trajectory. However, in Dong & Farrell (2008, 2009)’s papers,
each robot is assumed to know a desired trajectory.

This chapter investigates the distributed formation control problem for multi-
ple nonholonomic mobile robots using consensus-based approach. The contribu-
tions of this chapter are fourfold. First, a transformation is given to convert the
formation control problem for multiple nonholonomic mobile robots into a state
consensus problem. Second, the control laws are established using the result from
graph theory and Lyapunov techniques for accomplishing our formation control
objectives: a group of noholonomic mobile robots converge to a desired geometric
pattern with its centroid moving along the specified reference trajectory. In this
chapter, the specified reference trajectory is represented by the state of a virtual
leader whose outputs is only its position information that is available to only
a subset of a group of followers, which differs with existing results in Dong &
Farrell (2008, 2009). Third, in our previous Chapter, we use the leader-follower
approach(Consolini et al. 2008; Das et al. 2002; Desai et al. 1998, 2001; Mariottini
et al. 2007) to research formation control problem, the communication topology
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is tree information sensing structure. The relative separation and relative bearing
for each robot with its leader is need for design the controller, However, in this
Chapter, the control laws proposed are distributed. It is not necessary to know
the global information for each robot. In fact, each robot can obtain information
only from its neighbors. The informations about relative separation and relative
bearing of the robot with its leader don’t need. Fourth, different with existing
results given in Dong & Farrell (2008, 2009) and Dong (2012), our control laws
guaranty that the nonholonomic mobile robots can at least exponentially con-
verge to the desired geometric pattern, as well as the geometric centroid of the
formation at least exponentially converges to the trajectory of virtual leader.

3.2 Mathematical Model of a Nonholonomic Mo-
bile Robot

X

Y

C

2R 2r

j
x

j
y j

θ

Figure 3.1: Differential wheel mobile robot.

Consider a unicycle mobile robot in Fig.3.1, It is assumed that the mobile robot
moves without side slip, which means that the mobile robot satisfies the nonholo-
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nomic constraint,
ẋj sin θj − ẏj cos θj = 0. (3.1)

Hence, the kinematics of the jth robot can be described by

q̇j =

 ẋj
ẏj
θ̇j

 =

 cos θj 0
sin θj 0

0 1

[ vj
wj

]
, (3.2)

where qj = (xj, yj, θj)
T is the posture of the jth robot in a cartesian frame, (xj, yj)

is the coordinate C of the center of mass, vj, wj and θj are the linear velocity,
the angular velocity, and the heading angle of the jth robot.

3.3 Problem Statement

Consider a multi-robot system with m nonholonomic mobile robots, labeled as
1, 2, ...,m, moving on a horizontal plane. For simplicity, we assume that all robots
have the same mechanical structure shown in Fig. 3.1, and the kinematics of the
ith robot can be described by (3.2). Suppose that the desired geometric pattern F

of m mobile robots is defined by orthogonal coordinates (pjx, pjy), which satisfies

m∑
j=1

pjx = p0x,
m∑
j=1

pjy = p0y. (3.3)

where (p0x, p0y) is the center of the geometric pattern F. Without loss of gener-
ality, we assume that p0x = 0, p0y = 0.

In this chapter, our objective is to design the control inputs vj and wj for the
robot j based on its states (qj, q̇j), (pjx, pjy), and its neighbors’s states (qi, q̇i) and
(pix, piy) for i ∈ Nj, such that a group of mobile robots converge to the desired
formation pattern F, the orientation of each robot converges to a desired value θ0,
and the geometric centroid of the formation converges to the desired trajectory
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(x0, y0), that is to say,

lim
t→∞

[
xj − xi
yj − yi

]
=

[
pjx − pix
pjy − piy

]
, (3.4)

lim
t→∞

(θj − θ0) = 0, (3.5)

lim
t→∞

(
m∑
j=1

xj
m
− x0) = 0, lim

t→∞
(
m∑
j=1

yj
m
− y0) = 0. (3.6)

Here, the geometric centroid (x0, y0) and the desired value θ0 can be considered
as the posture of a virtual leader 0, which does not have to be an actual robot
but is specified by

ẋ0 = v0 cos θ0, ẏ0 = v0 sin θ0, θ̇0 = w0. (3.7)

Hence, we hereafter call the m robots in system (3.2) as followers.
The connection weight between robot j(1 ≤ j ≤ m) and the virtual leader 0

is denoted by B, where B = diag{b1, b2, . . . , bj, . . . , bm}, such that

bj =

{
bj > 0, if robot j can obtain information of the virtual leader 0

0, otherwise .

To make the control objective solvable, the following assumptions and prelim-
inaries are given.

Assumption 3.1 The θj for (0 ≤ j ≤ m) is bounded, wj for (0 ≤ j ≤ m) is
persistently exciting and |wj| ≤ wmax.

Remark 3.2 wj is persistently exciting, which means wj does not converge to
0. The assumption is because of the fact that the wheeled mobile robot system is
nonholonomic.

Assumption 3.3 There exists at least one follower which can obtain information
from the virtual leader.

Remark 3.4 From the Assumption 3.3, it is not required that each robot knows
virtual leader’s information, that is to say, the desired trajectory is not required
to available to each robot, that is different from existing results in Dong & Farrell
(2008, 2009).
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3.4 Distributed Control Algorithm

Let’s define the following transformation:

z1j =θj,

z2j =(xj − pjx) cos θj + (yj − pjy) sin θj + k0sign(u1j)z3j, (3.8)

z3j =(xj − pjx) sin θj − (yj − pjy) cos θj,

u1j =wj,

u2j =vj − (1 + k20)u1jz3j,

with the inputs u1j and u2j, where 0 ≤ j ≤ m, k0 > 0, and sign(·) is the signum
function. Hence, the dynamic system of (3.8) is given as follows

ż1j =u1j, (3.9)

ż2j =u2j + k0|u1j|z2j, (3.10)

ż3j =u1jz2j − k0|u1j|z3j. (3.11)

Using (3.8)-(3.11), the control objective (3.4-3.6) becomes

lim
t→∞

(z1j − z10) =0, (3.12)

lim
t→∞

(z2j − z20) =0, (3.13)

lim
t→∞

(z3j − z30) =0, (3.14)

lim
t→∞

(u1j − u10) =0. (3.15)

Lemma 3.5 If the equations (3.12)-(3.15) hold for 0 ≤ j ≤ m, then them mobile
robots can converge to the formation pattern F, i.e., the equations (3.4)-(3.6) can
be satisfied.

Proof: From (3.8), it can be easily obtained that[
xj − pjx
yj − pjy

]
=

[
cos θj sin θj
sin θj − cos θj

] [
z2j − k0sign(u1j)z3j

z3j

]
.
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Since (3.12)-(3.15) are satisfied, it then follows that

lim
t→∞

[
xj − pjx
yj − pjy

]
= lim

t→∞

[
cos θj sin θj
sin θj − cos θj

] [
z2j − k0sign(u1j)z3j

z3j

]
=

[
cos θ0 sin θ0
sin θ0 − cos θ0

] [
z20 − k0sign(u10)z30

z30

]
=

[
x0
y0

]
.

This proof is completed.

Remark 3.6 Based on our proposed transformation (3.8) and above proof, the
formation control problem for multiple nonholonomic mobile robots becomes into
a consensus problem. In the following part of this chapter, we will propose the
distributed control protocols according to the consensus theory. The controller for
the mobile robot will be proposed according the communication graph G.

According to its neighbors’ information based on the communication graph G,
the controller for the mobile robot j, (1 ≤ j ≤ m) can be given as follows

u1j =u10 − α
∑
i∈Nj

aji(z1j − z1i)− αbj(z1j − z10)

− βsign(
∑
i∈Nj

aji(z1j − z1i) + bj(z1j − z10)), (3.16)

u2j =− α
∑
i∈Nj

aji(z2j − z2i)− αbj(z2j − z20)

− βsign(
∑
i∈Nj

aji(z2j − z2i) + bj(z2j − z20))− k0|u1j|z2j, (3.17)

where j = 1, . . . ,m, bj is a positive constant if the virtual leader’s position is
available to the follower j, and bj = 0 otherwise, |ż20| ≤ κ, κ is a positive constant,
α is a nonnegative constant, β is a positive constant and satisfies β > κ.

Since the undirected graph G is connected, it follows that L + B = L +

diag{b1, . . . , bm} is a symmetric positive definite matrix, whereB = diag(b1, . . . , bm)

and bj ≥ 0, (j = 1, . . . ,m). Furthermore, it is easy to verify that the matrix
M = diag{L+B,L+B} is also a symmetric positive definite.
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Substituting (3.16) and (3.17) into the questions (3.9) and (3.10), we have

ż1∗ =− α(L+B)z1∗ + αB1mz10 − βsign((L+B)z1∗ −B1mz10) + 1mu10

ż2∗ =− α(L+B)z2∗ + αB1mz20 − βsign((L+B)z2∗ −B1mz20), (3.18)

where z1∗ = [z11, . . . , z1m]T and z2∗ = [z21, . . . , z2m]T . Let z̃1∗ = z1∗ − 1mz10 and
z̃2∗ = z2∗ − 1mz20. From (3.18), the closed-loop error dynamic system can be
obtained as

˙̃z1∗ =− α(L+B)z̃1∗ − βsign((L+B)z̃1∗),

˙̃z2∗ =− α(L+B)z̃1∗ − βsign((L+B)z̃2∗)− 1mż20, (3.19)

where the fact L1mz10 = 0 has been applied according to (1.2). Let Z =

[z1∗, z2∗]
T = [Z1, . . . , Z2m]T , Z̃ = [z̃1∗, z̃2∗]

T = [Z̃1, . . . , Z̃2m]T and f0 =

0, . . . , 0︸ ︷︷ ︸
m

, z20, . . . , z20︸ ︷︷ ︸
m

T .
Hence, the error dynamic system can be rewritten into a vector form as

˙̃Z =− αMZ̃ − βsign(MZ̃)− ḟ0. (3.20)

Note that the right-hand side of (3.20) is discontinuous. Therefore, the stability
of (3.20) will be analyzed by using differential inclusions and nonsmooth analysis
Paden & Sastry (1987). Because the signum function is measurable and locally
essentially bounded, the Filippov solution for (3.20) exists Paden & Sastry (1987).
Equation (3.20) is written in terms of differential inclusions as

˙̃Z ∈a.e. K[− αMZ̃ − βsign(MZ̃)− ḟ0]. (3.21)

Theorem 3.7 For the systems in (3.9) and (3.10), if the communication graph
G is connected and the Assumption 3.3 is satisfied, then lim

t→∞
(z1j − z10) = 0,

lim
t→∞

(z2j − z20) = 0 and lim
t→∞

(u1j − u10) = 0 in finite time under the control laws
(3.16) and (3.17), in particular, z1j = z10, u1j = u10 and z2j = z20 for any t ≥ T ,
where

T =

√
Z̃T (0)MZ̃(0)

√
λmax(M)

(β − κ)λmin(M)
. (3.22)
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Proof: Choose the Lyapunov function candidate as

V =
1

2
Z̃TMZ̃. (3.23)

Using the Properties of K[·], the set-valued Lie derivative of V can be obtained
as follows

˙̃V
.
=

⋂
ξ∈∂V (Z̃)

ξTK[−αMZ̃ − βsign(MZ̃)− ḟ0].

where ∂V (Z̃) is the generalized gradient of V at Z̃. Because V is continuously
differentiable with respect to Z̃, ∂V (Z̃) = {MZ̃}, which is a singleton. Therefore,
it follows that

˙̃V (Z̃) =K[−αZ̃TM2Z̃ − βZ̃TMsign(MZ̃)− Z̃TMḟ0]

={−αZ̃TM2Z̃ − β‖Z̃TM‖1 − Z̃TMḟ0}, (3.24)

where the fact that xT sign(x) = ‖x‖1 has been used. By Lemma 1.7 and Paden
& Sastry (1987), if f is continuous, then K[f ] = {f}. Note that the set-valued
Lie derivative ˙̃V is a singleton, whose only element is actually V̇ . Therefore, it
follows that

max ˙̃V = V̇ =− αZ̃TM2Z̃ − β‖Z̃TM‖1 − Z̃TMḟ0 (3.25)

≤− αZ̃TM2Z̃ − β‖Z̃TM‖1 − Z̃TM12mż20

≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1, (3.26)

where |ż20| ≤ κ. Note that M2 is symmetric positive definite, α ≥ 0 and β > κ.
Therefore, it follows that max ˙̃V is negative definite. It then follows from Lemma
1.10 that

∥∥∥Z̃(t)
∥∥∥→ 0 as t→∞.

Next, we show that V will decrease to zero in finite time. Note that

V =
1

2
Z̃TMZ̃

≤1

2
λmax(M)‖Z̃‖22.
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It then follows from (3.25) that the derivative of V satisfies

V̇ ≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1
≤− (β − κ)‖Z̃TM‖2
=− (β − κ)

√
Z̃TM2Z̃

≤− (β − κ)

√
λ2min(M)‖Z̃‖22

=
−(β − κ)λmin(M)

√
λmax(M)‖Z̃‖22√

λmax(M)

≤−(β − κ)
√

2λmin(M)√
λmax(M)

√
V .

After some manipulation, we get

2
√
V (t) ≤ 2

√
V (0)− (β − κ)

√
2λmin(M)√

λmax(M)
t.

Therefore, V (t) = 0 when t ≥ T =

√
Z̃T (0)MZ̃(0)

√
λmax(M)

(β−κ)λmin(M)
.

Hence, z1j(1 ≤ j ≤ m) and z2j(1 ≤ j ≤ m) converge to z10 and z20 in
finite time, respectively. Also it is obvious from (3.16) that u1j(1 ≤ j ≤ m) can
converge to u10 in finite time. This proof is completed.

Remark 3.8 From the Theorem 3.7, we have proved that the variables z1j(1 ≤
j ≤ m), z2j(1 ≤ j ≤ m) and u1j respectively converge to z10, z20 and u10 in
finite time under the proposed control laws (3.16), (3.17). In Theorem 3.9, we
will prove that z3j exponentially converges to z30 under the control laws (3.16)
and (3.17).

Theorem 3.9 For the systems in (3.11), if the communication graph G is con-
nected and the Assumption 3.3 is satisfied, then z3j exponentially converges to z30
under the control laws (3.16) and (3.17).

Proof: Let z̃3j = z3j − z30. Taking the derivative of z̃3j gives

˙̃z3j =ż3j − ż30
=− k0|u1j|z̃3j + u1j z̃2j + (u1j − u10)z20 − k0(|u1j| − |u10|)z30
=− k0|u1j|z̃3j + x2(t). (3.27)
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where x2(t) = u1j z̃2j + (u1j − u10)z20 − k0(|u1j| − |u10|)z30.

Consider the following Lyapunov function candidate as

V2 =
1

2
z̃23j. (3.28)

Step 1: we prove that the state z̃3j is bounded when t ≤ T , that means for z̃3j
large disturbance will not occur during the period of z1∗ → z10 and z2∗ → z20.

The derivative of V2 along the trajectory (3.27) gives

V̇2 =z̃3j ˙̃z3j = −k0|u1j|z̃23j + x2(t)z̃3j. (3.29)

Note from Theorem 3.7, Z̃ → 0 in finite time. It follows that there exists a
positive constant σ, such that

|x2(t)| = |u1j z̃2j + (u1j − u10)z20 − k0(|u1j| − |u10|)z30| ≤ σ. (3.30)

Since z̃1j and z̃2j converge to zero in finite time T , it follows that z̃1j and z̃2j

are bounded for all t, i.e. there exists a positive constant C1 > 0, such that
|u1j| < C1,|z1j| < C1 and |z2j| < C1. In the following, we will first verify that,
when |z̃3j| ≥ 1, there exists a positive constant L1, such that

V̇2 ≤ L1V2. (3.31)

In fact, from (3.29), we have

V̇2 =− k0|u1j|z̃23j + x2(t)z̃3j

≤k0|u1j|z̃23j + |x2(t)|z̃23j = 2{k0|u1j|+ |x2(t)|}V2 (3.32)

≤2{k0C2
1 + σ}V2 = L1V2,

where L1 = 2{k0C2
1 + σ}. Next, we will prove that when |z̃3j| < 1, there exists a

positive constant L2, such that

V̇2 < L2. (3.33)
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In fact, since |u1j| < C1 and |x2(t)| ≤ σ, it follows from (3.29) that

V̇2 <k0|u1j||z̃3j|2 + |x2(t)||z̃3j|
<k0C1 + σ = L2. (3.34)

where L2 = k0C1 + σ. From the inequalities (3.31) and (3.33), whatever |z̃3j| ≥ 1

or |z̃3j| < 1, we have

V̇2 ≤L1V2 + L2.

After some manipulation, we can further get that

V2(t) ≤{V2(0) +
L2

L1

}eL1t +
L2

L1

.

Hence, from (3.28), z̃3j is bounded when t ≤ T .
Step 2: we prove that z̃3j is converged to zero when t ≥ T .
From the Theorem 3.1, when t ≥ T , the Z̃ = 0, i.e. z1j = z10, z2j = z20 and

u1j = u10, then the system (3.27) becomes

˙̃z3j =− k0|u10|z̃3j. (3.35)

Then, we have

z̃3j(t) =e
∫ t
T −k0|u10|dτ z̃3j(T ) = e−k0|u10|(t−T )z̃3j.

Hence, z̃3j(t) exponentially converges to zero.

Remark 3.10 From the Theorems 3.7 and 3.9, our control objectives (3.12)-
(3.15) are hold. Therefore from the Lemma 3.5, the m mobile robots converge to
the formation pattern F, i.e., the equations (3.4)-(3.6) are satisfied.

3.5 Simulation Results

In this section, some simulation results are presented to demonstrate the effec-
tiveness of the theoretical results obtained in the previous sections. Let’s consider
a multiple mobile robot system with six followers denoted by F1-F6 and one vir-
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tual leader denoted by L, respectively. The communication graph of the multiple
mobile robot system is shown in Figure 3.2.

1
F

3
F

4
F

5
F

6
F

L

2
F

Figure 3.2: Communication graph of a group of six followers and one virtual
leader.

For simplicity, suppose that A = [aij]6×6, aij = 1 if robot i can receive infor-
mation from robot j, aij = 0 otherwise; B = diag{b1, b2, . . . , b6}, bj = 1 if the
virtual leader’s information is available to the follower j, and bj = 0 otherwise,
where i ∈ {1, ..., 6} and j ∈ {1, ..., 6}. And the adjacency matrix A, the degree
matrix and the Laplacian matrix of the graph shown in Fig.3.2 can be written
as:

A =


0 1 1 0 1 1
1 0 1 0 0 0
1 1 0 1 0 1
0 0 1 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0

 , D =


4

2
4

2
2

2

 ,

L = D−A =


4 −1 −1 0 −1 −1
−1 2 −1 0 0 0
−1 −1 4 −1 0 −1
0 0 −1 2 −1 0
−1 0 0 −1 2 0
−1 0 −1 0 0 2

 ,
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and B = diag{1, 0, 0, 0, 0, 0}. Hence,

L+B =


5 −1 −1 0 −1 −1
−1 2 −1 0 0 0
−1 −1 4 −1 0 −1
0 0 −1 2 −1 0
−1 0 0 −1 2 0
−1 0 −1 0 0 2

 , M =

[
L+B 0

0 L+B

]
. (3.36)

The desired formation geometric pattern F is defined by orthogonal coordi-
nates as (p1x, p1y) = (2, 0), (p2x, p2y) = (1,

√
3), (p3x, p3y) = (−1,

√
3), (p4x, p4y) =

(−2, 0), (p5x, p5y) = (−1,−
√

3), and (p6x, p6y) = (1,−
√

3) shown in Fig. 3.3.
The reference trajectory of the virtual leader is chosen as x0 = 12 sin(t/3), y0 =

−12 cos(t/3).

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

X(m)

Y
(m

)

(−2,0) (2,0)

(−1,−
√
3) (1,−

√
3)

(−1,
√
3) (1,

√
3)

Figure 3.3: Desired geometric pattern of formation.

From the coordinate transformation (3.8), it can be obtained that z20 = 12k0,
thus, ż20 = 0 < κ. The gain parameters for each robot are chosen as α = 23,
β = 0.65 ≥ κ and k0 = 2. It is easy to verify that these parameters satisfy the
constraints in Theorem 3.7.

Fig. 3.4 shows the formation pattern of the six follower robots at some time,
the trajectory of virtual leader(black line), and the trajectory of the six follower
robots’ centroid (blue line). Fig. 3.5 shows the trajectories of x0(blue line) and
the centroid of xi (1 ≤ i ≤ 6)(red line); and the position error between x0 and the
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centroid of xi. Fig. 3.6 shows the trajectories of y0(blue line) and the centroid
of yi (1 ≤ i ≤ 6)(red line); and the position error between y0 and the centroid of
yi. Fig. 3.7(a) shows the tracking errors between the orientation wi of follower
Fi (1 ≤ i ≤ 6) and the orientation w0 of virtual leader. Fig. 3.7(b) shows the
tracking errors between the orientation θi of follower Fi (1 ≤ i ≤ 6) and the
orientation θ0 of virtual leader.

It is shown from Fig. 3.4 that the desired geometry pattern of the six robots
is formed under the proposed distributed controllers (3.17) and (3.16), i.e., the
equation (3.4) is verified. From Fig. 3.5 and Fig. 3.6, the geometric centroid
of the formation converges to the trajectory of virtual leader, that is to say, the
equation (3.6) is verified. From Fig. 3.7, the angular velocity and orientation
of each follower robot converge to the angular velocity and orientation of virtual
leader, i.e., the equation (3.5) and (3.15) are verified.

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

X(m)

Y
(m

)

Figure 3.4: Formation pattern of the six follower robots at some time, the tra-
jectory of virtual leader(black line), and the trajectory of the six follower robots’
centroid (blue line).
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Figure 3.5: (a)The trajectories of x0(blue line) and the centroid of xi (1 ≤ i ≤
6)(red line); (b)The position error between x0 and the centroid of xi.
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Figure 3.6: (a)The trajectories of y0(blue line) and the centroid of yi (1 ≤ i ≤
6)(red line); (b)The position error between y0 and the centroid of yi.
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Figure 3.7: The tracking errors: (a)between wi (1 ≤ i ≤ 6) and w0; (b)between
θi (1 ≤ i ≤ 6) and θ0.
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3.6 Conclusion

In this chapter, the distributed formation control problem for multiple nonholo-
nomic mobile robots using consensus-based approach has been studied. Some dis-
tributed control laws have been proposed based on the some results from graph
theory and Lyapunov techniques. Some simulation results have been obtained
to verify the effectiveness of the distributed control algorithm proposed for the
formation control.
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Chapter 4

Distributed Adaptive Formation
Control for Multiple Nonholonomic
Wheeled Mobile Robots
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4.1 Introduction

In the previous Chapter, the formation control of nonholonomic wheeled mobile
robots is based on kinematic models, which requires “perfect velocity tracking".
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However, in many practical situations, the dynamics of robot should not be ig-
nored and practical control strategies accounting for both the kinematic and
dynamic effect should be implemented (Fierro & Lewis 1998; Fukao et al. 2000;
Zohar et al. 2011).

This chapter investigates the distributed adaptive formation control problem
for multiple nonholonomic wheeled mobile robots. The objective is to develop
the distributed controllers based on the combination both kinematic model and
dynamics systems with unknown parameters, such that a group of noholonomic
wheeled mobile robots asymptotically converge to a desired geometric pattern
with its centroid moving along the specified reference trajectory. To achieve this
goal, a variable transformation is first given to convert the formation control
problem into a state consensus problem. Then, the distributed kinematic con-
trollers are developed. We assume that the specified reference trajectory can
be considered as the trajectory of a virtual leader whose information is avail-
able to only a subset of the followers. Also the followers are assumed to have
only local interaction. In practice, it is well know that the dynamics model of
the wheel mobile robot has unknown dynamic parameters, which will affect the
robust trajectory tracking of the system. Therefore, adaptive computed-torque
controllers for mobile robots are developed, and sufficient conditions are derived
for accomplishing the asymptotically stability of the systems based on algebraic
graph theory, matrix theory, and Lyapunov control approach. Finally, simulation
examples illustrate the effectiveness of the proposed controllers.

Compared with existing works in the literature, the current work has the
following advantages. Firstly, in contrast to the traditional leader-follower ap-
proach (Consolini et al. 2008; Das et al. 2002; Desai et al. 1998; Liu & Tian 2009;
Mariottini et al. 2007), the communication topology is not required to have tree
information sensing structure. Moreover, the relative separation and bearing for
each robot with its leader is not required to be known. Secondly, in contrast to
that only kinematic control models are considered(Chen et al. 2010; Dierks &
Jagannathan 2009a,b; Dong 2012; Dong & Farrell 2008, 2009; Park et al. 2011),
we design the controllers based on both the kinematic and dynamic models of
robots. Thirdly, the control laws proposed in this chapter are distributed. It is
not necessary to know the global information for each robot. In fact, each robot
can obtain information only from its neighbors.
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4.2 Problem Formulation and Preliminaries

4.2.1 Dynamics of Nonholonomic Wheeled Mobile Robot

Consider a multi-robot system consisting of m nonholonomic wheeled mobile
robots indexed by 1, 2, ...,m. The nonholonomic dynamics model of the mobile
robot j can be described by the Euler-Lagrange equation as follows

Mj(qj)q̈j + Cj (qj, q̇j) q̇j +Gj(qj) = Bj(qj)τj − ATj (qj)λj, j = 1, . . . ,m, (4.1)

where qj = (xj, yj, θj)
T is the posture of the mobile robot j, (xj, yj) are coordi-

nates, θj is the heading angle of the robot, Mj(qj) ∈ R3×3 is a symmetric positive
definite inertia matrix, Cj (qj, q̇j) ∈ R3×3 is the bounded centripetal and corio-
lis matrix, Gj(qj) ∈ R3×1 is the gravitations vector, Bj(qj) ∈ R3×2 is the input
transformation matrix, τj ∈ R2×1 is the control torque vector, Aj(q) ∈ R1×3 is the
matrix associated with the constraints, and λj ∈ R1×1 is the vector of constraint
forces.

Suppose that all kinematic equality constraints are independent of time, and
can be expressed as follows:

A(qj)q̇j = 0. (4.2)

It is well know that the wheeled mobile robot is a typical example of a nonholo-
nomic mechanical system. The wheeled mobile robot satisfies the nonholonomic
constraint 3.1, which means the robot can only move in the direction normal to
the axis of the driving wheels, i.e. the wheeled mobile robot satisfies pure rolling
and nonslipping. Then, the kinematics model of the mobile robot j ∈ {1, . . . ,m}
can be written as

q̇j =

 ẋj
ẏj
θ̇j

 =

 cos θj 0
sin θj 0

0 1

[ vj
wj

]
= S(qj)v̄j, (4.3)

where v̄j = [vj, wj]
T , and vj and wj are the linear velocity and angular velocity

respectively.

From (4.2) and (4.3), it is easily obtained that

ST (qj)A
T (qj) = 0. (4.4)
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We consider the wheeled mobile robot with two driving wheels, which is shown
in Fig. 3.1. The geometrical center of robot is C, which is the center of mass
of the robot. The trajectory of the mobile robot is constrained to the horizontal
plain, i.e. Gj(qj) = 0. The dynamical equations of the mobile robot in Fig. 3.1
can be expressed in matrix form (4.1) where

Mj(qj) =

m̂ 0 0
0 m̂ 0
0 0 I

 , Cj(qj, q̇j) =

0 0 0
0 0 0
0 0 0

 , Gj(q) =

0
0
0

 ,
Bj(qj) =

1

r

cos θj cos θj
sin θj sin θj
R −R

 , Aj(q)
T =

− sin θj
cos θj

0

 , τj =

[
τrj
τlj

]
,

λj = −m̂(ẋj cos θj + ẏj sin θj)θ̇j.

where m̂ is the mass of the wheel mobile robot. I is the inertia moment of the
robot. 2R is the width of the mobile robot and r is the radius of the wheel. The
equation (4.1) has the following properties (Lewis et al. (1993)).

Property 4.1 The inertia matrix Mj(qj) is symmetric positive definite, and sat-
isfies the following inequality

m1‖qj‖2 ≤ qTj Mj(qj)qj ≤ m2‖qj‖2, qj ∈ R3, (4.5)

where m1, m2 are positive constants, and ‖ · ‖ is the standard Euclidean norm.

Property 4.2 Ṁj(qj)− 2Cj (qj, q̇j) is skew symmetric , that is to say,

ξT
[

1

2
Ṁj(qj)− Cj (qj, q̇j)

]
ξ = 0. ∀ξ ∈ R3. (4.6)

Property 4.3 For any differentiable vector ξ,

Mj ξ̇ + Cjξ +Gj = YjΘj, j = 1, . . . ,m, (4.7)

where Yj is regression vector, and Θj is the constant parameter vector associated
with the jth robot.
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4.2.2 Problem Description

Similar to Chapter 3, in this chapter the desired geometric pattern F of m mobile
robots is still defined by using orthogonal coordinates (pjx, pjy), which satisfies

m∑
j=1

pjx = p0x,

m∑
j=1

pjy = p0y. (4.8)

where (p0x, p0y) is the center of the geometric pattern F. Without loss of gener-
ality, we also assume that p0x = 0, p0y = 0.

In this chapter, we will still design the control inputs vj and wj for the wheeled
nonholonomic mobile robot j using its states (qj, q̇j), (pjx, pjy), and its neighbors’
states (qi, q̇i) and (pix, piy) for i ∈ Nj, to achieve our control objective (1): a group
of such robots converge to the desired formation pattern F, (2): the orientation
of each robot converges to a desired value θ0, and (3): the geometric centroid of
the formation converges to the desired reference trajectory (x0, y0), that is to say,

lim
t→∞

[
xj − xi
yj − yi

]
=

[
pjx − pix
pjy − piy

]
, (4.9)

lim
t→∞

(θj − θ0) =0, (4.10)

lim
t→∞

(
m∑
j=1

xj
m
− x0) =0, lim

t→∞
(
m∑
j=1

yj
m
− y0) = 0. (4.11)

Similarly, the geometric centroid (x0, y0) and the desired value θ0 are consid-
ered as the posture of a virtual leader 0,

ẋ0 = v0 cos θ0, ẏ0 = v0 sin θ0, θ̇0 = w0. (4.12)

To achieve our control objective, the same assumptions Assumption 3.1 and
Assumption 3.3 in Section 3.3 are needed.
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4.3 Distributed Control Algorithm

To achieve our control objective (3.4)-(3.6) based on the combination both kine-
matic model and dynamics model, the following transformation is defined:

z1j =θj,

z2j =(xj − pjx) cos θj + (yj − pjy) sin θj + k0sign(u1j)z3j, (4.13)

z3j =(xj − pjx) sin θj − (yj − pjy) cos θj,

u1j =wj,

u2j =vj − (1 + k20)u1jz3j + k0|u1j|z2j,

with the inputs u1j and u2j, where 0 ≤ j ≤ m, k0 > 0, and sign(·) is the signum
function. Hence, the dynamic system of (4.13) is given as follows

ż1j =u1j, (4.14)

ż2j =u2j, (4.15)

ż3j =u1jz2j − k0|u1j|z3j. (4.16)

According to (4.13)-(4.16), the control objective (4.9)-(4.11) becomes

lim
t→∞

(z1j − z10) =0, (4.17)

lim
t→∞

(z2j − z20) =0, (4.18)

lim
t→∞

(z3j − z30) =0, (4.19)

lim
t→∞

(u1j − u10) =0. (4.20)

Lemma 4.4 If the equations (4.17)-(4.20) are hold for 0 ≤ j ≤ m, then the m
mobile robots can converge to the formation pattern F, i.e., the equations (3.4)-
(3.6) can be satisfied.

Proof: The proof is similar to that of Lemma 3.5 and is therefore omitted
here.

Note that the undirected graph G is connected, it follows that the matrix L+

B = L+diag{b1, . . . , bm} and the matrix M = diag{L+B,L+B} are symmetric
positive definite, where B = diag(b1, . . . , bm) and bj ≥ 0, (j = 1, . . . ,m).

It is well known that the “perfect velocity tracking" for robot may not hold
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in practice. In fact, the dynamics model of the wheel mobile robot has unknown
dynamical parameters, which will affect the robust tracking of the system. Hence,
in this chapter, according to the mobile robot j’s neighbors’ information, the
following desired control inputs for the mobile robot j are proposed by

u1jr =u10 − α
∑
i∈Nj

aji(z1j − z1i)− αbj(z1j − z10)

− βsign(
∑
i∈Nj

aji(z1j − z1i) + bj(z1j − z10)), (4.21)

u2jr =− α
∑
i∈Nj

aji(z2j − z2i)− αbj(z2j − z20)

− βsign(
∑
i∈Nj

aji(z2j − z2i) + bj(z2j − z20)), (4.22)

where j = 1, . . . ,m, bj is a positive constant if the virtual leader’s position is
available to the follower j, and bj = 0 otherwise, |ż20| ≤ κ, κ is a positive constant,
α is a nonnegative constant, β is a positive constant and satisfies β > κ.

Remark 4.5 If we only consider the kinematic model of the nonholonomic wheeled
mobile robot with the velocity input (4.21) and (4.22), and assume that there is
“perfect velocity tracking", i.e. [

u1j

u2j

]
=

[
u1jr

u2jr

]
, (4.23)

then the kinematic model (4.14)-(4.16) is at least exponentially stable under the
control law (4.21) and (4.22). However, the perfect velocity tracking does not hold
in practice. In fact, the dynamics model of the wheel mobile robot has unknown
dynamical parameters, which will affect the robust tracking of the system.

Define the auxiliary velocity tracking error as

ũj =

[
ũwj
ũvj

]
= ujr − uj =

[
u1jr
u2jr

]
−
[
u1j
u2j

]
. (4.24)

where ujr = [u1jr, u2jr]
T and uj = [u1j, u2j]

T . Then the dynamic system (4.14)-
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(4.16) become

ż1j =u1jr − ũwj, (4.25)

ż2j =u2jr − ũvj, (4.26)

ż3j =(u1jr − ũwj)z2j − k0|(u1jr − ũwj)|z3j. (4.27)

Substituting (4.21) and (4.22) into the dynamic system (4.25) and (4.26), and
rewriting the closed-loop system (4.25) and (4.26) in a vector form gives

ż1∗ =− α(L+B)z1∗ + αB1mz10 − βsign((L+B)z1∗ −B1mz10) + 1mu10 − ûw,
ż2∗ =− α(L+B)z2∗ + αB1mz20 − βsign((L+B)z2∗ −B1mz20)− ûv, (4.28)

where z1∗ = [z11, . . . , z1m]T and z2∗ = [z21, . . . , z2m]T , ûw = [ũw1, . . . , ũwm]T and
ûv = [ũv1, . . . , ũvm]T . Let z̃1∗ = z1∗ − 1mz10 and z̃2∗ = z2∗ − 1mz20. From (4.28),
the closed-loop error dynamic system can be obtained as

˙̃z1∗ =− α(L+B)z̃1∗ − βsign((L+B)z̃1∗)− ûw,
˙̃z2∗ =− α(L+B)z̃1∗ − βsign((L+B)z̃2∗)− 1mż20 − ûv, (4.29)

where the fact that L1mz10 = 0 has been applied according to (1.2). Let
Z = [z1∗, z2∗]

T = [Z1, . . . , Z2m]T , Z̃ = [z̃1∗, z̃2∗]
T = [Z̃1, . . . , Z̃2m]T and f0 =0, . . . , 0︸ ︷︷ ︸

m

, z20, . . . , z20︸ ︷︷ ︸
m

T . Hence, the error dynamic system can be rewritten in a

vector form as

˙̃Z =− αMZ̃ − βsign(MZ̃)− ḟ0 − û (4.30)

where û = [ûw, ûv]
T = [ũw1, . . . , ũwm, ũv1, . . . , ũvm]T .

Note that the right-hand side of (5.37) is discontinuous. Therefore, the sta-
bility of (5.37) will be analyzed by using differential inclusions and nonsmooth
analysis Paden & Sastry (1987). Because the signum function is measurable and
locally essentially bounded, the Filippov solution for (5.37) exists Paden & Sastry
(1987). Equation (5.37) is written in terms of differential inclusions as

˙̃Z ∈a.e. K[− αMZ̃ − βsign(MZ̃)− ḟ0 − û]. (4.31)
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Remark 4.6 Note that the stability of the kinematic error system (4.30) is now
dependent on the error Z̃ and the velocity tracking error û. The following Theorem
4.7 is given to prove that when û = 0 (i.e., perfect velocity tracking (4.23))
the state Z̃ of system (4.30) converge to zero in finite time under the kinematic
controller (4.21) and (4.22).

Theorem 4.7 Suppose that the communication graph G is connected, Assump-
tion 3.3 is satisfied, and the kinematic controller for the system (4.30) is chosen
by (4.21)and (4.22), if the auxiliary velocity tracking error û = 0, then the state
Z̃ of system (4.30) can converge to zero in finite time, that is to say, z1j − z10,
u1j − u10 and z2j − z20 converge to zero in finite time.

Proof: If it is assumed that the dynamics system of the mobile robot satisfies per-
fect velocity tracking, i.e. û = 0, then the error dynamic system (4.30) becomes

˙̃Z ∈a.e. K[−αMZ̃ − βsign(MZ̃)− ḟ0]. (4.32)

Consider the following Lyapunov function candidate as

V =
1

2
Z̃TMZ̃. (4.33)

Using the Properties of K[·], the set-valued Lie derivative of V can be obtained
as follows

˙̃V
.
=

⋂
ξ∈∂V (Z̃)

ξTK[−αMZ̃ − βsign(MZ̃)− ḟ0].

where ∂V (Z̃) is the generalized gradient of V at Z̃. Because V is continuously
differentiable with respect to Z̃, ∂V (Z̃) = {MZ̃}, which is a singleton. Therefore,
it follows that

˙̃V (Z̃) =K[−αZ̃TM2Z̃ − βZ̃TMsign(MZ̃)− Z̃TMḟ0]

={−αZ̃TM2Z̃ − β‖Z̃TM‖1 − Z̃TMḟ0}, (4.34)

where the fact that xT sign(x) = ‖x‖1 has been used. By Lemma 1.7 and Paden
& Sastry (1987), if f is continuous, then K[f ] = {f}. Note that the set-valued
Lie derivative ˙̃V is a singleton, whose only element is actually V̇ . Therefore, it
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follows that

max ˙̃V = V̇ ≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1, (4.35)

where |ż20| ≤ κ. Note that M2 is symmetric positive definite, α ≥ 0 and β > κ.
Therefore, it follows that max ˙̃V is negative definite. It then follows from Lemma
1.10 that

∥∥∥Z̃(t)
∥∥∥→ 0 as t→∞.

Next, we show that V will decrease to zero in finite time. Note that

V =
1

2
Z̃TMZ̃ ≤ 1

2
λmax(M)‖Z̃‖22.

It then follows from (4.35) that the derivative of V satisfies

V̇ ≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1
≤− (β − κ)‖Z̃TM‖2
=− (β − κ)

√
Z̃TM2Z̃

≤− (β − κ)

√
λ2min(M)‖Z̃‖22

=
−(β − κ)λmin(M)

√
λmax(M)‖Z̃‖22√

λmax(M)

≤−(β − κ)
√

2λmin(M)√
λmax(M)

√
V .

After some manipulations, we get

2
√
V (t) ≤ 2

√
V (0)− (β − κ)

√
2λmin(M)√

λmax(M)
t.

Therefore, V (t) = 0 when t ≥ T =

√
Z̃T (0)MZ̃(0)

√
λmax(M)

(β−κ)λmin(M)
.

Hence, z1j(1 ≤ j ≤ m) and z2j(1 ≤ j ≤ m) converge to z10 and z20 in
finite time, respectively. Also it is obvious from (4.21) that u1j(1 ≤ j ≤ m) can
converge to u10 in finite time. This proof is completed.

Remark 4.8 From Theorem 4.7, when û = 0 (i.e., perfect velocity tracking), the
state Z̃ of system (4.30) can converge to zero in finite time. As in our previ-
ous discussion, the "perfect velocity tracking" for mobile robot may not hold in
practice, due to the fact that the dynamics model of the wheel mobile robot has
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unknown dynamic parameters, which will affect the robust tracking of the system.
In the next section, we will consider that "perfect velocity tracking" assumption
doesn’t hold in practice. Hence, it is necessary to design a suitable torque con-
troller τj based on the controller 4.21 and 4.22, guaranteeing the stability of the
kinematic error system (4.30).

4.4 Adaptive Dynamic Controller Design

4.4.1 Robot Model and Its Properties

From (4.3) and (4.13),the new kinematic model of the mobile robot j is obtained
as follows

q̇j =

 (1 + k20)z3j cos θj − k0sign(u1j)z2j cos θj cos θj
(1 + k20)z3j sin θj − k0sign(u1j)z2j sin θj sin θj

1 0

[ u1j
u2j

]
= S̄(qj)uj.

(4.36)
Differentiating (4.36), substituting it into the (4.1) and multiplying both sides by
S̄T (qj), the following dynamic equation is obtained

M̄ju̇j + C̄juj + Ḡj = τ̄j, j = 1, . . . ,m, (4.37)

where M̄j = S̄TMjS̄ is a symmetric positive definite inertia matrix, C̄j = S̄T (Mj
˙̄S+

CjS̄) is the centripetal and coriolis matrix, τ̄j = S̄TBτj denotes input vector. Let
A = (1 + k20)z3j − k0sign(u1j)z2j. The matrices in the dynamic equation (5.39)
are given as follows

M̄(qj) =

[
A2m̂+ I Am̂
Am̂ m̂

]
, C̄(qj, q̇j) =

[
AȦm̂ 0

Ȧm̂ 0

]
,

Ḡj(q) = 0, B̄(qj) =
1

r

[
A+R A+R

1 1

]
,

where m̂ and I are respectively the mass and inertia moment of the mobile robot.
Similar to the properties 4.1- 4.3, the equation (5.39) has the following prop-

erties.

Property 4.9 The inertia matrix M̄j(qj) is symmetric positive definite.

Proof: It is easy to verify, and is therefore omitted here.
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Property 4.10 The matrix ˙̄Mj − 2C̄j is skew symmetric.

Proof: The derivative of the inertia matrix, and the centripetal and coriolis
matrix are given by

˙̄Mj(qj) = ˙̄STMjS̄ + S̄TṀjS̄ + S̄TMj
˙̄S,

2C̄j = 2S̄T (Mj
˙̄S + CjS̄).

Since Ṁj−2Cj is skew symmetric andMj is symmetric positive definite, it follows
that

˙̄Mj − 2C̄j = ˙̄STMjS̄ + S̄TṀjS̄ + S̄TMj
˙̄S − 2S̄T (Mj

˙̄S + CjS̄)

= ˙̄STMjS̄ − S̄TMj
˙̄S + S̄T (Ṁj − 2Cj)S̄

= S̄T (Ṁj − 2Cj)S̄.

Hence, the matrix ˙̄Mj − 2C̄j is skew symmetric.

Property 4.11 For any differentiable vector ξ, the following equation (4.11) is
satisfied

M̄j ξ̇ + C̄jξ + Ḡj = YjΘj, j = 1, . . . ,m, (4.38)

where Yj is regression vector and Θj is the constant parameter vector associated
with the follower robot j.

Proof: It is easy to verify, and is therefore omitted here.

4.4.2 Controller Design

Taking the derivative of (4.24), and multiplying the inertia matrix M̄j to both
sides of equation gives

M̄j
˙̃uj =M̄ju̇jr − M̄ju̇j

=M̄ju̇jr + C̄juj + Ḡj − τ̄j
=− C̄jũj − τ̄j + M̄ju̇jr + C̄jujr + Ḡj, j = 1, . . . ,m. (4.39)

From the property 4.11, it follows that

M̄ju̇jr + C̄jujr + Ḡj = YjΘj, j = 1, . . . ,m. (4.40)
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Then, the equation (4.39) can be rewritten as

M̄j
˙̃uj =− C̄jũj − τ̄j + YjΘj, j = 1, . . . ,m. (4.41)

It is easy to obtain that Yj and Θj satisfy

Yj =

[
A2u̇1jr + Au̇2jr + AȦu1jr Ȧu1jr
Au̇1jr + u̇2jr + Ȧu1jr 0

]
, Θj =

[
m̂
I

]
. (4.42)

Next, we design an adaptive controller for the system (4.41) as follows

τ̄j = Kjũj + YjΘ̂j, (4.43)

where Kj is a symmetric positive-definite matrix defined by Kj = kjI2 with kj

being a positive gain constant and I2 ∈ R2×2 being the identity matrix. Θ̂j is the
estimate of Θj and satisfies

˙̂
Θj = ΓjY

T
j ũj, (4.44)

and Γj is a symmetric positive definite matrix. Let Θ̃j be the estimation error
of the parameter vector, and Θ̃j = Θj − Θ̂j. It then follows from (4.42) that
˙̃Θj = − ˙̂

Θj.

Substituting (4.43) into (4.41), the dynamics system of the robot j can be
written as

M̄j
˙̃uj =− C̄jũj − τ̄j + YjΘj

=− C̄jũj −Kjũj − YjΘ̂j + YjΘj

=− (C̄j +Kj)ũj + YjΘ̃j, j = 1, . . . ,m. (4.45)

Hence, the dynamics systems of all the follower robots can be written in a vector
form as

M̄(q) ˙̃u+ C̄ (q, q̇) ũ = −Kũ+ Y Θ̃, (4.46)

where M̄(q), C̄ (q, q̇) andK are respectively the block diagonal matrices of M̄j(qj),
C̄j (qj, q̇j) and Kj, and ũ = [ũw1, ũv1, ũw2, ũv2, . . . , ũwm, ũvm]T , it is easily obtained
from (4.30) that ‖ũ‖2 = ‖û‖2.
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Theorem 4.12 Suppose that the communication graph G is connected. Assump-
tion 3.3 is satisfied, the velocity controllers for (4.25) and (4.26) are respectively
designed by (4.21) and (4.22), and the torque control input for (4.39) is de-
signed by (4.43), if the control gains are chosen as α > 1

2λmax(M)
, β > κ and

kmax >
λmax(M)

2
, where kmax = max{k1, k2, . . . , km}, then, for 1 ≤ j ≤ m, the

errors z̃1j = 0, z̃2j = 0, ũwj = 0 and ũvj = 0 are globally asymptotically stable.

Proof: Define the Lyapunov function candidate as

V = V1 + V2, (4.47)

where

V1 =
1

2
Z̃TMZ̃, (4.48)

V2 =
1

2
ũTM̄ũ+

1

2
Θ̃TΓ−1Θ̃, (4.49)

with Θ̃ = [Θ̃1, . . . , Θ̃m]T , and Γ is the block diagonal matrices of Γj. Using the
properties of K[·], the set-valued Lie derivative of V can be obtained as follows

˙̃V =K[V1 + V2] ⊆ K[V1] + K[V2]

= ˙̃V1 + ˙̃V2. (4.50)

Since V2 is continuous, according to Lemma 1.7, the equality (5.69) holds. First,
let us compute the set-valued Lie derivative of V1,

˙̃V1(Z̃) =K[−αZ̃TM2Z̃ − βZ̃TMsign(MZ̃)− Z̃TMḟ0 − Z̃TMû]

={−αZ̃TM2Z̃ − β‖Z̃TM‖1 − Z̃TMḟ0 − Z̃TMû}. (4.51)

Similar to the proof process in Theorem 5.10, the set-valued Lie derivative ˙̃V1 is
a singleton. By using the Hölder’s inequality, it then follows from (4.51) that

˙̃V1 ≤− αZ̃TM2Z̃ − β‖Z̃TM‖1 − Z̃TM12mż20 − Z̃TMû

≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 − Z̃TMû

≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22 + ‖û‖22), (4.52)
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where the fact |ż20| ≤ κ has been used. Since the matrix M is symmetric positive
definite, it then follows that M2 is also symmetric positive definite. Since V2 is
continuous, it follows that the set-valued Lie derivative of V2 satisfies max ˙̃V2 = V̇2.
Hence, we have

V̇2 =ũTM̄ ˙̃u+
1

2
ũT ˙̄Mũ+ Θ̃TΓ−1 ˙̃Θ

=ũT{−C̄ũ−Kũ+ Y Θ̃}+
1

2
ũT ˙̄Mũ+ ˙̃ΘTΓ−1Θ̃

=− ũTKũ+ ũT{−C̄ +
1

2
˙̄M}ũ+ ũTY Θ̃ + (−Y T ũ)TΓTΓ−1Θ̃ (4.53)

=− ũTKũ,

where the fact that ˙̄Mj − 2C̄j is skew symmetric has been used .
Now, Substituting (4.52) and (4.53) into the Lie derivative ˙̃V gives

max ˙̃V = V̇ ≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22 + ‖û‖22)− ũTKũ

=− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22 + ‖ũ‖22)− ũTKũ

≤− αλ2max(M)‖Z̃‖22 − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22 + ‖ũ‖22)

− kmax‖ũ‖22
≤− (αλ2max(M)− λmax(M)

2
)‖Z̃‖22 − (β − κ)‖Z̃TM‖1

− (kmax −
λmax(M)

2
)‖ũ‖22,

and it is clear that max ˙̃V < 0 provided by ż20 ≤ κ, α > 1
2λmax(M)

, β > κ and
kmax >

λmax(M)
2

. It then from Lemma 1.10 that, ũ→ 0 and Z̃ → 0 as t→∞, i.e.,
z̃1j → 0, z̃2j → 0, ũwj → 0 and ũvj → 0 as t→∞. Therefore, the errors z̃1j = 0,
z̃2j = 0, ũwj = 0 and ũvj = 0 are globally asymptotically stable. This proof is
completed.

Remark 4.13 From the Theorem 4.12, we have proved that the variables z1j(1 ≤
j ≤ m) and z2j(1 ≤ j ≤ m) respectively converge to z10 and z20 globally asymptot-
ically under the proposed control laws (4.21),(4.22) and (4.43). In the following
Theorem 4.14, we will prove that z3j exponentially converges to z30 under the
control laws (4.21),(4.22) and (4.43).
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Theorem 4.14 Suppose that the communication graph G is connected, Assump-
tion 3.3 is satisfied, the velocity controllers for (4.25) and (4.26) are respectively
designed by (4.21) and (4.22), and the torque control input for (4.39) is designed
by (4.43), If z1j and z2j asymptotically converge to z10 and z20, then z3j also
asymptotically converges to z30.

Proof: Let z̃3j = z3j − z30. Take the derivative of z̃3j as

˙̃z3j =ż3j − ż30
=− k0|u1j|z̃3j + u1j z̃2j + (u1j − u10)z20 − k0(|u1j| − |u10|)z30
=− k0|u1j|z̃3j + x2(t). (4.54)

where x2(t) = u1j z̃2j + (u1j − u10)z20 − k0(|u1j| − |u10|)z30. The solution of the
differential equation (4.54) is given as follows

z̃3j(t) = e
∫ t
0 −k0|u1j |dτ z̃3j(0) +

∫ t

0

e
∫ t
τ −k0|u1j |dνx2(τ)dτ . (4.55)

According to Theorem 4.12, z̃2j asymptotically converges to zero, and u1j

asymptotically converges to u10. It then follows the definition of x2(t) that
x2(t) also asymptotically converges to zero. Hence, according to the definition of
asymptotic stability, for a arbitrary positive value σ > 0, it exists o > 0, when
the |x2(0)| < o, it has |x2(t)| < σ.

From the Assumption (3.1), the u1j is bounded, and u1j = wj, Hence, |u1j| ≤
wmax.

The solution of the differential equation (4.55) satisfies the inequality

z̃3j(t) =e
∫ t
0 −k0|u1j |dτ z̃3j(0) +

∫ t

0

e
∫ t
τ −k0|u1j |dνx2(τ)dτ

≤e−k0wmaxtz̃3j(0) +

∫ t

0

e−k0wmax(t−τ)x2(τ)dτ

≤e−k0wmaxtz̃3j(0) + e−k0wmaxt
∫ t

0

ek0wmaxτx2(τ)dτ

≤e−k0wmaxtz̃3j(0) +
σk0wmax − σk0wmaxe−k0wmaxt

k0wmax
=σ + e−k0wmaxt(z̃3j(0)− σ).

Hence, when t → +∞, |z̃3j(t)| ≤ σ. Since σ is a arbitrary positive values, from
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the definition of asymptotic stability, the z̃3j(t) is asymptotically stable at the
neighborhood of origin. This proof is completed.

Remark 4.15 From the Theorems 4.12 and 4.14, our control objectives (4.17)-
(4.20) are hold. Therefore from the Lemma 4.4, the m mobile robots converge to
the formation pattern F, i.e., the equations (4.9)-(4.11) are satisfied.

4.5 Simulation

In this section, numerical simulations are preformed to show the effectiveness of
some theoretical results obtained in the previous sections. Let’s consider a group
of six followers and one virtual leader. From the communication graph among
mobile robots shown in Fig. 3.2, it can be note that the undirected graph G for all
followers F1 to F6 is connected, and the follower F1 can receive information from
the virtual leader L. Let aij = 1 if robot i can receive information from robot j,
aij = 0 otherwise; also bj = 1 if the virtual leader’s information is available to
the follower j, and bj = 0 otherwise, where i ∈ {1, ..., 6} and j ∈ {1, ..., 6}.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

X(m)

Y
(m

)

Figure 4.1: The trajectory of virtual leader (black line), the trajectory of centroid
of the six followers (blue line), and the formation positions and pattern of the six
followers at some moments.
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In this simulation, we assume that the desired formation pattern F is defined
by orthogonal coordinates as (p1x, p1y) = (2, 0), (p2x, p2y) = (1,

√
3), (p3x, p3y) =

(−1,
√

3), (p4x, p4y) = (−2, 0), (p5x, p5y) = (−1,−
√

3), and (p6x, p6y) = (1,−
√

3).
Also assume the parameters m̂ = 5 kg and I = 3 kg ·m2. The trajectory of the
virtual leader is chosen as (x0(t), y0(t)), θ0(t)) = (12 sin(t/3),−12 cos(t/3), t/3).
According to the coordinate transformation (4.13), z20 = 12k0. Thus, ż20 = 0 ≤ κ.
The control gain parameters are chosen as α = 3, β = 0.64 and k0 = 2, Kj =

diag{130, 130}. Obviously, these parameters satisfy the constraints in Theorem
4.12 and Theorem 4.14.
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Figure 4.2: The trajectories of x0(blue line) and the centroid of xi (1 ≤ i ≤ 6)(red
line).
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Figure 4.3: The trajectories of y0(blue line) and the centroid of yi (1 ≤ i ≤ 6)(red
line).
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Figure 4.4: The tracking error ũwi for (1 ≤ i ≤ 6).
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Figure 4.5: The tracking error ũvi for (1 ≤ i ≤ 6).
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Figure 4.6: The tracking errors wi − w0(1 ≤ i ≤ 6).

104



4.5 Simulation

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

Time(s)

 

 

θ
1
−θ

0

θ
2
−θ

0

θ
3
−θ

0

θ
4
−θ

0

θ
5
−θ

0

θ
6
−θ

0

Figure 4.7: The tracking errors θi − θ0 (1 ≤ i ≤ 6).

Fig. 4.1 shows the trajectory of virtual leader (black line), the trajectory of
centroid of the six followers (blue line), and the formation positions and pattern
of the six followers at some moments. It can be seen from Fig. 4.1 that the six
robots converge to a desired geometry pattern under the proposed distributed
controllers (4.22) and (4.21), i.e., the equation (4.9) is verified. Fig. 4.2 shows
the trajectories of x0 (blue line) and the centroid of xi (1 ≤ i ≤ 6) (red line).
Fig. 4.3 shows the trajectories of y0 (blue line) and the centroid of yi (1 ≤ i ≤ 6)
(red line). From Fig. 4.2 and Fig. 4.3, the trajectory of the formation geometric
centroid converges to the trajectory of virtual leader, that is to say, the equation
(4.11) is verified. Fig. 4.4 and Fig. 4.5 show the tracking error ũwi for (1 ≤ i ≤ 6)

and ũvi for (1 ≤ i ≤ 6) under the torque controller (4.43). From Fig. 4.4 and Fig.
4.5, ũwi and ũvi respectively converge to zero. The perfect tracking of velocity
and angular velocity has been guaranteed. Fig. 4.6 and Fig. 4.7 respectively
show the angular velocity tracking errors wi − w0 and the orientation tracking
errors θi − θ0 between follower Fi (1 ≤ i ≤ 6) and virtual leader. It can be seen
from Fig. 4.6 and Fig. 4.7 that wi − w0 and θi − θ0 converge to zero over time,
i.e., the equation (4.10) and (4.20) are verified.
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4.6 Conclusion

In this chapter, the distributed adaptive formation control of multiple nonholo-
nomic wheeled robots has been discussed. The distributed control laws and adap-
tive dynamics controllers for mobile robots have been developed with the aid of
algebraic graph theory, matrix theory, and Lyapunov control approach. In this
chapter, the desired trajectory has been considered as the trajectory of a virtual
leader, whose information is not required to be available to each robot.Simulation
results have verified the effectiveness of theoretical results obtained in previous
sections.
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5.1 Introduction

In this chapter, we will consider the formation control problem for the wheeled
mobile robots, in which the dynamic model of the wheeled mobile robot has the
friction term and bounded disturbance term. In the previous chapter, we con-
sidered the dynamics model of the wheeled mobile robot ignoring the friction
term and bounded disturbance term. In some practical applications, the friction
term and bounded disturbance term should not be ignored and practical con-
trol strategies accounting for the friction term and bounded disturbance term
should be implemented. Firstly, we consider that the partial knowledge of the
mobile robot dynamics is available. An asymptotically stable torque controller is
proposed by using robust adaptive control techniques to account for unmodeled
dynamics and bounded disturbances. Next, we consider that the dynamics of
the mobile robot are unknown. Note that from the previous literatures (Fierro
& Lewis (1998)) the neural network controller can relax the knowledge of the
dynamics. Therefore the universal approximation property of neural network is
used to relax the knowledge of the dynamics system, and an asymptotically ro-
bust adaptive controller augmented with the neural network is derived to achieve
asymptotic tracking.

5.2 Preliminary

Let R denote the real numbers, Rp denote the real p vectors, Rp×q denote the real
p× q matrices, and the ‖ · ‖m denote the m-norm.

Definition 5.1 (Meyer 2000) Let x = (x1, x2, . . . , xp) ∈ Rp, the Rp is Euclidean
Space, if 1 ≤ m < +∞,

‖x‖m = (

p∑
j=1

(xj)
m)1/m
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if m =∞,
‖x‖∞ = max

1≤j≤p
|xj|

Especially, if m = 1, ‖x‖1 =
∑p

j=1 |xj|, and if m = 2, named the Euclid norm,

denote ‖ · ‖2, ‖x‖2 =
√∑p

j=1(xj)
2.

Definition 5.2 (Meyer 2000) The Cauchy-Bunyakovskii-Schwarz (CBS)Inequality:

‖xTy‖2 ≤ ‖x‖2 · ‖y‖2, for all x, y ∈ Rp×1 (5.1)

Equality holds if and only if y = αx for α = xT y
xT x

.

Definition 5.3 (Meyer 2000) Given A = [aij],B ∈ Rp×q, the Frobenius norm is
defined by

‖A‖2F = tr(ATA) =
∑
i,j

a2ij,

and the associated inner product is defined by

〈A,B〉F = tr(ATB),

where tr(·) is the trace, and tr(A) =
∑p

i=1 aii.

Matrix multiplication distinguishes matrix spaces from more general vector
spaces, but the three vector-norm properties say nothing about products. The
CBS inequality insures that

‖Ax‖22 ≤ (
∑
i,j

a2ij) · ‖x‖22 = ‖A‖2F‖x‖22, (5.2)

where A ∈ Rq×p and x ∈ Rp and we express this by saying that the Frobenius
matrix norm ‖ · ‖F and the Euclidean vector norm ‖ · ‖2 are compatible.

From the compatible condition (5.2), it can be obtained that

〈A,B〉F = tr(ATB) = ‖AB‖F ≤ ‖A‖F‖B‖F , (5.3)

Definition 5.4 (Petersen & Pedersen 2012) Assume F (x) to be a differentiable
function of each of the elements of x. It then holds that

dtr(F (x))

dx
= f(x)T ,
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where f(·) is the scalar derivative of F (·).

The derivatives of traces have the following properties (Petersen & Pedersen
2012):

dtr(x)

dx
= I, (5.4)

dtr(xTA)

dx
=
dtr(ATx)

dx
= A, (5.5)

dtr(xA)

dx
=
dtr(AxT )

dx
= AT , (5.6)

dtr(xTAx)

dx
= (A+ AT )x (5.7)

5.2.1 Dynamics of Nonholonomic Wheeled Mobile robot

Consider a multi-robot system consisting of m nonholonomic wheeled mobile
robots indexed by 1, 2, ...,m. The nonholonomic dynamics model of the mobile
robot j can be described by the Euler-Lagrange equation as follows

Mj(qj)q̈j+Cj (qj, q̇j) q̇j+Fj (q̇j)+Gj(qj)+τdj = B(qj)τj−AT (qj)λ, j = 1, . . . ,m,

(5.8)
where qj is the generalized coordinates, Mj(qj) ∈ R3×3 is a symmetric positive
definite inertia matrix, Cj (qj, q̇j) ∈ R3×3 is the bounded centripetal and coriolis
matrix, Fj(q̇j) ∈ R3×1 denotes surface friction. Gj(qj) ∈ R3×1 is the gravitations
vector, τdj denotes bounded unknown disturbances including unstructured un-
modeled dynamics. Bj(qj) ∈ R3×2 is the input transformation matrix, τj ∈ R2×1

is the control torque vector, Aj(q) ∈ R1×3 is the matrix associated with the
constraints, and λj ∈ R1×1 is the vector of constraint forces.

Similar to the discussions in Section 4.2.1, all the kinematic equality con-
straints are independent of time, and can be expressed as follows:

A(qj)q̇j = 0, (5.9)

the wheeled mobile robot satisfies the following nonholonomic constraint:

ẏj cos θj − ẋj sin θj = 0. (5.10)

110



5.2 Preliminary

and the kinematics model of the mobile robot j ∈ {1, . . . ,m} can be written as

q̇j =

 ẋj
ẏj
θ̇j

 =

 cos θj 0
sin θj 0

0 1

[ vj
wj

]
= S(qj)v̄j. (5.11)

From (5.9) and (5.11), it is easily obtained that

ST (qj)A
T (qj) = 0. (5.12)

We consider the wheeled mobile robot with two driving wheels, which is shown in
Fig.3.1. The geometrical center of robot is C, which is the center of mass of the
robot. The trajectory of the mobile robot is constrained to the horizontal plane,
i.e. Gj(qj) = 0.

The equation (5.8) has the following properties (Lewis et al. (1993)).

Property 5.5 The inertia matrix Mj(qj) is symmetric positive definite, and sat-
isfies the following inequality

m1‖qj‖2 ≤ qTj Mj(qj)qj ≤ m2‖qj‖2, qj ∈ R3, (5.13)

where m1, m2 are positive constants, and ‖ · ‖ is the standard Euclidean norm.

Property 5.6 Ṁj(qj)− 2Cj (qj, q̇j) is skew symmetric , that is to say,

ξT
[

1

2
Ṁj(qj)− Cj (qj, q̇j)

]
ξ = 0. ∀ξ ∈ R3. (5.14)

Property 5.7 The unknown disturbance satisfies ‖τdj‖ < dM with dM a known
positive constant.

5.2.2 Neural Network

The Fig. 5.1 shows a two-layer feedforward Neural Network. The Neural Network
output y is a vector with m components determined in terms of the n components
of the input vector x by the following formula Fierro & Lewis (1998)

yi =

Nb∑
j=1

[wijσ(

p∑
k=1

vjkxk + θvj) + θwi], i = 1, . . . ,m, (5.15)
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where σ(·) are the activation functions Nh is the number of hidden-layer neurons.
The inputs-to-hidden-layer interconnection weights are denoted by vjk and the
hidden-layer-to-outputs interconnection weights by wij. The threshold offset are
denoted by θvj, θwi. The sigmoid activation function is given by

σ(x) =
1

1 + e−x
. (5.16)

Let f(x) be a smooth function from Rp to Rq. According to the function approx-
imations property, it can be shown that as long as x is restricted to a compact
set Ux of Rp, for some number of hidden layer neurons Nh, there exist weights
and thresholds such that

f(x) = W Tσ(V Tx) + ε. (5.17)

Figure 5.1: Two-layer feedforward Neural Network structure
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5.2.3 Problem Description

Similar to Chapter 3 and 4, in this chapter the desired geometric pattern F of
m mobile robots is still defined by using orthogonal coordinates (pjx, pjy), which
satisfies

m∑
j=1

pjx = p0x,
m∑
j=1

pjy = p0y. (5.18)

where (p0x, p0y) is the center of the geometric pattern F. Without loss of gener-
ality, we also assume that p0x = 0, p0y = 0.

In this chapter, we will still design the control inputs vj and wj for the wheeled
nonholonomic mobile robot j using its states (qj, q̇j), (pjx, pjy), and its neighbors’s
states (qi, q̇i) and (pix, piy) for i ∈ Nj, to achieve our control objective (1): a group
of such robots converge to the desired formation pattern F, (2): the orientation
of each robot converges to a desired value θ0, and (3): the geometric centroid of
the formation converges to the desired reference trajectory (x0, y0), that is to say,

lim
t→∞

[
xj − xi
yj − yi

]
=

[
pjx − pix
pjy − piy

]
, (5.19)

lim
t→∞

(θj − θ0) =0, (5.20)

lim
t→∞

(
m∑
j=1

xj
m
− x0) =0, lim

t→∞
(
m∑
j=1

yj
m
− y0) = 0. (5.21)

Similarly, the geometric centroid (x0, y0) and the desired value θ0 are consid-
ered as the posture of a virtual leader 0,

ẋ0 = v0 cos θ0, ẏ0 = v0 sin θ0, θ̇0 = w0. (5.22)

To achieve our control objective, the same assumptions Assumption 3.1 and
Assumption 3.3 in Section 3.3 are needed.
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5.3 Distributed Control Algorithm

In this chapter, we consider the same transformation used in Chapter 4:

z1j =θj,

z2j =(xj − pjx) cos θj + (yj − pjy) sin θj + k0sign(u1j)z3j, (5.23)

z3j =(xj − pjx) sin θj − (yj − pjy) cos θj,

u1j =wj,

u2j =vj − (1 + k20)u1jz3j + k0|u1j|z2j,

where 0 ≤ j ≤ m, k0 > 0, and sign(·) is the signum function. The dynamic
system of (5.23) is given as follows

ż1j =u1j, (5.24)

ż2j =u2j, (5.25)

ż3j =u1jz2j − k0|u1j|z3j. (5.26)

Then according to (5.23)-(5.26), we obtain the same control objective in Chapter
4 as

lim
t→∞

(z1j − z10) =0, (5.27)

lim
t→∞

(z2j − z20) =0, (5.28)

lim
t→∞

(z3j − z30) =0, (5.29)

lim
t→∞

(u1j − u10) =0. (5.30)

Lemma 5.8 If the equations (5.27)-(5.30) hold for 0 ≤ j ≤ m, then them mobile
robots can converge to the formation pattern F, i.e., the equations (5.19)-(5.21)
can be satisfied.

Proof: The proof is similar to that of Lemma 3.5 and is therefore omitted here.
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Let’s consider the same desired control inputs used in Chapter 4 for the mobile
robot j as

u1jr =u10 − α
∑
i∈Nj

aji(z1j − z1i)− αbj(z1j − z10)

− βsign(
∑
i∈Nj

aji(z1j − z1i) + bj(z1j − z10)), (5.31)

u2jr =− α
∑
i∈Nj

aji(z2j − z2i)− αbj(z2j − z20)

− βsign(
∑
i∈Nj

aji(z2j − z2i) + bj(z2j − z20)), (5.32)

where j = 1, . . . ,m, bj is a positive constant if the virtual leader’s position is
available to the follower j, and bj = 0 otherwise, |ż20| ≤ κ, κ is a positive constant,
α is a nonnegative constant, β is a positive constant and satisfies β > κ.

Using the same operation in Section 4.3, define the auxiliary velocity tracking
error as

ũj =

[
ũwj
ũvj

]
=

[
u1jr
u2jr

]
−
[
u1j
u2j

]
. (5.33)

Then the dynamic system (5.24)-(5.26) become

ż1j =u1jr − ũwj, (5.34)

ż2j =u2jr − ũvj, (5.35)

ż3j =(u1jr − ũwj)z2j − k0|(u1jr − ũwj)|z3j. (5.36)

The error dynamic system can be rewritten in a vector form as

˙̃Z =− αMZ̃ − βsign(MZ̃)− ḟ0 − û, (5.37)

where û = [ûw, ûv]
T = [ũw1, . . . , ũwm, ũv1, . . . , ũvm]T .

Remark 5.9 Note that the stability of the kinematic error system (5.37) is now
dependent on the error Z̃ and the velocity tracking error û. The following Theorem
5.10 is given to prove that when û = 0 (i.e., perfect velocity tracking) the state Z̃
of system (5.37) can converge to zero in finite time.
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Theorem 5.10 Suppose that the communication graph G is connected, Assump-
tion 3.3 is satisfied, and the controller for the system (5.37) is chosen by (5.31)and
(5.32), if the auxiliary velocity tracking error û = 0, then the state Z̃ of system
(5.37) can converge to zero in finite time, that is to say, z1j − z10, u1j − u10 and
z2j − z20 converge to zero in finite time.

Proof: The proof is same to that of Theorem 4.7 and is therefore omitted here.

Remark 5.11 From Theorem 5.10, when û = 0 (i.e., perfect velocity tracking),
the state Z̃ of system (5.37) can converge to zero in finite time. As our previ-
ous discussion, the “perfect velocity tracking" for mobile robot may not hold in
practice, due to the fact that the dynamic model of the wheeled mobile robot has
unmodeled dynamics and unknown dynamical disturbances, which will affect the
robust tracking of the system. In the next section, we will consider that “perfect
velocity tracking" assumption doesn’t hold in practice. Hence, it is necessary to
design a suitable torque controller τj based on the controller (5.31) and (5.32),
guaranteeing the stability of the kinematic error system (30).

5.4 Adaptive Dynamic Controller Design

5.4.1 Robot Model and its Properties

From the (5.23), it can be easily obtained that

v̄j =

[
1 0
A 1

]
uj,

where A = (1 + k20)− k0sign(u1j)z2j. According to the (5.11), it follows that

q̇j = s(q)j v̄j = S(qj)

[
1 0
A 1

]
uj = Ŝ(qj)uj (5.38)

where

Ŝ =

(1 + k20)z3j cos θj + k0sign(u1j)z2j cos θj
(1 + k20)z3j cos θj + k0sign(u1j)z2j cos θj

1 0

 .
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The dynamics (5.8) of the mobile robot can be rewritten as follows

ŜTMjŜu̇j + ŜT (Mj
˙̂
S +CjŜ)uj + ŜTFj + ŜTGj = ŜTBτj − ŜT τdj, j = 1, . . . ,m,

(5.39)
i.e.

M̄ju̇j + C̄juj + F̄j + Ḡj = τ̄j − τ̄dj, j = 1, . . . ,m, (5.40)

where M̄j = ŜTMjŜ is a symmetric positive definite inertia matrix. C̄j =

ŜT (Mj
˙̂
S +CjŜ) is the centripetal and coriolis matrix, Ḡj = ŜTGj is the gravita-

tion vector, and Ḡj = 0. F̄j = ŜTFj is the surface friction, τ̄dj = ŜT τdj denotes
the bounded unknown disturbances including unstructured unmodeled dynamics,
and τ̄j = ŜTBτj is the input vector.

Similar to the properties 5.5-5.7, the equation (5.40) has the following prop-
erties.

Property 5.12 The inertia matrix M̄j(qj) is symmetric positive definite.

Property 5.13 The matrix ˙̄Mj − 2C̄j is skew symmetric.

Property 5.14 The unknown disturbance satisfies ‖τ̄dj‖ < d̄M with d̄M a known
positive constant.

5.4.2 Controller Design

Taking the derivative of (5.33) and multiplying by the inertia matrix M̄j both
sides gives

M̄j
˙̃uj =M̄ju̇jr − M̄ju̇j

=− C̄jũj − τ̄j + fj (ujr, u̇jr) + wj(t), j = 1, . . . ,m, (5.41)

where fj (ujr, u̇jr) = M̄ju̇jr + C̄jujr is composed of known quantities, and the
disturbance term is

wj(t) = ∆j + τ̄dj, j = 1, . . . ,m, (5.42)

where ∆j represents any model uncertainties and unmodeled dynamics, and τ̄dj is
the unknown bounded disturbance which could represent any inaccurately mod-
eled dynamics.
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Lemma 5.15 (Bounds on the Disturbance Term) (Fierro & Lewis 1998) The
disturbance term wj(t) is bounded according to

‖wj(t)‖ ≤ C0 + C1‖ũj‖+ C2‖ũj‖2 = YjΘj, (5.43)

with C0, C1, C2 depending on the terms like the disturbance bound, the changes
in the mass of the robot due to payload, and friction coefficients with Yj being a
known regression vector.

When the robot dynamics are partially known, the torque control algorithm for
the dynamics system (5.41) is designed to be

τ̄j = Kjũj + fj (ujr, u̇jr) + µjr, (5.44)

where Kj is a symmetric positive-definite matrix defined by Kj = kjI2 with kj

being a positive gain constant and I2 ∈ R2×2 being the identity matrix. The
nonlinear term µjr is an adaptive robustifying term and defined as (Kwan et al.
1995)

µjr =
ũj(YjΘ̂j)

2

(YjΘ̂j)‖ũj‖+ δj

δ̇j =− γjδj, δj(0) = Cδ > 0 (5.45)

where γj and Cδ are positive design constants and YjΘ̂j is the adaptive estimate
of the known function YjΘj. Θ̂j is the estimate of Θj, and the parameter turning
law for the estimate Θ̂j is defined as

˙̂
Θj = ΓjYj‖ũj‖, (5.46)

where Γj is a symmetric and positive definite matrix. Let Θ̃j be the estimation
error of the parameter turning law, and Θ̃j = Θj − Θ̂j. It then follows that
˙̂
Θj = − ˙̃Θj.

Substituting (5.44) into (5.41) and writing in a vector form gives

M̄(q) ˙̃u+ C̄ (q, q̇) ũ = −Kũ− µr + w(t), (5.47)
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where M̄(q), C̄ (q, q̇) and K are respectively the block diagonal matrices of
M̄j(qj), C̄j (qj, q̇j) and Kj, µr = [µ1r, . . . , µmr]

T , w(t) = [w1, . . . , wm]T , τ̄d =

[τ̄d1, . . . , τ̄dm]T , and ∆ = [∆1, . . . ,∆m]T .

Theorem 5.16 Suppose that the communication graph G is connected, Assump-
tion 3.3 is satisfied, the velocity controllers for (5.34) and (5.35) are respec-
tively designed by (5.31) and (5.32), and the torque control input for the dy-
namics system (5.41) is designed by (5.44), if the control gains is chosen as
α ≥ 1

2λmax(M)
, β ≥ κ and kmax ≥ λmax(M)

2
, where kmax = max{k1, k2, . . . , km},

then, for 1 ≤ j ≤ m, the errors z̃1j = 0, z̃2j = 0, ũwj = 0 and ũvj = 0 are globally
asymptotically stable.

Proof: Choose the Lyapunov candidate as

V = V1 + V2, (5.48)

where V1 and V2 are chosen as

V1 =
1

2
Z̃TMZ̃, (5.49)

V2 =
1

2
ũTM̄ũ+

1

2
Θ̃TΓ−1Θ̃ + δ1/γ1, (5.50)

with Θ̃ = [Θ̃1, . . . , Θ̃m]T , Γ is the block diagonal matrices of Γj. Using the
properties of K[·], the set-valued Lie derivative of V can be obtained as follows

˙̃V =K[V1 + V2] ⊆ K[V1] + K[V2]

= ˙̃V1 + ˙̃V2. (5.51)

Since V2 is continuous, according to Lemma 1.7, the equality (5.69) holds.
Using the Properties ofK[·], the set-valued Lie derivative of V1 can be obtained

as follows

˙̃V1 ,
⋂

ξ∈∂V (Z̃)

ξTK[−αMZ̃ − βsign(MZ̃)− ḟ0 − û].

where ∂V1(Z̃) is the generalized gradient of V at Z̃. Because V1 is continuously
differentiable with respect to Z̃, ∂V1(Z̃) = {MZ̃}, which is a singleton. Therefore,
it follows that
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˙̃V1(Z̃) =K[−αZ̃TM2Z̃ − βZ̃TMsgn(MZ̃)− Z̃TMḟ0 − Z̃TMû]

={−αZ̃TM2Z̃ − βZ̃TMsgn(MZ̃)− Z̃TMḟ0 − Z̃TMû}, (5.52)

where the fact that xT sign(x) = ‖x‖1 has been used. By Lemma 1.7 and Paden
& Sastry (1987), if f is continuous, then K[f ] = {f}. Note that the set-valued
Lie derivative ˙̃V1 is a singleton, whose only element is actually V̇1. Therefore, it
follows that

max ˙̃V1 = V̇ ≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 − Z̃TMû

≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22 + ‖û‖22),

(5.53)

where β > κ and α is positive. Note that M2 is symmetric positive definite.

Since V2 is continuous, it follows that the set-valued Lie derivative of V2 sat-
isfies max ˙̃V2 = V̇2. Hence, we have

V̇2 =ũTM̄ ˙̃u+
1

2
ũT ˙̄Mũ+ Θ̃TΓ−1 ˙̃Θ + δ̇1/γ1

=ũT{−C̄ũ−Kũ− µr + w(t)}+
1

2
ũT ˙̄Mũ+ Θ̃TΓ−1 ˙̃Θ− δ1

=− ũTKũ+ ũT (
1

2
˙̄M − C̄)ũ− ũTµr + ũTw(t) + ˙̃ΘTΓ−1Θ̃− δ1. (5.54)

Since the matrix ( ˙̄Mj−2C̄j) is skew symmetric, we have ũTj
[
1
2

˙̄Mj(q)− C̄j (q, q̇)
]
ũj =

0. Let gj = −δj − ũTj µrj + ˙̃ΘTΓ−1Θ̃ + ũTj wj(t), (1 ≤ j ≤ m). Substituting the
robustifying term (5.45) and the disturbance (5.42) into gj gives

gj ≤− δj −
‖ũj‖2(YjΘ̂j)

2

(YjΘ̂j)‖ũj‖+ δj
+ ‖ũj‖YjΘ̂j

≤− δj +
δj‖ũj‖(YjΘ̂j)

(YjΘ̂j)‖ũj‖+ δj

≤− δj(1−
‖ũj‖(YjΘ̂j)

(YjΘ̂j)‖ũj‖+ δj
) ≤ 0.
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Hence, it can be obtained that

ũTµr + ũT (ε+ τd) + ˙̃ΘTΓΘ̃ + δ̇1/γ1 ≤ 0. (5.55)

Substituting (5.55) into (5.54) gives the following inequality

V̇2 ≤− ũTKũ+ ũTw(t)− ũTµr − ‖ũ‖Y Θ̃− δ1
≤− ũTKũ. (5.56)

Now, Substituting (5.53) and (5.56) into the set-valued Lie derivative ˙̃V reveals

max ˙̃V = V̇ ≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22 + ‖û‖22)− ũTKũ

=− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22 + ‖ũ‖22)− ũTKũ

≤− αλ2max(M)‖Z̃‖22 − (β − κ)‖Z̃TM‖1

+
λmax(M)

2
(‖Z̃‖22 + ‖ũ‖22)− kmax‖ũ‖22

≤− (αλ2max(M)− λmax(M)

2
)‖Z̃‖22 − (β − κ)‖Z̃TM‖1

− (kmax −
λmax(M)

2
)‖ũ‖22,

and it is clear that max ˙̃V ≤ 0 provided by ż20 ≤ κ, α > 1
2λmax(M)

, β > κ and
kmax >

λmax(M)
2

. It then from Lemma 1.10 that ũ→ 0 and Z̃ → 0 as t→∞, i.e.,
z̃1j → 0, z̃2j → 0, ũwj → 0 and ũvj → 0 as t→∞. Therefore, the errors z̃1j = 0,
z̃2j = 0, ũwj = 0 and ũvj = 0 are globally asymptotically stable. This proof is
completed.

Remark 5.17 From the Theorem 5.16, we have proved that the variables z1j(1 ≤
j ≤ m) and z2j(1 ≤ j ≤ m) respectively converge to z10 and z20 globally asymptot-
ically under the proposed control laws (5.31),(5.32) and (5.44). In the following
Theorem 5.18, we will prove that z3j asymptotically converges to z30 under the
control laws (5.31),(5.32) and (5.44).

Theorem 5.18 Suppose that the communication graph G is connected, Assump-
tion 3.3 is satisfied, the velocity controllers for (5.34) and (5.35) are respectively
designed by (5.31) and (5.32), and the torque control input for the dynamics sys-
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tem (5.41) is designed by (5.44), If z1j and z2j asymptotically converge to z10 and
z20, then z3j also asymptotically converges to z30.

Proof: The proof is similar to that of Theorem 4.14 and is therefore omitted
here.

Remark 5.19 From the Theorems 5.16 and 5.18, our control objectives (5.27)-
(5.30) is held under the distributed kinematic controller (5.31),(5.32) and the
torque controller (5.44). Therefore from the Lemma 5.8, the m mobile robots
converge to the formation pattern F, i.e., the equations (5.19)-(5.21) are satisfied.

5.5 Neural Network Control Design

In the previous sections, the distributed control laws have been proposed under
the assumption that the dynamics are partially known. In this section, we assume
that the dynamics are not known.

When the robot dynamics are known, the torque controller for the (5.41) is
(5.44), where fj(ujr, u̇jr) is known. However since the knowledge of the robot
dynamics is no longer available, fj(ujr, u̇jr) can no longer be computed. There-
fore, according to the function approximation property, there exists an ideal
Neural Network weights Wj and Vj, such that the nonlinear function Hj(χj) =

fj(ujr, u̇jr) + ∆j can be given as

Hj(χj) = W T
j σ(V T

j χj) + εj. (5.57)

where εj is the Neural Network approximation error, and εj is bounded by a
known constant εN .

Assumption 5.20 The ideal weights are bounded by known positive values so
that

‖Vj‖F ≤ VM , ‖Wj‖F ≤ WM . (5.58)

Define the Neural Network function estimate by

Ĥj(χj) = Ŵ T
j σj(V

T
j χj), (5.59)
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where Ŵj is the estimate of the ideal Neural Network weight. Design the torque
inputs for the robot j as

τ̄j = Kjũj + Ŵ T
j σj(V

T
j χj) + µjr, (5.60)

where Kj is a symmetric positive-definite matrix defined by Kj = kjI with kj

being a positive gain constant and I being the identity matrix. Ŵj is the estimate
of the ideal Neural Network weight that is provided by on-line weight turning
algorithm. The weight turning algorithm is defined as

˙̂
Wj = Ξjσj(V

T
j x)ũj − φj‖ũj‖ΞjŴj, (5.61)

where Ξj is a symmetric and positive definite matrix governing the speed of
convergence of the algorithm, and φj > 0 is a small design parameter. The weight
estimation error for robot j can be defined as W̃j = Wj−Ŵj. The nonlinear term
µj to be defined later is used to compensate for error function robustness in the
face of functional reconstruction error and the bounded disturbance τ̄dj.

Substituting (5.44) into (5.41), the error dynamic of robot j produces the
closed-loop error dynamics shown below

M̄j
˙̃uj = −(Kj + C̄j)ũj +Hj(χj)− Ŵ T

j σj(V
T
j χj)− µjr + τ̄dj + εj,

= −(Kj + C̄j)ũj + W̃ T
j σj(V

T
j χj)− µjr + τ̄dj + εj, j = 1, . . . ,m, (5.62)

where W̃ T
j σj(V

T
j χj) = Wjσj(V

T
j χj) − Ŵjσj(V

T
j χj) is the Neural Network error

estimation function. Let the disturbance terms wj(t) = τ̄dj + εj. Hence, the
closed-loop system (5.62) can be written in a vector form as

M̄(q) ˙̃u+ C̄ (q, q̇) ũ = −Kũ+ W̃ Tσ(V Tχ)− µr + ε+ τ̄d, (5.63)

where M̄ , C̄ and K are respectively the block diagonal matrices of M̄j(qj),
C̄j (qj, q̇j) and Kj, (1 ≤ j ≤ m), µr = [µ1r, . . . , µmr]

T , τ̄d = [τ̄d1, . . . , τ̄dm]T ,
ε = [ε1, . . . , εm]T , and W̃ = [W̃1, . . . , W̃m]T .

Define the function ϕj(t) as

ϕj(t) =εN + d̄M + φjWM‖Ŵ‖F + νj1‖z̃1j‖+ νj2‖z̃2j‖+ νj3‖ũj‖
+ νj4‖z̃1j‖2 + νj5‖z̃2j‖2 + νj6‖ũj‖2, (5.64)
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which can be linearly parameterized as ϕj(t) = YjΘj, where the vectors Yj and
Θj are respectively defined as follows

Yj = [1 φj‖Ŵ‖F ‖z̃1j‖ ‖z̃2j‖ ‖ũj‖ ‖z̃1j‖2 ‖z̃2j‖2 ‖ũj‖2]T ,
Θj = [λj1 λj2 λj3 λj4 λj5 λj6 λj7 λj8]

T ,

with Yj being a known regression vector, λj∗ being a positive bounding constant
which depends on the disturbance bound, friction coefficients, Neural Network
approximation error bound, and the ideal Neural Network weights.

The nonlinear term µjr in (5.62) is an adaptive robustifying term and is defined
as Kwan et al. (1995)

µjr =
ũj(YjΘ̂j)

2

(YjΘ̂j)‖ũj‖+ δj
, (5.65)

where δj satisfies δ̇j = −γjδj, δj(0) = Cδ > 0 with γj and Cδ being positive
design constants, YjΘ̂j is the adaptive estimate of the known function YjΘj, Θ̂j is
the estimate of Θj, and the parameter turning law for the estimate Θ̂j is defined
as

˙̂
Θj = ΓjYj‖ũj‖, (5.66)

with Γj being a symmetric and positive definite matrix. Let Θ̃j be the estimation
error of the parameter turning law, and Θ̃j = Θj − Θ̂j. It then follows that
˙̂
Θj = − ˙̃Θj.

Theorem 5.21 Suppose that the communication graph G is connected, Assump-
tion 3.3 is satisfied, the velocity controllers for (5.34) and (5.35) are respec-
tively designed by (5.31) and (5.32), and the torque control input for the dy-
namics system (5.62) is designed by (5.60), if the control gains are chosen as
α > 1

2λmax(M)
, β > κ and kmax >

λmax(M)
2

, where kmax = max{k1, k2, . . . , km},
then, for 1 ≤ j ≤ m, the errors z̃1j = 0, z̃2j = 0, ũwj = 0 and ũvj = 0 are globally
asymptotically stable.

Proof: Consider the Lyapunov function candidate as follows

V = V1 + V2, (5.67)
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where V1 is defined in (5.49),

V2 =
1

2
ũTM̄ũ+

1

2
tr{W̃ TΞ−1W̃}+

1

2
Θ̃TΓΘ̃ + δ1/γ1, (5.68)

with Θ̃ = [Θ̃1, . . . , Θ̃m]T , and Γ is the block diagonal matrices of Γj. Using the
properties of K[·], the set-valued Lie derivative of V can be obtained as follows

˙̃V =K[V1 + V2] ⊆ K[V1] + K[V2]

= ˙̃V1 + ˙̃V2. (5.69)

Since V2 is continuous, according to Lemma 1.7, the equality (5.69) holds.

The set-valued Lie derivative of V1 satisfies the inequality (5.53). Since V2 is
continuous, it follows that the set-valued Lie derivative of V2 satisfies max ˙̃V2 = V̇2.
Hence, we have

V̇2 = ũTM̄ ˙̃u+
1

2
ũT ˙̄Mũ+ tr{W̃ TΓ−1 ˙̃W}+ ˙̃ΘTΓΘ̃ + δ̇1/γ1

=ũT{−C̄ũ−Kũ+ W̃ Tσ(V Tx)− µr + ε+ τ̄d}+
1

2
ũT ˙̄Mũ

+ tr{W̃ TΞ−1 ˙̃W}+ ˙̃ΘTΓΘ̃ + δ̇1/γ1. (5.70)

Note that if x ∈ R and a is a constant value, the following properties are satisfied,

tr{x} = x,

tr{a · x} = a · tr{x}.

Then, it follows that tr{−W̃ Tσ(V Tχ)ũ} = −W̃ Tσ(V Tχ)ũ. Since ˙̄Mj(q)− 2C̄j is
skew symmetry, it follows that

ũTj

[
1

2
˙̄Mj(q)− C̄j (q, q̇)

]
ũj = 0.
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Then substituting the Neural Network weight (5.61) into (5.70), we get

V̇2 =ũT{−C̄ũ−Kũ+ W̃ Tσ(V Tx)− µr + ε+ τ̄d}+
1

2
ũT ˙̄Mũ

+ tr{W̃ TΞ−1{Ξjσ(V Tχ)ũ− φ‖ũ‖ΞŴ}+ ˙̃ΘTΓΘ̃ + δ̇1/γ1

=− ũTKũ+ ũT{1

2
˙̄M − C̄}ũ− ũTµr + ũT (ε+ τ̄d) + Θ̃TΓ ˙̃Θ

+ ũT W̃ Tσ(V Tχ) + tr{W̃ TΞ−1{−Ξσ(V Tχ)ũ+ φ‖ũ‖ΞŴ}}+ δ̇1/γ1

=− ũTKũ− ũTµr + ũT (ε+ τ̄d) + ˙̃ΘTΓΘ̃ (5.71)

+ ũT W̃ Tσ(V Tχ) + tr{−W̃ Tσ(V Tχ)ũ+ φ‖ũ‖W̃ T Ŵ}+ δ̇1/γ1

=− ũTKũ− ũTµr + ũT (ε+ τ̄d) + ˙̃ΘTΓΘ̃

+ ũT W̃ Tσ(V Tχ) + tr{−W̃ Tσ(V Tχ)ũ}+ tr{φ‖ũ‖W̃ T Ŵ}}+ δ̇1/γ1

=− ũTKũ− ũTµr + ũT (ε+ τ̄d) + ˙̃ΘTΓΘ̃ + φ‖ũ‖tr{W̃ T Ŵ}}+ δ̇1/γ1,

where the fact ˙̂
Θj = − ˙̃Θj has been used. Since

tr{W̃ T Ŵ} =〈W̃ ,W 〉 − ‖W̃‖2F
≤‖W̃‖F‖W‖F − ‖W̃‖2F , (5.72)

Hence, the (5.71) can obtain the following inequality,

V̇2 =− ũTKũ− ũTµr + ũT (ε+ τ̄d) + ˙̃ΘTΓΘ̃ + φ‖ũ‖tr{W̃ T Ŵ}}+ δ̇1/γ1

≤− ũTKũ− ũTµr + ũT (ε+ τ̄d) + ˙̃ΘTΓΘ̃

+ φ‖ũ‖{‖W̃‖F‖W‖F − ‖W̃‖2F}+ δ̇1/γ1 (5.73)

=− ũTKũ− φ‖ũ‖W̃‖2F − ũTµr + ũT (ε+ τ̄d) + ˙̃ΘTΓΘ̃

+ φWM‖ũ‖‖W̃‖F + δ̇1/γ1.

Define the function Ωj, (1 ≤ j ≤ m) as follows

Ωj = −δj − ũTj µrj + ˙̃ΘT
j Γ−1Θ̃j + ũTj (εj + τ̄dj) + φjWM‖ũj‖‖W̃j‖F .
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Substituting the robustifying term (5.65) into Ωj gives

Ωj =− δj − ũTj µrj + ˙̃ΘT
j Γ−1Θ̃j + ũTj (εj + τ̄dj) + φjWM‖ũj‖‖W̃j‖F

≤− δj −
‖ũj‖2(YjΘ̂j)

2

(YjΘ̂j)‖ũj‖+ δj
− ‖ũj‖YjΘ̃j

+ ‖ũj‖{εN + d̄M + φjWM‖Ŵ‖F + νj1‖z̃1j‖+ νj2‖z̃2j‖+ νj3‖ũj‖
+ νj4‖z̃1j‖2 + νj5‖z̃2j‖2 + νj6‖ũj‖2}

=− δj −
‖ũj‖2(YjΘ̂j)

2

(YjΘ̂j)‖ũj‖+ δj
− ‖ũj‖YjΘ̃j + ‖ũj‖YjΘj

=− δj −
‖ũj‖2(YjΘ̂j)

2

(YjΘ̂j)‖ũj‖+ δj
+ ‖ũj‖YjΘ̂j

≤− δj +
δj‖ũj‖(YjΘ̂j)

(YjΘ̂j)‖ũj‖+ δj

≤− δj(1−
‖ũj‖(YjΘ̂j)

(YjΘ̂j)‖ũj‖+ δj
) ≤ 0.

Hence, it can be obtained that

ũTµr + ũT (ε+ τ̄d) + ˙̃ΘTΓΘ̃ + δ̇1/γ1 + φWM‖ũ‖‖W̃‖F ≤ 0. (5.74)

Then, substituting (5.74) and (5.72) into (5.73), the following inequality is ob-
tained

V̇2 ≤− ũTKũ− ũTµr + ũT (ε+ τ̄d) + Θ̃TΓ ˙̃Θ + φ‖ũ‖tr{W̃ T Ŵ}}+ δ̇1/γ1

≤− ũTKũ− φ‖ũ‖W̃‖2F . (5.75)

Thus, from (5.53) and (5.75), the set-valued Lie derivative ˙̃V satisfies the following
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inequality

max ˜̃V = V̇ ≤− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +
λmax(M)

2
(‖Z̃‖22

+ ‖û‖22)− ũTKũ− φ‖ũ‖W̃‖2F
=− αZ̃TM2Z̃ − (β − κ)‖Z̃TM‖1 +

λmax(M)

2
(‖Z̃‖22

+ ‖ũ‖22)− ũTKũ− φ‖ũ‖W̃‖2F
≤− αλ2max(M)‖Z̃‖22 − (β − κ)‖Z̃TM‖1 +

λmax(M)

2
(‖Z̃‖22 + ‖ũ‖22)

− kmax‖ũ‖22 − φ‖ũ‖W̃‖2F
≤− (αλ2max(M)− λmax(M)

2
)‖Z̃‖22 − (β − κ)‖Z̃TM‖1

− (kmax −
λmax(M)

2
)‖ũ‖22 − φ‖ũ‖W̃‖2F ,

and it is clear that max V̇ ≤ 0 provided by ż20 ≤ κ, α ≥ 1
2λmax(M)

, β ≥ κ and

kmax ≥ λmax(M)
2

. and it is clear that max ˙̃V < 0 provided by ż20 ≤ κ, α > 1
2λmax(M)

,
β > κ and kmax > λmax(M)

2
. It then from Lemma 1.10 that, ũ→ 0 and Z̃ → 0 as

t → ∞, i.e., z̃1j → 0, z̃2j → 0, ũwj → 0 and ũvj → 0 as t → ∞. Therefore, the
errors z̃1j = 0, z̃2j = 0, ũwj = 0 and ũvj = 0 are globally asymptotically stable.
This proof is completed.

Theorem 5.22 Suppose that the communication graph G is connected, Assump-
tion 3.3 is satisfied, the velocity controllers for (5.34) and (5.35) are respectively
designed by (5.31) and (5.32), and the torque control input for the dynamics sys-
tem (5.62) is designed by (5.60), If z1j and z2j asymptotically converge to z10 and
z20, then z3j also asymptotically converges to z30.

Proof: The proof is similar to that of Theorem 4.14 and is therefore omitted
here.

Remark 5.23 From the Theorems 5.21 and 5.22, our control objectives (5.27)-
(5.30) hold under the distributed kinematic controller (5.31),(5.32) and the torque
controller (5.60). Therefore from the Lemma 5.8, the m mobile robots converge
to the formation pattern F, i.e., the equations (5.19)-(5.21) are satisfied.
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5.6 Simulation

In this section, some simulations results have been provided to demonstrate the
effectiveness of some theoretical results of the previous sections. Consider a mul-
tiple mobile robot system with six followers denoted by F1-F6 and one virtual
leader denoted by L, respectively. The communication graph of the multiple
mobile robot system is shown in Fig. 3.2.

For simplicity, suppose that aij = 1 if robot i can receive information from
robot j, aij = 0 otherwise; bj = 1 if the virtual leader’s information is available
to the follower j, and bj = 0 otherwise, where i ∈ {1, ...,m} and j ∈ {1, ...,m}.

The desired formation geometric pattern F is defined by orthogonal coordi-
nates as (p1x, p1y) = (2, 0), (p2x, p2y) = (1,

√
3), (p3x, p3y) = (−1,

√
3), (p4x, p4y) =

(−2, 0), (p5x, p5y) = (−1,−
√

3), and (p6x, p6y) = (1,−
√

3) in Fig. 3.3. The
reference trajectory of the virtual leader is chosen as

x0 =10 sin(t/2)

y0 =− 10 cos(t/2).

The control gain parameters are chosen as α = 10, β = 0.99, k0 = 2. For
1 ≤ j ≤ 6, the design parameters for the robust adaptive terms are selected as
δj(0) = 30, γj = 0.5, and

Γj =

[
0.001 0

0 0.001

]
, Kj =

[
1 0
0 1

]
.

Assume the parameters for each robot are given as follows the mass m̂ = 5 kg
and the moment of inertia I = 3 kg ·m2. In both cases, unmodeled dynamics are
introduced in the form of friction as

F̄j =

[
aj1sign(u2j) + aj2u2j
aj3sign(u1j) + aj4u1j

]
,

where aji are the coefficients of friction, and aj1 = 0.75,aj1 = 0.05,aj1 = 0.025

and aj1 = 0.3. The disturbance is introduced as τ̄dj = 2 sin(2t) cos(5t),
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5.6.1 Verification of Formation Control Based on Robust
Adaptive Techniques
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−15
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Y
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Figure 5.2: Path of the six robots’ centroid(blue line), the desired trajectory of
the centroid of the robots(black line), and the formation of the six robots at
several moments under the distributed kinematic controller (5.31),(5.32) and the
torque controller (5.44).

In this simulation, Fig. 5.2 shows the trajectory of virtual leader (black line), the
trajectory of the six followers’ centroid (blue line), and the formation positions
and pattern of the six followers at some moments. It can be seen from Fig. 5.2
that the six robots converge to a desired geometry pattern under the proposed
distributed controllers (5.32), (5.31) and the robust adaptive torque controller
(5.44), i.e., the equation (5.19) is verified.

Fig. 5.3 shows the trajectories of x0(blue line) and the centroid of xi (1 ≤
i ≤ 6); and the position error between x0 and the centroid of xi. Fig. 5.4 shows
the trajectories of y0 and the centroid of yi (1 ≤ i ≤ 6); and the position error
between y0 and the centroid of yi. From Fig. 5.3 and Fig. 5.4, the trajectory
of the formation geometric centroid converges to the trajectory of virtual leader,
that is to say, the equation (5.21) is verified. Fig. 5.5 and Fig. 5.6 show the
tracking error ũwi for (1 ≤ i ≤ 6) and ũvi for (1 ≤ i ≤ 6) under the torque
controller (5.44). From Fig. 5.5 and Fig. 5.6, ũwi and ũvi respectively converge
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to zeros. The perfect tracking of velocity and angular velocity has been guarantee.
Fig. 5.7 and 5.8 respectively show the angular velocity tracking errors wi − w0

and the orientation tracking errors θi − θ0 between follower Fi (1 ≤ i ≤ 6) and
virtual leader. It can be seen from Fig. 5.7 and 5.8 that wi − w0 and θi − θ0

converge to zero over time, i.e., the equation (5.20) and (5.30) are verified.

0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

10

15

Time(s)

(a)

0 5 10 15 20 25 30 35 40

−15

−10

−5

0

5

10

Time(s)

(b)

Figure 5.3: (a)The trajectories of x0(blue line) and the centroid of xi (1 ≤ i ≤
6)(red line); (b)The position error between x0 and the centroid of xi.
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Figure 5.4: (a)The trajectories of y0(blue line) and the centroid of yi (1 ≤ i ≤
6)(red line); (b)The position error between y0 and the centroid of yi.
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Figure 5.5: The tracking error ũwi for (1 ≤ i ≤ 6) using the torque controller
(5.44).
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Figure 5.6: The tracking error ũvi for (1 ≤ i ≤ 6) using the torque controller
(5.44).
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Figure 5.7: Response of the centroid of wi − w0 for 1 ≤ i ≤ 6.
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Figure 5.8: Response of the centroid of θi − θ0 for 1 ≤ i ≤ 6.

5.6.2 Verification of Formation Control Based on Neural
Network Techniques

In this simulation, the number of hidden neuron is chosen by 5 for the mobile
robot, and the Neural Network parameters for each robot are selected as Fj =
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[
10 0
0 10

]
, and φj = 0.5. The control gain Γj is chosen by Γj =

[
0.001 0

0 0.008

]
.
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Figure 5.9: Path of the six robots’ centroid(blue line), the desired trajectory of
the centroid of the robots(black line), and the formation of the six robots at
several moments

In this simulation, Fig. 5.9 shows the trajectory of virtual leader (black line),
the trajectory the six followers’ centroid (blue line), and the formation positions
and pattern of the six followers at some moments. It can be seen from Fig. 5.9
that the six robots converge to a desired geometry pattern under the proposed
distributed controllers (5.32), (5.31) and the adaptive Neural Network controller
(5.60), i.e., the equation (5.19) is verified.

Fig. 5.10 shows the trajectories of x0(blue line) and the centroid of xi (1 ≤
i ≤ 6)(red line); and the position error between x0 and the centroid of xi. Fig.
5.11 shows the trajectories of y0(blue line) and the centroid of yi (1 ≤ i ≤ 6)(red
line); and the position error between y0 and the centroid of yi. From Fig. 5.10
and Fig. 5.11, the trajectory of the formation geometric centroid converges to
the trajectory of virtual leader, that is to say, the equation (5.21) is verified.
Fig. 5.12 and Fig. 5.13 show the tracking error ũwi for (1 ≤ i ≤ 6) and ũvi for
(1 ≤ i ≤ 6) under the torque controller (5.60). From Fig. 5.12 and Fig. 5.13,
ũwi and ũvi respectively converge to zero. The perfect tracking of velocity and
angular velocity has been guaranteed. Fig. 5.14 and 5.15 respectively show the
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Figure 5.10: (a)The trajectories of x0(blue line) and the centroid of xi (1 ≤ i ≤
6)(red line); (b)The position error between x0 and the centroid of xi.
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Figure 5.11: (a)The trajectories of y0(blue line) and the centroid of yi (1 ≤ i ≤
6)(red line); (b)The position error between y0 and the centroid of yi.
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Figure 5.12: The tracking error ũwi for (1 ≤ i ≤ 6) under the Neural Network
controller (5.60).
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Figure 5.13: The tracking error ũvi for (1 ≤ i ≤ 6) under the Neural Network
controller (5.60).
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Figure 5.14: Response of the centroid of wi − w0 for 1 ≤ i ≤ 6.

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

Time(s)

 

 

θ
1
−θ

0

θ
2
−θ

0

θ
3
−θ

0

θ
4
−θ

0

θ
5
−θ

0

θ
6
−θ

0

Figure 5.15: Response of the centroid of θi − θ0 for 1 ≤ i ≤ 6.
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angular velocity tracking errors wi−w0 and the orientation tracking errors θi−θ0
between follower Fi (1 ≤ i ≤ 6) and virtual leader. It can be seen from Fig. 5.14
and 5.15 that wi − w0 and θi − θ0 converge to zero over time, i.e., the equation
(5.20) and (5.30) are verified.

5.7 Conclusion

In this chapter, the formation control problem for the wheeled mobile robots has
been considered, in which the dynamics model of the wheeled mobile robot has
the friction term and bounded disturbance term in the dynamic model. First
the partial knowledge of the mobile robot dynamics has been assumed to be
available. Then an asymptotically stable torque controller has been proposed by
using robust adaptive control techniques to account for unmolded dynamics and
bounded disturbances. Next, with the dynamics of the mobile robot has been
assumed to be unknown. Then the universal approximation property of neural
network has been used to relax the knowledge of the system dynamics, and an
asymptotically robust adaptive controller augmented with the neural network has
been derived to achieve asymptotic tracking.
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Conclusions and Future Work

The purpose of this chapter is to summarize the contributions presented in the
dissertation and introduce some perspectives for future research to complete and
improve this work.

Conclusions

In this thesis, we focus on the formation control of multiple nonholonomic mobile
robots. The objective is to design some new control laws for each robot according
to different control tasks and different constraint conditions, such that a group
of mobile robots can form and maintain a desired geometric pattern and follow a
desired trajectory.

In Chapter 2, the leader-follower formation control problem for nonholonomic
mobile robots based on the backstepping approach has been investigated. The
trajectory tracking control for a single nonholonomic mobile robot has been ex-
tended to the formation control for multiple nonholonomic mobile robots based
on backstepping technique, in which follower can track its real-time leader by the
proposed kinematic controller. Due to the nonholonomic constraint of each robot
and the leader-follower formation control objective, an auxiliary angular velocity
control law has been developed to guarantee the global asymptotic stability of
the followers and to further guarantee the local asymptotic stability of the entire
formation. Then an asymptotically stable control law for the formation control
of multiple mobile robots has been developed by using backstepping technology,
which not only guarantee all mobile robots achieve and maintain the desired
formation, but also guarantee all follower robots track the time-varying trajec-
tory of the leader robot. Since using the backstepping technology may lead to the
impractical velocity jump when tracking errors suddenly occur, a bioinspired neu-
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rodynamics based approach has been developed to solve the impractical velocity
jumps problem. It is shown that each robot has smooth and continuous velocities
with zero initial value by using the bioinspired neurodynamics based approach.
Stability analysis has been provided by using Lyapunov theory. The effectiveness
of the proposed control scheme has been demonstrated by simulation results.

In Chapter 3 the distributed formation control problem for multiple non-
holonomic mobile robots using consensus-based approach has been investigated.
First, a variable transformation has been given to convert the formation control
problem for multiple nonholonomic mobile robots into a state consensus problem.
Then a set of control laws have been established using the result from graph the-
ory and Lyapunov techniques for accomplishing our formation control objectives:
a group of noholonomic mobile robots converge to a desired geometric pattern
with its centroid moving along the specified reference trajectory. In this chapter,
the specified reference trajectory has been represented by the state of a virtual
leader whose outputs is only its position information that is available to only a
subset of a group of followers. As the control laws proposed in this chapter are
distributed, it is not necessary to provide the global information for each robot.
In fact, each robot can obtain information only from its neighbors. It is shown
that the communication topology required in this chapter does not necessary need
to be tree information sensing structures, and our proposed control laws guaranty
that the nonholonomic mobile robots can at least exponentially converge to the
desired geometric pattern, as well as the geometric centroid of the formation at
least exponentially converges to the trajectory of the virtual leader.

In the previous Chapter 3, the formation control of nonholonomic wheeled mo-
bile robots is based on kinematic models, which requires “perfect velocity track-
ing". However, in many practical situations, the dynamics of robot should not
be ignored and practical control strategies accounting for both the kinematic and
dynamic effect should be implemented. Hence, Chapter 4 investigates the dis-
tributed adaptive formation control problem for multiple nonholonomic wheeled
mobile robots with consideration of both kinematic model and dynamics systems
with unknown parameters. The objective is to develop the corresponding dis-
tributed controllers, such that a group of nonholonomic wheeled mobile robots
asymptotically converges to a desired geometric pattern with its centroid moving
along the specified reference trajectory. To achieve this goal, a variable trans-
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formation is first given to convert the formation control problem into a state
consensus problem. Then, some distributed kinematic controllers are developed.
We assume that the specified reference trajectory can be considered as the tra-
jectory of a virtual leader whose information is available to only a subset of the
followers. Also the followers are assumed to have only local interaction. Next, it
is well known in practice that the dynamics model of the wheel mobile robot has
unknown dynamical parameters, which will affect the robust trajectory tracking
of the system. Therefore, adaptive computed-torque controllers for mobile robots
are developed. Sufficient conditions are derived for accomplishing the asymptot-
ical stability of the systems based on algebraic graph theory, matrix theory, and
Lyapunov control approach. Finally, simulation examples illustrate the effective-
ness of the proposed controllers.

It is well known that, in some practical applications, the friction term and
bounded disturbance term should not be ignored and practical control strategies
accounting for the friction term and bounded disturbance term should be im-
plemented. In Chapter 5, the formation control problem for the wheeled mobile
robots has been investigated, in which the dynamics model of the wheeled mobile
robot has the friction term and bounded disturbance term. First, the partial
knowledge of the mobile robot dynamics has been assumed to be available. Then
an asymptotically stable torque controller is proposed by using robust adaptive
control techniques to account for unmolded dynamics and bounded disturbances.
Second, the dynamics of the mobile robot has been assumed to be unknown.
Then the universal approximation property of neural network has been used to
relax the knowledge of the dynamics system, and an asymptotically robust adap-
tive controller augmented with the neural network has been derived to achieve
asymptotic tracking.

Ongoing and Future Works

There are some challenging open topics to the problems studied in this thesis.

The proposed control laws were corroborated based on simulation results on
examples in our current works. The numerical examples presented in this thesis
verified the theoretical results. So in the future works we will develop a platform
of robot group formation using real nonholonomic mobile robots to validate our
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theory results experimentally.
In practical applications, formation control algorithm for nonholonomic robots

ensuring collision avoidance of robots in the formation is possibly the most strik-
ing issue. In the future, we will consider the formation control problem with
obstacle avoidance.

In addition, it is well known that time delay is ubiquitous in many systems,
and most multiple robots systems operations are naturally delayed. Moreover,
it has been observed from numerical experiments in this thesis that formation
control algorithms without considering time delays may lead to unexpected in-
stability. Hence, in the future, we will also consider the formation control problem
for multiple nonholonomic robots with time-varying delays.
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Contribution à la Commande d’un Groupe de Robots Mobiles Non-holonomes
à Roues

Résumé: Ce travail s’inscrit dans le cadre de la commande d’un système multi agents/
multi véhicules. Cette thèse traite en particulier le cas de la commande d’un système
multi-robots mobiles non-holonomes. L’objectif est de concevoir des lois de comman-
des appropriées pour chaque robot de sorte que l’ensemble des robots puisse exécuter des
tâches spécifiques, de suivre des trajectoires désirées tout en maintenant des configurations
géométriques souhaitées. L’approche leadeur-suiveur pour la commande d’un groupe de
robots mobiles non-holonomes est étudiée en intégrant la technologie backstepping, avec
une approche basée sur les neurodynamiques bioinspirées. Le problème de commande
distribuée d’un système multi robots sur le consensus est également étudié. Des lois de
commandes cinématiques distribuées sont développés afin de garantir au système multi-
robots la convergence exponentielle vers une configuration géométrique souhaitée. Afin
de tenir compte de la dynamique des paramètres inconnus, des commandes adaptatives
de couple sont développés pour que le système multi-robots puisse converger asympto-
tiquement vers le modèle géométrique souhaité. Lorsque la dynamique est inconnue, des
commandes à base de réseaux de neurones sont proposées.

Mots-clefs: Leader-suiveur, Robots mobiles non-holonomes, Contrôle de la formation,
Algorithmes de consensus, Contrôleur adaptatif distribué, Réseau de neurons, Techonolo-
gie backstepping.

Formation Control of Multiple Nonholonomic Wheeled Mobile Robots

Abstract: This work is based on the multi-agent system / multi-vehicles. This thesis
especially focuses on formation control of multiple nonholonomic mobile robots. The
objective is to design suitable controllers for each robot according to different control
tasks and different constraint conditions, such that a group of mobile robots can form
and maintain a desired geomantic pattern and follow a desired trajectory. The leader-
follower formation control for multiple nonholonomic mobile robots is investigated under
the backstepping technology, and we incorporate a bioinspired neurodynamics scheme
in the robot controllers, which can solve the impractical velocity jumps problem. The
distributed formation control problem using consensus-based approach is also investigated.
Distributed kinematic controllers are developed, which guarantee that the multi-robots
can at least exponentially converge to the desired geometric pattern under the assumption
of "perfect velocity tracking". However, in practice, "perfect velocity tracking" doesn’t
hold and the dynamics of robots should not be ignored. Next, in consideration of the
dynamics of robot with unknown parameters, adaptive torque controllers are developed
such that the multi-robots can asymptotically converge to the desired geometric pattern
under the proposed distributed kinematic controllers. Furthermore, When the partial
knowledge of dynamics is available, an asymptotically stable torque controller has been
proposed by using robust adaptive control techniques. When the dynamics of robot is
unknown, the neural network controllers with the robust adaptive term are proposed to
guarantee robust velocity tracking.

Keywords: Leader-follower, Nonholonomic mobile robots, Formation control, Consen-
sus algorithms, Distributed adaptive controller, Neural Network, Backstepping technol-
ogy.
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