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Resumé.

Cette thèse de doctorat vise l’examen critique de certaines théories de champ moyen
nucléaire phénoménologiques, en se focalisant sur la description fiable des niveaux de
particules individuelles. L’approche suivie ici est nouvelle en ce sens que elle permet
non seulement la prédiction des valeurs numériques obtenues avec ce formalisme, mais
également une estimation des distributions de probabilités correspondant aux résultats
expérimentaux.

Nous introduisons le concept des ≪erreurs théoriques≫, visant estimer, dans un cadre
mathématique bien établi, les incertitudes relatives aux modélisations théoriques. Il
est également introduit une notion subjective de pouvoir prédictif des Hamiltoniens
nucléaires, qui est analysé dans le contexte des spectres énergétiques de particules in-
dividuelles. Le concept mathématique du ≪Problème Inverse≫ est appliqué aux Hamil-
toniens de champ moyen réalistes. Cette technique permet la prédiction de propriétés
du système partir d’un nombre limité de données.

Afin dapprofondir notre connaissance des Problèmes Inverses, nous focalisons notre
attention sur un problème mathématique simple. Une fonction dépendant de quatre
paramètres libres est introduite afin de reproduire des données ≪expérimentales≫. Nous
étudions le comportement des paramètres ≪fittés≫, leur corrélation, ainsi que les erreurs
associées. Cette étude nous aide comprendre la signification de la formulation correcte
du problème en question. Il nous montre également limportance dinclure les erreurs
expérimentales et théoriques dans la solution.

Abstract.

This thesis is a critical examination of phenomenological nuclear mean field theories, fo-
cusing on reliable description of levels of individual particles. The approach presented
here is new in the sense that it not only allows to predict the numerical values ob-
tained with this formalism, but also yields an estimate of the probability distributions
corresponding to the experimental results.

We introduce the concept of ‘theoretical errors’ to estimate uncertainties in theoretical
models. We also introduce a subjective notion of ‘Predictive Power’ of nuclear Hamilto-
nians, which is analyzed in the context of the energy spectra of individual particles. The
mathematical concept of ‘Inverse Problem’ is applied to a realistic mean-field Hamil-
tonian. This technique allows to predict the properties of a system from a limited
number of data.

To deepen our understanding of Inverse Problems, we focus on a simple mathematical
problem. A function dependent on four free parameters is introduced in order to
reproduce ‘experimental’ data. We study the behavior of the ‘fitted’ parameters, their
correlation and the associated errors. This study helps us understand the importance
of the correct formulation of the problem. It also shows the importance of including
theoretical and experimental errors in the solution.
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Introduction 11

Introduction

Nuclear physics is a very specific branch of science. It is probably one of the least
discovered fields due to the typical size of an atomic nucleus being of the order of tens
of femtometers. On the one hand we have such a small but of complex structure object
to experiment upon, on the other, there is a problem of the strong and not sufficiently
well known interactions appearing at a distance of a femtometer. An atomic nucleus is
a complex object, consisting of tens or hundreds of nucleons squeezed in a very small
space. Being fully aware of the fact that nucleons are also complex particles themselves,
we treat them as the smallest constituents of the nucleus. However, this simplification
proves to be not much of a solution, as the nucleons bound together into a nucleus
bring enough of complications in the formal description/modelling.

The theory of nuclear interactions is incomplete, because we are unable to reconstruct
the complexity of nucleon-nucleon interactions in the many-body systems. We can
only try to approximate their description using approximate, incomplete theories such
as nuclear shell-model, mean-field theory or collective model, to mention these with
the longest history. Every model created has its own limitations and usually works
under certain specific, limiting conditions. Moreover, all these models include free
parameters, which need to be fitted to experimental information, that is affected by
uncertainties. This very important fact is often ignored, while creating nuclear models.
Experimental errors may have a large and/or unpredictable impact on the resulting
parameters.

Knowing how inexact and limited the nuclear theories are, we should take a closer look
at their ability to predict the properties of the nuclides outside the range the models
were fitted to. Without this crucial step, we have no way of knowing, if our predictions
are valid. This fact is an important issue when searching for yet unknown exotic nuclei
– we have to know where to look for and the expected values should lie close to the
real ones.

This work emphasizes the statistical aspect of mathematical models. We introduce the
concept of ‘Predictive Power’ and stress the necessity of incorporating theoretical un-
certainties into nuclear theories. Chapter 3 presents the results of a statistical analysis
of an analytical mathematical model, showing the discussed properties of the fitting
process.

In chapter 4 we present the results concerning the Predictive Power of spherical Woods-
Saxon mean-field single-particle Hamiltonian and a way of improving its performance.
We also discuss the number of necessary parameters of the Woods-Saxon formalism
and present a way of significantly reducing them.
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Chapter 1

Predictive Power

This chapter introduces a rather new and often underestimated concept of theoretical
errors in microscopic theories of subatomic physics together with a related problem of
theory’s predictive power. At first we will discuss the notion1 of predictive power of a
given theory in a rather general context, i.e., without any reference to any particular
theory focussing on its impact on existing nuclear theories. We will also discover the
possible significance of predictive power for future experiments.

General Framework. Our understanding of subatomic world, although still strongly
limited at present, is evolving in time. In particular, we do not have the truly micro-
scopic theory of the nucleon-nucleon interactions that would be derived from a totally
microscopic starting point for instance describing the structure of nuclear matter in
terms of quarks and gluons. Our present-day theories that address processes taking
place inside the nucleus are based on rather phenomenological concepts. A uniform
theory of atomic nucleus, which would be acceptable for everyone does not exist so
far despite the fact of significant progress in e.g. the recent developments of methods
treating the nuclear few-body systems – we are still unable to describe all known nuclei
and nuclear properties within one general-scope theory.

For many years there have been attempts undertaken to construct the more and more
complete theories with increasing degrees of sophistication. Some of them, such as
e.g. nuclear mean field theory, which is going to receive a particular attention in what
follows, are very successful in reproducing certain physical properties, but are unable
or fail in describing a more extended set of observables – the tasks which in turn can be
achieved by other models (as e.g. the nuclear collective model). This brings us to an
observation that will be of importance when introducing the notion of the ‘theoretical
errors’ – quite generally the structure of the present day Hamiltonians can be written
down as

Ĥ = t̂+ v̂1 + v̂2 + v̂3 + . . . (1.1)

where the symbols v̂i represent the presently known interactions whereas ellipsis repre-

1At present there is a quick growth of interest in the literature of the methods of constructing
theories whose predictive power is treated in mathematical terms essentially using the Stochastic
Methods and the mathematical theory of the so-called Inverse Problem, the latter will be discussed
in more detail in the present work.
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sents the interactions that are presently either unknown or intentionally ignored. These
are the unknown/ignored terms which introduce:

Theories without or with limited Predictive Power. It sometimes happens that
within one theory there are several parameterisations, which can be used depending on
the quantity we want to calculate. Theories based on density functionals can serve as
an example of such a behaviour. There are over 120 parameterisations in Hartree-Fock
formalism with Skyrme interactions but neither one of them can be called universal.
Such situation can even be satisfactory locally, but it is far from the ultimate goal:
one theory applicable to whole of the nuclear chart, which reproduces all available
experimental data and is able to correctly predict properties of yet unknown nuclei. The
Hartree-Fock formalism has one more disadvantage, i.e. large number of parameters
to be determined, but this will be discussed in more detail later on.

Most of existing theories in nuclear physics have one structural element in common –
the coupling constants. These are some unknown parameters which define the relative
strength of the terms in the interaction potential or even the functional dependence (for
example diffuseness or radius of Woods-Saxon potential). These constants are usually
obtained as a result of some fitting procedure, which compares experimental data to its
theoretical counterpart. This approach can be quite dangerous. In order to be confident
of our results we must chose carefully the data to compare with. Some choices can be
more natural than the others, in the sense that it is easier to calculate and measure them
– or more problematic. We can try to reproduce the masses of nuclides, rotational bands
or single-particle energy levels. Whatever we chose, we have to remember that every
experiment we perform is contaminated with errors, which can result, for example,
from insufficient precision of used equipment or from complexity of measured quantity.
The origin of these errors may be different but they are still unavoidable. However,
almost every theoretical calculation in nuclear physics, which relies on experimentally
obtained values in recovering parameters of the formalism, neglect the uncertainties of
these quantities. Experimental data exploited in various fitting procedures are treated
as points instead of probability distributions, thus obtained parameters are idealised
and have limited applicability. This may seem as an overstatement, but can we really
trust such parameterisations? In many calculations we use experimental data for a
small number of nuclides to recover the coupling constants of a Hamiltonian, which is
next used to calculate properties of other nuclides – we extrapolate the result. What if
the parameterization is not exact, if there is some probability distribution associated
with it? The error we make may be small for the data we use; after all we fitted the
parameters to this set. However if we extrapolate an erroneous function, the result may
be far from correct. The great significance of this observation can be easily recognised
when we try to explore the region of heavy and super-heavy nuclei, where we have to
rely on theoretical predictions only. This brings us to the most basic question: ‘how to
determine whether our calculations and models are correct and their parameterisations
are stable?’.

Before we try to answer this question, let us first introduce and discuss some basic
concepts.
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1.1 Experimental Information

In our illustrations of the discussed concepts we focus mainly on single-particle mean-
field Hamiltonians with Woods-Saxon or Skyrme-Hartree-Fock interactions restricted
to doubly magic spherical nuclei. This phenomenological approach has several impor-
tant extensions into such more modern realisations as Relativistic Mean Field or density
dependent spin-orbit and tensor fields (see below). Furthermore, the single-particle en-
ergy levels as a natural choice of experimental data to compare to are also ones of the
most difficult to measure. Nonetheless this formalism still has a large educational value
due to its intuitive form and rather straightforward interpretation of terms included in
the Hamiltonian. The properties of its parameters, i.e. their natural correlation, which
will be discussed later, make it also a great tool to present the concepts of this work.

Experimental single-particle energy levels of spherical nuclei are very complex objects.
They are extracted from light-projectile nuclear-transfer reactions, where they are pop-
ulated or depopulated in residual A ± 1 neighbouring nuclei. These reactions provide
information about excitation energy, angular momentum and parity of single-particle
or single-hole levels. However, these states do not need to be directly comparable to
the eigen-values of the single-particle Hamiltonian. It often happens that there is more
than one level with the same jπ characteristics in a given energy region. This situation
can be explained by mixing of single-nucleonic states with core excitations or coupling
to the collective surface vibrations. It is obvious that we have to consider all of the
scattered states in determining the position of the eigen-energies in question. The true
single-particle levels are thus extracted by calculation of the center of gravity of all
levels with the same jπ weighted by the so-called spectroscopic factors, corresponding
to the strengths of the excited levels extracted from the transfer reactions. This can
be expressed as follows

εk =
∑

i

S(k, i)eexci , (1.2)

where eexci denotes the energy of the ith measured level and S(k, i) the associated
spectroscopic factor, which is defined as the probability that the wave-function of
measured state eexci contains the single-particle state with the energy εk

2. In principle,
we need all levels eexci to properly recover the single-particle state jπ. This is ensured
if the spectroscopic factors fulfil the sum rule

∀k
∑

i

S(k, i) = 1. (1.3)

Obviously this is not always the case – sometimes we do not have the full experimental
information. Additionally, what is even more important, extraction of the spectroscopic
factors can be subject to large errors. To minimise these effects we can modify the
expression (1.2) with the help of the the following normalisation

εk =

∑

i S(k, i)e
exc
i

∑

i S(k, i)
. (1.4)

2Theoretical justification of this procedure was presented by Baranger in [26]
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From the above expression we can clearly see, that there are two types of contribution
to the total error possible during extraction of single-particle states from experimental
data. On the one hand we have the energy resolution of the used apparatus, on the other
there is the determination of spectroscopic factors. They are calculated by dividing
the measured cross section by the theoretical one determined for the pure state k:

dσ

dΩ
(θ, Ei)

∣
∣
∣
exp

= S(k, i) · dσ
dΩ

(θ, Ek)
∣
∣
∣
th
. (1.5)

This means that our ‘experimental’ objects are in fact theory dependent and require an
important contribution from modelling of the reaction process. The situation gets even
more complicated – the obtained results strongly vary depending on the chosen model
of the reaction and its parameterization. Calculated spectroscopic factors can differ up
to 30% between models, therefore in order to be certain of validity of extracted energy
levels one must compare a vast number of reaction data. This is a hard and demanding
task but also very important, especially for light nuclei. The number of identified levels
in 40Ca or 48Ca is still very low which makes it almost impossible to exploit them for
obtaining very reliable theoretical extrapolations.

The analysis of the process of extraction of single-particle levels of double-magic nuclei
is a distinctive example of how important it is to take into account the experimental
uncertainties when trying to build a theory upon them.

1.2 Theoretical Errors

Let us now consider what happens when we create a theoretical model to describe a
physical phenomenon. Usually we end up with a set of parameters to be determined
through a fitting procedure to some experimental data. If we now take into account
experimental uncertainties of these data, we immediately see, that this will result in
theoretical error bars for calculated quantities, but also obtained parameterization of
the model will not be given as a set of numbers, but rather as a set of probability dis-
tributions. Furthermore, calculated errors do not need to correspond to its measured
counterparts. This means that even if one experimental point has a very small uncer-
tainty, we cannot expect the same for the predicted value – the width of its probability
distribution can be quite the opposite. This is a problem of the modelling process,
which can be more sensitive to some points than the others. The conclusion we get is
simple: if the experimental data input is given by probability distributions the same
applies to theoretical results. This fact should not be neglected when constructing
theoretical models.

Another, actually more important issue related to the source of theoretical uncertain-
ties, is the ‘accuracy’ of the theory, which is a major concern in nuclear physics. We
are unable to precisely describe the interactions of many-body systems, therefore our
theories are just approximations and as such, they cannot be expected to correctly
predict every form of each nuclear phenomenon, actually yet unknown terms introduce
extra theory errors.
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1.3 Inverse Problem

Every modelling of experimental data, i.e. calculating parameters of the model out of
measured values, is by construction an inexact process. This type of approach is often
referred to as ‘inverse problem’, as opposed to ‘forward’ or ‘direct’ problem. The latter
is simply predicting data based on exact, complete model, which is seldom the case in
nuclear physics.

The difference between these two ways of functioning of one and the same model is
rather crucial – within the inverse problem we do not have the complete description
of the system and we use an incomplete experimental information about it to recover
the parameters of modelisation. Another equally important difference is the number
of solutions. The forward problem has one, well defined solution, whereas the inverse
problem can have infinitely many. As an example let us consider the gravitational field
around a massive object. If we know exactly the mass distribution inside the object,
we can calculate the field around it – this is an example of a forward problem. On the
other hand, if we have a set of measurements of the field, we can create a model of the
mass distribution, but there can be more than one solution obtained from the same set
of points. The number of solutions or, as in the case of nuclear physics, the number
of parameterisations of the model, depend directly on the amount of experimental
information we have. The more we already know, the closer we can get to reality in
theoretical calculations. It is therefore crucial to extract as much as we can from the
experiment.

Unfortunately when we consider the energy levels of protons and neutrons within the
mean-field approach we do not have sufficient data to completely recover the form
of potential. The main problem is, of course, that we do not know exactly how to
parametrize it. Obviously if we chose a wrong type of function to represent some kind
of interaction or a part of it, we cannot even hope to recover a meaningful informa-
tion. This is similar to fitting linear function to data points received from exponential
function. We can, of course, do it locally but the discrepancies between data point and
results will be large and the model itself will be useless in terms of further modelling,
especially extrapolations.

The presence of errors is a natural element when solving the inverse problem. The pro-
cess of recovering the parameters is inexact and, by definition, theoretical uncertainties
have to occur even if we do not include experimental errors. If a complete description of
a system is unknown one cannot claim the calculated parameters and extrapolation to
be exact. This seems to be very straightforward, but in many calculations the discus-
sion of errors is simply omitted. Moreover, the possibility that obtained result is just
one of many solutions is not even mentioned. The problem gets more serious, when
the possibly erroneous calculations are extrapolated to describe other, not yet mea-
sured systems. In nuclear physics this can be related to predicted, but not yet found
super-heavy or exotic nuclei. Numerous experiments are planned and performed based
on theoretical predictions with little information on accuracy of these extrapolations.

The methods of solving the inverse problem are well developed and mathematically
grounded. They are widely exploited in many scientific domains. Modelling of physical
phenomena from limited sets of data is more common than one might think. We en-
counter inverse problems in astronomy – for example study of interior of stars, medical
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imaging – tomography, analysis, prediction of earthquakes or even weather forecasts.

1.3.1 Mathematical Description of the Inverse Problem

The most general formulation of the forward problem, i.e. predicting data d (in our
case: energy levels of a system) based on a given model m3 (in our case: a set of
parameters of a Hamiltonian) can be given as a following expression

G(m) = d, (1.6)

where G is called the forward operator such as a Hamiltonian of a quantum system
and represents the mathematical model of a system in question. It can be a function,
an operator or a system of equations. The above expression can represent a continuos
or discrete, both linear or non-linear problems.

As we have already said, experimental data always come with experimental errors, e.g.
systematic instrumental errors or simply inaccuracies of the measurement. This means,
that observed data d are not true values of observables with the help of which the true
solutions of the model can be found, but instead we have

d = G(mtrue) + ν = dtrue + ν, (1.7)

where ν is the uncertainty component. The recovered model m can be far from the
real solution mtrue, even if the uncertainties are small. This usually happens, when the
mathematical model is just an approximation of the reality or it is formulated in such
a way, that some of its parameters are correlated causing the instability of the inverse
problem. This aspect will be broadly discussed in this work due to its possible impact
on nuclear theories.

In our study, we focus mainly on discrete linear problems4, therefore equation (1.6) will
be interpreted as a system of equations in a matrix representation. This implies that
G is in general an m× n matrix, m is an n-element vector of model parameters and d
is the data vector with m entries. The inverse problem could be described formally by

m = G−1d, (1.8)

but only if G is square and if the inverse matrix exists. Under such conditions the
system of equations gives a unique solution, which on the other hand renders it useless
in most of the actual applications, where we deal with a small number of parameters
or lack of sufficient experimental information. This formulation can be applied only in
a small part of calculations.

If, however, G is a rectangular matrix and the inverse matrix does not exist, one can
multiply from the left by GT, which results in a set of the, so-called, normal equations

3m could symbolise a mathematical model or a parameter set.
4In fact, we are dealing with non-linear least-squares problem, which, however, can be linearised

with the help of Taylor expansion. This property justifies the use linear inverse problems in accordance
with many publications in this domain of applied mathematics.
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m = (GTG)−1GTd. (1.9)

This time we are also dealing with an inversion of a square matrix, but still one problem
remains. The column rank of GTG, say, r, i.e. the number of its linearly independent
column vectors, must be n for this matrix to be invertible. Once again, this is not
always the case – usually we are dealing with rank-deficient problems with rank r < n,
which do not have one unique solution. This stems from the fact, that there exists a
nontrivial (n− r)-dimensional null space of G, denoted as N(G). It is given by

Gm0 = 0, (1.10)

where m0 denotes all models, which belong to the null space. Any linear combination
of elements from m0 does not change the data d. Thus when we solve the inverse
problem, we may obtain infinitely many mathematically equivalent models from one
data set, which have different admixtures of the null space solutions. Fortunately, there
are ways of dealing with this problem, for example singular value decomposition, which
plays an essential role in this work. Its basic properties will be presented in the next
section.

Usually, inverse problems are solved by minimising the expression

δ = ‖Gm− d‖2, (1.11)

which is basically a general formulation of the least-squares problem, with ‖·‖2 denoting
the L2 norm, defined as

‖x‖2 =
√
∑

i

|xi|2. (1.12)

This approach allows us to avoid the explicit use of the inverse of matrix G.

Another important feature of inverse problems is the stability of solutions in terms
of data perturbation. It often happens, that the solution of the inverse problem are
sensitive to ‘noise’ contamination of d, i.e. a small admixture of ν can cause a large
change in obtained model.5 Inverse problems with this sort of behaviour are called
ill-posed or ill-conditioned. The first term is sometimes reserved only for continuous
systems, whereas the latter refers to discrete ones. One can also encounter a definition
where ‘ill-posedness’ means having more than one solution, but we will use this term to
describe unstable solutions.6 Usually, it is possible to stabilize the calculations by im-
plementing one of various regularization methods, which consist of imposing additional
constraints. This process will be explained later in this chapter along with an exam-
ple of Tikhonov regularization. The so-called truncated singular value decompositon,
presented in the next section, is also a way to stabilize the inverse problem.

5In what follows the word ‘model’ should be understood as the set of parameters of the Hamiltonian
6Actually, the term ‘well-posed’ was introduced by the French mathematician J.S. Hadamard, who

gave the criteria for a problem to be well defined, namely the solution must exist, it must be unique
and stable. From this we see, that both unstable and non-unique problems may as well be called
ill-posed.
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1.4 Singular Value Decomposition

The process of solving the inverse problem in general includes inversion of the matrix
G. It often happens, that this matrix is singular and cannot be inverted. As a remedy,
we can exploit the singular value decomposition (SVD), which is one of methods for
decomposing a matrix, widely exploited in statistics. Its properties are very useful
when it comes to determining the predictive power of a model – it allows us to easily
identify instabilities related to the G matrix.

Let us first consider the formal description of this method. Every real matrix A can
be decomposed in the following way (cf. [4], p.55, Eq. (4.1))

A = UDVT, (1.13)

where, if A is an m×n real matrix, then U is m×m, D is m×n and V is n×n.7 These
three matrices have specific properties: U and V are orthogonal (or have orthogonal
columns), so that

UTU = 1I
VTV = 1I.

}

(1.14)

The columns of U are eigenvectors of matrix AAT and similarly columns of V are
eigenvectors of ATA. The eigen-values in both cases are the same, they are the square
roots of the diagonal entries of D. In fact, D is a diagonal matrix, which can be
represented as

D = diag{d1, d2, . . . , dmin(m,n)}. (1.15)

The entries di are nonnegative; they are called singular values of A. They fulfil the
conditions

Av = du and ATu = dv, (1.16)

where u and v are the columns of matrices U and V respectively.

If matrix G is singular, only r first diagonal values of D are nonzero with r being the
rank of G. This allows us to decompose this matrix into

D =

[
Dr 0
0 0

]

, (1.17)

where Dr is r × r diagonal matrix. Using this we can express the decomposition of G
as a following expression

7For completeness we note here that there exist in the literature another notational convention,
where U is m × n matrix, D is n × n and V is n × n, cf. [8], but this is often referred to as an
example of reduced SVD, which we will discuss later. In both approaches, however, the properties of
the matrices are similar.
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G =
[
Ur, U0

]
[
Dr 0
0 0

]
[
Vr, V0

]T
, (1.18)

where Ur denotes the first r significant columns of U, U0 stands for last m−r columns.
Similarly, Vr denotes the first r columns and V0 marks the last n− r columns of V.

The columns in U form an r-dimensional orthonormal basis of the range of G denoted
as R(G), whereas columns of V0 are the null space basis of G. On the other hand the
columns of U0 span the null space N(GT) and Vr spans the range R(GT).

1.4.1 Reduced Singular Value Decomposition

The full version of the singular value decomposition is the least useful in practical ap-
plications. Usually we have m 6= n, so automatically the D matrix has only min(m,n)
diagonal values, the rest are ‘0’. This allows us to reduce the problem to the so-called
thin SVD8, which can be written as

A = Umin(m,n)Dmin(m,n)V
T
min(m,n), (1.19)

which means that Dmin(m,n) is now a square matrix, and the larger one of U and V is
cut to m × n size. This version of SVD is especially useful in numerical calculations
when there is a large difference between m and n.

Another, more reduced option is compact SVD. If rank r of matrix A is lower than
min(m,n) we can decompose A in the following way

A = UrDrV
T
r , (1.20)

where Dr is now a square matrix of size r × r, Ur is m× r and Vr is n× r.

Truncated SVD. The most common reduction of singular value decomposition is the
low-rank approximation called truncated SVD. It is similar to compact SVD, but the
number of singular values we take into account is smaller than the rank of A. This
approach can easily be justified. The singular values of a matrix vary in the order of
magnitude. The smallest are often the cause of instability of the solution, but on the
other hand they contribute the least to the total SVD. Rows of U and columns of V
multiplied by a small number have low impact on entries of resulting matrix, thus it
is safe to omit the smallest diagonal entries of D. Moreover, in numerical calculations
it often happens, that some of the non-zero singular values have strong contribution
from the rounding errors.

The TSVD can be written as

At = UtDtV
T
t , (1.21)

8It is necessary here to mention that this naming convention, consistent with e.g. Chapter 6 of [6],
is just one of many used in the literature. The most common is one definition of reduced or compact
SVD, cf. [4], pp. 56.
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where t < r represents the number of singular values we subjectively decide to take as
significant, Dt is a t× t matrix, Ut is m× t and Vt is n× t.

The resulting matrix At is only an approximation of A, but it is still the best approxi-
mation among the matrices of the rank t. This statement is known as the Eckart-Young
theorem (1936). It can be proven in terms of the so-called Frobenius norm, which is
defined as a square root of a sum of absolute values of all the entries of a m×n matrix,
i.e.

‖A‖F ≡

√
√
√
√

m∑

i=1

n∑

j=1

|aij|2, (1.22)

but it can also be represented in terms of the trace of AAT and singular values of A

‖A‖F =

√

Tr[AAT] =

√
√
√
√

min(m,n)
∑

i=1

d2i . (1.23)

In line with the mentioned theorem, in order to find a matrix Bm×n with rank t, that is
the best approximation of Mm×n with rank r ≥ t, we need to minimize the differences
between the entries of M and B, namely

min
B

‖M−B‖F = min
bij

√
√
√
√

m∑

i=1

n∑

j=1

|mij − bij|2. (1.24)

If we now assume that singular value decomposition of M is M = UDVT and exploit
the fact that Frobenius norm is unitarily invariant, i.e. ‖M‖F = ‖UTMV‖F , we may
write

min
B

‖M−B‖F = min
B

‖D−UTBV‖F (1.25)

To minimize this expression, UTBV needs to be diagonal since D is a diagonal matrix.
This is possible if the singular value decomposition of B can be written as B = USVT,
where S is a diagonal matrix with entries being the singular values of B. Assuming
this, we obtain

min
B

‖M−B‖F = min
B

‖D− S‖F = min
si

√
√
√
√

r∑

i=1

(di − si)2. (1.26)

If we now recall, that the rank of B is t ≤ r we finally have

min
B

‖M−B‖F = min
si

√
√
√
√

t∑

i=1

(di − si)2 +
r∑

i=t+1

d2i . (1.27)
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The minimum is obtained when si = di; i = 1, . . . , t, therefore matrix S needs to be
composed of exactly t largest singular values of M. This means that even if we choose
to ignore the smallest entries ofD to obtain better stability of the solution, we still have
the best approximation of the original matrix in the range of t-rank matrices. However,
one needs to remember that by removing the non-zero singular values we loose precious
information, thus the cut-off level has to be chosen very carefully. Unfortunately there
is no rule when it comes to this truncation, we have to choose between stability and
precision.

1.5 Inverse Problem in Terms of SVD

As it was already said, singular value decomposition can be used to solve the linear
inverse problem. If matrixG is singular, we can exploit the compact SVD defined in eq.
(1.20) and perform the so-called generalised inverse, or Moore-Penrose pseudoinverse.
It is defined as

G† = VrD
−1
r UT

r . (1.28)

Now we can write the pseudoinverse solution as

m† = G†d = VrD
−1
r UT

r d. (1.29)

In the index notation we have the following expression

m†
i =

r∑

j=1

1

dj
Vij

m∑

k=1

UT
jkdk. (1.30)

This approach has a very desirable property, i.e. the pseudoinverse always exists and
so does the solution. In addition, it can be shown, that the generalised inverse solution
is the least-squares solution of minimum length. It means that it minimises both
‖Gm−d‖2 and ‖m‖2. The last property is a way of choosing the desired solution from
the infinite set of solution minimising the first condition. This approach is justified,
because any uncertainty admixture increases, in principle, the norm of m. Selecting
the solution with the smallest length ensures that the result is as close to the true
solution as it can be, given the formulation of the problem. Of course, this is not the
only way of solving the problem of infinite number of solutions, but it offers a rather
good compromise between the size of the uncertainties and the exactness of the chosen
fit.

1.6 Regularization Methods

Truncated singular value decomposition is just one solution for ill-posed inverse prob-
lems. Another way of dealing with instability of the calculations are regularisation
methods. As we already explained, the instability arises from small singular values,
which makes the model very sensitive for small perturbations of data. Thanks to
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the specific mathematical form of the problem we can just neglect those values, as in
TSVD, which unfortunately changes the precision; or we can introduce an additional
parameter to scale the singular values.

1.6.1 Tikhonov Regularization

Tikhonov regularization is probably the most popular method used for linear inverse
problems. Its basic assumption is that instead of minimising equation (1.11), we extend
it by an additional term

min
(
‖Gm− d‖22 + ‖Γm‖22

)
, (1.31)

where Γ is the so-called Tikhonov matrix, chosen in such a way as to prefer solutions
with given properties. Most common choice of Γ is the identity matrix multiplied by
some additional parameter, which means that solutions with the smallest norm of m
are preferable. This version is called the damped least-squares problem and is defined
as

min
(
‖Gm− d‖22 + α2‖m‖22

)
, (1.32)

where α is called the regularization parameter.

Tikhonov regularization can be easily expressed in terms of singular value decompos-
tion. The definition of Euclidean norm allows to rewrite the equation (1.32) as the
following matrix expression

min

∥
∥
∥
∥

[
G
αI

]

m−
[
d
0

]∥
∥
∥
∥

2

2

, (1.33)

where we put Γ = I as the simplest case. For α 6= 0 we can solve it as a full-rank
least-squares problem, thus we have

[
GT αI

]
[
G
αI

]

m =
[
GT αI

]
[
d
0

]

, (1.34)

from where one obtains

(GTG+ α2I)m = GTd. (1.35)

The above expression is the zeroth-order Tikhonov regularization of our initial problem.
It can be further developed by decomposing G using SVD, which yields

(VSTUTUSVT + α2I)m = VSTUTd, (1.36)

or, equivalently

(VSTSVT + α2I)m = VSTUTd. (1.37)
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Solution of this equation is unique and in the index notation it is given as follows

mα,i =

min(m,n)
∑

j=1

s2j
s2j + α2

Vij

sj

m∑

k=1

UT
jkdk. (1.38)

One introduces a specific notation,

fi =
s2i

s2i + α2
, (1.39)

fi called filter factors. If si ≫ α then fi ≈ 1; if, to the contrary we have si ≪ α we have
fi ≈ 0. If we recall eq. (1.30), we notice that both expressions differ only by the factor
fi. This means that the smallest singular values, the most troublesome ones, will have
reduced impact on the solution as compared to (1.30), because they are multiplied by
a very small number. This method is smoother than truncated SVD, but also, what is
more important, it allows to keep the original dimension of G.

1.7 Role of Probability in the Inverse Problems

Before we begin, it would be helpful to introduce the notation by recapitulating some
basic concepts of probability theory.

When speaking of probability, one usually thinks of the rate of occurrence of some event
in a given sample. By sample we mean a subset of the population, i.e. a part of the
whole set of objects or events under consideration. This classical definition is rather
intuitive, but we will base our considerations on another, more modern, approach,
which exploits measure theory.

1.7.1 Definition and Properties of Probability Function

In a given space Ω (it can be the data or model space) we can define a σ-field Σ of all
its subsets, composed of either single points (e.g. points in the data space composed
of set of numbers representing various outcomes of series of, say, m measurements) or
collections of points. A σ-field is a collection of sets that has specific properties: it has
at least one element, the complement (Ω \ A) of a subset A belongs to the field and
also all possible unions of subsets belong to the field. These subsets are called ‘events’
and are denoted with capital letters A, B, C, . . ..

We can define a measure P (·) over the space Ω, that associates a positive real number to
an event A. This measure is the probability measure over Ω, if it satisfies the following
Kolmogorov axioms

1. Probability is a nonnegative number, P (A) ≥ 0 for all A ∈ Σ,

2. Probability is normalised, its value over the space is P (Ω) = 1,

3. The probability of a sum of pairwise disjoint events P (Ai) is equal to the sum of
individual probabilities, P (

⋃

i Ai) =
∑

i P (Ai).



1.7.2 Probability Density 25

One can observe, that additional properties of the probability function arise from the
above statements. First of all, P (·) is a monotonic function, i.e. if one subset is
contained in another, its probability is less or equal than the probability of the larger
subset. This can be formally written as

P (A) ≤ P (B) ≤ P (C) . . . ifA ⊆ B ⊆ C . . . . (1.40)

This statement also implies that the lower bound of P is

P (Ø) = 0, (1.41)

thus for any event A ∈ Ω we have the limits of probability

0 ≤ P (A) ≤ 1. (1.42)

For event A and its complement (Ω \ A) we get the relation

P (A) + P (Ω \ A) = 1. (1.43)

Finally, if two events are not disjoint, we may write the sum rule as

P (A ∪B) = P (A) + P (B)− P (A ∩ B), (1.44)

where P (A ∩ B) denotes the probability of the intersection of subsets A and B.

1.7.2 Probability Density

Probability distribution over the space Ω can be represented as an integral

P (A) =

∫

A

f(x)dx, (1.45)

where x = {x1, x2, x3, . . .} denotes the coordinate system and the integration is over
the subset A. The function f(x) is called the probability density function (PDF) and
its form depends on the coordinate system we choose. In fact, this quantity has a
physical dimension, which is inverse to the dimension of the volume element of the
chosen space as opposed to the dimensionless value of the probability function itself.
This immediately implies, that it depends on the coordinate system. The change of
coordinates can be written as

x′ = x′(x), (1.46)

where x′ and x are the new and old coordinates respectively. If by f ′(x′) we denote the
probability density in the new coordinates, then we have for the probability distribution

P (A) =

∫

A

f ′(x′)dx′. (1.47)
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However, from the definition (1.45), for any A ∈ Ω we have

∫

A

f(x)dx =

∫

A

f ′(x′)dx′. (1.48)

Recalling that the change of coordinates can be written as

dx = |J(x′)| dx′, (1.49)

where J(x′) is determinant of the Jacobian matrix, we get as the result

f ′(x′) = |J(x′)| f(x). (1.50)

1.7.3 Expectation and Variance

The expectation or mean of a vector variable x can be defined using the probability
density function. For each component of x, it is given as the weighted average over the
whole space Ω, i.e.

E[xi] =

∫

xif(x)d
Nx, (1.51)

where E[x] denotes the expectation of x and f(x) is the probability density function
defined for the variable x, which plays the role of the weight factors. Actually, one can
calculate the expectation of any function, say g(x), as

E[g(x)] =

∫

g(x)f(x)dNx. (1.52)

For the mean of x we will reserve a symbol ‘µ’. This is a multidimensional case, where
µ is a vector.

The standard deviation or variance of x is defined as

σ2
i ≡ E[(xi − µi)

2] =

∫

(xi − µi)
2f(x)dNx. (1.53)

Exploiting the properties of the expectation, we can expand this expression in the
following way

σ2
i ≡ E[(xi − µi)

2] = E[x2
i ]− (E[xi])

2. (1.54)

All these considerations can be easily transfered into a one-dimesional case with only
one variable x or a discrete case, where we are dealing with finite number of possible
values of x.
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1.7.4 Covariance Matrix

In chapter 1.3.1 we have already briefly mentioned the correlation of parameters of
the mathematical model as one of the reasons of ill-posedness of the inverse problem.
This undesirable property can unfortunately be hidden and unnoticeable at first glance.
The correlations can be established by performing straightforward tests of behaviour
of the model under modification of the parameters9. There also exist an analytical tool
enabling quantitive description of correlations.

Having introduced the expectation in eq.(1.51), one can define the so-called covariance
matrix element as follows

Cij = Cov(xi, xj) =

∫

(xi − µi)(xj − µj)f(x)dx, (1.55)

where the diagonal entries Cij are the variances σ2
i . In matrix notation this definition

takes the form

C =

∫

(x− µ)(x− µ)Tf(x)dx. (1.56)

The covariance matrix is symmetric, and for any vector x it has a following property

x∗C−1x ≥ 0, (1.57)

i.e. it is definite nonnegative10. In the above expression x∗ denotes the conjugate
transpose of x.

This property means that eq.(1.57) can be considered as a norm and thus the expression

‖x‖ = x∗C−1x, (1.58)

is the weighted l2-norm of a vector x.

We can also define the so-called correlation coefficients ρij. They can be expressed in
terms of the covariance matrix, and are simply defined as

ρij =
Cij

σiσj

. (1.59)

They measure the relative strength of the correlation between the components of x (e.g.
a set of paramaters of a Hamiltonian or a set of experimental nuclear single-particle
levels). The correlation coefficients take the values

− 1 ≥ ρij ≤ 1. (1.60)

Let us now consider the inverse problem defined in eqs. (1.8) and (1.9). In this case,
the covariance matrix of the parameter set m can be calculated as follows11

9This method will be presented in Chapter 2
10c.f. [5], pp. 172.
11c.f. [4], pp. 264, Theorem B.5.
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Cov(m) = Cov(Ad) = ACAT, (1.61)

where A stands for either G−1 (if it is invertible), or for (GTG)−1GT (if it is not)
and C denotes the covariance matrix of d. This expression is valid if d has a normal
distribution.12 Moreover, this implies that Ad also has a normal distribution.

Let us focus on the case of normal equations, i.e. the solution of the least-squares
problem. We can write the full expression for the covariance matrix as

Cov(m) = (GTG)−1GTCG(GTG)−1. (1.62)

Now, if we consider the simplest case for the covariance matrix of d, i.e.

C = σ2I, (1.63)

which means that the experimental data are uncorrelated and have the same standard
deviation σ, we get

Cov(m) = σ2(GTG)−1. (1.64)

The covariance matrix is not necessarilly diagonal. In fact, the model elements (pa-
rameters) are linear combinations of data, therefore it is only natural to assume their
correlation and occurrence of the non-diagonal entries of the covariance matrix.

In a case of rank-deficient inverse problem, we may use the Singular Value Decom-
position. Recalling the generalised inverse solution m† given by eq. (1.29), we can
write

Cov(m†) = G†C(G†)T = σ2G†(G†)T. (1.65)

Inserting the decomposition of G† we obtain

Cov(m†) = σ2VrD
−2
r VT

r , (1.66)

and in the index notation

Cov(m†
i ,m

†
j) = σ2

r∑

k=1

Vik
1

d2k
V T
kj . (1.67)

It is important to notice, that since the part of V spanning the null space is excluded
from the summation, we obtain in general a nonsingular solution. If, however, it
happens, that some of the remaining diagonal values of D are small enough to cause
problems, we can perform one of regularisation methods to avoid instabilities of the
calculations.

12More precisely, it is a Multivariate Normal Distribution, which is simply a generalisation of one-
dimensional normal distribution into higher dimensions.
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1.7.5 Confidence Intervals

Another important concept of statistics is the notion of confidence intervals (CI). They
are calculated from the samples of the population at a givent confidence level, which
specifies how certain of the true value of a measured variable being inside the interval
we wish to be. In other words, calculating the confidence intervals with confidence
level, say, (1− p) means that with probability P = 1− p this interval will contain the
true mean value. We can write this formally as

P (x1 ≤ x ≤ x1) = 1− p, (1.68)

where (1 − p) is the confidence level, and x1, x2 denote the limits of the confidence
interval.

Usually the information about the population is limited, which implies, that the data
we possess cannot be treated as having a normal distribution. Instead, we can use a
Student’s t-distribution, which has the probability density function defined as13

f(t) =
Γ(ν+1

2
)√

νπ Γ(ν
2
)

(

1 +
t2

ν

)− ν+1
2

, (1.69)

where ν denotes the number of degrees of freedom and Γ is the Gamma function. The
Student’s distribution has a similar shape to normal distribution, but it has ‘fatter’
tails, which means that more points lie far from the mean value.

To recover the confidence interval of x of a sample of n elements with the mean x̄ we
define the following variable

z ≡ x− x̄

s/
√
n
, (1.70)

which has a t-distribution with (n − 1) degrees of freedom. In the above, s is the
standard deviation of the sample. Using this we can write

P (tn−1, p
2
≤ x− x̄

s/
√
n
≤ tn−1,1− p

2
) = 1− p, (1.71)

where tν,α is the critical t value, i.e. an argument of t-distribution with ν degrees of
freedom corresponding to the borders of the area of given probability α around the
mean.

The (1− p) confidence interval can be thus represented as

CI =

(

x̄+
tn−1, p

2
s

√
n

, x̄+
tn−1,1− p

2
s

√
n

)

. (1.72)

13cf. [4], pp. 256
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1.7.6 Likelihood Function

Let us consider the inverse problem given by equation (1.8) from the statistical point
of view. We can define the probability density function depending on a given model
m for each data component di, e.g. each nuclear single-particle level measured in the
experiment. This PDF will be denoted as fi(di|m).

The joint probability density function for the whole data set will be given by

f(d|m) = f1(d1|m) · f2(d2|m) . . . fm(dm|m). (1.73)

It can be considered as a function of parameters m, which gives us the probability of
reproducing the data set d depending on parameters m. Therefore we use a specific
notation

L(m|d) = f(d|m), (1.74)

and call this expression the likelihood function (or simply likelihood). It helps us to
determine, whether a given model is likely to fit the data. A simple criterion for the
selection of plausible models has been formulated. It is called the maximum likelihood
principle. The basic assumption for this criterion is that the best parameter set is the
one, that maximizes the likelihood function, therefore one simply needs to calculate

∂L(m|d)
∂mi

= 0, (1.75)

for each parameter mi.

1.8 Conditional Probability and Bayes’ Theorem

From the poinf of view of this work, one of the most useful notion in probability
theory is the Bayes’ law originally proposed by Thomas Bayes in the XVIII century.
Its contemporary formulation allows us to calculate the so-called posterior probability,
directly connected with the problem discussed in this section. The term ‘bayesian’ refers
to a whole branch of statistics based on a specific interpretation of probability started
by Bayes and Laplace. The probability is generally interpreted as an occurrence of a
given event in a large sample, which is a rather intuitive approach. In terms of bayesian
statistics, however, we speak of a confidence or a belief that a given ‘proposition’ is
true. The actual meaning of this statement will become clearer once the Bayes’ law is
shortly recalled.

To introduce all the necessary concepts it will be instructive to consider the following
example.

Example. We draw a ball from one of two urns. The probability of drawing from
the first one is two times smaller than from the other. In the first urn there are three
black balls and one white, whereas in the second one there are two balls of each colour.
What is the probability that if the drawn ball was black, it came from the first urn?
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The probability of drawing any ball from the first urn U1 is P (U1) = 1
3
, and from

the second P (U2) = 2
3
. The probability of drawing a black ball from the first urn is

P (b|U1) =
3
4
, and from the urn U2 it is P (b|U2) =

1
2
. This is the conditional probability,

that the event ‘drawing a black ball’ occurs at the condition that ‘it is drawn from the
urn number (1)’. Similarly, we can write P (w|U1) =

1
4
and P (w|U2) =

1
2
for the white

ball. What we are looking for is the conditional probability P (U1|b), that the ball was
drawn from the first urn, provided it was black.

The conditional probability is defined as

P (A|B) =
P (A ∩ B)

P (B)
, (1.76)

where P (A ∩B) is the joint probability of A and B. In our example P (b ∩ U1) means
the probability of drawing a black ball and drawing it from the first urn.

Transforming the above definition to calculate the joint probability, we get

P (A ∩B) = P (A|B)P (B). (1.77)

We can also rewrite this expression in a reversed order as

P (B ∩ A) = P (B|A)P (A), (1.78)

but, evidently, P (A ∩B) = P (B ∩ A). This allows us to write the following relation

P (B|A) =
P (A|B)P (B)

P (A)
, (1.79)

which is known as the Bayes’ theorem. P (B|A) is called the posterior probability,
also reffered to as the ‘probability of the causes’. This means that given a result A,
we calculate the probability of its cause B. P (A|B) is sometimes reffered to as the
likelihood. P (A) and P (B) are called the prior- or marginal- probabilities of A and B
respectively.

In our example we wish to calculate

P (U1|b) =
P (b|U1)P (U1)

P (b)
. (1.80)

P (b) is the probability of drawing a black ball from the urn, regardless of which one
we choose. This quantity can be calculated from the law of total probability

P (A) =
∑

n

P (A,Bn) =
∑

n

P (A|Bn)P (Bn), (1.81)

where Bn denotes a set of pairwise disjoint events Bi ∩ Bj = ∅, whose union is the
whole space.

According to this, we immediately have
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P (b) = P (b|U1)P (U1) + P (b|U2)P (U2) =
3

4
· 1
3
+

1

2
· 2
3
=

7

12
, (1.82)

and finally the posterior probability that the chosen urn was U1, if drawn ball was
black, becomes

P (U1|b) =
3

4
· 1
3
:
7

12
=

3

7
. (1.83)

If we now combine equations (1.79) and (1.81), we obtain a generalised expression

P (Bi|A) =
P (A|Bi)P (Bi)

∑

n P (A|Bn)P (Bn)
. (1.84)

As it was said in the introduction of this section, the Bayes’ theorem was a starting
point to a new interpretation of probability. The equation (1.79) can be simply viewed
as a relation between the conditional probability P (A|B) and its inverse P (B|A), valid
regardles of the approach we choose; but it can also be given a deeper meaning.

Let us suppose that a physical phenomenon can be described by several theoretical
models, but based on our knowledge we are unable to determine the correct one. We
can estimate our belief or confidence in a chosen model relying on partial evidence
provided by acquired data, for example measurement results. This confidence is exactly
the posterior probability from the Bayes’ theorem and its value changes with every
additional data we consider. We can compare this to a learning process, and actually
bayesian statistics is exploited in developing artificial intelligence protocols. In fact
every process requiring decision making based on incomplete or uncertain information
can be programmed and solved in terms of bayesian statistics. Moreover, many cases
of inverse problems are treated within this framework.

1.9 Least-Squares Approach as a Form of Inverse

Problem

In our study we use a linearised method of least-squares. The parameters ‘p’, of the
mean-field Hamiltonian are recovered by minimisation of the so-called χ2-function,
which compares various experimental data, for example: single-particle energy levels,
radii, level densities, position of the Fermi level and other quantities we may possi-
bly think of, with the respective theoretically calculated quantities. The function in
question is defined as

χ2(p) =
1

kε − np

·
kε∑

k=1

wk[εk − ek(p)]
2. (1.85)

In the most elementary realisations, εk are the measured energies of single-particle levels
and ek(p) are their theoretical analogues. The weight factors wk are, by definition,
positive numbers chosen arbitrarily by a physicist; they reflect relative importance of
particular data points. The symbols kε and np denote the number of experimental data
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and number of parameters, respectively. This version of the minimised function does
not include the uncertainties of the experimental data. However, the role of the latter
can be verified/tested in a simple and straightforward way by varying the input data to
obtain the impact of such variations and repeat the minimisation of the χ2 (modelling
the experimental and theoretical uncertainties).

Let us now examine expression (1.85) aiming at an approximate linearization of the
original, generally non-linear problem. We can linearise the problem by observing,
that in the vicinity of the real solution the theoretical energy levels calculated in the
(i+ 1)th-step can be expanded as follows

ek(p
(i+1)) ≈ ek(p

i) +

np∑

j=1

(
∂ek
∂pj

)∣
∣
∣
∣
p=p

(i)
j

(p
(i+1)
j − p

(i)
j ). (1.86)

To shorten the notation we introduce a scaled Jacobian matrix J
(i)
kj and an auxiliary

vector b
(i)
k defined as

J
(i)
kj ≡ √

wk

(
∂ek
∂pj

)∣
∣
∣
∣
p=p

(i)
j

and b
(i)
k =

√
wk[ek(p

(i))− εk]. (1.87)

These new objects allow to rewrite the expression for χ2 in (i + 1)th iteration in an
(apparently) more complicated and yet very useful way, as

χ2(p(i+1)) =
1

kε − np

·
kε∑

k=1

[
np∑

j=1

J
(i)
kj · (p(i+1)

j − p
(i)
j ) + b

(i)
k

]2

. (1.88)

The necessary condition for the minimum of this function is obtained when partial
derivatives with respect to the parameters vanish, namely

∂χ2

∂pi
= 0, (1.89)

This necessary condition for the minimum assumes to a good approximation that the
minimum has already been reached at the (i + 1)st iteration, in which case it can be
written in the form of a matrix relation

[
JTJ

](i)
(p(i+1) − p(i)) = −

[
JT

](i)
b(i) where [J

(i)
kl ] ≡ J(i). (1.90)

This is our formulation of the forward problem, for the inverse one we instantly obtain

p(i+1) − p(i) = −
{[

JTJ
](i)

}−1 [
JT

](i)
b(i). (1.91)

where J(i) is a kε × np real matrix, p(i) ∈ R
np and b(i) ∈ R

kε .

The solution of this equation for p(i+1) requires inversion of the matrix [JTJ](i). One
can easily predict what happens, when this matrix is singular and therefore cannot
be inverted – the problem becomes ill-posed and the obtained solution is useless. Of



1.9 Least-Squares Approach as a Form of Inverse Problem 34

course if this is known from the beginning, the problem can be fixed by introducing
some additional constraints into the χ2 function. Unfortunately a typical situation is
quite different. Numerical codes used in this type of calculations often do not solve
equation (1.91), but are rather based on e.g. conjugated-gradient or steepest descent
method. As a result there will be some parameterization of the model found, but
because of its mathematical instability it will be physically meaningless in terms of
further extrapolation. To avoid such situations, one should always carry out a stability
check by performing, for example the singular value decomposition.

If we follow the prescription given in Section 1.4 and omit the iteration number we can
write

J = UDVT (1.92)

where, for completeness, we recall that D is a diagonal matrix of the form

D = diag{d1, d2, . . . , dmin(kε,np)}. (1.93)

This decomposition allows us to write JTJ matrix in the following form

JTJ = VD2VT, (1.94)

and therefore for the inverse we immediately obtain

(JTJ)−1 = VD−2VT, (1.95)

where

D−2 = diag

{

1

d21
,
1

d22
, . . . ,

1

d2min(kε,np)

; 0

}

. (1.96)

Performing the singular value decomposition allows us to easily analyse the possible
scenarios. If at least one of the diagonal values of matrix D is zero, the inverse matrix
(JTJ)−1 does not exist. In numerical calculations this may happen for sufficiently
small di due to the rounding errors. This implies that the problem is ill-posed and the
parameters of the model are correlated, i.e. one ore more parameters are functions of
the others.

Let us now insert the the decomposed matrix J into expression (1.91). We obtain a
following relation

p(i+1) − p(i) = −
[
VD−1UT

](i)
b(i), (1.97)

which in index notation takes the form

[
p(i+1) − p(i)

]

j
= −

np∑

l=1

V
(i)
jl

1

d
(i)
l

kε∑

k=1

[
UT
lk

](i)
b
(i)
k . (1.98)
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The form of this expression (dl in denominator) automatically implies, that all vanishing
singular values should be excluded from the summation in this expression. However,
we can also remove all dl, which are sufficiently close to zero at the price of introducion
errors which need to be analysed on the case-by-case basis. We have a total freedom of
choice when it comes to this cut-off level, but we have to remember that this advantage
comes with a price. Every entry removed is a part of information lost and we move
further away from the real solution.

1.9.1 Covariance Matrix

Simiraly to the linear least-squares problem, we can define the covariance matrix of the
model parameters (p in this case). Unfortunately, we cannot use the equation (1.8),
defining the inverse problem, because the relation between data and parameters is not
linear. However, we can exploit the result given by eq. (1.61), where role of matrix G
is assumed by the Jacobian matrix. This allows us to write14

Cov(pi, pj) ∼ (JTJ)−1
ij , (1.99)

where we assumed, that covariance matrix of the data vector is proportional to the
identity matrix.

We can immediately conclude, that the possible singularity of the matrix (JTJ)−1

directly affects the covariance matrix of the parameters. If the singular values are small,
they cause the covariances to become large. This means, that not only parameters
become correlated (off-diagonal entries of covariance matrix) but also the confidence
intervals of the parameters grow larger, destroying the predictive power of the model.

Another important issue is that the covariance matrix in nonlinear problems strongly
depends on the accuracy of the linearisation. The Taylor expansion is valid only in the
vicinity of the real solution, but if this is not the case for a particular result, we cannot
rely on the covariance matrix. A way of solving this problem is scaling the eq. (1.99)
with the value of the χ2(p) of this fit. We thus have

Cov(pi, pj) = χ2(p)(JTJ)−1
ij . (1.100)

If we now insert the singular-value-decomposed matrix (JTJ)−1 we obtain in the index
notation

Cov(pi, pj) = χ2(p)

np∑

l

Vil
1

d2l
V T
lj . (1.101)

Presenting the covariance matrix in this particular way helps us better visualise what
happens when one or more di → 0. This unwanted value enters every term of the
matrix, thus spoiling our results. Fortunately, the situation can be remedied by sim-
ply removing those entries of D, which are too small and can cause the problem to
diverge by applying the Truncated Singular Value Decomposition approach, presented

14For more detailed derivation, cf. [4], Chapter 9.
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in section 1.4.1. Again, we have to remember, that this causes the loss of information,
therefore we have to be very careful in our choices.

The Confidence Intervals with given confidence level (1 − p) can be calculated by
taking

CI =
(

p̄i +
√

Cov(pi, pi) tkε−np,
p

2
, p̄i +

√

Cov(pi, pi) tkε−np,1− p

2

)

, (1.102)

where p̄i denotes the parameter values obtained as the best fit. This expression means,
that given the confidence level, there is a probability P = 1 − p that the interval
contains the true value of parameters. The use of t-distribution instead of normal
distribution is due to the fact, that the number of degrees of freedom is rather small.

1.10 Monte Carlo Methods

The existence of powerful computers allows to perform large, time-consuming calcu-
lations, which would be impossible to be carried out by humans. This possibility is
exploited by various methods of error propagation, called Monte Carlo methods. They
are useful, when there is no other way of estimating the uncertainties of the theoretical
model, e.g. in nonlinear problems but also in high-dimensional cases, where an ana-
lytical result can be difficult to interpret. The Monte Carlo methods allow to test the
behaviour of the model, its sensitivity to changes of the input.

The basic idea behind these methods is to create a large statistics by repeating the
same calculations with given initial probability distribution of data. This is an op-
posite approach to all regression-type methods, where we have only limited data sets
(samples). In Monte Carlo methods we simulate the ‘experiment’ along with its un-
certainties. This is achieved by randomly generating a large number of data vectors,
affected by uncertainty component, according to known probability distribution. Each
vector is then used, e.g. to recover the parameters of the model, which results in a
large number of parameter sets. We can formally write it as

m(i) = G−1(d0 + νi), (1.103)

where d0 is the mean value of the data probability distibution (it can be real experi-
mental data or just a simulation), νi denotes the i-th randomly generated uncertainty
component and m(i) is the i-th set of parameters. This way we obtain a probability
distribution of the model to be established, giving us the sought information about
model uncertainties.

The presented scenario is just one way of applying the Monte Carlo approach. There
are many algorithms, which are based on random number generators. They are used
in various scientific domains, e.g. particle physics, biology, mathematics etc.
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Chapter 2

Spherical Nuclei

A large part of results presented in this work was obtained within the nuclear mean
field theory in the special case of spherical symmetry. This particular area of nuclear
chart, due to its properties and simplicity, was already widely explored in the past. Our
motivation to re-investigate the problem was based on recent suggestion of existence
of exotic symmetries, e.g. tetrahedral symmetry in nuclei (for more details, cf. e.g.
[12], [13], [14], [15]). This property can manifest itself in some nuclear regions, but,
in order to search for experimental proofs, one needs theoretical predictions related,
among others, to nuclear transitions probabilities.

Various attempts to obtain such predictions showed how crucial it is to use as good
parameterisation of the Hamiltonian, as possible. For the calculations based on de-
formed Woods-Saxon approach, the so-called universal parameterisation was applied
to search for energy minima. In view of the fact, that new, revisited single-particle
energy levels were available for spherical nuclei, it was only proper to recalculate this
parameterisation. We have chosen seven doubly-magic nuclei for this task: 16O, 40Ca,
48Ca, 56Ni, 90Zr, 132Sn, 208Pb. A new, fast numerical code restricted only to spherically-
symmetric nuclei was constructed. Results of its performance will be presented in the
next section, along with discussion of its applicability in view of our recent reflections
about the predictive power.

2.1 Experimental Information

Single-particle energy levels in case of spherical nuclei are relatively well known. Their
positions have long been studied but many physists forget, that still they are very
complex quantities. Therefore, since we have chosen energy levels as our observables,
we are forced to ensure, that we use them properly.

As we have already mentioned, neutron and proton levels for a given nucleus (Z0,N0)
are not observed directly, but are established from neighbouring N0 ± 1 and Z0 ± 1
nuclei, where single-particle or single-hole states are populated. This is obtained by
light-projectile direct nucleon-transfer reactions (‘stripping’ e.g. (d,p), (t,d) or ‘pick-up’
e.g. (p,d), (d,t)) of the (Z0,N0) nucleus.
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2.1.1 Single-Particle Energy Levels of 208Pb

The heaviest stable spherical nucleus is the doubly-magic 208Pb. It is also one of the
best studied among the spherical nuclei. Let us therefore analyze its nucleonic structure
to understand all the difficulties in extracting the proper information.

The 208Pb nucleus has a lowest excited state at 2.614 MeV, which is a collective-
oscillation octupole state. Due to its low energy and strong collectivity it is the main
reason for the fragmentation of the single-particle strengths. There are other excited
collective states resulting from one-particle one-hole couplings, which may also con-
tribute to the scattering of spectroscopic factors, e.g. 5− level at 3.198 MeV or 2+ level
at 4.085 MeV.

To recover the single-particle level structure of 208Pb, four neighbouring odd-A nuclei
were studied, i.e. 209

82 Pb127,
207
82 Pb125,

209
83 Bi126 and

207
81 Tl126. First reactions carried out to

produce these nuclei gave only partial information about nucleonic levels. The range of
considered excitation energies was rather small and most of the states were considered
pure. Later experiments with different transfer reactions resulted in a more complete
picture and the fragmentation of levels became more prominent.

Table 2.1: Single-particle levels around Z = 82 and N = 126. Symbol eexc1 represents the
energy of the lowest state of each spin value measured in the four presented nuclei. The
states written bold are considered as pure single-nucleon states, i.e. their spectroscopic
factor is close to unity. The energies denoted with εκ are computed according to (1.4),
taking into account the N fragments measured in the quoted references. The difference
between eexc1 and the averaged value εκ is given by the last column. All the energies are
given in MeV.

Proton levels around Z=82 Neutron levels around N=126

States in 209
83 Bi126 States in 209

82 Pb127

Level eexc1 N [ref] εκ shift Level eexc1 N [ref] εκ shift

πh9/2 0.0000 1[27] 0 0 νg9/2 0.0000 1 0 0

πf7/2 0.8963 2[27] 1.31 0.41 νi11/2 0.7788 1 0.779 0

πi13/2 1.6086 5[27] 1.97 0.36 νj15/2 1.423(1) 4[30] 1.77 0.35

πf5/2 2.8262 5[27] 3.44 0.61 νd5/2 1.5671 - - -

πp3/2 3.1195 - - - νs1/2 2.0322 - - -

πp1/2 3.633(4) - - - νg7/2 2.491(1) - - -

νd3/2 2.538(2) - - -

States in 207
81 Tl126 States in 207

82 Pb125

Level eexc1 N [ref] εκ shift Level eexc1 N [ref] εκ shift

πs1/2 0.0000 3[31] 0.10 0.10 νp1/2 0.0000 1 0 0

πd3/2 0.3510 1[31] 0.351 0 νf5/2 0.5697 1 0.570 0

πh11/2 1.3481 2[31] 1.44 0.10 νp3/2 0.8978 1 0.898 0

πd5/2 1.6827 6[31] 2.08 0.40 νi13/2 1.6334 9[28] 2.4 0.8

πg7/2 3.474(6) 5[31] 4.18 0.71 νf7/2 2.3399 4[29] 3.0 0.7

νh9/2 3.414(2) - - -
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2.2 Spherical Woods-Saxon Mean-Field

Single-particle energy levels, in view of theoretical considerations, are eigenvalues of
the single-particle mean-field Hamiltonian. Proper construction of this Hamiltonian is
crucial in order to obtain instructive theoretical information.

The mean-field, as only an approximation to reality, is incomplete and inexact by def-
inition. The true nuclear Hamiltonian, in theory, includes all the interactions between
nucleons – the ones we already know of, but also the yet undiscovered ones.

As we do not know the true form of the many-body potential, we can approximate
the nucleon-nucleon interaction by an averaged potential, which roughly resembles and
reproduces the real interactions. Over the years, many forms of this mean potential,
which originated from different assumptions, have been created. Some of them are
more successful than others in describing the nuclear structure.

2.2.1 Definition of the Hamiltonian

Starting from the phenomenological point of view, we can write the following expression
for the single-particle Hamiltonian

Ĥ(~r) = T̂ (~r) + V̂C(~r) + V̂SO(~r, ~̂p, ~̂s) + V̂T (~r, ~̂p, ~̂s) +
[

V̂coul(~r)
]

+ . . . . (2.1)

Above, T̂ (~r) is the kinetic energy term, defined as

T̂ (~r) ≡ − ~
2

2m
∇ 2, where

∇ 2 =
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2

[
1

sinϑ

∂

∂ϑ

(

sinϑ
∂

∂ϑ

)

+
1

sin2 ϑ

∂ 2

∂ϕ 2

]

. (2.2)

V̂C(~r) is the central term, responsible for the leading radial dependence of the potential.
For our calculations, we have chosen the Woods-Saxon potential to play the role of the
central term, which in its simplest, spherical form is given by

V WS
C (r) =

V0

1 + e(
r−R
a

)
, R = r0A

1/3, (2.3)

where V0 is the depth of the potential well, a is the diffuseness parameter, responsible
for the thickness of the nuclear surface and R is the radius parameter of the nucleus.

The third term in equation (2.1) is the spin-orbit interaction, introducing the shell
effects into the Hamiltonian. Traditionally it is parameterised by

V̂so(~r, ~̂p, ~̂s) =
1

r

dV so(r)

dr
~̂ℓ · ~̂s, (2.4)

where V so(r) is the Woods-Saxon type potential, which means it has three adjustable
parameters: the potential depth V so

0 , diffuseness aso, and the radius rso0 .
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The next term is the tensor interaction, recently intensively re-discussed in nuclear
physics within the nuclear shell model [25]. Its formal definition will be presented in a
seperate section along with the presentation of its mean-field version.

The last term is the Coulomb interaction, applicable only to protons, as only they have
nonzero electric charge [hence the brackets]. In this work we assume the charge of the
nucleus to be uniformly distributed inside the sphere of the radius Rcoul, called the
charge radius. This will allow us to present the Coulomb interaction potential as the
classical electrostatic potential inside and outside of a uniformly charged sphere:

V̂coul(r) =







e2(Z − 1)

4πǫoRcoul

(
3

2
− 1

2

r2

R2
coul

)

for r 6 Rcoul

e2(Z − 1)

4πǫor
for r > Rcoul







, (2.5)

where (Z−1)e denotes the source charge, which is contained in the sphere. The charge
radius is given by the standard expression, connecting it to the number of nucleons

Rcoul ≡ rcoul A
1/3. (2.6)

We allow the charge radius parameter rcoul to differ from the nuclear radius and treat is
as an additional parameter. This gives us a total of seven parameters for protons, which
include three from the central WS potential, another three parametrising the spin-orbit
and the Coulomb radius as the seventh one; for neutrons we have six parameters.

The single-particle Hamiltonian can be expanded by adding further terms, if we find
them, which will complement the interaction and bring it closer to the true Hamilto-
nian. As a starting point of our considerations, we take into account only the main,
central term and the spin-orbit interaction with its form defined by eq. (2.4). As a
next step, we propose a different definition of the spin-orbit term, which includes also
the nucleonic densities and allows for a reduction of the number of the parameters.
This approach will be discussed in the next section.

2.2.2 The Schrödinger Equation

The theoretical nucleonic single-particle energy levels are obtained by solving the
Schrödinger equation with the Hamiltonian defined by equation (2.1). To solve this
equation, we use the fact, that for any vector in Hilbert space we can write the following
superposition

Ψn =
∑

k

cnkφk (2.7)

where {φk} is a given set of basis vectors, k denotes all the quantum numbers specifying
the basis states and cnk are some unknown coefficients. The Schrödinger equation takes
now the form

Ĥ
∑

k

cnkφk = En

∑

k

cnkφk. (2.8)
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Multiplication of both sides by φ∗
k′ and integration over the whole space gives

∑

k

cnk

∫

dV Φ∗
k′ĤΦk =

∑

k

cnkEnδk′k. (2.9)

where we exploited the orthonormality property for the basis vectors. The resulting
integrals are matrix element of the Hamiltonian, for which we introduce a short-hand
bra-ket notation

〈k′|H|k〉 ≡
∫

dV Φ∗
k′ĤΦk. (2.10)

This way we obtain a system of linear equations to be solved for cnk:

∑

k

cnk (〈k′|H|k〉 − Enδk′k) = 0, (2.11)

with the non-trivial solutions existing if and only if

det (〈k′|H|k〉 − Enδk′k) = 0; (2.12)

the latter expression equivalent to a diagonalisation problem of the matrix Hk′k ≡
〈k′|H|k〉.

2.2.3 Spherical Basis

As we have limited ourselves only to the spherical case, the natural choice of the basis
functions would be the harmonic oscillator basis in spherical coordinates {r, ϑ, ϕ},
namely

φnℓmℓ
(r, ϑ, ϕ) = fnℓ (r) Yℓmℓ

(ϑ, ϕ) =
Rnℓ(r)

r
Yℓmℓ

(ϑ, ϕ) , (2.13)

where Yℓmℓ
are the spherical harmonics and Rnℓ are the radial functions defined as

Rnℓ(r) = Nnℓ exp [−1
2

(
r
a

)2
]
(
r
a

)ℓ+1
L
(ℓ+ 1

2
)

n

[ (
r
a

)2 ]
, (2.14)

with L
(ℓ+ 1

2
)

n being the generalised Laguerre polynomials, Ref. [11], Eq. No. (22.3.9).
The constant Nnℓ is the normalisation factor given by

Nnℓ =

√

2n+ℓ+2 n!

a(2n+ 2ℓ+ 1)!!
√
π
, (2.15)

and a ≡
√

~/mω.

However, one needs to remember that we are dealing with fermions and therefore our
basis needs to include also the spin basis vectors. We need to construct vectors, that are
simultaneus eigenstates of ĵ 2, ℓ̂ 2 and ŝ 2 and spherically symmetric harmonic oscillator
Hamiltonian.1 This can be acomplished by introducing the Clebsch-Gordan coefficients

1All these operators commute among themselves, which implies the solutions to be their simula-
neous eigenstates.
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C (ℓmℓ; s,ms|jmj). Addition of spin and the orbital angular momentum must obey the
following rule for the eigenvectors

Φn;jmj ,ℓs(~r) =
∑

mℓ ms

C (ℓmℓ; s,ms|jmj)φn;ℓmℓ
(~r)χsms

, (2.16)

with the condition
mℓ +ms = mj. (2.17)

Above, χsms
denotes the eigenvectors of the spin operators ~s 2 and sz:

χ+ ≡ χ 1
2

1
2
=

(
1
0

)

χ− ≡ χ 1
2
− 1

2
=

(
0
1

)

. (2.18)

In the case of spin 1/2 particles, expression (2.16) will simplify to two terms corre-
sponding to two possible values of ms = ±1/2. Each value of ℓ gives us only two
possibilities for the total angular momentum: j = ℓ + 1

2
and j = ℓ − 1

2
. This implies

that four Clebsch-Gordan coefficients will be neccessary. From Ref. [10], Table 8.1,
p. 271:

For j = ℓ + 1

2
and fixed mj

C++
ℓmj

≡ C(ℓ, mℓ = mj − 1
2
; s,ms = +1

2
|j = ℓ+ 1

2
, mj) = +

√
ℓ+mj+

1
2

2ℓ+1
(2.19)

C+−
ℓmj

≡ C(ℓ, m′
ℓ = mj +

1
2
; s,m′

s = −1
2
|j = ℓ+ 1

2
, mj) = +

√
ℓ−mj+

1
2

2ℓ+1
(2.20)

For j = ℓ − 1

2
and fixed mj

C−+
ℓmj

≡ C(ℓ, mℓ = mj − 1
2
; s,ms = +1

2
|j = ℓ− 1

2
, mj) = −

√
ℓ+mj+

1
2

2ℓ+1
(2.21)

C−−
ℓmj

≡ C(ℓ, m′
ℓ = mj +

1
2
; s,m′

s = −1
2
|j = ℓ− 1

2
, mj) = +

√
ℓ−mj+

1
2

2ℓ+1
. (2.22)

If we now shorten the notation

φ+
n; jmj ,ℓs

≡ φnℓ;mj− 1
2
χ+ and φ−

n; jmj ,ℓs
≡ φnℓ;mj+

1
2
χ−, (2.23)

we can write the following expressions for the wave functions in the form

j = ℓ+ 1
2
: Φn; jmj ,ℓs = C++

ℓmj
φ+
n; jmj ,ℓs

+ C+−
ℓmj

φ−
n; jmj ,ℓs

j = ℓ− 1
2
: Φn; jmj ,ℓs = C−+

ℓmj
φ+
n; jmj ,ℓs

+ C−−
ℓmj

φ−
n; jmj ,ℓs

}

. (2.24)

2.2.4 Matrix Elements of the Hamiltonian

In this section the matrix elements of the Hamiltonian defined through Eq.(2.10) will
be calculated. First we introduce explicitly the set of quantum numbers denoted before
as k. In the following the matrix elements will be labelled with

k ≡ {n; jmj, ℓs} and k′ = {n′; j′m′
j, ℓ

′s′}. (2.25)
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The form of the basis functions implies that the matrix elements will in general consist
of four terms. This number reduces to diagonal form in terms of the {χ+, χ−}-basis,
since the Hamiltonian depends only on ~s 2. Therefore the non-zero matrix elements
have the following structure

j = ℓ+ 1
2
: 〈k′|Ĥ|k〉 = C++

ℓ′ m′
j
C++
ℓmj

∫

dV (φ+
n′; j′m′

j ,ℓ
′s′)

∗ Ĥ φ+
n; jmj ,ℓs

+ C+−
ℓ′ m′

j
C+−
ℓmj

∫

dV (φ−
n′; j′m′

j ,ℓ
′s′)

∗ Ĥ φ−
n; jmj ,ℓs

(2.26)

and

j = ℓ− 1
2
: 〈k′|Ĥ|k〉 = C−+

ℓ′ m′
j
C−+
ℓmj

∫

dV (φ+
n′; j′m′

j ,ℓ
′s′)

∗ Ĥ φ+
n; jmj ,ℓs

+ C−−
ℓ′ m′

j
C−−
ℓmj

∫

dV (φ−
n′; j′m′

j ,ℓ
′s′)

∗ Ĥ φ−
n; jmj ,ℓs

. (2.27)

The basis is composed of the eigenstates of all the operators with which the Hamiltonian
commutes i.e. ~ 2, ~ℓ 2 and ~s 2. This means that all the above matrix elements vanish
unless ℓ′ = ℓ, j′ = j and m′

j = mj, s = s′. Therefore the matrix-element expressions
reduce to

∫

dV (φ+
n′; j′m′

j ,ℓ
′s′)

∗ Ĥ φ+
n; jmj ,ℓs

=

∫

dV (φ−
n′; j′m′

j ,ℓ
′s′)

∗ Ĥ φ−
n; jmj ,ℓs

= δℓℓ ′ δss′ δjj′ δmjm′
j
〈n′ℓ′|Ĥ|nℓ〉, (2.28)

where

〈n′ℓ′|Ĥ|nℓ〉 ≡
∫ ∞

0

r 2 drf ∗
n′ℓ′(r)Ĥfnℓ(r). (2.29)

In addition the Clebsch-Gordan coefficients satisfy:

(C±+
ℓmj

)2 + (C±−
ℓmj

)2 = 1. (2.30)

In the next step we will calculate the matrix elements of the Hamiltonian but treating
the kinetic and potential terms separately.

Since the Laguerre polynomials depend on
(
r
a

)2
it will be useful to introduce a new

variable
z ≡ r 2

a 2 → r = a
√
z → dr = a

2
dz√
z

(2.31)

Using this expression we can write the matrix elements of the operator V̂ as follows

〈n′ℓ|V̂ |nℓ〉 = a

2
Nn′ℓNnℓ

∫ ∞

0

dz e−zzℓ+
1
2 L

(ℓ+ 1
2
)

n′ (z) V̂ (a
√
z)L

(ℓ+ 1
2
)

n (z) . (2.32)

The final expression for the kinetic energy term can be written down as

〈n′ℓ|T̂ |nℓ〉 = a ~ωNn ′ℓNnℓ

∫ ∞

0

dz e−zzℓ−
1
2

{[
1

2
(ℓ+ 1− z)L

ℓ+ 1
2

n′ (z) + z
dL

ℓ+ 1
2

n′

dz

]

[
1

2
(ℓ+ 1− z)L

ℓ+ 1
2

n (z) + z
dL

ℓ+ 1
2

n

dz

]

+
ℓ(ℓ+ 1)

4
L
ℓ+ 1

2

n ′ (z)L
ℓ+ 1

2
n (z)

}

. (2.33)
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2.3 Density Dependent Spin-Orbit Potential

The spin-orbit interaction defined in the previous section is an artificial construc-
tion, which does not include all the effects, which can occur at the surface of the
nucleus. The Hartree-Fock formalism provides us with a solution, which can improve
our model. Guided by the results of Skyrme-Hartree-Fock calculations we will substi-
tute the Woods-Saxon type form-factor in the definition of the spin-orbit potential by
nuclear density defined with the help of nucleonic wave functions. This will ensure,
that all fluctuations of distibution of the nucleonic matter will have their contribution
to the mean-field potential. As a result, we will obtain a semi-self-consistent procedure,
since the wave functions will occur both in the potential and the solution.

Let us first briefly present the Skyrme-Hartree-Fock formalism and then we will derive
the expression for the density dependent spin-orbit interaction used in the context of
Woods-Saxon form of the central potential.

2.3.1 Skyrme Interaction

One of the interactions used in Hartree-Fock calulations is the Skyrme force. This
interaction is local (zero-range), and is expressed by ’delta’ functions. The general
form of this force

V̂ =
∑

i<j

v̂
(2)
ij +

∑

i<j<k

v̂
(3)
ijk, (2.34)

includes also the three-body interaction, which simulates the many-body effects. The
two-body term has the following general form

v̂
(2)
ij = δ(~ri − ~rj)v(~k

′, ~k), (2.35)

where ~k and ~k′ are the operators of the relative motion defined as

~k ≡ 1

2i
(~∇1 − ~∇2) acting on the right (2.36a)

~k′ ≡− 1

2i
(~∇′

1 − ~∇′
2) acting on the left (2.36b)

The three-body term is expressed as

v̂
(3)
ijk = t3δ(~ri − ~rj)δ(~rj − ~rk). (2.37)

The function v(~k′, ~k) is a polynomial expansion in powers of ~k and ~k′ limited to
quadratic terms. It has the following form, as introduced by T.H.R. Skyrme ([16])



2.3.2 Single-Particle Spin-Orbit Potential 45

v(~k′, ~k) = t0(1 + x0P̂σ)

+ 1
2
t1(1 + x1P̂σ)(~k

2 + ~k′2)

+ t2(1 + x2P̂σ)~k
′ · ~k

+ 1
2
te

{

[3(~σ1 · ~k)(~σ2 · ~k)− (~σ1 · ~σ2)~k
2] + [3(~σ1 · ~k′)(~σ2 · ~k′)− (~σ1 · ~σ2)~k

′2]
}

+ to

{

[3(~σ1 · ~k′)(~σ2 · ~k)− (~σ1 · ~σ2)~k
′ · ~k]

}

+ iWo(~σ1 + ~σ2) · ~k′ × ~k, (2.38)

with P̂σ being the spin-exchange operator. The terms with coupling constants t0, t1
and t2 enter the central part of the potential (along with the three-body v̂

(3)
ijk term).

Constants te and to characterise the tensor potential, first corresponding to even and
second - to odd states with respect to relative orbital motion. The last term with
coefficient Wo represents the spin-orbit interaction.

The three-body term can be transformed into a two-body term by averaging over one
of the particles. This way we obtain

v̂
(3)
ij = 1

6
t3(1 + x3P̂σ)ρ0

[
1
2
(~ri + ~rj)

]
δ(~ri − ~rj), (2.39)

where ρ0 is the density taken at the center of mass of two nucleons. This term has
been modified by introducing nonlinearity in density (most frequently chosen power of
α = 1

3
), which improves the compressibility of the nuclear matter.

2.3.2 Single-Particle Spin-Orbit Potential

Solution of the Hartree-Fock equations with the interaction defined in the previous
section, gives the possibility of calculating the single-particle spin-orbit potential. It
consists of two parts: the ’usual’ and the tensor part. The latter originates from central
and tensor part of the Skyrme interaction. Following the articles [17] and [18], we start
with the definition of the spin-orbit potential for given particle type q = p, n ([17]
eq.(20) and (22b))

V q
ls =

−→
W q(~r) · (−i)(

−→∇ × ~σ) (2.40)

with

−→
W q(~r) =

1

2
Wo(

−→∇ρ+
−→∇ρq) +

1

8
(t1 − t2) ~Jq(~r) + αT

~Jq(~r) + βT
~Jq′(~r)

︸ ︷︷ ︸

tensor spin-orbit

. (2.41)

The first part, containig the derivatives of particle density ρq and total density ρ =
ρ′q + ρq, is equivalent to standard spin-orbit interaction defined by eq. (2.4). Its form
is consistent with the relativistic mean-field approach. The second part of eq. (2.41)
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is the tensor part of spin-orbit interaction. It consists of two expressions of different
origins. The term with parameter (t1− t2) comes from the central interaction and only
this part was considered by Vautherin and Brink in [17], whereas the last two terms
are due to the tensor part ([18] eq.(16),(17)). The coefficients αT and βT , as given by
[18] are expressed as2

αT =
5

12
to

βT =
5

24
(to + te) (2.42)

The quantity ~Jq(~r) represents the spin density defined as

~Jq(~r) = (−i)
∑

i,σσ′

φ∗
i (~r, σ, q)[

−→∇φi(~r, σ
′, q)× 〈σ|~σ|σ′〉], (2.43)

where the sum runs over all occupied states and φi represents the single-particle states
given by

φi(~r, σ, q) =
Rα (r)

r

∑

mlms

C(lsmlms|jm)Ylml
(ϑ, ϕ)χsms

(σ)χq(τ). (2.44)

Appearance of the Clebsch-Gordan coefficients C(lsmlms|jm) stems from the fact,
that this function must be simultaneously an eigenstate of ̂2, l̂2 and ŝ2 and thus i ↔
{j, ℓ, s}i.
For symmetry reasons (spherical case), the spin density depends only on the radial
component (cf. [17]), therefore it can be written as

~J(~r) =
~r

r
J(r) (2.45)

with J(r) defined as

J(r) =
1

4πr3

∑

α

(2jα + 1)

[

jα(jα + 1)− lα(lα + 1)− 3

4

]

R2
α(r). (2.46)

The same applies to the first term of
−→
W q, eq. (2.41) and the spin-orbit term can be

therefore reduced to

V q
ls =

1

r
Wq(r)~l · ~σ (2.47)

with

2These values are a little bit confusing, because the coefficient in front of the central part of tensor
interaction is the same as given by Vautherin and Brink, but there is ~s in the equation instead of ~σ,
so there could de a difference by a factor of 1

2
in αT and βT .
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Wq(r) =
1

2
Wo

d

dr
[ρ(r) + ρq(r)] +

1

8
(t1 − t2)Jq(r) + αTJq(r) + βTJq′(r) (2.48)

In our approach we have taken a generalised form of this potential, namely3

V q
ls =

1

r

[(
λqq
so

dρq
dr

+ λqq′

so

dρq′

dr

)
+ λqq

T Jq + λqq′
T Jq′

]
~l · ~σ (2.49)

2.3.3 Derivation of Particle Density

The particle density is defined as the sum of all the individual probability distributions
over all occupied states, i.e.

ρ(r) ≡
∑

α

ρα(r), (2.50)

where α denotes the full set of quantum numbers characterising single particle states.
The solutions of the single-particle Hamiltonian are superpositions of basis function,
that are simultaneous eigenstates of ̂2, l̂2 and ŝ2. This allows us to change the sum-
mation index from ℓ to jℓ± 1/2, thus simplifying the notation. Let us consider only a
part of expression (2.50) and start with a density for given N and j numbers. It can
be defined as follows

ρNj (r) =

j
∑

mj=−j

∣
∣ΨN ; jmj ,ℓ(r)

∣
∣
2

with ΨN ; jmj ,ℓ(r) =
∑

n

cNjℓnΦn; jmj ,ℓs(r) (2.51)

where Φn; jmj ,ℓs(r) are given by Eq.(2.16). Both projections in the quantum number
j = ℓ ± 1/2 yield the same result, as the square of Clebsh-Gordan coefficients are
the same in both cases, cf. Eq (2.19)-(2.22). Therefore we will introduce a compact
notation of these coefficients, namely

C+
jmj

≡ C±+
ℓmj

and C−
jmj

≡ C±−
ℓmj

. (2.52)

This allows us to write the following expression for the density function, including the
angular and spin components

3At this point we have a possibility of considering an alternative set of names of the coupling
constants given the fact that

Wν(r) ∼
d

dr
(2ρν + ρπ) and Wπ(r) ∼

d

dr
(2ρπ + ρν)

and this leads, strictly speaking, to the following parameterisation

λνν

so
= 2W0, λππ

so
= 2W0, λνπ

so
= W0, and λπν

so
= W0.

It will therefore be important to verify on the basis of the fit to the experimental levels what are
the real proportions between the coupling constants: is really λνν

so
≈ λππ

so
and λνπ

so
≈ λπν

so
?
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ρNj (r) =

j
∑

mj=−j

∑

n1

cNjℓn1

(

C+
jmj

f ∗
n1ℓ

Y ∗
ℓ;mj− 1

2
〈χ+|+ C−

jmj
f ∗
n1ℓ

Y ∗
ℓ;mj+

1
2
〈χ−|

)

·
∑

n2

cNjℓn2

(

C+
jmj

fn2ℓYℓ;mj− 1
2
|χ+〉+ C−

jmj
fn2ℓYℓ;mj+

1
2
|χ−〉

)

. (2.53)

Since the scalar products of antiparallel spin orientations 〈χ−|χ+〉 and 〈χ+|χ−〉 vanish,
the above expression takes the following form

ρNj (r) =
∑

n1,n2

cNjℓn1
cNjℓn2

fn1ℓfn2ℓ

( j
∑

mj=−j

(

C+
jmj

)2 ∣
∣
∣Yℓ;mj− 1

2

∣
∣
∣

2

+

j
∑

mj=−j

(

C−
jmj

)2 ∣
∣
∣Yℓ;mj+

1
2

∣
∣
∣

2
)

.

(2.54)

Additionally, both terms are exactly the same and the relative alignment of orbital
momentum ~ℓ and spin ~s is unimportant. This can be easily shown by simply considering
all the possible combinations. Let us focus on one of them and set j = ℓ + 1/2 and
mj = mℓ + 1/2. If we change the summation index, we obtain

j
∑

mj=−j

(

C+
jmj

)2 ∣
∣
∣Yℓ;mj− 1

2

∣
∣
∣

2

=
ℓ∑

mℓ=−ℓ−1

ℓ+mℓ + 1

2ℓ+ 1
|Yℓmℓ

|2 =
ℓ∑

mℓ=−ℓ

ℓ+mℓ + 1

2ℓ+ 1
|Yℓmℓ

|2 .

(2.55)

From [10], p. 150, Eq. (1) and (2) we get

l∑

mℓ=−l

|Yℓmℓ
|2 = 2ℓ+ 1

4π
and

l∑

mℓ=−l

mℓ |Yℓmℓ
|2 = 0, (2.56)

which simplifies the expression to

j
∑

mj=−j

(

C+
jmj

)2 ∣
∣
∣Yℓ;mj− 1

2

∣
∣
∣

2

=
1

4π

(

j +
1

2

)

. (2.57)

Inserting this result into Eq.(2.51) we get the following expression for the partial density
function

ρNj (r) =
2j + 1

4π

∑

n1,n2

cNjℓn1
cNjℓn2

fn1ℓfn2ℓ. (2.58)

Finally, the total density function can be written as

ρ (r) =
∑

N,ℓ,n1,n2

1

2π
fn1ℓfn2ℓ

[

(ℓ+ 1)cN
ℓ+ 1

2
n1
cN
ℓ+ 1

2
n2

+ ℓ · cN
ℓ− 1

2
n1
cN
ℓ− 1

2
n2

]

. (2.59)
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where we replaced the summation over j with the one over ℓ. The obtained expression
does not depend on the angular parts of the wave functions, which agrees with the
symmetry of the problem. Furthermore, the degeneracy of nucleonic levels is included
in this result.

2.3.4 Derivation of the Vector Spin Density

Begining with the same starting point as in previous derivation, we can rewrite the
expression (2.46) into the following

J(r) =
1

4πr

∑

Nljn1n2

(2j + 1)

[

j(j + 1)− l(l + 1)− 3

4

]

cNjln1
cNjln2

fn1l
(r)fn2l

(r), (2.60)

where we used the radial part of the eigenstate of the single-particle Hamiltonian,
namely

RN
lj (r) = r

∑

n

CN
jlnfnl(r). (2.61)

We notice that for

j = l + 1 → (2j + 1)
[
j(j + 1)− l(l + 1)− 3

4

]
= +2l(l + 1), (2.62)

j = l − 1 → (2j + 1)
[
j(j + 1)− l(l + 1)− 3

4

]
= −2l(l + 1), (2.63)

which gives

J(r) =
1

2πr

∑

Nln1n2

l(l + 1)
[

cN
l+ 1

2
n1
cN
l+ 1

2
n2

− cN
l− 1

2
n1
cN
l− 1

2
n2

]

fn1l(r)fn2l(r). (2.64)

We can now recall that the radial funtion is defined as

fnl(r) =
Rnl(r)

r
, (2.65)

and in the dimensionless coordinates z =
(
r
a

)2
we have

Rnℓ(z) = Nnle
− z

2 z
1
2
(ℓ+1) L

(ℓ+ 1
2
)

n (z) . (2.66)

In the above, the normalisation Nnl factor contains
√

2
a
. This allows us to calculate

1

r2
fn1l(r)fn2l(r) =

1

a4
Nn1lNn2le

−zzl−1L
(ℓ+ 1

2
)

n1 (z)L
(ℓ+ 1

2
)

n2 (z) (2.67)

and obtain
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1

r
J(r) =

1

2πa4

∑

Nln1n2

Nn1lNn2le
−zzl−1l(l + 1)L

(ℓ+ 1
2
)

n1 (z)L
(ℓ+ 1

2
)

n2 (z)

·
[

cN
l+ 1

2
n1
cN
l+ 1

2
n2

− cN
l− 1

2
n1
cN
l− 1

2
n2

]

. (2.68)

Let us briefly analyze the obtained result. If the nucleus is spin-saturated, which means
both ‘spin up’ and ‘spin down’ configurations with the same quantum number ℓ are
occupied, the expression in brackets is very close to zero. However, if we are dealing
with spin-unsaturated nucleus with only one level of this pair occupied, we obtain a
nonzero correction as compared to classical spin-orbit. This explains the reduction of
energy gaps in some spin-unsaturated nuclei, as compared to the same gap in other
nuclei. An example of this behaviour for two nuclides will be presented in Sec. 4.3.

Comments and Interpretation. We have presented a new formulation of the spin-
orbit term of the single-particle Hamiltonian. In this form, the spin-orbit interaction
brings important structural differences compared with the original one as in Eq. (2.4).
The main difference is the lack of the two ’geometrical’ adjustable parameters, namely
radius rsoo and diffusivity aso. From one point of view this is an improvement, as we aim
for large-scale nuclear structure calculations, especially in exotic nuclear ranges, where
physical properties of nuclei are poorly known. The classical spin-orbit parameters are
not reliable when extrapolated far from the range, that they were fitted in. Therefore
excluding them from the model may increase the stability of the properties of the
phenomenological Hamiltonian.

This procedure, however, needs to be validated. We have to be certain, that the im-
provement is not illusive. The central potential determines the spatial distribution of
nucleons inside the nucleus. Its parameters are very reliable in terms of extrapolations
far from the range, in which they are fitted. This property is justified if we consider
available experimental information. The electron scattering on nuclei gives us an in-
formation that the diffusivity of the nuclear surface is nearly constant and does not
depend on the mass or size of the nucleus. Thus the central diffuseness parameter may
be considered as independent, neither on Z nor on N . Additionally, the hadron scatter-
ing experiments allows us to assume that the effective mass distribution radius can be
expressed as Ro = roA

1/3, with only one parameter ro. Morover, the central potential
depth parameter is nearly constant throughout te Periodic Table with a modification
term proportional to the neutron excess parameter (N − Z)/(N + Z). 4 Knowing all
this, we may expect, that the geometrical parameters of the central potential are suit-
able for determining the nucleonic density distributions, which in turn will be reliable
when extrapolated into exotic nucelar regions.

4The depth parameter is in this case taken in the form of V = Vo[1± κ(N − Z)/(N + Z)], where
the plus sign is for protons and the minus sign for neutrons, which means it depends only on two
parameters for all nuclei.
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Chapter 3

Simulation of Predictive Power

This chapter contains a description of a simple mathematical model illustrating the
very basic concepts of predictive power of a mathematical model, in particular difficul-
ties arising from ill-posed models. We performed a througout modelling of performance
of this model in terms of uncertainty of the input data. Applying the Monte Carlo
techniques allowed us to test the correlation of the model parameters and their uncer-
tainties. The impact of the level of data (im)precision (large or small ‘experimental’
errors) on the resulting parameters and their performance was also studied, along with
the importance of proper data selection (usually referred to as ‘sampling’). We tested
also the predictive power of the model, its capability to extrapolate the results inside
or outside the fitting region (intraneous and extraneous predictive power).

3.1 Motivations and Basic Assumptions

In Chapter 1 we have briefly presented the theory behind the inverse problems and
introduced the concept of theoretical errors, which should be, in our opinion, taken into
account when constructing nuclear theories. We believe that every model in subatomic
physics, especially such, whose results are extrapolated into different regions of nuclear
chart, needs to be tested in terms of its predictive power. We would like to show
the significance of this statement by testing an exactly soluble mathematical model,
which will be easy to analyze but also instructive enough to illustrate the problem of
uncertainties in real calculations.

We choose to fit a function with four parameters to a given set of ‘experimental’ data.
This function is defined as follows

y(x) = a+ bx+ c sinh(x) + d cosh(x), (3.1)

where a, b, c and d are the parameters to be estimated. The data to be modelled are
simply exponent of x scaled by additional factor, i.e.

yexpα (x) =
exp(x)

1 + αx2
, (3.2)

where α is an additional parameter allowing us to test the behaviour of the fitting
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procedure when approaching the analytical case of α = 0. Strictly speaking, eq. 3.2
represents a ‘data generating function’ which is used as follows. We define a sequence of
discrete points xi and generate the pseudo-experimental input to the fitting procedures
by yexpα (xi).

For α = 0 we have simply

exp(x) = a+ bx+ c sinh(x) + d cosh(x). (3.3)

It can be easily checked, that the only values fulfilling this relation are

a = b = 0 and c = d = 1. (3.4)

This is a situation which resembles what is usually referred to as ‘exact modelling’; in
other words, this way of generating the ‘experimental data points’ leads to the data
set that may be reproduced exactly. Every other case, when α 6= 0, will result in
only an approximation of the generated data. We are thus interested in examining the
predictive power of this problem depending on the value of α.

We perform two different types of error estimation. The first test is a graphical pre-
sentation of the correlation of pairs of parameters, where we plot maps of the χ2 values
as a function of chosen two parameters with the remaining two kept fixed. The sec-
ond one is a test of the impact of experimental errors on the fitted parameters. We
introduce these errors into the minimisation process by generating a large number of
data sets contaminated with random uncertainty admixtures, i.e. performing a Monte-
Carlo-type calculations. This allows us to recover the information about parameter
uncertainties.

3.1.1 Solution in Terms of the Inverse Problem

To fit the parameters of the function defined in eq. (3.1) we need a set of experimental
data points, generated using the expression eq. (3.2). Let us therefore choose a set of
m points, which means that we solve a system of equations







a+ bx1 + c sinh(x1) + d cosh(x1) = yexpα (x1)
a+ bx2 + c sinh(x2) + d cosh(x2) = yexpα (x2)
a+ bx3 + c sinh(x3) + d cosh(x3) = yexpα (x3)
...
a+ bxm + c sinh(xm) + d cosh(xm) = yexpα (xm).

(3.5)

This system can be represented in a matrix notation as

Gm = d, (3.6)

where the data column vector d is defined as
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d =










yexpα (x1)
yexpα (x2)
yexpα (x3)

...
yexpα (xm)










, (3.7)

the model vector in this case is simply

m =







a
b
c
d






, (3.8)

and G is the forward operator defined as

G =










1 x1 sinh(x1) cosh(x1)
1 x2 sinh(x2) cosh(x2)
1 x3 sinh(x3) cosh(x3)
...

...
...

...
1 xm sinh(xm) cosh(xm)










. (3.9)

This mathematical model is a linear least-squares problem and in general it should be
possible to solve it analytically. However, we intend to introduce a random noise to
the data vector, thus the minimisation will be performed using iterative methods.

3.1.2 Monte Carlo Protocol

Our analysis of the problem is based on the Monte Carlo method, presented in Sec. 1.10
. According to its principles, we generate a large number (NMC) of ‘experimental’ data
sets, as defined by Eq. 3.7, but modified by small uncertainty admixtures, namely

y1 = yexpα (x1) + δy1, y2 = yexpα (x2) + δy2, . . . ym = yexpα (xm) + δym. (3.10)

The uncertainties {δyi} are generated randomly with probabilities given by a Gaussian
distribution with mean value equal to 0 and a given standard deviation σ. For each
data set, we perform a minimisation in order to recover the parameters that fit the
given data. The best fit is established with the help of minimisation routine, calculating
the minimum of a function

χ2(p) =
∑

i

(yi − y(xi))
2, (3.11)

where y(xi) are the theoretical predictions, defined by Eq. 3.1.

As a result of the Monte Carlo calculations, we obtain sets of parameters
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{a, b, c, d} ≡ {P1, P2, P3, P4}i for i = 1, 2, . . . NMC , (3.12)

which are naturally affected by the uncertainty admixtures introduced to the data.

Applying the Monte Carlo protocol allows us to recover the influence of the ‘exper-
imental’ uncertainties on the parameters. We can analyze the resulting ‘theoretical’
errors and probability distributions of the parameters. We can also test the predictive
power of the model by attempting to ‘predict’ the results which in the actual modelling
situation are known before hand.

3.2 Test of Correlation

The correlation of the parameters can be established by calculating the correlation
matrix, but it can be also obtained as a result of the Monte Carlo calculations.

Each minimisation yields a set of parameters. By plotting the obtained values for
pairs of parameters (e.g. P1 versus P2), we can judge, if the parameters are correlated.
When this happens, we will observe curves formed by the points corresponding to pairs
of parameters that were fitted in the same set. Uncorrelated parameters would result
in a more or less uniform distribution on the ‘xy’ plane. Our mathematical model is
parametrised by 4 parameters, therefore we obtain six types of correlation plots for all
possible combinations of pairs Pi − Pj.

The following set of four figures presents the results of such a correlation test in the
case of the ‘exact model’ (i.e. for α = 0) with small ‘experimental’ uncertainties
(σ = 0.001). Each figure consisting of four plots corresponds to one parameter pair.
The plots differ by the sampling option, i.e. the number of points the model is fitted
to. The top-left plot is obtained when we fit only to four points (they are calculated for
x1 = 0, x2 = 0.5, x3 = 1 , x4 = 1.5), every subsequent plot is a result of introducing
four more points into the data set (calculated for next equidistant xi’s with ∆x = 0.5).
It is important to stress here, that the results are plotted in different scales, depending
on the sampling type we choose.

The first figure shows the correlation of P1 and P2. What we can observe is a linear
correlation between these two parameters, which strongly depends on the data we
use. In the case of the smallest sample, the parameters vary in a rather broad range:
P1 ∈ [−0.1,+0.1] and P2 ∈ [−0.1,+0.1]. They are poorly constrained, as the points are
calculated for small values of xi, which means, that the exponential is almost negligible.
Increasing the sample, we can observe, that P1 and P2 become much less affected by
the data uncertainties and their correlation is less linear. This happens, because for
larger values of xi, the exponential part has the main contribution to the data points.

The next figure (3.2) presents an analogous set of plots for P1 and P3. Again, there
is also a linear correlation between these two parameters. Similarly as before, the
parameters become more constrained, when the size of the sample grows. This time,
however, for the 16-point sample, the correlation is much less visible.

The plots presented in figure 3.3 correspond to the correlation of P3 and P4. These
are the parameters responsible for the exponential part of the function. It is clearly
visible, that they become strongly correlated for the largest-sized sample.
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Figure 3.1: Correlation of parameters P1 and P2 for α = 0 (‘exact model’ version)
and σ = 0 .001 (‘precise data’ variant) for four different sampling options: top-left –
4 points, top-right – 8 points, bottom-left – 12 points and bottom-right – 16 points.

The strong linear correlation for all possible pairs of parameters (similar results are
obtained for other pairs) could be explained by the small level of contamination of the
data. We may expect, that this will change, if we increase the width of the Gaussian
distribution of the data points. However, if we plot similar figures for σ = 0.005 and
σ = 0.025, we immediately notice, that the only thing that changes is the scale. The
parameters are more weakly constrained by the data and thus vary strongly. but still
the linear correlation remains.
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Figure 3.2: Correlation of parameters P1 and P3 .
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Figure 3.3: Correlation of parameters P3 and P4 .
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Figure 3.4: Correlation of parameters P1 and P2 for α = 0 (‘exact model’ version)
and σ = 0 .005 (‘less precise data’ variant) for four different sampling options: top-left
– 4 points, top-right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.5: Correlation of parameters P1 and P3 .
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Figure 3.6: Correlation of parameters P3 and P4 .
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Figure 3.7: Correlation of parameters P1 and P2 for α = 0 (‘exact model’ version)
and σ = 0 .025 (‘imprecise data’ variant) for four different sampling options: top-left
– 4 points, top-right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.8: Correlation of parameters P1 and P3 .
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Figure 3.9: Correlation of parameters P3 and P4 .
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The following figures 3.10-3.18 and 3.19-3.27 present a similar set of plots, but for the
‘inexact’ models with α = 0.001 and α = 0.005, respectively. They are organized in
exactly the same way as previously. Observe, that the general trend and the scale of
the plots remain roughly unchanged. However, for the largest sample sizes (12 and 16),
the increase of the experimental uncertainties has almost no impact on the results.
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Figure 3.10: Correlation of parameters P1 and P2 for α = 0 .001 and σ = 0 .001
(‘precise data’ variant) for four different sampling options: top-left – 4 points, top-
right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.11: Correlation of parameters P1 and P3 .
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Figure 3.12: Correlation of parameters P3 and P4 .
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Figure 3.13: Correlation of parameters P1 and P2 for α = 0 .001 and σ = 0 .005 (‘less
precise data’ variant) for four different sampling options: top-left – 4 points, top-right
– 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.14: Correlation of parameters P1 and P3 .
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Figure 3.15: Correlation of parameters P3 and P4 .
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Figure 3.16: Correlation of parameters P1 and P2 for α = 0 .001 and σ = 0 .025
(‘imprecise data’ variant) for four different sampling options: top-left – 4 points, top-
right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.17: Correlation of parameters P1 and P3 .
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Figure 3.18: Correlation of parameters P3 and P4 .
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Figure 3.19: Correlation of parameters P1 and P2 for α = 0 .005 and σ = 0 .001
(‘precise data’ variant) for four different sampling options: top-left – 4 points, top-
right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.20: Correlation of parameters P1 and P3 .
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Figure 3.21: Correlation of parameters P3 and P4 .
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Figure 3.22: Correlation of parameters P1 and P2 for α = 0 .005 and σ = 0 .005 (‘less
precise data’ variant) for four different sampling options: top-left – 4 points, top-right
– 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.23: Correlation of parameters P1 and P3 .
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Figure 3.24: Correlation of parameters P3 and P4 .
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Figure 3.25: Correlation of parameters P1 and P2 for α = 0 .005 and σ = 0 .025
(‘imprecise data’ variant) for four different sampling options: top-left – 4 points, top-
right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.26: Correlation of parameters P1 and P3 .
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Figure 3.27: Correlation of parameters P3 and P4 .
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3.3 Over-fitting

The procedure of fitting the model to a given data set requires that the χ2 function
defined in Eq. 3.11 is as close to zero as possible. However, knowing that the data are
affected by the uncertainty component, we should expect, that this level of adjustment
corresponding to χ2 ≈ 0 will not be obtained. Unfortunately, this is not as simple as
it would seem. If the model is ill-posed and there a parametric correlation between
its parameters, there is no possibility to recover the optimal parameter set. The pa-
rameters will vary depending on the data we fit, every time resulting in a very small
values of the χ2 function. This is known as the ‘over-fitting’ mechanism and may cause
large problems if one does not consider the importance of the proper formulation of the
model. It can be remedied by increasing the size of the sample, which may remove or
diminish the impact of parametric correlations of the model on the data predictions.

To present the over-fitting phenomenon, we plot the histograms for the χ2 function,
which means that we count the number of occurrences of a given χ2 value. The re-
sults are presented in the following figures 3.28-3.33. Each figure consists of six plots
organised in such a way, that one column corresponds to one sampling option, i.e. the
model can be fitted to 6,8,12 or 16 data points. The plots in a given column present
the results for different type of input data: the top figure is plotted for ‘precise data’
variant with σ = 0.001, the middle one correspond to ‘less precise data’ (σ = 0.005)
and the bottom one present the results for the ‘imprecise data’ variant (σ = 0.025).

The first two plots correspond to the ‘exact model’ version with α = 0. The χ2 values
remain rather small, although they differ by orders of magnitude. What we can observe
is that the smaller the size of the sample, the closer the maximum of the distribution
is to zero and actually, for sample of size 4 (which is not plotted here), it becomes
a single line at zero. Increasing the size of the sample results in a slightly shifted
distribution (sample of 6 points – cf. Fig. 3.28, left column) but still the maximum
remains at zero. Futher adding of data points shifts the maximum towards right. We
can also compare the influence of the data precision on the χ2 function distribution.
As it should be expected, the distributions become broader if we increase the σ values,
but additionaly, they also shift toward right.

The figures 3.30 and 3.31 present the result for non-analytical case of α = 0.001,
whereas the last pair 3.32 and 3.33 show the results for larger value of α = 0.005.
What we can observe here is a rather similar pattern as before in the analytical case
of exponential function. Small sample results in over-fitting phenomenon, even if the
experimental uncertainties are large. However, increasing the sample shifts the position
of the maxium much further away from zero than before. This effect is the strongest
in the case of the largest sample of 16 points for α = 0.005 – the maximum is around
χ2 = 325. The width of the χ2 distribution also grows for this case.
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Figure 3.28: Over-fitting test for α = 0 (‘exact model’ version) with different types of
input data for two sampling options: 6 points – left column, 8 points – right column;
precise data (small σ) - top, moderately precise data (‘medium’ σ) - middle; poorly
determined data (relatively large σ) - bottom.
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Figure 3.29: Over-fitting test for α = 0 (‘exact model’ version) with different types of
input data for two sampling options: 12 points – left column, 16 points – right column;
precise data (small σ) - top, moderately precise data (‘medium’ σ) - middle; poorly
determined data (relatively large σ) - bottom.
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Figure 3.30: Over-fitting test for α = 0 .001 with different types of input data for two
sampling options: 6 points – left column, 8 points – right column; precise data (small σ)
- top, moderately precise data (‘medium’ σ) - middle; poorly determined data (relatively
large σ) - bottom.
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Figure 3.31: Over-fitting test for α = 0 .001 with different types of input data for
two sampling options: 12 points – left column, 16 points – right column; precise data
(small σ) - top, moderately precise data (‘medium’ σ) - middle; poorly determined data
(relatively large σ) - bottom.
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Figure 3.32: Over-fitting test for α = 0 .005 with different types of input data for two
sampling options: 6 points – left column, 8 points – right column; precise data (small σ)
- top, moderately precise data (‘medium’ σ) - middle; poorly determined data (relatively
large σ) - bottom.
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Figure 3.33: Over-fitting test for α = 0 .005 with different types of input data for
two sampling options: 12 points – left column, 16 points – right column; precise data
(small σ) - top, moderately precise data (‘medium’ σ) - middle; poorly determined data
(relatively large σ) - bottom.
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3.4 Monte Carlo Error Estimation

The concept of ‘theoretical’ errors, i.e. the uncertainties of the parameters of the model
can be easily presented using the Monte Carlo approach. This time we simply plot the
histograms for parameter values, which gives us the information about the frequency
of occurrence of a given value.

The plots are presented in figures 3.34-3.42. Each figure contains the results for one
data variant and a given version of the model. We can observe how the increasing
imprecision of the data affects the widths of the distributions for every model, regardless
of the α parameter.

The figures illustrate also how the ‘optimal fit parameters’ deviate from the exact solu-
tion (P1 = 0, P2 = 0, P3 = 1, P4 = 1) when the three quantities that characterise the
model (sampling, experimental input imprecision, inexactitude level of the modelling)
are modified.
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Figure 3.34: Probability distributions of parameters for α = 0 (‘exact model’ version)
and σ = 0 .001 (‘precise data’ variant) for four different sampling options: top-left –
4 points, top-right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.35: Probability distributions of parameters for σ = 0 .005 (‘less precise data’).
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Figure 3.36: Probability distributions of parameters for σ = 0 .025 (‘imprecise data’).
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Figure 3.37: Probability distributions of parameters for α = 0 .001 and σ = 0 .001
(‘precise data’ variant) for four different sampling options: top-left – 4 points, top-
right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.38: Probability distributions of parameters for σ = 0 .005 (‘less precise data’).
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Figure 3.39: Probability distributions of parameters for σ = 0 .025 (‘imprecise data’).
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Figure 3.40: Probability distributions of parameters for α = 0 .005 and σ = 0 .001
(‘precise data’ variant) for four different sampling options: top-left – 4 points, top-
right – 8 points, bottom-left – 12 points and bottom-right – 16 points.
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Figure 3.41: Probability distributions of parameters for σ = 0 .005 (‘less precise data’).
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Figure 3.42: Probability distributions of parameters for σ = 0 .025 (‘imprecise data’).
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3.5 Test of Predictive Power

The most important aspect of a mathematical model or a theory is its applicability
and usefulness. If we create a model and fit it to given data that are available to us, we
hope it can be applied in other cases as well. Usually, the obtained set of parameters
can be used to calculate the data points (i.e. the predictions of the model) within the
same range, that the parameters were obtained from. However, an ultimate test of a
model is its ability to reliably extrapolate to regions lying outside the fitting domain.
This is not an easy task, especially in nuclear physics, where available experimental
data are rather scarce but also the underlying physics is quite complex.

As a next test, we calculate two types of predictions. The first one, for points lying
inside the fitting range, will be reffered to as ‘intraneous predictions’, whereas the
second one, where we try to extrapolate beyond the fitting domain, will be called
‘extraneous’.

3.5.1 Intraneous Predictions

The following six figures 3.43-3.48 present the histograms for intraneous predictions.
They are organised in such a way, that, similarly as in previous sections, the columns
correspond to given sampling option and the plots in these columns are arranged by
decreasing precision of the data. For simplicity and to increase the clarity, the points
are shifted, so the maximum is at zero. The number of intraneous points calculated
for each sampling option is the same, as the number of points in the sample. The
histograms are labeled by the number of the point with a prefix ‘Int’.

The first two figures contain plots for the exact case with α = 0, the next two are
for α = 0.001, whereas the last two present predictions for α = 0.005. All three
types of calculations show similar behaviour. Large experimental uncertainties result in
broad distributions. However, increasing the size of the sample influences the resulting
histograms only to a small extent when it comes to their size.
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Figure 3.43: Probability distributions of intraneous predictions for α = 0 (‘exact model’
version) with different types of input data for two sampling options: 4 points – left
column, 8 points – right column.
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Figure 3.44: Probability distributions of intraneous predictions for α = 0 (‘exact model’
version) with different types of input data for two sampling options: 12 points – left
column, 16 points – right column.
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Figure 3.45: Probability distributions of intraneous predictions for α = 0 .001 with
different types of input data for two sampling options: 4 points – left column, 8 points
– right column.
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Figure 3.46: Probability distributions of intraneous predictions for α = 0 .001 with
different types of input data for two sampling options: 12 points – left column, 16
points – right column.
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Figure 3.47: Probability distributions of intraneous predictions for α = 0 .005 with
different types of input data for two sampling options: 4 points – left column, 8 points
– right column.
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Figure 3.48: Probability distributions of intraneous predictions for α = 0 .005 with
different types of input data for two sampling options: 12 points – left column, 16
points – right column.
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As we explained at the beginning, the plots contain only a part of the information.
The second part is presented in the following set of tables 3.1-3.12, which show the
comparison between the ‘real’ (unperturbed) data and the maxima of the histograms.
Each table represents one sampling option for three different data variants (as usual:
‘precise’ with σ = 0.001, ‘moderately precise’ with σ = 0.050 and ‘imprecise’ data with
σ = 0.025). Examining the tables 3.1-3.4, we immediately see that, as it was expected,
the precision of experimental input has a significant influence on the predictions of
the ‘exact’ model. Increasing the size of the sample from 4 to 8 improves the result,
however further addition of point has almost no impact on the performance of the
model.

Table 3.1: Intraneous predictions for 4-point sampling option and α = 0 for different
data precision variants.

α = 0 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 1.00 0.00 1.02 0.02 1.08 0.08

1.65 1.65 0.00 1.67 0.02 1.77 0.12

2.72 2.72 0.00 2.74 0.02 2.86 0.14

4.48 4.49 0.01 4.50 0.02 4.57 0.09

Table 3.2: Intraneous predictions for and 8-point sampling option α = 0 for different
data precision variants.

α = 0 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 1.00 0.00 1.02 0.02 1.10 0.10

1.65 1.65 0.00 1.66 0.01 1.70 0.05

2.72 2.72 0.00 2.73 0.01 2.77 0.05

4.48 4.48 0.00 4.49 0.01 4.55 0.07

7.39 7.39 0.00 7.40 0.01 7.45 0.06

12.18 12.18 0.00 12.20 0.02 12.24 0.06

20.09 20.09 0.00 20.10 0.01 20.14 0.05

33.12 33.12 0.00 33.13 0.01 33.20 0.08

The situation is slightly different when we consider the ’inexact models’ (i.e. with
nonzero α parameter), cf. tables 3.5-3.12. The results for 4 and 8 sampling points
are rather similar. However, increasing the size of the sample, we immediately see
the worsening of the fit. Additionally, the input uncertainties seem to have a very
low impact on the result – the errors are similar for all data variants. The more we
deviate from the exact model, the more the predictions differ from the expected values.
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Table 3.3: Intraneous predictions for 12-point sampling option α = 0 for different data
precision variants.

α = 0 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 1.00 0.00 1.02 0.02 1.08 0.08

1.65 1.65 0.00 1.66 0.01 1.70 0.05

2.72 2.72 0.00 2.73 0.01 2.76 0.04

4.48 4.48 0.00 4.49 0.01 4.54 0.06

7.39 7.39 0.00 7.40 0.01 7.43 0.04

12.18 12.18 0.00 12.19 0.01 12.22 0.04

20.09 20.09 0.00 20.10 0.01 20.12 0.03

33.12 33.12 0.00 33.13 0.01 33.17 0.05

54.60 54.60 0.00 54.61 0.01 54.64 0.04

90.02 90.02 0.00 90.03 0.01 90.06 0.04

148.41 148.42 0.01 148.42 0.01 148.47 0.06

244.69 244.70 0.01 244.71 0.02 244.79 0.10

Moreover, in major part of the cases, the real solution lies far beyond the obtained
distributions. Only the smallest samples (4 and 8 points) with rather high-precision
data are accurate enough to reproduce the data.
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Table 3.4: Intraneous predictions for 16-point sampling option α = 0 for different data
precision variants.

α = 0 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 1.00 0.00 1.02 0.02 1.09 0.09

1.65 1.65 0.00 1.66 0.01 1.70 0.05

2.72 2.72 0.00 2.73 0.01 2.77 0.05

4.48 4.48 0.00 4.49 0.01 4.54 0.06

7.39 7.39 0.00 7.40 0.01 7.43 0.04

12.18 12.18 0.00 12.19 0.01 12.22 0.04

20.09 20.09 0.00 20.09 0.00 20.12 0.03

33.12 33.12 0.00 33.12 0.00 33.15 0.03

54.60 54.60 0.00 54.60 0.00 54.63 0.03

90.02 90.02 0.00 90.02 0.00 90.06 0.04

148.41 148.41 0.00 148.42 0.01 148.46 0.05

244.69 244.69 0.00 244.70 0.01 244.75 0.06

403.43 403.43 0.00 403.44 0.01 403.50 0.07

665.14 665.14 0.00 665.15 0.01 665.21 0.07

1096.63 1096.63 0.00 1096.64 0.01 1096.68 0.05

1808.04 1808.05 0.01 1808.06 0.02 1808.12 0.08

Table 3.5: Intraneous predictions for 4-point sampling option and α = 0 .001 for dif-
ferent data precision variants.

α = 0.001 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 1.00 0.00 1.02 0.02 1.12 0.12

1.65 1.65 0.00 1.67 0.02 1.77 0.12

2.72 2.72 0.00 2.74 0.02 2.79 0.07

4.47 4.48 0.01 4.49 0.02 4.57 0.10
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Table 3.6: Intraneous predictions for and 8-point sampling option α = 0 .001 for dif-
ferent data precision variants.

α = 0.001 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 1.01 0.01 1.02 0.02 1.12 0.12

1.65 1.65 0.00 1.65 0.00 1.69 0.04

2.72 2.72 0.00 2.73 0.01 2.77 0.05

4.47 4.48 0.01 4.49 0.02 4.52 0.05

7.36 7.37 0.01 7.38 0.02 7.42 0.06

12.11 12.11 0.00 12.12 0.01 12.17 0.06

19.91 19.90 -0.01 19.91 0.00 19.98 0.07

32.71 32.72 0.01 32.74 0.03 32.80 0.09

Table 3.7: Intraneous predictions for 12-point sampling option α = 0 .001 for different
data precision variants.

α = 0.001 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 1.08 0.08 1.10 0.10 1.17 0.17

1.65 1.57 -0.08 1.58 -0.07 1.62 0.03

2.72 2.62 -0.10 2.62 0.10 2.67 0.05

4.47 4.42 -0.05 4.43 -0.04 4.47 0.00

7.36 7.38 0.02 7.39 0.03 7.43 0.07

12.11 12.20 0.09 12.20 0.09 12.25 0.14

19.91 20.03 0.12 20.03 0.12 20.07 0.16

32.71 32.81 0.10 32.82 0.11 32.85 0.14

53.74 53.74 0.00 53.75 0.01 53.80 0.06

88.23 88.11 -0.12 88.12 -0.11 88.16 0.07

144.79 144.62 -0.17 144.63 -0.16 144.67 0.12

237.51 237.64 0.13 237.65 0.14 237.74 0.23
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Table 3.8: Intraneous predictions for 16-point sampling option α = 0 .001 for different
data precision variants.

α = 0.001 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

1.00 2.07 1.07 2.09 1.09 2.15 1.15

1.65 1.02 -0.63 1.03 -0.62 1.07 -0.58

2.72 1.51 -1.21 1.52 -1.20 1.55 -1.18

4.47 3.34 -1.13 3.35 -1.12 3.38 -1.09

7.36 6.68 -0.68 6.68 -0.68 6.73 -0.63

12.11 12.04 -0.07 12.05 -0.06 12.07 -0.04

19.91 20.48 0.57 20.49 0.58 20.52 0.61

32.71 33.85 1.14 33.85 1.14 33.88 1.17

53.74 55.22 1.48 55.23 1.49 55.25 1.51

88.23 89.74 1.51 89.75 1.52 89.78 1.55

144.79 145.91 1.12 145.92 1.13 145.95 1.16

237.51 237.74 0.23 237.75 0.24 237.79 0.28

389.41 388.36 -0.95 388.37 -0.94 388.40 -0.91

638.18 635.89 -2.29 635.89 -2.29 635.94 -2.24

1045.41 1043.19 -2.22 1043.20 -2.21 1043.24 -2.17

1711.76 1713.92 2.16 1713.94 2.18 1714.00 2.24

Table 3.9: Intraneous predictions for 4-point sampling option and α = 0 .005 for dif-
ferent data precision variants.

α = 0.005 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) Shift y(x) Shift y(x) Shift

1.00 1.00 0.00 1.02 0.02 1.10 0.10

1.65 1.65 0.00 1.67 0.02 1.75 0.10

2.70 2.71 0.01 2.73 0.03 2.81 0.11

4.43 4.44 0.01 4.45 0.02 4.53 0.10
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Table 3.10: Intraneous predictions for and 8-point sampling option α = 0 .005 for
different data precision variants.

α = 0.005 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) Shift y(x) Shift y(x) Shift

1.00 1.02 0.02 1.04 0.04 1.10 0.10

1.65 1.63 -0.02 1.63 -0.02 1.69 0.04

2.70 2.70 0.00 2.71 0.01 2.76 0.06

4.43 4.45 0.02 4.46 0.03 4.51 0.08

7.24 7.27 0.03 7.28 0.04 7.31 0.07

11.81 11.82 0.01 11.82 0.01 11.88 0.07

19.22 19.19 -0.03 19.20 -0.02 19.26 0.04

31.20 31.22 0.02 31.24 0.04 31.30 0.10

Table 3.11: Intraneous predictions for 12-point sampling option α = 0 .005 for different
data precision variants.

α = 0.005 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) Shift y(x) Shift y(x) Shift

1.00 1.32 0.32 1.33 0.33 1.40 0.40

1.65 1.33 -0.32 1.34 -0.31 1.38 -0.27

2.70 2.31 -0.39 2.31 -0.39 2.36 -0.34

4.43 4.23 -0.20 4.24 -0.19 4.29 -0.14

7.24 7.34 0.10 7.35 0.11 7.38 0.14

11.81 12.17 0.36 12.18 0.37 12.21 0.40

19.22 19.69 0.47 19.70 0.48 19.72 0.50

31.20 31.56 0.36 31.57 0.37 31.60 0.40

50.55 50.55 0.00 50.56 0.01 50.60 0.05

81.74 81.26 -0.48 81.27 -0.47 81.31 -0.43

131.92 131.25 -0.67 131.26 -0.66 131.29 -0.63

212.54 213.04 0.50 213.06 0.52 213.12 0.58
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Table 3.12: Intraneous predictions for 16-point sampling option α = 0 .005 for different
data precision variants.

α = 0.005 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) Shift y(x) Shift y(x) Shift

1.00 4.73 3.73 4.74 3.74 4.80 3.80

1.65 -0.58 -2.23 -0.57 -2.22 -0.54 -2.19

2.70 -1.52 -4.22 -1.52 -4.22 -1.47 -4.17

4.43 0.52 -3.91 0.53 -3.90 0.57 -3.86

7.24 4.92 -2.32 4.93 -2.31 4.96 -2.29

11.81 11.66 -0.15 11.67 -0.14 11.70 -0.11

19.22 21.31 2.09 21.32 2.10 21.34 2.12

31.20 35.18 3.98 35.19 3.99 35.22 4.02

50.55 55.68 5.07 55.69 5.08 55.71 5.10

81.74 86.88 5.14 86.89 5.15 86.91 5.17

131.92 135.61 3.69 135.62 3.70 135.65 3.73

212.54 213.15 0.61 213.16 0.62 213.19 0.66

341.89 338.16 -3.73 338.17 -3.72 338.20 -3.69

549.14 541.39 -7.75 541.40 -7.74 541.44 -7.70

880.83 873.58 -7.25 873.59 -7.24 873.63 -7.20

1411.16 1418.37 7.21 1418.38 7.22 1418.45 7.29
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3.5.2 Extraneous Predictions

The following figures 3.49-3.54 present the second type of predictions, i.e. an attempt
to estimate the positions of points lying beyond the fitting range. For each type of
calculations, we present four predictions for x17 = 8.0, x18 = 8.5, x19 = 9.0; x20 = 9.5.
The plots are organised in such a way, that each figure presents the histograms for two
out of four sampling options for a given version of the model. Each column presents
all three data variants: the ‘precise’ data at the top, the ‘moderately precise’ in the
middle and the ‘lowest precision’ at the bottom. All the histograms are shifted and
centered around zero and are labeled by the number of the point with a prefix ‘Ext’.

As we expected, the precision of the data has a large influence on the width of the his-
tograms. The number of points used for the fit also plays a significant role and actually
its impact is larger than the differences resulting from the levels of data precision (the
widths of the histograms change by orders of magnitude from one sampling option to
another). Comparing the ensembles of plots for different versions of the model, we can
observe no significant difference between them. All the corresponding plots are of the
same scale.
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Figure 3.49: Probability distributions of extraneous predictions for α = 0 (‘exact model’
version) with different types of input data for two sampling options: 4 points – left
column, 8 points – right column.
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Figure 3.50: Probability distributions of extraneous predictions for α = 0 (‘exact model’
version) with different types of input data for two sampling options: 12 points – left
column, 16 points – right column.
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Figure 3.51: Probability distributions of extraneous predictions for α = 0 .001 with
different types of input data for two sampling options: 4 points – left column, 8 points
– right column.
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Figure 3.52: Probability distributions of extraneous predictions for α = 0 .001 with
different types of input data for two sampling options: 12 points – left column, 16
points – right column.
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Figure 3.53: Probability distributions of extraneous predictions for α = 0 .005 with
different types of input data for two sampling options: 4 points – left column, 8 points
– right column.
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Figure 3.54: Probability distributions of extraneous predictions for α = 0 .005 with
different types of input data for two sampling options: 12 points – left column, 16
points – right column.
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The following tables 3.13-3.15 present the actual positions of the maxima of the his-
tograms as compared to ‘real’ values. Each table contains all the results for a given
version of the model. The second column contains the ‘experimental’ values. The next
three pairs of columns give the maximum of the histogram and the difference between
this value and the exact position of a given point for different data precision.

Let us briefly examine every table. Increasing the inaccuracy of the data input in
the case of exact model (table 3.13) causes a drastic deterioration of the accuracy of
predictions (notice the 100% error in the case of 4-point sampling fit to ‘imprecise’
data). Increasing the size of the sample improves the predictions; doubling the size of
the sample gives two orders of magnitude improvement of the predictions.

For the inexact model options (tables 3.14 and 3.15) we obtain much worse performance.
However, there is one significant difference. For sufficiently large sample size the model
seems to be insensitive to data precision.

Table 3.13: Extraneous predictions for four sampling options and α = 0 for different
data precision variants.

Sample
α = 0 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

m=4

2980.96 3073.14 92.18 3488.33 507.37 5857.38 2876.42

4914.77 5067.31 152.54 5754.57 839.80 9675.65 4760.79

8103.08 8355.18 251.10 9491.23 1388.15 15972.35 7869.27

13359.73 13776.01 416.28 15652.18 2292.45 26355.26 12995.53

m=8

2980.96 2982.52 1.56 2989.63 8.67 3025.77 44.81

4914.77 4917.37 2.60 4929.23 14.46 4989.49 74.72

8103.08 8107.40 4.32 8122.79 19.71 8227.18 124.10

13359.73 13366.88 7.15 13399.52 40.21 13565.31 205.58

m=12

2980.96 2981.06 0.10 2981.48 0.52 2984.36 2.40

4914.77 4914.94 0.17 4915.68 0.91 4920.60 5.83

8103.08 8103.37 0.29 8104.63 1.55 8112.95 9.87

13359.73 13360.21 0.48 13362.32 3.41 13376.27 16.54

m=16

2980.96 2980.97 0.01 2981.00 0.04 2981.14 1.16

4914.77 4914.78 0.01 4914.85 0.08 4915.07 0.30

8103.08 8103.11 0.03 8103.19 0.11 8103.69 0.61

13359.73 13359.78 0.05 13360.00 0.27 13360.88 1.15
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Table 3.14: Extraneous predictions for four sampling options and α = 0 .001 for dif-
ferent data precision variants.

Sample
α = 0.001 σ = 0.001 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

m=4

2801.65 3041.86 240.21 3526.91 725.26 5288.75 2487.10

4583.60 5015.68 432.08 5818.47 839.80 8735.14 4760.79

7495.91 8270.02 774.11 9596.89 2100.98 14418.47 6922.56

12253.82 13635.54 1381.72 15826.73 3572.91 23789.91 11536.09

m=8

2801.65 2924.34 122.69 2932.50 130.85 2968.72 167.07

4583.60 4821.04 237.44 4834.67 251.07 4894.98 311.38

7495.91 7948.15 452.24 7970.79 474.88 8070.87 574.96

12253.82 13103.85 850.03 13137.97 884.15 13307.07 1053.25

m=12

2801.65 2875.57 73.92 2875.97 74.32 2878.30 76.65

4583.60 4739.27 155.67 4739.97 156.37 4743.99 160.39

7495.91 7811.83 315.92 7813.02 317.11 7820.57 324.66

12253.82 12877.47 623.65 12879.46 625.64 12889.78 635.96

m=16

2801.65 2818.96 17.31 2818.99 17.34 2819.12 17.47

4583.60 4640.06 56.46 4640.12 56.52 4640.35 56.75

7495.91 7641.75 145.84 7641.84 145.93 7642.29 146.38

12253.82 12589.88 336.06 12590.05 336.23 12590.95 337.13
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Table 3.15: Extraneous predictions for four sampling options and α = 0 .005 for dif-
ferent data precision variants.

Sample
α = 0.001 σ = 0.005 σ = 0.005 σ = 0.025

yexpα (x) y(x) y − yexpα y(x) y − yexpα y(x) y − yexpα

m=4

2258.30 2942.02 683.72 3306.87 1048.57 5962.17 3703.87

3610.48 4850.72 1240.24 5454.60 1844.12 9850.30 6239.82

5767.32 7997.64 2230.32 8995.81 3228.49 16262.33 10495.01

9205.67 13186.06 3980.39 14834.46 5628.79 26835.56 17629.89

m=8

2258.30 2707.47 449.17 2715.69 457.39 2754.59 496.29

3610.48 4462.02 851.54 4475.75 865.27 4540.56 930.08

5767.32 7354.65 1587.33 7377.48 1610.16 7485.07 1717.75

9205.67 12123.64 2917.97 12161.49 2955.82 12339.66 3133.99

m=12

2258.30 2513.93 255.63 2514.35 256.06 2516.54 258.24

3610.48 4137.49 527.01 4138.13 527.65 4141.20 530.72

5767.32 6813.65 1046.33 6814.71 1047.39 6819.92 1052.60

9205.67 11225.12 2019.45 11226.99 2021.32 11235.76 2030.09

m=16

2258.30 2313.67 55.37 2313.71 55.41 2313.82 55.52

3610.48 3786.87 176.39 3786.93 176.45 3787.16 176.68

5767.32 6212.85 445.53 6212.96 445.64 6213.37 446.05

9205.67 10209.71 1004.04 10209.89 1004.22 10210.62 1004.95
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3.6 Conclusions

In this chapter we have presented the application of the concepts of Predictive Power
to a mathematical model. For this purpose an exactly soluble model was created,
which was then modified with the help of a small parameter α, allowing us to test the
performance and limitations of inexact modelling. Using the Monte-Carlo techniques,
we have examined various properties of the data modelling.

It was shown, that correlations of parameters of a model are a crucial aspect of the
fitting process. The underlying parametric dependencies strongly affect the outcome.

Our calculations showed the strong impact of the selection of data on the performance of
the model. Almost every aspect of this study was affected by the sampling option. This
shows how important it is to carefully choose a proper set of data suitable for a given
model. The intraneous and extraneous prediction test clearly proved the significance
of this statement. The parameters fitted to a limited range of data points have almost
none predictive power when it comes to extrapolating the results far from the fitting
domain.

The proper data selection refers also to the precision of the input. If the ‘experimental’
points are affected by large uncertainties, the obtained results may strongly deviate
from the ‘real’ solution and the obtained model will have a very limited ability to
predict any further results.
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Chapter 4

Numerical Results

In this chapter we will present the results of our numerical calculations, concerning
spherical nuclei. The results were obtained using a Fortran 77 code written especially
for this task. The code solves the spherical single-particle Schrödinger equation in-
troduced in the previous chapter. This limitation to spherical symmetry has a strong
advantage: the code is fast and simple in its structure and allows for rapid alterations
if necessary, e.g. a modification of the interaction potential.

The main purpose of the calculations was to recover the parameters of the single-
particle potential from experimental information including first of all proton and neu-
tron energy levels, but also the nuclear radii. Sperical nuclei are the best and most
natural choice for this purpose. They are well-studied experimentally and their prop-
erties can easiliy be reproduced by simple theoretical models, like the one we used in
our work. Furthermore, the parameters of the single-particle spherical Woods-Saxon
potential can be incorporated into calculations of deformed nuclei. The calculations
we performed, revealed the mutual dependence of the parameters. This property was
throughly tested and studied and led to the concept of Predictive Power of a theory.

Our second task was to test the properties and behaviour of the modification of spin-
orbit interaction by implementation of density dependence discussed in section 2.3.
We will show, that this approch has several advantages and provides a more natural
description of spin-orbit interaction.

4.1 Traditional Form of the Spin-Orbit Potential

For the first part of our study we have chosen to recalculate the so-called ‘universal’
parameterisation of Woods-Saxon single-particle potential that enter equations 2.1-2.6
with a new set of experimental data. This parameterisation is used in many applica-
tions, e.g. to predict the properties of other, non-sperical nuclei, especially the ones,
which are not yet sufficiently explored. We strongly believe, that the revision of the
experimental input will result in an improved set of parameters and in turn lead to
better and more precise predictions in other regions of nuclear chart.
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4.1.1 Experimental Input

The single-particle levels were obtained from the recently revised analysis of experi-
mental data, cf. [22], [24]. Among all the available levels for a given nucleus, these
with large experimental uncertainties have not been taken into consideration. Below in
tables 4.1-4.7 we compare the experimental data used in our work with the previously
used data [23]. We can see, that the change in the positions of some levels is rather
significant and as such, it cannot be neglected. Therefore this aspect should be given
more consideration.

Table 4.1: Experimental single particle

levels for 16O

State Ref.[24] Ref.[23]

1 π1p3/2 -15.30 -

2 π1p1/2 -9.00 -

3 π1d5/2 -0.60 -

4 π2s1/2 -0.10 -

5 π1d3/2 4.40 -

1 ν1p3/2 -18.60 -

2 ν1p1/2 -12.40 -

3 ν1d5/2 -4.14 -

4 ν2s1/2 -3.27 -

5 ν1d3/2 0.94 -

Table 4.2: Experimental single particle

levels for 40Ca

State Ref.[24] Ref.[23]

1 π1d5/2 - -14.27

2 π2s1/2 -8.94 -11.02

3 π1d3/2 -6.42 -8.33

4 π1f7/2 -1.09 -1.71

5 π2p3/2 0.69 0.07

6 π2p1/2 2.41 1.79

7 π1f5/2 - 3.69

1 ν1d5/2 - -22.39

2 ν2s1/2 -16.70 -18.19

3 ν1d3/2 -14.10 -15.64

4 ν1f7/2 -8.36 -8.62

5 ν2p3/2 -5.86 -6.76

6 ν2p1/2 -4.40 -4.76

7 ν1f5/2 -1.38 -3.38

The minimisation procedure implemented in the numerical code compares experimen-
tal levels with the eigenvalues of the Schrödinger equation calculated for a given set of
parameters. In each step, the parameters are adjusted in order to obtain better agree-
ment with the data. However, in case of the lightest nucleus of 16O, the number of
experimental levels we can use is rather small and causes difficulties. For both protons
and neutrons, we have only 5 levels to compare to, which means that we solve five
equations for six or seven parameters. In view of our discussion from chapter 1, this
problem has infinitely many solutions and in this form it is not accepted. To avoid
this problem, we add additional constraints to our test function, which increases the
number of equations.

We choose to control the size of the nucleus by comparing the nuclear radius to its
experimental value (or ‘extrapolated’ values calculated according to Pomorski formula).
This allows us to obtain a proper geometry of the nucleus. Analogous result can be
obtained by adding a constraint for the density distribution. It can be implemented
for several nuclei, where the experimental denisty profiles are known. Both methods,
however, yield similar results. In case of protons for 16O, we still need one more
constraint. The problem is solved by adding a maximum error control in values of
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Table 4.3: Experimental single particle

levels for 48Ca

State Ref.[24] Ref.[23]

1 π1d5/2 -21.50 -20.81

1 π1d3/2 -16.68 -15.80

2 π2s1/2 -16.39 -15.51

3 π1f7/2 -9.63 -9.99

5 π2p3/2 -6.55 -7.30

6 π2p1/2 - -5.16

7 π1f5/2 - -5.07

1 ν1d5/2 - -17.31

2 ν2s1/2 -12.54 -13.16

3 ν1d3/2 -12.52 -12.01

4 ν1f7/2 -9.94 -9.68

5 ν2p3/2 -4.60 -5.25

6 ν2p1/2 -2.86 -3.58

7 ν1f5/2 -1.20 -1.66

Table 4.4: Experimental single particle

levels for 56Ni

State Ref.[24] Ref.[23]

1 π1d3/2 -8.60 -

2 π2s1/2 -7.90 -

3 π1f7/2 -5.00 -6.88

4 π2p3/2 -0.69 -0.99

5 π2p1/2 0.34 0.84

6 π1f5/2 0.42 0.13

7 π1g9/2 2.82 -

1 ν1d3/2 -18.40 -

2 ν2s1/2 -17.80 -

3 ν1f7/2 -14.60 -16.35

4 ν2p3/2 -10.25 -10.36

5 ν1f5/2 -9.48 -9.53

6 ν2p1/2 -9.14 -8.48

7 ν1g9/2 -7.24 -

Table 4.5: Experimental single particle

levels for 90Zr

State Ref.[24] Ref.[23]

1 π1f7/2 - -14.66

2 π1f5/2 -10.09 -10.10

3 π2p3/2 -9.86 -9.87

4 π2p1/2 -8.35 -8.36

5 π1g9/2 -5.15 -5.68

6 π2d5/2 -1.30 -1.92

7 π1g7/2 0.40 -0.13

8 π3s1/2 - 0.10

9 π2d3/2 - 0.11

1 ν1f7/2 - -14.76

2 ν1f5/2 -13.50 -13.05

3 ν2p3/2 -13.00 -12.74

4 ν2p1/2 -12.60 -12.37

5 ν1g9/2 -11.97 -11.69

6 ν2d5/2 -7.15 -7.20

7 ν3s1/2 -5.63 -5.64

8 ν2d3/2 -4.60 -4.78

9 ν1h11/2 - -4.70

10 ν1g7/2 -4.40 -4.63

Table 4.6: Experimental single particle

levels for 132Sn

State Ref.[24] Ref.[23]

1 π2p1/2 16.01 -15.77

2 π1g9/2 -15.71 -15.48

3 π1g7/2 -9.68 -10.15

4 π2d5/2 -8.72 -9.06

5 π2d3/2 -7.24 -7.23

6 π1h11/2 - -7.20

7 π3s1/2 - -6.65

1 ν1g7/2 -9.75 -9.63

2 ν2d5/2 -8.97 -9.10

3 ν3s1/2 -7.64 -7.55

4 ν1h11/2 -7.38 -7.42

5 ν2d3/2 -7.31 -7.17

6 ν2f7/2 -2.47 -2.29

7 ν3p3/2 -1.62 -1.31

8 ν1h9/2 -0.91 -0.91

9 ν3p1/2 - -0.72

10 ν1i13/2 - -0.39

11 ν2f5/2 -0.47 -0.35
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Table 4.7: Experimental single particle levels for 206Pb

State Ref.[24] Ref.[23]

1 π1g7/2 - -11.55

2 π2d5/2 - -9.80

3 π1h11/2 -9.35 -9.22

4 π2d3/2 -8.35 -8.18

5 π3s1/2 -8.10 -7.85

6 π1h9/2 -3.80 -4.19

7 π2f7/2 -2.49 -3.07

8 π1i13/2 -1.83 -2.35

9 π2f5/2 -0.40 -1.05

10 π3p3/2 - -0.92

11 π3p1/2 - -0.47

1 ν1h9/2 - -10.66

2 ν2f7/2 -10.30 -9.93

3 ν1i13/2 -9.80 -8.85

4 ν3p3/2 -8.27 -8.12

5 ν2f5/2 -7.94 -7.78

6 ν3p1/2 -7.37 -7.22

7 ν2g9/2 -3.94 -3.73

8 ν1i11/2 -3.16 -3.11

9 ν3d5/2 -2.37 -2.22

10 ν1j15/2 - -2.05

11 ν4s1/2 -1.90 -1.81

12 ν2g7/2 -1.44 -1.35

13 ν3d3/2 -1.40 -1.33

energy levels. This is realised by introducing the absolute value of the maximum
difference between experimental and theoretical energy levels in a given spectrum into
the χ2-function. This simply means that we accept only these solutions, where all the
levels are rather well reproduced.

Both constraints are also useful in other cases, where we have enough experimental data
to perform mathematically correct minimisation. Controlling the size of the nucleus
allows to restrict the number of solutions to only these, which give physical results. The
same applies for the second constraint. We are only interested in obtaining theoretical
level schemes that strongly resemble reality. Therefore, controlling the maximum error
forces the code to search only for these parameter sets, that satisfy this condition.

4.1.2 Results of Calculations

Pictures 4.1-4.7 present the best fits for all nuclei that we were able to obtain through
the minimisation procedure. However, these results are an example of the so-called
overfitting mechanism, which occurs mainly when the model has more parameters
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than the size of the data sample.

The graphs show the comparison between experimental and theoretical single-particle
levels. The experimental data are on the right-hand side of the plot, whereas the
calculated levels are on the left. Each level is labeled and its value is indicated in
MeV. At the top of the plot there is an information about the number of protons and
neutrons, the type of particles that were considered (left picture of each pair shows
protons, right – neutrons). The top line contains also the χ2 value (denoted S2) and
the value of the nuclear radius (Rrms) given in femtometers. On the right-hand side of
the plot there is a set of parameters that were obtained as a result of the minimisation.

What we see at the first glance is that the agreement of the theoretical levels with
experimental data is extremely good. With the exception of neutrons in case of 132Sn
and 208Pb, all the results are almost exact. Moreover, in some cases the accuracy of the
fit exceeds the experimental uncertainties. This may seem as an extremely attractive
result, but if we take a closer look at parameters obtain through the minimisation, we
immediately realize the problem – some of the spin-orbit parameters have strange and
undesirable values, eg. aso = 0.07 in case of neutrons for 40Ca nucleus.1

Performing calculations with minimisation procedures such as the one we present in
this work, we force the numerical code to choose parameters from a specific range,
which is more or less acceptable from the point of view of nuclear theory. This means
that we limit the outcome and search for ‘physical’ parameters. The results we present
were obtained because we allowed the code to go outside the normal range. While this
may seem pointless, as we are not really interested in non-physical outcomes, it revealed
the limitations of the model. The parameters of the central part of the chosen potential
fall in the expected range, the most problematic part is the spin-orbit interaction. The
three parameters seem to be random and thus non-transferable to other nuclei. We
have no way of knowing which set to choose or how can we find averaged values of the
parameters that will work for other nuclei.

Other aspect, that can be raised at this point, is the reliability of the model. It seems
extremely unlikely for a model as simple as Woods-Saxon based mean-field to be able to
reproduce with such a high level of accuracy the complexity of the subatomic structures.
This suggest that the model is ill-posed in the so-called ‘overfit’ regime and unsuitable
for this task. A possible solution, i.e. a replacement of the classical spin-orbit with
density-dependent potential, which amount to diminishing the number of parameters
was proposed in chapter 2.3. The next section wil present results of calculation with
such a potential.

Conclusions. These results are a crucial step in the search for a simple theory ap-
plicable to a wide range of nuclear chart. They undeniably revealed the limitations
of classical spin-orbit formulations and proved the model to be incomplete and unreli-
able. They also showed how important it is to consider and test the predictive power
of a given model. One can be easily misguided by seemingly good performance of
the calculations without proper control of the mathematical and statistical side of the
model.

By increasing the number of constraints we eliminate overfitting and the model may

1The diffuseness parameter is expected to be around 0.60, which is one order of magnitude larger
than the value obtained. Our result gives almost square shape for the WS formfactor in the spin-orbit
interaction.
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Figure 4.1: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 16O
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Figure 4.2: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 40Ca

acquire predictive power.

This is also a strong indication that a new way of calculating the spin-orbit splitting
is necessary.
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Figure 4.3: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 48Ca
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Figure 4.5: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 90Zr
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Figure 4.6: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 132Sn
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Figure 4.7: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 208Pb.
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4.2 Density Dependent Spin-Orbit Potential

On the basis of the discussion of the previous sections, we may say, that the Woods-
Saxon standard approach, which includes the spin-orbit interaction parameterised us-
ing a WS form-factor (eq. (2.4)) has many disadvantages. It depends on a set of 6
parameters for neutrons and 7 for protons (additional Coulomb radius), which means
13 different (and in theory uncorrelated) parameters, which need to be adjusted to a
limited number of data points. This is, unfortunately, a troublesome feature of this
model as it may lead to overfitting, especially for lighter nuclei. Moreover, this way
of calculating the spin-orbit interaction is artificial and does not represent all the fluc-
tuations of the nuclear matter. Using the Woods-Saxon-type functions for the central
part of the mean-field potential is justified by the bulk properties of the nucleus (cf.
section 2.3.4). The spin-orbit interaction is more sensitive to changes in the mutual
positions of nucleons.

As an alternative solution, we have presented a density-dependent form of the poten-
tial, cf. eq. (2.49). This formulation, guided by Hartree-Fock formalism, allows to
incorporate all the advantages of self-consistent approach into a simple model based
on Woods-Saxon central interaction. The first step of our work included only the first
part of equation (2.49), containing the particle densities, i.e. the equivalent of the
classical spin-orbit. As a result of replacing the WS-type spin-orbit potential with this
new formulation, we obtain an appropriately reduced set of parameters. In the worst
case scenario the model has 11 adjustable parameters, but we will present results sug-
gesting that this number can be further reduced to 8 (or 7, if we consider the Coulomb
radius parameter as not related to nuclear properties studied here and keep it fixed)
parameters, with only one responsible for the spin-orbit interaction.

The method of calculating the density-dependent spin-orbit interaction potential is
a semi self-consistent process. The particle densities, which enter the potential, are
obtained iteratively. This is continued until the obtained single-particle energy levels
are the same in two consecutive iterations up to a certain level of accuracy. This
method requires both types of particles to be calculated simultaneously as both proton
and neutron desities enter the spin-orbit potential for each of them. This way we
attempt to treat the nucleus as a whole system, which is another advantage of the
method bringing us closer to microscopic methods. Yet still it preserves the simplicity
of Woods-Saxon approach with the great advantage of the parametric ‘robustness’ of
the WS central potential.

The potential used in our calculations is defined as follows

V = V WS
C (r) +

1

r

(

λqq dρq
dr

+ λqq′ dρq′

dr

)

~ℓ · ~σ + [Vcoul(r)] . (4.1)

Generally, for each type of particles it depends on 5 parameters: 3 for the central
potential and 2 for the spin-orbit interaction. The Coulomb radius parameter is chosen
to have a fixed value. Based on preliminary results suggesting a linear correlation of
all four spin-orbit parameters, we have set

λqq = λqq′ = λq′q = λq′q′ def
= λ. (4.2)
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This additional constraint means we are left with only one parameter for both protons
and neutrons, which results in a total of 7 parameters.

Below, we present a set of plots comparing, similarly as in previous section, theoretical
levels with experimental data. On the right-hand side of the frame of each plot, there
is a set of parameters obtained as a result of the minimisation procedure. The last one
of four is the spin-orbit strength parameter. As we can see, the levels are rather well
reproduced. The best agreement was, of course, obtained for the two lightest nuclei
of 16O and 40Ca, but also other results, like for example 56Ni should be noted. For
other nuclei the agreement is still very good, however some levels are on the incorrect
relative positions as compared to the experimental data.
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Figure 4.8: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 16O

Conclusions. We have presented a method combining the classsical phenomenological
Woods-Saxon approach with more advanced and modern self-consistent Hartree-Fock
methods. Our calculations show great possibilities of this model. It strongly reduces the
number of parameters required to completely describe the mean-field potential, which
is a great improvement as compared to standard Woods-Saxon parameterisation. In
particular we may get rid of the artificial WS form-factor in the spin-orbit interac-
tion replacing it with nucleonic densities which are a natural part of the Schrödinger
equation and certainly the most ‘natural’ theoretical description of a particle inside a
nucleus.
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Figure 4.9: Comparison of experimental and theoretical single-particle energy spectra
for protons (left) and neutrons (right) for 40Ca
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Figure 4.10: Comparison of experimental and theoretical single-particle energy spectra
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Figure 4.13: Comparison of experimental and theoretical single-particle energy spectra
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Figure 4.14: Comparison of experimental and theoretical single-particle energy spectra
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4.3 Tensor Interaction

The choice of nuclei used in our calculations allowed us to test the specific behaviour
of energies of nucleonic states, where tensor part of spin-orbit splitting may possibly
influence their positions. As it was already mentioned, in nuclei in which full j or-
bitals are occupied the tensor interaction affects only the spin-unsaturated nuclei; the
strongest impact is in the nuclei where only one level from a spin-orbit split-pair is
occupied.

Guided by this information, we have chosen to test the behaviour of the spin-orbit
splitting in the case of spin-saturated 40Ca and spin-unsaturated 48Ca. In the latter
nucleus the last occupied neutron level is ν1f7/2, while its spin-orbit partner ν1f5/2
is empty. This means that if the tensor interaction is included, we should observe a
reduction of the spin-orbit splitting of protons in 48Ca as compared to the behaviour
of the same gap in 40Ca.

We have implemented the tensor part of the spin-orbit splitting according to Eq. (2.49).
The full potential can be thus written as

V = V WS
C (r) +

1

r

(

λqq dρq
dr

+ λqq′ dρq′

dr

)

~ℓ · ~σ +
1

r
(αJq + βJq′) ~ℓ · ~σ. (4.3)

The calculations were performed assuming the following constraints.

λqq = λqq′ = λ > 0 and α + β ≃ 0; α < 0; β > 0. (4.4)

The first constraint concerning the ordinary spin-orbit interaction originates from the
results of our calculations, which was presented in the previous section and it differs
from the parameterisation given in [17]. However, in this context it is an unimportant
difference as we are comparing the influence of the tensor part of the spin-orbit splitting.
As for the second constraint, we follow [18].

The sizes of the spin-orbit splitting of proton 1d partners are presented in the figure
4.15. The choice of levels for this plot was dictated by the relative strength of the spin-
orbit splitting. In case of calcium, it will be the largest for these levels. Both results
are calculated using the same set of parameters, which is given at the top of the graph.
The plot on the left side shows the levels of 40Ca, whereas the one on the right is for
48Ca. We can observe, that even if α is nonzero, nothing happens for spin-saturated
nucleus. The spin-orbit splitting is exactly the same as for normal spin-orbit term.
The situation is completely different for spin-unsaturated 48Ca. In this case, the gap
is slightly reduced if the tensor part of the spin-orbit interaction is included.

This fact can be easily explained, if we plot the radial components of the spin density in
both cases, cf. figure 4.16. We can see, that in the case of 40Ca both proton and neutron
parts of the vector density are small. This changes when we go to spin-unsaturated
case. The neutron part calculated for 48Ca is rather large and positive. If we now
recall the exact expression for vector spin-orbit term in spherical symmetry given by
eq. (2.64), we can immediately attribute this difference to the missing spin partner of
level ν1f7/2.

We can also compare the two terms of spin-orbit potential in both cases, i.e. for protons
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in 40Ca and 48Ca. They are given by the following expressions

V p
ρ = r2(1/r)λ

[
dρp
dr

+
dρn
dr

]

, (4.5)

V p
T = r2(1/r) [αJp + βJn] = r2(1/r)α [Jp − Jn] . (4.6)

These two potentials are presented in fig. 4.17 for both nuclei. The left panel shows
40Ca and the right one presents 48Ca. We can observe, that for the spin-saturated
nucleus, the tensor contribution to the total spin-orbit potential is practically zero.
In case of spin-unsaturated 48Ca there is a small positive potential. It causes the
‘abnormal’ spin-orbit splitting (due to its opposite sign as compared to standard spin-
orbit potential) and thus the reduction of the energy gap.
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Figure 4.17: Comparison of terms of spin-orbit interaction for 40Ca (left) and 48Ca
(right).

4.4 Correlation of Woods-Saxon Parameters

The Predictive Power of a mathematical model is a crucial aspect of development in
each theory and understanding the underlying physics. The correlation of parameters
may cause instability of the calculations (small change of parameters results in large
changes in the output), but also, what is important from the statistical point of view,
the confidence intervals of parameters tend to infinity. Guided by this, we performed
a very straightforward test to reveal the correlation between the parameters of the
Woods-Saxon Hamiltonian. From previous research, we already know, that for the
central term there is a correlation between the depth of the potential well and its
radius, namely Vor

2
o ≈ const. Our calculations showed other, more intresting results.

The main idea behind this test was to try to recover an exact solution of our Hamil-
tonian defined in chapter 2.2.1 through a fitting procedure. A set of single-particle
levels was first generated using the so-called Universal WS parameterisation. It was
then treated as a ‘new’ experimental input for the code. The six parameters form two
groups, one set is for the central part, the other for spin-orbit potential. Thus, we
choose to test them separately. In search for the correlation we fix one parameter of
the set and map the remaining two. This means that their values are varied within
a given range and at each point the χ2 function is calculated cf. the following figures
in this section. This allows us to deduce the parametric correlations by examining the
behaviour of the χ2-test.

In real calculations we are strongly limited in the number of available single-particle
levels, therefore we decided to mimic this by reducing the number of levels we compare
to only six. Additionally, the experimental information is usually limited to the levels
lying close to the Fermi level, which originates from the nature of experiment used
to obtain this information. However, as it turns out, it is not the best choice for the
purpose of recovering the stable sets of paramaters of the WS potential. The results we
present were performed for neutrons in 208Pb nucleus as an academic test case. The set
of six ‘experimental’ levels was chosen based on its position, starting form the bottom
of the spectrum up to the Fermi level.

The plots in figures 4.18 and 4.19 show the dependence of the χ2 function on two
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central parameters Vo and ro with ao remaining fixed. In the first case the lowest states
were used, namely 1s1/2, 1p3/2, 1d3/2, 2s1/2, 1f5/2 and 2p1/2. The second figure presents
the results of fitting to 1h11/2, 2f5/2, 3p1/2, 1i13/2, 2g9/2 and 3d3/2. In both cases we
can see the valleys marked in blue instead of single points, as we would wished to
obtain, corresponding to the best fit. However, for the low-lying states it seems that
the minimum is more distinct, whereas for the second case it would be rather impossible
to give any reasonable solution for the parameters. The next four plots in figures 4.20,
4.21, 4.22, 4.23 present the results for fixed ro (first two) and Vo (last two) in the same
manner2. Once again the parametric behaviour is visible. This time, the levels around
the Fermi surface behave slightly better, although there would still be a problem of
the confidence intervals. This result means that we are unable to fit the parameters to
six experimental levels only. We can also reverse this conclusion and notice, that with
this type of parametric dependence fitting an arbitrary set of levels may turn out to
be easy and give an ‘exact’ result.

The next set of figures 4.24-4.29 shows the result of the same procedure for the spin-
orbit interaction. This time the best behaviour is found for the levels near the Fermi
surface. This is not surprising as the shell effects are strongest for those levels. What is
new is the exsistence of double solution visible in figure 4.25. We call it the ‘compact’
and ‘non-compact’ solution. The first one refers to the small value of rso, whereas the
latter is for the large value.

Conclusions. From these tests we can conclude, that a typical experimental informa-
tion of six single-particle levels lying close to Fermi level may not be sufficient to recover
the parameters of the mean-field potential. Deeply bound levels seem to constrain cen-
tral potential relatively stronger, therefore they should be used as experimental input
in this type of calculations.

The spin-orbit interaction defined in a classical way manifests two-valued parametric
dependencies. In fact there are two different solutions referred to as ‘compact’ and ‘non-
compact’ with rso/aso ‘small’ or ‘large’. For recovering this part of parameterisation,
one needs the levels around the Fermi surface.

The presence of the valleys indicates also a possible way of eliminating the undesired
parametric correlations. Indeed, writing down an equation for the curve connecting all
the points at the bottom of the valleys we can express e.g. Vo = Vo(ro) or, alternatively
a = a(ro) etc. Such a manipulation can limit the number of really independent param-
eters and stabilise, according to the stochastic theory of the inverse problem, the final
performance of the fit.

2It should be noticed that the set of levels used in each plot may differ, the size and position of
the energy window is unchanged.
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Figure 4.18: Correlation of parameters of the central potential Vo vs. ro with energy
window far from Fermi level.
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Figure 4.19: Correlation of parameters of the central potential Vo vs. ro with energy
window close to Fermi level.
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Figure 4.20: Correlation of parameters of the central potential Vo vs. ao with energy
window far from Fermi level.
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Figure 4.21: Correlation of parameters of the central potential Vo vs. ao with energy
window close to Fermi level.
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Figure 4.22: Correlation of parameters of the central potential ao vs. ro with energy
window far from Fermi level.
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Figure 4.23: Correlation of parameters of the central potential ao vs. ro with energy
window close to Fermi level.
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Figure 4.24: Correlation of parameters of the spin-orbit potential Vso vs. rso with
energy window far from Fermi level.
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Figure 4.25: Correlation of parameters of the spin-orbit potential Vso vs. rso with
energy window close to Fermi level.
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Figure 4.26: Correlation of parameters of the spin-orbit potential Vso vs. aso with
energy window far from Fermi level.
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Figure 4.27: Correlation of parameters of the spin-orbit potential Vso vs. aso with
energy window close to Fermi level.



4.4 Correlation of Woods-Saxon Parameters 134

0.6 0.8 1.0 1.2 1.4
Spin-orbit Radius Parameterro

0.5

0.6

0.7

0.8

0.9

1.0

1.1
S

p
in

-o
rb

it
D

if
fu

se
n

e
ss

P
a
ra

m
e
te

r
a

o

Experimental Neutron Energy Levels: 1s1/2 1p3/2 1d3/2 2s1/2 1f5/2 2p1/2 Window Size: Emin=-41.686 MeV Emax=-23.424 MeV

constant parameter: V0SORB=23.0

E
x
p

e
ri

m
e
n

ta
l

le
v
e
ls

:
U

n
iv

e
rs

a
l

W
S

p
a
ra

m
e
te

rs
(c

e
n

tr
a
l

+
sp

in
-o

rb
it

in
te

ra
ct

io
n

)
V

0
C

E
N

T
=

-5
5
.9

5
R

0
C

E
N

T
=

1
.2

1
A

0
C

E
N

T
=

0
.6

9
V

0
S

O
R

B
=

2
3
.0

0
R

0
S

O
R

B
=

1
.1

4
A

0
S

O
R

B
=

0
.5

2

χ[MeV]

0
.3

0
.3

0
.7

0
.7

Behaviour of the χ Function

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

208

82
Pb

Figure 4.28: Correlation of parameters of the spin-orbit potential aso vs. rso with energy
window far from Fermi level.
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Figure 4.29: Correlation of parameters of the spin-orbit potential aso vs. rso with energy
window close to Fermi level.
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4.5 MonteCarlo Calculations for Spherical Woods-

Saxon Hamiltonian

A similar test to the one presented in the previous section was also performed using
Monte Carlo techniques [32], [33]. A set of parameters was first obtained through
a fitting procedure (with spin-orbit diffuseness fixed at aso = 0.6fm) and then used
to produce the ‘experimental’ levels. The positions of the levels were then randomly
modified in a set of 10,000 runs with probabilities given by Gaussian distributions. The
results of these calculations are presented in figure 4.30. The plot on the left-hand side
shows the positions of pairs of points (ac0 vs. V c

0 ), whereas the one on the right-hand
side presents the positions of (rc0 vs. V c

0 ).
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Figure 4.30: The results of Monte Carlo fitting for 208Pb projected on the (ac
0 vs. V c

0 )
plane (left) and (r c0 vs. V c

0 ) plane (right).

What we can conclude from this figure is the presence of a strong correlation between
central parameters rc0 and V c

0 , and almost no correlation between ac0 and V c
0 . We can

compare this result with a straightforward calculations of the correlation matrix defined
as

corr(X, Y ) =

∑

i[(Xi − X̄)(Yi − Ȳ )]
√∑

i(Xi − X̄)2
√∑

i(Yi − Ȳ )2
; X̄ ≡ 1

n

n∑

i=1

Xi, Ȳ ≡ 1

n

n∑

i=1

Yi, (4.7)

where Xi and Yi represnt the parameters of the Hamiltonian. Table 4.8 shows the
correlation matrix calculated from the results of Monte Carlo simulation.

Comparing the value corresponding to the pair (V c
0 ,r

c
0) with the one for (V c

0 ,a
c
0), we

clearly see the strong correlation of the first pair, as it was shown in the plot on the
right-hand side in Fig. 4.30.
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Table 4.8: The correlation matrix for the parameters of the Woods-Saxon Hamiltonian
as obtained from the Monte Carlo simulation.

V c
0 rc0 ac0 V so

0 rso0

V c
0 1.000 0.994 -0.028 0.000 0.265
rc0 0.994 1.000 0.016 0.005 0.270
ac0 0.028 0.016 1.000 0.259 0.288
V so
0 0.000 0.005 0.259 1.000 0.506
rso0 0.265 0.270 0.288 0.506 1.000

4.6 Monte Carlo Calculations for Spherical Hartree-

Fock Hamiltonian

The same procedure as presented in the previous section was performed using sperically-
symmetric Skyrme Hartree-Fock Hamiltonian [32], [33], which is defined as a sum of
kinetic-energy term and isoscalar and iso-vector potentials

H(r) =
~
2

2m
τ0 +H0(r) +H1(r). (4.8)

The potential terms are given by

Ht(r) = Cρ′

t ρ
2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτ+

1

2
CJ

t J
2
t + C∇J

t ρt∇ · Jt , (4.9)

where Cρ
t is defined as

Cρ′

t = Cρ
t + Cρα

t ρα0 . (4.10)

Among the twelve parameters, only six was allowed to vary in the fitting procedure,
namely Cρ

0 , C
ρ
1 , C

ρα
0 , Cτ

0 , C
τ
1 , C

∇J
0 . The remaining six were kept fixed or constrained by

relations with other parameters.3

The following figures show the results of Monte Carlo simulation for the Skyrme
Hartree-Fock Hamiltonian. In this case, we can observe stronger correlations as com-
pared to the Woods-Saxon Hamiltonian. On the left-hand side of Fig. 4.31 we can see
the correlation between Cρ

0 and Cρ
1 , the right-hand side shows C∇J

0 vs. Cρ
0 . Figure 4.32

presents the correlation of Cρ
0 and Cτ

0 (left) and also Cτ
0 and Cρα

0 . For the latter we
can also observe a tendency for a double-valued correlation.

It is also instructive to calculate the correlation matrix in this case. As presented in
Table 4.9, a major part of the parameters is strongly correlated, not only the ones
presented in Fig. 4.31 and 4.32. It can be compared with plots presented in Fig. 4.324,
where we observe other examples of correlations of parameters. These results suggest
that there are three rather than twelve independent parameters within the Syrme
Hartree-Fock formalism.

3For detailed information, cf. [32], sect. 4.
4Plots presented in this figure come from [33].
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Figure 4.31: The results of Monte Carlo fitting for 208Pb projected on the (C ρ
1 vs. C ρ

0 )
plane (left) and (C∇J

0 vs. C ρ
0 ) plane (right).

-1200 -1000 -800 -600 -400 -200

Parameter C
ρ
0

-500

0

500

1000

1500

P
a
r
a
m

e
t
e
r
C

τ 0

-2000 -1000 0 1000 2000 3000

Parameter C
ρα
0

-500

0

500

1000

1500

P
a
r
a
m

e
t
e
r
C

τ 0

Figure 4.32: The results of Monte Carlo fitting for 208Pb projected on the (C τ
0 vs. C ρ

0 )
plane (left) and (C τ

0 vs. C ρα
0 ) plane (right).

Table 4.9: The correlation matrix for the parameters of the Skyrme-Hartree-Fock
Hamiltonian as obtained from the Monte Carlo simulation.

Cρ
0 Cρ

1 Cρα
0 Cτ

0 Cτ
1 C∇J

0

Cρ
0 1.000 -0.948 -0.506 -0.902 0.952 0.965

Cρ
1 -0.948 1.000 0.682 0.745 -0.838 -0.854

Cρα
0 -0.506 0.682 1.000 0.102 -0.243 -0.290

Cτ
0 -0.902 0.745 0.102 1.000 -0.985 -0.977

Cτ
1 0.952 -0.838 -0.243 -0.985 1.000 0.993

C∇J
0 0.965 -0.854 -0.290 -0.977 0.993 1.000
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Figure 4.33: The results of Monte Carlo fitting for 208Pb projected on different planes.
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4.7 Comments on the Skyrme-Hartree-Fock

Formalism

Let us recall the formulation of the Skyrme Hartree-Fock approach presented briefly in
Sect. 2.3.1, where the Skyrme interaction is given by the following expression

v̂Skyrme(~ri, ~rj) = t0(1 + x0P̂σ) δ(~rij)

+ 1
2
t1(1 + x1P̂σ)

[
~k′2δ(~rij) + δ(~rij)~k

2
]

+ t2 (1 + x2P̂σ)
[
~k′] ·

[
δ(~rij)~k

]

+ 1
6
t3(1 + x3P̂σ) ρ

α(~R)
[
δ(~rij)

]

+ iW0 (~σi + ~σj) ·
[
~k′ × δ(~rij)~k

]

+ vtensor(~ri, ~rj), (4.11)

with the tensor interaction defined as

vtensor(~ri, ~rj) =
1
2
te

{
[ 3(~σi · ~k′) (σj · ~k′)− (~σi · ~σj)(~k

′)2 ] δ(~rij)

+ δ(~r12) [ 3(~σ1 · ~k ) (~σ2 · ~k )− (~σ1 · ~σ2)(~k )
2 ]
}

+ to
{
3(σ1 · ~k′)δ(~r12)(~σ2 · ~k)− (~σ1 · ~σ2)

[
~k

′] ·
[
δ(~r12)~k

]}
. (4.12)

As we have already mentioned, this formulation requires, by definition, a total of twelve
parameter, namely

{p} df
=

{
{t0, t1, t2, t3}; {x0, x1, x2, x3}; {W0}; {te, to}; {α}

}
, (4.13)

this only being an expansion of the second order. However, higher orders have also
been studied, e.g. cf. [34], where an expansion of the sixth order was presented. Let
us briefly disscus their results.

In the presented study, the total energy density is given by

H(~r ) =
∑

m′I′,n′L′v′J′

mI,nLvJ,Q

Cm′I′,n′L′v′J ′

mI,nLvJ,Q × Tm′I′,n′L′v′J ′

mI,nLvJ,Q (~r ), (4.14)

where Cm′I′,n′L′v′J ′

mI,nLvJ,Q denotes the coupling constants. This means, that the total number
of terms (and also coupling constants) grows to a very large number. An evaluation of
this number is presented in Table 4.10. The number of terms for time-even and time-
odd densities are given in column 1 and 2 respectively, whereas the last two columns
contain the numbers of terms with Galilean and gauge5 invariance.

5For more detailed information about Skyrme HF gauge invariance cf. e.g. [35]
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Table 4.10: The number of terms in Skyrme Hartree-Fock depending on the order
of expansion. The multiplication by a factor of two take into account both isospin
channels.

Order T-even T-odd Total Galilean Gauge

0 1 1 2 2 2
2 8 10 18 12 12
4 53 61 114 45 29
6 250 274 524 129 54

N3LO 2x312 2x346 2x658 2x188 2x97

624 692 1316 376 194

The number of terms as compared to the ‘ordinary’, second order Skyrme Hartree-
Fock formulation is enormous. If we consider this as an Inverse Problem, as it should
be treated, we can clearly see the difficulties arising from such a large number of
parameters. The stability of this type of fitting procedure is questionable, not to
mention its Predictive Power.

From the point of view of our work, expanding the Skyrme-Hartree-Fock formalism into
higher orders like ‘next-to-next-to-to-next’ order disscused in this section based on [34]
is rather pointless. It produces hundreds, or even thousands of coupling constants to
be fitted, while for the ordinary Hartree-Fock formulation there are twelve coupling
constants and at least nine parametric correlations among them, which leaves us with
only three independent parameters.
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Conclusions

In the present work we have examined the functioning of the modelling of selected
nuclear observables from the point of view of the predictive power and the inverse
problem – the mathematical theory underlying the modern stochastic theories of the
predictive power. The importance of the subject can be summarized as follows.

• In the coming years the uncertainties of the theoretical predictions will be a
required condition for publishing the articles in various journals.

• Our work shows that the number of parameters often exceeds the mathematical
needs of the modelling, e.g. the standard spherical Woods-Saxon single-particle
potential.

• This manifests itself in the ill-posedeness of the inverse problem what causes in
turn the instability in terms of the extraneous predictions.

• One way out is to reanalyze the problem and decrease the number of parameters,
as we have shown in the case of spherical Woods-Saxon potential – by introducing
a density dependent spin-orbit interaction.

• Another, more ’automatic’ option is to apply the regularisation methods such as
e.g. the Singular Value Decomposition or Tikhonov regularisation.

• The inclusion of experimental uncertainties in fitting procedures should become
a crucial point in all theoretical calculations.

Our work presents and illustrates certain first steps and concepts whose more sys-
tematic use is already becoming a reality in the ‘routine work’ of various groups of
physicists.
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