Julien DUGAY

LPCNO (Laboratoire de Physique-Chimie des Nano-Objets) INSA de Toulouse

Encadrants: Julian CARREY, Marc RESPAUD

Intégration et propriétés de magnéto-transport de nano-objets magnétiques élaborés par voie chimique

Ləborətoire de Physique & Chimie des Nəno-Objets

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Intégration de nano-objets dans des dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
- Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

Introduction

Nano-objets ?

Introduction

Nano-objets ?

Comment connecter des objets si petits ?

Introduction

Nano-objets ?

Inorganiques

Magnétiques ?	Non	Oui	
Métalliques	Au, Ag	Fe, Co	
Semi-conducteurs	Ga, Si,	Dopés (Co,)	
Oxydes	SiO ₂	Fe ₃ O ₄ , Co ₃ O ₄ ,	

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Intégration de nano-objets dans des dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
- Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

<u>A travers un nano-objet unique</u>: régime de blocage de Coulomb

Permet de contrôler le passage des charges à l'unité !!! Mais sous conditions...

- $R_T > 25 \text{ k}\Omega$
- T << E_C où E_C est l'énergie que coûte l'ajout d'un e⁻ sur le nano-objet

<u>A travers un nano-objet unique</u>: T << 300 K

<u>A travers un nano-objet unique</u>: T << 300 K

A. Bernand-Mantel, et al. Nat Phys, 2009.

A travers une assemblée de nano-objets:

Mêmes mécanismes physiques que précédemment...

Difficultés pour modéliser I (V, T)

Géométrie des chemins de conduction ?

Calcul de $E_{C\Sigma}(S,d,N)$

T. B. Tran et al., Phys. Rev. B, 2008.

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
 - Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
- Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

Spintronique

P ≠ 0

Transport polarisé en spin:

Les porteurs de charges des métaux magnétiques possèdent une asymétrie de spin:

Appréciée via la polarisation en spin:

$$P = \frac{n_{M}(E_{F}) - n_{m}(E_{F})}{n_{M}(E_{F}) + n_{m}(E_{F})}$$

1 - 1

électronique de spin (spintronique)

Magnétorésistance tunnel (TMR)

nouvelle électronique

Jullière, Phys. Lett. A 54, 225 (1975)

Spintronique

Transport polarisé en spin:

Les porteurs de charges des métaux magnétiques possèdent une asymétrie de spin:

Appréciée via la polarisation en spin:

$$P = \frac{n_{M} (E_{F}) - n_{m} (E_{F})}{n_{M} (E_{F}) + n_{m} (E_{F})}$$

(-)

P ≠ 0

nouvelle électronique

électronique de spin (spintronique)

Magnétorésistance tunnel (TMR)

Jullière, Phys. Lett. A **54**, 225 (1975)

$$TMR = \frac{R_{AP} - R_P}{R_P} = \frac{2P^2}{1 - P^2} \longrightarrow \text{Modèle trop simple}$$

Il faut considérer le dispositif dans son ensemble

Nano-objets magnétiques & spintronique

TMR dans des réseaux de nano-objets magnétiques (effet à bas champ)

Nano-objets magnétiques & spintronique

Une augmentation de la TMR dans le régime de blocage de Coulomb

Théorie	Expérience
S. Takahashi and S. Maekawa. PRL, 1998.	K. Ono et al. Journal of the Physical Society of Japan,1996.

L'effet magnéto-coulomb anisotrope => étude du mécanisme de retournement de l'aimantation d'un nano-objet.

Théorie

J. von Delft and D. Ralph. Physics Reports, 2001.

Expérience

A. Bernand-Mantel, Nat Phys, 2009. (nano-contact)

Retournement de l'aimantation d'un nano-objet par transfert de spin :

Théorie

M. B. A. Jalil and S. G. Tan. Phys. Rev. B, 2005.

Présence d'une double barrière tunnel

Elaboration de nano-objets magnétiques:

Voie chimique

Elaboration de nano-objets magnétiques:

Avantages de la voie chimique:

- Taille ajustable (nm μm)
- Forme ajustable
- Anisotropie magnétique ajustable
- Ligands isolants (C16-C18)
- Echange de ligands possible

L-M.Lacroix, JACS, 2009

Desvaux et al, Nat. Mat. (2005)

S. Sun et al, Science (2000)

- Paramètres à la fois flexibles et indépendants
- Nombreuses études possibles grâce à la diversité des molécules

Nano-objets magnétiques issus de la chimie & spintronique

Le corps est complexifiable à souhait...

Composés à transition de spin

A. Bousseksou et al. Chem. Soc. Rev., 2011.

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Intégration de nano-objets dans des dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
 - Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

Etat de l'art des systèmes issus de la chimie

Nano-objets à base d'oxydes magnétiques

- Synthèse et manipulation plus aisées
- Mesures de TMR à 300 K

Difficile de savoir qui joue le rôle des barrières (ligands?, joints de grains?)

N. Taub et al., JMMM 2009.

Nano-objets magnétiques et métalliques

Assemblée 2D de Nps (10 nm) de Cobalt enrobées d'acide oléique

C. T. Black et al., Science, 2000.

Etat de l'art

Etat de l'art

NPs magnétiques de FeCo

R. P. Tan et al. Phys. Rev. B, 2009.

Problématique liée aux nano-objets issus de la chimie

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Intégration de nano-objets dans des dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
 - Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

En réponse à la problématique précédente

Boîte à gants connectée à un bâti de dépôt ultra vide

1: Nano-objets purifiés, puis transférés en BAG

2: Intégration des nano-objets

3: Couche de protection (alumine cible, Ar)

Elaboration des dispositifs sans passage à l'air

Intégration de nano-objets dans des dispositifs de mesures

Dispositifs de mesures (configuration planaire)

Elaboration d'électrodes par lithographie optique

Elaboration d'électrodes par lithographie électronique

Intégration de nano-objets par diélectrophorèse (DEP)

Intégration de nano-objets par diélectrophorèse (DEP)

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Intégration de nano-objets dans des dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
 - Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

Propriétés de magnéto-transport de NPs Cobalt

Synthèse par voie polyols (modifiée)

Propriétés de magnéto-transport de NPs Cobalt

Synthèse par voie polyols (modifiée)

Propriétés de magnéto-transport de NPs Cobalt

Synthèse par voie polyols (modifiée)

Propriétés structurales et magnétiques

HRTEM: NPs faiblement cristallisées

- Diagramme de diffraction X: mélange de 2 phases cristallines => hcp et fcc
- Ms: faible (111 A.m^{2.}Kg⁻¹) par rapport au massif (163 A.m^{2.}Kg⁻¹) + faible $\mu_0 H_C$ (27 mT)
- ZFC/FC (5T) non décalée => pas de couplage magnétique d'échange
 - Présence de CO libéré au cours de la synthèse via la décomposition de l'acac ?
 - carburation partielle du coeur de cobalt
 -) réduction du μ_B de surface

Propriétés de magnéto-transport

Synthèse par voie organométallique

Synthèse par voie organométallique

La spectroscopie Mössbauer confirme le caractère métallique des nano-objets après synthèse

Propriétés magnétiques

		M _S (300 K) (emu.g ⁻¹)	<i>M</i> _S (2 К) (emu.g ⁻¹)	µ₀ <i>H</i> _c (300 K) (mT)	μ ₀ Η _c (2 K) (mT)
	poudre	220 ± 22	230 ± 23	4	23
Ech I	dépôt sur peigne	-	-	0	43
Ech I	l (poudre)	229 ± 23	243 ± 25	18	36

Contribution à fort champ Ech II en température et en tension

Contribution à fort champ Ech I et III en température et en tension

- Diminution linéaire lorsque *H* augmente
- Faible amplitude (0.7 %/T)

Peu ou pas de dépendance en *T* et en tension

Contraste avec les résultats précédents !

MR attribuée à du canting de surface

Influence en température et en tension de la TMR

J. Dugay, R. P. Tan et al., Nano Letters, 2011.

TMR V = 10 V

TMR V = 1 V

TMR V = 10 V

TMR V = 0.1 V

V = 30V

•

Influence en température et en tension de la TMR

Similitudes avec les systèmes obtenus par voie physique

Ech I:

Faible décroissance de la TMR (facteur ≈ 4 entre 2-300 K) => Proche des résultats obtenus par voie physique (≈ 2)

S. Mitani et al., JMMM 1998.

💿 Ech II:

Décroissance quasi-linéaire jusqu'à forte tension

Le mécanisme de transport serait tunnel jusqu'à 300 K

52

300

1.8 K

Ech II

TMR

VSM

TMR

VSM

Ech III

Ech I

Influence de la chimie de surface: modification de surface des NPs (Fe)

Synthèse par voie organométallique

Influence de la chimie de surface: modification de surface des NPs (Fe)

Influence de la chimie de surface: modification de surface des NPs (Fe)

Propriétés de magnéto-transport

Importance du choix du précurseur à utiliser pour cibler des effets de TMR

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Intégration de nano-objets dans des dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
- Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

Intégration de nano-objets dans des dispositifs de mesures

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-				
к		CI	n	
11	C	31		C.

Electrode du bas

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-Nanoindentation via la pointe d'un AFM

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-Nanoindentation via la pointe d'un AFM

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-Nanoindentation via la pointe d'un AFM

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm)-Recuit (250 °C)-Nanoindentation via la pointe d'un AFM

Résine Electrode du bas

LPCNO

2/ -Ajustement du méplat au diamètre des NPs

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-Nanoindentation via la pointe d'un AFM

LPCNO

2/ -Ajustement du méplat au diamètre des NPs -Dépôt 2D de NPs par dip coating

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-Nanoindentation via la pointe d'un AFM

LPCNO

- 2/ -Ajustement du méplat au diamètre des NPs -Dépôt 2D de NPs par dip coating
- 3/ -Dépôt d'une électrode d'Au

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-Nanoindentation via la pointe d'un AFM

- 2/ -Ajustement du méplat au diamètre des NPs -Dépôt 2D de NPs par dip coating
- 3/ -Dépôt d'une électrode d'Au

UMP CNRS THALES

4/ -Reprise de contact

Procédé d'élaboration

UMP CNRS THALES

1/ -Dépôt d'une couche de résine (40 nm) -Recuit (250 °C)

-Nanoindentation via la pointe d'un AFM

LPCNO

2/ -Ajustement du méplat au diamètre des NPs -Dépôt 2D de NPs par dip coating

Comment déposer une monocouche de NPs sur de la résine fine ???

Dépôt d'une monocouche:

Retrait mécanique d'un substrat plongé dans une solution colloïdale

S. Watanabe et al, Langmuir, 2009

Nous présentons seulement deux études (concentration, vitesse) sur des surfaces de SiO₂ patternées d'or

Intéressant pour du transport planaire à travers une monocouche

- \odot
- Plus flexible pour varier l'état de surface

Concentration en nano-objets

Vitesse fixée à 13 µm.s⁻¹

se rapprocher d'une monocouche

Microscopie optique

Objectif:

- Formation de lignes d'accroche (espacées d'environ 20 μm)
 -) La largeur des lignes d'accroche 🎵
- Microscopie électronique
 Le taux de couverture des lignes</ti>Mais peu entre 2 lignesépaisseur ??
 Nécessite une caractérisation topographique

[C] mmol/L⁻¹

Vitesse de retrait du substrat

[C] fixe = [10 mmol.L⁻¹]

74

Mesures de microscopie optique et électronique

Dégradation des barrières organiques après l'étape de Sputtering ou d'évaporation?

CS1: Dépôt par sputtering (couche d'Au)

	Dépôt électrode du haut	Epaisseur Al ₂ O ₃	Nbr dispositifs	Nbr de court-circuit	Dispositifs mesurables	R _{min-max}
CS1	Sputtering	-	10	6	0	R∞
CS2	Evaporation	-	13	7	5	1 MΩ-1GΩ
CS3	Sputtering	1-2 nm	8	1	5	8 ΜΩ-1GΩ

	Dépôt électrode du haut	Epaisseur Al ₂ O ₃	Nbr dispositifs	Nbr de court-circuit	Dispositifs mesurables	R _{min-max}
CS1	Sputtering	-	10	6	0	R∞
CS2	Evaporation	-	13	7	5	1 MΩ-1GΩ
CS3	Sputtering	1-2 nm	8	1	5	8 ΜΩ-1GΩ

Dégradation des barrières organiques après l'étape de Sputtering ou d'évaporation?

CS3: Dépôt d'une couche:

- d'Al₂O₃ (1-2 nm) cible (plasma Ar)

- Dépôt par sputtering (couche d'Au)

	Dépôt électrode du haut	Epaisseur Al ₂ O ₃	Nbr dispositifs	Nbr de court-circuit	Dispositifs mesurables	R _{min-max}
CS1	Sputtering	-	10	6	0	R∞
CS2	Evaporation	-	13	7	5	1 MΩ-1GΩ
CS3	Sputtering	1-2 nm	8	1	5	8 ΜΩ-1GΩ

Seul CS2 a présenté des caractéristiques laissant penser à du transport à travers un seul nano-objet

80

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
- Détection électrique de l'état de spin dans des réseaux de composés à transition de spin

 $[Fe(Htrz)_2(trz)](BF_4) (Htrz = 1H-1,2,4-triazole)$

A. Rotaru,. Chem. Commun.,2012.

 $[Fe(Htrz)_2(trz)](BF_4) (Htrz = 1H-1,2,4-triazole)$

A. Rotaru,. Chem. Commun., 2012.

Détection électrique de l'état de spin dans des réseaux de composés à transition de spin

Etat BS plus conducteur pour C2 et C3 (V = 10 V)

Malgré le nombre réduit de nano-objets mesurés

Corrobore les résultats obtenus sur poudre

A. Rotaru,. Chem. Commun, 2012.

=> la diffusion à l'interface ne gouverne pas le transport

Détection électrique de l'état de spin dans des réseaux de composés à transition de spin

Malgré le nombre réduit de nano-objets mesurés

Corrobore les résultats obtenus sur poudre

A. Rotaru,. Chem. Commun. 2012.

=> la diffusion à l'interface ne gouverne pas le transport

Etat BS plus conducteur pour C4 (entre 7 et 18 NPs en série)

En contradiction avec l'unique étude des mêmes composés (11 ± 7 nm)

F. Prins, et al. Advanced Materials, 2011.

Quels sont les mécanismes de transport de charges proposés?

Conditions expérimentales $\neq \Rightarrow$ Trop tôt pour souligner une contradiction => plus d'investigations

Plan de l'exposé

Introduction & objectifs

- Mécanismes de transport de charges
- Nano-objets magnétiques & spintronique
- Etat de l'art & problématique liée à ces systèmes

Résultats expérimentaux (nano-objet(s) magnétiques)

- Dispositifs de mesures
- Propriétés de magnéto-transport
- Mesures de transport d'un nano-objet individuel
- Détection électrique de l'état de spin dans des réseaux de composés moléculaires à transition de spin
- **Conclusion et perspectives**

Conclusion Nanoindentation dip coating en BAG Nano-objet unique LPCNO UMP cnrs THALES Assemblée (2D/3D) de nano-objets Détection de l'état de spin Procédé d'intégration Mesures de nano-objets de composés à transition en BAG sensibles à l'oxydation de spin (taille et forme \neq) A. Rotaru, J. Dugay et al. J. Dugay, R.P. Tan, et al. en préparation Advanced Materials accepted.

Relation entre chimie & effets magnétorésistifs

CO => peu ou pas de TMR & Effet fort champ (H/T)

Acides carboxyliques => TMR 300 K & Effet fort champ H/(T+T')

En l'absence des deux => TMR 300 K & Effet fort champ (spin canting)

Perspectives

Augmenter la TMR

- \Rightarrow Forte anisotropie (métal , forme), taille de réseaux
- \Rightarrow Cycle aromatique, tête fonctionnelle,
- ⇒ Transport cohérent => molécules bi-fonctionnelles

Nouveaux composés

- \Rightarrow Composés à transition de spin (nano-objets)
- \Rightarrow Molécules complexes

Radicaux libres

P. Nickels, et al. Small, 2008.

N. Baadji, et al. Nat Mater,2009.

A. Bousseksou et al. Chem. Soc. Rev. 2011.

Nouveaux effets

- \Rightarrow Spin-transfert
- ⇒ Effet magnéto-Coulomb

Remerciements

J.CARREY M.RESPAUD

I.GURALSKYI A.ROTARU G.MOLNAR L.SALMON A.BOUSSEKSOU

P.SALLES Service prépa

Ləborətoire de Physique & Chimie des Nəno-Objets

A.LOUBAT M.IBRAHIMA.MEFFRE G.VIAUC.GARCIA S.LACHAIZEL-M.LACROIX B.CHAUDRET

T.HUNGRIA P.F.FAZINNI T.BLON

R.TAN

K.BOUZEHOUANE P.SENEOR S.FUSIL V.CROS

Merci pour votre attention

Pôle génie électrique INSA Pôle génie mécanique INSA Secrétariat de l'INSA LAAS-CNRS

L.MAZENQ F.CARCENAC S.PINAUD