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French summary

0.1 Introduction

Avec le développement de nouveaux systémes d’acquisition d’images et 'avénement
de nombreux services de partage de vidéos, l'indexation automatique de documents
multimédias est devenue cruciale pour gérer ces vastes collections. L’enjeu majeur
consiste a extraire I'information pertinente permettant de résumer les contenus et de
retrouver les documents.

Durant ces derniéres années, de nombreux travaux se sont focalisés sur la problé-
matique de l'indexation d'images et de vidéos fondée sur 'analyse automatique des
contenus multimédias. Certains proposent de décrire le contenu au moven d’images-
clés |[CZICA02], en se basant sur la classification d’événements [SVW05|, en optant pour
la détection d’objets considérés de haut niveau sémantique [MBPLNOS], voire en in-
tégrant la transcription de la parole prononcée |CZICA02| (dans le cas de la vidéo).
D’autres optent pour la prise en compte des textes présents dans les documents mul-
timédia comme nouveau moyen d’accés a la sémantique des contenus [LS96]. Clest
dans ce contexte que sSinscrivent nos travaux de these qui se focalisent sur la problé-
matique de la reconnaissance automatique de textes dans les documents multimédia.
Cet intéret est justifié par le fait que ces textes—qui peuvent correspondre a des titres
de reportages, a des noms de personnes ou de villes, etc.—représentent des indices
sémantiques forts et fournissent des ¢éléments importants pour de nombreuses appli-
-ations telles que I'indexation et la recherche des images et des vidéos, 'archivage et
le chapitrage du flux TV, les bibliothéques numériques, la vision robotique, etc. Cette
extraction d’indices textuels nécessite cependant des systémes robustes a la variabilité
de styles et de tailles des caractéres, a la faible résolution, a la complexité du fond,
aux conditions d’acquisition difficiles, etc.

Dans cette thése, nous proposons des systémes complets d’OCR ( Optical Character
Recognition) spécifiquement adaptés aux images et aux vidéos et qui s’appliquent aussi
bien aux textes incrustés (ajoutés artificiellement dans les images ou les vidéos) qu’aux
textes de scéne (acquis n'importe ou; sur des affiches, des murs ou des panneaux et
qui peuvent avoir des fontes extrémement variables et ¢tre pris dans des conditions
assez complexes). Deux types d’approches, en utilisant et en évitant U'étape de la
segmentation en caractéres, sont concus et étudiés tout en mettant en évidence les
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avantages et les limites de cette étape.

Cette thése est organisée comme suit. Aprés avoir présenté notre premiére ap-
proche fondée sur une segmentation adaptée a la morphologie locale des images de
textes dans la section 0.2, deux autres méthodes qui se passent de cette étape sont
décrites dans les sections 0.3 et 0.4. Alors que la premiére approche est fondée sur un
processus de “scanning” multi-échelle et un modéle de graphe, la deuxiéme s’appuie
sur une nouvelle représentation des images de textes et sur un modéle de classifi-
cation connexionniste. Nos trois systémes d’OCR sont ensuite testés et évalués sur
deux bases de textes; en I'occurrence une base de textes incrustés et une base de
textes de scéne. Les résultats de ces expérimentations sont fournis et discutés dans la
section 0.5. Enfin, la section 0.6 conclut cette étude et met en évidence nos travaux
futurs.

0.2 L’approche fondée sur la segmentation

Afin de reconnaitre les textes présents dans les documents multimédia, nous pro-
posons une premiére approche qui consiste a segmenter les images de textes pour
obtenir des régions contenant des caractéres individuels avant d’entamer leur recon-
naissance. Contrairement aux méthodes de I'état de I'art, notre approche définit des
segmentations non-linéaires fiables et précises. Outre la robustesse de la méthode
de reconnaissance de caractéres fondée sur une approche de classification neuronale,
notre seconde contribution principale réside dans I'introduction d’un mode de super-
vision reposant sur un modéle de langue.

Vu que la segmentation de I'image de textes en caractéres est un point crucial pour
la reconnaissance (toute erreur réduit en effet directement les performances de 'OCR),
nous nous sommes donc intéressés a mettre en ceuvre une méthode segmentation
fiable qui permet de séparer les caractéres tout en s’adaptant a la morphologie locale
de I'image. Pour ce faire, nous commencons par ’analyse statistique d’intensités
des images de textes (qu'on combine a intégration multi-temporelle, dans le cas de
la vidée) dans le but de discriminer entre la classe “texte” et la classe “fond”. Une
carte floue de degrés d’appartenance a la classe “texte” est ainsi générée. En utilisant
cette carte, nous déterminons ensuite les séparations entre les caractéres comme des
chemins traversant le fond et qui coupent 'image du texte verticalement. Ces chemins
sont calculés avec un algorithme du plus court chemin spécifiquement adapté a notre
application. L’intérét de cette approche de segmentation réside dans sa capacité
a fournir des séparations précises et adaptées a la morphologie des caractéres. Par
ailleurs, nous distinguons entre deux types de segmentations : des segmentations dites
“fiables” et dont on est sir et des segmentations dites “a risque” qui sont douteuses
et qui seront remises en question par la suite. Comme le montre la figure 1, ces
segmentations “a risque” peuvent correspondre a des sur-segmentations (telles que le
cas du “r”) ou a des segmentations de caractéres attachés a un fond complexe (telles
que le cas du “rt”).
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Figure 1: Un exemple de segmentations obtenues : les chemins verts correspondent
aux segmentations “fiables’alors que les rouges correspondent aux segmentations “a
risque”.

Une fois les caractéres sont segmentés, nous pouvons donc adresser leur reconnais-
sance. Contrairement a la majorité des méthodes de 1'état de I'art, dans le cadre de
notre travail nous proposons de mettre au point un modéle de classification générique
robuste a la grande variabilité de style, de taille et de couleur des caractéres. Les méth-
odes neuronales semblent convenir parfaitement a ces attentes. Nous nous appuyons
donc sur un réseau de neurones a convolutions [LB95| capable d’apprendre automa-
tiquement en méme temps a extraire les caractéristiques appropriées et a reconnaitre
les classes de caractéres, sans aucune phase de prétraitement ou de binarisation. Pour
notre tache de reconnaissance de caractéres, nous avons testé plusieurs configurations
de réseau avant d’opter pour une architecture composée de cing couches cachées et
d’une couche finale de sortie. Le réseau prend en entrée une image de caractére couleur
redimensionnée a la taille de S x S pixels et produit en sortie un vecteur de taille N
(le nombre de classes considérées). Les valeurs de ce vecteur de sortie peuvent étre
interprétées comme des scores traduisant I’appartenance de I'image d’entrée a chaque
classe. Le caractére reconnu correspond ainsi a la classe obtenant la valeur de sortie
la plus élevée.

Malgré les bonnes performances de la reconnaissance neuronale, des erreurs peu-
vent étre produites a cause d’une confusion de caractéres visuellement similaires,
de la complexité du fond et de la mauvaise qualité des images. Pour pallier les am-
biguités relatives a cette reconnaissance locale caractére par caractére, nous proposons
d’introduire des connaissances linguistiques qui vont piloter les étapes de 'OCR. Dans
ce contexte, les modéles de langue de type n-grammes (qui sont déja trés utilisés dans
le domaine de la transcription de la parole mais aussi de la traduction automatique,)
ont montré leur capacité a améliorer les performances de reconnaissance en prenant en
compte le contexte lexical des mots. Pour notre probléme de reconnaissance de texets,
nous proposons d’utiliser ce type de connaissance linguistique et d’intégrer un modéle
n-grammes appris sur un corpus de mots afin d’estimer la probabilité qu’une séquence
de lettres soit observée dans une langue donnée. Les probabilités estimées sont en-
suite introduites dans notre systéme de reconnaissance pour gérer les hypothéses de
segmentations (notamment les segmentations “a risque”) et réduire les erreurs liés a
la confusion de caractéres.

L’approche proposée est évaluée sur des textes incrustés et des textes de scéne.
Les résultats obtenus sont présentés dans la section 0.5.
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0.3 L’approche sans segmentation

Bien que notre premier systéme d’OCR repose sur une méthode segmentation précise
calculant des séparations non-linéaires entre les caractéres, les performances de ce
systéme restent faibles dans le cas des images présentant d’importantes distorsions.
Ce fait peut étre expliqué par I'étape de la segmentation qui, dans le cas de ces
images, produit de nombreuses sous- et sur-segmentations, conduisant a des erreurs
de reconnaissance.

Pour remédier a cette limite, nous proposons une deuxiéme approche qui se passe
de I'étape de la segmentation en intégrant un processus de scanning multi-échelle per-
mettant de reconnaitre les caractéres a leur propre position et échelle directement a
partir de 'image du texte. [’idée est d’utiliser quatre fenétres glissantes de tailles dif-
féerentes (proportionnelles a la hauteur de I'image) qui sont déplacés a travers I'image
dans le but d’avoir au moins une fenétre qui sera bien alignée avec chaque caracteére.
La figure 2 illustre ce processus. Pour couvrir tous les caractéres et bien les cadrer,
nous proposons aussi d’adapter les bords verticaux des fenétres a la morphologie lo-
cale des images. Ainsi, des bords non-linéaires (calculés de maniére similaire a celle
des segmentations non-linéaires de 'approche fondée sur la segmentation présentée
en section 0.2) sont attribués a chaque fenétre glissante dans 'image.
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Figure 2: Le processus de “scanning” multi-échelle de I'image du texte: h désigne
I’hauteur de I'image.

Comme le montre la figure 2, 'application de du processus de scanning multi-
échelle aux images de textes génére de nombreuses fenétres qui peuvent correspondre
a des caractéres individuels bien centrés ou a des images de caractéres non-valides
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(tels que des parties de caractéres, des caractéres mal-alignés ou des espaces inter-
-aractéres). Une étape de classification est ainsi nécessaire pour identifier le contenu
de ces fenétres. Dans ce contexte, nous proposons une classification hiérarchique qui
débute par une phase de tri pour distinguer les fenétres contenant des caractéres
“valides” du reste, et qui ensuite analyse ces fenétres sélectionnés afin de reconnaitre
leurs caractéres. Pour ceci, nous nous basons sur la combinaison de deux réseaux
de neurones a convolutions (ayant des architectures similaires & celui utilisé pour la
reconnaissance des caractéres dans 'approche fondée sur la segmentation présentée
en section 0.2) dont les roles respectifs sont le tri de fenétres et la reconnaissance de
-aractéres.

Aprés avoir scanné les images de textes et classés les fenétres glissantes, la prochaine
¢tape est d’analyser ces résultats de classification pour reconnaitre les textes présents
dans les images. Pour cette tache, nous optons pour un modéle de graphe perme-
ttant de représenter les contraintes spatiales entre les différentes fenétres. Pour la
construction de ce graphe, nous représentons les bords de toutes les fenétres résul-
tantes par des nceuds connectés par des arcs chacun représentant une fenétre. En
attribuant les résultats de la classification aux arcs, toutes les combinaisons possibles
de fenétres sont testées et évalués afin de reconnaitre le texte présent dans l'image.
Un algorithme de Viterbi est ainsi appliqué dans le graphe pour déterminer le chemin
le plus probable (évitant les arcs correspondant a des fenétres contenant de caractéres
non-valides) et donc obtenir la séquence de caractéres (i.e., le texte) reconnue.

Dans cette approche, nous proposons aussi d’'introduire certaines connaissances
linguistiques pour prendre en considération le contexte lexical des mots et lever
quelques ambiguités de la classification (notamment les cas de certaines fenétres mal-
alignées avec un caractére qui sont confondues avec d’autres classes de caracteres telle
que une partie d’'un “W” confondue avec un “V” ou un “N”). Pour cette approche, nous
nous reposons aussi sur un modeéle de langue n-grammes caractéres et nous intégrons
les probabilités estimés par ce dernier dans notre graphe. Ces probabilités permettent
ainsi de piloter le processus de la reconnaissance tout en pondérant les transitions en-
tre les arcs du graphe. Le texte reconmu est donc obtenu en prenant en compte deux
informations complémentaires; a savoir les résultats de la classification et le contexte
lexical.

Cette approche est évaluée aussi sur des textes incrustés et des textes de scéne et
ses performances de reconnaissance sont comparées a celles de 'approche fondée sur
la segmentation. La section (.5 rapporte les principaux résultats obtenus et souligne
I'intérét et les limites de se passer de la phase de segmentation.

0.4 L’approche récurrente connexionniste

En intégrant un processus de “scanning” multi-échelle et en utilisant un modéle de
graphe, notre seconde approche prouve qu’il est possible d’éviter la phase cruciale de la
segmentation qui peut réduire les performances de reconnaissance, en particulier dans
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le cas des textes de scéne. Néanmoins, la principale faiblesse de ce systéme demeure
la complexité du graphe qui nécessite de tester un grand nombre de combinaisons de
fenétres avant d’obtenir le texte reconnu.

Notre troisiéme approche propose ainsi un nouveau moyen pour se passer de la
segmentation et éviter la complexité du modéle de graphe. Cette méthode opére
en deux phases : tout d’abord en générant une représentation originale des images
de textes fondée sur des séquences de caractéristiques apprises, ensuite en utilisant
un modéle connexionniste récurrent spécifique capable de classer ces caractéristiques
prenant en compte leur dépendance temporelle.

Dans cette approche, les images de textes sont tout d’abord scannées a différentes
échelles en utilisant le méme processus de “scanning” défini pour 'approche précé-
dente (voir section 0.3). Les fenétres résultantes sont ensuite employées pour produire
une représentation pertinente des images de textes. Contrairement & la majorité des
méthodes de I'état de I'art qui optent pour des représentations fondées sur des car-
actéristiques concues manuellement, nous proposons de représenter chacune de ces
fenétres par un ensemble de caractéristiques apprises par un modéle neuronale en
I’occurrence un réseau de neurones a convolutions. L’idée consiste a entrainer un
réseau de neurones a reconnaitre des images de caractéres et une fois I'apprentissage
est terminé, utiliser 'avant-derniére couche du réseau comme un extracteur de car-
actéristiques. Typiquement, dans notre travail chaque fenétre glissante est présentée
au réseau appris pour récupérer les activations de la derniére couche générant ainsi
un vecteur de caractéristiques. I’ensemble des vecteurs obtenus, pour une image
de texte donnée, est ensuite rassemblé en une séquence de vecteurs constituant une
représentation multi-échelle de I'image.

Dans le but de reconnaitre les textes présents dans les images, la prochaine étape
est d’analyser les représentations obtenues et classer les vecteurs des caractéristiques
apprises. Pour ce faire, nous choisissons d’utiliser un réseau de neurones récurrents
particulier, le bidirectional long-short term memory (BLSTM), ayant des connexions
récurrentes lui conférant une mémoire interne et le rendant ainsi capable de résoudre
des problémes de classification de séquences de données. Outre sa capacité a gérer la
dépendance entre les éléments successifs d’une séquence, le BLSTM offre 'avantage de
prendre en compte aussi bien le contexte passé que le contexte futur lors de la classifi-
cation. Néanmoins, ce modéle nécessite une opération de segmentation pour préciser
la position exacte de chaque caractére dans la séquence de caractéristiques d’entrée.
Vu que notre approche vise a se passer de toute segmentation, nous intégrons, dans
notre réseau BLSTM, une couche spécifique, appelée classification temporelle con-
nexionniste (CTC), introduite par Graves et al. [GLEF"09] et permettant d’étendre
I’application d’un réseau de neurones récurrents au cas des données non segmentées.
En effet, la CTC permet de créer le lien entre la séquence de sortie d’'un BLSTM
et la séquence cible de caractéres en introduisant une classe supplémentaire, appelée
BLANK, qui sera activée entre deux caractéres. Une fois 'apprentissage effectué, il
est nécessaire d’interpréter les sorties du BLSTM pour en déduire la séquence des
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-aractéres reconnues. Cette étape porte le nom de décodage. La figure 3 montre un
exemple de texte reconnu en décodant les séquences de sortie du réseau.
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Figure 3: Mlutration des sorties du BLSTM appris en utilisant la CTC : chaque courbe
d’une couleur représente le niveau d’activation d'une classe donnée et la courbe rose
claire correspond a la classe supplémentaire “BLANK”.

0.5 Reésultats expérimentaux

Cette section présente nos principales expérimentations et leurs résultats. Elle débute
par une description bréve des bases utilisées dans cette étude, en 'occurrence une
base de textes incrustés dans des vidéos réelles de journaux télévisées francais et une
base publique de textes de scéne (la base ICDAR 2003). En suite, nous présentons
I’évaluation de nos trois approches de reconnaissance de textes réalisée sur ces deux
bases et nous discutons les principaux résultats.

0.5.1 Données expérimentales

Nos expérimentations sont effectuées sur deux types de textes représentés dans deux
bases :

e Une base de textes incrustés dans des vidéos de journaux télévisés francais :
cette base comporte des textes assez variables en tailles (de 8 & 24 pixels de
hauteur), couleurs, styles et fonds (fonds uniformes ou plus complexes). Notons
que, pour cette base, avant d’appliquer nos systémes d’OCR, nous avons mis en
place une chaine automatique de traitement qui permet de détecter et d’extraire
les textes incrustés dans les vidéos.
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e Une base publique de textes de scéne, [CDAR 2003 : cette base comporte
des images de textes saisies n’'importe ou dans 'environnement dans des condi-
tions assez difficiles (faibles résolutions, illuminations non uniformes, en présence
d’ombre et de reflets, etc.). Les textes de cette base sont extrémement variables
et peuvent étre imprimeés, écrits ou méme dessinés.

Les figures 4 et 5 montrent quelques exemples d’'images de textes extraites de ces
deux bases.
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Figure 4: Exemples de textes incrustés dans les vidéos de journaux télévises.

Figure 5: Exemples de textes de scéne de la base ICDAR 2003.

0.5.2 Performance des approches proposées

Nos trois systémes d’OCR ont été testés et évalués sur les deux bases présentées
ci-dessus.
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En utilisant la chaine congue de détection et suivi de textes dans les vidéos, de
nombreuses expérimentations ont été effectuées pour évaluer nos approches et com-
parer leurs performances a celle des méthodes existantes et de certains moteurs d’OCR
commerciaux, en 'occurrence ABBYYFineReader OCR et Tesseract OCR.

Les résultats obtenus ont montrés que toutes nos approches obtiennent des bonnes
performances sur cette base avec des scores de taux de reconnaissance caractéres
supérieurs & 90%. En particulier, les scores (95% et 88% de taux de reconnaissance
caractére et taux de reconnaissance mot) accomplis par la méthode fondée sur la
segmentation prouvent que lorsque 1'étape de segmentation fonctionne bien, elle per-
met une reconnaissance précise et ainsi une amélioration des résultats. L’approche
connexionniste a également réalisé une excellente performance avec un taux de recon-
naissance caractére de 97.35% et un taux de reconnaissance mot de 87,20% (ce taux
inférieur a celui atteint par 'OCR fondé sur la segmentation peut étre expliqué par le
manque des certains espaces entre les mots, ce qui conduit a des erreurs de deux mots
consécutifs). Ces résultats mettent en évidence la contribution des représentations
basées les caractéristiques apprises et démontre la grande capacité de la méthode pro-
posée a gérer les dépendances entre les vecteurs de caractéristiques tout en évitant
I'étape de la segmentation.

En ce qui concerne la comparaison avec les systémes d’OCR commerciaux, toutes
nos méthodes ont atteint des résultats bien meilleurs que ceux du moteur Tesseract
OCR (avec plus de +10% de taux de reconnaissance mot). Notre approche fondée sur
la segmentation et celle connexionniste réalisent des performances similaires a celle de
ABBYY FineReader OCR avec une différence de respectivement +0, 13% et —0, 50%
de mots correctement reconnus. Cependant, 'approche sans segmentation obtient
un taux de reconnaissance plus faible que ABBYY FineReader OCR (avec —6% de
taux de reconnaissance mot). Ce résultat peut étre expliqué par la complexité du
modéle de graphe qui produit des espaces manquants conduisant a des erreurs de
reconnaissance de mots.

Les trois approches proposées ont été également évaluées sur la base de texte de
scéne. Les tests réalisés ont montré que la méthode fondée sur la segmentation permet
d’obtenir des performances similaires a celles des méthodes state-of-the-art, tandis
que 'OCR sans segmentation atteint des résultats qui dépasse les autres méthodes
existantes (environ 47% de taux de reconnaissance mots correspondant a 70% de
taux de reconnaissance caractéres). Cela prouve I'apport de se passer de 'étape de
segmentation et met en évidence ses limites ; toute erreur de segmentation diminue
directement les performances de reconnaissance du systéme. En effet, dans le cas
particulier des textes de scéne, les importantes distorsions présentes dans les images
rendent la segmentation particuliérement difficile menant a des erreurs de sur- et sous-
segmentations qui réduisent considérablement les performances de reconnaissance.

Concernant 'approche connexionniste, les tests effectués ont montré que, bien que
cette méthode est capable d’atteindre de bons scores sur I'ensemble d’apprentissage
(98% de taux de reconnaissance caractére), néanmoins elle obtient de moins bonnes
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performances sur I'ensemble de test (seulement 56% de taux de reconnaissance car-
actére). Nous pouvons expliquer ce fait par un probléme sur-apprentissage, proba-
blement parce que ’ensemble de données d’apprentissage ne comprend pas assez de
variabilité dans le contexte passé et futur de chaque lettre. Ce résultat peut également
étre justifié¢ par 'absence d’'un modéle de langage dans cette approche.

Les performances de nos méthodes sur cette base de textes de scéne ont été aussi
comparées a celles de deux moteurs d’OCR commerciaux, ABBYYFineReader OCR
et Tesseract OCR. Les tests réalisés ont montré que toutes nos méthodes obtiennent
des résultats meilleurs que ceux des systémes commerciaux. Cela prouve que, bien
que les systémes OCR commerciaux puissent réaliser des résultats satisfaisants sur
les textes incrustés, nos systémes se distinguent par leur grande capacité a gérer a la
fois les textes incrustés et les textes de scéne.

0.6 Conclusion

Dans cette thése, nous avons élaboré trois approches complétes de reconnaissance de
textes dans les documents multimédia. Outre leur capacité a traiter aussi bien les
textes incrustés que les textes de scéne, nos méthodes congoivent de nouveaux moyens
pour entamer les différentes étapes de la reconnaissance et proposent des solutions
originales pour entamer de nombreuses difficultés rencontrés par les méthodes de la
littérature.

Une premiére contribution de ce travail réside dans la définition de segmentations
non linéaires entre les caractéres qui s’adaptent a la morphologie locale des images.
Ces segmentations permettent ainsi de séparer les caractéres de maniére précise fa-
vorisant une meilleure reconnaissance. Nous avons aussi prouvé qu'’il est possible de
se passer de 'étape de segmentation en intégrant un processus de “scanning” multi-
échelle et un modéle de graphe. Dans ce travail, une représentation originale des im-
ages de textes fondée sur des caractéristiques apprises par un modéle neuronale a été
proposée. Cette représentation a été utilisé pour alimenter un modéle de classification
connexionniste particulier qui en combinant un réseau de neurones récurrent spécial
et une classification connexionniste permet de gérer la dépendance des caracteéris-
tiques apprises et ainsi reconnaitre le texte sans aucune phase de segmentation. Par
ailleurs, a travers nos expérimentations nous avons montré l'intérét de l'intégration
des modéles de langues dans nos approches et mis en évidence leur apport en terme
de performance.

Comme perspectives d’extention de ce travail, nous pouvons distinguer des trois
types de perspectives :

e Des perspectives directes qui constituent une continuité de nos travaux et peu-
vent améliorer les performances de nos approches: parmi ces approches, nous
citons l'intégration d'un modéle de langue dans I'approche connexioniste qui
permetra ainsi introduire le contexte lexical des mots et réduire les erreurs.
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Une autre piste qui peut étre creuser réside dans I'intégration des matrices de
confusion (qui fournissent une information précise sur les erreurs de confusion
du reconnaisseur de caractéres) pour lever les ambiguités de reconnaissance.

e Des perspectives a long terme qui consistent a explorer des nouvelles techniques
qui peuvent s’appliquer a certaines problématiques liées a la reconnaissance de
textes. Dans ce contexte, nous pensons a la super-résolution [B.J08| qui peut
améliorer la qualité de la segmentation, les techniques d’apprentissage non-
supervisé, tel que les auto-encodeurs [RPCLO7], qui peuvent étre utiles pour
générer des nouvelles représentation pertinentes des images de textes.

e Des perspectives d’ordre applicatif : Les résultats prometteurs obtenus dans le
cadre de ce travail de thése permettent ainsi déenvisager léintégration de nos
OCR dans un systéme dSindexation et de recherche de vidéos. Plus particuliére-
ment, les textes reconnus serviront a extraire des informations de haut niveau
sémantique permettant dSindexer les vidéos.
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Chapter 1

Introduction

The volume of audio-visual documents continue to grow tremendously especially with
the advent of photo and video sharing, delinearized television programs and video on-
demand professional systems. In this context, the access to the contents of multimedia
documents and their understanding become an issue of great importance. Because the
manual annotation of videos and images is extremely expensive and time consuming,
performing an automatic extraction of useful information present in an image or a
video is desirable and enables the design of powerful indexing, searching and browsing
systems able to deal with voluminous multimedia databases.

During the last years, a lot of work has been dedicated to the problem of automat-
ically indexing images and videos. Several attempts were proposed to describe digital
video contents by means of objects identified as semantically important [N BPLNOS],
by sets of key frames [('SLO2|, by classifying shots and events |[SW05], or also taking
into account speech transcription |[CZIKCA02|. Other approaches |LS96| made use of
texts present in images and videos as another way to access to the semantics of these
multimedia documents. So does our work which aims at providing accurate methods
able to extract and recognize the textual clues embedded or captured in images and
videos.

Actually, textual patterns present in multimedia documents provide high-level se-
mantic clues (names and functions of persons, places and streets names, dates, titles
of TV reports, names of products, etc.) often interesting for content-based image
retrieval.  Several applications and services can be developed using extracted and
recognized texts. For instance, texts recognized in a TV stream provide keywords
that can feed an indexing and retrieval system or help highlighting events (such as
sport scores) and summarizing contents. For mobile phones, services such as a tourist
translation assistant can be implemented relying on the recognized foreign texts cap-
tured with the mobile camera during a trip. In the case of digital libraries, recognized
texts permit an easy management (including archiving, search, translation, etc.) of
stored books, historical documents, magazines and journals and enable the access to
their content. Recognized texts can also be used for many other applications such as
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teaching videos and robotic vision systems.

All these applications require the help of a powerful Optical Character Recogni-
tion (OCR) system able to correctly recognize different kinds of texts embedded or
captured in multimedia documents.

In this context, the design of efficient OCR systems specifically adapted to multi-
media documents is an important issue and continues to be an active research field. In
the community of text recognition, texts in multimedia documents have been classified
into two main categories |JIIKICJ04:

e “caption” texts: which are texts overlaid artificially on images and videos ( cf.
(A) and (B) in Fig. 1.1). These texts can be created with clean background or
superimposed with transparency on the image or on the video sequence;

e “scene” texts: which are texts existing naturally in the scene and captured with
the acquisition system—namely a camera—in an image or in a video (¢f. (C)
and (D) in Fig. 1.1). Due to the under-controlled acquisition conditions, “scene”
texts are often harder to recognize than “caption” texts.

In general, for both text categories, several difficulties make the task of text
recognition a challenging problem that continues to interest many researchers, among
which:

e the huge diversity of texts properties: texts embedded or captured in images
and videos can vary a lot. First, in term of size, the height of characters can
range from some pixels to some hundreds of pixels. Texts can also be of different
colors or even multicolored. A great variability can be observed in term of fonts,
a character can have extremely different shapes, can have outlines or not, and
texts can have variable inter-character distance (i.e., the distance between two
successive characters) (¢f. (A) in Fig. 1.2);

e the complex backgrounds: text images can be considered as a sequence of
characters printed, superimposed, written, drawn or captured on a given back-
ground. Nevertheless, backgrounds can be so complex that the distinction be-
tween the characters and the background is extremely hard. For instance, texts
can be superimposed on moving backgrounds in some video cases. Backgrounds
and texts can also share a similar color so that even a human may fail to identify
the text (¢f. (B) in Fig. 1.2);

e the difficult acquisition conditions: the devices used to capture text images
or videos and the conditions of the acquisition often influence the quality and
the resolution of the text image to recognize. Several difficulties, such as non
uniform lighting, occlusions, blurring effects, decoding artifacts, can be observed
leading to a harder recognition task (¢f. (C) in Fig. 1.2).
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Figure 1.1: Examples of “caption” (A, B) and “scene” (C, D) texts.

In order to cope with these challenges, the design of efficient OCR systems specifi-
cally adapted to multimedia documents and able to deal with the different difficulties
mentioned above is required. However, most existing systems are developed for only
one kind of texts or address one single difficulty (such as the low resolution of text
images or videos, complex backgrounds, etc.).

In this work, we focus on the recognition task for the two categories of texts—
“caption” as well as “scene” texts. Our objectives are thus to design powerful OCR
systems that are able to handle both “caption” and “scene” texts and, at the same
time, to tackle the different challenges listed above. Through the proposed systems,
we also aim at addressing the different steps involved in the text recognition task
and at providing novel solutions to several issues encountered by the state-of-the-art
methods.

The main contributions of our work are listed below.

First, an OCR system that relies on a character segmentation step is proposed.
This OCR consists in segmenting the text image into individual characters, before
recognizing them. This system highlights the difficulties related to the character
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Figure 1.2: Examples of challenging texts: (A) texts of different fonts and sizes, (B)
texts on complex backgrounds and (C) texts captured with hard conditions.

segmentation phase, and performs segmentations in a way that is different from the
methods used in the literature: it proposes nonlinear segmentation well adapted to the
local morphology of images, and hence enabling a better character recognition. The
second contribution of this system lies in the robustness of the character recognition
method based on a neural classification approach, where no preprocessing is necessary
contrary to several other methods of the state-of-the-art. Due to this efficient neural-
based character recognizer, our method is able to deal with extremely variable texts.
Finally, we also incorporate a supervision scheme relying on a language model, in
order to reduce character confusion and to improve recognition performance.

Two other segmentation-free OCR systems are proposed. They address the text
recognition problem in a different way and avoid the step of character segmentation.
In contrast to the main methodology in the literature, the absence of the crucial seg-
mentation step allows to overcome several challenges related to complex backgrounds,
difficult acquisition conditions and touching characters. The first main contribution
of these systems lies in the incorporation of a multi-scale scanning process, using
sliding windows, permitting the recognition of characters directly in the whole text
image.

In the first segmentation-free OCR system, the recognition step is ensured by a
robust window classifier based on a neural model. Another strength of this system
consists in the construction of a graph model able to represent the sliding windows
spatial constraints and to integrate some linguistic knowledge to drive the recognition
scheme and increase the system’s performance.



The second segmentation-free OCR system aims to learn the succession of char-
acters directly from the sliding windows with a recurrent connectionist approach.
While hand-crafted features are widely used by the community of text recognition
to represent and thus classify texts, one of the main contribution of this OCR lies
in the representation of text images by some sequences of learnt features. This is
done by training a convolutional neural network to produce a relevant representation
of sliding windows, robust to noise, geometrical transformations and deformations.
Another strength of this approach is the design of a connectionist recurrent model
specifically adapted to the learnt representations and whose task is to recognize texts
taking into account the dependencies between successive learnt features.

In this work, many experimentations are carried out on two datasets: a “caption”
text dataset extracted from real digital videos, and the public “scene” text dataset
ICDAR 2003 |LPS703]. Each proposed OCR system is tested and evaluated on both
datasets. Results are detailed and discussed, highlighting the benefits and the limits
of each proposed OCR systems and comparing their performance with those of the
state-of-the-art methods.

This rest of this dissertation is organized as follows:

e Chapter 2 presents a literature survey on text recognition including all steps
involved in this task, namely text image preprocessing, character segmentation,
character recognition and text recognition. The interactions between these steps
are also discussed.

e Chapter 3 describes the databases used in this work, namely a database of
“caption” texts extracted from digital videos and the public database of natural
“scene” texts [CDAR 2003. The main characteristics and difficulties of these
databases are highlighted.

e Chapters 4, 5 and 6 propose the contributions of this dissertation and respec-
tively detail each of the designed OCR systems, together with experiments and
results.

e Chapter 7 draws conclusions of this study and proposes perspectives for future
directions.
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Chapter 2

Related work

2.1 Introduction

Since the 90’s, research in OCR systems has been an abundant field of research in
pattern recognition and computer vision. Prior works have mainly focused on sys-
tems operating on scanned documents and handwritten texts. Recently a considerable
progress has been made in different other domains such as text recognition in histor-
ical documents, in images and in videos. Fig. 2.1 depicts some applications of text
recognition and illustrates their related acquisition modalities.
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Figure 2.1: Examples of text recognition tasks.

This chapter presents a survey of main works achieved in the specific field of text
recognition in images and videos. The community has distinguished different issues
related to this recognition problem, including text detection [LS96, LDI00, YHGZ05,
DGO, PST10], text tracking and localization |()TWS07], text image preprocessing
[FTY'Z02, COBO4, YPX09, YW05, LPMO7|, character segmentation |CT02, MTGOG,
SGDO9, PSST11], character recognition |CGRO5, KHEO5, SG07a] and text recognition

-
i
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[ZC03, YEYT11, EGSL1]. A review of the new advances achieved, in the last years,
in these issues has been presented in |[SPB12|.

In this thesis, we focus on the steps involved in the sole text recognition task
and present here successively their related work ranging from prior to recent studies.
Fig. 2.2 shows these different steps and their interactions. Notice that, in our work,
we use an existing text detector that we adapt to our datasets (¢f. chapter 3).

Textimage -
\ |
-- Textimage preprocessing
7 ¥
! Character segmentation <’
\
e Character recognition
\

Textrecognition <--- Linguistic knowledge

\%

Recognized text

Figure 2.2: Text recognition steps.

2.2 Text image preprocessing

Texts embedded or captured in images and videos can be of different sizes, colors
and can have complex backgrounds with different kinds of distortions (noise, blur,
occlusion, etc.). These facts make text recognition a hard task and may lead to poor
results.

To overcome these difficulties and achieve a good OCR accuracy, some researchers
proposed to insert a step of text image enhancement before applying any recognizer.
The idea is to improve the quality of the text image and remove noise so that a
clear text image with clean background, easy to recognize, can be obtained. Most
designed preprocessing methods can be classified into three main categories: text
image binarization, super-resolution and multi-frame integration.

2.2.1 Text image binarization

A large number of methods, focusing on preprocessing, propose the binarization as a
necessary step useful for good recognition performance. The aim of these methods is
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to analyze the text image and label its pixels to text and non-text regions. A binary
image where the foreground—mnamely the text or the characters—and the background
are distinguished is then obtained.

This preprocessing is particularly challenging in the case of color text images
and video texts because of the complex background and various artifacts. Different
works thus present several techniques of binarization, that can be classified into two
major categories: statistical thresholding-based methods and machine learning-based
methods.

Statistical thresholding-based methods

Prior binarization techniques relied on a global thresholding method where only one
threshold is computed for the whole text image. In |Ots75], Otsu et al. assumed
that an image contains two classes of pixels, namely the text and the background.
By analyzing the gray-level histogram, they proposed a method which selects the
global threshold that maximizes the separability between the two classes. Sato et al.
[SIHS98] also presented a global thresholding binarization technique. Their idea is to
use four directional filters to extract character features, then apply a fixed threshold
to the output of the filters. These approaches obtain good results on images with
high contrast and clean background, which is rarely the case of natural “scene” text
images and video texts.

In 1985, Niblack et al. |[Nib85] proposed to improve binarization performance
by computing adaptive thresholds which take info account both the gray-level his-
togram and neighborhood information. The designed algorithm determines for each
pixel a threshold T calculated on the basis of the intensity statistics within a local
neighborhood in a window of fixed size:

where p and o are the standard deviation and the mean of the gray value within the
window, and k is a fixed parameter set to —0.2.

However, this binarization technique can introduce some noise when considering
windows in regions of background with no text. In order to overcome this drawback,
Sauvola et al. |SSHPO7| defined a new formula to calculate the local thresholds

assuming that pixels of text are usually near to 0 and those of the background are
close to 255: o
T = (1 — k(1 - %)) (2.2)
where R is the dynamics of the standard deviation.
Fig. 2.3 provides some results of thresholding binarization techniques applied to
“scene” text images.
Chen et al. [('Y04] also improved Niblack et al.’s algorithm by considering a local
neighborhood in a window of adaptive size. Window sizes are thus selected to lead to
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Figure 2.3: Comparison of some thresholding-based binarizations: (A) original text
images, (B), (C) and (D) are respectively results of methods presented in [Ots75],
[SSHPO7] and [Nib85| (figure provided by [MAJLL]).

smooth areas with low standard deviation (under a fixed threshold).
T, = p, + ko, (2.3)

where r is the adaptive size of windows.

Other authors (Wolf et al. [WJ04]) were also interested in Niblack et al.’s algo-
rithm and proposed to formulate the decision of binarization in terms of local contrast
instead of gray values. A new formula of threshold is thus defined:

T:(l—a)p—l—aM—l—a%(,u—M) (2.4)

where a is a parameter that controls the incertitude related to g and M is the minimum
gray value of the whole text image.

Recently, another binarization approach was proposed to specifically deal with
images with complex background and low contrast [ZLT10]. Using a Canny edge
detector, text boundaries are first selected. Then, the inner side of contours is deter-
mined relying on a local threshold method. Finally, contours are filled up to form text
regions. This approach enables to enhance text image quality and increase recogni-
tion performance. However, in the case of small characters, the detection of character
boundaries usually fails, leading to poor binarization results.

Ntirogiannis et al. |[NGP11] also proposed a thresholding-based binarization. After
detecting the text baselines, these authors identify the main body of the text and
determine the stroke width. A first thresholding step is applied with two different
thresholds: one for the baselines area and one for the remaining image area. Using the
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obtained result, a convex hills analysis is performed to update the text body region
and apply a final thresholding step.

Machine learning-based methods

Most thresholding methods rely on the computation of one global threshold or local
ones that serve to make the binarization decision. However, this kind of approach
usually fails when the text and background have similar textures or colors or in
the case of complex backgrounds. To solve this problem, machine learning-based
techniques were proposed.

Several works have considered the text image binarization as a segmentation prob-
lem and proposed to use the clustering as an effective technique able to take into ac-
count color information as grayv level ones. Particularly, the K-means clustering algo-
rithm, which aims to separate a set of elements into K clusters so that the inter-cluster
similarity is low and the intra-cluster one is high, was adopted by many researches.

In 2004, Gllavata et al. |GESFO4| presented a method that separates the text
from the background using the K-means clustering. Their algorithm consists of three
main steps. First, the dominating text color is estimated using a color quantization
method [Wu96]. A wavelet transform is then applied to the image in order to select
character features. Finally, pixels are classified into two clusters (namely the text
and the background) relying on a K-means algorithm applied to feature vectors that
include the dominating color and the normalized wavelet coefficients.

The K-means clustering technique was also chosen by Song et al. [SLPT08]. These
authors apply the K-means algorithm to the RGB values of pixels in order to segment
the text image into K clusters (K can be 2, 3 or 4). Obtained clusters are then
analvzed depending on their centers; clusters with the highest centers are considered
as text while the others are considered as background. Experiments showed that best
performances are obtained with K equal to 3.

Recently, Wakahara et al. [WIK11] also used the K-means clustering to binarize
color “scene” text images with complex background. The first step of their approach
is to segment the text images into K clusters using the K-means algorithm. A set of
2K _ 1 tentatively binarized images are then generated by the dichotomization of the
K obtained clusters. Every binarized image is segmented into a sequence of single
character-like images relying on an aspect character ratio. Using Support Vector
Machines (SVM), for each binarized text image, the “character-likeliness” of each
single character-like image is evaluated. Finally, the text image with the maximum
average of “character-likeliness” is selected.

However, the main drawback of the K-means algorithm is its inability to model
local information when segmenting the image. The decision of binarization of each
pixel is made only based on its intensity value without any consideration of its neigh-
borhood, which makes binarization particularly sensitive to noise and complex back-
ground. To overcome this problem, some authors have proposed to rely on the Markov
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Random Field (MRF) modeling. Indeed, MRF models, which are stochastic models,
permit to estimate the conditional probability of each pixel depending on its intensity
and on a defined surrounding neighborhood.

In 2002, Wolf et al. [WD02] proposed to use MRF to model the prior in a maximum
a posteriori (MAP) estimator. The obtained MAP is optimized with a Simulated
Annealing (SA) algorithm [KGJV83|. Even though the neighborhood considered in
the MRF was learned from a set of training data, obtained results did not outperform
thresholding-based methods. This result can be explained by the weakness of the
optimization algorithm.

The binarization method of Chen et al. [COB02] relies also on the MRF tech-
nique. First, a Gaussian Mixture Model (GMM) is learned with an Expectation-
Maximization (EM) algorithm to estimate distributions of text and background.
Then, a MAP optimization is performed introducing some prior modeled with a MRF
and using a fast Iterated Conditional Modes (ICM) algorithm |GG8&4].

Mishra et al. [MAJ11]| focused on the case of natural scene images and presented a
method robust to different kinds of degradations. After combining a MRF and a GMM
to model text and background colors, these authors selected seeds for each class ( cf.
Fig. 2.4) and applied a standard graph cut algorithm to obtain an initial binarization.
An iterative process, alternating the re-estimation of the Gaussian mixture and the
application of the graph cut algorithm, is applied until obtaining a clean binary image
(i.e., convergence conditions).

(A) (B)

Figure 2.4: An example of selected seeds: (A) original “scene” text image, and (B)
text and background seeds: text ones are in blue and background ones in red [MAJ11].

The GMM technique was also used by Ye et al. [YGHO4| but applied to a selected
set of pixels instead of the whole image pixels. In this work, images are first analyzed
with a Canny detector in order to select some parts of text pixels (¢f. Fig. 2.5) that
serve to train a GMM and estimate color models of the text and the background. The
binarization step is performed introducing some spatial connectivity information and
using the connected components analysis in order to remove noise.

Li et al. [LBWX10] integrated local visual information and contextual label infor-
mation in a Conditional Random Field (CRF) based approach. Their aim is to remove
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Figure 2.5: Ilustration of text pixel selection: (A) original text image, (B) Canny
detector result, (C) parallel edge lines and (D) selected text pixels [V GO

local ambiguities and improve binarization performance. This method was dedicated
to natural “scene” text images with complex background and obtained good results.

Saidane et al. |[SGO7hH| introduced an automatic binarization step based on a
learning model particularly robust to complex background and low resolution. In
this work, a convolutional neural network (ConvNet) [LB95]| is trained to take as
input a color text image and to return a binary image where text pixels are set to
0 and background ones are set to 255. The architecture of the network consists of 4
layers: a convolution layer, a sub-sampling layer, an up-sampling layer and an inverse
convolution layer.

Recently, Shi et al. |SXWZ12| addressed the binarization in a different way. The
main idea of their method is to apply an adaptive graph cut algorithm where some
pixels, selected considering the sole properties of the text, are identified as initial seeds.
The proposed binarization involves three steps. Aiming to provide local adaptive
binarization more adapted to each character or part of character, the text image is
first split into several sub-images. This is done relying on a set of processings including
edge detection, connected components analysis, and filtering. Each sub-image is then
analyzed in order to select some pixels with a high confidence to belong to text and
to background. Obtained pixels are finally considered as hard constraints seeds for
the graph cut algorithm applied to segment each sub-image.

2.2.2 Super-resolution

In addition to the classical step of binarization, many researches proposed to increase
the resolution of text images in order to obtain images of better quality where texts
are easier to recognize. Actually, the issue of super-resolution was a subject of several
works for general image processing |[FRENMO04, Fat07]. However, the special case of
text images remains particularly challenging because of the specifics of the patterns
(such as the size and the thickness of characters) and the high number of edges. In
this context, several attempts were made to adapt classical super-resolution methods
and to design new ones specifically adapted to text images and text videos.
Interpolation methods are the most common approach used for image resolution
enhancement. In [Y(GHO4|, before the binarization step, authors applied a sub-pixel
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interpolation in order to get text images with more important regions containing
clear characters. Wolf et al. |W.JC02] also applied a bi-linear interpolation to texts
embedded in videos aiming at increasing their resolution enough so that commercial
OCR softwares could process them (actually, commercial OCR softwares are mainly
developed to deal with scanned documents with high resolution).

Nevertheless, due to their sensitivity to noise, interpolation methods usually de-
teriorate the quality of text images introducing some irregularities around edges. To
tackle these difficulties, Li et al. |[LDO00| presented a super-resolution method that
relies on a projection onto convex sets (POCS) [PSMTO7]. First, a bi-linear interpola-
tion is applied to the text image in order to obtain an initial result. Then, considering
some sets of convex constraints, for each pixel, a residual function is evaluated and
back-projected. This is repeated iteratively until convergence. Fig. 2.6 illustrates this
method applied to a text detected in a video frame.

(1)

Figure 2.6: Mlustration of Li et al.’s method [LDO0|: (1) a video frame with blurred
license plate, (2) the results of the POCS-based super-resolution ((a)-(f) correspond
to the images obtained at iterations 1, 5, 10, 20, 50 and 100).

To increase the robustness against impulsive noise, others authors proposed ap-
proaches based on the quadratic 2D Teager filter [MSO1], which can be considered as
a useful contrast enhancer for images. The idea is to apply the Teager filter to text
images in order to get a high pass of input images (i.e., images with highlighted edges
and eliminated noise) and thus enable a specific processing for edges regions.

In [NMTMO5], authors focused on the case of video text. After the motion esti-
mation with Taylor series and the application of the 2D Teager filter to all frames
containing text, original frames and their obtained high pass images are warped and
bi-linearly interpolated to get two super-resolution images. Images are then fused and
denoised for a final result. Fig. 2.7 illustrates the results of the different steps of this
method.

To introduce a further robustness to camera motion, Malczeweski et al. |MSO6]
integrated “projective fit” and “projective flow” techniques to estimate motion param-
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Figure 2.7: Tlustration of Mancas-Thillou et al.’s method [MTMO5]: (A) original
low resolution text image, (B) bi-linear interpolation of (A), (C) super resolution
output without the Teager-filtered image, (D) and (E) the super resolution results
respectively before and after applying the denoising step.

(A)

(D) (E)

eters and relocate texts in a regular grid using the iterative POCS combined with
a biharmonic spline interpolation. Obtained text images and original ones are then
filtered with the 2D Teager filter and fused to obtain the final super-resolution image.

Banerjee et al. [BJOS| were interested in performing a super-resolution algorithm
able to create an image with smooth regions (inside and outside the text region)
and sharp discontinuities across edges. To that end, they first evaluated the edge
directed tangent field of text images, and incorporated this edge information into the
formulation of the energy function in a MRF model. The super-resolution text image
is finally obtained by reducing the energy function.

2.2.3 Multi-frame integration

Multi-frame integration is a preprocessing step applied only in the case of video text
data. The key idea of this task is to take advantage of the temporal redundancy of
a text appearing for some time in many frames in order to get a clear text image
with clean background and high contrast. Among the proposed methods, two major
approaches can be distinguished: those based on the averaging technique and those
based on the minimum/maximum integration.

In the first category, the enhancement of text image and cleanness of the back-
ground is achieved by averaging values of pixels over multiple frames where the text
appears. In [LD99], after detecting texts embedded in videos, the mean of the whole
sequence of text images is computed, to obtain an image containing enhanced text re-
gion on a clean background where noise and artifacts are reduced. Hua et al. [[TYZ02]
were also interested in solving the problem related to complex backgrounds by uti-
lizing the multi-frame integration. They proposed to improve Li et al.’s method by
removing frames where text is not clear. Assuming that texts embedded in videos
:an be clear in some frames and less clear in other ones (because of a low contrast
or a complex background), a selection of clean text frames (at worse, clean blocks of
texts) is performed. This selection is based on the analysis of the contrast in the area
around the bounding box of detected texts. An averaging of obtained frames and
blocks is finally applied to get a clear text image.

The second category of approaches relies on a time-based minimum pixel value (or
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ariation) search. Assuming that a text keeps the same color during its appearance
and is brighter than the background, the enhanced text image is obtained by assigning
to each pixel a value equal to the minimum of all its intensities over the different
frames containing the text |SKIHT99|. However, this method cannot be applied in
the case of dark text on bright background. To tackle this problem, Lienhart et
al. |LWO2| have proposed another method that takes the temporal redundancy into
account to identify the background by its temporal variation. They considered that
background often changes significantly through time while text usually keeps its main
color and shape. Relying on these hypotheses, a minimum/maximum operation is
applied in order to obtain, for each pixel, its two extremum values (the minimum and
the maximum ones). The analysis of these values enables to distinguish text from
background. Wang et al. [WJW04| also used a time-based minimum (or maximum)
pixel value search to obtain two images: one containing for each pixel the maximum
alue through time and another containing for each pixel the minimum value through
time. Both images are then analyzed with a Sobel filter in order to detect edges. The
image with the fewest edges, considered as the one with the uniform color, is selected
to be used for text blocks classification (into background or text).

Recently, Yi et al. [YPX09| proposed to combine both techniques—namely aver-
aging and time-based minimum—aiming at getting clean and clear texts to improve
recognition performance. Moreover, a text-intensity detector is integrated to filter
blurred texts and remove bad effects. Experiments carried out by these authors
showed that their method obtains good results, outperforming Hua et al.’s method
[FIYZ02|. Fig. 2.8 shows a comparison between results obtained with approaches
presented in [YPX09|, [HYZ02] and |LW02].

(C)

Figure 2.8: Comparison of some multi-frame integration techniques: (A), (B) and
(C) are results obtained with approaches presented in [[TYZ02], [LW02] and [YPX09)
(figure provided by [YPX09]).
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2.3 Character segmentation

Before recognizing characters, a step of segmentation is often necessary to separate the
text into single characters easier to analyze and classifyv. In this context, the automatic
segmentation of characters is considered as a crucial step in most OCR systems; each
segmentation error (i.e., either an over-segmentation or a sub-segmentation) involves
recognition errors and directly reduces OCR performance.

In the literature, several approaches were dedicated to this issue and have proposed
different strategies to address this problem. Casey et al. provided a complete survey
of character segmentation methods in [('L02] and identified three main categories of
approaches, that we adopt in our work:

e dissection segmentation approaches, which segment characters using only image
analysis processing techniques,

e recognition-based segmentation approaches, which segment the text into single
characters taking into account recognition results,

e segmentation-free approaches, which consist in recognizing a succession of char-
acters directly from the whole text image without any segmentation.

2.3.1 Dissection segmentation

The dissection segmentation category includes all methods that tend to separate char-
acters mainly relying on techniques of image or/and signal processing.

Projection profile-based segmentation

The projection profile analysis technique is one of the most prior common dissection
segmentations. It consists in a kind of compact representation of the spatial distri-
bution of the text image pixels content (i.e., intensity values). This technique allows
to estimate columns that do not contain text pixels and thus to deduce separations
between characters.

In |LSA94], the authors addressed the problem of touching character segmentation
in printed documents and presented a method based on profile projection analysis.
Two kinds of profile projection are computed for binary text images: the first one
counts for each vertical column the total number of black pixels (i.e., pixels assumed
to belong to the text), and the second one represents each column by the position
of top pixel belonging to the external text contour. Two thresholds are then applied
to build projection profiles in order to select segmentation positions. Nevertheless,
this approach is only effective on text images of high quality and whose binarization
was successful (clean text and background). For this reason, the projection profile
technique was mainly used for machine printed characters segmentation but rarely in
the case of captured or embedded texts.
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[MZJI707] is one of the few works dedicated to video text recognition that employed
the projection profile method. In this method, gray scale text images are used directly
(without any binarization) to build an intensity profile projection representing the
sums of pixel values over each column. Obtained profiles are then thresholded to get
segmentation positions.

Recently, Shivakumara et al. [SBS™11] proposed a character segmentation method
based on a modified profile projection technique (¢f. Fig. 2.9). This method first relies
on a binarization process, and evaluates, for each column, a text height difference
(THA) defined as the distance between the first and the last pixels within the column
belonging to the text. As in previous methods, profiles are built and segmentation
boundaries are obtained by thresholding computed profiles.
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Figure 2.9: Tllustration of Shivakumara et al.’s segmentation technique [SBST11]: (A)
input text image, (B) boundaries of the text image used to evaluate the THd, (C)
profiles of the computed THd, red dots (that correspond to THd less than two pix-
els) identify segmentation positions, and (D) obtained character segmentation result
(figure provided by [SBST11]).

Other authors [SIKH 99| proposed to use the projection profile technique as a pri-
mary segmentation. Text images are first filtered and binarized (using a thresholding-
based method) to compute vertical and horizontal projection profile. Obtained pro-
files are employed to determine candidates for character segmentation that will be
discussed depending on recognition results (see next subsection).

Shortest path algorithm-based segmentation

In [KITEO05|, Kopf et al. tackled the problem of character segmentation in low res-
olution images and videos and showed that the projection profile technique is not
well adapted to this case (since results of projection profile are sensitive to thresholds
and can thus lead to missed separations and split characters). Instead, the authors
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proposed a method based on Dijkstra’s shortest path algorithm in order to segment
characters taking into account the local morphology of images. The idea is to search
paths, from the top to the bottom of the text image, that can correspond to separa-
tions between characters. Selected paths are computed as successions of pixels having
the lowest difference between their values.

Tse et al. [TCIY 07| also used the shortest path algorithm to segment characters in
gray document images. The designed method applies the algorithm only to separate
touching characters. After an initial step that identifies touching characters, the
algorithm is performed to find a path from the top to the bottom that corresponds
to the separation between touching characters. In this approach, selected paths are
computed to be the ones with the lowest cost (i.e., the path whose pixels intensities
sum is the lowest).

Recently, Phan et al. [PSST11] proposed a robust shortest path-based segmen-
tation that includes two additional steps: an initial one to select candidate cuts and
a final one to remove false ones (i.e., over-segmentations). The first step relies on a
gradient vector flow to identify pixels of potential paths. Using obtained pixels, sev-
eral paths crossing the text image from the top to the bottom are determined, then
checked to see if they correspond either to segmentations between characters or not.
To do so, the authors assume that for a true segmentation, the path computed from
the top to the bottom is close to the one computed from the bottom to the top. Thus
for each obtained path, a backward path computation is performed to compare both
paths and decide either to keep or discard this path. Fig. 2.10 shows a comparison
between texts images segmented with Kopf et al.’s method [KHE05] and Phan et al.’s
one [PSSTTI].

SRS Y =52
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Figure 2.10: Comparison of shortest path algorithm-based segmentation techniques:

(A) and (B) are results obtained with methods respectively proposed in [[KHE05] and
in [PSST11] (figure provided by [PSST11]).

Split and merge algorithm-based segmentation

Boundary-based segmentations—namely the projection profile analysis and the short-
est path algorithm usually seek to segment text images by detecting edges and sepa-
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rations between characters. In addition to these segmentations, region-based segmen-
tations were also used to solve the problem of character segmentation. In contrast to
boundary-based approaches, region-based ones tend to identify segmented regions by
exploiting the homogeneity of the spatial information.

In [YBYKI1], a split and merge algorithm was used to separate characters in
license plate images. After a first step of text image binarization, a connected com-
ponent analysis is applied to get an initial set of isolated blobs. Depending on some
geometrical properties (such as the width, the high, the area, etc.), non-character
blobs (blobs not containing single characters) are selected to be removed (if they
contain noise), merged (if they contain fragments of one character) or split (if they
contain more than one character). Fig. 2.11 illustrates the different steps of this
method.

® 90-GH-667 " ©
2 90-GH-667 " «
30-GH-667 ©

Figure 2.11: Steps of Yoon et al.’s character segmentation method [YBYKI11]: (A)
the scene image, (B) the extracted license plate image, (C) the binary image of (B),
(D) the connected component analysis result, (E) removing noisy blobs, (F) merging
blobs, and (G) the final segmentation result after blob selection (figure provided by
[YBYKIL1]).

Huang et al. [HMZ09] also employed a split and merge algorithm to segment
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characters in texts extracted from videos. Their method involves two main steps: an
initial segmentation based on the projection profile analysis, and a merge and split
step based on assumptions about the width and the height of characters.

Other dissection segmentation

Besides the approaches presented above, other original methods for character segmen-
tation were designed.

Lue et al. |[LWCT10] proposed to combine a connected component analysis and
some periphery features to segment characters. Their method first analyzes binarized
text images in order to provide an initial segmentation and select touched characters.
A specific segmentation based on periphery features is then performed to deal with
identified touched characters. Used features are composed of 32 character contour
ralues extracted to characterize the character periphery (¢f. Fig. 2.12). Finally, a
verification step is applied to check obtained segmentation results.

Figure 2.12: Tllustration of periphery features [LWCT10).

In |SGO8|, Saidane and Garcia proposed an original method for character segmen-
tation in color “scene” text images. The designed automatic segmentation is based
on a convolutional neural network model that was trained to determine segmentation
positions. This network takes as input a color text image, is composed of three con-
volution layers, and returns a vector of outputs indicating positions of segmentation
borders.

2.3.2 Recognition-based segmentation

Assuming that character segmentation is a complex problem, some attempts to ex-
plore the interaction between the segmentation and the recognition have been done.
The idea is to take advantage of recognition outputs in the segmentation process to
ralidate segmented regions. Two methodologies can be distinguished: the first, most
common, one consists in building concurrent segmentations and relies on a character
recognizer to accept correct ones and reject false candidates, while the second works
by adjusting segmentation parameters based on recognition results.

In the first methodology, Sato et al.’s technique |SKHS98, SKITT99] is one of the
first recognition-based approaches. In this work, a simple segmentation step, based on
profile projection technique, is first applied to select candidates. Considering obtained
segmentations, several potential character images are identified and analyzed. Each
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one is characterized by a value encoding its similarity with its most probable class
of character. This similarity (or matching) value is computed with a correlation
metric between some reference patterns and the normalized character image. Once
recognition results are obtained, a final selection of segmentations is made keeping
only those corresponding to segmented regions with high similarity values.

Saidane et al. [SGDO09| also proposed a method that aims to get all possible seg-
mentations before removing false ones using recognition results. An over-segmentation
step is first performed using the method described in [SGOS8|. A graph model is built
by creating connections between neighboring segmentation candidates and integrating
character recognition results to weight connections. The character recognition step
is performed with the help of the neural model presented in [SGOTa| (¢f. subsection
2.4.2). Using a best path search algorithm, the most probable sequence of characters
is finally obtained keeping correct segmentations and removing false ones.

Another recognition-based segmentation dedicated to degraded text recognition
was presented by Jun et al. [JHIF705]. In this method, an initial basic set of segments
is first computed using a Principal Component Analysis (PCA) [Jol05|. Then, for
each segment, some character features are extracted in order to identify segments
containing single characters and recognize them. The remaining segments are merged
depending on their features and spatial localizations to recognize characters that they
contain.

In contrast to these methods, Mancas-Thillou and Bernard |MT GOG| presented a
segmentation method that uses character recognition to obtain the optimal param-
eters of the segmentation algorithm. The designed approach relies on Log-Gabor
filters able to locate and detect separations between characters. The choice of the
Log-Gabor filters parameter—namely the bandwidth—was performed depending on
recognition results after applying an OCR. The character recognizer is based on a
multilayer perceptron (MLP) network that was trained to classify some extracted
features.

2.3.3 Segmentation-free

In contrast to previous segmentation methods, few other authors have proposed OCR
systems that do not rely on any segmentation process. This family of approaches
addresses the problem of text recognition in complex images where separations be-
tween characters are particularly hard to identify (extremely complex background,
broken characters, attached characters, etc.). These approaches do not aim at sepa-
rating characters; instead they consider entire word text images as single units and
recognize them as such.

In [[KSTAO4], a method for text recognition dedicated to natural scene image re-
trieval is presented. No character segmentation is performed; instead a scanning pro-
cess is applied to a set of generated multi-resolution text images. Resulting clipped
regions are then classified to confirm if they contain characters or not and to recog-
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nize characters. The character recognition step is based on a features extraction and
a matching process that consists in projecting the features vector to built subspace
then detecting the class that corresponds the best to the input character image.

Negishi et al. [NTOA05] also performed a method able to recognize texts captured
in scene images without any character segmentation. The main idea of this method
consists in extracting some features (namely corners and curves, each one character-
ized by a histogram of edge directions) from the entire text image. Then, a voting
algorithm able to combine obtained features and analyze their spatial localization is
used, in order to recognize characters present in the text image.

In [FF09], Fan and Fan addressed the automatic license plate recognition and
proposed a graphical model able to recognize a sequence of characters without any
explicit segmentation. To that end, a Markov network is designed to formulate the
problem of the joint segmentation and recognition as a 1-D case problem. The network
consists of two layers (0110 to represent the segmentation, the other one to represent
the recognition) and takes as input vectors of low-level features extracted from the
text image.

Recently, Wang et al. [WB10| proposed a word recognition approach that relies
on a generic object recognition method, in which words are considered as objects
to be classified. Without any character segmentation, a character detection step is
performed to localize characters then recognize them with the help of some extracted
features. The words are finally recognized using a pictorial structure of recognized
characters, and classified using a dictionary.

2.4 Character recognition

The goal of text image recognition is to identify the sequence of characters contained
in the image. In this issue, the step of character recognition is an essential task since
it permits to label individual character images and thus recognize the sequence of
characters.

During last years, a great number of methods were proposed. Among these char-
acter recognizers, two main categories of approaches can be distinguished: pattern
matching-based approaches and machine learning-based approaches.

2.4.1 Pattern matching-based approaches

Pattern matching-based approaches are methods that tend to classify character im-
ages relying on matching algorithms able to measure the similarity between some
extracted patterns and a database of patterns. In this family of approaches, charac-
ters are usually characterized by a set of hand-crafted features (such as edges, profiles
and texture descriptors). Typically, a database of models of features is first gener-
ated. Then, for each character image, appropriate features are extracted and matched
against the database in order to recognize the class of the input image.
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In 2003, Zhang et al. proposed a character recognition method based on a like-
lihood measurement | |. Character images are first binarized and analyzed to
extract a set of features including Zernike magnitude, direction proportion, first-order
peripheral features, second-order peripheral features, vertical and horizontal projec-
tion profiles. This extraction step leads to an input feature vector of 207 values. This
vector is compared to a dataset of vectors extracted from training examples to finally
find the class with the highest likelihood.

In | |, Kopf et al. proposed to identify characters by means of their contours.
Using an extended Curvature Scale Space (CSS) technique, contours of characters
are analyzed and represented by some features selected by the authors as useful for
the classification. A matching algorithm able to consider geometrical transformations
(i.e., shifts and rotations) finally classifies extracted features and recognize characters.

Shivakumara et al. also defined a recognizer based on characters edges | |.
First, character images are resized to 64 x 64 pixels. Then a Canny detector, able to
preserve the shape of the characters, is applied to get image edges. Computed edges
serve to feed a recognizer defined by means of a hierarchical classification. Fig. 2.13
illustrates character edges features used for the classification. Character images are
hence classified progressively using a voting algorithm.

(M)

Figure 2.13: Edges features used for the hierarchical classification in Shivakumara
et al.’s method | |: (A) original color character image, (B) resized gray level
image, (C) result of the Canny detector, (D) filtered edge map, (E) dilated edges, (F)
outlets found in 8 directions from the centroid of the character, (G) filled edges, (H)
perimeter of filled edges, (I) dilated perimeter, (J) outlets found in 8 directions from
the centroid of the character, (K) filled edges, (L) shrunk, (M) after removing end
points from (L) (figure provided by | ).
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A method specifically designed to recognize characters extracted from videos was
proposed in |[CGRO5| to identify characters by their side-profiles. Admitting that
texts embedded in videos have similar fonts, the four side-profiles (namely top, left,
right and bottom as shown in Fig. 2.14) were considered as sufficient to represent and
classify characters. In the presented method, character images are first binarized then
analvzed to generate their corresponding side-profiles using the technique described
in [J5599]. Obtained side-profiles are finally matched against a database constructed
with training samples of characters.

(A) (B) (€ (D) (E)
Figure 2.14: An example of profile sides of character “a”™ (A) binarized character
image, (B), (C), (D) and (E) are respectively left, top, right and bottom profile sides
(figure provided by |CGRO5)).

Halima et al. also used a projection profile technique to recognize Arabic character
images extracted from digital videos |[[TICA10]. Besides vertical, horizontal, diagonal
and slanting diagonal profiles, some occlusion and transition features were equally
used in order to define a recognition method robust to distortions and translations.
Obtained features are classified with a matching step ensured by a K-nearest neighbor
(KNN) algorithm. In this work, the authors demonstrated that best performance are
obtained with K = 10.

The nearest neighborhood algorithm was also used by Iwamura et al. to recognize
amera-captured characters [[TIC10|. Their method consists in matching binarized
images of characters against a dataset of stored samples in order to find the most
similar one and thus identify the class of the input image. To do so, the connected
components of each character image are analyzed and described by means of vectors
of features which have the particularity to be affine invariant. The vectors serve to
match the character image using a KNN algorithm.

Other authors proposed to rely on corners and curves to recognize characters in
natural scene images. In [NIOA05], four points (namely the upper left, the upper
right, the lower left and the lower right) and four curves (namely up, down, left and
right) are extracted and considered as features. The step of pattern matching, that
relies on a voting algorithm, is performed to allow a recognition particularly robust
to distortions.

A character recognition approach based on the technique of the Gaussian Affine
Transform (GAT) was designed by Yokobayashi et al. and applied to natural “scene”
character images [Y W05, YWO06]. The method operates on binarized images and
applies a modified GAT correlation, specifically robust to geometric transformations,
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between the input image and a set of templates (one template per class). Matching
scores are thus computed and analyzed to recognize the class of the input character
image.

In |[ODTT09], a technique of character recognition is presented, which is dedicated
to low resolution images. It consists in two stages: a learning stage and a recognition
stage. The first stage computes one subspace per class of character. This is done by
constructing eigenvectors obtained after normalizing training data and applving an
autocorrelation between examples of the same class. Fig. 2.15 shows an example of
obtained eigenvectors. The recognition stage, whose purpose is to classifv character
images, evaluates the similarities between the input image and the eigenvectors of
computed subspaces. Finally, the appropriate class is recognized as the one with
which the character image matches the best.

(A) (B) (C)

Figure 2.15: Tlustration of eigenvectors obtained from 100 examples of character “A™
(A), (B), and (C) are respectively the first, second and third eigenvectors (figure
provided by |[ODT09]).

In order to recognize Korean characters, Park et al. [PLICT10| designed a method
that relies on shape-based statistical features (namely the horizontal, vertical, left-
diagonal and right-diagonal segments of each character). These features are extracted
from each input image, then matched against a dataset of features using a minimum
distance classifier.

In |UNS08], the authors focused on the special issue of recognizing texts captured
by a hand-held camera moving along the text. A mosaicing-by-recognition method
able to jointly create a clean text image and recognize characters is presented. The
first step consists in simply concatenating one-pizel slits (which are central regions
of the image of size 1 x H, with H the height of the image) of all frames containing
the text. The problem of recognition is then considered as a task of deformed text
recognition: the authors propose to formulate it as an optimal path problem that
evaluates the similarity between transformed input frames and reference patterns.
The similarity is calculated based on matching costs between one-pixel slits of the
input frames and the columns of the reference patterns.

These methods generally achieve good results. However, as in any pattern recog-
nition problem, the major issue is to define the robust features that represent the
characters independently of the image resolution, the background complexity, and
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potential distortions. Therefore, performance of the techniques may vary widely de-
pending on the chosen features and the image quality.

2.4.2 Machine learning-based approaches

The key idea of this category of approaches is to train a model to classify character
images so that the decision of the recognized class is taken automatically relying on
previous examples observed in the training phase. Several models were proposed in
the literature; some learn to classifv images directly from the images themselves while
others propose to use hand-crafted features or learnt features.

The SVM classifier is one of the learning-based models used to recognize characters
extracted from images and videos. In |DASOL|, the authors proposed to train a
SVM model with some hand-crafted features to classify characters. A large range
of features (namely regional features, run features, balance and symmetry features,
occupancy features, skeleton features, corner features, etc.) were extracted from
binarized character images and used to generate a vector of 172 values presented to
the SVM model. Since the number of classes in this classification task is greater than
two, several one-vs-one SVMs were trained and combined to recognize the different
classes of characters.

Another model, namely the convolutional neural network, was also emploved to
recognize character images. The convolutional neural network is a special form of
multilayer perceptron able to classify extremely variable character images without
any preprocessing step. In |[JSVR05], a character recognition approach based on a
convolutional neural classification is proposed to identify characters in images of low
resolution. The designed method takes as input an image of 29 x 29 pixels and
returns an output vector of 72 values encoding probabilities to belong to the classes
of characters. Saidane and Garcia also presented an automatic neural-based approach
for natural “scene” character recognition [SG:07a|. The proposed recognizer takes as
input an image of 48 x 48 pixels and returns an output vector of 38 values (one per
class of character). Note that artificial neural networks were also used in document
analysis problems including preprocessing, segmentation, and recognition. Marinai et
al. |[MGS05| present a survey of main works achieved in this domain.

Inspired by speech recognition, Som et al. [SCS09| defined an OCR system that
uses a Hidden Markov Model (HMM) able to learn to identify characters as a sequence
of states. After building bootstrap glyph models with a synthetic set of examples (one
example per class), the training stage was performed by means of three iterations of
a maximum likelihood process to obtain baseline glyph models. Characters are then
recognized using the computed models.

Recently, a method based on unsupervised feature learning was proposed aiming
to detect and recognize characters in natural scene images |[CCCT11]. A set of 8
gray-scale patches is first extracted from a training data and then used to run an
unsupervised learning algorithm in order to obtain a mapping from the input patches
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to vectors of features. The learning stage is ensured by a variant of K-means cluster-
ing. A further step of features reduction is performed relying on a spatial pooling and
vielding a final vector of 9 features for each character image of 36 x 36 pixels. A linear
SVM model is finally trained to classify generated features and recognize characters.

2.5 Text recognition

Once text images are segmented and single characters are recognized, the final output
of OCR systems (i.e., recognized texts) can be calculated. In this context, several
techniques were proposed to identify embedded and captured texts.

OCR systems using dissection segmentation methods usually identify recognized
texts as sequences of recognized characters [KHEOS, MZJT07]. Nevertheless, some
original work proposed to use more efficient methods. In [ZC03|, Zhang et al. pre-
sented a Bayesian framework for video text recognition. The method consists in
formulating the problem of words recognition with the maximum a posteriori (MAP)
where character recognition results and a word knowledge model are included. The
word knowledge model is computed on the basis of trained language models.

In contrast to these approaches, OCR systems relying on a character recognition-
based segmentation method require well-adapted techniques able to handle different
concurrent segmentations and to take into consideration character recognition results.
Sato et al. proposed a dynamic programming method that allows to obtain the
recognized text taking into account potential segmentations and character recognition
results [SIKHTT09|. The idea is to find the sequence of segmentations (and thus the
sequence of characters) that maximizes an evaluation value expressed on the basis of
character recognition results. In [SGD09|, the authors presented a text recognition
graph model whose nodes represent concurrent segmentation borders, and edges are
weighted with character recognition results. The final recognized text is obtained
using a best path search algorithm applied within the built graph.

Regarding OCR systems based on segmentation-free approaches, the task is harder
and efficient methods are necessary to produce the recognized texts. In [WEB10|, after
detecting and recognizing character, a pictorial structure [F1273] is built to represent
each word. This structure is then used to evaluate several character configurations
of the word within the input image. Each configuration is characterized by a sort of
score based on character recognition results and distortion costs (the distortion cost
is evaluated depending on the spatial relationship between two successive characters).
The recognized text is finally determined as the sequence of characters corresponding
to the optimal character configuration. To recognize Kanji texts captured in natural
scene images, a voting method was chosen by Kusashi et al. to identify the sequence of
characters corresponding to the input image [[<STA0O4]. Tt enables to use the regularity
of character placement to reduce recognition errors in complex backgrounds.

High level information, such as language properties and lexicons, can also be
integrated to improve the performance of OCR systems. A recognition error correction
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method was introduced by Thillou et al. |TFGO5| and used as a post-processing
step in an OCR system. Two levels of error correction were considered and applied
successively:

e a low-level error correction which relies on the confidence in character recogni-
tion results;

e a high-level error correction that uses a language model—mamely a character

n-gram model [MS99]—able to remove some character confusions.

Som et al. also proposed to integrate a character n-gram language model as a
post-processing step [SCS09]. Their OCR system was applied to texts embedded in
Turkish broadcast news and experiments showed that the language model permits to
reduce word errors significantly.

In contrast to these works, Weinman et al. presented an OCR system that in-
corporates a lexicon into the recognition scheme [WLATIO9|. The idea consists in
recognizing texts by means of a unified processing taking into account the character
appearance, the language, the similarity with other characters and the presence in
the lexicon.

2.6 Conclusion

This chapter reviewed the main approaches and presented the recent advances achieved
in text recognition in images and videos. The different steps that can be involved in
the text recognition task (namely text image preprocessing, character segmentation,
character recognition, and text recognition) were presented and their related work
discussed.

In this review, we notice that most approaches rely on preprocessing steps in order
to clean text images and to improve recognition performance. Furthermore, several
approaches are designed to deal only with binary images and consider that text recog-
nition in multimedia documents—i.e., in images and videos—is a simple extension of
classical OCR systems, initially developed for printed documents. In addition, the
main methodology in the literature consists in involving a step of character segmen-
tation (few methods avoid that step) and computes linear separations not necessarily
adapted to the morphology of the image. Concerning the character recognition is-
sue, main existing methods use hand-crafted features adapted to a particular task or
dataset.

In our work, in contrast to most state-of-the-art methods, we propose approaches
adapted to the special task of text recognition in images and videos. Our approaches
require no binarization step and provide novel solutions. Two categories of methods
are proposed: segmentation-based and segmentation-free methods, in order to study
the benefits and limits of the segmentation step. The designed approaches rely on
different novel segmentation techniques and use a neural classification model trained
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to recognize characters and able to learn to extract relevant features without any
preprocessing step. Moreover, some linguistic knowledge is integrated in the OCR
systems to tackle drawbacks of local character by character recognition and improve
text, recognition performance. Our different OCRs are applied and compared on two
databases—mamely texts embedded in videos and texts captured in natural scene
images and their results are described and discussed highlighting the benefits and
the limits of each system.



Chapter 3

Datasets and experimental settings

The experiments performed in this work are carried out on two main types of multi-
media documents: “caption” texts which are overlaid artificially on videos, and “scene”
texts which exist naturally in scenes and are captured in images. The choice of these
two categories of texts is motivated on the one hand by our desire to cover several
use cases of text recognition and on the other hand by our interest to both analyze
recognition problems and propose solutions able to deal with the two kinds of texts.
Therefore, two different datasets are used in our work to test the OCR schemes that
will be proposed and evaluate their performance in both text recognition tasks.

This chapter describes the chosen datasets—Dataset I and Dataset II—and presents
their acquisition environment. It also defines the evaluation metrics used.

3.1 The “caption” text video dataset: Dataset I

Dataset 1 consists of 32 videos of French news broadcast programs of the France 2
channel. Each video, encoded in MPEG-4 (H. 264) format at 720x576 resolution, is
about 30 minutes long. Numerous “caption” texts are embedded in each video and
often provide useful clues to understand its content (texts can correspond to persons
and places names, dates, titles of the news or TV reporters, etc.).

Even if, as mentioned before, our thesis work focuses only on the text recognition
step, we present in the first subsection a scheme that we have designed to detect,
track and extract embedded texts in videos. The datasets that have been obtained
with this scheme from broadcasted TV videos are then detailed.

3.1.1 Text detection and tracking

The first step of video text recognition consists in locating and extracting texts em-
bedded in videos. Therefore, we first perform a detection and tracking step to extract
texts from videos. The aim of this processing is to extract all images corresponding

31
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Figure 3.1: Detection post-processing: (A) and (B) are the color and the gray level
text images detected with the Delakis and Garcia’s detector, (C) is the Sobel operator
result, (D) is the morphological dilatation of (C) and (E) is the final text image
obtained after applving the profile projection technique.

to texts (using the detection step) and identify those containing the same text (by
the tracking processing).

Delakis and Garcia [DGOS] have provided a solution for horizontal text detection
in images. This robust method relies on a convolutional neural network and obtains
good results. We choose to make use of this detector and to adapt it to the case
of videos. For each text detection obtained with Delakis and Garcia’s detector, on
a video frame, we first adjust the bounding box, in order to crop the precise area.
Fig. 3.1 depicts this process: a Sobel operator, able to detect edges, is applied on the
gray level image, followed by the horizontal and vertical projection. Two thresholds
are chosen to discard left or right columns, and top or bottom lines.

In order to track texts embedded in videos, the detection step (namely the ap-
plication of Delakis and Garcia’s detector followed by the detection post-processing)
is applied every two seconds. This detection has two objectives: first to locate new
texts that are going to appear, and second to determine texts previously displayed
that are going to disappear. Since static texts embedded in videos are considered, a
tracking process that determines the starting and ending times of each localized text
is introduced (¢f. Fig. 3.2).

The tracking task is ensured by a similarity measure computed between the image
of the detected text and images appearing at the same location during the 2 second
sequence. In our work, the digital image correlation is used as an accurate indicator
to evaluate the visual similarity and is computed, on each pixel A of the text image,
as follows:

S sew, (I — )3 — I3)
VEbew, (Ih — 12T paw, (13 — B)?

where A and B are pixels of the text image, W4 is a window of size 3 x 3 centered
on A, I' and I? are the intensities of the images to compare, and I' and I? are the

Correlation(A) = (3.1)
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Figure 3.2: Text detection and tracking scheme in videos.
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Figure 3.3: Two examples of image correlation: (A) and (B) are images to compare
and (C) the output of the correlation.

mean values of I' and I? within the window. The outputs of the correlation process-
ing (images where each pixel is represented by its correlation value computed using
Eq. 3.1) are then analyzed in order to decide if correlated images correspond to the
same text or not (if the correlation value is over a fixed threshold, images are consid-
ered as corresponding to the same texts, and conversely). Fig. 3.3 shows examples of
correlation outputs: the example on the left illustrates the case of correlated images
corresponding to the same text while the example on the right illustrates the case of
images with different texts.

Once texts are extracted, they can be used to generate the required datasets.
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Figure 3.4: Examples of character images of the CharDatasetl.
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Figure 3.5: Examples of non valid character images of the GarbDatasetl.

3.1.2 Character dataset: CharDatasetl and GarbDatasetl

Using the detection and tracking scheme described above, “caption” texts embedded
in news videos can be extracted. First, four videos of Dataset I are treated to extract
their whole texts. Obtained text images are then used to generate a dataset of char-
acters. 15,168 color images of single characters manually segmented are extracted. In
this dataset, 41 character classes are considered: 26 Latin letters (small and capital
letters are not distinguished), 10 Arabic numbers, 4 special characters (".”, ’-*, ’(’, and
’)’) and a class for spaces between words.

Obtained images are of different sizes, fonts and colors and have different back-
grounds. Fig. 3.4 shows some examples of the generated characters dataset. This
database, called CharDatasetl, will be used to train our character recognizer.

1,001 images of non valid characters (i.e., “garbage”) are also extracted. These im-
ages correspond to poorly segmented characters, to misaligned spaces between charac-
ters, or to images of multiple characters. The obtained dataset, called GarbDatasetl,
will be used to train an image classifier to distinguish images corresponding to single
characters from garbage. A set of these non valid character images is illustrated in
Fig. 3.5.

3.1.3 Text datasets: TextDatasetl and TextTrainDatasetl

The other twenty eight videos are annotated and divided into two dataset: Text-
Datasetl consisting in eight videos and used to evaluate our OCR systems perfor-
mance and TextTrainDataset] consisting in the remaining twenty ones used to train
our connectionist model. Each video contains about 400 words, roughly corresponding
to 2,200 characters.

The text images extracted from these videos can vary a lot in terms of size (a
height of 8 to 24 pixels), color, style and background (uniform and complex moving
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Figure 3.6: Examples of text images of TextDatasetl.

backgrounds). Fig. 3.6 provides some examples of embedded text images of Text-
Datasetl.

3.2 The natural “scene” text dataset: Dataset 11

Dataset IT is the public database ICDAR 2003" which was created for a competition on
“scene” character and word recognition |[LPST03|. After describing the data capture
methodology of this dataset, both the character and the text datasets are presented
and their specifics detailed.

3.2.1 Data capture methodology

The images of this dataset were captured using several digital cameras with different
and unknown resolutions. The scene images were taken everywhere in the environ-
ment (indoor and outdoor) where texts appear on papers, boards, walls, storefronts,
door, etc. All “scene” text images are provided with some information including the
position and the size of the text in the captured image and the sequence of characters
corresponding to the localized text. From these images two datasets were generated:
a character and a text datasets containing respectively images of individual characters
and images of texts extracted from scene images.

Fig. 3.7 shows an example of a scene image extracted from the ICDAR 2003
dataset.

' The database ICDAR 2003 is available for download at
http://algoval.essex.ac.uk/icdar /Datasets. html# Robust.
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Figure 3.7: An example of a “scene” image in the [CDAR 2003 dataset.

3.2.2 Character dataset: CharDatasetll and GarbDatasetI]

The character database, called CharDatasetIl, consists of 5,689 color images of iso-
lated characters. The database contains 36 classes of characters: 26 Latin letters
(including small and capital letters) and 10 Arabic numbers. Provided characters are
of different colors and fonts and were captured with a variety of sizes ranging from
some pixels to hundreds pixels of height. Fig. 3.8 illustrates a sample of character
images of CharDatasetII.

In addition to the character dataset, we used another provided set of text images,
called TextTrainDatasetlIl, (originally created for training purpose) to extract 4,056
images of non valid characters. As GarbDatasetl, the obtained dataset, called (Garb-
Datasetll, contains mainly poorly segmented characters, spaces between characters
and images of multiple characters (c¢f. Fig. 3.9).

3.2.3 Text datasets: TextDatasetll and TextTrainDatasetlIl

The text databases, called TextDatasetII and TextTrainDatasetIl, consist respectively
of 1,110 and 1146 English “scene” texts extracted from the captured images. These
databases contain images of isolated words (i.e., the term word is used loosely here
to mean any string of characters) with characters printed, written and painted in
various fonts and colors (¢f. Fig. 3.10). The images are captured under uncontrolled
acquisition conditions and present several kinds of distortions (non uniform illumina-
tion, occlusions, shadows, blur, etc.). Texts are also of different sizes (a height of 12
to 504 pixels) and appear on complex and textured backgrounds. These issues make
the problem of recognizing text in this dataset a challenging problem. One can notice
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Figure 3.8: Examples of character images of the CharDatasetII.

Figure 3.9: Examples of non valid character images of GarbDatasetII.
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Figure 3.10: Examples of “scene” text images of TextDatasetII.

that in some cases, even humans can fail reading them.

In our work, TextDatasetIl is used to evaluate the proposed OCR approaches
and to compare obtained performances to those of state-of-the-art methods, while
TextTrainDatasetlII is used to train a proposed connectionist model.

3.3 Evaluation metrics

The recognition performance of our character classifier on CharDataset] and Char-
DatasetlIl is evaluated with the help of the classical character recognition rate mea-
surement, calculated as follows:

#characters correctly recognized

CharRecoRate =

3.2
#characters to recognize (32)

To calculate the recognition performance of our complete text recognition system
on TextDataset] and TextDatasetlI, the two following metrics were chosen:

e The character recognition rate which evaluates the percentage of characters
correctly recognized. It is calculated using the Levenshtein distance? as follows:

#characters to recognize — Y, dr,(recognized text, ground truth)

(3.3)

“The Levenshtein distance |[NovO6] is a metric that permits to evaluate the similarity between
two strings; it calculates the minimum number of operations (including the insertion, the deletion,
and the substitution of a single character) to transform a string into another one.

CharRecoRate =

#characters to recognize
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where dy, is the Levenshtein distance calculated for each text image in the
dataset and ground truth is the correct text to recognize and is obtained with
a manual annotation step and #characters to recognize is the total number of
characters in all ground truth texts of the dataset.

The word recognition rate which evaluates the percentage of words correctly
recognized. Since texts embedded in videos (namely TextDataset]) are mainly
sentences and sequences of words, before evaluating the word recognition rate,
an operation of alignment is applied to match recognized words with their cor-
responding words in the ground truth. Regarding natural “scene” texts of Text-
DatasetlI, they consist only of single words, therefore no alignment is applied.
Words correctly recognized are then determined and their recognition rate is
evaluated (cf. Eq. 3.4).

H#words correctly recognized

WordRecoRate =

(3.4)

Hwords to recognize

3.4 Conclusion

Two main datasets were presented in this chapter: a “caption” text video dataset and
a natural “scene” text dataset. These datasets include two types of multimedia docu-
ments (i.e., videos and images) and concern two different text recognition problems,
which are particularly interesting for the experimentation of our OCR systems.

In the next chapters, the approaches that we propose for text recognition in mul-

timedia documents are described and their performance is evaluated on the presented
datasets using the defined metrics: the character and the word recognition rates.
Experiments are depicted and results are discussed.
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Chapter 4

The segmentation-based approach

4.1 Introduction

This chapter presents our first contribution, 7.e., an approach designed to recognize
texts in images and videos. The main idea of this approach consists in segmenting
the text image into individual characters before recognizing them. In contrast with
existing methods, this OCR technique first performs a nonlinear character segmenta-
tion taking into account the local morphology of text images. Moreover, the proposed
OCR relies on a robust character recognizer based on a neural classification model
and integrates some linguistic knowledge in order to improve its performance.

Fig. 4.1 depicts the outline of this approach that involves three processing steps.
The next four sections (namely sections 4.2, 4.3, 4.4, and 4.5) describe these different
steps and their interactions within the recognition scheme. The experiments achieved
to evaluate our method and their results are presented and discussed in section 4.6.
Finally, section 4.7 provides some conclusions and highlights the advantages and the
limits of this OCR approach.

Text image

Character segmentation

v

Possible e
segmentations Character recognition 5
N i
Natural language I

Text recognition i =
processmg Language

COrpus

Linguistic
Recognized text knowledge

Figure 4.1: The proposed segmentation-based OCR scheme.
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4.2 Character segmentation

The first step of the proposed OCR consists in splitting the text image into sub-
images. The aim of this character segmentation step is to obtain one sub-image per
individual character, in order to enable a recognition. In this context, the segmen-
tation is crucial for the character recognition process: any error will directly reduce
the recognition accuracy of the OCR system. On the one hand, an over-segmentation
leads to individual characters segmented into two or more parts, hence the recogni-
tion of the characters becomes impossible. On the other hand, an under-segmentation
induces two or more characters fused in an individual sub-image, which don’t permit
recognition.

Considering these issues, we propose a robust segmentation method that permits
to separate characters depending on their local morphologies. To do so, our method
first distinguishes the text from the background taking into account the intensities
of pixels and, in the case of video texts, the temporal redundancy. This processing
produces a fuzzy map that is then used to segment the characters with a shortest
path algorithm. Fig. 4.2 depicts the outline of the proposed character segmentation.

Text image

!

Image intensity analysis

Multi-frame integration

--3  Fusion mechanism

’
’

I~
Fuzzy map

¢

Shortest path-based segmentation

!

Character segmentations

Figure 4.2: Steps of the proposed character segmentation: parts with dotted lines
concern only video texts.



4.2. CHARACTER SEGMENTATION 43

4.2.1 Statistical intensity analysis

In order to find reliable segmentations between characters, a preliminary treatment
that distinguishes the background from the text is required. An image intensity analy-
sis is hence performed. Assuming that pixels of a text image are of two classes—“text”
and “background™—and that intensities of both classes are governed by Gaussian dis-
tributions, a Gaussian mixture model can be fit to the image histogram. Thus the
distribution function related to the image intensity can be expressed as follows:

PImage ([> = Qlpext X PText([7 HText, UText) + QO Back X PBack(I; K Back UBack) (41)

where Pj,,,4c is the distribution of the text image, I is the intensity, Prey: and Ppger
are the Gaussian distributions of class “text” and class “background”, prerr, Orest
UBack and opge are the distributions parameters (mean and standard deviation re-
spectively), and arey and apaer are the distributions weights.

Using the Expectation-Maximization algorithm (EM) [DLR *77], the estimation of
the distributions parameters can be obtained by formalizing the problem as maximiz-
ing the likelihood between a set of observations—namely the image histogram—and
a Gaussian mixture model. Once the EM algorithm converges, estimated parameters
are then used to generate a fuzzy map indicating, for each pixel, its membership de-
gree to the class “text”. To do so, a model is applied such as the membership value
is equal to 0 if I < py, 1 if I > ps and varies linearly between these bounds, with
I the pixel intensity, pu; the mean of the dark distribution and py the mean of light
distribution.

Note that the polarization of the text image (dark text on a light background or
light text on a dark background) is determined by a simple processing that consists in
comparing the intensities of pixels of the two top and the two bottom rows of the image
to the intensities of the four middle rows. In the case of dark text on light background,
the fuzzy map is inverted in order to get a map where pixels are characterized by their
membership degree to the class “text”. Fig. 4.3 shows an example of such a fuzzy map.

In addition to the image intensity analysis, in the case of video data, we decide
to benefit from the temporal redundancy of texts by introducing a multi-frame inte-
gration process. Indeed, texts generally keep the same visual attributes (color, size,
font, etc.) during their appearance while backgrounds can change. Our idea con-
sists in analyzing the temporal variability and, when it is possible, in identifying the
background regions by their observed variability. In subsection 2.2.3, we have dis-
tinguished two main multi-frame integration approaches proposed in the literature:
those based on the averaging technique and those based on the minimum/maximum
integration. Since the first category of approaches is sensitive to noise and complex
background, we define a method based on the minimum/maximum integration that
characterizes the image pixels by their temporal standard deviation. Typically, each
pixel of the detected text is treated separately (without considering its neighborhood)
to analyze its different values while the text is present and hence evaluate its temporal
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Figure 4.3: Image intensity analysis.

standard deviation. Using these results, another fuzzy map indicating for each pixel
its membership degree to the class “background” is generated. Fig. 4.4 illustrates an
example of such a fuzzy map.
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Figure 4.4: Multi-frame integration: obtained fuzzy map; dark pixels are those pre-
senting high variations while bright ones are those with low variations.

Since intensity distributions and temporal variations are two independent sources
of information, we propose to combine the two fuzzy maps described above, in order to
obtain a more accurate membership one. A fusion system, with an adaptive behavior
depending on the values to combine, is therefore required. According to the definitions
in [Yag91], the chosen operator should be conjunctive (with a severe behavior) if both
values are low, disjunctive (with an indulgent behavior) if both values are high and
it should depend only on intensity distribution analysis if the temporal variation is
low. The operator expressed by Eq. 4.2 satisfies these conditions:

if y<th

X
I’ — x, .
He { o(v.y) = garigtioery  Otherwise

(4.2)

where z refers to the intensity analysis result, y refers to the temporal variation result
and th is a threshold determined empirically. o(z,y) is the associative symmetric sum,
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and g(z,y) is a positive increasing function (in our application, g(z,y) is defined as
9(z,y) =z x y).

Three examples of generated fuzzy maps are presented in Fig. 4.5. In example
(A), the temporal variation allows to identify only some regions of the background.
Example (C) illustrates another case in which the intensity analysis is shown to be in-
sufficient to distinguish both classes (this can be explained by a complex background
with some pixel intensities too close to the “text” mean). In both cases (A) and (C),
the combination of the intensity analysis result and the temporal variation result per-
mits to obtain a fuzzy map where the “background” and the “text” are well separated.
Example (B) shows how the combination operation also permits to remove encoding
artifacts observed in the temporal variation result.

(B)
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Figure 4.5: Fuzzy maps combination: (A), (B) and (C) are three examples of texts
detected in videos; (1) the intensity analysis result, (2) the temporal variation result
(white pixels are those with low temporal variation), (3) the fuzzy map obtained after
combining (1) and (2).

As mentioned above, the fuzzy map that has been produced is then used for
the character segmentation step. Note that the color images, which contain further
important information for the character recognition task, are however considered for
the rest of the OCR steps.

4.2.2 Shortest path-based segmentation

Our approach aims at finding nonlinear borders that separate characters while being
well-suited to their different morphologies. The segmentations, which take into ac-
count the size and the shape of the text, permit to enhance the character recognition
rates in the next step and thus improve the OCR performance, as we will show in
section 4.6.

Inspired by [LLP02|, where Lee et al. propose to segment texts in printed docu-
ments by using a projection profiles technique, a topographic feature analysis and a
shortest path algorithm, we define the segmentation as a problem of shortest vertical
path computation in the text image. Considering the fuzzy map generated above ( cf.
subsection 4.2.1) as a grid of vertices (pixels), each segmentation border is computed
as the shortest vertical path containing pixels of low probabilities (i.e., membership
degrees) to belong to the class “text”. Typically, nonlinear segmentation borders are
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Figure 4.6: The shortest path computation: the three allowed directions and their
respective weights.

computed as paths connecting pixels from the top (the first row) to the bottom (the
last row) of the image without crossing any pixel belonging to the class “text” (i.e.,
pixels having a membership degree over a fixed threshold). Paths containing pixels
with a probability value above the threshold (i.e., pixels with a strong probability to
belong to the “text”) are discarded even if they have the lowest accumulated proba-
bilities.

In our shortest path algorithm, from each pixel, only three directions are allowed:
45°,90°, and 135° with respect to the horizontal axis. For each direction ¢°, a weight
;o is assigned empirically. Note that ays0. = agzse, while agge # ayso (c¢f. Fig. 4.6).
Typically, assuming that each pixel in the fuzzy map is identified by its coordinates
(x,y) and characterized by its membership degree I, the shortest path Path(S) which
starts from the pixel S of the top of the image is computed with the following formula:

Path(S) = {Ai | Aipq = argmax (aa, ) - Ip), V0 <i < n} (4.3)
B

1€{0,...,n}
where Ag is S the first pixel in the path Path(S), B is a pixel of the image, neighbor
of A;, that satisfies the two conditions |rp —x4,| < 2 and yp = ya, + 1, a4, B) is
equal to agpe if zp = x4, and to ays. otherwise, and n is the number of pixels in
Path(S) and is equal to the height of the text image.

In order not to compute shortest paths from every pixel in the top line of the
image, and to avoid over-segmentation, a criterion of minimal distance (proportional
to the height of the text image) between the first vertices of two successive paths is
used.

The resulting segmentation borders are characterized by the value of their highest
pixel probability (i.e., the pixel with the highest probability of belonging to the class
“text”). This value is called the score of the path. Two categories of segmentation
borders are distinguished depending on their scores:

e “Accurate” borders which correspond to paths with low scores (i.e., under a
threshold set empirically). These paths are considered as corresponding to cor-
rect separations between two characters.
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Figure 4.7: An example of nonlinear segmentations: “accurate” ones are shown in
green and “risky” ones are shown in red.

e “Risky” borders which correspond to paths with higher scores. These paths will
be questioned later relying on further information in order to remove ambigui-
ties: character recognition results (cf. subsection 4.3) and linguistic knowledge
(cf. subsection 4.5).

Fig. 4.7 illustrates an example of the obtained nonlinear segmentations. As shown
in this figure, “risky” segmentations (drawn in red) can correspond either to an over-
segmentation (e.g., the 't” or the ’d’) or to a correct separation between two touching
characters on a complex background (e.g., “rt”).

According to the survey of character segmentation techniques presented by Casey
et al. [CLO2| (see section 2.3), our method can be considered as a hybrid method which
takes advantages of both “dissection” and “recognition-based” techniques. Indeed,
“accurate” segmentations are obtained by an intelligent process including an analysis
of the image but without any symbol classification. Thus, they can be considered as
deriving from “dissection” techniques. In contrast, “risky” segmentations that will be
discussed in accordance with recognition results can be considered as derived from
“recognition-based” techniques.

4.3 Character recognition

Once segmentation borders are computed, character images are generated by extract-
ing the segmented area and filling out the remaining pixels with the mean background
value. Obtained characters have then to be recognized. Among the state-of-the-art
approaches dedicated to the problem of character recognition in color and in gray scale
images, the dominant methodology consists first in binarizing the images and then
extracting visual features to recognize characters. The main drawback of this kind
of methods is that binarization may fail when the background is complex, leading to
poor recognition rates. Unlike these techniques, we propose to rely on a neural classi-
fication approach, based on Convolutional Neural Networks, able to learn to extract
appropriate descriptors and to recognize the character at the same time, without any
binarization step.

Before describing our character recognizer, a brief introduction to Convolutional
neural networks is presented.
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Figure 4.8: The perceptron’s structure.

4.3.1 Convolutional neural networks

Convolutional neural network is a special form of Artificial Neural Networks. This
section starts by introducing Artificial Neural Networks, then presents convolutional
networks and details their use.

Artificial Neural Networks (ANNs) correspond to a machine learning technique
that has been inspired by the human brain and the functioning of its biological neu-
rons. Similar to a human brain, an ANN is a trainable model that consists in a set
of units, called artificial neurons, connected together to perform a specific task.

The basic neural unit, illustrated in Fig. 4.8, was proposed by Rosenblatt [Ros58|
and named perceptron. It has n inputs {z,zs,...,z,} and one output y calculated
as follows:

Y= f(z x;.w; + b) (4.4)

where w; is the weight of input z;, b is a bias and f is a differentiable function called
the activation function. Among the most common activation functions, the linear
function, the sigmoid and the hyperbolic tangent are distinguished.

The Multi-Layer Perceptron (MLP) |[RITWE&G|, formed by a group of intercon-
nected perceptrons, is the most common ANN. As shown in Fig. 4.9, a MLP consists
in an input layer (containing the vector of inputs), one (or more) hidden layer(s)
containing perceptrons connected to the input or the previous hidden layer and an
output laver containing perceptrons connected to the last hidden layer.

To perform a given task, an ANN requires a learning phase in order to adjust
its parameters (namely the weights and the biases). Using a training set containing
pairs of inputs and their corresponding outputs, called targets, a training algorithm
is applied to obtain the optimal parameters that enable the network to model the
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Figure 4.9: An example of a MLP’s architecture.

dependency between the inputs and their targets. Among the training algorithms,
the most popular is the back-propagation algorithm [Wer00] that defines an error
function equal to the Mean Square Error (MSE), and uses a gradient descent technique
to minimize this error and hence estimate the weights and biases. The training phase
is done by alternating two steps: the forward pass which consists in evaluating the
outputs of the given inputs and the backward pass which updates the parameters
propagating the error relative to targets back through the network.

Though MLPs have shown a great ability to perform complex tasks, their appli-
cation remains limited to vectors of inputs. In particular, they are not adapted to the
case of image data since they are not able to take in consideration any spatial infor-
mation. To overcome this difficulty, some works have proposed to use hand-crafted
feature extractors that generate vectors of features. These vectors can then feed a
MLP network. However, the major issue of this solution is to design the appropriate
feature extractor able to produce the relevant information from the input image.

Convolutional Neural Networks, hereafter ConvNets, are a special form of ANN
introduced by LeCun et al. |[LB95], in order to tackle this problem and extend the use
of MLPs to the case of images. ConvNets are biologically-inspired architectures by
the mammalian visual cortex. Their basic idea is to define a model able to recognize
visual patterns directly from the image pixels without any preprocessing step. To do
so, ConvNets rely on three key ideas:

e the concept of local receptive fields that enables the network to extract elemen-
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tary visual features (such as edges, corners, etc.).

e the weights sharing technique that reduces the number of parameters and hence
improves the generalization ability of the network, also reducing the computa-
tional cost (since the number of trainable weights is reduced).

e the sub-sampling in the spatial domain which permits to reduce the sensitivity
to some geometrical transformations such as shifts. It also reduces the compu-
tational cost.

Typically, a ConvNet is designed to take as input an image, whose values are
normalized between —1 and +1, connected to a cascade of convolutional and sub-
sampling layers, followed by a classical MLP. Each layer consists of a set of maps
resulting of either a convolutional or a sub-sampling or a neuron operation. An
example of such an architecture is given in Fig. 4.10. During the training phase, the
ConvNet jointly learns to extract the appropriate features descriptors (convolution
and sub-sampling layers) and to perform the desired classification (MLP layers).

Due to its robustness to noise, deformations, translations and scale variations, this
model has proved a great ability to deal with a large number of extremely variable
patterns. In the literature, ConvNets were tested on several pattern recognition tasks
|[LICE10] including face detection [(GD04], document analysis |[SSJ03] and character
recognition in handwritten documents [LBBI98] and in color images [SGO7a].

4.3.2 Network architecture and training

Because of its ability to deal with large image datasets and its great robustness to
deformation and noise, we choose a ConvNet as a classification model for our character
recognition problem (a comparison with other classification methods will be done in
subsection 4.6.1).

For each character dataset (CharDatasetl and CharDatasetIl described in chap-
ter 3 respectively in subsections 3.1.2 and 3.2.2), several network architectures were
tested in order to obtain the optimal ConvNet that avoids overfitting problems and
increases the generalization ability of the system. At the end of these tests, a hetero-
geneous ConvNet architecture, called CRConvNet for Character Recognizer ConvNet,
was chosen for each dataset.

Each of the CRConvNets takes as input a color character image mapped into
three maps of size T x T pixels (T is fixed to 36 and 48 respectively in the case
of CharDatasetl and CharDatasetll, these values are determined depending on the
average size of image examples of each dataset). Each map, whose values are normal-
ized between —1 and 1, represents a channel (R, G or B). The hidden layers of the
CRConvNets consist of five layers. The two first ones, a convolutional (with kernel
masks of size 5 x 5) and a sub-sampling layer, can be interpreted as feature extrac-
tors; i.e., the first one analyzes the character image and extracts its low visual features
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Figure 4.10: The CRConvNet architecture; Conv means convolution.

(like corners or edges), while the sub-sampling step reduces the sensitivity to affine
transformations. Each of these layers generates n; feature maps connected to the
following layers. Once extracted, visual features can be combined taking into account
their spatial relationships. This step is ensured by the two next convolutional (with
kernel masks of size 5 x 5) and sub-sampling layers. ny new feature maps are then
generated and connected to a classical 2-layer MLP that enables the classification de-
cision. CRConvNets return vectors of outputs of size N, corresponding to the number
of considered character classes (namely 41 and 36 respectively for CharDatasetl and
CharDatasetII). The neurons of the output layer use the hyperbolic tangent, defined
by Lecun et al., as an activation function and return values, between —1.7 and 1.7,
that encode scores of the input image to belong to the given character classes. The
recognized character is finally determined as the class obtaining the highest output
value. Fig. 4.10 shows a CRConvNet and illustrates its architecture.

The designed networks were trained to learn to extract appropriate visual features
and classify images of single characters. The parameters of the ConvNets (convolu-
tion coefficients, biases and connection weights) are adjusted using the error back-
propagation algorithm. Classically, each image dataset is divided into three sets: a
training and a validation sets used for the training and a test set used to evaluate the
performance of the trained network. At each iteration, a color image of the training
set is presented to the network and a mean square error term is computed as:
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1 N
MSE = < ;(oi —d;)? (4.5)

where o; is the output value of the neuron i, and d; is its desired value (target), which is
set to 1if 7 corresponds to the character’s class and to —1 for other neurons. The error
15 then back-propagated in the network layers and the parameters are updated. At
each epoch!, a classification error rate is evaluated on the training and the validation
sets in order to control the generalization and the overfitting. Once the training phase
is finished, the classification performance of the obtained ConvNet is evaluated on the
test set (not used in the training phase).

Fig. 4.11 shows examples of character images recognized with the CRConvNet
trained on CharDatasetl. In general, the recognized class is often obtained with a
positive score close to 1, while the score of the remaining classes are negative and
close to —1. However, for the character “t” the recognized class is “t” with a score of
0.08 and the second best response of the CRConvNet is “f” with a score of —0.057.
The too close scores illustrate a strong ambiguity between these two classes, and the
CRConvNet encounters a difficulty to distinguish between them.

In our text recognition scheme, the trained CRConvNet is applied to all segmented
characters of the text image. When between two successive “accurate” segmentations
(see section 4.2.2), “risky” ones (red separations in Fig. 4.12 - (A)) are observed, the
CRConvNet is applied to all possible characters when keeping and removing each
risky segmentation. Fig. 4.12 - (A) and (B) illustrate the segmentation step results
and all the candidate characters on which the CRConvNet is applied.

4.4 Text recognition

Text images are thus segmented into individual characters recognized using the CR-
ConvNet. Focus can now be put on the recognition of the whole texts (single words
and sentences) detected in videos or extracted from scene images.

Since text images are segmented into separated characters, we intuitively combine
individual character recognition results and recognize texts as the sequences of rec-
ognized characters. In subsection 4.2.2, two categories of segmentation borders were
distinguished: “accurate” and “risky” ones. In our text recognition process, characters
located between two “accurate” segmentations (green separations in Fig. 4.12 - (A))
are recognized and considered as letters of the text. However, characters segmented
with one or two “risky” segmentations are analyzed to decide which ones correspond
to correct characters and have to be added to the text. To do so, all the responses
of the CRConvNet applied on each character candidate are first considered (all arcs
in Fig. 4.12 - (B)). Different propositions of words are then tested and evaluated by

TAn epoch is a set of iterations corresponding to the presentation of all the training images to
the network.
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Figure 4.11: Examples of recognized characters with the CRConvNet: each line illus-
trates an example of a character image and its corresponding 6 best results (character
class in blue and score in pink) obtained with the CRConvNet, the class“ " represents
the class “space”.

scores calculated depending only on the CRConvNet’s outputs. The word config-
uration that obtains the highest score is selected. At this stage of the processing,
for each possible segmentation, only the best response (i.e., the class obtaining the
highest probability) of the CRConvNet is considered while the rest of the responses
is ignored.

As shown in Fig. 4.12, even though errors related to “risky segmentations” are
reduced, confusions between similar characters are still present (such as the “v” rec-
ognized as a “y”). In section 4.5, we show how to introduce linguistic knowledge able

to drive the recognition scheme and to tackle these character confusions.

4.5 Integration of linguistic knowledge

To reduce the remaining errors still produced by our recognizer, we propose to benefit
from the lexical context and incorporate some linguistic knowledge to drive the whole
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Figure 4.12: An example of recognized text: (A) the segmented text image: green

and red separations represent respectively “accurate” and “risky” segmentations, (B)

characters candidates: green arcs illustrate characters located between successive “ac-
curate” segmentations and red dotted arcs represent different possible configurations

of characters related to “risky” segmentations, and (C) the recognized text.

recognition scheme. Using this further information, we aim at tackling remaining
difficulties related to character recognition (due to confusion between similar charac-
ters, and to the local character by character recognition) and at removing ambiguities
related to risky segmentations and to low quality images.

In this context, statistical language models seem to be well adapted to our recog-
nition task enabling the incorporation of linguistic properties in recognition schemes.
This section first introduces the fundamentals of the language model (namely a n-
gram one) and then details its integration in our text recognition scheme.

4.5.1 The n-gram language model

Widely used for speech transcription and natural language processing applications like
machine translation, n-gram models have demonstrated a strong ability to improve
recognition performance by considering the lexical context |[BBdSNO02|. They are the
most common technique of statistical language modeling [VNS99] and aim at detecting
the regularities of a given language. Relying on a statistical analysis of a large corpus,
n-gram models permit to evaluate the a priori probability of a given succession of N
items (which can be characters, phonemes or words). Hence, they allow to predict
the following item to be recognized given the items that have just been analyzed.

Assuming that the goal is to find the sequence of items X which maximizes the
probability p(X|signal), where X is a sequence of items and signal is the given input
signal (speech, text, image, etc.), the Maximum A Posteriori (MAP) approach can be
applied to express the problem as follows:

X = argmax p(X |signal) = argmax p(signal| X) - p(X) (4.6)
X X

where p(signal|X) is the a posteriori probability of the signal given the recognized
item sequence X, and p(X) is the a priori probability of X. The first term p(signal| X)
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is derived from the signal analysis, while the second one p(X) is obtained from the
language model and can be formulated as follows:

p(X) = Hp(mdﬁf’(h(’i))) = HP($1|$1372---%‘—1) (4.7)

where ¢(h(i)) is the context of the item x; and corresponds to the sequence of items
T1Ty...x;_q that precedes z;. Since ¢(h(2)) can contain an important number of items,
an infinite number of different contexts @¢(h(z)) is possible and hence the estimation
of the probabilities is extremely hard. The n-gram model provides a solution to this
problem by assuming that an item only depends on its n — 1 predecessors. Thus, the
context history ¢(h(z)) can be reduced to the n — 1 items preceding z; and Eq. 4.7
‘an be rewritten into:

p(X) = ][ p@il(ha(@) = ] ] p(@ili-ninsr...ais) (4.8)

Generally, the probabilities p(z;|Z; _pnZ;_py1..-2;_1) can be estimated via the statis-
tical analysis of a corpus. Nevertheless, when some possible n-grams does not occur
in the corpus, the statistical analysis is not able to evaluate their probabilities to
be observed and affects zero, while this is inaccurate. To handle this problem, sev-
eral techniques, called smoothing |C'GO6], were proposed to adjust the estimation of
the language model, and hence to produce more accurate probabilities for missing
n-grams.

In practice, the order n of a n-gram model is usually equal to 2 (a bi-gram model),
3 (a tri-gram model) or 4 (a quadri-gram model), rarely beyond because such model
requires a huge volume of data, necessary to reliably estimate probabilities of large
context histories.

4.5.2 Integration of the language model

For our recognition problem, since single words or short sentences are considered, a
character n-gram model is chosen to estimate the probabilities of sequences of letters in
a given language. These probabilities are then integrated into our recognition frame-
work to manage relationships between successive characters. Hence, when evaluating
words scores (defined in section 4.4) these joint probabilities of character sequences
are introduced to adjust transitions between characters and weight the different word
propositions.
Typically, Eq. 4.6 becomes:

A

C' = argmax p(signal|C) - p(C) (4.9)
c

where C' is the sequence of characters present in the image, p(signal|C) is the a
posteriori probability of signal (namely the image) given the character sequence C'.
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This probability is computed from the character recognition results (i.e., the outputs
of the CRConvNet) using a classical softmaz function, as follows:

_ B exp(output(s;|c;))
p(signal|C) = Hp(si|cl H S exploutput(s,|c;)) (4.10)

where c¢;, s; and output(s;|c;) are respectively the " character of sequence C, its
image and its corresponding CRConvNet output (see section 4.3.2).
P(C) is obtained from the character n-gram model (as in Eq. 4.8) and is expressed

as follows:
Hp CZ|¢ Hp Czlcz nCi— n+1-- .Cij— 1) (411)

where p(ci|ci_nci_n+1...ci_1) is the probability to observe ¢; given its context history
Ci—nCini1---Ci—1. In our experiments, using the SRILM toolkit [Sto02|, two n-gram
language models one for the French language used for Datasetl and one for the
English language for Datasetll were trained to learn these joint probabilities of
character sequences on two corpora of about respectively 10,000 French words and
11,000 English words. For our language training, we have tested several smoothing
techniques (namely absolute discounting backing-off, Kartz’s method [[<at87], Kneser-
Ney’s method [KN95], and Chen and Goodman’s method [CG96]); best performance
was obtained with Chen and Goodman’s technique.

Because probabilities are low (between 0 and 1), their logarithm (between —oo
and 0) is preferred, and two coefficients v and § are introduced as follows:

C = argmaﬂfz log(p(silci)) + 7 - log(p(cilo(hn(i)))) + 0) (4.12)

where ¢(h, (7)) corresponds to the sequence ¢;_,¢;_pi1...ci1. 7, called the Grammar
Scale Factor, encodes the weight of the language model and serves to balance the
influence of the linguistic knowledge in our OCR system. The parameter ¢ was incor-
porated to compensate the over- and sub-segmentations by controlling the lengths of
word candidates.

As shown in Fig. 4.13, for each word, a recognition graph is built in order to
determine the most probable word hypotheses that correspond to the image. For
each segmented region, the five best recognized characters are considered with their
CRConvNet outputs. Each segmentation hypothesis is represented by a node where a
set of optimal character sequences is generated and characterized by a score that com-
bines recognition results, language model probabilities and segmentation hypotheses.
Note that for each “risky” segmentation two paths in the graph are investigated, keep-
ing and removing this segmentation. The best word candidates are determined using
the Viterbi algorithm.

For TextDatasetl, since text images can contain sentences or sequences of words,
texts are first divided into single words using the class space (presented in chapter 3),
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Figure 4.13: An example of recognition graph: dots correspond to segmentation
borders, arcs illustrate some transitions between sequences of characters, values under
each sequence of characters are their scores computed with Eq. 4.12, and words in
green are words in the dictionary.

then each word is treated separately. For this dataset, word propositions are finally
checked against a French dictionary, containing about 400, 000 words including named
entities, and the recognized word is identified as the word belonging to the dictionary
and having the best score. If no proposition is found in the dictionary, the word
with the highest score is chosen. Notice that the use of a dictionary is not integrated
for TextDatasetIl because this scene image dataset contains an important number of
texts that do not belong to the dictionary (such as acronyms, etc.).

Fig. 4.13 illustrates an example of recognized words and their corresponding tran-
sitions.

4.6 Experimental results

This section reports several experimentations carried out on Datasetl and DatasetIl.
First, an evaluation of our neural classification approach for the character recognition
task is presented, and a comparison with a SVM-based method is provided. The
complete recognition scheme for texts (words and sequences of words) is then tested
and evaluated on the “caption” and “scene” text datasets. The particular impact of
the language model is finally investigated.
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Table 4.1: Performance of different ConvNet architectures tested on CharDatasetl
(evaluated on the test set): ny, ny and ng corresponds to the numbers of the maps
and the neurons of the network (see Fig. 4.10) and RR means Recognition Rate.

ny | ns | ny | Character RR
10 | 15| 60 87.17%
12125 ] 80 98.04%
15| 30 | 120 89.96%

Table 4.2: Classification performance of the CRConvNet (evaluated on the test sets):
RR means Recognition Rate.

Character RR
CharDataset]l | CharDatasetIl
CRConvNet 98.04% 85.13%

4.6.1 Performance of the proposed character recognizers

The training and evaluation of the CRConvNets are performed on CharDatasetl and
CharDatasetIl. In both experiments, the datasets are divided randomly into three
sets: a training set containing 80% of the images, a validation set and a test set, each
containing 10% of the images. The first two sets are used to train the CRConvNets (as
explained in subsection 4.3.2, two sets are necessary to control the training stage and
to avoid overfitting) while the last one serves to evaluate the recognition performance.

In our experiments, several architectures of CRConvNets were tested on the same
sets in order to obtain the optimal network that avoids both underfitting (when the
network parameters are not sufficient to learn to classify all character classes) and
overfitting (when the network starts to memorize images of the training set instead
of learning to generalize). We report in Table 4.1 some results obtained on Charac-
terDataset]l with different architectures, varying the number of maps and neurons in
the network.

Table 4.2 shows the classification results of the optimal configuration for each char-
acter dataset. These results are obtained after the training phase when evaluating the
CRConvNets on the test set (not used in the training phase). Performance of both
networks exceeds 85% of character recognition, a rate which allows to efficiently inte-
grate our recognizers in the complete recognition scheme. A 13% difference between
the results obtained on CharDataset] and CharDatasetIl can be noticed. This differ-
ence can be explained by the high variability of “scene” texts characters compared to
“caption” texts characters (see Fig. 4.14).

We have also compared ConvNets and SVM classification performance for the
character recognition task. Dorai et al. in |[DASO1| have tested the ability of SVM
models to recognize characters embedded in videos, but evaluated their performance
on a dataset different from ours. Hence, to provide a meaningful comparison, both
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Figure 4.14: Examples of characters of CharDataset]l and CharDatasetII.

classification approaches were tested on the same databases of images, CharDatasetl
and CharDatasetlIl, and under the same conditions (without extracting any features,
images are considered as input vectors of each model).

Our SVM implementation was based on the software package LIBSVM [CL11],
which was adapted to our datasets, to take the images as input. Using the RBF
(Radial Basis Function)? kernel and a one-vs-all protocol, several configurations of
the SVM were experimented, with different values for the parameters® C and +.
Table 4.3 depicts experimented SVM models and provides their results.

Table 4.3: Recognition rates of SVMs on a dataset of single characters: RR means
Recognition Rate, C the penalty term, and SV Support Vectors.

SVM Id | C | Number of SV Character RR

CharDataset] | CharDatasetIl
SVM 1 |1 9,215 75.46% 67.60%
SVM 2 | 2 8, 544 81.18% 72.30%
SVM 3 | 3 8,091 80.65% 74.94%

We can see that the recognition rates of the CRConvNets are higher than those

2The radial basis function is a particular function whose values are calculated depending on the
distance to a center (namely the center of the kernel).
3The penalty parameter C of the SVM permits to control the trade off between allowing training

errors and forcing rigid margins.



60 CHAPTER 4. THE SEGMENTATION-BASED APPROACH

of SVMs. For CharDatasetl, the CRConvNet achieves a recognition rate of 98.04%,
while the highest rate obtained with SVMs is 81.18% (SVM 2 model). Furthermore,
in terms of trainable parameters, the CRConvNet requires 16, 732 parameters, while
SVM 2 needs 8,544 support vectors with 11,073,024 stored parameters. The same
remarks hold when comparing the performance of the CRConvNet (about 85% of
character recognition rate) and SVM models (less than 75%) on CharDataset IL
Hence, we can conclude that, for this application (character recognition), ConvNets
vield better classification performance with lower complexity than SVMs.

4.6.2 Performance of the segmentation-based OCR

Using the trained CRConvNets, we focus on the evaluation of the whole segmentation-
based OCR tested both on TextDatasetl and TextDatasetIl. Results are reported in
table 4.4.

First, notice that character recognition rates are lower than those obtained in ta-
ble 4.2 (from 98.04% to 95.33% in the case of Datasetl and from 85.13% to 65.33%
in the case of Datasetll). This is simply due to the fact that CharDatasetl and
CharDatasetlII only contain perfectly segmented characters, whereas in the complete
scheme some segmentation errors can appear.

Table 4.4: Recognition performance of the segmentation-based OCR: RR means
Recognition Rate.

TextDataset] TextDatasetIl
Character RR | Word RR | Character RR | Word RR
segmentation-based OCR 95.33% 87.83% 65.33% 41.19%

Experimentations carried out on TextDatasetl ( ¢f. table 4.4) show that the pro-
posed OCR performs well on embedded texts with more than 95% of good charac-
ter recognition rate. This demonstrates that when the character segmentation step
works well (on text with small distortions like “caption” texts), it enhances the fol-
lowing phases and leads to better recognition performance. On the contrary, results
obtained on natural “scene” texts (i.e., TextDatasetIl) show a large difference be-
tween both datasets. While, the proposed OCR achieves a word recognition rate of
about 88% on TextDatasetl, it only obtains 41% on TextDatasetIl. This result can
be explained by three facts:

e The complexity of TextDatasetIl which makes the recognition task more chal-
lenging.

e The fact that the character recognizer performs better for CharDatasetI (98%
versus 85%).
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e The drawbacks of the character segmentation step where any error directly in-
duces a drop in the recognition accuracy. Particularly, in the case of natural
“scene” text, images are usually affected by various distortions which make the
segmentation very hard and thus lead to errors such as false segmentations con-
sidered as “accurate” ones that over-segment characters, or to confusing “risky”
segmentations. Fig. 4.15 illustrates some examples of these errors.

A FLASHE N3 Y
RUGBY

Figure 4.15: Examples of segmentation errors produced on TextDatasetIl: (A) the
“scene” text image, (B) the obtained segmentations drawn on the fuzzy map (green
and red separations represent “accurate” and “risky” segmentations).

Generally, the few remaining errors on TextDatasetl can be explained by some
character confusions between visually similar characters and some character segmen-
tation errors. Regarding the errors produced on TextDatasetIl, the strong distortions
of an important number of images and the small sizes of some of them reduce con-
siderably the recognition performance while the crucial character segmentation step
remains the major cause of errors.

We also compared the performance of our approach with state-of-the-art methods
[SGD09, WBI10] and commercial OCR engines (ABBYY FineReader OCR and Tesser-
act OCR). Results of these comparisons are reported in table 4.5. Since Saidane et
al. |SGD09] and Wang et al. [WB10] have designed their methods to recognize single
words in natural scene images, comparisons with these previously published state-
of-the-art methods are done only on the public database ICDAR 2003 (the “caption”
texts video dataset contains mainly images with sentences). In these comparisons, two
more experiments were performed on TextDatasetIl, evaluating the word recognition
rate as in [SGD0Y| and [WB10] (as a reminder experiments reported in table 4.4 have
been done on the full TextDatasetIl). The segmentation-based OCR is hence also
evaluated on the 901 images selected in [SGD09| (Expl) and on the 1,065 images se-
lected in [WB10| using the same lexicon, created from all the words that appear in the
test set as in |[WB10| (Exp2). These different tests show that our segmentation-based
OCR yields word recognition rates close to the ones obtained by other state-of-the-art
methods. Indeed, our method and Saidane et al.’s one obtain similar word recognition
rates (with less than 1% of difference) and fail to recognize almost the same texts,
where both segmentation methods produce false separations between characters. Re-
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Table 4.5: Comparison of the proposed OCR systems to state-of-the-art methods and
commercial OCR engines: CRR and WRR mean respectively character and word
recognition rates (only WRRs are reported for experiments on TextDatasetIl, since
Character RRs are not provided for other methods).

TextDataset I TextDataset 11

OCR system Expl Exp2

CRR WRR | WRR | WRR

Segmentation-based OCR | 95.33% | 87.83% | 53.28% | 59.63%
Saidane et al. [SGDOY) - - 54.13% -

Wang et al. [WB10)] - - - 59.20%

ABBYY FineReader OCR 95.03% | 87.70% - 42.80%

Tesseract OCR 88.57% | 70.01% - 35.00%

garding Wang et al.’s method, even though it avoids any segmentation step, it obtains
nearly the same performance as the one achieved with our OCR scheme.

Concerning commercial OCR systems, namely ABBYY FineReader and Tesseract,
notice that, due to practical issues, these OCRs were not trained on the same datasets
as our. As shown in table 4.5, results achieved on “caption” texts in TextDataset [
show that the OCR that we propose outperforms the Tesseract OCR with more than
+17% of words correctly recognized. Regarding ABBYY FineReader, this system ob-
tains a word recognition rate of 87.70% (corresponding to 95.03% of character recog-
nition rate) which is slightly lower than the one obtained by our segmentation-based
OCR system (i.e., 87.83% and 95.33% of word and character recognition rates). In the
case of “scene” texts in TextDataset II, ABBYY FincReader and Tesseract evaluated
by Wang et al. |WB10| obtain poor results with less than 45% of word recognition
rate. Compared to this performance of commercial OCRs, our OCR achieves far
better performance with more than +17% of word recognition rate. Hence, despite
ABBYY FineReader achieves good results on “caption” texts, our OCR system proves
its great ability to handle both “caption” and “scene” texts.

4.6.3 Contribution of the linguistic knowledge

In the previous subsection, we have given the performance of the full proposed OCR
scheme and compare its performance to those of other existing methods and some
commercial OCR engines. In this subsection, in order to better understand the ca-
pacities of our OCR scheme we focus on the evaluation of the contribution of the
linguistic knowledge that has been incorporated in, i.e., the language model and the
use of the dictionary. We first present the determination of the optimal n-gram model
(with its best parameters), then evaluate its influence on the recognition performance.
The use of a dictionary is finally investigated highlighting its contribution.

In Eq. 4.12, two parameters v and § were introduced to control the relative impor-
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tance of the language model and the segmentation hypothesis. Different experiments
were performed to determine their optimal values. The best performance was ob-
tained with v = 0.2 and § = 2. Notice that when ¢ is low (under 2), recognition rates
tend to decrease due to sub-segmentation, and when it is high (over 2), recognition
rates also decrease because of over-segmentation.

In order to evaluate the influence of the parameter n (the order of the n-gram
model, which corresponds to the length of the considered character context history),
bi-gram (estimating about 1,350 probabilities), tri-gram (estimating about 12,800
probabilities) and quadri-gram (estimating about 200, 000 probabilities) models were
experimented. Notice that these experiments where performed integrating the trained
language models but no dictionary in order not to influence their contribution by
another source of linguistic knowledge.

As shown in table 4.6, the best word recognition rate for both datasets is obtained
with the tri-gram model. Actually, the poor context (only one predecessor) in the
bi-gram model, even if it improves the recognition results, seems not to be sufficient
to remove ambiguities related to the local character by character recognition. The
quadri-gram model also permits to increase the performance of the baseline system
(without any language model). However, it does not improve results compared to the
tri-gram model which is less complex. For these reasons, the tri-gram model is chosen
for the rest of the experiments.

Table 4.6: Evaluation of the influence of the order of the character n-gram model on
the recognition performance: baseline system corresponds to our OCR without any
linguistic knowledge.

n-gram TextDatasetl TextDatasetIl
Character RR | Word RR | Character RR | Word RR
Baseline system 88.14% 63.04% 61.12% 34.75%
Bi-gram 91.83% 67.53% 62.58% 36.28%
Tri-gram 95.56% 85.80% 65.33% 41.19%
Quadri-gram 94.01% 80.64% 63.91% 38.46%

When incorporated in the OCR scheme (¢f. table 4.6), the tri-gram model permits
to improve the recognition performance on both TextDatasetl and TextDatasetIl by
respectively about 22% and 7% of word recognition rate. Fig. 4.16 presents some
corrections obtained with this integration; some confusions between similar characters
(e.g., 0" and “j”) are removed, and over-segmentations (e.g., for “r”) are eliminated.
However, errors associated with “accurate segmentations” (e.g., the space between
“T” and “0” in the word “Toyota”) remain difficult to correct and generally the system
fails to find the right word.

Finally, we evaluated the impact of the use of a dictionary—another kind of lin-
guistic knowledge—for TextDatasetl. Obviously, experiments demonstrated that our

system can be improved when a dictionary is used (c¢f. table 4.7). They also show




64 CHAPTER 4. THE SEGMENTATION-BASED APPROACH

ROLYNESIE POLVNESIE POLYNESIE
hijouternes BIIOUTERIES BIJOUTERIES
INTEFTNEY INTERNET

L OVOTA L OVOTA
(b) (c)

Figure 4.16: Examples of texts recognized by the segmentation-based OCR: (a) seg-
mented images, (b) results before integrating the language model and (c) results after
the integration of the language model (tri-gram).

that the combination of the two sources of linguistic knowledge—the language model
and the dictionary—results in the best performance, yielding a character recognition
rate of 95.33% and a word recognition rate of 87.83%. The slight drop in the charac-
ter recognition rate (by about 0.23%) can be explained by the fact that some words,
initially recognized correctly, but absent from the dictionary (like named entities),
are finally replaced by other wrong but lexicalized propositions. Note that, for the
intended applications, such as news indexing, we can expect to update a dictionary
by automatically adding new named entities (such as names of persons, events, titles
of films, etc.).

Table 4.7: Improving recognition performance by using a dictionary (LM means Lan-
guage Model and Dic Dictionary).

TextDatasetl
Method Character RR | Word RR
OCR (baseline system) 88.14% 63.04%
OCR+LM 95.56% 85.80%
OCR-+LM+Dic 95.33% 87.83%

4.7 Conclusion

In this chapter, we have presented our first OCR scheme dedicated to texts embed-
ded in videos or captured in scene images. This scheme, called segmentation-based
OCR, relies on a character segmentation step that permits to separate characters
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before their recognition. The first contribution of this system lies in the computa-
tion of nonlinear segmentation borders well adapted to the local morphology of the
text image. These segmentations permit to separate characters reliably and hence
enable good recognition performance. In contrast to the dominant methodology that
recognize characters by means of hand-crafted features, our approach proposes a neu-
ral classification model able to learn to deal with extremely various character images
without any preprocessing step. This recognizer provides outstanding results and out-
performs methods relying on SVM models (98.04% and 85.13% compared to 81.18%
and 72.30% of character recognition rate on “caption” and “scene” character images).
From character to text, another strength of our OCR system lies the integration of
linguistic knowledge (namely a language model and a dictionary) that supervises the
complete recognition scheme taking into account the lexical context. This knowl-
edge allows to reduce segmentation errors and recognition ambiguities, and hence to
improve the system performance.

The proposed OCR system was tested on two datasets of “caption” texts extracted
from digital videos and “scene” text images. Experiments showed that our approach
performs well on “caption” texts achieving good performance that exceeds 87% of
word recognition rate. However, results obtained on “scene” texts remain poor (with
a word recognition rate of about 41%). These results highlight limits of the character
segmentation step. Indeed, when the segmentation fails to find the correct separa-
tion between characters, it automatically induces a recognition error. In the special
case of “scene” text images, that often present various kinds of distortions, several
segmentation errors are produced, directly decreasing the recognition performance of
the complete OCR scheme. In the following chapters, we explore segmentation-free
approaches to tackle this issue.
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Chapter 5

The segmentation-free approach

5.1 Introduction

Our first OCR system relied on the segmentation of text images into individual char-
acters. Though characters are segmented depending on the local morphology of the
image, enabling more accurate recognition, in the case of text images with strong
distortions (such as natural “scene” texts, see Fig. 4.15), recognition performance re-
mains low. This fact can be justified by the character segmentation step that can
lead to potential under- or over-segmentations producing several recognition errors
(the analysis of remaining recognition errors demonstrated that over 62% of them are
due to wrong segmentations).

In order to tackle this difficulty, we propose a second OCR system that avoids any
explicitly character segmentation and addresses the problem in a way different from
main prior approaches (that are segmentation-based). Using a multi-scale scanning
process, our second method recognizes characters directly at their appropriate scale
and position within the whole text image.

Text image
Multi-scale image scanning
v
Window classification ||
: Ej
Text recognition Natual Ian_guage
S processing Language
\ Linguistic corpus
Recognized text knowledge

Figure 5.1: The segmentation-free OCR scheme.

This chapter presents this text recognition approach and details its different steps.
As shown in Fig. 5.1, text images are first scanned using sliding windows at various
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scales (¢f. section 5.2). Obtained windows are then classified ( ¢f. section 5.3) and rep-
resented by means of a graph model in order to recognize texts ( ¢f. subsection 5.4.1).
Some linguistic knowledge is also incorporated within the recognition process to im-
prove the system’s performance (¢f. subsection 5.4.2). The proposed OCR is eval-
uated on both Datasetl and DatasetIl and performance is compared to those of the
segmentation-based approach (presented in chapter 4) and of other state-of-the-art
methods (¢f. section 5.5).

5.2 Multi-scale scanning scheme

In contrast to the dominant methodology that aims at segmenting the text image into
separated characters, our proposal consists in scanning the full text image with sliding
windows. Since the main goal of this step is to cover all characters at their appropriate
position and scale a multi-scale scanning process with windows of different sizes is
performed. By that way, we hope that at least one window will be aligned with each
character within the text image. This section describes the proposed method that
consists in scanning text images at different scales (see subsection 5.2.1) using windows
with nonlinear borders (see subsection 5.2.2) adapted to the local morphology of the
image.

5.2.1 Text image scanning

The first step of our segmentation-free OCR consists in scanning a text image with
sliding windows aiming at covering all characters at their proper position in the image.
To do so, we perform a scanning method in which successive windows are moved from
the left to the right and centered at regular and close positions (not to miss any
character). In our experiments, best results were obtained with a moving step of one
eighth of the image height h.

Furthermore, since characters belonging to a same word can be of different sizes
depending on their labels and their fonts, we consider windows at various scales (i.e.,
windows with different widths) in order to cover different character sizes. Four scales
(namely S; , Sy, S3 and Sy) are used in our experiments, corresponding to window
widths equal to h/4, h/2, 3h/4, and h. Fig. 5.2 illustrates an example of a text image
scanned at these different scales and shows characters framed at their corresponding
scales (e.g., “S” and “e” are framed with windows equal to 3h/4 and h/2 respectively)
and an example of a misaligned window (centered between the “h” and “o” letters).

Using this multi-scale scanning process, several windows are considered per text
image. The total number of windows is determined according to the size of each
image—namely the width w and the height h (in our case 32% — 16 windows). Con-
sidering step = h/8 the moving step of the scanning scheme, the numbers of windows
at each scale are:
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Figure 5.2: Examples of characters well framed at scales Sy (red), Sy (blue), S5
(orange), and Sy (green) and a misaligned window at scale Sy (blue).

Fig. 5.3 illustrates the multi-scale scanning process and shows examples of resulting
sliding windows at scales Sy, Sy, S3, and Sy. The observed overlapping windows can
be explained by the small moving step (step = h/8).

]
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Figure 5.3: Multi-scale text image scanning scheme.

This multi-scale scanning scheme provides for each text image a set of windows. A
classification step (see section 5.3) is then required to analyze every window, recogniz-



70 CHAPTER 5. THE SEGMENTATION-FREE APPROACH

ing well-framed characters and identifving those containing non-valid ones. Neverthe-
less, before applying this classification, a nonlinear window borders computation ( cf.
next subsection) is integrated in order to clean well-framed character neighborhoods
and hence facilitate the classification.

5.2.2 Nonlinear window borders computation

Although the proposed multi-scale scanning process helps to cover different scales and
positions of characters in the text image, vertical borders of windows can extract also
parts of neighbors of centered characters (e.g., the “0” is present in the first window in
Fig. 5.2). Hence, such linear borders can decrease the performance of window image
classification.

In order to tackle this limit and increase the recognition accuracy of our OCR
system, we propose to adapt the sliding window borders to the local morphology of
the image. The purpose is, when possible, to clean the neighborhood of characters by
removing parts of characters that could be extracted with the centered one. Typically,
at each window position and scale, two nonlinear borders—namely the right and the
left ones—are defined as shortest paths from the top to the bottom of the image.

The computation of these borders is performed using the same processing as for
the determination of the nonlinear segmentations described in the previous chapter
in section 4.2. First, a fuzzy map which encodes, for each pixel, its membership
degree to the class “text” is generated. Using the resulting map, a shortest path
algorithm is therefore applied to compute nonlinear borders following pixels with a
low membership degree to belong to the class “text”.

In contrast to the computation of nonlinear segmentations in chapter 4, since we
need a path for each window border, these paths are allowed to cross pixels with
a high probability to belong to the class “text”. Indeed, in the case of important
image distortions, non-separated characters or misaligned windows, the shortest path
algorithm induces straight vertical borders since pixels in the local area have the same
probability. Resulting borders are finally characterized by a score, corresponding to
the value of their highest pixel probability (the pixel with the highest probability to
belong to the class “background”). These border scores encode their probabilities to
frame correctly the centered character.

Nonlinear borders are then used to remove parts of neighborhood characters, which
are replaced by a uniform value corresponding to the mean of the class “background”
(see section 4.2). By that way, sliding windows with clean neighborhood are generated
enabling an accurate character recognition. Fig. 5.4 shows some obtained sliding
windows with their nonlinear borders and also illustrates an example of a misaligned
window with straight vertical borders. The comparison between the first window
of Fig. 5.4 and the first one of Fig. 5.2 highlights the contribution of the nonlinear
borders of windows that permit, in this example, to remove the “0” and hence make the
recognition of the character “P” easier. In section 5.5, we demonstrate the contribution
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of these nonlinear borders, evaluating their influence on the whole OCR system’s
performance.

@werShot W%LK ll llj'r_‘ ]

Figure 5.4: Examples of sliding windows with nonlinear borders.

5.3 Window classification

The multi-scale scanning process, applied on each text image, produces several win-
dows of different sizes. The recognition of well-framed characters is thus required to
determine the text present in the image. However, before this recognition, a step of
pre-filtering is necessary to identify the sliding windows containing “valid” characters
and those containing “non-valid” ones.

In this context and for the same reasons as those explained in section 4.3, we
chose to use a ConvNet as a model to classify sliding windows into “valid character”
or “garbage” (i.e., window misaligned with a character, part of a character or interstice
between charac t(‘r%) To do so, for each character dataset—namely (CharDatasetl,
GarbDatasetI) and (()hd[‘ddtd&(lt]:]:, GarbDatasetII) described respectively in subsec-
tions 3.1.2 and 3.2.2—, several network architectures were tested for our classification

task. The best configuration, hereafter WCConvNet for Window Classifier ConvNet,
takes as input a color window image mapped into three maps of size T' x T pixels (T
is fixed to 36 and 48 respectively in the case of Dataset] and DatasetlI), containing
ralues normalized between —1 et 1. The WCConvNet output is a single neuron, using
a hyperbolic tangent activation function. The response of this single neuron encodes
the probability of the input window to correspond to a “valid” character. Note that
the architecture of the WCConvNet is similar to that of the CRConvNet presented
in section 4.3.2.

After this first classification, windows identified as not containing a character are
labeled as “garbage”, while remaining windows can now be analyzed to recognize
the characters they contain. To that end, we leverage the CRConvNet introduced in
section 4.3.2, and present these windows (with “valid” characters) to the CRConvNet’s
architecture whose task is to determine the class of the character well framed in the
window.

At the end, each sliding window is labeled as “garbage”, or by the “valid” charac-
ter recognized by the CRConvNet. The whole classification scheme is illustrated in
Fig. 5.5 which shows examples of sliding windows of a text image classified thmugh the
proposed processing: each well-framed character (such as “0”) is identified as “valid”

19
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Figure 5.5: The sliding windows classification scheme: examples of windows at scale

Sy (from the left to the right, windows are placed at positions h %, and %).

and then recognized, while interstices between characters are identified as “garbage”.
Nevertheless, some parts of characters can still introduce recognition confusions (e.g.,
the part of “u” recognized as “i”). In the next section, we present the graph model
proposed to deal with window classification results and to handle recognition errors.

5.4 Text recognition using a graph model

Now that text images are scanned at different scales and that “garbage” and valid
characters are classified, the next step is to combine multi-scale window classification
results in order to recognize the full text present in the image.

Since our multi-scale scanning process involves many overlapping windows, a graph
model, able to represent spatial constraints between sliding windows, is built and used
to recognize the whole text present in the image—mnamely the sequence of well-framed
characters recognized in the window classification step—( ¢f. subsection 5.4.1). Some
linguistic knowledge is then incorporated into the graph to supervise the complete
OCR scheme and remove recognition ambiguities (¢f. subsection 5.4.2).

5.4.1 Graph model construction

In order to recognize the text or the sequence of characters embedded or captured in
an image, we chose to use a directed acyclic graph model to represent the different
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multi-scale sliding windows and their classification results.

Indeed, a directed acyclic graph is a special structure consisting of a set of vertices
connected with directed edges (ordered pairs of vertices). It permits to represent
multiple routes (i.e., sequences of edges) from a given source (one vertex) to a given
target (one vertex). Furthermore, when weights (numeric values) are associated with
edges, the graph allows to evaluate each route and thus to deduce the one with, for
example, the minimal cost (or the most probable).

For our text recognition problem, a graph model where vertices correspond to
windows borders (i.e., positions between two successive characters) is considered. In
order to encode the spatial constraints between the different sliding windows through
the text image, directed edges are built to represent windows (i.e., characters) by
joining each two vertices corresponding to the left and the right borders of each
window. Considering the fact that four window scales are used to scan the text
image, each vertex v is thus connected to 4 successor and 4 predecessor vertices (i.e.,
the right borders of the four different windows starting from v and the left borders of
the four windows ending at v). Fig. 5.6 shows one part of a graph built on a simple
image and illustrates windows’ positions and scales.

In our case, the source (resp. target) vertex corresponds to the left (resp. right)
border of the window centered at the first (resp. last) position in the text image. Our
text recognition problem can thus be formulated as searching the most probable path
(i.e., sequence of arcs or windows corresponding to characters) that links the source
vertex to the target one.

To weight our graph model, results of window classification—namely the class
“garbage” and the output of the WCConvNet for non-valid characters, and the la-
bel of the recognized class and its corresponding score in the CRConvNet for valid
characters—are assigned to each edge. Furthermore, since nonlinear borders of win-
dows are characterized by scores encoding their probabilities to correspond to separa-
tions between successive characters (see section 5.2), a weight corresponding to this
score is assigned to each vertex.

Using the built graph, all possible paths within the graph are tested and their
scores calculated. These text scores are computed as the sums of the logarithms
of the values assigned to each edge—mnamely the WCConvNet or the CRConvNet
outputs of the input window—and the logarithms of the mean of the values assigned
to the edge’s vertices—namely the probabilities that the window borders correspond
to separations between characters. Regarding edges representing “garbage”, since they
correspond to windows misaligned with any character, part of a character or interstice
between characters, paths containing these edges are penalized and removed even if
they yield the best score. The recognized text is determined as the sequence of
characters corresponding to the most probable route (i.e., the path or sequence of
successive arcs that obtains the highest score). In practice, to determine the most
probable sequence of characters the classical Viterbi algorithm is applied on the graph
searching the best path that avoids edges of non “valid” characters.
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Figure 5.6: Graph model construction: the figure at the top illustrates the representa-
tion of window borders by vertices (i.e., black dots) and the one at the bottom shows
a part of the obtained graph (windows at scale S;, Sy, S3 and Sy are represented
respectively by green, blue, orange and red directed edges).
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5.4.2 Integration of linguistic knowledge

In subsection 5.3, we have shown the window classification processing that is applied
at several scales and positions in the text image. In the case of some misaligned
windows, this step can generate confusions between characters and thus introduce
errors reducing the system’s performance. Fig. 5.7 illustrates an example of a window
classified as a “valid” character though it corresponds to “garbage”.

N
1

CRConvNet
“valid N
character”

WCConvNet

e—l

N
‘&QLK

Figure 5.7: Example of a confusing window.

To remove these ambiguities, we propose to incorporate some linguistic knowledge
that permits to take into consideration the lexical context. In section 4.5, we have
shown that a statistical language model is well adapted to our text recognition prob-
lem and permits to improve recognition performance. Indeed, a character n-gram
model is able to estimate the joint probability that a sequence of characters is ob-
served in a given language, and we have demonstrated that when these probabilities
are used, several recognition errors can be removed.

In this text recognition problem, we propose to integrate these probabilities into
the graph model in order to adjust transitions between vertices. Typically, for each
path within the graph, its score is computed taking into account the probability of
the recognized sequence of characters (which corresponds to the sequence of edges
constituting the path). This score is calculated as follows:

C = argmax Z(log(Sfo’“) + log(p(wilcs)) + 7 - log(p(cilo(hn(7)))) + ) (5.1)

7
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-

where C = ¢1, ¢, ..., ¢ is the recognized sequence of characters of length I, 2" is the
score of the borders of the window w;, p(w;|¢;) is the classification result of w; (namely
the output of the CRConvNet, since windows labeled as “garbage” are discarded),
p(ci|d(hn(i))) is the probability provided by the n-gram model, « and § are parameters
respectively encoding the weight of the language model and compensating over- and
sub-segmentations.

In order to reduce character confusion errors, for each window containing a “valid”
character, the best five responses of the CRConvNet are considered in the graph and
a different score is computed per response. Using these scores, all paths avoiding
windows labeled as “garbage” are evaluated and the optimal text is finally obtained
using the Viterbi algorithm which permits to take into account positions and scales
of windows, their recognition results, and some language properties provided by the
language model.

The two character n-gram language models used in our experiments on Datasetl
and DatasetIl are the same ones as in the previous chapter (see section 4.5.2).

5.5 Experimental results

This section reports the evaluation of the proposed segmentation-free OCR system
on both datasets: the “caption” texts of Datasetl and the “scene” texts of DatasetlI.

After a presentation of the performance of the proposed individual window classi-
fier, the complete OCR system is evaluated and compared to state-of-the-art methods,
emphasizing the benefits and the limits of the character segmentation step by compar-
ing the results of this segmentation-free OCR and of our first segmentation-based one.
The contributions of the different processing steps (the multi-scale scanning scheme,
the computation of nonlinear window borders and the integration of the linguistic
knowledge) incorporated in the OCR are finally highlighted.

5.5.1 Performance of the window classifier

Our window classifier consists in combining the WCConvNet, whose task is to identify
windows containing garbage and windows with “valid” characters, and the CRConvNet
which recognizes classes of identified “valid” characters. Hence, this subsection focuses
on the training and evaluation of both types of ConvNets (see table 5.1).

Two WCConvNets were trained to classify windows in Dataset] and DatasetlIl.
The first one was trained on CharDatasetl and GarbDatasetI (which contains images
of non-valid characters) while the second was trained on CharDatasetIl and Garb-
DatasetIl. In both experiments, the datasets were divided randomly into three subsets:
a training set containing 80% of the images. a validation set and a test set, containing
each 10% of the images. The training and the validation sets are used to train the
WCConvNets and the test set serves to evaluate the classification performance.
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Table 5.1: Classification performance of the WCConvNet and the CRConvNet : RR
means Recognition Rate.

Character RR
(CharDatasetl, GarbDatasetI) | (CharDatasetIl, GarbDatasetIT)
WCConvNet 87.99% 79.23%
CRConvNet 98.04% 85.13%

As shown in table 5.1, results obtained on Dataset] are better than those obtained
on DatasetIl (about 9% of difference). This is due to the high variability of “scene”
texts (i.e., DatasetIl) compared to “caption” texts (i.e., Datasetl). Indeed, the seri-
ous distortions present in natural “scene” text images make some characters looking
like “garbage”, thus making it difficult for the WCConvNet to distinguish them from
“garbage”. Notice that the WCConvNet output threshold has been chosen to em-
phasize the recall (the rate of valid characters correctly classified), since any valid
character classified as garbage will be discarded in the graph. Fig. 5.8 shows some
confusing characters in DatasetII.

=il 7P

Figure 5.8: Examples of confusing characters (that can be identified as garbage) of
CharDatasetIL.

The training of the CRConvINet was presented in the previous chapter in subsec-
tion 4.6.1. Table 5.1 reminds of the obtained performance.

5.5.2 Performance of the segmentation-free OCR

Using the different processing steps incorporated in our OCR system, the recogni-
tion performance can now be evaluated on TextDatasetl and TextDatasetIl. Fig. 5.9
presents an example of a recognized text and illustrates the resulting best path within
the graph model. Note that different 4 and § values were tested (see Eq. 5.1), and
those yielding to best results were retained (7 = 0.2 and 6 = 1.2).

Experiments carried out on TextDataset] ( ¢f. table 5.2) show that our segmentation-
free OCR performs well on “caption” texts and obtains 93.55% of character recognition
rate, corresponding to about 81% of words correctly recognized. The proposed OCR
also achieves good results on natural “scene” texts (TextDatasetIT) obtaining a char-
acter recognition rate above 70%, corresponding to a word recognition rate of about
47%. The difference between the performance achieved on the two datasets can be
explained by two main facts:
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Figure 5.9: Example of recognized text: the first line shows the text image, black
dots are the vertices of the graph, directed edges represent the best path obtained
with the Viterbi algorithm and the last line illustrates the sliding windows identified
as containing “valid” characters then recognized with the CRConvNet.

e the window classifier

namely the WCConvNet and the CRConvNet
better on CharDataset] than on CharDatasetlI;

performs

e TextDatasetl is generally less complex than TextDatasetII where the task of the
best path search algorithm to find the correct text is particularly difficult.

Table 5.2: Recognition performance of the segmentation-free OCR: RR means Recog-
nition Rate.

TextDataset] TextDatasetI]
Character RR | Word RR | Character RR | Word RR
Segmentation-free OCR 93.55% 81.32% 70.33% 46.72%

Our recognition results were compared with those of two state-of-the-art methods
[SGDO9, WBI10]. For the same reasons as those explained in subsection 4.6.2, this
comparison was performed only on TextDatasetIl. Two experiments were performed:
we evaluate our OCR scheme on the 901 images selected in [SGD09] (Expl) and on
the 1,065 images selected in [WB10|, using the same lexicon, created from all the
words that appear in TextDatasetIl as in [WB10] in the same way as mentioned in
subsection 5.4.2 (Exp2). Results are reported in table 5.3 and show that our approach
achieves the best word accuracy. It outperforms Saidane et al.’s one |SGDOY|, that
relies on a character segmentation step, by about 3%. Our approach also yields
better results than Wang et al.’s one [WB10| by about 7% even though their method
avoids the segmentation step and uses hand-designed features to recognize characters.
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This demonstrates that our window classification, based on a combination of neural
networks, and the built graph model are well adapted to our recognition problem.

The proposed OCR is also compared to two commercial OCR engines, namely
ABBYY FineReader and Tesseract. Let us remind that due to some practical is-
sues, these commercial OCRs were not trained on the same datasets as our OCR and
other state-of-the-art methods. Results on TextDatasetl (c¢f. table 5.3) show that our
segmentation-free OCR achieves better performance than Tesseract (+5% of charac-
ter recognition rate). However it performs slightly worser that ABBYY FineReader
(—1.5% of character recognition rate). This can be explained by the use of a dictionary
in ABBYY FineReader absent in our OCR. Concerning experiments on TestDatasetII,
ABBYY FineReader and Tesseract, evaluated by Wang et al. [WB10] and using a
lexicon, created from all the words that appear in TextDatasetll, obtained about
42% and 35% of word recognition rate, while our segmentation-free OCR achieves
far better performance with +24% and +31%. Hence, we can conclude that despite
ABBYY FineReader achieves good results on “caption” texts, our segmentation-free
OCR proves with its great ability to handle both “caption” and “scene” texts.

Table 5.3: Comparison of the proposed OCR system to state-of-the-art methods and
commercial OCR engines: RR means Recognition Rate (For TextDatasetIl, only word
RRs are reported because they are the only performance evaluated for other existing
methods).

TextDatasetl TextDatasetI]
OCR system Expl Exp2
Character RR | Word RR | Word RR | Word RR
Segmentation-free OCR 93.55% 81.32% | 57.04% | 66.19%
Saidane et al. [SGD0OY) - - 54.13% -
Wang et al. [WB10)] - - - 59.20%
ABBYY FineReader OCR 95.03% 87.70% - 42.80%
Tesseract OCR 88.57% 70.01% - 35.00%

Finally, we have compared our segmentation-free OCR to our first segmentation-
based one, described in chapter 4, in order to discuss and highlight the benefits and
the limits of the character segmentation step.

Table 5.4: Comparison of the segmentation-free OCR to the segmentation-based one
presented in chapter 4: RR means Recognition Rate and Char character.

OCR system TextDatasetl TextDatasetI]
Character RR | Word RR | Character RR | Word RR
Segmentation-free OCR 93.55% 81.32% 70.33% 46.72%
Segmentation-based OCR 95.33% 87.83% 65.33% 41.19%

Results presented in table 5.4 show that both OCRs perform well on “caption” texts
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(i.e., TextDatasetI) with more than 93% of good character recognition rate (less than
2% of difference in term of character recognition rate). However the segmentation-
based OCR is slightly better. This proves that when the character segmentation step
works well (particularly on text with small distortions like “caption” text), it enhances
the following steps of the OCR and leads to better recognition performance.

On the contrary, performance achieved on “scene” texts (4. e., TextDatasetII) points
out a larger difference between results obtained with our segmentation-free OCR and
our segmentation-based one. While the first one achieves a character recognition
rate above 70% and a word recognition rate of about 47%. the second one obtains
65% of character recognition rate and 41% of word recognition rate. These results
highlight the drawbacks of the character segmentation step where any error directly
induces a drop in the recognition accuracy. This limit is enhanced in the special
-ase of natural “scene” texts where images are often affected by various distortions
making the segmentation very hard and thus leading to several errors such as over-
and sub-segmentations. Fig. 5.10 illustrates an example of a “scene” text where the
segmentation-based OCR produces several over-segmentations leading to a consider-
able number of errors while the segmentation-free OCR is able to recognize the correct
text captured in the scene image.
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Figure 5.10: Example of a “scene” text recognized with the segmentation-based OCR
(on the left) and the segmentation-free OCR (on the right): the left part illustrates
the obtained segmentations within the fuzzy map and the final recognition result,
and the right part shows the computed best path within the graph model and the
recognized text.

5.5.3 Contributions of incorporated processing steps

After presenting the global OCR performance, we evaluate here the contribution of
the different steps of the scheme. To that end, three experiments were performed to
highlight the influence of three processings:
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e The multi-scale scanning process (MSS) evaluated against a test using only one
sliding window size,

e The nonlinear borders computing phase (NLB) evaluated against a test consid-
ering sliding windows with linear borders,

e The language model integration (LM), evaluated against a test removing this
linguistic knowledge.

Results are shown in table 5.5. They confirm that multi-scale scans (MSS) are
mandatory to cover different sizes of characters promoting satisfactory results. In the
absence of this processing, the performance of the OCR notably decreases both on
TextDataset]l and TextDatasetIl to 15.74% and 0.12% of word recognition rate. The
consideration of the nonlinear borders of the sliding windows (NLB) also results in
an important improvement of the character recognition rate: the comparison of the
performance achieved with MSS+LM (i.e., without NLB) and those of the complete
scheme in table 5.5 demonstrates that this processing step enables to increase the word
recognition rate from about 56% to 81% in the case of TextDatasetl and from about
27% to 46% in the case of TextDatasetIl. The language model (LM) also permits to
improve the OCR performance on TextDataset] and TextDatasetIl by about 27% and
21% of word recognition rate. Note that the language model used in our experiments
is a character tri-gram language model, since it has been shown to be the most adapted
to our recognition problem (see subsection 4.6.3).

Table 5.5: Contributions of different processing steps incorporated in the proposed
OCR scheme: RR stands for Recognition Rate, NLB for nonlinear borders, MSS
for multi-scale scanning and the complete scheme means MSS+NLB+LM, i.e., our
segmentation-free OCR.

TextDataset] TextDatasetI]
Method
Character RR | Word RR | Character RR | Word RR
NLB+LM 41.35% 15.74% 9.12% 0.12%
MSS+LM 74.67% 55.98% 53.41% 27.18%
MSS+NLB 72.30% 54.00% 54.32% 25.54%
Complete scheme 93.55% 81.32% 70.33% 46.72%

5.6 Conclusion

In this chapter, we have presented our first segmentation-free OCR system, one main
strength of which lies in the absence of the traditional character segmentation step,
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which is involved in most existing methods. The avoidance of this step is done by
incorporating a multi-scale scanning scheme where sliding windows with nonlinear
borders are moved to cover the characters of a given text image at their different
positions and scales. The second contribution of this OCR is the designed window
classifier relying on a robust machine learning model. This neural model is able to deal
with various kinds of images and to learn to recognize “valid” characters and identify
non-valid ones, directly from images without any preprocessing. A directed acyclic
graph model has also been proposed to represent spatial constraints between windows
and to enable the recognition of texts using a Viterbi algorithm. The integration of
some linguistic knowledge, taking into account the lexical context, is also a strong
point of our system. This permits to reduce several errors and hence to improve the
system’ performance.

The proposed scheme was evaluated on two datasets, TextDatasetl and Text-
DatasetlI, highlighting the contribution of its processing steps including the multi-
scale scanning scheme, the nonlinear borders computation and the language model
integration. Our approach was also compared to state-of-the-art methods and com-
mercial OCR engines. Experiments carried out have shown that our method obtains
outstanding performance on both “caption” and “scene” texts, and yields the best
word recognition rate among concurrent approaches.

The comparison of this segmentation-free OCR to our segmentation-based one
demonstrated that both systems perform very well in the case of “caption” text im-
ages, while in the case of natural “scene” text images, the segmentation-free system
achieves better results. On the one hand, these results point out the benefits of the
character segmentation step that enhances the recognition performance when it oper-
ates well, particularly on “caption” texts with few distortions. On the other hand, they
prove that the segmentation step directly decreases the recognition performance when
it produces errors, particularly in the case of “scene” texts with strong distortions.

Even though our OCR avoids the segmentation phase by integrating a multi-
scale scanning process and using a graph model, the complexity of the latter, where
many paths have to be tested, remains the main weakness of this method. In the
next chapter, we tackle this issue and propose a different way to avoid any character
segmentation step.



Chapter 6

The recurrent connectionist approach

6.1 Introduction

In the previous chapter, we have presented a novel approach to recognize texts embed-
ded or captured in images or videos, that avoids the critical character segmentation
step by integrating a multi-scale scanning scheme. In order to deal with the sliding
windows and their classification results, a graph model is built and used to determine
the recognized word as the sequence of characters corresponding to the best path
within the graph. Though this method achieves good performance, its main draw-
back remains the complexity of the graph model where many possible paths have to
be tested and evaluated to select the best one. For instance, even for a small text
image of size height x width with width = 4 x height, the corresponding graph model
consists of “;th;' + 1 = 33 vertices (where step = %) and 112 edges (31 edges of
scale S; starting from the first 31 vertices, 29 edges of scale Sy starting from the
first 29 vertices, 27 edges of scale Sz starting from the first 27 vertices and 25 edges
of scale Sy starting from the first 25 vertices) inducing a huge number of possible
combinations (i.e., paths).

In order to address this issue, this chapter proposes a connectionist temporal
approach specifically designed to avoid the graph model and to learn how to auto-
matically recognize the text without any segmentation step. The method consists
of three main steps as depicted in Fig. 6.1: a multi-scale text image representation
elaboration, a feature sequence classification, and the text recognition itself. In the
first step, a text image is scanned at different scales as in the previous chapter, and
is represented by a sequence of learnt features vectors. The second step uses a spe-
cific bidirectional recurrent neural network (Bidirectional Long-Short Term Memory,
BLSTM) able to take into account dependencies between successive learnt features to
classify obtained features making use of both future and past contexts. Finally, the
network’s outputs are analyzed and decoded to obtain the recognized text.

The following sections (6.2, 6.3, and 6.4) successively describe these different steps
and their interactions within the recognition scheme. The proposed approach is eval-
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uated on Dataset] and DatasetIl and results are discussed in section 6.5.

Text image

Multi-scale text image
representation

Feature sequence
classification

!

Text recognition

Recognized text

Figure 6.1: The proposed recurrent connectionist OCR scheme.

6.2 Multi-scale text image representation

The first step of our approach consists in producing a relevant representation of text
images, robust to noise, deformations, geometric transformations and different kinds
of distortions. In the literature, most existing methods propose to use hand-crafted
features that aim at encoding prior knowledge about the image. However, these
features are often specialized for a specific task or a given dataset and two main
major issues remain their lack of genericity and their robustness to noise and defor-
mations. Recently, automatically learnt features-based representations have enjoyed
a considerable progress and have been applied to several fields such as object recogni-
tion [ Y'Y GI09], video action recognition |[BNWW 11, BAIW 12| or audio classification
|[LLPNO9|. For our text image representation problem, we propose to investigate this
new direction by exploiting ConvNets, and to use learnt ConvNet as a features ex-
tractor. We will also compare these learnt features to geometric hand-crafted ones
(¢f. section 6.5).

To generate a representation, each text image is first scanned with windows of four
different sizes (¢f. section 6.2.1). Each window at a scale s is then represented by a
vector X of m features learnt with a ConvNet (¢f. section 6.2.2). Considering the
four windows extracted at each scanning position ¢, a vector X* is thus produced by
concatenating X7, Xi X% and X} corresponding to these windows. At the end of the
scanning process, a sequence of learnt features vectors [X°, ... X* ... XP7! (with
p the number of positions considered in the scanning scheme) is finally generated to
represent each text image. Fig. 6.2 depicts these different processing steps, which are
detailed in the following subsections.
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Figure 6.2: Multi-scale text image representation.

6.2.1 Multi-scale image scanning

Text images usually consist of a succession of characters having different sizes and
shapes depending on their labels and fonts. Since the objective of the representation
phase is to find the accurate features able to summarize the content of characters
present in a text image, a multi-scale scanning scheme (which consists in the same
processing as the one presented in section 5.2) is used to obtain, for each character,
at least one window well aligned with it.

Text images are first scanned at various scales using four sliding windows of width
h/4, h/2, 3h/4 and h, where h is the height of the image (see Fig. 5.3). At each
position t (with ¢ € {0,1,...,p— 1}) of the scanning process, four windows at scales
S1, Sa, S3 and Sy are thus produced and moved with a step of h/8 to cover different
possible positions within the text image. Furthermore, window borders are adapted
to the local morphology of the image and computed using a shortest path algorithm
(see Fig. 5.4).

6.2.2 Learnt features generation

After applving the multi-scale scanning scheme, several windows are obtained, from
which accurate representations that preserve the information useful for the recognition
task have to be extracted.

As mentioned above, we have chosen to use learnt features because of their gener-
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icity and robustness to noise and deformations. To produce these features, a machine
learning model able to deal with color images without any preprocessing, and to ex-
tract relevant features is required. As explained in previous chapters 4 and 5, among
the possible machine learning models, ConvNets |LB95] have shown to be well adapted
to our recognition task (¢f. section 4.3.1) and are particularly able to learn to extract
descriptors accurate for visual patterns recognition. For this reason, we propose to
benefit from this capacity of the ConvNets to construct our features extractor.

This is done in two phases. First a ConvNet is trained in a supervised way to
classify images of individual characters. Once the training phase is finished, we use
the penultimate layer as a features extraction layer (¢f. Fig. 6.3) and hence consider
the activations of this layver as an accurate descriptor that summarizes the content of
the input image. The choice of the penultimate layer as our features descriptor can
be justified as follows. During the training phase, the ConvNet learns to extract some
appropriate features for the character recognition task, and to combine these features
to decide the classification result. This classification decision is taken in the output
layer, while the extraction of the features is ensured by the other layers, producing
a final vector of features generated at the activation of the penultimate layer; hence
this latter has been chosen as a features extraction layer.

We choose to use the CRConvNet specifically designed in section 4.3.2 to recognize
single characters in images as our neural-based model for the learnt features genera-
tion. Practically, for each text image, each sliding window resulting of the multi-scale
scanning process is presented to the CRConvNet. This window is then represented by
a vector composed of the activations of the penultimate layer, that has ns neurons in
Fig. 6.3. This figure shows the vector of learnt features produced for a single window
with the CRConvNet. Notice that, unlike in chapter 5, even misaligned windows (i.e.,
with a non-valid character) are presented to the CRConvNet and represented by the
learnt features.

In our experiments, two CRConvNets were trained to recognize characters: one
for images in CharDataset]l and one for images in CharDatasetIl. These CRConvNets
are the same ones presented in subsection 4.3.2. Using these network architectures
and considering the four scales of the scanning process, each position ¢ in the text
image is represented by a vector X' of 4 x ngz values (nz values per window scale)
corresponding to the features produced by the ConvNet model. Finally, each text im-
age is represented by a sequence of vectors of learnt features: [X°, ... X ... X?P~1]
with p the number of positions considered in the scanning process.

6.3 Feature sequence classification

Once text images are represented by sequences of automatically learnt features, the
next phase consists in classifying these sequences in order to recognize the text they
contain.

Inspired by the work of Graves et al. dedicated to handwriting recognition |GLE T09],
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Figure 6.3: The neural-based model for features learning.

we propose to combine a particular recurrent neural network (namely a BLSTM) and
a connectionist classification model (namely a connectionist temporal classification,
CTC) to build a model able to learn how to classify these feature sequences. On
the one hand, the BLSTM allows to handle long-range dependencies between vec-
tors of features, permitting to consider the context of input vectors while classifyving.
On the other hand, the CTC enables our system to avoid any explicit segmenta-
tion into characters. The designed model is hence able to learn jointly to recognize
a sequence of classes—namely characters—and to localize their positions—namely
characters positions—in the unsegmented input sequence data.

This section starts by a brief introduction to recurrent neural networks together
with a detailed presentation of BLSTM networks (see subsection 6.3.1). A description
of the CTC model is then provided (see subsection 6.3.2). Finally, the architecture
and the training of the network designed for our sequence classification problem is
presented (see subsection 6.3.3).

6.3.1 Bidirectional long-short term memory

Recurrent Neural Networks (RNNs) are a particular category of ANNs which have the
ability to deal with sequences of data by remembering state variables depending on
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previous neural input values and using them to influence the current output. The basic
idea of these networks is to introduce recurrent connections that enable the network
to maintain an internal state and thus to take into account the past context. The
training of these networks is done using a modified version of the back-propagation
algorithm adapted to the temporal inputs/outputs. The back-propagation through
time algorithm (BPTT) is the most commonly used one [WZ95]. Fig. 6.4 illustrates
an example of a RNN which takes as input a sequence of vectors of data of length p
and returns a sequence of outputs of the same length p. At each time step t (with
0 <t < p), an input vector X* of size m is presented to the network which returns
an output vector Y* of size n. Due to the recurrent connections in the hidden layer
of the RNN, Y* is computed taking into account not only the current input, i.e., X?,
but also its context represented by the previous inputs, i.e., X7, X2 etc.

[XP] ... [X!] [X0]—> —> [Y1] .. [Y'][Y]

Qutput
sequence

Input
seguence

Hidden layer

Figure 6.4: An example of a RNN architecture: recurrent connections are drawn in
red.

Nevertheless, in [[1S97| the authors have shown that these models are not able
to handle long time lags in input sequences due to the problem of exponential error
decay. Thus, these models become insufficient when long input sequences (over 10
or 12 time steps), such as our feature sequences, are considered. To overcome this
problem, Gers et al. |(:5503] have proposed the Long Short-Term Memory (LSTM)
model able to handle data with long range interdependencies. The first key idea of
this architecture is the introduction of a special node—namely the constant error
-arousel (CEC)—that allows a constant “memory cell” (a recurrent weight connection
which is set to 1). The second key idea consists in introducing three multiplicative
gates—namely the input gate, the output gate and the forget gate—whose task is to
control the access to the CEC providing analogy with write, read and reset operations.
They permit the CEC to store an information over long periods of time by protecting
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it from irrelevant or noisy activations. Fig. 6.5 illustrates a representation of a LSTM
neuron. Integrating these two ideas, a LSTM network learns to decide moments (i.e.,
time steps) when to remember and when to forget a previous input; hence it becomes
able to retain only the useful information over a long sequence of inputs.

NET OUTPUT

OUTPUT GATE

INPUT GATE

NET INPUT

Figure 6.5: A LSTM neuron or cell [Gra08]: the CEC is represented with a red
circle; the gates, represented with green ones, control the access to the cell with the
multiplicative units drawn as blue small circles; g and h are the input and the output
activation functions.

For the reasons explained above, we chose to use a LSTM model to classify our
learnt feature sequences. However, in our task of text recognition, the future is as
important as the past (i.e., both previous and next letters are important to recog-
nize the current letter). Hence, we propose to use a bidirectional LSTM (BLSTM)
architecture |GS05] that allows to consider both past and future contexts. Fig. 6.6
depicts the architecture of such a BLSTM network. It consists of two separated hid-
den layers of LSTM neurons: the first one permits to process the forward pass making
use of the past context, while the second one processes the backward pass making
use of the future context. Both hidden layers are connected to the same input layer,
which consists of the sequence of learnt features [X°,... X' ... XP~1] in forward or
reverse order. The output layer is also connected to both hidden layers, enabling to
make a decision considering past and future contexts; it returns a sequence of vec-
tors outputs [0°,..., 0% ..., 0P7'] where O' = [0}, 0},... 0, _;] with n the number
of character classes considered and of values between 0 and 1 (normalized with a
softmaz activation function).
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Figure 6.6: Architecture of a BLSTM network.

6.3.2 Connectionist temporal classification

Even though BLSTM networks are able to model long-range dependencies, they re-
quire pre-segmented training data allowing the network to learn to provide the correct
output at each time step. However, in our text recognition problem, no character seg-
mentation is performed and our sequences of features are not separated (i.e., at a given
time step ¢, the vector of features X* is not associated with any class of character).

Graves et al. |[GFGS06] have provided some remedies to this issue by introducing a
specific layer or objective function—namely the connectionist temporal classification
(CTC)—which allows to extend the use of RNNs to the case of non-segmented data.
In |GFGS06], they showed that a BLSTM with a CTC layer outperforms HMMs and
RNN-HMM hybrid schemes on a phoneme recognition task. Applied to handwritten
text recognition |[GLE 09|, a BLSTM with a CTC layer also outperforms HMM-based
methods.

Let us explain the main principles of the CTC layer. We consider a sequence
labeling task that consists in assigning to each input data sequence of length p a
target sequence of labels of length [, with [ lower than p (for instance, the input
sequence can be features representing a text image and the target sequence the text
or the sequence of characters in the image). If the input sequence is not segmented
(for instance, the features are not segmented with respect to the characters), the CTC
enables the recurrent network to handle these data by creating a link between the
BLSTM output sequence and the target one.

Fig. 6.7 illustrates this principle. If X = [X° X' ... XP7!] is a given in-
put sequence, Y = [Y° Y1 ... YP7! its corresponding network output and C' =
[O’D, ct ..., Cl_l} the target sequence, the goal of the CTC is to generate an in-
termediate label sequence C’ of length p (as long as the output sequence). To do
so, Graves et al. proposed to use an additional class, called class “blank”, which is
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inserted between the labels of the sequence C. During the training phase, consider-
ing the set of training examples { X} presented to the network, the CTC determines
their corresponding intermediate sequence {C"} by minimizing an objective function
O expressed as follows:

O=- Y In(P(CIX)) (6.1)

(X,C)eS

where S is a training set containing pairs of input and target sequences (X, C'), and
P(C|X) is the probability to observe one sequence C given its input sequence X.
Since the direct minimization of this objective function requires to examine all possible
sequences C’, Graves et al. proposed an alternative minimization process inspired by
the HMM’s backward-forward algorithm. More details are given in [GLEF T09]. Once
the intermediate sequence C’ is obtained, an error sequence e = [ el ... eP™1] is
:alculated and back-propagated to update the network weights (see Fig. 6.7).

Output sequence

CTC
. o [YPI] ... [YI[Y?]
: : —— > Processing of output
[(XPT] .. [XY[X0]=>i BLSTM network = & vecters < -[C. [ €]
Input sequence Target sequence
: ! €——————| Estimation of the error
[ [ ] [eU] [el] [ep-l] to back-propagate

Error sequence
Figure 6.7: Illustration of a CTC layer linking a BLSTM network to a target sequence.

After the training phase, a decoding process permits, given a BLSTM output
sequence Y, to obtain the recognized text by interpreting Y and removing “blank” in
the sequence C' (see section 6.4).

In our text recognition task, a CTC laver is thus introduced in our system to
connect the BLSTM's outputs to the sequence of labels, i.e., the sequence of characters
present in the text image. The precise description of this network architecture for
our two datasets is provided below; details of the decoding operation are given in
section 6.4.

6.3.3 Proposed BLSTM network architectures and training

For our recognition problem, for each dataset—TextDataset]l and TextdatasetII—
several configurations were tested to determine the best network architectures.
Regarding TextDatasetl, after testing several architectures, a BLSTM network
with two hidden layers (see Fig. 6.6), one for the forward pass (i.e., the past context)
and one for the backward pass (i.e., the future context), and a CTC output layer, has
been chosen. The network takes as input, at each time step, a sequence of vectors of
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200 values (4 x ng features, where ng = 50), namely the learnt features normalized
between —1 and 1. The input layer is fully connected to both hidden layers, each one
containing 150 LSTM cells with recurrent connections to all the other LSTM cells in
the layer. The output layer, fully connected to both hidden lavers, returns at each
time step a vector of 42 outputs (41 classes of characters, see subsection 3.1.2, and
the class “blank”) normalized with a softmaz activation function. The CTC layer
takes as input a sequence consisting of these 42 BLSTM outputs values and as target
the full text to be recognized C. In our experimental data, depending on the size
of the text image, the sequence of inputs can contain up to 300 vectors depending
on the number of positions considered in the scanning phase. The BLSTM network
is trained with the classical back-propagation through time algorithm [WZ95] on a
training set containing pairs of BLSTM input data (i.e., sequences of vectors of learnt
features representing text images X) and CTC targets (i.e., the corresponding texts
).

For TextDatasetlI, a similar BLSTM network architecture has been chosen. The
network consists of two hidden layers of 150 LSTM cells fully connected to each other.
The network takes as input a vector of 480 values (4x 120 features) normalized between
—1 and 1 and has an output laver which returns a vector of 37 values per time step
(36 classes of characters, see subsection 3.2.2; and the class “blank”). A CTC layer
is also introduced to make the link between these outputs values and the text to be
recognized. The training of this network was also performed on a training set under
the same conditions as the previous one (using the same back-propagation algorithm).

6.4 Text recognition

Once a BLSTM network is trained, for a given input sequence of feature vectors, the
output sequence provided by the BLSTM can be analyzed to obtain the recognized
text. This operation is called the decoding phase and aims at determining the labelling
[ that corresponds to the one with the highest conditional probability:

[ = argmax p(l| {X°, X1, ---, XP71}) (6.2)

where [ is a possible labelling aznd {XO X1 ... XP~1}is the input sequence.

For our decoding problem, we assume, as in [GLF 09|, that the best labelling cor-
responds to the most probable path within the sequence of the BLSTM outputs. This
path is simply determined as the concatenation of the most active outputs (namely
the classes with the highest conditional probability) at each time step. Given this best
path, that can contain character or “blank” labels, the resulting sequence of labels can
be analyzed to determine the recognized text or sequence of characters. This is done
in two steps: first by removing repeated successive labels, then by removing “blanks”.

For instance, for a sequence of labels:

f: 11 6188862862628863036363 (63)
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where ¢;, ¢, and 3 are classes of characters, and B is the class “blank”, the recognized
text is:
é = (C1C9Co(Cq (f)—l)

The order of the two steps is important to preserve letters that appear twice in
a text. If “blanks” were removed before repeated characters, the inappropriate text
C' = c1cc5 would be obtained.

Fig. 6.8 illustrates an example of recognized text (resulting of the decoding phase)
and shows its corresponding BLSTM where each recognized character is represented
with a peak.

Decoding outputs d e s e qu e s tration

e
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Figure 6.8: Example of a recognized text: Each class is represented with a color; the
label * 7 represents the class “space” and the gray curve corresponds to the class
“blank”.

6.5 Experimental results

We focus now on the evaluation of the proposed approach on our two datasets: the
“caption” texts (Datasetl) and the “scene” texts (Datasetll). First, some experiments
performed to compare learnt features-based representations to hand-crafted-based
ones are presented. Then our complete OCR system is evaluated on TextDatasetI and
TextDatasetIl and compared to other state-of-the-art methods and to our previous
approaches.

6.5.1 Contributions of the proposed learnt features

In order to evaluate the influence of our features, learnt with a neural-based model, on
the text recognition process, we propose to compare the performance of our approach
obtained with these features to the performance achieved using some hand-crafted
ones.
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Graves et al. |GLET09] have addressed the problem of handwriting text recog-
nition and proposed to represent texts by means of sequences of some geometrical
hand-crafted features. Their method is applied to binary images (a black text on a
white background) and consists in extracting nine features per column (i.e., vertical
line in the image). Each image is thus represented by a sequence of length w, the
width of the image, of nine-dimensional vectors. The nine values (i.e., geometrical
features) of each vector, computed per column, correspond to:

e F'1: the mean value of pixels intensities,

e ['2: the position of the center of gravity of the pixels,

e ['3: the second order vertical moment of the center of gravity,

e F4: the position of the uppermost black pixel,

e ['5: the position of the lowermost black pixel,

e FG: the number of black pixels between F4 and F5,

e F'7: the number of transitions from black to white between F4 and F5,
e [8: the rate of change of F4 with respect to its neighborhood columns,
e F9: the rate of change of F5 with respect to its neighborhood columns.

We choose to compare our learnt features to those nine features. We therefore
perform two experiments: one that tests and evaluates the performance of our pro-
posed connectionist approach when the BLSTM network is fed with sequences of the
hand-designed features, and the second that evaluates the approach when the BLSTM
network is fed with sequences of the learnt features. In both experiments, a phase
of training of the BLSTM network is first established on training sets (one for the
“caption” texts and one for the “scene” texts); then resulting networks are used to
evaluate the performance of the method on TextDatasetl and TextDatasetlIl.

In the first experiment, a preliminary step is performed in order to binarize text
images using the fuzzy map generated and described in subsection 4.2.1. The nine
geometrical features presented above are then extracted for each column in the im-
age, producing a sequence of length w containing vectors of nine features. Fig. 6.9
illustrates the generation of these geometrical features.

In the second experiment, sequences of learnt features are generated for each image
as described in section 6.2. Using the trained CRConvNet (c¢f. subsection 4.3.2),
learnt features are extracted from the multi-scale sliding windows. This extraction is
done per scanning step, producing a sequence of length w/step — 1 (with step = h/8)
containing vectors of 200 features for TextDatasetI, or 480 features for TextDatasetII.

Using resulting features, two BLSTM networks are trained for each dataset. The
first BLSTM is fed with the sequence of geometrical features and takes 9 input values
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Figure 6.9: Computation of the geometrical hand-crafted features.

per time step, while the second is fed with the sequence of learnt features and takes 200
or 480 input values per time step. For Datasetl, the training phases are performed on
a set of 1,399 text images extracted from TextTrainDatasetl, and for Datasetll, they
are performed on a set of 1,146 images extracted from TextTrainDatasetIl. Trained
networks are then evaluated on TextDataset] and TextDatasetII.

Table 6.1: Usefulness of learnt features: Reported results correspond to the character
recognition rate.

Used features TextDatasetl | TextDatasetII
Geometrical hand-crafted features 92.73% 21.87%
Learnt features 97.35% 56.44%

Performances are presented in table 6.1. Results achieved on TextDataset] show
that both BLSTM networks (trained with hand-crafted and learnt features) obtain
high performance, above 90% of character recognition rate. Nevertheless, for our
application, the learnt features-based process outperforms the hand-crafted-based one
by about +5% of characters correctly recognized. Regarding TextDatasetII, table 6.1
shows an important difference in performance between the two types of features (about
22% versus 56% of character recognition rate). The two experiments demonstrate that
the proposed learnt features are more adapted than geometrical ones for both types
of texts, particularly for “scene” ones where characters can be of various fonts and
shapes and can be captured on complex backgrounds making the binarization step
really difficult.

6.5.2 Performance of the recurrent connectionist OCR

Using the BLSTM networks trained with learnt features, we focus now on the eval-
uation of our complete connectionist approach and its comparison to state-of-the-art
methods.
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Table 6.2 provides the results together with figures obtained with two other ex-
isting methods and two commercial OCR engines (ABBYY FineReader OCR and
Tesseract OCR).

Table 6.2: Comparison of the proposed scheme to state-of-the-art methods and com-
mercial OCR engines: RR means Recognition Rate (For TextDatasetII, only word
RRs are reported because they are the only performance evaluated for other existing
methods).

TextDatasetl TextDatasetI]
OCR system Expl Exp2
Character RR | Word RR | Word RR | Word RR
Connectionist OCR 97.35% 87.20% | 22.81% | 48.83%
Saidane et al. [SGDOY - - 54.13% -
Wang et al. [WB10] - - - 59.20%
ABBYY FineReader OCR 95.03% 87.70% - 42 .80%
Tesseract OCR 88.57% 70.01% - 35.00%

Experiments carried out on TextDatasetl show that our connectionist approach
achieves an outstanding character recognition rate of 97.35% corresponding to a word
recognition rate above 87%. This method obtains an outstanding word recognition
rate and a higher character recognition rate than the commercial OCRs. These results
highlight the interest of the proposed connectionist recurrent classification model.
Regarding remaining errors (i.e., the 2.65% of wrongly recognized characters), the
experiments showed that most of them are related to missing spaces between words,
leading to recognition errors for two consecutive words, which explains the 87.20% of
word recognition rate (lower than the one obtained with ABBY'Y FineReader OCR).
This fact (i.e., that ABBYY achieves a slightly better word recognition rate with
+0.5%) can also be justified by the use of a dictionary in this OCR. Comparison with
commercial OCR engines on TextDatasetIl shows that though our approach presents
an overfitting problem, it still outperforms commercial OCR engines on “scene” texts
by over +6% of word recognition rate.

For the same reasons as those explained in subsection 4.6.2, comparison to existing
methods was performed only on TextDatasetIl. The two same experiments as those
presented in subsection 4.6.2 (Expl, Exp2) are performed to evaluate our approach
in the same conditions in order to provide meaningful comparisons. Let us just
remind that Expl (resp. Exp2) corresponds to the experimentation with a set of
901 images extracted from TextDatasetIT (resp. a set of 1,065 images extracted
from TextDatasetIl and using a dictionary). As shown in table 6.2, the connectionist
method achieves unsatistactory results on “scene” texts with poor word recognition
rates, lower than other methods. This performance can be explained by an overfitting
problem that was noticed during the training phase since the performance on the test
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set corresponds to a character recognition rate of about 98% on the training examples.

Our connectionist approach was also compared to our two previous proposed
scheme, i.e., segmentation-based and our first segmentation-free ones. Table 6.3
presents the results of this comparison.

Experiments carried out on TextDatasetl show that though this connectionist
method does not incorporate any linguistic knowledge (no language model and no
dictionary), it outperforms both our segmentation-based and first segmentation-free
approaches (that integrate these two linguistic components) by about respectively 2%
and 4% of character recognition rate. This proves the ability of this method to avoid
the character segmentation step and at the same time to obtain good performance.
The fact that the word recognition rate of this method is slightly lower than the one
obtained with the proposed segmentation-based approach can be explained by the
missing space errors described before, and also the use of a dictionary in the latter.
Regarding experiments on full TextDatasetIl, as explained before for Expl and Exp2,
we notice poor performance corresponding to lower character and word recognition
rates than those of other proposed OCRs. Besides the overfitting problem, these
results can be explained by several facts:

e First, the absence of the language model that has permitted to improve the
word recognition rate by +21% in the case of the first segmentation-free OCR.
Typically, though the BLSTM model incorporates some linguistic context (via
the past and future contexts), this information remains poor compared to the
one provided by a language model trained on an important corpus.

e Sccond, the absence of any dictionary that allows to remove some errors. Exp2
presented in table 6.2 demonstrates the utility of a dictionary that enables our
approach to achieve a far better word recognition rate.

e Third, the absence of the WCConvNet whose task, in chapter 5, consisted in
classifying windows into valid characters or “garbage”. Indeed, when scanning
“scene” texts (that often present serious distortions), several misaligned windows
that can be confused with valid characters are represented by feature vectors
similar to those of valid characters. When these confusions are presented to
the BLSTM network without any filtering step, several ambiguities can thus be
produced leading to poor recognition performance. One solution to this issue
could be the incorporation of the WCConvNet features in our approach.

6.6 Conclusion

In this chapter, we have presented a connectionist approach specifically designed for
the recognition of texts in images or videos. Text images are first scanned at vari-
ous scales. Resulting sliding windows are then used to generate vectors of features
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Table 6.3: Comparison of the connectionist OCR to previous proposed ones presented
in chapters 4 and 5: RR means Recognition Rate.

OCR system TextDatasetl TextDatasetII
Character RR | Word RR | Character RR | Word RR
Connectionist OCR 97.35% 87.20% 56.44% 18.60%
Segmentation-free OCR 93.55% 81.32% 70.33% 46.72%
Segmentation-based OCR 95.33% 87.83% 65.33% 41.19%

learnt with a ConvNet. Combining a particular recurrent neural network—namely
a BLSTM—and a connectionist temporal classification, a classification model is per-
formed to deal with generated sequences of learnt features and to directly learn to
recognize texts.

Our experiments have first compared learnt features to hand-crafted ones and
shown that proposed ones yvield the best performance both on “caption” and “scene”
texts. These results emphasize one contribution of this method, which lies in the
novel representation of text images generated with features learnt with a neural-based
model.

Our complete OCR was also evaluated on a “caption” texts dataset and obtained
promising results (exceeding 97% of characters and 87% of words correctly recognized
without any linguistic knowledge, i.e., neither a language model nor a dictionary),
outperforming state-of-the-art methods and commercial OCRs. This performance
demonstrates first the ability of the proposed method to make use of learnt features
dependencies (due to the BLSTM’s recurrent connections), and secondly its capacity
to avoid the difficult character segmentation step by modeling (via the CTC) the link
between non-segmented sequences of inputs and the recognized text. Experiments
that have been carried out on a “scene” texts dataset showed a problem of generaliza-
tion and highlighted the usefulness of the linguistic knowledge absent in this system.
A remedy could be an integration of a language model, as for the approaches described
in chapters 4 and 5.



Chapter 7

Conclusions and perspectives

This thesis addresses the issue of text recognition in multimedia documents. The aim
of this task is to extract the textual clues present in images and videos in order to
provide useful information to facilitate content analysis and understanding.

In this work, we have focused on the problem of text recognition in images and
videos and proposed to address all the steps involved in this task. Our goal was to
design novel efficient OCR systems able to deal with both “caption” and “scene” texts
and to cope with different challenges including the variability of sizes, colors and
fonts, the complexity of backgrounds, the difficult acquisition conditions, etc. Three
OCR systems were proposed and evaluated in this thesis. The key principles of these
systems and their performance achieved on two types of texts were summarized in
the conclusions of chapters 4, 5, and 6.

Beyond these three OCRs that can be considered as three global and “practical”
contributions of this work, we highlight here our main methodological contributions
to the field of text recognition in multimedia documents.

A first contribution lies in the design of a character segmentation method that
computes nonlinear separations well adapted to the local morphology of text images.
The resulting segmentations enable hence a precise extraction of characters and lead
to a better character recognition. In particular, the proposed method provides reliable
solutions to handle touching or close characters and to deal with texts with complex
backgrounds.

We have also presented an original multi-scale scanning scheme, avoiding any char-
acter segmentation step, and permitting to recognize characters directly from the text
image. This scheme consists in using sliding windows of different sizes (proportional
to the image height) that are moved at regular and close positions through the text
image aiming at covering all character sizes and positions. Nonlinear borders are also
computed for each window in order to obtain well-framed characters.

In addition to the multi-scale scanning scheme that permits to recognize charac-
ters at their appropriate position and scale in the text image, we have proposed to
deal with the obtained sliding windows with a graph model able to represent spatial

99
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constraints between windows and to manage their classification results. Due to this
graph, the need for the crucial segmentation step is completely removed and full texts
are recognized as sequences of characters corresponding to the most probable paths
within the graph.

Furthermore, we have proposed a novel representation of text images. In contrast
to the main methodology that relies on hand-crafted features, this proposal consists in
representing sliding windows with features learnt with a neural-based model permit-
ting to extract from color character images the relevant features summarizing their
contents. We have shown that these features are more robust to noise, font variability
and complex background than hand-crafted ones. By that way, text images can are be
represented by sequence of features vectors used to feed a specific connectionist neu-
ral model (that combines a particular recurrent network—a bidirectional long-short
term memory, BLSTM—and a connectionist classification—a connectionist temporal
classification, CTC) able to classify these sequences and to recognize texts.

This study has also demonstrated the contribution of linguistic knowledge (i.e.,
a language model and a dictionary) in the task of text recognition. Indeed, we
have proved that when introducing the probabilities estimated by a character n-gram
model, several errors related to the local character-by-character recognition can be
removed taking into account the lexical context. The use of a dictionary permits also
to reduce some errors, and hence improve recognition performance.

Through this work, some general principles have also emerged from our study and
the carried-out experimentations. For “caption” texts, both segmentation-based and
segmentation-free approaches are able to obtain outstanding performance. Regarding
“scene” texts, this thesis has proved that if the segmentation-based approach obtain
results equivalent to previously published methods, the segmentation-free one outper-
forms both state-of-the-art and commercial solutions, achieving promising results.

At the time of writing the present document, part of the work of this thesis has
been implemented into two demonstration softwares, developed in Orange Labs and
applied to broadcasts of several French TV channels (including TF1, France2, France3,
EuroSport, M6, and BEM TV):

e An indexing engine dedicated to broadcast news: this engine detects and recog-
nizes texts embedded in digital news videos allowing the extraction of titles of
reports, names of persons, dates and places. Fig. 7.1 shows the demonstration
interface presenting the results of this designed engine.

e A live-TV real-time text recognition engine: this engine combines the results of
our segmentation-based OCR system and transcription obtained by a speech-
to-text system to analyze a TV broadcast and extract keywords grouped into
four categories: persons, terms, geography and entity. This engine is applied
continuously to live-TV broadcasts including talk shows, game shows, news, efc.
Fig. 7.2 illustrates the interface of this engine.
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Figure 7.1: The broadcast news indexing engine: on the right, the video frame is
displayed while on the left the extracted text images and their recognition results are
provided.

As future extensions of this work, several research areas can be investigated.
Some of these areas are directly related to our thesis work and can be considered
as next steps to do:

1. The incorporation of linguistic knowledge—namely a language model—in our
connectionist approach: this can be done by introducing the probabilities of
sequences of characters estimated with a n-gram model in the decoding phase
of the BLSTM outputs. Hence, several errors should be removed and missed
characters be recovered.

2. The integration of character confusion matrices: confusion matrices are tables
that permit to evaluate the performance of a given recognizer by estimating for
each class its probability to be well-recognized and those to be confused with
each of the other classes. These matrices provide an important information
that was not exploited in this study and that can be incorporated in our OCR
systems to reduce ambiguities of recognition and thus improve performance.
These confusion probabilities could be integrated when calculating word or path
scores in our OCR systems.

3. The introduction of upper-case and lower-case letters: in our experiments, we
have not distinguished between upper-case and lower-case letters. Since this
differentiation can be useful to identify named entities, it is hence interesting
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Figure 7.2: The live-TV real-time text recognition engine: the video frames are pre-
sented on the left at the top, the recognized texts (VIDEO OCR) on the left in the
middle, the transcripts (SPEECH-TO-TEXT) on the left at the bottom, and the
extracted keywords (KEYWORDS) on the right.

to train our ConvNets to recognize these classes and to integrate them in our
OCR systems.

We can also propose some long-term prospects that might help to improve perfor-
mance:

1. The super-resolution of text images: the super-resolution is a technique that
consists in increasing the resolution of text images in order to obtain images
of better quality where texts are easier to recognize. Several methods were
proposed in the literature |[LD00, WD02, BJ08|. This preprocessing can hence
be studied to perform a robust method able to produce images with clearer
separations between characters and thus to improve the performance of the
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character segmentation step. Particularly, a method specifically adapted to
“scene” texts could be designed to reduce segmentation errors on this type of
texts.

2. Deep learning models for character recognition: though our recognizer relies
on a deep learning model, i.e., a ConvNet, and obtains good results, the use
of other deep learning models, such as Restricted Boltzmann Machines (RBM)
[LRB08], can be studied and compared to our recognizer in order to determine
the most appropriate one for the classification task.

3. Unsupervised learning techniques, such as autoencoders or sparse encoders:
these techniques, that has recently showed a great ability to resume image con-
tents [RPCLO7]. So it might be particularly interesting for our problem of text
images representation. One possible improvement of our connectionist method
lies in the use of unsupervised techniques to produce relevant representations
to feed a recurrent connectionist model whose task is to recognize the encoded
sequences of characters.

Apart from these prospects, the OCR systems developed in this work can find
practical applications in several domains. For instance, in addition to the indexing
engines, the proposed systems can serve to enhance a video teaching service by rec-
ognizing texts embedded in filmed slides, or help visually impaired people by reading
using audio devices.



104 CHAPTER 7. CONCLUSIONS AND PERSPECTIVES



Bibliography

IBBASMO02)]

[BJOS]

[BMW+11]

[BMW+12|

|CCOt11]

|CGO6)|

|CGROS|

|CLO2|

L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L. Mercer. A tree-based
statistical language model for natural language speech recognition.
Transactions on Acoustics, Speech and Signal Processing, 37(7):1001—
1008, 2002. 54

J. Banerjee and CV Jawahar. Super-resolution of text images using edge-
directed tangent field. In TAPR International Workshop on Document
Analysis Systems, pages 76-83. IEEE, 2008. xxvii, 15, 102

M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. Se-
quential deep learning for human action recognition. Human Behavior
Unterstanding, pages 29-39, 2011. 84

M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. Spatio-
temporal convolutional sparse auto-encoder for sequence classification.
British Machine Vision Conference, 2012. 84

A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D.J.
Wu, and A.Y. Ng. Text detection and character recognition in scene
images with unsupervised feature learning. In International Conference
on Document Analysis and Recognition, pages 440-445. TEEE, 2011. 27

S.F. Chen and J. Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th annual meeting on
Association for Computational Linguistics, pages 310-318. Association
for Computational Linguistics, 1996. 55, 56

T.B. Chen, D. Ghosh, and S. Ranganath. Video-text extraction and
recognition. In IEEFE Region 10 Conference, volume 1, pages 319-322,
2005. x, 7, 25

R.G. Casey and E. Lecolinet. A survey of methods and strategies in
character segmentation. Pattern Analysis and Machine Intelligence,

18(7):690-706, 2002. 7, 17, 47

105



106

|OL11]

|COB02)

|COB04|

|CSLO2|

|CY 04

|OZKA02

IDASO1|

[DGOS|

[DLR*77

[EGS11]

|[Fat07]

BIBLIOGRAPHY

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2(3):27, 2011. 59

D. Chen, J.-M. Odobez, and H. Bourlard. Text segmentation and recog-
nition in complex background based on Markov random field. In Inter-
national Conference on Pattern Recognition, volume 4, pages 227-230.
[EEE, 2002. 12

D. Chen, J.-M. Odobez, and H. Bourlard. Text detection and recognition

in images and video frames. Pattern Recognition Letters, 37(3):595-608,
2004. 7

H.S. Chang, S. Sull, and S.U. Lee. Efficient video indexing scheme for
content-based retrieval. Transactions on Circuits and Systems for Video
Technology, 9(8):1269-1279, 2002. 1

X. Chen and A.L. Yuille. Detecting and reading text in natural scenes.
In IEEE Conference on Computer Vision and Pattern Recognition, vol-
ume 2, pages 366-373. IEEE, 2004. 9

Y.L. Chang, W. Zeng, [. Kamel, and R. Alonso. Integrated image and
speech analysis for content-based video indexing. In International Con-
ference on Multimedia Computing and Systems, pages 306-313, 2002.
xvil, 1

C. Dorai, H. Aradhye, and J.-C. Shim. End-to-end video text recog-
nition for multimedia content analysis. In International Conference on
Multimedia and FEzpo, pages 601-604. [EEE Computer Society, 2001.
27,58

M. Delakis and C. Garcia. Text detection with convolutional neural
networks. In International Conference on Computer Vision Theory and
Applications, volume 2, pages 290-294, 2008. 7, 32

A.P. Dempster, N.M. Laird, D.B. Rubin, et al. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 39(1):1-38, 1977. 43

K. Elagouni, C. Garcia, and P. Sébillot. A comprehensive neural-based
approach for text recognition in videos using natural language process-
ing. In International Conference on Multimedia Retrieval, 2011. 8

R. Fattal. Image upsampling via imposed edge statistics. ACM Trans-
actions on Graphics, 26(3):95, 2007. 13



BIBLIOGRAPHY 107

[FET3|

[FF09)

[FREMO04]

[GDOA4]

|GESF04]

|GFGS06]

|GG84|

[GLE+09]

[Gra08]

|GS05]

|GSS03)

M.A. Fischler and R.A. Elschlager. The representation and matching of
pictorial structures. IEEE Transactions on Computers,, 100(1):67-92,
1973. 28

X. Fan and G. Fan. Graphical models for joint segmentation and recog-
nition of license plate characters. [EEFE Signal Processing Letters,,
16(1):10-13, 2009. 23

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar. Advances and chal-
lenges in super-resolution. International Journal of Imaging Systems
and Technology, 14(2):47-57, 2004. 13

C. Garcia and M. Delakis. Convolutional Face Finder: A neural archi-
tecture for fast and robust face detection. Pattern Analysis and Machine
Intelligence, 26(11):1408 1423, 2004. 50

J. Gllavata, R. Ewerth, T. Stefi, and B. Freisleben. Unsupervised text
segmentation using color and wavelet features. Image and Video Re-
trieval, pages 1967-1967, 2004. 11

A. Graves, S. Fernadndez, F. Gomez, and J. Schmidhuber. Connectionist
temporal classification: Labelling unsegmented sequence data with re-
current neural networks. In International Conference on Machine Learn-
ing, pages 369-376. ACM, 2006. 90

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. Pattern Analysis and Machine
Intelligence, 6(6):721-741, 1984. 12

A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and
J. Schmidhuber. A novel connectionist system for unconstrained
handwriting recognition. Pattern Analysis and Machine Intelligence,
31(5):855-868, 2009. xxii, 86, 90, 91, 92, 94

A. Graves. Supervised sequence labelling with recurrent neural network.
PhD thesis, Technische universitidt Miinchen, 2008. xiii, 89

A. Graves and J. Schmidhuber. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Net-
works, 18(5):602-610, 2005. 89

F.A. Gers, N.N. Schraudolph, and J. Schmidhuber. Learning precise
timing with LSTM recurrent networks. The Journal of Machine Learn-
ing Research, 3:115 143, 2003. 88



108

[HKA10]

[HMZ09]

[HS97]

[HYZ02]

[ITK10]

[JHE+05]

[JIKKJ04|

[Jol05]

15599

[JSVRO5]

[Kat87]

BIBLIOGRAPHY

M. Halima, H. Karray, and A. Alimi. A comprehensive method for
Arabic video text detection, localization, extraction and recognition.
Advances in Multimedia Information Processing-PCM, pages 648659,
2010. 25

X. Huang, H. Ma, and H. Zhang. A new video text extraction approach.
In International Conference on Multimedia and Ezrpo, pages 650—653.
IEEE, 2009. 20

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997. 88

X.S. Hua, P. Yin, and H.J. Zhang. Efficient video text recognition
using multiple frame integration. In International Conference on Image
Processing, volume 2, pages 397 400, 2002. x, 7, 15, 16

M. Iwamura, T. Tsuji, and K. Kise. Memory-based recognition of
camera-captured characters. In TAPR International Workshop on Doc-
ument Analysis Systems, pages 89-96. ACM, 2010. 25

S. Jun, Y. Hotta, K. Fujimoto, Y. Katsuyama, and S. Naoi. Grayscale
feature combination in recognition based segmentation for degraded text
string recognition. International Workshop on Camera-Based Document
Analysis and Recognition, 2005. 22

K. Jung, K. In Kim, and A. K Jain. Text information extraction in
images and video: a survey. Pattern Recognition Letters, 37(5):977-997,
2004. 2

[an Jolliffe. Principal component analysis. Wiley Online Library, 2005.
22

M.C. Jung, Y.C. Shin, and S.N. Srihari. Machine printed character
segmentation method using side profiles. In IEFEFE International Con-
ference on Systems, Man, and Cybernetics, volume 6, pages 863-867.
IEEE, 1999. 25

C. Jacobs, P.-Y. Simard, P. Viola, and J. Rinker. Text recognition of
low-resolution document images. In International Conference on Docu-
ment Analysis and Recognition, pages 695-699. IEEE, 2005. 27

S. Katz. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acous-
tics, Speech and Signal Processing, 35(3):400 401, 1987. 56



BIBLIOGRAPHY 109

[KGIVS3)|

|KHEO5|

|KNO5)|

[KSIA04]

|LBYS|

[LBBHOS|

[ILBWX10]

|LD99|

[LDOO]

[LDKOO|

|LKF10)

S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by sim-
ulated annealing. Science, 220(4598):671-680, 1983. 12

S. Kopf, T. Haenselmann, and W. Effelsberg. Robust charac-
ter recognition in low-resolution images and wvideos.  Universitit
Mannheim/Institiit fiir Informatik, 2005. x, 7, 18, 19, 24, 28

R. Kneser and H. Ney. Improved backing-off for m-gram language mod-
eling. In International Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 181-184. IEEE, 1995. 56

Y. Kusachi, A. Suzuki, N. Ito, and K. Arakawa. Kanji recognition in
scene images without detection of text fields - robust against variation
of viewpoint, contrast, and background texture. In International Con-
ference on Pattern Recognition, volume 1, pages 457-460, 2004, 22,
28

Y. LeCun and Y. Bengio. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks,
pages 255-258, 1995. xix, 13, 49, 86

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-
ing applied to document recognition. Proc. of the IEEE, 86(11):2278-
2324, 1998. 50

M. Li, M. Bai, C. Wang, and B. Xiao. Conditional random field for text
segmentation from images with complex background. Pattern Recogni-
tion Letters, 31(14):2295-2308, 2010. 12

H. Li and D. Doermann. Text enhancement in digital video using multi-
ple frame integration. In International Conference on Multimedia, pages
19-22. ACM, 1999. 15

H. Li and D. Doermann. Superresolution-based enhancement of text
in digital video. In International Conference on Pattern Recognition,
volume 1, pages 847-850. [EEE, 2000. ix, 14, 102

H. Li, D. Doermann, and O. Kia. Automatic text detection and tracking
in digital video. IEEE Transactions on Image Processing, 9(1):147-156,
2000. 7

Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks
and applications in vision. In IEEE International Symposium on Cir-
cuits and Systems, pages 253-256. IEEE, 2010. 50



110

[LLP02|

[LLPN09]

[LPMO7]

[LPST03]

[LRBOS]

[LS96]

[LSA4|

[LW02

[LWC*10]

IMAJ11]

[MBPLMOS|

BIBLIOGRAPHY

S.W. Lee, D.J. Lee, and H.S. Park. A new methodology for gray-scale
character segmentation and recognition. Pattern Analysis and Machine
Intelligence, 18(10):1045-1050, 2002. 45

H. Lee, Y. Largman, P. Pham, and A. Ng. Unsupervised feature learning
for audio classification using convolutional deep belief networks. Ad-
vances in neural information processing systems, 22:1096-1104, 2009.
84

J. Lim, J. Park, and G.G. Medioni. Text segmentation in color images
using tensor voting. Image and Vision Computing, 25(5):671-685, 2007.
7

S.M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young.
[edar 2003 robust reading competitions. International Journal on Doc-
ument Analysis and Recognition, 2:682-687, 2003. 5, 35

N. Le Roux and Y. Bengio. Representational power of restricted
boltzmann machines and deep belief networks. Neural Computation,
20(6):1631 1649, 2008. 103

R. Lienhart and F. Stuber. Automatic text recognition in digital videos.
Image and Video Processing, pages 26662675, 1996. xvii, 1, 7

S. Liang, M. Shridhar, and M. Ahmadi. Segmentation of touching char-
acters in printed document recognition. Pattern Recognition, 27(6):825—
840, 1994. 17

R. Lienhart and A. Wernicke. Localizing and segmenting text in im-
ages and videos. IFEFE Transactions on Circuits and Systems for Video
Technology, 12(4):256-268, 2002. x, 16

H.T. Lue, M.G. Wen, H.Y. Cheng, K.C. Fan, C.W. Lin, and C.C. Yu.
A novel character segmentation method for text images captured by
cameras. ETRI journal, 32(5):729-739, 2010. x, 21

A. Mishra, K. Alahari, and CV Jawahar. An MRF model for binariza-
tion of natural scene text. In International Conference on Document
Analysis and Recognition, pages 11 16, 2011. ix, 10, 12

F. Manerba, J. Benois-Pineau, R. Leonardi, and B. Mansencal. Multiple
moving object detection for fast video content description in compressed
domain. Journal on Advances in Signal Processing, 2008:5, 2008. xvii,
1



BIBLIOGRAPHY 111

IMGS05]

|MS99)]

IMS01]

IMS06|

IMTGO6)|

IMTMO5)

IMZ1+07|

INGP11]

[Nib85)|

INIOAO5]

|Nov66|

|ODT+09)]

S. Marinai, M. Gori, and G. Soda. Artificial neural networks for doc-
ument analysis and recognition. Pattern Analysis and Machine Intelli-
gence,, 27(1):23-35, 2005. 27

C.D. Manning and H. Schiitze. Foundations of statistical natural lan-
guage processing. MIT press, 1999. 29, 54

S.K. Mitra and G.L. Sicuranza. Nonlinear image processing. Academic
Press, 2001. 14

K. Malczewski and R. Stasinski. Optical character recognition of low
resolution text sequences from hand-held device supported by super-
resolution. In International Symposium on Multimedia Signal Processing
and Communications, pages 61-64. IEEE, 2006. 14

C. Mancas-Thillou and B. Gosselin.  Character segmentation-by-
recognition using log-Gabor filters. In International Conference on Pat-
tern Recognition, volume 2, pages 901-904, 2006. 7, 22

C. Mancas-Thillou and M. Mirmehdi. Super-resolution text using the
Teager filter. In International Workshop on Camera-Based Document
Analysis and Recognition, pages 10-16. Citeseer, 2005. x, 14, 15

G. Miao, G. Zhu, S. Jiang, (). Huang, X. Changsheng, and W. Gao. A
real-time score detection and recognition approach for broadcast basket-
ball video. In International Conference on Multimedia and Fzpo, pages
1691-1694. IEEE, 2007. 18, 28

K. Ntirogiannis, B. Gatos, and I. Pratikakis. Binarization of textual con-
tent in video frames. In International Conference on Document Analysis
and Recognition, pages 673—-677, 2011. 10

W. Niblack. An introduction to digital image processing. Strandberg
Publishing Company, 1985. ix, 9, 10

K. Negishi, M. Iwamura, S. Omachi, and H. Aso. Isolated charac-
ter recognition by searching features in scene images. In International
Workshop on Camera-Based Document Analysis and Recognition, pages
140-147, 2005. 23, 25

P.S. Novikov. Binary codes capable of correcting deletions, insertions,
and reversals. In Sowiet Physics-Doklady, volume 10, 1966. 38

A. Ohkura, D. Deguchi, T. Takahashi, I. Ide, and H. Murase. Low-
resolution character recognition by video-based super-resolution. In In-

ternational Conference on Document Analysis and Recognition, pages
191-195. IEEE, 2009. x, 26



112

[Ots75]

[PLK*10)

PSMTY7|

PSSTI11]|

PST10|

[QLWS07]

[RHWSG|

|[Ros58|

[RPCLO7|

SBS*11]

SCS09)

BIBLIOGRAPHY

N. Otsu. A threshold selection method from gray-level histograms. Au-
tomatica, 11:285-296, 1975. ix, 9, 10

J. Park, G. Lee, E. Kim, J. Lim, S. Kim, H. Yang, M. Lee, and S. Hwang.
Automatic detection and recognition of Korean text in outdoor sign-
board images. Pattern Recognition Letters, 31(12):1728-1739, 2010. 26

A.J. Patti, M.I. Sezan, and A. Murat Tekalp. Superresolution video
reconstruction with arbitrary sampling lattices and non-zero aperture
time. IEEE Transactions on Image Processing,, 6(8):1064-1076, 1997.
14

T.QQ. Phan, P. Shivakumara, B. Su, and C.L. Tan. A gradient vector
flow-based method for video character segmentation. In International
Conference on Document Analysis and Recognition, pages 1024-1028.
I[EEE, 2011. x, 7. 19

T.Q. Phan, P. Shivakumara, and C.L. Tan. A skeleton-based method for
multi-oriented video text detection. In [APR International Workshop
on Document Analysis Systems, pages 271-278. ACM, 2010. 7

X. Qian, G. Liu, H. Wang, and R. Su. Text detection, localization, and
tracking in compressed video. Signal Processing: Image Communica-
tion, 22(9):752-768, 2007. 7

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533-536, 1986.
48

F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958. 48

M.A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learn-
ing of sparse representations with an energyv-based model. Advances in
Neural Information Processing Systems, 19:1137-1144, 2007. xxvii, 103

P. Shivakumara, S. Bhowmick, B. Su, C.LL.. Tan, and U. Pal. A new gra-
dient based character segmentation method for video text recognition. In
International Conference on Document Analysis and Recognition, pages
126-130, 2011. x, 18

T. Som, D. Can, and M. Saraclar. HMM-based sliding video text recog-
nition for Turkish broadcast news. In International Symposium on Com-
puter and Information Sciences, pages 475-479, 2009. 27, 29



BIBLIOGRAPHY 113

[SGO7a]

[SGOTD]

SGOo8]

ISGDOY]

[SKH*99]

[SKHS98]

[SLPT08]

[SPB12)

[SPLT11]

[SSHP97]

SSJ03)|

7. Saidane and C. Garcia. Automatic scene text recognition using a
convolutional neural network. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 100-106, 2007. 7, 22, 27, 50

7. Saidane and C. Garcia. Robust binarization for video text recogni-
tion. In International Conference on Document Analysis and Recogni-

tion, volume 2, pages 874-879, 2007. 13

7. Saidane and C. Garcia. An automatic method for video character
segmentation. Image Analysis and Recognition, pages 557 566, 2008.
21, 22

Z. Saidane, C. Garcia, and J.-L. Dugelay. The image text recognition
graph (iTRG). In International Conference on Multimedia and Ezpo,
pages 266-269, 2009. 7, 22, 28, 61, 62, 78, 79, 96

T. Sato, T. Kanade, E.K. Hughes, M.A. Smith, and S. Satoh. Video
OCR: indexing digital news libraries by recognition of superimposed
captions. Multimedia Systems, 7(5):385-395, 1999. 16, 18, 21, 28

T. Sato, T. Kanade, E.K. Hughes, and M.A. Smith. Video OCR for dig-
ital news archive. In International Workshop on Content-Based Access
of Image and Video Database, pages 52—60. IEEE, 1998. 9, 21

Y. Song, A. Liu, L. Pang, S. Lin, Y. Zhang, and S. Tang. A novel
image text extraction method based on k-means clustering. In Inter-
national Conference on Computer and Information Science, pages 185—
190. IEEE, 2008. 11

N. Sharma, U. Pal, and M. Blumenstein. Recent advances in video based
document processing: A review. In IAPR International Workshop on
Document Analysis Systems, pages 6368, 2012. 8

P. Shivakumara, T.Q. Phan, S. Lu, and C.L. Tan. Video character
recognition through hierarchical classification. In International Con-

ference on Document Analysis and Recognition,, pages 131 135. IEEE,
2011. x, 24

J. Sauvola, T. Seppanen, S. Haapakoski, and M. Pietikainen. Adap-
tive document binarization. In International Conference on Document
Analysis and Recognition, volume 1, pages 147 152. IEEE, 1997. ix, 9,
10

P.Y. Simard, D. Steinkraus, and C.P. John. Best practices for convo-
lutional neural networks applied to visual document analysis. In Inter-
national Conference on Document Analysis and Recognition, volume 2,
pages 958 963, 2003. 50



114

Sto02]

SWO05)|

SXWZ12|

[TCIY07|

|TFGOS5|

[UMS08)

[WB10]

[WD02|

[Wer90]

[WJ04]

[WJC02|

[WIW04|

BIBLIOGRAPHY

A. Stolcke. SRILM-an extensible language modeling toolkit. In Inter-
national Conference on Spoken Language Processing, volume 3, pages
901-904, 2002. 56

C.G.M. Snoek and M. Worring. Multimedia event-based video indexing
using time intervals. IEEE Transactions on Multimedia, 7(4):638-647,
2005. xvii, 1

C. Shi, B. Xiao, C. Wang, and Y. Zhang. Adaptive graph cut based
binarization of video text images. In IAPR International Workshop on
Document Analysis Systems, pages 58—62. IEEE, 2012. 13

J. Tse, D. Curtis, C. Jones, and E. Yfantis. An OCR-independent char-
acter segmentation using shortest-path in grayscale document images. In
International Conference on Machine Learning and Applications, pages
142-147. IEEE, 2007. 19

C. Thillou, S. Ferreira, and B. Gosselin. An embedded application for
degraded text recognition. FURASIP Journal on applied signal process-
ing, 2005:2127-2135, 2005. 29

S. Uchida, H. Miyazaki, and H. Sakoe. Mosaicing-by-recognition for
video-based text recognition. Pattern Recognition, 41(4):1230-1240,
2008. 26

K. Wang and S. Belongie. Word spotting in the wild. In Furopean
Conference on Computer Vision, pages 591-604, 2010. 23, 28, 61, 62,
78, 79, 96

C. Wolf and D. Doermann. Binarization of low quality text using a
Markov random field model. In International Conference on Pattern
Recognition, volume 3, pages 160-163. IEEE, 2002. 12, 102

P.J. Werbos. Backpropagation through time: What it does and how to
do it. Proceedings of the IEEE, 78(10):1550-1560, 1990. 49

C. Wolf and J.-M. Jolion. Extraction and recognition of artificial text
in multimedia documents. Pattern Analysis and Applications, 6(4):309—
326, 2004. 10

C. Wolf, J.M. Jolion, and F. Chassaing. Text localization, enhancement
and binarization in multimedia documents. In International Conference
on Pattern Recognition, volume 2, pages 1037-1040. IEEE, 2002. 14

R. Wang, W. Jin, and L. Wu. A novel video caption detection approach
using multi-frame integration. In International Conference on Pattern
Recognition, volume 1, pages 449-452. IEEE, 2004. 16



BIBLIOGRAPHY 115

[WK11]

[WLMHO9]

[Wu96|

[WZ95]

[Yago1]

[YBYK11]

[YEYT11]

[YGHO4]

[YHGZ05]

[YPX09]

[YWO5]

T. Wakahara and K. Kita. Binarization of color character strings in
scene images using k-means clustering and support vector machines. In
International Conference on Document Analysis and Recognition, pages
274-278, 2011. 11

J.J. Weinman, E. Learned-Miller, and A.R. Hanson. Scene text recogni-
tion using similarity and a lexicon with sparse belief propagation. Pat-
tern Analysis and Machine Intelligence, 31(10):1733-1746, 2009. 29

X. Wu. YIQ vector quantization in a new color palette architecture.
IEEE Transactions on Image Processing, 5(2):321 329, 1996. 11

R. J. Williams and D. Zipser. Gradient-based learning algorithms
for recurrent networks and their computational complexity. Back-
propagation: Theory, architectures and applications, pages 433 486,
1995. 88, 92

R.R. Yager. Connectives and quantifiers in fuzzy sets. Fuzzy sets and
systems, 40(1):39-75, 1991. 44

Y. Yoon, K.D. Ban, H. Yoon, and J. Kim. Blob extraction based charac-
ter segmentation method for automatic license plate recognition system.
In International Conference on Systems, Man, and Cybernetics, pages
2192-2196. IEEE, 2011. x, 20

T. Yamazoe, M. Etoh, T. Yoshimura, and K. Tsujino. Hypothesis
preservation approach to scene text recognition with weighted finite-

state transducer. In International Conference on Document Analysis
and Recognition, pages 359-363, 2011. 8

Q. Ye, W. Gao, and Q. Huang. Automatic text segmentation from
complex background. In International Conference on Image Processing,
volume 5, pages 2905-2908. IEEE, 2004. ix, 12, 13

Q- Ye, Q. Huang, W. Gao, and D. Zhao. Fast and robust text detection
in images and video frames. Image and Vision Computing, 23(6):565
576, 2005. 7

J. Yi, Y. Peng, and J. Xiao. Using multiple frame integration for the
text recognition of video. In International Conference on Document
Analysis and Recognition, pages 71 75, 2009. x, 7, 16

M. Yokobayashi and T. Wakahara. Segmentation and recognition of
characters in scene images using selective binarization in color space and
GAT correlation. In International Conference on Document Analysis
and Recognition, pages 167 171, 2005. 7, 25



116

[YW06]

[YYGHO9)

[Z.C03)

[ZLT10]

BIBLIOGRAPHY

M. Yokobayashi and T. Wakahara. Binarization and recognition of de-
graded characters using a maximum separability axis in color space and
GAT correlation. In International Conference on Pattern Recognition,
volume 2, pages 885-888. IEEE, 2006. 25

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid match-
ing using sparse coding for image classification. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
1794-1801. IEEE, 2009. 84

D.Q. Zhang and S.F. Chang. A Bayesian framework for fusing multiple
word knowledge models in videotext recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, volume 2, pages 528533,
2003. 8, 24, 28

Z. Zhou, L. Li, and C.LL. Tan. Edge based binarization for video text
images. In International Conference on Pattern Recognition, pages 133—
136, 2010. 10



INSA de RENNES
Service des Formations

AVIS DU JURY SUR LA REPRODUCTION DE LA THESE SOUTENUE

Titre de la theése:

Combining neural-based approaches and linguistic knowledge for text recognition in multimedia documents

Nom Prénom de l'auteur : ELAGOUNI KHAOULA

Membres du jury :
- Monsieur MERIALDO Bernard
- Monsieur LEZORAY Olivier
- Monsieur MORIN Emmanuel
- Madame SEBILLOT Pascale
- Monsieur GARCIA Christophe
- Monsieur MAMALET Franck
- Monsieur VIARD-GAUDIN Christian

A N . ‘
Président du jury : (Viruabven VIgRD - G AvN

Date de la soutenance : 28 Mai 2013

Reproduction de la these soutenue

12 These pouvant étre reproduite en I'état
[ Thése pouvant &tre reproduite aprés corrections suggérées

Le Directeur,

Fait a Rennes, le 28 Mai 2013

Signature du présic@de jury
/

N




Résumé

Les travaux de cette these portent sur la reconnaissance des
indices textuels présents dans des images et des vidéos. Dans
ce cadre, nous avons congu des prototypes d'OCR (optical
character recognition) capables de reconnaitre tant des textes
incrustés que des textes de scene acquis n'importe ou au sein
d'images ou de vidéos (sur des panneaux, des banderoles, des
affiches...). Nous nous sommes intéressée a la définition
d'approches robustes a la variabilité des textes (fonte, couleur,
taille...) et aux conditions d'acquisition (fond complexe,
occlusion, luminosité non uniforme, faible résolution...). Plus
précisément, nous avons proposé deux types de meéthodes
dédiées a la reconnaissance de texte :

- une approche fondée sur une segmentation en caractéres qui
recherche des séparations non linéaires entre les caractéres
adaptées a la morphologie de ces derniers ;

- deux approches se passant de la segmentation en intégrant
un processus de scanning multi-échelles ; la premiére utilise un
modele de graphe pour reconnaitre les textes tandis que la
seconde intégre un modéle connexionniste récurrent
spécifiquement développé pour gérer les contraintes spatiales
entre les caractéres reconnus.

Qutre les originalités liées a chacune des approches, deux
contributions supplémentaires de ce travail de thése résident
dans la définition d'une reconnaissance de caractéres fondée
sur un modele de classification neuronale et l'intégration de
certaines connaissances linguistiques permettant de tirer profit
du contexte lexical.

Les difféerentes méthodes congues ont été évaluées sur deux
bases de documents : une base de textes incrustés dans des
vidéos et une base publique de textes de sceéne (base ICDAR
2003). Les expérimentations menées ont permis de montrer la
robustesse des approches et de comparer leurs performances
a celles de l'état de l'art, mettant ainsi en évidence les
avantages et les limites de chaque méthode.

Mots-clés : Reconnaissance de texte, reconnaissance de
caractéres, segmentation, réseau de neurones, modéle de
langue, scanning multi-échelles, modele de graphe,
classification connexionniste
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Abstract

This thesis focuses on the recognition of textual clues in images
and videos. In this context, OCR (optical character recognition)
systems, able to recognize caption texts as well as natural
scene texts captured anywhere in the environment have been
designed. Novel approaches, robust to text variability (different
fonts, colors, sizes, etc.) and acquisition conditions (complex
background, non uniform lighting, low resolution, etc.) have
been proposed. In particular, two kinds of methods dedicated to
text recognition are provided:

- A segmentation-based approach that computes nonlinear
separations between characters well adapted to the local
morphology of images;

- Two segmentation-free approaches that integrate a multi-scale
scanning scheme. The first one relies on a graph model, while
the second one uses a particular connectionist recurrent model
able to handle spatial constraints between characters.

In addition to the originalities of each approach, two extra
contributions of this work lie in the design of a character
recognition method based on a neural classification model and
the incorporation of some linguistic knowledge that enables to
take into account the lexical context.

The proposed OCR systems were tested and evaluated on two
datasets: a caption texts video dataset and a natural scene
texts dataset (namely the public database ICDAR 2003).
Experiments have demonstrated the efficiency of our
approaches and have permitted to compare their performances
to those of state-of-the-art methods, highlighting their
advantages and limits.

Keywords: Text recognition, character  recognition,
segmentation, neural network, language model, multi-scale
scanning, graph model, connectionist classification




