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Résumé

Ce travail de recherche est dédié à la simulation de la réponse transitoire des assemblages
de poutres soumis à des chocs. De tels chargements entrâınent la propagation d’ondes haute
fréquence dans l’ensemble de la structure. L’énergie qu’elles transportent peut être dom-
mageable pour son fonctionnement ou celui des équipements embarqués. Dans des études
précédentes, il a été observé sur des structures expérimentales qu’un régime vibratoire dif-
fusif tend à s’installer pour des temps longs. Le but de cette étude est donc de développer
un modèle robuste de la réponse transitoire des assemblages de poutres soumis à des chocs
permettant de simuler, entre autres, cet état diffusif.

Les champs de déplacement étant très oscillants et la densité modale élevée, la simu-
lation numérique de la réponse transitoire à des chocs peut difficilement être menée par
une méthode d’éléments finis classique. Une approche utilisant un estimateur de la den-
sité d’énergie de chaque mode de propagation a donc été mise en œuvre. Elle permet
d’accéder à des informations locales sur les états vibratoires, et de contourner certaines lim-
itations intrinsèques aux longueurs d’onde courtes. Après avoir comparé plusieurs modèles
de réduction cinématique de poutre à un modèle de Lamb de propagation dans un guide
d’ondes circulaire, la cinématique de Timoshenko a été retenue afin de modéliser le com-
portement mécanique haute fréquence des poutres. En utilisant ce modèle dans le cadre
de l’approche énergétique évoquée plus haut, deux groupes de modes de propagation de
la densité d’énergie vibratoire dans une poutre ont été isolés: des modes longitudinaux
regroupant un mode de compression et des modes de flexion, et des modes transversaux
regroupant des modes de cisaillement et un mode de torsion. Il peut être également montré
que l’évolution en temps des densités d’energie associées obeit à des lois de transport.

Pour des assemblages de poutres, les phénomènes de réflexion/transmission aux jonc-
tions ont du être pris en compte. Les opérateurs permettant de les décrire en termes de
flux d’énergie ont été obtenus grâce aux équations de continuité des déplacements et des
efforts aux jonctions. Quelques caractéristiques typiques d’un régime haute fréquence ont
été mises en évidence, tel que le découplage entre les modes de rotation et les modes de
translation.

En revanche, les champs de densité d’énergie sont quant à eux discontinus aux jonc-
tions. Une méthode d’éléments finis discontinus a donc été développée afin de les simuler
numériquement comme solutions d’équations de transport. Si l’on souhaite atteindre le
régime diffusif aux temps longs, le shéma numérique doit être peu dissipatif et peu dis-
persif. La discrétisation spatiale a été faite avec des fonctions d’approximation de type
spectrales, et l’intégration temporelle avec des schémas de Runge-Kutta d’ordre élevé du
type ”strong-stability preserving”. Les simulations numériques ont donné des résultats con-
cluants car elles permettent d’exhiber le régime de diffusion. Il a été remarqué qu’il existait
en fait deux limites diffusives différentes: (i) la diffusion spatiale de l’énergie sur l’ensemble
de la structure, et (ii) l’équirépartition des densités d’énergie entre les différents modes de
propagation. Enfin, une technique de renversement temporel a été développée. Elle pourra
être utile dans de futurs travaux sur le contrôle non destructif des assemblages complexes
et de grandes tailles.

Mots-clés : Propagation d’ondes haute fréquence, modèle de Lamb, poutre de Timo-
shenko, réflexion/transmission, éléments finis discontinus, schéma de Runge-Kutta, ren-
versement temporel.
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Abstract

This research is dedicated to the simulation of the transient response of beam trusses un-
der impulse loads. The latter lead to the propagation of high-frequency waves in such built-
up structures. In the aerospace industry, that phenomenon may penalize the functioning
of the structures or the equipments attached to them on account of the vibrational energy
carried by the waves. It is also observed experimentally that high-frequency wave propaga-
tion evolves into a diffusive vibrational state at late times. The goal of this study is then to
develop a robust model of high-frequency wave propagation within three-dimensional beam
trusses in order to be able to recover, for example, this diffusion regime.

On account of the small wavelengths and the high modal density, the modeling of high-
frequency wave propagation is hardly feasible by classical finite elements or other methods
describing the displacement fields directly. Thus, an approach dealing with the evolution of
an estimator of the energy density of each propagating mode in a Timoshenko beam has been
used. It provides information on the local behavior of the structures while avoiding some
limitations related to the small wavelengths of high-frequency waves. After a comparison
between some reduced-order beam kinematics and the Lamb model of wave propagation
in a circular waveguide, the Timoshenko kinematics has been selected for the mechanical
modeling of the beams. It may be shown that the energy densities of the propagating modes
in a Timoshenko beam obey transport equations. Two groups of energy modes have been
isolated: the longitudinal group that gathers the compressional and the bending energetic
modes, and the transverse group that gathers the shear and torsional energetic modes.

The reflection/transmission phenomena taking place at the junctions between beams
have also been investigated. For this purpose, the power flow reflection/transmission oper-
ators have been derived from the continuity of the displacements and efforts at the junc-
tions. Some characteristic features of a high-frequency behavior at beam junctions have
been highlighted such as the decoupling between the rotational and translational motions.

It is also observed that the energy densities are discontinuous at the junctions on ac-
count of the power flow reflection/transmission phenomena. Thus a discontinuous finite el-
ement method has been implemented, in order to solve the transport equations they satisfy.
The numerical scheme has to be weakly dissipative and dispersive in order to exhibit the
aforementioned diffusive regime arising at late times. That is the reason why spectral-like
approximation functions for spatial discretization, and strong-stability preserving Runge-
Kutta schemes for time integration have been used. Numerical simulations give satisfactory
results because they indeed highlight the outbreak of such a diffusion state. The latter is
characterized by the following: (i) the spatial spread of the energy over the truss, and (ii)
the equipartition of the energy between the different modes. The last part of the thesis
has been devoted to the development of a time reversal processing, that could be useful for
future works on structural health monitoring of complex, multi-bay trusses.

Keywords: High-frequency wave propagation, Timoshenko beam, Lamb model, reflec-
tion/transmission, discontinuous finite elements, Runge-Kutta scheme, time reversal.
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Introduction

Aerospace structures under impulse loads

Aerospace structures are often subjected to mechanical or acoustical impulse loads.
These shocks generate strongly oscillating waves in the structures. Typical examples are
the unfolding of solar panels of satellites or the pyrotechnic cut (the step of separation
between the launcher and the payload, see Fig. 1), that are set off by pyrotechnic shocks.
In aeronautics, the landing of a jet on the deck of an aircraft carrier produces a mechan-
ical shock when the tailhook catches the arresting gear (see Fig. 2). These waves could

Figure 1: The pyrotechnic cut step.

be highly penalizing because the energy they carry can reach the equipments attached to
the structures and disturb their operations. Actually several spatial missions aborted on
account of such problems [67]. Thus, it is much desirable to improve the understanding
and the prediction of the propagation of the waves in structures at long times. Moreover
aerospace structures are mainly composed of beams and plates, and the present study is
focused on the case of beam assemblies.

An ideal shock would excite the entire frequency spectrum. In the low frequency
range, the structural response is very well characterized by a modal approach. In the
high-frequency (HF) range this description is however not relevant any more on account
of the small wavelengths and the high modal density of built-up structures. Thus several
strategies have been conducted in order to predict more precisely the transient dynamics of
such structures under impulse loads. The methods widely used in the industry are global

9
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Figure 2: A landing of an F/A-18 Hornet on an aircraft carrier.

approaches like the Statistical Energy Analysis (SEA). It describes the levels of energy in the
substructures of a built-up system and the energetic exchanges between them [61]. However,
SEA gives no local information and relies on the determination of some core parameters
(like the so-called coupling loss factors characterizing the exchanges of energy) by hybrid
methods. An other class of methods gathers local approaches like the Vibrational Conduc-
tivity Analogy (VCA) [68]. Although they give a local evolution of the transient response,
they are not suitable for complex structures and are not valid in some cases [22, 88]. Wave
approaches have been developed like the WKBJ (for Wentzel, Kramers, Brillouin, and Jef-
freys) methods [91] which are appropriate for the HF range. But they require the resolution
of an eikonal equation, which raises several theoretical and numerical difficulties, in partic-
ular for wave superposition or the analysis of caustics. The use of WKBJ-type approximate
solutions with complex phase functions like Gaussian beams [13], or the segment projection
method [26], allows to alleviate these difficulties. In this type of methods the conversions
of wave polarizations are not easily accounted for, though these phenomena typically arise
in built-up structures. A last class of methods focuses on the evolution of some energy
density estimators into elastic structures using a so-called microlocal analysis [75]. This
method is applicable for complex structures and gives local informations on the transient
response while relying on weaker hypotheses as compared to the WKBJ approaches. It is
thus expected to be adapted to the present survey that consists in developing a reliable
method of analysis of the transient response of beam trusses under impulse loads.
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Characterization of the HF range dynamics

In the transient domain, impulse loads are ideally represented by a Dirac pulse. The
frequency content of such a distribution is the entire real domain. Thus this work poten-
tially concerns the whole frequency range. Nevertheless, it is important to notice that a
shock is not really a pulse but a very short excitation containing not all the frequencies but
only a part of it. The sharper the shock is, the wider is the frequency content.

The dynamic response of built-up structures to such broadband loads is illustrated by
the experiments exposed in [39, 85]. The first one has been conducted at ONERA. The
experimental structure is represented in Fig. 3. The employed material is dural, a weakly
dissipative aluminum alloy often used for aeronautical applications. Fig. 4 shows the esti-
mated mechanical energy for different sections of the structure displayed in Fig. 3 when a
unit point force is applied to one of its vertical edges at one extremity. In the low frequency

Figure 3: CAD view of the ONERA experimental structure. The structure is entirely closed
for experiments, but some outer plates have been removed on the sketch to make its main
frame visible. After Savin [85].

range (up to 250 Hz for this structure), the plot exhibits resonance frequencies correspond-
ing to global eigenmodes. These modes are global stationary waves which concentrate the
mechanical energy at the eigenfrequencies. They have been intensively investigated in the
past decades, see e.g [8, 17, 78]. But as the frequency increases, the modal density increases
too, such that at about 1200 Hz modes can no longer be distinguished from each other on
account of this high modal density and of the damping effects that overlap them. Between
these two ranges lies the mid-frequency domain, where the structural response is the tran-
sition between the global, low-frequency behavior and the high-frequency behavior. The
latter is characterized by vibrational energy levels decreasing significantly when observed
at increased distances from the excitation. They are also steadily decreasing with the fre-
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Figure 4: Estimated mechanical energy densities at different segments in the structure of
Fig. 3 (red: segment near the excitation, green: middle segment, blue: segment at the other
extremity of the structure).

quency. Thus for such higher frequencies the overall mechanical energy remains localized
close to the excitation and diffuses only weakly to the other parts of the structure.

An other experiment has been conducted by the Naval Research Laboratory of Washing-
ton, DC [39]. The structure is a fuselage section of a CESSNA Citation II, as seen in Fig. 5.
The excitation consists in a point force applied at a rib/stringer intersection at one end of
the fuselage. Observation of the velocity magnitude in Fig. 6 yields to the same conclusions
as for the ONERA experiment, i.e. global modes at low frequencies and localization of
the mechanical energy near the excitation point in the HF range. This localization can be
explained by the effects of the heterogeneities having size of the order or higher than the
wavelength that induce multiple scattering of the vibrational waves, and consequently their
geometrical diffusion. These scattering phenomena tend to localize the associated energy
near the excitation. The plot of the velocity phase of Fig. 7 gives further information.
At low frequency, the phase is piecewise constant with jumps of ±π, a typical feature of
global stationary modes. As the power flow is, in a first approximation, proportional to the
(spatial) gradient of the phase, the vibrational energy is spread over the entire structure
and concentrated at the resonance frequencies. In the medium frequency range, the phase
is rapidly varying thus the energy transfers become important from one substructure to
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Figure 5: View of the interior of the experimental structure and of the laser measurement
device. After Herdic et al. [39].

another. The vibrational energy is also primarily carried by clusters of local modes and the
higher-order global modes. In the HF range, the phase becomes noisy and accordingly the
energy transfers are smoothed out, exhibiting a diffusive behavior. In this latter situation,
the mechanical energy tends to remain rather localized in the vicinity of the excitation
point on account of the low diffusion constants corresponding to the geometrical spreading
of multiply-scattered waves.

Near the excitations, accelerations due to HF waves can reach very high values (of
orders of 106g, see for example [47]). Equipments attached to a structure subjected to
such impulse loads would need to be far from this area in order to avoid any functioning
problems. But for aerospace structures such as satellites, the lack of room prevents the
engineers from choosing the location of the attachments. It is thus very important to be
able to predict the level of energy potentially experienced by the equipments. One of the
goal of this thesis is to develop a mathematical and numerical model able to reconstruct
the transient response from an initial pulse to a possible diffusive regime.
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Figure 6: Comparisons of the computed and experimental magnitude distributions of the
radial velocity induced by a point force excitation applied to a stiffener intersection of the
structure in Fig. 5. After Herdic et al. [39].

Figure 7: Measurement of the phase distribution of the radial velocity induced by a point
force excitation applied to a stiffener intersection of the structure in Fig. 5 in the low-, mid-,
and high-frequency ranges. After Herdic et al. [39].
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Outline of the thesis

The work presented here is dedicated to built-up structures constituted by multi-bay
beam trusses since the latter are widely used in the aerospace industry. A typical example
is given by the International Space Station (ISS), see Fig. 8. The assembly with two-
dimensional slender structures such as plates or shells is left to future researches. In this
respect, the dissertation is divided into six chapters. It begins with a review of some numer-
ical and asymptotic methods dealing with HF wave propagation and structural dynamics.
Arguments are here developed in favor of a kinetic approach of elastic wave propagation. In
the second chapter, the accuracy of several beam models when considered in the HF range
are analyzed in regard to the Pochhammer-Chree waveguide model. The third chapter con-
sists in the formulation of a kinetic model for HF waves in three-dimensional beams. The
equations describing the evolution of the HF energy density in such structures are outlined.
The case of random parameters and the effect of prestressing loads are also considered. In
order to study an entire beam truss, the behavior of HF waves at the junctions between
beams has to be analyzed. In this respect, the reflection/transmission phenomena are inves-
tigated in the this chapter as well. Once the full model is obtained, it is necessary to develop
adapted methods of numerical simulation; this is the purpose of the fourth chapter. The
implemented method is the discontinuous Galerkin finite element method [41] for spatial
discretization, and the Runge-Kutta method [33] for time discretization. In this chapter,
the dispersion and the stability of the implemented scheme are also studied. In the fifth
chapter, several numerical examples are presented and a test of time reversal processing is
detailed. This dissertation is closed with some conclusions and perspectives.

Figure 8: The ISS in July 2011.
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Chapter 1

Modeling high-frequency
vibrations in structural dynamics

In this chapter, different approaches of the HF dynamics of bounded elastic media are
presented and discussed. The basic equations describing elastic waves are recalled in order to
introduce the notations used subsequently in the thesis. We then focus on ways of obtaining
approximate numerical or asymptotic solutions of the elastodynamics system, paying a par-
ticular attention to the high-frequency range where strongly oscillating solutions are sought
for. The characterization of HF vibrations has been classically done in terms of energetic
approaches by engineers. These methods are summarized in a subsequent part, in view of
motivating our strategy to use kinetic models to describe the evolution of the vibrational
energy in built-up structures. This theory is briefly discussed in a concluding section.

1.1 Elastic waves

First it is useful to introduce the basic framework of this study in terms of wave prop-
agation in a three-dimensional elastic medium. The purpose of this section is not to give
a detailed overview of elastic waves, but only to introduce the main notations that shall
be used subsequently. First, it is assumed that the structures we will consider in this work
are constituted by isotropic materials. The equations of motion are derived from equilib-
rium considerations and the constitutive equation of an elastic body occupying a bounded
domain Ω of R3 at its static equilibrium considered as the reference configuration. The
balance of momentum in a fixed reference frame under the action of body forces ρf , reads:

∇x · σ + ρf = ρ∂2tu in Ω , (1.1)

where ∇x is the usual gradient vector given in that reference frame (ê1, ê2, ê3) with the
corresponding Cartesian coordinates (x, y, z) of a point x in Ω by∇x = ê1∂x+ ê2∂y+ ê3∂z.
Also σ is the second order Cauchy stress tensor, ρ is the density of the medium, and u
is the small displacement field at the spatial point x ∈ Ω assimilated to a material point
p ∼ x in the small perturbation context. This hypothesis holds for Supp,t |u| ≪ L and
Supp,t |∇pu| ≪ 1, where L is a characteristic dimension of the structure, and:

|∇pu| = Tr(∇pu ·∇pu
T )1/2 .

21
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AT denotes the transpose of the second order tensor A, and TrA its trace. The small
perturbation hypothesis implies that the difference between the material and spatial gra-
dients is negligible, ∇p ≃ ∇x. Therefore the gradient vector will be simply denoted by ∇

when no ambiguity holds. In this context, ∂ia will also stand for i
th derivative with respect

to a, except for the time derivatives (a ≡ t) which will be denoted by u̇ = ∂tu and ü = ∂2t u.

The balance of momentum (1.1) is supplemented by boundary and initial conditions,
whereas the constitutive law gives the relationship between the stress tensor and the gra-
dient of the displacement. Let ∂Ω = Γ0 ∪ Γ be the boundary of the structure, such that
Γ0 ∩ Γ = ⊘. Let n̂ be the outward unit normal of that boundary. The structure is fixed on
the part Γ0 of ∂Ω:

u = 0 on Γ0 ,

and it is free on the other part Γ :

σn̂ = 0 on Γ .

The initial conditions are:

u(x, 0) = uI(x) , u̇(x, 0) = vI(x) . (1.2)

As the medium is isotropic, the constitutive law is the classical Hooke’s law:

σ = λ(Tr ǫ)I + 2µǫ , (1.3)

where ǫ = 1
2(∇u+∇uT ) is the linearized strain tensor, and I is the identity matrix. λ and

µ are the first and second Lamé coefficients, the second one being also the shear modulus.
Introducing the definition of the linearized strain tensor into Eq. (1.3) and inserting the
latter into the equilibrium equation (1.1) under the assumption of a homogeneous medium
and f ≡ 0, leads to the classical Navier equation:

µ∆u+ (λ+ µ)∇∇ · u = ρü . (1.4)

Here ∆ is defined as the vector Laplace operator given by ∆ =∇ · (∇u).

Solutions of the Navier equation can be sought for in the form of an harmonic plane
wave:

u(x, t) = Aei(ωt−k·x) , (1.5)

with A the amplitude vector of the wave, ω is the circular frequency, k is the wave vector,
and k = |k| is the wavenumber. Accordingly k/k is the unit vector which indicates the
direction of propagation of the wave. Inserting this ansatz into Eq. (1.4) gives the relation
between the circular frequency and the wavenumber, the so-called dispersion relation. Let
us introduce:

Γ(k) = (c2l − c2s)k ⊗ k + c2s|k|2I , (1.6)

the so-called acoustic or Christoffel tensor of an isotropic medium, where:

cl =

√

λ+ 2µ

ρ
(1.7)
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is the phase velocity of the longitudinal waves, and:

cs =

√

µ

ρ
(1.8)

is the phase velocity of the transverse waves. Then the Navier equation reads:

ρ
(

Γ(i∇x)− (i ∂t)
2
)

u = 0 , (1.9)

such that A and ω arise as the eigenvector and eigenvalue of Γ, which is positive definite
whenever k 6= 0:

Γ(k)A = ω2A . (1.10)

The solvability condition detΓ(k) = 0 for this eigensystem provides with the dispersion
relation, which solutions are the admissible phase speeds:

cφ =
ω

k
= cl or cs .

The phase velocity is the speed of material perturbations within the isotropic medium. The
dispersion relation allows to define the group velocity as well:

cg =∇kω ,

such that |cg| represents the velocity of the energy. Here the phase velocity and the group ve-
locity are the same because the medium is non dispersive. However in a dispersive medium,
where the relation between the wavevector and the circular frequency is not necessarily
linear, the phase and the group velocity are different. Then the shape of the initial wave is
modified as it propagates.

The analysis of the solutions of (1.4) in the case of an unbounded medium can be found
in the classical book of Achenbach [2], for example. There a Helmholtz decomposition is
invoked, which consists in dividing the wave field into a longitudinal component (also called
irrotational, dilatational or pressure wave) having a direction of propagation parallel to the
wave vector, and a transverse component (also called shear, equivoluminal, or rotational
wave) having a direction of propagation normal to the wave vector. The first is the gradient
of a scalar field and the second is the curl of a vectorial field. The transverse component is
divided into horizontally and vertically transverse waves which have perpendicular wavevec-
tors. The waves may also be commonly divided into two categories [2, p. 32], namely the
propagating and the standing ones. The propagating waves have the form of Eq. (1.5). This
type is considered in an unbounded medium or when the wavelength is small compared to a
characteristic dimension of the medium. The standing waves are basically the superposition
of two propagating waves with the same circular frequency ω and wavelength 2π

k travelling
in opposite directions. They may be given in the form:

u(x, t) = A sin(k · x) cos(ωt) .

If some boundary conditions are considered, then the range of acceptable harmonic motions
is subjected to restrictions. The existing waves are standing waves having wavenumbers
such that the induced displacement fulfills the boundary conditions. They correspond to
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the eigenmodes of the bounded medium.

For heterogeneous media, the acoustic tensor varies pointwise and the foregoing analysis
is no longer relevant. The equation of motion (1.1) shall be solved resorting to numerical or
asymptotic methods of approximation, of which a short survey is outlined below. The aim
of this presentation is however not to give an exhaustive review of all existing approaches.
It is rather focused on some of them in view of obtaining approximate solutions to the
elastodynamic problem (1.1) for waves propagating in structures (bounded media), with
wavelengths possibly small with respect to their characteristic lengths. Regarding numerical
methods, both issues related to spatial discretization, on account of the inhomogeneity of
the acoustic tensor, and time discretization are addressed in the following.

1.2 Some numerical methods

The construction of approximate solutions to partial differential equations such as the
balance of momentum (1.1) is classically done within the framework of the method of
weighted residuals, see e.g. [115]. Consider Eq. (1.1) in Ω in terms of the displacement field
u(x, t) solely together with boundary conditions on ∂Ω:

(

Γ(x, i∇x)− (i ∂t)
2
)

u = f in Ω ,
Bu = 0 on ∂Ω ,

(1.11)

where B is a linear partial differential operator. The initial conditions of the above system
are (1.2). An approximate solution uh of (1.11) is a function satisfying, say, Buh = 0 and
making the residual:

R :=H(x, i∇x, i ∂t)uh − f
small in some sense, where H(x,k, ω) := Γ(x,k)− ω2I. That approximation is sought for
in a finite-dimensional subspaceWh of some functional Hilbert spaceW (such as a L2 space)
where the true solutions of (1.11) or its variational form lie. Therefore uh is expanded on
a set of trial functions (φm)0≤m≤P spanning Wh as:

uh(x, t) =
P
∑

m=0

Um(t)φm(x) , (1.12)

while a family of test functions (ψm)0≤m≤P is used to define the smallness of the residual
by means of the Hilbert space scalar product and an average boundary integral up to a
time T > 0:

(R,ψm)W + 〈Buh,ψm〉∂Ω = 0 , 0 ≤ m ≤ P , t ∈ [0, T ] . (1.13)

Now the finite difference method, the finite element method, or the spectral method among
others may be arbitrarily seen as different particularization of the foregoing strategy [74].
Using finite differences, the trial functions are overlapping, locally defined polynomials of
generally low order. Using finite elements, the trial functions are locally defined smooth
functions, for example polynomials of fixed degrees which are non-zero only on subdomains
of Ω. Finite volumes are basically obtained using zeroth-order polynomials in this frame-
work. In spectral methods the trial functions are globally defined smooth functions, such
as Fourier series if the approximate solution is periodic.
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1.2.1 Finite difference method

In the finite difference method, an approximate solution of (1.11) is given by a local
interpolant polynomial, and the partial derivatives in (1.11) are then obtained by differ-
entiating this local polynomial. Here local refers to the use of nearby interpolation points
to approximate the solution or its derivatives at given points (both in space and time).
This method has been applied to elastic waves by, among others, Virieux [109]. In order
to increase the consistency and the stability of the implemented finite difference scheme,
the balance of momentum (1.1) and the constitutive equation (1.3) are used to form a
first-order system given in terms of the stress tensor and velocity field, rather than the
above second-order system given in terms of the displacement field. Consistency is related
to the difference between the approximate and the real solutions of a given partial differ-
ential equation, and stability is related to the ability of the numerical scheme to evade the
occurrence of artificial amplifications during the iterations. In order to have a consistent
and stable approximation of the derivatives, the time step needs to be small in regard to
the periods considered in the computation (given by the frequency content of the initial
condition), and it is also constrained by the mesh size retained for spatial discretization.
Thus in the case of the propagation of HF wave, computations can be expensive. Above
all, a finite difference discretization is impractical for complex geometries and boundary
conditions.

1.2.2 Finite element method

While the finite difference method tries to have an exact solution of an approximate
problem, the finite element method seeks the approximate solution of an exact problem. In
this method the structure is meshed into finite elements, and the approximate displacement
field ur

h of an element r is expanded in polynomial functions as:

ur
h(x, t) =N(x)qr(t) .

The low-degree polynomials N(x) are typically locally defined Lagrange polynomials, and
qr(t) is the vector of degrees of freedom. Using these trial functions as test functions as well
in (1.13) and integrating by parts, a Galerkin formulation is derived leading to the usual
differential equation:

MQ̈+KQ = F , (1.14)

where M is the (P + 1)× (P + 1) mass matrix, K is the (P + 1)× (P + 1) stiffness matrix,
F is the forcing vector, and Q is the nodal displacement vector. The boundary conditions
are directly applied to the trial and test functions on the boundary elements where the
displacement field vanishes.

Applying finite element methods to beam networks, the Semi-Analytical Finite Element
(SAFE) and Wave Finite Element (WFE) approaches take care of the particular geometry
of each beam by expanding their motion in terms of plane waves (sinusoidal functions)
along their axis, and finite element basis functions (low-order polynomials) in the transverse
directions [7, 47]. The approximate displacement field ur

h of an element r of a beam cross-
section for a particular wavenumber k is then approximated by:

ur
h(x, t) = ei(ωt−kx)N(x⊥)qr(t) ,
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whereN are finite element basis functions defined on the cross-section, x⊥ = (I− ê1⊗ ê1)x
being the transverse coordinates of the spatial position x within that cross-section, and
x = x · ê1 is the position of the cross-section along the axis of the beam oriented by, say, the
unit vector ê1. The vector qr(t) gathers the expansion coefficients (degrees of freedom) of
ur on the basis functions N of the element r on the cross-section. In the context of finite
element methods, a weak formulation is derived from Eq. (1.4) reduced to the cross-section,
leading to:

(K1 − i kK2 + k2K3 − ω2M)Q = F ,

where the Ki’s are stiffness matrices, M is the mass matrix, and Q is the vector of degrees
of freedom of the cross-section. This system is recast as a linear system with respect to the
wavenumber k as:

(A− kB)Q̃ = F̃ ,

with Q̃ = (Q , kQ)T and:

A =

(

0 K1 − ω2M

K1 − ω2M − iK2

)

, B =

(

K1 − ω2M 0
0 −K3

)

.

This system is solved for each circular frequency ω and gives the wavenumbers k(ω) and
the mode shapes. Thus each beam is meshed only in its cross-section, so that the mesh size
and the computational costs are greatly reduced in comparison to a three-dimensional com-
putation. In the SAFE method, only a cross-section is meshed, while in the WFE method
a short slice of the waveguide is discretized, allowing the use of a commercial finite element
software. This class of methods considers steady-state beam dynamics in the frequency
domain, which impose to perform an inverse Fourier transform to get to the transient re-
sponse. For simulation at long times, a large number of modes has usually to be considered.
It greatly increases the computational costs and numerical errors induced by the truncation
effects.

The use of local polynomial interpolants based on a small number of interpolating grid
points in finite difference or finite element methods is very reasonable for slowly varying
functions. Indeed, it seems to be meaningless to include informations far away from the
area of interest in approximating the variations of such functions. However, low-degree
local polynomials require in return very fine grids to accurately resolve solutions containing
significant spatial and temporal variations, as for HF waves. The use of fine grids increases
significantly the needs in computational resources, so alternative schemes using coarser
grids are sought for. The basic feature of spectral methods is to use all available values of a
function to construct approximations, while relying on looser meshes. Hence they are often
referred to as global methods in the dedicated literature.

1.2.3 Spectral methods

Spectral methods basically use global smooth functions as trial functions, such as
trigonometric polynomials (Fourier series) for periodic problems, or higher order Lagrange
or orthogonal polynomials (typically Jacobi polynomials such as Tchebychev or Legendre
polynomials) for non-periodic problems. They may be classified in different sub-categories
depending on the choice of the test functions [40]. Galerkin spectral methods use the same
trial and test functions, ψm = φm, each satisfying the boundary conditions Bφm = 0. Tau
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spectral methods consider as test functions most of the trial functions, however the latter do
not necessarily satisfy the boundary conditions. These very conditions are enforced by an
additional set of equations obtained by first, expanding Bφm on a set of orthonormal func-
tions (gj)0≤j≤M defined on the boundary ∂Ω with M < P , and then using the expansion
(1.12):

Bφm(x) =

M
∑

J=0

φjmgj(x) ,

Bu(x) =

P
∑

m=0

M
∑

J=0

Umφjmgj(x) = 0 .

Hence the M + 1 additional constraints are
∑P

m=0 Umφjm = 0 for 0 ≤ j ≤ M . Finally
collocation, or pseudo-spectral methods consider delta functions at special points, or at
special sub-domains, as test functions.

The basic ideas behind spectral methods may be extended to finite element meshes by
considering each element as a sub-domain where a ”global” approximation is constructed,
using higher-order polynomials as trial functions. The average boundary conditions in
(1.13) can be used to impose the consistency of the ”global” approximations between those
sub-domains in a weak form, playing the role of penalty constraints. In this spirit, discon-
tinuous Galerkin finite element methods [41] are obtained using the trial functions as test
functions as well. The term ”discontinuous” stems from the fact the enforcement of a com-
patibility condition between the ”global” approximations of adjacent sub-domains is done
in terms of user-defined boundary fluxes. This approach has become the method of choice
in unsteady convection-dominated flow problems for its good shock-capturing features, see
for example [41].

1.2.4 Time discretization

The most widely employed method for the numerical solution of the system of coupled
linear second-order differential equations (1.14) is the class of Newmark schemes [69]. It is
based on a time series expansion of Q and Q̇ as:

Q̇(t+∆t) = Q̇(t) + ∆t
(

(1− γ)Q̈(t) + γQ̈(t+∆t)
)

,

Q(t+∆t) = Q(t) + ∆tQ̇(t) +
∆t2

2

(

(1− 2β)Q̈(t) + 2βQ̈(t+∆t)
)

.

where 0 ≤ β ≤ 1
2 and 0 < γ ≤ 1. Implicit methods correspond to β > 0, and explicit

methods correspond to β = 0. This technique is widely used for industrial applications, but
stability and consistency problems may arise. While implicit schemes are unconditionally
stable, explicit schemes are not although they are more adapted to wave propagation prob-
lems, as argued in [12]. For a one-dimensional scalar equation of the form q̈(t)+ω2

0q(t) = 0,
the explicit Newmark schemes read:

(

q(t+∆t)
q̇(t+∆t)

)

=

[

1− ω2
0
2 ∆t

2 ∆t
1
2γω

4
0∆t− ω2

0∆t 1− γω2
0∆t

2

]

(

q(t)
q̇(t)

)

.
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For the method to be stable the absolute values of the eigenvalues of the amplification
matrix on the right-hand side above need to be less than or equal to zero. For the usual
choice γ = 1

2 that condition reduces to ω0∆t ≤ 2, so that the critical time-step is ∆tc =
2
ω0
.

In the multi-dimensional setting of Eq. (1.14) the preceding condition reads:

∆tc =
2

maxα ωα

where the (ωα)1≤alpha≤P+1 are the eigenfrequencies of the structure. So on account of the
high modal density of built-up structures in the HF range, that condition may become
extremely restrictive. As for the consistency of these schemes, it has been argued in [10]
that if there are less than 5 elements for the minimal wavelength, then the wave speeds
are modified significantly (dispersion error) and the solution amplitudes decrease with time
(dissipation error). The above stability criteria may also be written in terms of a Courant-
Friedrichs-Lewy (CFL) number as:

CFL =
π

N

3
∑

j=1

cj∆t

∆xj
≤ 1 ,

where N is the number of elements per wavelength in the spatial discretization, and cj are
the numerical wave speeds for each direction j.

Higher-order time discretization schemes may be required if a high-order spatial dis-
cretization is used, as in spectral methods. For the linear differential equations arising
from semi-discretized partial differential equations, as in Eq. (1.14) for example, higher-
order time discretizations are basically derived by adding terms to the Taylor expansion of
the time derivative. This is the approach retained in the derivation of multi-step Runge-
Kutta methods [40]. For non linear differential equations or equations involving possibly
discontinuous solutions, such as conservation laws, strong stability-preserving (SSP) time
discretization methods have been developed in the last decade [33]. These schemes are con-
structed by convex combinations of forward Euler operators, in such a way that the strong
stability-preserving property of the forward Euler operator applied to the differential equa-
tion at hand is conserved. If the latter is linear, they are in addition optimal in the sense
that they do not worsen the CFL condition of the forward Euler operator. Linear SSP
schemes of any order with optimal CFL condition have the form of multi-step Runge-Kutta
schemes where the order is the number of stages. They are now widely used for the time
integration of linear conservation equations.

1.3 Asymptotic approaches

Solutions of the elastic wave equation can rather be constructed by asymptotic ap-
proaches when they depend on a small, high-frequency parameter ε ≪ 1. This situation
arises when the applied loads depend on ε and are, say, highly oscillating at space-time
scales of the order of that small parameter. For example, Eq. (1.11) may be completed
with initial conditions:

u(x, 0) = uI
ε(x) , u̇(x, 0) = vIε(x) ,
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which depend on the high-frequency parameter ε, as well as the body forces f . The exact
form of these data has no relevance to the following study. A typical example could be
uI
ε(x) = εA(x)eiS

I(x)/ε and vIε(x) = B(x)eiS
I(x)/ε, as in geometric optics. Here A and

B are smooth amplitude functions and SI is the initial phase. An approximate solution
uε of (1.11) provided with these data is then constructed after the latter system has been
rescaled accordingly as:

(

Γ(x, i ε∇x)− (i ε∂t)
2
)

uε = fε in Ω ,
Buε = 0 on ∂Ω .

(1.15)

The above rescaled wave equation describes the propagation of elastic waves with a small
wave length with respect to the heterogeneities of the medium and the propagation distances–
the high-frequency regime we are interested in in this work. In this setting, the plane-wave
form (1.5) arising as a canonical solution of the elastic wave equation in an homogeneous
or piecewise homogeneous medium remains valid locally when ε ≪ 1, such that the form
of the solutions of (1.15) can be intuited a priori. This is the approach retained in the
well-known WKBJ method described next.

1.3.1 Ray methods

The WKBJ expansion method, named after the physicists G. Wentzel, H. Kramers and
L. Brillouin, and the mathematician H. Jeffreys, who independently formalized it in the
1920s, in fact the oldest and best known technique to deal with high-frequency waves. It
is also called ray theory in room acoustics [50] or seismology [108], among others. A first
evidence of the method can be found in the early works of F. Carlini (1817) or G. Green
and J. Liouville (1837), as noticed by Steele [92]. In the WKBJ approach, solutions of the
elastic wave equation (1.15) are assumed to have the form [108]:

uε(x, t) ≃ eiS(x,t)/ε
∞
∑

k=0

εkUk(x, t) , (1.16)

where S(x, t) is the (real) phase function, and the (Uk(x, t))k≥0 are amplitude functions of
the wave at various orders with respect to ε. In the HF range, only the first term (U0) is
significant such that the analysis is usually reduced to the computation of the phase and
the first amplitude function [82]. Plugging this ansatz into the elastodynamic equation
(1.15) and then equating the various terms of same orders in ε, leads to two equations.
The first one is a linear transport equation describing the evolution of the density |U0|2,
and the second one is a non linear eikonal equation describing the evolution of the phase.
Adopting a Lagrangian point of view, the eikonal equation can be solved locally by the
method of characteristics, or ray tracing. It consists in tracking the phase function solving
the eikonal equation locally in time on the so-called bicharacteristic curves of the underlying
Hamiltonian system corresponding to the elastic wave equation; see for example [88]. The
geometric rays themselves are the projections of the bicharacteristic curves on the physical
space. However as it is non-linear, the eikonal equation does not allow the direct treatment
of crossing rays, or the superposition of different phases. An alternative solution is to intro-
duce the concept of viscosity solution, as done in [28]. The method of characteristics also
fail on the caustics, where the rays arising from different initial positions in phase-space
may stack (singularities of the amplitude function due to the convergence of the rays on
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some envelop curves). This limitation can be addressed by using a Gaussian beam method.
In this approach, the real phase function S is replaced by a complex phase function, which
is real only on the rays [13] and has a Gaussian shape about them that narrows as the fre-
quency increases. The treatment of caustics becomes possible because only a limited-order
Taylor expansion of the eikonal equation has to be satisfied.

The boundary conditions in Eq. (1.15) are taken into account in these approaches by
adding auxiliary terms to the above ansatz (1.16). They add additional amplitude and
phase functions corresponding to the reflected rays as obtained by Snell-Descartes laws of
reflection/transmission. Hence the consideration of multiply-reflected rays on the bound-
aries of a bounded medium adds much complexity to the analysis of vibrational fields by
such asymptotics.

1.3.2 Wave front tracking methods

In the continuation of ray methods, several numerical approaches have been developed
in the last decades to deal with the eikonal equation of geometrical optics. The main con-
cern is in tracking the evolution of the wave fronts arising from sharp (possibly oscillatory)
initial conditions. Among the recent studies, the segment projection method [100] consists
in seeking the motion of a wave front γ by dividing it into different segments depending on
independent parameterizations. The latter are chosen such that they can be given as func-
tions of one variable solely. The method will be explained with the example of a circular
front evolving in the context of the scalar wave propagation as done by Tornberg [100] or
Engquist et al. [26].

The physical space is R2 and a point in that space is x = (x, y). The wave front
γ is then described by the functions fn(x, t))1≤n≤Nx (associated to the x-segment) and
gm(y, t)1≤n≤Ny (associated to the y-segment) of the independent variables x and y. Nx and
Ny are the numbers of x- and y-segments. The coordinates of a point of the front are then
given by (x, y) = (x, fn(x)) or (x, y) = (gm(y), y). The segments representing the front are
constructed as follows. An extremum of a function fn(x, t) defines a separation point for
the y-segment given by the function gm(y, t) as no y-segment can continue past this point.
A similar process is applied for the construction of the x-segments. Then, for each point
of the curve γ, there is at least one segment describing the curve. To make the description
complete, the information about the connectivity of segments must be provided. For the
circular wave front, two x-segments and two y-segments are required (see Fig. 1.1). The
segments are then moved by equations depending on the physics describing the motion of
the interfaces. In the considered situation, the propagation of a wave front in an isotropic
but not necessarily homogeneous two-dimensional medium depends on the velocity field
describing the medium c(x). A point of the wavefront moves then according the velocity
vector defined as c(x)n̂ = cx(x)êx + cy(x)êy where n̂ is the normal of the wavefront at x.
c(x) is the velocity field characterizing the medium. The velocity of the wave front is given
by cf (x) = cx(x)êx + cy(x)êy. In this context, it can be shown that the segments related
to a high-frequency scalar wave evolve according to the partial differential equations [25]:

∂tfn + cx∂xfn = cy ,
∂tgm + cy∂ygm = cx .

(1.17)
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These equations are then solved by standard numerical methods. After each numerical
step, the segment representation must be updated according to the same rules outlined
previously. New segments should be created if new extrema have appeared, and segments
should be removed when extrema disappear. The connection between segments must be
also updated. An example of updating is provided in Fig. 1.1. This technique is very
efficient to track the wave front, nevertheless it breaks down at caustics and crossing points
because the normal direction n̂ is not defined there. This limitation is removed by tracking
the wave front in the phase space [26]. It adds then an other variable that is the direction
of propagation. Then at caustics or focus points, the front is still described by at least one
segment.

Figure 1.1: Segment structure for the circle (up) and deformed circle (down): curve γ (left),
x-segment (middle), and y-segment (right). After Engquist et al. [26].

An alternative approach is the method of level-sets [25]. Here the wave fronts are seen as
the zeros of a single continuous function φ(x)(the level-set function) designed to be positive
on one side of the front and negative on the other side. The equation of motion of the fronts
is then applied to the whole level-set function as:

∂tφ+ c(x)n̂ ·∇xφ = 0 ,

if one considers the same situation as before. This transport equation may be solved by
standard numerical methods. The updated wave front is sought as the zero level of the
level-set function at the next numerical step.

Asymptotic methods may be numerically efficient, but they are hardly applicable to
complex geometries. For instance, the applications with polarized elastic waves are sparse
as they become numerically expensive when a lot of wave fronts are present, i.e. for diffuse
wave fields in bounded elastic media.
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1.4 Energy methods

Adopting Eulerian numerical methods, the consideration of high-frequency phenomena
in vibrating structures requires a high density of nodes both in the space and time dimen-
sions for the full discretization of the wave equation describing them. If a steady-state
regime is rather investigated the sole spatial discretization may be already bulky. Adopting
asymptotic ray methods, numerous wave fronts need to be tracked if multiple reflections of
the rays on the boundaries and interfaces are considered for the simulation of a diffusive
regime. Moreover the effects of the uncertainties of the mechanical parameters are much
more sensitive in the HF range on account of the high modal density of built-up struc-
tures [88, 90]. These shortcomings may be partially alleviated if the focus is put on the
evolution of some global quantities in the system under consideration. That is why en-
gineers have developed alternative approaches using quadratic observables (energetics) in
order to smooth out the contributions of highly oscillating, high-frequency wave fields. The
most popular methods are the Statistical Energy Analysis (SEA) introduced by Lyon and
Maidanik in their seminal paper [62], and the Vibrational Conductivity Analogy introduced
by Nefske and Sung [68]. The former adopts a global point of view, while the latter adopts
a local point of view.

1.4.1 Global approach: Statistical Energy Analysis

The Statistical Energy Analysis (SEA) exposed in Lyon [60], Lyon and DeJong [61],
tracks the evolution of the vibratory energy of subsystems while taking into account the
effect of uncertainties. Its principle is to divide a built-up structure into N substructures,
and to quantify the energy levels and the exchanges of mechanical energy between them.
Subsystems are constituted by group of modes having the same energetic properties, and
SEA predicts the average of the mechanical energy of this group. All the modes in a group
are assumed to have the same probability to be excited, leading naturally to the assumption
that the modal density is high, the latter holding only in the HF range.

A balance of the energy of the p-th substructure for a frequency band of width ∆ω and
central frequency ω is:

P in
p = P d

p +

N
∑

q 6=p

Ppq , 1 ≤ p ≤ N ,

where P in
p and P d

p are the input power and the dissipated power in the p-th substructure,
respectively, and Ppq is the power exchanged between p and an other substructure q. In
SEA it is subsequently assumed that the powers that are dissipated and exchanged by the
p-th substructure are related to its mechanical energy Ep through [61]:

P d
p = ωηpEp ,

Ppq = ω(ηpqEp − ηqpEq) ,
(1.18)

where ηp and ηpq are the dissipation loss factor and the coupling loss factors, respectively,
and Eq is the mechanical energy of the q-th substructure. These parameters are exper-
imentally or analytically established. To be valid, there must be high reflections of the
wave field at the boundary between sub-systems, leading to the so-called diffusion approx-
imation of steady-state vibrations. Then the Eq. (1.18) for each subsystem are assembled,
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leading to an algebraic system for the complete built-up structure. This procedure exhibits
a key advantage of the method in that it leads to a small-sized system. The hypotheses
of equipartition of the energy over the modes of a subsystem and of the non-correlation of
the response of these modes, leads to ηpq = ηqp for conservative couplings. It ensures the
symmetry of the SEA algebraic system and thus its ease of resolution.

In its original formulation SEA does not give any information about the transient dy-
namics of the structure. A time-domain version of SEA has been proposed in [61, 76]
as:

P in
p =

dEp

dt
+ P d

p +

N
∑

q 6=p

Ppq , 1 ≤ p ≤ N .

Many other directions have been followed in the structural-acoustics literature in order to
try to release the various assumptions introduced for the derivation of SEA. A complete sur-
vey of these works is however clearly out of the scope of this dissertation. One may mention
in passing the contribution of Langley [52] for example, who introduced a directional depen-
dence of the energy that relaxes the equipartition approximation. More recently, bringing
together a ray tracing method (see Sect. 1.3.2) and SEA, Shorter [89] and Tanner [97] have
provided a tool to systematically test the assumptions of SEA and extend its range of va-
lidity. SEA has been widely applied in industrial cases for the prediction of the amount
of energy of the resonant modes in the HF range at a low numerical cost. Nevertheless, it
still relies on the determination of some core parameters such as the input powers or the
coupling loss factors, though some recent researches propose to determine them from wave
considerations [76, 110–112]. As it stands to date SEA gives only a global information on
the steady-sate, not to say transient dynamics of a built-up structure. Approaches based
on an analogy with heat conduction are aimed at describing how the mechanical energy
is spread locally in a vibrating built-up structure. They are briefly addressed in the next
section.

1.4.2 Local approach: Vibrational Conductivity Analogy

The global aspect of the SEA method may not be satisfactory because it requires some
stringent assumptions to be applied. Hence some authors have considered local approaches
in order to describe more in detail the HF behavior of built-up structures. A first attempt
was done by Nefske and Sung [68], starting from earlier works by Rybak [83] or Belov
et al. [9]. The local variables of interest are then the mechanical energy density E :=
1
2(ρ|u̇|2 + σ : ǫ) and power flow density Π := −σu̇. It is first assumed that this two
quantities are connected through a law of heat diffusion type (Fourier’s law):

Π = −D(ω)∇xE , (1.19)

where D is a diffusion coefficient depending on the central circular frequency of the applied
loads. The local power balance in the structure, or continuity equation, is derived by
multiplying Eq. (1.1) with u̇:

∂tE + divΠ+Πd = Πin , (1.20)

where Πin = ρf · u̇ is the input power density and Πd is some dissipated power density.
Then, substitution of Eq. (1.19) into Eq. (1.20) leads to a partial differential equation in
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terms of the energy density solely. This approach, called the Vibrational Conductivity
Analogy (VCA) in the structural-acoustics literature, has been successfully apply to the
case of beams [54, 68], and plates [27, 38]. However, it seams to be hardly applicable to
more complex structures, because it assumes that the energy density spread over the entire
structure by invoking a Fourier’s law. This means that the structure should contain nu-
merous scatterers to spread the energy flows in all directions, or that the observation time
should be sufficiently large and the structure is sufficiently undamped to reach a state of
spatial equipartition of the energy density. Besides, the determination of boundary condi-
tions for coupled structures raises severe theoretical difficulties, because VCA relies on the
assumption that the wave field is diffuse in the vicinity of that boundaries as well. There-
fore ballistic wave fields can not be captured in principle, and a definition of the power flow
reflection/transmission phenomena remains awkward [95].

The main limitation of this method is thus the assumption that the energy density obeys
a Fourier’s law. The Transient Simplified Energetic Method [95] introduces a modification
of this law to account for wave transport phenomena in inhomogeneous media. This law
is suitable for short time predictions but it depends on the determination of the same core
parameters as an SEA global approach.

1.4.3 Kinetic modeling for the evolution of energy densities

As already mentioned previously, the displacement of HF waves is very oscillating and
induces high levels of accelerations. As can been seen from the developments of SEA and
VCA, the use of quadratic quantities is more relevant in the HF range [53]. This observation
can be explained with the following example. Let uε(x) be a one-dimensional oscillating
function of the form, say, uε(x) = m(x) + σ(x) sin(xε ), where 0 < ε ≪ 1. Then the weak
limit in L2(R) as ε→ 0 of the series (uε) is the mean function m(x), but the series has no
strong limit. However consider now the energy limit defined by:

lim
ε→0

∫

R

φ(x)u2ε(x)dx ,

where φ is a smooth function with compact support in R, a so-called observable. Then it
can be shown that:

lim
ε→0

∫

R

φ(x)u2ε(x)dx =

∫

R

φ(x)

(

m2(x) +
1

2
σ2(x)

)

dx .

Contrarily to the weak limit m(x), the quadratic quantity associated to the series (uε) tends
locally at any point x selected by the observable function φ(x) to m2(x) + 1

2σ
2(x). That

limit allows to see locally the influence of oscillations at the small scale ε since the deviation
σ(x) is now apparent. Moreover it no longer has the oscillatory feature of uε. The following
Fig. 1.2 shows an example of a highly oscillating function uε(x), its mean m(x), and the
square root of its energy limit (m2(x) + 1

2σ
2(x))

1
2 . It exhibits the interest of the use this

very limit in HF propagation phenomena, because it takes into account the influence of the
oscillations at a macroscopic scale.

In view of the relevance of quadratic quantities to describe oscillating functions as
illustrated above, rigorous estimators of the energy density of HF (strongly oscillating) wave
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Figure 1.2: The displacement function uε(x) = 1/2(x) + cos(2πx) sin(xε ) (thin gray line),
its mean function m(x) (thick dashed blue line), and the square root of its energy limit
√

m2(x) + 1
2 cos

2(2π) (thick red line).

fields solutions of Eq. (1.11) can be constructed using semiclassical, or Wigner measures [31,
57]. It may be shown in addition that the latter satisfy Liouville-type transport equations
on account of the propagation properties of the underlying wave fields. The developments
have strong connections with ray methods, in that they consider the HF limit ε → 0 of
the rescaled system (1.15) in a particular sense bringing out the associated energy density.
In Papanicolaou and Ryzhik [75], the authors have extended that theory to several physical
systems: quantum waves obeying a Schrödinger equation, acoustic and elastic waves obeying
a wave equation, or electromagnetic waves obeying the Maxwell equations. The decisive
advantage of this theory is to avoid the resolution of an eikonal equation while allowing
the superposition of different wave polarizations and phases. This superposition is possible
because Wigner measures depend both on the position and on the wavevector indicating
the direction of propagation of the waves. Moreover randomly heterogeneous media can be
considered (see Sect. 3.2.4 for more details), the Liouville equation being transformed into
a radiative transfer equation in this case [4, 36, 75]. Therefore multiple reflections of the
energy rays by the boundaries or the medium heterogeneities are much easier to address in
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this setting than by ray methods. The theory has been applied to two dimensional structural
elements in [86]. The aforementioned developments are part of a more general approach
known in the dedicated literature as kinetic modeling of wave propagation phenomena in
heterogeneous media; see for example the recent review [5]. The main point of issue is
the consideration of boundary conditions for energy and power flow densities. Classical
boundary conditions such Neumann or Dirichlet conditions have indeed to be adapted to
the case of quadratic quantities.

1.5 Conclusions

The aim of the thesis is to develop a method able to predict the transient dynamics of
beam trusses under impulse loads. Such phenomena are described by high-frequency waves
propagating in bounded media. Wave multiple reflections and crossings will arise because of
the reflection/transmission processes taking place at the junctions between sub-structures.
A kinetic modeling of the evolution of the energy density associated to high-frequency waves
allows to consider superposition and such multiple reflections at the boundaries. Moreover
it is more pertinent for the modeling of the transient response to shocks than the methods
describing directly the displacement fields, on account of the very oscillating disturbances
generated by high-frequency waves. At last, compared to an engineering approach as SEA,
the model gives local information of the evolution of the energy density.

The numerical schemes to be implemented for the numerical integration of kinetic equa-
tions need to be accurate in the sense that they will have to describe rapid phenomena
over rather large times (in order to reach the diffusive regime). Moreover the reflec-
tion/transmission processes at the junctions generate discontinuities of the energy density
fields. Hence, the method retained for the spatial discretization shall be able to account
for these singularities. A discontinuous Galerkin method using spectral-like approximation
functions seems to be well adapted to this situation. Also the time integration schemes
shall have to preserve the accuracy of the spatial discretization schemes achieved using the
aforementioned high-order approximations. Therefore, a strong stability-preserving high-
order Runge-Kutta scheme shall be implemented.

Before considering the derivation of kinetic equations for beam trusses, several models
of beams will be investigated in order to study their accuracy in the high-frequency range.
This is done in the next chapter by comparing various kinematical reductions to a three-
dimensional Lamb model of a circular waveguide.



Chapter 2

Waves in a beam

As argued in the introduction, the objectives of the thesis are to predict the evolution
of the energy density associated to HF wave propagation within beam trusses. In order to
introduce this study, different models of beams will be exposed having the higher frequency
ranges of vibration in view. Beams are structures with one dimension greater than the
two others. The use of such structural components allows to reduce the three-dimensional
kinematics of (1.4) into one-dimensional kinematics. In this chapter, the HF behavior of
a single beam is first studied considering it as a waveguide through an exact, analytical
Lamb model. Then different theories of kinematical reductions are compared to the three-
dimensional Lamb model, and their relevance for HF vibrations are discussed.

2.1 Beam as a waveguide

This study of wave propagation in beams begins with the derivation of a Lamb model
adapted to beam, also known as the Pochhammer-Chree model. This model gives the char-
acteristics of wave propagation in a one dimensional waveguide, the dispersion relations
or the group velocities for example. In his book, Achenbach [2] describes Lamb waves as
constructive interactions between the waves in a three-dimensional medium (i.e. one lon-
gitudinal wave and two transverse waves) coupled by the boundary conditions on the outer
surfaces.

The propagation of mechanical waves in a cylinder had been investigated earlier since
Pochhammer established the dispersion relation of such waves in 1876 [21]. Its derivation
can be found in numerous references, see [2, 65, 66, 80]. But the transcendental equation
characterizing dispersion can not be solved analytically and thus it was only in the 1940s
that this equation has been solved for low frequencies and real wavenumbers by Bancroft [6]
or Hudson [45]. Since these early works, the dispersion curves have been intensively studied.
Complete works have been done by Onoe et al. [71] for the longitudinal modes (see their
definition below) and Pao and Mindlin [73] for flexural motions (see their definition below).
Both works rely on a geometrical method, but with the increase of computational power it
is now possible to investigate the Pochhammer-Chree spectrum numerically. In this section,
the dispersion equations are thus investigated numerically thanks to the method derived
by Honarvar et al. [42] with a special care of the HF range phenomena. Conclusions of this
analysis will allow to evaluate the accuracy of the reduced model used subsequently for the

37
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study of the evolution of the energy density in a beam.

2.1.1 Dispersion relations

Firstly, the derivation of the dispersion relations of wave propagation in a cylindrical
waveguide will be recalled. The beam is supposed to be an infinite waveguide with a
circular cross-section of radius a constituted by an isotropic and homogeneous material. A
point of the waveguide is denoted by x ∈ R3 and its coordinates in the Cartesian frame
(ê1, ê2, ê3) are (x, y, z). x is the coordinate along ê1 that is the principal axis of the circular
waveguide. The classical wave equation Eq. (1.4) holds in it. Thus it is possible to introduce
a Helmholtz decomposition of the displacement field u. It consists in expanding it in an
irrotational (denoted by ∇Φ) vector field and a divergence-free (denoted by ∇×Ψ) vector
field. Applying this to the displacement of a point x results in:

u(x, t) =∇Φ+∇×Ψ . (2.1)

In the rest of the thesis a × b will denote the wedge product between the vectors a and
b. Inserting Eq. (2.1) into the elastodynamic equation (1.4) leads to two independent wave
equations:

∆Ψ =
1

c2s
Ψ̈ ,

△Φ =
1

c2l
Φ̈ ,

(2.2)

where cl and cs are respectively the velocity of the longitudinal and transverse waves given
by Eq. (1.7) and Eq. (1.8). On account of the shape of the cross-section, it is more convenient
to use a cylindrical frame of reference. So a point of the beam is mapped by x = rêr(θ)+xê1.
In this coordinate system, the system (2.2) is given by:

△Φ = ∂2rΦ+
1

r
∂rΦ+

1

r2
∂2θΦ+ ∂2xΦ =

1

c2s
Φ̈ , (2.3)

△Ψx = ∂2rΨx +
1

r
∂rΨx +

1

r2
∂2θΨx + ∂2xΨx =

1

c2l
Ψ̈x , (2.4)

△Ψr −
2

r2
∂θΨθ −

Ψr

r2
= ∂2rΨr +

1

r
∂rΨr +

1

r2
∂2θΨr + ∂2xΨr −

2

r2
∂θΨθ −

Ψr

r2
=

1

c2s
Ψ̈r , (2.5)

△Ψθ +
2

r2
∂θΨr −

Ψθ

r2
= ∂2rΨθ +

1

r
∂rΨθ +

1

r2
∂2θΨθ + ∂2xΨθ +

2

r2
∂θΨr −

Ψθ

r2
=

1

c2s
Ψ̈θ . (2.6)

The equations for Φ and Ψz are totally uncoupled but the components Ψθ and Ψr of Ψ are
coupled through Eq. (2.5) and Eq. (2.6). Considering only the waves in the ê1-direction,
the solutions of this set of equations have the form [34]:

Φ = AJn(pr) cos(nθ)e
i(kx−ωt) , (2.7)

Ψx = BJn(qr) sin(nθ)e
i(kx−ωt) , (2.8)

Ψr = (DJn−1(qr) + CJn+1(qr)) sin(nθ)e
i(kx−ωt) , (2.9)

Ψθ = (DJn−1(qr)− CJn+1(qr)) cos(nθ)e
i(kx−ωt) , (2.10)



2.1. BEAM AS A WAVEGUIDE 39

where p and q are defined by:

p2 =
ω2

c2l
− k2 , (2.11)

and

q2 =
ω2

c2s
− k2 , (2.12)

and n ∈ N the set of the natural integers. The system is under-constrained because there
are four constants for three equations. To fix it, the divergence-free condition ∇ ·Ψ = 0 is
added and leads to D = 0.

The dispersion relations are derived from the traction-free boundary conditions on the
lateral surface of the beam.

σ(êr)|r=a = 0 .

The stress components are given by Eq. (1.3) together with Eq. (2.1). These equations can
be reshaped in a matrix form as:

Γ(ω, k, θ, n)A = 0 , (2.13)

where A = (A,B,C)T is the amplitude vector. The matrix Γ is given in an extended form
by:
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H
A
P
T
E
R

2
.

W
A
V
E
S
IN

A
B
E
A
M

Γ =













(−λ(p2 + k2)Jn(pa) + 2µ∂2rJn(pa)) cos(nθ) 2µ(n
a
∂rJn(qa)− n

a2 Jn(qa)) cos(nθ) 2µ i k∂rJn+1(qa) cos(nθ)

−µ 2n
r
(∂rJn(pa)− 1

a
Jn(pa)) sin(nθ) −µ(2∂r2Jn(qa) + Jn(qa)q

2) sin(nθ) −µ i k(n+1

a
Jn+1(qa)− ∂rJn+1(qa)) sin(nθ)

2 i k∂rJn(pa) cos(nθ)
µ ink

a
Jn(qa) cos(nθ) µ(−n

a
∂xJn+1(qa) + (−q2 + k2 − n2

+n
a2 )Jn+1(qa)) cos(nθ)













(2.14)
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Non trivial solutions of the system (2.13) arise for det(Γ) = 0. This dispersion relation
gives the couples (ω, k) satisfying det(Γ) = 0 for a given value of n and for all θ ∈ [0, 2π[.
Then it is possible to recover the displacement field of Eq. (2.1) by fixing A to 1 and solving
the system:

(

B
C

)

= −
(

Γ22 Γ23

Γ32 Γ33

)−1 (
Γ21

Γ31

)

,

where Γij is the element of Γ on the row i and column j.

2.1.2 Modal analysis

The analysis of the dispersion relation and the displacement field of the waveguide is
performed for a fixed value of n in N. For n = 0, the dispersion relation can be analytically
computed:

[qaJ0(qa)− 2J1(qa)]
[

2p

a
(q2 + k2)J1(pa)J1(qa)− (q2 − k2)2J0(pa)J1(qa)− 4k2pqJ1(pa)J0(qa)

]

= 0 . (2.15)

The first part of the left-hand side concerns the motions along êθ only, while the second
part concerns the motions along êr and ê1 solely. Thus the first part corresponds to the
dispersion relation of the torsional waves while the latter is the Pochhammer equation
related to the longitudinal motions. For higher values of n, the dispersion equation can not
be factorized. Thus the motion exists along all the axes, leading to the so-called flexural
motions. The next subsections deal with the analysis of these dispersion curves.

2.1.2.1 Torsional motions

The dispersion relation for the torsional motion is:

qaJ0(qa) = 2J1(qa) . (2.16)

The solutions of such equation are tabulated in [1]. The first three solutions are

(aq)1 = 0 ,
(aq)2 = 5.1356 ,
(aq)3 = 8.4172 ,

but there is an infinite number of roots. Let γj = (a)j be a solution of Eq. (2.16). As

q2 = ω2

c2s
− k2, the dispersion relation becomes:

k = ± 1

acs

√

(aω)2 − (γjcs)2 . (2.17)

The HF limit corresponds to ω →∞. In this limit, the dispersion relation 2.17 becomes

ω2 = c2sk
2 , (2.18)

and the phase velocity is:
ω

k
= ±

√

µ

ρ
= ±cs . (2.19)
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That means that, in the HF range, the waveguide is a non-dispersive medium for all the
torsional waves. The limit velocity is the same for all torsional modes and corresponds to
the velocity of the shear wave cs in a three-dimensional medium. The dispersion curves of
these torsional modes are shown in Fig. 2.1, the phase velocities in Fig. 2.2, and the group
velocities in Fig. 2.3. The dispersion curves are obtained finding the roots of the Eq. (2.16)
with the algorithm inspired by the one presented in the article of Honarvar et al. [42]. In
this algorithm, the determinant is evaluated for every couple (ω, k) and sign changes are
detected to find the zeros of det(Γ). This method allows to take advantage of the matrix’s
computation efficiency of Matlab. The velocities are normalized according to the transverse
phase velocity cs.
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Figure 2.1: Dispersion curves of the torsional modes; the crosses denote the dispersion
points for the plot of the modes of Fig. 2.4.
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Figure 2.2: Phase velocity cφ =
ω(k)
k of the torsional modes; in red the modes selected for

the Fig. 2.4.
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Figure 2.3: Group velocity cg =
dω
dk of the torsional modes; in red the points selected for

plotting the modes on Fig. 2.4.
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Figure 2.4: Shape of some torsional modes. The top left shape corresponds to the first and
non-dispersive mode.

The plots have been confronted and validated by comparison to the ones extracted from
the aforementioned references. Moreover the first non-dispersive mode (displayed on the
top left on Fig. 2.4) is well retrieved. Some shapes of modes are displayed in Fig. 2.4 below.
They are defined as:

u = Re(Aei(kx−ωt)) , (2.20)

whereRe(A) denotes the real part of the components of the vector A. Since the components
of the amplitude vector A may be complex, the displacement field in the direction êi, i ∈
(r, θ, 1) becomes:

ui = |Ai| cos(ki − ωt+ ϕi) , (2.21)

where

ϕi = tan
Im(Ai)

Re(Ai)
,

is the phase angle of the amplitude along êi. For the torsional case, all the modes have a
shape that does not depend on the frequency. The higher the number of the mode is, the
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more oscillating is its shape. For a sake of clarity of the plots, the rods is displayed such
that 5 wavelengths are plotted in the ê1 direction. This rule of plotting will be kept for all
the next mode shape plots.

2.1.2.2 Longitudinal motions

Longitudinal modes correspond to the solutions of the second term of the left hand
side of Eq. (2.15). The dispersion equation for such modes is the well known Pochhammer
frequency equation:

2p

a
(q2 + k2)J1(pa)J1(qa)− (q2 − k2)2J0(pa)J1(qa)− 4k2pqJ1(pa)J0(qa) = 0 . (2.22)

Analytical resolution of this equation is not straightforward for the entire frequency range,
thus it is resolved thanks to the same numerical method as in the torsional case.

However the low frequency analysis can be done easily performing a first order Taylor
expansion for x → 0 of the Bessel functions Jn(x) , n = 0 or 1: that is J0(x) = 1 +
O(x2) , J1(x) =

x
2+O(x

2). Inserting these expansions into the Pochhammer equation (2.22)
leads to the phase velocity of the first longitudinal mode at low frequency:

cφ =
ω

k
= ±

√

E

ρ
= ±cP , (2.23)

where E is the Young’s modulus defined in terms of Lamé’s constants by:

E =
µ(3λ+ 2µ)

λ+ µ
.

Unfortunately, in the HF range, an asymptotic expansion of the Bessel functions is not
possible because the values of p (Eq. (2.11)) or q (Eq. (2.12)) are not necessarily high.
Moreover if ω ≫ csk is considered, the asymptotic forms of the Bessel functions are:

Jn(x) ≈
√

π

2x
cos(x− nπ

2
− π

4
) ,

leading to an other transcendental equation that must be resolved by a root finding algo-
rithm along the same lines as Eq. (2.22).

The resulting dispersion curves are displayed in Fig. 2.5, followed by the plots of the
phase velocities and the group velocities (Fig. 2.6 and Fig. 2.7) and the shapes of some
modes in Fig. 2.8.
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Figure 2.5: Dispersion curves of the longitudinal modes; the crosses denote the dispersion
points for the plot of the modes in Fig. 2.8.
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Figure 2.6: Phase velocity cφ =
ω(k)
k of the longitudinal modes; in red the modes selected

for the Fig. 2.8.
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Figure 2.7: Group velocity cg =
dω
dk of the longitudinal modes; in red the modes selected for

the Fig. 2.8.

Figure 2.8: Modal shape of some longitudinal modes. The top right modes corresponds to
purely longitudinal modes and the bottom right corresponds to the Rayleigh like mode.
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These results are confirmed by the comparison with those obtained by several authors,
see [2, 65, 71]. A remarkable feature of the spectrum of the longitudinal modes is that their
dispersion curves are tangent to the straight line ω = clk (in dashed red line on Fig. 2.5)
where cl is the wave celerity of Eq. (1.7). Inspection of the phase plot Fig. 2.6 shows that,
except for the first one, all other modes have a phase velocity that tends to the transverse
wave speed of a three-dimensional elastic medium cs. The phase velocity of the first mode
tends to the velocity of the Rayleigh wave. The latter is the root of the equation [64]:

(

cr
cs

)6

− 8

(

cr
cs

)4

+ 8

(

3− 2

(

cl
cs

)2
)

(

cr
cs

)2

− 16

(

1−
(

cl
cs

)2
)

= 0 ,

which may be obtained by substituting ω = crk into the equation

(k2 + q21)
2 = 4k2p1q1 ,

which is the limit form of the Pochhammer equation (2.22) for large real k and imaginary
p and q (p = ip1 and q = iq1) [71]. A good approximation of the Rayleigh velocity is [23]:

cr =
0.87 + 1.12ν

1 + ν
cs ,

where ν is the Poisson ratio, retrieving thus the result of Hudson [45]. It can also be noticed
the highest curves have a threshold at c = cl, confirming the asymptote of the dispersion
curves. The plot of the group velocities give further informations. All the curves, except
for the first mode, have the same behavior: they begin with an increasing trend oscillating
to a maximum value, then they drop rapidly to a local minimum value, and finally they
increase to a limit which is the shear velocity. The maximum and minimum values tend to a
limit as the number of the mode increases. The maximum group velocity is the longitudinal
velocity cl but the minimum value does not seem to correspond to any known wave velocity.
It is interesting to note that the longitudinal waves have a non dispersive behavior on the
threshold ω = clk. They will stay visible at large distance. The dispersion curves seems
to be non-dispersion for others dispersion points. They are more numerous for the highest
dispersion curves.

The shapes of the propagation modes displayed in Fig. 2.8 give further informations
the previous observations. For a wavenumber below the limit ω

cl
the disturbance oscillates

around the position of the cross-section at rest and is mainly longitudinal; in this limit,
the motion is purely longitudinal. Beyond this limit, the shape is mainly radial. For the
first mode, the disturbance is confined to the vicinity of the lateral surface (denoted by
0l, 1 on Fig. 2.5), similarly to the behavior of the Rayleigh mode in a semi-infinite medium.
The behavior of the dispersion curves around the line ω = clk suggests that some veering
phenomena occur between the longitudinal and the radial behavior of the modes [63].

2.1.2.3 Flexural motions

The flexural modes are obtained for n > 0. On account of the complexity of the
determinant of the matrix Γ, the analytical form can not be displayed here and no analytical
treatment can be performed. Thus all the developments will be conducted with the help of
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the previous algorithm [42].

k.a

ω
.a
/c
s

0 10 20 30 40 50 60

10

20

30

40

50

ω=c
l
 k

Figure 2.9: Dispersion curves for n = 1; the crosses denote the dispersion points for the
plot of the modes in Fig. 2.12.

ka

ω
 a

/c
s

0 1 2 3 4 5
0

1

2

3

4

5

Figure 2.10: Zoom on the low frequency of the dispersion curves for n = 1.
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The dispersion curves for n = 1 are displayed in Fig. 2.9 and the phase velocity in
Fig. 2.11. The same results as in Pao and Mindlin [73], Treyssède [101] are found, ex-
cept for the low frequency behavior of the second branch. This behavior is shown in the
Fig. 2.10. It has to be mentioned here that the same feature happens for all odd n. But no
reason for the difference between our computation and [73, 101] has been found at this time.
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Figure 2.11: Velocity phase cφ =
ω(k)
k for n = 1.

The dispersion curves have the same asymptotic behavior when k →∞ as the longitu-
dinal ones. All the modes have a phase velocity which tends to the transverse velocity cs
except the first one which tends to the Rayleigh surface wave velocity. It seems also to exist
an asymptote for the highest modes of the same kind as for the longitudinal modes, that
is ω = clk, on which the modes are non dispersive. The mode shapes (Fig. 2.12) provide
further informations. For high values of ω, some modes have a bending behavior (like the
mode displayed on the top left of Fig. 2.12). Other are typically shearing modes (like the
mode displayed on the top right of Fig. 2.12). It suggests that at high frequencies, the
bending and shear modes are separated. Finally the Rayleigh mode exhibits disturbance in
the vicinity of the lateral surface. It seems that there is no criteria allowing to predict the
class of a mode directly from the dispersion curves. The modes have to be plotted in order
to be classified.
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Figure 2.12: Shape of some flexural modes for n = 1. The top left corresponds to a purely
bending mode, the top right to a purely shear mode, the bottom left to a radial disturbance
and the bottom right to a Rayleigh like mode.
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Figure 2.13: Dispersion curves for n = 2; the crosses denote the dispersion points for the
plot of the modes in Fig. 2.15.
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Figure 2.14: Phase velocity cφ =
ω(k)
k for n = 2.
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Figure 2.15: Shape of some flexural modes for n = 2. The top left shape corresponds to
a mainly bending mode, the bottom right corresponds to a Rayleigh mode, and the two
others correspond to shear modes with second order radial disturbance.

These dispersion curves for n = 2 (Fig. 2.13) are the same as those found in [114].
The dispersion plots for higher values of n present the same features. The mode shapes
are separated into four groups: the ones having a second order flexural behavior, the ones
having a shearing behavior, the ones with a motion along êθ , and the Rayleigh mode with a
displacement in the vicinity of the boundary. Moreover it can be observed that the cut-off
frequency (the frequency at which at least one mode becomes propagative) increases with
n; it means that for any frequency, even high, only a finite number of modes up to a given
order n are likely to propagate. Fig. 2.16 displays the evolution of this cut-off frequency
(denoted by ωo) versus the motion number n. The blue line is the approximation of the cut-
off frequency as a first degree polynomial function; its fitted equation is (0.9725n+0.5882).
The group velocity of the flexural modes have not be displayed here because they are very
oscillating. They are indeed plotted by derivation of the dispersion curves, and for high
value of n, the dispersion curves begin very sensitive to numerical error and are not smooth
at a local scale although they give good agreement at large scale.
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Figure 2.16: Evolution of the cut-off frequency with the number of mode family n.

On Fig. 2.17, the dispersion curves are also plotted for purely imaginary values of k.
The same kind of plots as those obtained in the aforementioned references are retrieved. It
highlights the transition from evanescent to propagative behavior of the modes. Moreover
some propagating modes are in fact coupled in the imaginary part of the figure. The others
arise from imaginary branches. Veering effects between evanescent modes are noticeable in
this plot. The same kind of figures hold for all values of n. The mode’s shapes have been
plotted for a single value of ω and it could be interesting to study the evolution of the shape
according to ω in a future work.
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Figure 2.17: Dispersion curves for n = 2 for real and purely imaginary value of ka.

2.2 Approximate kinematical theories for waves in a beam

The previous analytical model is impractical for the analysis of beam trusses, because
at high frequency a lot of different modes propagate. Hence kinematically reduced beam
models are considered for engineering applications. An elementary theory for beams was
developed by Euler in 1744 for the static case and by Bernoulli in 1751 for the transient
case [102]. At that time, mechanical theories were not directly applied to practical matter,
but only for illustration purpose of mathematical concept. The first application of this
theory was done by Eiffel in the design of the Eiffel tower (1889). From this elementary
theory, a lot of authors developed more refined model. In this part, different reduced beam
models will be outlined and confronted to the exact Lamb model of the previous section.

To outlined the reduced kinematics, it is first necessary to define the notion of the
neutral fiber of a beam. This line follows the geometrical centers (or centroid) of the beam
cross-sections. Mathematically it is taken as the reference point, such that:

∫

Σ
x⊥dΣ = 0 , (2.24)
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Figure 2.18: An example of straight beam with a rectangular cross-section.

where x⊥ = x−(x·ê1)ê1 is the coordinate of a point in the local cross-section basis, Σ is the
cross-section of the beam, and ê1 is the axis tangent to the neutral fiber. In the following
of this chapter, the orthogonal projection of any vector a is defined by a⊥ = (I− ê1⊗ ê1)a.
Under the assumptions of a doubly symmetric distribution of the mass over the cross-section,
the geometrical center is coincident with the center of mass xm defined by:

∫

Σ
ρ(x⊥ − xm)dΣ = 0 .

In the same way, it is assumed that all the mechanical parameters have a doubly symmetric
distribution over the cross-section. Moreover in the remaining of this chapter, the beam is
assumed to be straight and the basis will be denoted by êi , 1 ≤ i ≤ 3. The corresponding
coordinates are (x , y , z), thus x locates the center of the cross-section on the neutral fiber.
The axes ê2 and ê3 are supposed to be the main axes of the beam that is they are axes of
symmetry of the cross-section (see Fig. 2.18 for an illustrative example).

2.2.1 Euler-Bernoulli kinematics

In the Euler theory it is assumed that the cross-sections of the beam have only rigid
body motions. The displacement field is thus separated into the contributions of:

– the translation of the neutral fiber uc(x, t) = uc(x, t)ê1 + u⊥(x, t), where uc(x, t) is
the axial displacement and u⊥ is the transverse displacement,

– and the rotation of the cross-sections about the neutral fiber:

θ(x, t) =

3
∑

i=1

θi(x, t)êi .

The displacement field is thus expressed as:

u(x, t) = uc(x, t) + θ(x, t)× x⊥ . (2.25)

The linearized strain tensor reads:

ǫ = (u′c − θ × ê1 + θ′ × x⊥)⊗s ê1 , (2.26)
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Figure 2.19: Disturbance of the beam for several theories: (a)-beam at rest, (b)-Euler
theory, (c)-Timoshenko theory, (d)-Levinson theory (the curved segment is the deformed
cross-section).

where a⊗s b denotes the symmetrized part of the tensor product a⊗b and a′ is the partial
derivative of a with respect to the abscissa x. In the Euler-Bernoulli theory, the cross-
sections are assumed to remain normal to the neutral fiber during the motion. Thus the
rotation vector of the cross-section becomes:

θ = ê1 × u′⊥ + θ1ê1 , (2.27)

where θ1 is the angle due to torsion. It is worth noticing that the transverse shear strain
defined by (u′⊥ − θ× ê1)⊗s ê1 vanishes in this case. The displacement of the cross-section
in this case is displayed on Fig. 2.19 -(b).

The Hooke’s law relating the small strain tensor ǫ to the stress tensor σ is given by:

ǫ =
1 + ν

E
σ − ν

E
Tr(σ)I , (2.28)

where ν is the Poisson’s ratio. On account of the slenderness of the beam, the hypothesis
Tr(σ) = σ11 is often invoked. Using Eq. (2.28) and Eq. (2.26), the stress vector acting on
the cross-section of normal ê1 is then given by:

σê1 = E(u′cê1 + (ê1 × u′′⊥)× s⊥) + µθ′1ê1 × x⊥ + τ⊥ , (2.29)

where τ⊥ is an additional shear stress vector (τ⊥ · ê1 = 0). This stress vector (2.29) can be
integrated over the cross-section in order to remove the x⊥ dependency. The axial netforce
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and netmoments are then defined as:

T1 =

∫

Σ
σ : ê1 ⊗ ê1dS = ESu′c ,

M =

∫

Σ
x⊥ × σê1dS = EJ(ê1 × u′′⊥) + µθ′1J(ê1) ,

(2.30)

where the geometrical inertia tensor is given by:

J =

∫

Σ
(||x⊥||2I − x⊥ ⊗ x⊥)dS .

The shear forces:

T⊥ =

∫

Σ
(I − ê1 ⊗ ê1)σ(ê1)dS ,

can be found by equilibrium of the netmoments, that is:

T⊥ = ê1 ×
(

−
∫

Σ
x⊥ × ρüdS +M ′

)

.

From Eq. (2.30), the balance of momentum (1.1) integrated over the cross-section gives:

ρüc = Eu′′c ,

ρθ̈1 = µθ′′1 ,

ρSü⊥ = −EJ(u′′⊥)′′ .
(2.31)

with ρ the material density of the beams and assuming that ρJü′′⊥ ≈ 0. As ê2 and ê3 are
principle axes of the cross-section, then the inertia tensor J is diagonal and the last two
equations of Eq. (2.31) are uncoupled. It is indeed valid for the symmetric cross-section
considered here. This set of equations allows to perform a dispersion analysis of this model
of kinematics. The solution of the system (2.31) is assumed to be a plane wave of the
form Aei(ωt−kx). Inserting it into the system (2.31) leads to the dispersion equation of the
Euler-Bernoulli beams:

ω = cPk , for the longitudinal motion, i.e. the displacement along ê1 ,
ω = csk , for the torsional motion, i.e. the rotation along ê1 ,

ω =

√

EJi
ρS

k2 , for the flexural motions, i.e. the rotations along êi , i = 2, 3 ,

where the wave velocities cP and cs are defined by Eq. (1.8) and Eq. (2.23), and Ji = J :
êi ⊗ êi. From this set of equations emerges the main limitation of this theory. As k →∞,
the phase and group velocity go to infinity for the flexural motions, thus allowing the prop-
agation of energy at speeds approaching infinity [78, 98, 99]. This is in contraction with the
study of wave in three-dimensional medium made in Sect. 1.1, where the maximum velocity
was cl. Moreover this model overestimates the natural frequencies, and is not accurate for
thick beams [106].
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2.2.2 Timoshenko kinematics

From this classical beam theory, authors have tried to remove some hypotheses to have
more refined and accurate models. Timoshenko proposed modified kinematics which relaxed
the hypothesis on the cross-section being normal to the neutral fiber by accounting for the
effect of shear strain as well as the effect of rotary inertia [99]. The kinematical assumption
is unchanged:

u = uc + θ × x⊥ , (2.32)

but without the restrictive hypothesis on the orthogonality of the cross-section with respect
to the neutral fiber given by Eq. (2.27). The rotation of the cross-section of the beam is
displayed on Fig. 2.19-(c) in this case. The cross-section is still assumed to be a rigid body.
The rigidity assumption is valid in practice for slender, thin beams or rods, and also for
moderately thick beams of many structural materials [49]. It leads to the balance equations:

ρüc = Eu′′c ,

ρθ̈1 = µθ′′1 ,

ρü⊥ = κµ(u′′⊥ + ê1 × θ′⊥) ,
ρJθ̈⊥ = EJθ′′⊥ + κµS(ê1 × u′⊥ − θ⊥) .

(2.33)

The parameter κ is called the Timoshenko parameter or the shear correction factor in
the literature. In the Timoshenko theory, the cross-section is assumed to remain flat, but
this is in contradiction with the boundary conditions on the lateral surface of the beam:
σ(x)n̂|x∈∂Σ = 0. Thus κ is introduced in order to take into account the non-uniform
distribution of the shear stress on the cross-section [51]. There are several ways to obtain
this coefficient. One of them is to solve:

∫

Σ
σ1idS = κSµθi , i = 2, 3 , (2.34)

defining thus κ as the ratio between the average of the three-dimensional distribution of
the shear stresses to the shear forces of the dedicated kinematics. Other authors compare
the shear forces given by Timoshenko beam theory to the asymptotic solution of the Saint-
Venant equations as done by Stephen [93]. Other studies of this parameter can be found
in Cowper [20], Pai and Schulz [72], Renton [81], where it is shown that it depends on
the Poisson ratio ν and on the shape of the cross-sections. For example, for a rectangular
cross-section, it may be approximated by [20]:

κ =
5(1 + ν)

6 + 5ν
, (2.35)

and for a circular cross-section by:

κ =
6(1 + ν)2

7 + 12ν + 4ν2
. (2.36)

Other authors proposed a method based on a finite element solution of the bending prob-
lem (see for example [35]). This numerical approach allows to know the shear reduction
coefficient for all shapes of cross-sections.
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It can be noticed that compared to the Euler-Bernoulli theory, the shear (u⊥) and
flexural (θ⊥) motions get coupled. The frequency spectrum of this equation has been ex-
tensively investigated in the aforementioned papers (see for example [94]). From Eq. (2.33),
it is possible to derive the equation of motion of the transverse displacement u⊥ given by:

(

EJ(u′′⊥)
)′′
+ ρSu′′⊥ − ρJ

(

1 +
E

κµ

)

ü′′⊥ +
ρ2J

κµ
¨̈u⊥ = 0 . (2.37)

As the cross-section is symmetric, these equations are uncoupled and the corresponding
dispersion relation is thus:

EJik
4 − ρSω2 − ρJi

(

1 +
E

κµ

)

k2ω2 +
ρ2Ji
κµ

ω4 = 0 , for i = 2, 3 . (2.38)

Its roots are:

k2i± =
ω2

2

(

1

c2T
+

1

c2P

)

±
√

ω4

4

(

1

c2P
− 1

c2T

)2

+
S

Jic2P
ω2 , for i = 2, 3 , (2.39)

where

cT =

√

κµ

ρ
, (2.40)

is the Timoshenko transverse velocity. The wave corresponding to ki+ is propagative for
every frequency while the wave having the wavenumber ki− has a cut-off frequency ωci, at
which the wavenumber becomes real and thus a wave can propagate. It is given by:

ωci = cT

√

S

Ji
. (2.41)

Moreover when ω → ∞, ki+ → ω
cT

and ki− → ω
cP
. It means that the modes become

non-dispersive in the HF range and that the bending and shear motion are separated in
this range according to the observation made on the Lamb spectrum (see Sect. 2.1.2.3). A
comparison between the Timoshenko theory and the Euler-Bernoulli theory has been con-
ducted by Han et al. [37] that shows the improvements brought by the Timoshenko theory.
Comparisons between the dispersion curves of the Timoshenko theory and those coming
from the analysis of the Lamb spectrum are shown on Fig. 2.20 for the longitudinal mode
and on Fig. 2.22 for the bending/shear modes. Fig. 2.21 and Fig. 2.23 shows a zoom of
these curves in the frequency range where the Timoshenko dispersion curves match well the
Lamb ones.
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Figure 2.20: Comparison of the longitudinal spectrum of a cylindrical waveguide (solid blue
lines) and the longitudinal dispersion curve for a Timoshenko beam (dashed black line).
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Figure 2.21: Zoom of the dispersion curves arisig from the Timoshenko and Lamb models
for the longitudinal mode.
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Figure 2.22: Comparison of the flexural spectrum of a cylindrical waveguide for n = 1
(solid blue lines), the dispersion curve of the bending mode (dashed green line), and the
dispersion curve of the shear modes (dashed red line) for a Timoshenko beam.
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Figure 2.23: Zoom of the dispersion curves arising from the Timoshenko and Lamb models
for the bending and shear modes.
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The observation of Fig. 2.21 confirms that, in the low frequency range, the behavior of
the first longitudinal mode is well retrieved by the Timoshenko theory. However beyond
ωa/cs ≃ 4 it becomes different. It is explained by the emergence of high order longitudinal
modes on which the energy spreads. Nevertheless it can be noticed that the group velocity
of the longitudinal mode predicted by the Timoshenko theory is between the minimal and
maximal value of the group velocity predicted by the Pochhammer spectrum (see Fig. 2.7),
indeed 0 ≤ cP ≤ cl. For the flexural modes, the difference between the lowest flexural mode
and the Timoshenko mode associated with ki+ is indistinguishable. The shear velocity
modified by the shear reduction factor is indeed very close to the Rayleigh wave speed.
The second branch of the Timoshenko theory does not match well the cut-off frequency
of the Pochhammer-Chree spectrum. In order to correct this slight discrepancy, Doyle
[23] suggests to introduce a new correction coefficient κ2 in order to separate the effect of
the rotary inertia from the effect of shear. Hence the equation of 2.33 for the transverse
displacement is modified to:

ρJκ2θ̈⊥ = EJθ′′⊥ + κµS(ê1 × u′⊥ − θ⊥) , (2.42)

all the other equations remaining the same. The dispersion equation for the shear-bending
motion is modified accordingly:

EJik
4 − ρSω2 − ρJi

(

κ2 +
E

κµ

)

k2ω2 +
κ2ρ

2Ji
κµ

ω4 = 0 , for i = 1, 2 . (2.43)

Hence it is is possible to derived the modified cut-off frequency, given by:

ωci =

√

κµS

ρJiκ2
.

Matching this result with the cut-off frequency of the second first order flexural mode,
allows to compute κ2. The HF velocity of the bending waves becomes:

cb =

√

E

κ2ρ
.

In the case of a circular cross-section of ray a, ωcia
cs
≃ 1.83 leads to:

κ2 =
κµSa2

ρJ · êr(1.83cs)2
.

Moreover, as in the case of the longitudinal waves, the velocity of the bending, shear
waves stays in the limit of the maximal and minimal value of the ones predicted by the
Pochhammer-Chree model. It could be interesting in a future work to study how the Tim-
oshenko modes are projected on the Lamb modes in order to quantify the contribution of
each Lamb modes in the Timoshenko theory.

2.2.3 Higher order kinematics

Many authors have discussed the accuracy of the Timoshenko theory in the HF range
(see for example the paper [106] and references therein). Its main limitation lies in the
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kinematical assumption. Indeed it does not allow any warping of the cross-section that
would correspond to other propagative modes and thus velocities can be misestimated.
Moreover, this kinematics does not fulfil the boundary condition on the lateral surface of
the beam. Some authors proposed to enhance the kinematics in order to be able to study
such motions. High order beam kinematics just refine the Timoshenko beam kinematics by
adding degrees of freedom in a polynomial form. For example Carrera et al. [15] assumed
that a N degrees of freedom displacement reads:

u =

N
∑

i=1

Fiui , (2.44)

where Fi is a polynomial function of x⊥ in the cross-section, and ui are vectors of degrees
of freedom. It is possible to recover the kinematics of the Timoshenko beam setting:

F1 = 1 , u1 = ucê1 + vcê2 +wcê3 ,
F2 = y , u2 = θ1ê3 ,
F3 = −y , u3 = θ3ê1 ,
F4 = z , u4 = θ2ê1 ,
F5 = −z , u5 = θ1ê2 .

The main drawback of this method is that the lateral boundary conditions are not respected.
Thus, as in the case of the Timoshenko kinematics, it is necessary to consider shear reduction
factors for each degree of freedom. Some authors alleviate this shortcoming by choosing
the kinematics according to the boundary conditions. Ghugal and Shimpi [32] performed
a review of such second and third order theories. A two-dimensional kinematics has been
developed by Levinson [56] or Reddy et al. [79]:

u(x, y, t) = uc(x, t) + yv′c(x, t) + y

[

1− 4

3

(y

h

)2
]

θ1(x, t) , (2.45)

where vc = u⊥ · ê2. The corresponding displacement of this theory is sketched on Fig. 2.19-
d. Eisenberg performed a frequency study of this displacement [24]. His conclusion is
that the difference between this model and the Timoshenko theory is not relevant. It thus
justifies the introduction and the computation of shear correction factors dedicated to the
frequency range of interest. On the other hand, Rychter [84] developed a theory accounting
for transverse shear deformation, transverse normal stress, self equilibrating axial stress, and
centroid axial-elongation contraction (due to Poisson effect). Even if it fulfils the boundary
conditions, the stress field coming from these hypotheses on the kinematics does not match
to the reference stress field arising from three-dimensional elasticity. Thus some authors
use a warping function accounting for the three-dimensional elasticity stress field in the
cross-section. The three-dimensional stress field in the cross-section is given by warping
functions in some special cases by Love [59]. These functions are used by several authors
to compute the shear reduction factor (see for example [16, 46, 72, 93, 113]), showing that
the kinematics using warping function correspond to the Timoshenko theory.

2.3 Conclusions

In this chapter, the propagation of waves in a beam has firstly been studied for a waveg-
uide of circular cross-section through the Lamb model with a special attention to the HF
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range. The waves of this model can be gathered into groups having similar disturbances,
that is torsional, longitudinal, flexural and higher-order flexural waves. It has been observed
that all the waves are non-dispersive in the HF range. Moreover, for all the values of mode
orders n, except for the torsional modes, the velocity of the first propagating mode tends
to the velocity of the Rayleigh wave while all the other modes have a velocity tending to
the shear velocity of transverse waves in a three-dimensional medium. All torsional modes
have a velocity tending to the shear velocity as well. Secondly, several reduced kinematics
have been studied. The Euler-Bernoulli and Timoshenko kinematics have been considered.
The dispersion curves of the Timoshenko theory have been confronted to the ones of the
Lamb model. They fit the dispersion curves predicted by the latter model in the low fre-
quency range. As the frequency increases, some Lamb modes become propagative and
the vibrational energy is spread on these modes. Then the dispersion curves of the Lamb
model move away from the Timoshenko ones. Nevertheless, the group velocity predicted by
the Timoshenko theory stays in the bounds of the group velocities predicted by the Lamb
theory. This observation is valid for the flexural, the longitudinal and the torsional Lamb
modes. It means that the group velocities predicted by the Timoshenko theory are coherent
with the Lamb model. At last, some higher order kinematics have been investigated. They
add some degrees of freedom to the Timoshenko theory in order to describe the warping
of the cross-section. However they rely on the computation of additional shear coefficients
to match the Lamb model. Thus, they do not bring more accuracy to the group velocities
than the Timoshenko theory. In the remaining of the thesis, the Tiomoshenko theory will
be used for its relative accuracy in the HF range, and because it predicts group velocities
consistent with the Lamb model.





Chapter 3

Kinetic modeling of high-frequency
waves in beam trusses

In this chapter, we first derive the mechanical equations corresponding to the Timo-
shenko kinematics in a general framework: the beam may be curved and the cross-section
does not need to be symmetric. Then the propagation of HF waves in such a structure is an-
alyzed with the kinetic modeling approach outlined in Sect. 1.4.3. The effects of prestressing
forces and random materials are also considered. Finally, reflection/transmission operators
for the power flows within beam assemblies are derived, for the application of the proposed
kinetic approach to beam trusses.

3.1 Three-dimensional Timoshenko beam model

The application of the transport theory first requires to establish the dynamic behavior
of a three-dimensional Timoshenko beam, i.e. its equilibrium and constitutive equations.
The purpose of this section is to derive these equations prior to the HF setting proposed
subsequently in Sect. 3.2.

3.1.1 Geometry and kinematical hypotheses

The vibrational behavior of the beam is modelled by Timoshenko’s beam kinematics.
This model is more relevant in the HF range than the Euler-Bernoulli one (see Sect. 2.2). In
this work, beams materials are assumed to be isotropic but not necessarily homogeneous. In
a first step, the material and geometrical parameters (including the cross-section’s shape)
vary along the beam axes at a length scale much larger than the wavelength of the excita-
tions imposed to the structure. The implication of this assumption will be apparent in the
HF setting of Sect. 3.2 (see Eq. (3.25)). The effect of random heterogeneities with character-
istic size of the order of the wavelength will be studied in a subsequent part. Assumptions
on the cross-section shape are not necessary to model the mechanical behavior of the beam.
The model below allows for curvature and torsion of the neutral fiber which will be denoted
by C. It is parametrized by the curvilinear abscissa s in a (bounded or not) subset S of R.
The corresponding curvilinear coordinates are s = (s, s2, s3)

T such that a point x in the
subdomain Ω of R3 occupied by the beam is parametrized by x = Ψ(s) in a fixed reference
frame. Ω is also written Ω ≡ C × Σ(s), where Σ is the beam’s cross-section. Let t̂(s), n̂(s),

67
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b̂(s) be the unit tangent, unit normal and tangent-normal vectors constituting a Darboux
frame defined about C. Also let xc(s) = Ψ(s, 0, 0) be the position of the neutral fiber, then
t̂(s) = x′c, where a

′ denotes the partial derivative with respect to the curvilinear abscissa
s. The unit normal vector corresponds to the unit normal vector of the corresponding
Frenet-Serret frame n̂F =

∣

∣t̂′
∣

∣

−1
t̂′ rotated by an angle α about t̂, this angle represents the

rotation of the main axes of the cross-section with respect to s. The last unit vector b̂ is
built in order to form an orthonormal basis, thus b̂ = t̂× n̂. The geodesic curvature κg(s)
is defined by t̂′ cosα = κgn̂, the normal curvature κn(s) by t̂

′ sinα = κnn̂ and the relative
torsion τ(s) is defined by b̂′ = −τ n̂. In order to have a single valued coordinates system
(s, s2, s3)

T , the cross-section dimensions have to be small with regard to both the curvature
and the torsion [44, 101]. Fig. 3.1 shows an example of a beam with one curvature along b̂
but no torsion. Contrary to the case evoked in Sect. 2.2, the cross-section is not symmetric
anymore, such that the center of mass and the shear center may be different. Moreover in
the case of a heterogeneous cross-section, the center of mass differs from the centroid (or
geometrical center) of the cross-section.

As in Sect. 1.1, the small transformation hypothesis is assumed to be enforced, then the
reference configuration Ω0 coincides with the current configuration Ω and a material particle
at p in the reference configuration is confused with its position in the current configuration
x. There is thus x ≃ p ≡ Ψ(s). Then it is recalled that the displacement of a material
particle at s of the beam is given by Eq. (2.32), that is:

u(s, t) = uc(s, t) + θ(s, t)× s⊥ . (3.1)

In the above uc(s, t) = uc(s, t)t̂(s) + u⊥(s, t) is the displacement of the neutral fiber, and
θ(s, t) = θ1(s, t)t̂(s) + θ⊥ is the small rotation vector of the cross-section about the neutral
fiber defined as the origin of the Darboux frame. The orthogonal projection is now defined
in this frame by a⊥ = (I − t̂⊗ t̂)a.

3.1.2 Resultant constitutive equations

The derivation of the constitutive equations is adapted from the analysis proposed
by Huang [44]. It is based on the computation of the internal work, which is independent
of the computational frame. The netforce acting on the cross-section is:

f(s, t) = T1(s, t)t̂(s) + T2(s, t)n̂(s) + T3(s, t)b̂(s) ,

T1 is the normal force along t̂, T2 is the tangent force along n̂, and T3 is the tangent force
along b̂. The net moment acting on the cross-section at centroid of the cross-section is:

m(s, t) =M1(s, t)t̂(s) +M2(s, t)n̂(s) +M3(s, t)b̂(s) ,

M1 is the torsional moment, M2 is the bending moment along n̂, and M3 is the bending
moment along b̂. By definition, the net force acting on the cross-section Σ is:

f =

∫

Σ
σt̂ dΣ , (3.2)

where σ(s, t) is the second-order stress tensor within the medium Ω. Also the net moment
acting on Σ is:

m =

∫

Σ
s⊥ × σt̂ dΣ . (3.3)
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Figure 3.1: Curved L-beam oriented by its local Darboux frame (full arrows), with the
tangent (t̂), normal (n̂), and bi-normal (b̂) axes , and the reference frame (dashed arrows).
The neutral fiber is the dash-dot black line. The curvature is about the bi-normal axis
solely.

As the Darboux frame (t̂, n̂, b̂) depends on the curvilinear coordinates s of the neutral fiber,
the derivation with respect to s is given by the Darboux formulas:

t̂′ = κgn̂+ κnb̂ ,

n̂′ = −κg t̂+ τ b̂ ,

b̂′ = −κnt̂− τ n̂ ,

and so in the case of curvilinear coordinates, a′ = (a · êi)′êi + (a · êi)ê′i , êi = (t̂, n̂, b̂). The
internal work V (s, t) is:

V = −
∫

S

[

Df · uc + (Dm+ t̂× f) · θ
]

ds , (3.4)

where:

D(s) =





∂s κg κn
−κg ∂s τ
−κn −τ ∂s



 = I3∂s +∆ , (3.5)
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is the so-called Frenet-Serret matrix. In is the n× n identity matrix. The skew-symmetric
matrix ∆ is given by:

∆ =





0 κg κn
−κg 0 τ
−κn −τ 0



 .

and denotes the curvatures of the neutral fiber. In this thesis, D will denote either that
matrix or the corresponding operator. Integrating by parts on ]0, L[⊂ S yields:

V =

∫ L

0

[

f · (Duc + t̂× θ) +m ·Dθ
]

ds − [f · uc +m · θ]s=L
s=0 . (3.6)

The boundary conditions prescribe either T1 or uc, either T2 or vc, either T3 or wc, either
M1 or θ1, either M2 or θ2, and either M3 or θ3. Substituting Eq. (3.2) and Eq. (3.3) into
Eq. (3.6) leads to:

V =

∫ L

0

∫

Σ

[

σt̂ · (Duc + t̂× θ) + (s⊥ × σt̂) ·Dθ
]

dΣ ds (3.7)

for the internal work in ]0, L[. The latter may be written as:

V =

∫ L

0

∫

Σ
σ : ǫ dΣ ds, (3.8)

where ǫ(s, t) is the second-order strain tensor, G :H := Tr(GHT ) being the tensor scalar
product of the second-order tensors G and H . Keeping in mind that the tensors σ and
ǫ are symmetric and that ǫ22, ǫ33, and ǫ23 vanish by computation, Eq. (3.8) gives in an
extended form:

V =

∫ L

0

∫

Σ

(

σ11ǫ11 + 2σ12ǫ12 + 2σ13ǫ13
)

dΣ ds . (3.9)

Factorizing the terms with respect to σ1j in Eq. (3.7) allows to identify ǫ1j from Eq. (3.8):

ǫt̂ = (Duc +Dθ × s⊥)t̂+
1

2
(Duc(n̂+ b̂) + t̂× θ +Dθt̂× s⊥) . (3.10)

The expression of the strain tensor given by Eq. (2.26) is retrieved, but without explicit
calculation using the kinematics. In an elastic medium and under the assumption of small
displacements, the stress-strain relationship is Hooke’s law given by:

σ = C : ǫ . (3.11)

C(s) is the elasticity tensor depending on the Lamé parameters λ(s) and µ(s) for isotropic
material given by Eq. (1.3). In the context of the Timoshenko beam theory, it is recalled
that σ22 and σ33 are small with regard to σ11 and thus σ11 = Eǫ11. Substituting the Hooke’s
law Eq. (3.11) with the expression of the strain ǫ1j given by Eq. (3.7) and Eq. (3.8) into
Eq. (3.2) finally leads to:

F = J0[C1](DUc + t̂×Θ)− J1[C1]DΘ , (3.12)

where the capital letters Uc, Θ, F ,M stand equivalently for the vectors in R3 constituted
by the coordinates of the displacement, the rotation, the netforce, and the netmoment,
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respectively, in the local frame (t̂, n̂, b̂) (for example F (s, t) = (T1(s, t), T2(s, t), T3(s, t))
T

or M(s, t) = (M1(s, t),M2(s, t),M3(s, t))
T ). C1(s) := diag(E, κµI2)

1 is the elasticity
tensor for the forces, with κ the shear reduction factor accounting for the non-uniformity of
the three-dimensional elasticity stress state in the cross-section (see Sect. 2.2.2), and Ji[A]
is the matrix associated with the operator J i[A] =

∫

ΣA(s⊥×)idΣ. For example, for a
diagonal matrix A, one have:

J1[A] =





0 −J1
0 [A11] J0

1 [A11]
J1
0 [A22] 0 0

−J0
1 [A33] 0 0



 ,

J2[A] =





(−J2
0 − J0

2 )[A11] 0 0
0 −J2

0 [A22] J1
1 [A22]

0 J1
1 [A33] −J0

2 [A33]



 ,

where J j
i [a] =

∫

Σ as
i
2s

j
3dS. By definition:

J0[A] =

(∫

Σ
AdΣ

)

.

The matrix J1[C1] does not a priori vanish because the distributions of the mechanical
parameters are not supposed to be doubly symmetric here. Substituting Eq. (3.11) into
Eq. (3.3) also leads to:

M = J1[C2](DUc + t̂×Θ)− J2[C2]DΘ , (3.13)

where C2(s) := diag(κµ(s), E(s), E(s)) is the relaxation tensor for the moments.

3.1.3 Equations of motion

Let us consider a curved beam of material volume density ρ(s). Integrating the local
dynamic equilibrium equation in Ω on the cross-section Σ and assuming that no external
force is applied to the beam, the balance of momentum for the resultant (net) forces is:

f ′ =

∫

Σ
ρü dΣ . (3.14)

Assuming that no external couple is applied to the beam either, the balance of angular
momentum for the resultant (net) moments is:

m′ + t̂× f =
∫

Σ

(

s⊥ × ρü
)

dΣ . (3.15)

Plugging Eq. (3.1) into Eq. (3.14) yields the first set of equations of motion:

DF = J0[ρI]Üc − J1[ρI]Θ̈ , (3.16)

1. Some authors, as Gruttmann and Wagner [35], Tso and Norwood [104], consider two different shear
factors for asymmetric cross-sections. The velocities of the shear wave become then distinct. In this study,
only one coefficient is adopted in order to have two similar energetic families (the longitudinal and the
transverse ones composed of 3 modes each of them having the same velocity). The shear coefficient factor
depends on the shape of the cross-section and on the Poisson’s ratio. Note that, for symmetric cross-sections,
only one coefficient is required [20].
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Plugging Eq. (3.1) into Eq. (3.15) yields the second set of equations of motion:

DM + t̂× F = J1[ρI]Üc − J2[ρI]Θ̈ . (3.17)

All these results match those found for beams with symmetric cross-sections by other au-
thors, for example Tsay and Kingsbury [103], or Treyssède [101].

3.1.4 Energetic observables

The dynamics of the beam reduced to its neutral fiber s ∈ S by integration over the
cross-section Σ(s) is described by Eq. (3.16), Eq. (3.17), Eq. (3.12), and Eq. (3.13). Intro-
ducing the state vector:

X = (U̇T
c , Θ̇

T ,F T ,MT )T ∈ R12 , (3.18)

they can be written as a 12× 12 first-order system:

{

A(s)Ẋ =
(

P 1∂s + P
0(s)

)

X ,
X(0, s) =X0(s) ,

(3.19)

where A = diag(A1,A2) with:

A1 =

(

J0[ρI] −J1[ρI]
J1[ρI] −J2[ρI]

)

, A2 =

(

J0[C1] −J1[C1]
J1[C2] −J2[C2]

)−1

,

P 1 =

(

0 I6
I6 0

)

, P 0(s) =

(

0 P 0
1

A2P 0
2 0

)

,

with

P 0
1 =

(

∆ 0
Ω ∆

)

, Ω =





0 0 0
0 0 −1
0 1 0



 ,

and

P 0
2 =

(

J0[C1]∆ −J1[C1]∆+ J0[C1]Ω
J1[C2]∆ −J2[C2]∆+ J1[C2]Ω

)

.

Here X0(s) is a vector of initial conditions. The matrix A2 exists if its Schur complement
−J2[C2] + J1[C2](J0[C1])

−1J1[C1] and J0[C1] are invertible. J0[C1] is diagonal and thus
invertible. The Shur complement is invertible if and only if:

(J1
0 [µ])

2 + (J0
1 [µ])

2 − (J2
0 [µ] + J0

2 [µ])J
0
0 [µ] 6= 0 ,

and

J0
2 [E](J

1
0 [E])

2−2J1
0 [E]J

0
1 [E]J

1
1 [E]+J

2
0 [E](J

0
1 [E])

2+J0
0 [E](J

1
1 [E])

2−J0
0 [E]J

2
0 [E]J

0
2 [E] 6= 0 .

Moreover note that A and P 1 are symmetric matrices and it can be shown that P 0 is a
skew-symmetric matrix. The matrix A is positive definite if (J1

1 )
2 < J0

2J
2
0 . It is assumed

that this condition is enforced, then the mechanical energy density E ∈ R+ for the beam
motion is:

E(s, t) = 1

2
(X,X)A , (3.20)
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and the power flow density Π ∈ R within the beam is:

Π(s, t) = −1
2
(X,X)P 1 = −(F · U̇c +M · Θ̇) , (3.21)

where the inner product (u,v)G := vTGu is introduced for a square matrix G. Finally,
taking the scalar product of Eq. (3.19) with X leads to the energy conservation law, or
continuity equation:

Ė +Π′ = 0 . (3.22)

3.2 HF wave propagation in a three-dimensional beam

This section focuses on the characterization of the solution of the system (3.19) in the
HF regime. HF vibrations of the beam may be generated by initial conditions oscillating
at a small length scale ε proportional to the wavelength. The HF regime thus corresponds
to ε→ 0. These initial conditions may be chosen for example as plane waves in the form
X0

ε (s) = χ(s)ei ks/ε, where k ∈ R and χ(s) is a slowly varying vector. As easily seen,
it is not possible to describe the limit of X0

ε as ε→ 0. Since by the hyperbolicity of
Eq. (3.19) its solution Xε(s, t) has the same oscillatory shape as the initial condition,
it is neither possible to describe its HF limit. However the energy input by the initial
condition remains finite and will propagate in the beam. One should be able to describe
and track it by Eq. (3.22), provided its limit as ε→ 0 is known. As explained in Sect. 1.4.3
energetic quantities associated to Xε, or observables proportional to |Xε|2 in some sense,
shall be considered in this very limit. The link between the solution Xε of Eq. (3.19)
and these observables as ε→ 0 is established using a Wigner transform of Xε and its
limit as ε→ 0, the so-called Wigner measure. The theory developed by Papanicolaou
and Ryzhik [75] or Guo and Wang [36] outlines how the limit is obtained, and how a
continuity equation of the form of Eq. (3.22) is derived for the Wigner measure. The main
novelty in the proposed analysis is that all energetic quantities shall be resolved in phase
space (position × wave vector) in order to correctly built up their HF limits and evolution
properties. The general framework is described in Sect. 3.2.1 below, and its application to
a curved three-dimensional Timoshenko beam is given in Sect. 3.2.2.

3.2.1 HF energy density and transport properties

In this section, the HF limit of a first-order hyperbolic system of the form Eq. (3.19)
is considered in a general setting. First, the Wigner transform and its properties are
introduced. This transform is used to estimate the energy density associated to the solutions
of system of the from Eq. (3.19). LetX(s, t) be a complex function defined on Rs × Rt with
values in Cn. Provided that X is square integrable with respect to s, its spatial Wigner
transform is defined by:

Wε[X](s, k, t) =
1

2π

∫

R

ei k·rX
(

s− εr
2
, t
)

X⋆
(

s+ ε
r

2
, t
)

dr . (3.23)

In the above X⋆ =X
T
stands for the conjugate transpose of X. The n× n matrixWε[X]

is Hermitian and not necessarily positive, but it does become so in the HF limit ε→ 0.
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Furthermore this (weak) limit always exists for a square integrable function. The Wigner
transform also has the property:

∫

R

Wε[X](s, k, t)dk =X(s, t)X⋆(s, t) , (3.24)

hence its link with the energy if one takes the trace of the above equation. Now let us
consider a vector Xε in Rn satisfying the first-order problem:

{

εA(s)Ẋε =
(

P 1(ε∂s) + εP 0(s)
)

Xε ,
Xε(0, s) =X

0
ε (s) .

(3.25)

This system is obtained from Eq. (3.19) by multiplying it with ε, assuming in addition that
A(s) and P 0(s) are independent of ε. This assumption was introduced earlier in Sect. 3.1.1.
It means that the parameters of the materials constituting the beam and its curvatures vary
on a scale much longer than the small wavelength ε imposed by the initial condition X0

ε .
Indeed, the initial data X0

ε vary on a scale greater or equal to ε, which is the case of the
plane waves X0

ε (s) ∝ ei ks/ε considered above. More generally, these data have to satisfy
the so-called ε-oscillatory strong condition stating that (|ε∂s|X0

ε )
2 remains at least locally

integrable on R [31]. HF plane waves are only a particular case satisfying this condition.
Finally, A and P 1 are also assumed to be symmetric so that the system (3.25) is said to
be symmetric. Then provided that the sequence (Xε) remains bounded in the set of square
integrable functions with respect to s ∈ R, its Wigner transformWε[Xε] has an Hermitian
weak limit (denoted byW ) as ε→ 0 which is also a non negative measure. This very limit
is the so-called Wigner measure of the sequence (Xε) [31, 57], obtained as follow. It has
the properties that for any pseudo-differential operator aW (s, εDs) defined for any smooth
function f(s) by:

aW (s, εDs)f(s) =
1

2π

∫

R×R
eik(s−r)a

(

s+ r

2
, εk

)

f(r)drdk ,

where a(s, k) is a matrix function, one has:

lim
ε→0

(aW (s, εDs)Xε,Xε)L2 = Tr

∫

R×R
a(s, k)W(ds, dk) .

Then by an appropriate choice of a(s, k), it can be shown that the HF energy density of
Eq. (3.20):

Eε(s, t) =
1

2
(Xε,Xε)A

is given in terms of W by:

lim
ε→0

Eε(s, t) =
1

2

∫

R

A :W dk, (3.26)

and the HF power flow density (3.21):

Πε(s, t) = −
1

2
(Xε,Xε)P 1 (3.27)

is:

lim
ε→0

Πε(s, t) = −
1

2

∫

R

P 1 :W dk . (3.28)
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Note that P 0 does not influence the power flow equation Eq. (3.28) because it is skew-
symmetric and thus its contribution vanishes with the inner product 3.27. Since the se-
quence (Xε) satisfies the system (3.25), it can be shown in addition that its Wigner measure
reads [36, 75]:

W (s, k, t) =
M
∑

α=1

Rα
∑

i,j=1

wij
α (s, k, t)vαi

(s, k)⊗ vαj
(s, k) . (3.29)

In the above (vαi
)1≤i≤Rα are the eigenvectors of the dispersion matrix:

Γ(s, k) := kA−1(s)P 1 , (3.30)

associated with the eigenvalues λα of which orders of multiplicity are Rα. These or-
ders of multiplicity are assumed to be independent of (s, k) ∈ S × R and are such that
∑M

α=1Rα = n. The Rα ×Rα coherence matrices Wα, defined as [Wα]ij = wij
α , satisfy the

transport equations:
∂tWα + {λα,Wα}+ [Wα,Nα] = 0 , (3.31)

where {g, h} = ∂kg · ∂sh− ∂sg · ∂kh is the usual Poisson’s bracket, [G,H] = GH +H⋆G⋆,
and Nα is an Rα ×Rα coupling matrix with elements:

[Nα(s)]ij = (vαj
, (P 1∂s + P

0(s))vαi
)− ∂sλα(∂kvαi

,vαj
)A −

1

2
∂2ksλαδij . (3.32)

This matrix is skew-symmetric on account of its last term ∂2ksλαδij .

3.2.2 Application to a three-dimensional Timoshenko beam

The transport theory is now applied to a Timoshenko beam. In this case, n = 12, the
vector Xε is the rescalled state vector X given by Eq. (3.18), and the hyperbolic system is
the one established in Sect. 3.1 that is Eq. (3.19). Let k := kt̂ be the wave vector within
a beam oriented by its tangent unit vector t̂. As P 0 is rescaled as a first-order term in
ε, it does not influence the eigenvalues of the dispersion matrix Γ of the system (3.19)
of Sect. 3.1.4 in the HF limit ε → 0. Thus the curvatures have no influence on the HF
vibrations of the beam. The dispersion matrix Γ is self-adjoint with respect to the inner
product (, )A, thus:

(Γa, b)A = (a,Γb)A , ∀a, b ∈ R12 ,

and thus all the eigenvalues of Γ are real and the eigenvectors can be chosen to be orthonor-
mal with respect to (, )A.

It is now assumed that the material parameters have a symmetric distribution over the
cross-section. It implies that:

J j
i [A] = J j

iA ,

and thus J1 = 0 on account of the property of the centroid of the cross-section Eq. (2.24).
The term J1

1 does not vanish because the cross-section is not necessarily symmetric and thus
n̂ and b̂ are not the main axes of inertia of the cross-section. Note that it could be possible
to remove it by a change of basis to the basis inertia of the beam but it is not required for
our calculation. The calculation gives for the eigenvalues of the dispersion matrix Γ :

λ±P (s,k) = ±cP(s)|k| each of multiplicity 3 ,
λ±T(s,k) = ±cT(s)|k| each of multiplicity 3 ,

(3.33)
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where cP and cT are the group velocities of longitudinal and transverse waves, respectively
given in Eq. (2.23) and Eq. (2.40):

cP =

√

E

ρ
, cT =

√

κµ

ρ
. (3.34)

Since these waves are non dispersive in the HF range, the group velocities are also the
phase velocities. Hence R±α = 3 for α = P,T and either the forward (+) or the backward
(−) waves. The associated eigenvectors normalized with respect to (, )A, are:

v±P1
=

1√
2

(

−k̂
√

E

aρc
, 0, 0, 0, 0, 0,±

√

aE

c
, 0, 0, 0, 0, 0

)T

,

v±P2
=

1√
2

(

0, 0, 0, 0,
k̂

√

ρJ2
0

, 0, 0, 0, 0, 0,±
√

EJ2
0 ,∓J1

1

√

E

J2
0

)T

,

v±P3
=

1√
2



0, 0, 0, 0,
k̂J1

1
√

cJ2
0ρ
, k̂

√

J2
0

cρ
, 0, 0, 0, 0, 0,±

√

cE

J2
0





T

, (3.35)

v±T1
=

1√
2

(

0,
k̂

√

ρJ0
0

, 0, 0, 0, 0, 0,±
√

κµJ0
0 , 0, 0, 0, 0

)T

,

v±T2
=

1√
2

(

0, 0,
k̂

√

ρJ0
0

, 0, 0, 0, 0, 0,±
√

κµJ0
0 , 0, 0, 0

)T

,

v±T3
=

1√
2

(

0, 0, 0,− k̂J0
0

√

ρbJ0
0

, 0, 0, 0, 0, 0,±
√

κµb

J0
0

, 0, 0

)T

.

where a = J0
0 (J

0
2J

2
0 − (J1

1 )
2), b = J0

0 (J
2
0 + J

0
2 ), and c = J0

2J
2
0 − (J1

1 )
2. If the cross-section is

considered to be symmetric, then the eigenvectors derived in [55] are retrieved, that is:

v±P1
=

(

k̂√
2ρS

, 0, 0, 0, 0, 0,±
√

ES

2
, 0, 0, 0, 0, 0

)T

,

v±P2
=

(

0, 0, 0, 0,
k̂

√

2J2
0ρ
, 0, 0, 0, 0, 0,±

√

J2
0E

2
, 0

)T

,

v±P3
=

(

0, 0, 0, 0, 0,
k̂

√

2J0
2ρ
, 0, 0, 0, 0, 0,±

√

J0
2E

2

)T

,

v±T1
=

(

0,
k̂√
2ρS

, 0, 0, 0, 0, 0,±
√

κµS

2
, 0, 0, 0, 0

)T

,

v±T2
=

(

0, 0,
k̂√
2ρS

, 0, 0, 0, 0, 0,±
√

κµS

2
, 0, 0, 0

)T

,

v±T3
=

(

0, 0, 0,
k̂

√

2(J0
2 + J2

0 )ρ
, 0, 0, 0, 0, 0,±

√

κ(J0
2 + J2

0 )µ

2
, 0, 0

)T

.
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The eigenvectors associated with the eigenvalues P± are the compressional (1) and bending
(2 and 3) energy modes, and the eigenvectors associated with the eigenvalues T± are the
shear (1 and 2) and torsional (3) energy modes.

The coupling matrix N is computed using Eq. (3.32). Since P 0 is skew-symmetric and
the eigenvectors do not depend on k, it is reduced to:

Nαij
= (vαj

,P 1∂svαi
)− 1

2
∂kλ

′
αδij ,

and it may be shown by computation that these terms vanish also. Thus the 3× 3 coherence
matrices W±

α , α = P,T, satisfy the Liouville-type transport equations:

∂tW
±
α ± sign(k)cα · ∂sW±

α ∓ |k|c′α · ∂kW±
α = 0 . (3.36)

The sign of the energetic mode has been removed compared to Eq. (3.35) because it denotes
the direction of propagation of the mode that is given also by the sign of W±

α . ThusW
±
α∓

vanishes. It may be physically explained because a wave travelling in a direction can
not carry energy in the opposite direction in the HF dynamics of the Timoshenko beams.
Accordingly, it can be observed that W−

α (s, k, t) =W
+
α (s,−k, t) for α = P,T, so that the

space time energy density reduces to:

E(s, t) = lim
ε→0

Eε(s, t) =
∑

α=P,T

∫

R

TrW+
α (s, k, t) dk . (3.37)

Similarly, the power flow density vector Π(s, t) := Π(s, t)t̂(s) in the local frame is:

Π(s, t) = lim
ε→0

Πε(s, t) =
∑

α=P,T

cα(s)

∫

R

TrW+
α (s, k, t)k̂ dk

=
∑

α=P,T

Rα
∑

j=1

∫

R

πjj
α (s,k, t) dk .

(3.38)

Here πjj
α (s,k, t) := cα(s)w

jj
α (s, k, t)k̂ is the power flow density of a mode α ∈ (P,T),

1 ≤ j ≤ Rα, in a beam oriented by its tangent unit vector t̂, with k̂ := k
|k| = sign(k)t̂.

If k > 0 the energy flux travels in the same direction as t̂, but if k < 0 it travels in the
opposite direction. For convenience the sign function is denoted by sign(k) = k̂ in the re-
maining of the thesis. The energy and power flow densities (Eq. (3.37) and Eq. (3.38)) to
be computed ultimately depend on the diagonal elements wjj

α of Wα solely. The transport
equations 3.36 do not couple them, although the boundary/interface conditions considered
in the next section do so. Thus only Eq. (3.36) for the elements (wjj

α )+ of W+
α has to be

considered, reminding the symmetry W+
α (s, k, t) = W−

α (s,−k, t). Introducing the set of
energy modes

E = (P1,P2,P3,T1,T2,T3) (3.39)

corresponding to the eigenvectors v+Pj
and v+Tj

, 1 ≤ j ≤ 3, and the eigenvalues λ+P and λ+T
(counted with their orders of multiplicity), the set of transport equations to be considered
is finally reduced to:

∂twα + cαk̂ ∂swα − |k|c′α ∂kwα = 0 , α ∈ E . (3.40)
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Accordingly, the power flow density of a mode α ∈ E is denoted by:

πα(s,k, t) = cα(s)wα(s, k, t)k̂ . (3.41)

These results extend to three dimensional beams the results of Savin [86] for the two-
dimensional case.

3.2.3 Effect of the prestressing forces

The effect of a prestressing on a curved beam is now studied. The prestressing intro-
duces a stationary stress denoted by σref . It is evaluated in practice by static equilibrium
consideration. Its introduction requires to modify the balances of momentum (3.14) and
(3.15) and the constitutive equations (3.12) and (3.13). The total force becomes:

ft =

∫

Σ0

ESt̂0dΣ0 , (3.42)

where

ft = fd + fref

is the total net force acting on the cross-section constituted by the dynamical part fd and

the prestressing part fref , E = I +∇s(u), S
def
= σd + σref is the second Piola tensor, and

Σ0 and t̂0 denotes respectively the cross-section and the axis tangent to the neutral fiber
for the reference configuration. The net force associated to the prestressed state is:

fref =

∫

Σ0

σref t̂0dΣ0 .

The zero and first order terms of Eq. (3.42) are:

ft =

∫

Σ
(σd + σref +∇(u)σref)t̂dΣ . (3.43)

The first term of the right hand side is the dynamic effect while the second and third
terms denote the effect of the prestressing. The latter requires to know the gradient of the
displacement. It can be shown that:

∇(u) = (u′c − θ × t̂+ θ′ × s⊥)⊗ t̂+ θ × . (3.44)

With Eq. (3.12), it is possible to express the total forces ft in a matrix form:

Ft = J0[C1+(σref : t̂⊗ t̂)I3](DUc+ t̂×Θ)−J1[C1+(σref : t̂⊗ t̂)I3]DΘ+Θ×Fref +Fref .
(3.45)

The total moment is:

mt =

∫

Σ0

(s⊥ − θ × s⊥)× (ESt̂0)dΣ0 ,

where mt =md +mref with

mref =

∫

Σ0

s⊥ × σref t̂0dΣ0 .
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Developing and keeping the zero and first order terms using Eq. (3.44) and Eq. (3.13) leads
to:

Mt = J1[C2+(σref : t̂⊗ t̂)I3](DUc+ t̂×Θ)−J2[C2+(σref : t̂⊗ t̂)I3]DΘ+Mref . (3.46)

The balance of momentum for force becomes:

DFt = J0[ρI]Üc − J1[ρI]Θ̈ , (3.47)

and the balance of momentum for the moment is:

m′ + n̂× ft =
∫

Σ
s⊥ × ü , (3.48)

where n̂ is the outward normal to the cross-section. Its first order expansion is n̂ ≃ t̂+θ×s⊥.
First order expansion leads to:

DMt + t̂× Ft = J1[ρI]Üc − J2[ρI]Θ̈ −Θ× t̂F ref . (3.49)

Finally the dispersion matrix defined in Eq. (3.30) becomes:

Γ = k









0 0 (J0[ρI])
−1 0

0 0 0 (J2[ρI])
−1

J0[C
∗
1 ] 0 0 0

0 J2[C
∗
2 ] 0 0









, (3.50)

where C∗1 = C1 + (σref : t̂ ⊗ t̂)I3, and C∗2 = C2 + (σref : t̂ ⊗ t̂)I3. As a conclusion, the
prestressing only affects the values of the wave velocities. The prestressed medium can be
thus considered as an equivalent medium of which the material parameters are modified by
the prestressing in the HF range.

3.2.4 Effect of material randomness

In the case of material having parameters varying rapidly, at a scale comparable to
the scale ε of the wavelength, the transport equation (3.40) can not take into account the
scattering phenomena related to these variations. Random perturbations of this parameters
of correlation length lc ∝ ε are considered in order to study the interactions of HF wave
propagation with materials varying at the same length scale. However the correlation length
has not to be too much high in order to avoid localization phenomena. In this case the
evolution of the Wigner measure is given by a radiative transfer equation. For a three-
dimensional open medium, the phase space energy density wα of the energy mode α is the
solution of the radiative transfer equation [4, 36, 75]:

ẇα+cαk̂·∇swα−|k|∇sc·∇kwα+Σαwα =
∑

β∈E

∫

Sd−1

σαβ(s, |k|, k̂·p̂)wβ(s,p, t)dΩ(p̂) , (3.51)

where Sd−1 is the unit sphere of Rd with the uniform probability measure Ω, and E is defined
by Eq. (3.39). The scattering cross-section σαβ gives the rate of energy of a mode β with
a wave vector p that is converted to energy of mode α with a wave vector k due to the
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scattering on the random inhomogeneities of the medium. The total scattering cross-section
Σα(s,k) for the polarization α is defined as:

Σα =
∑

β∈E

∫

Sd−1

σαβ(s, |k|, k̂ · p̂)dΩ(p̂) .

The scattering cross-section can be computed explicitly from the auto- and cross-correlation
spectra of the random perturbations of the mechanical parameters. In this case, the model
exhibits the scattering due to random media with continuous fluctuation. If discrete scatter-
ers are considered, then the scattering cross-section of the medium is given by the scattering
cross-section of a single scatterer multiplied by the density of scatterers. In any case the
Hamiltonian ω := cα|k| of Eq. (3.51) is preserved along the energy paths (rays). These re-
sults have been adapted to slender structures [88], electromagnetic waves, or the Shrödinger
equation in random media [75].

As for a random beam, it is assumed that the material parameters have the form:

ρε(s) = ρ(s)
[

1 +
√
εY1

(s

ε

)]

,

1

Eε(s)
=

1

E(s)

[

1 +
√
εY2

(s

ε

)]

,

1

(κµ)ε(s)
=

1

µr(s)

[

1 +
√
εY3

(s

ε

)]

,

(3.52)

where (Yj(s), s ∈ R), 1 ≤ j ≤ 3 are three real-valued statistically homogeneous and centered
second-order stochastic processes with correlation lengths comparable to the wavelength in
the medium. ρ(s) = E{ρε(s)}, E(s) = E{Eε(s)−1}−1, κµ(s) = E{(κµ)ε(s)−1}−1 are the
average macroscopic density, Young, and reduced shear modulus, E{X} standing for the
mathematical expectation of a random variable X. The perturbation amplitude is scaled by√
ε in order to avoid localization while keeping significant effect of the randomness on the

propagation of the energy density [75]. Introducing these new parameters in the mechanical
equations Eq. (3.12), Eq. (3.13), Eq. (3.14), Eq. (3.15) leads to the new first-order problem:

(A+
√
εAε)∂tXε = P1∂sXε + P0Xε , (3.53)

whereAε(s) is the matrix relative to the randomness of the medium. In the HF limit ε→ 0,
the energy density for longitudinal modes wP and transverse modes wT satisfy a radiative
transfer equation of the form (3.51) with d = 1, k̂ = ±1. It may be show that the latter
reduces to [87]:

∂twα + cαk̂∂swα − |k|c′α∂kwα = Σα(k)(wα(−k)− wα(k)) , α ∈ E , (3.54)

where E is the set of the energy modes defined by Eq. (3.39) and Σα(k) is the total scat-
tering cross-section. It gives the amount of energy in the modes α which is scattered to
all other modes. Thus in beams no mode conversion occurs on account of the random
heterogeneities [87]. The total scattering cross-section is given by:

Σα(k) =
π

2
ζαcαk

2S(2k) , (3.55)
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with S(k) = 1
2π

∫

R
R(r)eikrdr the one-dimensional Fourier transform of the normalized cor-

relation function R(x− y) of the random fluctuations of the density and inverse Young and
shear modulus, and ζα = ζ̃αlc is a dimensionless strength factor related to their variation
coefficients (or amplitudes) [87]. R(r) is normalized such that lc =

∫ +∞
0 R(r)dr is a cor-

relation length of the random fluctuations. Table 3.1 provides some models of correlation.
One can define a collision operator by:

Qα(k) = Σα(k)(wα(−k)− wα(k)) . (3.56)

The wave velocities cα are given by:

cP =

√

E

ρ
,

cT =

√

κµ

ρ
.

Table 3.1: Normalized correlation function (NCF) models for beams of correlation length
lc; Kν is the modified Bessel function of second kind, Γ is the Gamma function, ν ∈ [0, 1]
is the Hurst number in von Karman model (note that the latter reduces to Markov model
for ν = 1

2), and 1[a,b] is the indicator function valued at 1 on the segment [a, b].

NCF model R(r) S(k)

Gaussian exp

(

−π r
2

4l2c

)

lc
π
exp

(

− l
2
ck

2

π

)

Markov exp

(

−|r|
lc

)

lc
π

(

1 + l2ck
2
)−1

von Karman
21−ν√

πΓ
(

ν + 1
2

)

( |r|
lc

)ν

Kν

( |r|
lc

)

lc
π

(

1 + l2ck
2
)−(ν+ 1

2)

Triangular 2

(

1− |r|
lc

)

1[−lc,lc](r)
lc
π
sinc2

(

klc
2

)

Rayleigh δ

( |r|
2lc

)

lc
π

Thus it has been seen that the energy densities do not couple in an isolated beam in
the HF range, even in the random case. The last point to investigate in order to study an
entire truss is the behavior of HF waves at junctions. It is shown in the subsequent section
that it mixes the different wave modes by conversion rules. This is the subject of the next
part of this chapter.
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3.3 High-frequency power flow reflection/transmission oper-

ators in a beam junction

The HF energy density propagation in a beam is described by the transport equa-
tions (3.40). In order to use this model for complex three-dimensional beam trusses, the
reflection/transmission processes at the junctions have to be described. They contribute to
couple the energy mdoes α. This section deals with the description of the energy density
propagation in a junction of two beams, and then an arbitrary number N of beams. Power
flow reflection/transmission operators are derived along the same lines as in Savin [86] for
two-dimensional junctions. The subsequent analysis considers the basic case where incident
waves are travelling in a single beam and are reflected/transmitted in the other beams con-
nected to the junction. Incidences in several or all members of the junction may be treated
by superposition of this simple situation.

3.3.1 Energy transport in coupled structures

3.3.1.1 A junction of two beams

Let us consider two beams occupying the domains Ω1 and Ω2 of R3. They are pa-
rameterized by their curvilinear coordinates s = (s, s2, s3)

T ∈ R3 such that s ∈ S1 ⊂ R for
beam #1 and s ∈ S2 ⊂ R for beam #2. Here Sp, p = 1, 2, is an interval of R such that
Cp = Ψp(Sp) is the curved line in R3 constituting the neutral fiber of beam #p. Their
junction Γ := ∂Ω1 ∩ ∂Ω2 reduces to a single point x0 = Ψp(s

p
0) in this parametrization. Let

t̂p be the tangent vector to Cp, p = 1, 2, pointing outward from beam #p at the junction.
Then it is assumed for convenience that sp0 may be written s

p
0 = s0t̂

p in the local Frenet
frame of each beam #p. The Liouville equations (3.40) hold within each beam. However
their Hamiltonians λpα(s,k) := cpα(s)|k| shall be preserved across the interface as in phase
space description of geometrical optics [25, 48] where they remain constant along the (en-
ergy) rays. This applies even if they are reflected or transmitted by that interface. Here cpα
stands for the different group velocities of longitudinal (α = Pj, 1 ≤ j ≤ 3) and transverse
(α = Tj, 1 ≤ j ≤ 3) waves in beam #p. Thus one has:

λpα(s0,k) = λqβ(s0,k) := ω , ∀p, q = 1, 2 , ∀α, β ∈ E , (3.57)

where E is given by Eq. (3.39). The condition (3.57) holds for either transmitted (p 6= q)
or reflected (p = q) waves. It can be used to determine the reflected and transmitted
wavenumbers |kpα| from either side of the interface given an incident wavenumber |k|. More-
over, the power flow (3.38) is conserved across the junction owing to the Rankine-Hugoniot
condition written for the transport equations (3.40) [88]. For example, the energy density
travelling in beam #1 and impinging the junction at s0 with an incident wave vector k
such that k · t̂1 > 0 is partially reflected and partially transmitted while the overall power
flow remains constant. This property reads:

π1
α(s0,k, t) · t̂1 =

∑

β∈E

(

|π1
β(s0,k

1
β, t) · t̂1|+ |π2

β(s0,k
2
β, t) · t̂2|

)

, (3.58)

where the left traces of πα in beam #p at the junction are denoted by:

πp
α(s0,k, t) := lim

h↓0
πα(s0 · t̂p − h,k, t) . (3.59)
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Here c1α|k| = cpβ |k
p
β| ∀α, β ∈ E by Eq. (3.57), and k1β = −|k1β|t̂1, k2β = −|k2β|t̂2. The first and

second terms on the right-hand-side in Eq. (3.58) correspond to the fluxes flowing away from
the junction in beams #1 and #2, respectively, after reflection and transmission. They read:

|πp
α(s0,k, t) · t̂p| =

∑

β∈E

(

ρppαβ(s0)π
p
β(s0,k

p
β , t) · t̂p + τpqαβ(s0)π

q
β(s0,k

q
β, t) · t̂q

)

, (3.60)

for p 6= q ∈ (1, 2) and k̂ · t̂p < 0, with k1β = |k1β|t̂1 and k2β = |k2β |t̂2. ρppαβ(s0) and τpqαβ(s0)
are power flow reflection/transmission operators of the junction, respectively. The above
relations constitute the boundary/interface conditions to be used to solve the transport
equations (3.40). It should be noted that they remain valid everywhere within the beams
if the convention ρppαβ = 0 and τppαβ = δαβ is adopted for all s 6= s0.

3.3.1.2 A junction of N beams

Now this analysis can be generalized straightforwardly to a junction of N ≥ 2 beams.
Eq. (3.60) for the fluxes flowing away from that junction in beam #p after reflection and
transmission reads:

|πp
α(s0,k, t) · t̂p| =

∑

β∈E

(

ρppαβ(s0)π
p
β(s0,k

p
β , t) · t̂p +

N
∑

q=1
q 6=p

τpqαβ(s0)π
q
β(s0,k

q
β, t) · t̂q

)

(3.61)

for k̂ · t̂p < 0, where kqβ = |k
q
β|t̂q such that cpα(s0)|kpα| = cqβ(s0)|k

q
β| := ω for 1 ≤ p, q ≤ N ,

α, β ∈ E by Eq. (3.57). One may also define linear reflection operators Rpp
αβ : wβ 7→ wα and

transmission operators T pq
αβ : wβ 7→ wα provided that Eq. (3.61) is written in terms of the

energy densities wα rather than the flow densities πα:

|πp
α(s0,k, t) · t̂p| =

∑

β∈E

(

Rpp
αβ(cβwβ)

p(s0,k
p
β · t̂p, t) +

N
∑

q=1
q 6=p

T pq
αβ (cβwβ)

q(s0,k
q
β · t̂q, t)

)

(3.62)

for k̂ · t̂p < 0. Here the same definition as for the flow density, Eq. (3.59), is used for the
traces of cα and wα.

3.3.2 Computation of reflection/transmission operators for a beam junc-
tion

This section outlines how the power flow reflection/transmission operators ρppαiβj
(s0) and

τpqαiβj
(s0) may be computed. Some examples are also presented in order to illustrate these

results.

3.3.2.1 Theoretical analysis

A junction of N beams is considered. It is geometrically described by the Euler angles
between beam #p and beam #q. They are denoted by ψpq, θpq and ϕpq with the usual
convention (n̂, b̂, t̂) meaning that the composition of three intrinsic rotations about the



84 CHAPTER 3. KINETIC MODELING OF HIGH-FREQUENCY WAVES IN BEAM TRUSSES

moving frame axes is used to rotate the local Frenet frame of beam #p to the local frame
of beam #q. This rotation is denoted by Rqp. Hence:

Rqp = R#(ϕpq, t̂)R
#(θpq, b̂)R

#(ψpq, n̂) ,

where R#(α,e) is the matrix corresponding to a rotation of angle α around the axis e.
Moreover, the beams may be connected at a point which is not on the neutral fiber of the
first beam. The offset between the beam #p and the beam #q is denoted by the vector δpq
going from the former to the latter. The junction is at s = s0, and it is assumed without
loss of generality in the remaining that s0 = 0. It is also considered that waves are incident
in beam #1. Fig. 3.2 shows an example of a junction of three beams, and the existing waves
in each beam.

1
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1n̂

θ

Ψ
1t̂

ϕ

beam #1

reflected wave

incident wave

tr
an

sm
it

te
d
 w

av
e

transmitted wave

beam #3

beam #2

12

12

12

δ1

3

Figure 3.2: A junction of three coupled beams with travelling waves in each beam. The
junction is defined by three Euler angles: the first one is ψ1q, the second one is θ1q, and the

last one is ϕ1q using the usual convention (n̂,b̂,t̂) for the junction between beam #1 and
beam #q, q = 2, 3. δ31 represents the offset between the first and the third beams.

The energy reflection/transmission problem is studied considering first the reflection/transmission
problem for planar waves, propagating in the direction t̂. The incident waves, travelling in
beam #1 in the direction of increasing s may then be written as a linear superposition of
the components:

uIc = e−ik
1
Ps for a longitudinal motion corresponding to t̂1 ,

vIc = e−ik
1
Ts for a pure shear motion corresponding to n̂1 ,

wI
c = e−ik

1
Ts for a pure shear motion corresponding to b̂1 ,

θI1 = −ik1Te−ik
1
Ts for a torsional motion corresponding to t̂1 ,

θI2 = −ik1Pe−ik
1
Ps for a bending motion corresponding to n̂1 ,

θI3 = −ik1Pe−ik
1
Ps for a bending motion corresponding to b̂1 .

(3.63)
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The coefficients ik1α of the rotational component make them homogeneous to an angle. The
corresponding reflected waves travelling in beam #1 in the direction of decreasing s read:

uRc = B1
1e

ik1Ps ,

vRc = B1
2e

ik1Ts ,

wR
c = B1

3e
ik1Ts ,

θR1 = ik1TC
1
1e

ik1Ts ,

θR2 = ik1PC
1
2e

ik1Ps ,

θR3 = ik1PC
1
3e

ik1Ps .

Accordingly, the transmitted waves travelling in beam #q in the direction of increasing s
for that beam read:

uTq
c = Bq

1e
−ikqPs ,

vTq
c = Bq

2e
−ikqTs ,

wTq
c = Bq

3e
−ikqTs ,

θTq
1 = −ikqTC

q
1e
−ikqTs ,

θTq
2 = −ikqPC

q
2e
−ikqPs ,

θTq
3 = −ikqPC

q
3e
−ikqPs .

This description of plane waves is chosen so as to be compatible with the eigenvectors
Eq. (3.35) and eigenvalues Eq. (3.33) of the dispersion matrix Γ. The coefficients Bi and
Cq
i are obtained from the continuity of the displacements, rotations, forces, and moments

at the junction:

U I
c (0) +U

R
c (0) = R

1q(UTq
c (0)−ΘTq(0) × δq1) ,

ΘI(0) +ΘR(0) = R1qΘTq(0) ,

F 1(0) =
N
∑

q=2

R1qF q(0) ,

M1(0) =

N
∑

q=2

R1q(M q(0)− F q(0)× δq1) .

(3.64)

F q and M q correspond to the net force and net moment in beam #q, respectively, and
Unf

I and ΘI are the vectors of the amplitudes of the incident wave for the translational
(uIc , v

I
c , w

I
c ) and rotational (θ

I
1, θ

I
2 , θ

I
3) motions respectively. Also U

R
c andΘR are the vectors

of amplitudes of the reflected waves for translational and rotational motions respectively,
and UT

c and ΘT are the vectors of transmitted waves for translational and rotational
motions respectively. R1q is the rotation matrix corresponding to the projection of the local
frame of beam #q on the local frame of beam #1. Inserting the constitutive equations (3.12)
and (3.13) into Eq. (3.64) yields a linear system in terms of displacement and rotation solely.
An extended form of this system is given in the appendix A. It can be easily solved for
each type of incident wave and allows to compute the coefficients Bq

i , C
q
i . To be consistent

with the transport model (3.40) governing the phase space energy densities, the associated
power flows are derived from the generic formula for the energy flux of a HF plane wave
propagating in a beam [86]. The transient power flow in beam #q being:

Πq = −Re{F q · U̇ q
c +M

q · Θ̇q} ,
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where Re{z} denotes the real part of z, the time average power flow associated to a plane
wave is:

< Πq >=
1

2
Re{iω(F q ·U q

c +M
q ·Θq)} . (3.65)

The HF power flow reflection/transmission operators for coupled Timoshenko beams are
then defined by:

ρ11αβ =
< ΠR

α >

< ΠI
β >

, (3.66)

τ q1αβ =
< ΠTq

α >

< ΠI
β >

, (3.67)

respectively. Here < ΠR
α > is the time average power flow for the reflected waves corre-

sponding to the mode α ∈ E, < ΠTq
α > is the time average power flow for the transmitted

waves corresponding to the mode α in beam #q, and < ΠI
β > is the time average power

flow for an incident wave in the mode β. The linear reflection/transmission operators for
the energy densities are given by:

Rpp
αβ(cβwβ)

p(s0,k
p
β · t̂p, t) = cpβρ

pp
αβw

p
β(s0, k

p
β , t)k̂

p
β · t̂p ,

T pq
αβ (cβwβ)

q(s0,k
q
β · t̂q, t) = cqβτ

pq
αβw

q
β(s0, k

q
β , t)k̂

q
β · t̂q .

3.3.2.2 Examples

It may be observed by computation that, in the case of a coincident junction (i.e.
δ
j
i = 0) and in the HF limit, the reflection/transmission operators corresponding to trans-
lation incident motions uIc , v

I
c , or w

I
c , and rotational reflected/transmitted motions θRi ,

θTq
i , i = 1, 2 or 3, are null. This result can be understood as follows: Let us consider
a translational incident motion given by Eq. (3.63). Then by Eq. (3.65) and Eq. (3.12),
the corresponding power flow is of the order of O(ω2). Now for a rotational motion, the
power flow is by Eq. (3.13) and the expression of the rotation of an order O(ω4). Thus
reflection/transmission operators for this kind of displacements vanish in the HF limit. The
operators related to rotational incident motions and translational reflected/transmitted mo-
tions vanish as well as shown by direct computation. All operators are independent of the
circular frequency ω. Fig. 3.4 displays them for two rectangular (i.e. symmetric cross-
sections) Timoshenko beams (N = 2) with E2 = 2E1, all other parameters being identical
(ν1 = ν2, ρ1 = ρ2, and J1 = J2). The Euler angles between the beams at the junction are
−π/2 ≤ ψ12 ≤ π/2, θ12 = π/4 and ϕ12 = 0. Obviously, the sum of the power flow reflec-
tion/transmission operators is equal to one for a given angle. This property expresses energy
conservation. Fig. 3.5 displays the reflection/transmission operators for three Timoshenko
beams (N = 3) with the same geometrical and mechanical parameters (E2 = E3 = 2E1,
ν1 = ν2 = ν3, ρ1 = ρ2 = ρ3, and J1 = J2 = J3). The Euler angles between the beams at
the junction are −π/2 ≤ ψ12 ≤ π/2, θ12 = π/4, ϕ12 = 0, ψ13 = 0, θ13 = 0, and ϕ13 = 0.
Again, the sum of the power flow reflection/transmission operators is equal to one for a
given angle. For these situations, the property on the reflection/transmission operators
related to the rotational/translational motions outlined above is retrieved. The last case in
Fig. 3.6 represents a junction with a shift between the connecting points of the beams such
that δji 6= 0. In this case, all the modes are likely be solicited at the junction.
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Figure 3.3: Legend corresponding to the reflection/transmission operators for the represen-
tation on Fig. 3.4, Fig. 3.5, and Fig. 3.6.
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Figure 3.4: Evolution of the power flow reflection/transmission coefficients as functions of
the angle ψ12 for a junction of two Timoshenko beams with E2 = 2E1, ν1 = ν2, ρ1 = ρ2, and
J1 = J2. The Euler angles at the junction are −π/2 ≤ ψ12 ≤ π/2, θ12 = π/3, and ϕ12 = 0.



3.3. HIGH-FREQUENCY POWER FLOW REFLECTION/TRANSMISSION OPERATORS IN A BEAM JUNCTION 89

�pi/2 �pi/4 0 pi/4 pi/2
0

0.5

1

angle ψ
12

 (rad)

am
p

li
tu

d
e

Incident compressional motion along t
1

�pi/2 �pi/4 0 pi/4 pi/2
0

0.2

0.4

angle ψ
12

 (rad)

am
p

li
tu

d
e

Incident shear motion along n
1

�pi/2 �pi/4 0 pi/4 pi/2
0

0.5

angle ψ
12

 (rad)

am
p

li
tu

d
e

Incident shear motion along b
1

�pi/2 �pi/4 0 pi/4 pi/2
0

0.5

angle ψ
12

 (rad)

am
p

li
tu

d
e

Incident torsional motion along t
1

�pi/2 �pi/4 0 pi/4 pi/2
0

0.5

angle ψ
12

 (rad)

am
p

li
tu

d
e

Incident bending motion along n
1

�pi/2 �pi/4 0 pi/4 pi/2
0

0.5

angle ψ
12

 (rad)

am
p

li
tu

d
e

Incident bending motion along b
1

Figure 3.5: Evolution of the power flow reflection/transmission coefficients as functions of
the angle ψ12 for a junction of three Timoshenko beams with E2 = 2E1 = 2E3, ν1 = ν2 = ν3,
ρ1 = ρ2 = ρ3, and J1 = J2 = J3. The Euler angles between the beams at the junction are
−π/2 ≤ ψ12 ≤ π/2, θ12 = π/3, ϕ12 = 0, ψ13 = 0, θ13 = 0, and ϕ13 = 0.
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Figure 3.6: Evolution of the power flow reflection/transmission coefficients as functions
of the angle ψ12 for a junction of three Timoshenko beams with an offset set to δ21 =
n̂1+ b̂1 between the first and the second beam. The mechanical parameters are set to with
E2 = 2E1 = 2E3, ν1 = ν2 = ν3, ρ1 = ρ2 = ρ3, and J1 = J2 = J3. The Euler angles between
the beams at the junction are −π/2 ≤ ψ12 ≤ π/2, θ12 = π/3, ϕ12 = 0, ψ13 = 0, θ13 = 0, and
ϕ13 = 0.
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3.4 Conclusions

The HF behavior of an entire truss can be studied through the evolution of its energy
density. First it has been shown that inside a beam the evolution of its vibrational en-
ergy density follows a transport equation (3.40) for a deterministic medium and a radiative
transfer equation (3.54) for the case of random materials. The propagating energetic modes
are longitudinal modes (gathering the compressional and the bending ones), and transverse
modes (gathering the torsional and the shearing ones). There is no coupling between modes
inside the beams and so all the coupling occurs at the junctions as described by Eq. (3.62).
At a junction the energy densities of the different energetic modes are mixed thanks to
reflection/transmission phenomena. They are quantified by reflection/transmission oper-
ators (Eq. (3.66) and Eq. (3.67)) computed from the transmission conditions of planar
waves, Eq. (3.64). It has been remarked that if there is no offset between beams then the
rotational (torsional and bending modes) and translational (compressional and shearing
modes) energies are uncoupled. This means that no modes of the translational(respectively
rotational) set can exist if the initial condition does not contain an other member of the
translational (respectively rotational) set. The numerical computation of these operators
has been validated by a requirement of energy conservation. In the next chapter the trans-
port or radiative transfer equations will be discretized in order to be numerically integrated.





Chapter 4

The Runge-Kutta discontinuous
finite element method for
transport equations

Discontinuities in the velocity fields cα at the junction do not allow to use classical
finite element method to solve numerically the transport equation (3.40) and the radia-
tive transfer equation (3.54) with the interface condition of Eq. (3.58) or Eq. (3.61). In-
deed, although the overall power flow density is continuous across the junction owing to the
Rankine-Hugoniot condition, the energy density itself does not necessarily have to be con-
tinuous across that junction. Therefore a discontinuous finite element method [14, 18, 41]
is used to solve Eq. (3.40) or Eq. (3.54) together with the reflection/transmission conditions
of Eq. (3.61). The theoretical background of the discontinuous method is recalled in Sect. 4.1
below, while the numerical implementation issues are addressed in Sect. 4.2. The last part
of this chapter deals with the time integration by a strong stability-preserving Runge-Kutta
scheme. The dissipation and dispersion errors of the numerical scheme will also be studied.

4.1 Discontinuous finite elements in one-dimensional wave
guides

The discontinuous finite element method for the transport equations (3.40) or (3.54)
is first written on a single beam s ∈ S. Let us consider the subdivision Th = ∪K

r=1Dr of
S (which is now assumed to be bounded) into K non-overlapping subdomains, or finite
elements Dr. These elements are defined by Dr = [sr− 1

2
, sr+ 1

2
], and its length is denoted by

∆sr = sr+1/2 − sr−1/2. The largest element size of this mesh is h = max1≤r≤K |∆sr|. The
group velocities of the energetic mode α over the element r are denoted by crα. They are
not necessarily continuous but constant over the element. Here |k| is a fixed parameter,
and the wα’s are considered as functions of k̂, the direction of propagation, rather than k.
A variational formulation of the equations (3.54) in an ad hoc functional space Wh defined

93
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on Th is: Find wα ∈Wh, α ∈ E, such that

∫

Dr

((

∂twα(s, k̂, t)−Σα

(

k)( wα(s,−k̂, t)− wα(s, k̂, t)
)

)

v − cαk̂wα(s, k̂, t)∂sv
)

ds

= −
[

crαk̂wαv
]s

r+1
2

s
r−1

2

= −
[

πα · t̂r v
]s

r+1
2

s
r−1

2

, ∀v(s, k̂) ∈ Vh , (4.1)

where Vh is a test space of piecewise continuous functions on Th. The power flow densities
πα(s, k̂, t) in the above formulation are defined by Eq. (3.41), and t̂r is the unit tangent
vector to the mean fiber of Dr pointing from sr− 1

2
to sr+ 1

2
. Then the unit outward normal

t̂rout of this element is defined so as to point outward Dr at ∂Dr = {sr− 1
2
, sr+ 1

2
}. As the

sought solutions wα of Eq. (4.1) may be discontinuous at a junction of beams, or at the
interfaces between elements, the a priori global space Wh is defined as Wh =

⊕K
r=1W

r
h,

where the locally defined trial spaces Wr
h ⊆ H1(Dr) do not enforce any particular boundary

conditions on ∂Dr. As a consequence of the lack of such conditions for the local solution
and the test functions, the former is a priori multiply defined at the interfaces between
elements (a junction being only one of them). Thus the boundary flux πα · t̂r in Eq. (4.1) is
not uniquely defined. That is why it is replaced by a numerical flux π∗α, which depends on
the traces of wα from both sides of an interface between elements. Thus the discontinuous
version of Eq. (4.1) reads:

∫

Dr

((

∂twα(s, k̂, t)− Σα

(

k)(wα(s,−k̂, t)− wα(s, k̂, t)
)

)

v − wα(s, k̂, t)c
r
αk̂∂sv)

)

ds

= −
[

π∗α · t̂r v
]s

r+1
2

s
r−1

2

, ∀v(s, k̂) ∈ V
r
h , (4.2)

where Vr
h is the local test space defined by Vh =

⊕K
r=1 V

r
h. The numerical flux π

∗
α at the

interface s = sr+ 1
2
, say, is constructed from the computed values of wα(sr+ 1

2
, k̂, t) in Wr

h

(the trace of wα at sr+ 1
2
in Dr) and wα(sr+1− 1

2
, k̂, t) in W

r+1
h (the trace of wα at sr+ 1

2
in

Dr+1) so as to be consistent and conservative. Let:

π∗α(sr+ 1
2
) := π∗(sr+ 1

2
; (cαwα)

r, (cαwα)
r+1) (4.3)

for wα(sr+ 1
2
, k̂, t) in Wr

h and wα(sr+1− 1
2
, k̂, t) in W

r+1
h , recalling the definition (3.59). Then

consistency reads:

π∗
(

sr+ 1
2
; cαwα, cαwα

)

= cαwαk̂
∣

∣

s=s
r+1

2

,

meaning that the true energy flux (3.41) is recovered when π∗ is considered with a contin-
uous function. As for conservation it reads:

π∗(sr+ 1
2
;wr

α, w
r+1
α ) · t̂r + π∗(sr+1− 1

2
;wr

α, w
r+1
α ) · t̂r+1 = 0

at {sr+ 1
2
} = ∂Dr ∩ ∂Dr+1.
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4.2 Numerical implementation

Four main ingredients are needed to complete the numerical implementation of the dis-
continuous method of Eq. (4.2) once the subdivision Th has been performed: the definition
of the numerical flux function π∗ on all elements, the choice of the trial spaces Wr

h, the
choice of the test spaces Vr

h, and the choice of a time-integration scheme.

4.2.1 Numerical fluxes

The numerical fluxes ensuring the stability and consistency of the discontinuous method
for transport equations have the form [14, 18]:

π∗(sr+ 1
2
;wr

α, w
r+1
α ) =

1

2
(wr

α + wr+1
α )k̂ +Ar(w

r
α − wr+1

α )t̂r , (4.4)

where Ar is a positive scalar. For example, the upwind flux corresponds to Ar =
1
2 |k̂ · t̂r|

and the Lax-Friedrichs flux corresponds to Ar =
1
2 . Let Ir be the set of indices of the

beam elements which are connected to the beam element #r. Invoking Eq. (3.62), the
expression (4.4) is generalized as follows for an interface (a junction) {sr+ 1

2
} = {sr′− 1

2
} =

∂Dr ∩ ∂Dr′ , r 6= r′ ∈ Ir, where the group velocities cα are discontinuous. For k̂ = k̂ · t̂r < 0:

π∗α(sr+ 1
2
, t) · t̂r =

∑

β∈E

(

Rrr
αβ(cβwβ)

r(sr+ 1
2
, k̂rβ · t̂r, t) +

∑

r′∈Ir

T rr′

αβ (cβwβ)
r′(sr′− 1

2
, k̂r

′

β · t̂r
′

, t)
)

,

(4.5)

where k̂rβ =
k̂r
β

|k|and for k̂ = k̂ · t̂r > 0:

π∗α(sr+ 1
2
, t) · t̂r = πr

α(s, k̂, t) · t̂r . (4.6)

This choice corresponds to an upwind numerical flux whenever Rrr
αβ ≡ 0 and T rr′

αβ ≡ δαβ at
any point s which is not a beam junction, in which case Ir = {r + 1}. Eq. (4.5) corresponds
to a junction where the elements are connected at sr+1/2 and sr′−1/2. The expression

Eq. (4.5) may be generalized easily to junctions for which k̂ · t̂r 6= k̂ · t̂r′ and to junctions
located at sr− 1

2
. All the possible eventuality of junctions are displayed in Fig. 4.1. The

numerical fluxes are then given by:

π∗α(sr− k̂
2

, t) · t̂r =
∑

β∈E

(

Rrr′

αβ(cβwβ)
r(s

r− k̂
2

, k̂rβ · t̂r, t)

+
∑

r′∈I
r− k̂

2

T rr′

αβ (cβwβ)
r′(sr′+k̂r

′

β
/2, k̂

r′

β · t̂r
′

, t)
)

, (4.7)

and

π∗α(sr+ k̂
2

, t) · t̂r = πr
α(s, k̂, t) · t̂r , (4.8)

recalling that, from Eq. (3.57), k̂rβ = −
crα
cr
β
k̂, k̂rβ is the sign of k̂

r
β · t̂r, and k̂r

′

β = crα
cr
′

β

k̂t̂r
′

out. At
last Ir± 1

2
denotes the left (−) or right (+) indices of the connected elements.
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Figure 4.1: Sketch of all the situations of junction: the element Dr is connected on the right
to the elements Dr1 and Dr2 and on the left to the elements Dr3 and Dr4. The normals of
each element are displayed in red. The latter are fixed to point from sr− 1

2
to sr+ 1

2
.

4.2.2 Approximation space

The local approximation spaces Wr
h used for the expansion of the solution of Eq. (4.2)

are constructed as follows:

W
r
h = {w|Dr

∈ PP (Dr), 1 ≤ r ≤ K} , (4.9)

where PP (Dr) ⊂ H1(Dr) is typically a finite-dimensional set of univariate polynomials of
maximum order P . Two approaches may be considered to define the trial functions inWr

h: a
nodal approximation by Lagrange interpolation, or a modal approximation by orthonormal
polynomials.

4.2.2.1 Nodal approximation

In the nodal approximation, the approximate solution w̃α of Eq. (4.2) on the actual
element Dr = [sr−1/2, sr+1/2] is expanded with the Lagrange polynomials of order up to P

defined on the reference element D̂ = [−1, 1] as:

Gm(ξ) =
∏

0≤n≤P
n 6=m

ξ − ξn
ξm − ξn

, ξ ∈ D̂ ,
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where (ξm)0≤m≤P are the interpolation nodes on the reference element. The linear mapping
between the reference element and the actual element Dr is given by:

sr(ξ) = sr−1/2 +

(

1 + ξ

2

)

∆sr .

The approximate solution w̃α is then given as:

w̃α(s, k̂, t)|Dr
= IPwα(s, k̂, t) =

P
∑

m=0

wα(s
r
m, t, k̂)Gm(ξ) , (4.10)

where IPu is the interpolation operator used for discrete approximations [40]. The nodes
(srm = sr(ξm))0≤m≤P form the set of interpolation nodes on Dr. The unknowns are then
the values of wα at those interpolation nodes. Moreover the discrete approximation has the
following property:

IPwα(s
r
m) = wα(s

r
m) . (4.11)

It means that at the interpolation nodes, the interpolated values match the exact solution.
The error between the exact solution wα and the approximate solution w̃α of Eq. (4.2) is
called the truncation error.

4.2.2.2 Modal approximation

An other method of approximation is to use an expansion on a family of orthogonal
polynomials. In that approach, the trial functions are orthonormal on the reference element
D̂ for a given scalar product. One class of polynomials satisfying this property is the
normalized Jacobi polynomials. It is convenient to focus on this class because it has been
extensively studied and has nice convergence properties for non periodic functions [40]. The
modal approximation using the Jacobi polynomials on the element Dr is given in this case
by:

w̃α(s, k̂, t)|Dr
= PPwα(s, k̂, t) =

P
∑

m=0

ŵr
αm(k̂, t)J

(a,b)
m (ξ) , (4.12)

where PPu is the orthogonal projection operator used for the continuous expansion of u [40],
and J

(a,b)
m denotes the normalized Jacobi polynomial of order m. It is defined from the usual

Jacobi polynomial J̃
(a,b)
m by:

J
(a,b)
m (ξ) =

J̃
(a,b)
m (ξ)√
γm

,

where γm is the normalization constant such that:

< J̃
(a,b)
m , J̃(a,b)n >=

∫

D̂
J̃
(a,b)
m (ξ)J̃(a,b)n (ξ)p(a,b)(ξ)dξ = γmδmn ,

and p(a,b)(ξ) = (1− ξ)a(1 + ξ)b is a weight function. It is given by:

γm =
2a+b+1(m+ a)!(m+ b)!

(2m+ a+ b+ 1)(m+ a+ b)!m!
.

The normalized Jacobi polynomials are thus orthonormal:

< J
(a,b)
m , J(a,b)n >= δmn . (4.13)
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More details about these polynomials are given in the appendix B.

By construction, the degrees of freedom ŵr
αm are the projections of the solution wα on

the normalized Jacobi polynomials J
(a,b)
m with the inner product of Eq. (4.13). They are

given by:

ŵr
αm(k̂, t) =

∫

D̂
wα(s

r(ξ), k̂, t)J(a,b)m (ξ)p(a,b)(ξ)dξ . (4.14)

The modal approach has a direct link with the nodal approach as shown in the next section.

4.2.2.3 Link between the modal and nodal approaches

The integral (4.14) may be evaluated using a Gauss-Jacobi quadratures. The latter are
defined for an regular function u(ξ) on [−1, 1] by:

∫ +1

−1
u(ξ)p(a,b)(ξ)dξ ≃

Np
∑

j=0

pju(ξj) , (4.15)

where Np + 1 is the number of quadrature points, (ξj)0≤j≤Np , and (pj)0≤j≤Np are the as-
sociated weights. The above quadrature is then exact provided that u is a polynomial of
degree N ≤ 2Np + 1. It can be shown that a choice of the interpolation points ξj ensuring
an uniform convergence for a smooth function u corresponds to the zeros of orthogonal

polynomials of degree Np + 1 (typically the Jacobi polynomials J̃
(a,b)
Np+1 [77]). If the inter-

polation set is chosen differently, then Runge effects outbreak and become more important
as Np increases. The Runge effect corresponds to artificial oscillations arising when using
polynomial interpolation of high degrees.

The set of interpolation points built as above does not include the extremities of the
segment [−1,+1]. One can choose to add them, the set of interpolation points being then
the zeros of (J̃

(a,b)
Np

)′, with J̃
(a,b)
Np

is the Jacobi polynomial of order Np, and {−1,+1}. This
quadrature is called a Gauss-Lobatto-Jacobi quadrature. The expansion is then exact for
polynomials of orders up to 2Np − 1. That quadrature presents the advantage to give the
value of the function u on the edges of the element [70], leading to an exact interpolation of
its trace on that edges owing to Eq. (4.11). This may be advantageous for a discontinuous
finite element scheme since the trace of the approximate solution is necessary to define the
numerical flux across an interfaces between elements, as given by Eq. (4.7). Applying this
quadrature to the modal coefficient (4.14) leads to:

ŵr
αm(k̂, t) ≃

1

γ̂m

Np
∑

j=0

pjwα(s
r
j , k̂, t)J

(a,b)
m (ξj) , (4.16)

where γ̂m is the ”discrete” norm of J
(a,b)
m given by:

γ̂m =

Np
∑

j=0

pj

(

J
(a,b)
m (ξj)

)2
.
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Using a Gauss-Jacobi quadrature, one has γ̂m = 1. The Gauss-Lobatto-Jacobi quadrature
rule introduces error by approximating the integral as a sum. This error is called aliasing
error. It is given by [40, p.114]:

ANpwα =
∞
∑

k>Np

(INpJ
(a,b)
k )ŵr

αk .

It can be seen as a contamination of the discrete coefficients (4.16) by the high frequen-
cies of the continuous approximation when performing a Gauss-Lobatto-Jacobi quadrature.
Inserting the expression of the coefficients (4.16) into Eq. (4.12) gives:

w̃α(s, k̂, t)|Dr
≃

P
∑

m=0

J
(a,b)
m (ξ)





Np
∑

j=0

pjwα(s
r
j , k̂, t)J

(a,b)
m (ξj)



 .

Setting Np = P yields:

w̃α(s, k̂, t)|Dr
≃

P
∑

j=0

wα(s
r
j , k̂, t)

(

pj

P
∑

m=0

J
(a,b)
m (ξ)J(a,b)m (ξj)

)

.

This last expression may be directly identified with Eq. (4.10), so that one has:

Gj(ξ) = pj

P
∑

m=0

J
(a,b)
m (ξj)J

(a,b)
m (ξ) . (4.17)

The identification of the discrete approximation of the solution wα with the interpolation
polynomials suggests a mathematically equivalent, but computationally different way of
representing the discrete expansion of the solution wα. Thus it is possible to compute the
discrete expansion coefficients from the formula (4.16), or by using the Lagrange polynomial
interpolation directly.

4.2.2.4 Test spaces Vr
h

Various spaces of test functions may be chosen. The most common methods are the
Galerkin, the Petrov-Galerkin, and the collocation methods. In the Galerkin method, the
test functions are the same as the trial functions. In the Petrov-Galerkin method, the trial
and test functions may be different, hence the trail and test spaces are different. At last in
the collocation method, the test functions are delta functions at given nodes. The varia-
tional formulation (4.2) is then solved exactly at these nodes.

In this work, a Galerkin method has been considered. In the specific case of Eq. (4.2),
the test functions have been taken as:

v(ξ, k̂) = J
(a,b)
n (ξ)δ(k̂ ± 1) , (4.18)

considering only the modal version. Indeed, when using Gauss-Lobatto-Jacobi quadrature
rules, the modal and nodal expansion are mathematically equivalent as highlighted by
Eq. (4.17).
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4.2.2.5 Finite element projection

With the foregoing choices, it is now possible to spatially discretize Eq. (4.2). Inserting
the modal expansion (4.12) and using the test functions given by Eq. (4.18) into Eq. (4.2),
yields the discretized form of the variational formulation:

Mr
Ẇ

r
+Kr

W
r + Fr

W
r +

∑

r′∈Ir

Fr′
W

r′ = 0 , (4.19)

with an energetic initial conditionW
r(0) =W

r
0. The vectorW

r(t) of the degrees of freedom
for all the energetic modes α ∈ E, where E has been defined by Eq. (3.39) for beams, is:

W
r
k̂,α,m

(t) = ŵr
αm(k̂, t) , k̂ = ±1 , α ∈ E , 0 ≤ m ≤ P .

Also the vector of the modal expansion coefficients for the initial conditions wα(s, k̂, 0) is:

(Wr
0)k̂,α,m = ŵr

αm(k̂, 0) , k̂ = ±1 , α ∈ E , 0 ≤ m ≤ P ,

where ŵr
αm(k̂, 0) is computed by Eq. (4.14). The mass matrix is:

Mr
ǫǫ′ =

∆sr

2
δ(ǫ− ǫ′)IM ⊗M (a,b) , ǫ, ǫ′ = ±1 ,

for the backward (ǫ = −1) or the forward (ǫ = +1) propagation direction, M = #E is the
number of propagating energetic modes in the beams, and the matrix M (a,b), has entries
given by:

M (a,b)
mn =

∫ +1

−1
J
(a,b)
m (ξ)J(a,b)n (ξ)dξ .

These integrals may be evaluated using Gauss-Jacobi quadratures. If normalized Legendre
polynomials are used, then these integrals are equal to 1 because the normalized Legendre
polynomials are orthonormal with respect to the weight function p(0,0)(ξ) = 1.

The local stiffness matrix Kr is split into two parts as:

Kr
ǫǫ′ = Br

ǫǫ′ +Qr
ǫǫ′ . (4.20)

The first one is related to the local stiffness given by:

Br
ǫǫ′ =

∆sr

2
ǫδ(ǫ− ǫ′)Cr ⊗B(a,b) ,

where Cr = diag(crα)α∈E, assuming a piecewise homogeneous background medium (such
that (crα)

′ = 0); the (P + 1)× (P + 1) matrix B(a,b) has entries given by:

B(a,b)
mn =

∫ +1

−1
(J(a,b)m )′(ξ)J(a,b)n (ξ)dξ .

The derivatives of the Jacobi polynomials may be easily computed using Eq. (B.3) given in
the appendix B, and the above integrals evaluated using Gauss-Jacobi quadratures. The
second matrix of Eq. (4.20) is the local collision matrix Qr given by:

Qr
ǫǫ′ =

∆sr
2
(δ(ǫ − ǫ′)− δ(ǫ+ ǫ′))Σr(|k|)⊗ IP+1, Σr = diag(Σr

α)α∈E . (4.21)
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Now let J̃
(a,b)

(ǫ) = [J
(a,b)
0 (ǫ), J

(a,b)
1 (ǫ), . . . J

(a,b)
P (ǫ)]T , and J(a,b)(ǫ, ǫ′) = J̃

(a,b)
(ǫ)⊗ J̃

(a,b)
(ǫ′).

Then the local flux matrix Fr is:

Fr
ǫǫ′ =

[

δ(ǫ− ǫ′)Cr − δ(ǫ+ ǫ′)Rr(sr+ ǫ
2
)
]

⊗ J(a,b)(ǫ, ǫ) , ǫ, ǫ′ = ±1 ,

where Rr is the reflection matrix having entries given by:

Rr
αβ(sr+ ǫ

2
) = crβρ

rr
αβ(sr+ ǫ

2
) ,

ρrrαβ being given by Eq. (3.66). The coupling flux matrices Fr′ (coupling the element Dr

with its neighbor Dr′ at a junction ∂Dr ∩ ∂Dr′) are:

Fr′

ǫǫ′ = −δ(ǫ− ǫ′t̂r
′ · t̂r′out)Trr′(sr′−ǫ′/2)⊗ J(a,b)(ǫ,−ǫ′) , ǫ, ǫ′ = ±1 ,

where Trr′ is the transmission matrix having entries given by:

T rr′

αβ (sr′− ǫ′

2

) = cr
′

β τ
rr′

αβ (sr′− ǫ′

2

) ,

τ rr
′

αβ being given by Eq. (3.67).

4.2.3 Dissipation and dispersion errors of the semi-discretized scheme

The dispersion and dissipation errors of the semi-discretized transport equation are now
studied by seeking solutions of Eq. (4.19) propagating freely in the positive direction on an
uniform, periodic lattice hZ with h > 0 of the form:

W
r
α(t) = W̃αe

i(kh−ωt) , (4.22)

whereWr
α = (Wr

α1,W
r
α2, . . .W

r
αP ) is the vector gathering the coefficients of the approximate

solution of order P on the rthelement in the k̂ direction and for the energetic mode α. The
W̃α are the solutions of an 2(P + 1)× 2(P + 1) eigenvalue problem given by:

(−iωMr +Kr + Fr + e−ikhFr−1 + eikhFr+1)W̃α = 0 . (4.23)

This equation is obtained by inserting Eq. (4.22) into Eq. (4.19). The one-dimensional
medium is a uniform waveguide such that ρrrαβ = 0 and τ rr±1αβ = 1. From the non-dispersive
property of the propagation of HF waves in a Timoshenko beam (see Sect. 3.2.2), the exact
dispersion relation for the transport equation is:

ω(k) = ±cα|k| ,

whereas the numerical dispersion relations is obtained from the non trivial solutions of
Eq. (4.23). They are computed by finding the eigenvalues ωn for a fixed value of kh as the
solutions of:

det(−iωMr +Kr + Fr + e−ikhFr−1 + eikhFr+1) = 0 .

According to the size of Eq. (4.23), 2(P + 1) complex eigenvalues may be obtained. Two
of them correspond to the propagating physical modes in the two directions, both denoted
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by m = m0 in the following, and the other 2P modes are spurious, or zero-energy modes
(because they do not carry any energy [43]). The numerical eigenvalues being generally
complex-valued, the numerical dispersion error is defined by:

edisp(K) = Re(Ωm0(K))−K ,

and the dissipation error by:

ediss(K) = −Im(Ωm0(K)) ,

where K = h|k| and:
Ωm =

h

cα
ωm .

Fig. 4.2 shows the dispersion error of the semi-discretized scheme for different interpo-
lation orders P , while Fig. 4.3 displays the dissipation error of these schemes. The shear
velocity cT of the waves has been normalized to 1. These plots show that the numerical
dispersion and dissipation errors introduced by the spatial discretization are O(K2P+3) and
O(K2P+2), respectively, retrieving the results of Ainsworth [3]. This property is called a
”superconvergence” property when compared to the formal accuracy O(hP+1) of the dis-
continuous Galerkin method [18]. It is very much desirable for long time simulations. At
last, Fig. 4.4 displays the evolution of the numerical phase speed:

cnum
cα

= Re

(

Ωm0

K

)

as a function of K for various orders P .
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Figure 4.2: Dispersion errors of the semi-discretized scheme for different expansion orders
P .
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Figure 4.3: Dissipation errors of the semi-discretized scheme for different expansion orders
P .
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Figure 4.4: Normalized numerical phase velocity of the semi-discretized scheme for different
expansion orders P .
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4.2.4 Time integration

Finally, the time integration of the semi-discretized system (4.19) is performed by a
strong stability-preserving (SSP) high-order Runge-Kutta scheme [33]. The aim of that
scheme is to solve the ordinary differential equation:

{

Ẇ(t) = AW(t) ,

W(0) =W0 ,
(4.24)

where W(t) = [W1(t),W2(t), . . .WK(t)]T is the vector of all degrees of freedom and A is
the matrix operator coming out from the inversion of the mass matrix in Eq. (4.19) written
for all elements (Dr)1≤r≤K, where K is the number of finite elements. This inversion is
straightforward because the mass matrix is block-diagonal, and even diagonal if Legendre
polynomials are used. The time interval [0, T ] is first subdivided into Nt sub-intervals
[tn, tn+1], where ∆t = tn+1− tn denotes the time step. The class of linear, strong stability-
preserving (SSP) Runge-Kutta schemes considered in this study are the ℓ-stages, ℓ-order
accurate schemes built (recursively) as [33]:

Wi =Wi−1 +∆tAWi−1 , i = 1, 2, . . . ℓ− 1 ,

W(t+∆t) ≃Wℓ =

ℓ−2
∑

n=0

αℓ,nWn + αℓ,ℓ−1

(

Wℓ−1 +∆tAWℓ−1

)

,
(4.25)

where the coefficients αℓ,n are constructed with α1,0 = 1 and:

αℓ,n =
1

n
αℓ−1,n−1 , n = 1, 2, . . . ℓ− 2 ,

αℓ,ℓ−1 =
1

ℓ!
, αℓ,0 = 1−

ℓ−1
∑

n=1

αℓ,n .

Tab 4.1 below gives them for various orders P . These schemes are SSP in the sense that
‖Wℓ+1‖ ≤ ‖Wℓ‖, and optimal in the sense that their Courant-Friedrichs-Lewy (CFL) num-
ber is not worse than the CFL number of the forward (explicit) Euler scheme applied
to Eq. (4.24).

The stability of this time scheme is analyzed as follows. The ℓth-SSP Runge-Kutta
scheme is applied to the scalar ordinary differential equation u̇+ λu = 0. After discretiza-
tion, this equation may be put in the form un+1 = Pℓ(z = λ∆t)un. The function Pℓ(z) is
the stability function of the scheme because it is clearly apparent that the solution becomes
unstable if |Pℓ(z)| > 1. The stability area is thus defined by Rℓ = {z ∈ C ; |Pℓ(z)| ≤ 1}.
This area is displayed on Fig. 4.5 for various order ℓ. A necessary condition of stability for
the ℓth-order SSP Runge-Kutta scheme is then λi∆t ∈ Rℓ for each eigenvalue λi of A.

For a wave of wavenumber k, the matrix Ar corresponding to the rth-element is given
by:

Ar = (Mr)−1(Kr + Fr + e−ik̂KFr−1 + eik̂KFr+1) .

Its eigenvalues are displayed on Fig. 4.6 for the case cP =
√
2cT for several values of inter-

polation order P and for K varying in the range ]0, 2π]. Two curves are apparent because
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Table 4.1: Coefficients αℓ,n of the SSP method. After Gottlieb et al. [33].

order ℓ αℓ,0 αℓ,1 αℓ,2 αℓ,3 αℓ,4 αℓ,5 αℓ,6 αℓ,7

1 1

2
1

2

1

2

3
1

3

1

2

1

6

4
3

8

1

3

1

4

1

24

5
11

30

3

8

1

6

1

12

1

120

6
53

144

11

30

3

16

1

18

1

48

1

720

7
103

280

53

144

11

60

3

48

1

72

1

240

1

5040

8
2119

5760

103

280

53

288

11

180

1

64

1

360

1

1440

1

40320

there are two different velocities related to the propagating modes.

For our scheme to be stable in time, these eigenvalues have to lie in its stability area of
the SSP Runge-Kutta scheme. Then the CFL coefficient is estimated as the constant CP,ℓ

of the homothety that brings all these eigenvalues back into the stability region. Tab. 4.2
gathers the coefficients ĉP,ℓ = CP,ℓ

cP
cT

evaluated for various interpolation orders P and ℓ.
This table confirms the approximate CFL condition:

Table 4.2: CFL coefficients c̃P,ℓ for different interpolation orders P and linear ℓ-stages,
ℓ-order SSP time discretization schemes.

ℓ P=0 P=1 P=2 P=3 P=4 P=5

2 1.0000 0.3333 0.1689 0.1044 0.0718 0.0529
3 1.2560 0.4187 0.2121 0.1311 0.0902 0.0664
4 1.3925 0.4642 0.2352 0.1454 0.1000 0.0736
5 1.6082 0.5361 0.2716 0.1679 0.1155 0.0850
6 1.7765 0.5922 0.3000 0.1855 0.1276 0.0939
7 1.9766 0.6589 0.3338 0.2064 0.1420 0.1045
8 2.1564 0.7188 0.3642 0.2251 0.1549 0.1140

cα
∆t

h
≤ 1

2N + 1

of Cockburn and Shu [19] for a ℓ-stages, ℓ-order scheme with ℓ = P + 1 (written in red
and italic in the table 4.2). Moreover, it may be observed that increasing the order of
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Figure 4.5: Regions of absolute stability of linear ℓth-order SSP Runge-Kutta schemes for
2 ≤ ℓ ≤ 8.

the scheme and the number of stages does not significantly improve its efficiency. The
fully discretized scheme in space and time is referred to as the Runge-Kutta discontinuous
Galerkin (RKDG) method in the dedicated literature; see [41] and references therein.

4.3 Comparison with an analytical solution

The error induced by the discretization of the scattering operator 4.21 is studied through
the comparison with an exact analytical solution of Eq. (3.54) in an infinite beam. Such an
exact solution is available in the case of an homogeneous background medium with uniform
(Rayleigh) scattering and an initial condition of the form [107]:

w0
α(s, k̂) = δ(s − s0)⊗ δ(k̂ − k̂0) .
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Figure 4.6: Location of the eigenvalues of Ar for various interpolation order P .

It is given for L→∞ by:

wα(s, t) = e−Σαcαt

[

δ(s − cαt)

+
Σα

2
H(cαt− |s|)×

(

I0

(

Σα

√

c2αt
2 − s2

)

+

√

cαt+ s

cαt− s
I1

(

Σα

√

c2αt
2 − s2

)

)

]

,

where H(z) is the Heaviside unit-step function, and In(z) is the modified Bessel function
of order n. The first term on the right-hand side is the coherent signal (the ballistic wave
given by the Dirac function), and the second term is the incoherent signal produced by
multiple scattering. This comparison allows to study the effect of the discretization of the
scattering model on the accuracy of the scheme. The excited mode has a velocity cα, and
the simulation time is fixed to T < L

cα
in order to avoid reflection on the boundaries because

the beam has finite length 2L in the numerical simulation. Fig. 4.7 compares the analytical
and numerical solutions for c = 1, Σα = 0.5, k̂0 = 1, L = 5 unit length, K = 200 finite
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elements, and local interpolations by Legendre polynomials up to the sixth order. The time
scheme is a fifth-order SSP Runge Kutta scheme. The initial condition of the numerical
simulation is a hat function of width 0.1L and it is normizalized such that its integral is 1.
Hence it corresponds to an approximation of the Dirac distribution.
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Figure 4.7: Comparison of numerical (full dark line) and analytical (dashed red line) solu-
tions of the one-dimensional scalar radiative transfer equation with uniform scattering in
an infinite beam.

Observation of Fig. 4.7 shows that the numerical and analytical simulations match very
well. It exhibits the propagation of the coherent signal (the sharp peak on Fig. 4.7) and the
effect of multiple scattering that spreads some energy backward. Both effects are recovered
quantitatively and qualitatively by the numerical simulation. Moreover the total energy is
conserved by the numerical scheme.

4.4 Conclusions

The transport equations (3.40) or the radiative transfer equations (3.51) have been
fully discretized by a weakly dissipative and dispersive scheme. The physical fluxes (3.61)
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and (3.62) at beam junctions are considered through the numerical fluxes chosen with this
scheme. In the next chapter, some numerical examples are presented. They exhibit some
equipartition phenomena, among others, such as the diffusion regime that arises at long
times, or the effect of random materials. Moreover a time reversal process is developed,
bringing an other evidence of the accuracy of the RKDG scheme.





Chapter 5

Numerical simulation of
vibrational diffusion in beam
trusses and time-reversal
experiments

The equations describing the evolution of the energy density in a beam truss under
impulse loads, Eq. (3.40) and Eq. (3.54) together with the boundary conditions (3.61), have
been fully discretized in the foregoing chapter. Some numerical examples are now considered
in this chapter. They focus on the emergence of the diffusion regime and equipartition of
the vibrational energy in beam trusses on one hand, and on the possibility to perform time-
reversed simulations on the other hand. Here energy equipartition is understood in two
ways:

– the first one is the observation of a rather spatially uniform energy level within a
single or a group of beams;

– the second one is the observation of a rather uniform ratio of the transverse to longi-
tudinal energies in a single beam or in a group of beams.

The time reversal process is useful to test the efficiency of the numerical scheme and for
possible future industrial applications such as non destructive testing and structural health
monitoring.

5.1 The onset of diffusive waves in beam trusses

5.1.1 A single-bay truss

A beam truss constituted by N = 9 three-dimensional beams is considered. Its base
is a rectangle of 5× 4 unit lengths, see Fig. 5.1. All beams have the same square cross-
sections of area S = 1 and are made from homogeneous, isotropic elastic materials of unit
density and Poisson’s ratio equal to 0.3. The Table 5.1 sums up the normalized material
and geometrical properties of the beams. The shear reduction factor is computed with
the classical formula κ = 5(1 + ν)/(6 + 5ν), see Eq. (2.35). The transport equations (3.40)
hold in each beam and the reflection/transmission coefficients at the junctions are directly
computed from the approach outlined in Sect. 3.3.2. The forward and backward fluxes are

113
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Table 5.1: Normalized mechanical and geometrical parameters of the beams.
beam #p length Lp Young’s modulus

1 5 1
2 4 0.75
3 5 1.2
4 5 1
5 2.5217 1.25
6 4 1
7 3.6988 1.25
8 5.6853 0.5
9 6.4031 1.5

given as the superposition of reflected and transmitted fluxes including all existing energy
modes, α = Pj,Tj , j = 1, 2, 3, as described in Sect. 3.3.1. The energetic initial pulse has a
Gaussian shape and loads the mode P1 (load case #1, a pure compressional wave) or the
mode T3 (load case #2, a pure torsional wave). It is applied to, say, beam labeled #1 with
a fixed initial direction k̂ = +1; see again Fig. 5.1.

1

2

3

4

5

7
6

8 9

Figure 5.1: View of the single-bay beam truss with the Gaussian initial load in beam #1
(red line).

The nodal density is fixed at h−1 = 20/L uniform spatial elements per unit length for
all beams, where L is the length of beam #1. Legendre polynomials up to the fifth or-
der (P = 5) are used as local basis functions. The integration in time is performed by a
seventh-order Runge-Kutta SSP scheme. The time scale T = L/cT is introduced: it is the
time needed by a transverse wave to travel across the first beam. This parameter has been
set to T = 10 in our simulations. The Courant number CFL := cT∆t/h has been fixed to
CFL = 0.01, ∆t being the time step of the time integration scheme. The simulation lasts
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about 2 minutes on a single 2GHz processor with 24Go RAM.

5.1.1.1 An homogeneous beam truss with point junctions

We first consider the beam truss of Fig. 5.1 without any offset at the junctions between
the beams. Fig. 5.2 and Fig. 5.3 show the evolution of the overall energy density (3.37)
computed in that beam truss for the compressional and the torsional load cases, respec-
tively, on beam #1. Only the non-vanishing energy density is displayed on these plots.
It can be seen in both cases that the energy is spread over the entire structure at late
times. Discontinuities of the energy density are also noticeable at the junctions. At last,
the observed numerical wave velocities agree with those of the theory, see Eq. (3.34), as
exhibited by the difference of the travelling times for the initial compressional (load case 1)
and torsional (load case 2) waves in the first beam. Thus the numerical scheme is practically
non dispersive: the theoretical dispersion error is about 2.5 10−16 for our choice P = 5 [3],
which is below machine precision.

 t =0.00×T  t =0.25×T  t =0.50×T

 t =1.00×T  t =1.50×T  t =3.00×T

 t =5.00×T  t =7.50×T  t =10.00×T

Figure 5.2: Evolution of the energy density within the truss of Fig. 5.1 at selected instants
for a compressional initial pulse. Only the non-vanishing energy density is displayed on this
plot. No offset at the junctions is considered.

Fig. 5.4 and Fig. 5.5 show the evolution of the total energy Ep(t) :=
∫ Lp

0 E(s, t)ds for
each beam, 1 ≤ p ≤ 9 where Lp is the length of beam p. It should be first observed that
the total energy for the entire truss is numerically conserved. This is a required property
of the numerical scheme retained: the theoretical numerical dissipation error being about
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 t =0.00×T  t =0.25×T  t =0.50×T

 t =1.00×T  t =1.50×T  t =3.00×T

 t =5.00×T  t =7.50×T  t =10.00×T

Figure 5.3: Evolution of the energy density within the truss of Fig. 5.1 at selected instants
for a torsional initial pulse. Only the non-vanishing energy density is displayed on this plot.
No offset at the junctions is considered.

2.5 10−15 for P = 5 [3]. Moreover, the total energy in each beam tends to a limit as t→∞
which apparently depends on its mechanical parameters. This phenomenon characterizes
the diffusive regime holding at late times.

Finally, Fig. 5.6 and Fig. 5.7 show the ratio

Epα(t) =
3

∑

j=1

∑

k̂=±1

∫ Lp

0
wαj

(s, k̂, t)ds , 1 ≤ p ≤ 9 , α = P,T ,

between the overall transverse and longitudinal vibrational energy in each beam EpT(t)/E
p
P(t).

This ratio converges to a constant value of the form:

EpT(t)
EpP(t)

−→
t→+∞

nTcP
nPcT

, 1 ≤ p ≤ 9 ,

where nP and nT are the number of longitudinal and transverse modes generated in each
beam by the reflection/transmission processes at the junctions. Those numbers depend
on the initial condition and the shape of the truss. However the limit should be analyzed
theoretically more in details; this issue is out of the scope of this thesis but it is the subject
of ongoing researches. For example, the initial motion in Fig. 5.4 and Fig. 5.6 is a compres-
sional mode α = P1 in beam #1. According to the reflection/transmission operators, it
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Figure 5.4: Evolution of the total energies Ep(t), 1 ≤ p ≤ 9, in each beam of the truss of
Fig. 5.1 for an initial compressional pulse. No offset at the junctions is considered.

is transmitted as transverse shear modes (α = T1 or T2) or the same compressional mode
(α = P1) in the beams connected to it (beams #2, #7). However no conversion to bending
(α = P2 or P3) or torsional (α = T3) modes occurs at any time. Thus nP = 1 and nT = 2
in this case. For Fig. 5.5 and Fig. 5.7 the initial mode is a pure torsional wave α = T3

hit on beam #1 as well. According to the reflection/transmission coefficients for such a
rotational incident wave, nP = 2 and nT = 1 (the transverse mode is the torsional mode
α = T3 and the longitudinal modes are the pure bending modes α = P2 or P3). That is
why it is observed that the above energy ratios apparently converge to the aforementioned
diffusion limit. It should be noted that the high variations observed at the beginning of the
simulation occur because some beams are not yet loaded or loaded with compressional or
transverse waves solely.
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Figure 5.5: Evolution of the total energies Ep(t), 1 ≤ p ≤ 9, in each beam of the truss of
Fig. 5.1 for an initial torsional pulse. No offset at the junctions is considered.



5.1. THE ONSET OF DIFFUSIVE WAVES IN BEAM TRUSSES 119

0 2 4 6 8 10
10

 2

10
 1

10
0

10
1

 t

×T

Figure 5.6: Evolution of the energy ratios
cTEpT(t)
2cPEpP(t)

, 1 ≤ p ≤ 9, in each beam of the truss

of Fig. 5.1 for an initial compressional pulse. No offset at the junctions is considered.
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Figure 5.7: Evolution of the energy ratios
2cTEpT(t)
cPEpP(t)

, 1 ≤ p ≤ 9, in each beam of the truss

of Fig. 5.1 for an initial torsional pulse. No offset at the junctions is considered.



5.1. THE ONSET OF DIFFUSIVE WAVES IN BEAM TRUSSES 121

5.1.1.2 An homogeneous beam truss containing junctions with offsets

We now consider the beam truss of Fig. 5.1 with several offsets at the junctions. The
latter are gathered in the Table 5.2 below. Fig. 5.8 and Fig. 5.9 display the evolution of
the total energy density for each substructure, and the ratio between the transverse and
the longitudinal energy densities, respectively.

Table 5.2: Offsets δp+1
p between the beam #p and the beam #(p+1). The offsets between

the beam #p and the other connected beams are deduced from δ
p+1
p .

beam p δ
p+1
p

2 n̂2 + 0.8b̂2
4 0.5n̂4 − 0.2b̂4
6 n̂6 + 0.8b̂6
8 −n̂8 + 0.2b̂8

The expected diffusion limit has changed because the number of transverse and lon-
gitudinal modes generated at the junctions are different from the previous situation, see
Sect. 5.1.1.1. Indeed, all the modes are now likely to be excited at the junctions (see
Sect. 3.3). This means that one expects that all modes in each beam will take part to the
equipartition rule of the diffusion regime at late times. Hence the diffusion limit is now:

EpT(t)
EpP(t)

−→
t→+∞

cP
cT

. (5.1)

As compared to the previous case of a beam truss without offset at the junctions, the
equipartition rule above is reached at slightly later times. This can be explained by the
modifications of the reflection/transmission operators induced by the offsets. Although the
offsets are large, their influence on the reflection/transmission coefficients is not very impor-
tant. The conversion rates of a translational (respectively rotational) motion to rotational
(respectively translational) motions are low and thus this translational (respectively rota-
tional) motion is not significantly modified by the scattering processes at a junction with
offsets. Then the time needed to reach the equipartition rule (1.1) is increased because the
mixing of all modes is achieved at a slower pace.
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Figure 5.8: Evolution of the total energies Ep(t), 1 ≤ p ≤ 9, in each beam of the truss
of Fig. 5.1 for an initial compressional pulse. The offsets summarized in the Tab. 5.2 are
considered for the junctions.
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Figure 5.9: Evolution of the ratios
cTEpT(t)
cPEpP(t)

, 1 ≤ p ≤ 9, in each beam of the truss of Fig. 5.1

for an initial compressional pulse. The offsets summarized in the Tab. 5.2 are considered
for the junctions.
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5.1.1.3 The single-bay beam truss with random materials

The radiative transfer model of Sect. 3.2.4 is now considered for the single-bay beam
truss of Fig. 5.1 having random material characteristics, according to Eq. (3.52). The per-
turbations of these parameters are assumed to have Gaussian correlation, see Table 3.1,
with lck = 2 and strength factors ζα = 2, see Eq. (3.55). Fig. 5.10, Fig. 5.11, and Fig. 5.12
show the same quantities as before in the present case of material randomness. Fig. 5.10,
Fig. 5.11, and Fig. 5.12 display the evolution of the energy density (3.37) computed in that
beam truss, the evolution of the total energy for each beam, and the ratio between the
transverse and the longitudinal total energies, respectively.

 t =0.00×T  t =0.25×T  t =0.50×T

 t =1.00×T  t =1.50×T  t =3.00×T

 t =5.00×T  t =7.50×T  t =10.00×T

Figure 5.10: Evolution of the energy density within the truss of Fig. 5.1 at selected instants
for a compressional initial pulse, accounting for some material randomness. Only the non-
vanishing energy density is displayed on this plot. No offset at the junctions is considered.

Fig. 5.10 shows that a part of the energy flow is reflected in the opposite direction on ac-
count of the back-scattering effect induced by material randomness. But despite this spread
of energy, comparison between the corresponding homogeneous case, Fig. 5.4 and Fig. 5.6,
and the heterogeneous case, Fig. 5.11 and Fig. 5.12, shows that the diffusion limit is not
reached faster in the latter case. These heterogeneities just contribute to erase the oscilla-
tions about a mean value at early times. Indeed, the scattering process induced by material
randomness does not involve any modal conversion, thus it does not influence the evolution
of the ratio between the transverse and the compressional energy modes. This explains
why the time at which the diffusion limit is reached is not modified by the material ran-
domness. The oscillations observed in each plot are thus due to the reflection/transmission
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Figure 5.11: Evolution of the total energies Ep(t), 1 ≤ p ≤ 9, in each beam of the truss of
Fig. 5.1 for an initial compressional pulse, accounting for some material randomness. No
offset at the junctions is considered.

phenomena at the junctions between beams. The material randomness only smooths out
the energy densities by spreading them over the beams separately for each mode.
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Figure 5.12: Evolution of the ratios
cTEpT(t)
2cPEpP(t)

, 1 ≤ p ≤ 9, in each beam of the truss of

Fig. 5.1 for an initial compressional pulse, accounting for some material randomness. No
offset at the junctions is considered.

5.1.2 A multiple-bay truss

The evaluation of the performances of the numerical scheme is continued with the con-
sideration of a larger structure, in order to test the efficiency of the method at larger scales.
The truss is now composed of four plane-parallel cells, or bays. The height of the cells
is 4 unit length and their width is 5 unit length. The length of the first cell is 7.5 unit
length, the length of the second cell is 7 unit length, the length of the third cell is 8 unit
length, and the length of the fourth cell is 6 unit length. Transverse beams are added in
order to ensure the mixing of the energy modes by the reflection/transmission processes
at the junctions. All the beams have the same mechanical parameters and have a square
cross-section. Fig. 5.13 displays the beam truss and the triangular initial pulse impinging
beam #1 with a compressional content. The simulation is continued up to 10 × T , where
T is defined similarly as in the single-bay case. 4 elements per unit length are used for
spatial discretization, so that there are 1212 elements for the entire truss. Legendre poly-
nomials up to the order P = 8 are used for the approximation on each element, and a 7-th
order Runge-Kutta SSP scheme is used for time integration with a CFL number fixed at
CFL = 0.01. The computation lasts 4115s (about 1 hour) on a single 2GHz processor with
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Figure 5.13: View of the multiple-bay beam truss with the triangular initial load in beam
#1 (blue line). The colors represent the beam’s group.

24Go RAM. Beyond these computational considerations, some interesting features can be
highlighted by the simulation. Fig. 5.14 displays the evolution of the energy density at
different times. It is spread over the entire truss as it reaches the opposite side of the truss
at about T = 10. Fig. 5.15 displays the evolution of the total energy in each beam with
respect to time. The beams have been gathered by substructures (colored on Fig. 5.13)
for a sake of clarity, and the sum of the total energy for each substructure is plotted on
Fig. 5.16. That total energies tend to decrease in the first substructure and increase in
the others. At the end of the computation, only the second substructure has reached an
uniform spatial distribution, and the total energy in the third and fourth substructure is
very low. Fig. 5.17 and Fig. 5.18 show the evolution of the ratio between the total energies
for the transverse and longitudinal modes in each beam, and its mean for each substruc-
ture, respectively. On account of the type of the initial condition and to the numbers of
transverse and longitudinal modes generated at the junctions, the expected limit for the
ratio between the transverse total energies on the longitudinal total energies is:

EpT(t)
EpP(t)

−→
t→+∞

2cP
cT

.

On Fig. 5.18, one can see that the mean values of the ratios tends toward this limit. For
the farthest substructures (the third and the fourth ones), the ratio between the transverse
and compressional energies stabilize faster than the total energy themselves. This may
be explained by the fact that the farther the substructures are from the initial pulse,
the more they benefit from the mixing of the energy modes that has taken place in the
substructures closer to initial pulse. Contrarily, the total energy of the second substructure
gets stabilized faster than the mean of the ratios the longitudinal and the transverse energies
of its components, because this substructure benefits of the mixing that has taken place
in the first substructure only. That second substructure is the first one to reach spatial
equipartition because it is both close to the source, and can exchange energy with two
substructures. These observations and the knowledge of the transient response to some
pulse could be helpful for the design of spatial structures, or the placing of equipments at
locations of low energy levels or specific energy ratios.
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 t =0.00×T  t =0.25×T  t =0.50×T
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Figure 5.14: Evolution of the energy density within the truss of Fig. 5.13 at selected instants
for a compressional initial pulse. Only the non-vanishing energy density is displayed on this
plot. No offset at the junctions is considered.
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Figure 5.15: Evolution of the total energies Ep(t), 1 ≤ p ≤ 48, in each beam of the truss
of Fig. 5.13 gathered by beam group for an initial compressional pulse. No offset at the
junctions is considered.
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Figure 5.16: Evolution of the sum of the total energies in each beam group of the truss of
Fig. 5.13 for an initial compressional wave. No offset at the junctions is considered.
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Figure 5.17: Evolution of the ratios
cTEpT(t)
2cPEpP(t)

, 1 ≤ p ≤ 48, in each beam of the truss

of Fig. 5.13 gathered by beam group for an initial compressional pulse. No offset at the
junctions is considered.
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Figure 5.18: Evolution of the mean of the ratios
cTEpT(t)
2cPEpP(t)

, in each beam group of the truss

of Fig. 5.13 for an initial compressional pulse. No offset at the junctions is considered.
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5.2 Numerical experiments of time reversal

The aim of a time-reversal experiment is to possibly reconstruct an initial pulse from
time-reversed signals. In the original setting of Fink [29], the time-reversed signals were
amplified beforehand in order to reconstruct an amplified pulse able to break up kidney
stones, for example. In the present case, time reversal is used to test the accuracy of
the proposed RKDG scheme in terms of numerical dispersion and dissipation. A similar
procedure has been performed in [96], for example, for a spectral finite element code solving
the elastic wave equation in an unbounded, three-dimensional anisotropic random medium.
This computation takes advantage of the reversibility of the wave equation (1.4). Here the
time-reversal procedure is considered for the transport equation (3.40). The time-reversed
signals are thus the energy density fields simulated by the RKDG scheme within the whole
structure up to a final time tend. The time-reversed energy density field w

TR
α (s, k, t) should

have the property:

wTR
α (s, k, t) = wα(s,−k, tend − t) , (5.2)

meaning that the energy density travelling in a direction k̂ at time t and position s in
the direct simulation travels in a direction −k̂ at time tend − t and position s in the re-
versed simulation. Considering first an isolated beam, the time-reversed energy density field
within that beam is obtained straightforwardly. As the evolution law (3.36) is the same
for both directions k̂ = ±1, the time-reversed evolution equation is the direct evolution
equation with an opposite direction k̂ = ∓1. Then the signal to be time-reversed is the
energy density field at the end of the direct computation. The time-reversed computation
is performed using the direct energy density field at tend as the initial condition, consid-
ering however an opposite direction of propagation. Time-reversed numerical simulations
require a proper definition of the reversed-time collision operator of Eq. (3.56), and the
reversed-time reflection/transmission operators of Eq. (3.66-Eq. (3.67)).

5.2.1 Reversed-time collision operator

For a randomly heterogeneous medium, the reversed-time collision operator is derived
as follows. Considering the right-hand side of Eq. (3.51) with the opposite direction as an
entry, gives the new collision operator:

QTR
α (k) = Σα(−k)(wα(k)− wα(−k))

= −Σα(k)(wα(−k)− wα(k))

= −Qα(k) .

(5.3)

Thus the reversed-time collision operator is the opposite of the collision operator of the
direct simulation.

5.2.2 Reversed-time reflection/transmission operators

The reversed-time reflection/transmission operators at the junctions have also to be
derived. Indeed, if the reflection/transmission operators of the direct simulation are used,
the spread of the energy density over the truss will continue. Consider for example Fig. 5.19,
which displays some energy waves in a direct and in a time-reversed simulation. In the
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Figure 5.19: Energy waves in the direct simulation and their compatibility conditions for a
time-reversed simulation. τpqαβ is the transmission operator, ρppαβ is the reflection operator,

and Ipqαβ is the reversed-time reflection/transmission operator. The wavy arrows indicate
propagation directions.

direct simulation, an incident wave normalized to 1 in the mode α generates reflected and
transmitted waves of amplitudes given by the reflection/transmission coefficients Eqs.(3.66-
3.67) when it impinges the junction. In the time-reversed simulation the wavenumber,
and so the propagation direction, are the opposite from the direct simulation. Thus the
impinging waves are now the reflected and transmitted waves once they have been time
reversed. When impinging the junction, these waves generate reflected and transmitted
waves themselves, according to the reversed-time reflection/transmission operators. So the
latter should be constructed such that one recovers the initial energy wave in mode α from
the reflected/transmitted waves. This yields to the following compatibility equations for an
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incident wave in the first beam of a junction of two beams:

∑

β∈E

ρ11αβI
11
βγ + τ12αβI

21
βγ = δαγ ,

∑

β∈E

ρ11αβI
12
βγ + τ12αβI

22
βγ = 0 ,

(5.4)

where Ipqαβ is the reversed-time reflection/transmission operator for a wave in mode α in
beam #p to a wave in mode β in the beam #q. These operators are the unknowns of the
system (5.4), while ρpqαβ and τ

pq
αβ are the reflection and transmission operators for the direct

propagation defined in Sect. 3.3.2. The first equation describes how the incident wave is
recovered in beam #1, and the second one is a statement of the absence of impinging wave
in beam #2 for the direct simulation. There are four unknowns for two equations in this
system. However applying the same analysis for an incident wave in beam #2 adds two
equations, namely:

∑

β∈E
ρ22αβI

22
βγ + τ21αβI

12
βγ = δαγ ,

∑

β∈E
ρ22αβI

21
βγ + τ21αβI

11
βγ = 0 .

(5.5)

The system (5.4)-(5.5) in a matrix form reads as follows. Let ρpp and τ pq be the matri-
ces gathering the reflection and transmission operators for waves from beam p to beam q
respectively, and let Ipq be the matrix gathering the reversed-time reflection and transmis-
sion operators for waves from beam p to beam q respectively; then the system (5.4)-(5.5)
becomes:

(

ρ11 τ 12

τ 21 ρ22

)(

I11 I12

I21 I22

)

= I12 . (5.6)

Thus it appears that the reversed-time reflection/transmission matrix for the junction is
the inverse of the direct reflection/transmission matrix. If the number of connected beams
exceeds two, the same analysis can be followed by adding the relations taking into account
the waves in the additional beams. If for example three beams are connected, one has:





I11 I12 I13

I21 I22 I23

I31 I32 I33



 =





ρ11 τ 12 τ 13

τ 21 ρ22 τ 23

τ 31 τ 32 ρ33





−1

. (5.7)

5.2.3 Numerical examples

The numerical time-reversal procedure has been applied to the truss of Fig. 5.1, consid-
ering some material randomness. The numerical and mechanical parameters are the same
as for the case of Sect.5.1.1.3. The direct simulation is performed until tend = 2× T , where
T is as defined in Sect.5.1.1. Fig. 5.20, Fig. 5.21, and Fig. 5.22 show the evolution of the
energy density in the truss at selected instants, the evolution of the total energies in each
beam, and the evolution of the ratio between the transverse on the longitudinal energies,
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 t =0.00×T  t =0.25×T  t =0.50×T

 t =1.00×T  t =2.00×T  t =3.00×T

 t =3.50×T  t =3.75×T  t =4.00×T

Figure 5.20: Direct and reversed evolution of the energy density within the truss of Fig. 5.1
at selected instants for a compressional initial pulse, accounting for some material random-
ness. Only the non-vanishing energy density is displayed on this plot. No offset at the
junctions is considered. The time reversal is performed at T = 2.

respectively.

Fig. 5.21 shows that the energy is rather uniformly spread over the entire truss at
t = tend. All these plots are symmetric about tend. This feature underlines the low dissipa-
tion and low dispersion of the numerical scheme because the evolution of the energy is the
same for the direct and reversed simulations. If the scheme lacks these properties, then it is
impossible to have this symmetry because the numerical dispersion and dissipation would
have modified the signal too much to be able to retrieve the initial pulse. Moreover that
initial pulse is well retrieved.

On Fig. 5.23 and Fig. 5.24 the energy density is plotted for tend = 3 × T . The time-
reversed computation fails because tend is too long, leading to a too much diffusive state.
The latter is supposedly described by a diffusion equation, which is not reversible in time.
All the information brought by the initial pulse is spread over the truss. Despite the failure
of retrieving that initial condition (see the spurious oscillations at t = 6× T on Fig. 5.23),
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Figure 5.21: Direct and reversed evolution of the total energies Ep(t), 1 ≤ p ≤ 9, in each
beam of the truss of Fig. 5.1 for an initial compressional pulse, accounting for some material
randomness. No offset at the junctions is considered. The time reversal is performed at
T = 2.
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Figure 5.22: Direct and reversed evolution of the ratios
cTEpT(t)
2cPEpP(t)

, 1 ≤ p ≤ 9, in each beam

of the truss of Fig. 5.1 for an initial compressional pulse, accounting for some material
randomness. No offset at the junctions is considered. The time reversal is performed at
T = 2.



5.2. NUMERICAL EXPERIMENTS OF TIME REVERSAL 139

 t =3.50×T

 t =3.75×T  t =6.00×T

 t =3.00×T

Figure 5.23: Direct and reversed evolution of the energy density within the truss of Fig. 5.1
at selected instants for a compressional initial pulse, accounting for some material random-
ness. Only the non-vanishing energy density is displayed on this plot. No offset at the
junctions is considered. The time reversal is performed at T = 3.

the total energy on the entire truss is conserved all along the simulation (black line on
Fig. 5.24). The divergence could be due to the spurious modes (see Sect.4.2.3) that are
greatly amplified by the reversed-time reflection/transmission coefficients having a norm
possibly greater than 1, together with the dispersion and the dissipation brought by the
numerical scheme and the numerical accuracy of the computer. These so-called zero-energy
modes are unavoidable in numerical simulations because they arise from the discretization
of continuous problems.

Nevertheless this numerical time-reversal processing remains useful in view of the devel-
opment of a real time-reversal processing, in order to perform non destructive monitoring
for example. The difference with the technique of time-reversal mirrors used by Fink [29]
concerns the data to be recorded and time reversed. In the first case the field over the entire
domain at the end of the direct simulation is needed, whereas in the second case the history
of the evolution during the entire direct process is required on a closed surface surrounding
the target source.
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Figure 5.24: Direct and reversed evolution of the total energies Ep(t), 1 ≤ p ≤ 9, in each
beam of the truss of Fig. 5.1 for an initial compressional pulse, accounting for some material
randomness. No offset at the junctions is considered. The time reversal is performed at
T = 3.
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5.3 Conclusions

The proposed RKDG numerical scheme has been tested on examples showing the behav-
ior of the solutions of transport or radiative transfer equations at late times. The simulations
detailed in this chapter describe the evolution of the energy density within beam trusses
submitted to impulse loads. The computations performed for a single-bay truss constituted
from homogeneous materials show that a diffusive behavior emerges at late times. It is
characterized by a spatial spread of the energy density over the entire structure, as well
as modal equipartition of the total energy. It agrees with the observations drawn in the
general introduction of this thesis about the HF behavior of built-up structures. It also
corresponds to the hypothesis of modal equipartition holding in SEA (see Sect.1.4.1). The
diffusive behavior is prompted by the multiple reflections/transmissions of the energy den-
sity taking place at the junctions. Consequently, it has been highlighted that the ratio of
the transverse energy to the longitudinal energy converges toward a limit depending on
the number of modes generated at the junctions by the reflection/transmission phenom-
ena. Taking into account some randomness of materials shows that the diffusive state is
not modified. It only scatters the energy density of a given mode over the beams without
modal conversion, making the transient smoother. But the diffusion state does not arise
earlier.

The numerical method has also been tested on a larger structure, namely a four-bay
beam truss, showing its potentiality to be applied for industrial purposes. At last a time-
reversal processing has been implemented in order to test the low dispersive and low dissi-
pative properties of the numerical scheme by demonstrating that it is possible to retrieve
the initial pulse from the spread of the energy density at a late time. This time-reversal pro-
cessing could be useful for the structural health monitoring of complex, multi-bay trusses.





Conclusions and perspectives

An analytical model of wave propagation in a waveguide has been derived and studied
in the scope of the HF range. It allows to examine the accuracy of several beam models.
Then a transient transport model for the propagation of the HF vibrational energy density
in three-dimensional Timoshenko beam trusses has been derived. Particular attention has
been paid to the generality of the formulation of the mechanical behavior of the beams.
Hence the cross-section may have arbitrary shapes and the beams may be curved. It has
been shown that the curvature and the shape of the beam do not influence the velocity of
the energetic waves. Two family of waves have been highlighted. The longitudinal one that
gathers the compressional and the two bending modes, and the transverse one that gath-
ers the torsional and the two shearing modes. Within the beam, energetic modes do not
couple, so all the conversion phenomena occur at the junctions between beams. Moreover
the formulations of a prestressed beam and a beam constituted with random material have
been investigated. These extensions do not modify basically the HF behavior of beams.
The prestressing only modify the stiffness of the material and the random heterogeneities
scatter the energy backward but with modal conversion.

The proposed model also accounts for the power flow reflection and transmission phe-
nomena at the junctions in the HF range. They are characterized by reflection/transmission
operator for the energy flux in order to be compatible with the energetic formulation of
the beam vibrations. Here again, the derivation of these operators account for the gener-
ality of the junctions. Also the beams may be not connected at the same point on their
cross-sections. If they are, then the shearing and bending modes are totally uncoupled,
contrary to the low frequency case. It leads to two different kinds of reflection/transmission
phenomena. The one concerning the translational motions (the longitudinal mode and the
shearing modes), and the one concerning the rotational motions (the torsional mode and
the bending modes). Both are totally uncoupled, thus if the initial condition contains only
translational (respectively rotational) modes, then no rotational (respectively translational)
modes are generated at the junctions. For the case of a junction with an offset between the
connected beams, then all the modes are likely to arise at the junction.

The proposed analytical model is numerically solved by a Runge-Kutta discontinuous
Galerkin (RKDG) finite element scheme. The dissipation and the dispersion of this scheme
have been studied. It appears that both are very low and the scheme is thus suitable for
long time simulations. Moreover, comparison to an analytical solution in the case of a beam
made of random materials submitted to a impulse load shows that the numerical solution
gives similar results.
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Numerical results obtained for several examples of beam trusses illustrate the tran-
sient regime and the onset of a diffusive regime at late times. The latter is prompted by the
multiple reflections and transmissions of the energy modes at the beam junctions, with pos-
sible mode conversions. This scattering process is different from the multiple scattering of
waves on random heterogeneities or inclusions considered elsewhere see e.g. [58, 75, 87, 105],
though it gives rise to the same qualitative behavior at late times. Diffusion is character-
ized by an equilibration of the total energy in each subsystem (the beam components of
the truss), it is the spatial equipartition, and for each propagation mode, it is the modal
equipartition. The outbreak of diffusion does not seem to arise more quickly in presence
of random heterogeneities. Quantitatively, randomness would not however contribute to
mix all wave modes because no conversion occurs on account of them. It only spreads
the energy in the structure but not between the modes. This situation is comparable to
the assumption of modal equipartition invoked in the Statistical Energy Analysis (SEA) of
structural-acoustic systems. This model establishes hence the link between the microscopic
model of wave propagation and a macroscopic model given by diffusion equations. However
a rigorous mathematical model of the diffusive behavior induced by multiple scattering at
the junctions and interfaces lacks at present, even if some conclusions about the expected
equilibration rules have been drawn. An other interesting study concerning the diffusion
behavior could consist in a characterization of the diffusion by a criteria depending on the
value of the total energy density or/and the ratio of longitudinal on transverse energy den-
sities. A parametrical study could also allow to study the effect of the truss geometry on
the outbreak of the diffusion.

Beyond this investigation on the diffusion limit, the analysis for more complex junctions
should also be considered in future works, including for example elastic constraints or dissi-
pation phenomena [11]. It could also be interesting to consider the reflection/transmission
operators directly by an energetic approach, avoiding to get back to a formulation of the
boundary conditions in terms of displacements and resultant netforces and moments. For
example, the interface condition can be taken into account directly in the transport equa-
tions by considering diffusion operators with small viscosity, as done in [30].

The time-reversal technique provides an other evidence of the stability and the accu-
racy of the proposed numerical scheme. But it could be used as a tool for non destructive
evaluation in order to detect defaults in beam trusses for instance. The time-reversal pro-
cess exposed here constitutes the first step of a complete time-reversal method with time
reversal mirrors. This issue is the subject of an ongoing work and has given satisfactory
results already.

Another topic could be the micro-local analysis of the Navier equation in a waveguide.
Its purpose is to derive an exact model of HF wave propagation in beams, in order to fur-
ther study the relevance of the Timoshenko model in the HF range. An other possibility of
investigation of the link between the ”exact” model and the Timoshenko model, concerns
the study of the projection of the Timoshenko modes on the Lamb spectrum. Indeed, it
may be useful to understand how the energy associated the Timoshenko modes spread over
the propagating Lamb modes. A last point of concern is the analysis of the evolution of
the mode’s shapes resulting from the Lamb model with respect to the frequency range.
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In short, many theoretical investigations could be carried out, but the numerical scheme
and the modelling frame are robust and easily adaptable to modifications induced by the
invoked studies.





Appendix A

Computation of the
reflection/Transmission operators

The displacement and effort continuities are given by Eq. 3.64. The constitutive equa-
tions (3.12) and (3.13) provide the relation between the forces and displacements. In term
of amplitude of reflected and transmitted waves, it is:

1u +B
1 = R1q

(

Bq + iKqΛq
1C

q
)

−iK1
1θ + iK1C1 = R1q

(
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where

Dp
u =





−ikpP κpg κpn
−κpg −ikpT τp

−κpg −τp −ikpT



 ,

Dp
ur =





ikpP κpg κpn
−κpg ikpT τp

−κpg −τp ikpT



 ,

D
p
θ =





−ikpT κpg κpn
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

 ,

D
p
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
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−κpg −τp ikpP



 ,

Kp = diag(kpT, k
p
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

 ,
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and 1u,θ is the indicator function of the incident mode. Ω is the matrix related to the
operator t̂×. Thus the local system for the beam 1 to be solved is:

I1 = Ψ1X1 ,

where
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




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Appendix B

Jacobi polynomials

The normalized Jacobi polynomials are the solutions of the Sturm-Liouville eigenvalue
problem:

− d

dξ
(1 − ξ2)p(a,b)(ξ) d

dξ
J
(a,b)
m (ξ) = m(m+ a+ b+ 1)p(a,b)(ξ)J(a,b)m (ξ) , (B.1)

where p(a,b)(ξ) = (1 − ξ)a(1 + ξ)b is the weight function, with a, b > −1. The Jacobi

polynomials J̃
(a,b)
m are given by:

J̃
(a,b)
m =

√
γmJ

(a,b)
m

where the normalization constant γm is:

γm =
2a+b+1(m+ a)!(m+ b)!

(2m+ a+ b+ 1)(m+ a+ b)!m!
.

The Jacobi polynomials are explicitly expressed by the Rodrigues’ formula:

J̃
(a,b)
m (ξ) =

(−1)m
2mm!

p(−a,−b)(ξ)
d

dξm
p(m+a,m+b)(ξ)

=
1

2m

m
∑

k=0
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k Cm+b

m−k(ξ − 1)m−k(ξ + 1)k ,

with the generalized binomial coefficients 1 Cz
p = z!

(z−p)!p! . They have the property to be
orthogonal with respect to the inner product:

< J̃
(a,b)
m , J̃(a,b)n >(a,b)=

∫

D̂
J̃
(a,b)
m (ξ)J̃(a,b)n (ξ)p(a,b)(ξ)dξ = γmδmn . (B.2)

An other useful property of these polynomials concerns the computation of their derivatives:

d

dξ
J
(a,b)
m (ξ) =

√

m(m+ a+ b+ 1)J
(a+1,b+1)
m−1 (ξ) , (B.3)

Finally, the Jacobi polynomials have the symmetry relation:

J
(a,b)
m (−ξ) = (−1)mJ

(b,a)
m (ξ) .

1. It is reminded that z! := Γ(z + 1) =
∫ +∞

0
tze−tdt and Γ(p + 1) = p!, the usual factorial, if p is an

integer. Indeed as Γ(z + 1) = zΓ(z), one has z! = z(z − 1)! etc.
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Practically to compute the normalized Jacobi polynomials, one uses an induction relation:

ξJ(a,b)n (ξ) = anJ
(a,b)
n−1 (ξ) + bnJ

(a,b)
n (ξ) + an+1J

(a,b)
n+1 (ξ) ,

with:

an =
2
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√

n(n+ a+ b)(n + a)(n+ b)

(2n + a+ b− 1)(2n + a+ b+ 1)
,

bn = −
a2 − b2

(2n+ a+ b)(2n + a+ b+ 2)
.

To get started, the initial values are given by:

J
(a,b)
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√

2−a−b−1
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)
,

J
(a,b)
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1

2
J
(a,b)
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√

a+ b+ 3

(a+ 1)(b+ 1)
((a+ b+ 2)ξ + (a− b)) .

Some classical examples are:
– a = b: this choice yields to the family of ultraspherical or Gegenbauer polynomials

C
(λ)
m (ξ) defined by:

C
(λ)
m (ξ) :=

(2λ)m

(λ+ 1
2)m

J̃
(λ−1/2,λ−1/2)
m (ξ) ,

where (z)m := (z−1+m)!/(z−1)!. The weight function is p(λ−1/2,λ−1/2) = (1− ξ2)λ−1/2;
– a = b = 0: this choice yields to the family of Legendre polynomials Lm(ξ) = C

(1/2)
m (ξ)

such that the weight function is p(0,0) = 1. The first six Legendre polynomials are
displayed in Fig. B.1;

– a = b = −1/2: this choice yields to the family of Tchebychev polynomials Tm(ξ)
defined by:

Tm(ξ) = m lim
λ→0

Γ(2λ)C(λ)
m (ξ) .

The weight function is p(−1/2,−1/2) = (1 − ξ2)−1/2. They have an explicit analytical
expression as:

Tm(ξ) = cos(m arccos(ξ)) .

The first six Tchebychev polynomials are displayed in Fig. B.2.
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Paris 6, France; ONERA, France, 1995.



BIBLIOGRAPHY 155

[28] E. Fatemi, B. Engquist, and S. Osher. Numerical solution of the high frequency
asymptotic expansion for the scalar wave equation. Journal of Computational Physics,
120(1):145–155, 1995.

[29] M. Fink. Time reversed acoustics. Physics Today, 50(3):34–40, 1997.
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Problèmes Hyperboliques. PhD thesis, Université de Provence, 2007.
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