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Abstract 

 

This thesis deals with the problem of stability analysis and control design for nonlinear 

systems in the form of continuous-time Takagi-Sugeno models. The approach to stability 

analysis is usually based on the direct Lyapunov method. Several approaches in the literature, 

based on quadratic Lyapunov functions, are proposed to solve this problem; the results 

obtained using such functions introduce a conservatism that can be very detrimental. To 

overcome this problem, various approaches based on non-quadratic Lyapunov functions have 

also been recently presented; however, these approaches are based on very conservative 

bounds or too restrictive conditions. The idea developed in this work is to use non-quadratic 

Lyapunov functions and non-PDC controller in order to derive less conservative stability and 

stabilization conditions. The main proposals are: using local bounds in partial derivatives 

instead of time derivatives of the memberships, decoupling the controller gain from the 

Lyapunov function decision variables, using fuzzy Lyapunov functions in polynomial settings 

and proposing the synthesis of controller ensuring a priori known time-derivative bounds are 

fulfilled in a modelling region instead of checking them a posteriori. These new approaches 

allow proposing local conditions to stabilize continuous T-S fuzzy systems including those 

that do not admit a quadratic stabilization. Several simulation examples are chosen to verify 

the results given in this dissertation.  

 

Key words: Takagi-Sugeno Models, non-quadratic Stability, non-quadratic Stabilization, 

Lyapunov function, Linear Matrix inqualities, Sum Of Squares. 
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Resumen 

 

Esta tesis aborda el problema del análisis de estabilidad y diseño de control para sistemas no 

lineales expresados en forma de modelos Takagi-Sugeno de tiempo continuo. El análisis de 

estabilidad se basa, por lo general, en el método directo de Lyapunov. Existen varios enfoques 

en la literatura, sobre la base de las funciones cuadráticas de Lyapunov, que se proponen para 

resolver este problema; los resultados obtenidos usando tales funciones introducen un 

conservadurismo que puede ser excesivo. Para superar este problema, diversos enfoques 

basados en funciones de Lyapunov no cuadráticas se han presentado recientemente; estos 

enfoques se basan en límites muy conservadores o condiciones  demasiado restrictivas. La 

idea desarrollada en este trabajo es el uso de funciones de Lyapunov no cuadráticas y un 

controlador no PDC con el fin de obtener condiciones de estabilidad y estabilización menos 

conservadoras. Las principales propuestas son: el uso de límites locales en derivadas parciales 

en lugar de derivadas temporales de las funciones de pertenencia, el desacoplo del controlador 

respecto de las variables de decisión de la función de Lyapunov, el uso de funciones de 

Lyapunov difusas en modelos polinomiales y finalmente, proponer la síntesis de controladores 

garantizando ciertos límites de la derivada-temporal, conocidos a priori, en una región de 

modelado en lugar de comprobarlos a posteriori. Estos nuevos enfoques permiten proponer 

condiciones locales para estabilizar los sistemas continuos difusos T-S incluyendo aquéllos 

que no admiten una estabilización cuadrática. Varios ejemplos de simulación han sido 

seleccionados para verificar los resultados obtenidos en esta tesis. 

 

Palabras clave: modelos Takagi-Sugeno, Estabilidad no cuadrática, Estabilización no 

cuadrática, función de Lyapunov Desigualdades Matriciales Lineales, Suma de Cuadrados. 
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Résumé 

 

Cette thèse aborde le problème de l'analyse de la stabilité et de la conception des lois de 

commande pour les systèmes non linéaires mis sous la forme de modèles flous continus de 

type Takagi-Sugeno. L'analyse de stabilité est généralement basée sur la méthode directe de 

Lyapunov. Plusieurs approches existent dans la littérature, basées sur des fonctions de 

Lyapunov quadratiques sont proposées pour résoudre ce problème, les résultats obtenus à 

l'aide des telles fonctions introduisent un conservatisme qui peut être très préjudiciable. Pour 

surmonter ce problème, différentes approches basées sur des fonctions de Lyapunov non 

quadratiques ont été proposées, néanmoins ces approches sont basées sur des conditions très 

restrictives. L'idée développée dans ce travail est d'utiliser des fonctions de Lyapunov non 

quadratiques et des contrôleurs non-PDC afin d'en tirer des conditions de stabilité et de 

stabilisation moins conservatives. Les propositions principales sont: l'utilisation des bornes 

locales des dérivées partielles au lieu des dérivés des fonctions d’appartenances, le 

découplage du gain du régulateur des variables de décision de la fonction Lyapunov, 

l’utilisation des fonctions de Lyapunov floues polynomiales dans l’environnement des 

polynômes et la proposition de la synthèse de contrôleur vérifiant certaines limites de dérivés 

respectées  dans une région de la modélisation à la place de les vérifier a posteriori. Ces 

nouvelles approches permettent de proposer des conditions locales afin de stabiliser les 

modèles flous continus de type T-S, y compris ceux qui n'admettent pas une stabilisation 

quadratique et obtenir des domaines de stabilité plus grand. Plusieurs exemples de simulation 

sont choisis afin de vérifier les résultats présentés dans cette thèse. 

 

Mots clés : modèles flous de types Takagi-Sugeno, Stabilité non-quadratique, stabilisation 

non-quadratique, Fonction de Lyapunov, Inégalités matricielle linéaires, somme des carrées. 
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Notations and abbreviations 

 

Notations 

�  : Real numbers 

n�  : n  Dimensional Euclidean space 

m n×�  : The set of all real m n×  matrices 

I  : Identity Matrix 

( )*  : Symmetric block 

1A−
 : Inverse of matrix A   

TA  : Transpose of the matrix A   

TA−
 : Transpose of the inverse of A  
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Abbreviations 

 

LPV : Linear Parameter Varying 

Q-LPV : Quasi Linear Parameter Varying 

T-S : Takagi-Sugeno  

PDC : Parallel Distributed Compensation 

MF : Membership Functions  

LMI : Linear Matrix Inequality 

BMI : Bilinear Matrix inequality 
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SOS : Sum of squares 

NP : Non-positivity 

PWLF : Piecewise Lyapunov function 

NQFLF: Non-quadratic Lyapunov function 

PF : Polynomial fuzzy 

PFLF : Polynomial fuzzy Lyapunov Function 

SDP : Semi-definite program 
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1. Chapter 1: Introduction 

 

 

Synopsys 

n this introductory chapter, we provide an overview of the main purpose of this thesis. We 

briefly give a review of the fuzzy control and we point out the most important existing 

works dealing with stability analysis and controller design for fuzzy systems in the literature, 

then we explain the motivations concepts, the objectives and contributions, by giving the 

chapters outline of this thesis, we end the chapter. 

 

 

I
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This Ph.D. thesis considers the problems of non-quadratic stability analysis and control 

design for continuous-time Takagi-Sugeno models. The goal is to develop new approaches to 

overcome the drawbacks of existing approaches in fuzzy control theory. 

1.1. Background and Motivation 

Physical systems are generally described by nonlinear models, which make stability 

analysis a goal difficult to reach; classical approaches tend to approximate them by linear 

systems. However, the major drawback is that the linearized systems fail to completely 

represent the real plants that are highly nonlinear. Researchers have proposed several ways to 

deal with nonlinear systems; a linear parameter varying (LPV) presentation has been proposed 

by [Shamma, 1988] in order to approximate nonlinear systems, An LPV system is essentially 

a linear time-varying system which can be written in the form 

 
( )( ) ( )( )
( )( ) ( )( )

x A t x B t u

y C t x D t u

θ θ

θ θ

C = +D
E

= +DF

�
 (1.1) 

Where θ  is a bounded time varying parameter vector. As such it has a structure which is 

similar to a linear time-invariant state space system, and control design methods with some 

similarity to linear state space methods can indeed be used. Although these models do not 

capture the nonlinear behavior of the original models [Bernal & Guerra, 2010]. 

Another alternative has been introduced by [Shamma & Cloutier, 1993] to write nonlinear 

systems in the form of quasi-LPV models, this representation is obtained through an exact 

transformation of the nonlinear states. A quasi-LPV system is defined as a system where the 

state realization can be put in the following form: 

 
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

x t A x t x t B x t u t

y t C x t x t D x t u t

C = +D
E

= +DF

�
 (1.2) 

This class of models is known also as Takagi-Sugeno models [Takagi & Sugeno, 1985] which 

consists in a set of linear models blended together with nonlinear functions called 

membership functions (MFs) which hold the convex-sum property [Tanaka & Wang, 2001]. It 

allows then to exactly represent a nonlinear model in a compact set of the state variables 

[Taniguchi & al, 2001]. 

T-S models may be extended to polynomial fuzzy models which consists in a convex sum of 

polynomials models. It has been recently proposed in [Sala & Ariño, 2008] , [Tanaka & al, 
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2009b] and [Lo, 2011] to represent efficiently a nonlinear system, especially when nonlinear 

terms are polynomials. 

In this thesis, nonlinear systems represented in the form of both T-S and polynomial fuzzy 

models are considered, continuous case will be analysed. 

1.2. Review of previous Works 

Over the last three decades, the so-called Takagi-Sugeno models [Takagi & Sugeno, 

1985] have reached a great attention in the control community. Since, they allow a systematic 

stability analysis and controller design via linear matrix inequalities (LMIs) [Tanaka & Wang, 

2001] which can be efficiently solved by convex programming techniques already 

implemented in commercially available software [Boyd & al, 1994]. Several  results for 

stability, stabilization, estimation [Tanaka & Wang, 2001], [Lendek & al, 2010], [Lendek & 

al, 2011], [Feng, 2006] have been obtained. 

T-S models are combined with different control laws, among which parallel distributed 

compensation (PDC) is considered a natural option since it is based on linear state feedbacks 

blended together using the same MFs of the T-S representation. Once a T-S model and a 

control law are proposed, the direct Lyapunov method is applied to obtain, when possible, LMI 

conditions for stability analysis, control and observer design [Tanaka & Wang, 2001], [Sala & 

al, 2005] (see references therin). The stability of a T-S model is based on the Lyapunov theory, 

proving the existence of a common matrix 0P >  such that 0V <� , where ( ) ( ) ( )
T

V t x t Px t=  

is a Lyapunov candidate function [Tanaka & al, 1996], [Wang & al, 1996]. Nonetheless, the 

quadratic approach presents serious limitations because its solutions are inherently 

conservative, i.e., there are stable or stabilizable models which do not have a quadratic solution 

[Sala & al, 2005], this conservativeness comes from different sources [Guerra & al, 2012]: the 

type of T-S model [Guerra & al, 2007], [Bouarar & al, 2010], the way the membership 

functions are dropped-off to obtain LMI expressions [Tuan & al, 2001], [Sala & Ariño, 2007, 

2007a], the integration of membership-function information [Sala & Guerra, 2008], [Bernal & 

al, 2009], or the choice of Lyapunov function [Johansson & al, 1999], [Tanaka & al, 2001c], 

there was room for reducing this conservativeness by changing the choice of the Lyapunov 

function.  

Researchers have proposed several Lyapunov functions to deal with these drawbacks: 

 In [Blanco & al, 2001], [Tanaka & al, 2003], [Bernal & Husek, 2005] Non-Quadratic 

Fuzzy Lyapunov functions (NQFLFs) were proposed, thus constituting the first non-quadratic 

framework for T-S models. Nevertheless, the time-derivative of the membership functions of 
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the T-S model appears in the derivative of the Lyapunov function which makes the resulting 

conditions non LMIs, for that, several results propose just to bound them a priori [Bernal & 

al, 2006], [Mozelli & al, 2009]. This way of doing is not satisfactory because the verification 

of these bounds can only be done a posteriori with a case by case approach, especially when 

compared with the discrete-case [Guerra & Vermeiren, 2004], [Ding & al, 2006], [Krusewski 

& al, 2008], [Guerra & al, 2009b]. Another drawback rises from the fact that authors bound 

the time-derivatives of the MFs assuming that they do not depend on the input, which turns 

out to be very restrictive. Moreover, the proposed control law makes use of the time-

derivatives of the MFs through a classical PDC scheme, thus ignoring the non-quadratic 

nature of the involved Lyapunov function. 

In [Johansson & al, 1999], [Othake & al, 2003], [Feng & al, 2004], [Feng & al, 2005] 

researchers proved that the use of piecewise Lyapunov functions (PWLFs) have effectively 

relaxed the referred pessimism, though they require the MFs to induce a polyhedral partition 

of the state space. Unfortunately, this condition on the MFs of those TS models obtained by 

sector nonlinearity approach is not fulfilled; moreover, the piecewise approach leads to 

bilinear matrix inequalities in the continuous-time context which cannot be optimally solved 

[Feng & al, 2005].  

In [Rhee & Won, 2006], a line-integral Lyapunov function is proposed to circumvent 

the MFs’ time-derivative obstacle, though the line integral is asked to be path-independent 

thus significantly reducing its applicability [Guelton & al, 2010]. 

All these approaches consider the problem of global stability which is far to be the 

general rule for nonlinear systems. Although they present some improvements which are 

particularly important and allow dealing with problems that was unfeasible before, a change 

of perspective for non-quadratic stability analysis of T-S models has been proposed in [Guerra 

& Bernal, 2009]. This approach employing a non-quadratic Fuzzy Lyapunov function 

(NQFLF) and priori known bounds [Guerra & Bernal, 2009], [Bernal & Guerra, 2010], 

[Bernal & al, 2010] and [Guerra & al, 2011], reduces global goals to less exigent conditions, 

thereby showing that an estimation of the region of attraction can be found (local stability); 

this approach may provide a local solution for nonlinear models that do not admit a global 

solution [Khalil, 2002]. 
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1.3. Objetcives and Contributions 

The subject of this work is to develop new non-quadratic stability and stabilization 

conditions for continuous T-S fuzzy systems. Based on non-quadratic Lyapunov functions, 

new non-quadratic stability conditions are derived in order to overcome the drawbacks of the 

quadratic approaches and the existing ones. 

A first motivation for the work of this thesis arises from the fact that most of stability 

conditions are based on quadratic Lyapunov functions which means that the aim can be 

reached by finding a common Lyapunov matrix 0P >  for all the vertices of the polytopes – 

or sub-models. This renders stability results conservative and even a large number of systems 

can be stable without the existence of a quadratic Lyapunov function. 

A second motivation is that in most of existing approaches dealing with stability and 

stabilization, the properties of the membership functions are not taking into account except 

the convexity property. In other approaches, it is taking in consideration the upper bound for 

the time derivative of the premise membership function as assumed by [Tanaka & al, 2001a, 

2001b, 2001c, 2003].  

A third motivation is that it has been shown that reducing global stability goals to 

something less restrictive will give a nice solution by providing an estimation of the stability 

domain (local asymptotic conditions), as it is usually the case for nonlinear models for which 

stability and/or stabilization cannot be reached globally. 

The main contributions of this thesis are in both stability analysis and controller 

design: 

The first contribution is concerned with a relaxation in the latter sense which demands 

a change of perspective from global to local conditions. Non-quadratic Lyapunov functions 

has been proposed to analyze the stability of continuous-time Takagi-Sugeno models which 

means that the objective can be reached after finding a number of 0
i

P > . 

The second contribution consists in a sum of squares (SOS) approach based first on 

polynomial fuzzy modeling providing a more effective representation of the nonlinear 

systems and second more relaxed stability conditions based on polynomial fuzzy Lyapunov 

function comparing to the LMI-Based approach. These SOS conditions can be solved 

numerically using the Matlab toolbox SOSTOOLS [Prajna & al, 2004a].   

The third contribution is the extension of the local results obtained for stability 

analysis to the control design of continuous-time Takagi-Sugeno models, based on non-PDC 

control law according to the non-quadratic nature of the Lyapunov function, new Local 

stabilization conditions have been obtained. The well-known problem of handling time-
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derivatives of membership functions (MFs) as to obtain conditions in the form of linear 

matrix inequalities (LMIs) is overcome by reducing global goals to the estimation of a region 

of attraction. 

A last contribution results in a novel approach proposing the design of a robust local 

H∞  controller for disturbed continuous-time Takagi-Sugeno based on non-quadratic 

Lyapunov function, the method is based on a new form of non-PDC controller and by the 

mean of Finsler’s Lemma, LMIs conditions can be obtained, the idea does not require a bound 

for the input control, it only needs a priori known bound of the states which is given from the 

domain of definition of the T-S models. 

1.4. Chapters outline  

This thesis is organized as follows: 

Chapter 1 provides an introduction de the study.  

Part I presents the state of the art. 

Chapter 2 introduces Takagi-Sugeno models followed by the method used to the 

design of these models. A recall of the basic concepts and definitions of the theory of 

stability in the Lyapunov sense is given. Quadratic stability and stabilization conditions for 

continuous-time Takagi-Sugeno models are then presented. Semi definite programming 

techniques and a number of tools and properties are cited. The chapter ends with a 

discussion of the drawbacks of existing approaches trying to overcome the problems 

encountered when using classical approaches for stability and stabilization. 

In Part II, we develop the contributions of this thesis and it is organized in four 

chapters 

Chapter 3 is devoted to the first major contribution; it presents new solutions for 

stability analysis problems for continuous-time Takagi-Sugeno models. This chapter is based 

on a method first proposed by [Guerra & Bernal, 2009] to obtain local results and better 

estimation of the region of attraction via non-quadratic Lyapunov functions. An improvement 

of this approach is then given in order to obtain better relaxed stability conditions followed by 

illustrative examples to show the advantages of the proposed LMIs conditions.  

In chapter 4, we present polynomial fuzzy modeling and stability analysis. The 

stability conditions based on polynomial Lyapunov functions are represented in terms of SOS 

and can be numerically (partially symbolically) solved via the recently developed 

SOSTOOLS. To illustrate the validity and applicability of the proposed approach, a number of 

analysis and design examples are provided. 
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Chapter 5 is devoted to the second major contribution; it extends the results obtained 

in chapter 3 for stability analysis to stabilization. New non-quadratic approaches based on 

non-PDC controller and non-quadratic Lyapunov functions are proposed in order to obtain 

more relaxed results comparing with recent existing methods in non-quadratic control design 

and to prove stabilization of a large number of continuous-time Takagi-Sugeno models which 

do not admit a quadratic stabilization. Simulation results are then presented to show the 

effectiveness of the proposed approaches during this chapter. 

Chapter 6 studies the design of a robust non-quadratic controller based on non-

quadratic Lyapunov function, the goal in this chapter is to take into account during the 

controller design of the different perturbations and unknown inputs that can affect a nonlinear 

system, in order to obtain sufficient local conditions allowing to stabilize the proposed models 

with better attenuation of the external perturbations. In then, a robust H infinity controller is 

designed for the proposed model showing that the link between the controller gain and the 

Lyapunov function can be cut in a convenient manner via Finsler’s lemma. Simulation 

examples are given to highlight the method’s advantages. 

Part III ends the thesis with some concluding remarks and recommendations for future 

work. 
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2. Chapter 2: State of the art 

 

 

Synopsys 

his chapter is devoted to the presentation of the context of our work and the definition of 

basic concepts of our study. We first introduce Takagi-Sugeno models known also as 

Quasi Linear Parameter Varying (Quasi-LPV) models and the approach used to design such 

models. Second, we give an overview of the Lyapunov theory and the different Lyapunov 

functions used to study stability and stabilization of continuous-time Takagi-Sugeno models. 

Two techniques of Semi-definite programming: Linear matrix inequalities and Sum of squares 

programming are presented, and some matrix proprieties which will be useful in the following 

chapters, are recalled. Finally the drawbacks of the use of a quadratic Lyapunov functions are 

discussed and the existing approaches and results to overcome these problem are studied. 

 

T
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2.1. Takagi-Sugeno (quasi-LPV) models 

 

A nonlinear system can be represented by the so called Takagi-Sugeno (T-S) fuzzy model 

first proposed by Takagi and Sugeno [Takagi & Sugeno, 1985]. The T-S fuzzy model is based 

on IF-THEN rules, which represent the local input-output relations of a nonlinear system. 

Consider the nonlinear system 

 
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

x t f z t x t g z t u t

y t d z t x t

C = +D
E

=DF

�
 (2.1) 

With ( )( )f z t , ( )( )g z t , ( )( )d z t  being nonlinear functions, ( ) n
x t ∈�  is the state vector, 

( ) m
u t ∈�  is the input vector, ( ) q

y t ∈�  is the output vector and ( )( ) p
z x t ∈�  is the premise 

vector bounded and smooth in a compact set C  of the state space including the origin. 

 The i th−  rules of a so-called T-S Fuzzy model [Takagi & Sugeno, 1985] are given 

under the following form: 

Model Rule i  : 

 If ( )1z t  is 1iM  AND �  AND ( )pz t  is 
ip

M  

Then  

 
( ) ( ) ( )

( ) ( )
,

i i i

i

x t A x t B u t

y t C x t

= +CD
E

=DF

�
1, 2, ,i r= �   (2.2) 

 

Where n n

i
A

×∈� , n m

i
B

×∈�  and q n

i
C

×∈� , { }1, ,i r∈ �  are matrices of proper dimensions, 

2 p
r = ∈�  is the number of linear models, 1iM  is the fuzzy set and r  is the number of model 

rules; ( ) ( )1 , , pz t z t�  are known premise variables that may be functions of the state 

variables, external disturbances, and/or time. 

Each equation in (2.2) is called “Sub-model”, to each rule corresponds a set of weight 

( )( )iw z t   which depends on the degree of membership of the premises variables to the fuzzy 

set 
ik

M . 

Equations (2.2) are evaluated with the following T-S defuzzification formula: 
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( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

1

1

r

i i i

i

r

i i

i

x t h z t A x t B u t

y t h z t C x t

=

=

C
= +D

D
E
D =
DF

�

�

�

 (2.3) 

the T-S model (2.3) can be an exact representation of the original nonlinear system (2.1) 

inC if the following systematic methodology is used to get the T-S model.  

2.1.1. Sector non linearity Approach  

 

The idea of using sector nonlinearity in fuzzy Takagi-Sugeno model construction first 

appeared in [Kawamoto & al, 1992] and expanded in [Tanaka & Wang, 2001], Sector 

nonlinearity is based on the following idea: Consider a simple nonlinear system ( )( )x f x t=�  

where ( )0 0f = , the aim is to find the global sector such that ( ) [ ] ( )1 2x f x s s x t= ∈� , where 

( )1s x t  and ( )2s x t  are lines as shown in Figure 2.1, this approach guarantees an exact fuzzy 

Takagi-Seguno model construction. However sometimes it is difficult to find a global sector 

for general nonlinear systems. In this case, we consider local sector nonlinearity as depicted in 

Figure 2.2.  

 

 

 

Figure 2.1: Global sector 
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Figure 2.2: Local sector 

 

Remark 2.1: 

Consider the nonlinear system ( )( )x f x t=� , ( )0 0f = . According to the properties of 

nonlinear terms encountered in the non-linear mathematical model, we distinguish two types 

of representative T-S: 

• If all the nonlinearities of the system are continuous and bounded on n�  then the T-S 

model allows an exact representation of the nonlinear system over the entire 

state space n� . 

• If all the nonlinearities of the system are only continuous, then the T-S 

 model allows an exact representation of the nonlinear system on a compact subset of 

the state space n
C ⊂ � . 

 

 

Example 2.1: 

Consider the autonomous nonlinear model given by: 

 ( ) ( ) ( )( )cosx t x t x t=�  (2.4) 

Note that ( )( ) ( )( )cosf x t x t=  is continuous and bounded in [ ]1 1− , then we can write 

 ( )( )
( )( )

( )( )

( )( )

( )( )

( )

1 2

cos 1 1 cos
cos 1 1

2 2
h x t h x t

x t x t
x t

+ −
= × + × −
������	 ������	
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and the Takagi-Sugeno model corresponding to the nonlinear model (2.4) can be written as: 

 ( ) ( )( ) ( )
2

1

i i

i

x t h z t A x t
=

=��  (2.5) 

where 1 1A =  and 2 1A = − . 

 

Tensor-Product structure: 

 Let ( )( ) ,j j jnl z t nl nl� �∈
� �

, { }1, ,j p∈ �  be the set of bounded nonlinearities in (2.1) 

belonging to C. Employing the sector nonlinearity approach [Tanaka & Wang, 2001], the 

following weighting functions can be constructed 

 ( )( )
( )( )

( )
( )( ) ( )( )0 1 0, 1

j jj j j

j j

nl nl z t
w z t w z t w z t

nl nl

−
= = −

⋅ −
, { }1, ,j p∈ �  (2.6) 

From the previous weights, the following MFs are defined: 

 ( )( )1
1 21 2 2

1

p
jp

p
j

i i ji i i
j

h h w z t−+ + × + + ×
=

= = ∏�
 (2.7) 

with { }1, ,2 pi ∈ � , { }0,1ji ∈ . These MFs satisfy the convex sum property ( )( )
1

1
r

ii
h z t

=
=� , 

( )( ) 0ih z t ≥  in C. 

 

Remark 2.2: 

T-S models obtained via nonlinear sector approach depend directly on the number of 

nonlinearities to be cut. Thus, when one has nl  nonlinear terms, then the T-S model contains 

2nl  fuzzy rules. 

 

2.1.2. Polynomial Takagi-Sugeno model 

By the mean of the sector nonlinearity approach, a nonlinear system can be modeled by the so 

called Polynomail fuzzy model which allows an exact representation of the system (2.1) in a 

compact set of the state space, where the polynomial fuzzy model has a polynomial model 

consequence as developed thereinafter. 

Model Rule i  : 

 If ( )1z t  is 1iM  AND �  AND ( )pz t  is 
ip

M  
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Then  

 
( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

ˆ
,

ˆ

i i

i

x t A x t x x t B x t u t

y t C x t x x t

C = +D
E

=DF

�
1, 2, ,i r= �   (2.8) 

 

Where ( )( )iA x t , ( )( )iB x t  and ( )( )iC x t , { }1, ,i r∈ �  are polynomial matrices in ( )x t , 

( )( )x̂ x t  is a column vector of monomials in ( )x t . This family of models will be the subject 

of chapter 4, in which further development will be given. 

2.2. Lyapunov theory 

 

Stability and stabilization analysis are usually based on Lyapunov theory [Vidyasagar, 1993], 

a large number of results have been obtained for continuous-time Takagi-Sugeno models, in 

this section, we will give some notions and types of the Lyapunov functions used in the 

literature. 

 

Theorem 2.1: 

An equilibrium point of a time-invariant dynamical system is stable (in the sense of 

Lyapunov) if there exists a continuously differentiable sector function ( )V x  such that along 

the system trajectories the following is satisfied 

 ( ) ( )0,    0 0V x V> =  (2.9) 

 ( ) 0
dV V x

V x
dt x t

∂ ∂
= = ≤

∂ ∂
�  (2.10) 

If the condition (2.10) is a strict inequality then the system is asymptotically stable. 

 

In the following some definitions related to Lyapunov stability will be given: 

 

Theorem 2.2: 

Considering the non-linear system 

 ( ) ( )( )x t f x t=�  (2.11) 

with an isolated equilibrium point * 0 n
x = ∈Ω ⊂ � . If there exist a locally Lipschitz function 

: n
V →� �  that has continuous partial derivatives and two ΚΚΚΚ  functions1 α and β  such that: 

���������������������������������������� �������������������

1 A function [ ) [ ): 0, 0,aα → ∞ is a k function, if it is strictly decreasing and ( )0 0α = , It is a ∞K function if a = ∞  and ( )limt tϕ→∞ = ∞   
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 ( ) ( ) ( ) *,   0 ,nx V x x xα β≤ ≤ ∀ = ∈Ω ⊂ �   

The origin 0x =  of system (2.11) is  

- Stable if  

 
( )

0,   ,   0;
V x

x x
t

∂
≤ ∀ ∈Ω ≠

∂
 

- Asymptotically stable if there exists a K  function ϕ  such that 

 
( )

( ) ,   ,   0;
V x

x x x
t

ϕ
∂

≤ − ∀ ∈Ω ≠
∂

 

- Exponentially stable if there exists four positive constant scalars , , , pα β γ  such that 

 ( ) ( ) ( ),   ,   ;
p p

x x x x x xα α β β ϕ γ= = =  

 

The extension of this theorem for the case of non-autonomous systems is given in [Khalil, 

2001]. 

2.2.1. Lyapunov functions: 

 

Several Lyapunov functions candidate are usually proposed to solve the stability problem 

 

a)   Quadratic Lyapunov functions: 

A classical Lyapunov function candidate is based on a quadratic form as: 

 ( )( ) ( ) ( ) ,    ,    0 
T n n T

V x t x t Px t P P P
×= ∈ = >�   (2.12) 

Thus finding a Lyapunov function returns to find a definite positive matrix P . 

It is well known that the existence of a quadratic Lyapunov function is only sufficient for 

asymptotic stability. 

 

b) Piecewise Lyapunov functions:  

The piecewise Lyapunov functions are more relaxed than the original designs because the 

quadratic Lyapunov function can be regarded as a special case of piecewise Lyapunov 

function, nevertheless, these designs always need certain restrictive boundary conditions or 

attach some extra constraints or assumptions, which greatly reduce the applicability. 

A piecewise Lyapunov function is defined as [Johansson & al, 1999]: 
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 ( )
( ) ( ) 0

1

,     x S ,

,       x S ,
1 1

T

i i

T

i i

x t Px t i L

V x x x
P i L

C ∈ ∈
DD

= E� � � �
∈ ∈D� � � �

D� � � �F

 (2.13) 

Where  { } n

i i L
S

∈
⊆ �   is a polyhedral partition, L  is the set of cell indexes, 0L  denotes the set 

of indexes of cells that contain the origin and 1L  denotes the set of indexes of cells that do not 

contain the origin. 

This Lyapunov function is parameterized to be continuous across cell boundaries. This 

condition is fulfilled by means of constraint matrices [ ]i i iF F f=  with 0
i

f =  for 0i I∈  

satisfying 

 ,      S
1 1

i j i j

x x
F F x S
� � � �

= ∈ ∩� � � �
� � � �

 

So we can parameterize Lyapunov functions as  

 0,       ,T

i i i
P F TF i L= ∈  

 1,       T

i i i
P F TF i L= ∈  

Where free parameters are collected in symmetric matrix T , allowing LMI formulation. This 

Lyapunov function combines the power of quadratic Lyapunov functions near an equilibrium 

point with the flexibility of piecewise linear functions in the large. 

 

c)   Non-quadratic fuzzy Lyapunov functions  

Non-quadratic fuzzy Lyapunov functions are generally given by   

 ( )( ) ( )( ) ( ) ( )
1

,
r

T

i i

i

V x t h x t x t Px t
=

=�  (2.14) 

Where 
i

P  is a positive definite matrix and ( )( ) 0ih z t ≥ , ( )( )
1

1
r

i

i

h z t
=

=� . 

This function allows relaxing the constraints imposed by the quadratic approach. Indeed, 

finding a Lyapunov matrix for each local model is easier than find a common Lyapunov 

matrix for all local models. To find the matrices 
i

P , a convex optimization procedure was 

proposed by Johansson [Johansson & al, 1999] in the case of nonlinear systems continuously 

differentiable. Note that this function reduces to the quadratic case, if we simply choose 

i
P P= . 
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Several studies using this type of functions either in the continuous case [Jadbabaie & al, 

1999], [Morère, 2001], [Blanco et al., 2001], [Tanaka et al., 2001c], or in the discrete case 

[Morère, 2001], [Kruzewski & al, 2008]. 

 

d) Polynomial Lyapunov functions  

To check the stability and control design for nonlinear systems described by polynomial fuzzy 

models, polynomial Lyapunov functions as defined in the following, can be used 

 ( )( ) ( )( ) ( )( ) ( )( )ˆ ˆ ,
T

V x t x x t P x t x x t=  (2.15) 

Where ( )( )P x t is a symmetric polynomial matrix in ( )x t , ( )( )x̂ x t  is a column vector whose 

entries are all monomials of ( )x t . 

This representation is more general than the quadratic one since if ( ) ( )x̂ t x t=  and ( )( )P x t  

is a constant matrix, the polynomial Lyapunov function reduces to the quadratic ones, 

interesting results have been obtained overcoming the problem of conservativeness since 

polynomial fuzzy models are convex combinations of polynomial models instead of convex 

combinations of linear ones.  

Consider the autonomous nonlinear system of the form 

 ( )x f x=�   (2.16) 

where n
x ∈�  and for which we assume without loss of generality that ( )0 0f = , i.e. the 

origin is an equilibrium of the system. A Lyapunov function can be found to prove the 

stability under some conditions which can be formulated as SOS program stated in the 

following proposition and solved using semi definite programming. 

 

Proposition 2.1: [Papachristodoulou & Prajna, 2002]  

Suppose that for the system (2.16) there exists a polynomial function ( )V x  such that 

 ( )0 0,V =   (2.17) 

 ( ) ( ) >0,V x xφ−   (2.18) 

 ( ) >0,
V

f x
x

∂
−

∂
  (2.19) 

with ( ) 0xφ >  for 0x ≠ . Then the zero equilibrium of the system is stable. 
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Proof: [Papachristodoulou & Prajna, 2002] Condition (2.18) enforces ( )V x  to be positive 

definite. Since condition (2.19) implies that ( )V x�  is negative semi definite, it follows that 

( )V x  is a Lyapunov function that proves stability of the origin 

In the above proposition, the function ( )xφ  is used to enforce positive definiteness of ( )V x . 

If ( )V x is a polynomial of degree 2d , then ( )xφ  may be chosen as follows: 

 ( ) 2 ,
n d

j

ij i

i j

x xφ ε=��   

Whereε ’s satisfy 

 ,    i=1, ,n,
m

ij

j

ε γ> ∀� �  

with γ  a positive number, and 0
ij

ε ≥ for all i  and j . In fact, this choice of ( )xφ  will force 

( )V x  to be radially unbounded, and hence the stability property holds globally if the 

conditions in Proposition 1 are met. 

 

2.2.2. Computationnal tools: Semi definite programming 

 

Several techniques have been used in control theory in order to solve problems related to 

stability analysis and controller design for nonlinear systems.  In the following, we define two 

powerful tools: Linear matrix inequalities (LMI Toolbox for Matlab) [Boyd & al, 1994] and 

Sum of squares (SOSTOOLS) [Prajna & al, 2004a]. 

 

a) Linear Matrix inequalities (LMI) 

A linear matrix inequality or LMI is a matrix inequality of the form 

 ( ) 0

1

0,
m

i i

i

F x F x F
=

+ >�A  (2.20) 

Where m
x ∈�  is the variable; and T n n

i i
F F

×= ∈� , 0, ,i m∈ �  are known. The inequality 

given in (2.20) means that ( )F x  is positive-definite, i.e., ( ) 0T
u F x u >  for all non-zero 

n
u ∈� . An LMI is a Set of n  polynomial inequalities in x . The multiple LMIs 

( ) ( )1 0, , 0nF x F x> >�  can be expressed as a single LMI:  
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( )

( )

1 0 0

0 0 0

0 0
n

F x

F x

� �
� �

>� �
� �� �

B  (2.21) 

Nowadays, LMI tools are well-known [Boyd & al, 1994] and we just recall thereinafter the 

properties necessary for the work presented in this thesis. 

 

b) Sum of Squares (SOS)  

A multivariable polynomial ( ) ( )1, , np x x p x� A  is a sum of squares if there exist 

polynomials ( ) ( )1 , , mf x f x�  such that 

  ( ) ( )2

1

m

i

i

p x f x
=

=�  (2.22) 

It is clear that ( )f x  being an SOS naturally implies ( ) 0f x ≥  for all n
x ∈� . Though, a 

positive polynomial may not be written as SOS, except the some special cases (see [Reznick, 

2000])  

 

In the general multivariable case SOSTOOLS can solve two kinds of sum of squares 

programs: the feasibility and optimization problems [Prajna & al, 2004a]. 

 

Proposition 2.2:  

A polynomial ( )p x  of degree 2d  is an SOS if and only if there exists a semi definite positive 

matrix Q  and a vector of monomials ( )Z x containing all monomials in x  of degree d≤  such 

that 

  ( ) ( ) ( )
T

p x Z x QZ x=  

 

The proof of this proposition is based on the eigenvalue decomposition and can be found in 

[Parrilo, 2000]. In general the monomials ( )Z x  are not algebraically independent. Expanding 

( ) ( )
T

Z x QZ x  and expanding the coefficients of the resulting monomials to the ones in ( )p x , 

we obtain a set of affine relations in the elements of Q . Since ( )p x  being SOS is equivalent 

to 0Q ≥ , the problem of finding a Q  which proves that ( )p x  is an SOS can be cast as a 

semi-definite program (SDP) [Parrilo, 2000] [Papachristodoulou & Prajna, 2002]. 
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2.3. Key properties and lemmas 

 

In this thesis, the following widely known properties from literature will be frequently used  

Property 1: Schur complement: 

Let n nP ×∈�  a positive definite matrix, m nX ×∈�  a full rang matrix and n nQ ×∈� , the 

following two inequalities are equivalent  

 ( ) ( ) ( ) ( ) ( )
1

1. 0,  0
T

Q s X s P s X s P s
−

− > >  

 
( ) ( )
( ) ( )

*
2. 0

Q s

X s P s

� �
>� �

� �
 

 

Property 2: Finsler’s Lemma [Boyd & al, 1994] 

 Let ,nx ∈�  T n nQ Q ×= ∈� , and m nR ×∈�  such that ( )rank R n< ; the following expressions 

are equivalent: 

a) 0Tx Qx < , { }: , 0 0nx x x Rx∀ ∈ ∈ ≠ = <0�  

b) : 0n m T TX Q XR R X×∃ ∈ + + <� .  

c) : 0TQ R Rµ µ∃ ∈ − <� .  

 

Property 3: For ny ∈�  and a scalar 0α > , the following equivalence holds: 

 0 0T Ty y yy Iα α− < ⇔ − <  (2.23) 

 

Property 4: Inequality Lemma: Consider ,X Y  two matrices of appropriate dimension, for a 

scalar 0ε > , the following statement holds: 

 

1T T T T
X Y Y X X X Y Yε

ε
+ ≤ +  (2.24) 

The same holds with a matrix 0Q > : 

 1T T T TX Y Y X X QX Y Q Y−+ ≤ +  (2.25) 
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Consider ,X Y  matrices of appropriate dimension, ,λ β ∈�  with λ  a varying parameter and 

the following inequalities problem: 

 
λ β< , 0Y Xλ+ ≤  (2.26) 

For purpose of proofs, a specific need of finding solutions to (2.26) will be necessary. Among 

the various possibilities next two properties will be useful. 

Property 5: Sufficient conditions for (2.26) to hold are: 

 0Y Xβ± ≤ . (2.27) 

Proof: as λ β<  thus via sector nonlinearity technique: ( )
2 2

λ β β λ
λ β β

β β

+ −
= × + × −  with 

obviously: 0
2

λ β

β

+
≥  and 0

2

β λ

β

−
≥ . Therefore, whatever are X  and Y : 

 
( ) ( )

2 2
Y X Y X Y X

λ β β λ
λ β β

β β

+ −
+ = × + + × −  (2.28) 

Thus if (2.27) holds the conclusion (2.26) is obvious. 

 

Property 6: A sufficient condition for (2.26) to hold, with 0T
S S= >  is: 

 
( )2 11

0
2

Y S XS Xβ −+ + ≤  ⇔  

21

02

2

Y S X

X S

β
� �
− −� � ≥
� �
� �

 (2.29) 

Proof: using property 4 with any 0T
S S= >  of appropriate size gives: 

 
( ) ( )2 11 1

2 2
Y X X Y S XS Xλ λ λ −+ + ≤ + +

 
(2.30) 

And using λ β<  gives directly the sufficient condition (2.29). The second part is just 

Schur’s complement direct application. 

Property 7: S-procedure  

 Consider matrices 0T

i i
T T= > , { }1, ,i p∈ � , the following two expressions are equivalent: 

 01. 0,    0T
X T X X> ∀ ≠  such that { }0, 1, ,T

iX T X i p≥ ∀ ∈ �  

 12. , , 0
p

σ σ∃ ≥�  such that 0

1

0
p

i i

i

T Tσ
=

− >�  
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a) Relaxation Lemmas 

As it will be shown later in (2.40) one source of conservatism relies on the way the multiple 

sums are considered. To summarize therein various results, consider the following double 

sum problem with 
ij

ϒ  ( ) { }
2

, 1, ,i j r∈ �  symmetric matrices of appropriate dimensions: 

 

( )( ) ( )( )
1 1

0
r r

i j ij

i j

h z t h z t
= =

ϒ >��  (2.31) 

A “nice” solution to (2.31) without adding slack variables is recalled. 

 

Theorem 2.3: [Tuan & al, 2001]: 

Sufficient conditions for (2.31) to hold are:  

 

{ }

{ }
2

0, 1, ,

2
0, ( , ) 1, , , .

1

ii

ii ij ji

i r

i j r i j
r

ϒ > ∀ ∈

ϒ + ϒ + ϒ ≥ ∀ ∈ ≠
−

�

�
 (2.32) 

 

Other conditions can be obtained introducing slack variables, for example [Liu & Zhang, 

2003]. 

 

Theorem 2.4: [Liu & Zhang, 2003]: 

Sufficient conditions for (2.31) to hold are: 

If there exist matrices { }, 1, ,T

i iQ Q i r= ∈ �  and ( ) { }
2

, , 1, ,T

ij ji
Q Q i j r= ∈ �  such that: 

 

{ }

{ }
2

, 1, ,

, ( , ) 1, , , .

ii i

ij ji ij ji

Q i r

Q Q i j r i j

ϒ ≥ ∀ ∈

ϒ + ϒ ≥ + ∀ ∈ >

�

�
 

 

( )

( )

1 12 1

21 2

1

1 1

0

r

r r

r rr r

Q Q Q

Q Q

Q

Q Q Q

−

−

� �
� �
� �

>� �
� �
� �� �

�

C

C B

�

 

 

Conditions in [Liu & Zhang, 2003] have been further improved, at the expense of higher 

computational cost. Consider a multi-dimensional index variable { }1, ,
n

i r∈ �  where r  is the 

number of rules and n  is an arbitrary complexity parameter. Then the result in [Liu & Zhang, 

2003] is a particular case of the following theorem. 
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Theorem 2.5: [Sala & Ariño, 2007]: 

Sufficient conditions for (2.31) to hold are:  

The following inequality (with complexity 2n − ) holds 

 

 

( ) ( )

( ) ( )

( )
2

,1,1 ,1,

1 2

, ,1 , ,

0,   for 0
n

r

T
T T T T

r

B

r r r

Q Q

h h x h x h x

Q Q

ξ ξ ξ
−∈

� �
� �

> = ≠� �
� �
� �

�
k k

k

k

k k

�

C B C �

�

 

 

if there exist matrices ,  
n

X B∈j j  so that 

 
( )

( )
( )

1 2

1
,       

2

Y

j j n

P P

Q Q B
+

∈ ∈

ϒ > + ∀ ∈� � j j

j i j i

i   

where ( )P i  denotes all the permutations of i , ( ),k = i j ,  

( ){ }1 2, , , /1 , 1, , )p

n n j
B i i i i r j n= ∈ ≤ ≤ ∀ =i = � � �  and { }1,  1, , 1)n n k kB B i i k n

+
+= ∈ ≤ = −i / �   

  

 

In a suitable recursive framework, it can be proved that the above conditions become 

necessary and sufficient with n → ∞  , and establish some tolerance parameter for finite n  

[Sala & Ariño, 2007].
 

 

In the following part of this chapter, we recall of some existing approaches proposed to 

overcome the drawbacks of the quadratic approach in stability analysis and controller design 

using convex optimization techniques (LMIs Toolbox) and sum of squares (SOS) tools. 

2.4. Quadratic Lyapunov function approach forT-S models 

�

2.4.1. Quadratic Stability of Takagi-Sugeno models 

 

Consider the Open loop T-S fuzzy system: 

 ( ) ( )( ) ( )
1

r

i i

i

x t h z t A x t
=

=��  (2.33) 

Based on the quadratic Lyapunov function given in (2.12), the following stability theorem can 

be formulated. 
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Theorem 2.6: [Tanaka & Sugeno, 1992]  

Consider the model (2.33), if there exists a matrix 0T
P P= > , such the following holds 

 0,   =1, , NT

i i
A P PA i+ < ∀ �  

The T-S fuzzy model given in (2.33) is globally asymptotically stable. 

 

The stability conditions in Theorem 2.6 are only sufficient since the membership functions i.e. 

( )( )ih z t  are not taken into account. 

2.4.2. Quadratic stabilization of Takagi-Sugeno models: 

Several control laws have been proposed in the literature, to deal with the stability of the 

closed loop of Takagi-Sugeno models, the most used control law is the parallel distributed 

compensation controller. 

a) PDC control law (Parallel distributed compensation):  

Takagi-Sugeno models can be stabilized using the parallel distributed compensation (PDC) 

controller [Wang & al, 1996]. Each control rule is designed from the corresponding rule of T-

S fuzzy model. Moreover, the linear control technique can be used to design the consequent 

parts of a T-S fuzzy controller, because the consequent parts are described by linear state 

equations.  

 

Figure 2.3: Parallel distributed compensation controller design [Wang et al, 1996] 

  

Controller Rule i  : 
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 If ( )1z t  is 1iM  AND �  AND ( )pz t  is 
ip

M  

Then  

 ( ) ( )i iu t F x t= , 1, 2, ,i r= �   (2.34) 

The PDC controller shares the same fuzzy sets with the T-S fuzzy model in the premise parts, 

this mirrored structure is necessary for the LMI-Based analysis and the design procedures. 

 

b) Quadratic Controller design 

Consider the following Takagi-Sugeno model given by: 

 ( ) ( )( ) ( ) ( )( )
1

r

i i i

i

x t h z t A x t B u t
=

= +��  (2.35) 

The PDC controller is  

 ( ) ( )( ) ( )
1

r

i i

i

u t h z t F x t
=

=�  (2.36) 

By substituting (2.36) in (2.35), we obtain the Takagi-Sugeno closed loop as follows: 

 ( ) ( )( ) ( )( ) ( ) ( )
1 1

r r

i j i i j

i j

x t h z t h z t A B F x t
= =

= +���  (2.37) 

The design of the controller (2.36) returns to calculate the local gains 
i

F  which ensure the 

stability of the closed loop (2.37), we consider a quadratic Lyapunov function candidate as in 

(2.12) with 0T
P P= > , thus its derivative writes: 

( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )( ) ( )
1 1

              = 0

T T

r r
T T T T

i j i i j i i j

i j

V x t x t Px t x t Px t

x t h z t h z t A P PA F B P PB F x t
= =

= +

� �
+ + + <� 	

A B
��

� � �

 (2.38) 

or 

 ( )( ) ( )( )( )
1 1

0
r r

T T T

i j i i j i i j

i j

h z t h z t A P PA F B P PB F
= =

+ + + <��  (2.39) 

Note that inequality (2.39) is a bilinear matrix inequality (BMI) due to the existence of 

bilinear terms T T

j iF B P  and
i j

PB F . In order to obtain linear matrix inequality constraints, left 

and right product with 1X P−=  and the classical change of variables 1P X −= and 
j j

M F X=  

[Wang & al, 1996] give the following stabilization conditions: 

 ( )( ) ( )( )( )
1 1

0
r r

T T T

i j i i j i i j

i j

h z t h z t XA A X M B B M
= =

+ + + <��  (2.40) 

Thus next result is directly based on ( )( ) ( )( ) ( )( ) ( )( )i j j ih z t h z t h z t h z t= . 
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Theorem 2.7: [Tanaka & al, 1998] 

The equilibrium of the continuous fuzzy control system described by (2.35) is asymptotically 

stable in the large if there exist a common positive definite matrix 0T
X X= >  and matrices 

i
M  such that 

i i
M F X= for which the following holds: 

 
0

ii
ϒ <

 
(2.41) 

 
0,    

ij ji
i < jϒ + ϒ <

 
(2.42) 

With 

 
T T T

ij i i j i i jXA A X M B B Mϒ = + + +  

for all i  and j  excepting the pairs ( ),i j  such that ( )( ) ( )( ) 0,i jh z t h z t t= ∀ . 

Moreover, if a solution holds, the control gains are derived using: 1

i i
F M X

−= . 

 

The goal here is to find a common matrix P  and gains 
i

F  simultaneously by solving some 

conditions which can be formulated as Linear matrix inequalities (LMI) that can be easily 

solved with convex programming techniques i.e. LMI toolbox of Matlab.  

2.5. Non-quadratic fuzzy Lyapunov function (NQ) approaches 

2.5.1. Non-quadratic stability analysis 

 

Consider the Takagi-Sugeno model given by: 

 ( ) ( )( ) ( )
1

r

i i

i

x t h z t A x t
=

=��  (2.43) 

Consider the non-quadratic Lyapunov function candidate: 

 ( )( ) ( ) ( )( ) ( )
1

r
T

i i

i

V x t x t h z t P x t
=

� �
= � 	

A B
�  (2.44) 

With 0T

i i
P P= > . The derivative of the Lyapunov function writes [Tanaka & al., 2003]: 

 

( )( ) ( )( ) ( )( )
1 1 1

0
r r r

T

i j j i i j k k

i j k

h z t h z t A P P A h z t P
= = =

� �
+ + <� 	

A B
�� � �  (2.45) 

 

Theorem 2.8: [Tanaka & al, 2003]  
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Assume that ( )( )k k
h z t φ≤� , the fuzzy system is stable if there exist 0

k
φ ≥ , 1, ,k r= �  such 

that: 

 
0

i
P > , 1, ,i r= �  

 
{ }

1

1
0

2

r
T T

k k j i i j i j j i

k

P A P P A A P P Aφ
=

+ + + + <� , i j≤  

 

Note that due to the convex sum property ( )( )
1

1
r

h z tρρ =
=�  it follows directly: 

 ( )( ) ( )
1

0,      z
r

h z t tρ
ρ =

= ∀� �  

This property allows extra term addition that relaxes Theorem 2.8. 

 

Theorem 2.9: [Tanaka & al, 2003]  

Assume that ( )( )k k
h z t φ≤� , the fuzzy system is stable if t 0

k
φ ≥ here exist , 1, , 1k r= −�  

such that: 

 
0

i
P > , 1, ,i r= �  

 k r
P P≥ , 1, , 1k r= −�  

 
( ) { }

1

1

1
0

2

r
T T

k k r j i i j i j j i

k

P P A P P A A P P Aφ
−

=

− + + + + <� , i j≤  

 

The proposed approaches use priori known bounds of the time-derivative of the membership 

functions which are not always readily available, thing that turns out to be very restrictive. 

 

Another way to overcome the disadvantages of the quadratic approach is to consider the line-

integral Lyapunov function [Rhee & Won, 2006]: 

 

 ( ) ( )
( )0,

2
x

V x f dψ ψ
Γ

= ⋅�  (2.46) 

 

Where ( )0, xΓ  a path from the origin to the current state is x , nψ ∈� is a dummy vector for 

the integral, ( ) n
f x ∈�  is a vector function of the state x , ( )⋅  denotes an inner product, and 

ndψ ∈�  is an infinitesimal displacement vector. Thus, the application to T-S models follows 

Non-quadratic approaches such as (2.44) and a possibility is: 
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 ( ) ( )f x P x x=  

Where  

 ( ) ( )
1

0
r

i i

i

P x h x P
=

= >�  

Nevertheless, it restricts to specific T-S model of the form [Rhee & Won, 2006]: ( ) ( )z t x t=  

and 
i

h  must only depend on 
i

x . For example 1 2x x×  or ( )2

1 2sinx x×  could not be used as 

premise variables. Moreover, the degrees of freedom of the 
i

P  { }1, ,i r∈ �  are also very 

restricted due to the necessary and sufficient conditions for path-independency. 

 

Theorem 2.10: [Rhee & Won, 2006]  

The T-S fuzzy system (2.43) is asymptotically stable if there exist P , 
i

D  and 0X ≥  

satisfying 

 0,   1, ,
i i

P P D i r= + > = �   (2.47) 

 ( )1 0,   1, ,T

i i i iP A A P s X i r+ + − < = �  (2.48) 

 2 0,   , 1, , , i<jT T

i j j i j i i jP A A P P A A P X i j r+ + + − ≤ = �  (2.49) 

where 

12 1

12 2

1 2

0

0

0

n

n

n n

p p

p p
P

p p

� �
� �
� �=
� �
� �
� �

�

�

C C B C

�

 , 

1

2

11

22

0 0

0 0

0 0

i

i

in

i

nn

d

d
D

d

α

α

α

� �
� �
� �=
� �
� �
� �� �

�

�

C C B C

�

 

 

Although the restrictions depicted, the approach is interesting as it gives LMI conditions in a 

global sense without any bounds on the membership functions derivative such as needed for 

(2.45). At last, for stabilization, unfortunately the problem cannot be written in LMI 

constraints [Rhee & Won, 2006] and solution using two-path algorithms are required. 

 

To overcome the difficulties listed before, A systematic approach has been proposed by 

[Mozelli & al, 2009a] improving the results those obtained by [Tanaka & al, 2003], the 

method consist on introducing slack variables into the LMIs in order to separate the system 

matrices from the Lyapunov matrices, providing more relaxed LMI Conditions 

Based on multiple Lyapunov function defined as in (2.44), Stability of the TS model is 

guaranteed via the following theorem: 
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Theorem 2.11: [Mozelli & al, 2009a] 

The fuzzy system is stable if there exist symmetric matrices
i

P , 3M  and matrices 1M , 2M  

such that the following set of LMIs: 

 0,   1, ,
i

P i r> = � , (2.50) 

 0,   1, ,
i

i rΞ < = � , (2.51) 

 3 0,   1, ,
i

P M i r+ > = � , (2.52) 

Hold with 

 
( )

( )
1 1

2 1 2 2

*T T

i i

i T T

i i

P M A A M

P M A M M M

φ� �− −
Ξ � �

− − +� �� �
A   (2.53) 

 ( )3

1

r

P P Mφ ρ ρ
ρ

φ
=

+�A   (2.54) 

( )( )h z tρ ρφ≤�  with ( )( ) 1
h z t Cρ ∈ and 0, 1, , rρφ ρ≥ = �  are given scalars 

 

2.5.2. Non-quadratic stabilization of T-S models 

 

Results obtained for stability are not directly exploitable for stabilization, especially to derive 

LMI constraints. Consider the Takagi-Sugeno fuzzy system: 

 ( ) ( )( ) ( ) ( )( )
1

r

i i i

i

x t h z t A x t B u t
=

= +��  (2.55) 

Consider the following PDC controller: 

 ( ) ( )( ) ( )
1

r

i i

i

u t h z t F x t
=

=�  (2.56) 

The closed loop writes: 

 ( ) ( )( ) ( )( )( ) ( )
1 1

r r

i j i i j

i j

x t h z t h z t A B F x t
= =

= +���  (2.57) 

Therefore, bounds such that ( )( )k k
h z t φ≤�  become difficult to justify. To illustrate this point 

consider an example issued from [Tognetti, 2010]. Consider a 2-rules TS model with:  

 

 
1

3.6 1.6

6.2 4.3
A

−� �
= � �−� �

, 2

1.6

6.2 4.3

a
A

− −� �
= � �−� �

, 1

0.45

3
B

−� �
= � �−� �

, 2
3

b
B

−� �
= � �−� �

,  
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The MFs 1 1
1 0

1 sin

2

x
h w

−
= =  and 1 1

2 1

1 sin

2

x
h w

+
= =  are defined in the compact set 

{ }: 2
i

C x x π= ≤ , 1,2i = . Note that the time-derivative of MFs can be developed as:  

 ( )( ) [ ] [ ]( )

( ) ( )

1

1 2 1

2
1

1* 1*
1

1 1 1

1 2 1 2

cos

2

cos
( ) ( )

2

cos 1 sin 1 sin
3.6 1.6 0.45 3.6 1.6

2 2 2

i i i

i

x
h h x

x
h z t A x t B u t

x x x
x x u x x bu

=

= =

= +

� − + �� � � �
= − − + − −� 	� 	 � 	

A B A BA B

�

� � �

  

  (2.58) 

which depends on the input ( )u t that cannot be known beforehand. Therefore, the conditions 

in [Tanaka & al, 2003] assuming 1
i i

h φ≤ =�  is somewhat difficult to uphold. This is the major 

flaw of these approaches and will be highly discussed in the next chapters. 

Nevertheless, we give some results found in the literature. 

 

A different result uses an extended control law [Tanaka & al, 2003]: 

 ( ) ( )( ) ( ) ( )( ) ( )
1 1

r r

i i i i

i i

u t h z t F x t h z t T x t
= =

= − −� � �  (2.59) 

Therefore, the closed loop writes 

  ( ) ( )( ) ( )( ) ( )( ) ( )
1 1 1

r r r

i j i i j k i k

i j k

x t h z t h z t A B F h z t BT x t
= = =

� �
= − −� 	

A B
�� � ��  (2.60) 

Based on the non-quadratic Lyapunov functions given in (2.44) the following theorem is 

obtained. 

 

Theorem 2.12: [Tanaka & al, 2003] 

The fuzzy system is stable via the new PDC controller if there exist 0ε > , 0γ > , 
i

s , positive 

definite matrices 0T

i i
P P= > , 

i
F , 

i
T , 1, ,i r= �  such that: 

 
i i

P s I≥ , 1
i

s ≥  (2.61) 
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( )
( )

( ) ( )

( )

2

2

6 6

2 2

2 2

1

3 1

1

0

6 1 0 0

0 2 0

0 0 2

i j k n n

i j n n m r

T

n n

T

n n

T

n n

s s s I
r

s s I P P

r I

I

I

υ υ υ

ρ ρ

υ

υ

υ

ε

µ
γ

×

×

×

×

×

� �� �
+ +� �� 	−� �� 	 Ω Λ Π

� �� 	
+ + − −� �� 	

>A B� �
� �Ω −
� �

Λ� �
� �Π� �

  (2.62) 

i j k≤ ≤ , 1, , 1rρ = −� , 1, 2m =  

Where 

ijk ikj jik jki kij kjiυ � �Ω = Ω Ω Ω Ω Ω Ω� �  

ij m ji mυ ρ ρ� �Λ = Λ Λ� � , 
ijrm jirmυ � �Π = Π Π� � , ( ) 1T

ijk i i j k
A B F Pε

ε
Ω = − +  

( ) 1T

ij m m j i
B T Pρ ρ ργµ

γ
Λ = − , ( ) 1T

ijrm rm j r i
B T Pγµ

γ
Π = +  

 

Apart the fact already mentioned on the bounds ( )( )k k
h z t φ≤� , note that (2.59) corresponds 

to an algebraic loop as soon as ( )( )ih z t�  is control dependent such as in the example (2.58), 

therefore its use is highly restricted. 

 

The path-independence property has also been used in [Rhee & Won, 2006]. By the means of 

line integral Lyapunov function presented in (2.46) for the non-quadratic controller design, it 

results the following theorem: 

 

Theorem 2.13: [Rhee & Won, 2006]  

The T-S fuzzy control system (2.55) with the fuzzy controller (2.56) is asymptotically stable 

if there exist P , 
i

D , 
i

F  and 0X ≥  satisfying 

 0,   1, ,
i i

P P D i r= + > = �   (2.63) 

 ( )1 0,   1, ,T

iii iiiG G s X i r+ + − < = �  (2.64) 

 ( )
1

3 0,   , 1, , ,  
3

T

iij iij
G G s X i j r i j+ + − ≤ = ≠�  (2.65) 

 0,   , , 1, , ,  < <T

ijk ijkG G X i j k r i j k+ − ≤ = �  (2.66) 

Where 

( )iii i i i iG P A B F= +  
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( ) ( ){ }¨

1

3
iij i i j i j j i j i i i

G P A A B F B F P A B F= + + + + +  

( ) ( ) ( ){ }1

6
ijk i j k j k k j j i k i k k i k i j i j j i

G P A A B F B F P A A B F B F P A A B F B F= + + + + + + + + + +  
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As already mentioned, conditions (2.63) to (2.66) are not LMI as soon as the control gains 
i

F  

{ }1, ,i r∈ �  are searched. Therefore a 2-step algorithm is proposed in [Rhee & Won, 2006]. 

Firstly, using a locally-available conventional quadratic Lyapunov function approach, 

feedback gains guaranteeing the local stability are selected. Then, being fixed (2.63) to (2.66)

becomes LMI and can be solved. Several loops can be necessary and there is no guarantee of 

convergence towards a solution. Nevertheless, it always includes the quadratic case as shown 

in [Rhee & Won, 2006]. 

 

In [Mozelli & al, 2009a], A new PDC based fuzzy control design is proposed with: 

 ( ) ( )( ) ( )
1

r

i i

i

u t h z t F x t
=

= −�  (2.67) 

Based on the non-quadratic Lyapunov functions given in (2.44) the following theorem is 

obtained. 

 

Theorem 2.14: [Mozelli & al, 2009a] 

Given a scalar 0µ > ,  The fuzzy system is stabilizable by the fuzzy controller if there exist 

symmetric matrices 
i

T , Y  and any matrices R , 
i

S  satisfying the following set of LMIs: 

 0
i

T > , (2.68) 

 0,   1, ,
i

T Y i r+ > = � , (2.69) 

 0,   1, ,
ii

i rΞ < = � , (2.70) 

 0,   1, ,ij i j rΞ < < = � , (2.71) 

where 
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( )

( ) ( )
*T T T T

i i i j j i

ij T T T

i i i j

T A R RA B S S B

T A R B S R R

φ

µ µ

� �− − + +
Ξ � �

− − +� �� �
A   (2.72) 

 ij ij jiΞ Ξ + ΞA   (2.73) 

 ( )
1

r

T T Yφ ρ ρ
ρ

φ
=

+�A   (2.74) 

 

The upper bounds for the time-derivative of the membership functions are considerd 

available. 

 

2.6. Polynomial Lyapunov function approach for T-S models 

2.6.1. Non-quadratic stability analysis: SOS approach  

 

Consider the following polynomial fuzzy model 

 ( ) ( )( ) ( )( ) ( )( )
1

ˆ
r

i i

i

x t h z t A x t x x t
=

=��  (2.75) 

where ( )( )iA x t  is a polynomial matrix in ( )x t . The term ( )( )x̂ x t  is a column vector which 

entries are all monomials in ( )x t  that is, ( )( )ˆ N
x x t ∈�  is an 1N ×  vector of monomials in 

( )x t  and consider a candidate of polynomial Lyapunov function 

 ( ) ( )( ) ( )( ) ( )( )ˆ ˆT
V x x x t P x t x x t=  (2.76) 

Where ( )( ) N N
P x t

×∈�  is a symmetric polynomial matrix. 

 

Theorem 2.15: [Tanaka & al, 2009b] 

The zero equilibrium of the system (2.75) is stable if there exists a symmetric polynomial 

matrix ( ) N N
P x

×∈�  such that (2.77) and (2.78) are satisfied, where ( )1 xε  and ( )2i xε  are 

nonnegative polynomials such that ( )1 0xε >  for 0x ≠ and ( )2 0i xε ≥  for all x  : 

 ( ) ( ) ( )( ) ( )1
ˆ ˆ  is SOST
x x P x x I x xε−  (2.77) 

 ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

2

1

ˆ ˆ , , is SOS
ˆ

T T

i i

T n
k

i i

k k

P x T x A x A x T x P x

x x x x iP
x A x x x x I

x
ε

=

� �+ +
� 	

− ∀∂� 	+� 	∂A B
�

 (2.78) 
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where ( ) N n
T x

×∈�  is a polynomial matrix whose ( ),i j  the entry is given by 

 ( ) ( )
ˆij i

j

x
T x x

x

∂
=

∂
 (2.79) 

In addition, if (2.78) holds with ( )2 0i xε >  for 0x ≠ , then the zero equilibrium is 

asymptotically stable. If ( )P x  is a constant matrix, then the stability holds globally. 

2.6.2. Non-quadratic stabilization analysis: SOS approach 

 

Consider the following Takagi-Sugeno model [Tanaka & al, 2009b] 

 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ){ }
1

ˆ
r

i i i

i

x t h z t A x t x x t B x t u t
=

= +��  (2.80) 

The overall fuzzy controller is given by: 

 ( ) ( )( ) ( )( ) ( )( )
1

ˆ
r

i i

i

u t h z t F x t x x t
=

= −�  (2.81) 

From (2.80) and (2.81), the closed loop system can be represented as  

 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ } ( )( )
1 1

ˆ
r r

i j i i j

i j

x t h z t h z t A x t B x t F x t x x t
= =

= −���  (2.82) 

And consider a candidate of polynomial Lyapunov function  

 ( ) ( )( ) ( ) ( )( )1ˆ ˆT
V x x x t X x x x t

−= D  (2.83) 

Where ( )1 N N
X x

− ×∈D �  is a symmetric polynomial matrix. 

Let ( )k

iA x  denote the k th−  row of ( )iA x , ( )1 2, , , mK k k k= �  denote the row indices of 

( )iB x  whose corresponding row is equalto zero, and define ( )
1 2
, , ,

mk k k
x x x x=D � . 

 

Theorem 2.16: [Tanaka & al, 2009b] 

The control system consisting of (2.80) and (2.81) is stable if there exist a symmetric 

polynomial matrix ( ) N N
X x

×∈D �  and a polynomial matrix ( ) m N

iM x
×∈� such that (2.84) and 

(2.85) are satisfied where ( )1 xε  and ( )2ij xε  are nonnegative polynomials such that ( )1 0xε >  

for 0x ≠  and ( )2 0ij xε ≥  for all x : 

 

 ( ) ( )( )1  is SOST
X x x Iυ ε υ−D  (2.84) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )2

, 

ˆ ˆ

                                                  

T T

i i j i

T T T

j i j j i

T
T T T T T

j i j

k k

i j ij

k K k Kk k

T x A x X x T x B x M x X x A x T x

M x B x T x T x A x X x T x B x M x

X x A x T x M x B x T x

X X
x A x x x x A x x x x I

x x

υ υ

ε
∈ ∈

� �− +
� 	

− + −� 	
� 	− + −� 	
� 	

∂ ∂� 	− − +� 	∂ ∂A B
� �

D D

D

D

D D

                                       is SOS, i j∀ ≤

 (2.85) 

 

Where Nυ ∈�  is a vector that is independent of x . ( ) N n
T x

×∈�  is a polynomial matrix 

whose ( ),i j th  entry is given by 

 ( ) ( )
ˆij i

j

x
T x x

x

∂
=

∂
 (2.86) 

In addition, if (2.78) holds with ( )2 0ij xε >  for 0x ≠ , then the zero equilibrium is 

asymptotically stable. If ( )X xD  is a constant matrix, then the stabilization holds globally. 

 

2.7. Conclusion 

 

In this chapter, we presented a state of art of Takagi-Sugeno models and an introduction to 

some of the basic concepts used in this thesis. Classical stability and stabilization conditions 

based on Lyapunov theory have been discussed.  

Several relaxation schemes and existing approaches used in the literature to overcome the 

drawbacks of the quadratic approach have been presented. Clearly the so-called non-quadratic 

approaches, especially for stabilization, are not satisfactory: no “pure” LMI constraints, a 

priori assumptions that may be impossible to fulfill. Mainly, these approaches present many 

drawbacks due to the way the time-derivative of the membership functions are dropped and 

the type of the Lyapunov function used to prove the stability, new non-quadratic approaches 

for stability analysis and controller design allowing to obtain less conservative results for 

continuous-time Takagi-Sugeno models will be successively proposed in the following part.
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3. Chapter 3: Non-quadratic stability of 

T-S models: Bounding the MF partial 

derivatives 

 

 

Synopsys 

his chapter presents the first contribution of this thesis dealing with Local stability 

analysis for continuous-time Takagi-Sugeno models. New LMI conditions for non-

quadratic stability will be derived to overcome the drawbacks of global quadratic solutions. 

The major contribution is to take into account all the structural information of the membership 

function when dealing with its time derivative, in particular the partial derivatives of the 

memberships with respect to the states instead of time. Parts of this chapter are inspired from 

a publication in which I contributed [Sala & al, 2010]. 

T
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3.1. Introduction 

In the previous chapter, we presented different existing approaches in the literature 

studying the stability analysis and controller design, thus these approaches generally gives 

sufficient conditions which lead to obtain conservative results, this problem is due to different 

reasons, the principal reasons are the type of candidate Lyapunov functions, the way the sums 

are dropped or also the choice of the relaxation lemmas, these sources and some recent 

alternatives to overcome them will be discussed in the following sections. 

 

3.2. New local condition for stability analysis of T-S models 

�

This work is based on a new approach first proposed by [Guerra & Bernal, 2009] to deal with 

the stability analysis of continuous-time T-S models, by the mean of non-quadratic Lyapunov 

functions, new local conditions have been obtained and proved to be less restrictive than the 

global ones, moreover this approach has led to an estimation of the stability domain, which is 

usually the case for nonlinear models [Khalil, 2002]. 

Consider the following continuous-time T-S model: 

 ( ) ( )( ) ( ) ( )
1

r

i i z

i

x t h z t A x t A x t
=

= =��  (3.1) 

where ( )( )ih z t  fulfil asumptions in (2.7). In [Guerra & Bernal, 2009] stability of T-S model 

(3.1) is investigated using the following non-quadratic Lyapunov function candidate: 

 ( ) ( ) ( )( ) ( ) ( ) ( )
1

r
T T

i i z

i

V x x t h z t Px t x t P x t
=

= =�  (3.2) 

Where 0T

z z
P P= > .  

Its time-derivative along the trajectories of the T-S model (3.1) is: 

 ( ) ( ) ( ) ( )T T

z z z z z
V x x t P A A P P x t= + +� � . (3.3) 

To ensure the stability of the T-S model (3.1), ( ) 0V x <�  should be fulfilled, which is 

equivalent to : 

 0T

z z z z z
P A A P P+ + <� . (3.4) 
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Remark 3.1: LMI conditions for stability analysis are usually derived from inequalities as 

(3.4). However, obtaining LMIs from (3.4) for global stability is no longer possible since the 

term 
1

r

z i i

i

P h P
=

=� ��  depends on the time-derivatives of MFs. 

Theorem 3.1: (Local stability) The T-S model (3.1) is locally asymptotically stable in a 

domain D  including the origin, if there exist matrices of proper dimension 0
i

P > , 

{ }1, ,i r∈ �  such that the following holds 

 0T

z z z z
P A A P+ < . (3.5)  

 

Proof: The non-quadratic Lyapunov function candidate (3.2) satisfies ( )0 0V = , ( ) 0V x ≥  in 

� . Its time-derivative (3.4) holds ( )0 0V =� . Provided that 0T

z z z z
P A A P+ < , it is implied that 

there exists a sufficiently small 0λ >  such that 0T

z z z z
P A A P Iλ+ + <  which can be used to 

define { }: ,
z

D x x B P λ= ∈ <� . The origin belongs to domain D  since 

 
1 1 1

1

   

T T Tr r r
i i

z i i i i

i i i

T Tr
i

z i

i

h h z
P h P zP xP

z z x

h z
A xP

z x

= = =

=

� �∂ ∂ ∂� � � �
= = = � 	� 	 � 	

∂ ∂ ∂A B A B A B

� �∂ ∂� �
= � 	� 	

∂ ∂A B A B

� � �

�

�� ��

  (3.6) 

depends on the state vector ( )x t . Since ( ) 0V x >  and ( ) 0V x <�  in { }0D − , the equilibrium 

point 0x =  is locally asymptotically stable, thus concluding the proof. � 

 

In [Guerra & Bernal, 2009], a new approach is proposed to overcome the difficulty mentioned 

in Remark 3.1 via a local approach, which  has allowed to obtain a better region of attraction 

(local stability). Taking into account all the information contained in the membership 

functions definition, 
z

P�  is developed as follows: 

 

( )

1 1 1 1

1 1 1 11 1

.k

j j

T pr r r
i i

z i i i k i

i i i k k

kp pp pr r
ij j

i j k i i k i

i k i kj jk k
j k

h h
P h P zP z P

z z

w
w z z P w z P

z z

= = = =

= = = == =
≠

∂ ∂� �
= = =� 	

∂ ∂A B

� �
∂� �∂ � 	= =� 	 � 	∂ ∂ � 	A B

A B

� � ��

�� ��∏ ∏

�� � �

� �

  (3.7) 
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In order to reconstruct the membership functions, each k  summand is multiplied by 

( )1 1
k k

k k

i i
w w+ − = , expression (3.7) gives: 

 ( )
1 1 1 1

1k

k j k j

k p ppr
i k j k j

z i i i i k i

i k j jk
j k j k

w
P w w w w z P

z= = = =
≠ ≠

� �
∂ � 	= + −

� 	∂ � 	
A B

�� ∏ ∏� �

 

Knowing that 
1

j

p
j

i i

j

h w
=

= ∏ , ( )
1 1

: 1
k j j

p p
k j j

i i

j j
j k

h h w w wµ µ µ
= =
≠

∃ = − =∏ ∏  where k k

k k

i

k k

w w

z z

µ∂ ∂
= −

∂ ∂
, 0

k
i = , 

1
k

µ = , then 
z

P� can be rewritten as: 

 ( )( ) ( )( ) ( ) ( )( )
1 2

0 0

, , , ,
1 1 1 1

0k

k kp pr r

z i i k ki k i k g k g k

i k kk k
i

w w
P h h P P z h P P z

z z
αµ µ α α

α= = = =
=

∂ ∂
= + − = −

∂ ∂
�� ��� � �  (3.8) 

where ( ) ( ) ( )1 1

1 , 1 / 2 2 1 1 mod 2p k p k p kg kα α α+ − + − −� �= − × + + −� �  and ( ) ( )2 1, , 2 p k
g k g kα α −= + , 

� �� �  being the floor function. 

Considering the premise vector as a linear combination of the states, i.e., ( ) ( )z t Lx t=  with 

p nL ×∈� . This assumption preserves the approximation capabilities of T-S models obtained 

by sector nonlinearity approach [Tanaka & Wang, 2001] while allowing to write  

 ( ) ( )
1 1 1

n r n

k z k k
z LA x h LA xγ β β γγ γ

γ β γ= = =

= =� ���  (3.9) 

 

Substituting (3.9) in (3.8) the following is obtained: 

 ( ) ( ) ( )( )
1 2

0

, ,
1 1 1 1

kpr r n

z g k g kk
k k

w
P h h x LA P P

z
α β γ β α αγ

α β γ= = = =

∂
= −

∂
�����  (3.10) 

 

Assuming, now, that 0

k

k

k

w
x

z
γ γλ

∂
≤

∂
, 0

kγλ > , for { }1, ,k p∈ �  and { }1, ,nγ ∈ � , non-

quadratic Stability conditions are resumed in the following theorem: 

 

Theorem 3.2: [Guerra & Bernal, 2009] 

If there exist symmetric matrices 0
i

P > , { }1, ,i r∈ � , such that LMIs 
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{ } { }
{ }

{ }

2

0, 1, , , 1, , 2

( , ) 1, , , ,2
0,

1 1, ,2 ,

m p n

m m m

p n

r m

r

r m

αα

αα αβ βα

α

α β α β

×

×

ϒ < ∈ ∈

∈ ≠
ϒ + ϒ + ϒ <

− ∈

� �

�

�

 (3.11) 

( ) ( ) ( ) ( )( )
1 2, ,

1 1

1
m
k

p n
dm T

k g k g kk
k

P A A P LA P P
γ

αβ α β β α γ β α αγ
γ

λ
= =

ϒ = + + − −��  hold with m

kd γ  defined from 

the binary representation of ( )
( )1

111
1 2 2

p nm m m

pn p n
m d d d

× −

−
− = + × + + ×�  and ( )1 ,g kα , ( )2 ,g kα  

defined as in (3.7), then ( )x t  tends to zero exponentially for any trajectory satisfying (3.1) in 

the outermost Lyapunov level contained in 0

,

:
k

k

k k

w
R x x

z
γ γ

γ

λ
C �∂D D

= ≤E �
∂D DF �

E . 

 

Remark 3.2: Theorem 3.2 provides non-quadratic Stability conditions which are generally 

local since they apply for the outermost Lyapunov level in region R , which is an estimation 

of the region of attraction of T-S model (3.1). As for the original nonlinear model, R C∩  is 

an estimation of its region of attraction (recall C is the compact on which the T-S model 

exactly represents the original one) [Tanaka & Wang, 2001]. 

Remark 3.3: The quadratic case is included in this approach, provided the same relaxation, 

due to the fact that if a quadratic solution holds then conditions of Theorem 3.2 are satisfied 

with 
i

P P= . This is direct from expression of m

αβϒ  as 
i

P P= , whatever are the 
kγλ  it results 

in: m T
PA A Pαβ β βϒ = + , therefore (3.11) exactly corresponds to the quadratic case conditions. 

Remark 3.4: Inequalities in (3.11) are LMIs since 0
kγλ >  are given. Note that if conditions 

(3.11) of Theorem 3.2 are satisfied, we know that local stability exists, i.e. R ≠ ∅  and there 

exists sufficiently small 0
kγλ > . Therefore, if the initially chosen 

kγλ do not satisfy (3.11), 

quick algorithms can be used. For example, a simple bisection by successively dividing 
kγλ  

by a common value 0λ >  comes at hand [Guerra & Bernal 2009]. 

 

Consider the fact that any nonlinear dependence of ( )( )z x t  can be written in terms of ( )x t  

allows us to alternatively write 
z

P�  as: 
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( ) ( )( )

( ) ( ) ( )( )

1 2

1 2

0

, ,
1 1

0

, ,
1 1 1 1 1

kpr

z kg k g k
k k

kpr r n n

g k g kv
k v v

w
P h P P z

z

w
h h x A P P

x

α α α
α

α β γ β α αγ
α β γ

= =

= = = = =

∂
= −

∂

∂
= −

∂

��

�����

� �

 (3.12) 

with ( ) ( ) ( )1 1

1 , 1 / 2 2 1 1 mod 2p k p k p kg kα α α+ − + − −� �= − × + + −� �  and ( ) ( )2 1, , 2 p k
g k g kα α −= + . 

In order to clarify the way to obtain the  expression of 
z

P� , consider a T-S model with 4 rules, 

whose MFs are based on functions ( )1

0 1w x , ( )2

0 2w x , ( ) ( )1 1

1 1 0 11w x w x= − , and 

( ) ( )2 2

1 2 0 21w x w x= −  as 1 2

1 0 0h w w= , 1 2

2 0 1h w w= , 1 2

3 1 0h w w=  and 1 2

4 1 1h w w= . Therefore, 

expression (3.12) can be obtained from 
z

P�  as follows: 

  

( )

1 2

2 1

14 4 2 4 2

1 1 1 1 1 1

1 214 2 4
2 1

1 2

1 1 11 1 2

1 2
2 10 0
0 1 0 2

1 2

j

k

j

ji
z i i k i i j k i

i i k i k jk k

k

i i ij

i k i i i i

i k ijk
j k

h
P h P x P w x x P

x x

w w w
w x P w x w x P

x x x

w w
w x w x

x x

= = = = = =

= = ==
≠

� �∂ ∂
= = = � 	

∂ ∂ A B

� � � �∂ ∂ ∂� 	= = +� 	� 	 � 	∂ ∂ ∂� 	 A BA B

� �∂ ∂
= +� 	

∂ ∂A B

� �� �� ∏

�� �∏

�� � �

� � �

� �
1 2

2 10 1
1 1 1 0 2 2

1 2

21 1 2
2 1 2 101 1 1
0 1 1 2 3 1 1 1 2 4

1 2 1 2

w w
P w x w x P

x x

ww w w
w x w x P w x w x P

x x x x

� �∂ ∂
+ +� 	

∂ ∂A B

� � � �∂∂ ∂ ∂
+ + + +� 	 � 	

∂ ∂ ∂ ∂A B A B

� �

� � � �

 

Since 0 1

k k

k k

w w

x x

∂ ∂
= −

∂ ∂
, the previous expression is rewritten as  

 ( ) ( ) ( ) ( )
1 2 1 2

2 1 2 10 0 0 0
0 1 1 3 0 2 1 2 1 1 2 4 1 2 3 4

1 2 1 2

z

w w w w
P w x P P w x P P w x P P w x P P

x x x x

∂ ∂ ∂ ∂
= − + − + − + −

∂ ∂ ∂ ∂
� � � � �  

Multiplying each term 0

k

k

w

x

∂

∂
 by ( )0 0 0 11 1k k k kw w w w+ − = + = , it gives 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
1 2 1 2 1 2 1 20 0
0 0 1 0 1 1 3 0 0 0 1 2 1 2

1 2

1 2
1 2 1 2 1 2 1 20 0
0 1 1 1 1 2 4 1 0 1 1 2 3 4

1 2

1 2

0 0
1 3 1 1 3 1 2 2 1 2

1 2

1 2

0 0
2 4 1 2 4 3 4 2 3

1 2

z

w w
P w w w w x P P w w w w x P P

x x

w w
w w w w x P P w w w w x P P

x x

w w
h h x P P h h x P P

x x

w w
h h x P P h h x P

x x

∂ ∂
= + − + + −

∂ ∂

∂ ∂
+ + − + + −

∂ ∂

∂ ∂
= + − + + −

∂ ∂

∂ ∂
+ + − + +

∂ ∂

� � �

� �

� �

� � ( )4P−
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from which expression (3.12) is obtained by introducing ( )
4 2 2

1 1 1

k v
v

x h A xβ β γγ
β γ= = =

=� ���  and 

regrouping terms as shown below: 

 

 

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

( ) ( )( )
1 2

1

0
1 1 3 1 3 2 4 2 4

1

2

0
2 1 2 1 2 3 4 3 4

2

4 2
0

, ,
1 1

z

k

k g k g k
k k

w
P x h h P P h h P P

x

w
x h h P P h h P P

x

w
h x P P

x
α α α

α = =

∂
= + − + + −

∂

∂
+ + − + + −

∂

∂
= −

∂
��

� �

�

�

  

 ( ) ( ) ( )( )
1 2

4 4 2 2 2
0

, ,
1 1 1 1 1

k

z g k g kv
k v v

w
P h h x A P P

x
α β γ β α αγ

α β γ= = = = =

∂
= −

∂
������  (3.13) 

LMIs conditions for stability analysis can now be sorted, coming back to (3.4) and using 

(3.12), the following conditions can be obtained: 

 ( ) ( ) ( )( )
1 2

0

, ,
1 1 1 1 1

0
kpr r n n

T

z z z z g k g kv
k v v

w
P A A P h h x A P P

x
α β γ β α αγ

α β γ= = = = =

∂
+ + − <

∂
�����  (3.14) 

Assuming 0

k

k v

v

w
x

x
γ γλ

∂
≤

∂
 for any 1, ,k p= � , , 1, ,v nγ = � , property 5, (2.27) can be 

repeatedly applied to (3.14) in order to obtain the following sufficient conditions: 

 ( ) ( ) ( ) ( )( ) 2

1 2, ,
1 1 1

1 0, 1, , 2
m
k v

p n n
dm T pn

zz z z z z k v z g z k g z kv
k v

P A A P A P P m
γ

γ γ
γ

λ
= = =

ϒ = + + − − < =��� �  

  (3.15) 

with m

k vd γ  defined from the binary representation of ( )

2 1

1111
1 2 2m m m pn

pnn pn n
m d d d

−

−
− = + × + + ×� . 

Several sum relaxation scheme can be applied to double-sum expression (3.15). Using 

relaxation (2.32) the following alternative formulation of Theorem 3.2 can be stated: 

 

Theorem 3.3: [Sala & al, 2010] 

 If 0T

i i
P P∃ = > , { }1, ,i r∈ � , such that    

 

{ } { }
( ) { }

{ }

2

2

2

0, 1, , , 1, , 2

, 1, , , ,2
0,

1 1, ,2 ,

m p n

m m m

p n

r m

r

r m

αα

αα αβ βα

α

α β α β

×

×

ϒ < ∈ ∈

∈ ≠
ϒ + ϒ + ϒ <

− ∈

� �

�

�

 (3.16) 
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( ) ( ) ( ) ( )( )
1 2, ,

1 1 1

1
m
k v

p n n
dm T

k v g k g kv
k v

P A A P A P P
γ

αβ α β β α γ β α αγ
γ

λ
= = =

ϒ = + + − −��� hold with m

k vd γ  defined from 

the binary representation of ( )

2 1

1111
1 2 2m m m pn

pnn pn n
m d d d

−

−
− = + × + + ×�  and ( )1 ,g kα , ( )2 ,g kα  

defined as in (3.12), then ( )x t  tends to zero exponentially for any trajectory satisfying (3.1) 

in the outermost Lyapunov level { }: T

o z
R x x P x c= ≤  contained in the modeling region 0C  and  

0
0

, ,

:
k

k v

k v v

w
R x x

x
γ γ

γ

λ
C �∂D D

= ≤E �
∂D DF �

E . 

 

Proof: It follows immediately from the preceding discussion that established that LMIs (3.16) 

imply ( ) 0V x <� . � 

Remark 3.5: LMI conditions in Theorem 3.3 are local. They test whether T-S model (3.1) is 

stable in ( )0 0 0R C R⊆ ∩  or not. Nevertheless, a different approach allows the same 

conditions to be used to estimate a region of attraction in 0C  if 0T

z z z z
P A A P+ < . To do so, 

substitute any constant 
k vγλ  in (3.16) by 

k vγλ λ×  and search via bisection for the maximum 

0λ >   that renders (3.16) feasible in 0C . Once the maximum value λ  has been found, it 

means that T-S model (3.1) and its original nonlinear equivalent model (3.1) are stable in the 

outermost Lyapunov level { }: T

o z
R x x P x c= ≤  contained in 0C  and 

0
0

, ,

:
k

k v

k v v

w
R x x

x
γ γ

γ

λ λ
C �∂D D

= ≤ ×E �
∂D DF �

E . 

Remark 3.6: As expected, Theorem 3.3 reduces to the quadratic case if 
i

P P= , i.e., if there is 

a common quadratic Lyapunov function. In other words, the quadratic case is included in the 

new approach. 

 

3.3. Improvements on local non-quadratic stability of T-S models: iterative 

remodeling 

 

This approach illustrates the way to get progressively better estimates of the region of 

attraction: if a nonlinear model is available, an algorithm alternating closer modeling areas 
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and bigger estimates is employed; if not, an algorithm alternating closer polytopes (thus 

modifying the T-S model matrices) and bigger estimates is applied. 

Following the discussion in Remark 3.5, further improvements can be done to augment the 

estimation of the stability domain in case 0 0R C⊂ . The intuition behind the method is that a 

modelling area tighter than 0C  but including estimation 0R  can lead to better estimates since 

the model matrices will be “closer”. Two ways of achieving this goal are proposed. 

Algorithm 1:  

Step 0: Initialize 1k = .  

Step 1: Define a polyhedral region 1 1:
k k k k

C C C R− −⊃ ⊃  and get the maxima and minima of 

MFs ,
i i i

h h h� �∈ � �  in 
k

C . With these bounds, use results in [Sala & Ariño, 2006] to get new 

matrices
( )k

jA , 1, ,
k

j r= �  such that in region 
k

C : ( )

1

r
k

j ji i

i

A v A
=

=� , ( )( )
1

kr

i j ji

j

h z t vµ
=

=� , 

( )( )
1

1
kr

j

j

z tµ
=

=� , ( )( ) 0j z tµ ≥ . These matrices are “closer” than those in the original 

polytope and are likely to provide (once results for stability in Theorem 3.3 are reapplied) 

larger bounds 
k vγλ λ×  leading to greater 

k
R  and 

k
R . Note that only vertices 

ji
v  are needed to 

calculate 
( )k

jA .  

Step 2: If more refinement is needed, increase k  in 1 and go to Step 1, if not, end the 

algorithm. Obviously, each iteration adds progressively smaller refinements to the previous 

estimations of the region of attraction. The original stability domain is augmented by the 

cumulative refinements. 

Algorithm 2: (Only if the nonlinear model is available).  

Step 0: Initialize 1k = .  

Step 1: Define a new modelling compact region 1 1:
k k k k

C C C R− −⊃ ⊃  and get a new T-S 

model representation by sector nonlinearity approach, taking into account the new maxima 

and minima of the model nonlinearities to define the MFs. Reapply the results on 

stability/stabilization to the new set of matrices 
( )k

i
A , 1, ,i r= �  thus obtained. As in the 

previous case, these matrices are “closer” than those in the original polytope and are likely to 

provide larger bounds 
k vγλ λ×  and greater regions 

k
R  and 

k
R .  
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Step 2: If more refinement is needed, increase 1k k← +  and repeat Step 1, if not, otherwise 

stop the algorithm. As with the first algorithm, this iterative procedure also leads to a limit in 

the estimation of the region of attraction. 

Remark 3.7: Note that the algorithms above circumscribe themselves to estimates in the 

original modelling region 0C , so their progressively better stability domains are also valid for 

the original nonlinear models the T-S models come from. 

Remark 3.8: Over the quadratic case, Theorem 3.3 increases the number of LMI constraints 

from 1r +  to 
22 2 pn

r r+ × . 

3.4. Examples 

This section presents two examples: the first one illustrates how algorithm 1 allows “closer” 

matrices to be obtained for a given T-S model via the procedures detailed in [Sala & Arino, 

2006], thus increasing the size of the stability domain; the second example shows how 

algorithm 2 can be employed to recast a given nonlinear model as a “tighter” T-S one, thereby 

augmenting the size of the region of attraction. 

Example 3.1:  

Consider the following T-S model whose matrices are taken from [Tanaka & al, 2003]: 

 ( ) ( ) ( )( )
2

1

( )z i i

i

x t A x t h z t A x t
=

= =��  (3.17) 

With 

 1

5 4

1 2
A

− −� �
= � �− −� �

, 2

2 4

20 2
A

− −� �
= � �−� �

, 

 ( ) ( )1 2z t x t= , 1 3

1 0 20.5 +0.5h w x= = − , and 1 1

2 1 01h w w= = −  defined in the compact region 

{ }0 : 1
i

C x x= ≤ . 

Quadratic stability fails for T-S model (3.17). As indicated in Remark 3.5, conditions (3.16) 

can be used to estimate the region of attraction because 0T

z z z z
P A A P+ <  holds for some 

0
i

P > , 1,2i = . To do so, initial values 
3

2
k vγλ =  for 1k = , 1,2γ = , and 2v =  can be 

calculated from the fact that 1ix ≤  and 
1 1

20 1
2

2 2

3 3

2 2

w w
x

x x

∂ ∂
= = ≤

∂ ∂
; otherwise 0

k vγλ = . 
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Moreover, from (3.12) ( ) ( )1 11,1 2,1 1g g= = , ( ) ( )2 21,1 2,1 2g g= = , and m

k vd γ  are the digits of 

the binary representation of 2 3

122 121 112 1111 2 2 2m m m m
m d d d d− = + × + × + × , for example the 

quadruplet ( )1,0,0,0  for 2m = . With these values, Theorem 3.3 and bisection, stability of T-

S model (3.17) is established for the region of attraction 
o

R  whose borders are shown by a 

closed solid line in Figure 3.1. 

At the same figure, the different borders of region 0R  are shown with dashed lines and the 

borders of 0C  are shown with dotted lines. 

Algorithm 1 can be used to augment the stability domain
o

R . To begin with, define the 

encapsulated regions { }: 1 0.03
k i

C x x k= ≤ − , 1,2k = , i.e. 0 0k
C C R⊃ ⊃ . In 1C  the 

maximum and minimum of MFs 1h  and 2h  are given by 0.9563 and 0.0437. Following the 

procedures in [Sala & Arino, 2006], the new vertices 
ji

v  can be written as 11 0.9563v = , 

12 0.0437v = , and 21 0.9563v = , 22 0.0437v = , from which the new matrices 
( )1

jA , 1, 2j =  are 

calculated, so Theorem 3.3 can be reapplied. 

In Figure 3.2 all estimations 
i

R , 0,1, 2i =  are compared (concentric pseudo-ellipsoids) as well 

as all the borders of 
i

C , 0,1, 2i =  (concentric rectangles). Note that as 
i

R  gets larger, 
i

C  gets 

smaller, which reflects the fact that these algorithms reach a limit. Indeed, the last estimation 

2R  corresponds to a quadratic one since matrices 
( )2

jA , 1, 2j =  are getting “close” enough 

such that quadratic conditions are feasible (i.e., λ → ∞ ); that explains the fact that 2R  is only 

bounded by 2C , since 2

2R = � .. 
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Figure 3.1: First estimation of the region of attraction for T-S model (3.17). 
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Figure 3.2: Comparing estimations of the stability domains of T-S model (3.17). 

 

Example 3.2: 

 Consider the following nonlinear model: 

 

3 2 3 2 3
1 1 1 1 2 1 2 2 2

3 2 2 3
2 1 2 1 2 1 2

3 0.275 0.55 0.0125 2 0.25

0.125 0.9 0.25 0.1313

x x x x x x x x x

x x x x x x x

� �− + + − + +� �
= � �� �

− − + −� � � �

�

�
 (3.18) 
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The stability properties of (3.18) in 2ix ≤ , 1,2i =  are to be investigated via algorithm 2. To 

this end, we define { }: 2 0.02
k i

C x x k= ≤ − , 0,1, 2k =  as the encapsulated regions in which 

the following T-S model representations of (3.18) are defined via sector nonlinearity 

methodology. Recall also that these models are not approximations, but equivalent to the 

nonlinear one in 
k

C : 

 ( ) ( ) ( )( )
4

1

( )z i i

i

x t A x t h z t A x t
=

= =��  (3.19) 

with 1 0m = , ( )
2

1 2 0.02M k= − , 2 0m = , ( )
2

2 2 0.02M k= − , ( ) ( )1 1z t x t= , ( ) ( )2 2z t x t= , 

2
1 1 1
0

1 1

M x
w

M m

−
=

−
, 

2
2 2 2
0

2 2

M x
w

M m

−
=

−
, 1 1

1 01w w= − , 2 2

1 01w w= − , 1 2

1 0 0h w w= , 1 2

2 0 1h w w= , 1 2

3 1 0h w w= , 

1 2

4 1 1h w w= , and the following model matrices 

 

 
1 2 1 2 2

1

1 1 1 2

3 0.275 0.55 0.0125 2 0.25

0.125 0.9 0.25 0.1313

m m m m m
A

m m m m

− + + − +� �
= � �− − + −� �

 

 
1 2 1 2 2

2

1 1 1 2

3 0.275 0.55 0.0125 2 0.25

0.125 0.9 0.25 0.1313

m M m M M
A

m m m M

− + + − +� �
= � �− − + −� �

 

 
1 2 1 2 2

3

1 1 1 2

3 0.275 0.55 0.0125 2 0.25

0.125 0.9 0.25 0.1313

M m M m m
A

M M M m

− + + − +� �
= � �− − + −� �

 

 
1 2 1 2 2

4

1 1 1 2

3 0.275 0.55 0.0125 2 0.25

0.125 0.9 0.25 0.1313

M M M M M
A

M M M M

− + + − +� �
= � �− − + −� �

 

Note that region 0C  coincides with the region of interest and its resulting T-S model (equation 

(3.19) with 0k = ) can be found in [Guerra & Bernal, 2009]. Quadratic stability fails for this 

model as well as for those in 1C  and 2 1 0C C C⊂ ⊂ . Since Theorem 3.1 conditions 

0T

z z z z
P A A P+ <  hold for some 0

i
P > , 1,2i = , Theorem 3.3 can be applied to obtain a first 

estimation of the stability domain in 0C , as suggested in Remark 3.5. Note also that 

expression of 
z

P�  is similar to (3.13). 
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Since 
1 1

0 1 1

1 12

w x w

z z

∂ ∂
= − = −

∂ ∂
, 

2 2

0 2 1

2 22

w x w

z z

∂ ∂
= − = −

∂ ∂
 and 2ix ≤  for any 

k
C , 2

k vγλ =  is a valid set 

of values to hold inequality 0

k

k v

v

w
x

x
γ γλ

� �∂
≤� 	

∂A B
, { }, , 1, 2k vγ ∈ . 
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Figure 3.3: Estimates of the region of attraction of T-S model (3.19) 

 

Region 0C  is denoted in Figure 3.3as the interior of a solid-line rectangle, while 0R  is the 

interior of a solid-line pseudo-ellipsoid.  

To ameliorate this estimate, algorithm 2 asks for nonlinear model (3.18) to be recast as a T-S 

one in a region 1 0 1 0:C C C R⊃ ⊃ , which is consistent with the definition of 
k

C  given above. 

Therefore, applying algorithm 2 for 1,2k =  the regions of attraction 1R  and 2R  shown in 

Figure 3.3 with dashed and dotted-line pseudo-ellipsoids, respectively, are obtained. Their 

corresponding modelling regions 1C  and 2C  are depicted in the same figure with dashed- and 

dotted-line rectangles, respectively. As expected, they increase the quality of the estimations 

for the region of attraction. In addition, four model trajectories have been showed to illustrate 

the behaviour of the equilibrium point at the origin (solid lines with arrows pointing to the 

origin).  
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3.5. Conclusion 

In this chapter, a way to escape the quadratic framework for stability analysis has been 

presented. This approach is based on reducing the global stability goals to find local 

conditions that allow estimating the region of attraction via LMIs while taking into account 

MFs’ information and Tensor product structure. The results provide an answer to problems 

that, otherwise, were previously unsolved for T-S models. Improvements of this approach 

based on fuzzy Lyapunov functions have been proposed in the second section. These 

ameliorations are based on taking advantage of the possible gaps between a first estimation of 

the region of attraction and the modeling area, by recasting the T-S model a) from a 

redefinition of its MFs leading to new model matrices, or b) from a redefinition of the T-S 

model out of the nonlinear one, when available. Some illustrative simulation examples have 

been included that clearly show the advantages of the proposed method. 

.
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4. Chapter 4: Non-quadratic stability of 

T-S models: polynomial fuzzy lyapunov 

function 

�

�

Synopsys 

his chapter presents a polynomial fuzzy modeling for nonlinear systems approach based 

on fuzzy polynomial Lyapunov function, SOS Stability conditions are formulated which 

may be solved by the mean of the sum of squares (SOS) approach. Parts of this chapter are 

exposed in paper I contributed [Bernal & al, 2011]. 

T
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4.1. Introduction 

 

 In this chapter, a new contribution dealing with the stability of continuous-time 

polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov 

functions. Based on a Taylor-series approach which allows a polynomial fuzzy model to 

exactly represent a nonlinear model in a compact set of the state space, it is shown that a 

refinement of the polynomial Lyapunov function so as to make it share the fuzzy structure of 

the model proves advantageous. Conditions thus obtained are tested via SOS tools which are 

efficiently solved by semi-definite programming algorithms [Prajna & al, 2004a, 2004b]. 

  Polynomial fuzzy (PF) models have established a new paradigm that overcomes many 

of the aforementioned problems of conservativeness since they are convex combinations of 

polynomial models instead of convex combinations of linear ones [Tanaka & al, 2009a], 

[Tanaka & al, 2009b]. Moreover, conditions derived under this new framework can also be 

checked with semi-definite programming using Sum-of-Squares (SOS) tools. 

This new approach is based on two recent works: the first one [Sala, 2009], [Sala & 

Arino, 2009] provides a systematic way of obtaining exact polynomial fuzzy representations 

of nonlinear models via a Taylor-series approach, thus generalizing sector nonlinearity 

approach; the second one [Guerra & Bernal, 2009], [Bernal & Guerra, 2010] shows how to 

escape from the quadratic framework by combining local analysis and fuzzy Lyapunov 

functions for continuous-time T-S models. Since local analysis can be easily included via 

Lagrange multipliers and the Positivstellensatz argumentation in the polynomial framework 

[Prajna, 2004a], [Sala & Arino, 2009], the use of more general Lyapunov functions such as 

the polynomial fuzzy ones is investigated in this section as a generalization of the one 

employed in the previous section. 

4.1.1. Polynomial fuzzy modeling and notations 

 

Consider a nonlinear model ( ) ( )x t f x=�  having the origin as an equilibrium point, and 

assume that it can be expressed in the form: 

 ( ) ( )( ) ( )( ) ( )( )1

1 , , ,x t h z x h z x x t
γ

γπ=� �  (4.1) 

being ( ) : n nγπ +⋅ →� �  a vector of polynomial functions, ( ) n
x t ∈�  the state vector, 

( )( )z x t
γ∈�  another vector of polynomial functions of the state (denoted as the premise 
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vector), and a set of functions ( ) :k
h ⋅ →� � , { }1, ,k γ∈ �  representing possible non-

polynomial nonlinearities in (4.1), such as trigonometric, exponential, etc., functions 

nonlinearities ( )k
h ⋅  are assumed bounded and smooth in a region of interest given by a 

compact set 0Ω ⊃ . Any compact region of interest Ω can be included into a semi-algebraic 

set with a piecewise polynomial boundary (for instance, a ball). This fact will be later used for 

SOS relaxations. 

For instance, a model equation ( )( )
2

2

1 1 2 2 1sinx x x x x= − +�  can be expressed in the above form 

by considering ( ) 2

1 2 2 1, ,h x x h x xπ = + , ( ) ( )sinh z z= , and 2

1 2z x x= − . As discussed below, if 

functions ( )k
h z  are d

C 2 they admit a representation as a fuzzy combination of polynomials 

of degree d, to be denoted as “polynomial fuzzy” model. The case 1d =  amounts to the well-

known Takagi-Sugeno models. 

Once a nonlinear system in the above general form is assumed, fuzzy techniques will be used 

to analyse its stability. The first step is converting the system to a fuzzy model (a polynomial 

fuzzy one, in fact). In order to carry out such conversion, consider a particular non-

polynomial nonlinearity ( )h z  as those defined above (subscripts and arguments are omitted 

for simplicity). Employing the polynomial fuzzy modeling described in [Sala, 2009], [Sala & 

Arino, 2009] (which is a generalization of sector nonlinearity in [Tanaka & Wang, 2001]), 

this function can be rewritten as a convex sum of polynomials. Indeed, in order to do so,  let 

us denote the d-th degree Taylor approximation of ( )h z  as ( )
( ) ( )1

0

0

!

id
i

d

i

h
h z z

i

−

=

=� , d ∈� , the 

residual term ( )
( ) ( )d

d d

h z h z
T z

z

−
= , with ( ) ( )

0
0 limd d

z
T T z

→
= , and the bounds ( )sup

d d
z

T T z
∈Ω

= , 

( )inf
d d

z
T T z

∈Ω
= , assuming the arbitrarily chosen degree d is low enough such that the required 

derivatives exist and ( )
d

T z  is continuous.   

This notation allows defining the pair of MFs:  

 ( )
( )

0

d d

d d

T z T
w z

T T

−
=

−
, ( ) ( )1 01w z w z= − , ( ) ( )0 1, 0w z w z ≥  (4.2) 

It is straightforward to see that the nonlinearity ( )h z  can now be written as  

���������������������������������������� �������������������

2 d
C : first through th

d derivatives are continous 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0 0 1 1

0

i i

i

h z w z q z w z q z w z q z
=

= + =� , (4.3) 

with two vertex polynomials of degree d given by:  

 ( ) ( )0

d

d dq z h z T z= +   

 ( ) ( )1

d

d d
q z h z T z= +  

 For details, see [Sala, 2009], [Sala & Arino, 2009]. On the sequel, arguments will be omitted 

when convenient for brevity, for instance, 
i

w  will stand for ( )iw z . Basically, replacing (4.3) 

into the polynomial π  in (4.1) will yield the overall fuzzy polynomial model. However, if the 

polynomial π  is not linear in ( )k
h ⋅ , say it appears with degree 

k
d , it gives rise to multi-

dimensional  (nested) tensor-product convex sums. Indeed, in that case, every function ( )k
h ⋅ , 

{ }1, ,k γ∈ �  can be written as the product of its 
k

d  elementary convex sums of the form (4.3)

. Thus, expression (4.1) can be rewritten as the following PF model: 

 

( )
1 2

1 1 2 2

1 2

1 2 1 2

1 2

1 1 1
1 1 2 2

0 0 0

1 1 1
1 2

0 0 0

, , , ,

       
p p

p p

dd d

i i i i i i

i i i

p

i i i i i i

i i i i

x t w q w q w q x

w w w w

γ

γ γ

γ

γ γπ
= = =

= = = ∈

� �� �� � � �
� 	= � 	� 	 � 	 � 	� 	A B A B A BA B

= =

� � �

�� � � i iq q�

� �

� �
�

 (4.4) 

with :  

• p  being the sum of the degrees in ( )π ⋅  of each of the γ  nonlinearities in (4.1), i.e., 

1j

p d
γ

γ
=

=� .  

• ( ) { } { }{ }1 2, , , : 0,1 , 1, ,
p p j

i i i i j p= = ∈ ∈i � ��  is the set of all p-bit binary numbers, 

being its elements, i , multidimensional index variables whose k-th bit is denoted as 
k

i . 

• ( )
1 2

1 2

1
p j

p
p j

i i i i j

j

w w w w w z
=

= = ∏i �  is a product of elementary MFs obtained from those 
i

w  

describing each nonlinearity in (4.3) ( 
i

h  for T-S models in section 3.2). 

• and ( )xiq  is a polynomial vector of the proper size.  
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Example 4.1:  

To illustrate the modelling process above, consider the model  

 2sin ( ) xx x e x−= +�  

It will have a polynomial model for 
1 1

1

1
1 1

0

sin( ) i i

i

x w q
=

=� , and another one for 
2 2

2

1
2 2

0

x

i i

i

e w q
−

=

=� , 

giving rise to an overall model in the form:  

 
1 2 3 1 2 3

1 2 3

1 1 1
1 2 1

0 0 0

i i i i i i

i i i

x w w w
= = =

=��� q� ,      with 
1 2 3 1 3 2

1 1 2

i i i i i iq q q x= +q  

Defining 3 1 1

i i i
w w w= =  yields an expression in the form (4.4), i.e., a three-dimensional tensor 

product combination of vertex polynomials. 

Recall that PF model (4.4) is equivalent to the original nonlinear model (4.1) in the compact 

set Ω  of the state space including the origin; moreover, T-S models are a subclass of the PF 

ones. A PF model is said to be of order d if the maximum order found in its Taylor 

approximations is d. This procedure generalizes those in [Arino & Sala, 2007], [Bernal & 

Guerra, 2010] to the polynomial case. From the modelling procedure, it is clear that many of 

the 2-rule memberships wi in (4.4) may be repeated, as in the above example, this fact can be 

used to remove conservativeness (applying the multi-sum relaxations in chapter 2). This issue 

will be disregarded in the sequel, for simplicity.  

Once a polynomial fuzzy model has been obtained, consider now the following polynomial-

fuzzy Lyapunov function candidate: 

 ( ) ( ) ( )
1 2 1 2

1 2

1 1 1
1 2

0 0 0
p p

p p

p

i i i i i i

i i i

V x w w w p x w p x
= = = ∈

= =�� � � i i

i

�� �
�

 (4.5) 

where ( )p x ∈i �  are polynomials to be determined, and the MFs 
j

j

i
w  are those in the PF 

model (4.4). This function is a generalization of the fuzzy Lyapunov function in [Blanco & al, 

2001], [Tanaka & al, 2003] where ( )p xi  are restricted to be homogeneous quadratic 

polynomials in the state. 

Asking this function to be a valid Lyapunov candidate means to ask ( )V x  to be positive and 

radially unbounded; since 0w ≥i , it is enough to guarantee ( ) 0p x ≥i  to have ( ) 0V x ≥ . As 

naturally follows from the polynomial nature of the PF model and the PFLF, positiveness will 
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be tested by the sum-of-squares condition, i.e., ( )p xi  is SOS �  ( ) 0p x ≥i . Radial 

unboundedness is achieved by replacing zero in the right-hand side with an arbitrary radially-

unbounded polynomial, such as ( )2 2

1 2x xε + , with 0ε >  an arbitrary scalar. In the next 

section, a solution is proposed to the problem of deriving conditions to make (4.5) a valid 

PFLF for PF model (4.4) incorporating locality and membership-shape information (bounds 

on partial derivatives).  

 

4.1.2. Stability conditions: SOS formulation 

�

Note that, as (4.4) has the structure in assumption (2.7), the time-derivative of wi  in (4.4) can 

be rewritten as shown in the previous section or  [Guerra & Bernal, 2009], [Bernal & Guerra, 

2010]: 

 ( ) ( )
1 1 11 1

k

j j

kp pp p p
ij j

k i j k i j k

k k kj jk k k
j k

ww w
w z z w z z w z z

z z z z= = == =
≠

� �
∂� �∂ ∂ ∂ � 	= = = =� 	 � 	∂ ∂ ∂ ∂ � 	A B

A B

� � �∏ ∏i i
i
� � � � � , 

where the fact that each factor in wi  depends on only one premise variable has been used. 

Multiplying by ( )1 1
k k

k k

i i
w w+ − =  gives 

 ( ) ( )( )i i i
1 11 1

1k k

k j k j

k kp pp p
i ik j k j

i i i i k kk
k kj jk k

j k j k

w w
w w w w w z w w z

z z= == =
≠ ≠

� �
∂ ∂� 	= + − = +

� 	∂ ∂� 	
A B

� �∏ ∏� � � , (4.6) 

where ( )ki  is defined as the p-bit binary index resulting from changing the k -th bit of i  to 

its complement ( Note that if we define α  as the integer representation of the set of binary 

digits i , we would be in the setting of the previous chapter where functions ( )1 ,g kα , 

( )2 ,g kα  were used for an equivalent purpose, details are omitted for brevity). 

In order to clarify the new notation, consider  

 ( ) ( ) ( ) ( )1 2 3

1 1 0 2 1 31,0,1
w w w z w z w z= =i .  

To obtain expression (4.6) the expression 

( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

21 33
1,0,1 2 3 1 3 1 201 1

0 2 1 3 1 1 1 1 3 2 1 1 0 2 31,0,1
1 1 2 3

k

k k

w ww w
w z w z w z z w z w z z w z w z z

z z z z=

∂ ∂∂ ∂
= = + +

∂ ∂ ∂ ∂
�� � � � �
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must be written. Omitting arguments, the previous expression can be written as in (4.6) by 

multiplying each summand by the proper term of the form ( )1 1
k k

k k

i i
w w+ − = , i.e.: 

 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

21 3
2 3 1 1 1 3 2 2 1 2 3 301 1
0 1 0 1 1 1 1 0 1 2 1 0 0 1 31,0,1

1 2 3

21 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 301 1
0 0 1 1 0 1 1 1 0 1 1 1 1 2 1 0 0 1 0 1 3

1 2 3

21

01
10,0,1 1,0,1

1

ww w
w w w w w z w w w w z w w w w z

z z z

ww w
w w w w w w z w w w w w w z w w w w w w z

z z z

ww
w w z

z z

∂∂ ∂
= + + + + +

∂ ∂ ∂

∂∂ ∂
= + + + + +

∂ ∂ ∂

∂∂
= + +

∂ ∂

� � � �

� � �

�
( ) ( )( ) ( ) ( )( )

3

1
2 31,0,1 1,1,1 1,0,0 1,0,1

2 3

.
w

w w z w w z
z

∂
+ + +

∂
� �

 

This form as in section 3.2, will allow convex expressions to be recovered on the Lyapunov 

method analysis: taking derivatives of the PFLF in (4.5) along the trajectories of PF model 

(4.4) and taking (4.6) into account gives  

 

( ) ( ) ( )( )

( )( )

1

0

1

        

k

p p

p

kp
i

kk
k k

kp

k k
k k

w
V x w p w p w p w w z p

z

w
w p z p p

z

∈ ∈ =

∈ =

� �∂
= + = + +� 	� 	∂A B

� �∂
= + −� 	

∂A B

� � �

� �

i i i i i i i ii
i i

i i i i
i

� � � � �

� �

� �

�

, (4.7)  

where the straightforward identity ( ) ( )
p p

k k
w p w p

∈ ∈

=� �i ii i
i i� �

 has been used to write the 

rightmost expression.  

Example 4.2:  

Continuing with our previous example, note that according to (4.7), the polynomials 

( )k
p p−i i

 sharing the same MF ( )1,0,1
w w=i  are ( ) ( )1,0,1 0,0,1

p p−  for 1k = , ( ) ( )1,0,1 1,1,1
p p−  for 

2k = , and ( ) ( )1,0,1 1,1,0
p p−  for 3k = . It is important to emphasize that should a stability 

problem have a quadratic solution, these terms will vanish since ,∀i j , p p=i j , thus proving 

the generalization ability behind the proposal in this paper. 

Consider now expressions 

T

k
k

z
z x

x

∂� �
= � 	

∂A B
��  and 

T
p

p x
x

∂� �
= � 	

∂A B
i

i
� �  which are fuzzy polynomials (

k
z  

and pi  are polynomials by assumption and x�  is taken from its PF representation in (4.4)). 

The result of substituting them in (4.7) is: 
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( ) ( )( )

( )( )

0

1

0

1

p p p

p p

TT kp

k

k
k k

TT kp

k

k
k k

w zp
V x w w w p p

x z x

w zp
w w p p

x z x

∈ ∈ = ∈

∈ ∈ =

� �� �∂ ∂∂ � �� �
� 	= + −� 	� 	 � 	� 	� 	∂ ∂ ∂A B A BA BA B

� �� �� �∂ ∂∂� �� 	� 	= + ⋅ −� 	� 	 � 	� 	∂ ∂ ∂A B A BA BA B

� � � �

�� �

i
i l l l l i i

i l l

i
i l l l i i

i l

q q

q q

�
� � �

� �

 (4.8) 

All terms in the above expression are either MFs or polynomials, except possibly for 0

k

k

w

z

∂

∂
. 

The basic idea is that, in the same way as the nonlinearities were fuzzified, 0

k

k

w

z

∂

∂
 can be recast 

again as a convex sum of polynomials, following the polynomial fuzzy modeling technique 

already described in (4.2) and (4.3) [Sala, 2009] and [Sala & Arino, 2009].  

Example 4.3: 

Given a scalar nonlinearity ( ) sinh x x=  in [ ]1,1Ω = − , it is easy to see that  

 ( ) ( )0 00.8414 0.8414 1h x w w= − −   

with 0 10.5942sin 0.5w x= + , from which it follows that  

 0 0.5942cos
dw

x
dx

=   

These functions are all infinitely differentiable in the chosen region of interest [ ]1,1Ω = − . 

The latter one, 0dw

dx
, can also be written as a convex sum of polynomials in Ω , for instance: 

  ( )0
0 00.5942 0.3211 1

dw

dx
µ µ= + −   

With 0 2.1755cos 1.1755xµ = − .  

Actually, polynomials of degree zero have been chosen in this example, but the methodology 

applies to any arbitrary chosen degree. 

Since 1nk
z

x

×∂
∈

∂
�  is assumed to be a polynomial vector, using a PF model of 0

k

k

w

z

∂

∂
, every 

expression 10

k
nk

k

w z

z x

×∂ ∂
⋅ ∈

∂ ∂
�  in (4.8) can be written as 
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 ( ) ( )0

k k

k sk

k
k kk

k

w z
x x

z x
µ

∈

∂ ∂
⋅ =

∂ ∂
� v v

v

r
�

, 1, ,k p= � , (4.9) 

with 
k

s  being the number of possible non-polynomial nonlinearities in 0

k

k

w

z

∂

∂
, and 

1 skk k k

k k k

v v
µ µ µ=v � , ( )

1

0
1ii

kk

k

vv
µ

=
⋅ =� , ( ) 0i

k

k

v
µ ⋅ ≥  being the MFs associated with each modelled 

nonlinearity, and ( ) 1

k

k n
x

×∈vr �  being the resulting polynomial vector. 

Substituting (4.9) in (4.8) yields 

 

( ) ( )( )

( )( ) ( )( )
1

1 1

1

1

1

...

k k

p p k sk

p k

p p s p sp

T
T p

k k

v k
k v

T p
T

p k

k
k

p
V x w w p p

x

p
w w p p

x

µ

µ µ

∈ ∈ = ∈

∈ ∈ ∈ ∈ =

� �� �� �∂� �� 	� 	= + −� 	� 	 � 	� 	� 	∂A B A BA BA B

� �∂� �
= + −� 	� 	� 	∂A BA B

�� � �

�� � � �

i
i l l v l i i

i l

i
i l v v l v l i i

i l v v

q r q

q r q

�

�

� � �

� � � �

 

Defining the polynomial vector 

( )

( )

1

1ˆ p

p

p p

p p

×

−� �
� �

= ∈� �
� �−
� �

i i

i

i i

p C � , the polynomial matrix 

( )

( )

1

1

p

T

p n

T
p

×

� �
� �
� �= ∈
� �
� �
� �� �

v

v

v

r

R

r

C � , and the multi-index ( )1, ,
p

=v v v� , the previous expression can be 

rewritten as 

 ( ) ˆ

p p

T

Tp
V x w w

x
σ

µ
∈ ∈ ∈

� �∂� �
= +� 	� 	� 	∂A BA B
��� i

i l v l i v l

i l v

q p R q�
� � �

 (4.10) 

with 1 p
s sσ = + +� . 

The main result can now be stated: 

 

Theorem 4.1: [Bernal & al, 2011] 

 The PF model (4.4) with MF-derivatives as in (4.9) is asymptotically stable if there exist 

polynomials ( )p x ∈i � , and non-negative, radially unbounded polynomials ( )1 xε , ( )2 0xε >  

such that  
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 ( ) ( )1p x xε−i  is SOS 

and  

 ( )( ) ( )2
ˆ

T T
p x xε− ∂ ∂ + −i l i v lq p R q  is SOS  

for all ,
p

∈i l � , σ∈v �  with ˆ
ip  and vR  defined as in (4.9)-(4.10). 

 

Proof: It follows immediately from the fact that ( ) ( )1p x xε−i  being SOS enforces the 

Lyapunov function candidate (4.5) to be non-negative and radially unbounded, whereas 

( )( ) ( )2
ˆ

T T
p x xε− ∂ ∂ + −i l i v lq p R q  being SOS assures the time-derivative of the Lyapunov 

function to be strictly negative outside the origin, i.e., ( ) 0V x <� , as can be deduced from 

(4.10). � 

Remark 4.1: In order to reduce conservativeness of the above result, any relaxation scheme 

can be applied to the tensor-product double fuzzy summation in w wi l  that appears in (4.10), 

for example, grouping those terms sharing the same factorization of i lw w  [Tanaka & Wang, 

2001], [Sala & Ariño, 2007] and [Ariño & Sala, 2007]. 

Remark 4.2: As originally explained in [Prajna & al, 2004a], [Parrilo, 2003] and illustrated in 

[Sala & Ariño, 2009], the Positivstellensatz argumentation extends the use of Lagrange 

multipliers and S-procedure in the LMI framework to the polynomial-SOS case, thus 

permitting local information to be included as constraints in SOS conditions. Assume that m 

known restrictions arranged as a vector ( ) 0F x ≥ , ( ) m
F x ∈�  hold in Ω . Then, conditions in 

Theorem 4.1 are valid in Ω  if ( ) ( ) ( )i j j

j

p x u x xφ−�  and 

( )( ) ( ) ( )ˆ
T T

l i v l k k

k

p x q p R q u x xφ− ∂ ∂ + −�i
D  are SOS with ( )ju x , ( )ku xD  being SOS 

polynomials (multipliers) and ( )j xφ  being arbitrary polynomials composed by products of 

those in F . These sufficient conditions may be easier to fulfil than those without local 

restrictions. 

Remark 4.3: Polynomial-programming techniques, even if convex for a fixed degree of the 

polynomials, are computationally hard in the fuzzy-control context. The basic drawbacks are: 

(a) a high-degree Taylor series is needed to approximate the nonlinearities in a large domain; 
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(b) the number of rules is two to the power of the number of nonlinearities and the degree of 

them in π ;  

(c) as polynomials diverge wildly, many times, the obtained results are worse than ordinary T-

S ones unless Positivstellensatz multipliers are used;  

(d) as model and Lyapunov function’s degrees increase, so does the needed degree of the 

Positivstellensatz multipliers. Hence, even if the conditions are asymptotically exact under 

some uniform convergence assumptions, there are severe limitations in applying the approach 

to realistic problems. In the authors’ opinion, polynomial approaches, even if theoretically 

elegant, they should be used in practice only if ordinary T-S ones fail. 

 

4.2. Examples 

Example 4.4:  

Consider the following nonlinear model [Tanaka & al, 2003], [Tanaka & al, 2009b]: 

 ( )
1 2 1 1

1 2 1 1

7 3
4 sin

2 2

19 21
2 sin

2 2

x x x x

x t

x x x x

� �
− − −� �

= � �
� �− −
� �� �

� . (4.11) 

The stability properties of the previous model in { }1
i

xΩ = ≤  will be investigated. To do so, 

nonlinearity 1sin x  is written as a convex sum of polynomials following the techniques 

described above with 1 1z x=  (for more details, see [Sala, 2009], [Sala & Ariño, 2009]), 

leading to the following PF model structure:  

 ( )
( )( )

( )( )

( )( )

( )( )1

1 1

1 2 1 0 1 2 1 1
1 1

0 1

1 1

1 2 1 0 1 2 1 1

7 3 7 3
4 4

2 2 2 2

19 21 19 21
2 2

2 2 2 2

x x x q x x x x q x

x t w w w

x x x q x x x x q x
∈

� � � �
− − − − − −� � � �

= = +� � � �
� � � �− − − −
� � � �� � � �

� i i

i

q�
�

. (4.12) 

where ( )1

0q x , ( )1

1q x  are polynomials of certain degree, and ( )1

0w x , ( )1

1w x  are the 

corresponding MFs. 

Consider a 0-degree PF model: in this case, ( )1

0 0.8414q x =  and ( )1

1 0.8414q x = −  are, 

plainly, constants while 1

0 10.5942sin 0.5w x= +  and 1 1

1 01w w= −  are the corresponding MFs. 

For expression 
1

0
1

1

0.5942cos
w

x
x

∂
=

∂
, consider a 0-degree modeling as in (4.9), i.e., bounds 
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( )1

0 0.5942r x = , ( )1

1 0.3211r x = , and MFs 1

0 12.1755cos 1.1755xµ = − , 1 1

1 01µ µ= − . Theorem 

4.1 is now used to analyse stability for a degree-2 PFLF candidate of the form  

 ( ) ( ) ( )1 1

0 1 1 2V x w p x w p x= + . 

When no Lagrange multipliers are used (global analysis) the SOS problem is unfeasible. In 

order to make local analysis as pointed out in Remark 4.2, a set of second order polynomial 

Lagrange multipliers multiplied by the following constraints (valid in Ω  with 1x = ) are 

included:  

 
( )( ) ( )( )

( )( ) ( )( ) ( )( )

2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 1

2 2 2 2 2 2 2 2 2

1 1 2 2 2 2

0, 0, 0, 0,

0, 0, 0.

x x x x x x x x x x x x

x x x x x x x x x x x x

− < − < − − − < − − − <

− + < − − − < − + <
 (4.13) 

Via SOSTools, conditions in Theorem 4.1 are then satisfied for: 

 ( ) 2 2

1 1 1 2 23.9106 1.863 4.1858p x x x x x= + +   

and  ( ) 2 2

2 1 1 2 210.692 1.2375 2.569p x x x x x= + + .  

In Figure 4.1, some level curves of this PFLF are displayed in dashed-lines; the outermost 

Lyapunov level is in bold-dashed. Some trajectories in solid lines are also included. 
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1
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Figure 4.1 : Lyapunov levels for the 0-degree PFLF in Example 4.4 
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Now consider a 3rd-degree PF model in (4.12) with polynomials  

 ( )1 3

0 1 10.1585q x x x= − , ( )1 3

1 1 10.1667q x x x= − , 

and MFs 

 
( )1 11

0 3

1

sin
122.9 20.48

x x
w

x

−
= + , 

( )1 11

1 3

1

sin
19.48 122.9

x x
w

x

−� �
= − +� 	

A B
 

It can be checked that  

 
( ) ( )3 21

1 1 1 1 10 1 1

6 3 4 3

1 1 1 1 1

cos 1 3 sin cos 3sin 2
122.9 122.9

x x x x xw x x

x x x x x

� �− − − � �∂
= = − +� 	 � 	

∂ A BA B
, (4.14) 

which can be written as follows from the Taylor-series representation of its components 

 

1 2 4 3 5

0 1 1 1 1

3 4 3

1 1 1 1

4 5
31 1

1 13 4

1 1

1 3 2
122.9 1

2! 4! 3! 5!

1 3 1 3 1 3
122.9 122.9

4! 5! 4! 5! 6! 7!

w x x x x
x

x x x x

x x
x x

x x

� �� � � �∂
= − + − − − + − +� 	� 	 � 	

∂ A B A BA B

� �� � � � � �� � � �
= − − − = − − − +� 	� 	 � 	 � 	 � 	� 	

A B A BA BA B A BA B

� �

� � �

(4.15) 

Thus proving that it can be defined in 0 as the limit of (4.14) and it is therefore a smooth 

function. 

Then, since 1 1z x=  the following third-degree Taylor-based PF model in [ ]1 1,1x ∈ −  arises:  

( ) ( )
1 1

1

3 31 1
1 1 1 11 1 1 10 1

0 1

01

2.0483 0.09555 2.0483 0.0975

0 0

x x x xw z
x x

z x
µ µ µ

=

� � � �− −∂ ∂
⋅ = = +� � � �

∂ ∂ � � � �
� v v

v

r  

with ( ) 1 1
13 3 4 3

1 1 1 1

cos 3sin122.9 2
0.0167

x x
T x x

x x x x

� �
= − + −� 	

A B
, 

( )1

0

0.0975

0.09555 0.0975

T x
µ

+
=

− +
, 1 1

1 01µ µ= − . 

Recall that according to definitions (4.9)-(4.10), in this example 1 1= ∈v v � , so matrix 

( )
1

1 2 1
T

r ×= ∈v vR � . The example is now analysed via Theorem 4.1. 

Via SOSTools, polynomials ( ) ( ) 2 2

1 2 1 1 2 28.4852 0.23829 2.8658p x p x x x x x= = + +  are found 

satisfying conditions in Theorem 4.1 under the aforementioned constraints. Note that the 

corresponding Lyapunov function has lost its fuzzy structure since ( ) ( )1 2p x p x= , i.e., 

( ) ( ) ( ) ( ) ( )1 1

0 01V x w p x w p x p x= + − = , a solution which is not ruled out by conditions in 

Theorem 4.1.  
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Discussion: Independently of their degree, PF models obtained by the aforementioned 

methodology are all exact representations of nonlinearities associated to a nonlinear model or 

the MFs’ derivatives. Then, a natural question arises: what is the difference between lower or 

higher degrees in PF modeling? The answer originates from the previous example: as the PF 

model degree increases the vertex polynomials converge to the Taylor series under mild 

assumptions; then, MFs yield their modeling influence only to the corresponding polynomials 

terms of higher degree. Therefore, the fuzzy character of the PF model becomes less 

significant for higher degree models. As a consequence of this phenomenon, in the previous 

example an ordinary quadratic polynomial Lyapunov function could not be found when the 

PF model was highly fuzzy (degree zero approximations): a non-quadratic PFLF has been 

found instead. On the other hand, when the PF model degree was increased the family of 

models thus represented seems to have been reduced in such a way that an ordinary quadratic 

Lyapunov function was found, thus having no need of the fuzzy structure for it. 

Example 4.5:  

Consider the following nonlinear model: 

 ( )
( ) ( )( )

( ) ( )( )

2 22

1 1 1 1 2 2

2 2

1 1 2 2 1 2

0.2363 0.0985 0.1 0.1 0.9

sinh 2 0.7097 0.3427 0.1 0.1

x x x x x x

x t

x x x x x x

� �− + + −
� �=
� �

− − + +� �� �

� , (4.16) 

which, from simulations, has a stable focus at the origin and an unstable limit cycle; it is 

therefore not globally stable.  

For different values of 0x > , let { }i
x xΩ = ≤  be a square region of interest in which a 

decreasing Lyapunov function is to be found. Simulation shows that 4.15x =  is the 

maximum admissible value for the whole Ω  to be in the basin of attraction.  

First- and third-degree PF models of (4.16) have been obtained depending on whether first- or 

third-degree polynomials were used for bounding 1sinh x . The MFs’ derivatives 

corresponding to these PF models have been also bounded by first- and third-degree 

polynomials with an analogous methodology. Then, under second-order Lagrange multipliers 

with constraints (4.13), Theorem 4.1 has been used to search the maximum 0x >  for which 

stability can be proved for each combination of the previous cases. 

The test is first run for quadratic non-fuzzy polynomial Lyapunov functions of the form  

 ( ) ( )V x p x=  
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 where of course the time-derivatives of the MFs play no role (conditions in Theorem 4.1 have 

ˆ 0
i

p = ); these results are then compared with those obtained with a second-order fuzzy 

polynomial function  

 ( ) ( ) ( )
p

V x w x p x
∈

=� i i

i �

 

The results are shown in Table 4.1, the degree of the candidate Lyapunov function was fixed 

to 4. 

 

{ }i
x xΩ = ≤  ( )deg 1=iq  ( )deg 3=iq  

Non-fuzzy PLF 2.1094x =  2.6406x =  

PFLF, ( )deg 1
k

k =vr  2.500x =  2.6875x =  

PFLF, ( )deg 3
k

k =vr  2.5313x =  2.7344x =  

 

Table 4.1: Comparing polynomial Lyapunov functions versus polynomial fuzzy Lyapunov 

functions in Example 4.5: maximum size of a square region of interest where a decreasing LF 

is feasible. 

As expected, better approximations on the PF model and/or the MFs’derivatives lead to better 

results. On the other hand, given a particular PF model, PFLFs improve over non-fuzzy ones. 

4.3. Conclusion 

 In this chapter, a new methodology for analyzing the stability of continuous-time 

nonlinear models in the polynomial fuzzy form has been presented. It combines recent 

advances on Taylor-based fuzzy polynomial models and local stability via fuzzy polynomial 

Lyapunov functions, exploiting both polynomial bounds on the model’s non-polynomial 

nonlinearities and, also, polynomial bounds on the partial derivatives of the membership 

functions. The examples in this chapter illustrate that fuzzy-polynomial Lyapunov functions 

prove useful in performing better than the unstructured polynomial Lyapunov functions, 

getting larger estimates of the region of attraction. 
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5. Chapter 5: Non-quadratic 

stabilization of T-S models: Using 

partial-derivative information 

 

 

Synopsys 

his chapter represents the third major contribution of this work in which non-quadratic 

stabilization of continuous-time Takagi Sugeno models will be discussed. Several new 

local approaches for controller design based on non-quadratic Lyapunov functions and non-

PDC controller will be presented. The chapter is mainly based on contributions I participated 

in and that appear in the papers [Bernal & al, 2010], [Guerra & al, 2011], [Pan & al, 2012] 

and [Jaadari & al, 2012]. 

 

 

T
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5.1. Introduction 

 

In the previous chapters, we proposed new local approaches to deal with stability analysis and 

to overcome the problems of conservativeness. It has been found that reducing the global 

goals to local ones while employing a non-quadratic Lyapunov function actually leads to 

reasonable local asymptotic conditions that provide an estimation of the stability domain: an 

egress from the quadratic framework. In this chapter, we extend these approaches to the 

stabilization of continuous T-S models. The new obtained solutions overcome the problem of 

dealing with time-derivatives of the membership functions and lead to stabilize a large family 

of nonlinear models that do not admit global stabilization. Moreover, the new conditions are 

expressed as linear matrix inequalities (LMIs) which are efficiently solved by convex 

optimization techniques. For illustration purposes, examples are developed that clearly point 

out the advantages of the new approaches over already existing ones. 

 

5.2. Non-quadratic stabilization of T-S models: a local point of view 

5.2.1. Problem formulation 

 

Consider the following T-S model  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )
1

r

i i i z z

i

x t h z t A x t B u t A x t B u t
=

= + = +��  (5.1) 

where 
i

A , 
i

B , { }1, ,i r∈ �  are controllable pairs of matrices of proper dimensions, 2 p
r = ∈�  

is the number of linear models and ( )( )ih z t  are the membership functions fulfilling (2.7). 

The following non-PDC control law will be used [Guerra & Vermeiren, 2004]: 

 ( ) ( ) ( )
1

1

1 1

r r

i i j j z z

i j

u t h F h P x t F P x t

−

−

= =

� �
= =� 	

A B
� �  (5.2) 

Substituting (5.2) in (5.1) gives the closed-loop T-S model 

 ( ) ( ) ( )1

z z z z
x t A B F P x t−= +� , (5.3) 

whose stability properties will be investigated through the following non-quadratic fuzzy 

Lyapunov function (NQFLF) candidate: 
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 ( )( ) ( ) ( )1T

z
V x t x t P x t

−=  (5.4) 

where 0T

z z
P P= >  (then 1 0

z
P

− > ). Its derivative along the trajectories of the closed-loop T-S 

model (5.3) is: 

 ( )( ) ( ) ( )( ( ) ) ( )1 1 1 1 1
T

T

z z z z z z z z z z z
V x t x t P A B F P A B F P P P x t− − − − −= + + + +� �  (5.5)  

Since 1

z z z z
P P P P

− = −� � , elementary matrix manipulations show that ( ) 0V x <�  is verified if  

 ( ) 0
T

z z z z z z z z z
A P B F A P B F P+ + + − <� . (5.6) 

 

A preliminary result that, in a sense, justifies the future developments is stated first. 

 

Theorem 5.1:(Local stabilizability): If there exist matrices of the proper size 0T

i i
P P= > , 

i
F , { }1, ,i r∈ �  such that 0T T T

z z z z z z z z
A P B F P A F B+ + + < , then there exists a domain D , 

0 D∈ , such that T-S model (5.1) is locally asymptotically stabilizable under control law (5.2). 

 

Proof: The same procedure applied to obtain the local stability conditions in Theorem 3.1, 

will be used to derive the new local stabilization conditions. 

For control purposes, As 0T T T

z z z z z z z z
A P B F P A F B+ + + <  it always exists a sufficiently small 

0λ >  such that: 

 0T T T

z z z z z z z z
A P B F P A F B Iλ+ + + + < . (5.7) 

 Then a domain { }: ,  
z

D x x B P λ= ∈ <� containing the origin can be defined since: 

 ( ) ( )1

1 1 1

T TT Tr r r
i i

z i i i z z z z i

i i i

h hz z
P h P xP A B F P x t P

z x z x

−

= = =

� �∂ ∂∂ ∂� � � �
= = = +� �� 	 � 	

∂ ∂ ∂ ∂A B A B� �� �
� � ��� �   (5.8) 

As 
z

P�  (5.8) is a continuous function of ( )x t , equal to zero at the equilibrium point 0x =  it is 

easy to conclude that D  contains a small enough open ball by continuity arguments. Since 

( ) 0V x >  and ( ) 0V x <�  in { }0D − , the equilibrium point 0x =  is locally asymptotically 

stable, thus concluding the proof. � 
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Remark 5.1 : conditions for Theorem 5.1 can be ensured, for example, with (2.32), i.e. define 

T T T

ij i j i j j i j iA P B F P A F Bϒ = + + + , find 0T

i i
P P= > , 

i
F , { }1, ,i r∈ �  such that: 

 
2

0
1

ii ij ji
r

ϒ + ϒ + ϒ >
−

, { }, 1, ,i j r∈ �  (5.9) 

In view of these first results, the whole challenge is now to be able to write and/or to bound 

z
P�  in a satisfactory way, including the LMI formulation problems. As previously mentioned, 

the term 
z

P�  depends on the time-derivatives of the MFs and moreover these derivatives can 

depend on the control to be calculated. Therefore, obtaining LMI conditions implying (5.6) in 

a “general” case is challenging. Generally [Blanco & al, 2001], [Tanaka & al, 2003], [Bernal 

& al, 2006], [Mozelli & al. 2009a] use assumptions such as 
z z

P φ<�  or ( )i i
h x φ≤� . Let us 

illustrate on a very simple example why this a priori assumption can be a major problem of 

these approaches. 

Example 5.1 : 

Consider the following nonlinear system form [Tanaka & al. 2007]: 

 ( )3x ax x b u= + +�  (5.10) 

Employing the sector nonlinearity approach, the following T-S model can be obtained: 

 ( )( )
2

1

i i i

i

x h x A x B u
=

= +��  (5.11) 

Where with the defined compact set { }:C x x d= ≤ : 1 2A A a= = , 3

1B d b= + , 3

2B d b= − + , 

( )
3 3

1

1 0 32

x d
h x w

d

+
= =  and ( )

3 3
1

2 1 32

d x
h x w

d

−
= = . Consider now a condition in the form: 

( )1 1h x φ≤�  which results in: 

 ( ) ( )2 2 3

1 13 3

3 3

2 2
h x x x x ax x b u

d d
φ= = + + ≤� �  (5.12) 

Consider now a particular case with 100a = , 21b = , 2.71d =  and as in [Tanaka & al, 2007], 

4

1 10φ = . Employ conditions [Tanaka & al, 2007] to design controller for system (5.11). 

Figure 5.1 depicts the trajectories of 1h�  with initial state 0 2.6x C= ∈ . It can be seen that the 

lower bound of 1h�  does not satisfy the assumption ( ) 4

1 10h x ≤� . To satisfy the assumption 
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( ) 4

1 10h x ≤� , the initial state must be chosen in the region { }: 2.71 2.38x x− ≤ ≤  whose 

restrictions go beyond the original compact set { }: 2.71C x x= ≤ . 

 

Figure 5.1 : The trajectory of 1h� . 

This very simple example shows clearly that the assumption on an a priori bound of the time-

derivatives of the MFs 1h�  is a major problem of these techniques as they depend on the to-be-

designed controller ( )u x . Their validity must be checked a posteriori, which makes their 

usefulness questionable. Next parts try to overcome this problem whereas keeping LMI 

constraints problems. 

5.2.2. Constraints on the control 

�

Throughout this chapter, ( )
v

A
⋅⋅⋅⋅
 stands for the th

v  row of A , ( )
s

A
⋅

 for the th
s  column and 

( )
vs

A  for the element in the th
v  row and th

s  column. The interested reader is referred to 

section 3.2 from chapter 3 or [Guerra & Bernal, 2009] for details concerning the fact that 
z

P�  

can be written as: 

 ( ) ( )( ) ( ) ( )( )
1 2 1 2

0 0

, , , ,
1 1 1

k kp pr

z k j kg z k g z k g j k g j k

k j kk k

w w
P P P z h z P P

z z= = =

∂ ∂
= − = −

∂ ∂
� ��� � �  (5.13) 
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with ( ) ( ) ( )1 1

1 , 1 / 2 2 1 1 mod 2p k p k p kg j k j j+ − + − −� �= − × + + −� � , and ( ) ( )2 1, , 2 p k
g j k g j k

−= + , 

denoting the floor function as � �� � . Note that, as 0

k

k

w

z

∂

∂
 are a priori known, the major point will 

be the writing of 
k

z� . Consider that: 

 
1

T n
k k

k v

v v

z z
z x x

x x=

∂ ∂� �
= =� 	

∂ ∂A B
�� ��  and ( ) ( ) ( ) ( )

1 1

n m

v z z z s z ev v vs ve
s e

x A x B u A x B u
⋅ ⋅

= =

= + = +� ��  (5.14) 

Therefore: 

 ( ) ( )
1 1 1 1

n n n m
k k

k z s z evs ve
v s v ev v

z z
z A x B u

x x= = = =

∂ ∂
= +

∂ ∂
�� ���  (5.15) 

Thus, with 0 0

k k

k

k v v

w z w

z x x

∂ ∂ ∂
=

∂ ∂ ∂
, (5.13) writes: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
1 2 1 2

0 0

, , , ,
1 1 1 1 1 1

k kp pn n n m

z s z e zg z k g z k g z k g z kvs ve
k v s k v ev v

w w
P x A P P u B P P

x x= = = = = =

∂ ∂
= − + −

∂ ∂
��� ����  (5.16) 

Now, considering the whole expression (5.6) ( ) 0V x <�  is ensured if: 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1 2

1 2

0

, ,
1 1 1

0

, ,
1 1 1

0

kp n n
T

z z z z z z z z s z g z k g z kvs
k v s v

kp n m

e z g z k g z kve
k v e v

w
A P B F A P B F x A P P

x

w
u B P P

x

= = =

= = =

∂
+ + + − −

∂

∂
− − <

∂

���

���
  (5.17) 

Via expressions 0

k

s

v

w
x

x

∂

∂
 and 0

k

e

v

w
u

x

∂

∂
 locality is now introduced. If these terms have known 

bounds (derived from the modelling area C, for instance), then (5.17) turns out to be an LMI 

expression to test stability in the region thus induced; if not, some initial bounds can be 

chosen so bisection can be applied to find the largest region in which (5.17) remains feasible. 

In both cases, the result is a controller that guarantees the closed-loop T-S model in (5.3) to be 

stable in a local region around the origin. 

 

Remark 5.2: it is very important to notice that the expression (5.17) shows that if a quadratic 

Lyapunov function exists, then 0
z

P =�  is guaranteed via ( ) ( )1 2, ,g k g k
P P

α α
=  for each { }1, ,i r∈ �  

and { }1, ,k p∈ � . This remark will hold also for the LMI constraints thereinafter, lemmas will 

shown this fact. Therefore, conditions derived always include the quadratic case. 
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While bounds are easily found from C for those expressions depending on ( )x t  like 0

k
w , for 

the control, extra LMI constraints have to be set. A classical way of doing [Tanaka & Wang, 

2001] is followed. Assume ( ) 00x x<  and ( )( )0 1V x ≤  therefore: 

 ( ) ( ) ( ) ( )1 10 0 1T T

z zx t P x t x P x
− −≤ ≤  for 0t ≥  (5.18) 

Notice that it means 2

0z
P x I> . Now, to guarantee ( )u t µ< , a sufficient condition is: 

 ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 1 1

2 22

1 1
0 0 1T T T T

z z z z z z
u x t P F F P x t x t P x t x P x

µ µ
− − − −= ≤ ≤ ≤  (5.19) 

Thus middle part of (5.19) can be written:  

 ( ) ( )1 1 1

2 2

1 1
0 0T T T

z z z z z z z z
x t P F F P P x t F F P

µ µ
− − −� �

− ≤ ⇔ − ≤� 	
A B

  (5.20) 

and using Schur complement ( )u t µ<  is ensured if: 

 
2

0

T

z z

z m

P F

F Iµ

� �
>� �

� �
 (5.21) 

The main result can be now stated. 

 

Theorem 5.2: [Bernal & al, 2010]  

If there exist matrices of proper size 2

0

T

j jP P x I= > , 
j

F , { }1, ,j r∈ � , such that the following 

LMIs 

 

{ } ( ){ }
{ }

( ){ }

2

0, 1, , , 1, , 2

( , ) 1, , , ,2
0,

1 1, ,2 ,

pn m n

ii

ii ij ji pn m n

i r

i j r i j

r

α

α α α

α

α

+

+

ϒ < ∈ ∈

∈ ≠
ϒ + ϒ + ϒ <

− ∈

� �

�

�

 (5.22) 

 
2

0

T

j j

j m

P F

F Iµ

� �
>� �

� �� �
, { }1, ,j r∈ �  (5.23)  

hold under definitions  
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( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2

1 2

, ,
1 1 1

, ,
1 1 1

1

1 ,

kv e n

kvs

T T T

ij i j i j j i j i

p n m
d

kv i g j k g j kve
k v e

p n n
d

kvs i g j k g j kvs
k v s

A P B F P A F B

B P P

A P P

α

α

α

η µ

λ

+

= = =

= = =

ϒ = + + +

− − −

− − −

���

���

   (5.24) 

( )1 ,g j k , ( )2 ,g j k  defined as in (5.13), ( )kv e n
dα

+
, 

kvs
d

α  defined from: 

( ) ( )
( ) 1

1111
1 2 2

pn n m

pn n m pn n m
d d dα α αα + −

+ + −
− = + × + + ×� , then ( )x t , ( ) 00x x<  tends to zero 

exponentially for any trajectory satisfying (5.3) in the outermost Lyapunov level 

{ }1

0 0: T

z
R x x P x r−= ≤  contained both in C and 0 0

, , ,

: ,
k k

e kv s kvs

e k s v v v

w w
R x u x

x x
µη λ

C �∂ ∂D D
= ≤ ≤E �

∂ ∂D DF �
E . 

 

Proof: from definition of ij

αϒ  (5.24) and relaxation conditions of (5.22), it holds directly:  

 ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2

1 2

, ,
1 1 1

, ,
1 1 1

1

1 0

kv e n

kvs

T T T

zz z z z z z z z z

p n m
d

kv z g z k g z kve
k v e

p n n
d

kvs z g z k g z kvs
k v s

A P B F P A F B

B P P

A P P

α

α

α

η µ

λ

+

= = =

= = =

ϒ = + + +

− − −

− − − <

���

���

 (5.25) 

Since all the possible sign combinations of the ( )p n m× +  terms in the last two summands of 

(5.25) are taken into account, and given that 0

k

e kv

v

w
u

x
µη

∂
≤

∂
, 0

k

s kvs

v

w
x

x
λ

∂
≤

∂
 in R  (LMIs 

(5.23) guarantee that ( )u t µ< ) , it follows that:  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 2

1 2

0

, ,
1 1 1

0

, ,
1 1 1

0

kp n m
T T T

z z z z z z z z e z g z k g z kve
k v e v

kp n n

z s zzg z k g z kvs
k v s v

w
A P B F P A F B u B P P

x

w
A x P P

x

α

= = =

= = =

∂
+ + + − −

∂

∂
− − < ϒ <

∂

���

���
 (5.26) 

thus concluding the proof � 

As stated Remark 5.2, it is important to show that these conditions at least always include the 

quadratic solutions. 

Lemma 5.1: Under the same relaxation (5.22) if there exists a solution to quadratic 

stabilization conditions then Theorem 5.2 conditions are feasible. 
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Proof: suppose it exists 0T
P P= > , 

j
F , { }1, ,j r∈ � , such that: 

 0quad T T T

zz z z z z z z
A P B F PA F Bϒ = + + + <  (5.27) 

Consider now 
j

P P= , { }1, ,j r∈ � , then as ( ) ( )1 2, ,
0

g j k g j k
P P− = , { }, 1, ,j k r∈ �  conditions 

(5.22) exactly match conditions to prove (5.27). Therefore (5.22) is satisfied. If a constraint on 

the control has to be satisfied, i.e. ( )u t µ<  in the quadratic case therefore it will correspond 

to [Tanaka & Wang 2001]: 

 
2

0

T

z

z m

P F

F Iµ

� �
>� �

� �
 (5.28) 

Which is equivalent to (5.23) with 
j

P P= . Finally, parameters 
kv

η  and 
kvs

λ  are obviously 

free, therefore each set 0 0: ,
k k

e kv s kvs

v v

w w
x u x

x x
µη λ

C �∂ ∂D D
≤ ≤E �

∂ ∂D DF �
 – with or without constraint on the 

control – can grow arbitrarily to the large and global stabilization is thus ensured as 

0 0

, , ,

: ,
k k

n

e kv s kvs

e k s v v v

w w
R x u x

x x
µη λ

C �∂ ∂D D
= ≤ ≤ →E �

∂ ∂D DF �
�E .� 

 

Remark 5.3: Inequalities in Theorem 5.2 are LMIs since , 0
ksv kv

λ η >  are given. Remember 

that due to the local stabilizability proof, Theorem 5.1, these values do exist. Of course for 

some values 0 0, 0
ksv kv

λ η >  the conditions could fail. A simple bisection search can be used 

guaranteeing a solution. For example searching the largest common value 0ε >  such that 

LMIs (5.22) are feasible with 0

ksv ksv
λ ε λ= × , 0

kv kv
η εη= . 

 

5.3. Design examples 

�

Two examples are developed in this section: the first comes from [Mozelli & al, 2009] as a 

matter of comparison; a second example illustrates Remark 5.3 and both the effects of the 

input constraints and the initial conditions. 

Example 5.2 : 

Consider again (see chapter 2, section 2.7.1) the following family of T-S models with 

0 25a≤ ≤ , 0 1.8b≤ ≤  [Mozelli & al, 2009]: 
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 ( ) ( ) ( )( ) ( )
2

1

( ) ( )z i i i

i

x t A x t h z t A x t B u t
=

= = +��  (5.29) 

with  

 1

3.6 1.6

6.2 4.3
A

−� �
= � �−� �

, 2

1.6

6.2 4.3

a
A

− −� �
= � �−� �

, 1

0.45

3
B

−� �
= � �−� �

, 2
3

b
B

−� �
= � �−� �

, 

 ( ) ( )1 1z t x t= , 1 1
1 0

1 sin

2

x
h w

−
= =  and 1 1

2 1

1 sin

2

x
h w

+
= =  defined in the compact set 

:
2

iC x x
πC �

= ≤E �
F �

, 1,2i = .  

The best results in [Mozelli & al, 2009] for stabilization of T-S models (5.29) are based on 

direct bounds of the time-derivatives of the MFs 
i i

h φ≤�  and an arbitrary parameter µ ; in the 

referred paper these values have been chosen as 1
i

φ = , 1,2i =  and 0.04µ =  resulting in the 

feasibility domain shown in Figure 5.2 with cross marks. In order to comment again the 

bound 
i i

h φ≤�  as for Example 5.1, it implies in addition to the assumption 
2

i
x

π
≤ : 

( )( ) [ ] [ ]( )

( ) ( )

2
1 1

1 2 1 1* 1*
1

1 1 1
1 2 1 2

cos cos
( ) ( )

2 2

cos 1 sin 1 sin
3.6 1.6 0.45 3.6 1.6 1

2 2 2

i i i

i

i

x x
h h x h z t A x t B u t

x x x
x x u x x bu φ

=

= = = +

� − + �� � � �
= − − + − − ≤ =� 	 � 	� 	

A B A BA B

�� � �

 

Again the assumption 1
i i

h φ≤ =�  is impossible to satisfy a priori. Consider now Theorem 5.2 

conditions with ( ) 15u t µ≤ = , ( )0 2x π≤  and ( ) 2
i

x t π≤  (from definition of C), the new 

approach produces the feasibility region shown in Figure 5.2 with circles: it obviously 

outperforms results in [Mozelli & al, 2009]. Moreover, the trajectories for each point is a 

priori guaranteed to remain in C. 



 

Chapter 5: Non-quadratic stabilization of T-S models: Using partial-derivative information 

89 
�

�

0 5 10 15 20 25

0

0.5

1

1.5

a

b

 

Figure 5.2: Closed-loop stability domains comparison: Theorem 6 [Mozelli & al, 2009] (×) 

and Theorem 5.2 (o). 

 

Example 5.3 : 

 Consider the following 4-rule T-S model in the compact set { }: 2
i

C x x= ≤  inspired in one 

of the examples in [Guerra & Bernal, 2009]: 

 ( ) ( )( ) ( )
4

1

( ) ( ) ( ) ( )z z i i i

i

x t A x t B u t h z t A x t B u t
=

= + = +��  (5.30) 

with  

 1

3 2

0 0.9
A

−� �
= � �
� �

, 2

0.8 3

0 0.9
A

−� �
= � �−� �

, 3

1.9 2

0.5 0.1
A

−� �
= � �−� �

, 4

0.1 3

0 2
A

� �
= � �−� �

, 

 1

0

10
B

� �
= � �
� �

, 2

0

3
B

� �
= � �
� �

, 3

1

1
B

� �
= � �
� �

, 4

0

2
B

� �
= � �
� �

, 

2
1 1
0

4

4

x
w

−
= , 

2
2 2
0

4

4

x
w

−
= , 1 1

1 01w w= − , 2 2

1 01w w= − , 1 2

1 0 0h w w= , 1 2

2 0 1h w w= , 1 2

3 1 0h w w= , and 

1 2

4 1 1h w w= . In that case, the premise variables are the state variables, i.e. ( ) ( )1 1z t x t= , 

( ) ( )2 2z t x t= . To exhibit some of the expressions, for this example after some manipulations: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

0 0
1 3 1 1 3 1 2 2 1 2

1 2

1 2

0 0
2 4 1 2 4 3 4 2 3 4

1 2

.

z

w w
P h h x P P h h x P P

x x

w w
h h x P P h h x P P

x x

∂ ∂
= + − + + −

∂ ∂

∂ ∂
+ + − + + −

∂ ∂

� � �

� �

 

And the expression 
zz

αϒ  in conditions (5.22) derives directly from: 

 ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2

1 2

4

1

2 2 1

, ,
1 1 1

2 2 2

, ,
1 1 1

1

1

kv e n

kvs

T T T T T T

z z z z z z z z i i z z z z z z z z

i

d

kv z g z k g z kve
k v e

d

kvs z zzg z k g z kvs
k v s

A P B F P A F B h P A P B F P A F B

B P P

A P P

α

α
α

η µ

λ

+

=

= = =

= = =

+ + + − ≤ + + +

− − −

− − − = ϒ

�

���

���

�

 (5.31) 

Next step is the definition of the initial values 0

kvs
λ , 0

kv
η  satisfying, respectively, 0

k

s kvs

v

w
x

x
λ

∂
≤

∂
 

and 0

k

e kv

v

w
u

x
µη

∂
≤

∂
. Note that 

1 1

0 1 1

1 12

w x w

z z

∂ ∂
= − = −

∂ ∂
 and 

2 2

0 2 1

2 22

w x w

z z

∂ ∂
= − = −

∂ ∂
 and with the 

definition of the compact set { }: 2
i

C x x= ≤ , it follows that: 

 { }0 02, 1, , , 1, 2
k k

s kvs kv

v v

w w
x k v s

x x
λ η

∂ ∂
≤ = ≤ = ∈

∂ ∂
, (5.32) 

thus 0 2
kvs

λ =  and 0 1
kv

η =  can be used as initial values. At last, bound on the control is fixed. 

First, with ( ) 0.5u t µ≤ =  gives the biggest stabilization region { }1 1 1

0 0: T

z
R x x P x r−= ≤  

presented in Figure 5.3 (dotted line). Second, with ( ) 0.8u t µ≤ = , Figure 5.3  shows the 

biggest region { }2 1 2

0 0: T

z
R x x P x r−= ≤  (solid line) with a significant increase. This indicates the 

importance of this bound. Figure 5.3 exhibits for 0.8µ = , four model trajectories as well as 

gives the borders of the regions of the different constraints in dashed lines: 

 0 0

, , ,

: 0.8125 ,  1.625
k k

e s

e k s v v v

w w
R x u x

x x
µ

C �∂ ∂D D
= ≤ ≤E �

∂ ∂D DF �
E  (5.33)  
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Figure 5.3: Two stabilization regions for T-S model (5.30): with 0.5µ =  ( 1

0R  region 

enclosed by dotted lines) and with 0.8µ =  ( 2

0R  enclosed by solid lines). 

 

In order to give some numerical results, the gains and matrices involved in the control law for 

the case 0.8µ =  are  

 [ ]1 0.2263 2.3089F = − − , [ ]2 1.4418 2.0579F = − − , 

 [ ]3 0.8758 2.3548F = − , [ ]4 5.1766 0.2926F = − − , 

 1

47.4617 2.8114

2.8114 8.6795
P

−� �
= � �−� �

, 2

48.6279 5.2959

5.2959 8.8808
P

−� �
= � �−� �

, 

 3

45.2456 2.8272

2.8272 8.6803
P

−� �
= � �−� �

, 4

48.5332 5.1353

5.1353 8.6539
P

−� �
= � �−� �

. 

In this case, an example of control law evolution with initial conditions [ ]1.2 0  is presented 

in Figure 5.4.  
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Figure 5.4: Control law evolution. 

 

A local stabilization result has been obtained via Theorem 5.2 nevertheless, bounds on the 

control law are introduced and the treatments of the problem seem to be more complicated, 

the work presented in the next section allows solving the stabilization problem in a local 

framework without this drawback. 

5.4. New contributions for non-quadratic stabilization of T-S models 

 

Problem formulation is similar as previous section, i.e. TS model (5.1), control law (5.2) and 

Lyapunov function (5.4), therefore ending with the same problem (5.6) recalled here:  

 ( ) 0
T

z z z z z z z z z
A P B F A P B F P+ + + − <�  (5.34) 

With (5.13) ( ) ( )( )
1 2

0

, ,
1

kp

z kg z k g z k

k k

w
P P P z

z=

∂
= −

∂
�� � . Recall that the major point is to express in a 

satisfactory way 
k

z� . 

In the previous approach, 
k

z�  were expressed without expanding the non-PDC control law 

(5.2) therefore requiring the control bounds: ( )u t µ< . Next, a more interesting way to cope 

with the stabilization problem is used in order to remove this drawback.  
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Remark 5.4: In this section the functions ( )ih z and the mapping between the premise vector 

( )z t  and the state vector ( )x t  are of class 1
C  on the defined compact set C ; i.e. the partial 

derivatives are well-defined. 

Let us focus on the scalar 
k

z ∈� � , introducing the control law: 

 ( ) ( )1 1

T T T

k k k
k z z z z z z z z z

z z z
z x A B F P x A P B F P x

x x x

− −∂ ∂ ∂� � � � � �
= = + = +� 	 � 	 � 	

∂ ∂ ∂A B A B A B
��  (5.35) 

Therefore the goal is to find a “nice” bound 0
k

β >  for: 

 0

k

k k

k

w
z

z
β

∂
≤

∂
�  (5.36) 

which is equivalent to: 

 ( ) 10

Tk

k
z z z z z k

k

w z
A P B F P x

z x
β−∂ ∂� �

+ ≤� 	
∂ ∂A B

 (5.37) 

Remark 5.5: it is also important to note that this is not equivalent to other approaches found 

in the literature, [Tanaka et al, 2003] [Bernal & al, 2006], [Mozelli & al, 2009] where the 

required condition is in the form of: ( )( )i i
h z t φ≤� . In this later case, 

i
φ  is given a priori and 

can only be checked a posteriori, see Example 5.1. In the presented case, the bounds 
k

β  are 

included in the problem to solve. Said in other words, if (5.37) can be expressed as an LMI 

problem then its solutions will guarantee a priori the future trajectories to remain in the 

region of attraction. 

5.4.1. First trial:  

�

Note that (5.37) holds if: 

 ( )
2

1 20

Tk

k
z z z z z k

k

w z
A P B F P x

z x
β−

� �∂ ∂� �
+ ≤� 	� 	� 	∂ ∂A BA B

 (5.38) 

Or equivalently: 

 ( ) ( )
2

1 1 20 0

Tk
TTk k

z z z z z z z z z z k

k

w z z
A P B F P xx P A P B F

z x x
β− −� �∂ ∂ ∂� �

+ + − ≤� 	 � 	
∂ ∂ ∂A BA B

 (5.39) 

Remembering that 
2 2

x
x λ≤  2T

x
xx Iλ⇔ ≤  (property 3 (2.23)), (5.39) holds if: 
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 ( ) ( )
2

2 1 1 20 0

Tk
Tk k

x z z z z z z z z z z k

k

w z z
A P B F P P A P B F

z x x
λ β− −� �∂ ∂ ∂� �

+ + − ≤� 	 � 	
∂ ∂ ∂A BA B

 (5.40) 

Applying again property 3 to (5.40) gives: 

 ( ) ( )
2

2 1 1 20 0

Tk
T k k

x z z z z z z z z z z k

k

w z z
P A P B F A P B F P I

z x x
λ β− −� �∂ ∂ ∂� �

+ + − ≤� 	 � 	
∂ ∂ ∂A BA B

 (5.41) 

As the functions 0

k
w  are known explicitly, as previously mentioned bounding 0

k

k

w

z

∂

∂
 is direct. 

On the other side, k
z

x

∂

∂
 represents the linear or nonlinear mapping between ( )z t  and ( )x t  and 

under the assumption made Remark 5.4 is well-defined and therefore known. The bounds can 

be computed easily and: 

2 2

20

k

k
k

k

w z

z x
λ

� �∂ ∂
≤� 	

∂ ∂A B
 

2

20

Tk

k k
k

k

w z z
I

z x x
λ

� �∂ ∂ ∂� �
⇔ ≤� 	 � 	

∂ ∂ ∂A BA B
; it follows that: 

 ( ) ( )2 2 1 1 2 0
T

x k z z z z z z z z z z k
P A P B F A P B F P Iλ λ β− −+ + − ≤  (5.42) 

Then, multiplying left and right with 
z

P  gives: 

 ( ) ( )2 2 2 2 0
T

x k z z z z z z z z k z
A P B F A P B F Pλ λ β+ + − ≤  (5.43) 

Considering now that 
z

P Iδ≥  it follows that T T

z
x P x x xδ≥  and with the change of variable 

1 2

z
x P y= , 2T T

z z
y P y y P yδ≥ , thus 2

z z
P Pδ≥ , thus (5.36) is satisfied if: 

 ( ) ( )2 2 2 0
T

x k z z z z z z z z k z
A P B F A P B F Pλ λ β δ+ + − ≤  (5.44) 

And with the help of the Schur complement, (5.44) is equivalent to: 

 
( )

( ) 2

*
0

z

x k z z z z k

P

A P B F Iλ λ β δ

� �
>� �

+� �
 (5.45) 

Now, we can come back to 
z

P�  knowing that 0

k

k k

k

w
z

z
β

∂
≤

∂
� . Using property 6 (2.29) and 

introducing matrices 0k

zz
S >  we can write: 

 

( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

1 2

1 2 1 2

0

, ,
1

1
2

, , , ,
1

1

2

kp

z kg z k g z k
k k

p
k k

k zz zzg z k g z k g z k g z k

k

w
P P P z

z

S P P S P Pβ

=

−

=

∂
= −

∂

≤ + − −

�

�

� �

 (5.46) 
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Therefore, let us consider the following quantities: 

 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

2

1

1

,1 ,1

, ,

1
* *

2

2 0 0

0

0

0 0 2

p
T T T k

i j i j j i j i k ij

k

ijg i g i

ij

p

ijg i p g i p

A P B F P A F B S

P P S

P P S

β
=

� �
+ + + +� �

� �
� �− −
� �Γ =
� �
� �
� �

− −� �� �

� �

�

C B B C

C B B

�

 (5.47) 

 
( )

( ) 2

*
i

ij

x k i j i j k

P

A P B F Iλ λ β δ

� �
ϒ = � �

+� �� �
 (5.48) 

 

Theorem 5.3:[Guerra & al, 2011]  

Consider the T-S closed loop model (5.3) and expressions defined in (5.48) and (5.47). If 

there exist matrices 
i

P , 
i

F , 0k

ijS > , { }, 1, ,i j r∈ � , { }1, ,k p∈ �  such that the following LMI 

are satisfied: 

 
i

P Iδ≥ , { }1, ,i r∈ �  (5.49) 

 
2

0
1

ii ij ji
r

ϒ + ϒ + ϒ >
−

, { }, 1, ,i j r∈ �  (5.50) 

 
2

0
1

ii ij ji
r

Γ + Γ + Γ <
−

, { }, 1, ,i j r∈ �  (5.51) 

Then, the control law (5.2) stabilizes the T-S open loop model (5.1) in a local domain. An 

estimation of this domain is given by the outermost Lyapunov level contained in the compact 

set of the state variables C .  

 

Proof: From definition of 
ij

ϒ  (5.48) (respectively 
ij

Γ  (5.47)) and relaxation conditions (5.50) 

(respectively (5.51)) it follows 0
zz

ϒ <  (respectively 0
zz

Γ < ). 0
zz

ϒ <  ensures 0

k

k k

k

w
z

z
β

∂
≤

∂
� , 

then, applying the Schur complement on 0
zz

Γ <  leads to: 

( ) ( )( )( ) ( ) ( )( )( )1 2 1 2

1
20

, , , ,
1

1
0

2

kp
T T T k k

z z z z z z z z k zz zzg z k g z k g z k g z k

k k

w
A P B F P A F B S P P S P P

z
β

−

=

∂
+ + + + + − − ≤

∂
�  

Therefore, considering (5.46) it follows: 
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 0T T T

z z z z z z z z z
A P B F P A F B P+ + + − <�  (5.52) 

Thus concluding the proof. � 

Remark 5.6: notice that (5.49)~(5.51) are LMI constraints only if the scalar 2

k
β  is known. 

A procedure to determine this value is possible, inspired from [Mehdi & al, 2004] for static 

output feedback. Recall that if the conditions of Theorem 5.1 are satisfied it ensures the 

existence of a local stability domain for Theorem 5.3. Therefore, the procedure is based on 

this remark. 

Basic Algorithm 

Step 1: consider Theorem 5.1. Find 0T

i i
P P= > , 

i
F , { }1, ,i r∈ �  such that conditions 

(5.9) hold. The obtained gains give a control law that can be seen as stabilizing the 

“frozen” time-invariant continuous T-S model. Thus initial bound ( )
0

2

k
β  can be 

directly obtained from this first step. 

Step 2: with ( )
0

2

k
β , find solution to the Theorem 5.3 conditions (5.49)~(5.51). 

Many refinements can come at hand, introducing a decay rate to step 1 for example, enforcing 

step 1 with (5.50). Nevertheless, the weakness of the approach is due to the necessity of the 

condition 2

z z
P Pδ≥ . 

 

5.4.2. Second trial 

�

Let us begin again from (5.37) recalled thereinafter: 

 ( ) 10 0

Tk k

k
k z z z z z k

k k

w w z
z A P B F P x

z z x
β−∂ ∂ ∂� �

= + ≤� 	
∂ ∂ ∂A B
�  (5.53) 

Note that the vector 
1

T

nk k k

n

z z z

x x x

� �∂ ∂ ∂
= ∈� �

∂ ∂ ∂� �
� �  will very often contain empty rows. For 

example with [ ] 4

1 2 3 4

T
x x x x x= ∈�  consider 2

1 1z x=  and ( )2

2 1 42 cosz x x=  thus directly: 
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1

1

1 1

1

1

0
0

0
0

0
0

z

x
z z

x x

∂� �
� �� �∂ � �� � � �∂ ∂� �= � � = � �� �∂ ∂� � � �
� �� �
� �� �� �

 and 

2

1 2

12

2 2

4 4

1 0

0 0 0

0 0

0 1

0

z

x z

xz

z zx

x x

∂� �
� �∂ ∂� � � �� � � � � �∂� �∂ � � � �=� � � �∂ ∂∂ � �� � � � � �� �∂ ∂� �� �
� �
� �

. 

Therefore, let us define for each premise variable 
k

z , a restricted vector of the state 

,\ 0 knk k
i k

i

z
x n n

x
ξ

C �∂
= ≠ ∈ ≤E �

∂F �
� . Thus, it follows: 

 k k
k k

z z
T

x ξ

∂ ∂
=

∂ ∂
 with 

1,2, , ; 1,2, ,

1,        
,

0,      otherwise
k

k k

kk k
i jk ij ij

i n j n

z z
if

xT ξδ δ
= =

∂ ∂C
=D ∂ ∂� �= = E� �

D
F

� �
 (5.54) 

Note also that the nice property k kn nT

k k
T T I

×= ∈�  holds.  

With (5.54), expression (5.53) writes: 

 ( ) 10

Tk
Tk

k z z z z z kk

k

w z
T A P B F P x

z
β

ξ
−∂ � ∂ �

+ ≤� 	
∂ ∂A B

 (5.55) 

with ( ) 1 kn nT

k z z z z zT A P B F P x
×−+ ∈�  whereas ( ) 1 n n

z z z z zA P B F P x
− ×+ ∈� , thus reducing the size 

of the matrices. Summarizing; the more k
z

x

∂

∂
 is “empty”, the better the results. Since (5.55) is a 

scalar expression, it is verified if: 

 ( ) ( )1 10 0 2

Tk k
TT Tk k

k z z z z z z z z z z k kk k

k k

w z w z
T A P B F P x x P A P B F T

z z
β

ξ ξ
− −∂ � ∂ � ∂ � ∂ �

+ + + ≤� 	 � 	
∂ ∂ ∂ ∂A B A B

 (5.56) 

Applying the completion of square (property 4 (2.25) with slack variable 0T

z z
Q Q= >  gives: 

( ) ( )

( )
( )

1 1 10 0

1

12
1 1

1 02 2
1

02

2

Tk k
TT Tk k

k z z z z z z z z z k z z zk k

k k

Tk z z
T Tk

kz z k z z z z z kk T k
k

z z z z z k k

k

w z w z
T A P B F Q A P B F T x P Q P x

z z

Q P x
w z

x P Q T A P B F Q
w zz Q A P B F T
z

ξ ξ

β
ξ

ξ

− − −

−

−
−

−

∂ � ∂ � ∂ � ∂ �
+ + +� 	 � 	

∂ ∂ ∂ ∂A B A B

� �
� � � �∂ � ∂ �

= + ≤� � � �� 	 ∂ � ∂ �∂ ∂A B� � � �+� � � 	
∂ ∂� �A B� �

 

  (5.57) 
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With the help of property 3 (2.23), (5.57) is ensured if  

( )
( )

1

12
1 1

1 02 2
1

02

2

Tkz z
T Tk

k z z k z z z z z kkT k
k

z z z z z k k

k

Q P x
w z

x P Q T A P B F Q I
w z zQ A P B F T
z

β
ξ

ξ

−

−
−

−

� �
� �� � ∂ � ∂ �

+ ≤� �� � � 	∂ � ∂ � ∂ ∂A B� �� �+ � �� 	
∂ ∂� �A B� �

 

which can be expanded as: 

( )

( )

1

12

01

2

1

1 2

0

1

2

0

0

0
                                 2

0

z z k

k
T k

z z z z z k k

Tk
z zT k

kk

k T

k z z z z z

x
Q P

w z

Q A P B F T z

P Qw z
x I

z
T A P B F Q

ξ

β
ξ

−

−

−

−

� � � �
� � � �

∂ � ∂ �� � � �
� 	� � � �+ ∂ ∂A B� �� �

� �
� �∂ � ∂ � � �

× ≤� �� 	 � �∂ ∂A B� �� � � �+� �

 (5.58) 

Locality can now be expressed via known a priori bounds. The compact set of the state 

variables C directly gives 2T

x
x x λ≤ , and 20 0 0 0

TTk k k k

k k
kk k k k

k k

w z w z w w

z z
λ

ξ ξ ξ ξ

� �∂ � ∂ � ∂ � ∂ � ∂ ∂
= ≤� 	� 	 � 	

∂ ∂ ∂ ∂ ∂ ∂A B A B A B
. Thus, 

we can exploit this bound via property 3 (2.23) as: 

 ( )2 2 2 2

T T

T Tk k
x k x kk kk k

k k

x x
z z

x x Iz zλ λ λ λ
ξ ξ

ξ ξ

� � � �� � � �� ∂ � � ∂ �� � � �≤ + ⇔ ≤ +� � � �∂ ∂� 	 � 	� � � �∂ ∂A B A B� � � �� � � �∂ ∂� � � �� � � �

 (5.59) 

Therefore, (5.58) holds if 

 

( ) ( ) ( )

1 1

22 2

1 1 2 2

2 2

0 2

0

z z z k

T T x k

z z z z z k k z z z z z

Q P Q
I

Q A P B F T T A P B F Q

β

λ λ

−

− −

� �
� �

≤� � +
� �+ +� �

 (5.60) 

Multiplying (5.60) on the left and the right side by 

1

2

1

2

0

0

z

z

Q

Q

� �
� �
� �
� �� �

 and let, 
z z

Q P=  and 

( )2 2

2
k

k

x k

β
ϕ

λ λ
=

+
, it results  

 
( ) ( )

0 0

00

z

T kT
zz z z z k k z z z z

I P

PA P B F T T A P B F
ϕ

� � � �
≤� � � �

+ + � �� �� �
 (5.61) 

Which is equivalent to 
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( ) ( )

k z

T T

z z z z k k z z z z k z

I P

A P B F T T A P B F P

ϕ

ϕ

≤CD
E

+ + ≤DF
 (5.62) 

With the use of Schur complement, (5.62) writes 

 ( )
( )

*
0

k z

k z

T

k z z z z

I P

P

T A P B F I

ϕ

ϕ

≤C
D
� �E

>� �D +� �F

 (5.63) 

Thus let us define: 

 
( )

( )
*

k jk

ij T

k i j i j

P

T A P B F I

ϕ� �
Σ = � �

+� �� �
 (5.64) 

Now, we can come back to 
z

P�  knowing that 0

k

k k

k

w
z

z
β

∂
≤

∂
�  in the same way as the previous 

section (5.46) and consider the same quantity (5.47) recalled thereinafter: 

 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

2

1

1

,1 ,1

, ,

1
* *

2

2 0 0

0

0

0 0 2

p
T T T k

i j i j j i j i k ij

k

ijg i g i

ij

p

ijg i p g i p

A P B F P A F B S

P P S

P P S

β
=

� �
+ + + +� �

� �
� �− −
� �Γ =
� �
� �
� �

− −� �� �

� �

�

C B B C

C B B

�

 (5.65) 

LMI constraints can be formulated, as follows: 

 

Theorem 5.4:[Pan & al, 2012] 

 Given 
k

β , { }1, ,k p= �  wih 
( )2 2

2
k

k

x k

β
ϕ

λ λ
=

+
, 

ij
Γ  defined in (5.65) and k

ijΣ  defined in (5.64), 

if there exists matrices of proper dimension 0T

j jP P= > , 
j

F , 0k

ijS > , { }, 1, ,i j r= �  satisfying 

the following conditions: 

 
2

0
1

ii ij ji
r

Γ + Γ + Γ <
−

, { }, 1, ,i j r∈ �  (5.66) 

 
2

0
1

k k k

ii ij ji
r

Σ + Σ + Σ >
−

, { }, 1, ,i j r∈ �  (5.67) 
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k j

I Pϕ< , { }1, ,j r∈ �  (5.68) 

Then, the control law (5.2) stabilizes the T-S open loop model (5.1) in a local domain. An 

estimation of this domain is given by the outermost Lyapunov level contained in the compact 

set of the state variables C .  

 

Proof: it follows exactly the same line as Theorem 5.3. � 

 

Lemma 5.2: Under the same relaxation, if there exists a solution to quadratic stabilization 

conditions then Theorem 5.4 conditions are feasible and the result is global. 

Proof: suppose it exists 0T
P P= > , 

j
F , { }1, ,j r∈ � , such that: 

 0quad T T T

zz z z z z z z
A P B F PA F Bϒ = + + + <  (5.69) 

Consider now 
j

P P= , { }1, ,j r∈ � , then as ( ) ( )1 2, ,
0

g j k g j k
P P− = , { }, 1, ,j k r∈ �  and with free 

slack matrices 0k

ijS > , { }, 1, ,i j r= � , (5.66) resumes to: 

 2

1

1
0

2

p
T T T k

z z z z z z k zz

k

A P B F PA F B Sβ
=

+ + + + <�  (5.70) 

(5.63) resumes to: 

 ( )
( )

*
0

k

k

T

k z z z

I P

P

T A P B F I

ϕ

ϕ

≤C
D
� �E

>� �D +� �F

 (5.71) 

Note that (5.71) is satisfied whatever are 0T
P P= > , 

j
F , { }1, ,j r∈ � , if it exists a “big” 

enough 
k

ϕ , therefore a “big” enough 
k

β . Thus, 0k

ijS >  being free, they can be chosen 

arbitrarily small and (5.70) is satisfied that concludes the proof. � 

 

5.5. Design examples 

Example 5.4 : 

Consider a 2-rules T-S fuzzy model of the form, with ,a b ∈�  free parameters: 
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 ( )( )
2

1

1

i i i

i

x h x A x B u
=

= +��  (5.72) 

1

2 10

2 0
A

−� �
= � �
� �

, 1

1

1
B

� �
= � �
� �

, 2

5

1 2

a
A

−� �
= � �
� �

, 2
2

b
B

� �
= � �
� �

 

The MFs of the fuzzy model (5.72) are defined as: ( )
( )11

1 1 0

1 sin

2

x
h x w

−
= =  and 

( )
( )11

2 1 1

1 sin

2

x
h x w

+
= =  defined in the compact set { }: 2

i
C x x π= ≤ , 1,2i = . 

Once again computing the derivative of the membership function gives a control dependent 

results, as shown thereafter: 

 ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )1 1

1 1 2 1 1 1 1 1 2 2 1 1 2

cos cos
2 10 5

2 2

x x
h x h x x h x x x u h x ax x bu= = = − + + − +� � �  

Therefore, the non-quadratic stabilization conditions proposed by [Tanaka & al, 2003], 

[Tanaka & al, 2007], [Mozelli & al, 2009] for the above T-S fuzzy model resume in just 

solving a LMI feasibility problem that does not guarantee the future trajectories to remain 

bounded in C. Then, comparing on a grid ( )a b  the various LMI solutions coming from the 

approaches where ( )1 1 1h x φ≤�  is a priori needed, has no real meaning. Thus the comparison 

will be done only with quadratic conditions [Tanaka & Wang, 2001], and non-quadratic 

conditions [Rhee & Won, 2006]. 

In order to use the results of Theorem 5.4, since 2ix π≤  it follows that 2 28
x

λ π= , 2 20.5
k

λ =  

( 1k =  for this example) and as 1 xξ = ∈� : [ ]1 1 0
T

T = . Consider an example for one pair 

( ) ( )20 4a b = − . With 1 1800β = , Figure 5.5 shows the biggest region of attraction based 

on the solution of LMI constraints problem (5.66)~(5.68). The bounds of region 

{ }2: 8TR x x x π= ≤  are shown with dashed lines and the region { }1

0 0: T

z
R x x P x r−= ≤  

enclosed by a dotted line. Two model trajectories from initial conditions in 0R  are also 

plotted. 
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Figure 5.5: Biggest attraction domain for T-S fuzzy model (5.72) with ( ) ( )20 4a b = −  

 

Consider now the gridding of region [ ]20 10a ∈ −  and [ ]3 25b ∈ . Figure 5.6 exhibits an 

important increase of the solution compared with quadratic stabilization. Remember also 

(Lemma 5.2) that whenever a solution is obtained in the quadratic case, it is also global using 

Theorem 5.4. Figure 5.7 presents a comparison with the conditions of [Rhee & Won, 2006] 

that use a 2-step algorithm (see chapter 2). These conditions increase the precedent quadratic 

domain and Theorem 5.4 results are just repeated on the figure. Note that, except the 

quadratic solutions, at the intersection between [Rhee & Won, 2006] and Theorem 5.4 results 

we cannot prove that the result tends to a global result. Said in another way, if global 

conditions of 2-step algorithm of [Rhee & Won, 2006] hold, we can only prove that local 

conditions of Theorem 5.4 holds.  
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Figure 5.6: Stabilization region given by quadratic conditions [Tanaka & Wang, 2001] (“�”) 

and Theorem 5.4 (“o”) 

 

Figure 5.7: Stabilization region given by [Rhee & Won, 2006] (“�”) and Theorem 5.4 (“o”) 

�

5.6. Finsler’s relaxations for non-quadratic stabilization of T-S models 

 

The previous section presented a new way to deal with non-quadratic stabilization. Knowing 

that Finsler’s lemma allows relaxing results via adding slack variables, this section tries to take 

profit from this lemma to derive less conservative results. The central idea followed in the next 
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pages is to somehow “cut” the link between the Lyapunov function and the control law. It 

brings some interesting refinements in the quadratic case as well as in the non-quadratic one. 

Although our works are focused on non-quadratic stabilization, for sake of simplicity, let us 

begin with the quadratic case. 

 

5.6.1. Quadratic stabilization of T-S models 

�

Consider the following T-S model is derived with 2 pr = : 

 ( ) ( )( ) ( ) ( )( )
1

r

i i i

i

x t h z t A x t B u t
=

= +��  (5.73) 

Consider the following quadratic Lyapunov function candidate with 0T
P P= >  

 ( )( ) ( ) ( )1T
V x t x t P x t

−=  (5.74) 

and the non-PDC control law 

 ( ) ( )1

z zu t F H x t
−=  (5.75) 

Where the matrices 1P−  from the Lyapunov function are replaced with some slack variables 

1

z
H

−  to be determined. The closed-loop T-S model writes: 

 ( ) ( ) ( )1

z z z z
x t A B F H x t−= +�  (5.76) 

Theorem 5.5: [Jaadari & al, 2012] 

 The T-S model (5.73) under the control law (5.75) is globally asymptotically stable if 

0,ε∃ >  and matrices 0T
P P= > , 

i
H , and 

i
F , { }1, ,i r= �  of proper dimensions such that 

(2.32)  holds with  

 
( ) ( )

( )
* *

2

i j i j

ij

j i j i j

A H B F

H P A H B F Pε ε

+ +� �
ϒ = � �

− + + −� �� �
 

Proof: Consider the Lyapunov function candidate (5.74); proving that its time-derivative is 

negative can be written as 

 
1

1

0
0

0

T
x xP

V
x xP

−

−

� �� � � �
= <� �� � � �
� � � �� �

�
� �

 (5.77) 

which combined with the following expression from (5.76) 
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 1 0
z z z z

x
A B F H I

x

− � �
� �+ − =� �� �

� ��
 (5.78) 

yields, by Finsler’s Lemma, the next inequality: 

 ( )
1

1

1

0
* 0

0
z z z z

UP
A B F H I

WP

−
−

−

� � � �
� �+ + − + <� � � � � �

� �� �
 (5.79) 

with U  and W being matrices of proper dimension. Pre-multiplying by 
0

0

T

z
H

P

� �
� �
� �

 and post-

multiplying by 
0

0

zH

P

� �
� �
� �

 allows the following to be obtained: 

 [ ] ( )
0

* 0
0

T T

z z

z z z z

z

H H U
A H B F P

H PW

� � � �
+ + − + <� � � �
� �� �

 (5.80) 

Let T

z
U H

−=  and 1
W Pε −=  with 0,ε > so the previous expression renders 

 
( ) ( )

( )
* *

0
2

z z z z

z z z z z

A H B F

H P A H B F Pε ε

+ +� �
<� �

− + + −� �
 (5.81) 

Applying the Relaxation Lemma to (5.81) ends the proof. � 

 

Remark 5.7: Of course, the problem is not strictly LMI because of the parameter ε . This one 

is employed in several works concerning linear parameter varying (LPV) systems [Oliveira & 

Skelton 2001], [Oliveira & al, 2011]. It is normally a prefixed value belonging to a family such 

as: { }6 5 610 ,10 , ,10ε − −∈Ε = � . This family logarithmically spaced avoids an exhaustive line 

search. Why is it interesting to use? In [Oliveira & al, 2011] the authors showed that for 1000s 

of LPV models and comparing with numerous results – classical quadratic approach, Finsler 

application, and several variants – this way of doing was outperforming in a large way the 

existing results. Therefore we will follow the same line. In the next sections parameter ε  (or 

subscript versions of it) will reappear and preserve the same meaning. 

Remark 5.8: Another important remark is the necessity of the parameter ε . It is due to a well-

known fact about Finsler’s lemma applied to continuous state models. Effectively, when 

choosing the slack variables U  and W  in (5.79) not only a LMI formulation is important but it 

must also be kept in mind that the minimum expected is that the obtained results include the 

ordinary PDC control scheme. To achieve this goal, the term W  must be possibly chosen 
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arbitrarily small. Effectively, consider 
z

H P=  in (5.81), then using Schur complement allows 

the following expression to be obtained 

 ( ) ( ) ( )11
* 0

2

T

z z z z z z z z z
A P B F A P B F P A P B Fε −+ + + + + <  (5.82) 

which for sufficiently small 0ε >  is equivalent to the classical quadratic condition (5.27). 

  

5.6.2. Quadratic stabilization of T-S models : extended constraints 

�

Consider again the quadratic Lyapunov function candidate (5.74) together with the control law 

(5.75). A way to introduce extra degrees of freedom is to use the control law as another 

equality constraint via Finsler’s lemma.  

 

Theorem 5.6: [Jaadari & al, 2012] 

 The T-S model (5.73) under the control law (5.75) is globally asymptotically stable if it exists 

0ε >  and matrices 0T
P P= > , 

i
H , and 

i
F , { }1, ,i r= �  of proper dimensions such that 

(2.32) holds with 

 

( ) ( ) ( )

( ) ( )

* * *

2 * 0

0 2

i j i j

ij j i j i j

j

A H B F

H P A H B F P

F I

ε ε

ε ε

� �+ +
� �

ϒ = − + + − <� �
� �

−� �� �

. 

 

Proof: Consider the Lyapunov function candidate (5.74); proving that its time-derivative is 

negative can be written as 

 

1

1

0 0

0 0 0

0 0 0

T
x P x

V x P x

u u

−

−

� �� � � �
� �� � � �= <� �� � � �
� �� � � �� � � �� �

� � �  (5.83) 

which combined with the following expressions from (5.1) and (5.75): 

 
1

0
0

z z

z z

x
A I B

x
F H I

u

−

� �
−� � � � =� � � �−� � � �� �

�  (5.84) 

yields, by Finsler’s Lemma, the next inequality: 
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 ( )

1

1 1 1

1

2 2

3 3

0 0
0

0 0 * 0

0 0 0

z z

z z

P U V
F H I

P U V
A I B

U V

−

−
−

� � � �
� �−� � � �+ + <� �� � � � −� �� � � �� �� �

 (5.85) 

with 
i

U  and 
i

V , { }1, ,3i = � being matrices of proper dimension. Pre-multiplying and post-

multiplying by 

0 0

0 0

0 0

T

zH

P

I

� �
� �
� �
� �
� �

 and 

0 0

0 0

0 0

z
H

P

I

� �
� �
� �
� �� �

 gives: 

 ( )
1 1

2 2

3 3

0 0
0

0 0 * 0

0 0 0

T T T

z z z

z

z

z z z

H H U H V
F I

H PU PV
A H P B

U V

� � � �
−� �� � � �

+ + <� �� � � � −� �� � � �
� � � �

 (5.86) 

Let 1

T

z z
U H B

−= , 1

2 z
U P Bε −= , 3U Iε= , 1

T

z
V H

−= , 1

2V Pε −=  and 3 0V =  with 0ε > so the 

previous expression renders: 

 

( ) ( ) ( )
( ) ( )

* * *

2 * 0

0 2

z z z z

z z z z z

z

A H B F

H P A H B F P

F I

ε ε

ε ε

+ +� �
� �

− + + − <� �
� �−� �

 (5.87) 

Applying the Relaxation Lemma to (5.87) ends the proof.   

The same discussion as Remark 5.7 and Remark 5.8 holds in this case. This last result will be 

extended to a non-quadratic Lyapunov function in the next part. 

 

5.6.3. Non-quadratic Stabilization of T-S models  

�

Consider again the following non-quadratic Lyapunov function candidate with 0T

i i
P P= > : 

 ( )( ) ( ) ( )1T

z
V x t x t P x t

−=  (5.88) 

 

Theorem 5.7: The T-S model (5.73) under the control law (5.75) is locally asymptotically 

stable according to its initial conditions in the outermost Lyapunov level included in the region 

{ },n

x
R x x λ= ∈ ≤� , if it exists 0ε >  and matrices 0T

j jP P= > , 0T

j jQ Q= > , 
j

H , 
j

F , 

{ }1, ,j r= �  of proper dimensions such that (2.32) holds with 
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( ) ( ) ( ) ( )

( )
* * * *

2 0 0
0

0 2 0

0 0

i j i j

j j i j i j j

ij

j

j j

A H B F

H P A H B F P

F I

H P

ε ε

ε ε

ε ε

� + + �
� �

− + + −� �
ϒ = <� �

−� �
� �−� �

 

 
( ) ( )

( )

*
0

T

k j j jk

ij
T

k i j i j

H H Q

T A H B F I

ϕ� �+ −
� �Ψ = >
� �+� �

, 
k i

I Qϕ<  

And 

 ( ) ( ) ( )( )
1 2, ,

1 1

1 i

pr
d

k jg i k g i k
i k

P P P
γ

β ε
= =

− − − ≤��  (5.89) 

hold with 
2 2

2
k

k

k x

β
ϕ

λ λ
=

+
 and: 1

1 11 2 2r

r r
d d d

γ γ γγ −
−− = + × + + ×� , { }0, ,2 1rγ = −� . 

 

Proof: Consider the Lyapunov function candidate (5.88); in order to guarantee that its time-

derivative is negative the following condition must hold: 

 

1 1

1

0

0 0 0

0 0 0

T

z z

z

x P P x

V x P x

u u

− −

−

� �� � � �
� �� � � �= <� �� � � �
� �� � � �� � � �� �

�

� � �  (5.90) 

which combined with the equality constraint (5.84) yields, by a similar procedure of that 

employed in Theorem 5.6, the next inequality with 0ε > : 

 

( ) ( ) ( )
( ) ( )

1 * * *

2 * 0

0 2

T

z z z z z z z

z z z z z z z

z

H P H A H B F

H P A H B F P

F I

ε ε

ε ε

−� �+ + +
� �

− + + − <� �
� �−� �

�

 (5.91) 

In order to deal with 1

z
P

−� , consider the following relationship: 

 1 1

z z
P Pε− −≤�  (5.92) 

Thus, by Schur complement it can be taken into account to guarantee (5.91) if 

 

( ) ( ) ( ) ( )
( )

* * * *

2 0 0
0

0 2 0

0 0

z z z z

z z z z z z z

z

z z

A H B F

H P A H B F P

F I

H P

ε ε

ε ε

ε ε

+ +� �
� �

− + + −� � <
� �−
� �

−� �

 (5.93) 

Considering the property 1

z z z z
P P P P

− = −� � , it follows that (5.92) can be rewritten as: 
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 1 1

z z z z z z z z
P P P P P P P Pε ε− −≤ ⇔ − ≤� �  (5.94) 

Then recalling that: 

 ( ) ( )( )
1 2

0

, ,
1 1

kpr

z j kg j k g j k

j k k

w
P h P P z

z= =

∂
= −

∂
��� �  (5.95) 

And writing (i.e. (5.55) replacing 
z

P  with 
z

H ) with vector kξ  and 
k

T  defined in (5.54): 

 ( ) 10

Tk
Tk

k z z z z z kk

k

w z
T A H B F H x

z
β

ξ
−∂ � ∂ �

+ ≤� 	
∂ ∂A B

 (5.96) 

The procedure is strictly similar as the one previously explained for Theorem 5.4 as is not 

repeated therein. After some manipulations considering 0
z

Q > , (5.96) is ensured if: 

 
( ) ( )

1 2 1 2

1 1 21 2

0 0

00

z z

kT TT
k z z z z z zz z z z z z k

Q Q
I

T A H B F H QQ H A H B F T
ϕ

− −

−−

� � � �
× <� � � �

++� � � �� �
 (5.97) 

with 
2 2

2
k

k

k x

β
ϕ

λ λ
=

+
. Thus first row of (5.97) leads directly to 

k z
I Qϕ< , whereas second gives 

after congruence with 1 2

z
Q

− : 

 ( ) ( ) 1 1TT T

z z z z z k k z z z z z k z
H A H B F T T A H B F H Qϕ− − −+ + <  (5.98) 

Or equivalently: 

 ( ) ( ) 1T T T

z z z z k k z z z z k z z z
A H B F T T A H B F H Q Hϕ −+ + <  (5.99) 

Recalling that for 0
z

Q > : 1T T

z z z z z z
H Q H H H Q

− ≥ + − , (5.99) is satisfied if: 

 ( ) ( ) ( )T T T

z z z z k k z z z z k z z z
A H B F T T A H B F H H Qϕ+ + < + −  (5.100) 

And applying a Schur complement on (5.100) gives  

 
( ) ( )

( )

*
0

T

k z z zk

zz T

k z z z z

H H Q

T A H B F I

ϕ� �+ −
Ψ = >� �

+� �� �
 (5.101) 

That is satisfied using Theorem 5.7 conditions. 

Recalling the property: 

 
0

0 ,
0

k

k k k

k

Y X
Y X

Y X

λ
γ γ λ

λ

+ × ≤C
+ ≤ ⇐ ≤E

− × ≤F
 (5.102) 

Thus, (5.94) holds if conditions (5.89) hold, which concludes the proof.   
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Lemma 5.3: Under the same relaxation, if there exists a solution to quadratic stabilization, i.e. 

Theorem 5.6 conditions, then Theorem 5.7 conditions are feasible and the result is global. 

 

Proof: again consider that it exists 0ε >  and matrices 0T
P P= > , 

i
H , and 

i
F , { }1, ,i r= �  

such that conditions of Theorem 5.6 hold and fix 
i

P P=  { }1, ,i r∈ � . Therefore obviously 

(5.91) corresponds exactly to (5.87). Thus we must prove that the other constraints are always 

satisfied. First of all (5.89) clearly stands as it remains: 0
j

Pε ≥ . Now consider: 

 
( ) ( )

( )

*
0

T

k z z zk

zz T

k z z z z

H H Q

T A H B F I

ϕ� �+ −
Ψ = >� �

+� �� �
 and 

k z
I Qϕ<  (5.103) 

Note that (5.103) is satisfied, whatever are 
i

H , 
i

F , { }1, ,i r∈ � , if it exists a “big” enough 
k

ϕ , 

therefore a “big” enough 
k

β . Thus it concludes the proof. � 

 

5.7. Design examples 

Example 5.5 :  

To illustrate the gain obtained with respect to the quadratic conditions, consider the nonlinear 

model: 

 ( )
( )

( )
( ) ( )

2 2

1 2

22 2 2
21 1 2

1 1

2

a b x x
x t x t u t

xx c d x x

� �+ + − � �
� �= + � �−� �+ + + � �� �

�  (5.104) 

with 0.2363a = , 0.0985b = , 0.7097c = , and 0.3427d = . 

The following T-S model can be constructed from (5.104) in the compact set 

{ }1 2: 1, 2C x x x= ≤ ≤ : 

 ( ) ( )( ) ( )
4

1

( ) ( )i i i

i

x t h z t A x t B u t
=

= +��  (5.105) 

 
1

5 1

3 5

a b
A

c d

− + −� �
= � �− +� �

, 2

1

3

a b
A

c d

− + −� �
= � �− +� �

,

 

 3

4 1

2 4

a b
A

c d

− + −� �
= � �− +� �

, 4

1

2

a
A

c

− −� �
= � �−� �

,  
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 1 3

1

4
B B

� �
= = � �−� �

, 2 4

1

0
B B

� �
= = � �

� �
, 

 2

1 1z x= , 2

2 2z x= , 1

0 1w z= , 2 2
0

4

z
w = , 1 1

1 01w w= − , 2 2

1 01w w= − , 1 2

1 0 0h w w= , 1 2

2 0 1h w w= , 

1 2

3 1 0h w w= , 1 2

4 1 1h w w= . Using Theorem 5.6 with 1ε = , a non-PDC controller of the form (5.75) 

can be found via a quadratic Lyapunov function (5.74). The gains and Lyapunov matrix are 

given by 

1

0.4472

1.7071

T

F
� �

= � �
� �

, 2

0.2136

1.5175

T

F
� �

= � �
� �

3

0.3892

1.6472

T

F
� �

= � �
� �

, 4

0.1797

1.5333

T

F
� �

= � �
� �

, 

1

0.5147 0.3107

1.2469 2.7004
H

� �
= � �
� �

, 2

0.3894 0.8823

0.9513 2.1158
H

−� �
= � �
� �

,  

3

0.8551 0.5411

1.39 2.8006
H

� �
= � �
� �

, 4

0.7453 0.7108

1.1077 2.2548
H

−� �
= � �
� �

,  

 
0.8085 0.0367

0.0367 4.6949
P

� �
= � �
� �

. 

 

Figure 5.8: Stabilization region with quadratic Lyapunov function and non-PDC controller 

under Theorem 5.6 scheme. 
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Figure 5.9: Outermost Lyapunov level for Theorem 5.6 2R  and conditions [Wang & al, 

1996] 1R  applied to example (5.104). 

 

Figure 5.8 shows the highest quadratic Lyapunov level 0R  corresponding to this example in 

the set { }1 2: 1, 2C x x x= ≤ ≤ . Two trajectories of the controlled model via a non-PDC control 

law have been included which show the convergence towards the origin.  

In comparison, the classical approaches [Wang & al, 1996] gives the outermost Lyapunov 

level reduced, showed in Figure 5.9. 

Example 5.6 : (continued): To illustrate the new NQ results of Theorem 5.7, we consider 

again the example of [Mozelli & al, 2009] (5.29). Results show that with 0a =  and 2b = , 

there are no result for a quadratic function neither [Wang & al, 1996], nor Theorem 5.5 & 

Theorem 5.6. Considering Theorem 5.7 conditions with 1ε = , 
2

2

2
x

π
λ = , 2 0.25

k
λ =  and 

0.2β =  provides a feasible solution. The simulation has been performed from initial 

conditions ( ) [ ]0 1.3 0.5
T

x = − . The time evolution of the states is shown in Figure 5.10. The 

outermost Lyapunov level 0R  in the compact set : ,  1, 2
2

iC x x i
πC �

= ≤ =E �
F �

 is also plotted in 

Figure 5.11.  
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Figure 5.10: Time evolution of the states under Theorem 5.7 scheme. 

 

Figure 5.11: The outermost Lyapunov level for Theorem 5.7 applied to example 4.9. 

 

5.8. Conclusion 

This chapter summarizes the efforts made when quadratic global conditions fail to find a 

control law for a continuous TS model. Local based approaches are proposed with the idea to 

overcome the well-known problem of handling the time-derivatives of membership function 

as to obtain conditions in the form of linear matrix inequalities. A rewriting of the ( )ih z�  

allowed via prescribed bounds to reach this goal in several ways. First attempt kept a bound 
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on the control that is a reasonable assumption for practical cases. A second way permitted to 

overcome this drawback via some matrix transformations. At last, the proposition of new 

control laws, that do not use the matrices involved in the Lyapunov function were done. These 

new control laws together with the so-called Finsler’s lemma brought some new material to 

solve the problem. The proofs that these results always encapsulate the quadratic results were 

also done at each step. 

Although, examples shown that these methods solve problems unfeasible using the classical 

results, they are just an initial step. Effectively, the complexity of the LMI involved makes 

them quickly not tractable for “bigger” TS models than “few” rules and states. Robustness 

and performances are also to be though and, of course, interconnection with observers to go to 

output feedback results is also far from being solved. 



 

Chapter 6: Non-quadratic H-infinity control of T-S models 

115 
�

�

 

 

6. Chapter 6: Non-quadratic H-infinity 

control of T-S models 

�

�

Synopsys 

his chapter investigates the H∞  controller design for continuous-time Takagi-Sugeno 

models. The focus is how to extend the approaches previously developed for stability 

analysis and controller design to deal with disturbed T-S models. On the basis of a non-

quadratic Lyapunov function and with the consideration of the bounds of the partial-derivative 

of the membership functions, a robust H∞ control scheme is presented in terms of Linear 

Matrix inequalities to ensure a local stabilization with external disturbances attenuation, the 

work presented in this chapter is inspired from [Jaadari & al, 2013] 

 

 

T
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6.1. Introduction 

 

Recently the problem of H-infinity control design for disturbed nonlinear systems in the form 

of Takagi-Sugeno models has been widely investigated by many researchers due to the fact 

that nonlinear systems are frequently affected by unknown inputs and external disturbances. 

In order to deal with these problems, several works based on quadratic Lyapunov functions 

were developed [Hong & Langari, 2000], [Lee & al, 2001], [Tanaka & Wang, 2001] and non-

quadratic Lyapunov functions [Bernal & al 2011b]. Motivated by the new improvements 

obtained in recent works in non-quadratic approaches for stability analysis and controller 

design previously cited. In this chapter, we will consider the design problem of H∞ controller 

for continuous-time Takagi-Sugeno models affected by external disturbances. This approach 

aims to establish relaxed H∞  control conditions for continuous-time T-S systems based on 

non-quadratic technique. Both Finsler’s lemma and non-quadratic Lyapunov function are 

employed to further improve the results found in the literature, less conservative  stabilization 

results and better attenuation for the H infinity criterion will be obtained,  

 

6.2. Definitions and Problem statement 

�

Consider a disturbed nonlinear model of the form 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1 1

2 2 2

x t f z t x t g z t u t d z t t

y t f z t x t g z t u t d z t t

φ

φ

C = + +D
E

= + +DF

�
 (6.1) 

with ( )if ⋅ , ( )ig ⋅ , ( )id ⋅ , 1,2i =  being nonlinear functions, ( ) n
x t ∈�  the state vector, 

( ) m
u t ∈�  the input vector, ( ) q

y t ∈�  the output vector, ( ) q
tφ ∈�  the disturbance vector 

satisfying ( )
2

tφ φ≤ , and ( )( ) p
z x t ∈�  the premise vector assumed to be bounded and 

smooth in a compact set C  of the state space including the origin. 

Based on the definitions given in previous chapters, an exact representation of (6.1) in a 

compact set C  of the state space, is given by the following continuous-time T-S model: 



 

Chapter 6: Non-quadratic H-infinity control of T-S models 

117 
�

�

 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1

1

r

i i i i z z z

i

r

i i i i z z z

i

x t h z t A x t B u t E t A x t B u t E t

y t h z t C x t D u t G t C x t D u t G t

φ φ

φ φ

=

=

C
= + + = + +D

D
E
D = + + = + +
DF

�

�

�

 (6.2) 

with 2 p
r = ∈�  representing the number of linear models and ( ), , , , ,i i i i i iA B C D E G , 

1, ,i r= �  a set of matrices of proper dimensions. 

The following non-PDC control law, used in section 4.7 of chapter 4 or [Jaadari & al, 2012], 

is adopted: 

 ( ) ( ) ( ) ( ) ( )
1

1

1 1

r r

i i i i z z

i i

u t h z F h z H x t F H x t

−

−

= =

� �
= =� 	

A B
� �  (6.3) 

with m n

i
F

×∈�  the controller gains and n n

i
H

×∈�  The closed-loop T-S model is then written 

as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

z z z z z

z z z z z

x t A B F H x t E t

y t C D F H x t G t

φ

φ

−

−

C = + +D
E

= + +DF

�
 (6.4) 

Expression (6.4) can be written as: 

 
1

1

0
0

0

z z z z z

z z z z z

x

A B F H E I

xC D F H G I

y

φ−

−

� �
� �� �+ − � � =� � � �+ −� �
� �
� �

�
 (6.5) 

6.3. H-infinity controller design 

In this section, we give a set of conditions to design a robust controller with H∞ performance.  

The T-S model (6.2) satisfies the H∞ attenuation criterion if disturbances ( )tφ are bounded at 

the output by: 

 
( )

( )

( )
2

2

0
2

sup
t

y t

tφ

γ
φ≠

≤  (6.6) 

Where ( )
2

y t stands for the 2L norm of ( )y t  defined by: 
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 ( ) ( ) ( )
2

2 0

T
y t y t y t dt

∞

= �  

In other words, the goal is to minimize the following criterion with 0γ > : 

 ( ) ( )
2 22

0 0
y t dt t dtγ φ

∞ ∞

<� �  (6.7) 

Consider the following non-quadratic candidate Lyapunov function: 

 ( )( ) ( ) ( ) ( ) ( ) ( )
1

1

1

r
T T

z i i

i

V x t x t P x t x t h z P x t

−

−

=

� �
= = � 	

A B
�  (6.8) 

with 0T

i i
P P= > , { }1, ,i r∈ � .  

As shown in [Tanaka & Wang, 2001], condition (6.6) is satisfied if : 

 ( ) ( ) ( ) ( )2 0
T T

V y t y t t tγ φ φ+ − ≤�  (6.9) 

Deriving the Lyapunov function ( )( )V x t  and taking into account (6.2), (6.8) and (6.9) can be 

rewritten as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1 1 1 2 0,

T T

T T T T T

z z z

V y t y t t t

x t P x t x t P x t x t P x t t t y t y t

γ φ φ

γ φ φ− − −

+ −

= + + − + ≤

�

�� �
 (6.10) 

Which taking into account (6.5) can be also put in the following form: 

 

1 1

2

1

0 0

0 0 0
0

0 0 0

0 0 0

T

z z

z

x xP P

I

x xP

y yI

φ φγ

− −

−

� �� � � �
� �� � � �

−� �� � � � ≤
� �� � � �
� �� � � �

� � � �� �

�

� �
 (6.11) 

Now, Applying Finsler’s Lemma [Guerra & al, 2009a] with (6.11) and constraint (6.5) writes: 

 ( )

1 1
1 1

12
2 2

11
3 3

4 4

0 0

00 0 0
* 0

00 0 0

0 0 0

z z

z z z z z

z z z z zz

U VP P

U V A B F H E II

U V C D F H G IP

U VI

γ

− −

−

−−

� � � �
� � � � � �+ −−� � � �+ × + ≤� �� � � � + −� �
� � � �

� �� �

�

 (6.12) 

Left-multiplying by ( )T

z z
diag H I P I� �� �  and right-multiplying by 

[ ]( )z z
diag H I P I  gives: 
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( )

1

1 1

2

2 2

3 3

4 4

0 0

00 0 0
* 0

00 0 0

0 0 0

T TT T

z zz z z z

z z z z z z

z z z z zz zz

H U H VH P H H

A H B F E PU VI

C H D F G IPU PVH

U VI

γ

− � �� �
� �� �

+ −− � �� �� � + × + ≤� �� �� � + −� �
� �� �
� �� � � �

�

(6.13) 

Let 1 ,T

z
U H

−=  2 0,U =  1

3 1 ,
z

U Pε −=  4 0,U =  1 0,V =  2 1/ 2 ,T

z
V G=  3 0,V =  4 1/ 2V I= ; thus 

(6.13) becomes: 

 

( ) ( ) ( )
( )

1

2

1 1 1

* * *

1/ 2 * 0
0

2 0

1/ 2 0 0

T T

zz zz z z z

T T T

z zz z z z

zz z z z z

zz

H P H

G W E I G G

H P E P

W I

γ

ε ε ε

−� �Ω + Ω +
� �

+ − +� � ≤
� �Ω + − −
� �

−� �� �

�

 (6.14) 

With 
zz z z z z

A H B FΩ = +  and 
zz z z z z

W C H D F= +  

In order to deal with 1

z
P

−� , consider 1

2z z
Q Pε −=  under the following relationship: 

 1 1 1 1

2z z z z
P Q P Pε− − − −≤ ⇔ ≤� �  (6.15) 

so by Schur complement it can be taken into account to guarantee (6.14) if  

 

( ) ( ) ( ) ( )
( )2

1 1 1

2 2

* * * *

1/ 2 * 0 0

02 0 0

1/ 2 0 0 0

0 0 0

T

zz zz

T T T

z zz z z z

zz z z z z

zz

z z

G W E I G G

H P E P

W I

H P

γ

ε ε ε

ε ε

� �Ω + Ω
� �

+ − +� �
� � ≤Ω + − −
� �

−� �
� �−� �

 (6.16) 

Consider the definition of 
z

Q  above and the property 1

z z z z
P P P P

− = −� � ; it follows that (6.15) can 

be rewritten as: 

 1 1

2 2z z z z z z z z
P P P P P P P Pε ε− −≤ ⇔ − ≤� �  (6.17) 

Remark 6.1: Parameters 1ε  and 2ε  are incorporated due to the fact that results in Theorem 

6.1 include ordinary PDC control scheme only if the term 3U  in (6.13) can be fixed arbitrarily 

small. It follows the same procedure as the one chapter 5. 

As developed in section 4.6.3 of chapter 4, LMI conditions can be obtained from (6.17) if it 

exists a bound , 1, ,k k p
β = �  such that: 
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 0

k

k k

k

w
z

z
β

∂
≤

∂
�  (6.18) 

where 

 
( )
( )

( ) ( ) ( )( )1

T

k

k z z z z z z

z t
z A H B F H x t E t

x t
φ−∂

= + +
∂

�  (6.19) 

Since functions 0

k
w  are explicitly known, thus 0

k

k

w

z

∂

∂
 are known too. On the other side, k

z

x

∂

∂
 

represents the mapping between ( )z t  and ( )x t , and it is also known. Therefore we can 

replace 0

Tk

k

k

w z

z x

∂ ∂� �
� 	

∂ ∂A B
 by the following fuzzy Model [Tanaka & al, 2001c]: 

 0

1

k
T nk

Tk
kl kl

lk

w z
v

z x
µ

=

∂ ∂� �
=� 	

∂ ∂A B
� , 0

kl
µ ≥ , 

1

1
kn

kl

l

µ
=

=�  (6.20) 

As 
k

β ∈� , (6.18) holds if: 

 [ ]
2

1

2

1

kn

T z

kl kl z z z z z k

l

H x
v A H B F Eµ β

φ

−

=

� �� �
+ ≤� 	� �� 	

� �A B
�  (6.21) 

With [ ]zz z z z z zA H B F EΦ = + , (6.21) writes: 

 
1

2

1 1

k kn n
T T T T T z

kl z zz kl kl kl zz k

l l

H x
x H v vµ φ µ β

φ

−
−

= =

� �� �� �
� �Φ Φ ≤� 	� 	 � �� � � 	

A B � �A B
� �  

Let 
1

z
H x

ψ
φ

−� �
= � �
� �

, we obtain:  

 2

1 1

k kn n

T T T

kl zz kl kl kl zz k

l l

v vψ µ µ ψ β
= =

� �� �
Φ Φ ≤� 	� 	

A BA B
� �   (6.22) 

Consider that 
1 0

0

T

z
x xP

I
Iφ φ

−� �� � � �
≤� �� � � �

� � � �� �
 is equivalent to: 

 
1 0

0

T

T z z z
H P H

I
I

ψ ψ
−� �

≤� �
� �

 (6.23) 
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With the S-procedure (property 7) applied on (6.22) and (6.23), we get: 

 
1

2

1 1

0
0

0

k k Tn n

T T z z z

k kl zz kl kl kl zz

l l

H P H
v v

I
β µ µ

−
−

= =

� �� �� �
Φ Φ − ≤� 	� 	 � �

A BA B � �
� �  (6.24) 

And taking into account  

 ( ) ( )1 10 0
T T T

z z z z z z z z z z z
H P P H P H P H P H H

− −− − ≥ ⇔ + − − ≥  

(6.24) holds if: 

 2

1 1

0
0

0

k k Tn n

T T z z z

k kl zz kl kl kl zz

l l

H H P
v v

I
β µ µ−

= =

� �� �� � + −
Φ Φ − ≤� 	� 	 � �

A BA B � �
� �  

And by the mean of the Schur complement (property 1), we obtain 

 

( )

[ ]
1

0
*

0
0

k

T

z z z

k

n

T

kl kl z z z z z k

l

H H P

I

v A H B F E I

β

µ β
=

� �� �+ −
� �� �

� �� � >
� �
� �+
� �� �
�

 (6.25) 

Coming back to (6.17), and based on the development of  
z

P�  given in the previous chapter, it 

follows 

 ( ) ( )( )
1 2

0
2, ,

1

kp

k zg z k g z k

k k

w
z P P P

z
ε

=

∂
− − ≤

∂
� � , (6.26) 

which can be rewritten, knowing the bound 0

k

k k

k

w
z

z
β

∂
≤

∂
�  and applying property 5: 

 ( ) ( ) ( )( )
1 2

2 , ,
1

1 0k

p
d

z k g z k g z k
k

P P P
α

ε β
=

+ − − >�  (6.27) 

Where { }1, , 2 pα ∈ �  and 
k

d
α  defined from the binary representation of 

1 21 2 2 p

pd d d
α α αα − = + × + + ×� . 

LMI constraints can be then formulated, as follows: 

Theorem 6.1:[Jaadari & al, 2013] 

 Given
k

β , { }1, ,k p= � , such that (6.18) holds, the T-S model (6.2) under the control law 
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(6.3) is locally asymptotically stable with disturbance attenuation γ , if there exists 1 2, 0ε ε >  

and matrices 0T

j jP P= > ,
j

H ,
j

F , { }1, ,j r= �  of proper dimensions such that  

 

( ) { }
3

0, 0

0,

, , 1, ,

iii ijj jij jji

ijk jik ikj jki kij kji

i j k r

Γ < Γ + Γ + Γ <

Γ + Γ + Γ + Γ + Γ + Γ <

∀ ∈ �

 (6.28) 

And  

 ( ) { }
22

0,   , 1, ,
1

kl kl kl

ii ij ji
i j r

r
Σ + Σ + Σ > ∀ ∈

−
�  (6.29) 

hold with  

 

( ) ( ) ( ) ( )
( )2

1 1 1

2 2

* * * *

1/ 2 * 0 0

2 0 0

1/ 2 0 0 0

0 0 0

T

ij ij

T T T

k ij i k i

ijk ij j j i j

ij

j j

G W E I G G

H P E P

W I

H P

γ

ε ε ε

ε ε

� �Ω + Ω
� �

+ − +� �
� �Γ = Ω + − −
� �

−� �
� �−� �

 (6.30) 

 

( ) ( )

( )

( )

0 *

0 *

T

k j j j

kl

ij k

T T

kl i j i j kl i k

H H P

I

v A H B F v E I

β

β

β

� �+ −
� �

Σ = � �
� �

+� �� �

 (6.31) 

and 

 ( ) ( ) ( )( )
1 2

2 , ,
1

1 0k

p
d

j j k g j k g j k
k

P P P
α

α ε β
=

Γ = + − − >�  (6.32) 

with 
ij i j i j

A H B FΩ = +  and 
ij i j i j

W C H D F= + , 

( ) ( ) ( )1 1

1 , 1 / 2 2 1 1 mod 2p k p k p kg j k j j+ − + − −� �= − × + + −� �  and ( ) ( )2 1, , 2 p k
g j k g j k

−= + , ⋅� �� �  

standing for the floor function, 
k

d
α  defined from 1 21 2 2 p

pd d d
α α αα − = + × + + ×� , 

{ }1, ,2 pα = �  

The T-S model (6.2) satisfies the H∞  criterion for disturbances rejection provided that 

( ) 1tφ ≤ . 
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Proof: 

From (6.28) and respectively the relaxation Lemma (6.29) it follows immediately that 

inequalities in (6.30) and respectively (6.31) imply the inequalities given by (6.16) and (6.25). 

Since all the possible sign combinations in (6.27) are taken into account and inequalities in 

(6.18) bound the time derivative of the non-quadratic Lyapunov function it follows that (6.27) 

is a generalization of [Tuan & al, 2001] , thus concluding the proof. � 

Remark 6.2: note that it is very often possible to write 
z

G G= , as the external disturbance 

arrives directly on the output. In this case (6.28) reduces to a double sum and relaxation 

lemma (6.29) can also be used. 

 

6.4. Design examples 

In this section, we demonstrate the effectiveness of the proposed approach using simulation 

examples. The first example deals with a disturbed continuous-time TS model in which 

asymptotic stability and disturbance attenuation are guaranteed, the second example shows 

the advantages of using the new non-PDC controller scheme. 

Example 6.1: 

Consider the following T-S model: 

 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

2

1

2

1

i i i i

i

i i i i

i

x t h z t A x t B u t E t

y t h z t C x t D u t G t

φ

φ

=

=

C
= + +D

D
E
D = + +
DF

�

�

�

 (6.33) 

Where 1

6.3 3.5

8.3 1.4
A

− −� �
= � �−� �

, 2

2.7 5.4

6.66 3.5
A

−� �
= � �− −� �

, 1

1

0
B

� �
= � �
� �

, 2

0

1
B

� �
= � �
� �

, 1

2 10

5 1
C

−� �
= � �−� �

, 

2

3 20

7 2
C

−� �
= � �− −� �

, 1

1

1
D

� �
= � �−� �

, 2

2

0.5
D

−� �
= � �
� �

, 1

0.3

0.2
E

−� �
= � �−� �

, 2

0.1

0.2
E

� �
= � �
� �

, 1 2

0.35

0.35
G G

−� �
= = � �

� �
. 

The external disturbance is ( ) ( )sin 0.5t tφ = . The MFs of the fuzzy model are defined as 

( )( ) ( )2

1 1 1cosh x t x t= , ( ) ( )2 1 1 11h x h x= −  in the compact set ( ):
2

iC x x t
πC �

= ≤E �
F �

. 

From the MFs above expression in (6.20) can be written with the following µ ‘s and v ‘s: 
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 ( ) ( )
1 2
0 1

1 1 1 1

11

2sin cos 0

T
T T

l l

l

w z
x t x t v

z x
µ

=

∂ ∂� �
= − =� �� 	 � �∂ ∂A B

�  

where  [ ] [ ]11 121 0 , 1 0 ,
T T

v v= − =
( ) ( )1 1

11

1 2sin cos

2

x t x t
µ

+
=  and 12 111µ µ= −  

Classical conditions based on common Lyapunov function and ordinary PDC controller 

cannot be solved for this example. 

By solving conditions in Theorem 6.1, a local H∞  controller has been designed. Knowing the 

bounds corresponding to the external disturbances, it follows 2 1
w

λ =  and by choosing 

1 1.1β = , 1 0.1ε =  and 2 1ε = . 

We have the state feedback gains given by 

[ ]1 0.148 0.480F =  , [ ]2 0.047 0.066F = −  

1

0.041 0.057

0.033 0.091
H

� �
= � �
� �

, 2

0.025 0.012

0.004 0.028
H

� �
= � �−� �

 

1

0.029 0.029

0.029 0.073
P

� �
= � �
� �

, 2

0.028 0.009

0.009 0.040
P

� �
= � �
� �

 

The time evolution of the closed loop system states with initial state vector 

( ) [ ]0 0.5 0.5
T

x = −  are depicted in Figure 6.1.  
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Figure 6.1 :  Time evolution of the system states signals 

 

The output signals under the external disturbance ( )w t  with an attenuation criterion 

0.762γ =  are shown in Figure 6.2. 
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Figure 6.2 : Time evolution of the output and disturbance signals 

 

The simulations results show that the closed loop system is stable with disturbance 

attenuationγ . Figure 6.3 shows the curve of control input. 
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Figure 6.3 : Time evolution of the control input  

 

For the sake of comparison, we propose to compare our approach resumed in Theorem 6.1 

with an approach based on the following non-PDC controller  

 ( ) ( ) ( ) ( ) ( )
1

1

1 1

r r

i i i i z z

i i

u t h z F h z P x t F P x t

−

−

= =

� �
= =� 	

A B
� �  (6.34) 

where 0T

z z
P P= > . 

LMI Conditions ensuring asymptotic stabilization and local H∞ controller design are stated in 

the following theorem. 

 

Theorem 6.2:[Jaadari & al, 2013] 

 The T-S model (6.2) under the control law (6.34) is locally asymptotically stable with an 

attenuation factor γ  , if there exists 
k

β , { }1, ,k p= � , satisfying (6.18), 1 0ε >  and matrices 

0T

j jP P= >  ,
j

F , { }1, ,j r= �  of proper dimensions such that, 

 

( ) { } { }3

0, 0

0,

, , 1, , , 1, , 2

iii ijj jij jji

ijk jik ikj jki kij kji

p
i j k r

α α α α

α α α α α α

α

ϒ < ϒ + ϒ + ϒ <

ϒ + ϒ + ϒ + ϒ + ϒ + ϒ <

∀ ∈ ∈� �

 (6.35) 
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And  

 ( ) { }
22

0,   , 1, ,
1

kl kl kl

ii ij ji
i j r

r
Φ + Φ + Φ < ∀ ∈

−
�  (6.36) 

Hold with  

 

( ) ( ) ( )( ) ( ) ( ) ( )

( )

1 2, ,
1

2

1 1 1

1 * * *

1/ 2 * 0

2 2 0

1/ 2 0 0

k

p
dT

ij ij k g j k g j k

k

T T T

k ij i k iijk

ij j j

ij

P P

G E I G G

P P

I

α

α

β

γ

ε ε ε

=

� �
Π + Π − − −� �
� �
� �Ψ + − +ϒ =
� �

Π − −� �
� �Ψ −� �

�

 (6.37) 

 
( )

( )
*

k jkl

ij T

kl i j i j k

P

v A P B F I

β

β

−� �
Φ = � �

+ −� �� �
 (6.38) 

Where  
ij i j i j

A P B FΠ = +  and 
ij i j i j

C P D FΨ = + , 

( ) ( ) ( )1 1

1 , 1 / 2 2 1 1 mod 2p k p k p kg j k j j+ − + − −� �= − × + + −� �  and ( ) ( )2 1, , 2 p k
g j k g j k

−= + , ⋅� �� �  

standing for the floor function, 
k

d
α  defined from 1 21 2 2 p

pd d d
α α αα − = + × + + ×� , 

{ }1, ,2 pα = �  

 

Proof: 

The proof is similar to that of Theorem 6.1, the arbitrary gain 
j

H  used in the controller (6.34)

is replaced by a symmetric definite positive matrix 0T

j jP P= > .� 

Example 6.2:  

Consider the T-S model defined in (6.33) 

 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

2

1

2

1

i i i i

i

i i

i

x t h z t A x t B u t E t

y t h z t C x t

φ
=

=

C
= + +D

D
E
D =
DF

�

�

�

 (6.39) 

Here, we consider that matrices 0
i

D =  and 0
i

G =  

 



 

Chapter 6: Non-quadratic H-infinity control of T-S models 

128 
�

�

Figure 6.4 shows the behavior of the minimum attenuation factorγ  found when the bound 
k

β  

varies, a better minimization is obtained using Theorem 6.1 comparing to the attenuation 

factor obtained via Theorem 6.2. 

 

Figure 6.4 : Attenuation factor with different values of the bound , 1
k

kβ = (Theorem 6.1 (o)) 

and Theorem 6.2 (*) 

6.5. Conclusion 

A new local approach to H-infinity control design for continuous-time T-S models has been 

presented in this chapter. Based on the notion of non-quadratic stabilization developed in the 

previous chapter. The problem of the time-derivative of the MFs has been overcome via 

Finsler’s lemma and produced less conservative. New conditions of the asymptotic 

stabilization problem and the external disturbance attenuation are expressed as LMIs which 

are easily solved by means of convex optimization techniques. Two examples are included to 

show the effectiveness of the new approach and its advantages. 
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7. Chapter 7: Conclusions   

7.1. Thesis summary 

 

This thesis has dealt with stability analysis and controller design of nonlinear systems of the 

form of continuous–time Takagi-Sugeno models, the main contributions in this work are: 

• Non-quadratic stability analysis for continuous-time T-S models 

• Non-quadratic stabilization for continuous-time T-S models 

Chapter 1 has provided an overview of nonlinear systems modeling, the motivations and a 

review of previous works have been presented. Next, the contributions of the thesis are 

described and it ended with an outline of the thesis. 

Part I has presented a state of the art for continuous-time Takagi-Sugeno models by 

introducing the basic concepts used for stability analysis and controller design. In this section, 

we detailed the principle of stability, stabilization and the Lyapunov theory on which is based 

this study. Thus, a brief overview of the major works of literature on the stability analysis and 

synthesis of fuzzy controllers for T-S models based on techniques of convex programming 

(Linear matrix inequalities and Sum of squares programming) was presented. Then, the 

drawbacks and the sources of conservatism were discussed. Recent proposed approaches and 

results to overcome these problems are studied.  

Part II contained four chapters developing the contibutions of this thesis 

In chapter 3, novel methods were presented for non-quadratic stability analysis of continuous-

time T-S models, these methods have taken the full route from an initial idea which consists in 

a change of perspective for non-quadratic stability analysis of T-S models. This approach 

reduces global goals to less exigent conditions, thereby showing that an estimation of the 

region of attraction can be found (local stability); this solution parallelizes nonlinear analysis 
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and design for models that do not admit a global solution. In this chapter, some improvements 

on the local stability conditions based on a new way to deal with the membership functions 

are presented, by the mean of fuzzy Lyapunov functions the results are given of the form of 

Linear Matrix inequalities.  

In chapter 4, a sum of squares (SOS) approach has been presented to deal with the problem of 

stability analysis of continuous-time nonlinear models. This approach proposed a polynomial 

fuzzy modeling that is a generalization of the T–S fuzzy model and is more effective in 

representing nonlinear systems combined with local stability analysis via fuzzy polynomial 

Lyapunov functions, exploiting both polynomial bounds on the model’s non-polynomial 

nonlinearities and, also, polynomial bounds on the partial derivatives of the membership 

functions. The simulations have proved less conservative results and better estimation of the 

region of attraction. 

 

Chapter 5 has represented an extension of the results obtained in previous chapters to the 

stabilization of T-S models, based on non-quadratic Lyapunov functions. New non-PDC 

controllers have been designed overcoming the drawbacks of existing results and reducing 

conservativeness thanks to including the membership-shape information. It is shown that the 

derived local conditions leads to interesting results comparing to existing quadratic 

approaches. In the first section, a new way to handle the time derivative of the membership 

functions is presented by introducing bounds a priori known (derived from the modeling 

region). Improved results have been shown in a second section of this chapter compared to 

recent non-quadratic approaches by expressing the bounds used in the previous section in 

LMI form. In the last section, new non-PDC controller has been designed starting from the 

possibility to somehow “cut” the link between the Lyapunov function and a non-PDC control 

law. To that end, quadratic and non-quadratic Lyapunov functions have been considered. This 

treatment has intended to gradually introduce the use of Finsler’s Lemma as to suggest the 

way the time-derivatives of the MFs can be handled. It has been proved that these non-

quadratic approaches reduce to the quadratic cases and include the ordinary PDC control law. 

In chapter 6, H-infinity controller design for disturbed continuous-time Takagi-Sugeno 

models approach has been developed. By the help of non-quadratic Lyapunov function and a 

new form of non-PDC controller, new local LMI conditions have been derived allowing 

asymptotic stabilization ans external disturbance attenuation. 
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In the next section, we discuss the possible future directions of this thesis 

7.2. Perspectives 

 

As future research directions, it would be interesting as first step, to improve the results in 

Chapter 3 and chapter 4 to more general inequalities as develop a new algorithm to optimize 

the bound of the derivative of the membership functions. 

The second step will be to provide an approach dealing with uncertain nonlinear systems in 

the form of continuous-time Takagi-Sugeno models, the issue is extend the results obtained 

during this thesis to develop a local robust controller based on non-quadratic Lyapunov 

functions and including the non-PDC controller structure based on an H infinity criterion   

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
z z z z z

z z z z z

x t A A x t B B u t E t

y t C C x t D D u t G t

φ

φ

= + ∆ + + ∆ +CD
E

= + ∆ + + ∆ +DF

�
 (7.1) 

Where ,  ,   and 
z z z z

A C B B∆ ∆ ∆ ∆  are matrices representing parameter uncertainties of the 

model (7.1).LMI formulation of the conditions for robust controller design can be derived. 

The third issue is to consider the problem of local observer design, the non-quadratic 

approaches proved in this thesis, can be adapted to the estimation of the unmeasured states of 

a nonlinear model. 

Another issue is to extend the results for stability analysis of nonlinear models modeled in the 

polynomial fuzzy form developed in chapter 3 to the controller design scheme, a SOS 

formulation of the SOS Stabilization conditions could be a generalization of the results 

obtained for Takagi Sugeno models. A more general and relaxed stabilization conditions and 

better estimation of the region of attraction can be obtained. 
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Appendices 

 

Positivstellensatz 

This section offers more detail on the so-called Positivstellensatz argumentation, which 

extends the Lagrange multipliers and S-procedure form the LMI framework to the SOS 

context. First appeared in [Parrilo, 2003], this relaxation is derived from real algebraic 

geometry and states that the solution set of the following problem is a convex set, thus 

solvable through convex optimization techniques [Prajna, 2004a]: 

Find polynomials ( )ip x , ˆ1, ,i N= �  and sum of squares ( )ip x , ˆ 1, ,i N N= + �  such that 

 ( ) ( ) ( )0, ,

1

0
N

j i i j

i

a x p x a x
=

+ =� , for ˆ1, ,j J= �  (7.2) 

 ( ) ( ) ( )0, ,

1

N

j i i j

i

a x p x a x
=

+�  are SOS for ˆ 1, ,j J J= + � , (7.3) 

with ( ),i ja x  are given scalar constant coefficient polynomials.  

Restrictions in (7.3) can be understood as inequality constraints which, in the current context, 

may arise from the modelling region of validity of the PF model, thus taking advantage of its 

local character. This idea leads to a reformulation of the Positivstellensatz argumentation 

[Sala, 2009b]: 

Assume a finite set of known polynomial restrictions ( ) ( ){ }1 , , mF f x f x= �  hold in region 

Ω . Then, a sufficient condition for a polynomial ( )xπ  being positive in Ω  is that there exist 

multiplier SOS polynomials ( )iq x , 1, ,i n= � , such that ( ) ( ) ( )
1

n

i i

i

x q x xπ φ
=

−�  is SOS, where 

( )i xφ  are arbitrary polynomials that are composed of products of those in F. 

The previous reasoning as well as some practical considerations of polynomial order for SOS 

tests, leads to a quasi-systematic procedure to include SOS restrictions into the local analysis. 

Briefly, it can be stated as follows:  
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1. Define a list of polynomial restrictions holding in the modelling area of the PF model 

( ) ( ){ }1 , , mF f x f x= � . Note that this non-unique list is naturally derived and a priori 

known from the modelling region. 

2. Construct polynomials ( )i xφ  as all the product combinations of restrictions in F 

preserving the same sign up to a certain order.   

Polynomial multipliers in Example 1 above have been derived following this procedure up to 

the double products of the restriction list:  

( ) ( ){ }2 2 2 2 2 2 2 2

1 2 1 2 1 20, 0, 0, 0, 0, 0F x x x x x x x x x x x x= − < − < − < − < − + < − + < .
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Titre : Systèmes quasi-LPV continus : comment dépasser le cadre du quadratique ? 

Cette thèse aborde le problème de l'analyse de la stabilité et de la conception des lois de 

commande pour les systèmes non linéaires mis sous la forme de modèles flous continus de 

type Takagi-Sugeno. L'analyse de stabilité est généralement basée sur la méthode directe 

de Lyapunov. Plusieurs approches existent dans la littérature, basées sur des fonctions de 

Lyapunov quadratiques sont proposées pour résoudre ce problème, les résultats obtenus à 

l'aide des telles fonctions introduisent un conservatisme qui peut être très préjudiciable. 

Pour surmonter ce problème, différentes approches basées sur des fonctions de Lyapunov 

non quadratiques ont été proposées, néanmoins ces approches sont basées sur des 

conditions très restrictives. L'idée développée dans ce travail est d'utiliser des fonctions de 

Lyapunov non quadratiques et des contrôleurs non-PDC afin d'en tirer des conditions de 

stabilité et de stabilisation moins conservatives. Les propositions principales sont: 

l'utilisation des bornes locales des dérivées partielles au lieu des dérivés des fonctions 

d’appartenances, le découplage du gain du régulateur des variables de décision de la 

fonction Lyapunov, l’utilisation des fonctions de Lyapunov floues polynomiales dans 

l’environnement des polynômes et la proposition de la synthèse de contrôleur vérifiant 

certaines limites de dérivés respectées  dans une région de la modélisation à la place de les 

vérifier a posteriori. Ces nouvelles approches permettent de proposer des conditions 

locales afin de stabiliser les modèles flous continus de type T-S, y compris ceux qui 

n'admettent pas une stabilisation quadratique et obtenir des domaines de stabilité plus 

grand. Plusieurs exemples de simulation sont choisis afin de vérifier les résultats présentés 

dans cette thèse. 

Mots clés : modèles flous de types Takagi-Sugeno, Stabilité non-quadratique, stabilisation 

non-quadratique, Fonction de Lyapunov, Inégalités matricielle linéaires, somme des 

carrées. 

 

Title : Continuous quasi-LPV Systems: how to leave the quadratic framework? 

This thesis deals with the problem of stability analysis and control design for nonlinear 

systems in the form of continuous-time Takagi-Sugeno models. The approach to stability 

analysis is usually based on the direct Lyapunov method. Several approaches in the 

literature, based on quadratic Lyapunov functions, are proposed to solve this problem; the 

results obtained using such functions introduce a conservatism that can be very 

detrimental. To overcome this problem, various approaches based on non-quadratic 

Lyapunov functions have also been recently presented; however, these approaches are 

based on very conservative bounds or too restrictive conditions. The idea developed in 

this work is to use non-quadratic Lyapunov functions and non-PDC controller in order to 

derive less conservative stability and stabilization conditions. The main proposals are: 

using local bounds in partial derivatives instead of time derivatives of the memberships, 

decoupling the controller gain from the Lyapunov function decision variables, using fuzzy 

Lyapunov functions in polynomial settings and proposing the synthesis of controller 

ensuring a priori known time-derivative bounds are fulfilled in a modelling region instead 

of checking them a posteriori. These new approaches allow proposing local conditions to 

stabilize continuous T-S fuzzy systems including those that do not admit a quadratic 

stabilization. Several simulation examples are chosen to verify the results given in this 

dissertation.  

Key words: Takagi-Sugeno Models, non-quadratic Stability, non-quadratic Stabilization, 

Lyapunov function, Linear Matrix inqualities, Sum Of Squares. 

 


