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Daniele PUCCI

TOWARDS A UNIFIED APPROACH

FOR THE CONTROL OF AERIAL VEHICLES





Abstract

Over the last century, the scientific community has dealt with the control of flying ma-
chines by mainly developing different strategies in relation to different classes of aircraft,
and no unified control approach has been developed so far. The present thesis contributes
towards the development of a unified control approach for aerial vehicles by maintaining
aerodynamic forces in the control design. It is assumed, however, that the aerodynamic
effects of rotational and unsteady motions are negligible, and that the means of actuation
for an aerial vehicle consist of a body-fixed thrust force for translational motion and a
control torque for attitude monitoring. This thesis then focuses on the guidance loop of
the control problem. One of the main objectives has been to determine how to regulate the
thrust intensity and the vehicle orientation to compensate for the orientation-dependent
external forces. In particular, the modelling, analysis, and control of the longitudinal
aircraft dynamics is first addressed. Then, some of these studies are extended to three-
dimensional motions of symmetric aircraft, such as missile-like bodies. An original out-
come of this thesis is to state conditions on the aerodynamic force that allow the control
problem to be recasted into that of controlling a spherical body. In this case, strong
stability results can be shown. The proposed control laws incorporate integral and anti-
wind up terms and do not rely on a switching policy between several control laws.

Résumé

Au cours du siècle dernier, la communauté scientifique a traité le contrôle des véhicules
aériens principalement par l’élaboration de stratégies ad hoc, mais aucune approche unifiée
n’a été développé jusqu’à présent. Cette thèse participe à l’élaboration d’une approche
unifiée pour le contrôle des véhicules aériens en prenant en compte les forces aérody-
namiques dans la conception de la commande. Nous supposons les effets aérodynamiques
de rotation et les effets non stationnaires négligeables. Les actionneurs du véhicule sont
supposés être composés d’une force de poussé fixée au corps pour le mouvement en trans-
lation, et d’un couple de contrôle pour la régulation d’attitude. Cette thèse se concentre
ensuite sur la boucle de guidage, traitant du contrôle de la vitesse linéaire. L’un des prin-
cipaux objectifs a été de déterminer la façon de réguler la force de poussée et l’orientation
du véhicule pour compenser les forces extérieures. Tout d’abord nous abordons la mod-
élisation, l’analyse et le contrôle de la dynamique longitudinale de l’avion. Ensuite nous
étendons certaines de ces études aux mouvements tridimensionnels d’avions au corps
symétrique, tels que les missiles. Un résultat original de cette thèse est de préciser les
conditions sur la force aérodynamique permettant de reformuler le problème du contrôle
dans celui de la commande d’un corps sphérique, pour lequel des résultats de stabilité
peuvent être démontrés. Les lois de commande proposées intègrent des termes intégraux
et anti-wind up sans reposer sur une politique de commutation entre plusieurs lois de
commande.
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Prologue in English

Feedback control of aerial vehicles in order to achieve some degree of autonomy remains
an active research domain after decades of studies in the subject. The complexity of
aerodynamic effects and the diversity of flying vehicles partly account for this continued
interest. Over the last decades, the scientific community has dealt with the control of
flying machines by mainly developing different strategies in relation to different classes of
aerial vehicles – as exemplified by airliners and helicopters – but no unified approach has
been developed so far. The present thesis contributes towards the development of such
an approach by taking into account aerodynamic effects in the control design.

Most aerial vehicles developed in the 20th century belong either to the class of fixed-
wing vehicles, or to that of Vertical Take Off and Landing (VTOLs) vehicles. The first
class is mainly comprised of airplanes, while the second class concerns several types of
systems, like helicopters, ducted fans, quad-rotors, etc. Control design techniques for
fixed-wing and VTOL vehicles have developed in different directions and suffer from
specific limitations. Classically, feedback control of fixed-wing aircraft explicitly takes into
account aerodynamic forces via linearized models, and stabilization is usually achieved
by applying linear control techniques. Linear techniques are used for hovering VTOL
vehicles too, but several nonlinear feedback methods have also been proposed in the last
decade to enlarge the provable domain of stability. These methods, however, are based on
simplified dynamic models that neglect aerodynamic forces, so they are not best suited
to the control of aircraft moving fast or subjected to strong wind variations.

A drawback of the independent development of control methods for fixed-wing and
VTOL aircraft is the lack of tools for flying vehicles that belong to both classes. One
can mention the example of convertible aircraft, which can perform stationary flight and
also benefit from lift properties at high airspeed via optimized aerodynamic profiles. The
renewed interest in convertible vehicles and their control is reflected in the growing number
of studies devoted to them in recent years, even though the literature in this domain is
not extensive. One of the motivations for elaborating more versatile control solutions is
that the automatic monitoring of the delicate transitions between stationary flight and
cruising modes, in relation to the strong variations of aerodynamic forces during these
transitions, remains a challenge even now.

Lately, advances in technology have given impetus to the development of small aerial
vehicles: lighter and more powerful engines, more efficient batteries, lighter materials,
and more reliable miniature electronics and sensors make it possible to embark all ele-
ments necessary for autonomous navigation in small aircraft, which are thus versatile to
numerous applications such as inspection, surveillance, cartography, cinematography, etc.
Among these emerging aerial vehicles, one can mention the HoverEye (Pfimlin, 2006), the
iSTAR (Lipera et al., 2001), the GTSpy (Johnson and Turbe, 2005), the University of
Bologna’s ducted fan tailsitter (Naldi, 2008a), the SLADe (Peddle et al., 2009), the X4-
flyer (Hamel et al., 2002a), the vigilant (Fabiani et al., 2007), the Goliath (Vissiere et al.,
2008), the GTMax (Johnson and Kannan, 2005), and the AVATAR (Saripalli et al., 2002).
Although nowadays navigation systems are reliable for autonomous flights, the control of
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small aerial vehicles is still an open avenue. One of the major difficulties in developing
these strategies is that a small aircraft can (usually) fly within a large flight envelope,
which impairs most of the control solutions proposed in the existing literature.

In view of these observations, we believe that there is a strong potential benefit in
bringing control techniques for fixed-wing and VTOL vehicles closer. The present thesis
takes a step in this direction by proposing a unified strategy that takes into account
aerodynamic forces in the control design. By neglecting so-called unsteady-aerodynamic
effects, an original outcome of the present thesis is to point out conditions upon the
aerodynamic forces that allow one to recast the control problem into the one of controlling
an equivalent body with a spherical shape subjected to an orientation-independent drag
force only. Once this transformation – referred to as spherical equivalency – is done,
strong stability and convergence results for reference trajectories can be demonstrated.

This work has been carried out during my Ph.D. within AROBAS – a robotics research
team of INRIA1 – and I3S UNSA/CNRS. The Ph.D. program has been under a co-
tutorship between the university of “Nice Sophia Antipolis” and “Sapienza” university
of Rome in order to obtain a PhD title from each of these universities according to
the “convention internationale de cotutelle de these” stated by the “Université Franco
Intalienne”. My research was funded by the I3S-CNRS/UNS University of Nice Sophia
Antipolis. The present document is organized into two parts:

Part 1: Principles of flight and thesis context. This part of the thesis recalls the
principles of flight, thus providing the reader with basic aerodynamic and flight dynamics
knowledge. Also, some of the control techniques for aerial vehicles are reviewed in order
to clarify the thesis context with respect to the existing literature. This part of the thesis
consists of five chapters:

• Chapter 1 The origin of the science of flight: this chapter presents historical
notes on the origin of the science of flight.

• Chapter 2 Aerial vehicles: this chapter describes the main components and
flight characteristics of three classes of aerial vehicles: Fixed-wing aircraft, Vertical
Take Off and Landing aircraft, and Convertible vehicles.

• Chapter 3 Basics of aerodynamics: this chapter introduces basic aerodynamic
background by focusing on the aerodynamic forces acting on common flat wings.

• Chapter 4 Basics of flight dynamics: this chapter introduces basic flight dy-
namics background by discussing classical modeling and control strategies for aerial
vehicles.

• Chapter 5: Motivations and thesis context: this short chapter presents the
main thesis assumptions and motivations.

1The French National Institute for Research in Computer Science and Control- http://www.inria.fr.
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Part 2: Modeling Analysis and Control of Aerial Vehicles. This part of the
thesis is dedicated to the modeling, analysis and control of two-dimensional and three-
dimensional body motions. However, three of the four chapters composing this part
concern two-dimensional motions, also referred to as aircraft longitudinal dynamics.
In particular:

• Chapter 6 System modeling: this chapter recalls the equations of motions for
two-dimensional bodies subjected to aerodynamic reaction forces. Models represen-
tative of the aerodynamic coefficients of NACA airfoils in sub-sonic flows are also
presented. Stall phenomena are taken into account in this modeling process.

• Chapter 7 Equilibria analysis: this chapter presents an equilibrium analysis
for the vehicle’s longitudinal dynamics, and focuses on basic but important con-
trol issues. First, the feasibility of a reference trajectory is shown to require the
existence of a vehicle’s (equilibrium) orientation along the reference. Then, the
existence of this orientation is shown to follow from the symmetries of the body’s
shape independently from fluid regimes and specific classes of reference trajectories.
Once the existence of the vehicle’s equilibrium orientation is studied, this chapter
discusses the uniqueness and multiplicity of this equilibrium orientation. In doing
so, the aforementioned spherical equivalency is presented: it is shown that for the
aerodynamic forces allowing for this equivalency the vehicle’s equilibrium orienta-
tion is unique over large domains of the reference trajectory. For other classes of
aerodynamic forces, this chapter shows that a reference velocity may be associated
with several vehicle’s equilibrium orientations, the occurrence of which is related
to the stall phenomena. As a consequence of the existence of several equilibria,
this chapter shows that some reference trajectories require a discontinuous vehicle’s
orientation profile to be stabilized; in this case, the reference trajectory is not fea-
sible. With this equilibria picture in mind, a study of the local uniqueness of the
vehicle’s equilibrium orientation is presented, thus laying down the basis for the
control design method presented in chapter 8. Another original outcome of this
chapter is to show that at a fixed vehicle’s thrust intensity and orientation there
may exist several stable equilibrium velocities associates with large angles of attack
and loss-of-altitude; this result is reminiscent of the deep stall situation.

• Chapter 8 Control design: relying on the equilibria analysis developed in Chap-
ter 7, this chapter presents local controllers for reference trajectories and veloc-
ities. When the aerodynamic coefficients allow for the aforementioned spherical
equivalency, the basin of attraction of these controllers becomes semi-global under
conditions that are satisfied in most practical cases. Simulations results verify the
effectiveness and robustness of the proposed control approach for aerial vehicles
flying in the vertical plane.

• Chapter 9 Extension to 3-D symmetric aircraft: assuming a rotational sym-
metry of the vehicle’s shape about the thrust force axis, this chapter extends some
of the results found for the two-dimensional motions to aircraft flying in three-
dimensional space. Original results concern the modeling of aerodynamic forces
acting on symmetric bodies and the characterization of a family of models that al-
low one to apply the aforementioned spherical-equivalency. Members of this family
are representative of the aerodynamic force acting on elliptic-shaped and missile-
like bodies in subsonic and hypersonic flows. To illustrate the usefulness of these
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results at the control design level, prior control controllers are applied to provide the
reader with laws that stabilize either a reference velocity or a reference trajectory.
Simulations results verify the effectiveness and robustness of the proposed control
approach for symmetric aerial vehicles.

Some of the results reported in this thesis have been published (or are about to) in research
papers (Pucci et al., 2011) (Pucci, 2012) (Pucci et al., 2012) (Pucci et al., 2013). According
to the “convention internationale de cotutelle de these” stated by the “Université Franco
Italienne”, I spent a period of time of my Ph.D. program in Italy at “Sapienza” university
of Rome under the supervision of Professor Salvatore Monaco. The results to which I
collaborated are not reported in this manuscript, but they are reported in (Boncagni
et al., 2011) (Boncagni et al., 2012c) (Boncagni et al., 2012a) (Boncagni et al., 2012b).
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La commande de véhicules aériens dans le but d’atteindre un certain degré d’autonomie
reste un domaine de recherche actif après des décennies de recherche. La complexité des
effets aérodynamiques et la diversité des véhicules volants expliquent partiellement cet
intérêt continu. Durant les dernières décennies, la communauté scientifique a relevé le
défis de contrôler des machines volantes principalement en développant différentes straté-
gies en relation avec les différentes classes de véhicules, comme le montre les avions et
les hélicoptères, mais aucune approche unifiée n’a été développée jusqu’ici. La présente
thèse contribue au développement de cette approche en prenant en compte les effets
aérodynamiques complexes dans la conception des commandes.

La plupart des véhicules aériens développés au 20ieme siècle appartiennent soit à la
classe des véhicules à voilure fixe soit a celle des véhicules à décollage verticale (VTOLs).
La première classe de véhicule comprend principalement les avions alors que la seconde
concernent plusieurs types d’appareil comme les hélicoptères, les quadrirotors etc. Les
techniques de conception des commandes pour les véhicules à voilure fixe ou VTOL ont
été développées dans différentes directions et souffrent de limitations spécifiques. Clas-
siquement, la commande en boucle fermée de véhicules à voilure fixe prend en compte
explicitement les forces aérodynamiques via des modèles linéarisés et la stabilisation est
traditionnellement réalisée en appliquant des méthodes de commande linéaire. Des méth-
odes linéaires sont utilisées pour la phase ascensionnelle du vol des VTOL aussi, mais
plusieurs méthodes de contrôle non linéaire ont aussi été proposées durant la dernière
décennie pour augmenter le domaine de stabilité. Cependant ces méthodes sont basées
sur des modèles dynamiques simplifiés qui négligent les forces aérodynamiques, ce qui fait
qu’elles ne sont pas adaptées au contrôle d’un appareil se déplaçant à grande vitesse ou
sujet à de fortes variations du vent.

Un inconvénient du développement indépendant des méthodes de contrôle pour ap-
pareils à voilure fixe et VTOL est le manque d’outils pour les véhicules appartenant
aux deux classes. On peut mentionner les véhicules convertibles qui réalisent un vol
stationnaire et bénéficient aussi de propriétés de portance pour de haute vitesse du flux
d’air autour de l’appareil via des profiles aérodynamiques optimisés. Le renouvellement de
l’intérêt pour les véhicules convertibles et leur commande est reflété par le nombre de plus
en plus important d’études liées au sujet ces dernières années bien que la littérature dans
le domaine n’est pas très étendu. Une des raisons d’élaborer des commandes plus souples
est que la surveillance automatique des délicates transitions entre le vol stationnaire et le
vol de croisière, en relation avec les grandes variations des forces aérodynamiques pendant
ces transitions, reste un challenge aujourd’hui.

Récemment, les avancées technologiques ont donné une impulsion au développement
de petits véhicules aériens : des moteurs plus petits et plus puissants, des batteries plus
efficaces, des matériaux plus légers et des capteurs et de l’électronique plus fiable ren-
dent possible l’intégration de tout ce qui est nécessaire pour la navigation autonome de
petits appareils qui sont adaptés à de nombreux type d’application comme l’inspection,
la surveillance,la cartographie, la cinématographie etc. Parmi ces nouveaux appareils, on
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peut citer l’HoverEye (Pfimlin, 2006), l’iSTAR (Lipera et al., 2001), le GTSpy (Johnson
and Turbe, 2005), le ducted fan tailsitter (Naldi, 2008a) de l’universitè de Bologne, le
SLADe (Peddle et al., 2009), le X4-flyer (Hamel et al., 2002a), le vigilant (Fabiani et al.,
2007), le Goliath (Vissiere et al., 2008), le GTMax (Johnson and Kannan, 2005), et
le AVATAR (Saripalli et al., 2002). Bien qu’aujourd’hui les systèmes de navigation sont
fiables pour un vol autonome, la commande des petits véhicules reste un problème ouvert.
L’une des principales difficultés pour le développement de ces stratégies est que ces petits
appareils peuvent typiquement voler dans de large enveloppes de vol qui rendent caduque
la plupart des solutions pour la commande proposées dans la littérature existante.

Ayant fait ces observations, nous pensons qu’il existe un fort bénéfice potentiel à
rapprocher les techniques de contrôle des véhicules à voilure fixe et VTOL. La présente
thèse fait un pas dans cette direction en proposant une stratégie unifiée qui prend en
compte les forces aéronautiques dans la conception des commandes. Un résultat original
de cette thèse est de souligner les conditions sur la force aérodynamique qui permettent
de reformuler le problème sous la forme du contrôle d’un corps sphérique sujet unique-
ment à une traînée indépendante de l’orientation. Une fois réalisée cette transformation,
appelée équivalence sphérique, des propriétés de stabilité et de convergence fortes pour
des trajectoires de référence peuvent être démontrées.

Ce travail a été effectué durant ma thèse dans l’équipe AROBAS de l’INRIA Sophia
Antipolis et dans le laboratoire I3S UNSA/CNRS en cotutelle avec Sapienza-Università di
Roma selon la “convention internationale de cotutelle de thèse” établie par “l’Université
Franco Intalienne”.

Ces travaux de recherche ont été financés par l’I3S-CNRS Université de Nice Sophia
Antipolis. Le manuscrit de thèse est divisé en deux parties:

Part1 : principe de vol et contexte de la thèse. Cette partie de la thèse rappelle les
principes du vol en donnant au lecteur les bases de l’aérodynamique et de la mécanique
du vol. Plusieurs techniques de contrôle des véhicules aériens sont revus dans le but de
clarifier le contexte de la thèse par rapport à la littérature existante. Cette partie de la
thèse consiste en 5 chapitres.

• Chapitre 1 : les origines de la science du vol: ce chapitre présente des notes
historiques sur l’origine de la science du vol.

• Chapitre 2 : Véhicules aériens : ce chapitre décrit les composants principaux
et les caractéristiques de vol de trois classes de véhicules : voilure fixe, VTOL et
convertibles.

• Chapitre 3 : Bases de l’aérodynamique : ce chapitre introduit les bases de
l’aérodynamique en se focalisant sur les forces agissant sur des profiles plats.

• Chapitre 4 : Bases de la dynamique du vol: ce chapitre introduit les bases
de la dynamique du vol en discutant des méthodes classiques de modélisation et de
conception des commandes des véhicules aériens.

• Chapitre 5: Motivations et contexte de la thèse: ce court chapitre présente
les hypothèses principales et les motivations de la thèse.
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Part 2: Modélisation et Commande des véhicules aériens. Cette partie de la thèse
est dédiée à la modélisation a l’analyse et à la commande du mouvement des corps en 2-D
et en 3-D. Cependant trois des ’ chapitres composant cette partie concerne le mouvement
bidimensionnel, aussi appelé dynamique longitudinale de l’avion. En particulier :

• Chapitre 6 Modélisation du système: ce chapitre rappelle les équations du
mouvement pour des objets en deux dimensions sujets à des forces aérodynamiques.
Des modèles représentatifs des coefficients aérodynamiques des profiles NACA dans
des flux d’air subsoniques sont aussi présentés. Le “stall phenomena” est pris en
compte dans cette modélisation.

• Chapitre 7 : Analyse des équilibres: Ce chapitre présente une analyse des
équilibres de la dynamique longitudinale du véhicule et se focalise sur des problèmes
de commande basiques mais importants. Premièrement on montre que la faisabilité
de la trajectoire de référence nécessite l’existence d’une orientation d’équilibre pour
le véhicule le long de la référence. Ensuite on montre que l’existence de cette ori-
entation vient des symétries du véhicule, indépendamment du régime d’écoulement
fluide et des classes de trajectoires de référence spécifique. Une fois l’existence d’une
orientation d’équilibre étudiée, ce chapitre discute de l’unicité et de la multiplicité
de cette orientation. Ensuite, l’équivalence sphérique précitée est introduite : on
montre que pour des forces permettant cette équivalence, l’orientation d’équilibre
du véhicule est unique dans un large domaine de trajectoires de références. Pour
d’autres classes de forces aérodynamiques, ce chapitre montre qu’une vitesse de
référence peut être associée a plusieurs orientations d’équilibre du véhicule, l’occurrence
desquelles est liée au stall phenomena. En conséquence de l’existence de plusieurs
équilibres, ce chapitre montre que certaines trajectoires de référence requièrent que
le profile d’orientation du véhicule discontinu soit stabilisé, dans ce cas, la trajec-
toire de référence n’est pas faisable. Avec cette image en tête, une étude de l’unicité
locale de l’orientation d’équilibre est présentée, posant les bases de la méthode de
commande présentée au chapitre 8. Un autre résultat original de ce chapitre est de
montrer qu’à une poussée et une orientation fixées, il peut exister plusieurs vitesses
d’équilibre stable associées avec de grands angles d’attaque et des pertes d’altitude ;
ce résultat est réminiscent de la situation de “deep stall”.

• Chapitre 8 : conception de la commande: en s’appuyant sur l’analyse de
l’équilibre développée précédemment, ce chapitre présente des contrôleurs locaux
pour des trajectoires et vitesses de référence. Lorsque les coefficients aérodynamiques
permettent l’équivalence sphérique, le bassin d’attraction de ces contrôleurs devient
semi-global sous des conditions remplies dans la plupart des cas. Les résultats des
simulations vérifient l’efficacité et la robustesse des commandes proposées pour des
véhiculent volant dans le plan vertical.

• Chapitre 9 : extension en 3D pour des véhicules symétriques: En sup-
posant une symétrie de rotation autour de l’axe de la poussée du véhicule, ce
chapitre étend certains des résultats trouvés pour le cas d’un mouvement bidimen-
sionnel au cas d’un avion se déplaçant en 3D. Des résultats originaux concernent
la modélisation des forces aérodynamiques agissant sur des corps symétriques et
la caractérisation d’une famille de modèles qui permettent d’appliquer le principe
d’équivalence sphérique précité. Les membres de cette famille sont les représen-
tants de la force aérodynamique agissant sur des corps ellipsoïde ou en forme de
missile dans des flux d’air subsoniques et hypersoniques. Pour illustrer l’utilité des
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résultats de cette thèse au niveau de la conception de la commande, des contrôleurs
développés pour le cas sphérique sont appliqués pour donner au lecteur les lois qui
stabilisent la vitesse de référence ou la trajectoire de référence. Les résultats des
simulations vérifient l’efficacité et la robustesse des approches proposées pour la
commande des véhicules symétriques.

Certains des résultats présentés dans cette thèse ont été publiés dans les articles de
recherche (Pucci et al., 2011) (Pucci, 2012) (Pucci et al., 2012) (Pucci et al., 2013).
Selon la “convention internationale de cotutelle de these” établie par l’“Université Franco
Italienne”, j’ai passé une période durant mon doctorat en Italie à “Sapienza” universitè
de Rome sous la supervision de Professor Salvatore Monaco. Les résultats obtenus du-
rant cette période ne sont pas présentés dans ce manuscrit, mais ils sont présentés dans
(Boncagni et al., 2011) (Boncagni et al., 2012c) (Boncagni et al., 2012a) (Boncagni et al.,
2012b).
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Le strategie di comando per gli aeromobili rappresentano un attivo dominio di ricerca e
attraggono una grande parte della comintà scientifica odierna. La complessità degli effetti
aerodinamici e la diversità fra i sistemi capaci di volare sono fra i fattori che complicano lo
sviluppo di una strategia di controllo che sia robusta e completa. Infatti, al giorno d’oggi
il controllo degli aeromobili viene effettuato progettando strategie ad hoc per diverse
tipologie di sistemi, come le leggi di controllo per gli aerei di linea e gli elicotteri. Questa
tesi partecipa allo sviluppo di una teoria unica per il controllo degli aeromobili.

Gran parte degli aeromobili sviluppati nel ventesimo secolo appartengono o alla classe
degli aerei ad ala fissa, o alla classe degli aerei a decollo verticale (VTOLs). La prima
classe è sopratutto composta da aerei di linea, mentre la seconda contiene un’ampia
gamma di sistemi come elicotteri, quad-rotos, etc. Le strategie di comando per gli aerei ad
ala fissa ed i VTOLs si sono sviluppate lungo direzioni diverse e soffrono di limiti specifici
collegati ad ogni classe. Il controllo degli aerei ad ala fissa prende in considerazione
le forze aerodinamiche attraverso dei modelli linearizzati e la stabilità del sistema è il
più delle volte garantita attraverso tecniche di controllo lineari. Simili tecniche lineari
sono state utilizzate anche per il controllo dei VTOLs, ma molti metodi nonlineari sono
stati sviluppati nell’ultima decade per allargare il dominio di stabilità. Questi metodi
nonlineari, tuttavia, son basati su modelli che spesso trascurano completamente la forza
aerodinamica sul corpo del veicolo, e quindi non sono adatti al controllo di aeromobili che
si muovono ad alte velocità.

Un problema dello sviluppo indipendente delle metodologie di controllo per aeromobili
ad ala fissa e VTOLs è la mancanza di strategie per quei aeromobili che appartengono ad
entrambe le classi. Si possono menzionare i cosidetti aeromobili convertibili che sono in
grado sia di effettuare il decollo verticale che di beneficiare delle proprietà di portanza di
ali attaccate al corpo del veicolo. Il rinnovato interesse per gli aeromobili convertibili si
riflette nel crescente numero di studi devoti ad essi negli anni recenti, sebbene la letteratura
sul loro controllo non è ancora molto sviluppata. Uno dei maggiori problemi è il controllo
della transizione tra volo verticale e volo orizzontale, la quale genera una grande variazione
delle forze aerodinamiche applicate al veicolo.

Ultimamente, gli sviluppi della tecnologia hanno dato un impulso allo sviluppo di pic-
coli aeromobili: motori elettrici più leggeri e più potenti, batterie più efficienti, materiali
più leggeri, e un’elettronica di bordo più affidabile hanno reso possibile l’imbarco di tutti
gli elementi necessari al volo autonomo su un piccolo aeromobile, che risulta così molto
utile per numerose applicazioni come l’ispezione, la sorveglienza, la cartografia, etc. Tra
questi piccoli aeromobili si può menzionare l’HoverEye (Pfimlin, 2006), l’iSTAR (Lipera
et al., 2001), il GTSpy (Johnson and Turbe, 2005), il ducted fan tailsitter (Naldi, 2008a)
dell’università di Bologna, il SLADe (Peddle et al., 2009), il X4-flyer (Hamel et al., 2002a),
il vigilant (Fabiani et al., 2007), il Goliath (Vissiere et al., 2008), il GTMax (Johnson and
Kannan, 2005), e il AVATAR (Saripalli et al., 2002). Sebbene ai giorni d’oggi i sistemi di
navigazione siano affidabili per il volo autonomo di piccoli aeromobili, il controllo di tali
sistemi è ancora una strada aperta. Una delle difficoltà maggiori è data dal fatto che un
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piccolo aeromobile può volare in un grande inviluppo di volo, il che rende inapplicabile
quasi tutte le strategie di comando per gli aerei ad ala fissa e per i VTOLs.

Alla luce di queste osservazioni, noi crediamo che si possa ottenere un beneficio notev-
ole nell’unificare le strategie di comando per gli aerei ad ala fissa ed i VTOLs in una
sola teoria per il controllo degli aeromobili. La presente tesi propone una strategia unica
per il controllo dei veicoli aerei. Un risultato originale di questa tesi è la definizione di
condizioni per le quali il problema del controllo può essere riscritto come se la forma del
veicolo fosse una sfera. Tale riformulazione viene chiamata equivalenza sferica, ed una
volta effettuata permette di dimostrare grandi domini di stabilità per ogni traitettoria di
riferimento.

La tesi di dottorato è stata sviluppata nel team AROBAS all’INRIA Sophia Antipolis.
Il programma di dottorato è stato in cotutela tra l’università di Nizza Sophia Antipolis e
l’università di Roma “La Sapienza” ai fini di ottenere un titolo di dottorato da ciascuna
di queste università, come definito dalla “convention internationale de cotutelle de these”
dell’“Université Franco Intalienne”. Il programma di dottorato fu finanziato dall’I3S-
CNRS/UNS University of Nice Sophia Antipolis. Questo documento è diviso in due parti:

Parte 1: I principi della dinamica del volo ed il contesto della tesi. Questa
parte richiama i principi della dinamica del volo. Inoltre, essa si focalizza su una parte
delle tecniche di controllo per gli aeromobili in modo tale da chiarire il contesto della tesi
rispetto la letteratura esistente. Questa parte della tesi è suddivisa in cinque capitoli:

• Capitolo 1 Cenni sull’origine della dinamica del volo: questo capitolo pre-
senta cenni storici sulla nascita e sviluppo della scienza che studia la modellazione
ed il controllo degli aeromobili, chiamata dinamica del volo.

• Capitolo 2 Aeromobili: questo capitolo descrive i componenti principali e le
caratteristiche di volo di tre classi di aeromobili: aeromobili ad ala fissa, aeromobili
a decollo e atterraggio verticale, ed aeromobili convertibili.

• Capitolo 3 Basi di aerodinamica: questo capitolo introduce i principi dell’aerodinamica
focalizzandosi sulle forze aerodinamiche che agiscono su comuni ali “piatte”.

• Capitolo 4 Basi di dinamica del volo: questo capitolo introduce le basi della
dinamica del volo e discute le metodologie classiche per il controllo degli aeromobili.

• Capitolo 5: Motivazioni e contesto della tesi: questo breve capitolo presenta
le ipotesi e le motivazioni della tesi.

Parte 2: Modellizzazione Analisi e Controllo degli aeromobili. Questa parte della
tesi è dedicata alla modellizzazione, analisi e controllo degli aeromobili. Tre dei quattro
capitoli che compongono questa parte della tesi sono dedicati a moti planari, chiamati
dinamica longitudinale dell’aeromobile.
In particolare:
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• Capitolo 6 Modellizzazione del sistema: questo capitolo richiama le equazioni
che governano il moto di corpi planari sottoposti a forze di reazioni aerodinamiche.
Modelli che sono rappresentativi dei coefficienti aerodinamici dei profili NACA in
regime sub-sonico vengono presentati. I fenomeni di stallo sono presi in consider-
azione in tale processo di modellizazione.

• Capitolo 7 Analisi degli equilibri: questo capitolo presenta un’analisi degli
equilibri della dinamica longitudinale, e si focalizza su basiche ma importanti ques-
tioni di controllo. Innanzitutto, si dimostra l’ovvio fatto che la fattibilità di una
traiettoria di riferimento necessità l’esistenza di un orientamento di equilibrio lungo
la traiettoria. Successivamente, si mostra che l’esistenza di tale orientamento è im-
plicata dalle simmetrie della forma dell’aeromobile independentemente dal regime
del fluido nel quale il veivolo vola, o classi specifiche di traiettorie di riferimento.
Dopo lo studio dell’esistenza dell’orientamento di equilibrio, questo capitolo studia
l’unicità e la multiplicità di tale orientamento. Durante tale analisi viene presentata
la menzionata equivalenza sferica: si dimostra che per le classi di forze aerodi-
namiche che permettono tale equivalenza l’orientamento di equilibrio è unico per
grandi domini di traittorie di riferimento. Per le altre classi di forze aerodinamiche,
questo capitolo mostra che una velocità di riferimento può essere associata a diversi
orientamenti di equilibrio: il verificarsi di tale fatto è legato ai fenomini di stallo.
Come conseguenza dell’esistenza di molteplici orientamenti di equilibrio, si dimostra
che la stabilizzazione asintotica di certe traiettorie di riferimento necessita di vari-
azioni discontinue dell’orientamento dell’aeromobile; in questo caso, la traiettoria di
riferimento non è fattibile. Dopo questo studio, l’unicità locale degli orientamenti
di equilibrio è analizzata. Tale studio permette di gettare le basi alla strategia del
controllo presentata nel capitolo 8. Un altro risultato originale di questo capitolo è
mostrare che a fissata intensità di propulsione e orientamento del veivolo possono
esistere diverse velocità di equilibrio associate a grandi angoli di attacco e perdite
di altitudine.

• Capitolo 8 Progettazione del controllo: basandosi sull’analisi degli equilibri
presentata nel capitolo 7, questo capitolo presenta degli stabilizzatori locali per trai-
ettorie di riferimento. Quando i coefficienti aerodinamici permettono per l’equivalenza
sferica, il dominio di attrazione garantito da tali controllori diventa semi-globale
sotto condizioni che sono soddisfatte per la grande maggioranza dei casi pratici.
Risultati di simulazione son presentati per verificare l’efficacia della strategia pre-
sentata.

• Capitolo 9 Estensione ai corpi simmetrici 3-D: assumendo una simmetria
del corpo dell’aeromobile attorno l’asse di propulsione, questo capitolo estende una
parte dei risultati trovati per il caso 2-D al caso di aeromobili che volando nello
spazio tridimensionale. I risultati originali riguardano la modellizazione delle forze
aerodinamiche agenti sui corpi simmetrici e la caratterizzazione di una famiglia
di modelli che permettono l’equivalenza sferica. Alcuni membri di tale famiglia
sono rappresentativi della forza aerodinamica che agisce su missili che volano in
regime sub-sonico e super-sonico. Per illustrare l’utilità di tale equivalenza sferica,
dei risultati presenti nella letteratura vengono applicati al sistema equivalente per
stabilizzare traittorie di riferimento. Risultati di simulazione sono presentati per
verificare l’efficacia della strategia proposta.
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Una parte dei risultati riportati in questa tesi sono stati pubblicati (o stanno per essere) in
articoli scientifici (Pucci et al., 2011) (Pucci, 2012) (Pucci et al., 2012) (Pucci et al., 2013).
Secondo la “convention internationale de cotutelle de these” definita dall’“Université
Franco Italienne” ho speso un periodo di tempo in Italia presso la “Sapienza” univer-
sità di Roma sotto la supervisione del Professor Salvatore Monaco. I risultati ai quali
ho collaborato non sono descritti in questo manuscritto, ma sono presentati in (Boncagni
et al., 2011) (Boncagni et al., 2012c) (Boncagni et al., 2012a) (Boncagni et al., 2012b).
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Principles of flight and thesis context
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1 The origin of the science of flight

Mankind has never ceased to envy birds’ capacity for flying. The profound human
curiosity about nature’s flight systems and the dream of flying have prompted a long,
irregular, and faltering understanding of basic aerodynamic phenomena, which culminated
in 1903 with the following words:

“Success four flights Thursday morning all against twenty-one mile wind started
from level with engine power alone average speed through air thirty-one miles
longest 57 seconds inform press home Christmas.”

This is the Orville Wright telegram sent on 17 December 1903 from the lifesaving station in
Kitty Hawk, North Carolina, to his father, Bishop Milton Wright, in Dayton Ohio. This
document announced humankind’s first successful powered flight of a heavier-than-air
flying machine1. Since then, the history of aviation has been closely tied to advancements
in technology, and mankind can now fly longer, faster, and higher than birds, but neither
more efficiently nor with the same degree of maneuverability. In fact, birds have evolved
since the Jurassic era – about 170 million years ago – thus developing features that man
still cannot match with an aerial machine despite tremendous advancements in aviation.
For instance, the supersonic aircraft SR-71 “Blackbird” attains speeds of 32 body-lengths
per second – that is Mach 3 ≈ 3220 Km/h – while pigeons frequently cover 75 body-
lengths per second (Shyy et al., 2008). And that is not all. Rotation rates and G-forces of
highly aerobatic aircraft in flight are smaller than those frequently experienced by birds,
which can withstand solicitations that our current technology still does not allow for. To
cite (McMasters and Henderson, 1979),

“humans fly commercially or recreationally, but animals fly professionally.”

Such superior abilities for flying are the fruit of the aforementioned evolution that provided
birds with highly effective capacities in perceiving their surrounding environment and
controlling their wings. Most birds are thus capable of taking off almost vertically2,
climbing in altitude, gliding, and landing vertically. The importance of the wings’ motion
to birds’ flight goes without saying, and this motion attracted the attention of humans as
soon as humankind began dreaming of flying.

The astonishing attempt to understand the aerodynamic phenomena between birds
and their surrounding air was made by Leonardo da Vinci (1452 - 1519) in his “Sul volo
degli uccelli”. Leonardo had the fundamental understanding that
1From (Hansen, 2003, p. 1).
2The “vertical direction” is given by the direction of the force of gravity.
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“A bird is an instrument working according to mathematical law, an instru-
ment which is within the capacity of man to reproduce with all its movements3.”

However, Leonardo’s work unfortunately “stayed looked up and unknown in the hands of
different private collectors for 300 years” (Hansen, 2003), so the question of what mankind
would have achieved if this work had been rendered public before arises naturally.

In the 16th century, the naval battles between England and Spain gave impetus to the
development of the so-call fluid dynamics, a general theory dealing with fluids and gases.
In fact, the defeat of the Spanish Armada – a fleet of awe-inspiring battleships developed
to invade England in 1588 – pointed out that the higher the agility and maneuverability,
the higher the chances for battleships to win a naval combat.

What is considered the “first major breakthrough in the evolution of fluid dynamics”
was made by Isaac Newton (1642-1727) in 1687 when he published PhilosophiæNaturalis
Principia Mathematica: the second book of this manuscript, composed of three books, was
wholly dedicated to fluids. Newton attempted to address the modeling of fluid flows by
applying the young “mechanics of rigid bodies” developed by Newton himself. However,
the fluid being a “geometrically undefined” matter rendered the application of his theory
much involved, and several issues that did not arise when considering geometrically-well-
defined (rigid) bodies remained unsolved.

“There is so great a difference between a fluid and a collection of solids particles
that the laws of pressure and of equilibrium of fluids are very different from
the laws of the pressure and equilibrium of solids4.”

Despite these difficulties, in his Principia Newton derived a law that describes the force
exerted by a fluid on a planar surface. This law varies with the sine square of the angle
of incidence between flow and plate (see Figure 1.1), and is widely known as Newton’s
sine-squared law. Although inaccurate, it was widely used in the design stage of boats.
Amazingly, Newton’s sine-squared law is applied nowadays in hypersonic applications.
Newton, however, was not able to develop a general theory for moving fluids.

A giant leap in the development of theoretical fluid dynamics was made by the contri-
butions of Daniel Bernoulli (1700-1782), Leonhard Euler (1707-1783) and Jean LeRond
d’Alembert (1717-1783). Probably, Bernoulli’s most important contributions to fluid dy-
namics can be found in his book Hydrodinamica (1738) where, for the first time in history,
calculus was used to study the physics of a fluid (Anderson, 1997, p. 43). However, in
this book Daniel Bernoulli did not present the famous Bernoulli’s equation: he presented
only an attempt at a partially-flawed relationship relating pressure and velocity of a fluid.
The history of Bernoulli’s equation involves also Johann Bernoulli5, father of Daniel, a
leading mathematician at that time who published a book entitled Hydraulica (1743). In
contrast to his son who related the pressure to a manometer column, in Hydraulica Johann
Bernoulli presented the pressure as a force on the fluid: clearly, Johann had a deeper un-
derstanding of the physics of fluids. Nevertheless, not even Johann presented Bernoulli’s
equation that was however attributed to Daniel for his attempt at the aforementioned
relationship presented in Hydrodinamica.
3Leonardo da Vinci, from his “Sul volo degli uccelli” (“Codex on the Flight of Birds”), 1505.
4Jean Le Rond d’Alembert, 1768.
5Historians describe Johann Bernoulli as “a person of sensitivity and irritability, with an overpowering
drive for recognition. He tried to undercut the impact of Daniel’s Hydrodinamica by predating the
publication date of Hydraulica to 1728” (Anderson, 2010, p. 303).
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In contrast to its name, Bernoulli’s equation was derived by Euler. Euler was the first
to conceive of pressure as a position-dependent point property. In 1757, he derived two
of the three6 pivotal differential equations used today in modern fluid dynamics, which
are for this reason called Euler’s equations. Then, Euler integrated these differential
equations and obtained, for the first time in history, the so-called Bernoulli’s equation in
the form we know today (Anderson, 2010, p. 303). It is important to remark that Euler’s
equations were extensions of previous results published by d’Alembert eight years earlier
(1749) in a paper entitled Essai d’une nouvelle thorie de la resistance des fluides.

Although the theory developed by Euler and d’Alembert was a theoretical break-
through, it led to a prediction of zero resistance on a closed two-dimensional body im-
mersed in a fluid. This prediction is known as the d’Alembert’s paradox.

“I do not see then, I admit, how one can explain the resistance of fluids by
the theory in a satisfactory manner. It seems to me on the contrary that
this theory, dealt with and studied with profound attention gives, at least in
most cases, resistance absolutely zero: a singular paradox which I leave to
geometricians to explain7.”

In reality, a body immersed in a moving fluid is always subjected to a finite force,
and the prediction of zero resistance was due to the assumption of friction-less flow made
by Euler and d’Alembert. Despite minds of the caliber of Euler attempted to solve
d’Alembert’s paradox, in the 18th century nobody noticed the importance of friction, or
viscosity, in producing the force of resistance.

The modeling of viscosity effects received much attention from the scientific commu-
nity in the 19th century. The equations taking friction effects into account were stated
independently by Louis Navier (1785 - 1836) in 1822 and by George Stokes (1819-1903) in
1845 (Anderson, 1997, p. 89). More specifically, the Navier-Stokes equations have similar
forms of Euler’s equations, but they explicitly relate friction effects to some variables
representing the state of the flow (velocity, pressure, etc.). These equations, however,
consist of a set of nonlinear partial differential equations to which there do not exist
closed-form solutions except for very specific cases. In fact, the existence of a smooth,
physically reasonable8 solution to the Navier-Stokes equations for three-dimensional flows
is still a matter of conjecture to this day (Fefferman, 2000) (Constantin, 2001). Thus,
in the 19th century the Navier-Stokes equations remained unsolved although the theory
behind them was well understood. A breakthrough in this sense was made by Ludwing
Prandtl (1875 - 1953) when he introduced the concept of a boundary layer : the effects
of friction, though present everywhere, are usually negligible except9 “in a thin region
adjacent to the surface of a body” (Anderson, 2010, p. 965).

The resolution of d’Alembert paradox was ascribed by history to Prandtl via his “On
the motion of fluids with very small viscosity” (1904) in which he presented the concept
of a boundary layer. The advent of this concept allowed to find approximated, reliable
solutions to the Navier-Stokes equations in planar problems, and completely changed the
history of theoretical fluid dynamics applied to airflows, called theoretical aerodynamics.
6The third equation is the so-called energy equation, derived in thermodynamics in the 19th century.
7Jean LeRond d’Alembert from his “Opuscules mathematiques”, 1768.
8A fluid is physically reasonable if its velocity field is bounded.
9Modern fluid dynamics explains that the effects of friction are non-negligible even “in the boundary
region between two flows of widely different velocities” (Anderson, 2010, p. 965), called shear layer.
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Figure 1.1: Decomposition of aerodynamic forces and angle of incidence.

Since theoretical aerodynamics did not provide relevant applicable results until the
advent of a boundary layer, in the 19th century the experimental learning of the nature
of flight moved, to a great extent, independently from theory. It is worth saying that
Newton, with his Principia, unintentionally delayed the development of this experimental
learning. More specifically, Newton considered a flying plate subjected to an aerodynamic
force decomposed into two components (see Figure 1.1): the “upward-force”, (later called
lift), and “force-preventing-motion”, (later called drag). Then he made calculations about
these components, and concluded that a manned flight would have required very big and
heavy wings. This conclusion – based on the approximate Newton’s squared-law – was
definitely overestimated: the scientific community in Newton’s time erroneously deduced
that “human flight by means of a supporting wing was impossible” (Hansen, 2003, p.
xx). The breakthrough in this sense was made by George Cayley (1773 - 1857) who is
often referred to as “the father of aerodynamics”. Cayley’s contributions to experimental
aerodynamics were monumental: he had the fundamental understanding that

the lift force is independent from propulsion.

Then, it was only a short step for him to conceive that in horizontal flight, the weight of the
vehicle must be compensated for the lift force, whereas propulsion must only counteract
the drag force – see the quote in Chapter 4. In addition to these basic but fundamental
principles, Cayley designed and built a few gliders equipped with control surfaces, thus
defining the basic elements of a fixed-wing aircraft. Furthermore, in contrast to Newton’s
sine-squared law, Cayley showed that for many wings’ shapes the lift is linear and the drag
is basically constant versus low angles of incidence. Consequently, Newton’s calculations
about the possibility of a human flight by means of a supporting wing were wrong: this
gave impetus to science to move “off the sharp horns of the dilemma created by Newton”
(von Kármán, 1967, p. 58), thus prompting scientists to a formal study of the mechanisms
of flight, and giving birth to the science of aerodynamics and flight dynamics.



2 Aerial vehicles

“Nobody will fly for a thousand years.”

The above words were muttered by Wilbur Wright on the 20th August, 1901, when the
performances of the glider built with his brother Orville were a far cry from those expected.
However, frustration rapidly vanished, and two years later they made what for mankind
was a giant leap: the first powered flight of a heavier-than-air flying machine. Since
then, aviation has advanced faster than it had ever done before, and today a considerable
number of classes of aerial vehicles exist1. This chapter presents three categories of aerial
vehicles recalling some of their flight characteristics.

2.1 Fixed-wing aircraft

Fixed-wing aircraft are equipped with wings permanently fixed to the aircraft’s body.
The main role played by these wings, which are not necessarily rigid, is to generate lift
forces for the aircraft to take-off and fly. Many types of fixed-wing aircraft exist including
kites and gliders. What follows presents the common elements of a powered fixed-wing
aircraft, also called airplane or plane. For additional material on the elements of an
airplane see, among others, (Scott, 2002) and (Stengel, 2004, p. 1).

The basic components of an airplane include (see Figure 2.1):
• A fuselage: the aircraft part that contains passengers, crew, etc. Most fuselages

have cylindrical or rectangular forms.
• A main wing: a surface whose main role is to generate the lift force to counteract

for the vehicle’s weight in flight. The main wing is usually composed of two parts
attached to the fuselage. The amount of lift produced by the main wing is strongly
related to its cross section, also called airfoil.

• A vertical tail: a surface whose main role is to stabilize2 the angle about an axis (al-
most) perpendicular to the main wing, also called yaw angle. This surface provides
the aircraft with “a tendency to nose into the relative wind resulting from forward
motion” (Stengel, 2004, p. 2).

• A horizontal tail: a surface whose main role is to stabilize the angle about an axis
(almost) parallel to the main wing, also called pitch angle. The tail surfaces are
referred to as empennage.

1A list of significant aircraft since the first Wright flyer can be found in (Hansen, 2003, p. xxxi).
2For the time being, stability is meant as the tendency of a system to return to its initial state following
a small disturbance from that state (Scott, 2002).
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Figure 2.1: Basic components of a plane.

• One or several engines: propulsion devices providing the thrust for the aircraft’s
motion. Several kinds of engines exist, and they can be roughly classified into two
main categories: propeller-driven piston and jet engines. The former were used by
the early aircraft, such as the Wright Flyer and World War II aircraft, and are still
common today on light planes; the latter are commonly used by modern aircraft.
Engine(s) can be installed within the fuselage, although airliners usually have their
engines mounted in the so-called nacelles (Scott, 2002).

• Control (movable) surfaces and thrust settings (see Figure 2.2). The control surfaces
usually consist of: ailerons, elevators, rudder, and flaps. The ailerons are control
surfaces – installed close to the wing tips – whose main role is to affect the roll angle:
the two surfaces are connected by means of a mechanism ensuring opposite motions
for their trailing edges (when one moves up, the other one moves down). The
elevator and the rudder are control surfaces for pitch and yaw control, respectively.
The flaps are control surfaces installed inboard of the ailerons for aerodynamic force
control during take-off and landing; these surfaces work in unison (Stengel, 2004).
Engine thrust settings provide the thrust control. In the case of airliners, thrust is
only occasionally changed.

Several configurations of planes exist such as aircraft with several fuselages or with more
than one horizontal or vertical stabilizer. For example, V-tail planes are equipped with a
pair of diagonal surfaces that serve as the horizontal and vertical stabilizers. A common
denominator of planes is the symmetry with respect to a plane (almost) perpendicular to
the main wing.

The flight characteristics of a powered fixed-wing aircraft vary in relation to wing
properties and the aircraft’s means of actuations. Most airplanes, however, meet the
following two properties:

1) stationary (hovering) flight is not allowed because of limitations on the thrust force
and vehicle’s controls (need of runways to take-off and land);

2) horizontal-constant-velocity flight can be performed with a thrust force smaller than
the aircraft’s weight (this property is also referred to as efficient-steady flight).
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Figure 2.2: Control surfaces and their effects.

2.2 Vertical Take Off and Landing (VTOL) aircraft

As its name implies, a Vertical take-off and landing (VTOL) aircraft can perform
vertical take-off and landing as well as stationary flight. Today, many families of VTOLs
exist such as helicopters, tail sitters, quadrotors, etc (see Figure 2.3). The following
presents the class of rotary-wing VTOL (RWVTOL) aircraft; for additional material on
VTOLs see (Campbell, 1962) and (Markman and Holder, 1962).

2.2.1 Rotary-wing VTOL (RWVTOL) aircraft

RWVTOL aircraft are equipped with one (or several) main rotor(s) allowing two (or
several) blades to rotate; the blades’ rotation generates the thrust force for the aircraft to
fly. This thrust depends upon the blades’ orientations and the rotor’s rotational veloc-
ity, also called rounds per minute (RPM) (Prouty, 2005). Hence, thrust control can be
achieved by changing the rotor’s RPM or/and the blades’ orientations, depending on the
vehicle’s means of actuations. For example, quadrotors and tailsitters usually allow for
RPM control only, while single-rotor helicopters also posses blade-orientation control.

The design of a RWVTOL aircraft must deal with the problem of counteracting par-
asite torques generated by the rotors. Figure 2.4 depicts three aircraft configurations
that deal with this problem. Figure 2.4a shows the solution based on an auxiliary rotor

Single-rotor helicopter Tailsitter Quadrotor

Figure 2.3: Examples of RWVTOLs (source Wikipedia).
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(a) (b) (c)

Figure 2.4: Different anti torque systems (aerospaceweb.org).

mounted (vertically) on the tail of the vehicle: the thrust generated by this auxiliary
rotor generates the torque that compensates for the parasite torque produced by the
main rotor. Figure 2.4b shows the so-called coaxial rotor configuration: a pair of rotors,
installed one above the other, rotate in opposite directions about the same axis of rotation.
Figure 2.4c shows the so-called tandem rotor configuration: two rotors installed on each
end of the fuselage rotate in opposite directions; a transmission mechanism synchronizes
the two rotors so as to avoid blades collision even during an engine failure. In the case of
quadrotors, parasite torques are counteracted by rotating the four rotors in pairs and in
opposite directions.

The orientation of a RWVTOL is modified mostly by unbalancing the thrust forces
generated by the blades. For instance (see Figure 2.5), the yaw angle of a single-rotor
helicopter can be changed via the auxiliary-rotor thrust control, while its roll and pitch
angles via the main-rotor thrust control. To unbalance the thrust forces generated by the
blades, helicopters use the so-called swashplate mechanism (Figure 2.6). The pivotal parts
of this mechanism are two discs installed one above the other, and whose centers lie on
the axis of the blades’ rotation. The disc on the top is attached to the blades so that its
vertical displacement modifies the blades’ orientation; this disc rotates in unison with the
blades. The disc on the bottom does not rotate with the blades, but can modify both the
vertical position and orientation of the disc above it. Figure 2.6a depicts a swashplate in
the resting position: the blades do not produce any thrust. By pushing the rotating disc
up via the disc below it, blades bend, so a downward force is generated (Figure 2.6b). By
inclining the rotating disc, the orientation of each blade varies while rotating, and force
distributions such as the one shown in Figure 2.6c can be generated.

Yaw

RollMore thrust Pitch

Swashplate

Figure 2.5: Effects of thrust regulation.
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Figure 2.6: Effects of swashplate on the thrust force and torque produced by the blades.

2.3 Convertible aircraft

Convertible aircraft – also called hybrid aircraft – can perform stationary flight and
also benefit from lift properties via optimized fixed-wings’ airfoils; therefore, they belong
to both families of airplanes and VTOLs. The transitions between stationary flight and
high-velocity cruise are called transition maneuvers, and their automatic monitoring is
still a challenge these days. One of the major problems in controlling a convertible dur-
ing the transition maneuvers is due to the strong variations of the aerodynamic forces,
which depend upon the vehicle’s velocity and orientation. However, the control of these
transitions is intimately related to the nature of the convertible itself. In fact, the family
of convertibles can be roughly divided in two subfamilies: tilting-thrust and fixed-thrust
convertibles. The former are powered by a tilting thrust that allows one to modify the
thrust’s direction with respect to the vehicle; in this case, the transition maneuver can be
performed by keeping approximately a constant vehicle’s orientation (horizontal configu-
ration in Figure 2.7). The latter are powered by a thrust force attached to the vehicle;
in this case, important changes in the vehicle’s orientation are required to perform the
transition maneuver (see Figure 2.8). The control of a fixed-thrust convertible is inherently
different from, and usually more involved than, the control of a tilting-thrust convertible.
The present thesis deals with the control of fixed-thrust aircraft, thus encompassing the
control of the transitions maneuvers of these vehicles.

Thrust

Thrust

Vertical Take-Off Efficient-steady flight

Figure 2.7: A tilting-thrust convertible: AV-8B Harrier II (source Wikipedia).
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Figure 2.8: A fixed-thrust convertible: NASA Puffin (source nasa.gov).



3 Basics of aerodynamics

“The term “aerodynamics” is generally used for problems arising from flight
and other topics involving the flow of air1.”

The following introduces basic aerodynamic background by focusing on the aerodynamic
forces and moments upon flat wings. For additional material on the fundamentals of
aerodynamics see (Bertin and Smith, 2008) (Anderson, 2010).

3.1 Aerodynamic sources

The motion of a body immersed in air generates aerodynamic reaction effects that are
due to only two sources (Anderson, 2010, p. 19) (Figure 3.1).

1) Distribution of pressures. The flow exerts pressures over the surface of the body.
These pressures act perpendicular to the surface, and are position-dependent.

2) Distribution of shear stresses. Because of the friction between the flow and the body,
position-dependent shear stresses act tangentially to the local surface.

The sum of pressure and shear stress distributions determine the total aerodynamic forces
and moments on the body, the prediction of which is still a main concern in aerodynamics.

In practice, wind tunnels are the most used devices to carry out experiments for mea-
suring aerodynamic forces and moments acting on a body since they generate constant,
uniform flows of gases. An example of wind tunnel tests is shown in Figure 3.1c, where the
gas used for the experiment was common smoke blown from the right of the figure to the
left. The air motion over the wing is represented by several streamlines, which highlight
some of the paths of the so-called fluid elements (small volumes of smoke). Figure 3.1c can
be viewed as if the wing were flying into motionless air, or as if the wing were motionless
and air were blown towards it; in these two cases, streamlines and aerodynamic effects
would be exactly the same2, so flight in air can be simulated in wind tunnels.

In theoretical aerodynamics, one of the main concerns is determining the distributions
of pressures and shear stresses over the body’s surface so that the integration of these
distributions provides the aerodynamic forces and moments exerted on the body.

To date, the Navier−Stokes equations are the most important equations in all fluid
dynamics: they describe the local pressures and shear stresses distributions of any flow
1Ludwing Prandlt, 1949.
2This observation was first made by Leonardo da Vinci.
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Wind tunnel test

Figure 3.1: (a) and (b): forces distributions; (c): a wind tunnel test (dept.aoe.vt.edu).

over any body, independently from its shape. However, these equations consist of a set of
nonlinear partial differential equations involving the viscosity, compressibility, density, and
velocity of the fluid element at a given position, and their integration over the shape of the
body does not typically yield closed-form expressions3. Thus, working out a functional
model of aerodynamic forces and moments from Navier-Stokes equations is not always
possible. The following presents a well-accepted general expression of aerodynamic forces
and moments deduced from the application of the so-called dimensional analysis.

3.2 Variations of aerodynamic forces and moments: dimensional analysis

The minimum number of independent dimensionless variables that describe the vari-
ations of aerodynamic forces and moments can be found by applying the method of di-
mensional analysis. (Bridgman, 1969) writes: “the principal use of dimensional analysis
is to deduce from a study of the dimensions of the variables in any physical system certain
limitations on the form of any possible relationship between those variable. The method is
of great generality and mathematical simplicity”. The foundations of dimensional analysis
were laid down by James Clerk Maxwell (1831 - 1879), Lord Rayleigh (1842-1919), Os-
borne Reynolds (1842-1912) and other scientists and engineers in France4, whose theories
were formalized by the Buckingham Pi theorem (Buckingham, 1914).

Theorem 3.1 (Buckingham pi theorem from (Anderson, 2010)). Let K equal the number
of base dimensions required to describe the physical variables. (In mechanics, all physical
variables can be expressed in terms of the dimensions of mass, length, and time; hence,
K = 3). Let P1, P2 . . . , PN represent N physical variables in the physical relation

f1(P1, P2 . . . , PN) = 0. (3.1)

Then, Eq. (3.1) may be re-expressed as a relation of (N − K) dimensionless products
(called Π products),

f2(Π1,Π2 . . . ,ΠN−K) = 0,

where each Π product is a dimensionless product of a set of K physical variables plus one

3We recall that the existence of a smooth, physically reasonable solution to the Navier-Stokes equations
for three-dimensional flows is still a conjecture to these days (Fefferman, 2000) (Constantin, 2001).

4For details on the history of dimensional analysis see (Macagno, 1971).
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Figure 3.2: Aerodynamic forces and moments on a motionless body.

other variable. Let P1, P2 . . . , PK be the selected set of K physical variables. Then

Π1 = f3(P1, P2 . . . , PK , PK+1)
Π2 = f4(P1, P2 . . . , PK , PK+2)

. . .

ΠN−K = fN−K+2(P1, P2 . . . , PK , PN)

The choice of the repeating variables P1, P2 . . . , PK should be such that they include all
the K dimensions used in the problem.

The underlying assumption of the above theorem is that
all physical quantities have dimensions which can be expressed as products of
powers of the set of base dimensions5.

Now, focus on the motionless body shown in Figure 3.2, and assume that the wind
velocity ~vw is the same in the vicinity of the body. Let ~Fa and ~Ma denote the aerodynamic
force and moment on the body, and P and G the application point of the aerodynamic
force – also called body’s center of pressure – and the body’s center of mass, respectively.
On an intuitive basis, we expect ~Fa to depend upon (Anderson, 2010, p. 35):

• The magnitude of the wind velocity |~vw|, also called windspeed .
• The freestream6 air density ρ.
• The effects of friction, represented by the freestream viscosity coefficient µ.
• A single reference length representing a measurement of a dimension of the body.

In the case of wings, this reference length is usually chosen as the chord length c,
that is the measurement of the distance between leading and trailing edge.

• The compressibility of the air, which is related to the speed of sound a.
Therefore, the above leads to write

~Fa = ~f(|~vw|, ρ, µ, c, a). (3.2)

After applying the Buckingham PI theorem, Eq. (3.2) becomes (Anderson, 2010, p. 39)

~Fa = ρc2|~vw|2

2
~C(Re,M), Re := ρc|~vw|

µ
, M := |~vw|

a
, (3.3)

where ~C(·) is the dimensionless static force coefficient that depends on the Reynolds and
Mach numbers Re and M . Now, observe that:
5From (Sonin, 2001), which also presents a tutorial introduction to the use of dimensional analysis.
6The fluid’s freestream characteristics are those far from the body.
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Figure 3.3: Common choices for the airflow angles in the case of flat wings.

• The term c2 in Eq. (3.3) has the dimension of an area, so we can replace it with any
reference area S (Anderson, 2010, p. 38). In the case of flat wings, the reference
area is usually defined as S := lc, where l denotes the wingspan (see Figure 3.3b).

• Eq. (3.3) is derived by assuming a motionless body. If the body moves with constant
velocity7, we must replace the wind velocity ~vw with the body’s relative velocity to
the wind ~va, also called airvelocity. In particular, the airvelocity ~va is defined as the
difference between the velocity of the body’s center of mass, denoted by ~v, and the
wind velocity ~vw, that is

~va := ~v − ~vw. (3.4)

• In general, the direction of the airvelocity with respect to the body is not constant.
Consequently, the force coefficient ~C(·) in Eq. (3.3) also depends upon this direction.
For planar problems (see Figure 3.3a), the airvelocity’s direction with respect to the
body is given by only one angle, usually defined as the angle of attack α between
~va and a direction attached to the body, such as the chord’s direction of an airfoil.
For three-dimensional problems, the airvelocity’s direction with respect to the body
is given by two angles, usually denoted by (α, β). In the case of “flat” wings, the
common choice of (α, β) is shown in Figure 3.3b and β is called side-slip angle.

Therefore, Eqs. (3.3) specializes to
~Fa := ka|~va|2 ~C(Re,M, α, β), (3.5a)

ka := ρS

2
, Re := ρc|~va|

µ
, M := |~va|

a
. (3.5b)

The expression (3.5a) implies that the static force coefficient ~C(·) of geometrically similar
bodies8 at the same (Re,M) are identical at fixed airvelocity’s direction. Consequently, the
force coefficient ~C(·) of a full-size aircraft can be obtained by carrying out measurements
on a small-scale model.

By applying the basic concepts of mechanics, the aerodynamic moment about the
body’s center of mass is given by

~Ma := ~GP × ~Fa. (3.6)
7The body’s motion is supposed at low rotation rates. High body rotation rates destroy the assumption
that the aerodynamic force is independent of the body’s angular velocity.

8Two bodies are geometrically similar if the shape of either one is obtained by uniformly scaling the shape
of the other one.
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Let us remark that the body’s center of pressure P depends on the Reynolds and Mach
numbers as well as on the airvelocity’s direction with respect to the body. As a conse-
quence, taking measurements of the aerodynamic effects at the center of pressure is a
difficult task, all the more so because its position is very difficult to predict over large
variations of the airvelocity. The measurements of aerodynamic forces and moments
are then usually taken at another fixed point, here denoted by R. Let ~MaR

denote the
aerodynamic moment measured at R. Thus , the aerodynamic moment about the center
of mass is given by (Stevens and Lewis, 2003, p. 101)

~Ma = ~GR × ~Fa + ~MaR
. (3.7)

For planar problems, the (static) aerodynamic moment can be written as ~Ma = Mpn̂,
where n̂ is a unitary perpendicular to the plane and Mp the magnitude of ~Ma, also called
pitching moment. Dimensional analysis applied to the pitching moment yields

Mp := kac|~va|2CM(Re,M, α), (3.8)

where CM is a dimensionless coefficient called pitching moment coefficient.

3.3 Lift and drag forces in terms of aerodynamic coefficients

The aerodynamic force is usually decomposed into two components (see Figure 3.4).
• Lift force: aerodynamic force component along a perpendicular to the airvelocity.
• Drag force: aerodynamic force component along the airvelocity’s direction.

When this decomposition is applied to the static force coefficient ~C(·) given by Eq. (3.5a),
the static aerodynamic force can be expressed in terms of two dimensionless coefficients
CL(·) and CD(·) such that

~Fa := ka|~va|
[
CL(Re,M, α, β)~v⊥

a − CD(Re,M, α, β)~va

]
, (3.9)

with ~v⊥
a a perpendicular to the airvelocity that may depend upon (Re,M). In the spe-

cialized literature, CL (∈ R) and CD (∈ R+) are called the aerodynamic characteristics of
the body, and also the lift coefficient and drag coefficient. Aerodynamic force coefficients
were first introduced by Otto Lilienthal (1848 - 1896) in his book “Birdflight as the Basis
of Aviation” (1889); however, he introduced coefficients to parametrize the aerodynamic
force’s components along the wing’s chord direction and its perpendicular. The Wright
brothers were among the first to use the coefficients CL and CD, but the famous form

Lift = q∞SCL

Drag = q∞SCD,

with q∞ := 0.5ρf |~va|2 – the dynamic pressure – was later introduced by Ludwig Prandtl
in about 1920’s9.

As for the force coefficient ~C(·), the lift and drag coefficients of a full-size aircraft can
be obtained by performing measurements on a small-scale model.
9The history of the aerodynamic coefficients is detailed in (Anderson, 2010, p. 93).
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Figure 3.4: Lift and drag components when the airvelocity belongs to the airfoil plane.

3.3.1 Experimental aerodynamic coefficients of flat wings

Figure 3.5 depicts typical experimental data – borrowed from (Davis et al., 2004) – of
flat wings’ aerodynamic coefficients. These data were taken for a symmetric airfoil NACA
0021 (shown in Figure 3.4) of l = 0.91m, c = 0.1524m, and at (Re,M) ≈ (160 · 103, 0.3);
the angles (α, β) were defined as shown in Figure 3.3b, but β was kept equal to zero.

Figure 3.5 shows that at low angles of attack, the lift coefficient is linear while the drag
coefficient is basically constant. Increasing the angle of attack produces stronger vortex
within the flow (see Figure 3.6), but as long as the flow remains attached to the wing,
the vortex effects do not basically affect the aforementioned relationships. At certain
values of the angle attack, the upper-surface flow starts detaching from the surface, thus
creating stronger turbulence both above and after the wing. For these values of α, the lift
coefficient is no longer linear versus the angle of attack, and it achieves a local maximum
at the so-called stall angle αs. Beyond the stall angle, the upper-surface flow separates
completely, and this causes rapid lift reductions and drag increases. These two variations
are called stall phenomena, and the domain on which they occur stall region.
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Figure 3.5: Lift and drag coefficients of NACA 0021.
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Stall phenomena are highly nonlinear and predicting the behaviors of the aerodynamic
characteristics on the stall region with a high degree of reliability is very challenging. As a
matter of fact, the aerodynamic characteristics on the stall region depend also on the direc-
tion of change of the angle of attack, as shown in Figure 3.7 – data borrowed from (Critzos
and Heyson, 1955, p. 17). The dependencies of the aerodynamic characteristics upon the
direction of change of α are called aerodynamic hysteresis.

At low-airspeeds (M < 0.3), the flow can be considered incompressible, and the aerody-
namic characteristics independent of the Mach number. In this regime, the aerodynamic
coefficients principally vary with the angle of attack α and the Reynolds number Re only.
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Figure 3.8: Aerodynamic characteristics of NACA 0021 at several Reynolds numbers.

Figure 3.8 shows typical (average) experimental data – still borrowed from (Davis
et al., 2004) – taken at several Reynolds numbers: it is visually evident that the larger
the Reynolds number, the larger the domain on which the lift is linear and the drag is
(almost) constant versus small angles of attack. At high angles of attack, instead, the
aerodynamic characteristics are basically independent of the Reynolds number. Observe
also that stall phenomena are less pronounced at smaller Reynolds numbers. As a matter
of fact, in the case of NACA airfoils (Zhou et al., 2011) shows that there exists a value
for Re, typically smaller than 104, under which these phenomena are basically absent.

3.3.2 Experimental aerodynamic coefficients of elliptic-shaped bodies

Besides flat wings, ellipsoids represent a class of shapes well-referenced in the spe-
cialized literature. Figure 3.9 depicts typical experimental data borrowed from (Keyes,
1965, p.19) taken for an ellipsoid of h = 0.2m, c = 0.1m, t = 0.05m and at (Re,M) =
(7.96 · 106, 6). Although a high Reynolds number, observe that no stall phenomena occur.
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Figure 3.9: Aerodynamic coefficients of elliptic shaped bodies.





4 Basics of flight dynamics

“[...] the scheme of flying by artificial wings has been much ridiculed; and
indeed the idea of attaching wings to the arms of a man is ridiculous enough,
as the pectoral muscles of a bird occupy more than two-thirds of its whole
muscular strength, whereas in man the muscles, that could operate upon wings
thus attached, would probably not exceed one-tenth of his whole mass. [...].
I feel perfectly confident, however, that this noble art will soon be brought home
to man’s general convenience, and that we shall be able to transport ourselves
and families, and their goods and chattels, more securely by air than by water,
and with a velocity of from 20 to 100 miles per hour. To produce this effect, it
is only necessary to have a first mover, which will generate more power in a
given time, in proportion to its weight, than the animal system of muscles1.”

Flight dynamics is the study of the performance, stability, and control of aerial vehicles
flying through the air or in outer space (Stengel, 2004). What follows aims at introducing
the principles of aircraft dynamics in air. For additional material on this subject see,
among others, (Talay, 2005), (Stevens and Lewis, 2003) and (Stengel, 2004).

4.1 Flight environment: the Earth’s atmosphere

The gaseous envelope that surrounds our planet is what we commonly call the Earth’s
atmosphere, and the mixture of gases composing it is the so-called air. The atmospheric
circulation maintains the ratios between the elements that compose the air approxi-
mately constant up to altitudes of approximately 90 km. Measurements and analysis
of atmospheric air taken at sea level point out that air is principally composed of four
elements (Talay, 2005): Nitrogen (N2) 78.084 %, Oxygen (O2) 20.948 %, Argon (Ar) 0.934
%, Carbon Dioxide (CO2) 0.031 %. This normal composition can vary considerably when
measured in industrialized areas, where air pollution raises the percentages of several
harmful elements.

Besides air composition, one way to characterize different atmosphere’s layers is the
gradient of the air’s temperature. By using the temperature gradient-based criterion (see
Figure 4.1), the atmosphere is commonly subdivided into five layers (ascending order):
troposphere, stratosphere, mesosphere, thermosphere, and exosphere. Airliners fly in the
troposphere since it yields a good trade-off for lift versus air resistance.
1George Cayley, from his “On Aerial Navigation, part one”, 1809.
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(a) (b)

Figure 4.1: (Talay, 2005) (a): atmosphere’s characteristics; (b): atmosphere’s sketch.

The atmosphere’s characteristics are in general dependent on time (atmospheric cir-
culation) and on position (altitude dependence). Several models of these dependencies
have been derived in the last decades, among which the so-called standard atmosphere
model. This model assumes the air “to be devoid of dust, moisture, and water vapor, and
to be at rest with respect to the Earth” (Talay, 2005). Figure 4.1 shows the variations
of the speed of sound, temperature, density, and pressure given by the U.S. Standard
Atmosphere model (1962). This model still plays a fundamental role in the design of an
aerial vehicle.

For aircraft flying at low altitudes, the atmosphere’s characteristics can be considered
constant and equal to those measured at sea level. The 1962 U.S. Standard Atmosphere
gives the following sea level characteristics.

Table 4.1: Sea level conditions from 1962 U.S. Standard Atmosphere
Variable Value
Pressure p = 1.03 Kg/cm2

Density ρ = 1.225 kg/m3

Temperature T = 288.15 K (15◦ C)
Acceleration of gravity g = 9.807 m/sec2

Speed of sound a = 340.29 m/sec
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4.2 Dynamics of aircraft motions

Aircraft dynamics are described by a set of differential equations that can characterize
the state of the aircraft in terms of the vehicle’s orientation, position, and angular and
linear velocities. These variables are measured with respect to some reference frames.

4.2.1 Reference frames

Let I = {O;~ı0, ~0, ~k0} be a fixed inertial frame with respect to (w.r.t.) which the
vehicle’s absolute pose is measured. This frame is chosen as the NED frame (North-East-
Down) with ~ı0 pointing to the North, ~0 pointing to the East, and ~k0 pointing to the
center of the earth. Let B = {G;~ı,~,~k} be a frame attached to the body, with G the
body’s center of mass. The linear and angular velocities ~v and ~ω of the body frame B are
then defined by

~v := d

dt
~OG , (4.1a)

d

dt
(~ı,~,~k) := ~ω × (~ı,~,~k). (4.1b)

The vehicle’s orientation w.r.t. the inertial frame is represented by the rotation matrix R
whose column vectors are the vectors of coordinates of ~ı,~,~k expressed in the basis of I.

4.2.2 Aircraft dynamics equations for a flat earth

Let ~F and ~M denote the resultants of the external forces and moments on a rigid
body of mass m. By taking the external moments ~M about the body’s center of mass G,
Newton’s and Euler’s theorems of mechanics state that

d

dt
~p = ~F , (4.2a)

d

dt
~h = ~M , (4.2b)

with

~p := m~v , (4.3a)
~h := −

∫
P ′ ∈ body
~GP ′ × ( ~GP ′ × ~ω) dm. (4.3b)

In the first approximation, aircraft can be modeled as rigid bodies immersed in air. Also,
aerial vehicles are usually controlled via a thrust force ~T = −T~k for translational motion
– with T ∈ R the thrust intensity – and a torque vector ~MI for attitude monitoring.
The torque actuation is typically generated in several ways (see Chapter 2), e.g. control
surfaces (fixed-wing aircraft), propellers (quadrotors), etc. By neglecting round-earth
effects, buoyancy forces2, and gravity torques, the external forces and moments on an
2The aircraft is assumed to be much heavier than air.
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aircraft are commonly modeled as follows (Fossen, 1994, Ch. 2), (Hua et al., 2009b),
(Stengel, 2004), (Stevens and Lewis, 2003):

~F = ~Fa +mg~k0 − T~k + ~Fb , (4.4a)
~M = ~Ma + T~k × ~GΘ + ~MI , (4.4b)

where (~Fa, ~Ma) are the aerodynamic forces and moments, Θ is the application point of
the thrust force, and g is the gravity acceleration. In Eqs (4.4b) the gyroscopic torque,
usually associated with rotor craft, has been neglected. The force ~Fb is referred to as body
force, and is usually generated to create the torque input ~MI . Thus, this force represents
a coupling between the torque actuation and the external force ~F , and its importance at
the control level is discussed in Section 4.3. An expression of the body force on a common
helicopter is given in (Hua, 2009, Ch.1) (Olfati-Saber, 2001, Ch.5) (Koo and Sastry, 1998),
and on the HoverEye tailsitter in (Pflimlin et al., 2004) (Pflimlin, 2006, Ch. 3).

Note that Eqs. (4.1)-(4.4) are “coordinate-free”, and thus independent from the refer-
ence frame used to express the vectors in these equations. Now, assume that the mass m
of the vehicle is constant. Then, Eqs. (4.1)-(4.4) expressed with coordinates in the body
frame B can be written as

ẋ = Rv, (4.5a)
Ṙ = RS(ω), (4.5b)
mv̇ = − S(ω)mv + F , (4.5c)
Jω̇ = − S(ω)Jω +M , (4.5d)

with ~v = (~ı0, ~0, ~k0)ẋ = (~ı,~,~k)v, ~ω = (~ı,~,~k)ω, ~F = (~ı,~,~k)F , ~M = (~ı,~,~k)M ,

J = −
∫

pG∈body
S2(pG) dm, (4.6)

and ~GP ′ = (~ı,~,~k)pG. The model (4.5) should be complemented by a modeling of the
actuators that generate the inputs T and ~MI . However, by assuming that the dynamics of
these actuators are (sufficiently) faster than the vehicle’s dynamics, they can be neglected
in the first approximation. This decoupling between vehicle’ and actuators’ dynamics
allows us to focus on common denominators of the control problem associated with (4.5),
independently from the specific issues related to the generation of the control inputs.

4.2.3 Aerodynamic forces and moments acting on the aircraft

The modeling of aerodynamic forces and torques ~Fa and ~Ma acting on the vehicle
remains one of the major problems in the modeling processes. Specialized aerodynamic
discussions can be found in (Anderson, 2010) (Stengel, 2004, Ch. 2) (Stevens and Lewis,
2003, Ch. 2) for fixed-wing aircraft, in (Pounds et al., 2010a) (Huang et al., 2009) (Bris-
teau et al., 2009b) for quadrotors, in (Johnson and Turbe, 2006) (Ko et al., 2007) (Pflimlin,
2006, Ch. 3) (Pflimlin et al., 2010) for ducted-fan tail-sitters, and in (Naldi, 2008b),
(Prouty, 2005), (Vilchis et al., 2003) for helicopters.

We have seen in Section 3.2 that the static aerodynamic forces and moments can be
expressed in terms of the Reynolds and Mach numbers and the airvelocity’s direction
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with respect to the aircraft. However, the problem of finding the expressions of these
dependencies was not addressed. One way to obtain a model of the aerodynamic forces
and moments is based on the superposition principle, which essentially consists of:
i) decomposing the aircraft in several rigid bodies;
ii) computing or measuring the aerodynamic forces and moments acting on each body;
iii) summing up all these aerodynamic forces and moments to obtain ~Fa and ~Ma.
The validity of this method requires close attention since the airflow on each part of
the aircraft depends also upon the positions of the other bodies composing the vehicles.
Furthermore, this method often provides only a static model of the aerodynamic effects.

A static model of the aerodynamic forces and moments is no longer valid when the
effects of rotational and unsteady motions become preponderant. These motions are
principally due to two different causes: spatial and temporal variations in the airflow
pattern (Stengel, 2004, p. 199). For instance, a constant angular velocity flight, if it were
feasible, would generate a different airflow pattern from that in steady flight. Then, the
aerodynamic forces and moments depend also on the vehicle’s angular velocity, and are
in general different from those on the aircraft in steady flight. In addition, the aircraft
translational and rotational accelerations also perturb the airflow pattern, which in turn
“produces transitory forces and moments that depend not only on the instantaneous ac-
celerations, but also on their state history” (Stengel, 2004, p. 200). Abrupt wind velocity
variations produce similar unsteady effects even when the aircraft’s velocity is constant.

Classically, the rotational and unsteady effects are modeled as linear perturbations
to the static aerodynamic moments and forces (Stengel, 2004, p. 200). For instance,
a common model for the pitching moment coefficient CM(·) of a symmetric aircraft in
symmetric flight is given by

CM(M,α, Ṁ, α̇, q, q̇) = CM(M,α) + ∂CM

∂Ṁ
Ṁ + ∂CM

∂α̇
α̇+ ∂CM

∂q
q + ∂CM

∂q̇
q̇,

where q is the pitch rate, and the Reynolds number is considered as constant. The
models for the other dimensionless coefficients, such as the lift, drag, etc., can be derived
analogously (Stevens and Lewis, 2003, p. 109).

4.2.4 Symmetric aircraft longitudinal dynamics: a planar case

If the vehicle’s shape is symmetric w.r.t. the vertical plane defined by (see Figure 4.2)

Π := {λ1~k + λ2~ : λ1, λ2 ∈ R},

it follows from Eq. (4.6) that J12 = J21 = J13 = J31 = 0, where Jij denotes the element in
the ith row and jth column of the matrix J . Now, assume that:

• The vector ~k0 is parallel to Π (wings-level flight).
• ~Fa and ~Ma are parallel to Π and ~ı, respectively. For slow-time-varying dynamics,

this assumption can be considered to hold when the airvelocity ~va belongs to Π.
• The vehicle’s center of mass G and the application point Θ of the thrust force ~T

belong to the plane Π. Then ~k × ~GΘ is parallel to ~ı.
• The body force ~Fb in Eq. (4.4) is negligible.
• The torque control input ~MI is parallel to ~ı.
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Figure 4.2: Aircraft flying it its vertical plane.

In light of the above, one has that:
• The external force ~F belongs to the plane Π, which implies F 1 ≡ 0.
• The external moment ~M is parallel to ~ı, which implies M2 ≡ M3 ≡ 0.

As a consequence, the vehicle’s trajectory develops in the plane Π as soon as the vehicle’s
linear and angular velocities are parallel and perpendicular to Π, respectively. In this case

v1 ≡ ω2 ≡ ω3 ≡ 0 ∀t.
Without loss of generality, let us further assume that ~ı is parallel to ~i0 so that R is a
rotation matrix representing a single rotation about the axis ~i0, that is

R =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
,

and ẋ1 ≡ v1 ≡ 0. Then, from System (4.5) one obtains
ẋ2,3 = Rθv2,3, (4.7a)
Ṙθ = ω1RθS2, (4.7b)

and
ω1 = θ̇, (4.8a)

mv̇2,3 = −mω1S2v2,3 + F 2,3 , (4.8b)
J11ω̇1 = M1 , (4.8c)

with

S2 :=
(

0 −1
1 0

)
.

The four equations given by (4.8) are the classical equations used to characterize the
motions in the vertical plane Π. These equations play a crucial role when analyzing an
aircraft in either steady, level flight or climbing or descending in this plane.
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4.3 A survey of aircraft control techniques

Since 1912, when the first autopilot was designed and tested by the Sperry Gyro-
scope Company, airplane control techniques have rapidly advanced, and today many
fully-autonomous aircraft exist. The purpose of this section is to provide the reader
with an introduction to the control of fixed-wing, VTOL, and convertible aircraft (see
Chapter 2). Since a thorough review of aircraft control would at least double the size this
thesis, it is clearly beyond the scope of the following sections.

4.3.1 Fixed-wing aircraft

Classically, fixed-wing aircraft dynamics are analyzed by neglecting the body forces ~Fb

acting on the body (see Eq. (4.4)) and by using a linearized model for the aircraft motion.
More specifically, define (Stevens and Lewis, 2003, p. 118):

• the system’s nine-dimensional state vector composed of the airspeed, the side-slip
angle, the angle of attack, the roll, pitch, and yaw angles, and the three components
of the body frame’s angular velocity expressed in the so-called stability-axes frame.
This frame is obtained by rotating, through the angle of attack, the body frame
about the axis perpendicular to the aircraft’s plane of symmetry (i.e. about the
vector ~ı in Figure 4.2);

• The four-dimensional control vector composed of the thrust intensity and three
deflection angles of the elevator, aileron, and rudder.

Then, after neglecting the body forces in Eq.(4.4), the aircraft’s nonlinear dynamics is
usually linearized around an equilibrium point representing a steady-state condition such
as steady wings-level flight, steady turning flight, steady pull up, and steady roll. A common
denominator of these flight conditions is that the body’s linear and angular accelerations
in the body frame are equal to zero. When the linearization is performed at a steady
wing-level flight with zero side-slip angle, the linearized system can be decoupled into the
two following decoupled dynamics (Stevens and Lewis, 2003, p. 126):

• The longitudinal dynamics: the system’s state is given by a four-dimensional vector
composed of the angle of attack, the pitch rate, the airspeed, and the pitch angle,
whereas the control vector is given by a two-dimensional vector composed of the
elevator deflection angle and the thrust intensity.

• The lateral dynamics: the system’s state is given by a four-dimensional vector
composed of the side-slip and roll angles, and the stability-axis roll and yaw rates,
whereas the control vector is given by a two-dimensional vector composed of the
aileron and rudder deflection angles.

Although these dynamics are representative of the real system only in a small flight enve-
lope close to the steady wing-level flight, they provide practical insights about important
open-loop aircraft modes. For instance, a study of the longitudinal dynamics points out
the existence of two open-loop aircraft oscillating modes at different frequencies , i.e.:

• Slow oscillations (phugoid) are characterized by large variations of airspeed, pitch
angle, and altitude, but an almost-constant angle of attack. The time period of a
phugoid oscillation is in the range of 30–60 seconds.



A survey of aircraft control techniques 42

Figure 4.3: A sketch of an aircraft during a phugoid mode.

• Fast oscillations (short period) are characterized by large pitch rates, but an almost
constant airspeed. The time period of a short period oscillation is about one second.

Analogously, a study of the lateral dynamics and its coupled effects with the longitudinal
dynamics points out the existence of other three aircraft modes: roll, spiral, and Dutch-roll
mode (Stevens and Lewis, 2003, p. 291) (Stengel, 2004, p. 595).

A well-designed feedback stability augmentation system (SAS) mitigates the effects of
all these modes on the aircraft dynamics, and renders the steady-state condition more
stable. Stability augmentation systems are usually designed ad hoc for the longitudinal
and lateral dynamics by using the aforementioned linear, decoupled approximation of the
nonlinear aircraft system. Various augmentation systems have been developed for several
purposes such as the pitch-axis SAS and the lateral-directional SAS/yaw damper (Stevens
and Lewis, 2003, p. 291).

High-performance or fighter aircraft need control systems that guarantee stringent
properties such as airplane stability at performance limits and the tracking of moving
targets. A control system to achieve these requirements is called control augmentation
system (CAS), which nowadays can give the pilot a selection of task-tailored control laws.
One can mention the example of the dogfight control laws, which aim at maximizing the
aircraft maneuverability and agility in air. Various control augmentation systems have
been developed for several purposes (Stevens and Lewis, 2003, p. 309), such as the pitch-
rate CAS, the normal acceleration CAS, and the lateral/directional CAS.

Beside SAS and CAS, pilot-relief autopilots have also been developed to achieve min-
imal steady-state errors and disturbance rejections (Stevens and Lewis, 2003, p.327).

Conventionally, SAS, CAS, and autopilots are designed through classical control design
techniques, the essence of which is the one-loop-at-a-time control design and successive
loop closure. Desired stability characteristics are classically achieved through the use of
tools as Bode plots, root locus, pole-placement procedure, etc.

Modern control techniques have also been applied to the control of fixed-wing air-
craft and problems addressed with these techniques include: pole-placement/Eigenvector
assignment, linear quadratic regulator with output feedback, reference tracking, model
following, dynamic inversion (D’Antonio and Monaco, 1995), parabolic flight (D’Antonio
and Monaco, 1993), etc. Most of these techniques, however, are based on linearized models
for the aircraft’s dynamics.

One of the main drawbacks of control design methods based upon linear approxi-
mations is that they can only guarantee the local stability of the associated nonlinear
system. In fact, the linearized dynamics is no longer representative of the real system
when the evolution of the real dynamics is far from the desired trajectory. Thus, the
global stability of the linearized system does not imply the global stability of the real
dynamics. Furthermore, when the linearized system associated with the error dynamics
is time-varying – as in the case of a time-varying reference trajectory or disturbance –
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ensuring the stability of the origin of this system is far from obvious. In this case, one may
try to apply the so-called gain-scheduling technique that basically consists of (Kadmiry
and Driankov, 2004) i) designing a set of local controllers, each of which is associated
with a different (constant) reference; ii) “scheduling” these local controllers depending on
the actual state of the system’s evolution. Applications of the gain-scheduling technique
to the control of aerial vehicles can be found in (Hyde and Glover, 1993) (Civita et al.,
2003) (Kadmiry and Driankov, 2004) (Turner et al., 2002). However, a drawback of this
technique is that the stability of the controlled system cannot in general be guaranteed.
Also, linearizing an aircraft’s dynamics often requires a minimal parametrization of the
rotation matrix representing the vehicle’s orientation. Since minimal parametrization of
a rotation matrix are undefined for some attitude configurations, they induce artificial
singularities that limit the domain of application of the controlled system. Hence, the
larger the domain of its validity, the better the parametrization.

Nonlinear phenomena in aircraft dynamics are particularly important because they can
give rise to an aircraft loss-of-control (LOC), which remains one of the most important
contributors to fatal accidents (Kwatny et al., 2009) (Belcastro and Foster, 2010). A
number of different forms of stability loss in longitudinal and lateral/directional motion
is related to the stall phenomena (Goman et al., 1997, s. 2.2). Among these forms,
one can mention a stable flight at high angle of attack without rotation, also called deep
stall condition. Other forms of loss of stability of aircraft are due to the roll- and the
inertia-coupled problems (Phillips, 1948) (Hacker and Oprisiu, 1974) (Jahnke, 1998).

Many types of aircraft LOCs can be related to the equilibria pattern variations of
the aircraft dynamics depending on the vehicle control settings. In particular, aircraft
dynamics may have more than one equilibrium point associated with a given control
setting (Stengel, 2004, p. 728). Consequently, when this setting varies, the equilibrium
of the aircraft may jump from one stable configuration to another; this may eventually
cause abrupt responses of the aircraft motion and an aircraft LOC.

(Carroll and Mehra, 1982) is probably the first work to introduce an approach – called
“bifurcation analysis and catastrophe theory methodology” – to understand the qualitative
and global behavior of a nonlinear aircraft dynamics in relation to the associated equilibria
pattern. For an introduction to bifurcation analysis of aircraft dynamics, the reader is
referred to (Cummings, 2004) (Lowenberg, 2002); for a review of some of the subsequent
papers, references of interest are (Carroll and Mehra, 1982) (Goman et al., 1997) (Paranjpe
et al., 1998) (Sinha, 2001). In essence, the studied nonlinear problem (such as steady
wings-level flight at high angle of attack) is usually formulated in the form of a set of
ordinary differential equations depending on parameters (Goman et al., 1997), which
often represent the control surface deflections. Thus, bifurcation analysis is a tool to
investigate the relation between the system’s behavior and control deflections variations,
but the faster these variations, the worse the prediction of the system’s behavior.

Bifurcation control deals with equilibria characteristics of a parametrized nonlinear
system modified by a designed control input (Chen et al., 2000). Applications of bifur-
cation control to aircraft dynamics can be found in (Kwatny et al., 1991) (Abed and
Lee, 1990). For instance, (Kwatny et al., 1991) focuses on design methods to achieve the
local stability of an equilibrium point associated with a nominal value of the coefficients
that parametrize the nonlinear system. However, the assumption that the system is
autonomous clearly impairs the proposed control approach when the error dynamics is
time dependent, as in the case of a time-varying reference.
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4.3.2 VTOLs

Classically, VTOLs control is addressed by neglecting the aerodynamic reaction forces
between the vehicle’s shape and the surrounding air. The coupling body force ~Fb (see
Eq. (4.4)), instead, requires close attention for some VTOL vehicles. More specifically,
this coupling term is usually negligible for quadrotors (Hamel et al., 2002b), (Pounds
et al., 2010b), (Bristeau et al., 2009a), but is generally relevant for helicopters because of
the swashplate mechanism (Hua, 2009, Ch.1), (Dzul et al., 2002), (Koo and Sastry, 1998),
(Mahony et al., 1999), (Olfati-Saber, 2001, Ch. 5), and for ducted-fan tail-sitters because
of the rudder system (Pflimlin, 2006, Ch. 3), (Pflimlin et al., 2004). Furthermore, several
studies (Hua, 2009, App.A), (Koo and Sastry, 1998), (Pflimlin et al., 2010), (Pounds et al.,
2010a) have shown that the body forces can induce unstable zero dynamics depending
on the vehicle’s configuration. Then, the relevance of the body force in Eq. (4.4), and its
implications at the control level, must be discussed in relation to the specific application
(Pflimlin et al., 2004) (Pflimlin, 2006, Ch. 3) (Hua et al., 2013).

Over the last decade, modern linear control techniques have also been applied to
the control of VTOLs. Among the control problems addressed with these techniques,
let us mention optimization based techniques, which may be related to energy efficiency
or robustness with respect to model uncertainties and/or aerodynamic disturbances. For
example, (Bouabdallah et al., 2004) proposes a Linear-Quadratic-Regulator (LQR) for the
rotational dynamics control of a quadrotor helicopter, and compares this controller with a
PID. (Castillo et al., 2005) applies an LQR controller to stabilize the lateral position and
the roll angle of a quadrotor helicopter, while (Stone, 2004) shows the application of the
LQR technique to stabilize the linear and angular velocities of a ducted-fan tail-sitter. A
more involved application of a LQ controller is found in (Benallegue et al., 2005), where
a sliding mode observer combined with a Linear-Quadratic-Gaussian (LQG) controller is
applied to a model of a quadrotor helicopter. To reduce the effects of exogenous distur-
bances on the control of helicopters, robust control techniques H2, H∞ have been widely
applied (Civita et al., 2003), (Luo et al., 2003), (Mammar and Duc, 1992), (Prempain
and Postlethwaite, 2005), (Takahashi, 1993). However, the main limitation of all above
linear control techniques is the local nature of the control design and analysis.

To overcome the limitations of control methods based on linear approximations, over
the last decades nonlinear control theory has paved the way for control techniques based
upon the system’s nonlinear dynamics. These nonlinear methods can yield controllers with
a significantly large domain of attraction as well as robustness properties with respect to
modeling errors and time-varying perturbations.

Nowadays, a well-known nonlinear control method is the so-called input-output feed-
back linearization technique (Isidori, 1995). When applied to the control of VTOLs, this
technique essentially consists in considering the thrust vector ~T as a system state variable,
and deriving it until one obtains a system’s form allowing one to linearize the translational
dynamics. For instance, it has been applied to the control of a planar model of a VTOL
(Hauser et al., 1992), and to a 6DOF model of a conventional helicopter (Koo and Sastry,
1998). In particular, (Hauser et al., 1992) points out that a non-zero body force ~Fb may
cause an unstable zero dynamics. An approach to address the control problem in the case
of unstable zero dynamics consists of neglecting the terms that give rise to these unstable
dynamics, and performing the input-output linearization on the approximated system. In
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the literature, this approach is known as approximate feedback linearization approach and
was used in (Hauser et al., 1992) and (Koo and Sastry, 1998). However, the implementa-
tion of the control solutions presented in these two papers raises a few important issues.
For example, these solutions require the knowledge of the thrust intensity and its first
order time derivative, the measurement of which can be problematic in practice. Also,
the well-posedeness of these solutions needs to be properly discussed. For example, the
solution proposed in (Hauser et al., 1992) is defined only if the thrust intensity is different
from zero, and this hypothesis can be violated during aggressive maneuvers.

Another nonlinear method for the control of VTOLs is the so-called backstepping
procedure. For example, under the assumption of no body force, (Frazzoli et al., 2000) and
(Mahony et al., 1999) use a dynamic extension of the system and backstepping procedure
to prove the boundedness of tracking errors.

In the case of symmetric vehicles, a way to take into account body forces consists in
stabilizing a specific control point rather than the vehicle’s center of mass; this modified
control task allows one to mitigate the effects of the body force on the translational
dynamics (Pflimlin et al., 2004) (Martin et al., 1996) (Olfati-Saber, 2002).

Nonlinear hierarchical controllers are another type of control technique for VTOLs.
This type of controllers, reminiscent of the hierarchical linear controllers, are characterized
by a two-stage architecture consisting of: i) a “high-level” position controller (Guidance
loop), whose role is to determine the desired thrust vector ~Td that stabilizes the vehicle’s
velocity; ii) a “low-level” orientation controller (Control loop), whose role is to stabilize
the thrust’s direction about the desired direction ~Td/|~Td|. Several studies address the
“high-level” control problem by expressing the desired thrust vector in terms of a desired
rotation matrix (Frazzoli et al., 2000) (Marconi and Naldi, 2007) (Marconi and Naldi,
2008) (Olfati-Saber, 2001, Ch. 5). Then, the desired rotation matrix is considered as a
reference tracking value for the stabilization of the vehicle’s orientation (low-level control
problem), and the stabilization of the rotation matrix to this desired value can be achieved
via various techniques (Marconi and Naldi, 2007) (Marconi and Naldi, 2008) (Isidori et al.,
2003), (Roberts and Tayebi, 2011), (Tayebi, 2008) (Tayebi and McGilvray, 2006) (Wen
and Kreutz-Delgado, 1991) (Frazzoli et al., 2000) (Olfati-Saber, 2001, Ch. 5) (Pounds
et al., 2007), etc. Problems addressed with hierarchical controllers are (Hua et al., 2013):

• way-point navigation (Pflimlin et al., 2006);
• visual servoing (Le-Bras et al., 2006);
• control with partial state measurement (Abdessameud and Tayebi, 2010);
• robustness with respect to unmodeled dynamics (Hamel et al., 2002a) (Lee et al.,

2009a), aerodynamic disturbances (Hua et al., 2009a) (Pflimlin et al., 2006) (Pflim-
lin et al., 2004) (Roberts and Tayebi, 2011), parametric uncertainties (Isidori et al.,
2003) (Marconi et al., 2002) (Marconi and Naldi, 2007), measurement errors (Plinval
et al., 2012);

• actuators saturation (Guerrero-Castellanos et al., 2011) (Marconi and Naldi, 2007)
(Marconi and Naldi, 2008) (Sanchez et al., 2008) (Zavala-Rio et al., 2003).

A common denominator of these controllers is the use of Lyapunov theory. In the lit-
erature, however, sliding-mode controls (Bouabdallah and Siegwart, 2005) (Bouabdallah
and Siegwart, 2005) (Lee et al., 2009b) and predictive controls (Bertrand et al., 2006)
(Jadbabaie et al., 1999) (Kim et al., 2002) are also used with the hierarchical scheme.
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4.3.3 Convertibles

When controlling a convertible vehicle, one of the main concerns is the control of the
transition maneuvers between hovering and high-velocity cruising. From a systemic point
of view, tilting-thrust convertibles have an additional control input compared to fixed-
thrust convertibles since the thrust direction can be modified at will in the former case.
In turn, this renders their translational longitudinal dynamics fully actuated since one has
a two-dimensional velocity and two control inputs, i.e. thrust’s intensity and direction.

In the case of fixed-thrust convertibles, an inherent difficulty is due to the dependency
of the aerodynamic effects upon the vehicle’s orientation. As a consequence, any varia-
tion of the thrust direction modifies aerodynamic effects in most cases. Several studies
have been dedicated to the control of transitions maneuvers for fixed-thrust convert-
ibles (Benosman and Lum, 2007) (Frank et al., 2007) (Oishi and Tomlin, 1999) (Desbiens
et al., 2010) (Naldi and Marconi, 2011) (Casau et al., 2012), the common denominator of
which is a “switching” policy between hover and cruise control depending on the actual
flight state. However, the automatic monitoring of the transitions between stationary
flight and cruising modes of fixed-thrust convertibles remains a challenge to these days.
One of the major difficulties is ensuring the stability of the closed-loop system along this
transition, which is very sensitive to the “switching” policy that must be usually tuned
for specific classes of reference trajectories. To our knowledge, a unified approach for
the control of the transition maneuvers not relying on a switching policy between several
control laws is still missing.



5 Motivations and thesis context

“Never forget your assumptions.”

This short chapter presents the main motivations and thesis assumptions.

5.1 Motivations

The reviewed control techniques for aerial vehicles (see Section 4.3) point out that:
• Fixed-wing aircraft control is usually addressed by considering a linearized model

for the airplane motion – including aerodynamic effects – and by neglecting the
so-called body force. Nonlinear aerodynamic effects, such as stall phenomena, can
induce a loss of control authority, which is turn related to the properties of the
system’s equilibria pattern.

• VTOL control is usually addressed by neglecting aerodynamic effects between the
vehicle’s shape and its surrounding air. Although the so-called body force can give
rise to unstable zero-dynamics, recent techniques show that the effects of this force
can be mitigated by controlling another point rather than the body’s center of mass.

• Control of convertibles is usually addressed by considering two different dynamics
for the aircraft motion: one for hovering and one cruising flight. Control laws are
derived for each of these dynamics and the control strategy for large flight envelopes
is based on a switching policy between these control laws.

This thesis proposes a nonlinear control approach for aerial vehicles subjected to aerody-
namic forces. The proposed strategy does not rely on switching policies between several
controls, so it participates in the development of a unified approach for the control of
aerial vehicles. The main assumptions made in this manuscript are summarized next.

5.2 Preliminary assumptions

5.2.1 Forces and moments on the vehicle

Consider the well-accepted model of forces and moments acting on the aircraft given
by Eqs. (4.4): we assume that the body force ~Fb is negligible with respect to the other
forces acting on the vehicle. Therefore, the external forces and moments acting on the
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vehicle are assumed to be given by
~F = ~Fa +m~g + ~T , (5.1a)
~M = ~Ma + ~GΘ × ~T + ~MI , (5.1b)

with ~g the vector representing the gravity acceleration and ~T the body-fixed thrust force.
The aerodynamic force on the vehicle is assumed to be in the form (3.9) at fixed

Reynolds and Mach numbers, namely
~Fa = ka|~va|

[
CL(α, β)~v⊥

a − CD(α, β)~va

]
. (5.2)

Hence, we assume that the aerodynamic coefficients do not depend on rotational and
unsteady motions (Stengel, 2004, p. 199). This assumption is better justified when
i) the body’s linear acceleration is small;
ii) the body’s angular velocity and acceleration are small;
iii) the wind velocity changes slowly.

5.2.2 Vehicle’s actuation

By assuming that the vehicle’s actuation can generate any torque input ~MI – also
referred to as full-torque actuation – the expression of the external moments (5.1b) shows
that convergence of the angular velocity ~ω to any bounded desired reference value is
theoretically possible. To provide the reader with a better comprehension of this fact, let
us consider, according to (5.1b), the Euler equation accounting for the rotational dynamics
of the vehicle, i.e.

Jω̇ = −S(ω)Jω +Ma +MT +MI ,

where ~Ma = (~ı,~,~k)Ma, ~MI = (~ı,~,~k)Ma and ~GΘ × ~T = (~ı,~,~k)MT . Then, by choosing
the torque control input as

MI = Jω̇d + S(ω)Jωd −Ma −MT − k(ω − ωd), k > 0,

one obtains exponential stability for any desired angular velocity ωd. Therefore, under the
assumption of full-torque actuation, one may view the angular velocity as an intermediary
control input. In practice, this corresponds to the classical decoupled control architecture
between inner and outer loops: the inner loop deals with the stabilization of the vehicle’s
angular velocity based on its direct measurement from an IMU, and the outer control
loop deals with the stabilization of the vehicle’s velocity based on its direct measurement
or estimation and by using the angular velocity set point and thrust intensity as control
inputs. This leads to consider the thrust force intensity and the angular velocity as control
inputs so that general principles applicable to many aerial vehicles can be worked out.

5.2.3 Vehicle’s dynamics

In light of the assumption of full-torque actuation, the control problem is brought back
to the control of the following subsystem

m~a = ~Fa +m~g + ~T , (5.3a)
d

dt
(~ı,~,~k) = ~ω × (~ı,~,~k), (5.3b)
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with ~a := d~v
dt

, ~Fa given by (5.2), and T := |~T | and ~ω the system control inputs.
The motion equation (5.3a) points out the role of the aerodynamic force ~Fa in obtaining

the body’s linear acceleration vector ~a. It shows, for instance, that to move with a constant
reference velocity the controlled thrust vector ~T must be equal to the resultant external
force

~Fext := m~g + ~Fa.

Now, assume that the body’s shape is a sphere. Then, under the assumptions discussed
in Section 5.2.1, the aerodynamic force does not depend on the body’s orientation since
it is reduced to its drag component, i.e.

~Fa = − kac0|~va|~va,

with c0 a positive constant. Consequently, the resultant external force ~Fext does not
depend on the vehicle’s orientation either. The control strategy then basically consists in
aligning the thrust direction ~T/|~T | with the direction of ~Fext (orientation control with ω)
and in opposing the thrust magnitude to the intensity of ~Fext (thrust control with |~T |).
The almost-globally stabilizing controllers proposed in (Hua et al., 2009a) illustrate this
strategy. However, the production of lift and drag forces that depend on the vehicle’s
orientation may significantly complexify this strategy. In particular, since the resultant
force ~Fext is in general orientation-dependent, the existence and uniqueness of the equi-
librium in terms of the vehicle’s orientation is no longer systematic, and the stabilization
of such an equilibrium can be very sensitive to thrust orientation variations. As a matter
of fact, the capacity of calculating the direction and intensity of ~Fa at every time-instant
– already a quite demanding requirement – is not sufficient to design a control law capa-
ble of performing well in (almost) all situations. Knowing how this force changes when
the vehicle’s orientation varies is needed, but is still not sufficient. The following shows
that orientation dependencies of the aerodynamic force have a fundamental role when
attempting to control the dynamics (5.3). An original outcome of the present thesis is to
point out the existence of a generic set of aerodynamic models that allow one to recast the
control problem into the one of controlling a spherical body – also referred to as spherical
equivalency – for which strong stability and convergence results can be demonstrated.
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“Dissect the bat, study it carefully, and on this model construct the machine.”

Leonardo da Vinci, Sul volo degli uccelli (1505)

Under the assumptions made in Section 5.2, this part of the thesis is ded-
icated to the modeling, analysis and control of two-dimensional and three-
dimensional motions of aerial vehicles. However, three of the four following
chapters are dedicated to two-dimensional motions, also referred to as aircraft
longitudinal dynamics





Notation

The following notation is used throughout the following three chapters.
• The ith component of a vector x is denoted as xi.
• For the sake of conciseness, (x1~ı+ x2~) is written as (~ı,~)x.
• {e1, e2} is the canonical basis in R2, and I is the (2 × 2) identity matrix.
• Given a function f : R → R, its first and second derivative are denoted as f ′ and f ′′,

respectively. Given a function f of several variables, the partial derivative of f w.r.t. one
of them, say x, is denoted as ∂xf = ∂f

∂x
. If f ∈ C1, then its derivative is always defined.

• G is the body’s center of mass and m is the (constant) mass of the vehicle.
• I = {O;~ı0, ~0} is a fixed inertial frame with respect to (w.r.t.) which the vehicle’s

absolute pose is measured.
• B = {G;~ı,~} is a frame attached to the body. The vector ~ı is parallel to the thrust

force ~T . This leaves two possible and opposite directions for this vector. The direction
here chosen, i.e. ~T = −T~ı, is consistent with the convention used for VTOL vehicles.

• The body’s position is denoted by ~p := ~OG = (~ı0, ~0)x. The body’s linear velocity
is denoted by ~v = d

dt
~p = (~ı0, ~0)ẋ = (~ı,~)v, and the linear acceleration by ~a = d

dt
~v.

• The vehicle’s orientation is characterized by the angle θ between ~ı0 and ~ı. The
rotation matrix of the angle θ is R(θ). The column vectors of R are the vectors of
coordinates of ~ı,~ expressed in the basis of I. The matrix S = R(π/2) is a unitary
skew-symmetric matrix. The body’s angular velocity is ω := θ̇.

• The wind’s velocity is denoted by ~vw and its components are defined by ~vw =
(~ı0, ~0)ẋw = (~ı,~)vw. The airvelocity ~va = (~ı,~)va = (~ı0, ~0)ẋa is defined as the difference
between the velocity of G and ~vw. Then, ~va = ~v − ~vw.

~ı0

~0
O ~ı

~

θ

~T

~Fext

G

Figure 5.1: Generic body subjected to external reaction forces





6 System modeling

This chapter addresses the modeling of the vehicle’s longitudinal dynamics, part of
which was discussed in Chapters 3 and 4. In particular, Section 6.1 recalls the vehicle’s
equations of motion in the vertical plane under the assumptions discussed in Chapter 5.
Section 6.2 is dedicated to the modeling of aerodynamic forces, with some emphasis on
the aerodynamic properties in the case of symmetric body’s shapes; in this section, we
also present some models for the aerodynamic coefficients of NACA airfoils. Section 6.3
presents the dynamics of the tracking errors when either a reference trajectory or velocity
is specified; in this section, we also present some preliminary definitions used throughout
Chapters 7 and 8.

6.1 Equations of motion

As discussed in Section 5.2.3, the vehicle’s equations of motion are derived by con-
sidering two control inputs. The first one is a thrust intensity T along the body fixed
direction ~ı whose main role is to produce longitudinal motion; the second control input is
the vehicle’s angular velocity ω. Also, we recall that the external forces acting on the body
are assumed to be composed only of the gravity m~g and the aerodynamic forces denoted
by ~Fa. Thus, under the assumption of complete torque actuation (see Section 5.2.2), the
vehicle’s equations of motion are given by:

m~a = m~g + ~Fa − T~ı, (6.1a)
θ̇ = ω, (6.1b)

with ~g = g~ı0, g the gravity constant, and T and ω the system’s control inputs.

6.2 Aerodynamic forces

The aerodynamic forces acting on the vehicle are assumed to be in the form (5.2).
Furthermore, since we are interested in the body’s longitudinal dynamics, the angle β is
considered equal to zero, and thus omitted as argument of the aerodynamic coefficients.
Then, the expression used for the aerodynamic force is given by

~Fa = ka|~va|
[
cL(α)~v⊥

a − cD(α)~va

]
, (6.2)
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Figure 6.1: Generic body subjected to lift and drag forces.

with ~v⊥
a obtained by rotating anticlockwise the vector ~va = (~ı,~)va by 90◦, that is

~v⊥
a = va1~− va2~ı.

The angle of attack α is here defined as the angle between the body-fixed zero-lift direction
~zL, along which the airspeed does not produce lift forces, and the airspeed vector ~va, i.e.

α := angle(~va, ~zL). (6.3)

By denoting the (constant) angle between the zero-lift direction and the thrust as δ, i.e.

δ := angle(~zL, ~T ), (6.4)

and also the angle between the vertical direction ~ı0 and ~va as γ, i.e.

γ := angle(~ı0, ~va), (6.5)

one has (Figure 6.1)

α = θ − γ + (π − δ), (6.6){
va1 = −|~va| cos(α+ δ),
va2 = |~va| sin(α+ δ).

(6.7)

6.2.1 Symmetric shapes

Shape symmetries of aerial vehicles are not coincidental. Simplification and cost re-
duction of the manufacturing process, despite their importance, are clearly not the main
incentives accounting for the ubiquitous use of symmetric shapes. In this respect, Nature
was first to give the example with most of the animals populating the Earth. On the
basis of this observation, one could figure out numerous practical advantages resulting
from symmetry properties. However, for flying purposes, not all symmetries are equally
interesting. For instance, the sphere, which represents the simplest most perfect symmet-
ric 3D-shape, is not best suited for energy-efficient long-distance flights because it does
not allow for the creation of lift forces which can counteract the effects of gravity in the
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Figure 6.2: Symmetric and bisymmetric bodies satisfying Assumptions 1 and 2.

same way –and almost as well– as wheel-ground contact reaction forces for terrestrial
vehicles. We here consider other kinds of symmetries in order to figure out aerodynamic
properties induced by them and their practical and theoretical interests. More precisely,
we focus on bodies whose surface S is characterized by the existence of an orthonormal
body frame Bz = {Z;~ız, ~z} such that either one of the following assumptions is satisfied.
Assumption 1 (Symmetry). Let P be any point of the body surface S with coordinates
(x, y) in Bz. Then, the point Ps with coordinates (x,−y) also belongs to S. In this case,
the body’s shape is said to be symmetric.
Assumption 2 (Bisymmetry). Let P be any point of the body surface S with coordi-
nates (x, y) in Bz. Then, the point Pbs with coordinates (−x,−y) also belongs to S. In
this case, the body’s shape is said to be bisymmetric.
Figure 6.2 shows some examples of symmetric and bisymmetric shapes.

When either one of the above assumptions is satisfied, we choose ~zL parallel to an axis
of symmetry so that cL(0) = cL(π) = 0. Note that this choice still leaves two possible
and opposite directions for the definition of the vector ~zL, and this in turn reflects in two
possible values1 of the angle δ. Without loss of generality, the direction here chosen is the
one that minimizes the angle δ.

Observe that a symmetric shape implies that the aerodynamic characteristics cD(α)
and cL(α) are even and odd functions, respectively. Hence, for symmetric shapes one has

cD(α) = cD(−α) (6.8a)
cL(α) = − cL(−α), (6.8b)
cL(0) = cL(π) = 0. (6.8c)

Bisymmetric shapes have an additional symmetry about the axis ~z, thus implying the
invariance of the aerodynamic forces w.r.t. body rotations of ±π. Then, in addition to
properties (6.8), a bisymmetric shape implies also that the aerodynamic characteristics
are π−periodic functions versus the angle of attack α, i.e.

cD(α) = cD(α± π), (6.9a)
cL(α) = cL(α± π). (6.9b)

1Defining the zero-lift-directions parallel to the axis of symmetry yields two values of the angle δ provided
that the thrust force is not perpendicular to this axis of symmetry.
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Figure 6.3: Measurements and typical approximations given by the model (6.10).

6.2.2 Models for aerodynamic coefficients of symmetric NACA airfoils

NACA profiles are airfoils widely used in practice and well referenced in the literature.
Let us thus focus on the modeling of their aerodynamic coefficients. To do this, we here
use three classes of modeling functions that will simplify the control design for System 6.1.
The reasons behind the choice of these three classes will be clearer in Chapters 7 and 8, so
for the time being we restrict our comments only on the capacities of the chosen functions
to approximate the experimental data. The first class of modeling functions is given by{

cL(α) = c1 sin(2α)
cD(α) = c0 + 2c1 sin2(α),

(6.10)

with c0 and c1 two positive constants. The process of approximating experimental aero-
dynamic characteristics with the functions (6.10) is illustrated by the Figure 6.3 where we
have used experimental data borrowed from (Davis et al., 2004) for a flat wing of airfoil
NACA 0021 with Mach and Reynolds numbers equal to (Re,M) ≈ (160 · 103, 0.3). The
estimated coefficients c0 = 0.0139 and c1 = 0.9430 minimize the average squared errors
between aerodynamic data and the model (6.10). The approximation result, although not
perfect, should be sufficient for control design purposes at low Reynolds numbers, which
usually yield less pronounced stall phenomena (Section 3.3.1). Observe that increasing
the Reynolds number worsens the approximation result only at small angles of attack
since the experimental data are mostly independent of the Reynolds number when the
angle of attack is beyond the stall angle αs.

The second class of modeling functions provides better approximations of the experi-
mental data at low angles of attack independently of the Reynolds number; they are

cL(α) = 0.5c2
2

(c2 − c3) cos2(α) + c3
sin(2α)

cD(α) = c0 + c2c3

(c2 − c3) cos2(α) + c3
sin2(α),

(6.11)
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Figure 6.4: Measurements and typical approximations given by the model (6.11).

with c2 and c3 two positive constants such that c2 > c3. These functions are representative
of the experimental aerodynamic characteristics at low angles of attack since computing
the second order Taylor expansion of (6.11) at α = 0 yields{

cL(α) = c2α

cD(α) = c0 + c3α
2,

which are the classical modeling functions used to approximate the static aerodynamic
characteristics at low angles of attack (Stengel, 2004). Figure 6.4 shows a typical ap-
proximation result given by the modeling functions (6.11); clearly, the closer the angle of
attack to the stall angle, the worse the approximation result.

The third class of models is obtained by combining the functions (6.10) and (6.11) in
only one (pair) of modeling functions, thus building a suitable model to approximate the
experimental data over large domains of (Re, α). In particular, we want that the combined
model “smoothly” switches between the models (6.10) and (6.11) when the angle of attack
crosses the stall region, and also that it satisfies the symmetric constraints (6.8). Among
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Figure 6.5: Pseudo-sigmoid function σ(α, k, α).
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Figure 6.6: Measurements and typical approximations given by the model (6.13).

the infinity of possible ways of doing this combination, we make use of a pseudo-sigmoid
function σ(α, k, α) depicted in Figure 6.5 and defined by

σ(α, k, α) = 1 + tanh(kα2 − kα2)
1 + tanh(kα2)

, α ∈ [−π, π). (6.12)

Now, let (cLL
, cDL

) and (cLS
, cDS

) denote the modeling functions given by Eqs. (6.10)
and (6.11), respectively. The aforementioned combined model is thus given by{

cL(α) = cLS
(α)σ(α, kL, α) + cLL

(α)[1 − σ(α, kL, α)]
cD(α) = cDS

(α)σ(α, kD, α) + cDL
(α)[1 − σ(α, kD, α)].

(6.13)

Observe that at small angles of attack one has σ(·) = 1 so that the model (6.13) coincides
with (6.11). At large angles of attack, instead, one has σ(·) = 0 so that (6.13) coincides
with (6.10). Note also that the function σ(·) is even versus α, and this means that the
models (6.13) satisfy the symmetric constraints (6.8).

Let us comment the role of the parameters α, kL, and kD in Eqs. (6.13). The parameter
α represents the angle at which the “switch” from the models (cLS

, cDS
) into (cLL

, cDL
)

is at the “middle points”, while the (positive) parameters kL and kD characterize the
domain on which this switch is accomplished. The larger kL and kD, the smaller this
domain. A first possibility for choosing α is

α = αs,

with αs the stall angle, while the parameters kL and kD can be chosen so that the slopes
of (6.13) are close to those measured experimentally within the stall region. Figure 6.6
shows typical approximations result when considering the model (6.13). The estimated
parameters at Re = 160 · 103 are c0 = 0.0139, c1 = 0.9430, c2 = 5.4641, c3 = 0.3151,
α = αs = 11◦, kL = 28, and kD = 167; while at Re = 5 · 106 they are c0 = 0.0078,
c1 = 0.9430, c2 = 6.3025, c3 = 0.1378, α = αs = 18◦, kL = 12, and kD = 86.
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6.3 Dynamics of the tracking errors and preliminary definitions

Let ~vr(t) denote a differentiable reference velocity, and ~ar(t) its first time-derivative,
i.e. ~ar(t) = ~̇vr(t). Define the velocity error as

~ev := ~v − ~vr. (6.14)

Using System (6.1) one obtains the following error model

~̇ep = ~ev, (6.15a)
m~̇ev = ~F − T~ı, (6.15b)
θ̇ = ω, (6.15c)

with ~F the apparent external force given by

~F := m~g + ~Fa −m~ar, (6.16)
~Fa = ka|~va|

[
cL(α)~v⊥

a − cD(α)~va

]
, (6.17)

with ~v⊥
a = va1~ − va2~ı, ~va = ~v − ~vw, and either ~ep :=

∫ t
0 [~v(s) − ~vr(s)] ds, the integral of

the velocity error, or ~ep := ~p− ~pr, the position tracking error when a reference trajectory
~pr := (~ı0, ~0)xr is specified.

Observe that the aerodynamic force ~Fa explicitly depends upon the angle of attack α.
Consequently, ~F depends upon the vehicle orientation θ via Eq. (6.6). Thus, Eq. (6.15b)
indicates that the equilibrium condition (~ep, ~ev) ≡ 0 implies

T~ı(θ) = ~F (~vr(t), θ, t), ∀t, (6.18)

which in turn implies

T = ~F (~vr(t), θ, t) ·~ı(θ), (6.19a)
0 ≡ ~F (~vr(t), θ, t) · ~(θ) ∀t. (6.19b)

In view of Eq. (6.19b), we can then state the following definition.

Definition 6.1. An equilibrium orientation θe(t) is a time-valued function such that
Eq. (6.19b) is satisfied with θ = θe(t).

The existence of an equilibrium orientation is a necessary condition for the asymptotic
stabilization of a reference velocity. Furthermore, observe that there may exist several
equilibrium orientations associated with a reference velocity ~vr(t). In order to classify the
number of these equilibrium orientations, define the set Θ~vr(t) as

Θ~vr(t) :=
{
θe(t) ∈ S1 : ~F (~vr(t), θe(t), t) · ~(θe(t)) = 0

}
. (6.20)

We can now define a particular case for which there exist only two distinct equilibrium
orientations over large domains of the reference velocity ~vr.
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Definition 6.2. System (6.15b) is said to have a generically-unique pair of equilibrium
orientations if and only if

cardinality(Θ~vr(t)) = 2 ∀t,

for any reference velocity ~vr(t) except for a unique, continuous velocity ~vb(t) such that

Θ~vb
(t) = S1 ∀t.

For the systems having a generically-unique pair of equilibrium orientations, the ref-
erence velocity ~vr(t) can be performed with only two vehicle’s orientations at any time t,
and this holds for any reference velocity except for a unique, bad reference velocity ~vb(t).
Therefore, for these classes of systems the problem of investigating the multiplicity of
the equilibrium orientations can be totally avoided. In the following chapters, we show
that there exist families of aerodynamic forces for which the associated tracking error
dynamics (6.15b) has a generically-unique pair of equilibrium orientations.

Remark that given an equilibrium orientation θe(t), the thrust intensity T at the
equilibrium configuration is given by Eq. (6.19a) with θ = θe(t). From a practical
point of view, the existence of an equilibrium orientation ensuring a positive thrust is
of particular importance, since positive-thrust limitations represent a common constraint
when considering aerial vehicles. Now, define

Θ+
~vr

(t) :=
{
θe(t) ∈ Θ~vr(t) : ~F (~vr(t), θe(t), t) ·~ı(θe(t)) ≥ 0

}
. (6.21)

Therefore, the practical cases of particular importance are those in which the cardinality
of the set Θ+

~vr
(t) is greater than one over large domains of the reference velocities, since

they ensure the existence of an equilibrium orientation associated with a positive thrust.
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This chapter presents an equilibria analysis for System (6.15), where the apparent
external force ~F is given by Eq. (6.16). In particular, Section 7.1 discusses the system’s
equilibria in the simpler case of a spherical shape; this section is also useful to familiar-
ize the reader with the definitions introduced in Section 6.3. Section 7.2 addresses the
existence problem of the equilibrium orientations in relation to the shape’s symmetries.
Section 7.3 presents a class of aerodynamic forces for which the system’s dynamics (6.15)
has a generically-unique pair of equilibrium orientations; for these aerodynamic forces,
the considered thrust-propelled vehicle can be seen as another vehicle subjected to an
orientation-independent external force only, as in the case of a spherical shape. This
equivalency is referred to as spherical equivalency. Section 7.4 discusses the multiplicity
of the equilibrium orientations and its implications at the control level. Section 7.5 studies
the local uniqueness of the equilibrium orientations. Section 7.6 studies the so-called static
stability of reference velocities. Section 7.7 shows that at fixed vehicle’s orientation and
thrust intensity there may exist several equilibrium velocities; this analysis is reminiscent
of the deep stall condition of aircraft.

7.1 The spherical-shape case

If the body’s shape is a sphere, then the aerodynamic force acting on the body is
reduced to its (orientation-independent) drag component, i.e.

~Fa = − kac0|~va|~va, (7.1)

with c0 a positive constant. Then, the apparent external force given by Eq. (6.16) becomes

~F (~v, t) = m~g − kac0|~va|~va −m~ar. (7.2)

Therefore, in the case of a spherical shape, the dynamics of the tracking errors are given
by Eqs. (6.15) with ~F independent of the vehicle’s orientation and given by Eq. (7.2).

Now, since the apparent external force ~F is independent of θ, Eq. (6.15) indicates that
the equilibrium condition (~ep, ~ev) ≡ 0 implies (recall that θ = angle(~ı0,~ı), see Figure 5.1)

T = |~F (~vr, t)|,

~ı(θe) =
~F (~vr, t)

|~F (~vr, t)|
⇒ θe = ξ(t),

(7.3)
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or 
T = −|~F (~vr, t)|,

~ı(θe) = −
~F (~vr, t)

|~F (~vr, t)|
⇒ θe = ξ(t) + π,

(7.4)

where ξ denotes the angle between the vertical direction ~ı0 and ~F (~vr, t), i.e.

ξ = angle(~ı0, ~F (~vr, t)).

Then, as long as ~F (~vr, t) is different from zero, there exist only two equilibrium orientations
ensuring (~ep, ~ev) ≡ 0. Furthermore, one of these two equilibrium orientations ensures a
positive thrust at the equilibrium configuration – see Eq. (7.3). When |~F (~vr(t), t)| = 0,
any orientation is an equilibrium angle since the equilibrium condition

~F (~vr(t), t) − T~ı(θ) = 0

holds for any θ with T=0. As a consequence of these facts, one states the following lemma.

Lemma 7.1. System (6.15b) with ~F given by Eq. (7.2) has a generically-unique pair of
equilibrium orientations. Furthermore, the cardinality of the set Θ+

~vr
, as defined by (6.21),

is equal to one, i.e.
cardinality(Θ+

~vr
(t)) = 1 ∀t,

for any reference velocity ~vr(t) except for a unique, continuous velocity ~vb(t).

The proof of this lemma is given in Appendix A.1. The above result points out two
important facts. First, the dynamics of the velocity errors (6.15b) with ~F given by (7.2)
has a generically-unique pair of equilibrium orientations. Therefore, any reference trajec-
tory is associated with only two vehicle’s (equilibrium) orientations for many reference
velocities. Secondly, the cardinality of the set Θ+

~vr
(t) is also equal to one for many reference

velocities.
In the next sections, we show that the dependence of the aerodynamic force upon

the orientation perturbs the structural properties of the error dynamics (6.15), and that
the existence of a vehicle’s equilibrium configuration along a reference velocity cannot be
guaranteed a priori.

7.2 Existence problem of an equilibrium orientation

The asymptotic stabilization of a reference velocity requires the existence of an equilib-
rium orientation – see Section 6.3. When the aerodynamic force ~Fa, and consequently the
apparent external force ~F , depends upon the vehicle’s orientation, ensuring the existence
of an equilibrium orientation is far from obvious since any change of the vehicle’s attitude
affects both vectors ~F (~vr, θ, t) and ~(θ) – see the definition of Θ~vr(t) given by (6.20). Nev-
ertheless, we know from experience that airplanes do fly, so the equilibrium orientation
must exist in most cases. One may then conjecture that the existence of an equilibrium
orientation follows from aerodynamic properties that hold independently of the body’s
shape, alike the dissipativity of aerodynamic forces due to friction. However, the next
lemma points out that the dissipative nature of the aerodynamic force is not in general
sufficient to assert the existence of an equilibrium orientation.
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Lemma 7.2. The dissipative nature of the aerodynamic force, i.e.

~va · ~Fa(~va, α) ≤ 0, ∀(~va, α), (7.5)

does not always imply the existence of an equilibrium orientation.

The proof is given in Appendix A.2. Another route that we may follow to conclude
about the existence of an equilibrium orientation is by considering specific classes of body’s
shapes. The next theorem addresses the existence problem of the equilibrium orientations
by considering symmetric and bisymmetric shapes as defined in Section 6.2.1.

Theorem 7.1. Assume that the aerodynamic characteristics cL(α) and cD(α) are con-
tinuous functions, and that the reference velocity is differentiable, i.e. ~vr(t) ∈ C1. Let
Θ~vr(t) and Θ+

~vr
(t) be the sets given by (6.20) and (6.21), with ~F given by (6.16).

1) If the body’s shape is symmetric and the thrust is parallel to its axis of symmetry,
then there exist at least two equilibrium orientations for any reference velocity, i.e.

cardinality(Θ~vr(t)) ≥ 2 ∀t, ∀~vr(t) ∈ C1
.

2) If the body’s shape is bisymmetric, then there exists at least one equilibrium ori-
entation ensuring a positive-semidefinite thrust intensity for any reference velocity,
i.e.

cardinality(Θ+
~vr

(t)) ≥ 1 ∀t, ∀~vr(t) ∈ C1
,

whatever the (constant) angle δ between the zero-lift direction and the thrust force.

The proof is given in Appendix A.3. Theorem 7.1 points out that the existence of
an equilibrium orientation follows from the symmetry properties of the body’s shape,
independently of flow regimes or specific families of reference velocities. More specifically,
item 1) asserts that for symmetric body’s shapes powered by a thrust force parallel to their
axis of symmetry, the existence of (at least) two equilibrium orientations is guaranteed for
any reference velocity. By looking at the proof of item 1), remark that the key assumption
to prove this existence is

cL(0) = cL(π) = 0, (7.6)

which does not depend on the drag coefficient. Hence, drag forces have no role in the
existence an equilibrium orientation when considering symmetric shapes powered by a
thrust force parallel to their axis of symmetry. When the thrust force is not parallel
to the shape’s axis of symmetry, one easily shows that the condition (7.6) is no longer
sufficient to ensure the existence of an equilibrium orientation for any reference velocity1.

Item 2) of Theorem 7.1 states that the bisymmetry of the body’s shape implies the
existence of an equilibrium orientation independently of the thrust direction with respect
to the body’s zero-lift direction, namely, independently of the angle δ in Figure 6.1. Of
most importance, this item points out that the shape’s bisymmetry implies the existence
of an equilibrium orientation associated with a positive-semidefinite thrust intensity in-
dependently of reference trajectories. Then, an additional sign constraint on the thrust
intensity may be satisfied in the case of bisymmetric shapes.
1See the proof of Lemma 7.2.
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Now, assume that the body’s shape is only symmetric and not bisymmetric. If the
thrust force is not parallel to the shape’s axis of symmetry, the assumptions of Theorem 7.1
are not satisfied and the existence of an equilibrium orientation cannot be asserted, al-
though the common sense makes us think that an equilibrium orientation still exists2.

By considering symmetric body shapes, the next theorem points out conditions ensur-
ing the existence of an equilibrium orientation independently of reference velocities and
thrust directions with respect to the body’s zero-lift direction.

Theorem 7.2. Consider a body with a symmetric shape. Assume that the aerodynamic
coefficients cL(α) and cD(α) are continuous functions, and that cD(π) > cD(0).
If there exists an angle αs ∈ (0, π/2) such that cL(αs) > 0 and

tan(αs) ≤ cD(αs) − cD(π)
cL(αs)

, (7.7)

then there exists at least one equilibrium orientation for any reference velocity, i.e.

cardinality(Θ~vr(t)) ≥ 1 ∀t, ∀~vr(t) ∈ C1
,

whatever the (constant) angle δ between the zero-lift direction and the thrust force.

The proof is given in Appendix A.4. Theorem 7.2 requires some knowledge of the body’s
aerodynamic coefficients to assert the existence of the equilibrium orientation. More
specifically, the key hypothesis in Theorem 7.2 is the existence of an angle αs such that
condition (7.7) is satisfied. Since stall phenomena are rapid, usually important, lift de-
creases and drag increases, then the likelihood of satisfying the condition (7.7) with αs

belonging to the stall region is very high. As a matter of fact, we verified that Theorem 7.2
applies with αs belonging to the stall region for the experimental data given in (Davis
et al., 2004), which were taken for NACA airfoils 0012, 0015, 0018, and 0021 at M = 0.3
and several Reynolds numbers.

7.3 Models yielding a generically-unique pair of equilibrium orientations

Let us recall that when the body’s shape is a sphere, the aerodynamic force is reduced
to its drag component, i.e. ~Fa = −kac0|~va|~va, and the error dynamics (6.15b) has a
generically-unique pair of equilibrium orientations – see Section 7.1. This section shows
that there exist other families of aerodynamic forces for which the associated velocity
error dynamics has a generically-unique pair of equilibrium orientations. Then, for these
families the problem of analyzing the multiplicity of the equilibrium orientations, i.e. the
cardinality of the set Θ~vr(t), can be totally avoided.

From the definitions of ~va and α given in Section 6.2, one has

~va = va1~ı+ va2~,

~v⊥
a = va1~− va2~ı,

cot(α+ δ) = − va1

va2

,

2Flat wings with a symmetric airfoil and with a thrust force not aligned with their axis of symmetry do
fly in the vertical plane.
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so that ~Fa given by (6.17) becomes

~Fa = ka|~va|
[
cL~v

⊥
a −

(
cD(α) + [cL(α) − cL] cot(α+ δ)

)
~va

]
− ka|~va|2 cL(α) − cL

sin(α+ δ)
~ı, (7.8)

with cL ∈ R not necessarily constant. By using the above relationships, it is a simple
matter to establish the following result.

Proposition 7.1. Assume that the aerodynamic forces are given by (6.17) and that the
aerodynamic coefficients satisfy the following condition

cD = cD(α) + [cL(α) − cL] cot(α+ δ), (7.9)

with cD and cL denoting two constant numbers.
Then, the body’s dynamic equation (6.1a) can be rewritten as

m~a = m~g + ~fp − Tp~ı, (7.10)

with

~fp = ka|~va|
[
cL~v

⊥
a − cD~va

]
, (7.11a)

Tp = T + ka|~va|2 cL − cL

sin(α+ δ)
, (7.11b)

so that ~fp is independent of the vehicle’s orientation θ.

When the condition (7.9) is satisfied, the dynamics of the velocity errors (6.15b) become

m~̇ev = ~Fp − Tp~ı, (7.12)

with Tp given by (7.11b) and

~Fp := m~g + ~fp −m~ar (7.13)

independent of the vehicle’s orientation. From here, one easily shows the following result.

Lemma 7.3. If the aerodynamic coefficients satisfy the condition (7.9) with cD a positive-
constant, then System (7.12) has a generically-unique pair of equilibrium orientations.

The proof is given in Appendix A.5. When the condition (7.9) is satisfied, we can see
the vehicle with an equivalent shape that provides constant aerodynamic coefficients, but
powered by an equivalent thrust force ~Tp = −Tp~ı. The satisfaction of the condition (7.9)
is compatible with an infinite number of functions cD(α) and cL(α). Let us point out
two particular sets of simple functions already considered in the modeling of aerodynamic
coefficients addressed in Section 6.2.2.
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Proposition 7.2. Assume that the resultant of the aerodynamic force is given by (6.17).

1) The modeling functions defined by Eq. (6.10), i.e.{
cD(α) = c0 + 2c1 sin2(α)
cL(α) = c1 sin(2α),

(7.14)

satisfy the condition (7.9) with{
cL = −c1 sin(2δ)
cD = c0 + 2c1 cos2(δ).

Then, the equivalent aerodynamic force ~fp and thrust intensity Tp allowing for the
transformation into the dynamics (7.10) with ~fp independent of θ are given by

~fp = − ka|~va|
[
c1 sin(2δ)~v⊥

a + (c0 + 2c1 cos2(δ))~va

]
, (7.15a)

Tp = T + 2c1ka|~va|2 cos(α− δ). (7.15b)

2) Assume that the thrust force ~T is parallel to the zero-lift direction ~zL so that δ = 0.
The modeling functions defined by Eq. (6.11), i.e.

cL(α) = 0.5c2
2

(c2 − c3) cos2(α) + c3
sin(2α)

cD(α) = c0 + c2c3

(c2 − c3) cos2(α) + c3
sin2(α),

(7.16)

satisfy the condition (7.9) with {
cL = 0
cD = c0 + c2.

Then, the equivalent aerodynamic force ~fp and thrust intensity Tp allowing for the
transformation into the dynamics (7.10) with ~fp independent of θ are given by

~fp = − ka|~va|(c0 + c2)~va, (7.17a)

Tp = T + c2
2ka|~va|2 cos(α)

(c2 − c3) cos2(α) + c3
. (7.17b)

Concerning the modeling functions (7.14), we can also show the following result.

Lemma 7.4. Assume that the aerodynamic forces are given by (6.17). In case of sym-
metric body shapes, the model (7.14) is the only family of aerodynamic coefficients for
which there exists a vector ~fp independent of θ such that (7.10) holds true whatever the
(constant) angle δ between the zero-lift direction and the thrust force.

The proof of Lemma 7.4 is given in Appendix A.6.
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7.3.1 The spherical equivalency

Assume that the thrust force is aligned with the zero-lift-line so that δ = 0. Then,
a body whose aerodynamics provides the aerodynamic coefficients given by either (7.14)
or (7.16) is equivalent to a sphere subjected to only an equivalent drag force

~fp = − ka|~va|cD~va, (7.18)

and powered by an equivalent thrust force Tp given by either (7.15b) or (7.17b). Now,
consider the physical aerodynamic characteristics of NACA airfoils shown in Figure 6.3,
and recall that the lower the Reynolds number, the better the approximation result given
by the model (7.14). Therefore, NACA profiles at very-low Reynolds numbers – and
with δ = 0 – can be seen as spheres subjected to an equivalent drag and powered by an
equivalent thrust. At large Reynolds numbers, this conceptual transformation can be con-
sidered valid for either small or large angles of attack, since the modeling functions (7.14)
and (7.16) are representative of the experimental data on these regions – see Figure 6.6.

Now, let us recall that the model (6.13) – obtained by combining the models (7.14)
and (7.16) – provides modeling functions that are representative of the experimental data
taken for several NACA airfoils – see Section 6.2.2. When we consider this combined
model for the aerodynamic coefficients, the associated errors dynamics may not have
a generically-unique pair of equilibrium orientations, which is however implied by each
of the models (7.14) and (7.16) when considered separately. More generically, for the
aerodynamic coefficients that do not satisfy the condition (7.9), a reference velocity may
be associated with several equilibrium orientations. A study of the multiplicity of the
equilibrium orientation is addressed in the next section.

7.4 Equilibria multiplicity and ill-conditioning of the control problem

Given a reference velocity ~vr(t), the number of possible vehicle’s equilibrium orien-
tations along this velocity equals the cardinality of the set Θ~vr(t) defined by Eq. (6.20).
Therefore, the problem of determining the multiplicity of the equilibrium orientations
arises only when the aerodynamic coefficients do not satisfy the condition (7.9) since this
condition implies a constant cardinality of Θ~vr over large domains of the reference velocity
– see Lemma 7.3.

This section studies the multiplicity of the equilibrium orientations and its control con-
sequences by considering the experimental aerodynamic coefficients shown in Figure 6.6
(symmetric airfoil NACA 0021). For the sake of simplicity, we assume no wind, i.e.

|~vw| ≡ 0, (7.19)

and a thrust force aligned with the body’s zero-lift direction, i.e.

δ = 0. (7.20)

Remark that since the airfoil NACA 0021 is symmetric, then Theorem 7.1 with δ = 0
ensures the existence of at least one equilibrium orientation along any reference velocity.
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Now, from the definition of the set Θ~vr given by (6.20), the cardinality of this set
equals the number of solutions θe to the following algebraic equation

F (ẋr, αe)TR(θe)e2 = 0, (7.21)

where ẋr is the vector of coordinates of the geometric vector ~vr expressed in the inertial
frame, i.e. ~vr=(~ı0, ~0)ẋr, and F is the vector of coordinates of ~F , given by (6.16), expressed
in the inertial frame, i.e. ~F=(~ı0, ~0)F . Thus, in light of (7.19) and (7.20), one has

F (ẋr, αe) = mge1 + ka|ẋr| [cL(αe)S − cD(αe)I] ẋr −mẍr, (7.22)

with αe = θe − γr + π, and γr = angle(e1, ẋr) (see Section 6.2). Now, by replacing

θe = αe + γr − π, (7.23)

in R(·) in Eq. (7.21), one obtains

F (ẋr, αe)TR(αe + γr)e2 = 0. (7.24)

Therefore, the problem of seeking for the equilibrium orientations θe is equivalent3 to the
problem of finding the equilibrium angles of attack αe.

Next sections investigate the multiplicity of the equilibrium angles of attack αe first
for a cruise flight, and then for a generic constant-velocity flight. In addition to this
analysis, the following sections provide the reader with some insights into the thrust
intensity at the equilibrium configuration by using the equilibrium condition (6.19a). In
light of (7.19), (7.20), and (7.23), expressing the equilibrium condition (6.19a) in the
inertial frame basis yields

Te = − F (ẋr, αe)TR(αe + γr)e1, (7.25)

where F (ẋr, αe) is given by Eq. (7.22).

7.4.1 Horizontal flight

Desired steady-horizontal flight implies that

ẋr = νe2, (7.26)

where ν ∈ R+ denotes a constant called cruise speed. Then, γr = angle(e1, ẋr) = π/2,
and the equilibrium condition (7.24) with (7.26) yields

[1−aνcL(αe)] cos(αe)−aνcD(αe) sin(αe) = 0, (7.27)

where aν is a dimensionless number defined by

aν := kaν
2

mg
, (7.28)

with ka = ρΣ/2. Remark that the dimensionless property of aν can be used to determine
dynamic similitude between different cases. For instance, assume that Eq. (7.27) holds, i.e.
3The equivalency holds only if |ẋr| > 0, which implies that γr is well defined.
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Figure 7.1: (a): pattern of the equilibrium angles αe; (b): aerodynamic coefficients.

αe is an equilibrium angle of attack at a given aν and for specific aerodynamic coefficients.
Then, any aircraft having these aerodynamic coefficients admits αe as an equilibrium angle
of attack at a cruise speed evaluated according to its geometry and weight, i.e.

ν =
√
mgaν

ka

. (7.29)

The possibility of finding the explicit expression of the equilibrium angles αe = φ(aν)
from Eq. (7.27) is intimately related to the model of the aerodynamic coefficients. For
instance, when the aerodynamic force is reduced to its drag component, i.e. cL(α) ≡ 0
and cD(α) ≡ c0, one has

αe = φ(aν) = atan
( 1
aνc0

)
.

More generically, the existence of the function φ(·) can be ensured by applying the implicit
function theorem, although the expression of this function remains in general unknown.
Conversely, observe that from Eq. (7.27) we can find the explicit expression of the param-
eter aν in function of the equilibrium angles αe, i.e.

aν(αe) = cot(αe)
cD(αe) + cL(αe) cot(αe)

. (7.30)

Therefore, a picture of the equilibrium angle αe as a function of the cruise velocity ν
is obtained by plotting Eq. (7.30). Figure 7.1a depicts the function (7.30) evaluated
with the experimental aerodynamic characteristics shown in Figure 7.1b (NACA 0021 of
l = 0.91m, c = 0.1524m and at Re = 160 · 103 and M = 0.3). From this figure we see
that the angle of attack at the equilibrium is unique (on (0, 90◦)) as long as the parameter
aν < 1.35. At aν = 1.35, the equilibrium angle of attack bifurcates in multiple points.
The local bifurcation of αe is a saddle-node kind since a couple of equilibrium angles
collide and annihilate each other (Chow and Hale, 1996) (Wiggins, 1990) when crossing
the bifurcation values aν = 1.35 and aν = 1.45. When aν belongs to a neighborhood of
1.4, one has three equilibrium angles of attack, and this means that a steady-horizontal
flight can be performed with (three) different vehicle’s orientations.

The bifurcation analysis of the equilibrium orientations is beyond the scope of the
present thesis, all the more so because these local phenomena occur principally on the
highly nonlinear and chaotic stall region, so they are very sensitive to the modeling of the
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aerodynamic coefficients on it. Let us just observe that bifurcations do not occur if aν(αe)
is well-defined and strictly decreasing on αe ∈ (0, 90◦). On this basis, a simple study of
the function aν(αe) given by (7.30) allows us to state the following lemma.

Lemma 7.5. Consider a steady-horizontal flight with no wind and a thrust force aligned
with the zero-lift direction, i.e. ẋr = νe2, ~vw = 0, and δ = 0. Assume that cL(α) and
cD(α) > 0 are continuously differentiable functions such that

cD(α) + cL(α) cot(α) > 0 ∀α ∈ (0, 90◦). (7.31)

1) If

c′
L(α) + c′

D(α) tan(α) + cD(α)
cos2(α)

> 0 ∀α ∈ (0, 90◦), (7.32)

then the function aν(αe) given by (7.30) is strictly decreasing on αe ∈ (0, 90◦), so
no bifurcation occurs on this domain.

2) If there exists one angle αe such that

c′
L(αe) + c′

D(αe) tan(αe) + cD(αe)
cos2(αe)

< 0, αe ∈ (0, 90◦), (7.33)

then a′
ν(αe) > 0, and there exists αb > αe such that a′

ν(αb) = 0 because aν(90◦) = 0.
Consequently, there exists at least a saddle-node bifurcation on (αe, 90◦).

Condition (7.31) holds in most cases because the lift coefficient is (usually) posi-
tive for small angles of attack and the ratio cL(α)/cD(α) is (usually) small for large α.
For example, if we consider the aerodynamic characteristics shown in Figure 7.1b, the
condition (7.31) is satisfied since cL(α) > 0 ∀α ∈ (0, 90◦). Now, notice that the condi-
tion (7.32), which rules out the occurrence of a bifurcation, may be satisfied even when
c′

L(α) < 0. Hence, the occurrence of the lift stall phenomenon – with c′
L(α) < 0 usually

when α ∈ (0, 45◦) – is not in general sufficient for αe to bifurcate. However, by assuming
that the drag coefficient is non-decreasing on α ∈ (0, 90◦), a decreasing lift coefficient on
α ∈ (0, 90◦) is necessary for the occurrence of a bifurcation; otherwise, the condition (7.32)
is satisfied. Stall phenomena induce a bifurcation when, for example, the rate of decrease
of the lift coefficient is so large that the condition (7.33) is satisfied.

Let us recall that the aerodynamic coefficients depend also upon the Reynolds and
Mach numbers – see Section 3.3 – although these numbers are assumed constant in the
aerodynamic modeling in Section 6.2. Recall also that for low-subsonic airflows the aero-
dynamic coefficients can be considered independent of the Mach number, so the pattern
of the equilibrium angles αe shown in Figure 7.1a principally varies with the Reynolds
number Re and the angle of attack αe only. To provide the reader with a picture of
these variations, Figure 7.2a depicts the function (7.30) evaluated with the experimental
aerodynamic characteristics taken at several Reynolds numbers and shown in Figure 7.2b
(NACA 0021 of l = 0.91m, c = 0.1524m and at M = 0.3). Figure 7.2a depicts (in
black) also the function aν(αe) evaluated with the modeling functions (7.14): since these
functions yield a generically-unique pair of equilibrium orientations, then no bifurcation
occurs. Let us recall that the modeling functions (7.14) better approximate the experi-
mental data of NACA airfoils when the Reynolds numbers is relatively small. Then, we
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Figure 7.2: aν(αe) given by (7.30) and the coefficients used to evaluate it.

can claim that the equilibria pattern of NACA airfoils at low Reynolds numbers and in
cruise flight never bifurcates. As shown in Figure 7.2a, increasing the Reynolds number
principally varies the equilibria pattern only at small angles of attack. This is due to the
fact that the experimental data are mostly independent of the Reynolds number when the
angle of attack is beyond the stall region. Furthermore, simulations we have performed
tend to show that the larger the Reynolds number, the smaller the minimum value of aν

– and thus of the cruise speed ν – at which multiple equilibria αe occur independently
of the considered NACA airfoil. This phenomenon is due to the shifting of the lift stall
region towards higher values of the angles of attack as Re increases.

A consequence of the existence of several equilibria is that, given a continuous reference
velocity profile, the associated equilibrium orientation θe(t) may be discontinuous. In
this case, the reference velocity can be perfectly tracked, i.e. (~ep, ~ev) = (0, 0) ∀t, only if
discontinuities of the vehicle’s attitude θ were admissible, and this is clearly impossible in
practice. Also, the continuity of the equilibrium orientation θe(t) is a necessary condition
for the well-posedness of the asymptotic stabilization problem of the equilibrium point
(~ep, ~ev) = (0, 0) of System (6.15), since the control input ω at the equilibrium, i.e. ω =
θ̇e(t), must be defined for any t.

The fact that the continuity of the reference velocity does not in general imply the
continuity of the equilibrium orientation θe(t) is visually clear from Figure 7.3 when con-
sidering transition maneuvers between hovering and high-velocity cruising. For example,
consider the transition from hovering to high-velocity cruising with a continuous reference
velocity of the form

ẋr(t) = νt(0, 1)T , (7.34)

with ν a (small) positive number. On the time interval t ∈ (0, t1) (see Figure 7.3a), one has
αe ≈ 90◦ because the horizontal reference velocity is of low intensity (the thrust opposes
the weight). As time goes by, the intensity of the reference velocity increases, and this
in turn implies smaller values of the angle of attack at the equilibrium configuration. At
t = t, the equilibrium attitude αe(t) instantaneously goes from 19◦ to 12◦, thus making
the equilibrium orientations θe(t) discontinuous. Such discontinuities destroy the well-
posedness of the asymptotic stabilization problem related to the transition maneuver
given by (7.34). Consequently, this reference velocity cannot be perfectly tracked by any
aircraft whose aerodynamic characteristics are similar to those shown in Figure 7.1b.
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7.4.2 Other flight directions

Assume that the reference velocity ẋr is constant and different from zero so that it
can be written as

ẋr = ν
(

cos(γr), sin(γr)
)T
, (7.35)

with ν ∈ R+ and γr ∈ S1 two constant values. Then, the equilibrium condition (7.24)
combined with (7.35) yields

aν

[
cD(αe) sin(γr) − cL(αe) cos(γr)

]
cos(αe + γr) +[

1 − aν(cL(αe) sin(γr) + cD(αe) cos(γr))
]

sin(αe + γr) = 0, (7.36)

where the dimensionless positive constant aν is still given by Eq. (7.28) (i.e. aν = kaν2

mg
).

By analogy with the case of steady-horizontal flight, from Eq. (7.36) we derive the
expression of aν = aν(αe, γr) to obtain a picture of the equilibrium angles αe, i.e.

aν(αe, γr) = sin(γr) cot(αe) + cos(γr)
c(αe)

, (7.37)

with c(αe) given by

c(αe) = cD(αe) + cL(αe) cot(αe). (7.38)

To depict also a picture of the thrust intensity at the equilibrium point ẋ ≡ ẋr, from
Eq. (7.25) we derive the thrust-to-weight ratio TW at the reference velocity, i.e.

TW := Te

mg
= aν [cD(αe) cos(αe) − cL(αe) sin(αe)] − cos(αe + γr).

Since aν at the equilibrium ẋ ≡ ẋr satisfies Eq. (7.37), substituting (7.37) in the above
expression of TW yields

TW (αe, γr) = cD(αe) sin(γr) − cL(αe) cos(γr)
sin(αe)c(αe)

. (7.39)

By using the experimental aerodynamic characteristics shown in Figures 7.1b, Figure 7.4
depicts the curves aν(αe, γr) and TW (αe, γr) for different values of the reference angle γr.
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To illustrate how we can use Figure 7.4, focus on the case γr = 45◦ and fix the parameter
aν = 0.4 (Figure 7.4c). Now, follow the vertical, dotted line drawn at aν = 0.4. Then, the
equilibrium angle αe is given by the intersection between this vertical line and the blue
curve (i.e. the curve corresponding to γr = 45◦), namely αe ≈ 89◦. In turn, the vehicle’s
orientation at the equilibrium is given by Eq. (7.23), i.e.

θe = αe + γr − π ≈ −46◦.

To derive also the thrust-to-weight ratio at this equilibrium, follow the dotted, horizontal
line drawn at αe1 ≈ 89◦. Then, the thrust-to-weight ratio at the equilibrium is given by
the intersection between this horizontal line and the blue curve in Figure 7.4d, namely
TW1 ≈ 0.66◦. The dashed (colored) lines in Figure 7.4c represent the equilibrium
configurations requiring a negative thrust.

Observe that bifurcations of the equilibrium angle αe occur not only in horizontal
flight (γr = 90◦), but also for other flight directions. Note for example the case of γr = 5◦,
which is associated with multiple equilibria even at relatively small velocities (aν ≈ 0.45).
As a consequence, there may exist discontinuous equilibrium orientations associated with
generic continuous reference velocities.

Let us finally observe that when the aerodynamic coefficients are given by either (7.14)
or (7.16), the coefficient c in Eq. (7.38) is constant and given by either c = c0 + 2c1 or
c = c0 + c2, respectively – see Proposition 7.2 with δ = 0. This allows us to calculate
the equilibrium angle of attacks on the domains where the models (7.14) and (7.16)
are representative of the experimental data, i.e. on large and small angles of attack,
respectively. More specifically, assume that c is constant. Then, Eq. (7.37) points out
that the equilibrium angle αe is given by

αe = atan
(

sin(γr)
aνc− cos(γr)

)
. (7.40)
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Now, assume that the aerodynamic coefficients are given by (7.16) – recall this model is
representative of the experimental data on small angles of attack – so that c = c0 + c2.
Therefore, if αe resulting from Eq. (7.40) is small, it is an estimate of the real angle of
attack at the equilibrium configuration.

7.5 Local uniqueness of equilibrium orientations

An equilibrium orientation is locally unique, or isolated, when there are no other equi-
libria in its (infinitesimally small) neighborhood. For instance, let us focus on Figure 7.4a
and assume that aν = 1.4 and γr = 90◦. Then, each of the three equilibria is isolated.
The local uniqueness of an equilibrium orientation is intimately related to the equilibrium
equation (6.19b), which writes in terms of vectors of coordinates in the inertial frame:

eT
2R

T (θ)F (ẋr(t), θ, t)
∣∣∣
θ=θe(t)

= 0, (7.41)

where F = mge1 + Fa −mẍr. Assume that F is continuously differentiable. If

∂θ

[
eT

2R
T (θ)F (ẋr(t), θ, t)

]∣∣∣
θ=θe(t)

6= 0, (7.42)

then the implicit function theorem ensures the existence of a unique differentiable func-
tion θ = φ(t) satisfying (7.41) when t belongs to a neighborhood It of t and such that
θe(t) = φ(t), i.e.

eT
2R

T (φ(t))F (ẋr(t), φ(t)) = 0, ∀t ∈ It, θe(t) = φ(t). (7.43)

Hence, the condition (7.42) ensures that the equilibrium orientation θe(t) is isolated and
differentiable at the time instant t.

The possibility of satisfying the condition (7.42) is intimately related to the depen-
dencies of the aerodynamic force Fa upon the orientation θ via the angle of attack α
– see Eq. (6.6). For example, assume that the aerodynamic force is reduced to its drag
component, – i.e. spherical shape cL(α) ≡ 0 and cD(α) ≡ c0 – so that the apparent
external force F does not depend on the vehicle’s orientation θ. Then, one easily verifies
that the condition (7.42) is satisfied if and only if the apparent external force along the
reference velocity is different from zero at the time t, namely

|F (ẋr(t), t)| > 0.

When |F (ẋr(t), t)| = 0, the equilibrium orientation is not locally isolated since any orien-
tation of the vehicle satisfies Eq. (7.41) (see Section 7.1 for more details on the equilibria
analysis in the case of a spherical shape). However, as soon as we consider the depen-
dencies of the aerodynamic force upon the vehicle’s orientation, the apparent external
force F being different from zero is no longer sufficient for θe(t) to be isolated4. Let us
consider another example. When the aerodynamic force depends upon θ but satisfies the
condition (7.9) (see Proposition 7.1), then the condition (7.42) becomes

∂θ

[
eT

2R
T (θ)Fp(ẋr(t), t)

]∣∣∣
θ=θe(t)

6= 0,

4For example, assume that F = Re1. Then, |F | = 1 (nonzero external force), but the equilibrium
orientation is not isolated since any orientation satisfies (7.41).
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with ~Fp = (~ı0, ~0)Fp given by (7.13) and independent of θ. Hence, the vector Fp plays the
same role of the external apparent force F in the spherical case, namely, the vector Fp

being different from zero ensures that the equilibrium orientation is isolated and differ-
entiable at the time instant t. However, when the aerodynamic force does not satisfy the
condition (7.9), the condition Fp(ẋr, t)6=0 no longer ensures these proprieties of θe(t).

The next theorem shows that there exists a change of the thrust control input T → Tp

such that the dynamics of the velocity errors can be written as

m~̇ev = ~Fp − Tp~ı, (7.44)

and such that the strict positivity of |~Fp| at the equilibrium point, i.e.

|~Fp(~vr(t), θe(t), t)| > δ, δ ∈ R+, (7.45)

implies that the equilibrium orientation θe(t) is isolated and differentiable at the time t.
Furthermore, other properties of the vector ~Fp are pointed out in the next result.

Theorem 7.3. Assume that the resultant of the aerodynamic force is given by (6.17) and
that the aerodynamic coefficients are twice-differentiable functions.
The body’s dynamic equation (6.1a) may be rewritten as

m~a = m~g + ~fp − Tp~ı, (7.46)

where the equivalent aerodynamic force ~fp and thrust intensity Tp are given by:

~fp = ka|~va|
[
cLp(α)~v⊥

a − cDp(α)~va

]
, (7.47a)

Tp = T + ka|~va|2[c′
L(α) cos(α+ δ) + c′

D(α) sin(α+ δ)], (7.47b)

with {
cLp(α) = cL(α) − [c′

L(α) cos(α+ δ) + c′
D(α) sin(α+ δ)] sin(α+ δ)

cDp(α) = cD(α) + [c′
L(α) cos(α+ δ) + c′

D(α) sin(α+ δ)] cos(α+ δ).
(7.48)

Then, the dynamics of the velocity error is given by Eqs. (7.44) with

~Fp := m~g + ka|~va|
[
cLp(α)~v⊥

a − cDp(α)~va

]
−m~ar, (7.49)

and the following results hold.

1) If the condition (7.45) is satisfied, then the equilibrium orientation θe(t) is isolated
and differentiable at the time t.

2) If the condition (7.45) is satisfied, then the direction of the vector ~Fp is almost
constant w.r.t. θ close to the equilibrium configuration, i.e.

∂θ

 ~Fp

|~Fp|

 ∣∣∣∣∣∣
(~ev ,θ)=(0,θe)

= 0. (7.50)

3) If the aerodynamic coefficients satisfy the condition (7.9), then ~fp given by (7.47a)
is independent of θ and coincides with the vector given by (7.11a).
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Figure 7.5: An aircraft under small perturbations from an equilibrium configuration.

The proof is given in Appendix A.7. The above theorem points out that if the vector ~Fp

is different from zero at the equilibrium configuration, then the associated equilibrium
orientation is isolated and differentiable at the time t, independently from the aerodynamic
force acting on the vehicle. Hence, the vector ~Fp plays the same role of the external
apparent force ~F in the spherical case. Another result pointed out in Theorem 7.3 is that
in a neighborhood of the equilibrium point (~ev, θ) = (0, θe), the direction of the vector ~Fp

is almost constant w.r.t. the vehicle’s orientation. In fact, the variable change Tp in
Theorem 7.3 has its origin in the process of imposing this property of ~Fp, which will allow
us to find local stabilizers for System (7.44) in the next chapter.

To provide the reader with an insight into the genesis of the variable change Tp, focus
on Figure 7.5. Figure 7.5a shows the body at an equilibrium configuration, so the thrust
force ~T opposes the apparent external force ~F . Since this force depends upon θ, any
perturbation dθ of the thrust direction modifies the apparent external force ~F . Now, the
perturbed force ~F (θe + dθ) shown in Figure 7.5b is not aligned with the thrust direction
since the vehicle is not in an equilibrium configuration. Then, ~F (θe + dθ) can be decom-
posed into two components (see Figure 7.5b): a force along the thrust direction at the
equilibrium configuration, i.e. the green vector, and a force along ~(θe), i.e. the red vector.
Since we can modify the thrust intensity at will, we can compensate for the red vector
by adding to the thrust intensity the term ∆T shown in Figure 7.5b. Consequently, the
vector resulting from

~F (θe + dθ) − ∆T~ı(θe + dθ)

is along the direction of ~F (θe). One can verify that ∆T corresponds to the second term
on the right hand side of Eq. (7.47b).

Finally, note that Theorem 7.3 includes Proposition 7.1 since the vector ~fp given
by (7.47a) is independent of the vehicle’s orientation when the aerodynamic coefficients
satisfy the condition (7.9).
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7.6 Static stability of a reference velocity

Suppose that an aircraft is flying at a constant reference velocity and a small gust,
which rapidly vanishes, perturbs the equilibrium of the system. If the aircraft’s velocity
tends to return to the original value with the control inputs kept at the equilibrium values,
then that configuration is called statically stable. In our case, the control inputs are the
thrust intensity and the angular velocity, so keeping the inputs at the equilibrium values
means fixing the vehicle’s thrust and orientation. The stability characteristics of the
perturbed velocities can be deduced by analyzing the linearization of System (6.15b), i.e.

m~̇ev = ~F − T~ı (7.51)

at the equilibrium point ~ev = 0 with (T, θ) ≡ (Te(t), θe(t)). Although the practical interest
of this analysis is arguable5, it is interesting as it highlights some consequences of the stall
phenomena at the control level. The next lemma states a static stability criterion in the
case of no wind and constant reference velocity.

Lemma 7.6. Assume no wind and a constant reference velocity ẋr = ν(cos(γr), sin(γr))T ,
with ν ∈ R+ and γr ∈ S1. Let αe be an equilibrium angle of attack at the reference velocity
and assume that the vehicle’s orientation is kept at θe = αe + γr + δ − π. Define:

p(α) := 3cD + c′
L, (7.52a)

q(α) := c2
D + c2

L + cDc
′
L − c′

DcL. (7.52b)

1) If either one of the following two conditions is satisfied

p(αe)q(αe) < 0, (7.53a)
p(αe) < 0 and q(αe) < 0, (7.53b)

then the reference velocity ẋr is locally unstable.

2) If both p(·) and q(·) are positive at the equilibrium angle αe, i.e.

p(αe) > 0 and q(αe) > 0, (7.54)

then the reference velocity ẋr is locally asymptotically stable.

The proof is given in Appendix A.8. Prior to applying this lemma, we need to deter-
mine the equilibrium angle(s) of attack αe at the reference velocity ẋr. To this purpose, we
can either calculate numerical solutions to the equilibrium equation (7.24) or use diagrams
alike Figure 7.6 for which δ = 0. For example, if we choose a reference velocity ẋr such
that (aν , γr) = (1.4, 90◦) (recall that aν = ka|ẋr|2

mg
), then Figure 7.6a points out that the

system has three equilibrium angles of attack: αe1 = 8.8◦, αe2 = 15.4◦ and αe3 = 20.6◦.
By applying6 Lemma 7.6 with these angles, we deduce that if the vehicle’s orientation is
kept at

θe2 = αe2 + γr − π = −74.6◦,

5The static stability of a vehicle is strongly related to its angular dynamics, here neglected.
6We apply Lemma 7.6 by using the aerodynamic coefficients shown in Figure 7.1b, which are those used
to depict the Figures 7.6.
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Figure 7.6: Static unstable regions of NACA airfoil 0021 with (Re,M) ≈ (160 · 103, 0.3).

then the reference velocity is unstable. However, this result was expected. In fact, the
likelihood of satisfying the condition (7.53) – which implies the instability of the associated
reference velocity – increases when αe belongs to the stall region because cL > 0, c′

L � 0
and c′

D � 0 in this domain. In contrast, for either small or large equilibrium angles of
attack (on [0, 90◦]), the condition (7.54) holds in most cases because: i) the lift coefficient
is positive for small (positive) angles of attack; ii) cL(α)/cD(α) is small for large α; iii) the
aerodynamic characteristics are smooth in these two domains. Therefore, in most practical
cases, the reference velocity is statically unstable when the associated equilibrium angle
of attack belongs to the stall region, and statically stable otherwise. As a matter of
fact, one verifies that the modeling functions given by either (7.16) or (7.14) – which are
representative of the experimental aerodynamic characteristics of several NACA profiles
for small and large angles of attack – satisfy the condition (7.54) for many values of the
coefficients (c0, c1, c2, c3).

Applying Lemma 7.6 with the aerodynamic characteristics shown in Figure 7.1b yields
the statically unstable/stable regions depicted in Figure 7.6. The statically asymptotically
stable reference velocities are those such that the equilibrium angles αe belong to the white
regions, as in the case of Figure 7.4c with (aν , γr) = (0.4, 85◦). Let us remark that on the
borders between the white and red regions, Lemma 7.6 fails to determine the stability
characteristics of ẋe because the matrix associated with the linearization of System (7.51)
at ~ev = 0 has an eigenvalue with zero real part. The analysis of these cases – e.g. via the
application of the Center Manifold Theorem (Khalil, 2003, p. 303) – is beyond the scope
of the present thesis, all the more so because it is very sensitive to the modelling of the
aerodynamic coefficients in the chaotic stall region.
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Figure 7.7: An airfoil at given (TWS
, θS) having two equilibrium velocities ~ve1 , ~ve2 .

7.7 Equilibrium velocities for fixed thrust intensity and orientation

So far, given a reference velocity ~vr, much effort was put to characterize the vehicle’s
orientation and thrust intensity at the equilibrium configuration ~v ≡ ~vr. In this section,
instead, given a thrust intensity and a vehicle’s orientation, we analyze the equilibrium
velocities ~ve. Although this analysis is reminiscent of the one performed in the previous
sections, it provides practical insights and consequences of the stall phenomena. For
instance, consider a cruising airliner subjected, at some point, to a wind gust that perturbs
the equilibrium of the system and makes the aircraft stall (i.e. the angle of attack grows
beyond the stall angle). Then, in most practical cases the airplane starts losing altitude
because of the reduced lift force. Among the stall recovery procedures aimed at recovering
altitude, the pilot may choose to stabilize the airplane’s orientation about a fixed value
– the same as for take-off, for example – and increase the thrust intensity up to a large
value. Let θS and TWS

denote the vehicle’s orientation and thrust-to-weight ratio chosen
and stabilized by the pilot. If there exists a stable equilibrium velocity causing loss of
altitude – such as ~ve2 in Figure 7.7 – then this stall recovery procedure is ineffective if the
aircraft’s velocity belongs to region of attraction of the stable equilibrium velocity, and
the pilot keeps the same vehicle’s orientation and thrust intensity. We show below that
these stable velocities occur for relatively large values of the thrust-to-weight ratio.

For the sake of simplicity, assume that no wind is blowing. Let the equilibrium velocity
~ve = (~ı0, ~0)ẋe be in the form

ẋe = νe(cos(γe), sin(γe))T ,

so that, when −90◦ ≤ γe < 90◦, the equilibrium velocity yields a loss-of-altitude.
By evaluating the equilibrium conditions (6.19) at (T, θ, ~vr,~ar, ~vw)≡(mgTWS

, θS, ~ve, 0, 0)
and by expressing them in the inertial frame basis, one can verify that

TWS
= cL(αS) cos(γe) − cD(αS) sin(γe)
cD(αS) sin(θS − γe) + cL(αS) cos(θS − γe)

, (7.55a)

aνe = sin(θS)
cD(αS) sin(θS − γe) + cL(αS) cos(θS − γe)

, (7.55b)

where
αS = αS(γe) = θS − γe + (π − δ),
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and the dimensionless parameter aνe given by

aνe = kaν
2
e

mg
,

so that the equilibrium velocity magnitude νe is given by

νe =
√
mgaνe

ka

. (7.56)

By using the experimental aerodynamic characteristics shown in red in Figure 7.2b,
Figure 7.8 depicts the functions TWS

and aνe versus γe with the vehicle’s orientation
θS = −80◦, and with δ = 0◦. To illustrate how we can use these curves, let us focus on
Figure 7.8a and fix TWS

= 0.2 (the pilot sets a thrust corresponding to the 20% of the
vehicle’s weight), and let us draw a horizontal line at this value. Then, the directions of
the equilibrium velocity are given by the intersections between this virtual line and the
green curve, namely γe1 ≈ 59◦, γe2 ≈ 71◦ and γe3 ≈ 98◦. By projecting the angles
γe vertically until Figure 7.8b, we also find out the value aνe corresponding to each γe,
and thus the magnitude of the equilibrium velocity νe via Eq. (7.56). Hence, any airplane
whose aerodynamic coefficients are similar to those shown in Figure 7.2b (red curves) has
three equilibrium velocities when the thrust-to-weight ratio is set at TWS

= 0.2, and the
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vehicle’s orientation is kept at θS = −80◦. Observe that if the aircraft’s velocity is close
to the equilibrium velocities γe1 ≈ 59◦ or γe2 ≈ 71◦, the vehicle’s altitude decreases.

The stability characteristics of the equilibrium velocities at given vehicle’s thrust and
orientation can be deduced by applying Lemma 7.6 with the reference velocity ẋr replaced
by the equilibrium velocity ẋe and with

αe = θS − γe + (π − δ). (7.57)

For example, the aforementioned case (TWS
, θS, δ)=(0.2,−80◦, 0◦) yields three equilibrium

velocity directions γe, each of which is associated with a different equilibrium angle of
attack, given by (7.57), to be used in Lemma 7.6. However, once the portrait of the
function TWS

is drawn, we can immediately identify the unstable equilibrium velocities.
In fact, by direct calculations one verifies that

sign(q(αe)) = sign(∂γeTWS
), θS ∈ (−180◦, 0), (7.58)

where q(α) and TWS
are given by Eqs (7.52b) and (7.55a), respectively.

Now, by drawing the function TWS
versus γe at fixed θS ∈ (−180◦, 0), the domain(s) of

γe in which TWS
is strictly decreasing represent the unstable equilibrium velocities – see

Lemma 7.6 and Eq. (7.58). For example, from Figure 7.8a we see that whatever the value
of

TWS
∈ [0, 0.24],

the equilibrium velocity directions

γe ∈ (68◦, 79◦)

are locally unstable since TWS
decreases in this domain. In contrast, the domain(s) in

which TWS
is strictly increasing versus γe imply a positive q . Consequently, in view of

Lemma 7.6, these domain(s) represent stable equilibrium velocities if

p(αe) = 3cD(αe) + c′
L(αe) > 0.

Let us remark that in most practical cases, p(αe) is positive everywhere except in the
stall region, where the function TWS

is usually decreasing. Hence, a rough estimation of
the stable equilibrium velocities is given by the domain(s) on which the function TWS

,
with θS ∈ (−180◦, 0), is strictly increasing. Figure 7.8a shows that when the pilot sets a
thrust-to-weight ratio greater than

TWsafety
= 0.24,

there exists a unique (usually stable) equilibrium velocity associated with a climbing
phase (γe > 90◦). Then, there exists a threshold of the thrust intensity above which the
vehicle’s altitude is expected to increase. However, because of thrust limitations, this
safety threshold may not be reached. The safety threshold gets larger when the angle δ
is negative (see Figure 7.9), as in the case of most airliners where small, negative values
of δ allow the airplane’s fuselage in cruise flight to be (almost) horizontal.
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In this chapter, we design and validate a Lyapunov-based control approach for the
asymptotic stabilization of either reference positions ~pr or reference velocities ~vr. This
approach is based on the equilibria analysis presented in Chapter 7, especially Section 7.5.
The chapter is composed of five sections. Section 8.1 discusses the control problem, the
main assumptions made in this chapter, and the key idea behind the proposed solutions.
Sections 8.2 and 8.3 present the velocity and position controls, respectively. Since these
controls make use of terms that may be undefined in some regions of the state space,
Section 8.4 presents control expressions that are defined everywhere. Section 8.5 presents
simulations results.

8.1 Main assumptions and problem statement

The dynamics of the tracking errors associated with the asymptotic stabilization prob-
lem are given by Eqs. (6.15), namely

~̇ep = ~ev, (8.1a)
m~̇ev = ~F − T~ı, (8.1b)
θ̇ = ω, (8.1c)

with

~F = m~g + ~Fa −m~ar, (8.2a)
~Fa = ka|~va|

[
cL(α)~v⊥

a − cD(α)~va

]
, (8.2b)

~v⊥
a = va1~− va2~ı, and either ~ep :=

∫ t
0 [~v(s) − ~vr(s)] ds, the integral of the velocity error, or

~ep := ~p − ~pr, the position tracking error when a reference trajectory is specified. Recall
that the vector ~ev is the velocity error defined by ~ev := ~v − ~vr.

Equation (8.1b) points out the role of the external apparent force ~F in obtaining the
dynamics of the velocity error ~ev. It shows, for instance, that the controlled thrust vector
T~ı must oppose the apparent external force ~F at the equilibrium point ~ev ≡ 0. When
the aerodynamic force ~Fa does not depend on the vehicle’s orientation – as in the case of
spherical shapes, see Section 7.1 – neither does the apparent external force ~F . The control
strategy then basically consists in aligning the thrust direction ~ı with the direction of ~F
(orientation control via ω) and in opposing the thrust magnitude to the intensity of ~F
(thrust control via T ). However, lift and drag forces that depend on the vehicle orientation
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may significantly complexify this strategy. As discussed in Chapter 7, the dependencies
of the apparent external force ~F upon the orientation make the existence, the uniqueness
and the continuity of the vehicle’s equilibrium no longer guaranteed a priori, and the
stabilization of such an equilibrium can be very sensitive to thrust orientation variations.
Hence, the way of aligning the thrust ~T and the apparent external force ~F is far from
obvious when this force depends upon the vehicle’s orientation.

Now, Theorem 7.3 (Section 7.5) points out the existence of a change of thrust control
T → Tp yielding the tracking errors dynamics in the form

~̇ep = ~ev, (8.3a)
m~̇ev = ~Fp − Tp~ı, (8.3b)
θ̇ = ω, (8.3c)

where the direction of ~Fp is almost constant close to the vehicle’s equilibrium configu-
ration (~ev, θ) = (0, θe) . A local control strategy then basically consists in aligning the
thrust direction ~ı with the direction of ~Fp (orientation control via ω) and in opposing
the magnitude Tp to the intensity of ~Fp (thrust control via T ). Based on this idea,
this chapter proposes nonlinear control laws to achieve asymptotic stabilizations of either
reference positions or reference velocities. To avoid non essential complications, we make
the following assumptions on the vehicle’s shape and thrust.

Assumption 3.
a) The vehicle’s shape is symmetric – see Section 6.2.1.
b) The thrust force ~T is parallel to the zero-lift direction ~zL so that δ = 0.
c) The aerodynamic coefficients cL(α) and cD(α) are twice differentiable functions,

and their derivatives are bounded ∀α ∈ S1.

From Theorem 7.3 with Assumption 3b, one verifies that the vector ~Fp and the thrust
intensity Tp yielding the tracking errors dynamics in the form (8.3) are given by:

~Fp = m~g + ~fp −m~ar, (8.4)

Tp = T + ka|~va|2
[
c′(α) sin(α) + cL(α)

sin(α)

]
, (8.5)

with

~fp = ka|~va|
[
cLp(α)~v⊥

a − cDp(α)~va

]
, (8.6){

cLp(α) = −c′(α) sin2(α),
cDp(α) = c(α) + 0.5c′ sin(2α),

(8.7)

c(α) = cD(α) + cL(α) cot(α). (8.8)

Let us now remark an important fact. In light of Eq. (8.7) and according1 to Proposi-
tion 7.1, if the aerodynamic coefficients satisfy the following condition

c = cD(α) + cL(α) cot(α), (8.9)
1When δ = 0, the constant cL in the condition (7.9) is zero; in the contrary case, the equivalent drag cD

would not be defined at α = 0 since cL(α) = 0.
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with c a constant number, then ~Fp in (8.3b) is independent of the vehicle’s orientation θ.
For instance (see Propositions 7.1 and 7.2 with δ = 0), the aerodynamic coefficients given
by either (7.14), i.e. {

cD(α) = c0 + 2c1 sin2(α)
cL(α) = c1 sin(2α),

(8.10)

or (7.16), i.e. 
cL(α) = 0.5c2

2
(c2 − c3) cos2(α) + c3

sin(2α)

cD(α) = c0 + c2c3

(c2 − c3) cos2(α) + c3
sin2(α),

(8.11)

satisfy (8.9) with a constant c, and the corresponding coefficients cLp and cDp are given
by either {

cLp ≡ 0
cDp ≡ c = c0 + 2c1,

(8.12)

or {
cLp ≡ 0
cDp ≡ c = c0 + c2,

(8.13)

respectively. Once the error dynamics (8.1b) is transformed into the form (8.3b) with ~Fp

independent of the vehicle’s orientation, the control design can be addressed by adapting
the methods developed for the class of systems subjected to an orientation-independent
external force. For example, the control solution presented in (Hua et al., 2009a) provides
globally stabilizing controllers for either a reference velocity ~vr or a reference trajectory ~pr.
However, when the aerodynamic coefficients do not yield a constant c, the control of sys-
tem (8.3) is no longer systematic. The following sections basically extend and encompass
the control approach (Hua et al., 2009a) by loosening the assumption that the apparent
external force does not depend on the vehicle’s orientation.

8.1.1 Equilibria of interest

The transformed system dynamics (8.3b) points out that ~ev ≡ 0 implies

Tp = ~Fp(~vr, θe, t) ·~ı(θe), (8.14a)
0 ≡ ~Fp(~vr, θe, t) · ~(θe), ∀t. (8.14b)

Let θ̃ ∈ (−π, π] denote the angle between~ı and ~Fp. The control objective is then equivalent
to the asymptotic stabilization of either θ̃=0 or θ̃ = π, depending on the equilibrium ori-
entation θe. These two equilibria correspond to either Tp=|~Fp| or Tp=−|~Fp|, respectively.
However, we derive control laws stabilizing (Tp, θ̃) = (|~Fp|, 0) only. Let us justify this
choice. First, in view of (8.8), observe that the term between square braces in the right
hand side of Eq. (8.5) can be written as

c′(α) sin(α) + cL(α)
sin(α)

= c′
L(α) cos(α) + c′

D(α) sin(α),

which is usually positive on either small or large angles of attack. Then, in most practical
cases (see Eq. (8.5)), one has a positive Tp and θ̃ = 0 along reference trajectories requiring
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Figure 8.1: Function w(·) in steady-horizontal flight and aerodynamic characteristics.

either small or large angles of attack and a positive thrust intensity. Besides, one can
verify that the aerodynamic coefficients given by either (8.10) or (8.11) yield a positive
Tp when T > 0 and α ∈ (−90◦, 90◦). Nevertheless, to provide the reader with a better
comprehension of the reasons behind the choice of stabilizing (Tp, θ̃) = (|~Fp|, 0) only, let
us analyze the properties of the equilibrium orientations yielding (Tp, θ̃) = (−|~Fp|, π).

First, note that since Eqs. (8.1b) and (8.3b) coincide, then the vector ~Fp and ~F satisfy
~Fp · ~ ≡ ~F · ~.

Consequently, seeking for the equilibrium orientations such that (8.14b) holds is equivalent
to searching for the zeros of the following function

w(θ) := − 1
mg

F T (ẋr(t), θ, t)R(θ)e2, (8.15)

where ~F = (~ı0, ~0)F , and ~vr = (~ı0, ~0)ẋr. Now, from Eqs. (8.2a), (8.5), and (8.15), one
verifies that at the equilibrium point ~ev = (~ı0, ~0) ˙̃x = (~ı0, ~0)(ẋ− ẋr) ≡ 0 one has

Tp|~ev≡0 = mg∂θw(θe). (8.16)

Therefore, θ̃ = 0 and θ̃ = π correspond to the derivative of the function w(·) being either
positive or negative at the equilibrium orientation θe, i.e. w(θe) = 0.

Figure 8.1a depicts typical trends of the function w(·) for steady-horizontal flight,
i.e. ẋr = ν(0, 1)T and |ẋw| ≡ 0, where we have used the aerodynamic characteristics
shown in Figure 8.1b – recall that aν = kaν2

mg
. From Figure 8.1a it is visually evident

that the equilibrium angles at which the function w(·) crosses zero are associated with
a positive derivative w.r.t. θ (recall that ∂θw = ∂αw) except for the equilibria occurring
in a neighborhood of the stall region. Then, for the case shown in Figure 8.1, stabilizing
θ̃ = 0 ensures that the equilibrium angle of attack does not belong to the stall region.

However, simulations that we have performed point out that large-constant reference
velocities representing a descending phase may be associated with ∂θw > 0, and conse-
quently θ̃ = 0, but a negative thrust intensity. Hence, to comply with the additional
constraint T > 0, one must stabilize θ̃ = π in these cases. Although this kind of reference
velocities are not frequently used in practice, we remark that the choice of stabilizing either
θ̃ = 0 or θ̃ = π requires in general close attention, since stabilizing the former equilibrium
does not always ensure a positive thrust at the equilibrium configuration ~ev ≡ 0.



91 Control design

8.1.2 Well-posedeness of the control problem

Let us now make the following complementary assumption.

Assumption 4. The reference velocity ~vr(t) ensures the existence of a continuous equi-
librium orientation θe(t) such that

|~Fp(~vr(t), θe(t), t)| > η, ∀t∈ R+, η ∈ R+. (8.17)

Under the Assumptions 3 and 4, the asymptotic stabilization problem associated with
the dynamics (8.1) is well-posed. In particular, because of Theorem 7.1, Assumption 3
ensures the existence of an equilibrium orientation for any reference velocity. Assump-
tion 4 supposes that the reference trajectory is associated with a continuous equilibrium
orientation (see Section 7.4.1) so that no jump of the equilibrium can occur; in addition,
since the condition (8.17) holds, it also ensures that the equilibrium orientation is differ-
entiable (see Section 7.5), so the angular velocity along the reference velocity is defined
for any time t. To avoid non-essential complications, we make the following assumption.

Assumption 5. The wind velocity ~vw and the reference velocity ~vr are bounded in norm
on R+, and their first and second order derivatives are defined and bounded on this set.

8.2 Velocity control

This section proposes a solution to the asymptotic stabilization of a reference velocity
~vr = (~ı0, ~0)ẋr. The control result is stated next.

Proposition 8.1. Assume that Assumptions 3, 4, and 5 are satisfied. Let ki > 0,
i = {1, 2, 3} and apply the control

T = F 1 + k1|Fp|ṽ1, (8.18a)

ω = k

k2|Fp|ṽ2 + k3|Fp|F p2

(|Fp| + F p1)2 −
F

T
p SR

TFδ

|Fp|2

 , (8.18b)

to System (8.1b)-(8.1c) with F p = RTFp, F = RTF ,
F = mge1 + Fa −mẍr, (8.19a)
Fp = mge1 + fp −mẍr, (8.19b)
Fδ := ∂ẋafpẍa − ∂αfpγ̇ −m

...
x r(t), (8.19c)

Fa(ẋa, α) = ka|ẋa|[cL(α)S − cD(α)I]ẋa, (8.20a)
fp(ẋa, α) = ka|ẋa|[cLp(α)S + cDp(α)]ẋa, (8.20b)

and k given by:
k = k(ẋa, θ) :=

(
1 + ka|ẋa|2F 2

sin(α)c′′ + 2 cos(α)c′

|Fp|2

)−1

. (8.21)

with c as (8.8). Then,

1) the control laws (8.18) are well defined in a neighborhood of the reference velocity;

2) (~ev, θ̃)=(0, 0) is a locally asymptotically stable equilibrium point of (8.1b)-(8.1c).
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The proof of this result is given in Appendix A.9. Let us remark an important fact. As
mentioned before, the expressions (8.7) point out that if c is constant, then the vector ~Fp

in (8.3) does not depend on the vehicle’s orientation. In this case, the control design for
System (8.3) can be addressed by adapting the method developed for the class of systems
subjected to an orientation-independent external force. For example, (Hua et al., 2009a)
proposes globally stabilizing controllers for this system. One can then verify that the
velocity control derived by the application of (Hua et al., 2009a) to System (8.3) – with
a constant c – coincides with that given by (8.18) with k ≡ 1 and c a constant number.
Then, the control laws (8.18) yield a large domain of attraction for the class of modeling
functions for which c is a constant. These facts are stated in the following proposition.

Proposition 8.2. If the aerodynamic coefficients satisfy the following condition

c = cD(α) + cL(α) cot(α), (8.22)

with c a constant number, then the control laws (8.18) coincide with the velocity control
proposed by (Hua et al., 2009a) when applied to system (8.1b)-(8.1c). Consequently, if

|Fp| > δ ∀t, δ > 0, (8.23)

and Assumptions 3, 4, and 5 hold, then the application of the controls (8.18) to Sys-
tem (8.1b)-(8.1c) renders (~ev, θ̃)=(0, 0) an asymptotically stable equilibrium point with
domain of attraction equal to R2 × (−π, π).

A consequence of the above proposition is that when the aerodynamic characteristics
are given by either (8.10) or (8.11) any reference velocity is semi-globally asymptotically
stable provided that the condition (8.23) is satisfied. This latter condition characterizes
the set of reference velocities for which the control is not defined. For example, among
constant reference velocities and no wind, one can verify that the unique reference velocity
implying |Fp| = 0 corresponds to a vertical fall at

√
mg/kac [m/s], a situation rarely met

in practice. The condition (8.23) is thus satisfied in most cases.
Now, if we assume that the aerodynamic characteristics are given by the model (6.13)

– i.e. a combination of the models (8.10) and (8.11), see Section 6.2 – then c is constant
and k ≡ 1 for either small or large angles of attack. In this case, the control laws (8.18) are
well-defined in these two regions independently of the closeness of the system’s trajectory
to the equilibrium point provided that |Fp| 6= 0 only.

Observe that the control laws (8.18) ensure the local asymptotic stability of any equi-
librium orientation θe yielding θ̃ = 0. If several equilibrium orientations exist associated
with θ̃ = 0, then the control (8.18) stabilizes each of these equilibria (Section 8.5.2).

In practice, the control law (8.18) must be complemented with integral correction
terms in order to deal with almost constant unmodeled additive perturbations. Define

Iv :=
∫ t

0
˙̃x(s) ds, (8.24)

and ˙̃x := Rṽ, the velocity error expressed in the inertial frame. Let h denote a smooth
bounded strictly positive function defined on [0,+∞) satisfying the following properties
for some positive constant numbers η, µ,

∀s ∈ R, |h(s2)s| < η, and 0 < ∂

∂s
(h(s2)s) < µ. (8.25)
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An example of such a function is,

h : s → h(s) = η√
1 + s

,

with η > 0. Then, a control result taking integral terms into account is stated next.

Proposition 8.3. Assume that Assumptions 3, 4, and 5 are satisfied. Apply the control
law (8.18) to System (8.1) with

F = mge1 + Fa −mẍr + h(|Iv|2)Iv, (8.26a)
Fp = mge1 + fp −mẍr + h(|Iv|2)Iv, (8.26b)
Fδ := ∂ẋafpẍa − ∂αfpγ̇ −m

...
x r(t) + d

dt
[h(|Iv|2)Iv], (8.26c)

Then, (Iv, ~ev, θ̃) = (0, 0, 0) is a locally asymptotically stable equilibrium point of Sys-
tem (8.1b)-(8.1c) augmented with the equation İv = Rṽ.

The proof is given in Appendix A.10. Analogously to the result presented in Proposi-
tion 8.2, one can show that the domain of attraction of the equilibrium point (Iv, ~ev, θ̃) =
(0, 0, 0) becomes R2 × R2 × (−π, π) when the aerodynamic coefficients and the vector Fp

given by (8.26b) satisfy conditions (8.22) and (8.23), respectively.
Observe that the properties (8.25) limit the influence of the term Iv in the control

actions. Then, the size of the constant η has to be chosen in relation to the size of the
modeling errors and of the unmodeled perturbation acting on the vehicle. On the other
hand, a small value for η may reduce the risk of driving |Fp| close to zero. Therefore, a
trade off has to be found depending on the considered case.

8.3 Position control

The control objective is now the combined stabilization of the position error ~ep and the
velocity error ~ev to zero. A solution to this problem is already given by Proposition 8.3
when setting I0 = x(0) − xr(0) in Eq. (8.24) so that Iv = x̃. However, this solution would
not take into account position integral correction terms, so we complement the control
action with terms of this kind. Let us recall that the classical integrator (i.e. ż = x̃)
presents several drawbacks. For instance, the integral term may grow very large and this,
in turn, would cause overshoots of the position tracking errors. To avoid this problem, and
also cope with actuator limitations, one must saturate the integral terms. The solution
presented here relies, in the first place, on the nonlinear integrator presented in (Hua
et al., 2009a, Sec. III.D), which prevents the so-called desaturation problem to occur and
the system’s time response to overly increase. More precisely, the nonlinear “bounded
integral” of the position error used to compensate for almost constant unmodeled additive
perturbations is defined as the solution to the following second-order system:

z̈ = −2kz ż − k2
z [z − sat∆(z)] + kzhz(|x̃|2)x̃, (8.27)
kz > 0, z(0) = 0, ż(0) = 0,

where hz is a smooth bounded strictly positive function defined on [0,+∞) satisfy-
ing (8.25) for some positive constant numbers ηz, βz, and sat∆ is the classical saturation
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function, i.e. sat∆(z) = zmin(1,∆/|z|). Let

y := x̃+ z, (8.28a)
v := ṽ +RT (θ)ż, (8.28b)

with h a smooth bounded positive function satisfying (8.25) for some positive constant
numbers η, β. Then, the control result is stated next.

Proposition 8.4. Assume that Assumptions 3, 4, and 5 are satisfied. Let ki > 0,
i = {1, 2, 3} and apply the control

T = F 1 + k1|Fp|v1, (8.29a)

ω = k

k2|Fp|v2 + k3|Fp|F p2

(|Fp| + F p1)2 −
F

T
p SR

TFδ

|Fp|2

 , (8.29b)

to System (8.1) with F p=RTFp, F = RTF ,

F = mge1 + Fa −mẍr + h(|y|2)y + z̈, (8.30a)
Fp = mge1 + fp −mẍr + h(|y|2)y + z̈, (8.30b)
Fδ = ∂ẋafpẍa − ∂αfpγ̇ −m

...
x r(t) + ...

z + d
dt

[h(|y|2)y], (8.30c)

Fa and fp given by (8.20), and k by:

k = k(ẋa, θ) :=
[
1 + ka|ẋa|2F 2

sin(α)c′′ + 2 cos(α)c′

|Fp|2

]−1

. (8.31)

Then,

1) the control laws (8.29) are well defined in a neighborhood of the reference trajectory,

2) (z, ż, ~ep, ~ev, θ̃) = (0, 0, 0, 0, 0) is a locally asymptotically stable equilibrium point of
System (8.1) complemented with System (8.27).

The proof is given in Appendix A.10. Analogously to the result in Proposition 8.2,
one can show that the domain of attraction of the equilibrium point (z, ż, ~ep, ~ev, θ̃) = 0
becomes R2 × R2 × (−π, π) when the conditions (8.22) and (8.23) are satisfied with Fp

given by (8.30b).
We remark that property (8.25) of the function h limit to the influence of the position

error in the control, and reduces the risk of saturating the actuators. Concerning the
constant kz in Eq. (8.27), it influences the desaturation rate of the variable z (via the
dynamics of z̈). Also, note that this parameter is proportional to the upper-bound of |z̈|,
so a large value of kz increases the range interval of Fp and, subsequently, modifies the
set in which Fp gets close to zero. Hence, the tuning of kz depends on the situation and
a trade off must be found.
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8.4 Control robustification

The control laws presented so far use terms that involve singularities for specific situ-
ations. To obtain control laws that are well-defined everywhere, we first set the nonlinear
coefficient k ≡ 1 so that we do not destroy the local stability property of the above control
laws (k ≈ 1 near the reference trajectory since F 2 ≈ 0). Secondly, we multiply the terms
1/(|Fp| + F p1)2 and 1/|Fp|2 by the function µτ ∈ C1 : [0,+∞) → [0, 1] defined by:

µτ (s) =
{

sin
(

πs2

2τ2

)
, if s ≤ τ

1, otherwise
(8.32)

with τ > 0. This yields the well-defined control expression given by

T = k1|Fp|ṽ1 + F 1, (8.33a)

ω = k2|Fp|ṽ2 + µτ (|Fp| + F p1) k3|Fp|F p2

(|Fp|+F p1)2 − µτ (|Fp|)
F

T

p SR
TFδ

|Fp|2
. (8.33b)

The property:
lim
s→0

µτ (s)
s2 = lim

s→0
sin

(
πs2

2τ2

)
s−2 = π

2τ2 ,

implies that the modified control is well-defined everywhere.

Remark 8.1. The control laws (8.18) and (8.29) make use of the feedforward term ẍa,
γ̇ that is not always available in practice. Simulations with wing models, however, have
shown that neglecting this term when its actual value is not too large does not much affect
the control performance, in the sense that ultimate tracking errors remain small.

8.5 Simulations

In this section, we illustrate through simulations the performance and robustness of
the proposed approach for the symmetric NACA 0021 airfoil model with the thrust force
parallel to the zero-lift-line, e.g. δ = 0. The system’s equations of motion are defined by
Eqs. (8.1) and the aerodynamic coefficients, shown in Figure 8.1b, are given by{

cL(α) = cLS
(α)σ(α, kL, α) + cLL

(α)[1 − σ(α, kL, α)],
cD(α) = cDS

(α)σ(α, kD, α) + cDL
(α)[1 − σ(α, kD, α)].

(8.34a)

with

σ(α, k, α) = 1 + tanh(kα2 − kα2)
1 + tanh(kα2)

, α ∈ [−π, π),


α = 11◦,

kL = 14,
kD = 41.8,{
cLL

(α) = c1 sin(2α),
cDL

(α) = c0 + 2c1 sin2(α),
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cLS

(α) = 0.5c2
2

(c2 − c3) cos2(α) + c3
sin(2α),

cDS
(α) = c0 + c2c3

(c2 − c3) cos2(α) + c3
sin2(α),


c0 = 0.0139,
c1 = 0.9430,
c2 = 5.4641,
c3 = 0.3151.

The other physical parameters are:

m = 10 [Kg],
ρ = 1.292

[
Kg/m3

]
,

Σ = 1 [m2].

ka = ρΣ
2

= 0.6460 [Kg/m] .

We here assume that the control objective is the asymptotic stabilization of a reference
velocity and we apply the control laws given by (8.18) in the modified form (8.33).

Other values are used for the calculation of the control laws in order to test the
robustness w.r.t. parametric errors. They are chosen as follows:

m̂ = 9 [Kg],
k̂a = 0.51 [Kg/m] ,

The term ẍa in Eq. (8.19c) is kept equal to zero, thus providing another element to test
the robustness of the controller. The parameters of the control laws are k1 = 0.1529,
k2 = 0.0234, k3 = 6, τ = 80.

8.5.1 From hovering to cruising flight with an unfeasible trajectory

The first chosen reference velocity represents a transition maneuver from hovering to
cruising flight in the form (7.34), so perfect tracking would involve jumps of the equilibrium
orientation. With a reference velocity of this kind we test our control approach when the
Assumption 4 is not satisfied. In particular, the reference velocity is given by:

ẋr(t) =
{

(0, 2t)T 0 ≤ t < 10,
(0, 20)T t ≥ 10.

(8.35)

It is then composed of: i) an horizontal velocity ramp on the time interval [0, 10) [sec];
ii) cruising with constant horizontal velocity of 20 [m/sec] for t ≥ 10 [sec]. The initial
velocity and attitude are ẋ(0) = [0, 0], and θ(0) = 0, respectively.

From top to bottom, Figure 8.2 depicts the evolution of the desired reference velocity,
the velocity errors, the angle of attack, the desired angular velocity, the thrust-to-weight
ratio, and the vehicle’s orientation. No wind is assumed.

At t = 0, the vehicle’s attitude is zero (vertical configuration), and the thrust tends to
oppose the body’s weight. However, because of modeling errors and a nonzero reference
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acceleration, the thrust-to-weight ratio is different from one. In the interval (0, 10) [sec],
the horizontal velocity of the vehicle increases, the angle of attack decreases, and the
vehicle’s orientation converges towards −90◦ (horizontal configuration). At t = 8, the
equilibria pattern of the system is approximately the one shown in Figure 7.3a with
t = 8. Hence, the equilibrium orientation is close to the discontinuity point. When t > 8
the equilibrium orientation jumps from one value to another one, thus creating abrupt
variations of the thrust intensity and of the (desired) angular velocity. Let us remark that
the control value just after the jump depends sensitively upon the constant τ . In fact, if
τ = 0 were chosen, the desired angular velocity would tend to infinity when the vehicle’s
orientation is close to both the discontinuity and the equilibrium orientation in the stall
region (θ̃ ≈ π ⇒ |Fp| +F p1 ≈ 0). The jump of the equilibrium orientation forbids perfect
tracking of the reference velocity, and one can observe that the velocity errors significantly
increase right after the discontinuity occurrence.

8.5.2Stabilization of different orientations depending on initial conditions

Recall that the aerodynamic coefficients used to simulate the airfoil’s aerodynamics
are shown in Figure 8.1b. Figure 8.1a points out that a steady-horizontal flight at aν = 1.5
can be performed with three different equilibrium orientations corresponding to

αe1 = 7.5◦, αe2 = 13◦, αe3 = 18◦.

Under the control laws (8.18), the equilibrium orientations associated with θ̃ = 0, namely

αe1 = 7.5◦, αe3 = 18◦,

are both locally asymptotically stable. Then, we expect that the equilibrium angle of
attack converges to either one of these two equilibria depending on its initial condition.
To show this, we assume that no wind is blowing, and that the reference velocity is of
the form ẋr = ν(0, 1) with ν = 15.0926 [m/sec] so that aν = 1.5. Figure 8.3 depicts
the results of two simulations performed with two different initial vehicle’s orientations
corresponding to α(0) = 9◦ and α(0) = 15◦ with ẋ(0) = [0, ν]. The fact that the system’s
trajectories converge to the closest equilibrium illustrates the possibility of ending up with
two different equilibrium angles of attack depending on its initial condition.
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9 Extension to 3-D symmetric aircraft

“Treat nature in terms of the cylinder, the sphere, the cone, all in perspective1.”

This chapter is dedicated to the modeling and control of symmetric aerial vehicles flying
in three-dimensional space.

After recalling some notation, the chapter is decided into four sections. Section 9.1 is
dedicated to the system modeling of aerial vehicles flying in three-dimensional space. Orig-
inal results concerning the modeling of aerodynamic forces acting on symmetric bodies
and the characterization of a family of models that allow one to recast the control problem
into the simpler case of a spherical body – i.e. the spherical equivalency – are reported in
section 9.2. Members of this family are singled out and tuned by using experimental data
borrowed from (Keyes, 1965) and (Saffel et al., 1971) for elliptic-shaped and missile-like
bodies. To illustrate the usefulness of these results at the control design level, Section 9.3
gives the adapted version of the velocity and position control schemes proposed in (Hua
et al., 2009a). Section 9.4 repeats a few simulation results.

~j0
~ı0

O

~k0

~

~ı

G

~k

~T

Figure 9.1: Generic three-dimensional flying body with a thrust force parallel to ~k
1Paul Cézanne (1890)
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The following notation is used throughout this chapter.
• The ith component of a vector x is denoted as xi.
• For the sake of conciseness, (x1~ı+ x2~+ x3~k) is written as (~ı,~,~k)x.
• S(·) is the skew-symmetric matrix-valued operator associated with the cross product

in R3, i.e. such that S(x)y = x× y, ∀(x, y) ∈ R3 × R3.
• {e1, e2, e3} is the canonical basis in R3.
• m is the mass of the vehicle, assumed to be constant, and Gm is the body’s center

of mass.
• I = {O;~ı0, ~0, ~k0} is a fixed inertial frame with respect to (w.r.t.) which the vehicle’s

absolute pose is measured, and B = {G;~ı,~,~k} is a frame attached to the body.
Observe that G and Gm may not coincide.

• The body’s linear velocity is denoted by ~v = d
dt
~OGm = (~ı0, ~0, ~k0)ẋ = (~ı,~,~k)v.

• The linear acceleration vector is ~a = d
dt
~v.

• The body’s angular velocity is ~ω = (~ı,~,~k)ω.
• The vehicle’s orientation w.r.t. the inertial frame is represented by the rotation

matrix R. The column vectors of R are the vectors of coordinates of~ı,~,~k expressed
in the basis of I.

• The wind’s velocity vector ~vw is assumed to be the same at all points in a domain
surrounding the vehicle, and its components are defined by ~vw = (~ı,~,~k)vw. The
airvelocity ~va=(~ı,~,~k)va=(~ı0, ~0, ~k0)ẋa is defined as the difference between ~v and ~vw.
Thus, va = v − vw.

9.1 System modeling

9.1.1 Vehicle’s dynamics

As discussed in Section 5.2.1, the external forces acting on the body are assumed to
be composed only of the weight vector m~g and the sum of aerodynamic forces denoted
by ~Fa. Now, let us make the following assumption concerning the thrust direction.

Assumption 6. The thrust force ~T is parallel to the vector ~k, i.e. ~T = −T~k with T
denoting the thrust intensity.

In view of Assumption 6 and the assumption of complete torque actuation (see Sec-
tion 5.2.2), the vehicle’s equations of motion considered in this chapter are given by:

m~a = m~g + ~Fa − T~k, (9.1a)
d

dt
(~ı,~,~k) = ~ω × (~ı,~,~k), (9.1b)

with T and ~ω the system’s control inputs.

9.1.2 Aerodynamic forces

As mentioned in Chapter 3, working out a functional model of aerodynamic forces from
celebrated Navier−Stokes nonlinear partial differential equations is a very complex task.
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Notwithstanding the delicate and complex issues associated with turbulent flows –a side
effect of which is the well known stall phenomenon– for which no general complete theory
exists to our knowledge. We thus propose to take here a different route by combining the
well-accepted general expression of the aerodynamic forces given by the Buckingham pi
theorem (see Section 3.2) with geometric considerations based on the body’s symmetry
properties. To be more precise, in view of the assumptions discussed in Section 5.2.1, the
aerodynamic force is assumed to be in the form

~Fa := ka|~va|
[
CL(α, β)~v⊥

a − CD(α, β)~va

]
, (9.2a)

ka := ρΣ
2
, (9.2b)

with ~v⊥
a a perpendicular to the airvelocity, (α, β) (any) pair of angles characterizing the

orientation of ~va w. r. t. the body frame, ρ the free stream air density, Σ an area germane
to the given body shape, and CD(·) (∈ R+) and CL(·) the aerodynamic coefficients. To
characterize the vector ~v⊥

a , we make use of a unit vector-valued function ~r(·) such that

~va := ~r(α, β) × ~va, (9.3a)
~r(α, β) · ~va = 0. (9.3b)

Then, the expression (9.2a) becomes

~Fa = ka|~va|
[
CL(α, β)~r(α, β) × ~va − CD(α, β)~va

]
. (9.4)

Observe that the constraint (9.3b) implies that |~Fa| = ka|~va|2
√
C2

L + C2
D, as in the two-

dimensional case treated previously.

9.2 Aerodynamic models for symmetric bodies

The expression (9.4) of the aerodynamic forces holds independently of the body’s
shape, since it is derived without any assumption upon this shape. We consider here two
kinds of body symmetries in order to point out aerodynamic properties induced by them
and their practical interest. More specifically, we focus on vehicles whose external surface
S is characterized by the existence of an orthonormal body frame B = {G;~ı,~,~k} – with
~k denoting the thrust direction according to Assumption 6 – that satisfies either one of
the following assumptions.

Assumption 7 (Symmetry). Any point P ∈ S transformed by the rotation of an angle
θ about the axis G~k, i.e. by the operator defined by

gθ(·) = rotG~k(θ)(·),

also belongs to S, i.e. gθ(P ) ∈ S.

Assumption 8 (Bisymmetry). Any point P∈S transformed by the composition of two
rotations of angles θ and π about the axes G~k and G~j, i.e. by the operator defined by

gθ(·) := (rotG~k(θ) ◦ rotG~(π))(·),

also belongs to S, i.e. gθ(P ) ∈ S.
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~ı
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~k~
~

~ı
G

~k

Figure 9.2: Symmetric and bisymmetric body shapes.

The operator rotO~v(ξ)(P ) stands for the rotation about the axis O~v by the angle ξ
of the point P . Examples of “symmetric” and “bisymmetric” shapes satisfying these
assumptions are shown in Figure 9.2.

For symmetric shapes, i.e. such that Assumption 7 holds true, one can define α ∈ [0, π]
as the angle of attack2 between −~k and ~va, and β ∈ (−π, π] as the angle between the unit
frame vector ~ı and the projection of ~va on the plane {G;~ı,~} (see Figure 9.3). Observe
that this assumption also implies that:
P1 : the aerodynamic force ~Fa does not change when the body rotates about its axis of
symmetry G~k ;
P2 : the aerodynamic force ~Fa belongs to the plane created by the vectors ~k and ~va, i.e.
~Fa ∈ span{~k,~va} .

Property P1 in turn implies that the aerodynamic characteristics do not depend on β,
whereas Property P2 implies that i) ~r is orthogonal to ~k, ii) ~r is independent of α, and
iii) the lift coefficient is equal to zero when α = {0, π}. Subsequently, the expression (9.4)
of aerodynamic force specializes to

~Fa = ka|~va|
[
CL(α, β)~r(β) × ~va − CD(α, β)~va

]
, (9.5a)

~r(β) = cos(β)~− sin(β)~ı. (9.5b)

Under the stronger Assumption 8, i.e. when the body’s shape is also π-symmetric w.r.t.
the G~ axis, the aerodynamic characteristics CL and CD must be π−periodic w.r.t. α.

The aforementioned choice of (α, β) implies that

α = cos−1
(

− va3

|~va|

)
, (9.6a)

β = atan2(va2 , va1), (9.6b)

and
2The angle of attack α so defined does not coincide with the one used for airplanes equipped with flat
wings which break the body’s rotational symmetry about G~k (Stengel, 2004, p. 53).
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~0
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~k0

~ıG

~k

~

~va

~FL

~FD

α

β

Figure 9.3: Aerodynamic forces and (α, β) angles.

va1 = |~va| sin(α) cos(β),
va2 = |~va| sin(α) sin(β),
va3 = −|~va| cos(α).

(9.7)

From the definitions of α and ~r(β), one then verifies that

~r(β) × ~va = − cot(α)~va − |~va|
sin(α)

~k,

so that the aerodynamic force ~Fa becomes

~Fa = − ka|~va|
(
CD(α) + CL(α) cot(α)

)
~va − ka|~va|2CL(α)

sin(α)
~k.

9.2.1 Aerodynamic models yielding spherical equivalency

By using the above relationship, it is a simple matter to establish the following result.
Proposition 9.1. Consider a symmetric thrust-propelled vehicle. Assume that the aero-
dynamic forces are given by (9.5) and that the aerodynamic coefficients satisfy the fol-
lowing relationship

CD(α) + CL(α) cot(α) = CD, (9.8)

with CD denoting a constant number. Then the body’s dynamic equation (9.1a) may also
be written as

m~a = m~g + ~fp − Tp
~k, (9.9)

with

Tp = T + ka|~va|2CL(α)
sin(α)

, (9.10a)

~fp = − kaCD|~va|~va, (9.10b)

so that ~fp is independent of the vehicle’s orientation.
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The important result is the non-dependence of ~fp upon the angle of attack α, and thus
upon the vehicle’s orientation. The interest of this proposition is to point out the possibil-
ity of seeing a symmetric body subjected to both drag and lift forces as a sphere subjected
to an equivalent drag force ~fp and powered by an equivalent thrust force ~Tp = −Tp

~k. The
main condition is that the relation (9.8) must be satisfied. Obviously, this condition is
compatible with an infinite number of functions CD and CL. Let us point out a particular
set of simple functions, already considered in the 2-D case (see Section 7.3), which also
satisfy the π-periodicity property w.r.t. the angle of attack α associated with bisymmetric
shapes.

Proposition 9.2. The functions CD and CL defined by{
CD(α) = c0 + 2c1 sin2(α)
CL(α) = c1 sin(2α),

(9.11)

with c0 and c1 two real numbers, satisfy the condition (9.8) with CD = c0 + 2c1. The
equivalent drag force and thrust intensity are then given by

~fp = − ka(c0 + 2c1)|~va|~va, (9.12a)
Tp = T + 2c1ka|~va|2 cos(α). (9.12b)

A particular bisymmetric body is the sphere whose aerodynamic characteristics (zero
lift and constant drag) are obtained by setting c1 = 0 in (9.11). Elliptic-shaped bodies
are also symmetric but, in contrast with the sphere, they do generate lift in addition to
drag. The process of approximating measured aerodynamic characteristics with functions
given by (9.11) is illustrated by the Figure 9.4. The left column of this figure shows the
experimental aerodynamic coefficients borrowed from (Keyes, 1965, p.19) for an elliptic-
shaped body with Mach and Reynolds numbers equal to M = 6 and Re = 7.96 · 106

respectively. For this example, the estimated coefficients were calculated in order to
minimize the average squared errors between aerodynamic data and the model (9.11),
i.e. c0 = 0.43 and c1 = 0.462. Since missile-like devices are “almost” bisymmetric,
approximating their aerodynamic coefficients with such functions can also be attempted.
For instance, the approximation shown in the right column of Figure 9.4 was obtained
by using experimental data taken from (Saffel et al., 1971, p.54) for a missile moving at
M = 0.7. In this case, the identified coefficients that minimize the average squared errors
between aerodynamic data and the model (9.11) are c0 = 0.1 and c1 = 11.55. In both
cases shown in Figure 9.4, the match between experimental data and the approximating
functions, although not perfect, should be sufficient for feedback control purposes.

As for the 2-D case, other functions satisfying the condition (9.8) may also be of interest
to model the aerodynamic characteristics of other bodies. For instance, by considering
annular wings, functions of the form

CD(α) = c0, CL(α) = c1 tan(α),

with c0 and c1 denoting two real numbers, can be used to model classical linearly increasing
lift and quasi-constant drag at small angles of attack, i.e. before the stall region is reached.
These functions can also be combined with functions (9.11) that are more representative
of the physics for angles beyond the stall region.
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Figure 9.4: Aerodynamic coefficients of elliptic (left) and missile (right) like bodies.

9.3 Control design

Once the system’s dynamics (9.1a) is transformed into the form (9.9) with ~Fp inde-
pendent of the vehicle’s orientation, the control design can be addressed by adapting
the method developed for the class of systems subjected to an orientation-independent
external force. We illustrate in this section the application of the control solutions (Hua
et al., 2009a) to stabilize either a reference velocity ~vr or a reference trajectory ~pr.

9.3.1 Velocity control

The control objective is the asymptotic stabilization of a reference velocity ~vr=(~ı0, ~0, ~k0)ẋr

= (~ı,~,~k)vr. The application of the control solution proposed in (Hua et al., 2009a, Sec.
III.D) to System (9.1), with (~Fa, T ) replaced by the equivalent drag force and thrust
intensity (~fp, Tp) defined in Proposition 9.1, yields the following control expressions

T = F 3 + k1|Fp|ṽ3, (9.13a)

ω1 = − k2|Fp|ṽ2 − k3|Fp|F p2

(|Fp| + F p3)2 −
F

T

p S(e1)RT Ḟp

|Fp|2
, (9.13b)

ω2 = k2|Fp|ṽ1 + k3|Fp|F p1

(|Fp| + F p3)2 −
F

T
p S(e2)RT Ḟp

|Fp|2
, (9.13c)

with ṽ := v − vr, ~ar := d
dt
~vr = (~ı0, ~0, ~k0)ẍr,

~F = (~ı0, ~0, ~k0)F = (~ı,~,~k)F := m~g + ~Fa −m~ar, (9.14a)
~Fp = (~ı0, ~0, ~k0)Fp = (~ı,~,~k)F p := m~g + ~fp −m~ar, (9.14b)
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and k1,2,3 three positive real numbers. Note that, using (9.10b), the vector fp of coordi-
nates of ~fp expressed in the fixed frame I is

fp = −kaCD|ẋa|ẋa, (9.15)
so that the vector of coordinates of the geometric vector ~Fp in the inertial frame becomes

Fp = mge3 − kaCD|ẋa|ẋa −mẍr, (9.16)
which is independent of the vehicle’s orientation. Therefore, its time-derivative does
not depend on the angular velocity vector ω and the above expressions of the first two
components of this vector are well defined. The interest of the invoked transformation,
combined with (9.8), lies precisely there.

As for the last component ω3, since it does not influence the vehicle’s longitudinal
motion due to the symmetry about the axis G~k, it does not have to be defined at this
point. This free degree of freedom can be used for complementary purposes involving, for
instance, the angle β.

Let θ̃ ∈ (−π, π] denote the angle between e3 and Fp. In (Hua et al., 2009a), stability
and convergence properties associated with the feedback control (9.13) are established by
using the Lyapunov function candidate

V = |ṽ|2

2
+ 1
k2m

[
1 − cos(θ̃)

]
,

whose time-derivative along any trajectory of the controlled system is

V̇ = −k1|Fp|ṽ2
3 − k3

k2
tan2

(
θ̃/2

)
.

Assuming that ~vw and ~vr are bounded in norm up to their second time-derivatives, and
provided that ∃ δ > 0 such that |Fp| > δ, ∀t ∈ R+, one shows that the equilibrium (ṽ, θ̃) =
(0, 0) of the controlled system is asymptotically stable, with the domain of attraction equal
to R3 × (−π, π).

In practice, the control law must be complemented with integral correction terms to
compensate for almost constant unmodeled additive perturbations. The solution proposed
in (Hua et al., 2009a) involves ~Iv = (~ı0, ~0, ~k0)Iv with

Iv :=
∫ t

0
˙̃x(s) ds,

and ˙̃x := Rṽ the longitudinal velocity error expressed in the inertial frame. Let h denote
a smooth bounded strictly positive function defined on [0,+∞) satisfying the following
properties (Hua et al., 2009a, Sec. III.C) for some positive constant numbers η, µ,

∀s ∈ R, |h(s2)s| < η, and 0 < ∂

∂s
(h(s2)s) < µ (9.17)

An example of such function is,

h : s → h(s) = η√
1 + s

,

with η > 0. It then suffices to replace the definitions (9.14) of ~F and ~Fp by
~F := m~g + ~Fa −m~ar + h(|Iv|2)~Iv (9.18a)
~Fp := m~g + ~fp −m~ar + h(|Iv|2)~Iv (9.18b)

in (9.13) to obtain a control which incorporates an integral correction action and for which
strong stability and convergence properties can also be proven (Hua et al., 2009a).
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9.3.2 Position control

The control objective is now the asymptotic stabilization of a reference trajectory
~pr := (~ı0, ~0)xr. Let us first (re)introduce the nonlinear “bounded integral” of the position
error used to compensate for almost constant unmodeled additive perturbations. Define
z as the solution of the following second-order system:

z̈ = −2kz ż − k2
z [z − sat∆(z)] + kzhz(|x̃|2)x̃, (9.19)
kz > 0, z(0) = 0, ż(0) = 0,

where hz is a smooth bounded strictly positive function defined on [0,+∞) satisfy-
ing (9.17) for some positive constant numbers ηz, βz, and sat∆ the classical saturation
function, i.e. sat∆(z) = zmin(1,∆/|z|). Let

y := x̃+ z, (9.20a)
v := ṽ +RT (θ)ż, (9.20b)

with h a smooth bounded positive function satisfying (9.17) for some positive constant
numbers η, β. The application of the control solution proposed in (Hua et al., 2009a,
Sec. III.D) to System (9.1), with (~Fa, T ) replaced by the equivalent drag force and thrust
intensity (~fp, Tp) defined in Proposition 9.1, yields the following control expressions

T = F 3 + k1|Fp|v3, (9.21a)

ω1 = − k2|Fp|v2 − k3|Fp|F p2

(|Fp| + F p3)2 −
F

T
p S(e1)RT Ḟp

|Fp|2
, (9.21b)

ω2 = k2|Fp|v1 + k3|Fp|F p1

(|Fp| + F p3)2 −
F

T

p S(e2)RT Ḟp

|Fp|2
, (9.21c)

with k1,2,3 three positive real numbers, F := RTF , F p := RTFp,

F := mge3 + Fa −mẍr + h(|y|2)y + z̈, (9.22a)
Fp := mge3 + fp −mẍr + h(|y|2)y + z̈, (9.22b)

Fa is the vector of coordinates of the aerodynamic force expressed in the inertial frame,
and fp is the vector of coordinates given by (9.15).

Let θ̃ ∈ (−π, π] denote the angle between e3 and Fp. In (Hua et al., 2009a), stability
and convergence properties associated with the feedback control (9.21) are established by
using the Lyapunov function candidate

V = |v|2

2
+ 1
k2m

[
1 − cos(θ̃)

]
+
∫ |y|

0
h(s2)sds,

whose time-derivative along any trajectory of the controlled system is

V̇ = −k1|Fp|v2
1 − k3

k2
tan2

(
θ̃/2

)
.

Assuming that ~vw and ~vr are bounded in norm up to their second time-derivatives, and
provided that ∃ δ > 0 such that |Fp| > δ, ∀t ∈ R+, one shows that the equilibrium
(x̃, ṽ, θ̃) = (0, 0, 0) of the controlled system is asymptotically stable, with the domain of
attraction equal to R3 × R3 × (−π, π).
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9.3.3 Control robustification

The control laws presented so far use terms that may introduce singularities far from
the reference trajectory. We here carry out modifications for the control law (9.21), but
they are also valid for the other control laws via straightforward transpositions. Let us
multiply the terms 1/(|Fp| +F p3)2 and 1/|Fp|2 by the function µτ ∈ C1 : [0,+∞) → [0, 1]
defined by:

µτ (s) =
{

sin
(

πs2

2τ2

)
, if s ≤ τ

1, otherwise
(9.23)

with τ > 0. This yields the well-defined control expression

T = F 3 + k1|Fp|v3, (9.24a)

ω1 = − k2|Fp|v2 − µτ (|Fp| + F p3) k3|Fp|F p2

(|Fp| + F p3)2 − µτ (|Fp|)
F

T
p S(e1)RT Ḟp

|Fp|2
, (9.24b)

ω2 = k2|Fp|v1 + µτ (|Fp| + F p3) k3|Fp|F p1

(|Fp| + F p3)2 − µτ (|Fp|)
F

T

p S(e2)RT Ḟp

|Fp|2
, (9.24c)

The property:
lim
s→0

µτ (s)
s2 = lim

s→0
sin

(
πs2

2τ2

)
s−2 = π

2τ2 ,

implies that the modified control is well-defined everywhere.

Remark 9.1. The control laws (9.24), (9.21) and (9.13) make use of the feedforward
term ẍa (via Ḟp) that is not always available in practice. Simulations with wing models,
however, have shown that neglecting this term when its actual value is not too large does
not much affect the control performance, in the sense that ultimate tracking errors remain
small.

9.4 Simulations in sub-sonic airflow

In this section, we illustrate through simulations the performance and robustness of
the proposed control strategy for a model of a missile-like body in sub-sonic airflow. The
shape of the body roughly corresponds to the one shown in Figure 9.3. The system’s
equations of motion used for simulations are given by Eqs. (9.1) with ~Fa given by (9.5)
and the aerodynamic coefficients by (9.11) with

c0 = 0.1, c1 = 11.55.

The aerodynamic coefficients are depicted in red in the right column of Figure 9.4. They
are representative of the experimental data measured for a missile-like body moving with
M = 0.7. We consider a body’s shape alike the one shown in Figure 9.3, with the radius
r of the semi-sphere at the top of the body equal to the base radius. Let h denote the
height of the body; the body’s and environment’s physical parameters are given by:
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m = 500 [Kg],
h = 7.5 [m],
r = 0.75 [m],

Σ = 1
2

(π − 4)r2 + 2hr ≈ 11 [m2],

ρ = 1.225
[
Kg/m3

]
,

ka = ρΣ
2

≈ 6.7 [Kg/m] .

We assume that the control objective is the asymptotic stabilization of a reference
trajectory, and we apply the control solution proposed in Section 9.3.2. Other values are
used for the calculation of the control laws (9.21) in order to test the robustness w.r.t.
parametric errors; they are chosen as follows:

m̂ = 425 [Kg], (9.25)
k̂a = 4.58 [Kg/m] , (9.26)
ĉ0 = 0.08, (9.27)
ĉ1 = 9.2, (9.28)

The term Ḟp in the expression of the control laws (9.21) is kept equal to zero, thus
providing another element to test the robustness of the controller. The values for the
other control parameters are:

• k1 = 0.3058, k2 = 0.1247, k3 = 16;
• h(s) = β

/√
1 + β2

η2 s with β = 2 and η = 15;

• kz = 1, hz(s) = βz

/√
1 + β2

z

η2
z
s with βz = 1 and ηz = 1;

• sat∆(z) = zmin
(
1, ∆

|z|

)
with ∆ = 100.

The gains k1, k2, k3, kz, h(0) and hz(0) are determined via a pole placement procedure
performed on the linear approximation of the tracking errors dynamics – together with
(9.19) – in hovering flight (see (Hua et al., 2008) for details). Let us recall that the
constants η and ηz limit the influence of the integral Iv and ż in the control action (see
Eqs. (9.14) (9.17) (9.18) and (9.19)). Hence, they should not be chosen too small if large
modeling errors have to be compensated. On the other hand, taking them small reduces
the risk of Fp evolving close to zero and of saturating the actuators.

9.4.1 Simulation 1: from hovering to cruising flight

We show below a simulation of a transition maneuver from hovering to cruising flight.
The reference trajectory used to simulate the transition is given by:

ẋr(t) =


10 [1, 1,−1]T 0 ≤t < 30,

0.97(t− 30) [1, 0, 0]T 30 ≤ t < 55,
24.25 [1, 0, 0]T t ≥ 55.

(9.29)
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with xr(0) = (0, 0, 0)T . Therefore, it consists of: i) a stationary point on the time interval
[0, 30) [s]; ii) an horizontal velocity ramp on the time interval [30, 55) [s]; iii) cruising with
constant speed of 24.25 [m/s] for t ≥ 55 [s]. The initial position and velocity are x(0) =
[0, 0, 0], ẋ(0) = [0, 0, 0] respectively; the initial vehicle’s orientation3 is characterized by
φ(0) = 0, θ(0) = 0, ψ(0) = 0.

From top to bottom, Figure 9.5 depicts the evolution of the reference velocity, the
velocity errors, the position errors, the angle of attack, the angular velocity, the thrust-to-
weight ratio, the vehicle’s attitude, and the wind velocity. Wing gusts are simulated only
along the vertical direction ~k0. On the interval [0, 30) [s], the vehicle’s attitude converges
towards zero (vertical configuration), and the thrust tends to oppose the body’s weight.
When t > 30 [sec], the horizontal velocity of the vehicle increases, so the angle of attack
and the pitch angle start decreasing . At the time instant t = 55 [sec], the reference
acceleration ẍr becomes instantaneously zero. This makes the thrust force discontinuous.
Observe also that the vehicle’s is flying almost horizontally at this time instant (θ ≈
−90◦, | ˙̃x| ≈ 0). On the time interval [62, 70] [sec] a constant wind gust “pushing the body
down” (ẋw3 > 0) is simulated; as a consequence, the control law requires the pitch angle
and the thrust force to increase in order to maintain small tracking errors. Conversely,
a constant wind gust “pushing the body up” (ẋw3 < 0) is simulated on the time interval
[74, 82] [sec]. In this case the control law requires greater values for the pitch angle and
the thrust force than those required with no wind. On the time interval [82, 90] [sec], a
non-constant wind gust perturbs the vehicle, and this requires non-constant control inputs
to maintain the tracking errors small.

9.4.2 Simulation 2: helicoidal horizontal flight with limited thrust

The control objective is to track the following reference trajectory

ẋr(t) =
{

[0.97t,−4 sin(0.2t), 4 cos(0.2t)]T 0 ≤t < 25,
[24.25,−4 sin(0.2t), 4 cos(0.2t)]T t ≥ 25.

(9.30)

with xr(0) = (0, 0, 0)T . The initial position and velocity are x(0) = [0, 0, 0], ẋ(0) = [0, 0, 0]
respectively; the initial vehicle’s orientation is characterized by φ(0) = θ(0) = ψ(0) = 0.
Limitations on the thrust force are taken into account by imposing the following constraint

0 < T < 2mg.

From top to bottom, Figure 9.6 depicts the evolution of the reference velocity, the velocity
errors, the position errors, the angle of attack, the angular velocity, the thrust-to-weight
ratio, and the vehicle’s attitude; no wind is blowing. On the time interval [0, 27) [sec], the
control requires a positive thrust intensity, and both velocity and position errors converge
to zero. On the time intervals where the thrust force saturates, the tracking errors increase
before tending to zero again.

3Standard roll φ, pitch θ and yaw ψ angles are used to parametrize the rotation matrix R; see (Stengel,
2004, p. 47) for details.
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ẋr3

˙̃x1˙̃x2˙̃x3

x̃1
x̃2
x̃3

ω1
ω2
ω3

φ
θ
ψ
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Figure 9.5: Simulation 1 of a missile-like body.
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Epilogue in Italian

Questa tesi è dedicata alla modellizzazione, analisi e controllo dei veicoli aerei sotto-
posti a forze di reazione aerodinamica. Essa ambisce a gettare le basi di un approccio
unificato per il controllo dei veicoli volanti in modo tale da proporre una metodologia per
i cosiddetti veicoli ibridi, i quali possono sia decollare verticalmente che volare orizzontal-
mente ad alte velocità.

La prima parte di questa tesi fornisce le basi di aerodinamica e dinamica del volo,
ed inoltre si focalizza su una parte della letterattura esistente. Questo processo ha fatto
emergere che il controllo dei veicoli arei è di norma risolto progettando diverse strategie
di comando in relazione a diverse classi di veicoli volanti, come esemplificato da elicotteri
ed aerei di linea. Un approccio unificato che prendesse in conto le forze aereodinamiche
nel controllo era ancora mancante. Tuttavia, un’attenta analisi delle equaizioni che re-
golano il moto mostra che progettare una metodologia di comando che sia indipendente
dall’attuazione e dalle forze aerodinamiche sul veicolo è impraticabile. Questa conclusione
ci ha condotto a delle ipotesi semplificatrici.

E’ stato ipotizzato che l’attuazione è composta da una forza di propulsione solidale al
veicolo e da un controllo in coppia per il controllo del suo orientamento. Di conseguenza, il
problema del controllo è stato disaccoppiato nella (classica) architettura a due stadi com-
posta da: un loop interno che è responsabile del controllo dell’orientamento (pilot loop);
un loop esterno che si occupa della stabilizzazione della velocità del veicolo (guidance
loop). Questa tesi si occupa di quest’ultimo loop e la determinazione di come regolare la
propulsione ai fini di compensare per le forze esterne agenti sul veicolo, che dipendono dal
suo orientamento, è stato uno degli obiettivi principali. Nel linguaggio dell’Automatica,
questa è una classica ipotesi di “backstepping”. Riguardo le forze esterne agenti sul veicolo,
è stato assunto che esse dipendano minimamente dai cosiddetti “efffetti aerodinamici non
stazionari”. Questa ipotesi ha a sua volta implicato che la forza aerodinamica non dipenda
dalla velocità angolare del veicolo.

Sotto queste ipotesi, la seconda parte di questa tesi si focalizza sulla modellizzazione,
analisi e controllo della dinamica longitudinale degli aerei – ossia moti planari – e poi
estende alcuni di queste analisi a moti tridimensionali di veicoli simmetrici, come la fu-
soliera di un aeroplano o di un missile. Un risultato originale della seconda parte di questa
tesi è definire delle condizioni per le quali si può riscrivere il problema del controllo come
quello associato ad un veicolo con superficie sferica. Tale trasformazione viene chiamata
equivalenza sferica, ed una volta eseguita permette di applicare le metodologie di controllo
sviluppate per un corpo sferico ad un veicolo non sferico.

Più precisamente, il capitolo dedicato alla modellizzazione della dinamica longitudinale
presenta le equazioni che descrivono i moti planari, e si focalizza sulle forze aerodinamiche
agenti sui profili simmetrici NACA in regime subsonico. Modelli che descrivono i coeffi-
cienti aerodinamici di questi profili, anche nella regione di stallo, vengono presentati.

L’analisi della dinamica longitudinale si focalizza su questioni fondamentali come
l’esistenza e la multiplicità della configuarzione di equilibrio dell’aereo – in termini di
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intensità di propulsione e orientamento del veicolo – lungo la traiettoria di riferimento.
Un risultato originale di questa analisi è mostrare che esiste una configuarzione di equi-
librio per ogni velocità di riferimento e del vento quando la forma del veicolo è simmet-
rica. Tuttavia, in accordo con la letteratura esistente, l’unicità di tale configuarzione di
equilibrio non può essere garantita a priori. Infatti, uno studio della multiplicità della
configuarzione di equilibrio mostra che i fenomeni di stallo aerodinamico possono dar vita
a diverse orientamenti di equilibrio associati ad una velocità di riferimento. Come con-
seguenza, si mostra che alcune velocità di riferimento possono essere seguite perfettamente
solo se fossero possibili variazioni discontinue dell’orientamento del veicolo. L’analisi della
dinamica longitudinale mostra anche che possono esistere diverese velocità di equilibrio
ad una fissata intensità di propulsione e orientamento del veicolo. Tale fatto è simile alla
condizione di “deep stall” per gli aerei.

Il controllo della dinamica longitudianle viene risolto usando l’analisi di Lyapunov,
la quale fornice controllori locali che stabilizzano sia velocità che posizioni di riferi-
mento. Quando la forza aerodinamica soddisfa le condizioni che permettono di applicare
l’equivalenza sferica, grandi domini di stabilità possono essere dimostrati.

Alcuni dei risultati trovati per i moti bidimensionali vengono poi estesi al caso di un
veicolo che vola nello spazio tridimensionale assumendo che la forma del corpo sia sim-
metrica rispetto l’asse di propulsione. In particolare, risultati interessanti riguardano la
modellizzazione delle forze aerodinamiche su corpi simmetrici e la caratterizzazione di una
famiglia di modelli che permettono di applicare la menzionata equivalenza sferica. Membri
di tale famiglia sono rappresentativi della forza aerodinamica che agisce su missili in regime
subsonico ed ipe3rsonico. Per illustrare l’utilità di questi risultati di modellizzazione al
livello di controllo, un metodo sviluppato per corpi sferici viene applicato al sistema sferico
equivalente in modo tale da fornire leggi di controllo che stabilizzano velocità e posizioni
desiderate. Video di simulazioni possono essere trovate al seguente link

http://goo.gl/HKQtz
Numerosi estensioni di questo studio sui corpi simmetrici possono essere menzionate. Esse
riguardano aeroplani ed altri veicoli dotati di superfici non simmetriche rispetto l’asse di
propulsione.

A questo punto, il paradigma di unificazione presentato in questa tesi è ancora con-
cettuale. Sebbene la validazione tramite simulazione è incoraggiante, le leggi di controllo
qui proposte chiamano per una moltitudine di estensioni prima che possano essere appli-
cate in un sistema fisico. Ad esempio, la misura e la stima di variabili fisiche come la
velocità del veicolo relativa al vento merità studi complementari.
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Cette thèse est consacrée à la modélisation, à l’analyse et au contrôle des véhicules
aériens à propulsion sujet à des forces aérodynamiques. Elle propose une approche unifiée
qui prend en compte les forces aérodynamiques dans la conception des commandes et
propose une méthodologie pour le contrôle de véhicules aériens avec un vaste domaine de
vol comme les véhicules convertibles, aussi appelés véhicules hybrides.

La première partie de ce manuscrit fournit au lecteur les bases de l’aérodynamique
et de la dynamique du vol et se focalise sur certaines parties de la littérature existante
concernant les techniques de contrôle des avions. Ce dernier point souligne le fait que
la commande des véhicules aériens est habituellement réalisée en utilisant des stratégies
différentes selon le type d’appareil, comme le montre le cas des avions et des hélicoptères.
A notre connaissance, une approche unifiée qui prend en compte les forces aérodynamiques
non-linéaires dans la conception des lois de commande était manquante. Cependant en
regardant de plus près les équations du mouvement d’un aéronef, on peut constater que
développer une approche unifiée pour l’asservissement, indépendante du type d’actionneur
de l’avion et des effets aérodynamique sur l’ensemble de la structure, est irréaliste et
techniquement infaisable. Ceci nous conduit à simplifier le problème de commande.

Les moyens de contrôler l’avion sont ici une force de propulsion fixe par rapport à la
structure de l’avion, permettant la translation et un couple pour le contrôle de l’attitude.
Le problème de la commande est alors découplé en une architecture (classique) à deux
étages consistant en une boucle intérieure pour le contrôle d’attitude (boucle de pilotage)
et une boucle extérieure pour le contrôle de la vitesse (boucle de guidage). Cette thèse se
focalise sur ce dernier point et déterminer comment réguler la force de propulsion pour
compenser les forces extérieures dépendantes de l’orientation a été l’un des principaux
objectifs. En Automatique, cette architecture découplée reflète une hypothèse typique de
”backstepping” et la manière de produire le mouvement angulaire désiré peut être effectué
via des méthodes de contrôle non-linéaire classique. Pour ce qui est des forces environ-
nementales sur le véhicule, on considère que la force aérodynamique dépend faiblement
d’effets aérodynamiques instationnaires. Ceci conduit à négliger la dépendance de la force
aérodynamique par rapport à la vitesse angulaire du véhicule.

Sous ces hypothèses, la seconde partie de la thèse se focalise en premier lieu sur la
modélisation, l’analyse et le contrôle de la dynamique longitudinale de l’avion - c’est à
dire le mouvement à deux dimensions – et ensuite étend certaines de ces études au cas du
mouvement en trois dimensions d’un véhicule symétrique, comme le fuselage d’un avion
ou le corps d’un missile. Un résultat original de de cette partie du manuscrit est de donner
les conditions sur la force aérodynamique qui nous permettent de reformuler le problème
sous la forme de celui du contrôle d’un corps sphérique, aussi appelé équivalence sphérique,
pour laquelle des résultats puissants sur la stabilité peuvent être démontrés. Les lois de
commande non-linéaires proposées incorporent des termes de corrections intégrales et anti-
wind-up pour gérer les incertitudes du modèle. Plus précisément, la modélisation de la
dynamique longitudinale de l’avion présente les équations gouvernant le mouvement plan
et se focalise sur les forces aérodynamiques agissant sur des profils symétriques NACA
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dans des flux d’air subsoniques. La conception des fonctions qui sont représentatives des
coefficients aérodynamiques de ces profils, incluant les phénomènes de décrochage sont
présentées.

L’analyse de la dynamique longitudinale du véhicule se concentre sur des problèmes
de commande basiques mais importants comme l’existence et la multiplicité des configu-
rations de l’avion, en terme d’intensité de poussée et d’orientation de l’appareil, le long
de la trajectoire. Un résultat original de cette analyse est de montrer qu’il existe une con-
figuration d’équilibre pour chaque vitesse de référence et vitesse de vent quand la forme
du corps est symétrique, indépendamment du régime d’écoulement. Selon la littérature
existante, cependant, une analyse de la multiplicité des configurations de l’avion souligne
que le phénomène de décrochage peut induire plusieurs orientations du véhicule pour une
vitesse donnée. Comme conséquence, un suivi parfait d’une vitesse continue de référence
peut requérir une configuration discontinue, ce qui n’est pas faisable en pratique. Ceci
appelle une multitude de remarque quant au choix d’une vitesse de référence représentant
les manœuvres de transitions entre le vol stationnaire et le vol de croisière à haute vitesse
puisque le suivi parfait de cette transition peut être infaisable en pratique. L’analyse de la
dynamique longitudinale montre aussi que pour une poussée et une orientation données,
il peut exister plusieurs vitesses d’équilibre associées avec de larges angles d’attaque et
des pertes d’altitude. Cette analyse est réminiscente de la situation de deep stall.

Le contrôle du mouvement plan est réalisé en utilisant l’analyse de Lyapunov, qui
fournit des contrôleur locaux qui stabilisent la vitesse de référence ou la position. Quand
la force aérodynamique nous permet d’appliquer l’équivalence sphérique évoquée plus
haut, de large domaines de stabilité sont obtenus. La lois de commande qui en dérivent
ne s’appuient pas sur un changement de lois de commandes en fonction du domaine de
vol mais représentent une approche unifiée pour des véhicules se déplaçant dans le plan
vertical et sujets à des forces aérodynamique non linéaires.

Certains des résultats obtenus dans le cas du mouvement plan sont étendus à celui
d’un avion volant en trois dimensions en supposant la symétrie de rotation de la forme
du véhicule autour de l’axe d’action de la poussée. En particulier, les résultats originaux
concernent la modélisation des forces aérodynamiques agissant sur des corps symétriques
et la caractérisation d’une famille de modèles qui permettent d’appliquer l’équivalence
sphérique précitée. Les membres de cette famille sont les représentants de la force aéro-
dynamique agissant sur

des corps elliptique et de forme comparable à des missiles dans des flux d’air subsonique
et hypersoniques. Pour illustrer l’utilité de ces résultats dans la phase de conception des
commandes, des contrôleurs développés pour le cas sphérique sont appliqués pour donner
au lecteur les lois qui stabilisent la vitesse de référence ou la trajectoire de référence. Des
vidéos et des simulations avec différentes trajectoires de référence sont disponibles ici :

http://goo.gl/HKQtz
Des extensions possibles de cette étude sur les appareils symétriques en 3 dimensions

sont nombreuses. Elles concernent les avions et autres véhicules dont les propriétés de
portance reposent principalement sur de grandes surfaces plates qui coupent la symétrie
du corps sur l’axe d’action de la poussée.

A ce niveau, le paradigme d’unification présenté dans cette thèse est encore princi-
palement conceptuel. Bien que la validation par les simulations soit encourageante, les
solutions proposées pour la commande appellent à une multitude d’extensions complé-
mentaires et d’adaptations avant qu’elles ne soient implémentées sur des appareils réels.
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On peut mentionner la production du mouvement angulaire désiré et la détermination de
la boucle d’asservissement bas biveau correspondante qui prend en compte les limites des
actionneurs – en relation, par exemple, avec la commande dépendante de la vitesse de
l’air. La mesure et l’estimation de variables physiques variées intervenant dans le calcul
de la lois de commande impliquent une combinaison de problèmes matériels et logiciels
dont il est important de tenir compte.





Epilogue in English

This thesis is devoted to the modeling, analysis and control of thrust-propelled aerial
vehicles subjected to aerodynamic reaction effects. It attempts to lay down a unified
approach that takes into account aerodynamic forces in the control design, and proposes
a control methodology for aircraft with large flight envelopes such as convertible vehicles,
also called hybrid aircraft.

The first part of this manuscript provides the reader with basic aerodynamic and
flight dynamics background, and focuses on part of the existing literature on aircraft
control techniques. This latter process pointed out that the control of aerial vehicles is
usually addressed by designing different control strategies in relation to different kinds of
aircraft, as exemplified by airliners and helicopters. A unified approach that takes into
account nonlinear aerodynamic forces in the control design was missing to the best of our
knowledge. However, a closer look at the vehicle’s equations of motion points out that
developing a unified control approach independently of the vehicle’s actuation and of the
aerodynamic effects acting on the body is unrealistic and technically impracticable. This,
in turn, led to simplifying assumptions.

The vehicle’s means of actuation are assumed to consist of a body-fixed thrust force for
translational motion, and a control torque for attitude monitoring. The control problem
is then decoupled into the (classical) two stage architecture consisting of: an inner loop
dealing with attitude control (pilot loop); an outer loop dealing with velocity control
(guidance loop). This thesis focuses on the latter, and determining how to regulate
the thrust force to compensate for the orientation-dependent external forces has been
one of the main objectives. In the language of Automatic Control Theory, this decou-
pled architecture reflects a typical “backstepping” assumption, and the way of producing
the determined desired angular motion can be achieved via classical nonlinear control
techniques. Concerning the environmental force on the vehicle, it is assumed that the
aerodynamic force depends minimally on the unsteady-aerodynamic effects. This led to
neglecting the dependencies of the aerodynamic force on the vehicle’s angular velocity.

Under these assumptions, the second part of this thesis focuses, in the first place, on the
modeling, analysis, and control of the longitudinal aircraft dynamics – i.e. two-dimensional
motions – and then extends some of these studies for three-dimensional motions of sym-
metric aircraft, such as the fuselage of an airliner or a missile-like body. An original
outcome of this part of the manuscript is to point out conditions on the aerodynamic
force that allow us to recast the control problem into the one of controlling a spherical
body – referred to as spherical equivalency – for which strong stability results can be
demonstrated. The proposed nonlinear control laws incorporate integral and anti-wind
up correction terms to deal with model uncertainties.

More precisely, the modeling of the longitudinal dynamics presents the equations gov-
erning planar motions, and focuses on the aerodynamic forces acting on symmetric NACA
airfoils in subsonic flows. Modeling functions that are representative of the aerodynamic
coefficients of these airfoils over large domains of the angle of attack are presented.
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The analysis of the vehicle’s longitudinal dynamics focuses on basic but important
control issues such as the existence and the multiplicity of the aircraft’s configurations
– in terms of thrust intensity and vehicle’s orientation – along a reference trajectory. An
original outcome of this analysis is to show that there exists an equilibrium aircraft’s
configuration for any reference and wind velocities when the body’s shape is symmet-
ric independently of fluid regimes. However, according to the existing literature, the
uniqueness of this equilibrium configuration cannot be in general guaranteed. In fact, an
analysis of the multiplicity of the aircraft’s configurations points out that stall phenomena
can induce several vehicle’s orientations at a given reference velocity. As a consequence,
perfect tracking of a continuous reference velocity may require a discontinuous aircraft
configuration, which is not feasible in practice. This calls for a multitude of remarks when
choosing a reference velocity representing the transition maneuvers between hovering and
high velocity cruising since the perfect tracking of this transition may be unfeasible in
practice. The analysis of the vehicle’s longitudinal dynamics shows also that at a fixed
vehicle’s thrust intensity and orientation there may exist several equilibrium velocities
associated with large angles of attack and loss-of-altitude. This analysis is reminiscent of
the deep stall situation.

The control of planar motions is addressed using Lyapunov analysis, which yields local
controllers that stabilize either reference velocities or positions. When the aerodynamic
force allows us to apply the aforementioned spherical equivalency, large domains of sta-
bility are obtained. The derived control laws do not rely on switching policies between
several controls, so they represent a unified control approach for vehicles moving in the
vertical plane and subjected to nonlinear aerodynamic forces.

Some of the results found for two-dimensional body motions are then extended to
aircraft flying in three-dimensional space assuming a rotational symmetry of the vehicle’s
shape about the thrust force axis. In particular, original results concern the modeling
of aerodynamic forces acting on symmetric bodies and the characterization of a family
of models that allow one to apply the aforementioned spherical-equivalency. Members
of this family are representative of the aerodynamic force acting on elliptic-shaped and
missile-like bodies in subsonic and hypersonic flows. To illustrate the usefulness of these
results at the control design level, prior control controllers are applied to provide the
reader with laws that stabilize either a reference velocity or a reference trajectory. Videos
of simulations with several reference trajectories can be found at

http://goo.gl/HKQtz
Possible extensions of this study on three-dimensional symmetric aircraft are numerous.
They concern airplanes and other vehicles whose lift properties mostly rely on the use of
large flat surfaces (wings) which break the body symmetries about the thrust force axis.

At this stage, the unification paradigm presented in this thesis is still mostly concep-
tual. Although validation by simulations is encouraging, the proposed control solutions
call for a multitude of complementary extensions and adaptations before they are im-
plemented on a physical device. One can mention the production of the desired angular
motion and the determination of corresponding low level control loops that take actua-
tors’ limitations into account – in relation, for instance, to the airspeed dependent control
authority associated with the use of flaps and rudders. Measurement and estimation of
various physical variables involved in the calculation of the control law also involve a
combination of hardware and software issues which are instrumental to implementation.

1
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A Appendix

A.1 Proof of Lemma 7.1

By using the same arguments as those in Section 7.1, one has that

cardinality(Θ~vr(t)) = 2, cardinality(Θ+
~vr

(t)) = 1,

if |~F (~vr(t), t)| 6= 0, and
Θ~vr(t) = Θ+

~vr
(t) = S1,

if |~F (~vr(t), t)| = 0. Then System (6.15b) with ~F given by Eq. (7.2) has a generically-
unique pair of equilibrium orientations (see Definition 6.2) if and only if there exists a
unique, continuous bad reference velocity ~vb(t) such that

|~F (~vb(t), t)| = 0 ∀t.

Now, from Eq. (7.2) observe that ~F (~vb, t) = 0 ∀t ⇐⇒

ẍb = f(ẋb, t), (A.1)

with
f(ẋb, t) := ge1 − c|ẋb − ẋw|(ẋb − ẋw),

c = kac0/m, ~vw = (~ı0, ~0)ẋw, ~vb = (~ı0, ~0)ẋb, and ~ab = (~ı0, ~0)ẍb. Thus, the problem is to
ensure the existence of a unique, continuous solution ẋb(t) to the differential system (A.1).
Without loss of generality, assume that the wind velocity and its derivative are bounded,
i.e. ∃c ∈ R+ : |ẍw| < c, |ẋw| < c. Then, one verifies that f(ẋb, t) is uniformly, locally
Lipschitz (Khalil, 2003, p. 90 Lemma 3.2) on any compact, convex Dc ⊂ R2 since ∃δ ∈
R+ : |∂ẋb

f | < δ,∀ẋb ∈ Dc. Consequently, there exists a unique, continuous solution ẋb(t)
to the differential system (A.1) in Dc. However, we cannot claim that the solution ẋb

is unique in R2 since this solution may leave any compact set – it may tend to infinity
in finite time (Khalil, 2003, p. 93 Example 3.3). By considering the derivative of the
positive-definite function given by

V = 1
2

|ẋb − ẋw|2,

one shows that the solutions to the differential system (A.1) are bounded, so there exists
a convex, compact Dc that contains any solution starting at ẋb(0) ∈ R2. Therefore, we
deduce that there exists a unique, continuous solution to System (A.1) ∀ẋb(0) ∈ R2 and,
consequently, to F (~vb, t) = 0 ∀t.
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A.2 Proof of Lemma 7.2

First, in view of ~F = (~ı0, ~0)F , ~Fa = (~ı0, ~0)Fa, ~g = (~ı0, ~0)ge1, ~ = (~ı0, ~0)Re2,
~vw = (~ı0, ~0)ẋw, ~vr = (~ı0, ~0)ẋr, ~ar = (~ı0, ~0)ẍr, and ~va = (~ı0, ~0)ẋa, the existence
of an equilibrium orientation such that (6.19b) holds is equivalent to the existence, at any
fixed time t, of one zero of the following function

ft(θ) := F T (ẋr(t), θ, t)R(θ)e2, (A.2)
where

F (ẋ, θ, t) = Fgr(t) + Fa(ẋa, α(ẋa, θ)), (A.3a)
Fgr := mge1 −mẍr, (A.3b)
Fa = ka|ẋa|[cL(α)S − cD(α)I]ẋa, (A.3c)
ẋa = ẋ− ẋw, (A.3d)
α = θ − γ + (π − δ) (A.3e)
γ = atan2(ẋa2 , ẋa1). (A.3f)

In terms of vectors of coordinates, the dissipativity of the aerodynamic force (7.5) writes
ẋT

aFa ≤ 0 ∀(ẋa, α). (A.4)
To show that (A.4) does not in general imply the existence of an equilibrium orientation,
it suffices to find an aerodynamic force satisfying (A.4) and such that the function given
by (A.2) never crosses zero for some reference and wind velocities at a some fixed time
instant. To show this, assume {

cL(α) = sin(α)
cD(α) = c0 + 1 − cos(α),

(A.5)

with c0 > 0. It is then straightforward to verify that the aerodynamic force given by
(A.3c) with the coefficients (A.5) satisfies (A.4); in addition, note also that

cL(0) = cL(π) = 0.
Now, since the vector F in the right hand side of Eq. (A.2) is evaluated at the reference
velocity, we have to evaluate the quantities (A.3) at ẋr. Let us assume that
A1 : the thrust force is perpendicular to the zero-lift direction, e.g. δ = π/2;
A2 : there exists a time t such that

i the reference and wind velocities imply γ(ẋr(t)−ẋw(t))=π/2 and ka|ẋr(t)−ẋw(t)|2=1;

ii the reference acceleration ẍr(t) implies Fgr1(t) = 0 and Fgr2(t) = c0 + 1.
By evaluating the angle of attack (A.3e) at the reference velocity with the assumptions
A1 and A2i, one verifies that α(t) = θ. Then, (A.2) at t = t becomes

ft(θ) = [Fgr2(t) − cD(θ)] cos(θ) + [cL(θ) − Fgr1(t)] sin(θ). (A.6)
In view of the aerodynamic coefficients (A.5) and the assumption A2ii, one has

ft(θ) ≡ 1 6= 0.
Hence, there exists an aerodynamic force that satisfies (A.4) but for which there does
not exist an equilibrium orientation for some reference and wind velocities at a fixed time
instant. Then, (A.4) does not in general imply the existence of an equilibrium orientation.
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A.3 Proof of Theorem 7.1

Recall that the existence of an equilibrium orientation such that (6.19b) holds is equiv-
alent to the existence, at any fixed time t, of one zero of the function ft(θ) given by (A.2).

A.3.1 Proof of the Item 1

Assume that the thrust force is parallel to the zero-lift-line so that δ = 0; the existence
of the equilibrium orientation in the case δ = π can be proven using the same arguments
as those below. Now, in view of Eqs. (6.7), namely{

va1 = −|ẋa| cos(α+ δ)
va2 = |ẋa| sin(α+ δ),

(A.7)

ẋa = R(θ)va, S = RT (θ)SR(θ), and of δ = 0, one verifies that the function ft(θ) given by
(A.2) becomes

ft(θ) = F T
gr(t)R(θ)e2 − ka|ẋrw(t)|2[cL(αr) cos(αr) + cD(αr) sin(αr)], (A.8)

where Fgr(t) is given by (A.3b) and

αr(θ, t) = θ − γr(t) + π, (A.9a)
γr(t) = atan2(ẋrw2 , ẋrw1), (A.9b)
ẋrw(t) := ẋr(t) − ẋw(t). (A.9c)

It follows from (A.9a) that at any time t there exists an orientation θ0(t) such that
θ = θ0(t) yields αr(t) = 0, namely

θ = θ0(t) = γr(t) − π ⇒ αr(t) = 0.

Consequently, θ = θ0(t) + π yields αr(t) = π and θ = θ0(t) − π yields αr(t) = −π. Now,
the assumption that the body’s shape is symmetric implies (see Section 6.2.1)

cL(0) = cL(π) = cL(−π) = 0.

Thus, from Eq. (A.8) one obtains

ft(θ0(t) + π) = ft(θ0(t) − π) = −ft(θ0(t)) (A.10)

since eT
2R

T (θ0 +π)Fgr(t) = eT
2R

T (θ0 −π)Fgr(t) = −eT
2R

T (θ0)Fgr(t). In view of (A.10), the
proof of the existence of (at least) two zeros of the function ft(θ) at any fixed time t, and
thus of two equilibrium orientations, is then a direct application of the intermediate value
theorem since, by assumption, ft(θ) is continuous versus θ (cL and cD are continuous) and
defined ∀t (ẋr is differentiable). These two zeros, denoted by θe1(t) and θe2(t), belong to
θe1(t) ∈ [θ0(t) − π, θ0(t)] and θe2(t) ∈ [θ0(t), θ0(t) + π].
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A.3.2 Proof of the Item 2

Under the assumption that the body’s shape is bisymmetric one has (see Section 6.2.1).

cD(α) = cD(α± π) ∀α,
cL(α) = cL(α± π) ∀α.

In view of Fa given by (A.3c), the above property of the aerodynamic coefficients imply

Fa(ẋa, α) = Fa(ẋa, α± π).

Then, using this property of the aerodynamic force and the expression of the angle of
attack in (A.3e), one verifies that the apparent external force given by (A.3a) satisfies

F (ẋ, θ, t) = F (ẋ, θ ± π, t) ∀(ẋ, θ, t). (A.11)

In turn, it is straightforward to verify that the function ft(θ) given by (A.2) satisfies, at
any fixed time t, the following property

ft(θ + π) = ft(θ − π) = −ft(θ) ∀θ. (A.12)

Then, analogously to the proof of the Item 1), the existence of at least two equilibrium
orientations θe1(t) and θe2(t) such that

ft(θe1(t)) = ft(θe2(t)) = 0

can be shown by applying the intermediate value theorem.
Observe that Eqs. (A.12) imply that if θe1(t) is an equilibrium orientation, i.e.

ft(θe1(t)) = 0 ∀t,

then another equilibrium orientation is given by θe2(t) = θe1(t) + π. Now, to show that
there always exists an equilibrium orientation ensuring a positive-semi definite thrust
intensity, from Eq (6.19a) observe that the thrust intensity at the equilibrium point is
given by

Te = F T (ẋr(t), θe(t), t)R(θe(t))e1.

Then, it follows from (A.11) that if the thrust intensity is negative-semi definite at t along
an equilibrium orientation, i.e.

Te(ẋr(t), θe1(t), t) ≤ 0,

then it is positive-semi definite at the the equilibrium orientation given by θe2(t)=θe1(t)+π,
i.e.

Te(ẋr(t), θe1(t) + π, t) ≥ 0.

Hence, on can always build up an equilibrium orientation θe(t) associated with a positive-
semi definite thrust intensity. Clearly, the continuity of such an equilibrium cannot be
guaranteed a priori.
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A.4 Proof of Theorem 7.2

First, observe that if sin(δ) = 0, then the existence of the equilibrium orientation follows
from Theorem 7.1 since the thrust force is parallel to the zero-lift-direction in this case.
Hence assume that

sin(δ) 6= 0. (A.13)

Recall that the existence of an equilibrium orientation such that (6.19b) holds is equivalent
to the existence, at any fixed time t, of one zero of the function ft(θ) given by (A.2). In
view of (A.7), ẋa = R(θ)va, and of S = RT (θ)SR(θ), one can verify that (A.2) becomes

ft(θ) = F T
gr(t)R(θ)e2 − ka|ẋrw(t)|2[cL(αr) cos(αr + δ) + cD(αr) sin(αr + δ)], (A.14)

where Fgr is given by (A.3b),

αr = αr(θ, t) = θ − γr(t) + π − δ, (A.15)

γr by (A.9b), and ẋrw by (A.9c).
From Eq. (A.14) note that if |ẋrw(t)| = 0, then there exist two zeros for the function

ft(θ), i.e. two equilibrium orientations at the time t. Thus, let us now focus when

|ẋrw(t)| 6= 0. (A.16)

It follows from (A.15) that at any fixed time t, there exists an orientation

θ0(t) = γr(t) − π + δ

such that θ = θ0(t) yields αr = 0, so θ = θ0(t) + π yields αr = π. Now, if

ft(θ0(t))ft(θ0(t) + π) ≤ 0,

then there exists a zero for the function ft(θ), and this zero belongs to the domain
[θ0(t), θ0(t) + π]. This is due to the fact that the function ft(θ) changes sign on this
domain and is continuous versus θ. We are thus interested in the case when the above
inequality is not satisfied. Therefore, assume also that

ft(θ0(t))ft(θ0(t) + π) > 0. (A.17)

Given the assumption that the body’s shape is symmetric, one has cL(0) = cL(π) = 0.
So, in view of (A.14), imposing (A.17) divided by k2

a|ẋrw(t)|4 sin(δ)2, which we recall is
assumed to be different from zero, yields

[at − cD(0)][cD(π) − at] > 0, (A.18)

where

at :=
F T

gr(t)R(θ0(t))e2

ka sin(δ)|ẋrw(t)|2
. (A.19)
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Under the assumption that cD(0) < cD(π), the inequality (A.18) implies that

cD(0) < at < cD(π). (A.20)

When the constraint (A.20) is satisfied, the inequality (A.17) holds and we cannot (yet)
claim the existence of an equilibrium orientation at the time instant t. The following
shows that when the inequality (A.20) is satisfied, the existence of an equilibrium ori-
entation at the time instant t follows from the symmetry of the body’s shape provided
that the conditions of Theorem 7.2 hold true. Recall that when the inequality (A.20) is
not satisfied, the existence of an equilibrium orientation at the time t follows from the
arguments used in the beginning of this proof.

Now, under the assumption that the body’s shape is symmetric one has

cD(α) = cD(−α), (A.21a)
cL(α) = − cL(−α). (A.21b)

Let α ∈ R+; then, by using (A.14) and the above properties of the aerodynamic coeffi-
cients, one verifies that (recall that θ = θ0(t) ⇒ αr(t) = 0, so θ = θ0(t)±α ⇒ αr(t) = ±α)

ft(θ0(t) − α)ft(θ0(t) + α) = [∆a sin(δ) + Λb][∆a sin(δ) − Λb] = ∆2
a sin2(δ) − Λ2

b , (A.22)

with

∆a = ∆a(α) := [at − cD(α)] cos(α) + cL(α) sin(α), (A.23)
Λb = Λb(α) := [bt + cD(α) cos(δ)] sin(α) + cL(α) cos(α) cos(δ),

bt :=
F T

gr(t)R(θ0(t))e1

ka|ẋrw(t)|2
.

It follows from Eq. (A.22) that if

∀at : cD(0) < at < cD(π), ∃αa ∈ R : ∆a(αa) = 0, (A.24)

then there exists a zero for the function ft(θ), and this zero belongs to the domain given
by [θ0(t) − αa, θ0(t) + αa] (the function ft(θ) would change sign in this domain). The
existence of a value αa, such that (A.24) holds, can be deduced by imposing that

∀at : cD(0) < at < cD(π), ∃α0, αs ∈ R, : ∆a(α0)∆a(αs) ≤ 0, (A.25)

which implies (A.24) with αa ∈ [α0, αs] since ∆a(α) is continuous versus α. Now, in view
of (A.23) note that ∀at : cD(0) < at < cD(π) one has

∆a(0) > 0. (A.26)

In addition, still from (A.23) note that ∀at : cD(0) < at < cD(π) one has

∆a(α) ≤ cD(π)| cos(α)| − cD(α) cos(α) + cL(α) sin(α).

Therefore, if there exists an angle αs ∈ (0, 90◦) such that cL(αs) > 0 and

cL(αs) sin(αs) − [cD(αs) − cD(π)] cos(αs) ≤ 0 ⇐⇒ tan(αs) ≤ cD(αs) − cD(π)
cL(αs)

,

then ∆a(αs) ≤ 0 and (A.25) holds with α0 = 0. Consequently, there exists an angle αa

such that (A.24) is satisfied and, subsequently, an equilibrium orientation θe(t) such that
ft(θe(t)) = 0.
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A.5 Proof of Lemma 7.3

Once the velocity errors dynamics are transformed into the form (7.12), i.e.

m~̇ev = ~Fp − Tp~ı,

with ~Fp independent of θ, one verifies that ~ev ≡ 0 implies (recall that θ = angle(~ı0,~ı))
Tp = |~Fp(~vr, t)|,

~ı(θe) =
~Fp(~vr, t)

|~Fp(~vr, t)|
⇒ θe = ξp(t),

(A.27)

and 
Tp = −|~Fp(~vr, t)|,

~ı(θe) = −
~Fp(~vr, t)

|~Fp(~vr, t)|
⇒ θe = ξp(t) + π,

(A.28)

where ξp denotes the angle between the vertical direction ~ı0 and ~Fp(~vr, t), i.e.

ξp = angle(~ı0, ~Fp(~vr, t)).

Consequently, at the time instant t one has

cardinality(Θ~vr(t)) = 2,

if |~Fp(~vr(t), t)| 6= 0 and
Θ~vr(t) = S1,

if |~Fp(~vr(t), t)| = 0. Then, system (6.15b) has a generically-unique pair of equilibrium
orientations (see the Definition 6.2) if and only if there exists a unique, continuous bad
reference velocity ~vb(t) such that

|~Fp(~vb(t), t)| = 0 ∀t.

From here, the proof proceeds as the proof of Lemma A.1.

A.6 Proof of Lemma 7.4

The aerodynamic force in the form (7.8) points out that we can transform the system’s
dynamics (6.1a) into (7.10) with ~fp independent of θ if and only if cD, i.e.

cD = cD(α) + [cL(α) − cL] cot(α+ δ),

and cL are independent of θ. Now, if cD is independent of θ, then its derivative w.r.t. θ
(which equals its derivative w.r.t. α) is equal to zero everywhere, i.e.

c′
D = c′

D(α) + [c′
L(α) − c′

L] cot(α+ δ) − cL(α) − cL

sin(α+ δ)2 ≡ 0 ⇐⇒

c′
D(α) sin(α+ δ)2 + [c′

L(α) − c′
L] cos(α+ δ) sin(α+ δ) − cL(α) + cL ≡ 0. (A.29)
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If there exists an orientation-independent cL such that the above equation is satisfied,
then differentiating Eq. (A.29) w.r.t. θ yields

(c′′
D − 2c′

L) sin(α+ δ) + (c′′
L + 2c′

D) cos(α+ δ) ≡ 0.

Since the aerodynamic coefficients are independent of the angle δ, i.e. the angle between
the thrust force and the zero-lift direction, the above differential equation is satisfied for
any value of δ only if {

c′′
D − 2c′

L = 0 ∀α,
c′′

L + 2c′
D = 0 ∀α.

(A.30)

The general solution to the linear differential system (A.30) is:{
cD(α) = b0 + b1 sin(2α) − b2 cos(2α),
cL(α) = b3 + b1 cos(2α) + b2 sin(2α),

with bj denoting constants numbers. When the shape of the body is symmetric, the above
functions must also satisfy the conditions (6.8). This implies that b1 and b3 are equal to
zero. Using the fact that cos(2α) = 1 − 2 sin2(α), one obtains (7.14) with c0 = b0 − b2 and
b2 = c1.

A.7 Proof of Theorem 7.3

By using (A.7) and ẋa = Rva, one verifies that

Fa − TRe1 ≡ fp − TpRe1, (A.31)

where Fa and fp are the vectors of coordinates of the geometric vectors ~Fa and ~fp, given
by (6.2) and (7.47a) expressed in the inertial frame basis, i.e.

fp = ka|ẋa| [cLp(α)S − cDp(α)I] ẋa, (A.32a)
Fa = ka|ẋa| [cL(α)S − cD(α)I] ẋa, (A.32b)

with cLp(α) and cDp(α) given by (7.48) and Tp by (7.47b), i.e.{
cLp(α) = cL(α) − [c′

L(α) cos(α+ δ) + c′
D(α) sin(α+ δ)] sin(α+ δ),

cDp(α) = cD(α) + [c′
L(α) cos(α+ δ) + c′

D(α) sin(α+ δ)] cos(α+ δ),
(A.33)

and

Tp = T + ka|~va|2[c′
L(α) cos(α+ δ) + c′

D(α) sin(α+ δ)]. (A.34)

Then, the possibility of writing the body’s dynamic equation (6.1a) as (7.46) follows from
(A.31). Observe that (A.31) also implies that

eT
1R

T (Fa − fp) ≡ − ka|~va|2[c′
L(α) cos(α+ δ) + c′

D(α) sin(α+ δ)], (A.35a)
eT

2R
T (Fa − fp) ≡ 0. (A.35b)
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A.7.1 Proof of the Item 1

Recall that a sufficient condition for θe(t) to be isolated and differentiable at the time t
is (see Section 7.5)

∂θe
T
2R

TF
∣∣∣
(ẋ,θ)≡(ẋr(t),θe(t))

6= 0, (A.36)

where F is the vector of coordinates of the apparent external force ~F in the inertial frame,
i.e.

F = mge1 + Fa −mẍr. (A.37)

By using the relationships (A.7), ∂θF = ∂θFa = ∂αFa, and Eq. (A.35a), one has

∂θe
T
2R

TF = −eT
2 SR

TF + eT
2R

T∂αFa = −eT
1R

TF + eT
1R

T (Fa − fp). (A.38)

Let Fp denote the vector of coordinates of the geometric vector given by (7.49) expressed
in the inertial frame basis, i.e.

Fp = mge1 + fp −mẍr, (A.39)

with fp given by (A.32a). Then, it follows from (A.37), (A.38), and (A.39) that

∂θe
T
2R

TF = −eT
1R

TFp. (A.40)

Now, from (A.35b), (A.37), and (A.39), it is a simple matter to verify that

eT
2R

TF ≡ eT
2R

TFp. (A.41)

Also, recall that at the equilibrium one has

eT
2R

TF
∣∣∣
(ẋ,θ)≡(ẋr,θe)

≡ 0,

therefore, in view of (A.41), at the equilibrium one has

eT
2R

TFp

∣∣∣
(ẋ,θ)≡(ẋr,θe)

≡ 0, (A.42)

i.e. the second component of the vector RTFp is equal to zero at the equilibrium point.
Now, in view of

|Fp| = |RTFp|,

and of the assumption that the vector Fp is different from zero at the equilibrium point,
one has that the first component of the vector RTFp is necessarily different from zero at
the equilibrium point, i.e.

eT
1R

TFp

∣∣∣
(ẋ,θ)≡(ẋr,θe)

6= 0.

This in turn implies, via (A.40), that the condition (A.36) is satisfied. Consequently, the
equilibrium orientation θe(t) is isolated and differentiable at the time instant t.



Proof of Theorem 7.3 142

A.7.2 Proof of the Item 2

To show that the direction of the vector ~Fp is almost constant w.r.t. the orientation
close to the equilibrium configuration, i.e.

∂θ

 ~Fp

|~Fp|

∣∣∣∣∣
(~ev ,θ)=(0,θe(t))

= 0,

we equivalently show that

∂θξp

∣∣∣
(~ev ,θ)=(0,θe(t))

= 0, (A.43)

where

ξp := angle(~ı0, ~Fp) = atan2(Fp2 , Fp1), (A.44)

with Fp given by (A.39). By using the above equation and the fact that

∂θFp = ∂θfp = ∂αfp,

one verifies that

∂θξp = −
F T

p S∂θFp

|Fp|2
= −

F T
p RSR

T∂αfp

|Fp|2
, (A.45)

where fp is given by (A.32a). Now, in view of fp as given by (A.32a), ẋa = Rva, and (A.7),
one verifies that the second component of the vector RT∂θfp is equal to zero everywhere,
i.e.

eT
2R

T∂αfp ≡ 0. (A.46)

Then from Eq. (A.45) one obtains

∂θξp = −eT
1R

T∂αfp

|Fp|2
eT

2R
TFp. (A.47)

Therefore, because of (A.42) and (7.45), one shows (A.43).

A.7.3 Proof of the Item 3

It is straightforward to verify that the coefficients cLp(α) and cDp(α) given by (A.33)
can be rewritten as {

cLp(α) = cL − c′
D sin(α+ δ)2,

cDp(α) = cD + c′
D sin(α+ δ) cos(α+ δ),

with

cD = cD(α) = cD(α) + [cL(α) − cL] cot(α+ δ),

and cL a constant number. If the condition (7.9) is satisfied, i.e. cD is constant, then{
cLp = cL,

cDp = cD,

and ~fp given by (7.47a) coincides with the vector given by (7.11a).
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A.8 Proof of Lemma 7.6

By decomposing the velocity error ~ev w.r.t. the inertial frame, i.e. ~ev = (~ı0, ~0) ˙̃x, the
dynamics (6.15b) with no wind and constant reference velocity writes

m¨̃x = mge1 + kaH(α(ẋ, θ))ẋ|ẋ| − TR(θ)e1, (A.48)

where

H(α) :=
(

−cD(α) −cL(α)
cL(α) −cD(α)

)
, (A.49a)

αr(ẋ, θ) = θ − γ(ẋ) + π − δ, (A.49b)
γ(ẋ) = atan2(ẋ2, ẋ1). (A.49c)

To study the static stability of a reference velocity in the form

ẋr = ν(cos(γr), sin(γr))T , ν > 0, (A.50)

fix the thrust intensity and vehicle’s orientation at their (constant) equilibrium values,
i.e.

T ≡ Te, (A.51a)
θ ≡ θe. (A.51b)

Then TR(θ)e1 in Eq. (A.48) is a constant vector. Consequently, the linearization of the
dynamics (A.48) at the equilibrium point ˙̃x = 0 is given by

m¨̃x = ka ∂ẋ

[
H(α(ẋ, θe))ẋ|ẋ|

]∣∣∣∣∣
ẋ=ẋr

˙̃x. (A.52)

The stability characteristics of system (A.52) can be then deduced by analyzing the char-
acteristic polynomial of the matrix

∂ẋ

[
H(α(ẋ, θe))ẋ|ẋ|

]∣∣∣
ẋ=ẋr

.

Now, by direct calculations one can verify that

∂ẋ

[
H(α(ẋ, θe))ẋ|ẋ|

]
= [(∂ẋ1H)ẋ|ẋ|, (∂ẋ2H)ẋ|ẋ|] +H(α)∂ẋ(ẋ|ẋ|), (A.53a)

∂ẋ1H = ∂αH∂ẋ1α = H ′ ẋ2

|ẋ|2
, (A.53b)

∂ẋ2H = ∂αH∂ẋ2α = −H ′ ẋ1

|ẋ|2
, (A.53c)

∂ẋ(ẋ|ẋ|) = ẋẋT

|ẋ|
+ |ẋ|I. (A.53d)

Therefore, in view of (A.50) and (A.53), one has

1
ν
∂ẋ

[
H(α(ẋ, θe))ẋ|ẋ|

]∣∣∣∣∣
ẋ=ẋr

= H ′(αe)
[(

cos(γr)
sin(γr)

)
sin(γr),−

(
cos(γr)
sin(γr)

)
cos(γr)

]
+

H(αe)
[(

cos(γr)
sin(γr)

)(
cos(γr) sin(γr)

)
+ I

]
, (A.54)



A.9. Proof of Proposition 8.1 144

where αe is the angle of attack at the equilibrium ẋ ≡ ẋr, i.e.

αe = θe − γr + π − δ.

Since H(α) = cL(α)S − cD(α)I, observe that this matrix satisfies

H = R(·)HRT (·), (A.55a)
H ′ = R(·)H ′RT (·). (A.55b)

Then, (A.54) becomes

1
ν
∂ẋ

[
H(α(ẋ, θe))ẋ|ẋ|

]∣∣∣∣∣
ẋ=ẋr

= R(γr)H ′RT (γr)
[(

cos(γr)
sin(γr)

)
sin(γr),−

(
cos(γr)
sin(γr)

)
cos(γr)

]

+ R(γr)HRT (γr)
[(

cos(γr)
sin(γr)

)(
cos(γr) sin(γr)

)
+ I

]

= R(γr)H ′
[
RT (γr)

(
cos(γr)
sin(γr)

)
sin(γr),−RT (γr)

(
cos(γr)
sin(γr)

)
cos(γr)

]

+ R(γr)H
[
RT (γr)

(
cos(γr)
sin(γr)

)(
cos(γr) sin(γr)

)
R(γr)+I

]
RT (γr)

= R(γr)
(

−2cD(αe) c′
D(αe) − cL(αe)

2cL(αe) −c′
L(αe) − cD(αe)

)
RT (γr). (A.56)

The expression (A.56) points out that the real parts of the eigenvalues of

∂ẋ

[
H(α(ẋ, θe))ẋ|ẋ|

]∣∣∣
ẋ=ẋr

have the same signs of those of(
−2cD(αe) c′

D(αe) − cL(αe)
2cL(αe) −c′

L(αe) − cD(αe)

)
,

the characteristics polynomial of which results

λ2 + p(αe)λ+ 2q(αe) = 0.

An application of the Routh–Hurwitz stability criterion to the above equation leads to
the statement in Lemma 7.6.

A.9 Proof of Proposition 8.1

By decomposing the velocity errors in the body frame basis, i.e. ~ev = (~ı,~)ṽ, from
System (8.3b)-(8.3c) one obtains

m ˙̃v = −mωSṽ − Tpe1 + F p, (A.57a)
θ̇ = ω, (A.57b)

with F p = RTFp, Fp given by (A.39), and fp by (A.32a). Recall that θ̃ ∈ (−π, π] denotes
the angle between the two vectors e1 and F p so that |Fp| cos(θ̃) = F p1 , and that the
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control objective is the asymptotic stabilization of θ̃ to zero. Now, consider the candidate
Lyapunov function V defined by:

V = m

2
|ṽ|2 + 1

k2

(
1 − F p1

|Fp|

)
. (A.58)

Via direct calculations one can verify that

d

dt

(
1 − F p1

|Fp|

)
= − F p2

k2|Fp|

(
ω +

F T
p SḞp

|Fp|2

)
. (A.59)

In view of (A.39), fp(ẋa, α) as (A.32a), Fδ as (8.19c), and α = θ− γ + π− δ, the term Ḟp

in the right hand side of the above equation becomes

Ḟp = ∂ẋafp ẍa + ∂αfp α̇−m
...
x r = ∂ẋafp ẍa − ∂αfp γ̇ + ∂αfp ω −m

...
x r = Fδ + ∂αfp ω.

In light of (A.59) and of the above relationship, the function V̇ along the solutions of
System (A.57) becomes

V̇ = ṽ1(F p1 − Tp) − F p2

k2|Fp|

[(
1 +

F T
p S∂αfp

|Fp|2

)
ω +

F T
p SFδ

|Fp|2
− k2|Fp|ṽ2

]
. (A.60)

Given S = RSRT , (A.46), fp(ẋa, α) as (A.32a), ẋa = Rva, (A.7), (A.41), δ = 0, and

c = cD(α) + cL(α) cot(α),

the term multiplying ω in (A.60) becomes:

1 +
F T

p S∂αfp

|Fp|2
= 1 + F p2

eT
1R

T∂αfp

|Fp|2
= 1 + kaF 2|ẋa|2 sin(α)c′′ + 2 cos(α)c′

|Fp|2
, (A.61)

which is equal to one, and thus different from zero, close to the equilibrium point1. Now,
given Tp in (A.34), the property (A.35b), F in (A.37), and Fp in (A.39), one verifies that

F p1 − Tp ≡ F 1 − T.

Then, by using (A.61) and the above relationship, the expression V̇ in (A.60) becomes

V̇ = ṽ1(F 1 − T ) − F p2

k2|Fp|

[(
1 + kaF 2|ẋa|2 sin(α)c′′ + 2 cos(α)c′

|Fp|2

)
ω +

F T
p SFδ

|Fp|2
− k2|Fp|ṽ2

]
.

The application of the control laws (T, ω) given by (8.18) thus yields

V̇ = −k1|Fp|ṽ2
1 −

k3F
2
p2

k2(|Fp| + F p1)2 = −k1|Fp|ṽ2
1 − k3

k2
tan2

(
θ̃

2

)
, (A.62)

because

tan2(θ̃/2) =
F

2
p2

(|Fp| + F p1)2 .

1From Eq. (A.57a) note that close at the equilibrium point, i.e. ṽ ≡ 0, one has F p2 ≡ 0.
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Since V̇ is negative semi-definite, the velocity error term ṽ is bounded. The next step of
the proof consists in showing the uniform continuity of V̇ along every system’s solution
and, using Barbalat’s lemma, one deduces the convergence of ṽ and θ̃ to zero. This part
of the proof is similar to the proof developed in (Hua et al., 2009a, Appendix C) (Hua,
2009, p. 80), which is recalled here for the sake of completeness.

In order to prove the mentioned uniform continuity of V̇ , it suffices to show that V̈
is bounded. Note that in view of Assumption 4, the vector Fp is different from zero in
an open neighborhood of (ṽ, θ̃) = (0, 0). Consequently, it is a simple matter to verify
that there exists an open neighborhood of (ṽ, θ̃) = (0, 0) in which V̈ is bounded. As a
consequence, in view of (A.62), there exists an open neighborhood of (ṽ, θ̃) = (0, 0) such
that for any initial condition in it, ṽ1 and θ̃ converge to zero. Now, in order to show that
ṽ2 tends to zero, observe that

d

dt

F p2

|Fp|
= −k2F p1 ṽ2 + k3

F p1F p2

(|Fp| + F p1)2 , (A.63)

where the control inputs (T, ω) were chosen as (8.18). By applying Barbalat’s Lemma,
one verifies the uniform continuity of (A.63) in a neighborhood of (ṽ, θ̃) = (0, 0). Then,
the right hand side of (A.63) tends to zero. Since

F p2 → 0, (|Fp| + F p1)2 > 0, F p1 → |Fp| > 0

in a neighborhood of (ṽ, θ̃) = (0, 0), then there exists an open neighborhood of (ṽ, θ̃) =
(0, 0) such that for any initial condition in it, ṽ2 necessarily tends to zero. As for the sta-
bility of the equilibrium (ṽ, θ̃) = (0, 0), it is a consequence of relations (A.58) and (A.62).

A.10 Proof of Proposition 8.3

The proof of this proposition is similar to the proof of the velocity control given
by (Hua et al., 2009a, Appendix D) (Hua, 2009, p. 82) by setting, in these proofs, the
so-called modeling errors c equal to zero. Let us briefly recall that the proof relies on
rewriting the dynamics ˙̃v as

m ˙̃v = −mωSṽ − Tpe1 +RTFp −RTh(|Iv|2)Iv, (A.64)

and on the candidate Lyapunov function

V = m

2
|ṽ|2 + 1

k2

(
1 − F p1

|Fp|

)
+
∫ |Iv |

0
f(s) ds (A.65)

with f : s → h(s2)s, which satisfies properties (8.25). In view of the statement in
Proposition 8.3, differentiating the above relation w.r.t. t points out that V̇ satisfies
equality (A.62) in a neighborhood of the equilibrium point. Then the convergence of
(Iv, ṽ, θ̃) to (0, 0, 0) proceeds like the proof of Proposition 8.1.
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A.11 Proof of Proposition 8.4

The proof of this proposition is similar to the proof of the position control presented
in (Hua et al., 2009a, Appendix E) (Hua, 2009, p. 83) by setting, in these proofs, the
so-called modeling errors c equal to zero. Let us briefly recall that the proof relies on the
dynamics of v, i.e.

mv̇ = −mωSv − Tpe1 +RTFp −RTh(|Iv|2)Iv, (A.66)

with f : s → h(s2)s, , which satisfies properties (8.25), and on the candidate Lyapunov
function defined by

V = m

2
|v|2 + 1

k2

(
1 − F p1

|Fp|

)
+
∫ |y|

0
f(s) ds. (A.67)

By differentiating the above function, one verifies that V̇ satisfies

V̇=−k1|Fp|v2
1 −

k3F
2
p2

k2(|Fp| + F p1)2 . (A.68)

Then, the convergence of (y, v, θ̃) to (0, 0, 0) and the stability of the associated subsystem
can be proven by using the same arguments as in the proof of Proposition 8.3. Now, the
convergence of (z, ż) to zero can be shown as follows. First, rewrite System (8.27) as

Ż = F (Z) +G(y, Z), (A.69)

with Z = (z, ż), F (Z) = (ż,−2kz ż − k2
zz + k2

zsat∆(z) − kzhz(|z|2)z)T , and G(y, Z) =
kz(0, hz(|y − z|2)(y − z) + hz(|z|2)z)T ; observe that G(y, Z) is bounded and vanishes
ultimately (one can verify from system (8.27) that z and ż are bounded, see (Hua, 2009,
p. 89) for details). Then, the convergence of (z, ż) to zero can be shown by verifying that
Z = 0 is a globally exponentially stable point of the system Ż = F (Z). To this purpose,
consider the Lyapunov function defined by

U = 1
2

|z|2 + 1
k2

(
1 − F p1

|Fp|

)
+ 1

2kz

∫ |z|2

0
hz(s) ds+ 1

2

∣∣∣∣z + ż

kz

∣∣∣∣2 . (A.70)

Then, the derivative of the above function w.r.t. t can be shown to satisfy

U̇ ≤ −αuU, (A.71)

with αu some positive constant. So, the the convergence of (z, ż) to zero follows from (A.69).
Then, sinceG(·) is a continuous function, one shows that the equilibrium point (z, ż, x̃, ṽ, θ̃)
= (0, 0, 0, 0, 0) is an asymptotically stable equilibrium point of the controlled System (8.1)
complemented with System (8.27).


