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Abstract

Comparative genomics is essentially a form of data mining in large collections of n-ary
relations between genomic elements. Increases in the number of sequenced genomes create
a stress on comparative genomics that grows, at worse geometrically, for every increase
in sequence data. Even modestly-sized labs now routinely obtain several genomes at a
time, and like large consortiums expect to be able to perform all-against-all analyses as
part of these new multi-genome strategies. In order to address the needs at all levels it
is necessary to rethink the algorithmic frameworks and data storage technologies used for
comparative genomics.

To meet these challenges of scale, in this thesis we develop novel methods based on
NoSQL and MapReduce technologies. Using a characterization of the kinds of data used in
comparative genomics, and a study of usage patterns for their analysis, we define a practical
formalism for genomic Big Data, implement it using the Cassandra NoSQL platform,
and evaluate its performance. Furthermore, using two quite different global analyses in
comparative genomics, we define two strategies for adapting these applications to the
MapReduce paradigm and derive new algorithms. For the first, identifying gene fusion and
fission events in phylogenies, we reformulate the problem as a bounded parallel traversal
that avoids high-latency graph-based algorithms. For the second, consensus clustering to
identify protein families, we define an iterative sampling procedure that quickly converges
to the desired global result. For both of these new algorithms, we implement each in
the Hadoop MapReduce platform, and evaluate their performance. The performance is
competitive and scales much better than existing solutions, but requires particular (and
future) effort in devising specific algorithms.






Résumé

La génomique comparée est essentiellement une forme de fouille de données dans des
grandes collections de relations n-aires. La croissance du nombre de génomes sequencés
créé un stress sur la génomique comparée qui croit, au pire géométriquement, avec la
croissance en données de séquence. Aujourd’hui méme des laboratoires de taille modeste
obtient, de facon routine, plusieurs génomes a la fois — et comme des grands consortia
attend de pouvoir réaliser des analyses tout-contre-tout dans le cadre de ses stratégies
multi-génomes. Afin d’adresser les besoins & tous niveaux il est nécessaire de repenser les
cadres algorithmiques et les technologies de stockage de données utilisés pour la génomique
comparée.

Pour répondre a ces défis de mise a ’échelle, dans cette these nous développons des
méthodes originales basées sur les technologies NoSQL et MapReduce. A partir d’une
caractérisation des sorts de données utilisés en génomique comparée et d’'une étude des
utilisations typiques, nous définissons un formalisme pour le Big Data en génomique,
I'implémentons dans la plateforme NoSQL Cassandra, et évaluons sa performance. En-
suite, & partir de deux analyses globales tres différentes en génomique comparée, nous
définissons deux stratégies pour adapter ces applications au paradigme MapReduce et
dérivons de nouveaux algorithmes. Pour le premier, I'identification d’événements de fusion
et de fission de geénes au sein d’une phylogénie, nous reformulons le probleme sous forme
d’un parcours en parallele borné qui évite la latence d’algorithmes de graphe. Pour le sec-
ond, le clustering consensus utilisé pour identifier des familles de protéines, nous définissons
une procédure d’échantillonnage itérative qui converge rapidement vers le résultat global
voulu. Pour chacun de ces deux algorithmes, nous l'implémentons dans la plateforme
MapReduce Hadoop, et évaluons leurs performances. Cette performance est compétitive
et passe a ’échelle beaucoup mieux que les algorithmes existants, mais exige un effort
particulier (et futur) pour inventer les algorithmes spécifiques.
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Chapter 1

Introduction

Résumé : Dans cette thése nous adressons certains défis en génomique com-
parée liés a la croissance des données et des relations n-aires entre eux, par le
développement de nouvelles représentations et de nouvelles stratégies algorith-
miques. Le défi particulier est que ces relations n-aires croissent rapidement
et au pire géométrigquement. Mes développements théoriques sont traduit en
implémentation de logiciels pratiques, qui nous validons ensuite sur des jeux de
données de taille conséquente.

En termes concrets, a partir d’une analyse d’une expérience concréte issue du
projet de comparaison de génomes Génolevures, nous avons défini, mis en cuvre
et évalué un systéeme distribué NoSQL de stockage de données et de relations. Les
performances sont meilleurs et une bonne mise a l’échelle est démontrée. Ensuite,
sur la base de méthodes existantes, nous avons rentré deux analyses globales de
génomes dans le paradigme de calcul distribué MapReduce. La premiére méthode,
qui identifie des événements anciens de fusion et de fission de génes, a pu étre
adapté a MapReduce grace a un nouvel algorithme. La seconde méthode, utilisée
pour partitionner des ensembles de génes en familles phylogénétiques, a été adapté
a MapReduce par la définition d’un processus d’échantionnage itératif qui converge
sur le résultat recherché. Ces exemples montrent que MapReduce est une bonne
approche pour certains calculs en génomique comparée, mais que l’adaptation
d’algorithmes existants pourrait demander des stratégies trés différentes.

In this thesis I address scaling challenges for computational biology, by developing new
data representations and new distributed algorithmic strategies for comparative genomics.
I translate these theoretical designs into practical software solutions, which I validate on
large data sets derived from existing well-studied genome comparisons.

1.1 Scaling up and out

It is a basic irony of Computer Science that the more we improve our computers, the
less we are content with resulting improvement to old problems, and the more we seek
improved techniques to attack even larger problems. Every generation of programs and
operating systems includes new functionalities that consume the advantages of Moore’s
law improvements to hardware, and consequently require new innovation in software to
stay ahead. In this sense, scaling is a fundamental problem for Computer Science.
Historically, we speak of scaling up to new application instances through the improve-
ment of computer hardware: faster processors with more cores, faster primary and sec-
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ondary memory with greater capacity. More recently, we speak also of scaling out, where
new capacity is seamlessly added to an existing infrastructure by installing additional com-
puters to share the load, rather than by adding capacity to existing computers (Figure
1.1). Systems with good scaling out properties transparently redistribute work to new
computers as they are added. Scaling out also reduces the impact of a single computer
failure, since the system automatically reassigns work to the remaining computers. This
is important when we consider the statistical likelihood of hardware failure: in a network
of 1000 nodes, each with a mean time to failure of 3 years, we expect to see one failed ma-
chine per day on average. We must build software architectures that take adjust robustly
to such failures.

P iz S E 5
f 9 L
. 7 o] ; 5d =
l * iz . ey
CPU Disk cPU C‘Pu Memory Disk cPU

Memory

=> Scaling out: x 100, x 1000 ... >

Figure 1.1: Scaling out flexibly adds nodes to a computing system

1.2 Comparative genomics versus Moore’s law

Computational biology is a general term describing computer-based methods for answer-
ing biological questions. These methods involve algorithms for analyzing a wealth of
different kinds of experimental data: gene and genome sequences, gene expression lev-
els, cell numbers and shapes, even images of specific proteins within cells and tissues.
Our focus will be on analysing genome sequences. Comparative genomics seeks to under-
stand the history and function of genomes by large-scale analysis of the relations between
genomic elements, as contrasted with analyzing of those elements individually. These re-
lations might be classifications into families of homologs, physical maps of gene proximity,
distance measures defined for functional or phylogenetic similarity, among many others
(03 BPGT04d) Bealld [700)

We will see that comparitive genomics presents a serious challenge requiring good
scaling scaling solutions, both to handle the increase in basic data volume, and to handle
the increased dimensionality of the relations between genomes.

1.2.1 Growth in sequencing data volume

The hundred- to thousand-fold decreases in sequencing costs [Wetl2] (Figure [1.2) that
we have seen in the past five years have made it feasible for even small labs to obtain the
genome sequence of a selected organism with their operating budget, something that pre-
viously with Sanger sequencing was only possible for groups of several labs with significant
special funding.

The data volumes are considerable — the number of fully-sequenced microbial genomes
submitted to GenBank doubles every 17 months [vNO4]. The current size (release 113)
of The European Nucleotide Archive (ENA)! is 1.5 Terabytes uncompressed. The 1000

!The European Nucleotide Archive (ENA): http://www.ebi.ac.uk/ena
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Figure 1.2: Genome Sequencing cost from Wetterstrand [Wetl2], showing that genome
sequence acquisition is growing faster than Moore’s law.

Genomes Project? has more than 200 terabytes of sequenced human genomes in its data
base; the data is currently accessible via Amazon Cloud®. Thus, the labs without dedicated
bioinformatics staff may have difficulties maintaining the necessary resources. Significantly,
figure illustrates that sequence volumes are growing faster than Moore’s law, so we
cannot simply rely on improvement to computer hardware to address these new problems.
Innovation in data storage and retrieval methods is needed to keep pace.

1.2.2 Growth in genome-genome relations

Secondly, and more significantly, comparative genomics produces an additional signifi-
cant strain on bioinformatics: for every linear increase in basic genome data, there is a
geometric increase in the relations, represented as n-tuples, between genome elements.
Every new genome results in a jump in the number of logical relations defined by all-
against-all comparisons, which are not just pairwise relations, but arbitrary sets of related

genes[BPGT04b] BSDQOT.

Annotation and comparative analysis illustrate the challenges very well. Comparative
annotation? uses supervised and unsupervised classification of all-against-all comparisons
between genomes to improve the annotation process. Individually annotating a collection
of related genomes requires a linear increase in effort, while at the same time ignoring
a significant source of information, since the related genomes will by design share many
common features. Comparative analysis of the annotated genomes also involves systematic
comparison of genome features. In the worst case both analyses scale geometrically with
the volume of the data. However, as we will see in chapter 3, matrices for comparative
genomics are often sparse and can be efficiently encoded in a well-designed storage system.

21000 Genomes Project: http://www.1000genomes.org

3The 1000 Genomes Project data on Amazon Cloud: http://aws.amazon.com/1000genomes

4Such as that performed by our Magus system for simultaneous genome annotation,
http://magus.gforge.inria.fr
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1.3 Practical motivation for comparative genomics

Developing good computer methods for computational biology, and specifically genomics,
is motivated by biology. In Nature feature [CGGGQO3], Francis Collins and colleagues
argue that this proceeds in three stages: Genomics to biology, elucidating the structure
and function of genomes; Genomics to health, translating genome-based knowledge into
health benefits; and Genomics to society, promoting the use of genomics to maximize
benefits and minimize harms. Through their vision they identify fifteen Grand Challenges
for the future of genomics research.

More modestly, we have motivated our work by two applications in comparative ge-
nomics: paraphyletic strategies for sequencing microorganisms of biotechnological interest,
and analysis of affinity binders for the human proteome.

1.3.1 Paraphyletic sequencing strategies

This decrease in sequencing costs has given rise to a routine multi-genome strategy: in-
stead of sequencing just one genome, labs routinely sequence it and a group of its near
phylogenetic neighbors. By making a careful choice of strains and species, it is possible to
“subtract” the common part of their genomes, and efficiently focus on the specific differ-
ences that are linked to the phenotype in question [WPPT11] ICROT09 [FGM™11]. These
sequencing strategies can be called paraphyletic, in the sense that they sequence collec-
tions of genomes in a single phylogenetic branch defined around an interesting organism,
rather than sequencing the single genome of that organism. The strategy is more sophis-
ticated than just randomly choosing the genomes. The strategy is to choose the related
organisms that share an interesting trait and some that do not. For example, if we were
interested in a pathogen we would choose some genomes that are pathogenic and some
related genomes that are not. If we wanted to understand a specific trait in a cell factory
in order to improve it, we would choose from the branch genomes with and without the
desired trait. During genome comparisons we identify the common parts to find out what
they share, and furthermore “subtract” that common part from individuals to identify
their specific genomic differences and link them to their specific phenotypic differences. If
the collection of related genomes is carefully chosen, then the number of specific differ-
ences will be small, and it will be easier to link them to the specific traits. For example,
in [Con07] twelve species of fruit fly were carefully chosen and sequenced; among many
results 44 lineage-specific genes were found and linked in many cases to specific tissues.
More modestly, in ﬂm the pathogenicity of Candida glabrata was studied through
sequencing and comparison of other pathogen and non-pathogen species from the clade of
the Nakaseomyces, including Candida nivariensis and Candida bracarensis. We considered
comparative annotation and scaling out for paraphyletic strategies in [SGMDTI].

1.3.2 Human genome and proteome

Comparison of individual persons’ genomes is also a form of genome comparison—indeed
reference [CGGGO3J] specifically built on the value of the human genome project (HGP)
for defining a common reference for comparison. Large-scale comparisons of the human
genomes helps research scientists to find gene-target treatments for such diseases as di-
abetes, heart disorders and others. Whole-genome sequencing strategies are widely used
by clinic studies. There is a tendency to move from “one-size-fits-all” medicine to a per-
sonalized medicine [NIHII]. Personalized medicine can significantly improve quality of
a diagnostics by targeting patient-specific genes and eliminating unnecessary treatments
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[KeoT?d]. It works with individual human genome which are all very similar to reference,
but contain significant individual differences responsible for individual traits and possi-
bly susceptibility to deceases. Julie Hoggatt expects in an exponential growth of
the use of the personalized medicine in the coming 10 years, thanks to new sequencing
technologies and advances in genomics, proteomics and pharmacogenomics fields. This
new paradigm in medicine requires developing large-scale data storage for patients data
ﬂm that can support exponential growth, natural language processing for data min-
ing [MHQG] and the decision support techniques [MWCROA].

One application that was used peripherally for this thesis was large-scale abalysis of
a systematic collection of affinity reagents for the human proteome[GS11al SGIQ]. We
worked with the EU ProteomeBinders Consortium® [L07], which like the US National
Cancer Institute Initiatives®, and Human Antibody Initiative” develops binders for the 25
000 human genes and more than 500 000 protein isoforms. Large-scale mining in these
data sets can be used to search for compatible sets of binders for a collection of protein
targets, where all of the binders have comparable specificity, technical constraints, etc., as
well as reasoning over the knowledge base.

1.4 Assets for this thesis

Three assets were essential to the research presented in this thesis.

Génolevures data and use cases. Since 12 years Génolevures is dedicated to large-
scale comparative genomics of Ascomycete yeasts chosen for their biotechnological or med-
ical interest, with a focus on understanding the mechanisms of eukaryote molecular evo-
lution [ST00l [DSET04) [STQ9]. Génolevures maintains a highly-accessed on-line resource
of annotated genomes and results [SMNTQ9, [DMSII]. There are many kinds of relations
there: protein families, synteny groups, conservations of genes and others ﬂm In
our team’s work in the Génolevures Consortium® we routinely analyze 10° genetic elements
and will quadruple this number in projects in the recent future. I used this high quality
data set and its use cases to design new storage and anaysis strategies in chapters|3|and 4]
and validate them in a practical system in chapter |5, I additionally used server logs from
the Génolevures web site to derive stress tests based on real uses.

Magus genome analysis system. Initially, the Magus? genome annotation system was
developed in 2006 by David Sherman for Génolevures based on an earlier system developed
in 2002. Magus 1.0 drives the current web site[SMNTQ9]. Magus is designed around a
standard sequence feature database, is integrated with the Generic Genome Browser!'®
ﬂm, uses various biomedical ontologies!!, and provides a RESTful web interface.
Magus is also designed for curation of the sequence features, presenting competing gene
models and an interface for annotators (curators) to choose and validate the correct gene
model.

"Proteome Binders Consortium: http://www.proteomebinders.org
5US National Cancer Institute: http://www.cancer.gov

"http:// www.hupo.org/research/hai

8Génolevures: http://www.genolevures.org

9Magus: http://magus.gforge.inria.fr

Y Generic Genome Browser: http://www.gmod.org/wiki/GBrowse
" Biomedical ontologies: http://obo.sf.net
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In the context of a reimplementation supported by an Inria Technology Development
Action (ADT), we started Magus 2.0 with a clean object model and a common interface
for the different storage back ends,flexible enough to work with both tables of relational
databases (MySQL and PostgreSQL) and the Cassandra NoSQL column families defined
in this thesis. The new data model was developed in collaboration by myself, David
Sherman, Anna Zhukova, and Florian Lajus. Florian Lajus is an engineer hired by the
project to implement of the new version Magus 2.0.

Computational resources. For my work I used parts of a dedicated 76-core computing
cluster maintained by the Magnome project-team, that was essential for studying practi-
cal deployment of implementation in a controlled environment. Genome-genome relations
were computing using classical sequence comparison algorithms running in the batch sys-
tem on the cluster. Various configurations of physical and virtual nodes were used to
evaluate Cassandra NoSQL data schema for chapter |3. And finally, a dedicated set of
nodes were used for algorithm testing in chapter 4/ and performance evaluation in chapter
5l

1.5 Challenges addressed in this thesis

In this thesis I address scaling challenges through new data representation strategies for
comparative genomics data and new strategies for distributed computations. The goal is
to define extensible systems that can be deployed by small groups as well as by national
platforms, and can be flexibly dimensioned for projects of different sizes.

From a practical standpoint, scaling to extreme data volumes is addressed by NoSQL
and MapReduce technologies, both associated with cloud computing [SLBATI [ADBT(Q9].
NoSQL provides distributed storage of Petabyte datasets. MapReduce is a paradigm
for writing large-scale analyses across thousand-node clusters. However, adopting these
technologies imposes new constraints on algorithms, and there is as yet an insufficient
real body of best practices for their use in bioinformatics. Successful applications to date
have focused for example on embarrassingly parallel analyses such as SNP identification
[MF1d, [PLZIT] but not on n-ary relations between genome elements.

In this thesis we attempt to define some ground rules for successful conversion of
global bioinformatic analyses to highly scalable MapReduce deployments. We define a
criterion that can be used to guide redefinition of bioinformatics algorithms so that they
can be efficiently deployed on NoSQL and MapReduce infrastructures, with a reasonable
guarantee of scaling out to new data volumes.

We illustrate our approach with two successful conversions of global comparative ge-
nomics analyses. The first, gene fusion/fission, systematically identifies gene fusion and
fission events in eukaryotic phylogenies using a parsimony criterion [DNSO8]. The second,
consensus clustering, computes multi-genome protein families by reconciling competing
and complementary clusterings [NSO7]. In both examples we are confronted with very
large matrices of n-ary relations between genomic elements, and we show that nonetheless
solutions to these problems can be deployed in NoSQL/MapReduce in a way that scales
smoothly with increases in data volume.

Some preliminary results of our work were introduced in [GS1Tal [GSTTD [SGTT] SLGIQ].
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1.5.1 Cassandra and Hadoop

Apache Cassandra'? provides a highly scalable distributed semi-structured data store
[LMIQ], where data is automatically replicated and balanced across an ad-hoc peer-to-
peer network of storage nodes in a computing cluster, and where capacity can be added
dynamically without disturbing applications running on the cluster. Apache Hadoop!'?
provides a software framework for fault-tolerant distributed computing of large datasets
across clusters of computers using the MapReduce paradigm [DG04]. In MapReduce algo-
rithms are decomposed into two phases using functional programming: a map phase where
a single function is applied to all data elements, followed by a reduce phase where groups
of mapped results are combined into a final result. Since both phases are functional, if a
node fails, its part of the computation can be recomputed without invalidating the other
parts. This leads to improved fault tolerance.

1.5.2 Specific challenges I address: 3 applications in genomics

In software engineering field the first thing to do is to identify requirements. In order
to identify the most important aspects of comparative genomics, we performed use case
analysis. Using the assets of existing sources such as Génolevures web site, we recognized
important challenges and real world scenarios.

To illustrate specific challenges of the comparative genomics, we consider three use
cases. First use case is a searching interface for the storage system of the genome sequence
features. Second and third uses cases are global analyses in comparative genomics, which
work with large matrices and graphs of relations between genomic elements.

Magus knowledge base. The Magus system Im provides an access to the
genome sequence features, such as genes, proteins, exons, etc. Beyond storing individual
sequence feature objects, the system operates with relations between these data elements.
There are many kinds of relations, for example: protein families, allele groups, tandem
repeats, matrices of similarities.

Magus::Search is an interface to search for sequence features, using different combina-
tions of parameters - attributes of sequence features or groups. The various search queries
contain searches by name, by overlapping intervals (geometric queries), by keywords, by
group members, etc. The object model for the Magus system is described in section 5.1\

The other use of the Magus knowledge base is to store intermediate results of compar-

ative genomics analyses, such as matrices and graphs of similarities. These are typically
sets of pairwise relations, with attribute values associated with them. The calculation of
matrices and graphs of similarities is typically the first step of the analyses in comparative
genomics, thus we need to store them in a format, prepared for the analyses. The number
of relations in that matrices and graphs scale quadratically with the number of individual
data elements.
Computational challenge. The first challenge is to store fast growing large dataset of
genome sequence features. With the linear growth in genome sequence features there
is superlinear growth in the number of n-ary relations (protein families, allele groups,
tandem repeats, etc)

The second challenge is to provide a searching interface for sequence features and
groups.

12The Apache Cassandra Project: http://cassandra.apache.org
'3The Apache Hadoop Project: http://hadoop.apache.org
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Method. In chapter |3| we will formalize the grouping organization of the relations between
data elements depends on the intended use: for searching or for large scale analyses. We
will store all relations in highly scalable Apache Cassandra NoSQL data store using both
techniques.

We will store all sequence features and groups in Cassandra. We will develop Cassandra
column families data schema based on the set of typical search queries.

We will develop Magus::Search common interface to access genome sequence features,
that can work with SQL and NoSQL backends using corresponding database adaptors.
We will develop Cassandra NoSQL adaptor for Magus::Search.

Identification of Fusion and Fission events. Genes change all the time not only
because of mutations, but also because of large scale operations of reorganizing the genes,
called gene fusions and fissions. Gene fusions and fissions can be identified by analyzing
similarity relations between genes [DNSQOS]. The algorithm searches for patterns in a large
graph of similarity relations between segments of genes, these patterns are the gene fusions
and fissions. Then, fusions and fissions are mapped onto evolutionary cross-species tree.
The algorithm is described in details in section |4.2.

Computational challenge. The first challenge is to store the quadratically growing data set
of pairwise relations between proteins and between paralogous groups.

The second challenge is the graph analysis phase of the algorithm, which is the most
stressed by the growth of the data since it needs to put the whole graph in memory.
Method To address the first challenge, we will store relations in the Cassandra data store,
using general technique of storing relations, described in subsection |1.5.2.

To address the second challenge, we will substitute graph analysis phase by the equiv-
alent distributed MapReduce algorithm.

Consensus and MCL clustering for protein families. Protein family is a group
of phylogenetically related proteins. The members of the protein families can belong to
different species, but share the same biological functions. The families are identified based
on similarities by clustering the results of pairwise all-against-all comparisons between
proteins.

Consensus clustering algorithm [NSQO7] involves all-against-all comparisons between
proteins with different methods such as Blast and Swith-Waterman’s, with two different
filterings. Then, all four matrices of comparisons proceed to the phase, where we run
MCL clustering with three different inflation parameters. The final step is a consensus
procedure.

MCL clustering [vDQQ] is an algorithm for clustering simple weighted graphs using
Markov stochastic matrices [EVDO02]. It looks into probabilities of random walks. Since
2002 it is the best algorithm to identify protein families and it was chosen in 2007 by
authors of the Consensus clustering article [NSO7]. The algorithm is described in details
in section 4.3l
Computational challenge The first challenge is to store different versions of matrices of
pairwise comparisons between proteins, that scale quadratically.

MCL clustering and consensus procedure are two phases of the Consensus clustering
algorithm that are very stressed by increase of data volume.

Method We will store all relations in Cassandra data store, using general technique of
storing relations, described in subsection [1.5.2.

Consensus procedure is easily parallelized because it involves many independent com-

putations on the conflict region.
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We will substitute MCL clustering step by iterative sampling procedure, that works
in parallel with small submatrices and converges to some satisfactory result in several
iterations.

1.6 Outline

In chapter |2 we will talk about common requirements for the large-scale systems for storing,
ad-hoc algorithms and analytics. In section [2.3| about storage systems, we will discuss the
CAP theorem, which claims that the storage system may only have two out of the three
following properties : Consistency, Availability and Partition tolerance. We will explain
the choice of Cassandra NoSQL, a highly Available Partition tolerant (AP) data store. In
section about ad-hoc algorithms (section 2.4) we will discuss different programming models
and specifically MapReduce. In section [2.5| we will talk about large-scale analytics.

In chapter 3| we will describe and formalize different ways of representing genomic big
data. We will be focused on the important aspect for comparative genomics—relations be-
tween data elements. Specifically we will talk about Cassandra representations of genomic
data elements and relations for different purposes. We will introduce general principles of
creating column families in section |3.6.1}

In chapter |4 we will consider global analyses in comparative genomics. These analyses
often involve all-against-all comparisons which scale geometrically. We will describe and
formalize MapReduce adaptations of two existing algorithms in comparative genomics.
Also, we will consider some example of human genome analysis.

In chapter 5| we will talk about Tsvetok, an integrative representation of implementa-
tions for the systems for data storage, ad-hoc algorithms and analytics. We will compare
SQL and NoSQL backends for Magus genome sequence features storage and retrieving
system. We will talk about implementations of two MapReduce adaptations of global
analyses in comparative genomics in MapReduce Hadoop framework.

In chapter |6| we will draw general conclusions and will propose some possible directions
for future work.
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Chapter 2

Preliminaries

Résumé : Pour appliquer le Big Data en génomique nous devons nous intéresser
a la fois au stockage, au calcul et aux analytiques. Le théoreme CAP établit qu’au
plus deuz des trois propriétés de la cohérence, la disponibilité et la tolérance au
partitionnement peuvent exister simultanément dans un systéme de gestion de
données distribué. Nous argumentons que les besoins de la génomique comparée
sont les mieux adressés par les approches NoSQL, qui propose la bonne combi-
naison de la cohérence et de la disponibilité nécessaire. Ensuite, nous discutons
les besoins de calcul en génomique et décrivons quelques éléments du paradigme
MapReduce, qui permet d’adapter des algorithmes existants par une décomposition
en phases fonctionnels d’application (map) et aggrégation (reduce). Nous con-
sidérons comme cas particulier I'analytique et les approches par entrepots de
données et par fouille de données. Nous terminons par une étude d’un défi cen-
trale du génomique comparée : le besoin de gérer les relations n-aires entre objets
génomiques, qui croissent de facon supralinéaire en fonction du nombre d’objets.

In this chapter we will consider three aspects of maintaining genomic Big Data: stor-
age, computation and analytics. In the first part of the chapter we define the common
requirements for these systems.

In the second part we compare different storage solutions, in order to choose the one
that matches best to our requirements. NoSQL is a class of distributed fault-tolerant
database management systems that usually abandon the declarative query language SQL
and its associated relational algebra, in exchange for better scalability. We will see, on
page 23, that the CAP theorem says that it is only possible to achieve two out of three
of the properties of Consistency, Availability, and Partition Tolerance for shared-data
systems. After consideration of the specificities of our applications, we chose Availability
and Partition-tolerance (AP) as the two most important properties for our applications,
and thus abandon Consistency. Among the available AP systems we chose the Apache
Cassandra NoSQL data store, because it is easy to use, widely used, open-source, and has
a very developed community.

In the third part we discuss distributed parallel computations. MapReduce is a
paradigm for writing programs for distributed parallel computations, that is based on
decomposing algorithms into separate map and reduce phases. A MapReduce software
framework, such as Apache Hadoop, hides technical details to make it easy to write ap-
plications, by simply implementing functions for each of the map and reduce phases. Pig
Latin is a declarative language for calculations that can additionally facilitate writing
MapReduce applications.
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In the fourth part we consider a special case of computations, analytics. These compu-
tations typically are performed on read-only data and often are statistical global analyses.
We consider data warehouse approaches, and two successful examples, BioMart and Hive.
We finally discuss the Apache Mahout libraries for data mining on top of Hadoop.

At the end we present our specific case of comparative genomic data, which works
with many relations instead of with individual objects. We also explore some difficulties
of distributed processing of graphs.

2.1 Storage, ad-hoc algorithms and analytics systems

As a first step we propose a classification of data management systems by their usage
patterns, in particular by the number of get and insert queries. This is not a precise
classification, some real world systems can belong (at least partly) to different classes.

1. Storage Systems

Storage systems are designed for retrieving small subsets of data from potentially
quite large data sets. They typically have mostly get and insert queries. The
Génolevures website, for example, uses several Data Storage Systems, including
MySQL and PostgreSQL databases. The public part of Génolevures provides access
to searching and visualizing tools for the data from these Data Storage Systems.
By analyzing the user log history we noticed that most often the get queries are
colocalized in the set of genes: the same gene features appear in many user search
results.

2. Systems for ad-hoc algorithms

System for ad-hoc algorithms are designed to support developing specialized pro-
grams for global analyses, that typically access the whole dataset or at least a large
part of it. These systems must be contrasted with Storage systems, above, which are
not natively adapted to the cycle of global get-transform-load operations. Systems
for ad-hoc algorithms may be built on top of storage systems to provide access to the
data for the distributed parallel computations. In the case of comparative genomics
global analyses may be, for example, clustering, pattern recognition, phylogenetic
graph analyses and others.

3. Analytics Systems
Analytics Systems are designed for implementing decision support systems on a con-
sistent, frozen picture of the data. They typically provide read-only access to the
data. Updates are rare and run by administrators of the systems. Data warehouses
are one of the most common analytics systems. The data in these systems are pre-
pared for analysis by domain specialists, in our case biologists and bioinformaticiens.

2.2 Requirements for storage, ad-hoc algorithms and
analytics systems

The common requirements for Storage, Ad-hoc algorithms and Analytics systems are

1. Large-scalable (petabyte-scalable)

In the recent years it has been observed that the volume of genomic data is growing
dramatically. The data are no longer stored—can no longer be stored—in the same
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file on the same computer. Analyses in comparative genomics are the most stressed
by this data volume growth since analysis of only tens of genomes can involve 108 to
10° pairwise comparisons. We need a petabyte-scale solution to store and analyze
data.

a) Distributed

Since the data no longer fit on one machine, we need distributed solutions.

b) Fault-tolerant

Statistically, the more we add machines to expand the computing capacities of
the system, the more we are likely to suffer from the failure of single machines.
This directly implies a need for fault-tolerant systesm that automatically redis-
tribute the data, as well as the queries and the computation tasks.

2. Fits to the usage patterns

In the section 2.1 we classify systems by their usage patterns. Storage systems
should work well both with get and insert queries; get queries might be colocalized.
The systems for ad-hoc algorithms should be optimized for global analyses, meaning
global get-transform-insert operations. An analytics system need not be optimized
for updates, but may be read-only and prepared to be analyzed by domain specialists.

3. Fasy to use and low cost

These requirements are very important for small labs who work essentially with
genomic and biological data, since often they cannot afford dedicated IT staff and
need easy and inexpensive solutions for distributed storage and global computations
on their data.

2.3 Storage systems

In this section we will discuss the requirements of a storage system for Big Data in genomics
and compare different solutions: traditional databases, parallel databases, and NoSQL.

2.3.1 Classification by CAP and data models
Consistency, Availability and Partition tolerance

For data storage systems there are three important properties:
1. Consistency: each computer node always represent the same view of the data.
2. Awailability: each computer node is always available for read and write.

3. Partition tolerance: splitting of the distributed system into several isolated sections
does not lead to incorrect responses from each of the sections.

The CAP theorem, proposed in 2000 by Eric A. Brewer [BreQQ] and formally proved by

Seth Gilbert and Nancy Lynch in [GLO2], says: for any shared-data system you can achieve
at most two out of these three properties.
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Data Models

Nathan Hurst [HurIQ] suggests the classification of the database systems based on the
CAP configurations and the data models they use:

1. Relational

Relational databases use the relational algebra; data are stored and accessed via
relations. A relation is defined as a set of tuples that have the same attributes. Such
databases support join operations and ACID (atomicity, consistency, isolation, dura-
bility) properties. Relational database management systems, for example MySQL
and PostgreSQL, are very widely used.

2. Key-value
Key-value systems support single key-value operations: get by key, put a key-value
pair into the store and delete by key.

3. Column-oriented
Column-oriented systems use associative arrays of columns with no fixed column
schema and do not support joins between these arrays.

4. Document-oriented

Document-oriented systems provide indexed storage of structured documents, such
as files in XML or JSON formats, associated with descriptive meta-data. They do
not support joins between documents.

CAP Classification

The classification of data store systems based on the CAP configuration and data model
is the following (illustrated in figure 2.1):

1. Consistent, Available (CA) Systems:

The data in these systems are always available and consistent, which is important
for the cases when we need ACID-compliant transaction support. For example, a
banking system must operate using transactions in order to guarantee that money
is not lost during failed, incomplete transfers. As a consequence, CA systems have
poor resistance to network partitioning. They typically use replication strategies to
deal with this problem.

a) relational: “traditional” (PostgreSQL', MySQL?, etc), Aster Data®, Green-
plum?

b) column-oriented: Vertica®

2. Consistent, Partition-Tolerant (CP) Systems:

The data in these distributed systems are consistent across the network, even across
partitioned nodes. At the same time they may have trouble with availability during
times when the computer nodes are partitioned. This means that the client will
always have the last version of data, but must wait until the network will be repaired.

'PostgreSQL: http://www.postgresql.org
MySQL: http://www.mysql.com

3 Aster Data: http://www.asterdata.com
4Greenplum: http://www.greenplum.com

®The Vertica Database: http://www.vertica.com
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Figure 2.1: Visual guide to NoSQL Systems. [Nathan Hurst’s Blog [HurI(]]. The vertices

of the CAP-triangle are proper

ties: Availability, Consistency and Partition Tolerance. The

sides of the triangle are the possible choices for the systems to abandon one property and

have two others.

a) column-oriented/tabular: BigTable [CDGT06], HyperTableS, HBase”
b) document-oriented: MongoDB?®, Terrastore”

c) key-value: Redis'?, Scalaris'!, MemcacheDB'2, BerkeleyDB!3

3. Awailable, Partition-Tolerant (AP) Systems:

The data in these systems are always available across partitioned nodes in the net-
work. However, the client might have not the latest version of the data. The systems
use “eventual consistency” — updates are not blocking and eventually propagate to
all nodes.

a) column-oriented/tabular: Cassandra'*

b) document-oriented: CouchDB', SimpleDB!6, Riak!”

SHyperTable: http://hypertable.org

"HBase: http://hbase.apache.org

8MongoDB: http://www.mongodb.org

9Terrastore: http://code.google.com/p/terrastore
9Redis: http://redis.io
"Scalaris: http://code.google.com/p/scalaris
12MemcacheDB: http://memcachedb.org
130Oracle BerkeleyDB: http://www.oracle.com/us/products/database/berkeley-db/overview /index.html
4 Apache Cassandra: http://cassandra.apache.org

15 Apache CouchDB: http://couchdb.apache.org

6 Amazon SimpleDB: http://aws.amazon.com/simpledb
'"Riak: http://wiki.basho.com
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¢) key-value: Dynamo[DHJITQ7], Voldemort'®, Tokyo Cabinet'?, KAT?

2.3.2 Specific requirements for the data storage systems

Our focus is on storage requirements for comparative genomics. For the good outward
scaling we need to have strong tolerance of network partitioning. Because of the CAP
theorem we need to abandon either consistency or availability [HurIQ]. For our applications
we choose Availability at the expense of Consistency: it is not critical for us if the client
does not work with the latest version of data since we have many inserts but few updates.
Our analyses are global and work on large data sets, there are many write operations, but
we do not need full consistency in our data store: the results of the global computations
do not change considerably between two similar versions of the data.

This leads us to NoSQL (Not Only SQL) distributed databases, which do not give
full ACID guarantees but are good in scaling. NoSQL systems typically lose the clarity
and guarantees of the relational algebra, as well as transaction support, in exchange for
partition tolerance. We will describe them in more details in the subsection below.

Available Partition-Tolerant systems use “eventual consistency”: updates/insert are
not blocking and eventually propagate to all computer nodes. Practically, small updates
propagate immediately, while for the big ones it might take a few seconds. Thus, with
the common requirements, defined in section [2.2, the requirements for the data storage
systems are:

1. Petabyte-scalable (implies Distributed and Fault-tolerant)

2. Partition-tolerant (implies Fault-tolerant)

3. Fits to the usage pattern: lots of get and insert queries, few updates
4. Highly available

5. Eventually consistent

6. Easy to use and low cost

2.3.3 NoSQL

As we said in the previous subsection, the choice of Partition-Tolerant storage systems
leads us to NoSQL systems.

In recent years, software applications in many fields have come to require processing
of Petabyte datasets. Traditional relational databases are found to scale poorly beyond
tens of terabytes [Catll], and commercial offerings in parallel databases are expensive
and difficult to maintain [PPRF0Q9]. An emerging alternative in distributed fault-tolerant
storage and computing is cloud-based “Big Data” approaches[SLBATI]. Unlike classic
technologies, typical NoSQL databases do not have a fixed relational schema: they provide
nested key-value associative arrays, called column families, where each row may have an
unlimited number of columns. [CatI]l [PPSTI].

Relational databases operate with relations and explicitly store them. A relation is
defined as a set of tuples that have the same attributes. A relation is usually represented
as a table, which consists of rows and columns. The tuples must have some identifier (it

18yoldemort: http://project-voldemort.com
¥Tokyo Cabinet: http://fallabs.com/tokyocabinet
20K AT: http://sourceforge.net /projects/kai

26



can be a key or an index). Other tuples in the database might use this identifier as a
foreign key.

In contrast, non-relational databases store data without explicit links between data
elements [CatI]] [PPSTI]. The responsibility for correctly storing and maintaining relations
between data objects is now with the client software application: the storage system itself
does not check the data schema.

2.3.4 Cassandra NoSQL datastore

Apache Cassandra?! [LMIQ] is a highly scalable distributed semi-structured NoSQL data
store.
Cassandra satisfies all our requirements defined in subsection [2.3.2:

1. Petabyte-scalable (Distributed and Fault-tolerant)

Cassandra is a highly scalable [CSTI] distributed fault-tolerant data store, where data
are automatically replicated and balanced across an ad-hoc peer-to-peer network of
storage nodes in a computing cluster. Data are partitioned and balanced across
multiple nodes in a cluster, and aggregate queries are distributed by default.

2. Partition-tolerant (implies Fault-tolerant)

Cassandra has no single point of failure. It is able to seamlessly continue working
even after of network partitions or node failures. Data are replicated into several
nodes and in case of node failure the query will get information from the other node.

3. Fits to the usage pattern: many of get and insert queries, few updates

In Cassandra low level insert queries are not blocking, Cassandra does not check if
the value already exists, it simply overwrites it. Thus insert and get queries are very
fast.

The low level update operation is identical to insert one in Cassandra. Data are
denormalized in Cassandra, one high level entity can be stored physically in several
places as part of several indexes for the different kinds of searches. To update some
attribute of some high level entity we may need to delete the old attribute from
several column families (indexes) and than add the new one. Thus, high level updates
are expensive, but since we do not have many updates, it is not very important for
us.

4. Highly Available (implies Fault-tolerant)

Firstly, as we noticed above, the node failure will still keep the system available
without any delay. Secondly, inserts and updates are not blocking concerned data
rows, the data is always available for reading and writing.

5. Eventually consistent

Cassandra uses eventual consistency with the possibility to tune the level of con-
sistency we want for each query. We can perform full-consistent queries with lower
performance or fast queries without consistency guarantees.

2!The Apache Cassandra Project: http://cassandra.apache.org
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6. Easy to use and low cost

Cassandra is an open-source project. It is extremely easy to install and maintain.
Capacity can be added easily with few commands dynamically without disturbing
applications running on the cluster.

Cassandra architecture

Cassandra is an Awailable Partition-tolerant system - highly available with no single point
of failure datastore. It has no central master node, responsibility is distributed among the
nodes. So any data can be written/read to/from any of the nodes in the cluster. The row
key value controls which nodes stores the columns. Each data item is replicated on N
hosts, where N is the replication factor configured for the keyspace [LMIQ].

Cassandra uses a ring topology. Each computer node is assigned a unique token that
determines for what keys it is the first replica cag]. Thus, each node in the ring is respon-
sible for some section of the data space (Figure [2.2). There are two replication strategies:
SimpleStrategy for a single data center and NetworkTopologyStrategy for multiple data
centers.

( )
(clole)

D A

( )
wiei D @ @
\_ _J

Cassandra Ring

C B ( )
> (elolo)

(" )
2 (clole)

Figure 2.2: Cassandra ring with replication factor = 3. The row keys A, B, C, D are
replicated three times and distributed across computer nodes Node 1, Node 2, Node 3 and
Node 4. [http://www.datastax.com].

Cluster membership is maintained by a Gossip protocol [DGHT87, [ADHQO5] on a peer-
to-peer network. The protocol provides only probabilistic guarantees instead of strong
reliability ones to achieve better scalability and fault tolerance [ADHOQI]. The authors in
[ADHOQS] proved, that in gossip protocol the probability of partitioning is exponentially
small.

In Cassandra Partitioner defines a scheme of organizing row keys in the keyspace, it
has impact only on the key (but not column) sorting strategy. The partitioner must be
chosen at the moment of cluster configuration. We can perform one or two level range
queries depending on which partitioner we use.

There are two major types of partitioners [Hewl(]:
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1. Random Partitioner: default partitioner. The keys are automatically balanced
across the cluster using MD5 hashing. The order of the keys is random, so the
key range queries are not possible.

2. Order Preserving Partitioner: The keys are UTF-8 strings. Rows are sorted by a
key order. There is a high potential risk of disbalanced nodes, but it is possible to
perform key range queries.

There are also:

3. Collating Order Preserving Partitioning(The keys are UTF-8 strings in United States
English Locale(en_us)) and

4. Byte-Ordered Partitioning(Data are treated as a raw bytes),

Cassandra provides tunable quorum-based eventual consistency [cag. We can set con-
sistency level for each get or insert query. Basically, we can configure consistency level for
reading using replication factor value N as:

1. All: it ensures that all N replicas provide the same version of the data and any
outdated or unavailable (due to fault) replicas will fail the operation. In this case
we gain full consistency in exchange for availability.

2. Any: the data is taken from the first answered node. The query response is fast, but
might be inconsistent.

3. Quorum: it ensure that the major number of nodes agree on the response. Quorum
level is a good compromise between consistency and performance (availibility).

There are also other consistency levels, such as: One, Two, Three, Local Quorum, Fach
Quorum [ag. Similarly, we can set consistency level for writings.

In Cassandra columns are sorted by the sorting operation “Compare with” which
we define for column family. These comparing operations are: AsciiType, BytesType,
LexicalUUIDType, LongType, UTF8Type, TimeUUIDType (sorts by a timestamp), etc.
Also it is possible to define a custom comparison operation. In contrast with traditional
relational databases it is not possible to compare columns by values.

Cassandra data model

Cassandra uses a ColumnFamily-based data model. The smallest increment of data is a
column. A column is a tuple (triplet) that contains a name, a value and a timestamp. All
values including the timestamp are provided by the client. Both names and values can be
integer or float numbers, strings or binary objects. There is no imposed declarative schema
for the column names and values. A data row is a list of columns, sorted by column name,
identified by the row key. At the moment of creating column family we can set one of the
several sorting algorithms to order column names, or implement our own one. The row
key is a unique string of the unlimited size.

A set of rows with the corresponding row keys is a (standard) column family. We can
predefine some list of column names if almost all rows have them. If Column Family has
only these, static columns, it is called static. If there are arbitrary, not static, columns
it is called mized. If there is no list of predefined column names the column family is
called dynamic. We can create secondary indexes for these predefined columns. Dynamic
columns may have arbitrary names and can be used as a dimension for the range queries.
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Cassandra also supports super columns - associative arrays of columns, which provides
one more level of nesting. Both columns and super columns are sorted by their names.
Also we can change the sorting order: the system allows us to sort columns by time instead
of by name. Super column family is a “column family within a column family” [LMIQ].
Standard and super column families are organized into Keyspaces. Keyspace is simply
a namespace for column families. (Figure [2.3). Typically, there is one keyspace per
application.

GenomicData
Sequences Location
e —CEENES C e )
CAGL
ERGO —p  _ . - %...% ET% %
SAKL —3p - - - S b S

0

SAKL —>

SAKLI

SAKL4 SAKL7

Figure 2.3: Example of a Cassandra Keyspace “GenomicData” (for simplicity we do not
show timestamps) that stores information about genomic sequences and features of that
sequences. This keyspace contains one Standard Column Family “Sequences” that maps
sequence names, start coordinates to the sequences and one Super Column Family “Loca-
tion” that stores the coordinates of the sequence features on the genomic sequences.

The row keys of “Sequences” Column Family are the sequence names. The column names
here are start coordinates on sequences. The column values are the sequence pieces -
strings of letters a, c, g, t.

The “Location” Super Column Family has sequence names as row keys. Each sequence
name refer to a sequence features pairs of coordinates (column names) which are discretely
organized in bins (super column names). The column values are the sequence features
names.

Cassandra dynamic Column Families do not have declarative schema. The nested boxes
here only show how we should interpret the data of the corresponding column families.
This representation is a contract, and the responsibility of respecting this contract is on
the application side, not on the database one.
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Figure 2.4: Contrasting different ways of selecting data from Cassandra.

1. Simple get uses a key (CAGL) and a column name (700) to obtain corresponding
column value. There is also a Multiple get query, where we can set discretely several input
key values.

2. Column slice allows us to define a single interval of column names (700-2000), which are
sorted by default, to retrieve column values. Here we also need to specify one or several
key values (CAGL).

3. Key Slice, similarly to Column Slice, allows us to retrieve column values in the single
interval of keys (CAGL-SAKL), specifying column name (700). The main difference is
that row keys are used to distribute the data rows, so the best strategy is to use Random
Partitioner that does automatic load balancing. Thus, row keys are not sorted by default
as column names do. To use Key Slice we need to set Order Preserved Partitioner for our
Keyspace in the beginning and maintain load balancing ourselves in the application level.
That is why Key Slice is not very used, and when it is used only when there is a extreme
need in 2-dimensional slices

4. Column+Key Slice allows us to choose both an interval of keys (CAGL-SAKL) and an
interval of column names (700-2000) to retrieve column values.).

Cassandra queries

Originally, Cassandra provided only a low-level Thrift?2 RPC-based API [cag]. Using the
Thrift software framework it it possible to generate code to build scalable cross-language

22Thrift: http://thrift.apache.org 31




services, that can work with languages such as C++, Java, Perl, C#, Ruby, etc. Thus,
using Thrift API we can connect to Cassandra using plenty of different programming
languages.

Cassandra CLI?? is a command line interface utility (based on Thrift API), that can
be used to define schema, to insert and retrieve data.

Since the version 0.8, in Cassandra there is CQL - Cassandra Query Language [cql]**.
It is similar to SQL, a rich declarative query language based on relational algebra for
relational databases. Even though CQL looks similar to SQL, there are some important
differences. CQL adjust to the Cassandra data model, which means there are no join
operators between column families and no row range queries for the clusters with random
partitioner.

Cassandra is designed around the queries. The data are organized in rows and dis-
tributed across network by row key. The main filter, the main parameter for the get
queries are row keys. Get queries that use secondary indexes work very inefficient without
specifying row keys. Thus, to design Cassandra Column Family we need to put the main
focus on the choice of the row keys.

Relations between objects must be stored explicitly in the row key or column (standard
or super) names to be a searchable attribute. Also, there is no join operation between
column families, so we need to design column families in advance with respect of types
of queries. Typically, each standard/super column family corresponds to a type of user
query.

In Cassandra there is no difference between low level Insert and Update operations: in
the Thrift API there is only “insert” operation, in CQL there are both these operations,
but their semantics are identical. Insert/update operation does not check if the column
already exist, the new value (eventually) substitute the old one.

There is no server side transaction support. Column families are denormalized, the
same data might be in several places. And it is the client applications responsibility to
maintain the same value in several column families.

Cassandra operations in Cassandra-CLI

For simplicity, we will use Cassandra-CLI command line interface to demonstrate the
different kinds of Cassandra operations. After, we will show the examples of the code in
CQL language.

The data in comparative genomics are semi-structured. Consequently, we store our
objects serialized and we use Cassandra as index for the objects. Static columns are used
to create secondary indexes. Secondary indexes are found to have bad performance, so we
do not use them, thus all our columns are dynamic and we use column names as dimensions
for the queries.

In our example, we have a set of sequence features and we would like to perform a
standard query by name with an optional parameter type on these data. For this case we
will create a column family and will demonstrate different possible Cassandra queries.

Create data schema

To create Cassandra data schema we need first to create a Keyspace. Keyspace typically
is one per application, thus we will use it for all our genomic indexes.

% Cassandra CLI documentation : http://www.datastax.com/docs/0.8/dml/using_cli
22CQL Language Reference: http://www.datastax.com/docs/1.0/references/cql/index
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We will create the same keyspace “GenomicData” as in figure 2.3 using a command
CREATE KEYSPACE. This keyspace (basically is a set of indexes) contains information
about genomic sequences and features of that sequences. Sequence feature is a genomic
object, that has several attributes: id, name, type, coordinates on the corresponding
sequence, etc.

For this keyspace we specify SimpleStrategy as a placement strategy class and the
replication factor number = 3 (discussed earlier in this subsection). We can connect to
this new Keyspace using command USE.

In this keyspace we create a Standard Column Family “Sequences” (as in figure 2.3)
using a command CREATE COLUMN FAMILY as it is illustrated in the Listing[1l. This
Column Family is a mapping between sequence names, their start coordinates and se-
quences. As we can see, at the moment of a dynamic Column Family creation there is no
information about imposed columns structure.

Listing 1 Cassandra-CLI: create data schema

> Create Keyspace “GenomicData”
CREATE KEYSPACE GenomicData
WITH placement_strategy = ’org.apache.cassandra.locator.SimpleStrategy’
AND strategy_options = [replication_factor:3];
> Connect to the GenomicData Keyspace
USE GenomicData;
> Create Column Family “Sequences”
CREATE COLUMN FAMILY Sequences
WITH comparator = IntegerType
AND key_validation_class=UTF8Type;

Insert data

The way how we insert data defines the actual structure of Column Families. Since there
is no schema control for dynamic Column Families, the applications should be very careful
with inserts.

To insert data we need to use the command SET with the name of the Column Family
(“Sequences”). We put the row key and the column name in the brackets and the column
value after “=". In our example we use sequence names (CAGL, ERGO, SAKL, etc) as
row keys, start coordinates (500, 700, 900, etc) as column names and sequences as column
values (Listing [2). We will discuss how to choose row keys and column families for the
searches in the subsection 13.6.1.

Listing 2 Cassandra-CLI: insert data queries
SET Sequences[' CAGL’][’500’]|="acgg’;
SET Sequences["CAGL’|['700’]="gcat’;
SET Sequences["CAGL’|["900’]="gcaa’;
SET Sequences|'ERGO’|['900’]|="acac’;
SET Sequences["'SAKL’]['2000’]|="ttga’;

[7
[7
[’
[7
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Simple Get

We can obtain columns and super columns using row key value, name of the column family
and, optionally, super column name and column name (see Figure 2.4/ and Listing |3)):

Listing 3 Cassandra-CLI: simple get query
GET Sequences"CAGL’]['700’];
=> (column="700, value=gcat, timestamp=1346609952805000)
GET Sequences’ERGO’]['900’];
=> (column=900, value=acac, timestamp=1346610095240000)

Using the Cassandra Thrift and CQL APIs (but not the basic Cassandra-CLI imple-
mentation), we can specify several row key values for the “multiget” queries.

Column Slice

For the column slice we specify as well one or more row key values. To limit the columns
from the data rows we determine a Slice Predicate. Slice Predicate is similar to a math-
ematic predicate and contain either the list of column names that we want to select
or the Slice Range - the interval of column names in between we search for the columns
(Figure [2.4). Slice Range set ordering, range and limit information.

To illustrate Column Slices we will use pseudocode, since Column Slices for dynamic
columns are not supported by the Cassandra-CLI implementation (but supported by Thrift
and CQL). The columns in the row are sorted by the column names (using IntegerType
strings comparator). Thus, for the row “CAGL” the columns are placed in the order of
coordinates on sequence. We can perform a column slice query specifying a column slice
range ['700” - '2000’] to have 2 columns as a result (Listing [4)).

Listing 4 Pseudocode: column slice

> Column Slice query (pseudocode).
GET_SLICE Sequences['CAGL’]['700" - "2000’];
=> (column=700, value=gcat, timestamp=1346612354231000)
=> (column=900, value=gcta, timestamp=1346612369629000)

We can get all row values using empty values for the slice range start and end param-
eters.

Multi-dimensional range queries and secondary indexes

In addition to a column range slice Cassandra supports two-dimensional key range slice
queries (Figure [2.4), but this implies of using low performance Order Preserving Parti-
tioners (as described earlier in this subsection).

Multi-dimensional range queries can be made using secondary indexes on static columns
- columns with fixed names. It allows querying by column values. There are several index
operators we can use in the index query: EQ(Equality), GTE(Greater than or equal to),
GT(Greater than), etc. But the limitation is to have at least one EQ operator which
will be primary filter for the index query. Secondary indexes are suitable for cases when
many rows share the same indexed value. When the indexed values are more unique,
the cost of querying and maintaining the index becomes too high. For the general cases,
the performance of the secondary indexes find out to be quite poor, but can be improved
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using the CCIndex mechanism [FZX11]. CCIndex [ZLWT10] (Complemental Clustering
Index) offer support of multi-dimensional high performance and reliable range queries over
Distributed Ordered Tables (like BigTable, HBase, etc). CClndex mechanism, applied to
Cassandra can significantly increase the speed of range queries [FZX11].

CQL

Since the version 1.0 of Cassandra, the queries in CQL (Cassandra Query Language) look
similar to the SQL ones. It is very convenient to use CQL especially for the column families
that use static columns (SQL-like).

To demonstrate CQL, we will create a static Column Family “Features” for the set
of sequence features. These features have some attributes: name, type, start and end
coordinates on the sequence. In our example (Listing |5|) we create table ( alias for column
family), insert data (columns) and get data using a SQL-like command SELECT. The
visible difference here, that we may specify Consistency Level for the get and insert queries.
Note, that the ranges are inclusive, so it is not possible to use operators “<” or “>".

Not all the features of Cassandra are implemented in CQL. Super Columns are not
supported, in CQL only a subset of available column family properties can be set.

Listing 5 CQL code example

> Create Table“Features”.
CREATE COLUMN FAMILY Features (
KEY varchar PRIMARY KEY,
name varchar,
type varchar,
start int,
end int)
WITH comparator=timestamp
AND default_validation=int;
> Insert some data into “Features”.
INSERT INTO Features (KEY, name, type, start, end)
VALUES (’acd55ddd’, "'SAKL1’, ’gene’, 1, 250)
USING CONSISTENCY QUORUM;
> Get data query.
SELECT * from Features
WHERE type = ’gene’
AND end <= 300
USING CONSISTENCY QUORUM;

2.3.5 Cassandra existing adaptations

Many applications in many different domains adopted the new NoSQL storage paradigm.
Cassandra Community is very large and continues growing?.

In [CGOPTI] the authors show how Telecom applications can be adapted to Cassan-
dra NoSQL data store. The main motivation for moving to NoSQL solutions is scaling
problems in the domain of telecommunications. They propose a following schema for their
applications: a Super Column Family with a caller phone number as a Cassandra row key,

25Cassandra Users List: http://www.datastax.com/cassandrausers
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type of the call as a Super Column Name and the columns correspond to the list of avail-
able services with the account identifications. Their performance comparisons showed that
Cassandra achieves better results than PostgreSQL for their schema and data workload (7
000 000 customer initiated calls).

Disney?® Technology Solutions and Services uses Cassandra as a query service?” [TacI2]
in their Big data platform. This platform is based on Cassandra, MongoDB and Hadoop.
One of the main uses of the Disney’s Big data platform is to collect, store and analyze user
experiences. They treat data as a service, providing higher level of data abstraction and
hiding operational complexity from application developers. Their Cassandra usage choices
are following: they use Random Partitioning in their cluster and DSE Search/Solr?® for
the search and ordering. Also, they search across columns in a single row, not across rows.

EBay?® were seeking for a cost-effective robust solution for processing enormous data
volume which does not have transactional constraints. They needed to perform large scale
analyses on structured and unstructured data®’. EBay has chosen Cassandra, integrated
with Hadoop MapReduce as a scalable storage and analytics solution with great write per-
formance and high availability. EBay utilizes Cassandra for the social signals (for example,
how many user own or like this item), logging, tracking and analytics®! [PatI2]. For each
user signal (“like” and “own”) they have two indexes (Cassandra Column Families) from
the user id to the item counter and from item id to the user counter. The same way they
store the graphs “users-items” for the analytics.

Plenty of other companies use Cassandra for the logging and store different kinds of
counters. Cassandra is used as an underlying storage system for Hadoop MapReduce
applications or as a tool for the analytic searches or to store archives and backups.

Cassandra is designed to be especially good for extreme large scale distributed ana-
lytics. Thus, it is able to handle petabytes of data, which is one of the most urgent need
now in comparative genomics. Another essential aspect of comparative genomics is global
computations, which typically involve systematic all-against-all comparisons. Cassandra
is integrated with Hadoop MapReduce framework for large-scale computations and dis-
tributed Data Warehouse Hive on top of Hadoop, which makes a good fit to our needs.
However, as a consequence of such a design, Cassandra is not efficient for the modest size
of data. The same way the search queries might be less performant than in some other
NoSQL systems, that put some indexes in memory (for example Couchbase3?). Another
consequent problem is that the good design of Column Families in Cassandra is quite
complicated. The document-based NoSQL systems (MongoDB, Couchbase) have more
intuitive ways of storing data (they store JSON documents), but they do not support
petabyte scale and are not designed for analytics purposes.

26The Walt Disney Company: http://www.disney.go.com

?"BigData at Disney presentation on Cassandra Summit 2012: http://www.datastax.com/wp-
content/uploads/2012/08/C2012-BigDataatDisney-ArunJacob.pdf

28DataStax Enterprise Search: http://www.datastax.com/docs/datastax_enterprise2.0/search/dse_search_start

29¢Bay: http://www.ebay.com

30DataStax Case Study: eBay :http://www.datastax.com/resources/casestudies/ebay

31BigData at eBay presentation on Cassandra Summit 2012: http://www.datastax.com/wp-
content /uploads/2012/08/C2012-BuyltNow-JayPatel.pdf

32Benchmarking Couchbase Server: http://www.couchbase.com/presentations/benchmarking-
couchbase
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2.4 Systems for ad-hoc algorithms

In the previous section we talked about storage systems and their requirements. In this
section we will talk about global analyses on Big Data and the necessary requirements for
such systems. We will consider the MapReduce paradigm for parallel computations, the
Hadoop MapReduce framework and a declarative language for MapReduce - Pig Latin.

2.4.1 Cloud and Grid Computing. Programming models

Cloud computing has recently been advanced as a solution for scaling problems. It involves
processing distributed computations on a large number of computers connected through
a real-time network. Cloud computing provides storage and computing capacities as a
service. There are several Cloud computing models. The most basic one is Infrastructure
as a service (IaaS), where virtual machines and other resources are provided. Clouds, that
use Platform as a Service (PaaS) model, typically provide operating system, database and
execution environment. In the Software as a Service model Clouds provide an access to
databases and applications. The Network as a service (NaaS) Clouds provide different
network and inter-cloud connectivity services.

Cloud computing share the same vision with Grid computing [FZRLOg]: their aims
are to reduce computing cost, to increase flexibility and reliability. But there are many
differences as well. The demand for computing has dramatically increased last years and
there is a need for massive scale computing systems. Figure (2.5 [FZRLO§] illustrates the
relations between Cloud and Grid computing: Clouds are service oriented systems and
considered to scale better than Grids.

A
Scale Distributed systems
Supercomputers h
Clouds
Grids
L
Clusters Web 2.0
Application Services
Oriented Oriented

Figure 2.5: Grids and Clouds Overview shows how well different distributed systems scale
and demonstrate their service or application orientation. [EZRLOS]

In the article [HKII] the authors compared different cloud computing services using
main characteristics such as: license type, intended user group (private or corporate use),
security and privacy, payment systems, openness of clouds, interoperability and portability,
etc. The authors introduced a taxonomy for the cloud services, and represent it as a tree
(Figure [2.6).

The common point about Clouds and Grids is that they do not magically solve the
scaling problem. Scaling and fault tolerance require us to adopt distributed architectures,
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Figure 2.6: The cloud computing services tree. Figure is taken from [HKT]]

and the key problem is that we need to choose the correct ways of rewriting existing
algorithms so that they work in these architectures.

The most common programming model for Grids is the Message Passing Interface
(MPI) [Eor94]. There is no single flow of computations, but a set of parallel tasks. The
tasks use their own memory for computations and communicate between each other by
passing messages [FZRLOJ].

MapReduce [DG04] is another programming model. There is no message between
tasks (jobs), the communication is through grouping. Apache Hadoop3? is a cluster-
based implementation of MapReduce. Cloud MapReduce [LOT]] is the implementation of
MapReduce on top of Cloud Operating System. Reference [HLDQO9] discusses the strategies
of efficient MapReduce implementation on top of MPI. Hadoop MapReduce 2.0, called
YARN?* (Yet Another Resource Negotiator), supports also MPI as an alternative for
MapReduce.

Since there are many technologies, we need to base our choice on the specificities of
the comparative genomics application. First, we need distributed storage that scales to
10" and works well with offline analytics. This leads us to choose NoSQL rather than
SQL, and (using the CAP theorem) AP without C. Second, the algorithms we want to
use are typically global, starting with a systematic all-against-all comparison, followed by
statistical or combinatorial classification of the distance matrix. This leads us to choose

33 Apache Hadoop: http://hadoop.apache.org
34Hadoop YARN: http://hadoop.apache.org/docs/current /hadoop-yarn/hadoop-yarn-site/ YARN.html
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a distributed MapReduce approach, rather than a fine-grained message-passing approach,
or a classical linear algorithm.

2.4.2 MapReduce and Apache Hadoop MapReduce framework

MapReduce is a paradigm for defining fault-tolerant distributed computing of large datasets
across clusters of computers [DG04]. In MapReduce, algorithms are decomposed into pairs
of phases using a functional programming style. In the map phase, a single map function
splits input data into independent data chunks and processes each map job in parallel,
associating a key value with the result value. In the reduce phase, the framework puts the
groups of results with the same key value to a reduce jobs, which are processed as well
in parallel and provide the array of final results (Figure [2.7). Since both phases are func-
tional, if a node fails, its part of the computation can be recomputed without invalidating
the other parts, leading to improved fault tolerance and reduced data loss. MapReduce is
easy to use, it does not require special knowledge in parallel programming, it hides details
of parallelization:partitioning, scheduling jobs executions and handling machines failures
DG,

Apache Hadoop?® provides a open-source software framework for MapReduce. Hadoop
MapReduce framework uses master-slave architecture: there is single master JobTracker
and one TaskTracker perl cluster-node. JobTracker schedules the jobs and TaskTrackers
execute them [mmapy Whi09]. The client application should set input/output locations for
the job and implement map and reduce functions using given framework interfaces.

Hadoop is implemented in Java, so MapReduce programs should either be written in
Java or use the Hadoop Streaming facility.

Hadoop supports input and output connections to Cassandra. There is no Hadoop
output data streaming®®, that is why Java is the only possible programming language to
use with Hadoop-Cassandra.

2.4.3 Pig Latin - declarative language for MapReduce

Apache Pig3” ﬂm is a open-source platform for large-scale analyses, that provides
the high-level textual language Pig Latin and an infrastructure for writing and evaluating
analysis programs written using this language. Pig compiles Pig Latin expressions into a
sequence of MapReduce jobs and executes them on an existing MapReduce implementa-
tion, the Hadoop framework. The Pig Latin language simplifies the writing, understanding
and maintaining of MapReduce programs. It becomes trivial to execute “embarrassingly
parallel” analyses.

In Pig there is no need to worry about map, shuffling and reduce phases. The operator
FOREACH is equivalent to the map phase of MapReduce. The same function (map
function) which we write inside FOREACH is applied in parallel to each data element.
The GROUP operator groups the data elements by some attribute and is equivalent to
the combine phase of MapReduce (see Listing 6 for the Pig code and Figure [2.7| for the
MapReduce diagram).

Complex analyses are executed through several data transformations. Pig provides a
rich library of operations as well as possibility to create one’s own user-defined functions.
Pig is very effective in iterative processing and it supports semi- or unstructured data [pig].

35The Apache Hadoop Project: http://hadoop.apache.org
36 Cassandra wiki Hadoop support: http://wiki.apache.org/cassandra/HadoopSupport
37 Apache Pig: http://pig.apache.org
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Initial data:

(1, acgtga)

(2, gggNaa)
(3, ttgcaN)

qnput: ) (Input: ) (Input: )
(1, acgtga) (2, gggNaa) (3, ttgcaN)
Map: Map: Map: M
map(1, acgtga) map(2, gggNaa map(3, ttgcaN) ap
Output: Output: Output:
(gc, 3:6) (gc, 3:6) (9c, 2:6)
(N, 0:6) (N, 1:6) (N, 1:6)
g
( Input: Input: 0
(gc, 3:6) (N, 0:6)
(gc, 3:6) (N, 1:6)
(gc, 2:6) (N, 1:6)

Reduce: Reduce: Reduce
reduce(gc, {3:6, 3:6, 2:6}) = reduce(gc, {0:6, 1:6, 1:6}) =
(3+3+2)/(6+6+6) = 0.44 (0+1+1)/(6+6+6) = 0.11
Output: Output:

(gc, 44%) (N, 11%)
\§ J A J
Final Output:

Figure 2.7: To demonstrate the power of MapReduce paradigm, we chose an example of
two simultaneous computations: ge-content and the content of gaps (N-content). Basically,
we count in parallel the number of letters g or ¢ and N in the input gene sequence, that
is a string of letters a, ¢, g, t (nucleotides) and N (gaps). Input string is cut into three
pieces. In the map phase we count the relative number of g and c letters in each piece of
sequence in parallel. The same way we count the number of N. The output of the map
phase are the key-values pairs where the keys are the result types (“ge” or “N”) and values
are the results of the calculations. The Combine step of MapReduce groups the outputs
of Map phase by keys. In the Reduce phase we summarize calculations to obtain total gc-
and N-contents.
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Listing 6 Calculating GC-content for each gene sequence and grouping the output by

gc-content

genes =

LOAD ’genes’ USING PigStorage()
AS (gene_id:chararray, gene:chararray);
GCs = FOREACH genes GENERATE gene_id as gene_id, GC(gene) as gc;

> GC is a User-defined function

grouped = GROUP GCs by gc;

2.4.4 Evaluation of MapReduce

Parallel databases vs MapReduce

For more than 20 years parallel database systems have been commercially used for dis-
tributed computations, such as Teradata, Aster Data, Vertica, Greenplum, DB2, Oracle
and others. Almost any computation can be expressed as a sequence of queries using
user-defined functions ﬂm We compare computations via parallel databases and
Hadoop MapReduce using the requirements defined in section [2.2:

1. Large-scalable (petabyte-scalable)

Both Hadoop MapReduce and parallel databases claim to be highly scalable systems.
[PPRFQ9 observes that parallel databases show significantly better performance
than MapReduce applications.

a)

b)

Distributed
By definition, all these systems are distributed.

Fault-tolerant

Typically parallel databases use master-slave architectures, but they claim to be
Highly Available (stronger property than just fault-tolerant) systems by avoid-
ing single points of failure and automatic back-up strategies. The basic Hadoop
implementation of MapReduce uses HDFS, the Hadoop distributed file system.
This system has a master node, NameNode, which is single point of failure. Na-
meNode stores the metadata about the cluster. But in 2011 it was substituted
by the AvatarNode, a software wrapper around the NameNode. There are two
avatar nodes in the system: Primary AvatarNode behaves like a NameNode,
Standby AvatarNode encapsulates the NameNode and the secondary NameN-
ode. This way the single point of failure is eliminated. DataStax Enterprise3®
is a Hadoop deployment integrated with Cassandra. Instead of HDFS it uses
CassandaF'S, where all nodes are peers and there is no single point of failure.

2. Fits to the usage pattern: optimal for global analyses, meaning global get-transform-
insert operations.

Global analyses in comparative genomics often involve extract-transform-load oper-
ations, which is MapReduce speciality and for which databases are not designed for

SADT 0.

3. Fasy to use and low cost

3¥DataStax: http://www.datastax.com
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Parallel databases are very expensive and difficult to maintain. In contrast, Hadoop
MapReduce is a free open-source software and it is extremely easy to configure it

ISAD*10, [PPR™09].

Dryad vs MapReduce

There are also proprietary and onky marginally used solutions similar to MapReduce.
Microsoft Dryad LINQ m suggests LINQ3? language extensions and a new model
for the distributed computations.

1. Large-scalable (petabyte-scalable)

a) Distributed

DryadLINQ is claimed as a generalization of MapReduce, SQL and Dryad
ﬂm (distributed execution engine for data-parallel programs). Applica-

tions can be written in any .NET programming language, and LINQ operators
are mixed with the rest of the code [EGETQ9].

b) Fault-tolerant
DryadLINQ as well as Hadoop MapReduce re-executes failed processes.

2. Fits to the usage pattern: optimal for global analyses, meaning global get-transform-
insert operations.

[EGFTQ) tests several scientific applications (global analyses) and shows for several
scientific applications performance of DryadLINQ is comparable to Hadoop MapRe-
duce.

3. Easy to use and low cost Dryad (and consequently DryadLINQ) requires specific Mi-
crosoft environment (Windows HPC Server 2008); DyadLINQ released a free version
for academic purposes, but yet there are not many users of this software, thus, there
is lack of community, compared to the large one for Hadoop.

The most important issue with Dryad that it does not provide a distributed file system,
which may explain its lack of success.

2.4.5 Existing MapReduce adaptations

MapReduce programming model is widely adopted both by industry and scientific world,
especially in bioinformatics.

In [AGMVT2] the authors describe a MapReduce solution for the distributed compu-
tations of the sequence comparisons. Their “alignment-free” solution, a fractal analysis
technique, does not require dynamic programming. The MapReduce decomposition is
organized in several steps: encoding into a Universal Sequence Map (USM) [AV02], de-
coding to verify encoding procedure, distance calculation and, finally, a single MapReduce
full sequences comparison.

The article [MABT10] introduces The Genome Analysis Toolkit (GATK) as a struc-
tured programming MapReduce framework for analyzing next-generation DNA sequencing
data. GATK provides a small set of data access patterns (or traversal types), which is
claimed in the article to cover the majority of analysis tool needs. GATK supports multiple
approaches for parallelization of tasks, including shared memory one.

39LINQ: Language-Integrated Query http://msdn.microsoft.com/en-gb/library/bb397926.aspx
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The article “MapReduce for Data Intensive Scientific Analyses” [EPFO§] presents the
experience of adapting MapReduce to the two scientific analyses: High Energy Physics
(HEP) data analyses and K-means clustering. The authors also introduce a new streaming-
based MapReduce implementation, CGL-MapReduce. Each map function of the HEP
MapReduce decomposition works with some amount of input files and produces some
histograms, then these histograms are merged in reduce tasks.

In [UKOvHQ9] the authors introduce an approach for materializing the closure of an
RDF graph to perform scalable distributed reasoning using MapReduce. They show, that
straightforward MapReduce implementation involve too large a number of tasks, so the
authors propose three optimizations to reduce the number of jobs.

[PSO]] introduces a distributed co-clustering framework DisCo, which they developed
as a new practical approachs for distributed data pre-processing. Co-clustering is a tech-
nique for clustering rows and columns of a matrix. This technique is widely used by

bioinformatics [HZZT02.

2.4.6 Distributed graph algorithms for comparative genomics

Beside the advantages of MapReduce described earlier, we should note, that not all algo-
rithms can be adapted to this approach. Graph algorithms in particular are a challenge
because “following an edge” is an essential operation: when we cannot put the entire
graph in memory, following an edge through secondary memory may incur extremely high
latency.

Many of the analyses in comparative genomics involve constructing and analyzing
global graphs. Typically we need to load these graphs into memory to analyze them.
The size of the graph grows at least quadratically with the size of elements (vertices).
For example, in the identification of fusion and fission events [DNSO§] algorithm the last
phase contains analysis of a large graph of relations between HMMs. To reduce the size
of the problem, in this algorithm the authors extract independent connected components.
Unfortunately, some components are still too big to be analyzed efficiently.

Graph algorithms are in general a challenge for MapReduce [LGHBQT], since traversal
requires random access to nodes, and that is quite expensive because of the network latency.
Existing work on graph-based algorithms has focused on converting classical traversal-
based graph algorithms to the MapReduce style. Cohen [Coh09] replaces traversal by
sorting and defines MapReduce primitives for graph algorithms. Malewicz et al ﬂm
define the PREGL parallel graph language which is based on an iterative, vertex-centric,
message-passing model. At each superstep, PREGL maps over all vertices who can send
messages to other vertices, which will be available together in the next superstep iteration.
Lattanzi et al [LMSVTI] define a filtering approach that successively partitions the input
until each piece fits into the memory of a single machine, where in every round each machine
performs a local computation and sends the results to the appropriate other machines for
the next round. They show that for the algorithms that they consider, results are obtained
after a small number of rounds.

We conclude here, that certain (embarrassingly parallel) algorithms in comparative
genomics can be adapted naturally to MapReduce. However, the algorithms that involve
graph analyses require more effort to be adapted to MapReduce, because they need random
access to the nodes.

43



2.5 Analytics systems

In previous section we talked about the systems for ad-hoc algorithms. In this section we
will consider systems for analytical processing: OLAP approaches and different kinds of
data warehouses. Analytics systems, being a special case of systems for ad-hoc algorithms,
share the same requirements. The difference is that such systems usually are read-only
and should in general provide an abstract integrative view of heterogeneous data.

2.5.1 OLAP

OLAP (Online Analytical Processing) [CCS93] is a general approach to support decision
making, performing multi-dimensional analytical queries. Online Transaction Processing
stores (OLTP) are usually source for OLAP stores.

modeling (AP irteractive
—_ TEFvice exploraiion
- e m =S
Transactional Multidimensional Visualised Knowledge
Data Data Data

Figure 2.8: Analytics workflow

OLAP systems provide an analytical view optimized for analysis and navigation. The
data are summarized, aggregated, and, because of the response time requirements, often
precomputed. Data are represented as a n-dimensional cube. The cells of the cube are
measured values and the dimensions are different indexes. The data elements in dimensions
can be hierarchical and can be organized as a set of parent-child relationships. It permits
roll up and drill down navigation: for each element we can show and hide child data
elements.

OLAP systems suffer a lot from the data volume increase, since the size of multidi-
mensional cubes grows as the product of dimensions. Representing data into these cubes
significantly improves the query systems expressive power. The problem is that the data
are already large and we need to put the cube (usually aggregated) in memory for the
queries, recomputing each time the contents of cells from the raw data.

Fortunately, there are techniques to deal with the representation and optimization
problems. It is observed that a multidimensional cube is typically very sparse. Thus,
instead of storing the entire cube, we can store just the nonempty cells. We can avoid
recomputation during a complex query by using materialized views. For example, in
[HRU9G] the authors present a technique for efficient representation of sparse cubes. They
perform a dependency analysis on the cells and decide which cells are the most useful to
materialize. This technique provides a good balance between memory consumption and
the average time to answer a query. In order to avoid useless recomputation of cell values.
materialized views can be cached between requests.

Data Warehouse, a read-only data storage, is a central element of the OLAP environ-
ment.
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2.5.2 Data Warehouses: BioMart, Hive

A Data Warehouse (DW) is a database used to support decision making. It presents
a frozen picture of the data. The data are cleaned, transformed, and prepared to be
analyzed by managers, business professionals, domain specialists. The data warehouse
presents information consistently and makes it easily accessible, because in this storage
system the data are redundant and duplicated.

There are many benefits of using data warehouses. This datastore is optimized for
queries, it may have rich declarative SQL-like query language. The data are read-only,
thus, warehouse can be de-normalized, which facilitates access to the information.

But, data warehouses also have some disadvantages. The data in DW can get outdated
relatively quickly, updates are difficult and can be expensive. For example, to add some
information into the offline data warehouse system we need to stop all applications working
with it at the moment and then rebuild the storage. It may be necessary to invalidate
decisions that were made with the previous version of the data. Thus, these offline data
warehouses are appropriate in cases when data do not change frequently.

Online (active, in-time) data warehouses represent the real time (or near real time)
data. They might be updated after every transaction performed on the source data.
There are also some techniques to improve performance of streaming updates in active
data warehouses: the MESHJOIN [PSVT07] algorithm, for example, introduces a novel
join operator that operates between a fast stream of source updates and the disk-based
relation under the constraint of limited memory.

The active data warehouses seem to fit more in our situation, which concern fast-
growing datasets of genomic data.

All data warehouses are read-only systems, built on top of source data storages. DW
might be only part of our solution: we still need to have a good high-scalable online storage
system under the data warehouse.

BioMart - Data Warehouse on top of relational (biological) databases

Biomart“? is a flexible robust distributed data warehouse. It is read-only and optimized
for queries. Often, scientists are required to use many databases from different sources for
their analyses. Typically, these databases have different formats and ways of representing
the data. BioMart integrates many data sources by providing a single web interface to
work with complex biological data ﬂm For example, it allows one to retrieve large
amount of data from Ensembl*!, Sanger??, as well as Uniprot®3 via a single standardized
interface. The queries may be performed on individual databases as well as on chains of
them.

From the data providers point of view BioMart facilitate the integration of their data
with existing data sets on the network.

BioMart is a very powerful federation technology, but it does not fit our requirements.
The BioMart is integrative, but not distributed, in the sense that the single databases are
stored in the different places, but themselves are not distributed. The source for BioMart
is relational databases or flat files, where our data seeks for the new storage technologies
such as NoSQL, as we discussed in the section [2.3|

40The Biomart system: http://www.biomart.org/

“IThe Ensembl project: http://www.ensembl.org

42The Wellcome Trust Sanger Institute: http://www.sanger.ac.uk
“3he Universal Protein Resource (UniProt): http://www.uniprot.org/
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Hive - Data Warehouse on top of Hadoop MapReduce

Apache Hive*4 ﬂm is an open-source data warehousing solution for Hadoop. In
contrast with BioMart system, the data source for Hive is either HDFS (Hadoop Dis-
tributed File System) or CassandraFS (Cassandra File System), both distributed data
storages. Hive can be connected with Cassandra using DataStax Enterprise*® distribution
of Hadoop, Cassandra and Hive.

Hive provides a SQL-like declarative query language Hive@L that is compiled to a se-
quence of Hadoop MapReduce jobs. User scripts as well can be plugged into this language.
Hive provides a relational model and SQL for Hadoop, which are best adapted to the deci-
sion makers on large data sets [pig]. Hive like most of data warehouses is read-only: there
are no delete or update operations, Hive implements only the query part of the SQL.

Hive tables can be created with CREATE TABLE command:

CREATE TABLE genes (gene_id INT, gene STRING)
PARTITIONED BY (ds STRING);

We can insert data using LOAD DATA command:

LOAD DATA LOCAL INPATH ’genes.txt’
OVERWRITE INTO TABLE invites PARTITION (ds="2012-09-15);

To get data we can use traditional SQL-like SELECT command:

SELECT count(*), ds FROM genes GROUP BY ds;

2.5.3 Mahout - Data Mining on top of Hadoop MapReduce

Apache Mahout?6 NQKL_"'_Jﬁﬂ is na open-source collection of scalable machine learning
libraries. It is mostly implemented on top of the Hadoop MapReduce framework.
Mahout supports four use cases for now:

1. Recommendation mining

The algorithm makes suggestions what the user might like, based on the user ex-
perience (for example, recommendations of the similar items in the internet shops
or people-to people recommending in the social networks). There are both simple
non-distributed recommender implementations and distributed Hadoop-based ones.

2. Clustering

Clustering groups topically related text documents together. Mahout supports many
different clustering algorithms: K-Means Clustering, Top Down Clustering, Hierar-
chical Clustering, Spectral Clustering, etc. There are also plans to implement many
other ones.

44 Apache Hive: http://hive.apache.org

“*DataStax Enterprise Hive documentation
http://www.datastax.com/docs/datastax_enterprise2.1/analytics/about_hive
6 Apache Mahout: http://mahout.apache.org
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3. Classification

Classification assigns new documents to the existing categories, based on the assign-
ments of the existing documents. Mahout supports several classification algorithms
for now (with the plan to implement many others): Logistic Regression, Random
Forests, Hidden Markov Model (HMM), Online Passive Aggressive, etc.

4. Frequent itemset mining (Pattern Mining)

The algorithm identifies the sets of items which usually appear together (for example,
in a shopping cart or in a query session).

The Mahout community also intends to implement some more algorithms, such as
Dimension Reduction (component analysis), Linear Regression, Vector Similarity, etc.

2.5.4 Hive and Mahout existing adaptions

Data Warehouse and Data Mining solutions on top of Hadoop MapReduce have many
applications in bioinformatics [TayI10]: Mahout libraries for the clustering and classification
can be used for the clustering of large genomic data sets, and as classifiers for biomarker
identification.

Recommendations systems are highly used by the wide range of applications and
projects. The workshop “Workshop on the practical use of recommender systems al-
gorithms & technology” [PKCII(] has many papers about recommendation mining appli-
cations: “Proposal and Evaluation of Serendipitous Recommendation Method Using Gen-
eral Unexpectedness” , “Supporting Consumers in Providing Meaningful Multi-Criteria
Judgments” | “Groups Identification and Individual Recommendations in Group Recom-
mendation Algorithms”, and others.

Since Hive provides SQL-like query language for data analytics, it can be naturally
used for the large scale statistics. Mahout libraries, in contrast, can be used for more
elaborated analytics: knowledge mining and pattern analysis.
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Chapter 3

Genomic Big Data

Résumé : L’annotation dun génome définit un ensemble d’éléments qui
représentent des objets biologiques, tels ques les génes codant protéine, des génes
noncodants, des centromeres, des régions cis-régulatoires, etc ... La génomique
comparée utilise a la fois ces éléments et surtout les relations entre ces éléments.
Les relations peuvent étre des compositions d’éléments en objets plus complexes,
de relations pair-a-pair telles que les distances, et finalement des regroupe-
ments arbitraires comme des classifications. Dans ce chapitre nous traitons
la représentation de ces donmées et commencons par une formailisation des
différents type de données et relations. Afin de procéder a une évaluation réaliste
de l'adéquation de NoSQL pour des donnés génomiques, nous avons analysé des
fichiers journaux anonymisés du site web de Génolevures pour caracériser les
modes d’utilisation typiques des ses utilisateurs. Cette analyse nous a permis de
dériver un schéma de stockage d’Apache Cassandra adjusté aur usages et requétes
réels, et implémenter un adaptateur logiciel compatible avec la chaine GMOD. Ces
outils ont été déployé sur un cluster Apache Cassandra et testé en comparaison
avec une base de données classique PostgreSQL.

A genome sequence annotation defines data elements representing biological objects, such
as genes that code for proteins, noncoding RNA genes, centromeres, cis-regulatory regions,
and so on; hundreds of terms are defined in the Sequence Ontology for Annotation!.
Comparative genomics relies on these data elements, and more importantly on the relations
between these data elements. These relations can be compositions of biological objects
into composite objects, such as gene arrays or retrotransposons, they can be pairwise
relations such as distances, and they can be arbitrary groupings such as classifications.
In this chapter we will talk about different ways of representing Genomic Data, including
the individual annotation data objects, and more importantly the relations between data
elements. We will first formalize the different types of data and relations that are necessary
for the specific case of comparative genomics. In order to realistically evaluate the practical
use of NoSQL for genome sequence features, we used log analysis of the Génolevures web
site to characterize real usage patterns. From these analyses we derived an appropriate
Apache Cassandra data storage schema, and implemented a data storage adapter, that
compatible with standard comparative genomics data schemas, tools and libraries. We

!The Sequence Ontology Project, http://sequenceontology.org, defines terms for biological objects on
annotated sequences. As of October 2012, the basic sequence ontology for annotation (SOFA) defines 252
terms, and the full sequence ontology defines 2151 terms.
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used these tools to deploy an Apache Cassandra cluster and tested it in comparison with
standard PostgreSQL backends for the Magus genome analysis system.

In this chapter we will talk about existing types of multidimensional data structures.
Depending on what are the dimensions in the data, we choose different data structure.
We will consider the case of semi-structured data elements and sparse relations between
these elements. These properties of data make it inefficient to store empty or null-values
of attributes or relations. So, we will talk about a representation of data as tuples. We
distinguish three kinds of tuple data structures: Data Cubes, n-dimensional matrices, and
the special case of n-tuples, triples, as illustrated in Figure (3.1l

As we saw in the previous chapters, special properties of our data induce special re-
quirements for the storage, ad-hoc algorithms, and analytics in comparative genomics. In
this chapter we will discuss these properties of the genomic data, formalize them, and
show how they correspond to our solutions.

Tuples stores

:

Data Cube n-dimensional RDF triple store

matrix
v(Cagl01,gene,0:250)

hasName

type

coordinates

DT OQD

2 Ua, b,d)~fi
name abcde

expresses

Figure 3.1: Different types of tuple data structures: Data Cube, n-dimensional matrix and
RDF triple Store. A Data Cube’s dimensions are the attributes of data elements. The
dimensions of the n-dimensional matrices are the data elements. RDF triples are data
entities composed of subject—predicate—object.

3.1 Cassandra representations of genomic data

As we saw in subsection [2.3.3, NoSQL provides an appropriate technology for storing our
huge volumes of data. Beyond simply storing the genomic elements, we must store the
n-ary relations between them, which define a high-dimensional sparse matrix. Following
our formalism for representing relations in subsection [3.3.1] we store in NoSQL database
only the non-empty values.

The main choice to make for the data representation in the Cassandra data store is to
decide what are the row keys. This is important, because the data are distributed by the
row keys, the row key is a main filter to get the data, the row values that are associated
with these row keys are grouped for the map function of MapReduce. Thus, a Cassandra
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row key is an identifier of the group of row values. Consequently, the way how we
use row values grouping defines the grouping itself.

As we saw in subsection 2.3.4 a NoSQL Cassandra schema should be designed around
the queries and analyses that will be performed on the system. For each use case typically
we need to create a column family. Data Cubes (section 3.2)) and n-dimensional matrices
(section 3.3) can both be used different ways: for searching small subsets of the data and
for global MapReduce analyses. If the data are used for searching, we create an index
(Cassandra column family) for each combination of parameters for the search.

If the data are used for a global MapReduce analysis, we group necessary values into
Cassandra rows for the map phase of MapReduce. Column families for global MapReduce
analyses are not the same as the ones that are used for searches by attributes. In contrast
with the searching indexes, for the MapReduce analyses it is important only to group
all needed values into the row, because Cassandra rows (or slices of the rows) are inputs
for map functions of MapReduce. And we do not have to care about how the values
are placed in the row, what are the row keys, super column names and column names.
Consequently, for the same data we might need two different column families: for search
and for MapReduce.

For RDF triples we will use a simple Cassandra schema to store them using row key,
super column name and column name for subject, predicate and object (section (3.4]).

3.2 Data cube

The most common type of data is simply a set of data elements with attributes. The data
are represented as Data Cubes (Figure|3.2)) where the dimensions are those attributes that
are used for searching. The values of this cube are typically either serialized objects or
identifiers of the objects. The dimensions are discrete-valued; values are not the same
for each dimension. The values of these dimensions are used as sources for sorting and
searching criteria.

In Relational databases each data object typically corresponds to a row in a table. The
attributes (dimensions of the data cube) are the columns of this table.

In NoSQL data stores we store serialized objects and use the attributes to create
indexes that refer to identifiers of the objects. We create separate index (column families)
for each combination of attribute names that is used for searching or sorting.

3.2.1 Data Cube representation

First, we will formalize what are actually the genomic data elements. These data are
semi-structured, because not all genomic elements and relations between them have the
same attributes. There are many kinds of genomic elements. There can be a wide range of
genome sequence features: genes, proteins, mRNA, exons, etc. Also, there are composite
elements such as groups of features: protein families, alleles, tandem repeats, etc; and
groups of groups: fusion and fission events, etc. Thus, genomic data elements can be
represented as objects that have arbitrary attributes and may contain other objects.

A common strategy for the semi-structured data elements is to keep them serialized
and make the indexes for the attributes that are used for search or sorting. This way we
do not need to create a uniform object representation (the union of the object interfaces)
that suit all kinds of elements; such a representation would be very inefficient for the small
features.
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Figure 3.2: Data cube: each dimension corresponds to some attribute name, the values on
this dimension are the possible attribute values for this attribute name. The values in the
Data Cube cells are serialized objects or identifiers for the objects. In this example there
are 3 dimensions (indexes): name, type, coordinates.

Definition 3.1. (Genomic Data Element)
Suppose the set Attributes contains the attribute names that will be used to create search
or sorting indexes. We represent Genomic Data Element d € D as a combination of
serialized object serialized_object and a set of attribute-values pairs:
d = (serialized_object,

attribute_name; : {attribute_valuel, ..., attribute_valuel},

attribute_name,, : {attribute_valuel, ... attribute_value™}

>’

for 1 < i <n, attribute_name; € Attributes,

{atribute_namey, ... atribute_name, } C Attributes.

Such data elements, with several attributes that can be used for searching and sorting
operations. Data Cube is simply a set of data elements. The dimensions of the cube are
attributes, and the values are identifiers, single values or serialized objects.

Definition 3.2. (Genomic Data Cube)

The set of Data Elements D, defined in the definition|3.1, is a representation of the Data
Cube as a function, where the range of the function is the set of serialized objects and the
domains are attributes.

A Data Cube is a multidimensional cube, each dimension of which corresponds to
some attribute name a; € Attributes, and the values of each a;-dimension are all possible
attribute values for this attribute name. The cell values in this Data Cube are serialized
objects or identifiers for the objects.

3.2.2 Data Cube Cassandra representation

We implemented a Cassandra schema of column families derived from a use-case analysis
of the Génolevures data resource in [SMNTQ9]. This follows standard practice in NoSQL
databases, where column family schemas are defined based on an analysis of a fixed set of
queries known in advance [SADT10]. This schema is used as a structured index of serialized
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objects representing genomic elements: genes, proteins, exons, mRNA, etc. A further
schema of column families is used for grouping features in genomic intervals. Significantly,
we also use Cassandra to store the n-ary relations between these elements, such as protein
families, alleles, tandem repeats, etc.

Column families for the search tools use row key, super and standard column names
as places for the search parameters. To improve performance of the key and row caches
we try not to create large rows by dividing them using some criteria.

Example 3.1. (Cassandra searching index for the Data Cube)
In this example we would like to store a collection of genomic sequence features and we
would like to be able to search them by some of their attributes: name and type. Thus, we
need to create an index for these attributes and the rest of information about the sequence
features we can store serialized.
Suppose, the Data Cube D (a set of data elements) is following (illustrated in the figure
D = {(name = “SAKLI"  type = “gene”) — object;

(name = “ERGOY , type = “exon”) — objects
(name = “CAGLS’  type = “gene’) — objects

(name = “YALIT , type = “intron”) — object,}.

objects objects
gene [ ) [ )

objectz
exon ‘

type

objects
o

intron

SAKL1 ERGO5 CAGL8 YALI7
hame

Figure 3.3: 2-dimensional Data cube in the example |3.1. The first dimension is name
of the sequence feature, the second dimension is its type. In the example the sequence
features have only one name and one type, but multiple values would not change the
representation.

This is a 2-dimensional Data Cube that is used for a search by name and type, and
suppose that the name is an obligatory parameter and a type is optional. Since the name
s an obligatory parameter, we use it as a Cassandra row key, while a type can be a column
name (the general principles are formulated in the further subsection |3.6.1). Thus, we
create a column family NameType, as it is illustrated in the figure|3.4.

As we discussed earlier in this chapter, sometimes the data representation (group-
ing) for MapReduce analyses might be different from the representation that would be
appropriate for searches by attributes, but in the case of Data Cube there is no difference.
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Figure 3.4: A Cassandra column family as an index for the search by name and type for
example 3.1l The sequence feature names are the Cassandra row keys, because they are
obligatory parameters. Optional parameter (type) is stored in column name.

Example 3.2. (Storing Data Cube in Cassandra for MapReduce analyses)
The Data Cube from our definition is a set of data elements that can be considered inde-
pendent. If we need to perform some global analysis on these data we do not need a special
schema mnor a special grouping for the elements, since the data elements are independent
and can be easily processed in parallel.

3.3 n-dimensional matrices

When the data are not just set of independent elements but the set of relations between
them, another representation of the data are used. n + 1 data tuples (n-tuple of relation
between elements and an attribute of this relation) are represented as function from n
dimensions (domain) to 1 dimension (range). This function corresponds to a n dimensional
matrix, as it is illustrated in Figure |3.5.

For Relational databases, for these kind of tuples we create a new table that store
relations between objects, which are combinations of the foreign keys.

In NoSQL world we need as well to create a new column family that stores the relation.

3.3.1 n-dimensional matrix representation

In the case of Comparative Genomics, a data set is not simply a collection of genomic
elements, the main focus is on the n-ary relations between these elements. But, more
precisely, they are not actually n-ary relations, they are n-ary mappings: each n-tuple has
some additional value, the attributes of the relation. Before talking about data represen-
tations, let us formalize some basic concepts that we will use further: what we mean by
n-ary relation, what are the multidimensional functions and arrays that often are used to
represent genomic data.

As we claimed before, our focus is on n-ary mappings from n-tuples of genomic elements
to some additional values (attributes of relation). It can be one or several attributes of
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Figure 3.5: An n-dimensional matrix, where n 4+ 1 tuples are represented as a n-function.
The range of this function consists of the attributes of the relations between data elements.

the relation: relation identifier, relation name, some score value, etc. For simplicity we
will consider attributes of the relation as one attribute object, and each relation has a
unique one (we can make it unique by assigning an unique identifier). Thus, we have a
multi-dimensional n-function whose values are unique.

The very important difference between genomic elements and attributes is that, while
we observe a dramatic increase in the number of genomic elements, the size on the disk
of attributes objects is not growing (the number of attributes for each n-tuple is not
increasing with the number of tuples). That is why we can think about attributes objects
as a fixed-size composite value over the Attributes set and we do not have to worry about
scaling properties of these attributes.

Definition 3.3. (Comparative Genomic data as a relation)

For sets of genomic elements (Data Cubes) Di,...D,, and a set of n-tuples over these
elements, we have for each n-tuple one attribute object from the set of possible attribute
objects Attributes. We represent this data as a subset of the Cartesian product, written
R C Dy x --- x D, x Attributes. Note that we do not store tuples with empty attribute
objects, thus most often |R| < |Dy x --- x D, x Attributes|.

The n-dimensional matrices in comparative genomics are sparse - there are almost
everywhere empty or zero values in the cells. Instead of storing the full matrix, we can
store more efficiently only non-zero, “interesting” values.

Definition 3.4. (Sparse Matrix)
A matriz R: R C Dy x---x D, x Attributes is sparse if it is populated almost everywhere
with zeros: |R| < |Dy x - -+ x Dy, x Attributes|.

Example 3.3. (Protein similarity sparse matriz as a relation)
Suppose, we have a set of proteins. Each protein is a specific sequence features, which has
many attributes. Often, while considering relations between data elements we do not need
all information about them, thus we can use only their name or identifiers.

Thus, in this example we represent the set of proteins as a set of their names: P =
{SACE/, SACE3, CAGL5, ZYRO8, DEHA2}. Suppose, we have symmetric similarity ma-
trix Mg;m between these proteins (for example, as a result of an all-against-all alignment):
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SACE4 SACE3 CAGL5 ZYROS8 DEHA2

SACEY 1 0 0.1 0 0.5
SACES 0 1 0 0 0.6
Mgim = CAGL5| 0.1 0 1 0 0
ZYROS 0 0 0 1 0.7
DEHA2\ 05 0.6 0 0.7 1

We represent this similarity matriz as a 3-ary relation Rsim, a set of 3-tuples. We do not
store empty or null values. This matriz here is symmetric, so we neither store duplicated
tuples nor self tuples.

Rsim = {(SACE4, CAGL5,0.1),

(SACE/, DEHA2,0.5),
(SACES, DEHA2,0.6),
(ZYROS, DEHAZ2,0.7)}.

Example 3.4. (Protein families as a relation)

Suppose, for the set of proteins P = {SACE4, SACE3, CAGL5, ZYROS8, DEHA2}, we
have a partition into families: SACE4 and SACES3 belong to the family GL3C1 and
CAGLS5, ZYROS, DEHA2 to GL3C2. We represent these protein family partitions as:

Rram = {(SACE{, SACES, GL3C1), (CAGL5, ZYROS, DEHA2, GL5C?2)}.

To calculate dimensions for a family partition we need to find the largest family. Its size +
1 is the number of dimensions of this relation. In our example Rpqm s a 4-ary relation.

Definition 3.5. (Comparative Genomic data as a function)

For sets of genomic elements (Data Cubes) D1, ...Dy, and the set of n-tuples over these
elements we have, for each n-tuple one attribute object from the set of possible attribute
objects Attributes. We represent this data as a n-ary function

F:Dyx---x D, — Attributes.

Example 3.5. (Similarity matriz as a function)

Suppose, for the set of proteins P = {SACE}, SACES, CAGL5, ZYROS8, DEHA2}, we have
a similarity matriz Mg, between these proteins (for example, as a result of an all-against-
all alignment) and the matriz actually directly corresponds to a function

Fgip : P x P — Attributes :

SACE4 SACE3 CAGL5 ZYROS8 DEHAZ2

SACE} 1 0 0.1 0 0.5
SACES3 0 1 0 0 0.6
Fsim = Mgim = CAGLS 0.1 0 1 0 0
ZYROS8 0 0 0 1 0.7
DEHAZ2 0.5 0.6 0 0.7 1

Attributes here are the similarity scores.
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Example 3.6. (Protein families partition as a function)

Suppose, for the set of proteins P = {SACE4,SACES, CAGL5, ZYROS8, DEHAZ2}, we
have a partition into families: SACE4 and SACES belong to the family GL3CI1 and
CAGL5, ZYROS8, DEHA2 to GL3C2. We represent these families as a 3-ary function
Fsim : P x P x P — Attributes.

FFam:

®(c,de)~f2

{((SACE4, SACE3,~) — GL3C1),
(CAGL5, ZYROS, DEHA2) — GL3C2))}.

Attributes here are the protein family names and other attributes.

Sometimes it is useful to think about the data as a multidimensional cube, but in
practice the tools and algorithms work with 1 or 2 dimensional functions. That is why
multidimensional functions are represented as one- or two-dimensional functions and we
call this tuple decomposition.

Definition 3.6. Tuple decomposition into one-dimensional function

For the sets of genomic elements (Data Cubes) D1, ...D,,, the set of possible relation at-
tribute objects Attributes and an m-ary function F : Dy x --- x D,, — Attributes, we
perform tuple decomposition by defining a one-dimensional function F' : D1U---UD,, —
Attributes, where for each n-tuple and corresponding attribute object a : F(dy,...d,) = a
we have F'(dy) = a,...,F'(d,) = a.

Example 3.7. (Tuple decomposition for protein families - 1 dimension)
For the protein families defined by the function Frem in example [3.6 we define a new
function F' :

GL3C1 GL3C2

SACE/ 1 0
SACES 1 0

Fpom = CAGL5| 0 1 =
ZYRO8| 0 1
DEHA2\ 0 1

— {(SACE{ — GL3C1),
(SACE3 — GL3C1),
(CAGLS5 — GL3C2),
(ZYROS — GL3C2),

(DEHA2 — GL3C2)}.

Sometimes in the application we need to know if two genomic elements belong to
the same group. For this case it is more useful to perform tuple decomposition into a
two-dimensional function.
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Definition 3.7. Tuple decomposition into two-dimensional function
For the sets of genomic elements (Data Cubes) D, ..., Dy, the set of possible attribute
objects Attributes and a n-ary function

F:Di x---x D, — Attributes
we perform tuple decomposition by defining a two-dimensional function
F":(Dy x D3)U(Dy x D3)---U(Dy_1 x Dy,) — Attributes,
where for each n-tuple and corresponding attribute object a : F(dy,...dy) = a, we have
F'(dy,d2) = a,...,F"(dn—1,dp) = a.

Example 3.8. (Tuple decomposition for protein families - 2 dimensions)
For the protein families defined by the function Fpgpy in example |3.6 we define a new
function F" :

SACE4 SACE3 CAGL5 ZYROS8 DEHA2

SACE/ [ GL3C1 GLSCI 0 0 0
SACES | GL3C1 GLSC1 0 0 0
rom= CAGL5 | 0 0  GL3C2 GL3C2 GL3C? | =
ZYRO8| 0 0  GL3C2 GLSC2 GL3C2
DEHA2\ 0 0  GL3C2 GLSC2 GL3C2

— {(SACE{, SACES — GL3C1),
(CAGLS5, ZYROS — GL3C2),
(CAGL5, DEHA2 — GL3C2),
(ZYROS, DEHA2 — GLS3C2)}.

3.3.2 n-dimensional matrix Cassandra representation

The same way as for Data Cubes, we implemented a Cassandra schema of column families
derived from a use-case analysis of the Génolevures [SMNTQ9]. Unlike in the case of
Data Cubes, here we do have two different use cases of using n-dimensional matrices.
The first one is to search by attributes or relation members of small subsets of relations.
The second use case is to perform global MapReduce analyses. The representation for
MapReduce analyses varies according to the algorithms.

Example 3.9. (Cassandra searching index for the n-dimensional matrices (func-
tions) )
Suppose, for the function F we performed tuples decomposition into the one-dimensional
function:

GL3C1 GL3C2

SACE/ 1 0
SACES 1 0

Fpom = CAGL5| 0 1
ZYRO8| 0 1

DEHA2\ 0 1

— {(SACE} — GL3C1),
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(SACE3 — GL3C1),
(CAGL5 — GL3C2),
(ZYROS — GL3C2),

(DEHA2 — GL3C2)}.

For the search applications we store this function F,,, . as a relation index to be able
to find all members by relation name and backward — by any member find relation name
(Figure 3.6).

Relation index

GL3C1 — | SACEA4 || SACES |

GL3C2 — [ CAGLS5 || ZYROS || DEHA2 |

SACE4 —
SACE3 —»
CAGL5 —
ZYRO8 —»
DEHA2 —;

Figure 3.6: A Cassandra column family for n-dimensional matrices/functions as an index
for the searches by relation name and member names (example [3.1)). For the searches by
relation name we have the first and the second rows in this figure, where the row keys
are relation names, and column names are the names of the relation members. We do not
show here column values, which are empty. For the backward searches by relation member
names, we have the rows (from 3rd to 7th in this figure), where the row keys are member
names.

As we noticed above, for attribute searches we represent genomic relations as a one-
dimensional function, because we can treat each of them independently. On the other
hand, for global algorithms we need to group relations, typically by members. Thus, we
represent genomic relations as a two-dimensional function. Consequently, it leads to data
duplication.

Example 3.10. (Storing protein families in Cassandra for MapReduce analy-
ses)
Suppose, for the function F we perform tuple decomposition into a two-dimensional func-

59



tion:

SACE4 SACE3 CAGL5 ZYROS8 DEHA2

SACE, [ GL3C1 GL3C1 0 0 0
SACES | GL3C1 GL3C1 0 0 0

Fpo = CAGL5| 0 0  GL3C2 GL3C2 GL3C? | =
ZYROS 0 0 GL8C2 GL8C2 GLSC2
DEHA2 0 0 GL3C2 GL3C2 GL3C2

= {(SACE/4, SACES — GL3C1),
(CAGL5, ZYROS — GL3C2),
(CAGLS5, DEHA2 — GL3C2),
(ZYROS, DEHA2 — GL3C2)}.

For the MapReduce we group relations by some criterion. Typically, we group them by
members: for each element which will be the row key we put into the row as column values
all other elements that are in relation with it (Figure|3.7). Note, that here we might need
to store duplicated values, because the same tuple will be used in several independent map
jobs.

Grouping for MapReduce

SACE3
GL3C1

SACE4 —

SACE4

SACE3 — GL3C1

ZYROS || DEHA2
GL3C2 || GL3C2

CAGL5 —

CAGL5 || DEHA2

ZYRO8 — a3 1 GL3c2
CAGL5 |[ ZYROS
DEHAZ — —arsm 1 arsce

Figure 3.7: A Cassandra column family for MapReduce analyses on n-dimensional matrices
(example 3.10). Here we group relations by their members, consequently duplicating them.
After a tuple decomposition of n-dimensional matrix, we have a set of 2-tuples associated
with their tuple names. Each 2-tuple we store 2 times: the first member as a row key with
the second member as a column name; and contrariwise. This way tuples are grouped by
their members automatically. The relation names are the Cassandra column values.

Example 3.11. (Storing 2-dimensional similarity matrices in Cassandra for
MapReduce analyses)

To store 2-dimensional similarity matrices we do not need to perform tuple decompositions:
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the similarity matriz is a set of 2-tuples with an attribute object associated with each tuple.
For MapReduce we group the elements by the first participant in the tuple, thus in the row
we have a projection from the sparse matriz into the first dimension. The same column
family can be used for the search applications: we can retrieve tuples by only the first
participant (row key) or both first and second participants (row key + column name).

So, for the similarity Matriz Mg, :

SACE4 SACE3 CAGL5 ZYROS DEHA2

SACE4 1 0 0.1 0 0.5
SACES 0 1 0 0 0.6
ZYROS 0 0 0 1 0.7
DEHA2 0.5 0.6 0 0.7 1

we create a column family that indexes this matrix using non-empty cells (Figure |3.8).

Similarity Matrixz

CAGLS5 || DEHA2

SACE4 — 01 05

DEHA2
0.6

SACE3 —

SACE4

CAGL5 — 01

DEHA2

ZYRO8 — 07

SACE4 || SACE3 || ZYROS8

DEHA2 — 4= 0.6 07

Figure 3.8: A Cassandra column family for MapReduce analyses and search applications
of similarity Matrices. Each 2-tuple we store 2 times: the first member as a row key with
the second member as a column name; and contrariwise. This way tuples are grouped by
their members automatically. Similarity score values are the Cassandra column values.

3.4 Triple store (RDF)

The Resource Description Framework (RDF)? is a standard metadata data model. RDF
operates with triples. A triple is a data entity composed of subject—predicate—object. This
kind of representation is appropriate for logical inference and knowledge mining. RDF' is
a collection of statements or facts, each fact is a triple (subject, predicate, object). We

*RDF: http://www.w3.org/RDF
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can represent RDF database as a directed graph (called RDF graph), where the vertices
are subjects and objects and the edges are predicates.

The RDF data model is widely used in bioinformatics [LPLT11]. For example, Bio2RDF?
ﬂm project is an attempt to convert publicly available biological datasets to a stan-
dard web RDF format for the knowledge integration.

SPARQL is a SQL-like RDF query language for retrieving and manipulating data
stored in RDF format. SPARQL queries may consist triple patterns, conjunctions, dis-
junctions, and optional patterns.

In ﬂL_EL_"'__l_lﬂ there is a simple example of a SPARQL query for finding a chemical
compound with the name “Tryptophan Synthetase” (illustrated in Flgure 3.9):

SELECT ?x WHERE {
?x <hasName> "Tryptophan Synthase";
?x <hassubstrate> "Chemical"}

Triples in an RDF database

ID subject predicate object

1 <Gene> <hasName:> . TrpA

2 . <Gene> - <eXpresses> l <Protein>

3 . <Protein= - <hasMName:= - Tryptophan Synthetase
4 | <Protein> - <hasSubstrate> . <Chemical>

SELECT 7x WHERE

?x <hasName= “Tryptophan Synthetase”.
?x% <hasSubstrate> <Chemical=

}

Tryptophan <An example of SPARQL>
Synthetase

—>» Answer: <Protein>
Chemical
<RDF graph>

Figure 3.9: An example of an RDF and a graph data representation and SPARQL query

(figure is taken from [LPLT11])

3Bio2RDF: http://bio2rdf.org
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3.4.1 Cassandra RDF representation

There are many implementations of the triple stores, for example: Sesame?, Allegro-
Graph®, Virtuoso®, etc.

The RDF storage adaptors for Cassandra data store, such as RDF.rb”, use a very
straightforward data model to store RDF triples in Cassandra. They map RDF subject
to a row key, RDF predicate to a Cassandra super column name, RDF object to a column
name (figure 3.10).

RDF store

hasName

gene —

Figure 3.10: Storing RDF triples in Cassandra

This representation of RDF triples allows us to perform a wide range of get queries by
one or several subjects, range queries on predicates and objects. At the same time in the
get query the key must always be given, thus, we should always provide a subject in our
queries. If we want to operate on data without subjects we must store a backward index,
simply swapping subject and object.

3.5 Characterizing standard usage patterns

Different usage patterns by end users impose different loads on the data storage backend.
An efficient design for data storage must take these patterns into account. The Génolevures
web site ﬂm is a highly-accessed service that provides data and tools for comparative
genomics of biotechnologically interesting yeasts, that historically is designed around an
in-depth use case analysis of the typical queries made by biological researchers. Using
anonymized logs of public access to the web site, and knowledge of the implementation of
the software service, we were able to associate each of these typical uses with different calls
to the data access API. According to ClusterMaps and Google Analytics the Génolevures
database has about 37,000 visits and 19,000 unique visitors per year (excluding search
engines) [MSDII]. We analyzed 10° lines of HTTP access logs. The URL queries in the
anonymized HTTP logs of the Génolevures website correspond to high-level user queries.
The Generic Model Organism Database project® defines a community of software tools,
including the Generic Genome Browser?, often based on the BioPerl Perl libraries.m
[SMST02] We instrumented the GMOD libraries used in the backend of the Génolevures
web site, in particular Bio::DB::SeqFeature::Store, the subclass of Bio::DB::SeqFeature
that implements database storage for sequence features, and the Bio::Graphics::Browser

“Sesame: http://www.openrdf.org

® AllegroGraph : http://www.franz.com/agraph/allegrograph
SVirtuoso: http://virtuoso.openlinksw.com

"TRDF.rb: http://rdf.rubyforge.org/cassandra

8GMOD: http://gmod.org

9Generic Genome Browser: http://gmod.org/wiki/GBrowse
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class that are used for the Genome Browser. By modifying the classes that Implement
the object-relational bridge between SQL databases and the Génolevures-specific derived
classes of the BioPerl object model, we were able to capture all of the low-level queries
through the BioSQL database schema.

Genome Browser, api calls Genome Browser, time

0,114 % 0,081 %

21,818 %

30,724 % 28,804 %

48,672 %

10,499 %

0,010:%

8,870 %
0,014 %

11,606 % 38,788 %

@® Dby name @® by aliases
by attributes @ by location
@® by subfeatures @ by sequence

Figure 3.11: Low-level API calls derived from log analysis of user queries, with their
relative number and contribution to the total time budget of the data storage system.

Figure summarizes the kinds of the different low-level data access calls that were
made, and their relative contribution to the total load on the system. In this figure we
can see that there are many searches by name, but they are quite fast. Obviously, the
queries by name that allow aliases (“by aliases”) are a more expensive than simple queries
by name. In contrast, searches by location (geometric queries that extract overlapping
genome intervals) are rare, but very expensive in terms of time. Most of the API calls in
this system concern fetching subfeatures, because in the Bio::DB::SeqFeature::Store data
storage implementation subfeatures are not attached to the parent features and are loaded
on demand. Also, there are relatively very few queries by specific attributes and queries
to retrieve a sequence.

3.6 Deriving column families for Cassandra

3.6.1 General principles

In Cassandra we have two types of cache we may use: row caches and key caches. The key
cache contains the location of row keys in memory. The row cache keeps the entire row
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in memory. Both caches work efficiently only with rows that are not too large (from our
experience the rows that have more than 1000 columns can be considered as large). The
data in Cassandra are distributed across the network using a row key, so we need to choose
keys for which the corresponding rows (a list of columns) would be not large. Composite
keys can reduce the size of rows by splitting its columns into new rows identified by the
original key and the values of the column names; one can think of this as combinations of
dimensions. By splitting large rows into many smaller ones, we improve the distribution
of data across computers.

From our usage experience and stress tests for performance tuning we derive the fol-
lowing principles of creating column families, using the list of user queries types:

1. All obligatory query parameters, that are not part of range queries, are included in
composite row keys.

2. If a query parameter is not always given, but has very few possible values, this
parameter can be included in a composite row key and we will use a Multiple Keys
Get operation to retrieve data with all possible values for this parameter.

3. If a parameter is optional, we use it as column name or super column name.

3.6.2 Cassandra column families for storing sequence features and
group relations

The first usage pattern is the Génolevures Genome Browser Search tool. This tool uses the
BioPerl (Bio::DB::SeqFeature::Store) search API. For each of the API queries we make a
column family or super column family in Cassandra data store. We use the same strategy
as Bio:DB::SeqFeatures::Store classes [ST02] [SMST02]: Cassandra column families are
used as searchable indexes to identify serialized objects that can be retrieved from the
“SerializedObjects” column family by primary id. Our column families are presented in
Figure 3.12.

The Attributes column family in Figures |3.13| and |3.14] defines a mapping between
attribute names-values and ids of features. It is used for search by an arbitrary attribute,
including search by name and search by alias as a subcase. We use attribute name and
attribute value as a composite row key, and Type (an optional parameter) as a super
column name. The Keywords column family is for full-text search by annotation keywords.
This column family is a mapping between the words in an annotation and a feature id.
The structure of the Keywords column family is similar to the Attributes column family:
composite keys of attribute name (that correspond to annotations) and the keywords of
the attribute value sentences.

For the particular case of geometric queries we have the Location column family (Fig-
ures 3.15 and [3.16). This kind of query always has a given sequence id and most often
the feature type, and, optionally, may indicate an interval on the sequence to search in
or overlap with. Following the general principles for this column family we use a compos-
ite key of sequence_id and feature type. There are relatively few different feature types
encountered in our data (gene, protein, mRNA, etc.) and we keep all possible types in
the Metadata column family. That is why when for location query the feature type is not
given, we can use Multiple Keys Get queries for all possible types.

As we describe in subsection 2.3.4, a Cassandra datastore always keeps its columns
and super columns sorted (by column name). In the Slice Range query we can specify a
set of column names or a column range interval, although we can use only one column or
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Column Column | Usage Figures
Famaly Famaly
Type
Attributes | Super Search for sequence features by an arbi- | schema: 3.13/or[A1] |
trary attribute (including name and alias) | example: [3.14
Keywords | Super Text search for sequence features by an- | schema: |A.2
notation keywords
Subfeatures| Standard | Retrieve subfeatures, if they are not at- | schema: |A.3
tached to a parent sequence feature
Sequence Standard | Get sequence of a sequence feature (a | schema: |A.4
string of letters a, ¢, g, t)
Location Super Search for sequence features in a given se- | schema: 3.15/or|A.5 |
quence and a given interval of coordinates | example: [3.16
Relations | Super 1) Get relation id by a member schema: [3.18 or [A.6 |
2) Get all members of the given relation | example: [3.19
(id)
3) Get attributes of a relation (id)
Relation Super Get relation by various relation attributes | schema: |A.7
Attributes
Metadata | Standard | Get meta information about all types and | schema: |A.8
ids of sequences and sequence features in
our database
Serialized | Standard | Get serialized objects (sequences and se- | schema: |A.9
Objects quence features) by given primary id

Figure 3.12: Column families in the Apache Cassandra schema, derived from API anal-
ysis of BioPerl and BioSQL libraries. Each search use case in BioPerl and BioSQL API
corresponds to a Cassandra column family, which is actually a search index.

Attributes

attribute_name:attribute_value — | | id id

Type

Figure 3.13: The Attributes column family is used for search by an arbitrary attribute.
Attribute name and attribute value are the obligatory parameters, thus we combine them
into a composed row key. Type is an optional parameter, thus we put it into Super Column

Name.

super column range per query. Since in our cluster we use the Random Partitioner to have
automatic load balancing (see 2.3.4) we can not use the Key Slice Range query.

Our geometric queries may specify (optionally) the interval on the sequence, where we
must search our sequence features. Depending on the situation, the interesting features
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Attributes (Example)

name:SAKL1 —

EMBLref:CU2444 —

gene

exon

1222 _versionl

1222 _version2

1224 _versionl

1224 _version2

gene

protein

1229_version2

1627 _version?2

Figure 3.14: An example of data in Attributes column family. The combinations of the
attribute names and attribute values are the row keys. Sequence feature types (gene, exon,
intron, etc) are the super column names. Several sequence features might have the same
attribute key-value pairs, so we store unique identifiers of sequence features as column
names.

Location

bin_value

chromosome

sequence_id:type —

start:stop:id

start:stop:id

start:stop:id

strand

strand

strand

Figure 3.15: A Location column family is used for interval (geometric) queries. Sequence
id and sequence feature type are two obligatory parameters, thus they are stored in row
keys. We divided each sequence into pieces of the same lengths (bins). We store sequence
feature ids in these bins. Coordinates are composed into column names for column slice
queries. We also add sequence feature ids into column names to make them unique. Since
strand is rarely explicitly used as a search parameter, it is stored in a column value.

may be either included in the given interval, or just overlapping with it. For the two
coordinates (start and end) the one range interval is not enough. The typical solution for
this problem is to use a binning technique. We cut our sequence into the bins of the same,
empirically optimal, size, and put feature to all bins that intersect it. A special case is
chromosome and other very large features - we put them only once, because they intersect
with all or too many bins. By specifying a range of bins we can perform a search by
overlapping intervals. The optimal bin size for medium size features is 10000 as it is used
by Bio::DB::SeqFeature::Store database adaptor implementations. This size is reasonable
for our data, since the average feature size is 550 and the average feature density in the
bin is 47 (see Figure 3.17)).
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Location (Example)

2

SACEOA:gene — | | 20200:20300:SACE1 || 20400:20680:SACE2
1 1

60500:60900:SACE3 || 62700:63060:SACE4
1 1

chromosome

Klla0D:chromosome — | | 0:480000:K11a0D
1

Figure 3.16: Location column family example. Here sequence SACEOA has 4 genes:
SACE1l, SACE2, SACE3 and SACE4. SACEl and SACE2 belongs to interval
[20000,29999], so they are stored in the bin=2. Similarly SACE3 and SACE4 are stored
in the bin=6. In this example KLLAOD do not have sequence features (genes, proteins,
...) except its chromosome, which is not divided into pieces because of its size, so we store
it separately.

The second usage pattern is the Génolevures Concordance Advanced Search. This
advanced search system works with the Magus data model, which is richer than BioP-
erl SeqFeature: it consists of protein families and other kind of groups. The data are
traditionally stored in PostgreSQL using BioSQL data storage schema.

To support different kind of relations needed for genomic data we create a Relations
column family (Figures [3.18 and [3.19) for searches by relation id or member id the way
we discussed in section [3.3l The first mapping is from relation_id, which is unique, to
all relation attributes and members. The second one is backward: from member_id and
relation_type to relation_ids.

The complete schema of Cassandra column families is explained in Appendix (chapter
6.2.3). This schema was designed using analyses of BioPerl API and Génolevures query
logs. Using typical user queries (extracted from the use cases) we performed continuous
stress tests to improve performance of our system. As a consequence of this performance
tuning, we derived some general principles of creating Cassandra column families, discussed
in subsection |3.6.1. From our usage experience we know that it is better to avoid too large
rows (thousands of columns), so designing column families for concrete tasks and concrete
data required measuring data distribution and performance.
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Sequence features sizes, medium size features
22000

19800
17600

15400

13200 max
M avg
11000 H min
8800
6600
4400
2200
0 III III III — | || III | || || || — || —
CDS:validated gene:validated mRNA:validated noncoding_exon:rRNA _validated tRNA:trnascan-se

Sequence features sizes, large size features
4500000
4050000
3600000
3150000

max

2700000 B avg

2250000 B nin
1800000
1350000
900000
450000
0

chromosome:validated repeat_region:rp_validated

Figure 3.17: Distribution of sequence feature sizes, for medium and large size features

Relations
"Attributes’ "Members’
relation_id — | | tag:value tag:value member_id member_id
"Relations’
member_id:relation_type — | | relation_id relation_id

Figure 3.18: Relations column family can be used for searches by relation id as well as by
member id. Each genomic element might participate in many different kinds of relations,
so we reduce row sizes by including relation type into row key.
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Relations (Example)

’Attributes’

GL3R0303 — | | pattern: “sczltkgd-py” profile:“2222222204 2

"Members’

SACE0G05434p PISO0C06536p | | YALIOE20955p

'Relations’

SACE0G05434p:protein_family — | | GL3R0303

'Relations’

PISO0C06536p:protein_family — | | GL3R0303

'Relations’

YALIOE20955p:protein_family — | | GL3R0303

Figure 3.19: Example of Relations column family. In this example, in the first row we
store an index for searches by relation id, to retrieve its members and attributes. The last
three row store the mapping between member id SACE0G05434p, PISO0C06536p and

YALIOE20955p to the relation id GL3R0303.
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Chapter 4

Genomic Global Analyses

Résumé : Les analyses en génomique comparée font partie de ce que les biolo-
gistes appellent des méthodes globales, dans le sens ou les réponses recherchées
exigent un raisonnement sur l'ensemble d’éléments dans les génomes analysés.
Dans ce chapitre nous discutons d’analyses globales en génomique, de emploient
le plus souvent des comparaisons tout-contre-tout dont la complexité croit de facon
génométrique en le nombre de génes. Nous considérerons en profondeur deux ex-
emples d’analyses globales existantes que nous adapterons au paradigme de calcul
distribué MapReduce. Pour mieuz évaluer la pertinence de nos travaux, nous in-
troduisons un critéere de “bonne décomposition” en map et reduce, basé sur des
notions d’équilibre de charge et de bonne mise a l’échelle. Nous montrons que
nos deux nouvels algorithmes adaptés remplissent ce critere.

Analyses in comparative genomics fall into the category that biologists call global meth-
ods, in the sense that the desired answers require reasoning over all genes in the genomes
that are being analyzed. In this chapter we will talk about these global analyses, which typ-
ically involve all-against-all comparisons that scale geometrically with the number of input
genes. We will consider in depth two examples of existing global analyses in genomics and
will show how they can be adapted using MapReduce distributed computations paradigm.
We will introduce a criterion of a good MapReduce decomposition, based on notions of
load balancing and good scaling. Finally, we will show how our new adaptations of the
two algorithms meet this criterion.

4.1 Adapting algorithms to MapReduce: criterion

In this section we consider the situation where we have an existing algorithm for global
analysis of n-ary gene relations that we need to convert to the distributed MapReduce
paradigm. The fact that analyses work with relations is very important because there is
no challenge in doing distributed computations on independent data elements. On the
other hand, n-ary relation data need specific groupings in order to scale well.

The common thread in the approaches from the literature, described in sections [2.4.5
and [2.4.6, hinges on a clever choice of values for the map step, and seeks to partition the
data into pieces that fit into one machine. In this thesis we are concerned with sparse
matrices of n-ary relations and can see that we have the same concerns. Previously,
in chapter [3| we considered the different ways of representing the data for the search
applications and MapReduce algorithms. The way that the data elements are grouped
into input Cassandra rows is defined by the needs of the map functions of the concrete
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MapReduce algorithm. The same is true for intermediate results: the output of map phase
and grouping for reduce functions is directly defined by the algorithm. Both for map and
reduce we group data elements by carefully choosing the keys.

For each existing global analysis we might adapt MapReduce model many ways. For-
mally we can define a general criterion for the good MapReduce algorithms that deal with
relations.

Definition 4.1. (Criterion of a good MapReduce algorithm)

1. Balanced loads (for map and for reduce):
Data distributed among the similar chunks of optimal size both for map
and reduce phases.(Figure 4.1)

In computing, load balancing is a methodology to distribute tasks among the proces-
sors to achieve optimal resource usage. MapReduce implements static load balancing
which is used for the cases when computer nodes are identical and the tasks resources
usages are similar. These assumptions allows the static load balancer to not take into
account the current network load.

That is why it is our responsibility to split the data into the equal (or similar) sized
chunks both for map and reduce phases. MapReduce tutorial frmap) advises 10-100
maps per-node and

“0.95 or 1.75 x ((no. of nodes) x mapreduce.tasktracker.reduce.tasks.mazximum)”

reduces, noticing that usually number of maps is defined by the total number of
inputs and increasing number of reduces increases load balancing, but also increases
framework overhead.

l l l
Reduce - EI ﬁl &I

Figure 4.1: Load Balancing for MapReduce. The small black circles and squares here
represent pieces of data (key-value pairs). These key-values are not the same and are
grouped differently for map and reduce phases; the key-values of reduce phase (small black
squares) are results of map computations. Big circles represent map jobs, big squares -
reduce jobs. Load Balancing: data chunks for map phase (and for reduce) have the same
(maybe different between map and reduce) optimal size.

2. Good scaling:
With the increase of data the number of chunks increases and the size of
chunks does not significantly grow(Figure |4.2)

We choose the size of the chunks for map and reduce phase considering the resource
usage of computations on these chunks. We should also take into account that many
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algorithms need to put the data into memory, in this case data should fit into memory
for efficient computations.

Map/Reduce

Figure 4.2: Scaling for MapReduce. The small black circles here represent pieces of data
(key-value pairs) in map (or reduce) phase. Big circles represent map (or reduce) jobs.
Scaling: if the number of data increases, the sizes of the data chunks for the map and the
reduce phases do not exceed the maximum chunk size when the number of chunks grows.

4.2 Application 1: Identification of gene fusion and fission
events

One consequence of genome remodeling in evolution is the modification of genes, either
by fusion with other genes, or by fission into several parts. By tracking the mathematical
relations between groups of similar genes, rather than between individual genes, we can
paint a global picture of remodeling across many species simultaneously. The method
[DNSQY] is appropriate for highly redundant eukaryote genomes. Applying this method
to a set of fungal genomes, the work in this paper: first, confirmed that the number of
fusion /fission events is correlated with genome size, second, that the fusion to fission ratio
favors fusions, third, that the set of events is not saturated, and fourth, that while genes
assembled in a fusion tend to have the same biochemical function, there appears to be
little bias for the functions that are involved. Furthermore, fusion and fission events are
landmarks of random remodeling, independent of mutation rate, and thus define a metric
of “recombination distance”.

The method in [DNSOS], shown schematically in Figure 4.3 builds proteins of the
same species into paralogous groups based on their similarity. Then it combines paralo-
gous groups of proteins into a single HMM (Hidden Markov Model). These HMMs are
systematically aligned using hhsearch [SGd08] and filtered to obtain a graph of relations
between genome segments. This graph is then mined for subgraph motifs, each containing
at least two collinear segments aligned to non-collinear segments in another genome. Each
of these motifs is an ewvent, corresponding to a fusion, a fission, or some combination of
the two. The authors of [DNSO]| define an Fvent “as an n-ary relation between P-groups,
at least one composite P-group (hereafter named C-group) and at least two element P-
groups (named E-groups), which fulfill three constraints: the E-groups belong to the same
proteome, they align on the C-group, the alignment regions have no or reduced overlap on
the C-group”. Fusion events correspond to the case where a single C-group is connected to
several E-groups of more than two species. In the case of fission events multiple C-groups
are connected to several E-groups of a single species.
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Figure 4.3: Schematic representation of the original method [DNSOS] of identifying fusion
and fission events. In the first step we systematically align proteins within the same
species. Then we build paralogous groups of proteins to reduce the number of relations.
These groups then are organized in Hidden Markov Models (HHM) and systematically
aligned. The last step of the algorithm is Graph analysis to detect fusion and fission
events.

Because the same events can be observed in different subsets branches of the phyloge-
netic tree of the species, they can be placed in history using a parsimony argument.

4.2.1 Adaptation to MapReduce

The bottleneck of the original algorithm [DNSQOF] is the graph analysis (the last step
in Figure 4.3), as illustrated in Figure |4.4. Graph analyses requires random access to
the nodes and edges. Large graphs cannot fit into memory, and the access to disk is
thousands times slower than access to memory. This makes it very expensive to process
large graphs. To reduce the graph size, the authors of [DNSO§] proposed firstly to extract
connected components of the graph, and then process them independently. But even this
decomposition strategy does not completely solve the scaling problem — the connected
components are still too large.

The input data for this part is a list of relations between composite “C-groups” (HMMs
with 2 or more aligned segments) and elementary “FE-groups” (HMMs with 1 aligned
segment). To express the graph analysis using the MapReduce paradigm we use the
knowledge that the graph is bipartite, so to find all events we can decompose the graph
into sub-graphs with longest path 2. For each E-group that can participate in an event
we calculate (in parallel, using grouping by C-groups, and E-groups) all nodes that are
reachable using a path of length 1 or 2.

This MapReduce algorithm has many redundant operations, since each event is ex-
tracted independantly from several subgraphs and reprocessed. But, in exchange, we
have decomposed the large problem into many small computations that can be performed
asynchronously and in parallel.

4.2.2 Formalism: maximum coincident component

One aspect of applying MapReduce paradigm to existing algorithms is to think about the
parts of these algorithms as functions. As a first step in defining these functions we need to
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Figure 4.4: Scaling problem in the graph analysis phase of the detecting fusions and fissions
algorithm [DNSO8]. With extreme growth of data volume, the graph does not fit into one
RAM, not event to one computer anymore. With distributed computations now we have
the problem of an access to the edges, and, consequently, the problem of synchronization

between local computations.

formalize different aspects of the original algorithms, which was only described abstractly

in [DNSOS].

General definitions

Letr C be a set of C-groups, and E a set of E-groups, R is a relation between E-groups
and C-groups, species is function on F U C, that associates each FE-group with some
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species-value. For sets of C-groups, define its E-group intersection (signature sig) to be
the intersection of the names of the E-groups in relations with those C-groups. Define a
partial event to be a set of relations for which the sig of its C-groups is nonempty and
for which each participating species-values of E-groups occurs at least twice. (An atomic
event is a partial event with exactly one c-group.)

Definition 4.2. (Signature) - Figure 4.2.2
For given sets E, C, Cy C C and relation R C E x C, the signature sig : 21¢1 — 2{£}

sig(C1) = {e€ E|Vece Cy,3(e,c) € R}
(Notation) For simplicity, we write sig(c) for sig({c}) for c € C.

Observation 4.1. (Intersection of signatures)
The intersection of the C-groups signatures is equal to the signature of the C-groups union.

sig(Ch) = m sig(c)

ceCq

sig(ci,c;) = sig(ci) N sig(c)
z; sig(c1) = {e1e2} sig(c1,c2) = {e2}

sig(cz) = {ecezes}  sig(ci,c3) =@

sig(ca) = {ezeq4} sig(cz,c3) = {eses}

Figure 4.5: Example of c-group signatures. The signature of the union of C-groups is
equal to the intersection of their signatures.

There is an additional condition for the FE-groups in events: the species of the FE-
groups that participate in fusion and fission events must appear at least in pairs. We
define property pair_species that should be true for the E-groups of events.

Definition 4.3. (Pair_species property)
For a subset E1 C E define the property pair_species as:

pair_species : 2B} 4 B
pair_species(Ey) = Ve € Ey 3é € E1, € # e, species(e) = species(€)

Definition 4.4. (E- and C- projections) - Figure 4.6
For Ry # 0 C R, define C-projection Ri|c and E-projection Ri|g as

Rilc ={c|(e;c) € Ru}, Rilp ={e| (e,c) € R}
Definition 4.5. (Partial event)
For Ry #0 C R, Ry is a partial event (p_event) iff
[sig(Ri1lc) = Ri|p and pair_species(Ri|p)]
or, equivalently, Ry is a partial event (p_event) iff

Ry = Ri|g X Ri|c and pair_species(R1|E)
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R1 = {(c1.1), (c1.€2), (C2.1)}

Ri1lc = {c1,c2}

Rile = {e1,e2}

Figure 4.6: Example of C- and E-projections of relation Ry C R. C-projection of relation
Ry is a set of C-groups that participate in it. Similarly, E-projection of R; is a set of
FE-groups that participate in R;.

Definition 4.6. (Event, Events) - Figure 4.7

Event is a mazimal partial event: it is not possible to add e- or c-group to this partial_event
while preserving partial event properties.

Events are the union of all events.

Consider e-groups Not Event: Ry Events: R1,R.
species: e e Y
C1< C1 il C1 .
c _~—€1 EMBO @2 @2 e
1 C2:l, C CxR
. €2 CAGL Lien ~83 RES,
2 C3 -
. %ea CAGL ? s e e4 * e4
3
Ro R R
€4 cacL not pair_species(e1, ez) ! ?

Figure 4.7: Events Examples. In the left part of the figure there is the initial graph of
relations between C- and E-groups. To illustrate pair species property we showed species
of E groups (EMBO and CAGL).

In this example Ry = {(c1,e1), (c1,e2)} is not an event because the species of {e1,ea} are
not in pairs: species{ei,ea} = {EMBO,CAGL}.

Ry = {(c2,€2), (c2,€3), (c2,e4)} is an event, because this is a maximal partial event with
pair species property: species{es,es,es} = {EMBO, EM BO, EM BO}.

The second event is Ry = {(c2,e3),(c2,€4),(c3,e3),(c3,e4)}, where species{es,es} =
{EMBO, EMBO}.

Definition 4.7. (Species count)
For given sets E and C, relation R C ExC and subset Ry # () C R, let us count the number
of different species-values for C-groups and E-groups as species_count : R1|gpUR1|c — N

species_count(Ry|c) = |{species(c) | ¢ € Ri|c}|

species_count(R1|g) = |{species(e) | c € Ri|g}|

Definition 4.8. (Event classification) - Figure 4.8
For given sets E and C, relation R C E x C, function species : EUC — Species and

7



event R1 #0 C R

fusion if species_count(R1|¢) = 1 and species_count(R|g
. fission if species_count(Ri|c) > 1 and species_count
event is . ; . .
multiple if species_count(Ri|c) > 1 and species_count(R
undecidable if species_count(Ri|c) = 1 and species_count(R|g
1. Fusion 2. Fission
€1 DEHA
CAGL C1 CRNE C1
€2 DEHA €1 kLA
RHOR C2
€3 KLLA €2 KLLA
RHOR C3
€4 KLLA

species count(cq) = 1
species count(esexezes) > 1

3. Multiple
€1 DEHA
CAGL C1
€2 DEHA
RHOR
27 es KLLA
€4 KLLA

species count(cicz) >1
species count(eiezezes) > 1

species count(ciczcs) >1
species count(eqez) = 1

4. Undecidable
KLLA

RHOR C4
€1
RHOR C2
€2 KLLA

species count(ccz) = 1
species count(eqez) = 1

Figure 4.8: Events Classification: fusions, fissions, multiple and undecidable.

1. Fusion events correspond to the case where a single C-group is connected to several

E-groups of more than two species.

2. In the case of fission events multiple C-groups are connected to several E-groups of a
single species. 3. Multiple events have multiple species of C-groups as well as multiple
species of E-groups. 4. Undecidable events have single species of C- and F-groups.

Definitions for MapReduce adaptation

Now we will define specific sets for the MapReduce adaptation: a subset of E-groups Cosig
and a set of C-groups Resitg. Then we will prove, that the the pairs of these subsets are

events.

Definition 4.9. (Cosig) - Figure |4.9

For given sets E and C, relation R C E x C, define function cosig as:
cosig: E x C x C — 2B} that for e € E and ¢ cj € O,

where (e,c¢;) € R and (e, c;) € R:

cosig(e, ci,cj) = {e' € sig(ci,cj) | pair_species(cosig(e, ci, cj)), e € cosig(e, ¢, cj)}
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Thus, cosig(e, c;, cj) is a mazimum subset of sig(c;, c;) for which the pair_species property
is true and e is part of it.

Basically, cosig is a the part of signature sig of the input C-groups c¢;, ¢; that contains
the input E-group e and for which the additional property pair_species is true.

Definition 4.10. (Resig)- Figure 4.9
For given sets E and C, relation R C E x C, define function resig as:
resig : Ex O x C — 21CY if for some e and c;, ¢; 3 cosig(e, c;, ;) and cosig(e, c;,c;) # 0:

resig(e,ci,cj) = {cp € C|3Ie, € C,cp # ¢y, # ¢j = cosig(e, ¢i, ;) C sig(c)}
U{Ci € C} U {Cj S C}

In other words, resig is a maximum set of C-groups where each C-group is connected
to each E-group of cosig.

Observation 4.2. (Costg and Resig)
By definition, if for some e € E and ¢;,¢; € C 3 cosig(e, ¢i, ¢j) # O then I resig(e, ¢, ¢j).
Resig # 0 since ¢;,c; € resig(e, ¢, cj).

e : cosig(e1, ¢, c) = {e1e2€3€4)
because:
€2 DEHA e1e2e3e4 C sig(c, c)={e1eze3e4)

pair_species(eiezeszeq) = true

€3 KLLA resig(e-, ci, ¢)) = {cicici}

because:
resig(es, ¢, c)) = {cpu{ciu
€4 KLLA {ceC| cosig(e,ci,c))= {e1e2e3e4} C sig(c)}
ck € resig(er, ¢, ¢) :
e1e2e3e4 C sig(ck)= {e1e2e3e4€5}
Cm & resig(e, ¢, c) :
e5 KLLA ¢ resig(er, c, o)

e1e2e3e4 ¢ sig(ck)= {es}

Figure 4.9: Example of Cosig and Resig. We compute cosig(eq, ¢;, ¢j) as the maximal sub-
set of sig(ci,c;) = {e1,e2,e3,es} that contains e; and satisfies the property pair_species.
cosig(er, ¢, cj) = {e1,ea,e3,e4}, because ey € {ey, ez, e3,e4} and species({e1, e2,e3,e4}) =
{DEHA,DEHA, KLLA, KLLA}. Resig contains all ¢; (including ¢; and ¢;) that are
connected to all E-groups of cosig, so resig(ei1,c;, ¢j) = {ci, ¢j, ik}

Lemma 4.1. (Cosig and resig give an event)
The cross product cosig(e, c;, cj) x resig(e, c;, ¢j) is an event if 3 cosig(e, ¢;, ¢j).
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Proof. We need to prove, that Ve, ¢; and ¢, (e,¢;) € R, (e,¢j) € R, if 3 cosig(e, ¢;, c;),
then Ry = cosig(e,c;,c;) x resig(e,ci,cj) is an event: Ri|c = resig(e,c;,cj), Ri|lg =
cosig(e, ci,c;), R1 = Ri|c x Ri|g, thus Ry is a partial event by definition 4.5

By definition of cosig(e, ¢, ¢;) is a maximum intersection of e-neighbors of ¢; and c¢;,
so we can not add extra e-group to this R;.
Also, we cannot add another c-group: if there is new c-group ¢ to add, that means Vé €
cosig(e, ¢;, c;) there is (6,¢) = thereis (e,¢) € R = Jeg,cp # i, cp #¢j 1 cp=¢ =
this c-group was considered in resig construction.
= R is a (maximum) event. O

Example 4.1. (Cosig and resig give an event)

In Figure|4.9, where cosig(e1, i, cj) = {e1,ea,e3,ea} and resig(er, ¢, ¢j) = {ci, ¢j, e}, the
cross product of cosig and resig gives an event.

First, each E-group of {e1,e2,e3,e4} is connected to each C group of {c;,cj,cp}. The
species of {e1,ea,es3,eq4} (DEHA, DEHA, KLLA, KLLA) are in pairs. So this subgraph is
a partial event. And, it is not possible to add neither E- nor C-group and preserve the
properties of a partial event: ¢, 1s not connected to e1; es is not connected to c;.

4.2.3 MapReduce deployment

Algorithm [7| maps over C—FE group relations, which are grouped by c. For each ¢ in C' we
store the signature sig(c). Next, these relations are grouped by e, so that in the reduce
step we have, for each e, all length 2 paths from E — C' — E. This is enough to calculate
cosig(e, ci, c;) and resig(e, c;, cj) for each e and for all (¢;,c;) pairs of corresponding c-
groups. To calculate cosig(e,c;, cj) we first take a maximal intersection of signatures
sig(c;) and sig(c;). Then we remove from this intersection the e—groups that are not at
least in pairs. To calculate resig(e,c;,c;) we check all c-groups (other than ¢; and ¢;)
and include the c-group to the resig if its signature contains the previously calculated
intersection (cosig). The union of the cross-products of cosig(e, ¢;, ¢j) and resig(e, ¢;, ¢;)
is the set of events, as is show schematically in figure [4.10]

4.2.4 Proof of algorithm
Theorem 4.1. The result set A of Algorithm |7

A= U A = U U (cosig(e, ci, cj) x resig(e, c;, cj))
eclk eck ci,cje{ck\(e,ck)GR}
1<j
3 cosig(e,ci,cj)
s equal to the set of all Events:
A = Fvents

Proof. 727 is true by Lemma 4.1,

”C” We need to prove, that V event Ry, 3 e € E, iandj : (e,¢;) € R, (e,¢j) € R, i < J,
that 3 cosig(e, ¢;, c;) and cosig(e, ¢;, cj) X resig(e, ¢;, ¢;) equal to it.

Event is a partial event, so by definition |4.5

R1 = Ri|g x Ri|c and pair_species(R1|g).

Let us take any e € Ry|g, any ¢;, ¢j € Ri|c, so

Ve' € Ry|g (¢/,¢;) € Ry and (€/,¢j) € By
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Algorithm 7 Detecting fusion and fission events

Input: List of relations between c- and e-groups = CtoFE column family =

{(Ci, (61'1, veey e,))}

Output: Events column family = {{(ep, ...), (cn,....)) }

function MAP(

key: ¢ > c-group
values: ey, ..., e > e-groups
)

Let sig(c) = (e1, ..., ex) > signature

for all ¢; € e, ...,e; do
output(e;, (c,sig(c)))
end for
end function

function REDUCE(
key: e > e-group,
values: v1, ..., Uy > v; = (¢, 819(¢)),
> sig(c;) = (e1, ..., ex)
)

Let A, =10
Let (¢;, sig(c;)) = vy
foralliel,...,n, j€i,..ndo
cosig « cosig(e, ¢;, ¢j)
if cosig # ) then

resig < resig U {c;} U {c;} >
forallkel,...n, k#1i, k+#jdo >
if cosig C sig(ci) then > Calculate resig(e, ¢;, ¢j)
resig < resig U {cy} >
end if >
end for >
A < A, U (cosig X resig)
end if
end for

output(e, Ae);
end function
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Initial data:

/

(c1, e1)(cz, €3)
(c1, 82) (co, €4)
(Cz, €2) §03, 63;

C3, €4

T~ A

Input: Input ) Input: )
€2
€1 C2 e3
§e3 Cs<e4
es
(c1,(er,e2)) (c2,(ezeses)) (c3 (eses))
Map: Map: Map:
sig(c1) = e1e2 sig(C2) = e2eses sig(ca) = eses
Output: Output: Output:
(e1 (ci-e1ez) ) (92 (ca: 929394] ) (es (ca: 9394] )
(e2,(creie2)) e3 (C2.€263€4)) (es,(caeses))
e4 (c2.e2e3€4))

J

o<

€2

(e2e3e4;C2)

(eseas; C2Ca)

~
Input: (Input (Input (Input )
( e
4 2
e C1 C2 e3 C2
e1— 1< ! e2< es< e4<
e C3Y Yes
L 64 L €4 ¢ €4 g
1 {(Creres) (e, {(creie2), (es, {(ca:eze3€4), (e4, {(c2ece3e4]),
(er. {{crerez))) (coeseses)}) (caeaed) ) (caeses)}) Reduce
Reduce: Reduce: Reduce: Reduce:
Find all events in this Find all events in this Find all events in this Find all events in this
subgraph that contain es subgraph that contain e2 subgraph that contain es subgraph that contain es
Output: Output: Output: Output:
(e1e2;¢1) (e1e2;¢1) (e2e3e4; C2) (e2e3e4;C2)
(e2e3e4;C2) (ezes; c2ca) (ese4; C2Ca)
. VAN AN VAN /
Final Output:
(e1€2;C1)

Figure 4.10: MapReduce Algorithm [7} Identification of fusion and fission events by iden-
tifying subgraphs in the C—FE bipartite graph. For simplicity, here we do not consider
species property of E-groups (pair_species).

The property pair_species(Ri|g) is true, so Ri|g = cosig(e, ¢;, ¢j).

Vey, € Ryl and Ve' € Ry|g3(€, )

This implies R;|c = resig(e, ¢;, ¢j). Finally,

Ry = Ri|g x Ri|c = cosig(e, ci, c;) x resig(e, ¢, ¢;)
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4.2.5 Meeting Criterion

Definition 4.11. (Criterion of a good MapReduce algorithm)

1. Balanced loads (for map and for reduce):

Data distributed among the similar chunks of optimal size both for map
and reduce phases

The map phase in our MapReduce deployment of fusion algorithm groups relations
by C-groups and process each c-group with corresponding E-groups independently.
To measure the load of the map phase we will calculate the number of E-groups
associated to each c-group, which we will call the E-index of a c-group. For our
data the distribution of E-indexes is illustrated in the left part of the Figure |4.11.
Analogously, the reduce step groups relations by E-groups, so we calculate C-indez for
each e-group (the distribution of C-indexes is illustrated on the right part of Figure
4.11). In particular reduce functions operate with the subgraphs of the length 2, so
we should take into account both E- and C-indexes to evaluate the reduce phase.

From the diagrams in the Figurel|4.11| we see that the E-index can be from 1 to 36 and
it s 2.246 in average. The C-indezx is from 1 to 24 and it is 1.827 in average. Both
E- and C-indezxes (which are actually degree of vertices in the c-to-e bipartite graph)
are not big and do not change much. Both indexes have a power law distribution.
Thus, we can claim that the load is balanced.

2. Good in scaling:

With the increase of data the number of chunks increases and the size of
chunks does not significantly grows

With the increase in number of species we expect significant geometric increase of
the total e-to-c relations graph. From the other side, current average value of the
vertices degrees (E- and C-indexes) is very low (1.827 for C-index and 2,246 for
E-index) and it will grow very slowly. Consequently, the chunks for map and reduce
phases will grow reasonably slowly.

4.3 Application 2: Consensus and MCL clustering

A protein family is a group of historically related proteins presumed to be functionally re-
lated. The members of these groups usually share the same or similar biological functions.
Protein families in related genomes provide key information for phylogenetic analysis,
functional annotation, exploring of functional diversity, and inferring metabolic networks.
Many complementary methods have been developed for computing families. One approach,
[NSOT], describes an efficient heuristic algorithm for the NP-complete consensus clustering
problem to reconcile complementary partitions of proteins into families. The idea is that
different clustering methods use different measures and different properties of the set of
proteins makes them complementary. [NSO7] defines consensus clustering as a process of
finding a consensus partition for k partitions that has minimum distance from them.

The algorithm is based on a compact encoding of the confusion matrix of relations be-
tween competing partitions, and an election procedure to find the best consensus from
competing partitions. In a typical application of this procedure, we start with four
protein-protein similarity matrices: systematic all-against-all alignments using the Smith-
Waterman [SWS1] and Blast [AGMT90] algorithms, each with and without filtering for

homeomorphy [WT04]. These matrices are clustered by the MCL algorithm D00, [EVDOQ02)
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Figure 4.11: The first figure: we count E-index for each c-group, and show how many
C-groups have the same E-index. Similarly, the second figure: we count C-index for each
e-group, and show how many E-groups have the same C-index.
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using three inflation parameters. The resulting twelve partitions are then reconciled using
the consensus procedure.

MCL clustering uses random walks on simple weighted graphs using Markov stochastic
matrices [yD0O0O [EVDO0?]. This algorithm was chosen in 2007 for detecting protein families
using different parameters by authors of Consensus clustering algorithm [NSOT].

The families in m were computed from 45000 proteins (thus 10° pairwise sequence
comparisons), that were partitioned into roughly 4500 families. The consensus clustering
process schematically is shown in the figure |4.12,

Proteins
BLAST SW
configuration
BLAST k = {SW, homeo, 1.2} W
similarity similarity
matrix matrix
filter for no filter filter for sl no filter
homeomorphy homeomorphy <
BLAST similarity BLAST similarity SW similarity SW similarity
ML matrix: Homeo matrix matrix: Homeo matrix

clustering |

4 4.0 I 4 4.0
Partition Partition Partition Partition Partition
HR H‘? Hm HH HIQ

Consensus Procedure

o= ---
CSmm--

Figure 4.12: Simplified schema for the consensus clustering algorithm defined in [NSO7].
First step is all-against-all comparisons of proteins to obtain matrices of similarities us-
ing 2 different algorithms: BLAST and Smith-Waterman’s. Then there is a filtering for
homeomorphy step. The third step is MCL clustering of similarity matrices using three
inflation parameters. The last part of the algorithm is a Consensus procedure to select
the best family partition.

4.3.1 Adaptation to MapReduce
Consensus Procedure

The first scaling issue of the Consensus Clustering algorithm defined [NSO7] is the final
Consensus procedure, since it involves all-against-all comparisons of the clusterings made
with different configurations. The initial method (defined in [NSOT]) detects the sets of the
conflict regions for each pair of clusterings. On the initial data for the 12 configurations
(different methods and different clustering parameters) the number of the conflict regions
is about 3500. But, the consensus procedure itself is run with many different sizes, conflict
and percentile parameters. With increase of number of the configurations, the number
of the conflict regions grows quadratically, because we need to compare all configurations
against all.

This quadratic growth of the number of conflict regions gives us a scaling issue for the
computations. At the same time it can be parallelized easily since the conflict regions of
the consensus procedure are independent and can be naturally processed in separate map
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functions, using the region id as a row key and associating a serialized representation of
conflict region as a row.

MCL Clustering for limited number of clusters

Beyond this natural decomposition, there is another scaling issue. With the linear growth
of proteins we have quadratic growth in the size of the similarity matrices, which rapidly
reach to the point when the existing tools (MCL clustering for detection protein families)
will not be able to work with these large similarity matrices. Our aim is to find the way
when we can work with the part of the data in parallel and then combine it (also, in
parallel).

Thus for this MapReduce deployment we consider one configuration k& of alignment
algorithm, filtering and MCL inflation parameter at the time (for example, in the Figure
4.12| k = {SW, homeo, 1.2}).

We cluster the large matrix of this configuration using an iterative sampling strategy. In
the first iteration we distribute proteins randomly into the equal sized chunks by assigning
random sample numbers to each protein. The map phase maps over the similarity matrix
rows and extract from the row the pairs of proteins that belongs to the same sample
and output it using sample number as a key and protein pairs as a combined value. In
the reduce phase all these outputs are grouped by sample number, so we have small
submatrices of the proteins that are from the same sample. We perform MCL clustering
operation and obtain family partitions for each of these sumbatrices . The union of these
family partitions is the result of the first iteration.

After the first iteration the result is very far from reality since we abandoned many
relations between proteins from different samples. For the second iteration we randomly
redistribute proteins into chunks with the condition that proteins that were found in the
same family will go to the same sample chunk. In the map phase we again take initial large
matrix and extract in parallel submatrices exactly the same way as in previous iteration.
In the reduce phase we recluster extracted protein sumbatrices. Now the result is a bit
better, because similar proteins “stuck” to each other.

In each iteration the family partition is better than in the previous one, because the
chance that similar proteins appeared in the same sample increases. The process converges
and after several iterations we obtain a partition closely approximating the results obtained
by the original heuristic algorithm. To decide when we should stop iterating we count
number of families and we terminate the process if number of families does not change.
Here we use the property of our data that the number of families does not change a lot
and this number is around 4500-5000.

4.3.2 Formalism: the iterative sampling algorithm.

Definition 4.12. (Similarity Matrix)
For a given set of proteins P, |P| = n, we can represent a given similarity function S,
S: P x P — R as similarity matrix D.

Vpi,p; € P 3 similarity d € R,d > 0, D(p;,p;) = S(pi,pj) =d
(Note) We use similarity functions defined in Blast [AGMT90Q] or Smith-Waterman

[SWE&T] algorithms. The algorithms uses different distance measures to compare sequences:
Blast uses —log19, Smith-Waterman uses %jid.
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Definition 4.13. (P’-projection)
For the similarity matriz D : P x P — R, P' C P we define a P'-projection of D

Dp/ :P'xP =R
if
Vpi,pj € P' D(pi,p;) = D'(pi, p;)
Definition 4.14. (Families) [NSO7/

P is the set of proteins over which a family computation will be performed.
A family computation F' over P defines a partitioning of P into disjoint subsets F' =

{f1,-fu} such that P = f;.

The subsets f; are called families.

Definition 4.15. (Sample Map)

For given set of proteins P, mazimum sample number k € N, k > 1, representation num-
ber r € N and iteration i € 0,1,...: the sample map computation S* over P defines a
k-partitioning of P into disjoint subsets S* = {s1,..., s} such that P = |Js; with the
following rule:

If there exists a previous sample computation S™' and family computation TI'~1:
Vfj e 1 S% is defined as: fj = random(si, ..., sk) (%)
Else: A
Vp € P : 5" is defined as: p — random(sy, ..., Sk)
(Note 1) (*) means that

ij elr! Vpj1,pj2 € fj dl:s; € S% and Dj1 € SI, Pj2 € S

(Note 2) The r value should be as large as possible, considering the fact that in bigger sam-
ples the accumulation of families will be faster, but at the same time the size of similarity
matrices are |r|?, and we should take into account the efficiency of tools on large matrices.
(Note 8) We calculate mazimum sample number k after choosing r as:

il
r

(Note 4) For our data, |P| =~ 45000, r = 10000, k = 4

k=

Definition 4.16. (Sample Projections)

For a set of proteins P, similarity matric D, mazimum sample number k and a protein
sample map S°, for each P € S',m € {0,....,k} we will call the sample similarity P -
projections sample-projections (D:, C D, D! : P! x P. —R)

Definition 4.17. (Sample family partitions)

For a given list of sample-projections (D, ...D,i), some clustering function Clustering :
D — 11, (transform similarity matriz to the family computation) we calculate sample fam-
ily partitions ITY, = Clustering(D?))

Let
= |J 1,

me{0,..k}
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This family partition is the result of the i*" iteration.
(Note) As a clustering function we use the TribeMCL [EVDQOOZ] version of the MCL

kD00 algorithms.

Algorithm 8 Iterative sampling for the MCL clustering
Input: Protein similarity matrix D =
{(prot;, ((protji, score; j1),...)) }
Output: Cassandra.families = {(family, (prot;, ....))} and
Cassandra.sample_map = {(prot,,, sample_num)}

function MAIN
Cassandra.sample_map «+ random(0..k)
while true do
RunMapReduce(D)
if |Cassandra.families| = FMAX then
return Cassandra.families
end if
end while
end function

function MAP(
key: prot;
values: (prot;, score;j), ...
)
sample_num «+ Cassandra.sample_map(p;)
for all prot; € values do
if sample_num = Cassandra.sample_map(prot;) then
output(sample_num, (prot;, prot;, score; ;))
end if
end for
end function

> 4gp, row of the similarity matrix D

function REDUCE(
key: sample_num
values: (proty, proty,, score; ), ...

)

> Sample number
> Sample similarity matrix Dy

Fs = Clustering(Ds) > Family partition
for all family € Fs do
new_sample_num < random(0..k) > New sample number

for all prot € family do
Cassandra. families(prot) < family
Cassandra.sample_map(prot) < new_sample_num
end for
end for
end function
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Figure 4.13: MapReduce algorithm |[8: Iterative sampling for the Consensus clustering,
where initially random samples accumulate relations between members of the same cluster
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4.3.3 MapReduce deployment

We run the MapReduce MCL clustering for each configuration of the sequence alignment
algorithm, filtering and MCL inflation parameter. Suppose, we choose some configuration.
At first, we sample proteins by assigning random sample numbers for each protein. Al-
gorithm |8 maps over the rows of similarity matrix and from each row selects the protein
pairs that belong to the same sample, and output them using the sample number as key.
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These pairs are then combined by sample number by the MapReduce framework, which
then proceeds to the reduce phase. In the reduce phase all relations are grouped by sample
numbers so in each reduce job we have a sample projection of similarity matrix. Sample
similarity matrices (projections) are clustered in the usual way. The union of these protein
families of samples is a result of this iteration. For the next iteration we again redistribute
proteins into samples, but proteins of the same protein family stay in the same cluster,
so that samples tend to accumulate relations between members of the same cluster. The
computed clusters converge towards the clusters that would have been found on the com-
plete similarity matrix if its computation had been feasible. This iterative process is shown
schematically in figure |4.13l

4.3.4 Evaluation

To evaluate iterative sampling algorithm we ran it on the same data as [NS07] and com-
pared results. To compare family partitions II and II’ we use distance function, defined

by van Dongen [¥D00]:
Definition 4.18. (van Dongen Distance [uD0Q]) (following [NSO7/)

d(H, H/) =2n — WH(H/) — T (H),

where n is the cluster size, m(I') is asymmetric index of the degree of refinement of one
partition versus another.

The iterative sampling process converged to equivalent heuristic results in 10-15 iter-
ations. The distance between partition using sampling algorithm and corresponding MCL
computation was converges as one over z for each configuration(figure |4.14).

From figure 4.14) we can see that the process converges for all possible configurations
(alignment algorithms: Blast/SW, filtering: homeo/no-homeo and MCL inflation param-
eters: 1.2, 2.4, 4.0). We observe that our MapReduce algorithm converges better for
Swith-Waterman similarity matrices than Blast ones. Also it converges better with align-
ments filtered by homeomorphy and MCL inflation parameter 1.2, and worse with bigger
coefficients.

4.3.5 Meeting Criterion
Definition 4.19. (Criterion of a good MapReduce algorithm)

1. Balanced loads (for map and for reduce):
Data distributed among the similar chunks of optimal size both for map
and reduce phases
The map phase in our MapReduce deployment of the MCL clustering algorithm maps
over the rows of the similarity matriz and outputs protein pairs with scores that belong
to the same sample. To measure load of the map phase we will calculate for each
row the number of proteins that have score value (Figure 4.15).

We observe that there are mostly small rows, as the mazimum elements in the row
1s 186. In case there will be large rows we can split them into several middle sized
ones, so the map phase will be balanced.

The reduce phase works with submatrices of equal size, and the number of chunks
grows with the increase in data. Thus, we can tell that the reduce phase is balanced.
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Figure 4.14: Distance between sampling computation and MCL clustering computation
depending on iteration.
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Figure 4.15: Proteins distribution over rows: we calculate number of proteins in the each
row and show how many rows have the same number of proteins.

2. Good in scaling:
With the increase of data the number of chunks increases and the size of
chunks does not significantly grows
With the increase of number of proteins the rows grow linearly even though the matrix
s very sparse. But it is not necessary to have whole row at the time since we are
interested only on independent protein pairs, so we can split very large rows and store
them in several Cassandra rows. Thus, we will map over parts of the rows of the
stmilarity matriz, but the samples will be combined the same way by sample number
for reduce phase.

The reduce phase operates with submatrices and the size of the submatrices is fized.
With the increase of data, the number of samples grows, but not the sample size.
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Chapter 5

Implementation

Résumé : Afin d’évaluer le schéma et les algorithmes concus dans les chapitres
précédents, nous avons décidé de les mettre en ccuvre. Nous commengons par
la conception d’un systéme de stockage de données et relations, qui peut étre
connecté indifféremment a une base de données SQL classique ou a un systéme
NoSQL. Cette conception nous a obligé de reconcevoir l’objet modéle de Magus
et d’explorer quelques choix stratégiques et techniques. Nous avons implémenté
le nouveaur systéme et avons ainsi contribué au rédéveloppement du systeme
d’analyse de génomes Magus. Une évaluation de performance, réalisée avec des
jeuzx de données réels et artificiels, montre que 'approche Cassandra fournit a la
fois des meilleurs performances et une meilleure mise a l’échelle.

Ensuite, nous implémentons les deuxr nouvels algorithmes développées dans le
chapitre |4}, employant pour MapReduce le cadre logiciel Apache Hadoop. La per-
formance des deuzx solutions est encore évalué avec des jeux de données réels
et artificiels. Nous observons que, sur des instance qui rentrent entierement en
mémoire vive, la performance de MapReduce souffre ; par contre, pour des in-
stances plus grandes, la mise a l’échelle raisonnée des algorithmes MapReduce
permet de suivre raisonnablement la croissance des données.

Nous terminons avec une modest exploration du réle du langage déclaratif Pig
Latin pour exprimer des calculs distribués MapReduce de fagon plus intuitive pour
les biologistes.

In this chapter we will first talk about design of a data storage system that can be
connected both to SQL and NoSQL data stores. In order to evaluate the pertinence of
the theoretical proposals we decided to implement a practical solution in a context of
reimplementation of the Magus system. First, we describe implementation of the system,
reviewing the object model,and technical and strategic solutions. Concretely, we will talk
about a software adaptor (in Perl) to the Cassandra NoSQL and implementation of the
data schema, defined in|3.6.1. We evaluate performance of the new system by loading and
searching stress tests based on real and artificial data sets, which are made by extrapo-
lation, conserving the properties of the data set. We will show that NoSQL Cassandra
solution has better performance and scaling properties than the relational PostgreSQL
solution.

Second, we will talk about MapReduce adaptations of two global comparative genomics
analyses, described in sections 4.2| and 4.3, We will show the feasibility of these kind of
adaptations by implementing their algorithms in Java using the Apache Hadoop frame-
work. We will evaluate performance by executing these algorithms using real and artificial
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data sets. We will observe, that on the data sets that fit into memory, performance of the
MapReduce algorithms is worse than original ones; however for data sets that do not fit
into memory, the MapReduce algorithms scale in a way that permit such instances to be
handled.

Third, we will discuss the possible use cases for the Pig Latin declarative language to
express MapReduce distributed computations in a more intuitive way, to reduce cognitive
friction for performing global analyses.

Apache Cassandra

ke Apache Hive
PostgreSQL
3-1. Data
1-1. Magus::SQL
1. Data Warehouse
(Online query
system)
3. Analytics
(Frozen
2. Ad-hoc picture)
algorithms
2-1. Classica\|Global analyses)
RAM
Apache Mahout
Perl scripts

2-2. MapReduce

Apache Hadoop

Figure 5.1: Tsvetok system overview. There are 3 connected components that refer to the
Data storage, Ad-hoc algorithms and Analytics systems.

Figure [5.1] introduces Tsvetok, a unified view I define integrating aspects of data anal-
yses in comparative genomics together. We place three cooperating systems in the center
of Tsvetok: data storage, ad-hoc algorithms and analytics systems. Each system in the
center connects to our proposed implementations, in the petals.

Let us describe the systems of Tsvetok in detail (Figure |5.1):

1. Data system (Online query system).
The Data storage and query system defines a unified interface used by Magus Query
System Interface, involves operations for searching and editing of sequence features.
The two petals Magus::SQL and Magus::NoSQL in the figure correspond to two
different technologies for physical storage—classical relational databases and NoSQL
data stores. The new Magus system is designed to allow switching between data
stores easily, simply by changing the connector parameters.
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To develop Magus::NoSQL for the case of a Apache Cassandra data store I used
the general principles of constructing column families defined in the section [3.6.1] to
guarantee efficient use of Cassandra. In the section [5.4 I will demonstrate through
the performance comparison between NoSQL and classical relational database im-
plementations that my general principles work well in practice.

2. Ad-hoc algorithms system (Global analyses).
The second segment in figure [5.1] describes Ad-hoc algorithms in comparative ge-
nomics, designed for a specific purpose. These algorithms have precise sense, stated
biological goal; they give an exact answer for a specific question. The two petals
correspond to classical RAM and MapReduce paradigms of computations.

The first implementation petal represents classical Random Access Memory (RAM)
algorithms. These algorithms must obey certain assumptions, such as a global,
shared memory. Consequently, they can work only if the computations are able
to fit into memory on one machine.

The second petal represents implementations of the computations using the MapRe-
duce paradigm (see section [2.4.2)) for the cases when the input data do not fit into
memory. We use the Hadoop MapReduce framework for distributed computations,
because it hides the technical details of the parallelization implementation, making
it easy to write applications for the global analyses.

To develop MapReduce algorithms I used the criterion of a good MapReduce decom-
position defined in the section 4.1 to guarantee efficient use of MapReduce paradigm.
In the section 5.5/ I will demonstrate through the performance comparison between
MapReduce and classical RAM implementations that my criterion works well in
practice.

3. Analytics system (Frozen picture).
The third segment in the figure 5.1/ corresponds to the Analytics system. This sys-
tem is used for decision support and for large-scale explorative analyses by domain
specialists (biologists, etc) on the frozen data (see section 2.5). Two petals corre-
spond to two technologies related to analytics—Hive Data Warehouse and Mahout
Data Mining libraries.

The first Analytics implementation petal represents Data Warehouses. They are
used to store the data for decision support using SQL-like query languages. Apache
Hive Data Warehouse provide the way of assessing and slicing data in a large-scale
context, executing on top of Hadoop MapReduce.

The second implementation petal represents Data Mining. Mahout is collection of
libraries for large-scale analytics developed in Data Mining community. The analyses
execute on top of Hadoop MapReduce. Mahout contains many already implemented
algorithms for Clustering, Sorting, Classification and others which are heavily used
in comparative genomics.

In this chapter we will focus on the Data and Ad-hoc algorithms implementations
(petals 1-1 Magus::SQL , 1-2 Magus::NoSQL and 2-2 MapReduce). We will talk how we
organized data storage, we will discuss software design patterns for searching and curation
of the data.
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Figure 5.2: Magus 2.0 object model

5.1 Magus Object Model

The new Magus Object Model was developed, in collaboration with Magnome team mem-
bers (see section |1.4)), to unify access to the different data schemas, such as
Bio::DB::SeqFeature::Store and BioSQL with the flexibility to use different types of data
storage systems (relational and NoSQL). The Génolevures web site is written in Perl and
Mason, thus our Magus object model is defined using a set of Perl classes.

The new Magus object model to represent sequence features is illustrated in Figure|5.2
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underlying object is Bio::Seql of BioSQL. LocatableEntry is a child of Entry, it has start
and end location coordinates on the sequence. There are three kinds of LocatableEntry:
Gene, Locus and ncGene. The underlying object of LocatableEntry is Bio::SeqFeaturel.

The Group class contains a collection of Entry or Group objects. The underlying object
of Group is Bio::Group, which currently is not part of BioSQL. Group objects can contain
information about sets of alleles, orthologs, paralogs, tandem repeats, fusion and fission
events, protein families, etc.

Some client software only use the Magus system to search for sequence features; for
them we provide read-only access. Other interfaces, for example annotators and curators,
can also annotate, validate and invalidate genes, and add new ones. To avoid interface
subclassing we decided to apply the Strategy Design Pattern for the classes that can edit
features. Strategy selects a suitable algorithm at runtime, which should be applied, based
on the type of data being processed. EntryEditor, the base class, provides an interface
to edit, annotate, validate and invalidate sequence features. It has two concrete strategy
implementations—Able Editor, that can edit features, and NullEditor, with read-only access.
There are three kinds of the AbleEditor for different types of features: BioSeqEditor,
BioSeqFeatureFEditor and BioGroupEditor.

5.2 Magus::NoSQL Cassandra implementation

We made a Cassandra adapter for BioPerl module Bio::DB::SeqFeature::Store, which is
used for storing and retrieving sequence annotation data from different types of underly-
ing databases. Bio::DB::SeqFeature::Store allows us to persistently store Bio::SeqFeaturel
objects in a database and later to retrieve them by a variety of search methods.
Bio::DB::SeqFeature::Store can work with many kinds of databases using different adap-
tors: mysql, berkeleydb, memory adaptor. We developed an adaptor, that allow us to use
Cassandra storage. The classes, were implemented:

1. Cassandra Wrapper.pm

This is a wrapper of the perl binding for Thrift, the low-level RPC-based API, to
separate very changing and unstable Cassandra Thrift API from the main adaptor
code.

2. CassandraGFF3.pm

This helper class works with sequence annotation files in GFF3, EMBL and others
formats. This class encapsulates information about our schema of column families in
Cassandra to store sequences and sequence features. It also provides the searching
API to retrieve Bio::SeqFeaturel objects using different types of given attributes. We
extended CassandraGFF3 to support another types of objects, such as some BioSQL
objects like proteins or groups (the new class Bio::Group).

3. Cassandra.pm (Bio::DB::SeqFeature::Store::Cassandra)

This is the main adaptor class, which allow us to store sequence features in Cassandra
data store and select features by id, by name, by alias, by type, by location (sequence
id and coordinates interval), by attribute, by notes (description) and by arbitrary
combinations of selectors, limiting the search to a particular region, getting, and
storing sequence information.
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As we claimed before, CassandraGFF3 works with BioPer]l and BioSQL classes, and
their conversion to Magus Data objects (different kinds of Entry objects) for end
users is placed in a common place in Magus.

. Magus::Search

Magus::Search has a unique interface for searching for sequence features. It can work
both with Cassandra NoSQL (by connecting to the
Bio::DB::SeqFeature::Store::Cassandra) object and relational SQL data stores with
different schemas (Bio::DB::SeqFeature::Store:: or BioSQL) simply by changing a
connector string.

. bp_load_seqdatabase.pl

bp_load_seqdatabase.pl is a standard tool of BioPerl to load genomic files in various
formats (EMBL, Uniprot, etc) to the relational databases (PostgreSQL, MySQL,
etc) with BioSQL schema. We implemented an extension for this flate file loader
to support loading to Cassandra using our schema of column families. So we can
use this script in a similar way, specifying in parameters “cassandra” as a driver,
Cassandra keyspace name as dbname, and correspondent host and port:

perl bp_load_seqdatabase.pl -host localhost -port 9160
-driver cassandra -format embl -dbname magus_test Cagl.embl
perl bp_load_seqdatabase.pl -host localhost -port 9160

-driver cassandra -format swiss -dbname magus_test Yali.swiss

. Unit tests in t/*.t
For each implemented class and for each method of this class we created a test
method.

. Stress tests (functional) in t/functional/*.*
Beyond testing the functionality of our classes we implemented stress tests for each
use case. There are two kinds of these stress tests: load and get tests.

a) Load test: load_magus_test_data.pl
load_magus_test_data.pl loads the whole Génolevures database using our version
of the bp_load_seqdatabase.pl script, described above. Sequence features are
loaded from EMBL-formated files, proteins—from Uniprot-formated files and
groups—from the group files in our internal tabular format.

b) Get tests: TestHelper.pm and sample files extracted from the database
To create stress tests for each type of query, we extracted sample data that con-
tain searching parameters and attributes of the sequence features to compare
with the result. For example, the sample file for the “by_location” search looks
like this:
Cagl0A 22270 29849 CAGLOA002099 CAGLOA00231g CAGLOA00275¢
CaglOA 22270 29849 CAGLOA002099 CAGL0OA002319g CAGLOA002759
Cagl0A 30988 42300 CAGL0OA003199 CAGL0OA003419g CAGLOA00407q ...
Each line of this file is a query search and there are about 1000 lines (queries)
in each sample file. For example, the first line of this example means, that
we search all sequence feature of CaglOA sequence, that intersect the inter-
val (22270, 29849), and result should contain three sequence features with the
names CAGLO0A00209g, CAGL0A00231g, CAGLOA00275g.
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For the get tests we created a TestHelper class, that knows how to read these
sample files and compare the result with the given attributes. For each use case
(for each type of search) we run TestHelper with correspondent test type and
data sample file.

In the new Magus 2.0 system the choice of which kind of database to use is specified
in one place in the DBSwitcher class.

5.3 Experiments on the cluster

The experiments were done on the cluster with four data nodes and one application node,
connected through the secure subnetwork. We use DataStax Enterprise! Cassandra de-
ployment which integrates it with Hadoop, Hive, Pig and other tools for distributed com-
putations. DataStax removed a single point of failure of Hadoop by substituting HDF'S
for CassandaFS, where all nodes are peers. We specified one node as a seed node for
Cassandra used while the Gossip protocol is just establishing.

To connect to the data from Application node we can use any of the data node IP
addresses as though it would have all the needed data.

5.4 Magus::Search - Load and Get performance
comparisons

To compare performance of the NoSQL Cassandra and PostgreSQL Magus implementa-
tions, we executed two types of the stress tests: Load and Get. Implementation of the
new Magus and execution of the Load/Get tests for the case of PostgreSQL (BioSQL) was
done by Florian Lajus.

5.4.1 Load tests

For the load tests we used a representation of the Génolevures database in EMBL-formated
(sequence features) and Uniprot-formated (proteins) files. Figures 5.3/ and 5.4 show the
results of the load time comparisons for the sequence features and proteins. Resume
consumption is plotted as a function of the number of objects.

We also performed comparative loading tests for the different kinds of groups (families
and alleles). The results are shown in table 5.1}

Group file type | Number of | Number of | PostgreSQL Cassandra
groups members in | loading time, | loading time,
the groups sec sec
Homolog 5801 from 2 to 255 15755 124
Allele 5926 from 1 to 2 1790 65

Table 5.1: Time for loading files for the Groups files versus the number of groups: for
Cassandra and PostgreSQL.

To check the scaling properties of the loading methods used by PostgreSQL (with
BioSQL schema) and Cassandra (with the column family schema, described in subsection

'DataStax: http://www.datastax.com
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Loading EMBL files: Cassandra and PostgreSQL
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Figure 5.3: Time for loading files for the EMBL files versus the number of features: for
Cassandra and PostgreSQL. Straight lines are linear regression showing relative growth of
the loading time with the growth in the number of objects in the file.
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Figure 5.4: Time for loading files for the Uniprot protein files versus the number of proteins:
for Cassandra and PostgreSQL. Straight lines are linear regression showing relative growth
of the loading time with the growth in the number of objects in the file
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Scaling properties of the loading EMBL files:
Cassandra and PostgreSQL
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Figure 5.5: Number of seconds required to load given genomes in EMBL files in Post-
greSQL and Cassandra data stores. Straight lines show linear increase in cumulative
loading time with the growth in the size of data stores.

3.6.2), we generated artificial EMBL files based on the existing 10 genomes, keeping the
same statistical distribution of attributes. We basically copied each chromosome (which
corresponds to some EMBL file) and changed the sequence name and all names of its
sequence features. The results of the time spent by Cassandra and PostgreSQL to load 10
initial and varying numbers of generated genomes are illustrated in figure |5.5.

5.4.2 Get tests

To test performance of the Magus::Search interface we executed several types of stress
tests. We chose that types of tests based on the usage patterns described in section [3.5|
Each test massively selects features by some attributes and compare attributes of these
features with the given ones. These types of tests are: by name, by location, by aliases,
by member (for the cases of protein family and alleles)

The comparative results for average time per query for Cassandra and PostgreSQL
data stores are shown in figure [5.6l To study the effect of database size on the average
get query time we performed the same get tests (by name, by location, by aliases and by
note) on the databases with different sizes, loaded with generated genomes, as is described
in the previous subsection |5.4.1. The scaling results of these get tests are illustrated in
figures 5.7}, 5.8}, 5.9, |5.10L

5.4.3 Discussion

From the figures [5.3| and [5.4] we can observe a great differences between Cassandra and
PostgreSQL load operation performance: Cassandra is 5.19 faster in loading EMBL files
and 2.84 faster in loading Uniprot files on average. The question is: can we find out
from where the difference is coming? One of the overheads is integrity checks done on
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Average time per query for get tests:
Cassandra and PostgreSQL
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Figure 5.6: Get tests average time per query: Cassandra and PostgreSQL
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Figure 5.7: Average time per get by name test query in PostgrSQL and Cassandra de-
pending on the size of the database.

relational databases and not in Cassandra. These integrity checks are intrinsic part of the
relational databases, while Cassandra does not provide any guarantees about integrity as
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Average time per query - get by location test
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Figure 5.8: Average time per get by location test query in PostgrSQL and Cassandra
depending on the size of the database.
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Figure 5.9: Average time per get by aliases test query in PostgrSQL and Cassandra
depending on the size of the database.
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Average time per query - get by note test
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Figure 5.10: Average time per get by note test query in PostgrSQL and Cassandra de-
pending on the size of the database.

it is understood in database theory. In the case of Magus system we do not need these
checks, because the sequence features data come from the verified EMBL and Uniprot
files.

In the figure |5.3| we also can see an increase in loading time following the increase in
the number of sequence feature objects in EMBL file. In contrast, in figure 5.4/ we do not
see the increase of loading time with the increase of number of the objects. This means
that the protein feature objects can be very different in number and size of attributes.

The difference in loading time of groups, as it is illustrated in table [5.1) is significant
between Cassandra and PostgreSQL implementations: Cassandra is 27.54 faster for the
case of alleles and 127.05 faster for the case of homolog groups. Again, part of the overhead
of PostgreSQL is integrity checks, which verify that all features of all groups are present
in the database. The Cassandra implementation has much better performance, but does
not provide any database-style guarantees about the features of the groups. In this case
the integrity checks are not necessary either, because the Magus system is responsible for
the composition of groups and in fact does not require the entire underlying collection of
sequence feature objects.

From figure 5.5/ we can see that both loading methods scale with the number of genomes.
We can observe that Cassandra loading time is 4.84 better than PostgreSQL on average.
Cassandra uses buffered writing: the writes first go to a CommitLog, than to MemTable
(a per-ColumnFamily structure) and, when it is full, is written to disk as an SSTable.
This process is faster than waiting until a transaction is being finished as it happens in
relational databases such as PostgreSQL.

As we can see from figure [5.6, the performance of the implementation is better in the
case of Cassandra for most of the cases: Cassandra performance is 3.58 times better for
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get by location tests, 1.77 for get by member ones, 6.41 for get by aliases and 51.31 for
get by note. However, Cassandra performance is 1.06 worse for the case of get by name
tests. As we can see, the difference in performance is significant for tests by aliases and
especially by note. This is because in BioSQL data schema aliases, notes as well as all
other annotations values are stored in the same table, which prevents creating a database
index to optimize the search time. For the future work of reimplementation of the Magus
system there is a plan to create a separate additional materialized views for aliases and
notes.

The figure [5.7, which illustrates average time per query for get by name test, demon-
strates the very small effect of data store size on Cassandra performance for this type of
query, while the average time per query in PostgreSQL grows linearly with the size of the
database. Also, we can observe that after the database size exceeds 50 genomes (which is
15,7 GB of EMBL text files) the curve grows twice as fast in the case of PostgreSQL.

For the case of get by location test, as we can see from figure 5.8, both Cassandra
and PostgreSQL average time per query grows linearly with the number of genomes in the
data stores. However, we can see that Cassandra performance is better than PostgreSQL
(with BioSQL data schema).

Figure 5.9 shows the scaling problems of BioSQL schema for the tests by aliases. Both
Cassandra and PostgreSQL average time per query grow linearly, but the increase rate is
22 times bigger in the case of PostgreSQL. As we discussed in this subsection previously,
in BioSQL schema the aliases are stored with all other annotation values, PostgreSQL
query time is very bad (from 1 to 8 seconds) and scales poorly.

The same BioSQL scaling issues we can observe in the search by note case, as it is
shown in figure [5.10L Also, as it was in the case of get by name queries, after the database
size exceed 50 genomes, the angle of the PostgreSQL slope is 5 times more.

5.5 Hadoop MapReduce algorithms implementation

As we described in section [2.4.2] MapReduce is a distributed computing paradigm, where
all algorithms are decomposed into two phases—map and reduce. Each phase applies the
same function (map or reduce) to small independent chunks of data, the outputs of the
map phase are combined by the map output keys to proceed to the reduce phase for the
final computations.

Apache Hadoop is a software framework for writing MapReduce applications in Java.
To write applications in the Hadoop framework we need to implement two Java classes
extending the two generic base classes Mapper and Reducer of the framework. As the
parameters of these classes we should specify the types of input and output types of
the keys and values. Keys and values are serialized by the Hadoop framework, so the
key and value classes must implement the Writable interface. During the MapReduce
combine step the keys are compared and sorted, thus the key classes must implement the
WritableComparable interface. In the Mapper class we must implement a map function,
in the Reducer, reduce. In the main class of our application we implement a run method,
where we need to set up the configuration in which we specify the Mapper and Reducer
classes, and key and value types. Also here we have to specify from where and how to take
data, and where to put output. If we use here Cassandra as a source of data, we specify
host, port, keyspace name and the SlicePredicate to decide which columns of all rows to
take. Otherwise, we must specify input and output paths in the distributed Hadoop File
System (HDFS).
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As we explained in sections 4.2] and 4.3 we adapted two existing global comparative
genomics algorithms to use MapReduce Hadoop framework. To measure performance we
used two metrics: total physical memory use and total CPU time. The memory and CPU
time for original algorithms were measured using the Unix “/usr/bin/time” command. For
the case of MapReduce distributed algorithms we used the values of memory and CPU
time counters from the Hadoop job report, which are aggregated values from all tasks.
For each task the memory value which will be taken into report is a last known value, not
the peak one. The reported CPU time has had the CPU time spent on task initialization
subtracted.

The performance results of the two MapReduce implementations comparing with the
original algorithms will be shown in the following subsections |5.5.1/ and [5.5.2.

5.5.1 Application 1: Identification of gene fusion and fission events

The algorithm of the identification of gene fusion and fission events [DNS0OS], as we de-
scribed in the section 4.2, has several preliminary steps that can be easily executed in
parallel. As we claimed before, for MapReduce adaptation we were interested only in the
last step: the graph algorithm that does detection of the fusion and fission event based
on the filtered set of relations between “C-groups” and “E-groups”. To measure scaling
properties we first executed both original algorithm [DNS08] and MapReduce adaptation
on the data from the initial article [DNSO§] (which corresponds to the size of the problem
=1).

Size Number | Physical Total physical | CPU time, | Total CPU

of the | of rela- | memory us- | memory us- | seconds, time, seconds,

problem | tions age, Kkbytes, | age, Kkbytes, | original MapReduce
original MapReduce | algorithm algorithm
algorithm algorithm

1 9 638 312 432 1 034 736 10.14 11.73

38 552 748 416 1 352 200 35.68 38.91
9 86 742 1 495 616 1 524 644 77.34 166.13

Table 5.2: Identification of gene fusion and fission events original and MapReduce imple-
mentation: physical memory and CPU time values for the different sizes of the problem.

To simulate increase of the size of input data, we doubled the number of C-groups and
E-groups, such a way that for each relation ¢ — e we added relations with new generated
c1 and ey: ¢ —eq, ¢; — e and ¢ — ey. Thus, doubling the number of C- and E-groups gives
a 4 times increase in the number of relations, which corresponds to a size of the problem
= 4. The same way by multiplying the initial number of E- and C-groups by 3, we got
the set of relations that corresponds to the size of the problem = 9. When we multiply
E- and C-groups by 4, which gives the size of the problem = 16, the filtering phase of the
original algorithm does not finish after a reasonable amount of time (22 hours).

The values of physical memory usage and CPU time for different sizes of input data for
the original algorithm and MapReduce adaptations are illustrated in the table 5.2. The
physical memory use grows linearly with the number of relations fitting to the equations:
y = 15.362x + 161230, R? = 0.9999 for original algorithm and y = 6.0707z + 1.031 - 106,
R? = 0.9054 for MapReduce one as is illustrated in figure [5.11. Figure |5.12 illustrates the
dependencies of the original algorithm and MapReduce adaptation total CPU time on the
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Fusions and Fissions: total memory usage
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Figure 5.11: Memory usage for Fusions and Fissions: original vs MapReduce implementa-
tions.
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Figure 5.12: CPU time usage for Fusions and Fissions: original vs MapReduce implemen-
tations.
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number of relations. Total CPU time grows linearly with the size of input relations as
well. The curve of the original algorithm fits to the equation y = 0.0009z + 1.8857, R?> = 1
and MapReduce one fits to y = 0.0021z — 20.736, R? = 0.9546. From these equations we
can observe, that for MapReduce algorithm to have better performance, we need to have
at least 2 machines.

5.5.2 Application 2: MCL clustering

The MCL clustering algorithm, as we described in the section|4.3] has the matrix of protein-
protein relations as input. To measure scaling properties of the original and MapReduce
methods, we run them on the matrices of different sizes with some chosen configuration

con figuration = {Blast, homeo, 1.2}.

The input data from the initial article [NSO7] corresponds to the size of the problem k =1
with the number of proteins around 50000 and number of protein-protein relations around
185000. To simulate increase of input data, we multiply the number of proteins by 2, 3
and 5, which gives the growth of the matrix (or, size of the problem) 4, 9 and 25 times,
respectively. Thus, we expect quadratic growth in the memory usage and CPU time
with the number of proteins or linear one with the size of the problem. In the MapReduce
sampling algorithm, independently of the size of input matrix, MCL clustering is performed
on the fixed sized input matrix, the number of proteins of which is % (heuristic value), thus
the size of it is % of the initial one and k = 1—16. The CPU time needed to perform MCL
clustering on 1—16 of total number of relations is C'PUgiginal(k = 1—16) = 1,1 sec. To calculate
theoretical total CPU time value for MCL clustering in sampling algorithm, we simply
need to multiply CPUom'gmal(l%) by the number of task. For the size of the problem k&
(proportional to the size of input matrix) the number of tasks is equal to number of samples
in each iteration multiplied by the number of iterations needed to obtain satisfying result
of clustering. The number of samples linearly grows with the number of proteins. For
the size of the problem =1 (which proportional to the size of the matrix) we divide all
proteins into 4 samples: samples(k) = 4 - Vk. The number of iterations for each size of
the problem we took from the MapReduce experiments. The dependency of the number
of iterations needed to obtain satisfying clustering result on the size of input proteins (size
of the problem) is illustrated in figure |5.13.
Thus,

CPUrotalsamplingvcL(k) = CPUogriginai (0, 25) - samples(k) - iterations(k) ~ k - In(k)

These result of the theoretical calculations for the sampling MCL clustering CPU time
is illustrated in figure [5.14. As we can see, the total sampling CPU time is worse than
the CPU time for the original algorithm, but for more than two machines, the theoretical
results for the sampling clustering become better.

These theoretical results (in figure [5.14) measure neither MapReduce overhead nor
the phase of extracting samples. The practical results of our MapReduce implementation
show large overhead in the sampling phase. This sampling phase takes a lot of memory
(see figure 5.15) and CPU time (see figure 5.16). Both CPU time and memory usage grow
linearly with the number of input relations (size of matrix). As we can see from figure
5.16), it requires more than 25 machines to have a better performance, than the original
algorithm.
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Ilterations of the Sampling algorithm
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Figure 5.13: Number of iterations needed to obtain satisfying clustering result depending
on the input data size. The size of the problem is proportional to the size of input matrix.
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Theoretical MCL clustering CPU
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Figure 5.14: CPU time usage for the original MCL clustering algorithm compare to theo-
retical calculations for the clustering on samples.
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MCL clustering: total memory usage
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Figure 5.15: Memory usage for MCL clustering: original vs MapReduce implementations.
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Figure 5.16: CPU time usage for MCL clustering: original vs MapReduce implementations.
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Chapter 6

Conclusions and Perspectives

Résumé : Dans cette theése nous avons adressé les défis de mise a [’échelle
en génomique comparée. La croissance des données de séquence, due a
la décroissance forte des coits de séquencage et l'adoption de stratégies de
séquencage paraphylétiques, met une énorme pression pour le développement de
méthodes de stockage et de calcul distribué parfaitement adaptés aux besoins de
la comparaison des génomes. Cette pression est liée au volume des données,
mats aussi au besoin d’analyser des relations n-aires entres objets génomiques,
qui croissent plus rapidement et au pire géométriquement. A partir d’une analyse
de ces besoins, ancrée dans une expérience concréte issue du projet conséquent de
comparaison de génomes Génolevures, nous avons défini, mis en ceuvre et évalué
un systeme distribué NoSQL de stockage de donmées et de relations. Ensuite,
sur la base de méthodes existantes, nous avons rentré deux analyses globales de
génomes dans le paradigme de calcul distribué MapReduce. La premiére méthode,
qui identifie des événements anciens de fusion et de fission de génmes, a pu étre
adapté a MapReduce grace a un nouvel algorithme de parcours dans le graphe de
relations entre segments génomiques. La seconde méthode, utilisée pour partition-
ner des ensembles de génes en familles phylogénétiques, a quant a elle été adapté a
MapReduce par la définition d’un processus d’échantionnage itératif qui converge
sur le résultat recherché. Ces exemples montrent que MapReduce est une bonne
approche pour certains calculs en génomique comparée, mais que l’adaptation
d’algorithmes existants pourrait demander des stratégies trés différentes.

Ces travaux ont montré la pertinence des approches NoSQL et MapReduce pour
la comparaison de génomes, et ouvrent la voie a plusieurs perspectifs. La
suite directe est de poursuivre l'adaptation de méthodes d’analyse globale de
génomes ; la palette de méthodes existantes est trés grande et la croissance des
données demande dés a présent une meilleur mise a l’échelle. Un défi particulier
est d’identifier des patterns algorithmiques qui pourront guider l’adaptation de
méthodes similaires. Un deuxiéme perspectif complémentaire est de poursuivre le
développement de langages de haut niveau pour [’expression de méthodes d’analyse
génomique. Notre expérimentation avec le langage COGITO et sa mise en ceuvre
dans Pig Latin n’est qu’a ses débuts. En finalement, l’adoption pour la génomique
d’Apache Cassandre et Apache Hadoop pour respectivement NoSQL et MapRe-
duce permet de bénéficier des développements en l’analytique a grande échelle, en
cours de réalisation aujourd’hui par une communauté grandissante.
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6.1 Conclusions

In recent years we have seen significant data volume growth in comparative genomics be-
cause of dramatic decrease in sequencing cost. New multi-genome paraphyletic sequenc-
ing strategies (section |1.3.1)) lead us to a need in new technologies for large-scale storage,
global, thus means distributed, analyses and analytics. In section [1.3| of the Introduction
we talked about different kinds of large-scale human genome analyses including the ones
that are used in personalized medicine. We need a scalable storage technology and ad-hoc
algorithm solutions to support fast growing data sets, not only for existing usage patterns,
such as search in data store by the given parameters and global analyses on n-ary relations
between data elements, but also for the new kinds of comparative analyses.

In this thesis we addressed scaling challenges of the comparative genomics. We de-
scribed common requirements for the large-scale systems for storing, global ad-hoc al-
gorithms and analytics. Based on these requirements we selected scalable technological
solutions, respectively, Apache Cassandra NoSQL data store, Apache Hadoop MapReduce
framework, Apache Mahout data mining libraries and Apache Hive Data Warehouse. We
developed column family schema to store genome sequence features in Cassandra. To
evaluate Hadoop, we adapted two existing global analyses in comparative genomics using
MapReduce computing paradigm.

6.1.1 Scalable storage of Big Data

To address scaling challenges of storing Big Data, in chapter [2| we evaluated concepts of
storing and retrieving large data sets, we compared traditional relational approaches to
a NoSQL ones. Based on the CAP theorem, that allows for the storage system to have
not more than 2 properties out of following 3: Consistency, Availability and Partition
tolerance (subsection 2.3.1), and common requirements of the scalable system, described
in section 2.2, we chose Apache Cassandra NoSQL data store (subsection [2.3.4)), which
is AP (Highly Available, Partition tolerant), as a scalable storage solution. In chapter |3
we talked about theoretical aspects of storing Genomic Big Data with the main focus on
relations between data elements. We discussed about formalism of storing Data Cubes, n-
dimensional matrices and RDF triples as a particular case of n-relations. In section (3.1 we
talked about Cassandra Column Family representations of genomic relations, depending of
the intended use - as a searching index, for MapReduce applications or as RDF triples for
knowledge mining. In section |3.5 we characterized standard usage patterns derived from
the user log analyses to derive column families for Cassandra. In section [3.6| we formulated
general principles of creating column families, based on the user query type and explained
the schema for storing genome sequence features and group relations.

6.1.2 Scalable ad-hoc analyses

To address scaling challenges of global analyses of the large data sets, in chapter |2 we
evaluated technologies for distributed computations, based on common requirements, dis-
cussed in section [2.2. MapReduce computing paradigm and Apache Hadoop MapReduce
framework was chosen as an appropriate solution for distributed computations.
MapReduce (section 2.4.2) is a computing paradigm, that divides an algorithm into
two phases - map and reduce. The same map function applies to small independent chunks
of data, then the output is combined by the map output keys. Combined key-value pairs
proceed to a reduce phase, where the same reduce function applies to the combined chunks
of data. Hadoop is a Java framework that hides technical challenges of parallelization and
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load balancing and allows us to write MapReduce applications, just implementing map
and reduce function. To evaluate MapReduce and Hadoop, we adapted two existing global
analyses in comparative genomics.

The first application (section [4.2), algorithm of detecting fusion and fission events
[DNSQOY], employs large-scale bipartite graph analysis as a last step, and the graph is
supposed to fit in memory. With the increase in the number of data elements, the size of
the graph of relations grows quadratically. Our MapReduce adaptation works in parallel
with small set of edges, grouped by some vertices, calculating as an intermediate result
subgraphs of the maximum length 2. We prove, that Events, the special patterns in the
bipartite graph of relations, that are found in all subgraphs are equal to all events of initial
graph. This algorithm was evaluated with the real data set from initial article [DNSOJ] as
well as artificial ones to measure scaling properties.

The context of the second application (section |4.3) is Consensus clustering [NSO7]. The
scaling challenges of this procedure is the clustering phase, which works on the matrix of
relations between proteins and produce a set of protein families (clusters) as a result. With
the increase in the number of proteins, the size of matrix of matrix grows quadratically.
Our MapReduce adaptation is an iterative approach. In each iteration we distribute
proteins randomly into some chunks and select in parallel relations both proteins of which
belong to the same chunk (have the same sample number). Then, selected relations are
grouped by the sample number, obtaining submatrices and proceed to the phase where
we execute in parallel MCL clustering on these submatrices. On the next iteration we
again randomly select the sample numbers of the proteins, but we assign the same sample
number for the proteins which belong to the same protein family (result of the previous
phase). After several iterations we obtain a set of protein families which is close to reality.
This algorithm was evaluated empirically, on the data sets of initial article [NSOT] as well
as artificial ones to measure scaling properties. For our MapReduce adaptation we rely
on the Important characteristics of our data set: the number of protein families is around
5000 and not increasing.

6.1.3 Implementations

In chapter 5| we talked about putting together all aspects of large-scale data analyses in
comparative genomics. We introduced Tsvetok (figure |5.1)), an integrative representation
of implementations for the systems for data storage, ad-hoc algorithms and analytics.

Two first petals of Tsvetok representation are Magus::SQL and Magus::NoSQL back-
ends for Magus genome sequence features storage and retrieving system. In section 5.1
we described the Magus object model and Magus::Search common API to access sequence
features using different kinds of attributes. In section |5.2] we talked about implementation
of the Cassandra backend for Magus system. In section [5.4 we compared PostgreSQL
backend with BioSQL data schema (Magus::SQL) and Cassandra backend with the col-
umn families schema (Magus::NoSQL), described in subsection |3.6.2, and observed, that
Cassandra has a better performance both for load and get stress tests.

Two next petals of Tsvetok representations are Classical RAM and MapReduce ad-hoc
algorithms for global analyses in comparative genomics. We implemented two MapReduce
adaptations of existing global analyses in comparative genomics, described in sections 4.2
and 4.3. In section 5.5 we talked about details of MapReduce implementations in Hadoop
framework, and we compared performance of the implementations of standard algorithms
and MapReduce adaptations. We observed some overhead related with MapReduce, which
is significant on the size of the problems that fit into memory. For each of MapReduce
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adaptation we calculated how many machines we need to have better performance than
the standard implementation.

As we claimed in two previous paragraphs NoSQL storage backend implementation of
Magus::Search has much better performance than classical SQL one. Opposite, the per-
formance of MapReduce implementation of our two applications in comparative genomics
is disappointing. We observed large overhead of initialization and handling of MapReduce
jobs, which encourage us to have larger data chunks for map tasks to reduce this over-
head. On the other hand, when we use Hadoop connected with Cassandra, very large rows
(several thousands columns) raise either memory exception or work very slowly. In these
conditions our criterion of a good MapReduce decomposition, described in section 4.1}, is
not as helpful as it could be.

Currently, there is some negative aspect of using Cassandra and Hadoop. From our
experience we observed, that public open-source deployments of Cassandra and Hadoop
are very fragile and sensitive. Client processes can kill the server. To reduce the risk of
server failure and to improve performance of the online queries, we designed architecture
the Cassandra-Hadoop server based on intensity of intended uses: we splited analytics
(MapReduce) nodes of the cluster from the online searching ones. To avoid reliability
problem of Hadoop when it maps all rows of Cassandra, we limited the size of Cassandra
rows, breaking the large ones into several.

Cassandra and Hadoop are supported by the open source communities. They are very
active in development and bug fixing, but many nice features was developed last 2 years.
At the same time, these new features poorly documented, for example, information of the
Hadoop counters of CPU and physical memory is present only deeply in comments for
the bug reports. In this fast-paced environment, the books describing these technologies
getting out of date faster than being published. All these aspects complicate the use of
these technologies and, as we saw, these technologies still require engineering effort to
maintain.

6.2 Perspectives

6.2.1 Other algorithms and MapReduce patterns for genomics

In this thesis we adapted two global algorithms of comparative genomics to MapReduce.
Many other genomics algorithms can be efficiently reimplemented using the MapReduce
paradigm. The algorithms, that work with relations between data elements (matrices or
graphs) should be reimplemented in the first place, since the number of relations grows
quadratically with the number of elements. For example, these algorithms can be the
searching for multi-level patterns in genomic data using graph-based algorithm [LCCWT0Q]
or graph algorithms for assembly for Next-Generation Sequencing Data [MKSIQ]. The
Graph 500 list! is an attempt to create the Top 500 with data intensive applications and
develop comprehensive algorithmic benchmarks to address challenges of graph algorithms.
Currently, there are only descriptions of the searching algorithms on the Graph 500 website.
We expect, that in future there will be several benchmarks with several implementations,
including MapReduce. The future work is to evaluate how this collection of large-scale
graph algorithms can be adapted for the needs of genomics.

Each of the algorithms in genomics can also be adapted to MapReduce individually.
The classification of the existing algorithms can help to detect common reusable points in
shape of data and analyses. Input data patterns and the character of the analysis can help

'The Graph 500: http://www.graph500.org
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develop MapReduce patterns to facilitate development of the distributed applications. The
community effort of rethinking global analyses and reimplementing them using MapRe-
duce computing paradigm should provide the basis for methodology for semi-automated
developing distributed algorithms for genomic data.

6.2.2 High-level language for large-scale analyses in genomics

As we showed in sections|2.4.2|and 5.5, the Hadoop framework for distributed MapReduce-
like computations is a powerful and efficient tool to express global analyses in comparative
genomics. However, there is a need for expressing MapReduce algorithms in a easier
way, since the potential developers of these algorithms are biologists and other domain
specialists. There is a need for a high-level declarative notation to write applications in
MapReduce style. We will show that Pig Latin language for MapReduce with COGITO
User Defined Functions is a good candidate for this high-level notation.

User defined functions of Pig Latin

As we saw in the section 2.4.3, Pig Latin is a declarative language for distributed cal-
culations that can additionally facilitate writing programs for MapReduce. Instead of
implementing Mapper and Reducer classes, we can use set of the standard functions of
the Pig language. It can significantly facilitate writing programs for the not complicated
analyses. For the more elaborated analyses the existing standard set of the Pig functions
are not enough. Fortunately, we can define our own Pig functions by writing User Defined
Functions (UDF) in Java and use them in our Pig scripts.

The most common type of Pig function is Ewal which can be used in FOREACH
statement. To implement our own Eval function we have to inherit our new class from
the base class FvalFunc and write our own ezec(Tuple input) method. Eval functions that
can be applied to grouped data are called Aggregate Functions and our new class have
to additionally implement Algebraic interface. Another type of Eval functions is Filter
functions that can be used anywhere, including FILTER statement. The new class of the
filter function have to use FilterFunc as a base class.

We can also specify our own Load and Store functions using LoadFunc and StoreFunc
base classes.

COGITO

COGITO (Comparative Genomics Interactive TOol) is a specification (proposal) for the
queries to the Génolevures database written by Pascal Durrens. COGITO proposes to
combine ideas from the SRS? query kernel (Sequence Retrieval System) with BioSQL and
some complementary functions. In COGITO there are various Data Structures: element
names (E), protein families (F), loci intervals (L), motifs (M), nucleic sequences (N),
protein sequences (P), table (T) and pathways (W). The possible operators are: ARE,
OR, NOT and PIPE. COGITO has a rich set of functions, such as compute, filter, link-
tables, input list, describe functions (show-aa-seq, show-map, show-nucl-seq, etc) and the
searching functions (get-element, get-family, get-members, get-pathway, etc) and many
others.

2SRS User Guide: http://srs.ebi.ac.uk/srs/doc/srsuser.pdf
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Pig Latin and COGITO

As we saw above, COGITO is an elaborate query language and Pig Latin is a language
for the distributed computations. Pig Latin with some additional User Defined Functions
for comparative genomics operations seems to be a reasonable candidate to work on top of
COGITO specification. For each of the COGITO Data Structures we can easily construct
a corresponding Pig type. For each of the COGITO search and compute operation we can
write the Java implementation as a Pig User Defined Function. Inside of the User Defined
Functions we have to be able to perform complicated queries to the data store, Magus
system can be easily adapted for these purposes. Thus we can use COGITO functions for
the global and elaborated comparative genomics analyses. One negative aspect of using Pig
Latin UDFs is its immaturity. While SQL has more than 30 years of successful experience
and good body of best practices, this experience and knowledge is absent for the case
of Pig Latin. It makes Pig Latin more difficult to understand and use, thus, it requires
a lot of investments in learning this technology. Better understanding of mathematical
meaning of Pig Latin operations, like relational algebra in SQL, could give more intuition
for developing applications.

6.2.3 Large-scale analytics

In section 2.5 we talked about large-scale analytics and considered Hive Data Warehouse
and Mahout data mining libraries. Developing concrete analytics applications requires
developing Data Warehouse schema. There is lots of work of developing such schemas
for computational biology already have been done by The BioMart project®. BioMart
demonstrates that there is a need in site-specific Data Warehouses and provides an catalog
of different Data Warehouses (individual marts) with unified access. BioMart is distributed
in a sense, that different Data Warehouses can be located geographically in different places.
As we discussed in section [2.5] with the data volume growth we will need a fully distributed
Data Warehouse solution.

Mahout algorithms, as well, have to be adapted to the specific needs of genomics.
Existing algorithms in the Mahout libraries can be the building blocks for the MapReduce
reimplementations, that described in subsection|6.2.1. On the other hand, the MapReduce
patterns, described in subsection |6.2.1, can be added to the Mahout library.

3The BioMart project http://www.biomart.org
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Appendix A

Complete Cassandra Column

Families Data Schema

In this section we will present the complete Cassandra data schema of column families.
This schema was designed using general principles of creating Cassandra column families,
discussed in subsection |3.6.1. More detailed explanation of the Attributes, Location and

Relations column families is in subsection [3.6.2.

Attributes

attribute_name:attribute_value —

Type

id

id

Figure A.1: Attributes column family is used for search by an arbitrary attribute. At-
tribute name and attribute value are the obligatory parameters, thus we combine them
into a composed row key. Type is an optional parameter, thus we put it into Super Column

Name.

Keywords

keyword —

Type

id

id

Figure A.2: Keywords column family is used for text search for sequence features by
annotation keywords. Keyword is essential and obligatory parameter, thus we use it as a
row key. Type is an optional parameter, thus we put it into Super Column Name.
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Subfeatures

parent_id —

child_id

child_id

Figure A.3: Subfeatures column family is used to store subfeatures, if they are not attached
to a parent sequence feature. Genomic data files in GFF3 format might have flattened
sequence features, so subfeatures are stored separately. Files in EMBL format represent
sequence features hierarchically, so subfeatures are stored inside attributes of serialized
object of parent sequence feature. We use id of parent sequence feature as Cassandra row

key, and all its subfeatures as Cassandra column names.

Sequences
. offset+1 offset+1
sequence_id —
sequence sequence

Figure A.4: Sequences column family is used to store sequences (string of letters a, ¢, g, t).
We put one sequence per Cassandra row, using sequence id as a row key. We cut sequence
strings into pieces to facilitate access to substrings. Each piece of sequence is stored in a

column name; for interval searches we can use Cassandra column slice.

Location

sequence_id:type —

bin_value

chromosome

start:stop:id

start:stop:id

strand

strand

start:stop:id

strand

Figure A.5: Location column family is used for interval (geometric) queries. Sequence
id and sequence feature type are two obligatory parameters, thus they are stored in row
keys. We divided each sequence into pieces of the same lengths - bins. We store sequence
feature ids in these bins. Coordinates are composed into column names for column slice
queries. We also add sequence feature ids into column names to make them unique. Rare

optional parameter strand is stored in column value.
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Relations
"Attributes’ "Members’
relation_id — | | tag:value tag:value member_id member_id
"Relations’
member_id:relation_type — | | relation_id relation_id

Figure A.6: Relations column family can be used for searches by relation id as well as by
member id. Each genomic element might participate in many different kinds of relations,
so we reduce row sizes by including relation type into row key.

RelationAttributes

Source

attribute_name:attribute_value:group_type — | | relation_id relation_id

Figure A.7: Relation Attributes column family can be used for searches for relations by
their attributes. Obligatory parameters relation attribute name and relation attribute
value with group type (protein family, genome, allele, tandem repeats, etc) are used to
compose a Cassandra row key. Source is a special attribute of a set of relations, it shows
what are the resource (for example, EMBL database) and version of the data. In the
attribute searches source is an optional parameter, so we put it into super column name.
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Metadata

id id

Allids” —

t t
"All_types’ —» ype | |l

Figure A.8: Metadata column family is used to store meta information about all types
of the sequence features and all sequence and sequence feature ids in our database. This
column family has only 2 rows. The first row contains all ids of sequences and sequence
features. The second row contains all types of sequence features (for example: gene,
protein, exon, etc).

SerializedObjects

. "Serialized’
id —

serialized_object

Figure A.9: Serialized Objects column family is used to store serialized sequence features.
We put one object per row, using sequence feature id as a Cassandra row key. We store
serialized object in column value, so column name is a static fixed string (“Serialized”).
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