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1 INTRODUCTION & CONTEXT

1 Introduction & context

Visual data are the most complex and most useful sensory input for humans. This

is evidenced from the fact that a significant proportion of the human brain is dedi-

cated to vision and to vision only. Thanks to visual perception we are able to sense

the light emanating from the objects surrounding us and also infer from this light

a wealth of information about the environment. We are, for instance, able to “see”

the depth and shape of objects, the color of surfaces, or the segmentation of the

scene into distinct objects. And we manage to do all this based just on images,

i.e., two-dimensional distributions of intensities, which as such do not at all con-

tain this kind of extra information. Computational vision and image analysis is

a multidisciplinary scientific field that aims to give similar abilities to computers,

i.e., to make them “see” in a way that is comparable to human perception. It is

currently one of the most challenging research areas in artificial intelligence. By

now it is widely recognized that mastering this scientific field is going to be one of

the first key steps we must take towards achieving true artificial intelligence, which

will require us to come up with answers to deep and fundamental questions about

representation and computation lying at the core of human intelligence.

Essentially, computational vision can be viewed as some sort of information

processing/extraction, where the goal is to process image data in order to extract

a representation of objects in the world and to infer their properties. Note that the

term image data in this case can have many different meanings depending on the

context and the application at hand, e.g., it can refer to static photographs, video

sequences, views from multiple cameras, X-ray data, infrared images, microscopy

images etc. Similarly, the properties to be inferred from such data can refer to

many different types of information such as depth, shape, surface color, object

boundaries, object motion, to mention only a few of them. In fact, due to the

proliferation of visual sensors as well as of storage devices that has taken place

over the last years, we now observe an exponential growth of the stored visual

content (e.g., images on the web, personal movies and photos, films, surveillance

tapes, YouTube videos etc.).

As a result, the extraction of information from this vast amount of visual data

and the exploitation of the resulting information space becomes an issue of even

greater importance and remains one of the greatest challenges in our days. In other

words, this means that there is a great need for general-purpose tools that will

be able to effectively interpret the various types of visual data in an automated

fashion. Addressing such a challenge has been one of the main focuses of my

research. Broadly speaking, I am interested in using visual data such as natural im-

ages, video, or medical image modalities in order to “make sense of” (i.e, analyze

and understand) various aspects of the world that surrounds us. For instance, we,
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1 INTRODUCTION & CONTEXT

as humans, simply open our eyes and seem to effortlessly recognize objects and

the structures of scenes. But this apparent ease is highly misleading and reflects in-

stead the enormous amount of neuronal resources (at least half the cortex) which is

involved in performing these visual tasks. Moreover, in practice, the sheer volume

of the available data makes impossible their analysis through human inspection

alone.

To address the above challenges, it is therefore imperative to use mathematical

models capable of explaining the huge amount of data available, and algorithms

that can exploit the models to make predictions about the future. However, due

to the tremendous ambiguities of the visual data and the enormous variability of

the visual tasks, to be able to truly match the level of human performance in this

area we need models that are truly rich and powerful. At the very least, such

models must be probabilistic in nature to be able to account for the uncertainty

present in the visual data. More importantly, however, such models must be capable

to encode the rich dependencies/relationships existing in the input visual signal

and to reason globally about the visual scene. Effective computational tools for

handling/manipulating models of this type are therefore of paramount importance,

and play an essential role for helping us to achieve further progress in this area.

Thus, an important tenet of my scientific research work so far has been that:

One of the main scientific challenges for achieving true breakthroughs

in the semantic interpretation of visual data relates to our ability in

building and utilizing richer, more holistic models for the underlying

visual tasks.

Motivated by such a need, over the past years I have focused my research efforts

around the following fundamental tasks:

1. Inference for visual perception, where I have tried to introduce a very gen-

eral computational framework based on which one will be able to perform

efficient inference for an extremely broad class of models related to tasks in

computer vision and image understanding.

2. Learning of models for visual perception, where I have also tried to introduce

novel machine learning algorithms for automatically estimating the structure

and the parameters of such models based on training data, thus aiming to

address some of the key challenges related to visual learning tasks at the

same time.

3. Developing of rich and efficient models for visual perception, where my goal

has been to fully utilize the aforementioned inference and learning frame-

works in order to propose novel concrete models for a variety of important
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1 INTRODUCTION & CONTEXT

problems from the domains of computer vision, image processing and med-

ical image analysis.

My motivation behind such an effort has been to help in further advancing the

available technology for automated interpretation of visual data, which can in turn

have a great societal and economic impact. Note, for instance, that advances in

scene understanding can in turn bring significant improvements in areas as diverse

as autonomous robots, surveillance, navigation & driver safety, situated search,

industrial inspection, medical image analysis, content-based image retrieval and

multimedia indexing, and intelligent vehicle systems, just to name a few of the

affected areas.

Of course, in addressing the 3 aforementioned fundamental tasks has led me

to utilize tools, combine results, and make contributions to a number of different

areas, including computer vision & image analysis, machine learning, and discrete

optimization. Moreover, besides the above areas of research, due to the fundamen-

tal and generic nature of the inference and learning methods that I have developed,

these are also easily applicable to a number of other areas of artificial intelligence

as well, such as, for instance, natural language processing, computational biology,

data mining, pattern recognition, to name just a few of the possible application

domains. Such an effort also directly relates to a second important tenet of my

research, which is that

Developing a general inference and learning framework for visual

perception based on graphical models not only is at the forefront of

computer vision research today, but it will also have a profound im-

pact in many other important branches of artificial intelligence.

This has been essentially one of the core topics addressed by my research work so

far.

My goal in the following sections is exactly to provide a high-level overview

of all this work conducted by me after obtaining my PhD. This overview has been

roughly divided into two parts, comprising sections 2 and 3. The former section

describes my research efforts towards developing a flexible, modular and compu-

tationally efficient inference and learning framework for image analysis. Such a

framework has also formed the scientific foundations for the work presented in

section 3. That section focuses on various applications of the aforementioned

framework with respect to tackling fundamental and challenging problems from

the fields of computer vision, image processing and medical imaging.
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2 SCIENTIFIC FOUNDATIONS

2 Scientific foundations

Developing computational solutions with respect to a specific visual task is a pro-

cess that typically involves three components,

(i) the parameterization of the problem through a set of parameters or a model,

(ii) the association of this model with the available observations,

(iii) and, the extraction of the optimal model parameters through an inference/optimization

algorithm.

However, such a process presents several important challenges:

1. curse of non-linearity: often the observations are not directly associated with

the model and therefore there is a non-linear relationship between them that

makes inference quite challenging,

2. curse of non-convexity: in most of the cases the designed cost function is

highly non-convex and therefore recovering computationally the optimal so-

lution is not obvious,

3. curse of dimensionality: many of the related optimization problems encoun-

tered in vision are of very large scale (involving, e.g., millions of variables).

This is even more so nowadays due to the great ease with with huge amount

of visual data can be collected. As a result, computational efficiency is an

extremely important factor.

On top of the above challenges, the models/algorithms that will be used must

be able to face the immense variability of the visual tasks encountered in areas

like computer vision and image analysis. As such, they must be robust enough

and should also rely upon solid mathematical principles. Furthermore, they should

be able to account for uncertainty, which is ever-present in the visual data (e.g.,

due to noise, imperfect sensors, or ambiguities in the visual interpretation). Dis-

crete graphical models like Conditional Random Fields (CRFs) or Markov Random

Fields1 (MRFs) comprise a very elegant framework that satisfies all of the above

properties. They provide a useful abstraction for quantifying uncertainty, describ-

ing complex dependencies in data while making the model’s structure explicit so

that it can be exploited by algorithms [53]. As such, they can and have been used

for expressing a wide array of problems in computer vision [10, 120]. This ex-

plains why the tasks of performing inference and learning the parameters of these

models are considered of paramount importance and have attracted a tremendous

1The terms MRFs and CRFs will be used interchangeably throughout.
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2 SCIENTIFIC FOUNDATIONS

amount of research in the computer vision and machine learning communities over

the past 40 years or so [26, 86, 99, 12, 36, 41, 135, 56, 119, 48, 49, 128, 123, 122].

Yet, as already explained above, such tasks are highly non-trivial (e.g. inference in

such models is in general NP-hard).

To fully specify a graphical model of this class, one needs to provide a graph

G = (V,E), consisting of a set of nodes V and a set of edges E, as well as a

set of so-called unary potentials u = {up(·)}p∈V and pairwise potentials v =

{vpq(·)}pq∈E , where all these potentials are typically assumed to be parameterized

through a vector of parameters w, i.e., it holds

up(xp) = up(xp;w), vpq(xp, xq) = vpq(xp, xq;w).

The energy of the resulting MRF model is then given by

MRFG(x|u, v) :=
∑

p∈V

up(xp) +
∑

pq∈E

vpq(xp, xq) , (1)

where xp ∈ L denotes the value assigned to the variable corresponding to node p

in the graph, and L denotes the set of possible values/labels for that node. Such a

model offers great flexibility and representational power, since by making a proper

choice of its main elements, i.e., the graph, the labels and the MRF potential func-

tions, one can express a very wide range of problems from image analysis and

beyond.

Given such a model, the goal of inference is to estimate the minimum of the

above energy function, which will hereafter be denoted by MRFG(u,v) and is

equal to

MRFG(u,v) := min
x

MRFG(x|u,v) . (2)

The goal of learning, on the other hand, is to make use of some available training

data in order to estimate the correct values that should be assigned to the parameters

w of the model so as to faithfully represent a specific task at hand.

Over the past years, a significant part of my research has been devoted to devel-

oping novel, highly practical and accurate inference/learning algorithms for such

models, mainly targeting applications in computer vision and image analysis. One

of the main goals of such an effort has been to introduce a modular and compu-

tationally efficient inference framework for visual image perception to address the

most fundamental problems in computational vision. In the following I briefly

present some of the main aspects of such a framework, thereby also describing

some of the main themes of my research in this regard along with some of the long

standing research challenges they aim to address.
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penguin Tsukuba SRI-tree

Fig. 1: FastPD running times compared to other MRF inference algorithms for some typi-

cal vision problems.

Fig. 2: Online approximation factors computed by FastPD for a benchmark stereo match-

ing problem. Notice how quickly these approximation factors approach the value of 1,

meaning that the corresponding estimated solutions are almost optimal.

2.1 Efficient inference on graphical models based on the duality the-

ory of linear programming

In [69], [70], I have developed a very general framework for inference based on

the primal-dual schema for linear programming. Such a schema is a well known

technique in combinatorial optimization, as it has been used both for deriving ex-

act polynomial-time algorithms to many cornerstone problems in combinatorial

optimization (including max-flow, matching, shortest path, minimum branching

and minimum spanning tree [98]) and for providing powerful approximation al-

gorithms to many NP-hard combinatorial problems (such as those of set-cover,

steiner-network, scheduling, steiner tree, feedback vertex set, just to mention a few

examples [125, 40]). The primal-dual schema has been first introduced into com-

puter vision by Komodakis et al [64, 65]. In our recent work [69, 70] we have

built upon and extended that previous work to provide a framework that makes the

following important contributions compared to prior art:

Computational efficiency for single MRFs: State of the art graph-cut based op-

timization algorithms for MRFs, such as the α-expansion method [11], try

to optimize the MRF energy by solving a series of max-flow problems.

Their efficiency is thus largely determined from the efficiency of these max-
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2 SCIENTIFIC FOUNDATIONS

flow problems, which, in turn, depends on the number of augmenting paths

per max-flow. By building upon the framework proposed in [65], we have

been able to derive a significantly improved primal-dual MRF optimization

method, called Fast-PD [69]. This method, like [65] or α-expansion [12],

also ends up solving a max-flow problem for a series of graphs. However,

unlike these techniques, the graphs constructed by Fast-PD ensure that the

number of augmentations per max-flow decreases dramatically over time,

thus boosting the efficiency of MRF inference (see Fig. 1). To show this,

we prove a generalized relationship between the number of augmentations

and the so-called primal-dual gap associated with the original MRF problem

and its dual. Furthermore, to fully exploit the above property, we have also

proposed two new extensions: an adapted max-flow algorithm, as well as an

incremental graph construction method.

Accuracy of solutions: Despite its efficiency, the proposed method also makes no

compromise regarding either the quality of the solutions it generates or the

generality of the MRFs it can handle. So, for instance, if the pairwise poten-

tials vpq(·, ·) are assumed to be metric functions, then it can be proved that

Fast-PD is as powerful as α-expansion, in the sense that it computes exactly

the same solution, but with a substantial speedup. Moreover, it applies to a

much wider class of MRFs2, i.e, it can even handle MRFs for which the pair-

wise potentials vpq(·, ·) are non-metric functions. In fact, in all these cases,

the proposed method can provide theoretical (i.e, worst-case) upper bounds

about how far the energy of the generated solution can be from the unknown

optimal MRF energy. Moreover, besides these theoretical upper bounds, our

method is also capable of providing per-instance upper bounds that are also

updated online, i.a., during the executing of the algorithm. In practice, these

bounds prove, of course, to be much tighter (i.e, much closer to 1) than the

worst-case upper bounds and hence can be very useful for assessing how

well the algorithm has performed for a particular task at hand (see Fig. 2).

Efficiency for dynamic MRFs: Furthermore, besides being able to significantly

speed up the optimization of static MRFs, Fast-PD can also be used for

boosting the efficiency of dynamic MRFs, i.e., MRFs whose parameters may

change over time. This is an important class of models, which are often en-

countered in computer vision applications (e.g., when analyzing time vary-

ing signals such as video data). Two works that have been proposed in this

regard recently are [52, 45]. These methods can be applied to dynamic MRFs

that are binary or have convex priors. On the contrary, Fast-PD naturally

2Fast-PD requires only vpq(a, b)≥0, vpq(a, b)=0⇒a=b
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2 SCIENTIFIC FOUNDATIONS

handles a much wider class of dynamic MRF models. It manages to achieve

that by also exploiting information coming from a problem that is dual to

the original MRF optimization problem. Fast-PD can thus be thought of as a

generalization of previous techniques. As a result of its great efficiency and

accuracy, FastPD turns out to be able to provide approximately optimal so-

lutions to dynamic NP-hard models even in real time, thus opening the way

for a wide range of new applications in this regard.

2.2 MRF energy minimization and beyond via dual decomposition

In [63], [61], I have also introduced a new rigorous theoretical framework to ad-

dress discrete MRF-based optimization in computer vision. Such a framework

exploits the powerful technique of Dual Decomposition. In particular, it is based

on a projected subgradient scheme [113, 91, 92, 80] that attempts to solve an arbi-

trary MRF optimization problem by first decomposing it into a set of appropriately

chosen easy-to-handle MRF subproblems and then combining their solutions in

a principled way. By analyzing the very weak conditions that these subproblems

have to satisfy, I have been able to show that such an approach provides extreme

generality and flexibility, thus leading to a very elegant framework that allows for

designing powerful MAP estimation algorithms for a very wide class of problems.

Based on this framework one is thus able to derive message-passing techniques

that, on the one hand, generalize and provide new insights into existing state-of-

the-art approaches such as tree-reweighted methods [128, 54, 55], and, on the other

hand, also enjoy much better theoretical properties at the same time.

By using, for instance, as slave subproblems any set of spanning trees that

cover the MRF graph G, one can show that such an approach leads to efficient

optimization schemes [61] that provably solve the following widely used LP relax-

ation to MRF optimization problem (2) (also known as the local marginal polytope

relaxation), which lies at the heart of most state of the art MRF inference methods

[134, 16, 108, 130, 76]:

min
x

∑

p∈V
up ·xp +

∑

pq∈E
vpq ·xpq

s.t. x ∈ XG
(3)

where the set XG is defined for any MRF graph G = (V,E) and discrete label set

L as follows:

XG =



















x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

l∈L xp(l) = 1, ∀ p ∈ V
∑

l′∈L xpq(l, l
′) = xp(l), ∀ pq ∈ E, ∀l ∈ L

xp(·) ∈ {0, 1}, ∀ p ∈ V

xpq(·, ·) ∈ {0, 1}, ∀ pq ∈ E


















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More generally, this framework provides great freedom as to how the slave

subproblems are chosen for a given inference problem MRFG(u,v) [63]. For

instance, assuming a decomposition of the graph G = (V,C) into a set of sub-

graphs {Gi = (Vi, Ci)} such that V = ∪Vi, C = ∪Ci, the following set of slaves

{MRFGi
(ui,vi)} (that are MRFs defined on the subgraphs Gi having their own

potentials ui,vi) leads to a convex dual relaxation of the following form:

DUAL{Gi}(u,v) = max
{ui},{vi}

∑

i

MRFGi
(ui,vi) (4)

s.t.
∑

i

ui = u (5)

∑

i

vi = v . (6)

where conditions (5), (6) simply express the fact that the sum of the potentials of

the slaves should give back the potentials of the master MRF model.

In this manner, simply by choosing different decompositions {Gi}, different

algorithms can be derived via the above scheme, all of which can be shown to

provably optimize (possibly different) dual relaxations to the MRF inference prob-

lem. In each case, the sum of the minimum energies of the slaves always provides a

lower bound to the minimum energy of the master MRF, and the maximum of these

bounds coincides with the optimum of the underlying dual relaxation. As a result,

appropriately chosen slave MRFs (e.g, with more complex topology for the sub-

graphs Gi) can lead to better lower bounds and thus to more powerful underlying

dual relaxations.

Moreover, in this manner, one is given the opportunity to derive inference tech-

niques that can take full advantage of the special structure that may exist in any

particular class of MRFs, which is one of the most important advantages of the

above approach and also allows the use of efficient inference techniques such as,

e.g, graph-cut based methods.

2.3 Tighter LP relaxations and cycle repairing

As already mentioned in an earlier section, the local marginal polytope LP relax-

ation [16, 108] lies at the heart, and is thus closely connected to, the great majority

of the state of art MRF inference techniques. Despite their success, however, all

these LP-based methods are doomed to fail if the aforementioned relaxation does

not approximate well the actual MRF inference problem (i.e, it is not tight), which

is exactly what happens in several cases where one has to deal with very hard MRF

problem instances.

Motivated by such an observation, in [58] I have tried to specifically focus my
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Fig. 3: (a) Upper (solid) and lower (dashed) bounds after running TRW-S and our method

on 2 different binary MRFs. Such bounds correspond to primal costs (i.e, MRF energies)

and dual costs respectively. For a binary MRF with only 1% non-attractive terms, the

upper and lower bounds of TRW-S converge (i.e, the standard local marginal polytope

LP-relaxation is tight). (b) This is not the case, however, for a binary MRF with 50%

non-attractive terms. But, thanks to cycle repairing, our algorithm uses a much tighter

relaxation and so its upper and lower bounds converge even in this case.

attention on MRF problems where the relaxation is known to be loose (i.e., the

solution of the relaxed problem is not optimal for the original one), trying to make

both practical and theoretical contributions in this regard. In particular, the focus

of my work has been to attempt to go beyond existing MRF inference techniques,

by deriving algorithms that are based on LP relaxations than are much tighter than

the aforementioned local marginal polytope relaxation. But instead of attempting

to do that in the primal domain, which would have been presumably inefficient, my

strategy has been to apply this tightening procedure in the dual domain. As a result

of this strategy, a hierarchy of tighter and tighter dual relaxations is created that

starts from the dual of the local marginal polytope relaxation and goes all the way

up to a dual relaxation that is actually tight, i.e., it coincides with the original MRF

inference problem. From this hierarchy, we choose to deal with one particular class

of relaxations, which we call cycle-relaxations, that turn out to provide the best

trade-off between computational efficiency and tightness of approximation. This is

achieved via an efficient dual-based operation called cycle-repairing, which helps

us to better deal with a difficulty that lies at the core of why MRF optimization is

actually an NP-hard problem: the existence of inconsistent cycles. As the name

of that operation reveals, its role is to eliminate any inconsistent cycles that may

appear during optimization. Furthermore, the more the repaired cycles, the tighter

the underlying relaxation becomes.

It should be noted at this point that there have also been other works such as

[115] that have recently tried as well to make use of tighter LP relaxations in the

context of MRF optimization. However, the aforementioned method relies on a

weaker relaxation than ours. Furthermore, they use a primal-based cutting plane

12
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algorithm that requires solving a large primal LP (of growing size) at each itera-

tion (i.e., after each new violated inequality is found), which makes their algorithm

impractical for large scale MRF instances. On the contrary, by working in the dual

domain, a method like ours is able to improve the relaxation (i.e., perform cycle re-

pairing) by reusing work done in previous iterations. It is thus much more efficient,

while it is also adaptive as it makes the relaxation tighter only when it needs to be.

Moreover, being dual-based, it can provide lower bounds to the optimum MRF

energy, which can be useful for verifying/assessing a solution’s optimality. Other

recent works that have focused on this important issue of tightening the underlying

MRF relaxation are [76, 131, 114, 105, 47, 46].

In order to briefly describe the used hierarchy of dual relaxations, one needs

to start with the dual to the local marginal polytope relaxation, which is the basic

building block and apparently lies at one end of this hierarchy. For an MRF with

unary and pairwise potentials ḡ, f̄ , this dual relaxation will hereafter be denoted by

D(ḡ, f̄). The dual cost of any feasible solution to that relaxation is a lower bound

to the unknown minimum energy MRF(ḡ, f̄). However, it is often the case that

even the maximum of these bounds will be much lower than the optimum MRF

energy, which is exactly what happens when D(ḡ, f̄) is not tight.

To counter that, i.e, to raise the maximum lower bound, one can resort to the

relaxation D+(ḡ, f̄ ) lying at the other end of our hierarchy, defined as follows for

an MRF on a graph G = (V, E) having potentials ḡ, f̄ :

D+(ḡ, f̄) = max
f

D(ḡ, f) (7)

s.t. f �E f̄ . (8)

In (8), we have used an abstract comparison operation �E between pairwise poten-

tial functions. In general, given any subset of edges C ⊆ E edges and any pairwise

potential functions f , f ′, the operation f �C f ′ means that the following inequality

should hold true for any labeling l = {lp}:

∑

pp′∈C

fpp′(lp, lp′)≤
∑

pp′∈C

f̄pp′(lp, lp′), ∀ l = {lp} (9)

That is, instead of comparing the values of pairwise potentials on individual edges,

we compare the sums of pairwise potentials values over all edges belonging to the

set C.

The reason that we have expressed D+(ḡ, f̄) in the above form is in order to

better illustrate its relation to relaxation D(ḡ, f̄). As can be observed, one differ-

ence between D(ḡ, f̄ ) and D+(ḡ, f̄ ) is that the latter contains an additional set of

variables f = {fpp′(·, ·)}, which can actually be thought of as a new set of pairwise
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potentials (also called virtual potentials hereafter). In relaxation D(ḡ, f̄), these vir-

tual potentials f do not appear at all, as they are essentially kept fixed to the true

potentials f̄ (i.e, it is as if constraints (8) have been replaced with the trivial con-

straints f = f̄ ). On the contrary, in D+(ḡ, f̄), we can vary these new potentials

in order to achieve a higher dual objective value (i.e, a higher lower bound to the

optimum MRF energy). The restriction, of course, is that we must never allow f to

become larger than the actual potentials f̄ , where the comparison between f and f̄

is done based not on the standard operator ≤, but on the generalized operator �E .

As a result of this fact, relaxation D+(ḡ, f̄) can actually be shown to be tight.

One thus can argue that relaxations D(ḡ, f̄ ), D+(ḡ, f̄ ) lie at opposite ends:

D(ḡ, f̄) imposes trivial constraints on f and is thus efficient but not tight, whereas

D+(ḡ, f̄) has an exponential number of constraints on f and is thus not easy to

handle but is actually tight. By going, however, between these two ends, one can

adjust the amount of constraints on f through concentrating only on the virtual

potentials at a subset of edges C ⊆ E of the MRF graphedges. Indeed, assuming

that initially f = f̄ , and that all fpp′(·, ·) with pp′ /∈ C will be kept fixed during the

current step, constraints (8) then reduce to the easier upper-bounding constraints

f �C f̄ , thus creating a relaxation in between D(ḡ, f̄) and D+(ḡ, f̄ ). Contrary to

f �E f̄ , constraints f �C f̄ focus only on a subset of the virtual potentials fpp′(·, ·),

i.e, only on those with pp′ in subset C, while the rest are left untouched. Not only

that, but, as optimization proceeds, one can choose a different local subset Ci to

focus on at each step. In this manner, different constraints can be dynamically used

at each step, implicitly creating a dual relaxation that becomes tighter and tighter as

time passes by. Such a relaxation is actually part of an hierarchy of dual relaxations

that starts from D(ḡ, f̄) (e.g, if each Ci contains only a single edge) and goes all the

way up to D+(ḡ, f̄) (e.g, if Ci contains all possible MRF edges). Cycle-relaxations

refer to one particular type of relaxations from this hierarchy, where the edges from

each set Ci are always assumed to form a simple cycle on the MRF graph, and so, in

this case, the process of enforcing the constraints associated with the dynamically

chosen cycles is referred to as cycle repairing (Fig. 3).

2.4 Accelerating MRF inference

Message passing methods are among the most popular MRF optimization tech-

niques in computer vision, with BP being the earliest method of this kind. Recently,

many state of the art message-passing techniques based on dual decomposition

have been proposed that rely on solving dual LP relaxations [61, 63, 128, 54, 130].

Compared to BP, they offer significant advantages such as better convergence prop-

erties, as well as the ability to provide suboptimality guarantees based on dual

lower bounds. Moreover, they have been shown to significantly outperform BP

14
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Fig. 4: V-cycle of the algrebraic multigrid approach for dual LP-based algorithms

and other MAP estimation techniques [120]. On the other hand, one main draw-

back is that they often have a higher computational cost compared, e.g, to graph-cut

based methods [70, 2]. As a result, given the large scale nature of the majority of

vision problems, one of the key challenges in energy minimization is how to be

able to significantly accelerate this type of techniques. This is even more so con-

sidering the fact that computer vision researchers start gradually resorting to the

use of higher order MRF models, where such dual-based methods are expected to

have much wider applicability due to their generality.

Motivated by the above observations, in one of my recent works [57] I have

focused on this central issue, i.e., on how to increase the overall efficiency of dual

LP-based algorithms, while maintining or even improving their effectiveness (i.e,

their accuracy) at the same time. To that end, I have proposed a framework that

integrates together two very general techniques in order to significantly speed up

such algorithms. The first one is inspired by algebraic multigrid techniques for lin-

ear systems of equations, and uses a multiresolution hierarchy of dual relaxations

for accelerating the convergence of dual-LP based methods. It relies on the premise

that information is expected to propagate faster at lower resolutions. In the past,

a geometric multigrid approach has been used for accelerating the BP algorithm,

but is applicable only to grid-structured graphs [20]. On the contrary, I extended

and generalized such an approach to LP-based algorithms, where a novel algebraic

multigrid framework is able to handle MRFs defined on any kind of graph, or hav-

ing any kind of potentials. Moreover, it can be applied to LP relaxations that are

tighter than the standard marginal polytope relaxation.

The general idea in this case is to use a hierarchy of dual decompositions, de-

fined on a sequence of graphs G = G(0), G(1), . . . , G(T ), where each graph G(t+1)

can be thought of as a “coarser” version of graph G(t). Due to the decomposition

of the master MRF into a set of smaller slave MRFs, the update of the dual vari-
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ables is essentially done based only on local information. As a result, information

travels slowly across the graph, and this has the undesirable effect of slowing down

the convergence of dual LP-based algorithms, which thus require many iterations

to converge to the correct solution. This issue is essentially very similar to the slow

convergence problem faced by iterative algorithms for linear systems. Again, due

to the local nature of the updates, such algorithms can recover very fast (i.e, in

few iterations) the high-frequency part of the solution, but they are very slow at re-

covering the lower frequencies. Multigrid is introduced to overcome this problem,

where the basic idea is based on the trivial observation that low frequencies in the

original grid reappear as high frequencies in a grid of lower resolution. A multigrid

approach thus replaces the original linear system with a hierarchical multiresolu-

tion set of linear systems. The two key elements in a multigrid algorithm are the

so called restriction and prolongation operators, that specify the transition between

linear systems at adjacent levels in the hierarchy. These operators are combined

to generate a so called V-cycle, which consists of a fine-to-coarse restriction phase

followed by a coarse-to-fine prolongation phase.

Therefore, in our approach we also need to define a restriction and prolonga-

tion operator, denoted hereafter by PROJ and LIFT respectively. The role of the

restriction operator is to take as input a master MRF and its dual decomposition at

level t, and to project them onto level t + 1, i.e, to create a corresponding master

problem and a corresponding dual decomposition at level t + 1

MRFG(t)(U(t),P(t))
{

MRF
G

(t)
i

(θG
(t)
i ,P(t))

}

PROJ
−→

MRFG(t+1)(U(t+1),P(t+1))
{

MRF
G

(t+1)
i

(θG
(t+1)
i ,P(t+1))

} (10)

On the contrary, the role of the prolongation operator LIFT is to take as input a fea-

sible set of dual variables
{

θG
(t+1)
i

}

for the decomposition defined at the “coarser”

level t + 1, and to lift them to a feasible set of dual variables
{

θG
(t)
i

}

for the

decomposition that has been previously defined at level t, i.e,

{

θG
(t+1)
i

} LIFT
−→

{

θG
(t)
i

}

. (11)

Just like in multigrid, a V-cycle in our case will consist of a restriction phase

followed by a prolongation phase (see Fig. 4). In the restriction phase we sequen-

tially apply operator PROJ to all but the last level in the hierarchy, i.e, we start from

level t = 0 and go up to level t = T − 1. In this manner, a master MRF along with

a dual decomposition is generated for each level. All of these decompositions are

essentially projections of the original master problem and its dual decomposition.

In the prolongation phase, we move in the opposite direction. This means that for

each level t (where t now starts from t = T and terminates at t = 0) we solve the
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Fig. 5: Convergence plots for Tsukuba and Venus with and without our MRF inference

acceleration method [57], as well as corresponding stereo matching results of our method.
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dual relaxation corresponding to the decomposition at that level, and then we lift

the resulting solution onto the next finer level (if one exists) via using the operator

LIFT, thus initializing the dual variables for the decomposition at level t − 1. Due

to the the information traveling much faster at the “coarser” levels of the hierar-

chy, the dual relaxations for these levels can be solved very fast, i.e, in very few

iterations. Furthermore, this quick spreading of the information that took place in

the coarser levels is carried over to the finer levels, thanks to the initialization of

the dual variables via the LIFT operator. This, in turn, results into accelerating the

convergence of the dual relaxations at the finer levels as well.

Last but not least, besides the use of the above algebraic multigrid approach for

acccelerating the convergence of MRF inference, one also needs to significantly

reduce the time per iteration of a dual LP-based algorithm in order to achieve an

even greater speed up. Towards that goal, I have also introduced a second tech-

nique, which consists of a novel decimation strategy that carefully fixes the labels

for a growing subset of nodes during the course of the algorithm, thus eliminating

the need to update their dual variables thereafter. It is based on the observation

that, when using an algrebraic multigrid approach, a set of nodes typically exists

that contribute a very small increase to the objective of the dual relaxation when

their dual variables are updated. Similarly to the first technique, it is very general,

and thus applicable to a very broad class of MRFs. Furthermore, it allows better

primal solutions to be computed. Note that MRF decimation techniques have also

been used in the past, and have been applied either to variants of BP [66, 13] or to

dual LP-based algorithms [75, 2, 111]. However, the latter techniques are not as

widely applicable as our method.

All in all, the use of the two aforementioned techniques that I proposed enables

dual LP-based algorithms for MRF inference to improve both their speed of con-

vergence and also the accuracy of their estimated solutions at the same time (e.g.,

see Fig. 5).

2.5 Towards efficient inference for high-order graphical models

With a few exceptions only, most of the existing inference techniques currently

used in computer vision are confined to the case of graphical models containing

low-rank (e.g., pair-wise) interactions between variables. One reason for this fact

is because optimization of higher order MRFs can often be extremely challenging

(i.e, algorithms that yield almost optimal solutions are hard to get in this case)

and, furthermore, these algorithms often have a very high computational cost that

is prohibitive in practice. Yet, it is by now widely recognized that many vision

problems could greatly benefit from the use of higher order models as this would

allow far more expressive priors to be encoded, and also multiple interactions to be
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Fig. 7: (a) A binary image segmentation result computed by applying our high-order in-

ference algorithm [59] to a P3×3 Potts model. (b) In this case our method computes the

global optimum of the corresponding 9th-order MRF since the MRF energies and the lower

bounds finally become equal to each other. Note that, in the above plot, solid lines rep-

resent MRF energies, whereas dashed lines represent dual costs, i.e., lower bounds on the

optimum MRF energy.

captured [103, 79, 100]. This would lead, in several cases, to a far better and more

accurate modelling, which is clearly required in many vision tasks (such a need is

also evident from the fact that in a variety of cases there is a large disagreement

between the global optimum, that can often be computed for pairwise MRFs, and

the ground truth solution [88]). In general, the energy of such MRF models is given

by

EG(x) =
∑

p∈V

up(xp) +
∑

e∈E

φe(xe),

where now E denotes a set of cliques or hyperedges3 , and φe(xe) (with xe =

{xp|p ∈ e}) denotes the corresponding higher-order potentials defined over these

hyperedeges.

Towards dealing with the above mentioned issues, I have recently proposed

a powerful framework for efficient high-order MRF optimization [59]. It uses a

3A hyperedge is simply a subset of MRF nodes
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Fig. 8: Stereo matching results for ‘venus’ and ‘teddy’ (from the middlebury dataset)

computed based on a higher-order model that uses a discontinuity preserving smoothness

prior with second order derivatives. The plots show the corresponding energies and lower

bounds during MRF energy minimization by our method.
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master-slave based scheme (Fig. 6), which relies on the core idea that even a hard

high-order MRF problem (with, e.g, large cliques or complicated structure) can

often be decomposed into high-order MRF subproblems that are very easy or even

trivial to solve. This leads to a very general and flexible framework. In particular,

such a framework can, on the one hand, be used for deriving a generic optimizer,

which is applicable to almost any high-order MRF, and which provably computes

the global optimum to a strong dual LP-relaxation to the MRF energy minimization

problem.

On the other hand, due to its flexibility, the proposed framework can also be

easily adapted to lead to even more powerful algorithms when it comes to dealing

with specific classes of high-order MRFs. To further illustrate this, I have also

introduced a new class of high-order potentials, called pattern-based potentials,

which offer great expressive power and can be useful for a variety of computer

vision tasks. By relying again on the same framework, a powerful and extremely

efficient message-passing algorithm is proposed to handle this class of high-order

potentials. This algorithm goes beyond the aforementioned generic optimizer and

is able to deliver solutions of very high quality. As a result, for the first time,

we have been able to show experimentally that in many practical cases one can

compute the global optimum for NP-hard high-order MRFs used in vision, and,

furthermore, we can do that in a very efficient manner, e.g, at a fraction of the

time that would be required by a generic message-passing scheme (Figures 7, 8).

In this manner, our goal has been, through our framework, to further promote the

applicability of higher-order models to vision.

It should be noted that the number of efficient MRF inference algorithms that

have been proposed for dealing with high-order vision problems is quite sparse.

A notable exception is the recent work of Kohli et al [51, 50], where an efficient

inference technique was proposed for a specific class of higher-order MRFs. Lan

et al [79] presented an efficient but approximate version of BP, while Potetz [100]

proposed a BP adaptation for a certain class of high-order graphical models. The

n-ary max-sum diffusion method has been very recently proposed by Werner [132],

while two other works [42, 104] address high-order MRF optimization by reducing

it to a pairwise problem with binary or multi-label variables, which is shown to lead

to a compact representation in certain special cases.

2.6 Learning of high-order graphical models

In areas such as computational vision and image analysis, it is very often the case

that hand-crafted models cannot cope with the complexity of the encountered prob-

lems. In many cases, for instance, the models that have to be employed and utilized

may very well depend on a large number of parameters, and so trying to manually
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tweak the values of these parameters can be a hopeless or (in the best case) an

extremely laborious process. As a result, besides inference, the task of training a

graphical model (i.e., determining its parameters/structure so as to provide an ac-

curate representation of the problem at hand) plays an equally important role for

successfully applying MRFs to problems from the above domains (it is not surpris-

ing, for instance, that a MAP-MRF solution is of little value if the used MRF does

not properly represent the problem at hand).

Yet, such a task is highly non-trivial and presents significant challenges. This

is because, unlike standard machine learning tasks where one must learn functions

predicting simple true-false answers or scalar values (as in classification and re-

gression), here one is supposed to learn models that predict answers much more

complex that consist of multiple interrelated variables (it is a characteristic exam-

ple of a so-called structured prediction problem).

Furthermore, this difficulty becomes even greater due to the computational

challenges that are often raised by computer vision applications with regard to

learning. For instance, many of the MRFs used in vision are of large scale. Also,

the complexity and diversity of vision tasks often require the training of MRFs with

complex potential functions. On top of that, during the last years the use of high

order MRFs is becoming increasingly popular in vision since such models are of-

ten found to considerably improve the quality of estimated solutions. Yet, most of

the MRF learning methods proposed so far in the vision literature compromise with

regard to at least one or more of the above issues. For instance, most of these meth-

ods impose restrictions on the type of the MRF potential functions that can be used

during learning, and/or can handle only pairwise MRFs [3, 77, 107, 121, 90, 89, 2].

In general, for training a graphical model, the provided input is assumed to

consist of a set of K training samples {zk,xk}K
k=1, where zk and xk represent

respectively the observed data and the ground truth MRF label assignments of the

k-th sample. Moreover, it is assumed that the unary potentials uk
p and the pairwise

potentials vk
c of the k-th MRF training instance can be expressed linearly in terms

of feature vectors extracted from the observed data zk , that is, it holds uk
p(xp) =

wT gp(xp, z
k), vk

c (xc) = wT gc(xc, z
k), where gp(·, ·) and gc(·, ·) represent some

known vector-valued feature functions (which are chosen based on the computer

vision application at hand) and w is an unknown vector of parameters. The goal of

MRF training is exactly to estimate this vector w using as input the above training

data.

Both generative (e.g., maximum-likelihood) [77] and discriminative (e.g., max-

margin) [122, 25] MRF learning approaches have been proposed in the literature

for this purpose. In the former case, one seeks to maximize (possibly along with an

L2 norm regularization term) the product of posterior probabilities of the ground
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truth MRF labelings given by

∏

k

PG(xk;w),

where PG(x;w) ∝ exp
(

EG(x;uk,vk,w)
)

denotes the probability distribution

induced by an MRF model with energy EG(x;uk,vk,w) (recall that the notation

EG(x;uk,vk,w) refers to the energy of an MRF defined on a graph G having

some unary and higher-order potentials u,v both of which are assumed to be pa-

rameterized by w).

This leads to a convex differentiable objective function that can be optimized

using gradient ascent. However, computing the gradient of this function involves

taking expectations of the feature functions gp(·), gc(·) with respect to the MRF

distribution P (x;w). One therefore needs to perform probabilistic MRF infer-

ence, which is, in general, an intractable task. As a result, approximate inference

techniques (e.g., loopy belief propagation) are often used for approximating the

MRF marginals required for the estimation of the gradient (which is suboptimal

and prevents a thorough theoretical analysis of such techniques). This is the case,

for instance, in [107], where the authors demonstrate how to train a CRF model for

stereo matching, as well as in [77], where also a comparison with other CRF train-

ing methods such as pseudo-likelihood and MCMC-based contrastive divergence

are included.

In the case of max-margin learning [123, 90], on the other hand, one seeks to

adjust the vector w such that the energy of the desired ground truth solution xk is

smaller by ∆(x,xk) than the energy of any other solution x, that is,

EG(xk;uk,vk,w) ≤ EG(x;uk,vk,w) − ∆(x,xk) + ξk , (12)

where EG(·) denotes the energy function of an MRF defined on a graph G whose

potentials u,v are parameterized by w. In the above set of linear inequality con-

straints with respect to w, ∆(x,x′) represents a user-specified distance function

(such as the Hamming distance) that measures the dissimilarity between any two

solutions x and x′ (obviously it should hold ∆(x,x) = 0). Furthermore, ξk is a

non-negative slack variable introduced for ensuring that a feasible solution w al-

ways exists. Ideally, w should be set such that each variable ξk ≥ 0 can take a value

as small as possible (so that, in effect, the amount of total violation of the above

constraints is minimal). As a result, during learning the following constrained op-
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timization problem has to be solved

min
w,{ξk}

µ · R(w) +
K

∑

k=1

ξk

s.t. constraints (12) .

(13)

In the above problem, µ is a user-specified hyperparameter, and R(w) represents a

regularization term whose role is to prevent overfitting during the learning process

(e.g., it can be set equal to ||w||2 or to a sparsity inducing norm such as ||w||1).

The slack variable ξk can also be expressed as the following hinge-loss term:

LG(xk;uk,vk,w) = EG(xk;uk,vk,w)−min
x

(

EG(x;uk,vk,w) − ∆(x,xk)
)

.

(14)

This, in turn, leads to the following equivalent unconstrained formulation:

min
w

µ · R(w) +
K

∑

k=1

LG(xk;uk,vk,w) . (15)

One class of methods [23, 87] try to solve the constrained optimization prob-

lem (13) by use of a cutting-plane approach when R(w) = ||w||2. In this case, the

above problem is equivalent to a convex quadratic program (QP) but with an ex-

ponential number of linear inequality constraints. Given that only a small fraction

of them will be active at an optimal solution, cutting plane methods proceed by

solving a small QP with a growing number of constraints at each iteration (where

this number is polynomially upper-bounded). One drawback of such an approach

relates to the fact that computing a violated constraint requires solving at each

iteration a MAP inference problem that is NP-hard in general. For the special

case where the MRF potentials are constrained to be submodular, [3] show how

to express the above constraints (12) in a compact form, which allows for a more

efficient MRF training to take place in this particular case.

Towards addressing all aforementioned challenges, in a recent strand of my

work I have focused on this important topic of graphical model learning, where I

have proposed a novel max-margin framework specifically for that purpose [71].

Such a framework makes use of recent advances made on the MRF optimization

side [74, 73], which are, in this case, combined for the first time with a max-margin

approach for MRF training [123]. In particular, the dual decomposition approach

[74], which has been previously used for MAP estimation, is now employed for

this purpose as well.

Note, in this regard, that the main difficulty for minimizing functional (15)

stems from the intractabality of the term minx

(

EG(x;uk,vk,w) − ∆(x,xk)
)
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that is included in the definition of the loss LG

(

xk;uk,vk,w
)

, which is NP-

hard to compute in general. Assuming without loss of generality that ∆(x,xk) =
∑

p δ(xp, x
k
p) +

∑

c δ(xc,x
k
c ), the above intractable term can be equivalently ex-

pressed as

min
x

(

EG(x;uk,vk,w) − ∆(x,xk)
)

= min
x

EG(x; ūk, v̄k,w),

where ūk
p(·) = uk

p(·) − δ(·, xk
p), v̄k

c (·) = vk
c (·) − δ(·,xk

c ) are the so-called loss-

augmented MRF potentials. In order to deal with the intractability of the above

minimization, I have proposed to resort to approximating it with a tractable convex

relaxation. In particular, I have proposed to use convex relaxations derived from

dual decomposition, which, in practice, have been previously shown to be quite

tight, i.e, it is assumed

min
x

EG(x; ūk, v̄k,w) ≈ DUAL{Gi}(ū
k, v̄k;w), (16)

where {Gi} can be any chosen decomposition of the graph G. Recently, I have

been able to show [71] that through such an approximation, the learning problem

(15) reduces to the following form

min
w,{ūk,i}

R(w) +
∑

k

∑

i

LGi

(

xk; ūk,i, v̄k,w
)

(17)

s.t.
∑

i

ūk,i = ūk . (18)

Essentially, one of the most important benefits from the above reduction is that it

manages to convert the training of a complex MRF that is defined on a graph G (see

the term LG(·) in (15)) to the parallel training of the slave MRF models defined

on the subgraphs Gi (see the terms LGi
(·) in (17)) , where the latter can be much

easier to handle within a max-margin learning framework.

For instance, one can simply choose a decomposition where each subgraph Gi

corresponds to exactly one clique of the original hypergraph G, which leads to

slaves that are typically easy to train and thus to a very general learning scheme.

On the other hand, there can also exist cases where such a decomposition may not

provide the best possible result one can achieve both in terms of efficiency (e.g, it

can lead to slower convergence during training) but also in terms of accuracy. For

instance, such a decomposition may not fully exploit additional properties that a

given class of MRFs may have (it should be noted that such additional properties

typically exist in many MRFs encountered in image analysis, e.g., either due to the

special form of the MRF potentials or due to the special topology of the graph G).

However, the above learning framework can gracefully handle such cases as well,
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since, thanks to it, one is still able to develop highly efficient and accurate learning

schemes simply by using a more appropriate decomposition that is adapted to the

model’s structure while remaining tractable at the same time.

In all of the aforementioned cases, it is ensured that the concurrent training

of the slave MRFs takes place in a principled way through an efficient projected

subgradient algorithm. This lead to a powerful learning framework that makes the

following important contributions compared to prior art: (1) it is able to efficiently

handle not just pairwise but also high-order MRFs, (2) it does not impose any

restrictions on the type of MRF potential functions that can handle or on the topol-

ogy of the MRF graph, (3) the reduction to the parallel training of a series of slaves

MRFs in combination with the projected subgradient method [102, 6, 109] leads

to a highly efficient learning scheme that is amenable to distributed computing and

is also scalable even to very large problems, (4) it allows the use of a hierarchy

of convex relaxations for approximating MAP-MRF estimation within learning for

structured prediction (where this hierarchy is derived by using a series of decom-

positions and can be shown to include some widely used LP relaxations for MRF

inference), thus leading to structured prediction learning algorithms of increasing

accuracy, (5) last, but not least, it is extremely flexible and extendable since its

only requirement to a user is to be able to compute an optimizer for a slave MRF,

while everything else is taken care by the learning framework itself. As such, it can

be easily adapted to take advantage of the special structure that may exist in any

given class of MRFs that one wishes to train.

2.7 Learning of graphical models with weak supervision

When it comes to learning of graphical models for image analysis, another issue of

utmost importance relates to the amount of available supervision. Most methods

typically assume that training takes place using fully supervised data, i.e., each

training sample specifies the ground truth values for all variables of the graphical

model. However, as we transition into using more and more complicated models,

the amount of time needed by a user to fully annotate a training example can vary

substantially. For instance, although a simple model for object detection may only

require specifying a bounding box for each training image, a more complex model

might also require specifying a segmentation mask as well as bounding boxes for

all parts of the object.

Given the large number of training images that are often available, it would be

impractical to expect all of them to be fully annotated. Therefore, a well-designed

learning method should be able to take full advantage of training examples with

varying levels of annotation, i.e., both fully annotated data and data that are weakly

annotated. On the one hand, the former type of data provide the greatest possible
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amount of information but are typically sparse in number. On the other hand, it

is very often the case that weakly annotated data (or even data with no annotation

at all) are quite easy to obtain in massive quantities. Due to their large number,

such data can therefore provide extremely valuable information and can guide the

learning process despite the fact that they contain only partial information.

To address this very important issue, I have recently worked on developing

novel learning schemes that can be used for performing an efficient training of

so-called latent graphical models [72], which are models containing latent (i.e.,

hidden) variables that are not observable during both training and testing [136] (it

should be noted that such models have lately been shown to play a crucial role in

many important vision applications [19]).

Let EG denote the energy of such a model defined on a hypergraph G = (V, E)

with vertices V and hyperedges E . In this case, the energy function is defined as

EG(x,y;w) =
∑

p∈V

uk
p(xp, yp;w) +

∑

e∈E

φk
e(xe,ye;w),

where we now assume that x, y represent respectively the observed and hidden

variables of the model. Furthermore, functions uk
p(·), φk

e(·) denote the unary and

higher-order potentials that are again assumed to be expressible in terms of an un-

known vector of parameters w and some feature functions of the input data zk

(e.g, uk
p(xp, yp;w) = wT fp(xp, yp, z

k) and similarly for φk
e(·)). As in the case

of supervised learning, we want to estimate w based on a provided set of train-

ing samples {yk, zk}K
k=1, with the important difference, however, that now only

variables yk are observable during training (whereas variables xk remain hidden

during both training and testing).

To deal with training models of the above type, I have recently proposed a dis-

criminative learning framework [72] that relies on extending the dual-decomposition

based approach used for fully supervised learning [71] to the above case. All in all,

this results into deriving a very efficient iterative learning scheme that essentially

keeps alternating between the following two main steps: (a) on the one hand, com-

pleting (in a principled manner) the values of all latent variables of the graphical

model, (b) and, on the other hand, updating the parameters w by training in parallel

a set of fully supervised MRF slave subproblems.

2.8 Inference and learning for LP-based clustering

Clustering is considered among one of the most fundamental unsupervised learn-

ing tasks. It lies at the heart of many important problems in computer vision, image

analysis and pattern recognition. Most of the clustering methods are center-based,

thus trying to extract a set of cluster centers that best “describe” the input data.
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Typically, this translates into an optimization problem where one seeks to assign

each input data point to a unique cluster center such that the total sum of the cor-

responding distances is minimized. These techniques are extremely popular and

they are thus essential even to other types of clustering algorithms such as Spectral

Clustering methods [94, 126, 112].

In practice, however, there exist several issues that affect the performance and

effectiveness of clustering. For instance, many center-based clustering methods

require the input data points to have a vectorial form. However, such an assumption

severely limits their applicability since often one wants to be able to deal with more

complicated forms of data such as graphs or sets of varying cardinality. Moreover,

in many cases an explicit data point representation may not even be available in

the first place. Instead, data points may only be implicitly defined through the

specification of a distance function between them.

A very important issue, in this case, is the type of distance functions (used for

measuring dissimilarity between data points) that the algorithm can handle. Ideally,

one would like to be able to cluster data based on arbitrary distances. This is so

because the used distance function essentially determines the possible shape of a

cluster (e.g., an Euclidean distance assumes that clusters have a spherical shape).

Therefore, by an appropriate choice of these distances, clusterings with completely

different characteristics can be realized [24].

Furthermore, the majority of center-based clustering methods rely on EM-like

schemes for optimizing their clustering objective function [5]. K-means is the

most characteristic (and perhaps the most widely used) technique from this class.

It keeps greedily refining a current set of cluster centers based on a simple gradient

descent scheme. As a result, it can very easily get trapped to bad local minima and

is extremely sensitive to initialization. It is thus likely to fail in problems with, e.g.,

a large number of clusters.

Last, another crucial issue, which can have an important effect on the quality

of clustering, relates to the correct number of clusters that needs to be extracted.

Contrary to what actually holds in most real-world problems in image analysis and

computer vision, the majority of clustering algorithms assume that this number is

known a priori. Instead, the desired and most proper behavior is that the num-

ber of clusters should be also estimated automatically, e.g., as a byproduct of the

optimization process.

Towards addressing the above challenges, I have recently worked on develop-

ing novel clustering techniques that aim to make important contributions regarding

both inference and learning [62], [72]:

On the front of inference, I have proposed a novel center-based clustering
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method, which utilizes the following exemplar-based clustering formulation

min
Q⊆S

E(Q) =
∑

p/∈Q

min
q∈Q

dp,q +
∑

q∈Q

dq,q . (19)

In the above formula, S denotes a set of datapoints endowed with a distance d,

whereas Q represents the set of cluster centers (exemplars), which in this case can

consist of any subset of data points from the input set S. The role of elements of

d = {dp,q} is twofold: for p 6= q each element dp,q represents the distance between

datapoints p and q, whereas each element dq,q represents the penalty for choosing

q as exemplar. As a result of this formulation, one seeks to minimize the distance

of a datapoint to its nearest center, while at the same time choosing as few centers

as possible. It is important to note that, in this case, the number of cluster centers

is not predetermined but is an output of the optimization.

The above NP-hard optimization problem can also be expressed as an equiva-

lent linear integer program [15] for which we use linear programming and duality

theory in order to compute an approximately optimal solution [62]. This leads

to an efficient and very general algorithm, which works in the dual domain, and

can cluster data based on an arbitrary set of distances. Despite its generality, it is

independent of initialization (unlike EM-like methods such as K-means), has guar-

anteed convergence, is able to automatically determine the number of clusters, and

can also provide online optimality guarantees about the quality of the estimated

clustering solutions. The latter come in the form of lower bounds on the cost of the

optimal clustering and are computed (for free) by simply using the cost of the dual

solutions generated during the course of the algorithm.

To deal with the most critical issue in a center-based clustering algorithm (se-

lection of cluster centers), we also introduce the notion of stability of a cluster

center, which is a well defined LP-based quantity that plays a key role to the algo-

rithm’s success. Intuitively, the stability of a data point as a cluster center tries to

measure how much one needs to penalize that point (by appropriately modifying

the objective function) such that it can no longer be chosen as a center in an optimal

solution of the modified problem. Apparently, one would like to choose as centers

those points having high stability. To that end, I have also proposed a computa-

tionally efficient method for approximating the stabilities of the datapoints, which

relies on properly utilizing available dual information.

Also, on the front of learning how to cluster, I have recently proposed a very

general framework that can automatically estimate from training data the proper

distance function that should be used for a given clustering task [72]. Due to the

complexity and variability of the clustering problems encountered in computer vi-

sion, the ability to automatically learn such a distance function based on training
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Fig. 9: (a) Learnt weights for the distance function for the 15 category scene dataset. In

this case, the distance to be learnt is a weighted combination of individual distances, each

one comparing images based on a different visual feature (various features are considered,

including Gist [97], histogram of dense quantized HOG, local binary patterns (LBP) [96],

rotation invariant LBP (rot-LBP) [1], histograms of quantized dense SIFT descriptors, his-

tograms of quantized sparse SIFT descriptors (at Hessian-affine interest points), standard

texton histograms and histograms based on MR8 textons [124]). (b) Evolution of the re-

sulting learning objective function during training.

Fig. 10: 10 of the images that have been chosen as cluster centers for the Scene dataset.
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Fig. 11: Corresponding weights learnt for the distance function used in the UIUC texture

dataset.
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data is a matter of utmost importance for obtaining the best possible performance

(moreover, in many cases this is actually the only viable choice as the distances

to be used often depend on a large number of parameters, which precludes the

possibility of manually adjusting all of them).

The proposed framework provides a very general max-margin learning scheme

for distance-based clustering. It uses as input a set of ground truth partitions of

training datasets. Based just on this input, it enables the discriminative learning

of a very broad class of distances for clustering, where, e.g, non-metric, non-

differentiable or even non-symmetric distances can be handled by the proposed

method. Despite its generality, the proposed learning framework provides great

computational efficiency as it is based on a very fast projected subgradient method,

and is, furthermore, inherently parallelizable. Also, by utilizing the formulation

of clustering (19), it properly accounts for the fact that the number of clusters is

typically not known in advance at test time, which is another important advantage

compared to prior art.

In this case, the learning problem for clustering is formulated as one of training

the following high-order conditional random field (CRF)

E(x;d) =
∑

p,q

upq(xpq;d) +
∑

p,q

φpq(xpq, xqq) +
∑

p

φp(xp). (20)

whose unary potentials u = {upq( · ;d)} and higher order potentials φ = {φpq(·), φp(·)}

are defined as follows

upq(xpq;d) = dp,qxpq (21)

φpq(xpq, xqq) = δ(xpq ≤ xqq) (22)

φp(xp) = δ
(

∑

q
xpq = 1

)

, (23)

where xp = {xpq|q ∈ S}, and δ(·) equals 0 if the expression in parenthesis is

satisfied and ∞ otherwise.

In the above MRF model, each binary variable xqq indicates whether datapoint

q has been chosen as a cluster center or not, and xpq with p 6= q indicates whether

p has been assigned to the cluster with center q or not. The high order potentials

φp(xp) in (23) ensure that each p is assigned to exactly one cluster, whereas the

pairwise potentials φpq(xpq, xqq) (22) ensure that if p is assigned to q then the latter

must have necessarily be chosen as a cluster center.

Here, the distance function d is assumed to be linearly parameterized by a

vector of parameters w. In this case, the two major challenges that one needs to

deal with when trying to estimate this vector w by training the above CRF model

are, on the one hand, the fact that the above CRF contains factors of very high
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order (e.g., note that the order of the potenials φp(xp) equals the cardinality of the

set of datapoints S), and, on the other hand, the fact that the above CRF model

contains latent variables that are not observable during training. To successfully

handle both of these challenges, we rely on our previously mentioned learning

framework for high-order latent graphical models, which is based on a master-slave

dual decomposition approach. Figures 9, 10, 11 show two example applications of

this training framework for clustering, which involve learning how to cluster scene

images (e.g., 15 scene category dataset [82]) and how to cluster texture images

(e.g., UIUC [81], Outex [95] datasets).

3 Applications to visual computing

Thanks to the generality of the aforementioned inference and learning techniques

for visual image perception, I have been able to successfully apply them for provid-

ing state-of-the-art solutions to a wide variety of fundamental tasks from computer

vision, image processing and medical image analysis. These include such prob-

lems as image-based 3D modeling of large natural environments, motion analysis

and optical flow estimation, intelligent image completion & inpainting, tracking,

automated texture synthesis, knowledge-based image segmentation, estimation of

realistic 3D facial animations from video data, animal motion reconstruction from

image sequences, deformable registration between images, segmentation and re-

construction of anatomical structures with prior knowledge, learning deformation

priors for dense registration, diffusion tensor registration, image fusion through de-

formable mosaicing, manifold-based clustering, and group-wise (population) reg-

istration. In the following sections I briefly describe some of my contributions for

a selective set of problems that I have worked on over the past years.

3.1 Computer vision and image processing

Blind image deconvolution using MRF-based image priors

Blind image deconvolution is a fundamental but very challenging problem, which

has a long history in the image and signal processing literature [78]. Perhaps its

most well known use is for removing the blur from consumer photographs (e.g, due

to camera shake), but it also has important applications in areas such as computa-

tional photography and astronomical imaging [101, 85]. The input to this problem

consists of a degraded image I that equals the convolution of a true image x with a

kernel k plus some noise n, or

I = x⊗ k + n, (24)
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Fig. 12: Left: input images. Right: kernels k and deconvolved images x as computed

by our method. The size (in pixels) of kernel k is, from top to bottom: 40×40, 29×38,

30×37.

where ⊗ denotes the convolution operator. Given only the image I as input, the

goal of blind image deconvolution is to inverse the above process and to recover

both x and k, which are assumed to be the unknowns in this case.

Over the past years, the problem of blind image deconvolution has attracted

a significant amount of attention from the computer vision and image processing

community, and thus a variety of algorithms [21, 110, 44, 17, 133, 4, 43, 84, 83]

have been proposed that try to contribute to the state of the art in various ways.

Obviously, one of the main difficulties of blind deconvolution relates to the fact

that there can be exponentially many images x and kernels k that satisfy equation

(24), which, in other words, means that inverting the above equation is a severely

ill-posed problem [14].

To address this problem, I have recently proposed an optimization-based blind
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Fig. 13: The 10th frame of the Army sequence (upper row) and Mequon sequence (lower

row) and our estimated (color-encoded) optical flow fields.

image deconvolution method that relies on imposing a discrete MRF prior on the

deconvolved image [60]. The use of such a prior results in a very efficient and

powerful deconvolution algorithm that carefully combines advanced optimization

techniques such as fast inference methods for discrete MRFs [70] and the alter-

nating direction method of multipliers [18, 22, 129]. Besides the computational

efficiency of the proposed scheme, it has also been demonstrated that it can eas-

ily handle even very challenging blind deblurring problems that involve large and

complicated blur kernels (Fig. 12).

Motion analysis and optical flow estimation

Optical flow estimation is a core task for the analysis and reconstruction of an

object’s motion, and is also heavily used in many other applications (e.g., video

processing, super-resolution, noise reduction and removal etc.). It consists of re-

covering a 2D displacement vector establishing correspondences between the con-

secutive projections of a 3D patch in the image. Unfortunately, this is an inherently

ill-posed problem, which presents great difficulties due to the ambiguities existing

in the flow where different displacements locally might correspond to the same

error (like in the absence of texture). In addition, another difficulty stems from

the fact that in most cases it is absolutely critical that the displacement vectors are

computed with very fine precision, i.e., with sub-pixel accuracy. To address these

challenges, I have worked on novel discrete-to-continuous optical flow estimation

and motion analysis techniques [33, 29, 7] that offer the following advantages com-
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(a) Finger Collusion - Missing Part Examples. Two first images: difficult examples because of fingers

collusions. Three last images: segmentation of hands with missing parts.

(b) Severe Noise Added: The prior knowledge highly contributes in correctly segmenting very noisy

images.

Fig. 14: Model-based segmentation of the hand. Initialization is shown in white, segmen-

tation in red, and the final control points positions in blue.

pared to prior art:

(i) they have incrementally refined precision that is defined locally and varies

according to the image structure,

(ii) they can encode complex interactions between graph nodes,

(iii) and last, but not least, can also complete the task in computationally efficient

manner.

They rely on an energy minimization framework that automatically estimates

uncertainty maps which are directly related with the covariance matrix of the ob-

tained solution. These maps are used within a dynamic MRF model where the set

of possible deformations is varying in space while being able to self-adjust the pre-

cision of the obtained optical flow vectors according to the observed uncertainties.

They are thus able to compute optical flow fields of high quality (Fig. 13).

Knowledge-based image segmentation

Segmentation is a fundamental problem in computer vision and image process-

ing. I have worked on a number of MRF-based approaches to address this task
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[9, 38, 37]. An important strand of my work on this topic was concerned with

how to exploit shape prior information in order to significantly improve the final

accuracy and quality of the segmentation. To this end, I have proposed an image

segmentation framework that makes proper use of such priors [9] along with clus-

tering methods [62]. It includes novel representations to model geometric shape

variations as well as efficient inference procedures to fit the resulting shape models

to the input data. The considered shape model is similarity-invariant and refers

to a sparse graph that consists of intra and inter-cluster connections representing

the inter-dependencies of control points. The clusters are determined according to

the correlations of the deformations of the control points within the training set

using a novel clustering approach [62]. The connections between the components

of a cluster represent the local structure while the connections between the clusters

account for the global structure. The prior model is encoded as the distributions

of the normalized distances between the connected control points. During search,

this model is used together with a discrete Markov random field (MRF) based seg-

mentation, where the unknown variables are the positions of the control points in

the image domain. The resulting method is computationally efficient, can encode

complex statistical models of shape variations, and is able to combine both local

and global shape priors (Fig. 14). Moreover, due to its generality, it can be applied

in a wide variety of different settings.

From images to 3D models: visual 3D reconstruction of large natural

environments

An important research problem in computer vision is the creation of image-based

modeling systems capable to provide photorealistic 3D representations of com-

plex, real-world environments. Minimal human intervention during the modeling

process, as well as operation in real time during rendering (a property that allows

virtual walkthroughs at interactive frame rates) are some of the desirable character-

istics for such systems. Towards that goal, I have proposed novel computer vision

algorithms [68, 67] for a hybrid (geometry- and image-based) modeling and ren-

dering framework that allows capturing real-world outdoor environments of very

large scale and of complicated geometry. The only input required by such a frame-

work is a sparse set of captured images from the scene. By applying advanced

vision-based methods, a series of so-called morphable 3D-mosaics is automati-

cally constructed from the captured images, which are then used for representing

the entire scene. To this end, a continuous morphing between 3D-mosaics (that

are nearby to the current viewpoint) is taking place during rendering. The morph-

ing is both photometric and geometric. Moreover, due to the way that morphable

3D-mosaics have been constructed, this morphing is also ensured to proceed in
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Fig. 15: Joy animation : (1) Observed sequence, (2) Individual 1, (3) Individual 2, (a) First

frame , (b) intermediate frame, (c) last frame.

a physically valid manner, thus remaining transparent to the user. The proposed

framework offers scalability to large scale environments, as only one morphable

3D mosaic needs to be displayed at any time during rendering. Furthermore, it can

faithfully reproduce the photorealistic richness of a scene, while requiring minimal

to none human intervention during the modeling process. On top of that, it runs

at interactive frame rates thanks to using a rendering pipeline which is highly opti-

mized for current 3D graphics hardware. Its effectiveness has been demonstrated in

the automatic 3D visual reconstruction of the Samaria Gorge in Crete [68], which

is one of the largest and most beautiful gorges in Europe.

Expression mimicking: from video to realistic 3D facial animations

Reproducing facial animations from images is a very challenging problem in com-

puter vision. It can lead to highly realistic animation results and, as such, it has
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received a substantial amount of effort with post-production and cinematography

being the main driving forces of such innovation needs. I have recently worked

[27] on a novel method for expression mimicking from a monocular video se-

quence to a 3D video avatar (Fig. 15). To this end, a generic 3D face mesh model

is constructed first, through automatic global and local registration of low reso-

lution range data. The expression mimicking problem is then addressed through a

compact facial representation with control points (based on the MPEG-4 standard),

and an efficient/optimal search of its geometric elements in the image. During the

search procedure, weak classifiers along with cascaded Adaboost are used, while

the optimal configuration of the Adaboost responses is found using discrete MRF

optimization techniques based on linear programming, which enforce the anthropo-

metric nature of the model. Last, but not least, animation is done using radial-based

functions.

Tracking

Tracking is an essential part of many computer vision and image processing appli-

cations. I have recently proposed a novel end-to-end system for deformable track-

ing of multiple curvilinear objects in image sequences [39]. The approach is based

on B-spline snakes defined by a set of control points whose optimal configuration

is determined through efficient discrete optimization. Each control point is asso-

ciated with a discrete random variable in a MAP-MRF formulation where a set of

labels captures the deformation space. In such a context, generic terms are encoded

within this MRF in the form of pairwise potentials. The use of pairwise potentials

along with the B-spline representation offers nearly perfect approximation of the

continuous domain. Efficient linear programming is considered to recover the ap-

proximate optimal solution. The proposed method performs in real-time, is shown

to be robust to poor features and high deformations of the object to be tracked,

can continuously maintain high accuracy on a sub-pixel level, and is generic in

the choice of data and regularization terms. Moreover, the discrete framework can

track multiple objects at the same time without altering or extending the model.

3.2 Medical image analysis

Medical image analysis is one of the most prominent application fields of com-

puter vision and image processing. It is characterized by the extraction of infor-

mation from image data for the purpose of making a medical diagnosis of a pa-

tient. This type of computer-aided diagnosis is increasingly considered in health

sciences. This is due to the progress made on the acquisition side, where recent

hardware developments have led to a new generation of scanners as well as image
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Fig. 16: Visual results (a) before and (b) after registration using our iconic approach [32].

Green voxels correspond to the segmentation of the reference; red voxels, to the (warped)

segmentation. Voxels in blue show exact overlap of reference and warped segmentation.

modalities. As a result, in vivo visualization of human tissues where one can de-

termine both anatomical and functional information is now possible. The analysis

and processing of the resulting image data for the interpretation of the tissues state

is a challenge of paramount importance that can significantly facilitate the task

of the physicians. Registration, segmentation, and 3D reconstruction/modeling of

anatomical structures are among the most fundamental problems in medical image

processing that need to be solved for addressing such a challenge.

Deformable registration

The objective of deformable registration is to recover a deformation field that aligns

two images (or volumes) that have in general an unknown non-linear relationship.
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Fig. 17: Visualization of input data for the 2D-3D registration:(a) 3D cone beam recon-

struction (3DCBR);(b,c) Exemplary digitally recon-structed radiographs (DRRs) which are

computed in the iterations of the registration algorithm;(d) Fluoroscopic image used as tar-

get in 1-view test;(e,f)Examplary DRRs with 20% uniform noise used as targets in 2-view

tests.
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This is a predominant task in medical image analysis involved in a vast number of

clinical examples. Over the last few years I have developed several state-of-the-art

techniques on this topic. These can be used for either inter or intra-modal de-

formable registration (Fig. 16) [32, 31], for hybrid (i.e., both iconic and geometric-

based) registration [34], for intensity-based registration of images by linear trans-

formations [138, 35], as well as for 2D-3D registration (Fig. 17) [137]. The pro-

posed methods rely on expressing deformable registration as a minimal cost graph

problem, where nodes correspond to the deformation grid, a node’s connectivity

corresponds to regularization constraints, and labels correspond to 2D/3D defor-

mations. They lead to modular, powerful, and flexible MRF formulations that can

account for arbitrary image-matching criteria, various local deformation models,

and regularization constraints. Thanks to the use of powerful discrete optimization

algorithms, they are able to attain unprecedented accuracy while requiring running

times that are orders of magnitude lower compared to prior art.

Segmentation and reconstruction of anatomical structures

Organs segmentation and modeling are two fundamental tasks in medical image

processing. The use of prior information either through explicit modeling of the

anatomy or through learning carries on great potential. I have recently proposed

general MRF-based methods to address these two tasks [8, 117, 106, 30], includ-

ing methods that rely on using prior information of the above type. The proposed

methods can deal with single or multi-component prior models, can encode para-

metric and non-parametric priors, and are able to use the entire information space.

Among other things, I have applied them for the 3D shape modeling and segmenta-

tion of the left ventricle [8], for the automatic recovery of the 3D shape of the knee

based on a set of 2D X-Ray images [106], as well as for cartilage segmentation

using a statistical atlas [30].

Groupwise registration

Groupwise (population) registration is defined as the identification of a homology

between more than two images. Its importance is evident in problems like sta-

tistical modeling of variations and atlas construction. I have recently proposed a

novel registration framework that is able to unite a population of images to an op-

timal (unknown) pose through their mutual deformation [116]. It makes use of a

registration criterion that comprises three terms: the first imposes compactness on

appearance of the registered population at the pixel level, the second tries to mini-

mize the individual distances between all possible pairs of images, while the last is

a regularization one imposing smoothness on the deformation fields. The problem
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Fig. 18: The node and the edge system of the constructed graph. With blue color the re-

lationship between the grid nodes and the images is depicted (deformation model). The

black edges represent the smoothness terms while the red ones encode the local dissimilar-

ity measure. The global relationship between all the nodes at respective places in the grids

is shown by the yellow edges. (For clarity a fraction of the edges is shown.)

is reformulated as a graphical model (Fig. 18) that consists of hidden (deforma-

tion fields) and observed variables (intensities). A novel deformation grid-based

scheme is proposed that guarantees the diffeomorphism of the deformation and is

computationally favorably compared to standard deformation methods. Towards

addressing important deformations, a compositional approach is also used where

the deformations are recovered through approximately optimal solutions of succes-

sive discrete MRFs by using efficient linear programming.

Learning deformation priors for dense image registration

Learning appropriate prior models is of paramount importance to address the ill-

posedness of the registration task, in particular when considering intra-modal reg-

istration of challenging, emerging imaging modalities such as functional MRI, dif-

fusion tensor imaging, or ultrasound. Towards this goal, I have recently proposed a

general framework for learning and inferring such priors based on image data [28].

The proposed priors can be used for replacing the conventional regularization con-

straints (e.g., penalizing the gradients of the displacement field) and can be very

efficiently embedded within MRF-based registration algorithms. Moreover, they

can be learned from a rather small training set, while they can encode local as well

global prior constraints on the deformation field.

Image fusion through deformable mosaicing

Whole-body magnetic resonance imaging (WB-MRI) is an emerging application

gaining vast clinical interest during the last years. It has been made clinically fea-

sible thanks to recent advances in MRI such as multi-channel receiver, parallel

imaging techniques, and automated table movement. Although such technologi-

cal advances shortened the longish acquisition time, this is still the limiting factor
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Fig. 19: Whole body MRI results (blue indicates overlap): (Left) initialization, (Middle)

our result, (Right) zoomed-in image patches from the left and middle images.

avoiding its wide-spread clinical usage. The acquisition of images with large field-

of-view helps to relieve this drawback, but leads to significantly distorted images.

To address this critical issue, I have recently proposed a novel deformable mo-

saicing approach [127], based on the simultaneous registration to linear weighted

averages, to correct for distortions in the overlapping area. This method produces

good results on in-vivo data (Fig. 19) and has the advantage that a seamless inte-

gration into the clinical workflow is possible.

Processing of diffusion tensor images (DTI)

Registration: Diffusion tensor imaging is a fairly new modality that is able to

provide clinicians with very useful information about the structure and the

geometry of the observed tissues. In this case, diffusion tensor registration

not only aims to recover the spatial correspondences but also reorient the

tensors accordingly to account for the rotational component of the spatial

deformation. The directional information of the diffusion tensors as well as

the high-dimensionality of the data further complicates the registration pro-

cess. To address these issues, I have recently proposed a novel method for

the spatial normalization of diffusion tensor images [118]. This method takes

advantage of both the diffusion information and the spatial location of ten-

sor in order to define an appropriate metric in a probabilistic framework. A

registration energy is defined in a reproducing kernel Hilbert space (RKHS),

encoding the image dissimilarity and the regularity of the deformation field

in both the translation and the rotation space. The problem is reformulated
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Fig. 20: Axial, coronal and sagittal views of fiber segmentation for (left column) a healthy

subject in 10 classes (middle column) a diseased subject in 3 classes. In the right column

it is shown the ground truth segmentation of the left column with the following muscles:

the soleus (cyan), lateral gastrocnemius (red), medial gastrocnemius (magenta), posterior

tibialis (yellow), anterior tibialis (green), extensor digitorum longus (purple), and the per-

oneus longus (blue).

as a graphical model where the latent variables are the rotation and the trans-

lation that should be applied to every tensor and the observed variables are

the tensors themselves. Efficient linear programming is used to minimize the

resulting energy.

Clustering: DTI has been mainly used to study the connectivity between the dif-

ferent structures of the human brain. Lately, it has also been used to study

the human skeletal muscles as diffusion can provide information about the

structure and the organization of the muscle fibers. A very important task in

this regard is to cluster fiber tracts for local statistical analysis of diffusion in-

formation. Recently, I have proposed [93] a novel manifold-based clustering

algorithm for this task (Fig. 20). Using a linear programming formulation of

prototype-based clustering, I designed a novel fiber classification algorithm

over manifolds that circumvents the necessity to embed the data in low di-

mensional spaces and determines automatically the number of clusters. I also

proposed the use of angular Hilbertian metrics between multivariate normal

distributions to define a family of distances between tensors that I generalize

to fibers. These metrics are used for approximating the geodesic distances

over the fiber manifold.
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cient MAP-Inference by Lagrangian Relaxation. In Proc. CVPR, 2012.

[49] J.H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schnörr. Globally
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