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This manuscript is centered on localized structures and excitability. Both topics

are of general interest since they are phenomena that are observed and studied in

di�erent systems. Among those, optical systems are particularly interesting because

of the possibility of future applications in the all-optical processing of information.

This introduction aims to remind the main features of these phenomena and to

illustrate the contents of the present manuscript.

1.1 Localized Structures

Localized structures refer to self-organization of a physical quantity in one or more

isolated regions surrounded by a homogeneous and qualitative di�erent state. This

phenomenon occurs in spatially extended and dissipative systems and they are

also called dissipative solitons or autosolitons. Localized structures were probably

�rst remarked by Faraday in the nineteenth century during his studies on pattern

formation in liquids in contact with vibrating surfaces [Faraday 1831], then they

have widely been studied both theoretically and experimentally since the 1980's

[Koga 1980, Laughlin 1983, Rosanov 1990, Kerner 1994]. Localized structures have

been observed in a large variety of systems, for instance: in vertically vibrated gran-

ular media [Umbanhowar 1996] (Fig 1.1a) where they look like isolated heaps of

sand, in colloidal suspensions where they look like localized oscillations (also called

oscillons) of the colloid level respect to the background level [Lioubashevski 1999]

(Fig. 1.1b), and in gas discharge experiments where they appear as isolated cur-

rent �laments [Astrov 1997] (Fig 1.1 c). In the following we will focus on localized

structures in optics.
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Figure 1.1: Localized structures in di�erent systems: a) vertically vibrated granular

medium (taken from [Umbanhowar 1996]), b) vertically vribating colloids (taken from

[Lioubashevski 1999]), c) gas discharge experiments (taken from www.uni-muenster.de).

1.1.1 Localized structures in optics

In optics, localized structures look like high(low) intensity peaks on a homogeneous

and darker (brighter) background in the transverse plane perpendicular to the prop-

agation direction. They are also known as cavity solitons (CS). In this thesis both

appellations are used. The term �soliton� was �rst introduced to describe solitary

waves that propagate without changing shape in conservative systems, where their

formation is understood in terms of compensation between di�raction and nonlin-

earity. The term �cavity� describes the dissipative character of the system where

these solitons form, because of the compensation of di�raction and nonlinearity and

of energy input and energy output. An analogous mechanism can occur along the

propagation direction in non spatially extended systems, in this case the non linear-

ity compensates the chromatic dispersion, giving birth to temporal cavity solitons

[Grelu 2012].

Cavity solitons, or Localized structures, possess very interesting properties:

i) their size and shape do not depend on the boundary conditions but they are

well determined by the balance between energy input and losses and between

nonlinearity and di�raction;

ii) they can exist in several positions of the transverse plane;

iii) they are bistable which means that the bright spots are stable for the same

parameters as the homogeneous dark state;

iv) they can be independently manipulated which means that one LS can be

switched-on and -o� (because of the bistability) by a local perturbation with-

out a�ecting a neighbouring localized structure;

v) they can move spontaneously or they can be moved by applying an external

gradient.

In virtue of these properties, CSs can be used as optical binary bits that can be

processed in parallel. The position of cavity solitons can be �xed by introducing a

spatial modulation in one parameter of the system, so that the CSs result trapped in

the desired points of the space, under the action of opposite gradients. In this way,
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an optical memory array, whose pixels are the CSs, can be realized. The potential

of CSs for optical storage and parallel processing of information was recognized and

stressed in [Firth 1996, Brambilla 1997, Coullet 2004].

Applications require compact and fast devices. Therefore, semiconductor micro-

cavities represent a good candidate among all the optical systems where CS have

been realized. The �rst experimental evidence of localized structures in semiconduc-

tors microcavities is reported in [Barland 2002]. The experimental set-up consists

in a broad-area Vertical Cavity Surface Emitting Laser (VCSEL) pumped below

threshold and driven by a holding beam. VCSELs are semiconductor microcavities

composed of two high-re�ectivity distributed Bragg re�ectors, the active medium

consists of quantum well structures which can be pumped electrically or optically.

The cavity length is of few microns and the broad-area emitting surface has a diam-

eter of 200 µm. In [Barland 2002] and [Hachair 2004], the authors show that CS can

be manipulated independently by an external optical perturbation with a suitable

phase with respect to the holding beam. In [Pedaci 2006], the phase of the holding

beam was spatially modulated and the optical memory array was realized.

Other applications, which exploit the CS motion induced by gradients, were exper-

imentally realized with the same set-up: an optical delay line [Pedaci 2008] and the

mapping of inhomogeneities of the microcavity hosting the CS [Pedaci 2005].

1.1.1.1 Cavity soliton lasers

The experiment, which we reported on above, requires a driving beam of high spatial

and temporal coherence. Now, it seems to be attractive, for applications, to remove

the necessity of such holding beam and to deal only with inexpensive incoherent

sources like an electric power supply or a high-power laser diode of low coherence.

This implies going from a driven system to a laser, i.e. an active device where emis-

sion is self-sustained. A laser device able to host localized structures is called Cavity

Soliton Laser (CSL). That is a laser which, although homogeneously pumped over

its transverse section, emits isolated beams (the cavity solitons) surrounded by re-

gions of pure spontaneous emission. These laser localized structures (or laser cavity

solitons) di�er from the localized structures in driven systems, whose polarization

and frequency is locked to the one of the holding beam. A laser localized struc-

ture is like a microlaser and, as any laser, it has the freedom to choose its phase

because it originates from a spontaneous symmetry breaking. Moreover, assuming

that the cavity is su�ciently isotropic and broadband, the output frequency and

polarization are also undetermined including the possibility of multi-frequency op-

eration which could result in irregularly or regularly self-pulsing localized structures

[Ackemann 2009]. Therefore in a CSL, every single CS within the laser aperture

should have the freedom to chose between all these possibilities. This gives exciting

new opportunities for fundamental studies as well as applications.

Three cavity soliton lasers based on two di�erent physical mechanisms have been

realized with semiconductor materials.

The two physical mechanisms that allowed to realize a Cavity soliton laser are:
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the frequency-selective feedback from a Bragg grating and the saturable absorp-

tion. The experiment, exploiting the frequency-selective feedback, is described in

[Tanguy 2008a]. In the case of saturable absorption, two di�erent experimental se-

tups were adopted: two mutually coupled VCSELs, one of which is pumped above

transparency (the ampli�er), and the other below transparency (the saturable ab-

sorber), in a face-to-face con�guration [Genevet 2008]; and an optically-pumped

monolithic VCSEL with integrated saturable absorber [Elsass 2010b].

1.2 Excitability

Excitability is de�ned by the response of the system to perturbations: perturbations

below a certain threshold decay to the initial stable state, while perturbations over-

coming the threshold result in the system running through a large and well de�ned

excursion in phase space before returning to its original state. The time that passes

before the system can be excited again is called refractory-time.

Excitability was initially introduced in physiology, to describe the spiking activ-

ity of neurons [Hodgkin 1952] (i.e. the generation of an abrupt and transient

change of the membrane potential) then it has been extended to many other sys-

tems which are able to present this well-calibrated threshold-like response. Be-

sides the neuron, among the paradigmatic examples we �nd the cardiac tissue and

the bromate-malonic acid chemical reactions (Belousov-Zhabotinsky (BZ) reaction

[Belousov 1959, Zhabotinsky 1964]). In a spatially extended excitable system (ex-

citable medium) each elementary part of the system possesses the property of ex-

citablity, so by means of a spatial coupling mechanism a local excitation is trans-

mitted in the neighbouring regions without decrement. In the above examples, the

coupling is the di�usion.

In one-dimensional media one observes traveling waves as, for instance, neural spikes

propagating along the axon. As the dimensions are increased the e�ects of this non-

linear phenomenon are more spectacular. In two-dimensional media such as a thin

layer of an unstirred solution with a BZ reaction, one can observe rotating spiral

waves [Winfree 1972, Zhabotinsky 1973] (see Fig. 1.2a ) . When the solution is

unstirred, local oscillations of concentration can be ignited by pacemakers (inho-

mogeneities or external local perturbation) and then propagate in concentric rings.

These propagating waves are described as fronts of excitation followed by refrac-

tory zones (see Fig. 1.2b). When two waves generated by two di�erent pacemakers

collide, they mutually annihilate as we can see on the top left corner of Fig. 1.2

b). Because of the constant propagation velocity, the waves created by the faster

pacemaker (the central one in Fig. 1.2b) will spread over the whole space, forming

a target pattern. The spiral waves are originated from the break of an expanding

excitation front caused by a defect or a local perturbation. Spirals waves together

with their three-dimensional counterparts, the scroll waves [Winfree 1973], have also

been found in the heart muscle in association with cardiac pathologies such as tachy-

cardia and arrhythmia [Davidenko 1992, Gray 2012].
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Figure 1.2: Snapshots of concentration waves in two-dimensional Belousov-Zhabotinsky

reaction. (a) spiral waves (numerical simulation taken from wikimedia.org); (b) concentric

wave propagation resulting in a target pattern (from scholarpedia.org).

These are some examples that give a hint on the richness of the phenomena

linked to excitability and on their importance. For instance excitability describes

the behaviour of some of the most vital parts of our body: heart and neurons. The

latter are responsible for the transmission and processing of information. These

computational properties can be exploited in other contexts. For instance BZ-like

reaction have been used to �nd the minimum-length paths in complex labyrinths

[Steinbck 1995], for image processing [Kuhnert 1989] and for constructing logic gates

[Gorecka 2006].

In the next sections we will describe the di�erent kinds of excitability and report on

excitability in optics.

1.2.1 Classi�cation

Excitable systems do not behave all the same: di�erent excitable systems can react

di�erently to the same perturbation and possess di�erent properties. It is therefore

important to know which stimulus is able to trigger the excitable response and

how this response looks like in order to understand and to eventually exploit the

computational properties of the system.

The �rst classi�cation of excitability aimed to distinguish di�erent kinds of neurons

and it was done by Hodgkin. He injected steps of current into the axons membranes

and looked at the resulting �ring activity as function of the current amplitude. This

method can be seen as the precursor of the bifurcation analysis . A Bifurcation is

a qualitative change in the dynamics of a system upon variation of its parameters.

In dynamical systems, the bifurcation analysis is a powerful tool for understanding

complex non-linear phenomena even without knowing all the details of the system.

Excitability is one of the phenomena that has been explained by this theory.

We present in what follows the classi�cation resulting from the study carried out

by Hodgkin and from the bifurcation theory. Both are currently used to describe

excitable systems.
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1.2.1.1 Hodgkin classi�cation

Hodgkin was the �rst to perform a study on the bifurcation mechanism of excitabil-

ity. His work is based on the analysis of the response of di�erent squid axons in the

resting state to a sudden application of constant current with various amplitudes

[Hodgkin 1948]. He could distinguish three kinds of responses:

• Class I. The generated spiking state can have an arbitrary low frequency de-

pending on the amplitude of the applied current.

• Class II. Spikes are generated within a certain frequency band which is rela-

tively insensitive to changes in the strength of the applied current.

• Class III. Only a single spike is generated; repetitive spiking may occur only

for very strong currents.

Neurons belonging to di�erent classes have di�erent computational properties. For

example Class I neurons may encode the strength of a constant input into the

frequency of the output while Class II neurons can act as threshold elements and

reveal when the input is above a certain value.

1.2.1.2 Bifurcations

Dynamical system theory explains that, no matter the nature of the examined sys-

tem, excitability appears close to a bifurcation that leads to the emergence (or

disappearance) of a limit cycle. Such bifurcations are three:

i) saddle-node on invariant circle bifurcation that occurs when a stable equilib-

rium and an unstable one merge and annihilate each other on an invariant

circle, giving rise to a limit cycle of in�nite period;

ii) saddle-loop bifurcation when the limit cycle becomes an homoclinic orbit to

the saddle point and its period becomes in�nite;

iii) supercritical Andronov-Hopf bifurcation that consists in the loss of stability of

a stable focus giving birth to a limit cycle;

The phase portraits corresponding to the above bifurcations are illustrated in Fig.

1.3. The system is excitable when, before (or after) the bifurcations, only one steady

state results stable (right column of Fig. 1.3).

The shape of the excitable response is de�ned by the limit cycle close to the bifurca-

tion (left column of Fig. 1.3). When a perturbation above threshold is applied, the

system undergoes a trajectory (thick line) that passes in the proximity of this limit

cycle. In the cases i) and ii) the threshold is well de�ned: it consists in the stable

manifold of the saddle (white circle in the �gures). Hence a all-or-none behaviour is

observed. Conversely in the Hopf bifurcation the threshold is not so well-de�ned, a

small deviation from the resting state results into a short trajectory while a large de-

viation produces a large excursion corresponding to the excitable response (the two
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Figure 1.3: Three bifurcations leading to excitability. The thick arrows show the direction

of the bifurcation parameter change. Stable nodes and focuses are represented by black

circles while saddle points and unstable focuses by white circles. Stable limit cycles have

solid lines while unstable one have dashed lines.
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trajectories are sketched in the last excitable portrait of Fig. 1.3). Between the two

trajectories there is a region which is referred to as a threshold-set [Izhikevich 2007]

and which consists of trajectories corresponding to not-full amplitude responses.

When the Hopf bifurcation is weakly saturated iii), this threshold-set is very narrow

(in real systems it can be even smaller than the noise level) so the system exhibits

an e�ective all-or-none behaviour.

According to the Hodgkin classi�cation, since at the saddle-node on invariant circle

bifurcation and saddle-loop bifurcation the limit cycle has in�nite period, the result-

ing excitability belongs to the Class I. On the other hand, the Weakly saturated

Hopf bifurcation gives birth to a limit cycle which has a certain non-zero frequency

thus the corresponding excitability is a Class II.

1.2.2 Excitability in optics

Among other systems in physics, optical systems can also exhibit excitable be-

haviour. Both classes of excitability has been observed.

On one hand Class I has been found in lasers with optical feedback [Giudici 1997]

and laser with optical injection [Goulding 2007] (saddle node on invariant cycle bi-

furcation) or in laser with saturable absorber [Plaza 1997] (saddle-loop bifurcation).

On the other hand Class II has been observed in optical ampli�ers [Barland 2003]

(Hopf bifurcation) and in active photonic crystals [Brunstein 2012].

Excitable optical systems were proposed for applications such as optical switch, since

they react only in response to su�ciently large input signals, and pulse-reshaping,

since a noisy and dispersed pulse which is su�ciently powerful can generate a well-

contrasted and strong pulse.

The above-mentioned systems have very small spatial extension therefore the ob-

served excitable behaviour has a global character and no propagation of excitable

waves has been observed. Instead propagation could be observed in a vertical-cavity

semiconductor optical ampli�er, a device that can be described as a two-dimensional

excitable medium [Marino 2005]. In [Marino 2005] authors report on an interesting

dynamical scenario that involves both wave propagation and stationary patterns by

showing that the excitable wave propagation is con�ned on a Turing pattern.

More studies involve extended optical system and are situated at the intersection be-

tween excitability and phenomena of self-organization [Gomila 2005, Jacobo 2008].

These studies are numerical, no experiment has been done yet. In [Gomila 2005] au-

thors demonstrate the existence of excitable localized structures in a paradigmatic

model for a kerr cavity. The excitability described in [Gomila 2005] is locally con-

�ned since it is a property of the localized structure while the medium that hosts

the structure (the Kerr cavity) is not excitable. Therefore, this kind of structures

could be �nd in any other system supporting LSs provided that there is a mechanism

able to induce oscillations of the LS amplitude that eventually bifurcate to excitable

dynamics. The concept of excitable localized structures opens new perspectives in

terms of applications in the information precessing by combining the computational

properties of excitable systems and the parallelism of localized structures. Logical
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operations have been already realized numerically [Jacobo 2012].

1.3 Motivations and contents

My work aimed to study laser localized structures and excitability in semicon-

ductor laser systems and to investigate the possibility of the intersection of both

phenomena: the excitable localized structures. Both LS and excitability in optics,

especially in fast materials like semiconductors, are interesting for application in

the all-optical information processing. Excitable localized structures is a recent

concept rising from numerical studies that would o�er appealing perspectives for

more functional applications. In this thesis we report on the �rst experimental

investigation of this innovative topic. Properties of Laser localized structures

(included excitability) have been studied in a system composed of two coupled

broad-area semiconductor-microcavities in a LSA (Laser with Saturable Absorber)

con�guration [Genevet 2008]. Using a model of a VCSEL (Vertical Cavity Surface

Emitting Laser) with intracavity saturable absorber [Bache 2005], we have also

performed numerical simulations in order to look for excitable localized structures

in this kind of system. A di�erent system without spatial dependence is used to

look experimentally for the mere excitable dynamics: a small-area VCSEL with

optical injection.

The manuscript is structured as follows. In Chapter 2 we report on the char-

acteristics of the observed laser localized structures and on their interaction. In

Chapter 3 the response to an external local perturbation is analyzed. The charac-

teristics of the perturbation that allow to control the stable stationary LSs in our

system are investigated. Moreover, we study the response to a perturbation applied

to the homogeneous non-lasing state for parameters out of the LS bistability in order

to look for excitable localized structures.

In Chapter 4 we analyze the bifurcation occurring at the onset of lasing when a lo-

calized structure nucleates on a defect and then drifts because of gradients, showing

that such a bifurcation possesses the characteristics of a bifurcation that describes

excitable dynamics. In Chapter 5 we report on the numerical results about excitable

localized structures in a semiconductor LSA. In Chapter 6 the experimental results

about excitability in a small-area optically injected VCSEL are illustrated.
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In this chapter the cavity soliton laser based on saturable absorption, which

we studied experimentally, will be brie�y illustrated. Then coherence properties

of laser localized states will be pointed out. Eventually some observations about

interaction between di�erent localized structures in guise of phase synchronization

and of non-local coupling will be reported.

2.1 Our cavity soliton laser

A scheme of the experimental set-up is reported in Fig. 2.1. For a detailed descrip-

tion of the system and its working principles see [Genevet 2008, Genevet 2009b,

Genevet 2009a], here we will point out important aspects for our purpose. The

physical system correspond to the portion that is highlighted by a red rectangle and

it is composed of two semiconductor laser resonators L1 and L2, a beam splitter BS,

two collimators C whose focal length is 8 mm and two lenses L whose focal length

is 5 cm. The rest is the detection system.

L1 and L2 are two nominally identical broad area (200 µm) Vertical Cavity Surface

Emitting Lasers (VCSEL), both of them are equipped with temperature and current

control, respectively T1, I1 and T2, I2. They are placed face-to-face at distance of

about 30 cm.

The coupling strength between the two devices is given by the beam-splitter BS

placed in external cavity, its transmission depends on the polarization: 80% for p-

polarization and 60% for s-polarization. The polarization symmetry 1 is then broken

1 VCSELs, unlike edge emitter semiconductor lasers, support both linear polarization and their

combination (circular, elliptical). This is due to the circular symmetry of the VCSEL cavity.
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Figure 2.1: Schematic of the experimental set-up. The physical system is encircled in

red. L1, laser above transparency; L2, laser below transparency; C, aspherical collimator

(focal length = 8 mm); L, lenses (focal length = 5 cm); BS (and all grey slashes), beam

splitters; M (and black slashes), mirrors. Outside the red square we have the detection

system. CCD1,2, Charged Couple Device camera (20 Hz); D1,2, �bre-coupled ampli�ed

photo-detector (8 GHz); I, iris diaphragm. The yellow dashed-line part is added for the

analysis of the coherence properties of localized structures and it is discussed in section 2.2.

FM, �ipping mirror; TL, tunable laser.

and radiation in the cavity ends up being p-polarized since losses are smaller for this

polarization. The 20% re�ected light goes for detection. Two branches are avail-

able: one collecting light from the ampli�er L1 and the other from the absorber. In

both branches a CCD camera monitors the time-averaged near �eld emission and a

8GHz �bre-coupled ampli�ed photo detector (D1 and D2) enables for time resolved

measurements. An iris, positioned on a plane conjugated to the CCD's plane, is

used to select the spatial region which we want to monitor. We used a multi-mode

�bre for the temporal measurements and we checked that the area selected by the

iris is smaller than the area which is coupled into the �bre.

By means of the collimators C and lenses L, the near-�eld of one resonator is im-

aged onto the plane of the near-�eld of the other one with magni�cation equal to one

(1 to 1 self imaging con�guration). The alignment procedure is done biasing both
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Figure 2.2: Near �eld image on the plane of the L1

when self-imaging is accomplished (dark areas corre-

spond to high intensities). We observe the sponta-

neous emission of L1 which is biased at few mA and

the image of L2 which is re�ected by the exit mir-

ror of L1 (the re�ection also partially occurs on the

substrate of L1 since the two lasers are not perfectly

superimposed). L2 is biased at more than one hun-

dred mA and it is lasing because of feedback provided

by the exit mirror of L1 and its substrate .

lasers and by looking at their emitted radiation on the cameras. The self-imaging

is achieved when the round emitting faces of the two VCSELs appear clear on both

camera with the same size like in Fig. 2.2.

The self imaging con�guration compensates di�raction occurring during propaga-

tion in the external cavity, keeping the Fresnel number high. Large Fresnel number

is a condition required for the existence of localized states together with bistability

[Lugiato 2003]. Bistability is provided by the mechanism of saturable absorption.

More precisely L1 is biased above transparency (I1 ≈ 200 - 300 mA) and it plays the

role of ampli�er while L2 is kept below transparency (I2 ≈ 10 mA) and it behaves

as an absorber [Genevet 2008]. For the saturable absorption to be e�ective, the

cavity-resonances of L1 and L2 have to overlap, otherwise the two devices will see

each other as mere mirrors. Resonance matching is achieved by setting properly the

temperatures of the two devices.

Temperature in�uences the refraction index of the semiconductor medium and so

the e�ective cavity length of the resonator. The cavity-resonance change of our VC-

SELs has been measured as 0.114 nm/◦C [Genevet 2009b]. A similar e�ect is given

by the bias current because of Joule heating. The corresponding cavity-resonance

change is of 0.005 nm/mA. Therefore, the temperature of the two devices should

be set in order to compensate the wavelength mismatch due to the di�erent biasing

(I1 > I2). Supposing the two devices are the same (same wavelength in the same

operating conditions), the temperature di�erence should be: T2 - T1 ≈ 8◦C. See

[Genevet 2009b] for a detailed analysis of the parameter region for the correct func-

tioning of the cavity soliton laser.

Once the good parameters are settled, the evolution of the near �eld shows well de-

�ned features as the current of the ampli�er I1 is increased from zero [Genevet 2008].

First of all we observe an increase of the global intensity because of the feedback

due to re�exion on L2 exit mirror. Feedback reduces losses in the compound system

that eventually starts lasing.

Then the increasing Joule heating makes L1 approach the resonance with L2 and the

two devices start interacting, so the global intensity decreases due to the absorption

from L2. Most of the compound system is not lasing anymore, we are in the o�-state

where the very weak radiation emitted is spontaneous emission. In this conditions
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some bright spots can arise abruptly as we keep increasing the current I1 and they

persist as the current is decreased again. The hysteresis cycle observed in the best

conditions is about 5 mA and it can be reduced down to tenths of mA in the worst

cases.

These bright spots are compatible with the de�nition of cavity solitons: they have

very well de�ned size (15 µ m of diameter), they are surrounded by a homogeneous

dark back-ground and they are stable for a certain range of parameters where the

background is also stable (within the hysteresis cycle mentioned above); furthermore

they can be switched on and o� independently [Genevet 2008].

Our cavity solitons laser is working.

Moreover, it is worth to point out that, compared to their counterparts born in

driven systems, these cavity solitons arise from spontaneous emission as any free-

running lasers and thus they have the freedom to choose their own phase. They are

then called laser cavity solitons. Laser cavity solitons are only a part of the family

of laser localized structures (LLS). Other LLS have been observed in our system:

multi-peaked structures (clusters of LCS) and ring structures with phase singularity

(vorteces)[Genevet 2010a].

In the following we are going to analyze the coherence properties of laser localized

structures and their interactions.

2.2 Properties of laser localized structures

We've already mentioned that the phase of LLS is arbitrary, we should also say that

the lasing frequency can be chosen by the system between the modes of the external

cavity that lie in the gain bandwidth. A single VCSEL usually operates in a single

longitudinal mode because of the short resonator length (of the order of µm). Two

consecutive longitudinal modes result very far away and only one lies within the gain

curve. The distance between two consecutive longitudinal modes in a Fabry-Perot

resonator is called Free Spectral Range: FSR = c/(2L).

When we add an external cavity, the corresponding cavity modes become accessible.

The external cavity length (i.e. the distance L1-L2) considered in this chapter is L

= 32 cm that corresponds to a free spectral range FSR = c/(2L) of 465 MHz.

Due to the presence of several modes under the gain curve, the lasing process can

be a�ected by multi-mode emission, and frequency multi-stability. In this section

we will report observations about the coherence properties of LLS focusing on the

spectral properties of the emission and on the extension of the phase pro�le. Our

observations are mainly based on interferometric and spectral measurements.

We built a Mach Zehnder-like interferometer by taking the beam directed towards

the fast detector D1 with a �ipping mirror and readdressing it onto the camera

CCD1 (see Fig. 2.1) in such a way that the two near �elds perfectly overlap. In a

regular Mach Zehnder interferometer, the two beams are perfectly aligned in order

to measure their exact phase di�erence. We leave voluntarily a tilt between the two

beams in order to get a fringes pattern and study qualitatively the frequency and
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phase emission of laser solitons.

It is worth to remind the mathematical expression of the two wave interference in

order to understand what we can work out from observations of the interference

pattern.

Let us consider two monochromatic waves U and U ′ coming from the same coherent

source and arriving on the plane of the camera. Each point of the space is described

by the vector ~x, U comes from the reference arm of the interferometer while U ′

comes from the other arm and it accumulates a phase delay φ during propagation:

U(~x, t) = A(~x)ei(
~k·~x−ωt) U ′(~x, t) = A′(~x)ei(

~k′·~x−ωt+φ)

A(~x) and A′(~x) are the space-dependent amplitudes; k and k′ the wave vectors, ω

and the angular frequency. The observable intensity in a point ~x resulting from the

interference of the two waves is given by:

I(~x) = |A(~x)|2 +
∣

∣A′(~x)
∣

∣

2
+ 2A(x)A′(x)cos

( c

λ

(

r̂ − r̂′
)

· ~x+ φ
)

(2.1)

where ~k = c
λ
r̂ and ~k′ = c

λ
r̂′ . The �rst two terms on the right hand side of eq. 2.1

correspond to the intensities of the single waves and the third one is the interfer-

ence term. The interference term consists in periodic fringes perpendicular to the

di�erence of the two wave vectors. The fringes period depends on the wavelength.

The visibility of the fringes is de�ned as:

V isibility =
max(I(~x))−min(I(~x))

max(I(~x)) +min(I(~x))

The maximum value of the visibility is 1 and it is reached when the amplitudes of

the two waves coincides: A(~x) = A′(~x). We can think that U and U ′ describe LCSs

in our interferometer. If they are monochromatic, the visibility on the camera will

be high, otherwise, the visibility will decrease. In fact, if LCSs are polychromatic

the interference pattern results in the sum of di�erent cosine terms (as in eq. 2.1)

that have di�erent periods and amplitudes, so the global visibility will be a�ected.

An example of this kind of interferometric measurements is reported in Fig 2.3.
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Figure 2.3: Spatial intensity distribution of the near �eld coming from the one arm of

the interferometer (a), from the other (b). (c) is the interferogram resulting from the

superposition of the two arms. System parameters are the same: I1 = 188.8 mA, I2 = 11.1

mA.
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We name with integers the localized structures of interest that are observed in the

near �eld image of the �rst branch of the interferometer (the one that goes directly

to CCD1 after the beam splitter) and with primed integers the same structures

coming from the other branch. When the two beams (Fig. 2.3 a) and b) ) are

superimposed, a fringed pattern appear (Fig. 2.3 c)). The fringes are visible only

on the bright region occupied by the laser solitons, this means that the emission of

both structures is coherent while the one of the background is not. Moreover the

fringes are well contrasted so probably the laser solitons are emitting on a single

longitudinal mode. This supposition can be con�rmed by spectral measurements.

In order to perform the spectral analysis we �ip-on the �ipping mirror in such a way

that the output beam can reach the optical �bre (D1 in the set-up scheme Fig. 2.1).

Then the optical �bre may be put in an optical spectral analyzer or in a detector

connected to a power spectrum analyzer. The power spectrum will allow to study

the modal composition of a structure within a bandwidth from 9 kHz to 8 GHz

(limit given by the detector) while the optical spectrum will be used for a coarse

analysis (the resolution bandwidth of OSA hp86142 is 60 pm that corresponds to

approximately 20 GHz at 980 nm).

It is worth to underline that when the two devices are interacting (necessary condi-

tion in LS regime), there is no qualitative di�erence between the near-�eld pro�le

observed in the plane of L1 (on CCD1) and the near-�eld pro�le observed in the

plane of L2 (on CCD2) [Genevet 2008]. Hence the choice to base our analysis on

measurements made on the detection branch 1 does not neglect any important as-

pects.

2.2.1 Phase pro�le

We observe experimentally that the spatial range of coherence of a localized structure

is broader than its area. This is because the phase pro�le of a localized structure

has a diameter much larger than the one of intensity pro�le. This characteristic

was theoretically found in solitary waves generated in general dissipative systems

with subcritical instability [Fauve 1990] and more recently it has been pointed out

in [Vahed 2011] in the case of semiconductor laser with saturable absorber. In

[Vahed 2011], the spatial extension of the phase pro�le is responsible for interaction

among cavity solitons which we will talk about in section 2.3.

The general method to analyze the phase pro�le of an electromagnetic beam is based

on interference between the electromagnetic beam and a reference coherent plane

wave. This reference beam can be obtained in our system by modifying slightly the

interferometer previously described by adding a short focal-length lens in one branch

of the interferometer (see dotted lens in Fig. 2.1). This operation allows to expand

a coherently-emitting region of the output beam (for example a CS) such that it is

much larger than the global output beam waist of the system. The reference beam

and the output beam are then recombined on the CCD camera.

With this method we will measure the phase pro�le of a LCS. We select an area

of the near �eld where at least one LCS is stable (Fig. 2.4 a ) one structure is
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expanded in one arm of the interferometer to form the reference beam (Fig. 2.4 b

). The result of the interferometer is a fringe pattern (Fig. 2.4 c). The shape of

the fringes is due to the tilt between the two beams and on the phase pro�le of the

reference beam (probably not completely �at but parabolic because of the lens).
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Figure 2.4: Two localized structures appear on the near �eld intensity distribution (a).

Structure 1 is expanded to form a reference beam (b). Combining (a) and (b) on the camera

we obtain the interference pattern (c). Fringes are visible on structure 1 (c)-(d) and they

occupy a wider region of space compared to the structure diameter (blue line in (d)). (d)

is the elaboration of images (a)(b)(c) in order to highlight the interference fringes: d = c -

(a + b). System parameters are: I1= 185.8 mA I2= 9.9 mA (left).

The interference pattern can be isolated for a better clarity by mathematical op-

eration between the intensity matrices of images (a),(b) and (c). In order to work

out the interference term from eq. 2.1, we should subtract the sum of the single

beam intensities from the total intensity I(~x). In this way we obtain Fig. 2.4 (d):

d = c− (a+ b). Then we compare the size of the interference pattern with the size

of the cavity soliton (Fig. 2.4 d ). The fringes are visible over an area that has a

diameter three times the diameter of the soliton. Therefore the phase is well de�ned

even in the surrounding of the cavity soliton where the emission is very weak (at

noise level). These experimental observations are compatible with the results of the

numerical work [Vahed 2011] even though we did not delve deeper, studying for ex-

ample the shape of the phase pro�le. The phase pro�le plays a key role in formation

of clusters [Genevet 2010c] and in interactions with di�erent solitons [Vahed 2011].

2.2.2 Modal behaviour

In our system LCSs that have been observed so far are essentially monochromatic

and they can undergo mode hopping. That is a sudden switch to another resonator

mode under some external perturbation. Mode hops are possible since cavity

solitons lasing at di�erent frequencies share part of their stability domain. Then

the �nal lasing frequency depends on the history of the system and it can be

swapped by some perturbations as described theoretically and experimentally in

[Genevet 2010b]. Possible causes of mode hops are: drift of temperature, noise or

small vibrations of the optics that form the resonator.

Here we demonstrate that LCS can be multi-mode and that monochromatic

and multi-mode LCSs can coexist on the transverse plane of the system for the
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same range of parameters. Then we will show that mode hopping is a general

phenomenon happening to di�erent localized structures hosted in our system.

Eventually we will say a litte bit more about multi-mode laser solitons.

Fig. 2.5 displays the intensity distribution of the superposition of the two near

�elds upon decrease of the current I1 within the bistability region. Four bright
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Figure 2.5: Intensity distribution of the interferogram obtained splitting the output beam

into two beams and then recombining the two near-�eld images on the camera (dark areas

correspond to high intensities). Fringes visibility of structure 2 changes upon decrease of

the ampli�er bias within the bistability domain. (a) I1= 197.8 mA: structures 1,2 and 3

just switched on. (b) I1 = 197.3 mA. (c) I1 = 196.1 mA: structure 3 just switched o�.

Structures 1 and 2 are stable until I1 = 195.6 mA. For all the three cases I2= 9.5 mA.

spots are visible in �gure 2.5 (a), structures 1 , 2 and 3 have just switched on

simultaneously 2 (within the integration time of the camera) for I1 = 197.8 mA

while the structure on the side is not bistable thus it can't be classi�ed as LS.

We will focus our attention on the evolution of the fringes of structures 1 and

2, for this reason we also show and compare the intensity pro�le along a line

perpendicular to the fringes in Fig. 2.6.
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Figure 2.6: Intensity pro�les obtained from a cut of the interferograms of the pictures 2.5

along a line perpendicular to the fringes. Left: comparison between the interference fringes

in situation (a) and (b) of 2.5. Right: between (a) and (c).

In (a) fringes appear well contrasted on structure 1 while they are less clear on

2This phenomenon of simultaneous switching is not usual since the system parameters are

slightly di�erent all over the transverse surface because of spatial disorder. Either the three struc-

tures rise in spatial islands where the parameters are the same or a non local interaction exist

between them, this topic will be discussed later in section 2.3



2.2. Properties of laser localized structures 19

structure 2. As the current is decreased (b)-(c), the fringes on 1 do not lose

contrast while fringes on 2 evolve becoming more visible in (b) or fading away

(c). We can gather that Cavity soliton 1 (CS1) is always monochromatic while

CS2 is monochromatic in (b) and polychromatic in (a) and (c). In (a) fringes are

still visible while in (c) they completely disappear suggesting that several spectral

components are present. The power spectrum of the case (c) is illustrated in Fig.

2.7.
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Figure 2.7: Power spectrum of lasers solitons depicted in �gure 2.5 (c). The structure

named 1 (CS1) is essentially monocromatic while the one named 2 (CS2) is multimode: the

spectrum shows several peaks at intervals equal to the FSR. The spectrum of the overlap

of both structures do not di�er from the one of CS2 indicating that the mode emitted by

CS1 is part of the spectrum of CS2. Traces are vertically shifted for clarity.

Furthermore in Fig. 2.6 we also remark a spatial shift of the fringes maxima from

(a) to (c) for structure 1, and from a) to b) for structure 2.

This shift of the interference pattern can be explained in terms of phase hopping:

the laser source (i.e. the LCS) changed abruptly its phase. That is equivalent to

adding an additional phase in the cosine argument of eq. 2.1 which relocates the

maxima. For CS2 the phase hop occurs together with the hop from multi-mode to

single-mode regime.

In the following we will show that mode hops may occur to all LLS. In Fig. 2.8

is depicted a near �eld and the corresponding interferograms. Two single-humps, a

ring and a complex structure appear.

From the interferogram we notice that the single-hump structures are coherent while

the complex structure pass from being incoherent to being coherent upon a small

perturbation (knock on the optical table). We focus our attention on the ring, its

emission is coherent: fringes are well contrasted and the power spectrum is �at.

The interferogram also reveals a dislocation of the fringe pattern that is a typical

signature of phase defects. The ring structure is an optical vortex. In order to

monitor its emitted frequency, we perform an heterodyne detection: radiation from
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Figure 2.8: Spatial intensity distribution of the near �eld coming from one branch of the

interferometer (left) and of the interference of the two branches (centre and right). System

parameters are the same I1 = 206.1 mA, I2 = 7.5 mA.

the vortex is selected by the iris and mixed with a beam coming from a tunable

laser (TL in Fig. 2.1) in the detector D1 in order to eventually analyze the beat

frequency. We �rst tune the external laser by looking at the optical spectrum (Left

of Fig. 2.9) and then we perform measurements on the power spectrum (Right of

Fig. 2.9).
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Figure 2.9: Left: Optical spectra of the Vortex and of the tunable laser obtained by

a Optical Spectrum Analyzer with a mono-mode �bre input. Right: Power spectrum of

the beat between the vortex and the tunable laser. The two power spectra correspond to

the same set of parameters. The beat peak spontaneously jumps from one value to the

other upon a small mechanical perturbation (a knock on the optical table). The frequency

di�erence matches the free spectral range of the external cavity.

While the power spectra of the tunable laser and of the vortex looked separately

are �at, the power spectrum of their superposition shows a peak. This peak moves

in a discrete way as a perturbation is applied Fig. 2.9 and the frequency shift

corresponds to a FSR.

2.2.2.1 Multimode laser cavity solitons

Multi longitudinal mode operation of LCS is very interesting because it opens pos-

sibilities for mode-locked LCS i.e. three dimensional localization of light. In partic-
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ular our experiment is a good candidate for this aim since saturable absorption is a

way to reach passive mode-locking in laser systems (see [Keller 2006] and references

therein). For mode-locking to occur, a �xed phase relationship between the di�er-

ent modes is necessary. The sum of all modes will then result in a periodic train of

pulses whose period is the cavity round trip time.

Observations of cavity solitons that can operate in multiple longitudinal mode have

already been reported in [Tanguy 2008b] in case of a cavity soliton laser with fre-

quency selective feedback. In this work it is shown that even though the power

spectrum of a cavity soliton appears �at, its optical spectrum can display side

modes. The authors explain this observation in terms of mode competition: the

di�erent modes intensity would be oscillating in anti-phase. This phenomenon

is typical of multimode semiconductor lasers [Yacomotti 2004]. As described in

[Yacomotti 2004], the anti-phase dynamics allows a compensation in the total out-

put: the intensity of each mode displays amplitude oscillations in the megahertz

range but the global intensity remains practically constant in time.

In the previous section we have already discussed multi-mode operation of LCS in

our system. We described it through low visibility in the interferograms and the

presence of peaks at frequencies that are multiple of the FSR in the power spectrum.

We have not said anything about the temporal behaviour.

Here we report observation of two- and multi- mode temporal dynamics in LCSs.

When the LCS is in two-mode operation, the time trace shows a periodic oscillation

around a non-zero value that corresponds to the average intensity of single-mode

LCS (left hand side of Fig. 2.10). Hence the two mode are not competing but they

have comparable constant intensity. The period of the oscillation corresponds to the

di�erence between the modes frequencies: 2 FSR for Fig. 2.10.
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Figure 2.10: Time trace of a multi-mode laser soliton compared with the non-lasing one.

Left: A two-mode LCS; the oscillating period correspond to a beat note between two modes

distant twice a FSR; the bistability region is 222.6 < I1 < 222.9 mA for I2 = 4.3 mA. Right:

a multi-mode LCS that presents intensity dropouts as if it had switched o� and then on

again; insert is a zoom of the �rst dropout; I1 = 252.5 mA and I2 = 0.6 mA.

Two-mode LCSs aren not very robust, the two-mode operation is often a transient

regime: it occurs upon variation of the current I1 within the bistability region like

the multi-mode regime that we discussed previously (for CS2 in Fig 2.5). It is

anyway possible to get LCSs that switch on in two-mode operation and that keep
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the same modal behaviour for all the bistability range, even for several realizations.

But in these cases the stability range is very narrow (tenths of mA) as the example

displayed in Fig. 2.10.

Multi-mode operation is more frequently observed. This means that, when not �at,

the power spectrum often shows more than one peak like CS2 in Fig. 2.7. We no-

ticed that the position and the number of peaks �uctuates, there is thus a sensitivity

to parameter variation and to external perturbations.

The time trace do not show neither periodic pulses (phase locked regime) nor a

completely constant emission (antiphase competition). It presents complex �uctua-

tions around the single mode LCS intensity that are due to multi-mode interference.

Moreover the temporal dynamics presents intensity dropouts as if the structure had

switched o� and then switched on again (Right hand side of Fig. 2.10). A zoom

of one dropout is displayed in the insert. The residence time in the o�-state last

around 50 ns and it is followed by the emission of series of pulses that bring the

system to the on-state. This transient is analog to the transient of the switch-on

process of LCS that have already been studied [Genevet 2009b, Genevet 2009a]. As

the parameters approach the lower edge of the bistability region (i.e. close to the

switch o�), the frequency of dropouts increases as well as the residence time. The

phenomenon could be inserted in the framework of noise-driven dynamics in bistable

systems. This regime, however, was not matter of additional studies.

2.3 Mutual coherence

Another characteristic of laser cavity solitons that arose from previous works is the

mutual incoherence. Thus they are independent micro lasers originated on the same

device [Genevet 2010c]. The demonstration is illustrated in Fig. 2.11. Structures
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Figure 2.11: Spatial intensity distribution of the near �eld from the main arm of the

interferometer (a). Laser solitons 1 and 2 have just switched-on. When the other arm of

the interferometer is opened, 1 and 2 interfere with themselves (b), but not between each

other: 2 and 1'(c). I1 = 199.1 mA, I2 = 11.1 mA.

1 and 2 are coherent because in the interferometer we observe well contrasted

fringes when they interfere with themselves 2.11(b). But when one structure is
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superimposed to the other one, we do not observe any �nges 2.11 so they are

not mutually coherent. The possible reasons of the observed mutual incoherence

are essentially two: (i) the lasing frequency is di�erent, (ii) the frequency is the

same but the phase is uncorrelated. Obviously (i) does not exclude (ii) and vice

versa. For both cases the interference fringes between the two solitons would not

be stationary and so they would be washed out by the integration time of the

camera. In order to investigate for which reason two di�erent solitons do not

interfere, we analyzed LCSs properties for di�erent system con�gurations. We call

a con�guration, a particular position of one resonator respect to the other.

We remind that localized structures theoretically arise from a homogeneous

broad-area device which has translational symmetry, hence they can exist in ev-

ery point of the transverse plane of the system and no energy is required to move

them around (see [Ackemann 2009] for basic properties of localized structures). De-

spite that, in real systems the stable position of a localized structure depends on

spatial inhomogeneities. In VCSELs these inhomogeneities arise from �uctuations

during the epitaxial growth of semiconductor layers and they cause a local change

of the cavity resonance. Investigations about the role of defects can be found in

[Kuszelewicz 2000, Rosanov 2002, Caboche 2009].

In our system we have to deal with spatial defects of both the ampli�er and ab-

sorber. Hence we expect that the relative alignment of L1 and L2 will in�uence

LCS properties and position since di�erent regions of L1 are coupled with di�erent

regions of L2 (see subsection 2.3.2).

During our analysis we ended up �nding mutual coherent cavity solitons. In the

following subsections, we will investigate the reasons of non mutual coherence, and

we will study the the case of coherent and interacting solitons.

2.3.1 Incoherent solitons

The method that we have available to study interference between two independent

laser beams is the analysis of the power spectrum (heterodyne measurements). In

case of di�erent lasing frequencies, we expect to see a peak at the beat note, oth-

erwise in case of same lasing frequency we should see a broadening around zero Hz

corresponding to the convolution of the two laser line-widths.

Experimentally we split the output beam that goes towards D1 (see Fig. 2.1) in two

beams. The output beam should contain at least two cavity solitons. We select a

di�erent cavity soliton from each of the two beams by means of an iris. Eventually

we recombine the two solitons signals into the �bre-coupled detector.

We considered only the cases of supposed monochromatic solitons i.e. solitons whose

power spectrum was �at.

Our observations ended up to be more complicated than what we expected.

Even though the two individual solitons had a �at power spectrum, the heterodyne

spectrum could (i) show several peaks or (ii) none. In Fig. 2.12 we report an

example of the �rst case: the interference between two solitons shows two peaks
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in the power spectrum. The peak distance matches the free spectral range of the

external cavity while the �rst peak is at around 6.2 GHz that is thirteen times the

FSR. A reasonable interpretation is that one soliton is switching repeatedly from

one longitudinal mode to the successive one while the other soliton is lasing at a

fequency that is 6.2 GHz apart. The mode-switch is analogue to the antiphase mode

dynamics reported in [Tanguy 2008b, Yacomotti 2004].
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Figure 2.12: Averaged power

spectrum of the superposition of

two cavity solitons (average over

20 sweeps). Two beat frequencies

show up while the spectrum of the

single soliton is �at. This hints at

two modes competition dynamics

that had already been observed

in [Tanguy 2008b]. The intensity

step comes from the detection.

When the heterodyne power spectrum is �at, the two solitons could be lasing at

the same frequency but a broadening at zero frequency was not visible. Then we

looked at the optical spectrum. An example is displayed in Fig. 2.13. The peaks are

separated by 0.1 nm that corresponds to a frequency di�erence of around 30 GHz at

976 nm. Therefore the two structures are lasing at two very far longitudinal modes.

Since the detector bandwidth is 8 GHz, the beat note could not be perceived.
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Figure 2.13: Optical spectra corresponding to the two laser solitons in the near �eld

image on the right. Both optical spectra are obtained with a mono-mode �bre input. The

spectrum of structure 1 di�ers from the one structure 2 by 0.1 nm that corresponds to a

frequency di�erence of 30GHz.

In conclusion, our measurements demonstrate that, when the superposition of two

di�erent solitons do not show interference fringes, it is because their lasing frequen-

cies are di�erent or because at least one soliton undergoes mode switch. Besides, the

lasing frequency of one CS resulted to be several FSR apart compared to the lasing
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frequency of the other, so that the beat note was undetectable by our detection

system (detector plus spectrum analyzer).

Nevertheless we remark that in the optical spectrum shown in 2.13, the spacing

between the two peaks is bigger than the peak resolution of our OSA (60 pm).

Sometimes, on the contrary, the two peaks could appear separated by a quantity

smaller than the instrument resolution, thus making the measurements unreliable.

In these cases the hypothesis of the same lasing frequency with uncorrelated phase

should be reconsidered. Precise measurements of the optical spectrum by means of

a Fabry-Perot interferometer could clarify this point.

2.3.2 Coherent and interacting solitons

Theoretically and numerically the interaction and formation of bound states

was �rst studied in the case of slightly overlapping localized structures. In

[Vladimirov 2001], the authors show that stable bound states can be formed if the

phase di�erence between the two localized structures is 0 or π. We demonstrated

experimentally the existence of two humps structure that exhibits phase locking or

a phase mismatch of π between the two humps [Genevet 2010c], as illustrated in

Fig. 2.14.

(a) (b) (c)

Figure 2.14: (a) Near �eld intensity distribution showing a two-humps cluster coexisting

with a single hump laser soliton. I1 = 212.9 mA, I2 = 7.5 mA. (b) Interference pattern of

the (a) with a reference beam obtained from one of the two humps of the cluster. Fringes

appear over all the cluster and they look continuous, indicating that the two contiguous

solitons are coherent and locked in phase. (c) Same as in (b) but for I1 = 213.7 mA. White

(dark) fringes become dark (white) when passing from one hump to the other, indicating

that the two contiguous solitons have a π phase di�erence.

Here we focus our attention on interaction between laser solitons whose distance is

greater than their diameter.

Numerically, phase-mediated interaction among laser solitons has been shown in a

semiconductor laser with saturable absorber [Vahed 2011]. Since the phase pro�le

is much broader then the intensity pro�le, the interaction can occur at distance

much greater than the soliton intensity diameter. The interaction depends on
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the initial distance and results in an adjustment of the soliton relative position

and a phase locking. Authors show that for a certain range of initial distances,

the relative phase oscillates around a π value. For larger distances, the phase is

completely locked at 0 value.

In real systems though, solitons are not free to move around, they are pinned on

defects. In the cavity soliton laser with frequency selective feedback, frequency

and phase locking have been studied both numerically and experimentally taking

into account the pinning role of defects [Paulau 2012]. Defects induce a shift in

LCS frequency since they a�ect the cavity resonance. In [Paulau 2012], it is shown

that LCSs lock by an Adler mechanism. The locking phase depends on the relative

detuning between the two solitons, for equal defects (zero detuning), it is π.

In Fig. 2.15, six di�erent near �eld images of the ampli�er L1 for which the LCSs

properties have been studied are depicted.
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Figure 2.15: Near �eld images of the ampli�er L1 (red circle) for di�erent relative align-

ments of the absorber L2 (black circle). Dotted lines on L2 are the main defects of the

absorber (visible in Fig. 2.2). Since the alignment is di�erent, the parameter region for

bistable LCS slightly changes: (a) I1 = 191.1 mA, I2 = 11.1 mA (b) I1 = 197.8 mA, I2 =

11.2 mA (c) I1 = 202.6 mA I2 = 11.1 mA (d) I1 = 195.9 mA I2 = 10.8 mA (e) I1 = 187.7

mA, I2 = 11.1 mA (f) I1 = 206.9 mA, I2 = 11.2 mA. Yes and No tags tell if at least two

structures are coherent.

They correspond to six di�erent alignments of L2 (black circle) respect to L1 (red

circle). The system can work as a cavity soliton laser only in the areas where the

two lasers are superimposed.
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First of all, we notice that the structures appearing in the near �eld have approx-

imately the same position respect to L1. For example the three solitons (labeled

1, 2, and 3) in the con�guration (c) can be found also in (d), (e) and (f) while in

(a) and (b) we see only two of them. This means that the inhomogeneities of the

ampli�er have a predominant role in choosing the position of the cavity solitons.

On the other hand, we will show that the coherence properties of the solitons

are in�uenced by the big spatial defects of L2 (see dashed lines in Fig. 2.15).

In fact, even though the distance between the solitons 1, 2 and 3 of Fig. 2.15

is short enough that one could expect a phase-mediated interaction3, only two

LSs are mutually coherent in each con�guration of Fig. 2.15 except con�guration

(b), where the two LSs are incoherent. In this con�guration, we notice that the

structure 1 lies on a defect line of L2 while the structure 3 is not. Because of the

big defect, the characteristics of the system may vary signi�cantly through the two

solitons positions. This variation could prevent interaction and synchronization

[Paulau 2012]. Two solitons in the same positions (1 and 3) but in con�guration

(e) are mutually coherent. In this case the defects on L1 that give rise to the

solitons are coupled with a part of L2 that is rather homogeneous. The interaction

between solitons is then possible. In (a), (c), (d) and (f) the solitons, which are

mutually-coherent, are the ones labeled 1 and 2. They either lie on the same defect

line (c,f) or in between two lines (a,d).

We studied the phase relationship between coherent LCSs. In order to do that

we modi�ed the set-up in such a way that we could measure the far �eld of the

two coherent structures in analysis. We found phase di�erences of either π or 0.

Examples are shown in Fig. 2.16 and Fig. 2.17.

The �rst one corresponds to con�guration (e) of Fig. 2.15. In panel (a) we observe

the near �eld of two LCS. The interference (b) between the near �eld and the

expansion of the soliton on the bottom displays fringes on both structures which

indicates mutual coherence. The two lobes with a central minimum in the far �eld

(c) demonstrates the π di�erence between the two LCSs.

Fig. 2.17 corresponds to con�guration (c) of Fig. 2.15. The near �eld in panel (a)

displays three LCSs. The interference (b) shows that only two of them are coherent.

From the far �eld (c) we deduce that the two coherent solitons are locked in phase.

We believe that, di�erently from the case of phase mediated interaction described in

[Vahed 2011], the value of the phase locking (0 or π) does not depend on the distance

between the position of the localized structures, since the two interacting structures

in Figs. 2.16 and 2.17 can show both values of phase locking. We also observed

a switch from 0 to π that followed a small parameters change or a mechanical

perturbation.

Another kind of long-range interactions that can not be explained by the previ-

ously described mechanisms (phase mediated and Adler synchronization) have been

3We remind that the phase pro�le of a CS has a diameter that is three times the one of the

intensity pro�le. Thus a long-range interaction between two di�erent CSs is expected when their

distance is short enough for their phase pro�les to overlap.
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(a) (b) (c)

Figure 2.16: Spatial intensity distibution of the near �eld where two localized structures

appear (a). (b) Interference between the near �eld and a reference beam obtained from

the structure on the bottom. The fringes appear over both structures indicating that they

are coherent. (c) Far �eld of both structures. The presence of two lobes with a central

minimum indicates an antiphase locking I1 = 186.3 mA, I2 = 9.9 mA

(a) (b) (c)

Figure 2.17: Spatial intensity distibution of the near �eld where three structures appear

(a); (b) interferogram of the near �eld and the expansion of the structure on the bottom

left hand side. Fringes appear also on the structure on the right hand side, indicating that

it is coherent with the structure on the bottom. (c) far �eld of both structures. The central

maximum indicates that the two structures are locked in phase. I1 = 204.9 mA, I2 = 11.1

mA.
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observed. It becomes evident at the switch of localized structures: the switch of a

localized structure could induce the switch of a close one. In Fig. 2.18 we report

a sequence of near �eld images where we control two cavity solitons by means of

an external writing beam. In (a) the system is in the nonlasing state (white area).

In (b) a writing beam is applied to create a laser soliton. Surprisingly another

structure about 30µm below the writing beam switches on at the same time (within

the integration time of the CCD camera). When the writing beam is moved away,

both laser solitons persist, which indicates their bistability. When the control beam

is moved back (d) and then removed (d), the soliton is switched o� while the one

below remain on, which demonstrates their independence.

Figure 2.18: Near �eld intensity distributions in bistability parameters region. When the

system is in the nonlasing state (white area in frame (a) ), a perturbation applied in a certain

location (b) can nucleate two localized structures which persist when the perturbation is

moved elsewhere in (c). When one localized structure is destroyed (d), the other one persists

(e) .

A similar mechanisms can be observed in the switch-o�. Fig. 2.19 illustrates the

temporal dynamics of a portion of the near �eld that includes two structures sepa-

rated by about 30 µm. The time trace starts from a constant value equal to twice the
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Figure 2.19: Temporal dynamics of the output power corresponding to an area of the near

�eld which includes two cavity solitons. Both solitons exhibit a dynamics analog to the one

depicted in the right hand side of Fig. 2.10. Moreover the dropouts are synchronized: First

CS2 switches o� and then CS1 switches o� after 100 ns ) .

single cavity soliton intensity. Then the global intensity drops down towards zero

in two steps and subsequently comes back to its original value. The value reached

after the �rst step corresponds to the single CS intensity. Therefore we are observing

two structures presenting intensity dropouts as the ones that we have already seen
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in Fig. 2.10 and whose dropouts are synchronized. The intensity of the structure

that we called CS1 drops down after 100 ns after the switch-o� of CS2. The two

structures also re-switch on together but we can not recognize a delay time from

these data because of the switch-on transients. A typical switch-on transient last

few hundreds of ns. So when two of them overlap, they are impossible to distinguish.

2.4 Conclusions

In this chapter, we have experimentally investigated the properties of laser localized

structures arising in mutually coupled semiconductor resonators in a laser with

saturable-absorber con�guration. Mode hopping and phase hopping induced by

small �uctuations of the system parameters have been observed. We also report on

observations of multi-mode localized structures.

Interactions between di�erent structures have been studied. Interferometric

measurements show that LSs can be either mutually incoherent or coherent.

On the one hand, we found that two localized structures result mutually incoherent

because they have di�erent frequency emission or because one of them continuously

jumps from one mode of emission to another one (mode hopping).

On the other hand, two structures result mutually coherent because they emit on

the same dominant frequency, and a well-de�ned phase relationship is established

between them. Our measurements of phase coupling in clusters revealed a in-phase

or an anti-phase locking between the two structures of the cluster, which ful�ll

the theoretical predictions. The same in-phase and anti-phase locking has been

measured between two separate localized structures.

We believe that the spatial inhomogeneities of the system play a crucial role in

this long range interaction. Infact, the mutual coupling occurs when the pinning

position of the two structures are close enough for their phase pro�les to overlap

provided that the pinning sites are located on the same defect or in a homogeneous

region of the space.

We remark another long range interaction: the switch-on and the switch-o� of

one structure can be induced respectively by the switch-on and the switch-o� of a

neighbouring one.
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An external perturbation is essential to investigate the features of a dynamical

system. In a bistable system, a perturbation can make the system switch from a

state to the other, while in excitable system, if a certain threshold is overcome, it

causes a deterministic response of the system that eventually comes back to the

original state.

An appealing feature of cavity solitons is the bistability: the CS state and the homo-

geneous background state are stable for the same region of parameters. An external

perturbation can switch a CS -on or -o� provided that it is stronger than a certain

threshold. The threshold is �xed by the unstable branch of the CS solution which

connects the stable background and the stable CS branch.

The control of CSs is fundamental for applications. The switch-on and switch-o�

duration determines the speed at which information can be written and processed.

Because of their rapid response, semiconductor devices may allow for fast manip-

ulations of cavity solitons. For this reason, the switching of CSs in semiconductor

devices has been object of several studies. The switching techniques that have been

proposed may di�er according to the considered system.

In semiconductor microcavities with coherent injection (holding beam HB), two

kinds of switching techniques had been studied: coherent and incoherent. In

the coherent switching, part of the HB is used as a control beam [Barland 2002,

Hachair 2004]. The control beam is locally injected in phase or out of phase in
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order to write or erase the CSs. In the incoherent one, the perturbation does not

have a stable phase relation with the HB and it acts, as an additional localized

pumping, on the population inversion. Experimentally it was realized in optically

pumped devices [Barbay 2006]. From a numerical point of view, both methods were

analyzed [Brambilla 1996, Michealis 1998].

In cavity soliton lasers, phase, polarization and frequency are not �xed by the HB

and therefore they are chosen freely by the system. The switching methods that

have been proposed for cavity solitons laser can be called semi-coherent and inco-

herent. The principle of the incoherent switching is the same described above, while

the semi-coherent consists in a perturbation of the electric �eld by the injection of

an external laser beam whose phase is independent of the phase of the system.

The di�erent techniques are described and compared numerically in the case of

a VCSEL with intracavity saturable absorber in [Mahmoud Aghdami 2008]. Ex-

perimentally in an optically pumped monolithic VCSEL with intracavity saturable

absorber [Elsass 2010b] solitons were repeatedly switched-on and -o� at a repetition

rate up to 80 MHz by incoherent switching. In our system, it has been shown that

the switch-on occurs with a long transient (hundreds of ns) [Genevet 2008] that

decreases upon reduction of the external cavity length. This transient limits the

rapidity of our system compared to monolithic one.

Other theoretical and experimental studies on lasers with saturable absorber but

without spatial degrees of freedom have demonstrated that a LSA can exhibit ex-

citable behaviour [Dubbeldam 1999, Plaza 1997, Larotonda 2002, Barbay 2011].

The excitability is observed by applying an optical perturbation when the pump

parameter is such that the non-lasing state is stable and the lasing state unstable

and close to a transition to a self-pulsing regime.

We are going to apply a short optical perturbation in the bistability region in order

to investigate the switch dynamics of CS. Moreover a perturbation is applied also

for parameters below the bistability region where the non-lasing solution is stable

and the CS solution is not. The aim is to investigate the possibility to �nd local

excitable behaviour i.e. excitable localized structures.

3.1 Experimental Set-Up

In �gure 3.1 a scheme of the setup with the injected laser is depicted.

The perturbation should be by preference shorter then any system-variable typical

response. We �rst generated sub-nanosecond pulses by gain switching of a 10 mW

power edge emitter laser diode. But the pulse energy wasn't enough to solicit a

response from our system. Eventually the laser (LD in 3.1) that we used to generate

the perturbation is a 100 mW edge emitter. Its current is modulated (MOD in

Fig.3.1) with a pulse sequence provided by a waveform generator. The minimal

duty cycle achieved is 0.1% of the sequence period plus 0.2 % of rise and fall time.

Because of the big impedance of the LD, the minimal pulse duration that we could

achieve is about 15 ns.
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Figure 3.1: Schematic of the experimental set-up. The physical system is encircled in red

and it is already been described in chapter 2. The control beam is generated by an edge

emitter laser diode (LD) that has been modulated in current (MOD); LD emission frequency

can be tuned twisting a mirror that couples LD and the di�raction grating (G); OI, optical

isolator; TA tapered ampli�er; CL, cylindrical lens to correct the beam astigmatism; HWP,

half wave plate.

The wavelength emitted by LD is λWB = 982 nm. Since the usual wavelength of CSs

(λCS) that switch on spontaneously in our system is around 976 nm, a di�raction

grating is added in front of LD in order to tune its laser frequency in the proximity

of λCS . The switching process is very sensitive to the perturbation wavelength as

we will see below. The half wave plate highlighted in the scheme 3.1 allows us to

change the polarization of the writing beam from parallel to orthogonal respect to

the CS's one.

The injection is done on the absorber L2, in such a way that the perturbation pulse

could locally saturate the absorption and start the lasing process. The same method

is used in [Taranenko 1997, Genevet 2008]. The switching process is monitored

through the fast detectors: D1 and D2, the iris selects the area of interest. We remind

that D1 sees the system output coming from the ampli�er L1 while D2 detects the

radiation coming from the absorber L2. The control beam is injected locally in the

absorber through re�ection on the BS. During the injection D1 receives the part of

the pulses that is transmitted (60% or 80% according to the polarization) by the BS

and that didn't enter in the system. After one round trip time from the beginning
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of the injection it also starts receiving the e�ects of the injection on the system:

the beam re�ected on BS goes in L2 then it is transmitted to L1 and eventually

re�ected on the BS to go towards D1. Since the pulse duration is of the order of

tens nanoseconds and the round trip time is 1.8 ns, the injected beam and its e�ects

on the system overlap on D1. However, the system response is much weaker than

the injected pulses because of the BS transmission-re�ectivity ratio.

On the other hand D2 receives only the system response to the injected pulses.

The signal in D2 has a delay of 3.5 ns compared to the signal in D1 because of the

optical path di�erence from the output BS to the �bre-coupled detectors. Moreover

it is much weaker because of the two beam-samplers which the output beam passes

through before reaching D2. In Fig. 3.2 and 3.3 we show an example of the signal

detected by D1 and D2, during a switch-on event. In the �rst �gure λWB is not tuned

Figure 3.2: Example of temporal signal detected by the two detectors during an injection

event when the feedback from the grating is cut. At the beginning the system is in the

non lasing state, D1 (top) and D2 (bottom) detect the local system output (zero intensity).

When the perturbation is injected (dashed blue lines), D2 detects the e�ect of the pertur-

bation on the system while D1 sees the injected pulse together with the response of the

system. In this case this perturbation is not e�ective and after the injection, the system is

back to its initial state.
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(the feedback from the grating was removed) while in the second one λWB ≈ λCS .

The signal in D2 has been shifted to compensate the delay and re-scaled in such a

way that it is at the same level of the signal in D1 when both detectors look at the

same cavity soliton. The spontaneous emission background is set at zero in both

signals. At the beginning the system is in the non lasing state, D1 and D2 detect

the local system output (zero intensity).

When the grating is removed, the writing pulse is not e�ective and the system stays

in the non-lasing state after the injection (blue dotted lines in Fig. 3.2). The injected

pulse (visible in D1 trace) has a square shape. Relaxation oscillations are visible at

its onset. The e�ect of this not tuned pulse on the system is almost imperceptible

(see D2 traces between the blue dotted lines).

On the other hand, if the injected pulse is appropriately 1 tuned (Fig. 3.3), the
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Figure 3.3: Example of temporal signal detected by the two detectors during one injection

event when the injected pulse is tuned in proximity of the CS wavelength. The smoothed

trace is overlapped (black line). At the beginning the system is in the non lasing state,

D1 (top) and D2 (bottom) detect the local system output (zero intensity). When the

perturbation is injected (dashed blue lines), D2 detects the e�ect of the perturbation on

the system while D1 sees the injected pulse together with the weak response of the system.

After the injection, a localized structure is switched on.
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intensity grows in D2 during the injection. After the injection, the output power

undergoes to fast oscillations (grey trace) before reaching the stable LCS value. This

switching transient last for around 250 ns and it is also visible in the trace D1. In D1

we also observe that the injected pulse (grey trace between the two blue dotted lines)

shows a complicated fast dynamics due to feedback instabilities from the grating.

The black lines are the �ltered traces (frequencies up to 1 GHz); the �lter will be

used in the next sections in order to better identify the instant at which the switch

occur. A tapered ampli�er (TA in Fig. 3.1) was added in a second time in order to

amplify the perturbation and to explore the system response upon variation of the

injected power.

3.2 Switch-On

In this section we investigate the in�uence on the switch-on dynamics of the writing

beam (WB) parameters, such as wavelength and power and polarization. In partic-

ular we focus our attention on the critical energy for the switch to occur and on the

switching time i.e. the delay between the rise of the injected pulse and the rise of

the CS.

Because of �uctuations in the injected pulses (due to feedback instability) we de-

cided to perform several realizations for the same injection and system parameters

and to study the average behaviour. We analyze series of at least �ve hundreds

switch-on events for di�erent WB wavelengths and powers.

The system is prepared in the nonlasing state in the bistability region. The WB is

addressed where a CS is known to arise pinning on a defect. The writing pulses are

�red with a period of 2 ms. In order to bring back the system to the non-lasing state

after a switch-on event, the current of the ampli�er I1 is modulated synchronically

with the WB in such a way that it drops down below the bistability region some

hundreds of microseconds after the injection. The delay between the modulation

dropout and the following WB injection is chosen long enough to allow the stabi-

lization of the system parameters.

In our analysis we distinguish successful switches from unsuccessful ones. A switch-

on event is unsuccessful when the system remains in the non-lasing state after the

WB injection, it is successful when the intensity grows and reaches the CS's value.

Among the successful switches we also count CSs that are switched-on and that

spontaneously switch-o� after some time. The reasons of the spontaneous decay of

the excited CSs will be discussed later in section 3.4.

The studies concerning wavelength and power are carried out by using a WB with

orthogonal polarization respect to the CS. The WB wavelength is adjusted by tilting

the mirror that couples LD to the grating while the pulse power is controlled with

the pump current of the TA.

A comparison between on-switches with orthogonal and parallel polarization is dis-

cussed in the last subsection.

1Discussion about the frequency tuning of the control beam will be broached in the next sections
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3.2.1 Writing beam wavelength

The injected wavelength turned out to be critical for the switch-on to be successful.

This criticality comes from the decision to keep the injected pulse duration as short

as possible (below twenty nanoseconds) and from the constraint imposed by the

maximum power2 available (5 mW). In these conditions, the best results in terms

of success rate (i.e. the number of successful on-switches over the total number

of events) are obtained for WB wavelengths blue tuned of few tenths of nanometer

compared to the CS's one. For longer pulses (microseconds) so for higher energies, a

successful switch was possible for di�erent wavelengths within a broader bandwidth

around λCS (about 1 nanometer which is the resonance width of our devices).

The e�ect of the frequency detuning between the WB and the CS on the switching

is rather complex and also di�cult to measure because of the long realization time

during which the system parameters might drift3. In the following, we will show

some measurements that will illustrate the main consistent e�ects.

In Fig.3.4 we measure switch-on events at the maximum pulse power for two di�er-

ent wavelengths in order to directly compare the system response. The time traces

acquired by the two detectors are displayed.
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Figure 3.4: Superposition of �ltered time traces detected by D1 (upper row) and D2 (lower

row) corresponding to switch-on events at two injected wavelengths. Right column: �fteen

hundreds WB pulses at λ = 975.93 nm (D1), 15 of which were successful (D2). Left column:

�ve hundreds WB pulses at λ= 975.56 nm (D1), 257 of which were successful (D2). λCS =

975.95 nm.

2 We consider the injected power as the power re�ecting on the beam splitter and e�ectively

reaching L2.
3The spontaneous switch-on threshold occurs for lower bias of the ampli�er I1 as the experiment

is repeated several times. The e�ciency of the WB pulses is sensitive to how far I1 is from the

threshold value. Moreover the I1 value determines the cavity resonance. These two elements have

an in�uence on our measurements.
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In the top row we show the superposition of all the injection events detected by

D1; in the bottom row, we report only the successful events detected by D2. One

wavelength matches λCS (left column) within the resolution of the optical spectrum

analyzer (60 pm), the other is 0.4 nm blue tuned respect to λCS(right column). The

success rate is much bigger for blue tuned WB. When the WB wavelength matches

the CS's one, the success rate is only 0.01% while when it is blue tuned the success

rate is of 0.51%.

We also observe that the peak power of the blue tuned injected pulses is slightly

lower than the peak power of pulses at the wavelength of the CS. But the corre-

sponding peaks in D2 do not keep the same proportionality: the peak power of

pulses at CS wavelength is twice the peak of the blue tuned ones. This means that

the re�ectivity on L2 is lower for the blue tuned wavelength. In appendix A we

report on a device analogous to a VCESL below transparency: the resonance sat-

urable absorber mirror (RSAM). Its spectral re�ectance curve (Fig. A.2) shows that

the re�ectivity reaches the minimum value at resonance. Hence we can conclude,

from the observed di�erence in the re�ectivity, that the cavity resonance of L2 is

blue-tuned respect to the cavity soliton frequency. For a di�erent con�guration, we

have tried to switch on a CS with three di�erent wavelengths: the CS one (λ1) and

two blue tuned ones (λ2,3). The corresponding optical spectra together with the

nonlasing state and CS spectrum are depicted in Fig.3.5.

Figure 3.5: Optical spectra.The

homogeneous nonlasing background

(BG) spectrum (dotted line) is

broader that the laser cavity soliton

(CS) spectrum (solid line). Switch-

on events have been measured for

three di�erent writing beam (WB)

wavelengths: λ1,2,3 (dashed line).

Before the injection, the system is in the nonlasing state, the spontaneous emis-

sion spectrum is broad (doted line) compared to the laser CS spectrum (solid

line) and the CS peak wavelength is red tuned compared to the non lasing hump

(around 975.8 nm) still visible in the CS spectrum (con�rming what observed in

[Genevet 2008, Genevet 2009a]) .

The switch-on of a CS was possible for the wavelength that matches λCS (λ1) and

for the most blue tuned one (λ3) but not for intermediate case (λ2) (spectra corre-

sponding to the three di�erent WB pulses are drawn in dashed lines).

The success rate is again higher for the blue tuned pulses which means that the

threshold for the switch to occur is lower. Our observations are in agreement with
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experimental studies about the wavelength in�uence on the switch-on process re-

ported in [Tanguy 2007, Radwell 2010]. In these works the authors show that the

minimal threshold occurs when the WB is about 0.1 nm blue tuned and that this

wavelength corresponds to the cavity resonance.

Moreover the fact that the writing pulses at λ2 are not e�ective suggests that the

detuning should not be smaller than a certain amount (0.1 nm in the case of Fig.3.5).

3.2.2 Writing beam power

For each wavelength of Fig.3.5 we acquire series of �ve hundreds switch-on events

for di�erent writing pulse powers in order to �nd the minimal energy necessary

for the switch and to study the evolution of the switching time. The pulse power

is controlled by the bias current of the tapered ampli�er (TA). In the following

we show the results for λ3 which is the wavelength that allowed for higher success

rates.

The average pulse duration is 15.5±0.4 ns.

For low current of the TA, i.e. for weak writing pulses, the system stays in the

non-lasing state after each WB pulse. As the average pulse power increases, some of

the pulses begin to be e�ective and they bring the system to the high power state:

the LCS. For values of the current between 1.3 and 1.4, the number of successful

events increases abruptly from 30% to 80% (see Fig.3.6). We locate the threshold
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Figure 3.6: Switch-on success rate as function of the bias current of the WB ampli�er.

The success rate is calculated over 500 WB pulses whose length is dt = 15.5±0.4 ns.

for the switch between these two values. In energy, the threshold is about 25 pJ.

For higher value of the current, the success rate is very close to one.

Fig.3.7 shows the superposition of successful switch-on events together with the

respective switching-times histogram for three di�erent value of Iamp: 1.3 A (top),

1.5 A (centre), 1.6 A (bottom).

In average, the CS switches on in a shorter time as the injected power increases.

This is in qualitative agreement with the phenomenon of non-critical slowing down.

Besides the switching-time distribution shrinks although the uncertainty keep being

quite high: of the order of ten ns.
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A possible contribution to the spread of the switching-time distribution could come

from the local heating of the device caused by the WB. Thermal changes are very

sensitive to noise and they induce a slow displacement of the hysteresis cycle that

would a�ect the threshold of the switching process as it has already been observed

in [Barbay 2006].
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Figure 3.7: Overlapping of successful switch-on events at λ3 for three di�erent WB ampli-

�cations (left) and corresponding histograms of switching times (right). The switching-time

is the time delay between the beginning of the injected pulse and the instant at which the

power reaches half of the CS power. Top: Iamp = 1.3 A, success rate is 32% . Centre: Iamp

= 1.5 A, success rate is 93%. Bottom: Iamp = 1.6 A, success rate is 96%.

In order to analyze the switch-on mechanism, we interrupt the coupling between

L1 and L2 by putting an obstacle in the middle of the cavity and we study the

re�ection of the writing pulses on the mere absorber L2. We measure series of �ve

hundreds pulses for the same WB ampli�cation used to switch-on in Fig.3.6. A

schematic of the experiment with the beams involved is drawn in the left hand side

of Fig.3.8. In order to calculate the re�ectivity we calculate the injected pulse en-

ergy EIN and the re�ected pulse energy EOUT, using the full bandwidth time traces

i.e. taking into account the fast dynamics of the injected pulses.

The energy of the injected pulse can be worked out from the signal D1 while the

re�ected energy can be worked out from D2, given the re�ectivity and transmission

of BS (R,T).

We calibrate the signal detected by D1 and D2 in such a way that they correspond

to the power measured just after the BS as in the schematic. The calibration for D1

is trivial because we can easily measure the transmitted power of WB. While the

calibration of D2 is done when the system is working as a CSL, by measuring the

power corresponding to the CS and to the background.

In the right hand side of Fig.3.8 we report the re�ectivity of L2 as function of the

average input energy. Here the re�ectivity is calculated as the average of the ratio

of output energy to input energy. The error-bars corresponds to the standard devia-

tion.As we can see in appendix A, re�ectivity in RSAMs is linked to the absorption
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Figure 3.8: Left: schematic of the method used to measure the response of L2 as function

of the WB energy for the same parameter as in Figs. 3.6 and 3.7; I2 = 3.6 mA, dt = 15.5±0.4

ns. Right: average re�ectivity of the absorber L2 as function of the injected energy. The

error-bars correspond to the standard deviations.

saturation. The measured re�ectivity of L2 shows the e�ects of the nonlinear ab-

sorption since it is not constant: it passes from 8% to 15% as the injected energy

increases. Moreover if we compare the trend of the right hand side of Fig.A.2 with

our data Fig.3.8, we observe that our data behaves qualitatively as the RSAM re-

�ectance for low injected intensity.

We can conclude that the e�ect that our WB pulse has in the switching process is to

partially saturate the absorption of L2. However the contribution of thermal e�ects

can't be completely excluded.

3.2.3 Writing beam polarization

All CSs that we have analyzed are p-polarized. Two causes contribute to favour

one speci�c polarization over the other. One is the fact that the beam-splitter

which couples L1 and L2 has a lower re�ection coe�cient for p-polarized light than

for s-polarized, which makes the p-polarized radiation experience less losses. The

other one is the birefringence of the VCSELs. Birefringence is the frequency split

of the two orthogonally polarized modes which, together with the frequency de-

pendence of the gain and absorption, makes the two orthogonally polarized modes

experience a di�erent net gain. In VCSELs the birefringence is small: 5-10 GHz

[van Exter 1997, Ackemann 2001].

The polarization of the writing beam is not crucial for the switch but it has an in-

�uence on the necessary switching energy and on the resulting switching-time. This

subsection aim to evaluate the threshold di�erence.

The polarization of the WB can be changed by rotating the half wave plate pointed

by the arrow in Fig. 3.1. Before reaching L2, the WB is re�ected by two BSs.

Because of the dependence of re�ection coe�cient of BSs on the polarization the

WB power e�ectively injected in L2 changes as the HWP is rotated. From the
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known values of the re�ection coe�cients of the beam splitters, we can estimate

that the injected power for p-polarized WB is one fourth of the injected power for

s-polarization.

In �gure 3.9 we show a superposition of switch-on events for the same experimental

conditions except for the HWP orientation. The ampli�cation of the WB is set at

the maximum level (Iamp = 1.7 A) and the detuning of the WB respect to the CS

is the optimal one for this case: λWB = 975.82 while λCS = 976.02 nm.

The signal from D1 is normalized according to the transmission and re�ection co-

e�cients of the BSs which the WB pass through, so that it �nally represents the

injected signal EIN (top row). The injected pulses for s-polarized WB are about

four times bigger than the p-polarized pulses which matches our expectation. De-

spite the weaker injection, for p-polarization 100% of switch-on events are successful

while for s-polarization WB the 90%. The �ltred time traces corresponding to the

successful events are displayed in the bottom row of Fig. 3.9. The vertical dashed

line in the bottom �gures represent the injection time.

For what concerns the switching time, we observe that it is shorter and more de�ned

in the p-case (around 20 ns) while in the s-case, CSs start rising within a large time

interval: between 20 and 80 ns.

���

���

Figure 3.9: Superposition of time traces corresponding to full bandwidth signal of the

injected pulses EIN (top row) and to the �ltered successful switches detected by D2 (bot-

tom row). Switch-on is performed for two WB polarizations: p-polarization (left) and

s-polarization (right); the injected wavelength is λWB = 975.82 nm; the system parameters

are I1 = 309.1 mA and I2 = 10.6 mA; λCS = 976.02 nm.

The success rate of the p-polarized switching remains quite high even decreasing

the pulse ampli�cation. It reaches the same value that we have obtained for the

s-switching (90%) for Iamp = 1250 mA. For this ampli�cation current, the peak

power of the injected pulses is the 12% of the peak power of the s-polarized injected

pulses depicted in Fig. 3.9. Hence we can estimate that for p-polarized switching,

the threshold energy would reduce of the same amount. Since we found a threshold

of 25 pJ for s-polarized switching, we would expect to be able to switch on CSs with

few pJ using p-polarized switching at the same wavelength.
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3.3 Switch-O�

In order to have a complete control of LCSs, once we have written them, it is

important to be able to erase them. As we did for the switch-on process, we will

study the parameters of the injected beam that allow to optimize the switch-o�. Five

hundreds injections are acquired for each set of parameters. The optimal conditions

previously found do not apply in the switch-o� process: p-polarized blue tuned

pulses are not e�ective on the CS. However, once again, the wavelength is very

important: the pulses must be as close as possible to the CS wavelength. In this

case the CS is a�ected by the perturbation and its intensity drops down. For a given

perturbation power, the e�ectiveness of CS switch-o� depends on the distance, in

terms of parameters, from the spontaneous switch-o�. If we are far, the CS switches

on again after some time as we see in Fig. 3.10. In the case reported in the �gure,

the CS is bistable for values of 306.6 mA ≤I1 ≤ 311.1 mA and the erasing beam

polarization is orthogonal. The drop in intensity becomes deeper and the o�-time

is longer as the system get closer to the spontaneous switch-o� (I1 = 306.6 mA).

The complete switch-o� occurs for I1 = 307.1 mA. For longer perturbation pulses

Figure 3.10: E�ects of the erasing pulses on a CS for decreasing I1 within the bistability

region. Superposition of �ve hundreds events for I1 = 310.2 mA (top), I1 = 309.2 mA

(centre), I1=308.7 mA (bottom); I2 = 10.6 mA. The injected wavelength matches the CS

one.

the switching o� happens before (further from the switch-o� point i.e. for higher I1)

than for shorter ones. This means that the necessary energy to switch-o� decreases

with the proximity to the lower edge of the bistability region as expected; and that

with the available perturbation it is not possible to switch-o� a CS within all the

bistability region. We introduce a modulation in I1 that would switch-on the CS

again after every perturbation pulse, in order to evaluate the success rate and the

threshold for a given value of I1.

The best result was obtained for the maximum ampli�cation and for a value of I1
closed to the spontaneous switch-o�. The successful events are only the 10% of the

total number of realizations and they are displayed in Fig.3.11. The switch-o� is
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Figure 3.11: Superposition of successful switch-o� events for I1 = 303.1 mA, I2 = 10.6

mA. The CS bistability domain is 302.7 mA ≤I1 ≤ 307.1 mA. The success rate is 10%.

sharper than the switch-on and it does not show a multimode dynamics, the power

simply drops down to zero in 10 ns after the end of the erasing pulse (dashed lines).

3.3.1 Erasing beam polarization

The available perturbation seems to be inadequate to reach a high success rate and

so to evaluate an average threshold for the CS erasing. Nonetheless we compare the

e�ects of the perturbation when the polarization is parallel and orthogonal to the

CS' one (Fig. 3.12). We notice that for both polarization, the CS shows an intensity

Figure 3.12: Superposition of �ltered time traces corresponding to switch-o� events for

injection with parallel polarization (left) and with orthogonal polarization (right). The CS

that we try to switch-o� is the same of Fig. 3.10; the system parameters are the same: I1
= 310.7 mA, I2 = 10.6 mA.

dropout but it does not switch-o�. For parallel polarization only few erasing pulses

drop the power down to zero while for orthogonal polarization in most of the cases

the CS switches-o� and around 30 ns afterwards, it switches-on again.

3.4 Injection Below the Bistability Region

As we have seen in the switch-on section, from time to time a CS that is switched-on,

switches-o� spontaneously after some time. In this case, the observed CS lifetime4

goes from 40 to 350 ns (see time traces of Fig. 3.7).

The phenomenon can be described as an attempt to switch-on a CS that is unstable

4Time for which the system stays locally in the on-state
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or as the switch-on of a stable CS very close to lower edge of the its stability domain

(bistability region). In the �rst case the CS state is not fully attained and the system

comes back to the non-lasing state in a time shorter than the switching transient

(about 200 ns). In the second case, the CS state is reached but small perturbations

like noise can switch the CS o�. The lifetime shows then a stochastic component

(see time traces of Figs. 3.7, 3.9). These CSs could be laser solitons with a di�erent

frequency which have di�erent bistability domains and which result unstable for the

present system parameters. Observations of CSs lasing at di�erent frequencies and

having di�erent but overlapping bistability domains have been already reported in

[Genevet 2010b].

In this section we focus our attention on these CSs which exhibit a short lifetime

once they are excited. First, for a given perturbation, we evaluate the frequency of

these events as function of the pump parameter I1 and we compare it to the total

number of successful switches. Later, in the next subsection, we analyze in detail

the statistics of the switch-o� times for I1 below the bistability region.

In Fig.3.13, we report the total success rate (blue squares) and the fraction of the

successful switches that corresponds to CSs with a short lifetime (red circles). The

detected time-window for each event is 500 ns so CSs, that switch-o� spontaneously

after that time, are not counted. The used WB has s-polarization.
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Figure 3.13: Ratio of successful switches to the total number of events (blue squares) and

number of CSs that decay spontaneously over the switched-on ones (red circles) as function

of I1 for s-polarized injection. The CS bistability domain is marked by the black dotted

lines.

Within the bistability region (delimited by the vertical dotted lines), the success

rate (blue squares) passes from 90% to 20% as I1 approaches the lower edge. This

means that the energy necessary for the switching increases as I1 moves away from

the spontaneous-switching point. On the other hand the CSs with a short lifetime

(red circles) are a small constant fraction of the total number of successful switches.

Just below the lower bistability edge (I1 = 307 mA), despite the fact that the CS

solution is unstable, we observe an unexpected increase of the success rate. When

we remove the train of writing pulses the CS persists for a time of the order of tens
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of milliseconds and then it switches-o�. Therefore the presence of the perturbation

is responsible for the metastability observed in the CS. Given the time scale of the

decay time, this phenomenon could have thermal origins. When we are su�ciently

far from the bistability (for I1 = 302.3 mA in Fig. 3.13), the success rate decreases

again and almost the totality of the successful events switches-o� within our detected

time-window. So, in these conditions, the observed behviour can be better described

in terms of failed attemps to switch-on a state that is not stable. This is the regime

that we study in the following.

3.4.1 Looking for excitable LCS

In order to test the local excitable behaviour of our system below the CS stability

domain, we analyze in detail the temporal response to a short optical perturbation.

The applied perturbation is not ampli�ed so the injected pulse power is about one

tenth of the previously used maximum power. In order to be able to excite the

system response even at low power, the injected pulses are p-polarized, their duration

is increased (at least 20 ns) and their wavelength is tuned to have the best success

rate. The results reported below are obtained for λWB = 975.70 nm while λCS =

975.82 nm.

Furthermore the injected train of pulses have a strongly astigmatic spatial pro�le

as we can see on the near �eld monitored by the camera (inside the dotted area of

Fig.3.14). The horizontal dimension is larger than the pro�le of a localized structure,

while the vertical dimension is narrower. Despite its shape, that does not match the

CS one, the perturbation is able to trigger a response from the system. The time-

averaged pro�le of the response have the shape of a localized structure (Fig.3.14 b)).

Figure 3.14: Time-averaged near �eld for injection below threshold (dark areas correspond

to high intensities). The analyzed area is delimited by the dotted curve. The train of

injected pulses appears as a weak and astigmatic bright spot (a), when it is moved on the

known pinning position, it excites the response of the system that in average looks like a

CS (b). When the beam is moved away, the system comes back immediately (within the

integration time of the camera) to the nonlasing state. I1 = 260 mA, I2 = 4.6 mA.

We remind that the principal features of the excitability are:

• the existence of a threshold for the perturbation, below which the system

linearly responds;
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• once the threshold is overcome the system emits a deterministic nonlinear

pulse, which does not depend on the perturbation, before coming back to the

stable initial state.

We observe that our system reacts in two di�erent ways.

i) When the pulses are not strong enough or the wavelength is not properly tuned,

the system does not exhibit any visible response after the injected pulse (Fig. 3.15).

In the �gure we display the average of several time traces corresponding to this

kind of events. The average allows to extract the system response from the time

traces of D2 which have a low signal to noise ratio. The response of the system to

the injected pulse is linear, it acts qualitatively as a low-pass �lter: from a square

input pulse (D1), we get a triangular output (D2).

Figure 3.15: Average of hundreds of time traces acquired by D1 and D2 corresponding to

unsuccessful events: the system stays in the nonlasing state after the injected pulse (D1).

The system (D2) behaves as a low-pass �lter during the injection: from 0 to 20 ns.

ii) When the pulses are strong enough and well tuned, the system emits light after

the perturbation: the intensity grows and it returns back to zero after some time

(see an example on the left of Fig. 3.16). The number of successful events for a

given perturbation depends on how distant I1 is from the bistability region. On

the right hand side of Fig. 3.16 we show the success rate obtained with 20 ns long

pulses whose average power is 300 µW. The fact that the number of responses

increases abruptly from 20% to 100% demonstrates the presence of a threshold to

overcome in order to obtain a nonlinear response from the system.

The threshold-like all-or-nothing behaviour is demonstrated, the next step is to

investigate the return trajectory (the way by which the system returns to its initial

state) of the response. To this purpose, we analyze the �ltered time traces of all the

successful events for a set of parameters used to trace Fig.3.16 and we measure the

return time (see Figs.3.17 and 3.18). We observe that all the response amplitudes

are comparable with the CS one and that there are no events shorter than 100

ns. The measured on-state lifetime can go from the cuto� 100 to more than 800

ns (limit imposed by the detection time window). Nonetheless a deterministic
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Figure 3.16: Left: example of the full-bandwidth time trace acquired by D2, corresponding

to one successful event. The �ltered trace is superposed in black. Right: success rate (red

circles) calculated over 200 realizations for di�erent values of I1. The injected pulses have

a power of about 300 µW and p-polarization. The abrupt rise of the success rate as I1 gets

closer to the bistability region (dashed red lines), denotes the existence of a threshold in

the response mechanism.

component shows up: most of the responses last about 125 ns.

This typical pulse duration is much longer than the excitable pulse width measured

in a VCSEL with intracavity saturable absorber which is in the subnanosecond

range [Barbay 2011]. It is also far from the known time scales of the system

variables (of the order of nanoseconds for carrier lifetime). Its origin seems to be

linked to the switching transient of a CS. If we look at the full bandwidth time

trace in Fig.3.16, we notice that the dynamics is identical to the one observed in

the switch-on of a cavity soliton [Genevet 2009a].
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Figure 3.17: Superposition of time traces detected by D2 corresponding to successful

events. The system parameters are I1 = 260 mA, I2 = 4.6 mA.
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Figure 3.18: Histogram of the re-

turn time for the successful events

depicted in Fig.3.17; the time is

counted from the beginning of the

injected pulse until the instant

when the power drops down of half

the CS value.

3.5 Conclusions

We have demonstrated that we are able to switch-on and -o� localized structures.

The optimal beam characteristics ended up to be di�erent for the two processes.

Switch-on prefers p-polarized pulses with wavelength blue tuned compared to

the one of the structure that is addressed. Switch-o�, on the other hand, is

favored by s-polarization and a wavelength that matches the CS's one. The

switch-on process, at our best, takes twenty nanoseconds to start and about two

hundreds nanoseconds to be completed because of the dynamical transient while

the switch-o�, when successful, occurs in about twenty nanoseconds. The switch-o�

e�ciency could be a�ected by the lack of power. The maximum injected energy is

about 30 pJ for s-polarized pulses and about ten pJ for p-polarization. Moreover

in [Mahmoud Aghdami 2008] the authors show that the e�ciency of the switching

depends on the control beam size. The spatial pro�le of the injected beam shape

is hardly controllable experimentally. The di�culties encountered in the switch-o�

might be due to this constraint.

Besides we have studied the response of the system below the bistability region

and found some elements peculiar to excitability such as a threshold-like behaviour

and a certain determinism in the return trajectory (the way by which the system

returns to its initial state). Indeed the majority of the responses has a duration of

125 ns and none lasts for a shorter time.

Moreover, the spatial pro�le of the time averaged response matches the one of the

stable CS. These observations are encouraging experimentally excitable localized

structures. Although the mechanism leading to excitability has still to be clari�ed

as well as the presence of a stochastic component in some of the observed return

trajectories.

Numerical works about excitable localized structures in kerr cavities, show the im-

portance to apply a suitable perturbation. In a in�nite-dimensional system, ex-
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citability is found by applying a perturbation in a speci�c direction: the one the

unstable LS [Gomila 2007]. Thus, once again it might be the perturbation shape

that limits our results.
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Since the demonstration of their existence in spatially extended optical systems,

localized structures have been mainly studied in a context of bistability, in the inter-

est of using them as optical bits for parallel information storage and treatment. On

the other hand, excitability in optics has been observed and investigated in absence

of spatial degrees of freedom.

In contrast to all of these studies excitability mediated by localized structures has

been recently studied theoretically in a paradigmatic model for a nonlinear opti-

cal cavity with spatial dependence [Gomila 2005]. At the intersection between the

phenomena of nonlinear light localization and excitability, excitable localized struc-

tures o�er both the parallel mode of operation typical of localized states and the

threshold-like response of excitable systems. Thus, they open novel perspectives for

applications in information processing [Jacobo 2010]. They appear as well-calibrated

pulses of light which are localized in space and after which the system returns to its

initial quiescent state. In the case studied in [Gomila 2005], excitability arises from

the collision of a stable limit cycle (oscillating localized state) with the unstable lo-

calized state branch, leading to a saddle loop bifurcation close to which the system

shows excitable localized structures.

We have already studied localized structures out of the bistability context in sec.

3.4, in this chapter we analyze the behavior of localized structures subjected to ex-

ternal gradients.

We observe a local bifurcation from the nonlasing state to a periodic emission of

pulses that has the same features of the one reported in [Gomila 2005] i.e. a �-

nite amplitude and in�nite period. Analysis of the spatio-temporal dynamics close
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to the bifurcation reveals the presence of noise triggered excitable localized states

and of localized states oscillating on the pinning position. We start presenting our

work from experimental observations, then we report on the further measurements

that allow the physical explication of the phenomenon. Conclusions are drawn to

summarize the results.

4.1 In�uence of alignment on the system dynamics

Alignment plays a crucial role in the dynamics of our system. In particular, for

what concerns localized structures, it is known that their stable spatial location

arises from an interplay of spatial inhomogeneities and gradient induced forces. In

this section we show an example on how the alignment changes the near-�eld inten-

sity distribution and its time-averaged dynamics as function of the parameters. First

of all the parameters are set in such a way that the system is able to work as a cavity

soliton laser and we monitor the evolution of the near �eld with the camera corre-

sponding to L2 when the mirror just in front of L1 is rotated horizontally. Snapshots

for di�erent relative alignments are displayed in Fig.4.1. At the beginning (a-b) the

intensity in the area of overlap is rather high and complex structures are visible,

then the interaction between the two devices becomes more clear until we recognize

bright localized structures surrounded by a dark homogeneous background (d). As

the mirror is further tilted, the structures get blurred (e-f) until they become less

contrasted and elongated (g). In h) all structures disappear and we observe only a

dark background.

��

��

�

�
�

�

�

�

Figure 4.1: Evolution of the near-�eld intensity distribution as the alignment is changed

(dark areas correspond to high intensities). Left: from a) to h) the pro�le of L1 moves

to the right with respect to L2. Right: zoom of snapshot d) and g) . The red squares

correspond to the areas analyzed in the following. I1 = 290 mA, I2 = 11.7 mA.

If we resolve in time the emission of the structures 1 and 2 in g), we will �nd a

behavior like the one displayed in Fig.4.2. It consists in the emission of bursts

rather similar to each other, whose duration is of the order of 15 ns. Each burst is

composed of short pulses separated by the compound cavity round-trip time, that
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is the time taken for the light to make twice the distance L1-L2 : 1.8 ns. Hence this

fast dynamics is associated to the multiple-longitudinal-mode dynamics.

Figure 4.2: Time traces detected by D1 corresponding to the emission coming from a

weakly bright and elongated structure surrounded by nonlasing background, equivalent to

structures 1 and 2 shown in Fig.4.1 g).

In a second time, the mirror is kept in the position g) and the current I1 is scanned

up and down. We compute the intensity of the areas 1 and 2 delimited by the red

squares in Fig.4.1 g) as function of the current in order to trace the local LI curve.

The aim is to understand how the pulsing structures form, if they are bistable and

what is the link with stable localized structures.

In Fig.4.3 the LI curve 2 (dotted line) shows a hysteresis cycle at threshold (region

B) while the spatial pro�le matches a typical CS pro�le (see inset B). The spatial

pro�le change qualitatively entering in region D (see inset D), becoming a pulsing

structure; bistability between the two spatial pro�les is observed in region C. On

the other hand, the LI curve 1 (straight line) does not show a hysteresis cycle and

it overcomes the laser threshold in region D exhibiting a pulsing behavior.
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Figure 4.3: Time-averaged local LI curve

for two points of the space (1 and 2 as in

Fig. 4.1 g) ). For low current, each point

is in the nonlasing state (A); B corresponds

to the bistability region of the bright spot

2 (see inset B); as the current is further in-

creased, 2 passes in a lower intensity state

whose near �eld pro�le is broader (D and in-

set D), at the same time 1 starts emitting;

as the current is decreased a hysteresis cy-

cle between the broader structure with lower

intensity and the higher intensity localized

spot appears in 2 (C) while 1 does not show

any bistability.

In Fig.4.4 we show the same LI curves but diminishing the current of the absorber I2
and increasing its temperature T2. The global e�ect is to increase the laser thresh-
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old which occurs for higher I1. The curve 2 behaves like the previous one except

for the fact that a two-lobes instead of a single-lobe structure is generated. On the

other hand curve 1 shows a hysteresis cycle corresponding to a single-lobe LS.

Figure 4.4: Time-averaged local LI

curve for same two points as in Fig 4.3)

but for di�erent current and temperature

of the absorber. Four regions are dis-

tinguishable: A) both curves are below

threshold; B) curve 2 shows a bistable

two-lobes structure (inset B); C) curve 1

shows a bistable localized structure; D)

the two-lobes structure in 2 becomes a

less bright and broader structure while

in 1 a non-bistable bright spot is visible

(inset D).
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Summarizing, in the same regions of the transverse plane where localized struc-

tures are known to be stable under optimal alignment conditions, a local pulsing

behaviour appear when the alignment conditions are slightly changed. This local

pulsing behaviour (Fig.4.2) can appear at the onset of the lasing process or beyond

the bistability region of a localized structure (respectively curve 1 and 2 in Fig.4.3).

For the same alignment conditions, the system can exhibit localized structure if the

current of the absorber is reduced and its temperature slightly increased (curve 1 in

Fig.4.4).

In the following we will analyze in detail the temporal and spatial dynamics of the

pulsing regime at the onset of lasing.

4.2 Single point dynamics

For our analysis, we measure the temporal emission of a small region of the space,

selected by the iris. The recorded area has a diameter of about 20 µm that is slightly

larger that the typical diameter of a localized structure. We select a region where

a localized structure is known to be stable (pinning on a defect) under optimal

alignment conditions. For the alignment conditions considered in the following, the

system behaves as in the curve 1 of Fig.4.3: the loss of equilibrium of the nonlasing

solution occurs through emission of pulses. For a given current of the absorber I2,

three regimes are distinguishable upon increase of I1, they are illustrated in Fig.4.5.

At threshold, the pulses are emitted sporadically (a); then the time between two

successive pulses (interspike time) decreases (b) and a clear periodicity appears (c).

In the completely periodic regime, the time-averaged near �eld consists in a bright

40 µm long and 15µm wide region surrounded by homogeneous dark background.

The detector is placed on the brightest part of this region (see inset in Fig.4.5).

Even though there is a certain interest in the fast dynamics, in this study, we focus
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Figure 4.5: Full bandwidth (grey line) and �ltered (black thick line) time traces of the

power emitted by the small (∼ 20-microns diameter) region of space delimited by the black

circle in the inset. The dynamics changes its characteristics as the pump I1 is increased, it

is: sporadic for I1 = 308.4 mA (a); quasi-periodic for I1 = 310.9 mA (b) and periodic for

I1 = 315.4 mA (c). I2 = 5.5 mA.

our attention on the slow envelop of the pulses which we obtain by Fourier �ltering

the time series allowing only components below 1.3 GHz (thick line in Fig.4.5).

Although the choice of the �lter is arbitrary, we have checked that the observations

reported below do not depend on the chosen width of the �lter window, provided

that it is su�cient to smooth out the details of the longitudinal mode dynamics. We

acquire time traces for di�erent value of I2 and study the evolution of the dynamics

upon variation of I1 in order to characterize the bifurcation leading from the stable

nonlasing state to the periodic pulsing regime. The interspike-times and the peak-

amplitudes are measured by identifying the maximum of the pulses (black spots in

Fig.4.5) and analyzed in the following subsection.

4.2.1 Analysis of the bifurcation

In the top panel of Fig.4.6 we show how the average time between pulses depends on

I1, for four values of I2. The error bars correspond to the standard deviation. In all

cases we observe that the loss of equilibrium of the nonlasing solution upon increase

of I1 occurs �rst via the mostly disordered emission of pulses, followed by a decrease

of the average value of interspike time. The dispersion of the interspike time also

strongly diminishes indicating that the dynamics is more and more periodic. If the

current I1 is increased further than the displayed values, the spatial pro�le becomes

more complicated and the slow dynamics is overcome by the fast one. Thus we don't

analyze this regime.

On the other hand, the amplitude of the pulses is very well de�ned in any case as

shown on the bottom panel of Fig.4.6. This indicates that the trajectory followed by
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Figure 4.6: Top: mean value of interspike time as function of ampli�er pump I1, for

di�erent values of the absorber current: I2 = 10.5 mA (•), I2 = 7.5 mA (�), I2 = 5.5 mA

(△), I2 = 1.9 mA (⋆). Bottom: corresponding mean value of the peak amplitude. The

error bars indicate the standard deviation.

the system in phase space is very well de�ned even when the temporal distribution

is disordered.

The trend of all the interspike time curves in Fig4.6 is compatible with the pe-

riod of a limit cycle arising via a saddle-node on an invariant circle [Strogatz 1994]

or via a saddle-loop [Gaspard 1990] bifurcations (both leading to excitability

[Izhikevich 2007]). Both are in�nite-period bifurcation. The period is proportional,

respectively, to the inverse of the square root of (I1-Is) [Strogatz 1994] and to the

logarithm of the same quantity [Gaspard 1990]. Where Is represents the value of

the control parameter at which the bifurcation occurs. The �t of one set of the

experimental data with these functions is reported on Fig.4.7.

Moreover our system behaves like a noise-driven excitable system as we illustrate

below. When we compute the coe�cient of variation for the data reported in Fig.4.6

i.e. the ratio between the standard deviation and the average value (Fig.4.8), we

�nd a maximum value of 0.9. This is an indication that the observed emission of

pulses is close to be a Poissonian process, for which the coe�cient is 1.

As we analyze the histograms of data corresponding to the three di�erent regimes

(see Fig.4.9 (left)). We remark that while the periodicity of the time series is very

clear in case c), the other two histograms exhibit an exponential decay at long times.

This indicates that the pulse emission process, when not periodic, can be described
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Figure 4.7: Average interspike time as function of I1 for I2 = 10.5 mA. The curve is �tted

with the equation for the period of a limit cycle arising from a saddle-loop (blue straight

line) and from a saddle-node bifurcation (dashed black line).
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Figure 4.8: Coe�cient of variation of the measured interspike time: standard deviation

to average ratio.

as noise induced barrier crossing (see e.g. [Hänggi 1990, Kramers 1940]). On the

other hand, a cut-o� is present at short times: there are few events below twenty

nanoseconds and none below ten nanoseconds. The same kind of distribution with

exponential tail and a cut-o� is observed for the interspike time of noise induced

excitable pulses [Yacomotti 1999, Eguia 2000]. In this framework, the cut-o� at

short times which is visible in all these histograms is caused by the refractory time

of excitable pulses.

The fact that the pulses are randomly triggered by noise is further con�rmed by the

return map of time intervals shown on the right panel of the �gure. If the dispersion

of the interspike time were due to simple �uctuations of the period of a limit cycle,

an accumulation of points would be visible in the y = x region of the return map.

Since the distribution of points �lls up the whole phase space, with exception of the

refractory time, the origin of the time intervals is clearly random.

For the sake of completeness we point out that all the data used to obtain Figs.

4.6 (and �gures related to it), have been obtained in the exact same con�guration

(alignment and spatial region) for consistency. The phenomenon is though observ-

able for di�erent combinations of the alignment and the detected spatial region.
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Figure 4.9: Left: histograms of interspike times in noise dominated (a), periodic (c) and

intermediate regimes (b). Right: return map of time intervals corresponding to case (a).

System parameters are: I1 = 343.9 mA, I2 = 1.9 mA (a), I1 = 333.6 mA, I2 = 5.9 mA (b),

I1 = 343.4 mA, I2 = 5.9 mA.

That is the case for Fig.4.9. The qualitative evolution of the interspike time average

and standard deviation is preserved but the absolute values of the parameters for

which the dynamics occurs, change according to the con�guration in which the mea-

surements are performed. For this reason the parameters for which the histograms

are obtained are not consistent with the data analyzed previously.

Independently on the physical origin of the observed dynamics, the system clearly

presents a bifurcation from a stable �xed point to an in�nite period and a �nite

amplitude limit cycle which is a situation leading to excitability. Therefore the

observed random generated pulses are identi�able as noise triggered excitable pulses.

In the next section we will investigate the physical mechanism that is behind the

observed dynamics. To this purpose, we analyze in more detail the spatial dynamics

of the system around this bifurcation.

4.3 Spatially resolved measurements

We acquire simultaneously times series from two di�erent detectors in the spatial

region of interest. The detectors are aligned along the elongated direction of the

bright structure visible on the camera as shown in near �eld snapshot of Fig. 4.10.

Each detector monitors a 20 microns diameter area, whose centers are separated

by 23 micrometers. Typical time traces corresponding to the periodic regime are

shown on Fig.4.10. In these cases the occurrence of a pulse in one region of space is

followed by a pulse in the neighbouring region with a delay and the clear correlation

(see Fig. 4.11) between the two traces demonstrates a propagation in the transverse

dimension. In order to complete these measurements, we also show in Fig. 4.12

that the time lag between the two traces increases with the distance between the

detectors.

The fact that the intensity emitted in the area monitored by D2 increases only

upon decrease of the intensity emitted in the area monitored by D1 hints at an

interpretation of the dynamics in terms of a localized state nucleated in front of
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Figure 4.10: Left: near �eld intensity distribution showing the areas detected simultane-

ously by D1 and D2. Right: time traces corresponding to the radiation emitted by the two

regions monitored by D1 (blue straight line) and D2 (dashed red line). The dynamics is

interpreted as localized states that periodically nucleate in D1 and then drift towards D2.

I1 = 302.9 mA, I2 = 10.5 mA .

D1 which then drifts across the spatial region of interest. If detector D2 is moved

further away, no intensity is detected, which indicates that the structure has reached

a spatial region where it can not exist due to spatial inhomogeneities [Caboche 2009].

The speed of the localized structure can be estimated from the time separation

between the falling edges in D1 and D2, i.e. when the structure leaves the area

monitored by each detector. In Fig. 4.10 this lag is of 4.4 ns, which together with

the distance between the two detectors edges (23 micrometers), leads to an esti-

mated velocity of 5.2 µm/ns (without any assumption of the size of the propagating

structure), a value close to the velocity of drifting localized structures measured in a

di�erent experimental system based on nominally identical devices [Caboche 2009].
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Figure 4.11: Zoom around zero delay of the auto-correlation of the signal D1 (blue straight

line) and of the cross-correlation of the signals D2 and D1 reported on Fig.4.10 (red dashed

line). Signals are normalized subtracting the average value and dividing by the standard

deviation. The auto-correlation shows that the signal has a correlation time of 200 ns, which

reveals an imperfect periodicity. The cross-correlation looks like the auto-correlation. Its

maximum peak is close to one and is shifted respect to the zero thus indicating the high

correlation and the delay between the two signals.
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This estimation can be checked against the duration at half maximum of the pulses

measured in D2: assuming a size of the localized structure (FWHM) of 12 microm-

eters (as measured for stationary localized structures in this experimental arrange-

ment), the center of the structure would drift about 32 micrometers during a pulse.

The pulse duration of 6.6 ns then leads to an estimated velocity of 4.8 µm/ns, which

matches rather well the previous estimation.

The motion takes place along a well de�ned direction (along the elongated dimen-

sion of the bright structure) which critically depends on the alignment. For in-

stance, the direction is tilted by a certain angle (about 45deg) in the case of the

structure in the inset of Fig. 4.10 and it is horizontal in the case of structure 2

on Fig. 4.1 g). This suggests that a gradient caused by the misalignment is re-

sponsible for the drift, excluding the spontaneous motion due to the localized struc-

ture's internal degrees of freedom which is described in models of bistable lasers

[Fedorov 2000, Rosanov 2002]. Hence we �nally interpret the periodic pulsing de-

scribed above in terms of periodic nucleation and motion of localized structures in

presence of a gradient and a local inhomogeneity.
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Figure 4.12: Signals acquired simultaneously in two regions of the transverse plane (D1,

D2). The position of D2 is moved along the bright structure as shown in the insets. The

delay between the two signals increases with the distance between the two detectors.
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4.3.1 Drift-induced excitable localized structures

According to the physical interpretation, we conclude that the previously described

noised triggered pulses (see Fig.4.13) are noise generated excitable localized struc-

tures. The excitability is proved by the characteristics of the bifurcation (discussed
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Figure 4.13: Part of the time trace used to trace the histogram a) of Fig. 4.9. It shows

local emission of noise triggered pulses that can be described as noise generated localized

structures. The visible low frequency modulation comes from the detection.

in sec. 4.2.1), and by the deterministic way by which the system comes back to the

nonlasing stable state.

The mechanism that induces the excitability is the drift due to external gradients.

The structure nucleates on the local inhomogeneity (D1), an external gradient makes

it drift, subsequently the structure reaches D2 quitting the region detected by D1

that comes back to the trivial state. In the end the localized structure dies on an-

other inhomogeneity that makes it unstable.

The described phenomenon exhibits a well-de�ned trajectory in both the local time-

traces (the pulse duration is given by the drift velocity) and in space (the spatial

trajectory is de�ned by the region of drift).

In the following we show that the spatial trajectory of localized structures depends

on the parameters. We calculate the time-averaged power measured in both detec-

tors (see Figs. 4.14) for the same data as Fig. 4.6 but for only two values of I2:

10.5 mA (left panel) and 1.9 mA (right panel). In both panels, the time-averaged

power detected in the region D1, which is where the nucleation takes place, is quite

high even at the onset of lasing (lower values of I1). It increases slowly reaching its

maximum when the fully periodic regime is achieved (higher values of I1). On the

other hand the power detected in D2 begins from a value very close to zero and,

as the current is increased, it grows linearly until it reaches the same value of D1

. The fact that the average detected power is equal in both detectors con�rms the

spatial dynamics observed in the periodic regime: localized structures are nucleated

in D1 and then drift through D2. According to this interpretation, the fact that the

averaged power in D2 diminishes as I1 decreases, indicates that the distance covered

by the drifting localized becomes shorter. The shorter distance is obtained for lower
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Figure 4.14: Time averaged power detected in two regions of the space D1 and D2 as func-

tion of I1. All the curves are normalize respect to the maximum value. Left: I2 = 10.5mA.

Right: I2 = 1.9 mA.

current of the absorber (I2 = 1.9 mA). For these parameters only the tails of the

localized structure are detected in D2 (see Fig.4.15).
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Figure 4.15: Sample of a time traces recorded in two di�erent points in the space: D1

(blue straight line) and D2 (red dashed line). I1 = 316.9 mA, I2 = 1.9 mA.

In order to check the determinism of the trajectory, we study the dependence of

the correlation of signal D1 and D2 on the parameters. If the correlation is high it

means that each LS generated in D1, decays in the same way. As an indicator we

use the value of the maximum of the cross-correlation function (see as an example

of the cross correlation function, the dashed curve in Fig. 4.11). From Fig. 4.16 we

notice that in all the four curves, the correlation between the two signal never goes

close to zero and that only in few cases it is lower than the 60%. Thus the signals

corresponding to two di�erent region of the space keep a high correlation all over

the considered parameters range. The drop of correlation is partially explained by
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the loss of power and by the change of the pulse shape (including only the tails of

the LS) in the signal D2 . Another phenomenon can be at the origin of the decrease

of correlation and it is illustrated in the next section.
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Figure 4.16: Maximum value of the cross-correlation between the signals measured in

two di�erent regions of the space: D1 and D2 placed as shown in Fig. 4.10. The system

parameters are the same as in Figs. 4.6.

4.3.2 Oscillating localized structures

For low ampli�er bias current values, (that is when the average period is large and

not well de�ned) time series sometimes present an unexpected dynamical feature,

shown on Fig. 4.17. During the interval from 30 to 150 ns, the power measured

in D1 oscillates around some value without ever reaching the background level (the

non lasing solution) and correspondingly the power observed in D2 oscillates without

ever reaching the maximum value corresponding to the presence of a localized state.

This can be explained by a localized structure which is oscillating around the pinning

position. The amplitude of these oscillations increases until at time about 200 ns

the localized structure detaches and fully passes in front of D2, restoring the regime

of mostly periodic nucleation and drift observed previously.

The number of back and forth oscillation events compared to the number of regular

drift events seems to depend on the particular con�guration. For example they are

quite rare in the case of Fig.4.9 indeed they do not clearly appear in the histograms

(slight shoulder on the left part of histograms b) and c). While they contribute to

reduce the correlation in the case of Fig.4.16.

Localized structures behave as �Aristotelian particles� which means that their

velocity (instead of acceleration) is proportional to the external forces ( i.e. to an
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Figure 4.17: Spatially resolved dynamics in two points of space. Localized states oscillate

back and forth before drifting away. I1 = 298.8 mA, I2 = 10.5 mA.

applied spatial gradient). Contrary to conservative solitons, their inertia (that is

the tendency of a particle to resist any change in its motion) is completely hidden

by dissipation [Longhi 1997]. The �Aristotelian� or overdamped character of the

LS's motion has been explained in models of nonlinear optical resonators with

driving �elds [Firth 1996, Maggipinto 2000].

In [Maggipinto 2000], authors study theoretically the stability of the LS solution

with respect to perturbations by evaluating the linearized operator describing

deviations from the exact stationary state. Since the LS is a stable solution, all the

eigenvalues of this operator have large negative real part, except the ones associated

with neutral modes, whose values are zero. Therefore, only the projection of the

perturbation on the neutral modes is relevant for the dynamics of LS since the

projections on the other modes are strongly damped. The only neutral mode, in the

case of driven systems, is the one corresponding to the translational symmetry of

the system, thus the e�ect of any perturbation is to induce a simple translation of

the LS, revealing its robustness. When a spatial gradient (for instance in the phase

of the driving �eld) is applied, the LS drifts along the gradient and its velocity

results proportional to the gradient itself (see also [Firth 1996]).

Clearly, the back and forth motion of the localized structure which we observed

in our system (Fig. 4.17) departs from this �Aristotelian particle� description of

localized structure under perturbations. It is understandable that this inertial-like

behavior occurs at the very edge of the localized structure's stability domain where

the e�ects of perturbations are less damped [Maggipinto 2000], and therefore in the

parameter range in which the periodicity breaks up and the dynamics is strongly

in�uenced by noise.

4.4 Conclusions

We have shown that the destabilization of the nonlasing solution in a system of cou-

pled broad-area lasers in an absorber-ampli�er con�guration can occur via stochas-

tic or periodic emission and drift of localized structures. Since this limit cycle
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arises with a �nite amplitude and zero frequency, the corresponding bifurcation

possesses the characteristics required for the generation of excitable localized struc-

tures [Izhikevich 2000].

We claim that the randomly emitted pulses, which we have locally measured, are

noise triggered excitable localized structures. The excitable behaviour is induced

by a local defect, which allows for the nucleation, and by the drift and annihilation

which allow the system to relax into its initial resting state. This mechanism for

excitability is also discussed by a recent numerical paper: [Parra-Rivas 2013]; and it

strongly di�ers from the case studied in [Gomila 2005] where the excitable localized

structures decay on the same spot where they appear.

In addition to noise-triggered excitable localized structures, we have also observed

oscillations of localized states around a pinning site. In [Parra-Rivas 2013] authors

have observed similar small-amplitude oscillations when the parameters are close to

threshold and for large values of the inhomogeneity. This dynamics, which departs

from the �Aristotelian particle� description of localized structure's motion, shows

the limits of the low-dimensional description of the nucleation and drift of laser

localized states.
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In this chapter, the topic of excitable localized states in a semiconductor laser

with saturable absorber (LSA) is considered numerically. Excitable localized struc-

tures were �rst predicted to exist in an optical cavity �lled with a Kerr medium

which is a system that does not show excitable behavior without spatial extension

[Gomila 2005]. In that instance, a local excitable behavior has been observed in

presence of an instability of a localized structure. For certain values of the control

parameter the LS becomes Hopf unstable, its intensity starts to oscillate while it

remains localized in the same region of space [Firth 2002]. As the control parameter

is further increased, the limit cycle (originated in the Hopf bifurcation) undergoes

a saddle-loop bifurcation which leads to excitability.

The same kind of bifurcation has been remarked in models of laser with saturable ab-

sorber without spatial dependence [Plaza 1997, Dubbeldam 1999]. In [Plaza 1997],

the system dynamics evolves through the following di�erent regimes by changing

the ratio of the characteristic times of the two system variables: non-zero station-

ary stable output, oscillations around non-zero value (Q-switching-like oscillations

[Erneux 1988]) and excitability.

On the other hand LSAs are also able to host localized structures (or cavity soli-

tons) provided that the Fresnel number is high. In lasers with saturable absorber,

the formation of CSs was �rst studied theoretically in the limit of fast materials

[Fedorov 1992, Vladimirov 1999, Fedorov 2000]. The existence of laser localized

structures in slow materials, such as VCSELs, was demonstrated numerically in

models such as [Bache 2005] and [Prati 2007].

In order to look for excitable localized structures, we use the model described in

[Bache 2005] and we analyse the response to a local perturbation out of the stabil-

ity domain of localized structures. The model consider both the passive and active
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material to be in the same cavity. Therefore they are more suitable for describing

the experiment of the VCSEL with intracavity saturable absorber ([Elsass 2010a])

than the experiment with two VCSELs coupled face-to-face which is studied in this

thesis and whose functioning is also based on saturable absorption.

5.1 Model and dynamical equations

The dynamical equations which we analyze are the same as the ones studied in

[Bache 2005].

Ḟ = [(1− iα)D + (1− iβ)d− 1]F + i∇2
⊥
F (5.1a)

Ḋ = −b1

[

D
(

1 + |F |2
)

− µ
]

, (5.1b)

ḋ = −b2

[

d
(

1 + s |F |2
)

+ γ
]

, (5.1c)

The adimensional variables F , D and d are respectively the slow envelop of the

electric �eld, the carrier density of the ampli�er medium and the carrier density

of the absorber medium. The laplacian operator ∇2
⊥

is the sum of the second

partial derivatives respect to the transverse coordinates: ∂2
xx+∂2

yy and it represents

di�raction in the paraxial approximation. The parameters α, β are the linewidth

enhancement factors describing the semiconductor materials; µ and γ are the pump

parameters for the active and passive medium; b1 and b2 are the ratio of the photon

lifetime to the carriers lifetimes for active and passive material, s is the saturation

parameter.

The time is rescaled to the cavity lifetime and the transverse coordinates x and y

to the di�raction length. This means that, for VCSELs, a time unit (t.u.) is of the

order of 10 ps and the spatial unit (s.u.) is of few microns.

In our analysis, contrary to [Bache 2005], the linewidth enhancement factor of the

passive medium β is taken di�erent from zero for a more realistic assumption. We

also de�ne the quantity r as the ratio between the carrier lifetime of the active and

passive material: r =
τamp

τabs
= b2

b1
. The parameters r and and µ will vary in our

studies while the other parameters are kept �xed:

γ = 0.5, s = 10, α = 2, β = 0.2, b1 = 0.01. (5.2)

The dynamical equations are integrated with a split-step method which uses the

Runge-Kutta algorithm to solve the non-linear part of the equations and the Fourier

transform (FFTW) to integrate the laplacian. The spatial grid is 128×128 pixels

wide with periodic boundary conditions.

The consolidated technique to excite CSs in the position (x0, y0) is to inject a suitable

�eld for a short period τinj. We use a �eld of the form:

Finj = |Finj| e
i(φinj+ωinjt)e

((x−x0)
2+(y−y0)

2)
2σ2

inj . (5.3)
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That is a �eld with Gaussian pro�le in space. |Finj| is the amplitude; σinj, the width;

φinj, the phase; (x0,y0), the center and ωinj is the frequency. We choose the injection

parameters as in [Bache 2005]:

x0 = y0 = 0, φinj = 0, ωinj = 0, σinj = 3, |Finj| = 1.5, τinj = 100. (5.4)

The position (x0, y0) = (0,0) corresponds to the center of the grid while the frequency

ωinj = 0 corresponds to the cavity resonance.

The peak intensity of the stable CS obtained for r = 0.45 is plotted as function of the

active material µ in �gure 5.1. The homogenous plane-wave solution is also shown

for comparison. We were able to switch-on CS in the interval: 1.43 ≤ µ ≤ 1.475. For

those values of µ, CSs coexist with the stable homogenous non-lasing solution. For

lower values, the CS solution does not survive and the system evolves towards the

non-lasing stable state. While for higher values, we �nd a spatiotemporal turbulence

which, for long times, evolves into a regime insu�ciently sampled over the numerical

grid (the same behaviour was found in [Bache 2005]).

Figure 5.1: Peak intensity of stable stationary cavity solitons (•) for di�erent values of µ,

together with the homogenous steady state solution for the intensity |F|2 (solid line). The

system parameters are those in Eq. (5.2) with r = 0.45. The CSs are switched-on by the

injected �eld in Eq. (5.3) with parameters as in Eq. (5.4). The homogeneous steady state

is computed setting the derivatives in the dynamical equations (Eqs. (5.1)) equal to zero.

The laser threshold is µ = 1.5 .

5.2 Self-pulsing cavity solitons

The stability of CSs depends on our free parameters r and µ.

The stability analysis of the CS solution as function of r and µ has been studied in

[Prati 2010] with the model for semiconductor LSA that includes the carrier radia-

tive recombination [Prati 2007]. In [Prati 2010] it is shown that the CS solution has
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a C-shape as function of the pump µ. The lower branch is always unstable while

the upper branch stability depends on the parameter r. For a given value of µ,

the stationary CSs are stable in the interval rmin < r < rmax (see Fig. 5.2) which

is below the region where the lasing homogeneous solution is Hopf unstable (upper

part of Fig. 5.2). The authors investigate the regime for small values of r (r < rmin),

they show that there is a drift instability that gives rise to spontaneously moving

solitons.

We are interested in the instability that occurs for big values of r. As r is increased,

the amplitude of a cavity soliton starts oscillating, the oscillations grow until they

reach a critical value after which the amplitude drops down to zero.

We show that there is a range of the parameter r for which these oscillations are

stable while remaining localized in space in coexistence with the homogenous non-

lasing solution. The stability diagram in the r-µ plane for our equations is displayed

Figure 5.2: Stability diagram of

the stationary CS in the plane of the

pump parameter (µ) and of the ra-

tio of carrier lifetimes in the active

and in the passive medium (r) plane.

Stationary CS are stable in the re-

gion between the two curves rmin and

rmax. The �gure is reproduced from

[Prati 2010] where the drift instabil-

ity is studied in the region r < rmin.

on the left hand side of Fig. 5.3.

Simulations were done keeping the same parameters (Eq. (5.2)) and for values of

µ in the interval 1.43 ≤ µ ≤ 1.475. The boundaries are obtained by observing the

di�erent equilibrium states resulting from the simulations.

Stationary CSs are stable in the grey region, beyond the black lines they become

unstable and decay into the non-lasing state through a transient of amplitude oscil-

lations which we have previously described. Above r ≈ 0.54 the homogenous lasing

solution is Hopf unstable. This line is traced according to the condition for Hopf

instability demonstrated in [Erneux 1988] and also reported on [Bache 2005]: the

upper branch is unstable for µ < µH with µH = r2γs; which in term of r becomes

r >
√

µ/γs.

Below the red line (r ≈ 0.05) we also �nd spontaneously moving CSs which we do

not report on in this thesis. We focus our attention on the self-oscillating CS (OCS)

instead. Their stability domain is in the region between the black lines which is

zoomed-in on the right hand side of Fig. 5.3.
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Figure 5.3: Left: stability diagram of the CS solution in the r-µ plane; stationary CSs are

stable in the grey region; below that region, the CSs drift on the transverse plane. Right:

Zoom of the upper part of the diagram showing the stability domain of the self-oscillating

cavity solitons (OCS); below the displayed lower boundary, cavity solitons are stationary;

beyond the upper boundary, they decay into the non-lasing state through a transient that

consists in increasing-amplitude oscillations.

5.2.1 Characteristics of the dynamics

We characterize the CS's oscillations by measuring the period, the maximum value

and the minimum value of the peak oscillations as function of r. The values mea-

sured for µ=1.45 are shown in Fig. 5.4. Both the amplitude of the peak oscillations

(top) and the period (bottom) increase with r.

For values from 0.48 to 0.492, the cavity soliton is stationary so the intensity is con-

stant. For bigger r the peak intensity , through a transient of increasing-amplitude

oscillations, reaches a Q-switching pulsing regime : the intensity is close to zero for

most of the time except for short periodic intervals i.e. the pulse width (see inset of

Fig. 5.4). The maximum pulse amplitude is eight times the intensity of a stationary

CS for µ = 1.45 and it grows as µ increases. The maximum value reached is fourteen

times the stationary CS intensity for µ = 1.475.

On the other hand the period behaves in a similar way for di�erent values of µ : it

is around 150 t.u. at the onset of the oscillations and it increases abruptly over 300

t.u. when r approaches the upper boundary for the existence of OCS (the last point

in Fig. 5.4 is r = 0.504055). For higher values of r, the period of the oscillations

increases even more but it never reaches a stationary value. After some oscillations

(tens in the proximity of the critical value), the OCS switches-o� spontaneously.

Hence we observe a local bifurcation from an oscillation (OCS) to a �xed point (ho-

mogeneous non-lasing state), so our system is a candidate for exhibiting excitability

[Izhikevich 2000]. In the next section we e�ectively demonstrate the existence of a

localized excitability.
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Figure 5.4: Top: maximum and minimum value of the peak-intensity of an oscillating CS

as function of r for µ = 1.45. Inset is the time trace for r = 0.504. Bottom: corresponding

period of the intensity oscillation. Other parameters as in Eq. (5.2).

5.3 Excitable localized structures

Excitability is a feature of a non-linear dynamical system de�ned by the response to

an external perturbation. Perturbations smaller than a characteristic threshold are

exponentially damped and the systems keeps its stable state. If the perturbation

exceeds this threshold, the system performs a large excursion in the phase space

before coming back to its initial resting state.

We apply a perturbation to the zero-intensity homogenous solution and we compare

the response of the system for three di�erent values of r. One value is within the

stability domain of stationary CSs, one within the stability domain of OCSs and an-

other one outside of both stability domains. The three initial conditions are pointed

out in the stability diagram on the right hand side of Fig. 5.5.

We use the same perturbation as in Eq. (5.3), the parameters are reported in the

caption of Fig. 5.5.

On the left hand side of Fig. 5.5 we display the evolution of the peak intensity in

the central point of the applied perturbation. The three di�erent initial conditions
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Figure 5.5: Response of system to a local gaussian perturbation for three di�erent values

of r: 0.45 (blue), 0.504 (green), 0.6 (red); and µ = 1.45. Left: time evolution of the intensity

in the central point of the applied perturbation. Right: three initial conditions (▽) located

in the r− µ plane in comparison with the stability diagram of CS and OCS. Parameters of

the perturbation are: σinj = 3, |F |2 = 2.5, τinj = 50 t.u. for r = 0.45 and τinj = 5 t.u. for

r = 0.504, 0.6; ωinj = 0.

give three di�erent behaviors: i) for r=0.45 (blue straight line), the system reaches,

through damped oscillations, the CS solution (the process takes about 5000 t.u.)

; ii) for r=0.504 (green dotted line), the system goes towards the OCS solution

through growing oscillations; iii) for r=0.6 (red line), the system emits a short pulse

and go back to the zero-intensity solution.

In Fig. 5.6 we illustrate the corresponding trajectories in phase space. We choose to

project the phase space onto the |F |2 - D plane. In cases i) and ii) the system has

two attractors: the non-lasing state (black square) and the CS (black circle) in case

i); the non-lasing state and the limit cycle i.e. the OCS solution (green dotted lines)

in case ii). The system can go from one attractor to the other provided that the

applied perturbation makes it go over the saddle point (black diamond). The saddle

point corresponds to the unstable CS and it de�nes the threshold for the perturba-

tion. Its value is reconstructed graphically by measuring the separatrix of the time

evolution of both variables (intensity and carrier density of the ampli�er) during

the switch-on process. When varying the perturbation energy around the threshold

value, the separatrix is where the transition from relaxing to the non-lasing solution

to the switching to the CS solution takes place.

Eventually the phase portrait in case iii) (red dotted line) presents a geometry typ-

ical of excitability. Indeed the system, once it has overtaken the saddle, performs a

large trajectory around the limit cycle which is no longer stable and it �nally comes

back to the stable non-lasing state.

In order to demonstrate that the phenomenon observed in case iii) is an excitable

cavity soliton, we investigate the dependence of the response on the injected pulse

amplitude and we compare the spatial pro�le of the emitted pulse with the station-

ary CS pro�le.
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Figure 5.6: Phase space: intensity (|F |2)

vs ampli�er carrier-density (D). The tra-

jectories correspond to the simulations of

Fig.5.5. The system, initially in the stable

non-lasing state (�), goes to the stable CS

solution (•) through damped oscillations for

r = 0.45 (blue straight line), provided the

perturbation takes the system beyond the

unstable CS (�). For r = 0.504 the system

is in a stable limit cycle (green dotted line).

For r = 0.6, the system performs a large

trajectory in the phase space before coming

back to the initial stable state (red dashed

line).

We notice that, in case iii) (r = 0.6), the response to a perturbation can be of two

kinds according to the perturbation strength: after a weak perturbation the peak

intensity makes a small hump before relaxing to zero (Fig. 5.7 a)); after a strong

perturbation a pulse, like the one previously described, is emitted (Fig. 5.7 b)).
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Figure 5.7: Time evolution of the peak intensity in response to a perturbation. For weak

perturbations (|Finj| = 1.7) the system relaxes into the non-lasing state (a); for strong

perturbations (|Finj| = 2.4) it performs a large excursion before coming back to non-lasing

state (b). The intensity oscillations during the injection (within the blue dashed lines) are

attributed to the beating between the perturbation frequency and the CS frequency. µ =

1.45 and r = 0.6.

The peak intensity of the emitted pulse as function of the amplitude of the injected

perturbation (|Finj|), together with the delay between the injected pulse and the

pulse emission are depicted in Fig. 5.8. We observe an abrupt transition from

quasi-zero intensity to a high intensity response which reveals a threshold-like be-

haviour. Moreover, the delay becomes larger for amplitudes closer to threshold and
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it decreases as the amplitude is increased. This slowing down of the dynamics is

also a typical behaviour in the proximity of a threshold. For values of |Finj| above

threshold, the pulses are all similar and the peak intensity slightly increases with the

perturbation amplitude. The existence of a threshold and the deterministic orbit of

the emitted pulse make the observed temporal response consistent with excitabil-

ity. The class of excitability, according to the classi�cation adopted in neuroscience

[Hodgkin 1948, Izhikevich 2007], is not easily determined by the present analysis.

There are signatures of class I excitability since the limit cycle seems to disappear

through a saddle-loop bifurcation. Indications of this bifurcation come from the

fact that the limit cycle in Fig. 5.6 is closed to the collision with the unstable CS,

and that its period increases abruptly in the proximity of the bifurcation (see lower

panel of Fig. 5.4). But, there is no evidence of class I excitability because the period

does not diverge. This ambiguity reveals the complexity of our model. A stability

analysis of the CS solution would allow to indentify the correct bifurcation diagram

that would explain the observed dynamical scenario.
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Figure 5.8: Top: amplitude of pulse emitted by the system in response to a perturbation

(see inset) as function of the amplitude of the injected-beam |Finj|. Bottom: corresponding

delay time of the emitted pulse calculated from the end of the injected pulse (see inset). A

threshold-like behavior is clearly observed. The parameters of the system are: µ = 1.45, r

= 0.6 while the other perturbation parameters are: τinj = 5 t.u. (blue dashed lines in the

insets) , σinj = 3.

The excitable behaviour is found for all the considered values of the pump

parameter: 1.43 ≤ µ ≤ 1.475 at r = 0.6. The excitability threshold decreases as

the current is increased as shown in Fig. 5.9. This can be understood from the

fact that for higher pumping of the ampli�er, the unstable CS get closer to the
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non-lasing solution (they collide at the laser threshold).

The new and interesting aspect is that the excitable behavior is con�ned in a region
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Figure 5.9: The excitability threshold as function of the pump parameter µ; r = 0.6.

Parameters of the injection are τinj = 5 and σinj = 3.

of the transverse plane that matches the stationary CS pro�le. Therefore we claim

that we are observing excitable CSs (or excitable localized structures) to distinguish

our case from the plane-wave excitable behaviour reported in lasers with saturable

absorber [Dubbeldam 1999, Plaza 1997]. In Fig. 5.10 we report the spatial pro�les

corresponding to the maximum peak intensity of all the three cases analyzed in

Figs. 5.5, 5.6. Stationary, oscillating and excitable CSs have the same spatial shape.
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Figure 5.10: Spatial pro�le obtained by

cutting the intensity distribution along a

line including the the maximum value of

the peak intensity of the stationary (r =

0.45), oscillatory (r = 0.504) and excitable

(r = 0.6) CSs. The curves are normalized

to their maximum value. No matter what

is the temporal behavior, the light emission

is localized in the same spatial pro�le.
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5.3.1 Response to di�erent perturbations

In the following we analyze the e�ect of the spatial width and of the frequency of

the perturbation on the excitable response.

First we inject three Gaussian-shaped pulses with di�erent widths: σinj = 4, 3, 2;

the �eld amplitude is adjusted to be at the excitability threshold. The temporal

pro�le of the pulse is square and it is kept constant: τinj 5 t.u. The intensity pro�le

is reported on the left column of Fig.5.11. The narrower is the Gaussian pulse, the

more powerful it should be in order to excite the response of the system. Thus the

injected energy

Einj = π|Finj|
2σ2

injτinj

seems to be the important quantity that determines the threshold. Though we also

notice that, when the pulse is larger, the energy that is required to reach the ex-

citability threshold is higher. This suggests that there should be a critical value of

the width for which it becomes impossible to trigger excitable CSs. The energies

corresponding to the considered perturbations are: Einj = 643.4 for σinj = 4 and Einj

= 565.5 for σinj = 3, 2. The time traces and spatial pro�les of the system responses

are illustrated for comparison in the central and right columns of Fig.5.11.

The temporal behaviours are all quite similar: the peak intensity of the pulse is

slightly bigger than 5 and its HWHM is of 13 t.u., only the delay time seems to

depend on the perturbation: it grows as the perturbation shrinks. On the other

hand, we know that the time delay changes a lot as the perturbations gets close to

threshold (as it is observed in the lower panel of Fig. 5.9); then the di�erence in

the delay time can be due to the precision used to determined the threshold which

is δ|Finj| = 0.1.

At last we observe that the spatial pro�les at the peak maximum are the same in

the three cases. Hence we have shown that excitable localized structures in a laser

with saturable absorber can be triggered by input pulses with di�erent widths in

contrast to studies about their counterparts in Kerr cavities which use as address-

ing beam a pulses of a speci�c form: the one of the unstable localized structure

[Gomila 2005, Gomila 2007, Jacobo 2008].

In a second time, we change the injected frequency ωinj, we keep the same injec-

tion time as before and we set σinj = 3. So that we can compare the threshold

energy for two di�erent frequencies of the perturbation. In the case of stationary

CS, the injection at the cavity soliton frequency (ωCS) allows to reduce the energy

threshold for the switching respect to the injection at the cavity frequency (ωinj =

0) [Mahmoud Aghdami 2008]. We show that also in the case of excitable CSs, the

energy is signi�cantly reduced.

On the left panel of Fig. 5.12, the spatial intensity pro�le of the perturbation at

threshold is depicted. Compared to the perturbation with the same width and at

the cavity frequency (central row of Fig.5.11), it is much weaker. The corresponding

energy is Einj = 11.1 that is about �fty times smaller than the threshold previously

calculated.

The resulting excitable CS has the same properties as the excitable CS triggered
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Figure 5.11: Three di�erent injected pulses and the resulting responses. Left column:

spatial intensity pro�les of the injected Gaussian pulses. Centre column: time evolution of

the peak intensity from the beginning of the injection. Right column: normalized spatial

intensity pro�le corresponding to the peak of the excitable response. The injection param-

eters are: σinj = 4 and |Finj | = 1.6 (top); σinj = 3 and |Finj| = 2 (center); σinj = 2 and

|Finj | = 3 (bottom). For all of them τinj = 5, ωinj = 0.

by a pulse at the cavity frequency as it can be seen from the temporal and spatial

pro�les on the central and right panels of Fig. 5.12.

5.4 Conclusions

We have studied numerically the stability of cavity solitons in a VCSEL with

saturable absorber using the ratio of the carrier lifetimes in the passive and in the

active material (r), as control parameter. In a certain parameter region, CSs that

develop a Q-switching instability (Oscillatory Cavity Solitons), are found to be

stable and to coexist with the homogeneous non-lasing solution.

Beyond the bifurcation from the OCS regime to the non-lasing solution, we have
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Figure 5.12: Excitable response for ωinj = ωCS. Left: spatial intensity pro�le of the

injected Gaussian pulse. Centre: time evolution of the intensity from the beginning of

the injection. Right: normalized spatial pro�le corresponding to the peak of the excitable

response. The other injection parameters are: σinj = 3 and |Finj | = 0.28, τinj = 5.

demonstrated the existence of excitable laser cavity solitons. They appear as a

short laser pulse localized in space, they arise from the stable non-lasing state in

response to a local perturbation that exceeds a characteristic threshold. After the

emission of the pulse, the system is back to the non-lasing stable state. The spatial

pro�le of the emitted pulse matches the pro�le of stable CSs found in the same

system.

Excitable localized structures have been already predicted in an optical cavity �lled

with a Kerr medium [Gomila 2005]. They represent a new tool in the all-optical

processing of information [Jacobo 2010]. We have shown that excitable laser CSs

can also be used for pulse reshaping by proving that the shape of the output does

not depend on the input. The output also does not depend on the input frequency.

We were able to trigger an excitable excitable localized structures with input pulses

at the cavity frequency and at the CS frequency. Injection at the CS frequency

allows to reduce the energy of the trigger pulse of a factor �fty respect to the

injection at the cavity frequency. The results about excitability obtained in our

analysis could be reproduced using the pump µ as bifurcation parameter by �xing

the value of r in the range of stability of the Oscillatory CSs. A similar bifurcation

from periodic oscillations to non-lasing solution would be observed as one decreases

the pump parameter. This could be more realistically realized in experiments where

the characteristic lifetimes of the system can not be changed.

We already looked for excitable localized structures in the experiment with two

coupled VCSELs by studying the response of the system to a local perturbation,

when the the pump parameter is set below the stability domain of the CS (see

sec. 3.4). The behaviour of the system could not be identi�ed as excitability since

no bifurcation to (or from) an oscillating regime was observed. This di�erence

from the numerical analysis is plausibly due to the characteristic lifetimes of the

experiment.

Indeed the experiment studied in this thesis di�ers from the above model since it
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has a long external cavity (≈ 30 cm) which allow multimode dynamics and which

makes the photon lifetime much longer1 compared to the photon lifetime in a

single VCSEL (10 ps) which is used in our model. Moreover, since the roles of the

ampli�er and of the absorber are played by identical devices, the carrier lifetime of

the absorber and of the ampli�er are the same. Therefore in the experiment r is

�xed and equal to one whereas in the numerical simulations is always smaller than

one.

1The photon lifetime of a single cavity is proportional to the cavity length, L, and inversely

proportional to the logarithm of the cavity mirrors re�ectivity, R: τph = −L/(c ln(R2)). If we

consider that, in the compound cavity, the dominant losses are given by the beam-splitter, whose

re�ectivity is R≈ 0.8, the photon lifetime can be reasonably estimated between 1 to 10 ns.
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In this chapter we consider the excitable dynamics in a di�erent system without

spatial dependence. The studied system is an optically injected semiconductor laser.

In this con�guration two lasers (a master and a slave) are coupled in such a way

that the light from the master is injected into the cavity of the slave and not vice

versa. When the frequencies of the two lasers are su�ciently close, the master �eld

may force the slave �eld to oscillate at the same frequency and at a �xed relative

phase, provided that the injection level is su�ciently high. This system is rich in

non-linear dynamics such as multistability, chaos and the focus of our investigations:

excitability.

As we have already discussed in the previous chapters, excitability refers to the

response of a system to perturbations from a steady state. The excitability in

this kind of systems has been so far claimed by analyzing the bifurcation from

resting state to periodic emission of pulses [Goulding 2007] and by the observa-

tion of random emission of pulses interpreted as noise triggered excitable pulses

[Kelleher 2009, Kelleher 2011b]. In [Goulding 2007] authors show that the ob-

served phenomenon can be explained in terms of excitability described by the

Adler model [Adler 1973]. In the Adler model, which describes the phase lock-

ing of two oscillators, an excitable event consists in a 2π-rotation of the slave phase.

This phase change during noise-triggered pulses has been experimentally measured

[Kelleher 2009]. More recent works report on multipulse regimes [Kelleher 2011a]

and on the evolution of interspike statistics as function of the injection strength

[Kelleher 2011b]. Nevertheless excitability, as by de�nition, have not been demon-

strated, since no perturbation has been applied in the system yet.

We study, for the �rst time at our knowledge, the response to an external pertur-

bation, obtained by modulating the phase of the master �eld. The experimental

set-up is described in the next section. The features of the observed excitable pulses
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together with the conditions at which they appear are discussed in sec. 6.2. Finally

we study the evolution of the system response under variation of the perturbation's

amplitude.

6.1 Experimental Set-up

The experimental set-up is sketched in Fig. 6.1. The MASTER is a tunable edge-

emitter semiconductor laser while the SLAVE is a mono-mode small-area VCSEL.

An optical isolator (OI) is placed in front of the MASTER in order to preserve the

unidirectionality of the coupling.

Figure 6.1: Sketch of the experimental set-up adopted to study excitability in a laser with

optical injection. PM, phase modulator; OI, optical isolator; FP, Fabry-Perot interferome-

ter; BS, beam splitter; PBS, polarizing beam-splitter; CM, clipping mirror; Pol, polarizer;

L/2, half wave plate.[Courtesy of Bruno Garbin, adapted from [Garbin 2012]].

The frequency of the master is kept �xed, we use two parameters in order to achieve

the synchronization and to look for the excitable regime: i) the slave current IS and

ii) the injection strength. The slave bias controls the emitted frequency and the

power. The slave's threshold is at about IS = 0.2 mA, the emission is linearly polar-

ized until IS = 1.8 mA. Its wavelength at threshold is 978.85 nm for the operating

temperature, and it increases as the current is increased with a rate of 0.45 nm/mA.

In terms of frequency it corresponds to 140 GHz/mA. The strength of the injection

is controlled by turning the half-wave plate in front of the polarizer which is oriented

parallel to the main polarization of the SLAVE, just before the beam-splitter.

The phase of the master �eld can be modulated by applying a square wave voltage

into the phase modulator (PM in Fig. 6.1). This means that the phase undergoes
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to periodic and abrupt changes with amplitude ∆φ, which depends on the voltage

amplitude. The phase kicks are alternately positive and negative according to the

derivative of the square wave and they represent the perturbation. The duration

of the perturbation is given by the rise-time of the function generator which is 100

picoseconds. The maximum value of the phase jump that we can achieve is limited

by the maximum voltage amplitude provided by our function generator and it is

2/5π.

The signal from the slave goes into two branches of detection in order to monitor

the dynamics. In one branch we measure the spectrum with a Fabry-Perot interfer-

ometer. The resolution is about 650 MHz. In the other branch we measure the time

traces with a resolution of 6 GHz. Both measurements can be done simultaneously.

6.2 Response to a perturbation

In order to �nd the excitable regime, we look at the spectrum. The excitable

regime is in proximity of the locking region for a low level of injection. If we look

at the signal from the Fabry-Perot, it is found that when the two lasers are not

interacting because their spectra are far apart, the power of the master should be

about the 5% of the power of the slave. We consider the master red-tuned compared

to the slave (positive detuning). The typical behaviour as IS is increased is the

following: as the frequencies of the two �elds get closer, a non-linear interaction takes

place and other frequencies appear in the spectrum, the corresponding time-trace

reveals a periodic behaviour; for a certain value of the current, the two frequencies

lock and the dynamics becomes stationary. The synchronization persists for some

values of IS until the slave is too blue tuned (negative detuning) and the two �elds

suddenly unlock. As the current is diminished, an hysteresis cycle between locked

and unlocked state becomes visible at the edges of the locking region (for both

positive and negative detuning). The two cycles may not be symmetric and their

widths depend on the injection strength.

The excitable behaviour can be found by perturbing a stationary stable state in the

proximity of a bifurcation to a limit cycle. Hence we apply a perturbation when

the lasers are synchronized for a value of IS close to the frequency unlocking. Let

us consider the case of positive detuning that is for lower values of IS . We set the

amplitude of the perturbation at its maximum and the period at 30 ns, an example

of the resulting temporal dynamics is reported on Fig. 6.2. The system responds

in a binary way to the perturbations: when the perturbation is suitable it emits

a sub-nanosecond pulse (the zoom of a pulse is depicted in the inset in Fig. 6.2)

otherwise it stays in its stationary state. In the �gure the pulse is emitted only for

positive phase variation, ∆φ. Because of the noise �uctuations some perturbations

may not be e�ective as the one at 50 ns.

The conditions for excitability described above can be reached for di�erent sets of

parameters, for instance by �xing a di�erent master frequency so that the locking

occurs at di�erent IS . We checked that the dynamics does not depend on the
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Figure 6.2: Temporal response of the system to a periodic perturbation of the phase

∆φ. The phase modulation is drawn on top of the �gure, its period is 30 ns. The system

responds with the emission of pulses all similar to each other (see inset), when the phase

kick is suitable (positive in this case and strong enough) or it does not respond (a pulse is

missed at 50 ns). IS = 1.095 mA.

polarization.

In Fig. 6.3 we show the evolution of the spectrum as IS is decreased in order to point

out the value at which excitability occurs. The frequency of the master is set to zero.

Until IS ≈ 2.03 the lasers are unlocked, one harmonic resulting from the interaction
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Figure 6.3: Evolution of the spectrum as the current of the slave IS is decreased. The

frequency of the master is set to zero. Excitability occurs at IS = 1.935, close to the

locking-unlocking transition. The color scale is logarithmic.
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is visible; between 2.03 and 1.93 we recognize the locking region. Beyond 1.93 the

lasers are again unlocked and from 1.9 they do not interact anymore. Excitable

pulses appear at IS = 1.935. In the next section we study the dynamics for these

parameters as function of the amplitude of the perturbation.

6.3 Threshold-like behaviour

In order to be de�nitely sure that the observed dynamics is excitability it is impor-

tant to establish the presence of a threshold for the perturbation.

For low amplitudes of the perturbation, the response of the system is not visible

(top trace of Fig. 6.4); as ∆φ is increased, some of the perturbations start to be

e�ective and are able to trigger pulses (central trace); for higher values almost the

totality of the applied perturbations is able to trigger a pulse (bottom trace).

We perform statistics of the amplitude of the emitted pulses over �ve-thousands

perturbations for several values of ∆φ. The results are illustrated in Fig. 6.5.
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Figure 6.4: Time traces corresponding to periodic perturbations with di�erent amplitudes

∆φ: below threshold ∆φ = 0.17 π (top), very close to threshold ∆φ = 0.3 π (center) and

above threshold ∆φ = 0.39 π (bottom). The signal is normalized respect to the mean value

of the excitable pulses. The traces are shifted vertically of 1.5 for clarity. IS = 1.935.
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For low values of ∆φ, the average amplitude is of the order of the detection

noise. Then, it increases slightly and linearly up to ∆φ ≈ 0.27π. In the interval

0.27π < ∆φ < 0.32π, the mean peak amplitude has a big excursion. On the other

hand the standard deviation reaches a maximum within the same interval. This

means that the perturbation has reached a critical value that takes the system close

to a separatrix where it is sensitive to �uctuations: either it emits a weak pulse or

a strong one (as we can see from the central time trace of Fig. 6.4). We locate the

excitable threshold at ∆φ ≈ 0.3π.

Beyond this range, the peak amplitude does not depend critically on the perturba-

tion and it does not show big �uctuations.

���

���

���

���

�

�
	
A
BC
�
	
A
D
E
F

���� ���� ���� ���� ���� ����

��B�

�

���

���

���

���

�
	
BC
�
	
A
D
E
F

Figure 6.5: Top: mean value of the peak amplitude of the system response as function

of ∆φ. Bottom: corresponding standard deviation. Both curves are normalized respect to

the average peak amplitude of the excitable pulses obtained for ∆φMAX = 0.39 π.

6.4 Conclusions

A laser with optical injection is expected to be able to show excitability

[Coullet 1998]. Di�erently from the studies that have been performed so far in

this kind of systems, we experimentally demonstrate the excitability by applying

a perturbation. We show that excitable pulses can be triggered by perturbations

obtained by modulating the phase of the injection. Moreover the statistics of the
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peak amplitude as function of the perturbation amplitude con�rms the threshold-

like behaviour of the phenomenon. For perturbations lower than the critical value

∆φ ≈ 0.3π, the system responds with weak pulses. For bigger values, it emits strong

pulses whose average amplitude does not depend critically on the perturbation's one.





Chapter 7

Conclusions and Perspectives

The research carried out during the three years of my PhD concerns excitability

and laser localized structures (LLS). We studied the separate and simultaneous

occurrence of these two nonlinear phenomena in semiconductor-based system.

On the one hand, we looked for excitability in a small-area VCSEL with optical

injection (chapter 6). Many theoretical and experimental studies claim that this

kind of system can be excitable. None has demonstrated excitability by analyzing

the response to an external perturbation. We demonstrated the excitability by

performing an experiment which shows the possibility to control the excitable

pulses by a phase perturbation, provided that the perturbation is stronger than a

certain threshold. Therefore, from a phenomenological point of view, the response

of this system to an external perturbation, is analogue to that of a neuron. The

experimental system is relatively simple to handle, and thanks to the control that

we achieved on the output pulses, it can be used to build more complex experiments

such as: the realization of an optical neuronal network, by interconnecting two or

more of such devices, and the realization of an optical bu�er.

On the other hand, we realized a cavity soliton laser in order to study the

properties of coherence and mutual coherence of LLS (chapter 2). Our cavity soliton

laser consists in two mutually coupled broad-area VCSELs, placed face-to-face at a

distance of thirty centimeters, and its functioning is based on saturable absorption.

LLS are localized structures arising from the spontaneous emission noise of the

system, thus their phase and frequency are not determined by an external driving

�eld. For what concerns the frequency of LLSs, mode hops between di�erent

longitudinal modes of the compound cavity and multi-mode emission have been

observed. We also reported on phase hops induced by small changes of the system

parameters. Because of the phase pro�le which has a diameter three times bigger

than the intensity pro�le, interaction between two distant structures is possible.

We reported on in-phase and out-of-phase locking between two di�erent localized

structures. However, the spatial disorder, caused by defects in the material or in the

alignment, plays an important role in the interaction between di�erent structures

and it can prevent their locking. Because of that, two LSs that are in the range of

the phase interaction (at a distance smaller than three times the LS diameter), may

emit on di�erent and very distant longitudinal modes and therefore they appear

mutually incoherent.

There is an important thing to be checked in perspective of applications: the control
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of LSs by an external beam. We studied the characteristics of the control beam

that allow for the most e�cient switching with the available power (chapter 3). The

switch-on process is favored by parallel polarization respect to the LS's one and by

blue-tuned wavelength compared to the LS's one. The necessary energy is of few

picojoules. Whereas The switch-o� process is favored by crossed polarization and

a wavelength that matches the LS's one; moreover, it requires more energy: tens

of picojoules. Even though the di�erent characteristics of the writing and erasing

beam raise interesting questions about the physical phenomenon occurring during

the switching, they limit the ease of use of the control beam which is fundamental

for applications. It would be possible to control LSs with the same beam if more

power were provided.

Our investigations went beyond the study of LSs in their stable stationary

regime with the aim of searching for excitable localized structures.

The existence of excitable localized structures was �rst predicted in a paradigmatic

model for a nonlinear cavity. The system described by that model is not excitable,

but when spatially extended, it hosts LSs which can exhibit excitable behaviour.

This excitability mediated by localized structures was found close to the bifurcation

that annihilates the limit cycle constituted by the oscillating localized structure.

Excitable localized structures are very interesting for applications since they o�er

both the parallel mode of operation of localized structures and the threshold-like

response of excitable systems.

We numerically demonstrated the existence of excitable localized structures in

a model for semiconductor laser with intracavity saturable absorber (chapter 5)

by studying the response to a perturbation. The perturbation was applied out of

the stability domain of the localized structure. The stationary LS may become

unstable as the ratio between the carrier lifetime of the active and of the passive

material is changed. For certain values, when the carrier lifetime of the absorber is

reduced, we observed oscillating localized structures. In this case the mechanism

that originates the limit cycle is the Q-switching instability. Excitable localized

structures exist after the bifurcation that annihilates the limit cycle represented by

the Q-switched LS.

We showed that excitable localized structures can be used for pulse reshaping since

the spatial and temporal shape of the output pulse does not depend on the ones

of the input. Future works will involve the analysis of the interactions between

di�erent excitable LSs.

We also studied experimentally the response of the system to a local pertur-

bation when the non-lasing solution is stable and the LS is unstable (sec. 3.4

in Chapter 3). Two kinds of responses are distinguishable: after weak or not

well-tuned perturbations the system remains in its stable state; after strong and

well-tuned perturbations the system locally emits light whose intensity and spatial

pro�le match the LS's ones, and then it decays on the non-lasing state again. We
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showed that the events of the latter kind possess features typical of excitability

such as threshold-like behaviour and a certain determinism in the return trajectory

(the minimal and typical lifetime is about 100 nanoseconds). Nonetheless that

cannot be interpreted as excitable behaviour since the emitted pulses were not all

identical. Moreover, the excitable response to an external perturbation results from

the vicinity in the parameters space to a bifurcation which creates (or annihilates)

a limit cycle. Such a bifurcation of a limit cycle, whose features could �t the ones

of the observed response, could not be identi�ed.

Di�erently from the one found in the numerical analysis, the Localized structure

of the experiment does not undergo a Q-switching instability, this is probably due

to the time scales of the experiment, which do not match the ones of model. As

we discussed in the conclusive section of Chapter 5, the main di�erence consists in

the photon lifetime, which in the experiment is about a thousand times the one

used in the numerical simulations, because of the long cavity length. Moreover,

the carrier lifetimes of the experiment are �xed by the VCSELs constructor.

Since the numerical simulations show that an excitable CS occurs for a saturable

absorber which is faster compared to the one which gives stable stationary CSs,

the employment of a faster saturable absorber in the experiment could be useful

for future investigations.

Then, in our experimental search for excitable localized structures, we followed

a di�erent approach: we looked for a bifurcation to/from a limit cycle.

We reported on a localized emission of periodic bursts which occurs when the

system is misaligned (chapter 4). The bursts are composed of fast pulses (linked to

the longitudinal modes interaction) with a slow periodic envelope (the minimum

period observed is twenty nanoseconds). We focused our analysis on the slow

envelope dynamics. The transition from non-lasing state to periodic emission

of pulses occurs through an in�nite period and non-zero amplitude bifurcation;

in addition, a random emission of pulses with Kramer statistics is observed

close to this bifurcation. We showed that this phenomenon can be explained by

the nucleation and drift of a localized structure in presence of a defect and a

gradient. Since the observed bifurcation has the characteristics required for the

generation of excitability, we believe that the observed random generated pulses

are noise-triggered excitable localized structures whose excitability is induced by

inhomogeneities and drift.

In order to e�ectively demonstrate the excitability, an external short perturbation

should be applied.

In the switch-on transient and in the above described bursts, we could observe

unstable trains of short pulses separated by the cavity round trip time. In the future,

it will be worth analyzing this fast dynamics which clearly indicates a multimode

regime. If a stable phase relationship could be established between the di�erent

modes, mode-locking would be realized and the three-dimensional (in space and

in time) localization of light would be possible. It is known that the carrier life-
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time of the saturable absorber plays an important role in stabilizing mode-locking

[Kurtner 1998]. In particular, a fast saturable absorber makes mode-locking more

stable against multiple pulse breakup than a slow saturable absorber. Therefore, in

order to achieve stable mode-locking with our set-up, one could replace the VCSEL

acting as saturable with a faster semiconductor saturable absorber.



Appendix A

A.1 Resonant Saturable Absorber Mirror

This appendix aims to illustrate some features of Resonant Saturable Absorber

Mirrors (RSAM).

A RSAM is composed of a semiconductor saturable absorber in between two Bragg

re�ectors (see Fig.A.1). Hence it is in principle analogous with a VCSEL pumped

below transparency as L2. The behaviour of a RSAM will be useful to understand

the response of L2 to the WB injection. In particular we are interested in the

qualitative dependence of re�ectivity on wavelength (Fig. A.2 left) and intensity

(Fig.A.2 right).

Figure A.1: Scheme of a Resonant Saturable Absorber Mirror (RSAM). Image from

http://www.batop.com.

For a given value of saturation, the re�ection is lower at resonance (1064 nm

in Fig.A.2, left) and higher for other wavelengths (up to 100% when the incoming

radiation is out of the resonance bandwidth). Moreover, for a given wavelength

within the resonance bandwidth, the re�ection increases as the absorber comes closer

to saturation. Indeed, the RSAM has a low re�ectance for weak optical signals and

high re�ectance for high power signals that are able to saturate the device (see right

hand side of Fig.A.2).
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Figure A.2: Left: resonance bandwidth of a RSAM for di�erent saturation levels. Re-

�ection is low within the resonance bandwidth and it increases as the the saturation level

increases. Right: re�ectance of a RSAM for orthogonal injection at resonance as function

of the incident pulse intensity. Images from http://www.batop.com
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