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From Local to Non-Local Quantum
Transport

In physics, transport is the generic term for the motion of charge, mass or energy
in response to a non-equilibrium situation. In my thesis, I study two very different
systems with remarkable transport properties: Two dimensional electron gases
under a strong perpendicular magnetic field showing the quantum Hall effect and
superconducting hybrid structures. Common to both systems is the important role
of quantum effects leading to regimes of dissipationless transport.
In quantum Hall systems, quantum mechanics manifests itself clearly in the

conductance quantization. The transverse Hall conductance does not increase linearly
with the magnetic field, as would be expected classically, but in steps of integer
multiples of e2/h. The longitudinal conductance features peaks at the magnetic field
values of the plateau transitions in the Hall conductance and drops by several orders
of magnitude everywhere else. The study of noise and current cross-correlations in
normal metal-superconductor hybrid structures reveals other aspects of quantum
mechanics: the quantization of charge, interference effects and the statistics of
the charge carriers. The noise at tunnel barriers is proportional to the charge per
carrier and it doubles if a superconductor, where charge is transported in Cooper
pairs, is involved. At the interfaces between the different electrodes, the stream
of incoming charge carriers is divided into a transmitted and a reflected stream.
The interference of streams having taken different ways leads to noise and current
cross-correlations. They are especially rich in superconducting hybrid structures
which couple electron and hole channels. In non-interacting purely fermionic systems,
current cross-correlations are always negative. However, they can become positive in
the presence of a superconductor.
The quantum Hall effect has a well established application in metrology, where it is

used to maintain the resistance standard. The high precision needed in metrology is
one motivation for further theoretical research, as one needs to know all factors which
limit the quantization of the Hall plateaus. The edge states of quantum Hall samples
are ballistic conducting channels that provide a possibility to perform with electrons
interference experiments well known from optics. The idea of an electronic equivalent
to a quantum optics experiment is also a motivation for studying three-terminal
superconducting hybrid structures: One hopes to use them as a source of entangled
electrons for Einstein-Podolski-Rosen experiments.
While in a classical framework position is a well defined quantity, in quantum
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From Local to Non-Local Quantum Transport

mechanical systems wave functions are spread and non-local effects are possible. The
local or non-local nature of transport phenomena depends on the relation between
the coherence length and other relevant length scales of the system. We study local
transport in quantum Hall systems at high temperature. There, electron-phonon
scattering destroys phase coherence on a length scale much shorter than the length
scale on which the disorder potential varies and the transport problem becomes
purely classical. Nevertheless, transport stays far from trivial. The current profile is
highly inhomogeneous and leads in the presence of extremely weak dissipation to a
percolation problem. One aim of this work is to develop theoretical tools to address
this difficult transport problem and to make predictions that can be confronted to
experiments.
At lower temperatures transport becomes non-local as tunnel effects start to play a
role. Here, wave functions pass as evanescent waves through classically insurmount-
able potential barriers leading to a finite probability that the particle propagates
at the opposite side of the barrier. As a first step towards non-local transport, we
consider tunneling of located wave packets in the quantum Hall regime.

Another beautiful manifestation of non-local transport can be found in three-
terminal normal metal-superconductor-normal metal hybrid structures where the
length of the superconductor separating the two normal metal electrodes is shorter
or of the order of the coherence length of the superconductor. A voltage applied
between one normal electrode and the superconductor leads to a current in the second
normal electrode. Besides conductance, current cross-correlations are often studied,
amongst others because positive cross-correlations are an indication of entanglement.
In this context, we want to know if reflectionless tunneling, an effect that leads to
an enhancement of the conductance over an normal metal-superconductor interface
in the presence of disorder, can enhance positive current cross-correlations. The
conductance and the current cross-correlations are always a sum of several microscopic
processes leading us to the question if electronic Fabry-Perot interferometers can be
used to filter these different processes.

Outline

My thesis consists of two parts “Transport in the Regime of the Quantum Hall
Effect” and “Conductance and Differential Current Cross-Correlations in Three-Ter-
minal Normal Conductor-Superconductor-Normal Conductor Hybrid Structures” the
former containing four the later three chapters.
The first chapter is a general introduction to the quantum Hall effect. First, the
basic concepts of Landau levels and localization by disorder are introduced leading
to an intuitive explanation of the quantum Hall effect. Afterwards, some more
sophisticated theories that can throw light on specific aspects of the quantum Hall
effect are presented.
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From Local to Non-Local Quantum Transport

In the second chapter, we study the high temperature regime of the quantum Hall
effect. We develop a diagrammatic technique based on an effective medium approach
to calculate the conductance as a function of the local conductivity tensor. In this
regime transport is dominated by classical percolation.
In the third chapter, we derive expressions for the conductance in function of
experimentally controllable quantities and compare our theoretical predictions to
recent experiments.
In the fourth chapter, we study quantum tunneling over saddle points from the
scattering of semi-coherent state wave packets. This method allows us in particular
to address analytically saddle points in the scalar potential in graphene.
The second part starts with the fifth chapter, which is an introduction to three-
terminal normal conductor-superconductor-normal conductor (NSN) hybrid struc-
tures. After explaining the charge transfer processes that can occur on the inter-
faces between normal conductors and superconductors, I give an introduction to
Einstein-Podolski-Rosen experiments which have inspired research on three-terminal
NSN-structure motivated by proposals to use them as a source of entangled electrons.
It is followed by an overview of experiments probing non-local conductance and a
discussion about what we can learn from current cross-correlations.
In the sixth chapter, metallic systems are studied in a one-dimensional model where
multi-dimensional behavior is simulated qualitatively by mode averaging. We address
the question whether an effect similar to reflectionless tunneling could enhance posi-
tive cross-correlations in three-terminal normal conductor-superconductor-normal
conductor hybrid structure with additional barriers in the normal conducting elec-
trodes.
In the seventh chapter, we turn towards a ballistic model. Here, additional bar-
riers lead to Fabry-Perot oscillations, which can at small but finite bias serve to
separate the different contributions of the conductance and of the differential current
cross-correlations.
The thesis ends with a summary and propositions for further work regarding both
topics addressed.
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Résumé substantiel en français

Transport quantique local et non-local

Dans le contexte de la physique, le transport est le terme générique désignant
le mouvement de charge, de masse ou d’énergie en réaction à une situation hors
équilibre. Dans ma thèse, j’étudie deux systèmes très différents avec des propriétés
de transport remarquables : les gaz d’électrons bidimensionnels sous fort champ
magnétique perpendiculaire montrant l’effet Hall quantique et les structures hy-
brides supraconductrices. Ces deux systèmes ont en commun le rôle important de la
mécanique quantique amenant à des régimes de transport sans dissipation.

Dans les systèmes à effet Hall quantique, la mécanique quantique se manifeste
clairement par la quantification de la conductance de Hall. En effet, la conductance
transverse ne crôıt pas linéairement avec le champ magnétique, comme attendu
classiquement, mais en marches multiples entières de e2/h. La conductance longitu-
dinale affiche des maxima aux champs magnétiques correspondants aux transitions
entre plateaux dans la conductance de Hall et chute de plusieurs ordres de grandeur
partout ailleurs. L’étude du bruit et des corrélations croisées en courant dans des
structures hybrides métal normal-supraconducteur montrent d’autres aspects de la
mécanique quantique : la quantification de la charge, les effets d’interférence et la
statistique des porteurs de charge. Le bruit sur une barrière tunnel est proportionnel
à la charge par porteur et se double en présence d’un supraconducteur où la charge est
transportée par les paires de Cooper. Aux interfaces entre les différentes électrodes,
le flot des porteurs de charge incidents est divisé dans un flot transmis et dans
un flot réfléchi. Le bruit et les corrélations croisées en courant sont le résultat de
l’interférence entre des flots ayant pris des chemins différents. Ces corrélations sont
particulièrement riches dans les structures hybrides supraconductrices qui couplent
les canaux d’électrons et les canaux de trous.

L’effet Hall quantique a une application bien établie en métrologie où il est
utilisé pour maintenir le standard de résistance. La précision élevée nécessaire
pour des applications métrologiques est une motivation pour la poursuite de la
recherche théorique, parce qu’il est nécessaire de connâıtre tous les facteurs limitant
la quantification des plateaux de Hall. Les états de bord des échantillons de Hall
sont des canaux balistiques avec lesquels une version électronique des expériences
d’interférence bien connues de l’optique peut être réalisée. L’idée d’un équivalent
électronique des expériences de l’optique quantique est aussi une motivation pour
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Résumé substantiel en français

étudier les structures hybrides supraconductrices à trois terminaux : on espère les
utiliser comme source d’électrons intriqués dans des expériences de type Einstein-
Podolski-Rosen.

Tandis que dans un cadre classique la position est une quantité bien définie, en
mécanique quantique les fonctions d’onde donnent seulement une distribution de
probabilité pour la position, et des effets non-locaux sont possibles. La nature locale
ou non-locale d’un phénomène de transport dépend de la relation entre la longueur
de cohérence et les autres échelles pertinentes du système. Nous étudions le transport
local dans un système de Hall quantique à des températures élevées. Dans cette
situation, la diffusion électron-phonon détruit la cohérence de phase sur des échelles
beaucoup plus courtes que l’échelle sur laquelle le potentiel de désordre varie et le
problème de transport devient purement classique. Néanmoins, le transport reste
hautement non-trivial. Le profil de courant est fortement inhomogène et entrâıne
en présence d’une dissipation extrêmement faible un problème de percolation. Un
but de ce travail est de développer des outils théoriques pour adresser ce problème
de transport difficile et de faire des prédictions qui peuvent être confrontées aux
résultats expérimentaux.
Pour des températures plus basses, le transport devient non-local, parce que l’effet
tunnel entre en jeu : des fonctions d’onde évanescentes passent des barrières classi-
quement infranchissables et donnent lieu à une probabilité finie pour une particule
de se propager du côté opposé. Comme première étape vers le transport non-local,
nous étudions le passage par effet tunnel d’un paquet d’onde localisé à travers une
barrière unique dans le régime de l’effet Hall quantique.

Une autre manifestation impressionnante du transport non-local peut être trouvée
dans des structures conducteur normal-supraconducteur-conducteur normal à trois
terminaux où la longueur du supraconducteur séparant les deux électrodes normales
est plus courte que (ou de l’ordre de) la longueur de cohérence du supraconducteur.
Une tension appliquée entre la première électrode normale et le supraconducteur
entrâıne un courant dans la deuxième électrode. En plus de la conductance, les
corrélations croisées en courant sont souvent étudiées, entre autre parce qu’un signe
positif des corrélations croisées est un indice pour l’intrication. Dans ce contexte, nous
souhaitons savoir si la réflexion d’Andreev résonante (reflectionless tunneling), un pro-
cessus qui augmente la conductance sur une interface métal normal-supraconducteur
en présence de désordre, peut amplifier des corrélations croisées positives. La conduc-
tance et les corrélations croisées en courant sont toujours une somme de plusieurs
effets microscopiques, ce qui nous amène à la question de savoir si des interféromètres
de Fabry-Pérot électroniques peuvent être utilisés pour filtrer ces différents processus.
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Résumé par chapitre

Résumé par chapitre

Introduction à l’effet Hall quantique
Le premier chapitre donne une introduction générale à l’effet Hall quantique. Après

la description de la phénoménologie, quelques remarques historiques et une digression
sur la réalisation physique des gaz des électrons bidimensionnels, l’effet Hall quantique
est expliqué de manière intuitive : pour l’effet Hall quantique deux ingrédients sont
essentiels : le champ magnétique intense qui fait nâıtre la structure particulière du
spectre en niveaux de Landau et le potentiel de désordre qui localise la plupart des
électrons. La localisation peut déjà être comprise à partir de la solution de l’équation
de mouvement newtonienne classique. Sous champ magnétique perpendiculaire et en
présence d’un potentiel, le mouvement des électrons peut être décomposé dans le
mouvement cyclotron autour d’un centre de guidage et le mouvement de dérive de ce
centre de guidage. Il s’avère que le centre de guidage suit les lignes équipotentielles
du potentiel de désordre. Ainsi, un électron se trouvant sur une ligne équipotentielle
entourant un sommet ou une dépression est localisé. Seulement les électrons sur les
lignes équipotentielles percolant à travers le système sont délocalisés. Les électrons
localisés ne contribuent pas au transport macroscopique et sont à l’origine des
plateaux de Hall et des régions de faible conductance longitudinale. Tandis que les
électrons délocalisés sont la raison pour la transition entre les plateaux et les pics
dans la conductance longitudinale.
Ensuite, je présente quelques théories plus élaborées et leur limitations. Cette partie
montre que l’explication de l’effet Hall quantique est loin d’être triviale et que
beaucoup de pièces du puzzle sont encore à trouver.
Dans les chapitres suivants, je présent mes deux pièces du puzzle : Une théorie
du transport pour le régime de haute température de l’effet Hall quantique et la
détermination analytique du coefficient de transmission d’un point selle pour le
potentiel scalaire dans le graphène à partir de paquets d’ondes.

Approche diagrammatique pour le régime de percolation classique des
transitions de Hall quantique
Dans le deuxième chapitre, nous étudions le régime de haute température de l’effet

Hall quantique, où l’énergie thermique est plus élevée que les fluctuations typiques
du potentiel de désordre. À ces températures, la diffusion électron-phonon détruit
la cohérence de phase des électrons sur une échelle plus courte que la longueur de
corrélation du potentiel de désordre et la loi d’Ohm peut être utilisée dans sa version
locale. Les variations aléatoires du potentiel de désordre créent des fluctuations fortes
dans les composantes de Hall de la conductivité locale. La densité de courant suit les
lignes équipotentielles, ce qui crée un problème de percolation. Expérimentalement, la
densité de courant et le champ électrique local sont difficiles à mesurer et l’expérience
de transport typique donne seulement accès aux quantités spatialement moyennées.
Pour cette raison, nous souhaitons calculer la conductivité effective σe, une quantité
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Résumé substantiel en français

qui est à un facteur géométrique près identique à la conductance, à partir de la
conductivité locale. L’approche de milieu effectif dans la version développée par
Stroud [1] permet de calculer la conductivité effective sous forme d’un développement
en puissances des fluctuations de la conductivité. Si la conductivité longitudinale
locale σ0 est grande par rapport aux fluctuations de la conductivité de Hall, la
conductivité effective peut facilement être trouvée en arrêtant le développement
perturbatif dès que la précision souhaitée est atteinte. Cependant, les échantillons
de Hall se trouvent dans la limite opposée de fortes fluctuations où l’application
de la théorie de perturbation est impossible. En se basant sur des arguments de la
théorie de la percolation, Simon and Halperin [2] et Isichenko et al. [3] conjecturent
que la conductivité effective longitudinale σe

L s’annule comme σe
L ∝ σ1−κ

0 dans la
limite σ0 → 0, avec l’exposant critique κ = 10/13. Nous accédons à ce régime
de fortes fluctuations en trois étapes. D’abord, nous développons un formalisme
diagrammatique qui nous permet de générer systématiquement les termes de la série.
Ensuite, nous calculons avec une combinaison d’étapes analytiques et numériques les
diagrammes de la série jusqu’à l’ordre six dans le nombre des boucles. Finalement,
en supposant que la conductivité effective s’annule avec une loi d’échelle dans la
limite de faible dissipation et de fortes fluctuations, nous extrapolons la conductivité
effective du régime de faibles fluctuations jusqu’au régime de fortes fluctuations
avec une approximant de Padé. L’extrapolation donne pour l’exposant critique
κ ≈ 0, 767± 0, 002.
En conclusion, avec cette combinaison de calculs diagrammatiques et d’extrapolation,
nous sommes capables de décrire le passage entier du régime dissipatif jusqu’au régime
de percolation. De plus nous confirmons par une méthode purement microscopique
l’exposant critique κ qui était auparavant seulement conjecturé par des arguments
heuristiques.

Transport percolatif classique : Théorie et expérience

Dans le troisième chapitre, nous dérivons les dépendances de la conductivité effective
longitudinale avec la température et le champ magnétique. Utilisant l’estimation du
temps de diffusion entre électrons et phonons par Zhao and Feng [4], nous déduisons
que la conductivité ohmique locale σ0 est indépendante du champ magnétique et
crôıt linéairement avec la température. Pour des températures élevées (kBT ≫ ~ωc)
et des champs magnétiques assez forts pour invalider le régime de Drude, nous
trouvons que la conductivité effective longitudinale suit la loi d’échelle σe

L ∝ B−κ.
Pour évaluer la dépendance en température, il faut connâıtre la valeur du potentiel
chimique. Aux valeurs magnétiques où la conductance longitudinale présente un pic
et la conductivité de Hall passe d’un plateau à l’autre, le potentiel chimique est
donné par µ = ~ωc(n+1/2). Pour la conductivité effective sur les pics nous trouvons
une formule analytique qui décrit la passage entre deux régimes distinct : pour des
températures élevées kBT > ~ωc/4 nous sommes dans un régime purement classique
et σpeak

L ∝ T 1−κ. Pour kBT < ~ωc/4 les niveaux de Landau commencent à se former
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et σpeak
L ∝ T 1−2κ.

Nous comparons ces formules avec des expériences menées par B. Piot et al. [5] au
Laboratoire National des Champs Magnétiques Intenses (LNCMI) à Grenoble et
par V. Renard et al. (en partie publié en [6]). Il est difficile d’extraire l’exposant
κ de la dépendance en champ magnétique, car B doit être assez large pour être
dans le régime de l’effet Hall quantique, mais en même temps assez petit pour que
kBT ≫ ~ωc soit satisfait. Pour la dépendance en température la forme globale des
courbes mesurées est en très bonne correspondance avec la prédiction théorique.
Cependant, les valeurs de κ trouvées expérimentalement sont légèrement plus petites
que la prédiction théorique.

Coefficient de transmission d’un point selle dans le potentiel électrostatique
dans le régime de l’effet Hall quantique

Dans le quatrième chapitre, nous quittons le régime semi-classique et considérons
un problème purement quantique : le passage à travers un point selle par l’effet
tunnel. Les points selles sont importants tant à l’échelle macroscopique, où ils
servent pour décrire les points contact quantiques définis par des électrodes, qu’à
l’échelle microscopique où les points selles dans le potentiel de désordre sont les
premiers endroits où une description classique échoue. Pour des gaz d’électrons
bidimensionnels ordinaires, Fertig et Halperin [7] ont déterminé le coefficient de
transmission de manière exacte à partir de la diffusion des ondes planes. Nous
développons une méthode alternative, basée sur des fonction Green de vortex [8–10].
En principe, il s’agit d’une théorie de diffusion avec des paquets d’onde formés par
des états semi-cohérent. Le grand avantage de notre méthode est qu’elle peut aussi
être appliquée au graphène pour lequel une solution analytique exacte n’existe pas
encore. Une fois la transmission connue, la formule de Landauer-Büttiker permet
de remonter à la conductance. Les points selles asymétriques ont une influence
différente sur la conductance dans les gaz d’électrons bidimensionnels ordinaires
et dans graphène. Dans un gaz d’électrons bidimensionnel ordinaire, l’asymétrie
cause seulement une légère modification de la longueur des plateaux de conductivité
qui sera expérimentalement difficile à mesurer. Pour le graphène, les points selles
asymétriques brisent la symétrie particule-trou de la conductance, c’est à dire la
courbe de conductance pour des énergies positive et négative sera asymétrique.

Introduction aux structures hybrides supraconductrices

Avec le cinquième chapitre commence la deuxième partie de la thèse. Il donne une
introduction aux processus non-triviaux de transfert de charge entre des conducteurs
normaux et des supraconducteurs, passe en revue des propositions d’utiliser une
structure conducteur normal-supraconducteur-conducteur normal (NSN) à trois
terminaux comme source de paires d’Einstein-Podolski-Rosen, présente en suite
des expériences sondant la conductance non-locale des structures NSN et montre
finalement pourquoi il est intéressant d’étudier les corrélations croisées en courant.
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Si un électron arrive à une interface entre un conducteur normal et un supracon-
ducteur avec une énergie plus petite que le gap supraconducteur, son passage direct
dans le supraconducteur est prohibé par l’absence d’états à un électron dans le supra-
conducteur. Le transfert de charge est cependant possible par réflection d’Andreev.
Dans ce processus, l’électron arrivant à l’interface crée une paire électron-trou. Les
deux électrons forment une paire de Cooper qui passe dans le supraconducteur et le
trou retourne dans le conducteur normal. Dans une structure hybride avec plusieurs
contacts normaux séparés d’une distance de l’ordre de la longueur de cohérence du su-
praconducteur, deux processus additionnels jouent un rôle : le cotunneling élastique et
la réflection d’Andreev croisée. Dans un processus de cotunneling élastique, l’électron
traverse le supraconducteur par l’effet tunnel. Le processus de réflection d’Andreev
croisée ressemble au processus de réflection d’Andreev direct, avec la différence que
le trou n’est pas retransmis dans l’électrode de provenance de l’électron, mais dans
une autre électrode.

Structures hybrides métal normal-supraconducteur-métal normal à trois
terminaux

Le sixième chapitre commence avec une description du modèle utilisé, suivi d’une
proposition pour décomposer les corrélations croisées en courant en analogie à la
décomposition du courant dans les contributions AR, CAR et EC. Après, l’effet de
réflexion d’Andreev résonante (reflectionless tunneling) est présenté, parce qu’il donne
la motivation pour l’étude d’une structure NNSNN, c’est à dire une structure NSN
avec deux barrières additionnelles, qui forme la partie principale de ce chapitre. Le
but de notre étude est de savoir, si un effet similaire à la réflexion Andreev résonante
(reflectionless tunneling) peut amplifier des corrélations croisées en courant positives.
Nous étudions un modèle unidimensionnel avec la théorie de diffusion. La matrice de
diffusion est évaluée avec la méthode de Blonder, Tinkham and Klapwijk [11] par
adaptation des fonctions d’onde. Le formalisme de Anantram et Datta [12] permet
de passer des éléments de la matrice de diffusion au courant et aux corrélations
croisées de courant. Dans notre modèle à une dimension, le courant et les corrélations
croisées sont très sensibles aux distances entre les barrières. Dans des systèmes
balistiques à un canal, les barrières multiples agissent comme un interféromètre de
Fabry-Pérot. Cet aspect sera étudié en détail au chapitre suivant. Mais dans un
système multidimensionnel avec plus d’un mode de transmission, les oscillations dans
des modes différents sont indépendantes et la conductance totale ne dépend que
de la moyenne de ces oscillations. Pour imiter qualitativement un comportement
multidimensionnel avec un modèle à une dimension, nous moyennons les distances
entre les barrières sur une période.
La conductance à travers une interface métal normal-supraconducteur (NS) peut être
significativement amplifiée en remplaçant le métal normal par un semi-conducteur
désordonné. Melsen et Beenakker [13] ont reproduit cet effet appelé réflexion d’An-
dreev résonante (reflectionless tunneling) en utilisant une barrière additionnelle
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Conclusion

comme un simple modèle de désordre.
L’étude de la structure NNSNN montre que, si la barrière entre les électrodes nor-
males et le supraconducteur est une barrière tunnel, ajouter une deuxième barrière
augmente fortement la partie AR du courant comme dans la structure NS. Cepen-
dant, les composantes EC et CAR et les corrélations croisées en courant sont peu
influencées. La réflexion d’Andreev résonante est la conséquence d’une interférence
constructive, qui a seulement lieu si les électrons et les trous impliqués acquièrent
une phase exactement opposés sur leur chemin à travers le système. Dans un système
où la phase est moyennée, ceci est seulement possible si les électrons et les trous
ont le même vecteur d’onde et s’ils voient le même environnement. C’est pourquoi
les barrières additionnelles ont peu d’influence sur les processus non-locaux EC et
CAR où la particule entre d’un côté et quitte la structure de l’autre côté. Si la même
tension est appliquée sur les deux électrodes normales, les corrélations croisées sont
dans notre modèle positives. Ces corrélations positives ne peuvent pas être amplifiées
par l’effet de réflexion d’Andreev résonant.

Le système balistique

Dans le septième chapitre, nous étudions toujours un système NNSNN, mais cette
fois-ci en supposant que le transport dans les électrodes normales est balistique. Les
barrières multiples agissent comme des interféromètres de Fabry-Pérot et nous voulons
savoir si cet effet peut être utilisé pour filtrer les différent processus microscopiques
contribuant à la conductivité et aux corrélations croisés en courant. La réponse à cette
question est positive, au moins d’un point de vue théorique. Dans la limite d’énergie
nulle, les résonances pour EC et CAR cöıncident. Cependant, pour des énergies plus
élevées, mais toujours beaucoup plus petites que le gap, le vecteur d’onde pour les
électrons est différent du vecteur d’onde pour les trous. En conséquence, les longueurs
de résonance sont différentes, et ceci permet de séparer l’effet CAR et EC, ainsi que
les différentes contributions aux corrélations croisées.

Conclusion

Nous avons développé un formalisme diagrammatique basé sur un modèle de
conductivité locale qui nous permet de calculer la conductivité longitudinale effective
dans le régime de haute température de l’effet Hall quantique. Notre formalisme
relie le domaine de fluctuations spatiales faibles, qui est déjà bien décrit par une
théorie de perturbation au première ordre, jusqu’au régime de fortes fluctuations qui
était jusqu’à présent inaccessible et où les échantillons de Hall sont normalement
classés. Pour le transport dans un gaz d’électrons bidimensionnels sous fort champ
magnétique, deux effets jouent un rôle important : le mouvement de dérive suivant les
lignes équipotentielles percolant à travers l’échantillon et la diffusion électron-phonon
qui permet de traverser des points selles qui forment des goulots d’étranglement
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pour le transport. Une signature des effets de percolation est l’exposant critique
κ. Sa valeur était auparavant conjecturée à partir d’arguments qualitatifs. Notre
formalisme permet de le calculer microscopiquement.
Nous avons comparé nos résultats avec des expériences récentes et avons trouvé un
bon accord général.
Dans le régime de basse température de l’effet Hall quantique nous avons étudié

la passage par effet tunnel à travers des points selles par la diffusion des paquets
d’ondes formés par des états semi-cohérents. Nous avons analytiquement calculé le
coefficient de transmission d’un point selle pour le potentiel scalaire dans le graphène
et avons trouvé que les points selles asymétriques brisent la symétrie particule-trou
de la conductance.
Nous avons étudié l’influence des barrières additionnelles sur la conductance

(non-locale) et sur les corrélations croisées dans des structures conducteur normal-
supraconducteur-conducteur normal à trois terminaux pour répondre à deux questions.
Dans les systèmes où la phase est moyennée, la réflexion d’Andreev résonante peut-
elle amplifier les corrélations croisées du courant positives dans le régime tunnel ?
Dans les systèmes balistiques, les interféromètres Fabry-Pérot peuvent-ils filtrer les
différents processus dont la conductance et les corrélations croisées sont composées ?
La réponse à la première question est négative : la réflexion d’Andreev résonante
n’amplifie pas les corrélations croisées positives dans le régime tunnel. La réponse
à la deuxième question est positive : Si une tension beaucoup plus petite que le
gap mais finie est appliquée, les différent processus dans le régime tunnel peuvent
clairement être distingués.
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Part I.

Transport in the Regime of the
Quantum Hall Effect
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1. The Integer Quantum Hall Effect

1.1. History and Phenomenology

During the winter of 1980, Klaus von Klitzing studied anomalies in the Hall
resistance and magneto-resistance of a two dimensional electron gas in the inversion
layer of a silicon MOSFET. To his surprise, the Hall resistance of his sample was not
proportional to the magnetic field, but featured steps as the data shown in figure 1.1b.
Even though von Klitzing was not the first to see these steps, he was the first to
realize that the Hall resistance on the plateaus is always an integer fraction of the
constant RK = h/e2, which carries now his name.
Already in Klaus von Klitzing’s very first experiment, the relative uncertainty of the
plateau values was better than 10−5 [14]. Nowadays, the reproducibility of RK is
confirmed within some parts in 1010, and its determination in terms of SI units has
an uncertainty of one part in 107 [15]. The universality of the Hall plateaus makes it
possible to apply them as an resistance standard, which is much more reliable than
the wire resistors used before 1990.
The discovery of the quantum Hall effect was not possible until the late seventies as
only then the techniques existed to meet the experimental conditions: the sample
fabrication technology to build the semiconductor heterostructures containing a two
dimensional electron gas, strong enough magnets to produce the needed high magnetic
field (typically 2-10T) and the cooling technique to reach the low temperatures
(typically below 1K).
There is to date no complete microscopic theory which describes the behavior of a
two dimensional electron gas for the whole range of magnetic fields, temperature,
and disorder configurations and could satisfyingly explain all aspects of the quantum
Hall effect. In this first introductory chapter, I will first give some arguments which
will lead us to a rough understanding of the phenomenology of the quantum Hall
effect. Afterwards, I will present some more sophisticated theories, which can put
light on specific aspects of the quantum Hall effect.

Charged particles moving in a magnetic field feel the Lorentz force, which deflects
them orthogonally to their initial motion and to the magnetic field. Resistivity and
conductivity become thus matrices which read in the two dimensional isotropic case:

ρ̂ =

(
ρL ρH
−ρH ρL

)

and σ̂ =

(
σL −σH
σH σL

)

= ρ̂−1 =
1

ρ2L + ρ2H

(
ρL −ρH
ρH ρL

)

. (1.1)
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Figure 1.1.: a) Schematic of a Hall bar. b) Typical form of the Hall resistance
RH and the longitudinal resistance RL as a function of the magnetic field. (data by
B. Piot et al. [5])

The diagonal elements of these matrices are called longitudinal or Ohmic resistivity/
conductivity and the off-diagonal elements Hall resistivity/ conductivity. Figure 1.1a
shows a schematic of a Hall bar, a rectangular structure containing a two dimensional
electron gas with several contacts. Often, there is a gate under the Hall bar by which
the density of the electron gas can be changed. In a typical Hall measurement, this
Hall bar is placed in a magnetic field perpendicular to its surface and a constant
current is forced through the sample. The voltages in direction of the current
(longitudinal voltage VL = Vxx) and perpendicular to it (Hall voltage VH = Vxy) are
measured while varying either the magnetic field or the gate voltage. As the system
is two dimensional, the Hall resistance, the quotient of Hall voltage and current
is equal to the Hall resistivity ρH = RH = UH/I. The sample dimensions are not
needed to get the Hall resistivity, ensuring the accurate determination of RK . The
longitudinal resistivity is given by ρL = RL(Lx/Ly) = (VL/I)(Lx/Ly) and contains
geometrical prefactors.

The phenomenon called the quantum Hall effect is that the Hall resistivity as a
function of magnetic field or electron density is quantized in integer fractions of the
constant RK = h/e2 and the longitudinal resistance is extremely small, except in
regions where the Hall resistance changes from one plateau to the next. Expressed in
terms of the conductance, this means that the Hall conductance features steps which
are integer multiples of e2/~ and the longitudinal conductance is, as the longitudinal
resistance, extremely small, except at the plateau transitions, owing to equation (1.1).

1.2. Realisation of Two Dimensional Electron Gases

To see the quantum Hall effect, one needs a two dimensional electron gas. As a
theoretician, it is easy to limit electron motion to a plane. But let us have a look how

24



1.2. Realisation of Two Dimensional Electron Gases
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Figure 1.2.: Left: Schematic of the layers in a GaAs/AlGaAs heterostructure with
two dimensional electron gas (2DEG), right: energy of the conduction and valence
band

experimentalists create a two dimensional electron gas. Most commonly, samples are
either Si-MOSFETs or GaAs/GaAlAs heterostructures.
A Si-MOSFET consists of a p-doped silicon substrate, covered with a thin silicon
oxide layer and on top of it an aluminum gate electrode. Charging the aluminum
electrode positively bends the conduction band of the silicon substrate downwards.
Once it is bend under the Fermi level, electrons are trapped at the interface between
the silicon and the silicon oxide layer: The electrons cannot enter the silicon oxide
layer, as it is an isolator, and they cannot enter the bulk of the silicon substrate, as
the band inversion exists only close to the aluminum electrode. Si-MOSFETs have
the advantage, that the density of the electron gas can be easily controlled by the
applied gate voltage.
In the second case undoped GaAs is covered first by a thin undoped GaAlAs layer,
the spacer, and then by n doped GaAlAs. Often, all dopants are in one plane, which
is called δ-doping. GaAlAs has a bigger gap between valence and conduction bands
than GaAs, and, due to the doping, its Fermi level lies higher. When GaAlAs and
GaAs are brought in contact, electrons supplied by the n doped GaAlAs will wander
to the GaAs side, to equal the Fermi levels. Positively charged ionized donor atoms
stay on the GaAlAs side and play the same role which was in the Si-MOSFET played
by the positively charged gate electrode: They bend the conduction band of the
GaAs downwards and lead to inversion close to the interface to the GaAlAs layer.
As the conduction band of GaAlAs lies much higher in energy than the downwards
bend conduction band of GaAl, the electrons are again trapped at the interface.
Two dimensional electron gases created in GaAs/GaAlAs heterostructure have the
advantage of high mobility.
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1. The Integer Quantum Hall Effect

In the above discussed cases, the two dimensional electron gas is deeply buried
in the semiconductor heterostructure. Using a different strategy, the authors of
[16] managed to create a two dimensional electron gas on the surface of InSb by
deposing Cesium atoms on it. This allowed them to investigate a surface electron
gas by scanning tunnel spectroscopy, which gives directly access to the local density
of states. On their images (see figure 1.4) the drift states, which are, depending on
energy, more or less localized, are clearly visible.

Another conducting material, which is naturally two dimensional, is graphene.
Graphene is a planar allotrop of carbon with linear energy spectrum. It shows an
half integer quantum Hall effect different from the one presented so far. Most parts
of this thesis deal with ordinary two dimensional electron gases. But the calculation
in chapter 4 are also applied to graphene and I will explain some of the peculiarities
of graphene in section 4.4.

1.3. Landau Levels

In this paragraph, which follows [17], we want to get some insight into the density
of states of the two dimensional electron gases under a perpendicular magnetic field,
understand what Landau levels are and estimate their degeneracy.

We suppose the electron gas to be confined to the (x, y)-plane and the magnetic
field to point in z-direction perpendicular to the electron gas. To start simple, we
neglect disorder, Zeeman coupling and the confining potentials. We suppose the
electrons to be free particles. Then, they are described by the Hamiltonian

Ĥ0 =
1

2m∗

(

p− e

c
A(r)

)2

=
P̂2

2m∗ , (1.2)

where m∗ is the effective mass, e = −|e| the electron charge, A the vector potential
and P the canonical momentum 1 conjugate to r.
In order to bring the Hamiltonian into a familiar form with dimensionless operators,
we introduce the cyclotron frequency ωc and the magnetic length lB:

ωc =
|e|B
m∗c

lB =

√

~c

|e|B (1.3)

and change to the ladder operators defined by:

â :=
1√
2

lB
~
(Px + iPy) , â† :=

1√
2

lB
~
(Px − iPy) . (1.4)

1. i. e.
d
dtr = P̂

m∗
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1.3. Landau Levels

These ladder operators obey the usual bosonic commutator relation 2
[
â, â†

]
= 1 and

the Hamiltonian takes the familiar form of an harmonic oscillator

Ĥ0 = ~ωc

(

â†â+
1

2

)

(1.5)

with the well known energy spectrum

En = ~ωc

(

n+
1

2

)

, n > 0. (1.6)

The energy levels of this spectrum are called Landau levels. The corresponding states
are highly degenerate. In realistic systems, there is always a disorder potential which
lifts the degeneracy partially and broadens the Landau levels, leading to the density
of states schematically presented in figure 1.5.
There are many different sets of eigenstates for H0, depending on boundary

conditions. One example are the vortex eigenstates, which are the basis for the
Green’s function formalism used in chapter 4 and will be presented there. Here, we
will have a closer look at the states of the Landau basis and use them to estimate
the number of states per Landau level and surface. We choose periodic boundary
conditions in x-direction and the Landau gauge, where A = −Byux with ux an
unitary vector in x-direction. The Hamiltonian is now

Ĥ =
p2y
2m∗ +

1

2m∗

(

px +
e

c
By
)2

. (1.7)

As the Hamiltonian does not depend on x we search the eigenstates under the form

Ψn(x, y) =
1√
Lx

eikxxψn,kx(y), (1.8)

where ψn,kx solves
[
p2y
2m∗ +

m∗ω2
c

2

(
y − l2Bkx

)2
]

ψn,kx = En,kxψn,kx , (1.9)

which we recognize as the Schrödinger equation for the one-dimensional harmonic
oscillator with equilibrium position Ykx = l2Bkx. Its eigenfunctions are the normalized
shifted Hermite polynomials

ψn,kx(y) =
1

√

2nn!π
1
2 lB

e
− (y−Ykx

)2

2l2
B Hn

(
y − Ykx
lB

)

. (1.10)

with Hn(x) = (−1)nex2 dn

dxn
e−x2

. (1.11)

2. [px, py] = [Ax, Ay] = 0, [Aj , pk] = i~
∂Aj

∂k
with j, k ∈ {x, y} and [rotA]z =

∂Ay

∂x
− ∂Ay

∂x
= B =

[B]z
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1. The Integer Quantum Hall Effect

In order to estimate the degeneracy, let us count the number N of states per Landau
level on a surface LxLy. Let Lx be the sample length in x-direction. Due to
the periodic boundary conditions Ψn(x, y) = Ψn(x + Lx, y), which tells us kx =
(2π/Lx)k with k an integer. For states centered in the interval [0, Ly], the inequality
0 < Ykx < Ly has to hold. As Ykx = l2Bkx = (2πl2B/Lx)k, we have the inequality
2πl2B < LxLy and the number of states in the square LxLy is N = (LxLy)/(2πl

2
B) =

|e|LxLyB/(~c). Knowing the degeneracy, we can define the filling factor ν as the
ratio of electron density ne and the number of states per Landau level and surface

ν =
ne

2πl2B
. (1.12)

Experimentally, there are two ways of seeing conductance steps: either by varying
the voltage of a gate under the sample or by varying the magnetic field. Both can be
traced back to a variation of the filling factor ν. With the gate voltage, the electron
density is changed. A change in the magnetic field changes the degeneracy, i. e. the
number of states available in the system.

1.4. Localization

In this section, we want to get a qualitative understanding of the way disorder
localizes the electron states. To this end, we first study the classical motion of
electrons under a magnetic field following [18]. Afterwards, we turn to a quantum
mechanical description and add, still following [17], an electric field to the Hamiltonian
(1.2) of the last section.

The classical motion of an electron with charge e in presence of an electric field E

and a magnetic field B is governed by the Lorentz force F = e (E+ (v/c)×B). For
an electron constrained to the (x, y)-plane under a constant magnetic field B = Buz

the Newtonian equation of motion reads

d2

dt2

(
x
y

)

=
|e|B
m∗c

d

dt

(
−y
x

)

(1.13)

Introducing the cyclotron frequency ωc and the complex notation z = x + iy the
equation of motion can be rewritten in the form

d2

dt2
z = iωc

d

dt
z. (1.14)

with the solution

z(t) = z0 + reiωct. (1.15)

The electron performs a cyclotron motion, i. e. it moves on a circle around z0 called
the guiding center with radius |r| = |v|/ωc given by the initial velocity v and the
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1.4. Localization

a)

E

B

b)

Figure 1.3.: a) Trajectory of a classical electron in a uniform electric and magnetic
field. b) Analogy between electric equipotential lines and contour lines with examples
for localized trajectories around mountain tops and valleys and extended states which
traverse the whole system. (The underlying map has been taken from Google Maps.)

cyclotron frequency. If an electric field E = Euy is added, the equation of motion
and its solution becomes

d2

dt2
z = iωc

d

dt
z − i eE

m∗ , z(t) = z0 + reiωct + c
E
B
t. (1.16)

The electron trajectory is represented in figure 1.3a: In addition to the cyclotron
motion, the guiding center drifts perpendicular to the electric field or, in other words,
it follows the equipotential lines of the electric potential Φ defined as E = −∇Φ.
The drift velocity is given by vd = cE×B/B2 for a general electric field. The radius
of the cyclotron motion is inversely proportional to the magnetic field. If the electron
moves in a slowly spatially varying electrostatic potential V (r) = eΦ(r) (where slowly
varying means |∂j∂kV | ≪ m∗ω2

c , j, k ∈ {x, y}) the guiding center motion is given by

d

dt
R =

c

e

B×∇V
B2

(1.17)

and thus the guiding center drifts along the equipotential lines of V (r). In a smoothly
varying potential landscape, this leads to two different kinds of trajectories: Closed
ones for guiding centers following an equipotential line around a local maximum or
minimum of the potential, and open ones with energy close to the mean value of
the potential, percolating through the system. An intuitive way of thinking of the
equipotential lines is to identify them with contour lines of a topographic map as
shown in figure 1.3b. There are electron trajectories which cycle infinitely around
the same mountain tops or lakes and there are trajectories leading over passes which
run through the whole area.
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1. The Integer Quantum Hall Effect

Let us get back to the quantum mechanical description. As in the classical case,
we introduce an electric field pointing in y-direction. This means adding a potential
V (y) = −eEy to the Hamiltonian which is most easily done in Landau gauge. The
Hamiltonian is now

Ĥ =
p2y
2m∗ +

1

2m∗

(

px +
e

c
By
)2

− eEy (1.18)

and does not depend on x. So we search again the solution under the form of
equation (1.8). This time ψn,kx has to solve

[
p2y
2m∗ +

1

2m∗

(

~kx +
e

c
By
)2

− eEy
]

ψn,kx = En,kxψn,kx . (1.19)

Completing the square in order to absorb the term linear in y and using the new
variables vd = cE/B and Ykx = kxl

2
B − vd/ωc the Hamiltonian takes the form of

equation (1.9) shifted by ∆E = Ykx |e|E + (m∗/2)v2d and with equilibrium position
Ykx :

[
p̂2y
2m∗ +

m∗

2
ω2
c (y − Ykx)2 + Ykx |e|E +

m∗

2
v2d

]

ψn,kx = En,kxψn,kx . (1.20)

Therefore the energy eigenvalues are

En,kx =

(

n+
1

2

)

~ωc + Ykx |e|E +
m∗

2
v2d (1.21)

=

(

n+
1

2

)

~ωc + V (Ykx) +
l2B

2~ωc

|∇V |2 = En(Ykx). (1.22)

The disorder potential lifts the degeneracy of the states in one Landau level. The
eigenfunctions are still given by (1.10) with the only difference that now Ykx =
kxl

2
B − vd/ωc. It is interesting to notice that these wave functions are localized on a

length scale of lB along the y-direction, but are extended in the x-direction. This
means they follow, as the classical guiding centers, the electric equipotential lines.
This will also stay true for potentials with more complex spatial dependence, as long
as they are slowly varying. As the kinetic energy of electrons can only change in
steps of ~ωc, the potential energy cannot change continuously either due to energy
conservation. The only way of changing the potential energy is by tunneling. Except
for states close to saddle points, the distances between states is typically much larger
than the characteristic width lB of the electronic wave functions and the electrons
have to stay on their equipotential line.
It seems now plausible that there are two kinds of states: localized ones and

extended ones. A beautiful experimental confirmation of the existence of localized
and delocalized states are the scanning tunneling spectroscopy measurements of [16]
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Figure 1.4.: Density of states of a two dimensional InSb surface electron gas in
the quantum Hall regime (B = 12T, T = 0.3K) measured by scanning tunneling
spectroscopy [16]. From a) to g) the sample voltage is increased (see h)) allowing
to probe the density of states at different energies. In figure a), at low energy, the
density of states is located in valleys of the potential landscape. In figure b) at slightly
higher energy, the density of states is still localized in the same valleys, but has moved
outwards. In d) the density of states percolates the entire sample. f) and g) shows
the density of states of the lowest spin level localized around mountain tops. The
valleys reappear as now also the density of states of the second spin level is probed.
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1. The Integer Quantum Hall Effect

(see figure 1.4). The eigenenergies of the extended states are approximately the
energies of the original Landau levels, i. e. they are at the center of the disorder
broadened Landau band. These two kinds of states are marked in the sketch of the
electron density of states in figure 1.5. It is intuitively clear, that only states that are
extended from one edge of the sample to the other can contribute to the macroscopic
conductance.
Let us calculate the current carried by one of the eigenstates. In general the

current operator is

ĵ =
e

m∗ P̂. (1.23)

It is useful to introduce the latter operators

b̂ =
1√
2

(√

m∗ωc

~
(y − Ykx) + i

1√
m∗~ωc

py

)

, (1.24)

b̂† =
1√
2

(√

m∗ωc

~
(y − Ykx)− i

1√
m∗~ωc

py

)

(1.25)

and express the current operators by them

ĵx =
e

m∗

(

px +
e

c
By
)

= −e
√

~ωc

2m∗ (b̂+ b̂†) + evd, (1.26)

ĵy =
e

m∗py = ie

√

~ωc

2m∗ (b̂
† − b̂). (1.27)

Using the orthogonality of the eigenstates of the harmonic oscillator, their expectation
values are readily evaluated

jn,kxx =

∫

dx

∫

dy Ψ∗
n,kx ĵxΨn,kx = evd = e

∂En,k

~∂kx
, (1.28)

while j
m,ky
y is zero.

Every state is carrying a current ĵ = evdux and as in the classical case, the current
density follows the equipotential lines.

1.5. Where Do the Hall Steps Come From ?

As last ingredient for a phenomenological explanation of the quantum Hall effect,
we need the Hall conductance of a Landau level whose localized states are completley
filled. To calculate it, we use the edge state approach: In a Hall bar, as the one
depicted in figure 1.1, the confining potential will strongly rise on the lower and
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1.5. Where Do the Hall Steps Come From ?

upper edge, leading to delocalized edge states which go through the sample. We
suppose the disorder potential to trap all states in the bulk of the sample. The
disorder potential will deform the edge states slightly, but not change the amount
of current they can carry. The electric field will point in positive y-direction on the
lower edge and in negative y-direction on the upper edge, leading to drift currents
ĵlowern,|kx| = −|evd|ux on the lower edge and ĵ

upper
n,−|kx| = |evd|ux on the upper edge. If there

is no difference in the occupation of states on the upper and the lower side, ĵlower

and ĵupper cancel each other exactly.
If there is a Hall voltage VH , a difference in the chemical potentials of the upper
and the lower edge eVH = µl − µu arises. The current carried by one Landau
level is the current carried by the edge states times their occupation probability
nn,kx = nF (En,kx − µkx) where nF is the Fermi function. At zero temperature the
contribution of one Landau level to the Hall conductivity reads

σn
H = lim

E→0

1

LyE
∑

kx

jn,kxx nn,kx = lim
E→0

e

~LyE

∫
dkx
2π

∂En,kx

∂kx
nn,kx (1.29)

= lim
E→0

e

h

1

LyE

∫ µu

µl

dEn,kx = lim
E→0

e

h

µu − µl

LyE
= lim

E→0

e2

h

(−VH)
LyE

=
e2

h
. (1.30)

From this expression, we can read the contribution to the Hall conductivity of one
Landau level σn

H = e2/h.
One could now jump to the conclusion that the direct generalization of equation (1.30)
to all Landau levels

GH =
e2

h

∑

n

nF (En − µ) (1.31)

would already be the desired quantized conductance formula. But this is wrong:
∑

n nF (En − µ) is nothing else but the filling factor ν and so

GH = ν
e2

h
=

ne

2πl2B

e2

h
=
|e|nec

B
. (1.32)

This is the classical result. The conductance increases linearly with the electron
density ne. There are no steps. To understand the conductance quantization, we have
to argument with the localized and delocalized states illustrated in figure 1.5. At low
temperatures electron states are filled successively with increasing electron density,
starting by the states with the lowest energy. At very low filling factors, all electrons
are in localized states and both, the longitudinal and the Hall conductance, are zero.
With increasing filling factor, the conducting states around (1/2)~ωc will be filled.
The Hall conductance rises, until the conducting states are filled. The conductance
will then have reached the value of σH = e2/h that we have calculated as the
contribution of one Landau level in equation (1.30). If the electron density increases
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Figure 1.5: Lower figure: Schemat-
ics of the density of states in the
regime of the quantum Hall effect in
presence of disorder. Dark gray ar-
eas stand for extended, conducting
states, light gray areas for localized,
non-conducting states.
Upper figure: Resulting longitudinal
(σxx) and Hall (σxy) conductance.

further, electrons are placed into non-conducting states. The Hall conductance stays
on its plateau value, until the next bunch of extended states is reached and so on.
The longitudinal conductance decreases as soon as half of the conducting states are
filled, because states with opposite kx-values cancel each other and completely filled
bands do not contribute to the macroscopic longitudinal conductance.

1.6. Further Complications to Consider

It is generally believed that the integer quantum Hall effect can be explained in an
effective one body image: The one body Hamiltonian Ĥ = 1/(2m∗)(p̂− (e/c)Â(r̂))2+
V̂ (r̂), where V̂ (r̂) is the potential created by disorder and the confinement, captures
qualitatively the whole physics of the integer quantum Hall effect. But, to achieve
quantitative agreement with experimental data, it is, depending on the studied
temperature, magnetic field and density range, necessary to take electron-electron
and electron- phonon interactions into account.
Electrons appear in two spin species. So the degeneracy and the conductivity

have to be multiplied by two. If one measures for example the Hall conductance
at low magnetic fields in a regime where spin cannot be resolved, one will only see
conductance plateaus at even integer values.
The spin couples by the Zeeman effect to the external magnetic field. This leads to
an energy shift of Ez = ±(1/2)gµBB, where µB is the Bohr magneton. The Zeeman
effect in itself is usually small, because the g-factors and the effective masses m∗

which give the ratio of the Zeeman energy to the energy scale of the Landau levels
∆Ez/∆En = gµBB/(~ωc) = gm∗/(2me) are small. For example in GaAs g = 0.43
[19], m∗/me = 0.067 [19] leading to ∆Ez/∆En = 0.014 ≪ 1. It can be taken into
account, by calculating the quantities one is interested in separately for both spin
species and adding them with the appropriate Zeeman shift. However, there are
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1.7. Perturbation Expansion in the Disorder Potential

exchange interaction effects between the two spin species [20]. Phenomenologically,
the effect of the exchange interaction can be described with an effective g-factor which
depends on magnetic field, electron density and temperature. The effective g-factors
are typically of the order of 10 [21] and no longer negligible. They make quantitative
analysis of experimental data difficult, because they have to be determined by a self
consistent calculation taking disorder and electron-electron interaction into account.
As electrons are charged particles, they interact via Coulomb forces. It is in general
believed that a mean-field description is enough to describe these interaction effects
in the regime of the integer quantum Hall effect. In the limit of zero temperature,
interaction leads to the separation of the two dimensional electron gas into “com-
pressible” and “incompressible” regions [22–24]. In a “compressible” region, there is
a Landau band at the Fermi energy. Electrons can be redistributed without energy
costs and are arranged to screen the external potential perfectly, resulting in strong
spatial fluctuations of the electron density and a constant effective potential. In
an “incompressible” region the Fermi energy falls into a gap between Landau bands.
Electron redistribution being energetically not possible, there is no screening of the
fluctuating external potential and the electron density is constant. The incompress-
ible regions are destroyed for increasing temperatures and can be safely ignored if
kBT/(~ωc) is bigger than a few percents [25].
Let us consider in what follows only the one body problem. For the arguments

I have given so far to explain the quantum Hall effect the disorder potential is
important, as it provides the localization mechanism, but has not yet been treated
microscopically. In the following sections, I will present some more sophisticated
theories to deal with the disorder potential.

1.7. Perturbation Expansion in the Disorder Potential

As the eigenstates and eigenvalues of the Hamiltonian Ĥ0 (see equation (1.2)) for
a free particle in a magnetic field are known, it is a natural idea to gain insight in
the behavior of the full Hamiltonian

Ĥ = Ĥ0 + V̂ (1.33)

via a perturbation theory in the potential V̂ describing the disorder. The impurities
causing the disorder are distributed randomly. Most experiments probe macroscopic
quantities, which are only sensible to the average disorder. Therefore, most theoreti-
cal treatments do not aim to solve the problem for one specific realization of disorder,
but average somewhere over all possible disorder configuration. Usually the disorder
averaged Green’s function is calculated, whose imaginary part gives the density of
states and which is a starting point to calculate the conductivity using the Kubo
formula. Tsuneya Ando was a pioneer on this field [26, 27].
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1. The Integer Quantum Hall Effect

As with all perturbation theories, a small parameter is needed to control the ap-
proximations made in the process. In general the perturbation theories work well
for low magnetic fields and disorder distributions with short range scatterers where
the mean free path l and the Fermi wave vector kF are large, so that (kF l)

−1 is
a small parameter. But in the regime of strong magnetic fields with long range
disorder, where we expect to see the quantum Hall effect, it is difficult to control
the perturbation theory, as the bare states are highly degenerate. For example, the
standard self-consistent Born approximation which works well at low fields leads to
unphysical results at high fields.
To give a concrete example for such a perturbation theory and its limits let us

calculate the density of states for a zero mean Gaussian distributed disorder potential
using the self consistent Born approximation in the limit of high magnetic fields [28].
Let Ĝ0 be the free and Ĝ the full retarded Green’s function defined by

lim
η→0

Ĝ0(E − Ĥ0 + iη) = 1̂, lim
η→0

Ĝ(E − Ĥ + iη) = 1̂. (1.34)

The two Green’s functions obey the Dyson equation Ĝ = Ĝ0 + Ĝ0V̂ Ĝ. To simplify
the following discussion let us introduce the Feynman diagrams

Ĝ0 = , V̂ = . (1.35)

The Dyson equation can be expanded as

Ĝ = + + + + + ... (1.36)

Let us now introduce ĝ = 〈Ĝ〉 = as the disorder average. As we suppose the
disorder to be zero mean Gaussian distributed, odd moments are zero and we can
use Wick’s theorem to do the average. We denote the average graphically by joining
the curly lines, representing the disorder, in all possible pairings.

g = 〈Ĝ〉 = + + + + + ... (1.37)

The self consistent Born approximation consists now in neglecting all diagrams with
crossings. In order to sum up the remaining diagrams, we define a self-energy Σ̂ as
the sum of all remaining irreducible diagrams without the outermost Ĝ0-lines.

Σ̂ = + + + + ... = = 〈V̂ ĝV̂ 〉 (1.38)

Looking at what remains of ĝ after the Born approximation and at Σ̂ we realize that
they are identical up to the outermost arc and therefore the last equation holds. At
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the same time, ĝ can be expressed as ĝ = Ĝ0 + Ĝ0V̂ Ĝ0 + ..., a geometric series which
leads to a Dyson equation for ĝ

ĝ = Ĝ0 + Ĝ0Σ̂ĝ. (1.39)

Let us project this Dyson equation into the basis built by the states defined in
equation (1.8) labeled by the quantum number α = n, k where n is the Landau level
index and k labels the guiding center coordinates. As we suppose the disorder to be
isotropic, ĝ will be diagonal in this basis and depend only on the Landau level index
n:

gn =
1

E − ǫn − Σn

. (1.40)

The density of states is given by the imaginary part of the retarded Green’s function
ĝ: To calculate it, we decompose the self-energy into its real and imaginary parts,
Σn = ∆n + iΓn leading to

ρ(E) = lim
η→0

lim
Lx,Ly→∞

1

πLxLy

Tr{Im(ĝ(E + iη)} (1.41)

=
1

2πl2B

∑

n

1

π

Γn(E)

(E − ǫn −∆n(E))2 + Γ2
n(E)

. (1.42)

Projecting equation (1.38) into the Landau Basis leads to

Σn =
∑

n′,k′

〈|Vnk,n′k′ |2〉gn′ . (1.43)

For strong magnetic fields the original Landau levels are well separated and the
disorder potential does not couple them, which means that V is diagonal in n.

Σn(E) =
∑

k′

〈|Vnk,nk′ |2〉gn =
an

E − ǫn − Σn

with an =
∑

k′

〈|Vnk,nk′ |2〉 (1.44)

⇐⇒ Σn(E) =
1

2
(E − ǫn)±

√

(E − ǫn)2 − 4an (1.45)

The density of states is only different from zero in the regions where Σn has an
imaginary part. This is the case for ǫn − 2

√
an < E < ǫn + 2

√
an, where

∆n(E) =
1

2
(E − ǫn), Γn(E) =

1

2

√

4an − (E − ǫn)2. (1.46)

Plugging this into equation (1.42), we get the self consistent Born density of states

ρ(E) =
1

2πl2B

∑

n

√

4an − (E − ǫn)2
2πan

Θ(4an − (E − ǫn)2). (1.47)
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Figure 1.6.: a)The density of states in self consistent Born approximation. As an
artefact of this approximation, the density of states goes to zero with infinite slope at
E = En ± 2

√
an.

b) Density of states obtained as spatial average of STM measurements[29]. The
Landau levels appear as double peaks due to the electron spin. The blue curves are
Gaussian fits.

This density of states consists of semi-ellipses (see figure 1.6): There are gaps where
the density of states is exactly zero and this gaps are reached with infinite slope.
This behavior seems unphysical: The energy of an electron is essentially given by
its Landau level energy plus the average over the potential energy of the area over
which the cyclotron motion of the electron is spread. In a random potential, extreme
energy fluctuations are rare, but they occur and therefore the spectrum should
never be exactly zero. Comparison with experimental data shows that the shape of
the self consistent Born density of states is wrong. Even though, the width of the
semi-ellipses predicts correctly the narrowing of the experimental measured peaks
with increasing Landau level index. Physically, the narrowing of the peaks in the
density of states is easily understood. In the same way as for a classical particle the
radius of its cyclotron motion increases with increasing energy, the wave function
spreads over a large area for a quantum mechanical particles in higher Landau levels.
Therefore, the disorder landscape is averaged over a larger area, the averages for
different states differ less and less from each other and the peaks in the density of
states become larger.

In reference [30] it is shown that, if the correlation length of the potential of
disorder is much longer than the magnetic length, the contribution of crossing
diagrams which are neglected in the self-consistent Born approach, is as big as the
contribution of the non crossing diagrams. This clearly invalidates the self-consistent
Born approximation in the high field limit. To give the order of magnitude, the
magnetic length is lB = 8nm for a magnetic field of B = 10T and the correlation
length is typical between a = 20nm and a = 100nm.
The self consistent Born approximation shows even worse problems, when transport
properties are studied.

The authors of [31] show that the Gaussian line shape of the density of states can
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Figure 1.7: Hall conductivity in the limit
of infinitely high Landau levels [34]. This
Hall conductivity does not feature plateaus
in consistency with the absence of localized
states in the self-consitent Born approxi-
mation.

be recovered by summing up all diagrams which is possible in the limit of smooth
disorder lB/a → 0 if the correlations of the disorder potential are supposed to be
distance independent. Another way, also in the limit of smooth disorder, is the
cumulant expansion of [32, 33], which yields a gaussian lineshape, too.
In reference [34] the limit of infinitely high Landau levels is studied at high

magnetic fields. This regime is experimentally not achievable, but in this limit the
self-consistent Born approximation becomes exact. With the Born approximation
the localized states are lost. As one sees in figure 1.7, this Hall conductivity does not
feature plateaus. This is an evidence that localized states are needed to get plateaus.

1.8. The Gradient Expansion of the Disorder

Potential

As we have seen in the last section, a perturbation expansion directly in the
strength of the disorder potential is difficult, as the free Hamiltonian is highly
degenerate. The idea of the gradient expansion is to decompose the potential into
a local constant term and higher gradient terms. The local constant term lifts the
degeneracy and a non-degenerate perturbation expansion in the gradient terms is
possible. Examples for this method are [35] and the more systematic vortex Green’s
function method [8–10] presented in chapter 4.2. In the vortex Green’s function
method the electron position is, inspired by the classical motion, decomposed into
a guiding center coordinate and a relative coordinate. The degeneracy is lifted by
the local potential at the guiding center positions and the Gaussian density of states
is trivially recovered [36]. The small parameter in the expansion is l2B/(a

2 + 2l2B),
where a is the correlation length of the disorder potential. The gradient expansion
theory converges rapidely for smooth disorder where a≫ lB.
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1.9. The ”Classical” Percolation Model

The “classical“ percolation model is based on the physical discussions in section 1.4:
Under high magnetic fields the classical motion and the quantum mechanical wave
functions follow equipotential lines. The equipotential lines are geometric objects,
which can be studied with the methods of percolation theory. Percolation theory
addresses the question of the spatial extension ξ of the equipotential lines. Does an
equipotential line of a certain energy “percolate” through the system i. e. in finite
systems connects one extremity of the sample to the other? In an infinite system an
object percolates, if its localization length ξ diverges. The divergence occurs with
an critical exponent ν when the critical energy Ec is approached. What are the
values of ν and Ec? How is the circumference of an equipotential line connected to
its spatial extension? These geometrical properties of the equipotential lines must
then be translated to properties of the wave functions and connected to transport
quantities.
The model is called “classical”, even if the percolating object is a wave function,
as long as there are no quantum tunneling effects. This is valid at high enough
temperatures for smooth disorder. As we will see in chapter 4, the energy connected
to quantum tunneling is Etunnel ∝ (l2B/a

2)
√

〈V 2〉, where a is the correlation length of

the disorder potential and
√

〈V 2〉 its typical amplitude. The two of them are highly

sample dependent. If for example a = 40nm, lB(B = 10T) = 8nm and
√

〈V 2〉 =
2meV, the tunnel effect is negligible for temperatures higher than Etunnel/kB ≈ 1K.

As concrete examples for the application of the percolation model I point to
chapter 2. The work of Simon and Halperin [2] presented in detail in section 2.1 and
my own work are based on the percolation model.

1.10. The Chalker-Coddington Model

The Chalker-Coddington model [14, 37] is a quantum network model based on
percolation ideas. It allows to investigate the influence of tunneling over saddle
points on the localization-delocalization quantum phase transition, which has been
spared out in the classical percolation model. Tunneling affects the shape of the
transition between plateaus. The Chalker-Coddington model works at low (zero)
temperature.
In the Chalker-Coddington model, the potential landscape is replaced by a regular
network of saddle points, connected via links along which the probability amplitude
can propagate. While traveling along a link, the absolute value of the probability
amplitude does not change, but it acquires a phase. The saddle points are described
by their scattering matrices. Often, the scattering matrix for a purely quadratic
saddle point is used, which has been calculated analytically by Fertig and Halperin
[38] and will be the subject of chapter 4.
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Figure 1.8.: The Hall conductivity depends on the local chemical potential a),
therefore it fluctuates spatially with the potential of disorder b). c) Sketch of the
dependence of the local Hall conductivity on the potential of disorder.

As in the classical percolation model the first goals are to calculate the localization
length ξ and its critical exponent ν. There does not yet exist consensus on the
values of this quantities [39]. The method gives also access to other quantities as for
example the energy level statistics and the statistics of the conductance. (As the
studied systems are coherent, there is no self averaging. The conductance fluctuates
strongly from sample to sample and it is not enough to give the mean value.)
The Chalker-Coddington model has initiated a lot of experimental work. Often the
temperature scaling of the plateau-to-plateau transition is measured, e.g. in [40–42],
either as the half width ∆B of the peaks in the longitudinal resistance which vanishes
as ∆B ∝ T κ when zero temperature is reached or as the slope of the Hall resistance
at the values of the plateau transitions Bc which diverges as dRxy/dB|Bc

∝ T−κ for
vanishing temperature. The exponent κ is related to the localization length critical
exponent ν via κ = p/(2ν), where p is the critical exponent of the phase coherence
length Lφ ∝ T−p/2.

1.11. The Two Phase Model

The two phase model of Dykhne and Ruzin [43] is a phenomenological theory,
which allows, starting from the assumption that the sample consists of a random
mixture of two phases with different Hall conductivities, to derive a relationship
between longitudinal and Hall conductance and to calculate the peak height of the
longitudinal conductivity. I present this theory here, as it can be seen as the low
temperature version of what I do in chapter 2. However, the regime they treat is
somehow pathological, as they need on the one hand low temperature to make the
transitions from one Landau level to the next sharp, but use at the other hand a
local conductivity approach, which neglects tunneling and quantum coherence effects.
The model of Dykhne and Ruzin applies also to the fractional quantum Hall effect,
but I will only have a look at the integer quantum Hall effect.
The first important assumption used in the two phase model is that the conductivity

σ̂ is a purely local quantity and therefore Ohm’s law holds in its local version
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j(r) = σ̂(r)E(r). The second assumption is that the conductivity takes exactly
two different values in the sample. The Hall conductivity depends on the chemical
potential as schematically depicted in figure 1.8. Close to a plateau transition a
small change in the chemical potential lets the Hall conductivity jump between
two different values. The chemical potential is a local quantity in the sense that
it is the sum of the global chemical potential of the sample and the local value of
the potential of disorder. The fluctuations in the disorder potential lead then to
fluctuations in the local Hall conductivity. The system is supposed to have also a
small longitudinal conductivity due to scattering at short range defects or phonons.
The local conductivity tensor takes the form:

σ̂(r) =

(
σL(r) −σH(r)
σH(r) σL(r)

)

, with σL(r) =

{

σ
(1)
L

σ
(2)
L

, σH(r) =

{

σ
(1)
H

σ
(2)
H

. (1.48)

The goal is now to calculate an effective conductivity σ̂e which is defined as

〈j〉 = σ̂e〈E〉, (1.49)

where 〈j〉 and 〈E〉 are the spatially averaged current density and the spatial averaged
electric field. It is not possible to calculate the components of the effective conductivity
tensor separately. But with a mathematical trick, Dykhne and Ruzin arrive at an
expression which connects the Hall and the longitudinal effective conductivity:

(σe
H − σ0

H)
2 + (σe

L)
2 = (σ0

L)
2, (1.50)

where, in the limit σL(r)→ 0 (It is possible to give the general expressions, but they
are lengthy.):

σ0
H =

σ
(2)
H + σ

(1)
H

2
and σ0

L =
|σ(2)

L − σ
(1)
L |

2
. (1.51)

As σ
(1)
H and σ

(2)
H are the conductivities of two adjacent plateaus, their difference is e2

h

and therefore the peak value of the longitudinal conductivity is predicted to be

σpeak
L = σ0

H =
e2

2h
. (1.52)

It is remarkable, that this model predicts a finite value of the effective longitudinal
conductivity σe

L even for vanishing local longitudinal conductivity σL(r)→ 0, while
models based on percolation theory predict a power law scaling of effective longitudinal
conductivity with the local longitudinal conductivity σe

L ∝ σ1−κ
L (see section 2.1 and

2.8) as saddle points are bottle-necks to the current. In the two phase model the
local conductivity is non-differentiable and therefore saddle points do not exist.
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1.12. Summary

1.12. Summary

This first chapter was an introduction to various aspects of the quantum Hall effect.
After the description of the phenomenology, some historical remarks and a side note
on the physical realization of two dimensional electron gases, an intuitive explanation
of the quantum Hall effect was given: Constraining electrons to a two dimensional
plan under a strong perpendicular magnetic field in presence of a disorder potential
leads to an energy spectrum of broadened Landau levels containing mainly localized
states. Only at the centers of the Landau levels there are delocalized states. As
localized states do not contribute to global transport, they lead to the plateaus in
the Hall conductivity and to extremely small longitudinal conductance values, while
the delocalized states lead to the risers between the plateau and the peaks in the
longitudinal conductance.
Afterwards, I gave an overview over some more sophisticated theories and their
limitations. This part showed that the explanation of the quantum Hall effect is far
from trivial and that many pieces of the puzzle are still to be found.
On the background of this introductory chapter, I will in the following chapters present
my two pieces of the jigsaw puzzle: A transport theory for the high temperature
regime of the quantum Hall effect and a determination of the transmission coefficient
for tunneling over saddle points in ordinary two dimensional electron gases and in
graphene based on the scattering of semi-coherent state wave packets.
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2. Diagrammatic Approach for the
Classical Percolation Regime of
Quantum Hall Transitions

This chapter deals with transport in the high-temperature regime of the quantum
Hall effect, where the thermal energy is higher than the typical fluctuations v0 of
the disorder potential (kBT ≫ v0). We will calculate the conductance of systems
like the one depicted in figure 2.1: A two dimensional electron gas under a strong
perpendicular magnetic field and a smooth disorder potential, which fluctuates
randomly in space. The research presented here has been published in [44] and [45].
We use a local conductivity approach, i. e. we suppose Ohm’s law to be valid in

its local form:

j(r) = σ̂(r)E(r), (2.1)

with j the local current density, σ̂(r) the local conductivity tensor and E the local
electric field. The local conductivity model is justified if the temperature is high
enough, that phase-breaking processes, such as electron-phonon scattering, occur on
length scales that are shorter than the typical variations of the disorder potential.
The determination of the local conductivity tensor σ̂, presented in section 2.5, needs
quantum mechanics. But once σ̂ is known, the problem is a purely classical one and
our task is to solve the continuity equation ∇ · j = 0 from classical electrodynamics.
The random spatial fluctuations of the disorder potential, on which we have a closer
look in section 2.4, lead to spatially fluctuating Hall components of the conductivity
tensor. In an experiment, the local current density and the local electric field are
not easily accessible. Therefore, we use an effective conductivity approach, presented

Vxx

Vxy

I I

Figure 2.1: Sketch of the studied system:
A disorder potential created by charge in-
homogeneities leads to a spatial fluctuating
local Hall conductivity represented by the
color map. Our goal is to calculate the
global conductance from the local conduc-
tivity.
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2. The Classical Percolation Regime of Quantum Hall Transitions

in section 2.2, to calculate the effective conductivity σ̂e defined as

〈j〉 = σ̂e〈E〉, (2.2)

where the brackets 〈. . .〉 denote a spatial average. The effective conductivity depends
on the value of the Ohmic component of the conductivity tensor σ0. If the Ohmic
component is large in comparison to the typical amplitude

√

〈δσ2〉 of conductance
fluctuations, the effective conductivity can be calculated perturbatively in

√

〈δσ2〉/σ0.
Section 2.3 presents this perturbation theory in general and section 2.5 for the specific
form of the conductivity tensor in the quantum Hall regime. However, quantum Hall
samples are typically in the opposite regime of strong conductivity fluctuations and
small σ0. The fluctuations of the Hall conductivity are of the order of

√

〈δσ2〉 ∼ 2e2/~
in the spin degenerate case, while the local ohmic conductivity σ0 is smaller than
the effective longitudinal conductivity which is usually smaller than the conductance
quantum e2/h. Fits of experimental data with our theory show, that σ0 ≪ σL < σH
(see section 3.5.2). With the extrapolation technique described in 2.8, we are able to
calculate the effective conductivity for the whole range from large to small σ0. In
the limit σ0 → 0 the effective longitudinal conductivity σe

L vanishes with a critical
exponent κ in the form of σe

L = C〈δσ2〉κ2 σ1−κ
0 . The value of the critical exponent

has been conjectured by Simon and Halperin [2] and by Isichenko et al. [3] to be
κ = 10/13. I will present their arguments in section 2.1. Our microscopic calculations
confirm their conjecture.

2.1. Percolation Arguments for the Critical Exponent

In this section, I will explain the heuristic arguments which allowed Simon and
Halperin [2] and Isichenko et al. [3] to conjecture the critical exponent κ.
Isichenko et al. do not study a conductivity model, but the advection-diffusion
equation in the stationary state ∇ · [nv(x)]−D0∇2n = 0, where n is a density, v a
velocity field and D0 a diffusion coefficient. This equation could for example describe
the distribution of sugar in a cup of coffee stirred with a teaspoon [46]. n would stand
for the sugar concentration, v would be the velocity field created by the teaspoon in
the coffee and D0 would be the molecular diffusion coefficient of sugar in coffee. The
advection term ∇ · [nv(x)] describes the passive motion of sugar molecules with the
coffee, while the term D0∇2n describes the diffusion. Alternatively, the advection-
diffusion equation could describe the heat transport in the coffee. Then, n would
be the local temperature, D0 the thermal conductivity, the first summand would
stand for heat transport by convection and the second summand for heat transport
by heat conduction. The averaged version of the advection-diffusion equation reads
∇(D̂e∇N) = 0, where N is the averaged density and D̂e the effective diffusivity. By
identifying N with the electric potential and D̂e with the effective conductivity tensor,
we see that this equation is equivalent to the continuity equation ∇j = ∇ (σ̂e∇φ) = 0
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2.1. Percolation Arguments for the Critical Exponent

a)

ξ

b) c)

ξ

Figure 2.2.: a) The see level is below the percolation threshold. The correlation
length ξ is given by the size of the largest lake. b) The see level is at the percolation
threshold. There is one coastline which percolates the system. The correlation length
ξ diverges. c) The see level is above the percolation threshold, the correlation length
is given by the size of the largest island.

for the current density.
Simon and Halperin consider the critical exponent for the resistivity, not for the
conductivity. But as the studied system is two dimensional and ρH ≫ ρL

σL =
ρL

ρ2L + ρ2H
≈ ρL
ρ2H

, (2.3)

i. e. conductivity and resistivity are proportional and will therefore have the same
critical exponent.
The local resistivity tensor is supposed to have the form

ρ̂(r) =

(
ρ0 ρH
−ρH ρ0

)

+

(
0 δρH(r)

−δρH(r) 0

)

, (2.4)

where the diagonal part ρ0 describes phenomenologically dissipative processes, such
as scattering with phonons and short range impurities, ρH is the mean value of the
Hall resistivity and δρH(r) the fluctuating, position dependent part with 〈δρH(r)〉 = 0
and 〈δρH(r)δρH(r′)〉 = λ2g(|r− r′|).
The first important point is that in the regime of vanishing dissipation ρ0 → 0

the current is confined to lines of constant δρH(r). From the Maxwell equation
∇ × E = 0 with E = ρ̂j and current conservation ∇ · j = 0, we get the transport
equation which describes our system.

−(∇δρH) · j+ ρ0(∂xjy − ∂yjx) = 0. (2.5)

For small ρ0, we have (∇δρH) · j ≈ 0: The current is perpendicular to the gradient
of the off-diagonal resistivity, i. e. the lines, on which current flows, are level lines
δρH(r) = const. This allows us to formulate a percolation problem in the sense
of [47]: Are there, and at which energies, level lines percolating the whole system?
This problem can be illustrated (see figure 2.2) by identifying the current flow lines
with the shore lines produced by successively floating a hilly terrain z = δρH(r). For
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2. The Classical Percolation Regime of Quantum Hall Transitions

W

2ǫλ

−λ

−ǫλ
0
ǫλ

λ

δρ
[x
]

x

Figure 2.3: The quotient of the cut-off λǫ
and the typical channel width W is propor-
tional to typical slope of the conductance
landscape λǫ/W ∝ λ/a.

low water levels, there will be mainly dry land with some lakes in it. For high water
levels, there will be an ocean with some islands. At the transition point between
dry land and ocean, there will be at least one coast line percolating the system. The
Hall conductance fluctuations δρH(r) being defined symmetrically distributed about
zero, the percolating contour line is at δρH(r) = 0.
As we are interested in the case where a small but finite value of ρ0 leads to a

finite width of the conducting channels, we choose a small cut-off ǫ and define all
points |δρH(r)|/λ < ǫ as belonging to the current carrying channels and all other
points to be insulating.
Defining a as the typical length scale of the fluctuations in δρH and recalling that
λ is the typical amplitude of the fluctuations in δρH , the variations of δρH in one
conductance channel are proportional to λǫ and the typical slope of the off-diagonal
conductance landscape is λ/a. This allows us to connect the typical channel width
W to the cut-off ǫ (see figure 2.3):

W ∝ ǫa (2.6)

In our percolation problem, the percolation length ξ is defined as the size (diameter)
of the largest insulating island. ξ gives the typical distance between saddle points.
Close to the percolation threshold (ǫ→ 0), the correlation length ξ diverges as:

ξ ∝ aǫ−ν . (2.7)

The channel length s is the distance between two saddle points, following the
conducting channel which snakes around the insulating island with diameter ξ.

s ∝ a

(
ξ

a

)D

∝ aǫ−νD, (2.8)

where D is the fractal dimension of the path.
The system is homogeneous on length scales larger than ξ, so it is enough to study a
square of side length ξ. Since there is typically only one conducting path in such
a square, the macroscopic longitudinal resistance of the square RL is proportional
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2.1. Percolation Arguments for the Critical Exponent

to the resistance of the conducting channel Rs. As resistance equals by definition
resistivity times length divided by the cross section, we have

RL ∝ Rs ∝
ρ̃s

W
. (2.9)

Studying the transport equation close to a saddle point will give us a second estimation
of the typical channel width W . At a saddle point ∇δρH = 0 and close to a saddle
point the expansion ρH ≈ xy ∂2ρH

∂x∂y
≈ xy λ

as
holds. Plugging this expression for ρxy

into the transport equation (2.5) yields

−ỹjx − x̃jy + (∂x̃jy − ∂ỹjx) = 0 (2.10)

with x̃ =

√

λ

ρ0as
x, ỹ =

√

λ

ρ0as
y. (2.11)

This tells us, that j = j(x̃, ỹ): Changes in the current profile occur on a typical length
scale

√

ρ0as/λ, which is proportional to the channel width

W ∝
√
ρ0sa

λ
∝ a

√

ρ0ǫ−νD

λ
. (2.12)

From the two estimations for the channel width, we get

ǫ ∝ λ−
1

2+νD ρ
1

2+νD

0 . (2.13)

With the definition

κ = 1− 1

2 + νD
(2.14)

the final result reads

RL ∝
ρ̃s

W
∝W λ

a
∝ ǫλ ∝ λκρ1−κ

0 . (2.15)

For the case that the disorder has only one length scale, it is known that ν = 4/3 [46]
and it is believed that D = 7/4 [46], leading to the conjecture

κ =
10

13
. (2.16)

This is a conjecture not a proof. First, not all of the above listed arguments are
completely convincing. Second, the determination of the fractal dimension D depends
on the assumption that its value for continuum percolation problems is identical
to its value for site percolation problems. Third, Simon and Halperin [2] point out
that D would change, if the current flow would not follow all the tiny wiggles of the
conductivity landscape but readjust to cut off death ends.
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2. The Classical Percolation Regime of Quantum Hall Transitions

+ →

Figure 2.4: If grains of two differ-
ent media with conductivity σ(1) and
σ(2) are mixed, what is the effective
conductivity σe of the mixture?

2.2. The Effective Medium Approach

If two granular media with different conductivities σ(1) and σ(2) are mixed in a
certain fraction, as depicted in figure 2.4, what will be the effective conductivity
of the mixture defined by equation (2.2)? This kind of question was a subject of
active research at the beginning of the last century. As the method we use to study
transport in the quantum Hall regime is closely related to the calculation of effective
quantities for mixtures of granular media, let us start with the textbook method [48]
to tackle this question. It has been explicitly applied to conductivity in [49] to study
the critical behavior of resistivity close to ferromagnetic phase transitions.
Current-density, conductivity and the electric field are decomposed in an average

part and a spatially fluctuating contribution:

j = j0 + δj(r), σ = σ0 + δσ(r), E = E0 + δE(r). (2.17)

The mean value for the current density is:

j0 = 〈(σ0 + δσ(r))(E0 + δE(r))〉 = σ0E0 + 〈δσ(r)δE(r)〉 (2.18)

as by definition 〈δσ(r)〉 = 0, 〈δE(r)〉 = 0 if the mean value is taken over the entire
volume of the sample. The spatially fluctuating part of the current density is given
by:

δj(r) = δσ(r)E0 + σ0δE(r). (2.19)

As ∇ · (j0 + δj) = 0 by the continuity equation and as the divergence of the constant
vector j0 is zero, also

0 = ∇ · δj = σ0∇ · δE+ E0 · ∇δσ(r). (2.20)

The variations of σ occur on a macroscopic length scale, the size of the grains, while
the fluctuations of the electric field E(r) occur on microscopic length scales. We
average equation (2.20) over a region where δσ(r) is constant. To distinguish this
average over a small region, from the average over the whole volume, we denote it by
a dash

σ0∇ · δE = −E0∇δσ(r). (2.21)
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2.2. The Effective Medium Approach

Supposing the fluctuations of the electric field to be isotropic on the length scale of the
fluctuations of the conductivity leads to ∇δE = 3∂δEx/∂x = 3∂δEy/∂y = 3∂δEz/∂z.
Let, without loss of generality, the mean electric field E0 point in x-direction yielding

3σ0
∂δEx

∂x
= −E0x

∂δσ(r)

∂x
. (2.22)

Integration leads to

3σ0δEx = −E0xδσ(r). (2.23)

As the direction of the electric field was chosen arbitrarily, this equation holds also
as vector equation.

δE = − E0

3σ0
δσ(r). (2.24)

This result allows us to calculate the average in equation (2.18):

〈δσ(r)δE(r)〉 = 〈δσ(r)δE(r)〉 = − E0

3σ0
〈[δσ(r)]2〉 (2.25)

and leads to the effective conductivity

σe = σ0 −
〈[δσ(r)]2〉

3σ0
. (2.26)

This means for example for a 50-50 random mixture where δσ = (σ(1) − σ(2))/2,
the effective conductivity is σe = σ0 − (σ(1) − σ(2))2/(12σ0), which holds as long as
|σ(1) − σ(2)| ≪ σ0.
The effective medium approach presented so far has two drawbacks. First, for the
derivation the granularity of the media is explicitly needed, and second, it would be
tedious to calculate higher order corrections of the effective conductivity with this
method. We want to study a system at high temperature, where the conductivity
fluctuations are continuous. Also, we want to leave the regime of weak fluctuations,
where first order perturbation theory is sufficient. Therefore, we use a Green’s
function version of the effective medium approach, developed by Stroud [1], which
can handle continuous fluctuations and where high order correction terms are easily
generated. A similar formalism was developed in [50]. As field of application for
their formalism, the authors of both references had polycrystalline materials in mind.
The effective conductivity under an applied magnetic field is one subject amongst
others in [1] and the core subject of [50]. But, as the quantum Hall effect was
not yet discovered when those papers were written, they concentrated on the three
dimensional case. The conductivity fluctuations they study do not occur in one
medium, but are a consequence of the medium being polycrystalline.
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2. The Classical Percolation Regime of Quantum Hall Transitions

We study a sample with d dimensional volume V , bounded by a surface S. Due to
disorder, its conductivity tensor σ̂(r) is spatially varying. Locally, the current density
is j(r) = σ̂(r)E(r). As in most cases only the current, the integral over the current
density, is experimentally accessible, it is enough to know the average current density
〈j〉. Let us imagine, that a constant electric field E0 is applied at the boundary of
our sample. Then the average current density is connected to this constant field by
an effective position independent conductivity tensor σ̂e:

〈J〉 = 〈σ̂(r)E(r)〉 ≡ σ̂eE0 = σ̂e〈E〉. (2.27)

The effective conductivity is, up to a geometric factor, the conductance. We decom-
pose σ̂(r) in a constant and in a position dependent part

σ̂(r) = σ̂0 + δσ̂(r). (2.28)

At this stage, the decomposition is arbitrary. Later, it will be convenient to choose
σ̂0 as the average conductivity. Expressing the electric field by its potential E(r) =
−∇Φ(r) and plugging the constitutional equation J = σ̂(r)E(r) into the continuity
equation ∇ · J = 0, we get

∇ · [σ̂(r)∇Φ(r)] = 0, (2.29)

which leads with (2.28) to the boundary value problem

∇ · [σ̂0∇Φ(r)] = −∇ · [δσ̂(r)∇Φ(r)] in V (2.30)

Φ(r) = Φ0(r) ≡ −E0 · r on S. (2.31)

We solve this boundary value problem formally with the Green’s function G(r, r′)
defined by

∇ · σ̂0 · ∇G(r, r′) = −δ(r− r′) in V, (2.32)

G(r, r′) = 0, for r′ on S. (2.33)

Now, we can express the potential Φ(r) as

Φ(r) = Φ0(r) +

∫

V

ddr′G(r, r′)∇′ · δσ̂(r′) · ∇′Φ(r′) (2.34)

with the shorthand notation ∇′ = ∇r′ . Integration by parts using ∇′G(r, r′) =
−∇G(r, r′) and taking the gradient on both sides leads to

E(r) = E0 +

∫

V

ddr′∇ · (∇G(r, r′) · δσ̂(r′) · E(r′))

= E0 +

∫

V

ddr′Ĝ0(r, r′) · δσ̂(r′) · E(r′), (2.35)
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2.3. Systematic Expansion at Strong Dissipation

where 1
[

Ĝ0
]

ij
= ∂

∂ri

∂
∂rj
G(r, r′). Multiplication of (2.35) by δσ̂ from the left hand

side and introduction of the tensor χ̂ defined by δσ̂(r)E(r) = χ̂(r)E0 leads to

χ̂(r)E0 = δσ̂(r)E0 + δσ̂(r)

∫

V

ddr′Ĝ0(r, r′)χ̂(r′)E0. (2.36)

As equation (2.36) is valid for all possible directions of E0, the following self-consistent
matrix equation also holds:

χ̂(r) = δσ̂(r) + δσ̂(r)

∫

V

ddr′Ĝ0(r, r′)χ̂(r′). (2.37)

Spatial averaging of the current j(r) = [σ̂0 + χ̂(r)]E0 over conductivity fluctuations
δσ̂(r) leads therefore to the effective conductivity

σ̂e = σ̂0 + 〈χ̂〉. (2.38)

In the limit of an infinite sample V →∞ the Green’s function which solves 2 the
boundary value problem (2.32) is

G(r, r′) =

∫
ddp

(2π)d
eip·(r−r′)

pσ̂0p+ 0+
(2.39)

where 0+ is a small positive quantity which ensures G→ 0 for |r| → ∞ as asked by
the boundary condition 3 (2.33).

2.3. Systematic Expansion at Strong Dissipation

The tensor χ̂ is given by the self-consistent equation (2.37). Iteration of this
equation leads to a development in powers of δσ/σ0, as the free Green’s function Ĝ0

1. Sign error in equation (2.10) of reference [1].

2. ∇ · σ̂0 · ∇G(r) = ∇ · σ̂0 · ∇
∫

ddp

(2π)d
eipr

pσ̂0p+i0+ = ∇ · σ̂0 ·
∫

ddp

(2π)d
ipeipr

pσ̂0p+i0+ =
∫

ddp

(2π)d
−p·σ̂0·pe

ipr

pσ̂0p+i0+ =

−
∫

ddp

(2π)d
eipr = −δ(r).

3. Without loss of generality, let us choose r = (r1, 0, ..., 0) and take the limit r1 → ∞.
As conductivity tensors are anti-symmetric with positive diagonal elements: lim

r1→∞
G(r) =

lim
r1→∞

∏d
n=2

∫
dpn

2π

∫
dp1

2π
eip1r1

pσ̂0p+0+ = lim
r1→∞

∏d
n=2

∫
dpn

2π

∫
dp1

2π
eip1r1

p2
1(σ0)1,1+

∑

d
α=2 p2

α(σ0)αα+0+
. The denom-

inator has singular points at p1 = ±i
(√

∑d
α=2 p

2
α(σ0)αα + 0+

)

and the integral can be done

with the residue theorem: lim
r1→∞

G(r) = lim
r1→∞

∏d
n=2

∫
dpn

2π
e
−

(√
∑d

α=2 p2α(σ0)αα+0+
)

r1

2
∑

d
α=2 p2

α(σ0)αα+0+
. After the change

of variables p′n = pnr1, we see that the boundary condition (2.33) is fulfilled: lim
r1→∞

G(r) =

lim
r1→∞

e−0+r1
∏d

n=2

∫ dp′
n

2π
e
−

(√
∑d

α=2 p
′2
α (σ0)αα

)

2
∑

d
α=2 p

′2
α (σ0)αα+0+

= 0.
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2. The Classical Percolation Regime of Quantum Hall Transitions

is proportional to 1/σ0:

χ̂(r) = δσ̂(r) + δσ̂(r)

∫

V

ddr1Ĝ0(r, r1)δσ̂(r1)

+ δσ̂(r)

∫

V

ddr1

∫

V

ddr2Ĝ0(r, r1)δσ̂(r1)Ĝ0(r1, r2)δσ̂(r2) + · · · . (2.40)

To simplify the notation, we introduce the Feynman-Diagrams

Ĝ0(r− r1) = r r1
and δσ̂(r) =

r
. (2.41)

With the convention to integrate over the rn, the expansion (2.40) can be graphically
represented by

χ̂(r) =
r
+

r r1
+

r r1 r2
+

r r1 r2 r3
+ ... . (2.42)

Even though our final goal is the conductivity tensor in the quantum Hall regime,
let us first study a purely resistive and isotropic medium to illustrate the method.
In this case, the conductivity tensor is diagonal and σ̂0 = σ01, δσ̂(r) = δσ(r)1. We
choose σ0 to be the average conductivity, so that 〈δσ(r)〉 = 0. In the limit of strong
dissipation compared to the typical fluctuations of conductivity (σ0 ≫

√

〈δσ̂2〉),
we can truncate equation (2.40) after the second order and get for the effective
conductivity σ̂e = σxx1 with

σxx = σ0 −
1

σ0

∫

ddr

∫
ddp

(2π)d
p2xe

ip·r

p2 + 0+
〈δσ(r)δσ(0)〉

= σ0 −
1

σ0

∫

ddr
δ(r)

d
〈δσ(r)δσ(0)〉 = σ0 −

〈δσ2〉
dσ0

. (2.43)

We recover thus equation (2.26).
The Green’s function formulation of the effective medium problem is immediately

appealing, because arbitrary orders of the strong-dissipation expansion can be
generated in a compact fashion (equation (2.42)). In the diagonal case where
δσ̂(r) = δσ(r)1, the fluctuating part of the conductivity commutes with the free
Green’s function Ĝ0, and we can extract the Green’s functions from the averages.

〈χ̂(r)〉 =〈δσ(r)〉1+

∫

d2r1〈δσ(r)δσ(r1)〉Ĝ0(r, r1)

+

∫

d2r1

∫

d2r2〈δσ(r)δσ(r1)δσ(r2)〉Ĝ0(r, r1)Ĝ0(r1, r2) + . . . . (2.44)
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2.4. Form of the Potential Correlations

If the sample is self averaging, we can replace the spatial average by an ensemble
average. If in addition the fluctuations of the conductivity follow a Gaussian dis-
tribution, these averages can be calculated by contracting the different δσ̂(r) using
Wick’s theorem. In section 2.4, I will argue, why the conductivity fluctuations in a
quantum Hall sample are often well described by a Gaussian distribution. In our
graphical representation, we denote these contractions by joining the curly lines and
get for example:

〈 〉 =
〈 〉 = + + . (2.45)

Odd moments of Gaussian distributions are zero and therefore the odd orders of the
development of χ̂ do not contribute. A second simplification comes from the fact that
all particle reducible diagrams (diagrams that can be split in two parts by cutting a
single line of Ĝ0) are identically zero. Taking the volume integrals is equivalent to
studying the Fourier transformed diagrams at zero momentum. Particle reducible
diagrams contain a factor [Ĝ0]ij(p = 0) = 0 and are therefore zero.

2.4. Form of the Potential Correlations

Already in the last section, and for all following calculations, the disorder potential
is chosen to be Gaussian distributed with Gaussian shaped pair correlator. In this
section, I give some arguments for this choice beside the obvious one, that it is very
convenient for analytical calculations.
First, a Gaussian-type random potential reflects the physical reality of a potential
created by a large number of weak, randomly distributed scattering sources [51]. As
we will see in the next paragraph, this can on theoretical grounds be understood
from a functional form of the central limit theorem. Second, even for samples where
the impurity density is too low to class the disorder potential automatically in the
category of “created by a large number of weak scattering sources”, the experimental
findings suggest a Gaussian distribution. As an example recall figure 1.6b which shows
the density of states obtained by a scanning tunneling microscope measurement [29].
The energy of an electron being essentially given by its Landau level energy plus
the average over the potential energy of the area over which the cyclotron motion
of the electron is spread, the shape of the density of states reflects the shape of the
potential distribution. Finally, one of our main goals is to calculate a percolation
critical exponent. It is generally believed, that the exact form of the potential is not
relevant for this kind of calculations [52].
Let us see how the Gaussian character of the potential correlations arises as a

consequence of a functional form of the central limit theorem: Let u(r− ri) be the
potential in the plane of the electron gas at position r created by the donor atom
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2. The Classical Percolation Regime of Quantum Hall Transitions

at position (ri, z) and let Pu(ri) = 1/L2 be the probability distribution for finding
an impurity at position ri, where L

2 is the surface of our sample. We choose L2 to
be large enough to ignore boundary effects, but finite so that N impurities lead to
a finite total potential. The total potential V (r), we are interested in, is given by
the sum over the potential created by all impurities. To simplify calculations, we
chose the origin of energy in a way, that the mean value of the total potential is zero,
leading to

V (r) =
N∑

i=1

u(r− ri)−N〈u〉. (2.46)

The probability density PV for V (r) is given by the functional integral:

P [V (x)] =
N∏

i=1

∫
d2ri
L2

δ

(

V (x)−
N∑

j

[u(x− rj)− 〈u〉]
)

=
N∏

i=1

∫
d2ri
L2

∫

Dλ ei
∫

d2rλ(r)(V (x−r)−
∑N

j [u(x−r−rj)−〈u〉]) (2.47)

=

∫

Dλ ei
∫

d2rλ(r)V (x−r)

[∫
d2r′

L2
e−i

∫

d2rλ(r)[u(x−r−r′)−〈u〉]
]N

=

∫

Dλ e
i
∫

d2rλ(r)V (x−r)+N log
[

∫

d2r′
L2 e−i

∫

d2rλ(r)[u(x−r−r
′)−〈u〉]

]

.

Using the saddle point method, we neglect terms which are higher than quadratic
order in λ leading to a Gaussian distribution. The error estimation for this step
follows bellow.

P [V (x)] =

∫

Dλ ei
∫

d2rλ(r)V (x−r)− 1
2
N

∫

d2r′
L2

∫

d2r1
∫

d2r2λ(r1)λ(r2)u(x−r1−r′)u(x−r2−r′)

=
1

√

det[c(r1 − r2)])
e

1
2

∫

d2r1
∫

d2r2V (r1−r′)V (r2−r′)c−1(r1−r2), (2.48)

with c(r1 − r2) = N

∫
d2r′

L2
u(r1 − r′)u(r2 − r′). (2.49)

The potential u, created by the ionized donor atoms, is a screened coulomb
potential. In samples where the distance d between the donor atoms and the plane
of the electron gas is large compared to the screening length ξs =

√

ξ20 + 2l2B (often
10nm < d < 100nm and ξ0 ≈ 5nm [53], the term 2l2B takes into account that the
potential has to be averaged over the region over which the wave function is spread)
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2.4. Form of the Potential Correlations

the screened Coulomb potential can be well approximated by a Gaussian potential:

u(r, z = 0) = A
1

√

d2 + (r− r′)2
e
−
√

d2+(r−r′)2
ξ0

≈ A

d

1

1 + (r−r′)2

d2

e−
d
ξs e

− (r−r
′)2

2dξ0 ≈ Be
− (r−r

′)2
ξ′2 (2.50)

with ξ′2 = 2dξs = 2d
√

s20 + 2l2B (2.51)

If u is a Gaussian, the correlation function c is, as a convolution of two Gaussians,
also a Gaussian with correlation length a =

√
2ξ′.

To estimate the error we made in neglecting terms higher than quadratic order
in λ, we study the ratio of the third and the second moment of V at coinciding
points, where it can be evaluated exactly. At coinciding points, we can treat V as a
normal probability variable, and for the n-th cumulant κn of V holds, as cumulants
are additive,

κn(V ) = κn

(
N∑

i=1

(u(ri)− 〈u〉)
)

= Nκn(u− 〈u〉). (2.52)

As V has zero mean value, the second and third cumulants are identical to the second
and third moments, and

〈V 3〉
〈V 2〉 32

=
κ3(V )

[κ2(V )]
3
2

=
Nκ3(u− 〈u〉)

N
3
2 [κ2(u− 〈u〉)]

3
2

. (2.53)

For u given by equation (2.50) and impurity density n = N/L2, we can calculate
these cumulants and take the thermodynamic limit

nL2κ3(u− 〈u〉) L→∞−−−→ π

3
B3nξ′2 (2.54)

nL2κ2(u− 〈u〉) L→∞−−−→ π

2
B2nξ′2, (2.55)

leading to the final result

〈V 3〉
〈V 2〉 32

≈ 1

3

√
2

πnξ′2
≈ 1

3

√

4

πna2
. (2.56)

The potential fluctuations are in good approximation Gaussian correlated, if the
impurity density in units of the correlation length of the potential is large. This
can be achieved in high density, high mobility samples. In the sample we study
in the next chapter d = 10nm leading with ξ0 ≈ 5nm [53] at 2T to ξ′ ≈ 20nm. If
we suppose the impurity density to equal the carrier density, n = 4 · 1011cm−2 and
〈V 3〉/〈V 2〉 32 ≈ 0.2 which is reasonably small.
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2. The Classical Percolation Regime of Quantum Hall Transitions

2.5. Application to the Quantum Hall Effect

In this section, we come back to our initial problem and apply the above developed
formalism to the quantum Hall effect. The conductivity tensor in this system has,
after decomposition in a spatially constant and in a spatially fluctuating part, the
form

σ̂(r) =

(
σ0 −σH
σH σ0

)

+

(
0 −δσ(r)

δσ(r) 0

)

(2.57)

if we assume that only the off-diagonal elements fluctuate. As σ0 ≪ σH , the neglect
of fluctuations in the diagonal component is justified.
The diagonal part describes phenomenologically all dissipative processes, especially
scattering with phonons. We suppose it to be space independent. This does not
exclude a dependence on temperature, the magnetic field, etc.(see section 3.1).
To get the off-diagonal part of the conductivity tensor, we use linear response theory,
i. e. we suppose that the conductivity which connects the current density in response
to the external electric field E0 is the same as the conductivity which connects the
equilibrium current density to gradients of the disorder potential (−∇V (r)).
Let us first have a look at the local equilibrium current density for the case of the
linear potential we studied in chapter 1. We read from equation (1.28) that every
filled state carries a current density proportional to the drift velocity:

jm(r) = evd = ec
E× uz

B
. (2.58)

The local equilibrium current density is the sum of the contributions of all filled
Landau levels. Due to the disorder potential, the density of filled states is position
dependent ne = ne(r) and

jeq(r) = ne(r)jm(r) = ne(r)ec
E×B

B2
. (2.59)

We read the Hall conductivity from the equilibrium current density:

σH(r) =
|e|cne(r)

B
=
e2

h

ne(r)

2πlB
=
e2

h
ν(r). (2.60)

The position dependent filling factor ν(r) can be expressed as a sum over Fermi-
functions with the local energy. In the limit of lB → 0 the local energy is Em(r) =
Em + V (r) (see equation (1.22)). This leads to the final expression

σH(r) =
e2

h

∑

m

nF (Em + V (r)− µ), (2.61)

where nF is the Fermi-distribution. This derivation of the current density is strictly
spoken only valid in the case of a disorder potential with purely linear position
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2.5. Application to the Quantum Hall Effect

dependance. But the final result is in the limit lB ≪ ξ valid for arbitrary disorder
configurations. It can be derived more rigorously using a gradient expansion of the
local potential controlled by the magnetic length lB. This is done in reference [9]
with the vortex Green’s function method (see section 4.2) and in reference [35] with
a Green’s function formalism where the gauge is chosen in a way that the vector
potential is perpendicular to the local gradient of the potential.
As discussed in section 2.4, we choose a Gaussian distribution for the smooth potential
of disorder V (r):

〈V (r)V (r′)〉 = v20e
− |r−r

′|
a2 (2.62)

which is thus characterized by the energy scale v0 and the length scale a. In the
regime kBT ≫

√

〈V 2〉 we can linearize equation (2.61) and get

σH(r) = σH + δσH(r) ≈
e2

h

∑

m

nF (Em − µ) + V (r)
e2

h

∑

m

n′
F (Em − µ). (2.63)

Therefore, the correlations between conductivity fluctuations are

〈δσ(r)δσ(r′)〉 = k20(T )e
− |r−r

′|
a2 (2.64)

with k0(T ) = v0
e2

h

∑

m

n′
F (Em − µ). (2.65)

In the case of the regime of the quantum Hall effect, the conductivity fluctuations
are no longer diagonal, but have the form δσ̂(r) = δσ(r)ǫ̂ with ǫ̂ = ( 0 −1

1 0 ). We can
still regroup the scalar factors δσ and calculate the average by contracting them.
The difference to the diagonal case is that for each δσ̂ a factor ǫ̂ stays in the matrix
product of the Green’s functions,

〈χ̂(r)〉 =〈δσ̂(r)〉+
∫

d2r1〈δσ̂(r)δσ(r1)〉ǫ̂Ĝ0(r, r1)ǫ̂

+

∫

d2r1

∫

d2r2〈δσ̂(r)δσ(r1)δσ(r2)〉 (2.66)

× ǫ̂Ĝ0(r, r1)ǫ̂Ĝ0(r1, r2)ǫ̂+ ... .

Up to the new rule, to add a matrix ǫ̂ for every dot, the diagrammatic remains
unchanged and in graphical representation

〈χ̂(r)〉 =
r r1

+
r r1 r2 r3

+
r r1 r2 r3

+ ... . (2.67)
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2. The Classical Percolation Regime of Quantum Hall Transitions

1 2 N-1 N

...

1th arc

2nd arc Figure 2.5: Numeration of
points and arcs.

For all diagrams the off-diagonal elements are zero and the two diagonal elements
are identical. Physically, this is due to isotropy, mathematically we will show it in
section 2.7. Therefore the effective conductivity has the form

σ̂e =

(
0 −σH
σH 0

)

+ σ0

[

1 +
∞∑

n=1

an
〈δσ2〉n
σ2n
0

](
1 0
0 1

)

=

(
σe
L −σH
σH σe

L

)

(2.68)

where the dimensionless coefficient an collects all diagrams of order n in perturbation
theory in 〈δσ2〉/σ2

0. In the next two sections, we will calculate the diagrams up to
the sixth order. As in the quantum Hall regime σ0 ≪

√

〈δσ2〉, simple truncation of
this series at a given order does not work. But in section 2.8, I will show how one can
get insight in the interesting regime of small dissipation by extrapolation techniques.

2.6. Creation of the Diagrams

The averaging process consists in summing all possible contractions of δσ̂ at one
given order.

〈
χ̂(n)

〉
=

∫

d2r1...d
2rn 〈δσ(r0)δσ(r1)...δσ(rn)〉

× ǫ̂Ĝ0(r− r1)ǫĜ0(r1 − r2)...ǫ̂Ĝ0(rn−1 − rn)ǫ̂. (2.69)

This means in the diagrammatic language that every possible way of connecting two
curly lines gives one diagram. For the lower orders these diagrams can be drawn by
hand as we have already seen in equation (2.45). As the number of possible diagrams
increases rapidly with the order, the diagrams have to be created systematically. To
do this, we study the structure of the diagrams. A diagram of order N consists of
N/2 arcs, which connect N points on a straight line. We numerate these points and
arcs to be able to refer to them more easily (see figure 2.5). The first arc starts
from point one and can end on any point whose number is bigger than one. Every
following arc starts form the smallest not yet connected point and can end on any
point which is not yet taken. Every diagram is unambiguously given by the suit of
the start and end points of its arcs: (end 1st arc, begin 2nd arc, end 2nd arc, ... ,
begin N th arc, end N th arc). This gives us a method to write a Python-Script which
creates all diagrams in the following way:
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2.7. Evaluation of the Diagrams

First, it creates all permutations p of (2,3,...,n).
Second, it make sure that the (n+1)th-arc starts after the n-th arc. The elements
of the suite of start and end points are referred by (p[0], p[1], ..., p[n − 2]). Only
permutations for which p[4] > p[2], p[6] > p[4], ... , p[n − 3] > p[n − 5] holds are
kept.
Third, it makes sure that every arc begins before it ends by discarding all permutations
for which the following does not hold: p[3] > p[2], p[5] > p[4], ..., p[n− 2] > p[n− 3]
The calculation of the diagrams is more easily done in momentum space. All

diagrams consist of the following three elements:

Ĝ0(p) = −
1

σ0

(
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

)

= − 1

σ0(p2x + p2y)

(
p2x pxpy
pxpy p2y

)

(2.70)

ǫ̂ =

(
0 −1
1 0

)

(2.71)

K(p) = πξ2k20e
− ξ2p2

4 = πξ2k20e
− ξ2

4 (p2x+p2y). (2.72)

Re-translating the diagrams into equations is done in two steps. First, to each line
the corresponding momentum has to be attributed. The first, second ... n-th arc
carries the momentum p1, p2...pn. Every straight line carries a momentum equal
to the sum of the momenta carried by the arc passing over this line. In this way,
the sum of momenta at each vertex is zero. Second, every arc stands for a factor K
with the corresponding momentum as argument and every straight line stands for a
matrix Ĝ0 also with the corresponding momentum as its argument. The Ĝ0 have to
be multiplied from the right to the left with an ǫ̂ matrix at the beginning, between
every Ĝ0-matrix and at the end. The whole expression has to be integrated over all
momenta. For example the second order diagram with one crossing is:

=

∫∫
d2p1
(2π)2

d2p2
(2π)2

K(p1)K(p2)ǫ̂Ĝ0(p1)ǫ̂Ĝ0(p1 + p2)ǫ̂Ĝ0(p2)ǫ̂. (2.73)

2.7. Evaluation of the Diagrams

The second order diagram in equation (2.67) can be calculated by hand:

=

∫
d2p

(2π)2
K(p)ǫ̂Ĝ0(p)ǫ̂

=
k20
πσ0

∫∫

dp pe−p2dθ

(
sin2(θ) − cos(θ) sin(θ)

− cos(θ) sin(θ) cos2(θ)

)

=
k20
2σ0

(
1 0
0 1

)

(2.74)

Before calculating the higher order diagrams, we remember, that all particle reducible
diagrams are zero. Although the conductivity is a matrix, we have to evaluate only
one element as every diagram D̂ is a diagonal matrix with identical diagonal elements,
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2. The Classical Percolation Regime of Quantum Hall Transitions

i. e. D̂ = D1. To prove this, let us study the effect of two different changes of variables,
the rotation by π of every momentum and the interchange of the the x and the y
components of every momentum on the diagrams. The diagrams have the general
form

D̂ =

(
∏

j

∫
dpjxdp

j
y

(2π)2
K(pj)

)

ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂ . . . ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂
︸ ︷︷ ︸

odd number of Ĝ0-matrices

. (2.75)

First change of variables: For all j pjx → pjy, p
j
y → −pjx. The functional determinant

for this change of variables is one. The K(pj) remain unchanged. For the free Green’s
function the variable change can be expressed by multiplication with ǫ̂-matrices:
Ĝ0 → −ǫ̂Ĝ0ǫ̂.

D̂ = −
(
∏

j

∫
dpjxdp

j
y

(2π)2
K(pj)

)

ǫ̂ǫ̂Ĝ0ǫ̂ǫ̂ǫ̂Ĝ0ǫ̂ǫ̂ǫ̂Ĝ0ǫ̂ǫ̂ǫ̂ . . . ǫ̂ǫ̂ǫ̂Ĝ0ǫ̂ǫ̂ǫ̂Ĝ0ǫ̂ǫ̂ǫ̂Ĝ0ǫ̂ǫ̂

= −
(
∏

j

∫
dpjxdp

j
y

(2π)2
K(pj)

)

Ĝ0ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂ . . . ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂Ĝ0 = −ǫ̂D̂ǫ̂. (2.76)

Second change of variables: For all j pjx → pjy, p
j
y → pjx. As for the first change of

variables, the functional determinant is one and the K(pj) remain unchanged. For
the free Green’s function the variable change can be expressed by multiplication with
η̂-matrices: Ĝ0 → η̂Ĝ0η̂, where η̂ is defined as η̂ = ( 0 1

1 0 ).

D̂ =

(
∏

j

∫
dpjxdp

j
y

(2π)2
K(pj)

)

ǫ̂η̂Ĝ0η̂ǫ̂η̂Ĝ0η̂ǫ̂η̂Ĝ0η̂ǫ̂η̂ . . . η̂ǫ̂η̂Ĝ0η̂ǫ̂η̂Ĝ0η̂ǫ̂η̂Ĝ0η̂ǫ̂ (2.77)

with η̂ǫ̂η̂ = −ǫ̂ and η̂ǫ̂ = −ǫ̂η̂

D̂ =

(
∏

j

∫
dpjxdp

j
y

(2π)2
K(pj)

)

η̂ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂ . . . ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂Ĝ0ǫ̂η̂ = η̂D̂η̂. (2.78)

The two changes of variables yield the equality D̂ = −ǫ̂D̂ǫ̂ = η̂D̂η̂ or written
component wise

(
Dxx Dxy

Dyx Dyy

)

=

(
Dyy −Dyx

−Dxy Dxx

)

=

(
Dyy Dyx

Dxy Dxx

)

, (2.79)

which can only be fulfilled if D̂ = D1.
We calculate the fourth and sixth-order diagrams using the computer algebra

program Mathematica. To save computation time and working memory, we proceed
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2.7. Evaluation of the Diagrams

in the following steps:
First, the expressions for the diagrams are created in Cartesian coordinates. The
factor ξ2/4 in the function K is absorbed in a change of variables. We get rid of the
denominator in the expression for Ĝ0 by rewriting them with the Feynman trick:

1

x
=

∫ ∞

0

dt e−tx. (2.80)

The integrals over the auxiliary variables t will only be done after the integrals over
the momenta.
Second, the integrals over the x and y components are done one after the other.
Instead of using the built-in integration routine, which is to time-consuming, we
remark that every integral has the form

∫

dx e−x2+b1x+b0
∑

n=0

anx
n. (2.81)

It is enough to evaluate this integral once in its general form. Afterwards, the
corresponding coefficients are extracted from the expressions to integrate and plugged
into the general expression.
Third, the result has to be simplified after the integration over the last momentum.
The built-in simplification routines are slow and do not arrive at a satisfying level of
simplification. The results of the integrations have the form of continued fractions.
The different parts of the expression are written into a table. This table allows to
write the fractions systematically, starting from the bottom, on common numerators.
Fourth, the integrals over the auxiliary variable t have to be done. In most cases the
built-in integration and simplification routines work fine. But for some expressions
terms containing logarithms have to be simplified by hand e.g. replace ln(8 + 16t)
by (3 ln(2) + ln(1 + 2t)).
The results for the fourth and sixth order diagrams are given in table 2.1.

The diagrams of eighth, tenth and twelfth order are calculated numerically. Again
we use a python script to create the diagrams, to discard the particle reducible ones
and to write the corresponding functions down in C-code. We pass to hyper spherical
coordinates 4 with the dimension corresponding to the order of the diagrams. The
integral over the radius is always the same and can be done analytically which has
the advantage of avoiding integrals over infinite intervals.
Afterwards, the angular integrals are done using the Vegas Monte Carlo integration
routine from the GNU Scientific Library. In a plain Monte-Carlo integration
the sample points are drawn from an evenly distributed probability distribution.
With a constant number of sampling points, the integral could be evaluated much

4. p1x = r cos(φ1), p1y = r sin(φ1) cos(φ2), p2x = r sin(φ1) sin(φ2) cos(φ3), ... , pnx =
r sin(φ1) · · · sin(φn−2) cos(φn−1), pny = r sin(φ1) · · · sin(φn−2) sin(φn−1). Volume element: dV =
rn−1 sinn−2(φ1) sin

n−3(φ2)... sin(φn−2)drdφ2dφ2...dφn−1
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2. The Classical Percolation Regime of Quantum Hall Transitions

Diagram Multi- Analytical Value Decimal
plicity Value

fourth order
1 −1

4
log(2) -0.173287

1 1
8
(1− log(4)) -0.048287

sixth order

1 1
96

(
3− π2 + 3 log[3](−3 + log[9]) + 12Li2

[
2
3

])
0.005040

2 1
32
log
[
27
16

]
0.016352

1 1
16

(
2 log[2]2 − 3 log[3] + log[8] + Li2

[
1
4

])
0.000760

2 1
384

(2 + 100 log[2]− 63 log[3]) 0.005474
1 1

8
log
[
32
27

]
0.021237

1 1
8
log
[
27
16

]
0.065406

1 − 1
48
− log[2]

6
+ 9 log[3]

64
0.018135

1 3
16
log
[
4
3

]
0.053940

Table 2.1.: Multiplicity and analytical values of the diagonal elements of the non-
zero fourth and sixth order diagrams. Li2 is the dilogarithm defined by Li2(z) =
∫ 0

z
dt log(1−t)

t
.

Order Method Coefficient an

1 Analytical 1
2

2 Analytical 1
8
− 1

2
log(2)

3 Analytical 0.2034560502
4 Numerical −0.265± 0.001
5 Numerical 0.405± 0.001
6 Numerical −0.694± 0.001

Table 2.2: Coefficients an of the per-
turbative series (2.68) up to sixth loop
order.

more accurately, if the function evaluations were concentrated to regions where the
integrand is largest in magnitude (importance sampling). But this needs knowledge
of the integrand behavior prior to integration. The Vegas algorithm is an iterative
algorithm which uses information generated during a Monte Carlo integration to
adapt the probability distribution used in subsequent integrations [54, 55].
As we are only interested in the sum of the diagrams and integration is time consuming,
it is impracticable to integrate all diagrams one by one. Instead, we sum the diagrams
before integration. Table 2.2 gives an overview of all calculated coefficients.

Some high order diagrams can even be evaluated analytically. With them, we
can test the numerical integration and confirm the built-in error estimation. The
analytically evaluated diagrams and their numerical and analytical values are given
in table 2.3. For the analytical calculation, we remark that these diagrams are only
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2.8. Extrapolation to the Regime of Small Dissipation

diagram analytical value numerical value
−44 log[2]+27 log[3]

32
= −0.0261233 −0.026071

162 log[3]+125 log[5]−32 log[131072]
192

= 0.01084 0.010879
−6496 log[2]−486 log[3]+3125 log[5]

1536
= −0.004632 −0.004630

Table 2.3.: Comparison of analytical and numerical values of certain diagrams.

composed of bare propagators and of the first order self-energy

Σ̂1(p) =
p pp+ q

q

=
〈δσ2〉
σ0

1

(p2x + p2y)
2

(
a b
b c

)

, (2.82)

with a =
1

2
(p2y − p2x)

[

e−p2x−p2y − 1
]

+ p2xp
2
y + p4y,

b = −pxpy[e−p2x−p2y − 1 + p2x + p2y],

c =
1

2
(p2x − p2y)

[

e−p2x−p2y − 1
]

+ p2xp
2
y + p4x.

For Σ̂1 the off diagonal elements are not zero, because it has a finite in and outgoing
momentum. Using this, already integrated building block, reduces the number of
integrals we have to do. The eighth-order diagram e.g. is:

=

∫
d2p

(2π)2
K(p)× ǫ̂Ĝ0(p)Σ(p)Ĝ0(p)Σ(p)Ĝ0(p)Σ(p)Ĝ0(p)ǫ̂. (2.83)

2.8. Extrapolation to the Regime of Small

Dissipation

Knowing the first coefficients of the perturbation series, we can very well describe
the regime where the conductivity is governed by phonons, i. e. σ0 ≫

√

〈δσ̂2〉. But
what happens in the opposite regime of small dissipation and how does the effective
conductivity behave on the crossover between the two regimes? To answer this
question, we use here an extrapolation technique. In view of the diagrammatic
representation, it would perhaps seem more natural to use a self consistent Born
approximation. This idea is explored in appendix A, but it does not lead to the
desired result, as the convergence is too slow.
The effective longitudinal conductivity σe

L vanishes [2] in the limit σ0 → 0. For
small values of σ0, the current density is orthogonal to the gradient of the potential
i. e. parallel to the level lines. This can be seen from the Maxwell equation ∇×E = 0
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2. The Classical Percolation Regime of Quantum Hall Transitions

which yields in the limit σ0 → 0 using current conservation ∇ · j = 0 and expressing
the electric field as E = σ̂−1j with σ̂ given by equation (2.57)

1

σ2
H

(∇σH) · j = 0⇔ (∇V (r)) · j = 0, (2.84)

where the last equivalence holds because of equation (2.61). For vanishing longitudinal
conductance, all current filaments are parallel to the equipotential lines. Therefore,
most of them circuit summits or basins of the potential and are localized. To have
an effective conductivity different from zero, some current filaments have to reach
from one end of the sample to the other. The current filaments percolate the system
only at one energy. But at this energy they have to pass saddle points, where the
gradient of the potential is zero. Conductance over saddle points is only possible via
electron-phonon processes encoded in σ0 and the smaller σ0 the smaller the effective
conductivity. From this considerations we expect, that the effective conductivity
behaves as

σe
L = C〈δσ2〉κ2 σ1−κ

0 (2.85)

for small σ0. With this assumption in mind, we extrapolate the series established
above for σ0 ≫

√

〈δσ2〉 to σ0 → 0 and determine the critical exponent κ. For the
extrapolation we use two methods, series expansion of the logarithmic derivative
with Padé approximants and a four point fit.

Padé approximants are a particular type of rational fraction approximations to the
value of a function for which only limited information is available [56]. The basic idea
is similar to Taylor expansion. While in a Taylor expansion, the unknown function
is approximated by a polynomial, the Padé approximant consists of a fraction of two
polynomials. More concretely:

Padé[L/M ] =
PL(x)

QM(x)
(2.86)

is a [L/M ] Padé approximant to a function f(x) if

f(x)− PL(x)

QL(x)
= O(xL+M+1), (2.87)

PL(x) and QM(x) are polynomials with degrees deg(PL) ≤ L, deg(QM) ≤ M and
QM(0) = 1, where O is the Landauer O. For uniqueness PL and QM must not
have common factors. For non-polynomial functions, Padé approximants have often
a larger convergence radius and converge faster than the corresponding Taylor
expansion.
Series expansion of the logarithmic derivative with Padé approximants (the so called

Dlog Padé approximants) is a standard method to calculate critical exponents [57].
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2.8. Extrapolation to the Regime of Small Dissipation

Order b2 b4 b6 b8 b10 b12
Coefficient -1 log(4) -2.135 3.698 -6.919 13.823

Table 2.4.: Coefficients bn for the the small-x series expansion (2.89) of the
function f(x) defined in equation (2.88).

As indicated by the name of the method, we have to start with the dimensionless
logarithmic derivative of the function to extrapolate:

f(x) := σ0
d log[σe

L(σ0)]

dσ0

∣
∣
∣
∣
σ0/
√

〈δσ2〉=1/x

(2.88)

Starting from the expansion of σe
L given in equation (2.68), we expand f(x) at small

x in a power series to order N in the number of arcs of the diagrams respectively to
order 2N in powers of x

fN(x) = 1 +
2N∑

n=1

bnx
n. (2.89)

All odd terms in this expansion are zero, because σe
L is an odd function of σ0. The

even coefficients are given in table 2.4. From the coefficients of the power series, we
calculate the [N/N] Padé approximant of f(x):

Padé[N/N ](f) =

∑N
n=0 pnx

n

1 +
∑N

n=1 qnx
n
. (2.90)

Again the numerator and the denominator polynomial are even functions of x. This
means Padé[(2n − 1)/(2n − 1)](f) = Padé[(2n)/(2n)](f) and we always have to
calculate two orders more to get new information.
Plugging the expected behavior of the conductivity at small dissipation (equa-
tion (2.85)), into the definition of f(x) (equation (2.88)), we get f(x) → 1 − κ
for x → ∞. The critical exponent κ is thus obtained by extrapolating the Padé
approximant (2.90) to infinity, which simply reads

1− κ = lim
x→∞

f(x) ≈ lim
x→∞

Padé[N/N ](f(x)) =
pN
qN

(2.91)

at the order N . To get the corrections of the effective conductivity at order N , we
have to replace f(x) by Padé[N/N ](f(x)) in equation (2.88) and solve the resulting
differential equation. The solution is

σe
L(σ0) ≈ Cσ0e

∫ x
0 dx

〈δσ2〉
σ2
0

∑N
n=0 pnxn

1+
∑N

n=1 qnxn = Cσ0

N∏

n

(

1 + cn
〈δσ2〉
σ2
0

)dn

, (2.92)
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Figure 2.6: Scaling function of the lon-
gitudinal conductance from the percolat-
ing (σ0 → 0) to the dissipative regime
(σ0 → ∞). The first order bare pertur-
bation theory (controlled only at large dis-
sipation) is shown in comparison to the
resummations of the n = 2 and n = 4
orders, showing good convergence for all
values of σ0.

where C is the integration constant and the cn, dn are dimensionless numbers
determined from the coefficients of the Padé expansion. The last equation holds, if
all roots of the denominator polynomial of the integral have multiplicity one.
At second order, the critical exponent is κ = 0.72± 0.09 and the effective conduc-

tivity reads

σe
L(σ0) = Cσ0

[

1 +
1

κ

〈δσ2〉
σ2
0

]κ/2

. (2.93)

To obtain the error bar on κ, equation (2.93) has been expanded to third order in
〈δσ2〉/σ2

0 with κ arbitrary, and the resulting third order coefficient has been compared
with the exact a3 value. Equation (2.93) describes the full crossover between the
regime of strong dissipation 〈δσ2〉 ≪ σ2

0, which is already well described by first order
perturbation theory to the non-perturbative limit of vanishing dissipation σ0 → 0
where percolation effects dominate, see figure 2.6.

In order to obtain a better estimate for the exponent, we push the calculation of
the effective conductivity to fourth order where it is given by κ = 0.779± 0.006, and
the resulting formula for the effective conductivity takes the form:

σe
L(σ0) = σ0

(

1 + A
〈δσ2〉
σ2
0

)B (

1 + C
〈δσ2〉
σ2
0

)D

(2.94)

One part of the error bar on κ is again obtained by expanding equation (2.94) to
fifth order with arbitrary κ and comparing the resulting coefficient to a5. The second
part is due to the error bar of the coefficients which have been evaluated numerically.
In principle, the calculation of the sixth order corrections should allow an even more

precise estimation of the critical exponent κ, but in that case the Padé approximant
features a spurious pole [58], that invalidates the method. The general form of the
Padé approximant (2.92) gives a hint why the Padé method becomes unstable at
high orders.

σe
L(σ0) ∝ 〈δσ2〉κ/2σ1−κ

0

[

1 + E
σ2
0

〈δσ2〉 + . . .

]

. (2.95)
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2.9. Summary

Order Method Exponent 1− κ
2 Padé 0.28± 0.09
4 Padé 0.221± 0.006
4 n-Fit 0.233± 0.002
∞ Conjecture 3/13 ≃ 0.2308

Table 2.5: Critical exponent 1−κ. The
indicated error bounds have been esti-
mated with the next coefficient of the
series. They clearly underestimate the
true error. But they indicate the order
of magnitude and that the four point fit
method gives the best result.

The sub-leading exponent κ′ is not independent of the leading exponent κ, but is
automatically given by κ′ ≃ 3−κ, which is unlikely to correspond with good precision
to the right value. Probably this lack of flexibility is the source of the spurious pole
in the Padé approximant. To circumvent this problem authors [59] have used a
generalized n-Fit method. For the case of the fourth order conductivity, we try the
following additive form:

σe
L(σ0) = Fσ0

(

1 +G
〈δσ2〉
σ2
0

)H

+ (1− F )c0
(

1 +G
〈δσ2〉
σ2
0

)I

. (2.96)

The critical exponent is here given by κ = min[2H, 2I]. The sub-leading exponent is
independent of the leading critical exponent and reads κ′ = max[2H, 2I]. To obtain
the numerical coefficients of equation. (2.96), it is expanded about x =

√

〈δσ2〉/σ0 = 0
and the first four coefficients of the resulting series are identified with the first four
coefficients of Table 2.4. The fifth coefficient is again used for the error estimation.
We find κ = 0.767 ± 0.002, in excellent agreement with the conjectured value
κ = 10/13 ≃ 0.7692.

2.9. Summary

In this sometimes quite technical chapter, we have developed a transport theory
for the high temperature regime of the quantum Hall effect based on an effective
medium approach. It allows us to describe the entire crossover from the percolating
to the dissipative regime. We were able to determine the critical exponent for the
longitudinal effective conductivity accurately in a fully microscopic theory.
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3. Classical Percolating Transport:
Theory and Experiment

In the previous chapter, we derived an expression for the effective conductivity as a
function of the local Ohmic conductivity σ0, that applies in the classical percolation
regime of the quantum Hall effect. In this chapter, we will express the effective
conductivity as a function of the experimental accessible quantities temperature
and magnetic field. This allows us to compare our theoretical results to recent
experimental data obtained by Benjamin Piot et al. [5] at the “Laboratoire National
des Champs Magnétiques Intenses (LNCMI)“ in Grenoble and to the experiment by
V. Renard et al. (partially published in [6]).

3.1. Estimation of the Local Ohmic Conductivity

from Phonon Scattering

The first element we need, in order to calculate the temperature and magnetic
field dependence of the effective conductivity, is the temperature and magnetic field
behavior of the Ohmic conductivity σ0 describing transport at short length scales. As
σ0 encodes mainly electron-phonon processes, we estimate it with the Drude formula

σ0 =
ne2τph/m

∗

1 + (ωcτph)2
(3.1)

using the electron-phonon scattering time τph. The following estimation for the
electron-phonon scattering rate in the regime of the quantum Hall effect follows
[4]. This derivation is close to the standard textbook version of electron-phonon
scattering which can for example be found in [60]. But instead of a homogeneous
three dimensional electron density, the high field two dimensional density given by
Landau states is used. The electron-phonon interaction Hamiltonian is given by [60]

V̂el-ph =

∫

d3r ρel(r)
∑

j

euj · ∇rVion(r−R0
j). (3.2)

It states that the electron gas characterized by its density ρel interacts with ions,
which are displaced from their equilibrium position R0

j by uj via the electrostatic
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3. Classical Percolating Transport: Theory and Experiment

potential Vion created by the ions. For simplicity, only one three dimensional acoustic
phonon mode is studied and we have [60]

uj =

√

~

2MN

∑

p

ep√
ωp

(âp + â†−p)e
ip·R0

l , (3.3)

where N is the number of ions, M the ionic mass, ωp = cL|p| the phonon frequency,
cL the speed of sound, ep the polarization vector and âp, â

†
p bosonic annihilation/

creation operators for phonons in mode p. We use the Fourier representation in the
volume V for the gradient of the ion potential

∇rVion(r−R0
j) =

1

V
∑

g

igV ion
g eig·(r−R0

j ). (3.4)

As discussed in section 1.4, the electron motion in a smooth disorder potential under
a strong magnetic field is well described by the semi-classical picture of electrons
moving on equipotential lines. As electron-phonon interaction is a local process,
we neglect curvature effects, introduce a local coordinate system x, y where the
x-direction is given by a tangent to the equipotential line and the y-direction is
normal to it and approximate the disorder potential locally by 1 V (x, y) = (v0/a)y.
This leads to a locally linearized Hamiltonian of the form of equation (1.18). For
simplicity, we consider only the lowest Landau level and recall its eigenstates φkx(x, y)
and eigenenergies Ekx :

φn=0,kx(x, y) =
1

√√
πlBL

e
ikxx− (y−y0)

2

2l2
B (3.5)

ǫkx = En=0,kx =
1

2
~ωc + kxl

2
B

v0
a

+
l2B

2~ωc

v20
a2

(3.6)

The electron density can be calculated as the product of field operators ρel(r) =
Ψ̂†(r)Ψ̂(r). In the Landau basis, taking only the lowest Landau level into account,
the field operator reads

∑

k φn=0,kx(x, y)ĉkx where ĉkx is a fermionic annihilation
operator, leading to the two dimensional electron density

ρel(x, y) =
1√
πlBL

∑

qx,kx

e−iqxxe
− (y−y0)

2

2l2
B ĉ†kx+qx

ĉkx (3.7)

=
1

L2

∑

q,kx

e−i(qxx+qyy)eiqyy0e−
q2yl2B

4 ĉ†kx+qx
ĉkx , (3.8)

1. To be consistent with the notation in section 2.1 the typical amplitude of the potential
fluctuations is denoted by v0, the correlation length by a. With respect to the notation in
reference [4] this means λ→ a and u0 → v0.
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3.1. Estimation of σ0 from Phonon Scattering

where in the second step the Gaussian has been expressed by its Fourier representa-
tion e−(y−y0)2/(2l2B) = (

√
πlB/L)

∑

qy
e−iqy(y−y0)e−(q2yl

2
B)/4. With these expressions, the

electron-phonon interaction Hamiltonian becomes using
∫
dx
∫
dy ei[(qx−gx)x+(qy−gy)y] =

L2δqx,gxδqy ,gy and
∑

j e
i(p−g)·R0

j = Vδp,g:

V̂el-ph = ie

√

~

2MNcL

∑

q,kx

√
qV ion

q eiqyy0e−
q2yl2B

4 ĉ†kx+qx
ĉkx(âq + â†−q). (3.9)

Knowing the interaction Hamiltonian, we can calculate the lifetime τkx for an electron
with relative energy ǫk above the Fermi energy with Fermi’s golden rule. 2 The electron
will be scattered from the initial state |kx〉el into the state |kx + qx〉el. This can
happen in two ways, either by emitting a phonon into the phonon mode | − q〉ph or
by absorption of a phonon from the phonon mode |q〉ph:

1

τkx
=

e2π

MNcL

∑

q

q(V ion
q )2e−

q2yl2B
2 [1− nF (kx + qx)]

× [nB(q)δ(ǫkx+qx − ǫkx − ~ωq) + (nB(−q) + 1)δ(ǫkx+qx − ǫkx + ~ωq)] , (3.10)

where nF is the electron and nB the phonon distribution function. For the ionic
potential a screened Coulomb potential is used V ion

q = e(ǫrǫ0a
3
0)

−1(k20 + q2)−1, where
a0 is the lattice constant, k0 the inverse screening length, ǫ0 the vacuum permittivity
and ǫr the relative permittivity. Due to the Gaussian factor in the sum, high q-values
do not contribute to the sum and as long as q ≪ k0, the potential depends only
weakly on momentum V ion

q ≈ V ion
0 , which allows us to take it out of the sum.

To evaluate the sum, we replace it by an integral
∑

q = V
∫
d3q/(2π)3. The integral

over the qx component collapses with the δ-functions giving a prefactor a/(l2bv0)
and the relationship q2x = q2(~2c2La

2)/(l4Bv
2
0). In order to get a finite scattering rate,

~
2c2La

2/(l4Bv
2
0) has to be smaller than one, as q2x ≤ q2. Assuming qx ≪ q (to be checked

later), one can use q2 ≈ q2y + q
2
z . After setting ~ωq/(kBT ) ≈ ~cL

√
q2y + q2z/(kBT ) = x

and passing to polar coordinates, we get for the scattering rate

1

τk
=
e2(V ion

0 )2k3BT
3a

8π2ρ~3c4Lv0l
2
B

∫ ∞

0

dx

∫ 2π

0

dθ x2e−
α2x2 cos2(θ)

2

e
ǫk

kBT

[

e
ǫk

kBT + 1
]

(ex + 1)
[

e
ǫk

kBT
+x

+ 1
] [

e
ǫk

kBT
−x

+ 1
]

(ex − 1)

=
e2(V ion

0 )2k3BT
3a

4πρ~3c4Lv0l
2
B

∫ ∞

0

dx x2e−
α2x2

4 I0

(
x2α2

2

) e
ǫk

kBT

[

e
ǫk

kBT + 1
]

(ex + 1)
[

e
ǫk

kBT
+x

+ 1
] [

e
ǫk

kBT
−x

+ 1
]

(ex − 1)
,

(3.11)

2. Fermi’s golden rule states for the lifetime τi of an initial state i with energy Ei that can decay
in final states f with energies Ef :

1
τi

= 2π
~

∑

f |〈f |V̂el-ph|i〉|2δ(Ef − Ei).
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3. Classical Percolating Transport: Theory and Experiment

with the density ρ = MN/V , α = kBT lB/(~cL) and In(z) the modified Bessel
function of the first kind. If α ≥ 1 the Gaussian function provides a strong cut-off for
the x values and we can estimate the integral by developing the rest of the integrand
about x = 0, leading to:

1

τk
=
e2(V ion

0 )2k3BT
3a

2πρ~3c4Lv0l
2
B

e
ǫk

kBT

[

e
ǫk

kBT + 1
]

∫ ∞

0

dx xe−
α2x2

4 =
e2(V ion

0 )2kBTa

πρ~c2Lv0l
4
B

1
[

e
− ǫk

kBT + 1
] .

(3.12)

As we consider energies close to the percolation threshold, the exponential factors
depend only very slowly on temperature, so that they can be neglected, leading to a
linear temperature dependence of the scattering rate. It depends inversely on the
fourth power of the magnetic length, thus quadratically on the magnetic field. We
thus find with the Drude formula

σ0 =
ne2τph/m

∗

1 + (ωcτph)2
≈ ne2

m∗ω2
cτph

=
nm∗ae4(V ion

0 )2kBT

2πρ~3c2Lv0
. (3.13)

assuming ωcτph ≫ 1 (to be checked later). The local longitudinal conductivity
depends linearly on temperature and is independent of the magnetic field.
In this derivation some approximations have been made. Let us check for what

sample parameters they are justified.
In order to neglect the momentum dependence of the ionic potential, the momentum
has to be small in comparison to the inverse screening length. The screening length
is not well known, but in [53] it is estimated to be k0 ≈ 2 · 108m−1 for GaAs. The
Gaussian function cuts momentum as soon as it is of the order of 1/lB. For B
between 1T and 10T, 1/lB < 1.2 · 108m−1, so smaller than k0 and this approximation
should be safe. For GaAs a0 = 5.7 · 10−10m [19] and ǫr = 13.18 [19], so that we can
estimate V ion

0 ≈ 185V.
Because of the Dirac-Delta-functions, the scattering rate has only a finite value if
~
2c2La

2/(l4Bv
2
0) < 1. The speed of sound in GaAs is about 4 · 103m/s [19]. For the

GaAs sample we use, we estimate v0 = kB ·3K ≈ 4·10−23J from the experimental data
in section 3.5.2. With this values, the correlation length of the potential has to be
smaller than a < (1/B) ·6 ·10−8kgmC−1 s−1. If we estimate a as a ≈ 2

√
d 4
√

ξ20 + 2l2B
(see 2.4) where ξ0 is the screening length and d the distance between the donor
atoms and the electron gas, the correlation length becomes too long for magnetic
field values higher than 2T. If the scattering rate vanishes in first order perturbation
theory, multi-phonon processes gain importance. To capture them, one has to go
beyond the first order perturbation theory performed here, but it may not change
the results dramatically.
The condition α > 1 is fulfilled for temperatures higher than 5K for the B-field
range from 1T to 5T. For lower temperatures, the magnetic field should not be too
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L with the Poisson Summation Formula

high. For the experimental data studied in the following α is larger than one. As
a side note, for α≪ 1 and ǫk small, Zhao and Feng [4] predict the scattering rate
to be proportional to T 3. Therefore, the inverse linear dependence of the coherence
length on temperature [61] observed at very low temperatures cannot be explained
by electron-phonon scattering.
The approximation ω2

cτ
2
ph ≫ 1 is convenient, as it allows to describe the temperature

dependence of σ0 with only one fit-parameter in the form σ0 ≈ AT . But it is not
essential because one could always use σ0 ≈ A1T/(1 + A2T

2). With the density of
GaAs ρ = 5360kg/m3[19], we find for T = 1K and B = 1T an acceptable value of
ω2
cτ

2
ph ≈ 34, but at higher temperatures and magnetic fields, we reach the opposite

regime as for example ω2
cτ

2
ph ≈ 0.003 for B = 5T and T = 40K.

Finally and perhaps most importantly, the Drude theory can only be used to calculate
the conductance locally, if electrons undergo a large number of scattering processes
while they cover the correlation length of the potential, i. e. if the sample is in
the diffusive regime at short length scales, where vdτph ≪ a. The drift velocity
can be estimated as vd = |∇V |/(|e|B) ≈ v0/(a|e|B). At high temperatures, this
condition is easily fulfilled, for T = 40K and B = 1T for example vdτph/a ≈ 0.01.
The ratio between scattering length and correlation length increases with decreasing
temperature and for T = 1K and B = 1T, we have only vdτph/a ≈ 0.4. But at least
for temperatures higher than 5K, the Drude formula can be used.

A large number of the used approximations is at the brink of validity. However,
some parameters, especially k0, v0 and a are not well known. As I have no better
estimation for the moment, I use in the following the assumption that the local
longitudinal conductivity depends linearly on temperature and is independent of
the magnetic field. A change in the temperature dependence of σ0 could explain
the deviations of the experimental values from the theoretical predicted curve form
occurring in sample NRC1649 at high temperatures (see figure 3.4). It would be
worthwhile to extend the calculation of this section beyond first order perturbation
theory.

3.2. Reexpressing the Effective Longitudinal

Conductivity with the Poisson Summation

Formula

In the previous chapter, we found for the effective longitudinal conductivity
(equations (2.85) and (2.65))

σe
L = Cσ1−κ

0

∣
∣
∣
∣
∣

e2

h

√

〈V 2〉
∞∑

m=0

n′
F (Em − µ)

∣
∣
∣
∣
∣

κ

. (3.14)
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3. Classical Percolating Transport: Theory and Experiment

The infinite sum over the Landau levels is at high temperatures difficult to handle, as
it converges slowly and the lowest order terms are not necessarily the most important
ones. In the high temperature limit, there exists a more convenient form, where high
order terms are exponentially suppressed. In a first step the sum is rewritten with a
variation of the Poisson sum formula 3 [62]

∞∑

n=0

f(n) =
∞∑

l=−∞

∫ ∞

0

f(t)e−2πiltdt (3.15)

and becomes

d

dµ

∞∑

m=0

nF (Em − µ) =
−1

4kBT

∞∑

m=0

1

cosh2
(

~ωc(m+ 1
2
)−µ

2kBT

)

=
−1

4kBT

∞∑

l=−∞

∫ ∞

0

dt ei2πlt
1

cosh2
(

~ωc(t+
1
2
)−µ

2kBT

) . (3.16)

After the change of variables x = 1
kBT

[
~ωct+

~ωc

2
− µ

]

d

dµ

∞∑

m=0

nF (Em − µ) =
−1
4~ωc

∞∑

l=−∞
(−1)lei2πl(

µ
~ωc

)

∫ ∞

~ωc
2kBT

− µ
kBT

dx
ei2πl

kBT

~ωc
x

cosh2
(
x
2

) , (3.17)

the limit µ/(kBT )→∞ can be taken, which limits the usability of the formula to
the regime µ≫ kBT and yields

d

dµ

∞∑

m=0

nF (Em − µ) =
−1
4~ωc

∞∑

l=−∞
(−1)lei2πl(

µ
~ωc

)

∫ ∞

−∞
dx

ei2πl
kBT

~ωc
x

cosh2
(
x
2

) . (3.18)

The integral is nothing but the Fourier transform
∫∞
−∞ dx eikx

[cosh(x
2 )]

2 = 4πk
sinh(πk)

[63]:

d

dµ

∞∑

m=0

nF (Em − µ) =
−1
~ωc

∞∑

l=−∞
(−1)lei2πl(

µ
~ωc

)
2π2l kBT

~ωc

sinh
(

2π2l kBT
~ωc

) . (3.19)

Using lim
x→0

x
sinh(x)

= 1, the l = 0 term can be extracted

d

dµ

∞∑

m=0

nF (Em − µ) =
−1
~ωc



1 +
∞∑

l=1

(−1)l cos
(
2πlµ

~ωc

)
4π2l kBT

~ωc

sinh
(

2π2l kBT
~ωc

)



 . (3.20)

3. Proof for our function: Multiply the representation of the Dirac-comb
∑∞

n=−∞ δ(x− n) =
∑∞

k=−∞ e2πikx by n′
F (x) and integrate over x from zero to infinity. Interchange sum and inte-

gral using monotone convergence on the left hand side and Lebesgue dominated convergence
(|n′

F (x)e
2πikx| ≤ n′

F (x)) on the right-hand side.
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3.3. High Temperature Magnetic Field Dependence

With this form of the sum over the derivatives of the Fermi functions, equation (3.14)
reads

σe
L = Cσ1−κ

0

[

e2

h

√

〈V 2〉
~ωc

]κ


1 +
∞∑

l=1

(−1)l cos
(
2πlµ

~ωc

)
4π2l kBT

~ωc

sinh
(

2π2l kBT
~ωc

)





κ

. (3.21)

3.3. High Temperature Magnetic Field Dependence

At high temperatures kBT ≫ ~ωc/4, the infinite sum in equation (3.21) can be
neglected, leading to a formula which gives via the cyclotron frequency the magnetic
field dependence of the longitudinal conductivity

σe
L = Cσ1−κ

0

[

e2

h

√

〈V 2〉
~ωc

]κ

∝ B−κ (3.22)

owing to the fact that σ0 is independent of the magnetic field at high field amplitudes.
This formula has been derived from a local conductivity tensor assuming that the
guiding centers drift along equipotential lines and is therefore only valid for high
enough magnetic fields. For low magnetic fields, where the motion of the guiding
centers is rather a random walk, the longitudinal conductivity can be described by
the Drude formula

σDrude
L =

ne2τ/m∗

1 + (ωcτ)2
(3.23)

and we expect to see a crossover between these two regimes in experimental data.
Fogler et al. [64] have estimated the magnetic field Bc where the classical Drude
description breaks down as

Bc =

√
m∗E

ed

(v0
E

) 2
3
, (3.24)

where E is the energy of the electrons which can be estimated as the Fermi energy
and d is the correlation length of the bare potential which is, in difference to a, not
yet corrected with the average over the spread of the wave function. The estimation
of the critical magnetic field Bc is based on a comparison of the cyclotron radius
with the correlations length of the potential and on a comparison of the cyclotron
energy with the drift energy taking into account that the bare potential has to be
averaged over one cyclotron orbit.
Reference [6] contains an experimental high temperature magneto-resistance study.

They find at a temperature of 40K and magnetic fields B > 5T for the longitudinal
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3. Classical Percolating Transport: Theory and Experiment

effective resistivity ρeL ∝ Bα with α = [0.9, 1.1]. For the effective conductivity, this
gives

σe
L =

ρeL
(ρeL)

2 + ρ2H
≈ ρeL
ρ2H
∝ Bα

B2
∝ Bα−2, (3.25)

as ρH ≫ ρeL in the experimental range considered. Thus κ = 2− α = [0.9, 1.1] which
leads to an critical exponent slightly larger than the one predicted in the last chapter.
However, the extraction of the critical exponent from the magnetic field dependence
is difficult, as in practice only a small window of magnetic field strength is usable.
The magnetic field has to be high enough to be in the high field regime, but small
enough that kBT ≫ ~ωc/4 holds.
The authors of [6] compare their result to the theoretical predictions of [65] who study
the interplay of a long-range correlated random potential and short range scattering
on antidots 4. They claim that their results are also applicable to unstructured two
dimensional electron gases. There, the role of the antidots is played by what we
encode in σ0. The authors of [65] find α = 10/13 in the strict limit B →∞. On a
first glance, this seems to be in contradiction with our result κ ≈ 10/13. The relation
κ = 2− α was derived for the experimental accessible region where σH ≪ σL. But
as σe

L ∝ B−κ, σH ∝ B−1 and κ < 1, the longitudinal conductance will overtake the
Hall conductance at high enough magnetic fields leading to σe

L ∝ 1/ρeL and α = κ in
this limit. So the result of [65] is consistent with our result, but cannot be used to
describe experiments at moderate magnetic fields.

3.4. Temperature Dependence of the Peak

Conductivity

Expression (3.21) can also be used to describe the temperature dependence of
the effective longitudinal conductivity at constant magnetic field, but only if the
chemical potential µ is known. We recall from chapter 1.5 that the transition from
one plateau to the next in the Hall conductivity and the peaks in the longitudinal
conductivity occur, when the extended states in the middle of a Landau band are
filled. As the centers of the disorder broadened Landau bands are at the energies of
the Landau levels En = ~ωc(n+1/2), the chemical potential in the plateau transition
regions is given by

µ = ~ωc

(

n+
1

2

)

(3.26)

4. Antidots are small potential hills which can be formed in a two dimensional electron gas by
lithographic etching.
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Figure 3.1: Temperature dependence of
the effective peak longitudinal conductivity
from equation (3.27) in logarithmic scale.
A crossover occurs at kBT

∗ = ~ωc/4 be-
tween a low-T power law [σpeak

L ∝ T 1−2κ]
and a high-T power law [σpeak

L ∝ T 1−κ].

leading to

σpeak
L (T ) = C[σ0(T )]

1−κ

[

e2

h

√

〈V 2〉
~ωc

]κ


1 +
∞∑

l=1

4π2l kBT
~ωc

sinh
(

2π2l kBT
~ωc

)





κ

. (3.27)

In section 3.1, we have seen that the local phonon contribution to the Ohmic con-
ductivity depends linearly on temperature σ0(T ) = AT . Figure 3.1 shows a plot of
the resulting longitudinal conductivity. Inspecting this plot and the last factor in
equation (3.27), we notice two temperature regimes. For kBT > ~ωc/4, the infinite
sum does not contribute, the temperature dependence of the effective longitudinal
conductance is uniquely given by the temperature dependence of σ0 leading to the
high temperature power law σpeak

L ∝ T 1−κ. For kBT < ~ωc/4, the infinite sum is
bigger than one and the effective longitudinal conductance follows the power law
σpeak
L ∝ T 1−2κ, as can be inferred from the alternative equation (3.14).
This low temperature power law valid on the conductivity peaks differs from the
power law σe

L ∝ T−10/13e−∆/T with the cyclotron gap ∆ valid on the plateaus of σH
between two Landau levels found by [66, 67].
The experimental literature measuring conductivity versus temperature mostly con-
centrates on temperatures much smaller than the regime we studied. V. Renard
provided us with the data used to study the magnetic field dependence of the effective
longitudinal resistivity, which allow to extract some data points for the temperature
dependence of the longitudinal effective conductivity at the peak values. I point to
section 3.5.2 for a comparison with this data and with more detailed data of a recent
experiment that was motivated by our present calculation.

3.5. Experimental Data

In this section I will compare the theoretical results to experimental data obtained
by B. Piot et al. [5] at the LNCMI in Grenoble and by V. Renard et al. (partially
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3. Classical Percolating Transport: Theory and Experiment

No. Aspect ratio Density Mobility at1.2K
Lx/Ly [cm−2] [cm2/V s]

Sample 1 NU573 6 4 · 1011 3.3 · 105
Sample 2 NRC1649 3 7 · 1011 8 · 104
Sample 3 Renard218 – 1.9 · 1011 4.3 · 105

Table 3.1.: Characteristics of the samples used for the presented measurements.

published in [6]).
The experiment is a standard, lock-in amplified, four point Hall measurement: The
sample is cooled down to temperatures between 1K and 50K. Coils provide a variable
magnetic field in z-direction. A current of the order of 20nA is injected along the
long side of the Hall bar. To this end, the Hall bar is connected in series with a
resistance of 100MΩ and a low frequency voltage (∼ 10HZ, 2V) is applied. With the
four lateral contacts, the longitudinal and the Hall voltage is measured. The small
voltage signal is amplified with a preamplifier and a look-in amplifier, which is the
reason to apply a modulated current.
The samples are delta-doped GaAs Hall bars with the densities and mobilities given
in table 3.1. The mobilities have been purposely chosen in the hope that they are
high enough that one can assume the potential to be smooth, but low enough that
spin-splitting can be neglected.
From the measured voltages the longitudinal Rxx and transverse Rxy resistances are
calculated and we get the effective conductivity by the following formula:

σxx

[
e2

h

]

=
ρxx

ρ2xx + ρ2xy

h

e2
=

Rxx
Ly

Lx
(

Rxx
Ly

Lx

)2

+ (Rxy)2

h

e2
(3.28)

where Lx and Ly are the dimensions of the two dimensional electron gas which are
of the order of half a millimeter.

3.5.1. Longitudinal Magneto-Conductance

Figure 3.2 shows the longitudinal magneto-conductance of the two samples mea-
sured by B. Piot et al. [5] at 47K and 50K respectively. The crossover between the low
field Drude behavior and the high field regime is clearly visible. To illustrate it further,
the low field part has been fitted with the Drude formula given in equation (3.23) and
presented as blue curves. The end of validity of the Drude formula lies between one
and two Tesla. The estimation of Fogler et al. [64] (equation (3.24)) predicts the break
down already at Bc = 0.5T if we use d = 1 · 10−8m, v0 = kB · 3K and take for E the
chemical potential at the transition between the Hall conductance plateaus eight and
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Figure 3.2.: Effective longitudinal magneto-conductivity for sample 1 and sample
2. Fit with the Drude formula (equation (3.23)), valid at low magnetic fields and
with the formula given in equation (3.22), valid in the regime of the quantum Hall
effect. a) sample 1, T = 47K, τ = 7.43 · 10−12s, κ = 0.62, b) sample 2, T = 50K,
τ = 2.85 · 10−12s, κ = 0.96, (data by B. Piot et al. [5])
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Figure 3.3.: Zoom into the high field part of the effective longitudinal conductivity
plots shown in figure 3.2. Deviations from the σe

L ∝ B−κ law are clearly visible
for magnetic field values higher than 8T, as kBT becomes comparable to ~ωc/4. a)
sample 1, T = 47K, κ = 0.62, b) sample 2, T = 50K, κ = 0.96, (data by B. Piot
et al. [5])
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ten occurring at 1.7T in the first sample, so that E = µ = ~ωc(4 + 1/2) ≈ 2 · 10−21J .
However, equation (3.24) is only an estimation and we do not know precisely what
values for d and v0 should be taken. If we use for example v0 = kB · 10K, the critical
field reaches one Tesla.
The zoom into the high field part presented in figure 3.3 shows that there is a second
crossover. Equation (3.22) predicts a power law behavior of the magneto-conductance
in the high magnetic field high temperature range. But it is only valid if the inequality
~ωc ≪ kBT/4 holds. Otherwise, we have to go back to equation (3.21) and use more
terms in the sum. If we ask e.g. the l = 1 term to be smaller than 0.1 using the
effective mass of electrons in GaAs, we can use equation (3.22) at T = 47K up to
magnetic fields of 8.6T. We try to extract κ from the interval 2.7T < B < 8.7T and
get κ = 0.62± 0.05 for the first sample and κ = 0.96± 0.05 for the second sample.
However, the magnetic field interval is too small for an accurate determination of
the critical exponent κ. The longitudinal conductivity for very high magnetic fields
B > 8.7T eludes a simple analytical treatment. First, for the application of equa-
tion (3.21) the chemical potential µ would have to be determined self consistently.
Second, the spin is clearly split and its role is more complicated than a global factor
two. If one takes the Zeeman effect into account, the reexpression of the sum over
Landau levels with the Poisson sum formula is still possible:

∑

σ=±1

d

dµ

∞∑

m=0

nF (Em − µ+ σEz)

=
−1
~ωc



2 +
∞∑

l=1

(−1)l4 cos
(
2πlµ

~ωc

)

cos

(
2πlEz

~ωc

)
2π2l kBT

~ωc

sinh
(

2π2l kBT
~ωc

)



 . (3.29)

At first glance, only a constant phase cos(2πlEz/(~ωc)) = cos(gm∗/(2m)) has to be
added. But there are exchange interaction effects between the two spin species [20]
which have to be taken into account with an effective g-factor. As the effective geff
factor is expected to vary in the considered magnetic field range from its bulk value
g = 0.43 [19] up to the order of ten [21], the analysis of the data is impossible as
long as no independent information about the field dependence of geff is available.

3.5.2. Temperature Dependence of the Peak Conductivity

As discussed in section 3.4, the longitudinal effective conductivity is most con-
veniently evaluated at the plateau transition values. At low temperatures, the
longitudinal effective conductivity as a function of the magnetic field features clear
maxima and the effective conductivity is taken at the peak positions, varying slightly
the magnetic field. At higher temperature, the maxima are washed out (see figure
3.4a). Therefore, the measurement is then done at constant B-fields. The peaks to
be studied have to be chosen at high enough magnetic fields in order to be in the
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quantum Hall regime, but at the same time at low enough fields that the two spin
species are not yet split. On figure 3.4a, we see that the conductivity peak marked
with a green arrow is already split at T = 1.2K, therefore, we can only use it at
higher temperatures, so that the green points in figure 3.4b start accordingly only at
2.5K. The figures 3.4b-d show double logarithmic plots of the effective longitudinal
peak conductivity for the three samples. The measurements in all three samples
feature two different regimes: a high temperature regime with positive slope and a
low temperature regime with negative slope. To compare the experimental data with
our theoretical predictions and to extract the critical exponents, they are fitted with

σpeak
L (T ) = AT 1−κ

∣
∣
∣
∣
∣
∣

1 +
l=12∑

l=0

4π2l kBT
~ωc

sinh
(

2π2l kBT
~ωc

)

∣
∣
∣
∣
∣
∣

κ

. (3.30)

There are only two fit parameters: κ and A. Their values are given in table 3.2. The
cyclotron frequency ωc is not a fit parameter but is calculated using the literature
value of the effective electron mass in GaAs [19]: m∗ = 0.067me. The value of
the cyclotron frequency ωc determines the position of the minimum of the curve
and it is remarkable that it appears at the right positions for all samples. For the
sample NU573, shown on figure 3.4b, measured points and fit curve are in excellent
agreement. This analysis confirms also that there is a linear temperature dependence
of σ0 on the whole temperature range. For the peak at the 10 → 8 transition
(blue), the values of the critical exponent κ is in good agreement with the theoretical
prediction. The agreement diminishes with increasing magnetic field value of the
peak position. One explanation could be that spin splitting effects, despite the
precautions taken to avoid them, play an increasing role.
In the sample NRC1649 the fitted curves deviate clearly from the measurements

for high temperatures. To rule out the possibility that the poor agreement is a
consequence of (3.30) being only valid in the limit of vanishing σ0, we also tried a fit
with

σxx ≈ (A1 · T )







1 +

A2

κ

{

1 +
∑l=12

l=0

4π2l
kBT

~ωc

sinh
(

2π2l
kBT

~ωc

)

}2

(A0 + A1T )2








κ
2

. (3.31)

This is the equation one obtains from the second order interpolation between the
percolation and the dissipative regime (see equation (2.93)). But the resulting curves
and the fitted values for κ stay the same. Inspection of A1 and A2 show that
A2 ≫ A1 and therefore the summand one in the parentheses in equation (3.31) is
negligible and we recover equation (3.30). A second, perhaps more likely explanation
for the deviations is that the approximation (ωcτph)

2 ≫ 1 used for the derivation
of the linear temperature dependence of σ0 is not valid. We redo the fits with
σ0 ∝ A1 ∗ (T/(1 + A2T

2))1−κ. The resulting plots are shown in figure 3.5 and the
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Sample NU573: Sample NU573:
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Figure 3.4.: a) Longitudinal effective conductivity as a function of the magnetic
field. At low temperature (T = 1.2K), there are clearly distinguishable resistance
peaks. At higher temperature (T = 47K), these peaks are washed out. Therefore, the
measurement is then done at constant B-fields. The arrows indicate the conductivity
peaks studied for the sample NU573 (data by B. Piot et al. [5]).
b) Temperature dependence of the longitudinal effective conductivity at the indicated
magnetic field values corresponding to the integer quantum Hall transitions 10→ 8
(blue), 8 → 6 (red), 6 → 4 (green) for sample NU573 (Data B. Piot et al. [5]).
Triangles design values measured at the conductance peaks, circles values at the
indicated B fields (see text). The lines are the fit curves with equation (3.30) and the
fit parameters given in table 3.2.
c) as b), but for sample NRC1649 (data by B. Piot et al. [5])
d) as b), but for sample Renard218 (data by V. Renard et al., partially published in
[6])
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Sample B[T ] ωc[K] A[ h
e2
Kκ−1] κ

NU573 1.7± 0.1 34± 2 0.16± 0.01 0.76± 0.01
NU573 2.3± 0.1 46± 2 0.115± 0.002 0.729± 0.005
NU573 3.3± 0.1 64± 2 0.071± 0.002 0.697± 0.006

NRC1649 2.2± 0.1 43± 1 0.34± 0.03 0.695± 0.005
NRC1649 2.65± 0.05 53± 1 0.260± 0.004 0.723± 0.004
NRC1649 3.23± 0.05 65± 2 0.198± 0.003 0.709± 0.004
NRC1649 4.2± 0.1 83.2 0.153± 0.005 0.723± 0.006
NRC1649 6.1± 0.3 122± 4 0.101± 0.003 0.698± 0.005
Renard218 0.99 19.9 0.175± 0.004 0.77± 0.01
Renard218 1.13 22.7 0.129± 0.003 0.78± 0.01

Table 3.2.: Values of the fit parameters for the data shown in figure 3.4. The error
bars on the B-field values indicate the scatter of the positions of the conductivity peaks
at low temperature. This leads to a uncertainty in the cyclotron frequency and in the
conductivities at higher temperatures. The error bars on A and κ were determined
by error propagation of these effects. For the sample Renard218 the raw data were
not available and the error bars indicated for A and κ reflect only the incertitude of
the fit.

fit-parameters in table 3.3. The additional fit parameter allows a better adaptation
to the measured points. However, now the fit-curves will decrease for temperatures
higher than ≈ 40K, a trend which is not visible in the measured data points.
All exponents found from the second sample are slightly lower than the theoretically
predicted exponent.
The third measurement by V. Renard et al., whose initial purpose was not to determine
the temperature dependence at the peak values suffers from a lack of data points. The
extracted values of the critical exponent are in good agreement with the theoretical
prediction.
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Figure 3.5: Temperature dependence of
the effective longitudinal conductivity
for sample NRC1649 (data by B. Piot
et al. [5]), fitted supposing for temperature
dependence of the Ohmic longitudinal con-
ductivity to be σ0 ∝ A1∗(T/(1+A2T

2))1−κ.
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Sample B[T ] A1[
h
e2
Kκ−1] A2[10

−4s−2] κ

NRC1649 2.2± 0.1 0.31± 0.01 4± 1 0.68± 0.01
NRC1649 2.65± 0.05 0.26± 0.01 3.2± 0.3 0.701± 0.004
NRC1649 3.23± 0.05 0.20± 0.01 5.2± 0.7 0.686± 0.003
NRC1649 4.2± 0.1 0.15± 0.01 4± 0.1 0.688± 0.001
NRC1649 6.1± 0.3 0.100± 0.005 3± 1 0.698± 0.005

Table 3.3.: Values of the fit parameters for the data of sample NRC1649 shown
in figure 3.5 fitted supposing the temperature dependence of the Ohmic longitudinal
conductivity to be σ0 ∝ A1 ∗ (T/(1 + A2T

2))1−κ.

3.6. Outlook towards Lower Temperatures

In section 3.4, we predicted that the peak longitudinal conductivity scales with
T 1−2κ in the temperature range v0 ≪ kBT ≪ ~ωc/4 which was confirmed by
experimental data. What will happen for even lower temperatures? The approach
to linearize the conductivity fluctuations (see section 2.5) is then no longer justified.
Taking naively the limit of zero temperature in the expression we used so far for the
local Hall conductivity yields

σH =
e2

h

∑

m

nF (Em + V (r)− µ) −−−→
T→0

e2

h
[ν +Θ(−V (r) + µ)]. (3.32)

The conductivity jumps between two discrete values. This is exactly the two phase
model investigated by [43] that I have presented in section 1.11. The two phase model
predicts the height of the conductivity peaks to be in the limit of zero temperature
σpeak
L = e2/(2h) per spin species thus σpeak

L = e2/h for spin unresolved conductance
peaks. This result is exact within the assumptions of the model. However, the
saturation of the conductivity has not been observed experimentally. Instead, for
low enough temperatures, the peak conductivity decreases again. Figure 3.6 shows
an example of such at measurement. Going back to the derivation of the local Hall
conductivity in [9], it turns out that a more accurate expression is

σH(r) =
e2

h

∫

d2R
∑

m

|Ψm,R(r)|2 nF (Em + V (r)− µ) (3.33)

where Ψm,R(r) is a vortex wave function. We will have a closer look on vortex wave
functions in the next chapter. For the moment it is enough to now, that these functions
are localized on the scale of the magnetic length lB. The Fermi function varies on the
length scale akBT/v0 which is for high temperatures much larger than lB. So, the wave
function contribution acts as a delta function, leading to the expression used so far
for the Hall conductivity. With decreasing temperature the Fermi function becomes
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Figure 3.6.: a) Peak longitudinal conductivity at low temperatures [68].
b) Sketch of the relation between disorder fluctuations and local conductivity. In
the high temperature limit, the local Hall conductivity is proportional to the disorder
potential. In the naive zero temperature limit the conductivity jumps between the
values between σH = e2

h
ν and σH = e2

h
(ν + 1). The inclusion of the wave function

contribution leads to smoother transitions between these two values.
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a sharper step function, varying on a length scale shorter than the wave function
contribution |Ψm,R(r)|2 which dominates then the spatial width of the transition. As
the wave function is localized in the transverse direction on the scale of the magnetic
length, the width of the transition between σH = (e2/h)ν and σH = (e2/h)(ν+1) is at
low temperatures given by lB. Consequently the conductivity fluctuations

√

〈δσ2
H(r)〉

are dominated by lB and independent of temperature at low temperatures. So we
expect to find in the temperature interval (lB/a)

2v0 ≪ kBT ≪ (lB/a)v0, as in
the very high temperature regime, an effective longitudinal conductivity which is
dominated by the phonon contribution:

σe
L ∝ σ1−κ

0 . (3.34)

This explains qualitatively the drop of the longitudinal effective conductivity at tem-
peratures lower than 1K which can be seen in figure 3.6. At even lower temperatures,
yet another regime enters. There, the local conductivity approach breaks down, and
quantum corrections have to be taken into account. The saturation predicted in
the two phase model could be observable in very clean samples, where the window
(lB/a)v0 ≪ kBT ≪ v0 is large enough. The schematic in figure 3.7 summarizes again
the different power-laws for the temperature dependence of the effective longitudinal
conductivity: In the fully classical regime, the conductivity scales as T 1−κ. With the
formation of Landau levels, the exponent becomes negative and σe

L scales as T 1−2κ.
In the two fluid regime, the conductivity saturates to the value e2/(2h) per spin
species. Wave function corrections lead in the interval (lB/a)

2v0 ≪ kBT ≪ (lB/a)v0
again to a scaling with T 1−κ before for even lower temperatures the local conductivity
model breaks down. In the next chapter, we will study one ingredient needed in the
quantum regime: tunneling over saddle points.
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3.7. Summary

3.7. Summary

We have derived theoretically the temperature and magnetic field dependencies of
the effective longitudinal conductivity in the classical limit of the quantum Hall regime.
They are in good agreement with experimental data and allow the determination of
the classical percolation critical exponent κ.
Our theory cannot describe the temperature regime where the thermal energy is
comparable to the typical fluctuations of the disorder potential. But we predict that
for even lower temperatures the effective longitudinal conductivity will again follow
a simple scaling law.
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4. Transmission Coefficient through
a Saddle Point Electrostatic
Potential in the Quantum Hall
Regime

After the semi-classical high temperature regime we studied in the last chapters,
let us now turn to a purely quantum mechanical problem, the tunneling through
saddle points. A quadratic saddle point is simple enough to allow an analytical
treatment but on the same time complicated enough to show non-trivial behavior. In
experiments, saddle points play a role on both the macroscopic and the microscopic
length scale. A lot of experiments performed in two dimensional electron gases use
quantum point contacts formed by metallic split gates. For example, in reference [69]
interference experiments with electrons are done and quantum point contacts are
used as beam splitters. On the microscopic level, the saddle points of the disorder
potential form bottle-necks for transport and it is at the saddle points where a
semi-classical description fails first at low temperature. The transmission probability
of saddle points is a key ingredient of percolation network models [14, 37].
The saddle point problem is described by the Hamiltonian

Ĥ = Ĥ0 + V (r) with V (r) = by2 − ax2 + V0 (4.1)

where Ĥ0 is given by equation (1.2), a and b are real positive coefficients and V0 is
the electrostatic potential value at the saddle point. Figure 4.1 shows a sketch of a
saddle point electrostatic potential with some classical trajectories. At high magnetic
fields the classical trajectories follow equipotential lines and a particle with energy
lower than the saddle point entering from the left hand side at the position marked
with “in” will be reflected by the saddle point, i. e. stay at its left hand side and will
leave the picture at the position marked with “refl”. Quantum mechanically, there
is a certain probability that particles will be transmitted through the saddle point
and leave the picture at the position marked with “trans”. It is this transmission
probability that we want to calculate in this chapter.
For ordinary two dimensional electron gases, Fertig and Halperin [7] (see sec-

tion 4.1) have solved the saddle point tunneling problem exactly. They calculate the
transmission probability from the quotient of scattering (i. e. plane wave like) wave
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4. Transmission Coefficient through a Saddle Point

Figure 4.1: Sketch of a saddle point with
some classical trajectories at energies lower
than the saddle point energy following
equipotential lines. If a particle entering
at the position marked with “in” follows its
classical trajectory to leave at the position
marked with “refl“, we speak of reflection.
If it is transmitted through the saddle point
and leaves the picture at the with “trans”
marked position, we speak of transmission.

functions. We develop a different method and extract the transmission probability
from vortex Greens’s functions [8–10], that I will shortly introduce in section 4.2.
Our vortex Green’s function method is a scattering theory with wave packets. The
advantage of the vortex Green’s function formalism is that, at least when neglecting
Landau level mixing, it can also be applied to graphene, where exact analytical
solutions are absent so far. I will present some of the peculiarities of graphene and
describe how the vortex Green’s functions have to be adapted to graphene [70] in
section 4.4 so that we can calculate the transmission probability through a saddle
point for a scalar potential in graphene in section 4.5. The research presented in this
chapter has been published in [71], where the main focus lies on the application to
graphene.

4.1. The Exact Solution to the Saddle Point

Tunneling Problem by Fertig and Halperin [7]

Fertig and Halperin diagonalise the Hamiltonian (4.1) exactly. One part of the
difficulty of the saddle point problem is that it is a two dimensional problem depending
on the two spatial coordinates x and y and their conjugated momenta. After a series
of Bogoliubov transformations, Fertig and Halperin pass from the initial variables x
and y to a new set of variables X and s with conjugated momenta P and p, which
can be separated. The Hamiltonian can be written as a sum

Ĥ = Ĥ1(X̂, P̂ ) + Ĥ2(ŝ, p̂) (4.2)

of two independent and commuting Hamiltonians [Ĥ1, Ĥ2] = 0 depending only on
X, P or s, p respectively. The eigenfunctions Ψ(X, s) can be written as a product
Ψ(X, s) = ψ(s)φ(X) of functions depending on X or s. The Hamiltonian Ĥ2 turns
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out to be a harmonic oscillator with eigenergies En = E2(n+ 1/2) where

E2 = ~ωc

√
√
√
√

√

(bl2B + al2B)
2

~2ω2
c

+
1

4
+
bl2B − al2B

~ωc

+
1

2
+
bl2B − al2B

~ωc

(4.3)

and can be completely eliminated from the problem, leading to a one dimensional
tunneling problem, with exactly known scattering eigenstates with eigenenergies

ǫ =
E −

(
n+ 1

2

)
E2 − V0

E1

(4.4)

with E1 =
~ωc

2

√
√
√
√

√

(bl2B + al2B)
2

~2ω2
c

+
1

4
+
bl2B − al2B

~ωc

− 1

2
− bl2B − al2B

~ωc

. (4.5)

All these steps are exact and work at arbitrary magnetic fields. The price to pay
is that s and X have no general simple physical interpretation. However, in the
limit ωc →∞, the oscillator levels of the Hamiltonian Ĥ2 can be identified with the
Landau levels, s describes the cyclotron motion and X a guiding center coordinate.
At finite magnetic fields, the initial spatial coordinate x is a linear combination of X
and s and the spatial coordinate y is a linear combination of P and p. The eigenstates
of the one dimensional tunneling problem are composed of two terms, one denoted by
ψin, describing a motion towards the saddle point and one denoted by ψout describing
a motion away from the saddle point. As X is proportional to the initial variable x
we can state, that large negative values of X describe a position at the left hand side
of the saddle point and large positive values of X describe a position at the right
hand side of the saddle point. A linear combination of eigenstates is constructed in
a way that the ψin component vanishes for large positive values of X in order to
reproduce the situation sketched in figure 4.1: Particles enter only from the left hand
side, but can leave at the right or the left hand side. The transmission coefficient
may then be written as

T1D = lim
X→∞

|ψout(X)|2

|ψin(−X)|2
. (4.6)

Once the transmission probability for the one dimensional problem is found the
analytical expression for the transmission probability for the whole system is also
known:

TFH =
1

1 + e−πǫ
. (4.7)

This result is exact and valid for arbitrary magnetic fields.
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4. Transmission Coefficient through a Saddle Point

4.2. The Vortex Green’s Function Formalism

This section gives a short introduction to the vortex Green’s function formalism
developed by Florens and Champel in [8–10].
As we have seen in section 1.3, the spectrum of the free Hamiltonian (1.2) describing
a two dimensional electron gas under a strong magnetic field is highly degenerate,
which leads to a wide choice of eigenstate bases. If an additional potential V (r),
which lifts the degeneracy, is added, the choice of a basis reflecting the symmetries
of the potential simplifies calculations. For the case of a general disorder potential,
without global symmetries, the vortex states basis turns out to be convenient. As
we have seen in section 1.4 the classical motion of charged particle in a magnetic
field can be decomposed into a fast cyclotron motion around a guiding center and a
slow drift motion of the guiding center. It is often instructive to separate motions
which occur on different time scales. One well known example for such a separation
is the Born-Oppenheimer approximation in molecular physics. The approximation
consists in writing molecular wave functions as a product of a function describing the
slow motion of the cores and a function describing the electron shell, which evolutes
much faster. Vortex wave functions reflect the classical motion and allow a similar
separation of guiding center and cyclotron motion. In difference to the example from
molecular physics, this is possible without any approximation. The first quantum
number of a vortex wave function is the guiding center coordinate R, reminiscent of
the slow drift motion. Self-interference in closed cyclotron orbits leads to the energy
quantification in Landau levels. The second quantum number, the Landau level
index m, is therefore a consequence of the fast cyclotron motion. The amplitude
of a vortex wave function is centered on a circle around the guiding center. The
lateral spread of the vortex wave function is given by the magnetic length lB. In the
symmetrical gauge, A = (1/2)B × r, where r is an in plane vector (x y) and the
vortex wave functions are given by

Ψm,R(r) = 〈r|m,R〉 =
1

√

2πl2Bm!

(
z − Z√
2lB

)m

e
− |z|2+|Z|2−2Zz∗

4l2
B , (4.8)

with z = x+ iy and Z = X + iY . Figure 4.2 shows some vortex wave functions.
The scalar product of two vortex functions is

〈m1,R1|m2,R2〉 = δm1,m2〈R1|R2〉 = δm1,m2e
− (R1−R2)

2−2iuz ·(R1×R2)

4l2
B (4.9)

with uz an unitary vector pointing in the direction of the magnetic field and 〈R1|R2〉 =
〈mR1|mR2〉. This tells us that vortex states are orthogonal with respect to the
quantum number m, but have coherent state character with respect to the continuous
quantum number R. The wave functions being non-orthogonal makes a perturbation
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Figure 4.2: Squared amplitude of some
vortex wave functions.

theory in wave functions difficult. But they obey the completeness relation

∫
d2R

2πl2B

∞∑

m=0

|m,R〉〈m,R| = 1, (4.10)

which assures that the expansion of an analytical function in vortex states is unique.
So vortex states can be used as basis states in a Green’s function formalism.
The projection of the definition of the retarded Green’s function

(E − Ĥ0 + V̂ + iη)Ĝ = 1̂ (4.11)

with η a small positive quantity into the vortex basis |R,m〉 yields

(~ω − Em1 + iη)Gm1,m2(R1,R2) = δm1,m2〈R1|R2〉

+

∫
d2R3

2πl2B

∞∑

m3=0

Gm1,m3(R1,R3)Vm3,m2(R3,R2) (4.12)

where Gm1,m2(R1,R2) = 〈m1,R1|Ĝ|m2,R2〉, Vm1,m2(R1,R2) = 〈m1,R1|V̂ |m2,R2〉.
Let us introduce new functions by extracting the overlap of two vortices from the
Green’s function and from the potential

Gm1,m2(R1,R2) = 〈R1|R2〉gm1,m2(R1,R2) and (4.13)

Vm1,m2(R1,R2) = 〈R1|R2〉vm1,m2(R1,R2). (4.14)

With them equation (4.12) reads

(~ω − Em1 + iη)gm1,m2(R1,R2) = δm1,m2

+

∫
d2R3

2πl2B

∞∑

m3=0

gm1,m3(R1,R3)vm3,m2(R3,R2)
〈R1|R3〉〈R3|R2〉
〈R1|R2〉

, (4.15)
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4. Transmission Coefficient through a Saddle Point

where after introducing the center-of-mass coordinate c12 = (R1 +R2)/2 and the
relative coordinate d12 = (R2 −R1)/2

〈R1|R3〉〈R3|R2〉
〈R1|R2〉

= e
− [R3−(c12+id12×uz)]

2

2l2
B . (4.16)

Supposing the potential V (x, y) to be an analytic function, the matrix element
vm1,m2(R1,R2) can be expanded in a series in powers of the magnetic length lB about
the point R12 = c12 + id12 × uz

vm1;m2(R1,R2) =
+∞∑

j=0

(
lB√
2

)j

v(j)m1,m2
(R1,R2) (4.17)

with v(j)m1,m2
(R1,R2) =

j
∑

k=0

(m1 + k)!√
m1!m2!

δm1+k,m2+j−k

k!(j − k)! (∂X + i∂Y )
k

× (∂X − i∂Y )(j−k)V (R)|R=R12
. (4.18)

Instead of projecting equation (4.11) directly into the vortex basis, we could have
multiplied it with Ĝ from the left hand and with Ĝ−1 from the right hand side to
obtain Ĝ(E − Ĥ0 + V̂ + iη) = 1̂. Applying the differential operator (∂X1 − i∂Y2) to
equation (4.15) and the differential operator (∂X2 + i∂Y2) on the equation analogous
to equation (4.15) when Ĝ(E − Ĥ0 + V̂ + iη) = 1̂ is the starting point, one gets the
set of differential equations

∂X1gm1,m2(R1,R2) = i∂Y1gm1,m2(R1,R2) (4.19)

∂X2gm1,m2(R1,R2) = −i∂Y2gm1,m2(R1,R2). (4.20)

This system of differential equations tells us the dependence of the Green’s function
g on its two spatial variables:

gm1,m2(R1,R2) = gm1,m2 (c12 + id12 × uz) . (4.21)

Knowing the general dependence of the Green’s functions on their two spatial coordi-
nates, it is enough to study them at coinciding points R1 = R2 = R. Introducing this
simplification into equation (4.15), the integral over R3 can be performed analytically,
after expanding the matrix elements of vm1,m3(R,R3) and gm3,m1(R3,R) about the
point R, yielding

(~ωc − Em1 + iη)gm1,m2(R) = δm1,m2 +
+∞∑

m3=0

+∞∑

k=0

(
lB√
2

)2κ

× 1

k!
(∂X − i∂Y )kvm1,m3(R)(∂X + i∂Y )

kgm3,m2(R). (4.22)

96



4.2. The Vortex Green’s Function Formalism

With the convention that ∂g acts only on the Green’s function and ∂v acts only on
the matrix element of the potential, we can write equation (4.22) in compacter form

(~ωc − Em + iη)gm1;m2(R) = δm1,m2 +
+∞∑

m3=0

e
l2B
2
(∂v

X−i∂v
Y )(∂g

X+i∂g
Y )vm1,m3(R)gm3,m2(R)

(4.23)

In the limit of vanishing Landau level mixing, i. e. ωc → ∞ with lB finite, the
vortex Green’s function becomes purely diagonal with gm1;m2(R) = δm1,m2gm1(R)
and equation (4.23) becomes

(~ω − Em + iη)gm(R) = 1 + e
l2B
2
(∂v

X−i∂v
Y )(∂g

X+i∂g
Y )vm(R)gm(R). (4.24)

Equation (4.24) has the disadvantage of coupling the X and the Y component of
Green’s function and potential matrix element in a non-trivial way. Even for a one
dimensional potential V = V (X) this equation would stay a differential equation of
infinite order. The two spatial variables X and Y can be decoupled by introducing
the new functions g̃m and ṽm by applying the convolution operator

Â[f(R)] = e−
l2B
4
∆R = −

∫
du

πl2B
f(u)e

(R−u)2

l2
B (4.25)

to the function g̃ and ṽ. After this change of functions, equation (4.24) takes the
form

(~ω − Em + iη)g̃m(R) = 1 + ei
l2B
2
(∂ṽ

X∂g̃
Y −∂ṽ

Y ∂g̃
X)ṽm(R)g̃m(R) (4.26)

which becomes trivial for one dimensional potentials.
The form of the equations (4.24) and (4.26) and the transformation between them

are deeply related to the theory of phase space quantization. Besides the use of
operators in Hilbert space and the path integral formalism, phase space quantization
provides a third approach to quantum mechanics, which is especially well suited to
describe the semi-classical limit. In the phase space quantization theory, two concepts
play an important role: phase space distribution functions, such as the Wigner- or the
Husimi-distribution and for each of these distribution functions a noncommutative
operator called star product. A star product is composed of a power series of
differential operators acting on the phase space variables which are usually position
x and momentum p. The star product connected to the Wigner-function is called the

Moyal star product [72] and can be represented as ⋆M = exp[(i~/2)(
←−
∂ x

−→
∂ p−

←−
∂ p

−→
∂ x)],

where the arrows indicate if the differential operators act to the right hand or to the
left hand side. The star product connected to the Husimi-function is called the Voros

star product [73] and reads ⋆V = exp[(~/2)(
←−
∂ x − i

−→
∂ p)(
−→
∂ x + i

−→
∂ p)]. The dynamics
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4. Transmission Coefficient through a Saddle Point

of static phase space functions is described by H ⋆y = Ey [72], the time independent
version of the Moyal-equation, where y is a phase space distribution function, H the
Hamilton function and ⋆ the star product corresponding to the distribution function.
The operators from Hilbert space quantum mechanics corresponding to the phase
space variables position and momentum have the commutator relation [x̂, p̂] = i~. The
X and the Y coordinate of the guiding centers have a similar relationship [X̂, Ŷ ] =
il2B [17]. Therefore, in a two dimensional electron gas under a strong magnetic field,
the phase space is the real space. Replacing position and momentum by the guiding
center coordinates and the reduced Planck constant by the square of the magnetic
length, we can identify the differential operator exp [(l2B/2)(∂

v
X − i∂vY )(∂gX + i∂gY )]

from equation (4.24) with the Voros star product and the differential operator
exp[i(l2B/2)(∂

ṽ
X∂

g̃
Y − ∂ ṽY ∂ g̃X)] of equation (4.26) with the Moyal star product. The

equations (4.23) and (4.26) are nothing but the defining equations of the Green’s
functions to the operator (H0 ⋆+V ⋆−E). The operator Â in equation (4.25) has also
an analog in phase space quantization theory. It is the operator which transforms
Husimi distributions into Wigner distributions.
An analogous calculation with Ĝ(E − Ĥ0 + V̂ + iη) = 1̂ as starting point yields

(~ω − Em + iη)g̃m(R) = 1 + e−i
l2B
2
(∂ṽ

X∂g̃
Y −∂ṽ

Y ∂g̃
X)ṽm(R)g̃m(R). (4.27)

If one limits oneself to quadratic order in the potential, the Green’s function g̃m can
be calculated analytically. The potential matrix element for a potential expanded up
to quadratic order about the point R0 reads

ṽm(R) = V (R0) +
l2B
2

(

m+
1

2

)

∆RV |R=R0 . (4.28)

If we insert this expansion into the equations (4.26) and (4.27), the sum of those two
equations yields the partial differential equation

l4B
8

[
(∂2Y V )∂2X + (∂2XV )∂2Y − 2(∂X∂Y V )∂X∂Y

]
g̃m(R)

+ [~ω − Em − ṽm(R) + iη] g̃m(R) = 1 (4.29)

and the difference the constraint

(∂XV )∂Y g̃m(R)− (∂Y V )∂X g̃m(R) = 0, (4.30)

which tells us that g̃m(R) has the same equipotential lines as V (R). Thus we use
E(R) = V (R) − V (R0) to write the Green’s function as a functional g̃m(R) =
fm[E(R)] and substitute it into equation (4.29) which then becomes an ordinary
differential equation

[

(γE + η)
d2

dE2
+ γ

d

dE

]

fm(E) + [Ẽm − E + iη]fm(E) = 1 (4.31)
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with

Ẽm = ~ω − Em − ṽm(0), (4.32)

γ =
l4B
4

[
∂2XV ∂

2
Y V − (∂X∂Y V )2

]

R=R0
, (4.33)

η =
l4B
8

[
∂2XV (∂Y V )2 + ∂2Y (∂XV )2 − 2∂XV ∂Y V ∂X∂Y V

]

R=R0
. (4.34)

The solution to this differential equation is

g̃m(R) =

∫ ∞

∞
dthR,A

m (R0, t)e
−i[V (R)−V (R0)]τ(t), (4.35)

with

hm(R0, t) =
−iθ(t)
cos(
√
γt)

e−i(η/γ)τ(t)+i(Ẽm+η/γ+iδ)t, τ(t) =
1√
γ
tan (
√
γt) . (4.36)

In the next section we will use this solution to treat the saddle point potential, which
is purely quadratic. But this formula is also useful for more complex potentials. If
one is interested in local quantities and can choose appropriate expansion points R0,
a quadratic approximation will often be sufficient, especially as it is unlikely that the
gradient and all three second order derivatives of the potential vanish simultaneously.

4.3. Tunneling over Saddle Points in an Ordinary

Two Dimensional Electron Gas

In this section, we calculate the transmission coefficient over a saddle point in the
absence of Landau level mixing using asymptotic forms of retarded vortex Greens
functions. For this, we have to remember the significance of vortex Green’s functions:
The Green’s function Gm(R1,R2, ω) tells us the probability amplitude that a vortex
with energy ~ω propagates from the position R1 to the position R2. We will do a
scattering theory with vortices instead of ordinary wave packets. Let us have a look
at figure 4.3, to clarify the notion of reflection and transmission and how they are
represented in terms of Green’s functions. We choose the saddle point position as
the origin of our coordinate system. The classical trajectory for a vortex with energy
lower than the saddle point arriving from the left hand side of the saddle point will
lead it back to the left hand side. If a vortex with energy lower than the saddle
point follows its classical path, we call it reflected, if it arrives at the opposite side
of the saddle point, transmitted. The classical trajectory for a vortex with energy
higher than the saddle point leads to the right hand side. But we use the convention
to call all vortices arriving from the left hand side and staying on the left hand
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Figure 4.3: Schematic to identify the
Green’s functions for reflection and trans-
mission. Solid (dashed) lines correspond
to an equipotential line V > 0 (V < 0).
Dotted lines denote the asymptotes of the
potential in equation (4.1).

side “reflected“ and all vortices incoming from the left hand side and outgoing at
the right hand side “transmitted“, regardless of their energy. Expressed with the
vortex coordinates R1 and R2 this means that the sign function of the product of
X-coordinates sgn(X1X2) is positive for vortex Green’s function describing reflection
and negative for vortex Green’s functions describing transmission. Far away from
the saddle point the Green’s functions can be written as products of asymptotic
wave functions Ψin, Ψtrans and Ψrefl . If we denote the transmission amplitude by t,
the reflection amplitude by r and the corresponding probabilities by capital letters
T and R, we have for the Green’s function describing transmission

Gtrans ∝ ΨinΨtrans∗ = |Ψin|2t. (4.37)

As the scattering state |Ψin|2 is not normalizable, we cannot directly extract the
Transmission coefficient from Gtrans. But as we also know the Green’s function
describing reflection

Grefl ∝ ΨinΨrefl∗ = |Ψin|2r, (4.38)

we can form the quotient of these two expressions

T

R
=

∣
∣
∣
∣

t

r

∣
∣
∣
∣

2

=

∣
∣
∣
∣

Gtrans

Grefl

∣
∣
∣
∣

2

(4.39)

and with the general relationship T +R = 1, we find

T =
1

1 +
∣
∣
∣

Grefl

Gtrans

∣
∣
∣

2 . (4.40)

So, in order to obtain the transmission coefficient, we have to calculate the asymptotic
form of the high magnetic field vortex Green’s functions Gm(R1,R2) for the saddle
point potential given in equation (4.1), starting from the general solution for the
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4.3. Tunneling over Saddle Points in an Ordinary Two Dimensional Electron Gas

tilde vortex Green’s functions g̃m we derived in the last section. The different Green’s
functions are connected by

Gm(R1,R2, ω) =〈R1|R2〉gm(R12) = 〈R1|R2〉e
l2B
4
∆R12 g̃m(R12) (4.41)

with R12 =
1

2
[R1 +R2 + i(R2 −R1)× uz] . (4.42)

We choose the saddle point for both, the coordinate origin and the reference point
for the expansion of the potential, so that R0 = 0 and V (R0) = 0. The curvature

γ =
l4B
4

[
∂2XV ∂

2
Y V − (∂X∂Y V )2

]

R=0
= −l4Bab (4.43)

is negative, its roots are complex so that the trigonometric functions in the expres-
sion (4.35) of the Green’s function g̃R,A

m have to be replaced by their hyperbolic
counterparts cos(i

√

|γ|t) = cosh(
√

|γ|t) and tan(i
√

|γ|t) = i tanh(
√

|γ|t). The
parameter η can be reexpressed by the product of the curvature and the potential

η(R12) = −l4Bab
[
bY 2

12 − aX2
12

]
= γV (R12), (4.44)

and the tilde Green’s function g̃m reads for the saddle point

g̃m(R12) =

∫ ∞

0

dt hm(0, t)e
−iV (R12)τ(t), (4.45)

hm(0, t) =
−iei(Ẽm+iη)t

cosh(
√

|γ|t)
. (4.46)

To transform the tilde Green’s function back, we have to apply to it the differential
operator Â defined in equation (4.25) and get

gm(R12) =Â[g̃m(R12)] =

∫ ∞

0

dt hm(0, t)

∫
du2

πl2B
e−i(bu2

y−au2
x)τ(t)e

− (R12−u)2

l2
B

=

∫ ∞

0

dt hm(0, t)
e
− τ(t)(iV (R12)−γ(R2

12/l
2
B)τ(t))

(1+iζ+|γ|τ2)
√

1 + iζ + |γ|τ 2
(4.47)

with

ζ =
l2B
2
∆rV (r) = l2B(b− a). (4.48)

In order to solve the integral over t, we first make the change of variable

s =d
1− |γ|τ 2(t)
1 + |γ|τ 2(t) with d =

|X1Y2 −X2Y 1|
l2B

(4.49)
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which leads to

gm(R12) =

∫ 0

d

ds
ide

−
√

(d−s)(d+s)V (R12)+i(d−s)R2
12/l

2
B

√
|γ|√

(d−s)(d+s)ζ−2id
√

|γ|
+

i(Ẽm+iη)arctanh

(√
d−s
d+s

)

√
|γ|

√

2(d− s)s(d+ s)(i
√
d2 − s2

√

|γ|ζ + 2d|γ|)
. (4.50)

To calculate the transmission coefficient, it is sufficient to know the asymptotic
form of the Green’s function Gm(R1,R2), where the vortex positions R1 and R2 are
asymptotically far away from the saddle point located at the origin. So we will later
take the limits |X1| → ∞ and |X2| → ∞, while V (X1, X2) = V (X2, Y2) = const.
and we can already simplify the local Green’s function gm(R12), by expanding it
about the limit d→∞. In the pre-factor it is enough to keep the term proportional
to 1/

√
d. In the exponent, which contains terms proportional to X1X2, we have to

keep terms up to linear order. The part of the exponential function containing the
hyperbolic area tangent function can be simplified with arctanh(

√

(d− s)/(d+ s)) =

1/2 ln(2d/s) +O(1/d)2 to (2d/s)i(Ẽm+iη)/(2
√

|γ|), so that we get

lim
d→∞

gm(R12) =g
∞
m (R12) =

−i(2d)−
1
2
+

i(Ẽm+iη)

2
√

|γ|
√

iζ
√

|γ|+ 2|γ|
e
−V (R12)+i

√
|γ|R2

12/l
2
B

ζ−2i
√

|γ|

∫ ∞

0

ds s
− 1

2
− i(Ẽm+iη)

2
√

|γ| e
−s

iR2
12

√
|γ|

dl2
B

(ζ−2i
√

|γ|) . (4.51)

The integral over s can be expressed in terms of the gamma function, defined as

Γ(z) = xz
∫ ∞

0

e−xttz−1dt, (4.52)

if we set t = s, x = iR2
12

√

|γ|/[dl2B(ζ − 2i
√

|γ|)] and z = 1/2− i(Ẽm + iδ)/(2
√

|γ|).
We are looking for asymptotic Green’s functions, where the vortices are close to the
asymptotes of the saddle point potential V (R). The asymptotes are given by the
equations Y1 =

√

a/bX1 and X2 = −
√

b/aY2. If we use these relationships in the
term replacing x, it simplifies to

x =
iR2

12

√

|γ|
dl2B(ζ − 2i

√

|γ|)
=
isgn(X1X2)

2
(4.53)

and with ln[i] = iπ/2

x−z = e−z ln[x] = 2
1
2
−i

(Ẽm+iδ)

2
√

|γ| e
−πsgn(X1X2)

4

(

i+ Ẽm+iδ√
|γ|

)

, (4.54)
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so that

g∞m (R12) =
−id−

1
2
+

i(Ẽm+iη)

2
√

|γ|
√

iζ
√

|γ|+ 2|γ|
e
−V (R12)+i

√
|γ|R2

12/l
2
B

ζ−2i
√

|γ|

× Γ

(

1

2
− i(Ẽm + iδ)

2
√

|γ|

)

e
−πsgn(X1X2)

4

(

i+ Ẽm+iδ√
|γ|

)

. (4.55)

To get the asymptotic two point Green’s function G∞
m (R1,R2), we only have to

multiply the asymptotic local Green’s function with the overlap 〈R1|R2〉 and get
after replacing R12 by its definition (4.42):

G∞
m (R1,R2) =

−id−
1
2
+

i(Ẽm+iη)

2
√

|γ|
√

iζ
√

|γ|+ 2|γ|
e
i
(
√

aX1−
√
bY 1)(

√
bX1+

√
aY1)+(

√
aX2+

√
bY 2)(

√
bX2−

√
aY2)

2(a+b)l2
B

× Γ

(

1

2
− i(Ẽm + iδ)

2
√

|γ|

)

e
−sgn(X1X2)

(

i
4
+ Ẽm+iδ

4
√

|γ|

)

e
− (

√
aX1+

√
bY1)

2+(
√

aX2−
√

bY2)
2

2(a+b)l2
B . (4.56)

For the case of a transmitted vortex sgn(X1X2) = −1, for the case of a reflected
vortex sgn(X1X2) = +1, so that

T

R
=

∣
∣
∣
∣

G∞
m (R1,R2)|sgn(X1X2)=−1

G∞
m (R1,R2)|sgn(X1X2)=+1

∣
∣
∣
∣

2

=

∣
∣
∣
∣
e
+iπ

2
+π

2
Ẽm√
|γ|

∣
∣
∣
∣

2

= e
π Ẽm√

|γ| (4.57)

and finally the transmission probability reads

T vortex
m =

1

1 + e
−π Ẽm√

|γ|

=
1

1 + e
−π

~ω−(~ωc+ζ)(m+1
2 )√

|γ|

=
1

1 + e
−π

~ω−(~ωc+l2
B

(a−b))(m+1
2 )

l2
B

√
ab

.

(4.58)

For symmetric saddle points where a = b, the standard Landau level energy
En = ~ωc(n+ 1/2) is compared to the energy scale l2B

√
ab of the saddle point in the

exponential part of the expression of the transmission probability. For asymmetric
saddle points, the cyclotron pulsation is modified by the term l2B(a − b). In refer-
ence [74] the transmission probability has been connected via the Landauer-Büttiker
formula to the conductance, which reads at zero temperature

G(µ) = 2e2

h

+∞∑

m=0

Tm(µ), (4.59)

where the global factor two accounts for the spin degeneracy. The conductance is
thus a step function. The difference between a symmetric and an asymmetric saddle
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4. Transmission Coefficient through a Saddle Point

point will only lie in the length of the steps and will, as the modification is small, be
difficult to perceive experimentally.
Let us compare our result obtained with vortex Green’s function to the exact result

of Fertig and Halperin. Our result was obtained in the limit of ωc →∞, so we have
to take the limit ωc →∞ in expression (4.4) and get for the transmission coefficient

lim
ωc→∞

T FH =
1

1 + e
−π

~ω−(~ωc+2l2
B

(a−b))(m+1
2 )

l2
B

√
ab

. (4.60)

For symmetrical saddle points, our result coincides with the exact result. The exact
result, too, predicts a modification of the cyclotron frequency in the case of an
asymmetric saddle point. However, this correction is by a factor 2 larger than the
one obtained with vortex Green’s functions. This deviation is a consequence of the
fact that Landau level mixing has been completely neglected. It could be avoided by
including the first order corrections for Landau Level mixing.

4.4. Vortex Green’s Functions for Graphene

Graphene is an allotrope of carbon where the carbon atoms are arranged in a
planar honeycomb lattice. This material, only discovered in 2004, has excited a
lot of interested in the last years as it has some unusual properties. First, there is
the electron spectrum to mention. In a large number of materials, the low energy
electron spectrum is well approximated by the quadratic spectrum of free electrons
E(k) = ~

2k2/(2m), if the electron mass m is replaced by the effective mass m∗. This
is not the case for graphene [75], where the electron spectrum in the low energy
limit is given by E+ = ~vF |k| with vF the Fermi velocity. Second, in graphene, the
Fermi-velocity is independent of the electron mass, while in the usual case vF = kF/m.
Third, the hole spectrum is given by E− = −~vF |k| and there is no band gap between
the electron and the hole spectrum. From these three properties it follows, that one
should not use scalar wave functions to describe graphene, but spinors, vectors with
electron- and hole-like elements. The evolution of the spinors is not given by the
Schrödinger equation, but by the Dirac equation for massless particles. Graphene is
composed of two sub-lattices leading to two valleys in the quasi-particle spectrum.
We assume that the two valleys of graphene do not interact and it is enough to take
the degeneracy of the two valleys with a factor two into account. Spin degeneracy
leads to an additional factor two.
The free Dirac Hamiltonian for a two dimensional graphene sheet in the (x, y)-plane
under a strong magnetic field in z-direction is given by

Ĥ0 = vF

(
0 Πx − Πy

Πx +Πy 0

)

(4.61)
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Figure 4.4: Longitudinal and Hall con-
ductivity in graphene as a function of the
charge-carrier density at T = 4K and
B = 14T, showing the anomalous quantum
Hall effect in graphene: The plateaus in the
Hall conductivity occur at half-integer mul-
tiples of the conductance quantum 4e2/h.
Adapted from [76].

where the canonical momentum Π = −i~∇r − eA(r)/c is defined as in the ordinary
case. The corresponding eigenergies are

Em,λ = λ
√
m~Ωc, (4.62)

where the Landau level index m is a non-negative integer, λ is a band index, which
is equal to ±1 if m ≥ 1 and 0 if m = 0 and the equivalent of the cyclotron frequency
in graphene is a function of the Fermi-velocity and the magnetic length

Ωc =
√
2
vF
lB
. (4.63)

In difference to ordinary two dimensional electron gases, there is no zero point energy
(E0,0 = 0) and the Landau level energy increases only as the square root of, not
linearly in, the Landau level index. This leads to the anomalous quantum Hall effect:
The conductance is quantized in half integer multiples of the conductance quantum
(4e2/h if spin and valley are degenerated) instead of the quantization in integer
multiples which is observed for ordinary two dimensional electron gases. Figure 4.4
shows an experimental curve of the conductance. Remarkable is the Landau level
which occurs at zero energy.

One possible set of eigenstates for the graphene Dirac Hamiltonian are the graphene
vortex states

Ψ̃m,R,λ(r) =
1

√

1 + |λ|

(
λΨm−1,R(r)
iΨm,R(r)

)

, (4.64)

or in Dirac notation

|m,R, λ〉 = 1
√

1 + |λ|

(
λ|m− 1,R〉
i|m,R〉

)

, (4.65)
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composed of the vortex states for ordinary two dimensional electron gases defined in
equation (4.8). As the initial vortex states, these vortex states are non-orthogonal
with respect to the continuous quantum number R, but orthogonal with respect to
the discrete quantum numbers

〈n1,R1, λ1|n2,R2, λ2〉 = δn1,n2〈R1|R2〉δλ1,λ2 , (4.66)

where the overlap 〈R1|R2〉 remains as given in equation (4.9). The graphene vortex
states obey the completeness relation

∫
d2R

2πl2B

+∞∑

m=0

∑

λ

|m,R, λ〉〈m,R, λ| = 1. (4.67)

The disorder potential is, like the Hamiltonian, a two by two matrix. Using the Pauli
matrices σp, p ∈ {x, y, z}, and σs = 1 as a basis for the space of quadratic matrices,
it can be represented as

V (r) =
∑

p=s,x,y,z

σpVp(r). (4.68)

The different parts of the potential have different physical origins [70]. The diagonal
Vs term is called the scalar potential and describes the electrostatic potential and
the random disorder potential created by charged impurities. The diagonal but
antisymmetric Vz term is called the random mass potential and is usually due to
the underlying substrate in single-layer graphene or to the second layer in bilayer
graphene. It is energetically favorable for graphene to be not entirely flat, but to
form ripples. These spatial distortions of the graphene sheet are described by the
off-diagonal contributions Vx and Vy.
The vortex Green’s function formalism allows to treat all three types of potentials.
But in the following, we will assume the scalar potential to be at most quadratic
and the other potentials to be flat, i. e. at most linear, in order to simulate quantum
point contact experiments.
The graphene vortex Green’s function formalism works exactly analogously to the

case of an ordinary two dimensional electron gas: The two point graphene vortex
Green’s functions Gm1,m2,λ1,λ2(R1,R2) and the potential matrix elements are defined

by projection of the definition of the retarded Green’s function (E−Ĥ0+V̂ +iη)Ĝ = 1̂

with Ĥ0 the Dirac Hamiltonian (4.61) on the vortex states. After extraction of the
overlap term a local graphene vortex Green’s function gm1,m2,λ1,λ2(R) that is entirely
defined by its behavior at coinciding points can be found. In the limit of ωc →∞,
the Green’s function becomes diagonal in the m-space. The transformation with
the exponential differential operator Â (defined in equation (4.25)) leads again to a
modified Green’s function g̃m,λ1,λ2 which can be exactly calculated, if the disorder
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potential is at most quadratic. The general solution for a flat mass potential and a
quadratic scalar potential reads

g̃m;λ1;λ2(R) =

∫ ∞

0

dt
−iei(η+m(R)/γ+

m(R))[t−τ+m(t)]+it(~ω+iη)

cos(
√

γ+m(Rt)
hm,λ1,λ2(t) (4.69)

with hm,λ1,λ2(t) =
∑

ǫ=±

e−itξm,ǫ(R)

2
[(1 + ǫλ1αm(R))δλ1,λ2 + ǫβm(R)δ−λ1,λ2 ] , (4.70)

where the effective energy is given by

ξm;±(R) = ṽ+m(R)±
√

E2
m + [ṽ−m(R)]2, (4.71)

the effective potentials ṽ+m and ṽ−m are given by

ṽ+m(R) = Vs(R) +m
l2B
2
∆RVs(R) (4.72)

ṽ−m(R) = −Vz +
l2B
4
∆RVs(R) (4.73)

the geometric parameters γ+m and η+m by

γ+m(R) =
l4B
4

[
(∂2X ṽ

+
m)(∂

2
Y ṽm)− (∂X∂Y ṽm)

2
]

R
, (4.74)

η+m(R) =
l4B
8

[
(∂2X ṽ

+
m)(∂Y ṽ

+
m)

2 + (∂2Y ṽ
+
m)(∂X ṽ

+
m)

2

−2(∂X∂Y ṽ+m)(∂X ṽ+m)(∂Y ṽ+m)
]

(4.75)

and αm(R) =
Em

√

E2
m + [ṽ−m(R)]2

, βm(R) =
ṽ−m(R)

E2
m + [ṽ−m(R)]2

. (4.76)

4.5. Transmission Coefficients through a Saddle

Point Electrostatic Potential for Graphene

Knowing the vortex Green’s function for a quadratic scalar potential, we can
calculate the transmission coefficient through a saddle point in the scalar potential
in absence of a mass potential for graphene in the same way as we calculated the
transmission coefficient in an ordinary two dimensional electron gas. Again, we
have to calculate the two point Green’s function Gm,λ1,λ2(R1,R2) from the Green’s
function g̃m,λ1,λ2(R) with which it is connected by

Gm,λ1,λ2(R1,R2, ω) =〈R1|R2〉gm,λ1,λ2(R) = 〈R1|R2〉e
l2B
4
∆R g̃m,λ1,λ2(R). (4.77)
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For the purely quadratic saddle point, the geometric parameters γ+m and η+m simplify
to γ+m = γ = −l4Bab, η+m = η(R) = γV (R) as in the ordinary electron gas and with
ζ = l2B(b− a), this leads to the Green’s function

g̃m;λ1;λ2(R) =

∫ ∞

0

dt
−ieit(~ω+iη)−iτ(t)V (R)

cosh(
√

|γ|t)
hm,λ1,λ2(t) (4.78)

with hm,λ1,λ2(t) =
∑

ǫ=±

e−itξm,ǫ(R)

2
[(1 + ǫλ1αm)δλ1,λ2 + ǫβmδ−λ1,λ2 ] , (4.79)

αm =

√
m~Ωc

√

m(~Ωc)2 + ζ2/4
, βm =

ζ/2
√

n(~ωc)2 + ζ2/4
. (4.80)

The position dependent part has the same form as before, and the convolution with
the operator Â leads to

gm,λ1,λ2 =

∫
du2

πl2B
g̃m,λ1,λ2(u)e

−u−R

l2
B

=

∫ ∞

0

dt
−ieit~ω+iη

cosh
(√

|γ|t
)hm,λ1,λ2(t)

e
−iτ(t)V (R)+γτ2(t)((R2/l2B))

1+iζτ(t)−γτ2(t)

√

1 + iζτ(t)− γτ 2(t)
. (4.81)

Let us now have a closer look at the function

hm,λ1,λ2 =

(
1 + αm βm
βm 1− αm

)
e−itEm,+

2
+

(
1− αm βm
βm 1 + αm

)
e−itEm,−

2
. (4.82)

For m ≥ 1 and ζ 6= 0 it is not diagonal in the λ space. It is more convenient to use
quantum numbers that are not mixed by the saddle point. The matrix

T =

(αm+1
βm

1
αm−1
βm

1

)

(4.83)

diagonalizes hm,λ1,λ2 and lets us pass from λ to ǫ space

Thm,λ1,λ2T
−1 =

(
e−itEm,+ 0

0 e−itEm,−

)

= e−itEm,ǫ = hm,ǫ (4.84)

where the function h and with it the entire Green’s function is diagonal. From now
on we use the quantum number ǫ, which labels the electron-like and the hole-like
energy band. We use the same substitution

s =
d(1− |γ|τ 2(t))
1 + |γ|τ 2(t) with d =

|X1Y2 −X2Y1|
l2B

(4.85)
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as in the case of an ordinary two dimensional electron gas and arrive with analogous
steps at the asymptotic form of the two point Green’s function

G∞
m;ǫ(R1,R2) =e

− (
√
aX1−

√
bY1)

2
+(

√
aX2+

√
bY2)

2

2l2
B

(a+b) e
i
(
√
aX1−

√
bY1)(

√
bX1+

√
aY1)+(

√
aX2+

√
bY2)(

√
bX2−

√
aY2)

2l2
B

(a+b)

−id−1/2+i(E−En,ǫ)/(2
√

|γ|)
√

2|γ|+ iζ
√

|γ|
e
−σ π

4

(

E−En,ǫ√
|γ|

+i

)

Γ

(

1

2
− iE − En,ǫ

2
√

|γ|

)

.

(4.86)

For the electron-like energy band with band index ǫ = 1, the extraction of the
transmission coefficient works exactly as in the case of the ordinary two dimensional
electron gas and

Tm,+

Rm,+

=

∣
∣
∣
∣

G∞
m,+(R1,R2)sgn(X1X2)=−1

G∞
m,+(R1,R2)sgn(X1X2)=1

∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
e

π
2

(

i+
~ωEm,+√

|γ|

)
∣
∣
∣
∣
∣

2

= e
π

~ω−Em,+√
|γ| . (4.87)

In the valence band, the vortices carry a positive charge. To make later calculations
of conductance easier, we want to study the transmission of negative charges and
therefore we have to interchange the Green’s function for reflection and transmission.

Tm,−
Rm,−

=

∣
∣
∣
∣

G∞
m,+(R1,R2)sgn(X1X2)=1

G∞
m,+(R1,R2)sgn(X1X2)=−1

∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
e
−π

2

(

i+
~ωEm,−√

|γ|

)
∣
∣
∣
∣
∣

2

= e
−π

~ω−Em,−√
|γ| . (4.88)

The transmission coefficient is thus

Tn,ǫ(E) =

[

1 + exp

(

−ǫπE − En,ǫ

l2B
√
ab

)]−1

. (4.89)

The transmission coefficient of the lowest Landau level is special, as it is composed
to equal parts from the electron and the hole-like contribution, leading to

T0(E) =
1

2
[T+

0 (E) + T−
0 (E)] =

1

2
. (4.90)

From the transmission coefficients, we can calculate the zero temperature conduc-
tance at the chemical potential µ with the Landauer-Büttiker formula [74]

G(µ) = 4e2

h

[

T0(µ) +
+∞∑

n=1

∑

ǫ=±
Tn,ǫ(µ)

]

, (4.91)

where we have accounted for the spin and valley degeneracies in graphene with the
overall prefactor 4. The function is shown in figure 4.5. The first observation is the
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4. Transmission Coefficient through a Saddle Point
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Figure 4.5: Zero-temperature conduc-
tance for a saddle point electrostatic poten-
tial with l2Ba = l2Bb = 0.05Ωc (symmetric
case) and l2Ba = 4l2Bb = 0.1Ωc (asymmet-
ric case). Asymmetries of the electrostatic
saddle point potential reflect in asymme-
tries between the electron and hole sectors
for the conductance.

half-integer quantization in terms of the conductance quantum (here 4e2/h) with
plateau values (n+1/2)4e2/h, reminiscent of the half-integer quantization of the Hall
conductance. At positive energies, current is carried by electrons, at negative energies
by holes. The conductance curve for a symmetric saddle point potential, where a = b
and thus ζ = 0, represented with a blue solid line, is symmetric for positive and
negative energies and has therefore particle hole symmetry. For an asymmetric saddle
point, where a 6= b and ζ 6= 0, particle hole symmetry is broken. The red dashed
conductance curve for the asymmetric saddle points is not symmetric in energy.
The plateau width is, in our example, larger for negative than for positive energies.
Although, we know from the case of the ordinary two dimensional electron gas, that
one cannot rely quantitatively on the corrections for asymmetric saddle points, we
expect that it is qualitatively correct. In difference to the case of an ordinary two
dimensional electron gas, the effect of an asymmetric saddle point in graphene should
be experimentally observable. For an ordinary two dimensional electron gas, an
asymmetric saddle point only leads to a small modification of the plateau width,
which would, as an absolute value, be difficult to measure. In graphene, however, one
can compare the conductance at positive and at negative energies and the asymmetry
should be clearly visible.

4.6. Summary

We have developed a scattering theory of semi-coherent state wave packets based
on vortex Green’s functions to calculate the transmission coefficients through saddle
points. It is applicable to ordinary two dimensional electron gases and to graphene
under high magnetic fields.
In the case of the ordinary two dimensional electron gas, we recover for symmetric
saddle points the exact result of Fertig and Halperin [7]. For asymmetric saddle
points our result differs quantitatively from the exact one, because we have neglected
Landau level mixing.
The result for graphene is especially interesting as there exists no exact solution.
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4.6. Summary

While in an ordinary two dimensional electron gas an asymmetry in the saddle point
leads only to a redefinition of the cyclotron frequency, it causes an asymmetric energy
dependence of the conductance of graphene.
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5. Introduction to Normal
Conductor-Superconductor Hybrid
Structures

This second part of my thesis deals with three-terminal normal conductor-super-
conductor hybrid structures. I will concentrate on symmetric structures with one
central superconducting electrode and two lateral normal conducting electrodes
abbreviated as NSN-systems. In this introductory chapter, I want to motivate, why
it is interesting to study these structures and give a short overview over the rich
physics connected with them. In the next chapters, I will describe the model I study
and present my results.

In section 5.1, I present the nontrivial charge transfer processes which occur at
interfaces between normal metals and superconductors. There are propositions to use
a three-terminal normal conductor-superconductor hybrid structure as a source of
entangled electrons. With entangled electrons one could perform Einstein-Podolsky-
Rosen experiments to test the foundations of quantum mechanics or do quantum
cryptography. Although these ideas are difficult to implement, they have inspired
the research on normal conductor-superconductor hybrid structures and I give a
short introduction to this topic in section 5.2. So far NSN-structures have mainly
been studied over their conductance, which will be subject of section 5.3. In the
last section before the summary of this introductory chapter, we will see, why it is
interesting to study, besides conductance, also noise and current cross-correlations.

5.1. Charge Transfer Processes at Interfaces between

Normal Conductors and Superconductors

In a superconductor, there are no single electron states for energies smaller than
the gap. Therefore, an electron with an energy smaller than the gap arriving from
the normal conducting side at a normal conductor-superconductor (NS) interface
cannot be transmitted as a single electron. But there are alternative charge transfer
processes, which avoid the forbidden single particle transmission: namely local An-
dreev reflection (AR) and in structures with multiple normal conducting electrodes
additionally elastic cotunneling (EC) and crossed Andreev reflection (CAR). The
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Figure 5.1.: Charge transfer processes at interfaces between normal and supercon-
ducting electrodes [77].

three processes are sketched in figure 5.1.
In a local Andreev reflection process, an electron arrives from the normal conducting
side and an electron-hole pair is created at the interface. The hole is reflected into
the normal metal and the electron forms a Cooper pair with the incoming electron
inside the superconductor. The inverse process is also possible: a hole arrives at the
interface and recombines with one electron of a cooper pair. The second electron
of the Cooper pair changes over to the normal conductor. In an Andreev reflection
process a charge of twice the electron charge is transferred. This process was dis-
covered independently by Saint-James [78, 79] and by Andreev [80], when solving
the Bogoliubov-de Gennes equations close to a normal conductor-superconductor
interface. Saint-James was interested in the spectrum of a slab of normal metal
deposited on the superconductor. He found that the level spacing in a normal metal
next to a superconductor is divided by two in comparison to an isolated normal
metal. In an isolated normal metal, discrete energy levels are a consequence of the
electrons being reflected at the borders of the metal. In a normal metal next to a
superconductor, an electron is not directly reflected but transformed into a hole,
the hole traverses the normal metal, is reflected at the outer border of the normal
metal, returns to the interface with the superconductor and is re-transformed into
an electron. This process doubles the way the particles have to traverse and reduces
consequently the distance between energy levels by two.
Andreev studied heat conduction over normal metal superconductor interfaces. With
the “over-the-barrier reflection of quasi-particles“ he found, he was able to explain
the reduction of the thermal conductance at normal metal-superconductor interfaces.
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5.2. Einstein-Podolsky-Rosen Experiments with Electrons

It took almost twenty years, until Blonder, Tinkham and Klapwijk used the Bogoliubov-
de Gennes equations to study conductance. They included also semi-transparent
interfaces, modeled by a δ-potential into their study. We will use a generalization of
their method to calculate scattering matrices of normal conductor-superconductor
hybrid structures in the next chapter.
If there are two normal electrodes connected to the superconductor within a distance
comparable to the coherence length of the superconductor, a variant of this Andreev
reflection can occur. Owing to the incidence of an electron, again an electron-hole
pair is formed, but the reflection of the hole takes place in an electrode different
from the one in which the electron has arrived. One can interpret this process also
the other way round: a Cooper pair arrives from the superconducting side and splits
up into two electrons which continue in different electrodes. This process is called
crossed Andreev reflection (CAR). It is always in concurrence to the process where
electrons (or holes) traverse the superconductor by the tunnel effect. In analogy to a
similar process in quantum dots, this process is called elastic cotunneling (EC). These
non-local processes have been discovered by Byers and Flatté [81] while theoretically
investigating how one could detect gap anisotropies by two point scanning tunneling
microscopy in order to distinguish s-wave and d-wave superconductors.
With the theoretical method used in this thesis, one can decompose the conductance

into its AR, CAR and EC contribution and calculate them separately (see section 6.3).
I will discuss experimental observations of EC and CAR processes in section 5.3.
Theorists have envisioned devices where the CAR process could be used to create
entangled electrons separated in space. This is the subject of the next section.

5.2. Einstein-Podolsky-Rosen Experiments with

Electrons

Quantum mechanics is a powerful theory and the accuracy of its predictions
has been experimentally verified over and over again. But it contradicts often our
intuition and can lead to philosophical questions. In their famous paper [82] Einstein,
Podolsky and Rosen, skeptical of quantum mechanics, started the discussion whether
quantum mechanics is a complete local realistic theory and found that it is either
not local realistic or not complete. Let us have a look at what this means by
studying the Bohm variant [83] of the Einstein-Podolksi-Rosen (EPR) experiment:
A quantum system consisting of two electrons carrying each spin one-half is prepared
in a singlet-state (or EPR-state) of total spin zero. If | ↑i〉α and | ↓i〉α describe the
spin eigenfunctions of the i-th electron (i ∈ {1, 2}) with respect to the axes α, the
EPR-state is given by

|EPR〉 = 1

2
(| ↑1〉α| ↓2〉α − | ↓1〉α| ↑2〉α). (5.1)
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The next step is to separate the two electrons without destroying their spin entangle-
ment. Afterwards, the spins of the two electrons are measured in two independent,
spacelike separated measurements along, let us say, either the z or the x-axes. Space-
like separated events are events that occur at a distance so long and at time difference
so short that the ratio between them is larger than the speed of light. According to
Einstein’s relativity theory, spacelike separated events cannot influence each other.
Quantum mechanics predicts that the result of the measurement of the spin of one
electron is plus one-half in fifty percent of the measurements and minus one-half in
the other fifty percent of the measurements. This is the case for all axes. If one
measures the spin of the two separated electrons along the same but arbitrarily
chosen axes, their spins will always be opposite to each other. Here enters the
paradox, the z and the x-component of the spin are non-commuting variables. They
can, according to Heisenberg’s uncertainty principle, not be measured simultaneously
with arbitrary precision and a quantum mechanical state cannot have at the same
time a well defined spin in z-direction and a well defined spin in x-direction. So,
how are the two electrons able to have always opposite spin? The first possibility
would be, that the x and the z-component of the spin are fixed already before the
measurement is done. In this case, quantum mechanics could be a strictly local
theory, but it would be incomplete: Even though the x and the z-component are
fixed, they are not described by quantum mechanical states. There have to be hidden
parameters. The second possibility would be that the spin is only chosen in the
moment it is measured. The two measurements, even though spacelike separated,
are not independent. This would make quantum mechanics a non-local theory.
Bell formulates in [84] an inequality later know as the Bell inequality, which allows
to distinguish between quantum theory and a hidden variable theory. He proposes to
measure correlations between the result of the measurement of the spin of electron
one in direction a and of the spin of electron two in direction b denoted by P (a,b).
The inequality is most often used in a variant of Clauser, Horne, Shimony and
Holt [85] which states that for a hidden variable theory

S = P (a′,b) + P (a′,b′) + |P (a,b)− P (a,b′)| ≤ 2, (5.2)

where a and a′ are the measurement axes for the first electron, b and b′ the axes
for the second electron and a′ and b are chosen in a way that P (a′,b) = 1− δ with
0 ≤ δ ≤ 1. Quantum mechanics, however, predicts that values of S = 2

√
2 > 2 could

be achieved by a an appropriate choice of the measurement axes.
Violations of Bell type inequalities have been measured with photons, where

polarization replaces the spin, as entangled photons are much easier to produce,
guide and detect. Let me name here only two examples. Aspect and his coworkers
take care to measure spacelike separated photons and in their third experiment [86]
the axes along which the polarization is measured is only chosen after the creation of
the photon pair, to rule out the possibility that the way the source emits its photons
is influenced by the choice of the axes along which the spins are later measured.
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5.2. Einstein-Podolsky-Rosen Experiments with Electrons

While in the experiment of Aspect et al. [86] the two measurements are already
performed at a macroscopic distance of 13m, in reference [87] the two detectors are
separated by 18km. It is not easy to determine when a quantum measurement is
finished and there are theories saying that one should displace a macroscopic mass
after doing a quantum measurement to make sure it is finished. With this large
distance it is possible to perform the measurement and move a mass while the two
detectors are spacelike separated.
There are few experiments using other quantum systems than photons for an EPR-
experiment. In [88] the quantum system is given by two Josephson phase qubits
entangled by a resonator. EPR-experiments with electrons have not been performed,
yet. There are several difficulties to overcome: The creation of the entangled electron
pairs, the transport of the electrons which is more difficult to control in solid state
devices, as the electrons do not propagate in vacuum but in a Fermi see and the
detection of entanglement in a stream of electrons, as it is difficult to send electron
pairs one by one.
Let us, after this quite lengthy side note on EPR experiments in general, now come

back to the versions including NSN-structures. Recher, Sukhorukov and Loss [89] on
the one hand and Lesovik, Martin and Blatter [90] on the other hand have proposed
two different three-terminal NSN-devices as a source of electrons either entangled
in spin or in energy. The idea is that a Cooper pair could in a CAR process split
up into two electrons which are separated into two different electrodes. These two
electrons would have opposite spins and, if energy is measured from the chemical
potential of the superconductor, opposite energies. The CAR process is always in
competition with AR and EC processes, which do not lead to entangled electrons.
Deutscher and Feinberg [91] proposed to use spin polarized ferromagnets instead of
normal metals for the leads to suppress EC. But of course, this configuration would
not allow to measure entanglement, as it follows directly from the spin polarization
into which lead the spin-up and the spin-down electron will propagate.
In the proposition of Recher et al. [89], the normal electrodes are connected to the
superconductor via two quantum dots which are in the Coulomb blockade regime.
The Coulomb repulsion prevents that more than one electron enters the same dot
and consequently impedes AR processes. The two normal conducting electrodes are
kept on the same chemical potential to prevent EC processes. If the superconductor
is at a higher chemical potential than the two normal electrodes, Cooper pairs split
up and tunnel coherently into the two different leads.
In the proposition by Lesovik et al. [90], CAR processes are identified by filtering the
electrons either in energy to measure spin entanglement or in spin to measure energy
entanglement. The idea of energy filtering is further developed in reference [92] where
a Bell like inequality is proposed in terms of current cross-correlations. Current
cross-correlations would be much easier to measure than particle coincidences needed
for the original Bell inequality. One kind of possible energy filters is a Fabry-perot
interferometer. In chapter 7, I calculate concretely conductance and current cross-
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5. Introduction to Normal Conductor-Superconductor Hybrid Structures

Figure 5.2: Scanning electron image of
a sample used in the experiment of Beck-
mann et al. [94] to measure non-local con-
ductance for parallel or anti-parallel spin-
polarized electrodes.

correlations for a model system containing two Fabry-Perot interferometers. The
idea of energy entanglement has been studied in more detail in [93].

The above described propositions of EPR-experiments in NSN-structures are for
the moment out of the range of experiments. But before dreaming of entanglement
tests, one should get a more in-depth understanding of the elementary processes in
NSN-devices and their influence on conductivity and current cross-correlations. In
section 5.3 we will have a look at which experiments in NSN-devices have already been
performed. Noise measurements are the next point on the agenda of experimentalists
after conductance measurements and we will have a look at what we can learn from
current cross-correlations in section 5.4.

5.3. Conductance in Three-Terminal Normal

Metal-Superconductor-Normal Metal Devices

The first quantity that has been measured in order to characterize NSN-devices is
the conductance and the non-local conductance. There are two ways of measuring
non-local conductance. Either a modulated voltage is applied between one normal
conducting electrode and the superconductor and the resulting current between
the superconductor and the second normal conducting electrode is measured and
amplified with a lock-in amplifier, or a modulated current is injected and voltage is
measured.

Beckmann et al. [94] have implemented the idea of Deutscher and Feinberg [91]
to use spin-polarized ferromagnetic electrodes to distinguish between CAR and EC
contributions to the non-local conductance. Their sample consists of an aluminum
bar, superconducting at temperatures below Tc ≈ 1.15K, contacted with iron wires.
The prolate form of the iron wires leads to a magnetic shape anisotropy which
confines the magnetization to point always along the wire, either towards or away
from the superconducting electrode. A current is induced between one iron electrode
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5.3. Conductance in Three-Terminal NSN-Devices

and the superconducting aluminum bar (in figure 5.2 marked with IA) and the
non-local voltage (in figure 5.2 marked with UB) is measured on a second electrode.
The observed non-local resistance R = UB/IA is slightly different depending on
whether the magnetizations in the iron wires are parallel or anti-parallel aligned.
This difference is explained as being the consequence of favoring either the EC
or the CAR component. If the conductance is measured at higher temperatures,
where aluminum is no longer in the superconducting state, spin accumulation effects
lead also to a difference between parallel and anti-parallel magnetization. However,
the length scale on which the difference in the non-local resistance decreases if the
distance between the two iron-wires is increased, is given by the superconducting
coherence length if the aluminum bar is in the superconducting state and by the
much longer spin-diffusion length if the aluminum bar is in the normal conducting
state. This is evidence for the scenario that the different contributions of EC and
CAR processes are the reason for the difference in the non-local conductance. On the
theoretical side the non-local conductance of spin-polarized multi-probe structures in
the tunneling limit has been studied by Falci et al. [95] and the decay of the non-local
conductance with the coherence length has been predicted. The interfaces in the
experiment of Beckmann et al. are of medium to high transparency. This regime
has been covered by Mélin and Feinberg [96] using a microscopic Green’s function
formalism which is able to deal with arbitrary interface transparencies. While in the
tunneling regime CAR contributes with a positive sign and EC with a negative sign to
the non-local conductance, for high interface transparencies and low to intermediate
spin polarizations, both processes lead to a negative non-local conductance. Only for
high spin polarization the CAR contribution becomes again positive.
Russo et al. [97] have studied in the same way, i. e. injecting current and measuring

non-local voltage, NSN-structures with non-magnetic normal electrodes connected
via tunnel barriers to a superconductor. They find that the non-local voltage changes
its sign as a function of the amplitude of the injected current. They attribute the
positive non-local voltage, which occurs at low current amplitudes, to EC processes
and the negative non-local voltages, that occurs at higher current amplitudes, to CAR
processes. Again, the signal decreases with increasing width of the superconductor.
That there are bias regions where the CAR contribution dominates and bias regions
where the EC contributions dominates, was surprising in the light of the non-
interacting theories existing in those days [96, 98, 99], which had predicted that
the CAR and the EC contribution would cancel each other in the tunneling limit.
Yeyati et al. [100] were able to explain the result of the experiment of Russo et al.
within a model including interaction effects. The fact that CAR dominates at low
energies can be understood with the simplified picture, that in a CAR process two
electrons have to enter the superconductor at the same time, which makes them
pay an additional charging energy in comparison to the EC process, where only one
electron passes through the superconductor in a virtual state. In figure 5.3 we see
the good qualitative agreement between theory and experiment.
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a) b)

Figure 5.3.: a)Non-local voltage as a function of the injected current (Vdc ∝ I) [97].
The positive non-local voltage observed at low Vdc marked with a red box is contributed
to EC, the negative signal observed at higher bias marked with a blue box is contributed
to CAR. b)Non-local conductance calculated in a model including interaction [100]
at different temperatures.

Cadden-Zimansky et al. [101, 102] did experiments similar to the two experiments
discussed above, but with highly transparent instead of tunnel interfaces . In their
sample, one superconducting electrode is contacted by several normal conducting/
ferromagnetic electrodes. Using different electrode pairs for their measurement,
they can get information about the distance dependence very easily. They find
that the observation of CAR and EC processes is further complicated by a third
process, charge imbalance: The injection of quasi-particles into the superconductor
leads to a non-equilibrium distribution of quasi-particles and Cooper pairs near the
NS-interfaces. For the non-local conductance, Cadden-Zimansky et al. find a positive
signal below the gap which diverges and changes sign when the gap is reached. These
results have been theoretically explained by Mélin et al. [103] using a model with a
self-consistently calculated gap.
Brauer et al. [104] found additional oscillations in the non-local conductance in the
tunneling regime. To date, there is no theory which explains this experiment. The
sample for this experiment has been nano-fabricated by shadow mask evaporation,
which leads to additional layers of material where they have not been intended. Parts
of the normal metal electrodes are covered by aluminum, so that one could ask if the
sample is not rather an SNSNS-device instead of an NSN-device.
The experiments of [105–108] implement the idea to gain control over the con-

ducting process by inserting a quantum dot in the Coulomb blockade regime between
the superconducting and the normal metal electrodes (see figure 5.4). The quantum
dots are formed in a nanowire contacting the two normal and the superconducting
electrodes. The quantum dots can be individually tuned by underlying gates. As an
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5.3. Conductance in Three-Terminal NSN-Devices

Figure 5.4: False color scanning electron
microscope image [105] of a device where
a central superconducting electrode is con-
nected to two normal metal electrodes over
two quantum dots. The quantum dots are
formed in a nanotube contacting the three
electrodes. The quantum dots can be indi-
vidually tuned by the gates g1 and g2.

example let us have a closer look at one of the experiment of Hofstetter et al. [105].
There, the non-local differential conductance over the quantum dot QD1 is measured
as a function of the voltage UN2 applied to the normal electrode N2 (see figure 5.4).
The normal electrode N1 and the superconductor are approximately at the same
potential. A small ac-voltage U is applied to the superconductor and the current I1 on
the normal electrode N1 is measured to get the differential conductance G1 = dI1/dU .
In figure 5.5a, the deviation ∆G1(UN2) = G1(−1mV) − G1(UN2) of the non-local
conductance from the non-local conductance at 1mV is shown in the situation where
the quantum dot QD2 is completely open and the quantum dot QD1 is tuned to
have its resonance at slightly negative voltages. With the schematics shown in
figure 5.5b-e, we can understand the features of ∆G1. Shown are the filled single
electron states in the leads (grey), the region where QD1 is transmitting (blue) and
the oscillations of the occupation due to the voltage oscillations (red). In figure 5.5b
UN2 is more negative than the gap. As this configuration is the point of reference for
G1, ∆G1 is by definition zero. If the voltage oscillations occur at the energy where
the quantum dot QD1 is conducting (figure 5.5c), the rate of EC processes changes.
If UN2 increases (the number of filled states decreases), EC processes become less
likely and ∆G1 features a dip. If the voltage oscillation occur at minus the energy
of the resonance of QD1, the rate with which Cooper pairs split in CAR processes
changes. As CAR processes become more likely if UN2 increases (the number of
filled states decreases) this leads to the peak in ∆G1. If UN2 is further increased
(figure 5.5e) CAR processes are still possible, but their rate does not change and so
∆G1 = 0.
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Figure 5.5.: a)Non-local differential conductance [105] of the device shown in
figure 5.4. b)-e)Schematics for the interpretation of the non-local conductance curve
shown in a), see text.
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5.4. Noise and Current Cross-Correlations

Other quantities one can measure in a circuit besides current are noise and current
cross-correlations. In macroscopic systems, noise is seen as something annoying,
limiting the achievable accuracy of measurements. In mesoscopic systems there
are three kinds of noise: 1/f -noise, thermal noise and partition noise, where the
latter is not a nuisance but carries information about the system, not obtainable in
conductance measurements.
The 1/f -noise got its name from its inverse proportionality on frequency. A general
theory of 1/f -noise does not yet exists, but it is supposed that in metals mobile
defects are at its origin [109]. 1/f -noise limits the accuracy of low frequency mea-
surements.
Thermal noise is a consequence of fluctuations of the thermal occupations of states.
For fermionic systems thermal noise vanishes at zero temperature. Thermal noise
exists also in equilibrium systems and is via the fluctuation-dissipation theorem
connected to the conductance of the system. Therefore, measurements of thermal
noise in an equilibrium system give the same information as conductance measure-
ments [110].
Partition noise has its origin in the quantization of charge. It occurs only in out-of-
equilibrium systems, e.g. samples where a finite voltage is applied. It carries, for
example, information on the statistics of the particles and on the effective charge.
Before motivating why it is interesting to study current cross-correlations, let us

define them for a NSN-system: Let Îa be the quantum mechanical operator for the
current in the normal lead Na and Îb the operator for the current in the normal lead
Nb. If we denote quantum mechanical expectation values by brackets 〈..〉 the average
current in lead Na is given by 〈Îa〉, the deviations from the mean by ∆Îa = Îa− 〈Îa〉,
the current noise by

Saa(τ) = 〈∆Îa(t)∆Îa(t+ τ) + ∆Îa(t+ τ)∆Îa(t)〉 (5.3)

and the current cross-correlations are given by

Sab(τ) = 〈∆Îa(t)∆Îb(t+ τ) + ∆Îb(t+ τ)∆Îa(t)〉. (5.4)

In my thesis, I study the spectral function of the current fluctuations which is the
Fourier transform of equation (5.4) exclusively at zero frequency. This is sufficient,
as thermal and partition noise are supposed to be white noise and as 1/f -noise is
not included in our model.
As we have seen in the last section, it is not easy to distinguish the different

contributions to the current. In local conductance measurements the AR component
dominates everything and in non-local conductance measurements, the CAR and
the EC component are in competition to each other. Bignon et al. [98] propose to
measure current cross-correlations instead of (non-local) conductance to get access
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to the CAR and EC amplitudes. They calculate the current cross-correlations in the
tunneling limit and find

Stunnel
ab = 2e

2e2

h

[

(VA + VB) coth

(
eVA + eVb
2kBT

)

ACAR

− (Va − Vb) coth
(
eVA − eVb
2kBT

)

AEC

]

(5.5)

where ACAR is the amplitude of the CAR and AEC the amplitude of the EC contri-
bution. In the current cross-correlation, the AR component is absent and one can
easily distinguish between CAR and EC contributions by choosing the voltages in a
way that either Va + Vb = 0 or Va − Vb = 0. I will discuss the decomposition of the
current cross-correlations in the different components beyond the tunneling limit in
section 6.3.
In purely fermionic systems, current cross-correlations are always negative [12, 111]
due to the Fermi-Dirac statistics. However, they can become positive if some kind
of interaction is present [112]. The BCS-interaction in a superconductor is such an
interaction that can lead to positive current cross-correlations. From equation (5.5)
or from the intuitive picture that in a CAR process one Cooper pair splits up into
two electrons, while for an EC process no direct interactions with the condensate
in the superconductor is needed, one could conclude that CAR processes lead to
positive, EC processes to negative current cross-correlations. Even though this
conclusion is oversimplified, as we will see in section 6.3, we can say that positive
current cross-correlations are always an evidence that something non-trivial is going
on. Finally, measurements of current cross-correlations are an important element for
the Bell-inequality tests we have seen in section 5.2.
Noise and current cross-correlation measurements are difficult to implement. To

date, there exist only a few experiments measuring noise in normal metal- supercon-
ductor hybrid structures.
Wei et al. [113] have measured the non-local conductance and the voltage cross-
correlations in a NSN structure in the tunneling limit. They find the cross-correlations
to be always positive, independently of the induced currents IA and IB. This is
not yet understood theoretically, as existing theories predict negative voltage cross-
correlations for asymmetric bias and positive voltage cross-correlations for symmetric
bias. But in the experiment of Wei et al. already the non-local conductance has an
unexpected sign: It is negative for low values of induced currents, which would imply
a dominance of CAR, while the experiments and theories we have seen above found
always a dominance of the EC effect in the non-local conductance in the low energy
tunneling regime.
In the preprint [108], Das et al. report positive current cross-correlations in a system
where the superconductor is connected via quantum dots in the Coulomb blockade
regime to the normal conductors. The positive current cross-correlations occur when
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Figure 5.6: Schematic of a circuit for the
measurement of current cross-correlations
[114].

the quantum dots are at resonance. This makes the interpretation more difficult, as
in a quantum dot at resonance the number of electrons on the dot is not well defined
and local Andreev reflection is not suppressed.
Kaviraj et al. [115] measured noise and current cross-correlations in a three-terminal
SNS-structure. The results are less interesting for us, as we want to study NSN-
structures. But their measurement device, depicted in figure 5.6, merits to be
mentioned, as it allows to measure directly current cross-correlations instead of
voltage cross-correlations. Even though the circuit is polarized in current, the sample
is effectively voltage biased due to the resistance R3 in parallel to the sample. The
currents flowing via the different arms of the sample are measured via the magnetic
field created by them with SQUIDs. 1 To extract the current cross-correlations the
SQUID signals of two different SQUIDs are analyzed with a spectral analyzer.
Torrès and Martin have theoretically studied a superconductor connected to a

normal electrode which splits up in two electrodes in a beam splitter [116, 117]. They
find that current cross-correlations can be both positive or negative depending on the
transmission of the beam splitter, the interface transparency between normal and su-
perconductor and the applied voltage. The largest positive current cross-correlations
occur for intermediate transmission of the beam splitter, low transparency of the
NS-interface and low bias voltage. The positive correlations always disappear for
bias voltages higher than the superconducting gap.
Mélin, Benjamin and Martin have studied the geometry where two normal metal
electrodes are independently connected to the superconductor using on the one hand
scattering theory, where the scattering matrix is calculated in the BTK-approach [11]
(see section 6.2), and on the other hand a microscopic Green’s function approach
based on a tight binding Hamiltonian. Both approaches allow to go beyond the tun-
neling limit studied by Bignon et al. [98] and reveal positive current cross-correlations
at high interface transparencies.

1. A SQUID consists of a superconducting ring interrupted by two Josephson-junctions. The
Josephson effect leads to a current in the superconducting ring which is extremely sensible on the
magnetic flux passing through the ring.
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5. Introduction to Normal Conductor-Superconductor Hybrid Structures

During my master’s thesis, I contributed to the article by Freyn, Flöser and
Mélin [118], where we have studied the case of a symmetrically biased NSN-structure
at arbitrary bias in more detail. We have obtained analytical expressions for cur-
rent, noise and current cross-correlations in the limit of small bias voltages within
scattering theory and we have analyzed the different contributions to the current
cross-correlations within the microscopic Green’s function approach. We were able
to show that positive current cross-correlations do not automatically imply CAR
processes.

5.5. Summary

Three-terminal normal conductor-superconductor-normal conductor (NSN) hybrid
structures feature transport processes absent in two terminal structures. Of special
interest is the process called crossed Andreev reflection (CAR) where a Cooper pair
in the superconductor splits up and the resulting electrons are transmitted into two
different normal conducting electrodes. This process is the basis for propositions
to build a source of entangled electrons. CAR and the competing process elastic
cotunneling EC have been observed in several non-local conductance experiments.
The study of noise and current cross-correlations could give further insight into the
physics of three-terminal NSN-structures. As noise measurements are difficult to
implement, experiments on noise and current cross-correlations were only started
recently.
In my thesis I continue the work of Sylvie Duhot [119] and of my master’s thesis.

Like Sylvie Duhot, I study NSN-structures, where additional scattering barriers have
been inserted into the normal conducting leads. While Sylvie Duhot concentrated on
the non-local conductance of metallic structures, I calculate in addition current cross-
correlations and extend my studies to ballistic systems. To gain deeper insight into
the microscopic processes leading to negative or positive current cross-correlations, I
analyze the different contributions to the current cross-correlations in the framework
of scattering theory similar to the analysis in the language of Green’s functions
of [118].
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6. Three-Terminal Normal
Metal-Superconductor-Normal
Metal Hybrid Structures

This chapter starts with the descriptions of the models that will be studied. The
approach by Blonder, Tinkham and Klapwijk [11] (see section 6.2) will allow us
to calculate the elements of the scattering matrices of the studied systems. In an
NSN-system, the current contains an AR, CAR and EC contribution. Inspired by
the decomposition of the current, I will propose a similar decomposition of the
current cross-correlations in section 6.3, which will make the following discussion
easier. Positive cross-correlations are often equated with CAR. In section 6.4, we
will see that current cross-correlations can be positive in absence of CAR processes
at high interface transparency. The phenomenon of reflectionless tunneling is a
motivation to study symmetric NSN-devices with additional barriers in the normal
conducting electrodes (NNSNN-devices), which is the main subject of this chapter.
Therefore, reflectionless tunneling will be presented in section 6.5. In section 6.6
metallic NNSNN-systems are studied. There, multidimensional behavior is simulated
within a one-dimensional model by mode averaging. The main result of this section is
that effects similar to reflectionless tunneling enhance strongly the local AR process,
but have little effect on the non-local components EC and CAR as long as the modes
in the normal section on the right and on the left hand side of the superconductor
are averaged independently.

6.1. The Model

We study one dimensional models of normal metal-superconductor hybrid struc-
tures. We are mainly interested in the two symmetric three-terminal normal-
superconductor-normal metal hybrid structures depicted in figure 6.1a and c. We
will refer to the former one as NSN-structure, to the latter one as NNSNN-structure.
To understand the difference between the two of them, it is instructive to study
the NNS-structure depicted in figure 6.1b. The central superconducting electrode
is grounded, the normal terminals can be biased with voltages Va and Vb. The
length R of the superconducting electrode in the NSN and NNSNN-structure is
comparable to the superconducting coherence length, which makes the observation
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6. Three-Terminal NSN-Hybrid Structures
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Va Vb

Ia

Figure 6.1.: Schematics of the studied models.

of interesting non-local effects possible. The interfaces between the normal metal
and the superconducting electrodes are modeled by barriers with transparencies Tlns
and Trsn. In the NNSNN structure there are additional barriers at a distance Ll

(respectively Lr) from the normal metal superconductor interface with transparency
Tlnn (respectively Trnn).

For energies lower than the superconducting gap ∆, the NSN and the NNSNN-
system can be described by a 4× 4 scattering matrix sαβij where Latin indices run
over the normal electrodes a and b and Greek indices over electrons e and holes
h. For energies lower than the superconducting gap, there are no single electron
or hole states in the bulk of the superconducting electrode. Consequently, there is
no scattering of electrons or holes in or out of the reservoir in the superconducting
electrode and the superconducting electrode does not appear in the scattering matrix.
However, the used scattering theory supposes implicitly that the superconductor is
a reservoir of Cooper pairs. So it is essential that the superconducting electrode
is grounded. The transformation of quasi-particles into Cooper pairs is taken into
account by the correlation length ξ with which the electron and hole functions are
damped in the superconductor.

The elements of the scattering matrix are evaluated from the BTK approach [11]
(see section 6.2). To calculate the current and current cross-correlations, we use the
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6.2. Calculation of the Scattering Matrix with the BTK approach

formulas derived by Anantram and Datta in [12]:

Ii =
|e|
h

∑

k∈{a,b}

∑

α,β∈{e,h}
sgn(α)

∫

dE

[

δikδαβ −
∣
∣
∣s

αβ
ik

∣
∣
∣

2
]

fkβ(E) (6.1)

Sij =
2e2

h

∑

k,l∈{a,b}

∑

α,β,γ,δ∈{e,h}
sgn(α)sgn(β)

∫

dE Akγ,lδ(iα, E)Alδ,kγ(iα, E)fkγ(E) [1− flδ(E)] (6.2)

with Akγ,lδ(iα, E) = δikδilδαγδαδ − sαγ†ik sαδil , sgn(α = e) = 1, sgn(α = h) = −1 and fiα
the occupancy factors for the electron and hole states in electrode i, given by the
Fermi function where the chemical potentials are the applied voltages. In the zero
temperature limit to which I limit my studies, the Fermi functions read:

fie(E) =

[

1 + exp

(
E − |e|Vi
kBT

)]−1

−−−→
T→0

θ(−E + |e|Vi) and (6.3)

fih(E) =

[

1 + exp

(
E + |e|Vi
kBT

)]−1

−−−→
T→0

θ(−E − |e|Vi). (6.4)

In our one-dimensional model, current and noise are highly sensitive to the distances
Ll, R, Lr between the barriers: they oscillate as a function of these distances with
a period equal to the Fermi wavelength λF ≪ Ll, R, Lr. In a ballistic system, the
multiple barriers act like a Fabry-Perot interferometer. We study these interference
effects and how one can use them to distinguish AR, EC and CAR contributions in
chapter 7. In a higher-dimensional system with more than one transmission mode,
the oscillations in the different modes are independent and thus they are averaged out.
Multi-dimensional behaviour can be simulated qualitatively with a one-dimensional
system by averaging all quantities over one oscillation period:

X(Ll, R, Lr) =
1

λ3F

∫ Ll+λF /2

Ll−λF /2

dll

∫ R+λF /2

R−λF /2

dr

∫ Lr+λF /2

Lr−λF /2

dlrX(ll, r, lr). (6.5)

This procedure is appropriate to describe qualitatively metallic systems. This chapter
is dedicated to these averaged quantities, while we study a ballistic system in the
next chapter.

6.2. Calculation of the Scattering Matrix with the

approach of Blonder, Tinkham and Klapwijk

The elements sαβij of the scattering matrix are calculated within the approach
of Blonder, Tinkham and Klapwijk (BTK)[11]: The one dimensional model of a

131



6. Three-Terminal NSN-Hybrid Structures

normal-metal-superconductor hybrid structure is described by the Bogoliubov-de
Gennes equations [120], i.e by an effective Hamiltonian of the form

Ĥ =

(
−~

2∇2

2m
− µ(x) + V (x) ∆(x)

∆(x) ~
2∇2

2m
+ µ(x)− V (x)

)

. (6.6)

In the BTK model, the chemical potential µ(x) is set to the applied voltages, the
potential V (x) is zero except for δ-peaks at the interfaces and the superconducting
gap ∆(x) is supposed to be zero in the normal conducting regions and constant
in the superconducting regions. In a more realistic model, the gap would have to
be determined self-consistently. The approximation of a constant gap leads to a
simpler, easier to understand model and allows an analytical treatment for simple
cases. For the example of the NSN-structure depicted in figure 6.1a, the potential
is given by V (x) = Zlns~vF δ(x) + Zrsn~vF δ(R − x), where the BTK parameter Zi

is connected to the interface transparency Ti by Ti = (1 + Z2
i )

−1. Solutions to
this Hamiltonian are two-component wave functions, where the upper component
describes electrons and the lower component holes. The solutions in the normal
conducting regions are superpositions of right and left moving plane waves with
wave vectors close to the Fermi wave vector ~kF =

√
2mµ. The wave vector for

electrons reads ~q+ =
√
2m
√
µ+ E, the one for holes ~q− =

√
2m
√
µ− E. In the

superconducting regions the amplitudes of the wave functions have to be modified
with the coherence factors u and v which read for energies smaller than the gap
(E < ∆):

uE =
1√
2

√

1 +
i
√
∆2 − E2

E2
, vE =

1√
2

√

1− i
√
∆2 − E2

E2
. (6.7)

In the superconductor, there are two kinds of quasi-particles: electron-like quasi-

particles proportional to
(
uE vE

)T
with wave vector ~k+ =

√
2m
√

µ+ i
√
∆2 − E2

and hole-like quasi-particles proportional to
(
vE uE

)T
with wave vector ~k− =√

2m
√

µ− i
√
∆2 − E2. As we are also interested in the energy dependence of the

quantities we calculate, we keep, except if stated otherwise, the full expressions
for the wave vectors and do not use the Andreev approximation q+ = q− = kF ,
k+ = kF + iξ and k− = kF − iξ used in the original BTK-paper [11].
As a concrete example, let us have a look at the NSN-system depicted in figure 6.1a.

For an electron incoming from electrode Na, the wave functions in the sections Na, S
and Nb respectively take the form:

ψNa(x) =

(
1
0

)(

1 eiq
+x + seeaa e−iq+x

)

+

(
0
1

)(

sheaa eiq
−x + 0 e−iq−x

)

, (6.8)

ψS(x) =

(
uE
vE

)(

c1 eik
+x + c2 e−ik+(x−R)

)
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6.2. Calculation of the Scattering Matrix with the BTK approach

+

(
vE
uE

)(

c2 e−ik−x + c3 eik
−(x−R)

)

, (6.9)

ψNb
(x) =

(
1
0

)(

se,eb,a eiq
+(x−R) + 0 e−iq+(x−R)

)

+

(
0
1

)(

0 eiq
−(x−R) + sh,eb,a e−iq−(x−R)

)

. (6.10)

Using the continuity of the wave functions at the interfaces [ψNa(0) = ψS(0), etc.]
and the boundary condition for the derivatives [ψ′

S(0)− ψ′
Na

(0) = Z~vFψNa(0), etc.]
we get a system of 8 equations. From this system of equations, we can eliminate the
coefficients ci, i ∈ {1, 2, 3, 3, 4} and calculate the scattering matrix elements se,ea,a, s

h,e
a,a,

sh,eb,a and se,eb,a. The remaining elements of the scattering matrix can be obtained from
the other possible scattering processes i. e. a hole incoming from electrode Na, an
electron/hole incoming from electrode Nb. These systems of equations can be written
in a compact form with the matrix of coefficients M , which reads for the NSN-case:

M =



































1 0 0 0 −uE −epuE −vE −emvE
0 1 0 0 −vE −epvE −uE −emuE

0 0 1 0 −epuE −uE −emvE −vE
0 0 0 1 −epvE −vE −emuE −uE

i q+

kF
− 2Zlns 0 0 0 i k

+

kF
uE −i k

+

kF
epuE −i k

−

kF
vE i k

−

kF
emvE

0 −i q−

kF
− Zlns 0 0 i k

+

kF
vE −i k

+

kF
epvE −i k

−

kF
uE i k

−

kF
emuE

0 0 i q+

kF
− 2Zrsn 0 −i k

+

kF
epuE i k

+

kF
uE i k

−

kF
emvE −i k

−

kF
vE

0 0 0 −i q−

kF
− 2Zrsn −i k

+

kF
epvE i k

+

kF
vE i k

−

kF
emuE −i k

−

kF
uE



































.

(6.11)

The equations are for an electron incoming from the left-hand side
(
seeaa sheaa seeba sheba c1 c2 c3 c4

)
·MT

=
(

−1 0 0 0 i q
+

kF
+ 2Zlns 0 0 0

)

, (6.12)

for an hole incoming from the left-hand side

(
sehaa shhaa sehba shhba c1 c2 c3 c4

)
·MT

=
(

0 −1 0 0 0 −i q+
kF

+ 2kFZrsn 0 0
)

, (6.13)

for an electron incoming from the right-hand side

(
seeab sheab seebb shebb c1 c2 c3 c4

)
·MT

=
(

0 0 −1 0 0 0 i q
−

kF
+ 2Zrsn 0

)

(6.14)

and for a hole incoming from the right-hand side

(
sehab shhab sehbb shhbb c1 c2 c3 c4

)
·MT

=
(

0 0 0 −1 0 0 0 −i q−
kF

+ 2Zrsn

)

. (6.15)
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6. Three-Terminal NSN-Hybrid Structures

coherence length ξ 1
gap ∆ 1 · 10−4

Fermi wave length kF 1 · 103
reduced Planck constant ~ 1
effective mass m 1 · 107
Fermi energy µ 5 · 10−2

Table 6.1: Parameter values for the nu-
merical calculations.

In the still relatively simple NSN cases and in the limit of zero energy, the system of
equations giving the scattering matrix elements can be solved analytically (see [118]).
We will use an analytically calculated scattering matrix for the NNS-system when
discussing the phenomenon of reflectionless tunneling in section 6.5. But as we are
also interested in the energy dependence of the scattering matrix and in the more
complicated NNSNN-case, we solve the equations numerically in most of the cases.

The generalization to the NNSNN-case is straightforward. We only have to insert

ψNl
(x) =

(
1
0

)(

c5 eiq
+x + c6 e−iq+(x−Ll)

)

+

(
0
1

)(

c7 eiq
−x + c8 e−iq−(x−Ll)

)

(6.16)

between the Na and the S section, and

ψNr(x) =

(
1
0

)(

c9 eiq
+(x−Ll−R) + c10 e−iq+(x−Ll−R−Lr)

)

+

(
0
1

)(

c11 eiq
−(x−Ll−R) + c12 e−iq−(x−Ll−R−Lr)

)

(6.17)

between the S and the Nb section. We obtain a system of 64 equations. It can again,
after elimination of the ci, be used to calculate numerically the 16 coefficients of the
scattering matrix.

In our problem, the energy scale is given by the superconducting gap ∆ and the
length scale by the coherence length ξ = ~

2kF/(m∆). Table 6.1 summarizes the
parameters used in the numerical calculations. The amplitudes of the non-local
processes CAR and EC decrease exponentially with the length R of the supercon-
ducting electrode. To get large CAR and EC signals, I use if not indicated otherwise,
R = 0.25ξ which is smaller than the length R ≈ ξ routinely obtained in experiments.
In most cases, larger R-values lead only to a reduced amplitude, but not to a qualita-
tive change of the curve. One exception is the ballistic system studied in chapter 7.
The lengths Ll and Lr have no influence on the scattering matrix at low energies.
However, if we want to study finite energy effects, a good choice is Ll ≈ Lr ≈ 10ξ.
To solve the linear systems of equations for the scattering matrix, routines from the
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6.3. Components of Conductance and Current Cross-Correlations

libraries LAPACK and BLAS are used. The numerical integrations, necessary to calcu-
late the mode averages, are done with integration routines from the GNU Scientific

Library.

6.3. Components of the Differential Conductance

and the Differential Current Cross-Correlations

As we have seen in section 5.1, an electron arriving from one of the normal metal
reservoirs at the interface to the superconductor can have four different destinies:
It can be reflected as an electron (normal reflection (NR)), reflected as a hole
(Andreev reflection (AR)), transmitted as an electron (elastic cotunneling (EC)) or
transmitted as a hole (crossed Andreev reflection (CAR)). The same holds for holes.
The corresponding elements of the scattering matrix are for normal reflection: seeaa,
shhaa , s

ee
bb , s

hh
bb , local Andreev reflection: sehaa, s

he
aa, s

eh
bb , s

he
bb , elastic cotunneling: seeab, s

hh
ab ,

seeba, s
hh
ba , and crossed Andreev reflection: sehab , s

he
ab , s

eh
ba , s

he
ba .

The current in electrode Na given by equation (6.1) can naturally be divided into
AR, CAR and EC contributions (to calculate this expression the unitarity of the
scattering matrix has been used):

Ia =
|e|
h

∫

dE
[(
|sehaa(E)|2 + |sheaa(E)|2

)
(fae(E)− fah(E))

︸ ︷︷ ︸

local Andreev reflection

+ |seeab(E)|2(fae(E)− fbe(E)) + |shhab (E)|2(fbh(E)− fah(E))
︸ ︷︷ ︸

elastic cotunneling

+ |sehab(E)|2(fae(E)− fbh(E)) + |sheab(E)|2(fbe(E)− fah(E))
]

︸ ︷︷ ︸

crossed Andreev reflection

. (6.18)

In the following, we do not study current, but the differential conductance. We
study the non local conductance, where Va = 0 and the current Ia is differentiated
with respect to Vb and the symmetric case where Va = Vb = V and the current Ia
is differentiated with respect to V . In the zero temperature limit, only the non-
local processes crossed Andreev reflection and elastic cotunneling contribute to the
non-local conductance:

∂Ia
∂Vb

∣
∣
∣
∣
Va=0

= −e
2

h

[
|seeab(|e|Vb)|2 + |shhab (−|e|Vb)|2

]

︸ ︷︷ ︸

elastic cotunneling

+
e2

h

[
|sehab(−|e|Vb)|2 + |sheab(|e|Vb)|2

]

︸ ︷︷ ︸

crossed Andreev reflection

,

(6.19)

while the symmetric case contains local Andreev reflection and crossed Andreev
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6. Three-Terminal NSN-Hybrid Structures

reflection:

∂Ia
∂V

∣
∣
∣
∣
Va=Vb=V

=
e2

h

[(
|sehaa(|e|V )|2 + |sheaa(|e|V )|2

)
+
(
|sehaa(−|e|V )|2 + |sheaa(−|e|V )|2

)]

︸ ︷︷ ︸

local Andreev reflection

+
e2

h

[(
|sehab(|e|V )|2 + |sheab(|e|V )|2

)
+
(
|sehab(−|e|V )|2 + |sheab(−|e|V )|2

)]

︸ ︷︷ ︸

crossed Andreev reflection

(6.20)

We now want to carry out a similar analysis for the current cross-correlations. We
study only the zero temperature limit, where fkγ(E)[1− flδ(E)] is zero if k = l and
γ = δ and the current cross-correlations are:

Sab(T = 0) =
2e2

h

∑

k,l∈{a,b}

∑

α,β,γ,δ∈{e,h}
sgn(α)sgn(β)

×
∫

dEsαγ†ak (E)sαδal (E)s
βδ†
bl (E)sβγbk (E)fkγ(E)[1− flδ(E)] (6.21)

Every summand in Sab contains the product of four elements of the scattering matrix.
As pointed out in [121, 122], in difference to the situation for the current, it is
impossible to combine those matrix elements to absolute squares. Let us now try
to classify the contributions of the noise as we did above for the current. We find
that no summand consists of only one kind of elements of the scattering matrix.
Every element consists of two local elements (NR or AR) and two non-local elements
(CAR or EC). Either the two local elements and the two non-local elements are
members of the same category, that gives the components EC-NR, CAR-NR, EC-AR,
CAR-AR, or all four matrix elements belong to different categories and we will call
these summands MIXED. Sometimes, it is useful to divide MIXED further as a
function of its voltage dependence (see appendix B). As the formulas for the current
cross correlations are lengthy, I relegate them into appendix B.
For the interpretation of current cross-correlations, the global sign plays an impor-

tant role. The differential current cross-correlations carry for positive applied bias
voltages the same sign as the current cross-correlations. For negative applied voltages
current cross-correlations and differential current cross-correlations have opposite
signs. To avoid confusion, I show only figures of differential current cross-correlations
calculated for positive bias voltages (and thus negative energies E = −|e|V ). Due
to the electron-hole symmetry of our model, differential current cross-correlations
calculated for negative bias voltages are up to a global sign identical to the ones
calculated at positive bias voltage. For small bias voltages, current cross-correlations
depend linearly on voltage. Thus, current cross-correlations and differential current
cross-correlations show the same qualitative behavior if studied as a function of the
interface transparency or the distance between barriers.
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6.4. Positive Cross-Correlations without CAR

Scattering matrix Green’s function
classification classification

CAR-NR CAR

EC-AR AR-AR
MIXED1, MIXED2 PRIME
EC-NR EC
CAR-AR AR-AR
MIXED3, MIXED4 MIXED

Table 6.2: Correspondences between the
categories in the language of Green’s func-
tions from [118] and in the language of
scattering matrix elements.

In reference [118], we carried out a similar analysis of current cross-correlations in
terms of Green’s functions. The elements of the scattering-matrix are connected to
the retarded Green’s functions of the tight binding model studied there via

sαβij = iδij + 2πtitj
√

ραi

√

ρβjG
R
ijαβ (6.22)

where ti is the transmission coefficient of the barrier i, ραi the density of electron or
hole states of electrode i and GR

ijαβ the Green’s function connecting the first site in
the superconductor next to the electrode j to the first site in the superconductor
next to the electrode i.
Table 6.2 shows the correspondences between the categories in the language of Green’s
functions and in the language of scattering matrix elements.
Bignon et al. [98] have studied current cross-correlations in the tunneling limit (see

also section 5.4). They find that noise measurements in the tunneling limit can give
access to the CAR and EC contribution of the current. We have just seen that at
least two processes are involved in every component of noise. The contributions of
noise they calculate fall into the categories EC-NR and CAR-NR. In the tunneling
limit the NR amplitude is approximately one, so that the current cross-correlations
containing products of NR and EC/CAR amplitudes are very similar to the EC and
CAR current contributions.

6.4. Positive Cross-Correlations without CAR

In fermionic systems without superconducting electrodes, current cross-correlations
are, as a consequence of the Fermi-Dirac statistics, always negative [12, 111]. In
superconductors, the coupling of electrons into Cooper pairs makes positive cross-
correlations possible. If a CAR process is interpreted as the splitting of a Cooper
pair into two electrons leaving the superconductor in different electrodes, positive
cross-correlations are the logical consequence. However, the CAR process is not the
only one, which can lead to positive cross-correlations. Let us investigate in more
detail the influence of the different processes on the current cross-correlations in a
NSN-system.
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Figure 6.2.: Averaged differential cross-correlations for a NSN-system with R =
0.25ξ as a function of the transparency of the interfaces T = Tlns = Trsn. The
positive cross-correlations at high interface transparency are due to the EC-AR
process, represented by a green solid line. a) bias Vb ≪ ∆/|e|, Va = 0 b) symmetric
bias Va = Vb ≪ ∆/|e|.

The black line in figure 6.2 shows the averaged differential current cross-correlations
for a) a system biased for non-local conductance measurements (Va = 0) and for b)
a symmetrically biased system (V = Va = Vb). The total current cross-correlations
have already been published in [118]. But here, we have in addition the different
parts which contribute to the total current cross-correlations separately. For high
interface transparencies the total cross-correlations are positive for both biases. For
the symmetrically biased case, the total cross-correlations are also positive for low
interface transparencies. Inspecting the different contributions, we see that positive
current cross-correlations at low interface transparencies are indeed a consequence of
a large CAR-NR component and therefore a consequence of CAR processes. But the
positive current cross-correlations at high interface transparencies have a different
origin: a large positive EC-AR contribution.
We can put the contributions to the current cross-correlations into two categories
with respect to their sign, which is independent of the interface transparency. EC-
NR, CAR-AR, MIXED2 and MIXED4 carry a negative sign, CAR-NR, EC-AR,
MIXED1 and MIXED3 a positive sign. Current can either be carried by electrons
Ie or by holes Ih. The sign of the different contributions to the current cross-
correlations depends on whether only currents of the same carrier type are correlated
(〈∆Îea∆Îeb 〉+〈∆Îha∆Îhb 〉+ a↔ b) which is the case for EC-NR, CAR-AR, MIXED2
and MIXED4 and leads to a negative sign or whether electron currents are correlated
with hole currents (〈∆Îea∆Îhb 〉+〈∆Îha∆Îeb 〉+ a↔ b) which is the case for CAR-NR,
EC-AR, MIXED1 and MIXED3 and leads to a positive sign. In purely normal
conducting systems the electron and hole currents are uncorrelated, only correlations
of the same carrier type contribute to the current cross-correlation and lead to a
negative sign. The sign of the total current cross-correlations is a consequence of
the relative strength of the different parts of the current cross-correlations, which
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Figure 6.3.: a) Absolute squares of scattering matrix elements for a NSN-system
with R = 0.25ξ as a function of the transparency of the interfaces T = Tlns = Trsn.
b) Zoom of a).

depends on the interface transparency.
In order to understand better the dependence on the interface transparency of the
different contributions to the current cross-correlations, let us have a look at the
absolute squares of the scattering matrix elements for the NSN-system shown in
figure 6.3. As the system is symmetric in Na and Nb and in electrons and holes,
all scattering matrix elements of one given category (NR, AR, CAR or EC) have
the same absolute squares. For an impermeable barrier, the only possible process
is normal reflection. Consequently, for T = Tlns = Trsn = 0, the absolute square
of the scattering elements encoding normal reflection are one (red, solid curve on
figure 6.3) and all other scattering matrix elements are zero. For the other extreme,
in the absence of a barrier where T = 1, the scattering processes have to conserve
momentum as there is no barrier which could absorb momentum. Normal reflection
means that a particle arriving with momentum p at the interface returns with
momentum −p. A momentum of 2p is transferred and the process does not conserve
momentum. Crossed Andreev reflection does not conserve momentum either. If, e.g.
an electron arrives with momentum p on the left hand side the hole leaving on the
right hand side will carry a momentum of −p, so that again a momentum transfer of
2p takes place. Therefore, the matrix elements for normal reflection and for crossed
Andreev reflection vanish in the limit T → 1.
In the tunneling limit, the processes EC-NR and CAR-NR dominate as they contain
a NR amplitude which is large for small T . At high interface transparencies, the
process EC-AR dominates, as it is the only one that does neither contain a CAR nor
a NR amplitude.
With the ”conservation of momentum” argument we can argue that, at least in our
model, current cross-correlations due to CAR have to tend to zero at least for very
high transparencies. As the total current cross-correlations do not tend to zero in
the limit T → 1, they can not be due to CAR.
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a) b)

Figure 6.4.: a) Experimental conductance voltage characteristic measured at differ-
ent temperatures [123]. The excess conductance at low voltage is for the measurements
at low temperatures clearly visible.
b) Theoretical conductance voltage characteristic for a superconductor-semiconductor
interface by [124]. In agreement with the experiment, the conductance enhancement
by reflectionless tunneling occurs only at low voltages.

6.5. Reflectionless Tunneling

The conductance of an NS tunnel junction is influenced by the amount of disorder
in the normal conductor. It can be larger for a “dirty“ normal conductor containing
a large number of non-magnetic impurities, where transport is diffusive, than for
a clean normal conductor, where transport is more ballistic. This phenomenon,
called reflectionless tunneling has been experimentally observed for the first time
by Kastalsky et al. [123]. They have measured the conductance in a NS contact,
where the normal conducting side had been formed by a doped semi-conductor and
have found an increased conductance at low voltages. Figure 6.4a shows one of their
measurements with a clear conductance peak at zero voltage for the measurements
performed at low temperature. The effect increases if the doping of the semiconductor,
i. e. the number of impurities is raised. An intuitive explanation for reflectionless
tunneling is that electrons and holes are reflected multiple times from the impurities,
a process which localizes them close to the NS-interface and increases their chance
to pass the tunnel barrier at the interface.

Melsen and Beenakker [13] had the idea to use a normal conductor with an
additional tunnel barrier as a simple model of a disordered normal conductor. They
studied the resulting NNS-junction with a random matrix approach and found indeed
an enhancement of the conductance as a result of the insertion of the second barrier.
Random-matrix theory is a mighty theory, but in the form it is used in the first part
of [13], it boils down to the average given by equation (6.5). I will therefore explain,
how one can obtain the result of Melsen and Beenakker in our language.
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In a NNS-structure at energies below the gap, there are no single electron or hole
states at the right hand side. Therefore, the transmission of electrons or holes to the
right hand side is not possible and the scattering matrix reduces to

S =

(
seeaa sehaa
sheaa shhaa

)

. (6.23)

From equation (6.1) follows for the current in the zero temperature limit

Ia =
e

h

∫

dE
[
|sheaa|2 + |sehaa|2

]
[Θ(−E − eVa)−Θ(E − eVa)] , (6.24)

so that the conductance is given by

GNNS =
dIa
dVa

=
e2

h

(
|sheaa(Va)|+ |sheaa(−Va)|+ |sehaaVa|+ |sehaa(−Va)|

)
. (6.25)

In the limit of small energies, the wave vectors in the normal conducting regions
become limE→0 k

+ = limE→0 k
− = kF , the wave vectors in superconducting region

become limE→0 q
+ = kF + i/ξ and limE→0 q

− = kF − i/ξ with ξ = ~
2kF/(m∆) and

the coherence factors simplify to limE→0 uE = u0 =
√

i∆/(2E) and limE→0 vE =
√

−i∆/(2E). With this simplifications, we can calculate the scattering matrix
analytically and find

|sehaa|2 = |sheaa|2 =
[
(1 + 2Z2

lnn)(1 + 2Z2
lns) + 4ZlnnZlns((1− ZlnnZlns) cos(2kFLl)

+ (Zlnn + Zlns) sin(2kFLl)) ]
−2. (6.26)

The integration over one period of Ll can also be done analytically

|sehaa|2 =
∫ Ll− π

kF

Ll− π
kF

dLl|sehaa|2 =
(1 + 2Z2

lnn)(1 + 2Z2
lns)

(4Z2
lnn + 4Z4

lnn + (1 + 2Z2
lns)

2)
3
2

. (6.27)

If we replace the barrier strengths by the interface transparencies, we get

|sehaa|2 =
T 2
lnnT

2
lns(Tlnn − 2)(Tlns − 2)

(4(T 2
lnn + T 2

lns − T 2
lnnTlns − TlnnT 2

lns) + T 2
lnnT

2
lns)

3
2

. (6.28)

The final result

GNNS =
4e2

h
|sehaa|2 =

4e2

h

T 2
lnnT

2
lns(Tlnn − 2)(Tlns − 2)

(4(T 2
lnn + T 2

lns − T 2
lnnTlns − TlnnT 2

lns) + T 2
lnnT

2
lns)

3
2

(6.29)

is identical to the one obtained by Melsen and Beenakker [13].
The conductance peak in the experimental curve shown in figure 6.4 disappears

for increasing voltage. This was explained with a semi-classical model by [123] (see

141



6. Three-Terminal NSN-Hybrid Structures

a)

0

0.002

0.004

0.006

0.008
G

N
N

S

[
e
2 h

]

0 0.2 0.4 0.6 0.8 1

Tlns

|e|V =0.0001∆

|e|V =0.001∆

|e|V =0.0025∆

|e|V =0.0125∆

|e|V =0.0625∆

b)

0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

G
N

N
S

[
e
2 h

]

0 0.02 0.04 0.06 0.08 0.1

eV/∆

Figure 6.5.: a) Conductance of the NNS-interface as a function of the barrier
strength Tlnn for different energies. Tlns = 0.01. b) Conductance of the NNS-interface
as a function of the applied voltage. Tlnn = 0.1, Tlns = 0.01

figure 6.4b: In an Andreev reflection process the reflected hole traces back the way of
the incoming electron. If Andreev reflection occurs at the Fermi energy, the electron
and the hole have the same wave vectors and both particle acquire exactly opposite
phases on there way leading to constructive interference effects. With increasing
voltage bias the energy difference between electrons and holes increases, the wave
vectors are no longer the same and the interference effects are reduced.
We can study the voltage dependence of the conductance in an NNS-structure with
our method using the energy dependent forms of wave vectors and coherence factors
and calculating the scattering matrix numerically. Figure 6.5a shows the conductance
of the NNS-interface as a function of the barrier strength Tlnn for different energies.
The curve for |e|V = 10−4∆ has the form found analytically in equation 6.29.
Higher applied voltages let the conductance peak disappear. Figure 6.5b shows the
dependence of the conductance on the applied voltage which is in good qualitative
agreement with the experimental result shown in figure 6.4a.

6.6. Multiple Barriers

In the light of the phenomenon of reflectionless tunneling discussed in the preceding
section, it is natural to ask if a similar effect could also enhance conductance and
current cross-correlations in a three-terminal NSN-structure. Duhot and Mélin [125]
have studied the influence of additional barriers on the non-local conductance in
three-terminal NSN-structures. They find that two symmetric additional barriers
enhance the non-local conductance.
First, we want to get a more in depth understanding of their result by calculating
the AR, CAR and EC components of the current separately. Afterwards, we will
study the influence of additional barriers on the current cross-correlations.

Figure 6.6 shows the averaged conductivity in the symmetric bias situation
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Figure 6.6.: Averaged differential conductance in the limit of zero energy in a)
the symmetrical bias situation Va = Vb ≪ ∆/|e| and b) in the situation of non-local
conductance measurements Va = 0, Vb ≪ ∆/|e| for a superconducting electrode much
shorter than the coherence length (R = 0.25ξ) as a function of the transparencies of
the additional barriers Tlnn = Trnn. The barriers next to the superconductor are in
the tunnel regime (Tlns = Trsn = 0.01).
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Figure 6.7.: Averaged differential conductance at different energies in a) the
symmetrical bias situation Va = Vb ≪ ∆/|e| and b) in the situation of non-local
conductance measurements Va = 0, Vb ≪ ∆/|e| for a superconducting electrode
shorter than the coherence length (R = 0.25ξ) as a function of the transparencies of
the additional barriers Tlnn = Trnn. The barriers next to the superconductor are in
the tunnel regime (Tlns = Trsn = 0.01).
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Figure 6.8.: Energy dependence of the averaged differential conductance in a) the
symmetrical bias situation Va = Vb ≪ ∆/|e| and b) in the situation of non-local
conductance measurements Va = 0, Vb ≪ ∆/|e| for a superconducting electrode much
shorter than the coherence length (R = 0.25ξ) as a function of the transparencies of
the additional barriers Tlnn = Trnn. The barriers next to the superconductor are in
the tunnel regime (Tlns = Trsn = 0.01).

Va = Vb ≪ ∆/|e| and in the situation of non-local conductance measurements Va = 0,
Vb ≪ ∆/|e| for a superconducting electrode much shorter than the coherence length
(R = 0.25ξ). The sum of the AR, CAR and EC components, traced in black, features
in both cases an extremum. But, looking at the behavior of their components, we see
that they arise by different mechanisms. Let us first have a look at the symmetrically
biased case. Without the additional barriers, i. e. in the limit Tlnn = Trnn → 1,
the contributions of AR and CAR are similar in magnitude. The EC component is
completely suppressed, as it is proportional to the difference of the applied voltages.
Introduction of two additional barriers increases the AR component by about a
factor 30. The shape of the curves is similar to the one of the NNS case which can
be recovered exactly by increasing the length of the superconducting electrode far
beyond the coherence length. The CAR curve, however, stays almost constant over a
long range of values of barrier strength of the additional barriers and vanishes finally
when the transparencies go to zero.
In the case of the non-local conductance voltage configuration, the AR component is
zero as it is proportional to the local voltage Va. As in the first case the additional
barriers have little influence on the CAR component, except for the fact, that it
tends to zero for vanishing transparency. The EC component is over a long range
of barrier strength values identical in amplitude, but opposite in sign to the CAR
component. For small T -values the EC component features a small extremum, but
it is much less pronounced than the maximum of the AR component of the first case.
The EC component tends in the limit Tlnn = Trnn → 1 slower to zero than the CAR
component which has a minimum in the total conductance as a consequence. That
the maximum in the conductance in the symmetrical bias case and in the non-local
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Figure 6.9: Gedankenexperiment with
coupled integrals Tlns = Trsn = 0.01,
R = 0.25ξ: Now, also the EC and the
CAR component are enhanced by reflec-
tionless tunneling.

conductance case have different origins can also be illustrated by studying their
energy dependence, depicted in figure 6.7: The enhancement of the AR component of
the conductance in the symmetrical biased case disappears completely with increasing
bias voltage. The extremum in the non-local conductance decreases slightly with
increasing bias voltage, but only up to a certain voltage value, then it saturates.

Why is the AR component enhanced by the additional barriers, but not the EC or
CAR components? Reflectionless tunneling is believed to occur because the electrons
and holes are localized between the double barrier and have therefore a higher
probability to enter the superconductor. There is a double barrier on the right and
on the left hand side, so this localization should also happen to the particles involved
in EC or CAR processes. The answer is, that in the AR cases the incoming electron
and the leaving hole see the same environment. In the EC and CAR processes the
incoming particle sees the environment on one side of the superconductor and the
leaving particle the environment on the other side. The energy dependence of the
conductance enhancement of the AR component, gives us evidence, that reflectionless
tunneling can only occur, if the outgoing hole can trace back the way of the incoming
electron. At low bias voltages, the electron and the hole have the same energy
and the same wave vector, reflectionless tunneling occurs. At higher bias voltage,
electrons and holes have different wave vectors and the reflectionless tunneling peak
disappears. In our model, reflectionless tunneling reappears once the phase difference
between electrons and holes has reached a multiple of π, which is shown in figure 6.8.
The height of the resonance peaks increases with increasing energy, because the
coherence length in the superconductor is larger at higher energies.

The integrals over the phases between the additional barriers on the left and on
the right hand side have, of course, been taken independently. There is no reason
to think that the channel mixing, which is emulated by the integrals, on the right
and on the left hand side are coupled. To verify this scenario, we couple the two
integrals in a gedankenexperiment. We set the distance Ll between the two left
hand-side barriers to be equal to the distance Lr between the two right-hand side
barriers and do only one integral over L = Ll = Lr. The result is shown in figure 6.9.
Now, the CAR and the EC component are also enhanced. Still, the effect on the EC
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Figure 6.10.: Averaged differential current cross correlations in a) the symmetrical
bias situation Va = Vb ≪ ∆/|e| and b) in the situation of non-local conductance
measurements Va = 0, Vb ≪ ∆/|e| for a superconducting electrode shorter than the
coherence length (R = 0.25ξ) as a function of the transparencies of the additional
barriers Tlnn = Trnn. The barriers next to the superconductor are in the tunnel regime
(Tlns = Trsn = 0.01).

component is larger and EC dominates the non-local conductance.

Let us turn back to independent mode averaging and have a look at the current
cross-correlations shown in figure 6.10. In the symmetric bias case the additional
barriers do not lead to an enhancement of the signal. The current cross-correlations
are dominated by the CAR-NR component, and, as we have seen above, CAR is not
influenced by reflectionless tunneling. The EC-AR component is amplified by the
additional barriers, because the AR amplitude describing a local process is amplified.
This leads to a small shoulder in the total cross-correlations. However, as we are in
the tunnel regime and the leading order of CAR-NR is T 2 while the leading order of
EC-AR is T 4, the influence of the EC-AR-component is too small to lead to a global
maximum.
In the case Va = 0, Vb ≪ ∆/|e| the additional barriers enhance the signal. But the
cross-correlations are dominated by EC-NR and are therefore negative.

6.7. Summary

NSN and NNSNN-devices are described in a simple one-channel model in scattering
theory, where the elements of the scattering matrix are calculated by wave function
matching in the BTK-approach.

Positive current cross-correlations at high interface transparencies are not con-
sequence of CAR-processes, but of the EC-AR contribution to the current cross-
correlations.

In NS-structures in the tunnel regime, the use of a diffusive normal metal-electrode
leads by an effect called “reflectionless tunneling“ to an enhancement of the conduc-

146



6.7. Summary

tance. Inspired by the idea of Melsen and Beenakker to model the diffusive normal
metal electrode by a clean normal metal electrode with an additional barrier, one can
ask what happens if additional barriers are added to a NSN-structure. Reflectionless
tunneling is a consequence of constructive interference occurring only if the involved
electrons and holes acquire exactly opposite phases on their way through the system.
In phase averaged systems this is only possible, if electrons and holes have the same
wave vector and see the same environment. Therefore, in a phase averaged system,
additional barriers have little influence on the non-local EC an CAR processes and
uniquely the local AR-process is enhanced. Positive cross-correlations in the tunnel
regime are due CAR-NR and cannot be enhanced with additional barriers, if an
average over the length has to be done. Thus, it is not to be expected that the use
of diffusive normal metals will facilitate the experimental observation of positive
current cross-correlation. This negative conclusion is important for experiments.
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Concerning the creation of a source of entangled electrons, there is always the
problem of the competition of CAR processes with AR and EC processes. In the
propositions for Cooper pair splitters, there are two main strategies to filter between
the different processes: The first strategy is to use quantum dots in the Coulomb
blockade regime to suppress local Andreev reflection and to use the discrete levels
of the quantum dots as energy filters to distinguish between EC and CAR. The
second strategy is to use interference effects. For example, a system containing
Mach-Zehner interferometers is proposed in [93] and a system containing Fabry-Perot
interferometers is proposed in [92]. In this chapter, we want to answer the question
whether electronic Fabry-Perot interferometers allow to filter the different processes
contributing to the conductance and to the current cross-correlations. To this end,
we study in detail a ballistic, one-dimensional NNSNN-system.
The model is to a large extend identical to the one used in the last chapter (see
figure 6.1c), but here we do not average over the length of the normal conducting
channels. We maintain, however, the average over the central superconducting
electrode. One could imagine that the normal conducing channels are formed by
single walled carbon nanotubes, where transport is ballistic, while the superconducting
central electrode is made from aluminum, where more scattering processes occur.
In the last chapter, we have seen that reflectionless tunneling cannot enhance the
non-local process CAR and EC. In the ballistic system studied here, the distances
Ll and Lr can be controlled independently. We expect the parts Nl and Nr to act as
Fabry-Perot interferometers and hope that constructive interferences for CAR and
EC are observable.
This chapter starts with a discussion of the expectations we have from the analogy

to optical Fabry-Perot interferometers. The main part consists of the analysis of
numerical calculations. The chapter ends with the examination of the challenges
connected to an experimental implementation of the studied NNSNN-system.

7.1. Resonances in a Fabry-Perot Interferometer

The NNSNN-system consists in principle of two Fabry-Perot interferometers, one
at the left and one at the right hand side of the superconductor. For the final result,
we have, of course, to take into account the entire system. But from thinking of the
two Fabry-Perot interferometers independently, we can already get a good idea where
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we have to expect resonance peaks, and what influence they have on the different
components of the conductance and of the current cross-correlations.
In an optical Fabry-Perot interferometer consisting of two parallel mirrors, light is
reflected multiple times between the mirrors. Part of the light is transmitted every
time the light reaches a mirror. The transmitted intensity results from the interference
of light which has undergone a different number of reflections between the two mirrors.
The transmission of a Fabry-Perot interferometer is a function of the phase difference
between a beam which has been n-times and a beam which has been (n+ 1)-times
reflected at both interfaces. The same is true for a Fabry-Perot interferometer for
electrons. This can also be seen from equation (6.26) giving the matrix elements
of the NNS-system before the phase average is carried out. An electron going once
back and forth between the two barriers at the left hand side of the NNSNN-system
acquires a phase φe = 2q+Ll, a hole acquires a phase φh = 2q−Ll. For low voltages,
where q+ ≈ q−, we expect electron and hole resonances for the same resonator lengths.
If the voltage is increased, the wave vector q+ =

√
2m~2

√

µ− |e|V decreases and the

wave vector q− =
√
2m~2

√

µ+ |e|V increases, shifting the resonance for electrons to
higher and the resonance for holes to lower values of Ll. The width of the resonances
of a Fabry-Perot interferometer depends on the reflectivity of the interfaces. The
smaller the transmission, the more beams having undergone different numbers of
reflections interfere with each other and the sharper are the resonance peaks.

Symmetrically applied bias

For a symmetrically applied bias, the differential conductance consists of an AR
and a CAR component. If a positive bias is applied to the normal electrode Na,
the current Ia contains an AR contribution, where a hole enters and an electron
leaves the superconductor (see figure 7.1a). At low energies, the AR contribution will
assume its maximum for values of Ll where electrons and holes are both in resonance.
At higher energies, the resonances for electrons and for holes occur at different values
of Ll. If the barriers are in the tunnel regime, the resonance peaks are sharp. The
resonance peaks for electrons and holes stop to overlap and the AR contribution
disappears. If the interface transparency is increased, the resonance peaks broaden.
Even if the electron and the hole wave vectors are significantly different, there is
an overlap between corresponding resonances leading to a double peak in the AR
contribution. AR is a local process, and we expect the AR contribution to the current
Ia to be mainly independent of the length Lr.
There are two possibilities for CAR process if the electrodes Na and Nb are sym-
metrically positively biased: Either a hole enters the superconductor at the left
hand side and an electron leaves the superconductor at the right hand side (see
figure 7.1b) or the process occurs the other way round (see figure 7.1c), the hole
enters at the right hand side and the electron leaves at the left hand side. In a CAR
process, both sides are involved and the position of the resonances will be a function
of both Ll and Lr. At low energies, the resonance for the two CAR processes will
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Figure 7.1.: Schematics to identify the contributions to the conductance in the
symmetrically biased case. Depicted are the filled states in the three reservoirs, and
the current of electrons and holes between the barriers. a) AR contribution for positive
bias, b) and c) The two possible CAR contributions for positive bias, d) Summary of
the processes for negative bias. If negative voltages are applied, the roles of electrons
and holes are interchanged, but the resulting conductance stays unchanged.

be superimposed and occur at length values Ll = Lr mod π/kF . In a CAR process,
the incoming hole and the outgoing electron are spatially separated. It is therefore
possible to reach the optimal resonance condition for electrons and for holes even
if the two kinds of carriers have different wave vectors. For higher bias values, the
conductance maximum due to the CAR process sketched in figure 7.1b will be shifted
to lower values of Ll and higher values of Lr. It will be the other way round for the
conductance maximum due to the second CAR process. Therefore, we expect the
resonance peak to split up into two peaks.
CAR and AR have both a positive contribution to the differential conductance. This
can also be seen in figure 7.1: The current Ia is defined to be positive if positive
charges enter the superconductor. All electrons on the left leave the superconductor
and all holes enter it.
If a negative bias is applied instead of a positive one, electrons and holes will in-
terchange their roles (see figure 7.1d). The resonance positions and the sign of the
conductance, however, will not change because q+(V ) = q−(−V ).

Asymmetrically applied bias Va = 0, Vb > 0

Now let us shift attention to the bias configuration Va = 0, Vb > 0 used to measure
non-local conductance. The non-local conductance consists of an EC and a CAR
contribution. EC processes involve the same type of charge carriers on both sides of
the superconductor. Therefore, the resonances for EC will always occur for diagonal
values Ll = Lr mod π/kF . At positive bias, EC is carried by holes (see figure 7.2a)
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Figure 7.2.: Schematics to identify the contributions to the conductance in the
non-local conductance bias configuration. Depicted are the filled states in the three
reservoirs, and the current of electrons and holes between the barriers. a)EC contri-
bution carried by holes for positive bias, b)CAR contribution for positive bias, c)EC
contribution carried by electrons for negative bias, d)CAR contribution for negative
bias. If negative voltages are applied, the roles of electrons and holes are interchanged,
but the resulting conductance stays unchanged.

and if the voltage is increased, the resonances in Ll and Lr are simultaneously shifted
to lower values. EC leads to a negative differential conductance as the holes move out
of the superconductor and the current is defined positive entering the superconductor.
From the two kinds of CAR processes possible in the symmetrically biased case, only
the second one contributes to the non-local conductance. At low energies the EC
and the CAR peak will be superimposed. At higher energies, the CAR peak moves
away from the diagonal.
The application of a negative bias interchanges again the roles of electrons and holes,
but it does not influence the resonance positions. The only difference between a
positive and a negative applied bias is the global sign of the current cross-correlations.

With respect to the central question concerning the idea to use a Fabry-Perot
interferometer as a filter for the different processes contributing to the conductance
and to the current cross-correlations, we expect that it will be essential to operate the
system at energies, where the wave vectors for electrons and holes are significantly
different. We are now well prepared to analyze the calculated results, which will
turn out to be in qualitative agreement with the scenario discussed in this section.
We start with the tunnel regime, investigate then how the contrast diminishes with
increasing interface transparency and have finally a closer look at a system with
intermediate interface transparencies.
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7.2. The Tunnel Regime

Let us now discuss the calculated conductance and the current cross-correlations.
In a first step, the barriers between the superconducting and the normal regions are
chosen in the tunnel regime (Tlns = Trsn ≈ 0.01) in order to achieve sharp resonances.
The distances Ll and Lr are chosen to be of the order of ten times the coherence
length ξ. This distance allows to observe phase differences ∆φ = |φe − φh| of the
order of 2π between electrons and holes already at energies much smaller than the
superconducting gap.
As in the last chapter for the averaged system, we will study four different quantities:
The conductance in the symmetrically biased case, the non-local conductance, where
the normal electrode in which the current is calculated is on the same potential as the
superconductor, and the current cross-correlations in the same two bias configurations.
The results are presented in the figures 7.3, 7.4, 7.5 and 7.6. The panels a) and c)
show always a three-dimensional plot of the conductance respectively the current
cross-correlations as a function of the distances between the barriers Ll and Lr.
The three-dimensional plot in panel a) depicts always the situation in the limit of
zero energy. The one in panel b) refers to higher energies. The three-dimensional
plots are completed by cuts through the resonances. These cuts show the different
contributions in different colors and have a higher resolution.

Conductance for a symmetrically biased system

Figure 7.3a shows the differential conductance dIa/dV |V=Va=Vb>0 in the symmet-
rically biased case Va = Vb as a function of the distances Ll and Lr in the limit
V → 0. There are resonance mountain ranges for two values of Ll and there are four
peaks which stand out of the mountain ranges. The mountain ranges correspond
to a Lr-independent process and will therefore be due to AR. This is confirmed by
figure 7.3b showing in a cut along one of the mountain ranges the AR and the CAR
component separately. Figure 7.3b shows us also that the mountain peaks are due to
CAR. The relative distance of two subsequent resonance peaks in units of kF is π in
Lr and in Ll direction. But the absolute resonance positions are not given by integer
multiples of π as it would be the case in a simple optical Fabry-Perot interferometer
with two identical mirrors. Figure 7.3c shows the differential conductance at higher
voltage (but still much smaller than the gap). As expected from section 7.1, the AR
mountain ranges disappear because the electron and hole resonances do not overlap
anymore. Every CAR peak splits up into two peaks corresponding to the two CAR
contributions.
The observation of the disappearance of AR and the splitting of the CAR peaks is
already in itself interesting. As the peaks are uniquely due to CAR processes, the
desired filtering is achieved. A NNSNN-system operated with symmetrical bias at
energies where AR is suppressed and tuned to a CAR resonance peak, could be a
good source of entangled electrons.
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7. The Ballistic System

Non-local conductance for Va = 0, Vb > 0

Figure 7.4 depicts the calculated differential non-local conductance for the bias
Va = 0, Vb > 0. Panel a) shows the non-local differential conductance dIa/dVb|Va=0

as a function of the distances Ll and Lr at very low voltage Vb. There are two
resonance peaks on the diagonal, where Ll = Lr, and two additional resonance peaks
where Ll = Lr ± π/kF . From the considerations in the last section, we expect the
EC and the CAR resonances to appear at the same positions. As the peaks are
negative, the EC contribution is apparently stronger than the CAR contribution.
Figure 7.4b showing a cut through figure 7.4a at constant Ll, where the total current
is decomposed into its EC and CAR component, confirms that the peaks in the
three-dimensional plot are indeed a superposition of EC and CAR.
When Vb is increased, the EC and the CAR resonance move apart (see figure 7.4c).
As expected the EC peaks stay on the diagonals and at Ll = Lr ± π/kF , but their
positions are shifted to lower length values. The positive conductance peaks due to
CAR appear at the same Lr value as the EC resonance peaks, as both processes are
carried by holes on the right hand side. On the left hand side CAR is carried by
electrons whose wave vector q+ decreases with increasing voltage Vb. Consequently,
the Ll values of the peak position increase with increasing voltage.
Again, the desired filtering of different processes is obtained. This voltage configura-
tion is interesting as the conductance changes between positive and negative values
if Lr is changed.

Differential current cross-correlations
The differential current cross-correlations dSab/dV |Va=Vb=V depicted in figure 7.5

and dSab/dVb|Va=0 depicted in figure 7.6 behave very similarly to the corresponding
differential conductance if one compares the CAR-NR component of the current
cross-correlations with the CAR component of the conductance and the EC-NR
component with the EC component. The only striking difference is the absence of
the mountain range in the noise at low symmetrical bias.
The similarity between current cross-correlations and conductance has already been
discussed at the end of section 6.3 in connection to the work of Bignon et al. [98]:
As the barriers are opaque, the most likely process to occur is normal reflection.
Therefore, the elements of the scattering matrix corresponding to normal reflection
are close to one and EC-NR is similar to EC and CAR-NR is similar to CAR. Only
the AR component of the conductance has no counterpart in the current cross-
correlations, because all elements of the current cross-correlations are composed of
a local and a non-local process. An AR-NR component does not exist and the AR
mountain range is absent in the noise.
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Figure 7.3.: Differential conductance for symmetrically applied bias V = Va = Vb
in the tunneling limit Tlns = Trsn = 0.01, Tlnn = Trnn = 0.26,
a) as a function of Lr and Ll at low voltage |e|V = 1 · 10−4∆,
b) cut through a) along one of the mountain ranges (at Ll = 3183.9π/kF ) at higher
resolution,
c) as a function of Lr and Ll at higher voltage |e|V = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.7π/kF at higher resolution,
d2) cut through c) at Ll = 3184.1π/kF at higher resolution.
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Figure 7.4.: Differential non-local conductance Va = 0 in the tunneling limit
Tlns = Trsn = 0.01, Tlnn = Trnn = 0.26,
a) as a function of Lr and Ll at low voltage |e|Vb = 1 · 10−4∆,
b) cut through a) at Ll = 3183.9π/kF at higher resolution,
c) as a function of Lr and Ll at higher voltage |e|Vb = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.7π/kF at higher resolution,
d2) cut through c) at Ll = 3184.1π/kF at higher resolution.
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Figure 7.5.: Differential current cross-correlations for Va = Vb in the tunneling
limit Tlns = Trsn = 0.01, Tlnn = Trnn = 0.26,
a) as a function of Lr and Ll at low voltage |e|V = 1 · 10−4∆,
b) cut through a) at Ll = 3183.9π/kF at higher resolution,
c) as a function of Lr and Ll at higher voltage |e|V = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.7π/kF at higher resolution,
d2) cut through c) at Ll = 3184.1π/kF at higher resolution.
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Figure 7.6.: Differential current cross-correlations for Va = 0 in the tunneling limit
Tlns = Trsn = 0.01, Tlnn = Trnn = 0.26,
a) as a function of Lr and Ll at low voltage |e|Vb = 1 · 10−4∆,
b) cut through a) at Ll = 3183.9π/kF at higher resolution,
c) as a function of Lr and Ll at higher voltage |e|Vb = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.7π/kF at higher resolution,
d2) cut through c) at Ll = 3184.1π/kF at higher resolution.
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7.3. Increasing the Interface Transparency

In the last section, we have studied the ballistic system in the tunnel regime where
all resonance peaks are sharp. However, the systems in which electronic Fabry-Perot
interferences have already been observed, for example [126, 127], were in the opposite
regime of high interface transparency. For increased barrier transparencies, we expect
the resonance peaks to become broader and the separation of the different peaks
to become less pronounced. In this section, we want to clarify, if it is necessary
to stay in the tunnel regime or if the filtering effect survives to higher interface
transparencies.

To investigate systematically what happens when the interface transparency is
increased, the non-local conductance at eVb = 6.25 ·10−2∆ and Va = 0 was calculated
for different barrier transparencies, at constant Lr value, which was chosen to be
in resonance so that the conductance in function of Ll would feature CAR and EC
peaks. Figure 7.7 shows this conductance for a short superconducting electrode
R = 0.25ξ and for different values of Tlnn = Tlns = Trsn = Trnn = T . The CAR peak
shows an interesting feature: It splits up into two peaks. One possible explanation is
that two kinds of CAR resonances can occur. In the present voltage configuration
CAR is carried by electrons on the left hand side. The first possibility is that the
electron oscillates between the barriers Tlnn and Tlns as in the tunnel regime. The
second possibility is that the electron enters the superconductor as quasi-particle and
the (quasi-)electron oscillates between the barriers Tlnn and the Trsn. The average
over the superconductor does not destroy this resonance because the integral is the
same for the electron oscillating at the left hand side and for the hole oscillating at
the right hand side. This two possibilities lead to two different resonance lengths.
As a consequence of this splitting, the CAR peak vanishes rapidly with increasing
barrier transparency, and if one wants to observe it, one should not choose barriers
more transparent than T ≈ 0.3.
The amplitude of quasi-particles decreases exponentially with the superconducting
length. Therefore, one can hope to suppress the second resonance between the Tlnn
and the Trsn barrier by elongating the superconducting electrode. This works indeed,
as the plots in figure 7.8 where R = ξ show: The EC and CAR peaks are sharper
than in the case of the extremely short superconducting electrode and there is no
splitting. Even for barrier transparencies as high as T = 0.7, the signature of the EC
and the CAR contribution is clearly visible. Against the general trend, we have here
a situation where a longer distance in the superconductor leads to a larger signal.

In conclusion, it is not necessary to operate the NNSNN device in the tunnel
regime in order to filter the different processes. Surprisingly, CAR resonances are
better resolved if the distance in the superconducting electrode is not too short.

Let us now study a system for intermediate interface transparencies T = Tlnn =
Tlns = Trsn = Trnn = 0.5 and R = ξ, which is clearly outside the tunnel regime
but has still a good resolution between the different processes, in more detail. We

159



7. The Ballistic System

T =0.1

−2

−1.5

−1

−0.5

0

0.5

d
I a

d
V
b

∣ ∣ ∣ ∣ V
a
=
0

[

e2 h

]

3184π 3185π

Ll[1/kF ]

EC
CAR
total

T =0.2

−2

−1.5

−1

−0.5

0

0.5

d
I a

d
V
b

∣ ∣ ∣ ∣ V
a
=
0

[

e2 h

]

3184π 3185π

Ll[1/kF ]

EC
CAR
total

T =0.3

−2

−1.5

−1

−0.5

0

0.5

d
I a

d
V
b

∣ ∣ ∣ ∣ V
a
=
0

[

e2 h

]

3184π 3185π

Ll[1/kF ]

EC
CAR
total

T =0.4

−2

−1.5

−1

−0.5

0

0.5

d
I a

d
V
b

∣ ∣ ∣ ∣ V
a
=
0

[

e2 h

]

3184π 3185π

Ll[1/kF ]

EC
CAR
total

T =0.5

−2

−1.5

−1

−0.5

0

0.5

d
I a

d
V
b

∣ ∣ ∣ ∣ V
a
=
0

[

e2 h

]

3184π 3185π

Ll[1/kF ]

EC
CAR
total

T =0.6

−2

−1.5

−1

−0.5

0

0.5

d
I a

d
V
b

∣ ∣ ∣ ∣ V
a
=
0

[

e2 h

]

3184π 3185π

Ll[1/kF ]

EC
CAR
total

Figure 7.7.: Non-local conductance at |e|Vb = 6.25 · 10−2∆ and Va = 0 for Tlnn =
Tlns = Trsn = Trnn = T as indicated in the figure, for a very short superconducting
electrode R = 0.25ξ, at constant Lr value, chosen to be in resonance so that the
conductance in function of Ll features CAR and EC peaks. The CAR peak splits up
in two peaks. For T = 0.5 and larger, the CAR peak has completely disappeared.
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Figure 7.8.: Non-local conductance at eVb = 6.25 · 10−2∆ and Va = 0 for
Tlnn = Tlns = Trsn = Trnn = T as indicated in the figure, for a slightly longer
superconducting electrode R = ξ, at constant Lr value, chosen to be in resonance so
that the conductance in function of Ll features CAR and EC peaks. The EC and CAR
peaks are sharper than in the case of the extremely short superconducting electrode
depicted in figure 7.7 and there is no splitting. Even for barrier transparencies as
high as T = 0.7 the signature of the EC and the CAR contribution is clearly visible.
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proceed in the same way as in the tunnel regime and analyze the conductance and
the current cross-correlations in two different voltage configurations.

Conductance for a symmetrically biased system

Figure 7.9 shows the differential conductance for a symmetrically biased system.
At low energies (figure 7.9a) the predominant structures are again the AR mountain
ranges. But in difference to the situation in the tunnel regime, there are no CAR peaks
on top of the mountain ranges. Instead, at the positions we would have expected
them, there are depressions. The cut along the mountain range (figure 7.9b) shows
that the AR component features a deep depression where Lr = Ll. This depression
exists already in the tunnel regime (figure 7.3), but is much less pronounced there.
The CAR component increases when Lr approaches Ll as if a peak was to form,
but falls back to zero at Lr = Ll. In the symmetrical biased case, the differential
conductance has no EC component, not because the scattering matrix elements for
EC processes are zero, but because there are no free states in the reservoirs. The
non-local differential conductance (figure 7.11b) shows that EC processes are very
likely to occur at Lr = Ll = 3183.7π/kF with respect to the scattering matrix. As
the probabilities for the four possible processes have to sum up to one, a large EC
scattering matrix element is only possible at the cost of the CAR and AR scattering
matrix elements. In the tunnel regime, the most probable process is normal reflection.
The EC scattering matrix element can be increased at the cost of the NR scattering
matrix element which has no signature in the conductance. But here, the AR
contribution is as high as 3.3e2/h, while the maximal possible value in a four channel
system is 4e2/h.
If higher voltages are applied (see figure 7.9c), each mountain range splits up into two
less high mountain ranges. In the tunnel regime, the AR contribution disappeared
at higher voltage. Electrons and holes have different wave vectors and therefore
different resonance lengths and if the resonances are narrow, electrons and holes are
not in resonance at the same time. Here with the higher interface transparencies,
the resonances are wider and if the electron is in resonance the hole part is still large
enough to form a peak and vice versa. At higher applied voltage, the mountain
ranges are surmounted by CAR peaks. The resonance of the EC elements of the
scattering matrix occur at different values of Lr and CAR and EC are not in direct
competition. The AR contribution (figure 7.9 d1 and d2) features at higher voltage
two depressions, where there was only one at lower voltage. In one case AR is
decreased in favor of CAR and in the second case, on the diagonals where Lr = Ll

mod π/kF , it is decreased, as in the low energy case, in favor of EC.

Non-local conductance for Va = 0, Vb > 0

Figure 7.10 shows the non-local conductance. The peaks position at both studied
voltages have the same symmetry as for the non-local conductance in the tunnel
regime. But the peaks and depressions are less sharp and higher. In the tunnel
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Figure 7.9.: Differential conductance for symmetrically applied bias V = Va = Vb
for intermediate interface transparency T = Tlnn = Tlns = Trsn = Trnn = 0.5 and
R = ξ,
a) as a function of Lr and Ll at low voltage |e|V = 1 · 10−4∆,
b) cut through a) along one of the mountain ranges (at Ll = 3183.7π/kF ) at higher
resolution,
c) as a function of Lr and Ll at higher voltage |e|V = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.5π/kF at higher resolution,
d2) cut through c) at Ll = 3183.9π/kF at higher resolution.
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Figure 7.10.: Differential non-local conductance Va = 0 for intermediate interface
transparency T = Tlnn = Tlns = Trsn = Trnn = 0.5 and R = ξ,
a) as a function of Lr and Ll at low voltage |e|Vb = 1 · 10−4∆,
b) cut through a) at Ll = 3183.7π/kF at higher resolution,
c) as a function of Lr and Ll at higher voltage |e|Vb = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.5π/kF at higher resolution,
d2) cut through c) at Ll = 3183.9π/kF at higher resolution.
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Figure 7.11.: Differential current cross-correlations for symmetrically applied bias
V = Va = Vb for intermediate interface transparency T = Tlnn = Tlns = Trsn =
Trnn = 0.5 and R = ξ,
a) as a function of Lr and Ll at low voltage |e|V = 1 · 10−4∆,
b) cut through a) along one of the mountain ranges (at Ll = 3183.7π/kF ) at higher
resolution,
c) as a function of Lr and Ll at higher voltage |e|V = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.5π/kF at higher resolution,
d2) cut through c) at Ll = 3183.9π/kF at higher resolution.
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Figure 7.12.: Differential current cross-correlations for Va = 0 for intermediate
interface transparency T = Tlnn = Tlns = Trsn = Trnn = 0.5 and R = ξ,
a) as a function of Lr and Ll at low voltage |e|Vb = 1 · 10−4∆,
b) cut through a) at Ll = 3183.7π/kF at higher resolution,
c) as a function of Lr and Ll at higher voltage |e|Vb = 6.25 · 10−2∆,
d1) cut through c) at Ll = 3183.5π/kF at higher resolution,
d2) cut through c) at Ll = 3183.9π/kF at higher resolution.
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regime, the EC and the CAR peak being superimposed at low voltage were similar
in magnitude. On figure 7.10b however, the EC amplitude is much larger than the
CAR amplitude. As in the symmetrically biased case, there is no CAR peak, but
the forming peak features a crater. This figure illustrates that the dip in the CAR
contribution occurs exactly at the peak-position in the EC contribution, indicating
that the competition between CAR and EC at the level of the scattering matrix is
at the origin of the crater in the CAR peak.

Differential current cross-correlations for a symmetrically applied bias

Figure 7.11 shows the current cross-correlations for the symmetric bias case. In
the tunnel regime the current cross-correlations were dominated by CAR-NR and
EC-NR as those processes depend only quadratic on the interface transparency, while
MIXED has cubic and CAR-AR and EC-AR even a bi-quadratic dependence on the
interface transparency. For the current cross-correlations at intermediate interface
transparency, this restriction does no longer exist. The current cross-correlations in
figure 7.11a feature trenches in Lr and in Ll direction. Their spatial extension lets us
conclude that they are connected to the AR amplitude which is independent of Lr

respectively Ll. From figure 7.11b, we see that the trenches are due to MIXED. Fig-
ure 7.11b shows also that the EC-AR component leads to sharp peaks at the positions
where Lr = Ll mod π/kF . These peaks are too narrow to be resolved in the surface
plot 7.11a. Here we have again an example for positive current cross-correlations
which are not due to CAR. The CAR-NR component which was dominant in the
tunnel regime is almost zero here which is consistent with the small amplitude of the
CAR process observed in the differential conductance.
At higher energies (figures 7.11d1 and d2), the CAR-NR contribution gains impor-
tance as the scattering matrix elements for CAR and EC are no longer in resonance
at the same position. In difference to the tunnel regime and as in the case of lower
energies, the MIXED processes play an important role.

Differential current cross-correlations for Va = 0, Vb > 0

The current cross-correlations in the non-local conductance bias configuration
shown in figure 7.12 feature, as the ones in the symmetrically biased case, at low
energy trenches where the AR parts of the scattering matrix are in resonance. The
MIXED component of the current cross-correlations plays an important role and leads
together with the EC-NR-component to mainly negative current cross-correlations.
At the points where Lr = Ll mod π/kF and the EC elements of the scattering matrix
are in resonance, the EC-AR component leads to positive peaks. At higher applied
voltage, there is again the separation of the Ll values where CAR and where EC is
in resonance and MIXED becomes less important.

Conclusion

These figures show that it is not necessary to be in the tunneling limit in order to
separate the different components of the conductance. Against the general trend,
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the distance in the superconductor should not be too short. The width and the
height of the resonances in the conductance are wider than in the tunnel regime
which could even facilitate their observation. As far as the current cross-correlations
are concerned, they are richer but also more difficult to interpret in the regime of
intermediate interface transparencies because more components play a role.

7.4. Could these Effects Be Observed

Experimentally?

What are the possibilities and obstacles for an experimental observation of the
phenomena discussed in this chapter? The Fabry-Perot effect needs ballistic transport
in a system with only a few (one) channels. The authors of the pioneering paper [126]
observed Fabry-Perot interferences in single-walled nanotubes. Instead of varying
the length of the nanotube, they change the Fermi-level position in the nanotube by
tuning the voltage applied to a gate under the nanotube. As the resonance position
depends on the product of wave number and length, changing the Fermi-wave length
has the same effect as changing the distance between barriers. This strategy is more
realistic than to imagine to vary the distances Ll and Lr. However, if the electrons
in the nanotube are sensitive to the electrostatic potential of a gate, they cannot be
perfectly screened. One would have to find a regime where the Coulomb interaction
is small enough to be neglected in comparison to the, at least in the tunnel regime,
also very small coupling energy between the nanotube and the reservoir, but high
enough that the Fermi wave vector can be influenced by a gate.

One could imagine a device consisting of two normal conducting and a supercon-
ducting electrode connected by one long carbon nanotube with a symmetry similar
to devices (see figure 5.4) used in recent experiments [105–108] where the normal and
superconducting electrodes are connected over quantum dots. But while there the
system was operated in the Coulomb blockade regime, we need the other extreme of
very small Coulomb energy. On both sides of the superconductor, there has to be a
gate that can be tuned separately so that several periods of Fabry-Perot interferences
can be swept in order to obtain plots similar to the one presented in the last section.

The next problem are the interfaces. In reference [126], where Fabry-Perot interfer-
ences are observed, the nanotube is connected with near-perfect ohmic contacts to the
electrodes. This means, it is in the regime of high interface transparencies (T ≈ 1),
not in the tunnel regime. If the interface transparency is high, the requirement to
have the charging energy much smaller than the coupling energy is easier to meet,
but in the extreme case of T ≈ 1 the contrast is too small. In the example of [126] the
minimal measured conductance is dI/dV ≈ 3.1e2/h and the maximal measured one
dI/dV ≈ 3.3e2/h. The last section showed that it is not necessary to be in the tunnel
regime to obtain a separation of the different contributions to the conductance. This
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can let us hope that an intermediate value of interface transparency can be found.
The next problem will then be to achieve this interface transparency experimentally.
For sharp Fabry-Perot interferences, the length of the nanotube has to be well defined.
If one uses only one long nanotube the superconducting region is created by the
proximity effect in the nanotube. So one cannot really speak of a sharp interface.
In conclusion, it will be very challenging to construct a device where the separation

of the different components of the conductance and of the current cross-correlations
by interference effects in absence of electron-electron interaction are observable. It
could, however, be possible to reach experimentally a regime where Fabry-Perot
interference effects are in competition to Coulomb blockade effects. The present
analysis of a simplified model describing an extreme case could help to explain such
experiments in an intermediate regime and it is a good basis for a more complete
theory.

7.5. Summary

The insertion of additional tunnel barriers into ballistic NSN-devices leads to
Fabry-Perot like oscillations of the differential conductance and of the current cross-
correlations. While at low energies the resonances for the CAR and the EC contribu-
tion to the non-local conductance occur for the same distances between the barriers,
those resonances are well separated at higher energies, because of the different energy
dependence of electron and hole wave vectors. In the tunnel regime, the shape of the
differential current cross-correlations is very similar to the shape of the differential
conductance.
If the central superconducting electrode is not too short, the Fabry-Perot-like oscilla-
tions survive to intermediate interface transparencies. In the semi-transparent regime,
the competition between the AR, CAR and EC components plays a role on the level
of the scattering matrix, because it has to stay unitary. The current cross-correlations
are not only composed of EC-NR and CAR-NR, but EC-AR, CAR-AR and MIXED
play also an important role.
The experimental realization of a system governed by Fabry-Perot oscillations only
will be at least challenging if not impossible. But the detailed study of the Fabry-
Perot regime presented here could help to understand an intermediate regime where
both Fabry-Perot effects and electron-electron interaction play a role.
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Transport in the Regime of the Quantum Hall Effect

We have developed a diagrammatic formalism based on a local conductivity model
which allowed us to calculate the effective longitudinal conductivity in the high
temperature regime of the quantum Hall effect. Our formalism is able to bridge the
regime of small fluctuations, which is already well described by first order perturbation
theory, to the so far inaccessible regime of strong fluctuations, where quantum Hall
samples are typically classed. For transport in a two dimensional electron gas under
a strong perpendicular magnetic field, two effects play an important role: The
drift motion of electrons along equipotential lines percolating the entire sample and
electron-phonon scattering which allows to pass saddle points forming transport-
bottle-necks. Both effects enter our formalism via the form of the local conductivity
tensor. A signature of the percolation effect is the critical exponent κ. The value
of κ has been previously conjectured using qualitative geometrical arguments. Our
formalism allowed us to calculate it microscopically.

So far, our formalism is limited to temperatures higher than the typical fluctuations
of disorder. It would be worthwhile to extend the calculation of the effective
conductivity to temperatures lower than the typical fluctuations of the disorder
potential, down to temperatures where the onset of quantum tunneling naively
sets a lower bound for the validity of the local conductivity approach. Below the
temperature scale associated to the typical disorder strength, the linearization of
the Fermi-Dirac distribution will no longer be possible. Additionally, first quantum
corrections have to be included in the Hall component of the local conductivity. Both
effects mean that we can no longer assume the conductivity fluctuations to follow a
Gaussian distribution. Wick’s theorem cannot be used and an alternative way to
calculate the correlators has to be found. This will certainly not be easy, but the
effort would pay in the description of the experimentally observed maximum of the
effective longitudinal conductivity reaching values close to e2/h.

We have compared our result to recent experiments and found overall a very
good agreement. For this comparison it was important to know the temperature
and magnetic field dependence of the ohmic conductivity σ0. So far we used an
estimation based on the electron-phonon scattering time found by [4] with Fermi’s
Golden Rule. However, the estimations at the end of section 3.1 show that first order
perturbation theory in the electron-phonon coupling is probably not enough. The
phonon contribution to σ0 should be studied in more detail. A first step would be to
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perform the calculation of the electron-phonon scattering time in a self-consistent
way.

Another interesting question is whether it is possible to apply the effective medium
approach to graphene instead of to ordinary two dimensional electron gases. It
has to be clarified whether there is a regime where the local conductivity approach
is justified and what are the relevant mechanisms for decoherence. Due to the
anomalous quantum Hall effect, the Hall conductivity will have a slightly different
form, but the main part of the calculation will stay unchanged.

In the last chapter on the quantum Hall effect, we have turned from the quasi-
classical high temperature to the fully quantum mechanical low temperature regime
and have studied tunneling over saddle points from the scattering of semi-coherent
state wave packets. We have analytically calculated the transmission through a
saddle point in the scalar potential in graphene and have found that asymmetric
saddle points break particle-hole symmetry in the conductance.
It was natural to start with the scalar potential, as a quantum point contact defined
by charged electrodes as well as disorder in form of charged impurities lead to saddle
points in the scalar potential. But one of the peculiarities of graphene is the random
mass potential due to the coupling to the substrate and it would be interesting
to calculate the transmission through a saddle point in this case. The Green’s
functions for a quadratic mass potential and a flat scalar potential are given in [70].
A calculation of the transmission in analogy to the one developed for the scalar
potential should be possible.

Conductance and Differential Current Cross-Correlations in Three-Terminal
Normal Conductor-Superconductor-Normal Conductor Hybrid Structures

We have studied the influence of additional barriers on the (non-local) conduc-
tance and differential current cross-correlations in three-terminal normal conductor-
superconductor-normal conductor (NSN) hybrid structures in order do answer two
questions: Can an effect similar to reflectionless tunneling enhance positive current
cross correlations in metallic, phase averaged systems? Can the Fabry-Perot in-
terference effects occurring in ballistic systems be used to distinguish the different
contributions to the conductance and to the current cross-correlations?

An important tool for this research was to divide the current cross-correlations into
different parts. This analysis allowed us to refute the hypothesis that positive current
cross-correlations in NSN structures are always a consequence of CAR processes.
Additional barriers in metallic, phase averaged systems lead to an enhancement
of local processes by reflectionless tunneling but have little influence on non-local
processes. The positive current cross-correlations expected for a symmetrically biased
system in the tunneling limit are not enhanced by the additional barriers. This
negative conclusion is important for experiments, as it shows that the use of diffusive
normal metals will probably not simplify the experimental observation of positive
current cross-correlation.
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In ballistic systems, additional barriers lead to Fabry-Perot oscillations and allow
to filter the different contributions of the conductance and of the current cross-
correlations, using the different energy dependence of the wave vectors for electrons
and holes.
All calculations of the conductance and the differential current cross-correlations

were performed in the zero temperature limit. Apart from making calculations
simpler this was justified because we wanted to study quantum and not thermal
noise. As experiments are always performed at finite temperature, it could be
interesting to include finite temperature effects, at least in order to estimate how low
temperature has to be so that thermal noise can be neglected. The generalization to
finite temperature is straightforward in the used scattering theory: Instead of the
Heaviside-Theta functions the full Fermi-Dirac distributions have to be used. At finite
temperature, there are additional contributions to the current cross-correlations.
An interesting extension of this work would be to include interaction effects, espe-

cially in the ballistic system, as the Fabry-Perot effects will always be in competition
with Coulomb blockade. Will the filtering of the different processes still be possible
in the presence of interactions?
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A. Self-Consistent Diagrammatic
Approach to the Effective
Longitudinal Conductivity

In the main part of my thesis, the effective longitudinal conductivity is first calcu-
lated perturbatively and then extrapolated to the regime of strong fluctuations. This
is a quite unusual method and in view of the diagrammatic representation, it would
perhaps seem more natural to calculate 〈χ〉 in self consistent Born approximation.
We will try to do that in this appendix. It turns out that the first order of our
self-consistent diagrammatic scheme, equivalent to the self consistent Born approxi-
mation, is not enough to reach the regime of very small dissipation and to extract
the critical exponent κ. Going to second order, we find that such an expansion has a
very slow convergence and cannot allow the determination of the critical exponent κ.

Derivation of the Dyson Equation

Our goal is to calculate the tensor 〈χ̂〉 given by equation 2.66 with the graphical
representation

〈χ̂〉 = + + + ... . (A.1)

Let us define the full propagator Ĝ as 〈χ̂〉 without the outermost arc and without
diagrams which do not have one arc which connects the first and the last dot.:

Ĝ == = +

+ + + + .... (A.2)

The expansion of Ĝ has the form of a geometric series. It can be resummed

Ĝ = Ĝ0 + Ĝ0〈χ̂〉G0 + Ĝ0〈χ̂〉G0〈χ̂〉G0 + ... = Ĝ0(1− 〈χ̂〉G0)−1 (A.3)
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and yields a Dyson equation in matrix form, where 〈χ̂〉 plays the role of the self-energy:

Ĝ(p) = Ĝ0(p) + Ĝ(p)〈χ̂(p)〉Ĝ0(p). (A.4)

The special form of the free propagator Ĝ0(p) = −ppt/(σ0p
2) = pG0(p)p

t with
G0(p) = −1/(σ0p2) gives us hope, that it could be possible to derive a scalar Dyson
equation which depends on the norm of p only. Let us suppose that the full Green’s
function has the same form as the free one, i. e. Ĝ(p) = pG(p)pt and plug this ansatz
into the Dyson equation:

pG(p)pt = pG0(p)p
t + pG(p)pt〈χ̂(p)〉pG0(p)p

t. (A.5)

Let us define S(p) = pt〈χ̂(p)〉p (as G0 and G depend only on the norm of p, the
Dyson equation implies that S depends also on the norm only), then

pG(p)pt = pG0(p)p
t + pG(p)S(p)G0(p)p

t (A.6)

and after multiplication with pt/p2 from the left hand side and with p/p2 from the
right hand side, we get the desired scalar Dyson equation:

G(p) = G0(p) +G(p)S(p)G0(p). (A.7)

As G0(p) = −1/(σ0p2) it is convenient to define s(p) = S(p)/p2 and g(p) = p2G(p),
then the Dyson equation reads:

g(p) =
−1

σ0 + s(p)
. (A.8)

First Order Self Consistent Scheme

The first order self consistent scheme, analogous to the self consistent Born
approximation, consists in neglecting all diagrams with crossings. So we approximate
〈χ̂〉 by

Σ̂1 = + + + + .... (A.9)

Ĝ is now defined as Σ̂1 without the outermost arc and from this definition follows
that Σ̂1 can be represented as

Σ̂1 = =

∫
d2p

(2π)2
K(p)ǫ̂Ĝ ǫ̂ (A.10)
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(K(p) and ǫ have been defined in equations (2.71) ans (2.72)). In the scalar Dyson
equation (A.8) s is replaced by

s1(q) =
qtΣ1(q)q

q2
=

1

q2

∫
d2p

(2π)2
K(p− q)qtǫ̂Ĝ(p)ǫ̂q

=
1

q2

∫
d2p

(2π)2
G(p)K(p− q)qtǫ̂pptǫ̂q

=
−1
q2

∫
d2p

(2π)2
G(p)K(p− q)(p× q)2 (A.11)

=
−1
q2

∫
d2p

(2π)2
G(p)K(p− q)p2q2 sin2(φ)

= −k20ξ
∫

dp

4π
p g(p) e−

ξ2

4
(p2+q2)

∫

dφ sin2(φ)e−
ξ2

2
pq cos(φ)

= −k
2
0ξ

4

∫

dp p g(p) e−
ξ2

4
(p2+q2)

[

I0

(
pqξ2

2

)

− I2
(
pqξ2

2

)]

where In are the modified Bessel functions of the first kind.
Equation (A.8) and equation (A.11) form a set of self consistent equations. We

solve them numerically with the following steps: First a start function ga for g is
guessed, then a first version of s1 is calculated from this start function and a new
function gb for g is calculated from the first version of s1. If ga 6= gb, ga is set to
ga = 1/2(ga + gb) and the process is repeated until self consistency is reached, i. e.
until ga = gb. The desired value of the diagonal elements of 〈χ̂〉 is then given by

〈χ〉 = s1(q = 0) = −k
2
0ξ

4

∫

dp p g(p) e−
p2

4 . (A.12)

Mixing in each step the new and the old version of g instead of replacing directly ga
by gb increases the numerical stability. The functions ga, gb and s1 are represented
as arrays of sampling points. Due to the exponential function in equation (A.11), it
is enough to know these functions for small arguments. For large values of σ0 the
equations converge fast for arbitrary choices of the start function. A good strategy
is to calculate first g for large values of σ0 and decrease then step by step σ0, where
in each step the final result of g of the preceding step is used as start function.
Figure (A.1) shows the effective longitudinal conductivity σL = σ0+〈χ̂〉 in function

of σ0 calculated in the first order self consistent approximation in comparison to
σL calculated in bare first order perturbation theory and with four-loop order
resummation. The first order self consistent Born approximation does not diverge for
small values of σ0, in difference to plain perturbation theory, but it tends towards a
finite value instead of going to zero with a power law. The regime of large conductivity
fluctuations is therefore not well described and it is impossible to extract the critical
exponent κ from the first order self consistent Born approximation. However, this
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Figure A.1: Comparison of first order
self consistent Born approximation with
first order perturbation theory and with the
four-loop order resummation. The first
order self consistent Born approximation
does not diverge for small values of σ0, but
it tends towards a finite value instead of
going to zero.

scheme allows to push the validity of the perturbation theory to smaller σ0 values
(down to σ0 ≈ 1).

Second Order Self Consistent Scheme

As the first order self consistent Born approximation is not sufficient, let us go on
and include all diagrams where every arc crosses at most one other arc. This means
approximating 〈χ̂〉 by 〈χ̂〉 ≈ Σ̂a

2 + Σ̂b
2, where Σ̂a

2 includes all diagrams where the first
and the last dot are connected by one arc, i. e. the diagrams of Σ1 and additionally
diagrams where the inner arcs are crossed

Σ̂a2 = Σ̂1+ + ... (A.13)

and Σb
2 contains diagrams where the first and the last point are connected to different

points and the corresponding arcs cross each other

Σ̂b2 = + + + + .... (A.14)

In the Dyson equation (A.8) we have now to set s = sa2 + sb2, where s
a
2 = qtΣa

2q/q
2

and sb2 = qtΣb
2q/q

2. sa2 is calculated in the same way as s1. The difference between
s1 and sa2 is that the function Ĝ includes more diagrams in the later case. Σ̂b

2 can be
represented as

Σ̂b
2 = (A.15)
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and therefore

sb2(q) =
qtΣb

2(q)q

q2
(A.16)

=
1

q2

∫
d2p1
(2π)2

∫
d2p2
(2π)2

K(p1 − q)K(p2 − p1)q
tǫ̂Ĝ(p1)ǫ̂Ĝ(p2)ǫ̂Ĝ(q− p1 + p2)ǫ̂q

=
1

q2

∫
d2p1
(2π)2

∫
d2p2
(2π)2

G(p1)G(p2)G(|q− p1 + p2|)K(p1 − q)K(p2 − p1)

qtǫ̂p1p1
tǫ̂p2p2

tǫ̂(q− p1 + p2)(q
t − p1

t + p2
t)ǫ̂q

=
1

q2

∫
d2p1
(2π)2

∫
d2p2
(2π)2

G(p1)G(p2)G(|q− p1 + p2|)K(p1 − q)K(p2 − p1)

(q× p1)(p1 × p2) [p2 × q− p2 × p1] [−p1 × q+ p2 × q]

=

∫
d2p1
(2π)2

∫
d2p2
(2π)2

G(p1)G(p2)G(|q− p1 + p2|)K(p1 − q)K(p2 − p1)
qp1 sin(φ1)

q2

(p1p2 sin(φ2 − φ1)) [p2q sin(φ2)− p2p1 sin(φ2 − φ1)] [−p1q sin(φ1) + p2q sin(φ2)]

=
ξ2k40
16π2

∫

d2p1

∫

d2p2g(p1)g(p2)g(|q− p1 + p2|)

e−
ξ2(q2+p21−2p1q cos(φ1))

4 e−
ξ2(p21+p22−2p1p2 cos(φ2−φ1))

4 sin(φ1) sin(φ2 − φ1)

−qp1 sin(φ2) sin(φ1) + qp2 sin(φ2)
2 + p21 sin(φ2 − φ1) sin(φ1)− p1p2 sin(φ2 − φ1) sin(φ2)

q2 + p21 + p22 − 2qp1 cos(φ1) + 2qp2 cos(φ2)− 2p1p2 cos(φ2 − φ1)

=
ξ2k40
16π2

∫

dp1p1

∫

dφ1

∫

dp2p2

∫

dφ2g(p1)g(p2)g(|q− p1 + p2|)

e−
ξ2(q2+p21−2p1q cos(φ1))

4 e−
ξ2(p21+p22−2p1p2 cos(φ2−φ1))

4 sin(φ1) sin(φ2 − φ1)

−qp1 sin(φ2) sin(φ1) + qp2 sin(φ2)
2 + p21 sin(φ2 − φ1) sin(φ1)− p1p2 sin(φ2 − φ1) sin(φ2)

q2 + p21 + p22 − 2qp1 cos(φ1) + 2qp2 cos(φ2)− 2p1p2 cos(φ2 − φ1)
.

Again, we calculate g self consistently. For the first order self consistent approximation,
we had to do only one integral, as the angular integral could be done analytically
and it was enough to use the Euler formula. To do the four dimensional integral
needed here, we use the Monte Carlo integration routine from the GNU scientific

library. The continuous values of g have to be interpolated from the sampling
points. Once self consistency is reached, the diagonal value of 〈χ̂〉 is given by
〈χ〉 = sa2(q = 0) + sb2(q = 0).
Again, 〈χ〉 is first calculated for large values of σ0 and then σ0 is stepwise decreased.

The result is shown in figure A.2. The result found in second order self consistent
Born approximation is closer to the result found with the resummation technique
than the first order one, but for σ0 . 0.5 the second order self consistent result is
still clearly larger than the four-loop order resummation result. From the points
in the interval 0.2e2/h < σ0 < 0.5e2/h it seems unlikely that the second order self
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A. Self-Consistent Diagrammatic Approach to σL
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Figure A.2: Comparison of the sec-
ond order self consistent Born approx-
imation with the first order result and
with the four-loop order resummation.
The second order self consistent Born
approximation is closer to the result
found with the resummation technique
than the first order one. The second or-
der self consistent Born approximation
does not converge for σ0 . 0.2e2/h

consistent Born result will reach zero in the limit σ0 → 0. For σ0 . 0.2e2/h the
second order self consistent calculation does not converge anymore. We could not
clarify if the reason is a mathematical one or a lack of numerical accuracy. We
tried to increase the number of the sampling points, to reduce σ0 more slowly or
to degrease the mixing of ga and gb in order to make the self consistent calculation
converge, but without success.
The self consistent approximation seems thus unable to capture the behavior of

the longitudinal effective conductivity in the limit of strong spatial fluctuations.
In order to extract the critical exponent κ one has to use the non-perturbative
Padé resummation technique presented in the main part of this thesis. A possibly
more satisfactory approach would be a systematic Monte Carlo resummation of
the diagrams. But our results indicate that such a methodology may be poorly
convergent in the limit of small dissipation.
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B. Components of Current
Cross-Correlations

Components of the current cross-correlations:
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2e2

h

∫

dE

(

2ℜ
[

s
ee
abs

ee
bas

ee†
aa s

ee†
bb

]

(θ(|e|Va − E) − 2θ(|e|Va − E)θ(|e|Vb − E) + θ(|e|Vb − E))

+2ℜ
[

s
hh
ab s

hh
ba s

hh†
aa s

hh†
bb

]

(θ(−|e|Va − E) − 2θ(−|e|Va − E)θ(−|e|Vb − E) + θ(−|e|Vb − E))











EC − NR

+2ℜ
[

s
eh
bas

he
abs

hh†
aa s

ee†
bb

]

(−θ(−|e|Va − E) + 2θ(−|e|Va − E)θ(|e|Vb − E) − θ(|e|Vb − E))

+2ℜ
[

s
eh
abs

he
bas

ee†
aa s

hh†
bb

]

(−θ(|e|Va − E) + 2θ(|e|Va − E)θ(−|e|Vb − E) − θ(−|e|Vb − E))











CAR − NR

+2ℜ
[

s
hh
ab s

ee
bas

eh†
bb

s
he†
aa

]

(−θ(|e|Va − E) + 2θ(|e|Va − E)θ(−|e|Vb − E) − θ(−|e|Vb − E))

+2ℜ
[

s
ee
abs

hh
ba s

eh†
aa s

he†
bb

]

(−θ(−|e|Va − E) + 2θ(−|e|Va − E)θ(|e|Vb − E) − θ(|e|Vb − E))











EC − AR

+2ℜ
[

s
he
bas

he
abs

he†
aa s

he†
bb

]

(θ(|e|Va − E) − 2θ(|e|Va − E)θ(|e|Vb − E) + θ(|e|Vb − E))

+2ℜ
[

s
eh
abs

eh
bas

eh†
aa s

eh†
bb

]

(θ(−|e|Va − E) − 2θ(−|e|Va − E)θ(−|e|Vb − E) + θ(−|e|Vb − E))











CAR − AR

+2ℜ
[

s
eh
abs

hh
ba s

hh†
bb

s
eh†
aa + s

hh
ab s

eh
bas

hh†
aa s

eh†
bb

]

(−θ(−|e|Va − E) + 2θ(−|e|Va − E)θ(−|e|Vb − E) − θ(−|e|Vb − E))

+2ℜ
[

s
ee
abs

he
bas

ee†
aa s

he†
bb

+ s
ee
bas

he
abs

ee†
bb

s
he†
aa

]

(−θ(|e|Va − E) + 2θ(|e|Va − E)θ(|e|Vb − E) − θ(|e|Vb − E))











MIXED1

+2ℜ
[

s
ee
abs

eh
bas

ee†
bb

s
eh†
aa + s

hh
ba s

he
abs

hh†
aa s

he†
bb

]

(θ(−|e|Va − E) − 2θ(−|e|Va − E)θ(|e|Vb − E) + θ(|e|Vb − E))

+2ℜ
[

s
eh
abs

ee
bas

ee†
aa s

eh†
bb

+ s
hh
ab s

he
bas

hh†
bb

s
he†
aa

]

(θ(|e|Va − E) − 2θ(|e|Va − E)θ(−|e|Vb − E) + θ(−|e|Vb − E))











MIXED2

+2ℜ
[

s
hh
aas

ee
bas

eh†
ba

s
he†
aa + s

ee
aas

hh
ba s

he†
ba

s
eh†
aa

]

(−θ(|e|Va − E) + 2θ(|e|Va − E)θ(−|e|Va − E) − θ(−|e|Va − E))
}

MIXED3a

+2ℜ
[

s
eh
abs

he
bb s

ee†
ab

s
hh†
bb

+ s
hh
ab s

ee
bbs

he†
ab

s
eh†
bb

]

(−θ(|e|Vb − E) + 2θ(|e|Vb − E)θ(−|e|Vb − E) − θ(−|e|Vb − E))
}

MIXED3b

+2ℜ
[

s
eh
aas

ee
bas

ee†
aa s

eh†
ba

+ s
hh
ba s

he
aas

hh†
aa s

he†
ba

]

(θ(|e|Va − E) − 2θ(|e|Va − E)θ(−|e|Va − E) + θ(−|e|Va − E))
}

MIXED4a

+2ℜ
[

s
ee
abs

eh
abs

ee†
bb

s
eh†
ab

) + s
eh
abs

he
bb s

hh†
bb

s
he†
ab

)
]

(θ(|e|Vb − E) − 2θ(|e|Vb − E)θ(−|e|Vb − E) + θ(−|e|Vb − E))

)}

MIXED4b

Differential current cross-correlations in the non-local conductance setup:
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B. Components of Current Cross-Correlations
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[18] B. Douçot and V. Pasquier, Physics in a Strong Magnetic Field, Séminaire
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[103] R. Mélin, F. S. Bergeret, and A. L. Yeyati, Self-consistent microscopic calcula-
tions for nonlocal transport through nanoscale superconductors, Phys. Rev. B
79, 104518 (2009).

[104] J. Brauer et al., Nonlocal transport in normal-metal/superconductor hybrid
structures: Role of interference and interaction, Phys. Rev. B 81, 024515
(2010).

[105] L. Hofstetter et al., Finite-Bias Cooper Pair Splitting, Phys. Rev. Lett. 107,
136801 (2011).

[106] L. Hofstetter, S. Csonka, J. Nyg̊ard, and C. Schönenberger, Cooper pair splitter
realized in a two-quantum-dot Y-junction, Nature 461, 960 (2009).

[107] L. G. Herrmann et al., Carbon Nanotubes as Cooper-Pair Beam Splitters, Phys.
Rev. Lett. 104, 026801 (2010).

[108] A. Das et al., Entangling electrons by splitting Cooper pairs: Two-particle
conductance resonance and time coincidence measurements, Arxiv preprint
arXiv:1205.2455 (2012).

190



Bibliography

[109] S. Kogan, Electronic noise and fluctuations in solids (Cambridge Univ Pr,
Cambridge, 2008).
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Abstract

This thesis consists of two independent parts. The first one deals with transport in two dimensional
electron gases in the regime of the quantum Hall effect. In the second part, current and current
cross-correlations are studied in normal conductor-superconductor-normal conductor (NSN) hybrid
structures.
In the high temperature regime of the quantum Hall effect, the longitudinal conductance is
calculated in a diagrammatic formalism based on a local conductivity approach. It takes the
interplay between electron-phonon scattering and the drift motion along equipotential lines of the
disorder potential into account and provides a microscopic derivation of the universal transport
critical exponent that was up to now only conjectured from qualitative geometrical arguments.
Microscopic expressions for the dependence in temperature and magnetic field of the longitudinal
conductance are derived and compared to recent experiments.
In the low temperature regime of the quantum Hall effect, tunneling over saddle points is
studied from the scattering of semi-coherent state wave packets. We derive analytically the
transmission coefficient of saddle-points in the scalar potential in graphene and find that asymmetric
saddle-points break particle-hole symmetry in the conductance.
In three-terminal NSN hybrid structures the influence of additional barriers on the (non-local)
conductance and on current cross-correlations is studied with scattering theory. In metallic, phase
averaged systems additional barriers lead to an enhancement of local processes by reflectionless
tunneling but have little influence on non-local processes and on current cross-correlations. In
ballistic systems, additional barriers lead to Fabry-Perot oscillations and allow to distinguish the
different contributions to the conductance and to the current cross-correlations.

Key-Words: Quantum Transport, Quantum Hall Effect, Superconducting Hybrid Structures,
Tunneling, Scattering Theory, Percolation

Résumé

Cette thèse est constituée de deux parties indépendantes. La première partie traite du transport
dans des gaz d’électrons bidimensionnels dans le régime de l’effet Hall quantique. Dans la deuxième
partie, le courant et les corrélations croisées en courant sont étudiées pour des structures hybrides
conducteur normal- supraconducteur- conducteur normal (NSN).
Dans le régime de haute température de l’effet Hall quantique, la conductance longitudinale est
calculée par un formalisme diagrammatique basé sur une approche de conductivité locale. Ce
calcul prend en compte l’effet de dérive des électrons sur les lignes équipotentielles du potentiel
de désordre et permet la dérivation microscopique de l’exposant critique de transport qui était
auparavant seulement conjecturé à partir d’arguments géométriques qualitatifs. Des expressions
microscopiques pour la dépendance en température et en champ magnétique de la conductance
longitudinale sont dérivées et comparées avec des expériences récentes.
Dans le régime de basse température de l’effet Hall quantique, le passage du courant par effet tunnel
sur des points selles est étudié à partir de la diffusion de paquets d’onde d’états semi-cohérents.
Nous dérivons analytiquement le coefficient de transmission d’un point selle pour le potentiel
scalaire dans le graphène et trouvons que les points selles asymétriques brisent la symétrie
particule-trou de la conductance.
Dans des structures hybrides NSN, nous étudions l’influence de barrières additionnelles sur la
conductance (non-locale) et sur les corrélations croisées en courant avec la théorie de diffusion.
Dans les systèmes métalliques, où la phase est moyennée, des barrières additionnelles augmentent
les processus locaux par réflexion d’Andreev résonante (reflectionless tunneling), mais ont peu
d’influence sur les processus non-locaux et sur les corrélations croisées en courant. Dans les
systèmes balistiques, des barrières additionnelles causent des oscillations Fabry-Pérot et permettent
de distinguer les différents processus contribuant à la conductance et aux corrélations croisées en
courant.

Mots clés : Transport quantique, Effet Hall quantique, Structures hybrides supraconductrices,
Effet tunnel, Théorie de diffusion, Percolation


