Prof Etienne Craye 
  
Prof. Mohsen Mr Hervé Elhafsi 
  
Camus 
  
Zhi Li 
  

Etienne CRAYE, for his guidance and kindness. His pragmatic and strict attitude toward work set a good example for me in my scientific life. I still remember the words of him "En recherche, il ne faut jamais ê tre ni approximatif, ni superficiel. Avec de la persévérance, de la méthode et de la rigueur, rien n'est impossible." I'm grateful to my

List of Figures

 on the optimal policy for Component 1 with lost sales .. 

General Introduction Chapter 1.

The main objective of this work is to study a special case of an assemble-to-order (ATO) manufacturing system that is not only subject to demand for the assembled product but also subject to demand for the individual components. For this purpose, we use a Markov decision process (MDP) framework to formulate the system. In this first chapter, we present a basic knowledge of our work such as the definition of ATO systems, the significant role of optimal control, the principles of the general approach, and the problem setting. Finally, we conclude this chapter with a plan of the thesis.

Assemble-to-Order Systems

In today's business environment, with the increasing competitiveness of the global market, mass customization has become a major objective for many manufacturing companies. This trend has forced companies to adopt a hybrid operations strategy to better deal with a variety of market environments. Towards this end, an assembly system known as ATO, has emerged and became more popular. An ATO system produces multiple components and assembles them into a variety of final products. Demands occur only for the final products, but the system keeps inventory at the component level [START_REF] Song | Supply Chain Operations: Assemble-to-Order Systems[END_REF]. The products can be assembled from different components while components can be used by different products (see Fig. 1.1). An ATO system simplifies the process of manufacturing. It can be regarded as a manufacturing strategy which allows a product to be made or service to be available to meet the needs of a specific customer order. ATO systems are characterized by short assembly times and high product variety, which have the advantage of decreasing life cycles of products, meeting diverse customer needs, and saving on total cost. It is an efficient strategy that companies have applied to reengineer their production design. The primary application of the ATO strategy is in the computer assembly industry. For instance, companies such as Dell and IBM benefit from using the ATO strategy.

The former is famous for controlling inventory levels of components, and the latter is famous for two-stage server computers. Both of them successfully apply the ATO strategy to enhance their competitive position in the global PC market [START_REF] Agrawal | Optimal material control in an assembly environment with component commonality[END_REF][START_REF] Cheng | A two stage push-pull production planning model[END_REF]. Generally speaking, the ATO strategy is characterized by flexibility and responsiveness, and it is useful for manufacturing companies to secure market share, improve profits and enjoy a competitive advantage.

In this work, we consider an ATO system that produces n components with a single assembled product. Demand from both the product and the components can be satisfied or rejected/backordered. Components are produced one unit at a time on separate production facilities and held in stock incurring a holding cost. We assume exponentially distributed production times, and demand arrives in the system following independent Poisson processes.

In our model, since the final assembly time is considerably short, we neglect it. This assumption is reasonable and applied in most ATO systems (see [START_REF] Song | Supply Chain Operations: Assemble-to-Order Systems[END_REF]. Due to the possibility of components stock-out, some orders may not be satisfied immediately. The unsatisfied order may be lost or backordered resulting in a penalty cost. In this study we consider two cases: the pure lost sales and the mixed lost sales and backorders. In the pure lost sales case, an order rejected incurs a lost sale cost. Demand from the assemble product has a higher penalty over the demand from the individual components. Due to limited capacity, it may be desirable to reject a demand from a component even when there is onhand inventory of components to satisfy future product demand. In the mixed lost sales and backorders case, a component order rejected incurs a lost sale cost and a product order backordered incurs a backorder cost. In this case, the product demand has no priority over the component demand, thus it may be backordered even when there is stock for all the components to satisfy future component demand. For these two cases, a system manager needs to decide which components to produce, and whether to satisfy an incoming component demand or reject it to reserve stock for future product demand, or whether to satisfy an incoming product demand or backorder it to reserve stock for future component demand. The objective is to minimize the expected total operating costs of the system.

Optimal Control of ATO Systems

ATO systems can be regarded as a multiple resource allocation that induces load distribution, production planning, requirements fulfilling and inventory assignment. The key challenge in the management of ATO systems resides in the difficulty to coordinate components procurement or production as components procurement or production leadtimes are usually stochastic. This is further compounded by the uncertainty of the demand of the assembled product as well as the individual components, if they are sold separately as spares. Another challenge for ATO systems is to efficiently manage component inventories and make optimal production and allocation decisions. Because of the complexity of such a system, it would tend to be difficult to control and would be uneconomical to operate. In addition, in many business scenarios where manufacturing companies face limited capacity and shortage situations that usually cannot be avoided, it is necessary to adopt a feasible strategy to solve these problems (Akç ay, 2002). In this situation, the issue of inventory rationing arises.

Because of a limited capacity, it may not be sufficient to produce the total quantity of the order. The manager needs to efficiently manage component inventories and allocation. The problem is how to determine inventory replenishment levels with uncertain demand and how to allocate the components for received demands.

In practice, determining optimal component inventory levels is difficult, especially in a multiproduct ATO system. The inventory level of a component at any point in time will depend on the previous allocation decisions. Such decisions depend on the production and consumption of all other components and the demand realizations of all end products. Thus, the problem of determining optimal inventory levels and an allocation policy can be formulated as a dynamic programming with the goal of minimizing the expected long-run system cost. Optimal control is needed to deal with the problem of finding a control policy for a given optimality criterion.

For characterizing the structure of optimal policies in the infinite horizon, please refer to the studies by [START_REF] Porteus | On the Optimal of Structured Policies in Countable Stage Decision Processes[END_REF][START_REF] Porteus | Conditions for Characterizing the Structure of Optimal Strategies in Infinite-Horizon Dynamic Programs[END_REF], [START_REF] Stidham | Monotonic and Insensitive Optimal Policies for Control of Queues with Undiscounted Costs[END_REF].

The main objective of this work is to control an ATO system with demand from both the individual components and the assembled product. In an assembly system, since satisfying a customer order requires multiple available components, the storage of one component delays the fulfillment of the order for product. The optimal control of ATO systems should be correlated across components: the optimal component replenishment policy is applied to the production and the optimal component allocation policy is applied to the inventory. Also, because a customer order requires multiple units of several components, the optimal component allocation policy results in severe computational complexity, especially in the case of multiple demand classes. As mentioned in Ha (1997c), "… as the number of customer classes increases the optimal policy will be difficult to compute because of the curse of dimensionality and will be even more difficult to implement." This implies that as the state space increases in size, the structure of the policy becomes more complex. Because many dimensions must be taken into account when making allocation decision: the inventory level, the number of backorders as well as the production process. For this reason, characterization of optimal control policies for ATO systems has been regarded as a challenging problem.

Various authors have studied this problem including De Vé ricourt et al. (2000,2002), Benjaafar andElHafsi (2006, 2010), Gayon et al. (2009). They showed that the optimal allocation policy is a multi-level rationing policy. In this work, we adopt a similar approach as these authors to analyze the optimal policy for a more general ATO system.

General Approach

In this work we study an ATO system. In order to determine a control policy, we formulate the problem an MDP. Then we specify the principle and algorithm in the following.

Markov Decision Process

The models we will study in the next few chapters use the MDP framework. Since demand inter-arrival times and production times are uncertain, randomness is one of the key factors that our models must take into account (see Zipkin 2000, section 7.

3). Markov Decision

Processes, which are also called stochastic dynamic programs or stochastic control problems, provide a mathematical framework for sequential decision making when outcomes are uncertain.

In a dynamical system the state can change over time. At each decision epoch, a decision maker can choose an action that may influence the future state of the system. Markov decision processes are completely determined by a five-tuple     , , , , ,

t t t S A S r p f  x x
which is defined as follows:

1. S: the set of possible system states.

2. A x : the set of available actions to the decision maker when the system is in a starting state x.

3. r t : the cost per unit time. The real-valued function r t (x, a) for aA  x denotes the value at time t of the cost incurred in period t. 

 

|, t fa  x : the probability density function of time between two changes in states of the system when action a is chosen in state x, at time t.

At each instant, the transition probability and the cost function depend on the past only through the current state of the system and an action can be selected in that state. This property is called "Markovian", which has been widely used in inventory control problems. This is because in this setting a Markovian policy is optimal and properties of the optimal policy are simple to carry out and do not vary with time [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF], Chapter 1). In order to choose actions, we must follow some policy. We define a policy to be any decision rule for choosing actions. In other words, a policy is a sequence of decision rules. Thus, the action chosen by a policy may, for instance, depend on the history of the process up to that state point, or it may be randomized in the sense that it chooses action a with some probability , a p a A  . When the policy depends only on the current state of the system, it is called Markovian policy. In this case, the control function under a policy  can be defined as A  in state S and action a. That is, ()

A 
x is the action selected in x when a policy  is employed.

Typically, under a policy  and in state x at time t the decision maker can choose an action a.

The cost generated depends on the state of the system at the next decision epoch. x and the phenomenon is repeated. Because the action is chosen in the present state incurs a cost that forces the system to move to a new state. Clearly, a new state is determined by the previous action choice. When the distribution f t is deterministic, the periods  between two changes of state are constant and equal, corresponding to the representation of periodic time. The decisions in this case are taken at time t=0,1,2,…, and the specification of the total cost ( , ) t ra x over a period is sufficient.

The objective is to determine the optimal policy   that minimizes the discounted cost,   0 min ( ( )) , where, X is the random process denoting the current state of the system and is the discount factor ( 01   ). Since r(X(t)) is the cost generated at time t, it follows that   v  x represents the expected total discounted cost generated when policy  is applied with the initial state x.

When decisions are made frequently or the discount factor is not assumed   where,   g  x represents the expected average cost per period for any policy  . The objective is to determine the optimal policy   that minimizes the average cost. The average cost criterion is simple to implement, because the results of which are independent of the starting state and the discount factor.

In this work, we use these two criteria in our analysis.

The Value Iteration Algorithm

In this sub-section, we consider the computational aspect of MDP. One of the commonly used algorithms in MDP is the value iteration. It is widely used to obtain the optimal policy.

Consider a Markov decision problem  

, , , , , t t t S A r p f

x which satisfies the assumptions in section1.3.1. The objective is to find the optimal policy that minimizes the discounted cost in equation (1.1).

Consider a set F of positive real-valued functions defined on S. Under the previous hypotheses, there exists an operator T that reflects the dynamic of the system and equation

(1.1) can be written as:

    1 , nn v Tv   xx (1.3)
where,   n v x is the n-stage cost function that converges to   v  x , with   0 .

vF  x

The infinitehorizon optimal cost function satisfies,    .

v Tv   xx (1.4) The existence of a Markov policy that achieves the minimum of the discounted cost in (1.1) and the convergence of the n-stage policy and cost function to the infinite-horizon optimal policy and cost follow from the fact that only finitely many controls are considered at each state.

An average cost criterion can also be considered. In this case the average cost per stage, g, and the relative cost in state x, v(x) satisfies,    .  v g Tv xx (1.5) Several conditions have to be satisfied for the existence and convergence results for (1.6) by letting 0   in (1.4) (see Cavazos-Cadena, 1992; Weber and Stidham, 1987):

1. there exists a stationary policy  which achieves a finite average cost g  .

2. the number of states in which the holding cost   hg  x  is finite.

The value iteration algorithm is the most widely used and best understood algorithm for solving Markov decision problems. It is an easy method to determine the optimal policy. In this work we use the value iteration algorithm, for more details readers can review Puterman (1994, Chapter 8).

Application of Markov Decision Process in ATO systems

The MDP framework has been used in a wide range of optimization problems. A general application of MDP described in Feinberg and Shwartz (2002, Part III). In this work, we consider an ATO system with limited production capacity, which produces multiple components and assembles them to a signal product. The product is assembled from components only when a customer order is received, and the inventory is kept at the component level. Faced with demands for both, the product and the components, the system manager must determine the optimal policy to minimize the total cost.

In this section, we only present the general characteristics of Markov decision problems. The detailed specification of the models that we study is given in the corresponding chapters.

The state of system

For this work, we assume a discrete-state setting, and use continuous time by converting to an equivalent discrete time. That is, our ATO system produces n types of components with a single assembled product. The product and the components can meet n+1 demands. For the pure lost sales case, the state S is a subset of n Z  (   is the set of nonnegative integers). In this case, we define the current state of the system at time t by the vector X(t)=(X 1 (t),…, X n (t)),

where X k (t), k=1,…n, is a nonnegative integer denoting the on-hand inventory for Component k at time t. For the mixed lost sales and backorders case, the state S is a subset of

1 n Z  
.The current state of the system at time t can be defined by the pair (X(t),Y(t)), where Y(t) is a nonnegative integer denoting the backorder level of the assembled product.

The decisions

For each of the models that we study, the decision maker has to decide which type of components should be produced, and whether to satisfy an incoming component demand or keep stock for future product demand. For instance, in the pure lost sales case: under a policy  for a starting state 

The cost structure

The related costs of our system are incurred from two sources: the cost of holding inventory and the cost of backordering. We assume the costs are linear, such as     

The transition probabilities of the state

Since production times and demand inter-arrival times are stochastic, we focus on these two uncertain sources: production times are exponentially distributed with mean 1, k  demands take place continuously over time according to independent Poisson processes with rate k 

(for Component k) and 0  (for the assembled product), respectively.

When the transition times are identically one, it is a Markov decision process, and in general case, it is called a semi-Markov decision process (see Ross 1969, Chapter 7). In the optimal control of exponential queuing systems, we use a semi-Markov decision process. That because a sequential decision process for which the times between transitions are random. In this work, we consider the following two cases:

Pure lost sales case

As mentioned above, in the pure lost sales case the current state of the system at time t can be described by the vector   1 ( ) ( ), , ( ) . be an n-dimensional vector of ones and ek the kth unit vector of dimension n. In the state x, if the decision maker chooses the action to produce one unit of Component k, the state will transfer to the state x+e k with the transition rate  k . If she takes the action to satisfy one unit order from the product, the state will transfer to the state x-e with the transition rate 0  , or decides to satisfy one unit order from Component k, the state will transfer to the state x-e k with the arrival rate  k .

Mixed lost sales and backorders case:

In the backorders case, the current state of the system at time t can be described as the pair   , the decision maker takes the action a. When backorders are allowed, the case is more complex than the pure lost sales. Because besides considering the on-hand inventory x, the backorder level y from the assembled product must be considered. In this case, in the initial state (x, y) if the decision maker chooses the action with transition rate  k , which would incur two different results: produce one unit Component k to stock, the state will transfer to the state (x+e k ,y); or produce one unit Component k to reduce one unit backorder from the assembled product, the state will transfer to the state    , which would lead to satisfy one unit order of the assembled product, the state will transfer to the state (x-e,y); or to backorder one unit demand of the assembled product, the state will transfer to the state (x, y+1). Similarly, with the rate  k , a transition occurs after time t, the next state may be (x-e k , y). Clearly, the distribution of time between two instants of decision depends only on the action specified by the control policy applied by the decision maker. Following [START_REF] Lippman | Applying a new device in the optimization of exponential queuing systems[END_REF], we uniformize the transition rate by defining the uniform rate

01       n k n l lk
. However, the next state of the system depends on the transition probability. We will discuss them for two cases, pure lost sales and mixed lost sales and backorders: Pure lost sales case:

In state x, an action a is selected. If the next state is  x , the system state at the next decision 

The optimal policy

Because the system is memoryless, a Markov policy is optimal. In this study, we formulate the problem as continuous-time MDP. That is, the decisions can be made at any time.

Applications in inventory control are modeled by allowing action choice at random times in infinite horizon. The core problem of MDP is to find a policy  in the state S that minimizes the expected discounted (average) cost. For all possible states S, we will find the optimal cost function v  and use it to determine the optimal policies .  

Problem Setting

In this work, we study an ATO system where we consider demands for both the individual components and assembled product. That is, the product is assembled from multiple components and the components stocked in advance of demand. These products will be used to satisfy the potential orders that arrive later. Components are produced one unit at a time on separate production facilities and held in stock, which incur a holding cost. In addition, both production times and customer inter-arrival times are stochastic. Due to the possibility of shortages, if an order is not satisfied immediately it incurs a lost sale cost or a backorder cost that depends on whether or not the customer is willing to wait for his order. Therefore, the task of the decision maker is to decide whether to satisfy an incoming demand or reject (backorder) it, reserving stock for the future demand from a more valuable type. At the same time, the decision maker also decides which component is needed to produce, if needed, whether to produce it to stock or to produce it to reduce the backorders from a particular demand. The objective is to minimize operating costs while maintaining order fulfillment. In general, this kind of problem can be regarded as a dynamic problem and a decision support tool is needed. In our work, we study the ATO system from an operations' perspective. We use a Markov decision process framework to determine an optimal policy under both the total expected discounted cost and the average cost per period criteria. We characterize the structure of an optimal policy. We carry out numerical experiments to analyze the structure of the optimal policies. We also offer some managerial insights to control the assembly systems.

Furthermore, we show that the optimal production policy is a state-dependent base-stock policy, and the optimal inventory allocation policy is a state-dependent rationing policy. More importantly, we show that the optimal policies are highly sensitive to various system parameters such as the holding and the lost sale/ backorder costs, the demand and production rates.

Plan of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 provides a brief review of the related literature to this work.

Chapter 3 aims at characterizing the optimal policy of the ATO system with lost sales. We determine the structure of the optimal policy and investigate the impact of different parameters on the optimal policy.

Chapter 4 aims at characterizing the optimal policy of the ATO system with lost sales and backorders. We characterize the optimal production policy and the optimal allocation policy for the components.

In Chapter 5, we develop several heuristic policies for the pure lost sales case and the mixed lost sales and backorders case. For each case, we compare the performance of the heuristics with the optimal policies, and then we find some more efficient heuristics.

Finally, the general conclusion sums up the main results obtained and the perspectives describes some future researches of this work.

Conclusion

ATO systems are successful strategies that have become increasingly popular in manufacturing. This work studies an ATO system that produces multiple components with a single assembled product. Such a system deals with both product and components demands.

In this chapter, we introduced an overview of ATO systems, the basic principles of the general MDP approach, and the value iteration algorithm that is used to compute the optimal policy. We also presented the application of MDP in ATO systems, based on which we formulate our problem.

Literature Review Chapter 2.

This chapter provides a brief review of the literature related to ATO systems. As mentioned in Chapter 1, the optimal control of ATO systems consist of two decisions: component replenishment and component allocation. These decision problems can be formulated as a single-product or multi-product models, and a single-period or multi-period models. For a comprehensive literature review, we can refer to one classical paper by [START_REF] Song | Supply Chain Operations: Assemble-to-Order Systems[END_REF]. It covers modeling issues and analytical methods, and a general formulation of ATO systems. From this overview, the literature review on ATO can be classified into the following four categories, which we will discuss in details.

Make-to-Stock Systems under MDP

Make-to-stock (MTS) systems are manufacturing strategies to manage inventory. In MTS system, products are stocked in advance according to a forecast of customer demand. Because the manager faces a joint production-control and inventory allocation problem, MTS systems can also be called production-inventory systems. A challenging problem in such systems is the dynamic allocation of inventory to different demand classes. This gives rise to an inventory rationing problem which has been widely studied in the literature.

The earlier work on inventory management and production scheduling dates back to Zheng and Zipkin (1990), who studied the optimal control of allocation problem. A simple Markovian behavior is assumed, the problem can be modeled as rationing a fixed production capacity to multiple identical products. More importantly, the authors proposed longest-queue policy and argued that it is always optimal to serve the longest queue under independent base stock policies. Ha (1997[START_REF] Ha | Stock Rationing in an M/Ek/1 Make-to-Stock Queue[END_REF] pointed out that for a two-dimension state space MTS production system, the optimal production policy is the dynamic "hedging point" policy, and the optimal allocation policy is a "state-dependent rationing" policy. Ha (1997a) is the first to consider rationing in the context of an MTS system. He modeled the system as a single server, single product, M/M/1 make-to-stock queue with multiple demand classes and lost sales. The optimal policy is characterized by a sequence of monotone threshold levels. Under this threshold rationing policy, each class has a rationing threshold below which the demand from that class cannot be satisfied. The system reserves inventory for the orders from the high-priority classes. Ha (1997b) studied hedging point policy with dynamic scheduling problem. By considering single server, two products, make-to-stock queue with backorders, he showed that the optimal rationing policy is of the "switching curve" type. Furthermore, two production switching cures have been obtained: one curve determines when and which product can be produced, and the other curve determines in which region the production can be stopped. In a similar MTS system, Ha (1997c) considered the backorders case but with single product and two priority demand classes. He characterized the optimal production and inventory rationing policies by a single monotone witching curve. He showed that the optimal production policy is of base-stock type and the optimal rationing policy is determined by rationing level, which is decreasing in the number of the low-priority class backorders. In a later article, [START_REF] Ha | Stock Rationing in an M/Ek/1 Make-to-Stock Queue[END_REF] extended the results of his work (1997c) to Erlang distributed production times in lost sales case. Using work storage as a state variable, he indicated that the optimal production policy can be characterized by a critical work storage level. Gayon et al. (2009) analyzed a similar system as [START_REF] Ha | Stock Rationing in an M/Ek/1 Make-to-Stock Queue[END_REF] for an M/E k /1 make-to-stock queue with multiple classes and they provided a formulation in the case of backorders and examined the effects of optimal policies under different operating conditions: with and without salvage market value. They showed that the optimal allocation policy with a salvage market is work-storage rationing policy that is characterized by n work-storage rationing thresholds corresponding to n demand classes.

Without a salvage market value, they showed that the modified work-storage rationing policy is optimal and is determined by the base-stock level.

De Vé ricourt et al. (2000,2002) also considered "hedging point" policies and developed further characterization of the optimal switching curve for the backorders case. The backorders case is more difficult to analyze than the lost-sales case when there are multiple demand classes. One of the major reasons is that backorders of the different demand classes increase dimensionality of the system. Therefore, the analysis is more complex. De Vé ricourt et al. (2000) showed that in a two-part types production system, it is optimal to produce the expensive item if it has the higher backorder cost. De Vé ricourt et al. ( 2002) studied a capacitated supply system with multiple demand classes. By decomposing the problem into ndimensional control problems and (n-1)-dimensional sub-problem, the optimal policy can be characterized simply by fixed threshold values. In the same vein, De Vé ricourt et al. (2001) evaluated the benefits of different optimal rationing policies: first come first service (FCFS), strict priority policy (SP) and the multilevel rationing policy (ML), and showed that the ML policy performs better than the other two policies. Gayon et al. (2009) characterized the optimal policy for a production-inventory system with multiple customer classes and imperfect advance demand information (ADI). They showed that in lost sales setting the suppliers benefit more from ADI than customers.

Unlike the pure backorder system or pure lost sales system, Benjaafar et al. (2010a) addressed a more general model, taking into account both features lost sales and backorders. Moreover, this paper initiated a study of the structure of the optimal policy in MTS system with both backorders and lost sales. In their case, the backorder and lost sale costs are similarly ordered.

Under this assumption, for each class the optimal production/allocation policy can be characterized as a threshold policy. Benjaafar et al. (2010b) studied a production-inventory system with customer impatience. The unsatisfied customer is either lost or backordered. The impatient customers are willing to wait for delivery until the next replenishment which depends on the exponentially distributed patience times. That means the customers will wait for an amount of time for fulfilling orders; otherwise, they cancel their orders. In particular, this paper showed that optimal policy base-stock level is non-increasing in the upper bound on the number of backorders, while the optimal policy rationing level is non-decreasing in that. In the same vein, Benjaafar and Elhafsi (2012) studied a two-customer class system: patient and impatient customers. The unsatisfied orders from the patient class can be backordered while the unsatisfied orders from the impatient class can be rejected. The optimal policy can be described by two threshold functions where inventory allocation is not static, which depends on the backorder level of the patient customer class.

There are several studies in the literature that consider production-inventory systems with transshipment/inventory sharing. [START_REF] Benjaafar | Demand Allocation in Multiple-Product, Multiple-Facility, Make-to-Stock Systems[END_REF] discussed the problem of inventory rationing in a system with multiple products and multiple production facilities. Zhao et al.

(2005) considered a two-location inventory-sharing system. They used a (S,K) policy, namely base-stock and rationing policy in a decentralized setting. Zhao et al. ( 2008) also considered a two-location system, while the transshipments can happen in both demand arrivals and production completions. They proved that for each location the optimal production policy is a hedging point policy and the optimal demand filling policy is a state-dependent policy.

There is also a stream of literature that considers the stock rationing problem with batch demand. [START_REF] Huang | A Make-to-Stock System with Multiple Customer Classes and Batch Ordering[END_REF] provided a non-unitary demand system and focused on the problem of rationing quantity. They showed that the order size can affect the benefit of the optimal stock rationing policy. [START_REF] Xu | Optimal production and rationing policies of a make-to-stock production system with batch demand and backordering[END_REF] extended the model of [START_REF] Huang | A Make-to-Stock System with Multiple Customer Classes and Batch Ordering[END_REF] to the multiple-class, batch demand system, where the batch demand can be partially accepted. They showed that the optimal policy is characterized by multiple rationing levels. 2010) studied an integrated production inventory system with multiple nonunitary demand classes. It is assumed that both production times and order inter-arrival times follow the Erlang distributions. They showed that the demand size variability can significantly affect the operating cost of the system.

ElHafsi et al. (

ATO Systems under Continuous Review

In contrast to MTS systems, which keep inventory at the end-product level, ATO systems keep inventory at the component level. When the customer order is received, the components can be assembled immediately and delivered to the customer. To our knowledge, most papers address continuous review models and develop heuristic policies to evaluate or optimize the decisions. In this stream, Song (1998) studied the performance measures for a base-stock system with Poisson demand and constant replenishment leadtimes. She showed that in a multi-item inventory model the order fill rate can be obtained by a series convolution of the batch size distribution and Poisson distribution. [START_REF] Song | Order-Fulfillment Performance Measures in an Assemble-to-Order System with Stochastic Leadtimes[END_REF]2001, Chapter 11) studied the effect of arrival correlation on the performance of the ATO system, and discussed how the system responds to different arrival correlations. [START_REF] Gallien | A simple and effective component procurement policy for stochastic assembly systems[END_REF] considered ATO systems with a single-item MTS environment. But in their model, the setting is based on a Poisson demand and an arbitrary distributed processing times. Associated with non-identically stochastic lead times and infinite capacity, the authors developed a simple and effective control policy for an ATO system. That is the structure of the optimal policy is entirely determined by the longest procurement delay and its differences with the other procurement delays. Similar system studied by [START_REF] Song | Performance Analysis and Optimization in Assemble-to-Order Systems with Random Leadtimes[END_REF], who proposed upper and lower bounds for the backorders in a single product case. They showed that it is optimal to keep higher base-stock levels for components with longer mean lead times (and lower unit costs). Lu and Song (2005) formulated an unconstrained cost-minimization model in multipleproduct assembly system with order-based backorder costs. They developed an algorithm to approximate the optimal base-stock level. Under the assumption that demands follow a batch Poisson process, Lu et al. (2005) focused on the expected backorder for each product. They solved the optimization problem by minimizing a weighted average of backorders over all products. Later, [START_REF] Lu | Estimation of Average Backorders for an Assemble-to-Order System with Random Batch Demands through Extreme Statistics[END_REF] extended the model (Lu et al., 2005) to multi-product, multicomponent ATO system with general random batch demands. He focused on the average backorder of the system, based on which he developed a new methodology for performance analysis of the system. Zhao (2009) also considered a multi-product and multi-component ATO system with batch ordering. He analyzed and evaluated the impact of the split orders/non-split orders on system performance. [START_REF] Hoen | A simple and accurate approximation for the order fill rates in lost-sales Assemble-to-Order systems[END_REF] studied a multiple endproducts system with lost sales and deterministic leadtimes. They devised an approximate method for estimating the order fill rates.

Another line of research on ATO systems is base-stock policies with fixed base-stock levels. (2012) studied an ATO N-system with non-identical leadtimes. This is the special case of Wsystem. Under the symmetric structure, the optimal component allocation decision is a noholdback (NHB) rule and the optimal production decision is a coordinated base-stock (CBS) rule; under the asymmetric structure, the optimal policies depend on the effect of cost asymmetry. Reiman and Wang (2012) considered the model of [START_REF] Dogru | A Stochastic Programming Based Inventory Policy for Assemble-to-order Systems with Application to the W Model[END_REF], while with non-identical lead times. They developed a multi-stage stochastic program and established a lower bound on the inventory cost of the system, based on which they also discussed the replenishment policy and the allocation policy.

ATO Systems under Periodic Review

For periodic review models, faced with multi-customer classes and integer-valued correlated random variable in each period, a static threshold production/allocation policy has been considered. In general, as mentioned in [START_REF] Chiang | Optimal replenishment for a periodic review inventory system with two supply modes[END_REF] "…earlier periodic review models, however, have focused on the situation which supply lead times are a multiple of a review period. Such models could be regarded as an approximation of continuous review models, as the review periods can be modeled as small". The earlier literature about this related problem is studied by [START_REF] Cohen | Service constrained (s,S) inventory systems with priority demand classes and lost sales[END_REF] who investigated two demand classes (the emergency demand and the normal demand) inventory system in a (s,S) policy with lost sales. Assuming the emergency demand has higher priority than the normal demand, the former can be satisfied first. In this setting, a strict priority rule is used for the allocation policy. Furthermore, authors developed and evaluated an efficient and effective solution heuristic for solving the service-constrained optimization problem. Later, [START_REF] Rosling | Optimal inventory policies for assembly systems under random demands[END_REF] considered an infinite horizon model with random demands multi-echelon inventory system. Under an assumption of zero setup cost, he showed that a balanced base-stock policy is optimal for multistage assembly systems. [START_REF] Chen | Optimal Policies for Multi-echelon Inventory Problems with Batch Ordering[END_REF] extended this equivalence between assembly and serial systems to the batch-ordering case. He showed that the batch ordering policy is an optimal policy for multi-echelon systems. [START_REF] Cheng | Inventory-service optimization in configure-to-order systems: From machine-type models to building blocks[END_REF] considered a configure-to-order (CTO) system. Such a system takes the ATO concept one step further, and then the customers can select the personalized set of components that assembled to the end product. They used a lower bound on the order fill rate of each product to investigate the optimal inventory-service tradeoff. [START_REF] Karaarslan | Analysis of an assemble-to-order system with different review periods[END_REF] considered a single item, two-component system with backorders under two different policies: a pure base-stock policy and a balanced base-stock policy. They showed that the balanced base-stock policy works better under low service levels, low holding cost ratio, and high demand uncertainty. Otherwise, the pure base-stock policy performs well.

Turning to the study of single-period ATO systems, [START_REF] Fu | Inventory and Production Decisions for an Assemble-to-Order System with Uncertain Demand and Limited Assembly Capacity[END_REF] analyzed the policy of pre-stocking components and a single product ATO system with uncertain demand and limited assembly capacity. They examined the effect of varying component leadtimes on the available assembly capacity. Xiao et al. (2010a) also considered the similar system as Fu et al. (2006), but focused on an ATO system with both uncertain demand and uncertain assembly capacity. By considering assembly-in-advance operations, the authors adopted a profitmaximization model and investigated the optimal production and inventory decisions. Xiao et al. (2010b) extended their study to a two-product production system with two types of uncertain demand. They studied the impact of the uncertain demand patterns on the optimal stocking and allocating decisions.

We found also several review articles on different inventory allocation policies. See, for example: Zhang (1997) considered an assembly system with multiple productions and dependent demands. He proposed a fixed-priority policy with stock commitment for allocating component stocks. [START_REF] Hausman | Joint demand fulfillment probability in a multi-item inventory system with independent order-up-to policies[END_REF] studied joint demand fulfillment probability in a multi-item inventory system under FCFS policy. [START_REF] Agrawal | Optimal material control in an assembly environment with component commonality[END_REF] studied assembly type production systems with demand uncertainty under a fair-share policy.

Several results are used to determine the optimal base-stock policy. Akç ay and [START_REF] Akçay | Joint inventory replenishment and component allocation optimization in an assemble-to-order system[END_REF] considered a multi-component and multi-product ATO system under the independent orderbased policy. [START_REF] Duran | Policies utilizing tactical inventory for service-differentiated customers[END_REF] focused on limited production capacity inventory system with multi-period time horizon. They considered two customer classes differentiated by their priority level, and showed that a (S, R, B) base-stock policy is optimal, where S is the orderup-to quantity, R is the reserve-up-to amount, and B is the backlog-up-to amount. Feng et al.

(2010) worked on a multi-item inventory system under the (r,nQ) policy, where r is the recorder point, nQ is the order size. They showed that the joint inventory positions of the system are stationary, independent and uniformly distributed.

ATO Systems in Continuous Time

In this section we discuss ATO systems that are managed/operated in continuous time. In this case, the problem is formulated using MDP. In this research branch, an initial view of the optimal control of a system with multiple components on multiple production facilities, and multiple demand classes is given by [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF], who studied an ATO system consisting of n products assembled from a subset of m distinct components. By assuming that the manager is faced with multiple demand classes, they analyze the optimal production and inventory allocation policies of such system. Unlike the fixed allocation policy, the optimal allocation policies are dependent on the on-hand inventory of the other components. The optimal inventory policy for one component can be described as a statedependent policy that depends on the on-hand inventory levels of all other components. In this article, although the authors considered a special case of an ATO system, it still can be viewed as a classic one. Because also under continuous review, compared with the other literatures (mentioned in section 2.2) which focus on performance evaluation of heuristic policies, this work determines the optimal production policy. 2008) also considered an n-product and m-component ATO system where the products have a modular nested design. They showed that the optimal production policy is a base-stock policy and the optimal inventory allocation policy is a multi-level rationing policy.

ElHafsi et al. (

Finally, ElHafsi (2009) studied an ATO system subject to non-unitary multiple demand classes. The author argued that comparing to the effect of order size variability, the optimal average cost rate is more sensitive to the order size. More recently, [START_REF] Benjaafar | Optimal Control of an Assembly System with Multiple Stages and Multiple Demand Classes[END_REF] discussed a multiple stages, multiple demand classes assembly system with batch production and batch demand. By considering different items can be produced in different batch sizes, they characterized the optimal policy. In particular, the optimal production quantity for each component and the optimal number of satisfied requirements for each demand class would also be determined.

In this work, we study a continuous time ATO system, and share several common features in the above literature of ATO system under continuous time. That is, the assumption of exponential production time and Poisson process demand. The current work is most closely related to that of [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF]. Similar to their model, we study an ATO system with a single product assembled from n components. However, in our system we consider two types of demand: demand of the assembled product and demand of the individual components, and discuss the demands with the pure lost sales (see Li, 2013a) and the mixed lost sales and backorders (see [START_REF] Li | Optimal Control of both lost sales and backorders ATO System with Component Demand[END_REF]. Based on which, we study the optimal control policy.

Conclusion

We provided a brief overview of the literature involved in this work, which can be classified into four categories: make-to-stock systems under MDP, ATO systems under continuous review, ATO systems under periodic review, and ATO systems in continuous time. Our work is more related to the literature on ATO systems in continuous time. In this line of research, we study the model that deals with two types of demand ATO system: the assembled product demand and the individual components demand. To our knowledge, there is little literature in this area. We hope that the research presented in this work also enriches the current literature on ATO systems with individual components demand.

ATO System with Individual Chapter 3.

Components Demand: Lost Sales for Components and Assembled Product

We consider the demand during shortage period as completely lost. In this chapter, we assume that if demand cannot be fulfilled immediately it is lost for both the assembled product as well as the individual components. We propose a dynamic programming model in order to determine the optimal control policy of such a system. The system deals with a single product which is assembled from multiple components. The system faces demand not only from the assembled product but also from the individual components. To determine the optimal operating policy, we formulate the problem using an MDP methodology and using two optimality criteria: discounted cost and average cost per period. Furthermore, we determine the structure of the optimal policy and investigate the impact of different parameters on the optimal policy. We are also interested in the effect of system parameters on the optimal policy. We test the system with a wide range of system parameters and show that the optimal base-stock and rationing levels are sensitive to system parameters The outline of this chapter is as follows: we start with an introduction in section 3.1. In section 3.2, we formulate the optimal control problem with lost sales and characterize its optimal policy under the discounted cost case. Then we extend our model to the average cost case. In section 3.3, we adopt the average cost criterion in numerical experiments, and use the iteration algorithm to calculate the optimal policy. Based on numerical results, we analyze the structure of the optimal policy. Finally, we conclude this chapter in section 3.4.

Introduction

This chapter considers an ATO system with a single product assembled from n components.

Each component is produced ahead of demand one unit at a time on an independent production facility. Unit held in inventory incurs a unit holding cost. Demand from both the product and the components can be either satisfied or rejected. Demand for the assembled product can be satisfied only if all components are in stock. We assume that demand for the assembled product has a higher priority over demand for the individual components. In this situation, a system manager may need to reject a demand from a component and save the inventory for future assembled product demand. At the same time, a system manager needs to decide when to produce a certain component and when not to produce it. We also assume exponentially distributed production times, and demands arrive to the system according to independent Poisson processes. We assume that the assembly time is instantaneous and there are no setup costs and setup times for production. Our assumption of negligible assembly time is supported by most of the literature on ATO systems.

A system manager must make two types of decisions: one regarding component production and the other regarding inventory allocation. The objective is to determine the optimal control policy that minimizes the expected operating costs of the system. In general, this kind of problem can be regarded as a dynamic problem and a decision support tool is needed. In our study, the problem can be formulated as an MDP resulting in Markovian policies. We show that the optimal production policy is characterized by state-dependent base-stock levels. That is, a component is produced when the on-hand inventory is below the base-stock level, and not be produced otherwise. Moreover, the base-stock level is non-decreasing in the on-hand inventory level of other components. We show that the optimal inventory allocation policy is a rationing policy. An order from a component is satisfied only if its on-hand inventory level is above a certain rationing level. The rationing level for each component is also nondecreasing in the on-hand inventory levels of other components. This is an interesting property since both the base-stock and the rationing levels are non-decreasing in the on-hand inventory level of other components. This result is quite different from the ones in (Benjaafar andElHafsi 2006, ElHafsi et al. 2008). In our system we discuss two types of demand: demand of the assembled product and demand of the individual components. Benjaafar and ElHafsi 2006 studied a single product ATO system, ElHafsi et al. 2008 studied a nestedmultiple-product ATO system, where they consider one type of demand that can only be from the end product, and focus on different demand classes. However, in our system since demand of the assembled product has a higher priority over demand of individual components, it is always satisfied if all components are in stock. We also assume that demands of the individual components are independent of each other. When the system jointly increases the on-hand inventory of the components, more demands from the assembled product are desired to be satisfied that means several individual components demands must be rejected. Hence, the rationing level of the individual components increases. This implies that it becomes more difficult to satisfy demand of the individual components when the on-hand inventory of components increases. Using a two-component example, we show that the optimal base-stock and rationing levels are sensitive to system parameters, such as holding cost, lost sales cost, production rate and arrival rate. Based on the numerical results, we show the impact of these parameters on the optimal policy and then present some properties in the general case.

The Optimal Control Problem

Model Formulation

We consider a system with a single product (for which we use the index 0) assembled from n components. Production times are exponentially distributed with mean 1 k  for Component k=1,…,n. Demand for Component k and the assembled product takes place continuously over time according to an independent Poisson process with rate k  and 0  , respectively. Let c i (i=1,…,n) be the lost sale cost for Component i demand. We assume that the lost sale cost for the assembled product is such that 01   n c c c . This condition states that the product demand has priority over the component demand. We define the state of the system, at time t, by the vector

  1 ( ) ( ), , ( ) n tt X tX   X
, where () k Xt , k=1,…n, is a nonnegative integer denoting the on-hand inventory for Component k at time t. The system produces components ahead of

demand. Let       1 ()    n kk k h t h X t X
be the holding cost, where h k (.) is increasing convex Under a policy  for each state
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the manager needs to decide which components to produce, and how to allocate inventory between components and the assembled product. Because the system is memoryless, these actions taken at a particular decision epoch depend only on the current state of the system. Decisions can be described as two types: production and inventory allocation, which are made simultaneously. In each state, production decision concerns which components to be produced, and inventory allocation decision concerns which demand should be satisfied immediately or rejected to reserve inventory for future demand of the assembled product.

The Case of Discounted Cost

We formulate the problem as an MDP. The expected discounted cost over an infinite planning horizon obtained under a policy  with a starting state   where 0

  is the discount rate, N 0 (t) is the number of units of the assembled product demand that have not been satisfied and N i (t) is the number of units of Component i demand that have not been satisfied up to time t. Our aim is to seek the optimal policy   that minimizes the expected discounted cost for all x. Let v * denote the optimal cost function (i.e., vv    

).

Following [START_REF] Lippman | Applying a new device in the optimization of exponential queuing systems[END_REF], we define the uniform rate The dynamic programming equation can be written as:
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where the operators T 0 , T k and T k , k=1,…,n are defined as follows:
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In our model, e k is the kth unit vector of dimension n and
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is an ndimensional vector of ones. Operator T 0 corresponds to the inventory allocation decision for demand of the assembled product, similarly, operator T k corresponds to the inventory allocation decision for demand of Component k, operator T k corresponds the production decisions for Component k.

In Theorem 3.1, we characterize the structure of the optimal policy.

For the further proving we define the following operators
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Proof of Lemma 3.1

In order to prove Lemma 3.1, we need to show that if v V then Tv must satisfy A1-A4. In order to do so, we prove that if v V then 0

Tv V , k TvV and k Tv V for all k. In other words, we show that 0 Tv V , k TvV and k Tv V satisfy A1-A4.
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Property A1

From (3.6) we have the following two cases:
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Hence, T k v satisfies A1.

Property A2

From (3.6) we have the following two cases:
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By A1-A3 we have:
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there are five possible sub-cases can be considered:
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i i i ij i ji v v v v         ,, 0.          x x x e x i j i i j i j i T v v v v 5.             ,, 0 Δ Δ Δ Δ 0.              x e
x x e e x xx e

i i i i i j i ij j i j i T v v v v v v Case 2 if ,, i k j k                      ,, min ,0 min ,0 min ,0 min ,0                x x
x e e x e

x e x

i j k i j k i j k j k i k T v v v v vv by A2 we have         Δ Δ Δ Δ        x x e x e
x e e

kk j k k i i j v v v v or         Δ Δ Δ Δ .        x x e x e
x e e

k k j i i k j k v v v v If         Δ Δ Δ Δ        x x e x e
x e e

kk j k k i i j v v v v
, under this condition, we have the following five cases:

1.         Δ Δ Δ Δ 0          x x e x e
x e e

k i j k ij kk v v v v     ,, 0.     xx i j k i j T v v 2.         Δ Δ Δ 0 Δ          x x e x e
x e e

k i j k j kk i v v v v       ,, 0.         x x x e e i j k i j k i j T v v v 3.         Δ Δ 0 Δ Δ          x x e x e x e e k k k k i j i j v v v v             ,, ,, 0. 
                x x x e x e x x e i j k i j k i j k j i j i k j T v v v e v vv 4.         Δ 0 Δ Δ Δ          x x e x e x e e k k k k i j i j v v v v                             ,, , = 0.                                       x x
x e e x e x e

x e e e x e e x e e x

x e e x e x

x e x

i j k i j k i j k j k i k i j k j k i j k i j k k i j k k T v v v v v v v v v v v v vv         0 Δ Δ Δ Δ          x x e x e x e e k k k k i j i j v v v v               ,, , = 0 
                  x x
x e e x e x e x xe

i j k i j k i j k j k i k i j k T v v v v v v v If         Δ Δ Δ Δ        x x e x e
x e e

kk i i k j i j v v v v
, under this condition, we also consider the other case:

5.         Δ Δ 0 Δ Δ          x x e x e
x e e

k k k k j i i j v v v v             ,, ,, 0. 
                x x x e x e x x e i j k i j k i j k i i j j k i T v v v e v vv
Hence, T k v satisfies A2.

Property A3

In order to prove the operator T k v(x) satisfies A3, we need to show that 

                  x
x e e e e x x e x pp i j

j i i i j j i i i v v v v v Then if     , ( ) 0,        e x x e x i i i v v v
we also have

  1 ... , 0.     x p i j j i v
In order to show that   From (3.6) we have the following two cases:

Case 1 if i=k,                     ,, min ,0 min ,0 min ,0 min ,0 .                ee x x x e e x e
x e x

i i i i i i i i i T v v v v vv
By A2 and A3 we have

        Δ Δ Δ Δ       
x e e x e x e

x i i i i i i v v v v or         Δ Δ Δ Δ .       
x e e x e x e

x i i i i i i v v v v If         Δ Δ Δ Δ       
x e e x e x e

x i i i i i i v v v v
, there are five possible sub-cases:

1.         Δ Δ Δ Δ 0         
x e e x e x e

x i i i i i i v v v v     ,, 0.     ee xx i i i T v v 2.         Δ Δ Δ 0 Δ         
x e e x e x e

x i i i i i i v v v v         ,, 0.          ee x x x x e i i i i i T v v v v 3.         Δ Δ 0 Δ Δ         
x e e x e x e

x i i i i i i v v v v         ,, 0.          ee x x x e x i i i i i T v v v v 4.         Δ 0 Δ Δ Δ         
x e e x e x e

x

ii i i ii v v v v             ,, 0.                ee x x x e x e x x e i i i i i i i i i T v v v v v v 5.         0 Δ Δ Δ Δ         
x e e x e x e

x 

ii i i ii v v v v                     ,, , , , , 0. 
                         
i i i i i i i i i i i i i i i T v v v v v v v v v v If         Δ Δ Δ Δ       
x e e x e x e

x ii i i i i v v v v
, under this condition, we also consider the other case:

6.         Δ Δ 0 Δ Δ         
x e e x e x e

x i i i i i i v v v v             ,, 0.                ee x x x e x x e x e i i i i i i i i i T v v v v vv Case 2: if , ik                      ,, min ,0 min ,0 min ,0 min ,0 .                ee x x x e e x e x e x i k i k i k k i k T v v v v vv
By A2 and A3 we have

        Δ Δ Δ Δ        x e
x e e x x e

kk ki k i v v v v or         Δ Δ Δ Δ        x e x x e e x e kk ki k i v v v v If         Δ Δ Δ Δ        x e
x e e x x e

kk ki k i v v v v
, under this condition, we have the following five cases:

1.         Δ Δ Δ Δ 0          x e
x e e x x e

k k k k i i v v v v     ,, 0.     ee xx i k i T v v 2.         Δ Δ Δ 0 Δ          x e
x e e x x e

k i i k k k v v v v       ,, 0.        ee x x x e i k i k i T v v v 3.         Δ Δ 0 Δ Δ          x e
x e e x x e

kk k k ii v v v v             , , , , 0.              e e e x x x e x x x i k i k i k i k i T v v v v v v 4.         Δ 0 Δ Δ Δ          x e
x e e x x e

kk k k ii v v v v                             ,, , 0. 
                                        ee ee e x x
x e e x e x

x e e e x e

x e e x e

x e e x e x e

x e x e

i k i k i k i k k i i k k k i k k i k k T v v v v v v v v v v v v vv 5.         0 Δ Δ Δ Δ          x e
x e e x x e

kk k k ii v v v v               , , , 0.                    e e e x x
x e e x e x e x x e

i k i k i k k i k i k T v v v v v v v If         Δ Δ Δ Δ        x e x x e e x e kk ki k i v v v v
, under this condition, we also consider the other case:

6.         Δ Δ 0 Δ Δ          x e x x e e x e kk i k ki v v v v             ,, ,, 0. 
                ee ee x x e e x e
x x e

i k i k i k i i k i T v v v x v vv Hence, T k v satisfies A3. Property A4                         Δ ,, Δ Δ ,0 Δ ,0           e e x
x e e x e x e x

x x e x

kk k k k T v min v v min v v v min v min v
By A3 we have

    1 ... , , 0        e xx p i j j i i vv for p=n-1. So       , Δ =Δ Δ 0,    e x x e x k k k v v v
then following the three cases:

Case1.         0 Δ Δ 0 Δ Δ .        ee x e x x x k k k v v T v v c Case2.             Δ 0 Δ Δ =Δ Δ Δ .       e e e
x e x x x x x

k k k k v v T v v v v Case3.             0 Δ Δ Δ Δ Δ Δ         ee x e x x x x e x k k k k k v v T v v v v       ,0 =Δ +Δ Δ . k v v v c    e e e x x x
Hence, T k v satisfies A4.

Operator T 0           0 0 1 0 if 0 min , otherwise,            x x xx n k k v c x Tv v e v c         0 1 0 if0 min 0, otherwise.               e x x e x n k k v c x v v c
By A4, already

      0 0 1 if 0 otherwise,            x x xe n k k v c x Tv v
hence it satisfies all 4 properties.

Operator T k           if 0 min , otherwise,         x x x e x kk k kk v c x Tv v v c         if 0 min 0, otherwise,             x x e x e kk k k k k v c x v v c (3.7)

Property A1

From (3.7) we have the following three cases:

Case 1: if 0,  k x     ,, Δ Δ 0.  i i i i k T v x v x Case 2: if 0, ,  k x i k     ( ) min 0, ( )       x x e x e i i i i i T v v v c ,         , , Δ ( ) min 0, ( ) 2min 0, ( ) min 0, ( ) .               x x e x e x x e i i i i i i i i i i i i i i T v v v c v c v c By A1 we have       Δ Δ Δ     x e x x e i i i i i v v v
, leading to four possible sub-cases:

1.       Δ Δ Δ 0          x e x x e i i i i i i i i v c v c v c   , , Δ ( ) 0.     x x e ii i i i i T v v 2.       Δ Δ 0 Δ          x e x x e i i i i i i i i v c v c v c   , , Δ ( ) ( ) ( ) 0.            x x e x e x i i i i i i ii i ii T v v v c v c 3.       Δ 0 Δ Δ          x e x x e i i i i i i i i v c v c v c   , , Δ ( ) 2 ( ) ( ) ( ) 0.              x x e x x e x i i i i i i i i i i ii T v v v v c v c 4.       0 Δ Δ Δ          x e x x e i i i i i i i i v c v c v c   , , , Δ ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0.                    x
x e x e x x e x e x x

i i i i i i i ii i ii i i i i T v v v v v v v v Case 3: if 0, ,  k x i k     ( ) min 0, ( )       x x e x e k k k k k T v v v c ,         , , Δ ( ) min 0, ( 2 ) 
2min 0, ( ) min 0, ( ) .

                 x x e
x e e

x e e x e

i i k k k i k k k i k k i k k i k T v v v c v c v c
By A2 we have

      Δ 2 Δ Δ        e e e e e kk k k i k i k v x v x v x
, leading to four possible subcases:

1.

      Δ 2 Δ Δ 0             e e e e e k i k k kk i k k k k v x c v x c v x c   ,, , Δ ( ) ( 2 ) 2 ( ) ( ) ( ) 0.                  x x e
x e e x e e x e x
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Hence, T k v satisfies A1.

Property A2

From (3.7) we have the following three cases:
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, we also have consider the other case:
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By A2 we have
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, we also consider the other case:
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Hence, T k v satisfies A2.

Property A3

In order to prove

  1 ... , Δ 0 p k i j j i Tv     x we use Observation 1 to prove   , Δ 0 k ei Tv  x , from (3.7)
we have the following three cases:
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By A1-A3 we have 
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By A2 and A3 we have
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we can also consider the other case:
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Hence, T k v satisfies A3.

Property A4

From (3.7) we have the following 2 cases:

Case 1 0,  k x   0 Δ Δ ( ) .   k Tv vc ee xx Case 2 0, k x        Δ Δ ( ) min 0,Δ ( ) min 0,Δ ( ) .          ee x x x e x e e e k k k k k k k k T v v v c v c Since ( ) ( )       x e e x e k k k k vv , we have (1) if ( ) ( ) 0          x e e x e k k k k k k v c v c
, then

    0 Δ Δ .     ee xx e k k v T v c (2) if ( ) 0 ( ) ,          x e e x e k k k k k k v c v c then   0 Δ ( ) ( ) ( ) .            e e e ee x x x x k k k k k T v v v c v c (3) if 0 ( ) ( )          x e e x e k k k k k k v c v c ,

then
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        , 0 Δ Δ Δ Δ .         e e e e x x x x e e e k k k k k T v v v v c
Hence, T k v satisfies A4.

Operator T Since h(x) is increasing convex, it satisfies A1-A3 and we can see Tv satisfies Properties A1-A3. We will show that Tv also satisfies Property A4 in the following: Definition 3.2. For v V we define the base-stock and the rationing levels as following:

        0 0 11 0 0 0 0 11 0 0 0 0 1 Δ ( ) ( ) ( ) ( ) ( ) ( ) 0 1 . nn k k k k kk nn kk kk n kk k Tv h T v T v T v h c c c h c c c                                       
                min 0 0 , min 0 , k k k k k k k k k s x v v r x v v c                x x e x x x x e
where  

1 1 1
, , , , , 

k k k n x x x x       x is n-1 dimensional

Theorem 3.1. The optimal production policy for Component k is a base-stock policy with a state-dependent base-stock level ()

kk s   x
where it is optimal to produce Component k, if

() k k k xs    x
and not to produce it otherwise. The optimal inventory allocation policy for Component k is a rationing policy with a state-dependent rationing level ()

kk r   x
where it is optimal to satisfy the demand of Component k if

() k k k xr    x
and to reject it otherwise. Both levels are non-decreasing in each of the states x i ,  ik . Furthermore, it is always optimal to 54 satisfy demand of the assembled product whenever on-hand inventory for all components is available.

Proof of Theorem 3.1

The optimal production policy consists of a base-stock policy with the base-stock level

() kk s  
x . From Property A2, the optimal base-stock level ()

kk s   x is non-decreasing in x j , . jk  By Property A1 if   0  k v x it implies   k k k xs   
x , in this case we do not produce any more;

in the case

  0  k v x and   k k k xs    x , it is optimal to produce. Property A3 implies that     ii s x
is non-increasing with joint increases in x . Also from property A2, the optimal rationing level ()

kk r   x
is non-decreasing in each of states x j , . jk  By Property A4, it is optimal to satisfy demand of the assembled product if there is at least one unit on-hand inventory for each component. It is optimal to satisfy demand of Component k if

  k k k xr    x , for k=1,2,…,n. Finally, we will prove   v V directly. Since   min n n vT    for any v inV , where () n T refers to n compositions of T and v  is the unique solution of , v Tv  from which v  satisfies Properties A1-A4.
This completes the proof of Theorem 3.1.

Theorem 3.1 shows that the optimal policy can be determined by the base-stock level and the rationing level. Both levels are state-dependent and non-decreasing in the on-hand inventory level of other components. Similar to [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF], the optimal production policy indicates that with an increase in the on-hand inventory level of one component, the inventory requirements for other components also increase. It is always optimal to satisfy product demand if all the components are present. Unlike [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF], the optimal inventory allocation policy indicates that with an increase in the on-hand inventory level of one component, the rationing level for other components also increase. That is because we discuss two types of demand: demand of the assembled product and demand of the individual components. In our system since demand of the assembled product has a higher priority over demand of individual components, it is always satisfied if all components are in stock. When the system jointly increases the on-hand inventory of the components, more demands from the assembled product are desired to be satisfied that means several individual components demands must be rejected. Hence, the rationing level of the individual components increases. This implies that it becomes more difficult to satisfy demand of the individual components when the on-hand inventory of components increases.

Influence of System Parameters

Theorem 3.3, we will discuss how the optimal policy is affected by system parameters. In order to do so, we redefine the base-stock and rationing levels with different parameters   00 , , , , ,

     k k k k h c c
for k=1,2,…,n, as:

                  , , , min 0 0 , min 0 , ( ) min 0 . ( ) k k k k k k k k k k k k k k k s x v r x v c c r x v c                            xx xx xx Lemma 3.2.
The optimal base-stock and rationing levels of Component k depend on various system parameters  k , for each '"

  kk we have

For the optimal base-stock level B1:

    '"    kk kk hh vv xx for '"  kk hh ,     '" 00    kk cc vv xx for '" 00  cc ,     '"    kk kk cc vv xx for '"  kk cc . B2:     '" 00    kk vv  xx for '" 00   ,     '" kk kk vv    xx  for '"   kk ,     '" kk kk vv    xx  for '"   kk .
For the optimal rationing level B3:

    '"    kk kk hh vv xx for '"  kk hh ,     '" 00    kk cc vv xx for '" 00  cc ,     '"    kk kk cc vv xx for '"  kk cc . B4:     '" 00    kk vv  xx for '" 00   ,     '"    kk kk vv  xx for '"   kk ,
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    '"    kk kk vv  xx for '"   kk .

Proof of Lemma 3.2

In order to prove Lemma 3.2, we need to show that Tv(x) satisfies Properties B1-B4. In order to do so, we will prove that T k v(x), T 0 v(x) and T k v(x) satisfy Properties B1-B4, respectively.

Operator T k               min , min ,0 ,      k k k T v v v v v x x e x x x             min ,0 min ,0 .         x x x e x k k k k k k T v v v v

Property B1

In order to prove B1, we consider three cases: 

Case 1 if '"  kk hh . By B1,     '"   
            ' ' ' ' min ,0 min ,0 ,         x x x e x k k k k k k k k k k h h h h T v v v v             " " " " min ,0 min ,0 ,         x x x e x k k k k k k k k k k h h h h T v v v v                         ' " ' " ' ' "" min ,0 min ,0 min , 0 min ,0 .                  x x x x x e x x e x k k k k k k kk k k k k k k k k k h h h h h h k k k hh T v T v v v v v vv By A1 we have '' ( ) ( )     x e x kk k k k hh vv and "" ( ) ( ).     x e x kk k k k hh vv By B1 we have '" ( ) ( )    xx kk kk hh vv
, from the above we have two possibilities:

' ' " " ( ) ( ) ( ) ( )          x e x x e x k k k k k k k k k k h h h h v v v v or ' " ' " ( ) ( ) ( ) ( ).          x e x e x x k k k k k k k k k k h h h h v v v v
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If ' ' " " ( ) ( ) ( ) ( )          x e x x e x k k k k k k k k k k h h h h v v v v
then we have five sub-cases:

1. ' ' " " ( ) ( ) ( ) ( ) 0            x e x x e x k k k k k k k k k k h h h h v v v v         ' " ' " 0.         x x x x k k k k k k k k k k h h h h T v T v v v 2. ' ' " " ( ) ( ) ( ) 0 ( )            x e x x e x k k k k k k k k k k h h h h v v v v             ' " ' " " ' 0.             x x x x x x k k k k k k k k k k k k k k h h h h h h T v T v v v v v 3. ' ' " " ( ) ( ) 0 ( ) ( )            x e x x e x k k k k k k k k k k h h h h v v v v                 ' " ' " " " '" 0.                   x x x x x e x x x e k k k k k k kk k k k k k k k k k h h h h h h k k k hh T v T v v v v v vv 4. ' ' " " ( ) 0 ( ) ( ) ( )            x e x x e x k k k k k k k k k k h h h h v v v v                 ' " ' " ' " " " 0.                   x x x x x x e x xe k k k k k k k k k k k k k k k k k k h h h h h h h kk h T v T v v v v v v v 5. ' ' " " 0 ( ) ( ) ( ) ( )            x e x x e x k k k k k k k k k k h h h h v v v v                     ' " ' " ' ' " " '" 0.                         k k k k k k k k kk k k k k k k k k k k k k h h h h h h h h k k k k hh T v T v v v v v v v vv x x x x x e x x e x x e x e If ' " ' " ( ) ( ) ( ) ( )          x e x e x x k k k k k k k k k k h h h h v v v v
, we also have one sub-case: 

6. ' " ' " ( ) ( ) 0 ( ) ( )            x e x e x x k k k k k k k k k k h h h h v v v v             ' " ' " ' " 0.             x x x x x x k k k k k k k k k k k k k k h h h h h h T v T v v v v v Case 2 if '" 00  cc . By B1,     '" 00    kk cc vv xx for '" 00  cc , where   ' 0  k c v x and   " 0  k c v x
            ' ' ' ' 0 0 0 0 min ,0 min ,0 ,         k k k k k k c c c c T v v v v x x x e x             " " " " 0 0 0 0 min ,0 min ,0 ,         k k k k k k c c c c T v v v v x x x e x                         ' " ' " ' ' 0 0 0 0 0 0 "" 00 min ,0 min ,0 min , 0 min ,0 .                  k k k k k k k k k c c c c c c k k k cc T v T v v v v v vv x x x x x

e x x e x

By A1 we have

'' 00 ( ) ( )     k k k cc vv x e x and "" 00 ( ) ( ).     k k k cc vv x e x
By B2 we have

'" 0 0 ( ) ( )    kk cc
vv xx , from the above we have two possibilities:

" " ' ' 0 0 0 0 ( ) ( ) ( ) ( )          k k k k k k c c c c v v v v x e x x e x or " ' " ' 0 0 0 0 ( ) ( ) ( ) ( )          k k k k k k c c c c v v v v x e
x e x

x .

If

" " ' ' 0 0 0 0 ( ) ( ) ( ) ( )          k k k k k k c c c c v v v v x e x x e
x , then we have five sub-cases:

1. " " ' ' 0 0 0 0 ( ) ( ) ( ) ( ) 0            k k k k k k c c c c v v v v x e x x e x         ' " ' " 0 0 0 0 0.         k k k k k k c c c c T v T v v v x x x x 2. " " ' ' 0 0 0 0 ( ) ( ) ( ) 0 ( )            k k k k k k c c c c v v v v x e x x e x             ' " ' " ' " 0 0 0 0 0 0 0.             k k k k k k k k c c c c c c T v x T v v v v v x x x x x 3. " " ' ' 0 0 0 0 ( ) ( ) 0 ( ) ( )            k k k k k k c c c c v v v v x e x x e x                 ' " ' " ' ' 0 0 0 0 0 0 "' 00 0.                   k k k k k k k k k c c c c c c k k k cc T v T v v v v v vv x x x x x e x x x e 4. " " ' ' 0 0 0 0 ( ) 0 ( ) ( ) ( )            k k k k k k c c c c v v v v x e x x e x                 ' " ' " ' ' " 0 0 0 0 0 0 0 ' 0 0.                   k k k k k k k k k k c c c c c c c kk c T v T v v v v v v v x x x x x e x x xe 5. " " ' ' 0 0 0 0 0 ( ) ( ) ( ) ( )            k k k k k k c c c c v v v v x e x x e x                     ' " ' " ' " ' " 0 0 0 0 0 0 0 0 '" 00 0.                         k k k k k k k k k k k k c c c c c c c c k k k k cc T v T v v v v v v v vv x x x x x e x e x x x e x e If " ' " ' 0 0 0 0 ( ) ( ) ( ) ( )          k k k k k k c c c c v v v v x e
x e x

x , we also have one sub-case:
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" ' " ' 0 0 0 0 ( ) ( ) 0 ( ) ( )            k k k k k k c c c c v v v v x e x e x x             ' " ' " ' " 0 0 0 0 0 0 0.             k k k k k k k k c c c c c c T v T v v v v v x x x x x x Case 3 if '"  kk cc .     '" 0.     xx kk k k k k cc T v T v
The proof is the same as Case 2 ( '" 00  cc ).

Hence, T k v satisfies B1.

Property B2

In order to prove B2, we consider three cases:

Case 1 if '" 00   . By B2,     '" 00    kk vv  xx for '" 00   . Here,   ' 0   x k v and   " 0   x k v
are the marginal cost difference due to increasing one unit on-hand inventory of component k under the condition of ' 0  and " 0  , respectively.

            ' ' ' ' 0 0 0 0 min ,0 min ,0             x x x e x k k k k k k T v v v v ,             " " " " 0 0 0 0 min ,0 min ,0 ,             x x x e x k k k k k k T v v v v                         ' " ' " ' ' 0 0 0 0 0 0 "" 00 min ,0 min ,0 min , 0 min ,0 .                         x x x x x e x x e x k k k k k k k k k k k k T v T v v v v v vv By A1 we have '' 00 ( ) ( )      x e x k k k vv and "" 00 
( ) ( )      x e x k k k vv . By B2 we have '" 0 0 ( ) ( )     xx kk vv
, from the above we have two possibilities:

" " ' ' 0 0 0 0 ( ) ( ) ( ) ( )              x e x x e x k k k k k k v v v v or " ' " ' 0 0 0 0 ( ) ( ) ( ) ( )              x e x e x x k k k k k k v v v v . If " " ' ' 0 0 0 0 ( ) ( ) ( ) ( )              x e x x e x k k k k k k v v v v
, then we have five sub-cases:

1. " " ' ' 0 0 0 0 ( ) ( ) ( ) ( ) 0                x e x x e x k k k k k k v v v v         ' " ' " 0 0 0 0 0. k k k k k k T v T v v v             x x x x 2. " " ' ' 0 0 0 0 ( ) ( ) ( ) 0 ( )                x e x x e x k k k k k k v v v v             ' " ' " ' " 0 0 0 0 0 0 0.                   x x x x x k k k k k k k k T v x T v v v v v 3. " " ' ' 0 0 0 0 ( ) ( ) 0 ( ) ( )                x e x x e x k k k k k k v v v v                 ' " ' " ' ' 0 0 0 0 0 0 "' 00 0.                          x x x x x e x x x e k k k k k k k k k k k k T v T v v v v v vv 4. " " ' ' 0 0 0 0 ( ) 0 ( ) ( ) ( )                x e x x e x k k k k k k v v v v                 ' " ' " ' ' " 0 0 0 0 0 0 0 ' 0 0.                           x x x x x e x x xe k k k k k k k k k k kk T v T v v v v v v v 5. " " ' ' 0 0 0 0 0 ( ) ( ) ( ) ( )                x e x x e x k k k k k k v v v v                     ' " ' " ' " ' " 0 0 0 0 0 0 0 0 '" 00 0.                                  x x x x x e x e x x x e x e k k k k k k k k k k k k k k k k T v T v v v v v v v vv If " ' " ' 0 0 0 0 ( ) ( ) ( ) ( )              x e x e x x k k k k k k v v v v
, we also have one sub-case:

6. " ' " ' 0 0 0 0 ( ) ( ) 0 ( ) ( )                x e x e x x k k k k k k v v v v             ' " ' " ' " 0 0 0 0 0 0 0.                   x x x x x x k k k k k k k k T v T v v v v v Case 2 if '"   kk .     '" 0. kk k k k k T v T v      xx
The proof is the same as Case 1 ( '" 00 

  ). Case 3 if '"   kk . By B1,     '"    kk kk vv  xx for '"  kk  , where   '  k k v  x and   "  k k v  x
            ' ' ' ' min ,0 min ,0 ,         k k k k k k k k k k T v v v v     x x x e x             " " " " min ,0 min ,0 ,         k k k k k k k k k k T v v v v     x x x e x                         ' " ' " ' ' "" min ,0 min ,0 min , 0 min ,0 .                  k k k k k k kk k k k k k k k k k k k k T v T v v v v v vv        x x x x x e x
x e x By A1 we have

'' ( ) ( )     kk k k k vv  x e x and "" ( ) ( ).     kk k k k vv  x e x
By B1 we have

'" ( ) ( )   
kk kk vv  xx , from the above we have two possibilities:

' ' " " ( ) ( ) ( ) ( )          k k k k k k k k k k v v v v     x e x x e x or ' " ' " ( ) ( ) ( ) ( ).          k k k k k k k k k k v v v v     x e x e x x If ' ' " " ( ) ( ) ( ) ( )          k k k k k k k k k k v v v v     x e x x e
x then we have five sub-cases:

1. ' ' " " ( ) ( ) ( ) ( ) 0            k k k k k k k k k k v v v v     x e x x e x         ' " ' " 0.         k k k k k k k k k k T v T v v v     x x x x 2. ' ' " " ( ) ( ) ( ) 0 ( )            k k k k k k k k k k v v v v     x e x x e x             ' " ' " " ' 0.             k k k k k k k k k k k k k k T v T v v v v v       x x x x x x 3. ' ' " " ( ) ( ) 0 ( ) ( )            k k k k k k k k k k v v v v     x e x x e x                 ' " ' " " " '" 0.                   k k k k k k kk k k k k k k k k k k k k T v T v v v v v vv        x x x x x e x x x e 4. ' ' " " ( ) 0 ( ) ( ) ( )            k k k k k k k k k k v v v v     x e x x e x                 ' " ' " ' " " " 0.                   k k k k k k k k k k k k k k k k k k kk T v T v v v v v v v         x x x x x x e x xe 5. ' ' " " 0 ( ) ( ) ( ) ( )            k k k k k k k k k k v v v v     x e x x e x                     ' " ' " ' ' " " '" 0.                         k k k k k k k k kk k k k k k k k k k k k k k k k k T v T v v v v v v v vv          x x x x x e x x e x x e x e If ' " ' " ( ) ( ) ( ) ( )          k k k k k k k k k k v v v v    
x e x e x

x , we also have one sub-case:

6. ' " ' " ( ) ( ) 0 ( ) ( )            k k k k k k k k k k v v v v     x e x e x x             ' " ' " ' " 0.             k k k k k k k k k k k k k k T v T v v v v v       x x x x x x
Hence, T k v satisfies B2.

Property B3

In order to prove B3, we consider three cases:

Case 1 if '"  kk hh . By B3,     '"    kk kk hh vv xx for '"  kk hh .
We have

    '" 0.     xx kk k k k k hh T v T v (see the proof of Property B1 Case 1) Case 2 if '" 00  cc . By B3,     '" 00    kk cc vv xx for '" 00  cc .
We have

    '" 00 0.     xx k k k k cc T v T v (see the proof of Property B1 Case 2) Case 3 if '"  kk cc . By B3,     '"    kk kk cc vv xx for '"  kk cc .             ' ' ' ' min ,0 min ,0 ,         x x x x k k k k k k k k k k c c c c T v v v e v             " " " " min ,0 min ,0 ,         x x x x k k k k k k k k k k c c c c T v v v e v                         ' " ' " ' ' ""
, min ,0 min ,0 min ,0 min ,0 .

                 x x x x x e x x e x k k k k k k kk k k k k k k k k c k c c c c c k k k cc T v T v v v v v vv By A1 we have '' ( ) ( )     x e x kk k k k cc vv and "" ( ) ( ).     x e x kk k k k cc vv By B3 we have '" ( ) ( )    xx k k kk cc vv
, from the above we have two possibilities:

' ' " " ( ) ( ) ( ) ( )          x e x x e x kk kk k k k k k k c c c c v v v v or
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63 ' " ' " ( ) ( ) ( ) ( ).          x e x e x x kk k k k k k k k k c c c c v v v v If ' ' " " ( ) ( ) ( ) ( )          x e x x e x kk kk k k k k k k c c c c v v v v
, then we have five sub-cases:

1. ' ' " " ( ) ( ) ( ) ( ) 0            x e x x e x kk kk k k k k k k c c c c v v v v         ' " ' " 0.         x x x x k k k k k k k k k k c c c c T v T v v v 2. ' ' " " ( ) ( ) ( ) 0 ( )            x e x x e x kk kk k k k k k k c c c c v v v v             ' " ' " " ' 0.             x x x x x x k k k k k k k k k k k k k k c c c c c c T v T v v v v v 3. ' ' " " ( ) ( ) 0 ( ) ( )            x e x x e x kk kk k k k k k k c c c c v v v v                 ' " ' " " " '" 0.                   x x x x x e x x e k k k k k k kk k k k k k k k k k c c c c c c k k k cc T v T v v v v v x vv 4. ' ' " " ( ) 0 ( ) ( ) ( )            x e x x e x kk kk k k k k k k c c c c v v v v                 ' " ' " " ' " " 0.                   x x x x x e x x xe k k k k k k k k k k k k k k k k k k c c c c c c c kk c T v T v v v v v v v 5. ' ' " " 0 ( ) ( ) ( ) ( )            x e x x e x kk kk k k k k k k c c c c v v v v                     ' " ' " ' ' " " '" 0.                         x x x x x e x x e x x e x e k k k k k k k k kk k k k k k k k k k k k k c c c c c c c c k k k k cc T v T v v v v v v v vv If ' " ' " ( ) ( ) ( ) ( )          x e x e x x kk kk k k k k k k c c c c v v v v
we also have one sub-case:

6. ' " ' " ( ) ( ) 0 ( ) ( )            x e x e x x kk kk k k k k k k c c c c v v v v             ' " ' " ' " 0.             x x x x x x k k k k k k k k k k k k k k c c c c c c T v T v v v v v
Hence, T k v satisfies B3.

Property B4

In order to prove B4, we consider three cases:

Case 1 if '" 00   .
Lost Sales for Components and Assembled Product 64 By B4,

   

'" 00

   kk vv  xx for '" 00   . We have     '" 00 0.      xx k k k k T v T v (see the proof of Property B2 Case 1) Case 2 if '" kk   . By B4,     '"    kk kk vv  xx for '" kk   .
We have

    '" 0.      xx kk k k k k T v T v (see the proof of Property B2 Case 2) Case 3 if '"   kk . By B4,     '"    kk kk vv  xx for '"   kk .
We have

    '" 0.     kk k k k k T v T v  xx (see the proof of Property B2 Case 3)
Hence, T k v satisfies B4.

Operator T 0           0 0 1 0 if 0 min , otherwise,            x x x e x n k k v c x Tv v v c         0 1 0 if 0 min 0, otherwise.               n k k v c x v v c e x
x e x By A4, already

      0 0 1 if 0 otherwise.            n k k v c x Tv v x x xe
Hence T 0 v satisfies all Properties B1-B4.

Operator T k           if 0 min , otherwise,          x x x e x k k k k k v c x Tv v v c         if 0 min 0, otherwise.              x x e x e k k k k k k v c x v v c (3.8)
Lost Sales for Components and Assembled Product 65 From (3.8) we have the following two possibilities:

Possibility 1: if 0, k x       xx k k T v v c
, hence it satisfies all Properties B1-B4.

Possibility 2: if 0, k x      ( ) min 0, ( ) ,       x x e x e k k k k k T v v v c       Δ ( ) min 0, ( ) min 0, ( ) .           x x e x x e k k k k k k k k k T v v v c v c

Property B1

In order to prove B1, we consider three cases:

Case 1 if '"  kk hh . By B1,     '"    kk kk hh vv xx for '"  kk hh .       ' ' ' ' Δ ( ) min 0, ( ) min 0, ( ) ,           x x e x x e k k k k k k k k k k k hh k hh k T v v v c v c       " " " " Δ ( ) min 0, ( ) min 0, ( ) ,           x x e x x e k k k k k k k k k k k hh k hh k T v v v c v c                         ' " ' " ' '
"" min 0, min 0, min 0, min 0, . , from above we have two sub-possibilities:

k k k k k k kk kk k k k k k k k k k k k h h h h h h k k k k k hh T v T v v v v c v c v c v c                        x x
' ' " " ( ) ( ) ( ) ( )          x x e x x e k k k k k k k k k k h h h h v v v v or ' " ' " ( ) ( ) ( ) ( ).          x x x e x e k k k k k k k k k k h h h h v v v v If ' ' " " ( ) ( ) ( ) ( )          x x e x x e k k k k k k k k k k h h h h v v v v
, then we have five sub-cases:

1. ' ' " " ( ) ( ) ( ) ( ) 0                x x e x x e k k k k k k k k k k k k k k h h h h v c v c v c v c         ' " ' " 0. k k k k kk k k k k k k h h h h T v T v v v           x x x e x e
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66 2. ' ' " " ( ) ( ) ( ) 0 ( )                x x e x x e k k k k k k k k k k k k k k h h h h v c v c v c v c             ' " ' " " ' 0. k k k k k k kk k k k k k k k k k k k k h h h h h h T v T v v v v c v c                   x x x e x e x e x e 3. ' ' " " ( ) ( ) 0 ( ) ( )                x x e x x e k k k k k k k k k k k k k k h h h h v c v c v c v c                 ' " ' " " " '" 0. k k k k k k kk kk k k k k k k k k k h h h h h h k k k hh T v T v v v v v vv                     x x x e x e x x e
x e x 4.

' ' " "

( ) 0 ( ) ( ) ( )                x x e x x e k k k k k k k k k k k k k k h h h h v c v c v c v c                 ' " ' " ' " " " 0. k k k k k k k k kk k k k k k k k k k k k k h h h h h h h kk h T v T v v v v c v v vc                       x x x e x e x e x x e x 5. ' ' " " 0 ( ) ( ) ( ) ( )                x x e x x e k k k k k k k k k k k k k k h h h h v c v c v c v c                     ' " ' " ' ' " " '" 0. k k k k k k k k kk kk k k k k k k k k k k k k h h h h h h h h kk hh T v T v v v v v v v vv                         x x x e x e x x e x x e xx If ' " ' " ( ) ( ) ( ) ( )          x x x e x e k k k k k k k k k k h h h h v v v v
we also have one sub-case:

6. ' " ' " ( ) ( ) 0 ( ) ( )                x x x e x e k k k k k k k k k k k k k k h h h h v c v c v c v c             ' " ' " ' " 0. k k k k k k kk k k k k k k k k k k h h h h h h T v T v v v v v                 x x x e x e x e x e
Case 2 if '" 00  cc .

By B2,

   

'" 00 

   kk cc vv xx for '" 00  cc .       ' ' ' ' 0 0 0 0 Δ ( ) min 0, ( ) min 0, ( ) ,           k k k k k k k k c c c c k T v v v c v c x x e x x e       " " " " 0 0 0 0 Δ ( ) min 0, ( ) min 0, ( ) k k k k k k k c c c c k k T v v v c v c           x x e x x e                         ' " ' " ' 0 0 0 0 0 ' " " 0 0 0 min 0, min 0, min 0, min 0, . kk k k k k k k k k c c c c c k k k k k k k k c c c T v T v v v v c v c v c v c                        x x
" ' ' 0 0 0 0 ( ) ( ) ( ) ( )          k k k k k k c c c c v v v v x x e x x e or " ' " ' 0 0 0 0 ( ) ( ) ( ) ( ).          k k k k k k c c c c v v v v x x x e x e If " " ' ' 0 0 0 0 ( ) ( ) ( ) ( )          k k k k k k c c c c v v v v x x e x
x e , then we consider five sub-cases:

1. " " ' ' 0 0 0 0 ( ) ( ) ( ) ( ) 0                k k k k k k k k k k c c c c v c v c v c v c x x e x x e         ' " ' " 0 0 0 0 0. kk k k k k k k c c c c T v T v v v           x x x e x e 2. " " ' ' 0 0 0 0 ( ) ( ) ( ) 0 ( )                k k k k k k k k k k c c c c v c v c v c v c x x e x x e             ' " ' " ' " 0 0 0 0 0 0 0. kk k k k k k k k k k k k k c c c c c c T v T v v v v c v c                   x x x e x e x e x e 3. " " ' ' 0 0 0 0 ( ) ( ) 0 ( ) ( )                k k k k k k k k k k c c c c v c v c v c v c x x e x x e                 ' " ' " ' ' 0 0 0 0 0 0 "' 00 0. kk k k k k k k k k k c c c c c c k k k cc T v T v v v v v vv                     x x x e x e x x e
x e x 4.

" " ' ' 0 0 0 0

( ) 0 ( ) ( ) ( )                k k k k k k k k k k c c c c v c v c v c v c x x e x x e                 ' " ' " ' ' " 0 0 0 0 0 0 0 ' 0 0. kk k k k k k k k k k k k k c c c c c c c kk c T v T v v v v v v c vc                       x x
x e x e x x e x e x 5.

" " ' ' 0 0 0 0 0 ( ) ( ) ( ) ( )                k k k k k k k k k k c c c c v c v c v c v c x x e x x e                     ' " ' " ' ' " " 0 0 0 0 0 0 0 0 '" 00 0. kk k k k k k k k k k k k k c c c c c c c c kk cc T v T v v v v v v v vv                         x x x e x e x x e x x e xx If " ' " ' 0 0 0 0 ( ) ( ) ( ) ( ) k k k k k k c c c c v v v v          x x x e
x e we also have one sub-case:

6. " ' " ' 0 0 0 0 ( ) ( ) 0 ( ) ( )                k k k k k k k k k k c c c c v c v c v c v c x x x e x e             ' " ' " " ' 0 0 0 0 0 0 0. kk k k k k k k k k k k c c c c c c T v T v v v v v                 x x x e x e x e x e Case 3 if '"  kk cc .     '" 0. kk kk kk cc T v T v     xx
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The proof is similar as Case 2 ( '" 00  cc ).

Hence, T k v satisfies B1.

Property B2

In order to prove B2, we consider three cases: 

Case 1 if '" 00   . By B2,     '" 00 kk vv     xx for '" 00   .       ' ' ' ' 0 0 0 0 Δ ( ) min 0, ( ) min 0, ( ) , k k k k k k k k k T v v v c v c               x x e x x e       " " " " 0 0 0 0 Δ ( ) min 0, ( ) min 0, ( ) k k k k k k kk k T v v v c v c               x x e x x e                         ' " ' " ' 0 0 0 0 0 ' " " 0 0 0 min 0, min 0, min 0, min 0, . kk k k k k k k k k k k k k k k k k T v T v v v v c v c v c v c                                x x
             x x e x x e k k k k k k v v v v or " ' " ' 0 0 0 0 ( ) ( ) ( ) ( ).              x x x e x e k k k k k k v v v v If " " ' ' 0 0 0 0 ( ) ( ) ( ) ( )              x x e x x e k k k k k k v v v v
, then we have five sub-cases:

1. " " ' ' 0 0 0 0 ( ) ( ) ( ) ( ) 0                    x x e x x e k k k k k k k k k k v c v c v c v c         ' " ' " 0 0 0 0 0. kk k k k k k k T v T v v v               x x x e x e 2. " " ' ' 0 0 0 0 ( ) ( ) ( ) 0 ( )                    x x e x x e k k k k k k k k k k v c v c v c v c             ' " ' " ' " 0 0 0 0 0 0 0. kk k k k k k k k k k k k k T v T v v v v c v c                         x x x e x e x e x e 3. " " ' ' 0 0 0 0 ( ) ( ) 0 ( ) ( )                    x x e x x e k k k k k k k k k k v c v c v c v c                 ' " ' " ' ' 0 0 0 0 0 0 "' 00 0. kk k k k k k k k k k k k k T v T v v v v v vv                            x x x e x e x x e
x e x
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69 4. " " ' ' 0 0 0 0 ( ) 0 ( ) ( ) ( )                    x x e x x e k k k k k k k k k k v c v c v c v c                 ' " ' " ' ' " 0 0 0 0 0 0 0 ' 0 0. kk k k k k k k k k k k k k kk T v T v v v v v v c vc                               x x x e x e x x e x e x 5. " " ' ' 0 0 0 0 0 ( ) ( ) ( ) ( )                    x x e x x e k k k k k k k k k k v c v c v c v c                 ' " ' " ' ' " " 0 0 0 0 0 0 0 0 kk k k k k k k k k k k k k T v T v v v v v v v                            x x x e x e x x e x x e     '" 00 0. kk vv       xx If " ' " ' 0 0 0 0 ( ) ( ) ( ) ( )              x x x e x e k k k k k k v v v v
we also have one sub-case:

6. " ' " ' 0 0 0 0 ( ) ( ) 0 ( ) ( )                    x x x e x e k k k k k k k k k k v c v c v c v c             ' " ' " " ' 0 0 0 0 0 0 0. kk k k k k k k k k k k T v T v v v v v                       x x x e x e x e x e
Case 2 if '"

kk   .     '" 0. kk kk kk T v T v      xx
The proof is the same as Case 1 ( '" 00

  ). Case 3 if '"   kk . By B1,     '" kk kk vv     xx for '"   kk .       ' ' ' ' Δ ( ) min 0, ( ) min 0, ( ) , k k k k k k k k k k k k k T v v v c v c               x x e x x e       " " " " Δ ( ) min 0, ( ) min 0, ( ) , k k k k k k k k k k k k k T v v v c v c               x x e x x e                         ' " ' " ' '
"" min 0, min 0, min 0, min 0, . 

k k k k k k kk kk k k k k k k k k k k k k k k k k T v T v v v v c v c v c v c                               x x
( ) ( ) ( ) ( )          k k k k k k k k k k v v v v     x x e x x e or ' " ' " ( ) ( ) ( ) ( ).          k k k k k k k k k k v v v v     x x x e x e If ' ' " " ( ) ( ) ( ) ( )          k k k k k k k k k k v v v v     x x e x
x e , then we have five sub-cases:

1. ' ' " " ( ) ( ) ( ) ( ) 0                k k k k k k k k k k k k k k v c v c v c v c     x x e x x e         ' " ' " 0. k k k k kk k k k k k k T v T v v v               x x x e x e 2. ' ' " " ( ) ( ) ( ) 0 ( )                k k k k k k k k k k k k k k v c v c v c v c     x x e x x e             ' " ' " " ' 0. k k k k k k kk k k k k k k k k k k k k T v T v v v v c v c                         x x x e x e x e x e 3. ' ' " " ( ) ( ) 0 ( ) ( )                k k k k k k k k k k k k k k v c v c v c v c     x x e x x e                 ' " ' " " " '" 0. k k k k k k kk kk k k k k k k k k k k k k T v T v v v v v vv                            x x x e x e x x e
x e x

( )                k k k k k k k k k k k k k k v c v c v c v c     x x e x x e                 ' " ' " ' " " " 0. k k k k k k k k kk k k k k k k k k k k k k kk T v T v v v v c v v vc                               x x x e x e x e x x e x 5. ' ' " " 0 ( ) ( ) ( ) ( )                k k k k k k k k k k k k k k v c v c v c v c     x x e x x e                     ' " ' " ' ' " " '" 0. k k k k k k k k kk kk k k k k k k k k k k k k kk T v T v v v v v v v vv                                  x x x e x e x x e x x e xx If ' " ' " ( ) ( ) ( ) ( )          x x x e x e k k k k k k k k k k h h h h v v v v 4. ' ' " " ( ) 0 ( ) ( ) 
we also have one sub-case:

6. ' " ' " ( ) ( ) 0 ( ) ( )                x x x e x e k k k k k k k k k k k k k k h h h h v c v c v c v c             ' " ' " ' " 0. k k k k k k kk k k k k k k k k k k h h h h h h T v T v v v v v                 x x x e x e x e x e
Hence, T k v satisfies B2.

Property B3

In order to prove B3, we consider three cases:

Case 1 if '"  kk hh .
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    '" kk kk hh vv    xx for '"  kk hh .
We have

    '" 0. kk kk kk hh T v T v     xx (see the proof of Property B1 Case 1) Case 2: if '" 00  cc . By B3,     '" 00 kk cc vv    xx for '" 00  cc .
We have

   

'" 00 0.

kk kk cc T v T v     xx (see the proof of Property B1 Case 2) Case 3 if '"  kk cc . By B3,     '" kk kk cc vv    xx for '"  kk cc ,       ' ' ' ' '' Δ ( ) min 0, ( ) min 0, ( ) ,           x x e x x e k k k k k k k k k k k c c c c k k T v v v c v c       " " " " "" Δ ( ) min 0, ( ) min 0, ( ) , k k k k k k k k k k k c c c c k k T v v v c v c           x x e x x e                       ' " ' " ' ' ""
'' " min 0, min 0, min 0, min 0, 

k k k k k k kk kk k k k k k k k k k k k c c c c c c k k k k cc T v T v v v v c v c v c v                        x x x
' ' " " ( ) ( ) ( ) ( )          x x e x x e k k k k k k k k k k c c c c v v v v or ' " ' " ( ) ( ) ( ) ( )          x x x e x e k k k k k k k k k k c c c c v v v v If ' ' " " ( ) ( ) ( ) ( )          x x e x x e k k k k k k k k k k c c c c v v v v
, then we have five sub-cases:

1. ' ' " " ' ' " " ( ) ( ) ( ) ( ) 0 k k k k k k k k k k k k k k c c c c v c v c v c v c                x x e x x e         ' " ' " 0. k k k k kk k k k k k k c c c c T v T v v v           x x x e x e 2. ' ' " " ' ' " " ( ) ( ) ( ) 0 ( ) k k k k k k k k k k k k k k c c c c v c v c v c v c                x x e x x e           ' " ' " " " k k k k k kk k k k k k k k k k c c c c c T v T v v v v c              x x x e x e x e       ' " " " 0. k k k k k k k k c c c v v v c          x e x x 3. ' ' " " ' ' " " ( ) ( ) 0 ( ) ( ) k k k k k k k k k k k k k k c c c c v c v c v c v c                x x e x x e                 ' " ' " " " '" 0. k k k k k k kk kk k k k k k k k k k c c c c c c k k k cc T v T v v v v v vv                     x x x e x e x x e
x e x 4.

' ' " " ' ' " " ( ) 0 ( ) ( ) ( ) k k k k k k k k k k k k k k c c c c v c v c v c v c                x x e x x e                 ' " ' " ' " " " ' ' 0. k k k k k k k k kk k k k k k k k k k k k k c c c c c c c kk c T v T v v v v c v v vc                       x x x e x e x e x x e x 5. ' ' " " ' ' " " 0 ( ) ( ) ( ) ( ) k k k k k k k k k k k k k k c c c c v c v c v c v c                x x e x x e                     ' " ' " ' ' " " '" 0. k k k k k k k k kk kk k k k k k k k k k k k c c c c c c c c kk cc T v T v v v v v v v vv                        x x x e x e x x e x x e xx If ' " ' " ( ) ( ) ( ) ( )          x x x e x e k k k k k k k k k k c c c c v v v v
and '"  kk cc , we also have one sub-case:

k k k k k k k k k k k k k k c c c c v c v c v c v c               x x x e x e             ' " ' " ' " '" "' 0. k k k k k k kk k k k k k k k k k k k k c c c c c c kk T v T v v v v c v c cc                   x x x 6. ' " ' " ' " ' " ( ) ( ) 0 ( ) ( ) 

e x e x e x e

Hence, T k v satisfies B3.

Property B4

In order to prove B4, we consider three cases:

Case 1 if '" 00   . By B4,     '" 00 kk vv     xx for '" 00   .
We have

   

'" 00 0.

kk kk T v T v      xx (see the proof of Property B2 Case 1) Case 2 if '"   kk . By B4,     '" kk kk vv     xx for '"   kk .
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We have

    '" 0. kk kk kk T v T v      xx (see the proof of Property B2 Case 2) Case 3 if '"   kk . By B4,     '" kk kk vv     xx for '" .

  kk

We have

    '" 0. kk kk kk T v T v      xx (see the proof of Property B2 Case 3) Hence, T k v satisfies B4.
Operator T Since h(x) is increasing convex in x i , it satisfies B1-B4 and we can see that Tv satisfies B1-B4. 2009) presented a general framework for investigating the effect of system parameters on the optimal policy for inventory control problem. The interested reader can refer to it for the overview of this problem. This completes the proof of Lemma 3.2.

Cil et al. (

From Lemma 3.2 we define Theorem 3.2. THEOREM 3.2. The optimal base-stock and rationing levels satisfy the following properties. and k  and non-increasing in the production rate µ k , for k=1,2,…,n.

Proof of Theorem 3.2

From Lemma 3.2, the base-stock and the rationing levels as:

      , min 0 0 , k k k k s x v        x x       , min 0 , ( ) 
k k k k k k r x v c c           x x       , min 0 . ( ) k k k k k r x v c           x x
Property 1:

From Property B1, we consider three cases:

1.

   

' 

k vv  x e
x is non-increasing in c 0 .

3.

   

'"

kk kk cc vv    xx for '"  kk cc .
Since the function   x is non-increasing in c k .

Property 2

From Property B2, we consider three cases:

1.

   

'" 00

kk vv     xx for '" 00   .
Since the function   v x is convex, for a fixed level k x and two different arrival rates '" 00   , from

    '" 00 kk vv     xx we have ( ) ( ) k vv  x e
x is non-increasing in 0  .

2.

   

'"

kk kk vv     xx for '"  kk  .
Since the function   v x is convex, for a fixed level k x and two different arrival rates '"

 kk  , from     '" kk kk vv     xx we have ( ) ( ) k vv  x e
x is non-increasing in k  .

3.

   

'"

kk kk vv     xx for '"  kk  .
Since the function   v x is convex, for a fixed level k x and two different production rates

'"  kk  , from     '" 00 kk vv     xx we have ( ) ( ) k vv  x e
x is non-decreasing in k  .

Property 3:

From Property B3, we consider three cases:

1.

   

' 

   

'" 00

kk cc vv    xx for '" 00  cc .
Since the function   v x is convex, for a fixed level k x and two different holding costs '"

00  cc , from     '" 00 kk cc vv    xx we have ( ) ( ) k vv  x
x e is non-increasing in c 0 .

3.

   

' 

Property 4:

From Property B4, we consider three cases:

1.

   

'" 00

kk vv     xx for '" 00   .
Since the function   This completes the proof of Theorem 3. 

The Case of Average Cost per Period

In this section we extend our analysis to the case of the average cost per period. Our objective is to minimize the expected long-run average cost of the system. Under a control policy  and a starting state x, the average cost is given by ()

g  x :     1 00 ( ( ) ( ) limsup .         Nn i l l i il N E h t c N t g N   x X x (3.9)
Our aim is to seek the optimal production policy   that minimizes the average cost per period ( ) inf

( ) gg    
xx for all states x. The optimality equation in this case is as follows:

  0 0 11 ( ) ( ) ( ) ( ),             nn k k k k kk v g h T v T v T v    x x x x x (3.10)
where  g is a finite constant denoting the average cost per period.

In Theorem3.3, we show that the optimal policy under the average cost criterion retains all the properties observed in Theorem3.1 and Theorem3.2 under the discounted cost criterion.

THEOREM 3.3. The optimal policy under the average cost criterion retains all the properties of the optimal policy under the discounted cost criterion, namely that the optimal policy can be described by two types of state-depend thresholds: a production base-stock level and an inventory rationing level. The base-stock and the rationing levels satisfy all the properties in Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.3

We deal with the average cot problem through the limit of discounted cost problem with 0   . Since our problem can be formulated as an MDP, there are two conditions must be held for the existence of average optimal policy. As showed by Cavazos-Cadena (1992), Weber and Stidham (1987): 1. there exists a stationary policy  which achieves a finite average cost g  . 2. the number of states in which the holding cost   hg  x  is finite.

For our model, consider a policy  that is described by two types of thresholds: a fixed base- stock level s k and a fixed rationing level r k . Each Component k can be produced if its on-hand inventory x k is below s k , and each demand of Component k can be satisfied if the on-hand inventory x k is above r k . The operators 0 T , k T and k T in equation (3.10) can be written as:

      0 1 0 if 0, otherwise,               n k k vx Tv vc xe x x       if , otherwise,            k k k k k v x r Tv vc xe x x       if , otherwise.           k k k k v x s Tv v xe x x
Since by Property A1 function   Based on the above conditions, [START_REF] Weber | Optimal control of service rates in networks of queues[END_REF] proposed that there exists a positive constant g * and the expected discounted cost v(x), then for all sates x:

  0 0 11 ( ) ( ) ( ) ( ). nn k k k k kk v g h T v T v T v         x x x x x   
So, the average cost per period g * can be determined form the above inequation.

This completes the proof of Theorem 3.3.

Numerical Experiments

In this section, the average cost per period criterion is adopted in our numerical experiments.

We investigate how the optimal control policies depend on different system parameters. We have used the value iteration algorithm to solve the dynamic programming equation in section 3.2. Readers are referred to the work of Puterman (1994, Chapter 8) for the details of the iteration algorithm, which we adapted directly.

Value Iteration Algorithm for Average Cost Criterion.

We consider a system with two components and one single product. We apply results for the average cost criterion. The details are as following:

Since the state space of our system is infinite, truncating the state space is necessary. The state space is truncated at     max max 12 0, 0, , nn  where max , 1,2, k nk  are positive integers that are gradually increased by five at each time. The iteration algorithm will stop when the minimum of average cost per period is obtained. We use the value iteration algorithm to find a stationary  -optimal policy, the decision rule   d   , and an approximation to its value.

Step 1. Input the parameters: , , , , , , ,

i l i l i h c n inc
   i=1,2; l=0,1,2, and inc=5.

Step 2. Select g * =0 (the optimal average cost rate), specify 0   , and n=0.

Step 3. For each state x:

1 1 2 2 0,1,..., , 0,1,..., , x n x n  compute   1  x n v by     0 10 11 ( ) ( ) ( ),           x x x x x nn k n n k n k k n kk v h T v T v T v 1 min ( ),   x n gv     11   xx nn v v g ,     1     xx nn vv .
Step 4. Step 5.

If

If    g g g , for each sate x, choose       0 0 1 1 1 11 arg ( ) ( ) ( ) ,              x x x x x nn k n k n k k n kk d h T v T v T v
and stop.

Otherwise, go to Step 6.

Step 6. From the above algorithm we obtain the optimal policy, we will illustrate its structure in the following subsection.

The Structure of the Optimal Policy

To simplify the computations, we focus on a two-component ATO system. We test this system with a wide range of parameter values. The structure of the optimal policy is illustrated in Fig. hand inventory for both Component 1 and Component 2 is small, thus the optimal policy tends to use the limited capacity only to satisfy demand of the assembled product. In region 3 and region 5, the on-hand inventory of one component is much larger than that of the other. Thus, it is optimal to satisfy demand of the assembled product and the demand of component that has a larger on-hand inventory. In region 4 and region 6, only one component is available while the other is not. When both the end product and component demands arrive, the component demand for the available one can be satisfied directly, but the other demands cannot be. In region 7, both Component 1 and Component 2 are not available, that is the system has no available capacity to satisfy any demand.

Also as seen from Fig. 3.2, there are two rationing levels 1  r and 2  r . Each level is nondecreasing in the on-hand inventory of the other component. This result is quite different from the result of [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF]. Note that the assembled product demand has higher priority, in order to satisfy demand of the assembled product all the components must be held in stock. If the on-hand inventory of one component increases, it is more desired to reserve other components for demand of the assembled product. As a result, the rationing level for each component increases. In summary, the inventory allocation policy is a statedependent rationing policy for demand of the individual components. For demand of the assembled product, it can be always satisfied if all the components are available.

The Effect of System Parameters on the Optimal Policy

In this section, we will briefly discuss how the different system parameters impact on the optimal policy. The following figures indicate that the base-stock and rationing levels are The holding cost also influences the optimal allocation policy that can be seen in Fig.

3.3(b).

As the holding cost h 1 increases it is optimal to keep less Component 1 in stock. This leads to the increase of the probability that demand of Component 1would be satisfied, thus the rationing level 1  r decreases. Clearly, the increase of the lost sale cost c 1 leads to more demands of Component 1 being satisfied, thus the rationing level of Component 1 decreases. r are non-decreasing in  0 . Obviously, when the number of the assembled product demands increases per unit of time, more demands enter in the system and more components are needed. Hence, the base-stock level of Component 1 increases. Also, the result implies that the more production of Component 1 leads to more demands of the assembled product can be satisfied, which reduces the probability that demand of Component 1 would be satisfied. Thus, the rationing level of Component 1 increases. 
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               c c c h h Fig. 3.2.
The structure of the optimal allocation policy with lost sales 
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(a) the optimal production policy for fixed values of c 0 (b) the optimal allocation policy for fixed values of c 0 
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Lost Sales for Components and Assembled Product 86 Thus, there is no need to hold a high-level inventory of Component 1 in stock, and the basestock level of Component 1 decreases. Also, high productivity can meet the coming demand and a low rationing level is optimal for the system.

Conclusion

In this chapter, we have considered an ATO system with a single product, multi-component and multi-demand, where demand from both the assembled product and the individual components can be satisfied or rejected. Demand of the assembled product is assumed to have a higher priority over demand of the individual components. The problem is modeled as an MDP. We showed that the optimal policy consists of a base-stock policy and a rationing policy where both the base-stock level and the rationing level for a component are nondecreasing in the on-hand inventory of the other components. Finally, we adopted the average cost criterion in the numerical experiments and explored the impact on the optimal policy of different system parameters, such as holding cost, lost sales cost, production rate and arrival rate.

ATO System with Individual Chapter 4.

Components Demand: Lost Sales for Components and Backorders for Assembled Product

We consider the ATO system introduced in Chapter 3, however in this chapter we assume that shortages result in both lost sale and backorder penalties. The unsatisfied demands for the assembled product will wait for delivery until the next replenishment but there is a cost associated with dissatisfaction that is independent of the waiting time. The unsatisfied demands for the individual components will be lost to seek some other source to satisfy their demands immediately. Thus, the system involves a mixed lost sales and backorders. Managing such a system is known to be difficult given the correlated component demands. To solve this problem, we formulate it as an MDP and characterize its optimal policy. Finally, we investigate the impact of different penalty cost parameters on the optimal policy. The outline of this chapter is as follows: a general introduction is given in section 4.1. In section 4.2, we formulate the optimal control model with lost sales and backorders under the discounted cost case. Then we analyze the structure of the optimal policy, and obtain several optimal properties. We also extend our model to the average cost case. In section 4.3, the numerical experiments are provided, based on numerical results we analyze the effect of the cost parameters on the optimal policy. Section 4.4 summarizes our results.

Introduction

In this chapter, we consider a variation of the system studied in Chapter 3. In particular, demand for the assembled product is satisfied only if all components are available, and a stockout of at least one component leads to the product demand being backordered. Demand for the individual components is satisfied only if the needed component is available, and the unsatisfied component demand would be lost. Managing such a system is known to be difficult given the correlated component demands. Besides considering the on-hand inventory X(t) of the system, the backorder level Y(t) of the assembled product must also be considered.

Therefore, our state space can be extended to the pair (X(t),Y(t)). In each state, the manager can decide what to produce and how much to produce. Here, the production decision depends on both the on-hand inventory and the backorder level. For each component, several options could be chosen: produce one unit to stock, produce one unit to reduce one unit backorder of the assembled product (if all other components are available), or do not produce at all. In this case, we assume that the product demand has no priority over the components demand.

Therefore, when there are backorders from the end product demand, it is not always optimal to produce the components to reduce the backorder level. At the same time, when the demands arrive, the manager has to decide whether to allocate the inventory of the components to the individual components demand, or allocate this inventory to demand of the assembled product.

To solve this problem, we formulate it as MDP and characterize its optimal operating production and inventory allocation policies. In a general ATO system, the base-stock level and rationing level of one component depend on the on-hand inventory of other components.

In our system, determination of the above threshold levels of one component should take into account both the backorder level of the assembled product and the on-hand inventory of all components. This chapter shows that for components, the optimal policy can be characterized by a production base-stock level and an inventory rationing level, while for the assembled product, the optimal policy is characterized by a state-dependent rationing level. Furthermore, we show that, the production base-stock level of components (for specific states) can be interpreted as a rationing level of the assembled product with respect to component inventory level.

The Optimal Control Problem

Model Formulation and Structure of the Optimal Policy

In this section, we describe the sequence of events of the ATO system. We consider a system consisting of a single product (the assembled product) assembled from n components. This chapter is based on the general assumptions in Chapter 3: component production times are exponentially distributed with mean 1 k  for k=1,…,n; demand for Component k and the assembled product arrive according to a Poisson process with rates k  and 0  , respectively.

The current state of the system at time t can be defined by the pair (X(t),Y(t)), where .

X(t)=(X 1 (t),…, X n (t)
        0 , 0 0 0 11 , ( ) ( ) ( ) ,                  nn t t t k k k k y kk v y E e h X t
The dynamic programming equation can be written as:

  0 00 11 , ( ) ( ) ( , ) ( , ) ( , ), nn k k k k kk v y h b y T v y T v y T v y               x x x x x (4.2)
where, operators T 0 , T k and T k , k=1,…,n are defined as follows:

          0 1 , 1 if 0 , min , , , 1 otherwise, 
           n k k v y x T v y v y v y x x x e x (4.3)           , if 0, , min , , , otherwise, 
        kk k kk v y c x T v y v y v y c x x x e x (4.4)                     min , , , if =0 , min , , , if > 0, 0 min , , , 1 if > 0, 0. k n k k i ik n n k i i ik ik v y v y y T v y v y v y y x v y v y y x                        x x e x x x e
x e x e (4.5)

Here, e k is the k th unit vector of dimension n and

1 n k k   
ee is an n-dimensional vector. The system chooses the decision that leads to the lowest system cost. Operator 0 T is the decision of how to control demand orders from the assembled product. If 

The Structure of the Optimal Policy

We use the dynamic programming formulation (4.1) to analyze the structure of the optimal policy for this system. We show that the optimal function   ,  vy x for all states (x,y) satisfies properties specified in Definition 4.1. In order to do so, we make the following important definition.

Definition 4.1:

Let A be the set of functions defined on

1    n
, where   is the set of nonnegative integers, such that if vA , we have

C1:         2 , , , , j j j v y v y v y v y       x e
x e x e x for all x, y.

C2:         , 2 , 1 , 1 , v y v y v y v y       x x x x
for all x, y.

C3:         , 1 , 1 , , jj v y v y v y v y        x e
x x e x for all x, y.

C4:         , , , , 
j i i j v y v y v y v y        x e e
x e x e x for all x, y and .  ij

C5:         1 2 1 2 2 ... , ... , , , pp j i i i j i i i j v y v y v y v y               x e e e e
x e e e e x e x for all x, y and j, where 12 , ,..., ,  p i i i j and 11 pn    .

C6:         2 , 1 , 1 , , j j j v y v y v y v y         x e
x e x e x for all x, y.

C7:         , 1 , , 1 , jj v y v y v y v y          x e
x e e x x e for all x, y and 1 0.

n j j x    C8:         , 2 , 1 , 1 , v y v y v y v y         x x e x x e
for all x, y and 1 0.

n j j x   
Property C1 indicates that the optimal cost function v * is component-wise convex in each of the state variables x j . Property C2 indicates that the optimal cost function v * is componentwise convex in the backorder level y. Property C3 indicates that the marginal cost difference due to increasing the on-hand inventory of Component j is non-increasing in the backorder level y. Property C4 indicates that the marginal cost difference due to increasing the on-hand inventory of Component j is non-increasing in x i . Property C5 indicates that the marginal cost difference due to increasing the on-hand inventory of Component j (given a fixed backorder level y) is non-decreasing with joint increases in x . Property C6 indicates that the marginal cost difference due to increasing the on-hand inventory of Component j is nondecreasing with joint increases in x j and the backorder level y. In particular, Properties C3, C4 and C5 reflect the submodularity and supermodularity of function v(x,y) (see [START_REF] Koole | Monotonicity in Markov Reward and Decision Chains: Theory and Applications[END_REF][START_REF] Koole | Structural Results for the Control of Queueing Systems Using Event-Based Dynamic Programming[END_REF] and [START_REF] Hajek | Optimal Control of Two Interacting Service Stations[END_REF] ).

Property C7 indicates that the marginal cost difference due to jointly increasing on-hand inventory of all components and backorder of the product, by one unit each is non-decreasing in the on-hand inventory level x j . Property C8 indicates that the marginal cost difference due to jointly increasing on-hand inventory of all the components and the backorder level of product, by one unit each is non-decreasing in the backorder level y.

Lemma 4.1. If  v A , then  Tv A , where   0 0 0 1 1 , ( ) ( ) ( , ) ( , ) ( , ) 
.

n n k k k k k k Tv y h b y T v y T v y T v y          x x x x x   

Proof of Lemma 4.1

In order to simplify the proof, we first define the following notation:

      , , , , j xj v y v y v y     x x e x       , , , , , j j j 
j x x x j x v y v y v y       x x e x        
,, , , , , , 

j i i j j j x x x x x i x v y v y v y v y         x x x e x     12 
i i i p p x x x i i i v y v y v y           x x e e e x       , , 1 , , y v y v y v y     x x x       , , , 1 , , y y y 
y v y v y v y       x x x         ,, , , , 1 , , 
j j j j x y y x x x v y v y v y v y         x x x x       1 , , 1 
, .

n l l xy v y v y v y         x x e x
We also show the following two observations Observation 1.

 

, 1 ,

j j n x i x ij v y v y           x e
x , for , , . i j n i j    Using C3 and C4,

    , 1 , 1 , j j j n x i x x ij v y v y v y              x e x x .
Observation 2. First, we note that properties C1, C2, C5 and C6 are implied by properties C3, C4, C7 and C8.

   

To see this consider the following Using C4 and C5 we have

            2 , , , , , , j j j i i j v y v y v y v y v y v y            x e
x e

x e e x e x e

x .

Hence,         2 , , , ,

j j j v y v y v y v y       x e
x e x e

x and C1 holds.

Using C3 and C8 we have

            , 1 , , 1 , , 2 , 1 jj 
v y v y v y v y v y v y            x x x e x e x x . Hence,         , 2 , 1 , 1 , v y v y v y v y       x x x
x and C2 holds.

Using C3, C4 we have

        , , , , jj v y v y v y v y        x e e
x e x e x

and by C4 we have 

        1 2 1 2 2 ... , ... , , , pp j i i i j i i i j v y v y v y v y                 x e
        2 , 1 , 1 , , , ,                            nn j j j k k j k j k j v y v y v y v y v y v y x e
x e x e e x e x e x .

Hence,  

      2 , 1 , 1 , , j j j v y v y v y v y         x e
x e x e x and C6 holds.

As a consequence, we only need to show that Tv satisfies Properties C3, C4, C7, and C8.

Operator k T

Property C3: we need to show that

          , , , 1 , , 1 , 0. 
j x y k k j k j k k T v y T v y T v y T v y T v y           x x e x e x x
Since the Operator T k depends on y and x . In this case, Operator T k can be rewritten as

              , min , , , , min 0, , . k k k x T v y v y v y v y v y      x x x e x x
Hence,

                    ,,
, , min 0, , 1 min 0, , min 0, , 1 min 0, , .

j j k k kk x y k x y x j x j xx T v y v y v y v y v y v y                x x x e x e xx
Case  jk . In this case,

                    ,,
, , min 0, , 1 min 0, , min 0, , 1 min 0, , .

k k k k kk x y k x y x k x k xx T v y v y v y v y v y v y                x x x e x e xx
By B3, we have

    , 1 ,       kk x k x k v y v y x e x e
, and

    , 1 , .     kk xx v

y v y xx

By B1 and B3, we have

    , 1 , kk x x k v y v y      x x e
, by B6

    , 1 , kk x k x v y v y      x e x
. Hence, we have

        , 1 , , 1 , ,            k k k k x x x k x k v y v y v y v y x x x e x e
which leads to five sub-cases.

1. 

        , 1 , , 1 , 0              k k k k x x x k x k v y v y v y v y x x x e x e                         ,, , , , 1 , , 1 , , 1 , , , , 1 , 0. 
                                  k k k k k k k k k k kk x y k x y x k x k x x x k x x k x x k x k T v y v y v y v y v y v y v y v y v y v y v y v
        , 1 , , 1 0 ,              k k k k x x x k x k v y v y v y v y x x x e x e                   ,, , , , 1 , 1 , , 1 , , , 1 0. 
                         k k k k k k k k k x y k x y x k x x x k x x x k T v y v y v y v y v y v y v y v y v y x x x e x x x e x x x e 3.         , 1 , 0 , 1 ,              k k k k x x x k x k v y v y v y v y x x x e x e         ,, , , , , 1 0. 
         k k k k x y k x y x x T v y v y v y v y x x x x 4.         , 1 0 , , 1 ,              k k k k x x x k x k v y v y v y v y x x x e x e         ,, , , , 1 , 0. 
         k k k k x y k x y x x T v y v y v y v y x x x x 5.         0 , 1 , 1 , ,              k k k k x x k x x k v y v y v y v y x x e x x e     ,, , , 0.     k k x y k x y

T v y v y xx

Case  jk . In this case, by B4, we have

    , 1 , 1 kk x j x v y v y       x e x
, and

    , , . kk x j x v y v y     x e x By B3,     , 1 , kk xx v y v y     xx
, and

    , 1 , kk x k x k v y v y       x e x e
. Hence, we have

        , 1 , 1 , , , k k k k x j x x j x v y v y v y v y            x e x x e x or         , 1 , , 1 , . k k k k x j x j x x v y v y v y v y            x e x e x x
Hence, we consider the following sub-cases.

1.

 

      , 1 , 1 , , 0 k k k k x j x x j x v y v y v y v y              x e x x e x                         ,, , , , 1 , , 1 , , 1 , 1 , , , , 0. 
j j k k k k x y k x y x j x j x x j k j j k k y j k y k T v y v y v y v y v y v y v y v y v y v y v y v y                                    x x x e x e x x
x e e x e

x e e x e

x e e x e 2.

 

      , 1 , 1 , 0 , k k k k x j x x j x v y v y v y v y              x e x x e x                     ,, , , , 1 , , 1 , , , , , 0. 
j j k k k k k k x y k x y x j x j x x x y j k y k x T v y v y v y v y v y v y v y v y v y v y                            x x x e x e x x x
x e e x e x 3.

 

      , 1 , 1 0 , , k k k k x j x x j x v y v y v y v y              x e x x e x         ,, , , , 1 , 0. 
j j k k x y k x y x j x j T v y v y v y v y            x x x e x e 4.         , 1 0 , 1 , , k k k k x j x x j x v y v y v y v y              x e x x e x       ,, , , , 1 0 
.

j j k x y k x y x j T v y v y v y         x x x e 5.         0 , 1 , 1 , , k k k k x j x x j x v y v y v y v y              x e x x e x     , , , , 0.     j j x y k x y T v y v y xx 6.         , 1 , 0 , 1 , k k k k x j x j x x v y v y v y v y              x e x e x x
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96         ,, , , , 1 , 0. 
j j k k x y k x y x j x j T v y v y v y v y            x x x e x e
II. >0 y and 0

n ik i x   
. In this case, we have

        , min , , , 1 
n k k i ik T v y v y v y       x x e x e
To prove this case, we use the same method used Ha (1997c) and Benjaafar et al. (2010). As above, we distinguish two cases.

Case  jk . In this case, we define the function  

,, W u y x on   0,1   Z as       , if 0, ,, , 1 if 1. 
            k n i ik v y u W u y v y u xe x xe k
Tv can then be rewritten as follows:

                  0, 1 , min , , , 1 min , , 1 , , 1 . n 
k k i ik n ki u ik T v y v y v y W u y u v y uv y                 x x e x e
x x e x e Also,

      , if 0, ,, , 1 if 1. 
              k k k xk x n xi ik v y u W u y v y u xe x xe
Hence, by B7, we have

    0, , 1, , kk xx W y W y    xx and therefore,   ,, W u y x is submodular in the direction (u, x k ). Let     1 , , , k k k T v y W u y    x e x e and     2 , 1 , , 1 k T v y W u y    xx
and consider the following two cases.

Case 12 . uu                          21 2 2 2 1 1 2 1 1 , 1 , , , 1 , , , , , , 1 , , , , , , , , 1 , , , , = k 
k k k k k T v y T v y W u y W u y W u y W u y W u y W u y W u y W u y W u y W u y T                    x e x x e x x e x x x x e x x x     , , 1 
.

k k k v y T v y    x e x
The first inequality is due to the definition of T k v; the second inequality is due to B3 and the third inequality is due to the submodularity of W in (u, x k ).

Case 12  uu ( 12 1, 0. uu  )                 , 1 , 1, , 1 0, , = , , , 1 , 1 
k k k k n k i k ik n k i k ik T v y T v y W y W y v y v y v y v y                       x e x x e x
x e e x e

x e e x e

        = 1, , 0, , 1 = , , 1 . 
k k k k W y W y T v y T v y      

x e x x e x

The third inequality is due to the Observation 2.

Case jk  . In this case, we use the same function   ,, W u y x as above. Hence,

      , if 0, ,, , 1 if 1. 
              yk y n yi ik v y u W u y v y u xe x xe
Also, by B8, we have

    0, , 1, , yy W y 
W y    xx . Hence,   ,, W u y x is submodular in the direction (u, y). Let     1 , 1 , , 1 k T v y W u y    xx and     2 , , , k j j T v y W u y    x e x e
and consider the following cases.

Case [START_REF] Chen | Optimal Policies for Multi-echelon Inventory Problems with Batch Ordering[END_REF] .

uu                              21 2 2 2 1 2 1 1 1 , 1 , , , 1 , , , , , , 1 , , , , , , , , 1 , , , , = , , 1 . 
k j k j j j k j k T v y T v y W u y W u y W u y W u y W u y W u y W u y W u y W u y W u y T v y T v y                      
x e x x e x x e x x x

x e x x x

x e x

The first inequality is due to the definition of T k v; the second inequality is due to B3 and the third inequality is due to the submodularity of W in (u, y).

Case 12 . uu  ( 12 1, 0.  uu )                 , 1 , 1, , 1 0, , = , , 
, ,

k j k j n j i k ik n k j i ik T v y T v y W y W y v y v y v y v y                     x e x x e x
x e e x e

x e e x e

        = 0, , 1, , 1 = , , 1 . 
j k j k W y W y T v y T v y      

x e x x e x

The third inequality is due to B5.

Hence, k Tv satisfy B3.

Property C4: we need to show that

          , , , , , , 0. 
          ji x x k k j i k i k j k

T v y T v y T v y T v y T v y x x e e x e x e x

Since the Operator T k depends on y and x . In this case, Operator T k can be rewritten as

              , min , , , , min 0, , . k 
k k x T v y v y v y v y v y      x x x e x x
Hence,

                    ,,
, , min 0, , min 0, , min 0, , min 0, , .

               j i j i k k kk x x k x x x j i x i x j x T v y v y v y v y v y v y x x
x e e x e

x e x

Case  i k j . In this case,

                    ,,
, , min 0, , min 0, , min 0, , min 0, , .

k j k j k k kk x x k x x x k j x k x j x T v y v y v y v y v y v y                x x
x e e x e

x e x By C1 and C4 and C5,

        , , , , k k k k x j x x k j x k v y v y v y v y            x e x x e e x e
, which leads to five sub-cases:

1.         , , , , 0 
k k k k x j x x k j x k v y v y v y v y              x e x x e e x e                 ,, , , , , , , , , 0. 
k j k j k k k k kk x x k x x x k j x k x j x x k j x k T v y v y v y v y v y v y v y v y                        x x
x e e x e x e x

x e e x e 99 2.

 

      , , , 0 , k k k k x j x x k j x k v y v y v y v y              x e x x e e x e             ,, , , , , , , 0. 
k j k j k k k k x x k x x x k j x j x x k j T v y v y v y v y v y vy                  x x
x e e x e x

x e e 3.

 

      , , 0 , , k k k k x j x x k j x k v y v y v y v y              x e x x e e x e         ,, , , , , 0. 
k j k j k k x x k x x x j x T v y v y v y v y          x x x e x 4.         , 0 , , , k k k k x j x x k j x k v y v y v y v y              x e x x e e x e         ,, , , , , 0. 
k j k j k k x x k x x x j x T v y v y v y v y          x x x e x 5.         0 , , , , k k k k x j x x k j x k v y v y v y v y              x e x x e e x e     ,, , , 0.     k j k j x x k x x T v y v y xx Case  j k i . In this case,                     ,, , , min 0, , min 0, , min 0, , min 0, , .   
             k i k i k k kk x x k x x x k i x k x i x T v y v y v y v y v y v y x x
x e e x e

x e x

Since the proof is similar as Case  i k j , we omit it.

Case  i k j . In this case,

                    ,,
, , min 0, , min 0, , min 0, , min 0, , .

               i j i j k k kk x x k x x x i j x i x j x T v y v y v y v y v y v y x x
x e e x e

x e x By C1, C4 and C5 we have

        , , , ,            k k k k x i j x j x i x v y v y v y v y x e e
x e x e

x , or

        , , , ,            k k k k x i j x i x j x v y v y v y v y x e e
x e x e x .

If

        , , , ,            k k k k x i j x j x i x v y v y v y v y x e e
x e x e

x , which leads to five sub-cases:

1.         , , , , 0              k k k k x i j x j x i x v y v y v y v

y x e e x e x e x
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                  ,, , , , , , , , , , , 0. 
i j i j k k k k ii ij x x k x x x i j x i x j x x j k x k x x k T v y v y v y v y v y v y v y v y vy                           x x
x e e x e x e x

x e e x e xe 2.

        , , , 0 ,              k k k k x i j x j x i x v y v y v y v y x e e x e x e x                   ,, , , , , , , , , , , 0. 
i j i j k k k k k i j k x x k x x x i j x j x i x x x x k x T v y v y v y v y v y v y v y v y v y                        x x
x e e x e x e x x

x e x 3.

        , , 0 , ,              k k k k x i j x j x i x v y v y v y v y x e e x e x e x             ,, ,, , , , , , , 0. 
                i j i j k k i j i k x x k x x x i j x j x x x x j T v y v y v y v y v y v y x x
x e e x e

x x e 4.

        , 0 , , ,              k k k k x i j x j x i x v y v y v y v y x e e x e x e x       ,, , , , 0. 
        i j i j k x x k x x x i j T v y v y v y x x x e e 5.         0 , , , ,              k k k k x i j x j x i x v y v y v y v y x e e x e x e x     ,, , , 0.     i j i j x x k x x T v y v y xx If         , , , ,            k k k k x i j x i x j x v y v y v y v y x e e
x e x e

x , which leads to five sub-cases: 

1.         , , , , 0              k k k k x i j x i x j x v y v y v y v y x e e x e x e x                   ,, , , , , , , , , , , 0. 
                          i j i j k k k k ii ij x x k x x x i j x i x j x x j k x k x x k T v y v y v y v y v y v y v y v

 

      , , , 0 ,              k k k k x i j x i x j x v y v y v y v y x e e x e x e x                   ,, , , , , , , , , , , 0. 
                       i j i j k k k k k i j k x x k x x x i j x j x i x x x x k x T v y v y v y v y v y v y v y v y v y x x
x e e x e x e x x

x e x 3.

 

      , , 0 , ,              k k k k x i j x i x j x v y v y v y v y x e e x e x e x             ,, ,, , , , , , , 0. 
                i j i j k k i j j k x x k x x x i j x i x x x x i T v y v y v y v y v y v y x x
x e e x e

x x e 4.

 

      , 0 , , ,              k k k k x i j x i x j x v y v y v y v y x e e x e x e x       ,, , , , 0. 
        i j i j k x x k x x x i j T v y v y v y x x
x e e 5. 

 

      0 , , , ,              k k k k x i j x i x j x v y v y v y v
        , min , , , 1 . 
n k k l lk T v y v y v y       x x e x e
Case  i k j

We use the same function   ,, W u y x as in the proof of C3 Case1 (2), and have the first 

differences of W in x j direction.       , if 0, ,, , 1 if 1. 
k k k T v y W u y    x e x e
and consider two cases:

Case 12 ,  uu                         21 2 2 2 1 2 1 1 1 , , , , , , , , , , , , , , , , , , , , , , = k 
k j k k j kj kj T v y T v y W u y W u y W u y W u y W u y W u y W u y W u y W u y W u y                   
x e e x x e e x x e x e x x

x e x e x x     , , .

k k k j T v y T v y    x e x e
The first inequality is due to the definition of T k v; the second inequality is due to C4 and the third inequality is due to the submodularity of W in (u, x j ). Case 12 ,

 uu 12 1, 0.  uu                 , , 0, , 1, , , , 1 , 1 , 
k j k k j k n j k l lk n j l k lk T v y T v y W y W y v y v y v y v y                       
x e e x x e e x

x e e x e

x e e x e

        1, , 0, , = , , . jk k j k k W y W y T v y T v y        x e x e
x e x e

The third inequality is due to the Observation 1

    , , 1 
       jj n x x l lk v y v y x x e
, and C4

    ,, jj x k x v y v y     x e x
. Hence we have

    , , 1 
        jj n x k x l lk v y v y x e x e
Case  j k i . In this case,

                    ,,
, , min 0, , min 0, , min 0, , min 0, , .

               k i k i k k kk x x k x x x k i x k x i x T v y v y v y v y v y v y x x
x e e x e

x e

x Since the proof is similar as Case  i k j , we omit it.

Case  i k j

We use the function   

k i i T v y W u y    x e x e
and consider two cases:

Case 12 ,  uu                         21 2 2 2 1 1 2 1 1 , , , , , , , , , , , , , , , , , , , , , , 
k j i k j i ji ji T v y T v y W u y W u y W u y W u y W u y W u y W u y W u y W u y W u y                   
x e e x x e e x x e x e x x

x e x e x x

    = , , . k j k i T v y T v y    x e x e
The first inequality is due to the definition of T k v; the second inequality is due to C4 and the third inequality is due to the submodularity of W in (u, x j ). Case 12 ,

 uu 12 1, 0.  uu                 , , 0, , 2, , , , 1 , 1 , 
k j i k j i n k j i i ik n j k k i ik T v y T v y W y W y v y v y v y v y                         
x e e x x e e x

x e e e x e

x e e x e e

        2, , 0, , = , , . ji k j k i W y W y T v y T v y        x e x e
x e x e

The third inequality is due to C4 and the Observation 1

      , , , 1 
j j j n x i k x x i ik v y v y v y            x e e x x e
Hence, k Tv satisfies C4.

Property C7: we need to show that Case  jk . In this case,

          1 , , , 1 , , 1 , 0. 
               n lj l k k j k j k k x y x T v y T v y T v y T v y T v y x x
          1 , , , 1 , , 1 , 0. 
               n lk l k k k k k k k x y x T v y T v y T v y T v y T v y x
x e x e e x x e

Define O on  

0,1   Z by       , if 0, ,, , if 1.         k v y u O u y v y u xe x x
k Tvcan be rewritten as follows: 

                  0,1 , min , , , min , , 1 , , . 
      , if 0, ,, , if 1.          k k k xk x x v y u O u y v y u xe x x
Hence, by C1, we have O u y x is submodular in (u,

    0, , 1 
x k ). Let     1 , 1 , , 1      k k k T v y O u y x e x e and     2 , , ,    k T v y O u y x e x e
and consider two cases: 

Case 12 ,  uu                         12 1 1 1 2 1 2 1 1 , 1 , , , 1 , , , , 1 , , , , , , , , 1 , , , , , , = , 
                                k k k k k k k k k k kk T v y T v

T v y xe

The first inequality is due to the definition of T k v; the second inequality is due to C7 and the third inequality is due to the submodularity of O in (u, x k ). Case 12 ,

 uu 12 1, 0.  uu                 , 1 , 0, , 1 1, , , 1 , 1, , 1 0, 
, 

                    k k k k kk k T v y T v
= , 1 , .     k k k T v y T v y x e x e
Case  jk . In this case,

          1 , , , 1 , , 1 , 0. 
               n lj l k k j k j k k x y x T v y T v y T v y T v y T v y x
x e x e e x x e

We use the function   ,,O u y x and have the first differences of  

,, O u y x in x j direction.       , if 0, ,, , if 1.          j j j xk x x v y u O u y v y u xe x x
Hence, by C4     

 uu                         21 2 2 2 1 1 1 2 1 , 1 , , , 1 , , , , , , , , 1 , , , , , , , , 1 , , 
                           k j k j j j T v y T v y O u y O u y O u y O u y O u y O u y O u y O u y O u y O u y
x e x e x e x e

x e e x e x x e

x e e x e x x e

    = , , 1 .     k j k

T v y T v y x e e x

The first inequality is due to the definition of T k v; the second inequality is due to C7 and the third inequality is due to the submodularity of O in (u,

x j ). Case 1 2 1 2 , 0, 1.    u u u u                 , 1 , 0, , 1 1, , , 1 , , , 1  
                    k j k j kj kj T v y T v y O y O y v y v y v y v y x e x e
x e

x e

x e e

x e

x e e e

x . In this case, we have

        0, , 1, , 1 = , , 1 . 
         j k j k O y O y T v y T v
        , min , , , 1 
n k k i ik T v y v y v y       x x e x e
Case  jk . In this case,

          1 , , , 1 , , 1 , 0. 
               n lk l k k k k k k k x y x T v y T v y T v y T v y T v y x x e
x e e

x x e

We use the function  

,, W u y x , where   ,, W u y x is submodular in (u, x k ). Let     1 , 1 , , 1 
k k k T v y W u y      x e x e and     2 , , , k T v y W u y    x e
x e and consider two cases: 

Case 12 ,  uu                         12 1 1 1 2 1 2 1 1 , 1 , , , 1 , , , , 1 , , , , , , , , 1 , , , , , , 
k k k k k k k k k k T v y T v y W u y W u y W u y W u y W u y W u y W u y W u y W u y W u y                                x x
k k k T v y T v y     x e x e
The first inequality is due to the definition of T k v; the second inequality is due to C7 and the third inequality is due to the submodularity of W in (u, x k ).

Case 12 ,

 uu 12 1, 0.  uu                 , 1 , 1, , 1 0, , , 2 , 
, ,

k k k k n ik ik n k k i ik T v y T v y W y W y v y v y v y v y                         x x e e x
x e e x e

x e e

x e e x e e

        0, , 1, ,1 = , , 1 . 
k k k k W y W y T v y T v y          x e x e
x e x e

Case  jk . In this case,

          1 , , , 1 , , 1 , 0. 
               n lj l k k j k j k k x y x T v y T v y T v y T v y T v y x x e
x e e x x e

We use the function   ,,

W u y

x , where   ,,

W u y x is submodular in (u,x j ). Let     1 , 1 , , 1 
k j j T v y W u y      x e x e and     2 , , , k T v y W u y    x e x e
and consider two cases: 

Case 12 , uu                          12 1 1 1 2 1 2 1 1 , 1 , , , 1 , , , , 1 , , , , , , , , 1 , , , , , , 
k k j j j j j j j j T v y T v y W u y W u y W u y W u y W u y W u y W u y W u y W u y W u y                                x x
k j k T v y T v y     x e x e
The first inequality is due to the definition of T k v; the second inequality is due to C7 and the third inequality is due to the submodularity of W in (u,x j ).

Case 12 , 

uu  12 1, 0. uu                  , 1 , 1, , 1 0, , , , , , 
k k j j n i k j ik n k j i ik T v y T v y W y W y v y v y v y v y                          x x
    0, , 1, , 1 = , , 1 
.

j k k j W y W y T v y T v y          x e x e
x e x e

Hence, k Tv satisfies C7.

Property C8: we need to show that

          1 , , , 2 , 1 , 1 , 0. 
              n l l k k k k k x y y T v y T v y T v y T v y T v y x x x e x x e
Since the Operator T k depends on y and . In this case, Operator T k can be rewritten as

        , min , , , .  kk T v y v y v y x x x e
We use the same function   ,,

O u y x

as in the proof of C7 and have the first differences of

 

,, 

O u y x in y direction.       , if 0, ,, , if 1. 



O u y

x is supermodular in (u, y).

Let     1 , 1 , , 1      k T v y O u y x e x e and     2 , 1 , , 1    k T v y O u y xx
and consider two cases:  

Case 12 ,  uu                           21 2 2 2 1 2 2 1 2 , 2 , , , 2 , , , , 1 , , , , 1 , , , , 1 , , , , 1 , , = , 1 , 
                           

.  y

The first inequality is due to the definition of T k v; the second inequality is due to C8 and the third inequality is due to the supermodularity of O in (u, y).

Case 1 2 1 2 , 0, 1.    u u u u                 , 2 , 1, , 2 0, , , 2 , , 1 , 1 1, 
, 

                   kk k k T v y T v
     1 0, , 1 = , 1 , 1 .         kk Oy T v y T v y xe x x e
The third inequality is due to the Observation 2.

II. >0 y and 0

n ik i x   
. In this case, we have

        , min , , , 1 
n k k i ik T v y v y v y       x x e x e
We use the same function  

,, W u y x , where   ,, W u y x is submodular in (u, y). Let     1 , 2 , , 2 k T v y W u y    xx and     2 , , , k T v y W u y    x e x e
and consider the following two cases:

Case 12 ,  uu                           12 1 2 2 2 1 2 1 1 , 1 , 1 , , 1 , , 1 , , 1 , , , , 2 , , 1 , , 1 , , , , 2 , , 1 = , 2 
, The first inequality is due to the definition of T k v; the second inequality is due to C8 and the third inequality is due to the supermodularity of W in (u, y).

kk kk T v y T v y W u y W u y W u y W u y W u y W u y W u y W u y W u y W u y T v y T v                             x x
Case 12 ,  uu 12 1, 0.  uu                 , 1 , 1 1, , 1 0, , 1 , , 1 
, , 1

kk n ik ik n ki ik T v y T v y W y W y v y v y v y v y                          x x e x x e
x e x e e

x e e x e

        0, , 1, , 2 = , , 2 . kk W y W y T v y T v y       

x e x x e x
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Operator k T Since           , if 0, , min , , , otherwise,         kk k kk v y c x T v y v y v y c x x
x e x

we have two cases to consider:

For case 0 k x  ,     , , ,  k k T v y v y c xx
hence it satisfies all the properties C1-C8.

For case

0 k x  ,               , min , , , , min 0, , .          k k k k k x k k T v y v y v y c v y v y c x x e x x e
x e (4.6)

Property C3: we need to prove that

          , , , 1 , , 1 , 0. 
j k k k k k x y j j T v y T v y T v y T v y T v y           x x e x e x x
From (4.6), we have

                   
,, , , min 0, , 1 min 0, , min 0, , 1 min 0, , .

j j k k kk k x y x y k x k j k x k j k x k k x k k T v y v y v y c v y c v y c v y c                         x x

e x e e x e e x e x e

Case  jk . In this case,

                   
,, , , min 0, , 1 min 0, , 1 min 0, , min 0, , .

                    k k k k kk k x y x y k x k x k k x k x k k T v y v y v y c v y c v y c v y c x x e x x e x x e
By C3 and C6, we have

        , , 1 , , 1                k k k k x k x k x k k x k k v y c v y c v y c v y c x x x e x e
, which leads to the following five sub-cases:

1.         , , 1 , , 1 0                  k k k k x k x k x k k x k k v y c v y c v y c v y c x x x e x e     ,, , , 0.      kk k x y x y k T v y v y x x e 2.         , , 1 , 0 , 1                  k k k k x k x k x k k x k k v y c v y c v y c v y c x x x e x e         ,, , , , 1 , 0. 
              k k k k k x y x y k x k k x k k T v y v y v y c v y c x x e x e xe 3.         , , 1 0 , , 1 
k k k k x k x k x k k x k k v y c v y c v y c v y c                  x x x e x e         ,, , , , 1 , 0. 
            k k k k k x y x y k x k x k T v y v y v y v y x
x e x e x e 4.

 

      , 0 , 1 , , 1                  k k k k x k x k x k k x k k v y c v y c v y c v y c x x x e x e             ,, , , , 1 , 1 , , 1 0. 
                    k k k k k k k x y x y k x k x k x k xk T v y v y v y c v y v y v y c x x e x x e x e x 5.         0 , , 1 , , 1                  k k k k x k x k x k k x k k v y c v y c v y c v y c x x x e x e                   ,, , , , , 1 , 1 , , , 1 , , 0. 
                        k k k k k k k k k k x y x y k x x k x x k x x x y T v y v y v y v y v y v y v y v y v y x x e x x e x x e x x x
Case  jk . In this case,

                   
,, , , min 0, , 1 min 0, , min 0, , 1 min 0, , .

j j k k kk k x y x y k x k j k x k j k x k k x k k T v y v y v y c v y c v y c v y c                         x x e
x e e x e e

x e x e

By C3, we have

    , 1 , kk x k j x k j v y v y         x e e
x e e and     , 1 ,

kk x k x k v y v y       x e x e
.

By C4, we have

    , 1 , 1 kk x k j x k v y v y         x e e x e
and

    ,, kk x k j x k v y v y       x e e
x e .

Finally, we have

        , 1 , 1 , , k k k k x k j k x k k x k j k x k k v y c v y c v y c v y c                    x e e x e
x e e x e

, or

        , 1 , , 1 , k k k k x k j k x k j k x k k x k k v y c v y c v y c v y c                    x e e
x e e x e x e .

If

        , 1 , 1 , , , k k k k x k j k x k k x k j k x k k v y c v y c v y c v y c                    x e e
x e x e e x e which leads to the following five sub-cases:

        1. , 1 , 1 , , 0 k k k k x k j k x k k x k j k x k k v y c v y c v y c v y c                      x e e x e
x e e x e 

                          , , , , , , 1 , , 1 , , 1 , , 1 , , , , 0. 
j j k k k k j k xy x y k x k j x k j x k x k jj y j y x y T v y v y v y v y v y v y v y v y v y v y v y v y v y                                    
      2. , 1 , 1 , 0 , k k k k x k j k x k k x k j k x k k v y c v y c v y c v y c                      x e e x e
x e e x e

                        ,, , , , 1 , , 1 , , , 1 , , 1 , 
, 

j j k k k kk k k x y x y k x k j x k j x k x k x k k j j x k k T v y v y v y v y v y v y v y c v y v y v y v y v y c                                     x x
jk x y x k k v y v y c        x x e         3. , 1 , 1 0 , , k k k k x k j k x k k x k j k x k k v y c v y c v y c v y c                      x e e x e
x e e x e

        ,, , , , 1 , 1 0 
.

j j k k k x y x y k x k j x k T v y v y v y v y               x x e x e e x e         4. , 1 0 , 1 , , k k k k x k j k x k k x k j k x k k v y c v y c v y c v y c                      x e e x e
x e e x e

      ,, , , , 1 0. 
j j k k x y x y k x k j k T v y v y v y c            x x e x e e         5. 0 , 1 , 1 , , k k k k x k j k x k k x k j k x k k v y c v y c v y c v y c                      x e e x e
x e e x e

   

,, , , 0.

     jj k x y x y k T v y v y x x e If         , 1 , , 1 , k k k k x k j k x k j k x k k x k k v y c v y c v y c v y c                    x e e
x e e x e x e we also consider the other sub-case:

        6. , 1 , 0 , 1 , k k k k x k j k x k j k x k k x k k v y c v y c v y c v y c                      x e e
x e e x e x e

            ,, ,, , , , 1 , , , 0. 
j j k k jj k x y x y k x k j x k j x y k x y k j T v y v y v y v y v y v y                      x x

e x e e x e e x e x e e

Hence, k Tv satisfies C3.

Property C4: we need to prove that

          , , , , , , 0.           ji k k k k k x x j i j j

T v y T v y T v y T v y T v y x x e e x e x e x

From (4.6), we have

              , min , , , , min 0, , .          k k k k k x k k T v y v y v y c v y v y c x x e x x e x e                    
,, , , min 0, , min 0, , min 0, , min 0, , .

                        j i j i k k kk k x x x x k x k j i k x k i k x k j k x k k T v y v y v y c v y c v y c v y c x x e
x e e e x e e

x e e x e

Case i k j . In this case,

                    ,,
, , min 0, , min 0, , min 0, , min 0, , .

                    k j k j k k kk k x x x x k x j k x k x k j k x k k T v y v y v y c v y c v y c v y c
x x e x e x

x e e x e

By C4, we have

    ,,       kk x k j x k v y v y x e e x e
and

    ,,     kk x j x v y v y x e x
.

By C1, we have

    ,,       kk x k j x j v y v y
x e e x e

.

By C5, we have

    ,,      kk x k x j v y v y x e x e
.

Hence, we have

        , , , ,                k k k k x k j k x k k x j k x k v y c v y c v y c v y c
x e e x e x e x , which leads to five sub-cases:

1.         , , , , 0                  k k k k x k j k x k k x j k x k v y c v y c v y c v y c
x e e x e x e x

                  ,, , , , , , , , , , , 0. 
                        k j k j k k k k k k k j k x x x x k x j x x k j x k x j x x x T v y v y v y v y v y v y v y v y v y x x e x e x
x e e x e

x e x x 2.

 

      , , , 0 ,                  k k k k x k j k x k k x j k x k v y c v y c v y c v y c
x e e x e x e x

            ,, , , , , , , 0. 
                    k j k j k k k k k x x x x k x j x k j x k k x j k T v y v y v y v y v y c v y c x x e x e
x e e x e xe [START_REF] Akçay | Joint inventory replenishment and component allocation optimization in an assemble-to-order system[END_REF].

        , , 0 , ,                  k k k k x k j k x k k x j k x k v y c v y c v y c v y c
x e e x e x e x

        ,, , , , , 0. 
k j k j k k k x x x x k x k j x k T v y v y v y v y             x x e
x e e x e 4.

 

      , 0 , , ,                  k k k k x k j k x k k x j k x k v y c v y c v y c v y c
x e e x e x e x

        ,, , , , , 0. 
k j k j k k k x x x x k x k j k x k k T v y v y v y c v y c               x x e
x e e x e

5.

 

      0 , , , ,                  k k k k x k j k x k k x j k x k v y c v y c v y c v y c
x e e x e x e x

    ,, , , 0.      k i k i k x x x x k T v y v y x x e Case j k i  . In this case,                     ,,
, , min 0, , min 0, , min 0, , min 0, , .

                    k i k i k k kk k x x x x k x i k x k x k i k x k k T v y v y v y c v y c v y c v y c x x e x e x
x e e x e

Since the proof is similar to Case i k j , we omit it.
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                    ,,
, , min 0, , min 0, , min 0, , min 0, , .

i j i j k k kk k x x x x k x i j k k x i k k x j k k x k k T v y v y v y c v y c v y c v y c                         x x e
x e e e x e e

x e e x e

By C4, we have

    ,, kk x k x j k v y v y       x e
x e e , and

    ,, kk x i k x i j k v y v y         x e e
x e e e

.

Hence, we have two cases:

        , , , , 
k k k k x k k x j k k x i k k x i j k k v y c v y c v y c v y c                    x e
x e e x e e x e e e ,or

        , , , , 
k k k k x k k x i k k x j k k x i j k k v y c v y c v y c v y c                    x e
x e e x e e x e e e .

If

        , , , , , k k k k x k k x j k k x i k k x i j k k v y c v y c v y c v y c                    x e
x e e x e e x e e e which leads to the following five sub-cases:

        1. , , , , 0 
k k k k x k k x j k k x i k k x i j k k v y c v y c v y c v y c                      x e
x e e x e e x e e e

   

,, , , 0.

i j i j k x x x x k T v y v y      x x e         2. , , , 0 , k k k k x k k x j k k x i k k x i j k k v y c v y c v y c v y c                      x e
x e e x e e x e e e       ,, , , , 0.

i j i j k k x x x x k x i j k k T v y v y v y c            x x e x e e e         3. , , 0 , , k k k k x k k x j k k x i k k x i j k k v y c v y c v y c v y c                      x e
x e e x e e x e e e

        ,, , , , , 0. 
i j i j k k k x x x x k x i j k x i k T v y v y v y v y               x x e
x e e e x e e

        4. , 0 , , , k k k k x k k x j k k x i k k x i j k k v y c v y c v y c v y c                      x e
x e e x e e x e e e

                    ,, , , , , , , , , , , 
i j i j k k k kk i i k k x x x x k x i j k x j k x i k x k x k k x j x x k k T v y v y v y v y v y v y v y c v y v y v y c                                   x x e
x e e e x e e x e e x e x e

x e x x e

    , , , 0. 
i j k x x x k k v y v y c       x x e         5. 0 , , , , k k k k x k k x j k k x i k k x i j k k v y c v y c v y c v y c                      x e
x e e x e e x e e e

                  , , , , , , , , , , , , 0. 
i j i j k k k k i i i j k x x x x k x i j k x j k x i k x k x j x x x T v y v y v y v y v y v y v y v y v y                             x x e
x e e e x e e x e e x e

x e x x

If

        , , , , , k k k k x k k x i k k x j k k x i j k k v y c v y c v y c v y c                    x e
x e e x e e x e e e we must consider the other sub-case:

        6. , , 0 , , k k k k x k k x i k k x j k k x i j k k v y c v y c v y c v y c                      x e
x e e x e e x e e e

        ,, , , , , 0. 
i j i j k k k x x x x k x i j k x j k T v y v y v y v y               x x e
x e e e x e e Hence, k Tv satisfies C4.

Property C7: we need to prove that

          1 , , , 1 , , 1 , 0. 
               n lj l k k k k k jj x y x T v y T v y T v y T v y T v y x
x e x e e x x e

From (4.6), we have

        , min , , ,    k kk T v y v y v y c x x e x .
Case  jk . In this case, we define the function   ,,

Q u y

x as:

      , if 0, ,, , + if 1. 
        k k v y u Q u y v y c u xe x x k
Tv can be rewritten as follows:

                    0, 1 , min , , , min , , 1 , , . k kk kk 
u T v y v y v y c Q u y u v y u v y c           x x e x x x e x Also,       , if 0, ,, , if 1. 



        k k k xk x x v y u Q u y v y u xe x x
Hence, by C1, we have

    1, , 0, ,    kk xx Q y Q y xx and therefore,   ,, Q u y x is supermodular in the direction (u, x k ). Let     1 , , ,      k jj T v y Q u y x e e x e e and     2 , 1 , , 1    k T v y Q u y xx
and consider two cases:

Case 12 , uu                    21 2 2 2 1 1 , 1 , , , 1 , , , , , , , , 1 , , , ,    
                   kk kk k k T v y T v y Q u y Q u y Q u y Q u y Q u y Q u y Q u y Q u x e x e
x e x e

x e e x e x x e

x e e

          1 2 1 , , , , 1 , , = , , 1 .  
        kk k y Q u y Q u y T v y T v y x e x x e
x e e x

The first inequality is due to the definition of T k v; the second inequality is due to C7 and the third inequality is due to the submodularity of Q in (u, x k ). Case 12 , uu 

( 12 0, 1. uu  )                 , 1 , 0, , 1 1, , , 1 , 0, , 1, , 1 kk kk k 
k T v y T v y Q y Q y v y v y c Q y Q y                   
x e x e x e x e

x x e

x e e x

    = , , 1 
.

kk k T v y T v y     x e e x
Case jk  . In this case, we use the function  

,, Q u y x

, and have the first differences of

  ,, Q u y x in x j direction.       , 0, ,, , 1. 



        j j j xk x x v y if u Q u y v y if u xe x x
By C3, we have

    0, , 1, ,    jj xx Q y Q y xx . Hence,   ,, Q u y x is submodular in (u, x j ). Let     1 , 1 , , 1      k jj T v y Q u y x e x e and     2 , , ,    k T v y Q u y x e x e
and consider two cases: 

Case 12 , uu                          12 2 1 2 2 1 1 2 1 , 1 , , , 1 , , , , 1 , , 1 , , , , 1 , , 1 , , 1 , , , , 1 =  
                          kk jj j j k T v y T v y Q u y Q u y Q u y Q u y Q u y Q u y Q u y Q u y Q u y Q u y
    , 1 , .     k j y T v y x e x e
The first inequality is due to the definition of T k v; the second inequality is due to C7 and the third inequality is due to the submodularity of Q in (u, x j ).

Case 12 , 

uu    12 1, 0.  uu                 , 1 , 0, , 1 1, , , 1 , , 1 ,  
                      kk jj j j k j k j T v y T v y Q y Q y v y v y c v y c v y x x
    1, , 1 0, , = , 1 , .  
        j kk j Q y Q y T v y T v y x e x e
x e x e

The third inequality is due to C7.

Hence, k Tv satisfies C7.

Property C8: we need to prove that

          1 , , , 2 , 1 , 1 , 0. 
              n l l k k k k k x y y T v y T v y T v y T v y T v y x x x e x x e
From (4.6), we have

        , min , , ,    k kk T v y v y v y c x x e x .
We use the same function   ,, Q u y x as the proof of C7, and define the first differences of

  ,, Q u y x in y direction.       , 0, ,, , 1. 



        yk y y v y if u Q u y v y if u xe x x
By C3, we have

    0, , 1, ,    yy 
Q y Q y xx . Hence,   ,, Q u y x is submodular in (u, y). Let     1 , 2 , , 2    k T v y Q u y xx and     2 , , ,    k T v y Q u y x e x e
and consider two cases: The first inequality is due to the definition of T k v; the second inequality is due to C8 and the third inequality is due to the submodularity of Q in (u, y).

Case 12 ,  uu                             12 1 2 2 2 1 1 2 1 , 1 , 1 , , 1 , , 1 , , 1 , , 2 , , , , 1 , , 1 , , 2 , , , , 1 = , 2 , . 
                            kk kk T v y T v y Q u y Q u y Q u y Q u y Q u y Q u y Q u y Q u y Q u y Q u y T v y T v y x x
Case 12 ,  uu ( 12 1, 0.  uu )                 , 1 , 1 0, , 1 1, , 1 , 1 , 1 , 2 , 
                      kk kk kk T v y T v y Q y Q y v y v y c v y c v y x x e x x e
x e x e

x x e e

        1, , 2 0, , = , 2 , .  
      kk Q y Q y T v y T v y x x e x x e
The third inequality is due to C7 and C8:

      1 1 1 , , , 1 
                   n n n j j j j j j k x y x y x y v y v y v y x e e
x e x e .

Hence, k Tv satisfies C8.

Operator 0 T Since           0 1 , 1 if 0 , min , , , 1 otherwise,  
          n k k v y x T v y v y v y x x
x e x we have two cases:

For case,

1 0 n k k x    ,     0 , , 1  T v y v y xx
, thus it satisfies all the properties C1-C8.

For case

1 0 n k k x    ,               1 0 , min , , , 1 , min 0, , .   
         n k k xy T v y v y v y v y v y x x e x x e x e (4.7) 
Property C3: we need to prove that

          0 0 0 0 0 , , , 1 , , 1 , 0. 
          j x y j j T v y T v y T v y T v y T v y x x e x e x x
We define the function   ,, I u y x as:

      , 1 if 0, ,, , if 1. 
        v y u I u y v y u x x xe 0
Tvcan be rewritten as follows:

                  0 0, 1 , min , , , 1 min , , 1 , 1 , .  
         u T v y v y v y I u y u v y uv y x x e x x x x e Also,       , 1 if 0, ,, , if 1. 



          y y y v y u I u y v y u x x xe
By C8, we have 

    0, , 1, ,   
 uu                         00 12 1 2 2 2 2 1 2 2 , 1 , , , 1 , , , , 1 , , , , 1 , , 1 , , 1 , , , , 1 , , 1  
                         
 j T v y T v y x e x 1 .   
The first inequality is due to the definition of T 0 v; the second inequality is due to C3 and the third inequality is due to the submodularity of I in (u, y).

Case   1 2 1 2 , 0, 1.    u u u u                 00 , 1 , 1, , 1 0, , , 1 , 1 , 1 , 1  
                  kj j j T v y T v y I y I y v y v y v y v y
x e x x e x

x e e x

x e x e

        00 0, , 1, , 1 = , , 1 . 
       j j

I y I y T v y T v y x e x x e x

The third inequality is due to C5.

Hence, 0 Tv satisfies C3.

Property C4: we need to prove that

          0 0 0 0 0 , , , , , , 0.  
         ji x x j i j j

T v y T v y T v y T v y T v y x x e e x e x e x
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We use the function   ,, I u y x as in the proof of property C3, and have the first differences of  

,,

I u y x in x j direction.       , 1 if 0, ,, , if 1. 



          j j j x x x v y u I u y v y u x x xe
By C7, we have

    0, , 1, , jj xx I y 
I y    xx . Hence,   ,, I u y x is submodular in (u, x j ). Let     0 1 , , ,    jj T v y I u y x e x e and     0 2 , , ,    ii T v y I u y x e x e
and consider two cases:

Case 12 ,  uu                           21 2 2 2 1 1 2 1 1 , , , , , , , , , , , , , , , , , , , , , , = ,  
                   k j i k j i ji ji k j k

T v y T v y I u y I u y I u y I u y I u y I u y I u y I u y I u y I u y T v y T

x The first inequality is due to the definition of T 0 v; the second inequality is due to C4 and the third inequality is due to the submodularity of I in (u, x j ).

Case

 

1 2 1 2 , 1, 0.    u u u u                 , , 1, , 0, , = , , 1 , , 1 k 
j i k j i ji ji T v y T v y I y I y v y v y v y v y                  
x e e x x e e x

x e e e x

x e e x e

        1, , 0, , = , , . ji k 
j k i I y I y T v y T v y        x e x e
x e x e

The third inequality is due to C4 and C7

      , , , 1          i i i x j x x v y v y v y x e e x e
x .

Hence 0 Tv satisfies C4.

Property C7: we need to prove that

          1 0 0 0 0 0 , , , 1 , , 1 , 0. 
               n lj l jj x y x T v y T v y T v y T v y T v y x
x e x e e x x e

We use the function   ,, I u y x , where  

,, I u y x is submodular in (u, x j ). Let     0 1 , 1 , , 1      jj T v y I u y x e x e and     0 2 , , ,    T v y I u y x e x e
and consider two cases: The first inequality is due to the definition of T 0 v; the second inequality is due to C7 and the third inequality is due to the submodularity of I in (u, x j ).

Case 12 ,  uu                         00 12 1 1 1 2 1 2 1 1 , 1 , , , 1 , , , , 1 , , , , , , , , 1 , , , , , , =  
                             
Case 12 , 

uu    12 1, 0.  uu                 00 , 1 , 1, , 1 0, , , 1 , 1 0, , 1, , 1 jj j j 
                     x x
v y T v y     x e x e 1 . j T 
Hence, 0 Tv satisfies C7.

Property C8: we need to prove that

          1 0 0 0 0 0 , , , 2 , 1 , 1 , 0. 
              n l l x y y T v y T v y T v y T v y T v y x x x e x x e
We use the function   ,, I u y x , where   ,,

I u y x is submodular in (u,y). Let     0 1 , 2 , , 2    T v y I u y xx and     0 2 , , ,    T v y I u y x e x e
and consider two cases: The first inequality is due to the definition of T 0 v; the second inequality is due to C8 and the third inequality is due to the submodularity of I in (u, y).

Case 12 ,  uu                             00 12 1 2 2 2 1 2 1 1 00 , 1 , 1 , , 1 , , 1 , , 1 , , , , 2 , , 1 , , 1 , , , , 2 , , 1 = , 2 , 
                            T v
Lost Sales for Components and Backorders for Assembled Product v(x,y) is closed under multiplication by a scalar and addition, Tv satisfies Properties C1-C6. We now prove Tv satisfies Properties C7-C8.

121 Case 12 , uu    12 1, 0.  uu                 00 , 1 , 1 1, , 1 0, , 1 , 1 , 2 0, , 1, , 1  
                  T v

Proof.

Property C7

Property C7 can be rewritten as: (for each operator using C7).

    , 1 ,      jj xx v y v y x x e .     0 00 1 1 0 0 0 1 1 , 1 ( ) ( 1) ( , 1) ( , 1) ( , 1) ( ) ( , 1) ( , 1) ( , 1) ( 1) 0 
                                          j j j j j j j j j j j n n k x x x x k x k k x k k n n k x x k x k k x x k k Tv y h b y T v y T v y T v y h T v y T v y T v y b y x x x x x x x x x     0 0 0 1 1 0 0 0 1 1 , ( ) ( ) ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( ) 0 
                                            j j j j j j j j j j j n n k x x x x k x k k x k k n n k x x k x k k x x k k Tv y h b y T v y T v y T v y h T v y T v y T v
From above Tv satisfies C7.

Property C8

Property C7 can be rewritten as: (for each operator using C8).

    , 1 ,      yy v y v y x x e .     0 0 0 1 1 0 0 0 1 1 , 1 ( ) ( 1) ( , 1) ( , 1) ( , 1) ( 1) ( , 1) ( , 1) ( , 1) ( ) 0  
                                           n n k y y y y k y k k y k k n n k y y k y k k y y k k Tv y h b y T v y T v y T v y b y T v y T v y T v y h x x x x x x x x x     0 0 0 1 1 0 0 0 1 1 , ( ) ( ) ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( ) 0  
                                           n n k y y y y k y k k y k k n n k y y k y k k y y k k Tv y h b y T v y T v y T v y b y T v y T v y T v
From above Tv satisfies C8.

We use the fact that (1)

() lim n n v T v   
for any vA , where () n T refers to n compositions of operator T (see Puterman,1994, Theorem 6.10.4), and (2) () n T v T  , v  is the unique solution of v=Tv. Hence, Tv A, this completes the proof of Lemma 4.1.

To describe the optimal policy implied by the aforementioned properties, we define the basestock and the rationing levels as follows:

Definition 4.2: Letting 1 1 1 ( , , , , ) , 
k k k n x x x x       x
, we define the following thresholds

              min 0| , , 0 , 0, or 0, 0, , min 0| , , 1 0 , 0, 0, 
                               n ik k k i n kk n ik k k i i ik x v y v y y y x sy x v y v y y x x e x x x e x e         , min 0| , , , k k k k k r y x v y v y c           x x x e         , min 0| , 1 , 0 k k k R y x v y v y           x x x e .
Here,   Note that when 0, 0,

n ik i yx            , min 0| , , 1 0 . 
             n ik k k k k i s y x v y v y x x e x e
In this case, the threshold reflects a routing decision rather than a production decision since In other words,     , , 1 .

   k k k k s y R y xx Proof:
For state (x,y), with

  ,1 k k k x s y    x , we have   1 , 1 , k k k x s y      x
and by definition of

  ,1 kk sy    x , we have         , 1 , , 1 ,  
               n ik k k i k v y v y v y v y
x e e

, which implies that it is optimal to backorder demand of the assembled product, when

  ,1 k k k x s y    x .
For state (x,y), with

  ,1 k k k x s y    x then we have   1 , 1 , k k k x s y      x
and by definition of

  ,1 kk sy    x , we have         , 1 , , 1 , 
                n ik k k i k v y v y v y v y
x e e

x e e

x x e

, which implies that it is optimal to satisfy demand of the assembled product, when   , 1 .

k k k x s y    x
Hence, when 1 0, 0,

   n k k yx   , kk sy   x
can be regarded as a rationing level for the

assembled product at Component k, namely     , , 1 .    k k k k s y R y xx
This completes the proof of Theorem 4.1

Properties C1-C8 together with Definition 4.2 lead to the structure the optimal policy, specified in the following theorem.

THEOREM 4.2. For Component k, k=1,…,k, there exists an optimal stationary policy specified in terms of a state-dependent production base-stock level ( , ),

kk sy   x for 0, y  or 0, 0 n ik i yx   
and a state-dependent inventory rationing level ( , ) kk ry   x . For the assembled product, there exists an optimal stationary inventory rationing policy specified in terms of a

Lost Sales for Components and Backorders for Assembled Product 124 state-dependent rationing level ( , ) kk Ry   x . In particular, the structure of the optimal policy can be described as follows:

Optimal production policy for Component k

Produce to increase Component k inventory if

( , ) k k k x s y    x
for y=0, or y>0, and

0    n ik i x .
Produce to reduce backorders of the assembled product if

  ,1    k k k x R y x
for y>0, and

0.    n ik i x Do not produce if   , k k k x s y    x
for y=0, or y>0, and

0    n ik i x .

2.Optimal inventory allocation policy for Component k

Satisfy demand of Component k if   ,    k k k x r y x . Reject demand of Component k if   ,    k k k
x r y x .

3.Optimal inventory allocation policy for the assembled product

Satisfy demand of the assembled product

if   , k k k x R y    x
for all k, k=1,2,…,n.

Backorder demand of the assembled product if at least one component has inventory level

 

,.

k k k x R y    x
Furthermore, the production and rationing levels have the following properties: and Properties C1 and C7 to prove the theorem. Three cases can be considered:

P1: ( , )
( (3) 0, 0

n ik i yx   
, by Property C7, we have (

)

n ik ki v y v y        x e x e is non-decreasing in . k x Hence, ( , ) ( , 1) 
       n ik ki v y v y x e x e if ( , 1) 
k k k x R y    x
which indicates that producing Component k to stock is optimal, and ( ,

n ik ik v y v y v y           x e x e x if ( 1) ( , ) ( , ) 
   k k k x R y x , 1) 
which indicates that producing Component k to reduce backorders of the assembled product is optimal.

Part 2. By Property C1, we have ( , ) ( , )

  k v y v y x x e is non-decreasing in x k .
Hence, ( , ) ( , )

    kk v y c v y x x e if ( , )    k k k x r y x
which indicates that rejecting demand of Component k is optimal, and ( , ) ( , )

    kk v y v y c x e x if ( , )    k k k x r y x
which indicates that satisfying demand of Component k is optimal.

Part 3. By Property C8, we have ( , 1) ( , )

    v y v y x
x e is non-decreasing in y. Hence,

   v y v y x e x if ( , )    k k k x R y x ( , ) ( , 1)  
which indicates that satisfying demand of the assembled product is optimal, and (

   v y v y x e x if ( , )    k k k x R y x , ) ( , 1)  
which indicates that backordering demand of the assembled product is optimal.

Properties P1. By Property C4 we have ( , ) is non-increasing in y.

Properties P3. By Property C7 we have ( ,

) v y v y     x x 1) ( , 
e is non-decreasing in i x and by C8 we have ( , 1)

( , ) v y v y     x x
e is non-decreasing in y. This completes the proof of Theorem 4.2. Theorem 4.2 reveals the structure of the optimal policy. Part 1 indicates that the optimal production decision for Component k is always determined by ( , ) is defined as the inventory level below which it is optimal for the system to produce Component k to stock, and stop producing it when the on-hand inventory reaches ( ,0)

kk s   x
. If y>0, there are two cases to be considered. For 0

n ik i x   
, there is at least one other component with no stock, thus it is optimal for the system to produce
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Component k to stock when the inventory level is below ( , ) kk sy   x , and do not produce it when the inventory level reaches ( , ) kk sy   x . For 0

n ik i x   
, there is stock for all other components, thus the production decision can be controlled by ( , 1)    kk Ry x . In this case, we produce one unit of Component k and use it to reduce the backorder level of the assembled

product for   ,1    k k k x R y x
. Otherwise, add it to its stock. For part 2, ( , ) , the system will use the sock of the different components to satisfy the demand of the assembled product. If on the other hand, the stock of at least one component, say Component i, is less that its corresponding threshold ( , ) ii Ry   x then stock will be reserved to satisfy future demand of components. Properties P1-P3 reflect the monotonicity of the base-stock and rationing levels. Property P1 indicates that when the on-hand inventory of other components and backorder level of the assembled product increase, production of Component k should increase. Property P2 indicates that the more onhand inventory of other components and backorder of the assembled product, the less demand of Component k would be satisfied. We express this result as follows: since the production decision depends on both the on-hand inventory and the backorder, on the one hand, the increased on-hand inventory of other components also increase the probability that the system would satisfy demand of the assembled product, on the other hand, the increased backorder required more components to balance, thus it is more desired to reserve Component k to reduce the backorders. Property P2 implies that it is less desirable to satisfy the demand of Component k, when the on-hand inventory of other components and the backorder of the end product increase. In contrast, Property P3 indicates that more demand of the assembled product would be satisfied when the stock of other components and the backorder of the assembled product increase.

To close this section, we extend our model to the case of the average cost per period criterion.

Under a control policy  and original state (x,y) the average cost is given by ( , ) Our aim is to seek the optimal production policy   that minimizes the average cost per period ( , ) inf 

                x x x x x (4.7)
where  g is a finite constant denoting the average cost per period.

In the following Theorem4.3, we show that the optimal policy under the average cost criterion retains all of the properties observed in Theorem4.1 and Theorem4.2 under the discounted criterion.

THEOREM 4.3. The optimal stationary policy under the average cost criterion retains all the properties of the optimal policy under the discounted cost criterion. That is, the production policy is controlled by a state-dependent base-stock level ( , ), 

Proof of Theorem 4.3

We deal with the average cot problem through the limit of discounted cost problem with 0   . Since our problem can be formulated as an MDP, there are two conditions must be held for the existence of average optimal policy. As showed by Cavazos-Cadena (1992), [START_REF] Weber | Optimal control of service rates in networks of queues[END_REF]: 1. there exists a stationary policy   which achieves a finite average cost g   . 2. the number of states in which the cost   , H y g    x is finite.

For our model, consider a policy   that is described by: a fixed base-stock level s k for Component k, a fixed rationing level r k for demand of Component k, and a fixed rationing level R for demand of the assembled product. Each Component k can be produced if its onhand inventory x k is below s k , each demand of Component k can be satisfied if the on-hand inventory x k is above r k , and demand of the assembled product can be satisfied if the backorder level y is above R. The operators 0 T , k T and k T in equation (4.7) can be written as:

      0 , if , and 0, , , 1 otherwise, 
               n i ik v y y R x T v y vy xe x x       , if , , , otherwise,            k k k k k v y x r T v y v y c xe x x             , if , =0, , if
, > 0,and 0, , , if , > 0,and 0, , 1 if , > 0,and 0, , 
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x , is increasing convex in x k and y.

There exists a positive integer   , the number of states in which the cost
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is finite. Thus, condition 2 holds. Based on the above conditions, [START_REF] Weber | Optimal control of service rates in networks of queues[END_REF] proposed that there exists a positive constant g * and the expected discounted cost v(x,y), then for all sates (x,y):
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So, the average cost per period g * can be determined form the above ineqution.

This completes the proof of Theorem 4.3.

Numerical Study

In this section, we adopt the average cost per period criterion in our numerical study. In order to explore the optimal policy, we begin our analysis by studying an example of a system consisting of two components. We investigate the behavior of the optimal policy for a variety of cases, each with a different combination of the system parameters. We use the value iteration algorithm as described in Chapter 3. We fix the system parameters as follows ( ,4)  Rx and 21 ( ,4) 

Rx

. In region 1 1 2 ( ,5)

  x s x
given y=5, x 1 =35, x 2 =1 for example, the optimal production policy tends not produce Component 1. This means, the backorder level is small and the system has a large stock of Component 1 but small stock of Component 2. In this case, the stock is sufficient for Component 1, thus there is no need to produce it. In region

  1 1 2 ,4   x R x and   2 2 1 ,4   x R x
given y=5, x 1 =20, x 2 =25 for example, the system has a large stock of both Components 1 and 2, the optimal production policy tends to produce Component 1 to reduce backorders of the assembled product. In the remaining region, given y=5, x 1 =2, x 2 =25 for example, the system has a small stock of Component 1 but a large stock of Component 2, the optimal production policy tends to produce Component 1 to increase its on-hand inventory. In this case, both Component 1 and 2 can be reserved to satisfy future demand of the assembled product. Similar results can also be easily seen from Fig. 4.1(c) and Fig. 4.1(d). Comparing these three figures, we observe that the base-stock level 12 ( , )  s x y increases with x 2 and y. The optimal production decision region that produces Component 1 to increase its on-hand inventory is smaller when backorder level y increases. This result is quite intuitive: since the production decision depends on both the on-hand inventory and backorder level, the increased backorder required more components to balance. Hence, it is desired to produce Component 1 to reduce the backorders rather than produce it to increase its inventory. 

Also form

  R x y
at Component 1 is optimal. On the other hand, when backorder level y increases, the system tends to produce more Components 1 to deal with large backorders from the assembled product, thus the optimal allocation decision region that produces to reduce backorders of the assembled product grows larger. If 2 0

x  , the base-stock level 1 (0, )  sy with different y is lower than that in Fig. 4.1 respectively. In that region, demand of the assembled product is always backordered whatever the value of x 1 . Component 1 can be produced to satisfy its demand, thus it may not be optimal to keep a high base-stock level for Component 1. It is known that the increase of backorder level would also increase the total cost of the system. In order to reduce this effect, it is natural to decrease the rationing level 12 ( , ) R x y  when the backorder level increases. produce to reduce backorders of the assembled product produce to stock do not produce Hence, the assembled product demand would be satisfied easily. Also seen form Fig. 4. 5(a) and Fig. 4.5(b), the effect of backorder level y is not significant. Especially when x 2 >1, the rationing level becomes to a vertical line with the fixed value x 1 =1. This means if all components are available, it is always optimal to satisfy demand of the assembled product.

x 2 x 1   1 2 ,10 R x  1 2 ( , 10) 
This result also can be seen from Fig. 4.6, when the backorder cost b 0 is larger than lost sale costs c 1 and c 2 , the optimal allocation region that satisfies demand of the assembled product becomes large enough, and then the rationing level 12 ( , ) R x y  becomes to x=1, for all y. 

Conclusion

We have provided a characterization of the optimal policy for an ATO system with single product with individual components demand. The system defined here considered both lost sales and backorders. Specifically, the unsatisfied component demand is lost and the unsatisfied product demand is backordered if not fulfilled immediately. At any time, for any component, the manager must decide whether to produce it and add it to the stock, to produce and allocate it to fill the backorders of the assembled product if any, or not to produce. Also for any incoming demand, the manager must decide which demand can be filled. Using MDP, we showed the structure of the optimal control policy. In addition, we generated some properties of the basestock and the rationing levels. Finally, we conducted a comprehensive numerical study with different penalty cost parameters, and analyze the impact of these cost parameters on the optimal policy.

Introduction

In the previous Chapters 3 and 4, we proved that the optimal production policy is a "statedependent base-stock" policy, and the optimal allocation policy is a "state-dependent rationing" policy. However, such dynamic optimal policies may be difficult to carry out in practice especially when the number of components is large. On the other hand, since the state space considered in our system is infinite, in order to implement the optimal policy we need to truncate the state space. Then we use the value iteration method with the exhaustive searching over the truncated range to compute the cost function for the system. However, the value iteration used in the infinite horizon may lead to an extremely slow convergence. Therefore, we hope to develop simple and effective heuristic policies that should closely approximate to the optimal policy.

In this chapter, we propose several static heuristic policies. Contrary to the optimal policy, these heuristics are characterized by static base-stock and rationing levels. That is, the inventory of . Let R denote the fixed rationing/production level for demand of the assembled product. We define the percentage cost difference between a heuristic and the optimal policy as

  heuristic heuristic PD =100% - , g g g  
where heuristic g is the average cost per period under heuristic, and g  is the average cost per period under the optimal policy. To simplify the computations, we focus on a two-component ATO system. In this system, we test the static heuristic policies with two cases: the pure lost sales system of Chapter 3, and the mixed lost sales and backorders of Chapter 4. For each case, we conduct a numerical study to compare the performance of the heuristic policies. The performance is measured through the percentage cost difference between the heuristic and the optimal policies.

The Case of Lost Sales

The Optimal Policy

Under the optimal policy, the dynamic programming equation can be written as:
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where the operators T 0 , T k and T k , k=1,…,n are defined as follows:
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As presented in Chapter 3, the optimal production policy for Component k is a base-stock policy with a state-dependent base-stock level ()

kk s  
x . The optimal inventory allocation policy for Component k is a rationing policy with a state-dependent rationing level () kk r   x . Both these levels are non-decreasing in each of the states x i ,  ik . Furthermore, it is always optimal to satisfy demand of the assembled product whenever on-hand inventory for all components is available.

Three Static Heuristic Policies

Based on the case of pure lost sales in Chapter 3, we develop three static heuristic policies. The key point of these heuristics is to find the fixed base-stock and rationing levels. Once the threshold levels are determined, they can be used in the heuristics to control the production and allocation of ATO system.

The Heuristic H1 policy

We adopt IBR policy developed by [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF] to our ATO system. Here, we redefine it as Heuristic H1.

Under Heuristic H1, the dynamic programming equation can be written as:
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where the operators H1,0 T , H1,k T and H1 k T , are defined as follows:
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Heuristic H1 is a simplified form of the optimal policy which is much easier to implement. In order to find the optimal base-stock and rationing levels, we do an exhaustive search on basestock levels over the region 

     max max max 12 0, 0, ... 0, k s s s   
, where max k s is the largest base-stock value for Component k under the optimal policy. We also use the same method to determine the rationing levels of each component demand. That is, the rationing levels can be searched exhaustively over the region       where k s is the base-stock value for component k. We examine all feasible combinations of base-stock and rationing values, then determine the minimum average cost per period g H1 in equation (5.1), from which the base-stock and the rationing levels can be obtained.

The Heuristic H2 policy

We introduce a heuristic policy with the fixed base-stock and rationing levels, we refer to it as Heuristic H2.

Under Heuristic H2, the dynamic programming equation can be written as:
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where operators H2,0 T , H2,k T and H2 k T , are defined as follows:
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Here, we use the results of (S,R) policy of Ha (1997a) to determine the base-stock and rationing levels. Ha (1997a) proposed an (S,R) policy in a make-to-stock production system with two demand classes and lost sales. The optimal policy can be described by a base-stock level S and a rationing level R. Since demand class 1 is assumed to have priority over demand class 2, the rationing policy is used only for controlling demand class 2. In the model of Ha (1997 a), there is a single product and two demand classes. In our model, we can decompose the problem with respect to the individual components. That is, each Component k is associated with two demands: demand of the assembled product and demand of itself. Similarly, since priority is given to the product demand, the rationing policy is applied to control Component k demand. Based on the above, our ATO system can be decomposed as a series of queuing systems. For each Component k the system consists an M/M/1/s k make-to-stock queue (see Buzacott and Shantikumar 1993, that is not satisfied. We use the results of Ha (1997a) as follows:
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Hence, for each one-dimensional problem the expected cost of the system is obtained by: to determine the minimum of average cost per period g H2 .
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The Heuristic H3 policy

Under Heuristic H3, the production can be controlled by a base-stock policy, while component demands are filled on a first-come-first-served (FCFS) basis. Upon the arrival of component demand, if there is enough on-hand inventory for that demand, then it is satisfied immediately. If there is no available component in stock, the component demand is rejected.

The dynamic programming equation can be written as:
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where operators H3,0 T H3,k T and H3 k T , are defined as follows:
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We do an exhaustive search on base-stock values over the region       

Comparison to the Heuristic Policies

We provide the numerical results on the performance measures with respect to the percentage cost difference between each heuristic and the optimal policies, and compare the performance of the heuristic policies with that of the optimal policy. The system parameters are generated randomly from the 100 examples (see Table 5.1). Table 5.1 presents results from a set of numerical experiments. In this table, three heuristic policies are tested for their efficiency. Comparing the percentage average cost difference per period between the optimal policy and the heuristic policies, the numerical results in Table 5.1 indicate that Heuristics H1 and H2 are efficient and clearly outperform Heuristic H3. This result is quite intuitive since H1 and H2 have the benefit of rationing, and the purpose of rationing is to reserve inventory for the future arrivals of the more valuable demands. In our numerical result, demand varies from component to component, thus the benefit of rationing is significant. Heuristic H3 does not perform well especially for cases where component demand is relatively high. As we can see in cases 2, 3, 11, 13, 25, 23, 33, 37, 38, 43, 50, 54, 61, 68, 71, 72, 76, 77, 80, 88, 89, and 92. In all these cases, the demand rate for one of the components is higher than the production rate. However, in practice, most systems have sufficient production capacity, thus the demands would be satisfied. In fact, with the advantage of its simplicity and ease of implementation, Heuristic H3 has been widely used in ATO systems. On the other hand, for some special cases Heuristics H1 and H2 are equivalent to Heuristic H3. For instance, we found that in cases 9, 10, 18, 22 the percentage difference of Heuristics H1, H2 and H3 are exactly the same. Note that in these cases, the rationing level for the component demand equals to 0, this means Heuristics H1 and H2 have no benefit of the rationing policy, and these two polices therefor can be regarded as Heuristic H3. Additionally, we found that the difference between Heuristics H1 and H2 is not very large, especially in cases [START_REF] Benjaafar | Optimal Control of a Production-Inventory System with both Backorders and Lost Sales[END_REF][START_REF] Benjaafar | Optimal Control of a Production-Inventory System with customer impatience[END_REF][START_REF] Buzacott | Stochastic Models of Manufacturing Systems[END_REF][START_REF] Dayanik | The effectiveness of several performance bounds for capacitated production assemble-to-order systems[END_REF][START_REF] De Véricourt | Assessing the Benefits of Different Stock-Allocation Policies for a Make-to-Stock Production System[END_REF][START_REF] Dogru | A Stochastic Programming Based Inventory Policy for Assemble-to-order Systems with Application to the W Model[END_REF][START_REF] Elhafsi | Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand class[END_REF][START_REF] Gayon | Stock rationing in an M/Er/1 multi-class make-to-stock queue with backorders[END_REF][START_REF] Glasserman | Leadtime-inventory tradeoffs in assemble-toorder systems[END_REF][START_REF] Ha | Stock-rationing policy for a make-to-stock production system with two priority classes and backordering[END_REF][START_REF] Hausman | Joint demand fulfillment probability in a multi-item inventory system with independent order-up-to policies[END_REF][START_REF] Li | Optimal Control of a Lost Sales ATO System with Component Demand[END_REF][START_REF] Li | Optimal Control of both lost sales and backorders ATO System with Component Demand[END_REF][START_REF] Lu | No-Holdback Allocation Rules for Continuous-Time Assemble-to-Order Systems[END_REF][START_REF] Lu | Backorder minimization in multiproduct assemble-to-order systems[END_REF]79,80,82,83,90,91,99, where the percentage difference of these two policies is exactly the same. But in general cases, Heuristic H1 performs better than Heuristic H2. In comparison, Heuristic H1 is more efficient because we do an exhaustive search to determine the base-stock and rationing levels, which needs to take into account the on-hand inventory of other components. In Heuristic H2, the base-stock and rationing levels can be determined from the M/M/1/s k make-to-stock queue, and there is therefore no need to consider the on-hand inventory of other components. Because of this, the accuracy of approximation under H2 is lower than that under H1. However, Heuristic H2 provides a computational advantage. Instead of requiring a multidimensional search for the base-stock and rationing levels, H2 offers a quite simple and computationally effective way of computing the optimal thresholds. Also from the Table 5.1, there is very little difference between the optimal policy and Heuristic H1. For example, a maximum of the percentage average cost difference is 4.28%, and a minimum is 0.00%. However, the percentage average cost difference between the optimal policy and Heuristic H3 is lager with a maximum of 59.12% and a minimum of 0.16%. It is clear that Heuristic H1 works best for controlling the ATO system.

Additionally, the optimal average cost is sensitive to the component production utilization

  0  k k k     .
In order to study the combined effect of the related costs (holding cost and lost sale costs) and component production utilization on the average cost. From Fig. 5.1(a) and Fig.

5

.1(b) we can see that the optimal average cost increases as 1  increases. When 1 1   , the optimal average cost is increasing in h 1 and c 0 . Clearly, the effect of the related cost on average cost is significant as 1  is large. However, when 1 1   , the optimal average cost is decreasing in h 1 and c 0 and the effect of the related cost on average cost is not significant as 1  is small. We can explain this behavior as follows: when 1 1   , the system is busy and has not enough capacity to handle all the demands. In this case, the lost sale cost c 0 has a dominant effect compared to the holding cost h 1 . On one hand, the increase of the lost sale cost c 0 would also incur the average cost increases; on the other hand, as showed in Fig. 5.1(a) the higher value of c 0 increases the value of optimal average cost. When 1 1   , the system is not busy and has a relative large capacity to handle the coming demands. In this case, the holding cost h 1 has a dominant effect compared to the lost sale cost c 0 . On one hand, the increase of the holding cost h 1 would also incur the average cost increases; on the other hand, as showed in Fig. 5.1(b) the higher value of h 1 decreases the value of optimal average cost.

To gain more insight, we next examine the effectiveness of the heuristics under different holding cost and lost sale cost structures. We fix some system parameters as 0
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Heuristic H3 with different cost parameters. As shown in Fig. 5.2, PD H1 is not monotonic in the holding cost ratio h 1 /h 2 . For each fixed value of c 0 /(c 1 +c 2 ), PD H1 fluctuates a lot between 0% to 0.5%. In Fig. 5.3, for each fixed value of c 0 /(c 1 +c 2 ), PD H3 decreases with h 1 /h 2 for the range of 12 1 14 hh  . We also observe that PD H3 fluctuates slightly for the range of 12 [START_REF] Chiang | Optimal replenishment for a periodic review inventory system with two supply modes[END_REF] 29 hh  .

As can be seen form this figure for a fixed value of h 1 / h 2 , we obtain

    0 1 2 0 1 2 52 PD PD c c c c c c      ,
that is the percentage difference PD H3 is increasing in the relative lost sale cost rate c 0 /(c 1 +c 2 ).

Comparing these two heuristic polices, the effect of the holding cost rate is obvious under Heuristic H3. significant, while this effect on PD H1 is slight. That because Heuristic H1 has the advantage of the rationing policy, which can be used to reduce the effect of c 0 /(c 1 +c 2 ). However, Heuristc H3 does not have the benefit of rationing, thus the relative lost sale cost rate affects PD H3 a lot. 
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where, operators T 0 , T k and T k , k=1,…,n are defined as follows:
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As presented in Chapter 4, for Component k there exists an optimal stationary policy specified in terms of a state-dependent production base-stock level ( , ),
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and a state-dependent inventory rationing level ( , ) kk ry   x . For the assembled product, there exists an optimal stationary inventory rationing policy specified in terms of a state-dependent rationing level ( , ) kk Ry   x .

Four Static Heuristic Policies

Based on the mixed lost sales and backorders case of Chapter 4, we develop four static heuristic policies. Throughout this sub-section, we use an exhaustive search to construct approximation of the optimal base-stock and rationing levels. Then these threshold levels can be applied for controlling the production and allocation of ATO system.

The Heuristic H4 policy

Heuristic H4 use a similar idea to the IBR policy developed by [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF].

H4 uses fixed thresholds for component and assembled product for production and inventory rationing decisions.

It is not difficult to show that under Heuristic H4, the dynamic programming equation can be written as:

  H4 H4,0 H4, H4 00 11 , ( ) ( ) 
( , ) ( , ) ( , ), nn k k k k kk v y g h b y T v y T v y T v y            x x x x x (5.4)
where operators H4,0 T , H4,k T and H4 k T are defined as follows:

      H4,0 , if , and 0, , , 1 otherwise, 
n i ik v y y R x T v y vy             xe x x       H4, , if , , , otherwise, k k k k k v y x r T v y v y c         xe x x             H4 , if , =0, , if , > 0,and 0, , , if , > 0,and 0, , 1 if , > 0,and 0, 
,

k k k n k k k i ik n k k i ik n n i i ik ik v y x s y v y x s y x T v y v y y R y x v y y R y x vy                      xe xe x x e
x e x otherwise.

          
We conduct an exhaustive search to find the best base-stock levels s k and rationing levels r k and R that minimize the average cost in equation (5.4) where k s the base-stock value for Component k under Heuristic H4. We also do an exhaustive search on rationing level R over the region   max 0, R

, where max R the largest rationing value for the assembled product under the optimal policy. Using this technique, the base-stock and the rationing levels and the corresponding optimal average cost per period g H4 can be determined.

As we can see, Heuristic H4 has the same structure as the optimal policy except that it uses fixed threshold levels rather that the optimal state-dependent ones. Its advantage is that it is easier to compute and implement compared to the optimal policy.

The Heuristic H5 policy

Under Heuristic H5 the production can be controlled by a fixed base-stock threshold, and demand of the assembled product is always satisfied as long as stock for all components is available. Demand of individual components is rationed through fixed threshold levels similar to Heuristic H4. Hence, Heuristic H5 gives priority to the demand of the assembled product over the demand of the individual components.

The dynamic programming equation can be written as:

  H5 H5,0 H5, H5 00 11 , ( ) ( ) 
( , ) ( , ) ( , ), nn k k k k kk v y g h b y T v y T v y T v y            x x x x x (5.5)
where the operators H5,0 T , H5,k T and H5 k T are defined as follows: From equation (5.5), we determine the minimum average cost per period g H5 .

      H5,0 1 , if 0, , , 1 otherwise, 
n k k v y x T v y vy            xe x x       H5, , if , , , otherwise, k 
k k k k v y x r T v y v y c         xe x x           H5 , if < , 0, , if < , > 0,and 0, , , 1 if > 0, 0, , otherwise. k k k n k k k i ik k n n i i ik ik v y x s y v y x s y x T v y v y y x vy                      

The Heuristic H6 policy

Under Heuristic H6 the production can be controlled by a fixed base-stock threshold, and demand of the individual component is always satisfied as long as stock for the needed component is available. Demand of the assembled product is rationed through fixed threshold levels similar to Heuristic H4. Hence, Heuristic H6 gives priority to demand of the individual components over demand of the assembled product.

The dynamic programming equation can be written as:

  H6 H6,0 H6, H6 00 11 , ( ) ( ) 
( , ) ( , ) ( , ), nn k k k k kk v y g h b y T v y T v y T v y            x x x x x (5.6)
where the operators H6,0 T , H6,k T and H6 k T are defined as follows: 

      H6,0 , if , and 0, , , 1 otherwise, 
n i ik v y y R x T v y vy             xe x x       H6, , if 0, , , otherwise, kk k k v y x T v y v y c         xe x x           H6 , if , =0 
k k k n k k k i ik n k k i ik n n i i ik ik v y x s y v y x s y x T v y v y y R y x v y y R y x v                      xe xe x x e xe x   otherwise. y           
In Heuristic H6, the rationing policy is used only for controlling demand of the assembled product. That is, if the backorder level for the assembled product is below the rationing level R the demand of the assembled product is backordered. Otherwise, demand of the assembled product can be satisfied. The base-stock levels s k can be exhaustively searched over the region

      max max max 12 0, 0, ... 0,    k s s s
, and the rationing level R can be exhaustively searched over the region   max 0, R . From equation (5.6), we determine the minimum average cost per period g H6 .

The Heuristic H7 policy

Under Heuristic H7, the production can be controlled by a fixed base-stock policy, while a first-come-first-served (FCFS) policy is for both the end product demand and the individual components demand.

The dynamic programming equation can be written as:

  H7 H7,0 H7, H7 00 11 , ( ) ( ) 
( , ) ( , ) ( , ), nn k k k k kk v y g h b y T v y T v y T v y            x x x x x (5.7)
where the operators H7,0 T , H7,k T and H7 k T are defined as follows: . From equation (5.7), we determine the minimum average cost per period g H7 .

      H7,0 , if 0, , , 1 otherwise 

Comparison to the Heuristic Policies

We conduct a numerical study to compare the performance of the heuristic policies. The performance is measured through the percentage cost difference between the heuristic and the optimal policy. The system under study has the following parameters: 00 , , , , h . Given a combination of the parameters, we compute the value of average cost under the optimal policy and each heuristic policy. Table 5.2 is the comparison of the optimal and heuristic policies and their corresponding average cost. Here, we report the performance of our heuristic policies. As can be seen from Table 5.2, Heuristic H4 performs better than the other three heuristics in each example tested with the percentage difference varies between 0.004% to 1.808%. It is of interest to notice the relative performance of the other three heuristics. Clearly, Heuristics H5, H6 and H7 do not perform as well as Heuristic H4 as they are further simplification of the Heuristic H4. Except for the cases 10, 47, 56, 67, 68, 72, 86, and 93, Heuristic H5 outperforms Heuristic H6. This is most likely due to the fact that when the arrival rate of end product demand is lower than that of components demand (see cases 67, 68, and 86), or the backorder cost is less than the lost sale cost (see cases 10, 47, 56, 72, and 93), priority is given to the individual components demand over the assembled product demand. In these cases, Heuristic H6 does a better job than Heuristic H5. However, in most cases the effect of backorder is higher than that of lost sale. This implies that the assembled product demand has higher priority than the individual components demand. Thus, Heuristic H5 works better than Heuristic H6. For a particular case 74, the relative load parameter

1  k 
and the backorder cost is larger than the lost sale cost.

In this case the system is out of stock, which leads to lost sales and backorders most of the time. Heuristic H4 has the benefit of the rationing policy for both demands of the assembled product and the individual components. Since the purpose of rationing is to reserve inventory for future arrivals of the more valuable demands, H4 works better than the other heuristics.

Also, it is easy to observe that Heuristic H5 outperforms Heuristic H7 for all cases. In addition, Heuristics H6 and H7 do not perform well especially for cases where component demand is relatively high, as we can see in cases 31, 34, 35, 39, 43, 45, 76, 86, 87, 99, and 100. This reflects the fact that, with high component demand levels, there is a great chance for the system to stock-out. Heuristics H4 and H5 reduce the stock-out probability by the fixed base-stock and rationing levels for components, while Heuristics H6 and H7 are less flexible because there are no rationing levels for components.

By comparing the above four heuristics, it is clear that Heuristic H4 works very well for controlling the ATO system, which is a good approximation of the optimal policy. This is because all the base-stock levels and the rationing levels are considered in this heuristic, and the production and allocation can be well controlled. Although H4 is very efficient, it is computationally intensive because it requires a multi-dimensional search for the optimal thresholds. Hence, developing other heuristics is necessary. As shown in Table 5.2, the difference in performance of H4 and of H5 is very small for the cases 1, 3, 7, 20, 47, 56, 61, 64, 67, 83, 86, 95, 96, 99 and 100, if without considering the special case 74, the performance of H4 and of H5 is exactly same in the rest of the cases. We can also see that there is difference in performance of H6 and of H7 for the cases 1, 7, 47, 56, 61, 86, 95, 96, 99, and 100, and for the other cases the performance of H6 and of H7 is exactly same. This is due to the effect of backorder. In general, if the demand of the assembled product is backordered the 
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the system tends to satisfy it immediately, there is no need to rationing the demand of the assembled product, thus the rationing level R for the assembled product equals to 0.

Consequently, for most cases Heuristic H4 is identical to Heuristic H5, and Heuristic H6 is identical to Heuristic H7. Although H5 does not perform as well as H4, and H7 does not perform as well as H6, the computational time of H5 and of H7 is significantly faster than that of H4 and of H6. Thus, with this advantage Heuristics H5 and H7 are also efficient for controlling the system. Our analysis suggests that the manager should pay more attention to the rationing policy of the individual components. Since the rationing level r k for Component k depends on the on-hand inventory x k , and the rationing level R for the assembled product depends on the backorder level y, in comparison, the on-hand inventory level is easier to control.

Conclusion

In order to well understand the structure of the optimal policy in ATO system studied in this work, we proposed several static heuristic policies for Chapter 3 the pure lost sales and for Chapter 4 the mixed lost sales and backorders. The heuristics are characterized by static basestock and rationing levels. Note that Heuristics H1 and H4 are similar to the IBR policy in [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF] for the pure product demand system. Here, we used and redefined the IBR policy to the mixed demand (demand from the assembled product and individual components) system. Based on our numerical experiences, we found that Heuristic H1 is a good approximation of the optimal policy in the pure lost sales case, and Heuristics H4 and H5 are good approximations of the optimal policy in the mixed lost sales and backorders. For the others Heuristics H2, H3, H6 and H7, with the advantage of quite simple formulation and fast computation they are also necessary to be considered for controlling our ATO system.
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We studied an ATO system with a single assembled product assembled from n components.

Demand from the individual components can be satisfied or rejected, and demand form the assembled product can be satisfied or rejected/backordered. The unsatisfied demand incurs a penalty cost. Components are produced one unit at a time on separate production facilities and held in stock incur ring a different holding costs. We assume exponentially distributed production times, and demand arrives in the system as independent Poisson processes. We considered two cases: the pure lost sales and the mixed the lost sales and backorders. For both cases, using an MDP approach, we showed that the optimal production policy is a statedependent base-stock policy and the optimal allocation policy is a state-dependent rationing policy. We also did some numerical experiments to explore the impact on the optimal policy of different system parameters. Finally, we proposed three heuristic policies in the pure lost sales case and four heuristic policies in the mixed lost sales and backorders case. In each case, we compared the performance of heuristic policies and found a good approximation of the optimal policy. We now outline several important results in our work:

For the pure lost sales case  The optimal production policy for Component k is a base-stock policy with a statedependent base-stock level () 

kk s   x
where it is optimal to produce Component k, if ()

k k k xs    x
and not to produce it otherwise. The optimal inventory allocation policy for Component k is a rationing policy with a state-dependent rationing level () Both levels are non-decreasing in each of the states x i ,  ik . Furthermore, it is always optimal to satisfy the demand of the assembled product whenever on-hand inventory for all components is available. 



We developed three static heuristic policies: Heuristics H1, H2 and H3 for the pure lost sales case. Comparing the performance of the heuristic policies with that of the optimal policy we found that Heuristics H1 and H2 are efficient and clearly outperform Heuristic H3. Heuristic H3 does not perform well especially for cases where component demand is relatively high. In comparison, Heuristic H1 is more efficient because it needs to take into account the on-hand inventory of other components to determine the optimal base-stock and rationing levels. In Heuristic H2, there is no need to consider the on-hand inventory of other components that may affect the accuracy of approximation. However, the H2 offers a quite simple and computationally effective way of computing the base-stock and rationing levels. Based on the numerical results, it is clear that Heuristic IBR works best for controlling the ATO system.

For the mixed lost sales and backorders case  For Component k, there exists an optimal stationary policy specified in terms of a state-dependent production base-stock level ( , ), . For the assembled product, there exists an optimal stationary inventory rationing policy specified in terms of a statedependent rationing level ( , ) kk Ry   x . In particular, the structure of the optimal policy can be described as follows: 



We developed four static heuristic policies: Heuristics H4, H5, H6 and H7 for the mixed lost sales and backorders case. Comparing the performance of the heuristic policies with that of the optimal policy we found that Heuristic H4 performs better than the other three heuristics. Clearly, Heuristics H5, H6 and H7 are the suboptimal policies and they are the further simplification of the Heuristic H7. In comparison, in most cases, Heuristic H5 works better than Heuristic H6. However, when the arrival rate of the assembled product demand is lower than that of components demand or the backorder cost is less than the lost sale cost, Heuristic H6 works better than Heuristic H5. We observed that Heuristic H5 outperforms Heuristic H7 for all cases. In addition, Heuristic H6 and Heuristic H7 do not perform well especially for cases where component demand is relatively high. We were able to obtain the result that Heuristic H4 works very well for controlling the ATO system, which does provide a more precise and a good approximation of the optimal policy.

The results presented in this work encourage us to believe that it will be fruitful to extend the research work in multiple directions. We hope to extend the models and heuristics to the general assembly system. We list several interesting research directions as follows:

Production times have an Erlang distribution

The limitation of our model is that the production times follow an exponential distribution, while this assumption may not be realistic in a real ATO system. In most ATO systems, there exists the multistage manufacturing process that incurs production time variability. In order to deal with this, the production times are assumed with Erlang distribution. Sicne "information on the production status and production time variability" (Gayon et al., 2009), Erlang distributions have the advantage of flexibility in modeling production processes. Thus one direction for the future research is to study the optimal policy for the general case of Erlang production times. As a continuation of this work, it would be useful to extend our model to Erlang production times with lost sales/backorders.

Batch production

Multiple non-unitary demands

Batch production and multiple non-unitary demands are common in many real ATO systems.

In such systems, batch production occurs when many similar components are produced together, and demand not always occurs one unit at a time. We assume that demand interarrival times follow a certain distribution, for instance, the Erlang distribution. We consider batch production and multiple non-unitary demands in a single model with multiple products and various demand size.

Develop efficient heuristics for the above models

Due to uncertain product demand, and production leadtimes for different components is different, ATO systems tend to be difficult to manage. The key challenge for ATO systems is to efficiently manage component inventories and make optimal production and allocation decisions. The above models presented are more general cases of ATO systems, which would be more difficult to analyze. We can also use an MDP approach to determine the optimal policy for such systems. However, the structure of the optimal policy would not be simple.

Also, the optimal policy would not be easy to implement. Thus, we expect to develop the efficient heuristics for such systems, which should be more easy for system managers to comprehend and implement in practice. 

Introduction gé né rale

Nos contributions

Etant donné e la revue de la litté rature existante, nous pouvons dire qu'il existe peu de travaux concernant les systè mes ATO avec le type de demande en composants individuels. Nous dé crivons maintenant plusieurs ré sultats importants dans notre travail. 

Perspectives d'avenir

Les ré sultats pré senté s dans ce travail nous incitent à croire qu'il sera utile de prolonger les travaux de recherche dans de multiples directions. Nous espé rons é tendre les modè les et heuristiques pour le systè me de l'assemblé e gé né rale. Nous listons plusieurs directions de recherche inté ressantes comme suit:

Les temps de production ont une distribution Erlang

Toutefois, il existe des limites à nos recherches, tel que les temps de production suivent une distribution exponentielle, alors que cette hypothè se n'est pas ré aliste dans un vé ritable systè me ATO. Dans la plupart des systè mes ATO, il existe des processus de fabrication par lots de plusieurs é tages dans lequel les composants peuvent ê tre produits ce qui engendre la variabilité des temps de production. Afin de ré gler ce problè me, les temps de production sont 

Dé velopper des heuristiques efficaces pour les modè les dé crits ci-dessus

En raison de l'incertitude des demandes de produits et de la diffé rence des dé lais de production pour des diffé rents composants, les systè mes ATO ont tendance à ê tre difficiles à gé rer. Le principal dé fi pour les systè mes ATO est de gé rer efficacement les stocks de composants et de prendre des dé cisions de production et d'affection optimales. Les modè les pré senté s ci-dessus sont des cas plus gé né raux des systè mes ATO, qui seront plus difficiles à analyser. Nous pouvons aussi utiliser une approche MDP pour dé terminer la politique optimale pour ces systè mes. Cependant, la structure de politique optimale ne serait pas simple.

En outre, la politique optimale ne serait pas facile à mettre en oeuvre. Ainsi, nous projetons de
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 11 Fig. 1.1. Assemble-to-order system

4 .

 4 p t : the transition probability per unit time. The transition probability function   |, t pa  x for aA  x denotes the system state at the next decision epoch and is determined by   |, t pa  x , when action a is chosen in state x, at time t. 5.

1 kw

 1  means satisfy demand from Component k, and 0 k w  means reject demand from Component k, 0 1 w  means satisfy demand from the assembled product, and 0 0 w  means reject demand from the assembled product. In the mixed lost sales and backorders case: under a policy  for a starting state     produce Component k to reduce the backorder level of the assembled product, and 0 k u  means do not produce Component k, 1 k w  means satisfy demand from Component k, and 1 k w  means reject demand from Component k, 0 1 w  means satisfy demand from the assembled product, and 0 0 w  means backorder demand from the assembled product.

  the holding cost of Component k per unit per unit time, 0 () b  denotes the backorder cost of the assembled product per unit per unit time.

  If the decision maker takes the action with transition rate 0

I

  Mixed lost sales and backorders case:If an action a is selected in state (x,y), the next state is   , y  x , the system state at the next decision epoch is determined by the transition probability is the indicator function (   1 d I  if d is true, and   0 d I  , otherwise).

  Song et al. (1999) studied the impact of limited capacity on ATO systems and evaluated performance of base stock policies with stochastic leadtimes. They showed that exact performance measures are a result of multidimensional Markov chains. Glasserman and Wang (1998) considered a system consisting of multiple types of demand, which take place according to batch Poisson processes. The inventory of each component is controlled by a base-stock policy, and the replenishment leadtimes are i.i.d. (independent and identically distributed) random variables. They focused on a target fill rate and studied the trade-off between inventory levels and delivery leadtimes. Dayanik et al. (2003) considered an ATO system consisting of multiple components and multiple products. They developed lower bounds to estimate the order fill rates for the system. Plambeck and Ward (2007) introduced a separation principle for a class of ATO systems with expediting. They demonstrated that the multidimensional assembly control problem can be separated into a series of single-item inventory control problems. Ko et al. (2011) studied a single product, multiple-component production system under a base-stock policy. They provided explicit approximations of the lead times distributions, from which the base-stock levels can be calculated. For a more general multi-product ATO system: non-identical production system, where the products differ in characteristics. Lu et al. (2010) focused on the W-, N-, M-system and assumed identical component leadtmes. They used a stochastic program to obtain optimal inventory strategy. Dogru et al. (2010) discussed W-system with identical component lead times and proposed a simple priority allocation policy. Under this environment, Lu et.al.

  Tv V . This completes the proof of Lemma 3.1.

  vector consisting of the on-hand inventory levels for Component , ik  and x k is the on-hand inventory level of Component k. Definition 3.2 indicates that the base-stock () on-hand inventory of other components. From Definition 3.1 and 3.2, and Lemma 3.1 we can characterize the structure of the optimal policy in the following Theorem 3.1.

1 ,

 1 

  cost difference due to increasing one unit onhand inventory of Component k under the condition of' 

  are the marginal cost difference due to increasing one unit onhand inventory of Component k under the condition of' 

  are the marginal cost difference due to increasing one unit onhand inventory of Component k under the condition of ' k  and " k  , respectively.

  above we have two possibilities:

( 1 )

 1 The base-stock level () kk s   x , for Component k, is non-increasing in the holding cost h k and non-decreasing in the lost sales costs c 0 and c k , for k=1,2,…,n. (2) The base-stock level () kk s   x , for Component k, is non-decreasing in the arrival rates 0  and k  and non-increasing in the production rate µ k , for k=1,2,…,n. (3) The rationing level () kk r   x , for Component k, is non-increasing in the holding cost h k , non-decreasing in the lost sales cost c 0 and non-increasing in c k for k=1,2,…,n. (4) The rationing level () kk r   x , for Component k, is non-decreasing in the arrival rates 0 

v

  x is convex, for a fixed level k x and two different lost sale costs'" 

    v x is convex, for a fixed level kx and two different holding costs '" non-decreasing in c k .

2 .

 2 Theorem 3.2 shows that the base-stock and the rationing levels are sensitive to various system parameters. Property 1 indicates that it is optimal to hold less inventory of Component k in stock as holding cost h k increases, but to hold more inventory of Component k in stock as lost sale cost either c 0 or c k increases. Property 2 indicates that the more demands of the assembled product or of Component k arrive to the system the more inventory of Component k should be held in stock. However, the higher production rate µ k leads to the lower inventory requirements for Component k. Property 3 indicates that the increase of holding cost h k or lost sale cost c k may also increase the probability that demand of Component k would be satisfied, while the increase of lost sale cost c 0 may reduce this probability. For a similar reason as shown in Property 3, Property 4 indicates that it is optimal to satisfy more demand of Component k as the production rate µ k increases, but to satisfy less demand of Component k as the arrival rates 0  and k  increase.

 v x

  is convex in each of the state variables x k , there exists the minimum value that   min   gv x . It is not hard to see that policy  is stationary, which achieves a finite average cost and condition 1 holds. For condition 2, since the holding cost function in each x k , there exists a positive integer  , the number of states in which the cost ()

  [START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF]. Otherwise, increment n by 1 and return to Step 3.

3. 1 Fig. 3 .

 13 Fig.3.1 and Fig.3.2 show that the optimal production policy is similar to that in[START_REF] Benjaafar | Production and Inventory Control of a Single Product Assemble-to-Order System with Multiple Customer Classes[END_REF], but the allocation policy is quite different. Fig.3.2 displays the optimal rationing decision in seven regions. In region 1, all demands are satisfied. In region 2, only demand of the assembled product is satisfied. In region 3, demand of Component 2 and demand of the assembled product are satisfied. In region 4, only demand of Component 2 is satisfied. In region 5, demands of Component 1 and demand of the assembled product are satisfied. In region 6, only demand of Component 1 is satisfied. In region 7, neither demand is satisfied. In fact, different regions correspond to different allocation decisions. In region 1, the amount of the on-hand inventory for both Component 1 and Component 2 is large, thus the system has enough capacity to satisfy all the demands. But in region 2, the amount of the on-

1  s and 1 r 1  s decreases with h 1 .

 1111 sensitive to the values of parameters such as holding cost, lost sales cost, production rate and arrival rate. From Fig.3.3(a) and Fig.3.3(b), it is easy to see that both are nonincreasing in h k . Since a higher level of h k may incur a greater average cost, the larger holding cost leads to less production of Component 1. Hence, the base-stock level

Fig. 3 . s and 1 r

 31 Fig. 3.4(a) and Fig. 3.4(b) show the effect of the lost sale cost c0 on both the base-stock and rationing levels. Both 1  s and 1  r are non-decreasing in c 0 . This result implies that when c 0

Fig. 3 . 1  s and 1 

 311 Fig. 3.6(a) and Fig. 3.6(b) show the effect of the arrival rate  0 on both the base-stock and rationing levels. Both 1  s and 1 

Fig. 3 . 1  1  1  1  s and 1 r 1 

 3111111 Fig. 3.7(a) and Fig. 3.7(b) show the effect of the arrival rate

Fig. 3 . 1 .

 31 Fig. 3.1. The structure of the optimal production policy with lost sales

1 Fig. 3 . 3

 133 Fig. 3.3 The effect of holding cost h 1 on the optimal policy for Component 1 with lost sales

Fig. 3 . 4 .

 34 Fig. 3.4. The effect of lost sale cost c 0 on the optimal policy for Component 1 with lost sales

1 Lost 1 Fig. 3 . 5 .

 1135 Fig. 3.5. The effect of lost sale cost c 1 on the optimal policy for Component 1 with lost sales

Fig. 3 . 6 . 1 Lost 1 Fig. 3 . 7 .

 361137 Fig. 3.6. The effect of arrival rate 0  on the optimal policy for Component 1 with lost sales

1 Fig. 3 . 8 .

 138 Fig. 3.8. The effect of production rate  1 on the optimal policy for Component 1 with lost sales

1 ,

 1 ) and X k (t) is a nonnegative integer denoting the on-hand inventory level of Component k at time t, Y(t) the backorder level for demand of the assembled product is a nonnegative integer. Each demand can be satisfied by only one single product or one component. If a demand of Component k is rejected, a lost sale cost c k per unit per unit of time is incurred. If a demand of the assembled product is unsatisfied, a backorder cost b 0 (.) per unit per unit of time is incurred. Each unit of Component k incurs an inventory carrying cost h k (.) per unit per unit of time. We assume both b 0 (.) and h k (.) are increasing convex functions. The expected discounted cost over an infinite planning horizon obtained under a policy  with a starting state    

,

  e., all components are in stock), we consider whether to satisfy the assembled product demand or delay it for later by backordering it. If, on the other hand, e., not all the components are available), the assembled product must be backordered. Operator k T corresponds to the decision of how to control demand orders from Component k. options: satisfy demand of Component k immediately or reject it. If 0  k x Component k is not available, thus the demand of Component k is lost. Operator k T corresponds to the production decision of Component k. If 0  ymeaning that there are no backorders of the assembled product, we must choose between: do not produce Component k or produce a unit of Component k to increase its inventory. If > 0there are backorders of the assembled product, and there is at least one component that is not available, the decision, in this case, is either not to produce Component k or produce a unit of Component k to increase its inventory. If > 0backorders of the assembled product and all other components are available, the decision is either to produce a unit of Component k to stock or use the produced unit to reduce the backlog of the assembled product (through assembly with other components).

1 ,

 1 

  Lost Sales for Components and Backorders for Assembled Product 104 Also

  convex function in each x i and y. Hence, it satisfies Properties C3-C6 (submodularity/supermodularity). Because C1 and C2 (convexity) are implied by C3-C6, function   , Hy x satisfies C1 and C2. Since

x

  denotes the rationing level for demand of the assembled product with respect to Component k.Lost Sales for Components and Backorders for Assembled Product 123

THEOREM 4 . 1 .

 41 we produce Component k to stock or produce Component k and use this unit to assemble a unit of the final product and use the latter to reduce the backlog of the final product. As a matter of fact, in this case  , For Component k, k=1,…,n, the base-stock level( , ) 

2 Part 1 .

 21 decreasing in both the inventory level i x of Component i, , ik  and the backlog level of the assembled product, y. decreasing in both the inventory level ix of Component i, , ik  and the backlog level of the assembled product, y. increasing in both the inventory level i x of Component i, , ik  and the backlog level of the assembled product, y.Proof of Theorem 4.We use the definition of the base-stock level( , ) 

  the amount of backorder of the assembled product, if any. That is, if y=0, the base-stock level( ,0) 

  of demand of Component k. When the on-hand inventory of Component k is larger than the largest( , ) will use the stock of Component k to satisfy the demand of Component k. Otherwise, the system will reserve this stock to satisfy future demand of the assembled product. For part 3,( , ) level of demand of the assembled product. When the on-hand inventory of Component k is larger than the largest( , ) 

  all states (x,y). The optimality equation in this case is as follows:

.

  the allocation policy is controlled by the state-dependent inventory rationing levels( , ) The base-stock and the rationing levels satisfy all the properties in Theorem 4.1 and Theorem 4.2.

  b 0 and c k (k=1,2). The following figures illustrate the structure of the optimal production policy for Component 1 and the optimal inventory allocation policy of the assembled product and Component 1. Similar results are obtained for Component 2 and demand of Component 2, hence omitted.

Fig. 4 .

 4 Fig.[START_REF] Benjaafar | A Production-Inventory System with Both Patient and Impatient Demand Classes[END_REF].1(a)-Fig.4.1(d) show the optimal production policy for Component 1 when the backorder cost rate, b 0 is much lower than the lost sale costs c 1 and c 2 . Here, we consider the following two cases. If y=0, as seen in Fig.4.1(a), there are no backorders of the assembled product, the system can be viewed as a pure lost sales system. The on-hand inventory of Component 1 is controlled by the base-stock policy with a base-stock level 12( ,0)  sx. That is,

Fig. 4 .

 4 Fig. 4.1(a)-Fig. 4.1(d) also display the structure of the optimal production policy with different backorder levels of y.

Fig. 4 . 2 ,

 42 1(b)-Fig.4.1(d), the rationing level( , 1) can be viewed as a production parameter, thus the optimal production decision region is bounded by the basestock level 12( , )  s x y and the rationing level( , 1) Fig. 4.2(a)-Fig. 4.2(d), we still let the backorder cost b 0 be lower than the lost sale costs c 1 and c 2 . But, reduce the difference between them by keeping b 0 unchanged and reducing the value of c 1 to 100 and c 2 to 75. In this setting, comparing with Fig. 4.1(a)-Fig. 4.1(d), the optimal production regions have changed. For example, as seen in Fig. 4.2(a), when there are no backorders, the base-stock level 12 ( ,0)  sx is lower than that in Fig. 4.1(a). The fact that when both c 1 and c 2 decrease, the optimal production policy tends to produce more Component 1 and 2 to reduce backorders of the assembled product. If y=0, there is no need to keep a large number of Component 1 in stock that may increase the holding cost, thus the base-stock level 12 ( ,0)  sx decreases. If y>0, as seen from Fig. 4.2(b)-Fig. 4.2(d), the optimal allocation region that produces Component 1 to reduce backorders of the assembled product is larger than that in Fig. 4.1(b)-Fig. 4.1(d) respectively, while the optimal production region that produces Component 1 to increase its on-hand inventory becomes smaller. We discuss two cases. If x 2 >0, for the same reason as mentioned in Fig. 4.2(a), the low rationing level 12 ( , 1)

Fig. 4 . 1 .(b 0 =10, c 1 =1000, c 2 yxFig. 4 .

 41124 Fig. 4.1. The optimal production policy for Component 1 with lost sales and backorders (b 0 =10, c 1 =1000, c 2 =800)

Fig. 4 .

 4 Fig. 4.5(a) and Fig. 4.5(b) show the structure of the optimal allocation policy for demand of the assembled product with lower lost sale costs c 1 =100 and c 2 =75. Obviously, the rationing level 12 ( , ) R x y 

Fig. 4 . 2 .(b 0 =10, c 1 =100, c 2 Fig. 4 . 3 .(b 0 =200, c 1 =100, c 2

 42124312 Fig. 4.2. The optimal production policy for Component 1 with lost sales and backorders (b 0 =10, c 1 =100, c 2 =75)



  Lost Sales for Components and Backorders for Assembled Product 135 assembled product demand has a relative priority over the individual components demand.

Fig. 4 .

 4 Fig. 4.7(a) and Fig. 4.7(b) show the structure of the optimal allocation policy for demand of Component 1 under the condition b 0 =10, c 1 =1000, c 2 =800. As displayed in Fig.4.7(a), the optimal allocation policy divides the state space into two regions: it is optimal to satisfy demand of Component 1 if on-hand inventory x 1 is above the rationing level 12( , ) r x y 

Fig. 4 . 2 Fig. 4 . 4 .Fig. 4 . 5 . 1 =100, c 2 Fig. 4 . 6 . 2 Fig. 4 . 7 . 1 =1000, c 2 1 Lost 2 Fig. 4 . 8 . 2 Fig. 4 . 9 . 1 =100, c 2 

 424445124624712124824912 Fig. 4.8(a) and Fig. 4.8(b) show the structure of the optimal allocation policy for demand of Component 1 under the condition b 0 =10, c 1 =100, c 2 =75. Obviously, the monotonicity result is similar to that in Fig. 4.7(a) and Fig. 4.7(b), but this dynamic trend is more significant.Relative to the original lost sale costs in Fig.4.7, both c 1 and c 2 decrease in Fig.4.8. In other words, the components demand has a lower priority which reduces the probability that demand of Component 1 would be satisfied. Therefore, the rationing level at Component 1 would be satisfied. Therefore, the rationing level at Component 1 with different value of x 2 is

.

  each component is controlled by a fixed base-stock policy, and the allocation of each demand can be controlled by a fixed rationing policy or a first-come-first-served (FCFS) policy. Throughout this chapter, let s k denote the fixed base-stock level for Component k, and Let r k denote the fixed rationing level for demand of Component k, and

section 4 . 3 ).

 43 , with the base-stock level s k and the rationing level   This way, a multidimensional optimization problem can be solved as a series of one-dimensional problems.We define   , kk I s r the inventory level of the system,   0 , kk p s r the probability of demand of the assembled product that is not satisfied, and  , the probability of demand of Component k



  Once all s k and r k are obtained, all of them will be used in equation(5.2) 

Fig. 5 . 1 Fig. 5 . 1 .

 5151 Fig.5.2 and Fig.5.3 reflect the sensitivity of the percentage difference from optimal cost in system cost parameters. We compare the average cost of Heuristic H1 to the average cost of

Fig. 5 . 2 . The effect of h 1 /h 2 on the system Fig. 5 . 3 . The effect of h 1 /

 521531 Fig. 5.2. The effect of h 1 /h 2 on the system Fig. 5.3. The effect of h 1 /h 2 on the system under Heuristic H1 under Heuristic H3

Fig. 5 . 4

 54 Fig. 5.4 The effect of c 0 / (c 1 +c 2 ) on the system under Heuristics H1 and H3

  (c 1 +c 2 )

Fig. 5 .

 5 Fig. 5.4(a)-Fig. 5.4(d) show the effect of relative lost sale cost rate c 0 /(c 1 +c 2 ) on PD H1 and PD H3 . We fix the lost sale costs c 0 +c 1 +c 2 =2000, but vary c 1 /c 2 in different values. Clearly, in Fig.5.4(a) for each fixed value of c 1 /c 2 , we can see that the effect of c 0 /(c 1 +c 2 ) on PD H3 is

Fig. 5 .

 5 Fig. 5.4(b) and Fig. 5.4(c) indicate the trend of PD change under different huristics. For Heuristic H1, Fig. 5.4(b) shows that

x

  Similar to Heuristic H4, we use dynamic programming to compute H5. That is, we do an exhaustive search on base-stock levels s k over the region   search on rationing levels r k over the region   

  a simple heuristic, where we only need to consider the base-stock levels for the production decision. For the demand of the individual components and of the assembled product that follow the FCFS rule, if the system has enough stock the coming demand can be satisfied. The base-stock levels s k can be computed by exhaustively searching over the region

2 ,

 2 which are generated randomly (see Table5.2). To gain insight, we consider a wide range of parameter values for component production utilization  

(

  the system parameters are drawn from uniform distributions as 0 ~(0,10), ~(0,10), ~(0,10),

 1 .x 2 .x

 12 The base-stock level() for Component k, is non-increasing in the holding cost h k and non-decreasing in the lost sales costs c 0 and c k , for k=1,2,…,n. The base-stock level() for Component k, is non-decreasing in the arrival rates 0  and k  and non-increasing in the production rate µ k , for k=1,2,…,n.

from

  Component k, is non-increasing in the holding cost h k , non-decreasing in the lost sales cost c 0 and non-increasing in c k for k=1,2,…,n.4. The rationing level ()kk r   x from Component k, is non-decreasing in the arrival rates Conclusions and Future Perspectives 165 0  and k  and non-increasing in the production rate µ k , for k=1,2,…,n.

1 .. 2 .. 3 .

 123 Optimal production policy for Component k Produce to increase Component k inventory if Optimal inventory allocation policy for Component k Conclusions and Future Perspectives 166 Satisfy demand of Component k if Optimal inventory allocation policy for the assembled product Satisfy demand of the assembled product if all k, k=1,2,…,n. Backorder demand of the assembled product if at least one component has inventory level decreasing in both the inventory level x i of Component i, , ik  and the backlog level of the assembled product, y. decreasing in both the inventory level x i of Component i, , ik  and the backlog level of the assembled product, y. increasing in both the inventory level x i of Component i, , ik  and the backlog level of the assembled product, y.

  Dans l'environnement é conomique actuel d'aujourd'hui, avec le renforcement de la compé titivité du marché mondial, la personnalisation de masse est devenue un objectif majeur pour de nombreuses entreprises de fabrication. Cette tendance avait forcé les entreprises à adopter une straté gie d'exploitation hybride à mieux traiter une varié té d'environnements de marché . Dans ce but, un systè me d'assemblage connu comme ATO, a é mergé et est devenu plus populaire. Un systè me ATO produit plusieurs composants et les assemble en une varié té de produits finis. L'information sur les demandes arrive seulement pour les produits finis, mais le systè me garde l'inventaire au niveau de composants[START_REF] Song | Supply Chain Operations: Assemble-to-Order Systems[END_REF].Les systè mes ATO peuvent ê tre considé ré s comme une affectation de ressources multiples qui induit la planification de production, la satisfaction des contraintes et l'affectation des stocks.Les systè mes ATO repré sentent une straté gie de logistique populaire utilisé e en gestion de fabrication. En raison de la complexité croissante des systè mes de fabrication d'aujourd'hui, le dé fi pour les systè mes ATO est de gé rer efficacement les stocks de composants et de trouver les dé cisions optimales de production et d'affectation.Nous é tudions un systè me ATO avec un produit unique qui est assemblé à partir de plusieurs composants. Le systè me doit ré pondre à une demande non seulement du produit assemblé , mais aussi des composants individuels. Nous considé rons le cas avec seulement des lost sales puis le cas mixte lost sales et backorders avec des temps de production suivant des lois de type exponentiel et une demande sous forme de loi de Poisson. Nous formulons le problè me comme un Processus de dé cision markovien (MDP), et nous considé rons deux critè res d'optimalité qui sont le coût actualisé et le coût moyen par pé riode. Nous caracté risons la structure de la politique optimale et é tudions l'impact des diffé rents paramè tres du systè me sur cette politique. Nous pré sentons é galement plusieurs heuristiques pour le cas lost sales et le cas mixte lost sales et backorders. Ces heuristiques fournissent des mé thodes simples, mais efficaces pour contrôler la production et l'affectation des stocks du système ATO.Aperç u de la thè seDans chaque chapitre, nous traitons un ATO systè me avec des demandes en composants individuels. Nous nous concentrons sur le cas lost sales et le cas mixte lost sales et backorders. Pour chaque cas, nous commenç ons par pré senter un aperç u de la revue de la litté rature. Ensuite, nous formulons le modè le de problè me et é tudions la politique optimale du systè me, puis nous dé veloppons les heuristiques pour ré soudre le problè me. A la fin, nous pré sentons des exemples numé riques pour analyser la performance et dé montrer l'efficacité des heuristiques proposé s.Le Chapitre 1 correspond à l'introduction générale qui présente les principes généraux de système ATO et la revue de l'état de l'art. Nous présentons, de même, les notions de base utilisé es tout au long de cette thè se, tels que (i) la dé finition des systè mes ATO, (ii) le rôle important de contrôle optimal, (iii) les principes de l'approche générale, (iv) et les paramètres du problè me. Enfin, nous concluons ce chapitre avec un plan de la thè se.Le Chapitre 2 est une brè ve revue des travaux existants sur le système ATO. Tous d'abord, nous présentons l'état de l'art des systèmes make-to-stock en vertu du MDP et des systè mes ATO en vertu de l'examen continu et de l'examen pé riodique. Nous nous inté ressons plus particuliè rement aux systè mes ATO en temps continu qui motive cette partie de la thè se. Dans cette ligne de recherche, nous é tudions le modè le qui traite le systè me ATO avec deux types de demandes: une demande en produit assemblé et une demande en composants individuels. À notre connaissance, il y a actuellement peu de travaux dans ce domaine. Nous espé rons que la recherche pré senté e dans ce travail enrichit la litté rature actuelle sur les systè mes ATO avec le type de demande en composants individuels.Le Chapitre 3 vise à caracté riser la politique optimale du systè me ATO avec le cas lost sales.Dans ce chapitre, nous supposons que si une demande en produit assemblé ou en composants individuels ne peut ê tre satisfaite immé diatement, elle sera perdue. Nous proposons un modè le de programmation dynamique afin de dé terminer la politique de contrôle optimal d'un tel systè me. Nous formulons le problè me en utilisant une mé thodologie MDP et en utilisant deux critè res d'optimalité , qui sont le coût actualisé et le coût moyen par pé riode. En outre, nous dé terminons la structure de politique optimale et é tudions l'impact des diffé rents paramè tres sur la politique optimale. Nous testons le systè me avec un large é ventail de paramè tres du systè me et nous montrerons que les niveaux de base-stock et de rationnement sont sensibles aux paramè tres du systè me. Le Chapitre 4 vise à caracté riser la politique optimale du systè me ATO avec le cas mixte lost sales et backorders. Dans ce chapitre, nous supposons que (i) si une demande en produit assemblé ne peut ê tre satisfaite immé diatement, elle attendra la future disponibilité , (ii) et si une demande en composants individuels ne peut pas ê tre satisfaite immé diatement, elle sera perdue. La gestion efficace d'un tel systè me est difficile é tant donné les exigences de composantes corré lé es. Pour ré soudre ce problè me, nous le formulons comme un MDP et nous caracté risons sa politique optimale. Enfin, nous é tudions l'impact des diffé rents paramè tres de coût de pé nalité sur la politique optimale. Pour le Chapitre 5, nous pré sentons plusieurs heuristiques qui sont basé s sur le modè le de programmation dynamique é tudié dans les Chapitres 3 et 4. Pour ces mé thodes approché es, nous utilisons l'approche des seuils statiques qui permet de se rapprocher à la politique optimale du systè me. Plus pré cisé ment, ces heuristiques fournissent des mé thodes simples, mais efficaces pour contrôler la production et l'affectation des stocks du système ATO. En raison de la complexité de ces systè mes, la politique optimale est mathé matiquement difficile pour un grand nombre de composants. Nous devons donc développer d'autres heuristiques plus efficaces pour trouver une bonne approximation de la politique optimale. Evidemment, les heuristiques proposé es sont des politiques sous-optimales, mais lorsqu'elles sont utilisées efficacement, elles permettent d'améliorer les performances dans le système ATO.

  supposé s avec Erlang distribution. Avec les caracté ristiques de "information on the production status and production time variability"(Gayon et al., 2009), les distributions Erlang ont l'avantage de flexibilité dans la modé lisation des processus de production. Ainsi, une direction pour la recherche future est d'é tudier la politique optimale pour le cas gé né ral d'Erlang temps de production. Dans le prolongement de ce travail, il serait utile d'é tendre notre modè le à Erlang temps de production avec le cas lost sales/backorders.Production en lotsDemande non unitaireLa production en lots et la demande non unitaire sont communs dans de nombreux systè mes ATO ré els. Dans un tel systè me, une demande n'arrive pas toujours seule fois mais elle peut avoir lieu continuellement au cours du temps. Nous pouvons supposer que les temps de demande inter-arrivé e suivent une certaine distribution, par exemple, la distribution Erlang. Il est né cessaire de considé rer un systè me ATO avec une production en lots ou une demande non unitaire, ou combiner ces deux cas dans un modè le unique. Dans ce cadre, nous pouvons é tudier les systè mes avec des produits multiples et diffé rentes tailles de demandes.

e x Definition 3.1. Let

  V be the set of functions on

	n  , where    is the set of non-negative
	integers, such that if v V , we have
	A1: A2: A3: A4: Property A1 shows that   , 0, ii v for all i,  x   , 0, ij v for all , 1,2,..., , i j n j i   x   12 ,..., , 0, p i j j j i v     for all 12 , , ,..., i j j   0 ,    vc for all 1 0.    n k k x  x e x   i v  x is non-decreasing in each of the state variables, and it implies , , p j i  and 1 1, pn    that the function v(x) is convex in x i . Property A2 shows that   i v  x is non-increasing in ( ) j x j i definition of submodularity and supermodularity readers can refer to Topkis (1978). Property  , and it implies that the function v(x) is submodular in the direction (x i ,x j ). For the A3 shows that   i v 1 , ,..., ij xx and p j x and it implies that the function v(x) is supermodular in the direction   1 , ...    p i i j j x x x x . Property A4 implies that it is always optimal to satisfy an order from the assembled product, if all the components are available.  x is non-decreasing with joint increases in 11 Lemma 3.1. If v V , then Tv V , where     0 0 ( ) ( ) ( )

  N k (t) is the number of units of Component k demand that have not been satisfied up to time t. Following[START_REF] Lippman | Applying a new device in the optimization of exponential queuing systems[END_REF], we define the uniform rate

		x	 x		dt	e c dN t 	e b Y t dt 	(4.1)
	where   nn 0   is the discount rate, 01  lk k l    , and let  	1			

Table 5 .1 Optimal policy versus Heuristic policies with lost sales
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	(the system parameters are drawn from uniform distributions as 0 ~(0,9), ~(0,9), ~(1,10), kk U U U   
		0 ~(1,10), ~(600,700), ~(1,300), kk h U c U c U	k		1, 2.	)
						percentage difference
						from optimal cost %
						H1	H2	H3
	1	0.42 7.65 0.33 8.85 5.68 3.78 3.61 621.90 85.54 252.09 1.34	3.73	5.43
	2	1.37 6.40 0.64 9.40 8.18 4.38 1.20 689.68 79.68 193.09 1.46	4.99	21.94
	3	2.96 2.73 2.06 6.64 7.29 1.43 2.83 617.42 156.46 93.89 0.41	4.92	15.33
	4	2.81 3.04 0.60 6.85 4.97 1.19 8.19 653.43 147.48 212.70 1.26	1.52	6.83
	5	0.95 6.48 5.22 7.25 8.40 7.60 2.78 629.88 246.48 147.21 0.52	1.54	2.22
	6	3.87 1.79 0.32 9.61 6.89 6.96 4.79 688.79 155.10 76.95 4.28	7.35	9.90
	7	0.01 0.13 8.76 7.11 5.91 4.30 4.63 687.75 176.76 105.76 0.23	0.23	0.23
	8	0.79 2.08 5.11 7.98 8.53 5.81 5.46 646.11 16.61 176.63 0.81	6.51	9.48
	9	0.21 6.52 2.30 9.53 2.83 1.62 7.69 656.43 182.96 271.69 0.17	0.17	0.17
		1.24 0.86 4.72 2.92 8.52 6.12 8.89 667.81 147.06 171.21 0.16	0.16	0.16
		2.52 5.34 3.09 8.44 1.52 6.14 9.30 607.75 73.62 274.04 0.17	7.12	17.48
		4.21 2.18 0.83 8.42 8.01 1.61 9.30 699.05 204.43 276.79 1.09	0.57	3.56
		2.07 0.28 2.59 9.21 4.78 5.78 9.56 674.77 294.54 244.04 2.35	10.54 14.09
		0.88 4.49 4.49 5.40 9.45 6.62 1.87 677.02 200.29 210.27 0.03	1.10	1.20
		3.53 2.26 2.26 7.59 2.00 4.01 4.75 654.66 68.63 158.62 1.56	7.52	10.94
		5.27 1.01 0.29 9.45 3.18 9.01 3.62 678.91 64.40 223.36 0.18	4.41	5.36
		0.40 6.11 3.26 3.66 4.98 7.61 9.68 650.56 274.23 204.79 0.34	0.42	4.79
		0.03 1.69 0.51 3.30 2.20 5.66 5.18 623.48 214.97 249.51 0.22	0.22	0.22
		1.57 2.47 6.54 6.18 9.17 9.41 9.12 698.83 190.37 268.73 0.30	0.42	0.30
		1.25 2.17 3.36 8.30 5.97 5.32 7.32 692.95 187.58 175.17 0.91	4.51	4.51
		1.14 5.90 2.80 9.12 8.30 5.69 1.38 646.24 200.24 179.96 0.76	0.85	0.93
		0.23 6.30 3.52 8.10 6.85 3.74 9.24 683.23 164.89 97.92 0.71	0.71	0.71
		0.07 4.51 1.18 1.99 3.78 4.89 5.09 654.64 38.08 50.90 2.94	6.86	12.17
		1.66 1.24 2.02 8.52 6.28 5.53 4.50 614.32 155.09 216.33 0.75	0.90	0.90
		0.19 5.42 1.61 3.07 4.59 5.94 7.45 665.59 166.51 117.59 1.23	1.32	6.33
		1.17 0.95 6.48 6.22 7.25 8.40 7.60 648.90 59.99 246.48 0.51	6.58	7.35
		8.35 3.87 1.79 1.32 9.61 6.89 6.96 625.40 126.81 155.10 0.26	0.90	4.18
		0.46 5.15 3.56 5.62 5.00 9.01 2.06 643.12 94.13 163.81 0.49	0.69	6.05
		0.52 2.28 1.26 6.97 6.37 5.04 5.28 612.22 176.61 86.57 2.28	3.92	7.84
		6.79 4.46 0.45 4.00 1.12 1.46 4.89 627.13 212.31 139.51 0.01	0.14	0.88
		4.71 7.75 8.49 7.00 1.54 9.41 9.42 624.89 128.39 296.09 0.06	2.29	4.75
		2.67 6.47 0.15 9.74 7.57 7.08 6.04 643.52 143.62 79.51 0.14	0.14	8.72
		2.97 2.74 0.61 8.34 8.81 8.96 4.35 627.14 88.26 124.39 0.06	0.06	10.66
		4.37 6.29 8.22 4.64 8.01 8.17 6.84 615.27 201.08 215.79 0.15	1.94	9.61
		2.80 0.96 1.56 6.80 8.52 3.42 4.64 694.79 237.33 221.85 0.69	3.51	3.52
		4.25 2.34 2.46 9.30 9.22 9.48 7.55 688.78 133.90 174.12 0.35	0.35	6.37
		0.77 7.52 1.54 1.13 3.16 7.44 9.84 642.04 255.05 73.98 0.38	0.41	10.09
		7.60 1.07 6.90 8.68 1.94 8.97 8.94 607.74 153.68 96.96 0.13	7.02	11.52
		1.79 2.47 0.14 6.90 4.84 1.87 3.46 663.30 213.43 164.03 1.77	1.77	2.89
		0.57 1.94 8.66 4.18 9.31 3.65 6.38 625.54 39.92 249.89 0.18	0.34	8.50
		8.89 1.92 1.53 1.05 9.69 2.20 8.52 625.90 75.44 251.90 0.03	0.39	2.06
		1.70 0.52 7.81 7.91 9.92 4.43 6.62 665.95 50.30 174.41 0.67	7.99	9.52
		0.21 3.93 6.67 9.97 3.58 3.70 7.55 601.30 265.15 99.23 0.29	1.16	10.79
		4.76 1.13 1.57 1.95 7.20 4.98 2.12 640.60 242.30 203.87 0.43	1.99	6.98
		8.15 6.12 7.15 1.45 4.41 5.92 7.14 600.12 210.63 29.17 0.07	1.00	5.96
		0.32 2.29 2.80 9.12 8.30 6.88 4.52 676.55 113.51 127.61 0.16	1.16	0.91
		0.17 5.70 0.47 4.42 8.25 4.59 8.64 658.56 163.12 70.03 0.28	0.28	6.02
		8.74 2.30 0.75 4.51 3.71 8.97 5.67 672.18 168.80 196.68 0.13	3.50	4.56
		0.87 8.25 1.31 7.18 3.00 9.14 2.50 620.89 247.49 72.97 0.18	0.33	9.12
		6.38 0.11 1.66 8.36 3.14 5.50 4.76 625.64 49.28 181.05 0.22	3.64	12.71

Table 5 .1 Optimal policy versus Heuristic policies with lost sales
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	(the system parameters are drawn from uniform distributions as 0 ~(0,9), ~(0,9), ~(1,10), kk U U U   
	0 ~(1,10), ~(600,700), ~(1,300), kk h U c U c U	k		1, 2.	)
					percentage difference
					from optimal cost %
					H1	H2	H3
	7.33 7.57 7.68 2.87 1.27 3.71 8.01 676.90 138.16 246.69 0.70	3.51	4.27
	0.74 1.57 0.29 6.41 7.62 7.48 8.30 683.97 144.75 155.34 2.39	2.39	3.86
	0.59 0.61 0.30 4.00 7.41 9.28 8.47 667.87 19.13 172.37 0.01	0.01	5.64
	8.22 1.46 4.76 9.50 5.80 3.08 1.64 642.43 162.20 141.81 1.29	1.78	47.35
	8.74 7.48 0.45 9.31 3.16 6.05 9.49 646.09 162.68 284.84 0.49	1.11	1.30
	0.69 1.00 2.48 2.40 5.14 1.64 9.75 636.72 13.03 189.10 1.07	1.82	9.43
	4.37 4.95 8.50 2.66 1.26 7.02 9.62 661.47 80.17 201.71 1.66	3.90	9.42
	8.24 6.78 8.10 2.00 7.41 9.83 7.05 619.25 194.02 51.01 0.27	2.48	7.40
	8.62 5.27 6.20 4.32 6.60 4.31 7.50 647.14 299.73 21.57 0.00	2.29	15.48
	8.68 2.01 6.73 2.00 6.28 9.89 2.35 603.58 52.17 96.56 0.64	1.35	5.64
	1.42 6.76 4.05 8.02 2.87 1.34 6.94 617.59 10.75 159.73 1.14	1.22	59.12
	8.74 2.30 0.75 4.51 3.71 8.97 5.67 672.18 168.80 196.68 1.12	2.63	4.69
	8.61 4.55 2.06 3.18 5.24 9.22 9.76 647.35 264.68 122.88 0.36	4.86	8.28
	0.63 2.02 0.03 8.70 9.21 3.38 9.94 658.61 19.07 127.52 0.17	3.79	8.19
	7.64 4.78 2.18 6.43 1.38 2.72 7.01 604.27 163.62 176.82 0.21	0.82	3.00
	1.28 8.63 7.43 2.19 2.75 3.36 5.08 660.74 111.31 290.63 0.08	0.39	9.92
	8.41 7.01 3.64 7.40 1.64 4.85 8.60 663.52 216.59 47.27 0.14	2.34	5.13
	8.24 1.25 8.97 9.61 2.54 7.12 8.43 673.84 294.51 98.22 0.15	1.59	16.06
	7.13 1.34 0.70 6.18 3.05 2.23 1.75 624.28 47.77 32.58 0.19	4.35	6.63
	8.64 2.32 3.98 1.54 4.92 7.49 2.20 691.74 256.80 183.68 0.02	1.75	1.94
	5.90 7.57 0.96 3.11 3.80 1.96 2.56 626.91 193.78 233.86 0.84	0.84	20.70
	6.24 1.61 2.90 8.71 2.10 5.89 5.94 630.17 136.97 98.49 0.14	1.37	12.28
	6.82 1.17 1.19 2.06 1.87 2.09 8.02 653.86 298.12 122.68 0.64	1.38	2.95
	8.41 2.19 6.97 1.14 2.66 8.01 8.23 628.75 129.05 80.67 0.00	2.52	4.79
	6.11 8.36 7.36 1.39 9.14 7.44 1.54 609.11 145.12 46.94 0.00	0.33	8.71
	6.82 3.15 7.82 2.52 9.82 9.13 4.59 657.62 37.06 85.02 0.01	1.41	15.59
	6.69 1.77 0.76 6.84 4.95 9.02 5.74 668.34 177.26 132.59 1.84	9.49	19.03
	3.53 1.46 2.11 1.77 6.94 3.27 9.24 612.39 121.97 160.69 2.93	4.37	5.68
	0.87 1.49 0.39 9.36 8.20 8.42 5.15 627.03 188.74 203.92 0.00	0.00	2.05
	1.54 4.26 7.20 5.06 4.68 2.78 6.65 664.44 175.31 262.74 0.04	0.04	15.08
	5.82 8.97 5.63 4.56 4.75 3.81 7.65 605.21 201.76 296.68 0.53	3.54	7.01
	0.29 7.48 8.20 3.67 3.36 7.70 4.88 667.90 87.84 283.14 0.10	0.10	2.77
	7.05 0.04 4.38 9.22 1.14 6.39 2.70 686.04 176.24 158.78 1.69	1.69	7.72
	5.27 2.34 7.36 2.23 5.41 1.62 4.83 617.76 206.65 172.82 1.17	5.23	8.01
	2.49 5.27 1.64 7.70 6.43 5.50 1.14 663.58 185.51 191.68 0.15	1.33	2.77
	7.41 2.57 1.22 2.65 2.06 6.49 1.96 670.93 294.82 203.16 0.61	4.83	2.54
	6.76 3.88 5.80 1.96 9.56 5.78 6.83 613.39 221.17 221.85 0.38	3.30	7.24
	2.85 6.78 5.22 6.63 3.87 8.73 2.78 611.94 103.82 201.87 0.07	0.21	37.98
	8.55 3.42 4.95 8.02 4.82 8.25 5.41 660.73 175.64 208.85 0.63	1.62	20.56
	0.09 3.05 4.97 3.53 3.42 9.86 7.56 601.17 74.76 137.47 0.56	0.56	1.43
	1.39 2.19 0.59 5.32 7.40 9.36 6.15 624.28 88.58 48.01 0.43	0.43	8.68
	7.59 1.89 8.81 7.58 3.32 7.44 6.19 653.99 235.54 214.42 0.46	2.13	16.63
	2.51 8.64 2.37 4.04 8.88 7.11 8.36 632.25 54.26 191.92 0.08	0.60	4.47
	7.16 7.01 4.62 4.92 1.26 1.26 7.64 635.02 78.96 253.47 0.00	0.41	4.10
	1.91 3.18 2.73 9.31 9.70 9.22 2.85 688.43 144.63 90.23 0.54	1.51	1.51
	2.45 2.41 0.92 9.82 8.49 6.81 8.30 640.70 121.87 154.62 0.33	1.43	3.71
	1.38 1.80 1.64 7.35 4.65 5.71 6.78 653.41 54.54 139.56 0.16	3.27	6.29
	8.30 4.59 4.94 2.24 3.98 8.55 1.23 609.54 264.97 265.44 0.00	0.29	1.52
	0.81 3.65 0.11 8.40 3.26 7.85 9.38 613.63 58.21 106.54 0.09	0.09	3.74
	100 6.94 8.16 2.97 8.53 2.37 4.90 5.02 614.65 274.20 216.54 0.12	2.08	3.16

  ,

	T v y x	   	v	 xe	y	n ik    i x
			 	vy x	
	  , T v y H7, k x	   , v y c , kk  if otherwise, 0, k v y x   xe       x
						,		if < ,	0,
						,		if < , > 0,and	0,
	H7	  ,					 , 1	if > 0,	0,
				  ,		otherwise.
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  Nous avons en premier lieu, é tudié un systè me ATO dans le cas lost sales pour des demandes en produit assemblé et composants individuels. Nous avons dé montré que la politique optimale de production pour un Composant k peut ê tre dé crite par le niveau de base-stock é tat dé pendant, qui est non-dé croissant sur le niveau de l'inventaire d'autres composants. Nous avons aussi démontré que la politique optimale d'affection pour un Composant k peut ê tre dé crite par le niveau de rationnement é tat dé pendant, qui est non-dé croissant sur le niveau de l'inventaire d'autres composants. Dans ce cas, nous pouvons produire une unité de Composant k, si le niveau d'inventaire de Composant k est infé rieur au niveau de base-stock, sinon nous ne faisons rien. Nous pouvons satisfaire une unité de demande en Composant k, si le niveau d'inventaire de Composant k est infé rieur au niveau de rationnement, sinon nous pouvons la refuser. En deuxiè me lieu, Nous avons é tudié un systè me ATO dans le cas mixte lost sales pour la demande en produit assemblé et backorders pour la demande en composants individuels. En plus de considé rer l'inventaire du systè me, le niveau de backorder de produit assemblé doit é galement ê tre envisagé . Nous avons dé montré que dans quelques conditions, le niveau de base stock peut ê tre interpré té comme un niveau de rationnement du produit assemblé au Composant k. Nous avons aussi dé montré que la politique optimale peut ê tre dé crite par trois types de seuil é tat dé pendant: (i) pour le Component k, il existe le niveau de base-stock, et le niveau de rationnement, (ii) pour le produit assemblé , il existe le niveau de rationnement. Tous les types de seuil dé pendent de l'inventaire du systè me et du niveau de backorder du produit assemblé . Troisiè mement, nous avons dé veloppé trois heuristiques pour le cas lost sales, et quatre heuristiques pour le cas mixte lost sales et backorders. Sur la base de nos expé riences numériques, nous avons constaté que l'Heuristique H1 est une bonne approximation de la politique optimale dans le cas lost sales, et que les Heuristiques H4 et H5 sont de bonnes approximations de la politique optimale dans le cas mixte lost sales et backorders. Pour les autres Heuristiques H2, H3, H6 et H7, é tant donné leur simple formulation et leur calcul rapide, ils sont é galement né cessaires pour contrôler le systè me ATO é tudié .
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 Table 5.We present several static heuristic policies based on the dynamic programming model of Chapters 3 and Chapter 4. For our heuristics, we use static thresholds to approximate the optimal state-dependent thresholds. Specifically, these static heuristics provide the simple, yet effective approaches for controlling production and inventory allocation of ATO systems. As we discussed in the General Introduction, due to the complexity of ATO systems, the optimal policy is computationally hard for large number of components. Because of the curse of dimensionality, the optimal policy will be difficult to implement. We therefore need to develop efficient heuristic policies to find a good approximation of the optimal policy. Of course, the heuristics that we proposed here are suboptimal policies, while when these heuristics used effectively they will lead to a performance improvement in ATO system. The outline of this chapter is as follows: we provide an introduction in section 5.1. In section 5.2, we propose three static heuristic policies with lost sales case, and compare the performance of them. In section 5.3, we propose four static heuristic policies with mixed lost sales and backorders case, and compare the performance of them. Concluding remarks are provided in section 5.4.

PD cc fluctuates more sharply than  . We can see that for a fixed value of c 0 /(c 1 +c 2 ), the percentage difference PD H3 decreases with the ratio c 1 /c 2 . For example, at a value of c 0 /(c 1 +c 2 )=20, PD cc and 12 3

PD cc is not significant .

The Case of Lost Sales and Backorders

The Optimal Policy

Under the optimal policy, the dynamic programming equation can be written as:

Conclusions and Future Perspectives

We conclude our work in this chapter. We considered an ATO system with continuous times and infinite-horizon. In this system, both production and demand filling decisions must be made. We have studied the pure lost sales case and the mixed lost sales and backorders case with exponential production times and Poisson demand. Using the dynamic programming formulation for each case, we showed that the structure of the optimal production policy is state-dependent base-stock policy, and the optimal allocation policy is a state-dependent rationing policy. We characterized the structure of the optimal policy. In addition, we developed several simple heuristic policies for the pure lost sales case and the mixed lost sales and backorders case. In each case, we compare the performance of the heuristic policies, and found a good approximation of the optimal policy. Finally, there are several potential avenues for future research. Mots-clefs: systè mes assemble-to-order, contrôle optimal, Processus de dé cision markovien

Integrated Production and Inventory Control of Assemble-To-Order Systems with Individual Components Demand

Abstract: Assemble-to-order (ATO) systems can be regarded as a multiple resource allocation that induces production planning, requirements fulfilling and inventory assignment. ATO is a popular strategy used in manufacturing management. Due to the increasing complexity of today's manufacturing systems, the challenge for ATO systems is to efficiently manage component inventories and make optimal production and allocation decisions.

We study an ATO system with a single product which is assembled from multiple components. The system faces demand not only from the assembled product but also from the individual components. We consider the pure lost sales case and the mixed lost sales and backorders case with exponential production times and Poisson demand. We formulate the problem as a Markov decision process (MDP), and consider it under two optimality criteria: discounted cost and average cost per period. We characterize the structure of the optimal policy and investigate the impact of different system parameters on the optimal policy. We also present several static heuristic policies for the pure lost sales and the mixed lost sales and backorders cases. These static heuristics provide simple, yet effective approaches for controlling production and inventory allocation of ATO system.

Keywords: Assemble-To-Order systems, optimal control, Markov decision processes.