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General Introduction

Chapter 1. General Introduction

The main objective of this work is to study a special case of an assemble-to-order (ATO)
manufacturing system that is not only subject to demand for the assembled product but also
subject to demand for the individual components. For this purpose, we use a Markov decision
process (MDP) framework to formulate the system. In this first chapter, we present a basic
knowledge of our work such as the definition of ATO systems, the significant role of optimal
control, the principles of the general approach, and the problem setting. Finally, we conclude

this chapter with a plan of the thesis.
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General Introduction

1.1 Assemble-to-Order Systems

In today’s business environment, with the increasing competitiveness of the global market,
mass customization has become a major objective for many manufacturing companies. This
trend has forced companies to adopt a hybrid operations strategy to better deal with a variety
of market environments. Towards this end, an assembly system known as ATO, has emerged
and became more popular. An ATO system produces multiple components and assembles
them into a variety of final products. Demands occur only for the final products, but the
system keeps inventory at the component level (Song and Zipkin, 2003). The products can be
assembled from different components while components can be used by different products
(see Fig.1.1). An ATO system simplifies the process of manufacturing. It can be regarded as a
manufacturing strategy which allows a product to be made or service to be available to meet
the needs of a specific customer order.

ATO systems are characterized by short assembly times and high product variety, which have
the advantage of decreasing life cycles of products, meeting diverse customer needs, and
saving on total cost. It is an efficient strategy that companies have applied to reengineer their
production design. The primary application of the ATO strategy is in the computer assembly
industry. For instance, companies such as Dell and IBM benefit from using the ATO strategy.
The former is famous for controlling inventory levels of components, and the latter is famous
for two-stage server computers. Both of them successfully apply the ATO strategy to enhance
their competitive position in the global PC market (Agrawal and Cohen, 2001; Cheng et al.,
2005).

Suppliers Components Products Demand for products

«— 111

® — =

 —

NA
—> XA
NA

Fig. 1.1. Assemble-to-order system
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General Introduction

Generally speaking, the ATO strategy is characterized by flexibility and responsiveness, and it
is useful for manufacturing companies to secure market share, improve profits and enjoy a

competitive advantage.

In this work, we consider an ATO system that produces n components with a single
assembled product. Demand from both the product and the components can be satisfied or
rejected/backordered. Components are produced one unit at a time on separate production
facilities and held in stock incurring a holding cost. We assume exponentially distributed
production times, and demand arrives in the system following independent Poisson processes.
In our model, since the final assembly time is considerably short, we neglect it. This
assumption is reasonable and applied in most ATO systems (see Song and Zipkin, 2003). Due
to the possibility of components stock-out, some orders may not be satisfied immediately. The
unsatisfied order may be lost or backordered resulting in a penalty cost. In this study we
consider two cases: the pure lost sales and the mixed lost sales and backorders. In the pure
lost sales case, an order rejected incurs a lost sale cost. Demand from the assemble product
has a higher penalty over the demand from the individual components. Due to limited
capacity, it may be desirable to reject a demand from a component even when there is on-
hand inventory of components to satisfy future product demand. In the mixed lost sales and
backorders case, a component order rejected incurs a lost sale cost and a product order
backordered incurs a backorder cost. In this case, the product demand has no priority over the
component demand, thus it may be backordered even when there is stock for all the
components to satisfy future component demand. For these two cases, a system manager
needs to decide which components to produce, and whether to satisfy an incoming component
demand or reject it to reserve stock for future product demand, or whether to satisfy an
incoming product demand or backorder it to reserve stock for future component demand. The

objective is to minimize the expected total operating costs of the system.
1.2 Optimal Control of ATO Systems

ATO systems can be regarded as a multiple resource allocation that induces load distribution,
production planning, requirements fulfilling and inventory assignment. The key challenge in
the management of ATO systems resides in the difficulty to coordinate components
procurement or production as components procurement or production leadtimes are usually
stochastic. This is further compounded by the uncertainty of the demand of the assembled
product as well as the individual components, if they are sold separately as spares. Another

13



General Introduction

challenge for ATO systems is to efficiently manage component inventories and make optimal
production and allocation decisions. Because of the complexity of such a system, it would
tend to be difficult to control and would be uneconomical to operate. In addition, in many
business scenarios where manufacturing companies face limited capacity and shortage
situations that usually cannot be avoided, it is necessary to adopt a feasible strategy to solve
these problems (Ak@y, 2002). In this situation, the issue of inventory rationing arises.
Because of a limited capacity, it may not be sufficient to produce the total quantity of the
order. The manager needs to efficiently manage component inventories and allocation. The
problem is how to determine inventory replenishment levels with uncertain demand and how

to allocate the components for received demands.

In practice, determining optimal component inventory levels is difficult, especially in a multi-
product ATO system. The inventory level of a component at any point in time will depend on
the previous allocation decisions. Such decisions depend on the production and consumption
of all other components and the demand realizations of all end products. Thus, the problem of
determining optimal inventory levels and an allocation policy can be formulated as a dynamic
programming with the goal of minimizing the expected long-run system cost. Optimal control
is needed to deal with the problem of finding a control policy for a given optimality criterion.
For characterizing the structure of optimal policies in the infinite horizon, please refer to the
studies by Porteus (1975, 1982), Stidham and Weber (1989).

The main objective of this work is to control an ATO system with demand from both the
individual components and the assembled product. In an assembly system, since satisfying a
customer order requires multiple available components, the storage of one component delays
the fulfillment of the order for product. The optimal control of ATO systems should be
correlated across components: the optimal component replenishment policy is applied to the
production and the optimal component allocation policy is applied to the inventory. Also,
because a customer order requires multiple units of several components, the optimal
component allocation policy results in severe computational complexity, especially in the case
of multiple demand classes. As mentioned in Ha (1997¢), “... as the number of customer
classes increases the optimal policy will be difficult to compute because of the curse of
dimensionality and will be even more difficult to implement.” This implies that as the state
space increases in size, the structure of the policy becomes more complex. Because many
dimensions must be taken into account when making allocation decision: the inventory level,

the number of backorders as well as the production process. For this reason, characterization
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General Introduction

of optimal control policies for ATO systems has been regarded as a challenging problem.
Various authors have studied this problem including De Vé&icourt et al. (2000, 2002),
Benjaafar and ElHafsi (2006, 2010), Gayon et al. (2009). They showed that the optimal
allocation policy is a multi-level rationing policy. In this work, we adopt a similar approach as

these authors to analyze the optimal policy for a more general ATO system.
1.3 General Approach

In this work we study an ATO system. In order to determine a control policy, we formulate

the problem an MDP. Then we specify the principle and algorithm in the following.
1.3.1 Markov Decision Process

The models we will study in the next few chapters use the MDP framework. Since demand
inter-arrival times and production times are uncertain, randomness is one of the key factors
that our models must take into account (see Zipkin 2000, section 7.3). Markov Decision
Processes, which are also called stochastic dynamic programs or stochastic control problems,
provide a mathematical framework for sequential decision making when outcomes are

uncertain.

In a dynamical system the state can change over time. At each decision epoch, a decision

maker can choose an action that may influence the future state of the system. Markov decision

processes are completely determined by a five-tuple (S,{de},rv P, ft), which is defined

as follows:
1. S: the set of possible system states.

2. A : the set of available actions to the decision maker when the system is in a starting
state X.

3. s the cost per unit time. The real-valued function 7, (x, a) forae A denotes the value
at time ¢ of the cost incurred in period z.

4. p;: the transition probability per unit time. The transition probability function p, (-|x,a)
for ae A denotes the system state at the next decision epoch and is determined by

p,(-]x,a), when action a is chosen in state x, at time 7.

o

f.(-|x,a): the probability density function of time between two changes in states of

15



General Introduction

the system when action a is chosen in state x, at time 7.

At each instant, the transition probability and the cost function depend on the past only
through the current state of the system and an action can be selected in that state. This
property is called “Markovian”, which has been widely used in inventory control problems.
This is because in this setting a Markovian policy is optimal and properties of the optimal
policy are simple to carry out and do not vary with time (Puterman 1994, Chapter 1). In order
to choose actions, we must follow some policy. We define a policy to be any decision rule for
choosing actions. In other words, a policy 7 is a sequence of decision rules. Thus, the action
chosen by a policy may, for instance, depend on the history of the process up to that state
point, or it may be randomized in the sense that it chooses action a with some probability

p,,ac A. When the policy depends only on the current state of the system, it is called

Markovian policy. In this case, the control function under a policy 7 can be defined as A" in

state S and action a. That is, A™(x) is the action selected in X when a policy 7 is employed.

Typically, under a policy 7 and in state x at time t the decision maker can choose an action a.

The cost generated depends on the state of the system at the next decision epoch. At time t for
a given probability density function f,(-|x,a), the system remains in state x and generates a
cost rt(x, a) per unit of time. When time is divided into periods, a decision epoch is
associated with the starting period. Thus, for a time interval 7, at time t+7, the system
changes to a new state X', which is determined by the distribution p,(-|x,a). The total cost
generated over this period is equal tor, (X', a) :j:”rs(x, a)ds, then a new action is chosen in

state x' and the phenomenon is repeated. Because the action is chosen in the present state
incurs a cost that forces the system to move to a new state. Clearly, a new state is determined
by the previous action choice. When the distribution f; is deterministic, the periods z between
two changes of state are constant and equal, corresponding to the representation of periodic
time. The decisions in this case are taken at time t=0,1,2,..., and the specification of the total

cost r.(x,a) over a period is sufficient.

The objective is to determine the optimal policy z* that minimizes the discounted cost,

V' (x) = minE; [ j:e’“tr(X(t))dt}, (L1)
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where, X is the random process denoting the current state of the system and « is the discount
factor (0<a <1). Since r(X(t)) is the cost generated at time t, it follows that v* (x) represents

the expected total discounted cost generated when policy 7 is applied with the initial state x.

When decisions are made frequently or the discount factor is not assumed (« =0) the average

cost case can be considered,

E7| [ r(x@)dt
g™ (x) =minsup Uor } (1.2)

T T T

where, g~ (x) represents the expected average cost per period for any policy 7. The objective

is to determine the optimal policy z* that minimizes the average cost. The average cost
criterion is simple to implement, because the results of which are independent of the starting

state and the discount factor.
In this work, we use these two criteria in our analysis.
1.3.2 The Value Iteration Algorithm

In this sub-section, we consider the computational aspect of MDP. One of the commonly used

algorithms in MDP is the value iteration. It is widely used to obtain the optimal policy.

Consider a Markov decision problem (S,A,r,p,, f,), which satisfies the assumptions in

sectionl1.3.1. The objective is to find the optimal policy that minimizes the discounted cost in

equation (1.1).

Consider a set F of positive real-valued functions defined on S. Under the previous
hypotheses, there exists an operator T that reflects the dynamic of the system and equation

(1.1) can be written as:
Vo1 (X) =Tv, (), (1.3)

where, v, (x) is the n-stage cost function that converges to v*(x), with v, (x) e F. The infinite-

horizon optimal cost function satisfies,

Vi (X)=Tv" (). (1.4)
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The existence of a Markov policy that achieves the minimum of the discounted cost in (1.1)
and the convergence of the n-stage policy and cost function to the infinite-horizon optimal
policy and cost follow from the fact that only finitely many controls are considered at each

state.

An average cost criterion can also be considered. In this case the average cost per stage, g,
and the relative cost in state X, v(x) satisfies,

V(X)+g=Tv(x). (1.5)

Several conditions have to be satisfied for the existence and convergence results for (1.6) by
letting « — 0 in (1.4) (see Cavazos-Cadena, 1992; Weber and Stidham, 1987):

1. there exists a stationary policy = which achieves a finite average cost g”.

2. the number of states in which the holding cost h(x)<g~" is finite.

The value iteration algorithm is the most widely used and best understood algorithm for
solving Markov decision problems. It is an easy method to determine the optimal policy. In
this work we use the value iteration algorithm, for more details readers can review Puterman
(1994, Chapter 8).

1.4 Application of Markov Decision Process in ATO systems

The MDP framework has been used in a wide range of optimization problems. A general
application of MDP described in Feinberg and Shwartz (2002, Part I1I). In this work, we
consider an ATO system with limited production capacity, which produces multiple
components and assembles them to a signal product. The product is assembled from
components only when a customer order is received, and the inventory is kept at the
component level. Faced with demands for both, the product and the components, the system

manager must determine the optimal policy to minimize the total cost.

In this section, we only present the general characteristics of Markov decision problems. The

detailed specification of the models that we study is given in the corresponding chapters.

The state of system
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For this work, we assume a discrete-state setting, and use continuous time by converting to an
equivalent discrete time. That is, our ATO system produces n types of components with a

single assembled product. The product and the components can meet n+1 demands. For the

pure lost sales case, the state S is a subset of Z*' (Z* is the set of nonnegative integers). In
this case, we define the current state of the system at time t by the vector X(©)=(X\(?),..., X,(?)),

where X,(¢), k=1,...n, is a nonnegative integer denoting the on-hand inventory for Component

k at time t. For the mixed lost sales and backorders case, the state S is a subset of Z*" .The
current state of the system at time t can be defined by the pair (X(2),Y(7)), where Y(¢) is a

nonnegative integer denoting the backorder level of the assembled product.
The decisions

For each of the models that we study, the decision maker has to decide which type of
components should be produced, and whether to satisfy an incoming component demand or

keep stock for future product demand. For instance, in the pure lost sales case: under a policy
z for a starting state x=(x,...X,), the decision maker takes actions

EERTRA™

n

a”(x)=(u,,...,.u,,Wy,...,w, ), where u, =1 means produce Component k (k=1,...,n), u, =0
means do not produce Component k, w, =1 means satisfy demand from Component k, and
w, =0 means reject demand from Component k, w, =1 means satisfy demand from the
assembled product, and w, =0 means reject demand from the assembled product. In the
mixed lost sales and backorders case: under a policy 7 for a starting state (X,y)=(X,....X,,Y),
the decision maker takes actions a' (x,y)=(uj,...,u;, W, ..., W, ), where u, =1 means produce
Component k to stock, u, =2 means produce Component k to reduce the backorder level of
the assembled product, and u, =0 means do not produce Component k, W, =1 means satisfy

demand from Component k, and w, =1 means reject demand from Component k, w, =1

means satisfy demand from the assembled product, and w, =0 means backorder demand

from the assembled product.
The cost structure

The related costs of our system are incurred from two sources: the cost of holding inventory

and the cost of backordering. We assume the costs are linear, such as r,(x)=r(x)=>,_h (x.)

19



General Introduction

and r(xy)=r(xy)=> h (x)+b(y) where both h () and by() are increasing convex
functions, h (-) denotes the holding cost of Component k per unit per unit time, b,(-) denotes

the backorder cost of the assembled product per unit per unit time.
The transition probabilities of the state

Since production times and demand inter-arrival times are stochastic, we focus on these two
uncertain sources: production times are exponentially distributed with mean 1/, , demands
take place continuously over time according to independent Poisson processes with rate 4,

(for Component k) and 4, (for the assembled product), respectively.

When the transition times are identically one, it is a Markov decision process, and in general
case, it is called a semi-Markov decision process (see Ross 1969, Chapter 7). In the optimal
control of exponential queuing systems, we use a semi-Markov decision process. That
because a sequential decision process for which the times between transitions are random. In

this work, we consider the following two cases:

Pure lost sales case

As mentioned above, in the pure lost sales case the current state of the system at time t can be
described by the vector X(t)=(X,(t),...,X,(t)). Under a policy = and a starting state
X=(X,...,X,), the decision maker takes the action a. Let e=(11,...,1), be an n-dimensional

vector of ones and ek the kth unit vector of dimension n. In the state x, if the decision maker
chooses the action to produce one unit of Component k, the state will transfer to the state x+e,

with the transition rate z, . If she takes the action to satisfy one unit order from the product, the
state will transfer to the state x-e with the transition rate 4, , or decides to satisfy one unit order

from Component k, the state will transfer to the state x-e, with the arrival rate 4, .

Mixed lost sales and backorders case:

In the backorders case, the current state of the system at time t can be described as the pair
(X().Y () , where X(t)=(X,()....X,(t)) . Under a policy = and a starting state
(% Y)=(%.-.. X, ¥), the decision maker takes the action a. When backorders are allowed, the

case is more complex than the pure lost sales. Because besides considering the on-hand
inventory x, the backorder level y from the assembled product must be considered. In this

case, in the initial state (x, y) if the decision maker chooses the action with transition rate 4, ,

20



General Introduction

which would incur two different results: produce one unit Component k to stock, the state will

transfer to the state (x+e,y); or produce one unit Component k to reduce one unit backorder

from the assembled product, the state will transfer to the state (X—Zilkeiy—l)- If the decision

maker takes the action with transition rate 4,, which would lead to satisfy one unit order of

the assembled product, the state will transfer to the state (x-e,y); or to backorder one unit
demand of the assembled product, the state will transfer to the state (x, y+1). Similarly, with

the rate 2, , a transition occurs after time t, the next state may be (x-e,, y). Clearly, the

distribution of time between two instants of decision depends only on the action specified by
the control policy applied by the decision maker. Following Lippman (1975), we uniformize

the transition rate by defining the uniform rate g=3%"" 4 + > 1 . However, the next state of

the system depends on the transition probability. We will discuss them for two cases, pure lost

sales and mixed lost sales and backorders:
Pure lost sales case:

In state X, an action a is selected. If the next state is x', the system state at the next decision
epoch is determined by the transition probability p(x'|x,a), which can be generated as

follows:

’ 7 :

p(x |X’a):?k|{uk=1}’ X'=X+e,,

p(xf|x,a):ﬁ| n ere
ﬁ {szlxk >0, and wq :1}

p(X'|X’a)=%|(xk>0, andw =1}’ X,:X—ek,

Mixed lost sales and backorders case:

If an action a is selected in state (X,y), the next state is (x,y)’, the system state at the next

decision epoch is determined by the transition probability p((x, y)' [(x, y),a) , Which can be

generated as follows:

pl(x Y xv) )= 21 (5) =(c+e,.y).
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p[(xyY[(ev).a]

I{Hin:kxi >0, y>0, and u;(:z} ! (X' y) = (X — Z:Lk Y _1)’

(xy) =(x-e,y),

JEMICHE

{H:lek >0, and w) :1} !

xS S w|R

{x>0, and wy =1} (X' y)' :(X_ek’y)v

p((x, y) |(% y),a)

where 1, is the indicator function (1, =1 if d is true, and 1, =0, otherwise).

The optimal policy

Because the system is memoryless, a Markov policy is optimal. In this study, we formulate
the problem as continuous-time MDP. That is, the decisions can be made at any time.
Applications in inventory control are modeled by allowing action choice at random times in
infinite horizon. The core problem of MDP is to find a policy = in the state S that minimizes
the expected discounted (average) cost. For all possible states S, we will find the optimal cost

function v* and use it to determine the optimal policies z".
1.5 Problem Setting

In this work, we study an ATO system where we consider demands for both the individual
components and assembled product. That is, the product is assembled from multiple
components and the components stocked in advance of demand. These products will be used
to satisfy the potential orders that arrive later. Components are produced one unit at a time on
separate production facilities and held in stock, which incur a holding cost. In addition, both
production times and customer inter-arrival times are stochastic. Due to the possibility of
shortages, if an order is not satisfied immediately it incurs a lost sale cost or a backorder cost
that depends on whether or not the customer is willing to wait for his order. Therefore, the
task of the decision maker is to decide whether to satisfy an incoming demand or reject
(backorder) it, reserving stock for the future demand from a more valuable type. At the same
time, the decision maker also decides which component is needed to produce, if needed,
whether to produce it to stock or to produce it to reduce the backorders from a particular
demand. The objective is to minimize operating costs while maintaining order fulfillment. In
general, this kind of problem can be regarded as a dynamic problem and a decision support

tool is needed. In our work, we study the ATO system from an operations’ perspective. We
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use a Markov decision process framework to determine an optimal policy under both the total
expected discounted cost and the average cost per period criteria. We characterize the
structure of an optimal policy. We carry out numerical experiments to analyze the structure of
the optimal policies. We also offer some managerial insights to control the assembly systems.
Furthermore, we show that the optimal production policy is a state-dependent base-stock
policy, and the optimal inventory allocation policy is a state-dependent rationing policy. More
importantly, we show that the optimal policies are highly sensitive to various system
parameters such as the holding and the lost sale/ backorder costs, the demand and production

rates.
1.6 Plan of the Thesis

The rest of this thesis is organized as follows:
Chapter 2 provides a brief review of the related literature to this work.

Chapter 3 aims at characterizing the optimal policy of the ATO system with lost sales. We
determine the structure of the optimal policy and investigate the impact of different

parameters on the optimal policy.

Chapter 4 aims at characterizing the optimal policy of the ATO system with lost sales and
backorders. We characterize the optimal production policy and the optimal allocation policy
for the components.

In Chapter 5, we develop several heuristic policies for the pure lost sales case and the mixed
lost sales and backorders case. For each case, we compare the performance of the heuristics

with the optimal policies, and then we find some more efficient heuristics.

Finally, the general conclusion sums up the main results obtained and the perspectives

describes some future researches of this work.
1.7 Conclusion

ATO systems are successful strategies that have become increasingly popular in
manufacturing. This work studies an ATO system that produces multiple components with a
single assembled product. Such a system deals with both product and components demands.
In this chapter, we introduced an overview of ATO systems, the basic principles of the

general MDP approach, and the value iteration algorithm that is used to compute the optimal
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policy. We also presented the application of MDP in ATO systems, based on which we

formulate our problem.
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Chapter 2. Literature Review

This chapter provides a brief review of the literature related to ATO systems. As mentioned in
Chapter 1, the optimal control of ATO systems consist of two decisions: component
replenishment and component allocation. These decision problems can be formulated as a
single-product or multi- product models, and a single- period or multi-period models. For a
comprehensive literature review, we can refer to one classical paper by Song and Zipkin
(2003). It covers modeling issues and analytical methods, and a general formulation of ATO
systems. From this overview, the literature review on ATO can be classified into the following

four categories, which we will discuss in details.
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2.1 Make-to-Stock Systems under MDP

Make-to-stock (MTS) systems are manufacturing strategies to manage inventory. In MTS
system, products are stocked in advance according to a forecast of customer demand. Because
the manager faces a joint production-control and inventory allocation problem, MTS systems
can also be called production-inventory systems. A challenging problem in such systems is
the dynamic allocation of inventory to different demand classes. This gives rise to an

inventory rationing problem which has been widely studied in the literature.

The earlier work on inventory management and production scheduling dates back to Zheng
and Zipkin (1990), who studied the optimal control of allocation problem. A simple
Markovian behavior is assumed, the problem can be modeled as rationing a fixed production
capacity to multiple identical products. More importantly, the authors proposed longest-queue
policy and argued that it is always optimal to serve the longest queue under independent base

stock policies.

Ha (1997, 2000) pointed out that for a two-dimension state space MTS production system, the
optimal production policy is the dynamic “hedging point” policy, and the optimal allocation
policy is a “state-dependent rationing” policy. Ha (1997a) is the first to consider rationing in
the context of an MTS system. He modeled the system as a single server, single product,
M/M/1 make-to-stock queue with multiple demand classes and lost sales. The optimal policy
is characterized by a sequence of monotone threshold levels. Under this threshold rationing
policy, each class has a rationing threshold below which the demand from that class cannot be
satisfied. The system reserves inventory for the orders from the high- priority classes. Ha
(1997b) studied hedging point policy with dynamic scheduling problem. By considering
single server, two products, make-to-stock queue with backorders, he showed that the optimal
rationing policy is of the “switching curve” type. Furthermore, two production switching
cures have been obtained: one curve determines when and which product can be produced,
and the other curve determines in which region the production can be stopped. In a similar
MTS system, Ha (1997c) considered the backorders case but with single product and two
priority demand classes. He characterized the optimal production and inventory rationing
policies by a single monotone witching curve. He showed that the optimal production policy
is of base-stock type and the optimal rationing policy is determined by rationing level, which
is decreasing in the number of the low-priority class backorders. In a later article, Ha (2000)

extended the results of his work (1997c) to Erlang distributed production times in lost sales
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case. Using work storage as a state variable, he indicated that the optimal production policy
can be characterized by a critical work storage level. Gayon et al. (2009) analyzed a similar
system as Ha (2000) for an M/Ex/1 make-to-stock queue with multiple classes and they
provided a formulation in the case of backorders and examined the effects of optimal policies
under different operating conditions: with and without salvage market value. They showed
that the optimal allocation policy with a salvage market is work-storage rationing policy that
is characterized by n work-storage rationing thresholds corresponding to n demand classes.
Without a salvage market value, they showed that the modified work-storage rationing policy

is optimal and is determined by the base-stock level.

De Véicourt et al. (2000, 2002) also considered “hedging point” policies and developed
further characterization of the optimal switching curve for the backorders case. The
backorders case is more difficult to analyze than the lost-sales case when there are multiple
demand classes. One of the major reasons is that backorders of the different demand classes
increase dimensionality of the system. Therefore, the analysis is more complex. De Vé&icourt
et al. (2000) showed that in a two-part types production system, it is optimal to produce the
expensive item if it has the higher backorder cost. De Vé&icourt et al. (2002) studied a
capacitated supply system with multiple demand classes. By decomposing the problem into n-
dimensional control problems and (n-1)-dimensional sub-problem, the optimal policy can be
characterized simply by fixed threshold values. In the same vein, De Vé&icourt et al. (2001)
evaluated the benefits of different optimal rationing policies: first come first service (FCFS),
strict priority policy (SP) and the multilevel rationing policy (ML), and showed that the ML
policy performs better than the other two policies. Gayon et al. (2009) characterized the
optimal policy for a production-inventory system with multiple customer classes and
imperfect advance demand information (ADI). They showed that in lost sales setting the
suppliers benefit more from ADI than customers.

Unlike the pure backorder system or pure lost sales system, Benjaafar et al. (2010a) addressed
a more general model, taking into account both features lost sales and backorders. Moreover,
this paper initiated a study of the structure of the optimal policy in MTS system with both
backorders and lost sales. In their case, the backorder and lost sale costs are similarly ordered.
Under this assumption, for each class the optimal production/allocation policy can be
characterized as a threshold policy. Benjaafar et al. (2010b) studied a production-inventory
system with customer impatience. The unsatisfied customer is either lost or backordered. The

impatient customers are willing to wait for delivery until the next replenishment which
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depends on the exponentially distributed patience times. That means the customers will wait
for an amount of time for fulfilling orders; otherwise, they cancel their orders. In particular,
this paper showed that optimal policy base-stock level is non-increasing in the upper bound
on the number of backorders, while the optimal policy rationing level is non-decreasing in
that. In the same vein, Benjaafar and Elhafsi (2012) studied a two-customer class system:
patient and impatient customers. The unsatisfied orders from the patient class can be
backordered while the unsatisfied orders from the impatient class can be rejected. The optimal
policy can be described by two threshold functions where inventory allocation is not static,

which depends on the backorder level of the patient customer class.

There are several studies in the literature that consider production-inventory systems with
transshipment/inventory sharing. Benjaafar et al. (2004) discussed the problem of inventory
rationing in a system with multiple products and multiple production facilities. Zhao et al.
(2005) considered a two-location inventory-sharing system. They used a (S,K) policy, namely
base-stock and rationing policy in a decentralized setting. Zhao et al. (2008) also considered a
two-location system, while the transshipments can happen in both demand arrivals and
production completions. They proved that for each location the optimal production policy is a

hedging point policy and the optimal demand filling policy is a state-dependent policy.

There is also a stream of literature that considers the stock rationing problem with batch
demand. Huang and Iravani (2008) provided a non-unitary demand system and focused on the
problem of rationing quantity. They showed that the order size can affect the benefit of the
optimal stock rationing policy. Xu et al. (2010) extended the model of Huang and Iravani
(2008) to the multiple-class, batch demand system, where the batch demand can be partially
accepted. They showed that the optimal policy is characterized by multiple rationing levels.
ElHafsi et al. (2010) studied an integrated production inventory system with multiple non-
unitary demand classes. It is assumed that both production times and order inter-arrival times
follow the Erlang distributions. They showed that the demand size variability can significantly

affect the operating cost of the system.
2.2 ATO Systems under Continuous Review

In contrast to MTS systems, which keep inventory at the end-product level, ATO systems
keep inventory at the component level. When the customer order is received, the components

can be assembled immediately and delivered to the customer. To our knowledge, most papers
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address continuous review models and develop heuristic policies to evaluate or optimize the
decisions. In this stream, Song (1998) studied the performance measures for a base-stock
system with Poisson demand and constant replenishment leadtimes. She showed that in a
multi-item inventory model the order fill rate can be obtained by a series convolution of the
batch size distribution and Poisson distribution. Xu (1999; 2001, Chapter 11) studied the
effect of arrival correlation on the performance of the ATO system, and discussed how the
system responds to different arrival correlations. Gallien and Wein (2001) considered ATO
systems with a single-item MTS environment. But in their model, the setting is based on a
Poisson demand and an arbitrary distributed processing times. Associated with non-identically
stochastic lead times and infinite capacity, the authors developed a simple and effective
control policy for an ATO system. That is the structure of the optimal policy is entirely
determined by the longest procurement delay and its differences with the other procurement
delays. Similar system studied by Song and Yao (2002), who proposed upper and lower
bounds for the backorders in a single product case. They showed that it is optimal to keep
higher base-stock levels for components with longer mean lead times (and lower unit costs).
Lu and Song (2005) formulated an unconstrained cost-minimization model in multiple-
product assembly system with order-based backorder costs. They developed an algorithm to
approximate the optimal base-stock level. Under the assumption that demands follow a batch
Poisson process, Lu et al. (2005) focused on the expected backorder for each product. They
solved the optimization problem by minimizing a weighted average of backorders over all
products. Later, Lu (2006) extended the model (Lu et al., 2005) to multi-product, multi-
component ATO system with general random batch demands. He focused on the average
backorder of the system, based on which he developed a new methodology for performance
analysis of the system. Zhao (2009) also considered a multi-product and multi-component
ATO system with batch ordering. He analyzed and evaluated the impact of the split
orders/non-split orders on system performance. Hoen et al. (2011) studied a multiple end-
products system with lost sales and deterministic leadtimes. They devised an approximate

method for estimating the order fill rates.

Another line of research on ATO systems is base-stock policies with fixed base-stock levels.
Song et al. (1999) studied the impact of limited capacity on ATO systems and evaluated
performance of base stock policies with stochastic leadtimes. They showed that exact
performance measures are a result of multidimensional Markov chains. Glasserman and Wang

(1998) considered a system consisting of multiple types of demand, which take place
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according to batch Poisson processes. The inventory of each component is controlled by a
base-stock policy, and the replenishment leadtimes are i.i.d. (independent and identically
distributed) random variables. They focused on a target fill rate and studied the trade-off
between inventory levels and delivery leadtimes. Dayanik et al. (2003) considered an ATO
system consisting of multiple components and multiple products. They developed lower
bounds to estimate the order fill rates for the system. Plambeck and Ward (2007) introduced a
separation principle for a class of ATO systems with expediting. They demonstrated that the
multidimensional assembly control problem can be separated into a series of single-item
inventory control problems. Ko et al. (2011) studied a single product, multiple-component
production system under a base-stock policy. They provided explicit approximations of the
lead times distributions, from which the base-stock levels can be calculated.

For a more general multi-product ATO system: non-identical production system, where the
products differ in characteristics. Lu et al. (2010) focused on the W-, N-, M-system and
assumed identical component leadtmes. They used a stochastic program to obtain optimal
inventory strategy. Dogru et al. (2010) discussed W-system with identical component lead
times and proposed a simple priority allocation policy. Under this environment, Lu et.al.
(2012) studied an ATO N-system with non-identical leadtimes. This is the special case of W-
system. Under the symmetric structure, the optimal component allocation decision is a no-
holdback (NHB) rule and the optimal production decision is a coordinated base-stock (CBS)
rule; under the asymmetric structure, the optimal policies depend on the effect of cost
asymmetry. Reiman and Wang (2012) considered the model of Dogru et al. (2010), while
with non-identical lead times. They developed a multi-stage stochastic program and
established a lower bound on the inventory cost of the system, based on which they also

discussed the replenishment policy and the allocation policy.
2.3 ATO Systems under Periodic Review

For periodic review models, faced with multi-customer classes and integer-valued correlated
random variable in each period, a static threshold production/allocation policy has been
considered. In general, as mentioned in Chiang (2003) “...earlier periodic review models,
however, have focused on the situation which supply lead times are a multiple of a review
period. Such models could be regarded as an approximation of continuous review models, as
the review periods can be modeled as small”. The earlier literature about this related problem

is studied by Cohen et al.(1988) who investigated two demand classes (the emergency
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demand and the normal demand) inventory system in a (s,S) policy with lost sales. Assuming
the emergency demand has higher priority than the normal demand, the former can be
satisfied first. In this setting, a strict priority rule is used for the allocation policy. Furthermore,
authors developed and evaluated an efficient and effective solution heuristic for solving the
service-constrained optimization problem. Later, Rosling (1989) considered an infinite
horizon model with random demands multi-echelon inventory system. Under an assumption
of zero setup cost, he showed that a balanced base-stock policy is optimal for multistage
assembly systems. Chen (2000) extended this equivalence between assembly and serial
systems to the batch-ordering case. He showed that the batch ordering policy is an optimal
policy for multi-echelon systems. Cheng et al. (2000) considered a configure-to-order (CTO)
system. Such a system takes the ATO concept one step further, and then the customers can
select the personalized set of components that assembled to the end product. They used a
lower bound on the order fill rate of each product to investigate the optimal inventory-service
tradeoff. Karaarslan et al. (2013) considered a single item, two-component system with
backorders under two different policies: a pure base-stock policy and a balanced base-stock
policy. They showed that the balanced base-stock policy works better under low service levels,
low holding cost ratio, and high demand uncertainty. Otherwise, the pure base-stock policy

performs well.

Turning to the study of single-period ATO systems, Fu et al. (2006) analyzed the policy of
pre-stocking components and a single product ATO system with uncertain demand and
limited assembly capacity. They examined the effect of varying component leadtimes on the
available assembly capacity. Xiao et al. (2010a) also considered the similar system as Fu et al.
(2006), but focused on an ATO system with both uncertain demand and uncertain assembly
capacity. By considering assembly-in-advance operations, the authors adopted a profit-
maximization model and investigated the optimal production and inventory decisions. Xiao et
al. (2010b) extended their study to a two-product production system with two types of
uncertain demand. They studied the impact of the uncertain demand patterns on the optimal

stocking and allocating decisions.

We found also several review articles on different inventory allocation policies. See, for
example: Zhang (1997) considered an assembly system with multiple productions and
dependent demands. He proposed a fixed-priority policy with stock commitment for
allocating component stocks. Hausman et al. (1998) studied joint demand fulfillment

probability in a multi-item inventory system under FCFS policy. Agrawal and Cohen (2001)
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studied assembly type production systems with demand uncertainty under a fair-share policy.
Several results are used to determine the optimal base-stock policy. Ak@y and Xu (2004)
considered a multi-component and multi-product ATO system under the independent order-
based policy. Duran et al. (2007) focused on limited production capacity inventory system
with multi-period time horizon. They considered two customer classes differentiated by their
priority level, and showed that a (S, R, B) base-stock policy is optimal, where S is the order-
up-to quantity, R is the reserve-up-to amount, and B is the backlog-up-to amount. Feng et al.
(2010) worked on a multi-item inventory system under the (r,nQ) policy, where r is the
recorder point, nQ is the order size. They showed that the joint inventory positions of the

system are stationary, independent and uniformly distributed.
2.4 ATO Systems in Continuous Time

In this section we discuss ATO systems that are managed/operated in continuous time. In this
case, the problem is formulated using MDP. In this research branch, an initial view of the
optimal control of a system with multiple components on multiple production facilities, and
multiple demand classes is given by Benjaafar and EIHafsi (2006), who studied an ATO
system consisting of n products assembled from a subset of m distinct components. By
assuming that the manager is faced with multiple demand classes, they analyze the optimal
production and inventory allocation policies of such system. Unlike the fixed allocation policy,
the optimal allocation policies are dependent on the on-hand inventory of the other
components. The optimal inventory policy for one component can be described as a state-
dependent policy that depends on the on-hand inventory levels of all other components. In this
article, although the authors considered a special case of an ATO system, it still can be
viewed as a classic one. Because also under continuous review, compared with the other
literatures (mentioned in section 2.2) which focus on performance evaluation of heuristic

policies, this work determines the optimal production policy.

ElHafsi et al. (2008) also considered an n- product and m-component ATO system where the
products have a modular nested design. They showed that the optimal production policy is a
base-stock policy and the optimal inventory allocation policy is a multi-level rationing policy.
Finally, EIHafsi (2009) studied an ATO system subject to non-unitary multiple demand
classes. The author argued that comparing to the effect of order size variability, the optimal
average cost rate is more sensitive to the order size. More recently, Benjaafar et al. (2011)

discussed a multiple stages, multiple demand classes assembly system with batch production
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and batch demand. By considering different items can be produced in different batch sizes,
they characterized the optimal policy. In particular, the optimal production quantity for each
component and the optimal number of satisfied requirements for each demand class would

also be determined.

In this work, we study a continuous time ATO system, and share several common features in
the above literature of ATO system under continuous time. That is, the assumption of
exponential production time and Poisson process demand. The current work is most closely
related to that of Benjaafar and ElIHafsi (2006). Similar to their model, we study an ATO
system with a single product assembled from n components. However, in our system we
consider two types of demand: demand of the assembled product and demand of the
individual components, and discuss the demands with the pure lost sales (see Li, 2013a) and
the mixed lost sales and backorders (see Li, 2013b). Based on which, we study the optimal

control policy.
2.5 Conclusion

We provided a brief overview of the literature involved in this work, which can be classified
into four categories: make-to-stock systems under MDP, ATO systems under continuous
review, ATO systems under periodic review, and ATO systems in continuous time. Our work
is more related to the literature on ATO systems in continuous time. In this line of research,
we study the model that deals with two types of demand ATO system: the assembled product
demand and the individual components demand. To our knowledge, there is little literature in
this area. We hope that the research presented in this work also enriches the current literature

on ATO systems with individual components demand.
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Chapter 3. ATO System with Individual
Components Demand: Lost Sales for Components

and Assembled Product

We consider the demand during shortage period as completely lost. In this chapter, we
assume that if demand cannot be fulfilled immediately it is lost for both the assembled
product as well as the individual components. We propose a dynamic programming model
in order to determine the optimal control policy of such a system. The system deals with a
single product which is assembled from multiple components. The system faces demand not
only from the assembled product but also from the individual components. To determine the
optimal operating policy, we formulate the problem using an MDP methodology and using
two optimality criteria: discounted cost and average cost per period. Furthermore, we
determine the structure of the optimal policy and investigate the impact of different
parameters on the optimal policy. We are also interested in the effect of system parameters
on the optimal policy. We test the system with a wide range of system parameters and show
that the optimal base-stock and rationing levels are sensitive to system parameters

The outline of this chapter is as follows: we start with an introduction in section 3.1. In
section 3.2, we formulate the optimal control problem with lost sales and characterize its
optimal policy under the discounted cost case. Then we extend our model to the average cost
case. In section 3.3, we adopt the average cost criterion in numerical experiments, and use
the iteration algorithm to calculate the optimal policy. Based on numerical results, we

analyze the structure of the optimal policy. Finally, we conclude this chapter in section 3.4.
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3.1 Introduction

This chapter considers an ATO system with a single product assembled from n components.
Each component is produced ahead of demand one unit at a time on an independent
production facility. Unit held in inventory incurs a unit holding cost. Demand from both the
product and the components can be either satisfied or rejected. Demand for the assembled
product can be satisfied only if all components are in stock. We assume that demand for the
assembled product has a higher priority over demand for the individual components. In this
situation, a system manager may need to reject a demand from a component and save the
inventory for future assembled product demand. At the same time, a system manager needs to
decide when to produce a certain component and when not to produce it. We also assume
exponentially distributed production times, and demands arrive to the system according to
independent Poisson processes. We assume that the assembly time is instantaneous and there
are no setup costs and setup times for production. Our assumption of negligible assembly time

is supported by most of the literature on ATO systems.

A system manager must make two types of decisions: one regarding component production
and the other regarding inventory allocation. The objective is to determine the optimal control
policy that minimizes the expected operating costs of the system. In general, this kind of
problem can be regarded as a dynamic problem and a decision support tool is needed. In our
study, the problem can be formulated as an MDP resulting in Markovian policies. We show
that the optimal production policy is characterized by state-dependent base-stock levels. That
is, a component is produced when the on-hand inventory is below the base-stock level, and
not be produced otherwise. Moreover, the base-stock level is non-decreasing in the on-hand
inventory level of other components. We show that the optimal inventory allocation policy is
a rationing policy. An order from a component is satisfied only if its on-hand inventory level
is above a certain rationing level. The rationing level for each component is also non-
decreasing in the on-hand inventory levels of other components. This is an interesting
property since both the base-stock and the rationing levels are non-decreasing in the on-hand
inventory level of other components. This result is quite different from the ones in (Benjaafar
and ElHafsi 2006, EIHafsi et al. 2008). In our system we discuss two types of demand:
demand of the assembled product and demand of the individual components. Benjaafar and
ElHafsi 2006 studied a single product ATO system, ElHafsi et al. 2008 studied a nested-

multiple-product ATO system, where they consider one type of demand that can only be from
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the end product, and focus on different demand classes. However, in our system since demand
of the assembled product has a higher priority over demand of individual components, it is
always satisfied if all components are in stock. We also assume that demands of the individual
components are independent of each other. When the system jointly increases the on-hand
inventory of the components, more demands from the assembled product are desired to be
satisfied that means several individual components demands must be rejected. Hence, the
rationing level of the individual components increases. This implies that it becomes more
difficult to satisfy demand of the individual components when the on-hand inventory of
components increases. Using a two-component example, we show that the optimal base-stock
and rationing levels are sensitive to system parameters, such as holding cost, lost sales cost,
production rate and arrival rate. Based on the numerical results, we show the impact of these

parameters on the optimal policy and then present some properties in the general case.

3.2 The Optimal Control Problem

3.2.1 Model Formulation

We consider a system with a single product (for which we use the index 0) assembled from n

components. Production times are exponentially distributed with mean 1/, for Component
k=1,...,n. Demand for Component k and the assembled product takes place continuously over
time according to an independent Poisson process with rate 4, and 4,, respectively. Let c;
(i=1,...,n) be the lost sale cost for Component i demand. We assume that the lost sale cost for
the assembled product is such that ¢, >c, +...+c,. This condition states that the product
demand has priority over the component demand. We define the state of the system, at time t,
by the vector X(t)=(X,()...., X,(t)), where X, (t), k=1,...n, is a nonnegative integer denoting
the on-hand inventory for Component k at time t. The system produces components ahead of

demand. Let h(X(t))=Y,_h (X, (t)) be the holding cost, where hy(.) is increasing convex
Under a policy = for each state x=(x,,...,x,), the manager needs to decide which

components to produce, and how to allocate inventory between components and the
assembled product. Because the system is memoryless, these actions taken at a particular
decision epoch depend only on the current state of the system. Decisions can be described as
two types: production and inventory allocation, which are made simultaneously. In each state,

production decision concerns which components to be produced, and inventory allocation
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decision concerns which demand should be satisfied immediately or rejected to reserve
inventory for future demand of the assembled product.

3.2.2 The Case of Discounted Cost

We formulate the problem as an MDP. The expected discounted cost over an infinite planning

horizon obtained under a policy  with a starting state x =(x,,...,x,) can be defined as:

v* (x) = {Z [ e (X, @)t Y[ e g, (t)] 3.1)

where « > 0is the discount rate, No(t) is the number of units of the assembled product demand
that have not been satisfied and N;(t) is the number of units of Component i demand that have

not been satisfied up to time t. Our aim is to seek the optimal policy ~* that minimizes the

expected discounted cost for all x. Let v denote the optimal cost function (i.e.,v* =v™ ).

Following Lippman (1975), we define the uniform rate g=3" 4+, x4 and let «+ g =1.

The dynamic programming equation can be written as:
V' (X)=h(X)+ TV (x) + Zn:ﬂkav* (X) +Zn:,ukav* (X), (3.2)
k=1 k=1

where the operators T°, T*and T,, k=1,...,n are defined as follows:

. V(X)+¢, if lﬂlxk =0
To(x)= k=1 (3.3)
min{v(x—e),v(x)+c,}  otherwise,
Trloy 2] V)G it =0, 3.4
V()= min{v(x—e,),v(x)+c,| otherwise, (34

Tv(x)=min{v(x+e,),v(x)}. (3.5)

In our model, e is the kth unit vector of dimension n ande=3},e, =(11,..,1) is an n-

dimensional vector of ones. Operator T° corresponds to the inventory allocation decision for
demand of the assembled product, similarly, operator T* corresponds to the inventory
allocation decision for demand of Component k, operator T, corresponds the production

decisions for Component k.
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In Theorem 3.1, we characterize the structure of the optimal policy.

For the further proving we define the following operators

AV(X)=V(x+e)—Vv(x),
AV (X)=Av(x+e ) —Av(x),

A V(X)=Av(x+e)—Av(x),and A v(X)=A; v(X),
V(X)=v(x+e, +e, +..+e )—v(X),

i +ip e, i

ANV(X)=V(x+€)—V(X).

Definition 3.1. Let #Z be the set of functions on Z*', where Z* is the set of non-negative

integers, such that if ve#/, we have

Al A v(x)=0, foralli,
A2: A v(x)<o, forall i,j=12,..,n,j=i,

A3: A v(x)=0, forall i, j, j,,.... j, #i, and 1< p<n-1,

i+j1+j2+,...‘+jp.i

Ad: Av(x)=—c,, forall TT;_,x, >0.

Property Al shows that Aiv(x) is non-decreasing in each of the state variables, and it implies
that the function v(x) is convex in x;. Property A2 shows that Av(x) is non-increasing in
x; (j=i), and it implies that the function v(x) is submodular in the direction (x;X;). For the

definition of submodularity and supermodularity readers can refer to Topkis (1978). Property

A3 shows that Av(x) is non-decreasing with joint increases in x,x, ,...,and X, and it implies

that the function v(x) is supermodular in the direction (x, x +X, +..+x, ). Property A4

implies that it is always optimal to satisfy an order from the assembled product, if all the

components are available.

Lemma3.1. If ve#Z, then Tve?/, where Tv(x)=h(x)+ AT v(x) + Zn:ikav(x) +Zn:ykav(x) .

Proof of Lemma 3.1
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In order to prove Lemma 3.1, we need to show that if ve#’ then Tv must satisfy A1-A4. In

order to do so, we prove that if ve?’ thenTve?/, Tve#/ and T've# for all k. In other

words, we show that T°ve?’, Tve# and T've? satisfy A1-A4.

Operator T,
Tv(x)=min{v(x+e,),v(x)} =v(x)+min{A,v(x),0}

Property Al
From (3.6) we have the following two cases:

Case 1if i=k,
ATV(X) = A v(X) +min{Av(x+2e;),0f —2min {Av(x +¢;),0} +min{Av(x),0}

by Al we have
AV(x+2e;)=Av(x+e)=Av(x), which leads to four possible sub-cases:
1. AV(Xx+2e)=Av(X+e)=AV(X)=0= A Tv(X)=A; v(X)=0.
2. AV(Xx+2e)=AV(x+e)=0=AV(X)= A Tv(X)=A V(X)) +AV(X)=AV(X+e)=>0
3. Av(x+2e)=20=Av(x+e)=AV(X)=
ALTV(X) = A V(X)) —2Av(X+€ )+ Av(X) =—AVv(Xx+e ) =0.

4. 0= AV(x+2e)=AV(X+e)=AVv(X)=

A TV(X) = AV (X) +AV(X+ 28, ) —2AV(X+€ )+ AV(X) = A, V(X +e ) = 0.
Case 2 if i =k,
AT V(X) = A v(x)+min{A,v(x+2e,),0} —2min{A,v(x +¢;),0} + min{A,v(x),0},
by A2 we have
AV(x+2e,) <AV (x+e)<Av(x), leading to three possible sub-cases:

1. Av(x+2e)<AV(X+e)<AV(X)<0=
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A TV(X)= A v(X) + AV (X +28) - 2A, V(X +€; ) + AV (X)
=V(X+2e +e )—-2v(x+e +e )+Vv(x+ee)
=A; v(x+e,)=0.

2. AV(x+2e)<AV(X+6)<0<AV(X)=>

ATV (X) = AV (X) + A V(X + 26 ) —2A, V(X +€))
=AV(X+e)—AV(X)+AV(X+2e)-2A,V(X+e)
= AV (X+e)—AV(X)—2Av(X+e)

=AiV(X)—AV(x+e)=0.

3. AV(Xx+26)<0<AV(X+e)<AV(X)=

AT V(X)) = A v (X)+ AV (X + 2¢))
=AnV(X)—AV(X+e)+2Av(x+e;)

i+k,i

=ApV(X)+AV(x+e)=0.
4. 0<AV(x+2¢)<AV(X+8)SAV(X)= A TV(X)=A,;v(X)=0.
Hence, T,v satisfies Al.

Property A2
From (3.6) we have the following two cases:

Case 1if i=k, j=k (j=k,i=k),

Tv(x)=A, v(X)+ min{Aiv(xﬁLei +e, )O} - min{Aiv(ijej )0}
—min{Av(x+¢;),0}+min{Av(x),0}.
By A1-A3 we have:

Av(x+e;)SAV(X)<AV(x+e +e;)<Av(x+e) there are five possible sub-cases can be

considered:

1 Av(x+e)SAV(X)<AV(x+e +e; ) SAV(x+e)<0=>

A Tv(X) = A v(X)+ Av(x+e +e; ) - Av(x+e ) - Av(x+e; )+ Av(X)

Lo ) i

Ai,jv(x)+Aiij(x+ei)—Ai,jv(x) =Ai,jv(x+ei)s0.

2. Aiv(x+ej)SAiv(x)SAiv(x+ei +ej)£0§Aiv(x+ei):>
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ATV(X) =4 V(X)+AV(X+e +e; ) —Av(x+e; )+ Av(x)=Av(x+e +e;) <O,
3. Av(x+e;)SAV(X)SO<AV(x+e +e ) <AV(x+e )=
A TV(X)=A, v(X) - Av(x+e; )+ Av(x)=0
4. Av(x+e;)<O<AV(X)<AV(x+e +e;)<Av(x+e)=
A TV(X) = A, v(X) = Av(x+e, ) ==AV(X) <0,

ijli

5.0< Aiv(x +€; ) <AV(X)< Aiv(x+ei +€; ) <AV(x+e)=A Tv(x)=A, v(x)<0.

Case 2 if i =k, j#Kk,

A; Tv(X)=A; v(X)+min {Akv(x +e +e, )O} —min {Akv(x +e, )O}
—min{Av(x+e,),0f+min{A,v(x),0}

by A2 we have

AV(X)=AV(x+e;) ZAkv(x+ej)2 Akv(x+ei +€; ) or
Akv(x)zAkv(x+ej)zAkv(x+ei )= Akv(x+ei +e; )

If AV(X)2AV(x+e)=Av(x+e;)>AV(x+e +e;) , under this condition, we have the

following five cases:

1. AV(x)= AkV(X+ei)ZAKV(X+ej)ZAkV(X+ei +ej)2 0= A, Tv(x)=4, v(x)<0.
2. Akv(x)zAkv(x+ei)2Akv(x+ej)ZOZAkv(x+ei +ej):>

A TV(X) =4, V(%) + AV (x+e +e;)<0.
3. Akv(x)ZAkv(x+ei)202Akv(x+ej)zAkv(x+ei +ej):>

A TV(X)=A V(X)+AV(x+e +e)—Av(x+e))
= A V(X)+ A, v(x+e; ) <O0.

4, Akv(x)ZOZAkv(x+ei)ZAkv(x+ej)2Akv(x+ei +ej):>
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Ai'kav(x)=Ai,jv(x)+Akv(x+ei +ej)—Akv(x+ej)—Akv(x+ei)
=v(x+e +e +e;)-v(x+e, +e;)-v(x+e +e)+v(x)
=Av(x+e +€)-AV(x+e,)-AV(X)
=A, v(x+e,)—Av(x)<0.

OzAkv(x)ZAkv(x+ei)ZAkv(x+ej)zAkv(x+ei +ej):>

Ai'kav(x):Ai‘jv(x)+Akv(x+ei +ej)—Akv(x+ej)—Akv(x+ei)+Akv(x)
=A, v(x+e,)<0
If AV(X)=AV(x+e;)=Av(x+e)=Av(x+e +e;), under this condition, we also consider

the other case:

5. Akv(x)zAkv(x+ej)202Akv(x+ei)zAkv(x+ei +ej):>

Ai’kav(x) =Aiij(x)+Akv(x+ei +ej)—Akv(x+ei)
=A V(X)+A,;,v(x+e)<0.

Hence, T,v satisfies A2.

Property A3

In order to prove the operator Tyv(x) satisfies A3, we need to show thatA, T,v(x) =0 which

from the following observation (Ref.2. Observation 1):

Observationl. if ve#’ and A,v(x)>0 then A, . v(x)>0 for all j,j,..j, =i, and

1<p<n-1
Proof: Using property A2, we have

v(x)= Aiv(x+ e+e +e; +..+e; )— ANV(X) = AV(X+e)—AV(X).

i+t ipi

Then if A, v(x)=Av(x+e)-Av(x)>0,we also have A, ;. .; v(x)=0.

In order to show that A,

i+ j ot pi

v(x)>=0, we use Observation 1 and show that A, v(x)=0,
directly.
From (3.6) we have the following two cases:

Case 1 if i=k,
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Ay Tv(x)=A, v(X)+min{Av(x+e +e),0} —min{Av(x+e),0}

—min{Av(x+g;),0}+min{Av(x),0}.
By A2 and A3 we have
AV(x+e +e)=Av(x+e)=Av(x+e)=>Av(x) or
AV(Xx+e +e)=AVv(X+e)=AV(Xx+e)=AV(X).

If Av(x+e +e)=Av(x+e)=Av(x+e)>Av(x), there are five possible sub-cases:
1 AV(X+e +e)=AV(X+e )= Av(X+e)=AV(X)=0= A, Tv(X)=A,,v(x)=0.
2. AV(x+e +e)=Av(x+e)=Av(x+e)=0=Av(X)=

A TV(X)=A, V(X)) +AV(X)=Av(x+e)=0.
3. Av(x+e +e)=Av(x+e)=0=Av(Xx+e)=Av(X)=

A TV(X)= A, v(X)—AV(X+e)+AVv(Xx)=0.
4. Av(x+e +e)=0=Av(x+e)=Av(x+e)=Av(X)=

A TV(X)=A V(X)—AV(X+e)—Av(X+e )+ AV(X)=—AV(Xx+e )=0.

5. 0=AVv(x+e +e)=Av(x+e)=Av(Xx+e)=Av(X)=

A TV(X)=A, V(X)+AV(X+e +e)—AV(X+e)—AV(X+e)+AVv(X)
=A,V(X)+ A, V(X+e)—A, V(X)=A, V(X +e)=0.
If Av(x+e +e)=Av(x+e)=Av(x+e)=Av(x), under this condition, we also consider the
other case:
6. Av(x+e +e)=Av(x+e)=0=Av(x+e)=AV(X)=

A, TV(X)= A V(X)—Av(X+e )+ Av(X)
=AV(x+e)—Av(x+e)=0.

Case 2: if i #Kk,

A, TV(X)=A,v(X)+min{Av(x+e +e),0}—min{A,v(x+e),0}
—min{A,v(x+e,),0}+min{A,v(x),0}.

By A2 and A3 we have
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AV(x+e)=Av(x+e +e)=AV(X)=Av(x+e )or
AV(X+e)=AV(X)=AV(X+e +e)=AV(X+e;)

IfAv(x+e)>Av(x+e +e)=Av(x)=Av(x+e;), under this condition, we have the following

five cases:
1 AV(x+e)=AV(x+e +e)=AV(X)=AV(Xx+e)=0= A, Tv(x)=A,v(x)=0.
2. AV(x+e)=AyV(x+e +e)=AV(X)=0=AVv(X+e )= A, T V(X)=A, v(X)—AV(x+¢€)>0.
3. AV(x+e)=AV(x+e +e)=0=AV(X)=AV(X+e )=
AT V(X)=A V(X)) = AV(X+€ )+ AV(X)=A,;V(X)— A, v(X)=0.
4. AV(x+e)=0=AV(x+e +e)=AV(X)=AV(X+e )=

AT V(X) = A V(X)+ AV (X+e +8)— AV (X+e )+ AV(X)
=v(x+e +e +e)-v(x+e)-v(x+e +e)+V(x+e,)
=AV(x+e, +e)—AV(x+e )+Ayv(x+e)

=A, V(x+e)+AV(x+e)=0.
5. 0= A V(Xx+e)=AV(X+e +8)=AV(X)=AV(X+e )=
AT V(X)=A V(X)+AV(X+e +e)—AV(X+e)—AV(X+e ) +AV(X)=A, v(X+e,)=>0.

IfAV(x+e)=Av(X)=AVv(x+e +e)>Av(x+e,;), under this condition, we also consider the
other case:
6. Av(Xx+€)=AV(X)=0=Av(X+e +e)=AV(X+e )=

ATV (X)=A, v (X)+AV(X+6 +e)—AV(X+e)

=A,V(X)+ A, v(x+e€)=0.

Hence, T,v satisfies A3.

Property A4
A, Tv(x)=min{v(x+e, +e),v(x+e)}—min{v(x+e,),v(x)}
=AV(x)+min{Av(x+e),0} —min{A,v(x),0}

By A3 we have A v(x)=A,;v(x)=0 for p=n-1.

i+t ipi
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So A, v(x)=Av(x+e)—Av(x)=0, then following the three cases:

Casel. A v(x+e)=Av(X)=20=A, Tv(x)=A,v(X)=—c,.

Case2. Av(x+e)=0=Av(X)= A, TV(X)=A, V(X)—A, V(X)= A, v(X).

Case3. 0= A v(x+e)=AV(X)= A, TV(X)=A, v(X)+ A V(Xx+e)—A, v(X)
=AV(X) A, V(X) = A, V(X) = —C,.

Hence, T,v satisfies A4.

Operator T°
To(x) = V(X)+¢C, if T x, =0
min{v(x—e),v(x)+c,} otherwise,
_ v(x)+c, if T, =0
v(x—e)+min{0,A,v(x)+c,} otherwise.

By A4, already T°v(x)= V)G TI% =0 hence it satisfies all 4 properties.
v(x—e) otherwise,
Operator T
V(X)+¢ ifx, =0
Thv(x) = ( )*+& “ )
min{v(x—e,),v(x)+c,} otherwise,
V(X)+cC ifx, =0
e " (3.7)
v(x—e,)+min{0,A,v(x—e )+c | otherwise,
Property Al

From (3.7) we have the following three cases:
Case 1: if x =0,

A TEV(X)=A;,v(x) = 0.
Case 2: if x, >0,i =Kk,

T'v(x)=v(x—e)+min{0,Av(x—e)+c},
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A TV(X)=A, v(x—€) +min{0,Av(x+e)+c } —2min{0,Av(X) + ¢} + min{0,Av(x—e;) +C, }.
By Al we have A,v(x+e;)>Av(x)=Av(x—e, ), leading to four possible sub-cases:
1. Av(x+e)+c =2Av(X)+c 2AV(Xx—g)+Cc =20= A, T'V(X)=A, v(x—¢€)>0.
2. Av(x+e)+c 2AV(X)+C =0=AV(x—€)+C =
A TV(X)= A V(X —€) +AV(X—€)+C =AV(X)+C >0.
3. AV(X+€)+¢ =0=AV(X)+C =AV(X—8)+C =
AL TV(X)= A, V(X—€) —2AV(X) + Av(X—e,) — ¢, =—AV(X) —C; 0.
4. 0=AV(X+e)+C =AV(X)+C =AV(X—86)+C =
A TV(X)=A V(X —€) + AV(X+€) —2AV(X) + A V(X —€;) = AV(X+6,) —AV(X) = A, V(X) = 0.
Case 3:if x, >0,i=k,
T v(x)=Vv(x—e,)+min{0,AV(X—€)+C,},

A TY(X)=A; v(x—e)+min{0,A V(X —e, +2¢) +C,}

—2min{0,A,V(x—e, +&)+C } +min{0,A,V(X—€,) +C,}.
By A2 we have A v(x—e, +2e,)<Av(x—e, +e )<AV(x—e,), leading to four possible sub-
cases:
1. AV(x—e +2e)+c <AV(Xx—e +e)+C <AV(x—e)+C <0=
AL TV(X)=A V(X —€) + A V(X —e, +2€) —2AV(X—€, +€)+AV(X—€,) =A,;V(X) > 0.
2. AV(x—e, +2e)+C <AV(X—e +€)+C <O<AV(X—e)+C =

A TR(X) = A V(X =€) + A V(X -8, +28,) —2A V(X —€, +€) —C,
=AV(X—e +€)-AVv(X—e)+AV(X—e +2€)-2AV(X—e, +€)—C,
=A,, V(X—e +e)—-Av(x—e)—2AV(Xx—e, +€&)—C,
=A, V(X—e)+AV(X—-e +€)—-2AV(X—€, +€)—C,

=A,V(X—€e)—-AVv(x—e +€)-c 0.

3. AV(x—e +2e)+c <O<AV(Xx—e +6&)+C <AV(X—e)+C =
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A TRV(X) = A V(X —€ ) + A V(X —€, +2€) +C,
=A V(X—€)—AV(X—e +€)—C +2AV(X—e, +€)+2C,
=A, V(X—e)+AV(X-e +€)+c 0.

I
4. 0<AV(Xx—e +2e)+C <AV(X—e +8)+C <AV(X—e)+C =
A T(X)=A, v(x—e,)>0.

Hence, T¢v satisfies A1l.

Property A2
From (3.7) we have the following three cases:
Case 1: if x =0,
A TR(X)=A v(x)<0.
Case 2:if x>0, i=k, j=k (j=k,i=k),
T v(x)=v(x—e)+min{0,Av(X—e)+C},

A TV(X) = A, v(x—g)+min{0,Av(x+e;)+¢ | —min{0,Av(x—e, +e;)+c,}

—min{0,AV(X) +¢ } +min{0,A\v(x—&) +¢}.
By Al we have

AV(X)ZAv(x—g)=Av(x+e; )= Av(x—g +e;) or

AV(X)2Av(x+e; )2 Av(x—e )2 Av(x—e +e,).
If AV(X) = Av(x—e )2 Av(x+e; )= Av(x—e +e; ), we have the following five cases:
L AV(X)+C 2Av(x—g)+C = AV(X+e;)+C 2 Av(x—g +e;)+¢ 20=

A TV(X)=A, v(x—e;) <O0.

2. AV(X)+¢ 2 AV(X—€)+C 2 AV(x+e;)+¢ 202 Av(x—g +e;)+C =

A TV(X)=A; V(x—e) —AV(X—g +€,)—C,
=—AV(x—-¢g,)—¢, <0.

3. Av(X)+c =AV(x—g)+cC 202Aiv(x+ej)+ci ZAiv(x—ei +ej)+ci =
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A TV(X)= A V(X—e) +Av(X+e;) —Av(x—e; +e))
=AV(X+e;)—AVv(x—¢g)<0.

4. AV(X)+¢ 202 Av(x—g )+C 2 Av(X+e;)+C 2 Av(x—g +e;)+C =

A TV(X)=A V(X—8) + AV(X+€,) —AV(X—€ +€,)+ AV(X—&)+C;
=AV(X+e;)+¢ <0.

5. 0=2A,

v(X)+c¢

>AV(X—€ )+ ZAiv(x+ej)+ci ZAiv(x—ei +ej)+ci =

A TV(X)=A V(X =€)+ AV(X+e,) —AV(X—e +&,) —AV(X) + AV(X—¢)
=AV(x+e;)—Av(x—g)<0.

If Av(X)=Av(x+e; )= Av(x—e)>Av(x—e +e;), we also have consider the other case:
6. AV(X)+C 2 AV(x+e;)+¢ 202 Av(X—€ )+ = Av(x—g +e; )+¢ =
A TV(X) = A v(X—6) —AV(X—e +e;) +AV(X—g)=0.
Case 3:if x, >0,i =k, j =k,
T'v(x)=v(x—e,)+min{0,Av(x—e)+C},

A TY(X) = A, v(x—e,)+min{0,A,V(X—e, +€ +&;)+C, | —min{0,AV(X—e, +&)+C,|

—min{0,A\V(X—e, +&)+C }+min{0,A,v(x—e,)+C,}.
By A2 we have
AV(x—e, +e +e;)<AV(x—e, +e;)<AV(x—e +e)<AV(x-e,) or
AV(x—e +e +e;)SAV(x—e +e)<AV(x—e, +e)<AV(x-¢,)

If Akv(x—ek +e +ej)£Akv(x—ek +ej)sAkv(x—ek +e,)<AVv(x—e,), we have the following

five cases:
1 AV(x—e +e +e;)+C <AV(x—e +e; )+ SAV(X—e +& )+ SAV(X—e)+C <0O=

A TEY(X)= A V(X—e,) +AV(X—e +& +&;)—AV(X—e, +e;)
—AV(X—e +&)+AV(X—€)=A v(x)<O0.

2. AV(x—e +e +e;)+C <AV(x—g +e;)+C <AV(X—e +€ )+ SO<AV(X—€)+C, =
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AiyjTkv(x):Ai’jv(x—ek)JrAkv(x—ek +e +e;)-AV(X—e, +e)—AV(X—e, +&)-C,
=A; V(X)) —AVv(x—e,)-c, <0.

3. AV(x—e, +e +e;)+c <AV(X—e +e;)+C <OSAV(X—e +e )+ SAV(X—g)+C, =

A THY(X)=A V(X ) +AV(X—e, +€ +€,) —AV(X—e +€;)
=A; V(X—€)+A V(X—g +e;)<0.

4. AV(x—e, +e +e;)+c <OSAV(X—e +e)+C SAV(X—g +&)+C SAV(X—g )+C =
A TV(X)=A; V(x—e ) +AV(X—e, +& +e;)+¢ <O0.
5. 0<AV(x—e +e +€;)+C <AV(x—e +e; )+ SAV(X—e +e )+ SAV(X—e)+C, =
A THY(X)= A v(x—e, ) <O0.
If Av(x—e, +e +e;)<AV(x—e +e)<AV(x—e +e;)<AV(x—-g) , we also consider the
other case:
6. AV(x—e +e +e;)+C <AV(x—g +€)+C <O<SAV(X—e, +&;)+C SAV(X—€)+C, =

A TY(X) = A V(X—€ ) +AV(X—8, +& +€,) —AV(X—8, +&)=A, V(X—e,)+A, V(X—e, +e,)<O0.

Hence, TV satisfies A2.

Property A3

In order to prove A,

i+t ipi

T*v(x)=0we use Observation 1 to proveA, T*v(x)>0, from (3.7)
we have the following three cases:
Case 1if x, =0,
A, T v(x)=A,,v(x)=0.
Case 2 if x, >0, and i=k,
T'v(x)=v(x—e,)+min{0,Av(x—e)+C},

A, TV(X)=A,;V(x—€)+min{0,A, v(x+€)+¢ } —min{0,A v(x—e, +€)+c,}

—min{0,A; V() +¢;} + min{0,A, v(x—e;) +¢;}.

By Al- A3 we have
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Av(x+e)=AV(X)=Av(x—e +e)>Av(x—e,), there are four possible sub-cases:
1. Av(x+e)+¢ 2 AV(X)+C = AV(X—e +e)+C =AV(X—g)+C =20=
A, TV(X)=A4,,; v(x—€)=0.
2. Av(x+e)+c 2AV(X)+¢ = Av(x—e +e)+C 20> AV(X—¢g)+C =
A TV(X)=A,; V(X—8) + A V(X —8;) +C =A V(X —¢ +€)+¢ 0.
3. Av(x+e)+C = AV(X)+C 20> Av(X—g +e)+C = AV(X—€)+C =
A, TV(X)=A,;V(x—€)—A V(X—¢€ +€)+ A v(x—g) =0.
4. Av(x+e)+c 20=AV(X)+¢ =AV(X—e +e)+C = AV(X—g)+C =

A, TV(X)=A,; V(X—€) = A, V(X—e; +8) — A V(X) —C, + A, V(X —€,)
=-A,v(X)—¢, >0.

5. 0=AV(X+e)+¢ = AV(X)+C¢ = AV(X—€ +e)+C = AV(X—g )+ =
AeyiTiv(x)eryi V(X—€;)+ A V(X+e)—A V(X —€ +&) — A, V(X) + A v(X—e ) = A, ; v(x—e;) > 0.

Case 3if x, >0, and i=k,

A, TV(X)=A,; v(x—€)+min{0,A, V(X —e, +& +€)+C, } —min{0,A, v(x—e, +&)+C,}

-min{0,A, v(x—e, +€)+¢, }+min{0,A, v(x—e,) +¢,}.
By A2 and A3 we have
AV(Xx—e +8)<AV(x—e +e +e)<AV(Xx—e )<AV(Xx—e +e) or
AV(x—e +8)<AV(x—e )<AV(Xx—e +e +e)<AV(x—e +e)

IfAV(X—e, +&)<AV(x—e, +e +e)<AV(X—e )< AV(x—e,+e),which leads to five possible
sub-cases:
1. Av(x—e, +e)+c <AV(x—e +e +e)+c <AV(Xx-e)+C <AV(Xx—e +e)+c <0=
A TV(X)=A, V(X —e) + A V(X —€, +& +€) —A V(X —€, +€) —A V(X —€, +&)+A, V(X—e,)
=V(X+e)—-Vv(X+e;)—Vv(X+e)+Vv(x)

=A,;V(X)=0.

2. AV(Xx—e +€)+C <AV(X—e +e +e)+C <AV(Xx—e)+C <O<AV(X—e +€)+C =
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A, TY(X)=A, V(X—€ ) +A V(X —e, +€ +€)—A V(X—e, +&)+A V(X—€)+C,

=A,;V(X—-e,)+A v(x—-e, +e)+c, >0.
3. AV(x—e +8&)+C <AV(Xx—e +e +e)+C <O0<AV(X—e)+C <AV(X—e +e)+C =
TYV(X)=A,; V(X - ) +A V(X—€, +& +€) —A V(X—e, +8&)=A, V(X&) + A, V(X—€, +€)=0.
4. Av(x—e +€)+C <O0<AV(x—e +e +e)+c <AV(X—e)+C <AV(X—e +e)+c =
TH(X)=A,; V(X—e,) — A, V(X—e, +€)—C, =0.
5. 0<AV(X—e, +€)+C <AV(X—e, +€ +e)+C <AV(X—e )+ <AV(X—e +€)+C, =
TYv(X)=A,,; v(x—€,)>0.

If AVv(x—e +e)<AV(x—e)<AV(Xx—e +e +e)<AVv(x—e +e), we can also consider the

other case:

6. Av(x—e +e)+c <AV(X—e)+C <O<AV(X—e, +e +e)+C <AV(X—e +e)+c =
TY(X)=A,; V(X—e,) —A V(X—€, +&) +A V(X—8,) = A, V(X—€,) —A,; V(x—g,) = 0.

Hence, T*v satisfies A3.

Property A4
From (3.7) we have the following 2 cases:

Case 1 x, =0,
A, T v(X)=A, V(X) = —C,.
Case 2 x, #0,
A, Tv(X)=A,V(X—e,)+min{0,A V(X —e +€)+C, }—min{0,Av(X—e,)+C,}.
Since Av(x—e, +€)=AVv(x—e,), We have
(1) if AV(x—e, +€)+C = AV(X—€,)+C >0, then A, T v(X)=Av(x—€,)=—C,.
(2) if Ayv(x—e, +€)+c, >20>A,v(x—e,)+c,, then
A, THv(X)=AN(X—€) —AV(X—€,) — C, = AV(X) = —C,.

(3)if 0>A v(x—e, +€)+c, >AV(X—¢e)+c,, then
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A TH(X)=A,v(Xx—g)+A,  V(Xx—8 )2 A, v(X—g )=—C,.
Hence, T*v satisfies A4.

Operator T

Since h(x) is increasing convex, it satisfies A1-A3 and we can see Tv satisfies Properties Al-

A3. We will show that Tv also satisfies Property A4 in the following:

A, Tv(X) = Ah(X) + AT V(X) + Zn:/ikAeT “V(X) + Zn:ykAeTkv(x)
> AN~ ACy— D AL - D a4 (AN()>0)

Z—Co(ﬂo+§(/¢k+/1k)j=—co(l—a)2—co.

Hence, Tv e #7. This completes the proof of Lemma 3.1. []

Definition 3.2. Forv e 7 we define the base-stock and the rationing levels as following:

S (X, )= min{xk 20|v(x+ek)—v(x)20},

where X, =(X,,-- X1, X1 %) i n-1 dimensional vector consisting of the on-hand
inventory levels for Component i =Kk, and x, is the on-hand inventory level of Component k.
Definition 3.2 indicates that the base-stock s; (x_,) and rationing level r’(x_) depend on the

on-hand inventory of other components.

From Definition 3.1 and 3.2, and Lemma 3.1 we can characterize the structure of the optimal

policy in the following Theorem 3.1.

Theorem 3.1. The optimal production policy for Component k is a base-stock policy with a

state-dependent base-stock level s;(x_,) where it is optimal to produce Component kK, if
X, <S,(x_) and not to produce it otherwise. The optimal inventory allocation policy for
Component k is a rationing policy with a state-dependent rationing level r’(x_,) where it is
optimal to satisfy the demand of Component k if x, >r (x ) and to reject it otherwise. Both

levels are non-decreasing in each of the states x;, i =k . Furthermore, it is always optimal to
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satisfy demand of the assembled product whenever on-hand inventory for all components is
available.

Proof of Theorem 3.1

The optimal production policy consists of a base-stock policy with the base-stock level

sy (x_,). From Property A2, the optimal base-stock level s;(x_,) is non-decreasing in x;, j =k.
By Property Al if A,v(x)>0 itimplies x, >s,(x_, ), in this case we do not produce any more;

in the case Av(x)<0 and x <s;(x_), it is optimal to produce. Property A3 implies that

*

s (x_;) is non-increasing with joint increases in x;,x; ,..,andx; . Also from property A2, the

: DX e
optimal rationing level r’(x_,) is non-decreasing in each of states x;, j = k. By Property A4, it
is optimal to satisfy demand of the assembled product if there is at least one unit on-hand

inventory for each component. It is optimal to satisfy demand of Component k if x >’ (x_),
for k=1,2,...,n. Finally, we will prove v e’ directly. Since v* =minn%T(”) for any v inZ,

where T® refers to n compositions of T and v* is the unique solution of v=Tv, from which

v* satisfies Properties A1-A4.
This completes the proof of Theorem 3.1. [

Theorem 3.1 shows that the optimal policy can be determined by the base-stock level and the
rationing level. Both levels are state-dependent and non-decreasing in the on-hand inventory
level of other components. Similar to Benjaafar and Elhafsi (2006), the optimal production
policy indicates that with an increase in the on-hand inventory level of one component, the
inventory requirements for other components also increase. It is always optimal to satisfy
product demand if all the components are present. Unlike Benjaafar and Elhafsi (2006), the
optimal inventory allocation policy indicates that with an increase in the on-hand inventory
level of one component, the rationing level for other components also increase. That is
because we discuss two types of demand: demand of the assembled product and demand of
the individual components. In our system since demand of the assembled product has a higher
priority over demand of individual components, it is always satisfied if all components are in
stock. When the system jointly increases the on-hand inventory of the components, more
demands from the assembled product are desired to be satisfied that means several individual

components demands must be rejected. Hence, the rationing level of the individual
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components increases. This implies that it becomes more difficult to satisfy demand of the

individual components when the on-hand inventory of components increases.
3.2.3 Influence of System Parameters

Theorem 3.3, we will discuss how the optimal policy is affected by system parameters. In

order to do so, we redefine the base-stock and rationing levels with different parameters

@ e{h,C.Cp A, A 14} fork=1,2,...,n, as:

Se (X, )=min {xk >0[A,V, (X)= 0},

. (X, ) =min{x >0Av, (x)

I\

_Ck}' (@m=c,)

heo (X )= min{xk > O|Akvw (x)= —w}. (w=c,)

Lemma 3.2. The optimal base-stock and rationing levels of Component k depend on various

system parameters @, , for each @, > @, we have

For the optimal base-stock level

For the optimal rationing level

B3: Ay, (X)=Av, (x) for h >h,

(x) for ¢, >c;,

AV, (X) AN,
)

(X)=Awv. (x) for ¢, >c, .

B4: AV, (X)<AV,.(x) for 4 >4,
(X)<AV, (X)

kjkx

for 4, > 2.,

B>
=
<
x‘\}
—_~
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Proof of Lemma 3.2

In order to prove Lemma 3.2, we need to show that Tv(x) satisfies Properties B1-B4. In order

to do so, we will prove that Tv(x), T°(x) and T v(x) satisfy Properties B1-B4, respectively.
Operator T,
Tv(X)=min{v(x+e,),v(x)} =Vv(x)+min{A,v(x),0},
ATV(X)=Av(x)+min{Av(x+e,),0}—min{A,v(x),0}.
Property B1
In order to prove B1, we consider three cases:
Case 1if h >h, .
By BL, Ay, (x)2Ay, (x) for b >h,

where A, (x) and AV, (x) are the marginal cost difference due to increasing one unit on-

hand inventory of Component k under the condition of h, and h,, respectively.

ATV, (x):Akvh.‘ (x)+ min{A (x+ek } mm{Akvhk }

ATY, (x)= AV, (x)+min {A V.. (x+ e, } min {Akvhk }

ATV, (X)= ATV, (X) =4, (X)-A )+min {Akvhk (x+e, } min {Akvh.k (x),O}
—min Akvhk (x+e), } + min{Akvh; (x),O}.

By Al we have Ay, (X+€) 2 AV, (X) and AV, (X+€) 2 AV, (X).
By B1 we have AV ()2 AV, (X), from the above we have two possibilities:

AV, (x+e,)= AV, (x)= AV, (x+e,)= AV, (x) or

Ath‘k (x+e)= Ath; (x+e)= Akvh‘k x)= Ath; ().
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If AV, (x+e) 2 AV, ()2 AV (X+e,) 2 AV, (X) then we have five sub-cases:
1. AV, (x+e)= AV, (x)= AV, (x+e)= AV, xX)=20=>
ATV, (x)— ATV, (x)= AV, (x)- AV (x)=0.
2. AV, (X+6,) 2 AV, (X)ZAV. (X+6,) =02 Ath; x) =
ATY, (x)— ATV, (x)= AV, (x)— AV (x)+ AV, (x)= AN, (x)=0.
3. AV, (X+6,)=AV. (X)=0> AV, (x+e,)= Akvhl xX) =

ATV, (x)- ATV, (X)=AV, (X)=AV,. (X)— AV, (x+e )+ AV, (x)

e e

=AYV, (X)=AV. (x+e,)>0.
4. AV, (X+€,)=0= AV, x)= AV (x+e,)= AV, x)=

ATV, (x)- ATV, (x)= AV, (x)— AV, (x)- AV, (x)- AV, (x+e)+ AV, (x)

=-AyV,. (x+e,)>0.
5. 02Av, (x+e)= AV, (x)> AV (x+e)= AV, x)=

ATV, (X) = ATy, (x)= AV, (X) =AY, (X)+ AV, (X+e, )— AV, (X) =AY, (X+e, )+ AV, (x)

=AY, (X+8) AV, (Xx+e)>0.
If AV, (x+e)Z AV (X+8) 2 AV, (X) 2 AV, (X), we also have one sub-case:
6. AV, (X+8) 2 AV (X+8)202AV, (X)=AyV,. (X)=
ATV ()= ATV (X) = Ay, ()= AV (%) =AY, (X)+ A, (x)=0.
Case 2if ¢, >c,.

By B1, Ay, (x)<A,v, (x) for Cy =Gy,

where A,v. (x) and AV (x) are the marginal cost difference due to increasing one unit on-

hand inventory of Component k under the condition of ¢, and c,, respectively.

ATV, (x)= AV, (X)+min {Akvcl,) (x+e), 0} —min {Akvq,) (x), 0},
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ATV, (x)= AV, (x)+min {Ach; (x+e), 0} —min {Ach; (x), O},

ATV, (x)— ATV, (x)= AV, (x)- AV, (X)+min {Akv% (x+e, )0} —min {Akvca (x), O}

- min{Aka,. (x+ek),0} - min{Akaw (x),O}.
By Al we have AV, (x+e)2Av, (x) and A, (x+e) 2 AV, (X).

By B2 we have AV, (X) <A,V (X), from the above we have two possibilities:

AV (X+6) Z AV (X) Z AV (X+e,)=A,V. (X) Or

AV (X+6) Z AV, (X+6,)2A V. (X)=A,V. (X).

If AV, (X+e)> AV, x)> AV, (x+e)> AV, (x), then we have five sub-cases:
1. Ach;; (x+e,) = Ach;; xX)= Akv% (x+e,) = Akvc.0 X)=20=>
ATV, (x)- ATV, (x)= AN, (x)- AV, (x)<0.
2. Ach;; (x+e)= Ach;; (x)> Akvcl,) (x+e,)=02> Akv% x) =
ATV, (x)- ATV, (x)= AV, (x)- AV, (x)— AV, (x)= —AY, (x)<0.
3. Acha (x+e,) 2= Ach;; X)=0= Akvc.0 (x+e,) = Ach'O X)=

ATV, (X) = ATV, (X) =AY, (X)= AV, (X)+AV, (X+e&)-AV, (X)

=—AV. (x)+ AV, (x+e,)<0.
4. AV, (X+e,)=0=Av. (x) 2 AV, (X+e)zAVv. (X)=

ATV, (X) = ATV (X) =AY, (X) =AY (X)+ AV, (X+e )= AV, (X)+AV, (X)

=AV. (x+¢,)<0.

Co
5 02 AV, (x+e,) = AV, (x)= AV, (x+e,) = AV, x)=

ATV, (x)- ATV, (x)= AV, (x)- AV (x)+ AV, (X+6, )= AV, (x+e)—Av, (x)+ AV, (x)

=AY, (X+ek)—Ach; (x+e,)<0.

If AV, (Xx+e,)2AV. (X+6,)=AV. (X)>AV_ (x), we also have one sub-case:
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6. AV, (x+e,) = AV, (x+e,)=>02 AV, (x)= AV, xX)=>

ATV, (x)- ATV, (x)= AV, (x)- AV, (x)- AN, (x)+ AV, (x)=0.
Case 3if ¢, >c,.
AT, (x)- ATV, (x)<0.

The proof is the same as Case 2 (c, >c,).

Hence, T,v satisfies B1.

Property B2

In order to prove B2, we consider three cases:
Case 1if 2, > 4,.

By B2, Ay, (X)<AV,(x) for 4, >7;. Here, Ay, (x) and AV, (x) are the marginal cost

difference due to increasing one unit on-hand inventory of component k under the condition

of 4, and 4,, respectively.
ATV, (x) =AY, (x)+ min{Akv% (x+ek),0} —min{Akv% (x),O} :
ATV, (x)= AV, (X)+min {Akvﬂg (x+e )0} —min {Akvﬂg (x),O},

ATV, (x)- ATV, (x)= AV, (x)- AV, (X)+min {Akv% (x+e )0} —min {Akv% (x),O}

—min {Akvﬂg (x+e,), O} + min{Akv%. (x),O}.
By Al we have AV, (x+e,) AV, (x) and AV, (x+e,) AV, (x).
By B2 we have AV, (x) SAkv% (x), from the above we have two possibilities:
Akv&.; (x+e,)= Akv&; xX)= Akv% (x+e,)= Akv% (x) or
Akvﬂé (x+e,) ZAkv% (x+e,) ZAkvﬂg (X) ZAkv% (x) .
If AV, (x+e)ZAV, () 2AV, (X+&)2AV, (X), then we have five sub-cases:

1. Asz(; (x+e,) ZAKV%. (%) ZAkv% (x+e.) 2Akv% xX)20=
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ATV, (x)—Akav% (x)= AV, (x)—Akv% (x)<0.
2. AV, (x+e,)= AV, (x)= AV, (x+e,)=02 AV, x)=
ATV, (x)—Akavﬂg (x)= AV, (x)—Akvﬂg (x)—Akv% (x)= —AV, (x)<0.
3. AV, (x+e,)= AV, (x)=02 Ay, (x+e,)= AV, x) =

ATV, (X)=ATY (X) =AY, (X) =AY, (X)+AV, (X+e,) =AY, (X)

=—AV, (x)+Akv% (x+e,)<0.
4 AV, (x+e,) 202Akvﬂ5 (x) AV, (x+e,) AV, x)=

ATV, (X) = ATV (X) =AY, (X) =AY, (X)+ AV, (X+&,)=AV, (X)+AV, (X)

=AWV, (x+e,)<0.
5024, (x+e,) AV, (x)zAkv% (x+e,) AV, x)=

ATV, (x)—Akavﬂg (x)= AV, (x)—Akvﬂé (x)+Akv% (x+ek)—Akv%. (x+ek)—Akv% (x)+Akv% (x)

=AY, (x+ek)—Akv%. (x+e,)<0.

If AV, (x+e)ZAV, (X+e,) 2 AV, (X)2AyV, (X), we also have one sub-case:
6. AV, (x+e,) AV, (x+e,) = OZAKV%. x) AV, xX)=>

ATV, (x)- ATV, (x)= AN, (x)- AN, (x)- AN, (x)+ AV, (x)=0.
Case 2if 4, >4, .
ATV, (X)=ATY, (x)<0.
The proof is the same as Case 1 (4, > 4, ).
Case 3 if g, > 4, .

By BL, Ay, (x)2Av, (x) for u, > u,,

where AV, (x) and A . (x) are the marginal cost difference due to increasing one unit on-

hand inventory of Component k under the condition of », and g, , respectively.
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ATV, (x)= AV, (X)+min {AkV#'K (x+e, )0} —min {Akv”.k (x),O} :
ATV, (x)= AV, (X)+min {Akvﬂ; (x+e, )0} —min {Akv#; (x),O} :

ATV, (X)= ATV, (X)=Av, (X)=AV . (X)+min {Akv (x+ey), 0} —min {AkV/,'k (x), 0}

By Al we have AV, (X+8)2 AV, (X) and AV (X+8) 2 AV . (X).

By B1 we have AV, (X) > AV, (x), from the above we have two possibilities:

Akvﬂ‘k (x+e,)= Akvﬂ,k xX)> Akv#; (x+e,)= Akv#; (x) or

Akvﬂ,k (x+e,)= Akvﬂ; (x+e,)= Akvy‘k xX)=> Akvﬂ; (x).

If AV, (X+8)ZAV, (X)ZAV . (X+e)ZAV . (X) then we have five sub-cases:
1. Akvﬂ. (X+e)= Akvﬂ‘ x)= Akvﬂ., (xX+e)= Akvﬂ.. xX)>20=

ATY, (x)- ATV, (x)= AV, (X)=AV .

Hy

(x)=0.
2. AV, (x+e,)= Ay, (x)= AV, (x+e,)=02 AV, x)=

ATV, (x)- ATV, (x)= AV, (x)- AV, (x)+ AV, (x)= AV, (x)=0.
3. Ay, (x+e,)= Ay, (x)=0> AV, (x+e,)= AV, x)=

ATV, (x)- ATV, (x)= AV, (x)- AV (x)- AV, (x+e )+ AV, (x)

=AY, (X)=AV . (x+e,)=0.
4 Ay, (x+e,)=0= AV, (x)> AV, (x+e,)= angy x)=

ATV, (x)- ATV, (x)= AV, (x)- AV, (x)- AV, (x)- AV, (x+e)+ AV, (x)

=-AV, (X+€,)=0.
5. 02Av, (x+e)= Ay, (x) = AV, (x+e)= AV, xX)=
ATV, (x)— ATV, (x)= AV, (x)- AV . (x)+ AV, (x+e)- AV, (x)- AV, (x+e)+ AV, (x)

=AY, (x+8)-AV. (x+g,)20.
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If AV, (X+8)2AV . (X+8)2AV, (X)2AV,.(x), we also have one sub-case:
6. Ay, (x+e,)= AV, (x+e,)=>02> Ay, (x) > AV, xX)=
ATV, (x)- ATV, (x)= AV, (x)- AN, (x)- AV, (x)+ AN, (x)=0.
Hence, Tv satisfies B2.
Property B3
In order to prove B3, we consider three cases:
Case 1if h >h, .
By B3, A, (x)zAkvh; (x) for h, >h.
We have ATV, (x)—Akavh; (x)=0. (see the proof of Property B1 Case 1)
Case 2if ¢, >c,.
By B3, AV, (X)<Av, (x) for ¢, >c;.
We have ATV, (X)_AkaVc;; (x)<0. (see the proof of Property B1 Case 2)
Case 3if ¢ >c, .
By B3, A, (x) 2 AV, (x) for ¢, >c;.
ATV, (x)= AV, (x)+min {Akvc.k (x+e, )O} —min {Akvc.k (x),O},
ATV, (x)= AV, (x)+min {Akvcl (x+e )O} —min {AkvcL (x),O},

ATV, (x)- Aka'C;v(x) =Av, (x)- AV, (x)+min {Akv (x+e,), O} —min {Akvc.k (x), O}

&

—min{Aka; (x+ek),0} + min{Aka; (x),O}.
By Al we have AV, (x+e) 2 AV, (X) and AV, (X+8) 2 AV (X).

By B3 we have Av, (X) =2 AV (x), from the above we have two possibilities:

Ach'k (x+e,)= Akvc‘k (x)> AV, (x+e)> AV, (x) or
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ANV (X+€,)Z AV (X+6,) = AV (X) = AV (X).

If AV, (X+6,)2AV. (X)> AV, (Xx+e)> AV, (x) , then we have five sub-cases:
LAV (X+e,)ZAV. (X)ZAV. (X+€)2AV. (X)20=
ATV, (x)- ATV, (x)= AV, (x)- AV, (x)=0.
2. AV, (X+e8,)Z AV (X)ZA V. (X+6,)20=Av. (X) =
ATV, (x)- ATV, (x)= AN, (x)- AV, (x)+ AN, (x)= AN, (x)=0.
3. ANV (X+6 )2 AV (X) 202 A, V. (X+6) 2 AV (X) =

ATV, (X) = ATV, (X)=Av, (X)= ANV, (X) =AY, (X+e,)+Av, (x)

C
=AY, (x)- AV, (X+e, )=0.

4. AV (X+8)202AV. (X)ZA V. (X+€) AV (X) =

ATV, (x)- ATV, (x)= AV, (x)- AV, (x)- AV, (x+e)- AV, (x)+ AV, (x)

=—AV. (x+8,)>0.
5. 02A V. (X+€,)ZAV. (X)ZAV. (X+&)=AV. (X) =

ATV, (x)— ATV, (x)= AV, (x)- AV, (x)+ AV, (x+e,)— AV, (x)— AV, (x+e)+ AV, (x)

=AY, (X+8) =AY, (X+e,)>0.
If Ak"c'k (x+e)> Aka; (x+e)> Akvc'k (x)> Aka; (x) we also have one sub-case:
6. Ach'k (x+e.)= AkvcL (x+e,)=02 Ach‘k (x)> AkvcL x)=
ATV, (x)- ATV, (x)= AN, (x)- AN, (x)- AV, (x)+ AN, (x)=0.
Hence, T,v satisfies B3.
Property B4

In order to prove B4, we consider three cases:

Case Lif 4, >4, .
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By B4, AV, (X)<AV,. (x) for 4, > 4.
We have AT,v, (x)—Akav%. (x)<0. (see the proof of Property B2 Case 1)

Case2if 4, >4, .

By B4, Ay, (X)<Av, (x) for 2,2 4,.

We have ATV, (X)=ATV A (x)<0. (see the proof of Property B2 Case 2)
Case 3 if g >4, .

By B4, AV, (X)2Ayv,. (x) for s > p

We have ATV, (x)—Akavﬂ; (x)=0. (see the proof of Property B2 Case 3)

Hence, T,v satisfies BA4.

Operator T°
Tou(x) = v(x)+c, if [1x, =0
min{v(x—e),v(x)+co} otherwise,
_ v(x)+c, if IIx, =0
v(x—e)+min{0,Av(x)+c,} otherwise.

By A4, already T°v(x)_{v(x)+c° IFI1x =0

v(x—e) otherwise.

Hence TV satisfies all Properties B1-B4.

Operator T¥
v(x)+c, ifx, =0
T'v(X)=1 " )
min{v(x—e,),v(x)+c,} otherwise,
v(x)+c, ifx, =0
_ (3.8)
v(x—e,)+min{0,Av(x—e)+c,} otherwise.
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From (3.8) we have the following two possibilities:

Possibility 1: if x, =0,

T*v(x)=v(x)+c,, hence it satisfies all Properties B1-B4.
Possibility 2: if x>0,

T'v(x)=v(x—e,)+min{0,A v(x—e,)+C,},

A, Tv(X)=AV(x—e,)+min{0,AV(X)+c, } —min{0,Av(x—e,)+C,}.
Property B1

In order to prove B1, we consider three cases:

Case 1if h >h, .

By BL, Ay, (X)=A,. (x) for h >hy.

AT, (X) =AY, (X—g,)+min {O, AV, () +6, } —min {0, AV, (X=€)+C } ,
A, T"th (x)= AV, (X—€,) +min {O, AV, () +¢ } —min {O, AV, (X=€,) +C, } :

ATV, (X)=AT Y (X)=Av, (X-€) AV, (x-€)+min {O, AV, (X)+¢ } —min {O, AV, (X—e,)+C }

—min{O,Akvh; (x)+ck} - min{O,Akvh; (x—ek)+ck}.
By Al we have AV, (X)> AV, (x—e,) and AV, (X)> AV, (x—e,).
By B1 we have AV, (x)= AV, (x), from above we have two sub-possibilities:
Ath‘k (x)=> Ath-K (x—e)= Ath; (x)=> Ath; (x—e,) or
AV, (x)= AV, (x)=> AV, (x—e)= AV (X—¢).
If AV, (x) = AV, (x—e)= AV, (x) = AV, (x—e,), then we have five sub-cases:
1. AV, (x)+c, > AV, (x—e,)+c, 2 AV, (x)+c, 2 AV, (x-e)+c, 20=

AT, (X)= AT (X) =AY, (X—8) = AV, (x—g)>0.
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2. AV () +C 2 AV, (X—8)+C AV () +¢ 202 AV, (X—8&,)+C, =
AT, (X)= ATV (X) =AY, (X=8) =AY, (X=& )+ AV, (x—€,)+C =AY, (X—8)+c, 20.
3. Ath‘k (x)+c, ZAthl'( (x—e)+c, ZOZAkvh; (x)+c¢, ZAth; (x—e)+c, =

ATV (X)=ATYV(X) =AY, (X=8) =AY, (X=&) =AY, (X)+ AV, (X—€)
=AY, (x—e)- AV, (x)=0.

4. AV, () +6 202AV, (X=€,)+C 2 AV (X) +C 2 AV, (X—&) +C, =

AT I‘vm (X)-AT th; (x)= AV, (x—e,)- AV, (x—e,)- AV, (x—e)-c — AV, (x)+ AV, (x—¢e,)
=AY, (x)—c, >0.

S. 0=Av, (X)+c, 2 AV, (x—e,)+c, 2 AV, (X)+c, > AV, (x-e)+c, =

ATV (X)=ATV (X)=Av, (X=8) =AY, (X= )+ AV, (X)= Ay, (X&) =AV, (X)+AY, (x—¢,)
=AY, (x)- AV, (x)=0.

If AV, (X)> AV, x)> AV, (x—e)> AV, (x—e,) we also have one sub-case:
6. AV, (X)+c, > AV, (X)+c, =202 AV, (x—e)+c, 2 AV, (x—e)+c, =
Akavh; (X)—AT kvh: () =AY, (X=&) =AYV, (X—& ) =AY, (X—&)+AY, (x—€,)=0.
Case 2if ¢, >c,.
By B2, AV, (X)<AV, (x) for ¢, >c;.
ATHY, (X) =AY, (x—€)+ min{O,Akvcb (X) +ck}— min{O, AN, (x—ek)+ck},
ATV, (X) =4y, (x—&)+ min{O,Akvca () +ck}— min{o, AV, (x=g,) +ck}

ATV, (%)= ATV, (X) =4,V (X—8 )= AV, (x—€,)+min {0, AV, (X)+6 }

- min{O,Akvc(.) (x—ek)+ck} - min{O,Akvca (x)+ck}+ min{O,AkaS (x—ek)+ck}.

By Al we have AV, x) = AV, (x—e,) and AV, (x) = AV, (x—e,)
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By B2 we have A,v. (x) <A.v. (X), from above we have two possibilities:
Akvcs xX)= Ach;; (x—e)= Akvc.0 xX)= Akv% (x—e,) or

AV (X)Z AV (X) 2 Akvca (x—e)= Akvq,) (x—e).
If Av. (X)>AV. (Xx—)=AV. (X)>AV. (x—g,), then we consider five sub-cases:
1L AV (X)+¢ 2 AV, (X—e)+c zAV. (X)+¢ = Ay, (x—e)+c, 20=

AT, (X)=AT*, (X) =4V, (x—e)-AV, (x-€)<0.
2. AV (X)+¢ = AV, (X—e)+c ZAV. (X)+¢ 202 AV (X—€)+C, =
ATY, (X) = ATV (X) =AY, (X—&,) =AY, (x—& ) =AY, (x—g)=C =-AV, (x—&)-¢ <O0.

3 AV (X)+C 2 AV, (x—e)+c, 20> AV, () +c ZAV, (x—g)+¢ =

AkaVc;) (x)- AkaVc; (x)= AV, (x—e,)- AV, (x—e )+ AV, (x) —AY, (x—ey)
=—AV, (x—e, )+ AV, (x)<0.

4 AV, (X) +c, 20> Av,. (x—e,)+c, > AV, (x)+c, > AWV, (Xx—e)+c =

AT ch;] (X)-AT kvcg (x)= AV, (x—e)- AV, (x—e )+ AV, (x)- AV, (x—e, )+ AV, (x—e)+¢,

=AV, (x)+¢, <0.
5. OZAkVC; (x)+c, Z AV, (x—e,)+c, > AV, (x)+c, ZAkvcb(x—ek)+ck =

AT, (X) = AT, (X) =AY, (X=8 )= AV, (X&) + AV, (X) =AY, (X—€ )= AV, (X)+ A,V (x—g,)
=AY, (X)=Av, (x)<0.

If AV, (X)=Av, (X)> AV (X—€) 2 AV, (X—e,) We also have one sub-case:
6. AV () +¢ AV, () +C 202AV (X—8,)+C ZAV, (X—€)+C =
AT, (X)=ATH, (X) =AY, (X—e ) =AY (X—g )+ AV, (X—8 ) =AYV, (x—g,)=0.

Case 3if ¢, >c,.

ATV, (x)=AT Y, (x)<O0.
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The proof is similar as Case 2 (¢, >c,).
Hence, T*v satisfies B1.
Property B2
In order to prove B2, we consider three cases:
Case 1if 2, > 4,.
By B2, AV, (X)<AV,. (x) for 4,> 4.
AT, (X) =4V, (x—ek)+min{O,Akvﬂ(.’(x)+ck}—min{O,Akv% (x—ek)+ck},
Akav%. (X) =4V, (x—ek)+min{O,Akv%. (x)+ck}—min{0,Akv%. (x—ek)+ck}
Akav% (X)_AkavﬂS (x):Akv% (x—ek)—Akvﬂg (x—e )+ min{O,Akv% (x)+ck}
—min{O,Aka{.} (x—ek)+ck}—min{0,Akv%. (x)+ck}+min{O,Akvﬂg (x—ek)+ck}.
By Al we have Ay, (x)ZAkv% (x—e,) and AV, (x)ZAkvﬂg (x—¢e,)
By B2 we have Akv% (X) <AV, (x), from above we have two possibilities:
AV, (x)zAkv&; (x—ek)zAkv% (x)zAkv% (x—e,) or

Akvﬂg (x)zAkv% (X)ZAKV% (x—ek)zAkv% (x—e).
If AV, (x) 2AV, (x—¢e,) 2AV, (X)> AV, (x—e,), then we have five sub-cases:
LAY, (X)+c, 2 AV, (x—e)+c, 2 AV, (X)+c, AV, (x-e)+c, 20=

AkT"vqu (x)—Akavﬂg (X) =AY, (x=&)-AV, (x-&,)<0.
2. AV, (x)+c, 2 AV, (x—e)+c, AV, (x)+c, 20=A,v, (x—e)+c, =
Akav% (x)—Akav%. (X)=8, (x—&) =AYV, (x=8,)-AV, (x—&,)=-C, =-AV, (x-g )¢ <0.

3. AV, (x) +c, Z AV, (x—e,)+c, 202Av, (x) +c, AV, (X—e)+c =

AkT"v% (x)—Akavjs (X) =4V, (X&) =AYV, (X= )+ AV, (X)=AV, (x-¢)

=—AV, (X—€,)+AV, (X)<0.
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4 Ay, (x) +c, 202Av, (x—e.)+c, AV, (x) +c, AV, (X—e)+c =

Akav% (x)—Akavjé (X) =AY, (X=8) =AYV (X=& )+ AV, (X) =AY, (X—€)+AV,. (X—€)+C,

=AYV, (x)+c, <O0.

5.02A,v, (x)+c, 2 AV, (x—e,)+c, AV, (x)+c, AV, (x—e)+c, =
Akav% (x)—Akav&; (X) =AY, (X=8) =AY, (X=& )+ AV, (X)-AV, (x—€)=AV, (X)+AV, (X&)
=AY, (x)—Akvﬂg (x)<0.
If AV, () 2AV, ()2AV, (X-€)=AV, (x—g) We also have one sub-case:
6. AV, (X)+c, AV, (x)+c, 20=2A,v, (x—e)+c, AV, (x—e)+c, =
Akav% (x)—Akavﬂg (X) =8, (x=6,) =AYV, (x=6)+AV, (x-8)-AV, (x-€)=0.
Case 2if 4, > 4,.
AkavA (x)—Akav)% (x)<0.
The proof is the same as Case 1 (4, > 4, ).
Case 3 if g >4 .
By B1, Ay, (x)ZAkvﬂ; (x) for s >y .
A, Tkv#.k (X)=Av, (x—&,)+min {O, AV, (X)+C } —min {O, AV, (X—€)+C, } ,
A, Tkvy; (x)= AN, (X—g,)+min {0, AN, () + ck} —min {O, AV, (X—&)+C, } :
ATV, (X)=ATV, (X)=4,v, (X&) =AyV,. (x~€)+min {O, AV, (X)+¢ } —min {0, AV, (X—8)+C, }
- min{O,Akv”; (x)+ck}+ min{O,Akv#; (x—ek)+ck}.
By Al we have Ay, x)> Ay, (x—e,) and AV, (x)> AV, (x—e).
By B1 we have Ay, (X) > AV, (x), from above we have two sub-possibilities:

Akvp. (x)=> Akvﬂ‘ (x—e)= Akv#.. (x)> Akv#.. (x—e,) or
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AkV#-k x)> Akv#; (x)> AkV,,‘k (x—e)= AkVﬂ; (x—e,).
If AV, x)> AV, (x—e.)= AV, (X) > AV, (x—e,), then we have five sub-cases:
1. Ay, (X)+c, > Ay, (x—e)+c 2 AV, X)+c, 2 AV, (x-e)+c, 20=
ATV, (X)=ATV, (X) =AY, (x-€)-AV. (x-g)20.
2. Ay, (X)+c, > Ay, (x—e)+c 2 AV, (X)+c, 202> AV, (x-e)+c, =
AkaVu‘k (x)- AkT"vy; (X) =AY, (X&) =AY, (X=&)+AV (X=8)+C =AY, (X-€ )+ >0.
3. Ay, (X)+c, > Ay, (x—e)+c, =02 AV, X)+c, > AV, (x—e)+c, =

ATV, (X)=ATV (X) =AY, (X=€,) =AY, (X=8)=AV . (X)+ AV - (x—¢&,)
=AY, (x—e,)— AV, (x)=0.

4. Ay, (x)+c, 20=Av, (x—e)+c, AV, (x)+c, AV, (x—-e)+c, =

AT kv#.K (X)-A,T "vﬂ; (X)=AY, (x-€)=AV . (x-8) =AY, (X=8)=C —AV . (X)+AV. (x~e,)

=AY, (x)-c, 20.

S. 0=Av, (X)+c, AV, (x—e)+c, AV, (x)+c, AV, (x-e)+c, =

AT “vﬂ‘k (X)-AT kVﬂL (X)=AV, (Xx=&) =AYV, (X=8)+AV, (X)=AV, (X—&)=AV . (X)+AV,. (X—€,)
=AY, (x)— AV, (x)=0.

If AV, ()ZAV. (X)ZAV, (X-8)2 AV, (X—€)we also have one sub-case:
6. AV (X)+C ZAV. (X)+C, 20> AV (X—8)+C, 2AV. (X—€,)+C =
k k
AT, (X)=AT v, (x)= AV, (x—ey) —AY, (x—ey) —AY, (x—e )+ AV, (x—e,)=0.
Hence, T*v satisfies B2.

Property B3

In order to prove B3, we consider three cases:

Case 1if h >h, .
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By B3, Ay, (x)ZAkvh; (x) for b >h .
We have Akavh‘k (x)—Akavh: (x)=0. (see the proof of Property B1 Case 1)
Case 2:if ¢, >c,.
By B3, AV, (X)<Av, (x) for ¢, >c;.
We have AkavC;) (x)—Akavq; (x)<0. (see the proof of Property B1 Case 2)
Case 3if ¢, >c,.
By B3, Ay, (X)<AvV, (x) fore, >c,,
AT ch'k (X)=Av, (x—&,)+min {O, AV, (X)+ C, } —min {0, AV, (x—e)+ C, }
A, Tka; (X) =4V, (x—g,)+min {O, AN, (X) +C, } —min {0, AV, (X—8)+C, } :
ATV, ()= ATV (X) =AY, (x—e) =AYV, (x—g,)+ min{O,Aka‘k (x)+c|;}— min{O,Akvc.k (x—ek)+c'k}
- min{O,Akvc; (x)+c;}+ min{O,AkvCL (x—ek)+c;}.
By Al we have Ay, (x)> Ay, (x—e,) and AV, (x)> AV, (x—e,).
By B3 we have Akvc‘k (x)> Akch (x), from above we have two possibilities:
AV, (x)= Ay, (x—e)= AV, (x)= AV, (x—e,) or
Ach'k xX)= Akvcl xX)= Ach‘k (x—e)= Akvcl (x—e,)
If AV, () 2AV, (X—€,)Z AV (X)Z AV, (X—€,), then we have five sub-cases:
LAY, (x)+ c > AV, (x—e,)+ C > AV, () + c > AV, (x—e)+ ¢ >0=
AkaVc‘k (x)—Akach (X) =4y, (x-&)-Av, (x-&,)>0.
2. AV, (X)+ c > AV, (x—&,)+ C > AV, () + ¢ 20> AV, (x—e,)+ c. =

Akavc‘k (x)- AkavC; (X) =AY, (X=8)=AV, (X=& )+ AV, (X-8)+C,
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=AY, (x=8) =AY, (X)+AV, (X)+¢ 20.
3. AV, (X)+ c > AV, (x—e,)+ ¢ 20> AV, (¥)+ c > AV, (x—e,)+ c. =

AT ch'k (X)-AT ch; (X) =AY, (x— )= AV, (X—&) =AY, (X)+ AV (x-¢)
=AYV, (x=&,)=AV, (X)=0.

4. AV, (X)+6, 202 AV, (X—€,)+C AV (X)+C 2 AV. (X—&,)+C, =
k k k k
ATV, (X) ATV (X)=AV (X—8 )= ANV, (X—8, )= AV, (X—8)—C —AV. (X)+AV. (Xx—¢,)
=-AV. (x)-¢, =0.
5. 02 AV, (x)+ c > AV, (x—e)+ c > AV, (x)+ c > AV, (x—e,)+ c. =

TV, (X)=AT YV (X) =4V, (x-g,)-A

Cx

Ve (X—e ) H ANV, (X) =AY, (X8 )= AV, (X)+AV, (X—€,)
>0

=AY, (x)- AV, (x)

If Av. (X)=A V. (X)=A V. (x—€,)=AV.(x—e,) and ¢, =c,, we also have one sub-case:
Cy Cy Cy Cy
6. AV, (xX)+c, > AV, (X)+c, 20> AV, (x—e)+C = AV, (x—e,)+C,

AkT"vc.k (x)- Akavc; (X)=Ay, (x—&)=AV, (X—€ ) =AY, (X—8)=C, +AV, (X—€)+C,

=c, —¢, =0.
Hence, T*v satisfies B3.
Property B4
In order to prove B4, we consider three cases:
Case Lif 4,> 4, .
By B4, Ay, (X)<AV,. (X) for 4,> 4.
We have Akav% (x)—Akav%, (x)<0. (see the proof of Property B2 Case 1)
Case 2if 4, >4, .

By B4, AV, (X)<Av, (x) for 4, >4,
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We have AkaVzk‘ (X)‘AkaVA; (x)<0. (see the proof of Property B2 Case 2)
Case 3 if g >4 .

By B4, AV, (X)2AV,. (x) for s > .

We have AkaVu; (x)—Akavy; (x)=0. (see the proof of Property B2 Case 3)
Hence, T*v satisfies B4.

Operator T

Since h(x) is increasing convex in x;, it satisfies B1-B4 and we can see that Tv satisfies B1-B4.
Cil et al. (2009) presented a general framework for investigating the effect of system
parameters on the optimal policy for inventory control problem. The interested reader can

refer to it for the overview of this problem.

This completes the proof of Lemma 3.2. [

From Lemma 3.2 we define Theorem 3.2.

THEOREM 3.2. The optimal base-stock and rationing levels satisfy the following properties.

(1) The base-stock level s;(x_), for Component k, is non-increasing in the holding cost h;

and non-decreasing in the lost sales costs c, and ¢, for k=1,2,...,n.

(2) The base-stock level s;(x_,), for Component k, is non-decreasing in the arrival rates 1,
and 4 and non-increasing in the production rate p, for k=1,2,...,n.

(3) The rationing level v (x_), for Component k, is non-increasing in the holding cost h,
non-decreasing in the lost sales cost c,and non-increasing in c, for k=1,2,...,n.

(4) The rationing level r;(x_,), for Component k, is non-decreasing in the arrival rates 1,

and 1, and non-increasing in the production rate u,, for k=1,2,...,n.

Proof of Theorem 3.2

From Lemma 3.2, the base-stock and the rationing levels as:
s, () =min{x, 20ja., ()20,

o, (x5 )=min{x 20[Av, (X)2—¢|, (z%c,)
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e, (X )=min {xk >0[Av, (x)2 —a}. (m=c,)

Property 1:

From Property B1, we consider three cases:

LAY, (X)2 A, (x) for b >h.

Since the function v(x) is convex, for a fixed level x, and two different holding costs h >h,
from Ay, (X)ZAkvh; (x) we have v(x+e,)—Vv(x) is non-decreasing in /.

2. AV, (X) <AV, (x) for ¢, >c;.

Since the function v(x) is convex, for a fixed level x, and two different lost sale costs c, > c,

from Ay, (x)< AV, (x) we have v(x+e,)—Vv(x) is non-increasing in c.

3. AV, (x)<AV, () for ¢, >c,.

Since the function v(x) is convex, for a fixed level x, and two different lost sale costs ¢, >c, 1
from Ay, (x)< AV, (X) we have v(x+e,)—V(x) is non-increasing in c.

Property 2

From Property B2, we consider three cases:

LAY, (X)<AV, (x) for 2> 4.

Since the function v(x) is convex, for a fixed level x_and two different arrival rates 4, >4,

from Ay, (x)sAkv%. (X) we have v(x+e,)—V(x) is non-increasing in 4, .
2. AV, (x)gAkvA; (x) for A4, >4, .

Since the function v(x) is convex, for a fixed level x, and two different arrival rates 4, > 4,

from AV, (X)<AV,. (x) we have v(x+e,)—V(x) is non-increasing in 2, .

3. AV, (X)2Av - (x) for g, > 4.
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Since the function v(x) is convex, for a fixed level x and two different production rates
i > ,u,:' from Ay, (X)SAKV% (X) we have v(x+e,)—Vv(x) is non-decreasing in 4, .

Property 3:

From Property B3, we consider three cases:

LAY, ()= Ay, (x) for b >h.

Since the function v(x) is convex, for a fixed level x, and two different holding costs h, > h, ,
from Ay, (x)zAkvh; (x) we have v(x)—v(x—e,) is non-decreasing in /.

2. AY, (x)<AY, (x) for ¢, >cp.

0

Since the function v(x) is convex, for a fixed level x, and two different holding costs c, >c,

from Ay, (x)< AV, (x) we have v(x)—v(x—e,) is non-increasing in c.

3. AV, (X)2 A, (x) fore, >c;.

Since the function v(x) is convex, for a fixed level x, and two different holding costs c, 20;’
from AV, (x) <AV, (x) we have v(x)—v(x—e,) is non-decreasing in c;.

Property 4:

From Property B4, we consider three cases:

L AV, (X) <AV, (x) for 2> 4.

Since the function v(x) is convex, for a fixed level x, and two different arrival rates 4, > 4,

from Av, (x)sAkv%. (X) we have v(x)—v(x—e,) is non-increasing in 4.
2. AV, (X) <AV, (x) for 4, > 4.
Since the function v(x) is convex, for a fixed level x, and two different arrival rates 4, > 4,

from AV, (X)<AV,. (x) we have v(x)—v(x—e,) is non-increasing in 2, .

3. AV, (X)2Av - (x) for s, > p.
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Since the function v(x) is convex, for a fixed level x and two different production rates

He = gy from A, (x) <AV, (x) we have v(x)—v(x—e,) is non-decreasing in , .

This completes the proof of Theorem 3.2. []

Theorem 3.2 shows that the base-stock and the rationing levels are sensitive to various system
parameters. Property 1 indicates that it is optimal to hold less inventory of Component Kk in
stock as holding cost hy increases, but to hold more inventory of Component k in stock as lost
sale cost either ¢y or ¢k increases. Property 2 indicates that the more demands of the assembled
product or of Component k arrive to the system the more inventory of Component k should be
held in stock. However, the higher production rate |k leads to the lower inventory
requirements for Component k. Property 3 indicates that the increase of holding cost hy or lost
sale cost cx may also increase the probability that demand of Component k would be satisfied,
while the increase of lost sale cost co may reduce this probability. For a similar reason as
shown in Property 3, Property 4 indicates that it is optimal to satisfy more demand of
Component k as the production rate |k increases, but to satisfy less demand of Component k

as the arrival rates 2, and 4, increase.

3.2.4 The Case of Average Cost per Period

In this section we extend our analysis to the case of the average cost per period. Our objective

is to minimize the expected long-run average cost of the system. Under a control policy =

and a starting state x, the average cost is given by g”(x):

[ (hk@) + SN
o ()= limsup |2 (xa.h)l + 200N )] 9

Our aim is to seek the optimal production policy =" that minimizes the average cost per

period g"(x)=inf_g~(x) for all states x. The optimality equation in this case is as follows:
Vi (X)+ 9" =h()+ TV () + D ATV () + D s TV (), (3.10)
k=1 k=1

where g" is a finite constant denoting the average cost per period.

In Theorem3.3, we show that the optimal policy under the average cost criterion retains all the

properties observed in Theorem3.1 and Theorem3.2 under the discounted cost criterion.
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THEOREM 3.3. The optimal policy under the average cost criterion retains all the
properties of the optimal policy under the discounted cost criterion, namely that the optimal
policy can be described by two types of state-depend thresholds: a production base-stock level
and an inventory rationing level. The base-stock and the rationing levels satisfy all the

properties in Theorem 3.1 and Theorem 3.2.
Proof of Theorem 3.3

We deal with the average cot problem through the limit of discounted cost problem with
a —0. Since our problem can be formulated as an MDP, there are two conditions must be
held for the existence of average optimal policy. As showed by Cavazos-Cadena (1992),

Weber and Stidham (1987): 1. there exists a stationary policy = which achieves a finite

average cost g”. 2. the number of states in which the holding cost h(x)<g” is finite.

For our model, consider a policy = that is described by two types of thresholds: a fixed base-
stock level s, and a fixed rationing level r,. Each Component k can be produced if its on-hand
inventory xi is below sy, and each demand of Component k can be satisfied if the on-hand

inventory X, is above ry. The operators T°, T* and T, in equation (3.10) can be written as:

T°v*(x)= V' (x—e) 'ka:le >0,
V' (X)+¢C, otherwise,

T (x) = Vi(x—e,) ika>r-k,
V' (X)+¢ otherwise,
vV (x+e ifx <s,,

TV (x)= ( ) k<_k
V' (x) otherwise.

Since by Property Al function v*(x) is convex in each of the state variables x, there exists
the minimum value that g" =minv"(x). It is not hard to see that policy 7 is stationary, which

achieves a finite average cost and condition 1 holds. For condition 2, since the holding cost

h(x) => s h.(x,) is increasing convex function in each xy, there exists a positive integer y,

the number of states in which the cost h(x) <y is finite. Thus, condition 2 holds.

Based on the above conditions, Weber and Stidham (1987) proposed that there exists a

positive constant g~ and the expected discounted cost v(x), then for all sates x:
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V(X)+ 9" 2 h(X)+ 4T v(x) + Zn:ﬂ,kT “V(X) + Zn:ykav(x).

So, the average cost per period g can be determined form the above inequation.

This completes the proof of Theorem 3.3. []
3.3 Numerical Experiments

In this section, the average cost per period criterion is adopted in our numerical experiments.
We investigate how the optimal control policies depend on different system parameters. We
have used the value iteration algorithm to solve the dynamic programming equation in section
3.2. Readers are referred to the work of Puterman (1994, Chapter 8) for the details of the

iteration algorithm, which we adapted directly.
3.3.1 Value Iteration Algorithm for Average Cost Criterion.

We consider a system with two components and one single product. We apply results for the

average cost criterion. The details are as following:

Since the state space of our system is infinite, truncating the state space is necessary. The state

space is truncated at {0,n™}x{0,n™}, where n™ k=12, are positive integers that are

gradually increased by five at each time. The iteration algorithm will stop when the minimum
of average cost per period is obtained. We use the value iteration algorithm to find a

stationary ¢ -optimal policy, the decision rule (d_)", and an approximation to its value.
Step 1. Input the parameters: x,4,h,c,,n,e&,inc, i=1,2;1=0,1,2, and inc=5.
Step 2. Select g"=0 (the optimal average cost rate), specify &> 0, and n=0.
Step 3. For each state x: x, =0,1,...,n,x, =0,1,...,n,, compute v, , (x) by
V. (X)=h(x)+ ATV, (x) + kZ:;/’lkT ‘v, (X) +k2n:;,ukavn (%),
g=minv_,(x),
v, (X)=v,.(x)-g,

A=V, (X)=V,(x).
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Step 4.

If sp=max|A|-min|A|<e,

go to Step 5. Otherwise, increment n by 1 and return to Step 3.
Step 5.

If |g—g°|/g <&, for each sate X, choose

d,(x)earg (h(x) + AT (X)+ iﬂ,kT v, (X) +i uTVv (x)), and stop.

Otherwise, go to Step 6.
Step 6.

9 =g,
n, =n, +inc,
n, =n, +inc.

Go to step 3.

From the above algorithm we obtain the optimal policy, we will illustrate its structure in the

following subsection.
3.3.2 The Structure of the Optimal Policy

To simplify the computations, we focus on a two-component ATO system. We test this system
with a wide range of parameter values. The structure of the optimal policy is illustrated in Fig.
3.1and Fig.3.2.

Fig.3.1 and Fig.3.2 show that the optimal production policy is similar to that in Benjaafar and
ElHafsi (2006), but the allocation policy is quite different. Fig.3.2 displays the optimal
rationing decision in seven regions. In region 1, all demands are satisfied. In region 2, only
demand of the assembled product is satisfied. In region 3, demand of Component 2 and
demand of the assembled product are satisfied. In region 4, only demand of Component 2 is
satisfied. In region 5, demands of Component 1 and demand of the assembled product are
satisfied. In region 6, only demand of Component 1 is satisfied. In region 7, neither demand is
satisfied. In fact, different regions correspond to different allocation decisions. In region 1, the
amount of the on-hand inventory for both Component 1 and Component 2 is large, thus the
system has enough capacity to satisfy all the demands. But in region 2, the amount of the on-
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hand inventory for both Component 1 and Component 2 is small, thus the optimal policy tends
to use the limited capacity only to satisfy demand of the assembled product. In region 3 and
region 5, the on-hand inventory of one component is much larger than that of the other. Thus,
it is optimal to satisfy demand of the assembled product and the demand of component that has
a larger on-hand inventory. In region 4 and region 6, only one component is available while the
other is not. When both the end product and component demands arrive, the component
demand for the available one can be satisfied directly, but the other demands cannot be. In
region 7, both Component 1 and Component 2 are not available, that is the system has no

available capacity to satisfy any demand.

Also as seen from Fig.3.2, there are two rationing levels r” andr, . Each level is non-

decreasing in the on-hand inventory of the other component. This result is quite different from
the result of Benjaafar and ElHafsi (2006). Note that the assembled product demand has
higher priority, in order to satisfy demand of the assembled product all the components must
be held in stock. If the on-hand inventory of one component increases, it is more desired to
reserve other components for demand of the assembled product. As a result, the rationing
level for each component increases. In summary, the inventory allocation policy is a state-
dependent rationing policy for demand of the individual components. For demand of the

assembled product, it can be always satisfied if all the components are available.
3.3.3 The Effect of System Parameters on the Optimal Policy

In this section, we will briefly discuss how the different system parameters impact on the
optimal policy. The following figures indicate that the base-stock and rationing levels are
sensitive to the values of parameters such as holding cost, lost sales cost, production rate and
arrival rate. From Fig. 3.3(a) and Fig. 3.3(b), it is easy to see that both s’ and r’ are non-
increasing in hy. Since a higher level of hy may incur a greater average cost, the larger holding
cost leads to less production of Component 1. Hence, the base-stock level s’ decreases with

h;. The holding cost also influences the optimal allocation policy that can be seen in Fig.
3.3(b). As the holding cost h; increases it is optimal to keep less Component 1 in stock. This
leads to the increase of the probability that demand of Component 1would be satisfied, thus

the rationing level r decreases.

Fig. 3.4(a) and Fig. 3.4(b) show the effect of the lost sale cost ¢, on both the base-stock and

rationing levels. Both s; and r’ are non-decreasing in co. This result implies that when cg
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increases, it is optimal to hold more inventories for both Component 1 and Component 2, thus
the base-stock level of Component 1 increases. Also, the more production of Component 1
increases the probability that demand of the assembled product would be satisfied, which
leads to more demand of Component 1 would be rejected. Hence, demand of the individual

components is more difficult to satisfy, and the rationing level of Component 1 increases.

Fig. 3.5(a) and Fig. 3.5(b) show the effect of the lost sale cost ¢, on both the base-stock and
rationing levels. In Fig. 3.5(a), the base-stock level of Component 1 is non-decreasing in the
lost sale cost ¢;. When ¢, increases that would increase the average cost of the system, in order
to reduce this effect more Components 1 are desired to produce. Since it is optimal to hold
more inventory of Component 1, the base-stock level of Component 1 increases. As seen from
Fig. 3.5(b), the rationing level of Component 1 is also non-increasing in the lost sale cost c;.
Clearly, the increase of the lost sale cost c; leads to more demands of Component 1 being

satisfied, thus the rationing level of Component 1 decreases.

Fig. 3.6(a) and Fig. 3.6(b) show the effect of the arrival rate 2, on both the base-stock and
rationing levels. Both s; and r” are non-decreasing in 4,. Obviously, when the number of the

assembled product demands increases per unit of time, more demands enter in the system and
more components are needed. Hence, the base-stock level of Component 1 increases. Also,
the result implies that the more production of Component 1 leads to more demands of the
assembled product can be satisfied, which reduces the probability that demand of Component

1 would be satisfied. Thus, the rationing level of Component 1 increases.

Fig. 3.7(a) and Fig. 3.7(b) show the effect of the arrival rate 2, on both the base-stock and

rationing levels. In Fig. 3.7(a), the base-stock level of Component 1 is non-decreasing in

arrival rate 4. It is not difficult to understand the fact that when the number of Component 1

demands increases per unit time, it is optimal to hold more inventory of Component 1, thus
the base-stock level of Component 1 increases. Similarly, in Fig. 3.7(b), the rationing level of

Component 1 increases with the arrival rate 4. It means that the increase of the inventory of

Component 1 leads to more demands of the assembled product being satisfied, while more

demands of Component 1 can be rejected.

Fig. 3.8(a) and Fig. 3.8(b) show the effect of the production rate ., on both the base-stock and
rationing levels. Both s’ and r’ are non-increasing in g . Due to the increase of the

production rate of Component 1, the system has higher production efficiency per unit of time.
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Fig. 3.1. The structure of the optimal production policy with lost sales

(14, = p, =1.0,4, =0.7,4, =0.25, 4, =0.2,¢, = 750,C, = 200,c, =50,h =10,h, =5)
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Fig. 3.2. The structure of the optimal allocation policy with lost sales

(14, = p, =1.0,4, =0.7,4, =0.25, 4, =0.2,¢, = 750,C, = 200,C, =50,h =10,h, =5)

82



Lost Sales for Components and Assembled Product

60 60
50+ . 50 1 r;’ forh =10
s, |forh, =10
40 + 40 4 .
N N r,; |for h, =20
> s, forh, =20 =
30 30 -
r; forh =40
20 s, forh =40 20
104 10 -
0 f f f T 0 T 1 T T
0 2 4 x 6 8 10 0 2 4 x 6 8 10
1 1

(a) the optimal production policy for fixed values of h; (b) the optimal allocation policy for fixed values of h;

Fig. 3.3 The effect of holding cost h; on the optimal policy for Component 1 with lost sales
(1, =, =1.0,4, =0.7,4, =0.25,1, =0.2,c, = 750, ¢, = 200,c, =50)
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(a) the optimal production policy for fixed values of ¢, (b) the optimal allocation policy for fixed values of ¢,

Fig. 3.4. The effect of lost sale cost ¢, on the optimal policy for Component 1 with lost sales
(1, = 4, =1.0,4 =0.7, 4 =0.25,4, =0.2,¢c, = 200,c, =50,h =10,h, =5)
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Fig. 3.5. The effect of lost sale cost ¢; on the optimal policy for Component 1 with lost sales
(1, =1, =1.0,4 =0.7,4 =0.25,1, =0.2,c, = 750,c, =50,h =10,h, =5)
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Fig. 3.6. The effect of arrival rate 4, on the optimal policy for Component 1 with lost sales

(1 =, =2.0,4 =0.25,4, =0.2,C, = 750,c, = 200,c, =50,h, =10,h, =5)
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Fig. 3.7. The effect of arrival rate 2, on the optimal policy for Component 1 with lost sales
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Fig. 3.8. The effect of production rate ., on the optimal policy for Component 1 with lost sales

(4, =0.7,4 =0.25,4, =0.2,¢, = 750,c, = 200,c, =50,h =10,h, =5)
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Thus, there is no need to hold a high-level inventory of Component 1 in stock, and the base-
stock level of Component 1 decreases. Also, high productivity can meet the coming demand

and a low rationing level is optimal for the system.
3.4 Conclusion

In this chapter, we have considered an ATO system with a single product, multi-component
and multi-demand, where demand from both the assembled product and the individual
components can be satisfied or rejected. Demand of the assembled product is assumed to have
a higher priority over demand of the individual components. The problem is modeled as an
MDP. We showed that the optimal policy consists of a base-stock policy and a rationing
policy where both the base-stock level and the rationing level for a component are non-
decreasing in the on-hand inventory of the other components. Finally, we adopted the average
cost criterion in the numerical experiments and explored the impact on the optimal policy of
different system parameters, such as holding cost, lost sales cost, production rate and arrival
rate.
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Chapter 4. ATO System with Individual
Components Demand: Lost Sales for Components

and Backorders for Assembled Product

We consider the ATO system introduced in Chapter 3, however in this chapter we assume that
shortages result in both lost sale and backorder penalties. The unsatisfied demands for the
assembled product will wait for delivery until the next replenishment but there is a cost
associated with dissatisfaction that is independent of the waiting time. The unsatisfied
demands for the individual components will be lost to seek some other source to satisfy their
demands immediately. Thus, the system involves a mixed lost sales and backorders. Managing
such a system is known to be difficult given the correlated component demands. To solve this
problem, we formulate it as an MDP and characterize its optimal policy. Finally, we
investigate the impact of different penalty cost parameters on the optimal policy.

The outline of this chapter is as follows: a general introduction is given in section 4.1. In
section 4.2, we formulate the optimal control model with lost sales and backorders under the
discounted cost case. Then we analyze the structure of the optimal policy, and obtain several
optimal properties. We also extend our model to the average cost case. In section 4.3, the
numerical experiments are provided, based on numerical results we analyze the effect of the
cost parameters on the optimal policy. Section 4.4 summarizes our results.
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4.1 Introduction

In this chapter, we consider a variation of the system studied in Chapter 3. In particular,
demand for the assembled product is satisfied only if all components are available, and a stock-
out of at least one component leads to the product demand being backordered. Demand for the
individual components is satisfied only if the needed component is available, and the
unsatisfied component demand would be lost. Managing such a system is known to be difficult
given the correlated component demands. Besides considering the on-hand inventory X(t) of
the system, the backorder level Y(t) of the assembled product must also be considered.
Therefore, our state space can be extended to the pair (X(t),Y(t)). In each state, the manager
can decide what to produce and how much to produce. Here, the production decision depends
on both the on-hand inventory and the backorder level. For each component, several options
could be chosen: produce one unit to stock, produce one unit to reduce one unit backorder of
the assembled product (if all other components are available), or do not produce at all. In this
case, we assume that the product demand has no priority over the components demand.
Therefore, when there are backorders from the end product demand, it is not always optimal
to produce the components to reduce the backorder level. At the same time, when the
demands arrive, the manager has to decide whether to allocate the inventory of the
components to the individual components demand, or allocate this inventory to demand of the
assembled product.

To solve this problem, we formulate it as MDP and characterize its optimal operating
production and inventory allocation policies. In a general ATO system, the base-stock level
and rationing level of one component depend on the on-hand inventory of other components.
In our system, determination of the above threshold levels of one component should take into
account both the backorder level of the assembled product and the on-hand inventory of all
components. This chapter shows that for components, the optimal policy can be characterized
by a production base-stock level and an inventory rationing level, while for the assembled
product, the optimal policy is characterized by a state-dependent rationing level. Furthermore,
we show that, the production base-stock level of components (for specific states) can be
interpreted as a rationing level of the assembled product with respect to component inventory

level.
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4.2 The Optimal Control Problem

4.2.1 Model Formulation and Structure of the Optimal Policy

In this section, we describe the sequence of events of the ATO system. We consider a system
consisting of a single product (the assembled product) assembled from n components. This
chapter is based on the general assumptions in Chapter 3: component production times are
exponentially distributed with mean 1/, for k=1,...,n; demand for Component k and the
assembled product arrive according to a Poisson process with rates 4, and A,, respectively.
The current state of the system at time t can be defined by the pair (X(¢),Y(¢)), where
X(H)=(X,(?),..., Xu(1)) and X,(¢) is a nonnegative integer denoting the on-hand inventory level of
Component k at time ¢, Y(¢) the backorder level for demand of the assembled product is a
nonnegative integer. Each demand can be satisfied by only one single product or one
component. If a demand of Component k is rejected, a lost sale cost ¢k per unit per unit of time
is incurred. If a demand of the assembled product is unsatisfied, a backorder cost by(.) per unit
per unit of time is incurred. Each unit of Component k incurs an inventory carrying cost hy(.)

per unit per unit of time. We assume both bg(.) and hy(.) are increasing convex functions.

The expected discounted cost over an infinite planning horizon obtained under a policy = with

a starting state (x,y)=(x,,...,X,,y) can be defined as

v (% y)=EL, {Z [ e h (X, ()t +§n: [Ce e dN, () + [ e by (Y (t))dt}, (4.1)

where > 0is the discount rate, Nk(t) is the number of units of Component k demand that have

not been satisfied up to time t. Following Lippman (1975), we define the uniform rate

B=Y1oA+Ziak ,and leta+ f=1.

The dynamic programming equation can be written as:
V(%) = () +by(Y) + ATV (%, ) + D ATV (%, )+ 4TV (%, ), (4.2)
k=1 k=1

where, operators T°, T and Ty, k=1,...,n are defined as follows:
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Ly +1 if TTx, =0

TOV(X,y)z V(X y+ ) : k=1Xk (4.3)
min {v(x -&,y),v(x,y +1)} otherwise,
V(X,y)+cC ifx, =0,

T*v(x,y)= ( Y)* G © (4.4)
min{v(x—e,y).v(x,y)+c}  otherwise,
min{v(x, y),v(x+e,, y)} ify =0

Tv(xy)={min{v(x,y),v(x+e,y)} if y> 0,_In]kxi=0 (4.5)
min{v(x+ek,y),v(x—iei,y—l)} ify>0,_1£!xi>0.

Here, e is the k™ unit vector of dimension n and e=3"_e, is an n-dimensional vector. The

system chooses the decision that leads to the lowest system cost. Operator T’is the decision

of how to control demand orders from the assembled product. If [],.x >0 (i.e., all

components are in stock), we consider whether to satisfy the assembled product demand or

delay it for later by backordering it. If, on the other hand, []; x =0 (i.e.,, not all the

components are available), the assembled product must be backordered. Operator T*

corresponds to the decision of how to control demand orders from Component k. If x>0, we
have two options: satisfy demand of Component & immediately or reject it. If x, =0,
Component &k is not available, thus the demand of Component k is lost. Operator T,
corresponds to the production decision of Component £. If y=0 meaning that there are no

backorders of the assembled product, we must choose between: do not produce Component k

n
i=k

or produce a unit of Component £ to increase its inventory. If y>0,[].,x =0 in this case there

are backorders of the assembled product, and there is at least one component that is not

available, the decision, in this case, is either not to produce Component k or produce a unit of

n
i=k

Component k to increase its inventory. If y>0,[]., x, >0 meaning there are backorders of the

assembled product and all other components are available, the decision is either to produce a
unit of Component & to stock or use the produced unit to reduce the backlog of the assembled

product (through assembly with other components).
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4.2.2 The Structure of the Optimal Policy

We use the dynamic programming formulation (4.1) to analyze the structure of the optimal
policy for this system. We show that the optimal function v*(x,y) for all states (x,y) satisfies

properties specified in Definition 4.1. In order to do so, we make the following important

definition.

Definition 4.1: Let 24 be the set of functions defined on Z*" , where Z* is the set of non-

negative integers, such that if ve 2, we have

C1: v(x+2e, y) (x+ej,y)2v(x+ej,y)—v(x,y)foraIIx,y.

C2: v(X,y+2)-v(x,y+1)>v(x,y+1)-v(xy) forall x,y.

C4: v(x+e; +e,y)-v(x+e,y)<v(x+e;,y)-v(x,y) forall x, y and i# j.

(
(

C3: v(x+e y+1) (x,y+1)£v(x+ej,y)—v(x,y) for all x, y.
(

CS5: v (

X+28,+€ +€ +..+€ ,y) (x+ej+ei1+ei2+...+eip,y)ZV(x+ej,y)—v(x,y)
forall x, y and j, where i,,i,,....i, # j, and 1< p<n-1.

Cé6: v(x+2ej,y+1)—v(x+ej,y+1)2v(x+ej,y)—v(x,y)for all x, y.

CT7: v(x+e;,y+1)-v(x+e;—e,y)2v(x, y+1)-v(x—ey) forall x, y and [0, x, > 0.

C8: v(x,y+2)-v(x—ey+1)2v(x,y+1)-v(x—e,y) forall x, y and [T}, x; > 0.

Property C1 indicates that the optimal cost function v is component-wise convex in each of
the state variables Xj. Property C2 indicates that the optimal cost function v is component-
wise convex in the backorder level y. Property C3 indicates that the marginal cost difference
due to increasing the on-hand inventory of Component j is non-increasing in the backorder
level y. Property C4 indicates that the marginal cost difference due to increasing the on-hand
inventory of Component j is non-increasing in X;. Property C5 indicates that the marginal cost
difference due to increasing the on-hand inventory of Component j (given a fixed backorder

level y) is non-decreasing with joint increases in X, ..,and X; . Property C6 indicates that

J1 | L
the marginal cost difference due to increasing the on-hand inventory of Component j is non-
decreasing with joint increases in Xj and the backorder level y. In particular, Properties C3, C4

and C5 reflect the submodularity and supermodularity of function v(x,y) (see Koole (2006,
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1998) and Hajek (1984) ).

Property C7 indicates that the marginal cost difference due to jointly increasing on-hand
inventory of all components and backorder of the product, by one unit each is non-decreasing
in the on-hand inventory level X;. Property C8 indicates that the marginal cost difference due
to jointly increasing on-hand inventory of all the components and the backorder level of

product, by one unit each is non-decreasing in the backorder level y.

Lemma4.l. If veXA, thenTve®, where
TV(X,Y) =h(X) +by(y) + ATV Y) + D ATV Y) ) s T V(X ).
k=1 k=1

Proof of Lemma 4.1

In order to simplify the proof, we first define the following notation:
A V(X Y)=v(x+e;,y)-v(x ),
A V(X%Y)= ijv(x+ e, y) —A, V(%)

ij‘xiv(x, y)= Axi,ij(X, y)= ijv(x+ei , y)—Ava(x, y),

LN~ v(X,y)=v(x+ e+, +..+€.,Y) -v(x,y),

AN(XY)=V(X,y+1)-V(X,Y),
A, V(X Y)=ANV(X Yy +1)—ANV(X,Y),
ij,yv(x, y)= Ayvxjv(x, y)= ijv(x, y+1)—ijv(x, y),

AZ."=1X|+VV(X’ y)=v(x+ey+1)—v(x,y).
We also show the following two observations

Observation 1. ijv(x+ iei,y+1jsAva(x, y), for Vi, jen,i=j.

i#]

Using C3 and C4, A, v(x+ iei,y+1j£ijv(x, y+1) <A, v(XY).

j i

Observation 2. Ayv(x+iei,y+1)2Ayv(x, y), for Viken,izk.
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Using C3 and C8, Ayv(x+ Zn}ei,y+1)2 AN(x+e,y+1)=A V(X Y).

i=k

In order to prove Lemma 4.1, we need to show that if ve %l then TV must satisfy C1-C8. In

order to do so, we prove that if ve2 then T°ve®, Tve® and Tve2A for all k. In other
words, we show that T°ve?2l, Tve®l and Tve2 satisfy C1-C8.
First, we note that properties C1, C2, C5 and C6 are implied by properties C3, C4, C7 and C8.

To see this consider the following

Using C4 and C5 we have
v(x+2e;,y)-v(x+e;y)2v(x+e; —e,y)-v(x—e,y)2v(x+e;,y)-v(xy).

Hence, v(x+2e;,y)-v(x+e;,y)2V(x+e;,y)-v(x,y)and C1 holds.

Using C3 and C8 we have
V(X y+1)-v(x, y)SV(x—ej,y+1)—v(x—ej,y)SV(x,y+2)—v(x,y+1).

Hence, v(x,y+2)-V(x,y+1)>v(x,y+1)-v(xy)and C2 holds.

Using C3, C4 we have

v(x+e;+e,y)-v(x+ey)2v(x+e;,y)-v(x,y) and by C4 we have

v(x+2ej +e, +e, +...+eip,y)—v(x+ej +e, +e, +...+eip,y)2v(x+ej +e,y)-v(x+e,y).

Hence, v(x+2ej +e, +e, +...+eip,y)—v(x+ej +e, +e, +...+eip,y)2v(x+ej,y)—v(x, y) , and

C5 holds.

Using C4 and C7,

v(x+2ej,y+1)—v(x+ej,y+1)2v(x+ej - iek,yj—v[x—éjek,ijv(x+ej,y)—v(x,y).

k=#j
Hence, v(x+2e;,y+1)-v(x+e;,y+1)>v(x+e;,y)-v(x,y) and C6 holds.
As a consequence, we only need to show that Tv satisfies Properties C3, C4, C7, and C8.

Operator T,

Property C3: we need to show that
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A, Tv(xy) =Tkv(x+ej,y+1)—Tkv(x+ej,y)—Tkv(x, y+1)+Tv(x y)<0.

Xj.y Kk

Since the Operator 7} depends on y and f[ X, , we distinguish the following cases
izk

I. y=0or y>0 and [, X =0. In this case, Operator 7} can be rewritten as

T.v(x,y)=min {v(x, y).v(x+e,, y)} =V(x,y)+min {0, A V(x, y)}

Hence,

A TV(%Y)=A, v(xy)+min{0,A, v(x+e,y+1)}-min{0,A, v(x+e,y)|

Xj.y Kk

—min{0,A, v(x,y +1)} +min{0,A, v(x,y)}.
Case j=k. In this case,

A, TV(xy)=A, V(xy)+min{0,A v(x+e,,y+1)}-min{0,A, v(x+e,,Y)}

X,y K
—min{O,Axkv(x,y+1)}+min{O,Axkv(x, y)}
By B3, we have A v(x+e,,y+1)<A v(x+e,y), and A v(x,y+1)<A v(x,y). By Bl and
B3, we have A, v(x,y+1)<A v(x+e,,y), by B6A v(x+e,y+1)<A v(xy). Hence, we have

A V(X Y+1) <A V(X y)<A v(x+e,y+1)<A v(x+e,y), which leads to five sub-cases.
LA V(X Y+1) <A V(X y)<A v(x+e,y+1)<A v(x+e,,y)<0=

A, TV(XY)=A, V(X Y)+A V(x+e,y+1)—A v(x+e,y)—A V(X y+1)+A v(XY)

Xy k
=8 V(CHe Y1) = A V(X Y) = A V(X e, y)+A, V(X )
=A v(x+e,y+1)-A v(x+e,y)<0.

2. A V(X y+1)<A V(X y)<A v(x+e,y+1)<O0<A v(x+e,y)=

A, TV(XY)=A, V(X Y)+A v(x+e,y+1)-A V(X y+1)+A v(xy)
=A V(x+e,y+1)—A V(X y)+A V(X y)=A v(x+e,y+1)<0.
3. A V(X y+1)<A v(x,y)<O0<A v(x+e,y+1)<A v(x+e,,y)=
A TV(Xy)= va(x, y)+ Axkv(x, y) —Axkv(x, y+1)=0.

X,y K

4. A, V(X y+1)<0<A v(x,¥)<A v(x+e,y+1)<A v(x+e,,y)=
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Xy Tk

A, TV(XY)=A, V(X Y)=-A, V(X y+1)=—A v(Xy)<O0.
5. 0<A V(X y+1)<A v(x+e,y+1)<A V(X Y)<A v(x+e,y)=
A, , TV(x,y)= A, WNV(xy)<0
Case j=k. Inthis case,

by B4, we have A v(x+e,y+1)<A v(x,y+1), and A v(x+e,y)<A v(xy). By B3,

Axkv(x,y+1)£Axkv(x, y),and Axkv(x+ek,y+1)£Axkv(x+ek,y) . Hence, we have
Av(x+e,y+1)<A V(X y+1)<A v(x+e,y)<A v(xy),or
Axkv(x+ej,y+1)sAxkv(x+ej,y)sAxkv(x,erl)SAxkv(x, y).
Hence, we consider the following sub-cases.
LA V(x+e, y+1)<A V(X y+1) <A v(x+e,y)<A V(X y)<0=

ATV Y)=A, V(6 Y)+AV(X+e,y+1)—A, v(X+e,y)—A, V(X Y+1)+A,v(XY)
=v(x+ej +ek,y+1)—v(x+ej, y+1)—v(x+ej +ek,y)+v(x+ek,y)

:Ayv(x+ej +ek,y)—Ayv(x+ek, y)<0.
2. Axkv(x+ej , y+l) <A V(X y+1)£Axkv(x+ej , y)sog A V(X Y)=

A, TV(xY)=A, V(X y)+Axkv(x+ej , y+1)—AXkV(X+ej , y)—Aka(x, y+1)+A V(X Y)-A, v(XY)
=AV(x+e +e,y)-Av(x+e,y)-A, v(xy)<O.

3. A, V(x+e,y+1)<A V(X y+1)<O<A V(X+e,Y)<A V(X y)=>
ATV Y)=A, V(X Y)+A V(x+e,y+1)-A v(x+e,y)<O0.
4. A v(x+e,y+1)<O<A v(x,y+1)<A v(x+e,y)<A, v(xy)=
A, TV(XY)=A, v(xy)+A,v(x+e,y+1)<O0.
5.0<A, v(x+e,y+1)<A V(X y+1)<A v(x+e,y)<A V(X y)=

ij’kav(x, y)= va(x, y)<0.

6.4, V(x+e,y+1)<A v(x+e,y)<0<A V(X y+1)<A V(X y)=
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A, TV(XY)=A, V(X y)+ Axkv(x+ e,y +1) —Axkv(x+ e, y) <0.

II. y>0 and [T % >0. In this case, we have

izk

TV(X,y)= min{v(XJrek,y),v(x—Zn:ei , y—1)}

To prove this case, we use the same method used Ha (1997c) and Benjaafar et al. (2010). As
above, we distinguish two cases.
Case j=Kk. In this case, we define the function W (u,x,y) on {0,1}xZ" as

v(x+e,,y) ifu=0,
V(X—Z” e y—l) ifu=1.

izk Ti?

W(u,x,y):{

T.v can then be rewritten as follows:

Tv(x,y)= min{v(x+ek,y),v(x—zn:ei,y—1)}

= um{(|)r11}W {ux,y}=(1-u)v(x+e,, y)+uv(x—§ei, y—1)_
Also,

A v(x+e,,y) ifu=0,
ANV(x=X7.e.y-1) ifu=1.

izk Ti?

AXkW(u,x,y)z{

Hence, by B7, we have A W (0,x,y)>A W (Lx,y) and therefore, W (u,x,y) is submodular
in the direction (u, xi). Let Tv(x+e,,y)=W (u,x+e,,y) and Tv(x,y+1)=W (u,,x,y+1) and
consider the following two cases.

Case u, <u,.

Tv(x+e, y+1)+Tv(X,y)<W (u,,x+e_,y+1)+W (u,X,y)
<SW (U, X+, Y)+W (U, X,y +1) =W (u,, X, y) +W (u,, X, y)
<W (u, x+e,,y)+W (u,, X,y +1) =W (u,, X, y)+W (u,, X, y)
=TVv(x+e,y)+TVv(xy+1).

The first inequality is due to the definition of Tyv; the second inequality is due to B3 and the
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third inequality is due to the submodularity of W in (u, x).

Case u, >u,(u,=Lu, =0.)

TV(x+e,y+1)+T V(X y)<W(Lx+e,y+1)+W(0,x,Y)
v(x+ek —Zn:ei,y)+V(X+ek,y)
Sv(x+ek —iei,y—1)+v(x+ek,y+1)
=W (Lx+e,,y)+W(0,x,y+1)
=T.v(x+e,,y)+T V(X y+1).

The third inequality is due to the Observation 2.
Case j=k. In this case, we use the same function W (u,x, y) as above. Hence,

AVv(x+e,.,y) if u=0,
Ayv(x—Z” e y—1) ifu=1.

izk Ti?

AW (u,x, y)={

Also, by B8, we have AW(0,x,y)>AW(Lx,y). Hence, W(u,x,y) is submodular in the
direction (u, y). Let Tv(x,y+1)=W (u,x,y+1) and T,v(x+e,,y)=W (u,,x+e,,y) and consider
the following cases.
Case u, <u,.
Tkv(x+e].,y+1)+Tkv(x,y)sW(uz,x+ej,y+1)+W(ul,x,y)
sW(uz,x+ej,y)+W(u2,x,y+1)—W(u2,x,y)+W(ul,x,y)

<SW (U, X+, y)+W (U, X, Y +1) =W (U, X, y) +W (U, X, y)
=Tv(x+e,y)+T V(X y+1).

The first inequality is due to the definition of Tyv; the second inequality is due to B3 and the

third inequality is due to the submodularity of W in (u, y).

Case u, >u,. (u,=1u,=0.)
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Tkv(x+ej,y+1)+Tkv(x, y)<W (1 x+ej,y+1)+W (0,x,y)

( —iei,y)+v(x+ek,y)
v(

izk

<V

<v(x+e, +e, y)+v(x Se, y)

izk

=W (0,x+e,,y)+W (L,x,y+1)
=Tkv(x+ej,y)+Tkv(x, y +1).

The third inequality is due to B5.

Hence, T, v satisfy B3.

Property C4: we need to show that

A, TV(6Y)=Tyv(x+e +e,y)-Tyv(x+e,y)-Tyv(x+e,y)+Tv(xy)<0.

Xj.X ok

Since the Operator T} depends on y and 11[ X, , we distinguish the following cases

I. y=0 or y>0 and [, X =0. In this case, Operator Ty can be rewritten as

TV(x,y)=min{v(x,y),v(x+e,y)} =v(xy)+ min{O,Axkv(x, y)}
Hence,

A, TV(XY)=A, V(X Y)+ min{O,Axkv(x+ej +ei,y)}— min{0,A, v(x+e, )}

Xj.% ok

—min {O,Axkv(x+ej , y)} +min {O,Axkv(x, y)}
Case i=k # j. In this case,

A, TV(xy)=A, V(X y)+min {O,Axkv(x +e, +e,, y)} —min {O,Axkv(x +e,, y)}
—min {0, A V(x+e,, y)} +min {O, A V(x, y)}

By C1 and C4 and C5, Axkv(x+ej,y)SAxkv(x, y)sAxkv(x+ek+ej,y)SAxkv(x+ek,y), which

leads to five sub-cases:

1A v(x+e,y)<A V(X Y)<A V(x+e +e,y)<A v(x+e,y)<0=

A, TV(GY)=A V(X Y)+A V(x+e, +e,Y) A, V(X+e,y)—A v(x+e,Y)+A V(X Y)

X Xj ok

=A V(x+e +e,y)-A v(x+e,y)<0.
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2. Axkv(x+ej,y)sAxkv(x, y)SAxkv(x+ek +ej,y)30£Axkv(x+ek,y):>

AL TV(GY)=A, V(X Y)+A, V(x+e, +e,y)-A v(x+e,y)+A V(XY)

X X

=A,V(x+e, +e,y)<0.

3. A, V(x+e,Y)<A V(X y)<O<A v(x+e, +e,y)<A V(x+e,Y)=

ATV Y)=A, V(X Y)- Axkv(x +e,, y) +A, V(% y)=0.

X 1 Xj k

4, Axkv(x+ej,y)sOSAxkv(x,y)SA v(x+ek+ej,y)SA v(x+e,y)=

A, TV(XY)=A, V(X Y)-Av(x+e,y)==A,v(xy)<O0.
5. 0<A, v(x+e,y)<A V(X Y)<A V(x+e, +e,y)<A V(x+e,y)=

AXK'XITKV(X, y) = Axk,xjv(x’ y) < 0'

Case j=k #i. In this case,

A, TV(xy)=A, V(X y)+min {O,Axkv(x +e, +e, y)} —min {O,Axkv(x+ e, y)}
—min {0, A v(x+e, y)} +min {O, A V(X y)}

Since the proof is similar as Case i=k = j, we omit it.

Case i #k # j. In this case,

A, TV(XY)=A, V(X y)+min {O,Axkv(x +e +e,, y)} —min {O,Axkv(x +e,, y)}
—min{0,A, v(x+e;,y)}+min{0,A, v(x,y)}.

By C1, C4 and C5 we have
Axkv(x+ei +ej,y)sAxkv(x+ej,y)sAxkv(x+ei,y)SAxkv(x, y),or
A V(x+e +e,y)<A v(x+e,y)<A v(x+e,y)<A V(XY).

If A v(x+e +e,y)<A v(x+e,y)<A v(x+e,Y)<A v(xy), which leads to five sub-cases:

1A v(x+e +e,y)<A v(x+e,y)<A V(x+e,y)<A v(xy)<0=
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A, TV(6Y)=A, V(X y)+Axkv(x+ei +ej.,y)—Axkv(x+ei,y)—Aka(x+ej , y)+Axkv(x, y)
=AV(x+e +e,Y)-AV(x+e,.Y)
=A,, V(x+e,y)<0.

2. A V(x+e +e,Y)<A V(Xx+e,y)<A V(x+e,y)SO<A V(X y)=

A TV(GY)=A V(X Y)+A V(X+e +€,,y)—A V(x+e,y)-A v(x+e,Y)+A V(X Y)-A v(XY)

% Xj

=A,, V(X+e,Y)=A v(xy)<0.

3. A V(x+e +e,y)<A V(X+e,y)SO<A V(X+e,y)<SA V(X y)=

A, TV Y)=A, V(X Y)+AV(X+e +e,y)—A, v(x+e,y)

X.Xj Kk

= A><i-><jv(x’ y) + Axi‘XkV(X + ei’ y) <0.

4. A v(x+e +e,y)<O<A v(x+e,y)<A V(x+e,Y)<A V(X y)=

Xk

A, TV(CY)=A, V(X Y)+A,V(x+e +e,y)<O0.

oy e
5.0<A v(x+e +e,y)<A v(x+e,y)<A V(X+e,y)<SA V(X y)=

Axi‘ijkv(x, y)= Axi,x,.V(X7 y)<O0.
If A v(x+e +e,y)<A Vv(x+e,y)<A v(x+e,y)<A, v(xy), which leads to five sub-cases:
LA V(x+e +e,y)<A v(x+e,y)<A v(Xx+e,y)<A V(X y)<0=

Xk Xk

A, TV(6Y)=A,, V(X y)+Axkv(x+ei +ej,y)—Axkv(x+ei,y)—Aka(x+ej , y)+Axkv(x, y)
=AV(x+e +e,Y)-AV(x+e,Y)
=A,, V(x+e,y)<0.

2. A V(x+e +e,Y)<A v(x+e,y)<A v(x+e,y)SO<A V(X y)=
A TVGY)=A V(6 Y)+A V(X+e +€,y)—A V(x+e,y)-A v(x+e,Y)+A V(X Y)-A v(XY)

=, V(x e, ¥)=A,V(x y) <O

3. A V(x+e +e,Y)<A V(x+e,y)<O<A v(Xx+e,y)<A V(X y)=

Xk
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A, TkV( Y) =AMJV(X, y)+Axkv(x+ei +e,, y)—Aka(erei Y)
=A,, V(X y)+A,  v(x+e,y)<0.

4. A v(x+e +e,y)<O<A v(x+e,y)<A v(x+e,y)<A, v(XYy)=

AL TV(x, y):ijv(x,y)+Axkv(x+ei +ej,y)£0.

%.Xj Kk
5.0<A v(x+e +e,y)<A v(x+e,y)<A v(X+e,y)<SA V(X y)=

A, TV(xy)=4A, v(xY)<0.

%Xk

II. y>0 and [];..x >0. In this case, we have

TV(XY)= min{v(x+ek , y),v(x—zn:eI , y—l)}.

Case i=k # j
We use the same function W (u,x,y) as in the proof of C3 Casel (2), and have the first

differences of W in x; direction.

A V(x+e.,y) ifu=0,
AW (uxy)=< "
W (uxy) ANV(X=-31.e.y-1) ifu=1.

By C7, we have A, W(0,x,y)>A, W (Lx,y)and therefore, W (u,x,y) is submodular in (u, x).
Let Tv(x,y)=W (u,x+e,,y) and Tv(x+e, y)=W(u,,x+e,,y) and consider two cases:
Case u, <u,,
Tkv(x+ek+ej,y) +Tv (u ,x+ek+ej,y)+W(ul,x,y)

W( x+ek,y)+W(u2,x+ej,y)—W(uz,x,y)+W(ul,x,y)

W (U, x+e,,y)+W (u,x+e;,y)=W (U, y)+W (u,x,y)
Tv(x+e,y)+Tv(x+e,y).

IA

The first inequality is due to the definition of Tyv; the second inequality is due to C4 and the

third inequality is due to the submodularity of W in (u, x;).

Case u, >u,, u, =1,u, =0.
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Tv(x+e +ek,y)+Tv X,Y) W(O x+ej+ek,y)+W(1,x,y)
(

v(x+e, +ek,y)+v(x—iel,y—1)

12k

IA

v(x+eA —En:el,y—l)+v(x+ek,y)

12k

W (Lx+e,y)+W(0,x+e, )
Tv(x+e],y)+Tv x+e,.,y).

k

The third inequality is due to the Observation 1 A, v(x, y)SAva(x—ie,,y—l), and C4
A V(x+e,Y)<A V(X Yy). Hence we have A, v(x+e,,y) <A, v(x Se,y— 1)

=k

Case j=k #i. In this case,

A, Tv(xy)=A, v(xy)+min{0,A v(x+e, +e,y)}-min{0,A, v(x+e,y)}

Xq. X K

—min {0, A v(x+e, y)} +min {0, A V(X y)}

Since the proof is similar as Casei=k = j, we omit it.

Case izk = |

We use the functionW (u,x,y), where W (u,x,y) is submodular in (u, X;).

Let Tv(x+e,,y)=W(u,x+e;,y) and Tv(x+e,y)=W (u,,x+e,y) and consider two cases:

Case u, <u,,

Tkv(x+ej +ei,y)+Tv(x, y)sW(uz,x+ej +ei,y)+W(ul,x, y)

IA

W (U, x+e,y)+W (U, x+e,y) =W (u, X y)+W (u,X )
W(ul,x+e, y)+W(u X+, Y) =W (U, %, y)+W (U, X, y)

Tv (x+ej,y)+Tv X+e,y).

IA

The first inequality is due to the definition of Tyv; the second inequality is due to C4 and the

third inequality is due to the submodularity of W in (u, x;).

Case u, >u,, u, =1,u, =0.
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Tkv(x+ej +ei,y)+Tkv(x, y)SW(O,X-i-ej +ei,y)+W(2,x,y)
=v(x+e, +e, +ei,y)+v(x—iei,y—1)

sv(x+ej —En:ek,y—1)+v(x+ek +e,Y)

=W (2,x+e,,y)+W(0,x+e,y)
=Tv(x+e,,y)+Tv(x+e,y).

The third inequality is due to C4 and the Observation 1

A V(x+e +e,y)<A V(X y)<A (x Zel,y 1)

ik

Hence, T,v satisties C4.

Property C7: we need to show that

AZ" TV(Xy)=TVv(x+e,y+1)-Tyv(x+e —ey)-TVv(xy+1)+TVv(x—ey)=0
1Y

Since the Operator T} depends on y and .12 X, , we distinguish the following cases

I. y=0 or y>0 and [];, X =0. In this case, Operator Ty can be rewritten as
Tv(x y)=min{v(x,y),v(x+e,,y)}.

Case j=k. In this case,

AZn TV(Xy)=TVv(x+e,y+1)-Tyv(x+e —ey)-TVv(xy+1)+Tyv(x—ey)=0.

Define O on {0,1}xZ"by

v(x+e,,y) ifu=0,

O(u,x, y):{

v(x,y) ifu=1.
T,v can be rewritten as follows:
Tv(x,y)=min{v(xy),v(x+e,y)}

= mln O{u X, ¥} =(1-u)v(x+e,y)+uv(xy).
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Also

A v(x+e,,y) if u=0,

A O(u,x,y)=
Ouxy) {Axkv(x,y) ifu=1.

Hence, by C1, we have A_O(0,x,y)>A, O(Lx,y)and therefore, O(u,x,y) is submodular in (u,
). Let Tv(x+e,y+1)=0(u,x+e,,y+1) and T,v(x—e y)=0(u,,x—e,y) and consider two
cases:
Case u, <u,,
TV(X,y+1)+Tyv(x+e, —ey)<O(u,X,y+1)+O(u, x+e, —e,y)
<O(u,x+e,,y+1)+O(u,,x—e,y)-O(u,x+e,—e y)+O(u, x+e, —e,y)

<O(u,x+e,,y+1)+0O(u,, x—e,y)-O(u,,x+e, —e,y)+O0(u,x+e, —e,y)

=TV(x+e,y+1)+Tv(x—ey).
The first inequality is due to the definition of Tyv; the second inequality is due to C7 and the
third inequality is due to the submodularity of O in (u, ).

Case u, >u,, u =1u, =0.

TV(X, y+1)+TVv(x+e, —ey)<O(0,x,y+1)+O(Lx+e, —ey)
=v(x+e,y+1)+v(x+e, —ey)
=0(Lx+e,y+1)+0(0,x—e,y)
=Tv(x+e,,y+1)+Tv(x—ey).

Case j=k. In this case,

AZn x|+y,xJTkV(X, y)=Ty(x+e,y+1)-Tyv(x+e —ey)-Tyv(x,y+1)+Tv(x—ey)=0.

We use the function O(u,x,y) and have the first differences of O(u,x,y) in x; direction.

A V(x+e,y) if u=0,

A, O(u,x, y)={

ijv(x, y) ifu=1.

Hence, by C4 A, O(Lx,y)>A, O(0,x,y) we have and therefor, O(u,x,y) is supermodular in (u,

Xj

x). Let Tv(x+e —ey)=0(u,x+e —ey) and Tv(x,y+1)=0(u,,x,y+1) and consider two
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cases:
Case u, >u,,
Tv(x+e,y+1)+Tv(x—ey)=0(u,x+e,, y+1)+O(u,x—e,y)
>0(u,, x+e, —€Y)-0(u,, x—&Y)+0(u,xy+1)+O(u,x—e,y)

zo(ul,x+ej—e y) L X—8,Y)+0(u,,X y+1)+0(u,x—e,y)
=Tkv(x+ej—e, y) Tkv(x,y+1).

The first inequality is due to the definition of Tyv; the second inequality is due to C7 and the

third inequality is due to the submodularity of O in (u, X;).

Case u, <u,,u, =0,u, =1.

Tkv(x+ej,y+1)+Tkv(x—e,y) O(O x+ej,y+1)+0(1,x—e, y)
v(x
v(x

O(0,x+e; —e,y)+O(Lx,y+1)

+ek+ej,y+1)+v(x—e,y)

IV

+e, +e, —e,y)+v(x,y+1)

=Tv(x+e, —ey)+Tv(xy+1).

The third inequality is due to C7.

II. y>0 and T[], x >0. In this case, we have

Tv(x,y)=min {v(x +e,, y),v(x —~ Zn:ei Y —1)}

i=k

Case j=k. In this case,

AZ" TV(Xy)=Tyv(x+e,y+1)-Tyv(x+e —ey)-TVv(xy+1)+Tv(x—ey)>0

We use the functionW (u,x,y), where W (u,x,y) is submodular in (u, x).
Let Tv(x+e,,y+1)=W(u,x+e,,y+1) and T,v(x—e,y)=W (u,,x—e,y)and consider two cases:

Case u, <u,,
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TV(Xy+1)+Tv(x+e —ey)<W (u,X,y+1)+W (u,, x+e, —e,y)
<W (u,x+e,,y+1)+W (u,x—e y)-W (u,x+e, —ey)+W(u,, x+e,—ey)
<W (u,x+e,,y+1)+W (u,, x—e,y)-W (u,x+e, —ey)+W(u,x+e, —ey)
=Tv(x+e,, y+1)+Tv(x—ey).

The first inequality is due to the definition of Tyv; the second inequality is due to C7 and the

third inequality is due to the submodularity of W in (u, x,).

Case u, >u,, u, =1,u, =0.

TV(X y+1)+Tyv(x+e —ey)<W(Lx,y+1)+W(0,x+e, —ey)
=v(x—zn:ei,y)+v(x+2ek -e,y)

=v(x+e, —e, y)+v(x+ek —zn:ei,y)

=W (0,x—e,y)+W (Lx+e,y+1)
=TV(x—ey)+TVv(x+e,y+1).

Case j=k. In this case,

AZ" TV(X,y)=TV(x+e,y+1)-Tyv(x+e —ey)-TVv(xy+1)+Tv(x—ey)=0.
g A TYXj

We use the functionW (u,x,y), where W (u,x,y) is submodular in (u,x;).

Let Tv(x+e,y+1)=W(u,x+e,y+1) and T,v(x—e,y)=W (u,x—e,y) and consider two cases:

Case u, <u,,

TV(Xy+1)+Tv(x+e —ey)<W (u, X y+1)+W (u, x+e, —e,y)
sW(ul,x+ej,y+l)+W(ul,x—e,y)—W(ul,x+ej —e, y)+W(u2,x+ej —e,y)
<W (U, x+e;,y+1)+W (u,, x—e,y)-W (u,x+e —e,y)+W (u,x+e —ey)
=Tkv(x+ej,y+1)+Tkv(x—e, y).

The first inequality is due to the definition of Tyv; the second inequality is due to C7 and the
third inequality is due to the submodularity of W in (u,x;).

Case u, >u,, u, =1u, =0.

2' 1
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T,v(X, y+1)+Tkv(x+eJ. —e, y)sW (Lx,y+1)+W (O,x+ej —e, y)

v(x—iei,y)+v(x+ek +e,—€,y)
v(x

i=k

+e, —e,y)+v(x+ej —Zn:ei,y)

W(0,x—ey)+W(Lx+e,y+1)

T.v(x—e, y)+Tkv(x+ej, y+1).

Hence, T, v satisfies C7.

Property C8: we need to show that

AZ" TV(XY)=TV(X, y+2)-Ty(x—ey+1)-Tv(x,y+1)+Tv(x—e,y)>0.

Since the Operator 7} depends on y and Ilj X, , we distinguish the following cases

I. y=0 or y>0 and [T, X =0. In this case, Operator 7} can be rewritten as
Tv(xy)=min{v(x,y),v(x+e,,y)}.

We use the same function O(u,x,y) as in the proof of C7 and have the first differences of

O(u,x,y) iny direction.

AN(x+e,.,y) if u=0,

A,0(u,x, y)={ ’

AN(X,Y) ifu=1.

Hence, by C3, we have A O(1x,y)>A 0(0,x,y) and therefore, O(u,x,y)is supermodular in
u, y).

Let Tv(x—e y+1)=0O(u,x—e y+1) and Tv(x,y+1)=0(u,,x,y+1) and consider two cases:

Case u, >u,,
TV(X,y+2)+TVv(x—ey)=0(u,,x,y+2)+0(u,x—ey)
>0(u,, X, y+1)—O(u,,x—e,y)+O(u,, x—e,y+1)+O(u,x—e,y)
>0(u,, %, y+1)—O(u,,x—e,y)+O(u,,x—e,y+1)+O(u,,x—e,y)

=T V(X Yy +1)+Tv(x—ey+1).

The first inequality is due to the definition of Tyv; the second inequality is due to C8 and the

107



Lost Sales for Components and Backorders for Assembled Product

third inequality is due to the supermodularity of O in (u, y).

Case u, <u,,u, =0,u, =1.

TV(Xy+2)+Tv(x—ey)>0(Lxy+2)+0(0,x—ey)
=Vv(X,y+2)+v(x+e —ey)
>v(X,y+1)+Vv(x+e —ey+1)

O(Lx y+1)+0(0,x—e,y+1)

=T V(X y+1)+Tv(x—ey+1).

The third inequality is due to the Observation 2.

II. y>0 and []}..x >0. In this case, we have

izk

TV(x,y)= min{v(xﬁtek,y),v(x—iei , y—1)}

We use the same function W (u,x,y), where W (u,x,y) is submodular in (u, y).
Let T,v(x,y+2)=W(u,x,y+2) and Tv(x—ey)=W(u,,x—ey) and consider the following
two cases:
Case u, <u,,
TV(X y+1)+TVv(x—ey+1)<W (u,X,y +1)+W (u,,x—e,y +1)
<W (U, %, Y +1)+W (u,, x—e,y)+W (u,, X, y +2) =W (u,, X, y +1)

<W (U, %,y +1)+W (u,,x—&,y)+W (u, X, y +2) W (u, X,y +1)
=T V(X y+2)+Tv(x—ey).

The first inequality is due to the definition of Tyv; the second inequality is due to C8 and the

third inequality is due to the supermodularity of W in (u, y).

Case u, >u,, u, =1,u, =0.

TV(Xy+1)+TVv(x—e,y+1)<W(Lx,y+1)+W(0,x—e y+1)

v(x—_zn:ei, y)+v(x+ek —e,y+1)
v(x

+e, —¢, y)+v(x—iei,y+1)

W (0,x—e, y)+W (1,x,y +2)
Tv(x—ey)+TV(xy+2).

IA
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Hence, T, v satisfies C8.

Operator T*

V(X y)+c, ifx, =0,

Since T v(x,y) ={ we have two cases to consider:

min{v(x—e.y).v(x,y)+c}  otherwise,
For case x, =0,
T'v(x,y)=V(x,y)+c,, hence it satisfies all the properties C1-C8.

For case x, >0,
Tv(x,y)=min{v(x—e,y).,v(xy)+c }=v(x—e,y)+ min{O,Axkv(x—ek Y)+C, } (4.6)
Property C3: we need to prove that
ATV Y) =THv(x+e,y+1)-T'v(x+e,y)-Tv(x y+1)+T*v(xy) <0.

From (4.6), we have

A TV(GY)=A, V(X—8y)+ min{O,Axkv(x—ek +ej,y+1)+ck}—min{O,Axkv(x—ek +ej,y)+ck}
—min{O,Axkv(x—ek,y+1)+ck}+min{0,Aka(x—ek,y)+ck}.
Case j=k. In this case,

A, TYV(XY)=A, v(Xx—ey)+min {O,Axkv(x, y+1)+c, } —min {O,Axkv(x—ek Y +1)+ ck}
-min{0,A, v(x,y)+¢,}+min{0,A, v(x—e,,y)+c,}.

By C3 and C6, we have

which leads to the

A NV(XY)+C A V(X y+1)+c 2A v(x—e,y)+C A v(x—e,y+1)+C

K 9

following five sub-cases:
1 AV(XYy)+c, 2A V(X y+1)+c 2A v(X—g,Y)+C 2A V(x—g,y+1)+c 20=
A TV(XY)=A, v(x—e,Yy)<0.

2. A V(X y)+Cc A V(X y+1)+c, =A v(x—e,y)+c 20=A v(x—e, y+1)+c =
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Axk’kav(x, y)=A, V(x—e.y)-A v(x—e,y+1)-c,
=-A, V(x—g,,y)-¢, <0.

3. A V(X y)+C, 2A V(X,y+1)+Cc 20=A v(x—e,y)+C, A v(x—e,y+1)+c =
A TV Y)=A V(X—e,Y)—A, V(X—g,,y+1)+A v(x—e,y)=0.
4. A, V(X y)+c 20=A V(X y+1)+c =A v(x—e,y)+C =A v(x—e, y+1)+c =

Axk,kav(x, y) =Axk'yv(x—ek , y)+Axkv(x, y+1)+c, —Axkv(x—ek , y+1)+Axkv(x—ek,y)
=A, v(x,y+1)+c, <0.

5.02A,v(x,y)+c =A V(X y+1)+c A v(x—e,y)+C =A v(x—e, y+1)+c =

Axk'kav(x, y)=A, V(X=€,Y)+A V(XY +1)—A, v(Xx—8,y+1)=A, V(X,y)+A, V(X—€,,Y)
=A V(X y+1)-A, v(Xy)=A_ v(XYy)<O0.

Case j =k. In this case,

A, TV(XY)=A, v(x—e.y)+ min{O,Axkv(x—ek +ej,y+1)+ck}—min{O,Axkv(x—ek +ej,y)+ck}
—min{O,Axkv(x—ek,y+1)+ck}+min{0,Aka(x—ek,y)+ck}.

By C3, we have A, v(x—e, +e,y+1)<A v(x—e +e,y)and A v(x—e, y+1)<A v(x—e,y).

By C4, we have A, v(x—e +e,y+1)<A v(x—e,y+1) and A v(x—e, +e,y)<A v(x—e,y).

Finally, we have

A V(x—e +e,y+1)+c, <A v(x—e, y+1)+c <A v(x—e, +e,y)+c <A v(x—e,Y)+C,Or

Axkv(x—ek +ej,y+1)+ck SAxkv(x—ek +ej,y)+ck <A V(x—e,y+1)+c <A V(x—e,y)+C,.

If A v(x—e +e,y+1)+c <A v(X—e,y+1)+C <A v(X—e +e,y)+C <A V(X—8,Y)+C,
which leads to the following five sub-cases:
LA V(x—e +e,y+1)+c, <A v(x—e,y+1)+C <A v(X—e +e,y)+C <A V(X—g,y)+C, <0=
ijnykv(x, y)
:ijyyv(x—ek,y)+Axkv(x—ek+ej,y+1)—Aka(x—ek +ej,y)—Aka(x—ek,y+1)+Aka(x—ek,y)
:v(x+ej,y+1)—v(x+ej,y)—v(x,y+1)+v(x,y)
:Ayv(x+ej,y)—Ayv(x,y):ij'yv(x, y)<0.
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2.AV(x—e +e,y+1)+c <A v(x—e,y+1)+c <A v(x—e, +e,y)+C, <O<A v(x—e,y)+C =
A TY(GY)=A, V(X—8,Y)+A, V(X—e +e,y+1)—A v(x—g +e,,y)-A, v(x—g,y+1)
+A, V(x—e,y)-A V(x-g,Y)-C,
=v(x+e;,y+1)-v(x+e;,y)-v(x y+1)+v(x,y)-A, V(X -e,y)-C,
=ij,yV(X, y)-A, v(x-e,y)-c, <0.

3.A,V(x—e, +e,y+1)+c <A v(x—e,y+1)+c <O<A v(x—e, +e,y)+C <A V(X—e,Y)+C =

ATV Y)=A, V(X—e,Y)+A, v(x—8, +e,,y+1)-A, v(x—e,y+1)<0.

4.AV(x—e +e,y+1)+c <O<A v(x—e,y+1)+c <A v(x—e +e,y)+c <A V(x—e,y)+C =

A TV(XY)=A, V(x-e,y)+A, V(x—e, +e;,y+1)+c, <0.

5.0<A v(x—e +e,y+1)+c, <A v(Xx—g,y+1)+C <A V(X—e +€,y)+C <A V(X—e,y)+C, =
A, TV Y)=A, V(x—g.Yy)<0.

IfA V(Xx—e +e,y+1)+c <A v(x—e +e,y)+C <A V(X—e y+ 1} G <A V(X—e Yy }c we

also consider the other sub-case:

6.A,V(x—e +e,y+1)+c, <A v(x—e, +e,y)+C, <O<A v(x—e,y+1)+c <A v(Xx—e,y)+C, =
A, T(X, y)=ijyyv(x—ek,y)JrAka(x—ek +e;,y+1)-A, v(x-e +e;,y)

=ij,yV(X—ekaY)JFij,yV(X_ek +ej,y)£0.

Hence, T*v satisfies C3.

Property C4: we need to prove that

ATV Y) =TV (x+e, +e,y)-Tv(x+e,y)-T'v(x+e,y)+TV(xy)<O0,
From (4.6), we have
THv(x,y) =min{v(x—e,,y).v(x,y)+} =Vv(x—e,y)+min{0,A, v(x—e,y)+C,}.

ij'XiTkv(x, Y)=A V(X—e.y)+ min{O,Aka(x—ek +€, +ei,y)Jrck}—min{O,Aka(x—ek +ei,y)+ck}
—min{O,Axkv(x—ek +ej,y)+ck}+min{0,Axkv(x—ek,y)+ck}.

Case i=k # j. In this case,
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A, TH(x, y):Axkvxjv(x—ek,y)+min{O,Axkv(x+ej,y)+ck}—min{0,Axkv(x, y)+ck}
-min{0,A, v(x—e, +e,y)+c }+min{0,A v(x—e,y)+C,}.
By C4, we have A, v(x—e, +e,,y)<A v(x—e,y) and A v(x+e,y)<A v(xy).

Xk

By Cl, we haveAxkv(x—ek +ej,y)SA v(x+ej,y).

Xk

By C5, we have A, v(x—e,,y)<A v(x+e,Y).

Xk

Hence, we have A, v(x—e, +e,,y)+c, <A v(x—e, y)+c <A v(x+e,y)+c <A V(X Y)+C,,

which leads to five sub-cases:
1 A v(x—e +e,y)+c <A V(X—e,y)+C, <A V(Xx+e,y)+C <A V(X y)+c <0=

A TH(XY) =ijv(x—ek,y)+Axkv(x+ej,y)—Axkv(x, y)—Aka(x—ek +ej,y)+Axkv(x—ek,y)
=Axkv(x+ej , y)—Axkv(x, y)=A, , v(xy)<0.

2. A V(x—e +e,y)+C <A V(X—e,y)+C <A V(x+e,y)+C SO<A V(X Y)+C =

A TV(Y)=A, V(X Y)+AV(X+e,y)-A v(x—e +e,y)+A Vv(x—e,y)+C,

=Axkv(x+ei,y)+ck <0.
3. A, v(x—e, +e,y)+c, <A v(x—e,y)+c <O<A v(x+e,y)+c, <A V(Xy)+c, =
A T(xY)=A,, v(x—¢, y)—Axkv(x—ek +ej,y)+Aka(x—ek,y) =0.
4. A v(x—e, +e,y)+c, <O<A v(x—e,Y)+C <A V(X+e,y)+C, <A V(Xy)+c, =
A TV(xY)=A,, v(x—e,y)—A,v(x—e +e,y)—c =—AV(x—e,y)—-c, <O
5. 0<A, v(x—e, +e,y)+C <A V(x—e,Y)+C <A V(X+e,y)+C, <A V(X y)+c, =
A, TV(xy)=A,  v(x—e,y)<O0.
Case j=k=i.In this case,

A, T(XY)=A, v(x—g.,y)+min{0,A v(x+e,y)+c | -min{0,A v(xy)+cC,|

—min{0,A, v(x—e, +e,y)+c |+ min{0,A v(x—e,y)+c}.

Since the proof is similar to Case i =k # j, we omit it.
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Case i=k = j. In this case,

A LTV Y)=A v(x—g,,y)+ min{O,Axkv(ijei +e, —ek,y)+ck}—min{O,Axkv(x+ei —e,.¥)+c,}

-~ min{O,Axkv(ijej —e,, y)+ck}+ min{0,A, v(x—e,y)+c,}.
By C4, we have

Av(x—e,y)=A v(x+e —e,y),and A v(x+e —e, Y)=A V(Xx+e +e —e,y).

Xk Xk

Hence, we have two cases:
AV(x—e,Y)+c 2A v(x+e —e,y)+C 2A v(x+e —e,y)+C 2A v(x+e +e —e,y)+C, ,0r

AV(x—-€,Y)+C 2A v(x+e —€,,Y)+C A v(x+e —e,y)+C =A v(x+e +e —e,Y)+C,.

Xk

If A v(x—e,y)+C 2A V(X+e —e,y)+C =A V(X+e —e,Y)+C, 2A V(x+e +e —e,y)+C,

which leads to the following five sub-cases:

LANV(Xx—e,y)+C 2A v(x+e —e,y)+C 2 A V(X+e —e,y)+C =A V(x+e +e —e,y)+c 20=
Ax,,ijkV(X, y) = Axi,ij(X_ek , y) <0.

2.AV(X—€,y)+C 2A v(x+e —e,y)+C =A v(x+e —e,y)+C 202 A v(x+e +e —e,y)+C, =

ATV Y)=A, V(X-¢€.,Y)+A V(x+e +e —e,y)+c, <O,

3.AV(X—€,y)+C =A V(x+e —e,y)+C 20=A v(x+e —e,y)+C 2A v(x+e +e —e,y)+C, =

ATV Y)=A, V(X=8, y)+A,v(x+e +e —8,y)—AV(x+e —e,Y)<O.

4.AV(x—e,,y)+C 202 A v(x+e —e,Y)+C 2A V(X+e —€,Y)+C 2A V(X+e +e —e,y)+C, =
A, TYV(GY)=A, V(x—e,Y)+A V(x+e +e —e,Y)-A v(x+e —e,y)-A V(x+e —e,y)
+A V(x—e,y)-A v(x-e,y)-c,
=Axiv(x+ej,y)—Axiv(x, y)-A V(x-e,y)-C,
<

=A,, V(X% Y)=-A,v(x-e,y)-c <0.

5.02A V(X—e,y)+C, =A V(X+e —e,y)+C, =A V(X+e —e,y)+C, =A V(x+e +e —e,y)+c =

A TV Y)=A, V(X—8,Y)+A V(x+e +e —e. y)-A V(x+e —e,Y)-A v(x+e —€,y)+A, V(X=g,Y)
=AV(x+e,y)-Av(xy)=4A,,v(xY)<0.

If A V(X-e,y)+C, 2A V(X+e —€,Y)+C 2A V(x+e —e,y)+C 2A V(X+e +e —e,Y)+C,

we must consider the other sub-case:
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6. A V(X—8,y)+C, =A V(X+€ —€,y)+C =02A v(x+e —e,y)+c 2A v(x+e +e —e,y)+C, =

A, TV(XY)=A, V(x—e,Y)+A V(X+e +e —e,y)—-A,V(x+e —e,y)<O0.

Hence, T*v satisfies C4.

Property C7: we need to prove that

AZ", XHMTKV(X, y)=T'v(x+e,y+1)-T'v(x+e —ey)-TV(x,y+1)+T"v(x—e,y)>0.

From (4.6), we have
TYV(X,y)= min{v(x—ek,y),v(x, y)+ck}.
Case j =k . In this case, we define the function Q(u,x,y)as:

v(x-e.,y) ifu=0,

Q(u,x.y):{

V(X y)+c, ifu=1.
T*vcan be rewritten as follows:

Tv(x,y)=min{v(x—e,y),v(x,y)+c,}

=minQ{u,x,y} =(1-u)v(x-e,, y)+u(v(x,y)+c,).

Also,

A, v(x—e,Y) if u=0,
A V(XY) ifu=1.

Hence, by C1, we have A_Q(Lx,y)>A, Q(0,x,y) and therefore, Q(u,x,y) is supermodular in
the direction (u, k).

Let T'v(x+e, —e,y)=Q(u,x+e —ey) and T*v(x,y+1)=Q(u,,x,y+1) and consider two cases:

Case u, >u,,
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T'v(x+e,,y+1)+T*v(x—e,y)=Q(u,, x+e,y+1)+Q(u,x—e,y)
>Q(u,,x+e,—ey)-Q(u,,x—e,y)+Q(u,, X,y +1)+Q(u,,x—e,y)
Q(u x+e, —eYy)-Q(u,x—ey)+Q(u,,x, y+1)+Q(u,x—e,y)
=T'v(x+e, —ey)+T V(X y+1).

\%

The first inequality is due to the definition of T*v; the second inequality is due to C7 and the

third inequality is due to the submodularity of Q in (u, Xy).

Case u, <u,, (u,=0,u,=1.)

T'v(x+e,y+1)+T'v(x—ey)>Q(0,x+e,,y+1)+Q(Lx—e,y)
=V(X,y+1)+v(x—ey)+c
=Q(0,x+e, —e, y)+Q(1,x,y+1)
=T'v(x+e, —e,y)+T V(X y+1).
Case j=k. In this case, we use the function Q(u,x,y), and have the first differences of

Q(u,x,y) inx; direction.

By C3, we have A, Q(0,x,y)>A, Q(1,x,y). Hence, Q(u,x,y) is submodular in (u, x;).
Let T'v(x+e,,y+1)=Q(u,x+e;,y+1) and T*v(x—e,y)=Q(u,,x—e,y) and consider two cases:

Case u, <u,,

V(X,y+1)+T"v (x+ej—e,y)SQ(ul,x,y+1)+Q(u2,x+ej—e,y)

<Q (uz,x+ej,y+1)+Q(ul,x,y+1)+Q(u2,x—e,y)—Q(uz,x,y+1)
Q(u, x+e,,y+1)+Q(u, %,y +1)+Q(u,, x—e,y)—Q(u, X,y +1)
T'v(x+e,,y+1)+T*v(x—e,y).

IA

The first inequality is due to the definition of T*v; the second inequality is due to C7 and the

third inequality is due to the submodularity of Q in (u, X;).

Case u, >u,, (u,=1u,=0.)
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TV(xy+1)+T'v(x+e —e,y)<Q(0,x, y+1)+Q(Lx+e, —e,y)
=v(x—e, y+1)+v(x+e —ey)+c,
<v(x+e, y+1)+c +Vv(x—e —ey)
=Q(Lx+e,,y+1)+Q(0,x—e,y)
=T'v(x+e,,y+1)+T'v(x—e,y).

The third inequality is due to C7.
Hence, T'v satisfies C7.

Property C8: we need to prove that

AZ" TV(XY)=TV(Xy+2)-T'v(x—ey+1)-T*v(x,y+1)+T'v(x—e y)>0.

From (4.6), we have
Tv(x, y)=min{v(x—ey).,v(X,y)+¢,}.

We use the same function Q(u,x,y)as the proof of C7, and define the first differences of

Q(u,x,y) iny direction.

AV(x—e.y) if u=0,

A,Q(ux y):{Ayv(x, y) if u=1.

By C3, we have A Q(0,x,y)>A Q(1,x,y). Hence, Q(u,x,y) is submodular in (u, y).
Let T'v(x,y+2)=Q(u,,x,y+2) and T*v(x—e,y)=Q(u,,x—e,y) and consider two cases:

Case u, <u,,
TV(X Yy +1)+Tv(x—e y+1)<Q(u, X,y +1)+Q(u,,x—e,y +1)
<Q(u, % y+1)+Q(u,, X, y+2)+Q(u,, x—e,y)—Q(u,,x,y +1)

<Q(u, %,y +1)+Q(u, X,y +2)+Q(u,, x—e,y)—Q(u,, X,y +1)
=TH(X Yy +2)+ T v(x—ey).

The first inequality is due to the definition of T*v; the second inequality is due to C8 and the

third inequality is due to the submodularity of Q in (u, y).

Case u, >u,, (u, =1u,=0.)

116



Lost Sales for Components and Backorders for Assembled Product

TV(X y+1)+T v(x—e,y+1)

The third inequality is due to C7 and C8:

A V(x—e, —ey)<A

2 >,
X + Xi
=] y =]

Hence, T*v satisfies C8.

Operator T°

Jy+1
Since T°v(x,y)= v(xy+)

min{v(x—e, y)v(X, y+1)}

For case, [],_x =0,

ﬂv(x—e, y)<A_,

<Q(0,x,y+1)+Q(Lx—e y+1)
=v(x—e,y+1)+Vv(x—ey+1)+c,
<V(X,y+2)+c, +v(x—e, —ey)
=Q(1L,x,y+2)+Q(0,x—e,y)
=TV(X y+2)+T v(x—e,y).

v(x—ey+1).

J:1><J-+y

n
if TTx, =0
k=1 we have two cases:
otherwise,

T(x,y)=v(x,y+1), thus it satisfies all the properties C1-C8.

For case [],,x >0,

To(x,y)= min{v(x—e, y),v(X, y+1)} =v(x—e,y)+ min{O,A

Property C3: we need to prove that

v(x—ey). 4.7)

n
X+
Zk:1 kY

ATV Y)=Tv(x+e,y+1)-Tv(x+e,y)-TV(x,y+1)+T°v(x,y) <0.

We define the function I(u,x,y)as:

I(u,x,y):{

T°v can be rewritten as follows:

v(x,y+1)
v(x—e,y)

ifu=0,
ifu=1.
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TV(X,y)= min{v(x—e, y).v(xy+1)}

= mgrﬂ} H{u,x,y}=(1-u)v(x, y+1)+uv(x—ey).

Also,

AN(Xy+1) ifu=0,

Ayl(u,x,y):{ ’

AV(x—ey) ifu=1.

By C8, we have A I(0,x,y)>AI(Lxy) and therefore, I(u,x,y) is submodular in the
direction (u, y). Let T°v(x+e,,y)=1(u,x+e,,y) and T°v(x,y+1)=1(u,,x,y+1) and consider
two cases:

Case u, >u,,

T°v(x+ej,y+1)+T°v(x, y)<| (ul,x+ej,y+1)+ 1(u,,%,y)
<H(u,x+e;, y+1)+1(u,x+e,y)+1(u,xy+1)—1(u,x+e,y+1)
< (uz,x+ej,y+1)+ I (ul,x+ej,y)+ I (uz,x,y+1)—l(uz,x+ej,y+1)
=Tov(x+e,,y)+TV(xy+1).

The first inequality is due to the definition of T°; the second inequality is due to C3 and the

third inequality is due to the submodularity of I in (u, y).

Case u, <u,,(u, =0,u, =1.)

TV(x+e,y+1)+Tv(xy)<I(Lx+e,y+1)+1(0,xy)

v(x+e —e y+1)+v(x,y+1)

(x
<v(x+e,,y+1)+v(x—ey+1)
1(0.x+e,,y)+1(Lxy+1)
=T v(x+ej,y)+T V(x,y+1).

The third inequality is due to C5.
Hence, T°v satisfies C3.

Property C4: we need to prove that

A TV(XY)=Tv(x+e +e,y)-T°v(x+e,y)-T'v(x+e,y)+Tv(xy)<O0.
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We use the function 1(u,x,y) as in the proof of property C3, and have the first differences of

I (u,x,y) in x; direction.

ijv(x,y+l) ifu=0,
ijv(x—e, y) ifu=1.

ijl(u,x,y)z{

By C7,we have A, 1(0,x,y)2A, 1(Lxy). Hence, 1(u,x,y) is submodular in (u, x;).

Let T°(x+e,,y)=1(u,x+e;,y) and T°v(x+e,y)=1(u,,x+e,Yy) and consider two cases:
Case u, <u,,
Tkv(x+ej+ei,y)+Tkv(x,y)sI(uz,x+ej+ei,y)+l(u1,x,y)
<H(u,x+e,y)+1(u,x+e,y)=1(u,xy)+1(u,xy)

< (ul,x+ej,y)+ I (u,,x+e,y) =1 (u,xy)+1(u,xy)
=Tv(x+e,,y)+TVv(x+e,y).

The first inequality is due to the definition of T%; the second inequality is due to C4 and the

third inequality is due to the submodularity of I in (u, X;).

Case u, >u,,(u, =1u, =0.)

2

Tv(x+e +e,y)+Tyv(xy)<I(Lx+e +e,y)+1(0,xY)

v(x+e +e —ey)+v(x,y+1)

IN

v(x+e —ey)+v(x+e,y+1)
I (Lx+e,y)+1(0,x+e,y)
-Tkv(x+ej,y)+Tkv(x+ei,y).

The third inequality is due to C4 and C7 Axiv(x+e]. —e, y) < Axiv(x—e, y)sAxiv(x, y+1).

Hence T’v satisfies C4.

Property C7: we need to prove that

AZ" TV(xy)=T'v(x+e,y+1)-Tv(x+e, —e,y)-T'v(x,y+1)+Tv(x—e,y)>0.

We use the function I(u,x,y), where I(u,x,y) is submodular in (u, x).
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Let T°v(x+e,,y+1)=1(u,x+e,y+1) and T°v(x—e,y)=1(u,,x—e,y) and consider two cases:

Case u, <u,,

TV(X, Yy +1)+Tv(x+e —e,y) <1 (u,x y+1)+1I(u,x+e —e,y)
<I(u,x+e,y+1)+1(u,x-ey)-1(u,x+e —ey)+1(u,x+e —ey)
(
v

< ( X+, y+1)+| U, X—e,y —I(u x+eJ—e,y)+I(u1,x+eJ—e,y)
=T'v(x+e,,y+1)+T'v(x—e,y).

The first inequality is due to the definition of T°; the second inequality is due to C7 and the
third inequality is due to the submodularity of I in (u, X;).

Case u, >u,, (u, =Lu,=0.)

TV(X,y+1)+T°v(x+e —e,y)<I(Lx,y+1)+1(0,x+e —ey)
=v(x—ey+1)+v(x+e —ey+1)
=1(0,x—e,y)+I(Lx+e,y+1)
=T*v(x—e,y)+Tv(x+e,y+1).

Hence, T'v satisfies C7.

Property C8: we need to prove that
AZ" TV(XY)=TV(X,y+2)-Tv(x—e,y+1)-Tv(x,y+1)+Tv(x—e,y)>0.

We use the function I(u,x,y), where 1(u,x,y) is submodular in (u,y).

Let T°v(x,y+2)=1(u,x y+2) and T°v(x—e,y)=1(u,,x—e,y) and consider two cases:

Case u, <u,,

TV(X,y+1)+Tv(x—e,y+1)<1(u,xy+1)+1(u,,x—ey+1)
<H(u, %, y+1)+ (U, x—e,y)+ 1 (u, X, y+2)— 1 (u,, X,y +1)
(

<T(u, X, y+1)+ 1 (u,, x—e,y)+ 1 (u,x, y+2)—1(u,x,y+1)
=TV(x,y+2)+T°v(x—e,y).

The first inequality is due to the definition of T%; the second inequality is due to C8 and the
third inequality is due to the submodularity of I in (u, y).
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Case u, >u,, (u, =Lu,=0.)

TV(Xy+1)+Tv(x-e y+1)<I(Lx,y+1)+1(0,x—ey+1)
=v(x—ey+1)+v(x—ey+2)
=1(0,x—e,y)+1(Lxy+1)
=Tv(x—e,y)+T V(X y+2).

Hence, T'v satisfies C8.

Operator T

Define function H(x,y) as: H(x,y)=h(x)+b,(y) which is increasing convex function in

each xjand y. Hence, it satisfies Properties C3-C6 (submodularity/supermodularity). Because

C1 and C2 (convexity) are implied by C3-C6, function H (x,y)satisfies C1 and C2. Since

v(x,y) is closed under multiplication by a scalar and addition, Tv satisfies Properties C1-C6.
We now prove Tv satisfies Properties C7-C8.

Proof.
Property C7

Property C7 can be rewritten as:

ijv(x, y+1)> Axlv(x -ey).

A TV(X, Y +1)=A, h() +A, by (Y +1) + A, TV Y +D) + D AA, TV Y+ +° 4T A, V(x,y +1)
k=1 k=1

=AN)+4A, T V(x,y+1)+ ZZkAXjT V(x,y +1) +Zykaijv(x, y+1) (ij by (y+1) = O)
k=1 k=1

A, TV(x—ey)=A, h(x—€)+A, by(y)+4A, TV(x—ey)+ ZlkAXJTkv(x -e,y) +ZﬂkaAx,V(X —e,y)
k=1 k=1

=A h(x—e)+4A, T v(x—e,y)+ ZﬂkijT “V(x—e,y) +ZykaAva(x -&,y) (ij by (y) = 0)
k=1 k=1

Using C5, A, h(x)>A, h(x—e),then we have A, Tv(x,y +1)> A, Tv(x~e,y) (for each operator
using C7).

From above TV satisfies C7.

Property C8

Property C7 can be rewritten as:
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Ayv(x, y+1)> Ayv(x -e,y).

ATV(X, Y +1) = A h(X) + A by (Y +1) + A, TV Y +1) + D AA TV Y +1) + D s TAN(X, Y +1)
k=1 k=1

= A by (Y +D) + ATV Y +D + Y AA TV Y +1) + Y T A V(X Y +1) (A,h(x) =0)
k=1 k=1

ATV(x—e,y)=Ah(x =€)+ A by (Y) + AA,TV(x—e y) + D AA T V(X - y)+ > T AN(X—€,Y)
k=1 k=1

= A0y (V) + A, TOV(X—e,y) + zn:ﬂkAyT"v(x —e,y) +Zn:,ukaAyV(X —e,Y) (A,h(x-e)=0)

Using C2, A by (y+1)>A by(y), then we have A Tv(x,y+1)>A Tv(x—e,y) (for each operator
using C8).

From above TV satisfies C8.

We use the fact that (1) v =lim__T®v for any ve®, where T refers to n compositions of

operator T (see Puterman,1994, Theorem 6.10.4), and (2) T™veT, v" is the unique solution

of v=Tv. Hence, Tve 2, this completes the proof of Lemma 4.1.[]

To describe the optimal policy implied by the aforementioned properties, we define the base-

stock and the rationing levels as follows:

Definition 4.2: Letting X , =(X,,.-, % 1, %,1,---» X,) » We define the following thresholds

min{xk >0 v*(x+ek,y)—v*(x,y)20}, y=0,ory>0,II. % =0,

S (X_,Y)= "
(y) min{xk20|v*(x+ek,y)—v*(x—Zei,y—l)zo}, y>0, [T X >0,

izk
rk"(xfk,y):min{xk >0 v*(x,y)—v*(x—ek,y)z—ck},
le(x_k,y)zmin{xk >0| V' (X, y+1)—V"(x—¢, y)ZO}.
Here, s;(x_,,y)denotes the base-stock level for Component k only fory =0, ory>0,IT\. % =0,
and below in Theorem 4.1 we will show that s;(x_,y) is in fact a rationing level for
y>0, T\, x >0. Besides, r,(x_,y) denotes the rationing level for demand of Component Kk,

and R;(x_,Yy)denotes the rationing level for demand of the assembled product with respect to

Component k.
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Note that when y >0, [T, X >0, s’k“(x_k,y):min{xk >0 v*(x+ek,y)—v*(x—Zi’;kei,y—l)ZO}.

In this case, the threshold reflects a routing decision rather than a production decision since
we produce Component k to stock or produce Component k and use this unit to assemble a

unit of the final product and use the latter to reduce the backlog of the final product. As a

matter of fact, in this case s;(x_.y) is tightly connected to R{(x_.y) as shown in the

following theorem.

THEOREM 4.1. For Component k, k=1,...,n, the base-stock level S.(X_,Yy) can be
interpreted as a rationing level of the assembled product at Component k for y >0, [T, x >0.

In other words, s; (x_,,Y)=R, (x,.y-1).

Proof:

For state (x,y), with x, <s;(x_,y+1), we have x —1<s;(x,,y+1), and by definition of
se(x,,y+1) , we have v'(x+e —e,y+1)<V' (X-Zi.&—e,y)=V (X y+1)<v'(x-ey) ,
which implies that it is optimal to backorder demand of the assembled product, when
X <S¢ (X y+1).

For state (x,y), with x >s;(x_,y+1) then we have x —1>s;(x_,y+1), and by definition of
ss(x,,y+1) , we have v'(x+e —e,y+1)=V' (X-Zl.—e,y)=V (X y+1)2V'(x-ey) ,
which implies that it is optimal to satisfy demand of the assembled product, when
X > S (X, Y +1).

Hence, when y>0, [Tiyx >0, s;(x_,y) can be regarded as a rationing level for the
assembled product at Component k, namely s; (x_,,y)=R¢ (X, y-1).

This completes the proof of Theorem 4.1 []

Properties C1- C8 together with Definition 4.2 lead to the structure the optimal policy,
specified in the following theorem.

THEOREM 4.2. For Component k, k=1,...,k, there exists an optimal stationary policy
specified in terms of a state-dependent production base-stock level S,(X_,,Y), for y=0,or
y > 0,T10L, %, = 0and a state-dependent inventory rationing level 1, (X_,,Y) . For the assembled

product, there exists an optimal stationary inventory rationing policy specified in terms of a
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state-dependent rationing level R (X ,,Y). In particular, the structure of the optimal policy

can be described as follows:

1. Optimal production policy for Component k

Produce to increase Component k inventory if x, <s;(x_,,y) for y=0, or y>0, and ][, x =0.
Produce to reduce backorders of the assembled product if X, =R;(x_,y—-1) for y>0, and
[T X >0.

Do not produce if X >s; (X_,y) for y=0, or y>0, and [}, x =0.

2.0ptimal inventory allocation policy for Component k

Satisfy demand of Component k if X >t (X, y).
Reject demand of Component k if %, <t (X_.Y).

3.0ptimal inventory allocation policy for the assembled product

Satisfy demand of the assembled product if X >Ry (x_,y) for all k, k=1,2,....,n.

Backorder demand of the assembled product if at least one component has inventory level
X <Re (X, Y).

Furthermore, the production and rationing levels have the following properties:

Pl: s;(x_,,y) is non-decreasing in both the inventory level x, of Component i, i#K,and the

backlog level of the assembled product, y.

P2: 1’ (x_,,y) is non-decreasing in both the inventory level x, of Component i, i#K,and the

backlog level of the assembled product, y.

P3: R'(x_,.,y) is non-increasing in both the inventory level x, of Component i, i#K,and the

backlog level of the assembled product, y.

Proof of Theorem 4.2

Part 1. We use the definition of the base-stock level s, (X ,,Y) and Properties C1 and C7 to
prove the theorem. Three cases can be considered:

(1) y=0, by Property Cl1, we have V'(x+e,,Y)—-V'(X,y) is non-decreasing in Xx,_. Hence,
Vi(x+e,Y) <SV(X,Y) if X <S;(X_,0) which indicates that producing Component k to stock is
optimal, and V'(X,y)<V'(x+e,y) if X >S:(X,,0) which indicates that not producing
Component k is optimal.

(2) y>0,[1X =0, by Property C1, v'(X+e,,y) <V'(X,y) if X, <S;(X_,Y) which indicates that
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producing Component & to stock is optimal, and V' (X,y) <V'(x+e,,y) if X, >S,(X ,,Y) which
indicates that not producing Component k is optimal.

(3) y>0,IT.« X >0, by Property C7, we haveVv'(x+e,,y) -V (Xx—X&,y—1) is non-decreasing
in x. Hence, V' (X+e,y)<v (x-Xle,y-1) if x <R/(x,,y-1) which indicates that
producing Component k to stock is optimal, and v (x—-Y&,y-D) <V (x+e.,y) <V (xy) if
X, =R, (X ,,y—1) which indicates that producing Component k to reduce backorders of the
assembled product is optimal.

Part 2. By Property C1, we have V'(X,y)—V'(X—e€,,Y) is non-decreasing in X,.

Hence, V' (X,y) +¢, <V (x—¢,,y) if x <r(X_.,y) which indicates that rejecting demand of
Component k is optimal, and v'(x—e,,y)<V'(X,y)+c, if X, >r (X ,,y) which indicates that
satisfying demand of Component k is optimal.

Part 3. By Property C8, we have V' (X,y+1)—Vv'(x—e,y) is non-decreasing in y. Hence,
Vi(x—ey)<vi(x,y+1) if x >R/ (X,,y) which indicates that satisfying demand of the
assembled product is optimal, and V' (X—e,y)>V'(X,y+1) if x <R (X ,y) which indicates

that backordering demand of the assembled product is optimal.

Properties P1. By Property C4 we have v'(x+e,,y)—Vv'(x,y) is non-increasing inx and by
property C3, we have v'(x+e,,y)—Vv"(x,y) 1S non-increasing in y.

Properties P2. By Property C4 we have v'(x,y)—-v*(x—e,,y) is non-increasing inx and by
property C3 we have v*(x,y)—Vv"(x—e,,y) 1s non-increasing in y.

Properties P3. By Property C7 we have v*(x,y+1)—Vv"(x,y—€) is non-decreasing inx and
by C8 we have v*(x,y+1)—Vv"(X,y—e) is non-decreasing in y.

This completes the proof of Theorem 4.2. []

Theorem 4.2 reveals the structure of the optimal policy. Part 1 indicates that the optimal
production decision for Component k is always determined by S,(X_,,Y) and R;(X,,y-1),
which depends on the amount of backorder of the assembled product, if any. That is, if y=0,
the base-stock level s, (X ,,0) is defined as the inventory level below which it is optimal for
the system to produce Component k£ to stock, and stop producing it when the on-hand
inventory reaches S, (X_,,0) . If >0, there are two cases to be considered. For []i X =0, there

is at least one other component with no stock, thus it is optimal for the system to produce
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Component & to stock when the inventory level is below S, (X ,,Y), and do not produce it
when the inventory level reaches s, (X_,Yy) . For []i X >0, there is stock for all other

components, thus the production decision can be controlled by R;(X_,,y—1) . In this case, we
produce one unit of Component k£ and use it to reduce the backorder level of the assembled
product for x, >Ry (x_,,y—1). Otherwise, add it to its stock. For part 2, £ (X_,Y) represents
the rationing level of demand of Component &. When the on-hand inventory of Component k&
is larger than the largest 1, (X ,,Y) fork=1---,n, the system will use the stock of Component
k to satisfy the demand of Component £ Otherwise, the system will reserve this stock to
satisfy future demand of the assembled product. For part 3, R;(X_,,Y) represents the rationing
level of demand of the assembled product. When the on-hand inventory of Component £ is
larger than the largest R, (X ,,y) fork=1,---,n, the system will use the sock of the different
components to satisfy the demand of the assembled product. If on the other hand, the stock of
at least one component, say Component i, is less that its corresponding threshold R'(X_;,Y)
then stock will be reserved to satisfy future demand of components. Properties P1-P3 reflect
the monotonicity of the base-stock and rationing levels. Property P1 indicates that when the
on-hand inventory of other components and backorder level of the assembled product
increase, production of Component & should increase. Property P2 indicates that the more on-
hand inventory of other components and backorder of the assembled product, the less demand
of Component k& would be satisfied. We express this result as follows: since the production
decision depends on both the on-hand inventory and the backorder, on the one hand, the
increased on-hand inventory of other components also increase the probability that the system
would satisfy demand of the assembled product, on the other hand, the increased backorder
required more components to balance, thus it is more desired to reserve Component k to
reduce the backorders. Property P2 implies that it is less desirable to satisfy the demand of
Component k, when the on-hand inventory of other components and the backorder of the end
product increase. In contrast, Property P3 indicates that more demand of the assembled
product would be satisfied when the stock of other components and the backorder of the

assembled product increase.

To close this section, we extend our model to the case of the average cost per period criterion.

Under a control policy zand original state (x,y) the average cost is given by g”(x,y):
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B | oo (X)) +by(¥ (ti))+221cka(ti))]

. (4.6)

97 (x,y)= lim sup

Our aim is to seek the optimal production policy z* that minimizes the average cost per
period g*(x,y)=inf _g”(x,y) for all states (x,y). The optimality equation in this case is as

follows:
V(xY) 8 =R+ B0+ ATV () + ATV () + ST (xy), (@)

where g" is a finite constant denoting the average cost per period.

In the following Theorem4.3, we show that the optimal policy under the average cost criterion
retains all of the properties observed in Theorem4.1 and Theorem4.2 under the discounted

criterion.

THEOREM 4.3. The optimal stationary policy under the average cost criterion retains all

the properties of the optimal policy under the discounted cost criterion. That is, the

production policy is controlled by a state-dependent base-stock level s (X_,,Y), fory =0, or
y>0,[Tu % =0 and the allocation policy is controlled by the state-dependent inventory

rationing levels 1, (X_,,Yy) and R (X ,y). The base-stock and the rationing levels satisfy all

the properties in Theorem 4.1 and Theorem 4.2.
Proof of Theorem 4.3

We deal with the average cot problem through the limit of discounted cost problem with
a —0. Since our problem can be formulated as an MDP, there are two conditions must be
held for the existence of average optimal policy. As showed by Cavazos-Cadena (1992),

Weber and Stidham (1987): 1. there exists a stationary policy z' which achieves a finite

average cost g~ . 2. the number of states in which the cost H(x,y)<g” is finite.

For our model, consider a policy ' that is described by: a fixed base-stock level s for
Component k, a fixed rationing level ry for demand of Component k, and a fixed rationing
level R for demand of the assembled product. Each Component k can be produced if its on-
hand inventory X is below s, each demand of Component k can be satisfied if the on-hand
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inventory xx is above ry, and demand of the assembled product can be satisfied if the

backorder level y is above R. The operators T°, T and T, in equation (4.7) can be written as:

T (x,y) = Vi (x—ey) ify>R, andilj{xi >0,
Vi (x,y+1) otherwise,

O L e
v (X, y)+C, otherwise,
Vi(x+e,Y) ifx <s,y =0,
Vi(x+e,.,y) ika<sk,y>0,andiljxi:0,
TV (X y)=1V'(x+e.y) ify< R,y>0,andiljxi>0,
v*(x—iznk:ei,y—l) ify>R,y>O,andi1f£xi>O,
V(X y; otherwise.

Since by Properties Cland C2 function v*(x,y) is convex in each of the state variables x, and
y, there exists the minimum value that g" =minv"(x,y). It is not hard to see that policy =" is
stationary, which achieves a finite average cost and condition 1 holds. Condition 2 is due to
the fact that, H (x,y)=h(x)+b,(y), where h(x)=3>_h (), is increasing convex in xc and y.
There exists a positive integer 5 , the number of states in which the cost

H(x,y)=h(x)+b,(y) <" is finite. Thus, condition 2 holds.

Based on the above conditions, Weber and Stidham (1987) proposed that there exists a

positive constant g~ and the expected discounted cost v(x,y), then for all sates (x,y):
V(% Y)+ 9" 2h00) +b, (Y) + ATV (X, Y) + D2 ATV () + D a4 TV (%, ).
k=1 k=1

So, the average cost per period g can be determined form the above ineqution.

This completes the proof of Theorem 4.3. []

4.3 Numerical Study

In this section, we adopt the average cost per period criterion in our numerical study. In order
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to explore the optimal policy, we begin our analysis by studying an example of a system
consisting of two components. We investigate the behavior of the optimal policy for a variety
of cases, each with a different combination of the system parameters. We use the value
iteration algorithm as described in Chapter 3. We fix the system parameters as follows
=u,=10, 4,=04, 4, =05, 4, =04, h =2, h,=1, and vary by and ¢, (k=1,2). The following
figures illustrate the structure of the optimal production policy for Component 1 and the
optimal inventory allocation policy of the assembled product and Component 1. Similar

results are obtained for Component 2 and demand of Component 2, hence omitted.

Fig. 4.1(a)-Fig. 4.1(d) show the optimal production policy for Component 1 when the
backorder cost rate, by is much lower than the lost sale costs ¢; and c,. Here, we consider the
following two cases. If y=0, as seen in Fig. 4.1(a), there are no backorders of the assembled

product, the system can be viewed as a pure lost sales system. The on-hand inventory of

Component 1 is controlled by the base-stock policy with a base-stock level s;(x,,0). That is,
if the on-hand inventory of Component 1 is less than s;(x,,0), then produce Component k to

increase its inventory up to s; (x,,0) . Otherwise, do not produce Component k. If y>0, as seen
in Fig. 4.1(b)-Fig. 4.1(d), the on-hand inventory of Component 1 is controlled by both the

base-stock level s;(x,,y) and the rationing level R(x,,y—1). That is, we consider the decision

of producing to reduce backorders of the assembled product if x >R'(x,,y-1) and
X, > R;(x,y—1), or producing to increase the on-hand inventory of Component 1, otherwise.

Fig. 4.1(a)-Fig. 4.1(d) also display the structure of the optimal production policy with

different backorder levels of y.

In Fig. 4.1(b), the different optimal production regions are determined by three thresholds:
S, (X,,5), R(x,,4) and R;(x,4). In region x >5/(X,,5) given y=5, x;=35, x,=1 for example,
the optimal production policy tends not produce Component 1. This means, the backorder

level is small and the system has a large stock of Component 1 but small stock of Component
2. In this case, the stock is sufficient for Component 1, thus there is no need to produce it. In
region x, >R’ (x,,4) and x, >R;(x,4) given y=5, x,=20, x,=25 for example, the system has a
large stock of both Components 1 and 2, the optimal production policy tends to produce
Component 1 to reduce backorders of the assembled product. In the remaining region, given
y=5, x;=2, X,=25 for example, the system has a small stock of Component 1 but a large stock

of Component 2, the optimal production policy tends to produce Component 1 to increase its
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on-hand inventory. In this case, both Component 1 and 2 can be reserved to satisfy future
demand of the assembled product. Similar results can also be easily seen from Fig. 4.1(c) and
Fig. 4.1(d). Comparing these three figures, we observe that the base-stock level s/ (x,,Y)
increases with x, and y. The optimal production decision region that produces Component 1 to
increase its on-hand inventory is smaller when backorder level y increases. This result is quite
intuitive: since the production decision depends on both the on-hand inventory and backorder
level, the increased backorder required more components to balance. Hence, it is desired to
produce Component 1 to reduce the backorders rather than produce it to increase its inventory.
Also form Fig. 4.1(b)-Fig. 4.1(d), the rationing level R/ (x_,,y—1), k=1, 2, can be viewed as a
production parameter, thus the optimal production decision region is bounded by the base-

stock level s;(X,,y) and the rationing level R/ (x_,,y-1).

In Fig. 4.2(a)-Fig. 4.2(d), we still let the backorder cost by be lower than the lost sale costs c;
and c,. But, reduce the difference between them by keeping by unchanged and reducing the
value of c¢; to 100 and c, to 75. In this setting, comparing with Fig. 4.1(a)-Fig. 4.1(d), the

optimal production regions have changed. For example, as seen in Fig. 4.2(a), when there are
no backorders, the base-stock level s;(x,,0) is lower than that in Fig. 4.1(a). The fact that

when both c¢; and c, decrease, the optimal production policy tends to produce more
Component 1 and 2 to reduce backorders of the assembled product. If y=0, there is no need to
keep a large number of Component 1 in stock that may increase the holding cost, thus the

base-stock level s (x,,0) decreases. If y>0, as seen from Fig. 4.2(b)-Fig. 4.2(d), the optimal

allocation region that produces Component 1 to reduce backorders of the assembled product
is larger than that in Fig. 4.1(b)-Fig. 4.1(d) respectively, while the optimal production region
that produces Component 1 to increase its on-hand inventory becomes smaller. We discuss
two cases. If x>0, for the same reason as mentioned in Fig. 4.2(a), the low rationing level

R(x,,y—1) at Component 1 is optimal. On the other hand, when backorder level y increases,
the system tends to produce more Components 1 to deal with large backorders from the
assembled product, thus the optimal allocation decision region that produces to reduce
backorders of the assembled product grows larger. If x, =0, the base-stock level s, (0, y) with
different y is lower than that in Fig.4.1 respectively. In that region, demand of the assembled
product is always backordered whatever the value of x;. Component 1 can be produced to
satisfy its demand, thus it may not be optimal to keep a high base-stock level for Component
1.
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Fig. 4.1. The optimal production policy for Component 1 with lost sales and backorders
(bo=10, ¢;=1000, ¢,=800)
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In Fig. 4.3(a)-Fig. 4.3(d), the backorder cost by is larger than the lost sale costs ¢; and c,. In
this setting, comparing with that in Fig. 4.2, we increase the backorder cost by to 200 and keep
lost sale costs c¢; and ¢, unchanged. That means the product demand has priority over the
components demand, thus the former one should always be satisfied if possible. For this
reason, as displayed in Fig. 4.3(b)-Fig. 4.3(d), it is the more beneficial to produce Component

1 to reduce backorders of the assembled product as long asy >0, x, >0. Even if there are no
backorders, see Fig. 4.3(a), the optimal production policy tends to produce more Components

1 to stock for future demand of the assembled product, thus the base-stock level s;(x,,0) is

higher than that in Fig. 4.2(a). For similar reason, if y>0,x, =0, the base-stock level s; (0, y)

with the different value of y is higher than that in Figure 4.2, respectively. Moreover, Fig.
4.2(b)-Fig. 4.2(d) and Fig. 4.3(b)-Fig. 4.3(d) show that the backorder level has a strong
impact on the optimal production decision. When there are backorders, the decision that

produces as much as possible to reduce the backorder is optimal, thus in these figures the

rationing level becomes very low R'(x,,y-1)=0.

Fig. 4.4(a) and Fig. 4.4(b) show the structure of the optimal allocation policy for demand of
the assembled product with larger lost sale costs ¢;=1000 and c,=800. Fig. 4.4(a) illustrates

that there exist a rationing level R (x,,y)that divides the state space into two regions: it is
optimal to satisfy demand of the assembled product if on-hand inventory for Component 1 is
above the rationing level R’(X,,y), and backorder it otherwise. As we can see the rationing
level R/ (X,,Y) is non-increasing in x,. This is because a high inventory level of Component 2
increases the probability that demand of the assembled product would be satisfied. Hence, the
rationing level R’(X,,y) decreases. Otherwise, the rationing level R’(X,,y) increases. Fig.
4.4(b) also illustrates that the rationing level R’(X,,y) is non-increasing in backorder level y.
It is known that the increase of backorder level would also increase the total cost of the
system. In order to reduce this effect, it is natural to decrease the rationing level R/ (X,,Y)

when the backorder level increases.

Fig. 4.5(a) and Fig. 4.5(b) show the structure of the optimal allocation policy for demand of

the assembled product with lower lost sale costs ¢;=100 and c,=75. Obviously, the rationing

level R(x,,y) is lower than that in Fig. 4.4(b), respectively. This is because in Fig.4.5 the
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Fig. 4.2. The optimal production policy for Component 1 with lost sales and backorders
(bo=10, ¢1=100, 02:75)
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Fig. 4.3. The optimal production policy for Component 1 with lost sales and backorders
(bp=200, ¢,=100, c,=75)
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assembled product demand has a relative priority over the individual components demand.
Hence, the assembled product demand would be satisfied easily. Also seen form Fig. 4.5(a)
and Fig. 4.5(b), the effect of backorder level y is not significant. Especially when x,>1, the
rationing level becomes to a vertical line with the fixed value x,=1. This means if all
components are available, it is always optimal to satisfy demand of the assembled product.
This result also can be seen from Fig. 4.6, when the backorder cost by is larger than lost sale

costs ¢; and ¢, the optimal allocation region that satisfies demand of the assembled product

becomes large enough, and then the rationing level R/ (x,,y)becomes to x=1, for all y.

Fig. 4.7(a) and Fig. 4.7(b) show the structure of the optimal allocation policy for demand of
Component 1 under the condition by=10, ¢;=1000, c,=800. As displayed in Fig. 4.7(a), the

optimal allocation policy divides the state space into two regions: it is optimal to satisfy

demand of Component 1 if on-hand inventory x; is above the rationing levelr’(x,,y), and

reject it otherwise. The rationing level r'(X,,y) is non-decreasing in both the on-hand
inventory x, and backorder level y. The explanation is that when backorder level y increases,
in order to avoid a large backorder cost penalty, it is desirable to assemble more Component 1

and Component 2 to reduce backorders of the assembled product. Hence, the system tends to

keep less Component 1 to stock for its demands that leads to the rationing level r’(x,,Y)

increases. Fig. 4.7(b) illustrates that the rationing level r,’(x,,y) is also non-decreasing in the
on-hand inventory x,. Given a fixed backorder level y, a high inventory level of Component 2
increases the probability that demand of the assembled product would be satisfied. As a result,

more Component 1 is needed for demand of the assembled product and demand of

Component 1 becomes difficult to satisfy, thus the rationing level r’(x,,y) increases. In

contrast, the rationing level r’(x,,y) decreases when the system has a low inventory level of

Component 2.

Fig. 4.8(a) and Fig. 4.8(b) show the structure of the optimal allocation policy for demand of
Component 1 under the condition by=10, ¢;=100, c,=75. Obviously, the monotonicity result is
similar to that in Fig. 4.7(a) and Fig. 4.7(b), but this dynamic trend is more significant.
Relative to the original lost sale costs in Fig. 4.7, both ¢, and ¢, decrease in Fig. 4.8. In other
words, the components demand has a lower priority which reduces the probability that
demand of Component 1 would be satisfied. Therefore, the rationing level at Component 1

would be satisfied. Therefore, the rationing level at Component 1 with different value of x; is
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Fig. 4.4. The optimal allocation policy for demand of the assembled product at
Component 1 with lost sales and backorders (by=10, ¢;=1000, ¢,=800)
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Fig. 4.5. The optimal allocation policy for demand of the assembled product at
Component 1 with lost sales and backorders (bo=10, ¢;=100, c,=75)
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Fig. 4.7. The optimal allocation policy for demand of Component 1 with lost sales and
backorders (by=10, ¢;=1000, c,=800)
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Fig. 4.8. The optimal allocation policy for demand of Component 1 with lost sales and
backorders (bo=10, ¢;=100, c,=75)
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(a) Optimal rationing policy (b) Optimal rationing policy for fixed values of x,

Fig. 4.9. The optimal allocation policy for demand of Component 1 with lost sales and
backorders (bo=200, c1=100, c,=75)
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higher than that in Fig. 4.7, respectively. Such a similar result would be obtained from Fig. 4.9(a)
and Fig. 4.9(b).

4.4 Conclusion

We have provided a characterization of the optimal policy for an ATO system with single
product with individual components demand. The system defined here considered both lost sales
and backorders. Specifically, the unsatisfied component demand is lost and the unsatisfied
product demand is backordered if not fulfilled immediately. At any time, for any component, the
manager must decide whether to produce it and add it to the stock, to produce and allocate it to
fill the backorders of the assembled product if any, or not to produce. Also for any incoming
demand, the manager must decide which demand can be filled. Using MDP, we showed the
structure of the optimal control policy. In addition, we generated some properties of the base-
stock and the rationing levels. Finally, we conducted a comprehensive numerical study with

different penalty cost parameters, and analvze the impact of these cost parameters on the ootimal

policy.
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Chapter 5. Heuristic Policies

We present several static heuristic policies based on the dynamic programming model of
Chapters 3 and Chapter 4. For our heuristics, we use static thresholds to approximate the
optimal state-dependent thresholds. Specifically, these static heuristics provide the simple, yet
effective approaches for controlling production and inventory allocation of ATO systems. As we
discussed in the General Introduction, due to the complexity of ATO systems, the optimal policy
is computationally hard for large number of components. Because of the curse of dimensionality,
the optimal policy will be difficult to implement. We therefore need to develop efficient heuristic
policies to find a good approximation of the optimal policy. Of course, the heuristics that we
proposed here are suboptimal policies, while when these heuristics used effectively they will lead

to a performance improvement in ATO system.

The outline of this chapter is as follows: we provide an introduction in section 5.1. In section 5.2,
we propose three static heuristic policies with lost sales case, and compare the performance of
them. In section 5.3, we propose four static heuristic policies with mixed lost sales and
backorders case, and compare the performance of them. Concluding remarks are provided in

section 5.4.
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5.1 Introduction

In the previous Chapters 3 and 4, we proved that the optimal production policy is a “state-
dependent base-stock™ policy, and the optimal allocation policy is a “state-dependent rationing”
policy. However, such dynamic optimal policies may be difficult to carry out in practice
especially when the number of components is large. On the other hand, since the state space
considered in our system is infinite, in order to implement the optimal policy we need to truncate
the state space. Then we use the value iteration method with the exhaustive searching over the
truncated range to compute the cost function for the system. However, the value iteration used in
the infinite horizon may lead to an extremely slow convergence. Therefore, we hope to develop

simple and effective heuristic policies that should closely approximate to the optimal policy.

In this chapter, we propose several static heuristic policies. Contrary to the optimal policy, these
heuristics are characterized by static base-stock and rationing levels. That is, the inventory of
each component is controlled by a fixed base-stock policy, and the allocation of each demand can

be controlled by a fixed rationing policy or a first-come-first-served (FCFS) policy. Throughout

this chapter, let sx denote the fixed base-stock level for Component &, and s=(s,,S,,...S, ). Let I
denote the fixed rationing level for demand of Component k, and r=(r,,r,,...,1,). Let R denote

the fixed rationing/production level for demand of the assembled product. We define the

percentage cost difference between a heuristic and the optimal policy as

PDheuristiC:lOO%x(ghe”"S“C-g*)/ 9", where g"™™* is the average cost per period under heuristic,

and g is the average cost per period under the optimal policy. To simplify the computations, we
focus on a two-component ATO system. In this system, we test the static heuristic policies with
two cases: the pure lost sales system of Chapter 3, and the mixed lost sales and backorders of
Chapter 4. For each case, we conduct a numerical study to compare the performance of the
heuristic policies. The performance is measured through the percentage cost difference between

the heuristic and the optimal policies.
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5.2 The Case of Lost Sales

5.2.1 The Optimal Policy

Under the optimal policy, the dynamic programming equation can be written as:
V(x)+ 0" =h(x)+ 4T 00+ S ATV (0 TV (),
k=1 k=1

where the operators T° T¢and T,, k=1....,n are defined as follows:

To(x) = V(X)+c, if T x =0

min{v(x—e),v(x)+c,}  otherwise,

v(X)+c, if x, =0,

Tkv(x)z{

min {v(x —e,),v(x)+ ck} otherwise,
Tv(x)=min{v(x+e,),v(x)}.

As presented in Chapter 3, the optimal production policy for Component £ is a base-stock policy

with a state-dependent base-stock level s;(x_, ). The optimal inventory allocation policy for
Component & is a rationing policy with a state-dependent rationing level r’(x_ ). Both these

levels are non-decreasing in each of the states x;, 1 #k . Furthermore, it is always optimal to
satisfy demand of the assembled product whenever on-hand inventory for all components is

available.

5.2.2 Three Static Heuristic Policies

Based on the case of pure lost sales in Chapter 3, we develop three static heuristic policies. The
key point of these heuristics is to find the fixed base-stock and rationing levels. Once the
threshold levels are determined, they can be used in the heuristics to control the production and

allocation of ATO system.
The Heuristic H1 policy

We adopt IBR policy developed by Benjaafar and EIHafsi (2006) to our ATO system. Here, we
redefine it as Heuristic H1.
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Under Heuristic H1, the dynamic programming equation can be written as:
V(X)+ 9™ =h(x) + AT ™V) + D AT ™) + D i T (X), (5.1)
k=1 k=1

where the operators T, T** and T'*, are defined as follows:

TH0y(x) = v(x—e) if I1x, >0,
v(x)+c, otherwise,
Ty (x) v(x—e,) if X, >1,,
v(x)=
V(X)+c, otherwise,
v(x+e,) if X, <s,,
TMv(x) =
V() {v(x) otherwise.

Heuristic H1 is a simplified form of the optimal policy which is much easier to implement. In
order to find the optimal base-stock and rationing levels, we do an exhaustive search on base-

stock levels over the region {0,s™}x{0,s/™}x...x{0,5;}, where s is the largest base-stock

value for Component k under the optimal policy. We also use the same method to determine the

rationing levels of each component demand. That is, the rationing levels can be searched
exhaustively over the region {0,s}x{0,s,}x...x{0,s,}, where s _is the base-stock value for

component k. We examine all feasible combinations of base-stock and rationing values, then
determine the minimum average cost per period g™ in equation (5.1), from which the base-stock

and the rationing levels can be obtained.
The Heuristic H2 policy

We introduce a heuristic policy with the fixed base-stock and rationing levels, we refer to it as
Heuristic H2.

Under Heuristic H2, the dynamic programming equation can be written as:
v(x)+ 9" =h(x) + AT "%v(x) + Zn:/ikT H2ky(x) + Zn:,uka“zv(x), (5.2)
k=1 k=1

where operators T"*°, T"** and T,"?, are defined as follows:
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Ty (x) = v(x—e) ifglxk >0,
v(x)+c¢, otherwise,

v(x—e) ifx >r,

-I-Hz,kv x) = k k k
(x) {v(x)+ck otherwise,

Ty (x) v(x+e,) if X, <s,,

v(x)=
‘ v(x) otherwise.

Here, we use the results of (S,R) policy of Ha (1997a) to determine the base-stock and rationing
levels. Ha (1997a) proposed an (S,R) policy in a make-to-stock production system with two
demand classes and lost sales. The optimal policy can be described by a base-stock level S and a
rationing level R. Since demand class 1 is assumed to have priority over demand class 2, the
rationing policy is used only for controlling demand class 2. In the model of Ha (1997 a), there is
a single product and two demand classes. In our model, we can decompose the problem with
respect to the individual components. That is, each Component k is associated with two demands:
demand of the assembled product and demand of itself. Similarly, since priority is given to the
product demand, the rationing policy is applied to control Component k demand. Based on the
above, our ATO system can be decomposed as a series of queuing systems. For each Component
k the system consists an M/M/1/s;y make-to-stock queue (see Buzacott and Shantikumar 1993,

section 4.3), with the base-stock level s; and the rationing level r (r, <s ). This way, a

multidimensional optimization problem can be solved as a series of one-dimensional problems.

We define I(s,.r,) the inventory level of the system, p,(s,.r,) the probability of demand of the
assembled product that is not satisfied, and p, (s,.r,) the probability of demand of Component k

that is not satisfied. We use the results of Ha (1997a) as follows:

_ @=P)A = py) A" Po
A- pu )= P )+ A= p)PE A= p5™)

po(sk’rk)

_ - p)A- i) o "
A= po ) L= pE )+ (L= p) o A pr*

pk(Sk’rk)
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1- ST, S =Ty —
pk](._/;%k){l_pkk C == pI(s =)o l}
K

(L- o) A= P57 ) + (L= p ) P57 (L - Pl
1_ o S, — I S+ Sy =T — §,
/’(P)(pj {pokk =t A= o) (s —r) e ] (s +1)po;}
1- py Pok
(1= po )AL= P %)+ (L- p )i " (L - pi™

(S h) =5 —

Hence, for each one-dimensional problem the expected cost of the system is obtained by:
9(Se: 6 ) =he 1 (S, h ) +Codo Py (s ) +C APy (Se 1 ), for r <s,..

We also define p, =(4 +A4)/th, Poc =%/t Indeed, s and r¢ can be determined from

ming(s,.r ), st. r, <s,.Once all s, and ry are obtained, all of them will be used in equation (5.2)

(s%)

to determine the minimum of average cost per period g™.

The Heuristic H3 policy

Under Heuristic H3, the production can be controlled by a base-stock policy, while component
demands are filled on a first-come-first-served (FCFS) basis. Upon the arrival of component
demand, if there is enough on-hand inventory for that demand, then it is satisfied immediately. If

there is no available component in stock, the component demand is rejected.

The dynamic programming equation can be written as:
V(X)+ g™ =h(x) + 3,T "*°v(x) + Zn:ﬂkT H3ky(x) + Zn:,ukaHSv(x), (5.3)
k=1 k=1

where operators T"*° T and T, are defined as follows:

T (x) = v(x—e) if I1x, >0,
v(x)+¢, otherwise,
v(x—e,) ifx, >0,

TH3,kV X) = k k

() {v(x)+ck otherwise,

v(x+e,) ifx <s,,

T.Bv(x)=

V() {v(x) otherwise.
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We do an exhaustive search on base-stock values over the region {0,s™}x{0,s} x...x{0,s},

and then the base-stock levels s=(s,,s,,...,s,) can be obtained from equation (5.3).

5.2.3 Comparison to the Heuristic Policies

We provide the numerical results on the performance measures with respect to the percentage
cost difference between each heuristic and the optimal policies, and compare the performance of
the heuristic policies with that of the optimal policy. The system parameters are generated
randomly from the 100 examples (see Table 5.1).

Table 5.1 presents results from a set of numerical experiments. In this table, three heuristic
policies are tested for their efficiency. Comparing the percentage average cost difference per
period between the optimal policy and the heuristic policies, the numerical results in Table 5.1
indicate that Heuristics H1 and H2 are efficient and clearly outperform Heuristic H3. This result
IS quite intuitive since H1 and H2 have the benefit of rationing, and the purpose of rationing is to
reserve inventory for the future arrivals of the more valuable demands. In our numerical result,
demand varies from component to component, thus the benefit of rationing is significant.
Heuristic H3 does not perform well especially for cases where component demand is relatively
high. As we can see in cases 2, 3, 11, 13, 25, 23, 33, 37, 38, 43, 50, 54, 61, 68, 71, 72, 76, 77, 80,
88, 89, and 92. In all these cases, the demand rate for one of the components is higher than the
production rate. However, in practice, most systems have sufficient production capacity, thus the
demands would be satisfied. In fact, with the advantage of its simplicity and ease of
implementation, Heuristic H3 has been widely used in ATO systems. On the other hand, for
some special cases Heuristics H1 and H2 are equivalent to Heuristic H3. For instance, we found
that in cases 9, 10, 18, 22 the percentage difference of Heuristics H1, H2 and H3 are exactly the
same. Note that in these cases, the rationing level for the component demand equals to O, this
means Heuristics H1 and H2 have no benefit of the rationing policy, and these two polices
therefor can be regarded as Heuristic H3. Additionally, we found that the difference between
Heuristics H1 and H2 is not very large, especially in cases 7, 9, 10, 18, 20, 22, 24, 32, 33, 36, 39,
46, 47, 52, 53, 79, 80, 82, 83, 90, 91, 99, where the percentage difference of these two policies is
exactly the same. But in general cases, Heuristic H1 performs better than Heuristic H2. In
comparison, Heuristic H1 is more efficient because we do an exhaustive search to determine the
base-stock and rationing levels, which needs to take into account the on-hand inventory of other
components. In Heuristic H2, the base-stock and rationing levels can be determined from the
M/M/1/sx make-to-stock queue, and there is therefore no need to consider the on-hand
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Table 5.1 Optimal policy versus Heuristic policies with lost sales

(the system parameters are drawn from uniform distributions as 4, ~U(0,9), 4, ~U(0,9), z4 ~U(110),
h, ~U(1,10),c, ~U(600,700),c, ~U(L300),k =1,2.)

percentage difference

from optimal cost %
o A A o, hh S ol C, HL __ H2 _ H3
042 7.65 0.33 885 568 3.78 3.61 62190 85.54 252.09 1.34 3.73 5.43
1.37 6.40 0.64 9.40 8.18 4.38 1.20 689.68 79.68 193.09 1.46 499 21.94
296 2.73 2.06 6.64 7.29 143 2.83 617.42 156.46 93.89 041 4.92 15.33
281 3.04 060 6.85 497 1.19 8.19 653.43 147.48 212.70 1.26 1.52 6.83
095 6.48 5.22 7.25 8.40 7.60 2.78 629.88 246.48 147.21 0.52 1.54 2.22
387 1.79 032 9.61 6.89 6.96 4.79 688.79 155.10 76.95 4.28 7.35 9.90
0.01 0.13 8.76 7.11 591 430 4.63 687.75 176.76 105.76 0.23 0.23 0.23
0.79 208 511 7.98 853 581 546 646.11 16.61 176.63 0.81 6.51 9.48
0.21 6.52 230 9.53 283 162 7.69 656.43 182.96 271.69 0.17 0.17 0.17
10 1.24 0.86 4.72 292 852 6.12 8.89 667.81 147.06 171.21 0.16 0.16 0.16
11 252 534 3.09 844 152 6.14 9.30 607.75 73.62 274.04 0.17 7.12 17.48
12 421 218 0.83 842 8.01 1.61 9.30 699.05 204.43 276.79 1.09 0.57 3.56
13 2.07 0.28 259 09.21 4.78 5.78 9.56 674.77 294.54 244.04 2.35 1054 14.09
14 0.88 4.49 449 540 945 6.62 1.87 677.02 200.29 210.27 0.03 1.10 1.20
15 3,53 2.26 226 7.59 2.00 4.01 4.75 654.66 68.63 158.62 1.56 7.52 10.94
16 5.27 1.01 0.29 945 3.18 9.01 3.62 678.91 64.40 223.36 0.18 4.41 5.36
17 0.40 6.11 3.26 3.66 498 7.61 9.68 650.56 274.23 204.79 0.34 0.42 4.79
18 0.03 1.69 051 3.30 2.20 5.66 5.18 623.48 214.97 249.51 0.22 0.22 0.22
19 157 247 6.54 6.18 9.17 941 9.12 698.83 190.37 268.73 0.30 0.42 0.30
20 125 217 3.36 830 597 532 7.32 69295 187.58 175.17 0.91 4.51 4.51
21 114 590 2.80 9.12 8.30 5.69 1.38 646.24 200.24 179.96 0.76 0.85 0.93
22 0.23 6.30 352 8.10 6.85 3.74 9.24 683.23 164.89 97.92 0.71 0.71 0.71
23 0.07 451 1.18 199 3.78 4.89 5.09 654.64 38.08 50.90 2.94 6.86 12.17
24 166 124 2.02 852 6.28 553 4.50 614.32 155.09 216.33 0.75 0.90 0.90
25 0.19 542 161 3.07 459 594 7.45 66559 166.51 117.59 1.23 1.32 6.33
26 1.17 095 6.48 6.22 7.25 8.40 7.60 648.90 59.99 246.48 0.51 6.58 7.35
27 8.35 3.87 1.79 1.32 9.61 6.89 6.96 62540 126.81 155.10 0.26 0.90 4.18
28 046 5.15 356 562 500 9.01 206 643.12 94.13 163.81 0.49 0.69 6.05
29 052 228 126 6.97 6.37 5.04 528 61222 176.61 86.57 2.28 3.92 7.84
30 6.79 446 045 4.00 1.12 1.46 4.89 627.13 212.31 139.51 0.01 0.14 0.88
31 471 7.75 849 7.00 154 941 942 624.89 128.39 296.09 0.06 2.29 4.75
32 267 6.47 0.15 9.74 7.57 7.08 6.04 643.52 143.62 79.51 0.14 0.14 8.72
33 297 274 061 834 881 896 4.35 627.14 88.26 124.39 0.06 0.06 10.66
34 437 6.29 8.22 4.64 8.01 8.17 6.84 615.27 201.08 215.79 0.15 1.94 9.61
35 280 096 156 6.80 8.52 342 4.64 694.79 237.33 221.85 0.69 3.51 3.52
36 425 234 246 9.30 9.22 9.48 7.55 688.78 133.90 174.12 0.35 0.35 6.37
37 077 752 154 1.13 3.16 7.44 9.84 642.04 255.05 73.98 0.38 0.41 10.09
38 7.60 1.07 690 8.68 194 8.97 894 607.74 153.68 96.96 0.13 7.02 11.52
39 179 247 0.14 6.90 484 187 3.46 663.30 213.43 164.03 1.77 1.77 2.89
40 0.57 194 866 4.18 9.31 3.65 6.38 62554 39.92 249.89 0.18 0.34 8.50
41 8.89 192 153 1.05 9.69 2.20 8.52 62590 75.44 251.90 0.03 0.39 2.06
42 1.70 052 7.81 791 992 443 6.62 665.95 50.30 174.41 0.67 7.99 9.52
43 0.21 3.93 6.67 9.97 358 3.70 7.55 601.30 265.15 99.23 0.29 1.16 10.79
44 476 1.13 157 195 7.20 4.98 2.12 640.60 242.30 203.87 0.43 1.99 6.98
45 8.15 6.12 7.15 145 441 592 7.14 600.12 210.63 29.17 0.07 1.00 5.96
46 0.32 229 280 9.12 830 6.88 452 676.55 113.51 127.61 0.16 1.16 0.91
47 0.17 5.70 0.47 442 8.25 459 8.64 65856 163.12 70.03 0.28 0.28 6.02
48 8.74 2.30 0.75 451 3.71 8.97 5.67 672.18 168.80 196.68 0.13 3.50 4.56
49 087 8.25 131 7.18 3.00 9.14 250 620.89 247.49 7297 0.18 0.33 9.12
50 6.38 0.11 1.66 8.36 3.14 5,50 4.76 625.64 49.28 181.05 0.22 3.64 12.71
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Table 5.1 Optimal policy versus Heuristic policies with lost sales

(the system parameters are drawn from uniform distributions as 4, ~U(0,9), 4, ~U(0,9), z4 ~U(110),
h, ~U(1,10),c, ~U(600,700),c, ~U(L300),k =1,2.)

percentage difference
from optimal cost %

A A A h h Co G C, H1 H2 H3
51 733 757/ 7.68 287 127 371 801 67690 138.16 24669 070 351 4.27

52 0.74 157 0.29 6.41 7.62 7.48 8.30 683.97 144.75 155.34 2.39 2.39 3.86
53 059 0.61 0.30 4.00 7.41 9.28 8.47 667.87 19.13 172.37 0.01 0.01 5.64
54 822 146 4.76 9.50 5.80 3.08 1.64 642.43 162.20 141.81 1.29 1.78 47.35
55 8.74 7.48 0.45 9.31 3.16 6.05 9.49 646.09 162.68 284.84 0.49 1.11 1.30
56 0.69 1.00 248 240 b5.14 164 9.75 636.72 13.03 189.10 1.07 1.82 9.43
57 437 495 850 266 126 7.02 9.62 66147 80.17 201.71 1.66 3.90 9.42
58 8.24 6.78 8.10 2.00 7.41 9.83 7.05 619.25 194.02 51.01 0.27 2.48 7.40
59 8.62 5.27 6.20 4.32 6.60 4.31 7.50 647.14 299.73 21.57 0.00 2.29 15.48
60 8.68 2.01 6.73 2.00 6.28 9.89 2.35 60358 52.17 96.56 0.64 1.35 5.64
61 142 6.76 4.05 8.02 287 134 6.94 61759 10.75 159.73 1.14 1.22 59.12
62 8.74 230 0.75 451 3.71 8.97 5.67 672.18 168.80 196.68 1.12 2.63 4.69
63 8.61 455 206 3.18 524 922 976 647.35 264.68 122.88 0.36 4.86 8.28
64 0.63 2.02 0.03 8.70 9.21 3.38 9.94 658.61 19.07 127.52 0.17 3.79 8.19
65 7.64 478 218 6.43 1.38 272 7.01 604.27 163.62 176.82 0.21 0.82 3.00
66 128 8.63 7.43 219 275 3.36 5.08 660.74 111.31 290.63 0.08 0.39 9.92
67 841 7.01 3.64 7.40 164 4.85 8.60 66352 216.59 47.27 0.14 2.34 5.13
68 8.24 125 897 9.61 254 7.12 8.43 673.84 29451 98.22 0.15 1.59 16.06
69 7.13 1.34 0.70 6.18 3.05 2.23 1.75 624.28 47.77 32,58 0.19 4.35 6.63
70 8.64 232 398 154 492 7.49 220 691.74 256.80 183.68 0.02 1.75 1.94
71 590 7.57 096 3.11 3.80 196 256 62691 193.78 233.86 0.84 0.84 20.70
72 6.24 161 290 8.71 210 5.89 594 630.17 136.97 98.49 0.14 1.37 12.28
73 6.82 1.17 1.19 2,06 1.87 2.09 8.02 653.86 298.12 122.68 0.64 1.38 2.95
74 841 219 6.97 1.14 266 8.01 8.23 628.75 129.05 80.67 0.00 2.52 4.79
75 6.11 836 7.36 1.39 9.14 7.44 154 609.11 145.12 46.94 0.00 0.33 8.71
76 6.82 3.15 7.82 252 9.82 9.13 459 657.62 37.06 85.02 0.01 1.41 15.59
77 6.69 177 0.76 6.84 495 09.02 574 668.34 177.26 13259 1.84 9.49 19.03
78 353 146 211 1.77 6.94 3.27 9.24 612.39 121.97 160.69 2.93 4.37 5.68
79 087 149 0.39 9.36 8.20 8.42 5.15 627.03 188.74 203.92 0.00 0.00 2.05
80 154 426 7.20 5.06 4.68 2.78 6.65 664.44 175.31 262.74 0.04 0.04 15.08
81 5.82 8.97 563 456 4.75 3.81 7.65 605.21 201.76 296.68 0.53 3.54 7.01
82 029 748 820 3.67 336 7.70 4.88 667.90 87.84 283.14 0.10 0.10 2.77
83 7.05 0.04 4.38 9.22 1.14 6.39 2.70 686.04 176.24 158.78 1.69 1.69 7.72
84 527 234 7.36 223 541 162 4.83 617.76 206.65 172.82 1.17 5.23 8.01
85 249 527 164 7.70 6.43 550 1.14 663.58 185.51 191.68 0.15 1.33 2.77
86 7.41 257 122 265 206 6.49 1.96 670.93 294.82 203.16 0.61 4.83 2.54
87 6.76 3.88 580 196 956 5.78 6.83 613.39 221.17 221.85 0.38 3.30 7.24
88 285 6.78 5.22 6.63 3.87 8.73 2.78 611.94 103.82 201.87 0.07 0.21 37.98
89 855 342 495 8.02 4.82 8.25 541 660.73 175.64 208.85 0.63 1.62 20.56
90 0.09 3.05 4.97 3.53 342 986 7.56 601.17 74.76 137.47 0.56 0.56 1.43
91 139 219 059 532 740 936 6.15 624.28 88.58 48.01 0.43 0.43 8.68
92 759 1.89 881 7.58 3.32 7.44 6.19 653.99 235.54 214.42 0.46 2.13 16.63
93 251 8.64 237 4.04 8.88 7.11 8.36 63225 54.26 191.92 0.08 0.60 4.47
94 7.16 7.01 4.62 492 126 1.26 7.64 635.02 78.96 253.47 0.00 0.41 4.10
95 191 3.18 2.73 9.31 9.70 9.22 2.85 688.43 144.63 90.23 0.54 1.51 1.51
96 245 241 092 9.82 849 6.81 8.30 640.70 121.87 154.62 0.33 1.43 3.71
97 138 180 164 7.35 4.65 5.71 6.78 653.41 54.54 139.56 0.16 3.27 6.29
98 8.30 459 494 224 398 855 1.23 609.54 264.97 265.44 0.00 0.29 1.52
99 0.81 3.65 0.11 8.40 3.26 7.85 9.38 613.63 58.21 106.54 0.09 0.09 3.74
100 6.94 8.16 2.97 853 2.37 490 5.02 614.65 274.20 216.54 0.12 2.08 3.16
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inventory of other components. Because of this, the accuracy of approximation under H2 is
lower than that under H1. However, Heuristic H2 provides a computational advantage. Instead of
requiring a multidimensional search for the base-stock and rationing levels, H2 offers a quite

simple and computationally effective way of computing the optimal thresholds.

Also from the Table 5.1, there is very little difference between the optimal policy and Heuristic
H1. For example, a maximum of the percentage average cost difference is 4.28%, and a
minimum is 0.00%. However, the percentage average cost difference between the optimal policy
and Heuristic H3 is lager with a maximum of 59.12% and a minimum of 0.16%. It is clear that

Heuristic H1 works best for controlling the ATO system.

Additionally, the optimal average cost is sensitive to the component production utilization
P =% +A4)/ 4 - In order to study the combined effect of the related costs (holding cost and lost
sale costs) and component production utilization on the average cost. From Fig. 5.1(a) and Fig.
5.1(b) we can see that the optimal average cost increases as p, increases. When p, >1, the
optimal average cost is increasing in h; and co. Clearly, the effect of the related cost on average
cost is significant as p, is large. However, when p, <1, the optimal average cost is decreasing in
hi and coand the effect of the related cost on average cost is not significant as p, is small. We
can explain this behavior as follows: when p, >1, the system is busy and has not enough capacity
to handle all the demands. In this case, the lost sale cost ¢y has a dominant effect compared to the
holding cost h;. On one hand, the increase of the lost sale cost co would also incur the average
cost increases; on the other hand, as showed in Fig. 5.1(a) the higher value of ¢, increases the
value of optimal average cost. When p, <1, the system is not busy and has a relative large
capacity to handle the coming demands. In this case, the holding cost h; has a dominant effect
compared to the lost sale cost co. On one hand, the increase of the holding cost h; would also
incur the average cost increases; on the other hand, as showed in Fig. 5.1(b) the higher value of

h; decreases the value of optimal average cost.

To gain more insight, we next examine the effectiveness of the heuristics under different holding

cost and lost sale cost structures. We fix some system parameters as 4, =0.75,1, =1, =0.2, 4, =1,

1, =1, while vary the value of the other parameters.

Fig.5.2 and Fig.5.3 reflect the sensitivity of the percentage difference from optimal cost in

system cost parameters. We compare the average cost of Heuristic H1 to the average cost of
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Heuristic H3 with different cost parameters. As shown in Fig.5.2, PDy; is not monotonic in
the holding cost ratio hi/h,. For each fixed value of co/(c1+cy), PDy; fluctuates a lot between 0%
to 0.5%. In Fig.5.3, for each fixed value of cy/(c;+cC;), PDus decreases with hi/h, for the range

of 1<h,/h, <14. We also observe that PDys fluctuates slightly for the range of 15<h /h, <29.

As can be seen form this figure for a fixed value of ha/ h, we obtain PD_ s >PD

/(e+cp)= co/(c+ez)=2"
that is the percentage difference PDys is increasing in the relative lost sale cost rate co/(C1+Cy).
Comparing these two heuristic polices, the effect of the holding cost rate is obvious under

Heuristic H3.

Fig. 5.4(a)-Fig. 5.4(d) show the effect of relative lost sale cost rate co/(c;+C2) on PDy; and
PDus. We fix the lost sale costs co+c1+¢,=2000, but vary ci/c, in different values. Clearly, in
Fig.5.4(a) for each fixed value of ci/c;, we can see that the effect of co/(c1+C2) on PDys is
significant, while this effect on PDy; is slight. That because Heuristic H1 has the advantage of
the rationing policy, which can be used to reduce the effect of co/(c1+c,). However, Heuristc
H3 does not have the benefit of rationing, thus the relative lost sale cost rate affects PDy3 a lot.
Fig. 5.4(b) and Fig. 5.4(c) indicate the trend of PD change under different huristics. For
Heuristic H1, Fig. 5.4(b) shows that PD

fluctuates more sharply than PD between

¢ /c=3 G /c=1

0.0% and 1.2%. For Heuristic H3, Fig. 5.4(c) covers a rang of 1<c,/(c, +¢,)<14. We can see

o/, @nd PD o o is

that for a fixed value of co/(ci1+cC,), the percentage differece between PD
not large. Fig. 5.4(d) covers a rang of 17 <c,/(c, +c,)<29. We can see that for a fixed value
of co/(c1+Cy,), the percentage difference PDy3 decreases with the ratio ci/c,. For example, at a

value of co/(c1+c)=20, PD =51.19%, PD =51.36%; at a value of co/(c1+cC;)=23,

¢ /c,=3 a/c=l
PD, ., ,=52.66% , PD_, ,=5287%; at a value of co/(c1+C2)=26, PD, , ,=53.85% ,
PD, ., =54.06%. In summary, for each heuristic our numercail results indicat that the
difference betweenPD, . , and PD_ . _, is not significant .

5.3 The Case of Lost Sales and Backorders

5.3.1 The Optimal Policy

Under the optimal policy, the dynamic programming equation can be written as:
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V(XY)+HG =N00+ B+ ATV (X9)+ LATYV ()3 4TV (XY),

where, operators T°, T“and Ty, k=1,...,n are defined as follows:

Tov(x,y): v(X,y+1) if&‘zllxk =0
min{v(x—e,y),v(x,y+1)} otherwise,
v(x,y)+c ifx, =0,

Thv(x,y)= m(in{):/)(x ke -

—e,.Y).v(x.y)+¢}  otherwise,
min{v(x, y),v(x+ek,y)} ify =0

TV(X,y)= min{v(x,y),v(x+ek,y)} if y> O,ilixi =0

min{v(x+ek, y),v(x—iei,y—l)} if y> 0,»1££xi > 0.

izk

As presented in Chapter 4, for Component k there exists an optimal stationary policy specified
in terms of a state-dependent production base-stock level s,(x_,Yy), for y=0, or
y>0,[TL,x =0and a state-dependent inventory rationing level (X ,,Y). For the assembled
product, there exists an optimal stationary inventory rationing policy specified in terms of a

state-dependent rationing level R (X_,,Y).

5.3.2 Four Static Heuristic Policies

Based on the mixed lost sales and backorders case of Chapter 4, we develop four static
heuristic policies. Throughout this sub-section, we use an exhaustive search to construct
approximation of the optimal base-stock and rationing levels. Then these threshold levels can
be applied for controlling the production and allocation of ATO system.

The Heuristic H4 policy

Heuristic H4 use a similar idea to the IBR policy developed by Benjaafar and EIHafsi (2006).
H4 uses fixed thresholds for component and assembled product for production and inventory

rationing decisions.
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It is not difficult to show that under Heuristic H4, the dynamic programming equation can be

written as:
V(X ¥)+ 9™ =h() +b, (y) + ATV y) + D AT ™, y) +D - s T v(x, y), (5.4)
k=1 k=1

where operators T™, T"** and T are defined as follows:

THOY(x,y) = v(x-ey) ify>R, and[1x >0,
V(X y+1) otherwise,
TH4’kV(X, y): V(X_ek’y) ika Zrk;
V(X y)+c, otherwise,
v(x+e,,y) ifx <s,,y =0,
v(x+e,,y) ika<sk,y>0,and_lﬂ£xi=0,
T (X, y)=1v(x+e,Y) ify<R,y> o,andﬁxi >0,
v(x—zn:ei,y—l) ify>R,y>0,andf£xi>o,
izk iz
v(x,y) otherwise.

We conduct an exhaustive search to find the best base-stock levels sy and rationing levels ry
and R that minimize the average cost in equation (5.4). That is, we do an exhaustive search on
base-stock levels sy over the region {0,s™}x{0,s7*}x...x{0,5;}, where s/ is the largest
base-stock level for Component k under the optimal policy. We exhaustively search on
rationing levels r, over the region {0,s,}x{0,s,}x...x{0,s,}, where s, the base-stock value for
Component k under Heuristic H4. We also do an exhaustive search on rationing level R over
the region {0,R™}, where R™ the largest rationing value for the assembled product under

the optimal policy. Using this technique, the base-stock and the rationing levels and the

corresponding optimal average cost per period g™ can be determined.

As we can see, Heuristic H4 has the same structure as the optimal policy except that it uses
fixed threshold levels rather that the optimal state-dependent ones. Its advantage is that it is

easier to compute and implement compared to the optimal policy.

The Heuristic H5 policy
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Under Heuristic H5 the production can be controlled by a fixed base-stock threshold, and
demand of the assembled product is always satisfied as long as stock for all components is
available. Demand of individual components is rationed through fixed threshold levels similar
to Heuristic H4. Hence, Heuristic H5 gives priority to the demand of the assembled product

over the demand of the individual components.

The dynamic programming equation can be written as:
V(% ¥)+g"™ =h(x) + b, (y) + AT NV Y) + D AT VX ) + D i TV, y), (5.5)
k=1 k=1

where the operators T*°, T** and T'* are defined as follows:

T (x,y) = v(x—e,y) if IEIle->0,
v(x,y+1) otherwise,
THS’kv(x )= v(x—e.y) ifx >,
' V(X Y)+c, otherwise,
v(x+e,,y) ifx.<s,y=0,
(o) v(x+e,,y) if x.<s,y> O,andf{xi =0,
T.v(X,y)= . i v
V(X—Zei,y—l) if y> O,Qxi>0,
v(x,y) otherwise.

Similar to Heuristic H4, we use dynamic programming to compute H5. That is, we do an
exhaustive search on base-stock levels s, over the region {0,s7™ }x{0,s7*} x...x{0,s™}, and we
can also exhaustively search on rationing levels r, over the region {0,s}x{0,s,}x..x{0,s,}.

From equation (5.5), we determine the minimum average cost per period g"°.

The Heuristic H6 policy

Under Heuristic H6 the production can be controlled by a fixed base-stock threshold, and
demand of the individual component is always satisfied as long as stock for the needed
component is available. Demand of the assembled product is rationed through fixed threshold
levels similar to Heuristic H4. Hence, Heuristic H6 gives priority to demand of the individual

components over demand of the assembled product.
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The dynamic programming equation can be written as:

V(% Y)+ 8 =N00+ By () + AT V() + SAT“V06Y) + 3 4TV, Y), (5

where the operators T"°, T** and T, are defined as follows:

THG'OV(X,y)z V(X—e, y) ify>R, andgxi >0,
V(X y+1) otherwise,
V(X—e, if x, >0,
T HG,kV(X’ y) — ( k y) k -
V(X y)+c, otherwise,
v(x+e,y) ifx, <s,,y =0,
v(x+e,,y) ika<sk,y>0,and_ll£xi=0,
T v(x,y)=1v(x+e,Y) ify<R,y> O’andﬁxi >0,
v(x—zn:ei,y—l) ify>R,y> O,andﬁxi>0,
izk i%
v(x,y) otherwise.

In Heuristic H6, the rationing policy is used only for controlling demand of the assembled
product. That is, if the backorder level for the assembled product is below the rationing level R
the demand of the assembled product is backordered. Otherwise, demand of the assembled
product can be satisfied. The base-stock levels s, can be exhaustively searched over the region

{0,5}x{0,57™ } x...x{0,s7}, and the rationing level R can be exhaustively searched over the
region {0,R™} . From equation (5.6), we determine the minimum average cost per period ge.
The Heuristic H7 policy

Under Heuristic H7, the production can be controlled by a fixed base-stock policy, while a
first-come-first-served (FCFS) policy is for both the end product demand and the individual

components demand.

The dynamic programming equation can be written as:

V(% Y)+ 8" =R +B )+ 4T VX Y) + S ATV ) + 4T, (K, Y), .7
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where the operators T, T""* and T/" are defined as follows:

Ty (x,y) = v(x—e,y) if iE{X‘ >0,

v(x,y+1) otherwise,
TR (x,y) = v(x—e.Yy) if X, >-O,

V(X y)+c otherwise,

v(x+e,,y) if x,<s,,y=0,

v(x+e,,y) if x,<s,y> O,andf[xizo,
TkH7V(X’ y) = n n .

V(X—Zei,y—l) if y> O,qxi>0,

v(x,y) otherwise.

Heuristic H7 is a simple heuristic, where we only need to consider the base-stock levels for
the production decision. For the demand of the individual components and of the assembled
product that follow the FCFS rule, if the system has enough stock the coming demand can be
satisfied. The base-stock levels sx can be computed by exhaustively searching over the region

{0,57} x{0,5/™} x...x{0,s™}. From equation (5.7), we determine the minimum average cost

per period g™’
5.3.3 Comparison to the Heuristic Policies

We conduct a numerical study to compare the performance of the heuristic policies. The
performance is measured through the percentage cost difference between the heuristic and the

optimal policy. The system under study has the following parameters: A, 4, 4., h..b,, and c,
for k=1,2, which are generated randomly (see Table 5.2). To gain insight, we consider a wide

range of parameter values for component production utilization (0.5< p, <1.2), and the
backorder cost(b0 ~U (5,15)><z§:1hk). Given a combination of the parameters, we compute the

value of average cost under the optimal policy and each heuristic policy. Table 5.2 is the
comparison of the optimal and heuristic policies and their corresponding average cost. Here,
we report the performance of our heuristic policies. As can be seen from Table 5.2, Heuristic
H4 performs better than the other three heuristics in each example tested with the percentage
difference varies between 0.004% to 1.808%. It is of interest to notice the relative

performance of the other three heuristics. Clearly, Heuristics H5, H6 and H7 do not perform

158



Heuristic Policies

as well as Heuristic H4 as they are further simplification of the Heuristic H4. Except for the
cases 10, 47, 56, 67, 68, 72, 86, and 93, Heuristic H5 outperforms Heuristic H6. This is most
likely due to the fact that when the arrival rate of end product demand is lower than that of
components demand (see cases 67, 68, and 86), or the backorder cost is less than the lost sale
cost (see cases 10, 47, 56, 72, and 93), priority is given to the individual components demand
over the assembled product demand. In these cases, Heuristic H6 does a better job than
Heuristic H5. However, in most cases the effect of backorder is higher than that of lost sale.
This implies that the assembled product demand has higher priority than the individual
components demand. Thus, Heuristic H5 works better than Heuristic H6. For a particular case

74, the relative load parameter p, >1 and the backorder cost is larger than the lost sale cost.

In this case the system is out of stock, which leads to lost sales and backorders most of the
time. Heuristic H4 has the benefit of the rationing policy for both demands of the assembled
product and the individual components. Since the purpose of rationing is to reserve inventory
for future arrivals of the more valuable demands, H4 works better than the other heuristics.
Also, it is easy to observe that Heuristic H5 outperforms Heuristic H7 for all cases. In
addition, Heuristics H6 and H7 do not perform well especially for cases where component
demand is relatively high, as we can see in cases 31, 34, 35, 39, 43, 45, 76, 86, 87, 99, and
100. This reflects the fact that, with high component demand levels, there is a great chance for
the system to stock-out. Heuristics H4 and H5 reduce the stock-out probability by the fixed
base-stock and rationing levels for components, while Heuristics H6 and H7 are less flexible

because there are no rationing levels for components.

By comparing the above four heuristics, it is clear that Heuristic H4 works very well for
controlling the ATO system, which is a good approximation of the optimal policy. This is
because all the base-stock levels and the rationing levels are considered in this heuristic, and
the production and allocation can be well controlled. Although H4 is very efficient, it is
computationally intensive because it requires a multi-dimensional search for the optimal
thresholds. Hence, developing other heuristics is necessary. As shown in Table 5.2, the
difference in performance of H4 and of H5 is very small for the cases 1, 3, 7, 20, 47, 56, 61,
64, 67, 83, 86, 95, 96, 99 and 100, if without considering the special case 74, the performance
of H4 and of H5 is exactly same in the rest of the cases. We can also see that there is
difference in performance of H6 and of H7 for the cases 1, 7, 47, 56, 61, 86, 95, 96, 99, and
100, and for the other cases the performance of H6 and of H7 is exactly same. This is due to

the effect of backorder. In general, if the demand of the assembled product is backordered the
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Table 5.2 Optimal policy versus Heuristic policies with lost sales and backorders

(the system parameters are drawn from uniform distributions as 4, ~U(0,10), 4, ~U(0,10), 4 ~U(0,10),
0.5< p <1.2, h ~U(L10),b, ~U(5,15)x 32 ;h,, ¢, ~U(100,500), p, = (4, + 4 )/ 14 .k =1,2.)

percentage difference
from optimal cost %

b A A o . hoh ) q C H4 H5  H6 H7

1 111 169 426 269 584 7.08 3.30 112.86 340.34 249.73 0577 1.351 1.804 2.107
2 203 274 238 461 493 993 2.02 94.16 321.38 443.39 0.039 0.039 1.590 1.590
3 398 4.02 555 898 813 4.60 142 121.49 429.66 1v8.85 0.268 0.357 1.206 1.206
4 167 521 630 6.72 7.56 3.47 595 78.23 138.03 437.72 0.309 0.309 1.845 1.845
5 286 321 563 586 7.85 249 8.64 144.00 429.40 489.02 0.285 0.285 0.514 0.514
6 127 084 043 299 199 523 9.16 63.83 414.05 241.37 0.627 0.627 2556 2.556
7 046 296 571 451 838 4.64 4.73 165.89 353.85 226.61 0.542 1.258 1.356 4.098
8 196 098 222 397 552 252 861 8571 403.39 33498 0.909 0.909 1.199 1.199
9 267 233 275 490 793 8.16 6.17 122.62 275.97 11450 0.190 0.190 0.577 0.577
10 0.07 3.98 287 585 546 496 849 9296 123.68 171.41 0.334 0.450 0.334 0.450
11 127 1.20 4.07 297 7.41 3.89 9.04 168.27 304.65 318.72 0.486 0.486 2.030 2.030
12 1.03 096 166 218 4.64 7.99 159 120.66 328.47 452.40 0.537 0.537 2.601 2.601
13 3.01 742 0.84 921 6.81 7.05 5.90 143.87 148.75 228.29 0.204 0.204 1.336 1.336
14 2.08 545 6.84 9.05 8.79 7.25 2.16 139.83 179.62 456.47 0.065 0.065 0.335 0.335
15 0.09 532 3.02 883 293 524 359 79.70 28316 227.49 0.669 0.669 2.332 2.332
16 230 275 229 6.85 6.75 4.89 294 12547 28579 285.08 0.861 0.861 1.352 1.352
17 242 294 6.46 8.67 7.52 3.01 1.47 148.58 438.44 112.58 0.312 0.312 0.662 0.662
18 1.14 158 0.81 4.02 224 527 6.61 162.89 102.62 281.61 0.860 0.860 2.831 2.831
19 0.70 489 2.87 487 575 6.14 7.11 166.97 304.18 188.88 0.102 0.102 3.353 3.353
20 0.25 4.26 3.66 537 6.97 105 9.89 89.27 169.85 126.07 0.005 1.206 2.127 2.127
21 023 6.41 260 7.86 4.28 6.29 131 60.60 352.21 172.74 0.440 0.440 2.715 2.715
22 107 235 322 339 523 106 650 79.16 178.02 284.10 0.030 0.030 0.665 0.665
23 131 6.81 0.73 993 1.77 858 8.29 106.27 405.39 430.71 0.538 0.538 3.533 3.533
24 048 0.83 527 160 521 883 160 128.24 316.83 121.32 0.356 0.356 2.355 2.355
25 3.71 146 0.70 9.03 6.79 2.10 3.12 167.86 430.86 103.79 0.443 0.443 2570 2.570
26 185 6.17 1.04 948 257 230 265 69.19 449.21 340.00 0.760 0.760 3.593 3.593
27 228 2,04 115 546 3.13 1.14 217 121.83 402.48 483.01 0.658 0.658 3.127 3.127
28 0.06 4.78 147 7.75 132 3.53 894 153.57 215.63 309.19 1.287 1.287 2.659 2.659
29 082 656 4.87 7.01 495 491 6.47 118.24 373.69 237.17 1.157 1.157 5.634 5.634
30 274 226 0.32 6.11 6.00 9.14 7.23 151.83 329.49 220.45 0.178 0.178 1.943 1.943
31 0.78 5.20 3.24 7.15 6.32 3.04 830 156.57 341.78 427.60 0.347 0.347 7.879 7.879
32 296 423 483 9.73 6.84 3.81 490 162.99 111.36 214.65 0.527 0.527 0.916 0.916
33 058 334 751 355 7.32 659 438 154.75 147.84 253.44 0.411 0.411 4321 4.321
34 118 0.15 199 182 446 239 473 16585 23530 262.86 0.520 0.520 8.562 8.562
35 0.78 9.24 6.15 9.77 597 208 6.23 7192 346.96 323.80 0.117 0.117 7.931 7.931
36 148 0.88 1.08 268 4.17 432 394 59.88 18252 360.38 0.327 0.327 3.755 3.755
37 186 3.34 3.12 8.33 592 1.80 4.27 146.45 421.13 24495 0.752 0.752 2.768 2.768
38 080 209 538 451 860 7.03 832 161.35 406.12 266.63 0.488 0.488 6.268 6.268
39 534 025 139 6.25 7.29 1.06 7.61 158.48 486.48 326.77 1.414 1.414 23.623 23.623
40 525 135 0.36 583 6.07 6.45 7.16 83.47 134.05 313.26 0.714 0.714 5.765 5.765
41 6.07 2.77 118 9.09 7.49 9.93 259 154.61 15741 251.60 0.845 0.845 4.369 4.369
42 8.15 151 235 947 925 524 8.12 169.05 224.67 285.65 0.427 0.427 3.092 3.092
43 6.25 0.09 342 542 875 287 7.81 118.85 338.32 189.28 0.489 0.489 15.937 15.937
44 192 187 048 3.72 3.34 7.31 3.71 96.13 389.94 187.87 0.458 0.458 6.734 6.734
45 0.34 139 159 231 3.77 6.09 1.83 88.94 41537 196.13 0.154 0.154 7.591 7.591
46 2.03 056 0.76 494 292 3.14 593 98.23 18596 186.00 0.293 0.293 3.947 3.947
47 0.47 0.10 0.49 0.95 1.67 2.74 9.24 4116 379.96 42244 0.010 0.723 0.363 5.593
48 0.48 1.73 3.20 2.07 4.26 241 6.14 5813 148.08 158.49 0.354 0.354 6.094 6.094
49 1.21 273 194 341 495 201 598 111.03 424.00 178.18 0.259 0.259 3.589 3.589
50 152 184 0.85 497 219 179 682 7956 474.18 268.83 0.184 0.184 3.177 3.177
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Table 5.2 Optimal policy versus Heuristic policies with lost sales and backorders

(the system parameters are drawn from uniform distributions as 4, ~U(0,10), 4, ~U(0,10), 4 ~U(0,10),
0.5< p <1.2, h ~U(L10),b, ~U(5,15)x 32 ;h,, ¢, ~U(100,500), p, = (4, + 4 )/ 14 .k =1,2.)

percentage difference
from optimal cost %

b A A Hu . h h b, G c H4 H5  H6 H7
51 1.05 043 1.71 243 3.06 590 463 8217 117.63 27633 0790 0790 1574 1574
52 0.60 1.03 245 298 3.42 559 4.96 69.88 227.82 45458 0.149 0.149 5734 5734
53 1.32 2.60 1.07 3.84 322 482 460 47.74 18211 199.48 0618 0618 1.371 1.371
54 170 246 2.37 495 3.97 576 6.74 92.02 31057 40530 0.753 0.753 2.429 2.429
55 0.26 519 1.66 4.55 3.36 3.51 4.47 86.85 483.11 384.78 0.726 0.726 3.099  3.099
56 0.79 1.81 1.98 457 3.18 2.02 549 66.18 209.95 332.79 0.018 0.247 0.112 0.686
57 069 1.65 196 2.63 4.95 6.84 6.69 5293 427.26 386.80 0.267 0.267 6.115 6.115
58 0.26 3.79 2.59 3.46 320 2.16 858 69.10 480.45 197.10 0.243 0.243 0.243 0.243
59 1.97 1.04 042 481 401 169 566 5473 200.01 164.37 0454 0454 5052 5052
60 159 2.79 1.45 3.80 3.97 6.80 655 83.89 277.30 173.66 0.195 0.195 1.627 1.627
61 0.46 1.84 1.63 2.67 192 807 7.27 49.97 35229 277.87 0.004 0.857 0.876 1.169
62 0.78 1.88 3.19 420 3.99 149 7.46 93.58 348.68 465.15 0.162 0.162 0.185 0.185
63 1.01 1.07 1.94 257 3.80 3.84 357 51.64 297.04 144.26 0.400 0.400 2.873 2.873
64 030 024 131 072 2.68 9.42 915 4028 14212 356.00 0.004 0.358 0.604 0.604
65 1.14 247 0.69 4.69 354 465 7.08 108.09 388.54 30573 0.568 0.568 4.842 4.842
66 142 077 651 244 982 856 3.66 7449 318.02 21948 0.757 0.757 1798 1.798
67 0.04 473 218 582 216 1.47 961 210.47 45820 143.43 0.129 2.200 2.128 2.829
68 130 1.38 7.43 435 946 492 230 178.88 155.86 188.07 0.128 1.913 1.405 5.380
69 216 191 431 496 7.81 503 583 9349 36578 443.31 0219 0219 1373 1.373
70 1.00 7.47 812 957 8.10 547 1.47 15548 220.94 353.92 0505 0.505 4.670 4.670
71 267 458 2.88 830 802 685 554 13560 198.65 492.38 1.414 1.414 1.830 1.830
72 236 7.22 205 995 497 7.44 272 83.86 100.10 296.27 0.154 0.154 1.096 1.096
73 034 7.99 7.54 7.64 7.75 2.13 7.06 206.66 421.96 331.71 0.768 1.182 1.182 1.182
74 1.23 241 973 679 950 221 3.22 20406 369.70 19520 0.262 6.379 6.379 6.379
75 120 277 3.61 597 7.51 9.05 4.40 213.99 474.80 100.03 0.645 0.645 2.233 2.233
76 156 6.87 6.54 9.02 831 858 656 166.86 227.97 371.99 0.185 0.185 11.512 11.512
77 054 836 254 954 538 126 168 119.78 305.63 25531 0.126 0.126 0.126 0.126
78 150 4.37 917 643 995 205 190 127.34 393.21 390.50 0.673 0.673 2.209 2.209
79 171 6.67 2.80 7.16 861 9.97 328 103.01 277.92 410.01 0.284 0.284 1778 1.778
80 1.09 929 6.05 9.81 7.0l 3.85 9.17 160.18 493.08 439.47 0.049 0.049 1.206 1.207
81 235 518 2.83 979 7.49 7.76 9.99 113.47 240.79 134.63 0.035 0.035 1.158 1.158
82 2.02 1.69 353 323 6.15 860 4.19 103.31 112.05 321.78 0.234 0234 2.733 2.733
83 0.06 7.62 7.53 828 829 7.31 879 171.79 33255 476.42 0.124 0.467 0.937 0.937
84 1.88 195 1.07 553 3.78 3.34 439 137.15 423.48 327.29 0.696 0.696 4.845 4.845
85 0.84 350 4.97 7.63 651 491 230 131.28 47400 399.34 0.149 0.149 0.180 0.180
86 1.35 323 3.81 403 7.15 1.91 953 154.88 216.67 342.51 0.274 0483 0.436 7.136
87 236 160 3.44 6.15 859 221 451 147.88 381.74 156.01 0.648 0.648 10.786 10.786
88 398 244 1.38 676 7.97 323 595 169.17 20151 12556 0.824 0.824 3.140 3.140
89 355 265 0.15 599 7.04 648 848 9545 25243 358.64 0.321 0.321 3.996 3.996
90 139 6.31 2.87 844 461 818 695 156.13 38549 162.64 0.056 0.056 0.315 0.315
91 287 620 1.22 987 581 406 691 157.53 189.58 342.06 0.401 0401 1372 1.372
92 081 084 265 237 3.62 253 448 210.84 471.41 14877 0.554 0.554 4.754 4.754
93 001 393 442 395 645 828 7.14 173.97 468.35 307.94 0.309 0.780 0.309 3.378
94 497 204 466 880 876 836 1.78 101.93 456.99 113.52 0.563 0.563 0.815 0.815
95 0.90 047 053 2.07 199 3.92 923 149.65 42505 47470 0.560 0.837 4.102 6.342
96 324 1.70 325 914 7.10 499 4.85 202.65 44659 224.88 0.054 0.054 0.088 4.119
97 1.88 500 423 7.85 571 810 4.10 90.06 241.20 164.47 0513 0513 4.324 4.324
98 268 070 1.39 4.93 806 622 3.46 184.15 102.55 282.97 0.268 0.268 1.250 1.250
99 1.19 6.19 869 858 9.85 1.43 231 117.88 352.09 147.67 0521 1.046 1.315 11.904
100 478 423 478 828 1.88 435 272 191.95 237.26 218.61 0.955 1.548 1.567 27.374
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the system tends to satisfy it immediately, there is no need to rationing the demand of the
assembled product, thus the rationing level R for the assembled product equals to O.
Consequently, for most cases Heuristic H4 is identical to Heuristic H5, and Heuristic H6 is
identical to Heuristic H7. Although H5 does not perform as well as H4, and H7 does not
perform as well as H6, the computational time of H5 and of H7 is significantly faster than that
of H4 and of H6. Thus, with this advantage Heuristics H5 and H7 are also efficient for
controlling the system. Our analysis suggests that the manager should pay more attention to
the rationing policy of the individual components. Since the rationing level r, for Component
k depends on the on-hand inventory xi, and the rationing level R for the assembled product
depends on the backorder level y, in comparison, the on-hand inventory level is easier to

control.
5.4 Conclusion

In order to well understand the structure of the optimal policy in ATO system studied in this
work, we proposed several static heuristic policies for Chapter 3 the pure lost sales and for
Chapter 4 the mixed lost sales and backorders. The heuristics are characterized by static base-
stock and rationing levels. Note that Heuristics H1 and H4 are similar to the IBR policy in
Benjaafar and ElHafsi (2006) for the pure product demand system. Here, we used and
redefined the IBR policy to the mixed demand (demand from the assembled product and
individual components) system. Based on our numerical experiences, we found that Heuristic
H1 is a good approximation of the optimal policy in the pure lost sales case, and Heuristics
H4 and H5 are good approximations of the optimal policy in the mixed lost sales and
backorders. For the others Heuristics H2, H3, H6 and H7, with the advantage of quite simple
formulation and fast computation they are also necessary to be considered for controlling our
ATO system.
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Conclusions and Future Perspectives

We conclude our work in this chapter. We considered an ATO system with continuous times
and infinite-horizon. In this system, both production and demand filling decisions must be
made. We have studied the pure lost sales case and the mixed lost sales and backorders case
with exponential production times and Poisson demand. Using the dynamic programming
formulation for each case, we showed that the structure of the optimal production policy is
state-dependent base-stock policy, and the optimal allocation policy is a state-dependent
rationing policy. We characterized the structure of the optimal policy. In addition, we
developed several simple heuristic policies for the pure lost sales case and the mixed lost
sales and backorders case. In each case, we compare the performance of the heuristic
policies, and found a good approximation of the optimal policy. Finally, there are several

potential avenues for future research.
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We studied an ATO system with a single assembled product assembled from n components.
Demand from the individual components can be satisfied or rejected, and demand form the
assembled product can be satisfied or rejected/backordered. The unsatisfied demand incurs a
penalty cost. Components are produced one unit at a time on separate production facilities and
held in stock incur ring a different holding costs. We assume exponentially distributed
production times, and demand arrives in the system as independent Poisson processes. We
considered two cases: the pure lost sales and the mixed the lost sales and backorders. For both
cases, using an MDP approach, we showed that the optimal production policy is a state-
dependent base-stock policy and the optimal allocation policy is a state-dependent rationing
policy. We also did some numerical experiments to explore the impact on the optimal policy
of different system parameters. Finally, we proposed three heuristic policies in the pure lost
sales case and four heuristic policies in the mixed lost sales and backorders case. In each case,
we compared the performance of heuristic policies and found a good approximation of the

optimal policy. We now outline several important results in our work:
For the pure lost sales case

e The optimal production policy for Component k£ is a base-stock policy with a state-
dependent base-stock level S,(X ) where it is optimal to produce Component k, if
X, <S;(x_) and not to produce it otherwise. The optimal inventory allocation policy for
Component £ is a rationing policy with a state-dependent rationing level r, (X ,) where it
is optimal to satisfy the demand of Component £ if X, >, (x_,) and to reject it otherwise.

Both levels are non-decreasing in each of the states x;, i #k . Furthermore, it is always
optimal to satisfy the demand of the assembled product whenever on-hand inventory for

all components is available.

e 1. The base-stock level s, (X_,) for Component £, is non-increasing in the holding cost ,
and non-decreasing in the lost sales costs ¢, and ¢, for &=1,2,...,n.
2. The base-stock level s, (x_,)for Component k, is non-decreasing in the arrival rates A,
and A, and non-increasing in the production rate W, for k=1,2,...,n.
3. The rationing level r (x_,) from Component k, is non-increasing in the holding cost
hy, non-decreasing in the lost sales cost ¢,and non-increasing in ¢, for k=1,2,....n.

4. The rationing level r (x_,) from Component k, is non-decreasing in the arrival rates
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A, and 4, and non-increasing in the production rate p, for k=1,2,...,n.

e We developed three static heuristic policies: Heuristics H1, H2 and H3 for the pure lost
sales case. Comparing the performance of the heuristic policies with that of the optimal
policy we found that Heuristics HI and H2 are efficient and clearly outperform Heuristic
H3. Heuristic H3 does not perform well especially for cases where component demand is
relatively high. In comparison, Heuristic H1 is more efficient because it needs to take into
account the on-hand inventory of other components to determine the optimal base-stock
and rationing levels. In Heuristic H2, there is no need to consider the on-hand inventory
of other components that may affect the accuracy of approximation. However, the H2
offers a quite simple and computationally effective way of computing the base-stock and
rationing levels. Based on the numerical results, it is clear that Heuristic IBR works best

for controlling the ATO system.

For the mixed lost sales and backorders case

e For Component k, k=1,---,n, the base-stock level S,(X_,Y) can be interpreted as a
rationing level of the assembled product at Component k fory >0, [, X >0. In other
words, s; (X_,y)=R¢ (X, y-1).

e For Component &, k=1,---,n, there exists an optimal stationary policy specified in terms
of a state-dependent production base-stock levels (x_,Y), for y=0,o0r y >0, x =0and
a state-dependent inventory rationing level I, (X ,,Y) . For the assembled product, there
exists an optimal stationary inventory rationing policy specified in terms of a state-
dependent rationing level R, (X_,,Y). In particular, the structure of the optimal policy can
be described as follows:

1. Optimal production policy for Component &k

Produce to increase Component k inventory if x <s;(x,,y) for =0, or y>0 and
L% =0.

Produce to reduce backorders of the assembled product if x >R, (x_,y—1) for y>0, and
[T % >0.

Do not produce if X, >s;(x_,,y) for y=0, or y>0, and [T, x, =0.

2. Optimal inventory allocation policy for Component &k

165



Conclusions and Future Perspectives

Satisfy demand of Component & if x >1;(x_,,y).
Reject demand of Component & if x, <1 (x,,Y).

3. Optimal inventory allocation policy for the assembled product

Satisfy demand of the assembled product if x> R;(x_,,y) forall k k=1,2,....n.

Backorder demand of the assembled product if at least one component has inventory level
% <Re (X, Y)-

Furthermore, the production and rationing levels have the following properties:

P1: s;(x_,,y) is non-decreasing in both the inventory level x; of Component i, ik, and

the backlog level of the assembled product, y.

P2: 17 (x_,,y) is non-decreasing in both the inventory level x; of Component i, i =k, and

the backlog level of the assembled product, .
P3: R/ (x_,,Y) is non-increasing in both the inventory level x; of Component i, i =k, and

the backlog level of the assembled product, .

e We developed four static heuristic policies: Heuristics H4, H5, H6 and H7 for the mixed
lost sales and backorders case. Comparing the performance of the heuristic policies with
that of the optimal policy we found that Heuristic H4 performs better than the other three
heuristics. Clearly, Heuristics HS, H6 and H7 are the suboptimal policies and they are the
further simplification of the Heuristic H7. In comparison, in most cases, Heuristic HS
works better than Heuristic H6. However, when the arrival rate of the assembled product
demand is lower than that of components demand or the backorder cost is less than the
lost sale cost, Heuristic H6 works better than Heuristic H5. We observed that Heuristic
HS5 outperforms Heuristic H7 for all cases. In addition, Heuristic H6 and Heuristic H7 do
not perform well especially for cases where component demand is relatively high. We
were able to obtain the result that Heuristic H4 works very well for controlling the ATO

system, which does provide a more precise and a good approximation of the optimal

policy.

The results presented in this work encourage us to believe that it will be fruitful to extend the
research work in multiple directions. We hope to extend the models and heuristics to the

general assembly system. We list several interesting research directions as follows:

Production times have an Erlang distribution
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The limitation of our model is that the production times follow an exponential distribution,
while this assumption may not be realistic in a real ATO system. In most ATO systems, there
exists the multistage manufacturing process that incurs production time variability. In order to
deal with this, the production times are assumed with Erlang distribution. Sicne “information
on the production status and production time variability” (Gayon et al., 2009), Erlang
distributions have the advantage of flexibility in modeling production processes. Thus one
direction for the future research is to study the optimal policy for the general case of Erlang
production times. As a continuation of this work, it would be useful to extend our model to

Erlang production times with lost sales/backorders.

Batch production
Multiple non-unitary demands

Batch production and multiple non-unitary demands are common in many real ATO systems.
In such systems, batch production occurs when many similar components are produced
together, and demand not always occurs one unit at a time. We assume that demand inter-
arrival times follow a certain distribution, for instance, the Erlang distribution. We consider
batch production and multiple non-unitary demands in a single model with multiple products

and various demand size.

Develop efficient heuristics for the above models

Due to uncertain product demand, and production leadtimes for different components is
different, ATO systems tend to be difficult to manage. The key challenge for ATO systems is
to efficiently manage component inventories and make optimal production and allocation
decisions. The above models presented are more general cases of ATO systems, which would
be more difficult to analyze. We can also use an MDP approach to determine the optimal
policy for such systems. However, the structure of the optimal policy would not be simple.
Also, the optimal policy would not be easy to implement. Thus, we expect to develop the
efficient heuristics for such systems, which should be more easy for system managers to

comprehend and implement in practice.
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Résumé Etendu en Francais

L'objectif principal de ce travail est d'é@udier un cas particulier d'un systéme de fabrication
assemble-to-order (ATO) qui est non seulement sujette ala demande pour le produit assemblé
mais éjalement sujette & la demande pour les composants individuels. A cette fin, nous
utilisons un cadre de processus de deeision markovien (MDP) pour formuler le systéme et

nous éudions par la suite la politique optimale.
Introduction géné&ale

Dans I'environnement €onomique actuel d'aujourdhui, avec le renforcement de la
compéitivitédu marchémondial, la personnalisation de masse est devenue un objectif majeur
pour de nombreuses entreprises de fabrication. Cette tendance avait forcéles entreprises a
adopter une strategie d'exploitation hybride &amieux traiter une variééd'environnements de
marché& Dans ce but, un systeme d'assemblage connu comme ATO, a énergé€et est devenu
plus populaire. Un systéne ATO produit plusieurs composants et les assemble en une varié&é
de produits finis. L’information sur les demandes arrive seulement pour les produits finis,

mais le systéme garde l'inventaire au niveau de composants (Song et Zipkin, 2003).

Les systémes ATO peuvent &re consid&é& comme une affectation de ressources multiples qui
induit la planification de production, la satisfaction des contraintes et 1’affectation des stocks.
Les systénes ATO représentent une stratégie de logistique populaire utilisée en gestion de
fabrication. En raison de la complexitécroissante des systémes de fabrication d'aujourd'hui, le
déi pour les systémes ATO est de gé&er efficacement les stocks de composants et de trouver

les d&isions optimales de production et d'affectation.

Nous éudions un systéne ATO avec un produit unique qui est assembléapartir de plusieurs
composants. Le systéme doit réondre aune demande non seulement du produit assemblé
mais aussi des composants individuels. Nous considé&ons le cas avec seulement des lost sales
puis le cas mixte lost sales et backorders avec des temps de production suivant des lois de

type exponentiel et une demande sous forme de loi de Poisson. Nous formulons le probléme
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comme un Processus de deé&ision markovien (MDP), et nous considé&ons deux critéres
d'optimalitéqui sont le cot actualiséet le codd moyen par p&iode. Nous caracté&isons la
structure de la politique optimale et &udions I'impact des diffé&ents parameétres du systé@me sur
cette politique. Nous présentons &jalement plusieurs heuristiques pour le cas lost sales et le
cas mixte lost sales et backorders. Ces heuristiques fournissent des mé&hodes simples, mais

efficaces pour controler la production et 1’affectation des stocks du systéme ATO.

Aperai de la these

Dans chaque chapitre, nous traitons un ATO systéne avec des demandes en composants
individuels. Nous nous concentrons sur le cas lost sales et le cas mixte lost sales et
backorders. Pour chaque cas, nous commeng@ns par pré&enter un aperq de la revue de la
litt&ature. Ensuite, nous formulons le modée de probléme et &udions la politique optimale
du systéme, puis nous déseloppons les heuristiques pour ré&oudre le probléne. A la fin, nous
préentons des exemples numé&iques pour analyser la performance et démontrer 1’efficacité

des heuristiques proposes.

Le Chapitre 1 correspond a I’introduction générale qui présente les principes généraux de
systtme ATO et la revue de 1’état de 1’art. Nous présentons, de méme, les notions de base
utilisées tout au long de cette thése, tels que (i) la définition des systémes ATO, (ii) le rde
important de controle optimal, (ii1) les principes de I’approche générale, (iv) et les parametres

du probléme. Enfin, nous concluons ce chapitre avec un plan de la thése.

Le Chapitre 2 est une bréve revue des travaux existants sur le systétme ATO. Tous d’abord,
nous présentons 1’état de I’art des systémes make-to-stock en vertu du MDP et des systames
ATO en vertu de 1’examen continu et de ’examen pé&iodique. Nous nous inté&essons plus
particulieéement aux systémes ATO en temps continu qui motive cette partie de la these. Dans
cette ligne de recherche, nous éudions le modée qui traite le syst@ne ATO avec deux types
de demandes: une demande en produit assemblé&et une demande en composants individuels.
A notre connaissance, il y a actuellement peu de travaux dans ce domaine. Nous espé&ons que
la recherche pré&entée dans ce travail enrichit la litt&ature actuelle sur les syste@mes ATO avec

le type de demande en composants individuels.

Le Chapitre 3 vise acaracte&iser la politique optimale du systé@ne ATO avec le cas lost sales.
Dans ce chapitre, nous supposons que si une demande en produit assembl€éou en composants

individuels ne peut @re satisfaite imméliatement, elle sera perdue. Nous proposons un
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modée de programmation dynamique afin de déerminer la politique de contr&e optimal d'un
tel systéme. Nous formulons le probléme en utilisant une méhodologie MDP et en utilisant
deux criteres d'optimalité qui sont le cott actualisé€et le cod moyen par p&iode. En outre,
nous déerminons la structure de politique optimale et éudions l'impact des diffé&ents
paraméres sur la politique optimale. Nous testons le systéne avec un large éentail de
parametres du systéme et nous montrerons que les niveaux de base-stock et de rationnement

sont sensibles aux paramétres du systéme.

Le Chapitre 4 vise acaracte&iser la politique optimale du systéne ATO avec le cas mixte lost
sales et backorders. Dans ce chapitre, nous supposons que (i) si une demande en produit
assembléne peut @re satisfaite immediatement, elle attendra la future disponibilité& (ii) et si
une demande en composants individuels ne peut pas &re satisfaite immédiatement, elle sera
perdue. La gestion efficace d'un tel systame est difficile &ant donné les exigences de
composantes corréees. Pour résoudre ce probléme, nous le formulons comme un MDP et
nous caracté&isons sa politique optimale. Enfin, nous éudions l'impact des diffé&ents

parametres de cott de pénalitésur la politique optimale.

Pour le Chapitre 5, nous préentons plusieurs heuristiques qui sont basé sur le modée de
programmation dynamique éudiédans les Chapitres 3 et 4. Pour ces méhodes approchées,
nous utilisons l'approche des seuils statiques qui permet de se rapprocher ala politique
optimale du systéme. Plus preéeisément, ces heuristiques fournissent des mé&hodes simples,
mais efficaces pour contrdler la production et 1’affectation des stocks du systeme ATO. En
raison de la complexitéde ces systémes, la politique optimale est mathénatiquement difficile
pour un grand nombre de composants. Nous devons donc développer d’autres heuristiques
plus efficaces pour trouver une bonne approximation de la politique optimale. Evidemment,
les heuristiques proposées sont des politiques sous-optimales, mais lorsqu’elles sont utilisées

efficacement, elles permettent d’améliorer les performances dans le systeme ATO.

Nos contributions

Etant donnee la revue de la litté&ature existante, nous pouvons dire qu’il existe peu de travaux
concernant les systénes ATO avec le type de demande en composants individuels. Nous

dé&rivons maintenant plusieurs réultats importants dans notre travail.

Nous avons en premier lieu, éudiéun systéne ATO dans le cas lost sales pour des demandes

en produit assemblé et composants individuels. Nous avons démontré que la politique
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optimale de production pour un Composant k peut &re dérite par le niveau de base-stock &at
dépendant, qui est non-deeroissant sur le niveau de I’inventaire d'autres composants. Nous
avons aussi démontré que la politique optimale d’affection pour un Composant k peut &re
dé&erite par le niveau de rationnement &at dépendant, qui est non-deéeroissant sur le niveau de
I’inventaire d'autres composants. Dans ce cas, hous pouvons produire une unitéde Composant
k, si le niveau d’inventaire de Composant K est infé&ieur au niveau de base-stock, sinon nous
ne faisons rien. Nous pouvons satisfaire une unitéde demande en Composant k, si le niveau
d’inventaire de Composant k est inf&ieur au niveau de rationnement, sinon nous pouvons la

refuser.

En deuxiame lieu, Nous avons &udiéun systé@ne ATO dans le cas mixte lost sales pour la
demande en produit assembléet backorders pour la demande en composants individuels. En
plus de considéer l'inventaire du systame, le niveau de backorder de produit assemblédoit
&jalement &re envisagé Nous avons dénontréque dans quelques conditions, le niveau de
base stock peut &re interpré&é&comme un niveau de rationnement du produit assembléau
Composant k. Nous avons aussi démontréque la politique optimale peut &re déerite par trois
types de seuil &at déendant: (i) pour le Component k, il existe le niveau de base-stock, et le
niveau de rationnement, (ii) pour le produit assemblé& il existe le niveau de rationnement.
Tous les types de seuil déendent de l'inventaire du systéne et du niveau de backorder du

produit assemblé

Troisiénement, nous avons développé trois heuristiques pour le cas lost sales, et quatre
heuristiques pour le cas mixte lost sales et backorders. Sur la base de nos expé&iences
numériques, nous avons constaté que 1’Heuristique H1 est une bonne approximation de la
politique optimale dans le cas lost sales, et que les Heuristiques H4 et H5 sont de bonnes
approximations de la politique optimale dans le cas mixte lost sales et backorders. Pour les
autres Heuristiques H2, H3, H6 et H7, éant donné& leur simple formulation et leur calcul

rapide, ils sont éyalement néeessaires pour contrder le systame ATO éudié
Perspectives d'avenir

Les ré&ultats pré&senté& dans ce travail nous incitent acroire qu'il sera utile de prolonger les
travaux de recherche dans de multiples directions. Nous espé&ons éendre les modées et
heuristiques pour le systémne de l'assemblé& géé&ale. Nous listons plusieurs directions de

recherche inté&essantes comme suit:

172



Résumé Etendu en Francais

Les temps de production ont une distribution Erlang

Toutefois, il existe des limites &nos recherches, tel que les temps de production suivent une
distribution exponentielle, alors que cette hypothése n'est pas réliste dans un vé&itable
systane ATO. Dans la plupart des systames ATO, il existe des processus de fabrication par
lots de plusieurs éages dans lequel les composants peuvent &re produits ce qui engendre la
variabilitédes temps de production. Afin de ré&ler ce probléme, les temps de production sont
supposé avec Erlang distribution. Avec les caract&istiques de “information on the
production status and production time variability” (Gayon et al., 2009), les distributions
Erlang ont l'avantage de flexibilitédans la modé&isation des processus de production. Ainsi,
une direction pour la recherche future est d'é@udier la politique optimale pour le cas géné&al
d'Erlang temps de production. Dans le prolongement de ce travail, il serait utile d'&endre

notre modée akErlang temps de production avec le cas lost sales/backorders.

Production en lots

Demande non unitaire

La production en lots et la demande non unitaire sont communs dans de nombreux systé@mes
ATO rels. Dans un tel systéme, une demande n’arrive pas toujours seule fois mais elle peut
avoir lieu continuellement au cours du temps. Nous pouvons supposer que les temps de
demande inter-arrivée suivent une certaine distribution, par exemple, la distribution Erlang. Il
est né&essaire de considéer un systéne ATO avec une production en lots ou une demande
non unitaire, ou combiner ces deux cas dans un modée unique. Dans ce cadre, nous pouvons

éudier les syst@mes avec des produits multiples et difféentes tailles de demandes.
Développer des heuristiques efficaces pour les modées deerits ci-dessus

En raison de l’incertitude des demandes de produits et de la diffé&ence des déais de
production pour des diffé&ents composants, les systénes ATO ont tendance aére difficiles &
géer. Le principal déi pour les systanes ATO est de géer efficacement les stocks de
composants et de prendre des deéeisions de production et d’affection optimales. Les modées
pré&entés ci-dessus sont des cas plus géné&aux des systémes ATO, qui seront plus difficiles a
analyser. Nous pouvons aussi utiliser une approche MDP pour déerminer la politique
optimale pour ces systames. Cependant, la structure de politique optimale ne serait pas simple.

En outre, la politique optimale ne serait pas facile a mettre en ceuvre. Ainsi, nous projetons de
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dérelopper des heuristiques efficaces pour de tels systémes, qui devraient &re plus faciles a

exploiter et & mettre en ceuvre dans la pratique pour les gestionnaires du systéme.
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Commande optimale (en Production et Stock) de Systé@mes Assemble-To-Order (ATO)
avec prise en compte de demandes en composants individuels

Ré&umé Les systanes assemble-to-order (ATO) peuvent &re considéé& comme une
affectation de ressources multiples qui induit planification de production, satisfaction des
contraintes et affectation des stocks. Les systé@mes ATO représentent une stratégie de
logistique populaire utilisée en gestion de fabrication. En raison de la complexité&croissante
des systames de fabrication daujourd'hui, le déi pour les systemnes ATO est de gé&er
efficacement les stocks de composants et de trouver les deéeisions optimales de production et
d'affectation.

Nous éudions un syst@me ATO avec un produit unique qui est assembléapartir de plusieurs
composants. Le systame doit réondre aune demande non seulement du produit assembl&
mais aussi des composants individuels. Nous considé&ons le cas avec seulement des lost sales
puis le cas mixte lost sales et backorders avec des temps de production suivant des lois de
type exponentiel et une demande sous forme de loi de Poisson. Nous formulons le probléne
comme un Processus de de&ision markovien (MDP), et nous considé&ons deux criteres
d'optimalitéqui sont le cott actualis€et le cod moyen par pé&iode. Nous caracté&isons la
structure de la politique optimale et é&udions I'impact des diffé&ents paramétres du systéme sur
cette politique. Nous pré&entons également plusieurs heuristiques pour le cas lost sales et le
cas mixte lost sales et backorders. Ces heuristiques fournissent des mé&hodes simples, mais
efficaces pour contrder la production et I’affectation des stocks du systéne ATO.

Mots-clefs: systames assemble-to-order, contrde optimal, Processus de dé&sision markovien

Integrated Production and Inventory Control of Assemble-To-Order Systems with
Individual Components Demand

Abstract: Assemble-to-order (ATO) systems can be regarded as a multiple resource
allocation that induces production planning, requirements fulfilling and inventory assignment.
ATO is a popular strategy used in manufacturing management. Due to the increasing
complexity of today’s manufacturing systems, the challenge for ATO systems is to efficiently
manage component inventories and make optimal production and allocation decisions.

We study an ATO system with a single product which is assembled from multiple
components. The system faces demand not only from the assembled product but also from the
individual components. We consider the pure lost sales case and the mixed lost sales and
backorders case with exponential production times and Poisson demand. We formulate the
problem as a Markov decision process (MDP), and consider it under two optimality criteria:
discounted cost and average cost per period. We characterize the structure of the optimal
policy and investigate the impact of different system parameters on the optimal policy. We
also present several static heuristic policies for the pure lost sales and the mixed lost sales and
backorders cases. These static heuristics provide simple, yet effective approaches for
controlling production and inventory allocation of ATO system.

Keywords: Assemble-To-Order systems, optimal control, Markov decision processes.
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