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 General Introduction Chapter 1.

The main objective of this work is to study a special case of an assemble-to-order (ATO) 

manufacturing system that is not only subject to demand for the assembled product but also 

subject to demand for the individual components. For this purpose, we use a Markov decision 

process (MDP) framework to formulate the system. In this first chapter, we present a basic 

knowledge of our work such as the definition of ATO systems, the significant role of optimal 

control, the principles of the general approach, and the problem setting. Finally, we conclude 

this chapter with a plan of the thesis.  
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1.1 Assemble-to-Order Systems 

In today’s business environment, with the increasing competitiveness of the global market, 

mass customization has become a major objective for many manufacturing companies. This 

trend has forced companies to adopt a hybrid operations strategy to better deal with a variety 

of market environments. Towards this end, an assembly system known as ATO, has emerged 

and became more popular. An ATO system produces multiple components and assembles 

them into a variety of final products. Demands occur only for the final products, but the 

system keeps inventory at the component level (Song and Zipkin, 2003). The products can be 

assembled from different components while components can be used by different products 

(see Fig.1.1). An ATO system simplifies the process of manufacturing. It can be regarded as a 

manufacturing strategy which allows a product to be made or service to be available to meet 

the needs of a specific customer order. 

ATO systems are characterized by short assembly times and high product variety, which have 

the advantage of decreasing life cycles of products, meeting diverse customer needs, and 

saving on total cost. It is an efficient strategy that companies have applied to reengineer their 

production design. The primary application of the ATO strategy is in the computer assembly 

industry. For instance, companies such as Dell and IBM benefit from using the ATO strategy. 

The former is famous for controlling inventory levels of components, and the latter is famous 

for two-stage server computers. Both of them successfully apply the ATO strategy to enhance 

their competitive position in the global PC market (Agrawal and Cohen, 2001; Cheng et al., 

2005). 
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Generally speaking, the ATO strategy is characterized by flexibility and responsiveness, and it 

is useful for manufacturing companies to secure market share, improve profits and enjoy a 

competitive advantage.  

In this work, we consider an ATO system that produces n components with a single 

assembled product. Demand from both the product and the components can be satisfied or 

rejected/backordered. Components are produced one unit at a time on separate production 

facilities and held in stock incurring a holding cost. We assume exponentially distributed 

production times, and demand arrives in the system following independent Poisson processes. 

In our model, since the final assembly time is considerably short, we neglect it. This 

assumption is reasonable and applied in most ATO systems (see Song and Zipkin, 2003). Due 

to the possibility of components stock-out, some orders may not be satisfied immediately. The 

unsatisfied order may be lost or backordered resulting in a penalty cost. In this study we 

consider two cases: the pure lost sales and the mixed lost sales and backorders. In the pure 

lost sales case, an order rejected incurs a lost sale cost. Demand from the assemble product 

has a higher penalty over the demand from the individual components. Due to limited 

capacity, it may be desirable to reject a demand from a component even when there is on-

hand inventory of components to satisfy future product demand. In the mixed lost sales and 

backorders case, a component order rejected incurs a lost sale cost and a product order 

backordered incurs a backorder cost. In this case, the product demand has no priority over the 

component demand, thus it may be backordered even when there is stock for all the 

components to satisfy future component demand. For these two cases, a system manager 

needs to decide which components to produce, and whether to satisfy an incoming component 

demand or reject it to reserve stock for future product demand, or whether to satisfy an 

incoming product demand or backorder it to reserve stock for future component demand. The 

objective is to minimize the expected total operating costs of the system. 

1.2 Optimal Control of ATO Systems 

ATO systems can be regarded as a multiple resource allocation that induces load distribution, 

production planning, requirements fulfilling and inventory assignment. The key challenge in 

the management of ATO systems resides in the difficulty to coordinate components 

procurement or production as components procurement or production leadtimes are usually 

stochastic. This is further compounded by the uncertainty of the demand of the assembled 

product as well as the individual components, if they are sold separately as spares. Another 
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challenge for ATO systems is to efficiently manage component inventories and make optimal 

production and allocation decisions. Because of the complexity of such a system, it would 

tend to be difficult to control and would be uneconomical to operate. In addition, in many 

business scenarios where manufacturing companies face limited capacity and shortage 

situations that usually cannot be avoided, it is necessary to adopt a feasible strategy to solve 

these problems (Akçay, 2002). In this situation, the issue of inventory rationing arises. 

Because of a limited capacity, it may not be sufficient to produce the total quantity of the 

order. The manager needs to efficiently manage component inventories and allocation. The 

problem is how to determine inventory replenishment levels with uncertain demand and how 

to allocate the components for received demands.  

In practice, determining optimal component inventory levels is difficult, especially in a multi-

product ATO system. The inventory level of a component at any point in time will depend on 

the previous allocation decisions. Such decisions depend on the production and consumption 

of all other components and the demand realizations of all end products. Thus, the problem of 

determining optimal inventory levels and an allocation policy can be formulated as a dynamic 

programming with the goal of minimizing the expected long-run system cost. Optimal control 

is needed to deal with the problem of finding a control policy for a given optimality criterion. 

For characterizing the structure of optimal policies in the infinite horizon, please refer to the 

studies by Porteus (1975, 1982), Stidham and Weber (1989).  

The main objective of this work is to control an ATO system with demand from both the 

individual components and the assembled product. In an assembly system, since satisfying a 

customer order requires multiple available components, the storage of one component delays 

the fulfillment of the order for product. The optimal control of ATO systems should be 

correlated across components: the optimal component replenishment policy is applied to the 

production and the optimal component allocation policy is applied to the inventory. Also, 

because a customer order requires multiple units of several components, the optimal 

component allocation policy results in severe computational complexity, especially in the case 

of multiple demand classes. As mentioned in Ha (1997c), “… as the number of customer 

classes increases the optimal policy will be difficult to compute because of the curse of 

dimensionality and will be even more difficult to implement.” This implies that as the state 

space increases in size, the structure of the policy becomes more complex. Because many 

dimensions must be taken into account when making allocation decision: the inventory level, 

the number of backorders as well as the production process. For this reason, characterization 



General Introduction 

15 

of optimal control policies for ATO systems has been regarded as a challenging problem. 

Various authors have studied this problem including De Véricourt et al. (2000, 2002), 

Benjaafar and ElHafsi (2006, 2010), Gayon et al. (2009). They showed that the optimal 

allocation policy is a multi-level rationing policy. In this work, we adopt a similar approach as 

these authors to analyze the optimal policy for a more general ATO system.  

1.3 General Approach 

In this work we study an ATO system. In order to determine a control policy, we formulate 

the problem an MDP. Then we specify the principle and algorithm in the following.  

1.3.1 Markov Decision Process 

The models we will study in the next few chapters use the MDP framework. Since demand 

inter-arrival times and production times are uncertain, randomness is one of the key factors 

that our models must take into account (see Zipkin 2000, section 7.3). Markov Decision 

Processes, which are also called stochastic dynamic programs or stochastic control problems, 

provide a mathematical framework for sequential decision making when outcomes are 

uncertain.  

In a dynamical system the state can change over time. At each decision epoch, a decision 

maker can choose an action that may influence the future state of the system. Markov decision 

processes are completely determined by a five-tuple   , , , , ,
t t t

S A S r p f
x

x  which is defined 

as follows: 

1. S: the set of possible system states. 

2. A
x
: the set of available actions to the decision maker when the system is in a starting 

state x.  

3. rt: the cost per unit time. The real-valued function rt (x, a) for a A
x

 denotes the value 

at time t of the cost incurred in period t. 

4. pt: the transition probability per unit time. The transition probability function  | ,
t

p a x

for a A
x

 denotes the system state at the next decision epoch and is determined by

 | ,
t

p a x , when action a is chosen in state x, at time t.  

5.  | ,
t

f a x : the probability density function of time between two changes in states of 
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the system when action a is chosen in state x, at time t.  

At each instant, the transition probability and the cost function depend on the past only 

through the current state of the system and an action can be selected in that state. This 

property is called “Markovian”, which has been widely used in inventory control problems. 

This is because in this setting a Markovian policy is optimal and properties of the optimal 

policy are simple to carry out and do not vary with time (Puterman 1994, Chapter 1). In order 

to choose actions, we must follow some policy. We define a policy to be any decision rule for 

choosing actions. In other words, a policy  is a sequence of decision rules. Thus, the action 

chosen by a policy may, for instance, depend on the history of the process up to that state 

point, or it may be randomized in the sense that it chooses action a with some probability 

,
a

p a A . When the policy depends only on the current state of the system, it is called 

Markovian policy. In this case, the control function under a policy   can be defined as A  in 

state S and action a. That is, ( )A
x  is the action selected in x when a policy is employed.  

Typically, under a policy   and in state x at time t the decision maker can choose an action a. 

The cost generated depends on the state of the system at the next decision epoch. At time t for 

a given probability density function  | ,
t

f a x , the system remains in state x and generates a 

cost  ,
t

r ax  per unit of time. When time is divided into periods, a decision epoch is 

associated with the starting period. Thus, for a time interval  , at time t , the system 

changes to a new state ,x  which is determined by the distribution  | ,
t

p a x . The total cost 

generated over this period is equal to ( , ) ( , )
t

t st
r a r a ds


  x x , then a new action is chosen in 

state x  and the phenomenon is repeated. Because the action is chosen in the present state 

incurs a cost that forces the system to move to a new state. Clearly, a new state is determined 

by the previous action choice. When the distribution ft is deterministic, the periods   between 

two changes of state are constant and equal, corresponding to the representation of periodic 

time. The decisions in this case are taken at time t=0,1,2,…, and the specification of the total 

cost ( , )
t

r ax  over a period is sufficient. 

The objective is to determine the optimal policy    that minimizes the discounted cost, 

 
0

min ( ( )) ,tv E e r t dt


  
  xx X

 


                                                             (1.1) 
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where, X is the random process denoting the current state of the system and is the discount 

factor ( 0 1  ). Since r(X(t)) is the cost generated at time t, it follows that  v x  represents 

the expected total discounted cost generated when policy   is applied with the initial state x.  

When decisions are made frequently or the discount factor is not assumed  0   the average 

cost case can be considered,  

                             
0

( ( ))

min sup ,

T

T

E r t dt

g
T





 

 
  


x X

x                                                              (1.2) 

where,  g
x  represents the expected average cost per period for any policy  . The objective 

is to determine the optimal policy    that minimizes the average cost. The average cost 

criterion is simple to implement, because the results of which are independent of the starting 

state and the discount factor.  

In this work, we use these two criteria in our analysis. 

1.3.2 The Value Iteration Algorithm 

In this sub-section, we consider the computational aspect of MDP. One of the commonly used 

algorithms in MDP is the value iteration. It is widely used to obtain the optimal policy.  

Consider a Markov decision problem  , , , , ,
t t t

S A r p f
x

 which satisfies the assumptions in 

section1.3.1. The objective is to find the optimal policy that minimizes the discounted cost in 

equation (1.1).  

Consider a set F of positive real-valued functions defined on S. Under the previous 

hypotheses, there exists an operator T that reflects the dynamic of the system and equation 

(1.1) can be written as: 

                         1 ,n nv Tv x x                                                                                          (1.3) 

where,  nv x  is the n-stage cost function that converges to  v x , with  0 .v Fx  The infinite-

horizon optimal cost function satisfies,  

          .v Tv x x                                                                                            (1.4) 
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The existence of a Markov policy that achieves the minimum of the discounted cost in (1.1) 

and the convergence of the n-stage policy and cost function to the infinite-horizon optimal 

policy and cost follow from the fact that only finitely many controls are considered at each 

state.  

An average cost criterion can also be considered. In this case the average cost per stage, g, 

and the relative cost in state x, v(x) satisfies, 

                             . v g Tvx x                                                                                    (1.5) 

Several conditions have to be satisfied for the existence and convergence results for (1.6) by 

letting 0   in (1.4) (see Cavazos-Cadena, 1992; Weber and Stidham, 1987): 

1. there exists a stationary policy   which achieves a finite average cost g
.
  

2. the number of states in which the holding cost  h gx
  is finite. 

The value iteration algorithm is the most widely used and best understood algorithm for 

solving Markov decision problems. It is an easy method to determine the optimal policy. In 

this work we use the value iteration algorithm, for more details readers can review Puterman 

(1994, Chapter 8).  

1.4 Application of Markov Decision Process in ATO systems  

The MDP framework has been used in a wide range of optimization problems. A general 

application of MDP described in Feinberg and Shwartz (2002, Part III). In this work, we 

consider an ATO system with limited production capacity, which produces multiple 

components and assembles them to a signal product. The product is assembled from 

components only when a customer order is received, and the inventory is kept at the 

component level. Faced with demands for both, the product and the components, the system 

manager must determine the optimal policy to minimize the total cost. 

In this section, we only present the general characteristics of Markov decision problems. The 

detailed specification of the models that we study is given in the corresponding chapters.  

The state of system 

http://en.wikipedia.org/wiki/Optimization_problem
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For this work, we assume a discrete-state setting, and use continuous time by converting to an 

equivalent discrete time. That is, our ATO system produces n types of components with a 

single assembled product. The product and the components can meet n+1 demands. For the 

pure lost sales case, the state S is a subset of 
n

Z   (   is the set of nonnegative integers). In 

this case, we define the current state of the system at time t by the vector X(t)=(X1(t),…, Xn(t)), 

where Xk(t), k=1,…n, is a nonnegative integer denoting the on-hand inventory for Component 

k at time t. For the mixed lost sales and backorders case, the state S is a subset of 
1n

Z
 .The 

current state of the system at time t can be defined by the pair (X(t),Y(t)), where Y(t) is a 

nonnegative integer denoting the backorder level of the assembled product. 

The decisions 

For each of the models that we study, the decision maker has to decide which type of 

components should be produced, and whether to satisfy an incoming component demand or 

keep stock for future product demand. For instance, in the pure lost sales case: under a policy 

  for a starting state  1, ,, nxx x  the decision maker takes actions 

   1 0, ,...,, ,, nna u wu w  x  where 1ku   means produce Component k (k=1,…,n), 0ku 

means do not produce Component k, 1kw   means satisfy demand from Component k, and 

0kw   means reject demand from Component k, 0 1w   means satisfy demand from the 

assembled product, and 0 0w   means reject demand from the assembled product. In the 

mixed lost sales and backorders case: under a policy   for a starting state    1,, ,, ,ny x yxx  

the decision maker takes actions    1 0, ,, , ,nua y u w    x ..., nw , where 1ku   means produce 

Component k to stock, 2ku   means produce Component k to reduce the backorder level of 

the assembled product, and 0ku   means do not produce Component k, 1kw   means satisfy 

demand from Component k, and 1kw   means reject demand from Component k, 0 1w   

means satisfy demand from the assembled product, and 0 0w   means backorder demand 

from the assembled product. 

The cost structure 

The related costs of our system are incurred from two sources: the cost of holding inventory 

and the cost of backordering. We assume the costs are linear, such as     1
( )

n

t k kk
r r h x


 x x
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and       01
, , ( )

n

t k kk
r y r y h x b y


  x x  where both ( )kh   and 

0 ( )b   are increasing convex 

functions, ( )kh   denotes the holding cost of Component k per unit per unit time, 
0 ( )b   denotes 

the backorder cost of the assembled product per unit per unit time. 

The transition probabilities of the state 

Since production times and demand inter-arrival times are stochastic, we focus on these two 

uncertain sources: production times are exponentially distributed with mean 1 ,k  demands 

take place continuously over time according to independent Poisson processes with rate 
k

(for Component k) and 
0  (for the assembled product), respectively. 

When the transition times are identically one, it is a Markov decision process, and in general 

case, it is called a semi-Markov decision process (see Ross 1969, Chapter 7). In the optimal 

control of exponential queuing systems, we use a semi-Markov decision process. That 

because a sequential decision process for which the times between transitions are random. In 

this work, we consider the following two cases: 

Pure lost sales case 

As mentioned above, in the pure lost sales case the current state of the system at time t can be 

described by the vector  1( ) ( ), , ( ) .nt t XX tX Under a policy   and a starting state 

 1, ,, nxx x  the decision maker takes the action a. Let  ,1,1 ,1 , e  be an n-dimensional 

vector of ones and ek the kth unit vector of dimension n. In the state x, if the decision maker 

chooses the action to produce one unit of Component k, the state will transfer to the state x+ek 

with the transition rate k . If she takes the action to satisfy one unit order from the product, the 

state will transfer to the state x-e with the transition rate 0 , or decides to satisfy one unit order 

from Component k, the state will transfer to the state x-ek with the arrival ratek . 

Mixed lost sales and backorders case: 

In the backorders case, the current state of the system at time t can be described as the pair

 ( ), ( )t Y tX , where  1( ) ( ), , ( ) nXt t X tX . Under a policy   and a starting state

   1,...,, ,ny x x yx , the decision maker takes the action a. When backorders are allowed, the 

case is more complex than the pure lost sales. Because besides considering the on-hand 

inventory x, the backorder level y from the assembled product must be considered. In this 

case, in the initial state (x, y) if the decision maker chooses the action with transition rate k , 
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which would incur two different results: produce one unit Component k to stock, the state will 

transfer to the state (x+ek,y); or produce one unit Component k to reduce one unit backorder 

from the assembled product, the state will transfer to the state  1


 
n

ii k
yx e . If the decision 

maker takes the action with transition rate 
0 , which would lead to satisfy one unit order of 

the assembled product, the state will transfer to the state (x-e,y); or to backorder one unit 

demand of the assembled product, the state will transfer to the state (x, y+1). Similarly, with 

the rate k
, a transition occurs after time t, the next state may be (x-ek, y). Clearly, the 

distribution of time between two instants of decision depends only on the action specified by 

the control policy applied by the decision maker. Following Lippman (1975), we uniformize 

the transition rate by defining the uniform rate 
0 1

  
 

  
n

k

n

ll k
. However, the next state of 

the system depends on the transition probability. We will discuss them for two cases, pure lost 

sales and mixed lost sales and backorders: 

Pure lost sales case:  

In state x, an action a is selected. If the next state is x , the system state at the next decision 

epoch is determined by the transition probability  | ,p ax x , which can be generated as 

follows:  

 1
( , ) ,           ,   

k

k

u kp a I


 
   xx x = x e  

 01

0

0, and 1
( , ) ,  ,n

kk
x w

p a I


 
 

 x x = x ex  

                                                     
 0, and 1

( , ) ,      ,
k k

k
kx w

p a I


  
   x x x ex  

Mixed lost sales and backorders case:  

If an action a is selected in state (x,y), the next state is  , y x , the system state at the next 

decision epoch is determined by the transition probability    , | , ,p y y a 
 
 

x x  , which can be 

generated as follows: 
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where 
 d

I  is the indicator function (
  1
d

I   if d is true, and 
  0
d

I  , otherwise). 

The optimal policy  

Because the system is memoryless, a Markov policy is optimal. In this study, we formulate 

the problem as continuous-time MDP. That is, the decisions can be made at any time. 

Applications in inventory control are modeled by allowing action choice at random times in 

infinite horizon. The core problem of MDP is to find a policy   in the state S that minimizes 

the expected discounted (average) cost. For all possible states S, we will find the optimal cost 

function v  and use it to determine the optimal policies .   

1.5 Problem Setting 

In this work, we study an ATO system where we consider demands for both the individual 

components and assembled product. That is, the product is assembled from multiple 

components and the components stocked in advance of demand. These products will be used 

to satisfy the potential orders that arrive later. Components are produced one unit at a time on 

separate production facilities and held in stock, which incur a holding cost. In addition, both 

production times and customer inter-arrival times are stochastic. Due to the possibility of 

shortages, if an order is not satisfied immediately it incurs a lost sale cost or a backorder cost 

that depends on whether or not the customer is willing to wait for his order. Therefore, the 

task of the decision maker is to decide whether to satisfy an incoming demand or reject 

(backorder) it, reserving stock for the future demand from a more valuable type. At the same 

time, the decision maker also decides which component is needed to produce, if needed, 

whether to produce it to stock or to produce it to reduce the backorders from a particular 

demand. The objective is to minimize operating costs while maintaining order fulfillment. In 

general, this kind of problem can be regarded as a dynamic problem and a decision support 

tool is needed. In our work, we study the ATO system from an operations’ perspective. We 
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use a Markov decision process framework to determine an optimal policy under both the total 

expected discounted cost and the average cost per period criteria. We characterize the 

structure of an optimal policy. We carry out numerical experiments to analyze the structure of 

the optimal policies. We also offer some managerial insights to control the assembly systems. 

Furthermore, we show that the optimal production policy is a state-dependent base-stock 

policy, and the optimal inventory allocation policy is a state-dependent rationing policy. More 

importantly, we show that the optimal policies are highly sensitive to various system 

parameters such as the holding and the lost sale/ backorder costs, the demand and production 

rates.  

1.6 Plan of the Thesis 

The rest of this thesis is organized as follows: 

Chapter 2 provides a brief review of the related literature to this work. 

Chapter 3 aims at characterizing the optimal policy of the ATO system with lost sales. We 

determine the structure of the optimal policy and investigate the impact of different 

parameters on the optimal policy. 

Chapter 4 aims at characterizing the optimal policy of the ATO system with lost sales and 

backorders. We characterize the optimal production policy and the optimal allocation policy 

for the components.  

In Chapter 5, we develop several heuristic policies for the pure lost sales case and the mixed 

lost sales and backorders case. For each case, we compare the performance of the heuristics 

with the optimal policies, and then we find some more efficient heuristics. 

Finally, the general conclusion sums up the main results obtained and the perspectives 

describes some future researches of this work. 

1.7 Conclusion  

ATO systems are successful strategies that have become increasingly popular in 

manufacturing. This work studies an ATO system that produces multiple components with a 

single assembled product. Such a system deals with both product and components demands. 

In this chapter, we introduced an overview of ATO systems, the basic principles of the 

general MDP approach, and the value iteration algorithm that is used to compute the optimal 
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policy. We also presented the application of MDP in ATO systems, based on which we 

formulate our problem.  
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 Literature Review Chapter 2.

This chapter provides a brief review of the literature related to ATO systems. As mentioned in 

Chapter 1, the optimal control of ATO systems consist of two decisions: component 

replenishment and component allocation. These decision problems can be formulated as a 

single-product or multi- product models, and a single- period or multi-period models. For a 

comprehensive literature review, we can refer to one classical paper by Song and Zipkin 

(2003). It covers modeling issues and analytical methods, and a general formulation of ATO 

systems. From this overview, the literature review on ATO can be classified into the following 

four categories, which we will discuss in details. 
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2.1 Make-to-Stock Systems under MDP 

Make-to-stock (MTS) systems are manufacturing strategies to manage inventory. In MTS 

system, products are stocked in advance according to a forecast of customer demand. Because 

the manager faces a joint production-control and inventory allocation problem, MTS systems 

can also be called production-inventory systems. A challenging problem in such systems is 

the dynamic allocation of inventory to different demand classes. This gives rise to an 

inventory rationing problem which has been widely studied in the literature. 

The earlier work on inventory management and production scheduling dates back to Zheng 

and Zipkin (1990), who studied the optimal control of allocation problem. A simple 

Markovian behavior is assumed, the problem can be modeled as rationing a fixed production 

capacity to multiple identical products. More importantly, the authors proposed longest-queue 

policy and argued that it is always optimal to serve the longest queue under independent base 

stock policies.  

Ha (1997, 2000) pointed out that for a two-dimension state space MTS production system, the 

optimal production policy is the dynamic “hedging point” policy, and the optimal allocation 

policy is a “state-dependent rationing” policy. Ha (1997a) is the first to consider rationing in 

the context of an MTS system. He modeled the system as a single server, single product, 

M/M/1 make-to-stock queue with multiple demand classes and lost sales. The optimal policy 

is characterized by a sequence of monotone threshold levels. Under this threshold rationing 

policy, each class has a rationing threshold below which the demand from that class cannot be 

satisfied. The system reserves inventory for the orders from the high- priority classes. Ha 

(1997b) studied hedging point policy with dynamic scheduling problem. By considering 

single server, two products, make-to-stock queue with backorders, he showed that the optimal 

rationing policy is of the “switching curve” type. Furthermore, two production switching 

cures have been obtained: one curve determines when and which product can be produced, 

and the other curve determines in which region the production can be stopped. In a similar 

MTS system, Ha (1997c) considered the backorders case but with single product and two 

priority demand classes. He characterized the optimal production and inventory rationing 

policies by a single monotone witching curve. He showed that the optimal production policy 

is of base-stock type and the optimal rationing policy is determined by rationing level, which 

is decreasing in the number of the low-priority class backorders. In a later article, Ha (2000) 

extended the results of his work (1997c) to Erlang distributed production times in lost sales 
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case. Using work storage as a state variable, he indicated that the optimal production policy 

can be characterized by a critical work storage level. Gayon et al. (2009) analyzed a similar 

system as Ha (2000) for an M/Ek/1 make-to-stock queue with multiple classes and they 

provided a formulation in the case of backorders and examined the effects of optimal policies 

under different operating conditions: with and without salvage market value. They showed 

that the optimal allocation policy with a salvage market is work-storage rationing policy that 

is characterized by n work-storage rationing thresholds corresponding to n demand classes. 

Without a salvage market value, they showed that the modified work-storage rationing policy 

is optimal and is determined by the base-stock level. 

De Véricourt et al. (2000, 2002) also considered “hedging point” policies and developed 

further characterization of the optimal switching curve for the backorders case. The 

backorders case is more difficult to analyze than the lost-sales case when there are multiple 

demand classes. One of the major reasons is that backorders of the different demand classes 

increase dimensionality of the system. Therefore, the analysis is more complex. De Véricourt 

et al. (2000) showed that in a two-part types production system, it is optimal to produce the 

expensive item if it has the higher backorder cost. De Véricourt et al. (2002) studied a 

capacitated supply system with multiple demand classes. By decomposing the problem into n-

dimensional control problems and (n-1)-dimensional sub-problem, the optimal policy can be 

characterized simply by fixed threshold values. In the same vein, De Véricourt et al. (2001) 

evaluated the benefits of different optimal rationing policies: first come first service (FCFS), 

strict priority policy (SP) and the multilevel rationing policy (ML), and showed that the ML 

policy performs better than the other two policies. Gayon et al. (2009) characterized the 

optimal policy for a production-inventory system with multiple customer classes and 

imperfect advance demand information (ADI). They showed that in lost sales setting the 

suppliers benefit more from ADI than customers. 

Unlike the pure backorder system or pure lost sales system, Benjaafar et al. (2010a) addressed 

a more general model, taking into account both features lost sales and backorders. Moreover, 

this paper initiated a study of the structure of the optimal policy in MTS system with both 

backorders and lost sales. In their case, the backorder and lost sale costs are similarly ordered. 

Under this assumption, for each class the optimal production/allocation policy can be 

characterized as a threshold policy. Benjaafar et al. (2010b) studied a production-inventory 

system with customer impatience. The unsatisfied customer is either lost or backordered. The 

impatient customers are willing to wait for delivery until the next replenishment which 
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depends on the exponentially distributed patience times. That means the customers will wait 

for an amount of time for fulfilling orders; otherwise, they cancel their orders. In particular, 

this paper showed that optimal policy base-stock level is non-increasing in the upper bound 

on the number of backorders, while the optimal policy rationing level is non-decreasing in 

that. In the same vein, Benjaafar and Elhafsi (2012) studied a two-customer class system: 

patient and impatient customers. The unsatisfied orders from the patient class can be 

backordered while the unsatisfied orders from the impatient class can be rejected. The optimal 

policy can be described by two threshold functions where inventory allocation is not static, 

which depends on the backorder level of the patient customer class.  

There are several studies in the literature that consider production-inventory systems with 

transshipment/inventory sharing. Benjaafar et al. (2004) discussed the problem of inventory 

rationing in a system with multiple products and multiple production facilities. Zhao et al. 

(2005) considered a two-location inventory-sharing system. They used a (S,K) policy, namely 

base-stock and rationing policy in a decentralized setting. Zhao et al. (2008) also considered a 

two-location system, while the transshipments can happen in both demand arrivals and 

production completions. They proved that for each location the optimal production policy is a 

hedging point policy and the optimal demand filling policy is a state-dependent policy.  

There is also a stream of literature that considers the stock rationing problem with batch 

demand. Huang and Iravani (2008) provided a non-unitary demand system and focused on the 

problem of rationing quantity. They showed that the order size can affect the benefit of the 

optimal stock rationing policy. Xu et al. (2010) extended the model of Huang and Iravani 

(2008) to the multiple-class, batch demand system, where the batch demand can be partially 

accepted. They showed that the optimal policy is characterized by multiple rationing levels. 

ElHafsi et al. (2010) studied an integrated production inventory system with multiple non-

unitary demand classes. It is assumed that both production times and order inter-arrival times 

follow the Erlang distributions. They showed that the demand size variability can significantly 

affect the operating cost of the system.  

2.2 ATO Systems under Continuous Review  

In contrast to MTS systems, which keep inventory at the end-product level, ATO systems 

keep inventory at the component level. When the customer order is received, the components 

can be assembled immediately and delivered to the customer. To our knowledge, most papers 
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address continuous review models and develop heuristic policies to evaluate or optimize the 

decisions. In this stream, Song (1998) studied the performance measures for a base-stock 

system with Poisson demand and constant replenishment leadtimes. She showed that in a 

multi-item inventory model the order fill rate can be obtained by a series convolution of the 

batch size distribution and Poisson distribution. Xu (1999; 2001, Chapter 11) studied the 

effect of arrival correlation on the performance of the ATO system, and discussed how the 

system responds to different arrival correlations. Gallien and Wein (2001) considered ATO 

systems with a single-item MTS environment. But in their model, the setting is based on a 

Poisson demand and an arbitrary distributed processing times. Associated with non-identically 

stochastic lead times and infinite capacity, the authors developed a simple and effective 

control policy for an ATO system. That is the structure of the optimal policy is entirely 

determined by the longest procurement delay and its differences with the other procurement 

delays. Similar system studied by Song and Yao (2002), who proposed upper and lower 

bounds for the backorders in a single product case. They showed that it is optimal to keep 

higher base-stock levels for components with longer mean lead times (and lower unit costs). 

Lu and Song (2005) formulated an unconstrained cost-minimization model in multiple- 

product assembly system with order-based backorder costs. They developed an algorithm to 

approximate the optimal base-stock level. Under the assumption that demands follow a batch 

Poisson process, Lu et al. (2005) focused on the expected backorder for each product. They 

solved the optimization problem by minimizing a weighted average of backorders over all 

products. Later, Lu (2006) extended the model (Lu et al., 2005) to multi-product, multi-

component ATO system with general random batch demands. He focused on the average 

backorder of the system, based on which he developed a new methodology for performance 

analysis of the system. Zhao (2009) also considered a multi-product and multi-component 

ATO system with batch ordering. He analyzed and evaluated the impact of the split 

orders/non-split orders on system performance. Hoen et al. (2011) studied a multiple end-

products system with lost sales and deterministic leadtimes. They devised an approximate 

method for estimating the order fill rates.  

Another line of research on ATO systems is base-stock policies with fixed base-stock levels. 

Song et al. (1999) studied the impact of limited capacity on ATO systems and evaluated 

performance of base stock policies with stochastic leadtimes. They showed that exact 

performance measures are a result of multidimensional Markov chains. Glasserman and Wang 

(1998) considered a system consisting of multiple types of demand, which take place 
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according to batch Poisson processes. The inventory of each component is controlled by a 

base-stock policy, and the replenishment leadtimes are i.i.d. (independent and identically 

distributed) random variables. They focused on a target fill rate and studied the trade-off 

between inventory levels and delivery leadtimes. Dayanik et al. (2003) considered an ATO 

system consisting of multiple components and multiple products. They developed lower 

bounds to estimate the order fill rates for the system. Plambeck and Ward (2007) introduced a 

separation principle for a class of ATO systems with expediting. They demonstrated that the 

multidimensional assembly control problem can be separated into a series of single-item 

inventory control problems. Ko et al. (2011) studied a single product, multiple-component 

production system under a base-stock policy. They provided explicit approximations of the 

lead times distributions, from which the base-stock levels can be calculated.  

For a more general multi-product ATO system: non-identical production system, where the 

products differ in characteristics. Lu et al. (2010) focused on the W-, N-, M-system and 

assumed identical component leadtmes. They used a stochastic program to obtain optimal 

inventory strategy. Dogru et al. (2010) discussed W-system with identical component lead 

times and proposed a simple priority allocation policy. Under this environment, Lu et.al. 

(2012) studied an ATO N-system with non-identical leadtimes. This is the special case of W-

system. Under the symmetric structure, the optimal component allocation decision is a no-

holdback (NHB) rule and the optimal production decision is a coordinated base-stock (CBS) 

rule; under the asymmetric structure, the optimal policies depend on the effect of cost 

asymmetry. Reiman and Wang (2012) considered the model of Dogru et al. (2010), while 

with non-identical lead times. They developed a multi-stage stochastic program and 

established a lower bound on the inventory cost of the system, based on which they also 

discussed the replenishment policy and the allocation policy. 

2.3 ATO Systems under Periodic Review  

For periodic review models, faced with multi-customer classes and integer-valued correlated 

random variable in each period, a static threshold production/allocation policy has been 

considered. In general, as mentioned in Chiang (2003) “…earlier periodic review models, 

however, have focused on the situation which supply lead times are a multiple of a review 

period. Such models could be regarded as an approximation of continuous review models, as 

the review periods can be modeled as small”. The earlier literature about this related problem 

is studied by Cohen et al.(1988) who investigated two demand classes (the emergency 
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demand and the normal demand) inventory system in a (s,S) policy with lost sales. Assuming 

the emergency demand has higher priority than the normal demand, the former can be 

satisfied first. In this setting, a strict priority rule is used for the allocation policy. Furthermore, 

authors developed and evaluated an efficient and effective solution heuristic for solving the 

service-constrained optimization problem. Later, Rosling (1989) considered an infinite 

horizon model with random demands multi-echelon inventory system. Under an assumption 

of zero setup cost, he showed that a balanced base-stock policy is optimal for multistage 

assembly systems. Chen (2000) extended this equivalence between assembly and serial 

systems to the batch-ordering case. He showed that the batch ordering policy is an optimal 

policy for multi-echelon systems. Cheng et al. (2000) considered a configure-to-order (CTO) 

system. Such a system takes the ATO concept one step further, and then the customers can 

select the personalized set of components that assembled to the end product. They used a 

lower bound on the order fill rate of each product to investigate the optimal inventory-service 

tradeoff. Karaarslan et al. (2013) considered a single item, two-component system with 

backorders under two different policies: a pure base-stock policy and a balanced base-stock 

policy. They showed that the balanced base-stock policy works better under low service levels, 

low holding cost ratio, and high demand uncertainty. Otherwise, the pure base-stock policy 

performs well.  

Turning to the study of single-period ATO systems, Fu et al. (2006) analyzed the policy of 

pre-stocking components and a single product ATO system with uncertain demand and 

limited assembly capacity. They examined the effect of varying component leadtimes on the 

available assembly capacity. Xiao et al. (2010a) also considered the similar system as Fu et al. 

(2006), but focused on an ATO system with both uncertain demand and uncertain assembly 

capacity. By considering assembly-in-advance operations, the authors adopted a profit-

maximization model and investigated the optimal production and inventory decisions. Xiao et 

al. (2010b) extended their study to a two-product production system with two types of 

uncertain demand. They studied the impact of the uncertain demand patterns on the optimal 

stocking and allocating decisions. 

We found also several review articles on different inventory allocation policies. See, for 

example: Zhang (1997) considered an assembly system with multiple productions and 

dependent demands. He proposed a fixed-priority policy with stock commitment for 

allocating component stocks. Hausman et al. (1998) studied joint demand fulfillment 

probability in a multi-item inventory system under FCFS policy. Agrawal and Cohen (2001) 
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studied assembly type production systems with demand uncertainty under a fair-share policy. 

Several results are used to determine the optimal base-stock policy. Akçay and Xu (2004) 

considered a multi-component and multi-product ATO system under the independent order-

based policy. Duran et al. (2007) focused on limited production capacity inventory system 

with multi-period time horizon. They considered two customer classes differentiated by their 

priority level, and showed that a (S, R, B) base-stock policy is optimal, where S is the order-

up-to quantity, R is the reserve-up-to amount, and B is the backlog-up-to amount. Feng et al. 

(2010) worked on a multi-item inventory system under the (r,nQ) policy, where r is the 

recorder point, nQ is the order size. They showed that the joint inventory positions of the 

system are stationary, independent and uniformly distributed.  

2.4 ATO Systems in Continuous Time 

In this section we discuss ATO systems that are managed/operated in continuous time. In this 

case, the problem is formulated using MDP. In this research branch, an initial view of the 

optimal control of a system with multiple components on multiple production facilities, and 

multiple demand classes is given by Benjaafar and ElHafsi (2006), who studied an ATO 

system consisting of n products assembled from a subset of m distinct components. By 

assuming that the manager is faced with multiple demand classes, they analyze the optimal 

production and inventory allocation policies of such system. Unlike the fixed allocation policy, 

the optimal allocation policies are dependent on the on-hand inventory of the other 

components. The optimal inventory policy for one component can be described as a state-

dependent policy that depends on the on-hand inventory levels of all other components. In this 

article, although the authors considered a special case of an ATO system, it still can be 

viewed as a classic one. Because also under continuous review, compared with the other 

literatures (mentioned in section 2.2) which focus on performance evaluation of heuristic 

policies, this work determines the optimal production policy.  

ElHafsi et al. (2008) also considered an n- product and m-component ATO system where the 

products have a modular nested design. They showed that the optimal production policy is a 

base-stock policy and the optimal inventory allocation policy is a multi-level rationing policy. 

Finally, ElHafsi (2009) studied an ATO system subject to non-unitary multiple demand 

classes. The author argued that comparing to the effect of order size variability, the optimal 

average cost rate is more sensitive to the order size. More recently, Benjaafar et al. (2011) 

discussed a multiple stages, multiple demand classes assembly system with batch production 
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and batch demand. By considering different items can be produced in different batch sizes, 

they characterized the optimal policy. In particular, the optimal production quantity for each 

component and the optimal number of satisfied requirements for each demand class would 

also be determined.  

In this work, we study a continuous time ATO system, and share several common features in 

the above literature of ATO system under continuous time. That is, the assumption of 

exponential production time and Poisson process demand. The current work is most closely 

related to that of Benjaafar and ElHafsi (2006). Similar to their model, we study an ATO 

system with a single product assembled from n components. However, in our system we 

consider two types of demand: demand of the assembled product and demand of the 

individual components, and discuss the demands with the pure lost sales (see Li, 2013a) and 

the mixed lost sales and backorders (see Li, 2013b). Based on which, we study the optimal 

control policy. 

2.5 Conclusion 

We provided a brief overview of the literature involved in this work, which can be classified 

into four categories: make-to-stock systems under MDP, ATO systems under continuous 

review, ATO systems under periodic review, and ATO systems in continuous time. Our work 

is more related to the literature on ATO systems in continuous time. In this line of research, 

we study the model that deals with two types of demand ATO system: the assembled product 

demand and the individual components demand. To our knowledge, there is little literature in 

this area. We hope that the research presented in this work also enriches the current literature 

on ATO systems with individual components demand. 
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 ATO System with Individual Chapter 3.

Components Demand: Lost Sales for Components 

and Assembled Product  

We consider the demand during shortage period as completely lost. In this chapter, we 

assume that if demand cannot be fulfilled immediately it is lost for both the assembled 

product as well as the individual components. We propose a dynamic programming model 

in order to determine the optimal control policy of such a system. The system deals with a 

single product which is assembled from multiple components. The system faces demand not 

only from the assembled product but also from the individual components. To determine the 

optimal operating policy, we formulate the problem using an MDP methodology and using 

two optimality criteria: discounted cost and average cost per period. Furthermore, we 

determine the structure of the optimal policy and investigate the impact of different 

parameters on the optimal policy. We are also interested in the effect of system parameters 

on the optimal policy. We test the system with a wide range of system parameters and show 

that the optimal base-stock and rationing levels are sensitive to system parameters 

The outline of this chapter is as follows: we start with an introduction in section 3.1. In 

section 3.2, we formulate the optimal control problem with lost sales and characterize its 

optimal policy under the discounted cost case. Then we extend our model to the average cost 

case. In section 3.3, we adopt the average cost criterion in numerical experiments, and use 

the iteration algorithm to calculate the optimal policy. Based on numerical results, we 

analyze the structure of the optimal policy. Finally, we conclude this chapter in section 3.4. 
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3.1 Introduction 

This chapter considers an ATO system with a single product assembled from n components. 

Each component is produced ahead of demand one unit at a time on an independent 

production facility. Unit held in inventory incurs a unit holding cost. Demand from both the 

product and the components can be either satisfied or rejected. Demand for the assembled 

product can be satisfied only if all components are in stock. We assume that demand for the 

assembled product has a higher priority over demand for the individual components. In this 

situation, a system manager may need to reject a demand from a component and save the 

inventory for future assembled product demand. At the same time, a system manager needs to 

decide when to produce a certain component and when not to produce it. We also assume 

exponentially distributed production times, and demands arrive to the system according to 

independent Poisson processes. We assume that the assembly time is instantaneous and there 

are no setup costs and setup times for production. Our assumption of negligible assembly time 

is supported by most of the literature on ATO systems.  

A system manager must make two types of decisions: one regarding component production 

and the other regarding inventory allocation. The objective is to determine the optimal control 

policy that minimizes the expected operating costs of the system. In general, this kind of 

problem can be regarded as a dynamic problem and a decision support tool is needed. In our 

study, the problem can be formulated as an MDP resulting in Markovian policies. We show 

that the optimal production policy is characterized by state-dependent base-stock levels. That 

is, a component is produced when the on-hand inventory is below the base-stock level, and 

not be produced otherwise. Moreover, the base-stock level is non-decreasing in the on-hand 

inventory level of other components. We show that the optimal inventory allocation policy is 

a rationing policy. An order from a component is satisfied only if its on-hand inventory level 

is above a certain rationing level. The rationing level for each component is also non-

decreasing in the on-hand inventory levels of other components. This is an interesting 

property since both the base-stock and the rationing levels are non-decreasing in the on-hand 

inventory level of other components. This result is quite different from the ones in (Benjaafar 

and ElHafsi 2006, ElHafsi et al. 2008). In our system we discuss two types of demand: 

demand of the assembled product and demand of the individual components. Benjaafar and 

ElHafsi 2006 studied a single product ATO system, ElHafsi et al. 2008 studied a nested-

multiple-product ATO system, where they consider one type of demand that can only be from 
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the end product, and focus on different demand classes. However, in our system since demand 

of the assembled product has a higher priority over demand of individual components, it is 

always satisfied if all components are in stock. We also assume that demands of the individual 

components are independent of each other. When the system jointly increases the on-hand 

inventory of the components, more demands from the assembled product are desired to be 

satisfied that means several individual components demands must be rejected. Hence, the 

rationing level of the individual components increases. This implies that it becomes more 

difficult to satisfy demand of the individual components when the on-hand inventory of 

components increases. Using a two-component example, we show that the optimal base-stock 

and rationing levels are sensitive to system parameters, such as holding cost, lost sales cost, 

production rate and arrival rate. Based on the numerical results, we show the impact of these 

parameters on the optimal policy and then present some properties in the general case. 

3.2 The Optimal Control Problem  

3.2.1 Model Formulation  

We consider a system with a single product (for which we use the index 0) assembled from n 

components. Production times are exponentially distributed with mean 1 k  for Component 

k=1,…,n. Demand for Component k and the assembled product takes place continuously over 

time according to an independent Poisson process with rate k  and 
0 , respectively. Let ci 

(i=1,…,n) be the lost sale cost for Component i demand. We assume that the lost sale cost for 

the assembled product is such that 
0 1  nc c c . This condition states that the product 

demand has priority over the component demand. We define the state of the system, at time t, 

by the vector  1( ) ( ), , ( )nt tXt XX , where ( )kX t , k=1,…n, is a nonnegative integer denoting 

the on-hand inventory for Component k at time t. The system produces components ahead of 

demand. Let     1
( )




n

k kk
h t h X tX  be the holding cost, where hk(.) is increasing convex 

Under a policy  for each state  1, ,, nxx x the manager needs to decide which 

components to produce, and how to allocate inventory between components and the 

assembled product. Because the system is memoryless, these actions taken at a particular 

decision epoch depend only on the current state of the system. Decisions can be described as 

two types: production and inventory allocation, which are made simultaneously. In each state, 

production decision concerns which components to be produced, and inventory allocation 
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decision concerns which demand should be satisfied immediately or rejected to reserve 

inventory for future demand of the assembled product. 

3.2.2 The Case of Discounted Cost 

We formulate the problem as an MDP. The expected discounted cost over an infinite planning 

horizon obtained under a policy with a starting state  1, , nx x x  can be defined as: 

                      
0 0

1 0

( ( )) ( ) ,
 

 

 

 
  

 
  

n n
t t

k k l l

k l

v E e h X t dt e c dN t   

xx                                          (3.1) 

where 0  is the discount rate, N0(t) is the number of units of the assembled product demand  

that have not been satisfied and Ni(t) is the number of units of Component i demand that have 

not been satisfied up to time t. Our aim is to seek the optimal policy    that minimizes the 

expected discounted cost for all x. Let v
*
 denote the optimal cost function (i.e., v v

  ). 

Following Lippman (1975), we define the uniform rate 
0 1

n

ll k k

n
  

 
    and let 1   . 

The dynamic programming equation can be written as:   

                            0

0

1 1

( ) ( ) ( ),     

 

    
n n

k

k k k

k k

v h T v T v T vx x x x x                                       (3.2) 

where the operators T
0
, T

k
 and Tk, k=1,…,n are defined as follows: 

                                                  

 
 

    

00 1

0

                               if 0

min ,       otherwise,

n

k
k

v c x
T v

v v c




  

 
  

x
x

x e x

                                                         (3.3) 

 
 

    

                                if 0,

min ,      otherwise,

k kk

k k

v c x
T v

v v c

  
 

 

x
x

x e x
                                              

(3.4) 

      min , . k kT v v vx x e x                                                                           (3.5) 

In our model, ek is the kth unit vector of dimension n and  1 1,1,...,1n
k k e e  is an n-

dimensional vector of ones. Operator T
0
 corresponds to the inventory allocation decision for 

demand of the assembled product, similarly, operator T
k
 corresponds to the inventory 

allocation decision for demand of Component k, operator Tk corresponds the production 

decisions for Component k. 
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In Theorem 3.1, we characterize the structure of the optimal policy. 

For the further proving we define the following operators  

   ( ) ,i iv v v   x x e x  

     , ,    i i i i iv v vx x e x  

   , ( ) ,i j j i jv v v    x x e x and  , , ( ),i j j iv v  x x  

   
1 2 1 2,...,

( ... ) ,
k ki i i i i i
v v v

  
      x x e e e x  

   ( ) .v v v   e x x e x  

Definition 3.1. Let V  be the set of functions on 
n , where   is the set of non-negative 

integers, such that if vV , we have  

A1:  , 0,i iv x  for all i, 

A2:  , 0,i jv x  for all , 1,2,..., , ,i j n j i   

A3:  
1 2 ,..., ,

0,
pi j j j i

v
   

 x  for all 
1 2, , ,..., ,pi j j j i  and 1 1,p n    

A4:   0 ,  v ce x  for all 1 0. 
n
k kx   

Property A1 shows that  iv x is non-decreasing in each of the state variables, and it implies 

that the function v(x) is convex in xi. Property A2 shows that  iv x  is non-increasing in

 ( )jx j i , and it implies that the function v(x) is submodular in the direction (xi,xj). For the 

definition of submodularity and supermodularity readers can refer to Topkis (1978). Property 

A3 shows that  iv x  is non-decreasing with joint increases in 
1

, ,...,
i j

x x and 
pj

x  and it implies 

that the function v(x) is supermodular in the direction  
1

,  ...  
pi i j j

x x x x . Property A4 

implies that it is always optimal to satisfy an order from the assembled product, if all the 

components are available. 

Lemma 3.1. If vV , then TvV , where     0

0

1 1

( ) ( ) ( )  
 

    
n n

k

k k k

k k

Tv h T v T v T vx x x x x . 

Proof of Lemma 3.1 
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In order to prove Lemma 3.1, we need to show that if vV  then Tv must satisfy A1-A4. In 

order to do so, we prove that if vV  then 0T vV , 
k

T vV  and kT vV  for all k. In other 

words, we show that 0T vV , 
k

T vV  and kT vV  satisfy A1-A4.  

Operator Tk 

           min , min ,0    k k kT v v v v vx x e x x x                                            (3.6) 

Property A1 

From (3.6) we have the following two cases:  

Case 1 if i=k, 

            , , min 2 ,0 2min ,0 min ,0          x x x e x e xi i i i i i i i i iTv v v v v  

by A1 we have 

     Δ 2 Δ Δ   x e x e xi i i i iv v v , which leads to four possible sub-cases: 

1.      Δ 2 Δ Δ 0     x e x e xi i i i iv v v    , , 0.   x xi i i i iTv v  

2.      Δ 2 Δ 0 Δ     x e x e xi i i i iv v v        , , 0       x x x x ei i i i i i i iTv v v v  

3.      Δ 2 0 Δ Δ     x e x e xi i i i iv v v  

         , , 2 0.          x x x e x x ei i i i i i i i i iTv v v v v  

4.      0 Δ 2 Δ Δ     x e x e xi i i i iv v v  

           , , ,2 2 0.            x x x e x e x x ei i i i i i i i i i i i iTv v v v v v  

Case 2 if i k , 

            , , min 2 ,0 2min ,0 min ,0 ,          x x x e x e xi i k i i k i k i kT v v v v v  

by A2 we have 

     Δ 2 Δ Δ   x e x e xk k i kiv v v , leading to three possible sub-cases: 

1.      Δ 2 Δ Δ 0     x e x e xk k ki iv v v  
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, ,

,

2 2

                2 2

                0.

          

       

   

x x x e x e x

x e e x e e x e

x e

i i k i i k i k i k

i k i k k

i i k

T v v v v v

v v v e

v

 

2.      Δ 2 Δ 0 Δ     x e x e xik ki kv v v  

       

       

     

   

, ,

,

2 2

               2 2

               2

               0.





        

          

       

     

x x x e x e

x e x x e x e

x e x x e

x x e

i i k i i k i k i

i i i k i k i

i k i i k i

i k i k i

T v v v v

v v v v

v v v

v v

 

3.      Δ 2 0 Δ Δ     x e x e xk ki i kv v v
 

     

     

   

, ,

,

,

2

               2

               0.





     

       

     

x x x e

x x e x e

x x e

i i k i i k i

i k i k i k i

i k i k i

T v v v

v v v

v v

 

4.          , ,0 Δ 2 Δ Δ 0.        x e x e x x xk k k i k ii i i iv v v T v v  

Hence, Tkv satisfies A1. 

Property A2 

From (3.6) we have the following two cases:  

Case 1 if ,  ( , )   i k j k j k i k , 

         
     

, min ,0 min ,0

                                min ,0 min ,0 .

        

    

x x x e e x e

x e x

i i j i i j i j

i i i

T v v v v

v v
 

By A1-A3 we have: 

       Δ Δ Δ Δ      x e x x e e x ei i ij i j i iv v v v  there are five possible sub-cases can be 

considered: 

1.        Δ Δ Δ Δ 0        x e x x e e x ej ii iji i iv v v v  

           

       

, ,

, , , ,               0.

            

         

x x x e e x e x e x

x x e x x e

i j i i j i i j i i i j i

i j i j i i j i j i

T v v v v v v

v v v v
 

2.        Δ Δ Δ 0 Δ        x e x x e e x ei i i ij i j iv v v v  
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           , , 0.             x x x e e x e x x e ei j i i j i i j i j i i i jTv v v v v v  

3.        Δ Δ 0 Δ Δ        x e x x e e x ei i i i j ij iv v v v  

       , , 0      x x x e xi j i i j i j iTv v v v  

4.        Δ 0 Δ Δ Δ        x e x x e e x ei i i i j ij iv v v v  

       , , 0.       x x x e xi j i i j i j iTv v v v
 

5.            , ,0 Δ Δ Δ Δ 0.          x e x x e e x x xei i i i i ji i jj i j iTv vv v v v  

Case 2 if , ,i k j k   

         
     

, , min ,0 min ,0

                                 min ,0 min ,0

         

    

x x x e e x e

x e x

i j k i j k i j k j

k i k

T v v v v

v v
 

by A2 we have  

       Δ Δ Δ Δ      x x e x e x e ek k j kk i i jv v v v or 

       Δ Δ Δ Δ .      x x e x e x e ekk j i ik jkv v v v  

If        Δ Δ Δ Δ      x x e x e x e ek k j kk i i jv v v v , under this condition, we have the 

following five cases: 

1.        Δ Δ Δ Δ 0        x x e x e x e ek i j k i jk kv v v v    , , 0.   x xi j k i jT v v  

2.        Δ Δ Δ 0 Δ        x x e x e x e ek i j k jk k iv v v v  

     , , 0.      x x x e ei j k i j k i jT v v v  

3.        Δ Δ 0 Δ Δ        x x e x e x e ek k kk i j i jv v v v   

       

   

, ,

, ,               0.

        

     

x x x e x e

x x e

i j k i j k i j k j

i j i k j

T v v v e v

v v
 

4.        Δ 0 Δ Δ Δ        x x e x e x e ek k kk i j i jv v v v  
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, ,

,

                

                

                 = 0.

            

          

        

    

x x x e e x e x e

x e e e x e e x e e x

x e e x e x

x e x

i j k i j k i j k j k i

k i j k j k i

j k i j k k

i j k k

T v v v v v

v v v v

v v v

v v

 

       0 Δ Δ Δ Δ        x x e x e x e ek k kk i j i jv v v v
 

           

 

, ,

,

 

                 = 0

            

  

x x x e e x e x e x

x e

i j k i j k i j k j k i k

i j k

T v v v v v v

v
 

If        Δ Δ Δ Δ      x x e x e x e ek k i ik j i jv v v v , under this condition, we also consider 

the other case: 

5.        Δ Δ 0 Δ Δ        x x e x e x e ek k kk j i i jv v v v  

       

   

, ,

, ,               0.

        

     

x x x e x e

x x e

i j k i j k i j k i

i j j k i

T v v v e v

v v
 

Hence, Tkv satisfies A2. 

Property A3 

In order to prove the operator Tkv(x) satisfies A3, we need to show that  ,Δ 0i kT v 
e

x  which 

from the following observation (Ref.2. Observation 1): 

Observation1. if vV and  ,Δ 0iv e x then  
1 ... ,

Δ 0
pi j j i

v
  

x for all
1 2
, ,... ,

p
j j j i and 

1 1.p n    

Proof: Using property A2, we have  

     
1 1... , ... ( ) ( ).              x x e e e e x x e x

p pi j j i i i j j i i iv v v v v  

Then if    , ( ) 0,     e x x e xi i iv v v we also have  
1 ... , 0.   x

pi j j iv  

In order to show that  
1 ... , 0   x

pi j j iv , we use Observation 1 and show that  , 0 e iv x , 

directly. 

From (3.6) we have the following two cases:  

Case 1 if i=k, 
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, , min ,0 min ,0

                                min ,0 min ,0 .

         

    

e ex x x e e x e

x e x

i i i i i i

i i i

T v v v v

v v
 

By A2 and A3 we have  

       Δ Δ Δ Δ      x e e x e x e xi i ii i iv v v v  or 

       Δ Δ Δ Δ .      x e e x e x e xi i ii i iv v v v  

If        Δ Δ Δ Δ      x e e x e x e xi i ii i iv v v v , there are five possible sub-cases: 

1.        Δ Δ Δ Δ 0        x e e x e x e xi i ii i iv v v v    , , 0.   e ex xi i iTv v  

2.        Δ Δ Δ 0 Δ        x e e x e x e xi i ii i iv v v v  

       , , 0.       e ex x x x ei i i i iTv v v v  

3.        Δ Δ 0 Δ Δ        x e e x e x e xi i ii i iv v v v  

       , , 0.      e ex x x e xi i i i iTv v v v  

4.        Δ 0 Δ Δ Δ        x e e x e x e xi ii ii iv v v v   

           , , 0.           e ex x x e x e x x ei i i i i i i i iTv v v v v v  

5.        0 Δ Δ Δ Δ        x e e x e x e xi ii ii iv v v v  

           

       

, ,

, , , ,               0.

            

         

e e

e e e e

x x x e e x e x e x

x x e x x e

i i i i i i i i i

i i i i i i

T v v v v v v

v v v v  

If        Δ Δ Δ Δ      x e e x e x e xi ii i i iv v v v , under this condition, we also consider the 

other case: 

6.        Δ Δ 0 Δ Δ        x e e x e x e xi i ii i iv v v v  

       

   

, ,

               0.

      

     

e ex x x e x

x e x e

i i i i i i

i i i

T v v v v

v v
 

Case 2: if ,i k  

         

     

, , min ,0 min ,0

                                 min ,0 min ,0 .

         

    

e ex x x e e x e

x e x

i k i k i k

k i k

T v v v v

v v
 

By A2 and A3 we have  
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       Δ Δ Δ Δ      x e x e e x x ek kk i k iv v v v or 

       Δ Δ Δ Δ      x e x x e e x ek kk i k iv v v v  

If        Δ Δ Δ Δ      x e x e e x x ek kk i k iv v v v , under this condition, we have the following 

five cases: 

1.        Δ Δ Δ Δ 0        x e x e e x x ek k kk i iv v v v    , , 0.   e ex xi k iT v v  

2.        Δ Δ Δ 0 Δ        x e x e e x x ek i ik k kv v v v      , , 0.     e ex x x ei k i k iT v v v  

3.        Δ Δ 0 Δ Δ        x e x e e x x ek kk ki iv v v v  

           , , , , 0.         e e ex x x e x x xi k i k i k i k iT v v v v v v  

4.        Δ 0 Δ Δ Δ        x e x e e x x ek kk ki iv v v v  

         

       

     

   

, ,

,

                

                

                0.

           

          

         

      

e e

e e

e

x x x e e x e x

x e e e x e x e e x e

x e e x e x e

x e x e

i k i k i k i k

k i i k k

k i k k

i k k

T v v v v v

v v v v

v v v

v v

 

5.        0 Δ Δ Δ Δ        x e x e e x x ek kk ki iv v v v  

             , , , 0.              e e ex x x e e x e x e x x ei k i k i k k i k i kT v v v v v v v  

If        Δ Δ Δ Δ      x e x x e e x ek kk i k iv v v v , under this condition, we also consider the 

other case: 

6.        Δ Δ 0 Δ Δ        x e x x e e x ek k i kk iv v v v  

       

   

, ,

, ,                0.

        

     

e e

e e

x x e e x e

x x e

i k i k i k i

i k i

T v v v x v

v v
 

Hence, Tkv satisfies A3. 

Property A4 

           

       

Δ   , ,

                Δ Δ ,0 Δ ,0

   

   e

e x x e e x e x e x

x x e xk k

k k kT v min v v min v v

v min v min v
 

By A3 we have    
1 ... , , 0     ex x

pi j j i iv v  for p=n-1. 
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So
      ,Δ =Δ Δ 0,  e x x e xk k kv v v  then following the three cases: 

Case1.         0Δ Δ 0 Δ   Δ   .      e ex e x x xk kkv v T v v c  

Case2.            Δ 0 Δ Δ   =Δ   Δ   Δ   .     e e ex e x x x x xkk k kv v T v v v v  

Case3.            0 Δ Δ Δ   Δ   Δ   Δ         e ex e x x x x e xk k k kkv v T v v v v  

                                         , 0=Δ   +Δ Δ   . kv v v c  e e ex x x  

Hence, Tkv satisfies A4. 

Operator T
0
 

 
 

    

00 1

0

                                   if 0

min ,            otherwise,




  

 
  

x
x

x x

n

k
k

v c x
T v

v e v c

 

               
 

    

0
1

0

                                       if 0

min 0,     otherwise.




  

 
     e

x

x e x

n

k
k

v c x

v v c

 

By A4, already  
 

 

00
1

          if 0

           otherwise,




  

 
 

x
x

x e

n

k
k

v c x
T v

v

 hence it satisfies all 4 properties. 

Operator T
k
 

 
 

    

                                        if 0

min ,              otherwise,

  
 

 

x
x

x e x

k kk

k k

v c x
T v

v v c
 

 

    

                                               if 0

min 0,    otherwise,

  
 

    

x

x e x e

k k

k k k k

v c x

v v c
                       (3.7) 

Property A1 

From (3.7) we have the following three cases:  

Case 1: if 0,kx  

   , ,Δ   Δ 0. i i i i

kT v x v x  

Case 2: if 0, , kx i k  

   ( ) min 0, ( )     x x e x ei i i i

iT v v v c , 
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       , ,Δ   ( ) min 0, ( ) 2min 0, ( ) min 0, ( ) .             x x e x e x x ei i i i i i i i i

i

i ii iT v v v c v c v c  

By A1 we have      Δ Δ Δ   x e x x ei i i i iv v v , leading to four possible sub-cases: 

1.      Δ Δ Δ 0        x e x x ei i i i i i i iv c v c v c   ,,Δ   ( ) 0.   x x ei i

i

i ii T v v  

2.      Δ Δ 0 Δ        x e x x ei i i i i i i iv c v c v c  

  ,,Δ   ( ) ( ) ( ) 0.         x x e x e xi i i i

i

i i ii i iT v v v c v c  

3.      Δ 0 Δ Δ        x e x x ei i i i i i i iv c v c v c  

  ,,Δ   ( ) 2 ( ) ( ) ( ) 0.           x x e x x e xi i i i i i i i i

i

i i T v v v v c v c  

4.      0 Δ Δ Δ        x e x x ei i i i i i i iv c v c v c  

  , ,,Δ   ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0.               x x e x e x x e x e x xi i i i i i

i

i ii i ii i i iT v v v v v v v v  

Case 3: if 0, , kx i k  

   ( ) min 0, ( )     x x e x ek k k k

kT v v v c , 

   

   

,,Δ   ( ) min 0, ( 2 )

                                        2min 0, ( ) min 0, ( ) .

       

        

x x e x e e

x e e x e

i i k k k i k

k k i k k

i

k

k

i

k

T v v v c

v c v c
 

By A2 we have      Δ 2 Δ Δ      e e e e ek kk ki k i kv x v x v x , leading to four possible sub-

cases: 

1.      Δ 2 Δ Δ 0           e e e e ek i k kk k i k kk kv x c v x c v x c  

  , ,,Δ   ( ) ( 2 ) 2 ( ) ( ) ( ) 0.              x x e x e e x e e x e xi i k k k i k k i k k

k

i i i iT v v v v v v  

2.      Δ 2 Δ 0 Δ           e e e e ek i k kk k ki k k kv x c v x c v x c   

  ,,Δ   ( ) ( 2 ) 2 ( )

                 ( ) ( ) ( 2 ) 2 ( )

                 ( ) ( ) 2 ( )

                 



           

               

           



x x e x e e x e e

x e e x e x e e x e e

x e e x e x e e

i i k k k i k k i k

i k i i k k k i k k i k

i k k i

k

i i

i k k k i k

T v v v v c

v v v v c

v v v c

,

,

( ) ( ) 2 ( )

                 ( ) ( ) 0.





          

        

x e x e e x e e

x e x e e

i k i k k k i k k i k

i k i k k k i k

v v v c

v v c

 

3.      Δ 2 0 Δ Δ           e e e e ek i k k i k k kk k kv x c v x c v x c  
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  ,

,

,

,

Δ   ( ) ( 2 )

                ( ) ( ) 2 ( ) 2

                ( ) ( ) 0.





       

            

        

x x e x e e

x e x e e x e e

x e x e e

i i k k k i k

i k i k k k i k k k i k

i

k

i

k i k k k i k

i T v v v c

v v c v c

v v c

 

4.      0 Δ 2 Δ Δ           e e e e ek i k k i k k kk k kv x c v x c v x c  

  ,,Δ   ( ) 0.   x x ei i

k

i ki T v v
 

Hence, T
k 
v satisfies A1. 

Property A2  

From (3.7) we have the following three cases:  

Case 1: if 0,kx  

   , ,Δ   Δ 0. x xi j i j

kT v v  

Case 2: if xk > 0, ,  ( , )   i k j k j k i k , 

   ( ) min 0, ( )     x x e x ek k k k

kT v v v c , 

     
   

,,Δ   ( ) min 0, ( ) min 0, ( )

                                         min 0, ( ) min 0, ( ) .

           

      

x x e x e x e e

x x e

i j i i j i i i j

i

i j i

i i i i i

T v v v c v c

v c v c

 By A1 we have 

       Δ Δ Δ Δ      x x e x e x e ei i i i j i i jv v v v  or 

       Δ Δ Δ Δ .      x x e x e x e ei i j i i i i jv v v v  

If        Δ Δ Δ Δ      x x e x e x e ei i i i j i i jv v v v , we have the following five cases: 

1.        Δ Δ Δ Δ 0            x x e x e x e ei i ii i i i j i i j iv c v c v c v c  

  ,,Δ   ( ) 0.   x x ei j

i

j ii T v v  

2.        Δ Δ Δ 0 Δ            x x e x e x e ei i i ii i i i j i i jv c v c v c v c  

  ,,Δ   ( ) ( )

                 ( ) 0.

      

    

x x e x e e

x e

i j i i i j i

i

j

i

i

i i

T v v v c

v c
 

3.        Δ Δ 0 Δ Δ            x x e x e x e ei i i i ii i i j i i jv c v c v c v c  
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 , ,Δ   ( ) ( ) ( )

                 ( ) ( ) 0.

        

     

x x e x e x e e

x e x e

i j i i j i i j

i

i j

i j i i

T v v v v

v v
 

4.        Δ 0 Δ Δ Δ            x x e x e x e ei i i i ii i i j i i jv c v c v c v c  

 , ,Δ   ( ) ( ) ( ) ( )

                 ( ) 0.

            

    

x x e x e x e e x e

x e

i j i i j i i j i i i

i j i

i

i j T v v v v v c

v c
 

5.        0 Δ Δ Δ Δ            x x e x e x e ei i i i ii i i j i i jv c v c v c v c  

  ,,Δ   ( ) ( ) ( ) ( ) ( )

                 ( ) ( ) 0.

            

     

x x e x e x e e x x e

x e x e

i j i i j i i j i i i

i j

i

i j

i i

T v v v v v v

v v
 

If        Δ Δ Δ Δ      x x e x e x e ei i j i i i i jv v v v , we also have consider the other case: 

6.        Δ Δ 0 Δ Δ            x x e x e x e ei i i i ii j i i i i jv c v c v c v c  

 , ,Δ   ( ) ( ) ( ) 0.        x x e x e e x ei j i i

i

ii ij j iT v v v v  

Case 3: if 0, , ,kx i k j k    

   ( ) min 0, ( ) ,     x x e x ek k k

k

kT v v v c  

     
   

,,Δ   ( ) min 0, ( ) min 0, ( )

                                         min 0, ( ) min 0, ( ) .

             

        

x x e x e e e x e e

x e e x e

i j k k k i j k k k j k

k k i k k k k

k

i j T v v v c v c

v c v c
 

By A2 we have 

       Δ Δ Δ Δ         x e e e e e x e e x ek k i j k k j k k i k kv v x v v  or 

       Δ Δ Δ Δ         x e e e e e x e e x ek k i j k k i k k j k kv v x v v  

If        Δ Δ Δ Δ         x e e e e e x e e x ek k i j k k j k k i k kv v x v v , we have the following 

five cases: 

1.        Δ Δ Δ Δ 0               x e e e e e x e e x ek kk k i j k k j k k i kk kkv c v x c v c v c  

  ,

,

,Δ   ( ) ( ) ( )

                                         ( ) ( ) ( ) 0.

          

        

x x e x e e e x e e

x e e x e x

i j k k k i j k k j

k

i

k k i k k i j

j T v v v v

v v v
 

2.        Δ Δ Δ 0 Δ              x e e e e e x e e x ek kk k i j k k j k k i k kk kv c v x c v c v c  
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  ,

,

,Δ   ( ) ( ) ( ) ( )

                 ( ) ( ) 0.

              

     

x x e x e e e x e e x e e

x x e

i j k k k i j k k j

k

i j k k i k

i j k k k

T v v v v v c

v v c
 

3.        Δ Δ 0 Δ Δ              x e e e e e x e e x ek kk k i j k k j k k i k kk kv c v x c v c v c  

  ,

, ,

,Δ   ( ) ( ) ( )

                 ( ) ( ) 0.

          

       

x x e x e e e x e e

x e x e e

i j k k k i j k k j

i j

i

i

j

j

k

k k k

T v v v v

v v
 

4.        Δ 0 Δ Δ Δ               x e e e e e x e e x ek k i j k k jk kk ik kk k kv c v x c v c v c  

 , ,Δ   ( ) ( ) 0.        x x e x e e ei j k k k i j

k

i j kT v v v c  

5.        0 Δ Δ Δ Δ               x e e e e e x e e x ek k i j kk k j k k i k kk k kv c v x c v c v c  

  ,,Δ   ( ) 0.   x x ei j

k

j ki T v v  

If        Δ Δ Δ Δ         x e e e e e x e e x ek k i j k k i k k j k kv v x v v , we also consider the 

other case:   

6.        Δ Δ 0 Δ Δ              x e e e e e x e e x ek kk k i j k k i k k j k kk kv c v x c v c v c  

  , , ,,Δ   ( ) ( ) ( ) ( ) ( ) 0.                x x e x e e e x e e x e x e ei j k k k i j k k i i j k

k

k j ki j jT v v v v v v

 

Hence, T
k
v satisfies A2. 

Property A3  

In order to prove  
1 ... ,

Δ 0
p

k

i j j i
T v

  
x we use Observation 1 to prove  ,

Δ 0k

e i
T v x , from (3.7) 

we have the following three cases: 

Case 1 if 0,kx  

   , ,Δ   Δ 0. e ex xi i

kT v v  

Case 2 if 0,kx  and ,i k  

   ( ) min 0, ( ) ,     x x e x ek k k

k

kT v v v c
 

     

   

, ,Δ    Δ  ( ) min 0,Δ  ( ) min 0,Δ  ( )

                                        min 0,Δ  ( ) min 0,Δ  ( ) .

        

    

e e x e x e x e e

x x e

i i i i i i

i i i

i

i i

i i

T v x v v c v c

v c v c

 

By A1- A3 we have 
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       Δ Δ Δ Δ     x e x x e e x ei i i i i iv v v v , there are four possible sub-cases: 

1.        Δ Δ Δ Δ 0           x e x x e e x ei i i i ii i i i iv c v c v c v c

 
 , ,Δ    Δ  ( ) 0.  e ex x ei i i

iT v v

 
2.        Δ Δ Δ 0 Δ           x e x x e e x ei i ii i ii ii iv c v c v c v c

 
 , ,Δ    Δ  ( ) Δ  ( ) Δ  ( ) 0.         e ex x e x e x e e

i

i i i i i i ii iT v v v c v c

 
3.        Δ Δ 0 Δ Δ           x e x x e e x ei i i i ii i i i iv c v c v c v c

 
 , ,Δ    Δ  ( ) Δ  ( ) Δ  ( ) 0.i

ii ii i i iT v v v v       e ex x e x e e x e

 
4.        Δ 0 Δ Δ Δ           x e x x e e x ei i i i ii i i i iv c v c v c v c  

 , ,Δ    Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( )

                Δ  ( ) 0.

        

   

e ex x e x e e x x e

x

i i i i i

i

i i i

i i

iT v v v v c v

v c

 

5.        0 Δ Δ Δ Δ           x e x x e e x ei i ii i i i i i iv c v c v c v c

 
 , , ,Δ    Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) 0.            e ex x e x e x e e x x e x e

i

i i ii i i i i i e i iT v v v v v v v  

Case 3 if 0,kx  and ,i k  

     

   

, ,Δ    Δ  ( ) min 0,Δ  ( ) min 0,Δ  ( )

                                        min 0,Δ  ( ) min 0,Δ  ( ) .

          

      

e ex x e x e e e x e e

x e e x e

i i k k k i k k k k

k k i k k k k

kT v v v c v c

v c v c
 

By A2 and A3 we have 

       Δ Δ Δ Δ         x e e x e e e x e x e ek k i k k i k k k kv v v v  or 

       Δ Δ Δ Δ        x e e x e x e e e x e ek k i k k k k i k kv v v v  

If        Δ Δ Δ Δ         x e e x e e e x e x e ek k i k k i k k k kv v v v ,which leads to five possible 

sub-cases: 

1.        Δ Δ Δ Δ 0               x e e x e e e x e x e ek k k kk k i k k i k k k kv c v c v c v c

 

 , ,

,

Δ    Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( )

                ( ) ( ) ( ) ( )

                Δ  ( ) 0.

i i k k k i k k k k i k k

i

i

k

i

T v v v v v v

v v v v

v

             

      

 

e e

e

x x e x e e e x e e x e e x e

x e x e x e x

x  

2.        Δ Δ Δ 0 Δ              x e e x e e e x e x e ek kk k i k k ki k k k k kv c v c v c v c
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x e x e e
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3.        Δ Δ 0 Δ Δ              x e e x e e e x e x e ek kk k i k k i k kkkk kv c v c v c v c

 

  , , , Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) 0.              e e ex x e x e e e x e e x e x e ei k k k i k k i i k

k

k k iT v v v v v v

 

4.        Δ 0 Δ Δ Δ              x e e x e e e x e x e ek kk k i k k i k k k kk kv c v c v c v c

 

  , Δ  ( ) Δ  ( ) 0.i k k i k

k

kT v v v c      ex x e x e e

 

5.        0 Δ Δ Δ Δ              x e e x e e e x e x e ek k i k kk k k ki k k k kv c v c v c v c

 

  , Δ  ( ) 0.  ex x e
k

i kT v v
 

If        Δ Δ Δ Δ ,        x e e x e x e e e x e ek k i k k k k i k kv v v v we can also consider the 

other case: 

6.        Δ Δ 0 Δ Δ              x e e x e x e e e x e ek k i k k k kkk i kk k kv c v c v c v c

 
  , , , Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) Δ  ( ) 0.           e ex x e x e e x e x e x ei k k k i k k i k k i k

kT v v v v v v

 
Hence, T

k
v satisfies A3.  

Property A4 

From (3.7) we have the following 2 cases:  

Case 1 0,kx  

  0Δ   Δ  ( ) .  kT v v ce ex x  

Case 2 0,kx   

     Δ   Δ  ( ) min 0,Δ ( ) min 0,Δ ( ) .        e ex x xe xe e ek k k k k k

k

kT v v v c v c  

Since ( ) ( )     x e e x ek k k kv v , we have 

(1) if ( ) ( ) 0        x e e x ek k k k k kv c v c , then     0Δ   Δ .   e ex x e
k

kvT v c  

(2) if ( ) 0 ( ) ,        x e e x ek k k k k kv c v c  then 

  0Δ   ( ) ( ) ( ) .         e e ee ex x x xk k k k

kT v v v c v c  

(3) if 0 ( ) ( )        x e e x ek k k k k kv c v c , then  
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       , 0Δ   Δ   Δ   Δ   .       e e e ex x x xe e ek k

k

k kT v v v v c  

Hence, T
k
v satisfies A4. 

Operator T 

Since h(x) is increasing convex, it satisfies A1-A3 and we can see Tv satisfies Properties A1-

A3. We will show that Tv also satisfies Property A4 in the following: 

 

 

   

0

0

1 1

0 0 0 0

1 1

0 0 0 0

1

Δ   ( ) ( ) ( ) ( )

              ( )        ( ) 0

              1 .

n n
k

k k k

k k

n n

k k

k k

n

k k

k

Tv h T v T v T v

h c c c h

c c c

  

  

   

 

 



       

      

 
         

 

 

 



e e

e e e e ex x x x x

x x  

Hence, TvV . This completes the proof of Lemma 3.1.  

Definition 3.2. For vV we define the base-stock and the rationing levels as following: 

      

      

min 0 0 ,

min 0 ,

k k k k

k k k k k

s x v v

r x v v c









    

     

x x e x

x x x e
 

where  1 1 1, , ,  , ,  k k k nx x x x    x  is n-1 dimensional vector consisting of the on-hand 

inventory levels for Component ,i k  and xk is the on-hand inventory level of Component k. 

Definition 3.2 indicates that the base-stock ( )k ks x  and rationing level ( )k kr x  depend on the 

on-hand inventory of other components.  

From Definition 3.1 and 3.2, and Lemma 3.1 we can characterize the structure of the optimal 

policy in the following Theorem 3.1. 

Theorem 3.1. The optimal production policy for Component k is a base-stock policy with a 

state-dependent base-stock level ( )k ks x  where it is optimal to produce Component k, if 

( )k k kx s  x  and not to produce it otherwise. The optimal inventory allocation policy for 

Component k is a rationing policy with a state-dependent rationing level ( )k kr x  where it is 

optimal to satisfy the demand of Component k if ( )k k kx r  x  and to reject it otherwise. Both 

levels are non-decreasing in each of the states xi, i k . Furthermore, it is always optimal to 
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satisfy demand of the assembled product whenever on-hand inventory for all components is 

available. 

Proof of Theorem 3.1 

The optimal production policy consists of a base-stock policy with the base-stock level 

( )k ks x . From Property A2, the optimal base-stock level ( )k ks x  is non-decreasing in xj , .j k  

By Property A1 if   0 kv x  it implies  k k kx s  x , in this case we do not produce any more; 

in the case   0 kv x  and  k k kx s  x , it is optimal to produce. Property A3 implies that
 

 

i is x  is non-increasing with joint increases in 
1

, ,...,i jx x and
nj

x . Also from property A2, the 

optimal rationing level ( )k kr x  is non-decreasing in each of states xj, .j k  By Property A4, it 

is optimal to satisfy demand of the assembled product if there is at least one unit on-hand 

inventory for each component. It is optimal to satisfy demand of Component k if  k k kx r  x , 

for k=1,2,…,n. Finally, we will prove v V  directly. Since  
min

n

nv T

  for any v inV , 

where 
( )nT refers to n compositions of T and v  is the unique solution of ,v Tv  from which 

v  satisfies Properties A1-A4.  

This completes the proof of Theorem 3.1. 

Theorem 3.1 shows that the optimal policy can be determined by the base-stock level and the 

rationing level. Both levels are state-dependent and non-decreasing in the on-hand inventory 

level of other components. Similar to Benjaafar and Elhafsi (2006), the optimal production 

policy indicates that with an increase in the on-hand inventory level of one component, the 

inventory requirements for other components also increase. It is always optimal to satisfy 

product demand if all the components are present. Unlike Benjaafar and Elhafsi (2006), the 

optimal inventory allocation policy indicates that with an increase in the on-hand inventory 

level of one component, the rationing level for other components also increase. That is 

because we discuss two types of demand: demand of the assembled product and demand of 

the individual components. In our system since demand of the assembled product has a higher 

priority over demand of individual components, it is always satisfied if all components are in 

stock. When the system jointly increases the on-hand inventory of the components, more 

demands from the assembled product are desired to be satisfied that means several individual 

components demands must be rejected. Hence, the rationing level of the individual 
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components increases. This implies that it becomes more difficult to satisfy demand of the 

individual components when the on-hand inventory of components increases.  

3.2.3 Influence of System Parameters 

Theorem 3.3, we will discuss how the optimal policy is affected by system parameters. In 

order to do so, we redefine the base-stock and rationing levels with different parameters 

 0 0, , , , ,    k k k kh c c  for k=1,2,…,n, as: 

    

    

    

,

,

,

min 0 0 ,

min 0 ,   ( )

min 0 .    ( )

k k k k

k k k k k k

k k k k k

s x v

r x v c c

r x v c

 

 

 



 













   

     

     

x x

x x

x x

 

Lemma 3.2. The optimal base-stock and rationing levels of Component k depend on various 

system parameters  k , for each ' " k k
 we have 

For the optimal base-stock level  

B1:    ' "  
k k

k kh h
v vx x  for ' "k kh h , 

          ' "
0 0

  k kc c
v vx x  for ' "

0 0c c , 

           ' "  
k k

k kc c
v vx x  for ' "k kc c . 

B2:    ' "
0 0

  k kv v
 

x x  for ' "

0 0  , 

          ' "
k k

k kv v  x x
 

 for ' " k k
, 

          ' "
k k

k kv v  x x
 

 for ' " k k
. 

For the optimal rationing level  

B3:    ' "  
k k

k kh h
v vx x  for ' "k kh h , 

          ' "
0 0

  k kc c
v vx x  for ' "

0 0c c , 

          ' "  
k k

k kc c
v vx x  for ' "k kc c . 

B4:    ' "
0 0

  k kv v
 

x x  for ' "

0 0  , 

          ' "  
k k

k kv v
 

x x  for ' " k k
, 
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          ' "  
k k

k kv v
 

x x  for ' " k k . 

Proof of Lemma 3.2  

In order to prove Lemma 3.2, we need to show that Tv(x) satisfies Properties B1-B4. In order 

to do so, we will prove that Tkv(x), T
0
v(x) and T

k
v(x) satisfy Properties B1-B4, respectively.  

Operator Tk 

           min , min ,0 ,    k k kT v v v v vx x e x x x  

         min ,0 min ,0 .       x x x e xk k k k k kT v v v v  

Property B1 

In order to prove B1, we consider three cases:  

Case 1 if ' "k kh h . 

By B1,    ' "  
k k

k kh h
v vx x  for ' "k kh h ,  

where  ' x
k

k h
v  and  " x

k
k h
v  are the marginal cost difference due to increasing one unit on-

hand inventory of Component k under the condition of '

kh  and "

kh , respectively.  

         ' ' ' 'min ,0 min ,0 ,       x x x e x
k k k k

k k k k k kh h h h
T v v v v  

         " " " "min ,0 min ,0 ,       x x x e x
k k k k

k k k k k kh h h h
T v v v v  

             
     

' " ' " ' '

" "

min ,0 min ,0

                                                                            min ,0 min ,0 .

         

    

x x x x x e x

x e x

k k k k k k

k k

k k k k k k k k kh h h h h h

k k kh h

T v T v v v v v

v v

 

By A1 we have ' '( ) ( )   x e x
k k

k k kh h
v v  and " "( ) ( ).   x e x

k k
k k kh h
v v  

By B1 we have ' "( ) ( )  x x
k k

k kh h
v v , from the above we have two possibilities: 

' ' " "( ) ( ) ( ) ( )        x e x x e x
k k k k

k k k k k kh h h h
v v v v or 

' " ' "( ) ( ) ( ) ( ).        x e x e x x
k k k k

k k k k k kh h h h
v v v v  
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If ' ' " "( ) ( ) ( ) ( )        x e x x e x
k k k k

k k k k k kh h h h
v v v v  then we have five sub-cases: 

1. ' ' " "( ) ( ) ( ) ( ) 0          x e x x e x
k k k k

k k k k k kh h h h
v v v v   

       ' " ' " 0.     x x x x
k k k k

k k k k k kh h h h
T v T v v v  

2. ' ' " "( ) ( ) ( ) 0 ( )          x e x x e x
k k k k

k k k k k kh h h h
v v v v   

           ' " ' " " ' 0.        x x x x x x
k k k k k k

k k k k k k k kh h h h h h
T v T v v v v v  

3. ' ' " "( ) ( ) 0 ( ) ( )          x e x x e x
k k k k

k k k k k kh h h h
v v v v   

           

   

' " ' " " "

' "                                      0.

        

    

x x x x x e x

x x e

k k k k k k

k k

k k k k k k k k kh h h h h h

k k kh h

T v T v v v v v

v v
 

4. ' ' " "( ) 0 ( ) ( ) ( )          x e x x e x
k k k k

k k k k k kh h h h
v v v v   

             

 

' " ' " ' " "

"                                      0.

         

   

x x x x x x e x

x e

k k k k k k k

k

k k k k k k k k k kh h h h h h h

k kh

T v T v v v v v v

v
 

5. ' ' " "0 ( ) ( ) ( ) ( )          x e x x e x
k k k k

k k k k k kh h h h
v v v v   

               

   

' " ' " ' ' " "

' "                                     0.

            

     

k k k k k k k k

k k

k k k k k k k k k k k kh h h h h h h h

k k k kh h

T v T v v v v v v v

v v

x x x x x e x x e x

x e x e
 

If  ' " ' "( ) ( ) ( ) ( )        x e x e x x
k k k k

k k k k k kh h h h
v v v v , we also have one sub-case: 

6. ' " ' "( ) ( ) 0 ( ) ( )          x e x e x x
k k k k

k k k k k kh h h h
v v v v  

           ' " ' " ' " 0.       x x x x x x
k k k k k k

k k k k k k k kh h h h h h
T v T v v v v v  

Case 2 if ' "

0 0c c . 

By B1,    ' "
0 0

   k kc c
v vx x  for ' "

0 0c c , 

where  '
0

k c
v x  and  "

0

k c
v x  are the marginal cost difference due to increasing one unit on-

hand inventory of Component k under the condition of '

0c  and "

0c , respectively.  

         ' ' ' '
0 0 0 0

min ,0 min ,0 ,       k k k k k kc c c c
T v v v vx x x e x  
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         " " " "
0 0 0 0

min ,0 min ,0 ,       k k k k k kc c c c
T v v v vx x x e x  

             
     

' " ' " ' '
0 0 0 0 0 0

" "
0 0

min ,0 min ,0

                                                                            min ,0 min ,0 .

         

    

k k k k k k k k kc c c c c c

k k kc c

T v T v v v v v

v v

x x x x x e x

x e x

 

By A1 we have ' '
0 0

( ) ( )   k k kc c
v vx e x  and " "

0 0

( ) ( ).   k k kc c
v vx e x  

By B2 we have ' "
0 0

( ) ( )  k kc c
v vx x , from the above we have two possibilities: 

" " ' '
0 0 0 0

( ) ( ) ( ) ( )        k k k k k kc c c c
v v v vx e x x e x  or 

" ' " '
0 0 0 0

( ) ( ) ( ) ( )        k k k k k kc c c c
v v v vx e x e x x . 

If " " ' '
0 0 0 0

( ) ( ) ( ) ( )        k k k k k kc c c c
v v v vx e x x e x , then we have five sub-cases: 

1. " " ' '
0 0 0 0

( ) ( ) ( ) ( ) 0          k k k k k kc c c c
v v v vx e x x e x   

       ' " ' "
0 0 0 0

0.     k k k k k kc c c c
T v T v v vx x x x  

2. " " ' '
0 0 0 0

( ) ( ) ( ) 0 ( )          k k k k k kc c c c
v v v vx e x x e x   

           ' " ' " ' "
0 0 0 0 0 0

0.        k k k k k k k kc c c c c c
T v x T v v v v vx x x x x  

3. " " ' '
0 0 0 0

( ) ( ) 0 ( ) ( )          k k k k k kc c c c
v v v vx e x x e x   

           

   

' " ' " ' '
0 0 0 0 0 0

" '
0 0

                                      0.

        

     

k k k k k k k k kc c c c c c

k k kc c

T v T v v v v v

v v

x x x x x e x

x x e  

4. " " ' '
0 0 0 0

( ) 0 ( ) ( ) ( )          k k k k k kc c c c
v v v vx e x x e x   

             

 

' " ' " ' ' "
0 0 0 0 0 0 0

'
0

                                     0.

          

   

k k k k k k k k k kc c c c c c c

k kc

T v T v v v v v v

v

x x x x x e x x

x e  

5. " " ' '
0 0 0 0

0 ( ) ( ) ( ) ( )          k k k k k kc c c c
v v v vx e x x e x   

               

   

' " ' " ' " ' "
0 0 0 0 0 0 0 0

' "
0 0

                                    0.

            

     

k k k k k k k k k k k kc c c c c c c c

k k k kc c

T v T v v v v v v v

v v

x x x x x e x e x x

x e x e  

If " ' " '
0 0 0 0

( ) ( ) ( ) ( )        k k k k k kc c c c
v v v vx e x e x x , we also have one sub-case: 
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6. " ' " '
0 0 0 0

( ) ( ) 0 ( ) ( )          k k k k k kc c c c
v v v vx e x e x x  

           ' " ' " ' "
0 0 0 0 0 0

0.       k k k k k k k kc c c c c c
T v T v v v v vx x x x x x  

Case 3 if ' "k kc c . 

   ' " 0.  x x
k k

k k k kc c
T v T v  

The proof is the same as Case 2 ( ' "

0 0c c ).  

Hence, Tkv satisfies B1. 

Property B2 

In order to prove B2, we consider three cases:  

Case 1 if ' "

0 0  . 

By B2,    ' "
0 0

   k kv v
 

x x  for ' "

0 0  . Here,  '
0

 xkv  and  "
0

 xkv  are the marginal cost 

difference due to increasing one unit on-hand inventory of component k under the condition 

of '

0  and "

0 , respectively.  

         ' ' ' '
0 0 0 0

min ,0 min ,0
   

       x x x e xk k k k k kT v v v v , 

         " " " "
0 0 0 0

min ,0 min ,0 ,
   

       x x x e xk k k k k kT v v v v  

             
     

' " ' " ' '
0 0 0 0 0 0

" "
0 0

min ,0 min ,0

                                                                            min ,0 min ,0 .

     

 

         

    

x x x x x e x

x e x

k k k k k k k k k

k k k

T v T v v v v v

v v

 

By A1 we have ' '
0 0

( ) ( )
 

   x e xk k kv v  and " "
0 0

( ) ( )
 

   x e xk k kv v . 

By B2 we have ' "
0 0

( ) ( )
 

  x xk kv v , from the above we have two possibilities: 

" " ' '
0 0 0 0

( ) ( ) ( ) ( )
   

        x e x x e xk k k k k kv v v v  or 

" ' " '
0 0 0 0

( ) ( ) ( ) ( )
   

        x e x e x xk k k k k kv v v v . 

If " " ' '
0 0 0 0

( ) ( ) ( ) ( )
   

        x e x x e xk k k k k kv v v v , then we have five sub-cases: 

1. " " ' '
0 0 0 0

( ) ( ) ( ) ( ) 0
   

          x e x x e xk k k k k kv v v v   
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       ' " ' "
0 0 0 0

0.k k k k k kT v T v v v
   

     x x x x  

2. " " ' '
0 0 0 0

( ) ( ) ( ) 0 ( )
   

          x e x x e xk k k k k kv v v v   

           ' " ' " ' "
0 0 0 0 0 0

0.
     

        x x x x xk k k k k k k kT v x T v v v v v  

3. " " ' '
0 0 0 0

( ) ( ) 0 ( ) ( )
   

          x e x x e xk k k k k kv v v v   

           

   

' " ' " ' '
0 0 0 0 0 0

" '
0 0

                                      0.

     

 

        

     

x x x x x e x

x x e

k k k k k k k k k

k k k

T v T v v v v v

v v  

4. " " ' '
0 0 0 0

( ) 0 ( ) ( ) ( )
   

          x e x x e xk k k k k kv v v v   

             

 

' " ' " ' ' "
0 0 0 0 0 0 0

'
0

                                     0.

      



          

   

x x x x x e x x

x e

k k k k k k k k k k

k k

T v T v v v v v v

v  

5. " " ' '
0 0 0 0

0 ( ) ( ) ( ) ( )
   

          x e x x e xk k k k k kv v v v   

               

   

' " ' " ' " ' "
0 0 0 0 0 0 0 0

' "
0 0

                                    0.

       

 

            

     

x x x x x e x e x x

x e x e

k k k k k k k k k k k k

k k k k

T v T v v v v v v v

v v  

If " ' " '
0 0 0 0

( ) ( ) ( ) ( )
   

        x e x e x xk k k k k kv v v v , we also have one sub-case: 

6. " ' " '
0 0 0 0

( ) ( ) 0 ( ) ( )
   

          x e x e x xk k k k k kv v v v  

           ' " ' " ' "
0 0 0 0 0 0

0.
     

       x x x x x xk k k k k k k kT v T v v v v v  

Case 2 if ' " k k
.  

   ' " 0.
k k

k k k kT v T v
 

  x x  

The proof is the same as Case 1 ( ' "

0 0  ).  

Case 3 if ' " k k
. 

By B1,    ' "  
k k

k kv v
 

x x  for ' "k k  ,  

where  '
k

kv x  and  "
k

kv x  are the marginal cost difference due to increasing one unit on-

hand inventory of Component k under the condition of '

k  and "

k , respectively.  
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         ' ' ' 'min ,0 min ,0 ,       
k k k k

k k k k k kT v v v v
   

x x x e x  

         " " " "min ,0 min ,0 ,       
k k k k

k k k k k kT v v v v
   

x x x e x  

             
     

' " ' " ' '

" "

min ,0 min ,0

                                                                            min ,0 min ,0 .

         

    

k k k k k k

k k

k k k k k k k k k

k k k

T v T v v v v v

v v

     

 

x x x x x e x

x e x

 

By A1 we have ' '( ) ( )   
k k

k k kv v
 

x e x  and " "( ) ( ).   
k k

k k kv v
 

x e x  

By B1 we have ' "( ) ( )  
k k

k kv v
 

x x , from the above we have two possibilities: 

' ' " "( ) ( ) ( ) ( )        
k k k k

k k k k k kv v v v
   

x e x x e x or 

' " ' "( ) ( ) ( ) ( ).        
k k k k

k k k k k kv v v v
   

x e x e x x  

If ' ' " "( ) ( ) ( ) ( )        
k k k k

k k k k k kv v v v
   

x e x x e x  then we have five sub-cases: 

1. ' ' " "( ) ( ) ( ) ( ) 0          
k k k k

k k k k k kv v v v
   

x e x x e x   

       ' " ' " 0.     
k k k k

k k k k k kT v T v v v
   

x x x x  

2. ' ' " "( ) ( ) ( ) 0 ( )          
k k k k

k k k k k kv v v v
   

x e x x e x   

           ' " ' " " ' 0.        
k k k k k k

k k k k k k k kT v T v v v v v
     

x x x x x x  

3. ' ' " "( ) ( ) 0 ( ) ( )          
k k k k

k k k k k kv v v v
   

x e x x e x   

           

   

' " ' " " "

' "                                      0.

        

    

k k k k k k

k k

k k k k k k k k k

k k k

T v T v v v v v

v v

     

 

x x x x x e x

x x e
 

4. ' ' " "( ) 0 ( ) ( ) ( )          
k k k k

k k k k k kv v v v
   

x e x x e x   

             

 

' " ' " ' " "

"                                      0.

         

   

k k k k k k k

k

k k k k k k k k k k

k k

T v T v v v v v v

v

      



x x x x x x e x

x e
 

5. ' ' " "0 ( ) ( ) ( ) ( )          
k k k k

k k k k k kv v v v
   

x e x x e x   

               

   

' " ' " ' ' " "

' "                                     0.

            

     

k k k k k k k k

k k

k k k k k k k k k k k k

k k k k

T v T v v v v v v v

v v

       

 

x x x x x e x x e x

x e x e
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If ' " ' "( ) ( ) ( ) ( )        
k k k k

k k k k k kv v v v
   

x e x e x x , we also have one sub-case: 

6. ' " ' "( ) ( ) 0 ( ) ( )          
k k k k

k k k k k kv v v v
   

x e x e x x  

           ' " ' " ' " 0.       
k k k k k k

k k k k k k k kT v T v v v v v
     

x x x x x x  

Hence, Tkv satisfies B2. 

Property B3 

In order to prove B3, we consider three cases:  

Case 1 if ' "k kh h . 

By B3,    ' "  
k k

k kh h
v vx x  for ' "k kh h . 

We have    ' " 0.  x x
k k

k k k kh h
T v T v  (see the proof of Property B1 Case 1) 

Case 2 if ' "

0 0c c . 

By B3,    ' "
0 0

  k kc c
v vx x  for ' "

0 0c c . 

We have    ' "
0 0

0.  x xk k k kc c
T v T v  (see the proof of Property B1 Case 2) 

Case 3 if ' "k kc c . 

By B3,    ' "  
k k

k kc c
v vx x  for ' "k kc c . 

         ' ' ' 'min ,0 min ,0 ,       x x x x
k k k k

k k k k k kc c c c
T v v v e v  

         " " " "min ,0 min ,0 ,       x x x x
k k k k

k k k k k kc c c c
T v v v e v  

             
     

' " ' " ' '

" "

,
min ,0 min ,0

                                                                           min ,0 min ,0 .

         

    

x x x x x e x

x e x

k k k k k k

k k

k k k k k k k kc k c c c c c

k k kc c

T v T v v v v v

v v

 

By A1 we have ' '( ) ( )   x e x
k k

k k kc c
v v  and " "( ) ( ).   x e x

k k
k k kc c
v v  

By B3 we have ' "( ) ( )  x x
k k

k kc c
v v , from the above we have two possibilities: 

' ' " "( ) ( ) ( ) ( )        x e x x e x
k kk k

k k k k k kc c c c
v v v v  or 
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' " ' "( ) ( ) ( ) ( ).        x e x e x x
k kk k

k k k k k kc c c c
v v v v  

If ' ' " "( ) ( ) ( ) ( )        x e x x e x
k kk k

k k k k k kc c c c
v v v v , then we have five sub-cases: 

1. ' ' " "( ) ( ) ( ) ( ) 0          x e x x e x
k kk k

k k k k k kc c c c
v v v v  

       ' " ' " 0.     x x x x
k k k k

k k k k k kc c c c
T v T v v v  

2. ' ' " "( ) ( ) ( ) 0 ( )          x e x x e x
k kk k

k k k k k kc c c c
v v v v  

           ' " ' " " ' 0.        x x x x x x
k k k k k k

k k k k k k k kc c c c c c
T v T v v v v v  

3. ' ' " "( ) ( ) 0 ( ) ( )          x e x x e x
k kk k

k k k k k kc c c c
v v v v  

           

   

' " ' " " "

' "                                     0.

        

    

x x x x x e

x x e

k k k k k k

k k

k k k k k k k k kc c c c c c

k k kc c

T v T v v v v v x

v v
 

4. ' ' " "( ) 0 ( ) ( ) ( )          x e x x e x
k kk k

k k k k k kc c c c
v v v v  

             

 

' " ' " " ' "

"                                      0.

         

   

x x x x x e x x

x e

k k k k k k k

k

k k k k k k k k k kc c c c c c c

k kc

T v T v v v v v v

v
 

5. ' ' " "0 ( ) ( ) ( ) ( )          x e x x e x
k kk k

k k k k k kc c c c
v v v v  

               

   

' " ' " ' ' " "

' "                                      0.

            

     

x x x x x e x x e x

x e x e

k k k k k k k k

k k

k k k k k k k k k k k kc c c c c c c c

k k k kc c

T v T v v v v v v v

v v
 

If ' " ' "( ) ( ) ( ) ( )        x e x e x x
k kk k

k k k k k kc c c c
v v v v  we also have one sub-case: 

6. ' " ' "( ) ( ) 0 ( ) ( )          x e x e x x
k kk k

k k k k k kc c c c
v v v v  

           ' " ' " ' " 0.       x x x x x x
k k k k k k

k k k k k k k kc c c c c c
T v T v v v v v  

Hence, Tkv satisfies B3. 

Property B4 

In order to prove B4, we consider three cases:  

Case 1 if ' "

0 0  .  
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By B4,    ' "
0 0

  k kv v
 

x x  for ' "

0 0  . 

We have    ' "
0 0

0.
 

  x xk k k kT v T v  (see the proof of Property B2 Case 1) 

Case 2 if ' "

k k  .  

By B4,    ' "  
k k

k kv v
 

x x  for ' "

k k  . 

We have    ' " 0.
 

  x x
k k

k k k kT v T v  (see the proof of Property B2 Case 2) 

Case 3 if ' " k k
.  

By B4,    ' "  
k k

k kv v
 

x x  for ' " k k .
 

We have    ' " 0.  
k k

k k k kT v T v
 

x x  (see the proof of Property B2 Case 3) 

Hence, Tkv satisfies B4. 

Operator T
0 

 
 

    

00 1

0

                                   if 0

min ,           otherwise,



   
 

 

x
x

x e x

n

k
k

v c x
T v

v v c

 

                
 

    

0
1

0

                                      if 0

min 0,     otherwise.



   
 

   

n

k
k

v c x

v v c
e

x

x e x

 

By A4, already  
 

 

00
1

        if 0

         otherwise.




  

 
 

n

k
k

v c x
T v

v

x
x

x e

 

Hence T
0
v satisfies all Properties B1-B4. 

Operator T
k 

 

 
 

    

                                        if 0

min ,              otherwise,

  
 

 

x
x

x e x

k kk

k k

v c x
T v

v v c
 

                          
 

    

                                               if 0

min 0,    otherwise.

  
 

    

x

x e x e

k k

k k k k

v c x

v v c
                               (3.8) 
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From (3.8) we have the following two possibilities:  

Possibility 1: if 0,
k

x   

    x x k

kT v v c , hence it satisfies all Properties B1-B4.  

Possibility 2: if 0,
k

x   

   ( ) min 0, ( ) ,     x x e x e
k k k

k

k
T v v v c  

     Δ   ( ) min 0, ( ) min 0, ( ) .         x x e x x e
k k k k k k k

k

k
T v v v c v c

 

Property B1 

In order to prove B1, we consider three cases:  

Case 1 if ' "k kh h . 

By B1,    ' "  
k k

k kh h
v vx x  for ' "k kh h .  

     ' ' ' 'Δ   ( ) min 0, ( ) min 0, ( ) ,         x x e x x e
k k k k

k k k k k k kh h

k

h hk T v v v c v c  

     " " " "Δ   ( ) min 0, ( ) min 0, ( ) ,         x x e x x e
k k k k

k k k k k k kh h

k

h hk T v v v c v c  

             
     

' " ' " ' '

" "

min 0, min 0,

                                                                                       min 0, min 0, .

k k k k k k

k k

k k

k k k k k k k k k k kh h h h h h

k k k k kh h

T v T v v v v c v c

v c v c

              

      

x x x e x e x x e

x x e

 

By A1 we have ' '( ) ( )   x x e
k k

k k kh h
v v  and " "( ) ( ).   x x e

k k
k k kh h
v v  

By B1 we have ' "( ) ( )  x x
k k

k kh h
v v , from above we have two sub-possibilities: 

' ' " "( ) ( ) ( ) ( )        x x e x x e
k k k k

k k k k k kh h h h
v v v v  or 

' " ' "( ) ( ) ( ) ( ).        x x x e x e
k k k k

k k k k k kh h h h
v v v v  

If ' ' " "( ) ( ) ( ) ( )        x x e x x e
k k k k

k k k k k kh h h h
v v v v , then we have five sub-cases: 

1. ' ' " "( ) ( ) ( ) ( ) 0              x x e x x e
k k k k

k k k k k k k k k kh h h h
v c v c v c v c  

       ' " ' " 0.
k k k k

k k

k k k k k kh h h h
T v T v v v       x x x e x e
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2. ' ' " "( ) ( ) ( ) 0 ( )              x x e x x e
k k k k

k k k k k k k k k kh h h h
v c v c v c v c  

           ' " ' " " ' 0.
k k k k k k

k k

k k k k k k k k k k k kh h h h h h
T v T v v v v c v c               x x x e x e x e x e

 

3. ' ' " "( ) ( ) 0 ( ) ( )              x x e x x e
k k k k

k k k k k k k k k kh h h h
v c v c v c v c  

           

   

' " ' " " "

' "                                      0.

k k k k k k

k k

k k

k k k k k k k k kh h h h h h

k k kh h

T v T v v v v v

v v

          

    

x x x e x e x x e

x e x  

4. ' ' " "( ) 0 ( ) ( ) ( )              x x e x x e
k k k k

k k k k k k k k k kh h h h
v c v c v c v c  

             

 

' " ' " ' " "

"                                      0.

k k k k k k k

k

k k

k k k k k k k k k k k kh h h h h h h

k kh

T v T v v v v c v v

v c

             

   

x x x e x e x e x x e

x

 

5. ' ' " "0 ( ) ( ) ( ) ( )              x x e x x e
k k k k

k k k k k k k k k kh h h h
v c v c v c v c

 

               

   

' " ' " ' ' " "

' "                                     0.

k k k k k k k k

k k

k k

k k k k k k k k k k k kh h h h h h h h

k kh h

T v T v v v v v v v

v v

              

   

x x x e x e x x e x x e

x x

 

If ' " ' "( ) ( ) ( ) ( )        x x x e x e
k k k k

k k k k k kh h h h
v v v v  we also have one sub-case: 

6. ' " ' "( ) ( ) 0 ( ) ( )              x x x e x e
k k k k

k k k k k k k k k kh h h h
v c v c v c v c  

           ' " ' " ' " 0.
k k k k k k

k k

k k k k k k k k k kh h h h h h
T v T v v v v v           x x x e x e x e x e

 

Case 2 if ' "

0 0c c . 

By B2,    ' "
0 0

  k kc c
v vx x  for ' "

0 0c c . 

     ' ' ' '
0 0 0 0

Δ   ( ) min 0, ( ) min 0, ( ) ,         k

k k k k k k kc c c ck T v v v c v cx x e x x e  

     " " " "
0 0 0 0

Δ   ( ) min 0, ( ) min 0, ( )k k k k k k kc c c c

k

k T v v v c v c         x x e x x e  

          
        

' " ' " '
0 0 0 0 0

' " "
0 0 0

min 0,

                                           min 0, min 0, min 0, .

                                             

k k

k k k k k k k kc c c c c

k k k k k k k kc c c

T v T v v v v c

v c v c v c

           

          

x x x e x e x

x e x x e

                                          

By A1 we have ' '
0 0

( ) ( )   k k kc c
v vx x e  and " "

0 0

( ) ( )   k k kc c
v vx x e  
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By B2 we have ' "
0 0

( ) ( )  k kc c
v vx x , from above we have two possibilities: 

" " ' '
0 0 0 0

( ) ( ) ( ) ( )        k k k k k kc c c c
v v v vx x e x x e  or 

" ' " '
0 0 0 0

( ) ( ) ( ) ( ).        k k k k k kc c c c
v v v vx x x e x e  

If " " ' '
0 0 0 0

( ) ( ) ( ) ( )        k k k k k kc c c c
v v v vx x e x x e , then we consider five sub-cases: 

1. " " ' '
0 0 0 0

( ) ( ) ( ) ( ) 0              k k k k k k k k k kc c c c
v c v c v c v cx x e x x e   

       ' " ' "
0 0 0 0

0.k k

k k k k k kc c c c
T v T v v v       x x x e x e  

2. " " ' '
0 0 0 0

( ) ( ) ( ) 0 ( )              k k k k k k k k k kc c c c
v c v c v c v cx x e x x e   

           ' " ' " ' "
0 0 0 0 0 0

0.k k

k k k k k k k k k k k kc c c c c c
T v T v v v v c v c              x x x e x e x e x e  

3. " " ' '
0 0 0 0

( ) ( ) 0 ( ) ( )              k k k k k k k k k kc c c c
v c v c v c v cx x e x x e  

           

   

' " ' " ' '
0 0 0 0 0 0

" '
0 0

                                      0.

k k

k k k k k k k k kc c c c c c

k k kc c

T v T v v v v v

v v

          

     

x x x e x e x x e

x e x
 

4. " " ' '
0 0 0 0

( ) 0 ( ) ( ) ( )              k k k k k k k k k kc c c c
v c v c v c v cx x e x x e   

             

 

' " ' " ' ' "
0 0 0 0 0 0 0

'
0

                                      0.

k k

k k k k k k k k k k k kc c c c c c c

k kc

T v T v v v v v v c

v c

              

   

x x x e x e x x e x e

x
 

5. " " ' '
0 0 0 0

0 ( ) ( ) ( ) ( )              k k k k k k k k k kc c c c
v c v c v c v cx x e x x e   

               

   

' " ' " ' ' " "
0 0 0 0 0 0 0 0

' "
0 0

                                       0.

k k

k k k k k k k k k k k kc c c c c c c c

k kc c

T v T v v v v v v v

v v

                  

    

x x x e x e x x e x x e

x x

 

If " ' " '
0 0 0 0

( ) ( ) ( ) ( )k k k k k kc c c c
v v v v        x x x e x e  we also have one sub-case: 

6. " ' " '
0 0 0 0

( ) ( ) 0 ( ) ( )              k k k k k k k k k kc c c c
v c v c v c v cx x x e x e  

           ' " ' " " '
0 0 0 0 0 0

0.k k

k k k k k k k k k kc c c c c c
T v T v v v v v            x x x e x e x e x e  

Case 3 if ' "k kc c . 

   ' " 0.
k k

k k

k kc c
T v T v  x x  
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The proof is similar as Case 2 ( ' "

0 0c c ). 

Hence, T
k
v satisfies B1. 

Property B2 

In order to prove B2, we consider three cases:  

Case 1 if ' "

0 0  . 

By B2,    ' "
0 0

k kv v
 

  x x  for ' "

0 0  . 

     ' ' ' '
0 0 0 0

Δ   ( ) min 0, ( ) min 0, ( ) ,k k k

k

k k kk kT v v v c v c
   

         x x e x x e  

     " " " "
0 0 0 0

Δ   ( ) min 0, ( ) min 0, ( )k k k k kk k k

kT v v v c v c
   

         x x e x x e  

          
        

' " ' " '
0 0 0 0 0

' " "
0 0 0

min 0,

                                           min 0, min 0, min 0, .

                                             

k k

k k k k k k k k

k k k k k k k k

T v T v v v v c

v c v c v c

    

  

           

          

x x x e x e x

x e x x e

                                          

By A1 we have ' '
0 0

( ) ( )
 

   x x ek k kv v  and " "
0 0

( ) ( )
 

   x x ek k kv v  

By B2 we have ' "
0 0

( ) ( )k kv v
 

  x x , from above we have two possibilities: 

" " ' '
0 0 0 0

( ) ( ) ( ) ( )
   

        x x e x x ek k k k k kv v v v  or 

" ' " '
0 0 0 0

( ) ( ) ( ) ( ).
   

        x x x e x ek k k k k kv v v v  

If " " ' '
0 0 0 0

( ) ( ) ( ) ( )
   

        x x e x x ek k k k k kv v v v , then we have five sub-cases: 

1. " " ' '
0 0 0 0

( ) ( ) ( ) ( ) 0
   

              x x e x x ek k k k k k k k k kv c v c v c v c   

       ' " ' "
0 0 0 0

0.k k

k k k k k kT v T v v v
   

       x x x e x e  

2. " " ' '
0 0 0 0

( ) ( ) ( ) 0 ( )
   

              x x e x x ek k k k k k k k k kv c v c v c v c   

           ' " ' " ' "
0 0 0 0 0 0

0.k k

k k k k k k k k k k k kT v T v v v v c v c
     

              x x x e x e x e x e  

3. " " ' '
0 0 0 0

( ) ( ) 0 ( ) ( )
   

              x x e x x ek k k k k k k k k kv c v c v c v c  

           

   

' " ' " ' '
0 0 0 0 0 0

" '
0 0

                                      0.

k k

k k k k k k k k k

k k k

T v T v v v v v

v v

     

 

          

     

x x x e x e x x e

x e x
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4. " " ' '
0 0 0 0

( ) 0 ( ) ( ) ( )
   

              x x e x x ek k k k k k k k k kv c v c v c v c   

             

 

' " ' " ' ' "
0 0 0 0 0 0 0

'
0

                                      0.

k k

k k k k k k k k k k k k

k k

T v T v v v v v v c

v c

      



              

   

x x x e x e x x e x e

x

 

5. " " ' '
0 0 0 0

0 ( ) ( ) ( ) ( )
   

              x x e x x ek k k k k k k k k kv c v c v c v c   

               ' " ' " ' ' " "
0 0 0 0 0 0 0 0

k k

k k k k k k k k k k k kT v T v v v v v v v
       

            x x x e x e x x e x x e         

                                       ' "
0 0

0.k kv v
 

   x x  

If " ' " '
0 0 0 0

( ) ( ) ( ) ( )
   

        x x x e x ek k k k k kv v v v  we also have one sub-case: 

6. " ' " '
0 0 0 0

( ) ( ) 0 ( ) ( )
   

              x x x e x ek k k k k k k k k kv c v c v c v c  

           ' " ' " " '
0 0 0 0 0 0

0.k k

k k k k k k k k k kT v T v v v v v
     

           x x x e x e x e x e  

Case 2 if ' "

k k  . 

   ' " 0.
k k

k k

k kT v T v
 

  x x
 

The proof is the same as Case 1 ( ' "

0 0  ).  

Case 3 if ' " k k
.  

By B1,    ' "
k k

k kv v
 

  x x  for ' " k k
.  

     ' ' ' 'Δ   ( ) min 0, ( ) min 0, ( ) ,
k k k k

k k k k k kk k

kT v v v c v c
   

         x x e x x e  

     " " " "Δ   ( ) min 0, ( ) min 0, ( ) ,
k k k k

k k k k k kk k

kT v v v c v c
   

         x x e x x e  

             
     

' " ' " ' '

" "

min 0, min 0,

                                                                                       min 0, min 0, .

k k k k k k

k k

k k

k k k k k k k k k k k

k k k k k

T v T v v v v c v c

v c v c

     

 

              

      

x x x e x e x x e

x x e

 

By A1 we have ' '( ) ( )   
k k

k k kv v
 

x x e  and " "( ) ( ).   
k k

k k kv v
 

x x e  

By B1 we have ' "( ) ( )  
k k

k kv v
 

x x , from above we have two sub-possibilities: 

' ' " "( ) ( ) ( ) ( )        
k k k k

k k k k k kv v v v
   

x x e x x e  or 
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' " ' "( ) ( ) ( ) ( ).        
k k k k

k k k k k kv v v v
   

x x x e x e  

If ' ' " "( ) ( ) ( ) ( )        
k k k k

k k k k k kv v v v
   

x x e x x e , then we have five sub-cases: 

1. ' ' " "( ) ( ) ( ) ( ) 0              
k k k k

k k k k k k k k k kv c v c v c v c
   

x x e x x e  

       ' " ' " 0.
k k k k

k k

k k k k k kT v T v v v
   

       x x x e x e
 

2. ' ' " "( ) ( ) ( ) 0 ( )              
k k k k

k k k k k k k k k kv c v c v c v c
   

x x e x x e  

           ' " ' " " ' 0.
k k k k k k

k k

k k k k k k k k k k k kT v T v v v v c v c
     

               x x x e x e x e x e
 

3. ' ' " "( ) ( ) 0 ( ) ( )              
k k k k

k k k k k k k k k kv c v c v c v c
   

x x e x x e  

           

   

' " ' " " "

' "                                      0.

k k k k k k

k k

k k

k k k k k k k k k

k k k

T v T v v v v v

v v

     

 

          

    

x x x e x e x x e

x e x  

4. ' ' " "( ) 0 ( ) ( ) ( )              
k k k k

k k k k k k k k k kv c v c v c v c
   

x x e x x e  

             

 

' " ' " ' " "

"                                      0.

k k k k k k k

k

k k

k k k k k k k k k k k k

k k

T v T v v v v c v v

v c

      



             

   

x x x e x e x e x x e

x

 

5. ' ' " "0 ( ) ( ) ( ) ( )              
k k k k

k k k k k k k k k kv c v c v c v c
   

x x e x x e
 

               

   

' " ' " ' ' " "

' "                                     0.

k k k k k k k k

k k

k k

k k k k k k k k k k k k

k k

T v T v v v v v v v

v v

       

 

              

   

x x x e x e x x e x x e

x x

 

If ' " ' "( ) ( ) ( ) ( )        x x x e x e
k k k k

k k k k k kh h h h
v v v v we also have one sub-case: 

6. ' " ' "( ) ( ) 0 ( ) ( )              x x x e x e
k k k k

k k k k k k k k k kh h h h
v c v c v c v c  

           ' " ' " ' " 0.
k k k k k k

k k

k k k k k k k k k kh h h h h h
T v T v v v v v            x x x e x e x e x e  

Hence, T
k
v satisfies B2. 

Property B3 

In order to prove B3, we consider three cases:  

Case 1 if ' "k kh h . 
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By B3,    ' "
k k

k kh h
v v  x x  for ' "k kh h . 

We have    ' " 0.
k k

k k

k kh h
T v T v  x x  (see the proof of Property B1 Case 1) 

Case 2: if ' "

0 0c c . 

By B3,    ' "
0 0

k kc c
v v  x x  for ' "

0 0c c . 

We have    ' "
0 0

0.k k

k kc c
T v T v  x x  (see the proof of Property B1 Case 2) 

Case 3 if ' "k kc c . 

By B3,    ' "
k k

k kc c
v v  x x  for ' "k kc c , 

     ' ' ' '

' 'Δ   ( ) min 0, ( ) min 0, ( ) ,         x x e x x e
k k k k

k k k k k k kc c c c

k

k T v v v c v c  

     " " " "

" "Δ   ( ) min 0, ( ) min 0, ( ) ,
k k k k

k k k k k k kc c c c

k

k T v v v c v c         x x e x x e  

             
    

' " ' " ' '

" "

' '

"

min 0, min 0,

                                                                                        min 0, min 0,

k k k k k k

k k

k k

k k k k k k k k k k kc c c c c c

k k k kc c

T v T v v v v c v c

v c v

              

      

x x x e x e x x e

x x e " .kc

 

By A1 we have ' '( ) ( )   x x e
k k

k k kc c
v v  and " "( ) ( ).   x x e

k k
k k kc c
v v  

By B3 we have ' "( ) ( )
k k

k kc c
v v  x x , from above we have two possibilities: 

' ' " "( ) ( ) ( ) ( )        x x e x x e
k k k k

k k k k k kc c c c
v v v v  or 

' " ' "( ) ( ) ( ) ( )        x x x e x e
k k k k

k k k k k kc c c c
v v v v  

If ' ' " "( ) ( ) ( ) ( )        x x e x x e
k k k k

k k k k k kc c c c
v v v v , then we have five sub-cases: 

1. ' ' " "

' ' " "( ) ( ) ( ) ( ) 0
k k k k

k k k k k k k k k kc c c c
v c v c v c v c              x x e x x e  

       ' " ' " 0.
k k k k

k k

k k k k k kc c c c
T v T v v v       x x x e x e  

2. ' ' " "

' ' " "( ) ( ) ( ) 0 ( )
k k k k

k k k k k k k k k kc c c c
v c v c v c v c              x x e x x e   

         ' " ' " "

"

k k k k k

k k

k k k k k k k k kc c c c c
T v T v v v v c          x x x e x e x e  
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                                                                   ' " "

" 0.
k k k

k k k k kc c c
v v v c       x e x x  

3. ' ' " "

' ' " "( ) ( ) 0 ( ) ( )
k k k k

k k k k k k k k k kc c c c
v c v c v c v c              x x e x x e   

           

   

' " ' " " "

' "                                      0.

k k k k k k

k k

k k

k k k k k k k k kc c c c c c

k k kc c

T v T v v v v v

v v

          

    

x x x e x e x x e

x e x
 

4. ' ' " "

' ' " "( ) 0 ( ) ( ) ( )
k k k k

k k k k k k k k k kc c c c
v c v c v c v c              x x e x x e   

             

 

' " ' " ' " "

"

'

'                                      0.

k k k k k k k

k

k k

k k k k k k k k k k k kc c c c c c c

k kc

T v T v v v v c v v

v c

             

   

x x x e x e x e x x e

x

 

5. ' ' " "

' ' " "0 ( ) ( ) ( ) ( )
k k k k

k k k k k k k k k kc c c c
v c v c v c v c              x x e x x e  

               

   

' " ' " ' ' " "

' "                                 0.

k k k k k k k k

k k

k k

k k k k k k k k k k kc c c c c c c c

k kc c

T v T v v v v v v v

v v

             

   

x x x e x e x x e x x e

x x

 

If ' " ' "( ) ( ) ( ) ( )        x x x e x e
k k k k

k k k k k kc c c c
v v v v  and ' "k kc c , we also have one sub-case: 

6. ' " ' "

' " ' "( ) ( ) 0 ( ) ( )
k k k k

k k k k k k k k k kc c c c
v c v c v c v c             x x x e x e  

           ' " ' " ' "

' "

" '                                       0.           

k k k k k k

k k

k k k k k k k k k k k kc c c c c c

k k

T v T v v v v c v c

c c

             

  

x x x e x e x e x e
 

Hence, T
k
v satisfies B3. 

Property B4 

In order to prove B4, we consider three cases:  

Case 1 if ' "

0 0  .  

By B4,    ' "
0 0

k kv v
 

  x x  for ' "

0 0  . 

We have    ' "
0 0

0.k k

k kT v T v
 

  x x  (see the proof of Property B2 Case 1) 

Case 2 if ' " k k
.  

By B4,    ' "
k k

k kv v
 

  x x  for ' " k k
. 
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We have    ' " 0.
k k

k k

k kT v T v
 

  x x  (see the proof of Property B2 Case 2) 

Case 3 if ' " k k
. 

By B4,
 

   ' "
k k

k kv v
 

  x x  for ' " . k k
 

We have    ' " 0.
k k

k k

k kT v T v
 

  x x  (see the proof of Property B2 Case 3) 

Hence, T
k
v satisfies B4. 

Operator T 

Since h(x) is increasing convex in xi, it satisfies B1-B4 and we can see that Tv satisfies B1-B4. 

Cil et al. (2009) presented a general framework for investigating the effect of system 

parameters on the optimal policy for inventory control problem. The interested reader can 

refer to it for the overview of this problem.  

This completes the proof of Lemma 3.2.  

From Lemma 3.2 we define Theorem 3.2. 

THEOREM 3.2. The optimal base-stock and rationing levels satisfy the following properties. 

(1) The base-stock level ( )k ks x , for Component k, is non-increasing in the holding cost hk 

and non-decreasing in the lost sales costs c0 and ck, for k=1,2,…,n. 

(2) The base-stock level ( )k ks x , for Component k, is non-decreasing in the arrival rates 0   

and k  and non-increasing in the production rate µk, for k=1,2,…,n. 

(3) The rationing level ( )k kr x , for Component k, is non-increasing in the holding cost hk, 

non-decreasing in the lost sales cost c0 and non-increasing in ck for k=1,2,…,n. 

(4) The rationing level ( )k kr x , for Component k, is non-decreasing in the arrival rates 0  

and k  and non-increasing in the production rate µk, for k=1,2,…,n. 

Proof of Theorem 3.2  

From Lemma 3.2, the base-stock and the rationing levels as: 

    , min 0 0 ,k k k ks x v 



    x x  

    , min 0 ,   ( )k k k k k kr x v c c  

      x x  
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    , min 0 .   ( )k k k k kr x v c   

      x x  

Property 1: 

From Property B1, we consider three cases: 

1.    ' "
k k

k kh h
v v  x x  for ' "k kh h . 

Since the function  v x  is convex, for a fixed level 
kx  and two different holding costs ' "k kh h , 

from    ' "
k k

k kh h
v v  x x  we have ( ) ( )kv v x e x  is non-decreasing in hk.  

2.    ' "
0 0

k kc c
v v  x x  for ' "

0 0c c . 

Since the function  v x  is convex, for a fixed level 
kx  and two different lost sale costs ' "

0 0c c , 

from    ' "
0 0

k kc c
v v  x x  we have ( ) ( )kv v x e x  is non-increasing in c0.  

3.    ' "
k k

k kc c
v v  x x  for ' "k kc c . 

Since the function  v x  is convex, for a fixed level 
kx  and two different lost sale costs ' "k kc c , 

from    ' "
k k

k kc c
v v  x x  we have ( ) ( )kv v x e x  is non-increasing in ck.  

Property 2  

From Property B2, we consider three cases: 

1.    ' "
0 0

k kv v
 

  x x  for ' "

0 0  . 

Since the function  v x  is convex, for a fixed level 
kx  and two different arrival rates ' "

0 0  , 

from    ' "
0 0

k kv v
 

  x x  we have ( ) ( )kv v x e x  is non-increasing in 0 . 

2.    ' "
k k

k kv v
 

  x x  for ' "k k  . 

Since the function  v x  is convex, for a fixed level kx  and two different arrival rates ' "k k  , 

from    ' "
k k

k kv v
 

  x x  we have ( ) ( )kv v x e x  is non-increasing in k . 

3.    ' "
k k

k kv v
 

  x x  for ' "k k  . 
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Since the function  v x  is convex, for a fixed level 
kx  and two different production rates

' "k k  , from    ' "
0 0

k kv v
 

  x x  we have ( ) ( )kv v x e x  is non-decreasing in 
k . 

Property 3: 

From Property B3, we consider three cases: 

1.    ' "
k k

k kh h
v v  x x  for ' "k kh h . 

Since the function  v x  is convex, for a fixed level 
kx  and two different holding costs ' "k kh h , 

from    ' "
k k

k kh h
v v  x x  we have ( ) ( )kv v x x e  is non-decreasing in hk.  

2.    ' "
0 0

k kc c
v v  x x  for ' "

0 0c c . 

Since the function  v x  is convex, for a fixed level
kx and two different holding costs ' "

0 0c c , 

from    ' "
0 0

k kc c
v v  x x  we have ( ) ( )kv v x x e  is non-increasing in c0.  

3.    ' "
k k

k kc c
v v  x x  for ' "k kc c . 

Since the function  v x  is convex, for a fixed level
kx and two different holding costs ' "k kc c , 

from    ' "
k k

k kc c
v v  x x  we have ( ) ( )  kv vx x e  is non-decreasing in ck.  

Property 4: 

From Property B4, we consider three cases: 

1.    ' "
0 0

k kv v
 

  x x  for ' "

0 0  . 

Since the function  v x  is convex, for a fixed level kx and two different arrival rates ' "

0 0  , 

from    ' "
0 0

k kv v
 

  x x  we have ( ) ( )kv v x x e  is non-increasing in 0 . 

2.    ' "
k k

k kv v
 

  x x  for ' "k k  . 

Since the function  v x  is convex, for a fixed level kx and two different arrival rates ' "k k  , 

from    ' "
k k

k kv v
 

  x x  we have ( ) ( )kv v x x e  is non-increasing in k . 

3.    ' "
k k

k kv v
 

  x x  for ' "k k  . 
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Since the function  v x  is convex, for a fixed level 
kx  and two different production rates

' "k k  , from    ' "
0 0

k kv v
 

  x x  we have ( ) ( )kv v x x e  is non-decreasing in 
k . 

This completes the proof of Theorem 3.2. 

Theorem 3.2 shows that the base-stock and the rationing levels are sensitive to various system 

parameters. Property 1 indicates that it is optimal to hold less inventory of Component k in 

stock as holding cost hk increases, but to hold more inventory of Component k in stock as lost 

sale cost either c0 or ck increases. Property 2 indicates that the more demands of the assembled 

product or of Component k arrive to the system the more inventory of Component k should be 

held in stock. However, the higher production rate µk leads to the lower inventory 

requirements for Component k. Property 3 indicates that the increase of holding cost hk or lost 

sale cost ck may also increase the probability that demand of Component k would be satisfied, 

while the increase of lost sale cost c0 may reduce this probability. For a similar reason as 

shown in Property 3, Property 4 indicates that it is optimal to satisfy more demand of 

Component k as the production rate µk increases, but to satisfy less demand of Component k 

as the arrival rates 
0  and 

k  increase. 

3.2.4 The Case of Average Cost per Period 

In this section we extend our analysis to the case of the average cost per period. Our objective 

is to minimize the expected long-run average cost of the system. Under a control policy   

and a starting state x, the average cost is given by ( )g
x : 

 
 1

0 0
( ( ) ( )

limsup .



 



 
 


 

N n

i l l ii l

N

E h t c N t
g

N




x

X
x                                                 (3.9) 

Our aim is to seek the optimal production policy    that minimizes the average cost per 

period ( ) inf ( )g g



 x x  for all states x. The optimality equation in this case is as follows: 

  0

0

1 1

( ) ( ) ( ) ( ),    

 

     
n n

k

k k k

k k

v g h T v T v T v  x x x x x                                     (3.10) 

where 
g  is a finite constant denoting the average cost per period.  

In Theorem3.3, we show that the optimal policy under the average cost criterion retains all the 

properties observed in Theorem3.1 and Theorem3.2 under the discounted cost criterion.  
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THEOREM 3.3. The optimal policy under the average cost criterion retains all the 

properties of the optimal policy under the discounted cost criterion, namely that the optimal 

policy can be described by two types of state-depend thresholds: a production base-stock level 

and an inventory rationing level. The base-stock and the rationing levels satisfy all the 

properties in Theorem 3.1 and Theorem 3.2.  

Proof of Theorem 3.3  

We deal with the average cot problem through the limit of discounted cost problem with

0  . Since our problem can be formulated as an MDP, there are two conditions must be 

held for the existence of average optimal policy. As showed by Cavazos-Cadena (1992), 

Weber and Stidham (1987): 1. there exists a stationary policy   which achieves a finite 

average cost g
.
 
2. the number of states in which the holding cost  h gx


 is finite.  

For our model, consider a policy   that is described by two types of thresholds: a fixed base-

stock level sk and a fixed rationing level rk. Each Component k can be produced if its on-hand 

inventory xk is below sk, and each demand of Component k can be satisfied if the on-hand 

inventory xk is above rk. The operators 0T , kT  and 
kT  in equation (3.10) can be written as: 
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Since by Property A1 function  v x  is convex in each of the state variables xk, there exists 

the minimum value that  min g v x . It is not hard to see that policy   is stationary, which 

achieves a finite average cost and condition 1 holds. For condition 2, since the holding cost 

 1
( )

n

k kk
h h x


x  is increasing convex function in each xk, there exists a positive integer  , 

the number of states in which the cost ( )h x  is finite. Thus, condition 2 holds. 

Based on the above conditions, Weber and Stidham (1987) proposed that there exists a 

positive constant g
*
 and the expected discounted cost v(x), then for all sates x: 
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  0

0

1 1

( ) ( ) ( ) ( ).
n n

k

k k k

k k

v g h T v T v T v

 

     x x x x x    

So, the average cost per period g
*
 can be determined form the above inequation.  

This completes the proof of Theorem 3.3. 

3.3 Numerical Experiments 

In this section, the average cost per period criterion is adopted in our numerical experiments. 

We investigate how the optimal control policies depend on different system parameters. We 

have used the value iteration algorithm to solve the dynamic programming equation in section 

3.2. Readers are referred to the work of Puterman (1994, Chapter 8) for the details of the 

iteration algorithm, which we adapted directly.  

3.3.1 Value Iteration Algorithm for Average Cost Criterion. 

We consider a system with two components and one single product. We apply results for the 

average cost criterion. The details are as following:  

Since the state space of our system is infinite, truncating the state space is necessary. The state 

space is truncated at    max max

1 2
0, 0, ,n n  where max , 1,2,

k
n k   are positive integers that are 

gradually increased by five at each time. The iteration algorithm will stop when the minimum 

of average cost per period is obtained. We use the value iteration algorithm to find a 

stationary  -optimal policy, the decision rule  d




, and an approximation to its value. 

Step 1. Input the parameters: , , , , , , ,
i l i l i

h c n inc    i=1,2; l=0,1,2, and inc=5.  

Step 2. Select g*=0 (the optimal average cost rate), specify 0  , and n=0. 

Step 3. For each state x: 
1 1 2 2

0,1,..., , 0,1,..., ,x n x n  compute  1
x

n
v  by 

                0

1 0
1 1

( ) ( ) ( ),  


 

    x x x x x
n n

k

n n k n k k n
k k

v h T v T v T v  

            
1

min ( ),


 x
n

g v  

                1 1 
 x x

n n
v v g , 

               1
  x x

n n
v v . 
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Step 4.  

            If max min     sp , 

            go to Step 5. Otherwise, increment n by 1 and return to Step 3. 

Step 5.  

           If  g g g , for each sate x, choose  

               0

0 1 1 1
1 1

arg ( ) ( ) ( ) ,


  
  

 

    x x x x x
n n

k

n k n k k n
k k

d h T v T v T v  and stop. 

         Otherwise, go to Step 6. 

Step 6. 

           
1 1

2 2

,

,

.

 

 

 

g g

n n inc

n n inc

 

           Go to step 3. 

From the above algorithm we obtain the optimal policy, we will illustrate its structure in the 

following subsection. 

3.3.2 The Structure of the Optimal Policy 

To simplify the computations, we focus on a two-component ATO system. We test this system 

with a wide range of parameter values. The structure of the optimal policy is illustrated in Fig. 

3.1 and Fig.3.2. 

Fig.3.1 and Fig.3.2 show that the optimal production policy is similar to that in Benjaafar and 

ElHafsi (2006), but the allocation policy is quite different. Fig.3.2 displays the optimal 

rationing decision in seven regions. In region 1, all demands are satisfied. In region 2, only 

demand of the assembled product is satisfied. In region 3, demand of Component 2 and 

demand of the assembled product are satisfied. In region 4, only demand of Component 2 is 

satisfied. In region 5, demands of Component 1 and demand of the assembled product are 

satisfied. In region 6, only demand of Component 1 is satisfied. In region 7, neither demand is 

satisfied. In fact, different regions correspond to different allocation decisions. In region 1, the 

amount of the on-hand inventory for both Component 1 and Component 2 is large, thus the 

system has enough capacity to satisfy all the demands. But in region 2, the amount of the on-
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hand inventory for both Component 1 and Component 2 is small, thus the optimal policy tends 

to use the limited capacity only to satisfy demand of the assembled product. In region 3 and 

region 5, the on-hand inventory of one component is much larger than that of the other. Thus, 

it is optimal to satisfy demand of the assembled product and the demand of component that has 

a larger on-hand inventory. In region 4 and region 6, only one component is available while the 

other is not. When both the end product and component demands arrive, the component 

demand for the available one can be satisfied directly, but the other demands cannot be. In 

region 7, both Component 1 and Component 2 are not available, that is the system has no 

available capacity to satisfy any demand. 

Also as seen from Fig.3.2, there are two rationing levels 
1

r  and
2

r . Each level is non-

decreasing in the on-hand inventory of the other component. This result is quite different from 

the result of Benjaafar and ElHafsi (2006). Note that the assembled product demand has 

higher priority, in order to satisfy demand of the assembled product all the components must 

be held in stock. If the on-hand inventory of one component increases, it is more desired to 

reserve other components for demand of the assembled product. As a result, the rationing 

level for each component increases. In summary, the inventory allocation policy is a state-

dependent rationing policy for demand of the individual components. For demand of the 

assembled product, it can be always satisfied if all the components are available. 

3.3.3 The Effect of System Parameters on the Optimal Policy 

In this section, we will briefly discuss how the different system parameters impact on the 

optimal policy. The following figures indicate that the base-stock and rationing levels are 

sensitive to the values of parameters such as holding cost, lost sales cost, production rate and 

arrival rate. From Fig. 3.3(a) and Fig. 3.3(b), it is easy to see that both 
1

s  and 
1

r  are non-

increasing in hk. Since a higher level of hk may incur a greater average cost, the larger holding 

cost leads to less production of Component 1. Hence, the base-stock level 
1

s  decreases with 

h1. The holding cost also influences the optimal allocation policy that can be seen in Fig. 

3.3(b). As the holding cost h1 increases it is optimal to keep less Component 1 in stock. This 

leads to the increase of the probability that demand of Component 1would be satisfied, thus 

the rationing level 
1

r  decreases.  

Fig. 3.4(a) and Fig. 3.4(b) show the effect of the lost sale cost c0 on both the base-stock and 

rationing levels. Both 
1

s  and 
1

r  are non-decreasing in c0. This result implies that when c0 
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increases, it is optimal to hold more inventories for both Component 1 and Component 2, thus 

the base-stock level of Component 1 increases. Also, the more production of Component 1 

increases the probability that demand of the assembled product would be satisfied, which 

leads to more demand of Component 1 would be rejected. Hence, demand of the individual 

components is more difficult to satisfy, and the rationing level of Component 1 increases. 

Fig. 3.5(a) and Fig. 3.5(b) show the effect of the lost sale cost c1 on both the base-stock and 

rationing levels. In Fig. 3.5(a), the base-stock level of Component 1 is non-decreasing in the 

lost sale cost c1. When c1 increases that would increase the average cost of the system, in order 

to reduce this effect more Components 1 are desired to produce. Since it is optimal to hold 

more inventory of Component 1, the base-stock level of Component 1 increases. As seen from 

Fig. 3.5(b), the rationing level of Component 1 is also non-increasing in the lost sale cost c1. 

Clearly, the increase of the lost sale cost c1 leads to more demands of Component 1 being 

satisfied, thus the rationing level of Component 1 decreases. 

Fig. 3.6(a) and Fig. 3.6(b) show the effect of the arrival rate 
0
 on both the base-stock and 

rationing levels. Both 
1

s  and 
1

r  are non-decreasing in 
0
. Obviously, when the number of the 

assembled product demands increases per unit of time, more demands enter in the system and 

more components are needed. Hence, the base-stock level of Component 1 increases. Also, 

the result implies that the more production of Component 1 leads to more demands of the 

assembled product can be satisfied, which reduces the probability that demand of Component 

1 would be satisfied. Thus, the rationing level of Component 1 increases. 

Fig. 3.7(a) and Fig. 3.7(b) show the effect of the arrival rate
1
  on both the base-stock and 

rationing levels. In Fig. 3.7(a), the base-stock level of Component 1 is non-decreasing in 

arrival rate 
1
 . It is not difficult to understand the fact that when the number of Component 1 

demands increases per unit time, it is optimal to hold more inventory of Component 1, thus 

the base-stock level of Component 1 increases. Similarly, in Fig. 3.7(b), the rationing level of 

Component 1 increases with the arrival rate 
1
 . It means that the increase of the inventory of 

Component 1 leads to more demands of the assembled product being satisfied, while more 

demands of Component 1 can be rejected. 

Fig. 3.8(a) and Fig. 3.8(b) show the effect of the production rate
1

 on both the base-stock and 

rationing levels. Both 
1

s  and 
1

r  are non-increasing in
1

 . Due to the increase of the 

production rate of Component 1, the system has higher production efficiency per unit of time.  
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Fig. 3.1. The structure of the optimal production policy with lost sales 
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Fig. 3.2. The structure of the optimal allocation policy with lost sales 
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(a) the optimal production policy for fixed values of h1    (b) the optimal allocation policy for fixed values of h1 

Fig. 3.3 The effect of holding cost h1 on the optimal policy for Component 1 with lost sales 

1 2 0 1 2 0 1 2
( 1.0, 0.7, 0.25, 0.2, 750, 200, 50)           c c c  

 

  

(a) the optimal production policy for fixed values of c0    (b) the optimal allocation policy for fixed values of c0 

Fig. 3.4. The effect of lost sale cost c0 on the optimal policy for Component 1 with lost sales 
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(a) the optimal production policy for fixed values of c1   (b) the optimal allocation policy for fixed values of c1 

Fig. 3.5. The effect of lost sale cost c1 on the optimal policy for Component 1 with lost sales 
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Fig. 3.6. The effect of arrival rate
0
 on the optimal policy for Component 1 with lost sales 
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(a) the optimal production policy for fixed values of 
1
  (b) the optimal allocation policy for fixed values of 

1
 

Fig. 3.7. The effect of arrival rate
1
 on the optimal policy for Component 1 with lost sales 
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  Fig. 3.8. The effect of production rate 
1
on the optimal policy for Component 1 with lost sales 
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Thus, there is no need to hold a high-level inventory of Component 1 in stock, and the base-

stock level of Component 1 decreases. Also, high productivity can meet the coming demand 

and a low rationing level is optimal for the system. 

3.4 Conclusion  

In this chapter, we have considered an ATO system with a single product, multi-component 

and multi-demand, where demand from both the assembled product and the individual 

components can be satisfied or rejected. Demand of the assembled product is assumed to have 

a higher priority over demand of the individual components. The problem is modeled as an 

MDP. We showed that the optimal policy consists of a base-stock policy and a rationing 

policy where both the base-stock level and the rationing level for a component are non-

decreasing in the on-hand inventory of the other components. Finally, we adopted the average 

cost criterion in the numerical experiments and explored the impact on the optimal policy of 

different system parameters, such as holding cost, lost sales cost, production rate and arrival 

rate. 



Lost Sales for Components and Backorders for Assembled Product 

87 

 ATO System with Individual Chapter 4.

Components Demand: Lost Sales for Components 

and Backorders for Assembled Product 

We consider the ATO system introduced in Chapter 3, however in this chapter we assume that 

shortages result in both lost sale and backorder penalties. The unsatisfied demands for the 

assembled product will wait for delivery until the next replenishment but there is a cost 

associated with dissatisfaction that is independent of the waiting time. The unsatisfied 

demands for the individual components will be lost to seek some other source to satisfy their 

demands immediately. Thus, the system involves a mixed lost sales and backorders. Managing 

such a system is known to be difficult given the correlated component demands. To solve this 

problem, we formulate it as an MDP and characterize its optimal policy. Finally, we 

investigate the impact of different penalty cost parameters on the optimal policy.  

The outline of this chapter is as follows: a general introduction is given in section 4.1. In 

section 4.2, we formulate the optimal control model with lost sales and backorders under the 

discounted cost case. Then we analyze the structure of the optimal policy, and obtain several 

optimal properties. We also extend our model to the average cost case. In section 4.3, the 

numerical experiments are provided, based on numerical results we analyze the effect of the 

cost parameters on the optimal policy. Section 4.4 summarizes our results. 
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4.1 Introduction 

In this chapter, we consider a variation of the system studied in Chapter 3. In particular, 

demand for the assembled product is satisfied only if all components are available, and a stock-

out of at least one component leads to the product demand being backordered. Demand for the 

individual components is satisfied only if the needed component is available, and the 

unsatisfied component demand would be lost. Managing such a system is known to be difficult 

given the correlated component demands. Besides considering the on-hand inventory X(t) of 

the system, the backorder level Y(t) of the assembled product must also be considered. 

Therefore, our state space can be extended to the pair (X(t),Y(t)). In each state, the manager 

can decide what to produce and how much to produce. Here, the production decision depends 

on both the on-hand inventory and the backorder level. For each component, several options 

could be chosen: produce one unit to stock, produce one unit to reduce one unit backorder of 

the assembled product (if all other components are available), or do not produce at all. In this 

case, we assume that the product demand has no priority over the components demand. 

Therefore, when there are backorders from the end product demand, it is not always optimal 

to produce the components to reduce the backorder level. At the same time, when the 

demands arrive, the manager has to decide whether to allocate the inventory of the 

components to the individual components demand, or allocate this inventory to demand of the 

assembled product.  

To solve this problem, we formulate it as MDP and characterize its optimal operating 

production and inventory allocation policies. In a general ATO system, the base-stock level 

and rationing level of one component depend on the on-hand inventory of other components. 

In our system, determination of the above threshold levels of one component should take into 

account both the backorder level of the assembled product and the on-hand inventory of all 

components. This chapter shows that for components, the optimal policy can be characterized 

by a production base-stock level and an inventory rationing level, while for the assembled 

product, the optimal policy is characterized by a state-dependent rationing level. Furthermore, 

we show that, the production base-stock level of components (for specific states) can be 

interpreted as a rationing level of the assembled product with respect to component inventory 

level. 

 



Lost Sales for Components and Backorders for Assembled Product 

89 

4.2 The Optimal Control Problem  

4.2.1 Model Formulation and Structure of the Optimal Policy  

In this section, we describe the sequence of events of the ATO system. We consider a system 

consisting of a single product (the assembled product) assembled from n components. This 

chapter is based on the general assumptions in Chapter 3: component production times are 

exponentially distributed with mean 1 k  for k=1,…,n; demand for Component k and the 

assembled product arrive according to a Poisson process with rates 
k  and 

0 , respectively. 

The current state of the system at time t can be defined by the pair (X(t),Y(t)), where 

X(t)=(X1(t),…, Xn(t)) and Xk(t) is a nonnegative integer denoting the on-hand inventory level of 

Component k at time t, Y(t) the backorder level for demand of the assembled product is a 

nonnegative integer. Each demand can be satisfied by only one single product or one 

component. If a demand of Component k is rejected, a lost sale cost ck per unit per unit of time 

is incurred. If a demand of the assembled product is unsatisfied, a backorder cost b0(.) per unit 

per unit of time is incurred. Each unit of Component k incurs an inventory carrying cost hk(.) 

per unit per unit of time. We assume both b0(.) and hk(.) are increasing convex functions. 

The expected discounted cost over an infinite planning horizon obtained under a policy with 

a starting state    1, , , ,ny x yx x can be defined as 

       0, 0 0 0
1 1

, ( ) ( ) ( ) ,
  

  

 

 
   

 
   

n n
t t t

k k k ky
k k

v y E e h X t dt e c dN t e b Y t dt    

x
x               (4.1) 

where 0 is the discount rate, Nk(t) is the number of units of Component k demand that have 

not been satisfied up to time t. Following Lippman (1975), we define the uniform rate

0 1   
n n
l k kl   , and let 1   . 

The dynamic programming equation can be written as: 

  

  0

0 0

1 1

, ( ) ( ) ( , ) ( , ) ( , ),
n n

k

k k k

k k

v y h b y T v y T v y T v y     

 

     x x x x x                             (4.2) 

where, operators T
0
, T

k
 and Tk, k=1,…,n are defined as follows: 
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Here, ek is the k
th

 unit vector of dimension n and 
1

n

k k
e e  is an n-dimensional vector. The 

system chooses the decision that leads to the lowest system cost. Operator 0T is the decision 

of how to control demand orders from the assembled product. If 1 0 
n

k k
x (i.e., all 

components are in stock), we consider whether to satisfy the assembled product demand or 

delay it for later by backordering it. If, on the other hand, 1 0 
n

k k
x (i.e., not all the 

components are available), the assembled product must be backordered. Operator kT

corresponds to the decision of how to control demand orders from Component k. If 0,
k

x  we 

have two options: satisfy demand of Component k immediately or reject it. If 0kx , 

Component k is not available, thus the demand of Component k is lost. Operator kT

corresponds to the production decision of Component k. If 0y  meaning that there are no 

backorders of the assembled product, we must choose between: do not produce Component k 

or produce a unit of Component k to increase its inventory. If > 0, 0 
n

i k i
y x  in this case there 

are backorders of the assembled product, and there is at least one component that is not 

available, the decision, in this case, is either not to produce Component k or produce a unit of 

Component k to increase its inventory. If > 0, 0 
n

i k i
y x  meaning there are backorders of the 

assembled product and all other components are available, the decision is either to produce a 

unit of Component k to stock or use the produced unit to reduce the backlog of the assembled 

product (through assembly with other components). 
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4.2.2 The Structure of the Optimal Policy 

We use the dynamic programming formulation (4.1) to analyze the structure of the optimal 

policy for this system. We show that the optimal function  ,v yx  for all states (x,y) satisfies 

properties specified in Definition 4.1. In order to do so, we make the following important 

definition. 

Definition 4.1: Let A  be the set of functions defined on 
1

n

, where   is the set of non-

negative integers, such that if vA , we have  

C1:        2 , , , ,j j jv y v y v y v y     x e x e x e x for all x, y. 

C2:        , 2 , 1 , 1 ,v y v y v y v y     x x x x  for all x, y. 

C3:        , 1 , 1 , ,j jv y v y v y v y      x e x x e x  for all x, y.  

C4:        , , , ,j i i jv y v y v y v y      x e e x e x e x  for all x, y and
 

.i j  

C5:        
1 2 1 2

2 ... , ... , , ,
p pj i i i j i i i jv y v y v y v y             x e e e e x e e e e x e x  

for all x, y and j, where
 1 2, ,..., ,pi i i j  and 1 1p n   .  

C6:        2 , 1 , 1 , ,j j jv y v y v y v y       x e x e x e x for all x, y.  

C7:        , 1 , , 1 ,j jv y v y v y v y        x e x e e x x e  for all x, y and 
1 0.n

j jx   

C8:        , 2 , 1 , 1 ,v y v y v y v y       x x e x x e  for all x, y and 
1 0.n

j jx 
  

Property C1 indicates that the optimal cost function v*
 is component-wise convex in each of 

the state variables xj. Property C2 indicates that the optimal cost function v* is component-

wise convex in the backorder level y. Property C3 indicates that the marginal cost difference 

due to increasing the on-hand inventory of Component j is non-increasing in the backorder 

level y. Property C4 indicates that the marginal cost difference due to increasing the on-hand 

inventory of Component j is non-increasing in xi. Property C5 indicates that the marginal cost 

difference due to increasing the on-hand inventory of Component j (given a fixed backorder 

level y) is non-decreasing with joint increases in 
1

, ,...,j ix x and 
pi

x . Property C6 indicates that 

the marginal cost difference due to increasing the on-hand inventory of Component j is non-

decreasing with joint increases in xj and the backorder level y. In particular, Properties C3, C4 

and C5 reflect the submodularity and supermodularity of function v(x,y) (see Koole (2006, 
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1998) and Hajek (1984) ).  

Property C7 indicates that the marginal cost difference due to jointly increasing on-hand 

inventory of all components and backorder of the product, by one unit each is non-decreasing 

in the on-hand inventory level xj. Property C8 indicates that the marginal cost difference due 

to jointly increasing on-hand inventory of all the components and the backorder level of 

product, by one unit each is non-decreasing in the backorder level y. 

Lemma 4.1. If v A , then Tv A , where 

  0

0 0

1 1

, ( ) ( ) ( , ) ( , ) ( , ).
n n

k

k k k

k k

Tv y h b y T v y T v y T v y
 

     x x x x x    

Proof of Lemma 4.1  

In order to simplify the proof, we first define the following notation: 

     , , , ,
jx jv y v y v y   x x e x

 

     , , , , ,
j j j jx x x j xv y v y v y    x x e x

 

       , ,, , , , ,
j i i j j jx x x x x i xv y v y v y v y      x x x e x  

   
1 21 2

,...,
, ( ... , ) , ,

i i i pp
x x x i i i

v y v y v y
  

      x x e e e x  

     , , 1 , ,yv y v y v y   x x x  

     , , , 1 , ,y y y yv y v y v y    x x x  

       , ,, , , 1 , ,
j j j jx y y x x xv y v y v y v y      x x x x  

     
1

, , 1 , .n

ll
x y

v y v y v y



    


x x e x  

We also show the following two observations 

Observation 1.  , 1 ,
j j

n

x i x
i j

v y v y


 
     

 
x e x , for , , .i j n i j    

Using C3 and C4,    , 1 , 1 ,
j j j

n

x i x x
i j

v y v y v y


 
        

 
x e x x .

 

Observation 2.    , 1 ,
n

y i y
i k

v y v y


    x e x , for , , .i k n i k  
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Using C3 and C8,      , 1 , 1 ,
n

y i y y
i k

v y v y v y


        x e x e x . 

In order to prove Lemma 4.1, we need to show that if Av  then Tv  must satisfy C1-C8. In 

order to do so, we prove that if Av  then 
0 AT v , A

k
T v  and AkT v  for all k. In other 

words, we show that 0 AT v , A
k

T v  and AkT v  satisfy C1-C8.  

First, we note that properties C1, C2, C5 and C6 are implied by properties C3, C4, C7 and C8. 

To see this consider the following 

Using C4 and C5 we have
 

           2 , , , , , ,j j j i i jv y v y v y v y v y v y          x e x e x e e x e x e x . 

Hence,
 
       2 , , , ,j j jv y v y v y v y     x e x e x e x and C1 holds. 

 

Using  C3 and C8 we have 

           , 1 , , 1 , , 2 , 1j jv y v y v y v y v y v y          x x x e x e x x . 

Hence,
 
       , 2 , 1 , 1 ,v y v y v y v y     x x x x and C2 holds. 

 

Using  C3, C4 we have 

       , , , ,j jv y v y v y v y      x e e x e x e x  and by C4 we have 

       
1 2 1 2

2 ... , ... , , ,
p pj i i i j i i i jv y v y v y v y               x e e e e x e e e e x e e x e . 

Hence,        
1 2 1 2

2 ... , ... , , ,
p pj i i i j i i i jv y v y v y v y             x e e e e x e e e e x e x , and 

C5 holds. 

Using C4 and C7, 

       2 , 1 , 1 , , , ,
 

   
                

   

n n

j j j k k j
k j k j

v y v y v y v y v y v yx e x e x e e x e x e x . 

Hence,        2 , 1 , 1 , ,j j jv y v y v y v y       x e x e x e x  and C6 holds. 

As a consequence, we only need to show that Tv satisfies Properties C3, C4, C7, and C8.
  

Operator 
k

T  

Property C3: we need to show that 
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         ,
, , 1 , , 1 , 0.

jx y k k j k j k k
T v y T v y T v y T v y T v y         x x e x e x x  

Since the Operator Tk depends on y and 



n

i
i k

x , we distinguish the following cases 

I. 0y   or > 0y  and 0 
n

i k i
x . In this case, Operator Tk can be rewritten as  

           , min , , , , min 0, , .
kk k x

T v y v y v y v y v y    x x x e x x  

Hence,  

         
     

, ,
, , min 0, , 1 min 0, ,

                                            min 0, , 1 min 0, , .

j j k k

k k

x y k x y x j x j

x x

T v y v y v y v y

v y v y

         

    

x x x e x e

x x
 

Case j k . In this case,  

         

     

, ,
, , min 0, , 1 min 0, ,

                                            min 0, , 1 min 0, , .

k k k k

k k

x y k x y x k x k

x x

T v y v y v y v y

v y v y

         

    

x x x e x e

x x
 

By B3, we have    , 1 ,     
k kx k x k
v y v yx e x e , and    , 1 , .   

k kx x
v y v yx x  By B1 and 

B3, we have    , 1 ,
k kx x k
v y v y    x x e , by B6    , 1 ,

k kx k x
v y v y    x e x . Hence, we have

       , 1 , , 1 , ,          
k k k kx x x k x k
v y v y v y v yx x x e x e which leads to five sub-cases. 

1.        , 1 , , 1 , 0            
k k k kx x x k x k
v y v y v y v yx x x e x e  

           

       

   

, ,
, , , 1 , , 1 ,

                     , 1 , , ,

                     , 1 , 0.

              

          

       

k k k k k k

k k k k

k k

x y k x y x k x k x x

x k x x k x

x k x k

T v y v y v y v y v y v y

v y v y v y v y

v y v y

x x x e x e x x

x e x x e x

x e x e

 

2.        , 1 , , 1 0 ,            
k k k kx x x k x k
v y v y v y v yx x x e x e  

         

       

, ,
, , , 1 , 1 ,

                    , 1 , , , 1 0.

          

           

k k k k k

k k k k

x y k x y x k x x

x k x x x k

T v y v y v y v y v y

v y v y v y v y

x x x e x x

x e x x x e
 

3.        , 1 , 0 , 1 ,            
k k k kx x x k x k
v y v y v y v yx x x e x e  

       , ,
, , , , 1 0.      

k k k kx y k x y x x
T v y v y v y v yx x x x  

4.        , 1 0 , , 1 ,            
k k k kx x x k x k
v y v y v y v yx x x e x e  
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       , ,
, , , 1 , 0.       

k k k kx y k x y x x
T v y v y v y v yx x x x  

5.        0 , 1 , 1 , ,            
k k k kx x k x x k
v y v y v y v yx x e x x e  

   , ,
, , 0.   

k kx y k x y
T v y v yx x  

Case j k . In this case,  

by B4, we have    , 1 , 1
k kx j x
v y v y     x e x , and    , , .

k kx j x
v y v y   x e x By B3,

   , 1 ,
k kx x
v y v y   x x , and    , 1 ,

k kx k x k
v y v y     x e x e . Hence, we have 

       , 1 , 1 , , ,
k k k kx j x x j x
v y v y v y v y          x e x x e x or 

       , 1 , , 1 , .
k k k kx j x j x x
v y v y v y v y          x e x e x x  

Hence, we consider the following sub-cases. 

1.        , 1 , 1 , , 0
k k k kx j x x j x
v y v y v y v y            x e x x e x  

           

       

   

, ,
, , , 1 , , 1 ,

                   , 1 , 1 , ,

                   , , 0.

j j k k k kx y k x y x j x j x x

j k j j k k

y j k y k

T v y v y v y v y v y v y

v y v y v y v y

v y v y

              

           

       

x x x e x e x x

x e e x e x e e x e

x e e x e

 

2.        , 1 , 1 , 0 ,
k k k kx j x x j x
v y v y v y v y            x e x x e x  

             

     

, ,
, , , 1 , , 1 , ,

              , , , 0.

j j k k k k k

k

x y k x y x j x j x x x

y j k y k x

T v y v y v y v y v y v y v y

v y v y v y

             

       

x x x e x e x x x

x e e x e x

 

3.        , 1 , 1 0 , ,
k k k kx j x x j x
v y v y v y v y            x e x x e x  

       , ,
, , , 1 , 0.

j j k kx y k x y x j x j
T v y v y v y v y        x x x e x e

 

4.        , 1 0 , 1 , ,
k k k kx j x x j x
v y v y v y v y            x e x x e x  

     , ,
, , , 1 0.

j j kx y k x y x j
T v y v y v y      x x x e  

5.        0 , 1 , 1 , ,
k k k kx j x x j x
v y v y v y v y            x e x x e x  

   , ,
, , 0.   

j jx y k x y
T v y v yx x

 

6.        , 1 , 0 , 1 ,
k k k kx j x j x x
v y v y v y v y            x e x e x x
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       , ,
, , , 1 , 0.

j j k kx y k x y x j x j
T v y v y v y v y        x x x e x e  

II. >0y  and 0
n

i k i
x  . In this case, we have

 

      , min , , , 1
n

k k i
i k

T v y v y v y


   x x e x e
 

To prove this case, we use the same method used Ha (1997c) and Benjaafar et al. (2010). As 

above, we distinguish two cases.   

Case j k . In this case, we define the function  , ,W u yx  on  0,1 Z  as  

 
 

 

,                     if 0,
, ,

, 1          if 1. 


  
 

   

k

n

ii k

v y u
W u y

v y u

x e
x

x e
 

k
T v  can then be rewritten as follows: 

      

 
       0,1

, min , , , 1

              min , , 1 , , 1 .

n

k k i
i k

n

k i
u

i k

T v y v y v y

W u y u v y uv y






   

      





x x e x e

x x e x e

 

Also, 

 
 

 

,                      if 0,
, ,

, 1           if 1.


  
  

    

k

k

k

x k

x n

x ii k

v y u
W u y

v y u

x e
x

x e
 

Hence, by B7, we have    0, , 1, ,
k kx x
W y W y  x x  and therefore,  , ,W u yx  is submodular  

in the direction (u, xk). Let    1
, , ,

k k k
T v y W u y  x e x e  and    2

, 1 , , 1
k

T v y W u y  x x  and  

consider the following two cases. 

Case 
1 2

.u u   

       

       

       

2 1

2 2 2 1

1 2 1 1

, 1 , , , 1 , ,

                            , , , , 1 , , , ,

                            , , , , 1 , , , ,

                             =

k k k k

k

k

T v y T v y W u y W u y

W u y W u y W u y W u y

W u y W u y W u y W u y

T

      

     

     

x e x x e x

x e x x x

x e x x x

   , , 1 . 
k k k
v y T v y  x e x

 

The first inequality is due to the definition of Tkv; the second inequality is due to B3 and the 
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third inequality is due to the submodularity of W in (u, xk).  

Case 
1 2
u u (

1 2
1, 0.u u  ) 

       

   

   

, 1 , 1, , 1 0, ,

                                            = , ,  

                                           , 1 , 1

                       

k k k k

n

k i k
i k

n

k i k
i k

T v y T v y W y W y

v y v y

v y v y





      

   

      





x e x x e x

x e e x e

x e e x e

   

   

                     = 1, , 0, , 1

                                            = , , 1 . 

k

k k k

W y W y

T v y T v y

  

  

x e x

x e x

 

The third inequality is due to the Observation 2. 

Case j k . In this case, we use the same function  , ,W u yx  as above. Hence, 

 
 

 

,                       if 0,
, ,

, 1            if 1.


  
  

    

y k

y n

y ii k

v y u
W u y

v y u

x e
x

x e
 

Also, by B8, we have    0, , 1, ,
y y
W y W y  x x . Hence,  , ,W u yx  is submodular in the 

direction (u, y). Let    1
, 1 , , 1

k
T v y W u y  x x  and    2

, , ,
k j j

T v y W u y  x e x e  and consider 

the following cases. 

   Case 
1 2

.u u   

       

       

       

   

2 1

2 2 2 1

2 1 1 1

, 1 , , , 1 , ,

                   , , , , 1 , , , ,

                   , , , , 1 , , , ,

                    = , , 1 . 

k j k j

j

j

k j k

T v y T v y W u y W u y

W u y W u y W u y W u y

W u y W u y W u y W u y

T v y T v y

      

     

     

  

x e x x e x

x e x x x

x e x x x

x e x

 

The first inequality is due to the definition of Tkv; the second inequality is due to B3 and the 

third inequality is due to the submodularity of W in (u, y). 

   Case 
1 2

.u u  (
1 2

1, 0. u u ) 
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, 1 , 1, , 1 0, ,

                                           = , ,  

                                          , ,

                             

k j k j

n

j i k
i k

n

k j i
i k

T v y T v y W y W y

v y v y

v y v y





      

   

    





x e x x e x

x e e x e

x e e x e

   

   

              = 0, , 1, , 1

                                           = , , 1 . 

j

k j k

W y W y

T v y T v y

  

  

x e x

x e x

 

   The third inequality is due to B5. 

Hence, 
k

T v  satisfy B3. 

Property C4: we need to show that 

         ,
, , , , , 0.         

j ix x k k j i k i k j k
T v y T v y T v y T v y T v yx x e e x e x e x  

Since the Operator Tk depends on y and 
n

i
i k

x


 , we distinguish the following cases 

I. 0y   or > 0y  and 0 
n

i k i
x . In this case, Operator Tk can be rewritten as  

           , min , , , , min 0, , .
kk k x

T v y v y v y v y v y    x x x e x x  

Hence,  

         

     

, ,
, , min 0, , min 0, ,

                                                                  min 0, , min 0, , .

         

    

j i j i k k

k k

x x k x x x j i x i

x j x

T v y v y v y v y

v y v y

x x x e e x e

x e x
 

Case  i k j . In this case,  

         

     

, ,
, , min 0, , min 0, ,

                                                                  min 0, , min 0, , .

k j k j k k

k k

x x k x x x k j x k

x j x

T v y v y v y v y

v y v y

         

    

x x x e e x e

x e x
 

By C1 and C4 and C5,        , , , ,
k k k kx j x x k j x k
v y v y v y v y          x e x x e e x e , which 

leads to five sub-cases: 

1.        , , , , 0
k k k kx j x x k j x k
v y v y v y v y            x e x x e e x e  

           

   

, ,
, , , , , ,

                      , , 0.

k j k j k k k k

k k

x x k x x x k j x k x j x

x k j x k

T v y v y v y v y v y v y

v y v y

            

      

x x x e e x e x e x

x e e x e
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2.        , , , 0 ,
k k k kx j x x k j x k
v y v y v y v y            x e x x e e x e  

         

 

, ,
, , , , ,

                      , 0.

k j k j k k k

k

x x k x x x k j x j x

x k j

T v y v y v y v y v y

v y

          

    

x x x e e x e x

x e e
 

3.        , , 0 , ,
k k k kx j x x k j x k
v y v y v y v y            x e x x e e x e  

       , ,
, , , , 0.

k j k j k kx x k x x x j x
T v y v y v y v y      x x x e x  

4.        , 0 , , ,
k k k kx j x x k j x k
v y v y v y v y            x e x x e e x e  

       , ,
, , , , 0.

k j k j k kx x k x x x j x
T v y v y v y v y       x x x e x  

5.        0 , , , ,
k k k kx j x x k j x k
v y v y v y v y            x e x x e e x e  

   , ,
, , 0.   

k j k jx x k x x
T v y v yx x  

Case  j k i . In this case,  

         

     

, ,
, , min 0, , min 0, ,

                                                                  min 0, , min 0, , .

         

    

k i k i k k

k k

x x k x x x k i x k

x i x

T v y v y v y v y

v y v y

x x x e e x e

x e x
 

Since the proof is similar as Case  i k j , we omit it. 

Case  i k j . In this case,  

         

     

, ,
, , min 0, , min 0, ,

                                                                  min 0, , min 0, , .

         

    

i j i j k k

k k

x x k x x x i j x i

x j x

T v y v y v y v y

v y v y

x x x e e x e

x e x
 

By C1, C4 and C5 we have  

       , , , ,          
k k k kx i j x j x i x
v y v y v y v yx e e x e x e x , or 

       , , , ,          
k k k kx i j x i x j x
v y v y v y v yx e e x e x e x . 

If        , , , ,          
k k k kx i j x j x i x
v y v y v y v yx e e x e x e x , which leads to five sub-cases: 

1.        , , , , 0            
k k k kx i j x j x i x
v y v y v y v yx e e x e x e x  
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, ,

,

, , , , , ,

                     , ,

                     , 0.

i j i j k k k k

i i

i j

x x k x x x i j x i x j x

x j k x k

x x k

T v y v y v y v y v y v y

v y v y

v y

              

      

   

x x x e e x e x e x

x e e x e

x e

 

2.        , , , 0 ,            
k k k kx i j x j x i x
v y v y v y v yx e e x e x e x  

             

   

, ,

,

, , , , , , ,

                     , , 0.

i j i j k k k k k

i j k

x x k x x x i j x j x i x x

x x k x

T v y v y v y v y v y v y v y

v y v y

             

    

x x x e e x e x e x x

x e x

 

3.        , , 0 , ,            
k k k kx i j x j x i x
v y v y v y v yx e e x e x e x  

       

   

, ,

, ,

, , , ,

                    , , 0.

        

     

i j i j k k

i j i k

x x k x x x i j x j

x x x x j

T v y v y v y v y

v y v y

x x x e e x e

x x e
 

4.        , 0 , , ,            
k k k kx i j x j x i x
v y v y v y v yx e e x e x e x  

     , ,
, , , 0.      

i j i j kx x k x x x i j
T v y v y v yx x x e e  

5.        0 , , , ,            
k k k kx i j x j x i x
v y v y v y v yx e e x e x e x  

   , ,
, , 0.   

i j i jx x k x x
T v y v yx x

 

If        , , , ,          
k k k kx i j x i x j x
v y v y v y v yx e e x e x e x , which leads to five sub-cases: 

1.        , , , , 0            
k k k kx i j x i x j x
v y v y v y v yx e e x e x e x  

           

   

 

, ,

,

, , , , , ,

                    , ,

                    , 0.

              

      

   

i j i j k k k k

i i

i j

x x k x x x i j x i x j x

x j k x k

x x k

T v y v y v y v y v y v y

v y v y

v y

x x x e e x e x e x

x e e x e

x e

 

2.        , , , 0 ,            
k k k kx i j x i x j x
v y v y v y v yx e e x e x e x  

             

   

, ,

,

, , , , , , ,

                    , , 0.

             

    

i j i j k k k k k

i j k

x x k x x x i j x j x i x x

x x k x

T v y v y v y v y v y v y v y

v y v y

x x x e e x e x e x x

x e x

 

3.        , , 0 , ,            
k k k kx i j x i x j x
v y v y v y v yx e e x e x e x  
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, ,

, ,

, , , ,

                    , , 0.

        

     

i j i j k k

i j j k

x x k x x x i j x i

x x x x i

T v y v y v y v y

v y v y

x x x e e x e

x x e
 

4.        , 0 , , ,            
k k k kx i j x i x j x
v y v y v y v yx e e x e x e x  

     , ,
, , , 0.      

i j i j kx x k x x x i j
T v y v y v yx x x e e  

5.        0 , , , ,            
k k k kx i j x i x j x
v y v y v y v yx e e x e x e x  

   , ,
, , 0.   

i j i jx x k x x
T v y v yx x

 

II. >0y  and 0
n

i k i
x  . In this case, we have

 

      , min , , , 1 .
n

k k l
l k

T v y v y v y


   x x e x e  

Case  i k j  

We use the same function  , ,W u yx  as in the proof of C3 Case1 (2), and have the first 

differences of W  in xj direction. 

 
 

 

,                        if 0,
, ,

, 1             if 1.


  
  

    

j

j

j

x k

x n

x ll k

v y u
W u y

v y u

x e
x

x e
 

By C7, we have    0, , 1, ,
j jx x
W y W y  x x and therefore,  , ,W u yx  is submodular in (u, xj). 

Let    1
, , ,

k j
T v y W u y x x e  and    2

, , ,
k k k

T v y W u y  x e x e  and consider two cases: 

   Case 
1 2

,u u   

       

       

       

2 1

2 2 2 1

2 1 1 1

, , , , , ,

                           , , , , , , , ,

                           , , , , , , , ,

                            =

k k j k k j

k j

k j

T v y T v y W u y W u y

W u y W u y W u y W u y

W u y W u y W u y W u y

      

     

     

x e e x x e e x

x e x e x x

x e x e x x

   , , . 
k k k j

T v y T v y  x e x e

 

The first inequality is due to the definition of Tkv; the second inequality is due to C4 and the 

third inequality is due to the submodularity of W in (u, xj). 

   Case 
1 2

,u u
1 2

1, 0. u u  
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, , 0, , 1, ,

                                               , , 1

                                               , 1 ,

               

k j k k j k

n

j k l
l k

n

j l k
l k

T v y T v y W y W y

v y v y

v y v y





      

     

     





x e e x x e e x

x e e x e

x e e x e

   

   

                                1, , 0, ,

                                                = , , . 

j k

k j k k

W y W y

T v y T v y

   

  

x e x e

x e x e

 

The third inequality is due to the Observation 1    , , 1


    
j j

n

x x l
l k

v y v yx x e , and C4  

   , ,
j jx k x
v y v y   x e x . Hence we have    , , 1



     
j j

n

x k x l
l k

v y v yx e x e  

Case  j k i . In this case, 

         

     

, ,
, , min 0, , min 0, ,

                                                                  min 0, , min 0, , .

         

    

k i k i k k

k k

x x k x x x k i x k

x i x

T v y v y v y v y

v y v y

x x x e e x e

x e x
 

Since the proof is similar as Case  i k j , we omit it. 

Case  i k j  

We use the function  , ,W u yx , where  , ,W u yx  is submodular in (u, xj).  

Let    1
, , ,

k j j
T v y W u y  x e x e  and    2

, , ,
k i i

T v y W u y  x e x e  and consider two cases:  

   Case 
1 2

,u u   

       

       

       

2 1

2 2 2 1

1 2 1 1

, , , , , ,

                            , , , , , , , ,

                            , , , , , , , ,

                           

k j i k j i

j i

j i

T v y T v y W u y W u y

W u y W u y W u y W u y

W u y W u y W u y W u y

      

     

     

x e e x x e e x

x e x e x x

x e x e x x

     = , , . 
k j k i

T v y T v y  x e x e

 

The first inequality is due to the definition of Tkv; the second inequality is due to C4 and the 

third inequality is due to the submodularity of W in (u, xj). 

   Case 
1 2

,u u
1 2

1, 0. u u  
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, , 0, , 2, ,

                                           , , 1

                                           , 1 ,

                 

k j i k j i

n

k j i i
i k

n

j k k i
i k

T v y T v y W y W y

v y v y

v y v y





      

      

      





x e e x x e e x

x e e e x e

x e e x e e

   

   

                          2, , 0, ,

                                            = , , . 

j i

k j k i

W y W y

T v y T v y

   

  

x e x e

x e x e

 

The third inequality is due to C4 and the Observation 1  

                                     , , , 1
j j j

n

x i k x x i
i k

v y v y v y


        x e e x x e  

Hence, 
k

T v  satisfies C4. 

Property C7: we need to show that 

         
1

,

, , 1 , , 1 , 0.




           


n

l j
l

k k j k j k k
x y x

T v y T v y T v y T v y T v yx x e x e e x x e  

Since the Operator Tk depends on y and 



n

i
i k

x , we distinguish the following cases 

I. 0y   or > 0y  and 0 
n

i k i
x . In this case, Operator Tk can be rewritten as  

      , min , , , . 
k k

T v y v y v yx x x e  

 Case j k . In this case,  

         
1

,

, , 1 , , 1 , 0.




           


n

l k
l

k k k k k k k
x y x

T v y T v y T v y T v y T v yx x e x e e x x e  

Define O on  0,1 Z by  

 
 

 

,          if 0,
, ,

,                 if 1.

  
 



k
v y u

O u y
v y u

x e
x

x
 

k
T v can be rewritten as follows: 

      

 
       

0,1

, min , , ,

              min , , 1 , , .


 

    

k k

k
u

T v y v y v y

O u y u v y uv y

x x x e

x x e x  
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Also  

 
 

 

,            if 0,
, ,

,                   if 1.

  
  

 

k

k

k

x k

x

x

v y u
O u y

v y u

x e
x

x

 

Hence, by C1, we have    0, , 1, ,  
k kx x
O y O yx x and therefore,  , ,O u yx  is submodular in (u, 

xk). Let    1
, 1 , , 1    

k k k
T v y O u yx e x e  and    2

, , ,  
k

T v y O u yx e x e  and consider two 

cases: 

   Case 
1 2

,u u   

       

       

       

1 2

1 1 1 2

1 2 1 1

, 1 , , , 1 , ,

                , , 1 , , , , , ,

                , , 1 , , , , , ,

                 = ,

        

          

          



k k k k

k k k

k k k

k k

T v y T v y O u y O u y

O u y O u y O u y O u y

O u y O u y O u y O u y

T v y

x x e e x x e e

x e x e x e e x e e

x e x e x e e x e e

x e   1 , .   
k

T v yx e

 

The first inequality is due to the definition of Tkv; the second inequality is due to C7 and the 

third inequality is due to the submodularity of O in (u, xk). 

   Case 
1 2

,u u  
1 2

1, 0. u u  

       

   

   

, 1 , 0, , 1 1, ,

                                               , 1 ,

                                               1, , 1 0, ,

                        

        

     

    

k k k k

k k

k

T v y T v y O y O y

v y v y

O y O y

x x e e x x e e

x e x e e

x e x e

                           = , 1 , .   
k k k

T v y T v yx e x e

 

Case j k . In this case,  

         
1

,

, , 1 , , 1 , 0.




           


n

l j
l

k k j k j k k
x y x

T v y T v y T v y T v y T v yx x e x e e x x e  

We use the function  , ,O u yx  and have the first differences of  , ,O u yx  in xj direction. 

 
 

 

,            if 0,
, ,

,                   if 1.

  
  

 

j

j

j

x k

x

x

v y u
O u y

v y u

x e
x

x

 

Hence, by C4    1, , 0, ,  
j jx x
O y O yx x  we have and therefor,  , ,O u yx  is supermodular in (u, 

xj). Let    1
, , ,    

k j j
T v y O u yx e e x e e  and    2

, 1 , , 1  
k

T v y O u yx x  and consider two 
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cases: 

   Case 
1 2

,u u   

       

       

       

2 1

2 2 2 1

1 1 2 1

, 1 , , , 1 , ,

                         , , , , , , 1 , ,

                         , , , , , , 1 , ,

                     

        

        

        

k j k j

j

j

T v y T v y O u y O u y

O u y O u y O u y O u y

O u y O u y O u y O u y

x e x e x e x e

x e e x e x x e

x e e x e x x e

        = , , 1 .          
k j k

T v y T v yx e e x

 

The first inequality is due to the definition of Tkv; the second inequality is due to C7 and the 

third inequality is due to the submodularity of O in (u, xj). 

   Case 
1 2 1 2

, 0, 1.  u u u u  
 

       

   

   

, 1 , 0, , 1 1, ,

                                                , 1 ,

                                                , , 1

                       

        

     

     

k j k j

k j

k j

T v y T v y O y O y

v y v y

v y v y

x e x e x e x e

x e e x e

x e e e x

   

   

                         0, , 1, , 1

                                                 = , , 1 . 

    

   

j

k j k

O y O y

T v y T v y

x e e x

x e e x

 

  The third inequality is due to C7. 

II. >0y  and 0
n

i k i
x  . In this case, we have

 

      , min , , , 1
n

k k i
i k

T v y v y v y


   x x e x e  

Case j k . In this case,  

         
1

,

, , 1 , , 1 , 0.




           


n

l k
l

k k k k k k k
x y x

T v y T v y T v y T v y T v yx x e x e e x x e  

We use the function  , ,W u yx , where  , ,W u yx  is submodular in (u, xk).  

Let    1
, 1 , , 1

k k k
T v y W u y    x e x e  and    2

, , ,
k

T v y W u y  x e x e and consider two cases: 

   Case 
1 2

,u u   
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1 2

1 1 1 2

1 2 1 1

, 1 , , , 1 , ,

                         , , 1 , , , , , ,

                         , , 1 , , , , , ,

         

k k k k

k k k

k k k

T v y T v y W u y W u y

W u y W u y W u y W u y

W u y W u y W u y W u y

        

          

          

x x e e x x e e

x e x e x e e x e e

x e x e x e e x e e

                    = , 1 , . 
k k k

T v y T v y   x e x e

 

The first inequality is due to the definition of Tkv; the second inequality is due to C7 and the 

third inequality is due to the submodularity of W in (u, xk). 

   Case 
1 2

,u u
1 2

1, 0. u u  

       

   

   

, 1 , 1, , 1 0, ,

                                              , 2 ,

                                              , ,       

           

k k k k

n

i k
i k

n

k k i
i k

T v y T v y W y W y

v y v y

v y v y





        

    

     





x x e e x x e e

x e x e e

x e e x e e

   

   

                                   0, , 1, , 1

                                               = , , 1 . 

k

k k k

W y W y

T v y T v y

    

   

x e x e

x e x e

 

Case j k . In this case,  

         
1

,

, , 1 , , 1 , 0.




           


n

l j
l

k k j k j k k
x y x

T v y T v y T v y T v y T v yx x e x e e x x e  

We use the function  , ,W u yx , where  , ,W u yx  is submodular in (u,xj).  

Let    1
, 1 , , 1

k j j
T v y W u y    x e x e  and    2

, , ,
k

T v y W u y  x e x e  and consider two cases:

 

  Case 
1 2

,u u    

       

       

       

1 2

1 1 1 2

1 2 1 1

, 1 , , , 1 , ,

                         , , 1 , , , , , ,

                         , , 1 , , , , , ,

         

k k j j

j j j

j j j

T v y T v y W u y W u y

W u y W u y W u y W u y

W u y W u y W u y W u y

        

          

          

x x e e x x e e

x e x e x e e x e e

x e x e x e e x e e

                    = , 1 , . 
k j k

T v y T v y   x e x e

 

The first inequality is due to the definition of Tkv; the second inequality is due to C7 and the 

third inequality is due to the submodularity of W in (u,xj). 

  Case 
1 2

,u u
1 2

1, 0.u u   
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, 1 , 1, , 1 0, ,

                                               , ,

                                               , ,

             

k k j j

n

i k j
i k

n

k j i
i k

T v y T v y W y W y

v y v y

v y v y





        

     

     





x x e e x x e e

x e x e e e

x e e x e e

   

   

                                  0, , 1, , 1

                                                = , , 1 . 

j

k k j

W y W y

T v y T v y

    

   

x e x e

x e x e

 

Hence, 
k

T v  satisfies C7. 

Property C8: we need to show that 

         
1

,

, , 2 , 1 , 1 , 0.




          


n

l
l

k k k k k
x y y

T v y T v y T v y T v y T v yx x x e x x e  

Since the Operator Tk depends on y and 



n

i
i k

x , we distinguish the following cases 

I. 0y   or > 0y  and 0 
n

i k i
x . In this case, Operator Tk can be rewritten as  

      , min , , , . 
k k

T v y v y v yx x x e  

We use the same function  , ,O u yx  as in the proof of C7 and have the first differences of 

 , ,O u yx  in y direction. 

 
 

 

,               if 0,
, ,

,                      if 1.

  
  

 

y k

y

y

v y u
O u y

v y u

x e
x

x

 

Hence, by C3, we have    1, , 0, ,  
y y
O y O yx x  and therefore,  , ,O u yx is supermodular in 

(u, y). 

Let    1
, 1 , , 1    

k
T v y O u yx e x e  and    2

, 1 , , 1  
k

T v y O u yx x  and consider two cases: 

   Case 
1 2

,u u   

       

       

       

 

2 1

2 2 2 1

2 2 1 2

, 2 , , , 2 , ,

                     , , 1 , , , , 1 , ,

                    , , 1 , , , , 1 , ,

                     = , 1 ,

      

        

        

  

k k

k k

T v y T v y O u y O u y

O u y O u y O u y O u y

O u y O u y O u y O u y

T v y T v

x x e x x e

x x e x e x e

x x e x e x e

x x e 1 . y

 

The first inequality is due to the definition of Tkv; the second inequality is due to C8 and the 
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third inequality is due to the supermodularity of O in (u, y).  

  Case 
1 2 1 2

, 0, 1.  u u u u  

       

   

   

, 2 , 1, , 2 0, ,

                                         , 2 ,

                                         , 1 , 1

                                        1, ,

      

    

     



k k

k

k

T v y T v y O y O y

v y v y

v y v y

O y

x x e x x e

x x e e

x x e e

x   

   

1 0, , 1

                                         = , 1 , 1 .

   

   
k k

O y

T v y T v y

x e

x x e

 

  The third inequality is due to the Observation 2. 

II. >0y  and 0
n

i k i
x  . In this case, we have

 

      , min , , , 1
n

k k i
i k

T v y v y v y


   x x e x e  

We use the same function  , ,W u yx , where  , ,W u yx  is submodular in (u, y).  

Let    1
, 2 , , 2

k
T v y W u y  x x  and    2

, , ,
k

T v y W u y  x e x e  and consider the following 

two cases:

 
   Case 

1 2
,u u  

       

       

       

 

1 2

1 2 2 2

1 2 1 1

, 1 , 1 , , 1 , , 1

                     , , 1 , , , , 2 , , 1

                    , , 1 , , , , 2 , , 1

                     = , 2 ,

k k

k k

T v y T v y W u y W u y

W u y W u y W u y W u y

W u y W u y W u y W u y

T v y T v

        

       

       

  

x x e x x e

x x e x x

x x e x x

x x e . y

 

The first inequality is due to the definition of Tkv; the second inequality is due to C8 and the 

third inequality is due to the supermodularity of W in (u, y). 

   Case 
1 2

,u u
1 2

1, 0. u u  

       

   

   

, 1 , 1 1, , 1 0, , 1

                                             , , 1

                                             , , 1

                     

k k

n

i k
i k

n

k i
i k

T v y T v y W y W y

v y v y

v y v y





        

     

     





x x e x x e

x e x e e

x e e x e

   

   

                        0, , 1, , 2

                                              = , , 2 .
k k

W y W y

T v y T v y

   

  

x e x

x e x
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Hence, 
k

T v  satisfies C8. 

Operator 
k

T  

Since

 

 
 

    

,                                       if 0,
,

min , , ,        otherwise,

  
 

 

k kk

k k

v y c x
T v y

v y v y c

x
x

x e x
 

we have two cases to consider:

 

For case 0kx  , 

   , , , k

kT v y v y cx x  hence it satisfies all the properties C1-C8. 

For case 0kx  , 

           , min , , , , min 0, , .        
k

k

k k k x k kT v y v y v y c v y v y cx x e x x e x e      (4.6)
 

Property C3: we need to prove that 

         ,
, , 1 , , 1 , 0.

j

k k k k k

x y j j
T v y T v y T v y T v y T v y         x x e x e x x  

From (4.6), we have 

         
     

, ,, , min 0, , 1 min 0, ,

                                                          min 0, , 1 min 0, , .

j j k k

k k

k

x y x y k x k j k x k j k

x k k x k k

T v y v y v y c v y c

v y c v y c

              

        

x x e x e e x e e

x e x e

Case j k . In this case,  

         

     

, ,, , min 0, , 1 min 0, , 1

                                                          min 0, , min 0, , .

            

      

k k k k

k k

k

x y x y k x k x k k

x k x k k

T v y v y v y c v y c

v y c v y c

x x e x x e

x x e
 

By C3 and C6, we have  

       , , 1 , , 1              
k k k kx k x k x k k x k k
v y c v y c v y c v y cx x x e x e , which leads to the 

following five sub-cases:  

1.        , , 1 , , 1 0                
k k k kx k x k x k k x k k
v y c v y c v y c v y cx x x e x e  

   , ,, , 0.    
k k

k

x y x y kT v y v yx x e  

2.        , , 1 , 0 , 1                
k k k kx k x k x k k x k k
v y c v y c v y c v y cx x x e x e  
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, ,, , , 1

                       , 0.

       

    

k k k

k

k

x y x y k x k k

x k k

T v y v y v y c

v y c

x x e x e

x e
 

3.        , , 1 0 , , 1
k k k kx k x k x k k x k k
v y c v y c v y c v y c                x x x e x e  

       , ,, , , 1 , 0.         
k k k k

k

x y x y k x k x kT v y v y v y v yx x e x e x e  

4.        , 0 , 1 , , 1                
k k k kx k x k x k k x k k
v y c v y c v y c v y cx x x e x e  

         

 

, ,, , , 1 , 1 ,

                     , 1 0.

             

    

k k k k k

k

k

x y x y k x k x k x k

x k

T v y v y v y c v y v y

v y c

x x e x x e x e

x
 

5.        0 , , 1 , , 1                
k k k kx k x k x k k x k k
v y c v y c v y c v y cx x x e x e  

           

     

, ,

,

, , , 1 , 1 , ,

                       , 1 , , 0.

             

      

k k k k k k

k k k

k

x y x y k x x k x x k

x x x y

T v y v y v y v y v y v y

v y v y v y

x x e x x e x x e

x x x
 

Case j k . In this case, 

         
     

, ,, , min 0, , 1 min 0, ,

                                                          min 0, , 1 min 0, , .

j j k k

k k

k

x y x y k x k j k x k j k

x k k x k k

T v y v y v y c v y c

v y c v y c

              

        

x x e x e e x e e

x e x e

 

By C3, we have    , 1 ,
k kx k j x k j
v y v y       x e e x e e and    , 1 ,

k kx k x k
v y v y     x e x e . 

By C4, we have    , 1 , 1
k kx k j x k
v y v y       x e e x e  and    , ,

k kx k j x k
v y v y     x e e x e . 

Finally, we have 

       , 1 , 1 , ,
k k k kx k j k x k k x k j k x k k
v y c v y c v y c v y c                  x e e x e x e e x e , or 

       , 1 , , 1 ,
k k k kx k j k x k j k x k k x k k
v y c v y c v y c v y c                  x e e x e e x e x e . 

If        , 1 , 1 , , ,
k k k kx k j k x k k x k j k x k k
v y c v y c v y c v y c                  x e e x e x e e x e

which leads to the following five sub-cases: 

       1. , 1 , 1 , , 0
k k k kx k j k x k k x k j k x k k
v y c v y c v y c v y c                    x e e x e x e e x e

 

         

       

     

,

,

,

   ,

, , 1 , , 1 ,

, 1 , , 1 ,

, , , 0.

j

j k k k k

j

k

x y

x y k x k j x k j x k x k

j j

y j y x y

T v y

v y v y v y v y v y

v y v y v y v y

v y v y v y



                  

       

       

x

x e x e e x e e x e x e

x e x e x x

x e x x
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       2. , 1 , 1 , 0 ,
k k k kx k j k x k k x k j k x k k
v y c v y c v y c v y c                    x e e x e x e e x e

         

   

         

, ,, , , 1 , , 1

                         , ,

                     , 1 , , 1 , ,

                  

j j k k k

k k

k

k

x y x y k x k j x k j x k

x k x k k

j j x k k

T v y v y v y v y v y

v y v y c

v y v y v y v y v y c

                

      

           

x x e x e e x e e x e

x e x e

x e x e x x x e

   ,   , , 0.
j kx y x k kv y v y c      x x e

 

       3. , 1 , 1 0 , ,
k k k kx k j k x k k x k j k x k k
v y c v y c v y c v y c                    x e e x e x e e x e

       , ,, , , 1 , 1 0.
j j k k

k

x y x y k x k j x kT v y v y v y v y            x x e x e e x e  

       4. , 1 0 , 1 , ,
k k k kx k j k x k k x k j k x k k
v y c v y c v y c v y c                    x e e x e x e e x e

     , ,, , , 1 0.
j j k

k

x y x y k x k j kT v y v y v y c          x x e x e e  

       5. 0 , 1 , 1 , ,
k k k kx k j k x k k x k j k x k k
v y c v y c v y c v y c                    x e e x e x e e x e

   , ,, , 0.    
j j

k

x y x y kT v y v yx x e
 

If        , 1 , , 1 ,
k k k kx k j k x k j k x k k x k k
v y c v y c v y c v y c                  x e e x e e x e x e we 

also consider the other sub-case:  

       6. , 1 , 0 , 1 ,
k k k kx k j k x k j k x k k x k k
v y c v y c v y c v y c                    x e e x e e x e x e

       

   

, ,

, ,

, , , 1 ,

                      , , 0.

j j k k

j j

k

x y x y k x k j x k j

x y k x y k j

T v y v y v y v y

v y v y

           

       

x x e x e e x e e

x e x e e
 

Hence, kT v  satisfies C3. 

Property C4: we need to prove that 

         ,
, , , , , 0.         

j i

k k k k k

x x j i j j
T v y T v y T v y T v y T v yx x e e x e x e x  

From (4.6), we have 

           , min , , , , min 0, , .        
k

k

k k k x k kT v y v y v y c v y v y cx x e x x e x e  

         

     

, ,, , min 0, , min 0, ,

                                                          min 0, , min 0, , .

              

        

j i j i k k

k k

k

x x x x k x k j i k x k i k

x k j k x k k

T v y v y v y c v y c

v y c v y c

x x e x e e e x e e

x e e x e

Case i k j  . In this case, 
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, ,
, , min 0, , min 0, ,

                                            min 0, , min 0, , .

          

        

k j k j k k

k k

k

x x x x k x j k x k

x k j k x k k

T v y v y v y c v y c

v y c v y c

x x e x e x

x e e x e
 

By C4, we have    , ,     
k kx k j x k
v y v yx e e x e  and    , ,   

k kx j x
v y v yx e x . 

By C1, we have    , ,     
k kx k j x j
v y v yx e e x e .  

By C5, we have    , ,    
k kx k x j
v y v yx e x e . 

Hence, we have        , , , ,              
k k k kx k j k x k k x j k x k
v y c v y c v y c v y cx e e x e x e x , 

which leads to five sub-cases: 

1.        , , , , 0                
k k k kx k j k x k k x j k x k
v y c v y c v y c v y cx e e x e x e x  

           

     

, ,

,

, , , , , ,

                      , , , 0.

             

      

k j k j k k k k

k k k j

k

x x x x k x j x x k j x k

x j x x x

T v y v y v y v y v y v y

v y v y v y

x x e x e x x e e x e

x e x x
 

2.        , , , 0 ,                
k k k kx k j k x k k x j k x k
v y c v y c v y c v y cx e e x e x e x  

         

 

, ,
, , , , ,

                     , 0.

             

    

k j k j k k k

k

k

x x x x k x j x k j x k k

x j k

T v y v y v y v y v y c

v y c

x x e x e x e e x e

x e
 

3.        , , 0 , ,                
k k k kx k j k x k k x j k x k
v y c v y c v y c v y cx e e x e x e x  

       , ,
, , , , 0.

k j k j k k

k

x x x x k x k j x k
T v y v y v y v y          x x e x e e x e  

4.        , 0 , , ,                
k k k kx k j k x k k x j k x k
v y c v y c v y c v y cx e e x e x e x  

       , ,
, , , , 0.

k j k j k k

k

x x x x k x k j k x k k
T v y v y v y c v y c            x x e x e e x e  

5.        0 , , , ,                
k k k kx k j k x k k x j k x k
v y c v y c v y c v y cx e e x e x e x  

      , ,
, , 0.    

k i k i

k

x x x x k
T v y v yx x e  

Case j k i  . In this case,  

         

     

, ,
, , min 0, , min 0, ,

                                            min 0, , min 0, , .

          

        

k i k i k k

k k

k

x x x x k x i k x k

x k i k x k k

T v y v y v y c v y c

v y c v y c

x x e x e x

x e e x e
 

Since the proof is similar to Case i k j  , we omit it. 
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Case i k j  . In this case, 

         

     

, ,
, , min 0, , min 0, ,

                                            min 0, , min 0, , .

i j i j k k

k k

k

x x x x k x i j k k x i k k

x j k k x k k

T v y v y v y c v y c

v y c v y c

              

        

x x e x e e e x e e

x e e x e

 

By C4, we have 

   , ,
k kx k x j k
v y v y     x e x e e , and    , ,

k kx i k x i j k
v y v y       x e e x e e e . 

Hence, we have two cases: 

       , , , ,
k k k kx k k x j k k x i k k x i j k k
v y c v y c v y c v y c                  x e x e e x e e x e e e ,or 

       , , , ,
k k k kx k k x i k k x j k k x i j k k
v y c v y c v y c v y c                  x e x e e x e e x e e e . 

If        , , , , ,
k k k kx k k x j k k x i k k x i j k k
v y c v y c v y c v y c                  x e x e e x e e x e e e  

which leads to the following five sub-cases: 

       1. , , , , 0
k k k kx k k x j k k x i k k x i j k k
v y c v y c v y c v y c                    x e x e e x e e x e e e

   , ,
, , 0.

i j i j

k

x x x x k
T v y v y    x x e  

       2. , , , 0 ,
k k k kx k k x j k k x i k k x i j k k
v y c v y c v y c v y c                    x e x e e x e e x e e e

     , ,
, , , 0.

i j i j k

k

x x x x k x i j k k
T v y v y v y c          x x e x e e e  

       3. , , 0 , ,
k k k kx k k x j k k x i k k x i j k k
v y c v y c v y c v y c                    x e x e e x e e x e e e

       , ,
, , , , 0.

i j i j k k

k

x x x x k x i j k x i k
T v y v y v y v y            x x e x e e e x e e  

       4. , 0 , , ,
k k k kx k k x j k k x i k k x i j k k
v y c v y c v y c v y c                    x e x e e x e e x e e e

         

   

     

, ,
, , , , ,

                          , ,

                      , , ,

                      

i j i j k k k

k k

i i k

k

x x x x k x i j k x j k x i k

x k x k k

x j x x k k

T v y v y v y v y v y

v y v y c

v y v y v y c

                

      

        



x x e x e e e x e e x e e

x e x e

x e x x e

   ,
, , 0.

i j kx x x k k
v y v y c     x x e

 

       5. 0 , , , ,
k k k kx k k x j k k x i k k x i j k k
v y c v y c v y c v y c                    x e x e e x e e x e e e

           

     

, ,

,

, , , , , ,

                      , , , 0.

i j i j k k k k

i i i j

k

x x x x k x i j k x j k x i k x k

x j x x x

T v y v y v y v y v y v y

v y v y v y

                 

      

x x e x e e e x e e x e e x e

x e x x

 

If        , , , , ,
k k k kx k k x i k k x j k k x i j k k
v y c v y c v y c v y c                  x e x e e x e e x e e e

we must consider the other sub-case: 
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       6. , , 0 , ,
k k k kx k k x i k k x j k k x i j k k
v y c v y c v y c v y c                    x e x e e x e e x e e e

        , ,
, , , , 0.

i j i j k k

k

x x x x k x i j k x j k
T v y v y v y v y           x x e x e e e x e e  

Hence, kT v  satisfies C4. 

Property C7: we need to prove that 

         
1

,

, , 1 , , 1 , 0.




           


n

l j
l

k k k k k

j j
x y x

T v y T v y T v y T v y T v yx x e x e e x x e  

From (4.6), we have 

      , min , , ,  k

k kT v y v y v y cx x e x . 

Case j k . In this case, we define the function  , ,Q u yx as:
 

 
 

 

,        if 0,
, ,

, +         if 1.

  
 



k

k

v y u
Q u y

v y c u

x e
x

x
 

kT v can be rewritten as follows: 

      

 
        

0,1

, min , , ,

               min , , 1 , , .

k

k k

k k
u

T v y v y v y c

Q u y u v y u v y c


  

     

x x e x

x x e x  

Also, 

 
 

 

,        if 0,
, ,

,               if 1.

  
  

 

k

k

k

x k

x

x

v y u
Q u y

v y u

x e
x

x

 

Hence, by C1, we have    1, , 0, ,  
k kx x
Q y Q yx x  and therefore,  , ,Q u yx  is supermodular in 

the direction (u, xk). 

Let    1
, , ,    k

j j
T v y Q u yx e e x e e  and    2

, 1 , , 1  kT v y Q u yx x  and consider two cases: 

   Case 
1 2

,u u   
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2 1

2 2 2 1

1

, 1 , , , 1 , ,

                                                 , , , , , , 1 , ,

                                                 , ,

        

        

   

k k

k k

k

k

T v y T v y Q u y Q u y

Q u y Q u y Q u y Q u y

Q u y Q u

x e x e x e x e

x e e x e x x e

x e e      

   

1 2 1
, , , , 1 , ,

                                                  = , , 1 .            

    

   k k

k

y Q u y Q u y

T v y T v y

x e x x e

x e e x

 

The first inequality is due to the definition of T
k
v; the second inequality is due to C7 and the 

third inequality is due to the submodularity of Q in (u, xk). 

   Case 
1 2

,u u  (
1 2

0, 1.u u  )
 

       

   

   

, 1 , 0, , 1 1, ,

                                                  , 1 ,                   

                                                  0, , 1, , 1

   

k k

k k

k

k

T v y T v y Q y Q y

v y v y c

Q y Q y

        

    

    

x e x e x e x e

x x e

x e e x

                                                   = , , 1 . k k

k
T v y T v y   x e e x

 

Case j k . In this case,
 
we use the function  , ,Q u yx , and have the first differences of 

 , ,Q u yx  in xj direction.
 

 
 

 

,         0,
, ,

,                1.

  
  

 

j

j

j

x k

x

x

v y if u
Q u y

v y if u

x e
x

x

 

By C3, we have    0, , 1, ,  
j jx x
Q y Q yx x . Hence,  , ,Q u yx is submodular in (u, xj). 

Let    1
, 1 , , 1    k

j j
T v y Q u yx e x e  and    2

, , ,  kT v y Q u yx e x e  and consider two cases: 

   Case 
1 2

,u u   

       

       

       

1 2

2 1 2 2

1 1 2 1

, 1 , , , 1 , ,

                      , , 1 , , 1 , , , , 1

                      , , 1 , , 1 , , , , 1

                       =

        

        

        

k k

j j

j

j

k

T v y T v y Q u y Q u y

Q u y Q u y Q u y Q u y

Q u y Q u y Q u y Q u y

T v

x x e e x x e e

x e x x e x

x e x x e x

   , 1 , .    k

j
y T v yx e x e

 

The first inequality is due to the definition of T
k
v; the second inequality is due to C7 and the 

third inequality is due to the submodularity of Q in (u, xj). 

   Case 
1 2

,u u   1 2
1, 0. u u
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, 1 , 0, , 1 1, ,

                                                , 1 ,

                                                , 1 ,

                 

        

      

      

k k

j j

j j k

j k j

T v y T v y Q y Q y

v y v y c

v y c v y

x x e e x x e e

x e x e e

x e x e e

   

   

                               1, , 1 0, ,

                                                 = , 1 , . 

    

   

j

k k

j

Q y Q y

T v y T v y

x e x e

x e x e

 

   The third inequality is due to C7. 

Hence, kT v  satisfies C7.

 
Property C8: we need to prove that 

         
1

,

, , 2 , 1 , 1 , 0.




          


n

l
l

k k k k k

x y y

T v y T v y T v y T v y T v yx x x e x x e  

From (4.6), we have 

      , min , , ,  k

k kT v y v y v y cx x e x . 

We use the same function  , ,Q u yx as the proof of C7, and define the first differences of 

 , ,Q u yx  in y direction. 

 
 

 

,         0,
, ,

,                1.

  
  

 

y k

y

y

v y if u
Q u y

v y if u

x e
x

x

 

By C3, we have    0, , 1, ,  
y y
Q y Q yx x . Hence,  , ,Q u yx  is submodular in (u, y). 

Let     1
, 2 , , 2  kT v y Q u yx x  and    2

, , ,  kT v y Q u yx e x e  and consider two cases:
 
 

  Case 
1 2

,u u   

       

       

       

   

1 2

1 2 2 2

1 1 2 1

, 1 , 1 , , 1 , , 1

                , , 1 , , 2 , , , , 1

                , , 1 , , 2 , , , , 1

                 = , 2 , .

        

       

       

  

k k

k k

T v y T v y Q u y Q u y

Q u y Q u y Q u y Q u y

Q u y Q u y Q u y Q u y

T v y T v y

x x e x x e

x x x e x

x x x e x

x x e

 

The first inequality is due to the definition of T
k
v; the second inequality is due to C8 and the 

third inequality is due to the submodularity of Q in (u, y). 

  Case 
1 2

,u u (
1 2

1, 0. u u )
 



Lost Sales for Components and Backorders for Assembled Product 

117 

       

   

   

, 1 , 1 0, , 1 1, , 1

                                                  , 1 , 1

                                                  , 2 ,

                   

        

      

     

k k

k k

k k

T v y T v y Q y Q y

v y v y c

v y c v y

x x e x x e

x e x e

x x e e

   

   

                               1, , 2 0, ,

                                                   = , 2 , . 

   

  k k

Q y Q y

T v y T v y

x x e

x x e

 

      The third inequality is due to C7 and C8:  

     
1 1 1

, , , 1
  

  

         
  

n n n

j j j
j j j

k
x y x y x y

v y v y v yx e e x e x e . 

Hence, kT v  satisfies C8. 

Operator 
0

T  

Since

 

 
 

    

0 1
, 1                                       if 0

,

min , , , 1           otherwise,




  

 
  

n

k
k

v y x
T v y

v y v y

x
x

x e x

 

 

we have two cases: 

For case, 
1

0
n

kk
x


 , 

   0 , , 1 T v y v yx x , thus it satisfies all the properties C1-C8. 

For case
 1

0
n

kk
x


 , 

           
1

0 , min , , , 1 , min 0, , .



       


n

kk
x y

T v y v y v y v y v yx x e x x e x e            (4.7)
 
 

Property C3: we need to prove that 

         0 0 0 0 0

,
, , 1 , , 1 , 0.         

jx y j j
T v y T v y T v y T v y T v yx x e x e x x  

We define the function  , ,I u yx as: 

 
 

 

, 1           if 0,
, ,

,           if 1.

  
 

 

v y u
I u y

v y u

x
x

x e
 

0T v can be rewritten as follows: 



Lost Sales for Components and Backorders for Assembled Product 

118 

      

 
       

0

0,1

, min , , , 1

              min , , 1 , 1 , .


  

     
u

T v y v y v y

I u y u v y uv y

x x e x

x x x e  

Also, 

 
 

 

, 1           if 0,
, ,

,           if 1.

  
  

  

y

y

y

v y u
I u y

v y u

x
x

x e

 

By C8, we have    0, , 1, ,  
y y
I y I yx x  and therefore,  , ,I u yx  is submodular in the 

direction (u, y). Let    0

1
, , ,  

j j
T v y I u yx e x e  and    0

2
, 1 , , 1  T v y I u yx x  and consider 

two cases: 

   Case 
1 2

,u u   

       

       

       

0 0

1 2

1 2 2 2

2 1 2 2

, 1 , , , 1 , ,

                       , , 1 , , , , 1 , , 1

                       , , 1 , , , , 1 , , 1

                     

      

         

         

j j

j j j

j j j

T v y T v y I u y I u y

I u y I u y I u y I u y

I u y I u y I u y I u y

x e x x e x

x e x e x x e

x e x e x x e

   0 0   = , , 1 .   
j

T v y T v yx e x

 

The first inequality is due to the definition of T
0
v; the second inequality is due to C3 and the 

third inequality is due to the submodularity of I in (u, y). 

   Case  1 2 1 2
, 0, 1.  u u u u  

       

   

   

0 0, 1 , 1, , 1 0, ,

                                            , 1 , 1

                                            , 1 , 1

                                     

      

     

     

k j

j

j

T v y T v y I y I y

v y v y

v y v y

x e x x e x

x e e x

x e x e

   

   0 0

       0, , 1, , 1

                                             = , , 1 . 

   

  

j

j

I y I y

T v y T v y

x e x

x e x

 

         The third inequality is due to C5.  

Hence, 0T v  satisfies C3. 

Property C4: we need to prove that 

         0 0 0 0 0

,
, , , , , 0.         

j ix x j i j j
T v y T v y T v y T v y T v yx x e e x e x e x  
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We use the function  , ,I u yx  as in the proof of property C3, and have the first differences of 

 , ,I u yx  in xj direction. 

 
 

 

, 1            if 0,
, ,

,           if 1.

  
  

  

j

j

j

x

x

x

v y u
I u y

v y u

x
x

x e

 

By C7, we have    0, , 1, ,
j jx x
I y I y  x x . Hence,  , ,I u yx  is submodular in (u, xj). 

Let    0

1
, , ,  

j j
T v y I u yx e x e  and    0

2
, , ,  

i i
T v y I u yx e x e  and consider two cases: 

   Case 
1 2

,u u   

       

       

       

 

2 1

2 2 2 1

1 2 1 1

, , , , , ,

                       , , , , , , , ,

                       , , , , , , , ,

                        = ,

      

     

     

 

k j i k j i

j i

j i

k j k

T v y T v y I u y I u y

I u y I u y I u y I u y

I u y I u y I u y I u y

T v y T

x e e x x e e x

x e x e x x

x e x e x x

x e  , . 
i

v yx e

 

The first inequality is due to the definition of T
0
v; the second inequality is due to C4 and the 

third inequality is due to the submodularity of I in (u, xj). 

   Case  1 2 1 2
, 1, 0.  u u u u  

       

   

   

, , 1, , 0, ,

                                            = , , 1      

                                           , , 1

                             

k j i k j i

j i

j i

T v y T v y I y I y

v y v y

v y v y

      

    

     

x e e x x e e x

x e e e x

x e e x e

   

   

              1, , 0, ,

                                            = , , . 

j i

k j k i

I y I y

T v y T v y

   

  

x e x e

x e x e

 

   The third inequality is due to C4 and C7      , , , 1        
i i ix j x x
v y v y v yx e e x e x . 

Hence 0T v  satisfies C4. 

Property C7: we need to prove that 

         
1

0 0 0 0 0

,

, , 1 , , 1 , 0.




           


n

l j
l

j j
x y x

T v y T v y T v y T v y T v yx x e x e e x x e  

We use the function  , ,I u yx , where  , ,I u yx  is submodular in (u, xj). 
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Let    0

1
, 1 , , 1    

j j
T v y I u yx e x e  and    0

2
, , ,  T v y I u yx e x e  and consider two cases: 

   Case 
1 2

,u u   

       

       

       

0 0

1 2

1 1 1 2

1 2 1 1

, 1 , , , 1 , ,

                   , , 1 , , , , , ,

                   , , 1 , , , , , ,

                   =

        

          

          

j j

j j j

j j j

T v y T v y I u y I u y

I u y I u y I u y I u y

I u y I u y I u y I u y

T

x x e e x x e e

x e x e x e e x e e

x e x e x e e x e e

   0 0, 1 , .    
j

v y T v yx e x e

 

The first inequality is due to the definition of T
0
v; the second inequality is due to C7 and the 

third inequality is due to the submodularity of I in (u, xj). 

   Case 
1 2

,u u  1 2
1, 0. u u

 

       

   

   

0 0, 1 , 1, , 1 0, ,

                                                 , 1 , 1   

                                                 0, , 1, , 1

                 

j j

j

j

T v y T v y I y I y

v y v y

I y I y

        

      

    

x x e e x x e e

x e x e e

x e x e

   0 0                                 = , , 1 . 
j

T v y T v y   x e x e

 

Hence, 0T v  satisfies C7. 

Property C8: we need to prove that 

         
1

0 0 0 0 0

,

, , 2 , 1 , 1 , 0.




          


n

l
l

x y y

T v y T v y T v y T v y T v yx x x e x x e  

We use the function  , ,I u yx , where  , ,I u yx  is submodular in (u,y). 

Let    0

1
, 2 , , 2  T v y I u yx x  and    0

2
, , ,  T v y I u yx e x e  and consider two cases: 

   Case 
1 2

,u u   

       

       

       

   

0 0

1 2

1 2 2 2

1 2 1 1

0 0

, 1 , 1 , , 1 , , 1

                    , , 1 , , , , 2 , , 1

                    , , 1 , , , , 2 , , 1

                     = , 2 ,

        

       

       

  

T v y T v y I u y I u y

I u y I u y I u y I u y

I u y I u y I u y I u y

T v y T v y

x x e x x e

x x e x x

x x e x x

x x e . 

 

The first inequality is due to the definition of T
0
v; the second inequality is due to C8 and the 

third inequality is due to the submodularity of I in (u, y). 
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   Case 
1 2

,u u  1 2
1, 0. u u

 

       

   

   

0 0, 1 , 1 1, , 1 0, , 1

                                               , 1 , 2   

                                               0, , 1, , 1

                             

        

     

   

T v y T v y I y I y

v y v y

I y I y

x x e x x e

x e x e

x e x

   0 0                   = , , 2 .   T v y T v yx e x

 

Hence, 0T v  satisfies C8. 

Operator T  

Define function  ,H yx  as:   0, ( ) ( )H y h b y x x  
 
which is increasing convex function in 

each xi and y. Hence, it satisfies Properties C3-C6 (submodularity/supermodularity). Because 

C1 and C2 (convexity) are implied by C3-C6, function  ,H yx satisfies C1 and C2. Since 

v(x,y) is closed under multiplication by a scalar and addition, Tv satisfies Properties C1-C6. 

We now prove Tv satisfies Properties C7-C8. 

Proof. 

Property C7 

Property C7 can be rewritten as: 

   , 1 ,    
j jx xv y v yx x e . 

 

 

0

0 0

1 1

0

0 0

1 1

, 1 ( ) ( 1) ( , 1) ( , 1) ( , 1)

                  ( ) ( , 1) ( , 1) ( , 1)        ( 1) 0

  

  

 

 

               

             

 

 

j j j j j j

j j j j j

n n
k

x x x x k x k k x

k k

n n
k

x x k x k k x x

k k

Tv y h b y T v y T v y T v y

h T v y T v y T v y b y

x x x x x

x x x x

 

 

 

0

0 0

1 1

0

0 0

1 1

, ( ) ( ) ( , ) ( , ) ( , )

                      ( ) ( , ) ( , ) ( , )       ( ) 0

  

  

 

 

               

             

 

 

j j j j j j

j j j j j

n n
k

x x x x k x k k x

k k

n n
k

x x k x k k x x

k k

Tv y h b y T v y T v y T v y

h T v y T v y T v y b y

x e x e x e x e x e

x e x e x e x e

 

Using C5, ( ) ( ),   
j jx xh hx x e then we have    , 1 ,    

j jx xTv y Tv yx x e  (for each operator 

using C7). 

From above Tv  satisfies C7. 

Property C8 

Property C7 can be rewritten as: 
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   , 1 ,    y yv y v yx x e . 

 

 

0

0 0

1 1

0

0 0

1 1

, 1 ( ) ( 1) ( , 1) ( , 1) ( , 1)

            ( 1) ( , 1) ( , 1) ( , 1)         ( ) 0

  

  

 

 

               

             

 

 

n n
k

y y y y k y k k y

k k

n n
k

y y k y k k y y

k k

Tv y h b y T v y T v y T v y

b y T v y T v y T v y h

x x x x x

x x x x

 

 

 

0

0 0

1 1

0

0 0

1 1

, ( ) ( ) ( , ) ( , ) ( , )

             ( ) ( , ) ( , ) ( , )         ( ) 0

  

  

 

 

               

             

 

 

n n
k

y y y y k y k k y

k k

n n
k

y y k y k k y y

k k

Tv y h b y T v y T v y T v y

b y T v y T v y T v y h

x e x e x e x e x e

x e x e x e x e

 

Using C2, 0 0( 1) ( ),   y yb y b y  then we have    , 1 ,    y yTv y Tv yx x e  (for each operator 

using C8). 

From above Tv  satisfies C8. 

We use the fact that (1) ( )lim n

n
v T v


  for any vA , where 

( )nT  refers to n compositions of 

operator T (see Puterman,1994, Theorem 6.10.4), and (2) ( )nT v T , v
  is the unique solution 

of v=Tv. Hence, TvA,  this completes the proof of Lemma 4.1.  

To describe the optimal policy implied by the aforementioned properties, we define the base-

stock and the rationing levels as follows:  

Definition 4.2: Letting 1 1 1( , , , , ),k k k nx x x x    x , we define the following thresholds  

 
    

    
min 0| , , 0 ,                    0,  or 0, 0,

,
min 0| , , 1 0 ,    0,  0,

 






 




       


 
        



n
i kk k i

nk k
n
i kk k i i

i k

x v y v y y y x

s y
x v y v y y x

x e x

x
x e x e

  

      , min 0| , , ,k k k k kr y x v y v y c  

      x x x e   

      , min 0| , 1 , 0k k kR y x v y v y  

      x x x e . 

Here,  ,k ks y

x denotes the base-stock level for Component k only for 0,  or 0, 0  
n
i k iy y x , 

and below in Theorem 4.1 we will show that  ,k ks y

x  is in fact a rationing level for

0,  0 
n
i k iy x . Besides,  ,k kr y

x  denotes the rationing level for demand of Component k, 

and  ,k kR y

x denotes the rationing level for demand of the assembled product with respect to 

Component k. 
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Note that when 0,  0,n
i k iy x         , min 0| , , 1 0 .  

       
n
i kk k k k is y x v y v yx x e x e  

In this case, the threshold reflects a routing decision rather than a production decision since 

we produce Component k to stock or produce Component k and use this unit to assemble a 

unit of the final product and use the latter to reduce the backlog of the final product. As a 

matter of fact, in this case  ,k ks y

x  is tightly connected to  ,k kR y

x  as shown in the 

following theorem. 

THEOREM 4.1. For Component k, k=1,…,n, the base-stock level ( , )k ks y

x can be 

interpreted as a rationing level of the assembled product at Component k for 0,  0 
n
i k iy x . 

In other words,    , , 1 . 

  k k k ks y R yx x  

Proof:  

For state (x,y), with  , 1k k kx s y

 x , we have  1 , 1 ,k k kx s y

  x and by definition of

 , 1k ks y

 x , we have        , 1 , , 1 ,   
         

n
i kk k i kv y v y v y v yx e e x e e x x e , 

which implies that it is optimal to backorder demand of the assembled product, when

 , 1k k kx s y

 x . 

For state (x,y), with  , 1k k kx s y

 x  then we have  1 , 1 ,k k kx s y

  x  and by definition of

 , 1k ks y

 x , we have        , 1 , , 1 ,   
         

n
i kk k i kv y v y v y v yx e e x e e x x e , 

which implies that it is optimal to satisfy demand of the assembled product, when 

 , 1 .k k kx s y

 x   

Hence, when 10,  0, 
n
k ky x  ,k ks y

x  can be regarded as a rationing level for the 

assembled product at Component k, namely    , , 1 . 

  k k k ks y R yx x  

This completes the proof of Theorem 4.1  

Properties C1- C8 together with Definition 4.2 lead to the structure the optimal policy, 

specified in the following theorem. 

THEOREM 4.2. For Component k, k=1,…,k, there exists an optimal stationary policy 

specified in terms of a state-dependent production base-stock level ( , ),k ks y

x  for 0,y  or 

0, 0n
i k iy x  and a state-dependent inventory rationing level ( , )k kr y

x . For the assembled 

product, there exists an optimal stationary inventory rationing policy specified in terms of a 
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state-dependent rationing level ( , )k kR y

x . In particular, the structure of the optimal policy 

can be described as follows: 

1. Optimal production policy for Component k 

Produce to increase Component k inventory if ( , )k k kx s y

 x  for y=0, or y>0, and 0 
n
i k ix . 

Produce to reduce backorders of the assembled product if  , 1

 k k kx R yx  for y>0, and 

0. 
n
i k ix  

Do not produce if  ,k k kx s y

 x  for y=0, or y>0, and 0 
n
i k ix . 

2.Optimal inventory allocation policy for Component k 

Satisfy demand of Component k if  ,

k k kx r yx . 

Reject demand of Component k if  ,

k k kx r yx . 

3.Optimal inventory allocation policy for the assembled product 

Satisfy demand of the assembled product if  ,k k kx R y

 x  for all k, k=1,2,…,n. 

Backorder demand of the assembled product if at least one component has inventory level 

 , .k k kx R y

 x  

Furthermore, the production and rationing levels have the following properties:
 
 

P1: ( , )k ks y

x  is non-decreasing in both the inventory level ix  of Component i, ,i k and the 

backlog level of the assembled product, y.  

P2:  ,k kr y

x  is non-decreasing in both the inventory level ix  of Component i, ,i k and the 

backlog level of the assembled product, y.  

P3: ( , )k kR y

x  is non-increasing in both the inventory level ix  of Component i, ,i k and the 

backlog level of the assembled product, y. 

Proof of Theorem 4.2 

Part 1. We use the definition of the base-stock level ( , )

k ks yx  and Properties C1 and C7 to 

prove the theorem. Three cases can be considered:  

(1) 0y , by Property C1, we have ( , ) ( , )kv y v y  x e x  is non-decreasing in .kx Hence, 

( , ) ( , )kv y v y  x e x  if ( ,0)

k k kx s x  which indicates that producing Component k to stock is 

optimal, and ( , ) ( , )kv y v y  x x e  if ( ,0)k k kx s  x  which indicates that not producing 

Component k is optimal.  

(2) 0, 0 
n
i k iy x , by Property C1, ( , ) ( , )kv y v y  x e x  if ( , )

k k kx s yx  which indicates that 
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producing Component k to stock is optimal, and ( , ) ( , )   kv y v yx x e  if ( , )

k k kx s yx  which 

indicates that not producing Component k is optimal.  

(3) 0, 0n
i k iy x  , by Property C7, we have ( , ) ( , 1)n

i kk iv y v y 
   x e x e  is non-decreasing 

in .kx  Hence,
 

( , ) ( , 1) 

   
n
i kk iv y v yx e x e  if ( , 1)k k kx R y

 x  which indicates that 

producing Component k to stock is optimal, and ( , 1) ( , ) ( , )n
i k i kv y v y v y  
    x e x e x  if 

( , 1)

 k k kx R yx  which indicates that producing Component k to reduce backorders of the 

assembled product is optimal.  

Part 2. By Property C1, we have ( , ) ( , )   kv y v yx x e  is non-decreasing in xk. 

Hence, ( , ) ( , )   k kv y c v yx x e  if ( , )

k k kx r yx  which indicates that rejecting demand of 

Component k is optimal, and ( , ) ( , )   k kv y v y cx e x  if ( , )

k k kx r yx  which indicates that 

satisfying demand of Component k is optimal.  

Part 3. By Property C8, we have ( , 1) ( , )   v y v yx x e  is non-decreasing in y. Hence, 

( , ) ( , 1)   v y v yx e x  if ( , )

k k kx R yx  which indicates that satisfying demand of the 

assembled product is optimal, and ( , ) ( , 1)   v y v yx e x  if ( , )

k k kx R yx  which indicates 

that backordering demand of the assembled product is optimal. 

Properties P1. By Property C4 we have ( , ) ( , )kv y v y  x e x  is non-increasing in ix  and by 

property C3, we have ( , ) ( , )kv y v y  x e x  is non-increasing in y. 

Properties P2.  By Property C4 we have ( , ) ( , )kv y v y  x x e  is non-increasing in ix  and by 

property C3 we have ( , ) ( , )kv y v y  x x e  is non-increasing in y.   

Properties P3. By Property C7 we have ( , 1) ( , )v y v y   x x e  is non-decreasing in ix  and 

by C8 we have ( , 1) ( , )v y v y   x x e  is non-decreasing in y.  

This completes the proof of Theorem 4.2. 

Theorem 4.2 reveals the structure of the optimal policy. Part 1 indicates that the optimal 

production decision for Component k is always determined by ( , )k ks y

x  and ( , 1)k kR y

 x , 

which depends on the amount of backorder of the assembled product, if any. That is, if y=0, 

the base-stock level ( ,0)k ks x  is defined as the inventory level below which it is optimal for 

the system to produce Component k to stock, and stop producing it when the on-hand 

inventory reaches ( ,0)k ks x . If y>0, there are two cases to be considered. For 0n
i k ix  , there 

is at least one other component with no stock, thus it is optimal for the system to produce 
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Component k to stock when the inventory level is below ( , )k ks y

x , and do not produce it 

when the inventory level reaches ( , )k ks y

x . For 0n
i k ix  , there is stock for all other 

components, thus the production decision can be controlled by ( , 1)

 k kR yx . In this case, we 

produce one unit of Component k and use it to reduce the backorder level of the assembled 

product for  , 1

 k k kx R yx . Otherwise, add it to its stock. For part 2, ( , )

k kr yx  represents 

the rationing level of demand of Component k. When the on-hand inventory of Component k 

is larger than the largest ( , )

k kr yx  for 1, ,k n , the system will use the stock of Component 

k to satisfy the demand of Component k. Otherwise, the system will reserve this stock to 

satisfy future demand of the assembled product. For part 3, ( , )k kR y

x  represents the rationing 

level of demand of the assembled product. When the on-hand inventory of Component k is 

larger than the largest ( , )k kR y

x  for 1, ,k n , the system will use the sock of the different 

components to satisfy the demand of the assembled product. If on the other hand, the stock of 

at least one component, say Component i, is less that its corresponding threshold ( , )i iR y

x  

then stock will be reserved to satisfy future demand of components. Properties P1-P3 reflect 

the monotonicity of the base-stock and rationing levels. Property P1 indicates that when the 

on-hand inventory of other components and backorder level of the assembled product 

increase, production of Component k should increase. Property P2 indicates that the more on-

hand inventory of other components and backorder of the assembled product, the less demand 

of Component k would be satisfied. We express this result as follows: since the production 

decision depends on both the on-hand inventory and the backorder, on the one hand, the 

increased on-hand inventory of other components also increase the probability that the system 

would satisfy demand of the assembled product, on the other hand, the increased backorder 

required more components to balance, thus it is more desired to reserve Component k to 

reduce the backorders. Property P2 implies that it is less desirable to satisfy the demand of 

Component k, when the on-hand inventory of other components and the backorder of the end 

product increase. In contrast, Property P3 indicates that more demand of the assembled 

product would be satisfied when the stock of other components and the backorder of the 

assembled product increase.  

To close this section, we extend our model to the case of the average cost per period criterion.  

Under a control policy  and original state (x,y) the average cost is given by ( , )g y
x : 
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      1

0, 0 1
( ) ( ) ( )

, lim sup .

N n

i i k k iy i k

N

E h t b Y t c N t
g y

N







 



  
  


 x

X
x                        (4.6) 

Our aim is to seek the optimal production policy    that minimizes the average cost per 

period ( , ) inf ( , )g y g y



 x x  for all states (x,y). The optimality equation in this case is as 

follows: 

  0

0 0

1 1

, ( ) ( ) ( , ) ( , ) ( , ),
n n

k

k k k

k k

v y g h b y T v y T v y T v y      

 

      x x x x x              (4.7) 

where 
g  is a finite constant denoting the average cost per period.  

In the following Theorem4.3, we show that the optimal policy under the average cost criterion 

retains all of the properties observed in Theorem4.1 and Theorem4.2 under the discounted 

criterion. 

THEOREM 4.3. The optimal stationary policy under the average cost criterion retains all 

the properties of the optimal policy under the discounted cost criterion. That is, the 

production policy is controlled by a state-dependent base-stock level ( , ),k ks y

x  for 0y  , or

0, 0n
i k iy x   and the allocation policy is controlled by the state-dependent inventory 

rationing levels ( , )k kr y

x  and ( , )k kR y

x . The base-stock and the rationing levels satisfy all 

the properties in Theorem 4.1 and Theorem 4.2. 

Proof of Theorem 4.3  

We deal with the average cot problem through the limit of discounted cost problem with

0  . Since our problem can be formulated as an MDP, there are two conditions must be 

held for the existence of average optimal policy. As showed by Cavazos-Cadena (1992), 

Weber and Stidham (1987): 1. there exists a stationary policy    which achieves a finite 

average cost g 
.
 
2. the number of states in which the cost  ,H y g x  is finite.  

For our model, consider a policy    that is described by: a fixed base-stock level sk for 

Component k, a fixed rationing level rk for demand of Component k, and a fixed rationing 

level R for demand of the assembled product. Each Component k can be produced if its on-

hand inventory xk is below sk, each demand of Component k can be satisfied if the on-hand 
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inventory xk is above rk, and demand of the assembled product can be satisfied if the 

backorder level y is above R. The operators 0T , kT  and 
kT  in equation (4.7) can be written as: 
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, 1            otherwise,
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x        otherwise.                       













 

Since by Properties C1and C2 function  ,v yx  is convex in each of the state variables xk and 

y, there exists the minimum value that  min , g v yx . It is not hard to see that policy    is 

stationary, which achieves a finite average cost and condition 1 holds. Condition 2 is due to 

the fact that,   0, ( ) ( )H y h b y x x , where  1
( )

n

k kk
h h x


x , is increasing convex in xk and y. 

There exists a positive integer   , the number of states in which the cost 

  0, ( ) ( )H y h b y    x x  is finite. Thus, condition 2 holds. 

Based on the above conditions, Weber and Stidham (1987) proposed that there exists a 

positive constant g
*
 and the expected discounted cost v(x,y), then for all sates (x,y): 

  0

0 0

1 1

, ( ) ( ) ( , ) ( , ) ( , ).
n n

k

k k k

k k

v y g h b y T v y T v y T v y    

 

      x x x x x    

So, the average cost per period g
*
 can be determined form the above ineqution.  

This completes the proof of Theorem 4.3. 

4.3 Numerical Study 

In this section, we adopt the average cost per period criterion in our numerical study. In order 
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to explore the optimal policy, we begin our analysis by studying an example of a system 

consisting of two components. We investigate the behavior of the optimal policy for a variety 

of cases, each with a different combination of the system parameters. We use the value 

iteration algorithm as described in Chapter 3. We fix the system parameters as follows

1 2 0 1 21.0,  0.4,  0.5,  0.4,         1 22,  1 h h , and vary b0 and ck (k=1,2). The following 

figures illustrate the structure of the optimal production policy for Component 1 and the 

optimal inventory allocation policy of the assembled product and Component 1. Similar 

results are obtained for Component 2 and demand of Component 2, hence omitted.  

Fig. 4.1(a)-Fig. 4.1(d) show the optimal production policy for Component 1 when the 

backorder cost rate, b0 is much lower than the lost sale costs c1 and c2. Here, we consider the 

following two cases. If y=0, as seen in Fig. 4.1(a), there are no backorders of the assembled 

product, the system can be viewed as a pure lost sales system. The on-hand inventory of 

Component 1 is controlled by the base-stock policy with a base-stock level 1 2( ,0)s x . That is, 

if the on-hand inventory of Component 1 is less than 1 2( ,0)s x , then produce Component k to 

increase its inventory up to 1 2( ,0)s x . Otherwise, do not produce Component k. If y>0, as seen 

in Fig. 4.1(b)-Fig. 4.1(d), the on-hand inventory of Component 1 is controlled by both the 

base-stock level 1 2( , )s x y
and the rationing level 1 2( , 1) R x y . That is, we consider the decision 

of producing to reduce backorders of the assembled product if 1 1 2( , 1) x R x y  and 

2 2 1( , 1)x R x y  , or producing to increase the on-hand inventory of Component 1, otherwise. 

Fig. 4.1(a)-Fig. 4.1(d) also display the structure of the optimal production policy with 

different backorder levels of y. 

In Fig. 4.1(b), the different optimal production regions are determined by three thresholds: 

1 2( ,5)s x , 1 2( ,4)R x  and 2 1( ,4)R x . In region 1 1 2( ,5)x s x  given y=5, x1=35, x2=1 for example, 

the optimal production policy tends not produce Component 1. This means, the backorder 

level is small and the system has a large stock of Component 1 but small stock of Component 

2. In this case, the stock is sufficient for Component 1, thus there is no need to produce it. In 

region  1 1 2 ,4x R x  and  2 2 1,4
x R x  given y=5, x1=20, x2=25 for example, the system has a 

large stock of both Components 1 and 2, the optimal production policy tends to produce 

Component 1 to reduce backorders of the assembled product. In the remaining region, given 

y=5, x1=2, x2=25 for example, the system has a small stock of Component 1 but a large stock 

of Component 2, the optimal production policy tends to produce Component 1 to increase its 
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on-hand inventory. In this case, both Component 1 and 2 can be reserved to satisfy future 

demand of the assembled product. Similar results can also be easily seen from Fig. 4.1(c) and 

Fig. 4.1(d). Comparing these three figures, we observe that the base-stock level 1 2( , )s x y

increases with x2 and y. The optimal production decision region that produces Component 1 to 

increase its on-hand inventory is smaller when backorder level y increases. This result is quite 

intuitive: since the production decision depends on both the on-hand inventory and backorder 

level, the increased backorder required more components to balance. Hence, it is desired to 

produce Component 1 to reduce the backorders rather than produce it to increase its inventory. 

Also form Fig. 4.1(b)-Fig. 4.1(d), the rationing level ( , 1)

 k kR yx , k=1, 2, can be viewed as a 

production parameter, thus the optimal production decision region is bounded by the base-

stock level 1 2( , )s x y  and the rationing level ( , 1)

 k kR yx . 

In Fig. 4.2(a)-Fig. 4.2(d), we still let the backorder cost b0 be lower than the lost sale costs c1 

and c2. But, reduce the difference between them by keeping b0 unchanged and reducing the 

value of c1 to 100 and c2 to 75. In this setting, comparing with Fig. 4.1(a)-Fig. 4.1(d), the 

optimal production regions have changed. For example, as seen in Fig. 4.2(a), when there are 

no backorders, the base-stock level 1 2( ,0)s x is lower than that in Fig. 4.1(a). The fact that 

when both c1 and c2 decrease, the optimal production policy tends to produce more 

Component 1 and 2 to reduce backorders of the assembled product. If y=0, there is no need to 

keep a large number of Component 1 in stock that may increase the holding cost, thus the 

base-stock level 1 2( ,0)s x decreases. If y>0, as seen from Fig. 4.2(b)-Fig. 4.2(d), the optimal 

allocation region that produces Component 1 to reduce backorders of the assembled product 

is larger than that in Fig. 4.1(b)-Fig. 4.1(d) respectively, while the optimal production region 

that produces Component 1 to increase its on-hand inventory becomes smaller. We discuss 

two cases. If x2>0, for the same reason as mentioned in Fig. 4.2(a), the low rationing level 

1 2( , 1) R x y at Component 1 is optimal. On the other hand, when backorder level y increases, 

the system tends to produce more Components 1 to deal with large backorders from the 

assembled product, thus the optimal allocation decision region that produces to reduce 

backorders of the assembled product grows larger. If 2 0x  , the base-stock level 1 (0, )s y with 

different y is lower than that in Fig.4.1 respectively. In that region, demand of the assembled 

product is always backordered whatever the value of x1. Component 1 can be produced to 

satisfy its demand, thus it may not be optimal to keep a high base-stock level for Component 

1.
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                                   (a)  y=0                                                                       (b)  y=5 

 

      

                                    (c)  y=10                                                                     (d)  y=25 

Fig. 4.1. The optimal production policy for Component 1 with lost sales and backorders 

(b0=10, c1=1000, c2=800) 
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In Fig. 4.3(a)-Fig. 4.3(d), the backorder cost b0 is larger than the lost sale costs c1 and c2. In 

this setting, comparing with that in Fig. 4.2, we increase the backorder cost b0 to 200 and keep 

lost sale costs c1 and c2 unchanged. That means the product demand has priority over the 

components demand, thus the former one should always be satisfied if possible. For this 

reason, as displayed in Fig. 4.3(b)-Fig. 4.3(d), it is the more beneficial to produce Component 

1 to reduce backorders of the assembled product as long as
20,  0y x  . Even if there are no 

backorders, see Fig. 4.3(a), the optimal production policy tends to produce more Components 

1 to stock for future demand of the assembled product, thus the base-stock level 1 2( ,0)s x  is 

higher than that in Fig. 4.2(a). For similar reason, if 
20, 0,y x  the base-stock level 1 (0, )s y

with the different value of y
 
is higher than that in Figure 4.2, respectively. Moreover, Fig. 

4.2(b)-Fig. 4.2(d) and Fig. 4.3(b)-Fig. 4.3(d) show that the backorder level has a strong 

impact on the optimal production decision. When there are backorders, the decision that 

produces as much as possible to reduce the backorder is optimal, thus in these figures the 

rationing level becomes very low 1 2( , 1) 0  R x y .  

Fig. 4.4(a) and Fig. 4.4(b) show the structure of the optimal allocation policy for demand of 

the assembled product with larger lost sale costs c1=1000 and c2=800. Fig. 4.4(a) illustrates 

that there exist a rationing level 1 2( , )R x y
that divides the state space into two regions: it is 

optimal to satisfy demand of the assembled product if on-hand inventory for Component 1 is 

above the rationing level 1 2( , )R x y
, and backorder it otherwise. As we can see the rationing 

level 1 2( , )R x y
 is non-increasing in x2. This is because a high inventory level of Component 2 

increases the probability that demand of the assembled product would be satisfied. Hence, the 

rationing level 1 2( , )R x y
 decreases. Otherwise, the rationing level 1 2( , )R x y

 increases. Fig. 

4.4(b) also illustrates that the rationing level 1 2( , )R x y
 is non-increasing in backorder level y. 

It is known that the increase of backorder level would also increase the total cost of the 

system. In order to reduce this effect, it is natural to decrease the rationing level 1 2( , )R x y
 

when the backorder level increases. 

Fig. 4.5(a) and Fig. 4.5(b) show the structure of the optimal allocation policy for demand of 

the assembled product with lower lost sale costs c1=100 and c2=75. Obviously, the rationing 

level 1 2( , )R x y
 is lower than that in Fig. 4.4(b), respectively. This is because in Fig.4.5 the 
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(c)  y=10                                                                     (d)  y=25 

Fig. 4.2. The optimal production policy for Component 1 with lost sales and backorders 

(b0=10, c1=100, c2=75) 
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                                    (c)  y=10                                                                      (d)  y=25 

Fig. 4.3. The optimal production policy for Component 1 with lost sales and backorders 

(b0=200, c1=100, c2=75) 
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assembled product demand has a relative priority over the individual components demand. 

Hence, the assembled product demand would be satisfied easily. Also seen form Fig. 4.5(a) 

and Fig. 4.5(b), the effect of backorder level y is not significant. Especially when x2>1, the 

rationing level becomes to a vertical line with the fixed value x1=1. This means if all 

components are available, it is always optimal to satisfy demand of the assembled product. 

This result also can be seen from Fig. 4.6, when the backorder cost b0 is larger than lost sale 

costs c1 and c2, the optimal allocation region that satisfies demand of the assembled product 

becomes large enough, and then the rationing level 1 2( , )R x y
becomes to x=1, for all y.  

Fig. 4.7(a) and Fig. 4.7(b) show the structure of the optimal allocation policy for demand of 

Component 1 under the condition b0=10, c1=1000, c2=800. As displayed in Fig. 4.7(a), the 

optimal allocation policy divides the state space into two regions: it is optimal to satisfy 

demand of Component 1 if on-hand inventory x1 is above the rationing level 1 2( , )r x y
, and 

reject it otherwise. The rationing level 1 2( , )r x y
is non-decreasing in both the on-hand 

inventory x1 and backorder level y. The explanation is that when backorder level y increases, 

in order to avoid a large backorder cost penalty, it is desirable to assemble more Component 1 

and Component 2 to reduce backorders of the assembled product. Hence, the system tends to 

keep less Component 1 to stock for its demands that leads to the rationing level 1 2( , )r x y
 

increases. Fig. 4.7(b) illustrates that the rationing level 1 2( , )r x y
is also non-decreasing in the 

on-hand inventory x2. Given a fixed backorder level y, a high inventory level of Component 2 

increases the probability that demand of the assembled product would be satisfied. As a result, 

more Component 1 is needed for demand of the assembled product and demand of 

Component 1 becomes difficult to satisfy, thus the rationing level 1 2( , )r x y
increases. In 

contrast, the rationing level 1 2( , )r x y
decreases when the system has a low inventory level of 

Component 2. 

Fig. 4.8(a) and Fig. 4.8(b) show the structure of the optimal allocation policy for demand of 

Component 1 under the condition b0=10, c1=100, c2=75. Obviously, the monotonicity result is 

similar to that in Fig. 4.7(a) and Fig. 4.7(b), but this dynamic trend is more significant. 

Relative to the original lost sale costs in Fig. 4.7, both c1 and c2 decrease in Fig. 4.8. In other 

words, the components demand has a lower priority which reduces the probability that 

demand of Component 1 would be satisfied. Therefore, the rationing level at Component 1 

would be satisfied. Therefore, the rationing level at Component 1 with different value of x2 is   
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       (a)  Optimal rationing policy                               (b)  Optimal rationing policy for fixed values of x2 

Fig. 4.4. The optimal allocation policy for demand of the assembled product at 

Component 1 with lost sales and backorders (b0=10, c1=1000, c2=800) 

 

    

       (a)  Optimal rationing policy for x2=1                          (b)  Optimal rationing policy for x2>1 

Fig. 4.5. The optimal allocation policy for demand of the assembled product at 

Component 1 with lost sales and backorders (b0=10, c1=100, c2=75) 
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Fig. 4.6. The optimal allocation policy for demand of the assembled product at Component 

1 with lost sales and backorders (b0=200, c1=100, c2=75) 

 

 

    

(a)  Optimal rationing policy                        (b) Optimal rationing policy for fixed values of x2 

Fig. 4.7. The optimal allocation policy for demand of Component 1 with lost sales and 

backorders (b0=10, c1=1000, c2=800) 
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 (a)  Optimal rationing policy                         (b)  Optimal rationing policy for fixed values of x2 

Fig. 4.8. The optimal allocation policy for demand of Component 1 with lost sales and 

backorders (b0=10, c1=100, c2=75) 

 

   

(a)  Optimal rationing policy                         (b)  Optimal rationing policy for fixed values of x2 

Fig. 4.9. The optimal allocation policy for demand of Component 1 with lost sales and 

backorders (b0=200, c1=100, c2=75) 
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higher than that in Fig. 4.7, respectively. Such a similar result would be obtained from Fig. 4.9(a) 

and Fig. 4.9(b). 

4.4 Conclusion  

We have provided a characterization of the optimal policy for an ATO system with single 

product with individual components demand. The system defined here considered both lost sales 

and backorders. Specifically, the unsatisfied component demand is lost and the unsatisfied 

product demand is backordered if not fulfilled immediately. At any time, for any component, the 

manager must decide whether to produce it and add it to the stock, to produce and allocate it to 

fill the backorders of the assembled product if any, or not to produce. Also for any incoming 

demand, the manager must decide which demand can be filled. Using MDP, we showed the 

structure of the optimal control policy. In addition, we generated some properties of the base-

stock and the rationing levels. Finally, we conducted a comprehensive numerical study with 

different penalty cost parameters, and analyze the impact of these cost parameters on the optimal 

policy. 
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 Heuristic Policies Chapter 5.

We present several static heuristic policies based on the dynamic programming model of 

Chapters 3 and Chapter 4. For our heuristics, we use static thresholds to approximate the 

optimal state-dependent thresholds. Specifically, these static heuristics provide the simple, yet 

effective approaches for controlling production and inventory allocation of ATO systems. As we 

discussed in the General Introduction, due to the complexity of ATO systems, the optimal policy 

is computationally hard for large number of components. Because of the curse of dimensionality, 

the optimal policy will be difficult to implement. We therefore need to develop efficient heuristic 

policies to find a good approximation of the optimal policy. Of course, the heuristics that we 

proposed here are suboptimal policies, while when these heuristics used effectively they will lead 

to a performance improvement in ATO system. 

The outline of this chapter is as follows: we provide an introduction in section 5.1. In section 5.2, 

we propose three static heuristic policies with lost sales case, and compare the performance of 

them. In section 5.3, we propose four static heuristic policies with mixed lost sales and 

backorders case, and compare the performance of them. Concluding remarks are provided in 

section 5.4. 
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5.1 Introduction 

In the previous Chapters 3 and 4, we proved that the optimal production policy is a “state-

dependent base-stock” policy, and the optimal allocation policy is a “state-dependent rationing” 

policy. However, such dynamic optimal policies may be difficult to carry out in practice 

especially when the number of components is large. On the other hand, since the state space 

considered in our system is infinite, in order to implement the optimal policy we need to truncate 

the state space. Then we use the value iteration method with the exhaustive searching over the 

truncated range to compute the cost function for the system. However, the value iteration used in 

the infinite horizon may lead to an extremely slow convergence. Therefore, we hope to develop 

simple and effective heuristic policies that should closely approximate to the optimal policy.  

In this chapter, we propose several static heuristic policies. Contrary to the optimal policy, these 

heuristics are characterized by static base-stock and rationing levels. That is, the inventory of 

each component is controlled by a fixed base-stock policy, and the allocation of each demand can 

be controlled by a fixed rationing policy or a first-come-first-served (FCFS) policy. Throughout 

this chapter, let sk denote the fixed base-stock level for Component k, and  1 2, ,..., ns s ss . Let rk 

denote the fixed rationing level for demand of Component k, and  1 2, ,..., nr r rr . Let R denote 

the fixed rationing/production level for demand of the assembled product. We define the 

percentage cost difference between a heuristic and the optimal policy as 

 heuristic

heuristicPD =100% - ,g g g   where 
heuristicg  is the average cost per period under heuristic, 

and g
is the average cost per period under the optimal policy. To simplify the computations, we 

focus on a two-component ATO system. In this system, we test the static heuristic policies with 

two cases: the pure lost sales system of Chapter 3, and the mixed lost sales and backorders of 

Chapter 4. For each case, we conduct a numerical study to compare the performance of the 

heuristic policies. The performance is measured through the percentage cost difference between 

the heuristic and the optimal policies. 
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5.2 The Case of Lost Sales 

5.2.1 The Optimal Policy 

Under the optimal policy, the dynamic programming equation can be written as:   
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As presented in Chapter 3, the optimal production policy for Component k is a base-stock policy 

with a state-dependent base-stock level ( )k ks x . The optimal inventory allocation policy for 

Component k is a rationing policy with a state-dependent rationing level ( )k kr x . Both these 

levels are non-decreasing in each of the states xi, i k . Furthermore, it is always optimal to 

satisfy demand of the assembled product whenever on-hand inventory for all components is 

available. 

5.2.2 Three Static Heuristic Policies 

Based on the case of pure lost sales in Chapter 3, we develop three static heuristic policies. The 

key point of these heuristics is to find the fixed base-stock and rationing levels. Once the 

threshold levels are determined, they can be used in the heuristics to control the production and 

allocation of ATO system. 

The Heuristic H1 policy  

We adopt IBR policy developed by Benjaafar and ElHafsi (2006) to our ATO system. Here, we 

redefine it as Heuristic H1. 
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Under Heuristic H1, the dynamic programming equation can be written as:  

  H1 H1,0 H1, H1

0
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n n

k

k k k

k k

v g h T v T v T v  
 

     x x x x x                                (5.1) 

where the operators H1,0T , H1,kT  and H1

kT , are defined as follows:  
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Heuristic H1 is a simplified form of the optimal policy which is much easier to implement. In 

order to find the optimal base-stock and rationing levels, we do an exhaustive search on base-

stock levels over the region      max max max

1 2
0, 0, ... 0,

k
s s s   , where max

k
s  is the largest base-stock 

value for Component k under the optimal policy. We also use the same method to determine the 

rationing levels of each component demand. That is, the rationing levels can be searched 

exhaustively over the region      1 2
0, 0, ... 0, ,  

k
s s s  where 

k
s  is the base-stock value for 

component k. We examine all feasible combinations of base-stock and rationing values, then 

determine the minimum average cost per period gH1 in equation (5.1), from which the base-stock 

and the rationing levels can be obtained.  

The Heuristic H2 policy  

We introduce a heuristic policy with the fixed base-stock and rationing levels, we refer to it as 

Heuristic H2.  

Under Heuristic H2, the dynamic programming equation can be written as:  

  H2 H2,0 H2, H2

0

1 1

( ) ( ) ( ) ( ),
n n

k

k k k

k k

v g h T v T v T v  
 

     x x x x x                              (5.2) 

where operators H2,0T , H2,kT  and H2

kT , are defined as follows:  
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Here, we use the results of (S,R) policy of Ha (1997a) to determine the base-stock and rationing 

levels. Ha (1997a) proposed an (S,R) policy in a make-to-stock production system with two 

demand classes and lost sales. The optimal policy can be described by a base-stock level S and a 

rationing level R. Since demand class 1 is assumed to have priority over demand class 2, the 

rationing policy is used only for controlling demand class 2. In the model of Ha (1997 a), there is 

a single product and two demand classes. In our model, we can decompose the problem with 

respect to the individual components. That is, each Component k is associated with two demands: 

demand of the assembled product and demand of itself. Similarly, since priority is given to the 

product demand, the rationing policy is applied to control Component k demand. Based on the 

above, our ATO system can be decomposed as a series of queuing systems. For each Component 

k the system consists an M/M/1/sk make-to-stock queue (see Buzacott and Shantikumar 1993, 

section 4.3), with the base-stock level sk and the rationing level  k k kr r s . This way, a 

multidimensional optimization problem can be solved as a series of one-dimensional problems.  

We define  ,k kI s r  the inventory level of the system,  0 ,k kp s r  the probability of demand of the 

assembled product that is not satisfied, and  ,k k kp s r  the probability of demand of Component k 

that is not satisfied. We use the results of Ha (1997a) as follows: 
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Hence, for each one-dimensional problem the expected cost of the system is obtained by: 

                                0 0 0, , , , ,  k k k k k k k k k k k kg s r h I s r c p s r c p s r 
 
for

 .k kr s  

We also define  0 ,k k k    
0 0 .k k    Indeed, sk and rk can be determined from 

 
 

,
min , ,  . .  .

k k
k k k k

s r
g s r s t r s Once all sk and rk are obtained, all of them will be used in equation (5.2) 

to determine the minimum of average cost per period gH2.  

The Heuristic H3 policy  

Under Heuristic H3, the production can be controlled by a base-stock policy, while component 

demands are filled on a first-come-first-served (FCFS) basis. Upon the arrival of component 

demand, if there is enough on-hand inventory for that demand, then it is satisfied immediately. If 

there is no available component in stock, the component demand is rejected.  

The dynamic programming equation can be written as:  
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0

1 1

( ) ( ) ( ) ( ),
n n

k

k k k

k k

v g h T v T v T v  
 

     x x x x x                                  (5.3)  

where operators H3,0T  H3,kT  and H3

kT , are defined as follows:  
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We do an exhaustive search on base-stock values over the region      max max max

1 2
0, 0, ... 0,  

k
s s s , 

and then the base-stock levels  1 2
, ,...,

n
s s ss  can be obtained from equation (5.3). 

5.2.3 Comparison to the Heuristic Policies 

We provide the numerical results on the performance measures with respect to the percentage 

cost difference between each heuristic and the optimal policies, and compare the performance of 

the heuristic policies with that of the optimal policy. The system parameters are generated 

randomly from the 100 examples (see Table 5.1).  

Table 5.1 presents results from a set of numerical experiments. In this table, three heuristic 

policies are tested for their efficiency. Comparing the percentage average cost difference per 

period between the optimal policy and the heuristic policies, the numerical results in Table 5.1 

indicate that Heuristics H1 and H2 are efficient and clearly outperform Heuristic H3. This result 

is quite intuitive since H1 and H2 have the benefit of rationing, and the purpose of rationing is to 

reserve inventory for the future arrivals of the more valuable demands. In our numerical result, 

demand varies from component to component, thus the benefit of rationing is significant.  

Heuristic H3 does not perform well especially for cases where component demand is relatively 

high. As we can see in cases 2, 3, 11, 13, 25, 23, 33, 37, 38, 43, 50, 54, 61, 68, 71, 72, 76, 77, 80, 

88, 89, and 92. In all these cases, the demand rate for one of the components is higher than the 

production rate. However, in practice, most systems have sufficient production capacity, thus the 

demands would be satisfied. In fact, with the advantage of its simplicity and ease of 

implementation, Heuristic H3 has been widely used in ATO systems. On the other hand, for 

some special cases Heuristics H1 and H2 are equivalent to Heuristic H3. For instance, we found 

that in cases 9, 10, 18, 22 the percentage difference of Heuristics H1, H2 and H3 are exactly the 

same. Note that in these cases, the rationing level for the component demand equals to 0, this 

means Heuristics H1 and H2 have no benefit of the rationing policy, and these two polices 

therefor can be regarded as Heuristic H3. Additionally, we found that the difference between 

Heuristics H1 and H2 is not very large, especially in cases 7, 9, 10, 18, 20, 22, 24, 32, 33, 36, 39, 

46, 47, 52, 53, 79, 80, 82, 83, 90, 91, 99, where the percentage difference of these two policies is 

exactly the same. But in general cases, Heuristic H1 performs better than Heuristic H2. In 

comparison, Heuristic H1 is more efficient because we do an exhaustive search to determine the 

base-stock and rationing levels, which needs to take into account the on-hand inventory of other 

components. In Heuristic H2, the base-stock and rationing levels can be determined from the 

M/M/1/sk make-to-stock queue, and there is therefore no need to consider the on-hand  
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Table 5.1 Optimal policy versus Heuristic policies with lost sales 

(the system parameters are drawn from uniform distributions as 
0 ~ (0,9), ~ (0,9), ~ (1,10),k kU U U    

0~ (1,10), ~ (600,700), ~ (1,300), 1,2.k kh U c U c U k ) 

 

 

 

H1 H2 H3

1 0.42 7.65 0.33 8.85 5.68 3.78 3.61 621.90 85.54 252.09 1.34 3.73 5.43

2 1.37 6.40 0.64 9.40 8.18 4.38 1.20 689.68 79.68 193.09 1.46 4.99 21.94

3 2.96 2.73 2.06 6.64 7.29 1.43 2.83 617.42 156.46 93.89 0.41 4.92 15.33

4 2.81 3.04 0.60 6.85 4.97 1.19 8.19 653.43 147.48 212.70 1.26 1.52 6.83

5 0.95 6.48 5.22 7.25 8.40 7.60 2.78 629.88 246.48 147.21 0.52 1.54 2.22

6 3.87 1.79 0.32 9.61 6.89 6.96 4.79 688.79 155.10 76.95 4.28 7.35 9.90

7 0.01 0.13 8.76 7.11 5.91 4.30 4.63 687.75 176.76 105.76 0.23 0.23 0.23
8 0.79 2.08 5.11 7.98 8.53 5.81 5.46 646.11 16.61 176.63 0.81 6.51 9.48

9 0.21 6.52 2.30 9.53 2.83 1.62 7.69 656.43 182.96 271.69 0.17 0.17 0.17

10 1.24 0.86 4.72 2.92 8.52 6.12 8.89 667.81 147.06 171.21 0.16 0.16 0.16

11 2.52 5.34 3.09 8.44 1.52 6.14 9.30 607.75 73.62 274.04 0.17 7.12 17.48

12 4.21 2.18 0.83 8.42 8.01 1.61 9.30 699.05 204.43 276.79 1.09 0.57 3.56

13 2.07 0.28 2.59 9.21 4.78 5.78 9.56 674.77 294.54 244.04 2.35 10.54 14.09

14 0.88 4.49 4.49 5.40 9.45 6.62 1.87 677.02 200.29 210.27 0.03 1.10 1.20

15 3.53 2.26 2.26 7.59 2.00 4.01 4.75 654.66 68.63 158.62 1.56 7.52 10.94

16 5.27 1.01 0.29 9.45 3.18 9.01 3.62 678.91 64.40 223.36 0.18 4.41 5.36

17 0.40 6.11 3.26 3.66 4.98 7.61 9.68 650.56 274.23 204.79 0.34 0.42 4.79

18 0.03 1.69 0.51 3.30 2.20 5.66 5.18 623.48 214.97 249.51 0.22 0.22 0.22

19 1.57 2.47 6.54 6.18 9.17 9.41 9.12 698.83 190.37 268.73 0.30 0.42 0.30

20 1.25 2.17 3.36 8.30 5.97 5.32 7.32 692.95 187.58 175.17 0.91 4.51 4.51

21 1.14 5.90 2.80 9.12 8.30 5.69 1.38 646.24 200.24 179.96 0.76 0.85 0.93

22 0.23 6.30 3.52 8.10 6.85 3.74 9.24 683.23 164.89 97.92 0.71 0.71 0.71

23 0.07 4.51 1.18 1.99 3.78 4.89 5.09 654.64 38.08 50.90 2.94 6.86 12.17

24 1.66 1.24 2.02 8.52 6.28 5.53 4.50 614.32 155.09 216.33 0.75 0.90 0.90

25 0.19 5.42 1.61 3.07 4.59 5.94 7.45 665.59 166.51 117.59 1.23 1.32 6.33

26 1.17 0.95 6.48 6.22 7.25 8.40 7.60 648.90 59.99 246.48 0.51 6.58 7.35

27 8.35 3.87 1.79 1.32 9.61 6.89 6.96 625.40 126.81 155.10 0.26 0.90 4.18

28 0.46 5.15 3.56 5.62 5.00 9.01 2.06 643.12 94.13 163.81 0.49 0.69 6.05

29 0.52 2.28 1.26 6.97 6.37 5.04 5.28 612.22 176.61 86.57 2.28 3.92 7.84

30 6.79 4.46 0.45 4.00 1.12 1.46 4.89 627.13 212.31 139.51 0.01 0.14 0.88

31 4.71 7.75 8.49 7.00 1.54 9.41 9.42 624.89 128.39 296.09 0.06 2.29 4.75

32 2.67 6.47 0.15 9.74 7.57 7.08 6.04 643.52 143.62 79.51 0.14 0.14 8.72

33 2.97 2.74 0.61 8.34 8.81 8.96 4.35 627.14 88.26 124.39 0.06 0.06 10.66

34 4.37 6.29 8.22 4.64 8.01 8.17 6.84 615.27 201.08 215.79 0.15 1.94 9.61

35 2.80 0.96 1.56 6.80 8.52 3.42 4.64 694.79 237.33 221.85 0.69 3.51 3.52

36 4.25 2.34 2.46 9.30 9.22 9.48 7.55 688.78 133.90 174.12 0.35 0.35 6.37

37 0.77 7.52 1.54 1.13 3.16 7.44 9.84 642.04 255.05 73.98 0.38 0.41 10.09

38 7.60 1.07 6.90 8.68 1.94 8.97 8.94 607.74 153.68 96.96 0.13 7.02 11.52

39 1.79 2.47 0.14 6.90 4.84 1.87 3.46 663.30 213.43 164.03 1.77 1.77 2.89

40 0.57 1.94 8.66 4.18 9.31 3.65 6.38 625.54 39.92 249.89 0.18 0.34 8.50

41 8.89 1.92 1.53 1.05 9.69 2.20 8.52 625.90 75.44 251.90 0.03 0.39 2.06

42 1.70 0.52 7.81 7.91 9.92 4.43 6.62 665.95 50.30 174.41 0.67 7.99 9.52

43 0.21 3.93 6.67 9.97 3.58 3.70 7.55 601.30 265.15 99.23 0.29 1.16 10.79

44 4.76 1.13 1.57 1.95 7.20 4.98 2.12 640.60 242.30 203.87 0.43 1.99 6.98

45 8.15 6.12 7.15 1.45 4.41 5.92 7.14 600.12 210.63 29.17 0.07 1.00 5.96

46 0.32 2.29 2.80 9.12 8.30 6.88 4.52 676.55 113.51 127.61 0.16 1.16 0.91

47 0.17 5.70 0.47 4.42 8.25 4.59 8.64 658.56 163.12 70.03 0.28 0.28 6.02

48 8.74 2.30 0.75 4.51 3.71 8.97 5.67 672.18 168.80 196.68 0.13 3.50 4.56

49 0.87 8.25 1.31 7.18 3.00 9.14 2.50 620.89 247.49 72.97 0.18 0.33 9.12

50 6.38 0.11 1.66 8.36 3.14 5.50 4.76 625.64 49.28 181.05 0.22 3.64 12.71
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Table 5.1 Optimal policy versus Heuristic policies with lost sales  

(the system parameters are drawn from uniform distributions as 
0 ~ (0,9), ~ (0,9), ~ (1,10),k kU U U    

0~ (1,10), ~ (600,700), ~ (1,300), 1,2.k kh U c U c U k ) 

 

 

  

H1 H2 H3
51 7.33 7.57 7.68 2.87 1.27 3.71 8.01 676.90 138.16 246.69 0.70 3.51 4.27

52 0.74 1.57 0.29 6.41 7.62 7.48 8.30 683.97 144.75 155.34 2.39 2.39 3.86

53 0.59 0.61 0.30 4.00 7.41 9.28 8.47 667.87 19.13 172.37 0.01 0.01 5.64

54 8.22 1.46 4.76 9.50 5.80 3.08 1.64 642.43 162.20 141.81 1.29 1.78 47.35

55 8.74 7.48 0.45 9.31 3.16 6.05 9.49 646.09 162.68 284.84 0.49 1.11 1.30

56 0.69 1.00 2.48 2.40 5.14 1.64 9.75 636.72 13.03 189.10 1.07 1.82 9.43

57 4.37 4.95 8.50 2.66 1.26 7.02 9.62 661.47 80.17 201.71 1.66 3.90 9.42

58 8.24 6.78 8.10 2.00 7.41 9.83 7.05 619.25 194.02 51.01 0.27 2.48 7.40

59 8.62 5.27 6.20 4.32 6.60 4.31 7.50 647.14 299.73 21.57 0.00 2.29 15.48

60 8.68 2.01 6.73 2.00 6.28 9.89 2.35 603.58 52.17 96.56 0.64 1.35 5.64

61 1.42 6.76 4.05 8.02 2.87 1.34 6.94 617.59 10.75 159.73 1.14 1.22 59.12

62 8.74 2.30 0.75 4.51 3.71 8.97 5.67 672.18 168.80 196.68 1.12 2.63 4.69

63 8.61 4.55 2.06 3.18 5.24 9.22 9.76 647.35 264.68 122.88 0.36 4.86 8.28

64 0.63 2.02 0.03 8.70 9.21 3.38 9.94 658.61 19.07 127.52 0.17 3.79 8.19

65 7.64 4.78 2.18 6.43 1.38 2.72 7.01 604.27 163.62 176.82 0.21 0.82 3.00

66 1.28 8.63 7.43 2.19 2.75 3.36 5.08 660.74 111.31 290.63 0.08 0.39 9.92

67 8.41 7.01 3.64 7.40 1.64 4.85 8.60 663.52 216.59 47.27 0.14 2.34 5.13

68 8.24 1.25 8.97 9.61 2.54 7.12 8.43 673.84 294.51 98.22 0.15 1.59 16.06

69 7.13 1.34 0.70 6.18 3.05 2.23 1.75 624.28 47.77 32.58 0.19 4.35 6.63

70 8.64 2.32 3.98 1.54 4.92 7.49 2.20 691.74 256.80 183.68 0.02 1.75 1.94

71 5.90 7.57 0.96 3.11 3.80 1.96 2.56 626.91 193.78 233.86 0.84 0.84 20.70

72 6.24 1.61 2.90 8.71 2.10 5.89 5.94 630.17 136.97 98.49 0.14 1.37 12.28

73 6.82 1.17 1.19 2.06 1.87 2.09 8.02 653.86 298.12 122.68 0.64 1.38 2.95

74 8.41 2.19 6.97 1.14 2.66 8.01 8.23 628.75 129.05 80.67 0.00 2.52 4.79

75 6.11 8.36 7.36 1.39 9.14 7.44 1.54 609.11 145.12 46.94 0.00 0.33 8.71

76 6.82 3.15 7.82 2.52 9.82 9.13 4.59 657.62 37.06 85.02 0.01 1.41 15.59

77 6.69 1.77 0.76 6.84 4.95 9.02 5.74 668.34 177.26 132.59 1.84 9.49 19.03

78 3.53 1.46 2.11 1.77 6.94 3.27 9.24 612.39 121.97 160.69 2.93 4.37 5.68

79 0.87 1.49 0.39 9.36 8.20 8.42 5.15 627.03 188.74 203.92 0.00 0.00 2.05

80 1.54 4.26 7.20 5.06 4.68 2.78 6.65 664.44 175.31 262.74 0.04 0.04 15.08

81 5.82 8.97 5.63 4.56 4.75 3.81 7.65 605.21 201.76 296.68 0.53 3.54 7.01

82 0.29 7.48 8.20 3.67 3.36 7.70 4.88 667.90 87.84 283.14 0.10 0.10 2.77

83 7.05 0.04 4.38 9.22 1.14 6.39 2.70 686.04 176.24 158.78 1.69 1.69 7.72

84 5.27 2.34 7.36 2.23 5.41 1.62 4.83 617.76 206.65 172.82 1.17 5.23 8.01

85 2.49 5.27 1.64 7.70 6.43 5.50 1.14 663.58 185.51 191.68 0.15 1.33 2.77

86 7.41 2.57 1.22 2.65 2.06 6.49 1.96 670.93 294.82 203.16 0.61 4.83 2.54

87 6.76 3.88 5.80 1.96 9.56 5.78 6.83 613.39 221.17 221.85 0.38 3.30 7.24

88 2.85 6.78 5.22 6.63 3.87 8.73 2.78 611.94 103.82 201.87 0.07 0.21 37.98

89 8.55 3.42 4.95 8.02 4.82 8.25 5.41 660.73 175.64 208.85 0.63 1.62 20.56

90 0.09 3.05 4.97 3.53 3.42 9.86 7.56 601.17 74.76 137.47 0.56 0.56 1.43

91 1.39 2.19 0.59 5.32 7.40 9.36 6.15 624.28 88.58 48.01 0.43 0.43 8.68

92 7.59 1.89 8.81 7.58 3.32 7.44 6.19 653.99 235.54 214.42 0.46 2.13 16.63

93 2.51 8.64 2.37 4.04 8.88 7.11 8.36 632.25 54.26 191.92 0.08 0.60 4.47

94 7.16 7.01 4.62 4.92 1.26 1.26 7.64 635.02 78.96 253.47 0.00 0.41 4.10

95 1.91 3.18 2.73 9.31 9.70 9.22 2.85 688.43 144.63 90.23 0.54 1.51 1.51

96 2.45 2.41 0.92 9.82 8.49 6.81 8.30 640.70 121.87 154.62 0.33 1.43 3.71

97 1.38 1.80 1.64 7.35 4.65 5.71 6.78 653.41 54.54 139.56 0.16 3.27 6.29

98 8.30 4.59 4.94 2.24 3.98 8.55 1.23 609.54 264.97 265.44 0.00 0.29 1.52

99 0.81 3.65 0.11 8.40 3.26 7.85 9.38 613.63 58.21 106.54 0.09 0.09 3.74

100 6.94 8.16 2.97 8.53 2.37 4.90 5.02 614.65 274.20 216.54 0.12 2.08 3.16
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inventory of other components. Because of this, the accuracy of approximation under H2 is 

lower than that under H1. However, Heuristic H2 provides a computational advantage. Instead of 

requiring a multidimensional search for the base-stock and rationing levels, H2 offers a quite 

simple and computationally effective way of computing the optimal thresholds. 

Also from the Table 5.1, there is very little difference between the optimal policy and Heuristic 

H1. For example, a maximum of the percentage average cost difference is 4.28%, and a 

minimum is 0.00%. However, the percentage average cost difference between the optimal policy 

and Heuristic H3 is lager with a maximum of 59.12% and a minimum of 0.16%. It is clear that 

Heuristic H1 works best for controlling the ATO system. 

Additionally, the optimal average cost is sensitive to the component production utilization

 0 k k k    . In order to study the combined effect of the related costs (holding cost and lost 

sale costs) and component production utilization on the average cost. From Fig. 5.1(a) and Fig. 

5.1(b) we can see that the optimal average cost increases as 
1  increases. When 

1 1  , the 

optimal average cost is increasing in h1 and c0. Clearly, the effect of the related cost on average 

cost is significant as 
1  is large. However, when 

1 1  , the optimal average cost is decreasing in 

h1 and c0 and the effect of the related cost on average cost is not significant as 
1  is small. We 

can explain this behavior as follows: when
1 1  , the system is busy and has not enough capacity 

to handle all the demands. In this case, the lost sale cost c0 has a dominant effect compared to the 

holding cost h1. On one hand, the increase of the lost sale cost c0 would also incur the average 

cost increases; on the other hand, as showed in Fig. 5.1(a) the higher value of c0 increases the 

value of optimal average cost. When
1 1  , the system is not busy and has a relative large 

capacity to handle the coming demands. In this case, the holding cost h1 has a dominant effect 

compared to the lost sale cost c0. On one hand, the increase of the holding cost h1 would also 

incur the average cost increases; on the other hand, as showed in Fig. 5.1(b) the higher value of 

h1 decreases the value of optimal average cost. 

To gain more insight, we next examine the effectiveness of the heuristics under different holding 

cost and lost sale cost structures. We fix some system parameters as 0 2 2 10.75, 0.2, 1,      

2 1,   while vary the value of the other parameters.  

Fig.5.2 and Fig.5.3 reflect the sensitivity of the percentage difference from optimal cost in 

system cost parameters. We compare the average cost of Heuristic H1 to the average cost of 
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(a)  a range of large values of 1
                                (b)  a range of small values of 1

 

Fig. 5.1. The effect of the relative load on optimal average cost 
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Fig. 5.2. The effect of h1/h2 on the system        Fig. 5.3. The effect of h1/h2 on the system 

under Heuristic H1                                       under Heuristic H3 
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               (a)  Heuristic H1 vs. Heuristic H3                                             (b) Heuristic H1 

 

       

(c)  Heuristic H3                                        (d) Heuristic H3 for a rang of smaller values of 

                                                                                                                       c0/( c1+c2) 

Fig. 5.4 The effect of c0 / (c1+c2) on the system under Heuristics H1 and H3 
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Heuristic H3 with different cost parameters. As shown in Fig.5.2, PDH1 is not monotonic in 

the holding cost ratio h1/h2. For each fixed value of c0/(c1+c2), PDH1 fluctuates a lot between 0% 

to 0.5%. In Fig.5.3, for each fixed value of c0/(c1+c2), PDH3 decreases with h1/h2  for the range 

of 
1 21 14h h  . We also observe that PDH3 fluctuates slightly for the range of 

1 215 29h h  . 

As can be seen form this figure for a fixed value of h1/ h2, we obtain 
   0 1 2 0 1 25 2

PD PD
c c c c c c   

 , 

that is the percentage difference PDH3 is increasing in the relative lost sale cost rate c0/(c1+c2). 

Comparing these two heuristic polices, the effect of the holding cost rate is obvious under 

Heuristic H3. 

Fig. 5.4(a)-Fig. 5.4(d) show the effect of relative lost sale cost rate c0/(c1+c2) on PDH1 and 

PDH3. We fix the lost sale costs c0+c1+c2=2000, but vary c1/c2 in different values. Clearly, in 

Fig.5.4(a) for each fixed value of c1/c2, we can see that the effect of c0/(c1+c2) on PDH3 is 

significant, while this effect on PDH1 is slight. That because Heuristic H1 has the advantage of 

the rationing policy, which can be used to reduce the effect of c0/(c1+c2). However, Heuristc 

H3 does not have the benefit of rationing, thus the relative lost sale cost rate affects PDH3 a lot. 

Fig. 5.4(b) and Fig. 5.4(c) indicate the trend of PD change under different huristics. For 

Heuristic H1, Fig. 5.4(b) shows that 
1 2 3PDc c 

 fluctuates more sharply than 
1 2 1PDc c 

 between 

0.0% and 1.2%. For Heuristic H3, Fig. 5.4(c) covers a rang of  0 1 21 / 14c c c   . We can see 

that for a fixed value of c0/(c1+c2), the percentage differece between 
1 2 1PDc c   and 

1 2 3PDc c   is 

not large. Fig. 5.4(d) covers a rang of  0 1 217 / 29c c c   . We can see that for a fixed value 

of c0/(c1+c2), the percentage difference PDH3 decreases with the ratio c1/c2. For example, at a 

value of c0/(c1+c2)=20, 
1 2 3PD 51.19%c c   , 

1 2 1PD 51.36%c c   ; at a value of c0/(c1+c2)=23, 

1 2 3PD 52.66%c c   , 
1 2 1PD 52.87%c c   ; at a value of c0/(c1+c2)=26, 

1 2 3PD 53.85%c c   ,

1 2 1PD 54.06%c c   . In summary, for each heuristic our numercail results indicat that the 

difference between
1 2 1PDc c 

 and 
1 2 3PDc c 

 is not significant . 

5.3 The Case of Lost Sales and Backorders  

5.3.1 The Optimal Policy 

Under the optimal policy, the dynamic programming equation can be written as:   
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As presented in Chapter 4, for Component k there exists an optimal stationary policy specified 

in terms of a state-dependent production base-stock level ( , ),k ks y

x  for 0,y  or

0, 0n
i k iy x  and a state-dependent inventory rationing level ( , )k kr y

x . For the assembled 

product, there exists an optimal stationary inventory rationing policy specified in terms of a 

state-dependent rationing level ( , )k kR y

x . 

5.3.2 Four Static Heuristic Policies  

Based on the mixed lost sales and backorders case of Chapter 4, we develop four static 

heuristic policies. Throughout this sub-section, we use an exhaustive search to construct 

approximation of the optimal base-stock and rationing levels. Then these threshold levels can 

be applied for controlling the production and allocation of ATO system. 

The Heuristic H4 policy  

Heuristic H4 use a similar idea to the IBR policy developed by Benjaafar and ElHafsi (2006). 

H4 uses fixed thresholds for component and assembled product for production and inventory 

rationing decisions.  
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It is not difficult to show that under Heuristic H4, the dynamic programming equation can be 

written as:  

  H4 H4,0 H4, H4
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We conduct an exhaustive search to find the best base-stock levels sk and rationing levels rk 

and R that minimize the average cost in equation (5.4). That is, we do an exhaustive search on 

base-stock levels sk over the region      max max max

1 2
0, 0, ... 0,  

k
s s s , where max

k
s  is the largest 

base-stock level for Component k under the optimal policy. We exhaustively search on 

rationing levels rk over the region      1 2
0, 0, ... 0, ,  

k
s s s  where 

k
s  the base-stock value for 

Component k under Heuristic H4. We also do an exhaustive search on rationing level R over 

the region  max0, R , where 
maxR  the largest rationing value for the assembled product under 

the optimal policy. Using this technique, the base-stock and the rationing levels and the 

corresponding optimal average cost per period g
H4

 can be determined. 

As we can see, Heuristic H4 has the same structure as the optimal policy except that it uses 

fixed threshold levels rather that the optimal state-dependent ones. Its advantage is that it is 

easier to compute and implement compared to the optimal policy. 

The Heuristic H5 policy 
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 Under Heuristic H5 the production can be controlled by a fixed base-stock threshold, and 

demand of the assembled product is always satisfied as long as stock for all components is 

available. Demand of individual components is rationed through fixed threshold levels similar 

to Heuristic H4. Hence, Heuristic H5 gives priority to the demand of the assembled product 

over the demand of the individual components. 

The dynamic programming equation can be written as:  

  H5 H5,0 H5, H5
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where the operators 
H5,0T , H5,kT  and H5

kT  are defined as follows:  
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Similar to Heuristic H4, we use dynamic programming to compute H5. That is, we do an 

exhaustive search on base-stock levels sk over the region      max max max

1 2
0, 0, ... 0,  

k
s s s , and we 

can also exhaustively search on rationing levels rk over the region      1 2
0, 0, ... 0,  

k
s s s . 

From equation (5.5), we determine the minimum average cost per period g
H5

. 

The Heuristic H6 policy  

Under Heuristic H6 the production can be controlled by a fixed base-stock threshold, and 

demand of the individual component is always satisfied as long as stock for the needed 

component is available. Demand of the assembled product is rationed through fixed threshold 

levels similar to Heuristic H4. Hence, Heuristic H6 gives priority to demand of the individual 

components over demand of the assembled product. 
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The dynamic programming equation can be written as:  

  H6 H6,0 H6, H6
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      x x x x x                (5.6) 

where the operators 
H6,0T , H6,kT  and H6

kT  are defined as follows:  
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In Heuristic H6, the rationing policy is used only for controlling demand of the assembled 

product. That is, if the backorder level for the assembled product is below the rationing level R 

the demand of the assembled product is backordered. Otherwise, demand of the assembled 

product can be satisfied. The base-stock levels sk can be exhaustively searched over the region

     max max max

1 2
0, 0, ... 0,  

k
s s s , and the rationing level R can be exhaustively searched over the 

region max0, R . From equation (5.6), we determine the minimum average cost per period g
H6

. 

The Heuristic H7 policy 

Under Heuristic H7, the production can be controlled by a fixed base-stock policy, while a 

first-come-first-served (FCFS) policy is for both the end product demand and the individual 

components demand. 

The dynamic programming equation can be written as:  

  H7 H7,0 H7, H7

0 0

1 1

, ( ) ( ) ( , ) ( , ) ( , ),
n n

k

k k k

k k

v y g h b y T v y T v y T v y  
 

      x x x x x                (5.7) 
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where the operators 
H7,0T , H7,kT  and H7

kT  are defined as follows:  
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Heuristic H7 is a simple heuristic, where we only need to consider the base-stock levels for 

the production decision. For the demand of the individual components and of the assembled 

product that follow the FCFS rule, if the system has enough stock the coming demand can be 

satisfied. The base-stock levels sk can be computed by exhaustively searching over the region

     max max max

1 2
0, 0, ... 0,  

k
s s s . From equation (5.7), we determine the minimum average cost 

per period g
H7

. 

5.3.3 Comparison to the Heuristic Policies 

We conduct a numerical study to compare the performance of the heuristic policies. The 

performance is measured through the percentage cost difference between the heuristic and the 

optimal policy. The system under study has the following parameters: 0 0, , , ,k k kh b   , and kc  

for k=1,2, which are generated randomly (see Table 5.2). To gain insight, we consider a wide 

range of parameter values for component production utilization  0.5 1.2 k , and the 

backorder cost  2
10 ~ (5,15) k kb U h . Given a combination of the parameters, we compute the 

value of average cost under the optimal policy and each heuristic policy. Table 5.2 is the 

comparison of the optimal and heuristic policies and their corresponding average cost. Here, 

we report the performance of our heuristic policies. As can be seen from Table 5.2, Heuristic 

H4 performs better than the other three heuristics in each example tested with the percentage 

difference varies between 0.004% to 1.808%. It is of interest to notice the relative 

performance of the other three heuristics. Clearly, Heuristics H5, H6 and H7 do not perform 



Heuristic Policies 

159 

as well as Heuristic H4 as they are further simplification of the Heuristic H4. Except for the 

cases 10, 47, 56, 67, 68, 72, 86, and 93, Heuristic H5 outperforms Heuristic H6. This is most 

likely due to the fact that when the arrival rate of end product demand is lower than that of 

components demand (see cases 67, 68, and 86), or the backorder cost is less than the lost sale 

cost (see cases 10, 47, 56, 72, and 93), priority is given to the individual components demand 

over the assembled product demand. In these cases, Heuristic H6 does a better job than 

Heuristic H5. However, in most cases the effect of backorder is higher than that of lost sale. 

This implies that the assembled product demand has higher priority than the individual 

components demand. Thus, Heuristic H5 works better than Heuristic H6. For a particular case 

74, the relative load parameter 1k  and the backorder cost is larger than the lost sale cost. 

In this case the system is out of stock, which leads to lost sales and backorders most of the 

time. Heuristic H4 has the benefit of the rationing policy for both demands of the assembled 

product and the individual components. Since the purpose of rationing is to reserve inventory 

for future arrivals of the more valuable demands, H4 works better than the other heuristics. 

Also, it is easy to observe that Heuristic H5 outperforms Heuristic H7 for all cases. In 

addition, Heuristics H6 and H7 do not perform well especially for cases where component 

demand is relatively high, as we can see in cases 31, 34, 35, 39, 43, 45, 76, 86, 87, 99, and 

100. This reflects the fact that, with high component demand levels, there is a great chance for 

the system to stock-out. Heuristics H4 and H5 reduce the stock-out probability by the fixed 

base-stock and rationing levels for components, while Heuristics H6 and H7 are less flexible 

because there are no rationing levels for components. 

By comparing the above four heuristics, it is clear that Heuristic H4 works very well for 

controlling the ATO system, which is a good approximation of the optimal policy. This is 

because all the base-stock levels and the rationing levels are considered in this heuristic, and 

the production and allocation can be well controlled. Although H4 is very efficient, it is 

computationally intensive because it requires a multi-dimensional search for the optimal 

thresholds. Hence, developing other heuristics is necessary. As shown in Table 5.2, the 

difference in performance of H4 and of H5 is very small for the cases 1, 3, 7, 20, 47, 56, 61, 

64, 67, 83, 86, 95, 96, 99 and 100, if without considering the special case 74, the performance 

of H4 and of H5 is exactly same in the rest of the cases. We can also see that there is 

difference in performance of H6 and of H7 for the cases 1, 7, 47, 56, 61, 86, 95, 96, 99, and 

100, and for the other cases the performance of H6 and of H7 is exactly same. This is due to 

the effect of backorder. In general, if the demand of the assembled product is backordered the  
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Table 5.2 Optimal policy versus Heuristic policies with lost sales and backorders 

(the system parameters are drawn from uniform distributions as
0 ~ (0,10), ~ (0,10), ~ (0,10),k kU U U    

0.5 1.2, k  2
10 0~ (1,10), ~ (5,15) , ~ (100,500), , 1,2.kk k k k k kh U b U h c U k       ) 

 

  

 

H4 H5 H6 H7

1 1.11 1.69 4.26 2.69 5.84 7.08 3.30 112.86 340.34 249.73 0.577 1.351 1.804 2.107

2 2.03 2.74 2.38 4.61 4.93 9.93 2.02 94.16 321.38 443.39 0.039 0.039 1.590 1.590

3 3.98 4.02 5.55 8.98 8.13 4.60 1.42 121.49 429.66 178.85 0.268 0.357 1.206 1.206

4 1.67 5.21 6.30 6.72 7.56 3.47 5.95 78.23 138.03 437.72 0.309 0.309 1.845 1.845

5 2.86 3.21 5.63 5.86 7.85 2.49 8.64 144.00 429.40 489.02 0.285 0.285 0.514 0.514

6 1.27 0.84 0.43 2.99 1.99 5.23 9.16 63.83 414.05 241.37 0.627 0.627 2.556 2.556

7 0.46 2.96 5.71 4.51 8.38 4.64 4.73 165.89 353.85 226.61 0.542 1.258 1.356 4.098

8 1.96 0.98 2.22 3.97 5.52 2.52 8.61 85.71 403.39 334.98 0.909 0.909 1.199 1.199
9 2.67 2.33 2.75 4.90 7.93 8.16 6.17 122.62 275.97 114.50 0.190 0.190 0.577 0.577

10 0.07 3.98 2.87 5.85 5.46 4.96 8.49 92.96 123.68 171.41 0.334 0.450 0.334 0.450

11 1.27 1.20 4.07 2.97 7.41 3.89 9.04 168.27 304.65 318.72 0.486 0.486 2.030 2.030

12 1.03 0.96 1.66 2.18 4.64 7.99 1.59 120.66 328.47 452.40 0.537 0.537 2.601 2.601

13 3.01 7.42 0.84 9.21 6.81 7.05 5.90 143.87 148.75 228.29 0.204 0.204 1.336 1.336

14 2.08 5.45 6.84 9.05 8.79 7.25 2.16 139.83 179.62 456.47 0.065 0.065 0.335 0.335

15 0.09 5.32 3.02 8.83 2.93 5.24 3.59 79.70 283.16 227.49 0.669 0.669 2.332 2.332

16 2.30 2.75 2.29 6.85 6.75 4.89 2.94 125.47 285.79 285.08 0.861 0.861 1.352 1.352

17 2.42 2.94 6.46 8.67 7.52 3.01 1.47 148.58 438.44 112.58 0.312 0.312 0.662 0.662

18 1.14 1.58 0.81 4.02 2.24 5.27 6.61 162.89 102.62 281.61 0.860 0.860 2.831 2.831

19 0.70 4.89 2.87 4.87 5.75 6.14 7.11 166.97 304.18 188.88 0.102 0.102 3.353 3.353

20 0.25 4.26 3.66 5.37 6.97 1.05 9.89 89.27 169.85 126.07 0.005 1.206 2.127 2.127

21 0.23 6.41 2.60 7.86 4.28 6.29 1.31 60.60 352.21 172.74 0.440 0.440 2.715 2.715

22 1.07 2.35 3.22 3.39 5.23 1.06 6.50 79.16 178.02 284.10 0.030 0.030 0.665 0.665

23 1.31 6.81 0.73 9.93 1.77 8.58 8.29 106.27 405.39 430.71 0.538 0.538 3.533 3.533

24 0.48 0.83 5.27 1.60 5.21 8.83 1.60 128.24 316.83 121.32 0.356 0.356 2.355 2.355

25 3.71 1.46 0.70 9.03 6.79 2.10 3.12 167.86 430.86 103.79 0.443 0.443 2.570 2.570

26 1.85 6.17 1.04 9.48 2.57 2.30 2.65 69.19 449.21 340.00 0.760 0.760 3.593 3.593

27 2.28 2.04 1.15 5.46 3.13 1.14 2.17 121.83 402.48 483.01 0.658 0.658 3.127 3.127

28 0.06 4.78 1.47 7.75 1.32 3.53 8.94 153.57 215.63 309.19 1.287 1.287 2.659 2.659

29 0.82 6.56 4.87 7.01 4.95 4.91 6.47 118.24 373.69 237.17 1.157 1.157 5.634 5.634

30 2.74 2.26 0.32 6.11 6.00 9.14 7.23 151.83 329.49 220.45 0.178 0.178 1.943 1.943

31 0.78 5.20 3.24 7.15 6.32 3.04 8.30 156.57 341.78 427.60 0.347 0.347 7.879 7.879

32 2.96 4.23 4.83 9.73 6.84 3.81 4.90 162.99 111.36 214.65 0.527 0.527 0.916 0.916

33 0.58 3.34 7.51 3.55 7.32 6.59 4.38 154.75 147.84 253.44 0.411 0.411 4.321 4.321

34 1.18 0.15 1.99 1.82 4.46 2.39 4.73 165.85 235.30 262.86 0.520 0.520 8.562 8.562

35 0.78 9.24 6.15 9.77 5.97 2.08 6.23 71.92 346.96 323.80 0.117 0.117 7.931 7.931

36 1.48 0.88 1.08 2.68 4.17 4.32 3.94 59.88 182.52 360.38 0.327 0.327 3.755 3.755

37 1.86 3.34 3.12 8.33 5.92 1.80 4.27 146.45 421.13 244.95 0.752 0.752 2.768 2.768

38 0.80 2.09 5.38 4.51 8.60 7.03 8.32 161.35 406.12 266.63 0.488 0.488 6.268 6.268

39 5.34 0.25 1.39 6.25 7.29 1.06 7.61 158.48 486.48 326.77 1.414 1.414 23.623 23.623

40 5.25 1.35 0.36 5.83 6.07 6.45 7.16 83.47 134.05 313.26 0.714 0.714 5.765 5.765

41 6.07 2.77 1.18 9.09 7.49 9.93 2.59 154.61 157.41 251.60 0.845 0.845 4.369 4.369

42 8.15 1.51 2.35 9.47 9.25 5.24 8.12 169.05 224.67 285.65 0.427 0.427 3.092 3.092

43 6.25 0.09 3.42 5.42 8.75 2.87 7.81 118.85 338.32 189.28 0.489 0.489 15.937 15.937

44 1.92 1.87 0.48 3.72 3.34 7.31 3.71 96.13 389.94 187.87 0.458 0.458 6.734 6.734

45 0.34 1.39 1.59 2.31 3.77 6.09 1.83 88.94 415.37 196.13 0.154 0.154 7.591 7.591

46 2.03 0.56 0.76 4.94 2.92 3.14 5.93 98.23 185.96 186.00 0.293 0.293 3.947 3.947

47 0.47 0.10 0.49 0.95 1.67 2.74 9.24 41.16 379.96 422.44 0.010 0.723 0.363 5.593

48 0.48 1.73 3.20 2.07 4.26 2.41 6.14 58.13 148.08 158.49 0.354 0.354 6.094 6.094

49 1.21 2.73 1.94 3.41 4.95 2.01 5.98 111.03 424.00 178.18 0.259 0.259 3.589 3.589

50 1.52 1.84 0.85 4.97 2.19 1.79 6.82 79.56 474.18 268.83 0.184 0.184 3.177 3.177

percentage difference

 from optimal cost %
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Table 5.2 Optimal policy versus Heuristic policies with lost sales and backorders 

(the system parameters are drawn from uniform distributions as
0 ~ (0,10), ~ (0,10), ~ (0,10),k kU U U    

0.5 1.2, k  2
10 0~ (1,10), ~ (5,15) , ~ (100,500), , 1,2.kk k k k k kh U b U h c U k       ) 

 

 

 

H4 H5 H6 H7

51 1.05 0.43 1.71 2.43 3.06 5.90 4.63 82.17 117.63 276.33 0.790 0.790 1.574 1.574

52 0.60 1.03 2.45 2.98 3.42 5.59 4.96 69.88 227.82 454.58 0.149 0.149 5.734 5.734

53 1.32 2.60 1.07 3.84 3.22 4.82 4.60 47.74 182.11 199.48 0.618 0.618 1.371 1.371

54 1.70 2.46 2.37 4.95 3.97 5.76 6.74 92.02 310.57 405.30 0.753 0.753 2.429 2.429

55 0.26 5.19 1.66 4.55 3.36 3.51 4.47 86.85 483.11 384.78 0.726 0.726 3.099 3.099

56 0.79 1.81 1.98 4.57 3.18 2.02 5.49 66.18 209.95 332.79 0.018 0.247 0.112 0.686

57 0.69 1.65 1.96 2.63 4.95 6.84 6.69 52.93 427.26 386.80 0.267 0.267 6.115 6.115

58 0.26 3.79 2.59 3.46 3.20 2.16 8.58 69.10 480.45 197.10 0.243 0.243 0.243 0.243

59 1.97 1.04 0.42 4.81 4.01 1.69 5.66 54.73 200.01 164.37 0.454 0.454 5.052 5.052

60 1.59 2.79 1.45 3.80 3.97 6.80 6.55 83.89 277.30 173.66 0.195 0.195 1.627 1.627

61 0.46 1.84 1.63 2.67 1.92 8.07 7.27 49.97 352.29 277.87 0.004 0.857 0.876 1.169

62 0.78 1.88 3.19 4.20 3.99 1.49 7.46 93.58 348.68 465.15 0.162 0.162 0.185 0.185

63 1.01 1.07 1.94 2.57 3.80 3.84 3.57 51.64 297.04 144.26 0.400 0.400 2.873 2.873

64 0.30 0.24 1.31 0.72 2.68 9.42 9.15 40.28 142.12 356.00 0.004 0.358 0.604 0.604

65 1.14 2.47 0.69 4.69 3.54 4.65 7.08 108.09 388.54 305.73 0.568 0.568 4.842 4.842

66 1.42 0.77 6.51 2.44 9.82 8.56 3.66 74.49 318.02 219.48 0.757 0.757 1.798 1.798

67 0.04 4.73 2.18 5.82 2.16 1.47 9.61 210.47 458.20 143.43 0.129 2.200 2.128 2.829

68 1.30 1.38 7.43 4.35 9.46 4.92 2.30 178.88 155.86 188.07 0.128 1.913 1.405 5.380

69 2.16 1.91 4.31 4.96 7.81 5.03 5.83 93.49 365.78 443.31 0.219 0.219 1.373 1.373

70 1.00 7.47 8.12 9.57 8.10 5.47 1.47 155.48 220.94 353.92 0.505 0.505 4.670 4.670

71 2.67 4.58 2.88 8.30 8.02 6.85 5.54 135.60 198.65 492.38 1.414 1.414 1.830 1.830

72 2.36 7.22 2.05 9.95 4.97 7.44 2.72 83.86 100.10 296.27 0.154 0.154 1.096 1.096

73 0.34 7.99 7.54 7.64 7.75 2.13 7.06 206.66 421.96 331.71 0.768 1.182 1.182 1.182

74 1.23 2.41 9.73 6.79 9.50 2.21 3.22 204.06 369.70 195.20 0.262 6.379 6.379 6.379

75 1.20 2.77 3.61 5.97 7.51 9.05 4.40 213.99 474.80 100.03 0.645 0.645 2.233 2.233

76 1.56 6.87 6.54 9.02 8.31 8.58 6.56 166.86 227.97 371.99 0.185 0.185 11.512 11.512

77 0.54 8.36 2.54 9.54 5.38 1.26 1.68 119.78 305.63 255.31 0.126 0.126 0.126 0.126

78 1.50 4.37 9.17 6.43 9.95 2.05 1.90 127.34 393.21 390.50 0.673 0.673 2.209 2.209

79 1.71 6.67 2.80 7.16 8.61 9.97 3.28 103.01 277.92 410.01 0.284 0.284 1.778 1.778

80 1.09 9.29 6.05 9.81 7.01 3.85 9.17 160.18 493.08 439.47 0.049 0.049 1.206 1.207

81 2.35 5.18 2.83 9.79 7.49 7.76 9.99 113.47 240.79 134.63 0.035 0.035 1.158 1.158

82 2.02 1.69 3.53 3.23 6.15 8.60 4.19 103.31 112.05 321.78 0.234 0.234 2.733 2.733

83 0.06 7.62 7.53 8.28 8.29 7.31 8.79 171.79 332.55 476.42 0.124 0.467 0.937 0.937

84 1.88 1.95 1.07 5.53 3.78 3.34 4.39 137.15 423.48 327.29 0.696 0.696 4.845 4.845

85 0.84 3.50 4.97 7.63 6.51 4.91 2.30 131.28 474.00 399.34 0.149 0.149 0.180 0.180

86 1.35 3.23 3.81 4.03 7.15 1.91 9.53 154.88 216.67 342.51 0.274 0.483 0.436 7.136

87 2.36 1.60 3.44 6.15 8.59 2.21 4.51 147.88 381.74 156.01 0.648 0.648 10.786 10.786

88 3.98 2.44 1.38 6.76 7.97 3.23 5.95 169.17 201.51 125.56 0.824 0.824 3.140 3.140

89 3.55 2.65 0.15 5.99 7.04 6.48 8.48 95.45 252.43 358.64 0.321 0.321 3.996 3.996

90 1.39 6.31 2.87 8.44 4.61 8.18 6.95 156.13 385.49 162.64 0.056 0.056 0.315 0.315

91 2.87 6.20 1.22 9.87 5.81 4.06 6.91 157.53 189.58 342.06 0.401 0.401 1.372 1.372

92 0.81 0.84 2.65 2.37 3.62 2.53 4.48 210.84 471.41 148.77 0.554 0.554 4.754 4.754

93 0.01 3.93 4.42 3.95 6.45 8.28 7.14 173.97 468.35 307.94 0.309 0.780 0.309 3.378

94 4.97 2.04 4.66 8.80 8.76 8.36 1.78 101.93 456.99 113.52 0.563 0.563 0.815 0.815

95 0.90 0.47 0.53 2.07 1.99 3.92 9.23 149.65 425.05 474.70 0.560 0.837 4.102 6.342

96 3.24 1.70 3.25 9.14 7.10 4.99 4.85 202.65 446.59 224.88 0.054 0.054 0.088 4.119

97 1.88 5.00 4.23 7.85 5.71 8.10 4.10 90.06 241.20 164.47 0.513 0.513 4.324 4.324

98 2.68 0.70 1.39 4.93 8.06 6.22 3.46 184.15 102.55 282.97 0.268 0.268 1.250 1.250

99 1.19 6.19 8.69 8.58 9.85 1.43 2.31 117.88 352.09 147.67 0.521 1.046 1.315 11.904

100 4.78 4.23 4.78 8.28 1.88 4.35 2.72 191.95 237.26 218.61 0.955 1.548 1.567 27.374
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the system tends to satisfy it immediately, there is no need to rationing the demand of the 

assembled product, thus the rationing level R for the assembled product equals to 0. 

Consequently, for most cases Heuristic H4 is identical to Heuristic H5, and Heuristic H6 is 

identical to Heuristic H7. Although H5 does not perform as well as H4, and H7 does not 

perform as well as H6, the computational time of H5 and of H7 is significantly faster than that 

of H4 and of H6. Thus, with this advantage Heuristics H5 and H7 are also efficient for 

controlling the system. Our analysis suggests that the manager should pay more attention to 

the rationing policy of the individual components. Since the rationing level rk for Component 

k depends on the on-hand inventory xk, and the rationing level R for the assembled product 

depends on the backorder level y, in comparison, the on-hand inventory level is easier to 

control. 

5.4 Conclusion  

In order to well understand the structure of the optimal policy in ATO system studied in this 

work, we proposed several static heuristic policies for Chapter 3 the pure lost sales and for 

Chapter 4 the mixed lost sales and backorders. The heuristics are characterized by static base-

stock and rationing levels. Note that Heuristics H1 and H4 are similar to the IBR policy in 

Benjaafar and ElHafsi (2006) for the pure product demand system. Here, we used and 

redefined the IBR policy to the mixed demand (demand from the assembled product and 

individual components) system. Based on our numerical experiences, we found that Heuristic 

H1 is a good approximation of the optimal policy in the pure lost sales case, and Heuristics 

H4 and H5 are good approximations of the optimal policy in the mixed lost sales and 

backorders. For the others Heuristics H2, H3, H6 and H7, with the advantage of quite simple 

formulation and fast computation they are also necessary to be considered for controlling our 

ATO system. 
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Conclusions and Future Perspectives 

We conclude our work in this chapter. We considered an ATO system with continuous times 

and infinite-horizon. In this system, both production and demand filling decisions must be 

made. We have studied the pure lost sales case and the mixed lost sales and backorders case 

with exponential production times and Poisson demand. Using the dynamic programming 

formulation for each case, we showed that the structure of the optimal production policy is 

state-dependent base-stock policy, and the optimal allocation policy is a state-dependent 

rationing policy. We characterized the structure of the optimal policy. In addition, we 

developed several simple heuristic policies for the pure lost sales case and the mixed lost 

sales and backorders case. In each case, we compare the performance of the heuristic 

policies, and found a good approximation of the optimal policy. Finally, there are several 

potential avenues for future research.  
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We studied an ATO system with a single assembled product assembled from n components. 

Demand from the individual components can be satisfied or rejected, and demand form the 

assembled product can be satisfied or rejected/backordered. The unsatisfied demand incurs a 

penalty cost. Components are produced one unit at a time on separate production facilities and 

held in stock incur ring a different holding costs. We assume exponentially distributed 

production times, and demand arrives in the system as independent Poisson processes. We 

considered two cases: the pure lost sales and the mixed the lost sales and backorders. For both 

cases, using an MDP approach, we showed that the optimal production policy is a state-

dependent base-stock policy and the optimal allocation policy is a state-dependent rationing 

policy. We also did some numerical experiments to explore the impact on the optimal policy 

of different system parameters. Finally, we proposed three heuristic policies in the pure lost 

sales case and four heuristic policies in the mixed lost sales and backorders case. In each case, 

we compared the performance of heuristic policies and found a good approximation of the 

optimal policy. We now outline several important results in our work: 

For the pure lost sales case 

 The optimal production policy for Component k is a base-stock policy with a state-

dependent base-stock level ( )k ks x  where it is optimal to produce Component k, if 

( )k k kx s  x  and not to produce it otherwise. The optimal inventory allocation policy for 

Component k is a rationing policy with a state-dependent rationing level ( )k kr x  where it 

is optimal to satisfy the demand of Component k if ( )k k kx r  x  and to reject it otherwise. 

Both levels are non-decreasing in each of the states xi, i k . Furthermore, it is always 

optimal to satisfy the demand of the assembled product whenever on-hand inventory for 

all components is available. 

 1. The base-stock level ( )k ks x  for Component k, is non-increasing in the holding cost hk 

and non-decreasing in the lost sales costs c0 and ck, for k=1,2,…,n. 

2. The base-stock level ( )k ks x for Component k, is non-decreasing in the arrival rates 0  

and k  and non-increasing in the production rate µk, for k=1,2,…,n. 

3. The rationing level ( )k kr x  from Component k, is non-increasing in the holding cost  

hk, non-decreasing in the lost sales cost c0 and non-increasing in ck  for k=1,2,…,n. 

4. The rationing level ( )k kr x  from Component k, is non-decreasing in the arrival rates  
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0  and k and non-increasing in the production rate µk, for k=1,2,…,n. 

 We developed three static heuristic policies: Heuristics H1, H2 and H3 for the pure lost 

sales case. Comparing the performance of the heuristic policies with that of the optimal 

policy we found that Heuristics H1 and H2 are efficient and clearly outperform Heuristic 

H3. Heuristic H3 does not perform well especially for cases where component demand is 

relatively high. In comparison, Heuristic H1 is more efficient because it needs to take into 

account the on-hand inventory of other components to determine the optimal base-stock 

and rationing levels. In Heuristic H2, there is no need to consider the on-hand inventory 

of other components that may affect the accuracy of approximation. However, the H2 

offers a quite simple and computationally effective way of computing the base-stock and 

rationing levels. Based on the numerical results, it is clear that Heuristic IBR works best 

for controlling the ATO system.  

For the mixed lost sales and backorders case 

 For Component k, 1, , ,k n  the base-stock level ( , )k ks y

x can be interpreted as a 

rationing level of the assembled product at Component k for 0,  0 
n
i k iy x . In other 

words,    , , 1 . 

  k k k ks y R yx x  

 For Component k, 1, , ,k n  there exists an optimal stationary policy specified in terms 

of a state-dependent production base-stock level ( , ),k ks y

x  for 0,y  or  0, 0n
i k iy x  and 

a state-dependent inventory rationing level ( , )k kr y

x . For the assembled product, there 

exists an optimal stationary inventory rationing policy specified in terms of a state-

dependent rationing level ( , )k kR y

x . In particular, the structure of the optimal policy can 

be described as follows: 

1. Optimal production policy for Component k 

Produce to increase Component k inventory if ( , )k k kx s y

 x  for y=0, or y>0 and 

0n
i k ix  . 

Produce to reduce backorders of the assembled product if  , 1

 k k kx R yx  for y>0, and 

0. 
n
i k ix  

Do not produce if  ,k k kx s y

 x  for y=0, or y>0, and 0n
i k ix  . 

2. Optimal inventory allocation policy for Component k 
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Satisfy demand of Component k if  ,

k k kx r yx . 

Reject demand of Component k if  ,

k k kx r yx . 

3. Optimal inventory allocation policy for the assembled product 

Satisfy demand of the assembled product if  ,k k kx R y

 x  for all k, k=1,2,…,n. 

Backorder demand of the assembled product if at least one component has inventory level 

 , .k k kx R y

 x  

Furthermore, the production and rationing levels have the following properties:
 
 

P1: ( , )k ks y

x  is non-decreasing in both the inventory level xi of Component i, ,i k and 

the backlog level of the assembled product, y.  

P2:  ,k kr y

x  is non-decreasing in both the inventory level xi of Component i, ,i k and 

the backlog level of the assembled product, y.  

P3: ( , )k kR y

x  is non-increasing in both the inventory level xi of Component i, ,i k and 

the backlog level of the assembled product, y. 

 We developed four static heuristic policies: Heuristics H4, H5, H6 and H7 for the mixed 

lost sales and backorders case. Comparing the performance of the heuristic policies with 

that of the optimal policy we found that Heuristic H4 performs better than the other three 

heuristics. Clearly, Heuristics H5, H6 and H7 are the suboptimal policies and they are the 

further simplification of the Heuristic H7. In comparison, in most cases, Heuristic H5 

works better than Heuristic H6. However, when the arrival rate of the assembled product 

demand is lower than that of components demand or the backorder cost is less than the 

lost sale cost, Heuristic H6 works better than Heuristic H5. We observed that Heuristic 

H5 outperforms Heuristic H7 for all cases. In addition, Heuristic H6 and Heuristic H7 do 

not perform well especially for cases where component demand is relatively high. We 

were able to obtain the result that Heuristic H4 works very well for controlling the ATO 

system, which does provide a more precise and a good approximation of the optimal 

policy. 

The results presented in this work encourage us to believe that it will be fruitful to extend the 

research work in multiple directions. We hope to extend the models and heuristics to the 

general assembly system. We list several interesting research directions as follows:  

Production times have an Erlang distribution 
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The limitation of our model is that the production times follow an exponential distribution, 

while this assumption may not be realistic in a real ATO system. In most ATO systems, there 

exists the multistage manufacturing process that incurs production time variability. In order to 

deal with this, the production times are assumed with Erlang distribution. Sicne “information 

on the production status and production time variability” (Gayon et al., 2009), Erlang 

distributions have the advantage of flexibility in modeling production processes. Thus one 

direction for the future research is to study the optimal policy for the general case of Erlang 

production times. As a continuation of this work, it would be useful to extend our model to 

Erlang production times with lost sales/backorders.  

Batch production 

Multiple non-unitary demands 

Batch production and multiple non-unitary demands are common in many real ATO systems. 

In such systems, batch production occurs when many similar components are produced 

together, and demand not always occurs one unit at a time. We assume that demand inter-

arrival times follow a certain distribution, for instance, the Erlang distribution. We consider 

batch production and multiple non-unitary demands in a single model with multiple products 

and various demand size. 

Develop efficient heuristics for the above models 

Due to uncertain product demand, and production leadtimes for different components is 

different, ATO systems tend to be difficult to manage. The key challenge for ATO systems is 

to efficiently manage component inventories and make optimal production and allocation 

decisions. The above models presented are more general cases of ATO systems, which would 

be more difficult to analyze. We can also use an MDP approach to determine the optimal 

policy for such systems. However, the structure of the optimal policy would not be simple. 

Also, the optimal policy would not be easy to implement. Thus, we expect to develop the 

efficient heuristics for such systems, which should be more easy for system managers to 

comprehend and implement in practice.  
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Résumé Etendu en Français 

L'objectif principal de ce travail est d'étudier un cas particulier d'un système de fabrication 

assemble-to-order (ATO) qui est non seulement sujette à la demande pour le produit assemblé 

mais également sujette à la demande pour les composants individuels. À cette fin, nous 

utilisons un cadre de processus de décision markovien (MDP) pour formuler le système et 

nous étudions par la suite la politique optimale. 

Introduction générale 

Dans l'environnement économique actuel d'aujourd'hui, avec le renforcement de la 

compétitivité du marché mondial, la personnalisation de masse est devenue un objectif majeur 

pour de nombreuses entreprises de fabrication. Cette tendance avait forcé les entreprises à 

adopter une stratégie d'exploitation hybride à mieux traiter une variété d'environnements de 

marché. Dans ce but, un système d'assemblage connu comme ATO, a émergé et est devenu 

plus populaire. Un système ATO produit plusieurs composants et les assemble en une variété 

de produits finis. L’information sur les demandes arrive seulement pour les produits finis, 

mais le système garde l'inventaire au niveau de composants (Song et Zipkin, 2003). 

Les systèmes ATO peuvent être considérés comme une affectation de ressources multiples qui 

induit la planification de production, la satisfaction des contraintes et l’affectation des stocks. 

Les systèmes ATO représentent une stratégie de logistique populaire utilisée en gestion de 

fabrication. En raison de la complexité croissante des systèmes de fabrication d'aujourd'hui, le 

défi pour les systèmes ATO est de gérer efficacement les stocks de composants et de trouver 

les décisions optimales de production et d'affectation. 

Nous étudions un système ATO avec un produit unique qui est assemblé à partir de plusieurs 

composants. Le système doit répondre à une demande non seulement du produit assemblé, 

mais aussi des composants individuels. Nous considérons le cas avec seulement des lost sales 

puis le cas mixte lost sales et backorders avec des temps de production suivant des lois de 

type exponentiel et une demande sous forme de loi de Poisson. Nous formulons le problème 
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comme un Processus de décision markovien (MDP), et nous considérons deux critères 

d'optimalité qui sont le coût actualisé et le coût moyen par période. Nous caractérisons la 

structure de la politique optimale et étudions l'impact des différents paramètres du système sur 

cette politique. Nous présentons également plusieurs heuristiques pour le cas lost sales et le 

cas mixte lost sales et backorders. Ces heuristiques fournissent des méthodes simples, mais 

efficaces pour contrôler la production et l’affectation des stocks du système ATO. 

Aperçu de la thèse 

Dans chaque chapitre, nous traitons un ATO système avec des demandes en composants 

individuels. Nous nous concentrons sur le cas lost sales et le cas mixte lost sales et 

backorders. Pour chaque cas, nous commençons par présenter un aperçu de la revue de la 

littérature. Ensuite, nous formulons le modèle de problème et étudions la politique optimale 

du système, puis nous développons les heuristiques pour résoudre le problème. A la fin, nous 

présentons des exemples numériques pour analyser la performance et démontrer l’efficacité 

des heuristiques proposés. 

Le Chapitre 1 correspond à l’introduction générale qui présente les principes généraux de 

système ATO et la revue de l’état de l’art. Nous présentons, de même, les notions de base 

utilisées tout au long de cette thèse, tels que (i) la définition des systèmes ATO, (ii) le rôle 

important de contrôle optimal, (iii) les principes de l’approche générale, (iv) et les paramètres 

du problème. Enfin, nous concluons ce chapitre avec un plan de la thèse. 

Le Chapitre 2 est une brève revue des travaux existants sur le système ATO. Tous d’abord, 

nous présentons l’état de l’art des systèmes make-to-stock en vertu du MDP et des systèmes 

ATO en vertu de l’examen continu et de l’examen périodique. Nous nous intéressons plus 

particulièrement aux systèmes ATO en temps continu qui motive cette partie de la thèse. Dans 

cette ligne de recherche, nous étudions le modèle qui traite le système ATO avec deux types 

de demandes: une demande en produit assemblé et une demande en composants individuels. 

À notre connaissance, il y a actuellement peu de travaux dans ce domaine. Nous espérons que 

la recherche présentée dans ce travail enrichit la littérature actuelle sur les systèmes ATO avec 

le type de demande en composants individuels.  

Le Chapitre 3 vise à caractériser la politique optimale du système ATO avec le cas lost sales. 
Dans ce chapitre, nous supposons que si une demande en produit assemblé ou en composants 

individuels ne peut être satisfaite immédiatement, elle sera perdue. Nous proposons un 
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modèle de programmation dynamique afin de déterminer la politique de contrôle optimal d'un 

tel système. Nous formulons le problème en utilisant une méthodologie MDP et en utilisant 

deux critères d'optimalité, qui sont le coût actualisé et le coût moyen par période. En outre, 

nous déterminons la structure de politique optimale et étudions l'impact des différents 

paramètres sur la politique optimale. Nous testons le système avec un large éventail de 

paramètres du système et nous montrerons que les niveaux de base-stock et de rationnement 

sont sensibles aux paramètres du système.  

Le Chapitre 4 vise à caractériser la politique optimale du système ATO avec le cas mixte lost 

sales et backorders. Dans ce chapitre, nous supposons que (i) si une demande en produit 

assemblé ne peut être satisfaite immédiatement, elle attendra la future disponibilité, (ii) et si 

une demande en composants individuels ne peut pas être satisfaite immédiatement, elle sera 

perdue. La gestion efficace d'un tel système est difficile étant donné les exigences de 

composantes corrélées. Pour résoudre ce problème, nous le formulons comme un MDP et 

nous caractérisons sa politique optimale. Enfin, nous étudions l'impact des différents 

paramètres de coût de pénalité sur la politique optimale. 

Pour le Chapitre 5, nous présentons plusieurs heuristiques qui sont basés sur le modèle de 

programmation dynamique étudié dans les Chapitres 3 et 4. Pour ces méthodes approchées, 

nous utilisons l'approche des seuils statiques qui permet de se rapprocher à la politique 

optimale du système. Plus précisément, ces heuristiques fournissent des méthodes simples, 

mais efficaces pour contrôler la production et l’affectation des stocks du système ATO. En 

raison de la complexité de ces systèmes, la politique optimale est mathématiquement difficile 

pour un grand nombre de composants. Nous devons donc développer d’autres heuristiques 

plus efficaces pour trouver une bonne approximation de la politique optimale. Evidemment, 

les heuristiques proposées sont des politiques sous-optimales, mais lorsqu’elles sont utilisées 

efficacement, elles permettent d’améliorer les performances dans le système ATO. 

Nos contributions 

Etant donnée la revue de la littérature existante, nous pouvons dire qu’il existe peu de travaux 

concernant les systèmes ATO avec le type de demande en composants individuels. Nous 

décrivons maintenant plusieurs résultats importants dans notre travail. 

Nous avons en premier lieu, étudié un système ATO dans le cas lost sales pour des demandes 

en produit assemblé et composants individuels. Nous avons démontré que la politique 
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optimale de production pour un Composant k peut être décrite par le niveau de base-stock état 

dépendant, qui est non-décroissant sur le niveau de l’inventaire d'autres composants. Nous 

avons aussi démontré que la politique optimale d’affection pour un Composant k peut être 

décrite par le niveau de rationnement état dépendant, qui est non-décroissant sur le niveau de 

l’inventaire d'autres composants. Dans ce cas, nous pouvons produire une unité de Composant 

k, si le niveau d’inventaire de Composant k est inférieur au niveau de base-stock, sinon nous 

ne faisons rien. Nous pouvons satisfaire une unité de demande en Composant k, si le niveau 

d’inventaire de Composant k est inférieur au niveau de rationnement, sinon nous pouvons la 

refuser. 

En deuxième lieu, Nous avons étudié un système ATO dans le cas mixte lost sales pour la 

demande en produit assemblé et backorders pour la demande en composants individuels. En 

plus de considérer l'inventaire du système, le niveau de backorder de produit assemblé doit 

également être envisagé. Nous avons démontré que dans quelques conditions, le niveau de 

base stock peut être interprété comme un niveau de rationnement du produit assemblé au 

Composant k. Nous avons aussi démontré que la politique optimale peut être décrite par trois 

types de seuil état dépendant: (i) pour le Component k, il existe le niveau de base-stock, et le 

niveau de rationnement, (ii) pour le produit assemblé, il existe le niveau de rationnement. 

Tous les types de seuil dépendent de l'inventaire du système et du niveau de backorder du 

produit assemblé. 

Troisièmement, nous avons développé trois heuristiques pour le cas lost sales, et quatre 

heuristiques pour le cas mixte lost sales et backorders. Sur la base de nos expériences 

numériques, nous avons constaté que l’Heuristique H1 est une bonne approximation de la 

politique optimale dans le cas lost sales, et que les Heuristiques H4 et H5 sont de bonnes 

approximations de la politique optimale dans le cas mixte lost sales et backorders. Pour les 

autres Heuristiques H2, H3, H6 et H7, étant donné leur simple formulation et leur calcul 

rapide, ils sont également nécessaires pour contrôler le système ATO étudié. 

Perspectives d'avenir 

Les résultats présentés dans ce travail nous incitent à croire qu'il sera utile de prolonger les 

travaux de recherche dans de multiples directions. Nous espérons étendre les modèles et 

heuristiques pour le système de l'assemblée générale. Nous listons plusieurs directions de 

recherche intéressantes comme suit: 
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Les temps de production ont une distribution Erlang 

Toutefois, il existe des limites à nos recherches, tel que les temps de production suivent une 

distribution exponentielle, alors que cette hypothèse n'est pas réaliste dans un véritable 

système ATO. Dans la plupart des systèmes ATO, il existe des processus de fabrication par 

lots de plusieurs étages dans lequel les composants peuvent être produits ce qui engendre la 

variabilité des temps de production. Afin de régler ce problème, les temps de production sont 

supposés avec Erlang distribution. Avec les caractéristiques de “information on the 

production status and production time variability” (Gayon et al., 2009), les distributions 

Erlang ont l'avantage de flexibilité dans la modélisation des processus de production. Ainsi, 

une direction pour la recherche future est d'étudier la politique optimale pour le cas général 

d'Erlang temps de production. Dans le prolongement de ce travail, il serait utile d'étendre 

notre modèle à Erlang temps de production avec le cas lost sales/backorders. 

Production en lots 

Demande non unitaire 

La production en lots et la demande non unitaire sont communs dans de nombreux systèmes 

ATO réels. Dans un tel système, une demande n’arrive pas toujours seule fois mais elle peut 

avoir lieu continuellement au cours du temps. Nous pouvons supposer que les temps de 

demande inter-arrivée suivent une certaine distribution, par exemple, la distribution Erlang. Il 

est nécessaire de considérer un système ATO avec une production en lots ou une demande 

non unitaire, ou combiner ces deux cas dans un modèle unique. Dans ce cadre, nous pouvons 

étudier les systèmes avec des produits multiples et différentes tailles de demandes.  

Développer des heuristiques efficaces pour les modèles décrits ci-dessus 

En raison de l’incertitude des demandes de produits et de la différence des délais de 

production pour des différents composants, les systèmes ATO ont tendance à être difficiles à 

gérer. Le principal défi pour les systèmes ATO est de gérer efficacement les stocks de 

composants et de prendre des décisions de production et d’affection optimales. Les modèles 

présentés ci-dessus sont des cas plus généraux des systèmes ATO, qui seront plus difficiles à 

analyser. Nous pouvons aussi utiliser une approche MDP pour déterminer la politique 

optimale pour ces systèmes. Cependant, la structure de politique optimale ne serait pas simple. 

En outre, la politique optimale ne serait pas facile à mettre en œuvre. Ainsi, nous projetons de 
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développer des heuristiques efficaces pour de tels systèmes, qui devraient être plus faciles à 

exploiter et à mettre en œuvre dans la pratique pour les gestionnaires du système. 
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Commande optimale (en Production et Stock) de Systèmes Assemble-To-Order (ATO) 

avec prise en compte de demandes en composants individuels 

Résumé: Les systèmes assemble-to-order (ATO) peuvent être considérés comme une 

affectation de ressources multiples qui induit planification de production, satisfaction des 

contraintes et affectation des stocks. Les systèmes ATO représentent une stratégie de 

logistique populaire utilisée en gestion de fabrication. En raison de la complexité croissante 

des systèmes de fabrication d'aujourd'hui, le défi pour les systèmes ATO est de gérer 

efficacement les stocks de composants et de trouver les décisions optimales de production et 

d'affectation. 

Nous étudions un système ATO avec un produit unique qui est assemblé à partir de plusieurs 

composants. Le système doit répondre à une demande non seulement du produit assemblé, 

mais aussi des composants individuels. Nous considérons le cas avec seulement des lost sales 

puis le cas mixte lost sales et backorders avec des temps de production suivant des lois de 

type exponentiel et une demande sous forme de loi de Poisson. Nous formulons le problème 

comme un Processus de décision markovien (MDP), et nous considérons deux critères 

d'optimalité qui sont le coût actualisé et le coût moyen par période. Nous caractérisons la 

structure de la politique optimale et étudions l'impact des différents paramètres du système sur 

cette politique. Nous présentons également plusieurs heuristiques pour le cas lost sales et le 

cas mixte lost sales et backorders. Ces heuristiques fournissent des méthodes simples, mais 

efficaces pour contrôler la production et l’affectation des stocks du système ATO. 

Mots-clefs: systèmes assemble-to-order, contrôle optimal, Processus de décision markovien 

 

Integrated Production and Inventory Control of Assemble-To-Order Systems with 

Individual Components Demand 

Abstract: Assemble-to-order (ATO) systems can be regarded as a multiple resource 

allocation that induces production planning, requirements fulfilling and inventory assignment. 

ATO is a popular strategy used in manufacturing management. Due to the increasing 

complexity of today’s manufacturing systems, the challenge for ATO systems is to efficiently 

manage component inventories and make optimal production and allocation decisions.  

We study an ATO system with a single product which is assembled from multiple 

components. The system faces demand not only from the assembled product but also from the 

individual components. We consider the pure lost sales case and the mixed lost sales and 

backorders case with exponential production times and Poisson demand. We formulate the 

problem as a Markov decision process (MDP), and consider it under two optimality criteria: 

discounted cost and average cost per period. We characterize the structure of the optimal 

policy and investigate the impact of different system parameters on the optimal policy. We 

also present several static heuristic policies for the pure lost sales and the mixed lost sales and 

backorders cases. These static heuristics provide simple, yet effective approaches for 

controlling production and inventory allocation of ATO system.  

Keywords: Assemble-To-Order systems, optimal control, Markov decision processes. 


