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Context

The general framework of the manuscript is the approximation of a real-valued function z(x):

z:QC R SR

r o z(x)

from some of its values {z(x1),...,2(zn)}, (%i)i=1,..n € Q where @) is a nonempty open set
called the input parameter space. We suppose that we do not have any information about this
function. Such a function is generally called in the computer experiments literature a black-
box function and it represents the output of a computer code taking x as input parameters.
Computer codes are widely used in science and engineering to describe physical phenomena.
The term “Computer Experiments” refers to mathematical and statistical modeling using
experiments performed via computer simulations. This kind of experiments is often called
“experiments in silico”.

To approximate the relation between the input variable x and the response variable z(x),
the only available information is the so-called experimental design set D = {x1,...,2z,} and
the known outputs z" = {z(z1),...,2(x,)} of z(x) at points in D. Nevertheless, they are not
sufficient to build a surrogate model for z(z). Indeed, we also have to make some assumptions
about the space where z(x) lies.

A legitimate question that we can point out is the necessity to control the number n of
observations. Indeed, a natural way to know the output z(z) is to simulate the computer
code with the input variable x. Nonetheless, advances in physics and computer science lead
to increased complexity for the simulators. As a consequence, performing an uncertainty
propagation, a sensitivity analysis or an optimization based on a complex computer code is
extremely time-consuming since it requires a large number of computer simulations. Therefore,
to avoid prohibitive computational costs, a fast approximation of the computer code - also
called surrogate model or meta-model - is built with a restricted n.

The statistical approach is widely used for the analysis of computer experiments since
there are many sources of uncertainty to consider. We summary them in the following graph.
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Statistical analyses generally deal with the measurement, the modeling and the meta-
modeling errors. The modeling error has two main sources of uncertainty. The first one
is the mathematical approximation of the phenomena including physical simplifications and
the second one is the uncertainty about the values of the physical parameters present in
the model. The measurement error represents the uncertainty between the real phenomena
and our observations of the phenomena. Finally, the meta-model error corresponds to the
uncertainty due to the approximation of the code output. Since the meta-models are also
implemented with computer codes, this part includes discretization, truncation and round-off
errors.

We note that the discretization error is due to the transcription of the mathematical
model - generally considering continuous functions - into a discrete model. Furthermore, the
truncation error is due to the fact that computers can only deal with finite approximations
and the round-off error arises because we can only represent a finite number of real numbers
on a machine. We highlight that nowadays, we cannot handle all sources of uncertainty and
thus the ones between the reality and the surrogate model remain unknown.

In this manuscript, we focus on the measurement and on the meta-modeling errors. In
particular, we consider the Gaussian process regression - also called kriging model - as surrogate
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model. It is a useful and very popular tool to approximate an objective function given some
of its observations (see e.g [Sacks et al., 1989b], [Sacks et al., 1989a|, [Currin et al., 1991],
[Morris et al., 1993], [Laslett, 1994], [Koehler and Owen, 1996], [Schonlau, 1998], [Stein, 1999,
|[Kennedy and O’Hagan, 2001], [Santner et al., 2003], [Fang et al., 2006], [O’'Hagan, 2006],
[Conti and O’Hagan, 2010], [Bect et al., 2012| and |Gramacy and Lian, 2012]). It corresponds
to a particular class of surrogate models which makes the assumption that the response of
the complex code is a realization of a Gaussian process. A strength of this approach is that
it provides a basis for statistical inference through the Gaussian assumption. It has originally
been used in geostatistics by [Krige, 1951] to interpolate a random field at unobserved locations
(see [Matheron, 1963], [Matheron, 1969], [Chilés and Delfiner, 1999|, [Wackernagel, 2003],
[Berger et al., 2001] and |Gneiting et al., 2010]) and it has been developed in many areas such
as environmental and atmospheric sciences. It was then proposed in the field of computer
experiments by [Sacks et al., 1989b]. During the last decades, this method has become widely
used and investigated.

We introduce the Gaussian process regression in Part I. This chapter is inspired by the
books of [Stein, 1999], [Santner et al., 2003] and [Rasmussen and Williams, 2006], the reader
is referred to them for more detail about kriging model. In this part, we introduce in Chapter
1 the univariate kriging model, i.e. when the output of the objective function is a scalar. In
this chapter, we present different approaches for the kriging model: from the Bayesian one
in Section 1.2 to the original one introduced by [Krige, 1951] in Section 1.5. Furthermore,
throughout Chapter 1 we present some methods to implement and use in practical way the
kriging model. In particular, in Section 1.3 we present classical mathematical tools and recent
advances about model selection in a Gaussian process regression context. Moreover, in Section
1.4 we discuss about covariance kernels which are an important element of kriging model.
Finally, we give in Chapter 1 some theoretical insights about Gaussian process regression.
More specifically, we deal with spectral representation of a Gaussian process in Section 1.4
and we propose a short introduction to reproducing kernel Hilbert spaces in Section 1.5.

Then, in Chapter 2, we present kriging models in a multivariate framework. The corre-
sponding method is called co-kriging and is used when the output of the objective function
is a vector with correlated components. First in Section 2.1, we extend the Bayesian kriging
equations presented in Section 1.2 for the co-kriging models. Second, we present in Section
2.2 the original co-kriging model introduced in the geostatistical literature. We will see that
the Bayesian and the geostatistical approaches are equivalent. Then, in Section 2.3 we discuss
about matrix-valued covariance kernels which are an important ingredient of the method with
a non-trivial definition. Finally, in Section 2.4, we give an example of a co-kriging model
widely used in computer experiments which allows for taking into account the derivatives into
the model building.

Sometimes low-fidelity versions of the computer code are available. They may be less
accurate but they are computationally cheap. A question of interest is how to build a surrogate
model using data from simulations of multiple levels of fidelity. The objective is hence to
build a multi-fidelity surrogate model which is able to use the information obtained from the
fast versions of the code. Such models have been presented in the literature |Craig et al.,
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1998], [Kennedy and O’Hagan, 2000], [Higdon et al., 2004], [Forrester et al., 2007|, [Qian
and Wu, 2008] and [Cumming and Goldstein, 2009]. We propose in Part II some derivations
and extensions to the model proposed by [Kennedy and O’Hagan, 2000] and investigated by
[Higdon et al., 2004], [Forrester et al., 2007] and [Qian and Wu, 2008|. First of all, we present
this model in Chapter 3 and we deal with some key issues that make difficult to use the
suggested model for practical applications. In particular we propose in sections 3.3 and 3.6
an original approach for the parameter estimations which is effective even when the number
of code levels is large. Furthermore, we propose in Section 3.4 a Bayesian formulation of the
model which allows to consider prior information in the parameter estimations and integrates
all the uncertainty due to the estimation of the parameters. We also proposed some tricks
to reduce the computational complexity of the model. Comparisons have been performed
between our model and the ones of [Kennedy and O’Hagan, 2000] and [Qian and Wu, 2008]
on a academic example in Section 3.5 and on an application in Section 3.7. They show that our
approach improves the former ones both in terms of prediction accuracy and computational
costs.

Then, in Chapter 4, we suggest another approach to build multi-fidelity co-kriging models
based on a recursive formulation. With this original formulation presented in Section 4.2, we
obtain the same performance in terms of prediction accuracy and computational costs as the
model proposed in Chapter 3 when we use the suggested improvements. However, it allows
for extending classical results of kriging to the considered co-kriging model. In particular,
we give Universal co-kriging equations in Section 4.3 which integrate the uncertainty due to
the estimation of some parameters. Moreover, in Section 4.4 we give computational shortcuts
to compute the cross-validation procedure for the suggested multi-fidelity co-kriging model.
The efficiency of the recursive formulation of the model is emphasized on an application in
Section 4.5. We also implement this model in a R CRAN package named “MuFiCokriging”
(http://cran.r-project.org/web/packages/MuFiCokriging) and present it in Section 4.6.
Another strength of the approach presented in Chapter 4 is that it allows for obtaining the
contribution of each code level into the total model variance. We use this important property
in Chapter 5 to propose sequential design strategies in a multi-fidelity framework.

In Chapter 5, we first propose original kriging-based sequential design strategies in Section
5.1. The novelty is that they take into account the model prediction capability into the
sequential procedure and not only the estimated model variance. Then, we give in Section
5.2 a method to extend the kriging-based sequential design strategies to the multi-fidelity co-
kriging model. We note that, in a multi-fidelity framework, the search for the best locations
where to run the code is not the only point of interest. Indeed, once the best locations are
determined, we also have to decide which code level is worth being run. In particular, the
presented extensions take into account the computational time ratios between code versions
and the part of each code into the model’s variance. The performance of the given sequential
strategies for kriging and co-kriging models are illustrated on applications in Section 5.3.

In many cases, computer codes have a large number d of input parameters. Global sensi-
tivity analysis aims to identify those which have the most important impact on the output.
A popular tool to perform global sensitivity analysis is the variance-based method coming
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from the Hoeffding-Sobol decomposition [Hoeffding, 1948| and named as the Sobol method
[Sobol, 1993|. Nevertheless, this method requires an important number of simulations. The
codes being often extremely time-consuming, we use a surrogate model to handle with it. We
present in Chapter 6 an original kriging-based global sensitivity analysis. In particular, it
fixes important flaws present in the pioneering article of [Oakley and O’Hagan, 2004]. We
present the principle of their method in Section 6.3 and give some improvements for it. Then,
in Section 6.4 we suggest our original approach to perform kriging-based sensitivity analysis.
Finally, the extensions of the two presented methods for the multi-fidelity co-kriging models
are presented in Section 6.5.

We emphasize that in Chapter 6 Subsections 6.4.3 and 6.5.2 we propose two methods to
generate samples with respect to the kriging and co-kriging predictive distributions on large
data sets. In particular, we avoid numerical issues such that ill-conditioned matrices and high
computational costs.

For many realistic cases, we do not have direct access to the function to be approximated
but only to noisy versions of it. For example, if the objective function is the result of an
experiment, the available responses can be tainted by measurement noise. Another example is
Monte-Carlo based simulators - also called stochastic simulators - which use Monte-Carlo or
Monte-Carlo Markov Chain methods to solve a system of partial differential equations through
its probabilistic interpretation. Gaussian process regression can be easily adapted to the case
of noisy observations. We deal with the framework of stochastic simulators in Part III.

First, we introduce at the beginning of Part III, the context of stochastic simulators. The
important point is that in this framework the observation noise variance is inversely propor-
tional to the number of particles used to the Monte-Carlo schemes. Furthermore, the amount
of particles also controls the computational cost of the simulator. Therefore, in that frame-
work, we have an explicit relation between the accuracy of an output and its computational
cost. Another particularity is that an infinite number of code levels of increasing accuracy
can be obtained. In particular, we consider the case of partially converged simulations, i.e.
an accurate code output corresponds to a coarse one after continuing the Monte-Carlo con-
vergence. We show in the introduction of Part III that using a multi-fidelity co-kriging model
in such a context is equivalent to use a noisy-kriging considering uniquely the most accurate
simulations.

Then, Chapter 7 deals with the learning curve describing the generalization error of the
Gaussian process regression as a function of the training size. The main result of this chapter
is the proof of a theorem giving the generalization error for a large class of correlation kernels
and for any dimension when the number of observations is large. The theorem is presented
in Section 7.3 and its proof is given in Section 7.7. The presented proof generalizes previous
ones that were limited to special kernels or to small dimensions (one or two). From this
result, we deduce in Section 7.4 the asymptotic behavior of the generalization error when
the observation error is small. This is of interest since it provides a powerful tool for decision
support. Indeed, from an initial experimental design set, it allows for predicting the additional
computational budget necessary to reach a given desired accuracy. This result is applied
successfully in Section 7.6 to a nuclear safety problem. Moreover, in Section 7.5 we deal with
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the optimal resource allocation. If we consider as fixed the number of particles for the Monte-
Carlo procedures and the number of simulations, then a question of interest is to find the
particle repartition on the simulations which minimizes the model uncertainty. We provide a
proposition giving an optimal allocation under restricted conditions. Furthermore, we observe
in Appendix D that this allocation remains efficient in more general cases.

Finally, we address in Chapter 8 the problem of global sensitivity analysis for stochastic
simulators. As seen previously, variance-based sensitivity methods require a large number of
simulations. As the computer codes are time-consuming they are generally substituted by a
surrogate model. Therefore, there are two sources of uncertainty in such analysis. The first one
corresponds to the meta-model error (approximation error) and the second one corresponds to
the error on the sensitivity index estimates of the meta-model (estimation error). To perform
such analysis, we suggest a particular surrogate model in Section 8.2 which corresponds to a
Gaussian process regression build from lot of simulations but with a large uncertainty. The
main result of this chapter is a theorem presented in Section 8.3 which gives sufficient condi-
tions to obtain the asymptotic normality for the suggested index estimators. The proof of this
theorem is given in Subsection 8.4. From the theorem, we can derived asymptotic confidence
intervals taking into account the uncertainty of both the meta-model approximation error and
the index estimation error. We illustrate on an example the efficiency of our approach.
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Notations

a.c.
a.s.

a.e.
BLUP
Ccv
IMSE
LOO
MCMC
MLE

absolutely continuous,

almost surely,

almost every,

Best Linear Unbiased Predictor,

Cross-Validation,

Integrated Mean Squared Error,

Leave-One-Out,

Monte-Carlo Markov Chain,

Maximum Likelihood Estimate,

Mean Squared Error,

Reproducing Kernel Hilbert Space,

Objective function to be approximated,

input parameter in a subset Q of R?,

nonempty open subset of R? representing the input parameter space,
number of dimensions of the input parameter space,
number of observations,

the vector of the observed values of z(x) in D.

the n x d experimental design set, the n lines represent the observation
points in @,

Gaussian process,

Multivariate or univariate Gaussian distribution,

Gaussian process of mean m(z) and covariance structure k(z, %),
the Gaussian vector Z (D),

covariance function or continuous positive definite kernel,
covariance vector between z and D with respect to k(z, Z),
covariance matrix of D with respect to k(z, %),

matrix valued covariance kernel,

correlation kernel,

correlation vector between z and D with respect to r(z, %),
correlation matrix of D with respect to r(zx, z),
hyper-parameters of the covariance or correlation structure,
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variance parameter,

vector of regressors of size p,
regression parameter,

design matrix corresponding to the values of f'(D),
sample space,

a o-algebra on €2,

the Borelian o-algebra,

a probability on F,

a probability measure on @,
probability density function,
expectation,

covariance,

equality in distribution,

an equality which acts as a definition,
indicator function,

the identity matrix,

matrix or vector transpose,

trace of a matrix,

scalar product,

euclidean norm,

Kronecker symbol,

diagonal matrix with diagonal vector z,
convolution operator,

a Hilbert space of real functions,

space of square-integrable functions with respect to the measure u.
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Introduction
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Chapter

An introduction to Gaussian process

regression

Let us consider that we are interested in approximating an objective function z(z) € R with
z € Q C R? from few of its observations and where @ is a nonempty open set. In our
framework, z(z) represents the output of a code and z represents its input. Furthermore,
we denote by D = {z1,...,2,} with z; € @ the experimental design set and z" = z(D)
the values of z(x) at points in D - 2" is called the vector of observations. Gaussian process
regression - also called kriging model - is a very popular tool to perform such approximation.
Throughout, the manuscript, we will equivalently use the term kriging model or Gaussian
process regression.

We present in this chapter the Gaussian process regression principle through different
approaches. First, we introduce it with a Bayesian paradigm in Section 1.2. Then, we give
two other approaches: the geostatistical one with the Best Linear Unbiased Predictor (BLUP)
(Subsection 1.5.1) and the regularization one with the representer theorem in a Reproducing
Kernel Hilbert Space (RKHS) (Subsection 1.5.2).

We also deal with two important points controlling the efficiency of the Gaussian process
regression. The first one is about the model selection (Section 1.3) in which we present different
ways to estimate the model parameters. The second one is the choice of the covariance kernel
of the Gaussian process used in the model (Section 1.4). Over all, let us introduce in the next
Section 1.1 the so-called Gaussian processes.

1.1 Gaussian processes: a short introduction

Let us consider a probability space (Qz,Fz,Pz), a measurable space (S,B(S)) and T an
arbitrary set. A stochastic process Z(x), z € T, is a collection of random variables defined
on (Qz,Fz,Pz), indexed by T and with values in S. Z(x) is Gaussian if and only if for
any finite collection C' C T, Z(C') has a joint Gaussian distribution. In our work, we always
have S = R and T = Q C R? with d an integer representing the dimension of the input

parameter space and () a nonempty open set. A Gaussian process is completely specified by
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its mean function m(z) = Ez [Z(x)] and its covariance function k(z,Z) = covy (Z(x), Z(z)) =
By [(Z(x) - Bz [2())(2(F) — Bz [2(3))].

The mean function m(x) of a Gaussian process represents its trend. In a Gaussian process
regression framework, we usually choose a mean function of the form m(z) = f'(x)3, with
t'(z) = (fi(z),..., fp(z)) a vector of regressors generally including a constant function and 3
a p X 1 vector of regression parameters.

The covariance function k(z,Z) is a positive definite kernel, i.e. for all (a;)i=1,..n € R,
N € N* and distinct (2;)i=1,... v € T, it satisfies the following property:

N
Z aiajk(a:i,:ﬂj) Z 0

1,j=1

and E%’:l a;a;k(x;,x;) = 0 if and only if a; = 0 for all i = 1,..., N. Furthermore, we always
consider in the manuscript that k(x, ) is continuous and sup,cp k(z, x) < oco. The covariance
kernel describes the dependence structure of the Gaussian process Z(z). In our framework,
we often consider kernels of the form k(x,%) = o?r(z,;0) where r(x,7;0) is a correlation
kernel parametrized with the vector @ and o2 is the variance parameter. Furthermore, we
generally consider a stationary kernel, i.e. k(z, ) is a function of z —Z. Nonetheless, for some
derivations - like in Chapter 7 - we consider any continuous positive definite kernel k(z, ) such
that sup,cr k(x,2) < co. The covariance kernel is certainly the most important ingredient
of a Gaussian process regression. Indeed, it controls the smoothness of the Gaussian process
(see Section 1.5) and thus the regularity of the approximation of the objective function z(z).

A first example of covariance kernel. A popular covariance kernel is the isotropic
squared exponential one defined as

- 1 -
B, #) = 0% exp (—%zux - x||2) , (1)

where ||.|| stands for the euclidean norm. It is parametrized by the hyper-parameter 6 which is
called the characteristic length-scale or correlation length. Roughly speaking, 8 represents the
distance for which the observations are strongly dependent. In general, the parameters of the
covariance function are referred to hyper-parameters to highlight that they are parameters of
a non-parametric model. We illustrate in Figure 1.1 some realizations of Gaussian processes
with a squared exponential covariance kernel. We vary the formula of the mean and the
value of the variance parameter o? and the hyper-parameter §. We observe in Figure 1.1

2 controls the range of variation of the Gaussian process, the

that the variance parameter o
hyper-parameter 8 controls the oscillation frequencies and the mean controls the trend of the

Gaussian process.

1.2 Kriging models : a Bayesian approach

In a kriging framework, we consider that the code z(x) is a realization of a Gaussian process
Z(x). Usually, we consider a Gaussian process with mean of the form m(x) = £'(z)3, with
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9=04;0°=1;m(x)=0 9=0.1;0°=1;m(x)=0

Z(x)
Z(x)

z(x)
Z(x)

00 02 04 06 08 10 00 02 04 06 08 10
X X
Figure 1.1: Realizations of Gaussian processes with squared exponential kernel with different
parameter values and trend formulas. The shade area represents the point-wise mean plus
and minus twice the standard deviation. It corresponds to 95% confidence intervals.

f'(x) = (fi(x),..., fp(z)) and with covariance function k(x,Z) = o?r (x,%;0). The mean of
the Gaussian process models the trend of the observations with respect to the input parame-
ters and the covariance structure models the dependence between the different values of the

objective function.

1.2.1 Kriging equations

We develop in this subsection the so-called kriging equations. The kriging mean provides
the surrogate model that we use to approximate the objective function z(z) and the kriging
variance represents the uncertainty of the model. We derive two types of kriging models. In
the first one, we consider that the observations are noisy-free. In the second one, we consider

that the observations are tainted by a white noise.
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The noisy-free case

We consider the random vector Z" := Z(D) which is Gaussian since Z(x) is a Gaussian
process. We consider the problem of predicting the random variable Z(x) for any = € Q.
Intuitively, we want to use the information contains in Z" to predict Z(x) and thus we consider
the joint distribution of Z(z) and Z™ given by:

Z(2) (a)8 1Y)
(&) () =y W) e

where / stands for transpose, F := f/(D) is the design matrix, r'(z) = [r(z,zi;0)]i=1,..n
is the correlation vector between Z(x) and the observations at points (z;)ij=1,..», in D and
R = [r(zs,25;0)]ij=1,.n is the correlation matrix between the observations at points in D.

Then, the predictive distribution is defined by [Z(x)|Z" = 2", 3,0%,6]. The notation
[A| B] stands for the distribution of A conditionally to B. Conditionally to 3,02, 8 the random
vector (Z(x),Z") is Gaussian. Therefore, conditionally to these parameters, the conditional
distribution [Z(z)|Z" = z", 3,02, 6] is a Gaussian N (2(z), s*(x)) with :

S@) = £(@)B+r'(@)R (2" — Fp) (1.3)

and
s*(z) = o? (1- r' ()R 'r(2)). (1.4)

Equations (1.3) and (1.4) correspond to the Simple Kriging equations, i.e. when all

parameters are considered as known. The kriging mean 2(z) is the surrogate model

that we use to approximate the objective function z(z) and the kriging variance s?(x)

represents the model mean squared error.

We illustrate in Figure 1.2 some realizations of a conditional Gaussian process distribution.
We see in Figure 1.2 that the kriging mean interpolates the observations. This is an important
property of kriging equations. Furthermore, we see that the kriging variance equals zero at
points of the experimental design set. It means that we consider that the model error is null
at these points. It is natural since the model is interpolating.

Then, we see in Equation (1.3) that the kriging mean does not depend on the variance
parameter 0. In fact, this parameter - representing the range of variation of the function z(z) -
has just an impact on the kriging variance (1.4). Furthermore, we see that the kriging variance
does not depend on the observations z". This property can be useful to elaborate strategies
to reduce the model uncertainty. Indeed, we can evaluate the reduction of uncertainty after
adding some points into the experimental design set without simulating new observations.
Nevertheless, this point is also a big flaw of the method. Since the Gaussian assumption
cannot be verified, the kriging variance can poorly represent the model error. In fact, kriging
variance is more a measure of the distance between the point z and the points in D than a

measure of the prediction error at point . Therefore, conception based uniquely on kriging
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Figure 1.2: Realizations of a conditional Gaussian process distribution with squared expo-
nential kernel, variance parameter o> = 1, hyper-parameter § = 0.1, regressors function
f'(x) = (1,z) and trend parameter 3 = (—1,1). The thin purple lines represent the realiza-
tions, the crosses represent the observations, the thick blue line represents the kriging mean
Z(x) and the shade area represents the mean Z(z) plus and minus twice the standard deviation
s(x). It corresponds to 95% confidence intervals.

variance could be inappropriate. We present in Chapter 5 an example of method which uses
the model prediction capability to adjust the kriging variance.

Furthermore, if we denote by Y (z) = Z(z)—f'(z)3, y" = y"—Fg and §(z) = 2(x)—f'(2)3,
then Y (z) is a Gaussian process with mean zero and the same covariance structure as Z(z).
Then we can rewrite Equation (1.3) with the two following forms:

j(x) =) il (1.5)
i=1
with o = [r'(2)R™Y;, i =1,...,n and
n
§(x) = vik(w, 1), (1.6)
i=1

with ~; = [Rfl (z" — Fﬁ)]i, i = 1,...,n. These two equations introduce the two other
approaches of the Gaussian process regression. In Equation (1.5) we notice that the predictor
g(x) can be viewed as a linear predictor with respect to the observed values y”. This approach
which refers to the Best Linear Unbiased Predictor (BLUP) is presented in Subsection 1.5.1.
Then, in Equation (1.6), we see that the predictor can be written as a linear combination
of the kernel k(x, ) centered onto the points of the experimental design set. This form -
corresponding to the solution of a specific regularization problem in a Reproducing Kernel
Hilbert Space (RKHS) - is presented in Subsection 1.5.2.
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The noisy case

For many cases, we do not have direct access to the function to be approximated but only
to a noisy version of it. For example, if the objective function is the result of an experiment,
the observations are typically tainted by measurement noise. Let us suppose that we want
to approximate an objective function x € @ — f(x) € R from noisy observations at points
(24)i=1,....,n in D. Throughout the manuscript f(z) designs a function for which we have noisy

observations (see Part IIT). We assume an independent Gaussian observation noise with zero

2

mean and variance o

(). In the computer experiments literature, it is referred as the “nugget
effect”. Therefore, we have n observations of the form z; = f(z;) + o-(x;)e; where (g;)i=1,..n
are independent and identically distributed with respect to a Gaussian distribution with zero
mean and variance one. As in the noisy-free case, we assume that f(z) is a realization of a
Gaussian process Z () of mean m(z) = f'(z)3 and covariance structure k(z, ¥) = o2r(z, 7; 0).
Denoting by Z" = Z(D) +€", with " := [0.(2;)€i]i=1,...n, We have the following covariances:

cov (Z(z),2") =¥ (x),
with k'(z) = [k(z, z;)]i=1,...» and
cov(Z",Z") =K + A,

where K = [k(z4, 25))i j=1,..n, A = [ag(wi)&j]i,j:lw’n and ¢;; is the Kronecker delta which is

one if ¢ = j and zero otherwise. Therefore, we have the following joint distribution:

Z(x) f'(z)3 k(xz,z) K/(x)
() () (5 &) &

Then, the predictive distribution [Z(z)|Z" = 2", 3,02, 0, A] is still a Gaussian distribution
N (2(z), s*(x)) with :

2z) =f'(2)B+ K (z)(K+ A) ! (z" — FB) (1.8)

and

s3(x) = k(z,z) — K (2)(K + A) " 'k(z). (1.9)

We note that in the noisy case, the predictor (1.8) can also be viewed as a linear predictor with
respect to the observations or as a regularization problem solution in a RKHS. Furthermore,
the mean Z(x) of the predictive distribution no longer interpolates the observations z" and the
variance s2(z) is not zero at points in the experimental design set. This properties are natural
since there is no sense to interpolate the observations if they are tainted by noise. Moreover,
at a point z; € D, the predictive variance cannot equal zero since it takes into account the
observation noise variance. We present in Figure 1.3 an example of kriging model in a noisy
framework.
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Figure 1.3: Realizations of a conditional Gaussian process distribution with noisy observations
and a squared exponential kernel. The variance parameter equals o2 = 2, the hyper-parameter
equals 6 = 0.1 and the mean m(x) is null. The thin purple lines represent the realizations, the
crosses represent the observations, the thick blue line represents the kriging mean Z(z) and
the shade area represents the mean Z(z) plus and minus twice the standard deviation s(z).

Furthermore, the observation noise variance is 02(x) = (2 + sin(4rx)) /4.

1.2.2 Bayesian kriging equations

We discuss in this section about the Bayesian approach in Gaussian process regression. In
a Bayesian paradigm the parameters and hyper-parameters of the model are considered as
unknown and are modeled by random variables. The first objective is to infer from the
observations about the parameters and hyper-parameters. Then the aim is to provide a
predictive distribution integrating the posterior distributions of the parameters and hence
taking into account their uncertainty.

The Bayesian approach has two important strengths. First, it allows for taking into ac-
count all the sources of uncertainty coming from the parameter estimations into the predictive
distribution. Second, it allows for taking into account expert knowledges - through a prior
distribution - into the parameter estimations. For more detail about the Bayesian methods,
the reader is referred to the book of [Robert, 2007].

In counterpart, they are two important flaws in a Bayesian modeling. The first one -
perhaps the most important - is that the posterior distributions are sensitive to the prior
distributions given by experts. This flaw is even more important that we often restrict the
choice of the prior distributions in order to obtain closed form formulas for the posterior
predictive distributions. Such prior distributions are called conjugate distributions. The
second one is that for general prior distributions, there is no closed form expressions for
the predictive distribution. It is then necessary to perform various numerical integrations
which are usually done with Monte-Carlo Markov Chain (MCMC). These methods could be
computationally expensive and not be suitable for practical applications - this explains the
use of conjugate priors. For more detail about MCMC schemes, the reader is referred to the
book of [Robert and Casella, 2004].
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The Jeffreys law

A question of interest in a Bayesian approach is to describe prior distributions which reflect the
fact that there is no prior knowledge about the parameters. These distributions are called non-
informative. For the non-informative case, we use the improper distributions corresponding to
the “Jeffreys priors” [Jeffreys, 1961|. These laws are based on the Fisher information matrix
[Fisher, 1956] which is defined as the expected value of the observed information.

Let us denote by z" a sample of a random variable Z and f(z"|t) the likelihood of a

parameter ¥ = (v;);=1,.. 4 with respect to z"”. The observed information matrix is defined as:

2
0,00

Then, the Fisher information matrix is given by:

Twia") - | o ")

ij=1,...d

2
009

where the expectation is taken with respect to the distribution of z" with the parameter ¥

1) = || g1

ij=1,..d

The “Jeffreys prior” distribution is given by the density function:

p(wp) o [det (I())]"/2. (1.10)

The “Jeffreys prior” distribution is a widely used non-informative prior distribution which is
justified because the Fisher information is considered as a measure of the information about
1) contained in the observations. It has the desirable property to be invariant under re-
parameterization of the parameter vector v |Jeffreys, 1946]. Furthermore, the Cramér-Rao
bound states that the inverse of the Fisher information is a lower bound on the variance of
any unbiased estimator of ¥ ([Cramer, 1999] and [Rao, 1945]). Using a “Jeffreys prior” is
equivalent to minimize the impact of the prior distribution.

Let us consider that z" is sampled from a multivariate Gaussian distribution with mean
F3 and covariance matrix o?R, we have:

vom_ m (@ —FBR (2" —Fp)
I(O' 7Zn) —*@‘1‘ 0-6 .
From which we deduce that:
I(0?) = -
07) =573
The non-informative Jeffreys distribution is then given by:
p(o?) o = (1.11)
o2

Following the same guideline, we find that:

p(Blo?) x 1. (1.12)

We note that an improper prior distribution is not bad if the provided posterior distribution is
proper. Indeed, according to the Bayesian version of the likelihood principle, only the posterior
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i ! [0?] ~IG(,7) | p(0?) < &
[Blo®] ~ Np(bo, 7* Vo) (1) (2)
p(Blo?) x 1 (3) (4)

Table 1.1: Four different cases corresponding to four combinations of prior distributions for
the model parameters.

distributions are of importance (see [Robert, 2007] Sections 1.3 and 1.5). Furthermore, from a
practical point of view, Bayesian methods can be applied as soon as the posterior distributions
are proper. We note that some arguments about the advantage of improper prior distributions
are given in [Robert, 2007 Section 1.5.

Bayesian parameter estimation

We describe here the Bayesian estimation of the parameters (3,0?) in equations (1.3) and
(1.4). We use a hierarchical specification for the model parameters. At the lowest level, we
consider the parameter 3. At the second level we have the parameter o2 which controls the
distribution of 3. At the top level we have the parameter @ which controls the distribution of o
and 3. In the Bayesian literature, we call hierarchical models those coming from this procedure
[Robert, 2007]. Throughout the manuscript, we do not consider the hyper-parameter 6 as a
random variable except in Subsection 1.3.1 where we present how to perform a Bayesian
estimation of 8. Other estimation methods for 8 are described in Subsection 1.3.

Parameter prior distributions. We consider the following informative prior distribu-
tions:

[Blo?] := N (bg, 0> V) (1.13)
and
[0?] :== TG (o, ), (1.14)
where ZG(a,7y) stands for the inverse gamma distribution with density function

’}/a e—'y/m
p(x) = @Wlxw-

Those prior distributions are commonly used in Bayesian kriging. They allow for obtaining
closed form expression for the predictive distribution. Such priors are called conjugate priors in
the Bayesian literature. In the forthcoming developments, we consider the four cases presented
in Table 1.1.

Parameter posterior distributions. We gave in Table 1.1 the prior distributions of
the parameters. The purpose of this paragraph is to provide their posterior distributions, i.e.
the one conditioned by the observed values z". The equations derived below can be found in
the book of [Santner et al., 2003]. First, let us explain the likelihood of B and o

SR LS LS
(2mo?)"/2y/det R .

f(z"18,0%) = (1.15)

2 o2
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The Bayes rules' give us the following equation

p(Blz",0%) o f(2"|B,0)p(Blo?), (1.16)

from which we can deduce that the posterior distribution [3|z",02] for parameter 3 is the
following one:

82", 0% = N (Av,A), (1.17)
where:
Aol [ PROFLVET (k)
| FRE]/0? (3)&(4)
and
| [F'R7z" + Vi 'bg) /o? (1)&(2)
T R (3)%(4)
Then, the following equality
p(o*|z") = f(2"|B,0*)p(Blo*)p(o?)/p(Blo?, 2")/ f(2") (1.18)
leads to the following posterior distribution [02|z"] for parameter o2:
[U2,Zn] :Ig(V07Q0)7 (119)
where . . ~
29+ (bg — B)(Vo + [FRF] ) (by — ) + @, (1)
Qo4 (Po= B (Vot [F'RF]™) " (bo — 8) + Qo (2)
7 2:}’ + Qo (3) 7
Qo (4)
with 3 = (FFR™IF)"L(FFR'2"), Q, = (z")[R"! — R"!F(FFR'F) " 'F'R!|z" and
n/2+a (1)
n/2 (2)
) n-pizta @)
n—p/2 (4)

Posterior predictive distribution

We have explained in equations (1.17) and (1.19) the posterior distribution of parameters
(B,02%). The purpose of this paragraph is to provide the posterior predictive distribution
[Z(x)|Z" = 2z"] integrating the parameter posterior distributions.

First, let us integrate the posterior distribution of 3:

pela)le" ) = [ pleta)la" 8.2 p(Bla" o) dB.

'Tf A and B are events such that P (B) # 0, we have P (A|B) = P (B|A) P (A) /P (B). The continuous version
of this result is the following one: given two random variables x and y with conditional distribution f(z|y) and
marginal distribution g(y), the conditional distribution of y given z is g(y|z) = f(z|y)g(y)/ [ f(z|y)g(y) dy.
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Straightforward calculations give us that the predictive distribution [Z(z)|Z" = 2", 0?] is the

following Gaussian one:
N (28(x), s3(x)) ,

where

25(z) = f'(2)Av + K/ (2) K™ (z" — FAv), (1.20)

-1
s3(z) = o 1—<f/(3:) k’(:p)) (g f{) (E(?)) (1.21)

and

Equations (1.20) and (1.21) are the Universal Kriging equations. It corresponds to
the Simple kriging ones after integrating the posterior distribution of the regression

parameter (3.

Now, let us consider the predictive distribution [Z(z)|Z™ = z"] after integrating the posterior
distribution of the variance parameter o2. The corresponding probability density function is:

p(e(a)ia") = [ @), (o’ " do
The calculations are tractable and we find that [Z(x)|Z" = z"] is the following Student-t
distribution?:
Ti (v, 28(7), Qo (2)) (1.22)
where Zg(z) is defined in (1.20),
-1
Qo Vi F f(z)
- %9 (1 ! ! 1.2
Qo) =22 |1+ (@) ¥@) g 1] | (1.23)

(o

and @), and v, are introduced in Equation (1.19).

The Student-t predictive distribution corresponds to the Universal kriging predictive
distribution after integrating the posterior distribution of the parameter o2. Despite
the fact that we do not have a Gaussian distribution anymore, the surrogate model is
still the mean Zg(x) and the variance v,Q g+ (x)/ (Vs —2) of the predictive distribution

informs us about the model mean squared error.

2Let wus consider a random vector W = (Wh,...,Wy) distributed according to
the  Student-t  distribution  Ta(v, u, X), its  probability  density  function is  p(w) =
D((v+d)/2) (1+ 2(w—p)S H(w-— /,1,))7(1'“0/2 /(det(2))*?(vn)¥?I'(v/2). The parameter v represents
the degrees of freedom, p is the location parameter and ¥ is the scale matrix.
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1.3 Model Selection

We have presented in Subsection 1.2.2 some predictive distributions integrating different pa-
rameter posterior distributions. For all cases, we always considered the hyper-parameter @ as
known. We present in this section different methods to estimate it.

1.3.1 Bayesian estimate

Like presented previously (1.15) and according to the methodology in [Rasmussen and Williams,

2006] p.108, the hyper-parameter @ controls the prior distributions of 3 and o>

. Therefore,

following the same guideline than in Subsection 1.2.2, we can give a prior distribution p(8)

for @ and estimate its posterior distribution from the observations. We present below the

complete Bayesian scheme. We note that we consider the same prior distributions for the

parameters 3 and o2 than the ones presented in Subsection 1.2.2 (see Table 1.1). First, as
presented in Subsection 1.2.2, at the bottom level we have:

n 2 f(zn’/870—270)p(/6‘0—270)

0) = 1.24

p(Blz", 0%, 0) e (1:24)

where f(z"|3,02,0) is the likelihood (1.15) and p(B|c?, 8) is the prior distribution of 3 rep-

resenting our knowledge about the parameter before having observations (see Table 1.1). The

resulting posterior distribution p(3|z", 02, 0) is given by (1.17). Furthermore, p(z"|0?,0) is
given by the following equation:

f(z"B, 0% 0)p(Blo°, 6)

p(Blz", 02, 0)
Second, we can obtain the posterior distribution of 2 with the following equality
p(z"|0?, 8)p(a°|0)

p(z"(0) ’

where p(c2|@) is the prior distribution about o2 (see Table 1.1). The resulting posterior

p(z”]aQ, 0) =

p(02|z", 0) =

(1.25)

distribution p(c?|z", ) is given by (1.19) and p(z"|0) is given by

p(a"|o%, 0)p(0*10)

Finally, we can express the posterior distribution of 8 with the following formula
p(z"[0)p(0)

p(z")
In practice, Monte-Carlo Markov Chain (MCMC) methods are used to estimate p(6|z")

[Robert and Casella, 2004]. We highlight that MCMC schemes only require knowledge of
p(0)z™) up to a multiplicative constant and thus it is not necessary to evaluate p(z™). Then,

p(0)z") =

we can integrate the posterior distributions into the predictive distribution. First we integrate
the posterior distribution of 3 with the following formula

p(z(z)|z", 0%, 0) = /p(Z(l’)!Z”ﬁ,Gz,9)p(ﬂ\zn,0279)dﬂ-
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We obtain a Gaussian distribution with mean (1.20) and variance (1.21). Then we can inte-

grate with respect to o2

p(2(2)]z",0) = / p(=()]2", 0%, 0)p(?|2", 0)do”.

We obtain the Student-t distribution in Equation (1.22). Finally, we can integrate the posterior
distribution of 6:

p(e(a)|2") = / p(=(2)]2", 0)p(6]2")d6.

Nevertheless, the calculations are not anymore tractable and the predictive distribution needs
to be numerically estimated. In general, MCMC schemes are used. These numerical integra-
tions may be difficult and as noted in [Santner et al., 2003] the choice of the prior distribution
is non-trivial. The reader is referred to the article of [Diggle and Ribeiro Jr, 2002| for examples
of prior distributions for 6.

As example, let us consider a 2-dimensional Gaussian process Z(z) with zero mean and a
Gaussian covariance kernel k(z, Z) = o2 exp (—||z — Z||*/(26?)) where 0? = 4 and § = 0.1. We
sample a realization Z(x) on 40 points. Then, we consider the parameter 6 as unknown and
we estimate it from the 40 observations with a Bayesian method. We consider the following

improper prior distribution for 6:
1

p(f) x g

Figure 1.4 illustrates the prior and the posterior distributions of #. We see that the prior
distribution is far from the real value of # (the real value being 0.1). Then, the mode of the
posterior distribution approaches the real value but with a non-negligible uncertainty.

prior distribution
—— posterior distribution

0.20
1

0.15
1

density
0.10
|

0.05
1

0.00
1

Figure 1.4: Example of prior and posterior distribution for the hyper-parameter 6 for an
isotropic Gaussian covariance kernel in dimension 2.

Figure 1.5 represents the predictive mean and variance in the Bayesian and non-Bayesian
cases. For the non-Bayesian case, we fix § = 0.1. Since, the mode of the posterior distribution
of  is close to the real value, the means of the predictive distributions are close. Nevertheless,

the significant differences between the predictive variances reflect that we take into account
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the uncertainty due to the parameter estimation in the Bayesian case. Indeed, we see that in

this case the variance is more important.

1.0

0.8

>§f >§
d‘bb OE Oh 0% Oé fO °
X X
(a) (b)
3%©>Bl
00_7_\’
>~o.7 @ >
S .
MO
5 | o KR <
dO dZ d4 de d8 ﬁO
X X
(c) (d)

Figure 1.5: Posterior predictive distribution for the Bayesian and the non-Bayesian cases in a
2 dimensional example with a Gaussian kernel. The figures on (a) & (c) represent the posterior
means, the figures (b) & (d) represent the predictive variances, the figures (a) & (b) represent
the non-Bayesian cases and the figures (c) & (d) represent the Bayesian cases. We see that the
predictive means are equivalent. This is due to an efficient estimation of the hyper-parameter
0. Furthermore, the predictive variance is more important in the Bayesian case since we take
into account the uncertainty due to the estimation of 6.

1.3.2 Maximum likelihood estimates

The maximum likelihood estimation is a very popular method to estimate parameters. The
drawback of the maximum likelihood estimation is that, contrarily to Bayesian estimation, we
do not have any information about the variance of the estimator (see [Lehmann and Casella,



1.3. MODEL SELECTION 37

1998]). Nevertheless, in a kriging framework, it is significantly less time-consuming than a
Bayesian approach. The multivariate normal assumption for Z" lead to the following likelihood
for parameters 3, o2 and 0:
1
exp | —= 5
(2mo2)n/2\/det Rg 2 o

The correlation matrix R is denoted by Rg to emphasize its dependence on 8. Conditionally

f(2"|8,0%,8) =

(2"~ FB) Ry (2" - Fﬂ>> ()

to o and 6, the maximum likelihood estimate (MLE) of 3 is given by:
B = (FR,'F)"'FR,'2". (1.27)

It corresponds to its generalized least squares estimate. Then we can substitute the value of ,3
in the likelihood (1.26) and maximize it with respect to o?. Given @ we obtain the following

MLE for o2: . L .
n __ F /R— n __ F
6'2 _ (Z 16) 0 (Z /6) (128)

n

Substituting B and o2 for B and ¢? in Equation (1.26), we obtain that the maximum of the
likelihood over B and &2 is

£(2"|0) = (26%)~"/(det Rg) /% exp <_g) ,

which depends only on 8. Therefore, the MLE of @ can be found by minimizing the opposite
of the log-likelihood given by (up to a constant):

Lrest(0;2") = nlog(6?) + log(det(Rg)). (1.29)

The opposite of this equation is called the concentrated log-likelihood or the marginal
likelihood. We illustrate in Figure 1.6 an example of Lye(0;2") (1.29) calculated from
the realization of a 2-dimensional Gaussian process of mean zero and covariance k(x,Z) =
o2 exp (—%2321($i —i‘i)Q/O?) - where # = (z1,2?) € R?, & = (3%,2%) € R?, 6; = 0.1,
0> = 0.04 and 02 = 2 - on 150 design points in [0, 1]2. The marginal likelihood has to be nu-
merically minimized with global optimization methods. To have a more effective optimization,

one can used the derivative of the marginal likelihood?:

0

%ﬁres‘c(e;z ) = —n ((y )/Rely ) (y )/R ! ¢

—-1_n
o o8, 0 Y
JR.
—1 0
+tr (Re 0, >,

with y" = z" — F3.
Restricted Maximum Likelithood estimate. The restricted maximum likelihood method
was introduced by [Patterson and Thompson, 1971] in order to reduce the bias of the maxi-

mum likelihood estimator. The restricted maximum likelihood estimates of the parameters o2
3The proof is straightforward using the derivative of an inverse matrix %Ke_l = —KG_I%%K@_1 and the

one of the log determinant of a positive definite symmetric matrix % logdet Ky = tr (K;l%) where 86%

is a matrix of element-wise derivatives (see [Harville, 1997]).
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Figure 1.6: An example of the opposite of a log-likelihood calculated with 150 obser-
vations sampled from a Gaussian process of zero mean and covariance kernel k(z,Z) =

o2 exp (—% 2 (2 — a}i)2/0?) with 81 = 0.1, 65 = 0.04 and o2 = 2.

and @ consist in maximizing the likelihood of those parameters for a maximum of independent
linear combinations of the observations z" and such that all these combinations are orthogonal
to F3, i.e. the mean of Z™. For more detail, the reader could refer to the two reference articles
[Harville, 1974] and [Harville, 1977].

Now, let us consider a matrix C of size (n — p) x n of rank (n — p) such that CF = 0.
The restricted maximum likelihood estimate of o and @ are given by the classical maximum
likelihood estimate but with the transformed data z™ = Cz"”. We note that the restricted
MLE is independent of the choice of C (see [Harville, 1977]). The likelihood of Z" = CZ" is
given by:

a2 o 1 1(z") (CReC')"'2"
f(@"|B,0%,0) = Ty e g <—2 3 ) (1.30)

Maximizing (1.30) with respect to 02 and considering that the estimator is independent to the

choice of C, we have the following restricted maximum likelihood estimate for the variance
parameter:

n A —1/,n A
.9 (z" —FB)Ry (2" — FP)
= . 1.31
OREML n—p (1.31)
Furthermore, substituting o with 635, in the likelihood (1.30), we find that the restricted
maximum likelihood of @ can be found by minimizing:

(n — p)log(6%pmr) + log(det(Ry)). (1.32)

Marginal likelthood in a moisy case. In a noisy case, we cannot derive a closed form

expression for the estimate of o2, Indeed, in that case the likelihood for 3, 02, @ and A - see
Equation (1.7) in Subsection 1.2.1 - is given by

exp (~(2" ~ FB) (K20 +A) ! (2" ~ FB)/2)
(2mo2)n/2 \/det (Ky29+A) .

f(Zn|/B,0'2,0,A) = (133)
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We use the notation K,2 9 to emphasize the dependence of K = [k(x;,2})]ij=1,..n to the
parameters o2 and 8. Thus, we have the following estimate for 3:

B=(F (Kppg+A) 'F)'F (Kpg+A) 2" (1.34)

The opposite of the marginal likelihood becomes up to a constant

Lrest(0,0%,A;2") = (2" —FB) (Kyog+A) " (2" — FB)
+ logdet (Ky29+ A).

We illustrate in Figure 1.7 an example of Lyes (0, 02, A = 021;z") calculated from the realiza-

tion of a 1-dimensional Gaussian process of mean zero and covariance k(x, %) = o2 exp (—%%#) +
026,—z - where 2, € R, § = 0.1, 02 = 0.25 and 0% = 2 - on 150 design points in [0, 1]. We
note that o2 is supposed to be known.

T T
0.00 0.05 0.10 0.15 0.20

Figure 1.7: An example of the opposite of a log-likelihood calculated with 150 obser-
vations sampled from a Gaussian process of zero mean and covariance kernel k(z,Z) =
o2 exp (—%%#) + 028,—z with 0 = 0.1, 62 = 0.25 and 0? = 2. The variance parame-

2

ter o“ is supposed to be known.

1.3.3 Cross-validation estimate

The principle of a cross-validation (CV) procedure is to split the experimental design set into
two disjoint sets, one is used for training and the other one is used to monitor the performance
of the surrogate model. The idea of a CV estimation is then to find the parameter 0 leading
to the best performance on the test set. A particular case of CV is the Leave-One-Out (LOO)
one where n test sets are obtained by removing one observation at-a-time. The CV procedure
can be time-consuming for a kriging model - e.g. for the LOO scheme it requires the inversion
of n sub-matrices of size n — 1 - but it is shown by [Rasmussen and Williams, 2006], [Dubrule,
1983] and [Zhang and Wang, 2009] that there are computational shortcuts. We present them
in the remainder of this paragraph.
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Notations: 1If § is a subset of indices in {1,...,n}, then A ¢ is the sub-matrix of
elements £ x £ of A, aj) is the sub-vector of elements & of a, A[_¢ represents the matrix A
in which we remove the rows of index &, a|_¢) represents the vector a in which we remove the
elements of index &, A[_¢ _¢ is the sub-matrix of A in which we remove the rows and columns
of index § and A[_¢ ¢ is the sub-matrix of A in which we remove the rows of index £ and keep
only the columns of index &.

CV for Universal kriging

Let us consider a set of index £ C {1,...,n} of length k. We denote by ecy ¢ the errors (i.e.
the real values minus the predicted values) of the cross-validation procedure on the test set Dy
when we learn the kriging model on the training set D[_¢). Furthermore, we denote by U%v,g
the predictive CV variances at points in Dyg. For the proof, we sort the observations z" such
that ¢ is the index of the k last elements of z". Nevertheless, the presented equations remain
true whatever the order of the observations. First, we consider the variance parameter o2,
the hyper-parameter 8 and the regression parameter 3 as known. We are hence in the simple

kriging case. Thanks to the block-wise inversion formula®, we have the following equality:

. (A B
cof3 2)

. —1 —1 _ —1
with A =[R] ¢ 4+ [R]l[—;—a Rl_ee) Q" Rl g RI ¢ g,
B'=-Q 7' [R] _¢[R] ¢ and:

Q=[Rlg— Rl q[Rl ¢ Rl g

-1

We note that Q = ([Rfl] € g]) represents the correlation matrix at points in D¢ with
respect to the correlation kernel obtained from the distribution of a Gaussian process of kernel
r(z,2") conditioned by z'?_ﬂ at D[_¢). Therefore, we can deduce that in a Simple kriging case,

the predictive CV variances U%V,{,SK are

-1
0.2CV,£,SK = 0'2<|:R71j|[§7€}) . (135)

4Let us consider T a m X m matrix, U a m X n matrix, V a n x m matrix and W a n x n matrix. Let us

T A%
v VI—\I’>’ or equivalently, (XI)JV T) is non-singular if and only if the

matrix n x n Q = W — VT U is non-singular. In this case, we have:

-1
T U (T +T'UQ VT —TT'UQ™!
Vv W - -Qlvr! Q!

consider that T is non-singular, then (

and

W Vv 71_ Q! —Q'vr!
U T S \-T'uQ! T'4+TlUQ VT
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Furthermore, from the block decomposition of R™!, we have the following equality:

-1
([R_l][s,a) R (2" —FB)| g = 25— FgB

—1 n .
Rlie_¢ Rl g (27— F )

We highlight that the term Fg8 + [R] _¢ [R] [__157_51 (ZF_Q — F[_f]ﬁ) represents the kriging
mean predictions on Dy of a Gaussian process of mean f(x)'3 and correlation kernel r(z, ¥)
conditioned with the observations zﬁ&]. Thus we can deduce that in a Simple kriging case,
the CV errors ecyv ¢ sk are

-1
-1 -1
covesk = (R eq) R (2" = FB)]. (1.36)
Second, we suppose the trend parameter 3 as unknown and we have to re-estimate it when
we remove the observations. We emphasize that we are here in a Universal kriging framework.
In a Bayesian case, the posterior mean B_g of 3 when we remove the observations of index &
is given by

—1 —1 n
Be (IFre) R, gF(g) = [F gl Rl g2 g (1.37)
From the block-wise inverse of R we can deduce that [R] [__15’_5} = A — BQB’. To obtain the

cross-validation equations in the Universal kriging case, we just have to estimate the following
quantity:

ve = (Fig — [R] R] L . F_g)2(Fg—[R] R] L . F '
3 [€] l&.—¢] BH[-¢,—g T [=¢] (€] [6,—¢) P [—¢,—g =€) >

~1
with 3 = ([F[,g]]’ [R][__l5 g F[,ﬂ) . Indeed, from equations (1.4) and (1.21), we can deduce
that UZCV,5 = O%V’&SK + v¢. We have the following equality:

—1 —1 “lrpm-1
(Fig — Rl g R ¢ Flg) = (R7Yeq) ™ [R7F],,.
Therefore, the CV predictive errors and variances in a Universal kriging framework are given

by
—1

cove=([Reg) [R (2" ~FB)] (139
and

- -1 _ 1
atve = o (R )eq)  + (R Mga) " RF],
o —1 _ _1 _ /
x (Frel BRI gFrg) ((RYge) ' [RF] [g]))
The term [R) [__157_51 is evaluated with the equality:

Rl g=R e g-R cg (R eg) R e g

To obtain the CV predictive errors and variances in a Universal kriging framework, we just

(1.39)

1

have to invert the matrix R once and then invert the sub-matrix [Rfl][éyﬁ. We note that in
a LOO framework, £ is reduced to an integer and the computational cost for the inversion of
[R_l][g,g] is negligible. In the presented equations, the variance parameter is supposed to be
known. We present in Chapter 4 a method to re-estimate it for each removed observations
when we consider its maximum likelihood estimate.
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Leave-One-Out based estimation

In the previous paragraph, we present the predictive errors and variances resulting from a CV
procedure when o2 and 6 are fixed. We present here a way to estimate them thanks to a LOO
CV technique, i.e. € =4 with ¢ = 1,...,n. The opposite of the predictive log probability
at observation zﬁ] when the model is learned with the observations zfii] is given by (up to a

constant):
€&v.
L(0®,0;2f) = log oty ; + 5 (1.40)
Cv,i
where .
eovi=([R7,,) R ("-FB)],
and

U%V,i = o’ <<[R1][m})_1 + ([Rfl][iai})il [RilF] [4]
X ([F[_i]]’ [R][__li’_i] F[_i})_1 (([Rfl][iﬂ)*l [R'F] [i]>/>

From Equation (1.40) we can obtained the opposite of the LOO log-predictive probability
Lroo(o?,0;z" ZE 0%, 0;zp). (1.41)

The reader is referred to the books of [Rasmussen and Williams, 2006] p122 for an illustration
of this criterion in a robotic application and the article of |Geisser and Eddy, 1979] for a
discussion about it. We note that thanks to the equations (1.38) and (1.39), this approach is
as computationally expensive as the classical maximum likelihood one.

We illustrate in Figure 1.6 an example of a LOO log predictive probability L1,00(0?, 8, z")
(1.41) calculated from the realization of a 2-dimensional Gaussian process of mean zero and
covariance k(z,%) = o?exp (—% ?:1(£Ci - 56’)2/022> - where z = (2!,22) € [0,1?, & =
(#1,7%) € [0,1)%, 81 = 0.1, 83 = 0.04 and 0% = 2 - on 150 design points in [0, 1]2.

Another approach to estimate the parameters @ and o2 has been suggested by [Bachoc,
2013]. Its principle is the following one. First, noticing that the CV predictive errors (1.38)

2

do not depend on ¢“, we can estimate € by minimizing the following sum - also called the

squared error loss:
n

0 = arg n%in ; E%V%e. (1.42)
The LOO CV predictive error (1.38) is denoted by ecy ;¢ to emphasize its dependence on 6.
Nonetheless, this procedure does not provide an estimate for o2 and can lead to bad predictive
variances since it does not take care about the LOO-CV predictive variances. To tackle this

issue, [Bachoc, 2013] suggests the following estimator for o%:

1« E?JV'@
~9 7
= — —, 1.43
& - E = (1.43)

CVzG
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Figure 1.8: An example of LOO log-predictive probability calculated with 150 observa-
tions sampled from a Gaussian process of zero mean and covariance kernel k(x,z) =
o2 exp (—% 2 (2 — 5:i)2/03) with 81 = 0.1, 65 = 0.04 and o2 = 2.

where 0'2 Vb is obtained from Equation (1.39):

1
~éV§0 - <[R9_1][£,§]) )
(R o) R (el [Re) g Fra)  (1RgMea)  [Ry'F], )

This estimator of o2 leads to the following desirable property:

Z CV190'2/ CV,i,0,62 =

An asymptotic normality and efficiency study of this estimator is proposed by [Bachoc, 2013].
For the numerical optimization of equations (1.41) or (1.42), it could be worthwhile to consider
their partial derivatives. In a Simple kriging framework (see equations (1.36) and (1.35)), they
can be deduced from the two following derivatives:

[8 9 ] _ UQdiag(Rgl%—RfR_)
1=1,....,n

P P diag(Ry')?
[26 | ] _ -R,'G¥R, (="~ Fp)
00 Vs i=1,...,n a d1ag( )
diag(Ro”’ggeR DR, (z" — FB)
diag(R,")? '

1.4 Covariance kernels

Certainly one of the most important points of a Gaussian process regression is the choice of
the covariance function k(z,%), z,# € Q C R? of the Gaussian process Z(x) modeling the
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objective function z(z). We note that @ is a nonempty open set. We have seen in Section 1.1
that a covariance kernel k(z, %) has to be positive definite®. This ensures that the covariance
matrix K = [k(z, ;)] j=1,..n - also called the Gram matrix - is positive definite for any
distinet (24)i=1,..n € Q.

Moreover, the covariance kernel can also describe particular relations between Z(z) and
Z(z). As example, k(z, ) is said to be stationary if it is a function of (x — Z). This means
that it is invariant under any translation in the input space and that the relation between
Z(z) and Z(Z) is uniquely determined by the distance between z and Z. We describe these
kernels in Subsection 1.4.2. Then, in Subsection 1.4.3 we present some non-stationary kernels.
In particular, we present the fractional Brownian one that we use in Chapter 7. Finally, we
deal with the eigenfunction analysis of k(x, Z) in Subsection 1.4.4.

We highlight that it is easy to build new kernels from other ones thanks to the following
properties ([Rasmussen and Williams, 2006]):

1. If k1 (z, ) and ko(x,Z) are covariance kernels then
k(:C) '%) = kl(wv i’) + k2($7 j)

or
k('r7 :i) = kl (.’13, «%)kg(l’, ‘%)
is a covariance kernel.

2. If f(z) is a deterministic function and /%(x, %) a covariance kernel, then

is a covariance kernel.

3. If ki (x, &) and ko(z, T) are covariance kernels such that [ ki (x, 2)ka(z, 2)k1(2, &) dz dz <
oo, then

k(z,2) = /kl(:c,z)kg(z,é)kl(é,i:) dzdz

is a covariance kernel. In particular, if ka(z,2) = 0(z — 2) - d(x) stands for the Dirac
delta function - and the function k, : & — k(z,Z) is in L?*(Q) for all z € Q C RY, then
we have k(z,z) = [ ki(x,u)ki(u,Z)du which is the covariance kernel of the following
Gaussian process

Z(x) :/kl(:ﬂ,u) dW (u),

where W (u) is a d-dimensional Wiener process (which is equivalently to say formally
that dW (u)/du is a Gaussian white noise).

4. If ki (2%, 2') and ko(22, #2) are covariance kernels defined on different spaces X! and X2,
then
k(z,3) = ki@, 31) + ko (2%, 2%)

5We recall that a kernel k(z, Z) is positive definite if and only if for all (a;)i=1,...,.v € R, N € N* and distinct
(zi)i=1,..,N € @, we have Zf.\,[j:l a;ajk(zi,x;) > 0 and Z?’j:l a;ajk(zi,z;) = 0 if and only if a; = 0 for all
...,N.
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or

k(x,z) = k‘l(azl, :i‘l)kg(:vg, :Z‘Q)

is a covariance kernel defined on the product space X! x X2. We named as a tensorised
kernel, a kernel of the form k(x, %) = ki (z!, #1)ko (22, 22).

1.4.1 Relations between Gaussian process regularities and covariance ker-
nels

To emphasize the importance of the choice of k(x,Z), let us introduce the concept of mean
square differentiability (see [Cramer and Leadbetter, 1967]). First, for a fixed point z* € Q a
covariance kernel Z(x) is said to be mean square continuous - or continuous in mean square -
at x* if:

E [(Z(J:*) - Z(x))ﬂ =),

Moreover, we have the following equality E {(Z(x*) — Z(x))Q] = k(z*, 2*)—k(z*, z)+k(z,x)—

k(xz*,x). Thus, Z(x) is mean square continuous if and only if k(z, ) is continuous at (z, %) =

(x*,2*). Then, we consider at point z = (x!,..., 2%) the Gaussian process:

Z,(Li)(ac) _ Z(x+ he};) — Z(x)’

with A € R\ {0}. The mean square derivative of Z(x) in the i*® direction is the Gaussian
process 0Z(x)/0x such that

<8Z(ﬂ7) - Z,(:)(x)>2] "=90.

Furthermore, 0Z(z)/0z" exists if and only if k(z, ¥) is twice differentiable at point x = & and
its covariance kernel is 0%k(z,¥)/0x'0%'. We so have a tight relation between the regularity
of the considered Gaussian process and the regularity of the covariance kernel k(z, Z).

In fact, with more assumptions on k(z, ), we can have stronger results about the continuity
of Z(x). Let us consider the following definition (see |Cramer and Leadbetter, 1967]).

Definition 1.1 (continuous almost surely random processes). Let us consider a random pro-
cess Z(x), x € Q C R?, defined on (Qz, F,Pz) with values in (R, B(R)). Z is continuous
almost surely on @ if for almost every w € Qz, x — Z;(z,w) is continuous on Q.

This definition is of interest since it means that almost all paths of such random processes
are continuous. Nonetheless, the definition of continuous almost surely random processes are
not easy for general cases. The following theorem provides a useful criterion for establishing
the existence of versions of stochastic processes with continuous sample paths (see [Oksendal,
1998]).
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Theorem 1.1 (Kolmogorov-Chentsov). Let Z(z), » € Q C R%, be a random process
defined on (Qz, F,Pz) with values in (R,B(R)). Let us suppose that there are three
positive constants (7,¢,c) € (R%)3 such that ¥(z, %) € Q?,

E(Z(z) = Z(@)]"] < cl]e — Z[|7*.

Then, there is Z(x) a version of Z(x) (i.e. for all x € Q, Py (Z(x) = Z(az)) = 1) such
that

.
Va € [0,e/7),E sup w < 0.
@neg? \ llz—2|]
THET

This means that the sample of Z(m) are almost surely Holder continuous with Hélder

exponent o.

Theorem 1.1 can easily be used in a Gaussian framework. This is highlighted in the
following example.

Example 1.1. Let us consider a stationary Gaussian process Z(x) with mean zero and co-
variance kernel given by o?r(h) where h = x — Z, ,% € R?. We have the following equality:

E[(Z(z) — Z())*] = 20*(1 — r(h)).

Furthermore, from the following equality

E[(2(z) - 2@)*] = 2 oon(1 oy

- 2npl

and the condition r(h) € C¢, we can deduce that In > d/e such that

E[(2() - 2@)™] < &

! 2n cn ne
2otz [hl e,

Therefore, there is a version Z(z) of Z(x) which is a-Holder continuous almost surely with
a€0,e/2).

Then, for the unidimensional case z,Z € @@ C R, a finer result is given by [Fernique, 1964]
on k(z,x) so that Z(z) is continuous a.s.. As stated in the theorem below, this condition is
given in terms of the incremental variance E [(Z(z) — Z(Z))?].

Theorem 1.2 (Fernique’s theorem). If for |t —Z| < e, 2, € Q C R, there is a function
Y for which \/E[(Z(x) — Z(%))?] < ¢(z — &), where ¥ is nondecreasing on [0,¢] and

SO R
/ou\/log(l/u)d =0

then Z(x) has an almost sure continuous version.

The first proof of this theorem has been presented by [Dudley, 1967]. Then, several proofs
have been suggested (see |Garsia, 1972] and [Marcus and Shepp, 1970]). In particular, [Marcus
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and Shepp, 1970] present a proof for stationary covariance kernels k(x,z) = k(z—2), =,z € R.
In that case, the condition simply becomes:

* VE(0) — k(u)

0 uy/log(1/u)

du < oo.

1.4.2 Stationary covariance functions

In this subsection we consider the case @ = R? and we are interested in stationary covariance
kernels. As presented previously, it corresponds to a covariance kernel k(z, ), =, € R?,
function of h = z — . We will use the notation k(x,Z) = k(h). These kernels are widely used
in the framework of computer experiments.

One of their interesting properties is that the regularity of k(h) at h = 0 determines the
smoothness property of Z(z) in mean square sense. Indeed a Gaussian process Z(z) with
covariance k(h) is mean square continuous if k is continuous at h = 0. Furthermore, the
Gaussian process 0¥ Z(x)/0z™ ... 0z corresponding to the k'™ order partial mean square
derivative of Z(r) exists if and only if 9%*k(h)/9%x™ ... 9?2 exists and is finite at h = 0.

Another interesting property of stationary covariance kernels is that they can be repre-
sented as the Fourier transform of a positive measure as stated in the following theorem (see
[Stein, 1999] p.24).

Theorem 1.3 (Bochner’s theorem). For any continuous positive definite function k(h)
from R? into R, there exists a unique probability measure p on R such that

k(h) = / e2mitwh) gy,
R4

We note that (.) stands for the scalar product. A proof of this theorem is given by
[Gikhman and Skorokhod, 1974]. In the case where u(dw) has a density S(w), we call it the
spectral density or power spectrum of k(h) and we have

k(h) = / 2w S (w) dw
Rd

and

S(w) = / e~ 2mi{wh) 1 (h) dh.
Rd

From the spectral density S(w), we can define the following complex representation of the
Gaussian process Z(z) (see [Stein, 1999]):

Z(z) = / VS (w)e2™ W p dw, (1.44)

where n,, is the Fourier transform of a Gaussian white noise. Moreover, we can estimate the
integral (1.44) with the following sum:

J
Z(x) =Y (/S (wy)e?™ i, A(f), (1.45)
j=1



48 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

where (wj)j=1,..7, J € N, is a tensorised grid covering the support of S(w) and A(j) is the
volume of the elementary hypercube of the grid associated with w;. This representation can be

used to compute samples of Z(z) at points in X = {x1,...,2;} using the following equation:
J
(Z(x;) = Z [ i{wj,m ] . [ S(wj)ﬁwj] A(7). (1.46)

j=1 b
The main advantage of this method is that it does not require the Cholesky’s decomposition
of the covariance matrix Kx of Z(x) at points in X with respect to the kernel k(h). In-
deed, a commonly used method to sample Z(z) at points in X is to consider the Cholesky

decomposition of the covariance matrix Kx = [k(z;, zj)]i=1,.. 1, (zi)i=1,.1 € X :

Kx = LxL.

Then, a realization of Z(z) at X can be obtained by sampling a noise &'

= [e4)i=1,..; Where
(€i)i=1,...; are independent and identically distributed with respect to the Gaussian distribution

N (0,1) and by considering the following equation:
Z(X) = Lxel.

Note that Z(x) is considered to be zero-mean. Otherwise, we just have to add the term
M = [m(z;)]i=1,...; where m(z) is the mean of Z(z).

We emphasize that we can use a Fast Fourier transform to compute (1.46) and to sample
Z(z) by considering a tensorised regular grid. This allows for reducing the complexity of the
method.

We present below some examples of stationary covariance kernels. For a more complete
list, the reader is referred to [Stein, 1999] and [Rasmussen and Williams, 2006].

The Gaussian or Squared Exponential Covariance Function

The isotropic form of this kernel has already be presented in Section 1.1. It is defined as

2
k:(h):exp< ;”ZL ) (1.47)

where the parameter 6 is the correlation length or characteristic length-scale. Furthermore, it

has the following power spectrum:
S(w) = (27792)d/2 exp (—2m20%||wl|?) .

This covariance function is smooth at A = 0 and thus corresponds to Gaussian processes
which are infinitely mean square differentiable. Moreover, Theorem 1.1 implies that the cor-
responding Gaussian processes are infinitely differentiable almost surely. Thanks to the point
4. presented in the introduction of Section 1.4, we can easily define the anisotropic Gaussian

covariance function as follows with = (z',...,2%) and & = (z',..., 2%

d ~
k(h) —exp< %Z v ) (1.48)
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This kernel is widely used in kriging models but can be unrealistic as mentioned in [Stein,
1999] due to the strong regularity of the underlying Gaussian processes. A covariance function
as the v-Matérn one is in general more appropriate (see below). We illustrate in Figure 1.9 the
shape of the 1-dimensional Gaussian kernel with different correlation lengths and examples of
resulting Gaussian process realizations.
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Figure 1.9: Figure (a): the Gaussian kernel k(h) in function of h = z — & with different
correlation lengths 6. Figure (b): examples of corresponding Gaussian process realizations.

The v-Matérn covariance function

The isotropic v-Matérn covariance function is defined as follow (see [Matérn, 1986])

2 (vl (Veellnll
- 2o () (20 "

where the parameter 6 is the correlation length, the parameter v is the regularity parameter,
K, is the modified Bessel function ([Abramowitz and Stegun, 1965] sec 9.6), and T" is the
Euler-Gamma function. It has the following power spectrum:

—(v+d/2)

207427 (v + d/2) (2v)” [ 2v 01 1o
() = U AD O (B )
A Gaussian process Z(z) with a v-Matérn covariance kernel is v-Holder continuous in mean
square and /-Holder continuous almost surely V/ < v. Furthermore, for v = p + 1/2 with
p € N, the v-Matérn kernel has the following form

V|l T+ 1) & (+ i)t [ Vaulinll”
Fy=p1/2(h) :eXp< 0 L(2p+1) Zu(p_z 9

1=
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In a Gaussian process framework, two popular v-Matérn covariance kernels are the ones for

v=23/2and v =5/2:
ky=s/2(h) = (1 + \/%MI) exp (\B}JM) :

Vo[ 5 (IRl V5| [h|
k‘,/:5/2(h) = (1 + 0 + g 02 exp | — 9 .

Another special case is the one with ¥ = 1/2 which leads to the so-called exponential covariance

function

ot = s (121

This corresponds to the covariance of an Ornstein-Uhlenbeck process (|[Uhlenbeck and Orn-

stein, 1930]). We can also consider anisotropic Matérn covariance kernels as follows with

r=(z',... ;2% and 7 = (3',...,5%)

d
k(z,2) = [[ ki g (=" — &),
=1

where

k:,/i70i (LUZ — i’z) =

21— (\/2ui\xi —gz@'y)” . <\/2ui\mi —5&])
i v 0 :

'(v?) 0
We illustrate in Figure 1.10 the shape of the 1-dimensional v-Matérn kernel with different
regularity parameters and a correlation length fixed to 8 = 0.2. Examples of resulting Gaussian

process realizations are given.
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Figure 1.10: Figure (a): the v-Matérn kernel k(h) in function of h = = — Z with a fixed
correlation length 6 = 0.2 and different regularity parameters v. Figure (b): examples of

corresponding Gaussian process realizations.
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The ~-exponential covariance function

The isotropic y-exponential covariance function is defined as follow

e (- (L)), 0<rca

The positive definiteness of this kernel is proved in [Schoeneberg, 1938]. Furthermore, for v < 2
the corresponding Gaussian processes are not differentiable in mean square sense whereas for
v = 2 they are infinitely differentiable. Thus, the use of this kernel for practical applications
can be difficult to justify. We illustrate in Figure 1.11 the shape of the 1-dimensional ~-
exponential kernel with different parameters « and a correlation length fixed to § = 0.2.
Examples of resulting Gaussian process realizations are given.
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Figure 1.11: Figure (a): the y-exponential kernel k(h) in function of h = x — & with a fixed
correlation length 6 = 0.2 and different parameters v. Figure (b): examples of corresponding

Gaussian process realizations.

1.4.3 Non-stationary covariance kernels

There are many ways to construct non-stationary covariance kernels. As an example, as pre-
sented in [Rasmussen and Williams, 2006] p89 Sec.4.4.2 we can cite the dot product covariance
functions which are invariant to a rotation on the inputs about the origin. These kernels are
commonly used in the field of Geostatistics. Another interesting example is the covariance
function presented in [Gibbs, 1997] which allows for varying the length-scale parameter (x)
in function of x. It is defined as follows

d 1/2 d i ~iN2
i 26,() <>) (i - 7)
k(z,2) = <~ exp| — ) o o |
U+ 2 0+ 070
where ;(z) are positive functions on z = (x!,... 2%). In Chapter 7 we use the following

kernel:
k(x, &) = o2 + 72 — |z — 721,
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with H € (0,1). It corresponds the the kernel of a fractional Brownian motion with Hurst
parameter H. This Gaussian process is mean square continuous and nowhere mean square
differentiable. Nevertheless, it is Holder continuous with exponent H —e¢, Ve > 0. Furthermore,
for H = 1/2 it corresponds to the Brownian motion. We illustrate in Figure 1.12 some
realizations of fractional Brownian motions with different Hurst parameters.
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Figure 1.12: Realization of fractional Brownian motions with different Hurst parameters H.

1.4.4 Eigenfunction analysis

We saw in Theorem 1.3 that stationary covariance kernels can have a spectral representation
through the Fourier transform of a probability measure. We discuss in this subsection about
an interesting theorem which allows for having a spectral decomposition of covariance ker-
nels k(z, ) thanks to its eigenvalues and eigenfunctions decomposition. Let us consider this
theorem below. It is an extension of the Mercer’s theorem [Mercer, 1909] with a probability
measure ¢ and a continuous positive kernel k(z, T) satisfying the property sup,¢q k(z,r) < oo
with @ an nonempty open subset of R? (see [Kénig, 1986] and [Ferreira and Menegatto, 2009]).
Theorem 1.4 (Mercer’s theorem). Let us consider a continuous positive kernel k(z, x),
z, & € Q C RY - such that SUPzcQ k(xz,z) < oo and Q is an nonempty open set - and a
probability measure p on Q. The kernel k(z,Z) can be written as follows

(2, 3) = \pop(z)p(3),

p>0

where ¢p(z) € Li(Q) are the eigenfunctions of the trace class integral operator

(Thf)(x) = / (e, w) £ () dja(u),

and (A\p)p>o the corresponding nonnegative sequence of eigenvalues sorted in decreas-
ing order. Furthermore, (¢p(x))p>0 is an orthonormal basis of L7(Q) and ¢,(x) are
continuous for all p such that A\, # 0.
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We intensively use this theorem in Chapter 7 and Chapter 8. In particular, we will see
that the regularity of a Gaussian process is related to the rate of convergence of its eigenvalues
(Ap)p>0. Furthermore, we always consider in the manuscript that p is a probability measure
such that ;(U) > 0 for any nonempty open subset U of Q C R%.

We will talk in these chapters about degenerate and non-degenerate kernels. To be clear

in the remainder of the manuscript, we define this notion below

Definition 1.2. Let us consider a covariance kernel k(x,Z) and its Mercer’s decomposition

ko, @) =) Apdp(2)dp(2).

p=>0

If k(z,Z) has a infinite sequence (\,)p>0 of non-zero eigenvalues, then it is called a non-
degenerate kernel. Otherwise, if it has a finite number of non-zero eigenvalues, it is called a

degenerate kernel.

We see in Chapter 7 that the degenerate or non-degenerate property of a covariance kernel
has a strong impact on the rate of convergence of the generalization error of a Gaussian process
regression.

Right now, let us present some particular results about this decomposition.

1. By definition, the function ¢,(z) satisfies the following equality
Mn(w) = [ K)o (w) du(u).
2. The orthonormal property of (¢p(z))p>0 implies that

/ ba (1) () da(x) = By,

where § stands for the Kronecker symbol.

3. We have the following equality:

/k(x,a:)du(x) = Z)\p < 400,

p=0

This shows that the operator T}, is trace class with

tr(Th) = > Ap.

p>0

4. For covariance kernels such that k(z,r) = 0% Vx, we have Va:

0’ = Z Aptp()? = Z Aps

p=0 p=0

since [ 02 du(u) = o
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Furthermore, with the Mercer’s decomposition, we have the analogous of the complex
representation of a Gaussian process as stated below.

Theorem 1.5 (Karhunen-Loeve decomposition). Let us consider a Gaussian process
Z(x) with covariance kernel k(x, %) and the following Mercer’s decomposition

ke, @) =) Apdp(2)dp(2).

p=>0

Then, Z(x) can be represented through the following form

Z(x) = Z \/E%(x)zp?

p>0

where (Z,)p>0 are independent and identically distributed random variables with distri-

bution N (0,1) defined as

Vinzy = [ Z(wéyu) duw),

An important property of the Karhunen-Loeve decomposition is that it provides the best
spectral decomposition of a Gaussian process in the sense that it minimizes the total mean
squared error resulting of its truncation as stated in the following proposition.

Proposition 1.1. Let us consider any orthonormal basis (1p(z))p>0 of LZ(Q) and the
following decomposition of Z(x)

%0 =3 (] 26 dn(w) vy

Then, for a given p > 0, the basis minimizing

2

[2 || Z ([ z@uta) v | | e

p>p

is given by (¢p(x))p>0, i.e. the one of the Karhunen-Loeve decomposition. We note that
the functions ¢p(x) for p > 0 are unique if and only if the values of ¢, for p > 0 are

positive and distinct.

Proof. Let us consider (¢,())p>0 an orthonormal basis of L2 (Q) and let us denote by

2

2w =8 | | 5 ([ 20 dutw) v,

p=>p

A direct calculation gives that

)= 3 Gpla)(e) / / I (1, 0) o () () dp() ().

DP,q>D
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Then, by integrating we find that £2 = [ &%(x) du(z) equals:

2= [ [ o)t (0) dutw du(o).

p>p

Thus, we want to minimize 2 with the constraint of normalized v, (z). Let us consider the
Lagrangien formulation of this problem

5 [ [ ke wno) i) o) = [ty du 1),

p>p

where 7, are the Lagrangian multipliers. By differentiation with respect to 1, (u) and setting
the derivatives equal to 0, we find that for p > p

[ 0000 0) dit) = 2ty () = 0.

ie. Yp(z) = ¢p(x) and vy, = A, for all p > p. O

However, contrary to the complex representation, closed form expressions for such a spec-
tral decomposition is rarely available. The Nystrém procedure can be used to numerically
approximate the Karhunen-Loeve spectral decomposition of a Gaussian process. This proce-
dure being based on a quadrature numerical integration, it could be an issue to perform it in
high dimension except for tensorised kernels. Indeed, in that case, the approximation can be
performed by considering d 1-dimensional numerical integrations.

First, let us consider the Karhunen-Loeve decomposition of the 1-dimensional Gaussian

process Z(z), x € [0,1]:
= > V(@) 2. (1.50)

p=0
To evaluate the Karhunen-Loeve spectral decomposition of Z(z) we have to solve the following
eigenproblem Vp € N:

Mo(w) = [ (e, u)pla) i) (151)
[0,1]

Let us consider that the measure p has a density f(x). We can consider the following numerical
integration:

1 N
Ry LCOLTETES DTSR NS

where (2;);=1,.. N is a regular grid on [0,1] (the extension to any intervals [a,b] is straight-
forward). Then, by considering the eigenfunctions ¢,(z) at points (z;);=1,.. n, we obtain the
following eigenproblem:

Ni®, = Ky®,, (1.53)
where @, = (¢(z1),...,9(xN)), )\5 = M\N and [Kylij = k(xj,2;)f(z;). Therefore, )\f/N
is an estimator for A, for ¢« = 1,...,N. It can be shown that )\f/N converges to A, when

N — oo |Baker, 1977].
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Then, the Nystrom method for approximating the pth eigenfunction [Baker, 1977] is given
by:

1
bp(x) ~ @k'(:c)@p, (1.54)
where k'(z) = (k(z,z;),...,k(z,zn)). Thus, given a point x, we can sample Z(x) by consid-

ering the following truncated series:

Z(x)~ Y sz. (1.55)

p<Np 4/ )‘ﬁN

Second, let us consider the following d-dimensional Gaussian process, € [0, 1]¢:

d
Z(x) ~ GP(0, [ [ kia', &)). (1.56)
i=1
We note that Z(x) has a d-dimensional tensorised kernel. We have the following Karhunen-
Loeve representation of Z(x):

d
Z(z) = Z H \/rm¢pi($)zp17--wpd’ (1.57)

P1ye-spa=>01=1

where A, and ¢, (z) are respectively the eigenvalues and eigenfunctions of the kernel k;(z, Z).
Thus, to compute a realization of Z(x) we just have to consider the Nystréom approximation
of each kernel k;(x,Z) for i = 1,...,d (i.e. it corresponds to d 1-dimensional numerical
integrations).

1.5 Kriging models: two other approaches

The kriging equations were presented in Section 1.2 through a Bayesian approach. Nonetheless,
it was not the original approach suggested by [Krige, 1951|. In Subsection 1.5.1 we present
this approach based on a linear formulation as presented in Equation (1.5). In particular,
we will see that it leads to the same model as the simple and universal kriging one. We
use this result in Chapter 7 to show asymptotic results on the predictive variance in a noisy
kriging framework. Then, in Subsection 1.5.2 we present a closely related tool coming from
the regularization theory in a reproducing kernel Hilbert space.

1.5.1 The Best Linear Unbiased Predictor

We present in this subsection the concept of the Best Linear Unbiased Predictor (BLUP). We
still consider the problem of predicting a random variable Z(z), 2 € Q@ C R? from a vector of
observations z" at points D. We recall that Z(z) is a Gaussian process of mean f'(z)3 and
covariance structure k(x, ) modeling the objective function z(x). First of all, we consider the
parameter 3 known and equal to zero. Let us consider the linear predictor:

A~

Z(x) = ap+a'Z". (1.58)
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We are looking for an unbiased predictor, i.e. E [Z (aj)} = E[Z(x)]. The unbiased property
leads to ag = 0. Then, we want to determine the best linear unbiased predictor with respect
to the mean squared errors loss function. Thus, the problem consists in finding the coefficient

a solving

a

minE | (a'2" - 2(2))*]. (1.59)

We have
E [(a’z” - Z(m))z} = k(z,z) + a'Ka — 2a'k(z),

which is minimal for a = k’(z)K~!. Thus, the BLUP is given by:
Z(z) =X (x)K~1Z" (1.60)
and its mean squared error (MSE) is given by

MSE, (z) = k(z,z) — K (z)Kk(z). (1.61)

n

Considering the observed values 2", equations (1.60) and (1.61) with

k(x,%) = or(z,¥) are identical to the ones of the Simple kriging (1.3) and (1.4).

Furthermore, the Gaussian property of the underlying stochastic process Z(x) im-

plies that the predictive distributions of the two approaches are identical.

Now, let us assume that 3 is unknown and consider an unbiased linear predictor of the form
Z(z) = a'Z". (1.62)

The unbiased property imposes the constraint a’F3 = f'(z)3, V3, i.e. F'a = f(x). Thus, the
goal is to solve the following constraint optimization problem

ming E [(a’Z" ~ Z(2))?
Fa=f(x)
or equivalently

{ min, k(z, ) + a’Ka — 2a’k(x) (1.63)

Fa=f(z)

We can use the method of Lagrange multipliers to minimize the quadratic form in (1.63)
subject to F'a = f(z). We aim to find (a,A\) € R"*? minimizing the Lagrangian formulation

k(z,z) +a'Ka — 2a’k(z) + 2\ (F'a — f(z)).

We can calculate the gradients with respect to (a,A) and set it equal to zero. We find the
following system of equations

Fa—f(z)=0
Ka—k(z)+ FA=0 "’
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A (o F )

a/] \F K k(x)
_ -Q QF'K! f(z)
- \K'FQ K'-K'FQFK ') \k(z)/’

with Q = (F’K~'F)~!. Therefore, we find that

which leads to

a=K 'FQf(z) + (K ' - K 'FQF'K ') k(z)
and the resulting predictor is
Z2(z) = ()3 + K (2)K ! (zn - FB) , (1.64)
with 8 = (FFK~'F) " 'F'K~1Z". The MSE of the predictor Z(z) in (1.64) is then given by

MSE;(z) = k(z,z)— K (2)K 'k(z)

/() — K (2K F)(FK- R (F (o) - K@kEy ()

Equations (1.64) and (1.65) with k(z,%) = o?r(z,%) are identical to the ones of
the Universal kriging (1.20) and (1.21). Considering the Gaussian property of the
underlying stochastic process Z(z), it gives that the two approaches are equivalent.

1.5.2 Regularization in a Reproducing Kernel Hilbert Space

In this subsection, we present how the Gaussian process regression theory can be related to
the regularization problem in a Reproducing Kernel Hilbert Space (RKHS). First of all, we
introduce some concepts about RKHS and then we present the famous representer theorem
given a general form for the solution of a regularization problem in a RKHS. The forthcoming
developments were inspired by the book of [Wahba, 1990] and [Rasmussen and Williams,
2006]. We present here a brief introduction to RKHS, for more detail about them, the reader
could refer to the article of [Aronszajn, 1950| or the book of [Wahba, 1990|. Furthermore,
for a deep presentation of regularization in a RKHS and the correspondence with Gaussian
process regression, we refer to the thesis of [Vazquez, 2005] Chapter 3.

Covariance functions and reproducing kernels in Hilbert spaces

Foremost, we define a general index set X'. Examples of X' can be various (e.g. X = {1,..., N},
X = 10,1, X = S with S the unit sphere,...). For our purpose, we always consider that
X C R? but the results presented in this paragraph remain true for more general X. We saw



1.5. TWO OTHERS APPROACHES 99

in Section 1.1 that a kernel k(z,Z) with z, & € X is positive definite if for any a1,...,a, € R,
and distinct x1,...,2, € X, n € N* we have

n
Z aiajk(a:i,acj) > 0.
1,j=1

and 223:1 a;a;k(x;,x;) = 0 if and only if a; = 0 for all ¢ = 1,...,n. Furthermore, we
can define a Gaussian process Z(x) with covariance structure k(x, z) if it fulfills the positive
definiteness property. We will see in the forthcoming developments that we can associate the
kernel k(x,Z) to a RKHS. Let us consider the following definition:

Definition 1.3 (Reproducing Kernel Hilbert Space). Let H be a Hilbert space of real functions
f defined on an index set X'. Then H is called a reproducing kernel Hilbert space endowed with
an inner product (.,.) and norm ||f||ly = /(f, f)# if there exists a function & : X x X — R
with the following properties:

1. For every x € X, the function k; : & — k(z, %) belongs to H.
2. k(x,Z) has the reproducing property (k., )3 = f(z), Vf € H.

3. Vx € X the evaluation functional k,(Z) is a bounded linear functional, i.e. JM, such
that Vf € H, | f(x)] < My||fl|n-

The form k,(.) for the evaluation functional comes from the Riesz representation theorem.
We note that we have also the property (k, kz)y = k(z, Z). For a given RKHS, the representer
k4 (.) of evaluation at x is unique. The converse is true as presented in the following theorem
[Aronszajn, 1950]:

Theorem 1.6 (Moore-Aronszajn theorem). To every RKHS there corresponds a unique
positive definite function k(xz, ) called the reproducing kernel and conversely, given a
positive definite function k(x,T) we can construct a unique RKHS of real-valued functions
on X with k(x, ) as its reproducing kernel.

Proof. If H is a RKHS, then the reproducing kernel is k(z,Z) = (ks, kz)3, where for each x,
Z, k, and k; are the representers of evaluation at x and Z. Furthermore, k(z,Z) is positive
definite since, for any distinct z1,...,z, € X, a1,...,a, € R, n € N*, we have:

n n
Z a,a]k(fvl,%) = Z aiaj<kxi7kdfj>’hf
i,j=1 hj=1
n
= Hzaikxng{ZO'
i=1
and || 37| aiks,]|3, = 0 if and only if a; = 0 for all i = 1,...,n. Conversely, given k(z,Z)

we construct H = Hy, as follows. For each fixed x € X', denote by k, the real-valued function
such that
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Then, construct a manifold by taking all finite linear combinations of the form

n
§ aikxiv
i=1

for all choices of n, a1,...,ay, € R, x1,...,x, € X with the inner product

Zazka:y § az T H - § azaj kl‘zakl‘] § k xzamj a’Laj

1,j=1 1,j=1

The inner-product is well-defined since k(z, %) is positive definite. Furthermore, for any f
such that f(z) = >"" | ajks, (x) we have (kg, f)» = f(z). In this linear manifold we have

[fn(@) = F(@)| = [(fn = fr Re)ml < I fo = fllallkall2-

Thus, the norm convergence implies the point wise convergence and we can adjoin to this
manifold all the limits of Cauchy sequences of functions in the manifold. The resulting Hilbert

space is the RKHS H with the reproducing kernel k(z, Z). O
In the Hilbert space L? with the inner product ( f, gz = f x) dx, the dirac delta
function is the representer of evaluation. Indeed, f(z) = [ f(u)d(z — u) du. Nevertheless,

the diract delta function does not belong to L? and thus L? is not a RKHS. As noted in
[Rasmussen and Williams, 2006], kernels are the analogues of dirac delta functions within the
smoother RKHS.

Now let us consider the eigenfunction decomposition of the kernel k(x, ) (see Mercer’s
Theorem 1.4 in Section 1.4) with p a probability measure, sup,cy k(z, ) < oo and k(z, Z) is
continuous on X € R? - X is a nonempty open set. There exists an orthonormal sequence of
eigenfunctions, (¢p(z))p>0 € L2 (X) with the corresponding eigenvalues (Ap)p>0 > 0 sorting
in decreasing order, such that

| k@)@ (@) = yla), 0

K@, 2) =) Apdp(a)dp(2)

p=>0

//kaacdu ) du(z Z)\2<oo

p>0

We note that for the case X = {1,..., N} the analogs of the previous equations are K¢, =

Ap#,, K = TAT and tr(K?) = va lAg where K = [k(3,7)]ij=1,..5, &p = [6p(i)liz1,..N
A = diag ([Ai]i=1,....~) and T = [¢;]i=1,.. N is orthogonal. We have the following proposition:
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Proposition 1.2. Let us consider a covariance kernel k(x,Z) with an eigenfunction
decomposition k(z, %) = 3~ Ap®p(2)dp(Z) with respect to the measure . If we consider
f(@) =350 fodp(x), f(2) is in the RKHS H with reproducing kernel k(x, &) if and only

if
ZY<OO

p>0

and ||f|3, = > p>0 J2/Ap. If f(x) € H, then we have the equality

fop= /X f(x)¢p(z)du(z), for p such that A\, > 0.

Proof. The collection of functions f(z) with >~ g f3/Ap < o0 is a Hilbert space H with
FI1F, = X ps0 5/ Ap- We aim to prove that H is a RKHS with reproducing kernel k(z, ) =
> p>0 ApPp(2)Pp(Z). We have

Aoty (x
||k‘x”%{:z - p Z)‘pgb ,x) < o0
= v p>0
Thus, k; belongs to H. Furthermore, we have the equalities
fp(Apgp(a
<f7 H - Z P p s Z fp¢p )
p>0 A p>0

which lead that k(z,Z) has the reproducing property. Finally, we show that the evaluation
functional is bounded:

!f(x)\=zjm\/w < ITEY v

p>0 p>0 Ap p>0

[ el | -
O

We can now consider the RKHS constituted by the functions of the form f(z) = > - fpdp()
with the inner product

(oo =3 % (1.66)
p>0 P
with g(x) = EPZO gpop(x). We note that despite the fact that the eigenvalue decomposi-
tion depends on the measure p, the inner product is invariant under a change of measure
[Kailath, 1971]. Another view of the RKHS can be obtained from the reproducing kernel map
construction as stated in the following proposition.

Proposition 1.3. Let us consider a covariance kernel k(z,z) Yn € N, z; € X, a; € R,
f(2) =30 aik(z, 2;) is in the RKHS H with reproducing kernel k(z,Z), and || f||3, =
i1 qiok(zi, x5).
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Proof. The collection of functions f(z) = Y14 ask(x, z;) is a Hilbert space H with || f]|3, =
Z?jzl a;ok(x;, x;). Furthermore, k;, belongs to H and has the reproducing property:

n

(fika)m = aik(zs, x) = f(2).

i=1
O

We note that we recognize the form of the predictor given in Equation (1.6) in Subsection
1.2.1.

An example of Reproducing Kernel Hilbert Space in [0, 1]

Let us consider a function f : [0,1] — R with m — 1 continuous derivatives and such that
fm e L2([0,1]) where £(@ denote the ¢*® derivative of f. The Taylor series expansion gives

m—1 1 m—1
., (r —u) m
) =3 Z o) + /0 S ) du,

with (x — u)+ = (v — u)14_y>0. Furthermore, let us consider A,, the class of functions such
that (f(q)(()) = O), Yq=0,...,m—1. Then f € A, implies
1
£@) = [ Gl = )™ w)du
0

where Gy (7 — u) = (z —u) "' /(m — 1)I. The function G, is the Green’s function for the
problem f(™ = g. Then, let us denote by HO, the following space

1O = {f € Am:[0,1] = R, (f<q>(0) :0) Vg=0,...,m—1,f™ e L2, 1])}.

The collection of functions A, is a Hilbert space with norm ||f|[3, = fol (fm (u))2 du.
Furthermore, let us consider the kernel

1
k(x,z) = /0 Gm(z — u)Gpm (T — u) du. (1.67)

Denoting k, = k(z,.) we have

Thus, a simple calculation gives that

1kl f3g0. :/01 (k§m>(u))2du:/01 (Con (2 — 1)) du = h(, 7).

Therefore k, is in H2,. Furthermore, we have

1 1
f apo, = / £ ()™ (u1) s = / £ () Gon (2 — ) dt = f(z)

and k; has the reproducing property. Finally, it is easy to check that the evaluation functional
if bounded:

[f (@) = (fs ke)ag, < Nl kallag, = [1f]l2g, V(2 ).
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Connection with Gaussian processes.

Let us consider a Gaussian process Z(z), € X with zero mean and covariance kernel k(z, ) =
> >0 Ap®p()$p(Z). Then, the Karhunen-Loeve representation of Z(x) is given by

Z(x) ~ Y Zydp(a),

p=>0

where (Z,),>0 are independent Gaussian random variables with mean zero and variance A,
such that

2= [ 2(@)éy(a) dut). (1.68)

The integral (1.68) is well defined in quadratic mean [Cramer and Leadbetter, 1967]. Nonethe-
less, if k(x, &) is non-degenerate (i.e., if it has a infinite number of non-zero eigenvalues), then
samples of Z(x) do not belong to H. Therefore, the assumption f € H and f is a sample
of the Gaussian process Z(z) are not equivalent. To illustrate this statement, let us consider
the degenerate kernel kp(x,2) = > 5 A\pdp(x)Pp(Z) and the corresponding Gaussian process

Zp(z) = 3_,<5 ZpPp(x). We have

E[|Zs(x) - Z(@)*] = Y Apo2(z) =3 0.
p=p+1

Therefore, Z;(x) tends to Z(z) in mean square sense but

D 2 _
B (1z1i) = 3 12t oo

p=0

However, as noted in [Rasmussen and Williams, 2006], the posterior mean of the Gaussian
process after observing some data will lie in the RKHS due to the averaging.

Now, let us consider the Hilbert space Z spanned by Z(x), x € X. It is the collection of
random variables of the form Z = )" | a; Z(x;) with the inner product (Z1, Zs) = E[Z1 2]
and all of their quadratic mean limits. First, the equalities

(Z(x), 2(7)) = E[Z(2)2(2)] = k(z, ) = (kz, kz)

show that there is a correspondence between the inner product of Z and the one of H. Now
let us consider a bounded linear function in H with representer 1. Thus, n can be written in
the form n(x) = lim, n™ (z) with n(™ (z) = 37| aik(2;,z) . Furthermore, let us define Zs,
as the L2limit of 31", oy Z(z;) = Z™, n(™ converges in H if and only if Z(™) converges in
L? . Therefore, if the limit lim, E [(Zo — Y1 ; @i Z(2;))?] = 0 holds, we have

E[ZZ(x)] = lim > B[ Z(2:)Z(x)] = lim > aik(zi,x) = n(z).
=1 i=1

Therefore, the Hilbert space Z is isomorphic to H with the correspondences Z(x) ~ k,
Z~ ~ 1 and a preserved inner product.
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Regularization problem in a RKHS

Let us consider the following functional:

7() = 171+ Q7). (1.69)

where z" is the observed values of the objective function z(x) we are approximating, f™ =
f(MD) = (f(z1),..., f(xzy)) and X is a scalar parameter. The term Q(z",f") in (1.69) is a
measure of the distance between the observed values z" and the predicted ones f". Moreover,
the norm ||f||% in the Hilbert space H represents the regularity of the predictor f. The
purpose of this section is to determine the function f minimizing (1.69). In a Gaussian
process regression framework, we consider that Q(z",f™) is a squared loss function, i.e.

Q(Zn, fn) — (Zn _ fn)/(zn o f”)

More general forms of loss functions can be found in the book of [Wahba, 1990]. Let us
consider the following Theorem:

Theorem 1.7 (Representer Theorem). Let us consider a function f in a« RKHS H with
the reproducing kernel k(x,z). Each minimizer f € H of

A
J(f) = Sl + Q=" ),

has the form

flz) = Z aik(x,x;).
i=1

Again we recognize the form of the kriging predictor giving in Equation (1.6). Theorem
1.7 was first proved by [Kimeldorf and Wahba, 1971] in the case of squared loss functions.
Now let us consider the following functional

Lo~ )z — ), (1.70)

1
J(f) = sIfI
(1) = 51171B+ 55
Theorem 1.7 gives us that the solution of (1.70) has the form f(z) = k/'(z)a™ with a™ =
(aj,...,00)", n € Nand k(z) = [k(z, z;)]i=1,..n. Thus, the functional (1.70) can be written:

_ 1 ny/ n 1 n _ n\/(,n __ n

Ja) = 2(a ) Ka" + 2052(2 Ka")'(z" — Ka")
— l(an)/ K + iK/K an _ i(zn)/Kan + (zn)/zn
2 o2 o2 202 ’

with K = [k(z;,2;)]; j=1,..n and noticing that ||f||3, = (o) Ka™ as stated in Proposition
1.3. The minimum of J(e) with respect to a™ is given by

A"t = (K + U?I)_1 z".
Thus, the solution of the regularization problem is given by:

2(x) = K'(2) (K 4 021) " 2, (1.71)
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which is exactly the form of the predictor in a noisy-kriging framework (1.8) with a constant
observation noise variance, i.e. A = g2I. We can consider two extreme cases for the functional
J(f) presented in Equation (1.70). First, let us consider the case 02 — oo. Thus, J(f) becomes
J(f) = ||fl|3, which means that we only considered the penalization on the regularity of f.
We can derive the same calculations as before and we find that o™ = 0. If we refer to the
kriging framework, it corresponds to the mean of the Gaussian process Z(z) modeling z(x) in
a simple kriging case. In fact, as presented by [Wahba, 1990] Sec 1.3, this case corresponds
to the one of the generalized linear regression. Then, let us consider the asymptotic o2 — 0
which corresponds to the minimization problem J(f) = (z" — ™) (2" — ). In that case we
find the following solution for the minimization problem

am = K*lzn
which corresponds to the predictor
2z) =K (x)K 12", (1.72)

We recognize the form of the predictor obtained in a simple Kriging framework with noisy-free
observations (1.3).

A useful property of RKHS

The Riesz representation theorem tells us that any bounded linear function L in H has a
unique representer 7 in H. The powerful property of the reproducing kernel k,, is that we can
deduce 7 from it. Indeed, we have

n(Z) = (n, kz)n = Lkz,

which means that 7(Z) can be obtained by applying L to k;z. For example, if we consider
X =R?and Lf = [ f(u)du then n(Z) = [ kz(u) du. Moreover, if we consider X = R, f(x)
and kz(z) differentiable and Lf = %f(x) for some = € R, then n(Z) = %ki«(x).

Then we can consider the space H, spanned by 1 and its orthogonal ”HTJ]- The spaces H,,
and H# are two subspaces of ‘H such that H = H,, @H# and are themselves RKHS. As stated
in [Berlinet and Thomas-Agnan, 2004] Theorem 11, the reproducing kernel k7 of H,, is given
by the orthogonal projection of k, on H,:

Ui

n_ =
[Inll%

kg = <kxu"7>7{”777|7’%{ = n(x) (1.73)

Furthermore, the relation H = H, ® H# implies that the kernel of 7—[# is given by k, — ki.
We note that the norm HnH%{ can be deduced from the following equality

1113 = (s 0y = (Lks, Lkz)n

As an application, a very interesting use of this property were suggested by [Durrande
et al., 2013] who propose an ANOVA decomposition for the reproducing kernel k(z, ). Then,
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this decomposition is used to perform sensitivity analysis in an efficient way. Their approach
is based on the following proposition (see [Durrande et al., 2013] Proposition 1):

Proposition 1.4. Let H be an RKHS with a reproducing kernel k(x,Z), x,Z € R, then
H can be decomposed as a sum of two orthogonal RKHS

1
H =H1 & Ho,

where Ho is a RKHS of zero-mean functions and Hi is its orthogonal.

The proof is straightforward according to the previous discussion by considering the
bounded linear functional Lf = [ f(u)du with its representer n(z) = [ kz(u)du. By ap-
plying the presented results, the kernel for H; is given by kL(Z) = n(z)n()/||nl|3,, i-e:

1/~\ W) du fk‘;;(u)du
k:z(a?)—/kx( )d [ [k(v,u)dudv’

Then, the reproducing kernel of the orthogonal space Hi- = Mg - which corresponds to the
collection of functions g such that (1, g)% = Lg = [ g(u) du = 0, i.e. the space of zero-mean
functions - is given by

EQ(E) = ka(E) — ky ().

Example of a Gaussian process with zero mean function. Let us consider a 1-
dimensional Gaussian process Z(z), x € [0, 1] with zero mean and covariance kernel k(z, z) =
exp (—|z — #|/0) with § = 10. It corresponds to the Ornstein-Uhlenbeck kernel presented in
Subsection 1.4.2. The advantage of this kernel is that a closed form expression can be given
for Equation (1.73). Indeed, after straightforward calculations, we find that

(29 -0 (exp(—%) + exp(zTTl))) (20 -0 (exp(—%) + exp(i’gl)))
20 — 202 + 202 exp (— %)

kY (x, %) =

and the reproducing kernel for the sub-RKHS of zero mean functions is given by k°(z,%) =
k(z,%) — k'(x,%). We illustrate in Figure 1.13 one realization of a Gaussian process with
covariance kernel k(z, %) and the same realization but with covariance kernel k°(z, Z).
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Figure 1.13: Example of realizations for the Gaussian processes Z(z) with covariance kernel
k(z,%) and Z°(z) with covariance kernel k°(x,%). k°(x,%) is the reproducing kernel of the
sub-RKHS of zero mean functions on [0, 1]. The two realizations are computed thanks to the
Cholesky’s decomposition method (see Subsection 1.4.2) with the same Gaussian white noise.
We empirically observe that the mean of the realization of Z%(z) is close to 0, as expected.
Indeed, it equals —3.5.10~° whereas the one of Z(z) is —3.1.1071.
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Chapter

Co-kriging models

In Chapter 1, we have presented how to surrogate an objective function z(x) with z € @ C
R? @ an nonempty open set, and z(z) € R. Nevertheless, in practical applications, the
objective function can be multivariate, i.e. its output can lie in R® with s € N*. We denote
such functions by z(z) = (z1(x),...,2s(x)) € R® with # € Q. Furthermore, the different
components (z;(z))i=1,..s of the vector of functions z(x) can be dependent. Therefore, if we
want to approximate a component z;(z) of z(z) it could be worthwhile to take into account
the other ones (z;()) ;-

In this chapter, we are interested in that framework. The component of z(x) that we want
to predict is generally called the principal component and the other ones are the secondary

components.

In Section 2.1 we present the extension of the kriging model for multivariate functions.
This extension is called co-kriging and was first developed in geostatistics (see [Chilés and
Delfiner, 1999] and [Wackernagel, 2003]). Then, in Section 2.2 we present the original model
of co-kriging suggested in the geostatistical literature. In Section 2.3 we deal with the defi-
nition of valid covariance kernels for co-kriging models. Finally, in Section 2.4 we present an
approach in computer experiments using co-kriging models to surrogate the output of a code.
It corresponds to the case where we want to take into account the code output derivatives

into the model.

2.1 Bayesian Kriging models for vectorial functions

Let us suppose that we want to approximate the last component zs(x) of z(z) by taking
into account the other components (z;(z))i=1,. s—1. Analogously to the Gaussian process
regression, we consider that the output of the objective function is a multivariate Gaussian
process Z(z) = (Z1(z),...,Zs(x)) with mean m(x) and matrix-valued covariance function

69
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V(z,%). In a multivariate case, we have

m(z)
m(z) = : (2.1)
ms(z)
and
ki1(x,2;011) ... kis(x,T;01s)
V(x,z) = : : , (2.2)
ksi(x,%;051) ... kss(x,T;055)

where k;j(x,z) = cov (Zi(z), Z;(%);045), i, = 1,...,s and m;(z) = E[Z;(z)], i = 1,...,s.
We note that the hyper-parameters 6;;, representing the parameters of the covariance kernel
k;ij(x,Z), can include the variance parameter. For the moment, we consider that V(z,Z) is
a valid matrix-valued covariance function. In fact, its choice is non-trivial since assuring the
positive definiteness of V(z,Z) could be an issue. We present in Section 2.3 how to define
admissible covariance structures in a multivariate context. It is though important to note that
V(z,Z) is not necessarily symmetric, i.e. we can have k;j(x,Z) # kj;(x, Z). Moreover, as in a
kriging case, we consider that the i® component of m(z) is of the form m;(x) = f/(x)3; with
f/(x) a vector of functions of size p;.

2.1.1 Simple co-kriging equations

Let us denote by Z(®) = (Z7), ..., (Z2+)") the values of (Z;(x))i=1... s at points in (D%);—1 ¢
where D = (m&z),,x%)), xg.ni) eRY j=1,...,n;,i=1,...,s. Furthermore, we denote
by 25) = (27",...,2") the values of (2;(x))i=1.. s at points in (D);=1__¢ and by M) =
(My,...,M;) the values of (m;(z))i=1,. s at points in (Di)izly__,,s. Thus, we have M, =
/(DY) 3, := F;3; with F; a matrix of size n; x p;, i =1,...,s .

The purpose of the co-kriging model is to predict the value of Zs(x) by considering the
known values z(®). As in the simple kriging case, the predictive distribution of the simple co-
kriging is given by [ZS(:U)]Z(S) = 209, (B;)i=1,....s: (0i5)i j=1...s). Let us consider the following
Gaussian vector

Zs(x) f'(x)B, kss(z,z) klqi(z) ... Kkl (x)
Z F ki K o Ky
G PO e N B I (2.3)
Zs Fsﬁs kss (1') Ksl ce Kss

with kyj(z) = [ksj(x,zr(j))]k:17.__,nj, kjs(z) = [kfjs(l'](cj),x)]k:L...,nj and K;; = [kfij(l'](j)ax(j))]kzl

We note that although in general k;j(z,Z) # kj;(x, Z), we have the equality kyj(z) = kjs(z)
and K;; = K/;. Indeed, the equality cov(Z;(z),Z;(Z)) = cov(Z;(%), Zi(z)) implies that
ksj(x, %) = kjs(%, ) and thus k;;(z) = kji(z) and K;; = K;. Thus, we obtain that the predic-
tive distribution [ZS(:C)|Z(5) =70 (By)i=1,....s, (0ij)ij=1...,s] is Gaussian with mean mz_ gk (z)

yee it
ey



2.1. BAYESIAN KRIGING MODELS FOR VECTORIAL FUNCTIONS 71

. 2 . .
and variance s g, (2) given by:

mz, sk (@) = B@)B, + K@)V (20 - M©) (2.4)
and
57, s () = kes(w, ) — K (2)V ks (2), (2.5)
where K/ (z) = (kgl(x) . k;s(x)) and
K11 e Kls
v,=| : : (2.6)
Ksl Kss

Considering the univariate case s = 1, the predictive mean (2.4) and variance (2.5)
are identical to the ones of the Simple kriging (1.3) and (1.4).

We note that the matrix Vg must be positive definite. We present in Section 2.3 different co-
variance structures which ensure this property. Furthermore, the equality k;;(x, ) = k;i(Z, )
implies that V is symmetric. The predictive mean myz, sk (x) is the surrogate model for the
component zs(x) of z(z) and the predictive variance SQZS,SK(‘T) represents the model mean
squared error. Like in simple kriging with noisy-free observations, mz, sk (z) interpolates
zs(x) at points of the experimental design set and 52257 s (x) equals zero at these points. Fur-
thermore, we can easily integrate a noise variance in the model by considering a nugget effect
as presented in Subsection 1.2.1 in the paragraph “The noisy case”. In that case, the surrogate
model will not interpolate the observed values anymore.

Example of simple co-kriging
Let us consider the bivariate Gaussian process (Z1(x), Z2(z)), x € R such that

Zl(a:):alél(x) + agdg(a?)
Zg(x):blél(a:) + b252(1§) ’

where d1(z) and d2(z) are two independent Gaussian processes with means zero and covari-
ances ki(x, ) and ko(z,Z) such that:

e ki(x, %) is a 5/2-Matérn kernel with variance parameter o2 = 1 and characteristic length

scale 8 = 0.2,

e ko(x,T) is a 3/2-Matérn kernel with variance parameter o2 = 1 and characteristic length
scale § = 0.3.
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The bivariate stochastic process (Z1(z), Z2(x)) is Gaussian since it is a linear combination of
the bivariate Gaussian process (d1(x), d2(x)). We note that the independence ensures the nor-
mality for (81(z), d2(z)). Furthermore, (Z1(x), Z2(z)) has zero mean and covariance structure

aky(z, %) + adko(2, )  arbiki(z, &) + a2b2/€2(ﬂf,i‘)) (2.7)

Viz. #) =
) <a1b1k¢1(w, z) + agboka(x, T) biki (2, %) + b3k (x, )

Let us consider the sample of Z;(x) and Z3(z) showed in Figure 2.1 with a1 = 1, ag = —4,
b1 = 0.5 and bQ = 3.

o
-
0
0
_ W _
= © A X © A
0 |
|
[To |
1
o
S
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
X X
(a) (b)

Figure 2.1: Example of sample for the bivariate Gaussian process (Z;(x), Z2(x)) with covari-
ance structure defined in (2.7) with a1 = 1, ag = —4, by = 0.5 and by = 3 . Figure (a)
illustrates the sample of Z;(x) and Figure (b) illustrates the sample of Zs(x).

We aim to reconstruct the sample of Z;(x) from its values at points in D! = (—0.20, 0.08,
0.36, 0.64,0.93) and the sampled values of Z(z) at points in D? = (—0.20, —0.06, 0.08,0.22,0.36, 0.50,
0.64, 0.78, 0.93,1.07). Figure 2.2 illustrates the predictive mean and confidence intervals ob-
tained for the simple co-kriging equations (2.4) and (2.5). Furthermore, we also illustrate the
predictive mean (1.3) and variance (1.4) of the simple kriging using only the sampled values
of Z1(z) at points in D'. We see in Figure 2.2 that the confidence intervals of the co-kriging
model are smaller than the ones of the kriging model. Furthermore, they are more relevant in
the co-kriging model since they represent more precisely the real model error. Finally, we see

that the co-kriging mean is more accurate than the kriging one.

2.1.2 Co-kriging parameter estimation

In a co-kriging framework, the hyper-parameters (Bij)i,jzl.“’s are considered as known - this
include the variance parameters. We note that the selection methods presented in Section 1.3
can naturally be extended for the co-kriging model. However, they will be in general extremely
computationally expensive. Nevertheless, we will see in Part II that in some particular contexts
we can easily infer from some hyper-parameters about the predictive distribution. In this
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Figure 2.2: Comparison between co-kriging and kriging models. The solid line represents the
co-kriging mean, the dotted line represents the kriging mean, the dashed line represents the
sample of Z(z) that we want to approximate. The shade areas represent the mean plus and
minus twice the predictive standard deviation of the co-kriging and kriging models.

subsection, we only deal with the estimation of the vector Bl = (B1,-..,B,) of size (37, pi)-
We consider here a Bayesian estimate for ,6(3) but the maximum likelihood one can be deduced
from it without difficulties. First, let us consider the probability density function of the random
vector Z(*)

exp <_5 (29— F® ﬁ<8>)'vs—1 (2 —F® ﬁ<s>>)
(27)"/2\/det V4 ’

where n = 3"7_, n; and F() is the following (335_, n;) x (325, pi) matrix

p(z)8%)) =

F, 0 0 0
0 Fy O 0
Fo _ | - - o :
0O ... 0 Fsq O
0O ... 0 0 F,

We note that p(z(s)|,6(s)) is the likelihood of parameter B'*). Then, from the Bayes rule we
have:

p(B%121) o p(21|8)p(B")
and thanks to the improper Jeffrey’s prior distribution

p(B®)) e 1,

we find that the distribution [8()|z(¥)] is

N (B(s), 2ﬁ<s)> ; (2.9)
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where
, -1
Sy = ((F(5>) V;1F<5>> (2.10)

and ,
Y =%, (F(s)) Vg, (2.11)

We emphasize that the posterior distribution of parameter ,6(5) is similar to the one found in
Equation (1.17). In particular, for s = 1 they are identical. We note that the MLE of 8
is given by B(s) in (2.11). Furthermore, we can easily extend the result given in Subsection
1.2.2 if we consider a Gaussian prior distribution for 8().

2.1.3 Universal co-kriging equations

As presented in Subsection 1.2.2, we can infer from the posterior distribution of ,8(5) given in
Equation (2.9) about the predictive distribution of the simple co-kriging which is a Gaussian
with mean given in Equation (2.4) and covariance given in Equation (2.5).

Let us integrate the posterior distribution of B(s):

plze(2)]2®) = / pzs(2)|), B9)p(8¢)2)) 43,

After direct calculations, it can be shown that the predictive distribution [Z,(z)|Z(®) =
205, (6i)ij=1...,s] is Gaussian with mean

mz.(x) = £(0)B, + Ki(2) V! (200 - FO5) (2.12)

and variance

, N\ 5 (2
2,(0) = ko) - ((0@) K@) (F?s> (FV)> (fk(D, (2.13)

where

,6(5) = ((F(S))/VS_lF(S))i1 (F(S))/Vs_lz(s) and BS are the p, last components of B(S).

For the univariate case s = 1, the predictive mean (2.12) and variance (2.13) are
identical to the ones of the Universal kriging (1.20) and (1.21).

We highlight that closed form formulas can also be derived for the predictive distribution
when a Gaussian prior distribution is considered for ﬁ(s). The universal co-kriging equations
are then similar to the ones presented in Subsection 1.2.2.
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2.2 Co-kriging in geostatistics

We present in this section the geostatistical approach to deal with multivariate objective
functions. It is the natural extension to the one presented in Subsection 1.5.1. Similarly to
the Bayesian scheme presented in Section 2.1 we want to predict a principal component z4(x)
by taking into account the secondary components (z;(z))i=1,. s—1. As previously, the vector
of functions (z;)i=1,. s is modeled with a multivariate Gaussian process (Z;(x))i=1,.. s with
mean m(z) (2.1) and matrix-valued covariance function V(z,Z) (2.2). Nevertheless, in order
to simplify the equations, we present the bivariate case s = 2. The extension for any s is
straightforward.

2.2.1 Simple co-kriging

Let us consider the bivariate Gaussian process (Z1(x), Z2(x)) and the corresponding Gaussian
random vector (Z1',Z3?) where Z!" := Z;(D"), i = 1,2. Furthermore, we consider M; :=
m(D?) = f/(D")3; := F;83; where F; is a matrix of size n; x p;, i = 1,2.

In a simple co-kriging case, the coefficients (3;);=12 are considered as known. Therefore,
we can suppose them equal to zero without loss of generality. Let us consider that we want to
predict the principal component Z,(x). We consider the following linear unbiased predictor:

no ni
Zo(z) =Y aiZe(@®) + 3 iZi (@) = (a2) 25 + (v) 2, (2.14)
=1 =1

where " = [®]i=1,..n, and Y™ = [y;]i=1,...n,. Like in Subsection 1.5.1 we want to find the

ni

coefficients @™ and 4™! minimizing

E I:(ZQ(I') — Zg(x)>2] = koo(z,z) + var (ZQ(CL‘))
—2 (kg ()™ + Ky (z)v™)

where
var (ZQ (a:)) = (am)/ Ko + (’Ynl), Kjpy™ +2 (ang)/ Ko™,

koj(z) = [kzj(%ﬂ?;(ﬁj))]k:1,...,nj, kjo(z) = [ka(x;(ﬁj)vw)]k:1,l..,nj and K;; = [kij(x](j)vxl(j))]k:L...,nia

l:l,.‘.,n]-
i,j = 1,2. We note that kia(z,Z) = ko1(Z,z) implies that Ki2 = K/, and kjao(z) = ko1 (z).
We can derive the mean squared error with respect to a™2 and ™. Setting the derivatives

equal to zero, we obtain that the minimum satisfies the following system of equations:

(2.15)

(@) Kag + (v™) Kiz = Kby ()
(v") K1 + (a™2) Ka1 = kb (2)

Therefore, we can deduce ™2 and 4™ from the following linear problem:

Koo Kor) (@) _ ko (7)
K2 Kii ) \™ ko (z) )
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The estimator is thus given by the equation

-1
2ofa) = (Kpl) Koy(o) (Ef Ei) (ﬁ) 2.1

. 2
and the predictive variance s% () = E {(Zg(x) — Zg(x)> ] is

-1
ng(a:):kzg(a:,x)—(k'm(x) kgl(x)) (Ei Ei) (2?8) (2.17)

Conditionally to the observed values, the predictive means (2.16) and (2.4) are iden-
tical when we consider m(z) = 0. Furthermore, the predictive variances (2.17) and
(2.5) are identical too. Therefore, the predictive distributions of the Bayesian and
the best linear unbiased predictor are identical.

We have shown that the Bayesian simple co-kriging and the one introduced in the geostatistical
literature give the same predictive distributions in the bivariate case. In fact, the generalization
of this result for any multivariate function is straightforward.

2.2.2 Universal co-kriging

We use in this subsection the same notations as in Subsection 2.2.2. In a universal co-kriging
context, the coefficients (3;)i=1,2 are unknown and have to be taken into account in the
constraint of unbiasedness. Let us consider that we want to predict the principal component
Zs(x). We consider the following linear predictor:

ng ni
Zow) =Y eiZo(a?) + Y (") = (@) 25 + (Y 2 (218)
i=1 i=1
Like in Subsection 2.2.1 we want to find the coefficients a™? and ™! minimizing

B|(20) - 2:0)) | = Fa(oa) 4 -2 (le) K) (ij:f)

na\/ n1\/ K K a”?
+ (@) (4 ))(Kfj Kji) (7>

Furthermore, the constraint of unbiasedness implies that
(@) Fofy + (v") F18; = f5(z)B,

which is generally translated in geostatistic by the following conditions (see |Wackernagel,

2003])
{ (a72) Py = fi(z) (2.19)
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. 2
We use the Lagrangian formulation of the problem to minimize E [(Zg () — Zg(x)> } under
the constraints (2.19):

| (Z2(0) - Z2(0)) | + 220 By — () + 20aF}

where A; and Ag are the Lagrangien multipliers. We obtain the following linear system by
calculating the gradients with respect to (a2,~4™, A1, A2) and setting them equal to zero

Kgg K21 Fl2 0 a™ k22 (.%’)
K Ky 0 Fll ~" _ k21($>
FQ 0 0 0 )\1 fg(.’L’)

0 F, 0 O A2 0

Let us introduce the following notations:

12 11 1 1

and kb (z) = (k’22 (x) k’21(x)> After some algebra, we find that the estimator is given by

Za(x) = ()8, + Ky(@) V5" (29 —FPB) (2:20)
where

B= ((F(2))/V2_1F(2)>1 (F(2)>/V;12(2) (2.21)

and ,@2 are the po first components of B

2
Then, denoting the predictive variance s3, (z) = E (Zg(ac) — Zy (a:)) ] and noticing that

((am)’ (fy"l)’) F® = (fé(m) 0), we have:

st (1) = kog(2,2) — (k’Q(x) £)(x) 0> ((F(;))/ fo(z) | . (2.22)

In the bivariate case, the predictive means (2.20) and (2.12) and the predictive
variances (2.22) and (2.13) are identical. Therefore, the predictive distributions of

the Bayesian and the best linear unbiased predictor are identical.

For the bivariate case the Bayesian and the geostatistical universal co-kriging provide the same
predictive distribution. Furthermore, this result is directly generalizable for any multivariate

cases.
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2.3 Admissible matrix-valued covariance kernels

In Section 2.1 we have presented the equations of the simple and universal co-kriging which
come from the Gaussian assumption for the multivariate stochastic process Z(z) = (Z1(z), . .., Zs(x)),
s € N* with mean m(x) and matrix-valued covariance matrix V(z,Z) such that

k‘n(.%', i’; 911) Ce kls(.ilf, .i'; 913)
V(z,2) = : - :
k51($, j; 051) ce kss(xa j; 055)
A valid covariance structure V (z, i’)'must sa‘pisfy the condition of positive definiteness. Namely,
for any (D%);;,. s where D¢ = (a:gl), ... ,:cgfi)), azg»ni) eRY j=1,...,n;,i=1,...,s, the fol-
lowing covariance matrix

k11(D1,Dq1;011) ... kis(D1,Dg;015) Ky o0 Ky

Vs = : : = : S
ksl(D57 Dl; 051) cee kss(D57 Ds; 035) Ksl cee Kss

has to be positive definite. We note that V is the covariance matrix of Z() = ((Z1)', ... (Z%)")
the values of (Z;(z))i=1,. s at points in (Di)izly,,,75. We present two methods to ensure the
positive definiteness of V(z, ). The first one in Subsection 2.3.1 is the approach commonly
used in geostatistics. The second one in Subsection 2.3.2 uses an extension of the Bochner’s
theorem (see Theorem 1.3, Subsection 1.4.2).

2.3.1 Linear transformation of a multivariate Gaussian process

A first method to define admissible matrix-valued covariance kernels V(z,Z) is to notice
that any linear transformation of a multivariate Gaussian process is a multivariate Gaussian
process. We derive in this subsection some examples of valid covariance structures using this

property.

Linear model of coregionalization

Let us consider the multivariate Gaussian process §(z) = (01(z), ..., 0t(z)) where (8;(x))i=1,...+
are univariate Gaussian processes with covariance kernel k;(z,Z) and such that d;(z) L 6;(x)
foralli,j =1,...,t, i # j. We note that the independence assumption ensures the normality
of 6(x). Then, any linear combinations of (6;(x))i=1,... is a multivariate Gaussian process,
i.e. if we define for all t =1,...,s, with s € N*, the following random process

t
= ajdi(@)
j=1

then Z(z) = (Z;i(z))i=1,. s is a multivariate Gaussian process. Furthermore, we have

cov (Zi(x), Z;(Z Zakakcov (0 (x Zaka kg (z, z)
k=1
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Therefore, the covariance structure of Z(x) is

V(z,z) = Z {a};aﬂ ki (z, T),

t

k 1 i?j:]‘?"'?S
where the matrix [a};aﬂ is nonnegative definite since it can be written with the
1,j=1,0)8
following form for all kK =1,...,¢
a]lgozll€ a,lcozz 04,1C
: = 1 s
. (¢ o)
0420411C coooajag ag

This approach is referred as the linear model of coregionalization and is frequently used in
geostatistics (see [Goulard and Voltz, 1992] and [Wackernagel, 2003]). For this model, the

smoothness of any Gaussian process Z;(x), ¢ = 1,...,s, is the one of the roughest latent
process d;(z), j = 1,...,t such that a§- is not zero.

Convolved Gaussian white noise process

As presented in point 3. in the introduction of Section 1.4, a Gaussian process can be defined
with the following form:

Z(z) = /k(:c,u) dW (u),

where W (x) is the Wiener process. Furthermore, Z(z) has the covariance kernel [ k(z, u)k(u, ) du.
If we consider ¢ independent Gaussian white noise processes (W;(x))i=1,..+, then by apply-
ing the linear operators (L;W;)(z) = fkf(ac,u)Wz(u) du = Zl-j(x), i=1,...,t,7=1,...,s,
s € N*, the following multivariate stochastic process is still Gaussian:
(Z] (%)) i=1,..1,
Jj=1,...,s

with covariance structure such that
cov (Zf(x),Z,i(a?)) = z:k/kf(x,u)kfg(u,:%) du.

This technique was suggested by [Boyle and Frean, 2005] to deal with multiple output func-
tions. We present below their approach for the bivariate case. Let us consider three indepen-
dent Gaussian white noise processes (W;(x));=1,..3 and four covariance kernels (k;(z, Z))i=1,2
and (h;(z,Z))i=1,2. Then we can define the four following Gaussian processes:

Vi(z) = hi(z, u)W1(u) du,
Yi(z) = ki(x, u)Wa(u) du,
ka(x, u)Wa(u) du,

ho(x, w)Ws(u) du.

o)
&
Il
—
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We note that the final multivariate random process (Vi (x), Y1(x), Ya(z), Va(x) is Gaussian since
it is a linear transformation of a multivariate Gaussian process. Furthermore, its components
are all independent except for Y (z) and Y3(x) since they come from the same Gaussian white
noise Wa(z). Then, considering two independents Gaussian white noise processes (¢;(z))i=1,2,
one can define the following bivariate Gaussian process:

Zi(z) = Vi(z)+Yi(z) + ofer(2)
Zo(x) = Va(z)+ Ya(z) +ojea(z)

where
cov (Zy1(z), Z1(z)) = /hl(x,u Yhi(u, & du+/k1 x,u)ky(u, T) du—i—aldx &
cov (Za(x), Z2(Z)) = /h2($,u Yho(u, & du+/k:2 z,u)ko(u, Z) du 4 030,—3,

cov (Zi(x), Za(z)) = /kl(x,u)kg(u,a?)du.

For some kernels as the squared exponential one, closed form expressions can be obtained for
these integrals (see [Boyle and Frean, 2005]).

Gaussian processes with zero mean

Following the work of [Durrande, 2011], we present here another approach than the one pre-
sented in Subsection 1.5.2 to deal with zero-mean Gaussian processes. We consider a Gaussian
process Z(z) with mean f'(z)8 and covariance kernel k(z,Z), r € Q@ C R?. Furthermore, we
consider the following linear transformation of Z(x):

LZ(x):/QZ(u)du.

Since any linear transformation of a Gaussian process is Gaussian, we have

Z(x) N f'(x)B k(x,z) [ k(=,
J Z(u) du Jfw)Bdu) \ [k(u,z)du [ [k(u, dudv

and thus the distribution of [Z(z)| [ Z(u) du = 0] is Gaussian with mean

’x),@—/k(x,u) du <//k(u,v) dudv)l/f’(u)ﬂdu
k(z, x) — / z,u) du <// u,v) dudv)l/k(u z) du.

and variance
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2.3.2 Spectral analysis of a multivariate covariance structure

Another approach to ensure the positive definiteness for V(x, Z) is to consider the stationary
case V(z,Z) = V(h) with h = x—Z and the following generalization of the Bochner’s Theorem
for multivariate Gaussian processes.

Theorem 2.1 (Multivariate Bochner’s Theorem). For any continuous positive definite
matriz-valued V (h) from R? into R® x R®, such that

kn(h;OH) - kls(h;els)
V(h) = . ,
ksl(h; 051) cee kss(h; 053)

there exists a unique matriz valued positive finite measure p such that V(h) =
Jpa €274 du(w).  Furthermore, if u(w) has a spectral density S(w) - S(w) is non-
negative definite - with

Sii(w; 011) ... Sis(w;01s)
Ssl(w;Osl) . Sss(w;ess)

where Sij(w; 0y5) is the power spectrum of kij(h; 055), then V(h) = [pa 2w §(w) dw.

Therefore, to define a valid covariance structure V(h), we have to ensure that Yw € R4
S(w) > 0 is nonnegative.

An example of valid covariance structure

The example presented below comes from the article of [Gneiting et al., 2010]. Let us consider
the covariance V(h) such that

kij(h) = (¢i * ¢;)(h),
where (¢;)i=1,.. s are square integrable functions. Then, we have
kij(h) = F~H(F(ci) Fles))(h),

where F stands for the Fourier transform. The spectral density of k;;(h) is S;;(w) = fi(w) fj(w)
where f;(w) = F(c¢;). Therefore, the matrix of the spectral densities is

flw) fi(w) ... fi(w)fs(w)
S(w) = : ~ : = f(w)f'(w),

L) () e F(w)fs(w)

with f'(w) = (f1(w), ..., fs(w)). This ensures the property S(w) is nonnegative.
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Valid cross-covariance functions for bivariate random fields

We give here another example inspired by the article of [Gneiting et al., 2010|. Let us suppose
a bivariate Gaussian process Z(x) = (Z1(x), Z2(x)) with covariance structure :

ku(h) = otki(h;61),
kao(h) = o3ka(h;02),
k12(h) = praoi0o2kia(h; 012),
kot(h) = kua(h).

with h = 2 — &, z,% € R%. Then, we have :

S(uw) o2 F(k1(h; 61))(w) p120102F (k12(h; 012))(w)
pr2o102F (k12(h; 012))(w) 03 F (ka(h; 82))(w)

To ensure the nonnegative definiteness, the following inequality must be satisfied for all
w € R?

|p12F (k12(h; 012)) (w)[* < F(k1(h; 1)) (w) F (k2(h; 02)) (w). (2.23)

The isotropic Gaussian kernel class. Let us suppose that ki (h; 0) = ka(h; 0) = ki2(h;0) =

k(h;6) with :
k(h;0) = exp —M :
’ 262

According to Subsection 1.4.2, we have :
S(w) = F(k(h,0)) = (276%)¥? exp(—27262||w]|?).
The condition (2.23) becomes V¢ > 0 :
Pha(01)" exp(—4n°61yt) < (61)%% exp(—2n671)(63) "% exp(—2m°631).

Therefore, we have to satisfy the following condition to respect the nonnegative definiteness
property V¢ > 0:

) _ (6163)" 2,002 2 | g2
Pi2 < ngg exp(—2m7t(0] — 2075 + 63)). (2.24)
12)" =

This means that 67 — 262, + 03 > 0 implies pjo = 0 and 67 — 262, + 03 < 0 leads to p2y <
(0203)7/2/(67,)".

The Matérn kernel class. We still consider that ki (h;0) = ka(h; 0) = ki2(h; 0) = k(h; 0).
As presented in Subsection 1.4.2; the Matérn kernel class is given by

wo) — 2 (mmn)”m (ﬁ;)nhu) |

I'(v) 0
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with the power spectrum

d.d/2 v —(v+d/2)
_ 2% I'(v+d/2)(2v) 2—V+47r2|]w|]2 .
I'(v)6?”

S(w) -

The condition (2.23) gives that:
p2 < F(lll + d/Q)F(I/Q + d/2) (2V1)V1 (QVQ)VZ F(U12)2
12 = [(vig + d/2)? (2v12)2v12 T(v1)T (1)

giviz 2 ztd /o —v1—d/2 2 —vo—d/2
A2 ing (12 4 yn% 24 ant 22 4 an .
0171057 120 \ 07y 03

This condition is presented in [Gneiting et al., 2010]. It leads the following cases:

1
L. vi2 < 5(v1 4+ 12) = p12 =0.
_1 U 07 03
2. vi2 = 5(v1 + 1), s, > max (g, 52 ) =

) _ (9102>d T(v1 + d/2)T(vy + d/2)T(1r12)? (v1 + 1)
P12 9%2 [(v12 + d/Q)QF(Vl)F(W) (41/11/2)‘1/2'

3. v = 5(11 + 1) % min (5 %) o
: 12 = 35\ 2’V1+l/2 2v1 2v9

7 << 20811 )( 20312 > D(v1 + /2T + d/2AT(10)?
12 (V1 + 1)02 (V1 + 11)62 T(vio +d/2)2T(v))D(ra)

. 0% 02 02 62
4. vig = %(1/1 + 1v2), min (ﬁ, ﬁ) < 0% < max( L2

2u1 2u
t =0 (case 3.), or for t — oo (case 2.), or for:

o a1(21/1 + d) + GQ(QVQ + d) — 2&21(1/1 “+ v + d)
2a12(11a1 + v2a2) + a12d(ar + ag) — 2a1a2(vy + vo +d)’

) = the minimum is reached for

where:
i _ 6 67,

ap = — ag = —= = —=
2V17 21/2’ V1 + o

a12 =

2.4 Co-kriging models using function derivatives

We introduce in this section a co-kriging model approach commonly used in the field of
computer experiments. We have seen in the introduction of Section 1.4 that the mean square
partial derivatives 0Z(z)/02%, * = (z!,...,2%) € R? of a Gaussian process Z(z) exists if
and only if its covariance kernel k(z,Z) is twice differentiable with respect to z°. As the
differential operator is linear, if the covariance kernels are well defined, then the multivariate
stochastic process (Z(z), (0Z(x)/02")i1... ) is Gaussian. Furthermore, we have the following

Cross covariances

(2.25)

az<gz)> Ok(x, 7)
' ot
cov <aZ (z) 92 (”3)> m. (2.26)
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with i,7 = 1,...,d. Now, let us consider that we want to surrogate an objective function z(x)
with a Gaussian process Z(z) of mean f'(x)3 and covariance kernel k(x, Z) and with respect to
the partial derivatives of z(x) (see [Morris et al., 1993] and [Mitchell et al., 1994]). We denote
by Z™ the values of Z(x) at points in D" = {z1,...,z,}, such that z; = (x]l, el ]) € R4,
j =1,...,n and by Z7, the values of 0Z(x)/0x" at points in D™. Similarly, we denote
by z" and z(; the values of z(z) and 0z(x)/0z" at points in D™. The joint distribution of

(Z(x),Z"™, (Z?Z-))izl,...,d) is the following multivariate normal distribution

Z(x) f'(x) k(x,z) K(x) k’(l)(x) k’( )( x)
Zn Fn k,($) K K(Ol) e K(Od)
Zy | ~N || By |8, | K@) Kao)y Kay - Kaa : (2.27)
Z?d) F?d) k,(d) (:L’) K(dO) K(dl) . K(dd)
where

F() = [0f'(z )/5$§]i:1,...,n;zz1,...,d,
K = [k(zi, z))lij=1,..n,
K = [0k(zi, x) /0] j=1.. mi=1,...d»
K : [azk(fﬂuﬂb)/axk@x],g Lok d=1,....d>
k' (z) := [k(z,2)]i=1,...n
k/(l)@?) = [8k<$7mi)/awﬁi:l,...,n;l:l,...,da

The desired predictive distribution [Z(x)|Z", (Z@))izlw’d] can be obtained following the same
technique as the one presented in Subsection 1.2.1. Denoting by

z" F7
h(x) _ k(l) (.’IJ) 7 _ (1) ., F= 1)
k(g () 2 Fr,
and
K Kq K 0a)
vV K10 K(.n) K4 ,

the predictive distribution is normal with mean:

f'(2)8 + W (z)V~! (z - FB) : (2.28)

where

B=(FV'F) 'FV g
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and variance

ko)~ (F(z) W) (g 1';) (ff(f:%) (2.29)

The predictive mean is the surrogate model for z(z) and the predictive variance represents
the model mean squared error. Therefore, we can improve the surrogate model on z(z) by
considering its partial derivatives.

Example of Gaussian process regression using derivatives

Let us consider Z(x) a Gaussian process with mean zero and covariance kernel k(z,z) =
exp (—(z — £)?/26%) with § = 0.1 and « € [0, 1]. The covariance kernel k(xz, Z) being smooth,
the Gaussian process Z(z) is infinitely mean square differentiable. Furthermore, according to
the previous developments we have:

o (209 510 - 2% o (-5

cov (fli@), ‘Z(@) = <912 - W) P (‘W) '

Now let us condition Z(z) at points D = (0.0,0.2,0.4,0.7,0.9) with 2(D) = (-1,2,6,—2,6)
and (dz/dz)(D) = (0,—20,40,0,15). Figure 2.3 illustrates the predictive means and confi-
dence intervals obtained with a simple kriging and a simple co-kriging using the derivatives.

and

We see in Figure 2.3 that the predictive means are significantly different between the simple

Figure 2.3: Example of Gaussian process regression using derivatives. The dotted line repre-
sents the kriging mean, the solid line represents the co-kriging using the derivatives. The shade

areas represent the predictive means plus and minus twice the predictive standard deviations.

kriging and the simple co-kriging using the derivatives. Furthermore, the derivatives giving
additional information, the confidence intervals for the co-kriging are naturally smaller than
the ones of the kriging.
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Contributions in Multi-fidelity
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Chapter

The AR(1) multi-fidelity co-kriging model

3.1 Introduction

Large computer codes are widely used in science and engineering to study physical systems
since real experiments are often costly and sometimes impossible. Nevertheless, simulations
can sometimes be costly and time-consuming as well. In this case, conception based on an
exhaustive exploration of the input space of the code is generally impossible under reasonable
time constraints. Therefore, a mathematical approximation of the output of the code - also
called surrogate or metamodel - is often built with a few simulations to represent the real
System.

The Gaussian Process regression presented in Chapter 1 is a particular class of surrogate
models which makes the assumption that prior beliefs about the code can be modeled by a
Gaussian Process. We focus here on this metamodel and on its extension to multiple response
models (see Chapter 2).

Actually, a computer code can often be run at different levels of complexity and a hierarchy
of levels of code can hence be obtained. The aim of this chapter is to study the use of several
levels of a code to predict the output of a costly computer code (see |Le Gratiet, 2013]).

A first metamodel for multi-level computer codes was built by [Kennedy and O’Hagan,
2000] using a spatially stationary correlation structure. This multi-stage model is a particular
case of the co-kriging one presented in Chapter 2. Then, [Forrester et al., 2007] went into more
detail about the estimation of the model parameters. Furthermore,they presented the use of
co-kriging for multi-fidelity optimization based on the EGO (Efficient Global Optimization)
algorithm created by [Jones et al., 1998]. A Bayesian approach was also proposed by [Qian
and Wu, 2008| which is computationally expensive and does not provide explicit formulas for
the joint distribution of the parameters.

This chapter presents a new approach to estimate the parameters of the model which
is effective when many levels of codes are available (see Subsection 3.6.1). In particular, it
provides a closed form expression for the posterior distribution of the scale factor which is
new and of great practical interest for accuracy and computational cost. Furthermore, this
approach allows us to consider prior information in the estimation of the parameters. We also

89
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address the problem of the inversion of the co-kriging covariance matrix when the number
of levels is large. A solution to this problem is provided which shows that the inverse can
be easily calculated (see Subsection 3.6.2). Finally, it is known that with a non-Bayesian
approach, the variance of the predictive distribution may be underestimated [Kennedy and
O’Hagan, 2000]. This chapter suggests a Bayesian modeling different from the one presented
by [Qian and Wu, 2008] which provides an explicit representation of the joint distribution for
the parameters and avoids prohibitive implementations (see Section 3.4.3).

3.2 Building a surrogate model based on a hierarchy of s levels
of code

Let us assume that we have s levels of code z1(z),...,2s(z), 2 € R, d > 0. Forallt =1,...,s
the t*" scalar output z;(z) is modeled by 2 (2) = Z;(z,w) where Z;(z,w),w € Q is a realization
of the Gaussian process Z;(x). We will introduce below a consistent set of hypotheses so that
the joint process (Z;(7)),egd =1, s is Gaussian given a certain set of parameters. [Kennedy
and O’Hagan, 2000] suggest an autoregressive model to build a metamodel based on a multi-
level computer code. Hence, we have a hierarchy of s levels of code - from the less accurate
to the most accurate - and for each level, the conditional distribution of the Gaussian process
Zy(x) knowing Zy(x), ..., Zi—1(x) is entirely determined by Z;_i(z). Let us introduce here
the mathematical formalism that we will use in this chapter.

Q C R? is a compact subset of R? representing the input space. For t =1,...,s, D; =

{xgt), ceey xﬁl?} is the experimental design set at level ¢ containing n; points in (). Let Z; =
Z1(Dy) = (Zt(:ngt)), . .,Zt(ngt)))’ be the random Gaussian vector containing the values of
Zy(z) for x € Dy. Let Z = (Z},...,Z.) be the Gaussian random vector containing the values

of the processes (Z¢(x))i=1,. s at the points of the design sets (Dy)=1,. s. We assume here
that the code output is observed without measurement error. The column vector of responses
is written z = (2, ...,z,)’, where z;, = (zt(xgt)), cee zt(xq(ft)))’ is the output vector for the level
t.

If we consider Zs(z), the Gaussian process modeling the most accurate code, we want
to determine the predictive distribution of Zs(z¢), o € @ given Z = z, i.e. the following
conditional distribution: [Z(z¢)|Z = z].

We assume the Markov property introduced by [Kennedy and O’Hagan, 2000]:

Cov(Zi(x), Z1—1(2)| Zi—1(2)) =0 Va # I. (3.1)

The property Cov(Zi(z), Zi—1(%)|Zi—1(x)) = 0, Vo # & means that if Z;,_1(x) is
known, then nothing more can be learn about Z;(z) from any other run of the
cheaper code Z;_1(Z) for & # x.

This assumption leads to the following autoregressive model (see proof in Appendix A.1):

Zi(x) = pr—1(x) Ze—1(x) + 0(x) t=2,...,s, (3.2)
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where ;(z) is a Gaussian process independent of Z;_1(z),...,Zi(x) and p;—;i(x) represents
a scale factor between Z;(z) and Z;_i(x). It both represents the correlation degree and the
scale factor between two successive levels of code:
Cov(Zi(x), Zi—1(x
ey = COV).Zia()
var(Zi—1(z))

We assume that p;—1(x) = gr—1(2)B,, ,,t=2,...,s, whereg; 1(x) = (f},_,(2),..., fo "1 (2))
is a vector of g;_1 regression functions - generally including the constant function : z € @ — 1
-and B8, | € R#-1.

Conditioning on parameters oy, B, and 6y, §;(z) is assumed to be a Gaussian process with
mean f{(z)3,, where f;(z) is a p;-dimensional vector of regression functions, and with a co-
variance function of the form k;(z, %) = cov(dy(z), (%)) = o?ri(z — ¥;6;), where o? is the
variance of the Gaussian process and 8, are the hyper parameters of the correlation function r;.
Moreover, conditioning on parameters o1, 3; and 61, the simplest code Z;(z) is modeled as a
Gaussian process with mean f](x)3; and with covariance function ki (x, %) = o371 (z — 7;01).
With this consistent set of hypotheses, the joint process (Z1(z),..., Zi(x))zeQt=1,..,s given
o = (07)i=1
mean:

E[Zt($)|0'2,0,ﬂ7,3p] = hé(.ﬁU)ﬁ, (33)

t—1 t—1
hj(x) = ((H pi(fﬁ)) fi (), (H Pi($)> f3(z), ... 7pt—1(x)ft/1(x)7ft/(x)> (3-4)
i=1 =2

and covariance:

t t—1
cov(Zi(x), Zu(3)]0*,60,8,8,) = > o7 | [[ pi(2) | rj(ax — 3 6,). (3.5)
J=1 i=j
For each level t = 2,...,s, the experimental design Dy is assumed to be such that Dy C

D;_ ;1. Note that this assumption is not necessary but allows us to have closed form expressions
for the parameter estimate formulas. Furthermore, we denote by R;(Dg,D;) the correlation
matrix between observations at points in Dy and Dy, 1 < k,l < s. Ry(Dg,Dy) is a (ng x ng)
matrix with (7, j) entry given by:

[Re(Dy,D))iy = el — a0 1<i<m 1<j<n.

We will use the notation: R;(Dy) = R¢(Dy, Dg).

[Kennedy and O’Hagan, 2000] present the case where Vt € [2,s], pi—1(x) = pi—1 is constant.
Here, we will consider the general model presented in equations (3.2). We will also propose
a new approach to estimate the coefficients (8, 3,, ,)i=2
which allows us to get information about their uncertainties. In the following section, we

..... s based on a Bayesian approach,
describe the case of 2 levels of code where the scaling coefficient p is constant and then we will
extend it for s levels in Section 3.6. The general case in which p depends on z is addressed in
Appendix A.2.
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3.3 Building a model with 2 levels of code

Let us assume that we have 2 levels of code z9(x) and z1(z). From the previous section we
assume that:
{ Zo(x) = pZi(z) +6(x), z€Q (3.6)
(Z1(@)eeq L 6@)acq |

The goal of this section is to build a surrogate model for Zs(z) given the observations Z = z
with an uncertainty quantification. The strategy is the following one. In Subsection 3.3.1 we
describe the statistical distribution of the output Zs(zp) at a new point z( given the parameters
(B, Bs,p), (62,02) and (61, 62) and the observations z. In Subsection 3.3.2 we describe the
Bayesian estimation of the parameters (3;,3,p) and (07,02) given the observations. As
pointed out at the end of Subsection 3.3.2 the hyper-parameters (01, 602) are estimated using
a concentrated restricted log-likelihood method.

3.3.1 Conditional distribution of the output

For a point zg € ) we determine in this subsection the distribution of [Z2(x0)|Z = z, (B4, B2, p),
(02,02),(01,02)]. Standard results for normal distributions (see Chapter 2) give that:

[Z2(20)|Z = 2, (81, Ba, p); (07, 03), (61, 02)] ~ N (mz,(20), 5%, (20)), (3.7)
with mean function:
mz,(z) =h'(2)8+ ¥ (z)V'(z — HB) (3.8)
and variance:
2 _ 22 2 / -1
57,(x) = p“oi + 03 =K (z)V ™ k(z), (3.9)
where we have denoted 3 = (gl> ,Z = (zl> and where H is defined by:
2 z2
fi(z") 0
; : Fi(Dy) 0
f1<x£33> 0
H = @y @y | = )
pfl(xl ) (=)
: : pF1(Dy) | F5(Dy)
o(0) £al2)
£(21))
with the notation F;(D;) = : . Furthermore, we have h'(z) = (pf] (z), f5(x)) and:
£ (1)

k'(z) = Cov(Za(z),Z)

= (poiRi({x},D1), p?0i Ri({x}, D2) + 03 Ry ({2}, D2)) (3.10)



3.3. BUILDING A MODEL WITH 2 LEVELS OF CODE 93

Z

The covariance matrix V of the Gaussian vector Z = (
2

) can be written :

_ O'%Rl(Dl) pO’%Rl(Dl,Dg) (3 11)
poiRi(D2,D1) p*07Ri(D2) + 03 Ra(D2)

3.3.2 Bayesian estimation of the parameters with 2 levels of code

In this subsection, we describe the Bayesian estimation of the parameters (8,03, p, 0%,
03,01,0,) for the 2-level model given the observations Z = z. In particular, we look for
the posterior distribution of (34, 35, p, 0%, 0'%, 01, 02) given the observations Z = z in the case
in which the prior distribution of (3, 85, p, 0%, 05,01, 02) has a special (conjugate) form or a
non-informative form. Due to the conditional independence between Z;(x) and é(x), it is pos-
sible to estimate separately the parameters (3;,0%,01) and (B, p,03,02). We first describe
the posterior distribution of (31, 0%) given 7 and (84,2, p) given O3, which can be obtained
in closed forms. We then describe how to estimate 61 and 8.

Firstly, we consider the parameters (3, 0%,81). We choose the following non-informative
prior distributions corresponding to the “Jeffreys priors" [Jeffreys, 1961]:

1
p(Bi]01,61) x1  p(of,61) x P (3.12)
1

Considering the probability density function of [Z1|8;,0%,61] and the Bayes formula, the
posterior distribution of [34|z1,0%,01] is :

[81lz1,07,601] ~ Ny, ([FllRl(Dl)lFl]1[F/131(D1)121]7 [FﬁRl(Dgl)_lFl]1> ;o (3.13)

01

where F; := F (D). Then, using the Bayes formula, we obtain that the posterior distribution
of [0%|z1,04] is:

1

[07]21,61] ~ IG(ip2), s - ) (3.14)

where ZG(a, Q) stands for the inverse gamma and the parameters are given by:

2|y = = ;pl Q1 = (z1 — F13,)Ri(D1) " Yz1 — F134) , (3.15)

with B, = E [B1lz1,0%,01] = [F{R(D1)"'F1] "} [FRy(D1) " 'z4].
The posterior mean 3; of B, with non-informative “Jeffreys priors" [Jeffreys, 1961| equals

the maximum likelihood estimate of B;. For the parameter o7, the estimate given by the
2 Q1

1 = 2a
oflny

maximum likelihood method. This method was introduced by Patterson and Thompson [Pat-

is identical to the one obtained with the restricted

posterior harmonic average &

terson and Thompson, 1971] in order to reduce the bias of the maximum likelihood estimator.

Secondly, let us consider the set of parameters (B, p, 03, 02). In order to have closed form
formulas for the posterior distribution of (35, p), we estimate them together. The idea to carry
out a joint Bayesian analysis is proposed for the first time in this chapter and we believe it is
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important. Indeed, if the cheaper code is perfectly known, it can be considered as a regression
function and so p will be a regression parameter. In this case, it is clear that a separated
estimation of 35 and p cannot be optimal.

Using the Jeffrey prior distributions p((p, B)|03,802) x 1 and p(03,03) o % and the same

2

methodology as for the posterior distribution of (3;,0%), we find that:

(9. Ba)|1. 72,0, 0] ~ N ([F’Rz(Dz)‘lF]‘l[F’Rz(DQ)‘lF], [FR(D)F])

g2
(3.16)
and:
(03|22, 21, 02] NIQ(aagmz,%), (3.17)
where: o — e — 1 ) )
iy = 5 Qo = (22— FAYR(D2) (22— FA) , (3.18)

with X = E[(p, By)|21, 22,03, 03] = [F'Ry(D2) 'F] ' [F'Ry(D2) 'z5]. The design matrix F is
such that F = [21(D2) Fs]. Furthermore, the estimate of o3 given by the posterior harmonic

average 63 = QQQ; is the same as the restricted maximum likelihood one.
0'2\71,2

The hyper-parameters 61 and 6, are found by minimizing the negative concentrated re-
stricted log-likelihoods:

log (|det (R1(D1)) |) + (n1 — p1)log(d1?), (3.19)

log (|det (Ra(Da2)) |) + (n2 — p2 — 1)log(d22). (3.20)

These minimizations problems must be numerically solved with a global optimization method.
We use an evolutionary method coupled with a BFGS (Broyden-Fletcher-Goldfarb-Shanno)
algorithm [Avriel, 2003]. The drawback of the maximum likelihood estimation is that, con-
trarily to Bayesian estimation, we do not have any information about the variance of the
estimator in non-asymptotic cases (see [Lehmann and Casella, 1998|). Nevertheless, Bayesian
estimation of the hyper parameters 8; and 65 are prohibitive and as noted in [Santner et al.,
2003| the choice of the prior distribution is non trivial. Therefore, in this chapter, we will
always estimate these parameters with a concentrated restricted likelihood method.

3.4 Bayesian prediction for a code with 2 levels

The aim of a Bayesian prediction is to provide a predictive distribution for Z4(x) integrating
the posterior distributions of the parameters and hence taking into account their uncertainty.
The forthcoming developments are the extension of the Bayesian kriging presented in Section
1.2.2 to the multi-fidelity co-kriging model.

A Bayesian prediction for a code with s = 2 levels was suggested by [Qian and Wu, 2008|.
Nevertheless, we propose here a new Bayesian approach with some significant differences.
First, we assume that the adjustment coefficient is a regression function whereas [Qian and Wu,
2008| model it with a Gaussian process. Secondly, we use different prior distributions for the
parameter estimation. More specifically, according to the Bayesian estimation of parameters
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previously presented, we use a joint prior distribution for (B,,p) conditioned by o3 whereas
[Qian and Wu, 2008] use separated prior distributions with p not conditioned by o3. Then,
we use a hierarchy between the different parameters. At the lowest level is the regression
parameter 3. At the second level is the variance parameter o2 which controls the distribution
of the parameter 3. At the top level is the parameter @ which controls the distribution of the
parameters at the bottom levels. It is common to use a hierarchical specification of models
for Bayesian prediction as presented in [Rasmussen and Williams, 2006]. This strategy will
allow us to obtain explicit formulas for the joint distribution of the parameters and above all,
to reduce dramatically the cost of the numerical implementation of the complete Bayesian
prediction.

We will also present the case in which we do not have any prior information about the
parameters. As described in the previous section, the hyper parameter 6 is estimated by
minimizing the negative concentrated restricted log-likelihood and it is assumed to be fixed
to this estimated value from now on.

3.4.1 Prior distributions and Bayesian estimation of the parameters

Many choices of priors can be made for the Bayesian modeling. Here we study the two following
cases:

(I) Priors for each parameter are informative.

(IT) Priors for each parameter are non-informative.

For the non-informative case (II), we use the improper distributions corresponding to the
“Jeffreys priors” and then the posterior distributions are given in Section 3.3.2. Note that non-
informative distributions are used when we do not have prior knowledge. For the informative
case (I), we will consider the following prior distributions:

[B1l07] ~ Ny, (b1, 01 V1), [(p, Ba) |21, 03] ~ Nijp, (bA = <22> 5V = (%0 ‘(,)2))

[0%] ~ ZG(a1,m),  [o3]z] ~ IG(az,72)
where by € RPt, by € R1*P2 Vy is a (p; x p1) diagonal matrix, V is a ((1 + p2) x (1 + p2))
diagonal matrix, v, is a positive scalar and ai,v1,a2,72 > 0. The forms of the priors are
chosen in order to be able to get closed form expressions for the posterior distributions. Note
that there are enough free parameters in the prior distributions to allow the user to prescribe
their means and variances. From the previous prior definitions, the posterior distributions of
the parameters are:

(81|21, 03] ~ Ny (Afvi, AL [(pyBy)|21, 22, 03] ~ Np, 1 (A}, AD), (3.21)
where:
Al — { Ui[F’lR1(D1) 'Fy +V1 -1 i=(
Z ot [FiRi(D1)~'Fy] ™! i=(I) ’
” { [F{R1(D1)'z1 + V{'by]/0? i=(I)

[FiR1(D1) 'z1]/0} i=(I1)
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and F = [21(Dy) Fs]. Furthermore, we have:

] ~ 76T L) odlam] ~ To(07E", L) (3.22)
where:
Q! = 291 + (b1 — B1) (V1 + [F Ry (D1) 'F1] )~ 1(by — By) + Q3 i = (I)
¢ le[Rl(Dl)il — Rl(Dl)ilFl(F/lRl(Dl)ilFl)ilF/lRl(Dl)il]Zl ] = (II) ’
Q=] 2t (bx = A)(Va + [F'Rz(D2) ~'F] 1)~} (by — ) + Q3 i=(I)
’ zh[Ra(D2) ™! — Ro(D2) 'F(F/'Re(Do) ~'F) " 'F'Ry(Do) " Yze  i=(II) ’
By = (F{Ry (D)) 'F)) " 'F| Ry (D) 'z, A = (F'Ry(D2) 'F) 1F' Ry(Dy) L2y,
J%\Tn - oL + o 1= (I) U%\ng . L + o ;= (I)
Oéi - { @ 7/ _ <II) ) Oéi - { 7?275271 Z — (II)

Mixing of informative and non-informative priors are of course possible and easy to imple-
ment. As we will discuss in Subsection 3.4.4 and see in the examples of Section 3.5, the use
of informative priors has minor impact on the mean estimation but may have a strong impact
on variance estimation.

3.4.2 Predictive distributions when 3,, p, 0} and o3 are known

As a preliminary step towards the Bayesian prediction carried out in the next subsection, we
give here Bayesian prediction in the form of closed form expressions when the parameters 3,
p, 02 and o3 are known. The conditional distribution of [Z2(z)|Z = z, B4, p,0%,03] is given
by:

[ZQ(x)‘Z = ZvBZ’ Py U%’ O-%] ~N (Mi(x)’ O'?(:E)) ) (3'23)
where:
(AR o (Al
piz) = hi( )( 3, >+k( )V ( H( 3, ));

i (x) = s7,(x) + g1Ajg]

and A} and v} are defined by (3.21). Note that the estimated variance is augmented by the
term glAzlg’1 which quantifies the uncertainty due to the estimation of 3. g1 is a (1 X p1)
vector composed of the p; first elements of the (1 X p;,1 x py) vector g = (g1,82) = h'(z) —
K'(z)V™'H. H is given by (3.3.1). The existence of closed form formulas is important as it
will allow for a fast numerical implementation.
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3.4.3 Bayesian prediction

Before performing the Bayesian prediction we note that - thanks to the explicit joint prior
distribution for 35 and p, the independence hypotheses and the hierarchical specification of
the parameters - conditioning on @, we have an explicit formula for the following joint density
(see Section 3.4.1):

p(B1, By, p. 01,0521, 22) = p(B1lot, 21)p(By, plos, 21, 22)p(0t|21)p(05 |21, 22). (3.24)

This explicit joint density is an original result which contrasts with [Qian and Wu, 2008|
and which allows us to avoid prohibitive implementation for the Bayesian analysis.

First, we consider the predictive distribution with ¢ and ¢3 known. Considering the con-
ditional independence assumption between (6(x))gzeq and (Z1(z))zecq, the probability density

function of [Z3(x)|Z = 2, 0%, 03] can be deduced from the following integral:

p(22(z)|21, 22,07, 03) = /RHP2 p(z2(w)|21,22, By, p, 01, 03)p(p, Bal21, 22, 05) dpd By, (3.25)
where p(z9()|21, 22, B, p,02,03) is given by (3.23). This integral has to be numerically
evaluated. Since [p, 35|21, z2, 03] has a known normal distribution given by (3.21), we here use
a Monte-Carlo algorithm when the dimension of 3, and p is high, or a trapezoidal quadrature
method when it is low.

Then, we infer from the parameters o} and 03. Due to the independence between (3(x))zeq
and (Z1(x))zeq, the probability density function of [Zs(x)|Z = z] is:

p(22(z)|z1,22) = /QP(Z2(1’)1217Z2a0%7Ug)p(ffflzl)p(aglzhzz)dedU§7 (3.26)
R

where p(0?|z1) and p(o3|z1,z2) are given by (3.22). This integral has also to be numerically

evaluated. Since we have a double integration, a quadrature method will be efficient. We
2 2

1'Lnf ’ O-lsup:l

| from Equation (3.22) and such that p(o’inf|z1), p(o’%sup\zl) p(a%mf|z1,z2) and

use here a trapezoidal numerical integration, defining the region of integration [o
2 2
2z‘nf ’ U2sup

p(agsw |z1,22) are close to 0. This region essentially contains the support of the function. Fur-

[o

thermore, we create a non-uniform integration grid distributed with a geometric progression.

Finally p(z2(x)|z1, 2z2) is a predictive density function integrating the posterior distribution
of parameters (35, p, B1,0%,05). We hence have a predictive distribution taking into account
the uncertainties due to the parameter estimations.

3.4.4 Discussion about the numerical evaluations of the integrals

We saw in the previous section that we can obtain an analytical prediction when B, p, 02 and
o3 are known. From this analytical formula, we can have a Bayesian prediction with only two
nested integrations. One of them can be approximated with a quadrature or a Monte Carlo
method, which is not too expensive. The other is a double integration approximated with a

quadrature method which is efficient and not expensive. Therefore, we do not use any Markov
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chain Monte Carlo method and we considerably reduce the time and the complexity of the
method. This allows us to easily build an accurate Bayesian metamodel. Practically, we use
441 integration points to approximate (3.26) and 1000 Monte-Carlo particles to approximate
(3.25). Therefore, we have 441000 call to the predictive density function (3.23).

To avoid a prohibitive implementation, another approach has also been proposed in [Cum-
ming and Goldstein, 2009]. They adopt a Bayes linear formulation which requires only the
specification of the means, variances, and covariances. See [Goldstein and Wooff, 2007] for
further details about the Bayes linear approach. The strength of this method is that its com-
putational cost is low. Nonetheless, since it only focuses on posterior means and covariances,
it does not provide the full posterior predictive distribution.

Finally, we highlight the fact that our Bayesian procedure can be used to perform multi-
fidelity analysis with more than 2 levels of code whereas the cost of the one presented by [Qian
and Wu, 2008] is too high to allow for such analysis. We illustrate in Section 3.7 through an
industrial case the great practical importance of using more than 2 levels of code.

3.5 Academic examples

We will present in this section some co-kriging metamodels using one-dimensional functions
inspired by the example presented by [Forrester et al., 2007|. For the following examples, we
will use a non-Bayesian co-kriging model - i.e. the one presented by [Kennedy and O’Hagan,
2000] - but with a Bayesian estimation of the parameters (see Section 3.3.2) and for the second
example we will use a Bayesian co-kriging.

Furthermore, the correlation kernels are assumed to be:

k l
RCINCA @ =y
T\x; .%'j yUr) = exp 29% 5

where t,k,l =1,2 1<i<mn; 1<j<mnyand the regression functions are fj(z) = 1 and
Bo)= (1 ).

Example 1. The aim of this example is to emphasize the effectiveness of the presented
Bayesian estimation of the parameters (see Section 3.6.1). We assume that the cheap code
is given by z1(z) = 0.5(6z — 2)%sin(12z — 4) + 10(x — 0.5) — 5 and the expensive code by
zo(x) = 2z1(x) — 20z + 20 . The experimental design set of the cheapest code is Dy =
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1} and the one of the expensive code is Dy = {0,0.4,0.6,1}.
This example is identical to the one-dimensional demonstration presented in [Forrester et al.,
2007]. Figure 3.1 shows the functions = — z9(x) and x +— 21 (z), the training data for z9 and
21, the ordinary kriging using only the expensive data and the co-kriging using expensive and
cheap data.

To validate the model, the Root Mean Squared Exrror RMSE = >+ (mz,(z) — 22 (x))?/nr
and the Nash-Sutcliffe model efficiency coefficient (see |[Nash and Sutcliffe, 1970]) Eff =

2
| _ Zuer (mz (x)_Zwa)Q) , Z2 = ) .cp, 22(x)/n2 are computed. The Nash-Sutcliffe efficiency
Seer (mz,(2)=22) °

compares the residual variance with the total variance. It is also referenced as ()9 coefficient.

The closer Eff is to 1, the more accurate the model is.
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— 2(x)
15
""" z1(x)
co—kriging
ordinary kriging
Z

10 4

oD

Z1

Figure 3.1: Example 1. The co-kriging metamodel is very close to the expensive output zs(.)
and improves significantly the ordinary kriging metamodel using the small design Ds.

The test set T is composed of a regular grid points sampled from 0 to 1 with a grid
step equal to 0.01 and Zy is the empirical mean evaluated in T. The estimated RMSE is
5.68 x 1072 and the efficiency Eff is 99.98%, so we have a prediction error close to 0. The
Bayesian estimates of the parameters of co-kriging are given in Table 3.1. Furthermore, the
estimates of the hyper-parameters (61, 62), calculated by maximizing the concentrated log-
likelihoods (3.19) and (3.20), are 6; = 0.25 and 6 = 0.80. D; being a regular grid with
a grid step equal to 0.1 and Dy being composed of points sampled from 0 to 1, points of
the experimental designs are hence strongly correlated which will imply a smooth surrogate

model.

Regression Coeflicient Posterior mean
P 2
B9 (20, —20)
B4 —3.49

Variance Coefficient | Posterior harmonic average
o? 32.75
o3 7.02 x 10730

Table 3.1: A co-kriging example with one-variable functions. Bayesian estimation of parame-
ters.

We see that the Bayesian estimation of parameters is very effective since the estimations
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of parameters p and 3, are perfect. Nevertheless this example does not highlight the strength
of the method since there is a relation between 22(z)e(01] and 21(¥)ze[0,1) Which exactly
corresponds to Equation (3.2) with the error d5 that can be written in terms of the regression
functions fy exactly. Therefore, if the cheap code is well modeled, like in this case, the co-
kriging is equivalent to a linear regression. Moreover, the very small value of o3 illustrates
this.

Example 2. This example illustrates a case where the non-Bayesian co-kriging underes-
timates the predictive variance whereas the Bayesian one adjusts it. We assume that the
expensive code is given by z2(x) = 22 (x) — 202 + 20+ sin(10 cos(5z)) and the cheaper code is
given by z;(x) = 0.5((6x—2)?sin(12z—4))+10(x—0.5) —5. Through the term sin(10 cos(5z)),
the expensive code has high frequencies which are not captured by the cheap code and the error
02 is not a simple linear combination of the regression functions f5. Therefore, the functions
do not exactly match the model presented in Section 3.2 and the high frequency discrepancy
makes the problem more challenging. Figure 3.2 shows the results of kriging and co-kriging
for these two functions. The estimated RMSE is 1.05 and the efficiency Eff is 93.57%, we

154 Zzgxg
””” Z1\X
----- co-kriging
104 ordinary kriging
A Zy
o Z1 /,o

Figure 3.2: Example 2. The high frequency components of the expensive code are not predicted
since they are not captured by the cheap code and the coarse grid used for the expensive code
cannot detect them either. Nevertheless, the co-kriging improves the ordinary kriging meta-
model since the cheap code allows us to predict the low frequencies of the expensive code
accurately.

still have a good prediction. The Bayesian estimation of the parameters are given in Table
3.2 and we have él = 0.25 and ég = 0.07. The values of #; and 65 have been fixed according
the following arguments. As the cheap code is the same as the one of the Example 1, we keep
the same estimate for ;. Then, we consider that there are not enough points to carry out a



3.5. ACADEMIC EXAMPLES 101

significant estimate of 5. Therefore, we fix the value of 6, according to the high frequencies
introduced by the term sin(10 cos(5x)).

Regression Coefficient Posterior mean
P 1.86
B9 (18.39,—17.00)
B1 —3.49
Variance Coefficient | Posterior harmonic average
o? 32.75.03
o2 0.30

Table 3.2: A co-kriging example with one-dimensional functions. Bayesian estimation of

parameters.

Due to the additional term sin(10cos(5z)), the estimate of the parameter p is less effec-
tive than in the first example. This highlights the dependence between p and the mean of
d(7)zef0,1)- Furthermore, Figure 3.3 represents the confidence interval at plus or minus twice

154 — 2(x)
44444 co—kriging
A 7
10 + 95% non-Bayesian confidence interval
————— 95% Bayesian confidence interval

-10 4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: Example 2 without any prior information. The thick dotted line represents the
prediction mean, the thin dotted lines represent the confidence interval at plus or minus twice
the standard deviation in the non-Bayesian case and the dashed lines represent the same

confidence interval in the Bayesian case.

the standard deviation of the predictive distribution in the Bayesian and non-Bayesian cases.
We see that we underestimate the variance of the predictive distribution in the non-Bayesian
case. Its estimate is well adjusted in the Bayesian case.
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We finally consider the case in which we have prior information:

2 0.05 0 0
[(p, B2)|21, ag] ~N 20 ,0’% 0 005 0O , [0§|zl] ~7ZG(3,1).
—20 0 0 0.05

Figure 3.4 shows the result of the Bayesian co-kriging with the given prior information. The
estimated RMSE is 0.79 and the efficiency Eff is 96.57%, we hence improve the accuracy of
the metamodel. The predictive mean is closer to the true function and the predictive variance
is reduced compared to the non-informative Bayesian case, with the confidence intervals that
still contain the true function. The posterior distributions of the parameters are given in Table
3.3 and we have ; = 0.25 and 0y = 0.07.

Regression Coefficient Posterior mean
P 2.00
Ba (20.12,—19.81)
A —3.49
Variance Coefficient | Posteriori harmonic average
o? 32.75
o3 0.29

Table 3.3: A co-kriging example with one-dimensional functions and prior information. Pos-
terior distribution of parameters.

15 4 — 2zy(x)
44444 co—kriging
A 7
10 § non-Bayesian confidence interval at 95%
rrrrr Bayesian confidence interval at 95%

-10 4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.4: Example 2 with prior information. The prior information improves the accuracy
of the co-kriging metamodel and the variance of the predictive distribution has decreased.
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3.6 The case of s levels of code

The aim of this section is to perform a multi-level co-kriging with any number of codes. Let us
consider s levels of code. The generalization of the previous model is straightforward. Actually,
if we denote by B = (8},...,8.), p= (p1,---,ps_1), 02 = (03,...,02) and § = (01,...,05),
we have:

Vo € Q [Zs(2)|Z = 2,8,p,0%,0] ~ N (mZS(:c),SQZS(a:)) ,

where:
mz,(x) = hi ()8 + k(x)V ' (z — H,B) (3.27)
and:
S2ZS (z) = O'%S —K.(2)V; 'k, (2). (3.28)
Furthermore, the correlation matrix for Dy and ps = 0, Vs < 0. The matrix V4 has the form:
vy v
V, = : : . (3.29)
v v
The s diagonal blocks of size n; X n; are defined by:
t—1
V) = 62R/(Dy) + 02 1p2 | Ri_1(Dy) + -+ 02 (H pf) R1(D,) (3.30)
i=1
and the off-diagonal blocks of size n; X n; are given by:
) i—1
VD = | T]pi | VIP(Dy, D) 1<t<i<s (3.31)
i=t
The vector ks(z) is such that kq(z) = (kf(x,D1)’,..., kX (z,Dy)"), where:
s—1
kf(x,D¢) = py_1k;_ (2, Dy) + (H pi> o7 Ry(z,Dy) 1<t<s, (3.32)
i=t

where (Hf;s/l pi) =1 and kj(z,D;) = (Hf;ll pi) 0?Ry(x,D1). If we define:

l
£ (2")
Fk(Dl): 1<kl <s,
!
£ (zh))
then the matrix Hg can be written as:
Fi(Dy)
p1F1(D2) F5(Dy) 0
H, — p1p2F1(D3) p2F2(Ds) , (3.33)

(1) Ay (I 0) B0 . R,

h' (z) and var(Zs(z)) = O'%s are given by the equations (3.3) and (3.5).
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3.6.1 Bayesian estimation of parameters for s levels of code

From the assumptions of conditional independence between (6;(z))zecq and (Zi—1(x), ..., Z1(2))zeq,
we can extend the Bayesian estimation of the parameters to the case of s levels. Note that we

do not assume the independence of 3, and p;—1. We can obtain a closed form expression for

the posterior distribution of (3, p;—1). For all t = 2,... s, we have:

[(pt—1,By)|Zt, 2t—1, 04, 07) ~ N ((H;Rt(Dt)let)_l HR,(Dy) 'z, 0} (HgRt(Dt)ilHt)_l> ;

(3.34)
where H; = [z;,_1(D;) F,(D;)]. Furthermore, if we note A, = E[(pi_1,8,)|2¢, z¢—1, 0y, 02,
then we have:

07|21, 21-1,04] ~ TG (au, %)7 (3.35)
where [ (nt — Pt — ].)/2 and Qt == (Zt - Ht;\t)’Rt(Dt)_l(zt - Htj\t)-
The REML estimator of o7 is 67 = Q:/2a; and we can estimate 6; by minimizing the

expression:

log(|det(R:(Dy))|) + (ns — pr — qi—1)log(62). (3.36)

The generalization of the Bayesian estimation previously presented is important since it shows
that the parameter estimation for a s-levels co-kriging is equivalent in terms of numerical
complexity to the one for s independent krigings.

3.6.2 Reduction of computational complexity of inverting the covariance
matrix V,

Vgisan (37 ni x > 4 n;) matrix, its inverse can hence be difficult to process. We present
in this subsection two propositions to reduce the complexity of the processing of V1.

Proposition 3.1. Let us consider the covariance matrix Vs presented in Equation
(5.29). By sorting the experimental design sets such that ¥Vt = 2,...,s, Dy_1 =

(:vgtfl), .. ,zstj)_nt,:cgt), e xﬁf}) = (Dy—1 \ Dy, Dy), Vt = 2,...,s the inverse of the
matriz Vg has the form:
N 0 0 0 )
S— 2-7 S DS -1 - s — s s -1 — -
vl U 1Rgé ) ) 1RUéD ) vol— R1(D21) 7
_ <0 Psfle(Ds)’1> Rs(Dy)~! 71
o2 o3

(3.37)

with V2, an (351 ni x Y2571 ny) matriz and Ry(Ds) ™" an (ns x n) matriz.

Proof. The proof is proposed with the general form p(z) = g¢—1(z)8,,_, for the adjustment
coefficient. Throughout the proof, we denote by ® the matrix element-by-element product
(see Appendix A.2). Let us consider the following sorting procedure:

Vit = 2,. .., S Dt,1 == (Dt,1 \ Dt,Dt).
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The proof is based on the block-wise inversion formula of the covariance matrix Vs. The
covariance matrix V4 can be written with the form:

V(L)
Vs—l Us—l .
Vs <U/ 1 V(s:9) Us1 = : ’
s V(s—1Ls)
where V4_1 is the covariance matrix of the random vector (Zi,...,Zs_1) and U,_; is the
covariance matrix between (Z1,...,Zs_1) and Zs. Classical block-inversion matrix formula

gives that

-1
Vs—l Us—l o Vs__ll + Vs__llUs—nglU;_lvs__ll _V;_llUs—ngl
U, v -Q;'U,_ V.Y Q' '

where Qg = V(&) — U;flV;llUs_l. For s > t the following equalities stands:

V) = cov(Zy(Dy), Zs(Dy))
= cov (Zy(Dy), ps—1(Ds) ® Zs_1(Ds) + 65(Ds))
= cov (Zi(Dy), ps—1(Ds) ® Zs_1(Dy))
= (Ln,ps—1(Ds)") ® cov (Zy(Dy), Zs—1(Ds))
= (Lnps1(Dy)) @ VD DtD)

Ps—
p

Therefore, we have:

V(l,s) V(l,s—l) (Dla Ds)
Usor = : = (125;11 nips—l(DS)/> © :
V(Silvs) V(871’871) (DS—17 DS)

Denoting that
V(l,sfl) (Dla Ds)

V(s—l,s—l) (Ds—h Ds)
are the ny last columns of V,_1, we obtain that:
V(l,sfl) (DI; Ds)

V;_llUsfl = V;_ll (lzf;ll nipsfl(Ds)/> ®© :
V(s—l,s—l) (D571’ Ds)

0 s—1 - n n
= (12?;}nips_1(Ds)’) © ( (Zizlln; )% )
Furthermore, we have the equality
Qs = cov(Zs(Dy), Zs(Dy))
—cov (Z\ Zs(Dy), Zs(Dy)) cov (Z\ Zy(Dy), Z \ ZS(DS))f1 cov (Z\ Zs(Dy), Zs(Dy)),
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with Z \ Zs(Ds) = (Z1(Dy),...,Zs—1(Ds—1)). Therefore, Qg is the covariance matrix of
Zs(Dys) conditioned by (Z1(D1),...,Zs—1(Ds—1)). Furthermore, the equality:

Zs(Dg) = ps—1(Ds) ® Zs—1(Dg) + d5(Dy)
implies that:

var (Zs(Ds)|Z\ Z5(Ds)) = var (ps—1(Ds) © Zs-1(Ds) + 05(Ds)|Z \ Zs(Dy))
= var (05(Ds)|Z\ Zs(Ds)) ,

since Zs;_1(Dy) is [Z \ Zs(Dy)]-measurable. Moreover, we have the equality
var (Z5(Ds)|Z \ Zs(Ds)) = var (65(Ds)),
since 05(Dg) L Z\ Zs(Dg). Therefore, we have:
Q. = var (65(Dy)) = 02R,(Dy).
From the previous equality, we deduce that

O(Z‘?*l n;—Ng)XMNs

=1

-1 -1
VoiUs—1Qs7 = | (p 1 (D1, )0R(Dy)

o3
and
O s—1 s—1 0 s—1
—1 1 -1 _ (X221 mi—ns) X (3052 ni—ns) (2121 ni—ns)xns
VS_IUS_IQS U;_lvs_l N ( 01 (23—1 1) (ps l(Ds)Ps 1(DS) )QRS(DS) 1) '
ns X i—1 Mi—Ms Us

Finally, we find that

_ Wi Wy
vit= ( W ) :
12 22

O s—1 s—1 0 -
_ (32321 ni—ms) X (30721 ni—ns) (232 1 i —ns) Xns
Wi = ( 01 ' (ps— 1(De)Ps 1(D3) JORs(Ds) " >

nax (Y57} ni—n) o2

where

O(Zl 1 i) X1

W12 == (Ps 1(D5) )@RS(DS) 1 ?
03
- (0 (lnspsfl(DS),)@Rs(Ds)fl>
12 — nsX(Zf:_II n;i—ns) o2 s
Ry(D,)!

S
Furthermore, with the equality Vi = var (Z1(D1)) = 07R1(D;) we find the recursive form

presented earlier in this subsection. O
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This is a very important result since it shows that we can deduce V;! from R,(D;)~!,
t = 1,...,s. Therefore, the complexity of the processing of V1 is O(3 7_; n?) instead of

Oz mi)®).

From Equation (3.37) and the Bayesian estimation of parameters presented in Section
3.6.1, we have shown here that building a s-level co-kriging is equivalent in terms of

numerical complexity to build s independent krigings.

We emphasize that, for practical applications, the form (3.37) for the inverse of Vg allows
us to perform fine matrix regularization in the case of ill-conditioned problems. Indeed, Vi
is invertible if and only if the matrices Ry(Dy), ¢ = 1,...,s are invertible. Therefore, if
the problem is ill-conditioned, we just have to regularize the matrices R;(D;) which are ill-
conditioned too. Moreover, we can further simplify the problem by considering the proposition
below.
Proposition 3.2. Let us consider Vg the covariance matriz presented in Equation (3.29)
and ks(x) the covariance vector presented in Equation (3.32). Then, we have the follow-
g equality:

s—1

-1 ) — 0(2171 n;—ng)x1
VIlk,(z) = ps—1Vs_1ks—1(2) (ps—le(Ds)_lRS(DS7 {x})) ) (3.38)
RS(DS)_lRS(DS, {z})

Proof. We know that the vector kq(x) is such that ks(z) = (ki (z,D1)’, ..., kX (x,Dy)’)’, with:

ki (2, D) = pi_1 (D) @ ki_y (2, Dy)’ <H pi(x )Uth z,Dy).

Let us denote by

v! + 0 0 1
s—1 0 (psfl(Ds)Psfl(Bs)/)QRs(Ds)i

A= =
_<0 (1%1ps71(Di‘);)®Rs(DS)—1>
and
0
B - N (pS—l(Ds)ln;Q)QRS(DS)*l
o2

The following equality stands:
ky(z) VIl = (ks(x)’A ks(x)’B) .

Let us focus on the term ky(z)'A, we have:

0 0
ks(z))A = (ki(z,D1),..., ki 1(z,Ds_1)") <V511+<0 (ps_l(Ds)ps_1<gs>’)@Rs<Ds)1))

_k:(xa DS)/ (0 (1nsp371(D3);)®RS(DS)_1> ‘

T

s
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We note that we have the equality:
(kf('% Dl)lv SRR k:fl(‘% Ds—l)/) - pS—l(x)k/sfl(w)'

Indeed, the vector (kj(x,D1), ..., ki (x,Ds_1)") represents the covariance between Zs(x)
and (Z1(Dy),...,Zs—1(Ds_1). Therefore, we have:

(ki (x,D1),... ki 1 (2,Ds_1)) = cov(Zs(x),(Z1(D1),...,Zs-1(Ds_1)))
= cov (ps—1(x)Zs—1(x) + 0s(x), (Z1(Dq), ..., Zs—1(Ds-1)))

and the independence d5(z) L (Z1(x),. .., Zs—1(x)), gives that:

(ki(@,D1),... ki1 (2, Ds1)') = cov(ps—1(2)Zs—1(2), (Z1(D1),. .., Zs—1(Ds-1)))
= ps—1(@)cov (Zs—1(2), (Z1(D1), ..., Zs—1(Ds-1)))

!/

= ps-1(2)k_ (7).
Let us return to the term ky(x)’A. Noticing that
o1l DS—l)/ = (ks_1(z,Dy1\ DS)/ ke (, DS)/)7

we obtain the following equality:

K(@)A = poa (@K @)V + (0 ki (z, D) eemtPerema B IORD:) )

_k:(x) DS), <0 (1nsps—1(D5);)®Rs(DS)71) ‘

g5

We know that k% (x, D) = ps_1(Ds) ©k*_;(z,Ds) +02Rs(z,Ds). Therefore, we can deduce
that:

K(@)A = o1 (@)K (2) VI = Ry(@,D,) (0 (Lu,per1(Ds)) © Ry(Ds) )

ps,l(m)k;_l(x)V;_ll - <O1X(Zf;11 ni—ns) (psfl(DS), © RS({x},Ds))RS(DS)_I) .

Let us focus now on the term k4(x)'B:

/ * / * !/ O * /RS(DS)_l
ks(SU)B = —(k‘l(x,Dl),...,ks_l(l‘,Ds_l)) (psfl(Ds)l/nS)@Rs(Ds)_l +ks($,D8) 702
o2 s
s-1(Ds)17,) © Rg(Ds) ™" Rs(Ds) "
— by (0, Dy P O BDIT o py BalDe)
(D1 ) © Ry(Dy)!
— —k?:_l(JJ,Ds),(ps 1( ) n;—)2 5( 5)
Ry(D,)~!

+ (Ps—l(DS)/ © ky_y (2, D) + 02 Ry(x, DS)) o2

= Ry(z,Ds)R;L
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Finally we obtain:

0
1V ik, —
Vlk(z) = ps-1Viks1(2) (piss(Ds)_le(Ds,$)>

Rs(Ds) 'Rs(Ds, )

O

Therefore, k,(z)V,

s

! is independent of o2. Since ki(z)V;' = Ry({z},D1)R1(D;)~" does
not depend on ¢?, by induction, kK.(z)Vy

5 Lis independent of (712 for all 1 < ¢ < s. We have

just shown here that the co-kriging mean does not depend on the variance coefficients.

3.6.3 Numerical test on the reduction of computational complexity

In the previous section, we have presented a reduction of complexity for the co-kriging model by
expressing the inverse of the matrix Vs with the inverses of the matrices Ry(Dy), t =1,...,s.
We present here a numerical test to highlight the gain of CPU time obtained with this method.
We focus on the case of 2 levels of code with constant regression functions and the following
Gaussian kernel for the 2 levels:

o 50y = ().

The experimental design set for the cheap code is a regular grid composed of nj points
between 0 and 1 and the experimental design set for the expensive code are the ny first points
of this grid. We consider the relation n; = 4ny with no = 50,60, ...,500 and the parameter
0 = 5/ng (the parameter 6 is controlled by ns in order to avoid ill-conditioned covariance
matrices). The total number of observations is hence n = nj + no. Figure 3.5 compares the
CPU time needed to build a co-kriging model with or without reduction complexity.

First, the slope of the two CPU times is close to 3 (the least-squares estimate value is
3.03). The complexity of a matrix inversion being O(n3), with n the size of the matrix, the
estimate of the slope highlights the fact that it is the matrix inversion which leads the CPU
time. Then, Figure 3.5 emphasizes that the reduction of complexity is worthwhile. Indeed, we
see that the ratio between the two CPU times is approximately a constant equal to 1.93. We
are hence close to the theoretical ratio equal to (ny +mnsg)3/(n$ 4+ n3) ~ 1.92 which is obtained
when we consider that the CPU time is essentially due to the matrix inversion.

3.6.4 Academic example on the complexity reduction

A 3-level co-kriging metamodel is presented in this section to illustrate the gain of CPU which
can be obtained with the presented reduction of complexity. We focus on the inversion of the
co-kriging matrix V4 by comparing the CPU time needed with a direct inversion or by using
the formula (3.37). We assume that the 3 levels of code are given by the followings three
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Figure 3.5: CPU time comparison between 2-level co-kriging models. The triangles represent
the CPU time for the crude co-kriging model and the circles represent the CPU time for the
co-kriging model with the complexity reduction. The gain of CPU time with the reduction
complexity is approximately a factor equal to 1.93.

dimensional functions:

z1(x) = sin(zy), (3.39)
z(x) = 2(z) + asin(zg)?, (3.40)
z3(x) = 2o(z) + brisin(z), (3.41)

with = (21,72, 23) € [-m,7]3, @ = 7and b = 1/10. We note that the complex function z3(z)
corresponds to the Ishigami function which is very popular in the field of sensitivity analysis
[Saltelli et al., 2000]. We consider ng = 50 observations for the most accurate code z3(z),
ny = 200 for the intermediate code and n; = 400 for the less accurate code. All experimental
design sets are randomly sampled from the uniform distribution. As presented in Section 3.2
we consider nested experimental designs Vi =2,...,s D; C D;_;.

We use a tensorised Matérn-5/2 kernel for the three correlation functions:

d
Tt(x7i.;9t) = HrlD(x%i.i;at,i)? (342)
i=1

with r1p(t,£;0) = (1 + \/EVTTE' + %“;?2) exp (—\/5|tTTt~|>, t,t € R and constant regression
functions fi(x) = 1.

The estimates of the hyper-parameters 8; are presented in Table 3.4.
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Parameter Estimate
0, (0.61 1.99 2.04)
0, (1.98 0.26 2.48)
05 (0.23 0.89 0.21)

Table 3.4: Academic example on the complexity reduction. Estimates of the hyper-parameters
(correlation lengths) for the 3-level co-kriging.

The hyper-parameter estimates show us that z;(z) is very smooth in the directions 2 and
x5 reflecting the fact that it depends only on the first direction x;. Similarly, the bias between
zo(z) and z1(x) only depending on the second direction 9, it is rough in this direction and
very smooth in the other ones. Finally, the bias between z3(z) and z2(z) is rougher in the
direction x3 than in the directions x; and x5. This is due to the important impact of x3 on
the third level.

The estimates of the variance, scale and regression parameters are given in Table 3.5.

Parameter | Estimate
B 0.00
B, 0.99
B9 2.44
B, 0.95
Bs 0.64
o? 0.09
o3 1.66
o3 6.25

Table 3.5: Academic example on the complexity reduction. Estimates of the variance, scale
and regression parameters for the 3-level co-kriging.

Table 3.5 shows the efficiency of the suggested method for the parameter estimations since
it provides very accurate estimates of p; and ps.

To evaluate the accuracy of the co-kriging model, we use a test set of 30,000 points uni-
formly sampled from the uniform distribution. Then, we compute the efficiency Eff with
the co-kriging predictions and the responses of z3(x) on this set. We obtain for the co-kriging
model Eff = 83.21%, we hence have a good accuracy despite the small number of observations
used for the high fidelity model. Nonetheless, we have a significant improvement relatively
to the kriging model since with the same kernel and the same experimental design set D3 we
obtain Eff = 47.97% which is a very poor accuracy. The hyper-parameter estimate of the
kriging model is 0= (0.79,0.14,0.29), the variance one is 62 = 13.66 and the trend coefficient
one is B = 3.89.
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Let us now compare the difference of CPU time between the co-kriging building with a
crude inversion of the covariance matrix V4 and the one with an inversion using the formula
presented in Subsection 3.6.2. The CPU time necessary without the reduction complexity is
CPU¢ryde = 0.47 whereas the one necessary with the complexity reduction is CPUy;g = 0.14.
We hence find that the CPU time ratio between the two methods approximately equals 3.36.
This is not far from the theoretical ratio which equals 6503 /(400% + 200 + 503) ~ 3.80. We
note that the complexity reduction could be of important practical interest. For example,
without it the computational cost of a leave-one-out cross validation procedure will be much
more important (the ratio will still be around 3 in our example). The complexity of this
procedure being O(n?), the gain of CPU time will be substantial.

3.6.5 Comparison with existing methods on an academic example

We proceed here on a numerical comparison between the suggested model and the ones pre-
sented by [Kennedy and O’Hagan, 2000] and [Qian and Wu, 2008]. The comparison is made
both in terms of RMSE and computational resources. For the comparison, we consider a
2-level co-kriging model with the following functions:

z1(x) = sin(z1) + asin(x2)?
{22(95) = z1(x) + bajsin(zy) (3.43)

with x = (z1,72,23) € [-7,7]3, a = 7 and b = 1/10. Furthermore, the experimental design
set D for the coarse code z1(x) is composed of 100 points uniformly spread on [—7,7]* and
the experimental design set for the fine code z3(z) is composed of 50 points randomly extracted
from D;. Then, we consider a test set Xiest of 1000 points uniformly spread on [—7r,7r]3. In
order to propose a fair comparison, we use the R-CRAN package “approximator.1.2-2” on the
R.2.15.2 platform to implement the model of Kennedy and O’Hagan. This package has been
specially created to compute the equations given by [Kennedy and O’Hagan, 2000]. Then,
we use the WinBUGS software version 1.4.3 to implement the model presented by |Qian and
Wu, 2008]. It is a software specially dedicated to Bayesian analysis and particularly efficient
to develop Metropolis-within-Gibbs algorithms [Liu, 2001]. Finally, we use the R-CRAN
package “MuFiCokriging.1.2” to implement our model. This package computes the mean and
the variance of the predictive distribution presented in Subsection 3.4.3 and integrates the
proposed complexity reductions (see Chapter 4 Section 4.6). For the two correlation functions
r1(z,2") and ro(z,z’) we use Gaussian covariance kernels for the three models

d /\2
ri(z,2") = exp <—; Z W) ,
=1 2y

and for the model presented by Qian et al. we assume a Gaussian covariance kernel for the
adjustment coefficient. Furthermore, we assume a constant trend for the Gaussian processes

modeling the coarse code and the bias between the two codes.
The correlation parameters and the adjustment parameter of the model presented by
Kennedy and O’Hagan are estimated with a concentrated likelihood method with a joint esti-
mation of (0;2);=1,..3 and p as presented in their paper. The other parameters are estimated
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with a classical maximum likelihood estimate. Note that in this model the scaling coefficient
p 1is constant.

The correlation parameters of the model presented by Qian et al. are estimated with a
Bayesian method and the prior for each of them is I'(2,0.1) where I" stands for the Gamma
distribution. As in [Qian and Wu, 2008] we consider these parameters as known and fixed
to the modes of their posterior distributions. Furthermore, for the Bayesian procedure the
convergence is achieved after 50,000 burn-in iterations and another 100,000 runs are then
generated to compute the posterior distributions as in [Qian and Wu, 2008]. We note that the
convergence is assessed both visually and with the method of Geweke [Geweke et al., 1991]
as presented by Qian et al.. The other parameters are estimated thanks to the Metropolis-
within-Gibbs algorithm with the following parameters for the prior distributions:

L (alvfylaapa/ypuaéa/y(;) = (271)2)17271)7
® U :07
oy =1,

L4 (upa va Us, V§) = (17 17 07 1)7

The reader is referred to [Qian and Wu, 2008] for more detail about these parameters. They
reflect that we do not have information about the variance and the regression parameters of
the model. Moreover, the prior information on p is such that its mean is centered on 1. We
note that in this model, p depends on x. For the Bayesian procedure, the convergence is
reached again after 50,000 burn-in iterations and another 100,00 runs are then generated.

The prediction RMSE of the model presented in Section 3.4 is compared with the ones of
the models presented by Kennedy and O’Hagan and Qian et al. on 100 different experimental
design sets Dy and D9 and test sets Xiest. The resulting RMSEs for the three models are
given in Figure 3.6.

We see in Figure 3.6 that the RMSEs of the presented model and the one of Qian et al.
are significantly better than the one of the model of Kennedy and O’Hagan. Furthermore,
our model is slightly better than the one of Qian et al. in terms of RMSE. Indeed, we see
that the notches in Figure 3.6 do not overlap. According to [Chambers et al., 1983] p.62,
this means that the difference between the two medians are significant. We note that the
correlation length for the model of Qian et al. and the one obtained with the restricted
maximum likelihood method (see Subsection 3.6.1) are similar, i.e. around (1.60,0.45,1.95)
for 8; and around (0.30,1.90,0.30) for @5. The difference of RMSE between the proposed
model and the one of Qian et al. is essentially explained by a less efficient estimation of the
parameter p for the model of Qian et al.. Indeed, it varies around 1.13 whereas the real value
is 1. Moreover, with the estimation method presented in Subsection 3.6.1 the parameter p is
estimated to be around 0.99. This highlights the importance to have an efficient estimation
of this parameter.

Finally, we compare the three methods in terms of computational costs. Figure 3.7 illus-
trates the different CPU times obtained from the 100 different experimental and test sets. We
see in Figure 3.7 that there is a significant difference between the model CPU times. Indeed,
the ratio of CPU time between the model of Kennedy and O’Hagan and the presented one is
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RMSE

Figure 3.6: RMSEs of the presented model e1,g, the model of [Kennedy and O'Hagan, 2000
eko (see [Kennedy and O’Hagan, 2000]) and the model of [Qian and Wu, 2008 eqian (see
[Qian and Wu, 2008]). The numerical comparisons are performed on the 3-dimensional aca-
demic example (3.43) with 100 different experimental and test sets.

around 10 whereas the one between the model of Qian et al. and the presented one is around
1000. The important difference between the model of Qian et al. and the other models is
natural since in this model a complex Bayesian scheme is used which is known to be expensive.
The one between the suggested model and the one of Kennedy and O’Hagan can be explained
by the complexity reduction for the covariance matrix inversion.

3.7 Example : Fluidized-Bed Process

This example illustrates the comparison between 2-level and 3-level co-kriging. A 3-level
co-kriging method is applied to a physical experiment modeled by a computer code. The
experiment, which is the measurement of the temperature of the steady-state thermodynamic
operation point for a fluidized-bed process, was presented by [Dewettinck et al., 1999], who
developed a computer model named “Topsim” to calculate the measured temperature. The
code, developed for a Glatt GPCG-1, fluidized-bed unit in the top-spray configuration, can
be run at 3 levels of complexity. We hence have 4 available responses:

e T, the experimental response.

e T3: the most accurate code modeling the experiment.

Ts: a simplified version of Tj.

e T;: the lowest accurate code modeling the experiment.
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Figure 3.7: CPU times for the presented model CPUpq, the one of Kennedy and O’Hagan
CPUko and the one of Qian et al. CPUqgran (note that the scales are different). The numerical
comparisons are performed on the 3-dimensional academic example (3.43) with 100 different
experimental and test sets. The ratio between CPUgkg and CPUy,q is around 10 and the ratio
between CPUqian and CPUpg is around 1000.

The differences between T, T9 and T3 are discussed by Dewettinck et al. (1999). The aim
of this study is to predict the experimental response T, given the two levels of code T3 and
T>. We only focus on a 3-level co-kriging using T3 and T to predict Ty, since 28 responses
available for each level is not enough to build a nested experimental design relevant for a
4-level co-kriging. The experimental design set and the responses Tq, T2, T3 and Ty, are
given by [Qian and Wu, 2008] who have presented a 2-level co-kriging using Ty, and Ts.
Furthermore, the responses are parameterized by a 6-dimensional input vector presented by
Dewettinck et al. (1999).

3.7.1 Building the 3-level co-kriging

To build the 3-level co-kriging, we use 10 measures of T, (measures 1, 3, 8, 10, 12, 14, 18,
19, 20, 27 in Table 4 in [Qian and Wu, 2008]), 20 simulations of T3 (runs 1, 2, 3, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 24, 27) and the 28 simulations of T and the input vector
is scaled between 0 and 1. The last 18 measures of T, are used for validation. The design
sets are nested such that Dy = (Dy—1 \ D¢, D) for ¢ = 2,3 and we use a Matérn-5/2 kernel
for the three covariance functions. The estimates of the hyper-parameters which represent
correlation lengths of the three covariance kernels are given in Table 3.6.
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6, | 1.790 | 3.988 [ 1.218 [ 1.790 | 3.595 | 0.722
0, | 1.810 | 1.842 | 2.008 | 1.036 | 0.001 | 0.345
05 | 0.890 | 0.721 | 2.008 | 2.952 | 1.790 | 0.241

Table 3.6: Example:
lengths) for the 3-level co-kriging.

fluidized-bed process. Estimates of the hyper-parameters (correlation

The estimates of hyper-parameters in Table 3.6 show us that the surrogate model is very
smooth in the first four directions. For the fifth direction the Gaussian processes modeling
the cheap code Ty and the bias between T, and T3 are very smooth and the one modeling
the bias between T3 and Ts is close to a regression. Finally, the model is more oscillating in
the sixth direction in particular for the two biases where correlation lengths are around 0.3.

Furthermore, Table 3.7 gives the estimates of the variance and regression parameters (see
Section 3.6.1).

Regression coefficient | Posterior mean | Posterior Covariance/o?
B4 47.02 0.134
B, < 0.97 ) 0.001  —0.034
Bs —0.17 —0.034 1.610
B, (0.95) 0.003 —0.121
B3 1.93 —0.121 5.188
Variance coefficient Q: oy
o? 1032 13.5
o3 5.30 9
o3 8.39 4

Table 3.7: Example: fluidized-bed process. Bayesian estimation of the variance and regression
parameters for the 3-level co-kriging.

Table 3.7 shows that the responses have approximately the same scale since the adjustment
coefficients are close to 1. Furthermore, we see an important bias between T3 and T9 with
Bs = 1.93. Finally, the variance coefficients for the biases indicate that they are possibly much
simpler to model than the cheap code Ty as their estimates are smaller.

3.7.2 3-level co-kriging prediction: predictions when code output is avail-
able

The aim of this section is to show that co-kriging can improve significantly the accuracy of
the surrogate model at points where at least one level of responses is available.

The predictions of the 3-level co-kriging are here presented and compared with the pre-
dictions obtained with a 2-level co-kriging using only the 10 responses of Tc;, and the 20
responses of T'3. The predictions for the 2-level and the 3-level co-krigings vs. the real values
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(i.e., the measured temperature T¢,)p) are shown in Figure 3.8. The 3-level co-kriging gives us
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Figure 3.8: Predictions of the 2-level and the 3-level co-krigings for the fluidized-bed process.
The 3-level co-kriging improves significantly the predictions of the 2-level one.

the same prediction means as the 2-level co-kriging at the 10 points (points 2, 5, 6, 7, 9, 11,
13, 16, 22, 24) where T3 is known. These overlapped points mean that Ty does not influence
the surrogate model at these points. This follows from the Markov property introduced in
Section 3.2, which implies that the prediction of T, is entirely determined by T3 at these
points. We also note that, in general, the 2-level co-kriging predictions - at points where T3
is unknown - are not accurate and the 3-level co-kriging improves significantly the prediction
means compared to the 2-level co-kriging. Table 3.8 compares the 2-level co-kriging with the
3-level co-kriging and summarizes some results about the quality of the predictions on the 18
validation points. Nonetheless, it is important to notice that, in the 3-level case, the output of
the cheapest code T+ is known at the 18 test points. This means that the results of this sub-
section show that the 3-level co-kriging prediction is more accurate than the 2-level co-kriging
prediction at a point where the cheapest response Ty is available. In the next subsection we
will show that the 3-level co-kriging prediction is more accurate than the 2-level one at a point

where no response is available.
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Eff RMSE MaxAE
2-level co-kriging 61.23 % 4.24 14.04
3-level co-kriging 98.71 % 0.89 1.98
Average Std. dev. Median Std. dev. Maximal Std. dev
2-level co-kriging 2.90 1.02 5.68
3-level co-kriging 0.90 1.02 1.04

Table 3.8: Example: fluidized-bed process. Comparison between 2-level co-kriging and 3-
level co-kriging. Predictions are better in the 3-level case and the prediction variance seems
well-evaluated since the RMSE and the average standard deviation are close.

Figure 3.9 shows the prediction errors of the 2-level co-kriging and the confidence interval
at plus or minus twice the prediction standard deviation. The last 10 prediction errors and
their confidence intervals are the same as those of the 3-level case since it corresponds to
the points where T3 is known. We see in Figure 3.9 that the confidence intervals are well
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Figure 3.9: Prediction errors of the 2-level co-kriging and confidence intervals at plus or minus
twice the standard deviation. We see a significant difference between the accuracy of the
predictions means and their confidence intervals for the point where T3 is unknown (the 8
first validation points) and for the ones where it is known (the last 10 validation points).

predicted. Furthermore, we see a significant difference between the accuracy of the prediction
means and their confidence intervals for the point where T3 is unknown (the 8 first validation
points) and for the ones where it is known (the last 10 validation points).
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3.7.3 3-level co-kriging prediction: predictions when code output is not
available

In this subsection, we show that a multi-level co-kriging can significantly improve the predic-
tion of a surrogate model at points where no response is available.

We have seen in Section 3.7.2 that the 3-level co-kriging improves significantly the 2-level
co-kriging at points where T3 is unknown and Ts has been sampled. Nevertheless, to have a
fair comparison between these two co-kriging models, we compare their accuracy by applying a
Leave-One-Out Cross-Validation (LOO-CV) procedure at the 10 points where T, is known.
This means that we perform for each of these 10 points the following procedure:

1. The experimental and the two code outputs corresponding to the point are removed
from the data set.

2. The 2-level co-kriging method and the 3-level co-kriging method are applied using the
truncated data set in order to give a confidence interval for the experimental output at
the point.

Figure 3.10 shows the result of the LOO-CV procedure for the 2-level and 3-level co-kriging.
We see that the 3-level co-kriging is more accurate than the 2-level one. Indeed, the LOO-CV
RMSE for the 2-level co-kriging is equal to 1.88 whereas it is equal to 1.09 for the 3-level
co-kriging. This shows that the 3-level co-kriging provides better predictions also at points
where no response is available. This highlights the strength of the proposed method and shows
that a co-kriging method with more than 2 levels of code can be worthwhile.

O  3-level co—kriging LOO-CV error
o | & 2-level co-kriging LOO-CV error
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Figure 3.10: Leave-One-Out Cross-Validation predictive errors and variances of the 2-level
and 3-level co-kriging. We see that the confidence intervals are accurate and the precision of
the 3-level co-kriging is significantly better than the one of the 2-level co-kriging.
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3.7.4 Comparison with existing methods

In this subsection we carry out a numerical comparison between the proposed model and the
ones of [Kennedy and O’Hagan, 2000] and [Qian and Wu, 2008] on the Fluidized-Bed Process
example. The comparison is performed similarly to the one presented in Subsection 3.6.5.

First we consider a 2-level co-kriging with T, as fine level and Ty as coarse level. For
the coarse level we randomly extract 20 observations of Ty and for the fine level we randomly
extract 10 observations of T, such that the experimental design set of T, is nested into
the one of T. The other 18 observations of Ty, are used as test sets. We have generated 100
different combinations of design and test sets for the numerical comparisons. The comparisons
are also performed thanks to the R CRAN package “approximator” for the model of Kennedy
and O’Hagan, to the WinBugs software to the one of Qian et al. and to the R CRAN package
“MuFiCokriging” for the presented method. Like in Subsection 3.6.5, Gaussian covariance
kernels and constant trends are chosen for all the Gaussian processes and constant adjustment
coefficients are taken for the suggested model and the one of Kennedy and O’Hagan. Further-
more, for the Bayesian procedure presented by [Qian and Wu, 2008] we choose the following
parameters for the prior distributions:

o (s apy Yy s, Y5) = (2,1,2,1,2, 1),

o u; =0,

o 1 =1,

(up, Vp,us, v5) = (1,1,0,1),
(al,bl,ap,bp,ag,bg) =(2,0.1,2,0.1,2,0.1)

Like in Subsection 3.6.5 the convergence is reached after 50,000 burn-in iterations and 100,000
additional runs have been generated to compute the posterior distributions.

Figure 3.11 compares the RMSE of the three models evaluated on the 18 test points.
We see in Figure 3.11 that the presented model is significantly better than the other ones.
Furthermore, contrary to the comparison performed in Subsection 3.6.5, we see that the worst
model is the one of Qian et al.. This is explained by the fact that, as mentioned in their
article at the end of Section 2.4, the model suggested by Qian et al. supposed that the cheap
code is known at a new point z. If it is not the case, they consider it equal to the prediction
given by a Bayesian model on the cheap code. Nevertheless, in our example, we only have
20 observations in a 6-dimensional input space and the predictions of the cheap code are not
good enough for the method of Qian et al..

Finally, we present in Figure 3.12 the computational costs of the three methods. As pointed
out in Subsection 3.6.5, the suggested and the Kennedy and O’Hagan’s models are significantly
less computationally expensive than the one of Qian et al.. Nevertheless, contrary to the
comparison in Subsection 3.6.5, the presented model and the one of Kennedy and O’Hagan
are equivalent in terms of CPU times. This is due to the fact that the complexity reduction
for the covariance matrix inversion does not bring significant differences when the number of
observations is very small as in the Fluidized-Bed Process application.
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Figure 3.11: RMSEs of the presented model er,q, the model of [Kennedy and O’Hagan, 2000
eko (see [Kennedy and O’Hagan, 2000]) and the model of [Qian and Wu, 2008 eqian (see
[Qian and Wu, 2008]). The numerical comparisons are performed on the Fluidized-Bed Process
application with 100 different experimental and test sets.

3.8 Conclusion

We have presented a method for building kriging models using a hierarchy of codes with differ-
ent levels of accuracy. This method allows us to improve a surrogate model built on a complex
code using information from a cheap one. It is particularly useful when the complex code is
very expensive. We see in our literature review that the first multi-level metamodel originally
suggested is a first-order auto-regressive model built with Gaussian processes. The AR(1)
relation between two levels of code is natural and the building of the model is straightforward.
Nevertheless, we have highlighted some key issues which makes it difficult to use this model
in practical ways.

First, important parameters of the model, which are the adjustment coefficients between
two successive levels of codes, were numerically estimated. We propose here an analytical
estimation of these parameters with a Bayesian method. This method allows us to have infor-
mation about the uncertainties of the estimations and above all, to easily use the AR(1) model
and its generalization to the case of non-spatial stationarity. Furthermore, a strength of the
proposed method is that it even works for a code with more than 2 levels since its implemen-
tation is such that the estimations of the parameters of a s-level co-kriging is equivalent to the
ones of s independent krigings in terms of numerical complexity. It is important to highlight
that this method is based on a joint Bayesian analysis between the adjustment coefficient and
the mean of the Gaussian process modeling the difference between two successive levels of
code.
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Figure 3.12: CPU times for the presented model CPUrq, the one of Kennedy and O’Hagan
CPUxko and the one of Qian et al. CPUgian. The numerical comparisons are performed on
the Fluidized-Bed Process application with 100 different experimental and test sets. The ratio
between CPUgian and CPUyrg is around 1000 and CPUrg and CPUgko have the same order
of magnitude.

Second, we have seen that the variance of the predictive distribution of the AR(1) model
could be underestimated. A natural approach to improve this estimation is a Bayesian model-
ing. We propose here a Bayesian co-kriging for 2 levels of code and to avoid computationally
expensive implementation, we suggest another model than the one presented. This new model
is based on a hierarchical specification of the parameters of the model. This allows us to have
a Bayesian model including only two nested integrations without Markov chain Monte Carlo
procedure.

Finally, for a non-Bayesian s-level co-kriging, we have proved that building a s-level co-
kriging is equivalent to build s independent krigings. This result is very important since it
solves one of the most important key issues of the co-kriging which is the inversion of the
covariance matrix. A 3-level co-kriging example has been provided to show the efficiency of
the presented method.



Chapter

Multi-fidelity co-kriging model: recursive
formulation

4.1 Introduction

We have developed in Chapter 3 a co-kriging based surrogate model for multi-fidelity computer
codes. In fact, the first multi-fidelity model in a computer experiments framework has been
proposed by [Craig et al., 1998] and is based on a linear regression formulation. Then this
model is improved in [Cumming and Goldstein, 2009] by using a Bayes linear formulation.
The reader is referred to [Goldstein and Wooff, 2007] for further detail about the Bayes linear
approach. The methods suggested by [Craig et al., 1998] and [Cumming and Goldstein, 2009]
have the strength to be relatively computationally cheap but as they are based on a linear
regression formulation, they could suffer from a lack of accuracy. Another approach is to use
the model of [Kennedy and O’Hagan, 2000| presented in Chapter 3. This method turns out
to be very efficient and it has been applied and extended significantly.

The strength of the co-kriging model is that it gives very good predictive models but
it is often computationally expensive, especially when the number of simulations is large.
Furthermore, large data set can generate problems such as ill-conditioned covariance matrices.
These problems are known for kriging but they become even more difficult for co-kriging since
the total number of observations is the sum of the observations at all code levels.

In Chapter 3, we solve two mains issues of the model suggested by [Kennedy and O’Hagan,
2000] by proposing a complexity reduction for the inverse of the covariance matrices and by
improving the estimation of the model parameters. Despite these improvements, it is hard
to use this model to manage some problems such as sequential design (see Chapter 5) or
sensitivity analysis (see Chapter 6). Indeed, for sequential design we wish to obtain the part
of each code level on the predictive variance. This is not clear with the model of [Kennedy
and O’Hagan, 2000]. Moreover, for sensitivity analysis we wish to finely infer from the model
uncertainty about the one of the sensitivity indices. This problem is hard to address by using
the model of [Kennedy and O’Hagan, 2000| since we are not able to generate samples from
the predictive distribution incorporating the posterior distributions of the adjustment and
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regression parameters.

To handle these problems, we adopt in this chapter a new approach for multi-fidelity
surrogate modeling which uses a co-kriging model but with an original recursive formulation.
An important property of this model is that it provides predictive mean and variance identical
to the ones presented in [Kennedy and O’Hagan, 2000] and in Chapter 3. Therefore, it has
the same efficiency of the model of [Kennedy and O’Hagan, 2000] in terms of prediction
accuracy. However, our approach significantly reduces the complexity of the model presented
in [Kennedy and O’Hagan, 2000] since it divides the whole set of simulations into groups of
simulations corresponding to the ones of each level. Therefore, we will have s sub-matrices to
invert which is less expensive and ill-conditioned than a large one. In fact, the computational
complexity is equivalent to the one obtained in Chapter 3 Subsection 3.6.2 by using Equation
(3.37) for the inverse of the covariance matrix. Therefore, we keep the advantages of the
improvement presented in Chapter 3.

We will see in chapters 5 and 6 that the presented formulation allows for dealing effectively
with sequential design and sensitivity analysis. Furthermore, a strength of our approach is
that it allows to extend classical results of kriging to the considered co-kriging model. The
two original results presented in this chapter are the following ones:

1. First, closed form expressions for the universal co-kriging predictive mean and variance
are given (Section 4.3).

2. Second, the fast cross-validation method proposed in [Dubrule, 1983] is extended to the
multi-fidelity co-kriging model (Section 4.4).

Finally, we illustrate these results in a complex hydrodynamic simulator (Section 4.5).

4.2 Multi-fidelity Gaussian process regression

In Subsection 4.2.1, we detail our recursive approach to build such a model. The recursive
formulation of the multi-fidelity model is the first novelty of this chapter. We will see in the
next sections that the new formulation allows us to find original results about the co-kriging

model and to reduce its computational complexity.

4.2.1 Recursive multi-fidelity model

Let us suppose that we have s levels of code (z4(z))i=1,. s sorted by increasing order of
fidelity and modeled by Gaussian processes (Zi(x))i=1,..s, © € Q. We still consider that
zs(x) is the most accurate and costly code that we want to surrogate and (z;(x))=1,... s—1 are
cheaper versions of it with zj(x) the less accurate one. Let us consider the following model

fort=2,...,s:

Zy(w) = pr—1(x) Ze—r () + 6 ()
Zi—1(x) L o(x) , (4.1)
pr—1(z) = ggfl(@ﬁpt_l
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where Z; 1 () is a Gaussian process with distribution [Z;_; (x)|Z*~) = 2=V g8, |, B> o 4],
5¢(z) is a Gaussian process with mean f/(x)B, and covariance kernel o?r;(x,%) and Dy C
Ds 1 C---CDsy.

Here, g;—1(x) is a vector of ¢—1 regression functions, f;(x) is a vector of p; regression
functions, B, is a p;-dimensional vector, 3,, | is a ¢;—1-dimensional vector, 7)) = (Zh,... 7.
is the Gaussian vector containing the values of the random processes (Z(x))i=1,..s at the

points in the experimental design sets (Dy)¢—1,.. s and z%) = (Z},...,2.) the vector containing

s
the values of (2;(x))=1,..s at the points in (D¢)i—1,.._s.

The nested property of the experimental design sets is not necessary to build the model
but it allows for a simple estimation of the model parameters. Since the codes are sorted
in increasing order of fidelity it is not an unreasonable constraint for practical applications.
Nonetheless, we present in Appendix B.1 the equations of the multi-fidelity co-kriging model
when the experimental design sets are not nested.

The unique difference with the model presented in Chapter 3 is that we express Z;(x)
(the Gaussian process modeling the response at level ¢) as a function of the Gaussian process
Z,_1(x) conditioned by the values z!~Y = (z1,...,z,_1) at points in the experimental de-
sign sets (D;)i=1,..+—1. The Gaussian processes (0¢(x))¢=2,.. s have the same definition as in
Chapter 3 and we have for t = 2,...,s and for x € Q:

2@\ 2 =29, 8,,8,, 02| ~ N (u2,(x), 5%,() (4:2)

where:

pz () = prr(@)nz, (@) + £(2)8; + ri(@)Ry " (2 — pr1(Dy) © 2-1(Dy) = FuBy) - (4.3)

and:

07,(x) = pi_1(2)07, ,(2) + 0} (1 - ri(@)Ry 'r(x)) . (4.4)

The notation ® represents the element by element matrix product. R; is the correlation
matrix Ry = (r4(x, %))z zep, and rj(z) is the correlation vector ry(x) = (r¢(z,Z))zep,. We
denote by p;(Dy_1) the vector containing the values of pi(z) for z € Dy_1, z;(Dy—1) the vec-
tor containing the known values of Z;(z) at points in D;_; and Fy is the experience matrix
containing the values of f;(x) on Dy.

The mean pz, (x) is the surrogate model of the response at level ¢, 1 < ¢ < s, taking
into account the known values of the ¢ first levels of responses (Zz‘)z‘:l,...,t and the variance
a%t () represents the mean squared error of this model. The mean and the variance of the
Gaussian process regression at level ¢ being expressed in function of the ones of level t — 1, we
have a recursive multi-fidelity metamodel. Furthermore, in this new formulation, it is clearly
emphasized that the mean of the predictive distribution does not depend on the variance
parameters (U?)t:Lm’S. This is a classical result of kriging which states that for covariance

2

kernels of the form k(z,Z) = o?r(x, %), the mean of the kriging model is independent of o2
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An important strength of the recursive formulation is that contrary to the formulation
suggested in [Kennedy and O’Hagan, 2000] and in Chapter 3, once the multi-fidelity
model is built, it provides the surrogate models of all the responses (z¢(x))=1....s-

We have the following proposition. We note that we consider here an adjustment coefficient
depending on x. The reader is referred to Appendix A.2 for the details about the predictive
mean and variance of the model presented in Chapter 3.

Proposition 4.1. Let us consider s Gaussian processes (Zy(x))i=1.. s and Z) =
(Z¢)t=1,....s the Gaussian vector containing the values of (Zi(x ))t:l,...,s at points in
(D¢)t=1,..,s with Dy C Dg_y C --- C Dy. If we consider the mean my, (x) (3.27) and
the variance SZZS () (3.28) induced by the model presented in Chapter 3 and the mean
1z, (x) (4.3) and the variance 0% (x) (4.4) induced by the model (4.1) when we condition
the Gaussian process Zs(x) by the known values z( of Z®) and by the parameters 3,
B, and o2, then, we have:

pz(x) = mz(x),

0z,(x) = sg,(a).

Proof. Let us consider the co-kriging mean of the model presented in Chapter 3 for a t-level
co-kriging with t = 2,...,s and p;—1(x) = g;_(2)B,, ,:

mz,(2) = b(2)BY + ki (2) Vi () - HBY),
where 8% = (8],...,8), z) = (z,...,2,), Hy is defined in Equation (3.33) and hj(z) is

defined in the following equation:

t—1
=<<Hpi<x>> (Hm) Pl >f;1<x>,fz<x>>. (4.5)
=1
We have:

hy(z)BY = pi(a ((sz ) (Hm ) (= >) BV 1 £ (z)B,
= pr-1(@)h]_(2)B"7Y +£/(2)B,.

Then, from equations:

cov(Zy(z), Zi()|0®, B, 8,) = (sz )COV i(2), Zi(2)|0*, B, B,) (4.6)

i=t’

and:

cov(Zi(z), Zu(3)|0%, B,8,) = >_ a7 | [[ pi(2)pi(@) | (=, ), (4.7)
7=1
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with ¢t > £ , we have the following equality:
K@)V 2" = pi(@)ki_y(2)V, 207 = (pi_1(Dy) © (rj(2)R; 21 (Dy))
+r)(z)R; 2
and with Equation (4.5):
ki(2)V; HBY = pra (@) (2) Vi Hima 87 + v (@) Ry Fo(Dy) By,

where ® stands for the element by element matrix product. We hence obtain the recursive
relation:

mz,(z) = pr-1(x)mz,_, (x) + £(2)B, + ri(@)Ry " [z — pe-1(Dy) © 21-1(Dy) — Fo(Dy)By]
The co-kriging mean of the model (4.1) satisfies the same recursive relation and we have
mz, (x) = puz, (). This proves the first equality of Proposition 4.1:
pz,(x) = mz, (2).
We follow the same guideline for the co-kriging covariance:
sg.(@,@) = v%,(2,7) — ki (2) Vi ke (2),

where v%, (x,Z) is the covariance between Z;(x) and Z;() and s (x,Z) is the covariance func-
tion of the conditioned Gaussian process [Zt(a:)|Z(t) =z".8,3 y o?] for the model presented
in Chapter 3. From Equation (4.7), we can deduce the following equality:

O’%t (z,2) = pt—l(aj)pt—l(i)vi,l (z,2) + Ug(x’ ),

where a%t (z,%) is the covariance function of the conditioned Gaussian process [Z;(x)|Z(") =
z), 3, Bptfl,af] of the recursive model (4.1). Then, from equations (4.6) and (4.7), we have:

Ky (2)V; ' ke(Z) = pro1 (@) pe—1 (B)k;_1 (2) VS ke (2) + o7 (2) Ry ().
Finally we can deduce the following equality:

%,@,8) = poa(@)pi-a(#) (v, (0,8) = Ky (0) Vil kee1(3) ) +0F (1 - (@) R ma(@)
which is equivalent to:

3(2.) = proa (D)1 (2),_, (2.8) + 07 (1 - ¥} ()R 'ri(2)

This is the same recursive relation as the one satisfies by the co-kriging covariance U%t(a;, z)
of the model (4.1) (see Equation (4.4)). Since 5221 (x,z) = a%l (x,Z), we have :

0% (x,7) = s (v, 7).
This equality with = Z proves the second equality of Proposition 4.1. O

Proposition 4.1 shows that the model presented in [Kennedy and O’Hagan, 2000| and
the recursive model (4.1) have the same predictive Gaussian distribution. Our objective in
the next sections is to show that the new formulation (4.1) has several advantages compared
to the one of [Kennedy and O’Hagan, 2000|. First, its computational complexity is lower
(Section 4.2.2); second, it provides closed form expressions for the universal co-kriging mean
and variance contrarily to [Kennedy and O’Hagan, 2000] (Section 4.3); third, it makes it
possible to implement a fast cross-validation procedure (Section 4.4).
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4.2.2 Complexity analysis

The computational cost is dominated by the inversion of the covariance matrices. In the
original approach proposed in [Kennedy and O’Hagan, 2000] one has to invert the matrix Vg
of size D7y mi X >0 4 N

Our recursive formulation shows that building a s-level co-kriging is equivalent in terms of
numerical complexity to build s independent krigings. This implies a reduction of the model
complexity. Indeed, the inversion of s matrices (R¢)¢=1,. s of size (ny X ny)i=1,. s where ny
corresponds to the size of the vector z; at level t = 1,.. . s is less expensive than the inversion
of the matrix V of size > 7, n; x >_;_; n;. We also reduce the memory cost since storing the
s matrices (R¢)¢=1,. s requires less memory than storing the matrix V. The computational
cost is thus equivalent to the one obtained with the results given in Chapter 3 Subsection
3.6.2.

We note that the model with this formulation is more interpretable since we can de-

duce the impact of each level of response into the model error through (a%t (@))t=1,....s-

4.2.3 Parameter estimation

We present in this section a Bayesian estimation of the parameter ¥ = (3, ,Bp,O'Q) focusing
on conjugate and non-informative distributions for the priors. This allows us to obtain closed
form expressions for the posterior distributions of the parameters. Furthermore, from the non-
informative case, we can obtain the estimates given by a maximum likelihood method. The
presented formulas can hence be used in a frequentist approach. We note that the recursive
formulation and the nested property of the experimental designs allow for separating the
estimations of the parameters (Bt,ﬁptil,af)t:h_,s and (B;,0%).
Like in Chapter 3 Section 3.4, we address two cases in this section

Case (i): all the priors are informative

Case (ii): all the priors are non-informative

It is of course be possible to address the case of a mixture of informative and non-informative
priors. For the non-informative case (ii), we use the “Jeffreys priors” |Jeffreys, 1961]:

1 _ _ 1
p(Bilof) 1, p(o?) por P(By,_,» B2V, 07) oc 1, p(of]z" V) o = (48)
1 t
where ¢t = 2,...,s. For the informative case (i), we consider the same conjugate prior distri-

butions as in Chapter 3 Section 3.4:

[181|0-%] ~ Npl (b17 O-%Vl)a

(t—l) 2 N b, = btp—l 2V 2 th—l 0
[ﬂpt_la:@t|z ’Ut] ~ INg_1+pt t — b,@ 70t Vi = Oy 0 V,B )
t t
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[of] ~ ZG(ar, ), (o712 V] ~ ZG(an ),

with by a vector a size p1, bé)q a vector of size q;_1, bf a vector of size p;, V1 a p1 X p1
matrix, fol a qi—1 X qt—1 matrix, Vf a pp X pr matrix, aq,v1, g,y > 0 and ZG stands for
the inverse Gamma distribution. The posterior distributions are then as follows. We have:

[:61|Z1>U%] NNp1(21V1,21> [Bpt,laﬁt|z(t)vatz] NNQt71+Qt(2tVt72t)v (4'9)

where, for ¢t > 1:

-1 —1 —1 —1
m R+ Yoot () H; Rz, + Yooby] (i)
> = e e = neh 2 o (4.10)
[} % H ]~ (ii) [, %2 (i)

with H; = Fy and for ¢t > 1, H; = [G4—1 © (Zt—l(Dt)lfh,l) F;] where

Gt—la

/

is the experience matrix containing the values of g;_1(2)" in D; and 17, |

is a g_1-vector of
ones. Furthermore, we have for ¢t > 1:

Q

07129 ~ TG (ar, ). (4.11)

where: 3 R B
_ ) 2n+ (b= A) (Ve + [HIRTH ) 7 (b — A) + Q- (i)
Qt - ~ . 9
Qt (ii)
with Qt = (Zt — Htj\t)/Rt_l(Zt — Htj\t) s Xt = (HéRt_lHt)ilHéRt_lzt and :

%:{2+% 0

nt*Pt;Qt—l (il) ?
with the convention gg = 0.

We highlight that the maximum likelihood estimators for the parameters 3, and (3 P B:)
are given by the means of their posterior distributions in the non-informative case. Further-
more, the restricted maximum likelihood estimate of the variance parameter o2 can also be de-
duced from its posterior distribution in the non-informative case and is given by &Z REML = %t
Finally, we see that the parameter posterior distributions for the recursive model are iden-
tical to the ones presented in Chapter 3 Section 3.4. This strengthen the relation between
the two models. However, we will see in the remainder of this chapter and in the following
chapters that the recursive model bring significant advantages compared to the one presented

in Chapter 3.

4.3 Universal co-kriging model

We can see in Equation (4.2) that the predictive distribution of Zs(z) is conditioned by the
observations z(*) and the parameters 3, B, and o2. The objective of a Bayesian prediction
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is to integrate the parameter posterior distributions into the predictive distribution. Indeed,
in the previous subsection, we have expressed the posterior distributions of the variance pa-
rameters (af)t:L,“,S conditionally to the observations and the posterior distributions of the
trend parameters 3, and (3 i1 B¢)t=2....,s conditionally to the observations and the variance
parameters. Thus, using the Bayes formula, we can easily obtain a predictive distribution
only conditioned by the observations by integrating into it the posterior distributions of the
parameters as presented in Chapter 3 Section 3.4.

As a result of this integration, the predictive distribution is not Gaussian. In particular, we
cannot have a closed form expression for the predictive distribution. However, it is possible
to obtain closed form expressions for the posterior mean E[Z,(z)|Z(®) = 2(*)] and variance
Var(Z,(z)|Z() = 2(%)).

The following proposition giving the closed form expressions of the posterior mean and
variance of the predictive distribution only conditioned by the observations is a novelty. The
proof of this proposition is based on the recursive formulation which emphasizes the strength
of this new approach. Indeed, it does not seem possible to obtain this result by considering
directly the model suggested in [Kennedy and O’Hagan, 2000].

Proposition 4.2. Let us consider s Gaussian processes (Zi(x))i=1.. s and Z() =
(Z¢)i=1,..,s the Gaussian vector containing the values of (Zi(x ))tzl,mjs at points in
(D¢)¢=1,..,s with Dy C Dg_y C --- C Dy. If we consider the conditional predictive
distribution in Equation (4.2) and the posterior distributions of the parameters given in
equations (4.9) and (4.11), then we have fort=1,... s

E[Zy(2)|Z®) = 2P] = b(2)Zw; + v (2)R; ! (2 — HyZovy), (4.12)

with b} = £, Hy = Fy and fort > 1, bi() = (g 1(2)ElZ1(2)|Zi1 = 21] £())

and Hy = [G—1 © (z—1(Dy) 1. F.]. Furthermore, we have:

qt— 1)

Var(Zy(2)|20 = 20) = 67, (@)Var(Zi—1()| 207D = 207)
+ory (1 - ri(@)R; 'r () ., (4.13)

+ (b, — rj(2)R; 'Hy) 3 (b} — ) (2)R; 'H;)'

with Upt 1( ) = gtfl(m)/ <[Et][17---7%71711---7%71] + [Etut]17~--,Qt—l[2tvt]/1 ..... qt,1> gi-1(x).

Proof. Noting that the mean of the predictive distribution in Equation (4.2) does not depend
on o2 and thanks to the law of total expectation, we have the following equality:

E [Zt(m)|Z(t) - z<t>] —E [E [Zt(:n)|Z(t) =20, o2, Bt,ﬂpH] ‘z“) - z@ﬂ :

From the equations (4.3) and (4.9), we directly deduce Equation (4.12). Then, we have the
following equality:

var (MZt () |z

’0752) = (hy(2) — r4(2) Ry "Hy) By (hy(2) — re(2)' Ry THy)'. (4.14)
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The law of total variance states that:
VELI‘(Zt(SU)|Z(t), 0?) = E {Var(Zt(x)|z(t),Bt,,@pt_l,af) ‘z(t), Uf]

+ var (]E [Zt(x)|z(t),ﬁt,,8pt71,at2} z(t),atz> .

Thus, from equations (4.3), (4.12) and (4.14), we obtain:

Var(Zt(x)\Z(t) =z, o) = &ﬁt_l(x)var(Zt_l(x)\Z(tfl) = z(tfl),a?) + o} (1 — ré(a;)Rt_lrQ(a:))
+ (h = ry(@)R; T HY) By (] - rj(2) Ry ' Hy)' '
(4.15)
Again using the law of total variance and the independence between E [Zt(x) 1Z®) =20 3, 5%71}

and o2, we have:

var(Zy(z)|z®) = E [var(Zt(x))\z(t),atz} . (4.16)

We obtain Equation (4.13) from Equation (4.11) by noting that the mean of an inverse Gamma
distribution ZG(a,b) is b/(a — 1). O

We note that, in the mean of the predictive distribution, the parameters have been replaced
by their posterior means. Furthermore, in the variance of the predictive distribution, the vari-
ance parameter has been replaced by its posterior mean and the term (h} — rj(z)R; 'H,) 3,
(h; —ry(x)R; 1Ht)/ has been added. It represents the uncertainty due to the estimation of
the regression parameters (including the adjustment coefficient). We call these formulas the
universal co-kriging equations due to their similarities with the universal kriging equations
(they are identical for s = 1).

An important difference between the universal kriging predictive variance and the
universal multi-fidelity co-kriging one is that the latter depends on the observations.
Therefore, the classical methods based on the predictive variance (e.g. sequential

design strategies) are not easy. We address this question in Chapter 6.

4.4 Fast cross-validation for co-kriging surrogate models

The idea of a cross-validation procedure is to split the experimental design set into two disjoint
sets, one is used for training and the other one is used to monitor the performance of the
surrogate model. The idea is that the performance on the test set can be used as a proxy
for the generalization error. A particular case of this method is the Leave-One-Out Cross-
Validation (noted LOO-CV) where n test sets are obtained by removing one observation
at a time. This procedure can be time-consuming for a kriging model but it is shown in
[Dubrule, 1983], [Rasmussen and Williams, 2006|, [Zhang and Wang, 2009] and Chapter 1
Subsection 1.3.3 that there are computational shortcuts. Our recursive formulation allows us
to extend these ideas to co-kriging models (which is not possible with the original formulation
in [Kennedy and O’Hagan, 2000]). Furthermore, the cross-validation equations proposed in
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this section extend the previous ones even for s = 1 (i.e. the classical kriging model) since
they do not suppose that the regression and the variance coefficients are known. Therefore,
those parameters are re-estimated for each training set. We note that the re-estimation of
the variance coefficient is a novelty which is important since fixing this parameter can lead
to huge errors for the estimate of the cross-validation predictive variance when the number of
observations is small or when the number of points in the test set is important.

If we denote by &, the set of indices of the nyes points in Dy constituting the test set Dyegt
and &, 1 <t < s, the corresponding set of indices in D; - indeed, we have Dy C Dg_1 C -+ C
D1, therefore Dyt C Dy. The nested experimental design assumption implies that, in the
cross-validation procedure, if we remove a set of points from Dy we can also remove it from
D;, 1<t <s.

The following proposition gives the vectors of the cross-validation predictive errors and
variances at points in the test set D5 when we remove them from the ¢ highest levels of
code. In the proposition, we consider that we are in the non-informative case for the parameter
posterior distributions (see Section 4.2.3) but it can be easily extended to the informative case
presented in Section 4.2.3. We note that this result presented for the first time to a multi-
fidelity co-kriging model can be obtained thanks to the recursive formulation.

Notations: If £ is a set of indices, then A ¢ is the sub-matrix of elements § x § of A, aj
is the sub-vector of elements £ of a, B|_¢ represents the matrix B in which we remove the
rows of index &, C[_¢ _¢) is the sub-matrix of C in which we remove the rows and columns of
index § and C[_¢ ¢ is the sub-matrix of C in which we remove the rows of index § and keep
only the columns of index &.

Proposition 4.3. Let us consider s Gaussian processes (Zi(x))i=1,..s and Zs) =
(Zt)t=1,..s the Gaussian vector containing the values of (Zy(x))i=1,..s at points in
(D¢)=1,...,s with Dy € Dg_y C --- C Dy. We denote by Dyest a set made with the
points of index §, of Ds and &, the corresponding points in Dy with 1 <t < s. Then,
if we denote by ez, ¢ the errors (i.e. real values minus predicted values) of the cross-
validation procedure when we remove the points of Dyest from the t highest levels of code,

we have:

(525755 - ﬁs—l(Dtest) © 5257175571) [Rgl] [€.6] [RQI (Zs - Hs)\s,—ss)] AR (4~17)

-1
=0 whenu < t, As_g, = ([HS]’[_ES]KS[HS}[,gsO [HJ/ ¢ Koz (D \
Dtest); pAs—l(Dtest) = gfg_l(Dtest)[)\s,—gsh,...,q571 and:

with €z, ¢

_ —1 -1 -1 -1 -1
K, = [RS ][—587—551 N [RS ][—537551 <[RS ][Es,és}) [Rs ][és,—ﬁs}' (4'18)

Furthermore, if we note O'%S ¢ the variances of the corresponding cross-validation proce-
S s

dure, we have:
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-1
0%5755 = &/275—17—53 (DteSt) @ U%S—lags—l + 0‘37_£Sdiag <<|:Rs_1j| [gsvgs}) > + VS’ (419)

-1
with Bpcs.-¢, = [ ([ ¢ KL )] }
[1,..q5—1,1,...,gs—1]

6’§571»_£s (Dtest) - gg’*l(DtESt) (va'S*l’*gs + [A577£s]1,,_7q571 [AS,*ﬁs]i,...,q5_1> g5_1<DteSt)7

and
!/
0_2 _ (Zs(Ds \ Dtest) - [Hs][_gs]ks,—gs) K (Zs (Ds \ Dtest) - [Hs][_gs])\s,—gs) .
=&s Ng — Ps — qs—1 — Ntrain
where o2 = 0 when u < t, Nyrqin 1S the length of the index vector &, Hy = [G4-1 ®

u7_£

(21D ) Fy] and:

-1
V,=U! ([HS]'HS]KS[HS][_Q) U, (4.20)

with Us = ([R5 Ve, e,1) " [RyTHL] ¢ .

Proof. Let us consider that &, is the index of the k last points of D;. We denote by Dyest these
points. First we consider the variance and the trend parameters as fixed, i.e. af g, = %
and Ay ¢, = 3wy, and Vg = 0, i.e. we are in the simple co-kriging case. Thanks to the

block-wise inversion formula, we have the following equality:

. (A B
Rs - <B/ Q_1> I (421)

: —1 -1 - ™
with A = [Rq]Z¢ ¢+ [Rs]lifss,fsg [Relig,e Q" Rl ¢, ) Relie, ¢
B = Q7' [Ry]e, ¢ [Re] ¢, ¢ and:

Q= [Rulie e) — Rele,, e Rl e, ¢ Rl g e (4.22)
-1
We note that 2(a?il)Q = 2(05211) <[R;1}[Es7£s]) represents the covariance matrix of the

points in Dy wWith respect to the covariance kernel of a Gaussian process of kernel %rs (x,Z)
(which is the one of §5(x)) conditioned by the points Dy \ Dyest. Therefore, from the previous
remark and Equation (4.4), we can deduce Equation (4.19).

Furthermore, we have the following equality:

-1
<[RS_1] [Es?gs}) [Rs_l (ZS o HSAS’*‘Es)] (€, = Zs(Dtest) - hg(Dtest)Eslls
[RS][gs?fgs] [RS][__1£S7—£5] ° (423)
(ZS(DS \ Dtest) - [Hs]@gs}Esus)

where hl(z) = [ps—1(z)uz, ,(x) f/(x)]. From this equation and Equation (4.3), we can
directly deduce Equation (4.17) with ez, ¢ = 25(Dtest) — t12, (Dtest)-
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Then, we suppose the trend and the variance parameters as unknown and we have to
re-estimate them when we remove the observations. Thanks to the parameter posterior distri-
bution presented in Section 4.2.3, we can deduce that the estimates of O'Z e, and A ¢, when
we remove observations of index &, are given by the following equations:

-1
Aoe, = ([Hs]’[_ES]KS[HS][_&O [H.){_¢ | Koz (Ds \ Dyest) (4.24)
and:
o (2(Ds\ Dyest) — [Hy]_g A —¢.) Ko (25(Ds \ Diest) — [Ha] ¢ As—¢.)
02 ¢ = o (4.25)
s Ns —Ps — 4s—1 — Ntrain
with K, = [Rs] ¢ ;.

From the equality (4.21), we can deduce that K; = A — BOB' from which we obtain
Equation (4.18). Finally, to obtain the cross-validation equations for the universal co-kriging,
we just have to estimate the following quantity (see Equation (4.13)):

/
(P(Diest) = Rilie, g Kol ¢, ) T (Ho(Diest) — Rilie, ¢ | KelH] ¢, ), (4.26)
with 3y = ([H;]—gsKS[Hs]—gs)_l- The following equality:

(Pe(Diest) = Ralie, g Kol ¢, ) = ((R:]ie, e) ™ [RIHL] ). (4.27)

allows us to obtain Equation (4.20) and completes the proof. O

We note that these equations are also valid when s = 1, i.e. for kriging model. We
hence have closed form expressions for the equations of a k-fold cross-validation with a re-
estimation of the regression and variance parameters. These expressions can be deduced from
the universal co-kriging equations. The complexity of this procedure is essentially determined
by the inversion of the matrices ([R; 1] €. Eu]>u—t . of size Ngest X Niest. Furthermore, if we

suppose the parameters of variance and/or trend as known, we do not have to compute UZ e,

and/or A; _¢, (they are fixed to their estimated value, i.e. Jt27.£t = % and Ay ¢, = By,
see Section 4.2.3) which reduces substantially the complexity of the method. These equations

generalize those of [Dubrule, 1983] and [Zhang and Wang, 2009] where the variance o? g, I8

supposed to be known. Finally, the term Vs is the additive term due to the parameter posterior
distributions in the universal co-kriging. Therefore, if the trend parameters are supposed to
be known, this term is equal to 0.

Remark: We must recognize that our closed form cross-validation formulas do not allow for
the re-estimation of the hyper-parameters of the correlation functions. However, as discussed
in Subsection 4.5.1, Proposition 4.3 is useful even in that case to reduce the computational
complexity of the cross-validation procedure.
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4.5 Illustration: hydrodynamic simulator

In this section we apply our co-kriging method to the hydrodynamic code “MELTEM”. The
aim of the study is to build a prediction as accurate as possible using only a few runs of
the complex code and to assess the uncertainty of this prediction. In particular, we show
the efficiency of the co-kriging model compared to the kriging one. We also illustrate the
difference between simple and universal co-kriging and the results of the LOO-CV procedure.
These illustrations are made possible and easy by the closed form formulas for the predictive
mean and variance for universal co-kriging and by the fast cross-validation procedure described
in Section 4.4 and 4.3 respectively. Finally, we show that considering an adjustment coefficient
depending on x can be worthwhile.

The code MELTEM simulates a second-order turbulence model for gaseous mixtures in-
duced by Richtmyer-Meshkov instability [Grégoire et al., 2005]. Two input parameters
and zo are considered. They are phenomenological coefficients used in the equations of
the energy of dissipation of the turbulent flow. These two coefficients vary in the region
[0.5,1.5] x [1.5,2.3]. The considered code outputs, called eps and L., are respectively the dis-
sipation factor and the mixture characteristic length. The simulator is a finite-elements code
which can be run at s = 2 levels of accuracy by altering the finite-elements mesh. The simple
code z1(.), using a coarse mesh, takes 15 seconds to produce an output whereas the complex
code z3(.), using a fine mesh, takes 8 minutes. We use 5 runs for the complex code z2(x) and
25 runs for the cheap code z;(x). This represents 8 minutes on a hexa-core processor, which
is our constraint for an operational use. Then, we build an additional set of 175 points to test
the accuracy of the models. We note that no prior information is available: we are hence in
the non-informative case.

4.5.1 Estimation of the hyper-parameters

In the previous sections, we considered the correlation kernels (r(z,Z))i=1,.. s as known. In
practical applications, we choose these kernels in a parameterized family of correlation kernels.
Therefore, we consider kernels such that ri(x,z) = r(z,Z;¢¢). For t = 1,...,s the hyper-
parameter ¢; can be estimated by maximizing the concentrated restricted log-likelihood (see
[Santner et al., 2003] and Chapter 1 Section 1.3) with respect to ¢y:

log (|det (R¢)[) + (n¢ — pr — qe—1) log (07 rEmL) » (4.28)

with the convention gg = 0 and UE,REML is the restricted likelihood estimate of the variance
o2 (see Section 4.2.3). This minimization problem has to be solved numerically.

It is a common choice to estimate the hyper-parameters by maximum likelihood [Santner
et al., 2003]. It is also possible to estimate the hyper-parameters (¢¢)i=1, s by minimizing a
loss function of a Leave-One-Out Cross-Validation procedure (see Section 1.3). Usually, the
complexity of this procedure is O <(Zf:1 ni)4). Nonetheless, thanks to Proposition 4.3, it is

reduced to O (Zf:1 n?) since it is essentially determined by the inversions of the s matrices
(R¢)¢=1,... s- Therefore, the complexity for the estimation of (¢¢)¢=1, ..., is substantially reduced.
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Furthermore, the recursive formulation of the problem allows us to estimate the parameters
(Cbt)t:l,‘..,s one at a time by starting with ¢ and estimating ¢¢, t = 2, ..., s recursively.

4.5.2 Comparison between kriging and multi-fidelity co-kriging

Before considering the real case study, we propose in this section a comparison between the
kriging and co-kriging models when the number of runs no for the complex code varies such
that no = 5,10, 15, 20,25. For the co-kriging model, we consider n; = 25 runs for the cheap
code. In this section, we focus on the output eps.

To perform the comparison, we generate randomly 500 experimental design sets (Dg;,
Dl,i)i:l,..,SOO such that D277; C Dl,i) 1 =1,...,500, Dl,i has ny points and D27Z’ has no points.

We use for both kriging and co-kriging models a Matérn-5/2 covariance kernel and we
consider p, 3; and (3, as constant. The accuracies of the two models are evaluated on the
test set composed of 175 observations. From them, the Root Mean Squared Error (RMSE) is

1 175 test test) )2 1/2
computed: RMSE = (ﬁ Y iy (pzy (75Y) = 29(27%Y)) ) .
Figure 4.1 gives the mean and the quantiles of probability 5% and 95% of the RMSE

computed from the 500 sets (Dg2;,D1)i=1,... 500 when the number of runs for the expensive
code no varies. In Figure 4.1, we can see that the errors converge to the same value when no
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Figure 4.1: Comparison between kriging and co-kriging with n; = 25 runs for the cheap code
(500 nested design sets have been randomly generated for each ng). The circles represent the
averaged RMSE of the co-kriging, the triangles represent the averaged RMSE of the kriging,
the crosses represent the quantiles of probability 5% and 95% for the co-kriging RMSE and
the times signs represent the quantiles of probability 5% and 95% of the kriging RMSE. Co-
kriging predictions are better than the ordinary kriging ones for small ns and they converge
to the same accuracy when no tends to n; = 25.
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tends to ni. Indeed, due to the Markov property given in Section 3.2, when Dy = D1, only
the observations zs are taken into account. Furthermore, we can see that for small values of
ng, it is worth considering the co-kriging model since its accuracy is significantly better than
the one of the kriging model.

4.5.3 Nested space filling design

As presented in Section 4.2 we consider nested experimental design sets: Vit =2,...,s Dy C
D;_1. Therefore, we have to adopt particular design strategies to uniformly spread the inputs
for all D;. A strategy based on Orthogonal array-based Latin hypercube for nested space-
filling designs is proposed by [Qian et al., 2009].

We consider here another strategy for space-filling design, described in the following algorithm,
which is very simple and not time-consuming. The number of points n; for each design D, is
prescribed by the user, as well as the experimental design method applied to determine the
coarsest grid Dy used for the most expensive code z; (see [Fang et al., 2006] for a review of
different methods).

Algorithm 1 Nested space filling design

1: build Dy = {l'gzs)}j:lr“,n
2: for t = s to 2 do
3: build design D;_1 with the experimental design method prescribed by the user.

with the experimental design method prescribed by the user.

s

4: for i = 1 to n; do

5: find i‘gt*l) € D,_; the closest point from :L‘Z(t) € D where j € [1,n4—1].
6: remove :Tcg-t_l) from D;_;.

7: end for

8: D, = f)t—l U Dy.

9: end for

This strategy allows us to use any space-filling design method and it conserves the initial
structure of the experimental design D; of the most accurate code, contrarily to a strategy
based on selection of subsets of an experimental design for the less accurate code as presented
by [Kennedy and O’Hagan, 2000| and [Forrester et al., 2007]. We hence can ensure that Dy
has excellent space-filling properties. Moreover, the experimental design D;_; being equal to
D, ;U D, this method ensures the nested property.

We illustrate in the next page the different stage of the nested design procedure for s = 2.
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In the presented application, we consider ng = 5 points for the expensive code zo(x) and
ny = 25 points for the cheap one z;(x). We apply the previous algorithm to build Dy and Dy
such that Do C D;. For the experimental design set Do, we use a Latin-Hypercube-Sampling
[Stein, 1987] optimized with respect to the S-optimality criterion which maximizes the mean
distance from each design point to all the other points [Stocki, 2005]. Furthermore, the set
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D; is built using a maximum entropy design [Shewry and Wynn, 1987] optimized with the
Fedorov-Mitchell exchange algorithm [Currin et al.,; 1991]|. These algorithms are implemented
in the library R lhs. The obtained nested designs are shown in Figure 4.2.
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Figure 4.2: Nested experimental design sets for the hydrodynamic application. The crosses
represent the n; = 25 points of the experimental design set D; of the cheap code and the
circles represent the ns = 5 points of the experimental design set Doy of the expensive code.

4.5.4 Multi-fidelity surrogate model for the dissipation factor eps

We build here a co-kriging model for the dissipation factor eps. The obtained model is
compared to a kriging one. This first example is used to illustrate the efficiency of the co-
kriging method compared to the kriging. It will also allow us to highlight the difference
between the simple and the universal co-kriging.

We use the experimental design sets presented in Section 4.5.3. To validate and compare
our models, the 175 simulations of the complex code uniformly spread on [0.5,1.5] x [1.5,2.3]
are used. To build the different correlation matrices, we consider a tensorised Matérn-5/2
kernel (see [Rasmussen and Williams, 2006] and Chapter 1 Section 1.4):

r(x,Z;0¢) = ra(x1, Z1; 00.1)m14(22, T2; 012), (4.29)

with x = (z1,22) € [0.5,1.5] x [1.5,2.3], 041,02 € (0, +00) and:

i— @] |5 (= 3)° i — %
rra(wn & 00) = (14 V3Rl S — @7 (gl Tl (4.30)
6 3 02, 0.1

)
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Then, we consider g1(z) = 1, fa(x) = 1, fi(x) = 1 (see Section 4.2.1) and, using the concen-
trated maximum likelihood (see subsections 4.5.1 and 1.3.2), we have the following estimates
for the correlation hyper-parameters: 8; = (0.69,1.20) and 6, = (0.27,1.37).

According to the values of the hyper-parameter estimates, the co-kriging model is smooth
since the correlation lengths are of the same order as the size of the input parameter space.
Furthermore, the estimated Pearson correlation between the two codes is 82.64%, which shows
that the amount of information contained in the cheap code is substantial.

Table 4.1 presents the results of the parameter Bayesian estimation (see Section 4.2.3).

Trend coefficient DI >, /o?
) 8.84 0.48
(ﬁm) (0.92> ( 1.98 —18.13)
Bs 0.74 —18.13 165.82
Variance coefficient Q: 20y
o? 6.98 24
o2 0.06 3

Table 4.1: Application: hydrodynamic simulator. Parameter Bayesian estimation results for
the response eps (see equations (4.9) and (4.11)).

We see in Table 4.1 that the correlation between 38, and B, is important which highlights
the importance of taking into account the correlation between these two coefficients for the
parameter estimation. We also see that the adjustment parameter 8, is close to 1, which
means that the two codes are highly correlated.

Figure 4.3 illustrates the contour plot of the kriging and co-kriging means, we can see
significant differences between the two surrogate models.

Table 4.2 compares the prediction accuracy of the co-kriging and the kriging models. The
different coefficients are estimated with the 175 responses of the complex code on the test set:

MaxAE: Maximal absolute value of the observed error.
RMSE : Root mean squared value of the observed error.
Eff =1 —|lppz,(Diest) — z2(Diest)||* /112, (Diest) — Za[?, with 2o = (3772 22(2}*")) /na.

RIMSE : Root of the average value of the kriging or co-kriging variance.

Eff RMSE MaxAE RIMSE.
kriging ~ 75.83% 0.133  0.49 0.110
co-kriging 98.01% 0.038  0.14 0.046

Table 4.2: Application: hydrodynamic simulator. Comparison between kriging and co-kriging.
The co-kriging model provides predictions significantly better than the ones of the kriging
model.
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Figure 4.3: Contour plot of the kriging mean (Figure (a)) and the co-kriging mean (Figure
(b)). The triangles represent the ne = 5 points of the experimental design set of the expensive
code.

We can see that the difference of accuracy between the two models is important. Indeed,
the one of the co-kriging model is significantly better. Furthermore, comparing the RMSE
and the RIMSE estimates in Table 4.2, we see that we have good estimates of the predictive
distribution variances for the two models. We note that the predictive variance for the co-
kriging is obtained with a simple co-kriging model. Therefore, it will be slightly larger in the
universal co-kriging case. Indeed, by computing the universal co-kriging equations, we find
RIMSE = 0.058.

We can compare the RMSE obtained with the test set with the RMSE obtained with a
Leave-One-Out cross validation procedure (see Section 4.4). For this procedure, we test our
model on ne = 5 validation sets obtained by removing one observation at a time. As presented
in Section 4.4, we can either choose to remove the observations from zs or from zo and z.
The root mean squared error of the Leave-One-Out cross validation procedure obtained by
removing observations from zo is RMSE,, roo = 4.80.1072 whereas the one obtained by
removing observations from z, and z; is RMSE, ., roo = 0.10. Comparing RMSE., oo and
RMSE., ., oo to the RMSE obtained with the external test set, we see that the procedure
which consists in removing points from zs and z; provides a better proxy for the generalization
error. Indeed, RMSE,, 100 is a relevant proxy for the generalization error only at points where
z1 is available. Therefore, it underestimates the error at locations where z; is unknown.

Figure 4.4 represents the mean and confidence intervals at plus or minus twice the standard
deviation of the simple and universal co-krigings for points along the vertical line 1 = 0.99
and the horizontal line x5 = 1.91 (x = (0.99, 1.91) corresponds to the coordinates of the point
of Dy in the center of the domain [0.5,1.5] x [1.5,2.3] in Figure 4.2). In Figure 4.4 on the
right hand side, we see a necked point around the coordinates x1; = 1.5 since, in the direction
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of 9, the correlation hyper-parameters length for Z;(x) and d2(z) are large (612 = 1.20 and
22 = 1.37) and a point of Dy has almost the same coordinate.
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Figure 4.4: Mean and confidence intervals for the simple and the universal co-kriging. Figure
(a) represents the predictions along the vertical line 1 = 0.99 and (b) represents the predic-
tions along the horizontal line x5 = 1.91. The solid black lines represent the mean of the two
co-kriging models, the dashed lines represent the confidence interval at plus or minus twice the
standard deviation of the simple co-kriging and the dotted lines represent the same confidence

intervals for the universal co-kriging.

4.5.5 Multi-fidelity surrogate model for the mixture characteristic length
L.

In this section, we build a co-kriging model for the mixture characteristic length L.. The
aim of this example is to highlight that it can be worth having an adjustment coefficient p;
depending on x. We use the same training and test sets as in the previous section and we
consider a tensorised Matérn-5/2 kernel (4.29). Let us consider the two following cases:

Case 1: gi(x) =1, fo(x) =1 and fi(z) =1

Case 2: gi(x) = (1 :cl), fo(z) =1 and fi(z) =1

We have the following hyper-parameter maximum likelihood estimates for the two cases

Case 1: 61 = (0.52,1.09) and 6, = (0.03,0.02)
Case 2: 01 = (0.52,1.09) and 05 = (0.14,1.37)

The estimate of 91 is identical in the two cases since it does not depend on p; and it is estimated
with the same observations. Furthermore, we can see an important difference between the
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estimates of 8. Indeed, they are larger in the Case 2 than in the Case 1 which indicates that
the model is smoother in the Case 2. Table 4.3 presents the posterior distributions of 3; and
o2 for the two cases (see Section 4.2.3).

Trend coefficient Sivy | B9/0?
B, 1.26 0.97
Variance coefficient Q1 201
o? 15.62 | 24

Table 4.3: Application: hydrodynamic simulator. Posterior distributions of 3, and o3 for the
response L. (see equations (4.9) and (4.11)).

Then, Table 4.4 presents the posterior distributions of B4, 3,, and o3 for the Case 1, i.e.

p1
when p; is constant (see Section 4.2.3).
Trend coefficient Sovo 3/ 0'%
B, 1.49 0.83 —0.79
By —0.26 —-0.79 0.95
Variance coefficient Q2 2009
o3 0.01 3

Table 4.4: Application: hydrodynamic simulator. Posterior distributions of 85, 8, and o3
for the Case 1, i.e. when p; is constant, for the response L. (see equations (4.9) and (4.11)).

Finally, Table 4.5 presents the posterior distributions of B35, 3, and o3 for the Case 2, i.e.

p1
when p; depends on z (see Section 4.2.3).

Trend coefficient Sovy 3y/03

1.66 234 —-3.50 044

(ﬁ’“) —0.48 —-3.50 9.18 —-3.67

P, —0.04 0.44 —3.67 2.60
Variance coefficient Q2 2009
o3 3.24.1071 2

Table 4.5: Application: hydrodynamic simulator. Posterior distributions of 3,5, 3, and ag

p1
for the Case 2, i.e. when p; depends on z, for the response L. (see equations (4.9) and (4.11)).

We see in Table 4.4 that the adjustment coefficient is around 1.5 which indicates that the
magnitude of the expensive code is slightly more important than the one of the cheap code.
Furthermore, we see in Table 4.5 that if we consider an adjustment coefficient which linearly
depends on z; (i.e. with gf(x) = (1 :):1>), the constant part of 3, is more important (it



CHAPTER 4. MULTI-FIDELITY CO-KRIGING MODEL: RECURSIVE

144 FORMULATION

is around 1.66) and there is a negative slope in the direction x; (it is around —0.48). Since
x € [0.5,1.5], the averaged value of p; is 1.18 and goes from 1.42 at 1 = 0.5 to 0.94 at
x1 = 1.5. We see also a significant difference between the two case for the variance estimate.
Indeed, the variance estimate in the Case 1 (see Table 4.4) is much more important than the
one in the Case 2 (see Table 4.5). This could mean that we learn better in the Case 2 than in
the Case 1.

Figure 4.5 illustrates the contour plot of the two co-kriging models, i.e. when p; is constant
and when p; depends on x.
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Figure 4.5: Contour plot of the co-kriging mean when p; is constant (Figure (a) ) and when p;
is depends on z (Figure (b) ). The triangles represent the no = 5 points of the experimental
design set of the expensive code.

Furthermore, Table 4.6 compares the prediction accuracy of the co-kriging in the two cases.
The precision is computed on the test set of 175 observations.

RMSE  MaxAE
Case 1 7.26.1073 0.23
Case 2 1.53.1073 0.16

Table 4.6: Application: hydrodynamic simulator. Comparison between co-kriging when p;
is constant (Case 1) and co-kriging when p; depends on x (Case 2). The Case 2 provides
predictions better than the Case 1, it is hence worthwhile to consider an adjustment coefficient

that is not constant.

We see that the co-kriging model in Case 2 is clearly better than the one in Case 1.
Therefore, we illustrate in this application that it can be worth considering an adjustment
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coefficient not constant contrarily to the model presented in [Kennedy and O’Hagan, 2000
and [Forrester et al., 2007].

4.6 The R CRAN package MuFiCokriging

We have implemented a R CRAN package named “MuFiCokriging” which allows for computing
the recursive multi-fidelity co-kriging model presented in this chapter. This package can be
used with the software R available on the following website: http://cran.r-project.org.
The package includes the major part of the previous developments, i.e.:

e The model definition and building with non-informative Bayesian parameter estimation,
e The model predictive mean and variance for the Simple and Universal co-kriging,
e The fast cross-validation procedures,

e The algorithm for designing nested experimental design sets.

We present in this section the different procedures implemented into the package “MuFiCokrig-
ing” by following an academic example with s = 3 levels of code and with the input dimension
set to d = 2. Note that any s and d can be used. The package is available on the following

http://cran.r-project.org/web/packages/MuFiCokriging I

We emphasize that our package depends on the “DiceKriging” R CRAN package (see [Roustant

url:

et al., 2012]). This allows us to benefit from the advances and the computational efficiency
proposed by this package.

First of all, the package installation is made thanks to the following command:
library(MuFiCokriging)

We note that the text with the verbatim font is used to represent R codes. Furthermore, to
have more detail about a function of the package, the user may use the command help().

4.6.1 Nested Experimental design sets

First, let us present the function allowing for building nested experimental design sets. This
function named NestedDesignBuild computes Algorithm 1. It takes as arguments a list of
s non-nested matrices 1ist(D1,D2,D3) representing the experimental design sets for all code
levels. The order of the list is important, D1 represents the experimental design set of the less
accurate code and D3 the one of the most accurate. The procedure nests the design sets such
that D3 C D2 CD1 with respect to Algorithm 1 and such that D3 will be unchanged.


http://cran.r-project.org
http://cran.r-project.org/web/packages/MuFiCokriging
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list(D1,D2,D3)

NestedDesignBuild(design = 1ist(D1,D2,D3))
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As we see in the next script, the experimental design sets for the levels 1 and 2 are changed
and the one for the level 3 is unchanged.

> identical(D1,NestDesign$PX)
[1] FALSE

> identical(D2,ExtractNestDesign(NestDesign,2))
[1] FALSE

> identical(D3,ExtractNestDesign(NestDesign,3))
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(1] TRUE

The object class "NestDesign" is built thanks to the following procedure
NestedDesign(x, nlevel , indices = NULL, n = NULL)

where:

x represents the experimental design D; at level 1,

nlevel represents the number s of code levels,

tth

indices is a list of index. The t*" element of the list is the index of D;_; corresponding

to the points in Dy.

n is a list of integers representing the number of points for each level. It is necessary to
set n only if indices=NULL. In that case, the experimental design sets (Dy);—2, . s are
randomly generated from Dj.

The procedure ExtractNestDesign allows for extracting the design sets (Dy)i=2 s from an
object of class "NestDesign". We note that the experimental design set D; can be obtained
with the command NestDesign$PX where NestDesign is an object of class "NestDesign".
Therefore, we have the following correspondence:

D;: NestDesign$PX
D,: ExtractNestDesign(NestDesign,2)

D3: ExtractNestDesign(NestDesign,3)

4.6.2 Building a multi-fidelity co-kriging models with MuFiCokriging R
package

Let us consider the three following functions:

— (M)Q _5 (15@ 4 505m1-5) 6) 5(1521—5)2

472 ™ 4m2
2
2a(w) = z1(2) + (152 + 20282 — 6) : (4.31)

z3(z) = z2(x) + 10 (1 — &) cos(15z1 — 5) + 10

N
—_
—

8
~

The function z3(z) corresponds to the Branin’s function where the inputs x = (21, x2) € [0, 1]?
are normalized (see [Jones et al., 1998]). We consider the nested experimental design sets build-
ing in the previous section and representing by the object NestDesign of class "NestDesign".
First, we have to obtain the observations of zi(x), z2(z), 23(x) at points in Dy, Dg, D3. The
contour plot of the three functions are illustrated in the following sketch.
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X2

X2

Z1 Z2 Z3
L | I
+

MuFicokm(
formula = 1ist ("1, “1+X1+X2+
I(X172) +I(X272) +I(X1%X2),71),
MuFidesign = NestDesign,

response = list(z1,z2,2z3),

nlevel = 3)
MuFicokm

The procedure MuFicokm is used to build a multi-fidelity co-kriging model. It returns an object
of class MuFicokm representing the model definition including the parameter estimations. Its

main arguments are the following ones:

formula: an object of class formula allowing to define the regression functions f;(z).
Example of scripts corresponding to a regression function f(z) = (1, z1, 2, T122):

> names (data.frame(NestDesign$PX))
[1] IIX1|| ||X2"
> formula = 71 + X1 + X2 + I(X1*X2)

MuFidesign: an object of class NestDesign representing the nested experimental design
sets.

response: a list of vector representing the observations (z;);=1,... s-

nlevel: an integer representing the number of levels s.
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formula.rho: an object of class formula allowing to define the regression functions
g:(z) for the adjustement coefficients (pi—1(x))=2,... s-

covtype: the type of covariance matrix for Zi(z) and (0;(z))i=2,.s. The available
kernels are (see Subsection 1.4.2):

"gauss": Squared Exponential covariance function
"matern5_2": 5/2-Matérn covariance function
"matern3_2": 3/2-Matérn covariance function
"exp": exponential covariance function

"powexp": y-exponential covariance function

In a simple co-kriging case, the user can fix the values of the parameters and hyper-parameters
with the following arguments:

coef .trend: a list of vectors containing the values of (3;)¢=1,.. s
coef.rho: a list of vectors containing the values of (/6pt,1)t:27...,s-
coef .var: a list of positive reals containing the values of (G,:z)t:L,,,,,

coef.cov: a list of vectors with strictly positive components representing the values of

(e)t:]-:"'75'
nugget: a list of reals representing the “nugget effect” for each level of code.

estim.method: an optional argument allowing to indicate which method is used for the
estimation of (0);=1,... s. Two choice are possible: "EML" corresponds to the maximum re-
stricted likelihood estimation; "LOO" corresponds to the Leave-One-Out cross validation
estimation with the squared error loss function.

If they are set to NULL the parameters are estimated thanks to the method presented in Sub-
section 4.2.3 with non-informative prior distributions. The values of the estimates correspond
to the posterior means of the regression, adjustment and variance parameters. Furthermore,
the hyper-parameters are estimated by minimizing the negative restricted log-likelihood or
the Leave-One-Out cross validation squared error (see Subsection 1.3.3). The remaining ar-
guments are essentially used to control the optimization procedure for the hyper-parameter
estimations. After obtaining the multi-fidelity co-kriging model MuFicokm, the user can have
a summary of the model thanks to the summary procedure:
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.
N sum$CovNames: names of
the used covariance kernels )
.
sum$Cov.val: h -
N ' yper
parameter estimates )
( R 7
- sum sum$Var.val: variance
MuFicokm —— | summary(MuFicokm) —> )
parameter estimates
sum$Trend.val: Trend
l— .
L parameter estimates
( sum$Rho.val: adjust-
—) K
ment parameter estimates
4.6.3 Predictive means and variances at new points
At this stage, we have built a multi-fidelity co-kriging model from (D)= . s and (z¢)=1,....
We are know interested in predicting z3(z) at new points X = {z!,...,2"}. The predictive

mean and variance are implemented in the predict procedure which has three arguments:

object: an object of class MuFicokm.
newdata: a matrix representing the points X where to perform the predictions.

type: a character string indicating the type of used multi-fidelity co-kriging.

"SK": simple co-kriging, i.e. when trend and adjustment parameters are known.

"UK": universal co-kriging, i.e. when trend and adjustment parameters are esti-
mated.

As stated in Subsection 4.2.1, once the multi-fidelity predictive means and variances are
built for zs(x), the ones for (z;(x))i=1,..s—1 are also available. The outputs of the predict
procedure are the following ones:

mean: the predictive mean for zs(z).
sig2: the predictive variance for zs(x).

mux:a list of predictive means. the i*" element of the list corresponds to the predictive
mean of z;(z),i=1,...,s.

varx:a list of predictive variances. the i*? element of the list corresponds to the predictive
variance of z;(z), i =1,...,s.

The procedure predict can also provide the predictive covariance matrix at points in X with
the optional arguments cov.compute = TRUE. The resulting covariance at level s is obtained
with the output C and the ones for levels t = 1,..., s are obtained with the output CovMat.
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MuFicokm

l

ypred <- predict (MuFicokm,

—
newdata = X, type="UK")
ypred$mean: ypred$sig2:
1175 (2) .
ﬁ x
ypred$varx[[2]]:
ol N 0%, (@)
ypred$varx[[1]]:
Kz (‘T) . .
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MuFicokm
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CV <- CrossValidationMuFicokmAll(
MuFicokm ,indice=c(1,7,4))
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Figure 4.6: Example of CV prediction errors when we remove the three points of Dy indexed
by &, = (1,7,4). The confidence intervals equal twice the CV predictive standard deviations.

4.6.4 Cross validation procedures

The fast cross-validation method presented in Section 4.4 is implemented in the procedure
CrossValidationMuFicokmAll. As stated in the application 4.5, the practitioner can either
decide during the CV procedure to remove points from all code levels or from levels s, ...t
with 0 < t < s. The CrossValidationMuFicokmAll procedure computes all these cases. Its
arguments are an object of class MuFicokm representing the multi-fidelity co-kriging model
and a vector of integer indice indicating the index of the points that we remove from Dy for
the CV procedure. Then, the procedure outputs CVerrall, CVvarall and CVCovall provide
the CV predictive errors, variances and covariances when we remove the points from all code
levels. Furthermore, the outputs CVerr, CVvar and CVCov are lists where the ¢ elements
correspond to the cross validation predictive means, variances and covariances at level t.

4.7 Conclusion

We have presented in this chapter a recursive formulation for a multi-fidelity co-kriging model.
This model allows us to build surrogate models using data from simulations of different levels
of fidelity.

The strength of the suggested approach is that it considerably reduces the complexity of
the co-kriging model while it preserves its predictive efficiency. Furthermore, one of the most
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important consequences of the recursive formulation is that the construction of the surrogate
model is equivalent to build s independent kriging models. Consequently, we can naturally
adapt results of kriging to the proposed co-kriging model.

First, we present a Bayesian estimation of the model parameters which provides closed
form expressions for the parameters of the posterior distributions. We note that, from these
posterior distributions, we can deduce the maximum likelihood estimates of the parameters.
Second, thanks to the joint distributions of the parameters and the recursive formulation,
we can deduce closed form formulas for the mean and covariance of the posterior predictive
distribution. Due to their similarities with the universal kriging equations, we call these
formulas the universal co-kriging equations. Third, we present closed form expressions for
the cross-validation equations of the co-kriging surrogate model. These expressions reduce
considerably the complexity of the cross-validation procedure and are derived from the ones
of kriging model that we have extended.

The suggested model has been successfully applied to a hydrodynamic code. We also
present in this application a practical way to design the experiments of the multi-fidelity
model.
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Chapter

Sequential design for kriging and
Multi-fidelity co-kriging models

Usually, in real applications, two stages are performed to surrogate a computer code with a
kriging model. The first one consists in building a kriging model from simulations coming
from an initial experimental design set. Many methods exist to build the initial design set,
in order to ensure appropriate space filling properties, the reader is referred to [Fang et al.,
2006| for a non-exhaustive review of them. The second stage consists in adding simulations
sequentially at new design points which complete the initial set. The selection of the new
points are usually based on criteria to improve the global accuracy of the kriging model and
this will be our goal in this chapter. To be complete, we mention that sequential kriging has
also been widely used in optimization (see [Jones et al., 1998]|, [Picheny et al., 2012]) and to
estimate probabilities of failure [Bect et al., 2012]

Kriging models are a powerful tool to enrich an experimental design set since it provides
through the kriging variance - also called predictor Mean Squared Error (MSE) or variance of
prediction - an estimator of the model MSE. Kriging literature provides lot of criteria usually
based on the kriging variance for sequentially design the experiments [Sacks et al., 1989b].
Furthermore, [Bates et al., 1996] and [Picheny et al., 2010] propose more efficient criteria
by considering the Integrated MSE (IMSE). It consists in integrating the mean value of the
MSE integrated over the input parameter space. We note though that the IMSE can be
computationally expensive to assess, especially when the dimension increases. Although these
criteria are efficient for many cases, they can suffer from an important flaw when the accuracy
of the kriging model is not homogeneous over the input parameter space. Indeed, the kriging
variance is determined by the distances between prediction and design points but not by the
real model errors. To fix this important flaw, we can use the Empirical IMSE suggested in
[Sacks et al., 1989b| which evaluates the model errors through a test set. Nevertheless, in
a complex computer code framework, it could be too expensive to consider an external test
set and cross-validation (CV) based criteria are more significant. As an illustration [Kleijnen
and van Beers, 2004] and [van Beers and Kleijnen, 2008] combine a bootstrapping and a
CV procedure to evaluate the predictor MSE. Although this method improves the classical

155
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approach, it still does not take into account the real model errors. We note that a strength
of the method proposed by [Kleijnen and van Beers, 2004] is that it can be applied to other
types of surrogate models than the kriging one.

The first focus of this chapter is on sequential design to improve the accuracy of a kriging
model. In particular, we propose new criteria combining the kriging variance and the Leave-
One-Out CV (LOO-CV) errors. The CV errors allow for focusing the new observations on
regions where the real model errors are large. Furthermore, thanks to the equations presented
in [Dubrule, 1983] and in Subsection 1.3.3, the LOO-CV equations are fast to compute and
thus the suggested approach is not expensive.

Defining sequential design strategies in a multi-fidelity framework is also of interest and
is still an open problem. A method based on nested Latin hypercube designs is suggested in
[Xiong and Qian, 2012]. However, it does not allow for adding a small number of additional
simulations (e.g. it cannot perform an one step at-a-time sequential design) and it does not
take into account the accuracies of the coarse code versions and the time ratios between two
code levels.

The second focus of this chapter is on sequential design for co-kriging model. We adapt
the new strategies suggested for the kriging model to the multi-fidelity co-kriging one. The
strength of the proposed extensions is that they not only provide the new points where to per-
form new simulations but they also determine which version of code is worth being simulated.
These new criteria take into account the computational time ratios between code versions.
They are based on a proxy of the IMSE reduction and on the recursive formulation presented
in Chapter 4 giving the contribution of each code on the total variance of the model. We note
that sequential design in a multi-fidelity framework has also been applied for optimization
purposes |Forrester et al., 2007] and [Huang et al., 2006].

The chapter is organized as follows. First, we present our CV-based sequential design
strategies. We illustrate these strategies in tabulated functions. Secondly, we present the
extensions of the previous strategies for the multi-fidelity co-kriging model. Finally, we apply
the sequential co-kriging approach to a mechanical example.

5.1 Kriging models and sequential designs

In this section, we briefly introduce the kriging equations presented in Chapter 1 and some
of its classical sequential design criteria. Then, we will present our sequential strategies to
enhance kriging models considering the region with large LOO-CV errors.

5.1.1 The Kriging model

Let us denote by z(z) the output of the code that we want to surrogate at point x € Q C R,
In our framework, we set that the prior knowledges about the code is modeled by a Gaussian
process Zo(x) with mean of the form mg(z) = f'(x)3 and with covariance function ko (z, ) =
o?r (z,%;0). We use the subscript 0 to emphasize that at this stage no observations are
considered. Using the same notation as in Chapter 1 Subsection 1.2.2, the kriging equations
are given by the distribution of the Gaussian process Zy(x) conditioned by its known values
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z™ at points in D:
Zn(x) ~ [Z0(2)|Z0(D) = 2"] = GP (ma(2), kn(z, 7)), (5.1)

where:

mn(x) = f'(2)B +r'(z) R (z" — FB) (5.2)

-1
o . , ) 0 F £(7)
n(,8) = 0% | 12, 2) = (F(2) ¥'(2)) (F R) (r@> , (5.3)

where 8 = (F'R™F)~'F'R~12" is the usual least-squares estimate of 8 (see Section 1.3). The
model parameters 0 and @ can be estimated by maximizing their Likelihood (see [Santner

and:

et al., 2003] and Subsection 1.3.2) or with a cross-validation procedure (see [Rasmussen and
Williams, 2006], [Bachoc, 2013] and Subsection 1.3.3). Furthermore, the Maximum restricted
Likelihood Estimate (MLE) of o2 is given by 62 = (z" — FB)R (2" — FB3)/(n — p). We
note that the kriging predictive mean and covariance are denoted by m,,(x) and ky(z,Z) to
emphasize their dependence on the number of observations n.

1 point at-a-time Sequential design

Now, let us suppose that we want to add a new point x,4+1 in D in order to enhance the
accuracy of the kriging model. From the kriging variance k;,(z,x) - representing the model
MSE - some sequential design methods have been derived [Sacks et al., 1989b|, [Bates et al.,
1996] and |Picheny et al., 2010]. A first one consists in adding 41 where the kriging variance
is the largest (see [Sacks et al., 1989b]):

Tpt1 = arg max ky(x, ). (5.4)
x

However, as presented in [Kleijnen and van Beers, 2004], its performance is poor. Then, it has
been improved with a criterion which consists in adding the new point which leads the most
important IMSE reduction (see [Bates et al., 1996] and [Picheny et al., 2010]):

Tp1 = argmax /UEQ kn(u,u) — kpy1(u, u) du, (5.5)
where
fw)\ [0 F f@)\ [ fa@)
Eni1(u, @) = o? | r(u, @) — | r(u) F R r(x) r(a)
r(u, x) f'(x) r'(z) 1 r(a,x)

Here, the covariance kernels ky,1+1(u, @) corresponds to the one of the distribution of the Gaus-
sian process Z,(u) (5.1) conditioned by a new observation at z. Furthermore, Equation (5.3)
shows that the kriging variance does not depend on the observations if we consider known
the parameters o2 and 8. Therefore, in that case, k,41(u,u) can be computed without new
simulations. We denote by MinIMSE this criterion. Finally, we also consider the criterion
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presented by [Kleijnen and van Beers, 2004] using a Jackknife estimator for the predictor
variance. Its principle is the following one. Let us consider m, —;(x) the kriging mean built
without the i*" observation, the Jackknife variance is given by:

Boa®) = s S (5= DR (56)

i=1

where Z; = nmy,(z) — (n—1)my, _;j(z) and Z = > ™, Z;/n. Then, we consider candidate points
coming from a maximin LHS Design [Fang et al., 2006] and we add the one which maximizes
the Jackknife variance. We denote by KleiCrit this criterion.

q points at-a-time Sequential design

There is a natural way to extend these algorithms when the simulations can be performed
simultaneously. Indeed, the covariance kernel k1 (2, ) of the Gaussian process Z,(z) condi-
tioned by the new observation at point x,1 can be computed without knowing z(z,+1) when
we consider the model parameters 02 and 0 as known. Then, from k,1(z, ), we can find a
new point x,1o where to perform a new simulation using the same criterion as in Equation
(5.5) and the kernel k,.2(z,%). Thus, considering the parameters o and 6 as known (they
are fixed to their estimated values), we can determine with this procedure ¢ good locations
where to perform simulations. We call this method the liar sequential kriging. This idea is
also extended in the framework of kriging-based optimization in [Ginsbourger et al., 2010].

5.1.2 LOO-CYV based strategies for kriging sequential design

We present in this subsection new sequential-kriging strategies. The main difference between
these new strategies and the previous ones is that they take into account the real model errors
through the LOO-CV equations.

The proposed sequential methods is based on Proposition 4.3 for the univariate case s = 1.
This proposition provides a powerful tool to compute the LOO-CV predictive means and vari-
ances. Indeed, several elements of the equations presented in Proposition 4.3 have been already
computed during the model construction (e.g. the inverse of the matrix R). Consequently,
the LOO-CV equations are fast to compute and can be easily recomputed at each step of
the sequential strategy. We note that the original result which is the estimation of ai_i is
of great importance. Indeed, as we use the value of k,, _;(x;,z;), x; € D, strongly depending
on Uiﬂ- in our forthcoming developments, it is important to well estimate it. We note that
ky,—i(zi, x;) corresponds to the covariance kernel of the distribution of Zy(z) conditioned by
the known value z” minus the i*® one and Uiﬂ- is the restricted maximum likelihood estimate
of 0% performed without the i*" observation of z".

Now, let us denote by €?5_cy = [((z(acz) — () the vector of the LOO-

i=1,...,n

i1 the vector of the LOO-CV vari-
ances with m,, _; the kriging predictive mean building without the ith observation of z" and

CV squared errors and sfoo oy = [kn,—i(2i, 2;)]

(24)i=1,...n € D. Furthermore, let us consider the Voronoi cells (V;)i=1,... » associated with the
points (2;)i=1,...n:

Vi={z e Q, |l — x| <|lz —zll, Vj # i}, 4,5 =1,...,n. (5.7)
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In the remainder of this section, we present two strategies to sequentially add simulations which
use e%OO—CV’ S%OO—CV and V;. The intuitive idea of the suggested criteria is to enhance the
predictive variance in the locations where the LOO-CV errors are important.

LOO-CV-based 1 point at-a-time Sequential design
Let us denote by x,41 the new point that we want to add to D. We consider the point
solving the following problem:

Tnp1 = argmax {k‘n(x, x) (1 + Z [5007_0\/]1;36\/; , (5.8)

—1 [stoo-cvli

where 1 stands for the indicator function.

This criterion considers the predictor MSE k, (x, z) adjusted with the LOO-CV errors and
variances. For equivalent k,(x,z), the criterion favors the points close to an experimental
design point with large LOO-CV errors. Furthermore, if two points are in the same Voronoi
cell, the one with the largest predictor MSE is considered. Therefore, a sequential strat-
egy with this criterion focus on the regions of () where the LOO-CV errors are the largest.
We note that the standardization with S%oofcv is important since it is not necessary to
enlarge the predictor MSE in the regions where it is well or over estimated. As example,
le? 5o_cvli < [stoo_cy]i means that the kriging variance is over-estimated around the point
z;, i.e. ky(x,x) is too large for € V;. In that case, the standardization with [s?;5_cvli

2 .
implies that Mlxew ~ 0 for z € V; and thus the term in Equation (5.8) is

=1 [s{o0_cvli
approximately equal to ky,(x,z).

We illustrate in Figure 5.1 the adjusted variance presented in Equation (5.8) and the
classical kriging variance (5.3) in a 1-dimensional example. The considered function is f(z) =
(sin(7z) + cos(14x))z? exp(—4z), x € [0,4]. We use a kriging model with a 5/2-Matérn kernel
with 02 = 1.1073 and # = 1 and the experimental design set is a regular grid of 8 points
between 0 and 4. We see in Figure 5.1 that the kriging model is not accurate in the domain
[0,2] where the function variations are important and the adjusted kriging variance (5.8)
focuses on that region.

As illustrated in Figure 5.1, the adjusted kriging variance allows for taking into account the
LOO-CV error in a sequential procedure focusing on the large error domain. Nevertheless,
it does not entirely fix the issue of the relevance of k,(z,x) to represent the model error.
Indeed, our criterion enlarges the kriging variance around points where kj(z,z) is under-
estimated but it does not reduce it at locations where it is over-estimated. However, it gives
more information about the relevance of m,(x) since it highlights the regions where it is
not accurate. Furthermore, it also aids in the interpretation of k,(z,x) since it emphasizes
whether it is under-estimated or not.

An efficient method to solve the problem in Equation (5.8) is to use an evolutionary
algorithm coupled with a descent algorithm. Indeed, when xz € V,; we have to solve the
problem arg maxgev; kn(z,x). This can be performed with classical optimization methods
(e.g. Conjugate gradient, Newton,. .. ). Then, we can use an evolutionary algorithm to explore
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f(x)

Figure 5.1: Illustration of the adjusted kriging variance in a 1-dimensional example. The solid
thick line represents the true function, the dashed thick line represents the kriging mean, the
bullets represent the observations and the dashed areas represent the kriging mean plus or
minus twice the kriging standard deviation and adjusted standard deviation. We see that the
kriging variance is enlarged at the domain where the function variations are important.

different cells (V;)i=1,... n. Furthermore, for low-dimensional problems (i.e. d < 10), a Monte-
Carlo method can be efficiently used as exploratory algorithm. We note that it is not necessary
to compute the Voronoi tessellation since the criterion only requires to determine in which
Voronoi cells lies a given point € Q € R?. This is computationally simple and cheap even
for high dimension d.

LOO-CV-based q points at-a-time Sequential design

We extend here the previous criterion for a g points at-a-time sequential design. First,
we emphasize that the liar sequential kriging is not relevant for this new criterion. Indeed,
conditioning on model parameters, with a liar method we can compute the kriging variances
(kn+ti(z,x))i=1,..q but not the LOO-CV equations. Therefore, we use another strategy to
propose ¢ new locations where to perform the simulations. This approach is proposed in
[Dubourg et al., 2011] in a different framework. The idea of the suggested method is to
select the ¢ best points with respect to the criterion (5.8) from N candidate points. These N
candidate points are chosen with the following algorithm.

1. Generate Nyiome samples with respect to the probability density function proportional
to kn(x,x) with a suitable Markov Chain Monte Carlo (MCMC) technique [Robert and
Casella, 2004].

2. Extract from these samples N representative points with a IN-means clustering technique

[MacQueen, 1967].

As presented in [Dubourg et al., 2011] the use of this algorithm to select N candidate
points in a kriging framework is efficient. Indeed, it allows us to concentrate the points
at the modes of the kriging variance. In the proposed strategy, we always take N > ¢
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and we choose from the N cluster centers (Cj)i=1.. n the ¢ points where ki, .qj(x,z) =

2 .
kn(z, x) (1—1—2" Mlxe%) is the largest. For the MCMC procedure, we use a

=1 [s{oo_cvli
Metropolis-Hastings (M-H) algorithm with a Gaussian jumping distribution. It is centered on

the last sample point and has a standard deviation such that the acceptance rate is around
30% (see [Robert and Casella, 2004]). Furthermore, we set Nyove such that Nyome > N.
For the N-means procedure, we choose the value of N with respect to the following criterion:

max min  ky(z,x), (5.9)

where (Cj)i=1... n are the cluster centers. This criterion prevents from having a cluster center
in a region where the kriging variance is close to zero. Furthermore, if the number of clus-
ters is too high, the cluster centers get away from the modes and consequently the value of
Milye(C;)iiy y kn(z,x) decreases. Therefore, this criterion also prevents from having a num-
ber of clusters too large. In practice, we choose N on a finite sequence from ¢ to 2n where n
is the number of observations and we run the N-means procedure several times for each V.
Then, we select the cluster centers minimizing (5.9). We note that the MCMC plus N-means
procedure requires careful implementation and appropriate diagnostics. For the N-means
procedure, we use the algorithm suggested by [Hartigan and Wong, 1979] with complexity
O(N Nyiemc). For the M-H procedure we use the R CRAN Package meme. To avoid com-
putational issues, one can extract the g-points from candidates generated with space-filling
design techniques [Fang et al., 2006]. However, with this technique, the candidate points will
not anymore be concentrated in the regions of high mean squared error and the method will
be less efficient.

5.2 Sequential design in a multi-fidelity framework

In this section, we consider the multi-fidelity co-kriging model presented in Chapter 4 with
constant scale factors (p¢—1)i=2,... s and we extend the previous sequential design strategies in
this framework. We note that, in a multi-fidelity framework, the search for the best locations
where to run the code is not the only point of interest. Indeed, once the best locations are
determined, we also have to decide which code level is worth being run. This will not only
depend on the time-ratios between the code levels but also on the contribution of each code
level to the total predictor MSE.

5.2.1 Multi-fidelity co-kriging models

Let us suppose that we want to surrogate a computer code output zs(z) and that coarse
versions of this code (z;(x))¢=1,.. s—1 are available. These codes are sorted by order of fidelity
from the less accurate zj(x) to the most accurate zs_j(x). We consider the universal multi-
fidelity co-kriging equations presented in Section 4.3 with constant scale factors (pi—1)i=2,. s

Thus, using the same notation as in Chapter 4 Section 4.2, the predictive mean ufu (x)
and variance k| J(z,Z) at level t = 2,..., s is given by the following equations:

i, () = proipiy, !t (2) + £(@) By + 1y (2) Ry (20 — FuBy — pr—12-1(D")) (5.10)
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and:

—1 _
K (o, 8) = 62, b (o) + 0f [ () — (Wj(a) xj()) (Ii Ez) <ht(ib‘>> |

where ptB_l = (H/R;'H;)"'H/R; '2; is the least-squares estimates of ('Otﬂl>, 62, =
t t

pr, + [(HR; TH,) ™! 1] and H; = [z,1(D;) Fy]. Furthermore, the restricted maximum

likelihood estimate of o is given by

RS B )
o) = .

(nt — Dbt — 1)

We note that the predictive mean and variance at level ¢ are denoted by pf, (z) and k!, (z, )
to higlight their dependence of the number of observations n; at level ¢.

The important property of this co-kriging model is that its MSE (5.11) provides
through the term 62 k!~ the contribution of the code level t — 1 to the total

Pt—1 MNt—1
predictor MSE at level ¢, t = 2,...,s. Therefore, it can allow us to determine which

code level is worth being simulated at a new location x.

5.2.2 Sequential design for multi-fidelity co-kriging models

The aim of this subsection is to extend the sequential kriging strategies proposed in Subsection
5.1.2 to the suggested multi-fidelity co-kriging model. These extensions are based on the
variance decomposition property presented in Subsection 5.2.1 in Equation (5.11) and on the
cross-validation equations presented in Proposition 4.3. From them, the LOO-CV equations
are fast to compute and consequently they can be used in a sequential procedure with a low
computational cost. Furthermore, since the experimental design sets are nested, we state that
during the LOO-CV procedure at level ¢, the points are removed from all code levels. Finally,
from these equations, we can adjust the co-kriging variances (kﬁfu (x,:ﬁ)) _, _, at each level

.....

using the same method as presented in Equation (5.8).

1 point at-a-time sequential co-kriging. First, let us consider x,ey the point solving the
problem:

Tnew = argmax k;, (z,x). (5.12)
x

Therefore, we want to compute a new simulation at point where the predictor MSE is maximal.
Now, let us consider two successive code levels t—1 and ¢t. The question of interest is to estimate
which of these two code levels is worth being simulated.
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First, thanks to Equation (5.11), we can deduce the contribution of each code levels to the
predictor MSE. Let us define the following notation for t = 2,.. ., s:

-1
0% (z) = o2 1_(hg(x) rg(x)) (Ii I;z) (}::((;”))) (5.13)

and 03, (z) =k}, (,x). Then, we have:

K (z,2) =Y oni(x) [] 63, (5.14)
i=1 j=i

Let us consider that the parameters (6;):=1 s define the characteristic length-scales of the
kernels ((r¢(x, Z;0;))i=1
1.4). Then, we can approximate the reduction of the IMSE after adding a new point ey at

s (see [Rasmussen and Williams, 2006] p.83 and Chapter 1 Section

77777

level t with the following formula:

¢ t—1 d
IMSE! o4 (2new) = Y 03:(wnew) [ [ 62, T] 05" (5.15)
i=1 j=i  m=1
with 8; = (6}, ...,0%). Indeed, at each stage, o3 (Tnew) H;: 65], represents the contribution

of the bias §%(x) to the co-kriging variance and Hizl 0! represents the volume of influence
of Tpew at level 5. This criterion is justify by the fact that the reduction of IMSE! defined by
IMSE! = /. 0 Jgt () dx after adding a new point Zpey has the same order of magnitude than
O'gi (Tnew) times the volume of influence an:l 07" of Tnew.

We illustrate below the criterion (5.15) for a kriging model in dimension 2. Let us consider
that we want to approximate the Branin-Hoo function (see [Jones et al., 1998]) from 12 obser-
vations. The considered experimental design set and the Branin-Hoo function are illustrated
in Figure 5.2.

Figure 5.3 represents the kriging predictive mean and variance. The estimated character-
istic length scales are 1 = 0.22 and 02 = 0.65 and the empirical IMSE is 1648. Let us consider
that we want to simulate a new observation at point Tnew = (0.25,0.5) (see Figure 5.3b), the
approximation of the IMSE reduction given by the criterion in Equation (5.15) is 468.

Figure 5.4 represents the kriging predictive mean and variance after adding a new sim-
ulation at point xpew = (0.25,0.5). The obtained empirical IMSE is 1130. Therefore, the
empirical uncertainty reduction equals 1648 — 1130 = 518 which is close to the approximation
given by Equation (5.15) which is 468.

Now, let us consider that the ratio of computational times between the codes z;(z) and
zi—1(z) equals By /t—1- 1t means that the computational cost for running one simulation on
zi(z) and one simulation on z;_1(z) (the experimental design sets must be nested) is the
same as the one for running 1 + B,/,_; simulations on z_1(z) — i.e. for running z1(z)
on 1+ By, different points zpew. Therefore, it is worth running the code z;—1(x) if (1 +
Bt/t_l)IMSEfe_dl (Tnew) > IMSE! _(Znew), i.e. if the potential uncertainty reduction by running

T

1+ By times z1(z) is greater than the one when we run one simulation on z(z) and
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Figure 5.2: Contour plot of the Branin-Hoo function. The blue triangles represent the con-

sidered experimental design set.
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Figure 5.3: Figure (a) illustrates the kriging predictive mean and Figure (b) illustrates the
kriging predictive variance. The blue triangles represent the experimental design set and the
red triangle is the point Zpew = (0.25,0.5) where to perform a new simulation. The filled

rectangle is the volume of influence of ey evaluated from 6; = 0.22 and 02 = 0.65.

one simulation on z;_1(z). From this criterion, we can deduce the following algorithm for an

one at-a-time sequential co-kriging model taking into account both the computational ratios
between the different code levels and the contribution of each level to the total co-kriging

variance.

Remarks:

Algorithm 2 evaluates for two successive code levels t — 1 and ¢, which one is

worth being simulated. It starts with the levels one and two, then two and three and so on.
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Figure 5.4: Figure (a) illustrates the kriging predictive mean and Figure (b) illustrates the
kriging predictive variance. The blue triangles represent the experimental design set.

When it finds that the level ¢ — 1 is more promising than the level ¢, it stops the loop and
simulate xpey at code levels z1(z),. .., z;—1(z). Since the loop is defined from level 1 to level
s, it favors simulations at low code levels. Therefore, it will tend to learn the coarse code
versions before learning the accurate ones. We note that during the loop of Algorithm 2, the
parameters are not re-estimated. In fact, they are re-estimated after adding the new point
Tnew. Moreover, the first test U?t(xnew) < IMSE? checks if the code level t at point Tpew is
worth being run. Then, the test IMSE' ! (2yew) /IMSE! 4 (new) > 1/(1 + Byji—1) evaluates
which code levels between ¢t and ¢ — 1 is the most promising. Finally, if we consider that the
code level t is more promising than the code level ¢ — 1, we confront it to the following code
level t + 1. We note that Algorithm 2 is reiterated until a prescribed accuracy is reached or
the computational time budget is spent.

1 point at-a-time sequential co-kriging with adjusted predictor MSE. From Propo-
sition 4.3, Algorithm 2 and Equation (5.15), we can extend the criterion (5.8) to the multi-
fidelity co-kriging model. Let us consider the following quantity:

t t—1 d
IMSEied,adj (Tnew) = i Ugi (Tnew) Hj:i U;ZJJ- m=1 07"

y 143 (5L0070V,i(z§')_ﬁ—j,i—laLoofcv,ifl($;'))2 ) (5.16)
-7:1 U%oofcv,i(zz')_a—ii_l,—jO—%OO—CV,ifl(w;')
where p_j 0 =0, p_;; corresponds to the first element of A; _; in Proposition 4.3, 630 _; =0,
&zi_l _; corresponds to the element [1, 1] of the matrix 3,; _; in Proposition 4.3, x; is the j
point of D;,

5LOOfCV,z’($§‘) = Zi($§) - Nii,—j(xé)’
0%00—0\/,@'(503') = kim,—j(fﬂé’ 1";)’

k;u _j(z, ) is the covariance kernel ki (x,Z) at level i built without the j™ observation of

Zj, Hy, _; is the predictive mean ,uf% at level i built without the j* observation of z; and
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Algorithm 2 One point at-a-time sequential co-kriging

1: Find Zpew such that xpew = argmax, k;,_(z, )
2: for t=2,...,sdo
3: if (03 (new) < IMSE') then

4: Run z¢—1(Zpnew)

5: end for

6: else

7: if (IMSE!_] (Znew)/IMSE! 4(2new) > 1/(1+ Byj—1)) then
8: Run z¢—1(Znew)
9: end for

10: end if

11: end if

12: end for

13: if (t = s) then

14: Run z¢(Zpew)

15: end if

j=1,....n5 ¢ = 1,...,t. In Equation (5.16), the kriging variance Ugi(l'), i =1,...,t,
in Equation (5.14) is replaced with the adjusted kriging variance presented in Subsection
5.1.2. We note that (5Loo_cv7¢(a:§») — pA_jﬂ-_1<€Loo_cy,i_1(acé-))2 is the part of the LOO-CV
squared error explained by the bias 6°(z) and Uﬁooicvﬂ-((ﬁ;) - &gi_l,—jUEOO—CV,z‘—l(QE;) is the
corresponding LOO-CV predictive variance. To adapt the adjusted co-kriging variance in a
multi-fidelity framework, we just have to replace IMSE!_4(z) with IMSE!

r red,adj (%) in Algorithm
2 and k;, (x,r) with:

S _ s 2 s—1 ~92
kns7adj(x7$) = dia O5i (@) [Tz I ps, ,
1 ni  (fLoo—cv,i(@)—p—ji-1eL00-0v,i—1(})) . (5.17)
X + ijl o? (x)—62 o? (x%)
Loo—cv,il%;) =9, | _;%T00-cv,i-1%;

S
ns,adj

replaced with its adjusted version. We highlight that thanks to Proposition 4.3, the elements
€LOO,CV71'(CC;-), O'I%OO_CVJ(.%‘;), &gi717_j and p_;;—1 are fast to compute.

(2, ) corresponds to kj_(x,z) in Equation (5.14) where the kriging variance o3, (z) is

(q')i=1..s points at-a-time sequential co-kriging. In this paragraph, we propose an
extension for the multi-fidelity model of the ¢ points at-a-time sequential design presented
in Subsection 5.1.2. Its principle is the following one. First, we select ¢* new points for the
code z¢(x) with the method presented in Subsection 5.1.2 “LOO-CV based ¢ points at-a-time
Sequential design”. Then, we consider these points as known for the code z;,_i(x) and we

t=1 new points for this code with the same method. We note that, as presented in

select q
Subsection 5.1.1, we can use a liar method to compute the new co-kriging variance without
simulating z_1(x) at the ¢ new points. Finally, we repeat this procedure for all code levels
from z;_9(x) to z1(z). At the end of the procedure, we have Z;?:j ¢' new points at level j and
we want to find the allocation {¢', ..., ¢’} leading to the largest potential uncertainty reduction

and under the constraint of a constant CPU time budget. We note the CPU time budget
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T = 22:1 ZE:J‘ ¢"T7 where (Ti)i:Lm’S represents the CPU times of codes (2i(x))i=1,..s-
Algorithm 3 presents the suggested ¢ points at-a-time sequential co-kriging.

Algorithm 3 (¢%);—;.s points at-a-time sequential co-kriging

_ ; .
1: Set the budget 7' > 0 and the allocation {q',...,q'} such that dic1 22— 4 T? =T
2: Set (Nyrene)i=1,....¢ for the M-H procedures.
3: Generate Njjc\c samples distributed with respect to &, (z, z).
4: Find the N cluster centers (C,f)i:.]w”’Nt such that N* = maxy> minxe'(cf)i KL, (x,x)
5: Select from (Cf);—; _ nt the ¢' points (xflew,i)izla-“)qt where kflt,adj(x, x) is the largest.
6: for m=t—1,...,1do '

. . ]
7: Compute kZLerZ?:mH 7 (z,x) with the new points ((l‘new’i)z’:l,“.,qt)j:m+17m7t
8: Generate Nyjcyc samples with respect to & Ly g (z,).

m i=m+1
9: Find the N™ cluster centers (C}");=1,. nm such that N™ =
1 m
MAax N >gm Milge(om), /’4:7“”_’_22:771+1 y (z, 1:)

10: Select from (C7")i=1,.,n= the ¢" points (x4 ;)i=1,..q, Where K™ (z,x)

N+ i1 €4ad]
is the largest.
11: end for

Algorithm 3 details. In line 3, kfn (z,x) comes from Equation (5.11). In line 4, the N'-
clustering is performed from the va[CMC samples generated in line 3. The N' cluster centers
are the candidate points from which we extract the ¢' new points having the maximum adjusted
(z,z) (line 5):

variance k!

ny,adj
kl _ l 2 -1 ~2
ny,adj (x,2) = >i105(@) [l Tor .,
« 1 ni (5L0070V,i(x})_f;—j,i—laLOO—CV,ifl(33;')’> .
* ZJ:l Uﬁoofcv,i(x,’bj)_o-gi_l,—jJ%OO—CV,i—l('I,Z]’)
In the 'For’ loop, the same procedure is repeated for all code levels m =1—1,...,1 except that
we update the kriging variances kj, (x,z) with the points added in level m+1,. .., (since the

t
nt +Zf:l+1 q"

sponds to the kernel distribution of a random process Zf, (x) ~ [Z(x)|Z®) = 2] conditioned

experimental design sets must be nested). Therefore, in Algorithm 3, & (x, ) corre-

by the observations at points ((ﬁ;ew i)izlyqu) l when the parameters (02);—1,_; and
’ Jj=l+1,...;s
(6;)i=1,...+ are considered as known (i.e. this corresponds to a liar method). Furthermore,
t
knt+Zf:l+1 q*,adj

(x,z) corresponds to the predictor variance k;f AL g (x,z) adjusted with
b2 =141
the LOO-CV errors and variances:

t _ t 2 t—1 ~2 d
k”t'*‘Zf:lﬂ q*,adj (z,2) = X U5i+zf:z+1 q' (z) Hj:i 7o Lim=1 o ( )
n; (ELoofCV,i(Ii')fﬁfj,iflsLooch,i—l(1?))2 ) 5.18
X <1 +> s 2

= 2 i 7] 4
j=1 9Loo-cv,i (5) pi,l,ijLOO—cv,i—l(wé')

1 2 :
where kn1+2f:z+1 4 and 0S4y (xne\f\,) a.re defluced' fr(?m E')quat%on (5.11). We note.z that
for the M-H procedures, we use a Gaussian jumping distribution with a standard deviation

such that acceptance rate is around 30%.
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Furthermore, let us consider the following quantity

t t—1 d
IMSEreaq =Y > o5(zhee,) [[062, 11 05" (5.19)
=1 r=1,...,q° j=t m=1
We consider the allocation {q!, ..., ¢'} which solves the following optimization problem:
ot
{q¢',.... ¢} = arg{ Ilnamt}IMSEWLq such that Z Z q¢T? =T, (5.20)
q 7"'7q . . .
J=l1i=j

i.e. we look for the allocation leading the maximal uncertainty reduction. This optimization
problem is very complex to solve. Nevertheless, when the number of code levels and the budget

T are low (e.g. s = 2 in our application) an exhaustive exploration of the allocation {¢',. .., ¢'}
can be performed. We are in that case in the presented application . Furthermore, we note
that IMSE,cq 4 is a proxy on the IMSE reduction when we add ((mﬁéw,i)izl,...,qm>m:1 . at

code levels (y"™(x))m=1,...t-
In practical application, Algorithm 3 is reiterated until we reach a prescribed precision or
the computational time budget is exhausted.

5.3 Applications

We compare in this section the MinIMSE, KleiCrit and AdjMMSE criteria on toy examples
and on an application concerning a spherical tank under pressure. We present both the cases
of 1 point at-a-time and ¢ points at-a-time sequential kriging. Then, we compare on the
tank application, the suggested sequential kriging and co-kriging methods with s = 2 levels.
The purpose of this section is to emphasize the efficiency of the LOO-CV-based criteria and
to highlight that a multi-fidelity analysis can be worthwhile. Finally, for the multi-fidelity
sequential co-kriging, we present the allocation of the simulations between the coarse code
and the accurate one. We note that for the different examples, we compare the different
methods given a prescribed computational time budget.

5.3.1 Comparison between sequential kriging criteria

In this subsection, the 1 point at-a-time sequential kriging criteria (MinIMSE, KleiCrit, Ad-
jMMSE) are compared on three tabulated functions:

e Ackley’s function on [—2,2]? [Ackley, 1987]:

z? + y2> (cos(27r;v) + cos(27y)
— exp

) +20 + exp(1).

f(z,y) = —20exp (—0.2 5

e Shubert’s function on [—2,2]? [Xian, 2001]:

5 5
f(z,y) = (Z kcos ((k+ 1)z + k)) (Z kcos ((k+ 1)y + k)) .

k=1 k=1



5.3. APPLICATIONS 169

e Michalewicz’s function on [0, 7]? [Michalewicz, 1992]:

e = s (s () -snt (s (£))

The comparison is performed on a test set Dyest composed of niest = 1000 points uniformly
spread on the input parameter space and from 50 different initial experimental design sets.
We compare the different methods with respect to the Normalized RMSE:

; 2
\/Z:L;eft (zreal(in?gest) — Zpred (l')) /ntest

MAXEDy ey Zreal (T) — MilgeD, Zreal(x)7

Norm RMSE = (5.21)

where 2;ea1() is the real value of the output and zpreq () the predicted one. The 50 initial ex-
perimental design sets are LHS designs of 10 points optimized with respect to the S-optimality
[Stocki, 2005]. From these designs, 50 sequential krigings are performed and the convergence
of the mean and the quantiles of the Normalized RMSE are computed for the three criteria.
The mean and confidence intervals of the Normalized RMSE with respect to these 50 initial
design sets are presented in Figure 5.5. We use for each kriging a tensorised 5/2-Matérn co-
variance function and a constant trend. Furthermore, after each added point, the parameters
B, 02 and 0 (see equations (5.1), (5.2) and (5.3)) of the kriging models are re-estimated with
a maximum likelihood method. These estimations are performed thanks to the R library
'DiceKriging’ [Roustant et al., 2012].

Figure 5.5 illustrates the efficiency of the criterion AdjMMSE. Indeed, for the Shubert’s
and Michalewicz’s functions, we see that the accuracy of the 1 point at-a-time kriging with
this criterion is significantly better than the one of the others criteria (both in terms of mean
and quantiles of the Normalized RMSE). In fact, these functions have the particularity to
have important variations in some areas of the input parameter space. Thus, the errors are
more important in these locations and the suggested criterion focuses the new points on it.
Furthermore, the contrast of variations are particularly important for the Shubert’s function.
For this reason, the IMSE criterion performed very poorly in that case. Indeed, this criterion
is efficient for functions with homogeneous variations (i.e. when the predictor MSE well
predicts the model errors). In contrast, the Jackknife predictor MSE provided by the criterion
KleiCrit manages to catch this heterogeneity and it performs better than the IMSE criterion.
Moreover, we see that the performance of the AAJMMSE and IMSE criteria are equivalent
for the Ackley’s function. We note that the variations of the Ackley’s function have the same
order of magnitude over the input parameter space.

These examples illustrate the fact that our criterion is more efficient than the other criteria
when the functions have important contrast variations and it remains efficient even in the cases
where the functions have homogeneous variations (its efficiency is equivalent to the one of the
IMSE criterion).

Another point of interest is to compare the gain of CPU time by using the short cuts
of Leave-One-Out Cross Validation presented in equations (4.17) and (4.19). For the three
academic examples, the CPU time of the sequential design using the criterion AdjMMSE
with equations (4.17) and (4.19) is around 14 whereas the one without them is around 19.
Therefore, the gain is substancial (it is approximately 25%).
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Figure 5.5: Comparison between 1 point at-a-time sequential kriging criteria on toy examples.
The bold triangles represent the mean of the Normalized RMSE for the AdjMMSE criterion,
the bold circles represent it for the MinIMSE criterion and the bold Crosses represent it for
the KleiCrit criterion. Furthermore, the solid lines represent the quantiles of probabilities 10%
and 90% of the Normalized RMSE, the dotted lines represent them for the MinIMSE criterion
and the dotted lines represents them for the KleiCrit criterion. The means and confidence
intervals are computed from 50 different sequential design procedures.

5.3.2 Spherical tank under internal pressure example

In this section, we deal with an example about a spherical tank under internal pressure. We
are interested in the von Mises stresses on the three points labeled in Figure 5.6. Indeed, we
want to prevent from material yielding which occurs when the von Mises stress reaches the
critical yield strength.

The system illustrated in Figure 5.6 depends on the following parameters:

e P (MPa) € [30,50]: the value of the internal pressure.
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Figure 5.6: Scheme of the spherical tank under pressure.

Rint (mm) € [1500,2500]: the length of the internal radius of the shell.
Tshen (mm) € [300,500]: the thickness of the shell.

Teap (mm) € [100,300]: the thickness of the cap.

Esper (GPa) € [63,77]: the Young’s modulus of the shell material.
Ecop (GPa) € [189,231]: the Young’s modulus of the cap material.
0y,shell (M Pa) € [200,300]: the yield stress of the cap material.

Oy,cap (M Pa) € [400,800]: the yield stress of the cap material.

The accurate code output y?(x) is the value of the von Mises stress provided by an Aster finite
elements code (http://www.code-aster.org) modeling the system presented in Figure 5.6.
We use the notation @ = (P, Rint, Tsheirs Teaps Eshells Ecaps Oy,sheil; Ty,cap)- We note that the
material properties of the shell correspond to high quality aluminum and the ones of the cap
corresponds to steel from classical to high quality. Then, the coarse code output zj(x) is the
value of the von Mises stress given by the 1D simplification of the tank (5.22) (it corresponds
to a perfect spherical tank under pressure, i.e. without cap):

(Rint + Tshell)3
(Rint + Tshen)* — R3

int

z1(z) = 3 (5.22)
2

According to Equation (5.22), the actual input dimension of z;(x) is three (it depends only
on P, Rjy: and Tgpe) while a sensitivity analysis performed with a Sobol decomposition
gives that the accurate code depends essentially on four parameters (P, Rint, Tspen and Teqp).
Furthermore, the response is highly stationary. Therefore, only few points are necessary to
well predict the output of the code. For these reasons, we can start the sequential strategies
from an initial experimental design set with only 10 points.

Thus, for the different comparisons, we use a S-optimal LHS design D? of 10 points for
the code z(x). For the coarse code z1(x), we start with a design D! of 20 points. It is
created with the following procedure. First, we create a S-Optimal design D! of 20 points.


http://www.code-aster.org
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Second, we remove from D! the 10 points that are the closest to those of D?. Finally, D! is the
concatenation of D2 and D* (this procedure ensures the nested property D? C D!, see Chapter
4 Section 4.5.3). We note that the CPU time is around 1 minute for the accurate code and
108 seconds for the coarse code. Nevertheless, to be in a more realistic case, we consider that
the CPU time ratio between z2(x) and z;(z) equals By s1 = 10. Furthermore, each sequential
procedure is performed with 40 different initial design sets. Then, the mean and the quantiles
of probabilities 90% and 10% of the empirical Normalized MSE are computed from a test set
composed of 1000 points uniformly spread on the input parameter space. Finally, for the M-H
procedure, we use a Gaussian jumping distribution such that the acceptance rate is around
30% and we set Nyiemce = 50000 (we use 5 000 samples for the the burn-in procedure of the
M-H method, see [Robert and Casella, 2004]). For the M-H procedure, we use the package
R CRAN mcmc. We note that after each added points, the parameters of the kriging or
co-kriging models are re-estimated with a maximum likelihood method and that 5/2-Matérn
kernels are used for all models.

The remainder of this section is organized as follows. First we compare the MSE of the 1
point at-a-time sequential kriging with the one of the ¢ = 5 points at-a-time one. Second, we
compare for a given CPU time budget the sequential kriging and cokriging strategies. In the
forthcoming developments, the response ¢ = 1, 2, 3 refers to the value of the von Mises stress
at point 7 on Figure 5.6.

Comparison between sequential kriging criteria

Figure 5.7 compares the different criteria of the 1 point at-a-time and the ¢ = 5 points at-a-time
sequential kriging. We see that the criteria MinIMSE and AdjMMSE give equivalent values
for the MSE for the 1 point at-a-time procedure and they perform better than the KleiCrit
criterion. They are equivalent since the output zo(x) is perfectly stationary. Nevertheless, the
criterion AdjMMSE is the most efficient for the ¢ = 5 points at-a-time procedure. Indeed,
the 5 points provided by a liar method with the MinIMSE criterion are not necessarily those
which maximize the reduction of the IMSE. The method suggested in Section 5.2.2 seems to
give a better solution.

Comparison between kriging and co-kriging sequential analysis

In this section, we compare the sequential kriging strategy with the sequential co-kriging
with respect to the AdjJMMSE criterion. Figure 5.8 gives the convergence of the empirical
normalized MSE for the response 1. We see that the sequential co-kriging performs better
than the kriging one. Furthermore, at the beginning of the method, the proportion of runs for
the accurate code is very low. Indeed, the coarse code and the accurate code are extremely
correlated for this response (around 99%) and thus, during the sequential strategy, the bias
between the two codes is well estimated. Then, when the coarse code is well approximated,
the sequential strategy starts to run the accurate one (for a CPU time around 500).

Figure 5.9 gives the convergence of the errors for the response 2. For this response, the
correlation between the coarse and the accurate code is around 80%. Therefore, the proportion
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Figure 5.7: Comparison between 1 point at-a-time sequential kriging criteria (a) and batch
sequential kriging criteria with ¢ = 5 (b) on the spherical tank example. The bold triangles
represent the mean of the Normalized RMSE for the AdjMMSE criterion, the bold circles
represent it for the MinIMSE criterion and the bold Crosses represent it for the KleiCrit
criterion. Furthermore, the solid lines represent the quantiles of probabilities 10% and 90%
of the Normalized RMSE, the dashed lines represent them for the MinIMSE criterion and the
dotted lines represent them for the KleiCrit criterion.
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Figure 5.8: Comparison between 1 point at-a-time sequential kriging and co-kriging on the
response 1 of the spherical tank example with respect to the AdJMMSE criterion (a). The
thick dashed line represents the mean of the Normalized RMSE for the sequential kriging and
the thick solid line represents it for the sequential co-kriging. The thin lines represent the
quantiles of probabilities 10% and 90% of the Normalized RMSE. Figure (b) represents the
proportion of runs allocated to the accurate code.
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of runs for the accurate code determined by the sequential strategy is more important than in
Figure 5.8. Furthermore, we see that this proportion increases with the CPU time. It means
that the sequential co-kriging improves the approximation of the coarse code at the beginning
of the procedure and then focuses on the accurate code. As a result, we see that the sequential
co-kriging strategy is substantially better than the kriging one.
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Figure 5.9: Comparison between 1 point at-a-time sequential kriging and co-kriging on the
response 2 of the spherical tank example with respect to the AdJMMSE criterion (a). The
thick dashed line represents the mean of the Normalized RMSE for the sequential kriging and
the thick solid line represents it for the sequential co-kriging. The thin lines represent the
quantiles of probabilities 10% and 90% of the Normalized RMSE. Figure (b) represents the
proportion of runs allocated to the accurate code.

Figures 5.8 and 5.9 illustrate the efficiency of the sequential co-kriging when the coarse
code bring information on the accurate code. For the response 3, the coarse code is weakly
correlated with the accurate code (around 45%). This is due to the fact that the coarse code
models the von Mises stress in a perfect spherical tank whereas the response 3 corresponds to
the one in the cap. Figure 5.10 shows that in this case, the sequential co-kriging model manages
to determine that the coarse code is not worth being simulated. Indeed, the proportion of
runs for the accurate code is very high. Furthermore, it shows that the co-kriging sequential
design performs as well as the kriging one when the coarse code is non-informative.

Finally, Figure 5.11 shows the efficiency of the (¢!, ¢?) at-a-time sequential co-kriging. We
set in Algorithm 3 that T = ¢' + ¢®> + 10¢®> = 120 where the CPU time of the coarse code
is 1 and the one of the accurate code is 10. For the the sequential kriging, we use a ¢ = 10
at-a-time sequential procedure. Furthermore, Figure 5.11 shows that at the beginning of the
procedure, the sequential co-kriging focuses on the approximation of the coarse code whereas
at the end it focuses on the accurate code. We note that the allocation of runs for the accurate
code in Figure 5.11 agrees with the proportion of runs given in Figure 5.9.

The results of the sequential co-kriging on the different responses show that the criterion
suggested in Section 5.2.1 performs very well. Indeed, it is always better than the sequential
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Figure 5.10: Comparison between 1 point at-a-time sequential kriging and co-kriging on the
response 3 of the spherical tank example with respect to the AAJMMSE criterion (a). The
thick dashed line represents the mean of the Normalized RMSE for the sequential kriging and
the thick solid line represents it for the sequential co-kriging. The thin lines represent the
quantiles of probabilities 10% and 90% of the Normalized RMSE. Figure (b) represents the
proportion of runs allocated to the accurate code.

kriging when the coarse code is informative and its performance is equivalent to it when the
coarse code is not useful. Furthermore, the different proportions of runs for the accurate code
emphasizes that the criterion accurately determines the contribution of each code to the total
model error and the optimal run allocation between the accurate and the coarse codes.

5.4 Conclusion

This chapter deals with sequential strategies for kriging and co-kriging models. First, we have
presented classical sequential criteria for the kriging model and we have suggested another
criterion based on the Leave-One-Out cross validation errors. This criterion has allowed us
to set the new observations at locations where the model error is important. The examples
presented in the last section have highlighted the efficiency of the suggested criterion. Indeed,
for non-stationary functions, it provides results significantly better than classical criteria and
for stationary ones its performance is equivalent to them. We have also emphasized the
performance of the suggested criterion on a real application. Furthermore, we show in the
application that when the simulations can be performed in parallel, our method has performed
better.

Second, we have presented the extension of our criterion to multi-fidelity co-kriging models.
We have shown in the application that performing a multi-fidelity sequential co-kriging is
worthwhile when the coarse code versions are informative (i.e. highly correlated with the
accurate code). Furthermore, a strength of the proposed approach is that it performs as well
as a sequential kriging when the coarse code versions are not informative. In fact, the proposed
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Figure 5.11: Comparison between ¢ = 10 points at-a-time sequential kriging and (¢!, ¢?)
points at-a-time sequential co-kriging. On Figure (a) the bold circles represents the mean of
the Normalized RMSE for the sequential kriging and the bold triangles represent the one of the
sequential co-kriging. Furthermore, the solid lines represent the quantiles of probabilities 10%
and 90% of the Normalized RMSE for the sequential co-kriging and the dashed ones represent
it for the sequential kriging. On Figure (b) the squares represent the median number of runs
for the coarse code during the sequential co-kriging and the triangles represent it for the
accurate code.

extension takes into account the contribution of each code to the total predictor mean squared
errors and it determines the best run allocation between accurate and coarse code versions
given a CPU time budget.



Chapter

Multi-fidelity sensitivity analysis

6.1 Introduction

Complex computer codes usually have a large number d of input parameters. The determi-
nation of the important input parameters can be carried out by a global sensitivity analysis.
We focus on Sobol indices [Sobol, 1993] which are a variance-based importance measure of
the model input parameters on the model response. They are based on the Hoeffding-Sobol
decomposition suggested by [Hoeffding, 1948] which is valid when the input parameters are
independent random variables. We consider the independent case in our framework. For an
extension of the Hoeffding-Sobol decomposition in a non-independent case, the reader is re-
ferred to [Chastaing et al., 2012]. Furthermore, other strategies for sensitivity analysis with
dependent inputs are suggested by [Borgonovo, 2007|, [Da Veiga et al., 2009], [Li et al., 2010],
|[Kucherenko et al., 2012] and [Mara and Tarantola, 2012|. Nevertheless, the estimation of the
Sobol indices by sampling methods requires a large number of simulations, that are sometimes
too costly and time-consuming. A popular method to overcome this difficulty is to build a
mathematical approximation of the code output [Marseguerra et al., 2003] and [looss et al.,
2006.

We deal in this chapter with the use of kriging and multi-fidelity co-kriging models to
estimate Sobol indices. A pioneering article dealing with the kriging approach to perform
global sensitivity analysis is the one of [Oakley and O’Hagan, 2004]. They suppose that our
prior knowledge about the code can be modeled by a Gaussian process and they estimate
the Sobol indices thanks to numerical integrations. The strength of the suggested approach is
that it allows for inferring from the surrogate model uncertainty about the Sobol indices. This
method is also investigated in [Marrel et al., 2009]. However, the implementation of the method
is complex and it is computationally expensive for general covariance kernels. Furthermore, it
does not take into account the numerical errors related to the integral evaluations. Another
flaw of the method presented in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009] is that
it is not able to handle the real Sobol indices but only an approximation of them.

On the other hand, a method giving confidence intervals for the Sobol index estimates and
taking into account both the meta-model uncertainty and the numerical errors on the Sobol
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index estimations is suggested in [Janon et al., 2011]. They consider a sampling strategy to
estimate the Sobol indices instead of numerical integrations and they infer from the sampling
errors thanks to a bootstrap procedure. Furthermore, to deal with the meta-model error,
they consider an upper bound on it. In the kriging case they use the kriging variance up to
a multiplicative constant as upper bound. Nevertheless, this is a rough upper bound which
considers the worst error on a test sample. Furthermore, this method does not allow for
inferring from the meta-model uncertainty about the Sobol indices.

We propose in this chapter a method combining the approaches of [Oakley and O’Hagan,
2004] and [Janon et al., 2011]. As in [Oakley and O’Hagan, 2004] we consider the code as
a realization of a Gaussian process. Nevertheless, we use the estimator suggested in [Janon
et al., 2011] to estimate the Sobol indices instead of numerical integrations. As a consequence,
we can use the bootstrap method presented in [Archer et al., 1997| to infer from the sampling
error on the Sobol indices estimation. Furthermore, contrary to [Oakley and O’Hagan, 2004]
and [Marrel et al., 2009] we deal with the real Sobol indices. As a consequence, we introduce
non-asymptotics certified Sobol indices estimations, i.e. with confidence intervals which take
into account the surrogate model error and the numerical integration error.

Finally, we extend the suggested approach to multi-fidelity co-kriging models. A defini-
tion of Sobol indices for multi-fidelity computer codes is presented in [Jacques et al., 20006].
However, their approach is based on tabulated biases between fine and coarse codes and does
not allow for inferring from the meta-model uncertainty. The co-kriging model fixes these
weaknesses since it allows for considering general forms for the biases and for inferring from
the surrogate model error.

This chapter is organized as follows. First we introduce in Section 6.2 the so-called Sobol
indices. Then, we present in Section 6.3 the kriging-based sensitivity analysis suggested by
[Oakley and O'Hagan, 2004]. Our approach is developed in Section 6.4. In particular, we give
an important result allowing for effectively sampling with respect to the kriging predictive
distribution in Subsection 6.4.3. Finally, we extend in Section 6.5 the presented approaches to
multi-fidelity co-kriging models. We highlight that we present in Subsection 6.5.2 a method
to sampling with respect to the multi-fidelity predictive distribution in a Universal co-kriging
case. Indeed, as presented in Section 4.3, in this case the predictive distribution is not anymore
Gaussian. We propose a method to tackle this issue.

6.2 Global sensitivity analysis: the method of Sobol

We present in this section the method of Sobol for global sensitivity analysis [Sobol, 1993].
It is inspired by the book of [Saltelli et al., 2000] giving an overview of classical sensitivity
analysis methods.

6.2.1 Sobol variance-based sensitivity analysis

Let us consider the input parameter space @ C R? such that (Q, B(Q)) is a measurable product
space of the form:

(Q’B(Q)) = (Ql X X QdaB(Ql X X Qd))7
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where B is the Borelian o-algebra and @); C R is a nonempty open set, for 1,...,d. Further-
more, we consider a probability measure p on (@, B(Q)), values in R and of the form

p(x) = (e") @ @ pa(a?).

The Hoeffding-Sobol decomposition (see [Hoeffding, 1948]) states that any function z(z) €
LZ(Q) can be decomposed into summands of increasing dimensionality in such way:

z(x) = 29 + Zzl(xz) + Z zij(xi,a:j) + -+ 21727._@(1‘1, Lty = Z zu(z"),  (6.1)
i=1

1<i<j<k ueP

where P is the collection of all subsets of {1,...,d} and z" is a group of variables such that

1% = (2%);cy. Furthermore, the decomposition is unique if we consider the following property

for every summand u = (u, ..., uk)1<k<d, 1 < u; < d:

/Zu(as“) dpty, (%) =0, Vi=1,... k. (6.2)

A consequence of this property is that all the summands are orthogonal, i.e. for every z,(z")
and z,(z") such that u,v € P and u # v, we have:

/ cu(2)20(2") da(z) = 0. (6.3)

Another consequence is that zg represents the mean of z(z) with respect to the measure u(x)

20 = /z(m) du(x). (6.4)

Sobol [Sobol, 1993] showed that the decomposition (6.1) can be evaluated via multi-dimensional
integrals through the following procedure

zi(2h) = /z(x) dp—_;i(x) — 2o,

@) = [ @) @) - 26 - 56) -~

ale?) = [ o) dum(o) = 3 ),

vCu

where p1_y(27%) = ®%1 pi(z%) and u € P. From this scheme, we can naturally develop the
igu

variance-based sensitivity indices of Sobol. First, let us consider the total variance D of z(x):

D= /22(:10) du(x) — 22. (6.5)

From the orthogonal property (6.3) and by squaring and integrating the decomposition (6.1),
we obtain

d
D = Z D; + Z Dij+---+Dia. . a= Z D,, (6.6)
i=1 1<i<j<d =)
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with

D, = / 22(2%) dpu_u(2). (6.7)

Finally, the Sobol sensitivity indices are given by

Sy = o (6.8)

where u € P. We note that we have the following useful equality which allows for easily
interpreting S,, as the part of variance of z(x) due to 2" and not explained by z¥ with v C w.

1= Z S + Z Sz] +---+ Sl,2,...,d = Z Su (69)

1<i<j<d ueP

In particular, S; is called the first-order sensitivity index for variable 2. It measures the
main effect of 2' on the output, i.e. the part of variance of z(z) explained by the factor
z'. Furthermore, S;; for i # j is the second-order sensitivity index. It measures the part of
variance of z(x) due to ' and 27 and not explained by the individual effects of z* and 7.

6.2.2 Monte-Carlo Based estimations of Sobol indices

Now, let us suppose that the inputs are a random vector X = (X!,..., X%) defined on
the probability space (x,Fx,Px) and with measure u. Using the previous formalism, the
summands of the Hoeffding-Sobol decomposition (6.1) can be interpreted as conditional ex-
pectations on the probability space (Qx, Fx,Px):
20 = Ex[:(X)],
z(XY) = Ex [2(X)|X'] — 20,
zij (X', X7) = Ex [2(X)| X% X7] — zi(X") — 2j(X7) — 20,

2(XY) = Ex (X)X =) z(X"),

with u € P. Furthermore, the total variance in (6.5) becomes:
D = varx (2(X)) (6.10)
and the partial variances presented in (6.7) can be written with the following form

D, = vary (Ex [2(X)|X"]) = > varx (Ex [2(X)[X"]). (6.11)

vCu

Now, let us denote by Q" = Q;, x --- x Qidl, di < d, {i1,...,iq,} € P and Q% =
Qjy X -+ X Qj,, such that {ji,... ja,} = {1,....d} \ {i1,...,ia}. Analogously, we use

the notation X% = (X7) b X2 = (Xj)je{j17._,,jd2}7 pd = <®ie{i1,.,,,idl}ui> and

pud2 = (® €U miay} Mj) where p% and p% are probability measures on (Q%,B(Q%)) and

ie{ilv'“vidl
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(Q%,B(Q%)). Consequently, we have the equalities p = p @ p®, Q = Q4 x Q% and
X = (XN, X%) with d = dy + da.
We are interested in evaluating the closed sensitivity index:
X VX" vary (Ex [2(X)| X))

v vary (2(X)) (6.12)

A first method would be to use d-dimensional numerical integrations to approximate the
numerator and denominator of (6.12) as presented in [Oakley and O’Hagan, 2004] and [Marrel
et al., 2009]. Nonetheless, since d is large in general, this method leads to numerical issues
and is computationally expensive. A second approach is to take advantage of the probabilistic
interpretation of the Sobol indices and to use a Monte-Carlo procedure to evaluate the different
integrals as presented in the forthcoming developments (see [Sobol, 1993]).

Proposition 6.1. Let us consider the random vectors (X, X) with X = (X%, X%) and
X = (X%, X%2) where X% is a random vector on Q% with the measure p®, X% and
X% qare random vectors on Q% with the measure pu® and X% 1 X% We have the

following equality:

vary (IEX {z(X)|Xd1D = covy (z(X),z(X)) . (6.13)

Proof. First, the equality z(X) £ z(X) implies that

covy (z(X),z(X)) — Ex [Z(X)Z(X)} “Ey [Z(X)} Ey [z (X)]
— Ex [z(X)z(f()} ~Ex [z (X))2.

Then, the following equalities hold since X% 1 X% and z(X) £ 2(X)
Ey [z(X)z(X)} — Ex EX [z XdIH

— Ex IEX [z |Xd1}JEX[( )|Xd1H

= EX EX [Z ’Xdl} :|
Finally, denoting that Ex [ (X)] = Ex [Ex [z (X)|X%]] we obtain the equalities

covy (Z(X),z(f()) — Ex {EX {z(X)\Xdl]T—EX [EX [z(X)\Xdlﬂz

= vary (EX |:Z(X)|Xd1}) .
]
SX™in Equation (6.12) can thus be estimated by considering two random vectors (X;)i=1,...m
and (Xi)z-zlw’m, m € N* lying in (Qx, Fx,Px) such that X; £ X and X; £x (é stands for

an equality in distribution) and by using an estimator for the covariance covx <z(X ), 2(X ))

and the variance varx (z(X)).
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Following this principle, Sobol [Sobol, 1993] suggests the following estimator for the ratio
in Equation (6.12):

Vn{dl _ % Z:il Z<XZ)Z(XZ) - % 2111 Z(Xz)% 2211 Z(XZ) .
Vin Lsm (X2 — (520, 2(X)°

This estimation is improved by [Janon et al., 2012] who propose the following estimator:

(6.14)

v < \2
Vrffdl B % Yo 2(Xa)z(X;) — (ﬁ Yo 2(X) + Z(Xz))
o m Lim1 2(Xi)? = <ﬁ >imy 2(Xi) + Z(Xi)>2

In particular they demonstrate that the asymptotic variance in (6.15) is better than the one
in (6.14) and they show that the estimator (6.15) is asymptotically efficient for the first order
indices. The main weakness of the estimators (6.14) and (6.15) is that they are sometimes
not accurate for small values of VXdl/V in (6.12). To tackle this issue, [Sobol et al., 2007]
propose the following estimator

(6.15)

VX LS 2(X)a(X) — 23T 2(X0)2(X5) (6.16)
= —, ,
Ym it 2(Xi)? = (3 X 2(X))
where X = (Xdl,Xd2), xXh £ Xdi Xdi | Xdgnd ():(i)izl,_“,m is such that )?Z £x for all

1=1,...,m.

6.3 Kriging-based sensitivity analysis: a first approach

We present in this section the approach suggested by [Oakley and O’Hagan, 2004] and [Marrel
et al., 2009] to perform global sensitivity analysis using kriging surrogate models. Then, we
present an alternative method that allows us to avoid complex numerical integrations. Never-
theless, we will see that the two proposed approaches do not provide a correct representation
of the Sobol indices. We handle this problem in the next section.

6.3.1 Kriging-based sensitivity indices

Let us introduce the kriging-based global sensitivity analysis presented in [Oakley and O’Hagan,
2004] and [Marrel et al., 2009]. The idea is to consider that our prior knowledge about the
code z(x) can be modeled by a Gaussian process Z(z) with mean f/(z)3 and covariance kernel
o?r(z, ). Then, we surrogate the code z(z) by a Gaussian process Z,(x) having the predictive
distribution of Z(z) conditioning by the known value z" of z(z) at points in the experimental

design set D = {z!,...,2"}, 2! € Q:

Zy(z) ~ GP (my(2), s2(z, 7)) , (6.17)

2

where the mean m,,(x) and the variance s,

in Subsection 1.2.1:

(x, &) corresponds to the kriging equations presented

mn(z) = ()8 + ' (z)R™ (z" - FB) :
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s2(z, ) =0% | 1— (f’(x) r’(x)) (](_:)‘ ];/)_ <£Eg) ;

where B = (F’ R*IF)f1 F'R~!'2" and o? is estimated with a restricted maximum likelihood
method, i.e. 62 = (z" — BF)R (2" — BF)/(n — p) where p is the size of 3.

The idea suggested in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009] is to substitute
z(z) with Z,(z) in Equation (6.12):

U vy (B [Z00X))
S{i( v, vary (Z,(X)) . (6.18)

Therefore, if we denote by (Qz,Fz,Pz) the probability space where the Gaussian process
Z(x) lies, then the estimator Sffdl lies in (7, Fz,Pz) (it is hence random). We note that
Z,(X) is defined on the product probability space (Q2x x Qz,0(Fx X Fz),Px @ Pz).

Nevertheless, the distribution of Sfdl is intractable and [Oakley and O’Hagan, 2004]
and [Marrel et al., 2009] focus on its mean and variance. More precisely, in order to derive
analytically the Sobol index estimates they consider the following quantity:

Ez [varx (Ex [Z,(X)|X%])]
Ez [varx (Z,(X))] ’

SXN = (6.19)

where Ey [.] stands for the expectation in the probability space (Qz, Fz,Pz). Furthermore,

the uncertainty on SA})L( ! is evaluated with the following quantity:

vary (vary (Ex [Z,(X)|X%]))
Ez [varx (Z,(X)))?

o (SXM) =

(6.20)

As shown in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009], the equations (6.19) and
(6.20) can be derived analytically through multi-dimensional integrals for the cases d = 1,
1 =1,...,d, i.e. for the first-order indices. Furthermore, with some particular formulations
of f(z), u(z) and r(z, Z), these multi-dimensional integrals can be written as product of one-
dimensional ones.

Discussions: The method suggested in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009]
provides an interesting tool to perform sensitivity analysis of complex models. Nevertheless,
in our opinion it suffers from the following flaws:

1. For general choice of f(z), u(x) and r(z,Z), the numerical evaluations of (6.19) and
(6.20) can be very complex since it requires multi-dimensional integrals.

2. The method is derived for first-order sensitivity indices and cannot easily be extended
to higher order indices.

3. The method allows for inferring from the surrogate model uncertainty about the sensi-
tivity indices but does not allow for taking into account the numerical errors related to
the multi-dimensional integral estimations.
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4. The considered index expectation and deviation do not correspond to the real Sobol
index ones since we obviously have

Ez [VarX (EX [ (X )\Xdl])] LE, lvarx (EX [ (X )]Xdl])]

Ez [varx (Z,(X))] vary (Zn(X))

and

vary (VarX (IEX [Zn(X)|Xd1])) £ var varx (EX [ (X )|Xd1})
Ey [varx (Zn (X)) “ varx (Zn(X)) ’

In the next subsection, we deal with the points 1, 2 and 3 by suggesting a Monte-Carlo sampling
method to evaluate (6.19) and (6.20) instead of quadrature integrations. Nonetheless, we do
not tackle the issue of point 4. To handle it, we suggest another method in Section 6.4.

6.3.2 Monte-Carlo estimations for the first approach

We present in this subsection, another approach to deal with the evaluation of S?fdl in
(6.19). TIts principle simply consists in using the estimation methods suggested in Subsec-
tion 6.2.2 instead of quadrature integrations to compute Ey [varX (]EX [Zn(X) Xdl])] and
Ey [varx (Z,(X))]. We present the method with the estimator presented in [Sobol, 1993].
The extension to those presented in [Janon et al., 2011] and [Sobol et al., 2007] is straightfor-

ward. Let us substitute in the estimator presented in Equation (6.14) the code z(z) by the
Gaussian process Z,(x):

d ~
Vn)z(,nl o % 2211 Zn, (X ) ( ) % Z:il Zn(Xi)% Zzn;l Zn(XZ)
= 2
Vinn it Zn(Xi)? = (7 it1 Zn(X0))
where the samples (X;)i=1.. m and (~z)l 1,...m are those introduced in Subsection 6.2.2.

Therefore, Vn)fnl /Vinn is an estlmator of VX '/V (6.12) when we replace the true function

z(z) by its approximation Z,(z) built from n observations z" of z(z) and when we estimate

: (6.21)

the variances and the expectation involved in (6.12) by a Monte-Carlo method with m par-
ticles. To be clear in the remainder of this chapter, we name as Monte-Carlo error the one
related to the Monte-Carlo estimation and we name as meta-model error the one related to
the substitution of z(x) by a surrogate model. Furthermore, m will always denote the number
of Monte-Carlo particles and n the number of observations used to build the surrogate model.

The strength of this formulation is that it gives closed form formulas for the evaluation
of (6.19) for any choice of f(x), u(x) and r(z,Z) contrary to [Oakley and O’Hagan, 2004]
and [Marrel et al., 2009]. Furthermore, this method can directly be used for any order of
Sobol indices which contrasts with the one presented in Subsection (6.3.1). Finally, unlike
quadrature integrations, Monte-Carlo integrations allow for taking into account the numerical
errors related to the integral evaluations. In particular, as presented in [Archer et al., 1997],
the bootstrap method can be directly used to obtain confidence intervals on the Sobol indices.

We give in the following equation the Monte-Carlo estimation of S’ff “ (6.19) corresponding
to the kriging-based sensitivity indices presented in [Oakley and O’Hagan, 2004| and [Marrel
et al., 2009].
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By [V ]

Sxi
= Ve i _ (6.22)
— 7}L znl 2(XL7XL)+m’Vl(Xl)mn( 2 Zz] 1 n(leXj)+ (X )mn(X ) '
= IS 2 (%X b (X (X ) A ST 206X (o) (%)

We note that the expression of Sf,fn is different from the one obtained by estimating
VXdl/Vm in (6.14) by replacing z(z) by the predictive mean m,(x ) In SX” we take into

mn

account the kriging predictive covariance through the terms s2(X;, X;) and s2(X;, X;).

6.4 Kriging-based sensitivity analysis: a second approach

We have highlighted at the end of Subsection 6.3.1 that one of the main flaws of the method
presented by [Oakley and O'Hagan, 2004] is that it does not care about the real Sobol in-
dices. We present in Subsection 6.4.1 another approach which deals with this issue. Then, in
Subsection 6.4.3 we present an efficient method to compute it.

6.4.1 Kriging-based Sobol index estimation

First of all, in the previous section we have considered the variance of the main effects VX “and
the total variance V' separately in Equation (6.12). That is why the ratio of the expectations
is considered as a sensitivity index in Equation (6.19). In fact, in a Sobol index framework,
we are interested in the ratio between VX and V. T herefore, we suggest to deal directly
with the following estimator (see Equation (6.21)):

vXa

SXU — “min 6.23
m,n men ( )

which corresponds to the ratio VXdl/V after substituting the code z(z) by the Gaussian
process Zy(z) and estimating the terms vary (Ex [Z,(X)|X%]) and varx (Z,(X)) with a
Monte-Carlo procedure as presented in [Sobol, 1993]. We note that we can naturally adapt
the presented estimator with the ones suggested by [Sobol et al., 2007] and [Janon et al.,
2012]. Nevertheless, we cannot obtain closed form expressions for the mean or the variance of
this estimator. We thus have to numerically estimate them. We present in Algorithm 4 the
suggested method to compute the distribution of 37)5(2

The output (Sm(; i l> k=1...Ny of Algorithm 4 is a sample of size Nz x B of Sn)idnl defined

I=1,.. B

on (Ux xQz,0(Fx x Fz),Px xPz) (ie. Sfrfflnl takes both into account the uncertainty of the
meta-model and the one of the Monte-Carlo integrations). Then, we can deduce the following
estimate «S_’éill for SX™:

Xd 1 Xd
7 »iVZ
l ., B
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Algorithm 4 Evaluation of the distribution of 87),5762.

1: Build Z,(z) from the n observations z" of z(z) at points in D (see Equation (6.17)).

2: Generate two samples (z;)i=1,...m and (Z;)i=1,...m of the random vectors (X;)i=1, . m and
(X'Z)Z:lm with respect to the probability measure p (see Proposition 6.1).

3: Set Nz the number of samples for Z,(x) and B the number of bootstrap samples for
evaluating the uncertainty related to Monte-Carlo integrations.

4: for k=1,...,Nz do
5: Sample a realization z,(x) of Z,(x) with x = {(x;)i=1,...m, (Ti)i=1,..m}
6: Compute Sn)gcgk | thanks to Equation (6.21) from z,(x).
7 for 1=2,... ,E do
8: Sample with replacements two samples u and u from {(z;)i=1,. m} and
9: Compute S’frf(gkl from z,(x?) with x? = {u, a}.
10: end for o
11: end for

return <Sn)§2kl>k: Ny

1=1,..B

. . dp .
Furthermore, we can estimate the variance of S;x ' with:
;

A Xd 1 /‘Xd —Xd 2

&2 (Spn) = N,B 1 Z ( kil — Smnl> . (6.25)
k=1,..Ny

—1.B

~

We note that the computational limitation of the algorithm is the sampling of the Gaus-
sian process Zp(x) on x = {(zi)i=1,...m, (Zi)i=1,..m}. For that reason, we use a bootstrap
procedure to evaluate the uncertainty of the Monte-Carlo integrations instead of sampling
different realizations of the random vectors (X;);—1,.. ., and (Xi)i:L__.7m. Furthermore, the
same bootstrap samples are used for the N realizations of Z, ().

Nevertheless, the number of Monte-Carlo particles m is very large in general - it is often
around m = 5000d - and it thus can be an issue to compute realizations of Z,(z) on x. We
present in the Subsection 6.4.3 an efficient method to deal with this point for any choice of

wu(x), f(x) and r(x,z) and any index order.

6.4.2 Determining the minimal number of Monte-Carlo particles m

We are interested here in quantifying the uncertainty of the considered estimator an(:;l (6.23).
This estimator integrates two sources of uncertainty, the first one is related to the meta-model
approximation and the second one is related to the Monte-Carlo integration. Therefore, we

. dq
can decompose the variance of S as follows:
k)

var (Sn)i;inl) = vary (IEX [Sﬁ’dyi }Zn(x)D + vary (EZ [Sn)ginl |(Xi,)~(i)i:1,,,,,m})

dy

where vary (E X [Sﬁn

SX and varx (IEZ [SXdl !(Xi, Xl)zzlmD is the one of the Monte-Carlo integration. Fur-

m,n m,n

‘Zn(:c)D is the contribution of the meta-model on the variability of
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thermore, we have the following equalities:

vary (EX Xdl‘Z :|> = EX vary 87)5:2‘(Xi7)2i)i:1,...,m>}
var x (EZ Sn)i(ir;‘(XiaXi)i:l,...,m}) = EZ varx SﬁjﬂZn(aﬁ))]

Therefore, from the sample (S‘éil i l)k:l ..N, We can estimate the part of variance of the

=1,...,

estimator Snjg ., related to the meta-modelling as follows:

Nz

"2 Xdl 1 A X d1 TXdl 2
A "B Z N Z (Sm,n,k,z - Sm,n,z) (6.26)
=2 k:l
where Sm nl = (Ziizl Sﬁj"ii,l) /Nz. Furthermore, we can evaluate the part of variance of

Sf,f 7; related to the Monte-Carlo integrations as follows:

=2

9 P 1 & 1
UMC(Sm,n)_Ni 51

(SX‘“ _ gxa )2 (6.27)

m,n,k,i m,n,k

INgE

I
—_

[ =1

where Smn,C = (Z sx )/B

m,n,k,i
Therefore, we have three different cases:

1. 6% (S,Sif;) > A%/[C(SX . ): the estimation error of Sn)g,,; is essentially due to the meta-

model error.

2. 6 (SX n) < JMC(SX '1): the estimation error of SX°!

. 18 essentially due to the Monte-

Carlo €ITor.

3. 62 (Sn)g:inl) ~ 6]2\40(37)52): the metamodel and the Monte-Carlo errors have the same

. . . . d;
contribution on the estimation error of S/ .
I’

Considering that the number of observations n is fixed, the minimal number of Monte-Carlo
particles m is the one such that &%n (Sn{fij) ~ &%C(Sn)szll). We call it “minimal” since it is
the one from which the Monte-Carlo error no longer dominates. Therefore, it should be the
minimum number of required particles in practical applications. In practice, to determine
it, we start with a small value of m and we increase it while the inequality UZ (SXdl) >

O’MC(SX ) is true.

6.4.3 Sampling with respect to the kriging predictive distribution on large
data sets

We saw in the previous subsection in Algorithm 4 that in a kriging framework, we can assess
the distribution of the Sobol index estimators from realizations of the conditional Gaussian
process Zn(z) at points in x. Nevertheless, the size of the corresponding random vector
could be important since it equals twice the number of Monte-Carlo particles m. Therefore,
computing such realizations could lead numerical issues such as ill-conditioned matrix or huge
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computational cost. Especially if we use a Cholesky decomposition since its complexity is
O((2m)?) and it often leads ill-conditioned matrix since the predictive variance of Z,(z) is
close to zero around the experimental design points.

Let us introduce the following unconditioned Gaussian process:

Z(z) ~ GP(0,0%r(z, %)). (6.28)

We have the following proposition [Chilés and Delfiner, 1999]:
Proposition 6.2 (Sampling Z,(z) by kriging conditioning). Let us consider the follow-

ing Gausstan process:

Zn(z) = mp(2) — 10 (2) + Z(2), (6.29)

where my,(x) is the predictive mean of Z,(x) (6.17),

i (z) = £'(2)8 + ' (z)R ! (Z(D) - Fﬁ) (6.30)

and B = (F’R_lF)_1 F'R-1Z(D). Then, we have

where Zy(x) has the distribution of the Gaussian process Z(x) of mean f'(x)B3 and co-
variance kernel or(x, %) conditioned by z" at points in D (6.17). We note that we are
i a Universal kriging case, i.e. we infer from the parameter 3. In a simple kriging case,

the proposition remains true by setting B = 0.

Proof. Let us introduce the following random process:

Zn(x) = my(x) — my(x) + Z(z), (6.31)
where:
Z(z) ~ GP(0,0°r(x, &)).

The random process Z,(z) is Gaussian since it is a linear transformation of the Gaussian
process Z(x). As a Gaussian process is entirely determined by its mean and covariance kernel,

we just have to prove the following equalities:
E[Z,(x)] = mn(z) (6.32)

and:

cov(Zn (), Zn(%)) = 82 (x, F). (6.33)

First, from the equalities E[Z(z)] = 0 and:
Efifin(x)] = f(@)E[3] +r'(2)R™ (E[Z(D)] - FE[3]) =0,
the equality (6.32) holds. Then, we have to verify the equality (6.33).

cov(Zn(2), Zn(Z)) = cov(ing (@), mn(E)) — 2c0v(Z(), mn(%)) + cov(Z(z), Z(%)).
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First, we have:

cov(Z(x), Z(%)) = o*r(x — 7). (6.34)
Second, we have the following equality:
cov(iiin(2),n (%)) = (F'(x) —1'(2)R™'F)cov(B, B)(£(&) — FR™'r(7))
+ 1'(@)R ™ eov(Z(D), Z(D)R™'r () + 2f(x)cov(B, Z(D))R ™ 'x(z)
or'(z)R " Lcov(Z(D), B)F'R (%),

where:
cov(8,Z(D)) = (FR'F) FR 'cov(Z(D), Z(D))
- Z(FRF)F
and:
cov(B,B8) = (FR'F)'FR 'cov(Z(D),Z(D))R'F (FR'F) "
— Z(FR'F).

Therefore, the following equality stands:

cov (i (x), mn (%)) /0> = (F(x) —r'(z)R™'F) (FR'F)

+ r(2)R7'r(Z) — 2r'(z)R7'F (FFR'F)
+ 2f'(z) (FR'F) ' FR 'r(3).

(f(&) — F'R™'r(2))
PR ()

&

Third, the following equality stands:

cov(Z(z),mn(3))/0? = t'(z)R7'F(FR'F) £(3)
+ () (R_lr(i) ~RF (FRF) F’R—lr(g})) .

-1

Finally, we obtain:

cov(Zn(z), Zn(%)))0? = r(z—z) —1r'(z)R'r()

+ (f(z) - r'(2)R7'F) (FR'F)

(f(z) - FR 'r(2)).
Therefore, we have the following equality:

cov(Zn(x), Zn(E)) = 52 (z, %) (6.35)
and Z,(z) has the same distribution as Z,(x). O

The strength of Proposition 6.2 is that it allows for sampling with respect to the distribu-
tion of Z,(z) by sampling an unconditioned Gaussian process Z(z). The first consequence is
that the conditioning of the covariance matrix is better since the variance of Z(z) is not close
to zero around points in D. The second important consequence is that it allows for using effi-
cient algorithms to compute realizations of Z(x). For example, if 7(z, Z) is a stationary kernel,
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one can use the Bochner’s Theorem 1.3 and the Fourier representation of Z(z) to compute
realizations of Z(x) as presented in Subsection 1.4.2 and in [Stein, 1999]. Furthermore, for
tensorised covariance kernel (see Introduction of Section 1.4), an even more efficient method is
to use the Mercer’s Theorem 1.4.4 and the Nystrém procedure to approximate the Karhunen-
Loeve decomposition of Z (x) as presented in Subsection 1.4.4. One of the main advantage of
the Karhunen-Loeve decomposition of Z(x) is that it allows for sequentially adding new points
to x without re-estimating the decomposition. Therefore, we can easily obtain the values of
a given realization z,(x) of Z,(x) at new points not in x. This interesting property allows us
to efficiently estimate the number m of Monte-Carlo particles such that the metamodel error
and the Monte-Carlo estimation one are equivalent (see Subsection 6.4.2).

6.5 Multi-fidelity co-kriging based sensitivity analysis

Now let us suppose that we have s levels of code (z¢(x));=1,....s from the less accurate one z1(x)
to the most accurate one zg(x) and that we want to perform a Global sensitivity analysis for
zs(x). To surrogate zs(x), we consider the multi-fidelity co-kriging model presented in Chapter
4 Subsection 4.2.1 after integrating the posterior distribution of the regression parameters
B = (B¢)t=1,.. s and adjustment parameters p = (ps—1)¢=2,... s, i.. the following predictive
distribution:

(Z4(x)|Z2) = 28, 62, (6.36)

where 0 = (07);—1._s (see Subsection 4.2.1). We note that we consider constant adjustment
coefficients (p;—1)¢=2,..s. The extension to the case pi—1(z) = g’(nc),[‘ipti1 is straightforward
(see Chapter 4). As presented in Chapter 4 Section 4.3, the predictive distribution (6.36) is
not anymore Gaussian. Nevertheless, we can have closed form expressions for its mean p;, (z)

and covariance kf (z,Z):
S

(il () = ps—1ps ' () + ps, (2) (6.37)
and:
kS (2,8) = af,sflkf;}l (z,%) + ks, (z,2), (6.38)

t
po=0,Hy =F1, 65 =pjy+ [(HR;H)™']

where for £ =1,...,s, (ptB1> = (H,R; 'H,) 'H/R; 'z;, H; = [z_1(Dy) Fy, Fr = f/(Dy),

(L1
ns (x) = £{(@) B, + ri(@)R; H(2¢ — FiBy — pr-12-1(D")) (6.39)

and

1
o . , , 0 H h(Z)
ks, (x,2) = 0,52 ri(x, T) — (ht(ac) rt(:v)) (Ht Rt) (rt(:ﬁ)> , (6.40)

with hi(z) = [uy;, !, (z)  f(z)] and bi(z) = f{(2).
The other notations are presented in Chapter 4 Subsection 4.2.1. We note that the variance

parameter o2 is estimated with a restricted maximum likelihood method. Thus, its estimation

is given by 62 = (z; — H,3,)R; ' (z; — HiB3,)/(n; — p; — 1) where p; is the size of 3.
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We present in Subsection 6.5.1 the extension in a multi-fidelity framework of the Monte-
Carlo estimations for the method of [Oakley and O’Hagan, 2004|. Then, we present in Subsec-
tion 6.5.2 the extension of our approach to perform co-kriging-based multi-fidelity sensitivity
analysis.

6.5.1 Extension of the method of Oakley and O’Hagan for multi-fidelity
co-kriging

Let us denote by SX the estimation of VX" /V (6.12) when we substitute zs(z) by Z, s(x) ~

[Zs (2)|Z®) =209 & ] and when we use the Sobol procedure to perform Monte-Carlo integra-
tions (see [Sobol, 1993| and Subsection 6.2.2). Then, the estimator suggested in [Oakley and
O’Hagan, 2004] and [Marrel et al., 2009] becomes in a multi-fidelity framework:

i _ mXiakn, (Xi, X) + g, (X, (X )—mz S ns(Xz,X)Jruis(Xi)uis(Xj)
72 Doy K (X Xo) + s, (Xa)ps, (Xa) — oz o0 ki, (X, X5) + ws,, (X)es,, (X5)
U
= o
where
1 m s s—1 _ s s—1 s—1 ~
U = EZ ( H62p] k5t(Xi7Xi)+ ﬁj ( Aj ,uét(Xz),Ulét(Xz)
i=1 \t=1 \ j=t t,i=1 \J=t j=t
1 m s s—1 ) _ s s—1 s—1 ~
3D 62 | ks (X %)+ 3 [ TLas | | TLas | mae(Xooms, (%) )
i,j=1 \t=1 \j=t ti=1 \J=t j=t

»)
I
3=
]z
~
w»
w»
L
Q»
D
5
&
>
>
+
w»
w
—|
H
b>
w
—|
K>>
=
&
>
=
N@z
s

J=t ti=1 \J=t j=
1 m S s—1 S s—1 s—1
—— > 167, | ks (X0 X5) + o5 | { T 67 | ma (Xidus (X)
i,j=1 \t=1 \j=t ti=1 \J=t j=t

and with the conventions po = 0, [[Z} ps = 1, /1,51( ) = ph, () and ks, (z,2) =k}, (2, Z).
We note that Sn{f o is the analogous of Sﬁg n bresented in Subsection 6.3.2. Furthermore,

the developed expression of 53,5 < allows for identifying the contribution of each code level ¢
to the sensitivity index and the one of the covariance between the bias and the code at level t.
We note that the covariance here is with respect to the distribution of the input parameters
X. Nevertheless, as pointed out in previous sections, this estimator is based on a ratio of

expectations and thus does not correspond to the true Sobol indices.

6.5.2 Extension of the second approach for multi-fidelity co-kriging models

We present here the extension of the approach presented in Section 6.4 to the multi-fidelity
co-kriging model. Therefore, we aim to sample with respect to the distribution of

SXU — i i1 Zns(Xi) Zns (Xi) = 5 1) Zno(X) 35 ZZ 1 Znsl ’), (6.41)

LS Zno(X0)? = (5 S Zno(X0)?
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which is the analog of Sf,g,dﬁ (6.23) in an univariate case when we substitute z(x) with Z,, ¢(x) ~
[Zy(x)|Z®) = 2(®) ¢?]. In fact, we can directly use Algorithm 4 by sampling realizations of
Zn,s(x) instead of Z,(x). Moreover, the procedure presented in Subsection 6.4.2 to determine
the optimal number of Monte-Carlo particles m is straightforward.

However, the distribution of Z,, ¢(x) is not Gaussian and thus the methods presented in
Subsection 6.4.3 cannot be used directly. In order to handle this problem, we consider the
conditional distribution [Z(2)|Z®) = 2, a2, p, 8], with 62 = (67)i=1..s; B = (Bi=2....s
and p = (pi—1)i=2,..,s which is Gaussian (see Chapter 4 Section 4.2). Note that we infer
from B3;. Furthermore, the Bayesian estimation of (p;—1,3;) gives us for all t = 2,...,s (see
Subsection 4.2.3):

<ptﬁ‘1> ~N (HR;'H,) 'H|R; 'z, 07 (HR; 'H,) ). (6.42)
t

Finally, thanks to the recursive formulation given in Chapter 4, we know that the following
Caussian process has the distribution [Z,(z)|Z® = 2z, 62, p, B]:

s—1 s—1 [s—1
Zn,s,p,8(T) = H pi | Zna(z) + Z H Pi | Otpi-1,8,(®) + 0t p,_y,8,(@), (6.43)
j=1 t=2 \ j=t
where (see equations (6.39) and (6.40)):
Zna(x) ~ GP (s, (), ks, (2, 7)) (6.44)
and for t =2,...,s:
5t,pt71,5t ("E) ~ GP (/‘t,pzﬂﬁt (:E)a kt,pzq,ﬁt (:Ea i‘)) ’ (6'45)

with gy, 8, (2) = ri(x)R; (2 — FiBy — pro12-1(DY) , ((Orpro1 8, (2))i=2,....5) Zn1 (2)) in-
dependent and

kt,Ptflﬂt(xﬂ ‘%) = Ut2 (rt(‘%i) - r;(m)Rt_lrt(‘%)) .
As a consequence, we can deduce the following algorithm to compute realizations of Z,, s(x) ~
(Z,(2)|Z) = 2(9), 52].

Algorithm 5 provides an efficient tool to sample with respect to the distribution [Z,(z)|Z(*) =
z(), o?]. Then, from each sample we can estimate the Sobol indices with a Monte-Carlo proce-
dure. Naturally, we can easily use a bootstrap procedure to take into account the uncertainty
related to the Monte-Carlo scheme. Furthermore, we see in Algorithm 5 that once a sample
of [Zs(2)|Z) = 209, a?] is available, a sample for each distribution [Z;(z)|Z®) = 2z, &2,
t =1,...,5 — 1 is also available. Therefore, we can directly in the analyze quantify the
difference between the Sobol indices at a level ¢ and the ones at another level .

6.6 Numerical illustrations on an academic example

We illustrate here the kriging-based sensitivity analysis suggested in Section 6.4. We remind
that the aim of this approach is to perform a sensitivity index taking into account both
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Algorithm 5 Sampling with respect to the non-Gaussian distribution [Z,(z)|Z(®) = 2z, ¢?].

1: Generate a sample 2, 1(z) with respect to (6.44) thanks to the method presented in Propo-

sition 6.2 in the universal kriging case.

2: Set 2 5() = 2n,1(2).
3: for t=2,...,s do

B
Pi-1
Bi
to the method presented in Proposition 6.2 in the simple kriging case.

6 Set 25(2) = p_170,s(@) + 67 e g ().
7: end for

*
4: Generate a sample (pt_*l> with respect to (6.42).

5: Conditionally to ) generate a sample J; . o, ﬁ*( x) with respect to (6.45) thanks
t—

return z, ¢(x).

the uncertainty related to the surrogate modeling and the one related to the Monte-Carlo
integrations. Let us consider the Ishigami function:

2(x1, T2, x3) = sin(xy) + Tsin(xz)? + 0.1z5sin(z1 ),

where p; is uniform on [—m, 7], i = 1,2,3. We are interested in the first order sensitivity
indices given by
(51, S2,S3) = (0.314,0.442,0).

This section is organized as follows. First, in Subsection 6.6.1 we compare the Sobol index
estimator Sn)gil (6.22) proposed by |Oakley and O’Hagan, 2004|, the suggested one given by
the mean of Sn)fbii (6.23) and the usual one which consists in substituting z(x) by the predictive
mean my,(x) (6.17) in (6.15). Then, in sections 6.6.3, 6.6.4 and 6.6.5 we deal with the approach
presented in Section 6.4. In particular, we show that this approach is relevant to perform an
uncertainty quantification taking into account both the uncertainty of the meta-modeling and
the one of the Monte-Carlo integrations. We note that the construction of the surrogate
models used in sections 6.6.3, 6.6.4 and 6.6.5 is presented in Section 6.6.2.

6.6.1 Comparison between the different methods

The aim of this subsection is to perform a numerical comparison between Sf,fdﬁ (6.22), the

empirical mean of S;),ijlnl (6.23) given in Equation (6.24) and the following estimator (see (6.15)):

I (X () — (s Sy ma(X0) + ma(%0))
Sin = s . (6.46)

" iy M (X)? - (ﬁ o mp(X;) +mn(Xi))2

We note that the mean 8557} of Sn)gn
B =150:

SXdl _ 1 Xdl
m,n NZB E mnkl’
17 7NZ

B

is evaluated thanks to Algorithm 4, with Nz = 500 and

l



194 CHAPTER 6. MULTI-FIDELITY SENSITIVITY ANALYSIS

and for Sn)ﬁ; and Sn)fnl we use the Monte-Carlo estimator (6.15) suggested in [Janon et al.,
2012] (it is the one used in (6.46). Then, for the comparison we randomly build 100 LHS
experimental design sets with n = 40, 50, 60, 70, 90, 120, 150, 200 observations. From these
experimental design sets, we build kriging models with a constant trend 8 and a tensorised
5/2-Matérn kernel. Furthermore, the characteristic length scales (6;);=1,23 are estimated with

a maximum likelihood procedure for each design set. The Nash-Sutcliffe model efficiencies,
>per(ma(z) — 2(2))* 1
Eff, =1 — &2 — , zZ(x) = — z(x),
" > ger(mn(z) — 2(2))? #T 2

zeT

of the different kriging models are evaluated on a test set T' composed of 10,000 points uni-

formly spread on the input parameter space [—,7|>. The values of Eff,, are presented in

Figure 6.1.
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Figure 6.1: Convergence of the model efficiency when the number n of observations increases.
100 LHS experimental design sets are randomly sampled for each number of observations n.
The closer Eff is to 1, the more accurate is the model m,,(z).

Figure 6.2 illustrates the Sobol index estimates obtained with the three methods. We see
Sxo

. 5 xd
X! performs as well as the usual estimator SX '

in Figure 6.2 that the suggested estimator
(6.46). In fact, as we will see in the next subsections, the strength of the suggested estimator
is to provide more relevant uncertainty quantification. Finally, we see in Figure 6.2¢ that the
estimator S’frfdﬁ (6.22) suggested in [Oakley and O’Hagan, 2004] seems to underestimate the

true value of the Sobol index.

6.6.2 Model building and Monte-Carlo based estimator

For the numerical illustrations in sections 6.6.3, 6.6.4 and 6.6.5, we use different kriging models
built from different experimental design sets of size n = 30, ...,200. They are LHS optimized
with respect to the centered Lo-discrepancy criterion. The design sets are built thanks to
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Figure 6.2: Comparison between three Sobol index estimators. The comparison are performed
from 100 random LHS experimental design sets for each number of observations n. Figure (a)
corresponds to the suggested Sobol estimator (see Section 6.4), Figure (b) corresponds to the
usual estimator (see Equation (6.46)) and Figure (c) corresponds to the estimator suggested
in [Oakley and O’Hagan, 2004]. The horizontal lines represent the true values of the Sobol
indices (solid gray line: Si; solid black line: Sz and dashed black line: S3)

R CRAN package “DiceDesign” Furthermore, for all kriging models, we consider a constant
trend ( and a tensorised 5/2-Matérn kernel (see Section 1.4).

The characteristic length scales (6;);=1,23 are estimated for each experimental design set
by maximizing the marginal likelihood. Furthermore, the variance parameter o and the
trend parameter § are estimated with a maximum likelihood method for each experimental
design set too. Then for each n, the Nash-Sutcliffe model efficiency is evaluated on a test set
composed of 10,000 points uniformly spread on the input parameter space [—7,7]3. Figure
6.3 illustrates the estimated values of Eff, with respect to the number of observations n.

Then, for estimating the Sobol indices, we use the Monte-Carlo based estimator given by
(6.15). It has the strength to be asymptotically efficient for the first order indices (see |[Janon

et al., 2012]).
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Figure 6.3: Convergence of the model efficiency when the number n of observations increases.
For each number of observations n, the experimental design set is a LHS optimized with
respect to the centered Lo-discrepancy. The closer Eff is to 1, the more accurate is the model

My ().

6.6.3 Sensitivity index estimates when n increases

Let us consider a fixed number of Monte-Carlo particles m = 10,000. The aim of this sub-
section is to quantify the part of the index estimator uncertainty related to the Monte-Carlo
integrations and the one related to the surrogate modeling.

To perform such analysis we use the procedure presented in Algorithm 4 with B = 300
bootstrap samples and Nz = 500 realizations of Z,(z) (6.17). It results for each i = 1,2,3
a sample (%mz), k=1,...,Nz, I = 1,...,B, with respect to the distribution of the

estimator obtained by substituting z(z) with Z,(z) in (6.15).

Then, we estimate the 0.05 and 0.95 quantiles of (S'inn,H), k =1,...,Nyz for each
1 = 1,2,3 with a bootstrap procedure. The resulting quantiles represent the uncertainty
related to the surrogate modeling. Furthermore, we estimate the 2.50% and 97.50% quantiles
of (Af;%n7k7l>, k=1,...,Nz, 1l =1,...,B with a bootstrap procedure too. These quantiles
represent the total uncertainty of the index estimator. Figure 6.4 illustrates the result of this
procedure for different numbers of observations n. We see in Figure 6.4 that for small values
of n, the error related to the surrogate modeling dominates. Then, when n increases, this
error decreases and it is the one related to the Monte-Carlo integrations which is the largest.
This emphasizes that it is worth to adapt the number of Monte-Carlo particles m to the
number of observations n. Finally, we highlight that the equilibrium between the two types of
uncertainty does not occur for the same n for the three indices. Indeed, it is around n = 100
for S7, n = 150 for Sy and around n = 75 for S3. We observe that the smaller the index is,
the larger its Monte-Carlo estimation error is.
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Figure 6.4: Sensitivity index estimates when n increases. The solid black lines represent
the means of the sensitivity index estimators. The dotted red lines represent the 2.50% and
97.50% confidence intervals taking into account only the uncertainty related to the surrogate
modeling. The dashed blue lines represent the 2.50% and 97.50% confidence intervals taking
into account both the uncertainty related to the surrogate modeling and the one related to
the Monte-Carlo integrations. The horizontal gray lines represent the true values of S; (a),

Sy (b) and Ss (c).

6.6.4 Optimal Monte-Carlo resource when n increases

We saw in the previous subsection that the equilibrium between the error related to the Monte-
Carlo integrations and the one related to the surrogate modeling depends on the considered
sensitivity index. The purpose of this subsection is to determine this equilibrium for each
index. To perform such analysis, we use the method presented in Subsection 6.4.2.

Let us consider a sample (S” nkl), m =30,...,200, k =1,..., Nz, Il =1,...,B, 1 =

m

1,2, 3, generated with Algorithm 4 and using the Monte-Carlo estimator presented in (6.15).
For each pair (m,n) we can evaluate the variance 6%71 (Sﬁn,n), i = 1,2,3, related to the
meta-modeling with Equation (6.26) and the variance 63,4 (Sk,,), @ = 1,2,3, related to the

Monte-Carlo integrations with Equation (6.27). We state that the equilibrium between the
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two types of uncertainty corresponds to the case

&%n (S}n,n) = 6%40 (SZmn) : (6'47)

We present in Figure 6.5 the pairs (m,n) such that the equality (6.47) is satisfied. We
see that the smaller is the sensitivity index, the more important is the number of particles m
required to have the equilibrium. Furthermore, we note that the curve increases extremely
quickly for the index S5 = 0. Therefore, it could be unrealistic to consider the equilibrium for
this case, especially when n is important (i.e. n > 100).

< %
?
o
[T
2]
o
T
Q
I wn
N
=)
S
Q
2
Sobol index S;
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? -~ Sobol index S3
3

T T T
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Figure 6.5: Relation between the number of observations n and the number of Monte-Carlo
particles m such that the error related to the meta-modeling and the one related to the
Monte-Carlo scheme have the same order of magnitude.

The presented analysis is of practical interest since it provides the appropriate number
of Monte-Carlo particles m for the sensitivity index estimation in function of the number of
observations n. Furthermore, in the framework of computer experiments, the observations are
often time-consuming and n cannot be large. Therefore, we look for a number of particles m

such that the variance &%n (Si ) related to the meta-modeling is smaller than the one of the

m,n)
Monte-Carlo integration 63, (Sﬁ,m) However, we saw that it could be unfeasible for some

values of sensitivity index. In this case a compromise must necessarily be done.

6.6.5 Coverage rate of the suggested Sobol index estimator

Algorithm 4 in Subsection 6.4.1 allows for obtaining a sample (S” nkl)’ k=1,...,Ng,

m

[ =1,...,B of the estimator of S; for each ¢ = 1,2,3. The purpose of this subsection is

to verify the relevance of the confidence intervals provided by (Sﬁnnkl> To perform such
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analysis, we generate 200 random LHS (D, j)=1,... 200 for different numbers of observations n.
For each D, ;, we build a kriging model with the procedure presented in Subsection 6.6.2 and

we generate a sample (Smnkl) k=1,...,Ny, l=1,...,B, with B = 200 and Ny = 300.
The efficiency of the different kriging models with respect to the number of observation n is
presented in Figure 6.6. From this sample, we evaluate the 2.50% and 97.50% quantiles with
a bootstrap procedure and we check if the true value of S; is covered by these two quantiles.
At the end of the procedure, the ratio between the number of confidence intervals covering
the true value of S; and the total number of confidence intervals (i.e. 200) has to be close to

95% for each n.
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Figure 6.6: Convergence of the model efficiency when the number n of observations increases.
For each number of observations n, 200 LHS experimental design sets are randomly sampled.
The closer Eff is to 1, the more accurate is the model m,,(z).

Furthermore, to perform the analysis we use different values of m according to the pro-
cedure presented in Subsection 6.4.2 for S; and S (i.e. such that the variance related to
the meta-modeling has the same order of magnitude than the one related to the Monte-Carlo
integrations). For S3, the number of Monte-Carlo particles m increases too quickly with re-
spect to n to use the method presented in Subsection 6.4.2. Therefore we fix m to the values
presented in Table 6.1. We note that the values of m for S3 are larger than the ones for 5;
and Ss.
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60 70 80 90 100 110
1,000 | 3,000 | 5,000 | 10,000 | 40,000 | 60,000

3

Table 6.1: Numbers of Monte-Carlo particles m for different values of the number of observa-
tions n for the estimation of Ss.

The empirical 95%-confidence intervals as a function of the number of observations n are

presented in Figure 6.7. We study three cases:

1. The confidence intervals are built from (Sﬁnnkl), k=1,...,Nz, 1l =1,...,B. There-
fore, it takes into account both the uncertainty related to the meta-model and the one
related to the Monte-Carlo estimations.

2. The confidence intervals are built from <5‘fnnk1>, k=1,...,Nz. In this case, we do
not use the bootstrap procedure to evaluate the uncertainty due to the Monte-Carlo
procedure. Therefore, we only take into account the one due to the meta-model.

3. The confidence intervals are built from the estimator S,i{d; (6.46) with a bootstrap
procedure. Here, we estimate the Sobol indices with the kriging mean and we do not
infer from the uncertainty of the meta-model. Therefore, we only take into account the
uncertainty related to the Monte-Carlo estimations.

We see in Figure 6.7 that the confidence intervals provided by the approach presented in
Section 6.4 are well evaluated for indices S7 and S3. Furthermore, they are underestimated
when we take into account only the meta-model or the Monte-Carlo uncertainty. This high-
lights the relevance of the suggested approach to perform uncertainty quantification on the
Sobol index estimates. However, the coverage rate is underestimated for index Sy. This is
even worst if we only consider the meta-model error. This may be due to a poor learning in
the direction xo for the the surrogate model. This emphasizes that the suggested method is
valid only if the kriging variance well represents the modeling error.

6.7 Application of multi-fidelity sensitivity analysis

In this section, we illustrate the multi-fidelity co-kriging based sensitivity analysis presented
in Section 6.5 on the example about a spherical tank under internal pressure presented in
Chapter 5 Section 5.3.

The scheme of the considered tank is presented in Figure 5.6. We are interested in the von
Mises stress at the point labeled 2 in Figure 5.6.

The physical system depends on 8 parameters and the von Mises stress zo(x) at point
x = (P, Rint, Tsheit, Teaps Eshell, Ecaps Oy shells Oy,cap) is provided by an Aster finite elements
code.

The cheaper version z1(z) of z3(z) is obtained by the 1D simplification of the tank corre-
sponding to a perfect spherical tank, i.e. without the cap:

(z) = 3 (Rint + Tenenr)® p
2 (Rmt + Tshell)3 - Rf '

nt
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Figure 6.7: Empirical 95% confidence intervals with respect to the number of observations n

for Sy (a), S2 (b) and S3 (c). The empirical coverage rates are evaluated from 200 kriging
models build from different random LHS design sets.

6.7.1 Multi-fidelity model building

We present here the construction of the model presented in Section 6.5. For the implementa-
tion, we use the R CRAN package “MuFiCokriging” presented in Chapter 4 Section 4.6.

First, we build two LHS design sets ]31 and Ds of size n1 x 8 and ny x 8 optimized with
respect to the centered Ls-discrepancy criterion, with ny = 100 and ny = 20. We note that
the input parameter z is normalized so that the measure u(x) of the input parameters is
uniform on [0, 1]%. In order to respect the nested property for the experimental design sets,
we remove from ]~)1 the no points that are the closest to those of Dy and we set that D1 is
the concatenation of Dy and f)l. This procedure ensures that Dy C Dy without operates any
transformation on Dy (see Algorithm 1 in Chapter 4 Section 4.5).

Second, we run the expensive code zo(x) on points in Do and the coarse code zi(x) on
points in Dy. The CPU time of the expensive code is around 1 minute. Furthermore, in order
to have a fair illustration, we consider that the CPU time of the coarse code z1(z) is not
negligible and we restrict its runs to n; = 100.

Third, we use tensorised 5/2-Matérn covariance kernels for o371 (z, %) and o3ry(x, 7) with
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characteristic length scales (9{)1-:1’.”,8 and (%)i:l,...,s- Furthermore, we set that the regression
functions are constants, i.e. fi(z) =1 and f5(z) = 1.
The estimates of the characteristic length scales are given in Table 6.2.

6, || 1.71 | 1.38 | 1.97 | 1.98 | 1.98 | 1.99 | 1.95 | 1.41
6, || 1.83 1 1.89| 0.5 | 1.93]|1.93|0.64| 1.89 | 0.79

Table 6.2: Maximum likelihood estimates of the characteristic length scales of the tensorised
5/2-Matérn covariance kernels use in the multi-fidelity co-kriging model. 6; represents the
estimates for the code level 1 and @5 represents the ones for the bias between the code levels
1 and 2.

The estimates of the characteristic length scales given in Table 6.3 show that the model
is very smooth. Then, Table gives the posterior mean of the parameters (p1,35) and 3; and
the restricted maximum likelihood estimates of o2 and o3.

B, 148.67 62 || 495.63
(p1,85) || (0.92, 57.61) || 62 || 551.07

Table 6.3: Posterior means of the trend parameters 3; and 3, and the adjustment parameter
p1 and maximum likelihood estimates of the variance parameters o} and 3.

The parameter estimates presented in Table 6.3 show that there is an important bias
between the cheap code and the expensive code since ,@2 ~ 58 whereas the trend of the cheap
code is ,@1 ~ 150. In particular, it is greater than the standard deviation of the bias which is
62 =~ 23. Then, the posterior mean of the adjustment parameter p; = 0.92 does not indicate a
perfect correlation between the two levels of code. Indeed, the estimated correlation between
z9(x) and z1(x) is 0.77. Furthermore their estimated variance equals 1514 for z5(z) and 810
for z1(x). In fact, we remind that the adjustment parameter:

_ cov(Za(x), Z1(x))
var(Zi(x))

p1 =

represents both the correlation degree and the scale factor between the codes z(z) and z;1(x).

Finally, we can estimate the accuracy of the suggested model with a Leave-One-Out cross
validation procedure. From the Leave-One-Out errors, we estimate the Nash-Sutcliffe model
efficiency Eff ;oo = 83%. This means that the suggested multi-fidelity co-kriging model
explains 83% of the variability of the model. We note that the closer Eff ;oo is to 1, the
more accurate is the model. Therefore, we have an excellent model despite the small number
of observations na = 20 used for the expensive code z2(x). In order to strengthen this result,
we test the multi-fidelity model on an external test set of 7,000 points and the estimated
efficiency is 86% which is even better.
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6.7.2 Multi-fidelity sensitivity analysis

Now let us perform a multi-fidelity sensitivity analysis using the approach presented in Sub-
section 6.5.2. We are interested in the first-order sensitivity indices.

The principle of the method is to sample from the distribution (6.41) using Algorithm 5.
We note that we use the Monte-Carlo estimator (6.15) instead of (6.14) since it is asymptoti-
cally efficient for the first-order indices. We repeat Algorithm 5 to have Nz = 200 realizations
of the predictive distribution [Zy(z)|Z® = 2z 2] and for each realization we generate
B = 150 bootstrap samples. Furthermore, we choose m = 20,000 for the Monte-Carlo sam-
pling size so that the error related to the Monte-Carlo integrations is negligible compared to
the one related to the surrogate modeling (see subsections 6.4.2 and 6.6.4).

Sensitivity analysis for the cheap code.

First, let us present the result of the sensitivity analysis for the cheap code. As emphasized
in Subsection 6.5.2, once samples with respect to the distribution [Z(x)|Z?) = z(?), o] are
available, samples for [Z;(2)|Z™) = z(1), o] are also available. Therefore, from them we can
perform a sensitivity analysis as presented in Section 6.4. Moreover, from the explicit formula
of z1(x) we expect that only the three variables P, R, and Tspey have an impact on the
output.

The result of the sensitivity analysis for the cheap code zj(x) is given in Figure 6.8. We
see in Figure 6.8 that only the three parameters P, R;,; and Tspe are influent as expected.
Furthermore, the internal pressure is the most important parameter whereas the geometrical
parameter R;,: and Ty have equivalent impact on the output. The sum of the first-order
sensitivity index means informs us that 97% of the variability of the output is explained by
the first-order indices. The interactions between the parameters are thus negligible. Further,
we see that the confidence intervals are tight and that the uncertainty on the Sobol index
estimator is essentially related to the Monte-Carlo integrations. This means that the model’s

error on the cheap code is very low.

Sensitivity analysis for the expensive code.
Second, we perform a sensitivity analysis for the expensive code z3(x) using the predictive
distribution [Zy(x)|Z® = 2, ?]. The result of the analysis is presented in Figure 6.9.

We see in Figure 6.9 that the result of the sensitivity analysis for the expensive code is
substantially different than the one for the cheap code. First, the importance measure of the
parameters P, R;,: and Ty decreases although the internal pressure P remains the most
influent parameter. Second, the material parameters Egper, Ecap, 0y sheit and 0y cqp have still a
negligible influence except for the rigidity of the cap Fc,,. Then, the most noticeable difference
is for the thickness of the cap T..,;, which is now the second most important parameter. Finally,
the sum of the index estimator means equals 96.7%. This means that the first order indices
still explain the main part of the model variability.

The hierarchy between the parameters can be easily interpreted. Indeed, the coarse code
corresponds to the approximation of the tank without the cap. Therefore, it is natural that
the parameters related to the cap have no influence. On the contrary, for the expensive



204 CHAPTER 6. MULTI-FIDELITY SENSITIVITY ANALYSIS

N~
© |— 95% meta—model confidence intervals
© - 95% MC+meta—model confidence intervals
o | ¢ Sensitivity index mean
0 |
o =
<
o

%)
™ |
o

*. =*
N
o
— |
o
S * + = * *
T T T T T T T I
Rint Tshell Teap Eshell Oy Ecap Oy P
X

Figure 6.8: Kriging based sensitivity analysis for the cheap code. The diamonds represent
the means of the first-order sensitivity index estimators, the solid red lines represent the 95%
confidence intervals taking into account only the meta-modeling uncertainty and the dashed
blue lines represent the 95% confidence intervals taking into account the uncertainty related
to both the Monte-Carlo integrations and the meta-modeling. The means and the confidence
intervals are obtained with Algorithm 4.

code, we are interested in the von Mises stress at the junction between the cap and the shell.
Consequently, the parameters related to the cap have now an influence. However, it was
difficult to have a prior on the impact of the cap onto the response variability. We deduce
from this analysis that it is in fact very important.

For the material parameters, their influences are negligible because we are in the regime
of elastic deformations. It is thus physically coherent. In fact, they would be more influent in
a plastic deformation regime which can occur for more important internal pressure P.

The other important differences between the two sensitivity analysis is the magnitude of
the confidence intervals. Indeed, we see in Figure 6.9 that contrary to the cheap code, the
confidence intervals for the sensitivity index estimators of the expensive code are very large.
Therefore, despite the good multi-fidelity approximation of the expensive code, we have an
important uncertainty on it. This is natural since we only use 20 runs of z3(z) to learn it.
Finally, we note that the most important uncertainty is for T¢,p. This is explained by the
fact that this parameter is not considered by the cheap code. Therefore, z;(z) brings no
information about T¢,, contrary to Rins, Tspen and P.
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Figure 6.9: Co-kriging based sensitivity analysis for the expensive code. The diamonds rep-
resent the means of the first order sensitivity index estimators, the solid red lines represent
the 95% confidence intervals taking into account only the meta-modeling uncertainty and the
dashed blue lines represent the 95% confidence intervals taking into account the uncertainty
related to both the Monte-Carlo integrations and the meta-modeling.

6.8 Conclusion

This chapter deals with the sensitivity analysis of complex computer codes using Gaussian
process regression. The purpose of the chapter is to build Sobol index estimators taking into
account both the uncertainty related to the surrogate modeling and the one related to the
numerical evaluations of the variances and covariances involved in the Sobol index definition.
The aim is to provide relevant confidence intervals for the index estimator.

To provide such estimators, we suggest a method which mixes a Gaussian process regres-
sion model with Monte-Carlo based integrations. From it, we can quantify the impact of both
the Gaussian process regression and the Monte-Carlo procedure on the index estimator vari-
ability. In particular, we present a procedure to equilibrate these two sources of uncertainty.
Furthermore, we suggest numerical methods to avoid ill-conditioned problems and to easily
handle the suggested index estimator.

Then, we propose an extension of the suggested approach for multi-fidelity computer codes.
They are of practical interest since they allow for dealing with the problem of very expensive
simulations. To deal with these codes, we use the multi-fidelity co-kriging model presented in
Chapter 4.

Finally, we illustrate the suggested strategy on an academic example for the univariate case
and with a real application on a tank under internal pressure for the multi-fidelity analysis.
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Introduction to Monte-Carlo simulators

Context

For many realistic cases, we do not have direct access to the function f(z) to be approximated
but only to noisy versions of it (as presented in Chapter 1 Subsection 1.2.1 Paragraph “The
noisy case”, we use the notation f(z) to design a function for which we have noisy observations).
For example, if the objective function is the result of an experiment, the available responses can
be tainted by measurement noise. In that case, we can reduce the noise of the observations by
repeating the experiments at the same locations. Another example is the Monte-Carlo based
simulators - also called stochastic simulators - which use Monte-Carlo or Monte-Carlo Markov
Chain methods to solve a system of partial differential equations through its probabilistic
interpretation. For such simulators, the noise level can be tuned by the number of Monte-
Carlo particles used in the procedure.

As presented in Subsection 1.2.1, Gaussian process regression can easily be adapted to
the case of noisy observations. Recently, many authors were interested in kriging models in a
stochastic simulator framework (|Kleijnen and Van Beers, 2005], [Picheny, 2009], [Boukouvalas
and Cornford, 2009], [Marrel et al., 2010], [Yin et al., 2011] and [Kleijnen, 2012]). In particular,
[Kleijnen and Van Beers, 2005|, [Boukouvalas and Cornford, 2009] and [Yin et al., 2011] deal
with heteroscedastic noises, [Marrel et al., 2010] deal with noisy-kriging-based global sensitivity
analysis and [Picheny, 2009] addresses the problem of optimal resource allocation. The aim of
this chapter is to introduce the framework of stochastic simulators. We note that the presented
result can also be used in the framework of experiments with repetitions.

As an introductory example, let us consider fg, (x) the output of a stochastic simulator
obtained with s; Monte-Carlo particles ((Yi(z));—; - Furthermore, let us consider f;,(z),
s > s1 the output of the same simulator obtained from the particles ((Y;(z)),—; ,, and
((Yi(®))i=g, 11,5, In that example, fs,(z) is more accurate and time-consuming than f;, ().
Now, let us suppose that we want to surrogate f,,(x) using both the information of the
observations of fs,(z) and fs, (x) at points in Dy and Dy such that Dy C D;. Considering the
models presented in Part II, we are tempted to use a multi-fidelity co-kriging approach. We
show in this chapter that it is equivalent to use a noisy-kriging approach with heterogeneous

observation noise variances.
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A multi-fidelity approach being equivalent to a noisy-kriging one and the number of Monte-
Carlo particles monitoring the observation noise level, for a fixed number of M-C particles a
question of interest is to find the best allocation of the Monte-Carlo particles into the points
of the experimental design set. This point was originally addressed in the linear regression
theory. A pioneering work is the one of [Elfving, 1952] which deals with the optimal resource
allocation with respect to criteria such as G-optimality or D-optimality (see [Fedorov, 1972]).
The G-optimality aims to minimize the maximum of the predictive variance, i.e. max;cq s2(x)
in a kriging framework (see Subsection 1.2.1) and the D-optimality addresses the problem of
minimizing the determinant of the information matrix F'F. We note that the D-optimality
cannot be used in a kriging framework since it works only for linear models. Then, many
authors deal with the problem of optimal design in a linear regression framework by suggesting
other optimality criteria and algorithms of construction ([Kiefer and Wolfowitz, 1959], [Kiefer,
1961], [Fedorov, 1972], [Wu, 1978], [Cook and Nachtrheim, 1980], [Fedorov and Hackl, 1997]
and [Molchanov and Zuyev, 2002]). Furthermore, [Picheny, 2009] presents an exploratory
work on optimal design for noisy kriging.

We give in Chapter 7 a proposition providing an optimal resource allocation under cer-
tain restricted conditions for heteroscedastic noisy kriging models and with respect to the
I-optimality. The I-optimality corresponds to the minimization of the averaged predictive
variance, i.e. [ s*(z)du(z) in a kriging framework (see Subsection 1.2.1). Furthermore, we
numerically observe in Appendix D that this allocation remains efficient in more general cases

although it is not anymore optimal.

Stochastic simulators and noisy-kriging models

Let us consider that we want to approximate the function
f:Qc R -R
z = f(z),

from noisy observations at points D = (z;)i=1,..» sampled from the design measure p and
with s; replications at each point ;, i = 1,...,n. We hence have ("1 ; s;) data of the form:

zij = f(@i) + o=(zi)ei
and we consider that (e; ) i=1,.n are independently distributed from a Gaussian distribution

.7:17'“’81'
with mean zero and variance one. Such a function can represent the output of a stochastic

simulator or the observation of an experiment. We present below the framework of stochastic
simulators and the use of co-kriging models to surrogate such computer codes.

Stochastic simulators

In a framework of stochastic simulators or experiments with repetitions, we consider outputs
of the form:

1 &
Zg; = s— Z zi’j. (648)
i =1
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We note that for stochastic simulators s; represents the number of Monte-Carlo particles and
for experiments s; represents the number of repetitions. Therefore, denoting the vector of the
observed values by z" = (z,)i=1,..n = (Zj’zl %i.j/8i)i=1,..n, the variance of an observation
Zg,; 1S
o2 (x:)

Si ’

var (zs,) =

The accuracy of an observation is hence inversely proportional to the number of Monte-Carlo
particles s;. Furthermore, we define the budget T' as follows:

T = i Si. (6.49)
=1

Let us consider the outputs of two code levels 2,1 and zg2, i = 1,...,n, such that sil < 312

s}: 1§ :Z%]

and
S

1
52 “,
1 =1

We note that the particles (2;;);; 5! of z, 1 are also used to compute z, 2. Since s} < s?, the
code output z, 2 is more accurate and time- consurnlng than the code output Z1- Furthermore
since the two outputs have common Monte-Carlo particles, they are correlated:

1 2
1 1
(¢{0)% (ZS%7ZSZZ> = COoVv ? E Zi,j,sfz E Zi,j
i oj=1 ioj=1
= —qgcov E Zijs g Zij + E Zij
l

Jj=s; EE|
U?(xz’)
5 -

53

We note that in practice the output z,2(x;) corresponds to the one of z.(z;) for which we
continue the Monte-Carlo convergence.l This is relevant for practical apf)lications since for
obtaining accurate simulations it is less time consuming to start from former simulations
partially converged.

Stochastic simulators and co-kriging models

Now let us consider that we want to surrogate f(x) from the observations z"} = (21 )i=1,..n,
S i EARAS)

2 > 81 for all ¢ = 1,...,n9. We denote

by D = {x1,.. xm} the experimental design set corresponding to the observatlons z”1 and

and z73 = (z, 2)i 1,...no such that ny > ng and s;

D = {z,..., an} the one corresponding to the observations z';. We note that we have the
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nested property D = DU{Zp,11, ..., Zn, }. Furthermore, we suppose that f(z) is a realization
of a Gaussian process Z(z) with mean f'(x)3 and covariance kernel o%r(x, Z). Therefore, the

observations ( z o) =i are realizations of the following random variables:
i= 17 5T

s

Zj(xz)—Z(acl Zae Ti)ei, J=1,2,i=1,...,n;,
K sz k=1
where ex; ~ N (0,1) and (eg;),_ sl ATC independent. To predict f(z) at a new loca-

tion, we consider the following joint dlstrlbutlon where Z" 5 ' j = 1,2 is the random vector

(Zg@),_,

geenylly

Z(x) f'(x) 1 r(x) /()
% )~N|[|fD)|B.*|r(z) K U ,
A /(D) r(z) U K

with K = [r(2, ) + (02(2) /81 0wi—a, Jisj=1,...m1s K = [1(@1,25) + (02(2:)/52) 0= )i j=1,.. 1m0
U = [r(i, 2)+(02(2:) /57 )0ws=a;)i=1,..n1 , K (& ) [r(2, 2:)]i=1,..n, and K'(z) = [r(2, 2:)}i=1,....n,-

=1,...,n9
T'Ll Zn2 —

j
The surrogate model for f(z) is given by the conditional distribution [Z(z)|Z]! =z,
zgf, 02]. Let us consider the proposition below.

Proposition 6.3. Let us denote by Z7} ™™ = (ZS1(aci)) ) and z7 "

g i na+1,...,
() oy o Then Z@IZE = #02% = 2207 ad [Z@|ZET =
27" 2"} = 272,07 has the same distribution.

Proposition 6.3 is of interest since it shows that using a co-kriging model with the
observations z’;ll and zg? is equivalent to use a kriging model considering only the

most accurate observations at points in D.

Conclusion

We show in this introduction that in a framework of Monte-Carlo simulators - or experiments
with repetitions - using a multi-fidelity co-kriging model is equivalent to use a noisy-kriging
model with heteroscedastic observation noise variance. We note that the equivalence stands
if we consider that fine code outputs correspond to coarse ones after continuing the Monte-
Carlo convergence or repeating the experiments. Since we will always consider this case in the
remainder of Part III, we will only use noisy-kriging models throughout it.



Chapter

Asymptotic analysis of the learning curve

7.1 Introduction

The purpose of this chapter is to describe the asymptotic behavior of the generalization error
- defined as the averaged mean squared error - when the number of observations is large. As
seen in the previous introduction, in many cases the noise variance is inversely proportional to
the number of repetitions, and thus proportional to the number of observations, see Example
7.1 below. We consider this framework in this chapter.

Many authors were interested in obtaining learning curves describing the generalization
error as a function of the training set size [Rasmussen and Williams, 2006]. The problem has
been addressed in the statistical and numerical analysis areas. For an overview, the reader
is referred to |Ritter, 2000b] for a numerical analysis point of view and to [Rasmussen and
Williams, 2006] for a statistical one. In particular, in the numerical analysis literature, the
authors are interested in numerical differentiation of functions from noisy data (see [Ritter,
2000a| and [Bozzini and Rossini, 2003]). They have found very interesting results for kernels
satisfying the Sacks-Ylvisaker conditions of order r [Sacks and Ylvisaker, 1981] but only valid
for 1-D or 2-D functions.

In the statistical literature [Sollich and Halees, 2002] give accurate approximations to the
learning curve and [Opper and Vivarelli, 1999] and [Williams and Vivarelli, 2000] give upper
and lower bounds on it. Their approximations give the asymptotic value of the learning
curve (for a very large number of observations). They are based on the Woodbury-Sherman-
Morrison matrix inversion lemma [Harville, 1997] which holds in finite-dimensional cases which
correspond to degenerate covariance kernels in our context. Nonetheless, classical kernels used
in Gaussian process regression are non-degenerate and we hence are in an infinite-dimensional
case and the Woodbury-Sherman-Morrison formula cannot be used directly. Another proof
for degenerate kernels can be found in [Picheny, 2009].

The main result of this chapter is a theorem giving the value of the Gaussian process re-
gression mean squared error for a large training set size when the observation noise variance is
proportional to the number of observations. This value is given as a function of the eigenvalues
and eigenfunctions of the covariance kernel. From this theorem, we can deduce an approx-

213



214 CHAPTER 7. ASYMPTOTIC ANALYSIS OF THE LEARNING CURVE

imation of the learning curve for non-degenerate and degenerate kernels (which generalizes
results in [Opper and Vivarelli, 1999, [Sollich and Halees, 2002| and [Picheny, 2009]) and for
any dimension (which generalizes results in [Ritter, 2000b], [Ritter, 2000a] and [Bozzini and
Rossini, 2003|). Finally, from this approximation we can deduce the rate of convergence of
the Best Linear Unbiased Predictor (BLUP) in a Gaussian process regression framework.

The rate of convergence of the BLUP is of practical interest since it provides a powerful
tool for decision support. Indeed, from an initial experimental design set, it can predict
the additional computational budget necessary to reach a given desired accuracy when the
observation noise variance is homogeneous in space.

The chapter is organized as follows. First we present the considered Gaussian process
regression model with noisy observations. Second, we present the main result of the chapter
which is the theorem giving the mean squared error of the considered model for a large training
size. Third, we study the rate of convergence of the generalization error when the noise variance
decreases. Academic examples are presented to compare the theoretical convergences given
by the theorem and numerically observed convergences. Finally, an industrial application to
the safety assessment of a nuclear system containing fissile materials is considered. This real
case emphasizes the effectiveness of the theoretical rate of convergence of the BLUP since it
predicts a very good approximation of the budget needed to reach a prescribed precision.

7.2 (Gaussian process regression

Let us suppose that we want to approximate an objective function = € Q C R? — f(z) € R,
() a nonempty open set, from noisy observations of it at points (z;)i=1,.., with z; € Q. The
points of the experimental design set (z;)i=1,..n are supposed to be sampled independently
from the probability measure p over Q). p is called the design measure. We hence have n obser-
vations of the form z; = f(x;) + \/7(x;)e; and we consider that (¢;)j=1,.. » are independently
sampled from the Gaussian distribution with mean zero and variance n:

e ~N(0,n). (7.1)

Note that the number of observations and the observation noise variance are both controlled
by n. It means that if we increase the number n of observations, we automatically increase the
uncertainty on the observations. An observation noise variance proportional to n is natural
in the framework of experiments with repetitions or stochastic simulators. Indeed, for a fixed
number of experiments (or simulations), the user can decide to perform them in few points
with many repetitions (in that case the noise variance will be low) or to perform them in
many points with few repetitions (in that case the noise variance will be large). We introduce
in Example 7.1 the framework of repeated experiments. We note that the framework is the
same as the one of stochastic simulators and it is the one considered in sections 7.5 and 7.6.

Example 7.1 (Gaussian process regression with repeated experiments). Let us consider that
we want to approximate the function z € Q € R? — f(x) € R from noisy observations at
points (z;)i=1,..» sampled from the design measure p and with s replications at each point.
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We hence have ns data of the form z; ; = f(x;) + 0-(x;)e; ; and we consider that (g;;)i=1,..n
Jj=1,...,s
are independently distributed from a Gaussian distribution with mean zero and variance one.

Then, denoting the vector of observed values by z" = (2')i=1,.n = (Zj-:l 2ij/8)i=1,...n, the
variance of an observation 2! is 02(x;)/s. Thus, if we consider a fixed budget T' = ns, we have
02(x;)/s = n7(x;) with 7(x;) = 02(x;)/T and the observation noise variance is proportional
to n.

In Section 7.3 we give the value of the generalization error for n large. Then, in Section
7.4 we are interested in its convergence for n large and when 7(x) tends to zero. Finally,
in Section 7.5 we consider the non-uniform allocation (s;)i—1,. , with T = > | s; and we
address the question of optimal allocation of the repetitions (s;)i=1,..» as a function of the

noise level o2(x;) so as to minimize the generalization error.

The main idea of the Gaussian process regression is to suppose that the objective function
f(z) is a realization of a Gaussian process Z(x) with a known mean and a known covariance
kernel k(x,Z) (note that we are here in a simple kriging case). The mean can be considered
equal to zero without loss of generality. Then, denoting by z" = [f(x;) + \/7(xi)ei]1<i<n the
vector of length n containing the noisy observations, we choose as predictor the Best Linear
Unbiased Predictor (BLUP) given by the equation (see Subsection 1.5.1 Equation (1.60)):

f(2) =K (@)K +nA)"'2", A= diag[(T(2i))i=1,..n]; (7.2)

-----

where k(z) = [k(x,z;)]i1<i<n is the n-vector containing the covariances between Z(x) and
Z(z;), 1<i<mnandK = [k(z;,2j)]1<ij<n is the n X n-matrix containing the covariances
between Z(z;) and Z(x;), 1 <4,j <n. When 7(z) is independent of , we have A = 71
with I the n x n identity matrix. The BLUP minimizes the Mean Squared Error (MSE) which
equals (see Subsection 1.5.1 Equation (1.61)):

o?(z) = k(z,z) — K'(2)(K + nA) " 'k(x). (7.3)

Indeed, if we consider a Linear Unbiased Predictor (LUP) of the form a’(x)z", its MSE is
given by:

E[(Z(z) — &' (2)Z™)?] = k(z,z) — 2a/(2)k(z) + a'(z)(K + nA)a(z), (7.4)

where Z" = [Z(z;) + /T(7i)ei]i<i<n and E stands for the expectation with respect to the
distribution of the Gaussian process Z(z). The value of a(z) minimizing (7.4) is a,(v) =
k'(2)(K+nA)~!. Therefore, the BLUP given by al,; ()z" is equal to (7.2) and by substitut-
ing a(x) with agpt(z) in Equation (7.4) we obtain the MSE of the BLUP given by Equation

(7.3).

The main result of this chapter is the proof of a theorem that gives the asymptotic value
of o%(z) when n — 400 and A = 7I. Thanks to this theorem, we can deduce the asymp-
totic value of the Integrating Mean Squared Error (IMSE) - also called learning curve or
generalization error - when n — 400. The IMSE is defined by:

IMSE — /R 0*(w) du(a), (7.5)
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where p is the design measure of the input space parameters. The asymptotic value of the
IMSE that we obtain can be viewed as a generalization of previous results (see [Rasmussen
and Williams, 2006], [Ritter, 2000b|, [Ritter, 2000a], [Bozzini and Rossini, 2003], [Opper and
Vivarelli, 1999], [Sollich and Halees, 2002 and [Picheny, 2009]). It can be used to determine
the budget required to reach a prescribed accuracy (see Section 7.5). Note that the proof
of the theorem holds for a constant observation noise variance 7. Nevertheless, to provide
optimal resource allocation, it can be important to take into account the heterogeneity of
the observation noise variance. We give in Proposition 7.3 under certain restricted conditions
(i.e., when K is diagonal) the optimal allocation taking into account the noise heterogeneity.
Moreover, we numerically observe in Appendix D that this allocation remains efficient in more
general cases although it is not anymore optimal (it remains more efficient than the uniform
one).

7.3 Convergence of the learning curve for Gaussian process re-
gression

This section deals with the convergence of the BLUP when the number of observations is large
and the reduced noise variance does not depend on z, i.e. 7(x) = 7 and A = 7I. The speed
of convergence of the BLUP is evaluated through the generalization error - i.e. the IMSE -
defined in (7.5). The main theorem of this chapter follows:

Theorem 7.1. Let us consider Z(x) a Gaussian process with zero mean and covariance
kernel k(z,%) € C°(Q x Q) and (xi)i=1,..n an experimental design set of n independent
random points sampled with the probability measure p on Q@ C RY. We assume that
Sup,cpd k(x,x) < oo. According to Mercer’s theorem (see Subsection 1.4.4 Theorem
1.4), we have the following representation of k(x,Z):

k@, &) =) Apdp(a)dp(2),

p=>0

where (¢p(x))p is an orthonormal basis of L2(Q) (denoting the set of square integrable
functions) consisting of eigenfunctions of (T f)(x) = [ga k(x, T)f(2)du(Z) and Ay is
the nonnegative sequence of corresponding eigenvalues sorted in decreasing order. Then,
for a non-degenerate kernel - i.e. when A\, > 0, Vp > 0 - we have the following conver-
gence in probability for the MSE (7.3) of the BLUP:

n—oo )\
o) "TF Y g (a)” (7.6)
p=0 P

For degenerate kernels - i.e. when only a finite number of A, are not zero - the conver-
gence is almost sure. We note that the convergences hold with respect to the distribution

of the points (x;)i=1,...n of the experimental design set.

The sketch of the proof of Theorem 7.1 is given below. The full proof is given in Section 7.7.
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Sketch of Proof. We first prove the theorem for degenerate kernels (see Section 7.7.1) which
was already known in that case. Next we find a lower bound for o%(z) for non-degenerate
kernels. Let us consider the Karhunen-Loéve decomposition of Z(z) = 3 - Zp\/Apop(z)
where (Z,), is a sequence of independent Gaussian random variables with mean zero and
variance one. If we denote by aopt,i(2), ¢ = 1,...,n, the coefficients of the BLUP associ-
ated to Z(z), the Gaussian process regression mean squared error can be written o?(z) =

2 _
D50 A (Dp(@) = D21 opti () p ()" + nT X0 aopt,i(x)?. Then, for a fixed p, the follow-
ing inequality holds:

2 n
EDIR" ( Z )0 (1) ) 7Y aopil@)’ = otypy(e),  (77)

p<p i=1
where, 0% ; p (%) is the MSE of the Linear Unbiased Predictor (LUP) of coefficients aopt i(x)
associated to the Gaussian process Zz(x) = >, 5 Zp\/Ap®p(x). Let us consider o 2(z) the
MSE of the BLUP of Z;(x), we have the following inequality:

Hpp(@) > o(a). (7.8)

Since Zp(z) has a degenerate kernel, Vp > 0, the almost sure convergence (7.6) holds for o2(z).
Then, considering inequalities (7.7), the convergence (7.6) for o2(x) and the limit p — oo, we
obtain:

TA

lim i ) > L . .

minto*(e) 2 >, 00 7
p>0

It remains to find an upper bound for o(x). Since o%(z) is the MSE of the BLUP associated to

Z(x), if we consider any other LUP associated to Z(x), then the corresponding MSE denoted

by 0%, p(z) satisfies the following inequality:

o*(x) < oyp().

The idea is to find a LUP so that its MSE is a tight upper bound of o?(x). Let us consider
the LUP:

frup(z) = X' (z)Az", (7.10)
with A the n X n matrix defined by A = L™t +>7_ (-=1)*(L"'M)*L~! with L = nrI +
Zp<p* )\p[¢p($i)¢p($j)]1§i,j§n, M = szp* )\p[(ﬁp(xi)¢p($j)]1gi’j§n, q a finite integer and p*
such that A\, < 7. The choice of this LUP is motivated by the fact that the matrix A is
an approximation of the inverse of the matrix (n7I + K) = L + M that is tractable in the
following calculations. Remember that the BLUP is fprup(z) = K'(z)(K + nrI)~'z". Then,
the MSE of the LUP (7.10) is given by:

2q+1

otup(r) = k(z,2) — K (2)L'k(z) = Y (1)K (2)(L~"M)'L"k(z).
=1

Thanks to the Woodbury-Sherman-Morrison formula!, the strong law of large numbers and
the continuity of the inverse operator in the space of p-dimensional invertible matrices, we

'If B is a non-singular p x p matrix, C a non-singular m X m matrix and A a m x p matrix with m, p < oo,
then (B4+AC'A)'=B'-B'AA'B7'A+C)'A'B™%.
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have the following almost sure convergence:

_ oo 22 1
K (@)L K(2) =5 30— op(@)? + — Y Nen(e)”
p<p* P p>p*

We note that we can use the Woodbury-Sherman-Morrison formula and the strong law of large
numbers since p* is finite and independent of n. Then, using the Markov inequality and the
equality szo Ap®p(7)? = k(x,2) < 0o, we have the following convergence in probability:

1 n—oo 1 i 1
K (2)(L7'M)'L™'k(z) =5 (T> D N, (x).

p>p*

We highlight that we cannot use the strong law of large numbers here due to the infinite sum
in p in the definition of M. Finally, we obtain the following convergence in probability:

) <&)2q+1
limsup 0% (z) < TLILH;O otyp(r) = Z ()\p - ip)\p> dp(w)* — Z )\?,Tigﬁp(a:);

T+ A
n—o00 >0 p>p* + 4

By taking the limit ¢ — oo in the right hand side and using the inequality A,« < 7, we obtain
the following upper bound for o?(x):

limsup o?(z) < Z dp()?. (7.11)

n—oo

T+ N

The result announced in Theorem 7.1 is deduced from the lower and upper bounds (7.9) and
(7.11). O

Remark 1 For non-degenerate kernels such that ||¢,(x)||f~ < oo uniformly in p, the con-
vergence is almost sure. Some kernels such as the one of the Brownian motion satisfy this

property.

The following theorem gives the asymptotic value of the learning curve when n is large.

Theorem 7.2. Let us consider Z(x) a Gaussian process with known mean and covari-
ance kernel k(z, %) € CO(Q x Q) such that supyega k(z,x) < 0o and (z;)i=1
imental design set of n independent random points sampled with the probability measure

n AN exrper-

77777

pwon Q@ C RE. Then, for a non-degenerate kernel, we have the following convergence in
probability:

IMSE "=37 ) T’; : (7.12)
T P

For degenerate kernels, the convergence is almost sure.

Proof. From Theorem 7.1 and the orthonormal property of the basis (¢,(x)), in LZ(Q), the
proof of the theorem is straightforward by integration. We note that we can permute the
integral and the limit thanks to the dominated convergence theorem since o?(z) < k(z,z). O
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The obtained limit is identical to the one established in [Opper and Vivarelli, 1999,
[Rasmussen and Williams, 2006] and [Picheny, 2009]. The originality of the pre-
sented result is the proof giving the asymptotic value of the learning curve for a
non-degenerate kernel. This result is of practical interest since the usual kernels for
Gaussian process regression are non-degenerate and we will exhibit dramatic differ-
ences between the learning curves of degenerate and non-degenerate kernels. We
note that intuitive arguments are given in [Opper and Vivarelli, 1999] and [Picheny,

2009] to justify the relevance of the result for non-degenerate kernels.

Proposition 7.1. Let us denote IMSEy, = lim, ..o IMSE. The following inequality
holds:

%Bﬁ < IMSE,, < B?, (7.13)
with
B? = Z Ap +7#{pst. A>T} (7.14)
pst. Ap<T
Proof. The proof is directly deduced from Theorem 7.2 and the following inequality:
(@) < - < ho(@)
o'\ = T = D
with:
<
ho () = { z/t v <T
1 rT>T
O

7.4 Examples of rates of convergence for the learning curve

Proposition 7.1 shows that the rate of convergence of the generalization error IMSE,, in
function of 7 is equivalent to the one of B2. In this section, we analyze the rate of convergence
of IMSE+, (or equivalently B2) when 7 is small. We note that the presented results can be
interpreted as a rate of convergence in function of the number of observations since 7 is the
ratio between the noise variance nT and the number of observations n.

In this section, we consider that the design measure y is uniform on [0, 1]%.

Example 2 (Degenerate kernels) For degenerate kernels we have # {p s.t. A\, > 0} < oco.

> =0,

ps.t. Ap<T

Thus, when 7 — 0, we have:

from which we deduce:
B? x 7. (7.15)
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Therefore, the IMSE decreases as 7. We find here a classical result about Monte-Carlo
convergence which gives that the variance decay is proportional to the observation noise vari-
ance (n7) divided by the number of observations n whatever the dimension. Nevertheless, for
non-degenerate kernels, the number of non-zero eigenvalues is infinite and we are hence in an
infinite-dimensional case (contrarily to the degenerate one). We see in the following examples
that we do not conserve the usual Monte-Carlo convergence rate in this case which emphasizes
the importance of Theorem 7.1 dealing with non-degenerate kernels.

Example 3 (The fractional Brownian motion) Let us consider the fractional Brownian
kernel with Hurst parameter H € (0, 1):

k(x,y) = 22 42 — |z — 421 (7.16)
The associated Gaussian process - called fractional Brownian motion - is Holder continuous
with exponent H — ¢, Ve > 0. According to [Bronski, 2003|, we have the following result:

Proposition 7.2. The eigenvalues of the fractional Brownian motion with Hurst expo-
nent H € (0,1) satisfy the behavior

_(2H+2)(AH+3) | 5

Ap — sz_I_H+0<p 4H+5 ) , P> 17

where 6 > 0 is arbitrary, vy = %%, and I' is the Euler Gamma function.

Therefore, when 7 < 1, we have:
1
RN
N <7 if p> (LI)”’“.
T
We hence have the following approximation for B2:
1
2 vg VH\ 28+1
Bl~ ) g2 T (T) ‘
P> (1) 7

Furthermore, we have:

> - / R vH
~ xr =
1 pRH 1 (LH)TIH p2H+1 o] (m)l—ﬁ’
p> (4L ) 2HFT . T
from which we deduce:
1
B2~ Cpr'iTme, 1<, (7.17)

where Cpy is a constant independent of 7.

The rate of convergence for a fractional Brownian motion with Hurst parameter H is
7173051, We note that the case H = 1 /2 corresponds to the classical Brownian motion. We
observe that the larger the Hurst parameter is (i.e. the more regular the Gaussian process
is), the faster the convergence is. Furthermore, for H — 1 the convergence rate gets close to
72/3. Therefore, even for the most regular fractional Brownian motion, we are still far from
the classical Monte-Carlo convergence rate.
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Example 4 (The 1-D Matérn covariance kernel) In this example we deal with the
Matérn kernel with regularity parameter v > 0 in dimension 1:

kip(z,Z;v,1) = 2 (\/ﬂb} — j‘) K, (W) ; (7.18)

['(v) l

where K, is the modified Bessel function [Abramowitz and Stegun, 1965]. The associated
Gaussian process is Holder continuous with exponent v — ¢, Ve > 0. The eigenvalues of this
kernel satisfy the following asymptotic behavior [Nazarov and Nikitin, 2004]:

1

)\p%m, p>>1

Following the guideline of the Example 3 we deduce the following asymptotic behavior for B2:
1
B xC,rl T, r &, (7.19)

where C), is a constant independent of 7.

This result is in agreement with the one of [Ritter, 2000a] who proved that for 1-dimensional
kernels satisfying the Sacks-Ylvisaker of order r conditions (where r is an integer), the gen-
eralization error for the best linear estimator and experimental design set strategy decays as
Tl_ﬁ. Indeed, for such kernels, the eigenvalues satisfy the large-p behavior A, oc 1 /p*rt?
[Rasmussen and Williams, 2006] and by following the guideline of the previous examples we
find the same convergence rate. We note that the Matérn kernel with parameter v = r 4+ 1/2
satisfies the Sacks-Ylvisaker of order r conditions. Furthermore, our result generalizes the
one of [Ritter, 2000a] since it provides convergence rates for more general kernels and for any
dimension (see below). Finally, our result shows that the random sampling gives the same
decay rate as the optimal experimental design.

Example 5 (The d-D tensorised Matérn covariance kernel) We focus here on the
d-dimensional tensorised Matérn kernel with isotropic regularity parameter v > % According
to [Pusev, 2011] the eigenvalues of this kernel satisfy the asymptotics:

>‘p ~ ¢(p)7 p > 17

where the function ¢ is defined by:

B log(l +p)2(d71)(u+1/2)
¢(p) = p2(u+1/2)

Its inverse ¢! satisfies:
1 _ 1 . 1 d—1
¢7L(e) = e T <log (5 72%1/2))) (1+0(1), e<1.

We hence have the approximation:

B2 ~ 2(v+1/2) -1
T~ o1 (7_)2(1/+1/2)71

log (1 n (]5_1 (7_))2((1—1)(114-1/2) n 7_¢_1 (7_) .
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We can deduce the following rate of convergence for B2:
2 1—5—L d—1
B: = C,qr 2+1/2]og (1/7)° 7, T, (7.20)

with C, 4 a constant independent of 7.

Example 6 (The d-D Gaussian covariance kernel) According to [Todor, 2006] the
asymptotic behavior of the eigenvalues for a Gaussian kernel is:

Ap < cexp (—cp%) ,

where ¢ and ¢ are constants that depend on the correlation length and the diameter of the
domain @Q. Applying the procedure presented in the previous examples, it can be shown than
the rate of convergence of the IMSE is bounded by:

Cyrlog (1/7)%, 7<1, (7.21)

with Cj a constant independent of 7.

We can see from the previous examples that for smooth kernels, the convergence rate
is close to 7, i.e. the classical Monte-Carlo rate.

We compare the previous theoretical results on the rate of convergence of the generalization
error with full numerical simulations. In order to observe the asymptotic convergence, we fix
n = 200 and we consider 1/7 varying from 50 to 1000. The experimental design sets are
sampled from a uniform measure on [0, 1] and the observation noise is n7. To estimate the
IMSE (7.5) we use a trapezoidal numerical integration with 4000 quadrature points over [0, 1].
Furthermore, to build the convergence curves (i.e to estimate the multiplicative coefficients)
in figures 7.1 and 7.2 we use a linear regression with the first value of the IMSE, an intercept
fixed to zero (since the IMSE tends to 0 when 7 tends to 0) and a unique explanatory variable
corresponding to the tested convergence (e.g. 791, 7log(1/7),...).

First, we deal with the 1-D fractional Brownian kernel (7.16) with Hurst parameter H.
We have proved that for large n, the IMSE decays as Tliﬁ. Figure 7.1 compares the
numerically estimated convergences to the theoretical ones.

We see in Figure 7.1 that the observed rate of convergence is perfectly fitted by the
theoretical one. We note that we are far from the classical Monte-Carlo rate since we are
in a non-degenerate case.

Finally, we deal with the 2-D tensorised Matérn-5/2 kernel and the 1-D Gaussian kernel.
The 1-dimensional Matérn-v class of covariance functions kip(t,t'; v, 0) is given by (7.18) and
the 2-D tensorised Matérn-v covariance function is given by:

k(z,Z;v,0) = kip(z1, 25 v, 01) ki1 p(xe, Th; v, 03). (7.22)
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Figure 7.1: Rate of convergence of the IMSE when the level of observation noise decreases for a
fractional Brownian motion with Hurst parameter H = 0.5 (a) and H = 0.9 (b). The number
of observations is n = 200 and the observation noise variance is nT with 1/7 varying from 50
to 1000. The triangles represent the numerically estimated IMSE, the solid line represents the
theoretical convergence, and the other non-solid lines represent various convergence rates.

Furthermore, the 1-D Gaussian kernel is defined by:
1 AV
k(z,Z;0) = exp (—M) )

Figure 7.2 compares the numerically observed convergence of the IMSE to the theoretical one
when 6; = 6 = 0.2 for the Matérn-5/2 kernel and when 6§ = 0.2 for the Gaussian kernel.
We see in Figure 7.2 that the theoretical rate of convergence is a sharp approximation of the
observed one.

7.5 Applications of the learning curve

Let us consider that we want to approximate the function z € Q C RY — f(x) from noisy
observations at fixed points (z;)i=1,..n, with n > 1, sampled from the design measure p and
with s; replications at each point z;.

In this section, we consider the situation described in Example 7.1:

e The budget T is defined as the sum of repetitions on all points of the experimental
design set - i.e. T =>"" | s;.

e An observation 2 at point z; has a noise variance equal to o2(z;)/s; with i =1,...,n.

In Subsection 7.5.1 we present how to determine the needed budget T' to achieve a pre-

scribed precision. Then, in Subsection 7.5.2, we address the problem of the optimal allocation
{s1,82,...,8p} for a given budget T' with Proposition 7.3.
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Figure 7.2: Rate of convergence of the IMSE when the level of observation noise decreases for
a 2-D tensorised Matérn-5/2 kernel (a) and for a 1-D Gaussian kernel (b). The number of
observations is n = 200 and the observation noise variance is n7 with 1/7 varying from 100 to
1000. The triangles represent the numerically estimated IMSE, the solid line represents the
theoretical convergence, and the other non-solid lines represent various convergences.

7.5.1 Estimation of the budget required to reach a prescribed precision

Let us consider a prescribed generalization error denoted by €. The purpose of this subsection
is to determine from an initial budget Ty the budget 7' for which the generalization error

reaches the value &. We handle this issue by considering a uniform allocation s; = s with

2

t=1,...,n and a constant reduced noise variance oZ.

train

First, we build an initial experimental design set (z}

)i=1,...n sampled with respect to
the design measure p and with s* replications at each point such that Ty = ns*. From
the s* replications (2;);j=1,. s+, We can estimate the observation noise variances o?2(z{*m)
with a classical empirical estimator: Zj;l(z” — 22/ (s* = 1), 21 = Zj;l zi j/s*. Then, we
consider a constant reduced noise variance 2 equal to the mean [pq 02(z) du(z) estimated

with Y7, 02(trin) /n,

Second, we use the observations z]' = (Zj;l zij)/s* to estimate the covariance kernel
k(z,Z). In practice, we consider a parametrized family of covariance kernels and we select the
parameters which maximize the likelihood (see [Stein, 1999] and Chapter 1 Section 1.3).

Third, from Proposition 7.1 we can get the expression of the generalization error decay
with respect to T' (denoted by IMSE7). Therefore, we just have to determine the budget T
such that IMSEr = &. In practice, we will not use Proposition 7.1 but the asymptotic results
described in Section 7.4.

This strategy will be applied to an industrial case in Section 7.6. We note that in the
application presented in Section 7.6, we have s* = 1. In fact, in this example the observations
are themselves obtained by an empirical mean of a Monte-Carlo sample and thus the noise
variance can be estimated without processing replications.
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7.5.2 Optimal resource allocation for a given budget

Let us consider a fixed budget T'. As presented in Subsection 7.5.1, to determine this budget
we make the approximation of a reduced noise variance o2(x) independent of x and we consider

the uniform allocation s; = s.

Despite the fact that the uniform allocation s; = s is needed to determine 7', in order to
provide the optimal resource allocation - i.e. the sequence of integers {s1, s2,. .., S, } minimiz-
ing the generalization error - it is worth taking into account the heterogeneity of the noise.
For a Monte-Carlo based simulator, the number of repetitions s could represent the number
of Monte-Carlo particles and the procedure presented below can be applied.

Determining the optimal allocation of the budget T" whatever the Gaussian process for a
heterogeneous noise is an open and non-trivial problem. To solve this problem, we first con-
sider the continuum approximation in which we look for an optimal sequence of real numbers
(Si)i=1,...n and then we round the optimal solution to obtain a quasi-optimal integer-valued
allocation (Sz‘,int)z‘:l,...,n~ The following proposition gives the optimal resource allocation under
certain restricted conditions for the continuous case. The reader is referred to [Munoz Zu-
niga et al., 2011] for a proof of this proposition in a different framework (the proof uses the
Karush-Kuhn-Tucker approach to solve the minimization problem with equality and inequality
constraints [KKuhn and Tucker, 1951] and [Karush, 1939]). We note that the optimal alloca-
tion given in Proposition 7.3 for a fixed budget T" can also be used for any n > 0 and for any

experimental design set.

Proposition 7.3. Let us consider Z(x) a Gaussian process with a known mean and
covariance kernel k(z,z') € C°(Q x Q) with sup, k(z,r) < co. Let (z;)i=1,..n be a given
k(zjwi)+ol(z;)

experimental design set of n points sorted such that the sequence
c(xj)o2(x;)

J=1,...,n
is non-increasing, where o2(x;) is the reduced noise variance of an observation at point ;,

c(z) = [ga k(' 2)? dn(z’) and n(z) is a positive measure used to calculate the Integrated
Mean Squared Error (IMSE). When the covariance matriz K is diagonal, the real-valued
allocation (s;)i=1,..n minimizing the generalization error:

IMSE — / (k(z,2) — K (2) (K + A)k(z)) dn(z), (7.23)
R4
under the constraints y ;1 s; =T and s; > 1,Vi=1,...,n is given by:
1 1 <
st = ) (e)o2 @) . o2 \ _ 2 s
' k(zi,q) N \e(@)o2(a)) (T i Z;L:i*-ﬁ-l k(??jéj)) — oz (i) L=

j=i*+1 k(zj,z;)

2

where A = diag [(gf(ml))z . J and:

Si

=1,...,
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xj)
k(xi, ;) + o2(z;) > —i+ i k:(zj,xj)

1" =max<{¢=1,...,n suchthat ~ >
C(l’i)O'8 (xz) Z?—'—H Ck(zfj) s()fj)
=t Zj,Tj
7.25)
By convention, if:

o2(z;)

oo +oda) ToF S ey gy L

c(z; 2 T n ()0 (x;) sy, .

(xi)o2(xi) Sy Yoo

then i* = 0.

The proof of Proposition 7.3 is given in Appendix D. We note that the proof holds be-
cause the problem is separable due to the diagonal property of the covariance matrix. The
optimization problem in Proposition 7.3 admits a solution if and only if 7" > n which reflects
the fact that n simulations are already available. Furthermore, when T is large enough, we
have ¢* = 0 and the solution has the following form:

opt __ 1 C(‘Q;l) 2
S = k(zi,70) - W T+ Z i 333,56] — oz (z) | - (7.27)
J=1 " k(z;,z;)

While Proposition 7.3 gives a continuous optimal allocation, an admissible allocation must
be an integer-valued sequence. Therefore we solve the optimization problem with the con-
tinuous approximation and then we round the continuous solution to obtain a quasi-optimal
integer-valued solution 5@ int- Lhe rounding is performed by solving the following problem:

Find J such that 3.7, s?P" = T with:

i=1 zmt

opt _ [s?pt} +1 i<J

) [557 i>J
where [x] denotes the integer part of a real number z.

We note that this allocation is not optimal in general (i.e. when K is not diagonal).
Nevertheless we have numerically observed that it remains efficient in general cases and is
better than the uniform allocation strategy. We perform numerical comparisons in Appendix
D.

Proposition 7.3 shows that it is worth allocating more resources at locations where the
reduced noise variance o2(z) and the quantity c(z;) = [pa k(z,2;)? dn(z) (representing the
local concentration of the IMSE) are more important.

7.6 Industrial Case: code MORET

We illustrate in this section an industrial application of our results about the rate of conver-
gence of the IMSE. The case is about the safety assessment of a nuclear system containing
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fissile materials. The system is modeled by a neutron transport code called MORET [Fernex
et al., 2005]. In particular, we study a benchmark system of dry PuO; storage. We note that
we are in the framework presented in Example 7.1.

This section is divided into 3 parts. First, we present the Gaussian process regression
model built on an initial experimental design set. Then we apply the strategy described
in Section 7.5.1 to determine the computational budget T needed to achieve a prescribed
precision. Finally, we allocate the resource T' on the experimental design set.

7.6.1 Data presentation

The benchmark system safety is evaluated through the neutron multiplication factor keg. This
is our output of interest that we want to surrogate. This factor models the criticality of a
chain nuclear reaction:

o k.g > 1 leads to an uncontrolled chain reaction due to an increasing neutron population.
o kot = 1 leads to a self-sustained chain reaction with a stable neutron population.

e ko < 1 leads to a faded chain reaction due to an decreasing neutron population.

The neutron multiplication factor depends on many parameters and it is evaluated using the
stochastic simulator called MORET. We focus here on two parameters:

e dpyo, € [0.5,4]g.cm™3, the density of the fissile powder. It is scaled in this section to
[0,1].

o dyater € [0,1]g.cm™3, the density of water between storage tubes.

The other parameters are fixed to a nominal value given by an expert and we use the notation
x = (dpu0y, dwater) for the input parameters.

The MORET code provides outputs of the following form:
1 S
Foale) =+ D2 Vi (a),
j=1

where (Yj(x))j=1,. s are realizations of independent and identically distributed random vari-

ables which are themselves obtained by an empirical mean of a Monte-Carlo sample of 4000

particles. From these particles, we can also estimate the variance o2(z) of the observation

Yj(x) by a classical empirical estimator. The simulator gives noisy observations and the vari-
ance of an observation ke s(z) equals o2(x)/s.

A large data base (Yj(2;))i=1,... 5625,j=1,...,200 is available to us. We divide it into a training
set and a test set. Let us denote by Y;(z;) the j*" observation at point x; - the 5625 points

x; of the data base come from a 75 x 75 grid over [0, 1]2. The training set consists of n = 100
train

points (2;"*");=1, .. n extracted from the complete data base using a maximin LHS and of the

train

first observations (Y7 (x;

))i=1,....100- We will use the other 5525 points as a test set.
The aim of the study is - given the training set - to predict the budget needed to achieve a

prescribed precision for the surrogate model and to allocate optimally these resources. More



228 CHAPTER 7. ASYMPTOTIC ANALYSIS OF THE LEARNING CURVE

precisely, let us denote by s; the resource allocated to the point :Ult-rain of the experimental
design set. First, we want to determine the budget 7= Y7 | s; which allows us to achieve
the target precision (see Subsection 7.5.1). Second, we want to determine the best resource

allocation (s;)i=1,..n (see Subsection 7.5.2).

2

To evaluate the needed computational budget 7' the observation noise variance oZ(x) is

approximated by a constant 52. The constant variance equals the mean [, 02(z) dp(z) of the

; : BSR T ; =2 _ 1 100 2/ train) _ -3
noise variance which is here estimated by o2 = 155 >_;—; o2 (2;"™") = 3.3.107>. Furthermore,

(2
we look for a uniform budget allocation, i.e. s; = s Vi = 1,...,n. In this case, the total

computational budget is T' = ns.

7.6.2 Model selection

To build the model, we consider the training set plotted in Figure 7.4. It is composed of the
n = 100 points (z{*#");_; , which are uniformly spread on Q = [0, 1]2.

Let us suppose that the response is a realization of a Gaussian process with a tensorised
Matérn-v covariance function. The 2-D tensorised Matérn-v covariance function k(z, z;v, 6)

is given in (7.22). The hyper-parameters are estimated by maximizing the concentrated Like-

lihood: . )
—i(z” —m) (c’K + o21) "} (z" —m) — §det(02K + &21),

where K = [k(zrain, x;rain; v,0))i j=1,..n, L is the identity matrix, 02 the variance parameter,

m the mean of keg s(7) and z" = (Y1 (z{41), ... Y1 (25%1)) the observations at points in the
training set. The mean of kg s(2) is estimated by m = s SO0y (afrain) = 0.65.

Due to the fact that the convergence rate is strongly dependent of the regularity parameter
v, we have to perform a good estimation of this hyper-parameter to evaluate the model error
decay accurately. Note that we cannot have a closed form expression for the estimator of 2,
it hence has to be estimated jointly with 6 and v.

Let us consider the vector of parameters ¢ = (v,01,6s,02). In order to perform the
maximization, we have first randomly generated a set of 10,000 parameters (¢y);—1 104 on
the domain [0.5, 3] x[0.01, 2] x[0.01, 2] x [0.01, 1]. We have then selected the 150 best parameters
(i.e. the ones maximizing the concentrated Maximum Likelihood) and we have started a quasi-
Newton based maximization from these parameters. More specifically, we have used the BFGS
method [Shanno, 1970]. Finally, from the results of the 150 maximization procedures, we have
selected the best parameter. We note that the quasi-Newton based maximizations have all
converged to two parameter values, around 30% to the actual maximum and 70% to another
local maximum.

The estimates of the hyper-parameters are v = 1.31, ; = 0.67, 6 = 0.45 and o? = 0.24.
This means that we have a rough surrogate model which is not differentiable and a-Holder
continuous with exponent o = 0.81. The variance of the observations is 2 = 3.3.1073, using
the same notations as Example 7.1, we have 7 = 52 /Ty with Ty = n (it corresponds to s = 1).

The IMSE of the Gaussian process regression is IMSE7, = 1.0.1072 and its empirical mean
squared error is EMSE7, = 1.2.1073 . To compute the empirical mean squared error (EMSE),
we use the observations (Yj(z;))i=1,.. 5525 j=1..200 With z; # x}fain Vk = 1,...,100,i =
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1,...,5525 and to compute the IMSE (7.5) (that depends only on the positions of the training
set and on the selected hyper-parameters) we use a trapezoidal numerical integration into a
75 x 75 grid over [0,1]%. For s = 200, the observation variance of the output ke s(z) equals

o2
200
the IMSE is close to the empirical mean squared error which means that our model describes

= 1.64.107° and is neglected for the estimation of the empirical error. We can see that

the observations accurately.

7.6.3 Convergence of the IMSE
According to (7.20), we have the following convergence rate for the IMSE:

log(T'/a?)

1
IMSE ~ log(1/7)7' 2w+173 = L
(T/52)' " 2w+17m

(7.28)

where the model parameter v plays a crucial role. We can therefore expect that the IMSE
decays as (see Subsection 7.5.1):

log(T/52) log(Ty/52)
(T/52) "7 73 (Ty/52) " 277D

IMSEr = IMSEq, (7.29)

Let us assume that we want to reach an IMSE of £ = 2.107%. According to the IMSE decay
and the fact that the IMSE for the budget T has been estimated to be equal to 1.0.1073, the
total budget required is T' = ns = 2000, i.e. s = 20. Figure 7.3 compares the empirical mean
squared error convergence and the predicted convergence (7.29) of the IMSE.

1le-03

10 | IMSE ~ o?/T
: — IMSE ~ log(T/a?)/(T /05)(1-1/@%1))

EMSE
6e-04 8e-04

4e-04

2e-04

0e+00
1

s=T/n
Figure 7.3: Comparison between Empirical mean squared error (EMSE) decay and theoretical
IMSE decay for n = 100 when the total budget 7" = ns increases. The triangles represent
the Empirical MSE, the solid line represents the theoretical decay, the horizontal dashed line
represents the desired accuracy and the dashed line the classical Monte-Carlo convergence.
We see that Monte-Carlo decay does not match the empirical MSE and it is too fast.

We see empirically that the EMSE of & = 2.10™% is achieved for s = 31. This shows that



230 CHAPTER 7. ASYMPTOTIC ANALYSIS OF THE LEARNING CURVE

the predicted IMSE and the empirical MSE are close and that the selected kernel captures
the regularity of the response accurately.

Let us consider the classical Monte-Carlo convergence rate 52/T, which corresponds to
the convergence rate of degenerate kernels, i.e. in the finite -dimensional case. Figure 7.3
compares the theoretical rate of convergence of the IMSE with the classical Monte-Carlo one.
We see that the Monte-Carlo decay is too fast and does not represent correctly the empirical
MSE decay. If we had considered the rate of convergence IMSE ~ &2/T, we would have
reached an IMSE of £ = 2.107% for s = 6 (which is far from the observed value s = 31).

7.6.4 Resource allocation

We have determined in the previous section the computational budget required to reach an
IMSE of 2.10~%. We observe that the predicted allocation is accurate since it gives an empirical
MSE close to 2.107%. To calculate the observed MSE, we uniformly allocate the computational
budget on the points of the training set. We know that this allocation is optimal when the
variance of the observation noise is homogeneous. Nevertheless, we are not in this case and
to build the final model we allocate the budget taking into account the heterogeneous noise
level o2(z). We note that the total budget is T = Y I' | s; where n = 100 is the number
observations and s; the budget allocated to the point xtra‘n

From (7.27) in Proposition 7.3, when the input parameter distribution g is uniform on

[0,1] and for a diagonal covariance matrix, the optimal allocation is given by:

1 2(% o2
8= — T+ ZO‘ (z) | —o2(xi) | - (7.30)

o Z] 1 Vo2 ()

Here we use this allocation to build the model. Let us consider that we do not have
observed the empirical MSE decay, we hence consider the budget given by the theoretical
decay T' = 2400. The allocation given by Equation (7.30) after the rounding procedure is
illustrated in Figure 7.4 with the contour of the noise level.

We see in Figure 7.4 that the resources allocation is more important at points where the
noise variance is higher. Table 7.1 compares the performances of the two models build with
the two allocations on the test set.

Uniform Allocation | Optimal Allocation
MSE 2.71.10~4 2.62.10~*
MaxSE 5.66.1072 5.35.1072

Table 7.1: Comparison between uniform and optimal (under the condition K diagonal) allo-
cation of resources.

We see in Table 7.1 that the budget allocation given by Equation (7.30) gives predictions
slightly more accurate than the uniform one.
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Figure 7.4: Figure (a): initial experimental design set with n = 100. Figure (b): noise level

dependence of the resources allocation. The solid lines represent the reduced noise variance

2
€

of the experimental design set.

oZ(x) contour plot and the numbers represent the resources (s;)i=1,... » allocated to the points

7.7 Proof of Theorem 7.1

7.7.1 Proof of Theorem 7.1: the degenerate case

The proof in the degenerate case follows the lines of the ones given by [Opper and Vi-
varelli, 1999], [Rasmussen and Williams, 2006] and [Picheny, 2009]. For a degenerate ker-
nel, the number p of non-zero eigenvalues is finite. Let us denote A = diag(\;)i<i<p,

/
o(x) = (¢1(x),...,¢p(x)) and & = <¢(x1)’ e qﬁ(azn)’) . The MSE of the Gaussian process
regression is given by:

o2 (z) = p(z)Ap(x) — P(2)AD' (DAY +nrT) " DAG(z).

Thanks to the Woodbury-Sherman-Morrison formula and according to [Opper and Vi-
varelli, 1999] and [Picheny, 2009] the Gaussian process regression error can be written:

) = o(o) (0 + 47 ey

nt

Since p is finite, by the strong law of large numbers, the p X p matrix %‘P’ ® converges almost
surely as n — co. We so have the following almost sure convergence:

n—oo A
o2(z) =3 Z;’; ()2, (7.31)
p<p P

7.7.2 Proof of Theorem 7.1: the lower bound for o%(z)

The objective is to find a lower bound for o%(z) for non-degenerate kernels. Let us consider
the Karhunen-Loéve decomposition of Z(z) = >~ Zp\/Apdp(x) where (Z,), is a sequence
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of independent Gaussian random variables with mean zero and variance 1. If we denote by
a;(x) the coefficients of the BLUP associated to Z(z), the mean squared error can be written

] ) ,
o’(z) = E (Z(w)—Zai(:c)Z(azi))

- B[ Vh (%(@—Zai(xwp(xi)) Z,

p=>0

2
= Z)\p< Za2 x)dp :m) +n72ai(m)2.

p>0 =1

Then, for a fixed p, the following inequality holds:

2@) > 3" N <¢p(az) =) ai(z)dp(x; > —f—nTZal = oiupp(a). (7.32)

P<p i=1

O'%Upp( ) is the MSE of the LUP of coefficients a;(z) associated to the Gaussian process
Zp(x) = > )<y Zp\/ Ap@Pp(®). Let us consider o 2(x) the MSE of the BLUP of Z;(x), we have
the following inequality:

Funsle) > o2(a). (7.33)

Since Zp(x) has a degenerate kernel, the almost sure convergence given in Equation (7.31)
holds for O'%(.T). Then, considering inequalities (7.32) and (7.33) and the convergence (7.31),
we obtain:

. 2
hnrggéfa >Z<T+A> (z)%. (7.34)

p<p

Taking the limit p — oo in the right hand side gives the desired result.

7.7.3 Proof of Theorem 7.1: the upper bound for o%(z)

The objective is to find an upper bound for o?(z). Since o?(x) is the MSE of the BLUP
associated to Z(x), if we consider any other LUP associated to Z(x) its MSE denoted by
02 p(z) satisfies the following inequality:

() < hyrpla). (7.35)

The idea is to find a LUP so that its MSE is a tight upper bound of o?(x). Let us consider
the LUP:

frup(x) =X (z)Az", (7.36)
with A the n x n matrix defined by A = L™t + 39 (-D¥L"'M)*L~! with L = n7I +
2 p<ps MlPp(i)bp(xj)icijcn, M= 32 o Aplop(2i)dp(2j)|1<ij<n, ¢ @ finite integer and
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p* such that A\, < 7. The matrix A is an approximation of the inverse of the matrix
L+ M = nrI + K. Then, the MSE of the LUP (7.36) is given by:

o2up(x) = k(z, ) — K (2) (2A — A(n7I + K)A) k()

and by substituting the expression of A into the previous equation we obtain:

2q+1

o?yp(x) = k(z,2) — K ()L k(z) — Z (1) (z)(L™'M)'L k(). (7.37)
=1

First, let us consider the term k/(x)L~'k(x). Since p* < oo, the matrix L can be written:

L=nrI+ <I>p*A<I>;*, (7.38)
/
where A = diag(\;)1<i<p+, ®pr = (gzﬁ(xl)’ ¢(xn)’> and ¢(x) = (¢1(x), ..., dp=(2)).
Thanks to the Woodbury-Sherman-Morrison formula, the matrix L' is given by:
(I) * @l *(I) * -1 @I *
L~ = 1 % <Pp —|—A—1) - (7.39)
nrt  nr nr nr

From the continuity of the inverse operator for invertible p* x p* matrices and by applying
the strong law of large numbers, we obtain the following almost sure convergence :

n p* (I)/ (I) —1
K ()L 'k(z) = %Zk(m,xi)Q—%Z [( AT ) ]
=1

p,q=0 D,q

[ Zk‘xml gbpxl] Zk‘fﬂfﬁj ¢q($3) )

X

nso 1 S GRS A

¥ ke XP) - 30 |(F4A7) | Bulblo X0, (0IE h(e. X6, (X))
p,q=0 D,q

where E,, is the expectation with respect to the design measure . We note that we can use
the Woodbury-Sherman-Morrison formula and the strong law of large numbers since p* is
finite and independent of n. Then, the orthonormal property of the basis (¢,(x))p>0 implies:

= 2)\]29%7(:16)2, Ep[k(z, X)ép(X)] = Apop(z).
p=0
Therefore, we have the following almost sure convergence:

_ Ao A2 1
K'(2)L~k(z) =3 ) ApiT » 2+; D Aoop(x)?. (7.40)
p<p* p>p*

Second, let us consider the term Z2q+1( 1)K (z)(L~'M)'L~'k(x). We have the following
equality:

k()L "M)L k(z) — g(;)ék’(x) @f)l( g;;}g) k(z)

w0 (37) (Ge) ke
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where:
P D) - (
L = &, ( o +A—1> = 3 A I6p(x)bp(a)i<iin, (7.41)
p.p'<p*
with dj(ong/ = [(q) n(b - ] . Since ¢ < oo, we can obtain the convergence in
probability of quH( YK () M)'L~'k(x) from the ones of:
1 /M [L'M\"
K'(z)— | — k 7.42
<>n(n>(n) (@) (7.42)
and:

n n2 n

K (2) <M>j (L/M)Z ’ L) (7.43)

with i <2¢+ 1 and j < i. Let us consider k'(z)1 (M)j (LIIQVI)Z_] k(z) and i > j, we have:

.1 /M /LMY B (n) (n) n
K(z)— | — n2 k(x)= > Bty oy > S (T44)

n n

P1ssPi—j <P* q15--,qi—j >p*
Pyl <P mi,...,m;j>p*
with:
A n \/)\7 n
n V ‘m1 mj
S&% ( g k JZ‘ Ly ¢m1 ) n § ¢mj Ty ¢p wr)
r=1

)\ n n
( q;L] Zk’ Z,Tr ﬁbql j (z; Z@% j ¢q1 g(xr)>

n

/7)\771])\"” ) i—j— 1)\ n
X H Y Z¢mz Ly ¢mz+1 $r H ;Zl Z¢QL($T)¢PZ+1(xT)Z¢QI (xr)¢p2(xT)

n
r=1 r=1

We consider now the term:

n A 1 &
Ay = 203 Gyl dplan) S by (w)g(e), (7.45)

r=1 r=1

with p,p’ < p*. From Cauchy Schwarz inequality and thanks to the following inequality:

EXe: |2<fZA|¢p =\, (2, @),

p'>0
we obtain (using Ay > Apr, Vp < p* and [327 [dq(@n)[|* < n 370 dq(ar)?):

) (n)

A n

2y—1 2

app'| — Y )‘p* ;q Zl ¢Q(xr) Vp, p/ <p*,
r—=
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with 02 = sup,, k(z, ). Considering the expectation with respect to the distribution of points
x,, we obtain Vp < oo:

Sl

q>p

] <N A

q>p

From Markov inequality, Vo > 0, we have:

(n) -1
( S 6) < K, qu>ﬁ Qqp.p' ] < U2)‘p* Zq>ﬁ )‘q'

0 - 0
Furthermore, Vé > 0, Vp > p*:

(7.46)

>5).

We have for all ¢ € (p*,p] : a t(”zp’ — Qg pp = AgOg=pOg=p = 0 (with 0 the Kronecker product),

Zaqpp’

q>p

Z agg,p’

q>p

(n)
Pu Zaqpp’ >20 ) <Py Z aqp,p’ >0 —HP“(

q>p* p*<q<p

as n — 0o, therefore:

Z t(z,p),p’

limsup P, (

2

Taking the limit p — oo in the right hand side, we obtain the convergence in probability of

n
Y a(gp)p, when n — oo:
U,

Z Z% ) bp(wr) = Z% 2)bgl) —5 0 Vp,p < pt. (7.47)

q>p* r=1

Following the same method, we obtain the convergence:

Z Zk x, Ty)pg(xy Zqﬁp zy)pg(xr) — 0 Vp < p*. (7.48)

q>p* r=1

Let us return to Sé%. By using Cauchy Schwarz inequality and bounding by the constant

Ky all the terms independent of ¢; and m;, we obtain:

Z S(STQL < Ky H )\ml Z Qbml xr

q1,--,qi—j >p* r=1

X Z <Aq7;_jzk($7xr)¢(Iij($T)Z¢pij(xr)d)‘h'j(xr)>
r=1 r=1

Gi—j>p~

i—j—1 n n
X Z H )\le E:I¢ql($r>¢m+1(x7“)E:I(bql(xT)qﬁpi(xT) )

q1;--59i—j5— 1>p =
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Since )~ Apdp(x r)? = k(z,x) < 02, we have the inequality 0 < Yoy f LA S by ()2 <
(02)7. Thus, for i > j and from (7. 47) and (7.48) we obtain the followmg convergence in prob-
ability when n — oo:

P
g Sé’ﬁn — 0.
q1;--5qi—j >P~
mi,...,m;>p*

Therefore, from (7.44) we obtain the following convergence when n — oo:

K ()~ <M)J (L/M>” K(z) 250 Vi< (7.49)

n\n n?
Following the same guideline as previously, it can be shown that when n — oco:

k’(x)% <1\:)J (L;I;/I> - L,k( ) 20 Vi< (7.50)

From the convergences (7.49) and (7.50), we deduce the following one when n — oo:

n n

K(z) (L7'M)"L'k(z) — ~K(x) (M>q k(z) 2 0. (7.51)

Therefore, to complete the proof we have to show that:

K@) (f)qk(x) Bry §° A2, (2)?

p>p*

Let us consider for a fixed j > 1:

with m = (m1,...,m;) and:
k(x xr)¢m1 xr > < Zk 37 y Ly (z)m xr))

n

Jj—1 1 J
X ll_‘!nz(bml Ly (Zsml_;,_l Ty 1;[

From Cauchy-Schwarz inequality, we have:

n J n
(le Z k=, :Dr)z) H % Z A G (1) (7.52)
r=1 =1 r=1
J n
< o H % Z )\migbmi (xr)Q' (7.53)
=1 r=1

r=1

S

2
S

~
IN
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Therefore, considering the expectation with respect to the distribution of the points (z,)y=1, . n,

we have:

E, Hafg)(z‘)u < ot (ﬁ Ami) % Zn: E, [qul(th)Q oo Oy (th)2] Ve € RY.

=1 t1,..5t=1

The following inequality holds uniformly in ¢1,...,¢; =1,...,n:

By

J
1_[(1)771z (Xt1)2] S bm7
i=1

where by, = Y pen{i,...;}) Hizl E. [Hz’elr $m,(X)?] because the term of left hand side of the
P=Ul_, I,
inequality is equal to one of the terms in the sum of the right hand side. Here II({1,...,j})

is the collection of all partitions of {1,...,j} and I, N I,, = 0, Vr # 1. We hence have:
J
E, Hag,?)(x)u < * [ Anibm-
i=1

Since )~ Apdp(7)? < 02, we have:

S Mwte = % e ¥ 105

T ém <X>2]

mi,...,m; >p* i=1 mi,...,m; >p* =1 Pell({1,....5}) r=1 i€l
P=Ul_, I,
l
2
= > IE (I X Aom(X)
Pell({1,....5}) r=1 i€l m;>p*
P=Ul_ I,

< o¥H{I{L,... 5}

Since the cardinality of the collection II({1,...,5}) of partitions of {1,...,5} is finite, the
series th_“’mpp* [T)_; Am;bm converges. Furthermore, as it is a series with non-negative
terms, Ve > 0, 3p > p* such that :

J
o' Y [ mibm <e,
meME =1

where Mﬁc designs the complement of M} defined by the collection of m = (my, ..., m;) such
that:

M ={m = (m1,...,m;) suchthat m; >p*, i=1,...,j},
My ={m = (mi,...,m;) suchthat p*<m; <p, i=1,...,j},

c
MS = M\ M.
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Therefore, we have Vé > 0, Ve > 0 3p > 0 such that uniformly in n:

> B[] <3

meMlg

Applying the Markov inequality, we obtain:

P Z ‘a%‘)(x)‘>g <e.

meMlg

Furthermore, by denoting a,(x) = lim,,— al (x), we have:

J Jj—1
am () = Amy /\mj b, ($)¢mg (z) H Am; 5mi:mi+l
i=1 =1

and from Cauchy-Schwarz inequality (see Equation (7.53)), we have:

We hence can deduce the inequality:

Y lam@) <ot D> I A

meME meME =1

(7.54)

(7.55)

(7.56)

Thus, 3p such that Y o lam(z)] < g for all # € RY. From the inequalities (7.54) and
p

(7.56), we find that 3p such that:

m(ZWW—Z%m

meM meM
Since Mj is a finite set:

limsup P, Z a%‘)(w)— Z am(x)| >0 ] =0,

n—oo
> 25) <eg

therefore:

limsup P, ( Z a™ (z) — Z am ()

n—oo meM meM

The previous inequality holds Ve > 0, thus we have the convergence in probability of Zme M Gm

t0 D e @m(w) with (by using the limit in Equation (7.55)):

S amle) = 30 N6,

meM p>p*

>25> <e+P, Z ™ (z) — Z am(z)| >0

(n)

()
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Finally, we have the following convergence in probability when n — oc:

i n—oo 1 w i
K (z)(L™'M)'L™ k(z) =3 () D A, (x). (7.57)

T
p>p*

We highlight that we cannot use the strong law of large numbers here due to the infinite sum
in M.

From Equation (7.37) and the convergences (7.40) and (7.51), we obtain the following
convergence in probability:

; ()
otup(x = Z( 7__|_)\ ) Z T+ A ¢p($)2. (7.58)

p=>0 p>p

By considering the limit ¢ — oo and the inequality A« < 7, we obtain the following upper

bound for o?(z):
TAp

limsup 0% (z) < Z dp()?. (7.59)

n—00 >0 T+ )\p

7.8 Conclusion

The main result of this chapter is a theorem giving the Gaussian process regression mean
squared error when the number of observations is large and the observation noise variance
is proportional to the number of observations. The asymptotic value of the mean squared
error is derived in terms of the eigenvalues and eigenfunctions of the covariance function and
holds for degenerate and non-degenerate kernels and for any dimension. We emphasize that
a noise variance proportional to the number of observations is natural in the framework of
experiments with replications or Monte-Carlo simulators.

From this theorem, we can deduce the asymptotic behavior of the generalization error -
defined in this chapter as the integrated mean squared error - as a function of the reduced
observation noise variance (it corresponds to the noise variance when the number of observa-
tions equals one). This result generalizes previous ones which give this behavior in dimension
one or two or for a restricted class of covariance kernels (for degenerate ones). The significant
differences between the rate of convergence of degenerate and non-degenerate kernels high-
light the relevance of our theorem which holds for non-degenerate kernels. This is especially
important as usual kernels for Gaussian process regression are non-degenerate.

Our work deals with Gaussian process regression when the variance of the noise can be
reduced by increasing the budget (i.e. the number of replications at each point). Our results
are of practical interest in this case since it gives the total budget needed to reach a precision
prescribed by the user. We efficiency of the presented result is emphasize on an industrial
application to the safety assessment of a nuclear system containing fissile materials.
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Chapter

Asymptotic normality of a Sobol index
estimator in noisy kriging framework

8.1 Introduction

As in the noisy-free case presented in Chapter 6, stochastic simulators commonly have a
large number d of input parameters for which we want to measure their importance on the
model output. Like in Chapter 6, we focus on the variance-based Sobol indices [Sobol, 1993]
coming from the Hoeffding-Sobol decomposition [Hoeffding, 1948]. We recall that we consider
independent input random variables.

Monte-Carlo methods are widely used to estimate the Sobol indices (see [Sobol, 1993],
[Sobol et al., 2007| and [Janon et al., 2012]). Their main advantages are that they allow for
quantifying the uncertainty related to the estimation errors. In particular, for non-asymptotic
cases, this can be easily carried out with a bootstrap procedure as presented in [Archer et al.,
1997] and [Janon et al., 2011]. Furthermore, in asymptotic cases, useful properties can be
shown as the asymptotic normality [Janon et al., 2012]. The reader is referred to [van der
Vaart, 1998] for an extensive presentation of asymptotic statistics.

Nevertheless, Monte-Carlo methods require a large number of simulations and are of-
ten unachievable under reasonable time constraints. Therefore, in order to avoid prohibitive
computational costs, we surrogate the simulator with a meta-model and we perform the es-
timations on it. In this chapter, we consider a special surrogate model corresponding to a
Gaussian process regression with a large number of observations. Indeed, we have seen in
Chapter 7 that in a stochastic simulator framework with a fixed budget, the noise variance of
the observations is proportional to their number. Therefore, in principle we have to make a
trade-off between the number of simulations and the output accuracy. Actually, we consider
the asymptotic case where the number of observations tends to infinity.

More precisely we consider an idealized regression problem for which we can deduce a
posterior predictive mean and variance tractable for our purpose. Furthermore, thanks to
the results presented in Chapter 7, we can explicitly derive the rate of convergence of this
meta-model approximation error with respect to the computational budget. Therefore, the
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Sobol index estimates - which are evaluated with a Monte-Carlo procedure by replacing the
true code with the posterior predictive mean - have two sources of uncertainty: the one related
to the Monte-Carlo scheme and the one related to the meta-model approximation. The error
due to the Monte-Carlo procedure tends to zero when the number of particles (calls of the
meta-model) tends to infinity and as presented in Chapter 7 the error due to the meta-model
tends to zero when the budget (calls of the complex simulator used to build the meta-model)
tends to infinity. A question of interest is whether the asymptotic normality presented in
[Janon et al.; 2011] is maintained.

The aim of this chapter is thus to provide conditions on the budget and the number of
Monte-Carlo particles which ensure the asymptotic normality of a Sobol index estimator. The
princip