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Context

The general framework of the manuscript is the approximation of a real-valued function z(x):

z : Q ⊂ R
d → R

x 7→ z(x)

from some of its values {z(x1), . . . , z(xn)}, (xi)i=1,...,n ∈ Q where Q is a nonempty open set

called the input parameter space. We suppose that we do not have any information about this

function. Such a function is generally called in the computer experiments literature a black-

box function and it represents the output of a computer code taking x as input parameters.

Computer codes are widely used in science and engineering to describe physical phenomena.

The term “Computer Experiments” refers to mathematical and statistical modeling using

experiments performed via computer simulations. This kind of experiments is often called

“experiments in silico”.

To approximate the relation between the input variable x and the response variable z(x),

the only available information is the so-called experimental design set D = {x1, . . . , xn} and

the known outputs zn = {z(x1), . . . , z(xn)} of z(x) at points in D. Nevertheless, they are not

sufficient to build a surrogate model for z(x). Indeed, we also have to make some assumptions

about the space where z(x) lies.

A legitimate question that we can point out is the necessity to control the number n of

observations. Indeed, a natural way to know the output z(x) is to simulate the computer

code with the input variable x. Nonetheless, advances in physics and computer science lead

to increased complexity for the simulators. As a consequence, performing an uncertainty

propagation, a sensitivity analysis or an optimization based on a complex computer code is

extremely time-consuming since it requires a large number of computer simulations. Therefore,

to avoid prohibitive computational costs, a fast approximation of the computer code - also

called surrogate model or meta-model - is built with a restricted n.

The statistical approach is widely used for the analysis of computer experiments since

there are many sources of uncertainty to consider. We summary them in the following graph.
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Statistical analyses generally deal with the measurement, the modeling and the meta-

modeling errors. The modeling error has two main sources of uncertainty. The first one

is the mathematical approximation of the phenomena including physical simplifications and

the second one is the uncertainty about the values of the physical parameters present in

the model. The measurement error represents the uncertainty between the real phenomena

and our observations of the phenomena. Finally, the meta-model error corresponds to the

uncertainty due to the approximation of the code output. Since the meta-models are also

implemented with computer codes, this part includes discretization, truncation and round-off

errors.

We note that the discretization error is due to the transcription of the mathematical

model - generally considering continuous functions - into a discrete model. Furthermore, the

truncation error is due to the fact that computers can only deal with finite approximations

and the round-off error arises because we can only represent a finite number of real numbers

on a machine. We highlight that nowadays, we cannot handle all sources of uncertainty and

thus the ones between the reality and the surrogate model remain unknown.

In this manuscript, we focus on the measurement and on the meta-modeling errors. In

particular, we consider the Gaussian process regression - also called kriging model - as surrogate

14



model. It is a useful and very popular tool to approximate an objective function given some

of its observations (see e.g [Sacks et al., 1989b], [Sacks et al., 1989a], [Currin et al., 1991],

[Morris et al., 1993], [Laslett, 1994], [Koehler and Owen, 1996], [Schonlau, 1998], [Stein, 1999],

[Kennedy and O’Hagan, 2001], [Santner et al., 2003], [Fang et al., 2006], [O’Hagan, 2006],

[Conti and O’Hagan, 2010], [Bect et al., 2012] and [Gramacy and Lian, 2012]). It corresponds

to a particular class of surrogate models which makes the assumption that the response of

the complex code is a realization of a Gaussian process. A strength of this approach is that

it provides a basis for statistical inference through the Gaussian assumption. It has originally

been used in geostatistics by [Krige, 1951] to interpolate a random field at unobserved locations

(see [Matheron, 1963], [Matheron, 1969], [Chilès and Delfiner, 1999], [Wackernagel, 2003],

[Berger et al., 2001] and [Gneiting et al., 2010]) and it has been developed in many areas such

as environmental and atmospheric sciences. It was then proposed in the field of computer

experiments by [Sacks et al., 1989b]. During the last decades, this method has become widely

used and investigated.

We introduce the Gaussian process regression in Part I. This chapter is inspired by the

books of [Stein, 1999], [Santner et al., 2003] and [Rasmussen and Williams, 2006], the reader

is referred to them for more detail about kriging model. In this part, we introduce in Chapter

1 the univariate kriging model, i.e. when the output of the objective function is a scalar. In

this chapter, we present different approaches for the kriging model: from the Bayesian one

in Section 1.2 to the original one introduced by [Krige, 1951] in Section 1.5. Furthermore,

throughout Chapter 1 we present some methods to implement and use in practical way the

kriging model. In particular, in Section 1.3 we present classical mathematical tools and recent

advances about model selection in a Gaussian process regression context. Moreover, in Section

1.4 we discuss about covariance kernels which are an important element of kriging model.

Finally, we give in Chapter 1 some theoretical insights about Gaussian process regression.

More specifically, we deal with spectral representation of a Gaussian process in Section 1.4

and we propose a short introduction to reproducing kernel Hilbert spaces in Section 1.5.

Then, in Chapter 2, we present kriging models in a multivariate framework. The corre-

sponding method is called co-kriging and is used when the output of the objective function

is a vector with correlated components. First in Section 2.1, we extend the Bayesian kriging

equations presented in Section 1.2 for the co-kriging models. Second, we present in Section

2.2 the original co-kriging model introduced in the geostatistical literature. We will see that

the Bayesian and the geostatistical approaches are equivalent. Then, in Section 2.3 we discuss

about matrix-valued covariance kernels which are an important ingredient of the method with

a non-trivial definition. Finally, in Section 2.4, we give an example of a co-kriging model

widely used in computer experiments which allows for taking into account the derivatives into

the model building.

Sometimes low-fidelity versions of the computer code are available. They may be less

accurate but they are computationally cheap. A question of interest is how to build a surrogate

model using data from simulations of multiple levels of fidelity. The objective is hence to

build a multi-fidelity surrogate model which is able to use the information obtained from the

fast versions of the code. Such models have been presented in the literature [Craig et al.,
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1998], [Kennedy and O’Hagan, 2000], [Higdon et al., 2004], [Forrester et al., 2007], [Qian

and Wu, 2008] and [Cumming and Goldstein, 2009]. We propose in Part II some derivations

and extensions to the model proposed by [Kennedy and O’Hagan, 2000] and investigated by

[Higdon et al., 2004], [Forrester et al., 2007] and [Qian and Wu, 2008]. First of all, we present

this model in Chapter 3 and we deal with some key issues that make difficult to use the

suggested model for practical applications. In particular we propose in sections 3.3 and 3.6

an original approach for the parameter estimations which is effective even when the number

of code levels is large. Furthermore, we propose in Section 3.4 a Bayesian formulation of the

model which allows to consider prior information in the parameter estimations and integrates

all the uncertainty due to the estimation of the parameters. We also proposed some tricks

to reduce the computational complexity of the model. Comparisons have been performed

between our model and the ones of [Kennedy and O’Hagan, 2000] and [Qian and Wu, 2008]

on a academic example in Section 3.5 and on an application in Section 3.7. They show that our

approach improves the former ones both in terms of prediction accuracy and computational

costs.

Then, in Chapter 4, we suggest another approach to build multi-fidelity co-kriging models

based on a recursive formulation. With this original formulation presented in Section 4.2, we

obtain the same performance in terms of prediction accuracy and computational costs as the

model proposed in Chapter 3 when we use the suggested improvements. However, it allows

for extending classical results of kriging to the considered co-kriging model. In particular,

we give Universal co-kriging equations in Section 4.3 which integrate the uncertainty due to

the estimation of some parameters. Moreover, in Section 4.4 we give computational shortcuts

to compute the cross-validation procedure for the suggested multi-fidelity co-kriging model.

The efficiency of the recursive formulation of the model is emphasized on an application in

Section 4.5. We also implement this model in a R CRAN package named “MuFiCokriging”

(http://cran.r-project.org/web/packages/MuFiCokriging) and present it in Section 4.6.

Another strength of the approach presented in Chapter 4 is that it allows for obtaining the

contribution of each code level into the total model variance. We use this important property

in Chapter 5 to propose sequential design strategies in a multi-fidelity framework.

In Chapter 5, we first propose original kriging-based sequential design strategies in Section

5.1. The novelty is that they take into account the model prediction capability into the

sequential procedure and not only the estimated model variance. Then, we give in Section

5.2 a method to extend the kriging-based sequential design strategies to the multi-fidelity co-

kriging model. We note that, in a multi-fidelity framework, the search for the best locations

where to run the code is not the only point of interest. Indeed, once the best locations are

determined, we also have to decide which code level is worth being run. In particular, the

presented extensions take into account the computational time ratios between code versions

and the part of each code into the model’s variance. The performance of the given sequential

strategies for kriging and co-kriging models are illustrated on applications in Section 5.3.

In many cases, computer codes have a large number d of input parameters. Global sensi-

tivity analysis aims to identify those which have the most important impact on the output.

A popular tool to perform global sensitivity analysis is the variance-based method coming

16

http://cran.r-project.org/web/packages/MuFiCokriging


from the Hoeffding-Sobol decomposition [Hoeffding, 1948] and named as the Sobol method

[Sobol, 1993]. Nevertheless, this method requires an important number of simulations. The

codes being often extremely time-consuming, we use a surrogate model to handle with it. We

present in Chapter 6 an original kriging-based global sensitivity analysis. In particular, it

fixes important flaws present in the pioneering article of [Oakley and O’Hagan, 2004]. We

present the principle of their method in Section 6.3 and give some improvements for it. Then,

in Section 6.4 we suggest our original approach to perform kriging-based sensitivity analysis.

Finally, the extensions of the two presented methods for the multi-fidelity co-kriging models

are presented in Section 6.5.

We emphasize that in Chapter 6 Subsections 6.4.3 and 6.5.2 we propose two methods to

generate samples with respect to the kriging and co-kriging predictive distributions on large

data sets. In particular, we avoid numerical issues such that ill-conditioned matrices and high

computational costs.

For many realistic cases, we do not have direct access to the function to be approximated

but only to noisy versions of it. For example, if the objective function is the result of an

experiment, the available responses can be tainted by measurement noise. Another example is

Monte-Carlo based simulators - also called stochastic simulators - which use Monte-Carlo or

Monte-Carlo Markov Chain methods to solve a system of partial differential equations through

its probabilistic interpretation. Gaussian process regression can be easily adapted to the case

of noisy observations. We deal with the framework of stochastic simulators in Part III.

First, we introduce at the beginning of Part III, the context of stochastic simulators. The

important point is that in this framework the observation noise variance is inversely propor-

tional to the number of particles used to the Monte-Carlo schemes. Furthermore, the amount

of particles also controls the computational cost of the simulator. Therefore, in that frame-

work, we have an explicit relation between the accuracy of an output and its computational

cost. Another particularity is that an infinite number of code levels of increasing accuracy

can be obtained. In particular, we consider the case of partially converged simulations, i.e.

an accurate code output corresponds to a coarse one after continuing the Monte-Carlo con-

vergence. We show in the introduction of Part III that using a multi-fidelity co-kriging model

in such a context is equivalent to use a noisy-kriging considering uniquely the most accurate

simulations.

Then, Chapter 7 deals with the learning curve describing the generalization error of the

Gaussian process regression as a function of the training size. The main result of this chapter

is the proof of a theorem giving the generalization error for a large class of correlation kernels

and for any dimension when the number of observations is large. The theorem is presented

in Section 7.3 and its proof is given in Section 7.7. The presented proof generalizes previous

ones that were limited to special kernels or to small dimensions (one or two). From this

result, we deduce in Section 7.4 the asymptotic behavior of the generalization error when

the observation error is small. This is of interest since it provides a powerful tool for decision

support. Indeed, from an initial experimental design set, it allows for predicting the additional

computational budget necessary to reach a given desired accuracy. This result is applied

successfully in Section 7.6 to a nuclear safety problem. Moreover, in Section 7.5 we deal with
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the optimal resource allocation. If we consider as fixed the number of particles for the Monte-

Carlo procedures and the number of simulations, then a question of interest is to find the

particle repartition on the simulations which minimizes the model uncertainty. We provide a

proposition giving an optimal allocation under restricted conditions. Furthermore, we observe

in Appendix D that this allocation remains efficient in more general cases.

Finally, we address in Chapter 8 the problem of global sensitivity analysis for stochastic

simulators. As seen previously, variance-based sensitivity methods require a large number of

simulations. As the computer codes are time-consuming they are generally substituted by a

surrogate model. Therefore, there are two sources of uncertainty in such analysis. The first one

corresponds to the meta-model error (approximation error) and the second one corresponds to

the error on the sensitivity index estimates of the meta-model (estimation error). To perform

such analysis, we suggest a particular surrogate model in Section 8.2 which corresponds to a

Gaussian process regression build from lot of simulations but with a large uncertainty. The

main result of this chapter is a theorem presented in Section 8.3 which gives sufficient condi-

tions to obtain the asymptotic normality for the suggested index estimators. The proof of this

theorem is given in Subsection 8.4. From the theorem, we can derived asymptotic confidence

intervals taking into account the uncertainty of both the meta-model approximation error and

the index estimation error. We illustrate on an example the efficiency of our approach.
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Notations

a.c. absolutely continuous,

a.s. almost surely,

a.e. almost every,

BLUP Best Linear Unbiased Predictor,

CV Cross-Validation,

IMSE Integrated Mean Squared Error,

LOO Leave-One-Out,

MCMC Monte-Carlo Markov Chain,

MLE Maximum Likelihood Estimate,

MSE Mean Squared Error,

RKHS Reproducing Kernel Hilbert Space,

z(x) Objective function to be approximated,

x input parameter in a subset Q of Rd,

Q nonempty open subset of Rd representing the input parameter space,

d number of dimensions of the input parameter space,

n number of observations,

zn the vector of the observed values of z(x) in D.

D the n× d experimental design set, the n lines represent the observation

points in Q,

GP Gaussian process,

N Multivariate or univariate Gaussian distribution,

Z(x) Gaussian process of mean m(x) and covariance structure k(x, x̃),

Zn the Gaussian vector Z(D),

k(x, x̃) covariance function or continuous positive definite kernel,

k(x) covariance vector between x and D with respect to k(x, x̃),

K covariance matrix of D with respect to k(x, x̃),

V(x, x̃) matrix valued covariance kernel,

r(x, x̃) correlation kernel,

r(x) correlation vector between x and D with respect to r(x, x̃),

R correlation matrix of D with respect to r(x, x̃),

θ hyper-parameters of the covariance or correlation structure,
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σ2 variance parameter,

f(x) vector of regressors of size p,

β regression parameter,

F design matrix corresponding to the values of f ′(D),

Ω sample space,

F a σ-algebra on Ω,

B the Borelian σ-algebra,

P a probability on F ,

µ a probability measure on Q,

p(x) probability density function,

E expectation,

cov covariance,
L
= equality in distribution,

:= an equality which acts as a definition,

1 indicator function,

I the identity matrix,
′ matrix or vector transpose,

tr trace of a matrix,

〈.〉 scalar product,

||.|| euclidean norm,

δx=x̃ Kronecker symbol,

diag (x) diagonal matrix with diagonal vector x,

∗ convolution operator,

H a Hilbert space of real functions,

L2
µ space of square-integrable functions with respect to the measure µ.
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Chapter 1

An introduction to Gaussian process

regression

Let us consider that we are interested in approximating an objective function z(x) ∈ R with

x ∈ Q ⊂ R
d from few of its observations and where Q is a nonempty open set. In our

framework, z(x) represents the output of a code and x represents its input. Furthermore,

we denote by D = {x1, . . . , xn} with xi ∈ Q the experimental design set and zn = z(D)

the values of z(x) at points in D - zn is called the vector of observations. Gaussian process

regression - also called kriging model - is a very popular tool to perform such approximation.

Throughout, the manuscript, we will equivalently use the term kriging model or Gaussian

process regression.

We present in this chapter the Gaussian process regression principle through different

approaches. First, we introduce it with a Bayesian paradigm in Section 1.2. Then, we give

two other approaches: the geostatistical one with the Best Linear Unbiased Predictor (BLUP)

(Subsection 1.5.1) and the regularization one with the representer theorem in a Reproducing

Kernel Hilbert Space (RKHS) (Subsection 1.5.2).

We also deal with two important points controlling the efficiency of the Gaussian process

regression. The first one is about the model selection (Section 1.3) in which we present different

ways to estimate the model parameters. The second one is the choice of the covariance kernel

of the Gaussian process used in the model (Section 1.4). Over all, let us introduce in the next

Section 1.1 the so-called Gaussian processes.

1.1 Gaussian processes: a short introduction

Let us consider a probability space (ΩZ ,FZ ,PZ), a measurable space (S,B(S)) and T an

arbitrary set. A stochastic process Z(x), x ∈ T , is a collection of random variables defined

on (ΩZ ,FZ ,PZ), indexed by T and with values in S. Z(x) is Gaussian if and only if for

any finite collection C ⊂ T , Z(C) has a joint Gaussian distribution. In our work, we always

have S = R and T = Q ⊂ R
d with d an integer representing the dimension of the input

parameter space and Q a nonempty open set. A Gaussian process is completely specified by

23
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its mean function m(x) = EZ [Z(x)] and its covariance function k(x, x̃) = covZ (Z(x), Z(x̃)) =

EZ [(Z(x)− EZ [Z(x)])(Z(x̃)− EZ [Z(x̃)])].

The mean function m(x) of a Gaussian process represents its trend. In a Gaussian process

regression framework, we usually choose a mean function of the form m(x) = f ′(x)β, with

f ′(x) = (f1(x), . . . , fp(x)) a vector of regressors generally including a constant function and β

a p× 1 vector of regression parameters.

The covariance function k(x, x̃) is a positive definite kernel, i.e. for all (ai)i=1,...,N ∈ R,

N ∈ N
∗ and distinct (xi)i=1,...,N ∈ T , it satisfies the following property:

N
∑

i,j=1

aiajk(xi, xj) ≥ 0

and
∑N

i,j=1 aiajk(xi, xj) = 0 if and only if ai = 0 for all i = 1, . . . , N . Furthermore, we always

consider in the manuscript that k(x, x̃) is continuous and supx∈T k(x, x) <∞. The covariance

kernel describes the dependence structure of the Gaussian process Z(x). In our framework,

we often consider kernels of the form k(x, x̃) = σ2r(x, x̃;θ) where r(x, x̃;θ) is a correlation

kernel parametrized with the vector θ and σ2 is the variance parameter. Furthermore, we

generally consider a stationary kernel, i.e. k(x, x̃) is a function of x− x̃. Nonetheless, for some

derivations - like in Chapter 7 - we consider any continuous positive definite kernel k(x, x̃) such

that supx∈T k(x, x) < ∞. The covariance kernel is certainly the most important ingredient

of a Gaussian process regression. Indeed, it controls the smoothness of the Gaussian process

(see Section 1.5) and thus the regularity of the approximation of the objective function z(x).

A first example of covariance kernel. A popular covariance kernel is the isotropic

squared exponential one defined as

k(x, x̃) = σ2 exp

(

− 1

2θ2
||x− x̃||2

)

, (1.1)

where ||.|| stands for the euclidean norm. It is parametrized by the hyper-parameter θ which is

called the characteristic length-scale or correlation length. Roughly speaking, θ represents the

distance for which the observations are strongly dependent. In general, the parameters of the

covariance function are referred to hyper-parameters to highlight that they are parameters of

a non-parametric model. We illustrate in Figure 1.1 some realizations of Gaussian processes

with a squared exponential covariance kernel. We vary the formula of the mean and the

value of the variance parameter σ2 and the hyper-parameter θ. We observe in Figure 1.1

that the variance parameter σ2 controls the range of variation of the Gaussian process, the

hyper-parameter θ controls the oscillation frequencies and the mean controls the trend of the

Gaussian process.

1.2 Kriging models : a Bayesian approach

In a kriging framework, we consider that the code z(x) is a realization of a Gaussian process

Z(x). Usually, we consider a Gaussian process with mean of the form m(x) = f ′(x)β, with
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Figure 1.1: Realizations of Gaussian processes with squared exponential kernel with different

parameter values and trend formulas. The shade area represents the point-wise mean plus

and minus twice the standard deviation. It corresponds to 95% confidence intervals.

f ′(x) = (f1(x), . . . , fp(x)) and with covariance function k(x, x̃) = σ2r (x, x̃;θ). The mean of

the Gaussian process models the trend of the observations with respect to the input parame-

ters and the covariance structure models the dependence between the different values of the

objective function.

1.2.1 Kriging equations

We develop in this subsection the so-called kriging equations. The kriging mean provides

the surrogate model that we use to approximate the objective function z(x) and the kriging

variance represents the uncertainty of the model. We derive two types of kriging models. In

the first one, we consider that the observations are noisy-free. In the second one, we consider

that the observations are tainted by a white noise.



26 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

The noisy-free case

We consider the random vector Zn := Z(D) which is Gaussian since Z(x) is a Gaussian

process. We consider the problem of predicting the random variable Z(x) for any x ∈ Q.

Intuitively, we want to use the information contains in Zn to predict Z(x) and thus we consider

the joint distribution of Z(x) and Zn given by:

(

Z(x)

Zn

)

∼ N
((

f ′(x)β
Fβ

)

, σ2

(

1 r′(x)
r(x) R

))

, (1.2)

where ′ stands for transpose, F := f ′(D) is the design matrix, r′(x) = [r(x, xi;θ)]i=1,...,n

is the correlation vector between Z(x) and the observations at points (xi)i=1,...,n in D and

R = [r(xi, xj ;θ)]i,j=1,...,n is the correlation matrix between the observations at points in D.

Then, the predictive distribution is defined by [Z(x)|Zn = zn,β, σ2,θ]. The notation

[A|B] stands for the distribution of A conditionally to B. Conditionally to β, σ2,θ the random

vector (Z(x),Zn) is Gaussian. Therefore, conditionally to these parameters, the conditional

distribution [Z(x)|Zn = zn,β, σ2,θ] is a Gaussian N
(

ẑ(x), s2(x)
)

with :

ẑ(x) = f ′(x)β + r′(x)R−1 (zn − Fβ) (1.3)

and

s2(x) = σ2
(

1− r′(x)R−1r(x)
)

. (1.4)

Equations (1.3) and (1.4) correspond to the Simple Kriging equations, i.e. when all

parameters are considered as known. The kriging mean ẑ(x) is the surrogate model

that we use to approximate the objective function z(x) and the kriging variance s2(x)

represents the model mean squared error.

We illustrate in Figure 1.2 some realizations of a conditional Gaussian process distribution.

We see in Figure 1.2 that the kriging mean interpolates the observations. This is an important

property of kriging equations. Furthermore, we see that the kriging variance equals zero at

points of the experimental design set. It means that we consider that the model error is null

at these points. It is natural since the model is interpolating.

Then, we see in Equation (1.3) that the kriging mean does not depend on the variance

parameter σ2. In fact, this parameter - representing the range of variation of the function z(x) -

has just an impact on the kriging variance (1.4). Furthermore, we see that the kriging variance

does not depend on the observations zn. This property can be useful to elaborate strategies

to reduce the model uncertainty. Indeed, we can evaluate the reduction of uncertainty after

adding some points into the experimental design set without simulating new observations.

Nevertheless, this point is also a big flaw of the method. Since the Gaussian assumption

cannot be verified, the kriging variance can poorly represent the model error. In fact, kriging

variance is more a measure of the distance between the point x and the points in D than a

measure of the prediction error at point x. Therefore, conception based uniquely on kriging
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Figure 1.2: Realizations of a conditional Gaussian process distribution with squared expo-

nential kernel, variance parameter σ2 = 1, hyper-parameter θ = 0.1, regressors function

f ′(x) = (1, x) and trend parameter β = (−1, 1). The thin purple lines represent the realiza-

tions, the crosses represent the observations, the thick blue line represents the kriging mean

ẑ(x) and the shade area represents the mean ẑ(x) plus and minus twice the standard deviation

s(x). It corresponds to 95% confidence intervals.

variance could be inappropriate. We present in Chapter 5 an example of method which uses

the model prediction capability to adjust the kriging variance.

Furthermore, if we denote by Y (x) = Z(x)−f ′(x)β, yn = yn−Fβ and ŷ(x) = ẑ(x)−f ′(x)β,

then Y (x) is a Gaussian process with mean zero and the same covariance structure as Z(x).

Then we can rewrite Equation (1.3) with the two following forms:

ŷ(x) =
n
∑

i=1

αiy
n
i , (1.5)

with αi = [r′(x)R−1]i, i = 1, . . . , n and

ŷ(x) =
n
∑

i=1

γik(x, xi), (1.6)

with γi =
[

R−1 (zn − Fβ)
]

i
, i = 1, . . . , n. These two equations introduce the two other

approaches of the Gaussian process regression. In Equation (1.5) we notice that the predictor

ŷ(x) can be viewed as a linear predictor with respect to the observed values yn. This approach

which refers to the Best Linear Unbiased Predictor (BLUP) is presented in Subsection 1.5.1.

Then, in Equation (1.6), we see that the predictor can be written as a linear combination

of the kernel k(x, x̃) centered onto the points of the experimental design set. This form -

corresponding to the solution of a specific regularization problem in a Reproducing Kernel

Hilbert Space (RKHS) - is presented in Subsection 1.5.2.
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The noisy case

For many cases, we do not have direct access to the function to be approximated but only

to a noisy version of it. For example, if the objective function is the result of an experiment,

the observations are typically tainted by measurement noise. Let us suppose that we want

to approximate an objective function x ∈ Q → f(x) ∈ R from noisy observations at points

(xi)i=1,...,n in D. Throughout the manuscript f(x) designs a function for which we have noisy

observations (see Part III). We assume an independent Gaussian observation noise with zero

mean and variance σ2ε(x). In the computer experiments literature, it is referred as the “nugget

effect”. Therefore, we have n observations of the form zi = f(xi) + σε(xi)εi where (εi)i=1,...,n

are independent and identically distributed with respect to a Gaussian distribution with zero

mean and variance one. As in the noisy-free case, we assume that f(x) is a realization of a

Gaussian process Z(x) of mean m(x) = f ′(x)β and covariance structure k(x, x̃) = σ2r(x, x̃;θ).

Denoting by Zn = Z(D) + εn, with εn := [σε(xi)εi]i=1,...,n, we have the following covariances:

cov (Z(x),Zn) = k′(x),

with k′(x) = [k(x, xi)]i=1,...,n and

cov (Zn,Zn) = K+∆,

where K = [k(xi, xj)]i,j=1,...,n, ∆ = [σ2ε(xi)δij ]i,j=1,...,n and δij is the Kronecker delta which is

one if i = j and zero otherwise. Therefore, we have the following joint distribution:

(

Z(x)

Zn

)

∼ N
((

f ′(x)β
Fβ

)

,

(

k(x, x) k′(x)
k(x) K+∆

))

. (1.7)

Then, the predictive distribution [Z(x)|Zn = zn,β, σ2,θ,∆] is still a Gaussian distribution

N
(

ẑ(x), s2(x)
)

with :

ẑ(x) = f ′(x)β + k′(x)(K+∆)−1 (zn − Fβ) (1.8)

and

s2(x) = k(x, x)− k′(x)(K+∆)−1k(x). (1.9)

We note that in the noisy case, the predictor (1.8) can also be viewed as a linear predictor with

respect to the observations or as a regularization problem solution in a RKHS. Furthermore,

the mean ẑ(x) of the predictive distribution no longer interpolates the observations zn and the

variance s2(x) is not zero at points in the experimental design set. This properties are natural

since there is no sense to interpolate the observations if they are tainted by noise. Moreover,

at a point xi ∈ D, the predictive variance cannot equal zero since it takes into account the

observation noise variance. We present in Figure 1.3 an example of kriging model in a noisy

framework.
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Figure 1.3: Realizations of a conditional Gaussian process distribution with noisy observations

and a squared exponential kernel. The variance parameter equals σ2 = 2, the hyper-parameter

equals θ = 0.1 and the mean m(x) is null. The thin purple lines represent the realizations, the

crosses represent the observations, the thick blue line represents the kriging mean ẑ(x) and

the shade area represents the mean ẑ(x) plus and minus twice the standard deviation s(x).

Furthermore, the observation noise variance is σ2ε(x) = (2 + sin(4πx))/4.

1.2.2 Bayesian kriging equations

We discuss in this section about the Bayesian approach in Gaussian process regression. In

a Bayesian paradigm the parameters and hyper-parameters of the model are considered as

unknown and are modeled by random variables. The first objective is to infer from the

observations about the parameters and hyper-parameters. Then the aim is to provide a

predictive distribution integrating the posterior distributions of the parameters and hence

taking into account their uncertainty.

The Bayesian approach has two important strengths. First, it allows for taking into ac-

count all the sources of uncertainty coming from the parameter estimations into the predictive

distribution. Second, it allows for taking into account expert knowledges - through a prior

distribution - into the parameter estimations. For more detail about the Bayesian methods,

the reader is referred to the book of [Robert, 2007].

In counterpart, they are two important flaws in a Bayesian modeling. The first one -

perhaps the most important - is that the posterior distributions are sensitive to the prior

distributions given by experts. This flaw is even more important that we often restrict the

choice of the prior distributions in order to obtain closed form formulas for the posterior

predictive distributions. Such prior distributions are called conjugate distributions. The

second one is that for general prior distributions, there is no closed form expressions for

the predictive distribution. It is then necessary to perform various numerical integrations

which are usually done with Monte-Carlo Markov Chain (MCMC). These methods could be

computationally expensive and not be suitable for practical applications - this explains the

use of conjugate priors. For more detail about MCMC schemes, the reader is referred to the

book of [Robert and Casella, 2004].
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The Jeffreys law

A question of interest in a Bayesian approach is to describe prior distributions which reflect the

fact that there is no prior knowledge about the parameters. These distributions are called non-

informative. For the non-informative case, we use the improper distributions corresponding to

the “Jeffreys priors” [Jeffreys, 1961]. These laws are based on the Fisher information matrix

[Fisher, 1956] which is defined as the expected value of the observed information.

Let us denote by zn a sample of a random variable Z and f(zn|ψ) the likelihood of a

parameter ψ = (ψi)i=1,...,d with respect to zn. The observed information matrix is defined as:

I(ψ; zn) =
[

− ∂2

∂ψi∂ψj

log(f(zn|ψ))
]

i,j=1,...,d

.

Then, the Fisher information matrix is given by:

I(ψ) =

[

−E

[

∂2

∂ψi∂ψj

log(f(zn|ψ))
]]

i,j=1,...,d

.

where the expectation is taken with respect to the distribution of zn with the parameter ψ

The “Jeffreys prior” distribution is given by the density function:

p(ψ) ∝ [det (I(ψ))]1/2 . (1.10)

The “Jeffreys prior” distribution is a widely used non-informative prior distribution which is

justified because the Fisher information is considered as a measure of the information about

ψ contained in the observations. It has the desirable property to be invariant under re-

parameterization of the parameter vector ψ [Jeffreys, 1946]. Furthermore, the Cramér-Rao

bound states that the inverse of the Fisher information is a lower bound on the variance of

any unbiased estimator of ψ ([Cramer, 1999] and [Rao, 1945]). Using a “Jeffreys prior” is

equivalent to minimize the impact of the prior distribution.

Let us consider that zn is sampled from a multivariate Gaussian distribution with mean

Fβ and covariance matrix σ2R, we have:

I(σ2; zn) = − n

2σ4
+

(zn − Fβ)′R−1 (zn − Fβ)

σ6
.

From which we deduce that:

I(σ2) =
n

2σ4
.

The non-informative Jeffreys distribution is then given by:

p(σ2) ∝ 1

σ2
. (1.11)

Following the same guideline, we find that:

p(β|σ2) ∝ 1. (1.12)

We note that an improper prior distribution is not bad if the provided posterior distribution is

proper. Indeed, according to the Bayesian version of the likelihood principle, only the posterior
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[σ2] ∼ IG(α, γ) p(σ2) ∝ 1
σ2

[β|σ2] ∼ Np(b0, σ
2V0) (1) (2)

p(β|σ2) ∝ 1 (3) (4)

Table 1.1: Four different cases corresponding to four combinations of prior distributions for

the model parameters.

distributions are of importance (see [Robert, 2007] Sections 1.3 and 1.5). Furthermore, from a

practical point of view, Bayesian methods can be applied as soon as the posterior distributions

are proper. We note that some arguments about the advantage of improper prior distributions

are given in [Robert, 2007] Section 1.5.

Bayesian parameter estimation

We describe here the Bayesian estimation of the parameters (β, σ2) in equations (1.3) and

(1.4). We use a hierarchical specification for the model parameters. At the lowest level, we

consider the parameter β. At the second level we have the parameter σ2 which controls the

distribution of β. At the top level we have the parameter θ which controls the distribution of σ2

and β. In the Bayesian literature, we call hierarchical models those coming from this procedure

[Robert, 2007]. Throughout the manuscript, we do not consider the hyper-parameter θ as a

random variable except in Subsection 1.3.1 where we present how to perform a Bayesian

estimation of θ. Other estimation methods for θ are described in Subsection 1.3.

Parameter prior distributions. We consider the following informative prior distribu-

tions:

[β|σ2] := N
(

b0, σ
2V0

)

(1.13)

and

[σ2] := IG(α, γ), (1.14)

where IG(α, γ) stands for the inverse gamma distribution with density function

p(x) =
γα

Γ(α)

e−γ/x

xα+1
1x>0.

Those prior distributions are commonly used in Bayesian kriging. They allow for obtaining

closed form expression for the predictive distribution. Such priors are called conjugate priors in

the Bayesian literature. In the forthcoming developments, we consider the four cases presented

in Table 1.1.

Parameter posterior distributions. We gave in Table 1.1 the prior distributions of

the parameters. The purpose of this paragraph is to provide their posterior distributions, i.e.

the one conditioned by the observed values zn. The equations derived below can be found in

the book of [Santner et al., 2003]. First, let us explain the likelihood of β and σ2:

f(zn|β, σ2) = 1

(2πσ2)n/2
√
detR

exp

(

−1

2

(zn − Fβ)′R−1 (zn − Fβ)

σ2

)

. (1.15)



32 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

The Bayes rules1 give us the following equation

p(β|zn, σ2) ∝ f(zn|β, σ2)p(β|σ2), (1.16)

from which we can deduce that the posterior distribution [β|zn, σ2] for parameter β is the

following one:

[β|zn, σ2] = N (Aν,A) , (1.17)

where:

A−1 =

{

[F′R−1F+V−1
0 ]/σ2 (1)&(2)

[F′R−1F]/σ2 (3)&(4)

and

ν =

{

[F′R−1zn +V−1
0 b0]/σ

2 (1)&(2)

[F′R−1zn]/σ2 (3)&(4)

Then, the following equality

p(σ2|zn) = f(zn|β, σ2)p(β|σ2)p(σ2)/p(β|σ2, zn)/f(zn) (1.18)

leads to the following posterior distribution [σ2|zn] for parameter σ2:

[σ2|zn] = IG(νσ, Qσ), (1.19)

where

Qσ ∝



















2γ + (b0 − β̂)(V0 + [F′R−1F]−1)−1(b0 − β̂) + Q̃σ (1)

(b0 − β̂)′(V0 + [F′R−1F]−1)−1(b0 − β̂) + Q̃σ (2)

2γ + Q̃σ (3)

Q̃σ (4)

,

with β̂ = (F′R−1F)−1(F′R−1zn), Q̃σ = (zn)′[R−1 −R−1F(F′R−1F)−1F′R−1]zn and

νσ ∝



















n/2 + α (1)

n/2 (2)

n− p/2 + α (3)

n− p/2 (4)

.

Posterior predictive distribution

We have explained in equations (1.17) and (1.19) the posterior distribution of parameters

(β, σ2). The purpose of this paragraph is to provide the posterior predictive distribution

[Z(x)|Zn = zn] integrating the parameter posterior distributions.

First, let us integrate the posterior distribution of β:

p(z(x)|zn, σ2) =
∫

p(z(x)|zn,β, σ2)p(β|zn, σ2)dβ.

1If A and B are events such that P (B) 6= 0, we have P (A|B) = P (B|A)P (A) /P (B). The continuous version

of this result is the following one: given two random variables x and y with conditional distribution f(x|y) and

marginal distribution g(y), the conditional distribution of y given x is g(y|x) = f(x|y)g(y)/
∫

f(x|y)g(y) dy.
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Straightforward calculations give us that the predictive distribution [Z(x)|Zn = zn, σ2] is the

following Gaussian one:

N
(

ẑβ(x), s
2
β(x)

)

,

where

ẑβ(x) = f ′(x)Aν + k′(x)K−1 (zn − FAν) , (1.20)

s2β(x) = σ2



1−
(

f ′(x) k′(x)
)

(

Vi F′

F K

)−1(

f(x)

k(x)

)



 (1.21)

and

Vi =

{

−V −1
0 (1)&(2)

0 (2)&(3)
.

Equations (1.20) and (1.21) are the Universal Kriging equations. It corresponds to

the Simple kriging ones after integrating the posterior distribution of the regression

parameter β.

Now, let us consider the predictive distribution [Z(x)|Zn = zn] after integrating the posterior

distribution of the variance parameter σ2. The corresponding probability density function is:

p(z(x)|zn) =
∫

p(z(x)|zn, σ2)p(σ2|zn)dσ2.

The calculations are tractable and we find that [Z(x)|Zn = zn] is the following Student-t

distribution2:

T1 (νσ, ẑβ(x), Qβ,σ(x)) , (1.22)

where ẑβ(x) is defined in (1.20),

Qβ,σ(x) =
Qσ

νσ



1 +
(

f ′(x) k′(x)
)

(

Vi F′

F K−1

)−1(

f(x)

k(x)

)



 (1.23)

and Qσ and νσ are introduced in Equation (1.19).

The Student-t predictive distribution corresponds to the Universal kriging predictive

distribution after integrating the posterior distribution of the parameter σ2. Despite

the fact that we do not have a Gaussian distribution anymore, the surrogate model is

still the mean ẑβ(x) and the variance νσQβ,σ(x)/(νσ−2) of the predictive distribution

informs us about the model mean squared error.

2Let us consider a random vector W = (W1, . . . ,Wd) distributed according to

the Student-t distribution Td(ν,µ,Σ), its probability density function is p(w) =

Γ((ν + d)/2)
(

1 + 1
ν
(w − µ)′Σ−1(w − µ)

)−(ν+d)/2
/(det(Σ))1/2(νπ)d/2Γ(ν/2). The parameter ν represents

the degrees of freedom, µ is the location parameter and Σ is the scale matrix.
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1.3 Model Selection

We have presented in Subsection 1.2.2 some predictive distributions integrating different pa-

rameter posterior distributions. For all cases, we always considered the hyper-parameter θ as

known. We present in this section different methods to estimate it.

1.3.1 Bayesian estimate

Like presented previously (1.15) and according to the methodology in [Rasmussen and Williams,

2006] p.108, the hyper-parameter θ controls the prior distributions of β and σ2. Therefore,

following the same guideline than in Subsection 1.2.2, we can give a prior distribution p(θ)

for θ and estimate its posterior distribution from the observations. We present below the

complete Bayesian scheme. We note that we consider the same prior distributions for the

parameters β and σ2 than the ones presented in Subsection 1.2.2 (see Table 1.1). First, as

presented in Subsection 1.2.2, at the bottom level we have:

p(β|zn, σ2,θ) = f(zn|β, σ2,θ)p(β|σ2,θ)
p(zn|σ2,θ) , (1.24)

where f(zn|β, σ2,θ) is the likelihood (1.15) and p(β|σ2,θ) is the prior distribution of β rep-

resenting our knowledge about the parameter before having observations (see Table 1.1). The

resulting posterior distribution p(β|zn, σ2,θ) is given by (1.17). Furthermore, p(zn|σ2,θ) is

given by the following equation:

p(zn|σ2,θ) = f(zn|β, σ2,θ)p(β|σ2,θ)
p(β|zn, σ2,θ) .

Second, we can obtain the posterior distribution of σ2 with the following equality

p(σ2|zn,θ) = p(zn|σ2,θ)p(σ2|θ)
p(zn|θ) , (1.25)

where p(σ2|θ) is the prior distribution about σ2 (see Table 1.1). The resulting posterior

distribution p(σ2|zn,θ) is given by (1.19) and p(zn|θ) is given by

p(zn|θ) = p(zn|σ2,θ)p(σ2|θ)
p(σ2|zn,θ) .

Finally, we can express the posterior distribution of θ with the following formula

p(θ|zn) = p(zn|θ)p(θ)
p(zn)

.

In practice, Monte-Carlo Markov Chain (MCMC) methods are used to estimate p(θ|zn)
[Robert and Casella, 2004]. We highlight that MCMC schemes only require knowledge of

p(θ|zn) up to a multiplicative constant and thus it is not necessary to evaluate p(zn). Then,

we can integrate the posterior distributions into the predictive distribution. First we integrate

the posterior distribution of β with the following formula

p(z(x)|zn, σ2,θ) =
∫

p(z(x)|zn,β, σ2,θ)p(β|zn, σ2,θ)dβ.
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We obtain a Gaussian distribution with mean (1.20) and variance (1.21). Then we can inte-

grate with respect to σ2

p(z(x)|zn,θ) =
∫

p(z(x)|zn, σ2,θ)p(σ2|zn,θ)dσ2.

We obtain the Student-t distribution in Equation (1.22). Finally, we can integrate the posterior

distribution of θ:

p(z(x)|zn) =
∫

p(z(x)|zn,θ)p(θ|zn)dθ.

Nevertheless, the calculations are not anymore tractable and the predictive distribution needs

to be numerically estimated. In general, MCMC schemes are used. These numerical integra-

tions may be difficult and as noted in [Santner et al., 2003] the choice of the prior distribution

is non-trivial. The reader is referred to the article of [Diggle and Ribeiro Jr, 2002] for examples

of prior distributions for θ.

As example, let us consider a 2-dimensional Gaussian process Z(x) with zero mean and a

Gaussian covariance kernel k(x, x̃) = σ2 exp
(

−||x− x̃||2/(2θ2)
)

where σ2 = 4 and θ = 0.1. We

sample a realization Z(x) on 40 points. Then, we consider the parameter θ as unknown and

we estimate it from the 40 observations with a Bayesian method. We consider the following

improper prior distribution for θ:

p(θ) ∝ 1

θ
.

Figure 1.4 illustrates the prior and the posterior distributions of θ. We see that the prior

distribution is far from the real value of θ (the real value being 0.1). Then, the mode of the

posterior distribution approaches the real value but with a non-negligible uncertainty.
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Figure 1.4: Example of prior and posterior distribution for the hyper-parameter θ for an

isotropic Gaussian covariance kernel in dimension 2.

Figure 1.5 represents the predictive mean and variance in the Bayesian and non-Bayesian

cases. For the non-Bayesian case, we fix θ = 0.1. Since, the mode of the posterior distribution

of θ is close to the real value, the means of the predictive distributions are close. Nevertheless,

the significant differences between the predictive variances reflect that we take into account
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the uncertainty due to the parameter estimation in the Bayesian case. Indeed, we see that in

this case the variance is more important.
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Figure 1.5: Posterior predictive distribution for the Bayesian and the non-Bayesian cases in a

2 dimensional example with a Gaussian kernel. The figures on (a) & (c) represent the posterior

means, the figures (b) & (d) represent the predictive variances, the figures (a) & (b) represent

the non-Bayesian cases and the figures (c) & (d) represent the Bayesian cases. We see that the

predictive means are equivalent. This is due to an efficient estimation of the hyper-parameter

θ. Furthermore, the predictive variance is more important in the Bayesian case since we take

into account the uncertainty due to the estimation of θ.

1.3.2 Maximum likelihood estimates

The maximum likelihood estimation is a very popular method to estimate parameters. The

drawback of the maximum likelihood estimation is that, contrarily to Bayesian estimation, we

do not have any information about the variance of the estimator (see [Lehmann and Casella,
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1998]). Nevertheless, in a kriging framework, it is significantly less time-consuming than a

Bayesian approach. The multivariate normal assumption for Zn lead to the following likelihood

for parameters β, σ2 and θ:

f(zn|β, σ2,θ) = 1

(2πσ2)n/2
√
detRθ

exp

(

−1

2

(zn − Fβ)′R−1
θ (zn − Fβ)

σ2

)

. (1.26)

The correlation matrix R is denoted by Rθ to emphasize its dependence on θ. Conditionally

to σ2 and θ, the maximum likelihood estimate (MLE) of β is given by:

β̂ = (F′R−1
θ F)−1F′R−1

θ zn. (1.27)

It corresponds to its generalized least squares estimate. Then we can substitute the value of β̂

in the likelihood (1.26) and maximize it with respect to σ2. Given θ we obtain the following

MLE for σ2:

σ̂2 =
(zn − Fβ̂)′R−1

θ (zn − Fβ̂)

n
. (1.28)

Substituting β̂ and σ̂2 for β and σ2 in Equation (1.26), we obtain that the maximum of the

likelihood over β and σ2 is

f(zn|θ) = (2πσ̂2)−n/2(detRθ)
1/2 exp

(

−n
2

)

,

which depends only on θ. Therefore, the MLE of θ can be found by minimizing the opposite

of the log-likelihood given by (up to a constant):

Lrest(θ; z
n) = n log(σ̂2) + log(det(Rθ)). (1.29)

The opposite of this equation is called the concentrated log-likelihood or the marginal

likelihood. We illustrate in Figure 1.6 an example of Lrest(θ; z
n) (1.29) calculated from

the realization of a 2-dimensional Gaussian process of mean zero and covariance k(x, x̃) =

σ2 exp
(

−1
2

∑2
i=1(x

i − x̃i)2/θ2i

)

- where x = (x1, x2) ∈ R
2, x̃ = (x̃1, x̃2) ∈ R

2, θ1 = 0.1,

θ2 = 0.04 and σ2 = 2 - on 150 design points in [0, 1]2. The marginal likelihood has to be nu-

merically minimized with global optimization methods. To have a more effective optimization,

one can used the derivative of the marginal likelihood3:

∂

∂θi
Lrest(θ; z

n) = −n
(

(yn)′R−1
θ yn

)−1
(yn)′R−1

θ

∂Rθ

∂θi
R−1

θ yn

+tr

(

R−1
θ

∂Rθ

θi

)

,

with yn = zn − Fβ̂.

Restricted Maximum Likelihood estimate. The restricted maximum likelihood method

was introduced by [Patterson and Thompson, 1971] in order to reduce the bias of the maxi-

mum likelihood estimator. The restricted maximum likelihood estimates of the parameters σ2

3The proof is straightforward using the derivative of an inverse matrix ∂
∂θ

K−1
θ = −K−1

θ
∂Kθ

∂θ
K−1

θ and the

one of the log determinant of a positive definite symmetric matrix ∂
∂θ

log detKθ = tr
(

K−1
θ

∂Kθ

∂θ

)

where ∂Kθ

∂θ

is a matrix of element-wise derivatives (see [Harville, 1997]).
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Figure 1.6: An example of the opposite of a log-likelihood calculated with 150 obser-

vations sampled from a Gaussian process of zero mean and covariance kernel k(x, x̃) =

σ2 exp
(

−1
2

∑2
i=1(x

i − x̃i)2/θ2i

)

with θ1 = 0.1, θ2 = 0.04 and σ2 = 2.

and θ consist in maximizing the likelihood of those parameters for a maximum of independent

linear combinations of the observations zn and such that all these combinations are orthogonal

to Fβ, i.e. the mean of Zn. For more detail, the reader could refer to the two reference articles

[Harville, 1974] and [Harville, 1977].

Now, let us consider a matrix C of size (n − p) × n of rank (n − p) such that CF = 0.

The restricted maximum likelihood estimate of σ2 and θ are given by the classical maximum

likelihood estimate but with the transformed data z̃n = Czn. We note that the restricted

MLE is independent of the choice of C (see [Harville, 1977]). The likelihood of Z̃n = CZn is

given by:

f(z̃n|β, σ2,θ) = 1

(2πσ2)(n−p)/2
√

det(CRθC
′)
exp

(

−1

2

(z̃n)′ (CRθC
′)−1z̃n

σ2

)

. (1.30)

Maximizing (1.30) with respect to σ2 and considering that the estimator is independent to the

choice of C, we have the following restricted maximum likelihood estimate for the variance

parameter:

σ̂2REML =
(zn − Fβ̂)′R−1

θ (zn − Fβ̂)

n− p
. (1.31)

Furthermore, substituting σ2 with σ̂2REML in the likelihood (1.30), we find that the restricted

maximum likelihood of θ can be found by minimizing:

(n− p) log(σ̂2REML) + log(det(Rθ)). (1.32)

Marginal likelihood in a noisy case. In a noisy case, we cannot derive a closed form

expression for the estimate of σ2. Indeed, in that case the likelihood for β, σ2, θ and ∆ - see

Equation (1.7) in Subsection 1.2.1 - is given by

f(zn|β, σ2,θ,∆) =
exp

(

−(zn − Fβ)′
(

Kσ2,θ +∆
)−1

(zn − Fβ)/2
)

(2πσ2)n/2
√

det
(

Kσ2,θ +∆
)

. (1.33)



1.3. MODEL SELECTION 39

We use the notation Kσ2,θ to emphasize the dependence of K = [k(xi, xj)]i,j=1,...,n to the

parameters σ2 and θ. Thus, we have the following estimate for β:

β̂ = (F′ (Kσ2,θ +∆
)−1

F)−1F′ (Kσ2,θ +∆
)−1

zn. (1.34)

The opposite of the marginal likelihood becomes up to a constant

Lrest(θ, σ
2,∆; zn) = (zn − Fβ)′

(

Kσ2,θ +∆
)−1

(zn − Fβ)

+ log det
(

Kσ2,θ +∆
)

.

We illustrate in Figure 1.7 an example of Lrest(θ, σ
2,∆ = σ2εI; z

n) calculated from the realiza-

tion of a 1-dimensional Gaussian process of mean zero and covariance k(x, x̃) = σ2 exp
(

−1
2
(x−x̃)2

θ2

)

+

σ2εδx=x̃ - where x, x̃ ∈ R, θ = 0.1, σ2ε = 0.25 and σ2 = 2 - on 150 design points in [0, 1]. We

note that σ2 is supposed to be known.
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Figure 1.7: An example of the opposite of a log-likelihood calculated with 150 obser-

vations sampled from a Gaussian process of zero mean and covariance kernel k(x, x̃) =

σ2 exp
(

−1
2
(x−x̃)2

θ2

)

+ σ2εδx=x̃ with θ = 0.1, σ2ε = 0.25 and σ2 = 2. The variance parame-

ter σ2 is supposed to be known.

1.3.3 Cross-validation estimate

The principle of a cross-validation (CV) procedure is to split the experimental design set into

two disjoint sets, one is used for training and the other one is used to monitor the performance

of the surrogate model. The idea of a CV estimation is then to find the parameter θ leading

to the best performance on the test set. A particular case of CV is the Leave-One-Out (LOO)

one where n test sets are obtained by removing one observation at-a-time. The CV procedure

can be time-consuming for a kriging model - e.g. for the LOO scheme it requires the inversion

of n sub-matrices of size n− 1 - but it is shown by [Rasmussen and Williams, 2006], [Dubrule,

1983] and [Zhang and Wang, 2009] that there are computational shortcuts. We present them

in the remainder of this paragraph.
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Notations: If ξ is a subset of indices in {1, . . . , n}, then A[ξ,ξ] is the sub-matrix of

elements ξ × ξ of A, a[ξ] is the sub-vector of elements ξ of a, A[−ξ] represents the matrix A

in which we remove the rows of index ξ, a[−ξ] represents the vector a in which we remove the

elements of index ξ, A[−ξ,−ξ] is the sub-matrix of A in which we remove the rows and columns

of index ξ and A[−ξ,ξ] is the sub-matrix of A in which we remove the rows of index ξ and keep

only the columns of index ξ.

CV for Universal kriging

Let us consider a set of index ξ ⊂ {1, . . . , n} of length k. We denote by εCV,ξ the errors (i.e.

the real values minus the predicted values) of the cross-validation procedure on the test set D[ξ]

when we learn the kriging model on the training set D[−ξ]. Furthermore, we denote by σ2
CV,ξ

the predictive CV variances at points in D[ξ]. For the proof, we sort the observations zn such

that ξ is the index of the k last elements of zn. Nevertheless, the presented equations remain

true whatever the order of the observations. First, we consider the variance parameter σ2,

the hyper-parameter θ and the regression parameter β as known. We are hence in the simple

kriging case. Thanks to the block-wise inversion formula4, we have the following equality:

R−1 =

(

A B

B′ Q−1

)

,

with A = [R]−1
[−ξ,−ξ] + [R]−1

[−ξ,−ξ] [R][−ξ,ξ]Q
−1 [R][ξ,−ξ] [R]−1

[−ξ,−ξ],

B′ = −Q−1 [R][ξ,−ξ] [R]−1
[−ξ,ξ] and:

Q = [R][ξ,ξ] − [R][ξ,−ξ] [R]−1
[−ξ,−ξ] [R][−ξ,ξ] .

We note that Q =
(

[

R−1
]

[ξ,ξ]

)−1
represents the correlation matrix at points in D[ξ] with

respect to the correlation kernel obtained from the distribution of a Gaussian process of kernel

r(x, x′) conditioned by zn[−ξ] at D[−ξ]. Therefore, we can deduce that in a Simple kriging case,

the predictive CV variances σ2
CV,ξ,SK are

σ2
CV,ξ,SK = σ2

(

[

R−1
]

[ξ,ξ]

)−1
. (1.35)

4Let us consider T a m×m matrix, U a m× n matrix, V a n×m matrix and W a n× n matrix. Let us

consider that T is non-singular, then

(

T U

V W

)

, or equivalently,

(

W V

U T

)

is non-singular if and only if the

matrix n× n Q = W −VT−1U is non-singular. In this case, we have:

(

T U

V W

)−1

=

(

T−1 +T−1UQ−1VT−1 −T−1UQ−1

−Q−1VT−1 Q−1

)

and
(

W V

U T

)−1

=

(

Q−1 −Q−1VT−1

−T−1UQ−1 T−1 +T−1UQ−1VT−1

)
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Furthermore, from the block decomposition of R−1, we have the following equality:
(

[

R−1
]

[ξ,ξ]

)−1
[

R−1 (zn − Fβ)
]

[ξ]
= zn[ξ] − F[ξ]β

− [R][ξ,−ξ] [R]−1
[−ξ,−ξ]

(

zn[−ξ] − F[−ξ]β
) .

We highlight that the term F[ξ]β + [R][ξ,−ξ] [R]−1
[−ξ,−ξ]

(

zn[−ξ] − F[−ξ]β
)

represents the kriging

mean predictions on D[ξ] of a Gaussian process of mean f(x)′β and correlation kernel r(x, x̃)

conditioned with the observations zn[−ξ]. Thus we can deduce that in a Simple kriging case,

the CV errors εCV,ξ,SK are

εCV,ξ,SK =
(

[

R−1
]

[ξ,ξ]

)−1
[

R−1 (zn − Fβ)
]

[ξ]
. (1.36)

Second, we suppose the trend parameter β as unknown and we have to re-estimate it when

we remove the observations. We emphasize that we are here in a Universal kriging framework.

In a Bayesian case, the posterior mean β̄−ξ of β when we remove the observations of index ξ

is given by

β̄−ξ

(

[F[−ξ]]
′ [R]−1

[−ξ,−ξ]F[−ξ]

)

= [F[−ξ]]
′ [R]−1

[−ξ,−ξ] z
n
[−ξ]. (1.37)

From the block-wise inverse of R we can deduce that [R]−1
[−ξ,−ξ] = A−BQB′. To obtain the

cross-validation equations in the Universal kriging case, we just have to estimate the following

quantity:

νξ =
(

F[ξ] − [R][ξ,−ξ] [R]−1
[−ξ,−ξ]F[−ξ]

)

Σ
(

F[ξ] − [R][ξ,−ξ] [R]−1
[−ξ,−ξ]F[−ξ]

)′
,

with Σ =
(

[F[−ξ]]
′ [R]−1

[−ξ,−ξ]F[−ξ]

)−1
. Indeed, from equations (1.4) and (1.21), we can deduce

that σ2
CV,ξ = σ

2
CV,ξ,SK + νξ. We have the following equality:
(

F[ξ] − [R][ξ,−ξ] [R]−1
[−ξ,−ξ]F[−ξ]

)

=
(

[R−1][ξ,ξ]
)−1 [

R−1F
]

[ξ]
.

Therefore, the CV predictive errors and variances in a Universal kriging framework are given

by

εCV,ξ =
(

[

R−1
]

[ξ,ξ]

)−1
[

R−1
(

zn − Fβ̄−ξ

)]

[ξ]
(1.38)

and

σ2
CV,ξ = σ2

(

(

[

R−1
]

[ξ,ξ]

)−1
+
(

[R−1][ξ,ξ]
)−1 [

R−1F
]

[ξ]

×
(

[F[−ξ]]
′ [R]−1

[−ξ,−ξ]F[−ξ]

)−1 (
(

[R−1][ξ,ξ]
)−1 [

R−1F
]

[ξ]

)′
) (1.39)

The term [R]−1
[−ξ,−ξ] is evaluated with the equality:

[R]−1
[−ξ,−ξ] = [R−1][−ξ,−ξ] − [R−1][−ξ,ξ]

(

[R−1][ξ,ξ]
)−1

[R−1][ξ,−ξ].

To obtain the CV predictive errors and variances in a Universal kriging framework, we just

have to invert the matrix R once and then invert the sub-matrix [R−1][ξ,ξ]. We note that in

a LOO framework, ξ is reduced to an integer and the computational cost for the inversion of

[R−1][ξ,ξ] is negligible. In the presented equations, the variance parameter is supposed to be

known. We present in Chapter 4 a method to re-estimate it for each removed observations

when we consider its maximum likelihood estimate.
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Leave-One-Out based estimation

In the previous paragraph, we present the predictive errors and variances resulting from a CV

procedure when σ2 and θ are fixed. We present here a way to estimate them thanks to a LOO

CV technique, i.e. ξ = i with i = 1, . . . , n. The opposite of the predictive log probability

at observation zn[i] when the model is learned with the observations zn[−i] is given by (up to a

constant):

L(σ2,θ; zn[i]) = logσ2
CV,i +

ε2CV,i

σ2
CV,i

. (1.40)

where

εCV,i =
(

[

R−1
]

[i,i]

)−1
[

R−1
(

zn − Fβ̄−i

)]

[i]

and

σ2
CV,i = σ2

(

(

[

R−1
]

[i,i]

)−1
+
(

[R−1][i,i]
)−1 [

R−1F
]

[i]

×
(

[F[−i]]
′ [R]−1

[−i,−i]F[−i]

)−1 (
(

[R−1][i,i]
)−1 [

R−1F
]

[i]

)′
) .

From Equation (1.40) we can obtained the opposite of the LOO log-predictive probability

LLOO(σ
2,θ; zn) =

n
∑

i=1

L(σ2,θ; zn[i]). (1.41)

The reader is referred to the books of [Rasmussen and Williams, 2006] p122 for an illustration

of this criterion in a robotic application and the article of [Geisser and Eddy, 1979] for a

discussion about it. We note that thanks to the equations (1.38) and (1.39), this approach is

as computationally expensive as the classical maximum likelihood one.

We illustrate in Figure 1.6 an example of a LOO log predictive probability LLOO(σ
2,θ, zn)

(1.41) calculated from the realization of a 2-dimensional Gaussian process of mean zero and

covariance k(x, x̃) = σ2 exp
(

−1
2

∑2
i=1(x

i − x̃i)2/θ2i

)

- where x = (x1, x2) ∈ [0, 1]2, x̃ =

(x̃1, x̃2) ∈ [0, 1]2, θ1 = 0.1, θ2 = 0.04 and σ2 = 2 - on 150 design points in [0, 1]2.

Another approach to estimate the parameters θ and σ2 has been suggested by [Bachoc,

2013]. Its principle is the following one. First, noticing that the CV predictive errors (1.38)

do not depend on σ2, we can estimate θ by minimizing the following sum - also called the

squared error loss:

θ̂ = argmin
θ

n
∑

i=1

ε2CV,i,θ. (1.42)

The LOO CV predictive error (1.38) is denoted by εCV,i,θ to emphasize its dependence on θ.

Nonetheless, this procedure does not provide an estimate for σ2 and can lead to bad predictive

variances since it does not take care about the LOO-CV predictive variances. To tackle this

issue, [Bachoc, 2013] suggests the following estimator for σ2:

σ̂2 =
1

n

n
∑

i=1

ε2
CV,i,θ̂

σ̃2
CV,i,θ̂

, (1.43)
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Figure 1.8: An example of LOO log-predictive probability calculated with 150 observa-

tions sampled from a Gaussian process of zero mean and covariance kernel k(x, x̃) =

σ2 exp
(

−1
2

∑2
i=1(x

i − x̃i)2/θ2i

)

with θ1 = 0.1, θ2 = 0.04 and σ2 = 2.

where σ̃2
CV,ξ,θ̂

is obtained from Equation (1.39):

σ̃2
CV,ξ,θ̂

=

(

[

R−1

θ̂

]

[ξ,ξ]

)−1

+
(

[R−1

θ̂
][ξ,ξ]

)−1 [

R−1

θ̂
F
]

[ξ]

(

[F[−ξ]]
′ [R

θ̂

]−1

[−ξ,−ξ]
F[−ξ]

)−1
(

(

[R−1

θ̂
][ξ,ξ]

)−1 [

R−1

θ̂
F
]

[ξ]

)′
.

This estimator of σ2 leads to the following desirable property:

1

n

n
∑

i=1

ε2
CV,i,θ̂σ̂2/σ

2
CV,i,θ̂,σ̂2 = 1.

An asymptotic normality and efficiency study of this estimator is proposed by [Bachoc, 2013].

For the numerical optimization of equations (1.41) or (1.42), it could be worthwhile to consider

their partial derivatives. In a Simple kriging framework (see equations (1.36) and (1.35)), they

can be deduced from the two following derivatives:

[

∂

∂θ
σ2
CV,i,SK

]

i=1,...,n

= σ2
diag(R−1

θ
∂Rθ

∂θ R−1
θ )

diag(R−1
θ )2

,

[

∂

∂θ
εCV,i,SK

]

i=1,...,n

=
−R−1

θ
∂Rθ

∂θ R−1
θ (zn − Fβ)

diag(R−1
θ )

+
diag(R−1

θ
∂Rθ

∂θ R−1
θ )R−1

θ (zn − Fβ)

diag(R−1
θ )2

.

1.4 Covariance kernels

Certainly one of the most important points of a Gaussian process regression is the choice of

the covariance function k(x, x̃), x, x̃ ∈ Q ⊂ R
d of the Gaussian process Z(x) modeling the
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objective function z(x). We note that Q is a nonempty open set. We have seen in Section 1.1

that a covariance kernel k(x, x̃) has to be positive definite5. This ensures that the covariance

matrix K = [k(xi, xj)]i,j=1,...,n - also called the Gram matrix - is positive definite for any

distinct (xi)i=1,...,n ∈ Q.

Moreover, the covariance kernel can also describe particular relations between Z(x) and

Z(x̃). As example, k(x, x̃) is said to be stationary if it is a function of (x − x̃). This means

that it is invariant under any translation in the input space and that the relation between

Z(x) and Z(x̃) is uniquely determined by the distance between x and x̃. We describe these

kernels in Subsection 1.4.2. Then, in Subsection 1.4.3 we present some non-stationary kernels.

In particular, we present the fractional Brownian one that we use in Chapter 7. Finally, we

deal with the eigenfunction analysis of k(x, x̃) in Subsection 1.4.4.

We highlight that it is easy to build new kernels from other ones thanks to the following

properties ([Rasmussen and Williams, 2006]):

1. If k1(x, x̃) and k2(x, x̃) are covariance kernels then

k(x, x̃) = k1(x, x̃) + k2(x, x̃)

or

k(x, x̃) = k1(x, x̃)k2(x, x̃)

is a covariance kernel.

2. If f(x) is a deterministic function and k̃(x, x̃) a covariance kernel, then

k(x, x̃) = f(x)k̃(x, x̃)f(x̃)

is a covariance kernel.

3. If k1(x, x̃) and k2(x, x̃) are covariance kernels such that
∫

k1(x, z)k2(z, z̃)k1(z̃, x̃) dz dz̃ <

∞, then

k(x, x̃) =

∫

k1(x, z)k2(z, z̃)k1(z̃, x̃) dz dz̃

is a covariance kernel. In particular, if k2(z, z̃) = δ(z − z̃) - δ(x) stands for the Dirac

delta function - and the function kx : x̃ 7→ k(x, x̃) is in L2(Q) for all x ∈ Q ⊂ R
d, then

we have k(x, x̃) =
∫

k1(x, u)k1(u, x̃) du which is the covariance kernel of the following

Gaussian process

Z(x) =

∫

k1(x, u) dW (u),

where W (u) is a d-dimensional Wiener process (which is equivalently to say formally

that dW (u)/du is a Gaussian white noise).

4. If k1(x
1, x̃1) and k2(x

2, x̃2) are covariance kernels defined on different spaces X 1 and X 2,

then

k(x, x̃) = k1(x
1, x̃1) + k2(x

2, x̃2)

5We recall that a kernel k(x, x̃) is positive definite if and only if for all (ai)i=1,...,N ∈ R, N ∈ N
∗ and distinct

(xi)i=1,...,N ∈ Q, we have
∑N

i,j=1 aiajk(xi, xj) ≥ 0 and
∑N

i,j=1 aiajk(xi, xj) = 0 if and only if ai = 0 for all

i = 1, . . . , N .
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or

k(x, x̃) = k1(x
1, x̃1)k2(x

2, x̃2)

is a covariance kernel defined on the product space X 1 ×X 2. We named as a tensorised

kernel, a kernel of the form k(x, x̃) = k1(x
1, x̃1)k2(x

2, x̃2).

1.4.1 Relations between Gaussian process regularities and covariance ker-

nels

To emphasize the importance of the choice of k(x, x̃), let us introduce the concept of mean

square differentiability (see [Cramer and Leadbetter, 1967]). First, for a fixed point x∗ ∈ Q a

covariance kernel Z(x) is said to be mean square continuous - or continuous in mean square -

at x∗ if:

E

[

(Z(x∗)− Z(x))2
]

x→x∗

−→ 0.

Moreover, we have the following equality E

[

(Z(x∗)− Z(x))2
]

= k(x∗, x∗)−k(x∗, x)+k(x, x)−
k(x∗, x). Thus, Z(x) is mean square continuous if and only if k(x, x̃) is continuous at (x, x̃) =

(x∗, x∗). Then, we consider at point x = (x1, . . . , xd) the Gaussian process:

Z
(i)
h (x) =

Z(x+ hei)− Z(x)

h
,

with h ∈ R \ {0}. The mean square derivative of Z(x) in the ith direction is the Gaussian

process ∂Z(x)/∂xi such that

E

[

(

∂Z(x)

∂xi
− Z

(i)
h (x)

)2
]

h→0−→ 0.

Furthermore, ∂Z(x)/∂xi exists if and only if k(x, x̃) is twice differentiable at point x = x̃ and

its covariance kernel is ∂2k(x, x̃)/∂xi∂x̃i. We so have a tight relation between the regularity

of the considered Gaussian process and the regularity of the covariance kernel k(x, x̃).

In fact, with more assumptions on k(x, x̃), we can have stronger results about the continuity

of Z(x). Let us consider the following definition (see [Cramer and Leadbetter, 1967]).

Definition 1.1 (continuous almost surely random processes). Let us consider a random pro-

cess Z(x), x ∈ Q ⊂ R
d, defined on (ΩZ ,F ,PZ) with values in (R,B(R)). Z is continuous

almost surely on Q if for almost every ω ∈ ΩZ , x 7→ Zt(x, ω) is continuous on Q.

This definition is of interest since it means that almost all paths of such random processes

are continuous. Nonetheless, the definition of continuous almost surely random processes are

not easy for general cases. The following theorem provides a useful criterion for establishing

the existence of versions of stochastic processes with continuous sample paths (see [Oksendal,

1998]).
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Theorem 1.1 (Kolmogorov-Chentsov). Let Z(x), x ∈ Q ⊂ R
d, be a random process

defined on (ΩZ ,F ,PZ) with values in (R,B(R)). Let us suppose that there are three

positive constants (γ, ε, c) ∈ (R∗
+)

3 such that ∀(x, x̃) ∈ Q2,

E [|Z(x)− Z(x̃)|γ ] ≤ c||x− x̃||d+ε.

Then, there is Z̃(x) a version of Z(x) (i.e. for all x ∈ Q, PZ

(

Z(x) = Z̃(x)
)

= 1) such

that

∀α ∈ [0, ε/γ),E












sup

(x,x̃)∈Q2

x 6=x̃

(

|Z̃(x)− Z̃(x̃)|
||x− x̃||α

)







γ




<∞.

This means that the sample of Z̃(x) are almost surely Hölder continuous with Hölder

exponent α.

Theorem 1.1 can easily be used in a Gaussian framework. This is highlighted in the

following example.

Example 1.1. Let us consider a stationary Gaussian process Z(x) with mean zero and co-

variance kernel given by σ2r(h) where h = x− x̃, x, x̃ ∈ R
d. We have the following equality:

E
[

(Z(x)− Z(x̃))2
]

= 2σ2(1− r(h)).

Furthermore, from the following equality

E
[

(Z(x)− Z(x̃))2n
]

=
(2n)!

2nn!
σ2n(1− r(h))n

and the condition r(h) ∈ Cε, we can deduce that ∃n > d/ε such that

E
[

(Z(x)− Z(x̃))2n
]

≤ (2n)!

2nn!
σ2nδnε ||h||nε.

Therefore, there is a version Z̃(x) of Z(x) which is α-Hölder continuous almost surely with

α ∈ [0, ε/2).

Then, for the unidimensional case x, x̃ ∈ Q ⊂ R, a finer result is given by [Fernique, 1964]

on k(x, x̃) so that Z(x) is continuous a.s.. As stated in the theorem below, this condition is

given in terms of the incremental variance E
[

(Z(x)− Z(x̃))2
]

.

Theorem 1.2 (Fernique’s theorem). If for |x− x̃| ≤ ε, x, x̃ ∈ Q ⊂ R, there is a function

ψ for which
√

E [(Z(x)− Z(x̃))2] ≤ ψ(x− x̃), where ψ is nondecreasing on [0, ε] and

∫ ε

0

ψ(u)

u
√

log(1/u)
du <∞,

then Z(x) has an almost sure continuous version.

The first proof of this theorem has been presented by [Dudley, 1967]. Then, several proofs

have been suggested (see [Garsia, 1972] and [Marcus and Shepp, 1970]). In particular, [Marcus
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and Shepp, 1970] present a proof for stationary covariance kernels k(x, x̃) = k(x− x̃), x, x̃ ∈ R.

In that case, the condition simply becomes:

∫ ε

0

√

k(0)− k(u)

u
√

log(1/u)
du <∞.

1.4.2 Stationary covariance functions

In this subsection we consider the case Q = R
d and we are interested in stationary covariance

kernels. As presented previously, it corresponds to a covariance kernel k(x, x̃), x, x̃ ∈ R
d,

function of h = x− x̃. We will use the notation k(x, x̃) = k(h). These kernels are widely used

in the framework of computer experiments.

One of their interesting properties is that the regularity of k(h) at h = 0 determines the

smoothness property of Z(x) in mean square sense. Indeed a Gaussian process Z(x) with

covariance k(h) is mean square continuous if k is continuous at h = 0. Furthermore, the

Gaussian process ∂kZ(x)/∂xi1 . . . ∂xik corresponding to the kth order partial mean square

derivative of Z(x) exists if and only if ∂2kk(h)/∂2xi1 . . . ∂2xik exists and is finite at h = 0.

Another interesting property of stationary covariance kernels is that they can be repre-

sented as the Fourier transform of a positive measure as stated in the following theorem (see

[Stein, 1999] p.24).

Theorem 1.3 (Bochner’s theorem). For any continuous positive definite function k(h)

from R
d into R, there exists a unique probability measure µ on R

d such that

k(h) =

∫

Rd

e2πi〈w,h〉 dµ(w).

We note that 〈.〉 stands for the scalar product. A proof of this theorem is given by

[Gikhman and Skorokhod, 1974]. In the case where µ(dw) has a density S(w), we call it the

spectral density or power spectrum of k(h) and we have

k(h) =

∫

Rd

e2πi〈w,h〉S(w) dw

and

S(w) =

∫

Rd

e−2πi〈w,h〉k(h) dh.

From the spectral density S(w), we can define the following complex representation of the

Gaussian process Z(x) (see [Stein, 1999]):

Z(x) =

∫

√

S(w)e2πi〈w,x〉n̂w dw, (1.44)

where n̂w is the Fourier transform of a Gaussian white noise. Moreover, we can estimate the

integral (1.44) with the following sum:

Z(x) ≈
J
∑

j=1

√

S(wj)e
2πi〈wj ,x〉n̂wj∆(j), (1.45)
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where (wj)j=1,...,J , J ∈ N, is a tensorised grid covering the support of S(w) and ∆(j) is the

volume of the elementary hypercube of the grid associated with wj . This representation can be

used to compute samples of Z(x) at points in X = {x1, . . . , xl} using the following equation:

(Z(xl))l=1,...,n =
J
∑

j=1

[

ei〈wj ,xl〉
]

l=1,...,n

[

√

S(wj)n̂wj

]

∆(j). (1.46)

The main advantage of this method is that it does not require the Cholesky’s decomposition

of the covariance matrix KX of Z(x) at points in X with respect to the kernel k(h). In-

deed, a commonly used method to sample Z(x) at points in X is to consider the Cholesky

decomposition of the covariance matrix KX = [k(xi, xj)]i=1,...,l, (xi)i=1,...,l ∈ X :

KX = LXL′
X.

Then, a realization of Z(x) at X can be obtained by sampling a noise εl = [εi]i=1,...,l where

(εi)i=1,...,l are independent and identically distributed with respect to the Gaussian distribution

N (0, 1) and by considering the following equation:

Z(X) = LXε
l.

Note that Z(x) is considered to be zero-mean. Otherwise, we just have to add the term

M = [m(xi)]i=1,...,l where m(x) is the mean of Z(x).

We emphasize that we can use a Fast Fourier transform to compute (1.46) and to sample

Z(x) by considering a tensorised regular grid. This allows for reducing the complexity of the

method.

We present below some examples of stationary covariance kernels. For a more complete

list, the reader is referred to [Stein, 1999] and [Rasmussen and Williams, 2006].

The Gaussian or Squared Exponential Covariance Function

The isotropic form of this kernel has already be presented in Section 1.1. It is defined as

k(h) = exp

(

−1

2

||h||2
θ2

)

, (1.47)

where the parameter θ is the correlation length or characteristic length-scale. Furthermore, it

has the following power spectrum:

S(w) =
(

2πθ2
)d/2

exp
(

−2π2θ2||w||2
)

.

This covariance function is smooth at h = 0 and thus corresponds to Gaussian processes

which are infinitely mean square differentiable. Moreover, Theorem 1.1 implies that the cor-

responding Gaussian processes are infinitely differentiable almost surely. Thanks to the point

4. presented in the introduction of Section 1.4, we can easily define the anisotropic Gaussian

covariance function as follows with x = (x1, . . . , xd) and x̃ = (x1, . . . , xd)

k(h) = exp

(

−1

2

d
∑

i=1

(xi − x̃i)2

θ2i

)

. (1.48)
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This kernel is widely used in kriging models but can be unrealistic as mentioned in [Stein,

1999] due to the strong regularity of the underlying Gaussian processes. A covariance function

as the ν-Matérn one is in general more appropriate (see below). We illustrate in Figure 1.9 the

shape of the 1-dimensional Gaussian kernel with different correlation lengths and examples of

resulting Gaussian process realizations.
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Figure 1.9: Figure (a): the Gaussian kernel k(h) in function of h = x − x̃ with different

correlation lengths θ. Figure (b): examples of corresponding Gaussian process realizations.

The ν-Matérn covariance function

The isotropic ν-Matérn covariance function is defined as follow (see [Matérn, 1986])

kν(h) =
21−ν

Γ(ν)

(√
2ν||h||
θ

)ν

Kν

(√
2ν||h||
θ

)

, (1.49)

where the parameter θ is the correlation length, the parameter ν is the regularity parameter,

Kν is the modified Bessel function ([Abramowitz and Stegun, 1965] sec 9.6), and Γ is the

Euler-Gamma function. It has the following power spectrum:

S(w) =
2dπd/2Γ (ν + d/2) (2ν)ν

Γ(ν)θ2ν

(

2ν

θ2
+ 4π2||w||2

)−(ν+d/2)

.

A Gaussian process Z(x) with a ν-Matérn covariance kernel is ν-Hölder continuous in mean

square and ν ′-Hölder continuous almost surely ∀ν ′ < ν. Furthermore, for ν = p + 1/2 with

p ∈ N, the ν-Matérn kernel has the following form

kν=p+1/2(h) = exp

(

−
√
2ν||h||
θ

)

Γ(p+ 1)

Γ(2p+ 1)

p
∑

i=0

(p+ i)!

i!(p− i)!

(√
8ν||h||
θ

)p−i

.



50 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

In a Gaussian process framework, two popular ν-Matérn covariance kernels are the ones for

ν = 3/2 and ν = 5/2:

kν=3/2(h) =

(

1 +

√
3||h||
θ

)

exp

(

−
√
3||h||
θ

)

,

kν=5/2(h) =

(

1 +

√
5||h||
θ

+
5

3

||h||2
θ2

)

exp

(

−
√
5||h||
θ

)

.

Another special case is the one with ν = 1/2 which leads to the so-called exponential covariance

function

kν=1/2(h) = exp

(

−||h||
θ

)

.

This corresponds to the covariance of an Ornstein-Uhlenbeck process ([Uhlenbeck and Orn-

stein, 1930]). We can also consider anisotropic Matérn covariance kernels as follows with

x = (x1, . . . , xd) and x̃ = (x̃1, . . . , x̃d)

k(x, x̃) =

d
∏

i=1

kνi,θi(xi − x̃i),

where

kνi,θi(xi − x̃i) =
21−νi

Γ(νi)

(√
2νi|xi − x̃i|

θi

)νi

Kνi

(√
2νi|xi − x̃i|

θi

)

.

We illustrate in Figure 1.10 the shape of the 1-dimensional ν-Matérn kernel with different

regularity parameters and a correlation length fixed to θ = 0.2. Examples of resulting Gaussian

process realizations are given.
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Figure 1.10: Figure (a): the ν-Matérn kernel k(h) in function of h = x − x̃ with a fixed

correlation length θ = 0.2 and different regularity parameters ν. Figure (b): examples of

corresponding Gaussian process realizations.
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The γ-exponential covariance function

The isotropic γ-exponential covariance function is defined as follow

k(h) = exp

(

−
( ||h||

θ

)γ)

, 0 < γ ≤ 2.

The positive definiteness of this kernel is proved in [Schoeneberg, 1938]. Furthermore, for γ < 2

the corresponding Gaussian processes are not differentiable in mean square sense whereas for

γ = 2 they are infinitely differentiable. Thus, the use of this kernel for practical applications

can be difficult to justify. We illustrate in Figure 1.11 the shape of the 1-dimensional γ-

exponential kernel with different parameters γ and a correlation length fixed to θ = 0.2.

Examples of resulting Gaussian process realizations are given.
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Figure 1.11: Figure (a): the γ-exponential kernel k(h) in function of h = x − x̃ with a fixed

correlation length θ = 0.2 and different parameters ν. Figure (b): examples of corresponding

Gaussian process realizations.

1.4.3 Non-stationary covariance kernels

There are many ways to construct non-stationary covariance kernels. As an example, as pre-

sented in [Rasmussen and Williams, 2006] p89 Sec.4.4.2 we can cite the dot product covariance

functions which are invariant to a rotation on the inputs about the origin. These kernels are

commonly used in the field of Geostatistics. Another interesting example is the covariance

function presented in [Gibbs, 1997] which allows for varying the length-scale parameter θ(x)

in function of x. It is defined as follows

k(x, x̃) =

d
∏

i=1

(

2θi(x)θi(x̃)

θ2i (x) + θ
2
i (x̃)

)1/2

exp

(

−
d
∑

i=1

(xi − x̃i)2

θ2i (x) + θ
2
i (x̃)

)

,

where θi(x) are positive functions on x = (x1, . . . , xd). In Chapter 7 we use the following

kernel:

k(x, x̃) = x2H + x̃2H − |x− x̃|2H ,
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with H ∈ (0, 1). It corresponds the the kernel of a fractional Brownian motion with Hurst

parameter H. This Gaussian process is mean square continuous and nowhere mean square

differentiable. Nevertheless, it is Hölder continuous with exponentH−ε, ∀ε > 0. Furthermore,

for H = 1/2 it corresponds to the Brownian motion. We illustrate in Figure 1.12 some

realizations of fractional Brownian motions with different Hurst parameters.
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Figure 1.12: Realization of fractional Brownian motions with different Hurst parameters H.

1.4.4 Eigenfunction analysis

We saw in Theorem 1.3 that stationary covariance kernels can have a spectral representation

through the Fourier transform of a probability measure. We discuss in this subsection about

an interesting theorem which allows for having a spectral decomposition of covariance ker-

nels k(x, x̃) thanks to its eigenvalues and eigenfunctions decomposition. Let us consider this

theorem below. It is an extension of the Mercer’s theorem [Mercer, 1909] with a probability

measure µ and a continuous positive kernel k(x, x̃) satisfying the property supx∈Q k(x, x) <∞
with Q an nonempty open subset of Rd (see [König, 1986] and [Ferreira and Menegatto, 2009]).

Theorem 1.4 (Mercer’s theorem). Let us consider a continuous positive kernel k(x, x̃),

x, x̃ ∈ Q ⊂ R
d - such that supx∈Q k(x, x) < ∞ and Q is an nonempty open set - and a

probability measure µ on Q. The kernel k(x, x̃) can be written as follows

k(x, x̃) =
∑

p≥0

λpφp(x)φp(x̃),

where φp(x) ∈ L2
µ(Q) are the eigenfunctions of the trace class integral operator

(Tkf)(x) =

∫

k(x, u)f(u) dµ(u),

and (λp)p≥0 the corresponding nonnegative sequence of eigenvalues sorted in decreas-

ing order. Furthermore, (φp(x))p≥0 is an orthonormal basis of L2
µ(Q) and φp(x) are

continuous for all p such that λp 6= 0.
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We intensively use this theorem in Chapter 7 and Chapter 8. In particular, we will see

that the regularity of a Gaussian process is related to the rate of convergence of its eigenvalues

(λp)p≥0. Furthermore, we always consider in the manuscript that µ is a probability measure

such that µ(U) > 0 for any nonempty open subset U of Q ⊂ R
d.

We will talk in these chapters about degenerate and non-degenerate kernels. To be clear

in the remainder of the manuscript, we define this notion below

Definition 1.2. Let us consider a covariance kernel k(x, x̃) and its Mercer’s decomposition

k(x, x̃) =
∑

p≥0

λpφp(x)φp(x̃).

If k(x, x̃) has a infinite sequence (λp)p≥0 of non-zero eigenvalues, then it is called a non-

degenerate kernel. Otherwise, if it has a finite number of non-zero eigenvalues, it is called a

degenerate kernel.

We see in Chapter 7 that the degenerate or non-degenerate property of a covariance kernel

has a strong impact on the rate of convergence of the generalization error of a Gaussian process

regression.

Right now, let us present some particular results about this decomposition.

1. By definition, the function φp(x) satisfies the following equality

λpφp(x) =

∫

k(x, u)φp(u) dµ(u).

2. The orthonormal property of (φp(x))p≥0 implies that

∫

φq(x)φp(x) dµ(x) = δp=q,

where δ stands for the Kronecker symbol.

3. We have the following equality:

∫

k(x, x)dµ(x) =
∑

p≥0

λp < +∞,

This shows that the operator Tk is trace class with

tr(Tk) =
∑

p≥0

λp.

4. For covariance kernels such that k(x, x) = σ2 ∀x, we have ∀x:

σ2 =
∑

p≥0

λpφp(x)
2 =

∑

p≥0

λp,

since
∫

σ2 dµ(u) = σ2.
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Furthermore, with the Mercer’s decomposition, we have the analogous of the complex

representation of a Gaussian process as stated below.

Theorem 1.5 (Karhunen-Loeve decomposition). Let us consider a Gaussian process

Z(x) with covariance kernel k(x, x̃) and the following Mercer’s decomposition

k(x, x̃) =
∑

p≥0

λpφp(x)φp(x̃).

Then, Z(x) can be represented through the following form

Z(x) =
∑

p≥0

√

λpφp(x)Zp,

where (Zp)p≥0 are independent and identically distributed random variables with distri-

bution N (0, 1) defined as

√

λpZp =

∫

Z(u)φp(u) dµ(u),

An important property of the Karhunen-Loeve decomposition is that it provides the best

spectral decomposition of a Gaussian process in the sense that it minimizes the total mean

squared error resulting of its truncation as stated in the following proposition.

Proposition 1.1. Let us consider any orthonormal basis (ψp(x))p≥0 of L2
µ(Q) and the

following decomposition of Z(x)

Z(x) =
∑

p≥0

(∫

Z(u)ψp(u) dµ(u)

)

ψp(x).

Then, for a given p̄ > 0, the basis minimizing

∫

E









∑

p≥p̄

(∫

Z(u)ψp(u) dµ(u)

)

ψp(x)





2

 dµ(x)

is given by (φp(x))p≥0, i.e. the one of the Karhunen-Loeve decomposition. We note that

the functions φp(x) for p ≥ 0 are unique if and only if the values of φp for p ≥ 0 are

positive and distinct.

Proof. Let us consider (ψp(x))p≥0 an orthonormal basis of L2
µ(Q) and let us denote by

ε2(x) = E









∑

p≥p̄

(∫

Z(u)ψp(u) dµ(u)

)

ψp(x)





2

 .

A direct calculation gives that

ε2(x) =
∑

p,q≥p̄

ψp(x)ψq(x)

∫ ∫

k(u, v)ψp(u)ψq(v) dµ(u) dµ(v).
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Then, by integrating we find that ε̄2 =
∫

ε2(x) dµ(x) equals:

ε̄2 =
∑

p≥p̄

∫ ∫

k(u, v)ψp(u)ψp(v) dµ(u) dµ(v).

Thus, we want to minimize ε̄2 with the constraint of normalized ψp(x). Let us consider the

Lagrangien formulation of this problem

∑

p≥p̄

∫ ∫

k(u, v)ψp(u)ψp(v) dµ(u) dµ(v)− γp

(∫

ψp(u)ψp(u) dµ(u)− 1

)

,

where γp are the Lagrangian multipliers. By differentiation with respect to ψp(u) and setting

the derivatives equal to 0, we find that for p ≥ p̄
∫

k(u, v)ψp(v) dµ(v)− γpψp(u) = 0,

i.e. ψp(x) = φp(x) and γp = λp for all p ≥ p̄.

However, contrary to the complex representation, closed form expressions for such a spec-

tral decomposition is rarely available. The Nyström procedure can be used to numerically

approximate the Karhunen-Loeve spectral decomposition of a Gaussian process. This proce-

dure being based on a quadrature numerical integration, it could be an issue to perform it in

high dimension except for tensorised kernels. Indeed, in that case, the approximation can be

performed by considering d 1-dimensional numerical integrations.

First, let us consider the Karhunen-Loeve decomposition of the 1-dimensional Gaussian

process Z(x), x ∈ [0, 1]:

Z(x) =
∑

p≥0

√

λpφp(x)Zp. (1.50)

To evaluate the Karhunen-Loeve spectral decomposition of Z(x) we have to solve the following

eigenproblem ∀p ∈ N:

λpφp(x) =

∫

[0,1]
k(x, u)φp(u) dµ(u). (1.51)

Let us consider that the measure µ has a density f(x). We can consider the following numerical

integration:

λpφp(x) =

∫

[0,1]
k(x, u)φp(u)f(u) du ≈ 1

N

N
∑

i=1

k(x, xi)φp(xi)f(xi), (1.52)

where (xi)i=1,...,N is a regular grid on [0, 1] (the extension to any intervals [a, b] is straight-

forward). Then, by considering the eigenfunctions φp(x) at points (xi)i=1,...,N , we obtain the

following eigenproblem:

λRp Φp = KNΦp, (1.53)

where Φ′
p = (φ(x1), . . . , φ(xN )), λRp = λpN and [KN ]i,j = k(xj , xi)f(xi). Therefore, λRp /N

is an estimator for λp for i = 1, . . . , N . It can be shown that λRp /N converges to λp when

N → ∞ [Baker, 1977].



56 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

Then, the Nyström method for approximating the pth eigenfunction [Baker, 1977] is given

by:

φp(x) ≈
1

λRp
k′(x)Φp, (1.54)

where k′(x) = (k(x, xi), . . . , k(x, xN )). Thus, given a point x, we can sample Z(x) by consid-

ering the following truncated series:

Z(x) ≈
∑

p≤Np

k′(x)Φp
√

λRp N
Zp. (1.55)

Second, let us consider the following d-dimensional Gaussian process, x ∈ [0, 1]d:

Z(x) ∼ GP(0,

d
∏

i=1

ki(x
i, x̃i)). (1.56)

We note that Z(x) has a d-dimensional tensorised kernel. We have the following Karhunen-

Loeve representation of Z(x):

Z(x) =
∑

p1,...,pd≥0

d
∏

i=1

√

λpiφpi(x)Zp1,...,pd , (1.57)

where λpi and φpi(x) are respectively the eigenvalues and eigenfunctions of the kernel ki(x, x̃).

Thus, to compute a realization of Z(x) we just have to consider the Nyström approximation

of each kernel ki(x, x̃) for i = 1, . . . , d (i.e. it corresponds to d 1-dimensional numerical

integrations).

1.5 Kriging models: two other approaches

The kriging equations were presented in Section 1.2 through a Bayesian approach. Nonetheless,

it was not the original approach suggested by [Krige, 1951]. In Subsection 1.5.1 we present

this approach based on a linear formulation as presented in Equation (1.5). In particular,

we will see that it leads to the same model as the simple and universal kriging one. We

use this result in Chapter 7 to show asymptotic results on the predictive variance in a noisy

kriging framework. Then, in Subsection 1.5.2 we present a closely related tool coming from

the regularization theory in a reproducing kernel Hilbert space.

1.5.1 The Best Linear Unbiased Predictor

We present in this subsection the concept of the Best Linear Unbiased Predictor (BLUP). We

still consider the problem of predicting a random variable Z(x), x ∈ Q ⊂ R
d from a vector of

observations zn at points D. We recall that Z(x) is a Gaussian process of mean f ′(x)β and

covariance structure k(x, x̃) modeling the objective function z(x). First of all, we consider the

parameter β known and equal to zero. Let us consider the linear predictor:

Ẑ(x) = a0 + a′Zn. (1.58)
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We are looking for an unbiased predictor, i.e. E

[

Ẑ(x)
]

= E [Z(x)]. The unbiased property

leads to a0 = 0. Then, we want to determine the best linear unbiased predictor with respect

to the mean squared errors loss function. Thus, the problem consists in finding the coefficient

a solving

min
a

E

[

(

a′Zn − Z(x)
)2
]

. (1.59)

We have

E

[

(

a′Zn − Z(x)
)2
]

= k(x, x) + a′Ka− 2a′k(x),

which is minimal for a = k′(x)K−1. Thus, the BLUP is given by:

Ẑ(x) = k′(x)K−1Zn (1.60)

and its mean squared error (MSE) is given by

MSEẐ(x) = k(x, x)− k′(x)K−1k(x). (1.61)

Considering the observed values zn, equations (1.60) and (1.61) with

k(x, x̃) = σ2r(x, x̃) are identical to the ones of the Simple kriging (1.3) and (1.4).

Furthermore, the Gaussian property of the underlying stochastic process Z(x) im-

plies that the predictive distributions of the two approaches are identical.

Now, let us assume that β is unknown and consider an unbiased linear predictor of the form

Ẑ(x) = a′Zn. (1.62)

The unbiased property imposes the constraint a′Fβ = f ′(x)β, ∀β, i.e. F′a = f(x). Thus, the

goal is to solve the following constraint optimization problem

{

mina E
[

(a′Zn − Z(x))2
]

F′a = f(x)

or equivalently
{

mina k(x, x) + a′Ka− 2a′k(x)
F′a = f(x)

. (1.63)

We can use the method of Lagrange multipliers to minimize the quadratic form in (1.63)

subject to F′a = f(x). We aim to find (a,λ) ∈ R
n+p minimizing the Lagrangian formulation

k(x, x) + a′Ka− 2a′k(x) + 2λ′(F′a− f(x)).

We can calculate the gradients with respect to (a,λ) and set it equal to zero. We find the

following system of equations
{

F′a− f(x) = 0

Ka− k(x) + Fλ = 0
,
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which leads to

(

λ

a

)

=

(

0 F′

F K

)−1(

f(x)

k(x)

)

=

(

−Q QF′K−1

K−1FQ K−1 −K−1FQF′K−1

)(

f(x)

k(x)

)

,

with Q = (F′K−1F)−1. Therefore, we find that

a = K−1FQf(x) +
(

K−1 −K−1FQF′K−1
)

k(x)

and the resulting predictor is

Ẑ(x) = f ′(x)β̂ + k′(x)K−1
(

Zn − Fβ̂
)

, (1.64)

with β̂ = (F′K−1F)−1F′K−1Zn. The MSE of the predictor Ẑ(x) in (1.64) is then given by

MSEẐ(x) = k(x, x̃)− k′(x)K−1k(x)

+(f ′(x)− k′(x)K−1F)(F′K−1F)−1(f ′(x)− k′(x)K−1F)′
. (1.65)

Equations (1.64) and (1.65) with k(x, x̃) = σ2r(x, x̃) are identical to the ones of

the Universal kriging (1.20) and (1.21). Considering the Gaussian property of the

underlying stochastic process Z(x), it gives that the two approaches are equivalent.

1.5.2 Regularization in a Reproducing Kernel Hilbert Space

In this subsection, we present how the Gaussian process regression theory can be related to

the regularization problem in a Reproducing Kernel Hilbert Space (RKHS). First of all, we

introduce some concepts about RKHS and then we present the famous representer theorem

given a general form for the solution of a regularization problem in a RKHS. The forthcoming

developments were inspired by the book of [Wahba, 1990] and [Rasmussen and Williams,

2006]. We present here a brief introduction to RKHS, for more detail about them, the reader

could refer to the article of [Aronszajn, 1950] or the book of [Wahba, 1990]. Furthermore,

for a deep presentation of regularization in a RKHS and the correspondence with Gaussian

process regression, we refer to the thesis of [Vazquez, 2005] Chapter 3.

Covariance functions and reproducing kernels in Hilbert spaces

Foremost, we define a general index set X . Examples of X can be various (e.g. X = {1, . . . , N},
X = [0, 1], X = S with S the unit sphere,. . . ). For our purpose, we always consider that

X ⊂ R
d but the results presented in this paragraph remain true for more general X . We saw
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in Section 1.1 that a kernel k(x, x̃) with x, x̃ ∈ X is positive definite if for any a1, . . . , an ∈ R,

and distinct x1, . . . , xn ∈ X , n ∈ N
∗, we have

n
∑

i,j=1

aiajk(xi, xj) ≥ 0.

and
∑n

i,j=1 aiajk(xi, xj) = 0 if and only if ai = 0 for all i = 1, . . . , n. Furthermore, we

can define a Gaussian process Z(x) with covariance structure k(x, x̃) if it fulfills the positive

definiteness property. We will see in the forthcoming developments that we can associate the

kernel k(x, x̃) to a RKHS. Let us consider the following definition:

Definition 1.3 (Reproducing Kernel Hilbert Space). Let H be a Hilbert space of real functions

f defined on an index set X . Then H is called a reproducing kernel Hilbert space endowed with

an inner product 〈., .〉H and norm ||f ||H =
√

〈f, f〉H if there exists a function k : X ×X → R

with the following properties:

1. For every x ∈ X , the function kx : x̃ 7→ k(x, x̃) belongs to H.

2. k(x, x̃) has the reproducing property 〈kx, f〉H = f(x), ∀f ∈ H.

3. ∀x ∈ X the evaluation functional kx(x̃) is a bounded linear functional, i.e. ∃Mx such

that ∀f ∈ H, |f(x)| ≤Mx||f ||H.

The form kx(.) for the evaluation functional comes from the Riesz representation theorem.

We note that we have also the property 〈kx, kx̃〉H = k(x, x̃). For a given RKHS, the representer

kx(.) of evaluation at x is unique. The converse is true as presented in the following theorem

[Aronszajn, 1950]:

Theorem 1.6 (Moore-Aronszajn theorem). To every RKHS there corresponds a unique

positive definite function k(x, x̃) called the reproducing kernel and conversely, given a

positive definite function k(x, x̃) we can construct a unique RKHS of real-valued functions

on X with k(x, x̃) as its reproducing kernel.

Proof. If H is a RKHS, then the reproducing kernel is k(x, x̃) = 〈kx, kx̃〉H, where for each x,

x̃, kx and kx̃ are the representers of evaluation at x and x̃. Furthermore, k(x, x̃) is positive

definite since, for any distinct x1, . . . , xn ∈ X , a1, . . . , an ∈ R, n ∈ N
∗, we have:

n
∑

i,j=1

aiajk(xi, xj) =
n
∑

i,j=1

aiaj〈kxi , kxj 〉H

= ||
n
∑

i=1

aikxi ||2H ≥ 0.

and ||∑n
i=1 aikxi ||2H = 0 if and only if ai = 0 for all i = 1, . . . , n. Conversely, given k(x, x̃)

we construct H ≡ Hk as follows. For each fixed x ∈ X , denote by kx the real-valued function

such that

kx(.) = k(x, .).
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Then, construct a manifold by taking all finite linear combinations of the form

n
∑

i=1

aikxi ,

for all choices of n, a1, . . . , an ∈ R, x1, . . . , xn ∈ X with the inner product

〈
n
∑

i=1

aikxi ,

n
∑

i=1

ãikx̃i〉H =

n
∑

i,j=1

aiãj〈kxi , kxj 〉H =

n
∑

i,j=1

k(xi, xj)aiãj .

The inner-product is well-defined since k(x, x̃) is positive definite. Furthermore, for any f

such that f(x) =
∑n

i=1 aikxi(x) we have 〈kx, f〉H = f(x). In this linear manifold we have

|fn(x)− f(x)| = |〈fn − f, kx〉H| ≤ ||fn − f ||H||kx||H.

Thus, the norm convergence implies the point wise convergence and we can adjoin to this

manifold all the limits of Cauchy sequences of functions in the manifold. The resulting Hilbert

space is the RKHS H with the reproducing kernel k(x, x̃).

In the Hilbert space L2 with the inner product 〈f, g〉L2 =
∫

f(x)g(x) dx, the dirac delta

function is the representer of evaluation. Indeed, f(x) =
∫

f(u)δ(x − u) du. Nevertheless,

the diract delta function does not belong to L2 and thus L2 is not a RKHS. As noted in

[Rasmussen and Williams, 2006], kernels are the analogues of dirac delta functions within the

smoother RKHS.

Now let us consider the eigenfunction decomposition of the kernel k(x, x̃) (see Mercer’s

Theorem 1.4 in Section 1.4) with µ a probability measure, supx∈X k(x, x) <∞ and k(x, x̃) is

continuous on X ∈ R
d - X is a nonempty open set. There exists an orthonormal sequence of

eigenfunctions, (φp(x))p≥0 ∈ L2
µ(X ) with the corresponding eigenvalues (λp)p≥0 ≥ 0 sorting

in decreasing order, such that

∫

X
k(x, x̃)φp(x̃) dµ(x̃) = λpφp(x), p ≥ 0,

k(x, x̃) =
∑

p≥0

λpφp(x)φp(x̃),

∫

X

∫

X
k2(x, x̃) dµ(x) dµ(x̃) =

∑

p≥0

λ2p <∞.

We note that for the case X = {1, . . . , N} the analogs of the previous equations are Kφp =

λpφp, K = ΓΛΓ and tr(K2) =
∑N

i=1 λ
2
p where K = [k(i, j)]i,j=1,...,N , φp = [φp(i)]i=1,...,N ,

Λ = diag ([λi]i=1,...,N ) and Γ = [φi]i=1,...,N is orthogonal. We have the following proposition:



1.5. TWO OTHERS APPROACHES 61

Proposition 1.2. Let us consider a covariance kernel k(x, x̃) with an eigenfunction

decomposition k(x, x̃) =
∑

p≥0 λpφp(x)φp(x̃) with respect to the measure µ. If we consider

f(x) =
∑

p≥0 fpφp(x), f(x) is in the RKHS H with reproducing kernel k(x, x̃) if and only

if
∑

p≥0

f2p
λp

<∞

and ||f ||2H =
∑

p≥0 f
2
p /λp. If f(x) ∈ H, then we have the equality

fp =

∫

X
f(x)φp(x)dµ(x), for p such that λp > 0.

Proof. The collection of functions f(x) with
∑

p≥0 f
2
p /λp < ∞ is a Hilbert space H with

||f ||2H =
∑

p≥0 f
2
p /λp. We aim to prove that H is a RKHS with reproducing kernel k(x, x̃) =

∑

p≥0 λpφp(x)φp(x̃). We have

||kx||2H =
∑

p≥0

λ2pφ
2
p(x)

λp
=
∑

p≥0

λpφ
2
p(x) = k(x, x) <∞.

Thus, kx belongs to H. Furthermore, we have the equalities

〈f, kx〉H =
∑

p≥0

fp(λpφp(x))

λp
=
∑

p≥0

fpφp(x) = f(x),

which lead that k(x, x̃) has the reproducing property. Finally, we show that the evaluation

functional is bounded:

|f(x)| =

∣

∣

∣

∣

∣

∣

∑

p≥0

fp(
√

λpφp(x))
√

λp

∣

∣

∣

∣

∣

∣

≤
√

√

√

√

∑

p≥0

f2p
λp

∑

p≥0

λpφ2p(x)

= ||f ||H||kx||H.

We can now consider the RKHS constituted by the functions of the form f(x) =
∑

p≥0 fpφp(x)

with the inner product

〈f, g〉H =
∑

p≥0

fpgp
λp

, (1.66)

with g(x) =
∑

p≥0 gpφp(x). We note that despite the fact that the eigenvalue decomposi-

tion depends on the measure µ, the inner product is invariant under a change of measure

[Kailath, 1971]. Another view of the RKHS can be obtained from the reproducing kernel map

construction as stated in the following proposition.

Proposition 1.3. Let us consider a covariance kernel k(x, x̃) ∀n ∈ N, xi ∈ X , αi ∈ R,

f(x) =
∑n

i=1 αik(x, xi) is in the RKHS H with reproducing kernel k(x, x̃), and ||f ||2H =
∑n

i,j=1 αiαjk(xi, xj).
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Proof. The collection of functions f(x) =
∑n

i=1 αik(x, xi) is a Hilbert space H with ||f ||2H =
∑n

i,j=1 αiαjk(xi, xj). Furthermore, kx belongs to H and has the reproducing property:

〈f, kx〉H =
n
∑

i=1

αik(xi, x) = f(x).

We note that we recognize the form of the predictor given in Equation (1.6) in Subsection

1.2.1.

An example of Reproducing Kernel Hilbert Space in [0, 1]

Let us consider a function f : [0, 1] → R with m − 1 continuous derivatives and such that

f (m) ∈ L2([0, 1]) where f (q) denote the qth derivative of f . The Taylor series expansion gives

f(x) =
m−1
∑

q=0

xq

q!
f (q)(0) +

∫ 1

0

(x− u)m−1
+

(m− 1)!
f (m)(u) du,

with (x− u)+ = (x− u)1x−u≥0. Furthermore, let us consider Am the class of functions such

that
(

f (q)(0) = 0
)

, ∀q = 0, . . . ,m− 1. Then f ∈ Am implies

f(x) =

∫ 1

0
Gm(x− u)f (m)(u) du,

where Gm(x − u) = (x− u)m−1
+ /(m− 1)!. The function Gm is the Green’s function for the

problem f (m) = g. Then, let us denote by H0
m the following space

H0
m :=

{

f ∈ Am : [0, 1] → R,
(

f (q)(0) = 0
)

∀q = 0, . . . ,m− 1, f (m) ∈ L2([0, 1])
}

.

The collection of functions H0
m is a Hilbert space with norm ||f ||2H0

m
=
∫ 1
0

(

f (m)(u)
)2
du.

Furthermore, let us consider the kernel

k(x, x̃) =

∫ 1

0
Gm(x− u)Gm(x̃− u) du. (1.67)

Denoting kx = k(x, .) we have

k(m)
x (x̃) = Gm(x− x̃).

Thus, a simple calculation gives that

||kx||2H0
m
=

∫ 1

0

(

k(m)
x (u)

)2
du =

∫ 1

0
(Gm(x− u))2 du = k(x, x).

Therefore kx is in H0
m. Furthermore, we have

〈f, kx〉H0
m
=

∫ 1

0
f (m)(u)k(m)

x (u) du =

∫ 1

0
f (m)(u)Gm(x− u) du = f(x)

and kx has the reproducing property. Finally, it is easy to check that the evaluation functional

if bounded:

|f(x)| = 〈f, kx〉H0
m
≤ ||f ||H0

m
||kx||H0

m
= ||f ||H0

m

√

k(x, x).
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Connection with Gaussian processes.

Let us consider a Gaussian process Z(x), x ∈ X with zero mean and covariance kernel k(x, x̃) =
∑

p≥0 λpφp(x)φp(x̃). Then, the Karhunen-Loeve representation of Z(x) is given by

Z(x) ∼
∑

p≥0

Zpφp(x),

where (Zp)p≥0 are independent Gaussian random variables with mean zero and variance λp
such that

Zp =

∫

Z(x)φp(x) dµ(x). (1.68)

The integral (1.68) is well defined in quadratic mean [Cramer and Leadbetter, 1967]. Nonethe-

less, if k(x, x̃) is non-degenerate (i.e., if it has a infinite number of non-zero eigenvalues), then

samples of Z(x) do not belong to H. Therefore, the assumption f ∈ H and f is a sample

of the Gaussian process Z(x) are not equivalent. To illustrate this statement, let us consider

the degenerate kernel kp̄(x, x̃) =
∑

p≤p̄ λpφp(x)φp(x̃) and the corresponding Gaussian process

Zp̄(x) =
∑

p≤p̄ Zpφp(x). We have

E
[

|Zp̄(x)− Z(x)|2
]

=
∞
∑

p=p̄+1

λpφ
2
p(x)

p̄→∞−→ 0.

Therefore, Zp̄(x) tends to Z(x) in mean square sense but

E
[

||Zp̄(x)||2H
]

=

p̄
∑

p=0

E
[

|Zp|2
]

λp
= p̄+ 1

p̄→∞−→ ∞.

However, as noted in [Rasmussen and Williams, 2006], the posterior mean of the Gaussian

process after observing some data will lie in the RKHS due to the averaging.

Now, let us consider the Hilbert space Z spanned by Z(x), x ∈ X . It is the collection of

random variables of the form Z =
∑n

i=1 αjZ(xi) with the inner product 〈Z1, Z2〉 = E [Z1Z2]

and all of their quadratic mean limits. First, the equalities

〈Z(x), Z(x̃)〉 = E [Z(x)Z(x̃)] = k(x, x̃) = 〈kx, kx̃〉

show that there is a correspondence between the inner product of Z and the one of H. Now

let us consider a bounded linear function in H with representer η. Thus, η can be written in

the form η(x) = limn η
(n)(x) with η(n)(x) =

∑n
i=1 αik(xi, x) . Furthermore, let us define Z∞

as the L2-limit of
∑n

i=1 αiZ(xi) = Z(n), η(n) converges in H if and only if Z(n) converges in

L2 . Therefore, if the limit limn E
[

(Z∞ −∑n
i=1 αiZ(xi))

2
]

= 0 holds, we have

E [Z∞Z(x)] = lim
n

n
∑

i=1

αiE [Z(xi)Z(x)] = lim
n

n
∑

i=1

αik(xi, x) = η(x).

Therefore, the Hilbert space Z is isomorphic to H with the correspondences Z(x) ∼ kx,

Z∞ ∼ η and a preserved inner product.
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Regularization problem in a RKHS

Let us consider the following functional:

J(f) =
λ

2
||f ||2H +Q(zn, fn), (1.69)

where zn is the observed values of the objective function z(x) we are approximating, fn =

f(D) = (f(x1), . . . , f(xn))
′ and λ is a scalar parameter. The term Q(zn, fn) in (1.69) is a

measure of the distance between the observed values zn and the predicted ones fn. Moreover,

the norm ||f ||H in the Hilbert space H represents the regularity of the predictor f . The

purpose of this section is to determine the function f minimizing (1.69). In a Gaussian

process regression framework, we consider that Q(zn, fn) is a squared loss function, i.e.

Q(zn, fn) = (zn − fn)′(zn − fn).

More general forms of loss functions can be found in the book of [Wahba, 1990]. Let us

consider the following Theorem:

Theorem 1.7 (Representer Theorem). Let us consider a function f in a RKHS H with

the reproducing kernel k(x, x̃). Each minimizer f ∈ H of

J(f) =
λ

2
||f ||2H +Q(zn, fn),

has the form

f(x) =

n
∑

i=1

αik(x, xi).

Again we recognize the form of the kriging predictor giving in Equation (1.6). Theorem

1.7 was first proved by [Kimeldorf and Wahba, 1971] in the case of squared loss functions.

Now let us consider the following functional

J(f) =
1

2
||f ||2H +

1

2σ2ε
(zn − fn)′(zn − fn). (1.70)

Theorem 1.7 gives us that the solution of (1.70) has the form f(x) = k′(x)αn with αn =

(αi, . . . , αn)
′, n ∈ N and k(x) = [k(x, xi)]i=1,...,n. Thus, the functional (1.70) can be written:

J(α) =
1

2
(αn)′Kαn +

1

2σ2ε
(zn −Kαn)′(zn −Kαn)

=
1

2
(αn)′

(

K+
1

σ2ε
K′K

)

αn − 1

σ2ε
(zn)′Kαn +

1

2σ2ε
(zn)′zn,

with K = [k(xi, xj)]i,j=1,...,n and noticing that ||f ||2H = (αn)′Kαn as stated in Proposition

1.3. The minimum of J(α) with respect to αn is given by

α̂n =
(

K+ σ2εI
)−1

zn.

Thus, the solution of the regularization problem is given by:

ẑ(x) = k′(x)
(

K+ σ2εI
)−1

zn, (1.71)
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which is exactly the form of the predictor in a noisy-kriging framework (1.8) with a constant

observation noise variance, i.e. ∆ = σ2εI. We can consider two extreme cases for the functional

J(f) presented in Equation (1.70). First, let us consider the case σ2ε → ∞. Thus, J(f) becomes

J(f) = ||f ||2H which means that we only considered the penalization on the regularity of f .

We can derive the same calculations as before and we find that αn = 0. If we refer to the

kriging framework, it corresponds to the mean of the Gaussian process Z(x) modeling z(x) in

a simple kriging case. In fact, as presented by [Wahba, 1990] Sec 1.3, this case corresponds

to the one of the generalized linear regression. Then, let us consider the asymptotic σ2ε → 0

which corresponds to the minimization problem J(f) = (zn − fn)′(zn − fn). In that case we

find the following solution for the minimization problem

α̂n = K−1zn,

which corresponds to the predictor

ẑ(x) = k′(x)K−1zn. (1.72)

We recognize the form of the predictor obtained in a simple Kriging framework with noisy-free

observations (1.3).

A useful property of RKHS

The Riesz representation theorem tells us that any bounded linear function L in H has a

unique representer η in H. The powerful property of the reproducing kernel kx is that we can

deduce η from it. Indeed, we have

η(x̃) = 〈η, kx̃〉H = Lkx̃,

which means that η(x̃) can be obtained by applying L to kx̃. For example, if we consider

X = R
d and Lf =

∫

f(u) du then η(x̃) =
∫

kx̃(u) du. Moreover, if we consider X = R, f(x)

and kx̃(x) differentiable and Lf = d
dxf(x) for some x ∈ R, then η(x̃) = d

dxkx̃(x).

Then we can consider the space Hη spanned by η and its orthogonal H⊥
η . The spaces Hη

and H⊥
η are two subspaces of H such that H = Hη⊕H⊥

η and are themselves RKHS. As stated

in [Berlinet and Thomas-Agnan, 2004] Theorem 11, the reproducing kernel kηx of Hη is given

by the orthogonal projection of kx on Hη:

kηx = 〈kx, η〉H
η

||η||2H
= η(x)

η

||η||2H
. (1.73)

Furthermore, the relation H = Hη ⊕ H⊥
η implies that the kernel of H⊥

η is given by kx − kηx.

We note that the norm ||η||2H can be deduced from the following equality

||η||2H = 〈η, η〉H = 〈Lkx, Lkx̃〉H

As an application, a very interesting use of this property were suggested by [Durrande

et al., 2013] who propose an ANOVA decomposition for the reproducing kernel k(x, x̃). Then,
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this decomposition is used to perform sensitivity analysis in an efficient way. Their approach

is based on the following proposition (see [Durrande et al., 2013] Proposition 1):

Proposition 1.4. Let H be an RKHS with a reproducing kernel k(x, x̃), x, x̃ ∈ R, then

H can be decomposed as a sum of two orthogonal RKHS

H = H1

⊥
⊕ H0,

where H0 is a RKHS of zero-mean functions and H1 is its orthogonal.

The proof is straightforward according to the previous discussion by considering the

bounded linear functional Lf =
∫

f(u) du with its representer η(x̃) =
∫

kx̃(u) du. By ap-

plying the presented results, the kernel for H1 is given by k1x(x̃) = η(x)η(x̃)/||η||2H, i.e:

k1x(x̃) =

∫

kx(u) du

∫

kx̃(u) du
∫ ∫

k(v, u) du dv
.

Then, the reproducing kernel of the orthogonal space H⊥
1 = H0 - which corresponds to the

collection of functions g such that 〈η, g〉H = Lg =
∫

g(u) du = 0, i.e. the space of zero-mean

functions - is given by

k0x(x̃) = kx(x̃)− k1x(x̃).

Example of a Gaussian process with zero mean function. Let us consider a 1-

dimensional Gaussian process Z(x), x ∈ [0, 1] with zero mean and covariance kernel k(x, x̃) =

exp (−|x− x̃|/θ) with θ = 10. It corresponds to the Ornstein-Uhlenbeck kernel presented in

Subsection 1.4.2. The advantage of this kernel is that a closed form expression can be given

for Equation (1.73). Indeed, after straightforward calculations, we find that

k1(x, x̃) =

(

2θ − θ
(

exp(−x
θ ) + exp(x−1

θ )
)) (

2θ − θ
(

exp(− x̃
θ ) + exp( x̃−1

θ )
))

2θ − 2θ2 + 2θ2 exp
(

−1
θ

)

and the reproducing kernel for the sub-RKHS of zero mean functions is given by k0(x, x̃) =

k(x, x̃) − k1(x, x̃). We illustrate in Figure 1.13 one realization of a Gaussian process with

covariance kernel k(x, x̃) and the same realization but with covariance kernel k0(x, x̃).
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Figure 1.13: Example of realizations for the Gaussian processes Z(x) with covariance kernel

k(x, x̃) and Z0(x) with covariance kernel k0(x, x̃). k0(x, x̃) is the reproducing kernel of the

sub-RKHS of zero mean functions on [0, 1]. The two realizations are computed thanks to the

Cholesky’s decomposition method (see Subsection 1.4.2) with the same Gaussian white noise.

We empirically observe that the mean of the realization of Z0(x) is close to 0, as expected.

Indeed, it equals −3.5.10−5 whereas the one of Z(x) is −3.1.10−1.
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Chapter 2

Co-kriging models

In Chapter 1, we have presented how to surrogate an objective function z(x) with x ∈ Q ⊆
R
d, Q an nonempty open set, and z(x) ∈ R. Nevertheless, in practical applications, the

objective function can be multivariate, i.e. its output can lie in R
s with s ∈ N

∗. We denote

such functions by z(x) = (z1(x), . . . , zs(x)) ∈ R
s with x ∈ Q. Furthermore, the different

components (zi(x))i=1,...,s of the vector of functions z(x) can be dependent. Therefore, if we

want to approximate a component zi(x) of z(x) it could be worthwhile to take into account

the other ones (zj(x))j 6=i.

In this chapter, we are interested in that framework. The component of z(x) that we want

to predict is generally called the principal component and the other ones are the secondary

components.

In Section 2.1 we present the extension of the kriging model for multivariate functions.

This extension is called co-kriging and was first developed in geostatistics (see [Chilès and

Delfiner, 1999] and [Wackernagel, 2003]). Then, in Section 2.2 we present the original model

of co-kriging suggested in the geostatistical literature. In Section 2.3 we deal with the defi-

nition of valid covariance kernels for co-kriging models. Finally, in Section 2.4 we present an

approach in computer experiments using co-kriging models to surrogate the output of a code.

It corresponds to the case where we want to take into account the code output derivatives

into the model.

2.1 Bayesian Kriging models for vectorial functions

Let us suppose that we want to approximate the last component zs(x) of z(x) by taking

into account the other components (zi(x))i=1,...,s−1. Analogously to the Gaussian process

regression, we consider that the output of the objective function is a multivariate Gaussian

process Z(x) = (Z1(x), . . . , Zs(x)) with mean m(x) and matrix-valued covariance function

69
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V(x, x̃). In a multivariate case, we have

m(x) =







m1(x)
...

ms(x)






(2.1)

and

V(x, x̃) =







k11(x, x̃;θ11) . . . k1s(x, x̃;θ1s)
...

. . .
...

ks1(x, x̃;θs1) . . . kss(x, x̃;θss)






, (2.2)

where kij(x, x̃) = cov (Zi(x), Zj(x̃);θij), i, j = 1, . . . , s and mi(x) = E [Zi(x)], i = 1, . . . , s.

We note that the hyper-parameters θij , representing the parameters of the covariance kernel

kij(x, x̃), can include the variance parameter. For the moment, we consider that V(x, x̃) is

a valid matrix-valued covariance function. In fact, its choice is non-trivial since assuring the

positive definiteness of V(x, x̃) could be an issue. We present in Section 2.3 how to define

admissible covariance structures in a multivariate context. It is though important to note that

V(x, x̃) is not necessarily symmetric, i.e. we can have kij(x, x̃) 6= kji(x, x̃). Moreover, as in a

kriging case, we consider that the ith component of m(x) is of the form mi(x) = f ′i(x)βi with

f ′i(x) a vector of functions of size pi.

2.1.1 Simple co-kriging equations

Let us denote by Z(s) = ((Zn1
1 )′, . . . , (Zns

s )′)′ the values of (Zi(x))i=1,...,s at points in (Di)i=1,...,s

where Di = (x
(i)
1 , . . . , x

(i)
ni ), x

(ni)
j ∈ R

d, j = 1, . . . , ni, i = 1, . . . , s. Furthermore, we denote

by z(s) = (zn1
1 , . . . , z

ns
s ) the values of (zi(x))i=1,...,s at points in (Di)i=1,...,s and by M(s) =

(M1, . . . ,Ms) the values of (mi(x))i=1,...,s at points in (Di)i=1,...,s. Thus, we have Mi =

f ′i(D
i)βi := Fiβi with Fi a matrix of size ni × pi, i = 1, . . . , s .

The purpose of the co-kriging model is to predict the value of Zs(x) by considering the

known values z(s). As in the simple kriging case, the predictive distribution of the simple co-

kriging is given by [Zs(x)|Z(s) = z(s), (βi)i=1,...,s, (θij)i,j=1...,s]. Let us consider the following

Gaussian vector













Zs(x)

Z1
...

Zs













∼ N

























f ′s(x)βs

F1β1
...

Fsβs













,













kss(x, x) k′
s1(x) . . . k′

ss(x)

k1s(x) K11 . . . K1s
...

...
. . .

...

kss(x) Ks1 . . . Kss

























, (2.3)

with ksj(x) = [ksj(x, x
(j)
k )]k=1,...,nj

, kjs(x) = [kjs(x
(j)
k , x)]k=1,...,nj

and Kij = [kij(x
(i)
k , x

(j)
l )]k=1,...,ni

l=1,...,nj

.

We note that although in general kij(x, x̃) 6= kji(x, x̃), we have the equality ksj(x) = kjs(x)

and Kij = K′
ji. Indeed, the equality cov (Zi(x), Zj(x̃)) = cov (Zj(x̃), Zi(x)) implies that

ksj(x, x̃) = kjs(x̃, x) and thus kij(x) = kji(x) and Kij = K′
ji. Thus, we obtain that the predic-

tive distribution [Zs(x)|Z(s) = z(s), (βi)i=1,...,s, (θij)i,j=1...,s] is Gaussian with mean mZs,SK(x)



2.1. BAYESIAN KRIGING MODELS FOR VECTORIAL FUNCTIONS 71

and variance s2Zs,SK
(x) given by:

mZs,SK(x) = f ′s(x)βs + k′
s(x)V

−1
s

(

z(s) −M(s)
)

(2.4)

and

s2Zs,SK(x) = kss(x, x)− k′
s(x)V

−1
s ks(x), (2.5)

where k′
s(x) =

(

k′
s1(x) . . . k′

ss(x)
)

and

Vs =







K11 . . . K1s
...

. . .
...

Ks1 . . . Kss






. (2.6)

Considering the univariate case s = 1, the predictive mean (2.4) and variance (2.5)

are identical to the ones of the Simple kriging (1.3) and (1.4).

We note that the matrix Vs must be positive definite. We present in Section 2.3 different co-

variance structures which ensure this property. Furthermore, the equality kij(x, x̃) = kji(x̃, x)

implies that Vs is symmetric. The predictive mean mZs,SK(x) is the surrogate model for the

component zs(x) of z(x) and the predictive variance s2Zs,SK
(x) represents the model mean

squared error. Like in simple kriging with noisy-free observations, mZs,SK(x) interpolates

zs(x) at points of the experimental design set and s2Zs,SK
(x) equals zero at these points. Fur-

thermore, we can easily integrate a noise variance in the model by considering a nugget effect

as presented in Subsection 1.2.1 in the paragraph “The noisy case”. In that case, the surrogate

model will not interpolate the observed values anymore.

Example of simple co-kriging

Let us consider the bivariate Gaussian process (Z1(x), Z2(x)), x ∈ R such that

{

Z1(x) = a1δ1(x) + a2δ2(x)

Z2(x) = b1δ1(x) + b2δ2(x)
,

where δ1(x) and δ2(x) are two independent Gaussian processes with means zero and covari-

ances k1(x, x̃) and k2(x, x̃) such that:

• k1(x, x̃) is a 5/2-Matérn kernel with variance parameter σ2 = 1 and characteristic length

scale θ = 0.2,

• k2(x, x̃) is a 3/2-Matérn kernel with variance parameter σ2 = 1 and characteristic length

scale θ = 0.3.
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The bivariate stochastic process (Z1(x), Z2(x)) is Gaussian since it is a linear combination of

the bivariate Gaussian process (δ1(x), δ2(x)). We note that the independence ensures the nor-

mality for (δ1(x), δ2(x)). Furthermore, (Z1(x), Z2(x)) has zero mean and covariance structure

V(x, x̃) =

(

a21k1(x, x̃) + a22k2(x, x̃) a1b1k1(x, x̃) + a2b2k2(x, x̃)

a1b1k1(x, x̃) + a2b2k2(x, x̃) b21k1(x, x̃) + b22k2(x, x̃)

)

. (2.7)

Let us consider the sample of Z1(x) and Z2(x) showed in Figure 2.1 with a1 = 1, a2 = −4,

b1 = 0.5 and b2 = 3.
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Figure 2.1: Example of sample for the bivariate Gaussian process (Z1(x), Z2(x)) with covari-

ance structure defined in (2.7) with a1 = 1, a2 = −4, b1 = 0.5 and b2 = 3 . Figure (a)

illustrates the sample of Z1(x) and Figure (b) illustrates the sample of Z2(x).

We aim to reconstruct the sample of Z1(x) from its values at points in D1 = (−0.20, 0.08,

0.36, 0.64, 0.93) and the sampled values of Z2(x) at points in D2 = (−0.20,−0.06, 0.08, 0.22, 0.36, 0.50,

0.64, 0.78, 0.93, 1.07). Figure 2.2 illustrates the predictive mean and confidence intervals ob-

tained for the simple co-kriging equations (2.4) and (2.5). Furthermore, we also illustrate the

predictive mean (1.3) and variance (1.4) of the simple kriging using only the sampled values

of Z1(x) at points in D1. We see in Figure 2.2 that the confidence intervals of the co-kriging

model are smaller than the ones of the kriging model. Furthermore, they are more relevant in

the co-kriging model since they represent more precisely the real model error. Finally, we see

that the co-kriging mean is more accurate than the kriging one.

2.1.2 Co-kriging parameter estimation

In a co-kriging framework, the hyper-parameters (θij)i,j=1...,s are considered as known - this

include the variance parameters. We note that the selection methods presented in Section 1.3

can naturally be extended for the co-kriging model. However, they will be in general extremely

computationally expensive. Nevertheless, we will see in Part II that in some particular contexts

we can easily infer from some hyper-parameters about the predictive distribution. In this
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Figure 2.2: Comparison between co-kriging and kriging models. The solid line represents the

co-kriging mean, the dotted line represents the kriging mean, the dashed line represents the

sample of Z1(x) that we want to approximate. The shade areas represent the mean plus and

minus twice the predictive standard deviation of the co-kriging and kriging models.

subsection, we only deal with the estimation of the vector β(s) = (β1, . . . ,βs) of size (
∑s

i=1 pi).

We consider here a Bayesian estimate for β(s) but the maximum likelihood one can be deduced

from it without difficulties. First, let us consider the probability density function of the random

vector Z(s)

p(z(s)|β(s)) =

exp

(

−1
2

(

z(s) − F(s)β(s)
)′

V−1
s

(

z(s) − F(s)β(s)
)

)

(2π)n/2
√
detVs

, (2.8)

where n =
∑s

i=1 ni and F(s) is the following (
∑s

i=1 ni)× (
∑s

i=1 pi) matrix

F(s) =

















F1 0 0 . . . 0

0 F2 0 . . . 0
...

...
. . .

...
...

0 . . . 0 Fs−1 0

0 . . . 0 0 Fs

















.

We note that p(z(s)|β(s)) is the likelihood of parameter β(s). Then, from the Bayes rule we

have:

p(β(s)|z(s)) ∝ p(z(s)|β(s))p(β(s))

and thanks to the improper Jeffrey’s prior distribution

p(β(s)) ∝ 1,

we find that the distribution [β(s)|z(s)] is

N
(

β̄
(s)
,Σ

β(s)

)

, (2.9)
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where

Σ
β(s) =

(

(

F(s)
)′

V−1
s F(s)

)−1

(2.10)

and

β̄
(s)

= Σ
β(s)

(

F(s)
)′

V−1
s z(s). (2.11)

We emphasize that the posterior distribution of parameter β(s) is similar to the one found in

Equation (1.17). In particular, for s = 1 they are identical. We note that the MLE of β(s)

is given by β̄
(s)

in (2.11). Furthermore, we can easily extend the result given in Subsection

1.2.2 if we consider a Gaussian prior distribution for β(s).

2.1.3 Universal co-kriging equations

As presented in Subsection 1.2.2, we can infer from the posterior distribution of β(s) given in

Equation (2.9) about the predictive distribution of the simple co-kriging which is a Gaussian

with mean given in Equation (2.4) and covariance given in Equation (2.5).

Let us integrate the posterior distribution of β(s):

p(zs(x)|z(s)) =
∫

p(zs(x)|z(s),β(s))p(β(s)|z(s)) dβ(s).

After direct calculations, it can be shown that the predictive distribution [Zs(x)|Z(s) =

z(s), (θij)i,j=1...,s] is Gaussian with mean

mZs(x) = f ′s(x)β̂s + k′
s(x)V

−1
s

(

z(s) − F(s)β̂
(s)
)

(2.12)

and variance

s2Zs
(x) = kss(x, x)−

(

(

f (s)(x)
)′

k′
s(x)

)

(

0
(

F(s)
)′

F(s) Vs

)−1(

f (s)(x)

ks(x)

)

, (2.13)

where

f (s)(x) =













0
...

0

fs(x)













,

β̄
(s)

=
(

(

F(s)
)′
V−1

s F(s)
)−1

(

F(s)
)′
V−1

s z(s) and β̂s are the ps last components of β̄
(s)

.

For the univariate case s = 1, the predictive mean (2.12) and variance (2.13) are

identical to the ones of the Universal kriging (1.20) and (1.21).

We highlight that closed form formulas can also be derived for the predictive distribution

when a Gaussian prior distribution is considered for β(s). The universal co-kriging equations

are then similar to the ones presented in Subsection 1.2.2.
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2.2 Co-kriging in geostatistics

We present in this section the geostatistical approach to deal with multivariate objective

functions. It is the natural extension to the one presented in Subsection 1.5.1. Similarly to

the Bayesian scheme presented in Section 2.1 we want to predict a principal component zs(x)

by taking into account the secondary components (zi(x))i=1,...,s−1. As previously, the vector

of functions (zi)i=1,...,s is modeled with a multivariate Gaussian process (Zi(x))i=1,...,s with

mean m(x) (2.1) and matrix-valued covariance function V(x, x̃) (2.2). Nevertheless, in order

to simplify the equations, we present the bivariate case s = 2. The extension for any s is

straightforward.

2.2.1 Simple co-kriging

Let us consider the bivariate Gaussian process (Z1(x), Z2(x)) and the corresponding Gaussian

random vector (Zn1
1 ,Z

n2
2 ) where Z

ni
i := Zi(D

i), i = 1, 2. Furthermore, we consider Mi :=

m(Di) = f ′i(D
i)βi := Fiβi where Fi is a matrix of size ni × pi, i = 1, 2.

In a simple co-kriging case, the coefficients (βi)i=1,2 are considered as known. Therefore,

we can suppose them equal to zero without loss of generality. Let us consider that we want to

predict the principal component Z2(x). We consider the following linear unbiased predictor:

Ẑ2(x) =

n2
∑

i=1

αiZ2(x
(2)
i ) +

n1
∑

i=1

γiZ1(x
(1)
i ) = (αn2)′ Zn2

2 + (γn1)′ Zn1
1 , (2.14)

where αn2 = [αi]i=1,...,n2 and γn1 = [γi]i=1,...,n1 . Like in Subsection 1.5.1 we want to find the

coefficients αn2 and γn1 minimizing

E

[

(

Z2(x)− Ẑ2(x)
)2
]

= k22(x, x) + var
(

Ẑ2(x)
)

−2
(

k′
22(x)α

n2 + k′
21(x)γ

n1
)

,

where

var
(

Ẑ2(x)
)

= (αn2)′K22α
n2 + (γn1)′K11γ

n1 + 2 (αn2)′K21γ
n1 ,

k2j(x) = [k2j(x, x
(j)
k )]k=1,...,nj

, kj2(x) = [kj2(x
(j)
k , x)]k=1,...,nj

and Kij = [kij(x
(i)
k , x

(j)
l )]k=1,...,ni

l=1,...,nj

,

i, j = 1, 2. We note that k12(x, x̃) = k21(x̃, x) implies that K12 = K′
21 and k12(x) = k21(x).

We can derive the mean squared error with respect to αn2 and γn1 . Setting the derivatives

equal to zero, we obtain that the minimum satisfies the following system of equations:

{

(αn2)′K22 + (γn1)′K12 = k′
22(x)

(γn1)′K11 + (αn2)′K21 = k′
21(x)

. (2.15)

Therefore, we can deduce αn2 and γn1 from the following linear problem:

(

K22 K21

K12 K11

)(

αn2

γn1

)

=

(

k22(x)

k21(x)

)

.



76 CHAPTER 2. CO-KRIGING MODELS

The estimator is thus given by the equation

Ẑ2(x) =
(

k′
22(x) k′

21(x)
)

(

K22 K21

K21 K11

)−1(

Zn2
2

Zn1
1

)

, (2.16)

and the predictive variance s2SK(x) = E

[

(

Z2(x)− Ẑ2(x)
)2
]

is

s2SK(x) = k22(x, x)−
(

k′
22(x) k′

21(x)
)

(

K22 K21

K12 K11

)−1(

k22(x)

k21(x)

)

. (2.17)

Conditionally to the observed values, the predictive means (2.16) and (2.4) are iden-

tical when we consider m(x) = 0. Furthermore, the predictive variances (2.17) and

(2.5) are identical too. Therefore, the predictive distributions of the Bayesian and

the best linear unbiased predictor are identical.

We have shown that the Bayesian simple co-kriging and the one introduced in the geostatistical

literature give the same predictive distributions in the bivariate case. In fact, the generalization

of this result for any multivariate function is straightforward.

2.2.2 Universal co-kriging

We use in this subsection the same notations as in Subsection 2.2.2. In a universal co-kriging

context, the coefficients (βi)i=1,2 are unknown and have to be taken into account in the

constraint of unbiasedness. Let us consider that we want to predict the principal component

Z2(x). We consider the following linear predictor:

Ẑ2(x) =

n2
∑

i=1

αiZ2(x
(2)
i ) +

n1
∑

i=1

γiZ1(x
(1)
i ) = (αn2)′ Zn2

2 + (γn1)′ Zn1
1 . (2.18)

Like in Subsection 2.2.1 we want to find the coefficients αn2 and γn1 minimizing

E

[

(

Z2(x)− Ẑ2(x)
)2
]

= k22(x, x) +−2
(

k′
22(x) k′

21(x)
)

(

αn2

γn1

)

+
(

(αn2)′ (γn1)′
)

(

K22 K21

K12 K11

)(

αn2

γn1

)

.

Furthermore, the constraint of unbiasedness implies that

(αn2)′F2β2 + (γn1)′F1β1 = f ′2(x)β,

which is generally translated in geostatistic by the following conditions (see [Wackernagel,

2003])
{

(αn2)′F2 = f ′2(x)
(γn1)′F1 = 0

. (2.19)
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We use the Lagrangian formulation of the problem to minimize E

[

(

Z2(x)− Ẑ2(x)
)2
]

under

the constraints (2.19):

E

[

(

Z2(x)− Ẑ2(x)
)2
]

+ 2λ1(F
′
2α

n2 − f2(x)) + 2λ2F
′
1γ

n1 ,

where λ1 and λ2 are the Lagrangien multipliers. We obtain the following linear system by

calculating the gradients with respect to (αn2 ,γn1 ,λ1,λ2) and setting them equal to zero











K22 K21 F′
2 0

K12 K11 0 F′
1

F2 0 0 0

0 F1 0 0





















αn2

γn1

λ1
λ2











=











k22(x)

k21(x)

f2(x)

0











.

Let us introduce the following notations:

V2 =

(

K22 K21

K12 K11

)

, F(2) =

(

F2 0

0 F1

)

, Z(2) =

(

Zn2
2

Zn1
1

)

and k′
2(x) =

(

k′
22(x) k′

21(x)
)

. After some algebra, we find that the estimator is given by

Ẑ2(x) = f ′2(x)β̂2 + k′
2(x)V

−1
2

(

Z(2) − F(2)β̂
)

, (2.20)

where

β̂ =

(

(

F(2)
)′

V−1
2 F(2)

)−1
(

F(2)
)′

V−1
2 Z(2) (2.21)

and β̂2 are the p2 first components of β̂.

Then, denoting the predictive variance s2UK(x) = E

[

(

Z2(x)− Ẑ2(x)
)2
]

and noticing that
(

(αn2)′ (γn1)′
)

F(2) =
(

f ′2(x) 0
)

, we have:

s2UK(x) = k22(x, x)−
(

k′
2(x) f ′2(x) 0

)

(

V2 F(2)

(

F(2)
)′

0

)−1






k2(x)

f2(x)

0






. (2.22)

In the bivariate case, the predictive means (2.20) and (2.12) and the predictive

variances (2.22) and (2.13) are identical. Therefore, the predictive distributions of

the Bayesian and the best linear unbiased predictor are identical.

For the bivariate case the Bayesian and the geostatistical universal co-kriging provide the same

predictive distribution. Furthermore, this result is directly generalizable for any multivariate

cases.
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2.3 Admissible matrix-valued covariance kernels

In Section 2.1 we have presented the equations of the simple and universal co-kriging which

come from the Gaussian assumption for the multivariate stochastic process Z(x) = (Z1(x), . . . , Zs(x)),

s ∈ N
∗ with mean m(x) and matrix-valued covariance matrix V(x, x̃) such that

V(x, x̃) =







k11(x, x̃;θ11) . . . k1s(x, x̃;θ1s)
...

. . .
...

ks1(x, x̃;θs1) . . . kss(x, x̃;θss)






.

A valid covariance structure V(x, x̃) must satisfy the condition of positive definiteness. Namely,

for any (Di)i=1,...,s where Di = (x
(i)
1 , . . . , x

(i)
ni ), x

(ni)
j ∈ R

d, j = 1, . . . , ni, i = 1, . . . , s, the fol-

lowing covariance matrix

Vs =







k11(D1,D1;θ11) . . . k1s(D1,Ds;θ1s)
...

. . .
...

ks1(Ds,D1;θs1) . . . kss(Ds,Ds;θss)






=







K11 . . . K1s
...

. . .
...

Ks1 . . . Kss







has to be positive definite. We note that Vs is the covariance matrix of Z(s) = ((Zn1
1 )′, . . . , (Zns

s )′)′

the values of (Zi(x))i=1,...,s at points in (Di)i=1,...,s. We present two methods to ensure the

positive definiteness of V(x, x̃). The first one in Subsection 2.3.1 is the approach commonly

used in geostatistics. The second one in Subsection 2.3.2 uses an extension of the Bochner’s

theorem (see Theorem 1.3, Subsection 1.4.2).

2.3.1 Linear transformation of a multivariate Gaussian process

A first method to define admissible matrix-valued covariance kernels V(x, x̃) is to notice

that any linear transformation of a multivariate Gaussian process is a multivariate Gaussian

process. We derive in this subsection some examples of valid covariance structures using this

property.

Linear model of coregionalization

Let us consider the multivariate Gaussian process δ(x) = (δ1(x), . . . , δt(x)) where (δi(x))i=1,...,t

are univariate Gaussian processes with covariance kernel ki(x, x̃) and such that δi(x) ⊥ δj(x)

for all i, j = 1, . . . , t, i 6= j. We note that the independence assumption ensures the normality

of δ(x). Then, any linear combinations of (δi(x))i=1,...,t is a multivariate Gaussian process,

i.e. if we define for all i = 1, . . . , s, with s ∈ N
∗, the following random process

Zi(x) =

t
∑

j=1

αi
jδj(x),

then Z(x) = (Zi(x))i=1,...,s is a multivariate Gaussian process. Furthermore, we have

cov (Zi(x), Zj(x̃)) =

t
∑

k=1

αi
kα

j
kcov (δk(x), δk(x̃)) =

t
∑

k=1

αi
kα

j
kkk(x, x̃).
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Therefore, the covariance structure of Z(x) is

V(x, x̃) =

t
∑

k=1

[

αi
kα

j
k

]

i,j=1,...,s
kk(x, x̃),

where the matrix
[

αi
kα

j
k

]

i,j=1,...,s
is nonnegative definite since it can be written with the

following form for all k = 1, . . . , t






α1
kα

1
k . . . α1

kα
s
k

...
. . .

...

αs
kα

1
k . . . αs

kα
s
k






=







α1
k
...

αs
k







(

α1
k

... αs
k

)

.

This approach is referred as the linear model of coregionalization and is frequently used in

geostatistics (see [Goulard and Voltz, 1992] and [Wackernagel, 2003]). For this model, the

smoothness of any Gaussian process Zi(x), i = 1, . . . , s, is the one of the roughest latent

process δj(x), j = 1, . . . , t such that αi
j is not zero.

Convolved Gaussian white noise process

As presented in point 3. in the introduction of Section 1.4, a Gaussian process can be defined

with the following form:

Z(x) =

∫

k(x, u) dW (u),

whereW (x) is the Wiener process. Furthermore, Z(x) has the covariance kernel
∫

k(x, u)k(u, x̃) du.

If we consider t independent Gaussian white noise processes (Wi(x))i=1,...,t, then by apply-

ing the linear operators (LjWi)(x) =
∫

kji (x, u)Wi(u) du = Zj
i (x), i = 1, . . . , t, j = 1, . . . , s,

s ∈ N
∗, the following multivariate stochastic process is still Gaussian:

(Zj
i (x)) i=1,...,t

j=1,...,s
,

with covariance structure such that

cov
(

Zj
i (x), Z

l
k(x̃)

)

= δi=k

∫

kji (x, u)k
l
k(u, x̃) du.

This technique was suggested by [Boyle and Frean, 2005] to deal with multiple output func-

tions. We present below their approach for the bivariate case. Let us consider three indepen-

dent Gaussian white noise processes (Wi(x))i=1,...,3 and four covariance kernels (ki(x, x̃))i=1,2

and (hi(x, x̃))i=1,2. Then we can define the four following Gaussian processes:

V1(x) =

∫

h1(x, u)W1(u) du,

Y1(x) =

∫

k1(x, u)W2(u) du,

Y2(x) =

∫

k2(x, u)W2(u) du,

V2(x) =

∫

h2(x, u)W3(u) du.
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We note that the final multivariate random process (V1(x), Y1(x), Y2(x), V2(x) is Gaussian since

it is a linear transformation of a multivariate Gaussian process. Furthermore, its components

are all independent except for Y1(x) and Y2(x) since they come from the same Gaussian white

noise W2(x). Then, considering two independents Gaussian white noise processes (εi(x))i=1,2,

one can define the following bivariate Gaussian process:

{

Z1(x) = V1(x) + Y1(x) + σ21ε1(x)

Z2(x) = V2(x) + Y2(x) + σ22ε2(x)
,

where

cov (Z1(x), Z1(x̃)) =

∫

h1(x, u)h1(u, x̃) du+

∫

k1(x, u)k1(u, x̃) du+ σ21δx=x̃,

cov (Z2(x), Z2(x̃)) =

∫

h2(x, u)h2(u, x̃) du+

∫

k2(x, u)k2(u, x̃) du+ σ22δx=x̃,

cov (Z1(x), Z2(x̃)) =

∫

k1(x, u)k2(u, x̃) du.

For some kernels as the squared exponential one, closed form expressions can be obtained for

these integrals (see [Boyle and Frean, 2005]).

Gaussian processes with zero mean

Following the work of [Durrande, 2011], we present here another approach than the one pre-

sented in Subsection 1.5.2 to deal with zero-mean Gaussian processes. We consider a Gaussian

process Z(x) with mean f ′(x)β and covariance kernel k(x, x̃), x ∈ Q ⊂ R
d. Furthermore, we

consider the following linear transformation of Z(x):

LZ(x) =

∫

Q
Z(u) du.

Since any linear transformation of a Gaussian process is Gaussian, we have

(

Z(x)
∫

Z(u) du

)

∼ N
((

f ′(x)β
∫

f ′(u)β du

)

,

(

k(x, x)
∫

k(x, u) du
∫

k(u, x) du
∫ ∫

k(u, v) du dv

))

and thus the distribution of [Z(x)|
∫

Z(u) du = 0] is Gaussian with mean

f ′(x)β −
∫

k(x, u) du

(∫ ∫

k(u, v) du dv

)−1 ∫

f ′(u)β du

and variance

k(x, x)−
∫

k(x, u) du

(∫ ∫

k(u, v) du dv

)−1 ∫

k(u, x) du.
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2.3.2 Spectral analysis of a multivariate covariance structure

Another approach to ensure the positive definiteness for V(x, x̃) is to consider the stationary

case V(x, x̃) = V(h) with h = x−x̃ and the following generalization of the Bochner’s Theorem

for multivariate Gaussian processes.

Theorem 2.1 (Multivariate Bochner’s Theorem). For any continuous positive definite

matrix-valued V(h) from R
d into R

s × R
s, such that

V(h) =







k11(h;θ11) . . . k1s(h;θ1s)
...

. . .
...

ks1(h;θs1) . . . kss(h;θss)






,

there exists a unique matrix valued positive finite measure µ such that V(h) =
∫

Rd e
2πi〈w,h〉 dµ(w). Furthermore, if µ(w) has a spectral density S(w) - S(w) is non-

negative definite - with

S(w) =







S11(w;θ11) . . . S1s(w;θ1s)
...

. . .
...

Ss1(w;θs1) . . . Sss(w;θss)






,

where Sij(w;θij) is the power spectrum of kij(h;θij), then V(h) =
∫

Rd e
2πi〈w,h〉S(w) dw.

Therefore, to define a valid covariance structure V(h), we have to ensure that ∀w ∈ R
d

S(w) ≥ 0 is nonnegative.

An example of valid covariance structure

The example presented below comes from the article of [Gneiting et al., 2010]. Let us consider

the covariance V(h) such that

kij(h) = (ci ∗ cj)(h),

where (ci)i=1,...,s are square integrable functions. Then, we have

kij(h) = F−1(F(ci)F(cj))(h),

where F stands for the Fourier transform. The spectral density of kij(h) is Sij(w) = fi(w)fj(w)

where fi(w) = F(ci). Therefore, the matrix of the spectral densities is

S(w) =







f1(w)f1(w) . . . f1(w)fs(w)
...

. . .
...

fs(w)fj(w) . . . fs(w)fs(w)






= f(w)f ′(w),

with f ′(w) = (f1(w), . . . , fs(w)). This ensures the property S(w) is nonnegative.
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Valid cross-covariance functions for bivariate random fields

We give here another example inspired by the article of [Gneiting et al., 2010]. Let us suppose

a bivariate Gaussian process Z(x) = (Z1(x), Z2(x)) with covariance structure :

k11(h) = σ21k1(h;θ1),

k22(h) = σ22k2(h;θ2),

k12(h) = ρ12σ1σ2k12(h;θ12),

k21(h) = k12(h).

with h = x− x̃, x, x̃ ∈ R
d. Then, we have :

S(w) =

(

σ21F(k1(h;θ1))(w) ρ12σ1σ2F(k12(h;θ12))(w)

ρ12σ1σ2F(k12(h;θ12))(w) σ22F(k2(h;θ2))(w)

)

.

To ensure the nonnegative definiteness, the following inequality must be satisfied for all

w ∈ R
d

|ρ12F(k12(h;θ12))(w)|2 ≤ F(k1(h;θ1))(w)F(k2(h;θ2))(w). (2.23)

The isotropic Gaussian kernel class. Let us suppose that k1(h; θ) = k2(h; θ) = k12(h; θ) =

k(h; θ) with :

k(h; θ) = exp

(

−||h||2
2θ2

)

.

According to Subsection 1.4.2, we have :

S(w) = F(k(h, θ)) = (2πθ2)d/2 exp(−2π2θ2||w||2).

The condition (2.23) becomes ∀t ≥ 0 :

ρ212(θ
2
12)

d exp(−4π2θ212t) ≤ (θ21)
d/2 exp(−2π2θ21t)(θ

2
2)

d/2 exp(−2π2θ22t).

Therefore, we have to satisfy the following condition to respect the nonnegative definiteness

property ∀t ≥ 0:

ρ212 ≤
(θ21θ

2
2)

d/2

(θ212)
d

inf
t≥0

exp(−2π2t(θ21 − 2θ212 + θ22)). (2.24)

This means that θ21 − 2θ212 + θ22 > 0 implies ρ12 = 0 and θ21 − 2θ212 + θ22 ≤ 0 leads to ρ212 ≤
(θ21θ

2
2)

d/2/(θ212)
d.

The Matérn kernel class. We still consider that k1(h; θ) = k2(h; θ) = k12(h; θ) = k(h; θ).

As presented in Subsection 1.4.2, the Matérn kernel class is given by

k(h; θ) =
21−ν

Γ(ν)

(√
2ν||h||
θ

)ν

Kν

(√
2ν||h||
θ

)

,
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with the power spectrum

S(ω) =
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)θ2ν

(

2ν

θ2
+ 4π2||w||2

)−(ν+d/2)

.

The condition (2.23) gives that:

ρ212 ≤ Γ(ν1 + d/2)Γ(ν2 + d/2)

Γ(ν12 + d/2)2
(2ν1)

ν1(2ν2)
ν2

(2ν12)2ν12
Γ(ν12)

2

Γ(ν1)Γ(ν2)

× θ4ν1212

θ2ν11 θ2ν22

inf
t≥0

(

2ν12
θ212

+ 4π2t

)2ν12+d(2ν1
θ21

+ 4π2t

)−ν1−d/2(2ν2
θ22

+ 4π2t

)−ν2−d/2

.

This condition is presented in [Gneiting et al., 2010]. It leads the following cases:

1. ν12 <
1
2(ν1 + ν2) ⇒ ρ12 = 0.

2. ν12 =
1
2(ν1 + ν2),

θ212
ν1+ν2

> max
(

θ21
2ν1
,

θ22
2ν2

)

⇒

ρ212 <

(

θ1θ2
θ212

)d Γ(ν1 + d/2)Γ(ν2 + d/2)Γ(ν12)
2

Γ(ν12 + d/2)2Γ(ν1)Γ(ν2)

(ν1 + ν2)
d

(4ν1ν2)d/2
.

3. ν12 =
1
2(ν1 + ν2),

θ212
ν1+ν2

< min
(

θ21
2ν1
,

θ22
2ν2

)

⇒

ρ212 <

(

2θ212ν1
(ν1 + ν2)θ21

)ν1 ( 2θ212ν2
(ν1 + ν2)θ22

)ν2 Γ(ν1 + d/2)Γ(ν2 + d/2)Γ(ν12)
2

Γ(ν12 + d/2)2Γ(ν1)Γ(ν2)
.

4. ν12 = 1
2(ν1 + ν2),min

(

θ21
2ν1
,

θ22
2ν2

)

< θ212 < max
(

θ21
2ν1
,

θ22
2ν2

)

⇒ the minimum is reached for

t = 0 (case 3.), or for t→ ∞ (case 2.), or for:

t =
a1(2ν1 + d) + a2(2ν2 + d)− 2a21(ν1 + ν2 + d)

2a12(ν1a1 + ν2a2) + a12d(a1 + a2)− 2a1a2(ν1 + ν2 + d)
,

where:

a1 =
θ21
2ν1

, a2 =
θ22
2ν2

, a12 =
θ212

ν1 + ν2
.

2.4 Co-kriging models using function derivatives

We introduce in this section a co-kriging model approach commonly used in the field of

computer experiments. We have seen in the introduction of Section 1.4 that the mean square

partial derivatives ∂Z(x)/∂xi, x = (x1, . . . , xd) ∈ R
d of a Gaussian process Z(x) exists if

and only if its covariance kernel k(x, x̃) is twice differentiable with respect to xi. As the

differential operator is linear, if the covariance kernels are well defined, then the multivariate

stochastic process (Z(x), (∂Z(x)/∂xi)i=1,...,d) is Gaussian. Furthermore, we have the following

cross covariances

cov

(

Z(x),
∂Z(x̃)

∂x̃i

)

=
∂k(x, x̃)

∂x̃i
, (2.25)

cov

(

∂Z(x)

∂xi
,
∂Z(x̃)

∂x̃j

)

=
∂2k(x, x̃)

∂xi∂x̃j
. (2.26)
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with i, j = 1, . . . , d. Now, let us consider that we want to surrogate an objective function z(x)

with a Gaussian process Z(x) of mean f ′(x)β and covariance kernel k(x, x̃) and with respect to

the partial derivatives of z(x) (see [Morris et al., 1993] and [Mitchell et al., 1994]). We denote

by Zn the values of Z(x) at points in Dn = {x1, . . . , xn}, such that xj = (x1j , . . . , x
d
j ) ∈ R

d,

j = 1, . . . , n and by Zn
(i) the values of ∂Z(x)/∂xi at points in Dn. Similarly, we denote

by zn and zn(i) the values of z(x) and ∂z(x)/∂xi at points in Dn. The joint distribution of

(Z(x),Zn, (Zn
(i))i=1,...,d) is the following multivariate normal distribution

















Z(x)

Zn

Zn
(1)
...

Zn
(d)

















∼ N

































f ′(x)
Fn

Fn
(1)
...

Fn
(d)

















β,

















k(x, x) k′(x) k′
(1)(x) . . . k′

(d)(x)

k′(x) K K(01) . . . K(0d)

k′
(1)(x) K(10) K(11) . . . K(1d)

...
...

...
. . .

...

k′
(d)(x) K(d0) K(d1) . . . K(dd)

































, (2.27)

where

Fn := f ′(Dn),

Fn
(l) := [∂f ′(xi)/∂xli]i=1,...,n;l=1,...,d,

K := [k(xi, xj)]i,j=1,...,n,

K(0l) := [∂k(xi, xj)/∂x
l
j ]i,j=1,...,n;l=1,...,d,

K(kl) := [∂2k(xi, xj)/∂x
k
i ∂x

l
j ]i,j=1,...,n;k,l=1,...,d,

k′(x) := [k(x, xi)]i=1,...,n,

k′
(l)(x) := [∂k(x, xi)/∂x

l
i]i=1,...,n;l=1,...,d,

The desired predictive distribution [Z(x)|Zn, (Zn
(i))i=1,...,d] can be obtained following the same

technique as the one presented in Subsection 1.2.1. Denoting by

h(x) =











k(x)

k(1)(x)

. . .

k(d)(x)











, z =













zn

zn(1)
...

zn(d)













, F =













Fn

Fn
(1)
...

Fn
(d)













and

V =













K K(01) . . . K(0d)

K(10) K(11) . . . K(1d)
...

...
. . .

...

K(d0) K(d1) . . . K(dd)













,

the predictive distribution is normal with mean:

f ′(x)β̂ + h′(x)V−1
(

z− Fβ̂
)

, (2.28)

where

β̂ =
(

F′V−1F
)−1

F′V−1z,
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and variance

k(x, x)−
(

f ′(x) h′(x)
)

(

0 F′

F V

)−1(

f(x)

h(x)

)

. (2.29)

The predictive mean is the surrogate model for z(x) and the predictive variance represents

the model mean squared error. Therefore, we can improve the surrogate model on z(x) by

considering its partial derivatives.

Example of Gaussian process regression using derivatives

Let us consider Z(x) a Gaussian process with mean zero and covariance kernel k(x, x̃) =

exp
(

−(x− x̃)2/2θ2
)

with θ = 0.1 and x ∈ [0, 1]. The covariance kernel k(x, x̃) being smooth,

the Gaussian process Z(x) is infinitely mean square differentiable. Furthermore, according to

the previous developments we have:

cov

(

Z(x),
dZ

dx̃
(x̃)

)

=
(x− x̃)

θ2
exp

(

−(x− x̃)2

2θ2

)

and

cov

(

dZ

dx
(x),

dZ

dx̃
(x̃)

)

=

(

1

θ2
− (x− x̃)2

θ4

)

exp

(

−(x− x̃)2

2θ2

)

.

Now let us condition Z(x) at points D = (0.0, 0.2, 0.4, 0.7, 0.9) with z(D) = (−1, 2, 6,−2, 6)

and (dz/dx)(D) = (0,−20, 40, 0, 15). Figure 2.3 illustrates the predictive means and confi-

dence intervals obtained with a simple kriging and a simple co-kriging using the derivatives.

We see in Figure 2.3 that the predictive means are significantly different between the simple

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

x

Z
(x

)

Figure 2.3: Example of Gaussian process regression using derivatives. The dotted line repre-

sents the kriging mean, the solid line represents the co-kriging using the derivatives. The shade

areas represent the predictive means plus and minus twice the predictive standard deviations.

kriging and the simple co-kriging using the derivatives. Furthermore, the derivatives giving

additional information, the confidence intervals for the co-kriging are naturally smaller than

the ones of the kriging.
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Chapter 3

The AR(1) multi-fidelity co-kriging model

3.1 Introduction

Large computer codes are widely used in science and engineering to study physical systems

since real experiments are often costly and sometimes impossible. Nevertheless, simulations

can sometimes be costly and time-consuming as well. In this case, conception based on an

exhaustive exploration of the input space of the code is generally impossible under reasonable

time constraints. Therefore, a mathematical approximation of the output of the code - also

called surrogate or metamodel - is often built with a few simulations to represent the real

system.

The Gaussian Process regression presented in Chapter 1 is a particular class of surrogate

models which makes the assumption that prior beliefs about the code can be modeled by a

Gaussian Process. We focus here on this metamodel and on its extension to multiple response

models (see Chapter 2).

Actually, a computer code can often be run at different levels of complexity and a hierarchy

of levels of code can hence be obtained. The aim of this chapter is to study the use of several

levels of a code to predict the output of a costly computer code (see [Le Gratiet, 2013]).

A first metamodel for multi-level computer codes was built by [Kennedy and O’Hagan,

2000] using a spatially stationary correlation structure. This multi-stage model is a particular

case of the co-kriging one presented in Chapter 2. Then, [Forrester et al., 2007] went into more

detail about the estimation of the model parameters. Furthermore,they presented the use of

co-kriging for multi-fidelity optimization based on the EGO (Efficient Global Optimization)

algorithm created by [Jones et al., 1998]. A Bayesian approach was also proposed by [Qian

and Wu, 2008] which is computationally expensive and does not provide explicit formulas for

the joint distribution of the parameters.

This chapter presents a new approach to estimate the parameters of the model which

is effective when many levels of codes are available (see Subsection 3.6.1). In particular, it

provides a closed form expression for the posterior distribution of the scale factor which is

new and of great practical interest for accuracy and computational cost. Furthermore, this

approach allows us to consider prior information in the estimation of the parameters. We also

89
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address the problem of the inversion of the co-kriging covariance matrix when the number

of levels is large. A solution to this problem is provided which shows that the inverse can

be easily calculated (see Subsection 3.6.2). Finally, it is known that with a non-Bayesian

approach, the variance of the predictive distribution may be underestimated [Kennedy and

O’Hagan, 2000]. This chapter suggests a Bayesian modeling different from the one presented

by [Qian and Wu, 2008] which provides an explicit representation of the joint distribution for

the parameters and avoids prohibitive implementations (see Section 3.4.3).

3.2 Building a surrogate model based on a hierarchy of s levels

of code

Let us assume that we have s levels of code z1(x), . . . , zs(x), x ∈ R
d, d > 0. For all t = 1, . . . , s

the tth scalar output zt(x) is modeled by zt(x) = Zt(x, ω) where Zt(x, ω), ω ∈ Ω is a realization

of the Gaussian process Zt(x). We will introduce below a consistent set of hypotheses so that

the joint process (Zt(x))x∈Rd,t=1,...,s is Gaussian given a certain set of parameters. [Kennedy

and O’Hagan, 2000] suggest an autoregressive model to build a metamodel based on a multi-

level computer code. Hence, we have a hierarchy of s levels of code - from the less accurate

to the most accurate - and for each level, the conditional distribution of the Gaussian process

Zt(x) knowing Z1(x), . . . , Zt−1(x) is entirely determined by Zt−1(x). Let us introduce here

the mathematical formalism that we will use in this chapter.

Q ⊂ R
d is a compact subset of Rd representing the input space. For t = 1, . . . , s, Dt =

{x(t)1 , . . . , x
(t)
nt } is the experimental design set at level t containing nt points in Q. Let Zt =

Zt(Dt) = (Zt(x
(t)
1 ), . . . , Zt(x

(t)
nt ))

′ be the random Gaussian vector containing the values of

Zt(x) for x ∈ Dt. Let Z = (Z′
1, . . . ,Z

′
s)

′ be the Gaussian random vector containing the values

of the processes (Zt(x))t=1,...,s at the points of the design sets (Dt)t=1,...,s. We assume here

that the code output is observed without measurement error. The column vector of responses

is written z = (z′1, . . . , z
′
s)

′, where zt = (zt(x
(t)
1 ), . . . , zt(x

(t)
nt ))

′ is the output vector for the level

t.

If we consider Zs(x), the Gaussian process modeling the most accurate code, we want

to determine the predictive distribution of Zs(x0), x0 ∈ Q given Z = z, i.e. the following

conditional distribution: [Zs(x0)|Z = z].

We assume the Markov property introduced by [Kennedy and O’Hagan, 2000]:

Cov(Zt(x), Zt−1(x̃)|Zt−1(x)) = 0 ∀x 6= x̃. (3.1)

The property Cov(Zt(x), Zt−1(x̃)|Zt−1(x)) = 0, ∀x 6= x̃ means that if Zt−1(x) is

known, then nothing more can be learn about Zt(x) from any other run of the

cheaper code Zt−1(x̃) for x̃ 6= x.

This assumption leads to the following autoregressive model (see proof in Appendix A.1):

Zt(x) = ρt−1(x)Zt−1(x) + δt(x) t = 2, . . . , s, (3.2)
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where δt(x) is a Gaussian process independent of Zt−1(x), . . . , Z1(x) and ρt−1(x) represents

a scale factor between Zt(x) and Zt−1(x). It both represents the correlation degree and the

scale factor between two successive levels of code:

ρt−1(x) =
Cov(Zt(x), Zt−1(x))

var(Zt−1(x))
.

We assume that ρt−1(x) = gt−1(x)βρt−1
, t = 2, . . . , s, where gt−1(x) = (f1ρt−1

(x), . . . , f
qt−1
ρt−1 (x))

′

is a vector of qt−1 regression functions - generally including the constant function : x ∈ Q→ 1

- and βρt−1
∈ R

qt−1 .

Conditioning on parameters σt, βt and θt, δt(x) is assumed to be a Gaussian process with

mean f ′t(x)βt, where ft(x) is a pt-dimensional vector of regression functions, and with a co-

variance function of the form kt(x, x̃) = cov(δt(x), δt(x̃)) = σ2t rt(x − x̃;θt), where σ2t is the

variance of the Gaussian process and θt are the hyper parameters of the correlation function rt.

Moreover, conditioning on parameters σ1, β1 and θ1, the simplest code Z1(x) is modeled as a

Gaussian process with mean f ′1(x)β1 and with covariance function k1(x, x̃) = σ21r1(x− x̃;θ1).

With this consistent set of hypotheses, the joint process (Z1(x), . . . , Zt(x))x∈Q,t=1,...,s given

σ2 = (σ2i )i=1,...,t, θ = (θi)i=1,...,t, β = (βi)i=1,...,t and βρ = (βρi−1
)i=2,...,t, is Gaussian with

mean:

E[Zt(x)|σ2,θ,β,βρ] = h′
t(x)β, (3.3)

h′
t(x) =

((

t−1
∏

i=1

ρi(x)

)

f ′1(x),

(

t−1
∏

i=2

ρi(x)

)

f ′2(x), . . . , ρt−1(x)f
′
t−1(x), f

′
t(x)

)

(3.4)

and covariance:

cov(Zt(x), Zt(x̃)|σ2,θ,β,βρ) =

t
∑

j=1

σ2j





t−1
∏

i=j

ρ2i (x)



 rj(x− x̃;θj). (3.5)

For each level t = 2, . . . , s, the experimental design Dt is assumed to be such that Dt ⊆
Dt−1. Note that this assumption is not necessary but allows us to have closed form expressions

for the parameter estimate formulas. Furthermore, we denote by Rt(Dk,Dl) the correlation

matrix between observations at points in Dk and Dl, 1 ≤ k, l ≤ s. Rt(Dk,Dl) is a (nk × nl)

matrix with (i, j) entry given by:

[Rt(Dk,Dl)]i,j = rt(x
(k)
i − x

(l)
j ;θt) 1 ≤ i ≤ nk 1 ≤ j ≤ nl.

We will use the notation: Rt(Dk) = Rt(Dk,Dk).

[Kennedy and O’Hagan, 2000] present the case where ∀t ∈ [2, s], ρt−1(x) = ρt−1 is constant.

Here, we will consider the general model presented in equations (3.2). We will also propose

a new approach to estimate the coefficients (βt,βρt−1
)t=2,...,s based on a Bayesian approach,

which allows us to get information about their uncertainties. In the following section, we

describe the case of 2 levels of code where the scaling coefficient ρ is constant and then we will

extend it for s levels in Section 3.6. The general case in which ρ depends on x is addressed in

Appendix A.2.
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3.3 Building a model with 2 levels of code

Let us assume that we have 2 levels of code z2(x) and z1(x). From the previous section we

assume that:
{

Z2(x) = ρZ1(x) + δ(x), x ∈ Q

(Z1(x))x∈Q ⊥ (δ(x))x∈Q
. (3.6)

The goal of this section is to build a surrogate model for Z2(x) given the observations Z = z

with an uncertainty quantification. The strategy is the following one. In Subsection 3.3.1 we

describe the statistical distribution of the output Z2(x0) at a new point x0 given the parameters

(β1,β2, ρ), (σ
2
1, σ

2
2) and (θ1,θ2) and the observations z. In Subsection 3.3.2 we describe the

Bayesian estimation of the parameters (β1,β2, ρ) and (σ21, σ
2
2) given the observations. As

pointed out at the end of Subsection 3.3.2 the hyper-parameters (θ1,θ2) are estimated using

a concentrated restricted log-likelihood method.

3.3.1 Conditional distribution of the output

For a point x0 ∈ Q we determine in this subsection the distribution of [Z2(x0)|Z = z, (β1,β2, ρ),

(σ21, σ
2
2), (θ1,θ2)]. Standard results for normal distributions (see Chapter 2) give that:

[Z2(x0)|Z = z, (β1,β2, ρ), (σ
2
1, σ

2
2), (θ1,θ2)] ∼ N (mZ2(x0), s

2
Z2
(x0)), (3.7)

with mean function:

mZ2(x) = h′(x)β + k′(x)V−1(z−Hβ) (3.8)

and variance:

s2Z2
(x) = ρ2σ21 + σ22 − k′(x)V−1k(x), (3.9)

where we have denoted β =

(

β1

β2

)

, z =

(

z1

z2

)

and where H is defined by:

H =

























f ′1(x
(1)
1 ) 0
...

...

f ′1(x
(1)
n1 ) 0

ρf ′1(x
(2)
1 ) f ′2(x

(2)
1 )

...
...

ρf ′1(x
(2)
n2 ) f ′2(x

(2)
n2 )

























=



















F1(D1) 0

ρF1(D2) F2(D2)



















,

with the notation Fi(Dj) =









f ′i(x
(j)
n1 )
...

f ′i(x
(j)
nj )









. Furthermore, we have h′(x) = (ρf ′1(x), f
′
2(x)) and:

k′(x) = Cov(Z2(x),Z)

=
(

ρσ21R1({x},D1), ρ
2σ21R1({x},D2) + σ22R2({x},D2)

) . (3.10)
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The covariance matrix V of the Gaussian vector Z =

(

Z1

Z2

)

can be written :

V =

(

σ21R1(D1) ρσ21R1(D1,D2)

ρσ21R1(D2,D1) ρ2σ21R1(D2) + σ22R2(D2)

)

. (3.11)

3.3.2 Bayesian estimation of the parameters with 2 levels of code

In this subsection, we describe the Bayesian estimation of the parameters (β1,β2, ρ, σ
2
1,

σ22,θ1,θ2) for the 2-level model given the observations Z = z. In particular, we look for

the posterior distribution of (β1,β2, ρ, σ
2
1, σ

2
2,θ1,θ2) given the observations Z = z in the case

in which the prior distribution of (β1,β2, ρ, σ
2
1, σ

2
2,θ1,θ2) has a special (conjugate) form or a

non-informative form. Due to the conditional independence between Z1(x) and δ(x), it is pos-

sible to estimate separately the parameters (β1, σ
2
1,θ1) and (β2, ρ, σ

2
2,θ2). We first describe

the posterior distribution of (β1, σ
2
1) given θ1 and (β2, σ

2
2, ρ) given θ2, which can be obtained

in closed forms. We then describe how to estimate θ1 and θ2.

Firstly, we consider the parameters (β1, σ
2
1,θ1). We choose the following non-informative

prior distributions corresponding to the “Jeffreys priors" [Jeffreys, 1961]:

p(β1|σ21,θ1) ∝ 1 p(σ21,θ1) ∝
1

σ21
. (3.12)

Considering the probability density function of [Z1|β1, σ
2
1,θ1] and the Bayes formula, the

posterior distribution of [β1|z1, σ21,θ1] is :

[β1|z1, σ21,θ1] ∼ Np1

(

[F′
1R1(D1)

−1F1]
−1[F′

1R1(D1)
−1z1], [F

′
1

R1(D1)
−1

σ21
F1]

−1

)

, (3.13)

where F1 := F1(D1). Then, using the Bayes formula, we obtain that the posterior distribution

of [σ21|z1,θ1] is:

[σ21|z1,θ1] ∼ IG(ασ2
1 |n1

,
Q1

2
), (3.14)

where IG(α,Q) stands for the inverse gamma and the parameters are given by:

ασ2
1 |n1

=
n1 − p1

2
Q1 = (z1 − F1β̃1)

′R1(D1)
−1(z1 − F1β̃1) , (3.15)

with β̃1 = E
[

β1|z1, σ21,θ1
]

= [F′
1R1(D1)

−1F1]
−1[F′

1R1(D1)
−1z1].

The posterior mean β̃1 of β1 with non-informative “Jeffreys priors" [Jeffreys, 1961] equals

the maximum likelihood estimate of β1. For the parameter σ21, the estimate given by the

posterior harmonic average σ̂21 = Q1

2α
σ2
1 |n1

is identical to the one obtained with the restricted

maximum likelihood method. This method was introduced by Patterson and Thompson [Pat-

terson and Thompson, 1971] in order to reduce the bias of the maximum likelihood estimator.

Secondly, let us consider the set of parameters (β2, ρ, σ
2
2,θ2). In order to have closed form

formulas for the posterior distribution of (β2, ρ), we estimate them together. The idea to carry

out a joint Bayesian analysis is proposed for the first time in this chapter and we believe it is
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important. Indeed, if the cheaper code is perfectly known, it can be considered as a regression

function and so ρ will be a regression parameter. In this case, it is clear that a separated

estimation of β2 and ρ cannot be optimal.

Using the Jeffrey prior distributions p((ρ,β2)|σ22,θ2) ∝ 1 and p(σ22,θ2) ∝ 1
σ2
2

and the same

methodology as for the posterior distribution of (β1, σ
2
1), we find that:

[(ρ,β2)|z1, z2, σ22,θ2] ∼ Np2+1

(

[F′R2(D2)
−1F]−1[F′R2(D2)

−1F], [F′R2(D2)
−1

σ22
F]−1

)

(3.16)

and:

[σ22|z2, z1,θ2] ∼ IG(ασ2
2 |n2

,
Q2

2
), (3.17)

where:

ασ2
2 |n2

=
n2 − p2 − 1

2
Q2 = (z2 − Fλ̃)′R2(D2)

−1(z2 − Fλ̃) , (3.18)

with λ̃ = E[(ρ,β2)|z1, z2, σ22,θ2] = [F′R2(D2)
−1F]−1[F′R2(D2)

−1z2]. The design matrix F is

such that F = [z1(D2) F2]. Furthermore, the estimate of σ22 given by the posterior harmonic

average σ̂22 = Q2

2α
σ2
2 |n2

is the same as the restricted maximum likelihood one.

The hyper-parameters θ1 and θ2 are found by minimizing the negative concentrated re-

stricted log-likelihoods:

log (|det (R1(D1)) |) + (n1 − p1)log(σ̂1
2), (3.19)

log (|det (R2(D2)) |) + (n2 − p2 − 1)log(σ̂2
2). (3.20)

These minimizations problems must be numerically solved with a global optimization method.

We use an evolutionary method coupled with a BFGS (Broyden-Fletcher-Goldfarb-Shanno)

algorithm [Avriel, 2003]. The drawback of the maximum likelihood estimation is that, con-

trarily to Bayesian estimation, we do not have any information about the variance of the

estimator in non-asymptotic cases (see [Lehmann and Casella, 1998]). Nevertheless, Bayesian

estimation of the hyper parameters θ1 and θ2 are prohibitive and as noted in [Santner et al.,

2003] the choice of the prior distribution is non trivial. Therefore, in this chapter, we will

always estimate these parameters with a concentrated restricted likelihood method.

3.4 Bayesian prediction for a code with 2 levels

The aim of a Bayesian prediction is to provide a predictive distribution for Zs(x) integrating

the posterior distributions of the parameters and hence taking into account their uncertainty.

The forthcoming developments are the extension of the Bayesian kriging presented in Section

1.2.2 to the multi-fidelity co-kriging model.

A Bayesian prediction for a code with s = 2 levels was suggested by [Qian and Wu, 2008].

Nevertheless, we propose here a new Bayesian approach with some significant differences.

First, we assume that the adjustment coefficient is a regression function whereas [Qian and Wu,

2008] model it with a Gaussian process. Secondly, we use different prior distributions for the

parameter estimation. More specifically, according to the Bayesian estimation of parameters
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previously presented, we use a joint prior distribution for (β2, ρ) conditioned by σ22 whereas

[Qian and Wu, 2008] use separated prior distributions with ρ not conditioned by σ22. Then,

we use a hierarchy between the different parameters. At the lowest level is the regression

parameter β. At the second level is the variance parameter σ2 which controls the distribution

of the parameter β. At the top level is the parameter θ which controls the distribution of the

parameters at the bottom levels. It is common to use a hierarchical specification of models

for Bayesian prediction as presented in [Rasmussen and Williams, 2006]. This strategy will

allow us to obtain explicit formulas for the joint distribution of the parameters and above all,

to reduce dramatically the cost of the numerical implementation of the complete Bayesian

prediction.

We will also present the case in which we do not have any prior information about the

parameters. As described in the previous section, the hyper parameter θ is estimated by

minimizing the negative concentrated restricted log-likelihood and it is assumed to be fixed

to this estimated value from now on.

3.4.1 Prior distributions and Bayesian estimation of the parameters

Many choices of priors can be made for the Bayesian modeling. Here we study the two following

cases:

(I) Priors for each parameter are informative.

(II) Priors for each parameter are non-informative.

For the non-informative case (II), we use the improper distributions corresponding to the

“Jeffreys priors” and then the posterior distributions are given in Section 3.3.2. Note that non-

informative distributions are used when we do not have prior knowledge. For the informative

case (I), we will consider the following prior distributions:

[β1|σ21] ∼ Np1(b1, σ
2
1V1), [(ρ,β2)|z1, σ22] ∼ N1+p2

(

bλ =

(

bρ

b2

)

, σ22Vλ = σ22

(

vρ 0

0 V2

))

,

[σ21] ∼ IG(α1, γ1), [σ22|z1] ∼ IG(α2, γ2)

where b1 ∈ R
p1 , bλ ∈ R

1+p2 , V1 is a (p1 × p1) diagonal matrix, Vλ is a ((1 + p2)× (1 + p2))

diagonal matrix, vρ is a positive scalar and α1, γ1, α2, γ2 > 0. The forms of the priors are

chosen in order to be able to get closed form expressions for the posterior distributions. Note

that there are enough free parameters in the prior distributions to allow the user to prescribe

their means and variances. From the previous prior definitions, the posterior distributions of

the parameters are:

[β1|z1, σ21] ∼ Np1(A
1
iν

1
i ,A

1
i ) [(ρ,β2)|z1, z2, σ22] ∼ Np2+1(A

λ
i ν

λ
i ,A

λ
i ), (3.21)

where:

A1
i =

{

σ21[F
′
1R1(D1)

−1F1 +V−1
1 ]−1 i = (I)

σ21[F
′
1R1(D1)

−1F1]
−1 i = (II)

,

ν1
i =

{

[F′
1R1(D1)

−1z1 +V−1
1 b1]/σ

2
1 i = (I)

[F′
1R1(D1)

−1z1]/σ
2
1 i = (II)

,
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Aλ
i =

{

σ22[F
′R2(D2)

−1F+V−1
λ ]−1 i = (I)

σ22[F
′R2(D2)

−1F]−1 i = (II)
,

νλi =

{

[F′R2(D2)
−1z2 +V−1

λ bλ]/σ
2
2 i = (I)

[F′R2(D2)
−1z2]/σ

2
2 i = (II)

and F = [z1(D2) F2]. Furthermore, we have:

[σ21|z1] ∼ IG(ασ2
1 |n1

i ,
Q1

i

2
), [σ22|z2, z1] ∼ IG(ασ2

2 |n2

i ,
Q2

i

2
), (3.22)

where:

Q1
i =

{

2γ1 + (b1 − β̃1)
′(V1 + [F′

1R1(D1)
−1F1]

−1)−1(b1 − β̃1) +Q1
2 i = (I)

z′1[R1(D1)
−1 −R1(D1)

−1F1(F
′
1R1(D1)

−1F1)
−1F′

1R1(D1)
−1]z1 i = (II)

,

Q2
i =

{

2γ2 + (bλ − λ̃)′(Vλ + [F′R2(D2)
−1F]−1)−1(bλ − λ̃) +Q2

2 i = (I)

z′2[R2(D2)
−1 −R2(D2)

−1F(F′R2(D2)
−1F)−1F′R2(D2)

−1]z2 i = (II)
,

β̃1 = (F′
1R1(D1)

−1F1)
−1F′

1R1(D1)
−1z1, λ̃ = (F′R2(D2)

−1F)−1F′R2(D2)
−1z2,

α
σ2
1 |n1

i =

{

n1
2 + α1 i = (I)
n1−p1

2 i = (II)
, α

σ2
2 |n2

i =

{

n2
2 + α2 i = (I)
n2−p2−1

2 i = (II)
.

Mixing of informative and non-informative priors are of course possible and easy to imple-

ment. As we will discuss in Subsection 3.4.4 and see in the examples of Section 3.5, the use

of informative priors has minor impact on the mean estimation but may have a strong impact

on variance estimation.

3.4.2 Predictive distributions when β2, ρ, σ
2
1 and σ2

2 are known

As a preliminary step towards the Bayesian prediction carried out in the next subsection, we

give here Bayesian prediction in the form of closed form expressions when the parameters β2,

ρ, σ21 and σ22 are known. The conditional distribution of [Z2(x)|Z = z,β2, ρ, σ
2
1, σ

2
2] is given

by:

[Z2(x)|Z = z,β2, ρ, σ
2
1, σ

2
2] ∼ N

(

µi(x), σ
2
i (x)

)

, (3.23)

where:

µi(x) = h′(x)

(

A1
iν

1
i

β2

)

+ k′(x)V−1

(

z−H

(

A1
iν

1
i

β2

))

,

σ2i (x) = s2Z2
(x) + g1A

1
ig

′
1

and A1
i and ν1

i are defined by (3.21). Note that the estimated variance is augmented by the

term g1A
1
ig

′
1 which quantifies the uncertainty due to the estimation of β1. g1 is a (1 × p1)

vector composed of the p1 first elements of the (1× p1, 1× p2) vector g = (g1,g2) = h′(x)−
k′(x)V−1H. H is given by (3.3.1). The existence of closed form formulas is important as it

will allow for a fast numerical implementation.
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3.4.3 Bayesian prediction

Before performing the Bayesian prediction we note that - thanks to the explicit joint prior

distribution for β2 and ρ, the independence hypotheses and the hierarchical specification of

the parameters - conditioning on θ, we have an explicit formula for the following joint density

(see Section 3.4.1):

p(β1,β2, ρ, σ
2
1, σ

2
2|z1, z2) = p(β1|σ21, z1)p(β2, ρ|σ22, z1, z2)p(σ21|z1)p(σ22|z1, z2). (3.24)

This explicit joint density is an original result which contrasts with [Qian and Wu, 2008]

and which allows us to avoid prohibitive implementation for the Bayesian analysis.

First, we consider the predictive distribution with σ21 and σ22 known. Considering the con-

ditional independence assumption between (δ(x))x∈Q and (Z1(x))x∈Q, the probability density

function of [Z2(x)|Z = z, σ21, σ
2
2] can be deduced from the following integral:

p(z2(x)|z1, z2, σ21, σ22) =
∫

R1+p2

p(z2(x)|z1, z2,β2, ρ, σ
2
1, σ

2
2)p(ρ,β2|z1, z2, σ22) dρdβ2, (3.25)

where p(z2(x)|z1, z2,β2, ρ, σ
2
1, σ

2
2) is given by (3.23). This integral has to be numerically

evaluated. Since [ρ,β2|z1, z2, σ22] has a known normal distribution given by (3.21), we here use

a Monte-Carlo algorithm when the dimension of β2 and ρ is high, or a trapezoidal quadrature

method when it is low.

Then, we infer from the parameters σ21 and σ22. Due to the independence between (δ(x))x∈Q
and (Z1(x))x∈Q, the probability density function of [Z2(x)|Z = z] is:

p(z2(x)|z1, z2) =
∫

R2

p(z2(x)|z1, z2, σ21, σ22)p(σ21|z1)p(σ22|z1, z2) dσ21dσ22, (3.26)

where p(σ21|z1) and p(σ22|z1, z2) are given by (3.22). This integral has also to be numerically

evaluated. Since we have a double integration, a quadrature method will be efficient. We

use here a trapezoidal numerical integration, defining the region of integration [σ21inf
, σ21sup ]×

[σ22inf
, σ22sup ] from Equation (3.22) and such that p(σ21inf

|z1), p(σ21sup |z1) p(σ22inf
|z1, z2) and

p(σ22sup |z1, z2) are close to 0. This region essentially contains the support of the function. Fur-

thermore, we create a non-uniform integration grid distributed with a geometric progression.

Finally p(z2(x)|z1, z2) is a predictive density function integrating the posterior distribution

of parameters (β2, ρ,β1, σ
2
1, σ

2
2). We hence have a predictive distribution taking into account

the uncertainties due to the parameter estimations.

3.4.4 Discussion about the numerical evaluations of the integrals

We saw in the previous section that we can obtain an analytical prediction when β2, ρ, σ
2
1 and

σ22 are known. From this analytical formula, we can have a Bayesian prediction with only two

nested integrations. One of them can be approximated with a quadrature or a Monte Carlo

method, which is not too expensive. The other is a double integration approximated with a

quadrature method which is efficient and not expensive. Therefore, we do not use any Markov
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chain Monte Carlo method and we considerably reduce the time and the complexity of the

method. This allows us to easily build an accurate Bayesian metamodel. Practically, we use

441 integration points to approximate (3.26) and 1000 Monte-Carlo particles to approximate

(3.25). Therefore, we have 441000 call to the predictive density function (3.23).

To avoid a prohibitive implementation, another approach has also been proposed in [Cum-

ming and Goldstein, 2009]. They adopt a Bayes linear formulation which requires only the

specification of the means, variances, and covariances. See [Goldstein and Wooff, 2007] for

further details about the Bayes linear approach. The strength of this method is that its com-

putational cost is low. Nonetheless, since it only focuses on posterior means and covariances,

it does not provide the full posterior predictive distribution.

Finally, we highlight the fact that our Bayesian procedure can be used to perform multi-

fidelity analysis with more than 2 levels of code whereas the cost of the one presented by [Qian

and Wu, 2008] is too high to allow for such analysis. We illustrate in Section 3.7 through an

industrial case the great practical importance of using more than 2 levels of code.

3.5 Academic examples

We will present in this section some co-kriging metamodels using one-dimensional functions

inspired by the example presented by [Forrester et al., 2007]. For the following examples, we

will use a non-Bayesian co-kriging model - i.e. the one presented by [Kennedy and O’Hagan,

2000] - but with a Bayesian estimation of the parameters (see Section 3.3.2) and for the second

example we will use a Bayesian co-kriging.

Furthermore, the correlation kernels are assumed to be:

rt(x
(k)
i − x

(l)
j ; θt) = exp

(

−
(x

(k)
i − x

(l)
j )2

2θ2t

)

,

where t, k, l = 1, 2 1 ≤ i ≤ n1 1 ≤ j ≤ n2 and the regression functions are f1(x) = 1 and

f ′2(x) = (1 x).

Example 1. The aim of this example is to emphasize the effectiveness of the presented

Bayesian estimation of the parameters (see Section 3.6.1). We assume that the cheap code

is given by z1(x) = 0.5(6x − 2)2sin(12x − 4) + 10(x − 0.5) − 5 and the expensive code by

z2(x) = 2z1(x) − 20x + 20 . The experimental design set of the cheapest code is D1 =

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and the one of the expensive code isD2 = {0, 0.4, 0.6, 1}.
This example is identical to the one-dimensional demonstration presented in [Forrester et al.,

2007]. Figure 3.1 shows the functions x 7→ z2(x) and x 7→ z1(x), the training data for z2 and

z1, the ordinary kriging using only the expensive data and the co-kriging using expensive and

cheap data.

To validate the model, the Root Mean Squared Error RMSE =
∑

x∈T (mZ2(x)− z2(x))
2/nT

and the Nash-Sutcliffe model efficiency coefficient (see [Nash and Sutcliffe, 1970]) Eff =

1 −
∑

x∈T (mZ2
(x)−z2(x))

2

∑

x∈T (mZ2
(x)−z̄2)

2 , z̄2 =
∑

x∈D2
z2(x)/n2 are computed. The Nash-Sutcliffe efficiency

compares the residual variance with the total variance. It is also referenced as Q2 coefficient.

The closer Eff is to 1, the more accurate the model is.



3.5. ACADEMIC EXAMPLES 99

0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

5

10

15

x

y

z2(x)
z1(x)
co−kriging
ordinary kriging
z2
z1

Figure 3.1: Example 1. The co-kriging metamodel is very close to the expensive output z2(.)

and improves significantly the ordinary kriging metamodel using the small design D2.

The test set T is composed of a regular grid points sampled from 0 to 1 with a grid

step equal to 0.01 and z̄2 is the empirical mean evaluated in T . The estimated RMSE is

5.68 × 10−2 and the efficiency Eff is 99.98%, so we have a prediction error close to 0. The

Bayesian estimates of the parameters of co-kriging are given in Table 3.1. Furthermore, the

estimates of the hyper-parameters (θ1, θ2), calculated by maximizing the concentrated log-

likelihoods (3.19) and (3.20), are θ̂1 = 0.25 and θ̂2 = 0.80. D1 being a regular grid with

a grid step equal to 0.1 and D2 being composed of points sampled from 0 to 1, points of

the experimental designs are hence strongly correlated which will imply a smooth surrogate

model.

Regression Coefficient Posterior mean

ρ 2

β2 (20,−20)

β1 −3.49

Variance Coefficient Posterior harmonic average

σ21 32.75

σ22 7.02× 10−30

Table 3.1: A co-kriging example with one-variable functions. Bayesian estimation of parame-

ters.

We see that the Bayesian estimation of parameters is very effective since the estimations
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of parameters ρ and β2 are perfect. Nevertheless this example does not highlight the strength

of the method since there is a relation between z2(x)x∈[0,1] and z1(x)x∈[0,1] which exactly

corresponds to Equation (3.2) with the error δ2 that can be written in terms of the regression

functions f2 exactly. Therefore, if the cheap code is well modeled, like in this case, the co-

kriging is equivalent to a linear regression. Moreover, the very small value of σ22 illustrates

this.

Example 2. This example illustrates a case where the non-Bayesian co-kriging underes-

timates the predictive variance whereas the Bayesian one adjusts it. We assume that the

expensive code is given by z2(x) = 2z1(x)−20x+20+sin(10 cos(5x)) and the cheaper code is

given by z1(x) = 0.5((6x−2)2 sin(12x−4))+10(x−0.5)−5. Through the term sin(10 cos(5x)),

the expensive code has high frequencies which are not captured by the cheap code and the error

δ2 is not a simple linear combination of the regression functions f2. Therefore, the functions

do not exactly match the model presented in Section 3.2 and the high frequency discrepancy

makes the problem more challenging. Figure 3.2 shows the results of kriging and co-kriging

for these two functions. The estimated RMSE is 1.05 and the efficiency Eff is 93.57%, we

0.0 0.2 0.4 0.6 0.8 1.0

−10
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Figure 3.2: Example 2. The high frequency components of the expensive code are not predicted

since they are not captured by the cheap code and the coarse grid used for the expensive code

cannot detect them either. Nevertheless, the co-kriging improves the ordinary kriging meta-

model since the cheap code allows us to predict the low frequencies of the expensive code

accurately.

still have a good prediction. The Bayesian estimation of the parameters are given in Table

3.2 and we have θ̂1 = 0.25 and θ̂2 = 0.07. The values of θ1 and θ2 have been fixed according

the following arguments. As the cheap code is the same as the one of the Example 1, we keep

the same estimate for θ1. Then, we consider that there are not enough points to carry out a
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significant estimate of θ2. Therefore, we fix the value of θ̂2 according to the high frequencies

introduced by the term sin(10 cos(5x)).

Regression Coefficient Posterior mean

ρ 1.86

β2 (18.39,−17.00)

β1 −3.49

Variance Coefficient Posterior harmonic average

σ21 32.75.03

σ22 0.30

Table 3.2: A co-kriging example with one-dimensional functions. Bayesian estimation of

parameters.

Due to the additional term sin(10 cos(5x)), the estimate of the parameter ρ is less effec-

tive than in the first example. This highlights the dependence between ρ and the mean of

δ(x)x∈[0,1]. Furthermore, Figure 3.3 represents the confidence interval at plus or minus twice
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−10
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95% non−Bayesian confidence interval
95% Bayesian confidence interval

Figure 3.3: Example 2 without any prior information. The thick dotted line represents the

prediction mean, the thin dotted lines represent the confidence interval at plus or minus twice

the standard deviation in the non-Bayesian case and the dashed lines represent the same

confidence interval in the Bayesian case.

the standard deviation of the predictive distribution in the Bayesian and non-Bayesian cases.

We see that we underestimate the variance of the predictive distribution in the non-Bayesian

case. Its estimate is well adjusted in the Bayesian case.
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We finally consider the case in which we have prior information:

[(ρ, β2)|z1, σ22] ∼ N













2

20

−20






, σ22







0.05 0 0

0 0.05 0

0 0 0.05












, [σ22|z1] ∼ IG(3, 1).

Figure 3.4 shows the result of the Bayesian co-kriging with the given prior information. The

estimated RMSE is 0.79 and the efficiency Eff is 96.57%, we hence improve the accuracy of

the metamodel. The predictive mean is closer to the true function and the predictive variance

is reduced compared to the non-informative Bayesian case, with the confidence intervals that

still contain the true function. The posterior distributions of the parameters are given in Table

3.3 and we have θ̂1 = 0.25 and θ̂2 = 0.07.

Regression Coefficient Posterior mean

ρ 2.00

β2 (20.12,−19.81)

β1 −3.49

Variance Coefficient Posteriori harmonic average

σ21 32.75

σ22 0.29

Table 3.3: A co-kriging example with one-dimensional functions and prior information. Pos-

terior distribution of parameters.
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Figure 3.4: Example 2 with prior information. The prior information improves the accuracy

of the co-kriging metamodel and the variance of the predictive distribution has decreased.
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3.6 The case of s levels of code

The aim of this section is to perform a multi-level co-kriging with any number of codes. Let us

consider s levels of code. The generalization of the previous model is straightforward. Actually,

if we denote by β = (β′
1, . . . ,β

′
s)

′, ρ = (ρ1, . . . , ρs−1), σ
2 = (σ21, . . . , σ

2
s) and θ = (θ1, . . . , θs),

we have:

∀x ∈ Q [Zs(x)|Z = z,β, ρ, σ2,θ] ∼ N
(

mZs(x), s
2
Zs
(x)
)

,

where:

mZs(x) = h′
s(x)β + k′

s(x)V
−1
s (z−Hsβ) (3.27)

and:

s2Zs
(x) = σ2Zs

− k′
s(x)V

−1
s ks(x). (3.28)

Furthermore, the correlation matrix for Dt and ρs = 0, ∀s ≤ 0. The matrix Vs has the form:

Vs =







V(1,1) . . . V(1,s)

...
. . .

...

V(s,1) . . . V(s,s)






. (3.29)

The s diagonal blocks of size nt × nt are defined by:

V(t,t) = σ2tRt(Dt) + σ2t−1ρ
2
t−1Rt−1(Dt) + · · ·+ σ21

(

t−1
∏

i=1

ρ2i

)

R1(Dt) (3.30)

and the off-diagonal blocks of size nt × nt̃ are given by:

V(t,t̃) =





t̃−1
∏

i=t

ρi



V(t,t)(Dt,Dt̃) 1 ≤ t < t̃ ≤ s. (3.31)

The vector ks(x) is such that ks(x) = (k∗1(x,D1)
′, . . . , k∗s(x,Ds)

′)′, where:

k∗t (x,Dt)
′ = ρt−1k

∗
t−1(x,Dt)

′ +

(

s−1
∏

i=t

ρi

)

σ2tRt(x,Dt) 1 < t ≤ s, (3.32)

where
(

∏s−1
i=s ρi

)

= 1 and k∗1(x,D1)
′ =

(

∏s−1
i=1 ρi

)

σ21R1(x,D1). If we define:

Fk(Dl) =









f ′k(x
(l)
1 )

...

f ′k(x
(l)
nl )









1 ≤ k, l ≤ s,

then the matrix Hs can be written as:

Hs =



















F1(D1)

ρ1F1(D2) F2(D2) 0

ρ1ρ2F1(D3) ρ2F2(D3)
...

...
. . .

(

∏s−1
i=1 ρi

)

F1(Ds)
(

∏s−1
i=2 ρi

)

F2(Ds) . . . Fs(Ds)



















, (3.33)

h′
s(x) and var(Zs(x)) = σ2Zs

are given by the equations (3.3) and (3.5).
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3.6.1 Bayesian estimation of parameters for s levels of code

From the assumptions of conditional independence between (δt(x))x∈Q and (Zt−1(x), . . . , Z1(x))x∈Q,

we can extend the Bayesian estimation of the parameters to the case of s levels. Note that we

do not assume the independence of βt and ρt−1. We can obtain a closed form expression for

the posterior distribution of (βt, ρt−1). For all t = 2, . . . , s, we have:

[(ρt−1,βt)|zt, zt−1,θt, σ
2
t ] ∼ N

(

(

H′
tRt(Dt)

−1Ht

)−1
H′

tRt(Dt)
−1zt, σ

2
t

(

H′
tRt(Dt)

−1Ht

)−1
)

,

(3.34)

where Ht = [zt−1(Dt) Ft(Dt)]. Furthermore, if we note λ̃t = E[(ρt−1,βt)|zt, zt−1,θt, σ
2
t ],

then we have:

[σ2t |zt, zt−1,θt] ∼ IG(αt,
Qt

2
), (3.35)

where αt = (nt − pt − 1)/2 and Qt = (zt −Htλ̃t)
′Rt(Dt)

−1(zt −Htλ̃t).

The REML estimator of σ2t is σ̂2t = Qt/2αt and we can estimate θt by minimizing the

expression:

log(|det(Rt(Dt))|) + (nt − pt − qt−1)log(σ̂
2
t ). (3.36)

The generalization of the Bayesian estimation previously presented is important since it shows

that the parameter estimation for a s-levels co-kriging is equivalent in terms of numerical

complexity to the one for s independent krigings.

3.6.2 Reduction of computational complexity of inverting the covariance

matrix Vs

Vs is an (
∑s

i=1 ni ×
∑s

i=1 ni) matrix, its inverse can hence be difficult to process. We present

in this subsection two propositions to reduce the complexity of the processing of V−1
s .

Proposition 3.1. Let us consider the covariance matrix Vs presented in Equation

(3.29). By sorting the experimental design sets such that ∀t = 2, . . . , s, Dt−1 =

(x
(t−1)
1 , . . . , x

(t−1)
nt−1−nt

, x
(t)
1 , . . . , x

(t)
nt ) = (Dt−1 \ Dt,Dt), ∀t = 2, . . . , s the inverse of the

matrix Vs has the form:

V−1
s =









V−1
s−1 +

(

0 0

0
ρ2s−1Rs(Ds)−1

σ2
s

)

−
(

0
ρs−1Rs(Ds)−1

σ2
s

)

−
(

0 ρs−1Rs(Ds)−1

σ2
s

)

Rs(Ds)−1

σ2
s









V−1
1 =

R1(D1)
−1

σ21
,

(3.37)

with V−1
s−1 an (

∑s−1
i=1 ni ×

∑s−1
i=1 ni) matrix and Rs(Ds)

−1 an (ns × ns) matrix.

Proof. The proof is proposed with the general form ρ(x) = gt−1(x)βρt−1
for the adjustment

coefficient. Throughout the proof, we denote by ⊙ the matrix element-by-element product

(see Appendix A.2). Let us consider the following sorting procedure:

∀t = 2, . . . , s Dt−1 = (Dt−1 \Dt,Dt).
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The proof is based on the block-wise inversion formula of the covariance matrix Vs. The

covariance matrix Vs can be written with the form:

Vs =

(

Vs−1 Us−1

U′
s−1 V(s,s)

)

Us−1 =







V(1,s)

...

V(s−1,s)






,

where Vs−1 is the covariance matrix of the random vector (Z1, . . . ,Zs−1) and Us−1 is the

covariance matrix between (Z1, . . . ,Zs−1) and Zs. Classical block-inversion matrix formula

gives that

(

Vs−1 Us−1

U′
s−1 V(s,s)

)−1

=

(

V−1
s−1 +V−1

s−1Us−1Q
−1
s U′

s−1V
−1
s−1 −V−1

s−1Us−1Q
−1
s

−Q−1
s U′

s−1V
−1
s−1 Q−1

s

)

.

where Qs = V(s,s) −U′
s−1V

−1
s−1Us−1. For s > t the following equalities stands:

V(t,s) = cov (Zt(Dt), Zs(Ds))

= cov (Zt(Dt), ρs−1(Ds)⊙ Zs−1(Ds) + δs(Ds))

= cov (Zt(Dt), ρs−1(Ds)⊙ Zs−1(Ds))

=
(

1ntρs−1(Ds)
′)⊙ cov (Zt(Dt), Zs−1(Ds))

=
(

1ntρs−1(Ds)
′)⊙V(t,s−1)(Dt,Ds).

Therefore, we have:

Us−1 =







V(1,s)

...

V(s−1,s)






=
(

1∑s−1
i=1 ni

ρs−1(Ds)
′
)

⊙







V(1,s−1)(D1,Ds)
...

V(s−1,s−1)(Ds−1,Ds)






.

Denoting that






V(1,s−1)(D1,Ds)
...

V(s−1,s−1)(Ds−1,Ds)







are the ns last columns of Vs−1, we obtain that:

V−1
s−1Us−1 = V−1

s−1







(

1∑s−1
i=1 ni

ρs−1(Ds)
′
)

⊙







V(1,s−1)(D1,Ds)
...

V(s−1,s−1)(Ds−1,Ds)













=
(

1∑s−1
i=1 ni

ρs−1(Ds)
′
)

⊙
(

0(
∑s−1

i=1 ni−ns)×ns

Ins

)

.

Furthermore, we have the equality

Qs = cov (Zs(Ds), Zs(Ds))

−cov (Z \ Zs(Ds), Zs(Ds))
′ cov (Z \ Zs(Ds),Z \ Zs(Ds))

−1 cov (Z \ Zs(Ds), Zs(Ds)) ,
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with Z \ Zs(Ds) = (Z1(D1), . . . , Zs−1(Ds−1)). Therefore, Qs is the covariance matrix of

Zs(Ds) conditioned by (Z1(D1), . . . , Zs−1(Ds−1)). Furthermore, the equality:

Zs(Ds) = ρs−1(Ds)⊙ Zs−1(Ds) + δs(Ds)

implies that:

var (Zs(Ds)|Z \ Zs(Ds)) = var (ρs−1(Ds)⊙ Zs−1(Ds) + δs(Ds)|Z \ Zs(Ds))

= var (δs(Ds)|Z \ Zs(Ds)) ,

since Zs−1(Ds) is [Z \ Zs(Ds)]-measurable. Moreover, we have the equality

var (Zs(Ds)|Z \ Zs(Ds)) = var (δs(Ds)) ,

since δs(Ds) ⊥ Z \ Zs(Ds). Therefore, we have:

Qs = var (δs(Ds)) = σ2sRs(Ds).

From the previous equality, we deduce that

V−1
s−1Us−1Q

−1
s =





0(
∑s−1

i=1 ni−ns)×ns

(ρs−1(Ds)1′
ns)⊙Rs(Ds)−1

σ2
s





and

V−1
s−1Us−1Q

−1
s U′

s−1V
−1
s−1 =

(

0(
∑s−1

i=1 ni−ns)×(
∑s−1

i=1 ni−ns)
0(

∑s−1
i=1 ni−ns)×ns

0ns×(
∑s−1

i=1 ni−ns)
(ρs−1(Ds)ρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

)

.

Finally, we find that

V−1
s =

(

W11 W12

W′
12 W22

)

,

where

W11 =

(

0(
∑s−1

i=1 ni−ns)×(
∑s−1

i=1 ni−ns)
0(

∑s−1
i=1 ni−ns)×ns

0ns×(
∑s−1

i=1 ni−ns)
(ρs−1(Ds)ρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

,

)

W12 = −





0(
∑s−1

i=1 ni−ns)×ns

(ρs−1(Ds)1′
ns)⊙Rs(Ds)−1

σ2
s



 ,

W′
12 = −

(

0ns×(
∑s−1

i=1 ni−ns)
(1nsρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

)

,

W22 =
Rs(Ds)

−1

σ2s
.

Furthermore, with the equality V1 = var (Z1(D1)) = σ21R1(D1) we find the recursive form

presented earlier in this subsection.
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This is a very important result since it shows that we can deduce V−1
s from Rt(Dt)

−1,

t = 1, . . . , s. Therefore, the complexity of the processing of V−1
s is O(

∑s
i=1 n

3
i ) instead of

O((
∑s

i=1 ni)
3).

From Equation (3.37) and the Bayesian estimation of parameters presented in Section

3.6.1, we have shown here that building a s-level co-kriging is equivalent in terms of

numerical complexity to build s independent krigings.

We emphasize that, for practical applications, the form (3.37) for the inverse of Vs allows

us to perform fine matrix regularization in the case of ill-conditioned problems. Indeed, Vs

is invertible if and only if the matrices Rt(Dt), t = 1, . . . , s are invertible. Therefore, if

the problem is ill-conditioned, we just have to regularize the matrices Rt(Dt) which are ill-

conditioned too. Moreover, we can further simplify the problem by considering the proposition

below.

Proposition 3.2. Let us consider Vs the covariance matrix presented in Equation (3.29)

and ks(x) the covariance vector presented in Equation (3.32). Then, we have the follow-

ing equality:

V−1
s ks(x) =







ρs−1V
−1
s−1ks−1(x)−

(

0(
∑s−1

i=1 ni−ns)×1

ρs−1Rs(Ds)
−1Rs(Ds, {x})

)

Rs(Ds)
−1Rs(Ds, {x})






. (3.38)

Proof. We know that the vector ks(x) is such that ks(x) = (k∗1(x,D1)
′, . . . , k∗s(x,Ds)

′)′, with:

k∗t (x,Dt)
′ = ρ′t−1(Dt)⊙ k∗t−1(x,Dt)

′ +

(

s−1
∏

i=t

ρi(x)

)

σ2tRt(x,Dt).

Let us denote by

A =









V−1
s−1 +

(

0 0

0 (ρs−1(Ds)ρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

)

−
(

0
(1′

n1
ρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

)









and

B =









−
(

0
(ρs−1(Ds)1ns )⊙Rs(Ds)−1

σ2
s

)

Rs(Ds)−1

σ2
s









.

The following equality stands:

ks(x)
′V−1

s =
(

ks(x)
′A ks(x)

′B
)

.

Let us focus on the term ks(x)
′A, we have:

ks(x)
′A = (k∗1(x,D1)

′, . . . , k∗s−1(x,Ds−1)
′)

(

V−1
s−1 +

(

0 0

0 (ρs−1(Ds)ρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

))

−k∗s(x,Ds)
′
(

0 (1nsρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

)

.
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We note that we have the equality:

(k∗1(x,D1)
′, . . . , k∗s−1(x,Ds−1)

′) = ρs−1(x)k
′
s−1(x).

Indeed, the vector (k∗1(x,D1)
′, . . . , k∗s−1(x,Ds−1)

′) represents the covariance between Zs(x)

and (Z1(D1), . . . , Zs−1(Ds−1). Therefore, we have:

(k∗1(x,D1)
′, . . . , k∗s−1(x,Ds−1)

′) = cov (Zs(x), (Z1(D1), . . . , Zs−1(Ds−1)))

= cov (ρs−1(x)Zs−1(x) + δs(x), (Z1(D1), . . . , Zs−1(Ds−1)))

and the independence δs(x) ⊥ (Z1(x), . . . , Zs−1(x)), gives that:

(k∗1(x,D1)
′, . . . , k∗s−1(x,Ds−1)

′) = cov (ρs−1(x)Zs−1(x), (Z1(D1), . . . , Zs−1(Ds−1)))

= ρs−1(x)cov (Zs−1(x), (Z1(D1), . . . , Zs−1(Ds−1)))

= ρs−1(x)k
′
s−1(x).

Let us return to the term ks(x)
′A. Noticing that

k∗s−1(x,Ds−1)
′ = (k∗s−1(x,Ds−1 \Ds)

′ k∗s−1(x,Ds)
′),

we obtain the following equality:

ks(x)
′A = ρs−1(x)k

′
s−1(x)V

−1
s−1 +

(

0 k∗s−1(x,Ds)
′ (ρs−1(Ds)ρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

)

−k∗s(x,Ds)
′
(

0 (1nsρs−1(Ds)′)⊙Rs(Ds)−1

σ2
s

)

.

We know that k∗s(x,Ds)
′ = ρs−1(Ds)

′⊙k∗s−1(x,Ds)
′+σ2sRs(x,Ds). Therefore, we can deduce

that:

ks(x)
′A = ρs−1(x)k

′
s−1(x)V

−1
s−1 −Rs(x,Ds)

(

0 (1nsρs−1(Ds)
′)⊙Rs(Ds)

−1
)

ρs−1(x)k
′
s−1(x)V

−1
s−1 −

(

01×(
∑s−1

i=1 ni−ns)
(ρs−1(Ds)

′ ⊙Rs({x},Ds))Rs(Ds)
−1
)

.

Let us focus now on the term ks(x)
′B:

ks(x)
′B = −(k∗1(x,D1)

′, . . . , k∗s−1(x,Ds−1)
′)

(

0
(ρs−1(Ds)1′

ns)⊙Rs(Ds)−1

σ2
s

)

+ k∗s(x,Ds)
′Rs(Ds)

−1

σ2s

= −k∗s−1(x,Ds)
′
(

ρs−1(Ds)1
′
ns

)

⊙Rs(Ds)
−1

σ2s
+ k∗s(x,Ds)

′Rs(Ds)
−1

σ2s

= −k∗s−1(x,Ds)
′
(

ρs−1(Ds)1
′
ns

)

⊙Rs(Ds)
−1

σ2s

+
(

ρs−1(Ds)
′ ⊙ k∗s−1(x,Ds)

′ + σ2sRs(x,Ds)
) Rs(Ds)

−1

σ2s
= Rs(x,Ds)R

−1
s .



3.6. THE CASE OF S LEVELS OF CODE 109

Finally we obtain:

V−1
s ks(x) =







ρs−1V
−1
s−1ks−1(x)−

(

0

ρs−1Rs(Ds)
−1Rs(Ds, x)

)

Rs(Ds)
−1Rs(Ds, x)






.

Therefore, k′
s(x)V

−1
s is independent of σ2s . Since k1(x)V

−1
1 = R1({x},D1)R1(D1)

−1 does

not depend on σ21, by induction, k′
s(x)V

−1
s is independent of σ2i for all 1 ≤ i ≤ s. We have

just shown here that the co-kriging mean does not depend on the variance coefficients.

3.6.3 Numerical test on the reduction of computational complexity

In the previous section, we have presented a reduction of complexity for the co-kriging model by

expressing the inverse of the matrix Vs with the inverses of the matrices Rt(Dt), t = 1, . . . , s.

We present here a numerical test to highlight the gain of CPU time obtained with this method.

We focus on the case of 2 levels of code with constant regression functions and the following

Gaussian kernel for the 2 levels:

r(x− x̃; θ) = exp

(

−(x− x̃)2

2θ2

)

.

The experimental design set for the cheap code is a regular grid composed of n1 points

between 0 and 1 and the experimental design set for the expensive code are the n2 first points

of this grid. We consider the relation n1 = 4n2 with n2 = 50, 60, . . . , 500 and the parameter

θ = 5/n2 (the parameter θ is controlled by n2 in order to avoid ill-conditioned covariance

matrices). The total number of observations is hence n = n1 + n2. Figure 3.5 compares the

CPU time needed to build a co-kriging model with or without reduction complexity.

First, the slope of the two CPU times is close to 3 (the least-squares estimate value is

3.03). The complexity of a matrix inversion being O(n3), with n the size of the matrix, the

estimate of the slope highlights the fact that it is the matrix inversion which leads the CPU

time. Then, Figure 3.5 emphasizes that the reduction of complexity is worthwhile. Indeed, we

see that the ratio between the two CPU times is approximately a constant equal to 1.93. We

are hence close to the theoretical ratio equal to (n1+n2)
3/(n31+n32) ≈ 1.92 which is obtained

when we consider that the CPU time is essentially due to the matrix inversion.

3.6.4 Academic example on the complexity reduction

A 3-level co-kriging metamodel is presented in this section to illustrate the gain of CPU which

can be obtained with the presented reduction of complexity. We focus on the inversion of the

co-kriging matrix Vs by comparing the CPU time needed with a direct inversion or by using

the formula (3.37). We assume that the 3 levels of code are given by the followings three
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Figure 3.5: CPU time comparison between 2-level co-kriging models. The triangles represent

the CPU time for the crude co-kriging model and the circles represent the CPU time for the

co-kriging model with the complexity reduction. The gain of CPU time with the reduction

complexity is approximately a factor equal to 1.93.

dimensional functions:

z1(x) = sin(x1), (3.39)

z2(x) = z1(x) + asin(x2)
2, (3.40)

z3(x) = z2(x) + bx43sin(x1), (3.41)

with x = (x1, x2, x3) ∈ [−π, π]3, a = 7 and b = 1/10. We note that the complex function z3(x)

corresponds to the Ishigami function which is very popular in the field of sensitivity analysis

[Saltelli et al., 2000]. We consider n3 = 50 observations for the most accurate code z3(x),

n2 = 200 for the intermediate code and n1 = 400 for the less accurate code. All experimental

design sets are randomly sampled from the uniform distribution. As presented in Section 3.2

we consider nested experimental designs ∀t = 2, . . . , s Dt ⊆ Dt−1.

We use a tensorised Matérn-5/2 kernel for the three correlation functions:

rt(x, x̃;θt) =

d
∏

i=1

r1D(xi, x̃i;θt,i), (3.42)

with r1D(t, t̃; θ) =
(

1 +
√
5 |t−t̃|

θ + 5
3
(t−t̃)2

θ2

)

exp
(

−
√
5 |t−t̃|

θ

)

, t, t̃ ∈ R and constant regression

functions ft(x) = 1.

The estimates of the hyper-parameters θt are presented in Table 3.4.
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Parameter Estimate

θ̂1

(

0.61 1.99 2.04
)

θ̂2

(

1.98 0.26 2.48
)

θ̂3

(

0.23 0.89 0.21
)

Table 3.4: Academic example on the complexity reduction. Estimates of the hyper-parameters

(correlation lengths) for the 3-level co-kriging.

The hyper-parameter estimates show us that z1(x) is very smooth in the directions x2 and

x3 reflecting the fact that it depends only on the first direction x1. Similarly, the bias between

z2(x) and z1(x) only depending on the second direction x2, it is rough in this direction and

very smooth in the other ones. Finally, the bias between z3(x) and z2(x) is rougher in the

direction x3 than in the directions x1 and x2. This is due to the important impact of x3 on

the third level.

The estimates of the variance, scale and regression parameters are given in Table 3.5.

Parameter Estimate

β1 0.00
(

βρ1

β2

) (

0.99

2.44

)

(

βρ2

β3

) (

0.95

0.64

)

σ21 0.09

σ22 1.66

σ23 6.25

Table 3.5: Academic example on the complexity reduction. Estimates of the variance, scale

and regression parameters for the 3-level co-kriging.

Table 3.5 shows the efficiency of the suggested method for the parameter estimations since

it provides very accurate estimates of ρ1 and ρ2.

To evaluate the accuracy of the co-kriging model, we use a test set of 30,000 points uni-

formly sampled from the uniform distribution. Then, we compute the efficiency Eff with

the co-kriging predictions and the responses of z3(x) on this set. We obtain for the co-kriging

model Eff = 83.21%, we hence have a good accuracy despite the small number of observations

used for the high fidelity model. Nonetheless, we have a significant improvement relatively

to the kriging model since with the same kernel and the same experimental design set D3 we

obtain Eff = 47.97% which is a very poor accuracy. The hyper-parameter estimate of the

kriging model is θ̂ = (0.79, 0.14, 0.29), the variance one is σ̂2 = 13.66 and the trend coefficient

one is β̂ = 3.89.
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Let us now compare the difference of CPU time between the co-kriging building with a

crude inversion of the covariance matrix Vs and the one with an inversion using the formula

presented in Subsection 3.6.2. The CPU time necessary without the reduction complexity is

CPUcrude = 0.47 whereas the one necessary with the complexity reduction is CPUlight = 0.14.

We hence find that the CPU time ratio between the two methods approximately equals 3.36.

This is not far from the theoretical ratio which equals 6503/(4003 + 2003 + 503) ≈ 3.80. We

note that the complexity reduction could be of important practical interest. For example,

without it the computational cost of a leave-one-out cross validation procedure will be much

more important (the ratio will still be around 3 in our example). The complexity of this

procedure being O(n4), the gain of CPU time will be substantial.

3.6.5 Comparison with existing methods on an academic example

We proceed here on a numerical comparison between the suggested model and the ones pre-

sented by [Kennedy and O’Hagan, 2000] and [Qian and Wu, 2008]. The comparison is made

both in terms of RMSE and computational resources. For the comparison, we consider a

2-level co-kriging model with the following functions:
{

z1(x) = sin(x1) + asin(x2)
2

z2(x) = z1(x) + bx43sin(x1)
, (3.43)

with x = (x1, x2, x3) ∈ [−π, π]3, a = 7 and b = 1/10. Furthermore, the experimental design

set D1 for the coarse code z1(x) is composed of 100 points uniformly spread on [−π, π]3 and

the experimental design set for the fine code z2(x) is composed of 50 points randomly extracted

from D1. Then, we consider a test set Xtest of 1000 points uniformly spread on [−π, π]3. In

order to propose a fair comparison, we use the R-CRAN package “approximator.1.2-2” on the

R.2.15.2 platform to implement the model of Kennedy and O’Hagan. This package has been

specially created to compute the equations given by [Kennedy and O’Hagan, 2000]. Then,

we use the WinBUGS software version 1.4.3 to implement the model presented by [Qian and

Wu, 2008]. It is a software specially dedicated to Bayesian analysis and particularly efficient

to develop Metropolis-within-Gibbs algorithms [Liu, 2001]. Finally, we use the R-CRAN

package “MuFiCokriging.1.2” to implement our model. This package computes the mean and

the variance of the predictive distribution presented in Subsection 3.4.3 and integrates the

proposed complexity reductions (see Chapter 4 Section 4.6). For the two correlation functions

r1(x, x
′) and r2(x, x

′) we use Gaussian covariance kernels for the three models

rj(x, x
′) = exp

(

−1

2

d
∑

i=1

(xi − x′i)
2

θ2i,j

)

,

and for the model presented by Qian et al. we assume a Gaussian covariance kernel for the

adjustment coefficient. Furthermore, we assume a constant trend for the Gaussian processes

modeling the coarse code and the bias between the two codes.

The correlation parameters and the adjustment parameter of the model presented by

Kennedy and O’Hagan are estimated with a concentrated likelihood method with a joint esti-

mation of (θi,2)i=1,...,3 and ρ as presented in their paper. The other parameters are estimated
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with a classical maximum likelihood estimate. Note that in this model the scaling coefficient

ρ is constant.

The correlation parameters of the model presented by Qian et al. are estimated with a

Bayesian method and the prior for each of them is Γ(2, 0.1) where Γ stands for the Gamma

distribution. As in [Qian and Wu, 2008] we consider these parameters as known and fixed

to the modes of their posterior distributions. Furthermore, for the Bayesian procedure the

convergence is achieved after 50,000 burn-in iterations and another 100,000 runs are then

generated to compute the posterior distributions as in [Qian and Wu, 2008]. We note that the

convergence is assessed both visually and with the method of Geweke [Geweke et al., 1991]

as presented by Qian et al.. The other parameters are estimated thanks to the Metropolis-

within-Gibbs algorithm with the following parameters for the prior distributions:

• (αl, γl, αρ, γρ, αδ, γδ) = (2, 1, 2, 1, 2, 1),

• ul = 0,

• νl = 1,

• (uρ, νρ, uδ, νδ) = (1, 1, 0, 1),

The reader is referred to [Qian and Wu, 2008] for more detail about these parameters. They

reflect that we do not have information about the variance and the regression parameters of

the model. Moreover, the prior information on ρ is such that its mean is centered on 1. We

note that in this model, ρ depends on x. For the Bayesian procedure, the convergence is

reached again after 50,000 burn-in iterations and another 100,00 runs are then generated.

The prediction RMSE of the model presented in Section 3.4 is compared with the ones of

the models presented by Kennedy and O’Hagan and Qian et al. on 100 different experimental

design sets D1 and D2 and test sets Xtest. The resulting RMSEs for the three models are

given in Figure 3.6.

We see in Figure 3.6 that the RMSEs of the presented model and the one of Qian et al.

are significantly better than the one of the model of Kennedy and O’Hagan. Furthermore,

our model is slightly better than the one of Qian et al. in terms of RMSE. Indeed, we see

that the notches in Figure 3.6 do not overlap. According to [Chambers et al., 1983] p.62,

this means that the difference between the two medians are significant. We note that the

correlation length for the model of Qian et al. and the one obtained with the restricted

maximum likelihood method (see Subsection 3.6.1) are similar, i.e. around (1.60, 0.45, 1.95)

for θ1 and around (0.30, 1.90, 0.30) for θ2. The difference of RMSE between the proposed

model and the one of Qian et al. is essentially explained by a less efficient estimation of the

parameter ρ for the model of Qian et al.. Indeed, it varies around 1.13 whereas the real value

is 1. Moreover, with the estimation method presented in Subsection 3.6.1 the parameter ρ is

estimated to be around 0.99. This highlights the importance to have an efficient estimation

of this parameter.

Finally, we compare the three methods in terms of computational costs. Figure 3.7 illus-

trates the different CPU times obtained from the 100 different experimental and test sets. We

see in Figure 3.7 that there is a significant difference between the model CPU times. Indeed,

the ratio of CPU time between the model of Kennedy and O’Hagan and the presented one is
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Figure 3.6: RMSEs of the presented model εLG, the model of [Kennedy and O’Hagan, 2000]

εKO (see [Kennedy and O’Hagan, 2000]) and the model of [Qian and Wu, 2008] εQIAN (see

[Qian and Wu, 2008]). The numerical comparisons are performed on the 3-dimensional aca-

demic example (3.43) with 100 different experimental and test sets.

around 10 whereas the one between the model of Qian et al. and the presented one is around

1000. The important difference between the model of Qian et al. and the other models is

natural since in this model a complex Bayesian scheme is used which is known to be expensive.

The one between the suggested model and the one of Kennedy and O’Hagan can be explained

by the complexity reduction for the covariance matrix inversion.

3.7 Example : Fluidized-Bed Process

This example illustrates the comparison between 2-level and 3-level co-kriging. A 3-level

co-kriging method is applied to a physical experiment modeled by a computer code. The

experiment, which is the measurement of the temperature of the steady-state thermodynamic

operation point for a fluidized-bed process, was presented by [Dewettinck et al., 1999], who

developed a computer model named “Topsim” to calculate the measured temperature. The

code, developed for a Glatt GPCG-1, fluidized-bed unit in the top-spray configuration, can

be run at 3 levels of complexity. We hence have 4 available responses:

• Texp: the experimental response.

• T3: the most accurate code modeling the experiment.

• T2: a simplified version of T3.

• T1: the lowest accurate code modeling the experiment.
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Figure 3.7: CPU times for the presented model CPULG, the one of Kennedy and O’Hagan

CPUKO and the one of Qian et al. CPUQIAN (note that the scales are different). The numerical

comparisons are performed on the 3-dimensional academic example (3.43) with 100 different

experimental and test sets. The ratio between CPUKO and CPULG is around 10 and the ratio

between CPUQIAN and CPULG is around 1000.

The differences between T1, T2 and T3 are discussed by Dewettinck et al. (1999). The aim

of this study is to predict the experimental response Texp given the two levels of code T3 and

T2. We only focus on a 3-level co-kriging using T3 and T2 to predict Texp since 28 responses

available for each level is not enough to build a nested experimental design relevant for a

4-level co-kriging. The experimental design set and the responses T1, T2, T3 and Texp are

given by [Qian and Wu, 2008] who have presented a 2-level co-kriging using Texp and T2.

Furthermore, the responses are parameterized by a 6-dimensional input vector presented by

Dewettinck et al. (1999).

3.7.1 Building the 3-level co-kriging

To build the 3-level co-kriging, we use 10 measures of Texp (measures 1, 3, 8, 10, 12, 14, 18,

19, 20, 27 in Table 4 in [Qian and Wu, 2008]), 20 simulations of T3 (runs 1, 2, 3, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 24, 27) and the 28 simulations of T2 and the input vector

is scaled between 0 and 1. The last 18 measures of Texp are used for validation. The design

sets are nested such that Dt−1 = (Dt−1 \Dt,Dt) for t = 2, 3 and we use a Matérn-5/2 kernel

for the three covariance functions. The estimates of the hyper-parameters which represent

correlation lengths of the three covariance kernels are given in Table 3.6.
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θ̂1 1.790 3.988 1.218 1.790 3.595 0.722

θ̂2 1.810 1.842 2.008 1.036 0.001 0.345

θ̂3 0.890 0.721 2.008 2.952 1.790 0.241

Table 3.6: Example: fluidized-bed process. Estimates of the hyper-parameters (correlation

lengths) for the 3-level co-kriging.

The estimates of hyper-parameters in Table 3.6 show us that the surrogate model is very

smooth in the first four directions. For the fifth direction the Gaussian processes modeling

the cheap code T2 and the bias between Texp and T3 are very smooth and the one modeling

the bias between T3 and T2 is close to a regression. Finally, the model is more oscillating in

the sixth direction in particular for the two biases where correlation lengths are around 0.3.

Furthermore, Table 3.7 gives the estimates of the variance and regression parameters (see

Section 3.6.1).

Regression coefficient Posterior mean Posterior Covariance/σ2t
β1 47.02 0.134

(

βρ1

β2

) (

0.97

−0.17

) (

0.001 −0.034

−0.034 1.610

)

(

βρ2

β3

) (

0.95

1.93

) (

0.003 −0.121

−0.121 5.188

)

Variance coefficient Qt αt

σ21 1032 13.5

σ22 5.30 9

σ23 8.39 4

Table 3.7: Example: fluidized-bed process. Bayesian estimation of the variance and regression

parameters for the 3-level co-kriging.

Table 3.7 shows that the responses have approximately the same scale since the adjustment

coefficients are close to 1. Furthermore, we see an important bias between T3 and T2 with

β3 = 1.93. Finally, the variance coefficients for the biases indicate that they are possibly much

simpler to model than the cheap code T2 as their estimates are smaller.

3.7.2 3-level co-kriging prediction: predictions when code output is avail-

able

The aim of this section is to show that co-kriging can improve significantly the accuracy of

the surrogate model at points where at least one level of responses is available.

The predictions of the 3-level co-kriging are here presented and compared with the pre-

dictions obtained with a 2-level co-kriging using only the 10 responses of Texp and the 20

responses of T3. The predictions for the 2-level and the 3-level co-krigings vs. the real values
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(i.e., the measured temperature Texp) are shown in Figure 3.8. The 3-level co-kriging gives us
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Figure 3.8: Predictions of the 2-level and the 3-level co-krigings for the fluidized-bed process.

The 3-level co-kriging improves significantly the predictions of the 2-level one.

the same prediction means as the 2-level co-kriging at the 10 points (points 2, 5, 6, 7, 9, 11,

13, 16, 22, 24) where T3 is known. These overlapped points mean that T2 does not influence

the surrogate model at these points. This follows from the Markov property introduced in

Section 3.2, which implies that the prediction of Texp is entirely determined by T3 at these

points. We also note that, in general, the 2-level co-kriging predictions - at points where T3

is unknown - are not accurate and the 3-level co-kriging improves significantly the prediction

means compared to the 2-level co-kriging. Table 3.8 compares the 2-level co-kriging with the

3-level co-kriging and summarizes some results about the quality of the predictions on the 18

validation points. Nonetheless, it is important to notice that, in the 3-level case, the output of

the cheapest code T2 is known at the 18 test points. This means that the results of this sub-

section show that the 3-level co-kriging prediction is more accurate than the 2-level co-kriging

prediction at a point where the cheapest response T2 is available. In the next subsection we

will show that the 3-level co-kriging prediction is more accurate than the 2-level one at a point

where no response is available.
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Eff RMSE MaxAE

2-level co-kriging 61.23 % 4.24 14.04

3-level co-kriging 98.71 % 0.89 1.98

Average Std. dev. Median Std. dev. Maximal Std. dev

2-level co-kriging 2.90 1.02 5.68

3-level co-kriging 0.90 1.02 1.04

Table 3.8: Example: fluidized-bed process. Comparison between 2-level co-kriging and 3-

level co-kriging. Predictions are better in the 3-level case and the prediction variance seems

well-evaluated since the RMSE and the average standard deviation are close.

Figure 3.9 shows the prediction errors of the 2-level co-kriging and the confidence interval

at plus or minus twice the prediction standard deviation. The last 10 prediction errors and

their confidence intervals are the same as those of the 3-level case since it corresponds to

the points where T3 is known. We see in Figure 3.9 that the confidence intervals are well
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Figure 3.9: Prediction errors of the 2-level co-kriging and confidence intervals at plus or minus

twice the standard deviation. We see a significant difference between the accuracy of the

predictions means and their confidence intervals for the point where T3 is unknown (the 8

first validation points) and for the ones where it is known (the last 10 validation points).

predicted. Furthermore, we see a significant difference between the accuracy of the prediction

means and their confidence intervals for the point where T3 is unknown (the 8 first validation

points) and for the ones where it is known (the last 10 validation points).
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3.7.3 3-level co-kriging prediction: predictions when code output is not

available

In this subsection, we show that a multi-level co-kriging can significantly improve the predic-

tion of a surrogate model at points where no response is available.

We have seen in Section 3.7.2 that the 3-level co-kriging improves significantly the 2-level

co-kriging at points where T3 is unknown and T2 has been sampled. Nevertheless, to have a

fair comparison between these two co-kriging models, we compare their accuracy by applying a

Leave-One-Out Cross-Validation (LOO-CV) procedure at the 10 points where Texp is known.

This means that we perform for each of these 10 points the following procedure:

1. The experimental and the two code outputs corresponding to the point are removed

from the data set.

2. The 2-level co-kriging method and the 3-level co-kriging method are applied using the

truncated data set in order to give a confidence interval for the experimental output at

the point.

Figure 3.10 shows the result of the LOO-CV procedure for the 2-level and 3-level co-kriging.

We see that the 3-level co-kriging is more accurate than the 2-level one. Indeed, the LOO-CV

RMSE for the 2-level co-kriging is equal to 1.88 whereas it is equal to 1.09 for the 3-level

co-kriging. This shows that the 3-level co-kriging provides better predictions also at points

where no response is available. This highlights the strength of the proposed method and shows

that a co-kriging method with more than 2 levels of code can be worthwhile.
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Figure 3.10: Leave-One-Out Cross-Validation predictive errors and variances of the 2-level

and 3-level co-kriging. We see that the confidence intervals are accurate and the precision of

the 3-level co-kriging is significantly better than the one of the 2-level co-kriging.
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3.7.4 Comparison with existing methods

In this subsection we carry out a numerical comparison between the proposed model and the

ones of [Kennedy and O’Hagan, 2000] and [Qian and Wu, 2008] on the Fluidized-Bed Process

example. The comparison is performed similarly to the one presented in Subsection 3.6.5.

First we consider a 2-level co-kriging with Texp as fine level and T2 as coarse level. For

the coarse level we randomly extract 20 observations of T2 and for the fine level we randomly

extract 10 observations of Texp such that the experimental design set of Texp is nested into

the one of T2. The other 18 observations of Texp are used as test sets. We have generated 100

different combinations of design and test sets for the numerical comparisons. The comparisons

are also performed thanks to the R CRAN package “approximator” for the model of Kennedy

and O’Hagan, to the WinBugs software to the one of Qian et al. and to the R CRAN package

“MuFiCokriging” for the presented method. Like in Subsection 3.6.5, Gaussian covariance

kernels and constant trends are chosen for all the Gaussian processes and constant adjustment

coefficients are taken for the suggested model and the one of Kennedy and O’Hagan. Further-

more, for the Bayesian procedure presented by [Qian and Wu, 2008] we choose the following

parameters for the prior distributions:

• (αl, γl, αρ, γρ, αδ, γδ) = (2, 1, 2, 1, 2, 1),

• ul = 0,

• νl = 1,

• (uρ, νρ, uδ, νδ) = (1, 1, 0, 1),

• (al, bl, aρ, bρ, aδ, bδ) = (2, 0.1, 2, 0.1, 2, 0.1)

Like in Subsection 3.6.5 the convergence is reached after 50,000 burn-in iterations and 100,000

additional runs have been generated to compute the posterior distributions.

Figure 3.11 compares the RMSE of the three models evaluated on the 18 test points.

We see in Figure 3.11 that the presented model is significantly better than the other ones.

Furthermore, contrary to the comparison performed in Subsection 3.6.5, we see that the worst

model is the one of Qian et al.. This is explained by the fact that, as mentioned in their

article at the end of Section 2.4, the model suggested by Qian et al. supposed that the cheap

code is known at a new point x. If it is not the case, they consider it equal to the prediction

given by a Bayesian model on the cheap code. Nevertheless, in our example, we only have

20 observations in a 6-dimensional input space and the predictions of the cheap code are not

good enough for the method of Qian et al..

Finally, we present in Figure 3.12 the computational costs of the three methods. As pointed

out in Subsection 3.6.5, the suggested and the Kennedy and O’Hagan’s models are significantly

less computationally expensive than the one of Qian et al.. Nevertheless, contrary to the

comparison in Subsection 3.6.5, the presented model and the one of Kennedy and O’Hagan

are equivalent in terms of CPU times. This is due to the fact that the complexity reduction

for the covariance matrix inversion does not bring significant differences when the number of

observations is very small as in the Fluidized-Bed Process application.
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Figure 3.11: RMSEs of the presented model εLG, the model of [Kennedy and O’Hagan, 2000]

εKO (see [Kennedy and O’Hagan, 2000]) and the model of [Qian and Wu, 2008] εQIAN (see

[Qian and Wu, 2008]). The numerical comparisons are performed on the Fluidized-Bed Process

application with 100 different experimental and test sets.

3.8 Conclusion

We have presented a method for building kriging models using a hierarchy of codes with differ-

ent levels of accuracy. This method allows us to improve a surrogate model built on a complex

code using information from a cheap one. It is particularly useful when the complex code is

very expensive. We see in our literature review that the first multi-level metamodel originally

suggested is a first-order auto-regressive model built with Gaussian processes. The AR(1)

relation between two levels of code is natural and the building of the model is straightforward.

Nevertheless, we have highlighted some key issues which makes it difficult to use this model

in practical ways.

First, important parameters of the model, which are the adjustment coefficients between

two successive levels of codes, were numerically estimated. We propose here an analytical

estimation of these parameters with a Bayesian method. This method allows us to have infor-

mation about the uncertainties of the estimations and above all, to easily use the AR(1) model

and its generalization to the case of non-spatial stationarity. Furthermore, a strength of the

proposed method is that it even works for a code with more than 2 levels since its implemen-

tation is such that the estimations of the parameters of a s-level co-kriging is equivalent to the

ones of s independent krigings in terms of numerical complexity. It is important to highlight

that this method is based on a joint Bayesian analysis between the adjustment coefficient and

the mean of the Gaussian process modeling the difference between two successive levels of

code.
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Figure 3.12: CPU times for the presented model CPULG, the one of Kennedy and O’Hagan

CPUKO and the one of Qian et al. CPUQIAN. The numerical comparisons are performed on

the Fluidized-Bed Process application with 100 different experimental and test sets. The ratio

between CPUQIAN and CPULG is around 1000 and CPULG and CPUKO have the same order

of magnitude.

Second, we have seen that the variance of the predictive distribution of the AR(1) model

could be underestimated. A natural approach to improve this estimation is a Bayesian model-

ing. We propose here a Bayesian co-kriging for 2 levels of code and to avoid computationally

expensive implementation, we suggest another model than the one presented. This new model

is based on a hierarchical specification of the parameters of the model. This allows us to have

a Bayesian model including only two nested integrations without Markov chain Monte Carlo

procedure.

Finally, for a non-Bayesian s-level co-kriging, we have proved that building a s-level co-

kriging is equivalent to build s independent krigings. This result is very important since it

solves one of the most important key issues of the co-kriging which is the inversion of the

covariance matrix. A 3-level co-kriging example has been provided to show the efficiency of

the presented method.



Chapter 4

Multi-fidelity co-kriging model: recursive

formulation

4.1 Introduction

We have developed in Chapter 3 a co-kriging based surrogate model for multi-fidelity computer

codes. In fact, the first multi-fidelity model in a computer experiments framework has been

proposed by [Craig et al., 1998] and is based on a linear regression formulation. Then this

model is improved in [Cumming and Goldstein, 2009] by using a Bayes linear formulation.

The reader is referred to [Goldstein and Wooff, 2007] for further detail about the Bayes linear

approach. The methods suggested by [Craig et al., 1998] and [Cumming and Goldstein, 2009]

have the strength to be relatively computationally cheap but as they are based on a linear

regression formulation, they could suffer from a lack of accuracy. Another approach is to use

the model of [Kennedy and O’Hagan, 2000] presented in Chapter 3. This method turns out

to be very efficient and it has been applied and extended significantly.

The strength of the co-kriging model is that it gives very good predictive models but

it is often computationally expensive, especially when the number of simulations is large.

Furthermore, large data set can generate problems such as ill-conditioned covariance matrices.

These problems are known for kriging but they become even more difficult for co-kriging since

the total number of observations is the sum of the observations at all code levels.

In Chapter 3, we solve two mains issues of the model suggested by [Kennedy and O’Hagan,

2000] by proposing a complexity reduction for the inverse of the covariance matrices and by

improving the estimation of the model parameters. Despite these improvements, it is hard

to use this model to manage some problems such as sequential design (see Chapter 5) or

sensitivity analysis (see Chapter 6). Indeed, for sequential design we wish to obtain the part

of each code level on the predictive variance. This is not clear with the model of [Kennedy

and O’Hagan, 2000]. Moreover, for sensitivity analysis we wish to finely infer from the model

uncertainty about the one of the sensitivity indices. This problem is hard to address by using

the model of [Kennedy and O’Hagan, 2000] since we are not able to generate samples from

the predictive distribution incorporating the posterior distributions of the adjustment and
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regression parameters.

To handle these problems, we adopt in this chapter a new approach for multi-fidelity

surrogate modeling which uses a co-kriging model but with an original recursive formulation.

An important property of this model is that it provides predictive mean and variance identical

to the ones presented in [Kennedy and O’Hagan, 2000] and in Chapter 3. Therefore, it has

the same efficiency of the model of [Kennedy and O’Hagan, 2000] in terms of prediction

accuracy. However, our approach significantly reduces the complexity of the model presented

in [Kennedy and O’Hagan, 2000] since it divides the whole set of simulations into groups of

simulations corresponding to the ones of each level. Therefore, we will have s sub-matrices to

invert which is less expensive and ill-conditioned than a large one. In fact, the computational

complexity is equivalent to the one obtained in Chapter 3 Subsection 3.6.2 by using Equation

(3.37) for the inverse of the covariance matrix. Therefore, we keep the advantages of the

improvement presented in Chapter 3.

We will see in chapters 5 and 6 that the presented formulation allows for dealing effectively

with sequential design and sensitivity analysis. Furthermore, a strength of our approach is

that it allows to extend classical results of kriging to the considered co-kriging model. The

two original results presented in this chapter are the following ones:

1. First, closed form expressions for the universal co-kriging predictive mean and variance

are given (Section 4.3).

2. Second, the fast cross-validation method proposed in [Dubrule, 1983] is extended to the

multi-fidelity co-kriging model (Section 4.4).

Finally, we illustrate these results in a complex hydrodynamic simulator (Section 4.5).

4.2 Multi-fidelity Gaussian process regression

In Subsection 4.2.1, we detail our recursive approach to build such a model. The recursive

formulation of the multi-fidelity model is the first novelty of this chapter. We will see in the

next sections that the new formulation allows us to find original results about the co-kriging

model and to reduce its computational complexity.

4.2.1 Recursive multi-fidelity model

Let us suppose that we have s levels of code (zt(x))t=1,...,s sorted by increasing order of

fidelity and modeled by Gaussian processes (Zt(x))t=1,...,s, x ∈ Q. We still consider that

zs(x) is the most accurate and costly code that we want to surrogate and (zt(x))t=1,...,s−1 are

cheaper versions of it with z1(x) the less accurate one. Let us consider the following model

for t = 2, . . . , s :











Zt(x) = ρt−1(x)Z̃t−1(x) + δt(x)

Z̃t−1(x) ⊥ δt(x)

ρt−1(x) = g′
t−1(x)βρt−1

, (4.1)
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where Z̃t−1(x) is a Gaussian process with distribution [Zt−1(x)|Z(t−1) = z(t−1),βt−1,βρt−2
, σ2t−1],

δt(x) is a Gaussian process with mean f ′t(x)βt and covariance kernel σ2t rt(x, x̃) and Ds ⊆
Ds−1 ⊆ · · · ⊆ D1.

Here, gt−1(x) is a vector of qt−1 regression functions, ft(x) is a vector of pt regression

functions, βt is a pt-dimensional vector, βρt−1
is a qt−1-dimensional vector, Z(s) = (Z′

1, . . . ,Z
′
s)

′

is the Gaussian vector containing the values of the random processes (Zt(x))t=1,...,s at the

points in the experimental design sets (Dt)t=1,...,s and z(s) = (z′1, . . . , z
′
s)

′ the vector containing

the values of (zt(x))t=1,...,s at the points in (Dt)t=1,...,s.

The nested property of the experimental design sets is not necessary to build the model

but it allows for a simple estimation of the model parameters. Since the codes are sorted

in increasing order of fidelity it is not an unreasonable constraint for practical applications.

Nonetheless, we present in Appendix B.1 the equations of the multi-fidelity co-kriging model

when the experimental design sets are not nested.

The unique difference with the model presented in Chapter 3 is that we express Zt(x)

(the Gaussian process modeling the response at level t) as a function of the Gaussian process

Zt−1(x) conditioned by the values z(t−1) = (z1, . . . , zt−1) at points in the experimental de-

sign sets (Di)i=1,...,t−1. The Gaussian processes (δt(x))t=2,...,s have the same definition as in

Chapter 3 and we have for t = 2, . . . , s and for x ∈ Q:

[

Zt(x)|Z(t) = z(t),βt,βρt−1
, σ2t

]

∼ N
(

µZt(x), s
2
Zt
(x)
)

, (4.2)

where:

µZt(x) = ρt−1(x)µZt−1(x) + f ′t(x)βt + r′t(x)R
−1
t (zt − ρt−1(Dt)⊙ zt−1(Dt)− Ftβt) (4.3)

and:

σ2Zt
(x) = ρ2t−1(x)σ

2
Zt−1

(x) + σ2t
(

1− r′t(x)R
−1
t rt(x)

)

. (4.4)

The notation ⊙ represents the element by element matrix product. Rt is the correlation

matrix Rt = (rt(x, x̃))x,x̃∈Dt and r′t(x) is the correlation vector r′t(x) = (rt(x, x̃))x̃∈Dt . We

denote by ρt(Dt−1) the vector containing the values of ρt(x) for x ∈ Dt−1, zt(Dt−1) the vec-

tor containing the known values of Zt(x) at points in Dt−1 and Ft is the experience matrix

containing the values of ft(x)
′ on Dt.

The mean µZt(x) is the surrogate model of the response at level t, 1 ≤ t ≤ s, taking

into account the known values of the t first levels of responses (zi)i=1,...,t and the variance

σ2Zt
(x) represents the mean squared error of this model. The mean and the variance of the

Gaussian process regression at level t being expressed in function of the ones of level t− 1, we

have a recursive multi-fidelity metamodel. Furthermore, in this new formulation, it is clearly

emphasized that the mean of the predictive distribution does not depend on the variance

parameters (σ2t )t=1,...,s. This is a classical result of kriging which states that for covariance

kernels of the form k(x, x̃) = σ2r(x, x̃), the mean of the kriging model is independent of σ2.
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An important strength of the recursive formulation is that contrary to the formulation

suggested in [Kennedy and O’Hagan, 2000] and in Chapter 3, once the multi-fidelity

model is built, it provides the surrogate models of all the responses (zt(x))t=1...,s.

We have the following proposition. We note that we consider here an adjustment coefficient

depending on x. The reader is referred to Appendix A.2 for the details about the predictive

mean and variance of the model presented in Chapter 3.

Proposition 4.1. Let us consider s Gaussian processes (Zt(x))t=1,...,s and Z(s) =

(Zt)t=1,...,s the Gaussian vector containing the values of (Zt(x))t=1,...,s at points in

(Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. If we consider the mean mZs(x) (3.27) and

the variance s2Zs
(x) (3.28) induced by the model presented in Chapter 3 and the mean

µZs(x) (4.3) and the variance σ2Zs
(x) (4.4) induced by the model (4.1) when we condition

the Gaussian process Zs(x) by the known values z(s) of Z(s) and by the parameters β,

βρ and σ2, then, we have:

µZs(x) = mZs(x),

σ2Zs
(x) = s2Zs

(x).

Proof. Let us consider the co-kriging mean of the model presented in Chapter 3 for a t-level

co-kriging with t = 2, . . . , s and ρt−1(x) = g′
t−1(x)βρt−1

:

mZt(x) = h′
t(x)β

(t) + k′
t(x)V

−1
t (z(t) −Htβ

(t)),

where β(t) = (β′
1, . . . ,β

′
t)
′, z(t) = (z′1, . . . , z

′
t)
′, Ht is defined in Equation (3.33) and h′

t(x) is

defined in the following equation:

h′
t(x) =

((

t−1
∏

i=1

ρi(x)

)

f ′1(x),

(

t−1
∏

i=2

ρi(x)

)

f ′2(x), . . . , ρt−1(x)f
′
t−1(x), f

′
t(x)

)

. (4.5)

We have:

h′
t(x)β

(t) = ρt−1(x)

((

t−2
∏

i=1

ρi(x)

)

f ′1(x),

(

t−2
∏

i=2

ρi(x)

)

f ′2(x), . . . , f
′
t−1(x)

)

β(t−1) + f ′t(x)βt

= ρt−1(x)h
′
t−1(x)β

(t−1) + f ′t(x)βt.

Then, from equations:

cov(Zt(x), Zt̃(x̃)|σ2,β,βρ) =

(

t−1
∏

i=t′

ρi(x)

)

cov(Zt̃(x), Zt̃(x̃)|σ2,β,βρ) (4.6)

and:

cov(Zt(x), Zt(x̃)|σ2,β,βρ) =
t
∑

j=1

σ2j





t−1
∏

i=j

ρi(x)ρi(x̃)



 rj(x, x̃), (4.7)
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with t > t̃ , we have the following equality:

k′
t(x)V

−1
t z(t) = ρt−1(x)k

′
t−1(x)V

−1
t−1z

(t−1) −
(

ρ′t−1(Dt)
)

⊙
(

r′t(x)R
−1
t zt−1(Dt)

)

+r′t(x)R
−1
t zt

and with Equation (4.5):

k′
t(x)V

−1
t Htβ

(t) = ρt−1(x)k
′
t−1(x)V

−1
t−1Ht−1β

(t−1) + r′t(x)R
−1
t Ft(Dt)βt,

where ⊙ stands for the element by element matrix product. We hence obtain the recursive

relation:

mZt(x) = ρt−1(x)mZt−1(x) + f ′t(x)βt + r′t(x)R
−1
t [zt − ρt−1(Dt)⊙ zt−1(Dt)− Ft(Dt)βt] .

The co-kriging mean of the model (4.1) satisfies the same recursive relation and we have

mZ1(x) = µZ1(x). This proves the first equality of Proposition 4.1:

µZs(x) = mZs(x).

We follow the same guideline for the co-kriging covariance:

s2Zt
(x, x̃) = v2Zt

(x, x̃)− k′
t(x)V

−1
t kt(x̃),

where v2Zt
(x, x̃) is the covariance between Zt(x) and Zt(x̃) and s2Zt

(x, x̃) is the covariance func-

tion of the conditioned Gaussian process [Zt(x)|Z(t) = z(t),β,βρ, σ
2] for the model presented

in Chapter 3. From Equation (4.7), we can deduce the following equality:

σ2Zt
(x, x̃) = ρt−1(x)ρt−1(x̃)v

2
Zt−1

(x, x̃) + v2t (x, x̃),

where σ2Zt
(x, x̃) is the covariance function of the conditioned Gaussian process [Zt(x)|Z(t) =

z(t),βt,βρt−1
, σ2t ] of the recursive model (4.1). Then, from equations (4.6) and (4.7), we have:

k′
t(x)V

−1
t kt(x̃) = ρt−1(x)ρt−1(x̃)k

′
t−1(x)V

−1
t−1kt−1(x̃) + σ2t r

′
t(x)R

−1
t rt(x̃).

Finally we can deduce the following equality:

s2Zt
(x, x̃) = ρt−1(x)ρt−1(x̃)

(

v2Zt−1
(x, x̃)− k′

t−1(x)V
−1
t−1kt−1(x̃)

)

+ σ2t
(

1− r′t(x)R
−1
t rt(x̃)

)

,

which is equivalent to:

s2Zt
(x, x̃) = ρt−1(x)ρt−1(x̃)s

2
Zt−1

(x, x̃) + σ2t
(

1− r′t(x)R
−1
t rt(x̃)

)

.

This is the same recursive relation as the one satisfies by the co-kriging covariance σ2Zt
(x, x̃)

of the model (4.1) (see Equation (4.4)). Since s2Z1
(x, x̃) = σ2Z1

(x, x̃), we have :

σ2Zs
(x, x̃) = s2Zs

(x, x̃).

This equality with x = x̃ proves the second equality of Proposition 4.1.

Proposition 4.1 shows that the model presented in [Kennedy and O’Hagan, 2000] and

the recursive model (4.1) have the same predictive Gaussian distribution. Our objective in

the next sections is to show that the new formulation (4.1) has several advantages compared

to the one of [Kennedy and O’Hagan, 2000]. First, its computational complexity is lower

(Section 4.2.2); second, it provides closed form expressions for the universal co-kriging mean

and variance contrarily to [Kennedy and O’Hagan, 2000] (Section 4.3); third, it makes it

possible to implement a fast cross-validation procedure (Section 4.4).
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4.2.2 Complexity analysis

The computational cost is dominated by the inversion of the covariance matrices. In the

original approach proposed in [Kennedy and O’Hagan, 2000] one has to invert the matrix Vs

of size
∑s

i=1 ni ×
∑s

i=1 ni.

Our recursive formulation shows that building a s-level co-kriging is equivalent in terms of

numerical complexity to build s independent krigings. This implies a reduction of the model

complexity. Indeed, the inversion of s matrices (Rt)t=1,...,s of size (nt × nt)t=1,...,s where nt
corresponds to the size of the vector zt at level t = 1, . . . , s is less expensive than the inversion

of the matrix Vs of size
∑s

i=1 ni×
∑s

i=1 ni. We also reduce the memory cost since storing the

s matrices (Rt)t=1,...,s requires less memory than storing the matrix Vs. The computational

cost is thus equivalent to the one obtained with the results given in Chapter 3 Subsection

3.6.2.

We note that the model with this formulation is more interpretable since we can de-

duce the impact of each level of response into the model error through (σ2Zt
(x))t=1,...,s.

4.2.3 Parameter estimation

We present in this section a Bayesian estimation of the parameter ψ = (β,βρ, σ
2) focusing

on conjugate and non-informative distributions for the priors. This allows us to obtain closed

form expressions for the posterior distributions of the parameters. Furthermore, from the non-

informative case, we can obtain the estimates given by a maximum likelihood method. The

presented formulas can hence be used in a frequentist approach. We note that the recursive

formulation and the nested property of the experimental designs allow for separating the

estimations of the parameters (βt,βρt−1
, σ2t )t=1,...,s and (β1, σ

2
1).

Like in Chapter 3 Section 3.4, we address two cases in this section

Case (i): all the priors are informative

Case (ii): all the priors are non-informative

It is of course be possible to address the case of a mixture of informative and non-informative

priors. For the non-informative case (ii), we use the “Jeffreys priors” [Jeffreys, 1961]:

p(β1|σ21) ∝ 1, p(σ21) ∝
1

σ21
, p(βρt−1

,βt|z(t−1), σ2t ) ∝ 1, p(σ2t |z(t−1)) ∝ 1

σ2t
, (4.8)

where t = 2, . . . , s. For the informative case (i), we consider the same conjugate prior distri-

butions as in Chapter 3 Section 3.4:

[β1|σ21] ∼ Np1(b1, σ
2
1V1),

[βρt−1
,βt|z(t−1), σ2t ] ∼ Nqt−1+pt

(

bt =

(

b
ρ
t−1

b
β
t

)

, σ2tVt = σ2t

(

V
ρ
t−1 0

0 V
β
t

))

,
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[σ21] ∼ IG(α1, γ1), [σ2t |z(t−1)] ∼ IG(αt, γt),

with b1 a vector a size p1, b
ρ
t−1 a vector of size qt−1, b

β
t a vector of size pt, V1 a p1 × p1

matrix, Vρ
t−1 a qt−1 × qt−1 matrix, Vβ

t a pt × pt matrix, α1, γ1, αt, γt > 0 and IG stands for

the inverse Gamma distribution. The posterior distributions are then as follows. We have:

[β1|z1, σ21] ∼ Np1(Σ1ν1,Σ1) [βρt−1
,βt|z(t), σ2t ] ∼ Nqt−1+qt(Σtνt,Σt), (4.9)

where, for t ≥ 1:

Σt =







[H′
t
R

−1
t

σ2
2
Ht +

V
−1
t

σ2
2
]−1 (i)

[H′
t
R

−1
t

σ2
2
Ht]

−1 (ii)
νt =







[H′
t
R

−1
t

σ2
2
zt +

V
−1
t

σ2
2
bt] (i)

[H′
t
R

−1
t

σ2
2
zt] (ii)

, (4.10)

with H1 = F1 and for t > 1, Ht = [Gt−1 ⊙ (zt−1(Dt)1
′
qt−1

) Ft] where

Gt−1,

is the experience matrix containing the values of gt−1(x)
′ in Dt and 1′qt−1

is a qt−1-vector of

ones. Furthermore, we have for t ≥ 1:

[σ2t |z(t)] ∼ IG(at,
Qt

2
), (4.11)

where:

Qt =

{

2γt + (bt − λ̃t)
′(Vt + [H′

tR
−1
t Ht]

−1)−1(bt − λ̃t) + Q̃t (i)

Q̃t (ii)
,

with Q̃t = (zt −Htλ̃t)
′R−1

t (zt −Htλ̃t) , λ̃t = (H′
tR

−1
t Ht)

−1H′
tR

−1
t zt and :

at =

{

nt
2 + αt (i)
nt−pt−qt−1

2 (ii)
,

with the convention q0 = 0.

We highlight that the maximum likelihood estimators for the parameters β1 and (βρt−1
,βt)

are given by the means of their posterior distributions in the non-informative case. Further-

more, the restricted maximum likelihood estimate of the variance parameter σ2t can also be de-

duced from its posterior distribution in the non-informative case and is given by σ̂2t,REML = Qt

2at
.

Finally, we see that the parameter posterior distributions for the recursive model are iden-

tical to the ones presented in Chapter 3 Section 3.4. This strengthen the relation between

the two models. However, we will see in the remainder of this chapter and in the following

chapters that the recursive model bring significant advantages compared to the one presented

in Chapter 3.

4.3 Universal co-kriging model

We can see in Equation (4.2) that the predictive distribution of Zs(x) is conditioned by the

observations z(s) and the parameters β, βρ and σ2. The objective of a Bayesian prediction
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is to integrate the parameter posterior distributions into the predictive distribution. Indeed,

in the previous subsection, we have expressed the posterior distributions of the variance pa-

rameters (σ2t )t=1,...,s conditionally to the observations and the posterior distributions of the

trend parameters β1 and (βρt−1
,βt)t=2,...,s conditionally to the observations and the variance

parameters. Thus, using the Bayes formula, we can easily obtain a predictive distribution

only conditioned by the observations by integrating into it the posterior distributions of the

parameters as presented in Chapter 3 Section 3.4.

As a result of this integration, the predictive distribution is not Gaussian. In particular, we

cannot have a closed form expression for the predictive distribution. However, it is possible

to obtain closed form expressions for the posterior mean E[Zs(x)|Z(s) = z(s)] and variance

Var(Zs(x)|Z(s) = z(s)).

The following proposition giving the closed form expressions of the posterior mean and

variance of the predictive distribution only conditioned by the observations is a novelty. The

proof of this proposition is based on the recursive formulation which emphasizes the strength

of this new approach. Indeed, it does not seem possible to obtain this result by considering

directly the model suggested in [Kennedy and O’Hagan, 2000].

Proposition 4.2. Let us consider s Gaussian processes (Zt(x))t=1,...,s and Z(s) =

(Zt)t=1,...,s the Gaussian vector containing the values of (Zt(x))t=1,...,s at points in

(Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. If we consider the conditional predictive

distribution in Equation (4.2) and the posterior distributions of the parameters given in

equations (4.9) and (4.11), then we have for t = 1, . . . , s:

E[Zt(x)|Z(t) = z(t)] = h′
t(x)Σtνt + r′t(x)R

−1
t (zt −HtΣtνt) , (4.12)

with h′
1 = f ′1, H1 = F1 and for t > 1, h′

t(x) =
(

gt−1(x)
′
E[Zt−1(x)|Zt−1 = zt−1] f ′t(x)

)

and Ht = [Gt−1 ⊙ (zt−1(Dt)1
′
qt−1

) Ft]. Furthermore, we have:

Var(Zt(x)|Z(t) = z(t)) = σ̂2ρt−1
(x)Var(Zt−1(x)|Z(t−1) = z(t−1))

+ Qt

2(at−1)

(

1− r′t(x)R
−1
t r′t(x)

)

+
(

h′
t − r′t(x)R

−1
t Ht

)

Σt

(

h′
t − r′t(x)R

−1
t Ht

)′
, (4.13)

with σ̂2ρt−1
(x) = gt−1(x)

′
(

[Σt][1,...,qt−1,1,...,qt−1] + [Σtνt]1,...,qt−1 [Σtνt]
′
1,...,qt−1

)

gt−1(x).

Proof. Noting that the mean of the predictive distribution in Equation (4.2) does not depend

on σ2t and thanks to the law of total expectation, we have the following equality:

E

[

Zt(x)|Z(t) = z(t)
]

= E

[

E

[

Zt(x)|Z(t) = z(t), σ2t ,βt,βρt−1

] ∣

∣

∣
Z(t) = z(t)

]

.

From the equations (4.3) and (4.9), we directly deduce Equation (4.12). Then, we have the

following equality:

var
(

µZt(x)
∣

∣

∣
z(t), σ2t

)

= (h′
t(x)− rt(x)

′R−1
t Ht)Σt(h

′
t(x)− rt(x)

′R−1
t Ht)

′. (4.14)
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The law of total variance states that:

var(Zt(x)|z(t), σ2t ) = E

[

var(Zt(x)|z(t),βt,βρt−1
, σ2t )

∣

∣

∣z
(t), σ2t

]

+ var
(

E

[

Zt(x)|z(t),βt,βρt−1
, σ2t

] ∣

∣

∣z
(t), σ2t

)

.

Thus, from equations (4.3), (4.12) and (4.14), we obtain:

var(Zt(x)|Z(t) = z(t), σ2t ) = σ̂2ρt−1
(x)var(Zt−1(x)|Z(t−1) = z(t−1), σ2t ) + σ2t

(

1− r′t(x)R
−1
t r′t(x)

)

+
(

h′t − r′t(x)R
−1
t Ht

)

Σt

(

h′t − r′t(x)R
−1
t Ht

)′ .

(4.15)

Again using the law of total variance and the independence between E

[

Zt(x)|Z(t) = z(t),βt,βρt−1

]

and σ2t , we have:

var(Zt(x)|z(t)) = E

[

var(Zt(x))|z(t), σ2t
]

. (4.16)

We obtain Equation (4.13) from Equation (4.11) by noting that the mean of an inverse Gamma

distribution IG(a, b) is b/(a− 1).

We note that, in the mean of the predictive distribution, the parameters have been replaced

by their posterior means. Furthermore, in the variance of the predictive distribution, the vari-

ance parameter has been replaced by its posterior mean and the term
(

h′
t − r′t(x)R

−1
t Ht

)

Σt
(

h′
t − r′t(x)R

−1
t Ht

)′
has been added. It represents the uncertainty due to the estimation of

the regression parameters (including the adjustment coefficient). We call these formulas the

universal co-kriging equations due to their similarities with the universal kriging equations

(they are identical for s = 1).

An important difference between the universal kriging predictive variance and the

universal multi-fidelity co-kriging one is that the latter depends on the observations.

Therefore, the classical methods based on the predictive variance (e.g. sequential

design strategies) are not easy. We address this question in Chapter 6.

4.4 Fast cross-validation for co-kriging surrogate models

The idea of a cross-validation procedure is to split the experimental design set into two disjoint

sets, one is used for training and the other one is used to monitor the performance of the

surrogate model. The idea is that the performance on the test set can be used as a proxy

for the generalization error. A particular case of this method is the Leave-One-Out Cross-

Validation (noted LOO-CV) where n test sets are obtained by removing one observation

at a time. This procedure can be time-consuming for a kriging model but it is shown in

[Dubrule, 1983], [Rasmussen and Williams, 2006], [Zhang and Wang, 2009] and Chapter 1

Subsection 1.3.3 that there are computational shortcuts. Our recursive formulation allows us

to extend these ideas to co-kriging models (which is not possible with the original formulation

in [Kennedy and O’Hagan, 2000]). Furthermore, the cross-validation equations proposed in
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this section extend the previous ones even for s = 1 (i.e. the classical kriging model) since

they do not suppose that the regression and the variance coefficients are known. Therefore,

those parameters are re-estimated for each training set. We note that the re-estimation of

the variance coefficient is a novelty which is important since fixing this parameter can lead

to huge errors for the estimate of the cross-validation predictive variance when the number of

observations is small or when the number of points in the test set is important.

If we denote by ξs the set of indices of the ntest points in Ds constituting the test set Dtest

and ξt, 1 ≤ t < s, the corresponding set of indices in Dt - indeed, we have Ds ⊂ Ds−1 ⊂ · · · ⊂
D1, therefore Dtest ⊂ Dt. The nested experimental design assumption implies that, in the

cross-validation procedure, if we remove a set of points from Ds we can also remove it from

Dt, 1 ≤ t ≤ s.

The following proposition gives the vectors of the cross-validation predictive errors and

variances at points in the test set Dtest when we remove them from the t highest levels of

code. In the proposition, we consider that we are in the non-informative case for the parameter

posterior distributions (see Section 4.2.3) but it can be easily extended to the informative case

presented in Section 4.2.3. We note that this result presented for the first time to a multi-

fidelity co-kriging model can be obtained thanks to the recursive formulation.

Notations: If ξ is a set of indices, then A[ξ,ξ] is the sub-matrix of elements ξ× ξ of A, a[ξ]
is the sub-vector of elements ξ of a, B[−ξ] represents the matrix B in which we remove the

rows of index ξ, C[−ξ,−ξ] is the sub-matrix of C in which we remove the rows and columns of

index ξ and C[−ξ,ξ] is the sub-matrix of C in which we remove the rows of index ξ and keep

only the columns of index ξ.

Proposition 4.3. Let us consider s Gaussian processes (Zt(x))t=1,...,s and Z(s) =

(Zt)t=1,...,s the Gaussian vector containing the values of (Zt(x))t=1,...,s at points in

(Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. We denote by Dtest a set made with the

points of index ξs of Ds and ξt the corresponding points in Dt with 1 ≤ t ≤ s. Then,

if we denote by εZs,ξs the errors (i.e. real values minus predicted values) of the cross-

validation procedure when we remove the points of Dtest from the t highest levels of code,

we have:

(

εZs,ξs − ρ̂s−1(Dtest)⊙ εZs−1,ξs−1

)

[

R−1
s

]

[ξs,ξs]
=
[

R−1
s

(

zs −Hsλs,−ξs

)]

[ξs]
, (4.17)

with εZu,ξu = 0 when u < t, λs,−ξs
=
(

[Hs]
′
[−ξs]

Ks[Hs][−ξs]

)−1
[Hs]

′
[−ξs]

Kszs(Ds \
Dtest), ρ̂s−1(Dtest) = g′

s−1(Dtest)[λs,−ξs
]1,...,qs−1 and:

Ks =
[

R−1
s

]

[−ξs,−ξs]
−
[

R−1
s

]

[−ξs,ξs]

(

[

R−1
s

]

[ξs,ξs]

)−1
[

R−1
s

]

[ξs,−ξs]
. (4.18)

Furthermore, if we note σ2Zs,ξs
the variances of the corresponding cross-validation proce-

dure, we have:
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σ2Zs,ξs
= σ̂2ρs−1,−ξs

(Dtest)⊙ σ2Zs−1,ξs−1
+ σ2s,−ξs

diag

(

(

[

R−1
s

]

[ξs,ξs]

)−1
)

+ Vs, (4.19)

with Σρ,s−1,−ξs
=

[

(

[Hs]
′
[−ξs]

Ks[Hs][−ξs]

)−1
]

[1,...,qs−1,1,...,qs−1]

,

σ̂2ρs−1,−ξs
(Dtest) = g′

s−1(Dtest)
(

Σρ,s−1,−ξs
+ [λs,−ξs

]1,...,qs−1 [λs,−ξs
]′1,...,qs−1

)

gs−1(Dtest),

and

σ2s,−ξs
=

(

zs(Ds \Dtest)− [Hs][−ξs]
λs,−ξs

)′
Ks

(

zs(Ds \Dtest)− [Hs][−ξs]
λs,−ξs

)

ns − ps − qs−1 − ntrain
.

where σ2u,−ξu
= 0 when u < t, ntrain is the length of the index vector ξs, Hs = [Gs−1 ⊙

(zs−1(Ds)1
′
qs−1

) Fs] and:

Vs = U ′
s

(

[Hs]
′
[−ξs]

Ks[Hs][−ξs]

)−1
Us, (4.20)

with Us =
(

[R−1
s ][ξs,ξs]

)−1 [
R−1

s Hs

]

[ξs]
.

Proof. Let us consider that ξs is the index of the k last points of Ds. We denote by Dtest these

points. First we consider the variance and the trend parameters as fixed, i.e. σ2t,−ξt
= Qt

2(at−1)

and λt,−ξt
= Σtνt, and Vs = 0, i.e. we are in the simple co-kriging case. Thanks to the

block-wise inversion formula, we have the following equality:

R−1
s =

(

A B

B′ Q−1

)

, (4.21)

with A = [Rs]
−1
[−ξs,−ξs]

+ [Rs]
−1
[−ξs,−ξs]

[Rs][−ξs,ξs]
Q−1 [Rs][ξs,−ξs]

[Rs]
−1
[−ξs,−ξs]

,

B′ = −Q−1 [Rs][ξs,−ξs]
[Rs]

−1
[−ξs,−ξs]

and:

Q = [Rs][ξs,ξs] − [Rs][ξs,−ξs]
[Rs]

−1
[−ξs,−ξs]

[Rs][−ξs,ξs]
. (4.22)

We note that Qs

2(as−1)Q = Qt

2(at−1)

(

[

R−1
s

]

[ξs,ξs]

)−1
represents the covariance matrix of the

points in Dtest with respect to the covariance kernel of a Gaussian process of kernel Qs

2(as−1)rs(x, x̃)

(which is the one of δs(x)) conditioned by the points Ds \Dtest. Therefore, from the previous

remark and Equation (4.4), we can deduce Equation (4.19).

Furthermore, we have the following equality:
(

[

R−1
s

]

[ξs,ξs]

)−1
[

R−1
s

(

zs −Hsλs,−ξs

)]

[ξs]
= zs(Dtest)− h′s(Dtest)Σsνs

− [Rs][ξs,−ξs]
[Rs]

−1
[−ξs,−ξs](

zs(Ds \Dtest)− [Hs]
′
[−ξs]

Σsνs

)

. (4.23)

where h′s(x) = [ρs−1(x)µZs−1(x) f ′t(x)]. From this equation and Equation (4.3), we can

directly deduce Equation (4.17) with εZs,ξs = zs(Dtest)− µZs(Dtest).
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Then, we suppose the trend and the variance parameters as unknown and we have to

re-estimate them when we remove the observations. Thanks to the parameter posterior distri-

bution presented in Section 4.2.3, we can deduce that the estimates of σ2t,−ξt
and λt,−ξt

when

we remove observations of index ξt are given by the following equations:

λs,−ξs
=
(

[Hs]
′
[−ξs]

Ks[Hs][−ξs]

)−1
[Hs]

′
[−ξs]

Kszs(Ds \Dtest) (4.24)

and:

σ2s,−ξs
=

(

zs(Ds \Dtest)− [Hs]−ξs
λs,−ξs

)′
Ks

(

zs(Ds \Dtest)− [Hs]−ξs
λs,−ξs

)

ns − ps − qs−1 − ntrain
, (4.25)

with Ks = [Rs]
−1
[−ξs,−ξs]

.

From the equality (4.21), we can deduce that Ks = A − BQB′ from which we obtain

Equation (4.18). Finally, to obtain the cross-validation equations for the universal co-kriging,

we just have to estimate the following quantity (see Equation (4.13)):

(

h′s(Dtest)− [Rs][ξs,−ξs]
Ks[Hs]−ξs

)

Σs

(

h′s(Dtest)− [Rs][ξs,−ξs]
Ks[Hs]−ξs

)′
, (4.26)

with Σs =
(

[H′
s]−ξs

Ks[Hs]−ξs

)−1
. The following equality:

(

h′s(Dtest)− [Rs][ξs,−ξs]
Ks[Hs]−ξs

)

=
(

(

[R−1
s ][ξs,ξs]

)−1 [
R−1

s Hs

]

[ξs]

)

, (4.27)

allows us to obtain Equation (4.20) and completes the proof.

We note that these equations are also valid when s = 1, i.e. for kriging model. We

hence have closed form expressions for the equations of a k-fold cross-validation with a re-

estimation of the regression and variance parameters. These expressions can be deduced from

the universal co-kriging equations. The complexity of this procedure is essentially determined

by the inversion of the matrices
(

[

R−1
u

]

[ξu,ξu]

)

u=t,...,s
of size ntest × ntest. Furthermore, if we

suppose the parameters of variance and/or trend as known, we do not have to compute σ2t,−ξt

and/or λt,−ξt
(they are fixed to their estimated value, i.e. σ2t,−ξt

= Qt

2(at−1) and λt,−ξt
= Σtνt,

see Section 4.2.3) which reduces substantially the complexity of the method. These equations

generalize those of [Dubrule, 1983] and [Zhang and Wang, 2009] where the variance σ2t,−ξt
is

supposed to be known. Finally, the term Vs is the additive term due to the parameter posterior

distributions in the universal co-kriging. Therefore, if the trend parameters are supposed to

be known, this term is equal to 0.

Remark: We must recognize that our closed form cross-validation formulas do not allow for

the re-estimation of the hyper-parameters of the correlation functions. However, as discussed

in Subsection 4.5.1, Proposition 4.3 is useful even in that case to reduce the computational

complexity of the cross-validation procedure.
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4.5 Illustration: hydrodynamic simulator

In this section we apply our co-kriging method to the hydrodynamic code “MELTEM”. The

aim of the study is to build a prediction as accurate as possible using only a few runs of

the complex code and to assess the uncertainty of this prediction. In particular, we show

the efficiency of the co-kriging model compared to the kriging one. We also illustrate the

difference between simple and universal co-kriging and the results of the LOO-CV procedure.

These illustrations are made possible and easy by the closed form formulas for the predictive

mean and variance for universal co-kriging and by the fast cross-validation procedure described

in Section 4.4 and 4.3 respectively. Finally, we show that considering an adjustment coefficient

depending on x can be worthwhile.

The code MELTEM simulates a second-order turbulence model for gaseous mixtures in-

duced by Richtmyer-Meshkov instability [Grégoire et al., 2005]. Two input parameters x1
and x2 are considered. They are phenomenological coefficients used in the equations of

the energy of dissipation of the turbulent flow. These two coefficients vary in the region

[0.5, 1.5]× [1.5, 2.3]. The considered code outputs, called eps and Lc, are respectively the dis-

sipation factor and the mixture characteristic length. The simulator is a finite-elements code

which can be run at s = 2 levels of accuracy by altering the finite-elements mesh. The simple

code z1(.), using a coarse mesh, takes 15 seconds to produce an output whereas the complex

code z2(.), using a fine mesh, takes 8 minutes. We use 5 runs for the complex code z2(x) and

25 runs for the cheap code z1(x). This represents 8 minutes on a hexa-core processor, which

is our constraint for an operational use. Then, we build an additional set of 175 points to test

the accuracy of the models. We note that no prior information is available: we are hence in

the non-informative case.

4.5.1 Estimation of the hyper-parameters

In the previous sections, we considered the correlation kernels (rt(x, x̃))t=1,...,s as known. In

practical applications, we choose these kernels in a parameterized family of correlation kernels.

Therefore, we consider kernels such that rt(x, x̃) = rt(x, x̃;φt). For t = 1, . . . , s the hyper-

parameter φt can be estimated by maximizing the concentrated restricted log-likelihood (see

[Santner et al., 2003] and Chapter 1 Section 1.3) with respect to φt:

log (|det (Rt)|) + (nt − pt − qt−1) log
(

σ2t,REML

)

, (4.28)

with the convention q0 = 0 and σ2t,REML is the restricted likelihood estimate of the variance

σ2t (see Section 4.2.3). This minimization problem has to be solved numerically.

It is a common choice to estimate the hyper-parameters by maximum likelihood [Santner

et al., 2003]. It is also possible to estimate the hyper-parameters (φt)t=1,...,s by minimizing a

loss function of a Leave-One-Out Cross-Validation procedure (see Section 1.3). Usually, the

complexity of this procedure is O
(

(
∑s

i=1 ni)
4
)

. Nonetheless, thanks to Proposition 4.3, it is

reduced to O
(
∑s

i=1 n
3
i

)

since it is essentially determined by the inversions of the s matrices

(Rt)t=1,...,s.Therefore, the complexity for the estimation of (φt)t=1,...,s is substantially reduced.
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Furthermore, the recursive formulation of the problem allows us to estimate the parameters

(φt)t=1,...,s one at a time by starting with φ1 and estimating φt, t = 2, . . . , s recursively.

4.5.2 Comparison between kriging and multi-fidelity co-kriging

Before considering the real case study, we propose in this section a comparison between the

kriging and co-kriging models when the number of runs n2 for the complex code varies such

that n2 = 5, 10, 15, 20, 25. For the co-kriging model, we consider n1 = 25 runs for the cheap

code. In this section, we focus on the output eps.

To perform the comparison, we generate randomly 500 experimental design sets (D2,i,

D1,i)i=1,...,500 such that D2,i ⊂ D1,i, i = 1, . . . , 500, D1,i has n1 points and D2,i has n2 points.

We use for both kriging and co-kriging models a Matérn-5/2 covariance kernel and we

consider ρ, β1 and β2 as constant. The accuracies of the two models are evaluated on the

test set composed of 175 observations. From them, the Root Mean Squared Error (RMSE) is

computed: RMSE =
(

1
175

∑175
i=1(µZ2(x

test
i )− z2(x

test
i ))2

)1/2
.

Figure 4.1 gives the mean and the quantiles of probability 5% and 95% of the RMSE

computed from the 500 sets (D2,i,D1,i)i=1,...,500 when the number of runs for the expensive

code n2 varies. In Figure 4.1, we can see that the errors converge to the same value when n2
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Figure 4.1: Comparison between kriging and co-kriging with n1 = 25 runs for the cheap code

(500 nested design sets have been randomly generated for each n2). The circles represent the

averaged RMSE of the co-kriging, the triangles represent the averaged RMSE of the kriging,

the crosses represent the quantiles of probability 5% and 95% for the co-kriging RMSE and

the times signs represent the quantiles of probability 5% and 95% of the kriging RMSE. Co-

kriging predictions are better than the ordinary kriging ones for small n2 and they converge

to the same accuracy when n2 tends to n1 = 25.
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tends to n1. Indeed, due to the Markov property given in Section 3.2, when D2 = D1, only

the observations z2 are taken into account. Furthermore, we can see that for small values of

n2, it is worth considering the co-kriging model since its accuracy is significantly better than

the one of the kriging model.

4.5.3 Nested space filling design

As presented in Section 4.2 we consider nested experimental design sets: ∀t = 2, . . . , s Dt ⊆
Dt−1. Therefore, we have to adopt particular design strategies to uniformly spread the inputs

for all Dt. A strategy based on Orthogonal array-based Latin hypercube for nested space-

filling designs is proposed by [Qian et al., 2009].

We consider here another strategy for space-filling design, described in the following algorithm,

which is very simple and not time-consuming. The number of points nt for each design Dt is

prescribed by the user, as well as the experimental design method applied to determine the

coarsest grid Ds used for the most expensive code zs (see [Fang et al., 2006] for a review of

different methods).

Algorithm 1 Nested space filling design

1: build Ds = {x(s)j }j=1,...,ns with the experimental design method prescribed by the user.
2: for t = s to 2 do
3: build design D̃t−1 with the experimental design method prescribed by the user.
4: for i = 1 to nt do
5: find x̃

(t−1)
j ∈ D̃t−1 the closest point from x

(t)
i ∈ Dt where j ∈ [1, nt−1].

6: remove x̃
(t−1)
j from D̃t−1.

7: end for
8: Dt−1 = D̃t−1 ∪Dt.
9: end for

This strategy allows us to use any space-filling design method and it conserves the initial

structure of the experimental design Ds of the most accurate code, contrarily to a strategy

based on selection of subsets of an experimental design for the less accurate code as presented

by [Kennedy and O’Hagan, 2000] and [Forrester et al., 2007]. We hence can ensure that Ds

has excellent space-filling properties. Moreover, the experimental design Dt−1 being equal to

D̃t−1 ∪Dt, this method ensures the nested property.

We illustrate in the next page the different stage of the nested design procedure for s = 2.
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First we build the experimen-

tal design set D2 for the most

accurate code z2(x). D2 is rep-

resented by the 10 blue circles.
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Then we build D̃1 the experi-

mental design set from which

we will build D1. D̃1 is repre-

sented by the 50 red crosses.
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We find the points of D̃1

the closest to those of D2

and we remove them.
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The experimental design set D1

is built by concatenating D2

and D̃1 without its removed

points. D2 is represented by

the blue circles and D1 by the

red crosses. Note that the pro-

cedure does not change D2.

D2

D̃1

(D2, D̃1)

(D2,D1)

In the presented application, we consider n2 = 5 points for the expensive code z2(x) and

n1 = 25 points for the cheap one z1(x). We apply the previous algorithm to build D2 and D1

such that D2 ⊂ D1. For the experimental design set D2, we use a Latin-Hypercube-Sampling

[Stein, 1987] optimized with respect to the S-optimality criterion which maximizes the mean

distance from each design point to all the other points [Stocki, 2005]. Furthermore, the set
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D1 is built using a maximum entropy design [Shewry and Wynn, 1987] optimized with the

Fedorov-Mitchell exchange algorithm [Currin et al., 1991]. These algorithms are implemented

in the library R lhs. The obtained nested designs are shown in Figure 4.2.

0.6 0.8 1.0 1.2 1.4

1.
6

1.
8

2.
0

2.
2

X1

X
2

Figure 4.2: Nested experimental design sets for the hydrodynamic application. The crosses

represent the n1 = 25 points of the experimental design set D1 of the cheap code and the

circles represent the n2 = 5 points of the experimental design set D2 of the expensive code.

4.5.4 Multi-fidelity surrogate model for the dissipation factor eps

We build here a co-kriging model for the dissipation factor eps. The obtained model is

compared to a kriging one. This first example is used to illustrate the efficiency of the co-

kriging method compared to the kriging. It will also allow us to highlight the difference

between the simple and the universal co-kriging.

We use the experimental design sets presented in Section 4.5.3. To validate and compare

our models, the 175 simulations of the complex code uniformly spread on [0.5, 1.5]× [1.5, 2.3]

are used. To build the different correlation matrices, we consider a tensorised Matérn-5/2

kernel (see [Rasmussen and Williams, 2006] and Chapter 1 Section 1.4):

r(x, x̃; θt) = r1d(x1, x̃1; θt,1)r1d(x2, x̃2; θt,2), (4.29)

with x = (x1, x2) ∈ [0.5, 1.5]× [1.5, 2.3], θt,1, θt,2 ∈ (0,+∞) and:

r1d(xi, x̃i; θt,i) =

(

1 +
√
5
|xi − x̃i|
θt,i

+
5

3

(xi − x̃i)
2

θ2t,i

)

exp

(

−
√
5
|xi − x̃i|
θt,i

)

. (4.30)
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Then, we consider g1(x) = 1, f2(x) = 1, f1(x) = 1 (see Section 4.2.1) and, using the concen-

trated maximum likelihood (see subsections 4.5.1 and 1.3.2), we have the following estimates

for the correlation hyper-parameters: θ̂1 = (0.69, 1.20) and θ̂2 = (0.27, 1.37).

According to the values of the hyper-parameter estimates, the co-kriging model is smooth

since the correlation lengths are of the same order as the size of the input parameter space.

Furthermore, the estimated Pearson correlation between the two codes is 82.64%, which shows

that the amount of information contained in the cheap code is substantial.

Table 4.1 presents the results of the parameter Bayesian estimation (see Section 4.2.3).

Trend coefficient Σtνt Σt/σ
2
t

β1 8.84 0.48
(

βρ1

β2

) (

0.92

0.74

) (

1.98 −18.13

−18.13 165.82

)

Variance coefficient Qt 2αt

σ21 6.98 24

σ22 0.06 3

Table 4.1: Application: hydrodynamic simulator. Parameter Bayesian estimation results for

the response eps (see equations (4.9) and (4.11)).

We see in Table 4.1 that the correlation between βρ1 and β2 is important which highlights

the importance of taking into account the correlation between these two coefficients for the

parameter estimation. We also see that the adjustment parameter βρ1 is close to 1, which

means that the two codes are highly correlated.

Figure 4.3 illustrates the contour plot of the kriging and co-kriging means, we can see

significant differences between the two surrogate models.

Table 4.2 compares the prediction accuracy of the co-kriging and the kriging models. The

different coefficients are estimated with the 175 responses of the complex code on the test set:

MaxAE: Maximal absolute value of the observed error.

RMSE : Root mean squared value of the observed error.

Eff = 1− ||µZ2(Dtest)− z2(Dtest)||2/||µZ2(Dtest)− z̄2||2, with z̄2 = (
∑n2

i=1 z2(x
test
i ))/n2.

RIMSE : Root of the average value of the kriging or co-kriging variance.

Eff RMSE MaxAE RIMSE.

kriging 75.83% 0.133 0.49 0.110

co-kriging 98.01% 0.038 0.14 0.046

Table 4.2: Application: hydrodynamic simulator. Comparison between kriging and co-kriging.

The co-kriging model provides predictions significantly better than the ones of the kriging

model.
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Figure 4.3: Contour plot of the kriging mean (Figure (a)) and the co-kriging mean (Figure

(b)). The triangles represent the n2 = 5 points of the experimental design set of the expensive

code.

We can see that the difference of accuracy between the two models is important. Indeed,

the one of the co-kriging model is significantly better. Furthermore, comparing the RMSE

and the RIMSE estimates in Table 4.2, we see that we have good estimates of the predictive

distribution variances for the two models. We note that the predictive variance for the co-

kriging is obtained with a simple co-kriging model. Therefore, it will be slightly larger in the

universal co-kriging case. Indeed, by computing the universal co-kriging equations, we find

RIMSE = 0.058.

We can compare the RMSE obtained with the test set with the RMSE obtained with a

Leave-One-Out cross validation procedure (see Section 4.4). For this procedure, we test our

model on n2 = 5 validation sets obtained by removing one observation at a time. As presented

in Section 4.4, we can either choose to remove the observations from z2 or from z2 and z1.

The root mean squared error of the Leave-One-Out cross validation procedure obtained by

removing observations from z2 is RMSEz2,LOO = 4.80.10−3 whereas the one obtained by

removing observations from z2 and z1 is RMSEz1,z2,LOO = 0.10. Comparing RMSEz2,LOO and

RMSEz1,z2,LOO to the RMSE obtained with the external test set, we see that the procedure

which consists in removing points from z2 and z1 provides a better proxy for the generalization

error. Indeed, RMSEz2,LOO is a relevant proxy for the generalization error only at points where

z1 is available. Therefore, it underestimates the error at locations where z1 is unknown.

Figure 4.4 represents the mean and confidence intervals at plus or minus twice the standard

deviation of the simple and universal co-krigings for points along the vertical line x1 = 0.99

and the horizontal line x2 = 1.91 (x = (0.99, 1.91) corresponds to the coordinates of the point

of D2 in the center of the domain [0.5, 1.5] × [1.5, 2.3] in Figure 4.2). In Figure 4.4 on the

right hand side, we see a necked point around the coordinates x1 = 1.5 since, in the direction
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of x2, the correlation hyper-parameters length for Z1(x) and δ2(x) are large (θ1,2 = 1.20 and

θ2,2 = 1.37) and a point of D2 has almost the same coordinate.
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Figure 4.4: Mean and confidence intervals for the simple and the universal co-kriging. Figure

(a) represents the predictions along the vertical line x1 = 0.99 and (b) represents the predic-

tions along the horizontal line x2 = 1.91. The solid black lines represent the mean of the two

co-kriging models, the dashed lines represent the confidence interval at plus or minus twice the

standard deviation of the simple co-kriging and the dotted lines represent the same confidence

intervals for the universal co-kriging.

4.5.5 Multi-fidelity surrogate model for the mixture characteristic length

Lc

In this section, we build a co-kriging model for the mixture characteristic length Lc. The

aim of this example is to highlight that it can be worth having an adjustment coefficient ρ1
depending on x. We use the same training and test sets as in the previous section and we

consider a tensorised Matérn-5/2 kernel (4.29). Let us consider the two following cases:

Case 1: g1(x) = 1, f2(x) = 1 and f1(x) = 1

Case 2: g′
1(x) =

(

1 x1

)

, f2(x) = 1 and f1(x) = 1

We have the following hyper-parameter maximum likelihood estimates for the two cases

Case 1: θ̂1 = (0.52, 1.09) and θ̂2 = (0.03, 0.02)

Case 2: θ̂1 = (0.52, 1.09) and θ̂2 = (0.14, 1.37)

The estimate of θ̂1 is identical in the two cases since it does not depend on ρ1 and it is estimated

with the same observations. Furthermore, we can see an important difference between the
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estimates of θ̂2. Indeed, they are larger in the Case 2 than in the Case 1 which indicates that

the model is smoother in the Case 2. Table 4.3 presents the posterior distributions of β1 and

σ21 for the two cases (see Section 4.2.3).

Trend coefficient Σ1ν1 Σ1/σ
2
1

β1 1.26 0.97

Variance coefficient Q1 2α1

σ21 15.62 24

Table 4.3: Application: hydrodynamic simulator. Posterior distributions of β1 and σ21 for the

response Lc (see equations (4.9) and (4.11)).

Then, Table 4.4 presents the posterior distributions of β2, βρ1 and σ22 for the Case 1, i.e.

when ρ1 is constant (see Section 4.2.3).

Trend coefficient Σ2ν2 Σ2/σ
2
2

(

βρ1

β2

) (

1.49

−0.26

) (

0.83 −0.79

−0.79 0.95

)

Variance coefficient Q2 2α2

σ22 0.01 3

Table 4.4: Application: hydrodynamic simulator. Posterior distributions of β2, βρ1 and σ22
for the Case 1, i.e. when ρ1 is constant, for the response Lc (see equations (4.9) and (4.11)).

Finally, Table 4.5 presents the posterior distributions of β2, βρ1 and σ22 for the Case 2, i.e.

when ρ1 depends on x (see Section 4.2.3).

Trend coefficient Σ2ν2 Σ2/σ
2
2

(

βρ1

β2

)







1.66

−0.48

−0.04













2.34 −3.50 0.44

−3.50 9.18 −3.67

0.44 −3.67 2.60







Variance coefficient Q2 2α2

σ22 3.24.10−4 2

Table 4.5: Application: hydrodynamic simulator. Posterior distributions of β2, βρ1 and σ22
for the Case 2, i.e. when ρ1 depends on x, for the response Lc (see equations (4.9) and (4.11)).

We see in Table 4.4 that the adjustment coefficient is around 1.5 which indicates that the

magnitude of the expensive code is slightly more important than the one of the cheap code.

Furthermore, we see in Table 4.5 that if we consider an adjustment coefficient which linearly

depends on x1 (i.e. with g′
1(x) =

(

1 x1

)

), the constant part of βρ1 is more important (it
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is around 1.66) and there is a negative slope in the direction x1 (it is around −0.48). Since

x ∈ [0.5, 1.5], the averaged value of ρ1 is 1.18 and goes from 1.42 at x1 = 0.5 to 0.94 at

x1 = 1.5. We see also a significant difference between the two case for the variance estimate.

Indeed, the variance estimate in the Case 1 (see Table 4.4) is much more important than the

one in the Case 2 (see Table 4.5). This could mean that we learn better in the Case 2 than in

the Case 1.

Figure 4.5 illustrates the contour plot of the two co-kriging models, i.e. when ρ1 is constant

and when ρ1 depends on x.
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Figure 4.5: Contour plot of the co-kriging mean when ρ1 is constant (Figure (a) ) and when ρ1
is depends on x (Figure (b) ). The triangles represent the n2 = 5 points of the experimental

design set of the expensive code.

Furthermore, Table 4.6 compares the prediction accuracy of the co-kriging in the two cases.

The precision is computed on the test set of 175 observations.

RMSE MaxAE

Case 1 7.26.10−3 0.23

Case 2 1.53.10−3 0.16

Table 4.6: Application: hydrodynamic simulator. Comparison between co-kriging when ρ1
is constant (Case 1) and co-kriging when ρ1 depends on x (Case 2). The Case 2 provides

predictions better than the Case 1, it is hence worthwhile to consider an adjustment coefficient

that is not constant.

We see that the co-kriging model in Case 2 is clearly better than the one in Case 1.

Therefore, we illustrate in this application that it can be worth considering an adjustment
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coefficient not constant contrarily to the model presented in [Kennedy and O’Hagan, 2000]

and [Forrester et al., 2007].

4.6 The R CRAN package MuFiCokriging

We have implemented a R CRAN package named “MuFiCokriging” which allows for computing

the recursive multi-fidelity co-kriging model presented in this chapter. This package can be

used with the software R available on the following website: http://cran.r-project.org.

The package includes the major part of the previous developments, i.e.:

• The model definition and building with non-informative Bayesian parameter estimation,

• The model predictive mean and variance for the Simple and Universal co-kriging,

• The fast cross-validation procedures,

• The algorithm for designing nested experimental design sets.

We present in this section the different procedures implemented into the package “MuFiCokrig-

ing” by following an academic example with s = 3 levels of code and with the input dimension

set to d = 2. Note that any s and d can be used. The package is available on the following

url:

http://cran.r-project.org/web/packages/MuFiCokriging

We emphasize that our package depends on the “DiceKriging” R CRAN package (see [Roustant

et al., 2012]). This allows us to benefit from the advances and the computational efficiency

proposed by this package.

First of all, the package installation is made thanks to the following command:

library(MuFiCokriging)

We note that the text with the verbatim font is used to represent R codes. Furthermore, to

have more detail about a function of the package, the user may use the command help().

4.6.1 Nested Experimental design sets

First, let us present the function allowing for building nested experimental design sets. This

function named NestedDesignBuild computes Algorithm 1. It takes as arguments a list of

s non-nested matrices list(D1,D2,D3) representing the experimental design sets for all code

levels. The order of the list is important, D1 represents the experimental design set of the less

accurate code and D3 the one of the most accurate. The procedure nests the design sets such

that D3 ⊂ D2 ⊂D1 with respect to Algorithm 1 and such that D3 will be unchanged.

http://cran.r-project.org
http://cran.r-project.org/web/packages/MuFiCokriging


146
CHAPTER 4. MULTI-FIDELITY CO-KRIGING MODEL: RECURSIVE

FORMULATION

D1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

D2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

D3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2
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ExtractNestDesign(NestDesign,level)

list(D1,D2,D3)

As we see in the next script, the experimental design sets for the levels 1 and 2 are changed

and the one for the level 3 is unchanged.

> identical(D1,NestDesign$PX)

[1] FALSE

> identical(D2,ExtractNestDesign(NestDesign,2))

[1] FALSE

> identical(D3,ExtractNestDesign(NestDesign,3))
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[1] TRUE

The object class "NestDesign" is built thanks to the following procedure

NestedDesign(x, nlevel , indices = NULL, n = NULL)

where:

x represents the experimental design D1 at level 1,

nlevel represents the number s of code levels,

indices is a list of index. The tth element of the list is the index of Dt−1 corresponding

to the points in Dt.

n is a list of integers representing the number of points for each level. It is necessary to

set n only if indices=NULL. In that case, the experimental design sets (Dt)t=2,...,s are

randomly generated from D1.

The procedure ExtractNestDesign allows for extracting the design sets (Dt)t=2,...,s from an

object of class "NestDesign". We note that the experimental design set D1 can be obtained

with the command NestDesign$PX where NestDesign is an object of class "NestDesign".

Therefore, we have the following correspondence:

D1: NestDesign$PX

D2: ExtractNestDesign(NestDesign,2)

D3: ExtractNestDesign(NestDesign,3)

4.6.2 Building a multi-fidelity co-kriging models with MuFiCokriging R

package

Let us consider the three following functions:



















z1(x) =
(

5(15x1−5)2

4π2

)2
− 2

(

15x2 +
5(15x1−5)

π − 6
)

5(15x1−5)2

4π2

z2(x) = z1(x) +
(

15x2 +
5(15x1−5)

π − 6
)2

z3(x) = z2(x) + 10
(

1− 1
8π

)

cos(15x1 − 5) + 10

. (4.31)

The function z3(x) corresponds to the Branin’s function where the inputs x = (x1, x2) ∈ [0, 1]2

are normalized (see [Jones et al., 1998]). We consider the nested experimental design sets build-

ing in the previous section and representing by the object NestDesign of class "NestDesign".

First, we have to obtain the observations of z1(x), z2(x), z3(x) at points in D1, D2, D3. The

contour plot of the three functions are illustrated in the following sketch.
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MuFicokm(

formula = list(~1, ~1+X1+X2+

I(X1^2)+I(X2^2)+I(X1*X2),~1),

MuFidesign = NestDesign,

response = list(z1,z2,z3),

nlevel = 3)

D1 D2 D3

z1 z2 z3

MuFicokm

The procedure MuFicokm is used to build a multi-fidelity co-kriging model. It returns an object

of class MuFicokm representing the model definition including the parameter estimations. Its

main arguments are the following ones:

formula: an object of class formula allowing to define the regression functions ft(x).

Example of scripts corresponding to a regression function f(x) = (1, x1, x2, x1x2):

> names(data.frame(NestDesign$PX))

[1] "X1" "X2"

> formula = ~1 + X1 + X2 + I(X1*X2)

MuFidesign: an object of class NestDesign representing the nested experimental design

sets.

response: a list of vector representing the observations (zt)t=1,...,s.

nlevel: an integer representing the number of levels s.
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formula.rho: an object of class formula allowing to define the regression functions

gt(x) for the adjustement coefficients (ρt−1(x))t=2,...,s.

covtype: the type of covariance matrix for Z1(x) and (δt(x))t=2,...,s. The available

kernels are (see Subsection 1.4.2):

"gauss": Squared Exponential covariance function

"matern5_2": 5/2-Matérn covariance function

"matern3_2": 3/2-Matérn covariance function

"exp": exponential covariance function

"powexp": γ-exponential covariance function

In a simple co-kriging case, the user can fix the values of the parameters and hyper-parameters

with the following arguments:

coef.trend: a list of vectors containing the values of (βt)t=1,...,s.

coef.rho: a list of vectors containing the values of (βρt−1
)t=2,...,s.

coef.var: a list of positive reals containing the values of (σ2t )t=1,...,,

coef.cov: a list of vectors with strictly positive components representing the values of

(θ)t=1,...,s.

nugget: a list of reals representing the “nugget effect” for each level of code.

estim.method: an optional argument allowing to indicate which method is used for the

estimation of (θ)t=1,...,s. Two choice are possible: "EML" corresponds to the maximum re-

stricted likelihood estimation; "LOO" corresponds to the Leave-One-Out cross validation

estimation with the squared error loss function.

If they are set to NULL the parameters are estimated thanks to the method presented in Sub-

section 4.2.3 with non-informative prior distributions. The values of the estimates correspond

to the posterior means of the regression, adjustment and variance parameters. Furthermore,

the hyper-parameters are estimated by minimizing the negative restricted log-likelihood or

the Leave-One-Out cross validation squared error (see Subsection 1.3.3). The remaining ar-

guments are essentially used to control the optimization procedure for the hyper-parameter

estimations. After obtaining the multi-fidelity co-kriging model MuFicokm, the user can have

a summary of the model thanks to the summary procedure:
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summary(MuFicokm)

sum$CovNames: names of

the used covariance kernels

sum$Cov.val: hyper-

parameter estimates

sum$Var.val: variance

parameter estimates

sum$Trend.val: Trend

parameter estimates

sum$Rho.val: adjust-

ment parameter estimates

MuFicokm
sum

4.6.3 Predictive means and variances at new points

At this stage, we have built a multi-fidelity co-kriging model from (Dt)t=1,...,s and (zt)t=1,....

We are know interested in predicting z3(x) at new points X = {x1, . . . , xn}. The predictive

mean and variance are implemented in the predict procedure which has three arguments:

object: an object of class MuFicokm.

newdata: a matrix representing the points X where to perform the predictions.

type: a character string indicating the type of used multi-fidelity co-kriging.

"SK": simple co-kriging, i.e. when trend and adjustment parameters are known.

"UK": universal co-kriging, i.e. when trend and adjustment parameters are esti-

mated.

As stated in Subsection 4.2.1, once the multi-fidelity predictive means and variances are

built for zs(x), the ones for (zt(x))t=1,...,s−1 are also available. The outputs of the predict

procedure are the following ones:

mean: the predictive mean for zs(x).

sig2: the predictive variance for zs(x).

mux:a list of predictive means. the ith element of the list corresponds to the predictive

mean of zi(x), i = 1, . . . , s.

varx:a list of predictive variances. the ith element of the list corresponds to the predictive

variance of zi(x), i = 1, . . . , s.

The procedure predict can also provide the predictive covariance matrix at points in X with

the optional arguments cov.compute = TRUE. The resulting covariance at level s is obtained

with the output C and the ones for levels t = 1, . . . , s are obtained with the output CovMat.
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ypred <- predict(MuFicokm,

newdata = X, type="UK")

ypred$mean:
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ypred$sig2:
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ypred$mux[[2]]:
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CV <- CrossValidationMuFicokmAll(

MuFicokm ,indice=c(1,7,4))

CV$CVerr[[2]]
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Figure 4.6: Example of CV prediction errors when we remove the three points of Ds indexed

by ξs = (1, 7, 4). The confidence intervals equal twice the CV predictive standard deviations.

4.6.4 Cross validation procedures

The fast cross-validation method presented in Section 4.4 is implemented in the procedure

CrossValidationMuFicokmAll. As stated in the application 4.5, the practitioner can either

decide during the CV procedure to remove points from all code levels or from levels s, . . . , t

with 0 < t ≤ s. The CrossValidationMuFicokmAll procedure computes all these cases. Its

arguments are an object of class MuFicokm representing the multi-fidelity co-kriging model

and a vector of integer indice indicating the index of the points that we remove from Ds for

the CV procedure. Then, the procedure outputs CVerrall, CVvarall and CVCovall provide

the CV predictive errors, variances and covariances when we remove the points from all code

levels. Furthermore, the outputs CVerr, CVvar and CVCov are lists where the tth elements

correspond to the cross validation predictive means, variances and covariances at level t.

4.7 Conclusion

We have presented in this chapter a recursive formulation for a multi-fidelity co-kriging model.

This model allows us to build surrogate models using data from simulations of different levels

of fidelity.

The strength of the suggested approach is that it considerably reduces the complexity of

the co-kriging model while it preserves its predictive efficiency. Furthermore, one of the most
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important consequences of the recursive formulation is that the construction of the surrogate

model is equivalent to build s independent kriging models. Consequently, we can naturally

adapt results of kriging to the proposed co-kriging model.

First, we present a Bayesian estimation of the model parameters which provides closed

form expressions for the parameters of the posterior distributions. We note that, from these

posterior distributions, we can deduce the maximum likelihood estimates of the parameters.

Second, thanks to the joint distributions of the parameters and the recursive formulation,

we can deduce closed form formulas for the mean and covariance of the posterior predictive

distribution. Due to their similarities with the universal kriging equations, we call these

formulas the universal co-kriging equations. Third, we present closed form expressions for

the cross-validation equations of the co-kriging surrogate model. These expressions reduce

considerably the complexity of the cross-validation procedure and are derived from the ones

of kriging model that we have extended.

The suggested model has been successfully applied to a hydrodynamic code. We also

present in this application a practical way to design the experiments of the multi-fidelity

model.
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Chapter 5

Sequential design for kriging and

Multi-fidelity co-kriging models

Usually, in real applications, two stages are performed to surrogate a computer code with a

kriging model. The first one consists in building a kriging model from simulations coming

from an initial experimental design set. Many methods exist to build the initial design set,

in order to ensure appropriate space filling properties, the reader is referred to [Fang et al.,

2006] for a non-exhaustive review of them. The second stage consists in adding simulations

sequentially at new design points which complete the initial set. The selection of the new

points are usually based on criteria to improve the global accuracy of the kriging model and

this will be our goal in this chapter. To be complete, we mention that sequential kriging has

also been widely used in optimization (see [Jones et al., 1998], [Picheny et al., 2012]) and to

estimate probabilities of failure [Bect et al., 2012]

Kriging models are a powerful tool to enrich an experimental design set since it provides

through the kriging variance - also called predictor Mean Squared Error (MSE) or variance of

prediction - an estimator of the model MSE. Kriging literature provides lot of criteria usually

based on the kriging variance for sequentially design the experiments [Sacks et al., 1989b].

Furthermore, [Bates et al., 1996] and [Picheny et al., 2010] propose more efficient criteria

by considering the Integrated MSE (IMSE). It consists in integrating the mean value of the

MSE integrated over the input parameter space. We note though that the IMSE can be

computationally expensive to assess, especially when the dimension increases. Although these

criteria are efficient for many cases, they can suffer from an important flaw when the accuracy

of the kriging model is not homogeneous over the input parameter space. Indeed, the kriging

variance is determined by the distances between prediction and design points but not by the

real model errors. To fix this important flaw, we can use the Empirical IMSE suggested in

[Sacks et al., 1989b] which evaluates the model errors through a test set. Nevertheless, in

a complex computer code framework, it could be too expensive to consider an external test

set and cross-validation (CV) based criteria are more significant. As an illustration [Kleijnen

and van Beers, 2004] and [van Beers and Kleijnen, 2008] combine a bootstrapping and a

CV procedure to evaluate the predictor MSE. Although this method improves the classical

155



156
CHAPTER 5. SEQUENTIAL DESIGN FOR KRIGING AND

MULTI-FIDELITY CO-KRIGING MODELS

approach, it still does not take into account the real model errors. We note that a strength

of the method proposed by [Kleijnen and van Beers, 2004] is that it can be applied to other

types of surrogate models than the kriging one.

The first focus of this chapter is on sequential design to improve the accuracy of a kriging

model. In particular, we propose new criteria combining the kriging variance and the Leave-

One-Out CV (LOO-CV) errors. The CV errors allow for focusing the new observations on

regions where the real model errors are large. Furthermore, thanks to the equations presented

in [Dubrule, 1983] and in Subsection 1.3.3, the LOO-CV equations are fast to compute and

thus the suggested approach is not expensive.

Defining sequential design strategies in a multi-fidelity framework is also of interest and

is still an open problem. A method based on nested Latin hypercube designs is suggested in

[Xiong and Qian, 2012]. However, it does not allow for adding a small number of additional

simulations (e.g. it cannot perform an one step at-a-time sequential design) and it does not

take into account the accuracies of the coarse code versions and the time ratios between two

code levels.

The second focus of this chapter is on sequential design for co-kriging model. We adapt

the new strategies suggested for the kriging model to the multi-fidelity co-kriging one. The

strength of the proposed extensions is that they not only provide the new points where to per-

form new simulations but they also determine which version of code is worth being simulated.

These new criteria take into account the computational time ratios between code versions.

They are based on a proxy of the IMSE reduction and on the recursive formulation presented

in Chapter 4 giving the contribution of each code on the total variance of the model. We note

that sequential design in a multi-fidelity framework has also been applied for optimization

purposes [Forrester et al., 2007] and [Huang et al., 2006].

The chapter is organized as follows. First, we present our CV-based sequential design

strategies. We illustrate these strategies in tabulated functions. Secondly, we present the

extensions of the previous strategies for the multi-fidelity co-kriging model. Finally, we apply

the sequential co-kriging approach to a mechanical example.

5.1 Kriging models and sequential designs

In this section, we briefly introduce the kriging equations presented in Chapter 1 and some

of its classical sequential design criteria. Then, we will present our sequential strategies to

enhance kriging models considering the region with large LOO-CV errors.

5.1.1 The Kriging model

Let us denote by z(x) the output of the code that we want to surrogate at point x ∈ Q ⊂ R
d.

In our framework, we set that the prior knowledges about the code is modeled by a Gaussian

process Z0(x) with mean of the form m0(x) = f ′(x)β and with covariance function k0(x, x̃) =

σ2r (x, x̃;θ). We use the subscript 0 to emphasize that at this stage no observations are

considered. Using the same notation as in Chapter 1 Subsection 1.2.2, the kriging equations

are given by the distribution of the Gaussian process Z0(x) conditioned by its known values
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zn at points in D:

Zn(x) ∼ [Z0(x)|Z0(D) = zn] = GP (mn(x), kn(x, x̃)) , (5.1)

where:

mn(x) = f ′(x)β̂ + r′(x)R−1(zn − Fβ̂) (5.2)

and:

kn(x, x̃) = σ2



r(x, x̃)−
(

f ′(x) r′(x)
)

(

0 F′

F R

)−1(

f(x̃)

r(x̃)

)



 , (5.3)

where β̂ = (F′R−1F)−1F′R−1zn is the usual least-squares estimate of β (see Section 1.3). The

model parameters σ2 and θ can be estimated by maximizing their Likelihood (see [Santner

et al., 2003] and Subsection 1.3.2) or with a cross-validation procedure (see [Rasmussen and

Williams, 2006], [Bachoc, 2013] and Subsection 1.3.3). Furthermore, the Maximum restricted

Likelihood Estimate (MLE) of σ2 is given by σ̂2 = (zn − Fβ̂)′R−1(zn − Fβ̂)/(n − p). We

note that the kriging predictive mean and covariance are denoted by mn(x) and kn(x, x̃) to

emphasize their dependence on the number of observations n.

1 point at-a-time Sequential design

Now, let us suppose that we want to add a new point xn+1 in D in order to enhance the

accuracy of the kriging model. From the kriging variance kn(x, x) - representing the model

MSE - some sequential design methods have been derived [Sacks et al., 1989b], [Bates et al.,

1996] and [Picheny et al., 2010]. A first one consists in adding xn+1 where the kriging variance

is the largest (see [Sacks et al., 1989b]):

xn+1 = argmax
x

kn(x, x). (5.4)

However, as presented in [Kleijnen and van Beers, 2004], its performance is poor. Then, it has

been improved with a criterion which consists in adding the new point which leads the most

important IMSE reduction (see [Bates et al., 1996] and [Picheny et al., 2010]):

xn+1 = argmax
x

∫

u∈Q
kn(u, u)− kn+1(u, u) du, (5.5)

where

kn+1(u, ũ) = σ2






r(u, ũ)−







f(u)

r(u)

r(u, x)







′





0 F′ f(x)

F R r(x)

f ′(x) r′(x) 1







−1





f(ũ)

r(ũ)

r(ũ, x)












.

Here, the covariance kernels kn+1(u, ũ) corresponds to the one of the distribution of the Gaus-

sian process Zn(u) (5.1) conditioned by a new observation at x. Furthermore, Equation (5.3)

shows that the kriging variance does not depend on the observations if we consider known

the parameters σ2 and θ. Therefore, in that case, kn+1(u, u) can be computed without new

simulations. We denote by MinIMSE this criterion. Finally, we also consider the criterion
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presented by [Kleijnen and van Beers, 2004] using a Jackknife estimator for the predictor

variance. Its principle is the following one. Let us consider mn,−i(x) the kriging mean built

without the ith observation, the Jackknife variance is given by:

s2jack(x) =
1

n(n− 1)

n
∑

i=1

(z̃i − ¯̃z)2, (5.6)

where z̃i = nmn(x)− (n−1)mn,−i(x) and ¯̃z =
∑

n
i=1z̃i/n. Then, we consider candidate points

coming from a maximin LHS Design [Fang et al., 2006] and we add the one which maximizes

the Jackknife variance. We denote by KleiCrit this criterion.

q points at-a-time Sequential design

There is a natural way to extend these algorithms when the simulations can be performed

simultaneously. Indeed, the covariance kernel kn+1(x, x̃) of the Gaussian process Zn(x) condi-

tioned by the new observation at point xn+1 can be computed without knowing z(xn+1) when

we consider the model parameters σ2 and θ as known. Then, from kn+1(x, x̃), we can find a

new point xn+2 where to perform a new simulation using the same criterion as in Equation

(5.5) and the kernel kn+2(x, x̃). Thus, considering the parameters σ2 and θ as known (they

are fixed to their estimated values), we can determine with this procedure q good locations

where to perform simulations. We call this method the liar sequential kriging. This idea is

also extended in the framework of kriging-based optimization in [Ginsbourger et al., 2010].

5.1.2 LOO-CV based strategies for kriging sequential design

We present in this subsection new sequential-kriging strategies. The main difference between

these new strategies and the previous ones is that they take into account the real model errors

through the LOO-CV equations.

The proposed sequential methods is based on Proposition 4.3 for the univariate case s = 1.

This proposition provides a powerful tool to compute the LOO-CV predictive means and vari-

ances. Indeed, several elements of the equations presented in Proposition 4.3 have been already

computed during the model construction (e.g. the inverse of the matrix R). Consequently,

the LOO-CV equations are fast to compute and can be easily recomputed at each step of

the sequential strategy. We note that the original result which is the estimation of σ21,−i is

of great importance. Indeed, as we use the value of kn,−i(xi, xi), xi ∈ D, strongly depending

on σ21,−i in our forthcoming developments, it is important to well estimate it. We note that

kn,−i(xi, xi) corresponds to the covariance kernel of the distribution of Z0(x) conditioned by

the known value zn minus the ith one and σ21,−i is the restricted maximum likelihood estimate

of σ2 performed without the ith observation of zn.

Now, let us denote by e2LOO−CV =
[

((z(xi)−mn,−i(xi))
2
]

i=1,...,n
the vector of the LOO-

CV squared errors and s2LOO−CV = [kn,−i(xi, xi)]i=1,...,n the vector of the LOO-CV vari-

ances with mn,−i the kriging predictive mean building without the ith observation of zn and

(xi)i=1,...,n ∈ D. Furthermore, let us consider the Voronoi cells (Vi)i=1,...,n associated with the

points (xi)i=1,...,n:

Vi = {x ∈ Q, ||x− xi|| ≤ ||x− xj ||, ∀j 6= i}, i, j = 1, . . . , n. (5.7)
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In the remainder of this section, we present two strategies to sequentially add simulations which

use e2LOO−CV, s2LOO−CV and Vi. The intuitive idea of the suggested criteria is to enhance the

predictive variance in the locations where the LOO-CV errors are important.

LOO-CV-based 1 point at-a-time Sequential design

Let us denote by xn+1 the new point that we want to add to D. We consider the point

solving the following problem:

xn+1 = argmax
x

{

kn(x, x)

(

1 +

n
∑

i=1

[e2LOO−CV]i

[s2LOO−CV]i
1x∈Vi

)}

, (5.8)

where 1 stands for the indicator function.

This criterion considers the predictor MSE kn(x, x) adjusted with the LOO-CV errors and

variances. For equivalent kn(x, x), the criterion favors the points close to an experimental

design point with large LOO-CV errors. Furthermore, if two points are in the same Voronoi

cell, the one with the largest predictor MSE is considered. Therefore, a sequential strat-

egy with this criterion focus on the regions of Q where the LOO-CV errors are the largest.

We note that the standardization with s2LOO−CV is important since it is not necessary to

enlarge the predictor MSE in the regions where it is well or over estimated. As example,

[e2LOO−CV]i ≪ [s2LOO−CV]i means that the kriging variance is over-estimated around the point

xi, i.e. kn(x, x) is too large for x ∈ Vi. In that case, the standardization with [s2LOO−CV]i

implies that
∑n

i=1

[e2LOO−CV]i

[s2LOO−CV]i
1x∈Vi ≈ 0 for x ∈ Vi and thus the term in Equation (5.8) is

approximately equal to kn(x, x).

We illustrate in Figure 5.1 the adjusted variance presented in Equation (5.8) and the

classical kriging variance (5.3) in a 1-dimensional example. The considered function is f(x) =

(sin(7x)+ cos(14x))x2 exp(−4x), x ∈ [0, 4]. We use a kriging model with a 5/2-Matérn kernel

with σ2 = 1.10−3 and θ = 1 and the experimental design set is a regular grid of 8 points

between 0 and 4. We see in Figure 5.1 that the kriging model is not accurate in the domain

[0, 2] where the function variations are important and the adjusted kriging variance (5.8)

focuses on that region.

As illustrated in Figure 5.1, the adjusted kriging variance allows for taking into account the

LOO-CV error in a sequential procedure focusing on the large error domain. Nevertheless,

it does not entirely fix the issue of the relevance of kn(x, x) to represent the model error.

Indeed, our criterion enlarges the kriging variance around points where kn(x, x) is under-

estimated but it does not reduce it at locations where it is over-estimated. However, it gives

more information about the relevance of mn(x) since it highlights the regions where it is

not accurate. Furthermore, it also aids in the interpretation of kn(x, x) since it emphasizes

whether it is under-estimated or not.

An efficient method to solve the problem in Equation (5.8) is to use an evolutionary

algorithm coupled with a descent algorithm. Indeed, when x ∈ Vi we have to solve the

problem argmaxx∈Vi kn(x, x). This can be performed with classical optimization methods

(e.g. Conjugate gradient, Newton,. . . ). Then, we can use an evolutionary algorithm to explore
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Figure 5.1: Illustration of the adjusted kriging variance in a 1-dimensional example. The solid

thick line represents the true function, the dashed thick line represents the kriging mean, the

bullets represent the observations and the dashed areas represent the kriging mean plus or

minus twice the kriging standard deviation and adjusted standard deviation. We see that the

kriging variance is enlarged at the domain where the function variations are important.

different cells (Vi)i=1,...,n. Furthermore, for low-dimensional problems (i.e. d < 10), a Monte-

Carlo method can be efficiently used as exploratory algorithm. We note that it is not necessary

to compute the Voronoi tessellation since the criterion only requires to determine in which

Voronoi cells lies a given point x ∈ Q ⊂ R
d. This is computationally simple and cheap even

for high dimension d.

LOO-CV-based q points at-a-time Sequential design

We extend here the previous criterion for a q points at-a-time sequential design. First,

we emphasize that the liar sequential kriging is not relevant for this new criterion. Indeed,

conditioning on model parameters, with a liar method we can compute the kriging variances

(kn+i(x, x))i=1,...,q but not the LOO-CV equations. Therefore, we use another strategy to

propose q new locations where to perform the simulations. This approach is proposed in

[Dubourg et al., 2011] in a different framework. The idea of the suggested method is to

select the q best points with respect to the criterion (5.8) from N candidate points. These N

candidate points are chosen with the following algorithm.

1. Generate NMCMC samples with respect to the probability density function proportional

to kn(x, x) with a suitable Markov Chain Monte Carlo (MCMC) technique [Robert and

Casella, 2004].

2. Extract from these samples N representative points with a N -means clustering technique

[MacQueen, 1967].

As presented in [Dubourg et al., 2011] the use of this algorithm to select N candidate

points in a kriging framework is efficient. Indeed, it allows us to concentrate the points

at the modes of the kriging variance. In the proposed strategy, we always take N ≥ q
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and we choose from the N cluster centers (Ci)i=1...,N the q points where kn,adj(x, x) =

kn(x, x)
(

1 +
∑n

i=1

[e2LOO−CV]i

[s2LOO−CV]i
1x∈Vi

)

is the largest. For the MCMC procedure, we use a

Metropolis-Hastings (M-H) algorithm with a Gaussian jumping distribution. It is centered on

the last sample point and has a standard deviation such that the acceptance rate is around

30% (see [Robert and Casella, 2004]). Furthermore, we set NMCMC such that NMCMC ≫ N .

For the N -means procedure, we choose the value of N with respect to the following criterion:

max
N≥q

min
x∈(Ci)i=1,...,N

kn(x, x), (5.9)

where (Ci)i=1...,N are the cluster centers. This criterion prevents from having a cluster center

in a region where the kriging variance is close to zero. Furthermore, if the number of clus-

ters is too high, the cluster centers get away from the modes and consequently the value of

minx∈(Ci)i=1...,N
kn(x, x) decreases. Therefore, this criterion also prevents from having a num-

ber of clusters too large. In practice, we choose N on a finite sequence from q to 2n where n

is the number of observations and we run the N -means procedure several times for each N .

Then, we select the cluster centers minimizing (5.9). We note that the MCMC plus N -means

procedure requires careful implementation and appropriate diagnostics. For the N -means

procedure, we use the algorithm suggested by [Hartigan and Wong, 1979] with complexity

O(NNMCMC). For the M-H procedure we use the R CRAN Package mcmc. To avoid com-

putational issues, one can extract the q-points from candidates generated with space-filling

design techniques [Fang et al., 2006]. However, with this technique, the candidate points will

not anymore be concentrated in the regions of high mean squared error and the method will

be less efficient.

5.2 Sequential design in a multi-fidelity framework

In this section, we consider the multi-fidelity co-kriging model presented in Chapter 4 with

constant scale factors (ρt−1)t=2,...,s and we extend the previous sequential design strategies in

this framework. We note that, in a multi-fidelity framework, the search for the best locations

where to run the code is not the only point of interest. Indeed, once the best locations are

determined, we also have to decide which code level is worth being run. This will not only

depend on the time-ratios between the code levels but also on the contribution of each code

level to the total predictor MSE.

5.2.1 Multi-fidelity co-kriging models

Let us suppose that we want to surrogate a computer code output zs(x) and that coarse

versions of this code (zt(x))t=1,...,s−1 are available. These codes are sorted by order of fidelity

from the less accurate z1(x) to the most accurate zs−1(x). We consider the universal multi-

fidelity co-kriging equations presented in Section 4.3 with constant scale factors (ρt−1)t=2,...,s.

Thus, using the same notation as in Chapter 4 Section 4.2, the predictive mean µtnt
(x)

and variance ktnt
(x, x̃) at level t = 2, . . . , s is given by the following equations:

µtnt
(x) = ρ̂t−1µ

t−1
nt−1

(x) + f ′t(x)β̂t + r′t(x)R
−1
t (zt − Ftβ̂t − ρ̂t−1zt−1(D

t)) (5.10)
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and:

ktnt
(x, x̃) = σ̂2ρt−1

kt−1
nt−1

(x, x̃) + σ2t



rt(x, x̃)−
(

h′
t(x) r′t(x)

)

(

0 H′
t

Ht Rt

)−1(

ht(x̃)

rt(x̃)

)



 ,

(5.11)

where

(

ρ̂t−1

β̂t

)

= (H′
tR

−1
t Ht)

−1H′
tR

−1
t zt is the least-squares estimates of

(

ρt−1

βt

)

, σ̂2ρt−1
=

ρ̂2t−1 +
[

(H′
tR

−1
t Ht)

−1
]

[1,1]
and Ht = [zt−1(Dt) Ft]. Furthermore, the restricted maximum

likelihood estimate of σ2t is given by

σ̂2t =

(

zt −Ht

(

ρ̂t−1

β̂t

))′

R−1
t

(

zt −Ht

(

ρ̂t−1

β̂t

))

(nt − pt − 1)
.

We note that the predictive mean and variance at level t are denoted by µtnt
(x) and ktnt

(x, x̃)

to higlight their dependence of the number of observations nt at level t.

The important property of this co-kriging model is that its MSE (5.11) provides

through the term σ̂2ρt−1
kt−1
nt−1

the contribution of the code level t − 1 to the total

predictor MSE at level t, t = 2, . . . , s. Therefore, it can allow us to determine which

code level is worth being simulated at a new location x.

5.2.2 Sequential design for multi-fidelity co-kriging models

The aim of this subsection is to extend the sequential kriging strategies proposed in Subsection

5.1.2 to the suggested multi-fidelity co-kriging model. These extensions are based on the

variance decomposition property presented in Subsection 5.2.1 in Equation (5.11) and on the

cross-validation equations presented in Proposition 4.3. From them, the LOO-CV equations

are fast to compute and consequently they can be used in a sequential procedure with a low

computational cost. Furthermore, since the experimental design sets are nested, we state that

during the LOO-CV procedure at level t, the points are removed from all code levels. Finally,

from these equations, we can adjust the co-kriging variances
(

ktnt
(x, x̃)

)

t=1,...,s
at each level

using the same method as presented in Equation (5.8).

1 point at-a-time sequential co-kriging. First, let us consider xnew the point solving the

problem:

xnew = argmax
x

ksns
(x, x). (5.12)

Therefore, we want to compute a new simulation at point where the predictor MSE is maximal.

Now, let us consider two successive code levels t−1 and t. The question of interest is to estimate

which of these two code levels is worth being simulated.
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First, thanks to Equation (5.11), we can deduce the contribution of each code levels to the

predictor MSE. Let us define the following notation for t = 2, . . . , s:

σ2δt(x) = σ2t



1−
(

h′
t(x) r′t(x)

)

(

0 H′
t

Ht Rt

)−1(

ht(x)

rt(x)

)



 (5.13)

and σ2δ1(x) = k1n1
(x, x). Then, we have:

ktnt
(x, x) =

t
∑

i=1

σ2δi(x)

t−1
∏

j=i

σ̂2ρj . (5.14)

Let us consider that the parameters (θt)t=1,...,s define the characteristic length-scales of the

kernels ((rt(x, x̃;θt))i=1,...,s (see [Rasmussen and Williams, 2006] p.83 and Chapter 1 Section

1.4). Then, we can approximate the reduction of the IMSE after adding a new point xnew at

level t with the following formula:

IMSEt
red(xnew) =

t
∑

i=1

σ2δi(xnew)

t−1
∏

j=i

σ̂2ρj

d
∏

m=1

θmi , (5.15)

with θt = (θ1t , . . . ,θ
d
t ). Indeed, at each stage, σ2

δi
(xnew)

∏t−1
j=i σ̂

2
ρj represents the contribution

of the bias δi(x) to the co-kriging variance and
∏d

m=1 θ
m
i represents the volume of influence

of xnew at level j. This criterion is justify by the fact that the reduction of IMSEt defined by

IMSEt =
∫

Q σ
2
δt(x) dx after adding a new point xnew has the same order of magnitude than

σ2
δi
(xnew) times the volume of influence

∏d
m=1 θ

m
i of xnew.

We illustrate below the criterion (5.15) for a kriging model in dimension 2. Let us consider

that we want to approximate the Branin-Hoo function (see [Jones et al., 1998]) from 12 obser-

vations. The considered experimental design set and the Branin-Hoo function are illustrated

in Figure 5.2.

Figure 5.3 represents the kriging predictive mean and variance. The estimated character-

istic length scales are θ1 = 0.22 and θ2 = 0.65 and the empirical IMSE is 1648. Let us consider

that we want to simulate a new observation at point xnew = (0.25, 0.5) (see Figure 5.3b), the

approximation of the IMSE reduction given by the criterion in Equation (5.15) is 468.

Figure 5.4 represents the kriging predictive mean and variance after adding a new sim-

ulation at point xnew = (0.25, 0.5). The obtained empirical IMSE is 1130. Therefore, the

empirical uncertainty reduction equals 1648− 1130 = 518 which is close to the approximation

given by Equation (5.15) which is 468.

Now, let us consider that the ratio of computational times between the codes zt(x) and

zt−1(x) equals Bt/t−1. It means that the computational cost for running one simulation on

zt(x) and one simulation on zt−1(x) (the experimental design sets must be nested) is the

same as the one for running 1 + Bt/t−1 simulations on zt−1(x) – i.e. for running zt−1(x)

on 1 + Bt/t−1 different points xnew. Therefore, it is worth running the code zt−1(x) if (1 +

Bt/t−1)IMSEt−1
red (xnew) > IMSEt

red(xnew), i.e. if the potential uncertainty reduction by running

1 + Bt/t−1 times zt−1(x) is greater than the one when we run one simulation on zt(x) and
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Figure 5.2: Contour plot of the Branin-Hoo function. The blue triangles represent the con-

sidered experimental design set.
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Figure 5.3: Figure (a) illustrates the kriging predictive mean and Figure (b) illustrates the

kriging predictive variance. The blue triangles represent the experimental design set and the

red triangle is the point xnew = (0.25, 0.5) where to perform a new simulation. The filled

rectangle is the volume of influence of xnew evaluated from θ1 = 0.22 and θ2 = 0.65.

one simulation on zt−1(x). From this criterion, we can deduce the following algorithm for an

one at-a-time sequential co-kriging model taking into account both the computational ratios

between the different code levels and the contribution of each level to the total co-kriging

variance.

Remarks: Algorithm 2 evaluates for two successive code levels t − 1 and t, which one is

worth being simulated. It starts with the levels one and two, then two and three and so on.
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Figure 5.4: Figure (a) illustrates the kriging predictive mean and Figure (b) illustrates the

kriging predictive variance. The blue triangles represent the experimental design set.

When it finds that the level t − 1 is more promising than the level t, it stops the loop and

simulate xnew at code levels z1(x), . . . , zt−1(x). Since the loop is defined from level 1 to level

s, it favors simulations at low code levels. Therefore, it will tend to learn the coarse code

versions before learning the accurate ones. We note that during the loop of Algorithm 2, the

parameters are not re-estimated. In fact, they are re-estimated after adding the new point

xnew. Moreover, the first test σ2δt(xnew) < IMSEt checks if the code level t at point xnew is

worth being run. Then, the test IMSEt−1
red (xnew)/IMSEt

red(xnew) > 1/(1 + Bt/t−1) evaluates

which code levels between t and t− 1 is the most promising. Finally, if we consider that the

code level t is more promising than the code level t − 1, we confront it to the following code

level t + 1. We note that Algorithm 2 is reiterated until a prescribed accuracy is reached or

the computational time budget is spent.

1 point at-a-time sequential co-kriging with adjusted predictor MSE. From Propo-

sition 4.3, Algorithm 2 and Equation (5.15), we can extend the criterion (5.8) to the multi-

fidelity co-kriging model. Let us consider the following quantity:

IMSEt
red,adj(xnew) =

∑t
i=1 σ

2
δi
(xnew)

∏t−1
j=i σ̂

2
ρj

∏d
m=1 θ

m
i

×
(

1 +
∑ni

j=1
(εLOO−CV,i(x

i
j)−ρ̂−j,i−1εLOO−CV,i−1(x

i
j))

2

σ2
LOO−CV,i(x

i
j)−σ̂2

ρi−1,−jσ
2
LOO−CV,i−1(x

i
j)

)

, (5.16)

where ρ̂−j,0 = 0, ρ̂−j,i corresponds to the first element of λi,−j in Proposition 4.3, σ̂2ρ0,−j = 0,

σ̂2ρi−1,−j corresponds to the element [1, 1] of the matrix Σρ,i,−j in Proposition 4.3, xij is the jth

point of Di,

εLOO−CV,i(x
i
j) = zi(x

i
j)− µini,−j(x

i
j),

σ2LOO−CV,i(x
i
j) = kini,−j(x

i
j , x

i
j),

kini,−j(x, x̃) is the covariance kernel kini
(x, x̃) at level i built without the jth observation of

zi, µ
i
ni,−j is the predictive mean µini, at level i built without the jth observation of zi and
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Algorithm 2 One point at-a-time sequential co-kriging

1: Find xnew such that xnew = argmaxx k
s
ns
(x, x)

2: for t = 2, . . . , s do
3: if

(

σ2δt(xnew) < IMSEt
)

then
4: Run zt−1(xnew)
5: end for
6: else
7: if

(

IMSEt−1
red (xnew)/IMSEt

red(xnew) > 1/(1 +Bt/t−1)
)

then
8: Run zt−1(xnew)
9: end for

10: end if
11: end if
12: end for
13: if (t = s) then
14: Run zt(xnew)
15: end if

j = 1, . . . , ni, i = 1, . . . , t. In Equation (5.16), the kriging variance σ2
δi
(x), i = 1, . . . , t,

in Equation (5.14) is replaced with the adjusted kriging variance presented in Subsection

5.1.2. We note that
(

εLOO−CV,i(x
i
j)− ρ̂−j,i−1εLOO−CV,i−1(x

i
j)
)2

is the part of the LOO-CV

squared error explained by the bias δi(x) and σ2LOO−CV,i(x
i
j)− σ̂2ρi−1,−jσ

2
LOO−CV,i−1(x

i
j) is the

corresponding LOO-CV predictive variance. To adapt the adjusted co-kriging variance in a

multi-fidelity framework, we just have to replace IMSEt
red(x) with IMSEt

red,adj(x) in Algorithm

2 and ksns
(x, x) with:

ksns,adj
(x, x) =

∑s
i=1 σ

2
δi
(x)
∏s−1

k=i σ̂
2
ρk

×
(

1 +
∑ni

j=1
(εLOO−CV,i(x

i
j)−ρ̂−j,i−1εLOO−CV,i−1(x

i
j))

2

σ2
LOO−CV,i(x

i
j)−σ̂2

ρi−1,−jσ
2
LOO−CV,i−1(x

i
j)

)

. (5.17)

ksns,adj
(x, x) corresponds to ksns

(x, x) in Equation (5.14) where the kriging variance σ2
δj
(x) is

replaced with its adjusted version. We highlight that thanks to Proposition 4.3, the elements

εLOO−CV,i(x
i
j), σ

2
LOO−CV,i(x

i
j), σ̂

2
ρi−1,−j and ρ̂−j,i−1 are fast to compute.

(qi)i=1,...,s points at-a-time sequential co-kriging. In this paragraph, we propose an

extension for the multi-fidelity model of the q points at-a-time sequential design presented

in Subsection 5.1.2. Its principle is the following one. First, we select qt new points for the

code zt(x) with the method presented in Subsection 5.1.2 “LOO-CV based q points at-a-time

Sequential design”. Then, we consider these points as known for the code zt−1(x) and we

select qt−1 new points for this code with the same method. We note that, as presented in

Subsection 5.1.1, we can use a liar method to compute the new co-kriging variance without

simulating zt−1(x) at the qt new points. Finally, we repeat this procedure for all code levels

from zt−2(x) to z1(x). At the end of the procedure, we have
∑t

i=j q
i new points at level j and

we want to find the allocation {q1, . . . , qt} leading to the largest potential uncertainty reduction

and under the constraint of a constant CPU time budget. We note the CPU time budget
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T =
∑t

j=1

∑t
i=j q

iT j where (T i)i=1,...,s represents the CPU times of codes (zi(x))i=1,...,s.

Algorithm 3 presents the suggested q points at-a-time sequential co-kriging.

Algorithm 3 (qi)i=1,...,s points at-a-time sequential co-kriging

1: Set the budget T > 0 and the allocation {q1, . . . , qt} such that
∑t

j=1

∑t
i=j q

iT j = T
2: Set (N i

MCMC)i=1,...,t for the M-H procedures.
3: Generate N t

MCMC samples distributed with respect to ktnt
(x, x).

4: Find the N t cluster centers (Ct
i )i=1,...,Nt such that N t = maxN≥qt minx∈(Ct

i )i
ktnt

(x, x)
5: Select from (Ct

i )i=1,...,Nt the qt points (xtnew,i)i=1,...,qt where ktnt,adj
(x, x) is the largest.

6: for m = t− 1, . . . , 1 do
7: Compute km

nm+
∑t

i=m+1 q
i(x, x) with the new points

(

(xjnew,i)i=1,...,qt

)

j=m+1,...,t
8: Generate Nm

MCMC samples with respect to km
nm+

∑t
i=m+1 q

i(x, x).

9: Find the Nm cluster centers (Cm
i )i=1,...,Nm such that Nm =

maxN≥qm minx∈(Cm
i )i k

m
nm+

∑t
i=m+1 q

i(x, x)

10: Select from (Cm
i )i=1,...,Nm the qm points (xmnew,i)i=1,...,qm where km

nm+
∑t

i=m+1 q
i,adj

(x, x)

is the largest.
11: end for

Algorithm 3 details. In line 3, klnl
(x, x) comes from Equation (5.11). In line 4, the N l-

clustering is performed from the N l
MCMC samples generated in line 3. The N l cluster centers

are the candidate points from which we extract the ql new points having the maximum adjusted

variance klnl,adj
(x, x) (line 5):

klnl,adj
(x, x) =

∑l
i=1 σ

2
δi
(x)
∏l−1

k=i σ̂
2
ρk

×
(

1 +
∑ni

j=1
(εLOO−CV,i(x

i
j)−ρ̂−j,i−1εLOO−CV,i−1(x

i
j))

2

σ2
LOO−CV,i(x

i
j)−σ̂2

ρi−1,−jσ
2
LOO−CV,i−1(x

i
j)

)

.

In the ’For’ loop, the same procedure is repeated for all code levels m = l−1, . . . , 1 except that

we update the kriging variances kmnm
(x, x) with the points added in level m+1, . . . , l (since the

experimental design sets must be nested). Therefore, in Algorithm 3, kt
nt+

∑s
i=l+1 q

i(x, x) corre-

sponds to the kernel distribution of a random process Zt
nt
(x) ∼ [Zt(x)|Z(t) = z(t)] conditioned

by the observations at points
(

(xjnew,i)i=1,...,qs

)

j=l+1,...,s
when the parameters (σ2i )i=1,...,t and

(θi)i=1,...,t are considered as known (i.e. this corresponds to a liar method). Furthermore,

kt
nt+

∑s
i=l+1 q

i,adj
(x, x) corresponds to the predictor variance kt

nt+
∑s

i=l+1 q
i(x, x) adjusted with

the LOO-CV errors and variances:

kt
nt+

∑s
i=l+1 q

i,adj
(x, x) =

∑t
i=1 σ

2
δi+

∑s
i=l+1 q

i(x)
∏t−1

j=i σ̂
2
ρj

∏d
m=1 θ

m
i

×
(

1 +
∑ni

j=1
(εLOO−CV,i(x

i
j)−ρ̂−j,i−1εLOO−CV,i−1(x

i
j))

2

σ2
LOO−CV,i(x

i
j)−σ̂2

ρi−1,−jσ
2
LOO−CV,i−1(x

i
j)

)

, (5.18)

where k1
n1+

∑s
i=l+1 q

i and σ2
δi+

∑s
i=l+1 q

i(xnew) are deduced from Equation (5.11). We note that

for the M-H procedures, we use a Gaussian jumping distribution with a standard deviation

such that acceptance rate is around 30%.
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Furthermore, let us consider the following quantity

IMSEred,q =

t
∑

i=1

∑

r=1,...,qi

σ2δi(x
i
new,r)

t−1
∏

j=i

σ̂2ρj

d
∏

m=1

θmi . (5.19)

We consider the allocation {q1, . . . , qt} which solves the following optimization problem:

{q1, . . . , qt} = arg max
{q1,...,qt}

IMSEred,q such that

t
∑

j=1

t
∑

i=j

qiT j = T, (5.20)

i.e. we look for the allocation leading the maximal uncertainty reduction. This optimization

problem is very complex to solve. Nevertheless, when the number of code levels and the budget

T are low (e.g. s = 2 in our application) an exhaustive exploration of the allocation {q1, . . . , qt}
can be performed. We are in that case in the presented application . Furthermore, we note

that IMSEred,q is a proxy on the IMSE reduction when we add
(

(xmnew,i)i=1,...,qm

)

m=1,...,t
at

code levels (ym(x))m=1,...,t.

In practical application, Algorithm 3 is reiterated until we reach a prescribed precision or

the computational time budget is exhausted.

5.3 Applications

We compare in this section the MinIMSE, KleiCrit and AdjMMSE criteria on toy examples

and on an application concerning a spherical tank under pressure. We present both the cases

of 1 point at-a-time and q points at-a-time sequential kriging. Then, we compare on the

tank application, the suggested sequential kriging and co-kriging methods with s = 2 levels.

The purpose of this section is to emphasize the efficiency of the LOO-CV-based criteria and

to highlight that a multi-fidelity analysis can be worthwhile. Finally, for the multi-fidelity

sequential co-kriging, we present the allocation of the simulations between the coarse code

and the accurate one. We note that for the different examples, we compare the different

methods given a prescribed computational time budget.

5.3.1 Comparison between sequential kriging criteria

In this subsection, the 1 point at-a-time sequential kriging criteria (MinIMSE, KleiCrit, Ad-

jMMSE) are compared on three tabulated functions:

• Ackley’s function on [−2, 2]2 [Ackley, 1987]:

f(x, y) = −20exp

(

−0.2

√

x2 + y2

2

)

− exp

(

cos(2πx) + cos(2πy)

2

)

+ 20 + exp(1).

• Shubert’s function on [−2, 2]2 [Xian, 2001]:

f(x, y) =

(

5
∑

k=1

kcos ((k + 1)x+ k)

)(

5
∑

k=1

kcos ((k + 1)y + k)

)

.
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• Michalewicz’s function on [0, π]2 [Michalewicz, 1992]:

f(x, y) = −sin (x)

(

sin

(

x2

π

))20

− sin (y)

(

sin

(

y2

π

))20

.

The comparison is performed on a test set Dtest composed of ntest = 1000 points uniformly

spread on the input parameter space and from 50 different initial experimental design sets.

We compare the different methods with respect to the Normalized RMSE:

NormRMSE =

√

∑ntest
i=1

(

zreal(x
i
test)− zpred(x)

)2
/ntest

maxx∈Dtest zreal(x)−minx∈Dtest zreal(x)
, (5.21)

where zreal(x) is the real value of the output and zpred(x) the predicted one. The 50 initial ex-

perimental design sets are LHS designs of 10 points optimized with respect to the S-optimality

[Stocki, 2005]. From these designs, 50 sequential krigings are performed and the convergence

of the mean and the quantiles of the Normalized RMSE are computed for the three criteria.

The mean and confidence intervals of the Normalized RMSE with respect to these 50 initial

design sets are presented in Figure 5.5. We use for each kriging a tensorised 5/2-Matérn co-

variance function and a constant trend. Furthermore, after each added point, the parameters

β, σ2 and θ (see equations (5.1), (5.2) and (5.3)) of the kriging models are re-estimated with

a maximum likelihood method. These estimations are performed thanks to the R library

’DiceKriging’ [Roustant et al., 2012].

Figure 5.5 illustrates the efficiency of the criterion AdjMMSE. Indeed, for the Shubert’s

and Michalewicz’s functions, we see that the accuracy of the 1 point at-a-time kriging with

this criterion is significantly better than the one of the others criteria (both in terms of mean

and quantiles of the Normalized RMSE). In fact, these functions have the particularity to

have important variations in some areas of the input parameter space. Thus, the errors are

more important in these locations and the suggested criterion focuses the new points on it.

Furthermore, the contrast of variations are particularly important for the Shubert’s function.

For this reason, the IMSE criterion performed very poorly in that case. Indeed, this criterion

is efficient for functions with homogeneous variations (i.e. when the predictor MSE well

predicts the model errors). In contrast, the Jackknife predictor MSE provided by the criterion

KleiCrit manages to catch this heterogeneity and it performs better than the IMSE criterion.

Moreover, we see that the performance of the AdjMMSE and IMSE criteria are equivalent

for the Ackley’s function. We note that the variations of the Ackley’s function have the same

order of magnitude over the input parameter space.

These examples illustrate the fact that our criterion is more efficient than the other criteria

when the functions have important contrast variations and it remains efficient even in the cases

where the functions have homogeneous variations (its efficiency is equivalent to the one of the

IMSE criterion).

Another point of interest is to compare the gain of CPU time by using the short cuts

of Leave-One-Out Cross Validation presented in equations (4.17) and (4.19). For the three

academic examples, the CPU time of the sequential design using the criterion AdjMMSE

with equations (4.17) and (4.19) is around 14 whereas the one without them is around 19.

Therefore, the gain is substancial (it is approximately 25%).
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Figure 5.5: Comparison between 1 point at-a-time sequential kriging criteria on toy examples.

The bold triangles represent the mean of the Normalized RMSE for the AdjMMSE criterion,

the bold circles represent it for the MinIMSE criterion and the bold Crosses represent it for

the KleiCrit criterion. Furthermore, the solid lines represent the quantiles of probabilities 10%

and 90% of the Normalized RMSE, the dotted lines represent them for the MinIMSE criterion

and the dotted lines represents them for the KleiCrit criterion. The means and confidence

intervals are computed from 50 different sequential design procedures.

5.3.2 Spherical tank under internal pressure example

In this section, we deal with an example about a spherical tank under internal pressure. We

are interested in the von Mises stresses on the three points labeled in Figure 5.6. Indeed, we

want to prevent from material yielding which occurs when the von Mises stress reaches the

critical yield strength.

The system illustrated in Figure 5.6 depends on the following parameters:

• P (MPa) ∈ [30, 50]: the value of the internal pressure.
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Figure 5.6: Scheme of the spherical tank under pressure.

• Rint (mm) ∈ [1500, 2500]: the length of the internal radius of the shell.

• Tshell (mm) ∈ [300, 500]: the thickness of the shell.

• Tcap (mm) ∈ [100, 300]: the thickness of the cap.

• Eshell (GPa) ∈ [63, 77]: the Young’s modulus of the shell material.

• Ecap (GPa) ∈ [189, 231]: the Young’s modulus of the cap material.

• σy,shell (MPa) ∈ [200, 300]: the yield stress of the cap material.

• σy,cap (MPa) ∈ [400, 800]: the yield stress of the cap material.

The accurate code output y2(x) is the value of the von Mises stress provided by an Aster finite

elements code (http://www.code-aster.org) modeling the system presented in Figure 5.6.

We use the notation x = (P,Rint, Tshell, Tcap, Eshell, Ecap, σy,shell, σy,cap). We note that the

material properties of the shell correspond to high quality aluminum and the ones of the cap

corresponds to steel from classical to high quality. Then, the coarse code output z1(x) is the

value of the von Mises stress given by the 1D simplification of the tank (5.22) (it corresponds

to a perfect spherical tank under pressure, i.e. without cap):

z1(x) =
3

2

(Rint + Tshell)
3

(Rint + Tshell)
3 −R3

int

P. (5.22)

According to Equation (5.22), the actual input dimension of z1(x) is three (it depends only

on P , Rint and Tshell) while a sensitivity analysis performed with a Sobol decomposition

gives that the accurate code depends essentially on four parameters (P , Rint, Tshell and Tcap).

Furthermore, the response is highly stationary. Therefore, only few points are necessary to

well predict the output of the code. For these reasons, we can start the sequential strategies

from an initial experimental design set with only 10 points.

Thus, for the different comparisons, we use a S-optimal LHS design D2 of 10 points for

the code z2(x). For the coarse code z1(x), we start with a design D1 of 20 points. It is

created with the following procedure. First, we create a S-Optimal design D̃1 of 20 points.

http://www.code-aster.org
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Second, we remove from D̃1 the 10 points that are the closest to those of D2. Finally, D1 is the

concatenation of D2 and D̃1 (this procedure ensures the nested property D2 ⊂ D1, see Chapter

4 Section 4.5.3). We note that the CPU time is around 1 minute for the accurate code and

10−8 seconds for the coarse code. Nevertheless, to be in a more realistic case, we consider that

the CPU time ratio between z2(x) and z1(x) equals B2/1 = 10. Furthermore, each sequential

procedure is performed with 40 different initial design sets. Then, the mean and the quantiles

of probabilities 90% and 10% of the empirical Normalized MSE are computed from a test set

composed of 1000 points uniformly spread on the input parameter space. Finally, for the M-H

procedure, we use a Gaussian jumping distribution such that the acceptance rate is around

30% and we set NMCMC = 50000 (we use 5 000 samples for the the burn-in procedure of the

M-H method, see [Robert and Casella, 2004]). For the M-H procedure, we use the package

R CRAN mcmc. We note that after each added points, the parameters of the kriging or

co-kriging models are re-estimated with a maximum likelihood method and that 5/2-Matérn

kernels are used for all models.

The remainder of this section is organized as follows. First we compare the MSE of the 1

point at-a-time sequential kriging with the one of the q = 5 points at-a-time one. Second, we

compare for a given CPU time budget the sequential kriging and cokriging strategies. In the

forthcoming developments, the response i = 1, 2, 3 refers to the value of the von Mises stress

at point i on Figure 5.6.

Comparison between sequential kriging criteria

Figure 5.7 compares the different criteria of the 1 point at-a-time and the q = 5 points at-a-time

sequential kriging. We see that the criteria MinIMSE and AdjMMSE give equivalent values

for the MSE for the 1 point at-a-time procedure and they perform better than the KleiCrit

criterion. They are equivalent since the output z2(x) is perfectly stationary. Nevertheless, the

criterion AdjMMSE is the most efficient for the q = 5 points at-a-time procedure. Indeed,

the 5 points provided by a liar method with the MinIMSE criterion are not necessarily those

which maximize the reduction of the IMSE. The method suggested in Section 5.2.2 seems to

give a better solution.

Comparison between kriging and co-kriging sequential analysis

In this section, we compare the sequential kriging strategy with the sequential co-kriging

with respect to the AdjMMSE criterion. Figure 5.8 gives the convergence of the empirical

normalized MSE for the response 1. We see that the sequential co-kriging performs better

than the kriging one. Furthermore, at the beginning of the method, the proportion of runs for

the accurate code is very low. Indeed, the coarse code and the accurate code are extremely

correlated for this response (around 99%) and thus, during the sequential strategy, the bias

between the two codes is well estimated. Then, when the coarse code is well approximated,

the sequential strategy starts to run the accurate one (for a CPU time around 500).

Figure 5.9 gives the convergence of the errors for the response 2. For this response, the

correlation between the coarse and the accurate code is around 80%. Therefore, the proportion
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Figure 5.7: Comparison between 1 point at-a-time sequential kriging criteria (a) and batch

sequential kriging criteria with q = 5 (b) on the spherical tank example. The bold triangles

represent the mean of the Normalized RMSE for the AdjMMSE criterion, the bold circles

represent it for the MinIMSE criterion and the bold Crosses represent it for the KleiCrit

criterion. Furthermore, the solid lines represent the quantiles of probabilities 10% and 90%

of the Normalized RMSE, the dashed lines represent them for the MinIMSE criterion and the

dotted lines represent them for the KleiCrit criterion.
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Figure 5.8: Comparison between 1 point at-a-time sequential kriging and co-kriging on the

response 1 of the spherical tank example with respect to the AdjMMSE criterion (a). The

thick dashed line represents the mean of the Normalized RMSE for the sequential kriging and

the thick solid line represents it for the sequential co-kriging. The thin lines represent the

quantiles of probabilities 10% and 90% of the Normalized RMSE. Figure (b) represents the

proportion of runs allocated to the accurate code.
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of runs for the accurate code determined by the sequential strategy is more important than in

Figure 5.8. Furthermore, we see that this proportion increases with the CPU time. It means

that the sequential co-kriging improves the approximation of the coarse code at the beginning

of the procedure and then focuses on the accurate code. As a result, we see that the sequential

co-kriging strategy is substantially better than the kriging one.
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Figure 5.9: Comparison between 1 point at-a-time sequential kriging and co-kriging on the

response 2 of the spherical tank example with respect to the AdjMMSE criterion (a). The

thick dashed line represents the mean of the Normalized RMSE for the sequential kriging and

the thick solid line represents it for the sequential co-kriging. The thin lines represent the

quantiles of probabilities 10% and 90% of the Normalized RMSE. Figure (b) represents the

proportion of runs allocated to the accurate code.

Figures 5.8 and 5.9 illustrate the efficiency of the sequential co-kriging when the coarse

code bring information on the accurate code. For the response 3, the coarse code is weakly

correlated with the accurate code (around 45%). This is due to the fact that the coarse code

models the von Mises stress in a perfect spherical tank whereas the response 3 corresponds to

the one in the cap. Figure 5.10 shows that in this case, the sequential co-kriging model manages

to determine that the coarse code is not worth being simulated. Indeed, the proportion of

runs for the accurate code is very high. Furthermore, it shows that the co-kriging sequential

design performs as well as the kriging one when the coarse code is non-informative.

Finally, Figure 5.11 shows the efficiency of the (q1, q2) at-a-time sequential co-kriging. We

set in Algorithm 3 that T = q1 + q2 + 10q2 = 120 where the CPU time of the coarse code

is 1 and the one of the accurate code is 10. For the the sequential kriging, we use a q = 10

at-a-time sequential procedure. Furthermore, Figure 5.11 shows that at the beginning of the

procedure, the sequential co-kriging focuses on the approximation of the coarse code whereas

at the end it focuses on the accurate code. We note that the allocation of runs for the accurate

code in Figure 5.11 agrees with the proportion of runs given in Figure 5.9.

The results of the sequential co-kriging on the different responses show that the criterion

suggested in Section 5.2.1 performs very well. Indeed, it is always better than the sequential
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Figure 5.10: Comparison between 1 point at-a-time sequential kriging and co-kriging on the

response 3 of the spherical tank example with respect to the AdjMMSE criterion (a). The

thick dashed line represents the mean of the Normalized RMSE for the sequential kriging and

the thick solid line represents it for the sequential co-kriging. The thin lines represent the

quantiles of probabilities 10% and 90% of the Normalized RMSE. Figure (b) represents the

proportion of runs allocated to the accurate code.

kriging when the coarse code is informative and its performance is equivalent to it when the

coarse code is not useful. Furthermore, the different proportions of runs for the accurate code

emphasizes that the criterion accurately determines the contribution of each code to the total

model error and the optimal run allocation between the accurate and the coarse codes.

5.4 Conclusion

This chapter deals with sequential strategies for kriging and co-kriging models. First, we have

presented classical sequential criteria for the kriging model and we have suggested another

criterion based on the Leave-One-Out cross validation errors. This criterion has allowed us

to set the new observations at locations where the model error is important. The examples

presented in the last section have highlighted the efficiency of the suggested criterion. Indeed,

for non-stationary functions, it provides results significantly better than classical criteria and

for stationary ones its performance is equivalent to them. We have also emphasized the

performance of the suggested criterion on a real application. Furthermore, we show in the

application that when the simulations can be performed in parallel, our method has performed

better.

Second, we have presented the extension of our criterion to multi-fidelity co-kriging models.

We have shown in the application that performing a multi-fidelity sequential co-kriging is

worthwhile when the coarse code versions are informative (i.e. highly correlated with the

accurate code). Furthermore, a strength of the proposed approach is that it performs as well

as a sequential kriging when the coarse code versions are not informative. In fact, the proposed
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Figure 5.11: Comparison between q = 10 points at-a-time sequential kriging and (q1, q2)

points at-a-time sequential co-kriging. On Figure (a) the bold circles represents the mean of

the Normalized RMSE for the sequential kriging and the bold triangles represent the one of the

sequential co-kriging. Furthermore, the solid lines represent the quantiles of probabilities 10%

and 90% of the Normalized RMSE for the sequential co-kriging and the dashed ones represent

it for the sequential kriging. On Figure (b) the squares represent the median number of runs

for the coarse code during the sequential co-kriging and the triangles represent it for the

accurate code.

extension takes into account the contribution of each code to the total predictor mean squared

errors and it determines the best run allocation between accurate and coarse code versions

given a CPU time budget.



Chapter 6

Multi-fidelity sensitivity analysis

6.1 Introduction

Complex computer codes usually have a large number d of input parameters. The determi-

nation of the important input parameters can be carried out by a global sensitivity analysis.

We focus on Sobol indices [Sobol, 1993] which are a variance-based importance measure of

the model input parameters on the model response. They are based on the Hoeffding-Sobol

decomposition suggested by [Hoeffding, 1948] which is valid when the input parameters are

independent random variables. We consider the independent case in our framework. For an

extension of the Hoeffding-Sobol decomposition in a non-independent case, the reader is re-

ferred to [Chastaing et al., 2012]. Furthermore, other strategies for sensitivity analysis with

dependent inputs are suggested by [Borgonovo, 2007], [Da Veiga et al., 2009], [Li et al., 2010],

[Kucherenko et al., 2012] and [Mara and Tarantola, 2012]. Nevertheless, the estimation of the

Sobol indices by sampling methods requires a large number of simulations, that are sometimes

too costly and time-consuming. A popular method to overcome this difficulty is to build a

mathematical approximation of the code output [Marseguerra et al., 2003] and [Iooss et al.,

2006].

We deal in this chapter with the use of kriging and multi-fidelity co-kriging models to

estimate Sobol indices. A pioneering article dealing with the kriging approach to perform

global sensitivity analysis is the one of [Oakley and O’Hagan, 2004]. They suppose that our

prior knowledge about the code can be modeled by a Gaussian process and they estimate

the Sobol indices thanks to numerical integrations. The strength of the suggested approach is

that it allows for inferring from the surrogate model uncertainty about the Sobol indices. This

method is also investigated in [Marrel et al., 2009]. However, the implementation of the method

is complex and it is computationally expensive for general covariance kernels. Furthermore, it

does not take into account the numerical errors related to the integral evaluations. Another

flaw of the method presented in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009] is that

it is not able to handle the real Sobol indices but only an approximation of them.

On the other hand, a method giving confidence intervals for the Sobol index estimates and

taking into account both the meta-model uncertainty and the numerical errors on the Sobol

177
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index estimations is suggested in [Janon et al., 2011]. They consider a sampling strategy to

estimate the Sobol indices instead of numerical integrations and they infer from the sampling

errors thanks to a bootstrap procedure. Furthermore, to deal with the meta-model error,

they consider an upper bound on it. In the kriging case they use the kriging variance up to

a multiplicative constant as upper bound. Nevertheless, this is a rough upper bound which

considers the worst error on a test sample. Furthermore, this method does not allow for

inferring from the meta-model uncertainty about the Sobol indices.

We propose in this chapter a method combining the approaches of [Oakley and O’Hagan,

2004] and [Janon et al., 2011]. As in [Oakley and O’Hagan, 2004] we consider the code as

a realization of a Gaussian process. Nevertheless, we use the estimator suggested in [Janon

et al., 2011] to estimate the Sobol indices instead of numerical integrations. As a consequence,

we can use the bootstrap method presented in [Archer et al., 1997] to infer from the sampling

error on the Sobol indices estimation. Furthermore, contrary to [Oakley and O’Hagan, 2004]

and [Marrel et al., 2009] we deal with the real Sobol indices. As a consequence, we introduce

non-asymptotics certified Sobol indices estimations, i.e. with confidence intervals which take

into account the surrogate model error and the numerical integration error.

Finally, we extend the suggested approach to multi-fidelity co-kriging models. A defini-

tion of Sobol indices for multi-fidelity computer codes is presented in [Jacques et al., 2006].

However, their approach is based on tabulated biases between fine and coarse codes and does

not allow for inferring from the meta-model uncertainty. The co-kriging model fixes these

weaknesses since it allows for considering general forms for the biases and for inferring from

the surrogate model error.

This chapter is organized as follows. First we introduce in Section 6.2 the so-called Sobol

indices. Then, we present in Section 6.3 the kriging-based sensitivity analysis suggested by

[Oakley and O’Hagan, 2004]. Our approach is developed in Section 6.4. In particular, we give

an important result allowing for effectively sampling with respect to the kriging predictive

distribution in Subsection 6.4.3. Finally, we extend in Section 6.5 the presented approaches to

multi-fidelity co-kriging models. We highlight that we present in Subsection 6.5.2 a method

to sampling with respect to the multi-fidelity predictive distribution in a Universal co-kriging

case. Indeed, as presented in Section 4.3, in this case the predictive distribution is not anymore

Gaussian. We propose a method to tackle this issue.

6.2 Global sensitivity analysis: the method of Sobol

We present in this section the method of Sobol for global sensitivity analysis [Sobol, 1993].

It is inspired by the book of [Saltelli et al., 2000] giving an overview of classical sensitivity

analysis methods.

6.2.1 Sobol variance-based sensitivity analysis

Let us consider the input parameter space Q ⊆ R
d such that (Q,B(Q)) is a measurable product

space of the form:

(Q,B(Q)) = (Q1 × · · · ×Qd,B(Q1 × · · · ×Qd)),
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where B is the Borelian σ-algebra and Qi ⊂ R is a nonempty open set, for 1, . . . , d. Further-

more, we consider a probability measure µ on (Q,B(Q)), values in R and of the form

µ(x) = µ1(x
1)⊗ · · · ⊗ µd(x

d).

The Hoeffding-Sobol decomposition (see [Hoeffding, 1948]) states that any function z(x) ∈
L2
µ(Q) can be decomposed into summands of increasing dimensionality in such way:

z(x) = z0 +
∑

i=1

zi(x
i) +

∑

1≤i<j≤k

zij(x
i, xj) + · · ·+ z1,2,...,d(x

1, . . . , xd) =
∑

u∈P
zu(x

u), (6.1)

where P is the collection of all subsets of {1, . . . , d} and xu is a group of variables such that

xu = (xi)i∈u. Furthermore, the decomposition is unique if we consider the following property

for every summand u = (u1, . . . , uk)1≤k≤d, 1 ≤ ui ≤ d:
∫

zu(x
u) dµui(x

ui) = 0, ∀i = 1, . . . , k. (6.2)

A consequence of this property is that all the summands are orthogonal, i.e. for every zu(x
u)

and zv(x
v) such that u, v ∈ P and u 6= v, we have:

∫

zu(x
u)zv(x

v) dµ(x) = 0. (6.3)

Another consequence is that z0 represents the mean of z(x) with respect to the measure µ(x)

z0 =

∫

z(x) dµ(x). (6.4)

Sobol [Sobol, 1993] showed that the decomposition (6.1) can be evaluated via multi-dimensional

integrals through the following procedure

zi(x
i) =

∫

z(x) dµ−i(x)− z0,

zij(x
i, xj) =

∫

z(x) dµ−{i,j}(x)− zi(x
i)− zj(x

j)− z0,

...

zu(x
u) =

∫

z(x) dµ−u(x)−
∑

v⊂u

zv(x
v),

where µ−u(x
−u) =

⊗d
i=1
i 6∈u

µi(x
i) and u ∈ P . From this scheme, we can naturally develop the

variance-based sensitivity indices of Sobol. First, let us consider the total variance D of z(x):

D =

∫

z2(x) dµ(x)− z20 . (6.5)

From the orthogonal property (6.3) and by squaring and integrating the decomposition (6.1),

we obtain

D =

d
∑

i=1

Di +
∑

1≤i<j≤d

Dij + · · ·+D1,2,...,d =
∑

u∈P
Du, (6.6)
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with

Du =

∫

z2u(x
u) dµ−u(x). (6.7)

Finally, the Sobol sensitivity indices are given by

Su =
Du

D
, (6.8)

where u ∈ P . We note that we have the following useful equality which allows for easily

interpreting Su as the part of variance of z(x) due to xu and not explained by xv with v ⊂ u.

1 =
d
∑

i=1

Si +
∑

1≤i<j≤d

Sij + · · ·+ S1,2,...,d =
∑

u∈P
Su. (6.9)

In particular, Si is called the first-order sensitivity index for variable xi. It measures the

main effect of xi on the output, i.e. the part of variance of z(x) explained by the factor

xi. Furthermore, Sij for i 6= j is the second-order sensitivity index. It measures the part of

variance of z(x) due to xi and xj and not explained by the individual effects of xi and xj .

6.2.2 Monte-Carlo Based estimations of Sobol indices

Now, let us suppose that the inputs are a random vector X = (X1, . . . , Xd) defined on

the probability space (ΩX ,FX ,PX) and with measure µ. Using the previous formalism, the

summands of the Hoeffding-Sobol decomposition (6.1) can be interpreted as conditional ex-

pectations on the probability space (ΩX ,FX ,PX):

z0 = EX [z(X)] ,

zi(X
i) = EX

[

z(X)|X i
]

− z0,

zij(X
i, Xj) = EX

[

z(X)|X i, Xj
]

− zi(X
i)− zj(X

j)− z0,

...

zu(X
u) = EX [z(X)|Xu]−

∑

v⊂u

zv(X
v),

with u ∈ P. Furthermore, the total variance in (6.5) becomes:

D = varX (z(X)) (6.10)

and the partial variances presented in (6.7) can be written with the following form

Du = varX (EX [z(X)|Xu])−
∑

v⊂u

varX (EX [z(X)|Xv]) . (6.11)

Now, let us denote by Qd1 = Qi1 × · · · × Qid1
, d1 ≤ d, {i1, . . . , id1} ∈ P and Qd2 =

Qj1 × · · · × Qjd2
such that {j1, . . . , jd2} = {1, . . . , d} \ {i1, . . . , id1}. Analogously, we use

the notation Xd1 = (Xi)i∈{i1,...,id1}, X
d2 = (Xj)j∈{j1,...,jd2}, µ

d1 =
(

⊗

i∈{i1,...,id1}
µi

)

and

µd2 =
(

⊗

j∈{j1,...,jd2}
µj

)

where µd1 and µd2 are probability measures on (Qd1 ,B(Qd1)) and
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(Qd2 ,B(Qd2)). Consequently, we have the equalities µ = µd1 ⊗ µd2 , Q = Qd1 × Qd2 and

X = (Xd1 , Xd2) with d = d1 + d2.

We are interested in evaluating the closed sensitivity index:

SXd1
=
V Xd1

V
=

varX
(

EX

[

z(X)|Xd1
])

varX (z(X))
. (6.12)

A first method would be to use d-dimensional numerical integrations to approximate the

numerator and denominator of (6.12) as presented in [Oakley and O’Hagan, 2004] and [Marrel

et al., 2009]. Nonetheless, since d is large in general, this method leads to numerical issues

and is computationally expensive. A second approach is to take advantage of the probabilistic

interpretation of the Sobol indices and to use a Monte-Carlo procedure to evaluate the different

integrals as presented in the forthcoming developments (see [Sobol, 1993]).

Proposition 6.1. Let us consider the random vectors (X, X̃) with X = (Xd1 , Xd2) and

X̃ = (Xd1 , X̃d2) where Xd1 is a random vector on Qd1 with the measure µd1 , Xd2 and

X̃d2 are random vectors on Qd2 with the measure µd2 and Xd2 ⊥ X̃d2 . We have the

following equality:

varX

(

EX

[

z(X)|Xd1
])

= covX

(

z(X), z(X̃)
)

. (6.13)

Proof. First, the equality z(X)
L
= z(X̃) implies that

covX

(

z(X), z(X̃)
)

= EX

[

z(X)z(X̃)
]

− EX

[

z(X̃)
]

EX [z (X)]

= EX

[

z(X)z(X̃)
]

− EX [z (X)]2 .

Then, the following equalities hold since Xd2 ⊥ X̃d2 and z(X)
L
= z(X̃)

EX

[

z(X)z(X̃)
]

= EX

[

EX

[

z(X)z(X̃)|Xd1
]]

= EX

[

EX

[

z(X̃)|Xd1
]

EX

[

z(X)|Xd1
]]

= EX

[

EX

[

z(X)|Xd1
]2
]

.

Finally, denoting that EX [z (X)] = EX

[

EX

[

z (X) |Xd1
]]

we obtain the equalities

covX

(

z(X), z(X̃)
)

= EX

[

EX

[

z(X)|Xd1
]2
]

− EX

[

EX

[

z (X) |Xd1
]]2

= varX

(

EX

[

z(X)|Xd1
])

.

SXd1 in Equation (6.12) can thus be estimated by considering two random vectors (Xi)i=1,...,m

and (X̃i)i=1,...,m, m ∈ N
∗ lying in (ΩX ,FX ,PX) such that Xi

L
= X and X̃i

L
= X̃ (

L
= stands for

an equality in distribution) and by using an estimator for the covariance covX

(

z(X), z(X̃)
)

and the variance varX (z(X)).
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Following this principle, Sobol [Sobol, 1993] suggests the following estimator for the ratio

in Equation (6.12):

V Xd1

m

Vm
=

1
m

∑m
i=1 z(Xi)z(X̃i)− 1

m

∑m
i=1 z(Xi)

1
m

∑m
i=1 z(X̃i)

1
m

∑m
i=1 z(Xi)2 −

(

1
m

∑m
i=1 z(Xi)

)2 . (6.14)

This estimation is improved by [Janon et al., 2012] who propose the following estimator:

V Xd1

m

Vm
=

1
m

∑m
i=1 z(Xi)z(X̃i)−

(

1
2m

∑m
i=1 z(Xi) + z(X̃i)

)2

1
m

∑m
i=1 z(Xi)2 −

(

1
2m

∑m
i=1 z(Xi) + z(X̃i)

)2 . (6.15)

In particular they demonstrate that the asymptotic variance in (6.15) is better than the one

in (6.14) and they show that the estimator (6.15) is asymptotically efficient for the first order

indices. The main weakness of the estimators (6.14) and (6.15) is that they are sometimes

not accurate for small values of V Xd1/V in (6.12). To tackle this issue, [Sobol et al., 2007]

propose the following estimator

V Xd1

m

Vm
=

1
m

∑m
i=1 z(Xi)z(X̃i)− 1

m

∑m
i=1 z(Xi)z(

˜̃Xi)

1
m

∑m
i=1 z(Xi)2 −

(

1
m

∑m
i=1 z(Xi)

)2 , (6.16)

where ˜̃X = (X̃d1 , X̃d2), X̃d1 L
= Xd1 , X̃d1 ⊥ Xd1 and ( ˜̃Xi)i=1,...,m is such that ˜̃Xi

L
= ˜̃X for all

i = 1, . . . ,m.

6.3 Kriging-based sensitivity analysis: a first approach

We present in this section the approach suggested by [Oakley and O’Hagan, 2004] and [Marrel

et al., 2009] to perform global sensitivity analysis using kriging surrogate models. Then, we

present an alternative method that allows us to avoid complex numerical integrations. Never-

theless, we will see that the two proposed approaches do not provide a correct representation

of the Sobol indices. We handle this problem in the next section.

6.3.1 Kriging-based sensitivity indices

Let us introduce the kriging-based global sensitivity analysis presented in [Oakley and O’Hagan,

2004] and [Marrel et al., 2009]. The idea is to consider that our prior knowledge about the

code z(x) can be modeled by a Gaussian process Z(x) with mean f ′(x)β and covariance kernel

σ2r(x, x̃). Then, we surrogate the code z(x) by a Gaussian process Zn(x) having the predictive

distribution of Z(x) conditioning by the known value zn of z(x) at points in the experimental

design set D = {x1, . . . , xn}, xi ∈ Q:

Zn(x) ∼ GP
(

mn(x), s
2
n(x, x̃)

)

, (6.17)

where the meanmn(x) and the variance s2n(x, x̃) corresponds to the kriging equations presented

in Subsection 1.2.1:

mn(x) = f ′(x)β̂ + r′(x)R−1
(

zn − Fβ̂
)

,
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s2n(x, x̃) = σ2



1−
(

f ′(x) r′(x)
)

(

0 F′

F R

)−1(

f(x̃)

r(x̃)

)



 ,

where β̂ =
(

F′R−1F
)−1

F′R−1zn and σ2 is estimated with a restricted maximum likelihood

method, i.e. σ̂2 = (zn − β̂F)′R−1(zn − β̂F)/(n− p) where p is the size of β.

The idea suggested in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009] is to substitute

z(x) with Zn(x) in Equation (6.12):

SXd1

n =
V Xd1

n

Vn
=

varX
(

EX

[

Zn(X)|Xd1
])

varX (Zn(X))
. (6.18)

Therefore, if we denote by (ΩZ ,FZ ,PZ) the probability space where the Gaussian process

Z(x) lies, then the estimator SXd1

n lies in (ΩZ ,FZ ,PZ) (it is hence random). We note that

Zn(X) is defined on the product probability space (ΩX × ΩZ , σ(FX ×FZ),PX ⊗ PZ).

Nevertheless, the distribution of SXd1

n is intractable and [Oakley and O’Hagan, 2004]

and [Marrel et al., 2009] focus on its mean and variance. More precisely, in order to derive

analytically the Sobol index estimates they consider the following quantity:

ŜXd1

n =
EZ

[

varX
(

EX

[

Zn(X)|Xd1
])]

EZ [varX (Zn(X))]
, (6.19)

where EZ [.] stands for the expectation in the probability space (ΩZ ,FZ ,PZ). Furthermore,

the uncertainty on ŜXd1

n is evaluated with the following quantity:

σ2(S̃Xd1

n ) =
varZ

(

varX
(

EX

[

Zn(X)|Xd1
]))

EZ [varX (Zn(X))]2
. (6.20)

As shown in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009], the equations (6.19) and

(6.20) can be derived analytically through multi-dimensional integrals for the cases d1 = i,

i = 1, . . . , d, i.e. for the first-order indices. Furthermore, with some particular formulations

of f(x), µ(x) and r(x, x̃), these multi-dimensional integrals can be written as product of one-

dimensional ones.

Discussions: The method suggested in [Oakley and O’Hagan, 2004] and [Marrel et al., 2009]

provides an interesting tool to perform sensitivity analysis of complex models. Nevertheless,

in our opinion it suffers from the following flaws:

1. For general choice of f(x), µ(x) and r(x, x̃), the numerical evaluations of (6.19) and

(6.20) can be very complex since it requires multi-dimensional integrals.

2. The method is derived for first-order sensitivity indices and cannot easily be extended

to higher order indices.

3. The method allows for inferring from the surrogate model uncertainty about the sensi-

tivity indices but does not allow for taking into account the numerical errors related to

the multi-dimensional integral estimations.
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4. The considered index expectation and deviation do not correspond to the real Sobol

index ones since we obviously have

EZ

[

varX
(

EX

[

Zn(X)|Xd1
])]

EZ [varX (Zn(X))]
6= EZ

[

varX
(

EX

[

Zn(X)|Xd1
])

varX (Zn(X))

]

and
varZ

(

varX
(

EX

[

Zn(X)|Xd1
]))

EZ [varX (Zn(X))]2
6= varZ

(

varX
(

EX

[

Zn(X)|Xd1
])

varX (Zn(X))

)

.

In the next subsection, we deal with the points 1, 2 and 3 by suggesting a Monte-Carlo sampling

method to evaluate (6.19) and (6.20) instead of quadrature integrations. Nonetheless, we do

not tackle the issue of point 4. To handle it, we suggest another method in Section 6.4.

6.3.2 Monte-Carlo estimations for the first approach

We present in this subsection, another approach to deal with the evaluation of S̃Xd1

n in

(6.19). Its principle simply consists in using the estimation methods suggested in Subsec-

tion 6.2.2 instead of quadrature integrations to compute EZ

[

varX
(

EX

[

Zn(X)|Xd1
])]

and

EZ [varX (Zn(X))]. We present the method with the estimator presented in [Sobol, 1993].

The extension to those presented in [Janon et al., 2011] and [Sobol et al., 2007] is straightfor-

ward. Let us substitute in the estimator presented in Equation (6.14) the code z(x) by the

Gaussian process Zn(x):

V Xd1

m,n

Vm,n
=

1
m

∑m
i=1 Zn(Xi)Zn(X̃i)− 1

m

∑m
i=1 Zn(Xi)

1
m

∑m
i=1 Zn(X̃i)

1
m

∑m
i=1 Zn(Xi)2 −

(

1
m

∑m
i=1 Zn(Xi)

)2 , (6.21)

where the samples (Xi)i=1,...,m and (X̃i)i=1,...,m are those introduced in Subsection 6.2.2.

Therefore, V Xd1

m,n /Vm,n is an estimator of V Xd1/V (6.12) when we replace the true function

z(x) by its approximation Zn(x) built from n observations zn of z(x) and when we estimate

the variances and the expectation involved in (6.12) by a Monte-Carlo method with m par-

ticles. To be clear in the remainder of this chapter, we name as Monte-Carlo error the one

related to the Monte-Carlo estimation and we name as meta-model error the one related to

the substitution of z(x) by a surrogate model. Furthermore, m will always denote the number

of Monte-Carlo particles and n the number of observations used to build the surrogate model.

The strength of this formulation is that it gives closed form formulas for the evaluation

of (6.19) for any choice of f(x), µ(x) and r(x, x̃) contrary to [Oakley and O’Hagan, 2004]

and [Marrel et al., 2009]. Furthermore, this method can directly be used for any order of

Sobol indices which contrasts with the one presented in Subsection (6.3.1). Finally, unlike

quadrature integrations, Monte-Carlo integrations allow for taking into account the numerical

errors related to the integral evaluations. In particular, as presented in [Archer et al., 1997],

the bootstrap method can be directly used to obtain confidence intervals on the Sobol indices.

We give in the following equation the Monte-Carlo estimation of S̃Xd1

n (6.19) corresponding

to the kriging-based sensitivity indices presented in [Oakley and O’Hagan, 2004] and [Marrel

et al., 2009].
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S̃Xd1

m,n =
EZ

[

V Xd1
m,n

]

EZ [Vm,n]

=
1
m

∑m
i=1 s

2
n(Xi,X̃i)+mn(Xi)mn(X̃i)− 1

m2

∑m
i,j=1 s

2
n(Xi,X̃j)+mn(Xi)mn(X̃j)

1
m

∑m
i=1 s

2
n(Xi,Xi)+mn(Xi)mn(Xi)− 1

m2

∑m
i,j=1 s

2
n(Xi,Xj)+mn(Xi)mn(Xj)

.
(6.22)

We note that the expression of S̃Xd1

m,n is different from the one obtained by estimating

V Xd1

m /Vm in (6.14) by replacing z(x) by the predictive mean mn(x). In S̃Xd1

m,n we take into

account the kriging predictive covariance through the terms s2n(Xi, X̃j) and s2n(Xi, Xj).

6.4 Kriging-based sensitivity analysis: a second approach

We have highlighted at the end of Subsection 6.3.1 that one of the main flaws of the method

presented by [Oakley and O’Hagan, 2004] is that it does not care about the real Sobol in-

dices. We present in Subsection 6.4.1 another approach which deals with this issue. Then, in

Subsection 6.4.3 we present an efficient method to compute it.

6.4.1 Kriging-based Sobol index estimation

First of all, in the previous section we have considered the variance of the main effects V Xd1 and

the total variance V separately in Equation (6.12). That is why the ratio of the expectations

is considered as a sensitivity index in Equation (6.19). In fact, in a Sobol index framework,

we are interested in the ratio between V Xd1 and V . Therefore, we suggest to deal directly

with the following estimator (see Equation (6.21)):

SXd1

m,n =
V Xd1

m,n

Vm,n
, (6.23)

which corresponds to the ratio V Xd1/V after substituting the code z(x) by the Gaussian

process Zn(x) and estimating the terms varX
(

EX

[

Zn(X)|Xd1
])

and varX (Zn(X)) with a

Monte-Carlo procedure as presented in [Sobol, 1993]. We note that we can naturally adapt

the presented estimator with the ones suggested by [Sobol et al., 2007] and [Janon et al.,

2012]. Nevertheless, we cannot obtain closed form expressions for the mean or the variance of

this estimator. We thus have to numerically estimate them. We present in Algorithm 4 the

suggested method to compute the distribution of SXd1

m,n .

The output
(

ŜXd1

m,n,k,l

)

k=1,...,NZ
l=1,...,B

of Algorithm 4 is a sample of size NZ ×B of SXd1

m,n defined

on (ΩX ×ΩZ , σ(FX ×FZ),PX ×PZ) (i.e. SXd1

m,n takes both into account the uncertainty of the

meta-model and the one of the Monte-Carlo integrations). Then, we can deduce the following

estimate S̄Xd1

m,n for SXd1 :

S̄Xd1

m,n =
1

NZB

∑

k=1,...,NZ
l=1,...,B

ŜXd1

m,n,k,l. (6.24)
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Algorithm 4 Evaluation of the distribution of SXd1

m,n .

1: Build Zn(x) from the n observations zn of z(x) at points in D (see Equation (6.17)).
2: Generate two samples (xi)i=1,...,m and (x̃i)i=1,...,m of the random vectors (Xi)i=1,...,m and

(X̃i)i=1,...,m with respect to the probability measure µ (see Proposition 6.1).
3: Set NZ the number of samples for Zn(x) and B the number of bootstrap samples for

evaluating the uncertainty related to Monte-Carlo integrations.
4: for k = 1, . . . , NZ do
5: Sample a realization zn(x) of Zn(x) with x = {(xi)i=1,...,m, (x̃i)i=1,...,m}
6: Compute ŜXd1

m,n,k,1 thanks to Equation (6.21) from zn(x).
7: for l=2,. . . ,B do
8: Sample with replacements two samples u and ũ from {(xi)i=1,...,m} and

{(x̃i)i=1,...,m}.
9: Compute ŜXd1

m,n,k,l from zn(x
B) with xB = {u, ũ}.

10: end for
11: end for

return
(

ŜXd1

m,n,k,l

)

k=1,...,NZ
l=1,...,B

Furthermore, we can estimate the variance of SXd1

m,n with:

σ̂2(SXd1

m,n ) =
1

NZB − 1

∑

k=1,...,NZ
l=1,...,B

(

ŜXd1

m,n,k,l − S̄Xd1

m,n

)2
. (6.25)

We note that the computational limitation of the algorithm is the sampling of the Gaus-

sian process Zn(x) on x = {(xi)i=1,...,m, (x̃i)i=1,...,m}. For that reason, we use a bootstrap

procedure to evaluate the uncertainty of the Monte-Carlo integrations instead of sampling

different realizations of the random vectors (Xi)i=1,...,m and (X̃i)i=1,...,m. Furthermore, the

same bootstrap samples are used for the NZ realizations of Zn(x).

Nevertheless, the number of Monte-Carlo particles m is very large in general - it is often

around m = 5000d - and it thus can be an issue to compute realizations of Zn(x) on x. We

present in the Subsection 6.4.3 an efficient method to deal with this point for any choice of

µ(x), f(x) and r(x, x̃) and any index order.

6.4.2 Determining the minimal number of Monte-Carlo particles m

We are interested here in quantifying the uncertainty of the considered estimator SXd1

m,n (6.23).

This estimator integrates two sources of uncertainty, the first one is related to the meta-model

approximation and the second one is related to the Monte-Carlo integration. Therefore, we

can decompose the variance of SXd1

m,n as follows:

var
(

SXd1

m,n

)

= varZ

(

EX

[

SXd1

m,n

∣

∣Zn(x)
])

+ varX

(

EZ

[

SXd1

m,n

∣

∣(Xi, X̃i)i=1,...,m

])

where varZ

(

EX

[

SXd1

m,n

∣

∣Zn(x)
])

is the contribution of the meta-model on the variability of

SXd1

m,n and varX

(

EZ

[

SXd1

m,n

∣

∣(Xi, X̃i)i=1,...,m

])

is the one of the Monte-Carlo integration. Fur-
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thermore, we have the following equalities:







varZ

(

EX

[

SXd1

m,n

∣

∣Zn(x)
])

= EX

[

varZ

(

SXd1

m,n

∣

∣(Xi, X̃i)i=1,...,m

)]

varX

(

EZ

[

SXd1

m,n

∣

∣(Xi, X̃i)i=1,...,m

])

= EZ

[

varX

(

SXd1

m,n

∣

∣Zn(x)
)]

Therefore, from the sample
(

ŜXd1

m,n,k,l

)

k=1,...,NZ
l=1,...,B

we can estimate the part of variance of the

estimator SXd1

m,n related to the meta-modelling as follows:

σ̂2Zn
(SXd1

m,n ) =
1

B

B
∑

l=1

1

NZ − 1

NZ
∑

k=1

(

ŜXd1

m,n,k,l − ¯̂SXd1

m,n,l

)2
(6.26)

where
¯̂SXd1

m,n,l =
(

∑NZ
i=1 SXd1

m,n,i,l

)

/NZ . Furthermore, we can evaluate the part of variance of

SXd1

m,n related to the Monte-Carlo integrations as follows:

σ̂2MC(SXd1

m,n ) =
1

NZ

NZ
∑

i=1

1

B − 1

B
∑

i=1

(

ŜXd1

m,n,k,i −
¯̂̄SXd1

m,n,k

)2

(6.27)

where
¯̂̄SXd1

m,n,k =
(

∑B
i=1 SXd1

m,n,k,i

)

/B.

Therefore, we have three different cases:

1. σ̂2Zn
(SXd1

m,n ) ≫ σ̂2MC(SXd1

m,n ): the estimation error of SXd1

m,n is essentially due to the meta-

model error.

2. σ̂2Zn
(SXd1

m,n ) ≪ σ̂2MC(SXd1

m,n ): the estimation error of SXd1

m,n is essentially due to the Monte-

Carlo error.

3. σ̂2Zn
(SXd1

m,n ) ≈ σ̂2MC(SXd1

m,n ): the metamodel and the Monte-Carlo errors have the same

contribution on the estimation error of SXd1

m,n .

Considering that the number of observations n is fixed, the minimal number of Monte-Carlo

particles m is the one such that σ̂2Zn
(SXd1

m,n ) ≈ σ̂2MC(SXd1

m,n ). We call it “minimal” since it is

the one from which the Monte-Carlo error no longer dominates. Therefore, it should be the

minimum number of required particles in practical applications. In practice, to determine

it, we start with a small value of m and we increase it while the inequality σ̂2Zn
(SXd1

m,n ) >

σ̂2MC(SXd1

m,n ) is true.

6.4.3 Sampling with respect to the kriging predictive distribution on large

data sets

We saw in the previous subsection in Algorithm 4 that in a kriging framework, we can assess

the distribution of the Sobol index estimators from realizations of the conditional Gaussian

process Zn(x) at points in x. Nevertheless, the size of the corresponding random vector

could be important since it equals twice the number of Monte-Carlo particles m. Therefore,

computing such realizations could lead numerical issues such as ill-conditioned matrix or huge
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computational cost. Especially if we use a Cholesky decomposition since its complexity is

O((2m)3) and it often leads ill-conditioned matrix since the predictive variance of Zn(x) is

close to zero around the experimental design points.

Let us introduce the following unconditioned Gaussian process:

Z̃(x) ∼ GP(0, σ2r(x, x̃)). (6.28)

We have the following proposition [Chilès and Delfiner, 1999]:

Proposition 6.2 (Sampling Zn(x) by kriging conditioning). Let us consider the follow-

ing Gaussian process:

Z̃n(x) = mn(x)− m̃n(x) + Z̃(x), (6.29)

where mn(x) is the predictive mean of Zn(x) (6.17),

m̃n(x) = f ′(x)β̃ + r′(x)R−1
(

Z̃(D)− Fβ̃
)

(6.30)

and β̃ =
(

F′R−1F
)−1

F′R−1Z̃(D). Then, we have

Z̃n(x)
L
= Zn(x),

where Zn(x) has the distribution of the Gaussian process Z(x) of mean f ′(x)β and co-

variance kernel σ2r(x, x̃) conditioned by zn at points in D (6.17). We note that we are

in a Universal kriging case, i.e. we infer from the parameter β. In a simple kriging case,

the proposition remains true by setting β̃ = 0.

Proof. Let us introduce the following random process:

Z̃n(x) = mn(x)− m̃n(x) + Z̃(x), (6.31)

where:

Z̃(x) ∼ GP(0, σ2r(x, x̃)).

The random process Z̃n(x) is Gaussian since it is a linear transformation of the Gaussian

process Z̃(x). As a Gaussian process is entirely determined by its mean and covariance kernel,

we just have to prove the following equalities:

E[Z̃n(x)] = mn(x) (6.32)

and:

cov(Z̃n(x), Z̃n(x̃)) = s2n(x, x̃). (6.33)

First, from the equalities E[Z̃(x)] = 0 and:

E[m̃n(x)] = f ′(x)E[β̃] + r′(x)R−1
(

E[Z̃(D)]− FE[β̃]
)

= 0,

the equality (6.32) holds. Then, we have to verify the equality (6.33).

cov(Z̃n(x), Z̃n(x̃)) = cov(m̃n(x), m̃n(x̃))− 2cov(Z̃(x), m̃n(x̃)) + cov(Z̃(x), Z̃(x̃)).
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First, we have:

cov(Z̃(x), Z̃(x̃)) = σ2r(x− x̃). (6.34)

Second, we have the following equality:

cov(m̃n(x), m̃n(x̃)) = (f ′(x)− r′(x)R−1F)cov(β̃, β̃)(f(x̃)− F′R−1r(x̃))

+ r′(x)R−1cov(Z̃(D), Z̃(D))R−1r(x̃) + 2f ′(x)cov(β̃, Z̃(D))R−1r(x̃)

− 2r′(x)R−1cov(Z̃(D), β̃)F′R−1r(x̃),

where:

cov(β̃, Z̃(D)) =
(

F′R−1F
)−1

F′R−1cov(Z̃(D), Z̃(D))

= σ2
(

F′R−1F
)−1

F′

and:

cov(β̃, β̃) =
(

F′R−1F
)−1

F′R−1cov(Z̃(D), Z̃(D))R−1F
(

F′R−1F
)−1

= σ2
(

F′R−1F
)−1

.

Therefore, the following equality stands:

cov(m̃n(x), m̃n(x̃))/σ
2 = (f ′(x)− r′(x)R−1F)

(

F′R−1F
)−1

(f(x̃)− F′R−1r(x̃))

+ r′(x)R−1r(x̃)− 2r′(x)R−1F
(

F′R−1F
)−1

F′R−1r(x̃)

+ 2f ′(x)
(

F′R−1F
)−1

F′R−1r(x̃).

Third, the following equality stands:

cov(Z̃(x), m̃n(x̃))/σ
2 = r′(x)R−1F

(

F′R−1F
)−1

f(x̃)

+ r′(x)
(

R−1r(x̃)−R−1F
(

F′R−1F
)−1

F′R−1r(x̃)
)

.

Finally, we obtain:

cov(Z̃n(x), Z̃n(x̃))/σ
2 = r(x− x̃)− r′(x)R−1r(x̃)

+ (f ′(x)− r′(x)R−1F)
(

F′R−1F
)−1

(f(x̃)− F′R−1r(x̃)).

Therefore, we have the following equality:

cov(Z̃n(x), Z̃n(x̃)) = s2n(x, x̃) (6.35)

and Z̃n(x) has the same distribution as Zn(x).

The strength of Proposition 6.2 is that it allows for sampling with respect to the distribu-

tion of Zn(x) by sampling an unconditioned Gaussian process Z̃(x). The first consequence is

that the conditioning of the covariance matrix is better since the variance of Z̃(x) is not close

to zero around points in D. The second important consequence is that it allows for using effi-

cient algorithms to compute realizations of Z̃(x). For example, if r(x, x̃) is a stationary kernel,
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one can use the Bochner’s Theorem 1.3 and the Fourier representation of Z̃(x) to compute

realizations of Z̃(x) as presented in Subsection 1.4.2 and in [Stein, 1999]. Furthermore, for

tensorised covariance kernel (see Introduction of Section 1.4), an even more efficient method is

to use the Mercer’s Theorem 1.4.4 and the Nyström procedure to approximate the Karhunen-

Loeve decomposition of Z̃(x) as presented in Subsection 1.4.4. One of the main advantage of

the Karhunen-Loeve decomposition of Z(x) is that it allows for sequentially adding new points

to x without re-estimating the decomposition. Therefore, we can easily obtain the values of

a given realization zn(x) of Zn(x) at new points not in x. This interesting property allows us

to efficiently estimate the number m of Monte-Carlo particles such that the metamodel error

and the Monte-Carlo estimation one are equivalent (see Subsection 6.4.2).

6.5 Multi-fidelity co-kriging based sensitivity analysis

Now let us suppose that we have s levels of code (zt(x))t=1,...,s from the less accurate one z1(x)

to the most accurate one zs(x) and that we want to perform a Global sensitivity analysis for

zs(x). To surrogate zs(x), we consider the multi-fidelity co-kriging model presented in Chapter

4 Subsection 4.2.1 after integrating the posterior distribution of the regression parameters

β = (βt)t=1,...,s and adjustment parameters ρ = (ρt−1)t=2,...,s, i.e. the following predictive

distribution:

[Zs(x)|Z(s) = z(s),σ2], (6.36)

where σ2 = (σ2t )t=1,...,s (see Subsection 4.2.1). We note that we consider constant adjustment

coefficients (ρt−1)t=2,...,s. The extension to the case ρt−1(x) = g′(x)βρt−1
is straightforward

(see Chapter 4). As presented in Chapter 4 Section 4.3, the predictive distribution (6.36) is

not anymore Gaussian. Nevertheless, we can have closed form expressions for its mean µsns
(x)

and covariance ksns
(x, x̃):

µsns
(x) = ρ̂s−1µ

s−1
ns−1

(x) + µδs(x) (6.37)

and:

ksns
(x, x̃) = σ̂2ρs−1

ks−1
ns−1

(x, x̃) + kδs(x, x̃), (6.38)

where for t = 1, . . . , s,

(

ρ̂t−1

β̂t

)

= (H′
tR

−1
t Ht)

−1H′
tR

−1
t zt, Ht = [zt−1(Dt) Ft], Ft = f ′t(Dt),

ρ̂0 = 0, H1 = F1, σ̂
2
ρs−1

= ρ̂2t−1 +
[

(H′
tR

−1
t Ht)

−1
]

[1,1]
,

µδt(x) = f ′t(x)β̂t + r′t(x)R
−1
t (zt − Ftβ̂t − ρ̂t−1zt−1(D

t)) (6.39)

and

kδt(x, x̃) = σ2t



rt(x, x̃)−
(

h′
t(x) r′t(x)

)

(

0 H′
t

Ht Rt

)−1(

ht(x̃)

rt(x̃)

)



 , (6.40)

with h′
t(x) = [µt−1

nt−1
(x) f ′t(x)] and h′

1(x) = f ′1(x).
The other notations are presented in Chapter 4 Subsection 4.2.1. We note that the variance

parameter σ2t is estimated with a restricted maximum likelihood method. Thus, its estimation

is given by σ̂2t = (zt −Htβ̂t)
′R−1

t (zt −Htβ̂t)/(nt − pt − 1) where pt is the size of βt.
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We present in Subsection 6.5.1 the extension in a multi-fidelity framework of the Monte-

Carlo estimations for the method of [Oakley and O’Hagan, 2004]. Then, we present in Subsec-

tion 6.5.2 the extension of our approach to perform co-kriging-based multi-fidelity sensitivity

analysis.

6.5.1 Extension of the method of Oakley and O’Hagan for multi-fidelity

co-kriging

Let us denote by S̃Xd1

m,s the estimation of V Xd1/V (6.12) when we substitute zs(x) by Zn,s(x) ∼
[Zs(x)|Z(s) = z(s),σ2] and when we use the Sobol procedure to perform Monte-Carlo integra-
tions (see [Sobol, 1993] and Subsection 6.2.2). Then, the estimator suggested in [Oakley and
O’Hagan, 2004] and [Marrel et al., 2009] becomes in a multi-fidelity framework:

S̃Xd1

m,s =
1
m

∑m

i=1 k
s
ns
(Xi, X̃i) + µs

ns
(Xi)µ

s
ns
(X̃i)− 1

m2

∑m

i,j=1 k
s
ns
(Xi, X̃j) + µs

ns
(Xi)µ

s
ns
(X̃j)

1
m

∑m

i=1 k
s
ns
(Xi, Xi) + µs

ns
(Xi)µs

ns
(Xi)− 1

m2

∑m

i,j=1 k
s
ns
(Xi, Xj) + µs

ns
(Xi)µs

ns
(Xj)

=
U

D
,

where

U =
1

m

m
∑

i=1





s
∑

t=1





s−1
∏

j=t

σ̂2ρj



 kδt(Xi, X̃i) +

s
∑

t,t̃=1





s−1
∏

j=t

ρ̂j









s−1
∏

j=t̃

ρ̂j



µδt(Xi)µδt̃(X̃i)





− 1

m2

m
∑

i,j=1





s
∑

t=1





s−1
∏

j=t

σ̂2ρj



 kδt(Xi, X̃j) +

s
∑

t,t̃=1





s−1
∏

j=t

ρ̂j









s−1
∏

j=t̃

ρ̂j



µδt(Xi)µδt̃(X̃j)



 ,

D =
1

m

m
∑

i=1





s
∑

t=1





s−1
∏

j=t

σ̂2ρj



 kδt(Xi, Xi) +
s
∑

t,t̃=1





s−1
∏

j=t

ρ̂j









s−1
∏

j=t̃

ρ̂j



µδt(Xi)µδt̃(Xi)





− 1

m2

m
∑

i,j=1





s
∑

t=1





s−1
∏

j=t

σ̂2ρj



 kδt(Xi, Xj) +

s
∑

t,t̃=1





s−1
∏

j=t

ρ̂j









s−1
∏

j=t̃

ρ̂j



µδt(Xi)µδt̃(Xj)





and with the conventions ρ̂0 = 0,
∏s−1

i=s ρ̂i = 1, µδ1(x) = µ1n1
(x) and kδ1(x, x̃) = k1n1

(x, x̃).

We note that S̃Xd1

m,s is the analogous of S̃Xd1

m,n presented in Subsection 6.3.2. Furthermore,

the developed expression of S̃Xd1

m,s allows for identifying the contribution of each code level t

to the sensitivity index and the one of the covariance between the bias and the code at level t.

We note that the covariance here is with respect to the distribution of the input parameters

X. Nevertheless, as pointed out in previous sections, this estimator is based on a ratio of

expectations and thus does not correspond to the true Sobol indices.

6.5.2 Extension of the second approach for multi-fidelity co-kriging models

We present here the extension of the approach presented in Section 6.4 to the multi-fidelity

co-kriging model. Therefore, we aim to sample with respect to the distribution of

SXd1

m,s =
1
m

∑m
i=1 Zn,s(Xi)Zn,s(X̃i)− 1

m

∑m
i=1 Zn,s(Xi)

1
m

∑m
i=1 Zn,s(X̃i)

1
m

∑m
i=1 Zn,s(Xi)2 −

(

1
m

∑m
i=1 Zn,s(Xi)

)2 , (6.41)
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which is the analog of SXd1

m,n (6.23) in an univariate case when we substitute z(x) with Zn,s(x) ∼
[Zs(x)|Z(s) = z(s),σ2]. In fact, we can directly use Algorithm 4 by sampling realizations of

Zn,s(x) instead of Zn(x). Moreover, the procedure presented in Subsection 6.4.2 to determine

the optimal number of Monte-Carlo particles m is straightforward.

However, the distribution of Zn,s(x) is not Gaussian and thus the methods presented in

Subsection 6.4.3 cannot be used directly. In order to handle this problem, we consider the

conditional distribution [Zs(x)|Z(s) = z(s),σ2,ρ,β], with σ2 = (σ2t )t=1,...,s, β = (βt)t=2,...,s

and ρ = (ρt−1)t=2,...,s which is Gaussian (see Chapter 4 Section 4.2). Note that we infer

from β1. Furthermore, the Bayesian estimation of (ρt−1,βt) gives us for all t = 2, . . . , s (see

Subsection 4.2.3):
(

ρt−1

βt

)

∼ N
(

(H′
tR

−1
t Ht)

−1H′
tR

−1
t zt, σ

2
t (H

′
tR

−1
t Ht)

−1
)

. (6.42)

Finally, thanks to the recursive formulation given in Chapter 4, we know that the following

Gaussian process has the distribution [Zs(x)|Z(s) = z(s), σ2, ρ,β]:

Zn,s,ρ,β(x) =





s−1
∏

j=1

ρj



Zn,1(x) +

s−1
∑

t=2





s−1
∏

j=t

ρj



 δt,ρt−1,βt
(x) + δt,ρt−1,βs

(x), (6.43)

where (see equations (6.39) and (6.40)):

Zn,1(x) ∼ GP(µδ1(x), kδ1(x, x̃)) (6.44)

and for t = 2, . . . , s:

δt,ρt−1,βt
(x) ∼ GP

(

µt,ρt−1,βt
(x), kt,ρt−1,βt

(x, x̃)
)

, (6.45)

with µt,ρt−1,βt
(x) = r′t(x)R

−1
t (zt − Ftβt − ρt−1zt−1(D

t)) ,
(

(δt,ρt−1,βt
(x))t=2,...,s, Zn,1(x)

)

in-

dependent and

kt,ρt−1,βt
(x, x̃) = σ2t

(

rt(x, x̃)− r′t(x)R
−1
t rt(x̃)

)

.

As a consequence, we can deduce the following algorithm to compute realizations of Zn,s(x) ∼
[Zs(x)|Z(s) = z(s), σ2].

Algorithm 5 provides an efficient tool to sample with respect to the distribution [Zs(x)|Z(s) =

z(s),σ2]. Then, from each sample we can estimate the Sobol indices with a Monte-Carlo proce-

dure. Naturally, we can easily use a bootstrap procedure to take into account the uncertainty

related to the Monte-Carlo scheme. Furthermore, we see in Algorithm 5 that once a sample

of [Zs(x)|Z(s) = z(s),σ2] is available, a sample for each distribution [Zt(x)|Z(t) = z(t),σ2],

t = 1, . . . , s − 1 is also available. Therefore, we can directly in the analyze quantify the

difference between the Sobol indices at a level t and the ones at another level t̃.

6.6 Numerical illustrations on an academic example

We illustrate here the kriging-based sensitivity analysis suggested in Section 6.4. We remind

that the aim of this approach is to perform a sensitivity index taking into account both
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Algorithm 5 Sampling with respect to the non-Gaussian distribution [Zs(x)|Z(s) = z(s), σ2].

1: Generate a sample zn,1(x) with respect to (6.44) thanks to the method presented in Propo-

sition 6.2 in the universal kriging case.
2: Set zn,s(x) = zn,1(x).
3: for t=2,. . . ,s do

4: Generate a sample

(

ρ∗t−1

β∗
t

)

with respect to (6.42).

5: Conditionally to

(

ρ∗t−1

β∗
t

)

, generate a sample δ∗t,ρ∗t−1,β
∗
t
(x) with respect to (6.45) thanks

to the method presented in Proposition 6.2 in the simple kriging case.
6: Set zn,s(x) = ρ∗t−1zn,s(x) + δ∗t,ρ∗t−1,β

∗
t
(x).

7: end for

return zn,s(x).

the uncertainty related to the surrogate modeling and the one related to the Monte-Carlo

integrations. Let us consider the Ishigami function:

z(x1, x2, x3) = sin(x1) + 7sin(x2)
2 + 0.1x43sin(x1),

where µi is uniform on [−π, π], i = 1, 2, 3. We are interested in the first order sensitivity

indices given by

(S1, S2, S3) = (0.314, 0.442, 0).

This section is organized as follows. First, in Subsection 6.6.1 we compare the Sobol index

estimator ŜXd1

m,n (6.22) proposed by [Oakley and O’Hagan, 2004], the suggested one given by

the mean of SXd1

m,n (6.23) and the usual one which consists in substituting z(x) by the predictive

mean mn(x) (6.17) in (6.15). Then, in sections 6.6.3, 6.6.4 and 6.6.5 we deal with the approach

presented in Section 6.4. In particular, we show that this approach is relevant to perform an

uncertainty quantification taking into account both the uncertainty of the meta-modeling and

the one of the Monte-Carlo integrations. We note that the construction of the surrogate

models used in sections 6.6.3, 6.6.4 and 6.6.5 is presented in Section 6.6.2.

6.6.1 Comparison between the different methods

The aim of this subsection is to perform a numerical comparison between S̃Xd1

m,n (6.22), the

empirical mean of SXd1

m,n (6.23) given in Equation (6.24) and the following estimator (see (6.15)):

ŠXd1

m,n =

1
m

∑m
i=1mn(Xi)mn(X̃i)−

(

1
2m

∑m
i=1mn(Xi) +mn(X̃i)

)2

1
m

∑m
i=1mn(Xi)2 −

(

1
2m

∑m
i=1mn(Xi) +mn(X̃i)

)2 . (6.46)

We note that the mean S̄Xd1

m,n of SXd1

m,n is evaluated thanks to Algorithm 4, with NZ = 500 and

B = 150:

S̄Xd1

m,n =
1

NZB

∑

k=1,...,NZ
l=1,...,B

ŜXd1

m,n,k,l,
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and for S̃Xd1

m,n and SXd1

m,n we use the Monte-Carlo estimator (6.15) suggested in [Janon et al.,

2012] (it is the one used in (6.46). Then, for the comparison we randomly build 100 LHS

experimental design sets with n = 40, 50, 60, 70, 90, 120, 150, 200 observations. From these

experimental design sets, we build kriging models with a constant trend β and a tensorised

5/2-Matérn kernel. Furthermore, the characteristic length scales (θi)i=1,2,3 are estimated with

a maximum likelihood procedure for each design set. The Nash-Sutcliffe model efficiencies,

Eff n = 1−
∑

x∈T (mn(x)− z(x))2
∑

x∈T (mn(x)− z̄(x))2
, z̄(x) =

1

#T

∑

x∈T
z(x),

of the different kriging models are evaluated on a test set T composed of 10,000 points uni-

formly spread on the input parameter space [−π, π]3. The values of Eff n are presented in

Figure 6.1.
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Figure 6.1: Convergence of the model efficiency when the number n of observations increases.

100 LHS experimental design sets are randomly sampled for each number of observations n.

The closer Eff is to 1, the more accurate is the model mn(x).

Figure 6.2 illustrates the Sobol index estimates obtained with the three methods. We see

in Figure 6.2 that the suggested estimator S̄Xd1

m,n performs as well as the usual estimator ŠXd1

m,n

(6.46). In fact, as we will see in the next subsections, the strength of the suggested estimator

is to provide more relevant uncertainty quantification. Finally, we see in Figure 6.2c that the

estimator S̃Xd1

m,n (6.22) suggested in [Oakley and O’Hagan, 2004] seems to underestimate the

true value of the Sobol index.

6.6.2 Model building and Monte-Carlo based estimator

For the numerical illustrations in sections 6.6.3, 6.6.4 and 6.6.5, we use different kriging models

built from different experimental design sets of size n = 30, . . . , 200. They are LHS optimized

with respect to the centered L2-discrepancy criterion. The design sets are built thanks to
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Figure 6.2: Comparison between three Sobol index estimators. The comparison are performed

from 100 random LHS experimental design sets for each number of observations n. Figure (a)

corresponds to the suggested Sobol estimator (see Section 6.4), Figure (b) corresponds to the

usual estimator (see Equation (6.46)) and Figure (c) corresponds to the estimator suggested

in [Oakley and O’Hagan, 2004]. The horizontal lines represent the true values of the Sobol

indices (solid gray line: S1; solid black line: S2 and dashed black line: S3)

R CRAN package “DiceDesign” Furthermore, for all kriging models, we consider a constant

trend β and a tensorised 5/2-Matérn kernel (see Section 1.4).

The characteristic length scales (θi)i=1,2,3 are estimated for each experimental design set

by maximizing the marginal likelihood. Furthermore, the variance parameter σ2 and the

trend parameter β are estimated with a maximum likelihood method for each experimental

design set too. Then for each n, the Nash-Sutcliffe model efficiency is evaluated on a test set

composed of 10,000 points uniformly spread on the input parameter space [−π, π]3. Figure

6.3 illustrates the estimated values of Eff n with respect to the number of observations n.

Then, for estimating the Sobol indices, we use the Monte-Carlo based estimator given by

(6.15). It has the strength to be asymptotically efficient for the first order indices (see [Janon

et al., 2012]).
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Figure 6.3: Convergence of the model efficiency when the number n of observations increases.

For each number of observations n, the experimental design set is a LHS optimized with

respect to the centered L2-discrepancy. The closer Eff is to 1, the more accurate is the model

mn(x).

6.6.3 Sensitivity index estimates when n increases

Let us consider a fixed number of Monte-Carlo particles m = 10, 000. The aim of this sub-

section is to quantify the part of the index estimator uncertainty related to the Monte-Carlo

integrations and the one related to the surrogate modeling.

To perform such analysis we use the procedure presented in Algorithm 4 with B = 300

bootstrap samples and NZ = 500 realizations of Zn(x) (6.17). It results for each i = 1, 2, 3

a sample
(

Ŝi
m,n,k,l

)

, k = 1, . . . , NZ , l = 1, . . . , B, with respect to the distribution of the

estimator obtained by substituting z(x) with Zn(x) in (6.15).

Then, we estimate the 0.05 and 0.95 quantiles of
(

Ŝi
m,n,k,1

)

, k = 1, . . . , NZ for each

i = 1, 2, 3 with a bootstrap procedure. The resulting quantiles represent the uncertainty

related to the surrogate modeling. Furthermore, we estimate the 2.50% and 97.50% quantiles

of
(

Ŝi
m,n,k,l

)

, k = 1, . . . , NZ , l = 1, . . . , B with a bootstrap procedure too. These quantiles

represent the total uncertainty of the index estimator. Figure 6.4 illustrates the result of this

procedure for different numbers of observations n. We see in Figure 6.4 that for small values

of n, the error related to the surrogate modeling dominates. Then, when n increases, this

error decreases and it is the one related to the Monte-Carlo integrations which is the largest.

This emphasizes that it is worth to adapt the number of Monte-Carlo particles m to the

number of observations n. Finally, we highlight that the equilibrium between the two types of

uncertainty does not occur for the same n for the three indices. Indeed, it is around n = 100

for S1, n = 150 for S2 and around n = 75 for S3. We observe that the smaller the index is,

the larger its Monte-Carlo estimation error is.
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Figure 6.4: Sensitivity index estimates when n increases. The solid black lines represent

the means of the sensitivity index estimators. The dotted red lines represent the 2.50% and

97.50% confidence intervals taking into account only the uncertainty related to the surrogate

modeling. The dashed blue lines represent the 2.50% and 97.50% confidence intervals taking

into account both the uncertainty related to the surrogate modeling and the one related to

the Monte-Carlo integrations. The horizontal gray lines represent the true values of S1 (a),

S2 (b) and S3 (c).

6.6.4 Optimal Monte-Carlo resource when n increases

We saw in the previous subsection that the equilibrium between the error related to the Monte-

Carlo integrations and the one related to the surrogate modeling depends on the considered

sensitivity index. The purpose of this subsection is to determine this equilibrium for each

index. To perform such analysis, we use the method presented in Subsection 6.4.2.

Let us consider a sample
(

Ŝi
m,n,k,l

)

, m = 30, . . . , 200, k = 1, . . . , NZ , l = 1, . . . , B, i =

1, 2, 3, generated with Algorithm 4 and using the Monte-Carlo estimator presented in (6.15).

For each pair (m,n) we can evaluate the variance σ̂2Zn

(

Si
m,n

)

, i = 1, 2, 3, related to the

meta-modeling with Equation (6.26) and the variance σ̂2MC

(

Si
m,n

)

, i = 1, 2, 3, related to the

Monte-Carlo integrations with Equation (6.27). We state that the equilibrium between the
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two types of uncertainty corresponds to the case

σ̂2Zn

(

Si
m,n

)

= σ̂2MC

(

Si
m,n

)

. (6.47)

We present in Figure 6.5 the pairs (m,n) such that the equality (6.47) is satisfied. We

see that the smaller is the sensitivity index, the more important is the number of particles m

required to have the equilibrium. Furthermore, we note that the curve increases extremely

quickly for the index S3 = 0. Therefore, it could be unrealistic to consider the equilibrium for

this case, especially when n is important (i.e. n > 100).
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Figure 6.5: Relation between the number of observations n and the number of Monte-Carlo

particles m such that the error related to the meta-modeling and the one related to the

Monte-Carlo scheme have the same order of magnitude.

The presented analysis is of practical interest since it provides the appropriate number

of Monte-Carlo particles m for the sensitivity index estimation in function of the number of

observations n. Furthermore, in the framework of computer experiments, the observations are

often time-consuming and n cannot be large. Therefore, we look for a number of particles m

such that the variance σ̂2Zn

(

Si
m,n

)

related to the meta-modeling is smaller than the one of the

Monte-Carlo integration σ̂2MC

(

Si
m,n

)

. However, we saw that it could be unfeasible for some

values of sensitivity index. In this case a compromise must necessarily be done.

6.6.5 Coverage rate of the suggested Sobol index estimator

Algorithm 4 in Subsection 6.4.1 allows for obtaining a sample
(

Ŝi
m,n,k,l

)

, k = 1, . . . , NZ ,

l = 1, . . . , B of the estimator of Si for each i = 1, 2, 3. The purpose of this subsection is

to verify the relevance of the confidence intervals provided by
(

Ŝi
m,n,k,l

)

. To perform such
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analysis, we generate 200 random LHS (Dn,j)j=1,...,200 for different numbers of observations n.

For each Dn,j , we build a kriging model with the procedure presented in Subsection 6.6.2 and

we generate a sample
(

Ŝi
m,n,k,l

)

, k = 1, . . . , NZ , l = 1, . . . , B, with B = 200 and NZ = 300.

The efficiency of the different kriging models with respect to the number of observation n is

presented in Figure 6.6. From this sample, we evaluate the 2.50% and 97.50% quantiles with

a bootstrap procedure and we check if the true value of Si is covered by these two quantiles.

At the end of the procedure, the ratio between the number of confidence intervals covering

the true value of Si and the total number of confidence intervals (i.e. 200) has to be close to

95% for each n.
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Figure 6.6: Convergence of the model efficiency when the number n of observations increases.

For each number of observations n, 200 LHS experimental design sets are randomly sampled.

The closer Eff is to 1, the more accurate is the model mn(x).

Furthermore, to perform the analysis we use different values of m according to the pro-

cedure presented in Subsection 6.4.2 for S1 and S2 (i.e. such that the variance related to

the meta-modeling has the same order of magnitude than the one related to the Monte-Carlo

integrations). For S3, the number of Monte-Carlo particles m increases too quickly with re-

spect to n to use the method presented in Subsection 6.4.2. Therefore we fix m to the values

presented in Table 6.1. We note that the values of m for S3 are larger than the ones for S1
and S2.
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n 60 70 80 90 100 110

m 1,000 3,000 5,000 10,000 40,000 60,000

Table 6.1: Numbers of Monte-Carlo particles m for different values of the number of observa-

tions n for the estimation of S3.

The empirical 95%-confidence intervals as a function of the number of observations n are

presented in Figure 6.7. We study three cases:

1. The confidence intervals are built from
(

Ŝi
m,n,k,l

)

, k = 1, . . . , NZ , l = 1, . . . , B. There-

fore, it takes into account both the uncertainty related to the meta-model and the one

related to the Monte-Carlo estimations.

2. The confidence intervals are built from
(

Ŝi
m,n,k,1

)

, k = 1, . . . , NZ . In this case, we do

not use the bootstrap procedure to evaluate the uncertainty due to the Monte-Carlo

procedure. Therefore, we only take into account the one due to the meta-model.

3. The confidence intervals are built from the estimator S̃Xd1

m,n (6.46) with a bootstrap

procedure. Here, we estimate the Sobol indices with the kriging mean and we do not

infer from the uncertainty of the meta-model. Therefore, we only take into account the

uncertainty related to the Monte-Carlo estimations.

We see in Figure 6.7 that the confidence intervals provided by the approach presented in

Section 6.4 are well evaluated for indices S1 and S3. Furthermore, they are underestimated

when we take into account only the meta-model or the Monte-Carlo uncertainty. This high-

lights the relevance of the suggested approach to perform uncertainty quantification on the

Sobol index estimates. However, the coverage rate is underestimated for index S2. This is

even worst if we only consider the meta-model error. This may be due to a poor learning in

the direction x2 for the the surrogate model. This emphasizes that the suggested method is

valid only if the kriging variance well represents the modeling error.

6.7 Application of multi-fidelity sensitivity analysis

In this section, we illustrate the multi-fidelity co-kriging based sensitivity analysis presented

in Section 6.5 on the example about a spherical tank under internal pressure presented in

Chapter 5 Section 5.3.

The scheme of the considered tank is presented in Figure 5.6. We are interested in the von

Mises stress at the point labeled 2 in Figure 5.6.

The physical system depends on 8 parameters and the von Mises stress z2(x) at point

x = (P,Rint, Tshell, Tcap, Eshell, Ecap, σy,shell, σy,cap) is provided by an Aster finite elements

code.

The cheaper version z1(x) of z2(x) is obtained by the 1D simplification of the tank corre-

sponding to a perfect spherical tank, i.e. without the cap:

z1(x) =
3

2

(Rint + Tshell)
3

(Rint + Tshell)3 −R3
int

P.
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Figure 6.7: Empirical 95% confidence intervals with respect to the number of observations n

for S1 (a), S2 (b) and S3 (c). The empirical coverage rates are evaluated from 200 kriging

models build from different random LHS design sets.

6.7.1 Multi-fidelity model building

We present here the construction of the model presented in Section 6.5. For the implementa-

tion, we use the R CRAN package “MuFiCokriging” presented in Chapter 4 Section 4.6.

First, we build two LHS design sets D̃1 and D2 of size n1 × 8 and n2 × 8 optimized with

respect to the centered L2-discrepancy criterion, with n1 = 100 and n2 = 20. We note that

the input parameter x is normalized so that the measure µ(x) of the input parameters is

uniform on [0, 1]8. In order to respect the nested property for the experimental design sets,

we remove from D̃1 the n2 points that are the closest to those of D2 and we set that D1 is

the concatenation of D2 and D̃1. This procedure ensures that D2 ⊂ D1 without operates any

transformation on D2 (see Algorithm 1 in Chapter 4 Section 4.5).

Second, we run the expensive code z2(x) on points in D2 and the coarse code z1(x) on

points in D1. The CPU time of the expensive code is around 1 minute. Furthermore, in order

to have a fair illustration, we consider that the CPU time of the coarse code z1(x) is not

negligible and we restrict its runs to n1 = 100.

Third, we use tensorised 5/2-Matérn covariance kernels for σ21r1(x, x̃) and σ22r2(x, x̃) with
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characteristic length scales (θi1)i=1,...,8 and (θi2)i=1,...,8. Furthermore, we set that the regression

functions are constants, i.e. f1(x) = 1 and f2(x) = 1.

The estimates of the characteristic length scales are given in Table 6.2.

θ̂1 1.71 1.38 1.97 1.98 1.98 1.99 1.95 1.41

θ̂2 1.83 1.89 0.5 1.93 1.93 0.64 1.89 0.79

Table 6.2: Maximum likelihood estimates of the characteristic length scales of the tensorised

5/2-Matérn covariance kernels use in the multi-fidelity co-kriging model. θ̂1 represents the

estimates for the code level 1 and θ̂2 represents the ones for the bias between the code levels

1 and 2.

The estimates of the characteristic length scales given in Table 6.3 show that the model

is very smooth. Then, Table gives the posterior mean of the parameters (ρ1,β2) and β1 and

the restricted maximum likelihood estimates of σ21 and σ22.

β̂1 148.67

(ρ̂1, β̂2) (0.92, 57.61)

σ̂21 495.63

σ̂22 551.07

Table 6.3: Posterior means of the trend parameters β1 and β2 and the adjustment parameter

ρ1 and maximum likelihood estimates of the variance parameters σ21 and σ22.

The parameter estimates presented in Table 6.3 show that there is an important bias

between the cheap code and the expensive code since β̂2 ≈ 58 whereas the trend of the cheap

code is β̂1 ≈ 150. In particular, it is greater than the standard deviation of the bias which is

σ̂2 ≈ 23. Then, the posterior mean of the adjustment parameter ρ̂1 = 0.92 does not indicate a

perfect correlation between the two levels of code. Indeed, the estimated correlation between

z2(x) and z1(x) is 0.77. Furthermore their estimated variance equals 1514 for z2(x) and 810

for z1(x). In fact, we remind that the adjustment parameter:

ρ1 =
cov(Z2(x), Z1(x))

var(Z1(x))

represents both the correlation degree and the scale factor between the codes z2(x) and z1(x).

Finally, we can estimate the accuracy of the suggested model with a Leave-One-Out cross

validation procedure. From the Leave-One-Out errors, we estimate the Nash-Sutcliffe model

efficiency Eff LOO = 83%. This means that the suggested multi-fidelity co-kriging model

explains 83% of the variability of the model. We note that the closer Eff LOO is to 1, the

more accurate is the model. Therefore, we have an excellent model despite the small number

of observations n2 = 20 used for the expensive code z2(x). In order to strengthen this result,

we test the multi-fidelity model on an external test set of 7, 000 points and the estimated

efficiency is 86% which is even better.
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6.7.2 Multi-fidelity sensitivity analysis

Now let us perform a multi-fidelity sensitivity analysis using the approach presented in Sub-

section 6.5.2. We are interested in the first-order sensitivity indices.

The principle of the method is to sample from the distribution (6.41) using Algorithm 5.

We note that we use the Monte-Carlo estimator (6.15) instead of (6.14) since it is asymptoti-

cally efficient for the first-order indices. We repeat Algorithm 5 to have NZ = 200 realizations

of the predictive distribution [Z2(x)|Z(2) = z(2),σ2] and for each realization we generate

B = 150 bootstrap samples. Furthermore, we choose m = 20, 000 for the Monte-Carlo sam-

pling size so that the error related to the Monte-Carlo integrations is negligible compared to

the one related to the surrogate modeling (see subsections 6.4.2 and 6.6.4).

Sensitivity analysis for the cheap code.

First, let us present the result of the sensitivity analysis for the cheap code. As emphasized

in Subsection 6.5.2, once samples with respect to the distribution [Z2(x)|Z(2) = z(2),σ2] are

available, samples for [Z1(x)|Z(1) = z(1), σ21] are also available. Therefore, from them we can

perform a sensitivity analysis as presented in Section 6.4. Moreover, from the explicit formula

of z1(x) we expect that only the three variables P , Rint and Tshell have an impact on the

output.

The result of the sensitivity analysis for the cheap code z1(x) is given in Figure 6.8. We

see in Figure 6.8 that only the three parameters P , Rint and Tshell are influent as expected.

Furthermore, the internal pressure is the most important parameter whereas the geometrical

parameter Rint and Tshell have equivalent impact on the output. The sum of the first-order

sensitivity index means informs us that 97% of the variability of the output is explained by

the first-order indices. The interactions between the parameters are thus negligible. Further,

we see that the confidence intervals are tight and that the uncertainty on the Sobol index

estimator is essentially related to the Monte-Carlo integrations. This means that the model’s

error on the cheap code is very low.

Sensitivity analysis for the expensive code.

Second, we perform a sensitivity analysis for the expensive code z2(x) using the predictive

distribution [Z2(x)|Z(2) = z(2),σ2]. The result of the analysis is presented in Figure 6.9.

We see in Figure 6.9 that the result of the sensitivity analysis for the expensive code is

substantially different than the one for the cheap code. First, the importance measure of the

parameters P , Rint and Tshell decreases although the internal pressure P remains the most

influent parameter. Second, the material parameters Eshell, Ecap, σy,shell and σy,cap have still a

negligible influence except for the rigidity of the cap Ecap. Then, the most noticeable difference

is for the thickness of the cap Tcap which is now the second most important parameter. Finally,

the sum of the index estimator means equals 96.7%. This means that the first order indices

still explain the main part of the model variability.

The hierarchy between the parameters can be easily interpreted. Indeed, the coarse code

corresponds to the approximation of the tank without the cap. Therefore, it is natural that

the parameters related to the cap have no influence. On the contrary, for the expensive
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Figure 6.8: Kriging based sensitivity analysis for the cheap code. The diamonds represent

the means of the first-order sensitivity index estimators, the solid red lines represent the 95%

confidence intervals taking into account only the meta-modeling uncertainty and the dashed

blue lines represent the 95% confidence intervals taking into account the uncertainty related

to both the Monte-Carlo integrations and the meta-modeling. The means and the confidence

intervals are obtained with Algorithm 4.

code, we are interested in the von Mises stress at the junction between the cap and the shell.

Consequently, the parameters related to the cap have now an influence. However, it was

difficult to have a prior on the impact of the cap onto the response variability. We deduce

from this analysis that it is in fact very important.

For the material parameters, their influences are negligible because we are in the regime

of elastic deformations. It is thus physically coherent. In fact, they would be more influent in

a plastic deformation regime which can occur for more important internal pressure P .

The other important differences between the two sensitivity analysis is the magnitude of

the confidence intervals. Indeed, we see in Figure 6.9 that contrary to the cheap code, the

confidence intervals for the sensitivity index estimators of the expensive code are very large.

Therefore, despite the good multi-fidelity approximation of the expensive code, we have an

important uncertainty on it. This is natural since we only use 20 runs of z2(x) to learn it.

Finally, we note that the most important uncertainty is for Tcap. This is explained by the

fact that this parameter is not considered by the cheap code. Therefore, z1(x) brings no

information about Tcap contrary to Rint, Tshell and P .
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Figure 6.9: Co-kriging based sensitivity analysis for the expensive code. The diamonds rep-

resent the means of the first order sensitivity index estimators, the solid red lines represent

the 95% confidence intervals taking into account only the meta-modeling uncertainty and the

dashed blue lines represent the 95% confidence intervals taking into account the uncertainty

related to both the Monte-Carlo integrations and the meta-modeling.

6.8 Conclusion

This chapter deals with the sensitivity analysis of complex computer codes using Gaussian

process regression. The purpose of the chapter is to build Sobol index estimators taking into

account both the uncertainty related to the surrogate modeling and the one related to the

numerical evaluations of the variances and covariances involved in the Sobol index definition.

The aim is to provide relevant confidence intervals for the index estimator.

To provide such estimators, we suggest a method which mixes a Gaussian process regres-

sion model with Monte-Carlo based integrations. From it, we can quantify the impact of both

the Gaussian process regression and the Monte-Carlo procedure on the index estimator vari-

ability. In particular, we present a procedure to equilibrate these two sources of uncertainty.

Furthermore, we suggest numerical methods to avoid ill-conditioned problems and to easily

handle the suggested index estimator.

Then, we propose an extension of the suggested approach for multi-fidelity computer codes.

They are of practical interest since they allow for dealing with the problem of very expensive

simulations. To deal with these codes, we use the multi-fidelity co-kriging model presented in

Chapter 4.

Finally, we illustrate the suggested strategy on an academic example for the univariate case

and with a real application on a tank under internal pressure for the multi-fidelity analysis.
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Part III

Contributions in noisy-kriging
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Introduction to Monte-Carlo simulators

Context

For many realistic cases, we do not have direct access to the function f(x) to be approximated

but only to noisy versions of it (as presented in Chapter 1 Subsection 1.2.1 Paragraph “The

noisy case”, we use the notation f(x) to design a function for which we have noisy observations).

For example, if the objective function is the result of an experiment, the available responses can

be tainted by measurement noise. In that case, we can reduce the noise of the observations by

repeating the experiments at the same locations. Another example is the Monte-Carlo based

simulators - also called stochastic simulators - which use Monte-Carlo or Monte-Carlo Markov

Chain methods to solve a system of partial differential equations through its probabilistic

interpretation. For such simulators, the noise level can be tuned by the number of Monte-

Carlo particles used in the procedure.

As presented in Subsection 1.2.1, Gaussian process regression can easily be adapted to

the case of noisy observations. Recently, many authors were interested in kriging models in a

stochastic simulator framework ([Kleijnen and Van Beers, 2005], [Picheny, 2009], [Boukouvalas

and Cornford, 2009], [Marrel et al., 2010], [Yin et al., 2011] and [Kleijnen, 2012]). In particular,

[Kleijnen and Van Beers, 2005], [Boukouvalas and Cornford, 2009] and [Yin et al., 2011] deal

with heteroscedastic noises, [Marrel et al., 2010] deal with noisy-kriging-based global sensitivity

analysis and [Picheny, 2009] addresses the problem of optimal resource allocation. The aim of

this chapter is to introduce the framework of stochastic simulators. We note that the presented

result can also be used in the framework of experiments with repetitions.

As an introductory example, let us consider fs1(x) the output of a stochastic simulator

obtained with s1 Monte-Carlo particles ((Yi(x))i=1,...,s1
. Furthermore, let us consider fs2(x),

s2 > s1 the output of the same simulator obtained from the particles ((Yi(x))i=1,...,s1
and

((Yi(x))i=s1+1,...,s2
. In that example, fs2(x) is more accurate and time-consuming than fs1(x).

Now, let us suppose that we want to surrogate fs2(x) using both the information of the

observations of fs2(x) and fs1(x) at points in D2 and D1 such that D2 ⊂ D1. Considering the

models presented in Part II, we are tempted to use a multi-fidelity co-kriging approach. We

show in this chapter that it is equivalent to use a noisy-kriging approach with heterogeneous

observation noise variances.
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A multi-fidelity approach being equivalent to a noisy-kriging one and the number of Monte-

Carlo particles monitoring the observation noise level, for a fixed number of M-C particles a

question of interest is to find the best allocation of the Monte-Carlo particles into the points

of the experimental design set. This point was originally addressed in the linear regression

theory. A pioneering work is the one of [Elfving, 1952] which deals with the optimal resource

allocation with respect to criteria such as G-optimality or D-optimality (see [Fedorov, 1972]).

The G-optimality aims to minimize the maximum of the predictive variance, i.e. maxx∈Q s2(x)
in a kriging framework (see Subsection 1.2.1) and the D-optimality addresses the problem of

minimizing the determinant of the information matrix F′F. We note that the D-optimality

cannot be used in a kriging framework since it works only for linear models. Then, many

authors deal with the problem of optimal design in a linear regression framework by suggesting

other optimality criteria and algorithms of construction ([Kiefer and Wolfowitz, 1959], [Kiefer,

1961], [Fedorov, 1972], [Wu, 1978], [Cook and Nachtrheim, 1980], [Fedorov and Hackl, 1997]

and [Molchanov and Zuyev, 2002]). Furthermore, [Picheny, 2009] presents an exploratory

work on optimal design for noisy kriging.

We give in Chapter 7 a proposition providing an optimal resource allocation under cer-

tain restricted conditions for heteroscedastic noisy kriging models and with respect to the

I-optimality. The I-optimality corresponds to the minimization of the averaged predictive

variance, i.e.
∫

s2(x) dµ(x) in a kriging framework (see Subsection 1.2.1). Furthermore, we

numerically observe in Appendix D that this allocation remains efficient in more general cases

although it is not anymore optimal.

Stochastic simulators and noisy-kriging models

Let us consider that we want to approximate the function

f : Q ⊂ R
d → R

x 7→ f(x),

from noisy observations at points D = (xi)i=1,...,n sampled from the design measure µ and

with si replications at each point xi, i = 1, . . . , n. We hence have (
∑n

i=1 si) data of the form:

zi,j = f(xi) + σε(xi)εi,j

and we consider that (εi,j) i=1,...,n
j=1,...,si

are independently distributed from a Gaussian distribution

with mean zero and variance one. Such a function can represent the output of a stochastic

simulator or the observation of an experiment. We present below the framework of stochastic

simulators and the use of co-kriging models to surrogate such computer codes.

Stochastic simulators

In a framework of stochastic simulators or experiments with repetitions, we consider outputs

of the form:

zsi =
1

si

si
∑

j=1

zi,j . (6.48)
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We note that for stochastic simulators si represents the number of Monte-Carlo particles and

for experiments si represents the number of repetitions. Therefore, denoting the vector of the

observed values by zn = (zsi)i=1,...,n = (
∑si

j=1 zi,j/si)i=1,...,n, the variance of an observation

zsi is

var (zsi) =
σ2ε(xi)

si
.

The accuracy of an observation is hence inversely proportional to the number of Monte-Carlo

particles si. Furthermore, we define the budget T as follows:

T =
n
∑

i=1

si. (6.49)

Let us consider the outputs of two code levels zs1i
and zs2i

, i = 1, . . . , n, such that s1i < s2i

zs1i
=

1

s1i

s1i
∑

j=1

zi,j

and

zs2i
=

1

s2i

s2i
∑

j=1

zi,j .

We note that the particles (zi,j)i=1,...,s1i
of zs1i

are also used to compute zs2i
. Since s1i < s2i , the

code output zs2i
is more accurate and time-consuming than the code output zs1i

. Furthermore,

since the two outputs have common Monte-Carlo particles, they are correlated:

cov
(

zs1i
, zs2i

)

= cov





1

s1i

s1i
∑

j=1

zi,j ,
1

s2i

s2i
∑

j=1

zi,j





=
1

s1i s
2
i

cov





s1i
∑

j=1

zi,j ,

s1i
∑

j=1

zi,j +

s2i
∑

j=s1i+1

zi,j





=
σ2ε(xi)

s2i
.

We note that in practice the output zs2i
(xi) corresponds to the one of zs1i

(xi) for which we

continue the Monte-Carlo convergence. This is relevant for practical applications since for

obtaining accurate simulations it is less time consuming to start from former simulations

partially converged.

Stochastic simulators and co-kriging models

Now let us consider that we want to surrogate f(x) from the observations zn1

s1
= (zs1i

)i=1,...,n1

and zn2

s2
= (zs2i

)i=1,...,n2 such that n1 > n2 and s2i > s1i for all i = 1, . . . , n2. We denote

by D = {x1, . . . , xn1} the experimental design set corresponding to the observations zn1

s1
and

D̃ = {x1, . . . , xn2} the one corresponding to the observations zn2

s2
. We note that we have the
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nested property D = D̃∪{xn2+1, . . . , xn1}. Furthermore, we suppose that f(x) is a realization

of a Gaussian process Z(x) with mean f ′(x)β and covariance kernel σ2r(x, x̃). Therefore, the

observations
(

z
sji

)

j=1,2
i=1,...,nj

are realizations of the following random variables:

Z
sji
(xi) = Z(xi) +

1

sji

sji
∑

k=1

σε(xi)εk,i, j = 1, 2, i = 1, . . . , nj ,

where εk,i ∼ N (0, 1) and (εk,i)k=1,...,sji
are independent. To predict f(x) at a new loca-

tion, we consider the following joint distribution where Z
nj

sj
, j = 1, 2 is the random vector

(

Z
sji
(xi)

)

i=1,...,nj

:







Z(x)

Zn1

s1

Zn2

s2






) ∼ N













f ′(x)
f ′(D)

f ′(D̃)






β, σ2







1 r′(x) r̃′(x)
r(x) K U

r̃(x) U′ K̃












,

with K = [r(xi, xj)+(σ2ε(xi)/s
1
i )δxi=xj ]i,j=1,...,n1 , K̃ = [r(xi, xj)+(σ2ε(xi)/s

2
i )δxi=xj ]i,j=1,...,n2 ,

U = [r(xi, xj)+(σ2ε(xi)/s
2
i )δxi=xj ]i=1,...,n1

j=1,...,n2

, k′(x) = [r(x, xi)]i=1,...,n1 and k̃′(x) = [r(x, xi)]i=1,...,n2 .

The surrogate model for f(x) is given by the conditional distribution [Z(x)|Zn1

s1
= zn1

s1
,Zn2

s2
=

zn2

s2
, σ2]. Let us consider the proposition below.

Proposition 6.3. Let us denote by Zn1−n2

s1
=
(

Zs1i
(xi)

)

i=n2+1,...,n1

and zn1−n2

s1
=

(

zs1i

)

i=n2+1,...,n1

. Then [Z(x)|Zn1

s1
= zn1

s1
,Zn2

s2
= zn2

s2
, σ2] and [Z(x)|Zn1−n2

s1
=

zn1−n2

s1
,Zn2

s2
= zn2

s2
, σ2] has the same distribution.

Proposition 6.3 is of interest since it shows that using a co-kriging model with the

observations zn1

s1
and zn2

s2
is equivalent to use a kriging model considering only the

most accurate observations at points in D.

Conclusion

We show in this introduction that in a framework of Monte-Carlo simulators - or experiments

with repetitions - using a multi-fidelity co-kriging model is equivalent to use a noisy-kriging

model with heteroscedastic observation noise variance. We note that the equivalence stands

if we consider that fine code outputs correspond to coarse ones after continuing the Monte-

Carlo convergence or repeating the experiments. Since we will always consider this case in the

remainder of Part III, we will only use noisy-kriging models throughout it.



Chapter 7

Asymptotic analysis of the learning curve

7.1 Introduction

The purpose of this chapter is to describe the asymptotic behavior of the generalization error

- defined as the averaged mean squared error - when the number of observations is large. As

seen in the previous introduction, in many cases the noise variance is inversely proportional to

the number of repetitions, and thus proportional to the number of observations, see Example

7.1 below. We consider this framework in this chapter.

Many authors were interested in obtaining learning curves describing the generalization

error as a function of the training set size [Rasmussen and Williams, 2006]. The problem has

been addressed in the statistical and numerical analysis areas. For an overview, the reader

is referred to [Ritter, 2000b] for a numerical analysis point of view and to [Rasmussen and

Williams, 2006] for a statistical one. In particular, in the numerical analysis literature, the

authors are interested in numerical differentiation of functions from noisy data (see [Ritter,

2000a] and [Bozzini and Rossini, 2003]). They have found very interesting results for kernels

satisfying the Sacks-Ylvisaker conditions of order r [Sacks and Ylvisaker, 1981] but only valid

for 1-D or 2-D functions.

In the statistical literature [Sollich and Halees, 2002] give accurate approximations to the

learning curve and [Opper and Vivarelli, 1999] and [Williams and Vivarelli, 2000] give upper

and lower bounds on it. Their approximations give the asymptotic value of the learning

curve (for a very large number of observations). They are based on the Woodbury-Sherman-

Morrison matrix inversion lemma [Harville, 1997] which holds in finite-dimensional cases which

correspond to degenerate covariance kernels in our context. Nonetheless, classical kernels used

in Gaussian process regression are non-degenerate and we hence are in an infinite-dimensional

case and the Woodbury-Sherman-Morrison formula cannot be used directly. Another proof

for degenerate kernels can be found in [Picheny, 2009].

The main result of this chapter is a theorem giving the value of the Gaussian process re-

gression mean squared error for a large training set size when the observation noise variance is

proportional to the number of observations. This value is given as a function of the eigenvalues

and eigenfunctions of the covariance kernel. From this theorem, we can deduce an approx-
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imation of the learning curve for non-degenerate and degenerate kernels (which generalizes

results in [Opper and Vivarelli, 1999], [Sollich and Halees, 2002] and [Picheny, 2009]) and for

any dimension (which generalizes results in [Ritter, 2000b], [Ritter, 2000a] and [Bozzini and

Rossini, 2003]). Finally, from this approximation we can deduce the rate of convergence of

the Best Linear Unbiased Predictor (BLUP) in a Gaussian process regression framework.

The rate of convergence of the BLUP is of practical interest since it provides a powerful

tool for decision support. Indeed, from an initial experimental design set, it can predict

the additional computational budget necessary to reach a given desired accuracy when the

observation noise variance is homogeneous in space.

The chapter is organized as follows. First we present the considered Gaussian process

regression model with noisy observations. Second, we present the main result of the chapter

which is the theorem giving the mean squared error of the considered model for a large training

size. Third, we study the rate of convergence of the generalization error when the noise variance

decreases. Academic examples are presented to compare the theoretical convergences given

by the theorem and numerically observed convergences. Finally, an industrial application to

the safety assessment of a nuclear system containing fissile materials is considered. This real

case emphasizes the effectiveness of the theoretical rate of convergence of the BLUP since it

predicts a very good approximation of the budget needed to reach a prescribed precision.

7.2 Gaussian process regression

Let us suppose that we want to approximate an objective function x ∈ Q ⊆ R
d → f(x) ∈ R,

Q a nonempty open set, from noisy observations of it at points (xi)i=1,...,n with xi ∈ Q. The

points of the experimental design set (xi)i=1,...,n are supposed to be sampled independently

from the probability measure µ over Q. µ is called the design measure. We hence have n obser-

vations of the form zi = f(xi) +
√

τ(xi)εi and we consider that (εi)i=1,...,n are independently

sampled from the Gaussian distribution with mean zero and variance n:

ε ∼ N (0, n). (7.1)

Note that the number of observations and the observation noise variance are both controlled

by n. It means that if we increase the number n of observations, we automatically increase the

uncertainty on the observations. An observation noise variance proportional to n is natural

in the framework of experiments with repetitions or stochastic simulators. Indeed, for a fixed

number of experiments (or simulations), the user can decide to perform them in few points

with many repetitions (in that case the noise variance will be low) or to perform them in

many points with few repetitions (in that case the noise variance will be large). We introduce

in Example 7.1 the framework of repeated experiments. We note that the framework is the

same as the one of stochastic simulators and it is the one considered in sections 7.5 and 7.6.

Example 7.1 (Gaussian process regression with repeated experiments). Let us consider that

we want to approximate the function x ∈ Q ⊆ R
d → f(x) ∈ R from noisy observations at

points (xi)i=1,...,n sampled from the design measure µ and with s replications at each point.
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We hence have ns data of the form zi,j = f(xi) + σε(xi)εi,j and we consider that (εi,j)i=1,...,n
j=1,...,s

are independently distributed from a Gaussian distribution with mean zero and variance one.

Then, denoting the vector of observed values by zn = (zni )i=1,...,n = (
∑s

j=1 zi,j/s)i=1,...,n, the

variance of an observation zni is σ2ε(xi)/s. Thus, if we consider a fixed budget T = ns, we have

σ2ε(xi)/s = nτ(xi) with τ(xi) = σ2ε(xi)/T and the observation noise variance is proportional

to n.

In Section 7.3 we give the value of the generalization error for n large. Then, in Section

7.4 we are interested in its convergence for n large and when τ(x) tends to zero. Finally,

in Section 7.5 we consider the non-uniform allocation (si)i=1,...,n with T =
∑n

i=1 si and we

address the question of optimal allocation of the repetitions (si)i=1,...,n as a function of the

noise level σ2ε(xi) so as to minimize the generalization error.

The main idea of the Gaussian process regression is to suppose that the objective function

f(x) is a realization of a Gaussian process Z(x) with a known mean and a known covariance

kernel k(x, x̃) (note that we are here in a simple kriging case). The mean can be considered

equal to zero without loss of generality. Then, denoting by zn = [f(xi) +
√

τ(xi)εi]1≤i≤n the

vector of length n containing the noisy observations, we choose as predictor the Best Linear

Unbiased Predictor (BLUP) given by the equation (see Subsection 1.5.1 Equation (1.60)):

f̂(x) = k′(x)(K+ n∆)−1zn, ∆ = diag[(τ(xi))i=1,...,n], (7.2)

where k(x) = [k(x, xi)]1≤i≤n is the n-vector containing the covariances between Z(x) and

Z(xi), 1 ≤ i ≤ n and K = [k(xi, xj)]1≤i,j≤n is the n × n-matrix containing the covariances

between Z(xi) and Z(xj), 1 ≤ i, j ≤ n. When τ(x) is independent of x, we have ∆ = τI

with I the n×n identity matrix. The BLUP minimizes the Mean Squared Error (MSE) which

equals (see Subsection 1.5.1 Equation (1.61)):

σ2(x) = k(x, x)− k′(x)(K+ n∆)−1k(x). (7.3)

Indeed, if we consider a Linear Unbiased Predictor (LUP) of the form a′(x)zn, its MSE is

given by:

E[(Z(x)− a′(x)Zn)2] = k(x, x)− 2a′(x)k(x) + a′(x)(K+ n∆)a(x), (7.4)

where Zn = [Z(xi) +
√

τ(xi)εi]1≤i≤n and E stands for the expectation with respect to the

distribution of the Gaussian process Z(x). The value of a(x) minimizing (7.4) is a′opt(x) =

k′(x)(K+n∆)−1. Therefore, the BLUP given by a′opt(x)z
n is equal to (7.2) and by substitut-

ing a(x) with aopt(x) in Equation (7.4) we obtain the MSE of the BLUP given by Equation

(7.3).

The main result of this chapter is the proof of a theorem that gives the asymptotic value

of σ2(x) when n → +∞ and ∆ = τI. Thanks to this theorem, we can deduce the asymp-

totic value of the Integrating Mean Squared Error (IMSE) - also called learning curve or

generalization error - when n→ +∞. The IMSE is defined by:

IMSE =

∫

Rd

σ2(x) dµ(x), (7.5)
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where µ is the design measure of the input space parameters. The asymptotic value of the

IMSE that we obtain can be viewed as a generalization of previous results (see [Rasmussen

and Williams, 2006], [Ritter, 2000b], [Ritter, 2000a], [Bozzini and Rossini, 2003], [Opper and

Vivarelli, 1999], [Sollich and Halees, 2002] and [Picheny, 2009]). It can be used to determine

the budget required to reach a prescribed accuracy (see Section 7.5). Note that the proof

of the theorem holds for a constant observation noise variance τ . Nevertheless, to provide

optimal resource allocation, it can be important to take into account the heterogeneity of

the observation noise variance. We give in Proposition 7.3 under certain restricted conditions

(i.e., when K is diagonal) the optimal allocation taking into account the noise heterogeneity.

Moreover, we numerically observe in Appendix D that this allocation remains efficient in more

general cases although it is not anymore optimal (it remains more efficient than the uniform

one).

7.3 Convergence of the learning curve for Gaussian process re-

gression

This section deals with the convergence of the BLUP when the number of observations is large

and the reduced noise variance does not depend on x, i.e. τ(x) = τ and ∆ = τI. The speed

of convergence of the BLUP is evaluated through the generalization error - i.e. the IMSE -

defined in (7.5). The main theorem of this chapter follows:

Theorem 7.1. Let us consider Z(x) a Gaussian process with zero mean and covariance

kernel k(x, x̃) ∈ C0(Q×Q) and (xi)i=1,...,n an experimental design set of n independent

random points sampled with the probability measure µ on Q ⊆ R
d. We assume that

supx∈Rd k(x, x) < ∞. According to Mercer’s theorem (see Subsection 1.4.4 Theorem

1.4), we have the following representation of k(x, x̃):

k(x, x̃) =
∑

p≥0

λpφp(x)φp(x̃),

where (φp(x))p is an orthonormal basis of L2
µ(Q) (denoting the set of square integrable

functions) consisting of eigenfunctions of (Tµ,kf)(x) =
∫

Rd k(x, x̃)f(x̃)dµ(x̃) and λp is

the nonnegative sequence of corresponding eigenvalues sorted in decreasing order. Then,

for a non-degenerate kernel - i.e. when λp > 0, ∀p > 0 - we have the following conver-

gence in probability for the MSE (7.3) of the BLUP:

σ2(x)
n→∞−→

∑

p≥0

τλp
τ + λp

φp(x)
2. (7.6)

For degenerate kernels - i.e. when only a finite number of λp are not zero - the conver-

gence is almost sure. We note that the convergences hold with respect to the distribution

of the points (xi)i=1,...,n of the experimental design set.

The sketch of the proof of Theorem 7.1 is given below. The full proof is given in Section 7.7.
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Sketch of Proof. We first prove the theorem for degenerate kernels (see Section 7.7.1) which

was already known in that case. Next we find a lower bound for σ2(x) for non-degenerate

kernels. Let us consider the Karhunen-Loève decomposition of Z(x) =
∑

p≥0 Zp

√

λpφp(x)

where (Zp)p is a sequence of independent Gaussian random variables with mean zero and

variance one. If we denote by aopt,i(x), i = 1, . . . , n, the coefficients of the BLUP associ-

ated to Z(x), the Gaussian process regression mean squared error can be written σ2(x) =
∑

p≥0 λp (φp(x)−
∑n

i=1 aopt,i(x)φp(xi))
2 + nτ

∑n
i=1 aopt,i(x)

2. Then, for a fixed p̄, the follow-

ing inequality holds:

σ2(x) ≥
∑

p≤p̄

λp

(

φp(x)−
n
∑

i=1

aopt,i(x)φp(xi)

)2

+ nτ

n
∑

i=1

aopt,i(x)
2 = σ2LUP,p̄(x), (7.7)

where, σ2LUP,p̄(x) is the MSE of the Linear Unbiased Predictor (LUP) of coefficients aopt,i(x)

associated to the Gaussian process Zp̄(x) =
∑

p≤p̄ Zp

√

λpφp(x). Let us consider σ2p̄(x) the

MSE of the BLUP of Zp̄(x), we have the following inequality:

σ2LUP,p̄(x) ≥ σ2p̄(x). (7.8)

Since Zp̄(x) has a degenerate kernel, ∀p̄ > 0, the almost sure convergence (7.6) holds for σ2p̄(x).

Then, considering inequalities (7.7), the convergence (7.6) for σ2p̄(x) and the limit p̄→ ∞, we

obtain:

lim inf
n→∞

σ2(x) ≥
∑

p≥0

τλp
τ + λp

φp(x)
2. (7.9)

It remains to find an upper bound for σ2(x). Since σ2(x) is the MSE of the BLUP associated to

Z(x), if we consider any other LUP associated to Z(x), then the corresponding MSE denoted

by σ2LUP (x) satisfies the following inequality:

σ2(x) ≤ σ2LUP (x).

The idea is to find a LUP so that its MSE is a tight upper bound of σ2(x). Let us consider

the LUP:

f̂LUP (x) = k′(x)Azn, (7.10)

with A the n × n matrix defined by A = L−1 +
∑q

k=1(−1)k(L−1M)kL−1 with L = nτI +
∑

p<p∗ λp[φp(xi)φp(xj)]1≤i,j≤n, M =
∑

p≥p∗ λp[φp(xi)φp(xj)]1≤i,j≤n, q a finite integer and p∗

such that λp∗ < τ . The choice of this LUP is motivated by the fact that the matrix A is

an approximation of the inverse of the matrix (nτI + K) = L + M that is tractable in the

following calculations. Remember that the BLUP is f̂BLUP(x) = k′(x)(K+ nτI)−1zn. Then,

the MSE of the LUP (7.10) is given by:

σ2LUP (x) = k(x, x)− k′(x)L−1k(x)−
2q+1
∑

i=1

(−1)ik′(x)(L−1M)iL−1k(x).

Thanks to the Woodbury-Sherman-Morrison formula1, the strong law of large numbers and

the continuity of the inverse operator in the space of p-dimensional invertible matrices, we

1If B is a non-singular p× p matrix, C a non-singular m×m matrix and A a m× p matrix with m, p < ∞,

then (B+AC−1A)−1 = B−1 −B−1A(A′B−1A+C)−1A′B−1.
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have the following almost sure convergence:

k′(x)L−1k(x)
n→∞−→

∑

p<p∗

λ2p
λp + τ

φp(x)
2 +

1

τ

∑

p≥p∗

λ2pφp(x)
2.

We note that we can use the Woodbury-Sherman-Morrison formula and the strong law of large

numbers since p∗ is finite and independent of n. Then, using the Markov inequality and the

equality
∑

p≥0 λpφp(x)
2 = k(x, x) <∞, we have the following convergence in probability:

k′(x)(L−1M)iL−1k(x)
n→∞−→

(

1

τ

)i+1
∑

p≥p∗

λi+2
p φp(x)

2.

We highlight that we cannot use the strong law of large numbers here due to the infinite sum

in p in the definition of M. Finally, we obtain the following convergence in probability:

lim sup
n→∞

σ2(x) ≤ lim
n→∞

σ2LUP (x) =
∑

p≥0

(

λp −
λ2p

τ + λp

)

φp(x)
2 −

∑

p≥p∗

λ2p

(

λp

τ

)2q+1

τ + λp
φp(x)

2.

By taking the limit q → ∞ in the right hand side and using the inequality λp∗ < τ , we obtain

the following upper bound for σ2(x):

lim sup
n→∞

σ2(x) ≤
∑

p≥0

τλp
τ + λp

φp(x)
2. (7.11)

The result announced in Theorem 7.1 is deduced from the lower and upper bounds (7.9) and

(7.11). �

Remark 1 For non-degenerate kernels such that ||φp(x)||L∞ < ∞ uniformly in p, the con-

vergence is almost sure. Some kernels such as the one of the Brownian motion satisfy this

property.

The following theorem gives the asymptotic value of the learning curve when n is large.

Theorem 7.2. Let us consider Z(x) a Gaussian process with known mean and covari-

ance kernel k(x, x̃) ∈ C0(Q×Q) such that supx∈Rd k(x, x) <∞ and (xi)i=1,...,n an exper-

imental design set of n independent random points sampled with the probability measure

µ on Q ⊆ R
d. Then, for a non-degenerate kernel, we have the following convergence in

probability:

IMSE
n→∞−→

∑

p≥0

τλp
τ + λp

. (7.12)

For degenerate kernels, the convergence is almost sure.

Proof. From Theorem 7.1 and the orthonormal property of the basis (φp(x))p in L2
µ(Q), the

proof of the theorem is straightforward by integration. We note that we can permute the

integral and the limit thanks to the dominated convergence theorem since σ2(x) ≤ k(x, x).



7.4. EXAMPLES OF RATES OF CONVERGENCE FOR THE LEARNING CURVE 219

The obtained limit is identical to the one established in [Opper and Vivarelli, 1999],

[Rasmussen and Williams, 2006] and [Picheny, 2009]. The originality of the pre-

sented result is the proof giving the asymptotic value of the learning curve for a

non-degenerate kernel. This result is of practical interest since the usual kernels for

Gaussian process regression are non-degenerate and we will exhibit dramatic differ-

ences between the learning curves of degenerate and non-degenerate kernels. We

note that intuitive arguments are given in [Opper and Vivarelli, 1999] and [Picheny,

2009] to justify the relevance of the result for non-degenerate kernels.

Proposition 7.1. Let us denote IMSE∞ = limn→∞ IMSE. The following inequality

holds:
1

2
B2

τ ≤ IMSE∞ ≤ B2
τ , (7.13)

with

B2
τ =

∑

p s.t. λp≤τ

λp + τ# {p s.t. λp > τ} . (7.14)

Proof. The proof is directly deduced from Theorem 7.2 and the following inequality:

1

2
hτ (x) ≤

x

x+ τ
≤ hτ (x),

with:

hτ (x) =

{

x/τ x ≤ τ

1 x > τ
.

7.4 Examples of rates of convergence for the learning curve

Proposition 7.1 shows that the rate of convergence of the generalization error IMSE∞ in

function of τ is equivalent to the one of B2
τ . In this section, we analyze the rate of convergence

of IMSE∞ (or equivalently B2
τ ) when τ is small. We note that the presented results can be

interpreted as a rate of convergence in function of the number of observations since τ is the

ratio between the noise variance nτ and the number of observations n.

In this section, we consider that the design measure µ is uniform on [0, 1]d.

Example 2 (Degenerate kernels) For degenerate kernels we have # {p s.t. λp > 0} <∞.

Thus, when τ → 0, we have:
∑

p s.t. λp<τ

λp = 0,

from which we deduce:

B2
τ ∝ τ. (7.15)
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Therefore, the IMSE decreases as τ . We find here a classical result about Monte-Carlo

convergence which gives that the variance decay is proportional to the observation noise vari-

ance (nτ) divided by the number of observations n whatever the dimension. Nevertheless, for

non-degenerate kernels, the number of non-zero eigenvalues is infinite and we are hence in an

infinite-dimensional case (contrarily to the degenerate one). We see in the following examples

that we do not conserve the usual Monte-Carlo convergence rate in this case which emphasizes

the importance of Theorem 7.1 dealing with non-degenerate kernels.

Example 3 (The fractional Brownian motion) Let us consider the fractional Brownian

kernel with Hurst parameter H ∈ (0, 1):

k(x, y) = x2H + y2H − |x− y|2H . (7.16)

The associated Gaussian process - called fractional Brownian motion - is Hölder continuous

with exponent H − ε, ∀ε > 0. According to [Bronski, 2003], we have the following result:

Proposition 7.2. The eigenvalues of the fractional Brownian motion with Hurst expo-

nent H ∈ (0, 1) satisfy the behavior

λp =
νH

p2H+1
+ o

(

p−
(2H+2)(4H+3)

4H+5
+δ

)

, p≫ 1,

where δ > 0 is arbitrary, νH = sin(πH)Γ(2H+1)
π2H+1 , and Γ is the Euler Gamma function.

Therefore, when τ ≪ 1, we have:

λp < τ if p >
(νH
τ

) 1
2H+1

.

We hence have the following approximation for B2
τ :

B2
τ ≈

∑

p>( νH
τ )

1
2H+1

νH
p2H+1

+ τ
(νH
τ

) 1
2H+1

.

Furthermore, we have:

∑

p>( νH
τ )

1
2H+1

νH
p2H+1

≈
∫ +∞

( νH
τ )

1
2H+1

νH
x2H+1

dx =
νH

2H
(

νH
τ

)1− 1
2H+1

,

from which we deduce:

B2
τ ≈ CHτ

1− 1
2H+1 , τ ≪ 1, (7.17)

where CH is a constant independent of τ .

The rate of convergence for a fractional Brownian motion with Hurst parameter H is

τ1−
1

2H+1 . We note that the case H = 1/2 corresponds to the classical Brownian motion. We

observe that the larger the Hurst parameter is (i.e. the more regular the Gaussian process

is), the faster the convergence is. Furthermore, for H → 1 the convergence rate gets close to

τ2/3. Therefore, even for the most regular fractional Brownian motion, we are still far from

the classical Monte-Carlo convergence rate.
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Example 4 (The 1-D Matérn covariance kernel) In this example we deal with the

Matérn kernel with regularity parameter ν > 0 in dimension 1:

k1D(x, x̃; ν, l) =
21−ν

Γ(ν)

(√
2ν|x− x̃|

l

)ν

Kν

(√
2ν|x− x̃|

l

)

, (7.18)

where Kν is the modified Bessel function [Abramowitz and Stegun, 1965]. The associated

Gaussian process is Hölder continuous with exponent ν − ε, ∀ε > 0. The eigenvalues of this

kernel satisfy the following asymptotic behavior [Nazarov and Nikitin, 2004]:

λp ≈
1

p2(ν+1/2)
, p≫ 1.

Following the guideline of the Example 3 we deduce the following asymptotic behavior for B2
τ :

B2
τ ≈ Cντ

1− 1
2(ν+1/2) , τ ≪ 1, (7.19)

where Cν is a constant independent of τ .

This result is in agreement with the one of [Ritter, 2000a] who proved that for 1-dimensional

kernels satisfying the Sacks-Ylvisaker of order r conditions (where r is an integer), the gen-

eralization error for the best linear estimator and experimental design set strategy decays as

τ1−
1

2r+2 . Indeed, for such kernels, the eigenvalues satisfy the large-p behavior λp ∝ 1/p2r+2

[Rasmussen and Williams, 2006] and by following the guideline of the previous examples we

find the same convergence rate. We note that the Matérn kernel with parameter ν = r + 1/2

satisfies the Sacks-Ylvisaker of order r conditions. Furthermore, our result generalizes the

one of [Ritter, 2000a] since it provides convergence rates for more general kernels and for any

dimension (see below). Finally, our result shows that the random sampling gives the same

decay rate as the optimal experimental design.

Example 5 (The d-D tensorised Matérn covariance kernel) We focus here on the

d-dimensional tensorised Matérn kernel with isotropic regularity parameter ν > 1
2 . According

to [Pusev, 2011] the eigenvalues of this kernel satisfy the asymptotics:

λp ≈ φ(p), p≫ 1,

where the function φ is defined by:

φ(p) =
log(1 + p)2(d−1)(ν+1/2)

p2(ν+1/2)
.

Its inverse φ−1 satisfies:

φ−1(ε) = ε
− 1

2(ν+1/2)

(

log
(

ε
− 1

2(ν+1/2)

))d−1
(1 + o(1)), ε≪ 1.

We hence have the approximation:

B2
τ ≈ 2(ν + 1/2)− 1

φ−1 (τ)2(ν+1/2)−1
log
(

1 + φ−1 (τ)
)2(d−1)(ν+1/2)

+ τφ−1 (τ) .
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We can deduce the following rate of convergence for B2
τ :

B2
τ ≈ Cν,dτ

1− 1
2(ν+1/2) log (1/τ)d−1 , τ ≪ 1, (7.20)

with Cν,d a constant independent of τ .

Example 6 (The d-D Gaussian covariance kernel) According to [Todor, 2006] the

asymptotic behavior of the eigenvalues for a Gaussian kernel is:

λp ≤ c′exp
(

−cp 1
d

)

,

where c and c′ are constants that depend on the correlation length and the diameter of the

domain Q. Applying the procedure presented in the previous examples, it can be shown than

the rate of convergence of the IMSE is bounded by:

Cdτ log (1/τ)
d , τ ≪ 1, (7.21)

with Cd a constant independent of τ .

We can see from the previous examples that for smooth kernels, the convergence rate

is close to τ , i.e. the classical Monte-Carlo rate.

We compare the previous theoretical results on the rate of convergence of the generalization

error with full numerical simulations. In order to observe the asymptotic convergence, we fix

n = 200 and we consider 1/τ varying from 50 to 1000. The experimental design sets are

sampled from a uniform measure on [0, 1] and the observation noise is nτ . To estimate the

IMSE (7.5) we use a trapezoidal numerical integration with 4000 quadrature points over [0, 1].

Furthermore, to build the convergence curves (i.e to estimate the multiplicative coefficients)

in figures 7.1 and 7.2 we use a linear regression with the first value of the IMSE, an intercept

fixed to zero (since the IMSE tends to 0 when τ tends to 0) and a unique explanatory variable

corresponding to the tested convergence (e.g. τ0.1, τ log(1/τ),. . . ).

First, we deal with the 1-D fractional Brownian kernel (7.16) with Hurst parameter H.

We have proved that for large n, the IMSE decays as τ1−
1

2H+1 . Figure 7.1 compares the

numerically estimated convergences to the theoretical ones.

We see in Figure 7.1 that the observed rate of convergence is perfectly fitted by the

theoretical one. We note that we are far from the classical Monte-Carlo rate since we are

in a non-degenerate case.

Finally, we deal with the 2-D tensorised Matérn-5/2 kernel and the 1-D Gaussian kernel.

The 1-dimensional Matérn-ν class of covariance functions k1D(t, t
′; ν, θ) is given by (7.18) and

the 2-D tensorised Matérn-ν covariance function is given by:

k(x, x̃; ν, θ) = k1D(x1, x
′
1; ν, θ1)k1D(x2, x

′
2; ν, θ2). (7.22)
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Figure 7.1: Rate of convergence of the IMSE when the level of observation noise decreases for a

fractional Brownian motion with Hurst parameter H = 0.5 (a) and H = 0.9 (b). The number

of observations is n = 200 and the observation noise variance is nτ with 1/τ varying from 50

to 1000. The triangles represent the numerically estimated IMSE, the solid line represents the

theoretical convergence, and the other non-solid lines represent various convergence rates.

Furthermore, the 1-D Gaussian kernel is defined by:

k(x, x̃; θ) = exp

(

−1

2

(x− x̃)2

θ2

)

.

Figure 7.2 compares the numerically observed convergence of the IMSE to the theoretical one

when θ1 = θ2 = 0.2 for the Matérn-5/2 kernel and when θ = 0.2 for the Gaussian kernel.

We see in Figure 7.2 that the theoretical rate of convergence is a sharp approximation of the

observed one.

7.5 Applications of the learning curve

Let us consider that we want to approximate the function x ∈ Q ⊆ R
d → f(x) from noisy

observations at fixed points (xi)i=1,...,n, with n ≫ 1, sampled from the design measure µ and

with si replications at each point xi.

In this section, we consider the situation described in Example 7.1:

• The budget T is defined as the sum of repetitions on all points of the experimental

design set - i.e. T =
∑n

i=1 si.

• An observation zni at point xi has a noise variance equal to σ2ε(xi)/si with i = 1, . . . , n.

In Subsection 7.5.1 we present how to determine the needed budget T to achieve a pre-

scribed precision. Then, in Subsection 7.5.2, we address the problem of the optimal allocation

{s1, s2, . . . , sn} for a given budget T with Proposition 7.3.
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Figure 7.2: Rate of convergence of the IMSE when the level of observation noise decreases for

a 2-D tensorised Matérn-5/2 kernel (a) and for a 1-D Gaussian kernel (b). The number of

observations is n = 200 and the observation noise variance is nτ with 1/τ varying from 100 to

1000. The triangles represent the numerically estimated IMSE, the solid line represents the

theoretical convergence, and the other non-solid lines represent various convergences.

7.5.1 Estimation of the budget required to reach a prescribed precision

Let us consider a prescribed generalization error denoted by ε̄. The purpose of this subsection

is to determine from an initial budget T0 the budget T for which the generalization error

reaches the value ε̄. We handle this issue by considering a uniform allocation si = s with

i = 1, . . . , n and a constant reduced noise variance σ2ε .

First, we build an initial experimental design set (xtraini )i=1,...,n sampled with respect to

the design measure µ and with s∗ replications at each point such that T0 = ns∗. From

the s∗ replications (zi,j)j=1,...,s∗ , we can estimate the observation noise variances σ2ε(x
train
i )

with a classical empirical estimator:
∑s∗

j=1(zi,j − zni )
2/(s∗ − 1), zni =

∑s∗

j=1 zi,j/s
∗. Then, we

consider a constant reduced noise variance σ2ε equal to the mean
∫

Rd σ
2
ε(x) dµ(x) estimated

with
∑n

i=1 σ
2
ε(x

train
i )/n.

Second, we use the observations zni = (
∑s∗

j=1 zi,j)/s
∗ to estimate the covariance kernel

k(x, x̃). In practice, we consider a parametrized family of covariance kernels and we select the

parameters which maximize the likelihood (see [Stein, 1999] and Chapter 1 Section 1.3).

Third, from Proposition 7.1 we can get the expression of the generalization error decay

with respect to T (denoted by IMSET ). Therefore, we just have to determine the budget T

such that IMSET = ε̄. In practice, we will not use Proposition 7.1 but the asymptotic results

described in Section 7.4.

This strategy will be applied to an industrial case in Section 7.6. We note that in the

application presented in Section 7.6, we have s∗ = 1. In fact, in this example the observations

are themselves obtained by an empirical mean of a Monte-Carlo sample and thus the noise

variance can be estimated without processing replications.
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7.5.2 Optimal resource allocation for a given budget

Let us consider a fixed budget T . As presented in Subsection 7.5.1, to determine this budget

we make the approximation of a reduced noise variance σ2ε(x) independent of x and we consider

the uniform allocation si = s.

Despite the fact that the uniform allocation si = s is needed to determine T , in order to

provide the optimal resource allocation - i.e. the sequence of integers {s1, s2, . . . , sn} minimiz-

ing the generalization error - it is worth taking into account the heterogeneity of the noise.

For a Monte-Carlo based simulator, the number of repetitions s could represent the number

of Monte-Carlo particles and the procedure presented below can be applied.

Determining the optimal allocation of the budget T whatever the Gaussian process for a

heterogeneous noise is an open and non-trivial problem. To solve this problem, we first con-

sider the continuum approximation in which we look for an optimal sequence of real numbers

(si)i=1,...,n and then we round the optimal solution to obtain a quasi-optimal integer-valued

allocation (si,int)i=1,...,n. The following proposition gives the optimal resource allocation under

certain restricted conditions for the continuous case. The reader is referred to [Munoz Zu-

niga et al., 2011] for a proof of this proposition in a different framework (the proof uses the

Karush-Kuhn-Tucker approach to solve the minimization problem with equality and inequality

constraints [Kuhn and Tucker, 1951] and [Karush, 1939]). We note that the optimal alloca-

tion given in Proposition 7.3 for a fixed budget T can also be used for any n > 0 and for any

experimental design set.

Proposition 7.3. Let us consider Z(x) a Gaussian process with a known mean and

covariance kernel k(x, x′) ∈ C0(Q×Q) with supx k(x, x) <∞. Let (xi)i=1,...,n be a given

experimental design set of n points sorted such that the sequence

(

k(xj ,xj)+σ2
ε(xj)√

c(xj)σ2
ε(xj)

)

j=1,...,n

is non-increasing, where σ2ε(xi) is the reduced noise variance of an observation at point xi,

c(x) =
∫

Rd k(x
′, x)2 dη(x′) and η(x) is a positive measure used to calculate the Integrated

Mean Squared Error (IMSE). When the covariance matrix K is diagonal, the real-valued

allocation (si)i=1,...,n minimizing the generalization error:

IMSE =

∫

Rd

(

k(x, x)− k′(x)(K+∆)−1k(x)
)

dη(x), (7.23)

under the constraints
∑n

i=1 si = T and si ≥ 1, ∀i = 1, . . . , n is given by:

sopti =















1 i ≤ i∗

1
k(xi,xi)





√
c(xi)σ2

ε(xi)

∑n
j=i∗+1

√
c(xj)σ

2
ε(xj)

k(xj,xj)

(

T − i∗ +
∑n

j=i∗+1
σ2
ε(xj)

k(xj ,xj)

)

− σ2ε(xi)



 i > i∗
,

(7.24)

where ∆ = diag

[

(

σ2
ε(xi)
si

)

i=1,...,n

]

and:
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i∗ = max











i = 1, . . . , n such that
k(xi, xi) + σ2ε(xi)
√

c(xi)σ2ε(xi)
≥
T − i+

∑n
j=i+1

σ2
ε(xj)

k(xj ,xj)

∑n
j=i+1

√
c(xj)σ2

ε(xj)

k(xj ,xj)











.

(7.25)

By convention, if:

k(xi, xi) + σ2ε(xi)
√

c(xi)σ2ε(xi)
<
T − i+

∑n
j=i+1

σ2
ε(xj)

k(xj ,xj)

∑n
j=i+1

√
c(xj)σ2

ε(xj)

k(xj ,xj)

, ∀i = 1, . . . , n, (7.26)

then i∗ = 0.

The proof of Proposition 7.3 is given in Appendix D. We note that the proof holds be-

cause the problem is separable due to the diagonal property of the covariance matrix. The

optimization problem in Proposition 7.3 admits a solution if and only if T ≥ n which reflects

the fact that n simulations are already available. Furthermore, when T is large enough, we

have i∗ = 0 and the solution has the following form:

sopti =
1

k(xi, xi)







√

c(xi)σ2ε(xi)
∑n

j=1

√
c(xj)σ2

ε(xj)

k(xj ,xj)



T +

n
∑

j=1

σ2ε(xj)

k(xj , xj)



− σ2ε(xi)






. (7.27)

While Proposition 7.3 gives a continuous optimal allocation, an admissible allocation must

be an integer-valued sequence. Therefore we solve the optimization problem with the con-

tinuous approximation and then we round the continuous solution to obtain a quasi-optimal

integer-valued solution sopti,int. The rounding is performed by solving the following problem:

Find J such that
∑n

i=1 s
opt
i,int = T with:

sopti,int =

{

[

sopti

]

+ 1 i ≤ J
[

sopti

]

i > J
,

where [x] denotes the integer part of a real number x.

We note that this allocation is not optimal in general (i.e. when K is not diagonal).

Nevertheless we have numerically observed that it remains efficient in general cases and is

better than the uniform allocation strategy. We perform numerical comparisons in Appendix

D.

Proposition 7.3 shows that it is worth allocating more resources at locations where the

reduced noise variance σ2ε(x) and the quantity c(xi) =
∫

Rd k(x, xi)
2 dη(x) (representing the

local concentration of the IMSE) are more important.

7.6 Industrial Case: code MORET

We illustrate in this section an industrial application of our results about the rate of conver-

gence of the IMSE. The case is about the safety assessment of a nuclear system containing
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fissile materials. The system is modeled by a neutron transport code called MORET [Fernex

et al., 2005]. In particular, we study a benchmark system of dry PuO2 storage. We note that

we are in the framework presented in Example 7.1.

This section is divided into 3 parts. First, we present the Gaussian process regression

model built on an initial experimental design set. Then we apply the strategy described

in Section 7.5.1 to determine the computational budget T needed to achieve a prescribed

precision. Finally, we allocate the resource T on the experimental design set.

7.6.1 Data presentation

The benchmark system safety is evaluated through the neutron multiplication factor keff . This

is our output of interest that we want to surrogate. This factor models the criticality of a

chain nuclear reaction:

• keff > 1 leads to an uncontrolled chain reaction due to an increasing neutron population.

• keff = 1 leads to a self-sustained chain reaction with a stable neutron population.

• keff < 1 leads to a faded chain reaction due to an decreasing neutron population.

The neutron multiplication factor depends on many parameters and it is evaluated using the

stochastic simulator called MORET. We focus here on two parameters:

• dPuO2 ∈ [0.5, 4]g.cm−3, the density of the fissile powder. It is scaled in this section to

[0, 1].

• dwater ∈ [0, 1]g.cm−3, the density of water between storage tubes.

The other parameters are fixed to a nominal value given by an expert and we use the notation

x = (dPuO2 , dwater) for the input parameters.

The MORET code provides outputs of the following form:

keff,s(x) =
1

s

s
∑

j=1

Yj(x),

where (Yj(x))j=1,...,s are realizations of independent and identically distributed random vari-

ables which are themselves obtained by an empirical mean of a Monte-Carlo sample of 4000

particles. From these particles, we can also estimate the variance σ2ε(x) of the observation

Yj(x) by a classical empirical estimator. The simulator gives noisy observations and the vari-

ance of an observation keff,s(x) equals σ2ε(x)/s.

A large data base (Yj(xi))i=1,...,5625,j=1,...,200 is available to us. We divide it into a training

set and a test set. Let us denote by Yj(xi) the jth observation at point xi - the 5625 points

xi of the data base come from a 75× 75 grid over [0, 1]2. The training set consists of n = 100

points (xtraini )i=1,...,n extracted from the complete data base using a maximin LHS and of the

first observations (Y1(x
train
i ))i=1,...,100. We will use the other 5525 points as a test set.

The aim of the study is - given the training set - to predict the budget needed to achieve a

prescribed precision for the surrogate model and to allocate optimally these resources. More
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precisely, let us denote by si the resource allocated to the point xtraini of the experimental

design set. First, we want to determine the budget T =
∑n

i=1 si which allows us to achieve

the target precision (see Subsection 7.5.1). Second, we want to determine the best resource

allocation (si)i=1,...,n (see Subsection 7.5.2).

To evaluate the needed computational budget T the observation noise variance σ2ε(x) is

approximated by a constant σ̄2ε . The constant variance equals the mean
∫

R2 σ
2
ε(x) dµ(x) of the

noise variance which is here estimated by σ̄2ε = 1
100

∑100
i=1 σ

2
ε(x

train
i ) = 3.3.10−3. Furthermore,

we look for a uniform budget allocation, i.e. si = s ∀i = 1, . . . , n. In this case, the total

computational budget is T = ns.

7.6.2 Model selection

To build the model, we consider the training set plotted in Figure 7.4. It is composed of the

n = 100 points (xtraini )i=1,...,n which are uniformly spread on Q = [0, 1]2.

Let us suppose that the response is a realization of a Gaussian process with a tensorised

Matérn-ν covariance function. The 2-D tensorised Matérn-ν covariance function k(x, x̃; ν,θ)

is given in (7.22). The hyper-parameters are estimated by maximizing the concentrated Like-

lihood:

−1

2
(zn −m)′(σ2K+ σ2εI)

−1(zn −m)− 1

2
det(σ2K+ σ̄2εI),

where K = [k(xtraini , xtrainj ; ν,θ)]i,j=1,...,n, I is the identity matrix, σ2 the variance parameter,

m the mean of keff,s(x) and zn = (Y1(x
train
1 ), . . . , Y1(x

train
n )) the observations at points in the

training set. The mean of keff,s(x) is estimated by m = 1
100

∑100
i=1 Y1(x

train
i ) = 0.65.

Due to the fact that the convergence rate is strongly dependent of the regularity parameter

ν, we have to perform a good estimation of this hyper-parameter to evaluate the model error

decay accurately. Note that we cannot have a closed form expression for the estimator of σ2,

it hence has to be estimated jointly with θ and ν.

Let us consider the vector of parameters φ = (ν, θ1, θ2, σ
2). In order to perform the

maximization, we have first randomly generated a set of 10,000 parameters (φk)k=1,...,104 on

the domain [0.5, 3]×[0.01, 2]×[0.01, 2]×[0.01, 1]. We have then selected the 150 best parameters

(i.e. the ones maximizing the concentrated Maximum Likelihood) and we have started a quasi-

Newton based maximization from these parameters. More specifically, we have used the BFGS

method [Shanno, 1970]. Finally, from the results of the 150 maximization procedures, we have

selected the best parameter. We note that the quasi-Newton based maximizations have all

converged to two parameter values, around 30% to the actual maximum and 70% to another

local maximum.

The estimates of the hyper-parameters are ν = 1.31, θ1 = 0.67, θ2 = 0.45 and σ2 = 0.24.

This means that we have a rough surrogate model which is not differentiable and α-Hölder

continuous with exponent α = 0.81. The variance of the observations is σ̄2ε = 3.3.10−3, using

the same notations as Example 7.1, we have τ = σ̄2ε/T0 with T0 = n (it corresponds to s = 1).

The IMSE of the Gaussian process regression is IMSET0 = 1.0.10−3 and its empirical mean

squared error is EMSET0 = 1.2.10−3 . To compute the empirical mean squared error (EMSE),

we use the observations (Yj(xi))i=1,...,5525, j=1...,200 with xi 6= xtraink ∀k = 1, . . . , 100, i =
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1, . . . , 5525 and to compute the IMSE (7.5) (that depends only on the positions of the training

set and on the selected hyper-parameters) we use a trapezoidal numerical integration into a

75 × 75 grid over [0, 1]2. For s = 200, the observation variance of the output keff,s(x) equals
σ̄2
ε

200 = 1.64.10−5 and is neglected for the estimation of the empirical error. We can see that

the IMSE is close to the empirical mean squared error which means that our model describes

the observations accurately.

7.6.3 Convergence of the IMSE

According to (7.20), we have the following convergence rate for the IMSE:

IMSE ∼ log(1/τ)τ
1− 1

2(ν+1/2) =
log(T/σ̄2ε)

(T/σ̄2ε)
1− 1

2(ν+1/2)

, (7.28)

where the model parameter ν plays a crucial role. We can therefore expect that the IMSE

decays as (see Subsection 7.5.1):

IMSET = IMSET0

log(T/σ̄2ε)

(T/σ̄2ε)
1− 1

2(ν+1/2)

/
log(T0/σ̄

2
ε)

(T0/σ̄2ε)
1− 1

2(ν+1/2)

. (7.29)

Let us assume that we want to reach an IMSE of ε̄ = 2.10−4. According to the IMSE decay

and the fact that the IMSE for the budget T0 has been estimated to be equal to 1.0.10−3, the

total budget required is T = ns = 2000, i.e. s = 20. Figure 7.3 compares the empirical mean

squared error convergence and the predicted convergence (7.29) of the IMSE.
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Figure 7.3: Comparison between Empirical mean squared error (EMSE) decay and theoretical

IMSE decay for n = 100 when the total budget T = ns increases. The triangles represent

the Empirical MSE, the solid line represents the theoretical decay, the horizontal dashed line

represents the desired accuracy and the dashed line the classical Monte-Carlo convergence.

We see that Monte-Carlo decay does not match the empirical MSE and it is too fast.

We see empirically that the EMSE of ε̄ = 2.10−4 is achieved for s = 31. This shows that



230 CHAPTER 7. ASYMPTOTIC ANALYSIS OF THE LEARNING CURVE

the predicted IMSE and the empirical MSE are close and that the selected kernel captures

the regularity of the response accurately.

Let us consider the classical Monte-Carlo convergence rate σ̄2ε/T , which corresponds to

the convergence rate of degenerate kernels, i.e. in the finite -dimensional case. Figure 7.3

compares the theoretical rate of convergence of the IMSE with the classical Monte-Carlo one.

We see that the Monte-Carlo decay is too fast and does not represent correctly the empirical

MSE decay. If we had considered the rate of convergence IMSE ∼ σ̄2ε/T , we would have

reached an IMSE of ε̄ = 2.10−4 for s = 6 (which is far from the observed value s = 31).

7.6.4 Resource allocation

We have determined in the previous section the computational budget required to reach an

IMSE of 2.10−4. We observe that the predicted allocation is accurate since it gives an empirical

MSE close to 2.10−4. To calculate the observed MSE, we uniformly allocate the computational

budget on the points of the training set. We know that this allocation is optimal when the

variance of the observation noise is homogeneous. Nevertheless, we are not in this case and

to build the final model we allocate the budget taking into account the heterogeneous noise

level σ2ε(x). We note that the total budget is T =
∑n

i=1 si where n = 100 is the number

observations and si the budget allocated to the point xtraini .

From (7.27) in Proposition 7.3, when the input parameter distribution µ is uniform on

[0, 1] and for a diagonal covariance matrix, the optimal allocation is given by:

si =
1

σ2





√

σ2ε(xi)
∑n

j=1

√

σ2ε(xj)



σ2T +

n
∑

j=1

σ2ε(xj)



− σ2ε(xi)



 . (7.30)

Here we use this allocation to build the model. Let us consider that we do not have

observed the empirical MSE decay, we hence consider the budget given by the theoretical

decay T = 2400. The allocation given by Equation (7.30) after the rounding procedure is

illustrated in Figure 7.4 with the contour of the noise level.

We see in Figure 7.4 that the resources allocation is more important at points where the

noise variance is higher. Table 7.1 compares the performances of the two models build with

the two allocations on the test set.

Uniform Allocation Optimal Allocation

MSE 2.71.10−4 2.62.10−4

MaxSE 5.66.10−2 5.35.10−2

Table 7.1: Comparison between uniform and optimal (under the condition K diagonal) allo-

cation of resources.

We see in Table 7.1 that the budget allocation given by Equation (7.30) gives predictions

slightly more accurate than the uniform one.
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Figure 7.4: Figure (a): initial experimental design set with n = 100. Figure (b): noise level

dependence of the resources allocation. The solid lines represent the reduced noise variance

σ2ε(x) contour plot and the numbers represent the resources (si)i=1,...,n allocated to the points

of the experimental design set.

7.7 Proof of Theorem 7.1

7.7.1 Proof of Theorem 7.1: the degenerate case

The proof in the degenerate case follows the lines of the ones given by [Opper and Vi-

varelli, 1999], [Rasmussen and Williams, 2006] and [Picheny, 2009]. For a degenerate ker-

nel, the number p̄ of non-zero eigenvalues is finite. Let us denote Λ = diag(λi)1≤i≤p̄,

φ(x) = (φ1(x), . . . , φp̄(x)) and Φ =
(

φ(x1)
′ . . . φ(xn)

′
)′

. The MSE of the Gaussian process

regression is given by:

σ2(x) = φ(x)Λφ(x)′ − φ(x)ΛΦ′ (ΦΛΦ′ + nτI
)−1

ΦΛφ(x)′.

Thanks to the Woodbury-Sherman-Morrison formula and according to [Opper and Vi-

varelli, 1999] and [Picheny, 2009] the Gaussian process regression error can be written:

σ2(x) = φ(x)

(

Φ′Φ
nτ

+Λ−1

)−1

φ(x)′.

Since p̄ is finite, by the strong law of large numbers, the p̄× p̄ matrix 1
nΦ

′Φ converges almost

surely as n→ ∞. We so have the following almost sure convergence:

σ2(x)
n→∞−→

∑

p≤p̄

τλp
τ + λp

φp(x)
2. (7.31)

7.7.2 Proof of Theorem 7.1: the lower bound for σ2(x)

The objective is to find a lower bound for σ2(x) for non-degenerate kernels. Let us consider

the Karhunen-Loève decomposition of Z(x) =
∑

p≥0 Zp

√

λpφp(x) where (Zp)p is a sequence
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of independent Gaussian random variables with mean zero and variance 1. If we denote by

ai(x) the coefficients of the BLUP associated to Z(x), the mean squared error can be written

σ2(x) = E





(

Z(x)−
n
∑

i=1

ai(x)Z(xi)

)2




= E









∑

p≥0

√

λp

(

φp(x)−
n
∑

i=1

ai(x)φp(xi)

)

Zp





2



=
∑

p≥0

λp

(

φp(x)−
n
∑

i=1

ai(x)φp(xi)

)2

+ nτ

n
∑

i=1

ai(x)
2.

Then, for a fixed p̄, the following inequality holds:

σ2(x) ≥
∑

p≤p̄

λp

(

φp(x)−
n
∑

i=1

ai(x)φp(xi)

)2

+ nτ
n
∑

i=1

ai(x)
2 = σ2LUP,p̄(x). (7.32)

σ2LUP,p̄(x) is the MSE of the LUP of coefficients ai(x) associated to the Gaussian process

Zp̄(x) =
∑

p≤p̄ Zp

√

λpφp(x). Let us consider σ2p̄(x) the MSE of the BLUP of Zp̄(x), we have

the following inequality:

σ2LUP,p̄(x) ≥ σ2p̄(x). (7.33)

Since Zp̄(x) has a degenerate kernel, the almost sure convergence given in Equation (7.31)

holds for σ2p̄(x). Then, considering inequalities (7.32) and (7.33) and the convergence (7.31),

we obtain:

lim inf
n→∞

σ2(x) ≥
∑

p≤p̄

(

τλp
τ + λp

)

φp(x)
2. (7.34)

Taking the limit p̄→ ∞ in the right hand side gives the desired result.

7.7.3 Proof of Theorem 7.1: the upper bound for σ2(x)

The objective is to find an upper bound for σ2(x). Since σ2(x) is the MSE of the BLUP

associated to Z(x), if we consider any other LUP associated to Z(x) its MSE denoted by

σ2LUP (x) satisfies the following inequality:

σ2(x) ≤ σ2LUP (x). (7.35)

The idea is to find a LUP so that its MSE is a tight upper bound of σ2(x). Let us consider

the LUP:

f̂LUP (x) = k′(x)Azn, (7.36)

with A the n × n matrix defined by A = L−1 +
∑q

k=1(−1)k(L−1M)kL−1 with L = nτI +
∑

p≤p∗ λp[φp(xi)φp(xj)]1≤i,j≤n, M =
∑

p>p∗ λp[φp(xi)φp(xj)]1≤i,j≤n, q a finite integer and
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p∗ such that λp∗ < τ . The matrix A is an approximation of the inverse of the matrix

L+M = nτI+K. Then, the MSE of the LUP (7.36) is given by:

σ2LUP (x) = k(x, x)− k′(x) (2A−A(nτI+K)A)k(x)

and by substituting the expression of A into the previous equation we obtain:

σ2LUP (x) = k(x, x)− k′(x)L−1k(x)−
2q+1
∑

i=1

(−1)ik′(x)(L−1M)iL−1k(x). (7.37)

First, let us consider the term k′(x)L−1k(x). Since p∗ <∞, the matrix L can be written:

L = nτI+Φp∗ΛΦ′
p∗ , (7.38)

where Λ = diag(λi)1≤i≤p∗ , Φp∗ =
(

φ(x1)
′ . . . φ(xn)

′
)′

and φ(x) = (φ1(x), . . . , φp∗(x)).

Thanks to the Woodbury-Sherman-Morrison formula, the matrix L−1 is given by:

L−1 =
I

nτ
− Φp∗

nτ

(

Φ′
p∗Φp∗

nτ
+Λ−1

)−1 Φ′
p∗

nτ
. (7.39)

From the continuity of the inverse operator for invertible p∗ × p∗ matrices and by applying

the strong law of large numbers, we obtain the following almost sure convergence :

k′(x)L−1k(x) =
1

nτ

n
∑

i=1

k(x, xi)
2 − 1

τ2

p∗
∑

p,q=0

[

(

Φ′
p∗Φp∗

nτ
+Λ−1

)−1
]

p,q

×
[

1

n

n
∑

i=1

k(x, xi)φp(xi)

]





1

n

n
∑

j=1

k(x, xj)φq(xj)



 ,

n→∞−→ 1

τ
Eµ[k(x,X)2]− 1

τ2

p∗
∑

p,q=0

[

(

I

τ
+Λ−1

)−1
]

p,q

Eµ[k(x,X)φp(X)]Eµ[k(x,X)φq(X)],

where Eµ is the expectation with respect to the design measure µ. We note that we can use

the Woodbury-Sherman-Morrison formula and the strong law of large numbers since p∗ is

finite and independent of n. Then, the orthonormal property of the basis (φp(x))p≥0 implies:

Eµ[k(x,X)2] =
∑

p≥0

λ2pφp(x)
2, Eµ[k(x,X)φp(X)] = λpφp(x).

Therefore, we have the following almost sure convergence:

k′(x)L−1k(x)
n→∞−→

∑

p≤p∗

λ2p
λp + τ

φp(x)
2 +

1

τ

∑

p>p∗

λ2pφp(x)
2. (7.40)

Second, let us consider the term
∑2q+1

i=1 (−1)ik′(x)(L−1M)iL−1k(x). We have the following

equality:

k′(x)(L−1M)iL−1k(x) =
i
∑

l=0

(

i

l

)

1

nτ
k′(x)

(

M

nτ

)l(

− L′M
(nτ)2

)i−l

k(x)

−k′(x)

(

M

nτ

)l (

− L′M
(nτ)2

)i−l
L′

(nτ)2
k(x),
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where:

L′ = Φp∗

(

Φ′
p∗Φp∗

nτ
+Λ−1

)−1

Φ′
p∗ =

∑

p,p′≤p∗

d
(n)
p,p′ [φp(xi)φp(xj)]1≤i,j≤n, (7.41)

with d
(n)
p,p′ =

[

(

Φ′
p∗

Φp∗

nτ +Λ−1

)−1
]

p,p′

. Since q < ∞, we can obtain the convergence in

probability of
∑2q+1

i=1 (−1)ik′(x)(L−1M)iL−1k(x) from the ones of:

k′(x)
1

n

(

M

n

)j (
L′M
n2

)i−j

k(x) (7.42)

and:

k′(x)

(

M

n

)j (
L′M
n2

)i−j
L′

n2
k(x), (7.43)

with i ≤ 2q + 1 and j ≤ i. Let us consider k′(x) 1n
(

M

n

)j
(

L′M

n2

)i−j
k(x) and i > j, we have:

k′(x)
1

n

(

M

n

)j (
L′M
n2

)i−j

k(x) =
∑

p1,...,pi−j≤p∗

p′1,...,p
′
i−j≤p∗

d
(n)
p1,p′1

. . . d
(n)
pi−j ,p′i−j

∑

q1,...,qi−j>p∗

m1,...,mj>p∗

S(n)
q,m, (7.44)

with:

S(n)
q,m =

(

√

λm1

n

n
∑

r=1

k(x, xr)φm1(xr)

)(

√

λmj

n

n
∑

r=1

φmj (xr)φp′1(xr)

)

×
(

λqi−j

n

n
∑

r=1

k(x, xr)φqi−j (xr)

n
∑

r=1

φpi−j (xr)φqi−j (xr)

)

×
j−1
∏

l=1

√

λml
λml+1

n

n
∑

r=1

φml
(xr)φml+1

(xr)

i−j−1
∏

l=1

λql
n

n
∑

r=1

φql(xr)φpl+1
(xr)

n
∑

r=1

φql(xr)φp′l(xr).

We consider now the term:

a
(n)
q,p,p′ =

λq
n

n
∑

r=1

φq(xr)φp(xr)
1

n

n
∑

r=1

φp′(xr)φq(xr), (7.45)

with p, p′ ≤ p∗. From Cauchy Schwarz inequality and thanks to the following inequality:

|φp(x)|2 ≤
1

λp

∑

p′≥0

λp′ |φp′(x)|2 = λ−1
p k(x, x),

we obtain (using λp ≥ λp∗ , ∀p ≤ p∗ and [
∑n

r=1 |φq(xr)|]2 ≤ n
∑n

r=1 φq(xr)
2):

∣

∣

∣a
(n)
q,p,p′

∣

∣

∣ ≤ σ2λ−1
p∗
λq
n

n
∑

r=1

φq(xr)
2 ∀p, p′ ≤ p∗,
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with σ2 = supx k(x, x). Considering the expectation with respect to the distribution of points

xr, we obtain ∀p̄ <∞:

Eµ

[

∑

q>p̄

∣

∣

∣a
(n)
q,p,p′

∣

∣

∣

]

≤ σ2λ−1
p∗

∑

q>p̄

λq.

From Markov inequality, ∀δ > 0, we have:

Pµ

(∣

∣

∣

∣

∣

∑

q>p̄

a
(n)
q,p,p′

∣

∣

∣

∣

∣

> δ

)

≤
Eµ

[∣

∣

∣

∑

q>p̄ a
(n)
q,p,p′

∣

∣

∣

]

δ
≤
σ2λ−1

p∗
∑

q>p̄ λq

δ
. (7.46)

Furthermore, ∀δ > 0, ∀p̄ > p∗:

Pµ





∣

∣

∣

∣

∣

∣

∑

q>p∗

a
(n)
q,p,p′

∣

∣

∣

∣

∣

∣

> 2δ



 ≤ Pµ





∣

∣

∣

∣

∣

∣

∑

p∗<q≤p̄

a
(n)
q,p,p′

∣

∣

∣

∣

∣

∣

> δ



+ Pµ

(∣

∣

∣

∣

∣

∑

q>p̄

a
(n)
q,p,p′

∣

∣

∣

∣

∣

> δ

)

.

We have for all q ∈ (p∗, p̄] : a(n)q,p,p′ → aq,p,p′ = λqδq=pδq=p′ = 0 (with δ the Kronecker product),

as n→ ∞, therefore:

lim sup
n→∞

Pµ

(∣

∣

∣

∣

∣

∑

q>p∗
a
(n)
q,p,p′

∣

∣

∣

∣

∣

> 2δ

)

≤
σ2λ−1

p∗
∑

q>p̄ λq

δ
.

Taking the limit p̄ → ∞ in the right hand side, we obtain the convergence in probability of
∑

q>p∗ a
(n)
q,p,p′ when n→ ∞:

∑

q>p∗

λq
n

n
∑

r=1

φq(xr)φp(xr)
1

n

n
∑

r=1

φp′(xr)φq(xr)
Pµ−→ 0 ∀p, p′ ≤ p∗. (7.47)

Following the same method, we obtain the convergence:

∑

q>p∗

λq
n

n
∑

r=1

k(x, xr)φq(xr)

n
∑

r=1

φp(xr)φq(xr)
Pµ−→ 0 ∀p ≤ p∗. (7.48)

Let us return to S
(n)
q,m. By using Cauchy Schwarz inequality and bounding by the constant

KM all the terms independent of qi and mi, we obtain:

∣

∣

∣

∣

∣

∣

∑

q1,...,qi−j>p∗

S(n)
q,m

∣

∣

∣

∣

∣

∣

≤ KM

j
∏

l=1

λml

1

n

n
∑

r=1

φml
(xr)

2

×

∣

∣

∣

∣

∣

∣

∑

qi−j>p∗

(

λqi−j

n

n
∑

r=1

k(x, xr)φqi−j (xr)

n
∑

r=1

φpi−j (xr)φqi−j (xr)

)

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

∑

q1,...,qi−j−1>p∗

i−j−1
∏

l=1

λql
n

n
∑

r=1

φql(xr)φpl+1
(xr)

n
∑

r=1

φql(xr)φp′l(xr)

∣

∣

∣

∣

∣

∣

.
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Since
∑

p≥0 λpφp(x)
2 = k(x, x) ≤ σ2, we have the inequality 0 ≤∑m1,...,mj

∏j
l=1 λml

1
n

∑n
r=1 φml

(xr)
2 ≤

(σ2)j . Thus, for i > j and from (7.47) and (7.48) we obtain the following convergence in prob-

ability when n→ ∞:

∑

q1,...,qi−j>p∗

m1,...,mj>p∗

S(n)
q,m

Pµ−→ 0.

Therefore, from (7.44) we obtain the following convergence when n→ ∞:

k′(x)
1

n

(

M

n

)j (
L′M
n2

)i−j

k(x)
Pµ−→ 0 ∀i < j. (7.49)

Following the same guideline as previously, it can be shown that when n→ ∞:

k′(x)
1

n

(

M

n

)j (
L′M
n2

)i−j
L′

n2
k(x)

Pµ−→ 0 ∀i ≤ j. (7.50)

From the convergences (7.49) and (7.50), we deduce the following one when n→ ∞:

k′(x)
(

L−1M
)q

L−1k(x)− 1

n
k′(x)

(

M

n

)q

k(x)
Pµ−→ 0. (7.51)

Therefore, to complete the proof we have to show that:

1

n
k′(x)

(

M

n

)q

k(x)
Pµ−→

∑

p>p∗

λq+2
p φp(x)

2.

Let us consider for a fixed j ≥ 1:

1

n
k′(x)

(

M

n

)j

k(x) =
∑

m1,...,mj>p∗

a(n)m (x),

with m = (m1, . . . ,mj) and:

a(n)m (x) =

(

1

n

n
∑

r=1

k(x, xr)φm1(xr)

)(

1

n

n
∑

r=1

k(x, xr)φmj (xr)

)

×
j−1
∏

l=1

1

n

n
∑

r=1

φml
(xr)φml+1

(xr)

j
∏

i=1

λmi .

From Cauchy-Schwarz inequality, we have:

∣

∣

∣a(n)m (x)
∣

∣

∣ ≤
(

1

n

n
∑

r=1

k(x, xr)
2

)

j
∏

i=1

1

n

n
∑

r=1

λmiφmi(xr)
2 (7.52)

≤ σ4
j
∏

i=1

1

n

n
∑

r=1

λmiφmi(xr)
2. (7.53)
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Therefore, considering the expectation with respect to the distribution of the points (xr)r=1,...,n,

we have:

Eµ

[∣

∣

∣a(n)m (x)
∣

∣

∣

]

≤ σ4

(

j
∏

i=1

λmi

)

1

nj

n
∑

t1,...,tj=1

Eµ

[

φm1(Xt1)
2 . . . φmj (Xtj )

2
]

∀x ∈ R
d.

The following inequality holds uniformly in t1, . . . , tj = 1, . . . , n:

Eµ

[

j
∏

i=1

φmi(Xti)
2

]

≤ bm,

where bm =
∑

P∈Π({1,...,j})
P=∪l

r=1Ir

∏l
r=1 Eµ

[
∏

i∈Ir φmi(X)2
]

because the term of left hand side of the

inequality is equal to one of the terms in the sum of the right hand side. Here Π({1, . . . , j})
is the collection of all partitions of {1, . . . , j} and Ir ∩ Ir′ = ∅, ∀r 6= r′. We hence have:

Eµ

[∣

∣

∣a(n)m (x)
∣

∣

∣

]

≤ σ4
j
∏

i=1

λmibm.

Since
∑

p≥0 λpφp(x)
2 ≤ σ2, we have:

∑

m1,...,mj>p∗

j
∏

i=1

λmibm =
∑

m1,...,mj>p∗

j
∏

l=1

λml

∑

P∈Π({1,...,j})
P=∪l

r=1Ir

l
∏

r=1

Eµ

[

∏

i∈Ir
φmi(X)2

]

=
∑

P∈Π({1,...,j})
P=∪l

r=1Ir

l
∏

r=1

Eµ





∏

i∈Ir

∑

mi>p∗

λmiφmi(X)2





≤ σ2j#{Π({1, . . . , j})}.

Since the cardinality of the collection Π({1, . . . , j}) of partitions of {1, . . . , j} is finite, the

series
∑

m1,...,mj>p∗
∏j

i=1 λmibm converges. Furthermore, as it is a series with non-negative

terms, ∀ε > 0, ∃p̄ > p∗ such that :

σ4
∑

m∈MC
p̄

j
∏

i=1

λmibm ≤ ε,

where MC
p̄ designs the complement of Mp̄ defined by the collection of m = (m1, . . . ,mj) such

that:

M = {m = (m1, . . . ,mj) such that mi > p∗, i = 1, . . . , j},

Mp̄ = {m = (m1, . . . ,mj) such that p∗ < mi ≤ p̄, i = 1, . . . , j},

MC
p̄ =M \Mp̄.



238 CHAPTER 7. ASYMPTOTIC ANALYSIS OF THE LEARNING CURVE

Therefore, we have ∀δ > 0, ∀ε > 0 ∃p̄ > 0 such that uniformly in n:

∑

m∈MC
p̄

Eµ

[∣

∣

∣
a(n)m (x)

∣

∣

∣

]

≤ εδ

2
.

Applying the Markov inequality, we obtain:

P





∑

m∈MC
p̄

∣

∣

∣a(n)m (x)
∣

∣

∣ >
δ

2



 ≤ ε. (7.54)

Furthermore, by denoting am(x) = limn→∞ a
(n)
m (x), we have:

am(x) = λm1λmjφm1(x)φmj (x)

j
∏

i=1

λmi

j−1
∏

i=1

δmi=mi+1 (7.55)

and from Cauchy-Schwarz inequality (see Equation (7.53)), we have:

|am(x)| ≤ σ4
j
∏

i=1

λmi .

We hence can deduce the inequality:

∑

m∈MC
p̄

|am(x)| ≤ σ4
∑

m∈MC
p̄

j
∏

i=1

λmi . (7.56)

Thus, ∃p̄ such that
∑

m∈MC
p̄
|am(x)| ≤ δ

2 for all x ∈ R
d. From the inequalities (7.54) and

(7.56), we find that ∃p̄ such that:

Pµ

(∣

∣

∣

∣

∣

∑

m∈M
a(n)m (x)−

∑

m∈M
am(x)

∣

∣

∣

∣

∣

> 2δ

)

≤ ε+ Pµ





∣

∣

∣

∣

∣

∣

∑

m∈Mp̄

a(n)m (x)−
∑

m∈Mp̄

am(x)

∣

∣

∣

∣

∣

∣

> δ



 .

Since Mp̄ is a finite set:

lim sup
n→∞

Pµ





∣

∣

∣

∣

∣

∣

∑

m∈Mp̄

a(n)m (x)−
∑

m∈Mp̄

am(x)

∣

∣

∣

∣

∣

∣

> δ



 = 0,

therefore:

lim sup
n→∞

Pµ

(∣

∣

∣

∣

∣

∑

m∈M
a(n)m (x)−

∑

m∈M
am(x)

∣

∣

∣

∣

∣

> 2δ

)

≤ ε.

The previous inequality holds ∀ε > 0, thus we have the convergence in probability of
∑

m∈M a
(n)
m (x)

to
∑

m∈M am(x) with (by using the limit in Equation (7.55)):

∑

m∈M
am(x) =

∑

p>p∗

λj+2
p φp(x)

2.
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Finally, we have the following convergence in probability when n→ ∞:

k′(x)(L−1M)iL−1k(x)
n→∞−→

(

1

τ

)i+1
∑

p>p∗

λi+2
p φp(x)

2. (7.57)

We highlight that we cannot use the strong law of large numbers here due to the infinite sum

in M.

From Equation (7.37) and the convergences (7.40) and (7.51), we obtain the following

convergence in probability:

σ2LUP (x)
n→∞−→

∑

p≥0

(

λp −
λ2p

τ + λp

)

φp(x)
2 −

∑

p>p∗

λ2p

(

λp

τ

)2q+1

τ + λp
φp(x)

2. (7.58)

By considering the limit q → ∞ and the inequality λp∗ < τ , we obtain the following upper

bound for σ2(x):

lim sup
n→∞

σ2(x) ≤
∑

p≥0

τλp
τ + λp

φp(x)
2. (7.59)

7.8 Conclusion

The main result of this chapter is a theorem giving the Gaussian process regression mean

squared error when the number of observations is large and the observation noise variance

is proportional to the number of observations. The asymptotic value of the mean squared

error is derived in terms of the eigenvalues and eigenfunctions of the covariance function and

holds for degenerate and non-degenerate kernels and for any dimension. We emphasize that

a noise variance proportional to the number of observations is natural in the framework of

experiments with replications or Monte-Carlo simulators.

From this theorem, we can deduce the asymptotic behavior of the generalization error -

defined in this chapter as the integrated mean squared error - as a function of the reduced

observation noise variance (it corresponds to the noise variance when the number of observa-

tions equals one). This result generalizes previous ones which give this behavior in dimension

one or two or for a restricted class of covariance kernels (for degenerate ones). The significant

differences between the rate of convergence of degenerate and non-degenerate kernels high-

light the relevance of our theorem which holds for non-degenerate kernels. This is especially

important as usual kernels for Gaussian process regression are non-degenerate.

Our work deals with Gaussian process regression when the variance of the noise can be

reduced by increasing the budget (i.e. the number of replications at each point). Our results

are of practical interest in this case since it gives the total budget needed to reach a precision

prescribed by the user. We efficiency of the presented result is emphasize on an industrial

application to the safety assessment of a nuclear system containing fissile materials.
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Chapter 8

Asymptotic normality of a Sobol index

estimator in noisy kriging framework

8.1 Introduction

As in the noisy-free case presented in Chapter 6, stochastic simulators commonly have a

large number d of input parameters for which we want to measure their importance on the

model output. Like in Chapter 6, we focus on the variance-based Sobol indices [Sobol, 1993]

coming from the Hoeffding-Sobol decomposition [Hoeffding, 1948]. We recall that we consider

independent input random variables.

Monte-Carlo methods are widely used to estimate the Sobol indices (see [Sobol, 1993],

[Sobol et al., 2007] and [Janon et al., 2012]). Their main advantages are that they allow for

quantifying the uncertainty related to the estimation errors. In particular, for non-asymptotic

cases, this can be easily carried out with a bootstrap procedure as presented in [Archer et al.,

1997] and [Janon et al., 2011]. Furthermore, in asymptotic cases, useful properties can be

shown as the asymptotic normality [Janon et al., 2012]. The reader is referred to [van der

Vaart, 1998] for an extensive presentation of asymptotic statistics.

Nevertheless, Monte-Carlo methods require a large number of simulations and are of-

ten unachievable under reasonable time constraints. Therefore, in order to avoid prohibitive

computational costs, we surrogate the simulator with a meta-model and we perform the es-

timations on it. In this chapter, we consider a special surrogate model corresponding to a

Gaussian process regression with a large number of observations. Indeed, we have seen in

Chapter 7 that in a stochastic simulator framework with a fixed budget, the noise variance of

the observations is proportional to their number. Therefore, in principle we have to make a

trade-off between the number of simulations and the output accuracy. Actually, we consider

the asymptotic case where the number of observations tends to infinity.

More precisely we consider an idealized regression problem for which we can deduce a

posterior predictive mean and variance tractable for our purpose. Furthermore, thanks to

the results presented in Chapter 7, we can explicitly derive the rate of convergence of this

meta-model approximation error with respect to the computational budget. Therefore, the
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Sobol index estimates - which are evaluated with a Monte-Carlo procedure by replacing the

true code with the posterior predictive mean - have two sources of uncertainty: the one related

to the Monte-Carlo scheme and the one related to the meta-model approximation. The error

due to the Monte-Carlo procedure tends to zero when the number of particles (calls of the

meta-model) tends to infinity and as presented in Chapter 7 the error due to the meta-model

tends to zero when the budget (calls of the complex simulator used to build the meta-model)

tends to infinity. A question of interest is whether the asymptotic normality presented in

[Janon et al., 2011] is maintained.

The aim of this chapter is thus to provide conditions on the budget and the number of

Monte-Carlo particles which ensure the asymptotic normality of a Sobol index estimator. The

principal difficulty of the study is that the estimator lies in a product probability space which

takes into account the uncertainty of the Gaussian process and the one of the Monte-Carlo

sample.

We emphasize that [Janon et al., 2011] present such a result for noise-free Gaussian pro-

cess regression using a squared exponential covariance kernel (see Subsection 1.4.2). They

give conditions on the number of simulations and the number of Monte-Carlo particles which

ensure the asymptotic normality for the Sobol index estimators. A part of our developments

is inspired by their work nevertheless they are different with some important respects. Indeed,

the particular case of noise-free Gaussian process regression with squared exponential covari-

ance kernel allows for not considering the probability space in which lies the Gaussian process.

This significantly simplifies the mathematical developments. Unfortunately this simplification

does not hold in our general framework.

The main result of this chapter is a theorem giving sufficient conditions to ensure the

asymptotic normality of Sobol indices estimators based on the Monte-Carlo procedure of

[Sobol, 1993] through the presented Gaussian process regression and for a large class of co-

variance kernels. The asymptotic normality is of interest since it allows for giving asymptotic

confidence intervals on the Sobol index estimators. This result is illustrated with an academic

example dealing with a partial differential equations problem.

8.2 Gaussian process regression for stochastic simulators

We present in Subsection 8.2.1 the practical problem that we want to deal with. In order

to handle the asymptotic framework of a large number of observations, we replace the true

problem by an idealized version of it in Subsection 8.2.2. This idealization allows us to study

the asymptotic normality of the Sobol index estimator in Section 8.3.

8.2.1 Gaussian process regression with a large number of observations

Let us suppose that we want to surrogate a function f(x), x ∈ Q ⊂ R
d, from noisy observations

of it at points (xi)i=1,...,n sampled from the probability measure µ - µ is called the design

measure and Q is an nonempty open set. Furthermore, we consider that we have r replications

at each point. We hence have ns experiments of the form zi,j = f(xi) + εi,j , i = 1, . . . , n,
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j = 1, . . . , s and we consider that (εi,j)i=1,...,n
j=1,...,s

are independently sampled from a Gaussian

distribution with mean zero and variance σ2ε . A stochastic simulator provides outputs of the

following form

zi =
1

s

s
∑

j=1

zi,j = f(xi) + εi, ∀i = 1, . . . , n,

where (εi)i=1,...,n are the observation noises sampled from a zero-mean Gaussian distribution

with variance σ2ε/s. Therefore, if we consider a fixed number of experiments T = ns, we have

an observation noise variance equal to nσ2ε/T .

Note that an observation noise variance proportional to n is natural in the framework of

stochastic simulators as presented in Chapter 7. Indeed, for a fixed total number of experi-

ments T = ns, we can either decide to perform them in few points (i.e. n small) but with lot

of replications (i.e. s large) or decide to perform them in lot of points (i.e. n large) but with

few replications (i.e. s small).

In a Gaussian process regression framework, we model f(x) as a Gaussian process with a

known mean (that we take equal to zero without loss of generality) and a covariance kernel

k(x, x̃). Therefore, in the remainder of this chapter, the function f(x) is random. The

predictive Mean Squared Error (MSE) of the Best Linear Unbiased Predictor (BLUP) given

by

ẑT,n(x) = k′(x)

(

K+
nσ2ε
T

I

)−1

zn, (8.1)

is

σ2T,n(x) = k(x, x)− k′(x)

(

K+
nσ2ε
T

I

)−1

k(x), (8.2)

where zn = (zi)i=1,...,n denotes the vector of the observed values, k(x) = [k(x, xi)]1≤i≤n

is the n-vector containing the covariances between f(x) and f(xi), 1 ≤ i ≤ n, K =

[k(xi, xj)]1≤i,j≤n is the n×n-matrix containing the covariances between f(xi) and f(xj), 1 ≤
i, j ≤ n and I is the n× n identity matrix.

In this chapter, we consider the case n ≫ 1. It corresponds to a massive experimental

design set but with observations with a large noise variance. This case is realistic for stochastic

simulators where the computational cost resulting from one Monte-Carlo particle is very low

and thus can be run in lot of points (xi)i=1,...,n.

8.2.2 Idealized Gaussian process regression

We assume from now on that the positive kernel k(x, x̃) is continuous and that supx∈Q k(x, x) <
∞ where Q is a nonempty open subset of Rd. We introduce the Mercer’s decomposition of

k(x, x̃) (see Chapter 1 Section 1.4):

k(x, x̃) =
∑

p≥0

λpφp(x)φp(x̃), (8.3)

where (φp(x))p is an orthonormal basis of L2
µ(Q) consisting of eigenfunctions of the integral op-

erator (Tµ,kg)(x) =
∫

Rd k(x, u)g(u)dµ(u) and λp is the nonnegative sequence of corresponding

eigenvalues sorted in decreasing order.
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Let us consider the following predictor:

ẑT (x) =
∑

p≥0

λp
λp + σ2ε/T

zpφp(x), (8.4)

where zp = fp + ε∗p, fp =
∫

f(x)φp(x) dµ(x), ε
∗
p ∼ N

(

0, σ2ε/T
)

, ε∗p independent of ε∗q for p 6= q

and (ε∗p)p≥0 independent of (fp)p≥0. Note that we have fp ∼ N (0, λp), fp independent of fq
for p 6= q and f(x) =

∑

p≥0 fpφp(x).

Let us introduce the probability space (ΩZ ,FZ ,PZ) = (Ωf × Ωε, σ(Ff × Fε),Pf × Pε)

where (Ωf ,Ff ,Pf ) corresponds to the probability space where f(x) and the sequence (fp)p≥0

are defined and (Ωε,Fε,Pε) is the probability space where the observation noises (εi)i∈N and

the sequence (ε∗p)p≥0 are defined. Further, let us consider the sequence of independent random

variables (Xi)i∈N with probability measure µ on Q ⊆ R
d and defined on the probability space

(ΩD,FD,PD). The sequence (Xi)i=1,...,n represents the experimental design set considered as a

random variable. Therefore, the predictors ẑT,n(x) in (8.1) and ẑT (x) in (8.4) are associated to

the random experimental design set (Xi)i∈N. We have the following convergence in probability

when n→ ∞ (see Chapter 7 Theorem 7.1):

σ2T,n(x)
PD−→

n→∞
σ2T (x), (8.5)

where σ2T,n(x) = EZ

[

(ẑT,n(x)− f(x))2
]

(8.2) and σ2T (x) = EZ

[

(ẑT (x)− f(x))2
]

. We recall:

σ2T (x) =
∑

p≥0

σ2ελp/T

σ2ε/T + λp
φp(x)

2. (8.6)

Therefore ẑT (x) in (8.4) is a relevant candidate for an idealized version of ẑT,n(x) in (8.1)

for the considered asymptotics n → ∞. The following proposition allows for completing the

justification of the relevance of ẑT,n(x).

Proposition 8.1. Let us consider f(x) a Gaussian process of zero mean and covariance

kernel k(x, x̃), ẑT,n(x) in (8.1) and ẑT (x) in (8.4) both associated to the random exper-

imental design set (Xi)i∈N. Consequently f(x) =
∑

p≥0 fpφp(x) where fp ∼ N (0, λp),

(fp)p≥0 independent and (φp(x))p≥0 defined in (8.3). The following convergence holds

∀δ > 0 and for any Borel set A ⊂ R
2 such that the Lebesgue measure its boundary is

zero:

PD (|PZ ((ẑT,n(x), f(x)) ∈ A)− PZ ((ẑT (x), f(x)) ∈ A)| > δ)
n→∞−→ 0. (8.7)

Proof of Proposition 8.1. First of all, we note that for a fixed ωD ∈ ΩD the random vari-

ables (ẑT,n(x), f(x)) and (ẑT (x), f(x)) are Gaussian since they are linear transformations of

((εi)i∈N, (fp)p≥0) and ((ε∗p)p≥0, (fp)p≥0) which are both independently distributed from Gaus-

sian distributions.

Thanks to the equality EZ

[

(ẑT,n(x))
2
]

= k(x, x)− σ2T,n(x) with k(x, x) =
∑

p≥0 λpφp(x)
2,

to the definition of ẑT (x) in (8.4) and to the convergence (8.5), the following convergence holds

in probability:

EZ

[

(ẑT,n(x))
2
] PD−→
n→∞

EZ

[

(ẑT (x))
2
]

. (8.8)
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Furthermore, we also have the equality EZ [ẑT,n(x)f(x)] = k(x, x) − σ2T,n(x) that leads the

convergence:

EZ [ẑT,n(x)f(x)]
PD−→

n→∞
EZ [ẑT (x)f(x)] . (8.9)

We can deduce the following convergence of the covariance of the two-dimensional Gaussian

vector (ẑT,n(x), f(x)) to the one of the two-dimensional Gaussian vector (ẑT (x), f(x)):

covZ ((ẑT,n(x), f(x)))
PD−→

n→∞
covZ ((ẑT (x), f(x))) . (8.10)

Furthermore, the following equality holds:

EZ [(ẑT,n(x), f(x))] = EZ [(ẑT (x), f(x))] = (0, 0). (8.11)

Let us denote by Cn = covZ ((ẑT,n(x), f(x))), for all Borel sets A ⊂ R
2 such that ν(∂A) = 0

(ν denotes the Lebesgue measure and ∂A the boundary of A), we have the following equality

almost surely with respect to (ΩD,FD,PD):

PZ ((ẑT,n(x), f(x)) ∈ A) = φ2

(

C−1/2
n A

)

,

where φ2 stands for the bivariate normal distribution N (0, I2). We note that Cn is a

random variable defined on the probability space (ΩD,FD,PD). Let us denote by C =

covZ ((ẑT (x), f(x))). The matrix C being nonsingular, the convergence (8.10) implies the

following one:

C−1/2
n

PD−→
n→∞

C−1/2.

Therefore, for all Borel sets A ⊂ R
2 such that ν(∂A) = 0, we have:

φ2(C
−1/2
n A)

PD−→
n→∞

φ2(C
−1/2A).

Finally, we can deduce that ∀δ > 0 and for all Borel sets A ⊂ R
2 such that ν(∂A) = 0, the

convergence in (8.7) holds.

The function ẑT (x) is the surrogate model that we consider in this chapter. We note that

ẑT (x) is not equal to the objective function f(x) since σ2ε/T 6= 0. In practical applications,

we expect that the idealized model (8.4) is close enough to the actual surrogate model (8.1)

so that it provides relevant confidence intervals.

Note that with this formalism f(x) is a random process defined on the probability space

(ΩZ ,FZ ,PZ). The random series (zp)p≥0 is defined on (ΩZ ,FZ ,PZ) as well. In order to study

the convergence of ẑT (x) to the real function f(x), let us define the Integrated Mean Squared

Error (IMSE):

IMSET =

∫

Rd

σ2T (x) dµ(x) = EZ

[

||ẑT (x)− f(x)||2L2
µ

]

. (8.12)

The following equality holds:

IMSET =
∑

p≥0

σ2ελp/T

σ2ε/T + λp
. (8.13)
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We can link the asymptotic rate of convergence of the IMSE (8.13) with the asymptotic decay

of the eigenvalues (λp)p≥0 thanks to the following inequalities (see Chapter 7 Section 7.3):

B2
T /2 ≤ IMSET ≤ B2

T , (8.14)

with:

B2
T =

∑

p s.t. λp≤σ2
ε/T

λp +
σ2ε
T
#{p s.t. λp > σ2ε/T}. (8.15)

8.3 Asymptotic normality of a Sobol index estimator

We present in this section the main theorem of this chapter about the asymptotic normality of

a Sobol index estimators using Monte-Carlo integrations and the meta-model ẑT (x) presented

in Subsection 8.2.2. In the forthcoming development, we suppose that T is an increasing

sequence indexed by the number m of Monte-Carlo particles used to estimate the variance

and covariance terms involved in the Sobol index. We use the notation Tm to emphasize that

T depends on m. First of all, let us define in Subsection 8.3.1 the considered Monte-Carlo

estimator.

8.3.1 A Sobol index estimator

Let us suppose that the input parameter is a random vector X with probability measure

µ = µ1 ⊗ µ2 on (Rd1 × R
d2 ,B(Rd1 × R

d2)) with d = d1 + d2. We consider the random vector

(X, X̃) defined in the probability space (ΩX ,FX ,PX) with X = (X1, X2) and X̃ = (X1, X̃2)

where X1 is a random vector with values in R
d1 and with distribution µ1, X

2 and X̃2 are

random vectors with values in R
d2 with distribution µ2, and X1, X2 and X̃2 are independent.

As presented in Chapter 6, the Sobol index of parameter X1 can be deduced from:

SX1
=
V X1

V
=

varX
(

EX

[

f(X)|X1
])

varX (f(X))
=

covX

(

f(X), f(X̃)
)

varX (f(X))
, (8.16)

where the random variables f(X) and f(X̃) are defined on the product probability space

(ΩZ ×ΩX , σ (FZ ×FX) ,PZ ×PX) and SX1
, V X1

and V are defined on the probability space

(ΩZ ,FZ ,FZ) .

Furthermore, let us consider the sequence (Xi, X̃i)
∞
i=1 of random variables defined in

(ΩX ,FX ,PX) independent and identically distributed such that (Xi, X̃i)
L
= (X, X̃) for all

i ∈ N
∗. We use the following estimator for (8.16) (see [Sobol, 1993]):

SX1

m =
V X1

m

Vm
=
m−1

∑m
i=1 f(Xi)f(X̃i)−m−2

∑m
i,j=1 f(Xi)f(X̃j)

m−1
∑m

i=1 f
2(Xi)−m−2(

∑m
i=1 f(Xi))2

, (8.17)

where the random variable SX1

m , V X1

m and Vm are defined on the probability space (ΩZ ×
ΩX , σ (FZ ×FX) , PZ × PX). Furthermore, after substituting f(x) with the meta-model

ẑTm(x), we obtain the following estimator:

SX1

Tm,m =
V X1

Tm,m

VTm,m
=
m−1

∑m
i=1 ẑTm(Xi)ẑTm(X̃i)−m−2

∑m
i,j=1 ẑTm(Xi)ẑTm(X̃j)

m−1
∑m

i=1 ẑ
2
Tm

(Xi)−m−2(
∑m

i=1 ẑTm(Xi))2
, (8.18)
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where the random variables SX1

Tm,m, V X1

Tm,m, VTm,m, ẑTm(Xi) and ẑTm(X̃j) are defined on the

product probability space (ΩZ × ΩX , σ (FZ ×FX) ,PZ × PX).

8.3.2 Theorem on the asymptotic normality of the Sobol index estimator

The theorem below gives the relation between Tm andm which ensures the asymptotic normal-

ity of the estimator V X1

Tm,m/VTm,m when m→ ∞. We note that V X1

Tm,m/VTm,m is the estimator

of the Sobol index V X1
/V = covX

(

f(X), f(X̃)
)

/varX (f(X)) when we replace the true func-

tion by the surrogate model (8.4) and when we use a Monte-Carlo estimator (8.16) for the

variance and covariance involved in the Sobol index.

Theorem 8.1. Let us consider the estimator SX1

Tm,m (8.18) of SX1
(8.16) with Tm an

increasing function of m ∈ N
∗. We have the following convergences:

If mB2
Tm

m→∞−→ 0, then for all interval I ∈ R and ∀δ > 0, we have the convergence:

PZ

(∣

∣

∣

∣

PX

(√
m
(

SX1

Tm,m − SX1
)

∈ I
)

−
∫

I
g(x)dx

∣

∣

∣

∣

> δ

)

m→∞−→ 0. (8.19)

If mB2
Tm

m→∞−→ ∞, then ∀δ > 0, ∃C > 0 such that :

PZ

(∣

∣

∣
PX

(

B−1
Tm

(

SX1

Tm,m − SX1
)

≥ C
)

− 1
∣

∣

∣
> δ
)

m→∞−→ 0. (8.20)

Here g(x) is the probability density function of a zero-mean Gaussian random vari-

able with variance:

varX

(

(f(X)− EX [f(X)])
(

f(X̃)− EX [f(X)]− SX1
f(X) + SX1

EX [f(X)]
))

(varX (f(X)))2
,

(8.21)

and B2
Tm

is given by (8.15).

Theorem 8.1 is of interest since it gives how fast Tm has to increase with respect to m

so that the error of the surrogate modeling and the one of the Monte-Carlo sampling have

the same order of magnitude. Indeed, for a given size m of the Monte-Carlo sample, it

is not necessary to choose a too large Tm otherwise the Monte-Carlo estimation error will

dominate (it corresponds the case mB2
Tm

m→∞−→ 0). On the other hand, if Tm is taken too

large (it corresponds to the case mB2
Tm

m→∞−→ ∞), the estimation error is dominated by the

meta-model approximation.

Furthermore, we see that when mB2
Tm

m→∞−→ 0, the asymptotic normality is assessed for

the estimator SX1

Tm,m with a variance Σ. By studying the case SX1
= 0 and SX1

= 1 we see

that the estimator is more precise for large values of Sobol indices than for small ones. A more

efficient estimator for small index values is given in [Sobol et al., 2007].

We show in Section 8.5 that the productmB2
Tm

can easily be handled when we have explicit

formula for the eigenvalues of the Mercer’s decomposition of k(x, x̃). The proof of Theorem

8.1 is given in the next subsection.
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8.4 Proof of Theorem 8.1

Let us denote by SX1

Tm
= covX

(

ẑTm(X), ẑTm(X̃)
)

/varX (ẑTm(X)) the variance of the main

effect of X1 for the surrogate model ẑTm(x) (8.4). The random variables SX1
and SX1

Tm
are

defined on the probability space (ΩZ ,FZ ,PZ) and the random variables SX1

Tm,m, ẑTm(X) and

f(X) are defined on the product probability space (ΩZ × ΩX , σ(FZ ×FX),PZ ⊗ PX).

Let us consider the following decomposition:

SX1

Tm,m − SX1
= SX1

Tm,m − SX1

Tm
+ SX1

Tm
− SX1

. (8.22)

In a first hand we deal with the convergence of
√
m
(

SX1

Tm,m − SX1

Tm

)

. We handle this prob-

lem thanks to the Skorokhod representation theorem, the Lindeberg-Feller theorem and the

Delta method. In a second hand, we study the convergence of
√
m
(

SX1

Tm
− SX1

)

through the

Skorokhod representation theorem.

In the forthcoming developments, we consider that mB2
Tm

m→∞−→ 0. Therefore, there exists

g(Tm) such that g(Tm)
m→∞−→ 0 and mB2

Tm
g−2(Tm)

m→∞−→ 0. The function g(Tm) considered in

the remainder of this section satisfies this property.

8.4.1 The Skorokhod representation theorem

Let us consider the following random variables defined on the probability space (ΩZ ,FZ ,PZ):

aTm(x) = (ẑTm(x)− f(x))B−1
Tm
g(Tm), (8.23)

bTm(x) = (ẑTm(x)− f(x))g(Tm)1/3B
−1/3
Tm

. (8.24)

Markov’s inequality and (8.14) give us ∀δ > 0:

PZ(||aTm(x)||2L2
µ
> δ) ≤ EZ(||aTm(x)||2L2

µ
)/δ ≤ g(Tm)2/δ.

Therefore, we have the following convergence in probability in (ΩZ ,FZ ,PZ):

lim
m→∞

||aTm(x)||2L2
µ
= 0

and the inequalities in (8.14) ensure the following one:

||aTm(x)||2L2
µ
≥ g(Tm)2/2. (8.25)

Furthermore, the following equality stands since f(x) is a Gaussian process:

EZ [(ẑTm(x)− f(x))6] = 15σ6Tm
(x).

Cauchy-Schwarz inequality leads to:

EZ [||ẑTm(x)− f(x)||6L6
µ
] ≤ 15

∫

σ6Tm
(x) dµ(x) ≤ 15B2

Tm
sup
x
k2(x, x).
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Therefore, thanks to Markov’s inequality we have:

PZ(||bTm(x)||6L6
µ
> δ) ≤ 15g(Tm)2 sup

x
k2(x, x)/δ

and the following convergence stands in probability in (ΩZ ,FZ ,PZ):

lim
m→∞

||bTm(x)||6L6
µ
= 0.

Therefore, we have the following convergences in probability in (ΩZ ,FZ ,PZ) when m→ ∞:











f(x)

aTm(x) = (ẑTm(x)− f(x))g(Tm)B−1
Tm

bTm(x) = (ẑTm(x)− f(x))g(Tm)1/3B
−1/3
Tm

L6
µ×L2

µ×L6
µ−→

m→∞







f(x)

0

0






.

As L6
µ×L2

µ×L6
µ is separable we can use the Skorokhod’s representation theorem [Billingsley,

1999] presented below.

Theorem 8.2 (Skorokhod’s representation theorem). Let µn, n ∈ N be a sequence of

probability measures on a topological space S; suppose that µn converges weakly to some

probability measure µ on S as n → ∞. Suppose also that the support of µ is separable.

Then there exist random variables Xn and X defined on a common probability space

(Ω,F ,P) such that:

(i) µn is the distribution of Xn

(ii) µ is the distribution of X

(iii) Xn(ω) → X(ω) as n→ ∞ for every ω ∈ Ω.

Therefore, there is a probability space denoted by (Ω̃Z , F̃Z , P̃Z) such that

(f̃Tm(x), ãTm(x), b̃Tm(x))
L
= (f(x), aTm(x), bTm(x)), (8.26)

with (f̃Tm(x), ãTm(x), b̃Tm(x)), f̃(x) defined on (Ω̃Z , F̃Z , P̃Z) and (f(x), aTm(x), bTm(x)) de-

fined on (ΩZ ,FZ ,PZ) - and ∀ω̃Z ∈ Ω̃Z the following convergence holds for m→ ∞:

(f̃Tm(x), ãTm(x), b̃Tm(x))
L6
µ×L2

µ×L6
µ−→

m→∞
(f̃(x), 0, 0). (8.27)

First, let us build below the analogous of zTm(x) in (Ω̃Z , F̃Z , P̃Z). For a fixed Tm > 0, we have

the equality aTm(x)g(Tm)−1BTm = bTm(x)g(Tm)−1/3B
1/3
Tm

. Therefore, we have

||aTm(x)g(Tm)−1BTm − bTm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0

and

PZ

(

||aTm(x)g(Tm)−1BTm − bTm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0
)

= 1.

The equality (ãTm(x), b̃Tm(x))
L
= (aTm(x), bTm(x)) leads to the following one

P̃Z

(

||ãTm(x)g(Tm)−1BTm − b̃Tm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0
)

= 1.
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Thus, for µ-almost every ω̃Z in Ω̃Z , we have

||ãTm(x)g(Tm)−1BTm − b̃Tm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0. (8.28)

If we consider such a ω̃Z , we have the equality ãTm(x)g(Tm)−1BTm = b̃Tm(x)g(Tm)−1/3B
1/3
Tm

for µ-almost every x

Let us denote by

z̃Tm(x) = f̃Tm(x) + g(Tm)−1BTm ãTm(x),

z̃Tm(x) is defined on (Ω̃Z , F̃Z , P̃Z). For a fixed ω̃Z ∈ Ω̃Z such that (8.28) holds, we have the

equality z̃Tm(x) = f̃Tm(x) + g(Tm)−1/3B
1/3
Tm
b̃Tm(x) for µ-almost every x.

8.4.2 Convergences with a fixed ω̃Z ∈ Ω̃Z

Let us consider a fixed ω̃Z ∈ Ω̃Z such that (8.28) holds. We aim to study the convergence of√
m
(

S̃X1

Tm,m − S̃X1

Tm

)

and
√
m
(

S̃X1

Tm
− S̃X1

)

in (ΩX ,FX ,PX) with:

S̃X1
= covX(f̃(X), f̃(X̃))/varX(f̃(X)), (8.29)

S̃X1

Tm
= covX(z̃Tm(X), z̃Tm(X̃))/varX(z̃Tm(X)) (8.30)

and

S̃X1

Tm,m =
m−1

∑n
i=1 z̃Tm(Xi)z̃Tm(X̃i)−m−2

∑n
i,j=1 z̃Tm(Xi)z̃Tm(X̃j)

m−1
∑n

i=1 z̃
2
Tm

(Xi)−m−2(
∑n

i=1 z̃Tm(Xi))2
. (8.31)

Convergence of
√
m
(

S̃X1

Tm,m − S̃X1

Tm

)

in (ΩX ,FX ,PX)

Let us denote by YTm,i = z̃Tm(Xi), Y
X1

Tm,i = z̃Tm(X̃i) and

UTm,i =
(

(YTm,i − EX [YTm,i])(Y
X1

Tm,i − EX [YTm,i]),

YTm,i − EX [YTm,i], Y
X1

Tm,i − EX [YTm,i], (YTm,i − EX [YTm,i])
2
) . (8.32)

Since ω̃Z ∈ Ω̃Z is fixed, YTm,i, Y
X1

Tm,i and UTm,i are defined on the probability space (ΩX ,FX ,PX).

For each m, (UTm,i/
√
m)i=1,...,m is a sequence of independent random vectors such that for

any ε > 0:

m
∑

i=1

EX

[

||UTm,i||2/m1{||UTm,i||>ε
√
m}
]

= EX

[

||UTm,1||21{||UTm,1||>ε
√
m}
]

≤ EX

[

||UTm,1||3
]

/(ε
√
m),

since ||UTm,1|| > ε
√
m.

We aim below to find an upper bound for supTm
EX

[

||UTm,i||3
]

. First, for any m let us

consider the component (YTm,i−EX [YTm ])(Y
X1

Tm,i−EX [YTm ]). We have the following inequality:

EX

[

|(YTm,i − E[YTm,i])(Y
X1

Tm,i − E[YTm,i])|3
]

≤ CEX

[

|YTm,i|6
]

,
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with C > 0 a constant. Minkowski inequality and the equality z̃Tm(x) = f̃Tm(x)+g(Tm)−1/3B
1/3
Tm
b̃Tm(x)

for µ-almost every x give that there exists C,C ′ > 0 such that:

EX

[

|YTm,i|6
]

≤ C||f̃Tm(x)||6L6
µ
+ C ′B2

Tm
g(Tm)−2||b̃Tm(x)||6L6

µ
.

The convergence (f̃Tm(x), b̃Tm(x))
L6
µ×L6

µ−→
m→∞

(f̃(x), 0) implies that there exists C > 0 such that

for any m:

EX

[

|(YTm,i − EX [YTm,i])(Y
X1

Tm,i − EX [YTm,i])|3
]

≤ C. (8.33)

Second, following the same guideline, we find that there exists C,C ′, C ′′ > 0 such that:

EX

[

|(YTm,i − EX [YTm,i])
2|3
]

≤ C, (8.34)

EX

[

|YTm,i − EX [YTm,i]|3
]

≤ C ′, (8.35)

EX

[

|Y X1

Tm,i − EX [YTm,i]|3
]

≤ C ′. (8.36)

Third, the inequalities (8.33), (8.35), (8.35) and (8.36) give that supTm
EX

[

||UTm ||3
]

<∞.

The inequality
∑m

i=1 EX

[

||UTm,i||2/m1{||UTm,i||>ε
√
m}
]

≤ EX

[

||UTm,1||3
]

/(ε
√
m) and the

uniform boundedness of EX

[

||UTm ||3
]

lead to the following convergence ∀ε > 0 when m→ ∞:

m
∑

i=1

EX

[

||UTm,i||2/m1{||UTm,i||>ε
√
m}
]

= EX

[

||UTm,i||21{||UTm,i||>ε
√
m}
]

m→∞−→ 0 (8.37)

and thus ||UTm,i||2 is uniformly integrable.

Now, we aim to show the convergence in probability of UTm,i
m→∞−→ Ui in (ΩX ,FX ,PX).

Let us denote by

Ui =
(

(Yi − EX [Yi])(Y
X1

i − EX [Yi]), Yi − EX [Yi], Y
X1

i − EX [Yi], (Yi − EX [Yi])
2
)

,

with Yi = f̃(Xi) and Y X1

i = f̃(X̃i). The random variables Ui, Yi and Y X1

i are defined on

(ΩX ,FX ,PX) since ω̃Z ∈ Ω̃Z is fixed.

First, we study the term EX

[∣

∣

∣U
(1)
Tm,i − U

(1)
i

∣

∣

∣

]

where U
(1)
i = (Yi − EX [Yi])(Y

X1

i − EX [Yi])

and U
(1)
Tm,i = (YTm,i − EX [YTm,i])(Y

X1

Tm,i − EX [YTm,i]). We have the following equality:

EX

[∣

∣

∣U
(1)
Tm,i − U

(1)
i

∣

∣

∣

]

= EX

[∣

∣

∣(YTm,i − EX [YTm,i])
(

(Y X1

Tm,i − EX [YTm,i])− (Y X1

i − EX [Yi])
)

+ (Y X1

i − EX [Yi])
(

(YTm,i − EX [YTm,i])− (Yi − EX [Yi])
)∣

∣

∣

]

,

from which we deduce the inequality:

EX

[∣

∣

∣
U

(1)
Tm,i − U

(1)
i

∣

∣

∣

]

≤ EX

[∣

∣

∣
(YTm,i − EX [YTm,i])

(

(Y X1

Tm,i − EX [YTm,i])− (Y X1

i − EX [Yi])
)∣

∣

∣

]

+ EX

[∣

∣

∣
(Y X1

i − EX [Yi])
(

(YTm,i − EX [YTm,i])− (Yi − EX [Yi])
)∣

∣

∣

]
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and from Cauchy-Schwarz inequality there exists C,C ′, C ′′ > 0 such that:

EX

[∣

∣

∣
U

(1)
Tm,i − U

(1)
i

∣

∣

∣

]

≤ CEX

[

(YTm,i − EX [YTm,i])
2
]1/2

EX

[

(Y X1

Tm,i − Y X1

i )2
]1/2

+ C ′
EX

[

(Y X1

i − EX [Yi])
2
]1/2

EX

[

(YTm,i − Yi)
2
]1/2

≤ C ′′
EX

[

(YTm,i − Yi)
2
]1/2

(

EX

[

(Y X1

i )2
]1/2

+ EX

[

(YTm,i)
2
]1/2

)

.

The equality YTm,i − Yi = g(Tm)−1BTm ãTm(Xi) for PX -almost every ωX ∈ ΩX implies that

EX

[

(YTm,i − Yi)
2
]1/2

= g(Tm)−1BTmEX

[

(ãTm(Xi))
2
]1/2

. Since ãTm(x)
m→∞−→ 0 in L2

µ, we have

the convergence EX

[

(YTm,i − Yi)
2
]1/2 m→∞−→ 0.

Furthermore, there exists C,C ′ > 0 such that EX

[

(Y X1

i )2
]1/2

< C and EX

[

(YTm,i)
2
]1/2

<

C ′ since z̃Tm(x) = f̃Tm(x) + g(Tm)−1BTm ãTm(x), f̃Tm(x)
m→∞−→ f̃(x) in L6

µ and ãTm(x)
m→∞−→ 0

in L2
µ. Therefore, we have the following convergence:

EX

[∣

∣

∣U
(1)
Tm,i − U

(1)
i

∣

∣

∣

]

m→∞−→ 0. (8.38)

Then, if we consider the terms U
(4)
i = (Yi − EX [Yi])

2 and U
(4)
Tm,i = (YTm,i − EX [YTm,i])

2.

Following the same guideline we find the convergence:

EX

[∣

∣

∣U
(4)
Tm,i − U

(4)
i

∣

∣

∣

]

m→∞−→ 0. (8.39)

Furthermore, denoting by U
(2)
i = (Yi − EX [Yi]), U

(2)
Tm,i = (YTm,i − EX [YTm,i]), U

(3)
i = (Y X1

i −
EX [Yi]) and U

(3)
Tm,i = (Y X1

Tm,i − EX [YTm,i]), we have the following inequalities:

EX

[∣

∣

∣U
(2)
Tm,i − U

(2)
i

∣

∣

∣

]

≤ CEX

[

(YTm,i − Yi)
2
]1/2

,

EX

[∣

∣

∣U
(3)
Tm,i − U

(3)
i

∣

∣

∣

]

≤ C ′
EX

[

(Y X1

Tm,i − Y X1

i )2
]1/2

,

with C,C ′ positive constants. The convergences f̃Tm(x)
L6
µ→ f̃ and ãTm(x)

L6
µ→ 0 when m → ∞

ensure that:

EX

[∣

∣

∣
U

(2)
Tm,i − U

(2)
i

∣

∣

∣

]

m→∞−→ 0 (8.40)

and

EX

[∣

∣

∣
U

(3)
Tm,i − U

(3)
i

∣

∣

∣

]

m→∞−→ 0. (8.41)

Finally, the convergences presented in (8.38), (8.39), (8.40) and (8.41) imply the desired one:

EX [||UTm,i − Ui||] m→∞−→ 0. (8.42)

Markov’s inequality gives ∀δ > 0:

PX (||UTm,i − Ui|| ≥ δ) ≤ EX [||UTm,i − Ui||] /δ. (8.43)
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The equations (8.42) and (8.43) imply the convergence UTm,i
m→∞−→ Ui in probability in

(ΩX ,FX ,PX).

This convergence in probability and the uniform integrability of ||UTm,i||2 implies that

UTm,i
m→∞−→ Ui in L2(ΩX) and thus covX(UTm,i)

m→∞−→ covX(Ui) = Σ. We note that we have

also the convergence EX [UTm,i] → EX [Ui] = µ since the convergence in L2(ΩX) implies the

one in L1(ΩX).

The condition (8.37) and the convergence
∑m

i=1 covX(UTm,i)/m = covX(UTm,i)
m→∞−→ Σ

allow for using the Lindeberg-Feller Theorem (see [van der Vaart, 1998]) which ensures the

following convergence in (ΩX ,FX ,PX):

m
∑

i=1

(UTm,i/
√
m− EX [UTm,i/

√
m]) =

√
m

(

m
∑

i=1

(UTm,i)/m− EX [UTm,i]

)

L−→
m→∞

N (0,Σ) .

Furthermore, we have the following equality:

S̃X1

Tm,m = Φ(ŪTm),

where ŪTm =
∑m

i=1 UTm,i/m and Φ(x, y, z, t) = (x−yz)/(t−y2). Therefore, the Delta method

gives that in (ΩX ,FX ,PX):

√
m
(

S̃X1

Tm,m − S̃X1

Tm

) L−→
m→∞

N
(

0,∇ΦT (µ)Σ∇Φ(µ)
)

, (8.44)

where µ = EX [Ui] =
(

covX(Yi, Y
X1

i ), 0, 0, varX(Yi)
)

. We note that the assumption varX(Yi) 6=
0 justifies the use of the Delta method. A simple calculation gives that:

∇ΦT (µ)Σ∇Φ(µ) =
varX

(

(Yi − EX [Yi])
(

Y X1

i − EX [Yi]− SX1
Yi + SX1

EX [Yi]
))

(varX(Yi))2
, (8.45)

with SX1
= covX(Yi, Y

X1

i )/varX(Yi) = varX(EX [Yi|X1])/varX(Yi).

Convergence of
√
m
(

S̃X1

Tm
− S̃X1

)

in (ΩX ,FX ,PX)

Analogously to [Janon et al., 2012], we have the equality:

S̃X1

Tm
− S̃X1

=
varX(δ̃Tm,i)

1/2Cδ̃Tm,i

varX(Yi) + 2covX(Yi, δ̃Tm,i) + varX(δ̃Tm,i)
,

where δ̃Tm(x) = g(Tm)−1BTm ãTm(x),

Cδ̃Tm,i
= 2varX(Yi)

1/2(corX(Yi, δ̃Tm,i)− corX(Yi, Y
X1

i )corX(Yi, δ̃Tm,i))

+varX(δ̃Tm,i)
1/2(corX(δ̃Tm,i, δ̃

X1

Tm,i)− corX(Yi, Y
X1

i ))
, (8.46)

δ̃Tm,i = δ̃Tm,i(Xi) and δ̃X
1

Tm,i = δ̃Tm,i(X̃i). The random variables δ̃Tm,i and δ̃X
1

Tm,i are defined

on the product space (Ω̃Z × ΩX , σ(F̃Z × FX), P̃Z ⊗ PX) and S̃X1
, δ̃Tm(x) and Cδ̃Tm,i

are
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defined on (Ω̃Z , F̃Z , P̃Z). We still consider a fixed ω̃Z ∈ Ω̃Z . The assumption varX(Yi) 6= 0

ensures that the denominator is not equal to zero and the convergences f̃Tm(x)
L6
µ−→

m→∞
f̃(x) and

ãTm(x)
L2
µ−→

m→∞
0 give that supmCδ̃Tm,i

< ∞. Furthermore, since ãTm(x)
L2
µ−→

m→∞
0 we have the

following inequalities:

varX(δ̃Tm,i) ≤ CEX [(BTmg(Tm)−1ãTm(Xi))
2] ≤ C ′g(Tm)−2B2

Tm
,

with C,C ′ positive constants.

Thanks to Slutsky’s theorem, the convergence mg(Tm)−2B2
Tm

m→∞−→ 0 ensures the following

asymptotic normality when m→ ∞ in (ΩX ,FX ,PX):

√
m
(

S̃X1

Tm,m − S̃X1
) L−→

m→∞
N
(

0,∇ΦT (µ)Σ∇Φ(µ)
)

. (8.47)

The case mB2
Tm

m→∞−→ ∞.

Let us suppose that mB2
Tm

m→∞−→ ∞. We consider the convergences of

B−1
Tm

(

S̃X1

Tm,m − S̃X1

Tm

)

(8.48)

and

B−1
Tm

(

S̃X1

Tm
− S̃X1

)

,

in (ΩX ,FX ,PX) with a fixed ω̃Z ∈ Ω̃Z such that (8.28) holds. We have the following equality:

B−1
Tm

(

S̃X1

Tm,m − S̃X1

Tm

)

= (
√
mBTm)

−1√m
(

S̃X1

Tm,m − S̃X1

Tm

)

.

The convergence (
√
mBTm)

−1 m→∞−→ 0 and the convergence in (8.44) (which does not depend

on the convergence of the ratio between B−2
Tm

and
√
m) imply the following one:

B−1
Tm

(

S̃X1

Tm,m − S̃X1

Tm

)

m→∞−→ 0.

Finally, thanks to the inequality (8.25), there exists C,C ′ > 0 such that

B−1
Tm

(

S̃X1

Tm
− S̃X1

)

= B−1
Tm

g(Tm)−1BTmvarX(ãTm(Xi))
1/2Cδ̃Tm,i

varX(Yi) + 2covX(Yi, δ̃Tm,i) + varX(δ̃Tm,i)

≥ Cg(Tm)−1
g(Tm)Cδ̃Tm,i

varX(Yi) + 2covX(Yi, δ̃Tm,i) + varX(δ̃Tm,i)

≥ C ′Cδ̃Tm,i
.

Therefore, if we have Cδ̃Tm,i
> 0, the asymptotic normality is not reached and the estimator

is biased. Regarding the expression of Cδ̃Tm,i
in (8.46) and assuming that varX(Yi) 6= 0,

Cδ̃Tm,i
= 0 could happen if:

• corX(Yi, Y
X1

i ) = 1, i.e. all the variability of f̃(x) is explained by the variable X1.

• varX(δ̃Tm,i) = 0, i.e. the surrogate model error is null.
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8.4.3 Convergence in the probability space (ΩZ × ΩX , σ(FZ ×FX),PZ ⊗ PX).

We have proved that for almost every ω̃Z ∈ Ω̃Z :

If mB2
Tm

m→∞−→ 0, then

∀I ∈ R, PX

(√
m
(

S̃X1

Tm,m − S̃X1
)

∈ I
)

m→∞−→
∫

I
g̃(x)dx.

If mB2
Tm

m→∞−→ ∞, then

∃C > 0 s.t. PX

(

B−1
Tm

(

S̃X1

Tm,m − S̃X1
)

≥ C
)

m→∞−→ 1,

where g̃(x) is the probability density function of a random Gaussian vector of zero mean and

covariance ∇ΦT (µ)Σ∇Φ(µ) (8.45). Therefore, in the probability space (Ω̃Z × ΩX , σ(F̃Z ×
FX), P̃Z ⊗ PX) we have

If mB2
Tm

m→∞−→ 0, then

∀I ∈ R, ∀δ > 0, P̃Z

(∣

∣

∣

∣

PX

(√
m
(

S̃X1

Tm,m − S̃X1
)

∈ I
)

−
∫

I
g̃(x)dx

∣

∣

∣

∣

> δ

)

m→∞−→ 0.

If mB2
Tm

m→∞−→ ∞, then

∀δ > 0, ∃C > 0 s.t. P̃Z

(∣

∣

∣PX

(

B−1
Tm

(

S̃X1

Tm,m − S̃X1
)

≥ C
)

− 1
∣

∣

∣ > δ
)

m→∞−→ 0.

and the equalities (f̃Tm(x), ãTm(x), b̃Tm(x))
L
= (f(x), aTm(x), bTm(x)) ∀Tm and f̃(x)

L
= f(x)

for all m give us in the probability space (ΩZ × ΩX , σ(FZ ×FX),PZ ⊗ PX):

If mB2
Tm

m→∞−→ 0, then

∀I ∈ ΩX , ∀δ > 0, PZ

(∣

∣

∣

∣

PX

(√
m
(

SX1

Tm,m − SX1
)

∈ I
)

−
∫

I
g(x)dx

∣

∣

∣

∣

> δ

)

m→∞−→ 0.

If mB2
Tm

m→∞−→ ∞, then

∀δ > 0, ∃C > 0 s.t. PZ

(∣

∣

∣PX

(

B−1
Tm

(

SX1

Tm,m − SX1
)

≥ C
)

− 1
∣

∣

∣ > δ
)

m→∞−→ 0,

where g(x) is the probability density function of a random Gaussian vector of zero mean and

variance

varX

(

(f(X)− EX [f(X)])
(

f(X̃)− EX [f(X)]− SX1
f(X) + SX1

EX [f(X)]
))

(varX (f(X)))2
.

This completes the proof.
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8.5 Examples of asymptotic normality for Sobol’s index

According to the previous developments, the desired asymptotic normality is assessed under

the assumption mB2
Tm

m→∞−→ 0. In the remainder of this section, we present relations between

Tm and m which lead the convergence mB2
Tm

m→∞−→ 0 for some usual kernels.

8.5.1 Asymptotic normality with d-tensorised Matérn-ν kernels

We focus here on the d-tensorised Matérn-ν kernel with regularity parameter ν > 1/2:

k(x, x̃) =

d
∏

i=1

21−ν

Γ(ν)

(√
2ν|xi − x̃i|

θi

)ν

Kν

(√
2ν|xi − x̃i|

θi

)

,

where Kν is the modified Bessel function [Abramowitz and Stegun, 1965]. The eigenvalues of

this kernel satisfy the following asymptotic behavior [Pusev, 2011]:

λp = φ(p), p≫ 1,

where φ(p) =
(

log(1 + p)2(d−1)(ν+1/2)
)

p−2(ν+1/2) (1 + O(1/p)). Therefore, for Tm ≫ 1:

B2
Tm

≈ log(Tm/σ
2
ε)

d−1

(

σ2ε
Tm

)1−1/2(ν+1/2)

.

Section 8.3 suggests that the asymptotic normality of the Sobol’s index estimator is assessed

when:

mB2
Tm

m→∞−→ 0.

Let us consider the following that Tm is such that:

log(Tm/σ
2
ε)

d−1

(

σ2ε
Tm

)1−1/2(ν+1/2)

= 1/m. (8.49)

It corresponds to the critical point mB2
Tm

≈ 1. In this case, the error originates both from

the meta-model approximation error and the Monte-Carlo estimation error. Equation (8.49)

leads to the following critical budget:

Tm
σ2ε

= σ2εm
1/(1−1/2(ν+1/2))log (m)(d−1) , (8.50)

and, the asymptotic normality is assessed for:

Tm
σ2ε

= σ2εm
1/(1−1/2(ν+1/2))+αlog (m)(d−1) , ∀α > 0. (8.51)

In practice, we want to minimize the budget allocated to the simulator and thus consider the

case α tends to zero. As a consequence, for applications we will consider the allocation of the

critical point (8.50).
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8.5.2 Asymptotic normality for d-dimensional Gaussian kernels

Let us consider the d-dimensional Gaussian kernel:

k(x, x̃) = exp

(

−1

2

d
∑

i=1

(xi − x̃i)2

θ2i

)

. (8.52)

Thanks to [Todor, 2006], we have the following upper bound for the eigenvalues:

λp ≤ c′exp
(

−cp1/d
)

, (8.53)

with c and c′ constants. From this inequality, we can deduce that there exists C > 0 such

that:

B2
Tm

≈ Clog(Tm/σ
2
ε)

d

(

σ2ε
Tm

)

.

Therefore, the critical budget corresponding to the critical point mB2
Tm

≈ 1 is given by

Tm/σ
2
ε = mlog (m)d (8.54)

and the asymptotic normality for the Sobol index estimator is assessed with:

Tm/σ
2
ε = m1+αlog (m)d , ∀α > 0. (8.55)

We note that the condition is only sufficient since we have an inequality in (8.53).

8.5.3 Asymptotic normality for d-dimensional Gaussian kernels with a Gaus-

sian measure µ(x)

Let us consider a Gaussian measure µ ∼ N (0, σ2µI) in dimension d and the Gaussian kernel

(8.52). As presented in [Zhu et al., 1998], we have analytical expressions for the eigenvalues

and eigenfunctions of k(x, x̃):

λp =

d
∏

i=1

√

2a

Ai
Bp

i ,

φp(x) = exp

(

−
d
∑

i=1

(ci − a)(xi)2

)

d
∏

i=1

Hp(
√
2cix

i),

where Hp(x) = (−1)p exp(x2) dp

dxp exp(−x2) is the pth order Hermite polynomial (see [Grad-

shteyn et al., 2007]), a = 1/(2σµ)
2, bi = 1/(2θ2i ) and

ci =
√

a2 + 2abi, Ai = a+ bi + ci, Bi = bi/Ai.

Therefore, the eigenvalues satisfy the following asymptotic behavior

λp ∝ exp (−pξd) , (8.56)

where ξd =
∑d

i=1 log (1/Bi). For Tm ≫ 1, we have:

B2
Tm

≈
(

σ2ε/Tm
)

log
(

Tm/σ
2
ε

)

/ξd. (8.57)
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Let us consider the critical point B2
Tm

= 1/m. Then, the critical budget is given by

Tm
σ2ε

= ξdm log(m)

and the asymptotic normality is assessed for:

Tm
σ2ε

= ξdm
1+α log(m), ∀α > 0. (8.58)

8.6 Numerical illustration

The purpose of this section is to perform a global sensitivity analysis of a stochastic code

solving the following heat equation:

∂u

∂t
(x, t)− 1

2
∆u(x, t) = 0, (8.59)

with x ∈ R
d and u(x, 0) = g(x) = exp(−∑d

i=1 x
2
i /(2σ

2
g,i)). The function u(x, t) has the

following probabilistic representation:

u(x, t) = EWt [g(x+Wt)], (8.60)

where Wt is the 1-dimensional Brownian motion. We evaluate the function u(x, t) through

the following stochastic code:

ucoder (x, t) =
1

r

r
∑

i=1





1

s

s
∑

j=1

g(x+Wt,i,j)



 , (8.61)

where the number of replications r tunes the precision of the output, s = 30 and (Wt,i,j)i=1,...,r
j=1,...,s

are sampled from a Gaussian random variable of mean zero and variance t.

We note that there is a closed form expression for the solution of the considered heat

equation, that will allow us to compute exactly the Sobol indices and to assess the quality of

our estimate:

u(x, t) =

d
∏

i=1

(

σ2g,i
σ2g,i + t

)1/2

exp

(

− x2i
2(σ2g,i + t)

)

. (8.62)

8.6.1 Exact Sobol indices

Let us consider that x is a random variable X defined on (ΩX ,FX ,PX) such that X ∼
N
(

0, σ2µI
)

. We are interested for the application in the first order Sobol indices, i.e. the

contribution of (Xj)j=1,...,d. By straightforward calculations it can be shown that:

SXj
=
V Xj

V
=

varX(EX [u(X, t)|Xj ])

varX(u(X, t))
=

Bj − 1
(

∏d
i=1Bi

)

− 1
, (8.63)
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where Xj is the jth component of the random vector X with j = 1, . . . , d and

Bj = σµ





2

t
− 2

t2

(

1

t
+

1

σ2g,i

)−1

+
1

σ2µ





− 1
2




1

t
+

1

σ2µ
− 1

t2

(

1

t
+

1

σ2g,i

)−1


 .

Therefore, the importance measure of the jth input is directly linked with the dispersion

parameter σ2g,i of the function g(x). Furthermore, when t tends to the infinity, the response

u(x, t) tends to zero as the variance of the main effect. In this section, we consider the response

at t = 1.

8.6.2 Model selection

Let us consider a Gaussian process of covariance ku(x, x̃) and mean mu to surrogate u(x, t) at

t = 1. We consider the predictive mean and variance presented in equations (8.1) and (8.2).

As the response u(x, t) is smooth, we choose a squared exponential covariance kernel:

ku(x, x̃) = σ2 exp

(

−1

2

d
∑

i=1

(xi − x̃i)2

θ2i

)

.

Furthermore, as u(x, t) tends to zero when x tends to the infinity, we consider that mu = 0.

Indeed, we want that the model tends to zero when we move away from the design points.

The experimental design set D is composed of n = 3000 training points xtraini sampled

from the multivariate normal distribution N
(

0, σ2µI
)

with σµ = 2 and d = 5. Furthermore,

the initial budget is T0 = 3000. It corresponds to a unique repetition r0 = 1 at each point of

D. The n observations of ucoder0 (x, 1) at points in D are denoted by un.

The hyper-parameters σ2, θ and σ2ε are estimated by maximizing the marginal Likelihood:

−1

2
(un)′

(

σ2K+ σεI
)−1

un − 1

2
det
(

σ2K+ σεI
)

,

where K = [ku(xi, xj)]i,j=1,...,n. To solve the maximization problem, we have first randomly

generated a set of 1,000 parameters (σ2, θ, σε) on the domain (0, 10)× (0, 2)d × (0, 1) and we

have started a quasi-Newton based maximization from the 10 best parameters using the BFGS

method. We obtain the following parameter estimations.

• θ̂ =
(

1.01 1.02 1.03 1.00 1.07
)

• σ̂2 = 1.46

• σ̂2ε = 6.74.10−2

Furthermore, the dispersion term of g(x) are set to:

• (σ2g,i)i=1,...,d = (5, 3, 2, 1, 1)
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8.6.3 Convergence of IMSET

As presented in Subsection 8.2.2 and Section 8.3, the asymptotic normality of the Sobol

index estimator is closely related to the convergence of the generalization error IMSET (8.12).

Therefore, in order to effectively estimate the confidence intervals of the estimators, we have

to characterize this convergence. Especially, we have to take into account the initial budget

used to select the model. The value of IMSET0 where T0 corresponds to the initial budget

allocated to D is estimated to IMSET0 = 6.06.10−1. According to (8.57), we have the following

convergence rate for IMSET with respect to T :

IMSET ∼
(

σ2ε/T
)

log
(

T/σ2ε
)

/ξd.

Therefore, from an initial budget T0 we expect that IMSET as a function of T decays as:

IMSET = IMSET0

T0 log
(

T/σ2ε
)

T log (T0/σ2ε)
.

The critical ratio mB2
T = 1 presented in Section 8.5 leads to the following budget:

T =
m

C
log

(

m

Cσ2ε

)

, (8.64)

with C = log
(

T0/σ
2
ε

)

/(T0IMSET0). We consider this ratio since there is numerically no

difference between T = m
C log

(

m
Cσ2

ε

)

and T = m1+ε

C log
(

m
Cσ2

ε

)

for a very small value of ε (e.g.

1010).

8.6.4 Confidence intervals for the Sobol index estimations

According to Theorem 8.1, if T follows the relation in (8.64), the Sobol index estimator

presented in Subsection 8.3.1 is asymptotically distributed with respect to a Gaussian random

variable centered on the true index and with variance given in (8.21). We use this property

to build 90% confidence intervals on the estimations of (Sj)j=1,...,d (8.63). The exact values

of the Sobol indices (8.63) are given by:

(Sj)j=1,...,d = (0.052, 0.088, 0.124, 0.194, 0.194).

Remember that m represents the number of particles for the Monte-Carlo integrations

and T is the budget used to construct the surrogate model ẑT (x). In order to illustrate the

relevance of (8.64), we consider the following equation:

T = σ2ε
mα

C
log
(m

C

)

,

with different values of α - the right value being α = 1 - and different values of m. For each

combination (α,m), we estimate the Sobol indices with the estimator (8.18) and from 500

different Monte-Carlo samples (xMC
i )i=1,...,m. For each sample we evaluate the 90% confidence

intervals thanks to (8.21) and we check if the estimations are covered or not. The result of

the procedure is presented in Table 8.1.
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m α S1 S2 S3 S4 S5

1,000 0.8 88.00 86.20 87.60 88.20 86.40

1,000 0.9 89.00 91.80 89.60 86.20 86.00

1,000 1.0 88.40 87.00 89.40 87.60 90.80

1,000 1.1 88.00 89.40 88.80 87.00 88.60

1,000 1.2 90.00 91.00 86.60 88.80 89.00

3,000 0.8 88.00 87.60 86.60 87.80 87.20

3,000 0.9 89.80 87.80 87.40 88.60 88.00

3,000 1.0 89.40 90.40 89.20 89.40 89.60

3,000 1.1 90.40 90.60 91.00 91.60 90.80

3,000 1.2 92.00 91.80 92.00 91.40 91.40

5,000 0.8 87.60 86.20 87.40 88.20 86.40

5,000 1.0 89.20 89.40 90.80 89.80 89.60

5,000 1.2 92.00 91.40 92.80 90.60 92.20

Table 8.1: Coverage rates for (Sj)j=1,...,d in percentage. The confidence intervals are built

from the variance presented in (8.21) in Theorem 8.1. The theoretical rates is 90% and the

estimations is performed from 500 different Monte-Carlo samples.

We see in Table 8.1 that the asymptotic behavior is not reached for m = 1, 000 Monte-

Carlo particles since the coverage is globally too low in this case for every α. Furthermore, for

m = 3, 000 and m = 5, 000, we see that the coverage is globally better for α = 1 than for the

other values. Indeed, the covering rate is underestimated for α < 1 and often overestimated

for α > 1 whereas it is always around 90% for α = 1.

Furthermore, the confidence intervals seem to be well evaluated either for large values of

Sj with S4 and S5, for intermediate values of Sj with S3 or for small values of Sj with S2

and S1. Therefore, this example emphasize the relevance of the asymptotic normality for the

Sobol index estimators presented in Theorem 8.1.

8.7 Conclusion

This chapter focuses on the estimation of the Sobol indices to perform global sensitivity

analysis for stochastic simulators. We suggest an index estimator which combines a Monte-

Carlo scheme to estimate the integrals involved in the index definition and a Gaussian process

regression to surrogate the stochastic simulator. The surrogate model is necessary since the

Monte-Carlo integrations require an important number of simulations.

In a stochastic simulator framework, for a fixed computational budget the observation

noise variance is inversely proportional to the number of simulations. In this chapter, we

consider the special case of a large number of observations with an important uncertainty on

the output. This choice allows us to consider an idealized version of the regression problem

from which we can define a surrogate model which is tractable for our purpose.
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In particular we aim to build confidence intervals for the index estimator taking into

account both the uncertainty due to the Monte-Carlo integrations and the one due to the

surrogate modeling. To handle this point, we present a theorem providing sufficient conditions

to ensure the asymptotic normality of the suggested estimator. The proof of the theorem is the

main point of this chapter. It gives a closed form expression for the variance of the asymptotic

distribution of the estimator. From it we can easily estimate the desired confidence intervals.

Furthermore, a strength of the suggested theorem is that it gives the relation between the

number of particles for the Monte-Carlo integrations and the computational budget allocated

to the surrogate model so that they have the same contribution on the error of the Sobol index

estimations.



Conclusion and perspectives

The general framework of the thesis is the Gaussian process regression for computer experi-

ments. The objective is to build a surrogate model - also called meta-model - of a computer

code in order to have a fast approximation of its input/output relation. From this approxima-

tion, one can perform uncertainty quantification, optimization, sensitivity analysis, quantile

estimation. . . For practical applications, using a surrogate model is often necessary since the

complex computer codes are generally time-consuming and the cited analyses require a large

number of simulations.

However, surrogate models require careful implementations and appropriate validation

diagnostics. Furthermore, the construction of a meta-model often depends on the conception

objective. As an example, for an optimization purpose, we will concentrate the observations at

locations where the improvement expectation is important. On the contrary, for a prediction

purpose, the observations are generally spread over all the input parameter space. Another

important point is that a meta-model is valid only over the space covered by the experimental

design set. In particular, it is not appropriate to perform extrapolations.

In this manuscript, we are interested in a first part in simulators which have coarser and

computationally cheaper versions. The aim is to improve the approximation of a computer

code output using these coarse versions. To surrogate such simulators we make the choice to

use an extension of Gaussian process regression for multivariate outputs. Furthermore, we also

focus on a particular structure defining the relation between the different code levels. This

choice has two main strengths. First, the Gaussian process assumption allows for having an

information about the model accuracy and provides a basis for statistical inference. Second,

the suggested structure allows for easily handling with the surrogate model and thus for

deriving interesting tools for practical applications. The numerous applications addressed in

the manuscript highlight the performance of the suggested approach.

Nevertheless, there is no reason that the Gaussian process assumption is relevant. There-

fore, it is worth exploring other meta-models such as polynomial models, neural networks,

support vector machine. . . Especially since the Gaussian assumption is not appropriate for

some types of computer outputs. It is not well-suited for highly non-linear responses and it is

hard to use for non-stationary outputs. These two examples are of importance since they are

common for simulators dealing with complex physics.
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Furthermore, the suggested structure between the code levels (i.e. the autoregressive

relation) is simple and cannot be relevant for all applications. A first case which can cause

a failure is the one when the bias between two codes is as difficult to learn as the complex

code. In that case, a multi-fidelity analysis as presented in this manuscript is not significant. A

second case which can cause a failure is when there is a transformation on the input parameters

between two code levels. Of course, more complex relations between two code levels can be

imagined. However, their estimation could require a large number of observations from the

complex computer code. We must keep in mind that a multi-fidelity analysis is worth only

if it reduces this number of observations. Examples of more complicated relations can be

found in the field of fluid dynamics with turbulent flow where the coarse codes can be linear

simplifications of the complex one. In this case, log-transformations are sometimes used to

predict the output of the complex code from the ones of the simplified codes.

Another class of problems for which the suggested approach is not relevant is the one when

we do not know which code level is the most accurate. Indeed, it is common that for a given

physical system, several simulators can be used to model it and no classification can be made

between them. A promising approach to deal with these problems is the multi-armed bandit

method. The multi-armed bandit problem was originally introduced by [Robbins, 1952]. A

multi-armed bandit is a bandit machine with more than one lever. Moreover, each lever has

its own expected profit. The purpose of the problem is to find the most rewarding levers

through repeated trials. Several strategies has been suggested to solve this problem and it has

been intensively investigated in the last decades (e.g the ε-greedy strategy [Watkins, 1989],

[Auer et al., 2002a], [Mannor and Tsitsiklis, 2004], the SoftMax strategy [Wyatt, 1998], [Auer

et al., 2002b], the interval estimation strategy [Kaelbling, 1993], [Meuleau and Bourgine, 1999]

and the POKER strategy [Vermorel and Mohri, 2005]). These strategies try to minimize the

so-called “regret” defined as the difference between the reward sum associated to an optimal

strategy and the sum of the collected rewards. Furthermore, simulators can also be effective

at different locations of the input parameter space. In that case, mixture of experts methods

can be used (see [Jordan and Jacobs, 1994], [Waterhouse et al., 1996], [Ueda and Ghahramani,

2002] and [Bishop et al., 2006]).

Naturally, from the model we have suggested, many investigations can be led. We propose

in this manuscript how to use it for performing sensitivity analysis and for improving the

prediction capability of the model. Of course, we could have studied the use of this model

for global optimization ([Jones et al., 1998], [Mockus, 1994], [Williams et al., 2000], [Mockus,

2002], [Huang et al., 2006], [Villemonteix et al., 2009], [Vazquez and Bect, 2010], [Marzat et al.,

2012], [Picheny et al., 2012] and [Janusevskis and Le Riche, 2013]), reliability-based design

optimization ([Bichon et al., 2008], [Valdebenito and Schuëller, 2010] and [Huang and Chan,

2010]), estimation of probabilities of failure ([Oakley, 2004], [Picheny et al., 2010], [Dubourg

et al., 2011], [Bect et al., 2012], [Li et al., 2012] and [Picard and Williams, 2013]) or model

calibration ([Kennedy and O’Hagan, 2001], [Higdon et al., 2004], [Van Oijen et al., 2005],

[McFarland et al., 2008], [Higdon et al., 2008] and [Wilkinson, 2010]) which are commonly

performed with Gaussian process models.

In the second part of the manuscript, we address more theoretical questions. In particular,
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we deal with the rate of convergence of the Gaussian process regression model when the

code output are tainted by measurement noise. We study the case where the observation

noise variance is proportional to the number of observations and we focus on the asymptotics

corresponding to a large number of observations. Despite the fact that this assumption is

relevant for stochastic simulators it is not the case for all noisy responses. Furthermore, it is

not obvious that the asymptotics of a large number of observations is the more relevant in

practice for stochastic simulators. Indeed, we can easily imagine that the best choice is an

intermediate between few accurate observations and lot of inaccurate observations. Moreover,

an interesting result would be to obtain the rate of convergence of the Gaussian process

regression for a fixed noise variance or when the noise variance equals zero, especially since

these cases most often occur in practical applications.

From this discussion, we see that many researches and improvements can be conducted

both for theoretical and practical perspectives. For theoretical ones, it would be interesting

to extend the asymptotic results on the Gaussian process regression to more general cases.

For practical ones, it would be nice to develop methods minimizing the importance of the

Gaussian assumption. Finally, for multi-fidelity codes, many investigations can be led to deal

with the cases where the autoregressive assumption fail.
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Appendix A

Chapter 3 supplementary materials

A.1 A Markovian property for covariance structure

An AR(1) autoregressive model

We present in this section the proof that the Markovian covariance structure presented in

Chapter 3 is equivalent to the AR(1) autoregressive model. The proof comes from the technical

report [O’Hagan, 1998]. Let us suppose that we want to predict f(x, t), (x, t) ∈ R
d ×R

+ and

that we have already observed f(x, t′) with t′ 6= t. It is natural to assume that no more

information about f(x, t) can be learn from f(x′, t′) for x 6= x′. It is a kind of Markov

assumption which states that f(x, t) depend on {f(x′, t′), x′ ∈ R
d}, for given x, t and t′

only through the nearest observation f(x, t′).

We denote by M(Rd; t, t′) this property which can formally be written with the following

form:

cov
(

f(x, t), f(x′, t′)
)

=
cov (f(x, t), f(x, t′)) cov (f(x, t′), f(x′, t′))

cov (f(x, t′), f(x, t′))
. (A.1)

We obtain cov (f(x, t), f(x′, t′)|f(x, t′)) = 0. We note that (A.1) implies a linear inde-

pendence, therefore there is no equivalence between (A.1) and M(Rd; t, t′). Nevertheless in a

Gaussian framework there is equivalence between independence and linear independence. The

AR(1) formula is obtained thanks to the following theorem.

Theorem A.1. The Markovian property M(Rd; t, t′) is satisfied for given t and t′ if and

only if there exists r(x), such that ∀x ∈ R
d, we have {f(x, t) − r(x)f(x, t′), x ∈ R

d} linearly

independent of {f(x, t′), x ∈ R
d}.

Proof. Let us consider t and t′ fixed, e(x) = f(x, t)− r(x)f(x, t′) and g(x) = f(x, t′).

⇐ Sufficiency.

Let us consider e(x) and g(x′) uncorrelated for all x and x′ in R
d. We denote by
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cov (e(x), e(x′)) = ce(x, x
′) and cov (g(x), g(x′)) = cg(x, x

′). For t 6= t′, we have:

cov (f(x, t), f(x′, t′)) = cov (e(x) + r(x)g(x), g(x′))
= r(x)cg(x, x

′)
.

Furthermore, we have:

cov
(

f(x, t′), f(x′, t′)
)

= cg(x, x
′),

cov
(

f(x, t′), f(x, t′)
)

= cg(x, x)

and:

cov
(

f(x, t), f(x, t′)
)

= r(x)cg(x, x),

where:

cov (f(x, t), f(x′, t′)) cov (f(x, t′), f(x, t′)) = r(x)cg(x, x
′)cg(x, x)

= cov (f(x, t), f(x, t′)) cov (f(x, t′), f(x′, t′))
.

We obtain Equation (A.1). The Markovian property M(Rd; t, t′) is thus satisfied for t 6= t′.
For t = t′ the property is obvious.

⇒ Necessity.

Let us suppose that we have:

cov
(

f(x, t), f(x′, t′)
)

=
cov (f(x, t), f(x, t′)) cov (f(x, t′), f(x′, t′))

cov (f(x, t′), f(x, t′))
.

We denote by:

r(x) =
cov (f(x, t), f(x, t′))
cov (f(x, t′), f(x, t′))

.

We have:

cov
(

e(x), g(x′)
)

= cov
(

f(x, t)− r(x)f(x, t′), f(x′, t′)
)

= cov
(

f(x, t), f(x′, t′)
)

− r(x)cov
(

f(x, t′), f(x′, t′)
)

= cov
(

f(x, t), f(x′, t′)
)

− cov (f(x, t), f(x, t′))
cov (f(x, t′), f(x, t′))

cov
(

f(x, t′), f(x′, t′)
)

= 0.

A.2 The case of ρ depending on x

A.2.1 Building a model with s levels of code

Let us consider s levels of code, if we note β = (β′
1, . . . ,β

′
s)

′, βρ = (β′
ρ1 , . . . ,β

′
ρs−1

)′, σ2 =

(σ21, . . . , σ
2
s) and θ = (θ1, . . . ,θs), we have [Zs(x)|Z = z,β,βρ, σ

2,θ] ∼ N
(

mZs(x), s
2
Zs
(x)
)

where mZs(x) and s2Zs
(x) are defined in equations (3.27) and (3.28). Let us define the nota-

tion
⊙l

i=k Ai = Ak ⊙ · · · ⊙ Al where ⊙ represents the matrix element-by-element product.
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Furthermore, let us denote by ρt = ρt(Dt) the vector containing the values of ρt(x), x ∈ Dt.

The s diagonal blocks of Vs (3.29) of size nt × nt are defined by:

V(t,t) = σ2tRt(Dt)+σ
2
t−1

(

ρt−1(Dt)ρ
′
t−1(Dt)

)

⊙Rt−1(Dt)+· · ·+σ21

(

t−1
⊙

i=1

ρi(Dt)ρ
′
i(Dt)

)

⊙R1(Dt),

and the off-diagonal blocks of size nt × nt′ are given by:

V(t,t′) =



1nt

(

t′−1
⊙

i=t

ρi(Dt′)

)′

⊙V(t,t)(Dt,Dt′) 1 ≤ t < t′ ≤ s,

where 1n denotes a vector of size n where all components are 1. The vector ks(x) in equations

(3.27) and (3.28) is such that ks(x) = (k∗1(x,D1)
′, . . . , k∗s(x,Ds)

′)′, where:

k∗t (x,Dt)
′ = ρ′t−1(Dt)⊙ k∗t−1(x,Dt)

′ +

(

s−1
∏

i=t

ρi(x)

)

σ2tRt(x,Dt),

where 1 < t ≤ s,
(

∏s−1
i=s ρi(x)

)

= 1 and k∗1(x,D1)
′ =

(

∏s−1
i=1 ρi(x)

)

σ21R1(x,D1). Further-

more, the matrix Hs in equations 3.33 can be written as:

Hs =











...
. . .

((

⊙j−1
i=1 ρi(Dj)

)

1′p1

)

⊙ F1(Dj)
((

⊙j−1
i=2 ρi(Dj)1

′
p2

))

⊙ F2(Dj) . . . Fj(Dj) 0

...
. . .











.

A.2.2 Bayesian estimation of parameters for s levels of code

We can extend the Bayesian estimation of the parameters to the case of ρ depending on x.

Note that we do not assume the independence of βt and βρt−1
. We have:

[(βρt−1
,βt)|zt, zt−1,θt, σ

2
t ] ∼ N

(

(

H′
tRt(Dt)

−1Ht

)−1
H′

tRt(Dt)
−1zt, σ

2
t

(

H′
tRt(Dt)

−1Ht

)−1
)

,

where Ht = [Fρt−1(Dt)⊙ (zt−1(Dt)1
′
qt−1

) Ft(Dt)]. Furthermore, we have:

[σ2t |zt, zt−1,θt] ∼ IG(αt,
Qt

2
),

where

αt =
nt − pt − qt−1

2
,

Qt = (zt −Htλ̂t)
′Rt(Dt)

−1(zt −Htλ̂t),

λ̂t = E

[

(βρt−1
,βt)|zt, zt−1,θt, σ

2
t

]

.

The REML estimator of σ2t is σ̂2t = Qt/2αt and we can estimate θt by minimizing the expres-

sion:

log(|det(Rt(Dt))|) + (nt − pt − qt−1)log(σ̂
2
t ).
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A.2.3 Some important results about the covariance matrix Vs

By sorting the experimental design sets as in Subsection 3.6.2, it can be shown that ∀t =

2, . . . , s the inverse of the matrix Vs has the form:

V−1
s =









V−1
s−1 +

(

0 0

0
(ρs−1(Ds)ρ′s−1(Ds))⊙Rs(Ds)−1

σ2
s

)

−
(

0
(ρs−1(Ds)1′

ns
)⊙Rs(Ds)−1

σ2
s

)

−
(

0
(1nsρ

′
s−1(Ds))⊙R−1

s (Ds)

σ2
s

)

R−1
s (Ds)
σ2
s









,

with V−1
1 =

R−1
1 (D1)

σ2
1

, V−1
s−1 an (

∑s−1
i=1 ni×

∑s−1
i=1 ni) matrix and Rs(D1)

−1 an (ns×ns) matrix.

It can also be shown that:

V−1
s ks(x) =







ρs−1(x)V
−1
s−1ks−1(x)−

(

0

ρs−1(Ds)⊙ (Rs(Ds)
−1Rs(Ds, {x}))

)

Rs(Ds)
−1Rs(Ds, {x})






.

A.2.4 Bayesian prediction for a code with 2 levels

The equations for the Bayesian prediction when ρ depends on x can be directly derived from

the Section 3.4 by replacing ρ with βρ and noting that the design matrix F is such that:

F = [Fρ(D2)⊙ (z1(D2)1
′
pρ) F2].

Finally, for the Bayesian prediction, we just have to adapt the integral (3.25) :

p(z2(x)|z1, z2, σ21, σ22) =
∫

R
pρ+p2

p(z2(x)|z1, z2,β2,βρ, σ
2
1, σ

2
2)p(βρ,β2|z1, z2, σ22) dβρdβ2.



Appendix B

Extension of the recursive formulation

without nested experimental design sets

(Chapter 4)

B.1 Multi-fidelity co-kriging models without nested experimen-

tal design sets

Thanks to the recursive formulation of the multi-fidelity co-kriging model presented in Chapter

4, we can easily adapt the method when the experimental design sets are not nested.

B.1.1 Building multi-fidelity co-kriging models when the design sets are

not nested

Let us consider the recursive formulation of the multi-fidelity model t = 2, . . . , s :











Zt(x) = ρt−1(x) + δt(x)

Zt−1(x) ⊥ δt(x)

ρt−1(x) = g′
t−1(x)βρt−1

,

where Z̃t−1(x) is a Gaussian process with distribution [Zt−1(x)|Z(t−1) = z(t−1),βt−1,βρt−2
, σ2t−1].

Without the nested property for the experimental design sets (Dt)t=1,...,s, we have for t =

2, . . . , s :






Zt(x)

Zt(x̃)

Zt(Dt)






∼ N













ρt−1(x)µZt−1(x) + f ′t(x)βt

ρt−1(x̃)µZt−1(x̃) + f ′t(x̃)βt

ρt−1(Dt)⊙ µZt−1(Dt) + Ftβt






,Σ






,

where:

Σ =







Σ11 Σ12 Σ13

Σ′
12 Σ22 Σ23

Σ′
13 Σ′

23 Σ33
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and:

Σ11 = cov (Zt(x), Zt(x)) = ρ2t−1(x)s
2
Zt−1

(x) + σ2t ,

Σ12 = Σ′
12 = cov (Zt(x), Zt(x̃)) = ρt−1(x)ρt−1(x̃)s

2
Zt−1

(x, x̃) + σ2t rt(x, x̃),

Σ13 = Σ′
13 = cov (Zt(x), Zt(Dt)) = ρt−1(x)(ρt−1(Dt)

′ ⊙ s2Zt−1
(x,Dt)) + σ2t r

′
t(x),

Σ22 = cov (Zt(x̃), Zt(x̃)) = ρ2t−1(x̃)s
2
Zt−1

(x̃) + σ2t ,

Σ23 = Σ′
23 = cov (Zt(x̃), Zt(Dt)) = ρt−1(x̃)(ρt−1(Dt)

′ ⊙ s2Zt−1
(x̃,Dt)) + σ2t r

′
t(x̃),

Σ33 = cov (Zt(Dt), Zt(Dt)) =
(

ρt−1(Dt)ρt−1(Dt)
′)⊙ s2Zt−1

(Dt,Dt) + σ2tRt.

We note that if x̃ ∈ Dt−1, then cov
(

Zt−1(x), Zt−1(x̃)|Zt−1(Dt−1) = zt−1
)

= 0. From the

previous normal distribution, we deduce that for all t = 2, . . . , s :

[

Zt(x)|Zt(Dt) = zt
]

∼ PG
(

µZt(x), s
2
Zt
(x, x̃)

)

,

where the predictive mean is:

µZt(x) = ρt−1(x)µZt−1(x) + f ′t(x)βt

+

[

ρt−1(x)(ρt−1(Dt)
′ ⊙ s2Zt−1

(x,Dt))

+σ2t r
′
t(x)

][

[ρt−1(Dt)ρt−1(Dt)
′]⊙ s2Zt−1

(Dt,Dt)

+σ2tRt

]−1

×
(

zt − ρt−1(Dt)⊙ µZt−1(Dt)− Ftβt

)

and the predictive variance is given by:

s2Zt
(x, x̃) = ρt−1(x)ρt−1(x̃)s

2
Zt−1

(x, x̃) + σ2t rt(x, x̃)

−
[

ρt−1(x)(ρt−1(Dt)
′ ⊙ s2Zt−1

(x,Dt))

+σ2t r
′
t(x)

][

[ρt−1(Dt)ρt−1(Dt)
′]⊙ s2Zt−1

(Dt,Dt)

+σ2tRt

]−1

×
[

ρt−1(x̃)(ρt−1(Dt)⊙ s2Zt−1
(Dt, x̃))

+σ2t rt(x̃)

]

.

Furthermore, for the first level, we have

{

µZ1(x) = f ′1(x)β1 + r′1(x)R
−1
1 (z1 − F1β1)

s2Z1
(x, x̃) = σ21

(

1− r′1(x)R
−1
1 r1(x̃)

) .

B.1.2 Parameter estimation for the multi-fidelity co-kriging model when

the design sets are not nested

We present two methods to estimate the parameters when the design are not nested. The

first one assumes that the intersection between two successive design sets is not empty. The

second one consider this intersection as empty.
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The case where Dt ∩Dt−1 6= ∅ : Let us denote by Dt∩t−1 = Dt ∩Dt−1, we have:

Zt(Dt∩t−1) ∼ N
(

ρt−1(Dt∩t−1)⊙ zt−1(Dt∩t−1) + Ft(Dt∩t−1)βt, σ
2
tRt(Dt∩t−1)

)

,

where

ρt−1(Dt∩t−1) = Gt−1(Dt∩t−1)βρt−1
.

Denoting by Ht = [Gt−1(Dt∩t−1) ⊙ zt−1(Dt∩t−1) Ft(Dt∩t−1)] and ξt = (βρt−1
,βt), we

find exactly the same estimation as for the case of nested design sets for β, βρ, σ
2 and θ (see

Subsection 4.2.3).
By using the law of total covariance, we can infer from β and βρt−1

about the predictive
covariance:

s2Zt
(x, x̃) = ρt−1(x)ρt−1(x̃)s

2
Zt−1

(x, x̃) + σ2
t rt(x, x̃)

−

[

ρt−1(x)ρt−1(Dt)
′ ⊙ s2Zt−1

(x,Dt)

+σ2
t r

′
t(x)

][

[ρt−1(Dt)ρt−1(Dt)
′]⊙ s2Zt−1

(Dt,Dt)

+σ2
tRt

]−1

×

[

ρt−1(x̃)ρt−1(Dt)s
2
Zt−1

(Dt, x̃)

+σ2
t rtx̃)

]

+

(

f
′
t(x)−

[

ρt−1(x)ρt−1(Dt)
′ ⊙ s2Zt−1

(x,Dt)

+σ2
t r

′
t(x)

][

[ρt−1(Dt)ρt−1(Dt)
′]⊙ s2Zt−1

(Dt,Dt)

+σ2
tRt

]−1

Ft

)

× σ2
t (HtR

−1
t Ht)

−1

×

(

f
′
t(x̃)−

[

ρt−1(x̃)ρt−1(Dt)
′ ⊙ s2Zt−1

(x̃,Dt)

+σ2
t r

′
t(x̃)

][

[ρt−1(Dt)ρt−1(Dt)
′]⊙ s2Zt−1

(Dt,Dt)

+σ2
tRt

]−1

Ft

)′

.

The inference from β, βρ and σ2 about the predictive mean is straightforward by using

law of total expectation. Nevertheless, the inference from σ2t about the predictive covariance

is not explicit since the predictive mean depends on it.

The case where Dt ∩ Dt−1 = ∅ : When the intersection between two successive design

sets is empty, the parameter estimations become complex. Nevertheless, we can estimate

them sequentially starting with (β1, σ1, θ1) and continuing with (βt,βρt , σt, θt)t=2,...,s. The

estimations of (β1, σ1, θ1) is not a problem and can be performed with classical parameter

estimation methods for kriging (see Section 1.3).

For the estimation of βt,βρt , σt, θt, we can use a maximum likelihood method. Indeed, we

have:

Zt(Dt) ∼ N
(

(

ρt−1(Dt)⊙ µZt−1(Dt) + Ftβt

)

,

[

[ρt−1(Dt)ρt−1(Dt)
′]⊙ s2Zt−1

(Dt,Dt)

+σ2tRt

])

,

Zt(Dt) ∼ N (υ,Υ) ,

therefore, the negative log-likelihood equals (up to a constant):

−log
(

L(zt(Dt),βt,βρt , σt, θt)
)

∝ log (|det (Υ)|) + υTΥ−1υ.

We estimate βt,βρt , σt, θt by minimizing −log
(

L(zt(Dt),βt,βρt , σt, θt)
)

.
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B.2 Fast cross validation for co-kriging multi-fidelity models

without nested experimental design sets

We deal in this section with the fast-cross validation equations presented in Subsection 4.4

when the experimental design sets are not nested. Let us consider the model presented in

Section B.1 and let us introduce the following notation:

Σt =

[

(ρt−1(Dt)ρt−1(Dt)
′)⊙ s2Zt−1

(Dt,Dt)

+σ2tRt

]

.

With the block matrix inverse formula, we obtain that:

[

[

Σ−1
t

]

[ζt,ζt]

]−1
= (ρt−1(Dt,ζt

)ρt−1(Dt,ζt
)′)⊙ s2Zt−1

(Dt,ζt
,Dt,ζt

) + σ2t rt(Dt,ζt
,Dt,ζt

)

−
[

(ρt−1(Dt,ζt
)ρt−1(Dt,−ζt

)′)⊙ s2Zt−1
(Dt,ζt

,Dt,−ζt
)

+σ2t rt(Dt,ζt
,Dt,−ζt

)

]

×
[

(

ρt−1(Dt,−ζt
)ρt−1(Dt,−ζt

)′
)

⊙ s2Zt−1
(Dt,−ζt

,Dt,−ζt
)

+σ2t rt(Dt,−ζt
,Dt,−ζt

)

]−1

×
[

(ρt−1(Dt,ζt
)′ρt−1(Dt,−ζt

))⊙ s2Zt−1
(Dt,−ζt

,Dt,ζt
)

+σ2t rt(,Dt,−ζt
Dt,ζt

)

]

,

where ζt are the index that we remove from the design set Dt.
[

[

Σ−1
t

]

[ζt,ζt]

]−1
is the predictive

covariance matrix of the cross validation procedure. The predictive variance corresponds to

the diagonal of this matrix:

ς2Zt,ζt
(Dt,ζt

) = diag

(

[

[

Σ−1
t

]

[ζt,ζt]

]−1
)

.

Furthermore, denoting by ξt = (βρt−1
,βt), we have:

[

[

Σ−1
t

]

[ζ
t
,ζ

t
]

]

−1
[

Σ−1
t [zt −Htξt]

]

[ζ
t
,ζ

t
]

= zt(Dt,ζ
t
)−Ht,−ζ

t
ξt

−
[

(ρt−1(Dt,ζ
t
)ρt−1(Dt,−ζ

t
)′)⊙ s2Zt−1

(Dt,ζ
t
,Dt,−ζ

t
)

+σ2
t rt(Dt,ζ

t
,Dt,−ζ

t
)

]

×
[

[

ρt−1(Dt,−ζ
t
)ρt−1(Dt,−ζ

t
)′
]

⊙ s2Zt−1
(Dt,−ζ

t
,Dt,−ζ

t
)

+σ2
t rt(Dt,−ζ

t
,Dt,−ζ

t
)

]

−1

×
(

zt(Dt,−ζ
t
)− ρt−1(Dt,−ζ

t
)⊙ µZt−1

(Dt,−ζ
t
)− Ft,−ζ

t
βt

)

,

where Ht = [Gt−1(Dt)⊙ µZt−1(Dt) Ft]. Finally, we obtain that:

εZt,ζt
(Dt,ζt

) =
[

[

Σ−1
t

]

[ζt,ζt]

]−1
[

Σ−1
t [zt −Htξt]

]

[ζt,ζt]
.
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Equivalence between multi-fidelity

co-kriging models and noisy-kriging

(Introduction of Part III)

Proof of Proposition 6.3

Proof. The normality of







Z(x)

Zn1

s1

Zn2

s2






and







Z(x)

Zn1−n2

s1

Zn2

s2






implies that the distributions [Z(x)|Zn1

s1
=

zn1

s1
,Zn2

s2
= zn2

s2
, σ2] and [Z(x)|Zn1−n2

s1
= zn1−n2

s1
,Zn2

s2
= zn2

s2
, σ2] are Gaussian. We just have to

prove that they have the same mean and variance.

First, let us denote by R the correlation matrix of

(

Zn1

s1

Zn2

s2

)

. We sort D = {x1, . . . , xn1}

and D̃ = {x1, . . . , xn2} such that for a fixed l = 1, . . . , n2, Zs1l
(xl) and Zs2l

(xl) are the last

components of

(

Zn1

s1

Zn2

s2

)

. After the sorting procedure, R can be written with the following form:

R =

(

T Vl

V′
l W

)

,

where Vl = (vl vl), v
′
l = ([r(xl, xi)]i=1,...,n1−1 [r(xl, xi)]i=1,...,n2−1) ,

W =

(

1 + σ2ε(xl)/s
1
l 1 + σ2ε(xl)/s

2
l

1 + σ2ε(xl)/s
2
l 1 + σ2ε(xl)/s

2
l

)

and

T =





cor
(

Zn1

s1,−l
,Zn1

s1,−l

)

cor
(

Zn1

s1,−l
,Zn2

s2,−l

)

cor
(

Zn2

s2,−l
,Zn1

s1,−l

)

cor
(

Zn2

s2,−l
,Zn2

s2,−l

)



 ,
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where Z
nj

sj ,−l
denotes the vector Z

nj

sj
without the lth components j = 1, 2. Let us consider the

following matrix:

Q =

(

1− al + τ1l 1− al + τ2l
1− al + τ2l 1− al + τ2l

)

,

with al = v′
lTvl, τ

1
l = σ2ε(xl)/s

1
l and τ2l = σ2ε(xl)/s

2
l . Denoting by bl = (τ1l − τ2l )

−1, the

inverse of Q is given by:

Q−1 =

(

bl −bl
−bl (1− al + τ2l )

−1 + bl

)

.

The block matrix inversion formula gives

R−1 =









T−1 +T−1vl(1− al + τ2l )
−1v′

lT
−1 −T−1

(

0(n1+n2−2)×1 vl(1− al + τ2l )
−1
)

(

01×(n1+n2−2)

v′
l(1− al + τ2l )

−1

) (

bl −bl
−bl (1− al + τ2l )

−1 + bl

)









.

Then, if we denote by k′(x) the correlation vector between Z(x) and

(

Zn1

s1

Zn2

s2

)

, after the sorting

procedure, it has the following form

k′(x) =

(

cor

(

Z(x),

(

Zn1

s1,−l

Zn2

s2,−l

))

cl cl

)

,

where cl = cor (Z(x), Z(xl)). Furthermore, the vector of observed values can be written:

zn1+n2 =
(

zn1

s1,−l
zn2

s2,−l
zs1l

(xl) zs2l
(xl)

)

,

where z
nj

sj ,−l
stands for the vector z

nj

sj
without the lth components for j = 1, 2. After straight-

forward calculations we obtain the equalities:

k′(x)R−1k(x) = k̃′(x)R̃−1k̃(x),

k′(x)R−1zn1+n2 = k̃′(x)R̃−1z̃n1+n2
−l ,

k′(x)R−1

(

f ′(D)

f ′(D̃)

)

= k̃′(x)R̃−1

(

f ′(D−l)

f ′(D̃)

)

,

(

f(D) f(D̃)
)

R−1

(

f ′(D)

f ′(D̃)

)

=
(

f(D−l) f(D̃)
)

R̃−1

(

f ′(D−l)

f ′(D̃)

)

and
(

f(D) f(D̃)
)

R−1zn1+n2 =
(

f(D−l) f(D̃)
)

R̃−1z̃n1+n2
−l .

where D−l is the experimental design set D without the lth row,

k̃′(x) =

(

cor

(

Z(x),

(

Zn1

s1,−l

Zn2

s2,−l

))

cl

)

,
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z̃n1+n2
−l =

(

zn1

s1,−l
zn2

s2,−l
zs2l

(xl)
)

and

R̃ =





cor
(

Zn1

s1,−l
,Zn1

s1,−l

)

cor
(

Zn1

s1,−l
,Zn2

s2

)

cor
(

Zn2

s2
,Zn1

s1,−l

)

cor
(

Zn2

s2
,Zn2

s2

)



 .

Using the same result as presented in Subsection 1.2.2, the predictive mean µn1,n2(x) and

variance s2n1,n2
(x) of [Z(x)|Zn1

s1
= zn1

s1
,Zn2

s2
= zn2

s2
, σ2] are given by:

µn1,n2(x) = f ′(x)β̂ + k′(x)R−1
(

zn1+n2 −Hβ̂
)

,

where: β̂ =
(

H′R−1H
)−1

H′R−1zn1+n2 and

s2n1,n2
(x) = σ2

(

1− k′(x)R−1k(x)

+(f ′(x)− k′(x)R−1H)

)

[

H′R−1H
]−1

(f ′(x)− k′(x)R−1H)′,

with H′ =
(

f(D) f(D̃)
)

.

Furthermore, the mean µn1,n2,−l(x) and the variance s2n1,n2,−l(x) of the distribution [Z(x)|Zn1

s1,−l
=

zn1

s1,−l
,Zn2

s2
= zn2

s2
, σ2] equal:

µn1,n2,−l(x) = f ′(x)ˆ̃β + k̃′(x)R̃−1
(

z̃n1+n2
−l −H−l

ˆ̃
β
)

,

where:
ˆ̃
β =

(

H′
−lR̃

−1H−l

)−1
H′

−lR̃
−1z̃n1+n2

−l and

s2n1,n2,−l(x) = σ2
(

− k̃′(x)R̃−1k̃(x)

+(f ′(x)− k̃′(x)R̃−1H−l)

)

[

H′
−lR̃

−1H−l

]−1
(f ′(x)− k̃′(x)R̃−1H−l)

′,

with H′
−l =

(

f(D−l) f(D̃)
)

. Therefore, we obtain with the previous equalities:

µn1,n2,−l(x) = µn1,n2(x)

s2n1,n2,−l(x) = s2n1,n2
(x)

.

Finally, proceeding in the same way for all l = 1, . . . , n2 we obtain that [Z(x)|Zn1

s1
= zn1

s1
,Zn2

s2
=

zn2

s2
, σ2] and [Z(x)|Zn1−n2

s1
= zn1−n2

s1
,Zn2

s2
= zn2

s2
, σ2], have the same mean and variance.
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Appendix D

Optimal resource allocation (Chapter 7)

D.1 Proof of Proposition 7.3

The minimization of the IMSE in Equation (7.23) with respect to (si)i=1,...,n and under the

constraints
∑n

i=1 si = T and si ≥ 1, ∀i = 1, . . . , n is equivalent to the following minimization

problem when K is diagonal:

argmin
(ui)i

n
∑

i=1

− c(xi)

k(xi, xi) +
σ2
ε(xi)
ui+1

, (D.1)

u.c.

n
∑

i=1

ui = T − n, ui ≥ 0, ∀i = 1, . . . , n, (D.2)

with si = ui + 1 and T ≥ n. The Lagrangian formulation of this problem with (u, λ) ∈
R
n
+ × R is given by:

L(rλ) =
n
∑

i=1

− c(xi)

k(xi, xi) +
σ2
ε(xi)
1+ui

+ λ

(

n
∑

i=1

ui − T + n

)

=
n
∑

i=1

(

− c(xi)

k(xi, xi) +
σ2
ε(xi)
1+ui

+ λui

)

− λ(T − n).

We solve the dual problem which consists on finding (u(λ∗), λ∗) such that:

L(u(λ∗), λ∗) = max
λ≥0

min
u∈Rn

+

L(u, λ). (D.3)

We note that u(λ∗) will be the solution of the problem (D.1). Minimizing L(u, λ) with respect

to u for a fixed λ is equivalent to minimizing each element − c(xi)

k(xi,xi)+
σ2
ε(xi)

1+ui

+ λui with respect

to ui ≥ 0.

Let us consider the function hi(x, λ) = − c(xi)

k(xi,xi)+
σ2
ε (xi)

1+x

+λx with x ∈ R+ and let us denote

ui(λ) = argminx≥0 hi(x, λ). The sign of the derivative of hi(x, λ) is the same as the one of

λ
(

k(xi, xi)(1 + ui) + σ2ε(xi)
)2 − c(xi)σ

2
ε(xi). Therefore, we have the three following cases:

281
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1. λ ≤ 0 ⇒ ∀i, hi(x, λ) is decreasing with respect to x and ui(λ) = +∞.

2. 0 < λ ≤ c(xi)σ
2
ε(xi)

(k(xi,xi)+σ2
ε(xi))2

⇒ hi(x, λ) reaches is unique minimum at

ui(λ) =
1

k(xi,xi)

(

√

c(xi)σ2
ε(xi)

λ − k(xi, xi)− σ2ε(xi)

)

.

3. λ > c(xi)σ
2
ε(xi)

(k(xi,xi)+σ2
ε(xi))2

⇒ hi(x, λ) is increasing with respect to x and ui(λ) = 0.

For the rest of the proof, we use the notation:

α(x) =
c(x)σ2ε(x)

(k(x, x) + σ2ε(x))
2

Let us look for the λ ≥ 0 which maximizes minu∈Rn
+
L(u, λ) = L(u(λ), λ). According to the

three previous cases, the maximum will obtained for λ > 0. We hence have to maximize with

respect to λ > 0 the following quantity:

L(u(λ), λ) =

n
∑

i=1

10<λ≤α(xi)
c(xi)

k(xi, xi)

(

2

√

λσ2ε(xi)

c(xi)
− 1− λ

(

σ2ε(xi) + k(xi, xi)
)

c(xi)

)

+
n
∑

i=1

1λ>α(xi)
−c(xi)

k(xi, xi) + σ2ε(xi)
− λ(T − n).

Then:

∂λL(r(λ), λ) =
n
∑

i=1

10<λ≤α(xi)
c(xi)

k(xi, xi)

(
√

σ2ε(xi)

λc(xi)
− k(xi, xi) + σ2ε(xi)

c(xi)

)

− (T − n). (D.4)

The function ∂λL(u(λ), λ) is continuous with respect to λ, equals −T + n for

λ > maxi=1,...,n α(xi) and is strictly decreasing on (0,maxi=1,...,n α(xi)). Furthermore, ∂λL(u(λ), λ) →
∞ when λ → 0. Therefore, L(u(λ), λ) admits a unique maximum at λ∗ verifying the equa-

tion ∂λL(u(λ∗), λ∗) = 0. We now re-index the experimental design set {1, . . . , n} such that

the quantities α(xi) form a non-decreasing sequence. This sequence gives a partition of

(0,maxi=1,...,n α(xi)) and we will look for the sub-interval containing λ∗.

If ∂λL (u (α(xi)) , α(xi)) < 0 ∀i, we set i∗ = 0 and we have λ∗ ∈ (0, α(x1)). Otherwise,

i∗ is the index such that:

∂λL (u (α(xi∗)) , α(xi∗)) ≥ 0 (D.5)

and:

∂λL (u (α(xi∗+1)) , α(xi∗+1)) < 0, (D.6)

and then:

λ∗ ∈ [α(xi∗), α(xi∗ + 1)) . (D.7)

Therefore, for λ ∈ (0,maxi=1,...,n α(xi)), we have:

∂λL(u(λ), λ) =
n
∑

i=i∗+1

c(xi)

k(xi, xi)

(
√

σ2ε(xi)

λc(xi)
− k(xi, xi) + σ2ε(xi)

c(xi)

)

− (T − n). (D.8)
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Furthermore, we have ∂λL(u(λ∗), λ∗) = 0 which is equivalent to:

1√
λ∗

=
T − i∗ +

∑n
i=i∗+1

σ2
ε(xi)

k(xi,xi)

∑n
i=i∗+1

√
c(xi)σ2

ε(xi)

k(xi,xi)

. (D.9)

From which we deduce that:

ui(λ
∗) =















0 i ≤ i∗

1
k(xi,xi)





√
c(xi)σ2

ε(xi)

∑n
j>i∗

√
c(xj)σ

2
ε (xj)

k(xj,xj)

(

T − i∗ +
∑n

j>i∗
σ2
ε(xj)

k(xj ,xj)

)

− σ2ε(xi)



− 1 i > i∗
.

(D.10)

Finally, we have L(u(λ∗), λ∗) = maxλ≥0minu∈Rn
+
L(u, λ). As the function to minimize is a

convex differentiable function, the function L(u(λ), λ) is concave and the constraints are affine,

the saddle point found verifies the Karush-Kuhn-Tucker (KKT) conditions and consequently

is the unique solution of the problem.

Furthermore, since ∂λL(u(λ), λ) is strictly decreasing with respect to λ on the interval

(0,maxi=1,...,n α(xi)), we have have the following equivalences:

i ≤ i∗ ⇔ ∂λL (u (α(xi)) , α(xi)) ≥ 0 (D.11)

⇔ k(xj , xj) + σ2ε(xj)
√

c(xj)σ2ε(xj)
≥
T − i+

∑n
j=i+1

σ2
ε(xj)

k(xj ,xj)

∑n
j=i+1

√
cjσ2

ε(xj)

k(xj ,xj)

, (D.12)

i∗ = 0 ⇔ k(xj , xj) + σ2ε(xj)
√

c(xj)σ2ε(xj)
<
T − i+

∑n
j=i+1

σ2
ε(xj)

k(xj ,xj)

∑n
j=i+1

√
cjσ2

ε(xj)

k(xj ,xj)

, ∀i = 1, . . . , n. (D.13)

The result announced in the proposition is obtained by replacing si = ui + 1. �.

D.2 Numerical illustrations

We present in this section numerical illustrations on the optimal allocation suggested in Propo-

sition 7.3. We compute them for various covariance kernels (Matérn, Gaussian, γ-exponential)

with variance parameter σ2 = 1, different dimensions d and number of observations n and two

type of measure µ for the experimental design set (uniform and Gaussian). First, we present

the case of large T - i.e. i∗ = 0 in Proposition 7.3 - and small characteristic length scales to fit

with the assumptions of the proposition. Then, we present the general case of non-diagonal

covariance matrix K. Finally, we illustrate the allocation for small budget T .

Let us summary below the protocol used for the comparison:

1. Two measures µ(x) are considered for the experimental design sets: µG(x) ∼ N (0, Id),

µU(x) =
∏d

i=1 1xi∈[0,1]
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2. The measure for the evaluation of the IMSE is η(x) = µ(x) and it is performed thanks

to a Monte-Carlo integration with 10000d points when d = 6 and with a trapezoidal

numerical integration with 2000 points when d = 1.

3. The comparisons are performed from 100 different experimental design sets generated

with respect to µ(x).

4. The noise variance for the n observations are randomly sampled from a uniform distri-

bution between 0 and 5.

Comparison in dimension 1 with a uniform measure µU(x) with large T .
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(c) d = 1, T = 50, n = 10, θ = 5.10−3

k(., .): 5/2-Matérn, η(x) = µU(x)
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(d) d = 1, T = 50, n = 10, θ = 5.10−3

k(., .): 3/2-Matérn, η(x) = µU(x)

Figure D.1: Comparison between uniform, random and optimal allocations on an example in

dimension d = 1 with heteroscedastic observation noise variance. 100 experimental design sets

of n = 10 points are randomly sampled from the measure µU(x). The budget is T = 50 and

the correlation length θ = 5.10−3 is small in order to be close to the assumption K diagonal.

We see that the optimal allocation is significantly better than the two other ones. This is

natural since we fit to the assumptions of Proposition 7.3 (i.e. K diagonal).
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(c) d = 1, T = 50, n = 20, θ = 5.10−3

k(., .): 5/2-Matérn, η(x) = µU(x)
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(d) d = 1, T = 50, n = 20, θ = 5.10−3

k(., .): 3/2-Matérn, η(x) = µU(x)

Figure D.2: Comparison between uniform, random and optimal allocations on an example in

dimension d = 1 with heteroscedastic observation noise variance. 100 experimental design sets

of n = 20 points are randomly sampled from the measure µU(x). The budget is T = 50 and the

correlation length θ = 5.10−3 is small in order to be close to the assumption K diagonal. We

see that the optimal allocation is better than the two other ones. Nevertheless, the difference

between the uniform and the optimal allocation is smaller than in the case illustrated in

Figure D.1. This is due to the fact that since n increases, we stray from the assumptions of

Proposition 7.3 (i.e. K diagonal). Furthermore, the difference between the uniform and the

optimal allocation is smaller for the Gaussian and the 5/2-Matèrn covariance kernels (Figures

(b) and (c)) than for the exponential and the 3/2-Matèrn covariance kernels (Figures (a) and

(d)). This is natural since for irregular kernels, we are closer to the assumption K diagonal.
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Figure D.3: Comparison between uniform, random and optimal allocations on an example

in dimension d = 1 with heteroscedastic observation noise variance. 100 experimental design

sets of n = 20 points are randomly sampled from the measure µU(x). The budget is T = 200

and the correlation length θ = 5.10−3 is small in order to be close to the assumption K

diagonal. We see that the optimal allocation is significantly better than the two other ones.

Furthermore, the difference between the uniform and the optimal allocation is larger than in

the case illustrated in Figure D.2.
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Comparison in dimension 6 with a uniform measure µU(x) with large T .
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Figure D.4: Comparison between uniform, random and optimal allocations on an example in

dimension d = 6 with heteroscedastic observation noise variance. 100 experimental design sets

of n = 100 points are randomly sampled from the measure µU(x). The budget is T = 500 and

the correlation length is θ = 5.10−1. We note that the covariance matrix K is not diagonal.

Though we do not respect the assumption of Proposition 7.3, we see that the suggested optimal

allocation is better than the two other ones. Furthermore, the difference between the uniform

and the optimal allocation decreases with the regularity of the covariance kernel. Indeed, the

smallest is for the Gaussian kernel in Figure (b) and the largest is for the exponential one in

Figure (a). This is due to the fact that less regular is the kernel closer we are to a diagonal

matrix K.
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Comparison in dimension 6 with a Gaussian measure µG(x) with large T .
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Figure D.5: Comparison between uniform, random and optimal allocations on an example in

dimension d = 6 with heteroscedastic observation noise variance. 100 experimental design sets

of n = 100 points are randomly sampled from the Gaussian measure µG(x). The budget is

T = 500 and the correlation length is θ = 5.10−1. We note that the covariance matrix K is

not diagonal. Though we do not respect the assumption of Proposition 7.3, we see that the

suggested optimal allocation is significantly better than the two other ones. Furthermore, the

difference between the uniform and the optimal allocations is particularly important compared

to the illustrations in Figures D.1, D.2, D.3 and D.4. This is explained by the fact that we

use a Gaussian measure for processing the IMSE whereas in Figures D.1, D.2, D.3 and D.4

we use an uniform measure which fits with the uniform allocation. Therefore, this comparison

shows that it is worth taking into account the measure of averaging to allocate the resource.
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Comparison in dimension 6 with a Gaussian measure µG(x) with small T .
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Figure D.6: Comparison between uniform, random and optimal allocations on an example in

dimension d = 6 with heteroscedastic observation noise variance. 100 experimental design sets

of n = 100 points are randomly sampled from the Gaussian measure µG(x). The budget is

T = 150 and the correlation length is θ = 5.10−1. We note that the covariance matrix K is

not diagonal. Though we do not respect the assumption of Proposition 7.3, we see that the

suggested optimal allocation is significantly better than the two other ones. Furthermore, the

difference between the uniform and the optimal allocations is particularly important compared

to the one given in the illustrations in Figures D.1, D.2, D.3 and D.4. This is explained by

the fact that contrary to the uniform allocation we take into account the averaging measure

into the optimal allocation. Furthermore, we see that the constraint of having one Monte-

Carlo particle for each point of the design set is well handled by the suggested allocation.

We highlight that its performance compared to the uniform one is even better than the one

illustrated in Figure D.5.
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RÉSUMÉ

Cette thèse porte sur l’approximation par processus gaussiens d’un code de calcul qui
peut être exécuté à différents niveaux de précision. L’objectif est d’améliorer les prédictions
d’un méta-modèle d’un code complexe en utilisant des approximations rapides de celui-ci.
Une nouvelle formulation d’une méthode basée sur un modèle de co-krigeage est proposée.
En particulier, cette formulation permet de simplifier numériquement la méthode et d’obtenir
des expressions analytiques des moyenne et variance de co-krigeage universel. Ceci est une
avancée importante qui permet d’utiliser ces modèles aisément en pratique. Des méthodes de
validation croisée rapides, de planification d’expériences séquentielle et d’analyse de sensibilité
ont également été étendues au cadre du co-krigeage multi-fidélité.

Ensuite, la thèse étudie une conjecture sur la dépendance de la courbe d’apprentissage
(c’est à dire le taux de décroissance de l’erreur quadratique moyenne) par rapport à la
régularité de la fonction à approcher. Une preuve dans un cadre général (qui comprend les
modèles classiques de régression par processus gaussiens avec noyaux stationnaires) a été ob-
tenue, tandis que les preuves précédentes ne sont valides que pour des noyaux dégénérés (c’est
à dire quand le processus est de dimension finie). Ce résultat permet d’aborder des questions
pratiques telles que l’allocation optimale du budget de temps de calcul entre les différents
niveaux de codes dans le cadre multi-fidélité.

Mots clés : Codes de calcul multi-fidélité, Régression par processus gaussien, Co-krigeage,
Planification séquentielle, Analyse de sensibilité, Courbe d’apprentissage.

ABSTRACT

This work is on Gaussian-process based approximation of a code which can be run at
different levels of accuracy. The goal is to improve the predictions of a surrogate model of a
complex computer code using fast approximations of it. A new formulation of a co-kriging
based method has been proposed. In particular this formulation allows for fast implementation
and for closed-form expressions for the predictive mean and variance for universal co-kriging
in the multi-fidelity framework, which is a breakthrough as it really allows for the practical
application of such a method in real cases. Furthermore, fast cross validation, sequential
experimental design and sensitivity analysis methods have been extended to the multi-fidelity
co-kriging framework.

This thesis also deals with a conjecture about the dependence of the learning curve (ie the
decay rate of the mean square error) with respect to the smoothness of the underlying function.
A proof in a fairly general situation (which includes the classical models of Gaussian-process
based metamodels with stationary covariance functions) has been obtained while the previous
proofs hold only for degenerate kernels (ie when the process is in fact finite-dimensional). This
result allows for addressing rigorously practical questions such as the optimal allocation of
the budget between different levels of codes in the multi-fidelity framework.

Keywords : Multi-fidelity computer codes, Gaussian process regression, Co-kriging, Se-
quential design, Sensitivity analysis, Learning curve.
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