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Introduction 

Purpose 

The importance of groundwater for the existence of human society cannot be overemphasized.  

Indeed, groundwater is the major source of drinking water in both urban and rural areas. 

Understanding the different mechanisms and phenomena that occur within the groundwater level 

is essential for better management of a resource that has social and economic interests. On the 

other hand the complexity and the cost to access the underground environment make it difficult 

and sometimes impossible to study these mechanisms in-situ. Therefore, numerical modeling 

appears as a useful tool to reproduce some observed phenomena and to predict others in order to 

prevent as much as possible their negative effects on the environment.  

A contribution to numerical methods has been made in this manuscript to simulate density driven 

flow problems in porous and free flow domains. The validity of the numerical codes was proven 

when compared against well-developed semi-analytical solutions for density driven flow in 

porous media and in free flow media. When validated, the numerical models are used to study the 

salt dissolution process. An adaptive mesh routine is developed and coupled to the density driven 

flow code in free flow media in order to study the salt dissolution process in a fracture. Finally,  

the density driven flow code in porous media is used to run a set of numerical simulations on a 

2D cross section based on field measurements.   

Regional subrosion 

Groundwater circulation in evaporite bearing horizons and resulting dissolution (subrosion) of 

salt frequently causes geomechanical problems such as land subsidence or collapses. Moreover, 

the groundwater salt dissolution affects also the water quality, such as salinization and high 

mineralization.  A significant potential hazard arises if radioactive waste repositories are situated 

in salt rock units. Salt deposits (e.g. rock salt), are largely widespread in a lot of continental 

regions. The subrosion process is considered as a major concern in construction projects and 

infrastructure planning (e.g. highways, railway connections). Moreover, the land subsidence 

phenomenon can be detected in areas with densely populated residential wich causes important 

infrastructural damages. The studied subrosion process studied in this thesis takes place in the 

region of Muttenz-Pratteln area (Figure 1). The subrosion process within the study area was also 

recorded in a 160 m of depth at the Adlertunnel, Basel, Switzerland which is part of a new 

European North-South railway connection The study areas are located in the east of the city of 
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Basel. These areas lie within the tectonic unit of the Tabular Jura, and they have been excessively 

used for subsurface operations (e.g. groundwater pumping, water withdrawal for drinking water 

supply, solution mining of halite). Further more, the studied areas are subdivided by a series of 

NNE-SSW Horst and Graben structures.  

 

Figure 1: Regional overview with working area [Spottke et al., 2005] 

 

The Horst and Graben structure of the Tabular Jura in the area of Muttenz-Pratteln and the 

Adlerhof-Anticline are explained in details in [Laubscher, 1982]. During an observation period of 

78 days in 1997, land subsidence occurred in a section of the open-mined Adlertunnel at rates of 

6 to 10 mm/month [Aegerter & Bosshardt, 1999]. 

Commonly the subrosion phenomenon is due to the extensive use of natural resources (e.g. 

groundwater withdrawal for drinking water, solution mining of halite). Large scale groundwater 

extraction and recharge may significantly increase the hydraulic gradients on large parts of the 

aquifer which in turn would accelerate the karst evolution. 

The first investigations on the relationship between solution mining and land subsidence were 

made by [Trefzger 1925, 1950]. He compared subsidence and salt production rates for different 

exploration wells in the Rheinfelden solution-mining district. And later the study continued with 

[Hauber 1971] and recently with [Zechner et al. 2011].  
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General overview 

In order to develop and to validate the numerical codes required to simulate dissolution and 

density driven transport, the thesis starts with the developed and the adopted mathematical and 

numerical models (chapters 1-2).  

In this work, we focus on the development of numerical models to simulate density flow in 

porous and free flow free domains. The dissolution phenomenon and evolution of fractures over 

time has been studied in this thesis as well. The developed models take into account the physical 

processes (advection, dispersion, molecular diffusion) and chemical processes (dissolution) using 

the equations of conservation of mass (PDEs) and the equation of dissolution. Efficient numerical 

methods are used to solve these equations. The mixed finite element method (MFE) is used to 

solve the flow in porous media and the nonconforming finite element method Crouzeix-Raviart 

(CR) is used to solve the flow within fractures (non-porous media). The mass transport equation 

is solved using the Multi-Point Flux Approximation method (MPFA) for the dispersion part and 

the Discontinuous Galerkin method (DG) for the advection part. The simulation of the fractures 

evolution is based on the development of a dynamic mesh method that adapts depending on the 

amount of dissolved salt at the boundaries. The dissolution model is combined with the flow-

transport models in order to simulate density driven flow with fracture evolution. 

In order to reach this goal, we needed first to validate the developed numerical codes. The first 

part of the thesis addresses the validation of the numerical model to simulate density driven flow 

in porous media. The simplified problem of saltwater intrusion in a coastal aquifer, known as the 

Henry problem [Henry 1964], is widely used for the validation of numerical models. In fact, this 

problem has a semi-analytical solution that was developed by Henry [Henry 1964] and corrected 

by Ségol [1994]. However, this solution can only simulate saltwater intrusion with unrealistic 

large amount of dispersion. The procedure developed by Henry is based on two steps: (i) an 

approximation of the solution by using a Fourier series representation with a certain truncation 

order of the coefficients and (ii) resolution of a strongly non-linear algebraic system to calculate 

these coefficients. Since 1964 all the authors (Henry [1964] Ségol [1994], Simpson and Clement 

[2004]) who worked on the Henry problem used the same iterative technique for solving the 

obtained algebraic system. This iterative technique is based on a sequential resolution of 

nonlinear systems of flow and mass transport. With this technique, convergence problems are 

encountered when decreasing the value of molecular diffusion. In addition, the number of Fourier 
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coefficients needed to calculate (and therefore the size of the nonlinear system to solve) increases 

significantly when the diffusion decreases. To overcome these difficulties, a new procedure for 

calculating the semi-analytical solution of the Henry problem is developed in this thesis. This 

procedure consists of solving simultaneously the two systems of flow and transport by using the 

Levenberg-Marquardt algorithm [Levenberg 1944, Marquardt 1963]. The use of this technique 

allowed to develop, for the first time, semi-analytical solutions of saltwater intrusion in the case 

of small diffusion and in the case of a large density contrast. These semi-analytical solutions were 

compared to the numerical solutions and are therefore suited for density driven model validation 

(chapter 3). 

In the second part of this work, we studied the flow in fractured evaporitic rocks. The Stokes 

equation that governs the flow is coupled to the advection dispersion equation via the state 

equation relating the variation of the density to mass fraction. A numerical code was developed to 

solve the nonlinear system using advanced numerical methods (MPFA-CR-DG). In order to 

validate this new model a semi-analytical solution for a density Stokes flow is developed in this 

thesis. This solution uses the same technique used for the Henry problem. Substituting Darcy's 

equation by the Stokes equation in the Fourier-Galerkin method, we built a new nonlinear 

algebraic system of equations. This system is more difficult to solve than the previous one 

because of the high magnitude of the free flow velocities. Again, the Levenberg-Marquardt 

algorithm is used to calculate the coefficients of the Fourier series of the semi-analytical solution. 

This new semi-analytical solution could then be used to validate density driven flow for free 

fluids (chapter 4). 

The final part of this work is devoted to the transport problem with dissolution of rock salt.  

In a first step of the dissolution study, we are interested in simulating salt dissolution within 

fractures. The numerical model takes into account the density driven Stokes flow and the 

dissolution of the fracture walls. A dynamic mesh algorithm is developed to track the evolution 

of these walls over the time. A consistent dissolution profile is obtained when comparing the 

numerical results with the experimental results for a simple fracture with reactive dissolution 

walls (chapter 5). 

Finally, and going to field scale, several observations and studies have been conducted on the salt 

dissolution study and the rate of subsidence [Aegerter & Bosshardt, 1999, Laubscher, 1982 

Spottke et al. 2005, Zechner et al. 2011]. The starting point was the results of Zechner et al. 
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[2011] on a 2D cross section within the Muttenz-Pratteln area. These authors revealed that the 

dissolution rate is very sensitive to the structure or dip of the halite formation. Therefore, more 

concern was given in this thesis to the structure and tectonics of the aquifers and the fault zones 

among other parameters to study their influence on the salt dissolution process and therefore on 

the subsidence phenomenon. The boundary conditions used in these simulations are estimated 

based on field measurements. The effect of several parameters was studied. The study showed, 

however, that some parameters (well depth, hydraulic charge at the inlet of the aquifer) have 

negligible effects on the dissolution. Other parameters (permeability, thickness of the lower 

aquifer, fault geometry) have a considerable effect on the dissolution process (chapter 6). 
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1.1 The mathematical flow model  

1.1.1 The flow model in Porous media 

Definition 

A porous medium is a solid containing void spaces (pores), connected or unconnected, dispersed 

within it in either a regular or random manner. These so called pores may contain a variety of 

fluids such as air, water, oil etc. If the pores represent a certain portion of the bulk volume, a 

complex network can be formed which is able to carry fluids. Only these permeable and porous 

media are taken into consideration in this volume. 

Porosity  

The porosity   [-] of a material is determined by measuring the amount of void space inside, and 

determining what percentage of the total volume of the material is made up of void space. 

Porosity measurements can vary considerably, depending on the material. High or low 

porosity will impact the way in which the material performs. For a material with a total volume tV  

the porosity   is given by: 

 
p t s

t t

V V V

V V
 
   (1.1) 

where 

 pV  is the void volume (pore volume) and 

sV  is the volume of the solid material. 

Permeability and intrinsic permeability  

The intrinsic permeability k [L2] is the pertaining to the relative ease with which a porous 

medium can transmit a liquid under a hydraulic or potential gradient. It is a property of the 

porous medium and is independent of the nature of the liquid or the potential field.  

The permeability K [L.T-1] is the rate at which liquids pass through a porous medium in a 

specified direction. It is therefore the capacity for transmitting a fluid, measured by the rate at 

which a fluid of standard viscosity can move a given distance through a given interval of 

time. The permeability is a function of the intrinsic permeability k, the dynamic viscosity 

[M.L-1.T-1] and the density of the circulating fluid   [M.L-3]. The permeability K  and the 
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intrinsic permeability k are scalar coefficients if the porous medium is isotropic, or if the flow 

occurs only in one direction. Otherwise, the hydraulic conductivity matrix is given as follows: 

 
xx xy xz

yx yy yz

zx zy zz

K K K

K K K

K K K

 
   
  

K  (1.2) 

with ij
ij

k g
K




 , where g  [L.T-2]  is the gravity acceleration. 

Governing equations 

The flow equation in a saturated porous media is described by a system of equations based on 

Darcy’s law and the mass conservation equation or the continuity equation. In porous media, 

Darcy’s law is considered as the analogous of the momentum conservation equation of the classic 

fluid dynamics.  

Darcy’s law 

In 1856, Darcy established empirically that the flux of water Q [L3.T-1] through a permeable 

formation with a section A [L2] and conductivity K [L.T-1] is proportional to the charge 

difference 1 2H H H    [L], and is inversely proportional to the distance L [L] separating two 

points of charge 1 2H and H . Darcy’s law could be then written in the following form: 

 1 2H HQ
K

A L


  (1.3) 

 

Following [Bear 1979], the filtration velocity or Darcy’s velocity could be written in terms of 

pressure gradient and gravity acceleration as follows: 

  p g z


    
k

q  (1.4) 

where   

q  : Darcy’s velocity [L.T-1]; 

k  : The intrinsic permeability tensor of the medium [L2];  

p  : The pressure [M.L-1.T-2]; 

z   : The depth [L]. 
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The fluid velocity V  [L.T-1] could be deduced from the Darcy’s velocity using the following 

equation: 

 



q

V  (1.5) 

The equivalent freshwater head h [L] is given in the following form: 

 
0

p
h z

g
   (1.6) 

Using (1.6) and (1.4) the Darcy’s equation could be written in function of the freshwater head as 

follows: 

 0

0

h z
 


 
     

 
q K  (1.7) 

where K  [L.T-1] is the hydraulic conductivity tensor, and 0  [M.L-3] is the freshwater density. 

If the density is considered as constant, equation (1.7) reduces to: 

 h  q K  (1.8) 

Continuity equation 

The continuity equation or the mass balance equation shows the principle of mass conservation of 

the fluid. In a finite elementary volume (FEV), the amount of injected (or displaced) fluid should 

be equal to the sum of the mass variation within an interval of time and the mass flux passing 

through the volume. This could be given by the following equation [Bear 1979]: 

 
   . ps psf

t


 


 


q  (1.9) 

Assuming that the porosity is a function of the pressure, and the density is a function of the 

pressure and the solute mass fraction (at a constant temperature), the first term in equation (1.9) 

could be written in the following form: 

   
  p C

t t t p p t C t

         
        

             
 (1.10) 

Using the definitions of the porous matrix compressibility coefficient   and the fluid 

compressibility coefficient   as given by Bear [Bear 1979]: 

 
1 1

,
1 p p

  
 
 

 
  

 (1.11) 

Equation (1.10) becomes: 
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  p C

S
t t C t

  
   

 
   

 (1.12) 

with 

psf   [L3.T-1] is the sink/source term;  

ps  [M.L-3] is the sink/source density; 

C    [Mass solute/Mass fluid] is the solute mass fraction;  

S    [M-1.L.T2] is the specific pressure storativity for a rigid solid matrix and it’s given as follows: 

 (1 )S       (1.13) 

The continuity equation (1.9) could be then written in the following form: 

  . ps ps

p C
S f

t C t

     
  

  
q  (1.14) 

Approximations 

Referring to [Ackerer and Younes 2008], two approximations could be used with the mass 

balance equation.  

 The Oberbeck–Boussinesq approximation: where density variations are neglected in the 

fluid mass balance: 

 
. psf

t


 


q  

(1.15) 

 The density variation in the fluid flow direction is neglected, and the fluid mass 

conservation equation (1.9) becomes: 

 
 

. ps psf
t


 


  


q  (1.16) 

As stated by [Kolditz et al 1998, Johannsen et al 2002, Ackerer and Younes 2008] Boussinesq 

assumption may introduce errors and should be avoided. The assumption stated by Bear [Bear 

1979] consists in neglecting . q , which represents the density variations in the flow direction. 

This approximation has been found efficient without particular loss of accuracy. Hence, the 

continuity equation could be written in the following form: 

 . ps ps

p C
S f

t C t

     
   

  
q  (1.17) 

Using (1.6) we get: 
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 .s ps ps

h C
S f

t C t

     
   

  
q  (1.18) 

where sS gS  is the specific mass storativity related to head changes [L-1]. 

Boundary conditions 

Three main types of boundary conditions are used when studying the fluid flow in porous media, 

and they are stated as follows: 

Dirichlet conditions 

In this case the hydraulic charge is imposed at one or different sides of the domain. 

    , ,Dh x t h x t  (1.19) 

where  ,Dh x t is a known function. 

Neumann conditions 

This type of boundary conditions consists of imposing a normal flux on one or different sides of 

the domain. 

  . ,Nh
q x t


  


q η K

η
 (1.20) 

where η  is the unit normal vector, and  ,Nq x t is a known flux value. 

Cauchy or Fourier conditions 

These are mixed conditions of charge and flow. In certain cases, the flux is described as a 

function of the charge, as follows: 

    . , ,F Fh
g x t h f x t


   


q η K

η
 (1.21) 

where  ,Fg x t and  ,Ff x t  are known quantities.  

1.1.2 The free flow model 

Definition  

Fluid flow through channels, cavities and fractures are referred to free fluid or free flow. Single-

phase steady incompressible flow through a free flow media is governed by the Navier-Stokes 

equation: 
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   2. p      u u u g  (1.22) 

and the continuity equation: 

 0. u  (1.23) 

 

where u  [L.T-1] is the velocity vector, and  [M.L-1.T-1] is the dynamic viscosity. 

Governing equations 

In the treated cases within this thesis, we assume that the flow is sufficiently slow to consider the 

inertial forces in the flow field (the first nonlinear term in equation (1.22)) negligibly small 

compared with the viscous and pressure forces. Therefore, in this case, the free-flow is governed 

by the following Stokes equations [Happel and Brenner 1965]: 

   2u gp       (1.24) 

   0. u  (1.25) 

Boundary conditions 

Referring to [Gresho and Sani 1987, Conca et al. 1994, 1995, Jäger and Mikelić 2001] three types 

of boundary conditions are used in Stokes flow: 

Imposed velocity 

In this type, the vertical and/or the horizontal velocities are imposed at one or different sides of 

the domain. 

 impu=u  (1.26) 

where impu  is a known velocity vector. 

Free boundary  

Known as free outflow boundary condition, and is given by the following equation: 

   0p   u η η
 

(1.27) 

Imposed pressure 

The pressure p  is prescribed at the boundary. Note that in this case, we set also the velocity 

components in the tangential direction to zero on the same boundary. This condition is named 

Normal flow/Pressure or straight-out boundary condition. 
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0

imp

t

p p

.


u η  

(1.28) 

where tη is the unit tangential vector along the side where the pressure is imposed. 

1.2 The transport model 

Definition 

When water flows, it could transport different kinds of species or solutes, in a dissolute form. At 

this end, different physical and chemical phenomena could occur in the transport process of these 

solutes. The physical mechanisms within the transport are the advection, the molecular diffusion 

and the kinematic dispersion. For the moment, we consider that there’s no reaction in the 

transport process, and therefore we show at first the transport equation with no chemical 

reactions.   

Governing equations 

Advection  

The advection (or convection) corresponds to the migration of solutes during displacement of 

water. This is the phenomenon by which the contaminant moves with the movement of the water 

which could be governed by Darcy or Stokes law. The average displacement of the contaminant 

by advection is directly proportional to the average flow velocity of the water. When the solute 

does not react with the environment, the transfer rate of the solute is that of the fluid that moves. 

The advection is described by the following hyperbolic equation: 

     0
C

. C
t


 


q

 

(1.29) 

where 

C   [ML-3] is the solute concentration; 

q   [L.T-1] is the Darcy’s velocity.  

In the case of free flows, the Darcy’s velocity is simply replaced by u , and the porosity   by 

one. This is also applicable for the rest of the transport equations within this section. 

Molecular diffusion 

The molecular diffusion is a phenomenon which is independent of the velocity of the fluid as it 

occurs even in the absence of flow (velocity). It is related to the existence of a concentration 
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gradient in the fluid and is derived from the agitation of the molecules that tends to homogenize 

the solute concentration within the medium (migration of molecules from high concentration 

areas to those with low concentrations). The solute mass flow transported by molecular diffusion 

is calculated according to Fick’s law: 

 
    0

C
. C

t


  

 mD  (1.30) 

where mD [L2.T-1] is the molecular diffusion  diagonal tensor. 

Dispersion 

Dispersion is the transport phenomenon resulting from the combined action of these two 

processes: Kinematic dispersion and molecular diffusion. The dispersion-diffusion transport 

approaches a parabolic equation type and is given by: 

 
    0

C
. C

t


  


D  (1.31) 

where 

k  mD D D is the dispersion tensor, given as follows : 

  , 2

i j
M ij L T T ij

q q
D D D D   

q
 (1.32) 

with 

kD is the kinematic dispersion tensor; 

LD  the longitudinal dispersion coefficient,  0.52 2,L L i jD with q q  q q ; 

TD  the transverse dispersion coefficient, T TD  q ; 

L  the longitudinal dispersivity in the direction of flow; 

T  the transverse dispersivity normal to the direction of flow; 

ij  the Kronecker delta. 

Advection-dispersion equation 

The mathematical model that describes the transport of a solute with no interaction with the solid 

matrix is given by the advection-dispersion equation as follows: 

 
      0

C
. C . C

t


 


   


q D  (1.33) 
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For free flows, the transport equation becomes: 

 
      0

C
. C . D C

t


 


   


u  (1.34) 

where u  is the flow velocity, and D  is the diffusion coefficient. 

Boundary conditions 

The associated boundary conditions could be: 

 Dirichlet type (imposed concentration); 

 Neumann type (imposed concentration gradient); 

 Cauchy type (flux related to concentration). 

1.3 Dissolution 

In case of dissolution, the transport equation is written in the following form: 

  
      s

C
. C . C Q

t


 


   


q D  (1.35) 

For free flows, the transport equation becomes: 

 
      s

C
. C . D C Q

t


 


   


u  (1.36) 

where sQ  is the dissolution flux, given as follows: 

  s satQ C C   (1.37) 

where  [mol.L-2.T-1] is the mass transfer coefficient, and satC  is the saturation concentration. 

1.4 Coupling flow and transport models 

Flow and transport equations are coupled by state equations linking density and viscosity to mass 

fraction. We use a linear model for density and a power formulation for viscosity: 

   1
0 1 0 0

0

,

C

C and
     


 
     

 
 (1.38) 

where 1  and 1  are respectively the density and viscosity of the saturated (high density) fluid, 

0 and 0 are the density and viscosity of the displaced (less dense) fluid. Note that different state 

equations may be used for density and viscosity [Dierch and Kolditz 2002]. 
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The following diagram shows the coupling between the transport and the flow equations: 
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g
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2.1 Flow discretization 

2.1.1 Flow in porous media 

Introduction 
Different methods are used to solve the flow problem. Among them we cite the most used which 

are: Finite Volumes (FV), Finite Differences (FD) and Finite Elements (FE). Detailed studies on 

the application of conventional techniques for solving problems of hydrogeology are presented 

by Remson et al. [1971] and Wang and Anderson [1982]. Each of these methods has its own 

advantages and disadvantages. Since the flow equation should be coupled with the transport 

equation (See Chapters 3, 4) the numerical flow model should provide accurate velocity field 

with continuous fluxes between adjacent elements even for highly heterogeneous domains with 

unstructured meshes. 

The FD and FV Methods allow the calculation of an average head per element. They give an 

exact mass balance at each element. The discretization of the flow equation with FDs is easy to 

develop but it can only be applied on rectangular (2D) or cubic (3D) meshes. Similarly, the FV 

method on triangular meshes requires triangles satisfying the Delaunay criterion (no point of a 

triangle is inside the circumcircle of any other triangle of the domain). This criterion cannot be 

easily applied on tetrahedrons. In addition, FV and FD approaches are not suitable for solving 

problems where the hydraulic conductivity K is represented by a full discontinuous tensor. 

Unlike FD and FV, the FE method allows the discretization of domains with complex geometry 

and full parameter tensor. However, continuity of the normal component of the velocity between 

adjacent elements in not guaranteed with the standard FE method. To overcome these difficulties, 

we use the mixed finite element method for the discretization of flow in porous media. 

The mixed finite element method 
The basic idea of the mixed finite element method is to approach simultaneously the hydraulic 

head H  and the flow velocity q . This approach has been used for the first time by Meissner 

[1973], and later by Raviart and Thomass [1977]. The MFE method provides exact mass balance 

for each element and preserves the same order of convergence for the hydraulic head H and the 

flow velocity q . On the other side, it’s a well-adapted method for heterogeneous domains, 

discretized with irregular meshes. In the following, we recall the main stages for the 

discretization of the flow equation using the MFE method.  
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The mixed finite element approach consists in writing the mass balance equation and Darcy’s 

law separately in a variational form but with different basis functions. The mass balance 

equation in (1.18) is discretized in a finite volume way and a fully implicit scheme which leads 

to [Ackerer and Younes 2008, Younes et al. 2009]: 

 
1

1 1n n
psn

s i ps
i

h h C
S E Q E f E

t C t

  
   




  
   (2.1) 

where E  is the area of element E. With MFEs, the velocity inside each triangle E  is 

approximated with linear vectorial basis functions: 

 
3

1

E E
j j

j

Q


 q w  (2.2) 

where E
jQ  is the flux across the edge j  of the element E  and E

jw  are the Raviart-Thomas basis 

functions given by  

 
1

2
E ,iE

j

E ,i

x - x

E z - z

 
   

 
w  (2.3) 

and verify 

 
1

0j

i j

E

if i j

if j i

  


 w n  (2.4) 

 

where E ,ix  and E ,iz  are the coordinates of the vertex i of E (opposed to the edge i), jn  is the unit 

normal outwardly oriented vector and Ej the edge j  of E . 

Darcy’s law (1.7) could be written in the following form: 

 
 0-1 0

0

g
h z

 
 

 
     

 
k q  (2.5) 

where k  is the matrix of the intrinsic permeabilities with  2
det( ) 0x z xzk k k  k . 

Equation (2.5) is written in a variational form which leads to: 

 

1 0
0 0

0

0 0

1
( ). . .

. .

i i i

E E E

E
i i

E EE E

g h g z

g
h g z
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  

  
 

 
    


    
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 

k q w w w

w w

 (2.6) 
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Using Green’s formula and (2.4), we obtain,  

 

   

1 0 0

0 0

( ). . .E
i i i E i i E

E EE E E E E

E
E Ei E Ei

E E

g
h h g z z

g
h Th g z z

  
 

  
 


 

 

   
        

   


   

    k q w w w n w w n

 (2.7) 

where Eh  is the average head in element E, Ez  the z-coordinate of the centre of E , EiTh  the 

average head on edge i of element E, Eiz  the z-coordinate of the midpoint of edge i and E  

represents the three element edges.  

Combining (2.2) and (2.7) leads to the following matrix form: 

 
   3

0 00

1 0 0

E EE E E E
ij j E E i i

j E

g
B Q h z Th z

   
  

     
       

     
  (2.8) 

where: 

   1T
ij i j

E

B
 w k w  (2.9) 

If we define ijr  as the edge vector from node i  toward node j , and ijl  by : 

   1T
ij ij ijl


 r k r  (2.10) 

ijl  verify the following properties:  

 12 T
ij jk ik jk kil l l    r k r ,  i, j ,k all different  (2.11) 

which leads to: 

 

12 13 23 12 13 23 12 13 23

12 13 23 12 13 23 12 13 23

12 13 23 12 13 23 12 13 23

3 3 3 3
1

3 3 3 3
48

3 3 3 3

l l l l l l l l l

l l l l l l l l l
E

l l l l l l l l l

       
 
        
 
        

B  (2.12) 

One notices that, 

  
3

12 13 23
1

1

48ij
j

B l l l L
E

     (2.13) 

Despite the advantages of MFEs, the solution obtained is not unconditionally stable when using 

small time steps. To overcome this problem, Younes et al. [2006] developed a mass lumping 

procedure for the MFEs. The objective of this procedure is to avoid over and undershoots of the 

standard MFE method when the time step is too small. Small time steps may be necessary to 
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reach convergence for highly nonlinear problems. The main idea of the approach is to distribute 

sink/source term and accumulation term for each element over its edges. Due to this re-

distribution, the new fluxes E
iQ at the element level are defined by: 

 0E
i

i

Q   (2.14) 

Using (2.8) and 
3

1

1

3E Ej
j

z z


  , leads to  

 
3

1

1

3E Ej
j

h Th


   (2.15) 

 
Inserting (2.15) into (2.8) the new flux through edge i is then: 

 0 0

0

E E
i ij j ij Ej

j jE

g
Q N Th N z

  
 

 
  

 
    (2.16) 

with 
 

 

T 1 T 1 T 1
23 23 23 31 23 12

T 1 T 1 T 1
31 23 31 31 31 12

T 1 T 1 T 1
12 23 12 31 12 12

det( )

E
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  

 
 
  
 
 
 

r k r r k r r k r
k

N r k r r k r r k r

r k r r k r r k r

 (2.17) 

The new flux E
iQ  corresponds to the actual flux under steady state conditions and without 

sink/source terms. The second step in the mass lumping procedure consists in writing continuity 

between elements E and E’ having common edge i. The continuity is written including the 

‘equivalent steady state’ new fluxes E
iQ , the storage and sink/source terms distributed over each 

element edge, which leads to: 

 

1

1

'

3

'
0

3

n n
ps i i

i ps

E

n n
ps i i

i ps s

E

E Th ThC
Q f S

C t t

E Th ThC
Q f S

C t t

   
   

   
   





  
       

  
       

  (2.18) 

where the first and the second terms in (2.18) represent the characteristics restricted to element E 

(resp. E’). The fluxes E
iQ  are estimated at time n+1, which leads to the following system 

equation: 
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  (2.19)

Equation (2.19) represents the discretized flow equations (1.7) and (1.18). Because the simplified 

fluid mass balance (1.16) is used, the only time varying coefficients in the flow system matrix 

are the viscosity and the time step length. If it can be assumed that the viscosity remains constant 

and as long as the time step length is not modified, the system matrix does not change. In the 

standard approach, the fluid mass balance equation (1.9) is used and the flow matrix has to be 

built for each iteration. When the flow matrix is not re-build, direct solvers are very appropriate 

and the system matrix has to be factorized once.  

2.1.2 Discretization of free flow 

Introduction 
Different methods can be used for the discretization of the Stokes equation [Langtangen and 

Mardal 2002]. Boffi et al. [2008] detailed the properties of the finite elements used for the Stokes 

problem, going from the cheapest element (Mini element, Me) to the most expensive one 

(Taylor-Hood, TH). Some of the presented elements do not satisfy the mass conservation 

properties. On the other side and due to stability conditions the system (1.24)-(1.25) cannot be 

discretized with the same order for pressure and velocity approximations. Otherwise some sort of 

stabilization is added to the mixed formulation [Li and Chen 2008]. To avoid these difficulties, 

we use the non-conforming Crouzeix-Raviart (CR) elements for the velocity approximation in 

combination with constant pressure per element, since they satisfy the Babuska-Brezzi condition 

[Brezzi and Fortin 1991, Girault and Raviart 1986, Gresho and Sani 1998]. This condition is 

central for ensuring that the final linear system to solve is non-singular [Langtangen 2002]. 

Moreover, the non-conforming Crouzeix-Raviart (CR) element has local mass conservation 

properties [Bruman and Hansbo 2004] and leads to a relatively small number of unknowns due to 

the low-order shape functions. The CR element is used in many problems such as the Darcy-
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Stokes problem [Bruman and Hansbo 2005], the Stokes problem [Crouzeix and Raviart 1973] 

and the elasticity problem [Hansbo and Larson 2002, 2003]. The CR element gives a simple 

stable optimal order approximation of the Stokes equations [Arnold 1993]. In the next section, we 

recall the main stages for the discretization of the Stokes equation with the CR triangular 

element. 

The non-conforming Crouzeix-Raviart element 

With the non-conforming finite element method, the degrees of freedom for the velocity vector u  

are the two component  i iu ,v  of u  at the midedge i  facing the node i  (Figure 2). Inside the 

element E , we assume a linear variation of the velocity components  E Eu ,v  

 E E E E E E
E i i j j k k E i i j j k ku u u u , v v v v              (2.20) 

 

 

Figure 2: Crouziex-Raviart Finite element. 

 

For an interior edge, the linear interpolation function i  for the velocity is nonzero only on the 

two adjacent elements E  and E  (see Figure 3) with 

      1 1

2
E
i k j j k j k j i k i k j i j i kx z z y x x z x z x z x z x z x z x

E
             

  (2.21) 

where E  is the area of the element E , ix  and iz  are the coordinates of the vertex i  of E . The 

interpolation function E
i  equals 1 on the midedge i  and zero on the midedges j  and k  of E   

(Figure 3). 

 

1

P

2

3

u3

v3

u1

v1

u2

v2



 Numerical models for density driven flow in porous and free flow domains    

    
  

28

 

Figure 3: the linear interpolation function for the velocity field. 

The variational formulation of the Stokes equation (1.24) using the test function i  over the 

domain   writes: 

  u Ι i i. p g z   
 

        (2.22) 

where u  is the gradient of the velocity vector u  and Ι  the 2 2  identity matrix. 

Using Green’s formula, we get  

    u Ι η u Ιi i ip . p g z     
  

            (2.23) 

The first integral contains boundary conditions. It vanishes in case of free-flow boundary or in 

case of an interior edge i . In this last case, equation (2.23) becomes 

    u  Ι u  ΙE E' E E
E E i E E i i i

E E E E

. p . p g z g z        
 

 

                 (2.24) 

 

Using (2.20) and (2.21), we obtain  
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



  (2.25) 

and 
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where i
j kx x x    and i

k jz z z   , Ez  and iz  are respectively the z-coordinate of the centre 

of E  and of the midpoint of edge i , E  and Ep  are respectively the mean density and pressure 

over E . The finite volume formulation of the continuity equation (1.25) over the element E  

writes: 

 0u
E

.    (2.27) 

using (2.20), it becomes 

  
3

1

0j j
j j

j

z u x v


      (2.28) 

The final system to solve for the flow is obtained by writing equation (2.25) for each edge (two 

equations per edge) and equation (2.28) for each element.  

2.2 Transport discretization 

Introduction 
For the transport equation, standard numerical methods, such as standard finite elements or finite 

volumes, are known to generate solution with numerical diffusion and/or non-physical 

oscillations when advection is dominant. These problems can be avoided with the discontinuous 

Galerkin method (DG) [Siegel et al. 1997]. Indeed, DG leads to a high-resolution scheme for 

advection that has been proven to be clearly superior to the already existing finite element 

methods [Arnold et al. 2002]. 

In this manuscript, the explicit DG method, where fluxes are upwinded using a Riemann solver is 

used to solve the advection equation and combined with the symmetric Multipoint Flux 

Approximation (MPFA) method for the diffusion equation. In the next section we show the 

discretization of the transport equation in free flow media. The discretization is quite the same in  

porous media, with some minor modifications (Darcy’s velocity, porosity, dispersion tensor). 

The DG-MPFA discretization 
The transport equation (1.35) with no sink/source terms is written in the following mixed form 

[Younes et al. 2009, 2011]: 

 
  0u u

u

D

D

C
. C .

t
D C




    

   

  (2.29) 
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The dispersive flux uD  is assumed to vary linearly inside the element E , therefore, 

 
1

u E
D D, Ei

i

. Q
E      (2.30) 

where u ηE
D, Ei D Ei

Ei

Q . 


   is the dispersive flux across the edge Ei  of E . 

We use the P1 DG method where the approximate solution ( , )hC tx  is expressed with linear basis 

functions E
i  on each element E  as follows: 

      
3

1

, | E E
h E i i

i

C t C t 


x x   (2.31) 

where  E
iC t  are the three unknown coefficients corresponding to the degrees of freedom which 

are the average value of the mass fraction defined at the triangle centroid  E Ex ,z  and its 

deviations in each space direction [Cockburn et al. 1989] with the corresponding interpolation 

functions:  

      1 2 3, 1, , ,  , .  E E E
E Ex z x z x x x z z z         (2.32) 

The variational formulation of (2.29) over the element E  using E
i  as test functions leads to: 
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u u

                                                   u.η

  (2.33) 

This could be written in the following matrix form: 

    
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  (2.34) 

with,  
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where Ej  is the adjacent element to E such that Ej  is the common edge of E  and Ej  and 

.E
E Ej

E

Q 


 



uη  the water flux across Ej . The upwind parameter E
E   is defined by 

 
1 . 0

0 . 0
EjE

Ej
Ej

if

if
 





  

uη

uη
  (2.35) 

An explicit time discretization is used for the equation (2.34). An efficient geometric slope 

limiter is used to avoid unphysical oscillations near sharp fronts [Younes et al. 2010b]. 

The dispersive fluxes ,
E
D jQ  across edges are approximated using the MPFA method. The basic 

idea of this method is to divide each triangle into 3 sub-cells as in Figure 4. 

Inside the sub-cell  1 2O,F ,G,F  formed by the corner O , the centre G  and the midpoint edges 

1F  and 2F , we assume linear variation of the mass fraction between 1
EC , 1TC  and 2TC , the mass 

fractions respectively at G  and the two continuity points 1f  and 2f . The symmetry of the MPFA 

is achieved when the continuity points are localized at 1 2

1 2

2

3

Of Of

OF OF
  . In this case  1 2O, f ,G, f  

is a parallelogram. Therefore, half-edge fluxes
1 2

1 2and
F F

O O

O O

Q D C Q D C
 

       
 

  , taken 

positive for outflow simplifies to [Younes and Fontaine 2008b]: 
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      (2.36) 

with 3E D E  . 

 

 
Figure 4: Triangle splitting into three sub-cells and linear concentration approximation on the sub-cell. 
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This system is written for all sub-cells sharing the vertex O  which create an interaction region. 

Then by writing continuity of diffusive fluxes across half-edges and continuity of mass fraction at 

continuity points, we obtain a local system     A TC B C . This local system is solved to 

obtain the mass fraction at the continuity points ( iTC ) as function of mass fraction at all elements 

sharing the vertexO . The obtained relation is then substituted into (2.36) to obtain half-edge 

fluxes explicitly as a weighted sum of the cell mass fraction of the interaction volume. Finally, 

the summation of these fluxes is written using an implicit time discretization and substituted into 

the equation (2.34).  

2.3 Dissolution 
The DG method is also used for the discretization of the dissolution equation. Hence, multiplying 

the dissolution equation (1.37) by the test function E
i  defined in (2.32) we get: 

 
1( ) (1 )E E n E n E

E i E i E i E i

E E E E

sat satC C C C C                   (2.37) 

where nC  and 1nC   are the concentrations at the time step n and 1n respectively. We use a  

time discretization where   is such that: 

 
0,

1,

for a full explicit scheme

for a full implicit scheme



 


  (2.38) 

The first right side term in (2.37) is treated as a constant quantity and is therefore added to the 
right hand side term of the global transport equation. The last two terms in (2.37) are added to 
equation (2.34). 
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[1] The Henry semianalytical solution for salt water intrusion is widely used for
benchmarking density dependent flow codes. The method consists of replacing the stream
function and the concentration by a double set of Fourier series. These series are truncated
at a given order and the remaining coefficients are calculated by solving a highly nonlinear
system of algebraic equations. The solution of this system is often subject to substantial
numerical difficulties. Previous works succeeded to provide semianalytical solutions only
for saltwater intrusion problems with unrealistic large amount of dispersion. In this work,
different truncations for the Fourier series are tested and the Levenberg-Marquardt
algorithm, which has a quadratic rate of convergence, is applied to calculate their
coefficients. The obtained results provide semianalytical solutions for the Henry problem in
the case of reduced dispersion coefficients and for two freshwater recharge values: the
initial value suggested by Henry (1964) and the reduced one suggested by Simpson and
Clement (2004). The developed semianalytical solutions are compared against numerical
results obtained by using the method of lines and advanced spatial discretization schemes.
The obtained semianalytical solutions improve considerably the worthiness of the Henry
problem and therefore, they are more suitable for testing density dependent flow codes.

Citation: Zidane, A., A. Younes, P. Huggenberger, and E. Zechner (2012), The Henry semianalytical solution for saltwater intrusion

with reduced dispersion, Water Resour. Res., 48, W06533, doi:10.1029/2011WR011157.

1. Introduction
[2] Saltwater intrusion into unconfined coastal aquifers

has been largely investigated using laboratory experiments
[e.g., Goswami and Clement, 2007; Thorenz et al., 2002]
and/or numerical simulations [e.g., Park and Aral, 2008].
However, the existence of a semianalytical solution made
the synthetic Henry saltwater intrusion problem [Henry,
1964] as one of the most widely tests used for verification
of density driven flow codes. The problem describes steady
state saltwater intrusion through an isotropic confined aqui-
fer. Freshwater enters the idealized rectangular aquifer
(Figure 1 ) with a constant flux rate from the inland (left)
boundary. A hydrostatic pressure is prescribed along the
coast (right) boundary where the concentration corresponds
to seawater concentration. The top and the bottom of the do-
main are impermeable boundaries. The saltwater intrudes
from the right until an equilibrium with the injected fresh-
water is reached. The semianalytical solution of Henry
[Henry, 1964] provides the steady state isochlors positions
by expanding the salt concentration and the stream function

in double Fourier series. Henry [1964] used only 78 terms
in these series and calculated the coefficients using a Gauss
elimination procedure with full pivoting. Pinder and
Cooper [1970] were the first to simulate the Henry problem
using a transient numerical code with two different initial
conditions to ensure convergence to the steady state solu-
tion. The obtained results as well as those obtained later by
[Segol et al., 1975; Frind, 1982; Huyakorn et al., 1987]
were not in agreement with Henry’s solution. In 1987, Voss
and Souza [1987] showed that the discrepancies in the pub-
lished papers were due to the use of different dispersion
coefficients in numerical and semianalytical calculations.
However, solving this problem did not lead to a satisfactory
matching. Many possible reasons for the discrepancies have
been invoked in the literature: for Huyakorn et al. [1987],
the discrepancies may be due to the discretization errors
within the numerical codes and/or to the use of different
boundary conditions at the seaward side between semiana-
lytical and numerical codes. Indeed, the sea boundary con-
dition used in the work of Frind [1982], Huyakorn et al.
[1987], and Voss and Souza [1987] was not consistent with
the original Henry problem. Croucher and O’Sullivan
[1995] presented a grid convergence study to evaluate the
truncation error due to the spatial discretization. Kolditz
et al. [1998] claimed that the discrepancies may be due to
the inaccuracy of the Boussinesq approximation assumed
by Henry.

[3] The most important reason for discrepancies has
been invoked by Voss and Souza [1987] who claimed that,
due to the lack of computing resources, Henry’s truncation
may not contain enough terms in the Fourier series to
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represent accurately the solution. In 1994, Segol [1994]
revaluated the semianalytical solution of Henry by using a
new truncation of the Fourier series with 138 terms instead of
the 78 used by Henry. The revaluated solution shows a good
agreement with the numerical results [e.g., Oldenbourg and
Prues, 1995; Herbert et al., 1988; Ackerer et al., 1999; Buès
and Oltéan, 2000; Abarca et al., 2007, Younes et al., 2009].

[4] In 2003, Simpson and Clement [2003] performed a
coupled versus uncoupled analysis to show that the true
profile in the Henry problem is largely determined by
boundary forcing and much less by the density-dependent
effects. In the uncoupled flow, the solute transport acts as a
tracer and has no influence on the flow equation. To
improve the worthiness of the Henry problem, they sug-
gested a decreasing of the fresh water recharge by half
[Simpson and Clement, 2004]. The semianalytical solution
is revaluated in this case by using 203 terms in the Fourier
series [Simpson and Clement, 2004].

[5] Henry [1964], Segol [1994], and Simpson and
Clement [2004] used the same iterative technique to calcu-
late the coefficients of the Fourier series. They solved the
nonlinear system as a system of linear equations where the
expansion coefficients are considered as unknowns. The
nonlinear right hand side is treated as a known quantity,
updated iteratively until convergence. As stated by Segol
[1994], this technique encountered substantial convergence
difficulties for small values of the dispersion coefficient.
Note that all published works succeeded to develop semian-
alytical solutions only when an unrealistically large amount
of dispersion is introduced in the solution. This deficiency
was pointed out by Kolditz et al. [1998] and by Voss and
Souza [1987, p. 1857], who stated that due to the large
amount of dispersion, ‘‘this test does not check whether a
model is consistent or whether it accurately represents den-
sity driven flows, nor does it check whether a model can rep-
resent field situation with relatively narrow transition zones.’’

[6] In this work, we calculate the coefficients of the Fou-
rier series by using the Levenberg-Marquardt algorithm,
which has a quadratic rate of convergence, to solve the
nonlinear algebraic system of equations. Different trunca-
tions of the infinite Fourier series are tested. Semianalytical
solutions for the Henry problem are developed in the case
of reduced dispersion coefficients and for two freshwater
recharge values: the initial value suggested by Henry and
the reduced one suggested by Simpson and Clement [2004].
The semianalytical solutions are compared against numeri-
cal results obtained using a robust numerical model based
on the method of lines and advanced spatial discretization
schemes [Younes et al., 2009].

2. Semianalytical Method
[7] To obtain the semianalytical solution, Henry [1964]

used a constant dispersion coefficient and assumed the
Boussinesq approximation valid which implies the exis-
tence of stream function. Using these assumptions, the
steady state flow and transport can be written in the follow-
ing nondimensional form [Henry, 1964, Segol, 1994]:

a
@2 
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�
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@y
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þ 1

�
; (2)

where  is the dimensionless stream function, C is the
dimensionless concentration, � ¼ L

d is the aspect ratio of the
domain with L and d, which are the length and the depth of
the aquifer, respectively.

[8] The nondimensional parameters a and b in the previ-
ous equations are given by

a ¼ Q

k1d
and b ¼ D

Q
; (3)

where Q [L2T�1] is the freshwater recharge, D [L2T�1] is

the coefficient of dispersion, k1 ¼ K �s��0

�0

� �
with K [LT�1]

the saturated hydraulic conductivity, �0 [ML�3] and �s
[ML�3] are the freshwater and saltwater densities,
respectively.

[9] The solution technique, known as Galerkin or Fourier-
Galerkin solution [Forbes, 1988], is obtained by replacing
the stream function and the salt concentration by double
Fourier series of the form:

 ¼
X1
m¼1

X1
n¼0

Am;n sinðm�yÞ cos n�
x

�

� �
; (4)

C ¼
X1
r¼0

X1
s¼1

Br;s cosðr�yÞ sin s�
x

�

� �
: (5)

[10] Substituting these relations into equations (1) and
(2), multiplying equation (1) by 4 sinðg�yÞ cosðh� x

�Þ and
equation (2) by 4 cosðg�yÞ sinðh� x

�Þ, and integrating over
the rectangular domain gives an infinite set of algebraic
equations for Ag;h and Bg;h namely,

"2a�2Ag;hðg2 þ h2Þ� ¼
X1
r¼0

Br;hhNðg; rÞ þ 4

�
Wðg; hÞ; (6)

"1b�2Bg;h g2 þ h2

�2

� �
� ¼

X1
n¼0

Ag;ngNðh; nÞ þ "1

X1
s¼1

Bg;ssNðh; sÞ

þ Quad þ 4

�
Wðh; gÞ:

(7)

[11] The functions "1; "2; N ; W and Quad are detailed
in Appendix A.

Figure 1. Domain and boundary conditions for the Henry
saltwater intrusion problem.
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[12] Segol [1994, p. 272] wrote about how Henry [1964]
described his solution of the set of algebraic equations (6)
and (7): ‘‘An iterative solution of equation (6) was used in
which the B0;h were computed by several sub iterations and
vice versa. The subiterative cycle consisted of recomputing
the values of the quadratic terms (Quad) using the revised
values of Bg;h (g > 0) while continuing to hold the B0;h

constant and then using these values to recompute the Bg;h

(g > 0).’’
[13] This procedure for computing the coefficients of the

Fourier series was also used by Segol [1994] and Simpson
and Clement [2004]. The convergence rate of the method
depends upon the values of the parameters a and b. To
overcome the convergence difficulties, Segol [1994] and
Simpson and Clement [2004] used the solution with the pa-
rameters a ¼ 0:263 and b ¼ 0:2 as an initial guess for the
other parameterizations. Then, the parameters a and b, are
reduced with small stepwise changes until the desired solu-
tion is obtained. Segol [1994] stated that the value b ¼ 0:1
was the lower limit of the range for which a stable and con-
vergent solution can be obtained.

3. New Semianalytical Strategy and Numerical
Code

[14] In the first part of this section, we describe the new
strategy used for solving the nonlinear system of algebraic
equations to calculate the Fourier series coefficients of the
semianalytical solution. In the second part, we briefly describe
the numerical code used to compare numerical and semiana-
lytical results.

3.1. Semianalytical Strategy

[15] The procedure used by Henry [1964], Segol [1994]
and Simpson and Clement [2004] encounters substantial
numerical difficulties because of its low convergence rate
when lowering the values of the parameters a and/or b.
Indeed, Segol [1994] stated that when lowering the value of
b, more coefficients are required to obtain a stable solution
and the convergence of the scheme becomes difficult. To
obtain a stable solution, Segol [1994] decreased the value
of b by considering small stepwise changes and iterating at
intermediate steps. The value b ¼ 0:1 was the lower limit
of the range for which a stable and convergent solution can
be obtained.

[16] To avoid these difficulties, we use in this work the Lev-
enberg-Marquardt algorithm [Levenberg, 1944; Marquardt,
1963], which has a quadratic rate of convergence to solve the
set of nonlinear algebraic equations [Yamashita and Fukush-
ima, 2001]. The Levenberg-Marquardt method is considered
as one of the most efficient algorithms for solving systems of
nonlinear equations. The nonlinear algebraic system of equa-
tions (6)–(7) is written in the form FðXÞ ¼ 0 where X is a
vector formed by the coefficients Ag;h and Bg;h. The algorithm
attempts to minimize the sum of the squares of the function.
The method is a combination of two minimization methods:
the gradient descent method and the Gauss-Newton method.
Far from the optimum, the Levenberg-Marquard method
behaves like a gradient descent method, whereas, it acts like
the Gauss-Newton method nearby the optimum.

[17] The Levenberg-Marquardt iterates starting from an
initial solution X0. At each iteration k, the new solution

Xkþ1 ¼ Xk þ dk is obtained from the solution of the follow-
ing linear system

�
JðXkÞT JðXkÞ þ �kI

�
dk ¼ �JðXkÞT FðXkÞ; (8)

where J is the Jacobian.
[18] Small values of the parameter �k correspond to the

Gauss-Newton update while the large ones correspond to
the gradient descent update. When the solution approaches
the minimum, the parameter �k is decreased, what makes
the algorithm tends to the Gauss-Newton method.

[19] In this study the Jacobian J is approximated numeri-
cally using finite differences and the Levenberg-Marquardt
parameter is initially fixed to �0 ¼ 0:01. During iterations,
if the new estimate is sufficiently better than the old one,
the parameter � is reduced by ten. Otherwise it is increased
by a factor of two. The tolerance is fixed to 10�12 for the
sum of the squares of the function.

3.2. Numerical Code

[20] The semianalytical results will be compared against
accurate numerical results obtained using a combination of
the method of lines and advanced spatial discretization
schemes.

[21] The flow system is written in terms of equivalent
fresh water head [Huyakorn et al., 1987]:

�S
@h

@t
þ " @�

@C

@C

@t
þ �r � q ¼ 0; (9)

q ¼ � �0g

�
k rhþ �� �0

�0

rz

� �
; (10)

where � is the fluid density [ML�3], S the specific mass
storativity related to head changes [L�1], h the equivalent
freshwater head [L], t the time [T], " the porosity [-], C the
solute mass fraction [M. salt/M. fluid], q the Darcy’s veloc-
ity [LT�1], �0 the density of the displaced fluid [ML�3], g
the gravity acceleration [LT�2], � the fluid dynamic viscos-
ity [ML�1T�1], k the permeability tensor [L2] and z the
depth [L].

[22] The solute mass conservation is written in term of
mass fraction:

@ð"�CÞ
@t

þr � ð�Cq� �DrCÞ ¼ 0: (11)

[23] For the Henry problem, the dispersion tensor is
assumed constant D ¼ D�I (I is the identity matrix) and the
density is assumed to vary linearly with respect to the mass
fraction. Due to the form of the governing equation used by
Henry, the value of the dispersion coefficient D� used in
the numerical code is equal to the value used in the semian-
alytical solution divided by porosity ðD� ¼ D="Þ.

[24] To achieve high accuracy for the spatial discretiza-
tion, each equation within the flow-transport system (9)–(11)
is modeled with a specific numerical method. The flow equa-
tion is discretized with the locally mass conservative Mixed
Finite Element method (MFE), that produces accurate and
consistent velocity field [Ackerer and Younes, 2008; Younes
et al., 2009; Younes et al., 2010]. The advection part of the
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transport equation is discretized with the Discontinuous
Galerkin (DG) method which produces accurate solution
even for problems involving sharp fronts [Siegel et al.,
1997]. Finally, the multi-point flux approximation (MPFA)
is used to discretize the dispersion equation [Younes and
Ackerer, 2008] since it is locally conservative and can treat
general irregular grids on anisotropic heterogeneous domains
[Aavatsmark, 2002; Younes and Fontaine, 2008a, 2008b].
The combination of the three spatial discretization methods
MPFA, DG and MFE, has proven to be accurate and robust
for modeling density driven flow problems [Younes and Ack-
erer, 2008; Konz et al., 2009: Zechner et al., 2011].

[25] The Differential Algebraic Solver with Precondi-
tioned Krylov (DASPK) time solver is used to solve the
MFE_DG_MPFA spatial discretization with the method of
lines. DASPK is a mature and sophisticated time integra-
tion package for large-scale Ordinary Differential Equa-
tions (ODE) or Differential Algebraic Equations (DAE)
systems. DASPK uses the Fixed Leading Coefficient Back-
ward Difference Formulas (FLCBDF). The BDF approach
works well on stiff problems and has good stability proper-
ties. DASPK solves systems of the general form:

Fðt; y; y0Þ ¼ 0: (12)

[26] Predictor and corrector polynomials are constructed
in order to estimate the truncation error. The time step
length and choice of order of integration (up to fifth order)
are adapted to minimize the computational effort while
keeping the local temporal truncation error � i small,
� i � "i ¼ "rjyij þ "a where the relative "r and absolute "a

local error tolerances are specified by the user.
[27] In this study, the Henry problem is discretized with

a uniform triangular mesh of 3200 elements (same results
were obtained with 5000 and 8000 elements).

4. Results and Discussion
[28] As stated, by Abarca et al. [2007], the drawbacks of

the Henry problem arise from the high values of the param-
eters a and b that Henry used to obtain the semianalytical
solution. Indeed, Henry chose the dimensionless parame-
ters � ¼ 2:0, a ¼ 0:263 and b ¼ 0:1. Segol [1994] stated
that the value b ¼ 0:1 was the lower limit of the range for
which a stable and convergent solution can be obtained.
Simpson and Clement [2004] proposed a semianalytical so-
lution where the parameter a is reduced by half and the pa-
rameter b is increased by a factor of 2 (� ¼ 2:0, a ¼ 0:1315
and b ¼ 0:2). In this section, the semianalytical solution for

the Henry problem is calculated using the Levenberg-
Marquardt algorithm and compared to the numerical solu-
tion for different test cases. Table 1 provides the freshwater
flux, the saltwater density and the diffusion coefficients for
each test case. Two values for the parameter a are tested:
the initial one and the halved one. The values of the param-
eter b are reduced until b ¼ 0:02 (Table 1). Different trun-
cations of the Fourier series are tested: the 78 coefficients
of Henry [1964], the 138 coefficients of Segol [1994] and
the 203 coefficients of Simpson and Clement [2004]. A new
truncation using 424 terms is introduced to calculate the
semianalytical solution in the case of small dispersion val-
ues. Two domains are used for the calculation of the semi-
analytical solution: the initial domain with an aspect ratio
� ¼ L=d ¼ 2 and a larger domain with � ¼ 3 (Table 1).
Three concentration isochlors (0.25, 0.5 and 0.75) are used
for the comparison between the semianalytical and the nu-
merical solutions. Table 2 provides the position of the three
isochlors for the new provided test cases. The transient nu-
merical simulations are performed until a long time to
ensure a steady state solution. Figure 2 shows the temporal
variation of the concentration in the element corresponding
to the intersection of the 0.25 isochlor with the base at
t ¼ 800 min for the studied test cases. The results show that
the time required to reach a steady state depends on the pa-
rameters a and b. For all test cases, 500 min of time seems
to be sufficient to obtain a steady position for the isochlors.

4.1. Case 1: The Standard Henry Problem With
a 5 0.263, b 5 0.1, and n 5 2.0

[29] This case is the standard test case solved by Henry
[1964] on an IBM 650 digital computer using 38 coeffi-
cients for the expansion of the stream function and 40 coef-
ficients for the expansion of the concentration. Segol
[1994] revaluated the semianalytical solution using an
expansion with 38 coefficients for the stream function and
100 coefficients for the concentration. Simpson and Clem-
ent [2004] calculated the solution using 103 and 100 coeffi-
cients for the expansion of the stream function and
concentration, respectively. The same iteration procedure,
including a number of subiterations, was used by all the
authors.

[30] We recalculate this standard test case with the Lev-
enberg-Marquardt algorithm using the 78 coefficients of
Henry, the 138 coefficients of Segol and the 203 coeffi-
cients of Simpson and Clement. Figure 3 compares the new
calculated isochlors and the semianalytical solution of
Segol [1994] to the numerical solution.

Table 1. Aspect Ratio, Freshwater Reacharge, Saltwater Density, Diffusion Coefficient and the Parameters ða; bÞ for the Different Test
Cases

� ¼ L
d Q ðm2 s�1Þ �s ðkg m�3Þ D ¼ "D� ðm2 s�1Þ a ¼ Q�0

Kð�s��0Þd
b ¼ D

Q

Case 1 2 6:610�5 1025 6:610�6 0.263 0.1
Case 2 2 3:310�5 1025 6:610�6 0.1315 0.2
Case 3 2 3:310�5 1025 3:310�6 0.1315 0.1

2 6:610�5 1050 6:610�6 0.1315 0.1
Case 4 2 6:610�5 1025 2:6410�6 0.263 0.04
Case 5 2 6:610�5 1025 1:3210�6 0.263 0.02
Case 6a 2 3:310�5 1025 1:3210�6 0.1315 0.04
Case 6b 3 3:310�5 1025 1:3210�6 0.1315 0.04
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[31] The semianalytical solution obtained using the
Henry truncation (78 terms) presents strong oscillations
along the three isochlors (0.25, 0.5 and 0.75). This shows
that the Henry solution was in error not because the full
equilibrium solution was not reached, but rather because of
the limited number of coefficients used in the Fourier se-
ries. Note that Segol [1994] stated that the values obtained
by Henry are interpolated and ‘‘are drawn to eliminate local
variations that appear due to truncation of Fourier series’’.

[32] The Simpson and Clement truncation gives the
same semianalytical solution (not plotted in Figure 3) than
the Segol truncation (138 terms). Contrarily to the solution
of Segol [1994], which is slightly shifted to the right (espe-
cially the 0.75 isochlor), the calculated semianalytical solu-
tion has an excellent agreement with the numerical solution
(Figure 3).

4.2. Case 2: The Modified Henry Problem With
a 5 0.1315, b 5 0.2, and n 5 2.0

[33] Simpson and Clement [2004] discussed the worthi-
ness of the Henry problem by comparing the isochlors
obtained with the coupled and uncoupled flow transport
models. To increase the density-dependent effects com-
pared to boundary forces, they proposed to decrease the
freshwater recharge by half. Compared to the previous test
case, the parameter a is reduced by 50% and the parameter
b is increased by a factor of 2.

[34] The semianalytical solution is revaluated using a
scheme of 203 terms. To facilitate the convergence, they
used the solution with the parameters a ¼ 0:263 and
b ¼ 0:2 as an initial guess and then lowered the parameter
a using 10 nonuniform steps.

[35] The semianalytical solution calculated with the Lev-
enberg-Marquardt algorithm in the case of Henry trunca-
tion (78 terms) and the case of Segol truncation (138 terms)
are shown in Figure 4. For both calculations, the initial so-
lution for the Levenberg-Marquardt algorithm was set to
zero.

[36] Figure 4 shows that the truncation of Henry (78
terms) is not sufficient to obtain accurate results. The Simp-
son truncation (203 terms) gives the same results (not plot-
ted in Figure 4) than the Segol truncation (138 terms).
Indeed, Simpson and Clement [2004] used the same expan-
sion for the concentration (100 terms) than Segol [1994].
This confirms the observation of Segol [1994] who stated
that the system is much less sensitive to the number of
coefficients for the expansion of the stream function Agh

than the number of coefficients for the expansion of the
concentration Bgh. As in the previous case, the 38 coeffi-
cients proposed by Henry and Segol for the expansion of the
stream function are adequate. Comparison with numerical
solution shows a very good agreement with numerical
results. Note that the steady state position of the 0.25 isochlor

Table 2. Position of the 0.25, 0.5 and 0.75 Isochlors for the Test Cases 3, 4, 5 and 6b

z ¼

Case 3 (a ¼ 0:1315,
b ¼ 0:1, � ¼ 2:0)

Case 4 (a ¼ 0:263,
b ¼ 0:04, � ¼ 2:0)

Case 5 (a ¼ 0:263,
b ¼ 0:02, � ¼ 2:0)

Case 6b (a ¼ 0:263,
b ¼ 0:04, � ¼ 3:0)

(0.25) x ¼ (0.5) x ¼ (0.75) x ¼ (0.25) x ¼ (0.5) x ¼ (0.75) x ¼ (0.25) x ¼ (0.5) x ¼ (0.75) x ¼ (0.25) x ¼ (0.5) x ¼ (0.75) x ¼

0.000 0.540 0.824 1.167 1.043 1.184 1.375 0.951 1.048 1.200 1.217 1.458 1.806
0.050 0.549 0.836 1.181 1.054 1.199 1.392 0.968 1.072 1.230 1.233 1.482 1.832
0.100 0.570 0.867 1.216 1.079 1.233 1.432 1.006 1.125 1.291 1.272 1.538 1.895
0.150 0.604 0.914 1.268 1.115 1.282 1.484 1.058 1.195 1.369 1.329 1.619 1.983
0.200 0.649 0.974 1.331 1.161 1.341 1.543 1.123 1.274 1.447 1.402 1.716 2.084
0.250 0.697 1.043 1.401 1.213 1.400 1.607 1.190 1.349 1.526 1.489 1.826 2.191
0.300 0.761 1.121 1.475 1.272 1.464 1.666 1.265 1.433 1.604 1.587 1.941 2.297
0.350 0.826 1.204 1.548 1.335 1.537 1.728 1.341 1.506 1.672 1.696 2.060 2.399
0.400 0.904 1.291 1.619 1.402 1.602 1.781 1.422 1.582 1.739 1.812 2.178 2.495
0.450 0.985 1.380 1.687 1.470 1.666 1.831 1.501 1.655 1.800 1.935 2.294 2.585
0.500 1.081 1.468 1.750 1.540 1.730 1.876 1.571 1.725 1.854 2.060 2.405 2.669
0.550 1.176 1.555 1.807 1.610 1.784 1.915 1.649 1.784 1.901 2.187 2.510 2.745
0.600 1.279 1.638 1.857 1.680 1.842 1.943 1.719 1.842 1.938 2.313 2.610 2.813
0.650 1.383 1.717 1.900 1.748 1.890 1.963 1.784 1.896 1.966 2.436 2.701 2.872
0.700 1.487 1.791 1.930 1.813 1.929 1.977 1.848 1.938 1.985 2.556 2.784 2.920
0.750 1.593 1.856 1.956 1.874 1.957 1.992 1.901 1.966 2.668 2.859 2.957
0.800 1.700 1.907 1.975 1.923 1.974 1.946 1.991 2.773 2.918 2.983
0.850 1.795 1.944 1.991 1.953 1.985 1.971 2.866 2.962
0.900 1.882 1.967 1.970 1.996 2.938 2.993
0.950 1.929 1.987 1.984 2.978
1.000 1.946

Figure 2. Temporal variation of the concentration in the
element corresponding to the intersection of the 0.25 iso-
chlor with the base at t ¼ 800 min for the studied test cases.
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is obtained after around 350 min whereas for the previous
case it was around 150 min (Figure 2).

[37] Figure 4 presents also the numerical results of the
uncoupled flow model where the solute transport acts as a
tracer. In this case, the solute intrusion is due to boundary
forcing. Indeed, the right hand side boundary condition cor-
responds to hydrostatic pressure with heavier saline water.
This induces solute intrusion even in the case of uncoupled
flow where the solute acts as a tracer inside the domain (for
more details see Simpson and Clement [2004]).

4.3. Case 3: The Modified Henry Problem With
a 5 0.1315, b 5 0.1, and n 5 2.0

[38] This test case is obtained from the modified Henry
problem of Simpson and Clement [2004] and by lowering the
dispersion coefficient by half (Table 1). This increases the
density-dependent effects compared to boundary forcing.
Figure 5 shows that the semianalytical isochlors move inland

significantly farther then the uncoupled numerical isochlors.
Therefore, this case is more sensitive to density-dependent
effects than the Simpson and Clement [2004] test case. A very
good agreement is observed between semianalytical and nu-
merical results, except the unphysical oscillations (local over-
and undershoots) observed in the 0.25 semianalytical isochlor
at the upper right corner of the domain (Figure 5). Note that
these unphysical oscillations, due to truncation of the Fourier
series, remain in the solution with the Simpson and Clement
truncation of 203 terms. Therefore, a new truncation is per-
formed by using 424 terms of the Fourier series with 214
terms ðA1...7;0...30Þ for the expansion of the stream function
and 210 terms ðB0...6;1...30Þ for the expansion of the concen-
tration. The results of this new truncation avoid the unphysi-
cal oscillations at the right top corner of the domain, although
the position of the isochlors does not change. Note that the
new truncation requires significantly more computational
time (around 5 days) than the Segol truncation (around 10 h).

Figure 3. Comparison of numerical and semianalytical results for the standard Henry problem with
a ¼ 0:263, b ¼ 0:1, and � ¼ 2:0. The semianalytical solution is calculated using the Henry truncation
(78 terms) and the Segol truncation (138 terms).

Figure 4. Comparison of numerical and semianalytical results for the modified Henry problem with
a ¼ 0:1315, b ¼ 0:2, and � ¼ 2:0. The semianalytical solution is calculated using the Henry truncation
(78 terms) and the Segol truncation (138 terms). The uncoupled numerical isochlors are also shown.
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On the other hand, the numerical simulation with the DASPK
numerical code requires less than 3 min of CPU time.

[39] Finally, as shown in Table 1, this test case
(a ¼ 0:1315 and b ¼ 0:1) can also be obtained using the
initial freshwater recharge (instead of the halved one), the
initial dispersion coefficient (6.610�6 m2 s�1) and a salt water
density of � ¼ 1050 kg m�3 (instead of � ¼ 1025 kg m�3).
A new numerical simulation is performed with these values.
The obtained isochlors are in excellent agreement with the
semianalytical solution. This shows the validity of the Boussi-
nesq approximation for the Henry problem even for a salt-
water density of � ¼ 1050 kg m�3. Indeed, the Boussinesq
approximation is used in the semianalytical calculation but not
in the numerical calculation and both give the same results.

4.4. Case 4: The Modified Henry Problem With
a 5 0.263, b 5 0.04, and n 5 2.0

[40] As stated by Voss and Souza [1987], Kolditz et al.
[1998], and Abarca et al. [2007], the major drawback of the

Henry problem arises from the high dispersion value used
by Henry to obtain the semianalytical solution. Therefore
the last three test cases are devoted to the semianalytical so-
lution with a strong reduction of the dispersion coefficient
which implies strong reduction of the parameter b.

[41] The results for a ¼ 0:263, b ¼ 0:04 and � ¼ 2:0 pre-
sented in Figure 6 show a reduced transition zone and a sig-
nificant difference between coupled and uncoupled results.
This makes this test case suitable for testing seawater intru-
sion codes. The semianalytical solution obtained with the
Segol truncation (138 terms) is in very good agreement with
the coupled numerical solution. Note, however, that small
unphysical oscillations appear in the right and left corners at
the top of the domain. These unphysical oscillations remain
with the Simpson and Clement truncation (203 terms). As
previously mentioned, the results of the new truncation with
424 terms show that the unphysical oscillations at the top of
the domain are completely avoided, although the position of
the isochlors does not change.

Figure 5. Comparison of numerical and semianalytical results for the modified Henry problem with
a ¼ 0:1315, b ¼ 0:1 and � ¼ 2:0. The semianalytical solution is calculated using the Segol truncation
(138 terms). The uncoupled numerical isochlors are also shown.

Figure 6. Comparison of numerical and semianalytical results for the modified Henry problem with
a ¼ 0:263, b ¼ 0:04, and � ¼ 2:0. The semianalytical solution is calculated using the Segol truncation
(138 terms). The uncoupled numerical isochlors are also shown.
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4.5. Case 5: The Modified Henry Problem With
a 5 0.263, b 5 0.02, and n 5 2.0

[42] In this test case, we lowered the dispersion by half
compared to the previous case. The truncations proposed
by Segol (138 terms) and Simpson and Clement (203
terms) are not sufficient to obtain a stable solution in this
case. Both truncations lead to significant unphysical oscil-
lations not only in the top of the domain but also in the iso-
chlors curves. The results of the new truncation (424 terms)
are compared to the numerical solution in Figure 7. Despite
the unphysical oscillations observed at the top of the do-
main, a good agreement is observed between the semiana-
lytical and the numerical isochlors. These unphysical
oscillations could be avoided if one uses a truncation with
much more coefficients. This requires very long computa-
tional time (several weeks) and as previously this will have
no significant effects on the three isochlors positions. The
results of Figure 7 show a very narrow transition zone due

the low dispersion coefficient, thus, saltwater invades more
the domain than the previous case. Coupled and uncoupled
numerical results are significantly different (Figure 7)
which reflects the importance of the density-dependent
effects compared to boundary forcing.

4.6. Case 6a: The Modified Henry Problem With
a 5 0.1315, b 5 0.04, and n 5 2.0

[43] This case has a small dispersion and a freshwater
recharge reduced by half as suggested by Simpson and
Clement [2004]. As mentioned before, the solutions
obtained using the Segol (138 terms) and Simpson and
Clement (203 terms) truncations are not accurate and lead
to significant unphysical oscillations not only at top of the
domain but also in the isochlor curves. Figure 8 shows that
the new truncation (424 terms) gives a stable solution
which is in good agreement with the numerical results
except in the lower left corner of the domain where the

Figure 7. Comparison of numerical and semianalytical results for the modified Henry problem with
a ¼ 0:263, b ¼ 0:02, and � ¼ 2:0. The semianalytical solution is calculated using the new truncation
(424 terms). The uncoupled numerical isochlors are also shown.

Figure 8. Comparison of numerical and semianalytical results for the modified Henry problem with
a ¼ 0:1315, b ¼ 0:04, and � ¼ 2:0. The semianalytical solution is calculated using the new truncation
(424 terms). The uncoupled numerical isochlors are also shown.
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semianalytical 0.25 isochlor is slightly more advanced than
the numerical one. This discrepancy is observed because
the semianalytical 0.25 isochlor is very close to the inland
boundary with zero concentration. Note that the 0.5 and
0.75 isochlors are well reproduced by the numerical code.

4.7. Case 6b: The Modified Henry Problem With
a 5 0.1315, b 5 0.04, and n 5 3.0

[44] To reduce the influence of the zero-concentration
Dirichlet left boundary condition on the 0.25 isochlor for
the previous case, a new semi analytical solution is per-
formed on a larger rectangular domain with an aspect ration
� ¼ L=d ¼ 3. The obtained semianalytical results are in
very good agreement with the numerical solution as shown
in Figure 9. Note that in this case, the steady state position
of the isochors is reached within 500 min. In Figure 9, the
saltwater intrudes much more in the domain than all previ-
ous cases. Large differences can be observed between
coupled and uncoupled results. Therefore, this test case is
the most sensitive one upon all the previous to density-de-
pendent effects and should be preferred for benchmarking
density driven flow codes.

5. Conclusions
[45] The Henry saltwater intrusion problem is considered

as one of the most popular test cases of density-dependent
groundwater flow models, since Henry [1964] provided a
semianalytical solution of the problem by expanding the
stream function and the salt concentration in double Fourier
series. These series are truncated at a given order and the
remaining coefficients are calculated by solving a highly
nonlinear system of algebraic equations. Henry [1964] used
a truncation of 78 terms, Segol [1994] used a truncation of
138 terms and Simpson and Clement [2004] used a trunca-
tion of 203 terms. These authors solved the nonlinear sys-
tem as a system of linear equations treating the nonlinear
right hand side as a known quantity, updated iteratively
until convergence. This procedure encountered substantial
convergence difficulties especially for reduced dispersion
values. Consequently, all published works succeeded to
develop semianalytical solutions only when an unrealisti-

cally large amount of dispersion is introduced in the
solution.

[46] In this work, this deficiency of the Henry problem
was avoided by using the Levenberg-Marquardt algorithm,
which has a quadratic rate of convergence, to calculate the
coefficients of the Fourier series. Different truncations are
studied and a new truncation based on 424 terms is pro-
posed to develop the semianalytical solutions of the Henry
problem with reduced dispersion coefficients.

[47] The obtained semianalytical solutions are in a very
good agreement with the numerical results obtained using
the method of lines and advanced spatial discretization
schemes. These solutions improve the applicability of the
semianalytical solution of the Henry problem to saltwater
intrusion problems with reduced diffusion and are therefore
more suitable to benchmark density-driven flow codes.

Appendix A
[48] The non linear algebraic equations are as follows:

"2a�2Ag;h g2 þ h2

�2

� �
� ¼

X1
r¼0

Br;hhNðg; rÞ þ 4

�
Wðg; hÞ;

"1b�2Bg;h g2 þ h2

�2

� �
� ¼

X1
n¼0

Ag;ngNðh; nÞ þ "1

X1
s¼1

Bg;sSNðh; sÞ

þ Quad þ 4

�
Wðh; gÞ;

where

"1 ¼
2; if : g ¼ 0

1; if : g 6¼ 0
;

(

"2 ¼
2; if : h ¼ 0

1; if : h 6¼ 0
;

(

Nðh; nÞ ¼ ð�1Þhþn � 1

hþ n
þ ð�1Þh�n � 1

h� n
;

Figure 9. Comparison of numerical and semianalytical results for the modified Henry problem with
a ¼ 0:1315, b ¼ 0:04, and � ¼ 3:0. The semianalytical solution is calculated using the new truncation
(424 terms). The uncoupled numerical isochlors are also shown.
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Wðh; gÞ ¼
ð�1Þh � 1

h
; if : g ¼ 0

0; if : g 6¼ 0

;

8<
:

Quad ¼ �
4

X1
m¼1

X1
n¼0

X1
r¼0

X1
s¼1

Am;nBr;sðmsLR� nrFGÞ;

with

F ¼ �ðm�rÞ;g þ �ðr�mÞ;g � �ðmþrÞ;g;

L ¼ �ðm�rÞ;g þ �ðr�mÞ;g þ �ðmþrÞ;g;

G ¼ ð�1Þhþn�s � 1

hþ n� s
þ ð�1Þh�nþs � 1

h� nþ s
� ð�1Þhþnþs � 1

hþ nþ s

� ð�1Þh�n�s � 1

h� n� s
;

R ¼ ð�1Þhþn�s � 1

hþ n� s
þ ð�1Þh�nþs � 1

h� nþ s
þ ð�1Þhþnþs � 1

hþ nþ s

þ ð�1Þh�n�s � 1

h� n� s
;

and �i; j is the Kronecker delta such that

�i; j ¼
1; if : i ¼ j

0; if : i 6¼ j
:

(

[49] Acknowledgments. The authors would like to thank the anony-
mous reviewers for their valuable comments and suggestions to improve
the quality of the paper. This study was partially supported by the GnR
MoMaS (PACEN/CNRS ANDRA, BRGM CEA EDF IRSN) France. And
in part, was made possible by the support of SNF (Swiss National Founda-
tion, grant 200020_125167), whose support is gratefully acknowledged.
And a special thanks to Stefan Wiesmeier and Silvia Leupin for their
appreciated support.

References
Aavatsmark, I. (2002), An introduction to multipoint flux approximations

for quadrilateral grids, Comput. Geosci., 6, 404–432.
Abarca, E., J. Carrera, X. Sanchez-Vila, and M. Dentz (2007), Anisotropic

dispersive Henry problem, Adv. Water Resour., 30(4), 913–926.
Ackerer, P., and A. Younes (2008), Efficient approximations for the sim-

ulation of density driven flow in porous media, Adv. Water Resour.,
31, 15–27.

Ackerer, P., A. Younes, and R. Mose (1999), Modeling variable density
flow and solute transport in porous medium: 1. Numerical model and
verification, Transp. Porous Media, 35(3), 345–373.
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Abstract  

The Henry semi-analytical solution for salt water intrusion into costal aquifers is widely used for 

benchmarking density driven flow in porous media. In this work, we develop a modified Henry 

semi-analytical solution for density driven flow of free fluids. The new benchmark concerns 

saltwater intrusion trough a channel where Stokes flow is coupled to mass transport via buoyancy 

forces. The semi-analytical solution is calculated by replacing the stream function and the 

concentration by a double set of Fourier series, truncated at a given order. The remaining 

coefficients are calculated using the Levenberg-Marquardt algorithm to solve the obtained highly 

nonlinear system of algebraic equations. The semi-analytical solution is validated against the 

results of a transient numerical code based on the nonconforming Crouzeix-Raviart (CR) finite 

element approximation for the Stokes flow and a combination of Discontinuous Galerkin (DG) 

and Multi-Point Flux Approximation (MPFA) methods for the mass transport equation. 

 

 

Keywords: Density driven flow, free fluids, Analytical solution, Crouzeix-Raviart, 

Discontinuous Galerkin, MPFA 
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1. INTRODUCTION 

The existence of semi-analytical solutions for nonlinear transport problems is well suited for the 

validation of numerical codes before their use on real cases. In this sense, the synthetic Henry 

saltwater intrusion problem [1] is one of the most widely used tests for the verification of density 

driven flow codes in porous media. Indeed, the semi-analytical solution of Henry [1] provides the 

steady state isochlors positions by expanding the salt concentration and the stream function in 

double Fourier series. Henry [1] used 78 terms in these series and calculated the coefficients 

using a Gauss elimination procedure. In 1994, Segol [2] revaluated the semi-analytical solution 

by using a new truncation with 138 terms. A good agreement was generally observed between 

this solution and numerical results [e.g. 3-8]. Effects of dispersion and anisotropy on the Henry 

problem have been studied numerically in [9]. Recently, a new semi-analytical solution was 

developed for the Henry problem in the case of small dispersion using a truncation based on 424 

terms in the Fourier series [10]. 

In this work, we extend the Henry problem to free fluids domains and we develop a semi-

analytical solution for saltwater intrusion trough a channel (or a single fracture). To this aim, we 

consider a synthetic problem describing the steady state saltwater intrusion through the channel. 

Freshwater enters an idealized rectangular domain (Fig. 1) with a constant flux rate from the left 

boundary. A hydrostatic pressure is prescribed along the right boundary with a denser salt-water 

solution. The top and the bottom of the domain are impermeable boundaries. The saltwater 

intrudes from the right until an equilibrium with the injected freshwater is reached. The free-flow 

is governed by the Stokes equation [11-17] since the flow through the channel is considered 

steady and laminar and the inertial forces in the flow field are assumed to be negligibly small 

compared with the viscous and pressure forces. As with the standard Henry problem [1], we 

develop the semi-analytical solution by expanding the concentration and the stream function in a 

double set of Fourier series. Two test problems are studied corresponding to different density 

contrasts. The Fourier series are evaluated using the truncation proposed in [10] based 424 

coefficients. These coefficients are calculated by solving a highly nonlinear system of algebraic 

equations with the Levenberg-Marquardt algorithm, which has a quadratic rate of convergence. 

The semi-analytical solution is then compared against numerical results obtained using a robust 

transient numerical code based on advanced numerical methods. Hence, the Stokes flow is 

discretized using the Crouzeix-Raviart (CR) approximation, based on the nonconforming 



 Semi-analytical and numerical solutions for density driven free flows    

    
  

49

piecewise linear finite elements for the velocity and the piecewise constant finite elements for the 

pressure. This approximation provides locally mass conservative velocity which is an essential 

property for mass transport to avoid artificial mass sources and sinks.  

For the transport equation, the Discontinuous Galerkin (DG) method is used to discretize the 

advection equation and combined with the symmetric Multipoint Flux Approximation (MPFA) 

method for the discretization of the diffusion equation [18]. The DG method is a robust and 

accurate numerical scheme for problems involving sharp fronts [19]. On the other hand, the 

MPFA method is locally conservative and handles general irregular grids [20-22]. The MPFA 

and the DG discretizations can be gathered into one system matrix without operator splitting [18]. 

To reduce the computational cost of simulations, flow and transport equations are solved 

sequentially using a non-iterative scheme with proper time management based on local truncation 

error control as in [23]. 

2. MATHEMATICAL MODELS 

Single-phase steady incompressible flow is governed by the Navier-Stokes equation: 

   2u u u g. p        (1) 

and the continuity equation:   

 0u.   (2) 

where   is the fluid density, u  is the velocity vector, p  is the pressure, g  is gravity, and   is 

the dynamic viscosity.  

In this work, we assume that the flow is sufficiently slow to consider the inertial forces in the 

flow field (the first nonlinear term in equation (1)) negligibly small compared with the viscous 

and pressure forces. Therefore, the free-flow simplifies to the following Stokes equations [24-

26]: 

 2u gp       (3) 

 0u.   (4) 

Three kinds of boundary conditions are used with this system:  

o The velocity u  is prescribed on the boundary;  

o Free outflow boundary condition   0u η ηp     with η  the outward normal vector to 

the boundary; 
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o The pressure p  is prescribed at the boundary. Note that in this case, we set also the 

velocity components in the tangential direction to zero on the same boundary as used in 

[27-31]. This condition is named Normal Flow/Pressure or straight-out boundary 

condition. 

Solute transport in the free-fluid region can be described by the following convection-diffusion 

equation:  

 2u
C

. C D C
t




     (5) 

where C  is the solute mass fraction and D  is the molecular diffusion coefficient. 

Flow and transport equations are coupled by the linear state equation linking density to mass 

fraction:  

  0 1 0 C       (6) 

where 1  and 0  are respectively saltwater and freshwater density. 

The boundary conditions for the transport equation are of Dirichlet type (C  is fixed) or Neumann 

type ( 0ηC    where η  is the direction normal to the boundary).  

3. THE SEMI-ANALYTICAL SOLUTION  

The synthetic problem is adapted from the saltwater intrusion problem of Henry [1], by replacing 

the confined aquifer (porous medium where the flow is governed by Darcy equation) by a 

channel (free-flow region where flow is governed by Stokes equation). The developments to 

obtain the semi-analytical solution are summarized in this section. 

The Stokes equations (3)-(4) are written in the following form: 

 

2 2

2 2

2 2

2 2

0

0

P u u

x x z

P v v
f

z x z

u v

x z





    
        
            
 

 
 

  (7) 

where the body forces f  can be written using (6) as, 

  0 1 0( )f C g      (8) 
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The last equation in (7) implies the existence of a stream function , such as: 

 u
z





 and v
x


 


 (9) 

Inserting (9) into (7) leads to: 

 
4 4 4

1 04 2 2 4
2 ( )

C
g

x x z z z

    
    

          
  (10) 

As in [1, 2], we define the following new variables:  

 x x d  , z z d  , u u d Q  , v v d Q  , u z     , v x     , z      (11) 

where x and z  are non-dimensional coordinates, u  and v  are the non-dimensional velocities 

and    the non-dimensional stream function. 

Using (11), eq (10) leads to: 

 
4 4 4

4 2 2 4

1
2

C
a

x x z z x

  


      
             

 (12) 

with 
3

1 0( )

Q
a

gd


 




 and 
L

d
   the aspect ratio of the domain, where L  is the length and d  is 

the depth of the domain. 

Similarly, the change of variables applied to the mass transport equation (5) (see [1, 2] for 

details) leads to:  

 
2 2

2 2

1 1C C C C C
b

x z z x x z z x

  
 

        
              

 (13) 

with 
D

b
Q

  and C is now the non-dimensional concentration. 

The stream function and the concentration are represented by double Fourier series of the form: 

 ,
1 0

sin( ) cos( )m n
m n

x
A m z n  



 

 

  (14) 

 ,
0 1

cos( )sin( )r s
r s

x
C B r z s 



 

 

  (15) 
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Substituting these relations into equations (12) and (13), multiplying equation (12) by 

4sin( ) cos( )
x

g z h 


 and equation (13) by 4cos( )sin( )
x

g z h 


, and integrating over the 

rectangular domain gives an infinite set of algebraic equations for ,g hA  and ,g hB  namely, 

 
2

4 2 2
2 , ,2

0

4
( ) ( , ) ( , )g h r h

r

h
a A g B hN g r W g h  

 





    (16) 

 
2

2 2
1 , , 1 ,2

0 1

4
( ) ( , ) ( , ) ( , )g h g n g s

n s

h
b B g A gN h n B SN h s Quad W h g   

 

 

 

       (17) 

Details about the parameters 1 2, , , ,N W Quad  , can be found in Appendix A. 

The algebraic system of equations (16)-(17) has the same form than the system obtained by 

Henry [1] and Segol [2] for the standard saltwater intrusion through a coastal aquifer. Note that 

the flow equation (16) is different from the one obtained with the Darcy flow in [1]. 

Henry [1], Segol [2] and Simpson and Clement [32] used different truncations of the Fourier 

series. They solved the nonlinear system as a system of linear equations where the expansion 

coefficients are considered as unknowns. The nonlinear right hand side is treated as a known 

quantity, updated iteratively until convergence. As stated by Segol [2], this technique 

encountered substantial convergence difficulties for small values of the parameters a  and b  

which for the standard Henry problem correspond to 
 

0

1 0
Darcy

Q
a

K d


 




 ( K  is the hydraulic 

conductivity of the porous medium) and Darcy

D
b

Q
 . 

To avoid convergence difficulties in the case of saltwater intrusion within a channel, we use in 

this work the Levenberg-Marquardt algorithm [33, 34], which has a quadratic rate of 

convergence, to solve the set of nonlinear algebraic equations (16) - (17) [35]. The method is 

considered as one of the most efficient algorithm for solving systems of nonlinear equations. The 

nonlinear algebraic system of equations (16)-(17) is written in the form   0F X  where X  is a 

vector formed by the coefficients ,g hA  and ,g hB  to calculate. The Levenberg-Marquardt algorithm 

includes two minimization methods: the gradient descent method and the Gauss-Newton method. 

Far from the optimum, the Levenberg-Marquardt method behaves like a gradient descent method, 
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whereas, it acts like the Gauss Newton method nearby the optimum. The Jacobian J  is 

approximated numerically using finite differences. 

Two test problems, corresponding to different density contrast, are studied in this work. The 

Fourier series are truncated using 424 coefficients as in [10] with 214 terms  1..7,0..30A  for the 

expansion of the stream function and 210 terms  0..6,1..30B  for the expansion of the concentration.  

4. THE NUMERICAL SOLUTION  

In this part, we summarize the numerical techniques used for the solution of the coupled stokes 

flow and mass transport system. 

4.1 STOKES FLOW DISCRETIZATION 

The flow system (3)-(4) cannot be discretized with the same order for pressure and velocity 

approximations due to stability conditions. Otherwise some sort of stabilization is added to the 

mixed formulation [36]. To avoid these difficulties, we use the non-conforming Crouzeix-Raviart 

(CR) elements for the velocity approximation in combination with constant pressure per element, 

since they satisfy the Babuska-Brezzi condition [37-39]. This condition is central for ensuring 

that the final linear system to solve is non-singular [40]. Moreover, the non-conforming 

Crouzeix-Raviart (CR) finite element method has local mass conservation properties [41] and 

leads to a relatively small number of unknowns due to the low-order shape functions. The CR 

elements are used in many problems such as the Darcy-Stokes problem [42], the Stokes problem 

[43] and the elasticity problem [44, 45]. The CR method gives a simple stable optimal order 

approximation of the Stokes equations [46]. In the following, we recall the main stages for the 

discretization of the Stokes equation with the CR triangular elements. 

With the non-conforming finite elements method, the degrees of freedom for the velocity vector 

u  are the two component  i iu ,v  of u  at the midedge i  facing the node i . Inside the element E , 

we assume a linear variation of the velocity components  E Eu ,v  

 E E E E E E
E i i j j k k E i i j j k ku u u u , v v v v            (18) 

where the interpolation function E
i  equals 1 on the midedge i  and zero on the midedges j  and 

k  of E  (Fig. 2). 
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The variational formulation of the Stokes equation (3) using the test function i  over the domain 

  writes: 

  u Ι i i. p g z   
 

       (19) 

where u  is the gradient of the velocity vector u  and Ι  the 2 2  identity matrix. 

Using Green’s formula, we obtain 

    u Ι η u Ιi i ip . p g z     
  

           (20) 

The first integral contains boundary conditions. It vanishes in case of free-flow boundary or in 

case of an interior edge i . In this last case, equation (20) becomes 

    u  Ι u  ΙE E' E E
E E i E E i i i

E E E E

. p . p g z g z        
 

 

                (21) 

Using (18) and (19), we obtain  

  
 

 

3

1

3

1

u  Ι

i j i j
ji

jE
E E i Ei

i j i jE
j

j

x x z z u
z

. p P
Ex

x x z z v

  



 
                         

 





 (22) 

and 

  
i

E
i E i E i

E

z
g z g z z

x
  

 
      

  (23) 

where i
j kx x x    and i

k jz z z   , Ez  and iz  are respectively the z-coordinate of the centre of 

E  and of the midpoint of edge i , E  and Ep  are respectively the mean density and pressure over 

E . 

The finite volume formulation of the continuity equation (4) over the element E  writes: 

 0u
E

.   (24) 

using (18), it becomes 

  
3

1

0j j
j j

j

z u x v


     (25) 

The final system to solve for the flow is obtained by writing equation (21) for each edge (two 

equations per edge) and equation (25) for each element.  
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4.2 MASS TRANSPORT DISCRETIZATION 

The DG leads to a high-resolution scheme for advection that has been proven to be clearly 

superior to the already existing finite element methods [47]. In this work, the explicit DG 

method, where fluxes are upwinded using a Riemann solver, is used to solve the advection 

equation and combined with the symmetric Multipoint Flux Approximation (MPFA) method for 

the diffusion equation.  

The transport equation (5) is written in the following mixed form 

 
  0u u

u

D

D

C
. C .

t
D C




    

   

 (26) 

The dispersive flux uD  is assumed to vary linearly inside the element E , therefore, 

 
1

u E
D D, Ei

i

. Q
E     (27) 

where u ηE
D, Ei D Ei

Ei

Q . 


   is the dispersive flux across the edge Ei  of E . 

We use the P1 DG method where the approximate solution ( , )hC tx  is expressed with linear basis 

functions E
i  on each element E  as follows: 

      
3

1

, | E E
h E i i

i

C t C t 


x x  (28) 

where  E
iC t  are the three unknown coefficients corresponding to the degrees of freedom which 

are the average value of the mass fraction defined at the triangle centroid  E Ex ,z  and its 

deviations in each space direction [48] with the corresponding interpolation functions:  

      1 2 3, 1, , ,  , .  E E E
E Ex z x z x x x z z z        (29) 

The variational formulation of (26) over the element E  using E
i  as test functions leads to (see 

[12] for details), 
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    

1

,

1 1 13
02

2 2 2
1

3 3 3
3

0

0

E

E
D jE E E

EjE
E E E

E E E
E

dC
Qdt C C C

dC
A B C M C M C

dt
C C C

dC

dt





 
   
         
                           
                   
 






 

 

  (30) 

with,  

   

, ,

N
0
, ,

1

.

, 1 1,..,3

u

E

E E E E
i j j i i j j i

E E

E E
E E E E E EE E

i j E i j i j E i j

E E

A B

Q Q
M M

E E

   

      
 

  

  

   
 

 

    
 

  


 

 

where Ej  is the adjacent element to E such that Ej  is the common edge of E  and Ej  and 

.E
E Ej

E

Q 


 



uη  the water flux across Ej . The upwind parameter E
E   is defined by 

 
1 . 0

0 . 0
EjE

Ej
Ej

if

if
 





  

uη

uη
 (31) 

An explicit time discretization is used for the equation (30). An efficient geometric slope limiter 

is used to avoid unphysical oscillations near sharp fronts [49]. 

The dispersive fluxes ,
E
D jQ  across edges are approximated using the MPFA method. The basic 

idea of this method is to divide each triangle into 3 sub-cells as in Fig. 3. Inside the sub-cell 

 1 2O,F ,G,F  formed by the corner O , the centre G  and the midpoint edges 1F  and 2F , we 

assume linear variation of the mass fraction between 1
EC , 1TC  and 2TC , the mass fractions 

respectively at G  and the two continuity points 1f  and 2f . The symmetry of the MPFA scheme 

is achieved when the continuity points are localized at 1 2

1 2

2

3

Of Of

OF OF
  . In this case half-edge 

fluxes 
1 2

1 2and
F F

O O

O O

Q D C Q D C
 

       
 

  , taken positive for outflow write [50]: 

 
1

1 1 1 2 1 1
2

2 11 2 2 2

E
O

E E
O

OF .OF OF .OFQ TC C

Q TC COF .OF OF .OF


    
            

   

     (32) 

with 3E D E  . 
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This system is written for all sub-cells sharing the vertex O  which create an interaction region. 

Then by writing continuity of diffusive fluxes across half-edges and by assuming continuity of 

mass fraction at continuity points, we obtain a local system      A TC B C . This local system 

is solved to obtain the mass fraction at the continuity points ( iTC ) as function of mass fraction at 

all elements sharing the vertexO . The obtained relation is then substituted into (32) to obtain 

half-edge fluxes explicitly as a weighted sum of the cell mass fraction of the interaction volume. 

Finally, the summation of these fluxes is written using an implicit time discretization and 

substituted into the equation (30).  

4.3 COUPLING STOKES FLOW AND MASS TRANSPORT 

Stokes flow equations (3)-(4) and the advection-diffusion mass transport equation (26) are 

coupled by the state equation (6) linking density to mass fraction. Due to nonlinearities, 

simulations can require an excessive computational time and/or heavy equipments. Adaptive 

temporal discretization based on local truncation error control has been shown to be useful to 

reduce the computational cost of the simulation [51-58]. In this work, we use the non-iterative 

time stepping scheme based on local truncation error control developed in [23].  

5. VALIDATION OF THE SEMI-ANALYTICAL SOLUTION 

We consider a synthetic example  22 1 m  where the domain is discretized with a regular 

triangular mesh of 3200 elements. The flux at the left (inland) boundary is set to 2 10 92Q . m s . 

To avoid very small values of the parameter a  for which we cannot obtain a converged semi-

analytical solution, the viscosity is set to 1 Pa s   in this synthetic problem. 

5.1 TEST CASE 1: 0 008 0 1a . ;b .   

In this test case, we set the freshwater density (at the left boundary) to 3
0 1000 kg m  , the 

saltwater density (at the right boundary) to 3
1 1011kg m   and the diffusion coefficient to 

2 10 092D . m s . The corresponding non-dimensional parameters a  and b  are: 

 
3

1 0

0.008
( )

Q
a

gd


 

 


 and 0.1
D

b
Q

  .  

Table 1 provides the position of the three principal isochlors (0.25, 0.5 and 0.75) obtained with 

the semi-analytical solution using the truncation suggested in [10]. The transient numerical 
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simulation is performed until a long time to ensure a steady state solution. The three semi 

analytical isochlors are then compared against the numerical solution in Fig. 4. A good agreement 

can be observed between the semi-analytical and the numerical solutions (Fig. 4).  

5.2 TEST CASE 2: 0 006 0 05a . ;b .   

In this case, the saltwater density is increased to 3
1 1015kg m   and the diffusion coefficient is 

reduced to 2 10 046D . m s . The corresponding non-dimensional parameters a  and b  are then: 

 
3

1 0

0.006
( )

Q
a

gd


 

 


 and 0.05
D

b
Q

  .  

The same truncation based 424 coefficients of the Fourier series is used for the semi-analytical 

solution. The positions of the three principal isochlors (0.25, 0.5, and 0.75) are listed in Table 1. 

Fig. 5 shows the semi analytical and numerical isochlors. As previously, a good agreement can be 

observed between the numerical and the semi-analytical solutions.  

6. CONCLUSION  

In this manuscript, we developed a semi analytical solution for the validation of density driven 

flow of free fluids. The problem is adapted from the saltwater intrusion problem of Henry [1], by 

replacing the confined aquifer by a channel. The semi-analytical solution is calculated by 

replacing the stream function and the concentration by a double set of Fourier series. These series 

are truncated using 424 terms as in [10]. The remaining coefficients are calculated by solving a 

highly nonlinear system of algebraic equations using the Levenberg-Marquardt algorithm. 

The semi analytical solution is validated using a synthetic problem of saltwater intrusion. Two 

test cases including different density contrasts are studied. A transient numerical model is 

developed for coupled Stokes flow and mass transport with large density variations. The model is 

developed for a general triangular meshes and uses the CR finite elements for the flow 

discretization, the DG method for advection and the symmetric MPFA method for diffusion. A 

good agreement is observed between the semi-analytical and numerical solutions fro the two 

studied test cases. The semi-analytical positions of the three principal isochlors are listed in Table 

1 and can then be used for the validation of numerical codes. 
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Appendix A 

2
4 2 2

2 , ,2
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4
( ) ( , ) ( , )g h r h
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h
a A g B hN g r W g h  

 
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2

2 2
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 

 

 
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1
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
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( ), ( ), ( ),m r g r m g m r gF         

( ), ( ), ( ),m r g r m g m r gL         

( 1) 1 ( 1) 1 ( 1) 1 ( 1) 1h n s h n s h n s h n s
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And ,i j  is the Kronecker delta such that 

 

,

1, :
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if i j
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Case 1 ( 0.008a  , 0.1b  )  Case 2 ( 0.006a  , 0.05b  ) 

z = 
(0.25) x 

= 

(0.5) x 

= 

(0.75) x 

= 
 z = 

(0.25) x 

= 

(0.5)x 

  = 

(0.75) x 

= 

0.000 1.342 1.540 1.722  0.000 1.146 1.294 1.453 

0.050 1.347 1.543 1.728  0.050 1.149 1.297 1.462 

0.100 1.353 1.551 1.739  0.100 1.160 1.311 1.479 

0.150 1.367 1.568 1.758  0.150 1.174 1.333 1.509 

0.200 1.386 1.593 1.784  0.200 1.199 1.364 1.551 

0.250 1.409 1.624 1.817  0.250 1.227 1.403 1.604 

0.300 1.442 1.663 1.853  0.300 1.263 1.451 1.677 

0.350 1.476 1.711 1.881  0.350 1.308 1.509 1.767 

0.400 1.521 1.758 1.909  0.400 1.364 1.585 1.853 

0.450 1.571 1.809 1.932  0.450 1.431 1.674 1.915 

0.500 1.630 1.856 1.946  0.500 1.504 1.789 1.951 

0.550 1.705 1.895 1.960  0.550 1.585 1.887 1.971 

0.600 1.767 1.921 1.965  0.600 1.700 1.937 1.979 

0.650 1.820 1.935 1.971  0.650 1.831 1.954 1.988 

0.700 1.887 1.943 1.979  0.700 1.915 1.971 1.991 

0.750 1.912 1.951 1.985  0.750 1.951 1.974 1.993 

0.800 1.918 1.957 1.985  0.800 1.954 1.977  

0.850 1.929 1.960 1.988  0.850 1.960 1.979  

0.900 1.932 1.965 1.991  0.900 1.960 1.982  

0.950 1.935 1.965 1.991  0.950 1.963 1.982  

1.000 1.932 1.965   1.000 1.968 1.996  

         

 

 

Table 1 
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Abstract 

In this study, we investigated both experimentally and numerically the dissolution of a “model fracture”. 

To take into account the influence of the density effects on the spatial and temporal evolution of the 

fracture shape, a slow freshwater flux was pumped through a vertical fracture constituted by two salt 

blocks. The experimental results are subject to numerical analysis. The used numerical model is based on 

robust numerical approaches.  An efficient and advanced approximation for both spatial and temporal 

discretization is used in order to reduce the high computational needs while maintaining accuracy. The 

flow equation is solved using the nonconforming Crouzeix-Raviart (CR) finite element approximation for 

the Stokes equation. For the transport equation, a combination between Discontinuous Galerkin Method 

and Multipoint Flux Approximation Method is proposed. The numerical effect of the dissolution is 

considered by using a dynamic mesh variation that increases the size of the mesh based on the amount of 

the dissolved salt. Similar results are observed between the laboratory experiments and the numerical 

results, which prove the efficiency of the numerical code to solve density driven flow problems including 

dissolution. 

 

 

 

Keywords: Salt dissolution, Dynamic mesh, CR, DG, MPFA, time control.  
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1. Introduction  

Different geomechanical problems, such as land subsidences and collapses are due to density driven flow 

in evaporite sedimentary rocks. Salt deposits (e.g. rock salt) are common in continental regions [37]. The 

buried salt layers are dissolved and then removed due to circulation of subsaturated groundwater [44, 22]. 

Dissolution cavities that occur above or within the impermeable salt deposits lead to subsidences or 

catastrophic collapses [5, 45, 41, 23]. Moreover, the groundwater salt dissolution affects also the water 

quality, such as salinization and high mineralization [33]. One of the highest environmental risks as stated 

by [5] is when radioactive waste repositories are situated in salt rock units which are affected by 

subsurface dissolution. Different aspects of salt dissolution can occur, as in some cases groundwater can 

interact with the salt rock from above [33, 45], from the side [42] or from below [5].  

In this work, we study the dissolution process of a fractured salt body that is vertically imposed gets in 

contact with a freshwater source from below and circulating opposite to gravity direction. Highest 

dissolution values were recorded at the top of the salt layer, whereas dissolution rates reduce gradually 

until the bottom of the salt body. This type of dissolution aspect is a simplified form of what could be 

observed in nature. Subvertical fractures are e.g often related to normal fault zones and, if hydraulically 

active, may accelerate density driven flow and, hence, dissolution of rock salt. One could approximate it 

as two layers above each other, when one is reactive and the other is impermeable. If there is a fracture 

that propagates through these layers and freshwater circulates from below as shown in Figures (1a, 1b), 

then this conical shape could be obtained. In other cases the ceiling is not impermeable; hence a different 

aspect of the dissolution shape could be observed and solution cavities could be created at the ceiling. In 

this study, more concern is given to the non-reactive ceiling. 

A robust numerical model is developed including some advanced approximations for both spatial and 

temporal discretization to reduce the computational needs and maintaining accuracy at the same time. The 

numerical code is used to simulate the density driven flow problem including the dissolution equation. 

The coupled flow-transport numerical model is based on the Stokes flow equation and the advection 

dispersion equation. On one hand, flow and transport equations are coupled by the state equations linking 

density and viscosity variations to mass fraction. On the other hand, both flow and transport are coupled 

with the dissolution equation by using a dynamic mesh routine, where the size of the finite element 

modifies with respect to the amount of dissolution that occurs near that element. To achieve high accuracy 

level for the spatial discretization of flow and transport, we used specifically suited methods. The flow 

through the fracture is considered steady and laminar and the inertial forces in the flow field are assumed 

to be negligibly small compared with the viscous and pressure forces. Therefore, the free-flow is governed 

by the Stokes equation [9, 46, 47, 34, 31, 32]. The Stokes flow is discretized using the Crouzeix-Raviart 

(CR) approximation, based on the nonconforming piecewise linear finite elements for the velocity and the 
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piecewise constant finite elements for the pressure. This approximation provides locally mass conservative 

velocity which is an essential property for mass transport to avoid artificial mass sources and sinks. The 

transport equation is solved using a combination between the Discontinuous Galerkin Method (DG) and 

the Multipoint Flux Approximation Method (MPFA). The first one is used to discretize the advection part 

while the second one is used for the discretization of the dispersion part [53]. As the DG includes the 

advantageous of both the Finite Element (FE) and the Finite Volume (FV) methods, it gives a robust and 

an accurate numerical scheme [48]. Considering the MPFA and as stated by [1, 2, 20, 36, 51] it is locally 

conservative and could handle irregular grids on anisotropic heterogeneous domains. On the other hand, 

both the MPFA and DG use the same type of unknowns that give the advantage of gathering it into one 

system matrix [53]. At this end, the combination (DG-MPFA) has shown to be a robust and accurate 

approach for modelling density driven flow problems [3, 52, and 55]. Non iterative time stepping is used 

in this work. The scheme based on local truncation error control as in [54]. It was able to increase the 

numerical accuracy and to reduce the computational cost at the same time [54].  

2. Experimental set-up 

The experimental device is represented in Figures (2, 3). The fracture is constituted of two salt blocks 

dimensions 9.9 x 3.5 x 0.42 cm3 spaced about 0.4 cm apart. The blocks were obtained by cutting from a 

compacted salt loaf used in cattle feed. The salt blocks were inserted between two parallel transparent 

glass plates supported by a rigid metal structure. During this operation, the fracture aperture can undergo a 

slight decrease estimated at about 0.025 – 0.075 mm. In order to ensure a good adhesion between the salt 

blocks and glass plates, the former were polished with very fine sandpaper. The impermeability of lateral 

boundaries is guaranteed by rubber seals. The cell is initially filled with fully saturated saline solution (Csat 

= 357 g/L). After about 12 hours, in order to induce dissolution of the rock matrix, distilled water is 

injected at low flow rate (Qv = 1.0 mL/h) into the lower part of the cell via a plastic injection tip. The 

injection tip (1.5 mm inner diameter) is centered between the two plates and located 2.0 mm above the 

lower cell edge. A peristaltic pump ensures a quasi-constant flow rate. The mixing between the injected 

fluid and the dissolved part of the rock matrix is removed through an exhaust nozzle disposed in the same 

way as the injection tip but in the upper part of the cell. In order to better visualize the dissolution of the 

salt blocks, the injected fluid was stained by adding a few milligrams of fluorescein. Illuminated by a 

homogeneous light source located behind the experimental model, the temporal and spatial evolution of 

the flow channel between the salt blocks is followed using a numerical camera with a standard Charge 

Coupled Device (CCD) detector consisting of 3888 x 2592 pixels. As the numerical camera is set in front 

of the experimental model, the recorded images, caught at various interval of time, are analyzed by image 

processing software.  
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The experimental configuration is characterized by a more rapidly dissolution in the upper part than in the 

lower part. This behavior suggests that the fracture dissolution is the result of the free buoyant convection. 

The less dense fluid will overcome the denser fluid resulting in different dissolution rates in agreement 

with the fracture height. For relatively short times, i.e.: at the beginning of the experiment (t < 10h) the 

dissolution rate increases approximately linearly with the fracture height while for relatively high times (t 

> 20h ), the fracture dissolution is more rapidly in the upper part than in the lower part.  

However, we must note that the analysis of our experimental results highlighted the emergence and the 

development of the gas bubbles arising from degassing during the dissolution of the rock matrix (small 

black spots located in the flow channel). Despite setting in saturated of the salt blocks more than 12 hours 

followed by vacuum degassing or the injection of CO2, this degassing phenomenon was observed for each 

carried out experiment. To verify the influence of this phenomenon on the spatial-temporal fracture 

evolution, the experiment was repeated at least twice. A very good reproducibility was observed. It not 

only shows a weak influence of the degassing phenomenon on the fracture dissolution but also a relatively 

small impact of the heterogeneities of the porous matrix.  

3. Mathematical model 

Taking into account the experimental conditions, the creeping flow and the transport into the fracture can 

be described by the following system of equations [21, 28, 38, 3, 10, 19]:   

Stokes equation: 

 2u gp       (1) 

 

Continuity equation: 

 0. u  (2) 

 

The solute mass conservation with dissolution is written in term of mass fraction as follows:  

  sat
( C )

.( C D. C ) C C
t

    


    u  (3) 

State equations linking density and viscosity to mass fraction: 

   1
0 1 0 0

0

,

C

C and
     


 
     

 
 (4) 

where   is the fluid density [ML-3], t the time [T], C  the solute mass fraction [M. salt/M. fluid], u  the 

velocity [LT-1], 0  the density of the injected fluid [ML-3], g  the gravity acceleration [LT-2],   the fluid 
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dynamic viscosity [ML-1T-1],  is the  “modified” mass transfer coefficient [ML-3T-1], L  and T  the 

longitudinal and transverse dispersivities [L], D  is the diffusion coefficient [L2T-1], 1  and 1  are 

respectively, density and viscosity of the high density fluid (saltwater) and 0  the viscosity of the injected 

fluid. The associated boundary conditions of the flow-transport system are of Dirichlet, Neuman or mixed 

type.  

3.1. SPATIAL DISCRETIZATION OF THE FLOW EQUATION 

The system (1)-(2) cannot be discretized with the same order for pressure and velocity approximations due 

to stability conditions. Otherwise some sort of stabilization is added to the mixed formulation [40]. To 

avoid these difficulties, we use the non-conforming Crouzeix-Raviart (CR) elements for the velocity 

approximation in combination with constant pressure per element, since they satisfy the Babuska-Brezzi 

condition [12, 24, 25]. This condition is central for ensuring that the final linear system to solve is non-

singular [39]. Moreover, the non-conforming Crouzeix-Raviart (CR) element has local mass conservation 

properties [13] and leads to a relatively small number of unknowns due to the low-order shape functions. 

The CR element is used in many problems such as the Darcy-Stokes problem [14], the Stokes problem 

[18] and the elasticity problem [26, 27]. The CR element gives a simple, stable and optimal order 

approximation of the Stokes equations [7]. In the following, we recall the main stages for the 

discretization of the Stokes equation with the CR triangular element. 

With the non-conforming finite element method, the degrees of freedom for the velocity vector u  are the 

two components  i iu ,v  of u  at the midedge i  facing the node i  (Fig. 4). Inside the element E , we 

assume a linear variation of the velocity components  E Eu ,v  

 E E E E E E
E i i j j k k E i i j j k ku u u u , v v v v            (5) 

Where the interpolation function E
i  equals 1 on the midedge i  and zero on the midedges j  and k  of 

E . 

The variational formulation of the Stokes equation (1) using the test function i  over the domain   

writes: 

  u Ι i i. p g z   
 

       (6) 

where u  is the gradient of the velocity vector u  and Ι  the 2 2  identity matrix. 

Using Green’s formula,  

    u Ι η u Ιi i ip . p g z     
  

           (7) 
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The first integral contains boundary conditions. It vanishes in case of free-flow boundary or in case of an 

interior edge i . In this last case, equation (7) becomes 

    u  Ι u  ΙE E' E E
E E i E E i i i

E E E E

. p . p g z g z        
 

 

                (8) 

Using (6) we obtain  

  
 

 

3

1

3

1

u  Ι

i j i j
ji

jE
E E i Ei

i j i jE
j

j

x x z z u
z

. p P
Ex

x x z z v

  



 
                         

 





 (9) 

and 

  
i

E
i E i E i

E

z
g z g z z

x
  

 
      

  (10) 

where i
j kx x x    and i

k jz z z   , Ez  and iz  are respectively the z-coordinate of the centre of E  

and of the midpoint of edge i , E  and Ep  are respectively the mean density and pressure over E . 

The finite volume formulation of the continuity equation (2) over the element E  writes: 

 0u
E

.   (11) 

using (5), it becomes 

  
3

1

0j j
j j

j

z u x v


     (12) 

The final system to solve for the flow is obtained by writing equation (8) for each edge (two equations per 

edge) and equation (12) for each element.  

3.2. SPATIAL DISCRETIZATION OF THE TRANSPORT EQUATION 

Standard numerical methods, such as FE or FV, usually generate solution with numerical diffusion and/or 

non-physical oscillations when the advection part is dominant within the transport equation. The DG 

allows us to avoid these oscillations [49] since it provides high-resolution scheme for advection. The local 

conservation of FV methods are maintained by the DG, in addition it allows higher order approximations 

that could be used through a variational formulation in place of some hybridised difference or functional 

reconstruction [35]. The method was used on diffusion-advection problems in [9, 15, 29] and multiple 

strategies have been used to adapt the DG method to elliptic problems [4, 8]. More details of DG methods 

can be found in [8, 16, 17]. 
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Concerning the hyperbolic systems, the DG method has proven to be superior to the already existing FE 

methods [8]. The DG method is used to solve the advection equation and combined with the Multipoint 

Flux Approximation (MPFA) method for the dispersion equation. 

The MPFA is locally conservative and handle general irregular grids on anisotropic heterogeneous 

domains. The MPFA method can be combined with the DG method without the time splitting procedure 

[53]. Since the MPFA and the DG use the same type of unknowns (average value per element), therefore 

both discretizations can be gathered into one system matrix. 

The spatial discretization of the DG-MPFA is given as follows: 

By substituting the mass conservation of the fluid in the transport equation [43] and referring to [3], the 

transport equation (3) can then be written in the following mixed form: 

 
 D

D

sat
C

C . ' C C
t

C

     


   

u. u

u D.
 (13) 

where ' /   , and the dispersive flux Du  is assumed to vary linearly inside the element E , therefore, 

 , ,

1
. . .E E

D D E D i D D i
i iE E

dE n dl Q Q
E



       u u u  (14) 

where ,
E
D iQ  is the dispersive flux across the edge i. 

We use the P1 DG method where the approximate solution ( , )hC tx  is expressed with linear basis 

functions E
i  on each element E  as follows: 

      
3

1

, | E E
h E i i

i

C t C t 


x x  (15) 

The three unknowns for each element are the average value of the mass fraction defined at the triangle 

centroid  E Ex , y  and its deviations in each space direction [16] with the corresponding interpolation 

functions:  

      1 2 3, 1, , ,  , .  E E E
E Ex y x y x x x y y y        (16) 

The variational formulation of (13) over the element E  using E
i  as test functions gives (see [53]), 
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


   



   

    

  

u u

                                                   u.η

 (17) 

    
where E  is the boundary edge of the element E, and *C  the upstream mass fraction on E , and 
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' /E E    where the density E is considered as constant inside the element E. 

More details about the expression of the left hand side terms in (18) could be found in [52]. 

Concerning the right hand side term in (17):  ' E
E i

E

satC C   

' ' ' 1 '( ) (1 )E E n E n E
E i E i E i E i

E E E E

sat satC C C C C                  (18) 

Where  

0,

1,

for a full explicit scheme

for a full implicit scheme



 


 (19) 

3.3. DISSOLUTION PROCESS 

To model the salt dissolution process, we used a technique based on the variation of the size of the mesh. 

The simulated domain is only the water circulation area (i.e., flow channel), and as long as the dissolution 

occurs, the size of the mesh within this area will increase (Fig.5). The variation of mesh size is directly 

related to the amount of dissolved salt. For an element E with area E , the dissolved mass within an 

interval of time dt  is given as follows: 

( )sat
dm

Q C C E
dt

         (20) 

where dm  is the amount of the dissolved mass within an interval of time dt . 

Knowing the density definition of a certain amount of salt: 

.s

dm

dA e
          (21) 

where s  is the salt density, .dA e is the volume of the dissolved salt, with dA  the dissolved area and e  

the dissolved thickness. In the case of 2D dissolution process the volume is then reduced to the area dA . 

Using (21) in (20) we get: 

( ).

s

satE C C dt
dA





       (22) 

As shown in (Fig.6), the area of the dissolved salt could be approximated as follows: 

.dA dh dy         (23) 

where dh is the increment that should be added to the edge at the salt boundary, and dy is the height of 

that edge. And since the coordinate variation is related to the nodes, then in case of multiple edges at the 

salt boundary, the amount of dissolved area at each edge is divided on the two corresponding nodes. In 

this case, the height dy  used in (23) to deduce the amount of coordinate increment dh for each node, is 
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nothing but the sum of the halves of the two edges sharing the same node (Fig.7). Consequently, the 

increment dh  can be calculated for each node n at the salt boundary as follows: 

( ).
( )

2. ( ). s

satE C C dt
dh n

dy n





       (24) 

and then it is added to the horizontal ordinate of that node at each time step.  

4. Coupling flow and transport equations 

Numerical simulations of density driven problems require excessive computational time and/or heavy 

equipments due to the strong nonlinearities between the flow and the transport equations. In order to 

reduce the computational needs and maintaining accuracy at the same time, a non iterative time stepping 

scheme based on local truncation error control is used as in [54]. The time stepping procedure is shown as 

follows: 

The local time truncation error of the concentration is evaluated using two approximations of adjacent 

order of accuracy.  

  
1

1 1 11

2

n
n n n n n

n

t
C C C C

t


   
     

e  (25) 

The time step is accepted if the absolute error criterion is verified, 

 1en    (26) 

If this criterion is met, the following time step is controlled by the temporal truncation error tolerance   

using, 

 1

1
min

e
n n

maxn
t t s ,r

max




 
    
 
 

 (27) 

If the error criterion is not satisfied, the current time step is repeated using the latest error estimate  

 1 1
1 1

max
e

n n
j j minn

t t s ,r
max

 
 

 
    
 
 

 (28) 

where j  indexes the recursive step size reduction, maxr  and minr  are used to limit multiplication and 

reduction factors and often set equal to 2.0 and 0.1 respectively and 0 9s .  a safety factor [50]. And the 

temporal truncation error tolerance is set to 0 01.  . 
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5. Results and discussion 

The dissolution results of the laboratory experiments shown refer to the salt block shape after 10, 20, 30 

and 40 hours (Fig.8). The dissolution is significantly remarkable after 40h, and the dissolution at the top of 

the domain is much more important than at the bottom. Despite the direction of freshwater from below to 

above, the low flow velocity value makes the density effect much more important than the boundary flux 

effect of the pump. When dissolution occurs, high density fluid tends to rise and less dense fluid tend to 

sink within the fracture. Referring to equation (20), the dissolution process between solid salt and fluid is 

directly related to the concentration gradient, thus, dissolution is much more important when the fluid is 

not saturated (i.e. low concentration value). And because the less dense fluid is less saturated, the 

dissolution at the top is larger than at the bottom where the fluid with higher density is saturated. Due to 

the fact that the observed dissolution is symmetric with respect to the centre of the domain (Fig. 8), only 

half of the domain was simulated. Therefore, a 2mm wide and 10 cm high fracture is simulated. The flow 

and transport equations are solved within the fracture, and the dissolution effect is considered by 

increasing the size of the fracture (i.e. size of the mesh). The horizontal ordinate of the nodes at the salt 

boundary increases as per equation (24) at each time step. And the horizontal ordinates of all the other 

nodes within the domain increase proportionally to the boundary nodes. This results in a homogeneous 

mesh variation after each time step. A remarkable change of the size of the mesh is observed especially at 

the top of the domain; this variation tends to be less important when going towards the bottom. The mesh 

variation profile confirms the experimental results that show an important dissolution at the top with 

respect to the amount of dissolution that occurs at the bottom, especially after 40h of injection. Even for 

earlier times, the numerical results are also similar to the laboratory experiments (Fig. 9). The 

concentration distribution (Fig. 9 e) affirms the importance of the density effect with respect to the 

injection flux. High concentration values are observed at the bottom and result in a very low the 

concentration gradient between the salt block and the water domain. Therefore, the amount of dissolution 

is lower than at the top of the domain.  

 

6. Conclusion 

The current study reveals the importance of small scale dissolution experiments when trying to understand 

larger field dissolution phenomena. In the presented laboratory experiments a low freshwater flux was 

induced at the opposite of gravity direction. The freshwater flow through a small fracture between two salt 

blocks was observed for 40h, and dissolution occurred from both sides. The results show a high amount of 

dissolution at the top of the domain, and a reduced dissolution towards the base. A specific numerical 
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model was developed to simulate the dissolution problem. The numerical code is based on efficient 

advanced approximations for both spatial and temporal discretization in order to reduce the high 

computational needs and maintaining accuracy at the same time. The numerical model is developed for a 

general triangular mesh and uses the CR finite element method to solve the flow, coupled with DG 

method to solve the advection and MPFA method to solve the dispersion. For the temporal discretization a 

non-iterative time stepping scheme based on local truncation error control was used. In addition, the 

dissolution process is treated numerically by using a dynamic mesh procedure. The mesh variation is 

based on the amount of dissolution flux (i.e. mass) at each edge of the salt boundary. The numerical 

results were found in a good agreement with the laboratory experiments. Hence, the results show the 

efficiency of the developed scheme for solving density driven flow in a reactive dissolution media.   
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Fig.1: Models of natural dissolution aspects, a) before dissolution and b) after dissolution with non-
reactive ceiling. 



 Salt dissolution process    

    
  

88

      

Fig.2: Domain and boundary condition of the experiment. 
 
 
 
 
 

 
Fig.3: Schematic view of the experimental setup for the laboratory dissolution runs. 
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Figure 4: The linear interpolation function for velocity field. 
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Fig.5: The numerical simulated domain. 

 
 
 
 
 

 
Fig.6: Area of the dissolved salt for one finite element. 
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Fig.7: Relative height of the dissolved salt for each node at the boundary. 

 
 
 
 
 
 
 
 

 
Fig.8: Photograph of the dissolution shape at different time steps of the experiment. 
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)e  

Fig.9: Dynamic mesh variation at different time interval, a)-10h, b)-20h, c)-30h,d)-40h, and e) the 
normalized concentration distribution after 40h. 

 
 

 
Fig.10: Comparison between the experimental and the simulated results, a)-with mesh, b) - without mesh. 
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Abstract 

Uncontrolled subsurface evaporite dissolution could lead to hazards such as land subsidence. 

Observed subsidences in a study area of Northwestern Switzerland were mainly due to subsurface 

dissolution (subrosion) of evaporites such as halite and gypsum. A set of 2D density driven flow 

simulations were evaluated along 1,000 m long and 150 m deep 2D cross sections within the 

study area that is characterized by tectonic horst and graben structures. The simulations were 

conducted to study the effect of the different subsurface parameters that could affect the 

dissolution process. Specific concern is given to the heterogeneity of normal fault zones and its 

role for the dissolution of evaporites by considering several permeable faults that include non-

permeable areas. Results show that a large fault zone consisting of several smaller higher 

conductive faults is the most important factor that affects the dissolution compared to the other 

investigated parameters of thickness of the lower karstic aquifer above the halite, a dynamic 

conductivity of the lower aquifer, and varying boundary conditions in the upper aquifer. The 

mixed finite element method (MFE) is used to solve the flow equation, coupled with the 

multipoint flux approximation (MPFA) and the discontinuous Galerkin method (DG) to solve the 

diffusion and the advection parts of the transport equation. 

 

 

Keywords: Density driven flow, Discontinuous finite elements, MPFA, Subrosion, Tectonics, 

Switzerland. 
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1. Introduction  

The importance of density driven flow arises due to its significant role in water resources 

management and engineering (Oude Essink 2001, Paniconi et al. 2001, and Xue Y et al. 1995). 

Simulation of saltwater transport models becomes a real need due to the large number of 

environmental problems such as intrusion of saltwater in coastal aquifers, landfills leakage, 

collapse of abandoned salt mines, radioactive waste disposal in salt rock formations and 

subsurface dissolution of evaporites (Oude Essink 2001, Luo et al. 2012, Ludwig et al. 2001, 

Magri et al. 2009). When carbonate rocks develop cavities over centuries, evaporite rocks can 

form cavities within days. Therefore, gypsum or rock salt are seen as the most soluble common 

rock formation (Martinez et al. 1998). Subsurface dissolution or subrosion occurs when non-

saturated groundwater gets in contact with evaporitic rock formations. The subsurface karst 

development can create additional groundwater pathways. As a consequence, additional 

mobilization of solutes can lead to widespread salinization of aquifers, and also land subsidence. 

Even comparably small subsidence rates can have an important effect on sensitive urban 

infrastructures (e.g. dams, buildings, traffic lines, power plants). The dissolution of salt is directly 

related to the concentration gradient between salt and water. The basic principle was discussed by 

(Johnson 1981, 2005) when he defined four requirements for dissolution of salt (NaCl) or 

gypsum (CaSO4): (1) a deposit of salt or gypsum against which, or through which, water can 

flow, (2) a supply of water subsaturated with Nacl/CaSO4, (3) an outlet where the resulting brine 

can escape, and (4) energy provided from hydrostatic head differences and/or density gradients, 

which causes groundwater flow through the system. Human activities can induce or influence any 

of the four requirements. Zechner et al. (2011) studies three possible causes for the observed land 

subsidence in northwestern Switzerland: (1) natural dissolution of the evaporites of the Middle 

Muschelkalk (anhydrite and halite), which is related to the tectonic setting of the evaporitic 

formations within a set of horst and graben structures, (2) salt solution mining, which has been 

pursued at different locations over the last 150 years, (3) large scale extraction of groundwater in 

an overlying fissured aquifer with hydrostatic connection to the underlying evaporites along fault 

zones with increased hydraulic conductivity. The effects of increased hydrostatic gradient due to 

both groundwater withdrawal and fluid density contrasts were evaluated in more details with a 

series of 2D density-coupled solute transport simulations along an approximately 1000-m long, 

and 150-m deep 2D cross section. Simulation results indicate that the upcoming process of saline 
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groundwater in to the main aquifer occurs under different distributions of subsurface parameters 

and hydraulic boundary conditions. For the presented setup the simulations also revealed that the 

most sensitive factor for the dissolution rate is the structure, or dip of the halite formation, which 

leads to an increase of dissolution rates with increasing dips. However, the authors pointed out 

that the assumption of a well-established homogenous karst with a constant thickness of 10 m on 

top of the salt layer does not take into account the process of evaporitic karst evolution, which is 

characterized by a dissolution process which is coupled to a dynamic development of subsurface 

aquifer parts with increasing porosity and hydraulic conductivity.   

Therefore, the presented work investigates the role of varying parameters such as aquifer 

geometry and transient conductivity on the rate of salt dissolution. They include (1) variations of 

thicknesses of the karst aquifer on top of the salt, or the thickness of the fault zones, (2) a 

dynamic conductivity of the karst aquifer on top of the salt which is directly related to the amount 

of the dissolved salt, and, in addition, (3) variations of the imposed hydraulic boundary 

conditions such as the value of the constant head, or the depth of a well. The 2D simulations are 

conducted using a numerical code that has been tested on a benchmark laboratory experiment in 

Konz et al (2008, 2009a, b), Younes et al (2009, 2011) and field scale models (Zechner et al. 

2011). In addition, the code has been recently tested against the Henry semianalytical solution for 

salt water intrusion (Zidane et al. 2012). The karstified evaporites are represented as porous 

aquifer. The opening porous space and fractures which are created during the dissolution process 

and result in a transient hydraulic conductivity are simulated with a modified discrete fracture 

approach (e.g. Kaufmann, 2002). The authors consider the approach valid on the simulated scale 

due to the fact that no hydraulically relevant larger voids, or conduit network have been observed 

in the dissolved halite or anhydrite/gypsum formations. Previous studies based on field 

investigations and data evaluation, e.g. Ludwig et al. (2001), have shown the importance of 

hydrological heterogeneities at various scales on density-driven transport. Luo et al. (2012) 

presented a 2D and 3D modeling study to describe the impact of different engineering solutions 

and appropriate remedial strategies for an abandoned, flooded deep salt mine in Stassfurt, 

Germany. Luo et al. (2012) found that the hydrogeological structure in the study area played a 

significant role in development of the subsurface concentration distribution. Due to the typical 

lack of knowledge about the hydrogeological structure and properties in field studies, different 

approaches to study the effect of heterogeneity within the simulations were used. Particularly, 
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more concern is given to the geometry of normal faults and their effect on the subrosion process. 

To our knowledge, very few studies have investigated the hydraulic role of sub vertical fault 

zones on the subrosion process. Magri et al. (2011) studied possible explanations for seawater 

intrusion in the Seferihisar-Balcova Geothermal system in Turkey. They found, based on data 

acquisitions and numerical simulations, that groundwater flow and coupled hydrochemical and 

hydrothermal patterns are strongly controlled by fault tectonics. Therefore, specific concern in 

the presented study is given to the structure of the normal fault zone and its role for the 

dissolution of evaporites. In particular two approaches are studied, the variable width of the fault 

and the heterogeneity. In the first approach the effect of different fault widths on the dissolution 

process is studied, whereas in the second approach the single fault is replaced by several thin 

faults separated by impermeable areas.   

2. Model concept 

The study site for the 2D simulations is located in northwestern Switzerland to the east of the 

southeastern border of the Upper Rhine Graben and is part of the Tabular Jura (Fig. 1). Land 

subsidence has been observed at six different locations, and monitored subsidence rates reached 

more than 100 mm/year, affecting area ranges from 100 to 1500 m. The study area is underlain 

by Triassic and Jurassic strata, which slightly dip to the southeast. The subsidence is mainly 

caused by subsurface dissolution of halite (rock salt), and partly by dissolution of overlaying 

anhydrite/gypsum formations of the Middle Muschelkalk. Fracture zones causing increased 

permeability within the Jurassic and Triassic formations are supposed to favor vertical exchange 

of groundwater also across aquitards. A 3D geological model consistent with the kinematic 

evolution of the southeastern border of the Rhinegraben (Spottke et al. 2005) is used to map an 

approximately 1,000-m-long and 150-m-deep 2D cross section. Regional hydrogeological 

boundary conditions for the 2D density-coupled solute-transport simulations are derived from a 

3D regional groundwater flow model with constant density (Fig. 1, 2). The simulated piezometric 

head distribution within the Upper Muschelkalk Aquifer shows the effect of the large-scale 

industrial pumping in the central part of the model (up to 1.5 m3/s), where the piezometric head is 

lowered up to 5 m (Fig. 1).   

In this study, the geometry and the boundary conditions for the 2D density-coupled models were 

considered variable parameters. The initial geometry, boundary conditions and physical 

parameters are similar to the previous models (Zechner et al. 2011), and were subsequently 
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varied according to the scenarios (Table 1-6). Depending on the simulated scenario, the 

numerical model contains 29,000 to 35,000 non-regular triangular finite elements. Large 

elements (5-10 m) are mainly located at the upper aquifer, and their size decreases within the 

fault zones and the lower aquifer to reach less than 20 cm in some parts. According to the 3D 

groundwater model, a constant head of 254.5m was initially imposed on the ESE boundary, but it 

was modified in scenarios (S_Head_2-6) to test its effect on the salt dissolution process. A 

pumping well located at the WNW end of the 2D cross section was simulated with different 

lengths and with equally distributed flux on the vertical filter and fitted. The imposed pumping 

rate of 0.15 m3/s corresponds to a simulated head of 251.0 m in the well as observed in 3D 

simulation of regional groundwater hydraulics (Fig. 1). Similarly to the Hydrocoin test case 

(OECD 1988), an impermeable boundary condition was applied at the lower part of the lower 

aquifer, with a constant concentration and a density of 1200 kg/m3. As a consequence, salt can 

enter the domain only via diffusion effects according to the approximation that salt dissolution is 

instantaneous compared to the simulated time which is 30 years in all the simulated scenarios 

(e.g. Alkattan et al. 1997). In all the simulations, the aquifer was initially filled with freshwater 

(NaCl concentration equals 0) and initial piezometric head was set to 0. 

The discrete fracture approach (Gureghian 1975, Huyakorn et al. 1983) is used to simulate 

density-driven flow within the vertical cross section. Therefore, no additional exchange term 

between matrix and fractures has to be taken into account in order to couple the matrix and 

porous flow. Referring to (Ackerer and Younes 2008, Younes et al. 2009) the flow equation in a 

porous media is given in the following form: 

                               
  0

h C
S

t C t

    
  

    q
    

(1)  

where   is the fluid density [ML-3], S  the specific mass storativity related to head changes [L-1], 

h  the equivalent freshwater head [L], t the time [T],   the porosity [-], C  the solute mass 

fraction [M. salt/M. fluid], q  the Darcy’s velocity [LT-1]. 

3. Effects of varying subsurface parameters 

Modeling density driven flow problems requires a nonlinear coupling between flow and transport 

equations. This nonlinearity is due to the density-viscosity linking between Darcy’s flow and the 

advection dispersion transport equation. The strong nonlinearity between flow and transport can 

typically lead to long CPU times. A spatial and temporal discretization with efficient advanced 
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approximations is developed to reduce the high computational need while maintaining accuracy 

at the same time. The locally conservative method mixed finite element (MFE) is used to 

discretize the flow, whereas the discontinuous Galerkin (DG) method is used to discretize the 

advection combined with the multipoint flux approximation (MPFA) for the discretization of the 

dispersion (Younes et al. 2009, Younes et al. 2011). The (MFE_DG_MPFA) has proven to be an 

accurate and robust discretization when compared to experimental flow tank benchmark data in 

Konz et al (2009a).  

Firstly, the effect of a dynamic hydraulic conductivity of the lower aquifer were studied, and, 

consequently, a dynamic porosity that is related proportionally to the variation of the 

conductivity. Secondly, the effect of the different geometries of the 2D cross sections on the 

dissolution process was investigated such as geometry and width of fault zones and thickness of 

the lower aquifer). And finally, the effect of the boundary and initial conditions (value of the 

hydraulic head, depth of the pumping well) were studied to test their effects on the salt 

dissolution.  

3.1. Hydraulic conductivity 

Groundwater flow in karst aquifers is controlled by several processes. A crucial one is the 

dissolution kinetics that results in karst void, or rapid fracture enlargement within an aquifer and 

depends on the saturation level of NaCl. A large number of numerical experiments have been 

conducted to study the evolution of karst aquifer. The studies start with one dimensional models 

for single fracture enlargement (Dreybrodt 1990, Palmer 1991, Groves and Howard 1994a), and 

continue to the evolution of two dimensional fracture networks with simple boundary conditions 

(Groves and Howard 1994b, Howard and Groves 1995, Siemers and Dreybrodt 1998). All of the 

above mentioned models, and also models that study the flow in a complex porous network 

(Clemens et al. 1996, Kaufmann and Braun 1999, 2000), did not consider the effect of the 

increasing conductivity of the fractures. A systematic parameter study for a karst aquifer has been 

conducted by (Kaufmann 2002). The latter studied the effect of a time dependent conductivity 

that takes the following form 

   
3g [d(t)]

K(t)=              
32v       

(2)  

where g is the acceleration of the gravity, and v is the kinematic viscosity of water. The term d(t) 
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is the time dependent fracture diameter, since the size of the fractures increases with the 

dissolution process, and  corresponds to the average fracture spacing. Following Kaufmann 

(2002), modifications to the equation were introduced (2) in order to include the numerical 

requirement that accounts for the amount of dissolved salt in the simulated scenarios. The MPFA 

method allows us to calculate the mass of salt (in kg) that enters the domain through diffusion. 

The amount of the dissolved mass is time dependent, since it depends on the flow velocity and 

the saturation level of water. The density definition of the dissolved solid is: 	

    s

m(t)
=

V
        (3) 

where s [kg/m3] is the salt density, m(t)[kg] is the mass of the dissolved salt block, and V [m3] is 

the volume of the dissolved salt block. The latter could be expressed in function of the thickness, 

width and length of the dissolved salt block (Fig. 3). 

V=L.W.d(t)        (4) 

L, W and d(t)[m] are the length, width and thickness (or diameter), respectively, of the dissolved 

salt. In a 2D model, the width term W is set to (W =1) in equation (4). Hence, replacing (3) and 

(4) into equation (2) results in: 

0

3

7 4 4 0

0
32

s

K( t ) K( t ) . E , if t

m( t )

Lg
K( t ) , if t


 

   

  
  
   

   (5) 

In the simulated scenarios is considered a constant that is updated iteratively at each time step, 

and its initial value is simply deduced from the initial value of the conductivity for the lower 

aquifer which is 0K(t )=7.4E-4 (Table 1). At the first time step ( 1t=t ), the amount of the 

dissolved salt is calculated. Using equation (5), the first value of   noted 0 is then deduced as 

follows: 

3

1

0
032

s

m( t )
Lg

K( t )






 
 
        (6) 

The updated value of K at the time step n is then deduced from both the dissolved mass at this 

time step and the calculated value of  at n-1. As a consequence, two simulations were ran 
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simultaneously: in the first one the value of the conductivity was kept constant with respect to the 

dissolved salt, while in the second the hydraulic conductivity increases with respect to the amount 

of dissolved salt as shown in equation (5). As expected, increasing the conductivity will increase 

the dissolution rate. Since more freshwater can enter the lower aquifer, the concentration level 

will be decrease within the lower aquifer, while the concentration gradient will increase. A 

remarkable increment of the mass input is observed within the first variation of the conductivity 

value. After this leap, the mass difference between the dynamic and the constant conductivity 

tends to be constant, especially after t = 0.2 years. The steady state of both simulations is reached 

in 0.5 years (Fig.4). 

3.2. Aquifer geometry 

The amount of salt that enters the system is controlled by the solute concentration gradient 

between (saturated) boundary condition and the groundwater in the adjacent lower aquifer. 

Therefore, the access of freshwater to the lower boundary is also affected by the geometry, or 

thickness of the lower aquifer and the fault zones, which form a hydraulic connection to the 

freshwater in the upper aquifer. Zechner et al. (2011) have assumed a uniform lower aquifer and 

fault zone thickness of 10m. Due the uncertainty related to the thickness of the geometries, 

different thicknesses ranging from 1 to 10m for the lower aquifer and 0.5 to 40 m for the fault 

zones were tested to simulate the resulting amount of dissolved salt. 

As expected, the x-axis flow velocity component increased when the thickness of the lower 

aquifer decreased (Fig.5, Scenario S_Lower_1; Table 2). Observed velocities of 5 m/d show that 

the convective part of the transport equation appears to have an important effect for dispersion of 

the dissolved salt over the upper aquifer, especially in areas near the two fault zones (Fig.6, 

Scenario S_Lower_1). The thinner lower aquifer forces the groundwater to flow faster, and 

therefore accelerates the dissolution process (Fig.7). A considerable decrease of the mass input is 

noticed when the lower aquifer thickness increases. Hence, an important variation of the mass 

input is seen when the lower aquifer thickness goes from 8 to 10 m compared to recent variation 

from 5 to 8m, and to old variation from 1 to 3m as shown in (Fig.7). The thickness of the lower 

aquifer and the amount of dissolved salt has proved to be inversely correlated, which is due to the 

velocity effect.  

3.3. Faults geometry 
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It was expected that the thickness of the fault zones will have a similar influence on the salt 

dissolution, because the fault width influences both flow rate and velocity. The following 

simulations revealed a completely different effect for the different fault zones thicknesses. In fact, 

different values for the fault zones thicknesses were simulated, going from 0.5 m, to 40 m width 

(Table 3). The fault thickness could be related to flow velocity in the fault zones, where large 

faults induce small velocities (Fig. 8, Scenario S_Fault_7) and, thus, less dissolution compared to 

the other simulations (variable permeability, lower aquifer thickness, etc..). But if the fault zones 

get wider, a large amount of freshwater will invade the lower aquifer and the concentration of 

groundwater in the lower aquifer will be reduced. Hence, the concentration gradient between the 

salt layer and the water within the lower aquifer increases, and, therefore, the dissolution process 

with larger faults will increase (Figs. 9, 10). The results show (Fig. 10) that the mass input tends 

to reach a steady state when the fault reaches the 40m thickness, since the last variation of the 

mass input over the thickness variation from 25 to 40 m induces the smallest mass increase 

among the different scenarios. Unfortunately, numerical limitations prevented us from simulating 

values with fault thickness above 40m to find the fault thickness at which the steady state of mass 

input is reached. The limitations are mainly due to the lack of memory when increasing the fault 

thickness and maintaining the required mesh resolution in order to avoid numerical instability. 

The velocity difference between the fault zone at the WNW boundary and the drawdown of the 

pumping well induces turbulences within the faultzone which is basically due to the density 

contrast between the upper and the lower aquifers (Fig. 8).  

In the previous sections the effect of the faults thicknesses on the dissolution process was 

demonstrated. With a 40 m thickness of fault, the dissolution rate has increased with about 125% 

with respect to the original model (10 m of thickness). Another factor that could affect the salt 

dissolution is the number of faults and their distribution. To study the impact of this factor on the 

salt dissolution, different scenarios of largest (40 m) fault were applied. Major faults causing 

significant displacement of sediments typically consist of sets of smaller faults, which can be 

grouped into a fault zone. Groundwater models often describe fault zones as homogeneous zone 

with increased hydraulic conductivity (e.g. Magri et al. 2011). In order to account for a more 

realistic approach of heterogeneity within the fault zone, the 40 m width is decomposed into 2, 3 

and 6 faults with different combinations of fault widths (Table 6).  



 Evaporite dissolution and risk of subsidence    

    
  

105

Despite that the actual active width of the fault is reduced when the faults number is increased, a 

substantial increase of mass input is observed when increasing the fault numbers (Figs. 11, 12). 

The dissolved mass increased by an amount of 13% when the wide (40 m) fault is replaced by six 

thin (2.5 m) faults (Fig. 12). This difference in mass input is due to the fact that steady state flow 

conditions require more time to be established in the case of six thin faults compared to the one 

single wide fault. To illustrate this difference, the time required for the lowest layer at the lower 

aquifer to reach the saturation concentration was investigated. Therefore, average concentrations 

for all the finite elements bordering the bottom of the lower aquifer were investigated for both 

cases (one large and six thin faults). Results show that 1.9 years are required in order to reach 

saturation within the lowest layer (i.e. no more dissolution) in the case of one wide fault, whereas 

up to 2.75 years in the case of six thin faults (Fig. 13). An important variation of the horizontal 

velocity component is observed in the lower aquifer in the case of 6 thin (2.5 m) faults (Fig. 14) 

compared to the 1 large (40 m) fault (Fig. 8). The average velocity over the lower aquifer is 3.8 

m/day in the case of six thin faults compared to 2.5 m/day in the case of one large fault. The 

higher velocity in the lower aquifer extends the required time for steady state of flow to be 

established and therefore increases the amount of dissolved salt. 

3.4. Effect of boundary conditions 

The simulated varying subsurface parameters proved to have an important effect on salt 

dissolution. The observed variation reached up 125% (effect of fault thickness). Varying 

boundary conditions, however, are also influencing flow velocities and have therefore the 

potential to accelerate salt dissolution. Zechner et al. (2011) showed that the presence or absence 

of a pumping well did not have a significant effect on the subrosion process in a well-established 

karst. The authors did not test if the penetration depth of the pumping well would affect the 

dissolution, neither did they observe how the dissolution could be influenced by a variation of 

prescribed hydraulic heads at the recharging ESE boundary. In fact, increasing the hydraulic head 

at the inlet boundary will certainly increase the flow velocity above the fault zone at the ESE 

boundary. As a first approach, it could be expected that increasing the velocity above the ESE 

fault zone would create a pressure decrease in the area. Thus, the velocity within the lower 

aquifer could also be increased due to this decrease and, hence, potentially increase the 

dissolution process. The results, however, do not confirm any effect on dissolution due to varying 

hydraulic heads at the ESE boundary. Different values of the prescribed hydraulic boundary 
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heads were considered, going from 254 m to 300 m (Table 4). The effect of the simulated 

scenarios for the hydraulic head appears somehow oscillatory (Fig. 16). Hydraulic heads of up to 

300m at the ESE boundary lead to a significant increase in horizontal velocity parallel to the x-

axis of up to one magnitude in the upper aquifer. Its influence on both the horizontal velocity and 

the resulting dissolution in lower aquifer, however, is negligible (Fig. 17, Scenario S_Head_6). 

The difference between the minimum and the maximum values of the dissolved salt within the 

different scenarios is less than 1 % (Fig. 16). Therefore, the value of the hydraulic head could be 

considered as a negligible parameter on the dissolution process. The effect of the well depth, 

however, confirms the results of Zechner et al (2011). Different lengths of the wells were 

considered, going from 25m to 50 m (Table 5). As expected, the influence of the depth is also 

negligible on the amount of the dissolved salt (Fig. 18).  

4. Conclusions 

Observed subsidences in the study area of Northwestern Switzerland were mainly due to 

subsurface dissolution (subrosion) of evaporites (e.g. halite and gypsum). A set of 2D density 

driven flow simulations were evaluated along 1,000 m long and 150 m deep 2D cross sections 

within the study area. The simulations were conducted to study the effect of the different 

parameters that could affect the dissolution process.  

Modeling density effects with high contrasts requires a coupled flow-transport numerical model 

for efficient computation due to the strong density-viscosity nonlinearity. A robust numerical 

code with advanced spatial and temporal approximations is used to reduce the excessive 

computational requirements and maintained the accuracy of the solution at the same time. 

Numerical difficulties at the presented field scale were encountered with the simulation of 

comparably thin structures such as fault thicknesses of less than 0.5 m and with lower aquifer 

thicknesses of less than 1 m.  

A reduction of the thickness of the lower aquifer to 1 m increases the dissolution rate by more 

than 40%. Modeling the problem with a dynamic conductivity (varied relatively to the amount of 

dissolved salt), proved to have an important effect on the rate of dissolution: a 25% increase of 

the dissolution rate is observed when simulating the 2D model with a dynamic conductivity. 

Steady state of flow, however, is reached in both cases (with constant and dynamic conductivity) 

within 0.5 years. Among the studied parameters, two affecting the velocity field mostly in the 

upper aquifer had a negligible effect on the dissolution rate: varying the value of the hydraulic 
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head at the ESE boundary from 254 m to 300 m as well as increasing the penetration depth of the 

pumping well from 25 m to 50 m changed the amount of dissolved salt by less than 1%.  

An increase of the dissolution rate up to 125% is observed when the thicknesses of the fault zones 

were increased to 40 m width. An additional concern is given to the most effective parameter, 

which is the structure of the normal fault zone. Therefore, a large (40 m) fault is replaced with 

two, three and six thin faults on both sides of the aquifer (WNW and ESE). A remarkable 

increasing in the dissolution is observed (13%) when going from one large fault to six thin faults. 

The reason why variation of normal fault zone structure leads to the highest variation of 

dissolution might be partly related to the field-specific setup. But the presence of conductive 

vertical zones in a variety of geological settings combined with the typical uncertainty related to 

the hydraulic characteristics of fractured fault zones suggests that faults play an important role in 

density-driven flow of groundwater and transport of solutes. These settings include also sites 

where seawater intrusion contaminates drinking water reservoirs, planned sites for disposal of 

radioactive waste, or sites for use of geothermal energy. 

The presented study simulates the halite dissolution process with diffusion at the lower interface 

(Alkattan et al. 1997). More accurate results could possibly be obtained if the dissolution 

equation is implemented in the transport part within the numerical code. Moreover, the flow 

equation in the numerical code is based on the Darcy’s equation to model the flow part. Within 

larger developing voids, fractures, or conduits, however, Darcy’s equation is no longer valid. An 

implementation of Stokes equation for laminar free-flow media could provide more accurate 

solutions of the flow field and coupled dissolution process within the larger voids.  
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Fig. 1: Study area map in Northwestern Switzerland, showing: location of subsidence areas, normal faults, simulated 
piezometric head within the upper aquifer, and location of 2D cross section for density-coupled transport model 
(modified after Zechner et al 2011). 
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Fig. 2: 2D cross-section with hydrostratigraphic model for the simulation of density-coupled flow and transport. 
Used boundary conditions are “constant head” (CH; narrow dashed line) to simulate pumping at the well, inflow 
from the ESE, and outflow at the bottom towards the ESE. Boundary conditions of “constant concentration” (CC; 
wide dashed line) simulate solute flux into the bottom of the lower aquifer  
 

 

 

        

                                                           Fig. 3: Volume of the removed salt block 
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Fig. 4: Effect of variable conductivity on the amount of dissolved salt, K is the hydraulic conductivity  

 

 
Fig. 5: Simulated x-component of velocity with 1m thickness of the lower aquifer after 30 years 

Scenario (S_Lower_1) 

 
Fig. 6: Simulated NaCl Concentration with 1m thickness of the lower aquifer after 30 years 

Scenario (S_Lower_1) 
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 Fig. 7: Effect of lower aquifer thickness on the amount of dissolved salt (each point is a 30 years 

independent simulation). 
 

 
Fig. 8: Simulated x-component of velocity with 40m thickness of the fault zones after 30 years 

Scenario (S_Fault_7) 
 

 
Fig. 9: Simulated NaCl Concentration with 40m thickness of the fault zones after 30 years 

Scenario (S_Fault_7) 
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Fig. 10: Effect of fault zone thickness on the amount of dissolved salt (each point is a 30 years independent 

simulation).  
 

 
Fig. 11: Mass input with respect to the active width for the different fault number scenarios. 
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Fig. 12: Active width for the different fault number scenarios. 

 
Fig. 13: Required time to reach the saturation in the lower aquifer. 

 
Fig. 14: Simulated x-component of velocity (with 6 thin faults) after 30 years. 



 Evaporite dissolution and risk of subsidence    

    
  

120

 
Fig. 15: Simulated NaCl Concentration (with 6 thin faults) after 30 years. 

 
 

  
Fig. 16: Effect of the hydraulic head on the amount of dissolved salt (each point is a 30 years independent 

simulation).  
 
 

 
Fig. 17: Simulated x-component of velocity for the (300m) hydraulic head after 30 years 

Scenario (S_Head_6) 
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Fig. 18: Effect of the well depth on the amount of dissolved salt (each point is a 30 years independent simulation) 

 
 

                  Scenarios 
Parameters S_K_1 S_K_2 

K Upper Aq. [m/s] 7.4E-4 7.4E-4 
ε Upper Aq.  [-] 3% 3% 
K Lower Aq.[m/s] 7.4E-4 Dynamic 
ε Lower Aq. [-] 1% Dynamic 
K Fault zones[m/s] 7.4E-4 7.4E-4 
ε Fault Zones  [-] 1% 1% 
Well depth      [m] 25 25 
Fault thickness[m] 10 10 
Right side head[m] 254.5 254.5 
Lower Aq. Slope[-] 6% 6% 
Lower Aq. Thickness [m] 10 10 

Table 1: Values of physical and geometrical parameters for the set of scenarios concerning the variation of the lower 

aquifer thicknesses.  ε is the porosity and K is the hydraulic conductivity.   
 

                  Scenarios 
Parameters S_Lower_1 S_Lower_2 S_Lower_3 S_Lower_4 S_Lower_5 

K Upper Aq. [m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Upper Aq.  [-] 3% 3% 3% 3% 3% 
K Lower Aq.[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Lower Aq. [-] 1% 1% 1% 1% 1% 
K Fault zones[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Fault Zones  [-] 1% 1% 1% 1% 1% 
Well depth      [m] 25 25 25 25 25 
Fault thickness[m] 10 10 10 10 10 
Right side head[m] 254.5 254.5 254.5 254.5 254.5 
Lower Aq. Slope[-] 6% 6% 6% 6% 6% 
Lower Aq. Thickness [m] 1 3 5 8 10 

Table 2: Values of physical and geometrical parameters for the set of scenarios concerning the variation of the lower 

aquifer thicknesses.   ε is the porosity and K is the hydraulic conductivity. 
 
 

                  Scenarios 
Parameters S_Fault_1 S_ Fault _2 S_ Fault _3 S_ Fault _4 S_ Fault _5 S_ Fault _6 S_ Fault _7 

K Upper Aq.   [m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Upper Aq.    [-] 3% 3% 3% 3% 3% 3% 3% 
K Lower Aq.  [m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Lower Aq.   [-] 1% 1% 1% 1% 1% 1% 1% 
K Fault zones  [m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 



 Evaporite dissolution and risk of subsidence    

    
  

122

ε Fault Zones  [-] 1% 1% 1% 1% 1% 1% 1% 
Well depth      [m] 25 25 25 25 25 25 25 
Fault thickness[m] 0.5 2 4 5 10 25 40 
Right side head[m] 254.5 254.5 254.5 254.5 254.5 254.5 254.5 
Lower Aq. Slope[-] 6% 6% 6% 6% 6% 6% 6% 
Lower Aq. Thickness [m] 10 10 10 10 10 10 10 

Table 3: Values of physical and geometrical parameters for the set of scenarios concerning the variation of the Fault zones 

thicknesses. ε is the porosity and K is the hydraulic conductivity. 
 
 
 

                  Scenarios 
Parameters S_Head_1 S_Head_2 S_Head_3 S_Head_4 S_Head_5 S_Head_6 

K Upper Aq. [m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Upper Aq.  [-] 3% 3% 3% 3% 3% 3% 
K Lower Aq.[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Lower Aq. [-] 1% 1% 1% 1% 1% 1% 
K Fault zones[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Fault Zones  [-] 1% 1% 1% 1% 1% 1% 
Well depth      [m] 25 25 25 25 25 25 
Fault thickness[m] 10 10 10 1 10 10 
Right side head[m] 254.5 260 270 280 290 300 
Lower Aq. Slope[-] 6% 6% 6% 6% 6% 6% 
Lower Aq. Thickness [m] 10 10 10 10 10 10 
Table 4: Values of physical and geometrical parameters for the set of scenarios concerning the variation of the right side hydraulic 

head. ε is the porosity and K is the hydraulic conductivity. 
                  Scenarios 
Parameters S_well_1 S_well_2 S_well_3 S_well_4 S_well_5 

K Upper Aq. [m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Upper Aq.  [-] 3% 3% 3% 3% 3% 
K Lower Aq.[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Lower Aq. [-] 1% 1% 1% 1% 1% 
K Fault zones[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Fault Zones  [-] 1% 1% 1% 1% 1% 
Well depth      [m] 25 30 35 40 50 
Fault thickness[m] 10 10 10 10 10 
Right side head[m] 254.5 254.5 254.5 254.5 254.5 
Lower Aq. Slope[-] 6% 6% 6% 6% 6% 
Lower Aq. Thickness [m] 10 10 10 10 10 

Table 5: Values of physical and geometrical parameters for the set of scenarios concerning the variation of the well depth.  ε is 
the porosity and K is the hydraulic conductivity.  
 

                  Scenarios 
Parameters S_FN_1 S_FN_2 S_FN_3 S_FN_4 

K Upper Aq. [m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Upper Aq.  [-] 3% 3% 3% 3% 
K Lower Aq.[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Lower Aq. [-] 1% 1% 1% 1% 
K Fault zones[m/s] 7.4E-4 7.4E-4 7.4E-4 7.4E-4 
ε Fault Zones  [-] 1% 1% 1% 1% 
Well depth      [m] 25 25 25 25 
Overall Fault thickness[m] 40 40 40 40 
Right side head[m] 254.5 254.5 254.5 254.5 
Lower Aq. Slope[-] 6% 6% 6% 6% 
Lower Aq. Thickness [m] 10 10 10 10 
Faults number [-] 1 2 3 6 
Active width [m] 40 2x10 3x5 6x2.5 
Gap [m] 0 1x20 2x12.5 5x5 

Table 6: Values of physical and geometrical parameters for the set of scenarios concerning the variation of faults number (FN).  ε 
is the porosity and K is the hydraulic conductivity.  
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General conclusions and perspectives 

The work presented in this thesis is divided into three main parts. Previous to the main parts, 

general mathematical and numerical methods that could be used to solve the flow and the 

transport problem in porous media and in free flow domains are introduced. Compared to 

different solution methods (FD, FV, FE, TH), and taking into account that the flow equations 

(Darcy and Stokes) should be coupled with density effects, the MFE method was used to solve 

the flow in porous media and the CR  finite element method was used to solve the flow in free 

flow domains. Moreover, since the standards numerical methods (FV, FE) generate solution with 

numerical diffusion and/or non-physical oscillations, the DG-MPFA method was used to solve 

the advection-diffusion transport equation. 

In the first part of this thesis, the developed MFE_DG_MPFA model was compared against a 

well-developed semi-analytical solution. The semi-analytical method was already developed by 

Henry [Henry 1964] in the saltwater intrusion problem. However, this solution can only simulate 

saltwater intrusion with unrealistic large amount of dispersion. The solution procedure developed 

by Henry is based on two steps: (i) an approximation of the solution by using a Fourier series 

representation with a certain truncation order of the coefficients and (ii) resolution of a strongly 

non-linear algebraic system to calculate these coefficients. This iterative technique is based on a 

sequential resolution of nonlinear systems of flow and mass transport. With this technique, 

convergence problems are encountered when decreasing the value of the molecular diffusion. To 

overcome these difficulties, a new procedure to calculate the semi-analytical solution was 

developed in this thesis. This procedure consists of solving simultaneously the flow and transport 

algebraic equations by using the Levenberg-Marquardt algorithm [Levenberg 1944, Marquardt 

1963]. The use of this technique allowed developing, for the first time, semi-analytical solutions 

of saltwater intrusion in the case of small diffusion and in the case of a large density contrast. 

A new semi-analytical solution was developed in the second part of this thesis. The semi-

analytical solution for density driven free flows was developed by following the steps of Henry 

[Henry 1964], by using the Fourier-Galerkin method. Similar to the semi-analytical solution 

algorithm adopted for density driven flow in porous media, the Levenberg-Marquadt algorithm 

[Levenberg 1944, Marquardt 1963] was used to solve the nonlinear algebraic equations in free 

flow domains. In order to validate the CR_DG_MPFA numerical model, the latter was compared 
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against the developed semi-analytical solution in a synthetic saltwater intrusion problem through 

a fracture, where a good agreement was reproduced.   

In the last part of this manuscript the focus was on the dissolution phenomenon. Within the 

framework of the project, the study of salt dissolution in fractures was recently studied by 

conducting a set of laboratory experiments for a salt block with cylindrical hole [Gechter et al. 

2008]. As a continuation of this study, a numerical model was developed in this thesis to simulate 

the salt dissolution within fractures. To simulate the salt dissolution process, a dynamic mesh 

routine was also developed and coupled to the CR_DG_MPFA numerical model. This numerical 

model with dynamic mesh adaptation was used to simulate a simple dissolution experiment for a 

vertical fracture that has been recently conducted at Nancy University. The obtained numerical 

dissolution profiles were in good agreement with the experimental result. 

Finally, the density driven flow code in porous media was used to run a set of numerical 

simulations on a 2D regional cross section from the Muttenz-Pratteln area. The aim of this study 

was to reveal the most important parameters that have an influence on the salt dissolution process 

that leads to the observed land subsidence within this area. The tectonic elements of faults were 

found to be the most important parameters that affect the salt dissolution. By varying the 

thickness and the repartition of faults the amount of the dissolved salt increased by more than one 

magnitude. The thickness and the permeability variation within the lower aquifer were found to 

have important effects on the salt dissolution. Effects of other parameters like the well depth and 

the hydraulic head at the boundary were found to be negligible.  

 

Among the mentioned points, we could summarize the following conclusions: 

 This deficiency encountered when solving the Henry problem was avoided by using the 

Levenberg-Marquardt algorithm to calculate the coefficients of the Fourier series. The 

adopted solution algorithm improve the applicability of the semianalytical solution of the 

Henry problem to saltwater intrusion problems with reduced diffusion and with high 

density contrast, and are therefore more suitable to benchmark density-driven flow codes. 

 The new developed semi-analytical solution for density drive flow in a free flow media is 

considered as a useful tool to validate density driven Stokes flow codes.   
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 The developed procedure by combining the numerical resolution of density driven free 

flows with mesh adaptation is suitable to take into account evolution of fracture geometry 

due to dissolution. 

 The geometry of the aquifer above the evaporite has a great influence on the subrosion 

process, especially the fault thickness values. An increase of the dissolution rate up to 

125% is observed when the thicknesses of the normal fault zones were increased to 40 m 

width. A similar effect is observed when reducing the thickness of the aquifer to 1 m, 

which increases the dissolution rate by more than 40%. 

 

In the framework of this thesis we could point out some ideas for further investigations:  

 The results of this research thesis could be used as a basis for further experimental and 

conceptual model developments on salt dissolution and solute transport by density-driven 

groundwater flow. These may ultimately help provide predictions on land subsidence and 

other risks. 

 The gained knowledge within this thesis could contribute to a 3D simulation of density 

flow with field data and geological structures. This could help to improve the knowledge 

on regional flow fields such as at the presented subsidence area in the region of Basel. 

 The reliability of the developed numerical tools has been proven against semi-analytical 

and experimental results; therefore further numerical studies on field scale subrosion 

processes could be conducted. 

 The studied dissolution case is of course an oversimplified representation of a natural 

system; but the developed code with mesh adaptation could be used as a starting point to 

study the dissolution phenomenon on real field applications, such as the development of 

karstic voids in evaporites coupled with flow and transport within these voids.  
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