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Instandhouding van samenwerking en diversiteit in de mycorrhiza-symbiose 

 

Samenvatting 

 

 Mutualistische relaties tussen planten en arbusculaire mycorrhiza-schimmels (AMF) 

zijn uitermate wijd verbreid (ongeveer 80% van de landplanten worden door deze 

organismen gekoloniseerd) en oud (meer dan 450 miljoen jaar). Deze symbiose is een 

essentiële factor in het functioneren en de productiviteit van ecosystemen; ze is ook sterk 

betrokken bij de kringloop van twee sleutelelementen, fosfor en koolstof. In de huidige 

context van verlies van biodiversiteit is de instandhouding van dit mutualisme erg 

belangrijk geworden. 

  Het doel van dit proefschrift was om de stabiliteit van het plant-schimmel-

mutualisme beter te begrijpen. Ik richtte mijn aandacht allereerst op de uitwisseling van 

nutriënten, waarbij ik testte of de gastheerplant en de schimmelsymbiont in staat zijn om 

onderscheid te maken tussen verschillende potentiële partners en meer middelen toe te 

wijzen aan partners die meer nutriënten aanleveren. Vervolgens bestudeerde ik de 

mogelijkheid dat de gastheerplant betrokken is bij de levering van secundaire metabolieten 

aan de schimmelhyfen. We ontwikkelden een nieuwe hypothese, namelijk dat de door de 

plant geleverde chemische bescherming positief gecorreleerd is met het niveau van 

samenwerking (d.w.z. nutriëntenlevering) door de wortelsymbionten. 

  Vervolgens bewoog ik me van het individuele niveau naar het niveau van de 

levensgemeenschap door het effect te bestuderen van een afname van de 

plantendiversiteit op de diversiteit van wortelsymbionten. Hiervoor gebruikte ik moleculaire 

analyses en innovatieve methodes, zoals het grootschalig uitlezen van DNA. Om de studie 

van de verkregen DNA-sequenties van mycorrhiza-schimmels en andere schimmels te 

vergemakkelijken,! werkte! ik! samen! met! collega�s! aan! de! oprichting! van! een!

gegevensbank! getiteld! �Phymyco-DB�,! die! publiekelijk opengesteld werd in 2012. Ten 

slotte bediscussieer ik de implicaties van het mycorrhiza-mutualisme in de context van 

landbouwsystemen en ik stel nieuwe wegen voor om zulke systemen te beheren. 

  Dit promotieonderzoek biedt nieuwe inzichten in de vraag hoe de interacties tussen 

planten en AM-schimmels werken en hoe ze ecologische en evolutionaire processen 

vormgeven in natuurlijke en landbouwecosystemen. Deze inzichten zijn van 

doorslaggevend belang bij de ontwikkeling van een meer ecologisch verantwoorde 

intensieve landbouw. Dit project heeft nieuwe kennis ontwikkeld en nieuwe visies in beeld 
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gebracht ten aanzien van het verlies van soortendiversiteit bij planten en de gevolgen 

daarvan voor de stabiliteit van AM-symbioses. Omdat arbusculaire mycorrhiza-schimmels 

essentieel zijn bij ecosysteemprocessen en het behoud van bodemvruchtbaarheid zou dit 

werk een belangrijke invloed moeten hebben in (i) het bodembeschermingsbeleid, (ii) het 

onderzoek naar plantenveredeling, en (iii) het ontwerp van duurzame landbouwsystemen. 

 

Sleutelwoorden: mutualisme, planten, arbusculaire mycorrhiza-schimmel, diversiteit, 

levensgemeenschap, evolutie, samenwerking, ecosysteemfunctioneren, koolstofallocatie, 

secundaire metabolieten, SSU rRNA gen, grootschalig uitlezen van DNA. 
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Summary 

 

 The mutualism between plants and arbuscular mycorrhizal fungi is extremely 

widespread (~ 80% of plants are colonized by these organisms) and ancient (over 450 

million years ago). This symbiotic relationship is an essential component of healthy 

ecosystem functioning and productivity, and is strongly involved in the cycle of two key 

elements: phosphorus and carbon. Maintaining this mutualism has become especially 

important in the current context of a biodiversity loss. One goal of this thesis was to 

understand the stability of the mutualism. I first focused on nutrient exchange, testing 

whether plant host and fungal symbionts are able to discriminate among partners, and 

allocate more resources to those individuals providing more nutrients. I then explored the 

possibility of the host-plant involvement in the protection of mycorrhizal symbionts via a 

transfer of secondary metabolites into fungal hyphae. We introduced a new hypothesis 

suggesting that chemcial protection from the plant is positively correlated with the level of 

cooperation (i.e. nutrient transfer) of the fungal symbiont. I then moved from the individual 

to the community by studying the effects of decreasing plant diversity on the diversity of 

root symbionts. To this aim, I utilized molecular analyzes and innovative tools, such as high 

throughput sequencing. To further facilitate the study of the obtained sequences and other 

fungal!sequences,!I!worked!with!colleagues!to!create!a!database!�Phymyco-DB�!which!was!

released to the public in 2012. Finally, I discuss the implication of the mycorrhizal 

mutualism in the context of current agricultural systems and propose new trajectories to 

manage these systems. 

 This PhD project provides new insights on how plant and AM fungi interactions work 

and how they shape ecological processes and evolutionary trajectories in natural and 

agricultural ecosystems. These points are of major importance to develop a more 

ecologically intensive agriculture. The project has provided new knowledge and 

perspectives on the loss of plant diversity, and its consequences for AM symbiosis stability. 

As arbuscular mycorrhizal fungi are essential in ecosystem processes and soil fertility 

maintenance, this work should have a broad impact in (i) the soil protection policy, (ii) the 

research on plant breeding and (iii) the design of sustainable agricultural systems. 

 

Key words: mutualism, plant, arbuscular mycorrhizal fungi, diversity, communities, evolution, 

cooperation, ecosystem functioning, carbon allocation, secondary metabolites, SSU rRNA gene, 

amplicon mass sequencing. 
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Résumé 

 

 Le mutualisme entre les plantes et les champignons mycorhiziens arbusculaires est 

extrêmement répandu (~ 80% des plantes sont colonisées par ces organismes) et ancien (il y a 

plus de 450 millions d'années). Cette relation symbiotique est une composante essentielle du 

fonctionnement des écosystèmes et de leur productivité, et est fortement impliquée dans le cycle 

de deux éléments clés: le phosphore et le carbone. Le maintien de ce mutualisme est devenu 

particulièrement important dans le contexte actuel de perte de biodiversité. Un des objectifs de 

cette thèse était de comprendre la stabilité de ce mutualisme. L'accent a tout d'abord été mis sur 

les échanges de nutriments impliqués dans cette symbiose, en testant si la plante hôte et les 

symbiotes fongiques sont capables de discriminer leurs différents partenaires, et d'allouer 

davantage de ressources aux partenaires fournissant plus de nutriments. La possibilité de 

l'implication de la plante hôte dans la protection des symbiotes mycorhiziens via un transfert de 

métabolites secondaires dans les hyphes a ensuite été étudiée. Nous avons alors pu émettre une 

nouvelle hypothèse suggérant qu'une protection impliquant des métabolites secondaires venant de 

la plante serait positivement corrélée avec le niveau de coopération (à savoir le transfert des 

nutriments)! du! champignon! symbiotique.! L�échelle! d'étude! est! ensuite! passée! de! l'individu! #! la!

communauté en étudiant les effets de la diminution de la diversité végétale sur la diversité des 

symbiotes racinaires. Pour ce faire, des analyses moléculaires et des outils novateurs ont été 

utilisés, tels que le séquençage à haut débit. Pour faciliter l'étude des séquences obtenues, une 

base de données 'Phymyco-DB'  rendue publique en 2012 a été utilisée. Enfin, je discute de 

l'implication du mutualisme mycorhizien dans le contexte des systèmes agricoles actuels et 

propose de nouvelles trajectoires pour gérer ces systèmes.  

               Ce projet de thèse apporte un nouvel éclairage sur la façon dont fonctionnent ces 

interactions entre les plantes et les champignons MA et sur la manière dont ils façonnent les 

processus écologiques et les trajectoires évolutives dans les écosystèmes naturels et agricoles. 

Ces points sont d'une importance majeure pour le développement  d'une agriculture plus 

écologiquement intensive et durable. Le projet a fourni de nouvelles connaissances et 

perspectives sur la perte de la diversité végétale et ses conséquences pour la stabilité de la 

symbiose MA. Comme les champignons mycorhiziens arbusculaires sont essentiels dans les 

processus des écosystèmes et l'entretien de la fertilité des sols, ce travail devrait avoir un large 

impact dans (i) la politique de protection des sols, (ii) la recherche sur l'amélioration des plantes et 

(iii) la conception de systèmes agricoles durables. 

 

Mots Clés: mutualisme, plante, champignons mycorhiziens à arbuscules, diversité, communautés, 

coopération, fonctionnement des écosystèmes, allocation de carbone, métabolites secondaires.  

SSU rRNA, séquençage de masse. 
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General introduction 

 

I. Relationships among living organisms 

  

 Ecosystems are continuously changing under the action of ecological and 

evolutionary forces. In addition to abiotic factors, biotic determinant, can dramatically affect 

the capacity of a given organism to survive in an ecosystem. A pathogen or a competitor 

may negatively impact individuals thereby causing changes in ecosystem composition, 

and these intra- and interspecific relationships between species mediate ecosystem 

dynamics (Brown et al., 2001). A high degree of ecosystem complexity is generally 

explained by a great complementarity in resource use via niche differentiation or facilitation 

(Loreau & Hector, 2001).  

 Like biotic factors, species can impact their own habitat via modification of abiotic 

factors. For example, particular plants can induce soil acidification and modify availability 

of nutrients through the palatability and biodegradability of the organic matter they produce 

(Wilcke et al., 2000).  

 Relationships among organisms are numerous. They can include cooperative, 

neutral, antagonistic and agonistic behaviours. Antagonisms are generally characterized 

by parasitism, competition, and predation, while cooperation is defined by positive, 

mutualistic interactions (Rico-Gray, 2001) (Diagram 1). These interactions can be 

specialized or opportunistic. Symbiosis generally involves intimate associations between 

two or more organisms and is a major driver of ecosystems functioning (e.g. Margulis, 

1992). In this thesis I consider the eco-evolutionary dynamics of symbiosis. 

 

 

  1. Symbiosis: definition 

 

 Symbiosis, according to the Oxford dictionary, is an! �interaction! between! two!

different!organisms!living!in!close!physical!association,!typically!to!the!advantage!of!both�.!

Close associations between different species of organisms have been known since the 

end of the 19th century. Cienkowski (1871) observed and demonstrated that Radiolaria (a 

group of marine protists) harboured small dinoflagellate algae in their extracellular coat, 

which were also able to live outside the organism. At about the same time, Frank (1877) 
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highlighted relationships between plant roots and fungi in an association called 

mycorrhiza.!Frank!defined!this!association!between!the!two!partners!as!�zusammenleben�,!

or!�living!together�!and!coined!the!term!�symbiotismus�!to!differentiate!it!from!parasitism.!In!

1879! the! word! �symbiosis�! was proposed by de Bary, who was working on lichens, to 

explain a close interaction between at least two different organisms. This definition now 

covers a wide range of interactions ranging from mutualism to parasitism. Van Beneden 

(1875) had already described mutualism, commensalism and parasitism but had found it 

difficult to define the limits between the categories. In this thesis, I!use!de!Bary�s!definition!

of symbiosis (i.e. a close interaction between at least two different organisms and that 

benefits at least one of the species) because symbiosis generally involves more than two 

partners with behaviours ranging from mutualism to parasitism (Diagram 1). 

 

 

 
 

Positive Negative Null 

Positive Mutualism   

Negative Parasitism 
Predation 

Competition  

Null Commensalism Amensalism Neutral 

 

Diagram 1:  

Diagram representing the six interspecific relationships ranging from mutualism (positive vs positive) to 

competition (negative vs negative) depending on the positive, negative or neutral effect of each species on 

the other. This diagram is modified from Principles of Animal Behavior. 

(http://eebweb.arizona.edu/animal_behavior/lycaenids/lycaen2.htm) 

 

 Margulis (1992) argued that symbiotic relationships between species (especially 

mutualism) have had (and continue to have) a major impact on the evolution of organisms 

and thus on ecosystem functioning. Mutualistic symbiosis can increase the functioning of 

organisms compared to their stand-alone state, allowing symbiotic organisms to colonize 

new ecosystems to which they were not previously adapted.  

Species 1 

Species 2 
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     2. Theory: Evolutionary forces and the symbiosis dilemma 

 

 Mutualistic associations are diverse and are found in all kingdoms of the tree of life. 

All Eukarya are involved in a specific form of mutualistic relationship, the intracellular 

inclusion of an alphaproteobacterial cell from which the mitochondrion evolved. This 

mutualistic interaction is assumed to have led to the emergence of Eukarya (e.g. Cavalier-

Smith, 2002). Other mutualisms, such as between plants and mycorrhizal fungi, are 

thought to have lead to land colonization by plants (e.g. Selosse & Le Tacon, 1998). From 

an evolutionary point of view, the evolution of mutualism, and especially its establishment, 

is difficult to explain (Cameron et al., 2008; Davitt et al., 2010; Frederickson et al., 2012). 

Natural selection will consistently favour organisms that are selfish; both partners in a 

trophic interaction are assumed to be subject to selection that will to maximize their gains 

from the relationship, while giving as little as possible in return. So why does cooperation 

not break down?  

If the fitness of the host is tightly aligned with the fitness of the symbiotic partners, 

this could help select for cooperation (i.e. vertical transmission, see below). However, 

multiple partners are often involved simultaneously in symbiosis within a single host (e.g. 

mycorrhiza and nitrogen-fixing nodules in plants, the gut microbiome in animals). In these 

cases,!selection!for!defection!from!cooperation!(i.e.! �cheating�) will be even stronger, and 

can increase the instability of the symbiosis (e.g. Denison et al., 2003; Kiers & Denison, 

2008). This is because cooperative partners that supply their hosts with resources 

indirectly aid competing strains (including non-cooperative ones) colonizing the same 

individual. This means individuals can experience a selective benefit from providing few 

resources.! In! social! sciences,! this! is! known! as! the! �tragedy! of! the! commons�! (Hardin,!

1968). To prevent defection in mutualisms, hosts have evolved mechanisms to better 

control their symbionts. These are discussed below. 

 

3. Key mechanisms contributing to stability of 'mutualistic' symbiosis 

 

 Several mechanisms have been proposed that may stabilize the initiation of 

mutualistic relationships. These include partner choice, vertical transmission, enslavement 

and lineage suicide (Sachs et al., 2004; Bright & Bulgheresi, 2010). 
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  a. Partner choice 

 Partner choice is a mechanism that allows hosts to identify and extract high quality 

partners from the environment (Golubski & Klausmeier, 2010; Archetti et al., 2011). To be 

efficient, the host partner needs to be exposed to a range of potential symbionts. Then 

based on signals that indicate quality and level of cooperation, hosts can choose the most 

appropriate partner. This type of mechanism has been shown to operate in some cases in 

the Rhizobium-legume symbiosis (e.g. Simms & Taylor, 2002), allowing the legume host to 

select particular genotypes of rhizobial symbionts. Similar choice mechanisms have been 

reported to be utilized by coral, fish and shrimp hosts with regard to their respective 

symbionts (Lewis & Coffroth, 2004; Jaafar & Hou, 2012). Also in ants and aphid 

mutualisms a mechanism based on partner choice has been demonstrated (Verheggen et 

al., 2012). In many animals, the composition of the gut microbiome is controlled, at least in 

part, by host immunity (Boehm, 2012); this can be viewed as a form of partner choice. 

However in any partner choice, there is still a potential for the symbiont to cheat, for 

example by evolving deceptive signalling mechanisms (Simms & Taylor, 2002), especially 

if it has a much shorter generation time than the host. 

 

  b. Vertical transmission 

 Vertical transmission is another means of ensuring that partners remain 

cooperative. This strategy relies on the vertical transmission of symbiont(s) across host 

generations. This aligns the reproduction of the host with the reproductive success of its 

symbiont. It has been found in the transmission of fungal endophytes in some grasses and 

the transmission of gut symbionts in termites (Noda et al., 2007; Omacini et al. 2012). In 

aphids, a limited number of Buchnera are transmitted from mother to the progeny through 

the transfer of bacteriocytes to the embryo (Koga et al., 2012). These Buchnera are 

mutualistic symbionts which are involved in parthenogenetic reproduction of the insect. It 

has been hypothesized that Buchnera strains are filtered via the reproduction process, 

resulting in a kind of purging of low-quality lineages (Bright & Bulgheresi, 2010). 

 

 c. Obligate dependency 

 A third mechanism to prevent symbionts from defecting from cooperation is via an 
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increase in the dependency of the symbiont on the host. By increasing the dependence of 

the symbiont on the host, the host gains greater control over the interaction. Dependency 

can be so intense that the genome size of symbiont is reduced (McCutcheon & Moran, 

2012), leading to loss of independent functioning. The most classic example is the case of 

mitochondria and chloroplasts which evolved, respectively, from purple non-sulphur 

bacteria and cyanobacteria, enslaved by their host cells (e.g. Margulis, 1993). 

 While these mechanisms have been shown to stabilize cooperation in other 

mutualistic systems, the plant-mycorrhizal mutualism cannot be explained by these host 

mechanisms. Here, I introduce the plant-mycorrhizal mutualism, and ask how this 

relationship is stabilized. 

 

II. Symbiosis between plants and fungi 

 

 Plant mutualisms are incredibly important in ecosystem productivity and functioning. 

The best known examples are (i) the nitrogen fixing root nodules of Rhizobium and 

Frankia, (ii) mycorrhizal fungi, and (iii) endophytic fungi. The most common of these 

mutualisms at the planetary scale is the mycorrhizal relationship. There are three main 

types of mycorrhizal mutualisms: arbuscular mycorrhiza (AM), ecto-mycorrhiza and 

ericoid-mycorrhiza (Trappe, 1987; Brundrett, 2009). Arbuscular mycorrhizal fungi (i.e. 

Glomeromycota) arguably constitute an extremely widespread mutualism form on earth 

(Smith & Read, 2008), and include the majority of plant species, including bryophytes, 

pteridophytes, gymnosperms and angiosperms (Johnson & Gehring, 2007). 

 

1. The AM symbiosis 

 

 a. History, taxonomy 

 The AM symbiosis emerged and evolved more than 450 million years ago 

(Redecker et al., 2000; Humphreys et al., 2010). Approximately 80% of land plants are 

colonized by AM fungi (Smith & Read, 2008). AM fungi have a global distribution in 

terrestrial ecosystems, and are also found in oligotrophic lakes in association with isoetid 

species (MØller et al., 2013). The AM fungal symbiosis is believed to date back to the very 

origin of the evolution of land plants and is believed to be a major factor contributing to 

plant success in terrestrial ecosystems. The AM symbiosis is a striking example of a 
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mutualism that does not follow the above strategies for stabilizing cooperation (i.e. 

paragraph I.2.).  

 

 

AM mutualism emerged early and was likely responsible for land colonization 

during the Devonian. This mutualism is widespread and highly successful. To 

explain its stability, we hypothesize that plants can detect and control low-quality 

AM fungal symbionts via differential allocation of carbon resources. 

 

We also hypothesize that plants protect the symbiont against fungivores by 

transferring protective secondary metabolites to the fungus. 

 

 

 

 The first species of Glomus, G. microcarpus and G. macrocarpus, were described by 

Tulasne & Tulasne in 1844. The Glomus genus was associated with Endogone in the 

Endogonaceae (Zygomycota) family because of the similarity of their respective spores. In 

1851, Tulasne & Tulasne moved G. microcarpus and G. macrocarpus into the Endogone 

genus. In 1974, Gedermann & Trappe, considered Glomus as a genus on its own and 

placed AM fungi in the genera Glomus, Acaulospora, Gigaspora and Sclerocystis, still in 

the Endogonaceae family (Zygomycota). All AM fungi were then brought together in a new 

order within the Zygomycota, Glomerales, by Morton & Benny (1990). 

 Until the 1990s, all taxonomical classifications of AM fungi were based on 

phenotypic features and morphological descriptions of spores. Spore �walls�! were/are!

particularly well-studied because of their diversity. At that time, the first molecular analyses 

based on ribosomal SSU gene sequences were being used to determine phylogenetic 

relationships between AM fungal taxa. All these taxa were classified in the polyphyletic 

phylum of the Zygomycota until 2001. On the basis of SSU rRNA gene analyses showing 

monophyly of Glomerales, Schüßler et al. (2001) suggested the removal of AM fungi from 

Zygomycota and raising the Glomerales to phylum level and renaming it Glomeromycota 

(Figure 1). 
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Figure 1:  

Fungal phylogenetic tree showing the relative position of the Glomeromycota phylum within the evolutionary 

'landscape' of other fungal phyla. This phylogenic tree is based on SSU rRNA gene sequences. Unlike 

Ascomycota, Basidiomycota and Glomeromycota,, Chytridiomycota (green) and Zygomycota (yellow) are 

polyphyletic. This figure is modified from Schüßler et al. (2001). The scale bar represents the number of 

substitutions per site. 

 

 

 The Glomeromycota phylum now consists of one class: Glomeromycetes, and five 

orders: Glomerales, Diversisporales, Gigasporales, Archaeosporales and Paraglomerales 

(Oehl et al., 2011). These orders contain in total 14 families and 26 genera (Figure 2). 

Most likely, only a very small proportion of AM fungal species have been described so far 

(e.g. Opik et al., 2006). 
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Figure 2:  

Phylogenetic tree of the Glomeromycota phylum based on SSU rRNA gene sequences presenting four 

orders and eight families. This figure is modified from Schüßler et al. (2001); the Gigasporacaea order 

described in Oehl et al. (2011) is not shown in this figure. The scale bar represents the number of 

substitutions per site. 

 

 

 b. Toward a molecular diagnosis of fungal diversity? 

 Molecular detection of the AM fungi colonizing roots has led to the discovery of 

many previously unknown species. However, the diversity of Glomeromycota is still poorly 

understood (e.g. Vandenkoornhuyse et al., 2002a). A major issue that remains is to 

determine the formal fungal taxonomic codes (i.e. markers) to designate taxa known only 

from molecular signatures (Hibbett et al., 2011). Further problems include (i) dual 

nomenclature existing for pleomorphic fungi (ii) the species name can include a complex of 

different organisms having similar morphologies (Vandenkoornhuyse & Leyval, 1998) (iii) a 

known fungus such as Glomus mossae was renamed Funneliformis mossae (Schüßler & 

Walker, 2010) without this modification being published in a peer-reviewed journal. These 
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aspects lead directly to problems in sequence annotations (i.e. synonymous names for a 

given sequence or reciprocally one name for a variety of sequences) and emphasize the 

need for significant changes. There is also an urgent need to limit contamination and the 

propagation of mistakes in sequence annotations in public databases. Sequences must be 

well identified and annotated to ensure the correct diagnosis of community diversity and 

production of robust phylogenies. In this context, the need to filter public sequence 

databases by stringent curation has become a fundamental issue. I addressed this 

problem by contributing to the development and curation of the Phymyco database (see 

chapter IV). 

 Molecular analyses based on SSU rRNA gene sequences have been successfully 

used to detect the whole fungal community colonizing the roots of a plant 

(Vandenkoornhuyse et al., 2002a), and also to detect AM fungi specifically (e.g. Helgason 

et al., 1998). This molecular target, shared by all living organisms, has both highly 

conserved and lineage-specific variable sequences. It contains a high quality phylogenetic 

signal that can be used to determine phylogenetic species and requires implicit adoption of 

the phylogenetic species concept (Mishler & Brandon, 1987). However many mycologists 

are still using the Internal Transcribed Spacer (ITS), which is a highly variable region in the 

cluster of rRNA genes. This molecular marker is used as a barcode that allows the 

identification of a given species if a query sequence has a very close relative and properly 

annotated sequence. However, ITS contains poor phylogenetic information which makes 

the correct construction of phylogenies difficult, even impossible. This molecular target is 

even more difficult to use in AM fungi, as compared to other fungal groups, because the 

genomes of AM fungi can exhibit considerable variation among their ITS copies (e.g. 

Sanders et al., 1995). Thus, the AM fungal diversity should be studied using appropriate 

markers meeting the criteria for a reliable identification of sequences. 

 

 c. Description, characteristics of arbuscular mycorrhiza 

 AM fungi are biotrophs, multinucleate! and! �asexual�! although! evidence! for!

recombination exists (e.g. Vandenkoornhuyse et al., 2001). Their life cycle is poorly 

understood. Different specific structures of AM fungi are formed inside and outside roots 

(Figure 3). 

 The mutualism begins with spore germination (Figure 5). Spores produce hyphae 

that grow through the soil toward the host plant (Giovanetti et al., 1993). When hyphae 

come into contact with exudates released from the roots, branching factors lead to intense 
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hyphal ramification (Figure 5). These branching factors have been shown to be 

sesquiterpene lactones and more especially strigolactones (compounds also released in 

the presence of parasites) (Akiyama et al., 2005; Ruyter-Spira et al., 2013). The hyphae 

then colonize the root surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  

Different structures of arbuscular mycorrhizal fungi: (A) spores (10 to 600 µm), (B) non septate hyphae (~5 to 

10 µm), (C) arbuscules that are found in (D) root cells. (E) detail of an arbuscule. In this figure (F) vesicles 

constituting lipid storage structures are also shown. (Photo credits from left to right and top to bottom: McGee 

1986; Symbiom http://bohdana77.wix.com/vttrial1#!mycorrhiza; Bundrett, 1984; Bundrett, 2008; visualized by 

optical microscopy). 

 

  

 As the fungus enters into contact with the root surface, cell to cell recognition takes 

place between the two organisms leading to the formation of a swollen hyphal structure or 

appressorium (figure 5). At this point, the root cell nucleus migrates to the contact area, 

opposite the appressorium. This latter penetrates the cell following the nucleus path 

(Genre et al., 2005). The cell modifications allowing AM fungal infection are triggered by a 

A 
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E 

F 
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fungal compound, the Myc-factor (Albrecht et al., 1999). Passage through the outer layers 

of the root involves lytic enzymes. Hyphae circulate in the intercellular spaces or directly 

through cells (Parniske, 2004). 

 

 

 In the inner cortex, the appressorium penetrates the cell wall and starts to form 

highly branched haustoria (Figure 5). These tree like structures, called arbuscules, cause 

multiple invaginations of the plant cell membrane. The arbuscules are completely 

surrounded by the periarbuscular plasma membrane, which isolates them from the root 

cell protoplast (Paszkowski, 2006). The root cell structure is thus deeply modified by 

arbuscule formation. In addition to nucleus migration toward the centre of the cell, due to 

reorganization of the cytoskeleton (Genre et al., 2005), there is also fragmentation of the 

central vacuole and increased transcriptional activity. Nutrient exchanges between plant 

and fungi take place at the level of the arbuscules. These structures collapse after a few 

days of activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Simultaneously to arbuscule formation, runner hyphae (the extraradical mycelium, 

ERM; Figure 4) are produced in the soil. These explore the soil and acquire resources. 

The ERM are then able to form new infection units. One plant can be colonized by several 

AM fungal species within the same root and one AM fungus can colonize several plant 

species to form a complex network (Figure 4). AM fungi display different colonization 

Figure 4:  

Autofluorescence micrograph of arbuscular 

mycorrhizal fungi (in green) colonizing roots (in 

brown) of its host-plant, Medicago truncatula. 

(A) are the hyphae constituting the extraradical 

mycelium (ERM). (Photo credit : Jan Jansa) 

A 
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strategies depending on the AM fungal family (Hart & Reader, 2002). Whereas voluminous 

external hyphae are produced by the Gigasporaceae for soil colonization (6 to 9 m/cm3), 

much fewer are produced by the Acaulosporaceae and Glomeraceae (1 to 2 m/cm3). 

 

 

  

 

Figure 5: 

 The different steps of root colonization by an AM fungus. Modified from Bonfante & Genre, 2010. 

 

d. Nutrient exchanges 

 AM fungi are known to improve plant mineral nutrition via nutrients collected in their 

hyphal network. Each hypha is of very small diameter, allowing for extremely efficient soil 

exploration. The hyphal network improves plant access to water, and can provide nutrients 

such as nitrogen, zinc and copper. However the major nutrient provided to the plant is 

phosphorus. Up to ~70 % of all plant phosphorus can be delivered by AM fungi (Smith et 

al., 2003). AM fungi collect mineral nutrients and water from soil via transporters. 

Phosphorus enters the hyphae via phosphate transporters, then circulates through the 

hyphae towards the arbuscules where they are deposited as polyphosphate chains. These 

chains cannot be assimilated by the root cells but are broken down into monophosphates 
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by polyphosphatase in the arbuscules. These monophosphates are then transferred 

through the periarbuscular membrane toward the root cells by P transporters (Parniske, 

2008). 

 In exchange for these services, AM fungi receive about 20% of photosynthates from 

the plant (Bago et al., 2000; Figure S8). Photosynthesized sugars and polyolisides enter 

the periarbuscular space, where they are then split into glucose and fructose. These 

hexoses are taken up via hexose transporters into the fungus where they are converted to 

the disaccharide trehalose and to lipids (Bonfante & Genre, 2010; Parniske, 2008) 

 

2. No host specificity but host-plant preference 

 

 Although roughly 270,000 known plant species are colonized by AM fungi (Smith & 

Read, 2008), fewer than 200 species of AM fungi have been described so far. This 

unbalance in species number may simply indicate that each AM fungal species has a wide 

range of plant hosts. This low specificity between the host-plant and AM fungi has been 

known for a long time (e.g. review of Gianinnazzi-Pearson, 1984) and confirmed 

repeatedly (e.g. van der Heijden et al., 1998; Santos et al., 2006). However, AM fungi are 

not randomly distributed among host-plants species (Eom et al., 1999). Repeatable 

patterns of AM fungal community have been found colonizing a given host-plant species at 

a given location (Vandenkoornhuyse et al., 2002b, 2003) suggesting a preferential 

association likely as a result of host-plant fitness (Vandenkoornhuyse et al., 2002a). It is 

also well-known that the growth of the host-plant varies depending on the symbiont, (e.g. 

van der Heijden et al., 1998), and that different host plants are colonized by different AM 

fungal symbiont communities (Vandenkoornhuyse et al., 2002b, 2003). These 

observations have been interpreted to mean that there is some form of host-plant 

preference (Vandenkoornhuyse et al., 2002b, 2003). Particular associations are likely 

determined by compatibility and success between one host and its AM symbionts, but also 

by stochastic effects such as spore dispersal (Verbruggen et al., 2012). Hausmann & 

Hawkes (2009) have shown that when a given plant is grown alone in a soil containing 

several AM fungal species, the plant displays a host-plant 'specificity' but when this same 

plant is grown in the same soil with the same fungi but with other plants, there is no longer 

host specificity but instead a host preference. 

 Some plants (e.g. Plantago lanceolata) and some fungi (e.g. Glomus intraradices) 

are extreme generalists having a wide range of partners (Opik et al., 2006; Helgason et al., 
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2007; Maherali & Klironomos, 2007), while some associations are more specific such as 

Glomus hoi which is almost always found in Acer pseudoplatanus roots (Helgason et al., 

2002). Host-plant preference depends on the local availability of AM fungi propagules in 

soil (Scheublin et al., 2004). Different signals are triggered for the mutual recognition of 

both partners through root exudates, such as branching factor (strigolactones), that favour 

colonization and proliferation (Giovanetti et al., 1994) of certain types of AM fungi, and via 

fungal components such as glomalin and Myc factor (Reinhardt, 2007; Requena et al., 

2007; Hartmann et al., 2009). These specific compounds stimulate colonization and hyphal 

propagation. As shown by Teutsh-Hausmann et al. (2010), AM fungal communities in plant 

roots can also be controlled by the order of plant establishment, the actual plant host and 

the vicinity of this plant. Plant/AM fungi associations can also vary with environmental 

conditions and plant colonization by an AM fungus will also depend on the season (Santos 

Gonzales et al., 2007). Indeed root and soil colonization by different AM symbionts exhibits 

both temporal and spatial variation. Not all AM fungi species are active at the same time 

(Smith et al., 2000). Soil disturbance (Schnoor et al., 2011) and soil physicochemical 

properties may influence the host-plant preference (Martínez-García & Pugnaire, 2011), as 

the efficiency of AM fungi and thus their ability to colonize roots will be impacted by the 

phosphate concentration (Ehinger et al., 2009). 

 AM fungal species/genotypes can differ dramatically in terms of nutrient acquisition, 

plant pathogen protection, drought resistance, etc (Bhattacharjee & Sharma, 2012; Wilson 

et al., 2012). Hosts may benefit from this diversity and preferentially associate with 

different fungal strains depending on biotic context. 

 

 3. Importance of AM symbiosis in ecosystems 

 

 a. Importance for plant development and reproduction 

 AM symbioses can be extremely important in ecosystem functioning and processes 

via different pathways (Rillig, 2004). On the global level, the AM fungal symbiosis is 

responsible for massive nutrient transfer. It is a mutualism 'that helps feed the world' 

(Marx, 2004; Duhamel & Vandenkoornhuyse, 2013, in revision) by playing a fundamental 

role in crop growth. In addition to plant mineral nutrition, AM fungi are involved in plant 

phytoprotection (Azcon-Aguilar & Barea, 1996; Smith et al., 2010). AM fungi colonization 

can elicit plant defence mechanisms (Abdel-Fattah et al., 2011; Jung et al., 2012) and 

have beneficial effects on plant stress, e.g., resulting from the presence of heavy metals in 
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the soil (Pallara et al., 2013). 

 In addition to having a profound impact on plant growth, AM fungal colonizers also 

affect plant sexual and asexual reproduction (Varga, 2010). As reviewed by Koide & Dickie 

(2002), their presence increases plant reproduction by acting on both male and female 

functions especially when there is phosphorus deficiency. Streitwolf-Engel et al. (1997) 

have shown that AM symbionts are able to manipulate plant reproduction traits. AM fungi 

can modify the size, number of stolons and ramets in a clonal plant, and can facilitate 

seedling establishment in grasslands (van der Heijden et al., 2004). 

 

 b. Impact of AM fungi on soil structure 

 The AM symbiosis has been shown to have a great impact on soil structure and 

stability. The hyphal network produced by AM fungi can bind the soil particles in stable 

aggregates. The amounts of such aggregates have been shown to be positively correlated 

with the length of the mycorrhizal hyphal network and roots (Jastrow et al., 1998), In 

addition, AM fungi produce a glycoprotein, glomalin, which improves stability of soil 

aggregates. This compound is thought to be important for structuring and quality 

improvement of soil, by limiting erosion and water withdrawal (Rillig & Mummey, 2006). 

 

 c. Fungal and plant community structure 

 In addition to the effects of AM fungi on plant growth and fitness, AM fungi and 

plants can also affect each other's community structure, such as level of diversity. AM 

symbionts are able to influence the structure and productivity of plant communities (van 

der Heijden et al., 1998; van der Heijden et al., 2006a, 2006b). An increase in AM fungal 

species richness can have a positive effect on the health and productivity of the plant 

community (van der Heijden et al., 2008; Wagg et al., 2011). This could be linked to the 

multiple functions carried out by AM fungi. A larger range of functions resulting from the 

presence of different AM fungi species could lead to higher plant productivity (Maherali & 

Klironomos, 2007). The pool of AM fungi species in the soil, their development and the 

establishment of a hyphal network during the germination of a plant seed, have the 

potential to promote the establishment of other plants (Hausmann & Hawkes, 2009). AM 

fungi are thus playing an active role in plant species establishment and coexistence (van 

der Heijden et al., 1998; Hart et al., 2003).! AM! fungi! are! able! to! �relax�! plant-plant 

competition for their mutual benefit (Wagg et al., 2011). 

 AM fungi can be involved in the colonization behaviour strategies of plants e.g. 
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those displaying allelopathy. AM fungi have been shown to expand the active area of 

emitted allelopathic compounds through the hyphal network (Barto et al., 2011). Even 

more fascinating is the possibility of connections between plants through the hyphal 

network and the possible transfer of compounds from one plant to another across these 

'hyphal bridges' (Barto et al., 2009). The allelopathic compounds released by plants 

(Javaid, 2007) not only pass through the AM hyphae but may also regulate AM fungal 

growth. 

 Reciprocally, the plant community can impact the composition/diversity of the fungal 

community. Host plants play a role in growth and structuring of the AM fungal community 

(e.g. Bever et al., 1996; Klironomos, 2002; Johnson et al., 2003a). The host plant species 

can potentially affect the sporulation rate, growth and survival of its AM symbiont 

(Helgason et al., 2009). Through the observed host-plant preference for a fraction of the 

available AM fungal community at a given location (Vandenkoornhuyse et al., 2002b, 

2003), host-plants can select for specific AM fungal community in soils.  

 It has been shown that the AM fungal communities of native plants can be modified 

or even suppressed by invasive species (Hawkes et al., 2006; Callaway et al., 2008). 

When several species of plant occur together, the effects of a given plant on its AM 

symbionts will be affected by the neighbourhood, suggesting that neighbourhood plants 

and their community composition are as important as the plant host itself in structuring the 

AM fungal community (Hausmann & Hawkes, 2009; 2010). The order of plant 

establishment is also likely to drive the AM fungal community trajectory (Hausmann & 

Hawkes, 2010). The first plants select a specific composition of developing AM fungal 

community, which in turn facilitates a particular trajectory for the establishment of new 

plants (Hausmann & Hawkes, 2010). This means that the host-plants in a particular 

location have the potential to impact the AM fungal community composition and diversity. 

 

 d. Link between AM symbiosis and ecosystem stability and productivity 

 AM fungi diversity has been shown to affect diversity and productivity of plant 

communities. Indeed, van der Heijden et al., in 1998 and 2007 and Klironomos et al. 

(2000), demonstrated a positive correlation between fungal diversity and plant diversity, an 

increase of fungal taxa richness leading to an increase of plant species richness and 

productivity. Nevertheless, this positive correlation between plant and AM fungal species 

richness is likely more complicated. Johnson et al. (2010) showed that plant genotypic 

richness led to a modification of AM fungal community composition in roots, with a 
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decrease of AM fungal species richness as the number of plant genotypes increased. 

However, AM fungal species richness could be a poor proxy of functional diversity if we 

assume that a given AM fungus name corresponds to a polymorphism of ecological 

functions. At this point, the effects of host plant genotypes on the intraspecific diversity of 

AM fungi remain unknown. Plant intraspecific diversity (i.e. magnitude of genetic diversity 

within a species) and the related polymorphism in functional traits could also affect 

ecosystem functioning (Hughes et al., 2008). 

 This AM fungal diversity affects plant diversity and productivity resulting in an 

increase of the organic matter diversity and quantity (Tilman 1982, 1997; Zak et al., 2003). 

As a consequence, this can have a positive impact on the diversity and functions of 

decomposers (i.e. higher functional complementarity), resulting in an improvement of 

nutrient cycling and thence a higher ecosystem productivity (i.e. Wardle et al., 2003; 

Hughes et al., 2008). As the AM fungal diversity increases, plants have access to a larger 

pool of functions. The coexistence of different plant species and their increasing diversity 

can be explained by their complementarity rather than competition.  

 

 

 

The consequences of a decline in plant species richness & diversity for AM fungal 

species richness and diversity are not yet clearly known. We hypothesize that a 

decrease in plant diversity will have a negative impact on AM fungal species 

richness and diversity, and ultimately affect ecosystem productivity. 
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III. Objectives and approaches: 

 

 The objectives of this work were to study the evolution of cooperation in AM 

symbiosis and to analyse the link between plant diversity and fungal symbiont 

diversity. 

 

 Experiments were designed to investigate the evolution of cooperation. It is well-

established that in the mycorrhizal mutualism, multiple symbiotic partners (of varying 

quality) can simultaneously colonize a single host. The mutualism is vulnerable to cheaters 

that benefit from colonizing a healthy host plant, but contribute little symbiotic benefit. We 

therefore ask how this mutualism is stabilized. We hypothesized that host plants are able 

to discriminate among the fungal communities in their root systems, and allocate the most 

carbon to the highest-quality symbionts. This hypothesis was tested utilizing an 

experimental Stable Isotope Probing (SIP) RNA approach under controlled inoculations 

(Chapter I). 

 

 The AM symbiosis exists in a web of multiple interactions. We were therefore 

interested in how adding additional organisms would affect cooperative dynamics. In a 

series of experiments, we included hyphal grazers (i.e. Collembola) to determine if fungal 

symbionts are chemically protected by their host plant. We hypothesized that a transfer of 

secondary metabolites from the plant to its AM symbionts would deter fungivore feeding. 

We used microcosms and controlled inoculations to determine whether AM symbionts 

received secondary metabolites from their host-plants as a protection against fungivores 

(Chapter II). 

 

 We developed and published for the public a sequence database to ensure proper 

analysis of these molecular data, avoid incorrect assignments, and provide high quality 

sequences for use as references, (see II.1.a). This database gathered reliable fungal SSU 

rRNA! and! EF1"! sequences! and! permitted! the determination, identification and 

phylogenetic analyses of fungi (Chapter III). 

 

 While we known that the AM symbiosis is important in ecosystem stability and 

productivity, we still do not have a good understanding of the link between plant diversity 

and fungal diversity. This is especially important in the context of conventional agricultural 
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practices where plant diversity is very low (i.e. crops), and leads likely to a decline of AM 

fungi, also because of biocides and fertilizers. Here we utilized a series of long term 

diversity manipulated plots to ask if decreased plant diversity leads to a decrease in fungal 

symbiont diversity. We analysed the AM fungal community composition and dynamics of 

root colonization in plots along a plant diversity gradient, using new molecular approaches 

involving pyrosequencing and high throughput amplicon sequence analyses (Chapter IV). 

 

 Based on this work, I suggest new ideas and prospects in terms of research and 

potential applications of AM fungi. I discuss the current problems of sustainable agriculture 

and human population increases and the question of a better use of the ecological 

functions of AM fungi in agriculture (Chapter V). 
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Chapter I: 
 
 

Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis 
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Abstract: 
 
 
 Plants and their arbuscular mycorrhizal fungal symbionts interact in complex 

underground networks involving multiple partners. This increases the potential for 

exploitation and defection by individuals, raising the question of how partners maintain a 

fair, two-way transfer of resources. We manipulated cooperation in plants and fungal 

partners to show that plants can detect, discriminate, and reward the best fungal partners 

with more carbohydrates. In turn, their fungal partners enforce cooperation by increasing 

nutrient transfer only to those roots providing more carbohydrates. On the basis of these 

observations we conclude that, unlike many other mutualisms, the symbiont cannot be 

�enslaved.�!Rather,! the!mutualism!is!evolutionarily!stable!because!control! is!bidirectional,!

and partners offering the best rate of exchange are rewarded. 
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 The symbiosis between plants and arbuscular mycorrhizal (AM) fungi is arguably 

the! world�s! most! prevalent! mutualism.! The! vast! majority! of! land! plants! form! AM!

interactions, in which plants supply associated AM fungi with carbohydrates, essential for 

fungal survival and growth (Parniske, 2008). In exchange, AM fungi provide their host 

plants with mineral nutrients [e.g., phosphorus (P)] and other benefits such as protection 

against biotic (pathogens and herbivores) and abiotic (e.g., drought) stresses (Smith et al., 

2010). This partnership, which evolved long before mutualisms among insects or 

vertebrates (Leigh, 2010), is credited with driving the colonization of land by plants, 

enabling massive global nutrient transfer and critical carbon sequestration (Bonfante & 

Genre, 2010; Smith et al., 2010).  

 The selective forces maintaining cooperation between plants and AM fungi are 

unknown (Leigh, 2010; Fitter, 2006). Providing nutritional benefits can be metabolically 

costly, leading to the expectation that partners may defect from mutualistic duties (Kiers & 

van der Heijden, 2006; Douglas, 2008). If individual host plant and fungal symbiont 

interests are tightly aligned (Poulsen & Boomsma, 2005), fungal symbionts will increase 

their own fitness by helping plants grow (Frank, 1996), and vice versa. However, plants are 

typically colonized by multiple fungal species (Vandenkoornhuyse et al., 2007), and fungal 

�individuals�!can!simultaneously! interact!with!multiple!host!plants!(Mikkelsen!et al., 2008) 

or species (Figure S1) (Selosse et al.,!2006).!This!can!select!for!�cheaters�!that!exploit!the!

benefits provided by others while avoiding the costs of supplying resources (Leigh, 2010; 

Douglas, 2008). It is possible that plants have evolved mechanisms to enforce cooperation 

by fungi, analogous to the sanctions against uncooperative partners demonstrated in 

diverse mutualisms (Goto et al., 2010; Jandér et al., 2010). However, sanction 

mechanisms in other systems appear to rely on a single host interacting with, and 

controlling the fate of, multiple partners. In contrast, the AM symbiosis involves a complex 

series of many-to-many interactions with multiple fungal strains (Vandenkoornhuyse et al., 

2007) and multiple hosts (Selosse et al., 2006), and it is not clear whether sanctions could 

operate in the same way.  

 An alternative explanation for the stability of the plant-mycorrhizal mutualism is that 

both plants and fungi are able to detect variation in the resources supplied by their 

partners, allowing them to adjust their own resource allocation accordingly. Such exchange 

of! resources,! in! economic! terms,! represents! a! �biological! market,�! in! which! partners 

exchange commodities to their mutual benefit (Noë et al., 1995; de Mazancourt & 

Schwartz, 2010). However, while mutualism market analogies have a strong theoretical 
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basis (Schwartz & Hoeksema, 1998; Cowden & Peterson, 2009; Hoeksema & Kummel, 

2003), plants may be unable to discriminate among intermingled fungal species on a fine 

enough scale to reward individual fungi (Bever et al., 2009). Empirical tests have 

previously been constrained by our inability to track host resources into diverse AM 

assemblages and by difficulties in manipulating the cooperative behavior of both fungal 

and plant partners. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 
Pair-wise comparisons of carbon allocation patterns to coexisting AM fungal species based on 13C 
enrichment. Values above the zero line indicate preferential allocation to species above the line. (A) More 
carbon was allocated to the cooperative species (G. intraradices) compared with the less-cooperative 
species (G. aggregatum) in a twospecies experiment. (B) When host plants were colonized with three AM 
fungal species, the RNA of the cooperative species (G. intraradices) was again significantly more enriched 
than that of the two less-cooperative species (G. aggregatum and G. custos). There was no significant 
difference in RNA enrichment between the two less-cooperative species. Data from all harvest times were 
pooled because there was no significant effect of time on RNA enrichment (Kruskal- Wallis, P > 0.05 for all 
three fungal species). Middle lines of box plots represent median values (n = 11), with bars showing value 
ranges (minimum to maximum). P values refer to nonparametric sign tests for differences of sample median 
from zero. 
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 We resolved these constraints by allowing fungal genotypes that differ in their 

cooperative behavior to compete directly on a single root system. We used stable isotope 

probing (SIP) to track and quantify plant resource allocation to individual fungal species 

(Figure S2) (Vandenkoornhuyse et al., 2007) and hence test for host discrimination against 

less-cooperative partners. We also employed in vitro root organ culture approaches 

(Pfeffer et al., 1999) to manipulate cooperative behavior of both plant and fungal 

mutualists to examine patterns of reciprocal rewards in response to variable levels of 

cooperation.  

 We used the model plant Medicago truncatula and three arbuscular mycorrhizal 

fungal species within the cosmopolitan subgenus Glomus Ab (Glomus intraradices, G. 

custos, and G. aggregatum). These AM fungi exhibited either high or low levels of 

cooperation (symbiont quality), based on plant growth responses, costs of carbon per unit 

P transferred, and resource hoarding strategies, with the two less-cooperative species 

directing more carbon resources either into storage vesicles (G. aggregatum) or spores (G. 

custos) compared with the cooperative species (Figures S3 and S4). We used closely 

related species to avoid potential confounding factors attributed to differences in life history 

traits not linked to nutrient exchange (Powell et al., 2009). We do not categorize our less 

cooperative species as unequivocal �cheats,�! noting that they may confer other benefits 

not measured here (Materials and methods are available as supporting material).  

 We grew Medicago hosts with one, two (G. intraradices versus G. aggregatum), or 

all three AM fungal species. We followed the C flux from the plant to the fungal partners by 

tracking plant assimilated C after 6 hours in a 13CO2 atmosphere (Vandenkoornhuyse et 

al., 2007). We harvested the roots after 6, 12, and 24 hours to follow the incorporation of 

host carbon into the RNA of the AM fungal assemblage. We focused on RNA because it 

better reflects immediate C allocation patterns relative to DNA (Manefield et al., 2002). 

Total RNA extractions were then subjected to ultracentrifugation to separate fractions 

based on the level of 13C incorporation. By quantifying mitochondrial ribosomal RNA 

transcripts via specifically designed primers and quantitative polymerase chain reactions 

(qPCRs), we were able to track the real-time relative C allocation to each of the AM fungal 

species (Figures. S2, S9, and S10). 

 We found that more carbon was supplied to the more-cooperative fungal species. In 

both the two-species and three-species experiments, the RNA of the cooperative fungus, 

G. intraradices, was significantly more enriched with host 13C than the RNA of both less-
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cooperative species of the same genus (Figure 6). We reject the hypothesis that the less 

cooperative species were simply incompatible partners because colonization in all single 

species controls were above 80% (Figure S4). Moreover, we found a significant effect of 

host preference on fungal abundance. G. aggregatum decreased by 36.7% (F1,8 = 6.39, P 

= 0.035) and G. custos by 85% (F1,8 = 63.6, P < 0.001) in communities where a high-

quality partner was available (Figure S5), suggesting either a shift in resource supply by 

the host to the more cooperative species or changes in competitive dynamics among the 

fungi (Materials and methods are available as supporting material). 

 The extent to which cooperation can be effectively enforced depends on the scale 

at which hosts discriminate against less-cooperative fungal symbionts. For plant hosts, this 

detection would have to occur at a very fine spatial scale (e.g., ~1 cm or smaller), because 

genetically distinct fungi can form closely intermingled networks within host root systems 

(Parniske, 2008). However, it has been argued that plants cannot discriminate among 

mixed fungi once colonization has been established (Bever et al., 2009). Discrimination 

based on fungal signaling before colonization is unlikely because there is no reason that 

fungi would have to signal honestly (Leigh, 2010).  

 To resolve this potential paradox, we investigated whether fine-scale host 

discrimination occurs between fungal hyphae colonizing the same host root. We used an 

in vitro triple split-plate system, with one mycorrhizal root compartment and two fungal 

compartments composed of the same fungal species but varying in P supply. This allowed 

us to mimic cooperation or defection by fungal partners connected to the same host root 

and to track how this influences C allocation back to the fungus (Figures 7, A and B). If 

hosts rely on nutrient transfer as a tool to discriminate between partners on the same root 

(Kiers & van der Heijden, 2006; Fitter, 2006), we would predict higher C allocation to the 

hyphae with access to higher P resources.  

 

 We found that hosts rewarded fungal hyphae that were supplied with greater P 

resources. As predicted, 4 days after the addition of 14C-labeled sucrose to the root 

compartment, we found that significantly more C was transferred to the fungal hyphae with 

access to more P (Figure 7A). In the cooperative species, G. intraradices, even small 

quantities of available P (e.g., 35 mM) resulted in a 10-fold increase in C allocation to the 

hyphae, relative to the hyphae with no access to P. We found no C allocation differences 

when hosts were colonized by the less-cooperative species, G. aggregatum (Figure 7B).  
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Figure 7: 
Triple-plate experiments to mimic partner cooperation or defection. We found a significant effect of P 

availability on C allocation patterns (F3,20 = 5.29, P = 0.0075), with preferential allocation of C to the fungal 

compartments with access to more P in (A) G. intraradices but not in (B) G. aggregatum. In the reciprocal 

experiment, we found a significant effect of the C availability on P allocation patterns (F7,58 = 7.298, P < 

0.0001), with a higher allocation of fungal P [measured as polyphosphate (PolyP)] to root compartments with 

higher C in both (C) G. intraradices and (D) G. aggregatum. However, the less-cooperative species G. 

aggregatum, remobilized a smaller percentage of its long-chained PolyP into short-chained PolyP, indicative 

of a hoarding strategy (Figures S6 and S8). Asterisks indicate significant differences between treatment 

means (Student-Newmans-Keuls test, P $!0.05). Error bars represent the means of 8 to 10 replicates +/- 1 

SEM. 
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 Like their plant hosts, AM fungi interact with multiple partners in nature (Selosse et 

al., 2006). Consequently, fungi may also enforce cooperation by rewarding increased C 

supply with greater P transfer. Therefore, we used a reciprocal triple split-plate 

experimental design, with one fungal and two root compartments, to determine whether 

the fungal partner would preferentially allocate P to the host providing more carbohydrates 

(Figures 7, C and D). We found that the cooperative species transferred more P to roots 

with greater access to C resources (Figure 7C), confirming that fungi can discriminate 

among hosts differing in C supply. In contrast, the less-cooperative species, G. 

aggregatum, responded differently. Like the cooperative species, it transferred more P to 

the root compartment with access to more C, showing that it was able to assess and 

respond to the rate of C supply (Figure 7D). However, this species predominantly stored 

the P resources in long-chained polyphosphates, a host-inaccessible form (Figure S6) 

(Takanishi et al., 2009). This type of resource hoarding potentially reduces P availability for 

competing fungi and P directly available for host uptake (Figure S8) and illustrates key 

differences in fungal strategies, with G. intraradices being a �reciprocator�! and G. 

aggregatum a lesscooperative �hoarder.�! 

 

 To track simultaneous resource exchange between partners, and hence determine 

whether AM fungi are stimulated to provide more P in direct response to a greater host C 

supply, we used a two-compartment Petri plate design. Host roots were exposed to labeled 

U-14C sucrose in either high or low concentrations, and labeled 32P was added to the 

fungal compartment. We found that increasing C supply stimulated P transfer by the 

cooperative fungal species G. intraradices but not the less-cooperative species G. 

aggregatum (Figure 8A). As above, the cooperative species responded to C rewards with 

a reciprocal P increase, whereas the less-cooperative species stored P in the host 

inaccessible formof long-chained polyphosphates (Figure S7). Finally, we compared the 

ratio of C costs to P transferred in both species (Figure 8B), confirming that colonization by 

the less-cooperative species resulted in significantly higher host costs. These results 

support our whole plant SIP experiments (Figure 6) and explain why the plant host 

consistently allocated more C to the cooperative species when given a choice.  
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Figure 8: 
Simultaneous measurement of P and C exchange. (A) Higher C availability stimulated increased P transfer 
by the cooperative species, G. intraradices (F3,22 = 3.07, P = 0.0489) but not by the less cooperative 
species, G. aggregatum. (B) When supplied with 25 mM sucrose, the carbon costs per root P of G. 
aggregatum were more than twice as high as with G. intraradices (F1,11 = 8.27, P = 0.0151). Dpm, 
disintegrations per minute. Asterisks indicate significant differences between treatment means (Student-
Newman-Keuls test,!P!$!0.05).!Error!bars!represent!means!of!6!to!8!replicates!+/- 1 SEM. 
 

 

 Overall, our results suggest that stability of the AM mutualism arises in a different 

way compared with other mutualisms. A general feature of many mutualisms is that one 

partner appears to be �in control�! (West & Herre, 1994) and has either domesticated the 

other partner (Poulsen & Boomsma, 2005) or enforces cooperation through punishment or 

sanction mechanisms (Leigh, 2010). In these cases, the potential for enforcement has only 

been found in one direction, with the controlling partner housing the other partner in 

compartments, which can be preferentially rewarded or punished, such as in legume root 

nodules (Kiers et al., 2003), Fig fruits (Jandér et al., 2010), and the flowers of yucca 

(Pellmyr et al.,1994) and Glochidion plants (Goto et al., 2010). In contrast, in the 

mycorrhizal mutualism, both sides interact withmultiple partners, so that neither partner 

can be �enslaved.�! Cooperation is only stable because both partners are able to 

preferentially reward the other. This provides a clear, nonhuman example of how 

cooperation can be stabilized in a form analogous to a market economy, where there are 

competitive partners on both sides of the interaction and higher quality services are 

remunerated in both directions (Noë et al., 1995; Bshary & Noë, 2003). 
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Supporting Material 

 

Materials and Methods 

 

Selection of fungal strains 

 We chose the three AM fungal species based on the following criteria: (1) all AM 

fungi belong to the same genus. By choosing closely related fungi, we were able to avoid 

problems associated with contrasting life history traits not necessarily associated with 

mutualistic benefit (Powell et al., 2009; Hart & Reader, 2005; Maherali & Klironomos, 

2007). (2) The fungi differentially affected growth of their host plant and this difference was 

evident within 10 weeks of growth (Figure S3). Although fungal benefits could potentially 

change (increase or decrease)!over!the!host�s!ontogeny!(Fitter,!1991;!Smith!et al., 2009), 

we were interested in documenting early-stage fungal and host allocation patterns, in 

which there were fewer constraints on fungal and plant growth. At this stage, clear 

allocation patterns are predicted because resources acquisition demand is at its highest 

(Cowden & Peterson, 2009). (3) The benefits conferred to hosts were consistent across 

different plant species (Figure S3). This allowed us to reject the hypothesis that the 

observed differences in mutualistic benefit were attributed to local coevolutionary 

dynamics between host and fungal symbiont (Antunes et al., 2011). (4) The selected AM 

fungi!differed!in!growth!benefit!but!were!not!�parasites�!(see!Smith!et al., 2009, Husband et 

al., 2002; Smith et al., 2011 for useful discussion). In our case the biomass of the plants 

inoculated with the less-cooperative AM fungal species was either equal, or greater than 

the growth of the non-mycorrhizal control plants (Figure S3). This allowed us to examine 

whether hosts could detect and respond to variation in fungal cooperation (Jansa et al., 

2005; Hodge et al., 2010), rather than testing for host response to a negative growth 

impact (e.g. a non-cooperative species (Husband et al., 2002). (Johnson et al.,1997) We 

utilized species with different structural patterns. At 10 weeks, G. custos allocated 

significantly more to spore production, and G. aggregatum allocated significantly more to 

vesicles compared to the other two AM fungal species (Figure S4). The use of these two 

less-cooperative species allowed us to test for host response when the choice was binary 

(G. intraradices versus G. aggregatum), and also test for host response in AM communities 

with three species, which included two less-cooperative species, G. aggregatum and G. 

custos differing in their carbon storage strategies. In these less cooperative fungi, high 
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spore and vesicle formation are potential indicators of fungal resource hoarding. Ratios of 

these fungal storage units to arbuscules (nutrient transfer structures) are often used as an 

estimate of symbiotic effectiveness (Johnson, 1993; Johnson et al., 1992). (Kiers & van 

der Heijden, 2006) Importantly, we do not categorize our less-cooperative species as 

unequivocal!�cheats�!(Smith!et al., 2003; Smith et al., 2011; Douglas, 2010). AM fungi can 

confer diverse benefits to the host plant (protection against pathogens, drought, or heavy 

metal uptake) not measured here (Sikes et al., 2010). It is well-known that biotic and 

abiotic changes can alter the relative benefits of AM fungi (Hoeksema et al., 2010). No 

experimental design can explore all the diverse conditions under which the relationship 

with particular fungi is potentially beneficial (Helgason & Fitter, 2009). (Fitter, 2006) To 

increase the ecological context of our experimental design, all fungal species were isolated 

from temperate ecosystems between 37- 43° degrees, and from areas in which Medicago 

sp. hosts are found. While these species are globally cosmopolitan, it is well known that 

fungal isolates �within a species - can differ greatly in the benefits they confer to their 

hosts (Koch et al., 2006). While it would be interesting to conduct future experiments that 

utilize plant and fungal material collected from a single ecosystem, we note that there are 

difficulties in isolating fungal strains from one location that meet all our criteria for selection 

(see criteria 1-6 above). 

 

Fungal cultures 

 For all experiments, we produced inoculum of Glomus intraradices (Schenck & 

Smith; isolate 09 collected from Southwest Spain by Mycovitro S.L. Biotechnología 

ecológica, Granada, Spain), G. custos (Cano & Dalpé; isolate 010 collected from 

Southwest Spain by Mycovitro S.L.) and G. aggregatum (Schenck & Smith; isolate 0165 

collected from the Long Term Mycorrhizal Research Site, University of Guelph, Canada) by 

growing the fungus in association with Ri T-DNA transformed carrot (Daucus carota clone 

DCI) roots in Petri dishes filled with mineral medium (Arnaud et al., 1996) and with sucrose 

as the only carbon source. We 3 ultured roots for approximately 8 weeks (until the plates 

were fully colonized) and fungal spores were isolated from the growth medium by 

solubilising the medium with 10 mM citrate buffer (pH 6.0). Design of species-specific 

quantitative real-time PCR (qPCR) markers, i.e. primers and hydrolysis probes To quantify 

the abundance of each AM fungal species in the stable isotope probing (SIP) experiments, 

we designed markers targeting species-specific motifs in the mitochondrial large ribosomal 

subunit RNA genes of G. intraradices, G. aggregatum and G. custos. DNA preparation and 
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amplification We extracted fungal DNA from both spores and colonized roots produced 

monoxenically, as described below. We used DNeasy Plant Mini kit (Qiagen, 

Hombrechtikon, Switzerland) and followed the recommendations of the manufacturer with 

slight modifications.!For!spores!only,! the!final!volume!of!the!DNA!preparations!was!20!%l!

(instead!of!recommended!100!%l)! to!maximize!DNA!concentration!before!PCR.!DNA!was!

subjected to PCR amplification of the mitochondrial large ribosomal subunit (mtLSU) RNA 

gene with following primer pair combinations, RNL11-RNL17, RNL1-RNL14, or RNL1-

RNL15 (according to Börstler et al., 2008). The PCR was carried out using Taq PCR Core 

kit!with!CoralLoad!reaction!buffer!(Qiagen),!using!a!25!%l!PCR!reaction!volume,!1!%M!of!

each primer, and 38 cycles (denaturation at 95°C for 10 s, annealing at 50°C for 90 s and 

amplification at 72°C for 90 s). Amplified DNA fragments were cloned into a blue-script 

vector (pGEM-T Easy vector system; Promega, Dübendorf, Switzerland) and sequenced 

by Microsynth AG (Balgach, Switzerland). The sequences were individually edited and the 

clones re-sequenced if the quality of the reads proved to be insufficient. The identity of the 

sequences was revealed by BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to 

exclude potential contaminant sequences (e.g., bacteria, unspecific amplifications of other 

genome regions).  

 

Probe design 

 The sequences of our three AM fungal species were aligned with other available 

mtLSU sequences from e.g. G. intraradices, G. proliferum and G. clarum in order to 

construct our hydrolysis probes. For each fungal species at least two species-

discriminating primers with associated hydrolysis probes were designed using the AlleleID 

software (version 6, Premier Biosoft International, Palo Alto, California, USA). Care was 

taken to target mtLSU regions coding for the ribosomal RNA to avoid putative introns 

described recently (Thiéry et al., 2010). We confirmed the specificity of the primers and 

fluorescent probes with a BLAST search and the oligonucleotides (primers and dually 

labeled hydrolysis probes, labeled with fluorescein at the 5`-end and BHQ-1 quencher at 

the 3`-end) were then synthesized by Microsynth AG (Balgach, Switzerland). Primers and 

probes were purified by preparative HPLC or preparative polyacrylamide gel 

electrophoresis, respectively, before lyophilization. Both primers and probes were diluted 

with PCR-grade!water!to!achieve!25!%M!concentrations,!aliquoted!(20!%l!each)!and!frozen!

at -20°C. Primer selection, optimization of cycling conditions, cross-reactivity testing (DNA 

and cDNA) To ensure species-level specificity, we performed several optimization steps. 
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First, we tested the markers for specificity under low stringency cycling conditions 

(denaturation at 95°C for 10 s, annealing at 52°C for 30 s, and amplification at 72°C for 5 

s). In this assay, we used DNA extracts from M. truncatula roots colonized by the different 

AM fungi (3 replicates for each species) as templates. From this initial test, primer pairs 

and probes showing greatest specificity towards their target species (either no cross-

amplification with other species or the greatest difference in Cq value between target and 

non-target species) were selected for further optimization (see Table S1). Stringency of 

cycling conditions was then increased stepwise for each of the markers to avoid 

amplification of non-target samples (see Table S1 for details of the optimized cycling 

conditions and Table S2 for the results of the cross4 amplification assay). Finally, to 

confirm that the markers only amplified the target fungal species, and that they avoided 

plant genes and were suitable at the RNA level, we performed another cross-amplification 

assay using cDNA generated from RNA extracts of nonmycorrhizal or mycorrhizal roots of 

M. truncatula colonized by the different fungal species (Table S2). Again, all three markers 

were confirmed to be species-specific at both, DNA and RNA level. 

 

qPCR calibration and detection limits 

 We generated plasmids carrying fragments of the mtLSU of the respective fungal 

species with 100% sequence match to the region amplified in order to: (1) to calibrate the 

qPCR detection cycle (Cq) with the gene copy concentrations and (2) to assess the 

detection limits of the qPCR markers. Cq is typically negatively and linearly correlated to 

the log-transformed template concentration (linear response region), until the detection 

limit of the assay is reached and the Cq becomes independent of the further dilution 

(background region) (Figure S9), or there is no response at all. We used the linear 

response region of each calibration assay to derive equations that allowed the conversion 

of Cq values to mtLSU gene copies per unit volume of the template (Figure S10). The 

detection limits were calculated from the background region of the qPCR response curve 

as follows: where DL represents the detection limit of the assay (Cq value), AVCq(back) 

the mean of the Cq values in the background region and SD (AVCq(back) ) the standard 

deviation of this mean. The detection limits of the three assays and the corresponding 

threshold concentrations of mtLSU are given below (Table S3). These assays were then 

used to determine the mtLSU gene copy concentration in DNA and cDNA samples, 

fractionated or not by ultracentrifugation, and taking into account any dilutions of the 

template during sample processing. 
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Plasmid preparation 

 Between two and four individual plasmid preparations per fungal species were used 

for the calibration of the qPCR markers. The plasmids were isolated from overnight 

cultures of transformed E. coli JM109 cells (Promega, Madison, WI, USA), grown on LB 

medium! supplemented! with! 100! %g! ml-1 Ampicillin, using the Miniprep procedure 

(Sambrook et al., 1989). The plasmids were linearised using the EcoRI+ digestion 

(Fermentas, Le Mont-sur-Lausanne, Switzerland) at 37°C for 2 h and then at 65°C for 20 

min. The concentration of the DNA was then measured by the PicoGreen fluorescence 

assay (P7589, Invitrogen, San Diego, CA, USA), using Roche LightCycler 2.0 at 45°C and 

measuring the emission at 530 nm. The concentration of plasmid copies per unit of sample 

volume was calculated according to (Jansa et al., 2008) under consideration of the DNA 

concentration in each sample, the length of the insert (176 bp for G. intraradices, 661 bp 

for G. aggregatum, and 438 bp for G. custos) and vector (3015 bp), and an estimated 

molecular weight per nucleotide double-stranded DNA of 660 Da. Plasmid preparations 

were serially diluted (5-fold and 10-fold) to achieve a range of plasmid concentrations from 

a few billions to (theoretically) less than 1 per microliter. 

 

Stable Isotope Probing 

 

Plant culture 

 Seeds of Medicago truncatula (variety Jemalong A17, courtesy of Bettina Hause, 

Leibniz Institute of Plant Biochemistry, Halle, Germany) were pre-treated with concentrated 

H2SO4 and exposed to a cold treatment (4°C in the fridge) for 3 days. The seedlings were 

transferred to a sterilized peat-based growth medium for 5 days and then planted in 1 L 

pots filled with sterilized nutrient-poor dune sand with the following characteristics: pH 7.2; 

0.2% organic matter; 0.3 mg kg-1 P(CaCl2-extracted) and 190 mg kg-1 total N. 5 For the 

two-species experiment, the seedlings were inoculated at planting with 1500 spores per 

plant and 1.0 g of in vitro root material of either G. intraradices or G. aggregatum (singles) 

or both species together (mixed 50:50) with inoculum concentrations reduced by half. For 

the three-species experiment, G. custos was included in the mixed treatment and the 

inoculum concentrations of the three AM species were reduced to one-third each. We 

assumed that in this mixed treatment, the nutrient-acquiring strategies of our AM species 

were fixed, meaning that strategies did not undergo fundamental change (switch from less 
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cooperative to cooperative or vice versa) simply because other symbionts were present 

(Kiers & Denison, 2008). Non-mycorrhizal control plants were inoculated with autoclaved 

inoculum. Plants were grown in a greenhouse with a 13 h light cycle. When the outside 

daylight was below 120 J cm-2 h-1, supplemental lights of 15,000 lux, were turned on. The 

temperature was kept between 22 and 25°C. Soil humidity was maintained at 70% water 

holding capacity and nutrients (8 ml per pot of Hoagland solution (Arnon & Hoagland, 

1940) containing only 50% of original P concentration) were added every two weeks. The 

plants were grown for a total of 10 weeks before 13CO2 labeling. 13CO2 labeling and 

harvest Plants were labeled with 13CO2 at the Experimental Soil Plant Atmosphere 

System (ESPAS, Isolife, Netherlands) (Gorissen et al., 1996), with a day/night rhythm of 

16/8! h! and! at! 21°C! and! 17°C,! respectively,! an! irradiation! of! 700! %mol! m-2 s-1 at plant 

height, and 80% relative humidity. 

 The plants were acclimated to the chamber for 48 h before labeling. The mean CO2 

level in the chamber! was! maintained! at! 401±19! %l! l-1 by injection of 12CO2 from a 

pressurized cylinder. During the night period prior to labeling, 12CO2 was removed by a 

CO2-scrubber in accordance with the 12CO2-respiration of M. truncatula. One hour before 

the start of the day period, 13CO2 was injected from a pressurized cylinder (99 atom % 

13C, 1 atom % 12C; Isotec, Inc. Miamisburg, OH, USA). For 6 h, a total CO2-level (12CO2 

+!13CO2)!of!396±20!%l!l-1 CO2 was maintained. The 13C-enrichment of the atmosphere 

was 92% at the start of the 6-h labeling period. This value gradually decreased due to the 

12CO2 respiration by the plant and resulted in a mean 13C-enrichment of 86.5±3.0 % over 

the time course of labeling. 

 In both the two-species and three-species experiment, the labeling chamber was 

opened and flushed with fresh air after 6 h to remove the labeled 13CO2. After the flushing 

period, the labeling chamber was closed and the 12CO2 level was maintained at 405±29 

%l! l-1. To follow the incorporation of 13C label over time in the two-species experiment, 

replicate plants were harvested at the 6 h-flushing period and again 6 h later at the 12 h 

time point. In the three species experiment an extra harvest time was added, so plants 

were harvested at 6 h, 12 h and 24 h. In both experiments, all replicates of the single 

inoculated control treatments were harvested at the 6 h time point. At each harvest, the 

aboveground plant parts were removed, oven dried at 70°C for 72 h, and weighed. The 

root systems were gently washed, weighed, homogenized and five root aliquots were 

placed in Eppendorf tubes and frozen with liquid N2. A small subsample of roots was 

removed, processed in 10% KOH, and stained with trypan blue to quantify the mycorrhizal 
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colonization and fungal structures in the root (McGonigle et al., 1990). 

Sand was collected and spores were counted using conventional decanting and wet 

sieving methods (Gerdemann & Nicolson, 1963). 

  

RNA extraction, ultracentrifugation, and cDNA synthesis by reverse transcription. 

 RNA was extracted from roots using the RNeasy Plant Mini Kit (Qiagen, 

Hombrechtikon, Switzerland), tested for quality and RNA concentration using a 

Nanodrop1000�!and!stored!at! -80°C. For centrifugation, 500 ng of RNA was transferred 

in 2 ml ultracentrifuge tubes (Sysmex, Kobe, Japan) pre-filled with 1.99 ml of 1.8 g ml-1 

CsTFA solution. The samples were then placed into a Sorvall discovery m120 SE micro 

ultracentrifuge (Thermo Fisher Scientific, Waltham, MA, USA) with a S120VT fixed angle 

titanium vertical rotor for 48 h at 20°C at a speed of 64000 rpm, resulting in a gravity of 

142,417 g at the maximum radius and 691,1128 g at the minimum radius. Between 17 to 

20!fractions!of!100!%l!each!were!collected!from!every!2!ml!vial.!To!remove!these!fractions,!

the tubes were punctured at the bottom and top using a needle. The upper needle was 

connected to a syringe pump (Harvard Apparatus, Kent, UK) that allowed a continuous 

flow!rate!(220!%L!min-1) of RNAse free water. This initiated a continuous flow of fractions 

from the lower needle. An extra vial was included in each ultracentrifugation batch for 

gravimetric estimation of density of each gradient fraction in each ultracentrifugation run 

(Drigo et al., 2010). The RNA in each fraction was precipitated, dried and resuspended in 

15 %l!of!ultrapure!water.!Five!%l!were!then!used!for!reverse!transcription!(RT),!using!a!final!

volume!of!25!%l!and!the!following!reaction!components:!5!%l!5xRT!buffer,!1.5!%l!of!10!mM!

dNTPs,!0.5!%l!random!hexamers,!1!%l!of!200!u/%l,!MMLV!reverse!transcriptase (Promega 

Corp.,!WI,!USA)!and!12!%l!water. 

 

Real time quantitative PCR (qPCR) analysis 

 All! qPCR! assays! were! carried! out! in! 9! %l! reactions,! using! the! LightCycler! 2.0!

instrument,! LightCycler! TaqMan! chemistry! (LightCycler! TaqMan! Master)! and! 20! %l-

Lightcycler glass capillaries. The final concentrations of the primers and the hydrolysis 

probe!were!0.5!%M!and!0.11!%M,!respectively!(for!sequences!see!Table!S1).!Each!reaction!

included!2.25!%l!of!the!DNA!template!(i.e.!sample).! 

 

Quantification of RNA abundance of the different fungal species 

 To quantify the enrichment of fungal RNA with host derived 13C in the different 
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fractions, we used qPCR targeting species-specific sequence motifs in the mtLSU, as 

described above. All reactions were carried out separately, not multiplexed, under stringent 

cycling!reaction!(Table!S1).!Briefly,!2.25!%l!of!the!RT!reaction!(see!above)!was!used!as!a!

template! for! qPCR,! and! the! total! qPCR! reaction! volume! was! 9! %l.! Gene! copy!

concentrations! were! calculated! per! %l! template! using! the! quantification cycle (Cq) from 

each assay and the respective calibration curves (Figure S10). The results of mtLSU 

quantification of each AM fungal species in the different fractions were subjected to 

nonlinear regression, using the Gaussian, 3-parameter function option in SigmaPlot for 

Windows version 11.0. This function is described by the following formula: where a and b 

are constants, x0 is the x value of function peak, and e is the base of natural logarithm 

(approximately 2.718). Only the samples with R2 of all relevant regressions higher than 

0.64!(i.e.,!R!&!0.8)!were!used!for!subsequent!statistical!analyses.!This!data!selection!was!

necessary in order to exclude samples that suffered high RNA degradation during 

ultracentrifugation and subsequent steps, and/or poorly fractionated samples, where the 

gradients were obviously disturbed during fraction collection. This quality check resulted in 

the removal of 1 out of 12 samples in the two-species experiment, and 6 out of 17 samples 

in the experiment with three AM fungal species. 

 

Analysis of peak front 

 Variation!in!host!C!allocation!patterns!were!calculated!based!on!differences!in!�peak!

front�!among!AM!species.!Peak!front!is!the!position!(i.e.!density!in!mg!ml-1) of the heaviest 

RNA fraction of each of the AM fungal species. Each fungal species shows a unique peak 

front position that can be compared against the others. Peak front is defined 

mathematically as the foremost fraction of the Gaussian regression curves cutting through 

the detection limit of the qPCR assay. Peak fronts further to the left (see Figure S2 for 

example) mean higher 13C enrichment, indicative of preferential C allocation to that fungal 

species. To determine peak front differences among the AM fungal species within each 

individual plant sample, we first measured abundance of each AM fungal species (copies 

of mtLSU) in each RNA density fraction by using qPCR with species-specific markers 

(Table S1). Then, Gaussian regressions across the different fractions were constructed for 

each AM fungal species. Peak fronts for the different AM fungal species were compared 

only when meeting requirements listed above, thus removing technically imperfect 

samples from statistical comparison. 

 To determine if there were significant differences in 13C enrichment of our AM 
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fungal species, we ran pair-wise comparisons of peak front position for all pairs of AM 

fungal species. We calculated differences in peak front positions based on a non-

parametric sign test, using Statgraphics Plus software (version 3.1 for Windows). P-values 

(Figure 6) refer to differences of the sample median from zero, with values above zero 

indicating preferential allocation to that particular fungal species. 

 To further confirm our preferential allocation findings, we ran additional analyses 

using a parametric generalized linear model (GLM) approach. For each replicate and each 

fungal species combination, differences in peak front positions between AM fungal species 

were calculated, as described above. A GLM was produced independently for both the two 

species and three-species experiments to test the variables of differential 13C enrichment 

and harvest time. The Akaike criteria (AIC) was used to select the optimal GLM, which in 

our!case!was!in!the!gamma!family.!A!�saturated!model�!reproduced the observed data. The 

relative importance of a given interaction term or a co-variable was estimated after removal 

of this term from the saturated model. Deviance analyses using Fisher tests were 

performed. Using this approach, we confirmed our finding that the RNA of the cooperative 

species (G. intraradices) was significantly more enriched than that of the two less-

cooperative species (G. aggregatum and G. custos). We found significantly higher 13C 

enrichment in both the two-species experiment (G. intraradices vs. G. aggregatum, P = 

0.019) and in the three species experiment (G. intraradices vs. G. aggregatum, P= 0.030) 

and (G. intraradices vs. G. custos, P = 0.016). There was no significant difference in RNA 

enrichment of the two lesscooperative species (G. aggregatum vs. G. custos, P > 0.05). 

The GLM deviance analyses showed no significant effect of time on allocation patterns for 

both the two-species (P= 0.4267) and three-species (P= 0.5571) experiments. All GLM 

analyses were carried out using the program R (http://www.r-project.org/). 

 

Analyses of non-fractionated RNA samples 

 The non-fractionated RNA samples were reverse transcribed and the cDNA was 

used as template for qPCR quantification of mtLSU copies as described above. The 

results were converted to mtLSU RNA copies per 500 ng RNA. These results were used to 

compare the abundance of the different fungal species in the roots after inoculation with 

single or mixed AM fungal species (Figure S5). 

 

Manipulation experiments with in-vitro root organ cultures 

 For all resource manipulation studies, we used Ri-T-DNA-transformed carrot roots 
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(D. carota L., clone DCI), that were colonized with the cooperative AM fungus G. 

intraradices or the less-cooperative AM fungus G. aggregatum. These two fungal species 

were used for the resource manipulation experiments because they differed greatly in cost 

to benefit ratios for P to C exchange (~2.5 higher C costs in G. aggregatum, Figure 8A), 

and represented the maximum and minimum of the host benefit continuum (Kiers & van 

der Heijden, 2006; Egger & Hibbett, 2004; Jones & Smith, 2004). 

 While root organ cultures (ROCs) have been criticized for their artificial nature 

(Fortin et al., 2002), it has been repeatedly demonstrated that ROCs possess similar 

nutrient and resource transfer and metabolic characteristics as whole plant systems 

(Pfeffer et al., 2004). ROCs have been pivotal in producing a large body of literature that 

has shaped our understanding of nutrient transport and C exchange in the AM symbiosis 

(Olsson 2002;  Bago et al., 2003;  Olsson & Johnson, 2005;  Olsson et al., 2005;  Bücking 

& Shachar-Hill, 2005;  Jin et al., 2005;  Govindarajulu et al., 2005;  Hammer et al., 2011;  

Tian et al., 2010). ROC model systems offer a number of important advantages for our 

study, including (1) the separation into fungal and root compartments (which prevented the 

diffusion and exchange of substrates between the compartments) and thereby precise 

control over quantities of resources supplied to fungus and host, (2) high visibility of the 

system, allowing us to select comparable plates for each experiment regarding e.g. the 

colonization of the fungal compartment, and (3) precision with which the ERM could be 

collected. In addition, ROCs provide the ideal model system for comparing particular traits 

(e.g. N or P transfer) across AM species, while standardizing for confounding 

environmental factors. This allowed us to compare baseline functioning and then 

manipulate resources to test for host and fungal responses to nutrient availability. Such 

small-scale manipulations are not yet possible in a soil based system. In the future, in-vitro 

whole-plant systems could be a useful test system for biological market experiments with 

AM fungi (Gyuricza et al., 2010). However, the challenge of working with in-vitro whole 

plants is the loss of precision in controlling the carbohydrate allocation from the host to the 

fungus. Although manually shading plants can be utilized as a potential treatment to 

reduce host C, the effects are difficult to control and to quantify, and secondary effects of 

the reduced photosynthetic rate on plant physiology can not be excluded. 

 

In vitro root organ cultures 

 We grew mycorrhizal systems in Petri dishes with two or three compartments 

(depending on the experimental design) at 25°C. The mycorrhizal roots were confined to 
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one or two root compartments (Arnaud et al., 1996) filled with solidified mineral medium 

(Chabot et al., 1992) containing 10 g l-1 sucrose. AM fungi are obligate biotrophs that 

cannot use this C source directly but rely on carbon that is supplied by the host. After 

approximately eight weeks of growth, the colonized root compartments were transferred 

into new Petri dishes and the extraradical mycelium (ERM) of the fungus was allowed to 

cross over the divider into one or two fungal compartments (depending on the 

experimental design, see below). These fungal compartments were filled with solidified 

mineral medium without sucrose and phosphate addition (KH2PO4 was replaced with an 

equimolar concentration of KCl). After approximately 3 weeks, the fungal compartments 

were sufficiently colonized by ERM and the plates could be used for the experiments. 

 

Experimental design of the ROC experiments 

 Preferential carbon transport from colonized roots to fungal ERM compartments 

differing in P supply. Here, we asked the question: Will hosts transfer significantly more C 

to the fungal hyphae with access to more P (Figures 7A,B)? We tested this question when 

hosts were colonized either by the cooperative species G. intraradices or the less-

cooperative species, G. aggregatum. We used a three compartment Petri dish design with 

one mycorrhizal root compartment and two fungal compartments differing in P supply. 

Labeled sucrose (22.2 mM sucrose containing [U-14C]sucrose, 1:500000, v/v) with a 

specific activity of 498 mCi mM-1 (Sigma-Aldrich, St. Louis, USA) was supplied to the root 

compartment. Simultaneously, water!(0!%M!P)!was!added!to!one!fungal!compartment!and!

35! %M! P! or! 700! %M! P! (as! KH2PO4)! to! the! other! fungal! compartment.!After! 4! days,! 6!

replicates per treatment were harvested and processed for liquid scintillation counting (see 

below). 

 

Preferential P transport from the ERM to root compartments differing in C supply. 

 Here, we asked the question: will significantly more P be transferred to the root 

compartment with access to more C (Figures 7C,D)? Again, we tested this with the 

cooperative species G. intraradices and the less-cooperative species, G. aggregatum. We 

used a reciprocal design of the three compartment Petri dish system described above, 

now with two root compartments and one fungal compartment. This allowed us to track the 

transport of P from the fungal ERM to colonized roots that differed in their carbon supply. 

Fungal hyphae from both root compartments were allowed to cross over into one root-free 

compartment. When approximately the same number of hyphae had crossed over from 
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each root compartment!into!the!fungal!compartment,!6.4!%Ci![33P]orthophosphate!(Perkin!

Elmer,! Waltham,! USA)! and! 35! %M! non-labelled KH2PO4 were added to the fungal 

compartment. The carbon supply in the root compartments was varied at the same time by 

adding 0.5 ml of water to one root compartment (0 mM control) and 0.5 ml of a sucrose 

solution to reach 5 mM or 25 mM in the other root compartment. After 4 days, 6 to 10 

replicates per treatment were harvested and prepared for further analysis (see below). 

 

Simultaneous measurements of symbiotic effectiveness and conditional response. 

 Here we asked two questions: (1) Does increasing host C supply lead to an 

increase in P transfer by both the cooperative and less-cooperative fungal symbionts 

(Figure 8A) and (2) does the baseline cost to benefit ratios (here in terms of carbon costs 

for P supplied to the root) differ between the two fungal species (Figure 8B)? To achieve 

both these aims, we used a two compartment Petri dish system with one root and one 

fungal compartment to which simultaneously 14C�sucrose and 32P-orthophosphate were 

added. Three weeks after the ERM started to cross over the divider, we added [U-14C] 

sucrose with a specific activity of 498 mCi mM-1 (Sigma-Aldrich, St. Louis, USA) to the 

root compartment and [32P] orthophosphate (Sigma-Aldrich, St. Louis, USA) to the fungal 

compartment. To test for differences in P transport in response to increasing C supply and 

determine the cost to benefit ratio of each fungal species, one set of plates was only 

supplied with 14C labeled sucrose and 14C labeled sucrose diluted with non-labeled 

sucrose! for! a! final! sucrose! concentration! of! 25! mM! sucrose! (0.448! %M! as! 14C! labeled!

sucrose) was added to the other set. After 4 days, 8 replicates per treatment were 

harvested and prepared for further analysis (see below). 

 

Liquid scintillation counting 

 For all experiments, we harvested the mycorrhizal roots and the fungal ERM after 4 

days of labeling. The ERM was isolated from the medium in the fungal compartment after 

several wash and centrifugation steps in Na citrate buffer (10 mM, pH 6.0). An aliquot of 

the medium was taken to determine the radioisotope residues in the medium and to 

confirm that there were no cross-contaminations between compartments in the plates. The 

root and ERM samples were dried in an oven at 70°C, weighed and digested with a tissue 

solubilizer (TS-2, rpi corp., Mount Prospect, USA). The radioactivity was determined by 

liquid scintillation counting (Wallac, Perkin Elmer, Waltham, USA) using standard full 

channel programs in single isotope experiments or by channel settings that allowed the 
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differentiation of 14C and 32P according to the emission energy in dual isotope 

experiments. The 14C measurements in the dual isotope experiments were additionally 

confirmed by measuring the samples for a second time 4 months later (i.e., after 8 half-

lives of 32P passed), when 32P was sufficiently depleted. The accuracy of all 

measurements was corrected by use of an internal standard. 

 

Extraction of various phosphate pools and analysis of phosphate pool distribution 

 To examine the phosphate pool distribution in mycorrhizal roots which were 

supplied with varying concentrations of sucrose (Figures 7C,D, Figures S6, S7), we 

extracted phosphate pools according to the method described previously (Aitchison & Butt, 

1973). The following phosphate pools were extracted and could be distinguished: (1) 

inorganic orthophosphate and acid soluble or short chained polyphosphates (chain length 

of less than 20 Pi residues) after extraction with 10 % TCA (w/v) at 4°C (two times); (2) 

phospholipids after extraction with first 100 % ethanol and then ethanol:ether (3:1, v/v), (3) 

acid insoluble or long-chained polyphosphates (chain length of more than 20 Pi residues) 

after extraction with 1 M KOH at room temperature (two times), and (4) DNA-, RNA- and 

protein-phosphates (residue). Acid soluble polyP (short chain length) and acid insoluble 

polyP (long chain length) within the supernatants were precipitated two times by a 

saturated BaCl2 solution over night at 4°C. We used polyP pools to measure P transport, 

because both polyphosphate pools are of fungal origin (plants are not able to produce 

polyP) and better represent P transport from the ERM to the IRM. The 33P content in all 

fractions was determined by liquid scintillation counting. 

 

Statistical Analysis 

 Data from the ROC experiments were analyzed using Unistat Software, P-STAT Inc. 

(Hopewell, NJ, USA). For all experiments, the data were subjected to a variance analysis 

(ANOVA),! with! �resource-level�! as! the treatment factor. Disintegrations per minute (dpm) 

values after scintillation counting were log transformed before the analysis. Following 

significant ANOVA, treatment means were compared using the Student-Newman-Keuls 

test!(P!$0!.05). 

 

Supplementary Text 

 We conclude by raising three important points: (1) our work does not preclude the 

possibility that partners employ other mechanisms to control the growth/success of 
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eachother. Various mechanisms have been proposed to explain, for example, how 

mycorrhization may be mediated by host plants (Bonfante & Genre, 2010; Douglas, 2008; 

Blee & Anderson, 1998;  Pearson et al., 1993; Schaarschmidt et al., 2007;  Vierheilig, 

2004). One possible mechanism is the digestion of fungal arbuscules by plant hosts 

(Kobae & Hata, 2010). Although alternative explanations for premature arbuscular death 

cannot yet be ruled out (Smith et al., 2011), empirical work has demonstrated that the 

lifespan of an arbuscule may be related to its ability to deliver P (Javot et al., 2007) or to 

the P status of the host (Breuillin et al., 2010). Molecules such as lysophosphatidylcholine 

(LPc) have been suggested to be involved in P sensing and gene regulation in plants, 

potentially allowing hosts to evaluate the amount of P delivered via the mycorrhizal 

pathway (Bucher et al., 2009). As more genome information becomes available, the 

molecular mechanisms governing the resource-sensing and control processes of both 

partners will be elucidated (Bucher, 2007). (2) Here, we demonstrated the importance of P 

as a resource for determining trade dynamics (e.g. Pearson & Jakobsen, 1993), but 

allocation based on other fungal commodities such as N, may likewise be important (Atul-

Nayyar et al., 2009;  Tanaka & Yano, 2005;  Hodge & Fitter, 2010). Research is now 

needed to determine how resource stoichiometry (e.g. the relative availability of carbon, 

nitrogen and phosphorus) affects trade among partners. (3) Although our work 

demonstrated that trade is favored with partners offering the best rate of exchange, this 

finding does not imply equal control in the mutualism. It is well-known that at high P levels: 

(i) the mycorrhizal nutrient uptake pathway can be repressed (Nagy et al., 2009), (ii) root 

exudate activity to stimulate presymbiotic growth of AM fungi is reduced (Gadkar et al., 

2003), and (iii) the host may degrade the arbuscules of the fungus (Kobae & Hata, 2010) . 

In contrast, AM fungi are obligate biotrophs, meaning they will always rely on hosts for C. 

The implication is that, although fungi may choose to transfer P to the plant offering the 

highest C benefit, they will always need a host plant to complete their life cycle. 
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Supplementary Figures S1-S10 

 

 

 

 

 

Figure S1:  

Schematic drawing of the arbuscular mycorrhizal (AM) mutualism and resource exchange processes. (A) 

Land plants interact with diverse AM fungal communities (different species/strains represented by different 

colors) and AM fungi interact with multiple host plants. The mutualism is characterized by an exchange of 

mineral nutrients (e.g. N and P) from the fungus for C from the host plant. The transfer of nutrients occurs 

primarily across specialized structures called arbuscules (a). Fungal carbon is allocated to hyphae (h), 

vesicles (v) and/or spores (s). (B) Nutrient exchange between plant and fungal partner. Host C is transferred 

across the plant-fungal interface, taken up by the fungus and translocated to the extraradical mycelium 

(ERM). P is taken up from the soil as inorganic P (Pi) and converted into polyphosphates (PolyP). PolyP 

plays a key role in transferring nutrients to the intraradical mycelium. Nitrogen, as NH4 and NO3, is likewise 

absorbed from the soil by AM fungi, and assimilated mainly into arginine (Arg). PolyP are negatively charged 

polyanions that can also bind the basic amino acid Arg. In the intraradical mycelium, PolyPs are remobilized 

and release inorganic phosphate (Pi) and Arg. Arg is further broken down to inorganic N (specifically NH4 +), 

and then transferred across the plant-fungal interface.  
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Figure S2:  

The detection of plant-derived C fluxes into microbial nucleic acids by stable isotope probing (SIP). (A) Plants 

were inoculated with three fungal species (red, blue, green). The plants were labeled with 13CO2 that was 

then incorporated into the RNA of the AM fungal community. (B) After extraction, the fungal RNA was 

ultracentrifuged in a cesium trifluoroacetate gradient. (C) The ultracentrifugation fractionated the RNA in 

layers based on the relative amount of 13C-labeled carbohydrates incorporated by each fungal species. (D) 

Each!centrifuge! tube!was!punctured!at! the!bottom!and! fractions! (~18!per! replicate)!of!100!%L!were! taken!

using a long needle. The abundance of each AM fungal species was then quantified in every fraction using 

qPCR with species-specific markers targeting the mitochondrial large ribosomal subunit. (E) Results from the 

different fractions were then subjected to nonlinear regression analysis, and RNA buoyancy peaks for each 

fungal species within a replicate were plotted. Peak fronts, e.g. the position of the heaviest RNA fraction of 

each of the AM fungal species detectable by qPCR, were calculated. Peak fronts further to the left indicate a 

higher 13C enrichment in the fungal RNA (e.g. red peak front in the example shown). Peak front differences 

(delta values for RNA buoyancies in g ml-1 of each pair of AM fungal species within each replicate) were 

determined and provided a paired species comparison of the C allocation patterns. 
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Figure S3:  

Growth benefits conferred by the three AM fungal species and non-mycorrhizal (NM) controls. There was a 

significant effect of inoculation treatment in both the dicot and monocot plant species, (A) Medicago 

truncatula (F3,65 = 52.808, P < 0.001) and (B) Allium porrum (F3,58 = 4.494, P = 0.007). In M. truncatula, 

inoculation with the cooperative species (G. intraradices) led to a significant growth benefit compared to both 

less-cooperative species (G. aggregatum and G. custos)!(Tukey�s!honestly!significant!difference!(HSD),!P!$!

0.05). These results were confirmed with the monocot A. porrum. G. intraradices again led to significantly 

higher growth than G. aggregatum or G. custos (Tukey�s! HSD,! P! $! 0.05).! In! both! plant! species,! the! less-

cooperative!strains!were!not!�parasites�,!meaning!colonization!by these fungal species lead to either greater 

(M. truncatula) or equal (A. porrum) growth compared to the NM-controls. This allowed us to examine 

whether hosts could detect andrespond to variation in fungal cooperation, rather than testing for host 

response to a negative growth impact. Letters indicate significant differences between treatments means 

according!to!Tukey�s!HSD!test!(P!$!0.05).!Bars!represent!the!means!of!15!replicates!±!1!standard!error. 
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Figure S4:  

Mycorrhizal growth characteristics of the three AM fungal species. All three species colonized more than 80% 

of the host root length of M. truncatula when grown alone, however structural patterns differed significantly 

among species. (A) The less-cooperative species G. aggregatum formed significantly less arbuscules per 

root length than the other two species (F2,44 = 6.917, P = 0.003). (B) G. aggregatum formed significantly 

more vesicles per root length than the other two species (F2,44 = 110.599, P <0.001). (B) The less-

cooperative species G. custos invested significantly more in spores compared to the other two fungal species 

(F2,26 = 18.747, P <0.001). Data were log transformed before analysis to meet assumptions for variance 

homogeneity. Different letters indicate significant differences between treatments means according to 

Tukey�s!HSD!test!(P!$!0.05).!Figures!(A)!and!(B)!show!the!means!of!15!replicates!±!1!standard!error.!Figure!

(C) shows the mean of 9 replicates ± 1 standard error. 
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Figure S5:  

Changes in the abundance of different AM fungal species in association with M. Truncatula, when alone or in 

mixtures (e.g. equal proportions of all three species). Abundance of AM species was assessed by species-

specific qPCR on cDNA prepared from non-fractionated RNA samples. There was no significant difference in 

the abundance of G. intraradices when the plant was inoculated with G. intraradices alone or in mixture (F1,8 

= 0.05, P = 0.84). In contrast, there was a significant decrease in the abundance of G. aggregatum (F1,8 = 

6.39, P = 0.035), and G. custos (F1,8 = 63.6, P <0.001), when compared to their singly inoculated controls. 

Cochran`s C Test and Bartlett`s test indicated no major deviation from the null hypothesis of equal variance 

between treatments. Bars represent the means of n=3-7 ± 1 standard error. Asterisks indicate significant 

differences between treatment means. 
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Figure S6:  

Long-chain PolyP pools of cooperative and less-cooperative AM fungi in a onefungal, two-root compartment 

experiment. The less-cooperative G. aggregatum transferred more P to the root system that was better 

supplied with C, but retained the P in the form of long-chained polyphosphates (PolyP) (Seufferheld & Curzi, 

2010), a form unavailable for the host (Takanishi et al., 2009). This could represent a potential hoarding 

strategy (see also Figures S7, S8). In contrast, the cooperative fungus G. intraradices converted a larger 

proportion of its long-chained PolyP to shortchained PolyP. Short-chained PolyP are continuously broken 

down in the intraradical mycelium to orthophosphate, which is transferred across the mycorrhizal interface to 

the host plant, and represent the PolyP pool that is correlated to host plant benefit (Takanishi et al., 2009; 

Ohtomo & Saito, 2005). Longchained PolyP concentrations were higher in roots that were colonized with the 

lesscooperative AM fungus G. aggregatum compared to roots colonized with G. intraradices, both in (A) dpm 

mg-1 root dry weight (5 mM F1,13 = 4.42; P = 0.055 and 25 mM F1,15 = 6.10; P = 0.026) and (B) in % of 

total polyP (5 mM F1,14 = 10.051; P = 0.0068 and 25 mM F1,13 = 5.404; P = 0.0369). The bars represent 

the mean of n= 6 to 9 replicates ± 1 standard error. Asterisks indicate significant differences between species 

within each sucrose treatment. 
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Figure S7:  

The less-cooperative G. aggregatum retained significantly more P in form of longchained polyphosphates 

(PolyP), than the cooperative AM fungus G. intraradices. As in the triple-plate experiement (Figure S6), G. 

aggregatum retained the P in the form of long-chained PolyP. The differences were not significant when no 

sucrose was added to the root system (0 mM; F1,13= 0.907, P = 0.341), but significant when 25 mM sucrose 

was added to the root system and more carbon became available for the fungus (F1,8 = 12.682; P = 0.0074). 

The bars represent the mean of n= 5 or 8 replicates ± 1 standard error. Asterisks indicate significant 

differences between species within each sucrose treatment. 

 

 

Figure S8:  

Model showing carbon and phosphate exchange in roots colonized with a cooperative (left) or less-

cooperative AM fungus (right). The host root allocates carbon preferentially to the cooperative AM fungus 

(Figure 6), which invests C resources into structures for increasing nutrient uptake and exchange, such as 

chitin for the extension of the hyphae (e.g. extraradical mycelium, ERM) in the soil. This allows the 

cooperative AM fungus to absorb more inorganic orthophosphate (Pi) from the soil and to transfer more P to 

the host (Bücking & Shachar-Hill, 2005; Lekberg et al., 2010). The phosphate is transferred in the form of 
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long-chained polyphosphates (PPPi, dark grey) to the intraradical mycelium (IRM) (Javot et al., 2007). Here, 

the cooperative fungus breaks down long-chained polyP into short-chained polyP (PPi, light grey) (Figures 

S6, S7) and then to inorganic orthophosphate (Pi). Short-chained polyP represents a relatively mobile polyP 

pool (Rasmussen et al., 2000), while long-chained polyP represents a long-term storage pool of phosphate 

(Takanishi et al., 2009; Ohtomo & Saito, 2005). 

This remobilization to short-chained polyP is likely facilitated by higher C conditions in the IRM (Bücking & 

Shachar-Hill, 2005). The increase in the Pi pool in the IRM facilitates the efflux into the interfacial apoplast 

and the uptake by the plant from the apoplast via mycorrhiza-specific P transporters (Javot et al., 2007; 

Harrison et al., 2002). In contrast, the less-cooperative AM fungus invests more carbon resources, such as 

triacylglycerides (TAG) (Bago et al., 2002) into the development of spores and vesicles (Figure S4), and less 

into the development of nutrient absorbing ERM. Phosphate that is transferred to the IRM ofthe less-

cooperative fungus is stored mainly in the form of long-chained polyP, and conversion to short-chained polyP 

is low (Figures S6B, S7). This reduces the inorganic phosphate pool in the fungal cytoplasm and reduces the 

efflux of P through the fungal plasma membrane into the mycorrhizal interface that is driven by the 

concentration gradient between the fungus and the host (Bücking & Shachar-Hill, 2005, Smith et al., 1994a; 

Smith et al., 1994b;  Ferrol et al., 2002). Storage of P in a long-chained form can be advantageous because 

it allows the fungus to better control the transfer of P across its plasma membrane by reducing P efflux. 

Hoarding of P resources also potentially reduces P availability for competing fungi and any P that is directly 

available for host uptake, making the host plant more dependent on the mycorrhizal pathway for its nutrients 

(Smith et al., 2009; Smith et al., 2011). However, fungal P hoarding also results in higher carbon costs for P 

for the host when the plant is P deficient, and has no choice in fungal partners (Figure 8). The different 

strength of the arrows indicates higher or preferential fluxes (bold) and lower or reduced fluxes (thin). 

Abbreviations: ERM - extraradical mycelium, IRM - intraradical mycelium, Pi � inorganic phosphate, PPi - 

short-chained polyphosphates, PPPi - long-chained polyphosphates, TAG -triacylglycerides. 

 

Figure S9.  

Response of the qPCR signal (quantification cycle, Cq) to DNA template dilutions. Here, the intra mt5 marker 

for the DNA preparation of G. intraradices is shown. For the calibration of the qPCR assay only values of the 

linear response region were used. The background region was used to determine the detection limit of the 

qPCR assay.  
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Figure S10:  

Calibration curves for the qPCR assays. Curves were designed to assess abundance of AM fungal species 

with markers targeting species-specific sequence motifs of the mitochondrial large ribosomal subunit 

(mtLSU) of (A) G. intraradices, (B) G. aggregatum and (C) G. custos. The calibration was carried out with 

serially diluted plasmid preparations carrying the respective DNA fragments. Equations for the conversion of 

the qPCR signal (i.e., quantification cycle, Cq) to the gene copy concentrations in the template are given for 

each!assay.!CP!represents!the!number!of!target!gene!copies!per!%l!template. 
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Supplementary Tables S1-S3 

 

Table S1:  

qPCR markers for specific quantification of development of Glomus intraradices, G. aggregatum, and G. 

custos by measuring gene copies of the mitochondrial large ribosomal subunit of the respective AM fungal 

species. FAM � fluorescein, BHQ1 � fluorescence quencher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2:  

Results of cross-specificity assay under optimized (stringent) cycling conditions for each AM species-specific 

qPCR marker. For templates, we used DNA extracts from spores and roots, as well as cDNA preparations 

from root RNA extracts. Sample provenance gives the information where the sample was produced, not 

where the nucleic acids were extracted and/or processed. All the qPCR analyses were carried out in 

Eschikon, Switzerland, using the same Roche LightCycler 2.0 instrument and Roche TaqMan chemistry. 

ROC � root organ culture, nd � no signal detected, n.a. � not applicable, BLD � below detection limit of the 

particular marker system. 
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Table S3:  

Detection limits and minimal detectable target gene concentrations of the three 

qPCR assays. 
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Abstract  

 A key objective in ecology is to understand how cooperative strategies evolve and 

are maintained in species networks. Here, we focus on the tri-trophic relationship between 

arbuscular mycorrhizal (AM) fungi, host plants and fungivores to ask if host plants are able 

to protect their mutualistic mycorrhizal partners from grazing. Specifically, we test whether 

secondary metabolites are transferred from hosts to fungal partners to increase their 

defence against fungivores. We grew Plantago lanceolata hosts with and without 

mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then 

measured fungivore effects on host biomass and mycorrhizal abundance (using 

quantitative PCR) in roots and soil. We used high-performance liquid chromatography to 

measure host metabolites in roots, shoots and hyphae, focusing on catalpol, aucubin and 

verbascoside. Our most striking result was that the metabolite catalpol was consistently 

found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were 

absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-

mediated protection of the mycorrhizal hyphal network.   

Key words: cooperation, defense, mutualism, networks, species interactions, symbiosis.  
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Introduction 

 

 All mutualistic interactions are embedded in larger ecological webs (Bascompte, 

2009). This means that external species, including predators, parasites, herbivores, and 

even other mutualists (e.g. Palmer et al., 2010) can influence the benefit:cost ratios of 

mutualisms, and alter theirecological and evolutionary outcomes (Afkhami & Rudgers, 

2009). Anthropogenic disturbances are increasingly linked to the disruption of species 

networks (Kiers et al., 2010), and this has prompted a call to focus on understanding how 

cooperative strategies evolve and are maintained in species networks (Bascompte, 2009).  

The 450-million-year-old arbuscular mycorrhizal (AM) symbiosis is likely the world�s!most!

prevalent mutualism (van der Heiden et al., 2008). It primarily involves the exchange of 

carbohydrates from plants for mineral nutrients from the fungal partner (Parniske, 2008). 

Estimates suggest that up to 20% of total host carbon can be transferred to AM fungi (for 

review see Bago et al.,! 2000).! In! return,! AM! fungi! improve! the! host! plant�s! supply! of!

phosphorus (Parniske, 2008), and nitrogen (Fellbaum et al., 2012) and provide a diversity 

of other benefits to the host plant (van der Heiden et al., 2008). The symbiosis contributes 

to massive global nutrient transfer, global carbon sequestration, and soil stabilization 

(Rilling & Mummey, 2006). These features make it paramount to health and ecosystem 

function. Like all mutualisms, the mycorrhizal symbiosis exists in a rich web of interactions. 

A given host is colonized by multiple AM fungal species (e.g. Vandenkoornhuyse et al., 

2002), and a single fungus can simultaneously colonize several plant individuals belonging 

to different plant species (e.g. Vandenkoornhuyse et al., 2007, Mikkelsen et al., 2008). This 

common mycelial network represents a dynamic underground environment: AM fungal 

hyphae can account for up to 30% of the total soil microbial biomass (for review see Leake 

et al., 2004).   

 The plant-AM fungal network co-exists with populations of soil micro-arthropods 

(Hishi et al., 2008) that feed on rhizosphere fungi, including AM fungal hyphae (Jonas et 

al., 2007). Collembola, known collectively as springtails, are among the most abundant soil 

arthropods (Petersen & Luxton, 1982) and most Collembola species feed on fungal 

hyphae (Fountain & Hopkin, 2005). Depending on their densities, fungivores may either 

enhance or degrade the symbiosis (Gange, 2000). At low densities, the presence of 

fungivores has been shown to increase AM fungal colonisation and hyphal development by 

acting as a transporting agent for nutrients in the soil (Klironomos & Moutoglis, 1999; 

Chapter II: Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular  mycorrhizal hyphae?  



 

71 

Bakonyi et al., 2002). Conversely, when fungivore densities increase, grazing pressure can 

negatively affect the AM fungal hyphal development (Klironomos & Ursic, 1998). This 

grazing effect can represent a significant cost to the AM fungi and their host plants (Harris 

& Boerner, 1990; Klironomos & Ursic, 1998; Johnson et al., 2005).   

 It is well known that plants employ a great variety of biologically active secondary 

metabolites as defensive compounds to deter herbivores (Bowers & Puttick, 1988; Marak 

et al., 2002; Wurst et al., 2010), but it is unknown if soil fungi use a similar chemical-based 

defense strategy. Recent work suggests that soil-borne fungi have developed strategies to 

decrease their palatability (Böllmann et al., 2010; Kempken & Rohlfs, 2010), such as the 

utilization of poisonous or repellent compounds to discourage hyphal consumption. So far 

only a few examples of fungal-synthesized repellants have been described (Rohlfs et al., 

2007; Böllmann et al., 2010; Staaden et al., 2010). Relative to saprotrophic free living 

fungi, mycorrhizal fungi (both AM and ectomycorrhizal types) appear to be well protected 

from grazing by fungivores. Several laboratory-based food choice studies have shown that 

fungivorous springtails preferentially consume saprophytic free-living fungi over 

mycorrhizal taxa (e.g. Klironomos & Kendrick, 1996; Klironomos & Ursic 1998; Schreiner & 

Bethlenfalvay, 2003). When AM fungal hyphae are the only available food source, a 

diminished growth performance and fecundity is found in many springtail species 

(Klironomos & Moutoglis, 1999; Larsen et al., 2008), suggesting that the consumption of 

these hyphae may be disadvantageous (Gange, 2000; Kempken & Rohlfs, 2010; Böllman 

et al., 2010). There is also some evidence that plant colonization by AM fungi can induce 

protective secondary metabolites in roots and leaves (Gange & West, 1994; De Deyn et 

al., 2009). The question arises, whether fungal partners benefit, either directly or indirectly, 

from secondary metabolites production of their plant host.  

 Here we test the idea that secondary metabolites, used by the host plant for its own 

protection against herbivory, can be transferred to the fungal partner to increase its 

defense against fungivores. We hypothesize that the presence of fungivores elicits the 

transfer of secondary metabolites to the fungal hyphae by the mycorrhizal plant. To test 

this hypothesis, we utilized microcosms to study the interaction between the host plant 

Plantago lanceolata, Glomus sp. fungal symbionts, and the fungivorous springtail Folsomia 

candida. We focused on the production of catalpol, aucubin and verbascoside, the main 

defensive secondary metabolites known to occur in P. lanceolata (Bowers et al. 1992). 

Catalpol and aucubin are iridoid glycosides and act as direct defense compounds 
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(Fontana et al., 2009), with generalist anti-feedant properties (Bowers & Puttick, 1988; 

Biere et al., 2004), and antimicrobial activity (Marak et al., 2002). Verbascoside is a 

caffeoyl phenylethanoid glycoside known for its antimicrobial and cytotoxic activity (Pardo 

et al., 1993). We used high-performance liquid chromatography (HPLC) to measure 

secondary metabolite concentrations in roots, shoots and fungal hyphae and quantitative 

PCR (qPCR) to determine the mycorrhizal abundance in roots and soil in the presence 

and absence of fungivores. Ultimately, our aim was to determine if plants protect their 

mycorrhizal hyphae in the presence of fungivores.   

 

Methods  

 

 P. lanceolata was chosen as the host plant because it has become a model plant 

species in mycorrhizal research: it is readily colonized and highly responsive to a broad 

range of AM fungal taxa (Maherali & Klironomos, 2007; Verbruggen et al. 2012) and is 

known to employ secondary metabolites for defense and protection (Marak et al., 2000; 

Biere et al., 2004; De Deyn et al., 2009; Wurst et al., 2008, 2010). P. lanceolata seeds 

(Cruydthoek, Assen, the Netherlands) were sterilized using diluted bleach (NaOCl 2.5 % 

w/w), then planted in autoclaved quartz sand (15% humidity) and grown for 14 days under 

plastic foils. 

 For each pot, three randomly selected seedlings of P. lanceolata (three seedlings to 

ensure ample root growth and hyphal growth) were planted together in a single meshbag 

(-! 6,5! cm,! height! 16! cm).! The! mesh! bags! were! prepared! from! 20! %m! pore! size! nylon!

mesh, which allowed the hyphae, but not the roots, to cross over and protected the roots 

from springtail exposure (Appendix A). After filling the quartz-dune sand mixture in the 

bags, they were placed central in pots (Ø=15 cm) with autoclaved quartz sand (~15% 

humidity, 1.7 kg per pot) mixed with 25% (w:w) glass beads (4 mm in diameter) to create 

spaces for springtails. 

 Seedlings were inoculated with spore material produced in in vitro root organ 

cultures (provided 140by Mycovitro S.L. Biotechnología ecológica, Granada, Spain) in one 

of three treatments. The seedlings were inoculated either with: (1) a single fungal inoculum 

of G. intraradices, strain 09 (Schenck & Smith, 1985, see Stockinger et al., 2009 for 

discussion of G. intraradices re-classification), (2) a single fungal inoculum of G. custos, 

Chapter II: Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular  mycorrhizal hyphae?  



 

73 

strain 010 (Cano et al., 2009) or (3) a 50:50 mixture of G. intraradices and G. custos, (see 

Kiers et al., 2011 for further description of fungal species). In all cases, a total of ~1000 

spores were added to the roots of the host plants in each mesh bag. Non-mycorrhizal 

controls were inoculated with heat-sterilized inoculum. Pots were randomized into 

treatments with or without springtails of ten replicates each.   

 We used the springtail Folsomia candida (Berlin clonal line), a ubiquitous soil 

microarthropod with a global distribution (Fountain & Hopkin, 2005) as our fungivore. This 

Collembolan has been shown to consume AM fungal hyphae, although saprophytic fungi 

are the preferred food source (Gange, 2000; Larsen et al., 2008). Individuals of F. candida 

(size range 0.25 to 0.5 mm) were raised in a climate room at 15°C, fed with a diet of 

common!baker�s! yeast,! and!starved! for!a!week!before!being!added! to!pots.!One!month!

after transplanting seedlings, we added 200 F. candida per pot, outside the meshbag in a 

shallow trench, providing a final density of approximately 120 individuals kg-1 soil (i.e. 1.4 

x 104 individuals / m2). Our aim was to match Collembola density found in natural habitats, 

which vary in grasslands from 0.5 to 8 x 104 individuals / m2 (Petersen & Luxton, 1982) to 

agricultural fields with densities from 0.5 to 2.5 x 104 (Moore et al., 1984). The plants were 

grown for twelve weeks in a greenhouse (temperature 16020-25 °C, relative humidity 60-

70%), and watered to maintain ~15% humidity. A Hoaglands nutrient solution with a 

reduced P content (50%) of 4 ml kg-1 dry sand was added once every two weeks 

(Hoagland & Arnon, 1950, see also Appendix A). Pots were randomized on benches once 

per week.   

Harvest 

 At harvest, the aerial plant portions were removed, freeze-dried and weighed. The 

roots were removed from meshbags, washed, freeze-dried, weighed and a subsample was 

taken for DNA extraction. Both roots and shoots weights were corrected for raw ash 

content. One soil core (diameter 2.7 cm) was collected outside the meshbags and weighed 

for DNA extraction and qPCR. Glass beads were removed from the soil and cores were 

stored at -20°C until DNA extractions. To measure the hyphal mass, blocks of sand were 

removed from the pot, placed on a sieve with a 0.5 mm mesh and subjected to wet 

sieving/washing (Appendix A). The ERM fraction was snap-frozen in liquid N2, freeze-

dried, weighed, and stored at -80°C for later HPLC-analysis. Fungal biomass was 

determined as ash-free dry weight by the weight difference upon loss on ignition at 500°C 

(see below, Chemical analysis). A random subsample of roots were stained using the 
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modified method by Phillips and Hayman (1970) with Trypan Blue in lactoglycerol, 

following maceration of the roots with KOH (10% for 30 min at 90°C) and acidification with 

1% HCl for 15 min. The roots were then aligned on a slide and 100 intersections were 

scored for presence/absence of hyphae, arbuscules and vesicles using the method 

described by McGonigle et al. (1990).  

 

Molecular analysis   

 We extracted fungal DNA from roots using DNeasy Plant Mini Kit (Qiagen) and soil 

using FastDNA SPIN kit for Soil (MP Biomedicals) following manufacturer´s 

recommendations. One gram of crushed (with vortexer), thawed (but not dried) soil was 

used for the extraction. For root extractions, fresh-roots were blotted dry, cut into small 

pieces and mixed, with a random subsample of 100 mg fresh weight taken for further 

processing. Liquid nitrogen and micropestles were used to pulverize the roots, following 

supplier recommendations, with DNA eluted in 50 µl elution buffer. The abundance of the 

two AM fungal species in the different samples was quantified using taxon-specific markers 

with hydrolysis probes (Kiers et al., 2011; Thonar et al., 2012, Appendix B). Our qPCR 

tests revealed that the inoculation with the AM fungal species G. custos was unsuccessful. 

This fungal species was undetectable in qPCR tests in most root samples that were 

inoculated with this strain (both single and mixed), and we found no hyphal biomass in the 

single G. custos treatment. In only one out of four analyzed plants that were inoculated 

with G. custos, a positive qPCR was recorded, but the abundance was still 2 orders of 

magnitude lower than for G. intraradices. We therefore removed the treatments containing 

G. custos from our plant analyses. However, we did still test for the presence of secondary 

metabolites in the hyphae of the mixed (G. intraradices + G. custos) treatment. Although 

this treatment only contained G. intraradices (i.e. G. custos did not successfully colonize 

hosts), it was still a valid test for the presence/absence of secondary metabolites in AM 

fungal hyphae.  

 

Chemical analysis  

 Freeze-dried roots and shoots were ground to powder using a metal lockable tube 

and a metal bullet for 50 seconds at the highest speed (30 strokes sec-1, Retsch MM200). 

The hyphae were ground cryogenically at liquid N2 temperature in an eppendorf tube 
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using a fitting pestle. The powdered roots, shoots and hyphae were stored at -80°C until 

HPLC analyses. The secondary metabolites were extracted from 10 mg of leaf or root 

material in 2 ml of methanol, following a modified analytical protocol used by Sesterhenn 

et al. (2007) for iridoid glycoside determination. The extraction vials were sonicated for 4 

min, heated for 30 min at 50°C and shaken overnight at 150 rpm. Subsequently, samples 

were centrifuged at 3000 rpm for 10 minutes, and filtered through 4.0 µm. Because no 

suitable internal standard was available, care was taken at all steps to maintain the 

absolute (secondary metabolites) concentration of the methanol extracts. For HPLC 

analysis, 50 µl of the extract and 100 µl of mobile phase A were transferred to a vial 

(Appendix A). The preparation of the hyphal extracts followed the same protocol as the 

plants, except that 10 mg of crude hyphal material was extracted in 1.5 ml methanol. The 

concentrations of hyphal extracts were then increased 10-fold by evaporation of the 

methanol under a stream of N2. For hyphal measurements, there was a total of 6 

replicates in the G. intraradices + springtail treatment, and 7 replicates in the mixed AM 

fungi + springtail treatment because some samples were pooled to achieve a sufficient 

amount of hyphae. All freeze-dried hyphal material was cryogenically ground and a 

subsample was subsequently ashed at 500°C to measure fungal biomass (the ash-free dry 

weight) by the loss on ignition.  

 

Hyphal isolation from in vitro cultures  

 To begin to assess if secondary metabolites originated from the fungus itself, we 

analysed secondary metabolites in hyphae from in vitro root organ cultures (Doner and 

Bécard, 1991). In vitro grown hyphae from G. intraradices (provided by Mycovitro) were 

grown on a gellan gum medium on a split plate together with carrot roots (Daucus carota). 

To extract the hyphae from 2the medium, the fungal compartment of the medium was 

suspended in 25 ml 10 mM sodium citrate buffer (pH 6, 37 °C, Appendix A). The hyphae 

were freeze-dried, stored and processed as above.  

 

Choice tests in presence and absence of catalpol  

 To determine if catalpol was a feeding deterrent for F. candida, we constructed food 

choice arenas as described by Larsen et al. (2008). We divided Petri dishes with plaster of 

Paris bottoms into two equal sections using a transverse wall, while leaving an opening to 
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allow migration of springtails to either section. One section of the arena received clean 

yeast, the other side yeast with the catalpol spiked at 4 different treatment concentrations: 

0, 0.1, 1,0 or 2.0% w/w. We used yeast rather than fungal mycelium because: (i) a high 

amount was required for all the different choice treatments, (ii) it is a more uniform test 

material than mycelium grown on a series of replicate plates, and (iii) it is free of any 

possible secondary metabolite material. We placed 20 springtails in the middle opening of 

each arena with 10 replicates per treatment. We recorded the distribution of the springtails 

over the two sections 4 times per day for 3 consecutive days. For each arena the 

collembolan distribution was averaged per day, and each treatment was tested for 

significant deviations from a random 50:50 distribution. The first day was not taken into 

account since the springtails were still actively exploring both sections.    

 

Statistical analysis   

 Plant data, hyphal biomass and secondary metabolite concentrations were 

analyzed using a two-way ANOVA with R 2.13.0 (http://www.r-project.org/). If significant 

differences were found with ANOVA, a Tukey post-hoc test was applied. All data were first 

tested for normality and homogeneity of variances (Kolmogorov-Smirnov! test!<!Levene�s!

test) and a logarithmic link function was used when required. To confirm ANOVA test 

results, a complementary statistical analysis was performed using parametric generalized 

linear model (GLM), using R (GLM approach, Appendix A). All molecular analyses and 

data on secondary metabolites in hyphae were analyzed by a one-sample t-test. 

Differences were considered significant at p<0.05. We ran a power analysis using R 2.13.0 

(http://www.r-project.org/) on hyphal biomass and the molecular root colonization data to 

determine the number of replicates we would have needed to detect a significant 

difference with a given power of 90% possibility to detect a significant result with p<0.05. 

 

Results  

 

 To investigate the potential transfer of protective secondary metabolites from the 

host plant to the fungal symbiont, we studied the effects of AM fungi on P. lanceolata in the 

presence or absence of springtails (Overview table and statistics, Appendix C and D). We 

found a highly significant effect of AM fungal inoculation (ANOVA: df=38, F=50.2, p<0.001) 
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and springtail treatment (ANOVA: df=38, F=17.8, p<0.001) on aboveground plant growth 

(Figure 9). The inoculation with G. intraradices led to an increase in aboveground growth of 

74% and of 60% , respectively in the presence (Tukey, p<0.05) and in the absence of 

springtails (Tukey, p<0.001). We also found that the presence of springtails reduced the 

positive effect of AM fungi on plant biomass (23% vs 60%, Figure 9), as indicated by a 

significant interaction term (ANOVA: df=38, F= 4.12, p=0.0498). There was no significant 

effect of inoculation or springtail addition on root biomass (ANOVA: df=36, F=1.27, 

p=0.299, Figure 9). As discussed above, treatments containing G. custos were excluded 

from plant growth analyses because of a failure to successfully establish G. custos 

colonization.   

 

 

 

 

 We measured AM fungal colonization in both the soil outside the meshbags (using 

hyphal biomass corrected for raw ash content as well as qPCR) and roots (using qPCR 

and visual counts) of the G. intraradices microcosms (Figure 10). In the soil, hyphae of G. 

intraradices were found (biomass and by qPCR) in all but one pot. We found no significant 

reduction in the hyphal biomass in the soil in the presence of springtails (Student's t-test, t 

= 0.93, df = 18, p>0.05, Figure 10a). Based on our microscopic counts, we found the plant 

roots had a total mean colonization of 57%, with no significant effect from the springtail 

treatment (ANOVA, f = 0.6434, df = 1, p>0.05), nor in % vesicles (Mean = 12%; ANOVA, f 

= 0.6933, df = 1, p>0.05) or arbuscles (Mean = 46%; ANOVA, f = 0.538, df = 1, p>0.05). 

Figure 9:  

Effects of AM fungal species G. intraradices 

(hatched bars) and the fungivore F. candida 

(grey bars) on P. lanceolata aboveground and 

belowground biomass. Above the x-axis 

corresponds to shoot dry weight, below the x-

axis corresponds to root dry weight. Letters 

indicate significant differences between 

treatments! means! according! to!Tukey�s! HSD!

test!(P!$!731!Bars!represent!the!means!of!10!

replicates ± 1 standard error. 
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Likewise, in the qPCR analysis, we found no statistical difference on soil fungal 

colonization!due! to!springtails! (Student�s! t-test: t = 0.3025, df = 12, p>0.05, Figure 10b), 

nor! on! root! colonization! (Student�s! t-test: t = 0.36, df = 12, p>0.05, Figure 10c). To 

determine if these non-significant differences were due to the low sample number, we ran 

a power analysis and found that between 17, ~100, ~1000 samples would be needed to 

detect differences in springtail addition on root biomass, hyphal biomass and qPCR data.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  

Effect of F.candida presence (grey) and absence (white) on (a) the mean dry weight of G. intraradices 

hyphae, N=10, (b) mtLSU copies of G. intraradices per gram of soil, and (c) mtLSU copies of G. intraradices 

per gram root, N=7, ± 1 standard error. Letters indicate significant differences between treatments according 

to!Tukey�s!HSD!test!(P!$!0.05).!  

 

 P. lanceolata roots and shoots contained the secondary metabolites catalpol, 

aucubin and verbascoside in varying concentrations depending on the treatment. Fungal 

inoculation led to a decrease in the verbascoside root concentration of 62.5% in the 

absence of springtails (ANOVA: df=36, F=7.62, p<0.001, Figure 11a). This trend was 

reversed in shoots where AM fungal inoculation increased the verbascoside concentration 

by 37%, but only when springtails were present (ANOVA: df=36, F=4.41, p=0.001, Figure 

11a). In contrast, AM fungal inoculation consistently reduced the concentrations of catalpol 

in the shoots by respectively 48% and 53%, both when springtails were present and 
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absent (ANOVA: df=36, F=8.43, p<0.001; Tukey: for 2both p<0.05, Figure 11c). Inoculation 

with AM fungi had no effect on the catalpol concentrations in the root (ANOVA, df=36, 

F=0.93, p=0.44). Of the three secondary metabolites found in roots, the catalpol 

concentrations were the lowest: in 13 of the 40 root samples, catalpol levels were under 

the detection limit. While aucubin was detectable in all leaf and root samples, none of the 

treatments had a significant effect on the aucubin concentration in plant shoots (ANOVA: 

df=36, F=2.45, p=0.08) or roots (ANOVA: df=36, F=1.99, p=0.13, Figure 11b). The power 

analysis indicates that ~17 replicates would be required to detect a significant effect of the 

fungal treatment on the aucubin concentration of the roots.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  

Effects of AM fungal species G. intraradices (hatched bars) and the fungivore F. candida (grey bars) on (a) 

verbascoside (b), aucubin (c) and catalpol concentration in P. lanceolata shoots and roots (+SEM). Above the 

x-axis corresponds to aboveground concentrations, below the x-axis corresponds to belowground 

concentrations.!Letters!indicate!significant!differences!between!treatments!means!according!to!Tukey�s!HSD!

test!(P!$!0.05).!Bars!represent!the!means!of!10!replicates!±!1!standard!error.! 
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 We measured the presence of secondary metabolites in AM fungal hyphae in 

treatments with and without springtails. While aucubin and verbascoside were 

undetectable in all hyphal samples, we consistently identified catalpol (mean concentration 

of 0.35±0.12 mg g-1 dry hyphae, Figure 12) in the fungal hyphae of each sample (n=6 

because of pooling) from the treatment with springtails. In contrast, catalpol was 

undetectable in the fungal hyphae when no springtails were added. To confirm this finding, 

we also tested hyphae from the mixed fungal treatment (Appendix E), which due to 

inoculation failure of G. custos, only contained G. intraradices. Again, when springtails were 

present, AM fungal hyphae contained catalpol (mean concentration of 0.26±0.08 mg g-1 

dry hyphae, n=7, Figure 12), while catalpol was undetectable when springtails were 

absent. As an initial test of whether the catalpol was produced by the fungus (e.g. in the 

absence of a photosynthetically active host), we tested the catalpol concentration of 

hyphae from in vitro root organ cultures. In all in vitro replicates, the catalpol level was 

under the detection limit (i.e. <250 ng ml-1).   

 

 

 

 

 

 

 

 

 

 

 

 Lastly, we tested whether catalpol was a feeding deterrent for F. candida using food 

choice arenas. We found that at all levels tested (0.1%, 1% and 2% w/w), catalpol acted as 

an efficient repellent for the springtails. When catalpol was present, 79-91% (depending on 

concentration) of the springtails choose to feed from material on the unspiked, control side 

(Appendix F).  

Figure 12:  

Catalpol concentration in hyphae of G. intraradices 

(hatched bars) and in mixed treatment (tightly 

hatched bars) which contained G. intraradices (+ 

G. custos which failed to establish). Fungal 

treatments were either exposed to the fungivore F. 

candida (grey bars) or experienced no fungivores 

(white bars). Letters indicate significant 

differences between treatments means according 

to!Tukey�s!HSD!test!(P!$!0.05).!Bars!represent!the!

means of 6 replicates (G. intraradices alone) or 7 

replicates (mixed treatment) ± 1 standard error. 
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Discussion  

 

 Here we investigated the effects of fungivores on the concentration of secondary 

metabolites in shoots and roots of host plants, and hyphae of AM fungi. The most striking 

result of our study was that AM fungal hyphae contained catalpol (Figure 12). This iridoid 

glycoside was consistently identified in all hyphal samples exposed to springtails, 

suggesting that its presence is triggered by the presence of fungivores. secondary 

metabolites have been well-studied in plants but less is known about these compounds in 

fungi. Reported fungal secondary metabolites broadly fall into five diverse chemical 

categories: polyketides, polyketide-peptide hybrids, fatty acid derived compounds, amino 

acid-derived compounds and non-ribosomal peptides (Roze et al., 2011). Previous work 

has identified secondary metabolites in Basidiomycota and Ascomycota phyla (Rohlfs & 

Churchill, 2011), and it is known that endophytic fungi can synthesize various secondary 

metabolites, like ergovaline, peramine, loline or indol derivatives (Fleetwood et al., 2007; 

Yue et al., 2000, Tanaka et al., 2012). These compounds have been shown to negatively 

affect microarthropods (Rohlfs &Churchill, 2011), and exhibit antifungal and antimicrobial 

properties (Aly et al., 2010). However,  the secondary metabolite class of iridoid glycosides 

seem to be exclusive to the plant kingdom (Dinda et al., 2007).   

 As this is the first evidence of secondary metabolites in AM fungal hyphae, it is not 

clear whether catalpol is synthesized by the plant or the fungus. As an initial test of this 

question, we collected hyphae from in vitro root organ cultures that lack a photosynthetic 

top. We did not find any evidence for secondary metabolites, suggesting that AM fungi do 

not synthesize catalpol de novo. However, these hyphae were not exposed to fungivores 

and thus iridoid secondary metabolites synthesis may not have been induced. While we 

utilized a different G. intraradices isolate than the one currently being sequenced, a 

preliminary search through the available genome data of G. (Rhizophagus) intraradices 

failed to provide any evidence for a functional biosynthetic pathway for iridoid glycosides in 

its genome. The fact that catalpol is one of the major secondary metabolites found in P. 

lancelota, and that there are no reports of catalpol being synthesized by other fungi in 

nature (Dinda et al., 2007), is supportive of our hypothesis that catalpol is transferred by 

the host to the fungi to protect against springtails.   

 How is catalpol transferred to the hyphae? Recent work suggests that mycorrhizal 

networks can facilitate a transfer of allelopathic compounds - compounds produced by one 
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plant that limit the growth of surrounding plants (Barto et al., 2011), but it is unknown if 

these compounds simply move along hyphal surfaces or whether they move inside 

hyphae. A transfer of biologically active secondary metabolites has been shown to exist in 

some root-hemiparasitic plants and their hosts, enabling these root parasites to reduce 

their susceptibility to herbivory by an uptake (via the haustorium) and sequestration of 

host-produced deterrents (Schädler et al., 2005; Rasmussen et al., 2006). The selective 

uptake and subsequent transport and storage of plant-derived secondary metabolites has 

also been found in several herbivorous insects (Leptidopterans, Coleopterans) to support 

anti-predator defense (Kuhn et al., 2004). These observations all indicate the existence of 

specific! mechanisms! that! enable! the! uptake! and! handling!of! �foreign�! biologically! active!

compounds without adverse effects on the organisms own physiological processes (e.g. 

involving! �vesicle! trafficking�! in! transfer/transport,! see!Field! et al., 2006). However, more 

work is needed to explore the movement and transfer (active or passive) of chemicals 

across hyphal networks.  

 A second result was that the hyphal biomass of the AM fungus was not reduced in 

the presence of springtails (Figure 10a). There was a trend towards reduced biomass in 

the presence of springtails, but this was never significant and the power analysis suggests 

that the lack of the significant difference is not the results of a small sample number. 

Biomass measurements were consistent with the qPCR analyses of roots and soil. 

Visually, we found the roots were well colonized ~50% root length colonized, and that this 

is the same or higher than root colonization rates reported for the field-grown Plantago 

plants! (�milauerová! <! �milauer,! 2002).! No! significant! differences! were! found! for! the!

springtail treatments for any colonization data. Measurements of the mtLSU were used as 

a proxy for active fungal biomass (Alkan et al., 2006), and again springtails did not lead to 

a significant reduction in fungal copy number (Figure 10b and c).   

 There are two potential explanations for why we do not see a significant reduction in 

hyphal biomass. First, it is possible that the survival of the springtails was low due to the 

lack of appropriate food sources. We added ~120 individuals kg-1 soil, which is within the 

range for natural densities (Petersen & Luxton, 1982; Moore et al., 1984). However, 

previous greenhouse experiments have shown that springtail numbers under ~200 

individuals kg-1 of soil result in no negative reduction of fungal growth, and can even 

stimulate fungal colonization (Giller, 1996; Bakonyi et al., 2002). There could be a 

compensatory effect to grazing by the springtails, with fungi allocating more to hyphal 
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regeneration and increased mycelium turnover in presence of these fungivores. The 

second possibility is that we are seeing an interplay between two opposing factors: while 

AM fungal hyphae was the only food source for the springtails, it was also an undesirable 

food source (Klironomos & Ursic, 1998). While the effects of plant-derived secondary 

metabolites vary depending on fungivore (Larsen et al., 2008), they are generally very 

strong feeding deterrents to herbivores (Biere et al., 2004). For example, collembola prefer 

to graze fungi containing less secondary metabolites, even if they may contain less 

nutrients (Jørgensen et al., 2005; Staaden et al., 2010). Our food choice experiments 

demonstrate that catalpol is a strong repellent for F. candida when!spiked!in!the!springtail�s!

regular! laboratory! food! (baker�s! yeast)! at! concentrations! =! 0.1>! w/w! (Appendix! F).! So!

while we would expect a decrease in the AM fungal biomass as sole food source, the 

reduction may be less pronounced due to the repellant qualities of the hyphae themselves. 

 As expected, we found a positive effect of AM fungal colonization on plant biomass 

in the treatments with G. intraradices (Figure 9). However, we did not expect that the 

presence of springtails - in the absence of AM fungal colonization - would increase plant 

biomass (Figure 9). While one possible explanation is that dead springtails provided extra 

nutrients or other growth promoter, our calculations indicate that the nitrogen content in 

200 springtails (~130 µg of N/pot) is insignificant compared to what was added as nutrient 

solution (~4.5 mg of N/pot). All growth data from hosts inoculated with G. custos were 

removed from the analysis because of the inoculation failure with this fungi. While we have 

had success with this AM fungal species in the past (e.g. Verbruggen et al., 2012), the soil 

characteristics of our pot cultures (composition, pH, moisturing) were potentially not 

favorable for its growth.  

 Consistent with the results of other authors (Gange & West, 1994; De Deyn et al., 

2009), we found that inoculation with AM fungi resulted in changes in the secondary 

metabolite contents of plant shoots and roots (Figure 11). While secondary metabolite 

levels are known to vary depending on numerous factors like plant age, pathogen 

presence, AM fungal colonization, nutrient availability, and genetic factors (Marak et al., 

2002; Fuchs & Bowers, 2004; Barton, 2007), our secondary metabolite levels were in a 

similar range to those found by others in greenhouse experiments (Fajer et al., 1992, 

shoots only, Fontana et al., 2009, shoots only, De Deyn et al., 2009, roots & shoots). In a 

manipulative experiment similar to ours, De Deyn et al. (2009) studied the effect of AM 

fungi on selected lines of P. lanceolata, containing high and low levels of iridoid glycosides. 

They found a catalpol range of 0.05%-0.8% and aucubin range of 0.05% - 1.0%, in the low 
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and high lines, respectively. These levels are in the range of our experiment, with catalpol 

levels found at 0.1% - 0.52% and aucubin at 0.6-1.4%. Also in agreement with a trend 

identified by De Deyn et al. 2009, we demonstrated that inoculation with AM fungi 

decreased catalpol levels in shoots (Figure 11c). We found that aucubin levels were 

unaffected by our experimental treatments (Figure 11b) and that colonization by AM fungi 

resulted in a decrease in 4the verbascoside levels in plant roots (Figure 11a). In the 

presence of springtails and absence of AM Fungi, the verbascocide concentration was 

lower than in any other treatment. A possible explanation would be that the reduced 

verbascoside production explains benefits to plant biomass. However, previous studies 

suggest that the costs of secondary metabolite products in Plantago lanceolata are minor 

(e.g. Darrow & Bowers, 1997), especially when nutrients are in short supply giving rise to a 

relative surplus on photosynthate available in the synthesis of the iridoids (Marak et al. 

2003). Therefore explaining an 80 mg increase in plant biomass from a 2.5 mg saving in 

verbascoside content is probably unlikely. Previous work has shown increases in 

secondary metabolites in leaves after AM fungal colonization (Gange & West, 1994), or no 

effect at all (Wurst et al., 2004; Fontana et al., 2009), highlighting the variability of 

secondary metabolite synthesis. Levels of secondary metabolites may also be higher in 

field grown plants compared to greenhouse plants, potentially due to exposure to even 

more threats (e.g. Bower et al., 1992). Changes in plant secondary metabolite levels can 

also be very local (Stout et al., 1996; Darrow & Bowers, 1999), which explains how we can 

see variations in catalpol in the aboveground portions and variations of verbascoside in 

roots only.   

 

Conclusion  

 

 Given the substantial investment of plants and fungi to form a mycorrhizal network, 

both partners have a shared interest in protecting it. Fungivores present a constant threat. 

What strategies do plant and/or fungus employ to safeguard hyphal network from grazing? 

Our results suggest that the plant may contribute to the chemical protection of the hyphal 

network. In the presence of fungivores, catalpol was found in the hyphae of AM fungi. 

When fungivores were absent, the catalpol concentrations in the hyphae were below the 

detection limit. This suggests that catalpol can be triggered by fungivore grazing pressure. 

As the synthesis of allelochemicals may involve costs, it is understandable why these 
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compounds are only found in the hyphae when there is a strong threat, such as 

fungivores.   

 Several aspects of the origin and transfer of protective compounds in hyphal 

networks warrant further study. For instance, we need more research to deduce whether 

AM fungi are capable of a deterrent metabolite synthesis of their own, and to test for the 

presence of a wider array of compounds such as mycorradicin and blumenin that may be 

transferred by mycorrhizal plant species as feeding deterrents (Maier et al., 1995; Strack et 

al., 2003 review). We also need a better understanding of the origin and/or transfer 

mechanisms of protective compounds, and whether compounds travel along the hyphae 

extracellularly (e.g. Barto et al., 2011) or intracellularly, as we predict. Lastly, we utilized 

only one host, one AM fungal species and one fungivore. More work is needed to broaden 

these conclusions and determine whether this is a common strategy across mycorrhizal 

host plants.  
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Appendix A: Methodological details of plant propagation/set-up, nutrient regime, 

hyphal harvest and chemical analysis 

 

Plant propagation 

 Before seedlings were planted in bags, the mesh bags were washed with 

demineralized water, and sterilised with 70% ethanol. Each mesh bag contained 300 g of a 

sterilized 9:1 mixture of quartz sand mixed with organic dune sand (see Verbruggen et al., 

2012 for soil description), resulting in 0.8% of organic matter per bag (15% humidity). All 

pots were covered with black plastic foil to avoid evaporation.  

 

Nutrient solution 

 The nutrient solution was injected below the quartz sand surface (over a depth of 1-

8 cm) at 6 equidistant positions around the meshbag to achieve an even extraradical 

mycelium (ERM) development, and to minimize the growth of algae on the sand surface of 

the pots. 

 

Hyphal Harvest 

 To measure the hyphal mass, blocks of sand were removed from the pot. The sand 

portion on the sieve was partly submerged in demineralised water and gently shaken to 

allow the sand to pass, leaving the intact ERM with quartz grains still attaching to the 

hyphal surface. By applying a gentle flow of demineralised water a portion of these 

attached grains could be removed. 

 To extract the hyphae from in-vitro medium, the fungal compartment of the medium 

was cut in 5-6 pieces and transferred in a 50 ml tube together with 25 ml 10mM sodium 

citrate buffer (pH 6, 37 °C). The solution was vortexed for 30 minutes at 100 rpm and 

sieved with nylon mesh. The washing steps were repeated until all medium was washed 

away. Roots were removed by hand using a stereomicroscope and tweezers.  Hyphae 

were put in an eppendorf tube, freezed it in liquid nitrogen and stored in a -80 °C freezer 

until analysis.  

 

Chemical analysis 

 Quantitative HPLC analysis was conducted using an Ultimate 3000 system (Dionex, 

USA) consisting of a dual pump module, autosampler, column compartment and 

photodiode array detector. A LiChroCART 125-4 LiChrospher 100RP-18 (5 µm) (Merck, 
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Darmstadt, Germany) was used as analytical column. The mobile phase consisted of (A) 

phosphate buffer (2.5 mM KH2PO4; pH= 4.0 with phosphoric acid) and (B) acetonitrile. The 

gradient elution had the following profile: 0-0.2 min, 0% B; 0.2-10.5 min, 0-6% B; 10.5-24.5 

min, 6-50% B; 24.5-26.5 min, 50-0% B; 26.5-29 min, 0% B. The column flow rate was 1 ml 

min-1 at 20 ºC, and the injection volume was 10 µl. The absorbance of catalpol and 

aucubin were measured at 204 nm, and verbascoside was measured at 215 nm. SM 

peaks in the chromatograms were identified by comparison of retention time of authentic 

iridoid and verbascoside standards (Carl Roth GmbH, Germany): catalpol (purity    99%) at 

4.8 min, aucubin (purity    98,5%) at 7.6 min and verbascoside (purity    98%) at 17.9 min. 

The peak area was integrated using Chromeleon Software Release 6.60 (Dionex Corp.) 

with external standards. Standard calibration curves were plotted using various 

concentrations of catalpol, aucubin and verbascoside (range: 10 � 250 µg ml-1 for each 

compound). The detection limit of catalpol and aucubin was 250 ng ml-1 and 80 ng ml-1 for 

verbascoside. 

 

Statistical analysis 

 The functions used in R to perform the statistical analyses are the following: 

- normality and homogeneity of variances: ks.test(); levene.test() 

- analyses of plant data, hyphal biomass and secondary metabolite concentrations: glm(); 

anova(lm()); TukeyHSD() 

- molecular analyses and data on secondary metabolites in hyphae: t.test(); welch.test() 

- power analyses: power.anova.test(); power.t.test() 

 

 For GLM analysis, the best possible GLM was selected after calculation of Akaike 

Information Criterion. In this study, the most appropriate family wise errors were Inverse 

Gaussian or Gaussian depending on the data. Modalities were included in the GLM one at 

a time. From the GLM, data were analysed by a one-sample t-test. 
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Figure A1:  
Experimental set-up. 
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Appendix B: Methodological qPCR analyses details  

 

 qPCR! assays! were! run! in! 9! %l! reactions,! using! the! LightCycler! 2.0! instrument!

(Roche),!LightCycler!TaqMan!chemistry!(LightCycler!TaqMan!Master)!and!20!%l-Lightcycler 

glass capillaries. The final concentrations of the primers and the hydrolysis probe were 0.5 

%M!and0.11!%M,!respectively!(for!sequences!see!Table!B1).!Each!reaction!included!2.25!%l!

of  the DNA sample.  

 

Table B1:  

qPCR markers for specific quantification of Glomus intraradices and G. custos by measuring gene copies of 

the mitochondrial large ribosomal subunit. FAM � fluorescein, BHQ1 � fluorescence quencher. 

 

Fungus Sequences!5`?3` 
(forward primer, reverse 
primer, 
hydrolysis probe) 

Nr 
cycles 

Denaturati
on 
(°C / s) 

Anneali
ng 
(°C / s) 

Amplificati
on 
(°C / s) 

Glomus 
intraradices 

TTTTAGCGATAGCGTAA
CAGC, 
TACATCTAGGACAGGG
TTTCG, 
FAM-AAACTGCCAC 
TCCCTCCATATCCAA-
BHQ1 

65 95 / 10 60 / 10 72 / 1 

Glomus 
custos 

TCTAACCCCAGAAATG
TATAG, 
AAGGACTGCCTTGTGT
TC, 
FAM-ATACAATAATG 
GGCAATCAGACATATC
GT-BHQ1 

65 95 / 10 62 / 15 72 / 1 
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Appendix C: Summary table of results and statistics  
 

Appendix C Legend G. intraradices Fungivores 

C - - 

S - + 

GI + - 

GIS + + 

M + - 

MS + + 

 

 

 

 N MEAN SEM p value 

 

Shoots biomass 

(g) 

C 10 0.177 0.004  
ANOVA and GLM see Appendix D 

S 10 0.250 0.011 

GI 10 0.283 0.008 

GIS 10 0.309 0.018 
 

Roots biomass 

(g) 

C 10 0.213 0.004 ANOVA and GLM see Appendix D 

S 10 0.219 0.016 

GI 10 0.231 0.047 

GIS 10 0.272 0.013 
 

Hyphae biomass 

(g) 

GI 10 0.022 0.004 Welch t = -0.92, df = 17.72, p-value = 0.36 

Student t = 0.92, df = 18, p-value = 0.36 
GIS 10 0.016 0.005 

M 10 0.020 0.005  

Welch t = -0.09, df = 14.42, p-value = 0.92 
MS 10 0.019 0.003 

 

qPCR Roots 

(copy number/g) 

GI 7 1.229E+09 6.320E+07 Welch t = 0.36, df = 6.84, p-value = 0.72 

Student t = 0.36, df = 12, p-value = 0.72 
GIS 7 1.139E+09 2.377E+08 

 

qPCR Soil 

(copy number/g) 

GI 7 2.806E+05 2.460E+04 Student t = 0.3, df = 12, p-value=0.76 

GIS 7 2.529E+05 8.803E+04 
 

Catalpol Shoots 

(mg/g) 

C 10 5.169 0.694 ANOVA and GLM see Appendix D 

S 10 5.261 0.641 

GI 10 2.764 0.309 

GIS 10 2.572 0.205 
 

Catalpol Roots 

(mg/g) 

C 10 1.640 0.224 ANOVA and GLM see Appendix D 

S 10 1.512 0.278 

GI 10 2.207 0.958 

GIS 10 1.084 0.202 
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Catalpol Hyphae 
(mg/g) 

GIS 6 0.349 0.116  

S 7 0.259 0.079 
 

Aucubin Shoots 

(mg/g) 

C 10 13.668 1.727 ANOVA and GLM see Appendix D 

S 10 12.406 1.646 

GI 10 9.146 0.870 

GIS 10 14.081 1.315 
 

Aucubin Roots 

(mg/g) 

C 10 7.074 0.971 ANOVA and GLM see Appendix D 

S 10 6.881 0.408 

GI 10 13.637 3.816 

GIS 10 8.436 0.709 
 

Verbascoside Shoots 

(mg/g) 

C 10 42.412 1.916 ANOVA and GLM see Appendix D 

S 10 31.831 3.670 

GI 10 42.198 3.334 

GIS 10 43.715 2.902 
 

Verbascoside Roots 

(mg/g) 

C 10 7.245 0.697 ANOVA and GLM see Appendix D 

S 10 5.281 1.069 

GI 10 2.718 0.623 

GIS 10 3.277 0.463 
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Appendix D: Comparison of ANOVA and GLM analyses for biomass measurements 
and secondary metabolites in roots and shoots. 
 

 

 

 

 

 

  

 

 

 

 

ANOVA 

(treatment effect) 

ANOVA 

(Fungi and Fungivore effect, 

interactions) 

GLM 

 
 

 

 df F p-value  df F p-value Family 

wise 

error 

 df F p-value  

 

Shoots 

biomass 

 

3 

 

24.027 

 

1.029e-08 

Fungi 1 50.1758 2.552e-08   

gaussian 

Fungi 1 67.113 9.592e-10 

Fungivore 1 17.7872 0.0001 Fungivore 1 21.735 4.199e-05 
Interaction 1 4.1183 0.0498 Interaction 1 24.683 1.656e-05 

 

Roots 

biomass 

 

3 

 

1.2736 

 

0.2985 

Fungi 1 0.0205 0.8871  

inverse. 

gaussian 

Fungi 1 1.7014 0.2006 

Fungivore 1 1.9028 0.1765 Fungivore 1 0.7922 0.3795 
Interaction 1 1.8976 0.1771 Interaction 1 0.4443 0.5094 

 

Catalpol 

in Shoots 

 

3 

 

 

8.4336  

 

0.0002 

Fungi 1 25.2126 1.408e-05  

inverse. 

gaussian 

Fungi 1 35.588 7.725e-07 

Fungivore 1 0.0100 0.9211 Fungivore 1 0.0096 0.9226 
Interaction 1 0.0784 0.7811 Interaction 1 0.2935 0.5913 

 

Catalpol 

in Roots 

 

3 

 

0.9297 

 

0.4364 

Fungi 1 1.5178 0.2259  

inverse. 

gaussian 

Fungi 1 0.0308 0.8618 

Fungivore 1 1.0492 0.3125 Fungivore 1 2.5673 0.1178 

Interaction 1 0.2219 0.6404 Interaction 1 1.7192 0.1981 

 

Aucubin 

in Shoots 

 

3 

 

2.4451 

 

0.0797 

Fungi 1 0.9909 0.3261  

inverse. 

gaussian 

Fungi 1 0.9909 0.3261 

Fungivore 1 1.6492 0.2072 Fungivore 1 1.6492 0.2072 
Interaction 1 4.6952 0.0369 Interaction 1 4.6952 0.0369 

 

Aucubin 

in Roots 

 

3 

 

1.9874 

 

0.1333 

Fungi 1 4.7049 0.0367  

gaussian 

Fungi 1 9.7448 0.0035 

Fungivore 1 0.5317 0.4706 Fungivore 1 3.6585 0.0637  

Interaction 1 0.7255 0.3999 Interaction 1 0.7335 0.3974 

 

Verbascoside 

in Shoots 

 

3 

 

4.4054 

 

0.0097 

Fungi 1 4.1761 0.0483  

gaussian 

Fungi 1 3.7130 0.0619  

Fungivore 1 3.1788 0.0830 Fungivore 1 2.2398 0.1432 
Interaction 1 5.8615 0.0206 Interaction 1 3.9893 0.0533 

 

Verbascoside 

in Roots 

 

3 

 

7.6236 

 

0.0004 

Fungi 1 19.1284 9.997e-05   

gaussian 

Fungi 1 19.1284 9.997e-05 

Fungivore 1 0.8849 0.3531 Fungivore 1 0.8849 0.3531 
Interaction 1 2.8575 0.0996 Interaction 1 2.8575 0.0996 
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Appendix E: Dry weights of fungal hyphae from �mixed� fungal treatment 
 

 

 

 

 

 

 

 

 

 

Figure E1:  

Effect of F.candida presence (grey) and absence (white) on the mean dry weights of fungal hyphae collected 

outside the meshbags for the treatments with AMF mixture (Bars represent the means of 10 replicates ± 1 

standard error). Letters indicate significant differences!between!treatments!means!according!to!Tukey�s!HSD!

test!(P!$!0.05).! 
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Abstract 

 

Background 
 
 In environmental sequencing studies, fungi can be identified based on nucleic acid 

sequences, using either highly variable sequences as species barcodes or conserved 

sequences containing a high-quality phylogenetic signal. For the latter, identification relies 

on phylogenetic analyses and the adoption of the phylogenetic species concept. 

Such analysis requires that the reference sequences are well identified and deposited in 

public-access databases. However, many entries in the public sequence databases are 

problematic in terms of quality and reliability and these data require screening to ensure 

correct phylogenetic interpretation. 

Methods and Principal Findings 
 
 To facilitate phylogenetic inferences and phylogenetic assignment, we introduce a 

fungal sequence database. The database PHYMYCO-DB comprises fungal sequences 

from GenBank that have been filtered to satisfy stringent sequence quality criteria. For the 
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first release, two widely used molecular taxonomic markers were chosen: the nuclear SSU 

rRNA and EF1-"! gene! sequences.! Following! the! automatic! extraction! and! filtration,! a!

manual curation is performed to remove problematic sequences while preserving relevant 

sequences useful for phylogenetic studies. As a result of curation, ~20% of the 

automatically filtered sequences have been removed from the database. To demonstrate 

how PHYMYCO-DB can be employed, we test a set of environmental Chytridiomycota 

sequences obtained from deep sea samples. 

Conclusion 
 
 PHYMYCO-DB offers the tools necessary to: (i) extract high quality fungal 

sequences for each of the 5 fungal phyla, at all taxonomic levels, (ii) extract already 

performed!alignments,!to!act!as!�reference!alignments�,!(iii)!launch!alignments!of!personal!

sequences along with stored data. A total of 9120 SSU rRNA and 672 EF1-"!high-quality 

fungal sequences are now available. 

The PHYMYCO-DB is accessible through the URL http://phymycodb.genouest.org/. 
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Introduction 

 

 In recent years there has been an exponential increase in the number of gene 

sequences available in public-access databases. This is the result of new developments in 

molecular techniques and new generation sequencers that allow the collection of data at 

great speed. The use of molecular taxonomic markers associated with phylogenetic 

analyses has revealed considerable genetic diversity in fungi, especially those that are 

cryptic, unculturable or not easily distinguishable by morphological characters (e.g. 

Vandenkoornhuyse et al., 2002a). As the species concept is employed for diversity 

measurements, systematics and evolutionary analyses (Purvis & Hector, 2000), an 

efficient means of identifying boundaries, and thus number of species, is required. 

Molecular methods and the implicit adoption of the phylogenetic species concept (Taylor et 

al., 2000) offer a standardized approach to delimit groups of organisms (e.g. 

Vandenkoornhuyse et al., 2002b; Jones et al., 2011; Powell et al., 2011). Thanks to 

progress in sequencing technologies and bioinformatic methods, the detection of 

orthologous sequences using databases is relatively efficient. This approach can also be 

successfully applied to organisms that are not available in culture, increasing our ability to 

identify new diversity in various habitats (Hawksworth & Rossman, 1997; Blackwell, 2011). 

Of course, this approach requires choosing a relevant molecular marker which: (i) targets a 

nucleic acid sequence with a limited proportion of homoplasy (i.e. correspondence 

between parts arising from evolutionary convergence), (ii) contains high phylogenetic 

information which is not sensitive to paralogy (i.e. single copy genes or highly conserved 

genes). This allows for accurate characterization of evolutionary affinities. 

 In this context, the nuclear gene coding for the small subunit of the ribosomal RNA 

(SSU! rRNA)! is! often!seen!as! the! �ultimate�! molecular! marker (Woese, 2000) (for review 

Pace, 2009). The SSU rRNA gene is present in all living organisms. Its sequence is highly 

conserved between taxa, reflecting strong functional constraints on the translational 

machinery. Indeed, most mutations in the SSU rRNA gene sequence reduce the stability of 

the secondary structure of the SSU rRNA molecule and thus the efficiency of protein 

synthesis. Furthermore, this gene, like other informational genes, appears to be less 

subject! to!horizontal!gene! transfers!and! is!believed! to!provide!better! inferences!of! �true�!

phylogenies (Choi & Kim, 2007). Although the SSU rRNA gene can have a multicopy 

status within a single fungal genome, sequence variations have been shown to be 
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extremely low or null. For example, from available complete annotated genomes 

(http://www.genomesonline.org/cgi-bin/GOLD/index.cgi), Saccharomyces cerevisiae has 

two SSU rRNA copies both on its chromosome XII. Encephalitozoon cuniculi, a 

Microsporidia, has two SSU rRNA genes copies one on its chromosome I, the other on 

chromosome IV. In these two cases, the copies display 100% identity. This is not 

surprising since the SSU rRNA gene is highly conserved. Thus this gene is less sensitive 

to paralogy compared to LSU rRNA gene and ITS where variations among copies have 

been clearly shown (e.g. Boon et al., 2010; Sanders et al., 1995; Lim et al., 2008). 

 A second advantage of using the SSU rRNA gene sequence is its huge 

representation in international public databases - GenBank (Benson et al., 2011), 

EMBL/ENA (Kulikova et al., 2007), DDBJ (Kaminuma et al., 2011) � which facilitates 

comparisons between a wide variety of organisms (for review Avise, 2004). One 

disadvantage is that because the SSU rRNA gene is highly conserved, the resolution of 

the phylogenetic analyses is poor for youngest fungal groups within Ascomycota. Other 

genes, such as those encoding for the elongation factor EF1-"!(tef1),! for!@-tubulin (tub1, 

tub2), actin (act1), or for RNA polymerase II subunits (rpb1 and rpb2), can be used as 

alternative markers. Among these ones, EF1-"!sequence!data!are!the!most!abundant but 

only represent a small fraction of the amount of SSU rRNA yet available (i.e. less than 7% 

of the total number of sequences contained in PHYMYCO-DB). Generally present as a 

single copy gene, the EF1-"!gene! is! involved! in!protein!synthesis!and!displays a higher 

mutation rate than SSU rRNA gene. Because of these attributes, EF1-"!protein!sequences!

have been used to resolve phylogenetic affinities between eukaryotic organisms (Baldauf, 

1999; Baldauf et al., 2000; Helgason et al., 2003), and particularly the sister clade 

relationship of animals and fungi (Baldauf & Palmer, 1993). The gene sequences also 

have the potential to help resolve phylogenetic relationships between closely related fungi 

(Helgason et al., 2003 ; Moon et al., 2002 ; Tanabe et al., 2004), but they contain a higher 

proportion of homoplasious positions compared to SSU rRNA gene sequences. Studies of 

both SSU rRNA genes and EF1-"! genes! could! greatly! improve! the! resolution! of! fungal!

phylogenetic affinities. An online database incorporating data from both these sequences 

is a key step to achieving improved phylogenetic resolution for fungi. 
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Pollution of public sequence database and the aim of PHYMYCO-DB 

 

 One major obstacle for international public databases is constant pollution by non-

negligible proportions of compromised sequences (GenBank/EMBL/DDBJ). This problem, 

discussed in several articles and journal forums (e.g. Bidartondo, 2008; Bridge et al., 2003 

; Vilgalys, 2003 ; Bridge et al., 2004 ; Hawksworth, 2004 ; Hawksworth, 2009 ; Holst-

Jensen et al., 2004 ; Nilsson et al., 2006), is becoming more and more obvious, but 

solutions remain elusive. Problematic data can arise from many different origins, including: 

(i) erroneous specimen identification (Vilgalys, 2003), (ii) the use of separate names for 

different sexual stages (Hawksworth, 2009), (iii) differences in taxonomy among specialists 

(Vilgalys, 2003) and/or advances in knowledge since the time the sequence was deposited 

leading to wrong designations (Hawksworth, 2004), (iv) the lack of precision in the 

description of the deposited sequences making their interpretation difficult (Kõljalg et al., 

2005), (v) sequences resulting from artefactual origin (i.e. chimeric sequences), and (vi) 

sequences of poor quality with undefined positions. Even more problematic is the 

erroneous annotated sequences that propagate within open access databases because of 

phylogenetic misinterpretation. Additionally, more and more sequence assignments are 

based solely on identity searches using heuristic local alignment (i.e. BLASTn searches). 

All these mistakes have the potential to jeopardize interpretations. Therefore, assessing 

the reliability of sequences is an increasingly important prerequisite to analyses. 

 Many of these errors can be limited via expert curation. Expert curation is critical for 

the continued advancement of the field because it allows for the production of sequence 

databases, containing accurate and reliable sequences. To date, most curated databases 

specialize in particular taxonomic groups (e.g. Öpik et al., 2010), collect data associated to 

each nucleic acid sequence, and work with specimens validated by experts and deposited 

in public reference collections (e.g. Kõljalg et al., 2005). Several important tools, such as 

the Ribosomal Database Project (Cole et al., 2009), SILVA (Pruesse et al., 2007), 

Greengenes database (DeSantis et al., 2006) exist online for the analysis of SSU rRNA 

gene sequences. Apart from SILVA, these databases use automated filters to remove part 

of the polluting sequences. However, manual curation is an essential component of these 

projects and should aim to be even more stringent. 

 Based on lessons learned from other curated databases, our aims at PHYMCO-DB 

are to: (i) develop an easy-to-use fungal-dedicated database with stored sequences of 
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high quality, (ii) use selected molecular markers that are widely acknowledged, namely 

SSU rRNA and EF1-",!(iii)!produce!a!tool,!based!on!anchor!sequences!covering!the!fungal!

tree, that can be automatically updated, along with an expert curation of the new 

sequences, (iv) produce high quality multiple alignments for use in testing environmental 

sequences or evolutionary hypotheses. 

 

Database Structure : Design and Implementation 

 

 The sequences constituting PHYMYCO-DB version 1 (Figure 13) were retrieved in 

October 2011 from the release 185 of GenBank (NCBI). The nuclear SSU rRNA and EF1-"!

genes sequences are extracted from the GenBank database, using the following queries: 

�[organism]! and! (ssu|SSUrRNA|SSU! rRNA|18SrRNA|18S|)! not!

(16S|mitoch*|28S|5.8S|ITS|Internal! Transcribed! Spacer|internal! transcribed! spacer|)�! and!

�[Organism]! and! (EF1! alpha|EF-1 alpha|EF1-alpha|EF-1alpha|EF-1-alpha|EF1

alpha|EF1a|)�.After!this!extraction!step,!automatic!quality!filter!parameters!are!applied.!For!

SSU rRNA, nucleic acid sequences that are shorter than 1000 nucleotides and longer than 

2500 nucleotides are rejected. Likewise for EF1-"! genes,! sequences! shorter! than! 700!

nucleotides and longer than 2500 nucleotides are discarded. Also sequences containing 

more than 10 consecutive undetermined nucleotides are excluded. According to the 

automatic quality criteria, all accepted sequences are then stored in a MySQL 5 relational 

database. The MySQL table structure is presented as a figure available in supplementary 

online information (Figure S1). PHYMYCO-DB is automatically updated 4 times a year and 

is managed by administrators using the web interfaces developed with PHP version 4 

programming language. 

 Following automatic filtering, datasets are then cross-checked by expert curators 

(hereafter!�expert!curation�).!Multiple!alignments!are!performed using Clustal X 2.1 (Larkin 

et al., 2007) on small sequence groups (<400 sequences), which are closely related to 

obtain a high-quality alignment and to make the expert curation as accurate as possible. 

Sequences are deleted from the alignment and from the database in a manual cleaning 

process if they contain: errors of sequencing (i.e. containing several substitutions that are 

not found anywhere else, Figure 14), errors in the annotation (i.e. a sequence with a 

naming inside a different group, Figure 14), homopolymers insertions (Figure 14), many 
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undetermined nucleotides (Figure 14), erroneous alignment or reverse complementary 

sequences (Figure 14). This expert curation is time consuming but essential to obtain 

reliable sequences and high-quality alignments. By adopting strict rules of expert curation, 

subjectivity and mistakes become minimal. Following expert curation, species redundancy 

(i.e. identical sequences) are retained in the database to keep sequences arising from 

different origin and ecological settings. The detection of dubious sequences from the 

alignments does not result in correction of the sequence in international databases. They 

are, however, all removed from PHYMYCO-DB. When corrections are made for a given 

sequence, a new registration number is provided by GenBank for example. In this case, 

the corrected sequence will be automatically extracted (i.e. 4 updates per year) and will be 

examined by one of the expert curators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:  

Flowchart of the data in the PHYMYCO-DB. The arrows indicate the flow of gene sequences extracted from 

the GenBank database, through the automated and manual curation steps. All the sequences made 

available to users has passed the 2 curation processes. After each upgrade of the database (i.e. 4 times per 

year), expert manual curation is performed. 
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 During our development process, it became clear that our automatic filters were not 

stringent enough to retrieve only trustworthy sequences. For example, SSU rRNA can 

present intron-like regions which could also be chimeric insertions. Introns are abundant in 

particular lineages of fungi, especially within lichen-forming fungi (Ascomycota). These 

fungi can display up to eight introns in the SSU rRNA gene, as for example found in the 

taxon Physconia (Bhattacharya  et al., 2002 ). At the expert curation stage, we noticed that 

the position of introns was not consistently given in the deposited sequence description, 

and they were detectable after the alignment only. When a sequence containing non-

positioned introns was the only sequence of a particular genus, this sequence was kept, 

Otherwise the sequence was discarded from PHYMYCO-DB. Employing our curation 

principles, we discarded 2090 additional unreliable sequences, i.e. 18% of the sequences 

extracted from GenBank. 

 Following the curation steps, 8757 SSU rRNA gene sequences have been stored in 

PHYMYCO-DB (5088 Ascomycota, 2088 Basidiomycota, 366 Chytridiomycota, 1046 

Glomeromycota, and 532 Zygomycota). PHYMYCO-DB also contains 648 EF1-"! gene!

sequences (294 Ascomycota, 189 Basidiomycota, 10 Chytridiomycota, 25 Glomeromycota, 

and 154 Zygomycota). Our database contains less fungal sequences than SYLVA because 

of the level of curation stringency. All fungal genera has at a minimum one representative 

sequence within PHYMYCO-DB. Because of the heterogeneity among the number of 

sequences per taxonomic rank, and because we wanted a limited number of sequences 

for each alignment, the taxonomic level within these alignments is variable (family to 

phylum level). We therefore produced!a!total!of!about!50!�reference�!alignment!files.!These!

online alignments contain mainly full-length sequences, even if rare, very long sequences 

were cut at the same length as the others. This was done to keep maximum information 

available. This is especially useful for designing primers, and to give a greater freedom for 

manipulation by online users. 
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Figure 14 : 

Visualisation of sequences deleted by the manual curation after alignment (ClustalX 2.1). 

The sequences highlighted in blue illustrate examples of sequences removed from PHYMYCO-DB. The 

compromised nature can stem from erroneous sequencing (e.g. repeated gaps), wrong annotation (e.g. 

sequence corresponding to another clade), high numbers of undetermined nucleotides, homopolymers 

insertions, erroneous alignment or reverse complementary sequences and presence of long insertions and 

introns or presence of deletions. 
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Tools within PHYMYCO-DB 

 

 We designed PHYMYCO-DB with specific tools to facilitate online use. Firstly, users 

can easily select sequences by browsing our interface through hierarchical taxonomic 

lineages presented in an arborescent structure (GenBank taxonomy), and then download 

them in a FASTA format file. The number of sequences stored in the database for each 

taxonomic level is given in brackets. Secondly, users can download an alignment file using 

a filter to find an alignment with the gene and the taxonomic rank requested. Special 

attention must be paid to the fact that some sequence characteristics in PHYMYCO-DB 

format are inherited from the extraction of GenBank sequences. For example, in some 

cases (e.g. Agaromycotina, a subphylum of Ascomycota), information on sequences 

taxonomy!was!associated!to!a!�no!rank�!tag!in!GenBank.!To!avoid!the!problem!that!these 

sequences are mistakenly placed in another taxonomic group, they were qualified as 

�undefined�!at! the!subphylum!rank! in!PHYMYCO-DB. For the next lower taxonomic rank, 

no known tag problem exists. Environmental sequences have, by definition, no clear 

taxonomic! ranking.! Therefore,! they! were! also! qualified! as! �undefined�,! but! only! until! the!

lowest taxonomic rank. These are important features to take into account when using the 

PHYMYCO-DB. 

 Thirdly, users can launch a ClustalW 2.0 alignment on our back-end computer 

clusters by uploading their own personal sequences in a FASTA or ALN format file. A future 

PHYMYCO-DB release will offer the possibility to select the multiple alignment tool (i.e. 

ClustalW, MUSCLE, and MAFFT). Currently, users can choose to append an outgroup or 

sequences from a particular PHYMYCO-DB taxonomic group. We anticipate that this tool 

will be very efficient when combined with phylogenetic analyses for investigating the 

sequence diversity of fungal amplicons from an environmental sample and even to identify 

new fungal lineages. 

 

PHYMYCO-DB as a Tool for Phylogenetic Identifications and Inferences 

 

 Based on a well-developed theoretical corpus, phylogenies can be computed using 

several different approaches (e.g. Felsenstein, 2004). From a mathematical point of view, 

the maximum likelihood phylogenetic reconstruction provides the best possible tree for a 

given explicit sequence evolution model. The model that best fits the aligned sequence 
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data can be selected, after using the popular Modeltest (Posada & Crandall, 1998 ). 

Achieving a good alignment is therefore of tremendous importance for good interpretation. 

Alignments!should!be!refined!using!an!�influence!function�!that!allows!the!removal!of!outlier!

columns from the matrix (i.e. nucleotide position where the phylogenetic signal differs from 

the general phylogenetic information recorded in the dataset, Bar-Henet al., 2008). This 

approach!allows!for!a!�blind!detection�!of!outliers!using!measures!of!each!site!in!a!context!

of a ML phylogenetic reconstruction. It must be emphasized that the sequence-based 

identification using SSU rRNA gene could be at the species level or at higher taxonomic 

levels depending on the fungal affiliation. 

 Following the above strategy, we provide an analysis of chytrid diversity as a proof 

of concept. Sequencing of the SSU rRNA gene was achieved by targeting chytrids from 

deep marine hydrothermal samples (ciPCR). First, the alignment of SSU rRNA gene 

sequences of the Chytridiomycota from PHYMYCO-DB were used to design specific 

primers manually. Two sets of designed primers covered the V3 and V4 variable regions 

and! were! suitable! for! pyrosequencing:! C130! (5XTACCTTACTACTTGGATAACCG3X)! with!

SR8R! (5XTCAAAGTAAAAGTCCTGGATC3X)! modified! from! Vilgalys! lab! webpage!

(http://www.biology.duke.edu/fungi/mycolab/primers.htm), and MH2 

(5XTTCGATGGTAGGATAGAGG3X) (Vandenkoornhuyse & Leyval, 1998) with SR8R. 

Another set of primers, expected to be universal for fungi and to produce longer 

amplicons,!were!also!tested:!MH2!with!NS7R!(5XATCACAGACCTGTTATTGCC3X)!modified!

from (White et al., 1990). Primers specificity was checked with a sample from a 

hydrothermal site from which several sequences of chytrids were retrieved (Le Calvez et 

al., 2009). The resulting sequences (GenBank accession numbers JN986721 to 

JN986723)! were! analyzed! using! the! corresponding! �reference�! alignment! in! PHYMYCO-

DB and the sequences having the highest similarity score in BLASTn. The computed 

phylogeny highlights the presence of a new group within the Chytridiomycota phylum 

(Figure 15). The three OTUs present high identity level (>98%) with environmental 

sequences ,and form a monophyletic group whose closest described relative is a 

sequence from the genus Maunachytrium. These OTUs constitute a new clade in the 

Lobulomycetaceae family (Simmons et al., 2009). BLASTn searches of these 

environmental sequences return the Maunachytrium sequence as the best hit, with a 

maximal identity of 96%. The widely used BLAST-based annotation for environmental 

sequences, would end with an assignation to Maunachytrium keaense or Maunachytrium 

sp. However, by choosing a phylogenetic approach, the analysis goes into greater depth. 
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The initial positioning of these sequences suggests that they form a new clade within the 

Lobulomycetaceae family, outside the Maunachytrium, Lobulomyces (maximal identity 

93%) and Clydaea (maximal identity 92%) genera. 
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Figure 15 : 

SSU rRNA phylogenetic positions of deep-sea Chytridiomycota (colored terminals) along with the closest 

known related SSU rRNA fungal sequences.Topology was built using MrBayes v.3.1.2 (Scale bar: 0.1 

estimated substitutions per site, 3000000 generations sampled every 100 generations and an average 

standart deviation of split frequencies of 0.004140) from a ClustalW 2.1 alignment. The model GTR+I+G was 

designated by jModelTest 0.1. Node support values are given in the following order: Maximum 

Parsimony/Maximum! Likelihood! (both! calculated! with! PAUP! 4.0@10! version,! 500! bootstraps)/MrBayes.!

Corallochytrium limacisporum (L42528), a putative choanoflagellate, was used as outgroup. Maunachytrium 

keaense (it is not part of PHYMYCO-DB) was also used to help build the tree. All sequences are listed with 

their GenBank accession numbers. The topologies were congruent apart from doted lines indicated in the 

figure. Thin lines show bootstrap values >50% and BPP >0.5 (MP/ML/MrBayes) and thick lines: bootstrap 

values >70% and BPP >0.7 (MP/ML/MrBayes). The sequences belonging to the Lobulomycetaceae family 

are indicated with their BLASTn percentage of maximum identity compared to the three deep-sea 

Chytridiomycota OTUs. 

 

 

 This exercise thus highlights important differences between phylogeneticaly based 

annotation and BLASTn annotation. More and more identifications rely solely on BLAST 

searches which allow for faster analyses of the rapidly increasing numbers of 

environmental sequences. Indeed many analyses and tools developed for mass 

sequencing are based on BLAST searches (e.g. MEGAN). We would argue that this 

approach is less conservative and more prone to mistakes. The use of phylogenetic 

approaches, when it is possible should be favoured, to avoid increasing the presence of 

polluting sequences in international sequences databases. 

 

Discussion 

 

 The release of PHYMYCO-DB is expected to provide comprehensive access to 

fungal sequences for two phylogenetic markers (SSU rRNA and EF1-"! genes)!obtained!

from cultivated isolates, as well as environmental samples. As a result of deep sequence 

cleaning, the aligned sequences available in PHYMYCO-DB are of high quality (Figure 

13). To our knowledge, this curation strategy provides a novel approach to the problem of 

database pollution. As such, we anticipate that it will complement other existing databases 

such!as!the!�Assembling!the!Fungal!Tree!Of!Life�!project!(AFTOL ; Lutzoni et al. , 2004), 

UNITE (Kõljalg et al., 2005 ; Abarenkov et al., 2010a) and MaarjAM (Öpik et al., 2010) 
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which are restricted to fungal sequences. 

 Curation and annotation of ITS is made possible through the web-based-workbench 

of PlutoF (Abarenkov et al., 2010b). Initially, the UNITE system contained ITS and 

nLSU/28S rRNA gene sequences from Basidiomycota and Ascomycota. Based on recent 

work, the ITS region is now being suggested as a possible universal DNA barcode marker 

for fungi (Schoch et al., 2012 ). It is accepted that the ITS region is valuable at species 

level and so, more taxonomically informative than SSU rRNA gene sequences for 

analysing! groups! of! organisms! that! have! emerged! �recently�! and! are! closely! related!

(Anderson & Parkin, 2007), e.g. Ascomycota and Basidiomycota. The ITS region is also 

often used to resolve phylogenetic relationships at the species level or at the infraspecific 

level (Xu et al., 2007). However, as the ITS region displays high sequence variability, even 

within a given organism as in Glomeromycota (i.e. Sanders et al., 1995), obtaining reliable 

alignments with this marker can be difficult (D'Auria et al., 2006) and potentially precludes 

multiple alignments. This is because accurate comparisons are hindered by the 

accumulated homoplasy and the high frequency of insertion/deletion events. The use of 

the SSU rRNA sequences is interesting since new groups, within all the fungal phyla 

including Ascomycota and Basidiomycota, can be detected (i.e. Vandenkoornhuyse et al., 

2002a ; Bass et al., 2007). The MaarjAM database has focused on SSU rRNA gene of 

arbuscular mycorrhizal fungi (Glomeromycota), with associated metadata. The existence 

of this database and the potential emergence of others should be encouraged. It enables 

the community to have access to reliable sequences. 

 For fungal sequence annotations and phylogenetic interpretations of fungal 

environmental sequences, one of the main advantages of PHYMYCO-DB is to facilitate the 

primer design and subsequent phylogenetic analyses of amplicons as shown in the 

example above (Figure 15). The use of PHYMYCO-DB to perform expert analyses 

appears to be complementary to BLASTn, the latter allowing a quick look of the query 

sequence proximity compared to the available sequences. From the phylogenetic analyses 

performed one arising interpretation is that different apparent polyphyletic groups may be a 

consequence of wrong annotations. We anticipate that the use of PHYMYCO-DB will help 

to limit incorrect SSU rRNA and EF1-"!genes!fungal annotation propagation in sequence 

databases. 
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Availability and Future Directions 

 

 The PHYMYCO-DB is available via a web-based interface at 

http://phymycodb.genouest.org/ on the GenOuest bioinformatics platform web site. The 

web interface is divided into!2!parts.!The!first!part,!entitled!�DB!admin�,!is!restricted!to!the!

administrators for use in cleaning and optimising the database. The second part, entitled 

�DB!explore�,! is!publicly!accessible! to!all!users.!The!next!set!of!PHYMYCO-DB releases 

will include (i) the provision of alignment files in which outlier nucleotides identified from 

influence functions (Bar-Henet al., 2008) will be highlighted, so that users can then delete 

these sites (ii) taxonomic modifications within Chytridiomycota and Zygomycota after 

Hibbett et al. (2007) and after Jones et al. (2011). PHYMYCO-DB will continue to expand 

with! new! genes.! We! are! currently! investigating! @-tubulin (tub1, tub2), actin (act1), and 

RNA polymerase II subunits (rpb1 and rpb2) as potential interesting targets. PHYMYCO-

DB will also be improved by incorporating all the finished fungal genomes available, and 

increasing the diversity of tools to perform multiple alignments. 
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Supporting Information 

 

MySQL table structure of PHYMYCO-DB. 

Figure S11 : 
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Chapter IV:   

 

Does a decrease in plant diversity lead to a decrease in AM symbiont diversity? 

 

 

Introduction 

 

 Mutualisms, cooperative interactions between different species, are an important 

driver of ecosystem dynamics. In particular, the mutualism between plants and their 

arbuscular mycorrhizal (AM) fungi is responsible for massive nutrient transfer and storage. 

In exchange for up to 20% of the total photosynthesized carbon, AM fungi provide plants 

with nutrients (i.e. as P, N, oligoelements) (Smith & Read, 2008; Fitter et al. 2011). Plants 

are thought to have successfully colonized land thanks to the mutualist association with 

arbuscular mycorrhiza (Simon et al., 1993; Redecker et al., 2000). Current estimates 

suggest that AM fungi colonize 80% of land plants.  

 As developed in the introductory section, AM fungi can have multiple effects on 

individual plants. As a consequence, they are also important drivers of plant community 

dynamics. Experimental work suggests that a higher AM fungal diversity positively 

influences plant productivity, diversity and nutrient uptake (van der Heijden et al. 1998; 

Hooper et al., 2005 ; Maherali & Klironomos, 2007; Wagg et al., 2011a). This is consistent 

with Moora et al. (2004) observations showing that different AM fungal taxa induce 

different growth responses depending on the host plant. AM fungal diversity likely 

contributes to plants coexistence (Grime et al., 1987; Van der Heijden et al., 2003) and 

may relax plant-plant competition (Wagg et al., 2011b). 

 Reciprocally, plant communities are also able to influence belowground AM fungal  

communities (Johnson et al. 2004). However, host plant effects on AM fungal diversity 

have yet to be studied extensively; only a limited number of studies have been published 

up to date (e.g. Verbruggen et al., 2010; Hartmann et al., 2009; Martinez-Garcia et al., 

2011). For example, the plant neighborhood effect (i.e. effects of the surrounding plants of 

the host plants on its arbuscular mycorrhizal fungal community) on AM fungal diversity has 

been poorly investigated. To better understand plant effects on fungal communities,  a 

spatialized sampling strategy and knowledge of plant community history is needed.   

 One idea is that a higher plant diversity is linked to a higher variety of carbohydrate 

substrates (Tilman et al., 1992; 1996a) which in turn increases the decomposers diversity 
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and functional complementarity. If we assume that plant growth is limited by resources 

availability, higher nutrients are available when organic matter is better recycled, thus 

when the plant diversity is higher. Plant diversity and ecosystem productivity are positively 

correlated (Tilman et al.,  1996b; 2001; Hector et al., 2000).  However, this positive 

correlation between plant diversity and productivity implies a range of AM fungal functions 

(i.e. plants nutrition, water supply), and that individual plant requirements are harmonized 

with particular AM fungal functions. As shown by Vandenkoornhuyse et al. (2002b; 2003) a 

host-plant preference in AM fungi does exist for co-occuring plant species. This can be 

interpreted as a consequence of host-plant requirements and the ability of the AM fungi to 

complement these needs. In light of these observations, the loss of fungal symbionts 

diversity could lead to a degradation in ecosystem nutrient cycling and to a negative 

impact on soil fertility. Considering this  host plant preference, we hypothesize that a 

decrease in host-plant diversity will lead to a decrease in fungal symbiont diversity (see 

also the 'General introduction' section). 

 Here we address this hypothesis and try to understand how plant diversity and 

composition affects root fungal communities. To achieve this, we collected samples from 

plots of a long term experiment where the plant diversity has been manipulated (Figure 16; 

Cedar Creek biodiversity experiment, Univ Minnesota, USA). Samples are being analysed 

using emerging molecular techniques allowing for the characterization of fungal 

communities. Five sampling campaigns have been run to assess both inter-annual and 

seasonal changes of root associated fungal communities along a gradient of plant species  

richness in 51 different plots. 

 As the analyses are still ongoing, this chapter provides preliminary results obtained 

from mass sequencing of AM fungal diversity in roots collected in June 2011 (Table 2). 

However, these preliminary results offer new perspectives about the possible 

consequences of the plant diversity erosion on the consortium of root fungal inhabitants. 

These results can also be interpreted in light of current conventional agricultural practices. 
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Material and methods 

 

Sampling 

 In order to examine the effects of host plant species richness on AM fungal 

community composition and diversity, we used the biodiversity experimental plots of the 

Cedar Creek LTER (i.e. Long Term Ecological Research) (see figure S12in the 

supplementary! material)! (Minnesota,! 45°35XN,! 93°10XW)! established! in! 1994! by! David!

Tilman to follow the effect of plant diversity variations on ecosystem functioning. The 

experimental area occupies a 10 hectare block of land and contains a total of 342 plots 

with a plant species gradient of diversity. The LTER area was first treated with herbicide 

and burned in 1993. Then 8 cm of the soil were removed to reduce the presence of seeds. 

All plots were manually seeded a first time with a total of 10g/m2 of seed in 1994 and a 

second time with a total of 5g/m2 of seed in 1995, and they were watered. Each plot 

measures 13m*13m, only the central 9*9m are used for the sampling to avoid an edge 

effect. Plots are actively maintained and manually weeded throughout the years to 

preserve the specified species and level of plant diversity. The plant richness gradient 

goes from one plant species to 32 plant species. All the 5 sampling campaigns were 

carried out on the e120 experiment (Biodiversity II), which contains a subgroup of 168 

plots of monocultures (39 replicates), 2 plant species (35 replicates), 4 plant species (29 

replicates), 8 plant species (30 replicates) and 16 plant species (35 replicates). Plants 

functional groups are forbs, C3, C4, and legumes (for details, see 

http://www.cbs.umn.edu/cedarcreek). The plant species composition within each plot was 

chosen randomly from a pool of 18 grassland perennial species (Table 1) 

 

 

Figure 16: 
Cedar Creek biodiversity 

experiment, Univ Minnesota, USA 
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Species  Abbreviation Functional Group 

Achillea millefolium  Achmi  Forb 

Agropyron smithii  Agrsm  C-3 

Amorpha canescens  Amoca  Legume 

Andropogon gerardi  Andge C-4 

Asclepias tuberosa  Asctu Forb 

Elymus canadensis  Elyca C-3 

Koeleria cristata  Koecr C-3 

Lespedeza capitata  Lesca Legume 

Liatris aspera  Liias Forb 

Lupinus perennis  Luppe Legume 

Monarda fistulosa  Monfi Forb 

Panicum virgatum  Panvi C-4 

Petalostemum candidum  Petca Legume 

Petalostemum purpureum  Petpu Legume 

Petalostemum villosum  Petvi Legume 

Poa pratensis  Poapr C-3 

Schizachyrium scoparium  Schisc C-4 

Solidago rigida  Solri Forb 

Sorghastrum nutans  Sornu C-4 

 

Table 1:  

Plant species present in the e120 experiment. In this table 20 plant species are listed and not 18 because 

when Petalostemum villosum was planted, the seeds also  contained a congener contaminant plant species: 

P. candidum. Thus in plots containing P. villosum, both species were planted. In addition, when the LTER 

was set up, no Solidago rigida were able to grow. This species was replaced by Monarda fistulosa. However 

S. rigida established one year later causing both plants to be present. 

 

 Five sampling campaigns were done: early June 2011, end of May 2012, beginning 

of July 2012, beginning of September 2012 and mid May 2013. In this chapter we present 

the results obtained from samples of the first sampling campaign. The same plots were 

harvested for each subsequent sampling campaign. 

 The choice of the plots to harvest was based on the function of the plants it 

contained. The plants considered were chosen on the basis of their good establishment 

and maintenance within the biodiversity experiment : Andropogon gerardi, Schizachyrium 

scoparium, Poa pratensis, Lespedeza capitata, Liatris aspera, Lupinus perennis, and 

Koeleria cristata. Thus, a total of 51 plots were selected, 12 plots containing 1 plant 

species, 12 containing 2 species, 10 with 4 species, 12 with 8 species and 5 with 16 

species (Table 2). 
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1 species 2 species 4 species 8 species 16 species 

5 Andge 157 Agrsm Koecr 138 
Achmi Elyca 
Koecr Liaas 

130 
Achmi Asctu Elyca Liaas 

Panvi Petpu Quema 
Schsc 

202 

chmi Agrsm Amoca 
Andge Asctu Elyca Koecr 
Lesca Liaas Luppe Monfi 
Panvi Petpu Poapr Schsc 

Solri Sornu 

29 Lesca 168 Andge, Koecr 176 
Agrsm Liaas 
Panvi Poapr 

170 
Achmi Asctu Elyca Koecr 
Monfi Petca Petpu Petvi 

Queel Solri 
227 

Agrsm Amoca Andge 
Asctu Elyca Koecr Lesca 
Liaas Luppe Monfi Panvi 

Petpu Poapr Quema 
Schsc Solri Sornu 

83 Luppe 171 Koecr Luppe 201 
Lesca Petpu 
Queel Sornu 

177 
Andge Asctu Koecr Liaas 
Petca Petvi Quema Schsc 

Sornu 
253 

Achmi Agrsm Amoca 
Andge Asctu Koecr Lesca 
Liaas Luppe Monfi Panvi 

Petpu Poapr Quema 
Schsc Solri Sornu 

94 Lesca 175 Luppe Sornu 223 
Koecr Liaas 
Poapr Queel 

178 
Achmi Agrsm Elyca Koecr 
Liaas Monfi Panvi Schsc 

Solri 
273 

Achmi Andge Asctu Elyca 
Koecr Lesca Liaas Luppe 
Monfi Panvi Petpu Poapr 
Queel Quema Schsc Solri 

Sornu 

109 Andge 193 Andge Luppe 225 
Elyca Petpu 
Queel Schsc 

206 
Agrsm Andge Asctu Lesca 
Luppe Monfi Poapr Solri 

Sornu 
339 

Achmi Amoca Andge 
Asctu Elyca Koecr Lesca 
Liaas Luppe Monfi Panvi 

Petpu Poapr Queel 
Quema Schsc Solri 

135 Schsc 236 Lesca Panvi 229 
Andge Petpu 
Poapr Schsc 

208 
Achmi Agrsm Koecr Lesca 
Luppe Panvi Poapr Schsc 

plots 

142 Koecr 259 Lesca Schsc 233 
Liaas Petpu 
Poapr Queel 

210 
Achmi Elyca Koecr Lesca 
Liaas Luppe Poapr Schsc 

 

167 Liaas 300 Luppe Panvi 286 
Lesca Poapr 
Schsc Sornu 

213 
Achmi Andge Koecr Lesca 
Petca Petvi Poapr Quema 

Schsc 

237 Poapr 304 Agrsm Koecr 302 
Liaas Luppe 
Monfi Quema 

Solri 
232 

Koecr Luppe Monfi Panvi 
Petca Petvi Queel Schsc 

Solri Sornu 

265 Luppe 311 Koecr Panvi 325 
Koecr Monfi 
Panvi Petpu 

Solr 
292 

Andge Elyca Koecr Lesca 
Luppe Petca Petvi Poapr 

Sornu 

267 Liaas 330 Andge, Liaas   303 
Achmi Agrsm Koecr Liaas 
Luppe Monfi Petca Petvi 

Poapr Solri 

268 Koecr 342 
Luppe Monfi 

Solri 
  313 

Achmi Koecr Lesca Liaas 
Luppe Petca Petpu Petvi 

Quema 
12 plots 12 plots 10 plots 12 plots 

 

Table 2:  

List of the plots sampled and related plant species richness. Numbers on the right for each modalities are the 

plot identifiers. 

 

 

Roots harvesting 

 Five 6X18cm soil cores were sampled in each plot (figure 17A). Within the next 24 

hours, roots were separated from the 255 core samples by sieving (figure 17B). Three soil 
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aliquots were taken and frozen and roots were washed in tap water then with a 1% 

solution (V/V) of TRITON X100 and finally rinsed with tap water and distilled water. 

Cleaned roots were selected (figure 17C) Roots were frozen in 5 different eppendorf 

microtubes (figure 17D). All the samples were stored at -80°C until utilisation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: 

Steps of the roots sampling: A), soil cores are done, B) roots are separated from soil, C) roots are selected, 

and D) put in eppendorf tubes.  

 

 

DNA extractions 

 Root samples were ground to powder in liquid nitrogen using a micropestle. Total 

DNA was extracted using a DNeasy plant mini kit (Qiagen Ltd, Crawley, UK) following the 

manufacturer's instructions. The DNA obtained was eluted in a final volume of 150µl. 

 

Leaves  and roots identification  

 Leaves from each of the 18 plant species present in the sampled plots were taken 

so that the roots present in each samples could be identified by analysing the chloroplastic 

trnL intron. This marker is used as a molecular barecode for plant species identification. 

DNA was extracted from each leave sample with DNeasy plant mini kits (QiagenLtd, 

Crawley, UK). The trnL intron was amplified from these DNA templatesby PCR using the 

primers 'c' (5' CGAAATCGGTAGACGCTACG 3') and 'd' (5'GGGGATAGAGGGACTTGAAC 

3') (Taberlet et al, 1991). The size polymorphism of the amplified fragment makes it easy to 
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identify plants based on leaf DNA. The PCR was performed using illustra Ready To Go 

PCR Beads (GE Healthcare, UK) with a mixture of 6.25 pmol of each primer and 5µl of 

DNA template in a final volume of 25µl. The PCR cycling consisted of : a first denaturation 

step at 94° for 3min, followed by a denaturation step at 94° for 45 sec, a hybridization step 

at 58°C for 1min and an elongation step at 72° for 1min. These three steps were repeated 

35 times and the cycling regime was ended by a final elongation step at 72° for 5 min. 

 

Amplifications 

 A fragment of the 18S rRNA gene of the AM fungi was specifically amplified from the 

total DNA extracted from roots. The primers used were AM1 (Helgason et al., 1998)  and 

NS31 (Simon et al., 1992). This primer set allowed a PCR amplification of a 550bp DNA 

fragments. The amplicons were sequenced with a 454GSFLX sequencer (Roche). Fusion 

primers were designed to allow the multiplexing. AM1 was bound to different multiplex 

identifiers (MID hereafter) to identify the amplicon origin within the sequences produced. A 

MID consists of a particular sequence of 6 to 10 nucleotides acting like a sample barcode. 

In this study we designed 96 original MIDs to allow the multiplexing of amplicons from 96 

different samples. The sequence constituted by the AM1 primer and the MID was followed 

by!an!adapter!A!(5�-CCATCTCATCCCTGCGTGTCTCCGACTCAG 3'). Each fusion primer 

(Figure 18) was designed in a way to avoid strong secondary structures and to prevent 

formation of self-dimers and hetero-dimers.! For! this! purpose,! the! G!of! each! candidate!

primer was calculated using RNAfold software (http://rna.tbi.univie.ac.at/cgi-

bin/RNAfold.cgi).! G! values! ! Z! -10 were accepted. The GC% of each primer was kept 

between! 40! and! 60>.! The! primer! NS31! was! bound! to! the! adapter! B! (5�-

CCTATCCCCTGTGTGCCTTGGCAGTCTCAG 3') to fit with the lib L sequencing chemistry 

(for more details see the part Sequencing 454, Figure 18). 

 All the PCRs were performed using illustra Ready To Go PCR Beads (GE 

Healthcare, UK) with a mixture of 6.25 pmol of each primer and 5µl of DNA template in a 

final volume of 25µl. PCR conditions were optimized to have no primer dimers and specific 

products. The different amplification steps were (i) a first denaturation step at 94° for 4min, 

(ii) a denaturation step at 94° for 30 sec, (iii) an hybridization step at 62°C - 0.1°C per 

cycle for 45 sec (iv) an elongation step at 72°C for 1 min. These last 3 steps were 

repeated 35 times. The cycling regime ended with a final elongation step at 72° for 7 min. 

 The quality of the amplifications was checked using a 1% E-GelÆ (Life 

Technologies-Invitrogen). A PCR and a true PCR replicate were performed for each DNA 
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sample. All PCR products were purified using AMPure XP � PCR kit (Roche) to prepare 

amplicon libraries. The quality of the purified product was checked using Agilent High 

Sensitive DNA assay (Agilent Technologies). The concentrations of all the purified 

amplicons were then measured by dPCR using a Fluidigm EP1 instrument. The amplicons 

were then pooled all together. 

 

emPCR  

 The pooled amplicons were amplified by emPCR using the Lib L chemistry. First, 

amplicons were mixed with micro beads in excess. An emulsion leads to the formation of 

millions of nanoreactors. Some of these nanoreactors contain only one PCR bead linked to 

a single amplicon. The emPCR amplification cycle is consists of (i) a first denaturation step 

at 94° for 10min, followed by (ii) a denaturation step at 94° for 1min, (iii) an hybridization 

step at 60°C for 1min and (iv) an elongation step at 72° for 1min. These last three steps 

were repeated 35 times and followed by a final elongation step at 72° for 7 min. 

 

Sequencing 454  

 Sequencing was performed using the GS FLX sequencer (Roche/454). The Lib L 

library was chosen to sequence the amplicons  unidirectionally. Amplicons of the 2 true  

PCR replicates were sequenced in parallel. The amplicons library and sequencing were 

replicated to ensure that the sequences found in the samples were real sequences and not 

stemming from PCR or sequencing errors. True sequences are expected to display a 

100% homology level. Thus our sequence analysis pipeline calculated the pairwise 

homology level to constitute groups of identical sequences. Sequences found only in one 

of the two replicates were not considered as valid, and were removed from the OTU list. 
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Figure 18:  

Principle of 454 GS FLX sequencing. The two Lib L adapters allow DNA capture by the beads (adapter B) 

and the beginning of  sequencing (adapter A). The sequencing is done by synthesis as explained in the 

figure. When a nucleotide is incorporated a light signal is emitted and detected by a CCD camera. Pictures 

are recorded and then converted into sequences.  

 

 

Analyses pipeline 

 A workflow was created for efficient processing the data analyses. This workflow 

Adapter A 

MID 

key 

AM1 

Adapter B 

key 
NS31 

5' 

5' 

3' 

3' 

Fusion primers Lib L 

G 
C 

sulfurylase 

luciferase 

APS 

luciferine 
ATP 

PPi 

Light + Oxy Luciferin 

DNA capture bead 

Sequencing by synthesis 

Nucleotides succession visualizing: 

Chapter IV: Does a decrease in plant diversity lead to a decrease in AM symbiont diversity?                           



 

124 

processes the data in a combined succession of operations within a Galaxy environment 

(http://genosites.genouest.org/) and assembles the sequences in clusters to form OTUs. 

The sequences are first clustered with a threshold of 97% identity.   

 

 

 

   

 

 

 

 

 

 

 

Legend: Figure 19:  
This figure shows the details of the amplicon-sequence analysis 
pipeline to obtain OTU from a .sff dataset obtained after 
454GSflx+ pyrosequencing. Pairwise distances between 
sequences are calculated to determine the different OTUs within 
the dataset and to assess the species richness and evenness 
(cutoff d<0.97). Sequences are clustered depending on their 
similarities and compared to a chosen RNA/DNA database (RDP, 
GreenGenes, or Phymyco-DB) to define their taxonomy. 
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 A file containing the sequences to be processed and a 'group file' relative to the 

sequence file are required to start the analyses (figure 19). Once these files have been 

uploaded the workflow can be launched. Different files are automatically created during the 

analyses and are made available to the user. These files are (1) a list file compiling the 

different OTUs obtained, (2) a fasta file listing the sequences contained in OTUs, (3) an 

accnos file relative to the fasta file (containing a list of the sequence IDs), (4) a name file 

relative to the fasta file, (5) a samples file relative to the fasta file, (6) a groups file relative 

to the fasta file, (7) a fasta file with one representative sequence of each OTU, (8) a 

shared file linking OTUs, samples and sequences identity along with the number of 

sequences from the sample contained in that OTU (i.e. a contingency table), and finally, 

(10) a contingency table for each OTU within each sample (see figure 19; Bahin et al., 

2013, in prep.) 

 Phymyco-DB (Mahé et al., 2012) is a database that was developed to facilitate 

fungal sequence analyses  (details in Chapter III). This database was propagated into the 

workflow to allow identification of the different OTUs obtained. 

 

Statistical and phylogenic analysis 

 The identity and diversity of AM fungal OTUs present in the harvested roots was 

assessed by processing a phylogenetic reconstruction. Sequences of the different OTUs 

were aligned with ClustalX 2.0.10 (http://www.clustal.org/ ; Larkin et al., 2007). A 

phylogenetic tree based on maximum likelihood was constructed using PhyML 3.0 aLRT 

(Guindon et al., 2010) and bayesian inferences with MrBayes v.3.1.2. (Ronquist et al., 

2011) The model to apply was determined using jModelTest0,1 (Posada & Crandall, 1998).  

 The relationships between AM fungal species richness and plant species richness 

were examined by performing an FCA using R (http://www.r-project.org/).  

 Concordance index analyses were also performed using R to test each OTU for the 

possibe existence of a rule of assemblage related to the plant species level modalities. 

The concordance index is calculated using the formula S = (a+d) / (a+b+c+d) where a= 

number of OTUs within 2 common modalities, b and c = number of OTUs absent from one 

of the 2 modalities, d=number of OTUs absent at the same time within 2 modalities. From 

this, a pairwise concordance index among modalities is computed. A dendrogram grouping 

those OTUs with concording responses across modalities is deduced.  

 The significance of the differences between groups of OTUs was determined with a 
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Kruskal Wallis test followed by a Nemenyi post-hoc test. The differences between the OTU 

richness as a function of the plant richness were assessed after checking the 

homoscedasticity of the variances with a Bartlett test and the normality of the data by a 

shapiro test. Then, an ANOVA was carried out followed by a Tukey HSD post-hoc test.  

  

Preliminary results and discussion 

 

 A deep multiplexing was completed within the pyrosequencing runs by using fusion 

primers and a mixture of amplicons obtained for a given molecular target from different 

samples. Sequences from amplicons of AM fungi were analysed thereafter, while 

sequence amplicons of the whole fungal pool associated with roots were removed from the 

dataset because the coverage (i.e. number of sequences for a given amplicon) was too 

low to describe the whole fungal diversity. In total, slightly more than 300,000 filtered AM 

fungal sequences were analysed. 

 The AM fungal community structure in relation to plant species richness modalities 

was analysed by ordination and clustering methods (figure 20). These analyses suggest a 

change in AM fungal communities for the 4 and 8 plant species plots. In contrast, a high 

variance in the AM fungal community was observed for the samples fromplots with 1 and 2 

plants species. One possible interpretation is that the single plant species plots are 

contaminated by other plant species despite the intensive work performed to weed and 

maintain the plots. This implies that plots containing one or more plant species were in fact 

analysed. The AM fungal community of the plots with 8 plant species was distinct from that 

of the other modalities as the samples from this modality are similar in the OTUs they 

contain (figure 20). It seems that the greater the plant species richness is, the higher and 

the more convergent the AM fungal community diversity is (figure 20). We thus 

hypothesize that if a host-plant preference exists, when plant species richness is low, the 

AM symbionts associated with these plants will preferentially develop and spread. We 

expected that a low plant species richness would result in a low AM fungal diversity and 

spread. In contrast with a  high plant species richness, the AM fungal diversity theoretically 

possible will also be higher. This is predicted to lead to the colonization of the roots of 

surrounding plants, leading to an homogenization of the AM fungal community present in 

roots (i.e. even if samples from the 4 & 8 plant species modalities display a higher OTU 

richness, AM fungal community composition found in the samples of these modalities 

looks like each other). 
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Figure 20:  

AM fungal communities clustering for each sample analysed. This clustering was calculated using ClustalW 

2.0.10 using a presence/absence matrix. It results in an unrooted tree where samples close to each other 

have a similar OTU composition (similarity in OTU number and identity). The AM fungal communities in 

black, red, green and blue are respectively from plots containing 1, 2, 4 and 8 plant species. 

 

 

 The diversity of AM fungal OTUs colonizing roots of the plants sampled in Cedar 

Creek were analysed using a phylogenetic reconstruction. From a total of 304,690 filtered 

sequences a total of 54 OTUs all belonging to the Glomeromycota were highlighted. OTUs 

representative of 4 orders of the Glomeromycota phylum were found (Figure 21). 

Glomeraceae were dominant with approximately 90% of the total number of sequences 

belonging to this group. Diversisporales, Paraglomerales, and Archaeosporales accounted 

respectively for 5 %, 1% and 0.1 % of the total number of phylotype sequences. 

Glomeraceae is  the most represented group with 38 OTUs (i.e. 73% of the total number of 

sequences) whereas the Diversisporales contain 9 OTUs (17 %). The number of OTUs 

found is in the comparable to other studies using a similar sequencing strategy. Opik et al. 

(2009) found a total number of 47 OTUs, compared to 32 OTUs for Lekberg et al. (2012) 

0.
1 

342b 
3 

311e 
3 

259d 
3 130a 

4 
201e 
3 

29d 
1 29e 

1 
29c 
1 29a 
1 
29b 
1 

142b 
1 

5a 
1 

268d 
2 267c 

2 
304b 
3 168b 

2 
193a 
2 193c 

2 83e 
1 
237d 
1 193e 

2 

259b 
3 

83c 
1 

168a 
2 

237e 
1 

168c 
2 

168e 
2 168d 

2 

83b 
1 

268e 
2 

265a 
2 
237c 
1 
268a 
2 

268c 
2 265e 
2 

142a 
1 
265d 
2 

135e 
1 

135b 
1 

135d 
1 

135c 
1 

135a 
1 

330a 
3 

142c 
1 311a 

3 167c 
1 267b 

2 

267a 
2 

5d 
1 157c 

2 

157d 
2 157b 

2 

157e 
2 

138a 
3 

109e 
1 

138e 
3 

342c 
3 

176a 
3 

302c 
4 

233d 
4 

325a 
4 

302d 
4 

193d 
2 

330b 
3 

193b 
2 

286c 
4 

237b 
1 

229d 
4 167d 

1 
304c 
3 

268b 
2 

142d 
1 

142e 
1 

229b 
4 94c 

1 

223d 
4 

236a 
2 236d 

2 
175b 
2 

311c 
3 

109a 
>1 

175d 
2 

300e 
3 

175c 
2 

236c 
2 

342a 
3 

83a 
>1 

167e 
1 

109c 
1 

267e 
2 

304e 
3 

109d 
1 

83d 
1 17>1

e 2 

94b 
>1 

311d 
3 

175e 
2 94e 

>1 
342e 
3 

5c 
1 

300b 
3 

267d 
2 

330e 
3 

109b 
1 

304d 
3 

259a 
3 

17>1
b 2 

94d 
1 

94a 
>1 

330c 
3 167a 

1 

300c 
3 

167b 
1 

157a 
2 302e 
4 

304a 
3 

229c 
4 

286b 
4 237a 

1 

233c 
4 225e 
4 

342d 
3 

233a 
4 
225b 
4 

20>1
d 3 229a 
4 

223a 
4 286d 

4 
265b 
2 

138c 
3 

286e 
4 138b 

3 
225d 
4 

325e 
4 302a 

4 302b 
4 

330d 
3 176e 

3 176b 
3 223b 

4 
130e 
4 229e 

4 

311b 
3 

325c 
4 

325d 
4 

286a 
4 

138d 
3 

223e 
4 
233e 
4 

17>1
a 2 

170a 
4 

130d 
4 

130c 
4 

130b 
4 

170e 
4 

233b 
4 

170b 
4 

170d 
4 

a) b) 

Chapter IV: Does a decrease in plant diversity lead to a decrease in AM symbiont diversity?                           



 

128 

and 70 for Lin XJ et al. (2012). The resulting phylogenetic tree is in accordance with the 

topologies described in literature with a large majority of Glomerales followed by 

Diversisporales, Archaeosporales and Paraglomerales (Lekberg et al.,  2012;  Lin XJ et al., 

2012). 

 Interestingly most of the OTUs found do not have any close sequence relative. The 

majority of the OTUs presented in figure 21 are unknown. The results also suggest a gap 

between the AM fungal taxonomy / species description and the AM fungal species diversity 

in nature. AM fungal diversity is far from being adequately described. From our results, we 

can speculate that a large proportion of the AM fungal species diversity remains unknown. 

Again, this is in agreement with Opik et al. (2009). This phenomenon was reinforced by the 

fact that we used a deep sequencing strategy which enabled us to detect OTUs at very 

low abundances. We have noticed that OTU 63 which is an Archaeoesporales has an 

Ascomycota as best BLAST hit, which is an example of the possible propagation of an 

incorrect annotation if a phylogeny is not constructed. 
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Figure 21: 

Phylogenetic analysis of the SSU rRNA AM fungal OTU representative sequences (i.e. one sequence per 

OTU found; one OTU being defined by a 97% cutoff).  The phylogeny was built by bayesian inferences using 

MrBayes v.3.1.2 (Scale bar: 0.1 estimated substitutions per site, 3300000 generations sampled every 100 

generations and an average standart deviation of split frequencies of 0,00958) from a ClustalW 2.1 
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alignment. The GTR+I+G model was selected after a ModelTest analysis. Node support values are given in 

the following order: in red, Maximum Likelihood (calculated with PhyML 3.0 aLRT, gamma shape parameter: 

0.392, number of categories: 4,  proportion of invariant: 0.117)/ in black, MrBayes. Corallochytrium 

limacisporum (L42528), a putative choanoflagellate, was used as outgroup. All sequences are listed with 

their GenBank accession numbers. OTUs 4, 5, 50, 51, 52 and 79 were removed from the phylogenetic 

reconstruction because they induced noise in the sequence alignment. Their closest relative sequences are 

respectively: uncultured Glomus (HF566605.1), uncultured Glomus (HF568342.1), uncultured Glomus 

(KC589000.1) uncultured Glomus (HF566497.1), uncultured fungus (HE806403.1) and uncultured Glomus 

(HF913471.1).  

 

 

 

 

 

 

Figure 22:  
Comparisons among AM fungal communities 
(A) mean OTU richness within AM fungal 
communities for each modality.  Letters indicate 
highly! signi\cant! differences! between! OTU!
richness averages according to Tukey HSD post 
hoc test (p<0,01).  
(B) factorial correspondence analysis to explain 
the projected variance. In black AM fungal 
communities for samples from the 1 plant species 
plots, from 2 plant species plots in red, from the 4 
plant species plots in green and from 8 plant 
species plots in blue.  
(C) linear regression of the fungal OTU richness 
in function of the plant species richness. 
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 The results of our preliminary analysis seem to confirm our working hypothesis. The 

OTU richness decreases concomitantly with plant species richness (Figure 22A &C). 

Indeed, OTU richness in the plots featuring 1 and 2 plant species are the same and 

contain an average of 24 OTUs. The roots from plots containing 4 & 8 plant species 

contained a significantly higher number of OTUs (Figure 22A). This is further confirmed by 

the results of the correspondance analysis, which clearly shows that the number of OTUs 

is positively correlated with the plant species richness (Figure 22B). 

 

 

 

Figure 23: 

Diagram showing the relative occurrence (presence/absence) of each of the 54 OTUs found in the study for 

the different modalities (1, 2, 4 and 8 plant species). In blue, red , green and purple are the OTU proportion 

observed in the 1, 2, 4 and 8 plant species modalities respectively. 

 

 

 The 54 different OTUs found in the study do not display the same abundance along 

the four plant species richness modalities (Figure 23) as some are rare and other are more 

common. The observed shift in the AM fungal community composition could be explained 

by changes in plant species richness. One third of the OTUs are found equally whatever 

the plant species richness (Figure 23, OTU 67 to OTU 54). Reciprocally, OTU 52, 69, and 

24 were only detectable in the plots with 1 and 2 plant species, while OTU 78, 43, 40 were 

rare in the low plant diversity plots (i.e. with 1 & 2 plant species) and common in plots with 

4 and 8 plant species. 
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 OTU 52 was found in most of the low diversity plots (i.e. 75% of the sampled low 

plant diversity plots). Thus this OTU displayed a broad distribution only in low diversity 

plots, which may indicate a large host range. We can potentially explain the OTUs 69 and 

24 presence only in a few plots with low plant diversity by suggesting that these AM fungi 

display a restricted host range. However this needs to be confirmed as it may be different 

at another period of the year. Another explanation is that these 3 OTUs (i.e. 52, 69 & 24) 

are only found in the 1 and 2 plant species plots because they are poorly competitive thus 

when the plant diversity increases, along with the emergence of a larger AM fungal 

diversity, these AM taxa fail to develop and spread.  

 OTUs 20, 43 and 78 belonging to the Acaulosporaceae and OTU 40 belonging to 

the Glomeraceae are frequent and mostly observed at a higher plant diversity levels (>4 

plant species). Strikingly, the OTU 1 found equally in all modalities, is observed in 91% of 

the total samples and represents 64.3 % of the total number of sequences. If this 

frequency is not related to a preference of PCR amplification bias, the OTU should be 

considered as highly successful under these field conditions. This has to be confirmed by 

analysing interannual and seasonal changes in AM fungal communities.  

   A concordance index analysis (figure 24A) was performed on group OTUs 

displaying similar representations in the 4 different modalities. Figure 24A indicates 3 

groups of OTUs that are all highly significantly different (Figure 24B, Kruskal Wallis: 

p<0,001) confirming that different AM fungal OTUs strategies exist across modalities. To 

draw the figure 24B, the average plant species richness of plots where each OTU was 

found, was performed for each group. OTUs within group 1 occurred at a lower average of 

plant species richness whereas group 3 occurred at the highest plant species richness 

average (i.e. group 1 average = 0.4; group 2 average = 1.6; group 3 average = 2.2) 
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 This additional analysis reinforced the above observations. Indeed OTUs 52, 69 and 

24 were only found in the plots containing 1 and 2 plant species all belonging to group 1 

(table3), whereas OTUs 78, 43, 40 and 20 mostly observed in the 4 and 8 plant species 

plots  belong to the group 2 (table 3).  
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Figure 25: 

Occurrence of  the 3 clusters: group1, group2 and group3, depending on the plant species richness (1, 2, 4 

or 8 plant species). Groups 1, 2 and 3 are respectively shown in light blue, dark blue and grey. 

 

 The proportion of each group within the 4 modalities (figure 25) suggests that group 

1 contains the 'rare' OTUs. They are observed in 0.08 to 48.7 % of the samples and 

represents 0.001 to 0.1% of the total number of sequences (table 3). Group 3 contains 

OTUs with an intermediate abundance as they are found in 28.8% to 57.7% of the 

samples and covered 0.02% to 1.7% of the total number of sequences (table 3). OTUs 

within this group are mainly found associated with higher plant species richness. These 

results raise the question of the possibility of differences in between OTUs ecological 

status with more AM fungal generalists in low plant diversity levels and more specialists in 

the higher levels of plant species richness plots. In low plant diversity levels even if less 

frequent specialist AM fungi could also be present resulting in a higher variance in AM 

fungal community composition (i.e. root samples from low plant diversity modalities display 

a lower OTU diversity than samples from the 4 & 8 plant species modalities but the AM 

fungal composition from one sample is different from the composition of another sample) 

(figure 20B). The second possible interpretation of this higher variance is a variability 

among AM fungal community diversity existing among host-plants with plants being 

colonised either by a low or a high diversity of AM fungi: within the low plant diversity 

modalities, some plants are colonized by a high richness of AM fungi while others are 

colonized by a low richness of AM fungi. When plant species richness increases, more 

plant functional groups are likely to coexist, leading to a higher number of AM fungal 

habitats. Niche complementarity along with a higher functional diversity can explain a 

higher AM fungal richness and the possibility of the occurrence of AM fungal 'specialists' 

would explain the observed lower variance (figure 20B) in AM fungal communities. 
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OTU  % of samples 
containing it 

% of seq tot Family Group 

OTU 17 19,2 0,06 Diversisporales archaeospora  1 

OTU 24 3,4 0,007 Glomerales glomeraceae 1  1 

OTU 25 8,3 0,008 Diversisporales archaeospora 1 

OTU 42 41 0,08 Glomerales glomeraceae 2 1 

OTU 47 33,9 0,1 Glomerales glomeraceae 1 1 

OTU 52 28,8  Glomerales glomeraceae 2 1 

OTU 53 48,7 0,09 Glomerales glomeraceae 2 1 

OTU 58 15,4 0,04 Glomerales glomeraceae 2 1 

OTU 59 12,1 0,02 Glomerales glomeraceae 1 1 

OTU 60 5,1 0,005 Glomerales glomeraceae 2 1 

OTU 61 33,3 0,07 Glomerales glomeraceae 1 1 

OTU 63 14,7 0,03 Diversisporales archaeospora 1 1 

OTU 67 41 0,1 Glomerales glomeraceae 1 1 

OTU 68 1,9 0,01 Diversisporales acaulosporaceae 1 

OTU 69 0,08 0,001 Glomerales glomeraceae 2 1 

OTU 71 30,1 0,09 Glomerales glomeraceae 2 1 

OTU 73 22,4 0,03 Glomerales glomeraceae 2 1 

OTU 74 8,3 0,006 Diversisporales acaulosporaceae 1 

OTU 75 5,7 0,005 Glomerales glomeraceae 2 1 

OTU 76 1,9 0,009 Glomerales glomeraceae 1 1 

OTU 77 27,5 0,03 Glomerales glomeraceae 2 1 

 

OTU 9 51,3 0,9 Glomerales glomeraceae 2 2 

OTU 11 57,7 0,2 Glomerales glomeraceae 1 2 

OTU 18 53,2 0,6 Glomerales glomeraceae 1 2 

OTU 20 49,3 1,7 Diversisporales acaulosporaceae 2 

OTU 21 46,8 0,7 Glomerales glomeraceae 1 2 

OTU 39 42,9 0,35 Diversisporales diversisporaceae 2 

OTU 40 51,3 0,4 Glomerales glomeraceae 2 2 

OTU 43 34 0,1 Diversisporales acaulosporaceae 2 

OTU 46 53,2 0,5 Diversisporales gigasporaceae 2 

OTU 49 30,7 0,4 Glomerales glomeraceae 1 2 

OTU 64 57,7 0,1 Glomerales glomeraceae 1 2 

OTU 72 43,6 0,07 Glomerales glomeraceae 2 2 

OTU 78 28,8 0,02 Diversisporales acaulosporaceae 2 

OTU 79 30,7  Glomerales glomeraceae 2 2 

 

OTU 1 91 64,3 Glomerales glomeraceae 2 3 

OTU 2 94,8 4,3 Glomerales glomeraceae 2 3 

OTU 3 93,5 7 Glomerales glomeraceae 2 3 

OTU 6 80,2 1,6 Glomerales glomeraceae 2 3 

OTU 7 45,5 0,3 Paraglomerales paraglomus 3 

OTU 10 80,7 1,7 Glomerales glomeraceae 2 3 

OTU 12 92,3 4 Glomerales glomeraceae 1 3 

OTU 13 67,3 0,5 Glomerales glomeraceae 2 3 

OTU 14 78,2 1,3 Glomerales glomeraceae 2 3 
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OTU  % of samples 
containing it 

% of seq tot Family Group 

OTU 16 60,2 0,7 Paraglomerales paraglomus 3 

OTU 19 84,6 0,2 Diversisporales scutellosporaceae 3 

OTU 37 73,7 0,4 Glomerales glomeraceae 1 3 

OTU 38 71,8 0,2 Glomerales glomeraceae 2 3 

OTU 41 71,8 0,4 Glomerales glomeraceae 2 3 

OTU 48 67,3 0,2 Diversisporales scutellosporaceae 3 

OTU 54 73,1 0,4 Glomerales glomeraceae 2 3 

OTU 55 66 0,3 Glomerales glomeraceae 2 3 

OTU 66 82 0,5 Glomerales glomeraceae 2 3 

OTU 70 71,8 0,3 Glomerales glomeraceae 1 3 

 

Table 3: 

OTUs list and % of samples containing these OTUs, % of the total number of sequences they represent and 

taxonomical family within the Glomeromycota phylum. 

 

 

 It is important to again stress the preliminary nature of these results. In order to 

confirm these findings, the work will need to be refined by (i) analysing the inter-annual 

changes (ii) the seasonal changes (iii) analysing in more detail the link between host-plant 

species and the AM fungal community composition (iv) analysing the whole fungal 

community associated to roots, not solely AM fungi (v) from a technical point of view 

making the number of produced sequence per sample analysed more homogeneous to 

allow the use of a matrix of relative frequencies (vi) including the 16 plant species modality 

within the analysis shown herein (sequencing under process). Despite the limitations of 

this current work, two ideas emerge: (i) in agreement with our working hypothesis, we 

found evidence that a decline in plant diversity induces a decline in AM fungal species 

diversity and (ii) a higher plant diversity will induce a convergence in the qualitative 

composition of the AM fungal communities. 

 Modeling of the root associated community by means of computing correlation 

networks will be performed to predict the key component(s) within this community. This 

should provide important information about community functioning, including synergies 

and competition among fungal communities, which are currently poorly documented. 
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Supplementary material: 

 

 

 

 

 

Figure S12: Plot numbering of the e120 experiment in Cedar Creek LTER. 
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Figure S13: 

Strategy to analyse the diversity of the root associated microorganisms. In this chapter are only presented 

the results of the PCR targeting AM fungi. 
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Summary  

 

 Food demand will increase concomitantly with human population but reports 

indicate that agricultural productivity will decrease as a result of global warming and soil 

degradation. To feed the world, food production therefore needs to be high enough and, at 

the same time, minimize damage to the environment. This equation cannot be solved with 

current strategies. Based on recent findings on the control of the AM symbiosis, new 

trajectories in soil management practices for agriculture and plant breeding which take into 

account the below-ground compartment and evolution of mutualistic strategy, are proposed 

here. In this context, we argue that plant breeders have the opportunity to make use of 

native Arbuscular Mycorrhizal symbiosis in an innovative ecologically intensive agriculture.  
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Introduction 

 
 Feeding the world and securing access to food are both major social and scientific 

issues. In recent years, the rapidly increasing demand for food (i.e., for human populations 

and livestock) along with biofuels has led to food price volatility (Battisti & Naylor, 2009). 

Recent work suggests that food crises are even more exacerbated by global warming: 

agricultural productivity has declined world-wide as a consequence of the hottest summers 

experienced in the recent past, and according to different global!warming!scenarios! [�]!

the hottest seasons on record will represent the future norm in many locations [...] (Battisti 

& Naylor, 2009). Human population has increased and will continue to increase to a peak, 

expected before the end of the century, with 10 billion people before 2100 (Lutz et al., 

2001). Contrary to common assumption, non-linearities between population expansion and 

environmental degradation are likely to increase disproportionately and rapidly (Harte, 

2007). Human population expansion will be coupled with an increased demand for space, 

water and food. These demands will therefore be accompanied by urban and cropland 

expansion, and more than 109 hectares of natural ecosystems are likely to be lost by 2050 

(Tilman et al., 2001). This represents collateral damage for the environment because 

cropland expansion can only be achieved by replacing non agricultural, mainly forested 

areas. According to recent studies, agricultural production will have to expand by about 

100% during the 21st century to satisfy forecast world demands (e.g., Cirera & Masset, 

2010). At the same time, agriculture is a major threat to the environment, leading to a 

decline in biodiversity and related ecosystem services, including degradation of soil and 

water quality (e.g., Foley et al., 2005). 

 A fundamental issue for agriculture during this century is to confront two 

contradictory goals, (i) the need to produce enough food to minimize human malnutrition 

and support world population expansion and (ii) the need to limit collateral damages to the 

environment, which can in turn negatively impact agriculture. Based on recent findings 

about strategies in plant mutualisms and plant selection, our aim is to propose new ideas  

and suggest guidelines for sustainable agricultural development. 

 

Intensive vs. extensive agriculture ? 

 
 To achieve a sustainable agriculture, the need is to increase the productivity while 

limiting the inputs in fertilizers and biocides and the damages to the environment. In this 
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context, both intensive agriculture and extensive agriculture should be considered. The 

aim in intensive agriculture is to maximize productivity per unit of surface while in 

extensive agriculture, lower productivity yields are accepted as a counterpart to less 

potential ecosystem damage. The main advantage of extensive agriculture is that no or 

few inputs are required. However this is often countered by a need for larger soil area to 

obtain comparable production. It has been shown that agricultural intensification with high 

yield production eventually increases greenhouse gas emissions per unit surface. 

However much higher emissions can be expected if the same production is obtained by 

expanding low-yield farming (Burney et al., 2010; Balmford et al., 2012). Similarly, the 

need to increase agricultural productivity to limit adverse effects on the environment has 

also been underlined by modeling land use/land cover changes (Nelson et al., 2010) and 

by projecting possible improvements of productivity in existing agricultural areas (Foley et 

al., 2011). One key element which has emerged is the necessity for agricultural 

intensification to preserve biodiversity and the related ecosystem services. 

 
Crop selection from traits? 

 
 Since the beginning of agriculture, crops have been selected for different traits, 

including plant productivity. The main current approach to modern plant breeding is to 

maximize the fitness of individual plants. However other contrasting breeding strategies 

have been suggested. One of the most exciting of these new solutions would be to base 

plant breeding on group selection rather than on individual plant fitness (Weiner et al., 

2010). This would imply a completely new approach to selection criteria involving the 

maximization of population performance and not of the individual peformance, this can 

produce higher yields. For example, selecting for cooperative shading, which would allow 

a passive control of weeds, seems promising to improve yield and sustainability (Weiner et 

al., 2010).  

 
 In these two approaches, however, the belowground compartment is not 

considered, which is arguably a mistake. Plants are deeply dependent on mutualist 

microorganisms for their growth, and these can be damaged by conventional agricultural 

practices and current plant breeding strategies. For example, conventional agriculture 

causes a decrease and a uniformisation of AM fungal taxa (Verbruggen et al., 2010), 

Another consequence can be the spread of unusual 'behavior' of arbuscular mycorrhiza in 

monocultures. They act like parasites which causes a decrease in crop yield (for a review 
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see Bennet et al., 2011). 

 
Arbuscular mycorhiza and consequences of agriculture  

 
 The arbuscular mycorrhiza relationship evolved roughly 400 million years (Redecker 

et al., 2000). This symbiosis is widespread with approximately 80% of land plants 

colonized by AM fungi (Smith & Read, 2008), across a huge diversity of ecosystems. In 

this symbiosis, plants provide carbohydrates to the arbuscular mycorrhizal fungi in 

exchange for minerals, drought resistance and protection against pathogens (Smith et al., 

2010). The fungus in this mutualistic relationship is an obligate biotroph, its transmission is 

horizontal as symbionts are taken up from the environment and there is no genetic 

uniformity between fungal symbionts as the nuclei coexisting in the AM symbionts are 

genetically dissimilar. Several different fungal symbionts colonize the same plant roots. 

 
 The arbuscular mycorrhizal symbiosis is responsible for massive global nutrient 

transfer. It is a mutualism 'that helps feed the world' (Marx, 2004). Arbuscular mycorrhizal 

fungi, because of their functions, can be considered as key microorganisms for soil 

productivity.  

 
 Intensive agricultural management (i.e., conventional agriculture in Europe and 

North America) has exerted a high selection pressure on microorganisms through 

profound modification of their habitats and niches, notably brought about by tillage, the 

high increase of mineral nutrients, and low plant diversity (i.e., crops). Tillage, ploughing 

and ripping, for example, represent an intense form of soil disruption. In natural habitats, 

AM mutualism is not subjected to perturbations of this intensity. Such disruption leads to 

degradation of the hyphal network, ecological functions, and AM fungal diversity (for 

review, see Verbruggen & Kiers, 2010). Soil nutrient availability is a strong driving 

influence for producing an evolved geographic structure in AM mutualism (i.e., a 

coevolutionary selection mosaïc) (Johnson et al., 2010). As a result, soil fertilization in 

agricultural ecosystems has had a negative impact on AM fungal functions (e.g., Johnson, 

1993) and diversity (Egerton-Warburton et al., 2007). Recently, Sheng et al. (2012) have 

shown that tillage and phosphorus fertilization have different and additive effects on AM 

fungi as tillage decreases arbuscular development in roots while phosphorus supply 

reduces the total AM fungal colonization. Thus confounding factors, related to conventional 

agricultural trajectories, act synergistically against mycorrhizal symbiosis.  
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Mutualistic strategy and agriculture  

 
 From a theoretical point of view, mutualisms (cooperative interactions among 

different species) can exhibit instability: individuals potentially benefit from defecting from 

cooperation if cooperation is costly. Organisms will increase their own fitness, even if this 

comes to a cost of others. This means that less-cooperative!strains!(i.e.!�cheaters�)!!Kiers 

et al, (2011) have demonstrated the capacity of plants to sanction symbiont of low quality  

providing them less carbon . Thus the gain in fitness for the cheater is reduced by this 

plant trait. This in itself can explain the stability of this symbiosis. A similar sanction of 

carbon allocation has been observed in the case of nitrogen-fixing nodules in leguminous 

plants to control Rhizobium cheaters (Kiers et al., 2006).The most cooperative AM fungal 

symbionts transfer more phosphorus to the roots when they receive more carbon (Kiers et 

al., 2011). Such mutualism is therefore bilaterally controlled because both partners can 

enforce the cooperation and any possible enslavement strategy is also limited. This fairly 

explains the stability of arbuscular mycorrhizal symbiosis. In addition, the main advantage 

for the plant to not enslave its symbionts is this access to numerous potential functions 

harbored by the reservoir of soil AM fungi into which the plant can tap depending on its 

nutritional requirements. For the fungi, the main outcome of not being enslaved is the 

maintaining of a a high level of diversity. This symbiosis is one reason for the success of 

plants in terrestrial ecosystems. 

 
 Less cooperative AM fungi do exist in nature. We can expect them to become more 

abundant as the diversity of AM fungi decreases because the symbiotic options offered to 

the plants are more limited. Kiers et al. (2011) found that AM fungi cheaters can develop 

'dealer' strategy by keeping phosphorus in polyphosphate chains and delivering it at an 

expensive! cost! for! the! host! plant.! The! plant�s! capacity! to! sanction! cheaters! is a 

tremendously important trait to maintain, given the fact that most mineral nutrients (~70% 

of the phosphorus for example) are delivered to plants by AM fungi (Smith et al., 2003).  

 

 Ecosystem productivity has been shown to be responsive to AM symbiosis diversity 

(van der Heijden et al, 1998; 2007). Host plants can be colonized by a variety of AM fungi 

(i.e., no host-specificity). However, recent findings suggest that plants can selectively 

allocate more resources to those fungal partners that ensure access to particular functions 

related to their needs (Kiers et al., 2011).!This!�selective!rewarding�!is!likely!to!lead!to!the!

exclusion of certain colonizers and culminate in an observed 'host-plant preference' 
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(Vandenkoornhuyse et al., 2002; 2003). 

 

 This leads to the idea that a plant can filter soil AM fungi depending on its 

requirements, the season and location. Conventional field-based agriculture makes use of 

very limited crop plant diversity, fungicides, soil tillage and fertilizer. The pressure exerted 

by agricultural practices leads to a reduction in AM fungal diversity compared to more 

natural ecosystems (e.g., Helgason et al., 1998; Verbruggen et al., 2010). Breeders 

generally select crop cultivars from rich soils which have been under conventional 

agriculture for many years. Agricultural soils have been enriched with fertilizers for 

decades and the ecological function of AM fungi as a provider of plant phosphorus is less 

important in these enriched soils. This can, in turn, relax selection for traits that allow 

plants to best evaluate their symbiotic partners. For example, it has been shown that older 

soya bean varieties are better able to control Rhizobia cheaters than modern soya bean 

cultivars (Kiers et al., 2007).  

 

 The same trend has occurred in the plant-mycorrhizal mutualism. There is work 

suggesting that AM fungal cheaters increase in agricultural soils. A loss of mycorrhizal 

responsiveness due to modern plant breeding was shown in wheat and maize (An et al., 

2010; Zhu et al., 2001) In breadfruit, the selection of cultivars favoring above-ground traits   

can lead to a defection of the AM mutualism (Xing et al., 2012).  Because AM fungi 

constitute a fundamental component of soil fertility, solutions for a more ecologically 

intensive agriculture should focus on this research question. Plant breeders could imagine 

new selection trajectories where the sanction trait is considered as a major selection 

target. In this way the possibilities offered by AM functional efficiency could be restored 

and agricultural practices modified by reducing soil inputs and tillage.  

 

 The alternative hypothesis is that plant breeders have selected cultivars that are 

very efficient for mineral foraging through soil AM fungal mutualists. This apparently 

optimistic hypothesis is worse than that of a loss of the sanction trait in crops, because of 

the lack of long term sustainability. Indeed, if there is a loss of AM fungal diversity and 

quality due to the low plant diversity in agroecosystem, plant would have less chance to 

meet their need. Furthermore, one important component of soil fertilizer, phosphorus, is 

known to rely on high quality rock phosphate, which is a finite resource. More than 85% of 

the global phosphate resources are dominated by only 3 countries which is far fewer than 
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the number of countries controlling the world's oil reserves (e.g., Elser & Benett, 2011). 

Phosphorus supply is thus of strategic importance for many countries, and [...] many food 

producers are in danger of becoming completely dependent on this trade [...] (Elser & 

Benett, 2011). Major agricultural regions such as India, America, and Europe are already 

dependent on P imports. Phosphate market prices can soar, as shown by the 700% 

increase in 2008 (Elser & Benett, 2011), especially as phosphate mining production is 

predicted to attain a peak in 2030 (Cordell et al., 2009). 

 

 Other plant mutualisms, in addition to arbuscular mycorrhiza, should potentially 

have a synergistic impact on plant productivity and plant resistance against stresses. For 

example, infection of barley with an endophytic fungus, Piriformosa indica, increases 

resistance to stresses including salinity and systemic resistance of the crop to root and leaf 

pathogens, and a concomitant increase in yield production (Waller et al., 2005). Native 

plants in coastal environments and geothermal habitats require fungal endophytes in order 

to grow (Rodriguez et al., 2008). Thus a passive adaptation of the plant is observed, with 

the endophytic fungus providing a selective advantage to the colonized plant. Infection of 

the tomato plant with these endophytes, for example, confers salt or heat resistance 

(Rodriguez et al., 2008). It can thus be argued that solutions, which support a more 

productive and sustainable agriculture and involve the use of endophytic microorganisms, 

do exist but have as yet been little explored.  

 

Future of agricultural trajectories 
 

 Forests represent important carbon stocks which, when converted into 

agrosystems, have a huge impact on CO2 emission to the atmosphere (e.g. Aldhous, 

2004) as well as a collateral effect on biodiversity (e.g. Balmford et al., 2012). In the 

context of global changes, it seems fundamental to limit agricultural expansion (Foley, 

2011). The key point seems to be to improve crop yields within existing agrosystems. 

However, conventional agricultural practices and plant breeding strategies have arguably 

entered a 'cul-de-sac' because they are [...] unlikely to improve attributes already favored 

by millions of years of natural selection [...] (Weiner et al., 2010) while under-explored 

natural keys to crop yield improvement , such as AM fungi exist but are ignored and 

maltreated.  

 To maintain or restore this essential component of soil fertility, conventional 
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agricultural practices need to be modified. The following are suggested guidelines to 

improve the sustainability of human land use and crop productivity:  

(1) Because AM diversity is positively correlated with plant diversity (van der Heijden et al., 

1998), agriculture will need to make use of greater plant diversity. (2) Tillage, if employed, 

will need to be restricted to maintain hyphal networks and functional efficiency and also to 

preserve soil aggregates and limit water losses (Souza-Andrade et al., 2003). (3) Plant 

breeders should select plants in poor soils, taking into account the 2 previous aspects, the 

aim being to maximize the efficiency of AM fungi symbiosis (i.e., plants able to take full 

advantage of the AM fungi available in soils). These new selected plants might also be 

able to restore effective AM fungi in the field (4) Additional mutualist microorganisms such 

as endophitic fungi should also be considered as important targets to improve plant 

resistance and productivity.  

 

 This should facilitate a promotion of AM fungal mutualism and, at the same time, 

reduce the use of fertilizers, biocides and water. These guidelines have the potential to 

enhance crop yields and reduce the problems associated with conventional agriculture in 

both developed and developing countries. 

 

Conclusion 

 

 The Green Revolution started about 50 years ago and has allowed food shortages 

to be limited. Given the stocks of resources and human population growth, this Green 

Revolution can continue for only a few more decades. The counterpart of this Green 

Revolution is a high cost to the environment and global environmental changes (e.g., 

Tilman et al., 2001). If nothing is done to counteract these changes, thresholds will be 

exceeded, with dramatic consequences (Harte, 2007) and indeed the impossibility for 

natural ecosystems to regenerate. A more sustainable agriculture has to emerge to 

guarantee food supply over the next 50 years. One way of achieving a more ecologically 

intensive agriculture would be to consider and protect the ecological functions displayed by 

AM fungi. This will not only improve natural plant mineral nutrition but also water supply 

and other ecological functions that have already been clearly documented (e.g. Smith & 

Read, 2008).  
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General Discussion and Perspectives 
 
 
 

 The aim of this thesis was to address key aspects governing the arbuscular 

mycorrhizal symbiosis. To achieve this goal, I executed a series of analyses and 

experiments ranging from the individual host-plant level to the plant community level. We 

examined discrimination processes, asking if plant and fungal partners were able to detect 

cooperation,! i.e.! each! other�s! level! of! nutrient! provision.!We! then! studied! the! strategies!

that a host plant may deploy to protect its cooperating AM fungal symbionts. We developed 

and published for the public a sequence database to ensure proper analysis of fungal 

identity. We also used emerging molecular methods to investigate the effects of variation in 

host plant species richness and diversity on the AM fungal communities. Below, I give a 

summary of these chapters and results.  

 

 

 

I. Exploring the bilateral control of AM symbiosis through preferential C allocation and P 

hoarding strategies 

 

 The maintenance of cooperation in the mycorrhizal partnership poses a problem for 

evolutionary theory. The problem is particularly puzzling because both plant and fungi 

interact with multiple partners simultaneously: a single host plant is colonized by multiple 

fungal! species! and! fungal! �individuals�! interact! with! multiple! host! plants.! This! complex!

series of many-to-many interactions means that neither partner can be �enslaved�.! It!also!

means that selfish individuals can exploit the relationship, reaping benefits while paying no 

costs, so why cooperate at all? In chapter I, we used stable isotope probing techniques 

and tracking of radioactive elements in in vitro root systems to demonstrate that plant and 

fungal partners are able to detect variation in nutrient provisioning by the other, and adjust 

their own strategy accordingly. We argued that the partnership functions like an economic 

market: partners compete by trading resources, and those offering the best rate of 

exchange are rewarded. We also found that some species of AM fungi stock P in host-

inaccessible polyphosphate chains and adopt a hoarding strategy. Whether these same 

processes operate under natural conditions are unknown. 

 

General Discussion and Perspectives                                                                                                                  



 

152 

 1. Functioning of AM symbiosis in a more complex experimental design 

 

 Our experiments utilized simplified conditions with three AM fungal species and one 

Medicago truncatula host grown under laboratory conditions. As AM fungal functioning can 

be very context dependent, lab and field experiments need to be combined to look at 

increasing levels of complexity, and realism. As a natural environment is generally 

composed of a broad diversity of AM fungi displaying different colonization strategies, the 

first step should be to enlarge the number of AM fungi tested. This could be achieved by 

performing additional stable isotope probing experiments. For example, other AM fungi 

from different families displaying different root colonization strategies, like Gigasporaceae 

or Acaulosporaceae, could be tested. Gigasporaceae fungi display high soil colonization 

but low roots colonization whereas Glomaceae exhibit the opposite characteristics, while 

Acaulosporaceae exhibit low colonization rates in both roots and soil (Hart & Reader, 

2002). Molecular markers need to be developed for strains from these fungal groups and 

tested to be able to track these species in multi-species communities. 

 

        2. Breeding and the ability of plants to discriminate among fungal partners 

 

 An outstanding question is how crop breeding has changed the ability of hosts to 

discriminate among their fungal partners. Future experiments should use a SIP-RNA 

approach to look at host carbon allocation patterns across crop cultivars (from wild 

genotypes to high-bred, recently released cultivars). Plants would be grown without AM 

fungi, colonized by high-quality strains, low-quality strains and in a mixture containing both 

types of symbionts. I would hypothesize that if the plant has lost its ability to discriminate, 

the biomass of a host plant grown in the fungal mixture will be similar to that of plants 

grown in the presence of only low-quality fungi. Conversely, if the plant biomass is similar 

to that of plants grown in the presence of high-quality strains, this would suggest that the 

capacity to sanction non-cooperative strains is conserved. This could be confirmed by 

studying carbon allocation patterns in the mixed treatment.  

 After studying the effects of the host, we could then investigate the effects of the 

fungus. Plants could be inoculated with fungal spores harvested from plots under 

conventional agricultural monocultures (i.e. exposed to fertilizers, biocides and tillage), to 

test whether conventional agricultural practices select for less mutualistic fungal partners 
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(chapter V). For a large range of agricultural plants, the functional effects of AM fungal 

colonization are still unknown. It is important to determine which plants profit from AM 

fungi, and to determine their level of dependency to be able to enhance agriculture 

management and soil restoration. 

 

    3. Plasticity of the AM symbiosis  

 

 It is well known that for the same AM fungal strain, the impact of the symbiosis on 

plant fitness will differ depending on the host plant species. Reinhart et al. (2012) tried to 

predict plant responses to AM fungal colonization using a plant phylogeny approach. 

However, they found it impossible to predict functional consequences and interactions 

using this approach. Phylogenetic proximity has been shown to be a poor predictor of plant 

responses to AM fungi. A major question is whether AM fungi are more or less adapted to 

particular plants? For example, it has been shown that plants inoculated with AM fungi 

from their native soil exhibit more arbuscules in their root cells, and that these native AM 

symbionts perform best in their endemic soil (Johnson et al., 2009). Studying adaptation in 

AM fungi is difficult because spores and hyphae contain hundreds of nuclei, some of which 

can vary genetically. Nuclear sorting could result in high functional plasticity (Ehinger et al., 

2009). AM fungi are also able to form anastomoses through which genetic material can be 

exchanged. This makes it difficult to predict the consequences of particular host-fungal 

combinations. 

 

     4. AM symbiosis costs and related hypotheses 

 

 When studying mutualisms, the cost:benefit ratios of partnerships need to be well 

understood. In the AM symbiosis, one approach is to study the ratio between the 

phosphorus benefits provided by the fungi and the cost in carbohydrates allocated to the 

fungus, even though this does not represent all the diverse benefits AM fungi can provide. 

AM fungal associations are costly to the plant at the early stage of its growth. The carbon 

drain to the roots, due to their rapid colonization by AM fungi, can be massive enough that 

it reduces plant growth (Olsonn et al., 2010). Carbon allocation to the fungal partner also 

represents a high cost for the plant when the amount of light is low (Fitter et al., 2006). 

However, if the carbon allocated by the host plant to its symbiont comes from resources in 

excess, this carbon flux cannot be considered as a cost. For example, the carbon cost 
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might be balanced by the increased photosynthetic rate, which is stimulated by the C sink 

strength of the symbiosis (Kashuk et al., 2009). However this phenomenon which offsets 

the cost of AM symbiosis is not generalizable (Black et al., 2000). It depends on the growth 

stage of the plant and on the colonization stage of the fungus. Furthermore, the C cost of 

the symbiosis can be masked by the beneficial nutritional effects provided by AM fungi 

(Kashuk et al., 2009). The question of luxury resources exploitation (e.g. Kiers & van der 

Heijden, 2006) should be further investigated. However, the use of excess plant carbon is 

likely only transitory and dependent on plant growth stage and nutrient availability. 

 

 

II. Physiological and molecular bases of the sanction trait by plants 

 

 While we found strong evidence for the capacity of Medicago truncatula to 

discriminate among AM fungal strains (Chapter I), the molecular and physiological bases 

of this phenomenon is still unknown. Future experiments are needed to reveal the 

molecular mechanisms behind patterns of preferential carbon allocation. One way to 

address the question would be to use a sequenced plant like Medicago truncatula. It 

should then be possible to perform a comparative transcriptomic profiling (i.e. RNA seq 

and microarrays) on microdissected root parts. The easiest way to apply this molecular 

strategy would be to grow plants colonized by both high- and low-quality fungal strains. By 

choosing target genes involved in mineral transfer, carbon transfer, transportation, etc, it 

should be possible to analyse their differential expression/transcription (underexpressed 

vs overexpressed) under different fungal and control treatments. These gene expressions 

should be monitored over time: before colonization by AM fungi, during the establishment 

of symbiosis and after colonization. However, the feasibility of this approach remains to be 

proven because of (i) the instabilities of RNAs, difficulties in conserving material, and the 

small amount of RNAs obtained after the microdissections and (ii) the possibility that 

'contaminant' plant RNAs from cells close to the arbuscules masks the molecular signal. 

 Transcriptomic analyses should also be performed to study the fungal side of AM 

symbiosis control, to see if similar mechanisms are present in other kind of symbionts like 

endophytic fungi, rhizobia etc. The hope is that a reference Glomales genome will soon be 

available. However, the genetics of AM fungi present a real challenge. Scientists are now 

achieving a better understanding of AM symbiosis by using 'omic' tools (Salvioly & 

Bonfante, 2013). Molecular biology has been used to detect the signals involved in 
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symbiosis establishment and in nutrient exchanges. We currently have transcriptomic 

datasets on the reprogramming of plant genes activity induced by symbiosis establishment 

(for review see Sanders & Croll, 2010). However these transcriptomic studies have been 

conducted, almost exclusively, on plant roots or leaf cells in response to symbiont 

colonization but rarely on the changes of gene expression in AM fungi in response to 

interaction with roots. This could be approached by using orthologous genes from other 

fungi also infecting plants. Up to now, only two mitochondrial genomes, several unrelated 

nuclear genes of AM fungi and the transcriptome of G. intraradices have been published 

(Franz & Hijri, 2009; Formey et al., 2012). 

 
 
III. Host plant involvement in AM symbiont defense 

 

 In the second experiment (Chapter II), the functioning of the AM fungal symbiosis 

was examined in a multi-species context. In natural ecosystems, plants and AM fungi are 

embedded in a species network, and their relationships are affected by these other 

species. To understand the functioning of the AM fungal symbiosis, we increased the 

complexity of the system by adding fungivores. We hypothesized that the plant could aid in 

the defense of its symbiont, and thereby indirectly promote its own fitness. We found that a 

well known plant secondary metabolite, catalpol � a known fungivore repellent � was found 

in the mycorrhizal hyphae. However, its presence was only detectable when there were 

fungivores in the soil. We suggested there was a transfer from plant to fungus triggered in 

the presence of fungivores. 

This transfer of secondary compounds was only tested in one plant species. Further 

tests are needed to expand these conclusions. This idea also needs to be tested using 

symbionts that vary in their quality. Although we tried to investigate whether the transfer of 

compounds differed depending on the identity of the fungal species, the inoculation with 

the low-quality fungal species failed. Our aim was to determine if the amount of secondary 

metabolite transfer is dependent on the quality of the fungal species: do plants allocate a 

lower amount of secondary metabolites to low-quality symbionts, thus allowing fungivores 

to graze the low-quality strains? A series of experiments is needed in which host plants are 

inoculated with a range of fungal symbionts differing in quality. We could then assess 

whether the transfer of secondary metabolites correlates with the quality of the fungal 

species. The range of secondary metabolites tested could also be enlarged to determine if 

plants can only transfer catalpol or if other compounds are involved in fungal protection. 
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 Fungivore mortality is also a potentially interesting factor to study as a proxy to the 

intensity of the protection provided by the host plant. In addition, transcriptomic 

approaches could be utilized to more precisely understand the underlying mechanisms 

behind this transfer. 

 

IV. Plant diversity versus fungal symbiont diversity 

 

  1. Molecular phylogeny and taxonomy 

 

 Studying AM fungal diversity based solely on morphological criteria is extremely 

difficult as they are not cultivable organisms, and because of phenotypic 

similarities/convergences among divergent organisms. Thus the use of molecular tools is 

the best solution to have document the range of fungal diversity. The development of new 

sequencing technologies and computational approaches has resulted in a significant step 

forward in the analysis of genetic and functional diversity. Diversity analyses based on 

metagenomic approaches and amplicon analyses involving high throughput sequencing 

are facilitating the assessment of both diversity and functions even for poorly known 

microorganisms. The use of next generation sequencing (NGS) has led to a tremendous 

increase in the amount of data obtained, and allowed for more in-depth analyses. In view 

of the size of the datasets, data analysis automation has become essential. An amplicon-

sequence analysis pipeline (figure 18) has been developed using a web-based Galaxy 

instance for intensive computations (Bahin et al., unpublished). With these new tools, 

known and unknown (micro)organisms within a community can be analysed after PCRs. In 

the study presented in Chapter IV, we used the primer set AM1-NS31 (Helgason et al., 

1999; Simon et al., 1992) to analyse the AM fungal community and diversity. These 

community analyses now need to be improved by including other primer sets to limit the 

bias associated with preferential amplification.  

 In addition to the amplicon sequence pipeline developed during this thesis (chapter 

IV), a database Phymyco-DB (chapter III) was created to facilitate the sequence analyses. 

Phymyco-DB!contains!high!quality!fungal!sequences!of!SSU!rRNA!and!EF1"!genes!which!

have both been shown to be efficient in fungal identification. Phymyco-DB has been 

propagated within the Galaxy pipeline (Mahe et al., 2012). 

 Working with Phymyco-DB underscored the poor quality, the lack of precision and 

the many errors that are currently found in public databases. All these factors lead to 
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erroneous taxonomies or at least to sequences not corresponding to the given taxonomy. 

Much work is still required to achieve reliable identification and assignment of 

Glomeromycota sequences. The traditional classifications based on morphological criteria 

can lead to numerous mistakes, and even the species concept currently utilized is 

questionable. Furthermore, the presence of spores does not necessarily indicate that the 

AM fungi are active. Numerous examples of misidentification of spores exist and 

significant problems exist with the naming and the molecular phylogenetic position of the 

fungi. For instance, an AM fungus classified as Glomus versiforme (culture line BEG47) in 

the 1980's is actually Diversispora epigea, but was only updated in 2011 by Schüßler et al. 

after molecular analysis. However, errors in the public sequence database (i.e. Genbank; 

Benson et al., 2004) persist because of incorrect annotations and the propagation of 

mistakes. A good classification system associated with trustworthy RNA/DNA databases 

and analysis tools are the foundation for the description and understanding of phylogenic 

and functional trait diversity regulating plant/AM fungal associations, communities and 

productivity. A solid phylogeny is the basis of systematic analyses, establishment and 

understanding of the different hierarchical levels governing the taxonomic and functional 

diversity of organisms. In addition to the classic SSU rRNA gene usually targeted in 

microbial community analyses, other markers could be used, such as the large subunit of 

the rRNA gene (e.g. Clapp et al., 2001) and the EF1a gene encoding elongation factor 1 

(e.g. Helgason et al., 2003). These two genes are more variable than the SSU rRNA gene. 

Thus, for organisms that emerged early, such as the Glomeromycota, these LSU rRNA 

and EF1a genes likely contain more homoplasic signals (i.e. inherited similarities). When 

the aim is to achieve reliable identification for closely related isolates, the mitochondrial 

LSU rRNA gene (=mtLSU rRNA; Thiéry, 2010, PhD Thesis, University of Basel) appears to 

be suitable (Kiers et al., 2011). Conversely, the use of ITS as species-'barcoding' marker 

should be avoided for Glomeromycota because AM fungi are multinucleate and display 

different ITS copies (e.g. Sanders et al., 1995; Boon et al., 2010). By applying molecular 

taxonomies, which are much more reliable for determining the phylogenetic relationships 

between fungal taxa, unification of the Glomeromycota taxonomies should be possible.  

 

2. Different levels of diversity to consider 

 

 In Chapter IV, the aim was to understand the functioning of the mycorrhizal 

symbiosis in a broader community context. The impact of plant discrimination processes 
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on fungal biodiversity is not well understood. This is because assessing the processes 

regulating the diversity of AM fungi in ecosystems is challenging. In Chapter IV, I 

investigated the link between plant and AM fungal symbiont diversity. Next generation 

sequencing and high throughput amplicon sequence analyses were applied to study the 

AM fungal diversity colonizing roots. This innovative molecular approach allowed us to 

handle a large number of samples and data. Roots were sampled from Cedar Creek 

Experimental Station in plots hosting a plant diversity gradient from 1 to 16 species. The 

goal was to observe the effect of a diversity of host on the AM fungal community structure. 

The project includes five sampling campaigns in total, but in Chapter IV, only preliminary 

results from the first sampling campaign are presented. However even if the modality with 

16 species is missing, we were able to observe how the plant species richness impacts the 

AM fungal community. Our preliminary results show that AM taxa richness is affected by 

the plant richness; it tends to decrease when the plant species richness is reduced. This 

corroborates results found in other studies (Burrows & Pfleger, 2002; Alguacil et al., 2012). 

 The study reported in Chapter IV should have implications in agricultural 

development. Under current regimes, extensive monocultures are largely used, potentially 

leading to decreases in AM fungal diversity and ecosystem productivity (Tilman, 1996b; 

van der Heijden et al., 1998; Klironomos et al., 2000). 

 We also show that the AM community composition changes according to changes in 

plant hosts, both in the occurrence and proportion of some AM symbionts. This suggests 

the possible existence of generalists and specialists. The results are explained by (i) a 

host-plant preference phenomenon, (ii) a preference for the functional group to which the 

plant belongs (C3 metabolism, C4 metabolism, forb or legume), (iii) a niche 

complementarity, (iv) differences in competitive level displayed by the AM fungi. 

 Here only the taxonomical diversity of plants and AM fungi was considered. 

However, different levels of diversity exist: (1) functional diversity, (2) species richness and 

evenness and (3) intraspecific diversity (Johnson et al., 2012). We focused solely on AM 

fungal species richness and evenness. Functional diversity and intraspecific diversity are 

not addressed in this PhD thesis. The intraspecific diversity of AM fungi has been little 

studied mainly because of lack of knowledge about (i) life cycle, (ii) ploidy level, (iii) 

coenocytic spores and cells. AMF display a high degree of intra individual sequence 

polymorphism (Corradi & Bonfante, 2012) and the existence of recombinations or 

recombination-like events have been demonstrated (e.g. Vandenkoornhuyse et al., 2001). 

One process which generates intraspecific variations is the fusion of hyphae from different 
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spores. In addition, the segregation of nuclei within the spores will differ depending on the 

host plant which would help to maintain the genetic diversity in AM fungi.  

Very little is known about the factors regulating genetic diversity within a given 

symbiosis. Both biotic and abiotic factors are involved in this regulation: the host-plant 

species and functions, and environmental conditions like phosphorus availability are 

known to induce genetic changes in AMF isolates (Ehinger et al., 2009). This increasing of 

intra-isolate genetic variation will lead to competition not only between closely related 

isolates but also within the same isolate (Ehinger et al., 2009). This will lead to the 

selection of particular genotypes, which in turn act on plant diversity. In addition, between-

species interactions and fitness feedback might explain the coexistence of plant and AM 

fungal diversity in ecosystems. Several questions arise at this point: firstly, what is the 

extent of intraspecific diversity within an AM fungal taxon; secondly, does this extent of 

intraspecific diversity vary between different AM fungal taxa? Thirdly, does this intraspecific 

diversity lead to a diversity of functional traits? 

 

   3. Integrating other organisms 

 

 I was interested in studying the relationship between plant diversity and fungal 

diversity. The molecular markers we used specifically targeted arbuscular mycorrhizal 

fungi. However, a given host plant can be colonized by AM fungi and microbial endophytes 

simultaneously. The diversity of these endophytic microorganisms is not well known and 

they are usually described as fungal endophytes. Research on endophytic microorganisms 

has mainly been performed on Poaceae but includes a large array of plants, even pioneer 

plants such as Arabidopsis thaliana (e.g. Qiang et al., 2012). These endophytes live in 

symbiosis with plant roots, stems or leaves, and their behaviour is known to range from 

mutualistic to pathogenic (for review see Rodriguez et al., 2009). Like AM fungi, they 

display various host ranges, and their effects are variable depending on the host species 

but also within a same host species (Vaz et al., 2012). They rely on plants for their survival 

and nutrient supply. Endophytes can improve the competitiveness, biomass and growth of 

their host, depending on the host-plant species and environmental conditions, (Waller et 

al., 2005; Aschehoug et al., 2012), and can confer tolerance to various stresses such as 

salinity, disease resistance (e.g. Waller et al., 2005), and herbivore-resistance (Brem & 

Leuchtmann, 2001; Afkhami & Rudgers, 2009). AM fungi and endophytes have reciprocal 

effects on each other and could potentially interact synergistically to influence host-plant 
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fitness (Larimer et al., 2012; Aschehoug, 2012). AM fungi and endophytes can also 

compete for the resources provided by the host-plant (Larimer et al., 2012). Liu et al. 

(2011) identified competition between an AM fungus and a fungal endophyte depending on 

the P resource supply and the C content of the plant, with a decrease in AM fungal 

colonization when P was higher and a decrease in endophytes when C was higher. Some 

endophytes can enhance AM fungal colonization, thus promoting the plant symbiosis with 

AM fungi (Vaz et al., 2012), this effect being dependent on the AM fungal species. Co-

infection of a plant with AM symbiont(s) and endophyte(s), leads to decreased colonization 

by both symbionts and, in particular conditions, the host-plant is unable to maintain the two 

kinds of symbionts, resulting in a decrease of AM fungal colonization (Larimer et al., 2010). 

This underlines the importance of not restricting investigations to the AM fungi but to have 

a broader view of root colonizing microorganisms. Different questions arise when the 

whole symbiotic pool of a given host-plant is considered: (i) are there high- and low-quality 

partners in other types of symbionts? (ii) what are the functions of endophytic symbionts 

(iii) how is cooperation maintained when there is a suite of competing species types?  

 In the future, dedicated markers could be used to identify all endophytic 

microorganisms associated with plants. The relative diversities of Fungi, Bacteria and 

Archaea could be examined to determine possible positive and negative correlations within 

the symbiont community and to detect possible associations and competitions within the 

host-plant. 

 

V. Arbuscular mycorrhizal symbiosis for a sustainable agriculture 

 

 Understanding the mechanisms governing the AM mutualism (e.g. taking into 

account the different strategies of control adopted by plant and AMF, as well as the 

reciprocal effects of plant diversity on AM fungi) is really important as they are crucial 

components for plant productivity, ecosystem functioning and maintenance of soil fertility 

(Tilman, 1996b; van der Heijden et al., 1998; Klironomos et al., 2000). Currently, food 

demand is increasing while agricultural productivity is stagnating (Koning et al., 2007; 

Depetris Chauvin et al., 2012). Conventional agricultural practices often disrupt the AM 

symbiosis due to application of fertilizers and intensive tillage. As this symbiosis is 

considered as a mutualism which helps to 'feed the world' it is essential to increase 

farming yields while limiting or even decreasing fertilizer inputs. Promoting and improving 

this symbiosis functioning in agricultural systems must be a priority. Some simple 
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measures presented in the chapter V can be applied: (i) the use of greater plant diversity, 

(ii) restricted or no tillage, (iii) selection of plants in poor soils, (iv) promotion of other 

mutualisms.  

 The inoculation of AM fungi directly in soil was suggested as a solution to restore 

poor soils (He & Nara, 2007; Douds et al., 2012; Vosatka et al., 2012). However, this is 

hardly generalizable (Hart & Trevors, 2005) as production of such high quantities of AM 

fungal inoculum seems impossible with present-day technology. Furthermore it was shown 

that native AM fungi perform better than inoculated fungi even if the latter are beneficial 

(Rowe et al., 2007: Johnson et al., 2010). It has also been shown that addition of non-

native AM fungi disrupts the native AM fungal diversity (Koch et al., 2011). Thus, the best 

solution is likely to promote the AM fungi already in their endemic soil.  
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Conclusion: 

 

 From this thesis, new knowledge on the AM symbiosis evolution and mechanisms of 

stability has been acquired. The first body of new insights is presented in Chapters I and II, 

showing that bilateral control of symbiosis, via a nutrient supply dependant on the 

cooperative quality of the partners contributes to maintaining cooperation. Another novel 

insight is the potential involvement of the host plant in the protection of its AM symbiont 

against fungivory, by providing toxic metabolites repelling fungivores. New knowledge has 

also been gained on the effect of a loss in plant diversity on the AM fungal community 

structure and diversity (Chapter IV). The database presented in Chapter III was built to 

help analyse the data obtained from this study. From these results, new ideas for AM 

symbiosis in agricultural management are discussed. 

 Empirical approaches to studying plant�microbe interactions are generally 

reductionist because of the complexity of these relationships. Little by little, we need now 

to increase the level of complexity of our experiments by studying multiple symbionts 

within individual host plants, and in multiple hosts to obtain a more comprehensive view of 

the AM symbiosis and its interactions within an ecosystem. It is now also important to 

focus on other symbionts colonizing the plants like bacteria and fungal endophytes. We 

need to determine if the same mechanisms of control of the symbiosis exist and if potential 

protection of these symbionts occurs. It is also necessary to know the consequences of 

changing plant diversity on these other symbiotic interactions. This will allow a more 

detailed picture of these mutualisms. With these new findings, it will be possible to have a 

better understanding of their role in regulating natural and agricultural ecosystems. In our 

changing planet, it is important to better understand and better use plant mutualisms to 

meet the future demand for foods. 
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