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Résumé

Dans cette thèse nous étudions la dynamique engendrée par une famille de flots hamiltoniens.
Un tel système dynamique à plusieurs générateurs est aussi appelé ‘polysystème’. Motivés par
des questions liées au phénomène de la diffusion d’Arnold, notre objectif est de construire des
trajectoires du polysystème qui relient deux régions lointaines de l’espace des phases.

La thèse est divisée en trois parties.
Dans la première partie, nous considérons le polysystème engendré par les flots discrétisés

d’une famille d’hamiltoniens Tonelli. En utilisant une approche variationnelle issue de la théorie
KAM faible, nous donnons des conditions suffisantes pour l’existence des trajectoires souhaitées.

Dans la deuxième partie, nous traitons le cas d’un polysystème engendré par un couple de
flots hamiltoniens à temps continu, dont l’étude rentre dans le cadre de la théorie géométrique
du contrôle. Dans ce contexte, nous montrons dans certains cas la transitivité d’un polysystème
générique, à l’aide du théorème de transversalité de Thom.

La dernière partie de la thèse est dédiée à obtenir une nouvelle version du théorème de
transversalité de Thom s’exprimant en termes d’ensembles rectifiables de codimension positive.
Dans cette partie il n’est pas question de polysystèmes, ni d’hamiltoniens. Néanmoins, les résultats
obtenus ici sont utilisés dans la deuxième partie de la thèse.

Mots clés: dynamique hamiltonienne et lagrangienne, théorie KAM faible, diffusion d’Arnold,
polysystème, semi-groupe de Lax-Oleinik, ensembles d’Aubry et Mañé, propriétés génériques,
théorie géométrique du contrôle, ensemble atteignable, théorème de transversalité de Thom,
ensemble rectifiable.

Abstract

In this thesis we study the dynamics generated by a family of Hamiltonian flows. Such
a dynamical system with several generators is also called ‘polysystem’. Motivated by some
questions related to the phenomenon of Arnold diffusion, our aim is to construct trajectories of
the polysystem which connect two far-apart regions of the phase space.

The thesis is divided into three parts.
In the first part, we consider the polysystem generated by the time-one maps of a family of

Tonelli Hamiltonians. By using a variational approach falling within the framework of weak KAM
theory, we give sufficient conditions for the existence of the desired trajectories.

In the second part, we address the case of a polysystem generated by two continuous-time
Hamiltonian flows. This problem fits into the framework of geometric control theory. In this
context, we show in some cases the transitivity of a generic polysystem, by means of Thom’s
transversality theorem.

The third and last part of the thesis is devoted to the proof of a new version of Thom’s
transversality theorem, formulated in terms of rectifiable sets of positive codimension. Neither
polysystems nor Hamiltonians are explicitly involved in this part. However, the results obtained
here are used in the second part of the thesis.

Keywords: Hamiltonian and Lagrangian dynamics, weak KAM theory, Arnold diffusion,
polysystem, Lax-Oleinik semigroup, Aubry and Mañé sets, generic properties, geometric control
theory, reachable set, Thom’s transversality theorem, rectifiable set
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Introduction

Lorsque l’on étudie les propriétés des systèmes hamiltoniens presque-intégrables, et en particulier
le phénomène d’instabilité connu sous le nom de diffusion d’Arnold, on est amené à considérer
des systèmes dynamiques “à plusieurs générateurs”. Plus précisément, ces systèmes sont obtenus
en itérant dans un ordre quelconque les éléments d’une famille de difféomorphismes hamiltoniens
d’une variété symplectique N associée au problème. De tels systèmes, où la dynamique est
engendrée par une famille d’applications, sont aussi appelés polysystèmes.

Du point de vue de la diffusion d’Arnold, l’intérêt est de chercher des trajectoires du polysys-
tème qui relient deux régions “lointaines” de N . Dans cette optique, nous traitons dans cette thèse
la question de l’existence de telles trajectoires dans le contexte d’un polysystème hamiltonien
général.

Instabilité pour familles d’hamiltoniens

Dans cette section nous allons d’abord formaliser quelques définitions générales sur les polysys-
tèmes. Cela permettra dans la suite d’avoir un cadre unique pour situer les différents chapitres.
On introduira ensuite les objectifs et le contenu de la thèse.

Soient N une variété symplectique et F une famille arbitraire d’hamiltoniens définis sur
N . Pour toute fonction H : N → R, on note {φtH}t∈R le flot hamiltonien associé. On suppose
que tous les flots sont complets. Dans cette thèse nous étudions l’action sur N du semi-groupe
engendré par

{
φtH : t ≥ 0, H ∈ F

}
.

On appelle le système ainsi obtenu polysystème hamiltonien à temps continu orienté. Nous allons
aussi considérer le cas où les éléments de F dépendent du temps de manière périodique (avec
période 1), dans ce cas nous étudions l’action sur N du semi-groupe engendré par

{φnH : n ∈ N, H ∈ F} .

et nous appelons polysystème hamiltonien à temps discret orienté le système ainsi obtenu.1

La notion de trajectoire d’un système dynamique s’étend naturellement au cas d’un polysys-
tème. Nous utiliserons dans ce dernier cas le terme polytrajectoire pour éviter toute ambiguïté.
Nous formalisons ci-dessous cette notion.

1Les polysystèmes à temps discret orienté sont parfois appelés systèmes de fonctions iterées. Les
polysystèmes à temps continu sont aussi appelés switched systems ou bang-bang control systems.
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12 Introduction

Dans les polysystèmes à temps continu orienté, une polytrajectoire est une courbe γ : R→ N
telle qu’il existe une suite strictement croissante (tj)j∈Z ⊆ R avec limj→±∞ tj = ±∞ et une suite
(Hj)j∈Z ⊆ F avec

γ(t) = φ
t−tj
Hj

(γ(tj)) ∀ t ∈ [tj , tj+1] ∀ j ∈ Z.

Dans les polysystèmes à temps discret orienté, une polytrajectoire est une suite (zj)j∈Z ⊂ N
telle qu’il existe une suite (Hj)j∈Z ⊆ F avec

zj+1 = φ1Hj
(zj) ∀ j ∈ Z.

En remplaçant F par F ∪ −F dans les paragraphes précédentes on obtient les définitions
analogues pour les polysystèmes à temps non-orienté (continu ou bien discret).

Nous abordons dans ces contextes les questions suivantes: existe-t-il des polytrajectoires
qui relient deux régions “lointaines” données de la variété N? Sous quelles conditions sur les
hamiltoniens de la famille F?

Par exemple, dans le cas particulier du polysystème à temps discret orienté engendré par
une famille d’applications twist exactes-symplectiques du cylindre T× R, les travaux de Moeckel,
Jaulent et Le Calvez (cf. [Moe02, Jau, LC07]) montrent que la seule obstruction à l’existence de
polytrajectoires reliant deux “hauteurs” différentes du cylindre est représentée par les cercles non
contractibles invariants communs à toutes les applications de la famille. Nous reviendrons plus
en détail sur leurs résultats dans la suite.

La motivation sous-jacente à ces questions, au-delà de leur intérêt intrinsèque, réside dans
le fait que dans certaines situations l’étude de l’instabilité d’un système hamiltonien intégrable
perturbé peut être réduit dans une certaine mesure à l’analyse d’un polysystème à temps discret
orienté. Comme déjà mentionné dans l’avant-propos, cet aspect est lié au phénomène d’instabilité
connu sous le nom de diffusion d’Arnold. Ce phénomène constitue à présent l’un des thèmes
majeurs de recherche en dynamique hamiltonienne. Nous renvoyons à [Loc99, KL08, DGdlLS08,
Ber10a, Che10] pour des articles d’introduction et à [Moe02, MS04, Mar08, BP12] pour des
articles où les liens avec les polysystèmes sont explorés.

Structure de la thèse

Cette thèse est divisée en trois parties.
Dans la Partie 1 nous nous plaçons dans le cadre d’un polysystème hamiltonien à temps

discret orienté engendré par une famille d’hamiltoniens Tonelli. Pour répondre aux questions
précédentes nous utilisons une approche variationnelle issue de la théorie KAM faible.

Dans la Partie 2 nous considérons le cas d’un polysystème hamiltonien à temps continu
(orienté et non orienté) engendré par deux hamiltoniens H1 et H2. L’approche utilisée ici s’inscrit
dans le cadre de la théorie géométrique du contrôle.

Dans la Partie 3, qui a été développée en collaboration avec Patrick Bernard, nous présentons
une nouvelle version du théorème classique de transversalité de Thom. Dans cette partie il n’est
pas question de polysystèmes, ni d’hamiltoniens. Néanmoins, les résultats obtenus ici sont utilisés
dans la Partie 2.
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Présentation des résultats

Partie 1: Polysystèmes hamiltoniens à temps discret (approche
avec la théorie KAM faible)

Dans cette partie la variété symplectique N introduite précédemment sera toujours l’espace
cotangent T ∗M d’une variété compacte connexe lisse sans bord M de dimension d ∈ N. Notons
z = (x, p) les éléments de T ∗M , avec x ∈M et p ∈ T ∗

xM .

Soit F une famille d’hamiltoniens Tonelli sur T ∗M . Nous considérons le polysystème à temps
discret orienté engendré par les flots au temps un

φ1H : T ∗M → T ∗M, avec H ∈ F .

Notons que les hamiltoniens Tonelli sont les hamiltoniens standard de la théorie KAM faible.
Nous renvoyons à [Fat] pour une exposition de cette théorie, et en particulier pour les notions
de solution KAM faible et d’ensembles de Mather, Aubry et Mañé, que nous utiliserons dans la
suite. Rappelons ici la définition d’hamiltonien Tonelli: une fonction H : T ∗M × T→ R est un
hamiltonien Tonelli si elle est de classe C2 et si les propriétés suivantes sont vérifiées:

(i) H est convexe dans les fibres et non dégénérée dans le sens suivant: la matrice des dérivées
secondes partielles ∂2ppH(x, p, t) est définie positive en tant que forme quadratique, pour
tout (x, p, t) ∈ T ∗M × T;

(ii) H est superlinéaire dans les fibres, i.e.

lim
|p|x→∞

H(x, p, t)

|p|x
= +∞ ∀ (x, t) ∈M × T,

où | · |x est une norme quelconque sur T ∗
xM dépendant continûment de x ∈ M . Cette

condition est équivalente à la propriété suivante: pour tout C ∈ R il existe D ∈ R tel que

H(x, p, t) ≥ C|p|x +D ∀ (x, p, t) ∈ T ∗M × T.

(iii) le flot de H est complet.

Lorsque d = 1 on a nécessairement M ∼= T et donc T ∗M ∼= T× R. Il est connu (cf. [Mos86]) que
dans ce cas étudier la dynamique des hamiltoniens Tonelli est essentiellement équivalent à étudier
la dynamique des applications twist exactes-symplectiques sur le cylindre T× R.

Comme déjà mentionné dans la section précédente, l’objectif de notre travail est de construire
des polytrajectoires qui relient deux régions lointaines de T ∗M . Pour mieux préciser cette idée,
nous regroupons dans l’énoncé suivant certains résultats présents dans la littérature. Notre travail
s’interprète comme une généralisation de ces résultats.
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Théorème 1. Supposons M = Td, et soient c0, c1 ∈ Rd.

(i) Cas d = 1 et F = {H}. Si H n’admet pas de cercles invariants non contractibles dont la
cohomologie appartient à l’intervalle [c0, c1], alors il existe une trajectoire (xj , pj)j∈Z ⊂ T×R
telle que

p0 = c0 et pn = c1 pour un certain n ∈ N.

(cf. [Bir32a, KO97, Mat91b, Moe02] pour des versions légèrement différentes de ce résultat
dans le cadre des applications twist exactes-symplectiques);

(ii) Cas d = 1 et CardF > 1. S’il n’existe aucun cercle invariant non-contractible commun
aux hamiltoniens de F et dont la cohomologie appartient à [c0, c1] alors il existe une
polytrajectoire (xj , pj)j∈Z ⊂ T× R telle que

p0 = c0 et pn = c1 pour un certain n ∈ N.

(cf. Moeckel [Moe02], Jaulent [Jau] et Le Calvez [LC07] pour des versions légèrement
différentes de ce résultat dans le cadre des applications twist exactes-symplectiques);

(iii) Cas d ≥ 1 et F = {H}. Il existe une fonction

Rd ∋ c 7→
(
R(c), ε(c)

)

où R(c) est un sous-espace vectoriel de Rd défini à partir des solutions KAM faible de H
en cohomologie c et ε(c) est un réel strictement positif, telle que la propriété suivante est
satisfaite: s’il existe une suite finie (c′k)

K
k=0 ⊂ Rd avec c′0 = c0, c

′
K = c1 et

{

c′k+1 − c
′
k ∈ R(c

′
k)

|c′k+1 − c
′
k| < ε(c′k)

∀ k ∈ {0, . . . ,K − 1}, (1)

alors il existe une polytrajectoire (xj , pj)j∈Z ⊂ Td × Rd avec

p0 = c0 et pn = c1 pour un certain n ∈ N.

Lorsque d = 1 on a R(c) = {0} si et seulement si H admet un cercle invariant non
contractible de cohomologie c.

Ces résultats ainsi que d’autres plus généraux sont démontrés par Bernard [Ber08]. Des
résultats de nature similaire sont démontrés dans [Mat93, CY04, CY09].

Notre contribution concerne le cas d ≥ 1 et CardF > 1. Elle est inspirée par l’approche
développé par Patrick Bernard dans [Ber08] dont la partie (iii) du Théorème 1 est une conséquence.
Comme il est courant en théorie KAM faible, lorsque M 6= Td le rôle de Rd dans le Théorème
1 est joué par le groupe de cohomologie H1(M,R), c’est-à-dire c0 et c1 sont deux classes de
cohomologie (rappelons que pour le tore Td on a H1(Td,R) = Rd).
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On montre dans la Partie 1 le résultat suivant, qui est une généralisation naturelle au cas
CardF > 1 de la Proposition 5.3 dans [Ber08].

Proposition 2. Il existe une relation d’équivalence ⊣⊢F sur H1(M,R) telle que:

(i) si c0 ⊣⊢F c1 alors pour tous H,H ′ ∈ F il existe une polytrajectoire (zj)j∈Z ⊂ T
∗M qui est

α-asymptotique à l’ensemble d’Aubry ÃH(c0) et ω-asymptotique à ÃH′(c1);

(ii) si c0 ⊣⊢F c1 et si η0, η1 sont deux 1-formes de cohomologie c0 et c1 respectivement, alors il
existe une polytrajectoire (zj)j∈N ⊂ T

∗M telle que

z0 ∈ Graph (η0) et zn ∈ Graph (η1)

pour un certain n ∈ N.

(iii) soient
(ci, Hi, εi)i∈Z ∈ H

1(M,R)×F×]0,+∞[

tels que ci ⊣⊢F ci+1 pour tout i ∈ Z. Alors il existe une polytrajectoire (zj)j∈Z ⊂ T
∗M qui

visite dans l’ordre les εi-voisinages des ensembles de Mather M̃Hi
(ci).

D’après cette proposition, on est amené à étudier la relation ⊣⊢F afin de montrer l’existence
de polytrajectoires reliant deux régions de T ∗M . Le résultat principal de la Partie 1 fournit
des conditions suffisantes assurant l’occurrence de la relation ⊣⊢F au voisinage d’une classe
c ∈ H1(M,R). Ces conditions sont données en termes d’un sous-espace RF (c) de “directions
admissibles”. Le résultat est énoncé ci-dessous.

Théorème 3. Supposons que F est fini. Il existe une fonction

H1(M,R) ∋ c 7→
(
RF (c), U(c)

)

où RF (c) est un sous-espace vectoriel de H1(M,R) défini à partir du polysystème associé à F et
U(c) est un voisinage de c dans H1(M,R), telle que:

{

c′, c′′ ∈ U(c)

c′′ − c′ ∈ RF (c)
⇒ c′ ⊣⊢F c′′.

Remarquons que même si ce théorème est un résultat local (en c ∈ H1(M,R)), il est possible
en principe d’en déduire des informations globales grâce à la transitivité de la relation ⊣⊢F .

Pour que le Théorème 3 soit intéressant il faut avoir plus d’informations sur le sous-espace
RF (c). Sa définition, plutôt abstraite, fait appel aux composantes minimales du polysystème
sur C0(M) engendré par les opérateurs de Lax-Oleinik associés aux hamiltoniens dans F . Nous
renvoyons au corps de la thèse (cf. Definition 1.5.2) pour la définition précise. Dans le reste de
cette section nous donnons quelques propriétés du sous-espace RF (c).

Nous commençons par la proposition suivante qui, avec le Théorème 3 et la Proposition 2,
permet de retrouver des résultats similaires à ceux de Moeckel, Le Calvez et Jaulent énoncés dans
la partie (ii) du Théorème 1.
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Proposition 4. Lorsque M = T on a

RF (c) = {0} ⇔ il existe un cercle non-contractible de cohomologie c

invariant pour tout flot φ1H avec H ∈ F .

Pour une variété M générale on obtiendra une généralisation partielle de la proposition
ci-dessus, à savoir:

Proposition 5. S’il existe une 1-forme lisse fermée η et une fonction u ∈ C1,1(M) telles que le
graphe de η + du est invariant pour tout flot φ1H , H ∈ F , alors RF ([η]) = {0}.

Lorsque F = {H} notre construction coïncide avec celle développée par P. Bernard dans
[Ber08]. En particulier on a:

Proposition 6. Lorsque F = {H} le sous-espace RF (c) coïncide avec le sous-espace R(c) défini
par Bernard dans [Ber08], pour tout c ∈ H1(M,R).

On démontrera aussi:

Proposition 7. Si les hamiltoniens dans F commutent on a

RF (c) = R{H}(c) ∀ H ∈ F .

En général, soit V ⊆ H1(M,R) un sous-espace vectoriel de dimension 1 qui n’est pas inclus
dans RF (c). Qu’est-ce que l’on peut en déduire sur la dynamique des hamiltoniens dans F? Une
réponse à cette question est donnée par la proposition suivante. Avant de l’énoncer, nous avons
besoin d’introduire deux notations. Pour tout A ⊆ M , notons [A⊥] l’ensemble des classes de
cohomologie des 1-formes lisses ayant support disjoint de A. De plus, pour toute 1-forme lisse η
sur M et toute fonction u : M → R notons Graph (η + du) ⊆ T ∗M l’ensemble défini par

Graph (η + du) = {(x, ηx + dxu) ∈ T
∗M : x ∈M,dxu existe } .

Proposition 8. Supposons que V * RF (c). Fixons une 1-forme lisse ηc de cohomologie c.

(i) Pour toute suite finie H1, . . . , Hk d’hamiltoniens dans F il existe un sous-ensemble S ⊆
T ∗M invariant par

φ1Hk
◦ · · · ◦ φ1H1

et tel que:

• S est un graphe Lipschitz sur π(S) ⊆M , où π : T ∗M →M est la projection canonique;

• S ⊆ Graph (ηc + du) pour une certaine fonction u : M → R semi-concave;

• V * [π(S)⊥].

(ii) Pour tout couple d’hamiltoniens H1, H2 ∈ F il existe deux fonctions u1, u2 : M → R telles
que:

• u1 est une solution KAM faible pour l’hamiltonien H1,c(x, p, t) := H1(x, ηc + p, t);

• u2 est une solution KAM faible duale pour H2,c(x, p, t) := H2(x, ηc + p, t);

• V *
[(
Graph (ηc + du1) ∩Graph (ηc + du2)

)⊥
]

.
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Partie 2: Polysystèmes hamiltoniens à temps continu (approche
avec la théorie géométrique du contrôle)

La deuxième partie de la thèse porte sur les polysystèmes hamiltoniens à temps continu (orienté
aussi bien que non-orienté) engendrés par deux flots hamiltoniens associés à deux hamiltoniens H1

et H2 indépendants du temps et définis sur une variété symplectique N quelconque (sans bord).
On dit que le polysystème est transitif si pour tout couple de point (z, z′) ∈ N ×N il existe

une polytrajectoire qui relie z à z′. Remarquons que dans le cas à temps orienté l’existence d’une
polytrajectoire reliant z à z′ n’implique pas en général l’existence d’une polytrajectoire reliant z′

à z. La question abordée dans la Partie 2 est la suivante: pour un choix “typique” de H1 et H2,
le polysystème engendré est-il transitif?

Comme souvent en systèmes dynamiques, une partie de la réponse à cette question consiste à
donner un sens précis au mot ‘typique’. À ce propos, la notion de généricité au sens de Baire
est une des plus utilisées. Rappelons brièvement sa définition: on dit qu’un sous-ensemble d’un
espace métrique complet est générique (ou résiduel) au sens de Baire s’il contient une intersection
dénombrable d’ouverts denses. On dit qu’un sous-ensemble est maigre au sens de Baire si son
complémentaire est générique au sens de Baire. Dans notre travail nous allons par contre utiliser
une notion différente, celle de sous-ensemble rectifiable de codimension positive dans un espace de
Banach ou de Fréchet, développée par Bernard dans [Ber10b] (voir aussi Zajicek [Zaj08]). Il s’agit
d’une notion plus forte de “petitesse”, dans le sens où si A est rectifiable de codimension positive
dans F (où F est un espace de Banach ou de Frechet) alors A est maigre au sens de Baire, tandis
que le contraire n’est pas vrai en général. Reprenons de [Ber10b] la définition précise, qui est
donnée à partir du cas particulier d’un graphe Lipschitz de codimension positive:

Définition 9 (Graphe Lipschitz). Soit A ⊂ F un sous-ensemble de l’espace de Banach F . On dit
que A est un graphe Lipschitz de codimension c ∈ N s’il existe deux sous-espaces E et G tels que:

• dimG = c;

• F = E ⊕G et E fermé;

• il existe une fonction Lipschitz g : E → G telle que

A ⊆ {x+ g(x) : x ∈ E}.

Définition 10 (Sous-ensemble rectifiable dans un espace de Banach). Soit A ⊂ F un sous-
ensemble de l’espace de Banach F . On dit que A est rectifiable de codimension c dans F si A
peut s’écrire comme une réunion dénombrable A = ∪nϕn(An) où:

• ϕn : Un → F est une application de type Fredholm2 d’indice in définie sur un ouvert Un

d’un espace de Banach separable Fn;

• An ⊆ Un est un graphe Lipschitz de codimension c+ in dans Fn.

2Une application ϕ : E → E′ entre deux espaces de Banach séparables E,E′ est de type Fredholm
d’indice i ∈ Z si elle est de classe C1 et si, pour tout x ∈ E, on a i = dimker dxϕ− codim im dxϕ.
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On dit aussi que A est rectifiable de codimension positive dans F s’il est rectifiable de codimension
c dans F avec c ≥ 1.

La définition ci-dessus peut être étendue au cas où F est un espace de Frechet ou une variété
de Banach (voir [Ber10b, BM]).

Rappelons que lorsque N est compacte les espaces Ck(N), k ∈ N, sont des espaces de Banach.
Lorsque N n’est pas compacte, nous munissons les espaces Ck(N) de la topologie faible de
Whitney, ils sont alors des espaces de Frechet.

Les deux résultats principaux de la Partie 2 sont les suivants. Notons 2d = dimN .

Théorème 11 (Cas à temps non-orienté). Soit H1 ∈ C
4d+1(N). Supposons que l’ensemble

{z ∈ N : dzH1 = 0}

est inclus dans une réunion dénombrable ∪l∈NN
l de sous-variétés N l ⊆ N de classe C2 avec

codimN l ≥
dimN

2
+ 1 ∀ l ∈ N.

Alors pour tout k ≥ 4d l’ensemble

{

H2 ∈ C
k(N) : le polysystème à temps continu non orienté

engendré par H1 et H2 est transitif
} (2)

a complémentaire rectifiable de codimension positive dans Ck(N). En particulier, il est générique
au sens de Baire.

Théorème 12 (Cas à temps orienté). Supposons N compacte. Soit H1 comme dans l’énoncé
précédent. Alors pour tout k ≥ 4d l’ensemble

{

H2 ∈ C
k(N) : le polysystème à temps continu orienté

engendré par H1 et H2 est transitif
} (3)

a complémentaire rectifiable de codimension positive dans Ck(N). En particulier, il est générique
au sens de Baire.

Des résultats analogues seront obtenus pour des hamiltoniens H1, H2 périodiques dans le
temps (avec la même période). Remarquons que les conditions demandées à H1 dans les énoncés ci-
dessus sont très faibles: en effet, pour une fonction H1 générique l’ensemble {z ∈ N : dzH1 = 0}
est constitué de points isolés, d’après une application immédiate du théorème classique de
transversalité de Thom. Remarquons aussi que dans le cas à temps non orienté N n’est pas
supposée compacte, et les flots de H1 et H2 pourraient donc n’être pas complets.

La strategie de la preuve des résultats ci-dessus est inspirée par celle utilisée par Lobry dans
[Lob72], où des questions analogues sont abordées dans le cadre des polysystèmes à temps continu
non orienté engendrés par des champs vecteurs généraux (i.e. non hamiltoniens).
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La preuve se subdivise en trois étapes.
Dans la première étape on utilise le théorème de Rashevsky-Chow en théorie géométrique du

contrôle (cf. [AS04, Chapitre 5]) pour obtenir des conditions suffisantes pour que le polysystème
à temps continu engendré par H1 et H2 soit transitif. Ces conditions sont données en terme des
jets de H1 et H2. La version du théorème de Rashevsky-Chow pour le cadre à temps orienté est
appelée théorème de Krener (cf. [AS04, Chapitre 8]). Pour que ce dernier s’applique de manière
fructueuse à la question de la transitivité, il faudra supposer que la dynamique de H1 et H2 est
récurrente. Cela est toujours vrai lorsque N est compacte (d’après le théorème de récurrence de
Poincaré), c’est pourquoi nous rajoutons cette condition dans le Théorème 12.

Dans la deuxième étape on utilise le théorème du redressement d’un flot hamiltonien pour
se placer dans un bon système de coordonnées. Quelques calculs explicites montrent alors que
les conditions obtenues dans la première étape se reformulent plus précisément de la manière
suivante: le polysystème est transitif si le jet de H2 (H1 étant fixé) n’intersecte pas certaines
sous-variétés (qui dépendent de H1) dont la codimension dans l’espace des jets est explicitement
calculée.

Dans la dernière étape on conclut la preuve en appliquant à ces sous-variétés le théorème
de transversalité de Thom dans l’espace des jets. La version classique de ce théorème donne la
généricité au sens de Baire des ensembles définis dans (2) et (3). Nous utilisons la version du
théorème de Thom qui est démontrée dans la Partie 3 de cette thèse (cf. Théorème 14) et qui
implique que les complémentaires des ensembles en question sont rectifiables de codimension
positive.

Partie 3: Une version en codimension positive du théorème de
transversalité de Thom

Cette partie est issue d’un travail en collaboration avec Patrick Bernard. Rappelons tout d’abord
l’énoncé classique (cf. [Hir94, Chapitre 3, Théorème 2.8]) du théorème de transversalité de Thom
dans l’espace de jets Jk(X,Y ), où k est un nombre naturel et les espaces X,Y sont des variétés
lisses de dimension finie. Nous supposons que X est compacte. Nous munissons Ck(X,Y ) de la
topologie de Whitney, c’est alors une variété de Banach.

Théorème 13 (Théorème de transversalité de Thom, version classique). Soit W ⊆ Jk(X,Y )
une sous-variété lisse. L’ensemble des applications dont le jet d’ordre k n’est pas transverse à W
est maigre au sens de Baire dans Ck+r(X,Y ) pour tout r ≥ 1.

Dans la Partie 3 nous obtenons la version suivante du Théorème 13.

Théorème 14 (Théorème de transversalité de Thom, version en codimension positive). Soit
W ⊆ Jk(X,Y ) une sous-variété lisse.

• si codimW ≥ dimX + 1 alors l’ensemble des applications dont le jet d’ordre k n’est pas
transverse à W est rectifiable de codimension codimW − dimX dans Ck+r(X,Y ) pour
tout r ≥ 1;

• si codimW ≤ dimX et si W satisfait au moins une des propriétés suivantes
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(P1) W est non-dégénérée (voir Définition 15),

(P2) W est analytique,

alors l’ensemble des applications dont le jet d’ordre k n’est pas transverse à W est rectifiable
de codimension 1 dans Ck+r(X,Y ) pour tout r ≥ 2.

La notion de sous-ensemble rectifiable de codimension positive que l’on utilise ici est celle de
la section précédente (voir Définition 10).

Définition 15. Soit j = jkxf ∈W . La sous-variété W est non-dégénérée en j si

(πkk−1)|W ⋔j jk−1f(X),

où πkk−1 : J
k(X,Y ) → Jk−1(X,Y ) est la projection canonique. Nous disons que W est non-

dégénérée si elle est non-dégénérée en tout point j ∈W . Observons qu’une condition suffisante
pour que W soit non-dégénérée est que la projection (πkk−1)|W : W → Jk−1(X,Y ) soit une
submersion.

Donnons maintenant un aperçu de la preuve du Théorème 14.

Considérons une sous-variété W ⊆ Jk(X,Y ) avec k ∈ N. Lorsque l’on étudie la transversalité
entre W et les k-jets jkf des applications f : X → Y on peut distinguer, suivant la codimension
de W , deux situations différentes: si codimW ≥ dimX + 1 alors le fait que W et jkf sont
transverses veut simplement dire que leur intersection est vide; on est dans le cas dit “d’évitement”.
On appellera “cas de non évitement” la situation opposée où codimW ≤ dimX.

Focalisons-nous d’abord sur le cas d’évitement. Dans ce cas, le théorème classique de
transversalité de Thom peut s’obtenir à partir de la version “facile” suivante du théorème de
Sard: si g est une application C1 de Rm sur Rn avec m < n, alors l’ensemble CV (g) ⊂ Rn des
valeurs critiques de g est maigre au sens de Baire. Or, une propriété plus fine est vraie dans cette
situation: l’ensemble CV (g) (qui en fait dans ce cas coïncide avec l’image de g), est rectifiable
de codimension n −m ≥ 1 dans Rn, selon la définition usuelle d’ensemble rectifiable dans un
espace vectoriel réel de dimension finie. À partir de cette remarque il est possible de déduire la
proposition suivante.

Proposition 16. Soit W ⊆ Jk(X,Y ) une sous-variété. Si codimW ≥ dimX+1, alors l’ensemble
des applications dont le jet d’ordre k n’est pas transverse à W est rectifiable de codimension
codimW − dimX dans Ck+r(X,Y ) pour tout r ≥ 1.

Cela prouve le Théorème 14 dans le cas d’évitement. Qu’en est-il du cas de non évitement? Il
s’avère qu’il est possible de le ramener au cas d’évitement de la manière suivante. On remarque
d’abord (cf. Gromov [Gro86, page 33] ou Eliashberg et Mishachev [EM02, Chapitre 2]) que, pour
une fonction f : X → Y arbitraire, la condition de transversalité entre jkf et W ne dépend que
du jet d’ordre 1 de jkf , c’est-à-dire de jk+1f . Il existe donc un sous-ensemble W̃ ⊂ Jk+1(X,Y )
tel que, pour toute f ∈ Ck+1(X,Y ),

jkf est transverse à W ⇔ jk+1f(X) ∩ W̃ = ∅. (4)

Dans la Partie 3 de la thèse, le résultat technique suivant est alors démontré:
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Théorème 17. Soit W ⊆ Jk(X,Y ) une sous-variété lisse satisfaisant au moins une des hypothèses
(P1) et (P2). Alors, le sous-ensemble W̃ ⊂ Jk+1(X,Y ) est inclus dans une réunion dénombrable
de sous-variétés de codimension ≥ dimX + 1.

Autrement dit, le sous-ensemble W̃ se situe dans le cas d’évitement bien que cela ne soit pas
le cas pour W . On peut donc appliquer à W̃ la Proposition 16. D’après l’équivalence (4), cela
achève la preuve du Théorème 14.

Remarquons que pour prouver le Théorème 14 seulement la version “facile” du théorème de
Sard a été utilisée, mais il a fallu cependant concéder un ordre de différentiabilité supplémentaire
(car W̃ appartient à Jk+1(X,Y ) et non pas à Jk(X,Y )).

Dans le reste de cette section nous donnons un aperçu de la preuve du Théorème 17. Rappelons
que W̃ ⊆ Jk+1(X,Y ) est défini par

W̃ =
{

jk+1
x f ∈ Jk+1(X,Y ) : jkf n’est pas transverse à W en x

}

,

et que l’on cherche à estimer la codimension de W̃ , c’est-à-dire le nombre d’équations indépendantes
localement nécessaires à définir W̃ . Une approche heuristique pour estimer ce nombre est la
suivante. D’après la définition de transversalité, le jet jk+1

x f ∈ Jk(X,Y ) appartient à W̃ si
et seulement si: (i) sa projection jkxf appartient à W et (ii) la matrice suivante (écrite en
coordonnées locales) n’est pas de rang maximal:









TjkxfW d(jkf)(TxX)









. (5)

Ici, TjkxfW est l’espace tangent à W en jkxf et d(jkf) est l’application tangente à l’application
jkf : X → Jk(X,Y ).

Étudions le nombre d’équations données par les conditions (i) et (ii). Pour la condition (i),
on vérifie aisément qu’elle donne un nombre d’équations indépendantes égal à codimW . Pour la
condition (ii), observons que la matrice dans (5) est de taille dim Jk(X,Y )× (dimX + dimW ),
et que dimX + dimW ≥ dim Jk(X,Y ) d’après les hypothèses du théorème. Notons

n = dimX + dimW, m = dim Jk(X,Y ).

On sait que pour qu’une telle matrice ne soit pas de rang maximum il faut imposer au moins
n −m + 1 équations, correspondants aux déterminants de certaines sous-matrices carrées de
taille maximale. Supposons que ces n − m + 1 équations soient indépendantes (en tant que
fonctions de la variable jk+1

x f) lorsque on les impose à la matrice (5), et qu’elles soient également
indépendantes vis-à-vis des équations issues de la condition (i). On a dans ce cas que les conditions
(i) et (ii) définissant W̃ sont décrites localement par un total de

codimW + n−m+ 1 = dimX + 1
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équations indépendantes. Cela donne bien le résultat souhaité, i.e. codim W̃ = dimX + 1. Or,
il se trouve que lorsque l’hypothèse (P1) est satisfaite on arrive effectivement à traduire cette
approche naïve en une preuve rigoureuse, et à démontrer donc le théorème dans cette situation.

Supposons maintenant que l’hypothèse (P1) ne soit pas satisfaite. Dans ce cas, il existe un
“ensemble dégénéré” non vide W0 ⊆W constitué par les points j ∈W tels que W est dégénérée
en j. On vérifie que pour un élément j ∈W0 la fibre (πk+1

k )−1(j) est entièrement inclue dans W̃ .
De plus, on vérifie aisément que W0 est fermé dans W , donc son complémentaire W ′ =W \W0

est une sous-variété non-dégénérée, et

W̃ = (πk+1
k )−1(W0) ∪ W̃ ′.

La codimension de W̃ ′ étant déjà connue (grâce au cas non-dégénéré que l’on vient d’examiner),
on déduit que pour estimer la codimension de W̃ il suffit d’estimer la codimension de W0. À ce
stade, la propriété (P2) s’avère être utile: elle garantit que l’ensemble W0 est suffisamment joli (il
est en fait analytique), ainsi que sa projection πkk−1(W0) ⊆ J

k−1(X,Y ) (qui est subanalytique).
Il est possible de conclure maintenant par récurrence sur k.



Chapter 1

Connecting orbits for families of Tonelli
Hamiltonians

1.1 Introduction

Much work has been carried out in order to understand the instability properties of Hamiltonian
systems, especially for Hamiltonians which are convex in the momenta variables p. The basic case
of a periodic Hamiltonian defined on the cotangent space T ∗T ∼= T× R of the one-dimensional
torus T = R/Z corresponds to exact-symplectic twist maps on the cylinder, see [Mos86]. Quite a
lot is known in this case, thanks for instance to the original works of Birkhoff [Bir32a, Bir32b]
and to the KAM and Aubry-Mather theories for twist maps. In particular, a general principle is
that the non-contractible invariant circles are the unique obstruction to instability phenomena
such as the drift in the p-variable.

The situation becomes more complicated when generalizing to higher dimension, namely to
Hamiltonians defined on T ∗Td, d ∈ N, or, more generally, on the cotangent space T ∗M of a
d-dimensional manifold M . In this setting, among others the variational approach of Mather and
Fathi’s weak KAM theory has been fruitful, especially in the framework of the so-called Tonelli
Hamiltonians. The Mather, Aubry and Mañé sets introduced by Mather and Fathi generalize
the invariant circles and the Aubry-Mather sets for twist maps, and provide at the same time
both an obstruction and a dynamical skeleton for the instability phenomena. This has allowed a
better comprehension of the mechanisms underlying the phenomenon of Arnold diffusion which
was firstly exhibited in the seminal paper [Arn64] on a concrete example.

Some studies have also been devoted to the following different generalization: one keeps the
dimension d = 1, and consider instead a family of several twist maps at once, which can be
iterated in any order. Following [Mar08], we shall call such a system a polysystem,1 and polyorbits
its (discrete-time) trajectories, see Definition 1 for more rigour. Of course, the trajectories of a
map in the family are also trajectories for the polysystem, thus the polysystem presents at least
the same unstable behaviors as the single maps in the family. Nevertheless, one expects new kinds

1The expression Iterated Functions System is also used to designate these systems.
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of unstable behavior possibly to be created: some obstructions for a map may be circumvented by
non-trivial iterations of other maps in the family. Moeckel [Moe02], Le Calvez [LC07] and Jaulent
[Jau] have studied this problem, extending some results for single twist maps to the polysystem
case. In particular, the general emerging principle is that the unique obstructions to instability
phenomena, such as the drift in the p-variable, are the common non-contractible invariant circles.

In this paper, we try to merge both generalizations, i.e. we deal with a family of several
Hamiltonians in arbitrary dimension and we investigate the presence of unstable polyorbits
(often we will call them “diffusion polyorbits” or “connecting polyorbits”). More precisely, we will
consider the polysystem associated to a family F of one-periodic Tonelli Hamiltonians2 defined
on the cotangent space of a compact d-dimensional manifold M without boundary. Just as in the
one-dimensional twist map case, one expects that some new unstable behavior may be created
by non-trivial iterations of the time-one maps of the family. On the other hand, unlike the
single-Hamiltonian case, there is not a definition of Mather, Aubry and Mañé sets for polysystems,
hence one may expect the obstructions to come expressed in terms of some more complicated
objects.

Our discussion will be in the framework of weak Kam theory, for which we refer to [Fat]. The
ideas will be close to those in Bernard’s paper [Ber08], of which the present work may be seen as a
generalization to the polysystem case (especially of Section 8 in that paper). We call our method
for the construction of unstable polyorbits “Mather mechanism”, after the paper [Mat93] which
introduced some of the basic ideas of the construction. In [Ber08] a slightly different “Arnold
mechanism” is also presented, more reminiscent of the aforementioned paper [Arn64].

The results which we obtain are rather abstract in nature: essentially, they give sufficient
conditions in order for the diffusion orbits to occur between two cohomology classes (in the sense
of Proposition 2). The conditions are encoded, locally around a cohomology class c, in a subspace
R(c) of “allowed cohomological directions for diffusion” (Theorem 3). This subspace is in turn
defined (cf. (1.5.2) and Proposition 29) in terms of some sort of generalized Aubry-Mather sets
for the polysystem (the sets IΦ(G) defined in Remark 11(i)), which may be in principle quite
difficult to decipher. We believe that the generality of our construction may compensate for this
abstract character. Moreover, some further study may lead to more transparent conditions, at
least in presence of additional hypotheses. For instance, in the twist map case we are able to
recover “concrete” and “optimal” results (see Corollary 4), similar to those already proved with
different methods by Le Calvez and Moeckel, and extending some other results of Mather in
[Mat91b] for a single twist map.

On the negative side, using a result of Cui [Cui10] we show that, if (in arbitrary dimension)
the Hamiltonians in the family commute, our mechanism does not give rise to new instability
phenomena, which is somehow expected.

As for the interest in studying Hamiltonian polysystems, let us mention that a motivation
lies in the fact that the behavior of some complex single-Hamiltonian systems may be to some
extent reduced to the analysis of simpler polysystems. We are aware for instance of a work of

2We recall that a one-periodic Tonelli Hamiltonian is a C2 function H(x, p, t) defined on T ∗M×T which
is strictly convex in p (with positive definite Hessian ∂2pH > 0), superlinear in p, and whose Hamiltonian
flow is complete.
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Bounemoura and Pennamen [BP12], where the polysystem approach is used in a neighborhood of
an invariant normally hyperbolic manifold, and some works of Marco therein cited.

1.1.1 Main results

Before introducing our results, let us review the kind of statements which we want to generalize.

For an exact-symplectic twist map F on the cylinder T×R, the archetypal instability result is
the following: if, for A < B, the annulus T× [A,B] ⊂ T×R does not contain any non-contractible
invariant circle, then there exists an orbit (xn, pn)n∈Z such that p0 < A and pN > B for some
N ∈ N. This dates back to Birkhoff [Bir32a, Bir32b], and has been improved in various ways.
Two improvements in the framework of Aubry-Mather theory for twist maps will be relevant to
us. The first states that if Mw1 and Mw2 are two Aubry-Mather sets for F of rotation number w1

and w2 respectively, such that there is no non-contractible invariant circle between them, then
there exists an orbit {zn = (xn, pn)}n∈Z ⊂ T× R such that

α - lim zn ⊆Mw1 and ω - lim zn ⊆Mw2 .

The second states that if (wi)i∈Z are rotation numbers such that, for any i, there is no non-
contractible invariant circle between the Aubry-Mather sets Mwi

and Mwi+1 , then for every
sequence (εi)i of positive number there exists an orbit which visits in turn the εi-neighborhood of
Mwi

. Both these results are due to Mather, we refer to [Mat91b] for precise statements.
Of course, for a twist map, non-contractible invariant circles do represent obstructions to the

drift in the p-variable, because they disconnect the cylinder, hence the previous statements are
optimal. Therefore the principle stemming from these results is that non-contractible invariant
circles are the only obstruction to this kind of instability.

For a family of exact-symplectic twist maps on the cylinder, the generalization of the Birkhoff
result above obtained by replacing in the statement “non-contractible invariant circle” with
“common non-contractible invariant circle” is true. This and other stronger results have been
proved by Moeckel, Le Calvez and Jaulent [Moe02, LC07, Jau]. Again, a common non-contractible
invariant circle obviously is a real obstruction to the drift in the p-variable, whence the optimality
of these results and the principle that, for a polysystem of exact twist maps, the common
non-contractible invariant circles are the only obstruction to this kind of instability.

For the case of a single Hamiltonian in higher dimension, usually only sufficient conditions for
the existence of unstable orbits can be proved. A great amount of work has been devoted to this
topic. Our approach is close to the one of Mather in [Mat93] and of Bernard in [Ber08] (see also
[Ber02, CY04, CY09]). Their results are better expressed in terms of cohomology classes rather
than rotation vectors: in their papers, the authors define equivalence relations in H1(M,R) such
that equivalence between classes implies existence of diffusing orbits between the corresponding
Aubry sets. The obstruction for the equivalence is represented, roughly speaking, by the size of
the Mañé sets. Notice however that, unlike the one-dimensional case, the obstructions for the
equivalence may not always correspond to real obstructions for the dynamics. Nevertheless, if
d = 1 the obstructions to the equivalence turn out to be exactly the non-contractible invariant
circles. Therefore, the results on twist maps mentioned above are recovered, and the equivalence
relation is then optimal in this case.



26 Chapter 1. Connecting orbits for families of Tonelli Hamiltonians

The present paper has the same structure: we define (in terms of pseudographs and of the
flows of the Hamiltonians in the family F , see Sections 1.2 and 1.3) an equivalence relation
⊣⊢F between cohomology classes, which is a natural adaptation to the polysystem case of the
relation ⊣⊢ introduced in [Ber08]. We then prove that the occurrence of such a relation implies
the existence of diffusing polyorbits, in the sense of Proposition 2. We find sufficient conditions
(in terms of the “homological size” of some sort of generalized Aubry sets) which ensure, locally
around a given class c, the occurrence of the relation. If d = 1, this conditions turn out to be also
necessary, hence the relation is optimal in this case. For F composed by a single Hamiltonian,
our results exactly reduce to the one in Section 8 of [Ber08].

More precisely, let F be a family of one-periodic Tonelli Hamiltonians on T ∗M , where M is a
d-dimensional compact manifold without boundary. For H ∈ F , we denote by

φH : T ∗M → T ∗M

the time-one map of the Hamiltonian flow of H. Let us first rigorously define what we mean by
polyorbit.

Definition 1 (F -polyorbit). A bi-infinite sequence {zn}n∈Z ⊆ T
∗M is a F -polyorbit (or, simply,

a polyorbit) if for every n ∈ Z there exists H ∈ F such that

φH(zn) = zn+1.

A finite F-polyorbit (or, simply, a finite polyorbit) is a finite segment (z0, z1, . . . , zN ) of a
F-polyorbit. We then say that the finite polyorbit joins z0 to zN .

Given two subsets S, S′ ⊆ T ∗M , we say that S is joined to S′ by a finite polyorbit if there
exist a finite polyorbit joining z to z′, for some z ∈ S and z′ ∈ S′.

Let ÃH(c) and M̃H(c) be the Aubry and Mather sets of H of cohomology of c, as defined in
[Ber08] or [Fat]. Their definition is also recalled in Subsection 1.4.5.

We have (Section 1.3):

Proposition 2. There exists an equivalence relation ⊣⊢F on H1(M,R) such that:

- if c ⊣⊢F c′ then for every H,H ′ ∈ F there exists a polyorbit which is α-asymptotic to the
Aubry set ÃH(c) and ω-asymptotic to ÃH′(c′);

- if c ⊣⊢F c′ and if η, η′ are one-forms of cohomology c, c′ respectively, then there exists a
finite polyorbit joining Graph (η) to Graph (η′);

- let (ci, Hi, εi)i∈Z ⊂ H1(M,R) × F × ]0,+∞[ such that ci ⊣⊢F ci+1 for every i. Then
there exists a polyorbit visiting in turn the εi-neighborhoods of the Mather sets M̃Hi

(ci).
Moreover, if (ci, Hi) = (c̄, H̄) for i small enough (resp. i big enough), then the polyorbit
can be taken α-asymptotic to ÃH̄(c̄) (resp. ω-asymptotic to ÃH̄(c̄)).

The main result is Theorem 31. Let us state it here for finite F , even if it will hold under a
weaker assumption.
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Theorem 3. Assume F is finite. Then for every c ∈ H1(M,R) there exist a vector subspace
R(c) ⊆ H1(M,R), a neighborhood W of c and ε > 0 such that

c′ ⊣⊢F c′ +BεR(c) ∀ c′ ∈W.

Of course one needs to have information on the subspace R(c) for the result to be interesting.
The definition of R(c) is rather abstract and not too easy to handle (cf. the definition given in
(1.5.2) and some equivalent expressions given in Proposition 29).

Nevertheless, we are able to prove (Proposition 33) that if there exists a C1,1 weak Kam
solution of cohomology c which is common to all the Hamiltonians in F , then R(c) = {0}. In
addition, if d = 1, the viceversa is true: if R(c) = {0} then there exists a C1,1 weak Kam solution
of cohomology c common to all Hamiltonians in F , i.e. a common non-contractible invariant
circle.

This fact, together with Theorem 3 and Proposition 2 yields the following result for families
of twist maps (no additional assumptions on F will be eventually needed):

Corollary 4. Let us consider the polysystem associated to an arbitrary family F of one-periodic
Tonelli Hamiltonians on T × R. Let us make the identification H1(T,R) ∼= R. If, for some
A < B ∈ R, the family F does not admit an invariant common circle with cohomology in [A,B],
then:

(i) there exists a polyorbit (xn, pn)n∈Z satisfying p0 = A and pN = B for some N ∈ N;

(ii) for every H,H ′ ∈ F and every c, c′ ∈ [A,B] there exists a polyorbit α-asymptotic to the
Aubry set ÃH(c) and ω-asymptotic to ÃH′(c′);

(iii) for every sequence (ci, Hi, εi)i∈Z ⊂ [A,B]×F × ]0,+∞[ there exists a polyorbit which visits
in turn the εi-neighborhoods of the Mather sets M̃Hi

(ci).

When d > 1 some information can still be extracted from the subspace R(c). A sample of
what can be obtained is presented in Proposition 35. Roughly speaking, among the obstructions
which prevent R(c) from being large, we find:

- for every finite string H1, . . . , Hn of elements of F , the invariant sets for the map

φ = φHn ◦ · · · ◦ φH1 ;

- for every pair H1, H2 of elements of F , for every c-weak Kam solution u1 for H1 and dual
c-weak Kam solution u2 for H2, the set

Graph (du1) ∩ Graph (du2).

However, unlike the twist map case, such obstructions must be intended in a “negative” way: their
smallness is a sufficient condition for R(c) to be large, the converse being not necessarily true.
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1.1.2 Structure of the paper

The paper is organized as follows. In Section 1.2 we establish some notation and recall some facts
about pseudographs and semiconcave functions.

In Section 1.3 we define the forcing relation ⊢F and the mutual forcing relation ⊣⊢F , and we
show, like in [Ber08], how the occurrence of such relations implies the diffusion for the polysystem
(Proposition 7).

In Section 1.4 we present the objects needed later to put in place what we call the Mather
mechanism: Lagrangian action, Lax-Oleinik operators, operations on costs (minimum, composi-
tion) and families of costs. Eventually we build the semigroup Σ∞

c which acts on the space of
pseudographs and encodes informations on the underlying polysystem dynamics. The Subsection
1.4.5 gathers some needed results in weak Kam theory, rephrased in the language of pseudographs.

In Section 1.5 the Mather mechanism for the construction of diffusion polyorbits is put in
place. The basic step of the mechanism is proved in Subsection 1.5.2. Then we heuristically show
the application to the twist map case in Subsection 1.5.3. Finally, in Subsection 1.5.4 we define
the subspace R(c) and we prove a general abstract result (Theorem 31) which gives sufficient
conditions for the occurrence of the relation ⊣⊢F in terms of R(c). We subsequently apply the
result to some special cases (such as twist maps and commuting Hamiltonians), and we discuss
the properties of R(c) in relation with the dynamics of the polysystem.

1.2 Notation. The space of pseudographs

In this section we recall from [Ber08] some facts about pseudographs. We refer to that article for
a more detailed introduction.

Let M be a d-dimensional compact connected manifold without boundary. We denote by
Ω the set of smooth closed one-forms on M and by π the projection from the cotangent space
T ∗M to M . If η ∈ Ω we denote by [η] ∈ H1(M,R) its cohomology class and, for S ⊆ Ω,
[S] = {[η] : η ∈ S}.

If u : M → R is a Lipschitz function and η ∈ Ω, then the pseudograph Gη,u ⊂ T
∗M is defined

by
Gη,u = {(x, ηx + dux) : x ∈M and dux exists} .

Let us call E the set of pseudographs:

E = {Gη,u : η ∈ Ω, u ∈ Lip(M)} .

Note that
Gη,u = Gη+df,u−f

for any smooth function f : M → R. Viceversa, if Gη,u = Gη′,u′ then, setting f = u− u′, it is not
difficult to check that f is smooth, η′ = η + df and u′ = u− f . In particular, the cohomologies of
η and η′ are equal. Thus the cohomology of a pseudograph G is well defined, and we denote it by
c(G). If G = Gη,u for some η and u, then

c(G) = [η] ∈ H1(M,R).
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It is not difficult to see that E is a vector space. In fact, it may be regarded as a quotient of
Ω× Lip(M) by the subspace {(η, u) : η = −du} = {(η, u) : Gη,u = G0,0}. The operations of sum
and scalar multiplication are explicitly given by

Gη,u + Gν,v = Gη+ν,u+v , λGη,u = Gλη,λu for λ ∈ R

(this does not depend on the chosen representatives (η, u) and (ν, v)).
We have the following identification of vector spaces, which will be extensively used throughout

the paper:
E ∼= H1(M,R)×

(
Lip(M)/ ∼

)

where the relation ∼ means up to the addition of constants. Given a linear section S : H1(M,R)→
Ω (i.e. [S(c)] = c), an isomorphism performing the above identification is given by

H1(M,R)×
(
Lip(M)/ ∼

)
→ E

(c, u) 7→ GS(c),u.

The space E can be given a norm via the formula

‖GS(c),u‖ = ‖c‖H1 + |u|,

where |u| denotes half the oscillation of u, i.e. |u| = (maxu−minu)/2. Changing the section S
or the norm ‖ · ‖H1 gives rise to an equivalent norm. In the rest of the paper, S and ‖ · ‖H1 will
be considered as fixed. Everything will be well-defined regardless of this choice. With a little
abuse of language, we will often write c in place of S(c), for instance Gc,u in place of GS(c),u.

We will be mostly concerned with a proper subset of E, namely

P =
{
Gc,u : c ∈ H1(M,R), u : M → R semiconcave

}
.

Here and throughout the paper, the term ‘semiconcave’ stands for the more accurate expression
‘semiconcave with linear modulus’. Some basic properties of semiconcave functions are reviewed
in Subsection 1.2.1.

Every G ∈ P is called an overlapping pseudograph (the motivation behind this terminology is
given in [Ber08, Section 2.9]). The set P is closed under sum and multiplication by a positive
scalar, but not under difference or multiplication by a negative scalar. In fact, the dual set P̆ of
anti-overlapping pseudographs is defined as

P̆ = −P =
{
Gc,u : c ∈ H1(M,R), u : M → R semiconvex

}
.

If c ∈ H1(M,R) and C ⊆ H1(M,R), the symbols Pc and PC stand for

Pc = {G ∈ P : c(G) = c}, PC =
⋃

c∈C

Pc.

and analogously for P̆c and P̆C .
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Given a subset N ⊂M and a pseudograph G, we denote by G|N the restriction of G above N ,
that is G ∩ π−1(N).

Given G = Gc,u ∈ Pc and Ğ = Gc,v ∈ P̆c (with the same c) the set

G ∧ Ğ ⊆M

is defined as the set of the points of minimum of the difference u−v. This is a non-empty compact
set because M is compact. Moreover, the semiconcavity of both u and −v implies the following
property: for every x in G ∧ Ğ both dux and dvx exist, and they coincide. As a consequence, for
any c and any couple (G, Ğ) ∈ Pc× P̆c, the following definition yields a non-empty subset of T ∗M :

G∧̃Ğ := G|G∧Ğ = Ğ|G∧Ğ = G ∩ Ğ ∩ π−1(G ∧ Ğ) ⊆ G ∩ Ğ

and the last inclusion may be strict in general. The set G∧̃Ğ is compact and is a Lipschitz graph
over its projection G ∧ Ğ, by properties of semiconcave functions.

Finally, let us observe that Ω can be naturally regarded as a subset of P ∩ P̆. The inclusion is
given by η 7→ Gη,0 = Graph (η).

1.2.1 Semiconcave functions

Let us make a brief digression about semiconcave functions. Recall that for us ‘semiconcave’
means ‘semiconcave with linear modulus’. We refer to [CS04] for a comprehensive exposition in
the Euclidean case. On a manifold, the notion of semiconcavity is still meaningful, but the one
of semiconcavity constant is chart-dependent. Nevertheless, by taking a finite atlas as shown in
[Ber08, Appendix 1] it is still possible to give meaning to the expression “u is C-semiconcave” for
a real-valued function defined on a compact manifold and C ∈ R. Hence we can define the best
semiconcavity constant of u as

sc(u) = inf{C ∈ R : u is C-semiconcave}.

It will depend on the particular finite atlas, but this choice will not affect our results.
We now recall some properties which are well-known in the Euclidean case and which hold

true in the manifold case as well. We refer to [Ber08, Appendix 1] for a more detailed exposition.
We have

sc (inf
λ
{uλ}) ≤ sup

λ

{sc(uλ)}, (1.1)

for any family of functions {uλ}λ, provided that the infimum is finite. Moreover, if un converges
uniformly to u, then

sc(u) ≤ lim inf sc(un). (1.2)

A semiconcave function is differentiable at every point of local minimum (and the differential is
0). We also have: if u and v are semiconcave and if x is a point of local minimum of u+ v, then
both u and v are differentiable at x, and dux + dvx = 0.

A family of functions {uλ}λ is called equi-semiconcave if sc(uλ) ≤ C for some constant C
independent of λ. We will use a lot the following fact: a family of equi-semiconcave functions is
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equi-Lipschitz (this follows for instance by adapting Theorem 2.1.7 and Remark 2.1.8 in [CS04]
to the case of a compact manifold).

Finally, the set of semiconcave functions is closed under sum and multiplication by a positive
scalar. A function u such that −u is semiconcave is called semiconvex. A function is both
semiconcave and semiconvex if and only if it is C1,1.

1.3 The forcing relation and diffusion polyorbits

Let F be an arbitrary family of one-periodic Tonelli Hamiltonians on M . Let us recall that a
one-periodic Tonelli Hamiltonian on M is a C2 function

H : T ∗M × T→ R

(x, p, t) 7→ H(x, p, t)

which is strictly convex and superlinear in p (for any fixed x and t) and whose Hamiltonian flow
is complete. Our goal is to prove existence of diffusion polyorbits for the family F , in the sense
discussed in the Introduction. In this section, we first adapt to the polysystem framework the
notion of forcing relation, which was introduced in [Ber08] for the case of a single Hamiltonian.
Then we show (Proposition 7) how this relation implies the diffusion: roughly speaking, if the
cohomology class c forces the class c′, then there will exist diffusion polyorbits from the cohomology
c to the cohomology c′, in a sense which will be made precise in the proposition. The aim of the
later sections will then be to give sufficient conditions for the forcing relation to occur between
two cohomology classes.

Let us recall that we denote by φH : T ∗M → T ∗M the time-one map of a Tonelli Hamiltonian
H. We define φF of a subset S ⊆ T ∗M as follows:

φF (S) =
⋃

H∈F

φH(S),

and we recursively define φn+1
F (S) = φF (φ

n
F (S)). Given two subsets S and S′ of T ∗M , we write

S ⊢N,F S′ def
⇐⇒ S′ ⊆

N⋃

n=0

φnF (S).

We write S ⊢F S′, and we say that S forces S′, if S ⊢N,F S′ for some N ∈ N. Note that, for
z, z′ ∈ T ∗M ,

{z} ⊢F {z
′} ⇔ there exists a finite F-polyorbit joining z to z′.

(We shall often write z ⊢F z′ to lighten notations.) In fact, we will mainly be interested in the
case in which S = G and S′ = G′ are two pseudographs in P. Let us make explicit that

G ⊢F G
′ ⇔ for every z′ ∈ G′ there exists z ∈ G and a finite F-polyorbit

joining z to z′ (with an uniform bound on the length of the polyorbit).
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We are now going to extend the definition of ⊢F to cohomology classes. If W and W′ are two
subsets of P, we write

W ⊢N,F W′ def
⇐⇒ ∀G ∈W ∃G′ ∈W′ : G ⊢N,F G

′.

We write W ⊢F W′, and we say that W forces W′, if W ⊢N,F W′ for some N ∈ N. If W = Pc or
W = PC , for some c ∈ H1(M,R) or C ⊆ H1(M,R), we simply write c or C in place of Pc or PC .
Similarly for W′ = Pc. So, for instance, if c and c′ are two cohomology classes, the relation

c ⊢N,F c′

means that for every G ∈ Pc there exists G′ ∈ Pc′ such that G ⊢N,F G
′.

The relation ⊢F is reflexive and transitive (between subsets of T ∗M as well as between subsets
of P, and in particular between cohomology classes as well). In the sequel, it will be useful to
consider the symmetrized relation ⊣⊢F on the cohomology classes defined by

c ⊣⊢F c′
def
⇐⇒ c ⊢F c′ and c′ ⊢F c.

If c ⊣⊢F c′, we say that c and c′ force each other. The following fact follows directly from the
definitions.

Proposition 5. The relation ⊣⊢F is an equivalence relation on H1(M,R).

We also have:

Proposition 6. Let c ⊢F c′. Then for any G ∈ Pc and any G′ ∈ P̆c′ there exists a finite polyorbit
joining G to G′.

Proof. Let us fix G ∈ Pc and G′ ∈ P̆c′ . Since c ⊢F c′, there exists G′′ ∈ Pc′ such that G ⊢F G′′,
which means that for every z′′ ∈ G′′ there exists a finite polyorbit joining G to z′′. Note that the
intersection G′ ∩ G′′ is not empty, because it contains the non-empty set G′∧̃G′′ (see Section 1.2).
Taking z′′ in this intersection, we get a finite polyorbit joining G to G′.

We can now restate and prove Proposition 2 about the existence of diffusion polyorbits. The
proof is essentially the same as in [Ber08, Proposition 5.3].

Proposition 7.

1. Let c ⊢F c′. Let H,H ′ ∈ F and η, η′ be two smooth closed one-forms of cohomology c and
c′ respectively. Then:

(i) there exists a polyorbit which is α-asymptotic to ÃH(c) and ω-asymptotic to ÃH′(c′);

(ii) there exists a finite polyorbit joining Graph (η) to Graph (η′);

(iii) there exists a polyorbit (zn)n∈Z which satisfies z0 ∈ Graph (η) and is ω-asymptotic to
ÃH′(c′);
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(iv) there exists a polyorbit (zn)n∈Z which is α-asymptotic to ÃH(c) and satisfies z0 ∈
Graph (η′).

2. Let
(ci, Hi, εi)i∈Z ⊆ H1(M,R)×F × ]0,+∞[

such that ci ⊢F ci+1. Then there exists a polyorbit (zn)n∈Z which visits in turn the εi-
neighborhoods of the Mather sets M̃Hi

(ci). Moreover, if (ci, Hi) = (c̄, H̄) for −i large
enough (resp. i big enough), then the polyorbit can be taken α-asymptotic to ÃH̄(c̄) (resp.
ω-asymptotic to ÃH̄(c̄)).

Proof of 1. The proof of any one of the four statements relies on a suitable application of
Proposition 6.

Let us start with (i). As it is well-known, there exist a c-weak Kam solution u for H and a
dual c′-weak Kam solution u′ for H ′. It is also known that u is semiconcave and u′ is semiconvex.
Let us consider the associated pseudographs G = Gc,u ∈ Pc and G′ = Gc′,u′ ∈ P̆c. By Proposition
6, there exists a finite polyorbit (zi)

N
i=0 joining G to G′. Moreover, by a general property of weak

Kam solutions (see [Ber08, Proposition 4.3]), every point in G is α-asymptotic for the flow of H
to ÃH(c) and every point in G′ is ω-asymptotic for the flow of H ′ to ÃH′(c′). This implies that
we can extend the finite polyorbit (zi)

N
i=0 to a bi-infinite one satisfying the requirements in (i).

For (ii), let us consider G = Gη,0 and G′ = Gη′,0. Since η and η′ are smooth, both G and
G′ belong to Pc ∩ P̆c. Hence the Proposition 6 immediately yields a finite polyorbit joining
G = Graph (η) to G′ = Graph (η′).

The proof of statements (iii) and (iv) is similar.

Proof of 2. It is a natural adaptation of the proof in [Ber08, Proposition 5.3 (ii)].

1.4 Lagrangian action and Lax-Oleinik operators

In this section we introduce the objects needed to put in place, in Section 1.5, the Mather
mechanism for the construction of diffusion polyorbits. For this aim, it is more convenient to
adopt the Lagrangian point of view on the dynamics rather than the Hamiltonian one.

Let us quickly recall some basic facts about the Lagrangian point of view: to any one-
periodic Tonelli Hamiltonian H : T ∗M × T → R one can associate a one-periodic Lagrangian
L : TM × T→ R via the Fenchel-Legendre transform, i.e.

L(x, v, t) = sup
p∈T ∗

xM

{p(v)−H(x, p, t)} , x ∈M, v ∈ TxM, t ∈ T.

The Lagrangian L turns out to be Tonelli as well, in the sense that it is C2, it is strictly convex
in v (with positive definite Hessian ∂2vL > 0), superlinear in v, and the associated Euler-Lagrange
flow on TM × T is complete. This flow is conjugated to the Hamiltonian flow of H on T ∗M × T.
Moreover, the Fenchel-Legendre transform applied to L yields H back. We refer to [Fat] for the
proofs of all these facts.
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Starting from our family F of one-periodic Tonelli Hamiltonians, we thus dispose of an
associated family of one-periodic Tonelli Lagrangians, which we shall still denote by the same
symbol F . For instance, depending on context, both expressions L ∈ F and H ∈ F will be used.

1.4.1 Outline of Section 1.4

The general idea is to translate the dynamics of the family F into a simpler dynamics on
pseudographs, by means of the characterization of the former in terms of minimal action and
Lax-Oleinik operators.

Subsection 1.4.2. We recall the definition of time-one action of a Tonelli Lagrangian, along
with the properties which are important for the sequel (Proposition 8).

Subsection 1.4.3. We associate to the time-one action (and, more generally, to any cost, i.e. any
continuous function on M ×M) a Lax-Oleinik operator, in the usual way. This Lax-Oleinik
operator can be interpreted also as an operator on pseudographs (formula (1.6)).

The properties of the time-one action, which have been recalled in Subsection 1.4.2, nicely
reflect in properties of the corresponding Lax-Oleinik operator (Remark 11). These nice properties
are not lost under some operations on costs such as minimums and compositions (Proposition 13).

Subsection 1.4.5. We review how the language of pseudographs allows to concisely rephrase
some aspects of the weak Kam theory for one Tonelli Lagrangian. From the viewpoint of the
present article, this may be regarded as a special case in which our family F is a singleton.

Subsection 1.4.6. We generalize the Subsection 1.4.5 to the general case in which F is not a
singleton. The key object is, for every cohomology c, a large semigroup Σ∞

c (depending on F)
of Lax-Oleinik operators on the space Pc of pseudographs of cohomology c. This semigroup is
essentially the one generated by the time-one actions of the Lagrangians in F with respect to the
operations on costs introduced in Subsection 1.4.3. As we will see, the dynamics on Pc of the
semigroup Σ∞

c is related to the dynamics on T ∗M of the semigroup generated by the time-one
maps φH , H ∈ F .

Crucially, the semigroup Σ∞
c will contain, after passing to the limit, the operators associated

to the Peierls barriers of the Lagrangians in F , along with their successive compositions. This
aspect, together with the possibility of “shadowing” these operators with “finite-time” ones, will
be at the heart of the Mather mechanism in the next section.

1.4.2 Properties of the Lagrangian action

Given a one-periodic Tonelli Lagrangian L on M and a closed smooth one-form η, the time-one
action AL,η : M ×M → R is defined by

AL,η(y, x) = min
γ(0)=y,γ(1)=x

∫ 1

0
L
(
γ(t), γ̇(t), t

)
− ηγ(t)(γ̇(t)) dt (1.3)

where the minimum is taken over absolutely continuous curves γ. It is well-known that minimizers
exist. The following important properties of AL are also known.

Proposition 8.
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(i) AL,η+df (y, x) = AL,η(y, x) + f(y)− f(x); this is immediate from the definition.

(ii) η 7→ AL,η is continuous if Ω is endowed with the topology induced from the space of
pseudographs E introduced in Section 1.2.

In view of (i) above, this is equivalent to the continuity of c 7→ AL,S(c). For a proof of this
last fact, see [Ber08, Appendix B.6].

(iii) AL,η is semiconcave. Even more, if C ⊂ H1(M,R) is compact, then {AL,S(c)}c∈C is
equi-semiconcave (for a proof see [Ber08, Appendix B.7]).

(iv) ∂xAL,η(y, x) exists if and only if ∂yAL,η(y, x) exists and in this case we have

(
x, ηx + ∂xAL,η(y, x)

)
= φH

(
y, ηy − ∂yAL,η(y, x)

)
,

where H is the Hamiltonian associated to L.

The time-n action An
L is defined by letting A1

L = AL and by induction

An+1
L,η (y, x) = min

z∈M

{
An

L,η(y, z) +A1
L,η(z, x)

}

or, equivalently,

An
L,η(y, x) = min

γ(0)=y,γ(n)=x

∫ n

0
L
(
γ(t), γ̇(t), t

)
− ηγ(t)(γ̇(t)) dt,

the minimum being over absolutely continuous curves.
It is well-known that, given L, there exists an unique function α : H1(M,R)→ R such that

the function
hL,η(y, x) = lim inf

n→∞
An

L,η(y, x) + nα([η])

is real-valued for every η; the family hL ≡ {hL,η}η is called the Peierls barrier of L. It clearly
satisfies the property (i) of Proposition 8; it also satisfies the property (iii), the proof of this fact
will be recalled in Subsection 1.4.5.

1.4.3 Lax-Oleinik operators

For any compact space X, the set of real continuous functions C(X) will be endowed with the
standard sup-norm ‖ · ‖∞. Any continuous function A ∈ C(M ×M) will be called a cost. We
will regard the time-one actions AL,η of the previous subsection as very special costs.

To any cost A, it is possible to associate the Lax-Oleinik operator TA : C(M)→ C(M) defined
by

TAu(x) = min
y∈M

{
u(y) +A(y, x)

}
, u ∈ C(M)

and the dual Lax-Oleinik operator T̆A : C(M)→ C(M)

T̆Au(y) = max
x∈M

{
u(x)−A(y, x)

}
, u ∈ C(M).
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We call IA(u) ⊆M the set of points y such that TAu(x) = u(y) +A(y, x) for some x. Let us now
list without proof some basic properties of these objects. Note that basically every property of
TA has a dual counterpart in a property of T̆A, even though we do not always explicit it. Recall
that | · | indicates half the oscillation of a function.

Proposition 9. Let A be a cost and u be a continuous function on M .

(i) The minimum and the maximum in the above formulas for TAu and T̆Au are actually
achieved; TAu and T̆Au actually belong to C(M);

(ii) if A′ is another cost and u′ another continuous function, then

‖TA′u′ − TAu‖∞ ≤ ‖A
′ −A‖∞ + ‖u′ − u‖∞,

|TA′u′ − TAu| ≤ |A
′ −A|+ |u′ − u|

(1.4)

(iii) IA(u) is compact and non-empty;

(iv) the set-valued function (A, u) 7→ IA(u) is upper-semicontinuos;

(v) for every A and u, we have T̆ATAu ≤ u and

IA(u) = {y ∈M : T̆ATAu(y) = u(y)} = argmin
{
u− T̆ATAu

}
.

(vi) for every A and u, we have

TAT̆ATA u = TA u and T̆ATAT̆A u = T̆A u;

(vii) if A is semiconcave, then TAu is semiconcave for any u, and sc(u) ≤ sc(A).

We are going to consider families of costs indexed by closed smooth one-forms. Let us give
some definitions.

Definition 10. Let A ≡ {Aη}η∈Ω be a family of costs indexed by the closed smooth one-forms.
We say that A is:

(i) geometric if Aη is Lipschitz for every η and

Aη+df (y, x) = Aη(y, x) + f(y)− f(x) ∀ f ∈ C∞(M); (1.5)

(ii) continuous if
Ω ∋ η 7→ Aη is continuous

when Ω is endowed with the topology induced from E, see Section 1.2. Note that if a family
A is geometric, the continuity of c 7→ AS(c) is sufficient in order to have the continuity of
η 7→ Aη; here S is the linear section chosen in Section 1.2;

(iii) locally equi-semiconcave if, for any compact C ⊂ H1(M,R), the family {AS(c)}c∈C is
equi-semiconcave;
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(iv) of F-flow-type if there exists N ∈ N such that the following holds:

the partial derivatives ∂xAη(y, x) and ∂yAη(y, x) exist

⇒
(
y, ηy − ∂yAη(y, x)

)
⊢N,F

(
x, ηx + ∂xAη(y, x)

)

for any η and for any (y, x). We say that A is of N,F-flow-type if we want to specify the
N .

If all the above conditions are satisfied, we say for short that A is a F-family.

Observe that the Proposition 8 says that the time-one actions {AL,η}η, L ∈ F , are F -families.
In the next subsection we are going to introduce some operations on costs which will preserve the
property of being an F-family. This will allow to use the Lagrangian time-one actions as “basic
bricks” to build many F-families of costs.

The utility of F-families comes from the following remark.

Remark 11.

(i) If A ≡ {Aη}η∈Ω is a geometric family of costs then

TAη+df
(u− f) = TAη(u)− f.

Hence, an induced operator on pseudographs ΦA : E → E is well-defined by

ΦA(Gη,u) = Gη,TAηu
(1.6)

as well as its dual counterpart
Φ̆A(Gη,u) = Gη,T̆Aηu

.

Note that both operators preserve the cohomology of G, i.e. c(ΦA(G)) = c(Φ̆A(G)) = c(G).

If A′ is another geometric family of costs, and if G = Gc,u,G
′ = Gc′,u′ ∈ E are two

pseudographs, we have the following inequality:

‖ΦA(G)− ΦA′(G′)‖E = ‖c− c′‖H1 + |TAcu− TA′

c′
u′|

≤ ‖G − G′‖E + |Ac −A
′
c′ |

(1.7)

which follows from (1.4).

In the same spirit, IAη+df
(u − f) = IAη(u), thus the set IAη(u) is also well-defined on

pseudographs, and we will denote it by IA(G) or IΦA
(G). Items (v) and (vi) in Proposition

9 translate respectively into
IA(G) = G ∧ Φ̆AΦA(G). (1.8)

and
ΦAΦ̆AΦA = ΦA, Φ̆AΦAΦ̆A = Φ̆A. (1.9)
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(ii) If {Aη}η is a continuous geometric family, then ΦA is continuous thanks to the estimate
(1.7). Moreover, IA(G) is upper-semicontinuous viewed as a (set-valued) function from E
to M . Indeed, the composition

(η, u) 7→ (Aη, u) 7→ IAη(u)

is upper-semicontinuous (thanks to Proposition 9(iv)), and this remains true when passing
to the quotient space of pseudographs.

(iii) If {Aη}η∈Ω is a locally equi-semiconcave geometric family, then ΦA(P) ⊆ P and ΦA(PC) is
relatively compact for all compact C ⊂ H1(M,R). This is a consequence of Proposition
9(vii) and the Ascoli-Arzelà Theorem (recall that equi-semiconcave implies equi-Lipschitz).
The analogous result holds true for Φ̆A.

(iv) If {Aη}η is a N,F-flow-type, locally equi-semiconcave and geometric family of costs, then

G|IA(G) ⊢N,F ΦA(G) ∀G ∈ P. (1.10)

This important fact is obtained by writing G = Gη,u and then applying Proposition 12
below. The dual statement is also true and is proved analogously. It can be expressed as

G|ĬA(G) ⊢N,−F Φ̆A(G) ∀G ∈ P̆.

Here we have denoted by −F the family {−H : H ∈ F}; its elements are not Tonelli
Hamiltonians but the relation ⊢−F is still meaningful. We have also denoted by ĬA(G) the
set of points x ∈M such that T̆Aηu(y) = u(x)−Aη(y, x) for some y (and η and u are such
that G = Gη,u).

Proposition 12. Suppose that the family of costs {Aη}η is of N,F-flow-type, locally equi-
semiconcave and geometric. Let u : M → R be semiconcave and v = TAηu. Then, for every x
such that dvx exists and for every y such that v(x) = u(y) +Aη(y, x), we have

the derivative duy exists and satisfies (y, ηy + duy) ⊢N,F (x, ηx + dvx).

Note that such a point y belongs to IA(Gη,u).

Proof. The proof is essentially the same as in [Ber08, Proposition 2.7] but we report it for
completeness. Let x be such that dvx exists, and let y be such that v(x) = u(y) +Aη(y, x). From
the definition of TAη , one gets that the function y′ 7→ u(y′)+Aη(y

′, x) has a minimum at y. Being
the sum of two semiconcave functions, both of them have to be differentiable at y and

duy + ∂yAη(y, x) = 0.

Similarly, the function x′ 7→ v(x′)−Aη(y, x
′) has a maximum at x. Since dvx exists by assumption

and −Aη is semiconvex, we get that ∂xAη(y, x) exists and

dvx − ∂xAη(y, x) = 0.

Thanks to the N,F-flow-type property we can conclude:

(y, ηy + duy) =
(
y, ηy − ∂yAη(y, x)

)
⊢N,F

(
x, ηx + ∂xAη(y, x)

)
= (x, ηx + dvx).
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1.4.4 Operations on costs and families of costs

There are three quite natural operations on costs. For A,A′ two costs and λ ∈ R, they are defined
as follows:

(A, λ) 7→ A+ λ (addition of constant)

(A,A′) 7→ min{A,A′} (minimum)

(A,A′) 7→ A′ ◦A(y, x) = min
z∈M

{
A(y, z) +A′(z, x)

}
(composition).

It is easily checked that the three of them are continuous in their arguments and that the
associated Lax-Oleinik operators are well-behaved in the following sense: for u ∈ C(M), we have

TA+λu = TAu+ λ

Tmin{A,A′}u = min{TAu, TA′u} (1.11)

TA′◦Au = TA′ ◦ TAu.

We can define the same operations on families of costs: for all A ≡ {Aη}η, A′ ≡ {A′
η}η and

all functions λ : H1(M,R)→ R, we define

(A+ λ)η = Aη + λ([η]), min{A,A′}η = min{Aη, A
′
η}, (A′ ◦A)η = A′

η ◦Aη.

The following proposition shows that these operations preserve the fact of being a F-family.

Proposition 13. Let A,A′ be two F-families of costs, and λ : H1(M,R)→ R be a continuous
function. Then A+λ, min{A,A′} and A′ ◦A are F-families as well. Moreover, the semiconcavity
constants are controlled by

sc (A+ λ)η = sc(Aη)

sc(min{A,A′}η) ≤ max{sc(Aη), sc(A
′
η)}

sc (A′ ◦A)η ≤ max{sc(Aη), sc(A
′
η)}

(1.12)

for each η ∈ Ω.

Proof. We have to verify that the four conditions of Definition 10 hold true for the families
A+ λ,min{A,A′} and A′ ◦A. Conditions (i) and (ii) are easy to check.

In order to prove (iii) (i.e. the local equi-semiconcavity), it suffices to prove the three relations
(1.12). The first is obvious and the second follows from (1.1). For the third, let η ∈ Ω. For any
fixed z, each of the functions (x, y) 7→ Aη(y, z) + A′

η(z, x) is max{sc(Aη), sc(A
′
η)}-semiconcave

on M ×M . This is a general property for functions on M ×M which have the form f(y) + g(x)
with f and g semiconcave. Taking the minimum over z yields (A′ ◦A)η, without deteriorating
the semiconcavity constant due to (1.1). This proves the third relation in (1.12).

As for the condition (iv), i.e. the F -flow-type property, it is obvious for A+ λ. Let us prove
it for min{A,A′}. Let η ∈ Ω and x, y be such that ∂y min{A,A′}η(y, x) and ∂xmin{A,A′}η(y, x)
exist. If Aη(y, x) < A′

η(y, x) then locally min{A,A′}η = Aη and the F-flow-type property of



40 Chapter 1. Connecting orbits for families of Tonelli Hamiltonians

min{A,A′} reduces to the F-flow-type property of A. Similarly if A′
η(y, x) < Aη(y, x). In the

remaining case in which Aη(y, x) = A′
η(y, x) = min{A,A′}η(y, x), we have by semiconcavity

∂xmin{A,A′}η(y, x) = ∂xAη(y, x) = ∂xA
′
η(y, x)

∂y min{A,A′}η(y, x) = ∂yAη(y, x) = ∂yA
′
η(y, x).

thus the F-flow-type property of min{A,A′} reduces to the F-flow-type property of A or A′.
From these considerations we conclude that min{A,A′} is a F -flow-type family. From the proof
just carried out it is also apparent that, if A is of N,F-flow-type and A′ is of N ′,F-flow-type,
then min{A,A′} is of max{N,N ′},F-flow-type.

It remains to prove the F -flow-type property for A′◦A. Let η, y, x be such that ∂y(A′◦A)η(y, x)
and ∂x(A′ ◦A)η(y, x) exist. Let z be a point of minimum in the expression

(
A′ ◦A

)

η
(y, x) = min

z∈M
{Aη(y, z) +A′

η(z, x)}.

Since Aη(y, ·) +A′
η(·, x) is the sum of two semiconcave functions, both ∂xAη(y, z) and ∂yA′

η(z, x)
exist and they satisfy

∂xAη(y, z) + ∂yA
′
η(z, x) = 0.

Note also that the function x′ 7→ (A′ ◦ A)η(y, x
′) − A′

η(z, x
′) has a maximum at x. Since

∂x(A
′ ◦A)η(y, x) exists by assumption and −A′

η is semiconvex, we get that ∂xA′
η(z, x) exists and

∂x(A
′ ◦A)η(y, x)− ∂xA

′
η(z, x) = 0.

By similar arguments, one gets that ∂yAη(y, z) exists and

∂y(A
′ ◦A)η(y, x)− ∂yAη(y, z) = 0.

Using the relations just derived and the F-flow-type property of A and A′, we finally get
(
y, ηy − ∂y(A

′ ◦A)η(y, x)
)
=
(
y, ηy − ∂yAη(y, z)

)
⊢F

(
z, ηz + ∂xAη(y, z)

)

=
(
z, ηz − ∂yA

′
η(z, x)

)
⊢F

(
x, ηx + ∂xA

′
η(z, x)

)

=
(
x, ηx + ∂x(A

′ ◦A)η(y, x)
)
.

This proves the F-flow-type property for A′ ◦A. From the proof just carried out it is also clear
that, if A is ofN,F -flow-type and A′ is ofN ′,F -flow-type, then A′◦A is of (N+N ′),F -flow-type.

Note that (1.11) implies

ΦA+λ = ΦA, ΦA′◦A = ΦA′ ◦ ΦA

IA+λ(G) = IA(G), Imin{A,A′}(G) ⊆ IA(G) ∪ IA′(G), IA′◦A(G) ⊆ IA(G). (1.13)

Instead, we are not able to find an analogous formula for Φmin{A,A′}. Let us notice that even
if ΦA+λ = ΦA, the operation of adding a constant is not completely immaterial: it has a role
for operators associated to costs such as min{A+ λ,A′ + λ′}. If λ′ − λ is sufficiently big, then
the corresponding operator will be ΦA, and if λ− λ′ is sufficiently big, the operator will be ΦA′ .
Intermediate values of λ′ − λ will correspond to intermediate situations.
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1.4.5 Weak KAM theory

In this subsection we consider the special case F = {L} and we rephrase in the language of
pseudographs some standard results in weak Kam theory. Some of them have already been used
in Proposition 7, and some others will be used in Section 1.5.

From now on we shall often use the symbol c to denote both a cohomology class and (with
a little abuse of language) the 1-form S(c). The context should avoid any confusion. Recall
that S(·) is a once-for-all fixed linear map which associate to each cohomology class c a smooth
closed 1-form having cohomology c. The particular choice of the map S(·) is immaterial for our
purposes.

An important role in weak Kam theory is played by the so-called weak Kam solutions. There
are several equivalent definitions for them. The one which we are going to use is: given a Tonelli
Lagrangian L and a cohomology class c, a c-weak Kam solution for L is a solution u ∈ C(M) of
the equation

u = TAL,c
u+ αL(c),

where AL,c is the c-time-one action and αL : H
1(M,R)→ R is Mather’s α-function appeared in

Subsection 1.4.2. A dual c-weak Kam solution is defined as a solution u ∈ C(M) of the equation

u = T̆AL,c
u− αL(c)

We say that u is a weak Kam solution (resp. dual weak Kam solution) if it is a c-weak Kam
solution (resp. dual weak Kam solution) for some c. The Weak Kam Theorem (cf. [Fat, Theorem
4.7.1]) states that for any Tonelli Lagrangian L and any cohomology c there exists at least one
c-weak Kam solution and one c-dual weak Kam solution. In fact, αL(c) is the unique constant
such that the above equations admit a solution (assuming, as we do, that M is compact).

It is no surprise, in view of the definition of ΦAL
in (1.6), that the language of pseudographs

allows to concisely reformulate these concepts. From that definition it is indeed immediate that:

u is a c-weak Kam solution for L ⇔ Gc,u is a fixed point of ΦAL
. (1.14)

In view of this, we shall call weak Kam solutions as well the fixed points of ΦAL
, and c-weak

Kam solutions the fixed points in Pc. Analogously for dual weak Kam solutions, with Φ̆A in place
of ΦA. Notice that two c-weak Kam solutions u and u′ differing by a constant correspond to the
same weak Kam solution Gc,u = Gc,u′ .

Another important object in weak Kam theory is the Peierls barrier hL, introduced in
Subsection 1.4.2. Let us point out that

hL,c = lim
n→∞

lim
m→∞

min{An
L,c + nα,An+1

L,c + (n+ 1)α, . . . , Am
L,c +mα}, (1.15)

and that, by Proposition 13, the families of costs appearing in the right-hand side are locally
equi-semiconcave in the sense of Definition 10, with a local (in c) common bound for their
semiconcavity constants. Hence, they have a local (in c) common bound for their Lipschitz
constants. By the Ascoli-Arzelà theorem, this implies that the two limits are uniform (for
any fixed c). Since uniform limits preserve semiconcavity constants, we get that the family of
costs hL is locally equi-semiconcave in the sense of Definition 10. In fact, by (1.12) we have
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sc(hL,c) ≤ sc(AL,c) for each c. Remark 11(iii) thus applies, i.e. ΦhL
(PC) is relatively compact in

P for every compact C ⊂ H1(M,R).
The next proposition reformulates in our language the well-known identities

min
z∈M

{
hL,c(y, z) +AL,c(z, x) + αL(c)

}
= hL,c(y, x),

min
z∈M

{
AL,c(y, z) + hL,c(z, x) + αL(c)

}
= hL,c(y, x),

min
z∈M

{
hL,c(y, z) + hL,c(z, x)

}
= hL,c(y, x) ∀ y, x ∈M.

Proposition 14. Let hL ≡ {hL,c}c be the family of costs associated to the Peierls barrier of L.
The following identities hold true:

ΦAL
◦ ΦhL

= ΦhL

ΦhL
◦ ΦAL

= ΦhL

ΦhL
◦ ΦhL

= ΦhL

This proposition has important consequences. Indeed, it implies the following characterizations
of weak Kam solutions.

Proposition 15. Let L be a Tonelli Lagrangian, c ∈ H1(M,R) and u : M → R be a continuous
function. The following are equivalent:

(i) u is a c-weak Kam solution for L;

(ii) Gc,u is a fixed point of ΦAL
;

(iii) Gc,u is a fixed point of ΦhL
;

(iv) Gc,u belongs to the image of ΦhL
.

The dual statement obtained by replacing ‘c-weak Kam solution’ with ‘dual c-weak Kam solution’
and Φ with Φ̆ is also true.

Proof.
(i)⇔ (ii) has been already pointed out in (1.14);
(iii)⇒ (ii): let G be such that ΦhL

(G) = G. We then have, by Proposition 14,

ΦAL
(G) = ΦAL

ΦhL
(G) = ΦhL

(G) = G;

(iii)⇒ (iv) is obvious;
(iv)⇒ (iii): let G ∈ ΦhL

(E); then there exists G′ ∈ E such that ΦhL
(G′) = G. By Proposition 14,

ΦhL
(G) = ΦhL

ΦhL
(G′) = ΦhL

(G′) = G;

(ii)⇒ (iii): for a given G ∈ P, the set of costs A such that ΦA(G) = G is closed under addition of
constants, finite minima, compositions and uniform limits. From ΦAL

(G) = G and expression
(1.15) we thus get ΦhL

(G) = G.
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The dual statement is proved analogously.

Since the image of ΦAL
is contained in P and the image of Φ̆AL

is contained in P̆, the previous
proposition clearly implies that weak Kam solutions belong to P and dual weak Kam solutions
belong to P̆. In d = 1, it is known that the non-contractible invariant circles are exactly the
pseudographs which are both weak Kam solutions and dual weak Kam solutions.

The following proposition will be crucial in the proof of Proposition 33. As usual, H denotes
the Tonelli Hamiltonian associated to L via the Fenchel-Legendre transform.

Proposition 16.

(i) A weak Kam solution G ⊂ T ∗M is subinvariant for φ−1
H ( i.e. φ−1

H (G) ⊆ G). A dual weak
Kam solution is subinvariant for φH ;

(ii) if G is a weak Kam solution belonging to P̆, then automatically G is a dual weak Kam
solution. Analogously, a dual weak Kam solution belonging to P is a weak Kam solution;

(iii) if G is both a weak Kam solution and a dual weak Kam solution, then G is a Lipschitz graph
over M which is invariant for φH ( i.e. φH(G) = G).

Proof.

(i) Let G be a weak Kam solution, i.e. ΦAL
(G) = G. From Remark 11(iv) and Proposition

8(iv) we know that
G|IAL

(G) ⊢1,{L} ΦAL
(G),

hence we get
G = ΦAL

(G) ⊆ φH
(
G|IAL

(G)

)
.

Applying φ−1
H to both sides we get φ−1

H (G) ⊆ G, that is the first claim of the statement.
The dual claim is obtained analogously, starting from the dual version of Remark 11(iv).

(ii) Let G be a weak Kam solution belonging to P̆. We have

Φ̆AL
(G) ⊆ φ−1

H (G) ⊆ G,

where the first inclusion follows from the dual version of Remark 11(iv), while the second
inclusion follows from part (i) of this Proposition.

It is not difficult to prove that if a pseudograph is contained in another one, then the two
must coincide. Thus the inclusion above implies Φ̆AL

(G) = G, that is G is a dual weak Kam
solution, as desired. The dual statement is analogous.

(iii) Let G be both a weak Kam and a dual weak Kam solution. It is immediate from part (i)
that G is invariant for φH . Moreover, G has to belong to P∩ P̆, hence it is a Lipschitz graph
over M (recall that a function both semiconcave and semiconvex is C1,1).
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We have just seen that a weak Kam solution G is subinvariant for φ−1
H . Hence the sequence

φ−n
H (G) is decreasing in n. Moreover, one may prove (see [Ber08], or Proposition 23 in which we

are going to prove some analogous statements in more general situations) that its intersection is
a compact invariant set, and is given by

⋂

n∈N

φ−n
H (G) = G|IhL (G) = G∧̃Φ̆hL

(G).

where the second equality is just a direct consequence of (1.8).
We now introduce the c-Aubry set of L, denoted by ÃL(c), which appears in Proposition 7.

One of the possible definitions is the following:

ÃL(c) =
⋂{
G|IhL (G) : G is a c-weak Kam solution

}
⊆ T ∗M.

For a weak Kam solution G, the subset of M given by IhL
(G) = G ∧ Φ̆hL

(G) is also called the
projected Aubry set of G.

If G ∈ Pc and G′ ∈ P̆c, it is always true (see Section 1.2) that G∧̃G′ ⊆ T ∗M is a compact set
which is a Lipschitz graph over its projection G ∧ G′ ⊆M , hence the same holds true for each of
the sets G|IhL (G) = G∧̃Φ̆hL

(G).

It is then clear that ÃL(c) is a compact invariant Lipschitz graph over its projection too, being
the intersection of compact invariant Lipschitz graphs. It is less obvious from this description,
but true, that ÃL(c) is non-empty.

Let us denote by VL and V̆L respectively the sets of weak Kam solutions and dual weak
solutions for L. The function ΦhL

and Φ̆hL
are inverse to each other when restricted to these sets.

More precisely,
ΦhL
◦ Φ̆hL |VL

= id, Φ̆hL
◦ ΦhL |V̆L

= id.

This is due to the formulas (1.9). A pair of the type (G, Φ̆hL
(G)) ∈ V× V̆ is, up to a constant, a

conjugate weak Kam pair in the sense of Fathi (see [Fat]). Indeed, we see from Proposition 9(v)
that if u and ŭ are such that (Gc,u,Gc,ŭ) ∈ V× V̆ and Gc,ŭ = Φ̆hL

(Gc,u), then u− ŭ is constant on
the Aubry set of G (this constant is zero if we choose ŭ = T̆hL

ThL
u).

The following property (which has been used in the proof of Proposition 7) tells us that weak
Kam solutions may be seen as a sort of unstable manifolds of the Aubry set of L, and dual weak
Kam solutions as stable manifolds.

Proposition 17. For every c-weak kam solution G and every z ∈ G, the α-limit of z for φ1H is
contained in Ã(c). Analogously, every point in a dual c-weak Kam solution is ω-asymptotic to
Ã(c).

Proof. See [Ber08, Proposition 4.3].

Let us now give one of the possible definitions of the Mather set M̃L(c): it is the union of the
supports of the invariant measures for φ1H which are contained in Ã(c). It is a compact invariant
set. Finally, the following is one of the possible definitions of the Mañé set ÑL(c):

ÑL(c) =
⋃{
G|IhL (G) : G is a c-weak Kam solution

}
.
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This can be proved to be a compact invariant set as well. We have

M̃L(c) ⊆ ÃL(c) ⊆ ÑL(c) ⊆ T
∗M.

We refer to [Ber02], [Fat] or [Mat91a] for a detailed analysis.

1.4.6 The semigroup Σ
∞
c

In this part we somehow generalize the previous subsection to the case of more than one Tonelli
Hamiltonian. Let us recall that our final aim is to get informations about the forcing relation ⊢F ,
in order to apply Proposition 7. We have seen that F-families of costs do give us informations
about ⊢F , and that the time-one actions of the Tonelli Lagrangians in F are F -families of costs.
Moreover, the Proposition 13 tells us that being a F-family is a property which is preserved by
addition of constants, minimums and compositions. This motivates what follows.

Let σ be the unique class of families of costs such that:

(i) σ contains {AL : L ∈ F};

(ii) σ is closed under the operations of addition of constants, minimum and composition (defined
in Section 1.4.4);

(iii) σ is the smallest among those classes satisfying (i) and (ii).

By property (ii), σ is a semigroup under the operation of composition. Recall that the operator
ΦA associated to a F-family of costs A is the one defined by

ΦA(Gη,u) = Gη,TAηu
.

By Proposition 13 we immediately deduce:

Proposition 18. Every family A ∈ σ is a F-family according to Definition 10. Hence, all the
conclusions of Remark 11 apply to A, and in particular we have

G|IA(G) ⊢F ΦA(G) ∀G ∈ P.

Let us define
Σ = {ΦA : A ∈ σ}.

By the formula ΦA′ ◦ΦA = ΦA′◦A it is clear that Σ is a semigroup with respect to the composition.
Let now c belong to H1(M,R). Recall that we use the symbol Ac to denote the cost AS(c). We
then define

σc = {Ac : A ∈ σ}

and call σ∞c its closure in C(M ×M):

σ∞c = cl (σc).

Let us stress that the elements of σ∞c are just costs and not families of costs. It is clear that σ∞c
is the smallest class containing {AL,c : L ∈ F} and closed under addition of constants, minimums,
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compositions and uniform limits. In particular, it is a semigroup for the composition. Let us
point out the important fact that the Peierls barriers hL,c belong to σ∞c as well, since the limits
involved in their definition are uniform (see the discussion after relation (1.15)).

In order to have good compactness properties, we will often make the assumption that F is
equi-semiconcave, according to the following definition:

Definition 19. We say that a family F of Tonelli Lagrangians is equi-semiconcave if, for every
fixed c ∈ H1(M,R), the time-one actions {AL,c : L ∈ F} form an equi-semiconcave set of
functions on M ×M , that is

sup
L∈F

sc(AL,c) < +∞.

Of course, any finite family F of Tonelli Lagrangians is equi-semiconcave. If F is equi-
semiconcave, then by the estimates (1.12) we have

sup
A∈σ∞

c

sc(A) = sup
L∈F

sc(AL,c) < +∞.

hence σ∞c is an equi-semiconcave set of functions. In particular, it is an equi-Lipschitz set of
functions. By the Arzeli-Ascolà theorem, σ∞c is then closed under pointwise limits. Being closed
under minimums, it is also closed under countable inf and liminf, unless the resulting function is
identically ±∞. Being a separable space, it is actually closed under arbitrary inf and liminf, unless
the resulting function is identically ±∞. The following property is an immediate consequence of
the Arzeli-Ascolà theorem:

Proposition 20. If F is semiconcave, then σ∞c modulo addition of constants is compact.

Let us now fix c ∈ H1(M,R). Every element A ∈ σ∞c is a cost and not a family of costs,
hence in general it is not associated to an operator from P to P. Nevertheless, we can still define
the operator ΦA : Pc → Pc by

ΦA(Gc,u) = Gc,TAu.

Since the costs in σ∞c are semiconcave, the image ΦA(Pc) is really contained in Pc. Finally, we
define

Σ∞
c = {ΦA : A ∈ σ∞c },

which is a semigroup of operators from Pc to itself.
The semigroups σ∞c and Σ∞

c will play a central role in the sequel. The next proposition states
some of their useful properties. Note that item (iii) below is a sort of shadowing property. Recall
that | · | indicates half the oscillation of a function.

Proposition 21. Let F be equi-semiconcave.

(i) For every A,A′ ∈ σ∞c and G,G′ ∈ Pc, it holds

‖ΦA(G)− Φ′
A′(G′)‖P ≤ |A−A

′|+ ‖G − G′‖P (1.16)

and in particular every Φ ∈ Σ∞
c is 1-Lipschitz.
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(ii) The function IA(G) is upper-semicontinuous in both A ∈ σ∞c and G ∈ Pc.

(iii) For all ΦA ∈ Σ∞
c ,G ∈ Pc and U neighborhood of ΦA(G) in Pc there exists Φ′ ∈ Σ such that

Φ′(G) ∈ U (in particular G ⊢F U by Proposition 18).

Proof. Item (i) is analogous to the estimate (1.7). Item (ii) is an easy consequence of Proposition
9 (iv). For item (iii) note that, by the very definition of Σ∞

c , there exists a sequence of costs
An ∈ σc converging to A as n→ +∞. Item (iii) then follows from item (i) and the definition of
Σ.

In the next proposition we gather some properties of the minimal subsets of the dynamical
system (Pc,Σ

∞
c ) which will be needed in the next section. We recall that a minimal subset is

a compact subset of Pc which is stable by the semigroup Σ∞
c and which does not contain any

proper subset with the same properties. For compact spaces the existence of minimal subsets is a
standard Zorn’s Lemma argument (actually, for compact metric spaces the Zorn’s Lemma is not
needed, see the proof in [HK02, Theorem 2.2.1]). Even if Pc is not compact, this argument can
be easily adapted to our case, as the next proposition shows.

Let us remark that the existence of minimal components is the unique point in our construction
for which the equi-semiconcavity of F seems to be crucial. In Corollary 34 this assumption will
be eventually dropped for the case d = 1.

In the sequel we say that a subset S of Pc is subinvariant if Φ(S) ⊆ S for every Φ ∈ Σ∞
c .

Proposition 22. Assume F is equi-semiconcave. Then:

(i) for any G ∈ Pc its orbit {Φ(G) : Φ ∈ Σ∞
c } is compact;

(ii) there exists a minimal set. In fact, the orbit of any G ∈ Pc contains a minimal set;

(iii) G ∈ Pc belongs to a minimal component M if and only if for every Φ ∈ Σ∞
c there exists

Φ′ ∈ Σ∞
c such that Φ′Φ(G) = G; in this case, M coincides with the orbit of G. In particular,

every minimal component M is transitive: for every G,G′ ∈ M there exists Φ ∈ Σ∞
c such

that Φ(G) = G′.

Proof.

(i) The orbit of a pseudograph G ∈ Pc is the image of the map

σ∞c ∋ A 7→ ΦA(G).

This map is continuous by the estimate 1.16. In addition, ΦA+λ = ΦA for every constant λ.
By Proposition 20 we know that σ∞c modulo addition of constants is compact, thus the
image of the map is compact as well.

(ii) Given G ∈ Pc, its orbit is a subinvariant and compact set, by item (i). By a general result
in topological dynamics, it contains a minimal set.
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(iii) Let G ∈M with M minimal, and consider Φ ∈ Σ∞
c . The orbit of Φ(G) contains a minimal

component by (ii), and is contained in M because M is subinvariant. By minimality of M,
the orbit has to coincide with M. Viceversa, suppose that for every Φ ∈ Σ∞

c there exists
Φ′ ∈ Σ∞

c such that Φ′Φ(G) = G. We know that the orbit of G contains a minimal set M
by (ii). The assumption says that every subinvariant set contained in the orbit of G must
contain G as well. We deduce that M coincides with the orbit of G.

In order to have a better understanding of the operators in Σ∞
c and the minimal components

of Pc, let us now further investigate about these objects in some special cases.

- Case F = {L}. This is the case analyzed in Subsection 1.4.5. In addition to what already
said there, one can show that in this case Σ∞

c is commutative, and that ΦΦhL,c
= ΦhL,c

Φ =
ΦhL,c

for every Φ ∈ Σ∞
c . Since the image of ΦhL,c

coincides with its fixed points, it is then
easy to verify that M is a minimal component if and only if M = {G} for some c-weak Kam
solution G for L.

- Commuting Hamiltonians. If the Hamiltonians in F commute with each other, i.e. their
Poisson bracket satisfies

{H,G}+ ∂tH − ∂tG = 0 ∀H,G ∈ F ,

then it is known (see [Cui10] for the time-periodic case and [CL11, Zav10] for the autonomous
case) that the associated Lax-Oleinik semigroups commute and that the Hamiltonians
in the family share the same weak Kam solutions and the same Peierls barrier which we
denote {hc}c. Thus Σ∞

c is commutative and ΦΦhc = ΦhcΦ = Φhc for every Φ ∈ Σ∞
c . It is

then easy to verify that the minimal components are exactly the c-weak Kam solutions for
one (hence all) Hamiltonian in F .

- General case. For every ΦA ∈ Σ∞
c it is possible to define an analogous of the Peierls barrier.

Indeed, arguing as for the case A = AL,c, one can show (see [Zav12]) that there exists a
unique real number αA such that the liminf

hA = lim inf
n→+∞

An + nαA (1.17)

is real-valued. Exactly as for the Peierls barrier, we have ΦhA
∈ Σ∞

c , and analogous
statements to Propositions 14 and 15(ii)-(iii)-(iv) hold. In particular the image of ΦhA

coincides with its fixed points and with the fixed points of ΦA.

The interpretation of an arbitrary operator in Σ∞
c in terms of Hamiltonian dynamics is

not easy. However, something can be said for particular operators. As a sample, let us
pick two Hamiltonians H1 and H2 in F , and call A1, A2 their time-one actions and h1, h2
their Peierls barriers. In the next two propositions we prove some properties of ΦA2◦A1 and
Φh2◦h1 .

Proposition 23. Let H1, H2 ∈ F , and call A1, A2 their time-one actions and φ1, φ2 : T
∗M →

T ∗M their time-one maps. Let us also denote A = A2 ◦A1 and φ = φ2 ◦ φ1. Let us consider the
operator ΦA : P→ P. The following hold true:
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(i) for every G ∈ P and every n ∈ N it holds

φ−n
(
ΦAn(G)

)
⊆ G|IAn (G);

(ii) the fixed points G of ΦA are subinvariant for φ−1; more precisely, they satisfy

φ−n(G) ⊆ G|IAn (G);

(iii) for every fixed point G of ΦA, the set G|IhA (G) is invariant with respect to φ, i.e.

φ
(

G|IhA (G)

)

= G|IhA (G);

(iv) for every fixed point G of ΦA, every point in G is α-asymptotic to G|IhA (G) with respect to φ.

Proof.

(i) This is a more precise version of the relation

G|IAn (G) ⊢F ΦAn(G)

of Remark 11 (iv). It follows by a refinement of the proof of Proposition 12, using property
(iv) in Proposition 8 and the special form of A (i.e. A = A2 ◦A1);

(ii) it is immediate from item (i) since ΦAn(G) = G for all n ∈ N;

(iii) let G be a fixed point of ΦA. It is easy to check that the set ∩nφ−n(G) is invariant. Hence
it suffices to show that this intersection is equal to G|IhA (G). With this aim, let us first
notice that

IhA
(G) =

⋂

n

IAn(G). (1.18)

Indeed, from hA ◦A
n = hA and relations 1.13, it follows that the left-hand side is included

in the right-hand side. Note that the relations 1.13 also imply that the sequence IAn(G)
is decreasing in n. For the reverse inclusion, write G = Gc,u, consider ȳ belonging to the
intersection in the right-hand side and let xn ∈M be such that u(xn) = u(ȳ) +An(ȳ, xn) +
nαA. Then by definition of hA every accumulation point x of the sequence xn satisfies

u(x) ≥ u(ȳ) + hA(ȳ, x).

Since G is a fixed point of ΦA, we also have u(x) = miny{u(y) + hA(y, x)}. We deduce that
the minimum has to be achieved in ȳ, and thus ȳ ∈ IhA

(G). This proves (1.18). In order
to conclude the proof of item (iii), it suffices to prove that

⋂

n

φ−n(G) = G|
⋂

n IAn (G).

The left-hand side is included in the right-hand side by item (ii). The reverse inclusion
follows from the fact that, if z ∈ G|I

An+1 (G), then φn(z) ∈ G. This follows from property
(iv) in Proposition 8 and a refinement of the proof of Proposition 12.
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(iv) Let z ∈ G. By equation 1.18, it suffices to prove that any α-limit of z lies in G|I
AN (G) for

every N ∈ N. Since G|I
AN (G) is a closed set, it suffices to prove that φ−n(z) ∈ G|I

AN (G) for
n large enough. This is indeed true for n ≥ N by item (ii).

Proposition 24. Let H1, H2 ∈ F , and call h1, h2 their Peierls barriers. Let us fix c ∈
H1(M,R) and denote Ac = h2,c ◦ h1,c. Let us consider the operator ΦA,c ∈ Σ∞

c and the subsets
V1,c,V2,c,VA,c ⊂ Pc constituted respectively by the fixed points of Φh1,c ,Φh2,c and ΦA,c. Then VA,c

is contained in V2,c and is isometric to a subset of V1,c.

Proof. Obviously VA,c is contained in the image of ΦA,c, which is contained in the image of Φh2,c ,
that is V2,c. Moreover, since ΦA,c = Φh2,c ◦Φh1,c and ΦA,c is the identity when restricted to VA,c,
we get that Φh2,c is a left inverse for Φh1,c on VA,c. Since both of them are 1-Lipschitz (cf. Proposi-
tion 21 (ii)), Φh1,c has to be an isometry between VA,c and Φh1,c(VA,c), which is a subset of V1,c.

Let us point out that, if d = 1, the whole of Σ∞
c would not be needed for the purposes of this

article. Indeed, the heuristic discussion in Section 1.5.3 as well as the proof of Proposition 33 show
that the Peierls barrier operators ΦhL

, L ∈ F , would suffice to get optimal results. Nevertheless,
if d > 1, considering the whole of Σ∞

c gives stronger (though more abstract) results.

1.5 The Mather mechanism

Throughout the whole section, the family F is assumed to be equi-semiconcave in the sense of
Definition 19, unless otherwise stated. For a subset S ⊆M , we call S⊥ ⊆ Ω the vector subspace
of the smooth closed one-forms whose support is disjoint from S and [S⊥] its projection on
H1(M,R). It follows from the finite dimensionality of H1(M,R) that there always exists an
open set U ⊇ S such that [U⊥] = [S⊥]. Such a U will be called an adapted neighborhood of
S. Let us point out that, if M = T, we have [S⊥] = {0} if and only if S = T, and otherwise
[S⊥] = H1(T,R) ∼= R. For a vector subspace V ⊆ H1(M,R), we denote the ε-radius ball centered
at the origin by Bε(V ).

1.5.1 Outline of Section 1.5

We describe a mechanism for the construction of diffusion polyorbits. When F = {L} is a
singleton, our construction essentially boils down to the one in [Ber08]. Some of the main ideas
come from the seminal paper of Mather [Mat93].

Subsection 1.5.2. We prove the technical results which are at the core of the Mather
mechanism. Basically, they show how a pseudograph G may force nearby cohomologies, with the
sets IA(G), A ∈ σ∞c acting as obstructions to this phenomenon.

Subsection 1.5.3. We heuristically show how the results of the previous subsection apply to
polysystems of twist maps on the cylinder.
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Subsection 1.5.4. We apply the results of Subsection 1.5.2 to prove a general theorem in
arbitrary dimension. We discuss some consequences and applications, including the rigorous
counterpart of the heuristic picture in Subsection 1.5.3.

Loosely speaking, the mechanism works in the following way: we will be able to associate to
every c ∈ H1(M,R) a subspace R(c) ⊆ H1(M,R) of “allowed cohomological directions” for the
forcing relation ⊣⊢F . In view of Proposition 7, this gives allowed cohomological directions for the
diffusion: the larger the subspace R(c) is, the more are the directions for which connecting orbits
starting at c exist. The obstruction for this subspace to be large will be, roughly, the homological
size of the sets IA(G), for G ∈ Pc and A ∈ σ∞c .

1.5.2 The basic step

Let us introduce some notations: for c ∈ H1(M,R), G ∈ Pc, A ∈ σ
∞
c , we define

RA(G) = [IA(G)
⊥] = [G ∧ Φ̆AΦA(G)

⊥] ⊆ H1(M,R).

Here the second equality follows from 1.8. More generally, for A1, . . . , An ∈ σ
∞
c , we define

RA1,...,An(G) =
[

IAn◦···◦A1(G)
⊥ + IAn◦···◦A2(ΦA1(G))

⊥

+ · · ·+ IAn

(
ΦAn−1 ◦ · · · ◦ ΦA1(G)

)⊥
]

.

We will see in Lemma 27 that the subspace RA1,...,An(G) should be intended as a subspace of
“allowed cohomological directions for the forcing relation, through the composition ΦAn ◦ · · · ◦ΦA1 ,
starting from G ”. By taking the union over all finite strings (A1, . . . , An), one should get a space
of “allowed cohomological directions for the forcing relation starting from G ”. Afterward, by
intersecting over all G in Pc, one should get a space of “allowed cohomological directions for the
forcing relation starting from c ”, which is basically what we are looking for in order to apply
Proposition 7. This motivates the following definitions:

R(G) =
⋃

A1,...,An∈σ∞
c

n∈N

RA1,...,An(G)

R(c) =
⋂

G∈Pc

R(G) (1.19)

At this stage it is not clear whether R(G) or R(c) are vector subspaces. In Proposition 29 several
equivalent expressions for R(c) will be given. They will imply that R(c) is indeed a vector
subspace, and R(G) is a vector subspace for every G in a minimal component of Pc. We shall
write RF (c) when we want to emphasize the dependence on the family F .

The following lemma is the basic key step in the accomplishment of the Mather mechanism.
Given a family of costs A ∈ σ,3 the lemma shows how a pseudograph G may force nearby
cohomologies, with the set IA(G) acting as an obstruction to this phenomenon. Furthermore, the
semicontinuity in G of IA(G) allows to extend the conclusion to a whole neighborhood of G.

3We recall that the definition of σ is given in Section 1.4.6.
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Lemma 25. Let A be a F-family of costs according to the Definition 10 (in particular, A ∈ σ
will work). Let ΦA be the associated operator on pseudographs. Then, for every G ∈ P and for
every neighborhood U of ΦA(G) in P there exist N ∈ N, a neighborhood W of G and an ε > 0
such that:

∀ G′ ∈W , ∀ c ∈ c(G′) +BεRA(G) ∃G′′ such that

G′′ ∈ U, G′ ⊢N,F G
′′, c(G′′) = c.

Proof. Let us fix G, U and an adapted neighborhood U of IA(G). The set function G 7→ IA(G) is
upper semicontinuous, thus there exists a neighborhood W′ of G such that IA(G′) ⊆ U for all
G′ ∈W′. Moreover, by continuity of ΦA, we can suppose that ΦA(W′) ⊆ U. The function

P× U⊥ ∋ (G, ν) 7→ G + Gν,0

is continuous, hence there exists a neighborhood W of G and a neighborhood W of 0 in U⊥

such that W + GW,0 ⊆ W′. Projections are open maps, thus the projection of W on the
cohomology contains a ball Bε[U

⊥] centered at 0. With these choices of W and ε, let G′ ∈ W
and c ∈ c(G′) + Bε[U

⊥]. We can then take as G′′ the pseudograph ΦA(G
′ + Gν,0) where ν ∈ W

satisfies [ν] = c− c(G′). Indeed, by Remark 11(iv) we find N such that

G′ ⊢0,F G
′
|U =

(
G′ + Gν,0

)

|U
⊢N,F ΦA

(
G′ + Gν,0

)
= G′′.

The Lemma 25 easily extends to operators in Σ∞
c .

Proposition 26. Let ΦA ∈ Σ∞
c . Then, for every G ∈ Pc and for every neighborhood U of ΦA(G)

in P there exist N ∈ N, a neighborhood W of G and an ε > 0 such that:

∀G′ ∈W , ∀ c ∈ c(G′) +BεRA(G) ∃G′′ such that

G′′ ∈ U, G′ ⊢N,F G
′′, c(G′′) = c.

Proof. Let us fix G and U, and let us consider IA(G) and one of its adapted neighborhoods U .
By Proposition 21 (iii) there exists A′ ∈ σ such that ΦA′(G) ∈ U and IA′(G) ⊆ U . This implies

RA′(G) = [IA′(G)⊥] ⊇ [U⊥] = [IA(G)
⊥] = RA(G).

We apply the Lemma 25 and we get the result.

In the following lemma we prove two similar results which show how Proposition 26 has a
good behavior under composition. The second version is in principle stronger but we will see that
the first version would eventually lead to the same results, at least for an equi-semiconcave family
F . Therefore a posteriori the second version is not strictly needed here.

The main point in both results is that, if we compose several operators in Σ∞
c , the set of

allowed directions which we get is greater than just the union of the allowed directions obtained
by applying separately Proposition 26 to each operator. In fact, we obtain the vector subspace
generated by this union.
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Lemma 27. Let ΦA1 , . . . ,ΦAn ∈ Σ∞
c . Then: for every G ∈ P and for every neighborhood U of

ΦAn ◦ · · · ◦ ΦA1(G) in P there exist N ∈ N, a neighborhood W of G and an ε > 0 such that:

∀G′ ∈W, ∀ c ∈ c(G′) +BεRA1,...,An(G)

∃G′′ : G′′ ∈ U, G′ ⊢N,F G
′′, c(G′′) = c.

Proof. Let us suppose n = 2 for simplicity. Let us consider G ∈ P and a neighborhood U of
ΦA2ΦA1(G). Let U1 and U2 be adapted neighborhoods in M of IA2◦A1(G) and IA2(ΦA1(G))
respectively. By Proposition 21, there exist A′

1, A
′
2 ∈ σ and a neighborhood W′ of G in P such

that

ΦA′
2
ΦA′

1
(G′) ∈ U, IA′

2◦A
′
1
(G′) ⊆ U1 and IA′

2
(ΦA′

1
(G′)) ⊆ U2 ∀G′ ∈W′.

Let us now consider η1 ∈ U⊥
1 and η2 ∈ U⊥

2 . Given G′ = Gη,u ∈W′, we have

ΦA′
2

(
ΦA′

1
(G′ + Gη1,0) + Gη2,0

)
= Gη+η1+η2,v

with

v := TA′
2,η+η1+η2

w w := TA′
1,η+η1

u.

Let x ∈M be a point such that dvx exists. By Proposition 12, if z is a point which realizes the
minimum in the formula for v(x), then dwz exists and

dwz + ηz + η1,z + η2,z ⊢N2,F dvx + ηx + η1,x + η2,x

for some N2 ∈ N. In the same way, if y realizes the minimum in the formula for w(z), then

duy + ηy + η1,y ⊢N1,F dwz + ηz + η1,z

for some N1 ∈ N.
A generalization of the upper-semicontinuity result in 11 (ii) shows that if [η1 + η2] ∈

Bε[U
⊥
1 + U⊥

2 ] with ε small enough, then y ∈ U1 and z ∈ U2. We thus have η1,y = 0 and η2,z = 0
and therefore

duy + ηy ⊢N1+N2,F dvx + ηx + η1,x + η2,x

which is to say

G′ = Gη,u ⊢N1+N2,F Gη+η1+η2,v.

The proof is now completed with G′′ = Gη+η1+η2,v, up to choosing G′ in a smaller neighborhood
W ⊆W′ in such a way that ε can be fixed independently of G′.

Note that, trivially, Lemma 25 is a particular case of Proposition 26, which in turn is a
particular case of Lemma 27, hence just the latter will be used in the sequel.
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1.5.3 Heuristic application to twist maps

Even without the main general theorem of the next subsection (Theorem 31), it is possible at
this stage, using just the Lemma 27, to derive some results about the presence of diffusion in
polysystems of exact-symplectic twist maps on the cylinder. The discussion in this subsection will
just be an heuristic one, even if everything could be made rigorous. The corresponding rigorous
results will be proven in greater generality in the next subsection (Proposition 33 and Corollary
34).

Let F = {H1, H2} be a family of two Tonelli Hamiltonians on T × R and call L1, L2 the
corresponding Lagrangians. Let us fix c ∈ H1(M,R). We now show that just two scenarios are
possible:

- there exists a circle of cohomology c which is invariant for both H1 and H2 (which obviously
provides an obstruction to diffusion); the only cohomology class forced by c is c itself;
R(c) = {0};

- there is no circle as above; in this case c forces a whole neighborhood of cohomology classes
(and thus there exists diffusion in the sense of Proposition 7); R(c) = H1(T, R) ∼= R.

Indeed, suppose that there exists a circle of cohomology c which is invariant for both H1 and
H2. It is standard that it can be identified with a pseudograph G which is invariant for both φH1

and φH2 . In particular, by the very definition of forcing relation in Section 1.3, G is the only
pseudograph forced by G, and thus c is the only cohomology class forced by c. Moreover, we
deduce by Lemma 27 and the definition of R(G) that R(G) = {0}, thus R(c) = {0}.

On the other hand, let us suppose that there is no such common invariant circle. Let us
consider G ∈ Pc, and let us apply Φh2 ◦ Φh1 to it (h1 and h2 are the Peierls barrier of H1, H2).
By the first version of Lemma 27, we get

G ⊢F c+Bε

(
Rh1(G) +Rh2(Φh1(G))

)
∀ G ∈ Pc. (1.20)

Recall that the image of Φh1 is contained in P and consists precisely of the weak Kam solutions
for H1, while the image of Φ̆h2 is contained in P̆ and consists of the dual weak Kam solutions for
H2. By assumption there are no common invariant circles, hence, in view of Proposition 16,

Φh1(G) 6= Φ̆h2Φh2Φh1(G).

This implies (due to d = 1) that Rh2(Φh1(G)) = H1(T,R) regardless of G ∈ Pc. Thus the formula
(1.20) implies that every G ∈ Pc forces a whole neighborhood of cohomology classes. In that
formula, ε depends in principle on G, but one can show that by compactness it is possible to
choose it uniformly in G. Therefore c forces a whole neighborhood of cohomology classes, as
claimed. Since R(G) ⊇ Rh2(Φh1(G)), the discussion also proves that R(G) = H1(T,R) for every
G ∈ Pc, thus R(c) = H1(T,R).

Notice how in this one-dimensional case our construction is optimal, in the following sense: the
obstructions to the mechanism (i.e. the “homological size” of the sets IA(G)) are real obstructions
to the diffusion (i.e. the common invariant circles). On the contrary, in d > 1 the construction
will likely give just sufficient conditions for the diffusion: the obstructions to this mechanism may
be circumvented by a different diffusion mechanism (such as, for instance, the Arnold mechanism
presented by Bernard in [Ber08]).
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1.5.4 A general theorem and some applications

We can summarize the argument used in Subsection 1.5.3 for the case d = 1 by saying that we
have applied Lemma 27 to Φh2 ◦ Φh1 , and the result turned out to be optimal (so that there
was no need to consider any other Φ ∈ Σ∞

c ). Moreover, switching the order and considering
Φh1 ◦ Φh2 would have led to the same result. The generalization of this argument to an arbitrary
dimension d is not completely straightforward: the choice of the operator could in principle make
a difference, and it is less clear if the allowed directions which one obtains are optimal or not.

In order to overcome these difficulties, we will adopt a slightly more abstract approach. This
will give stronger conclusions, at the cost of a certain difficulty to interpret the obstructions which
we will found.

We start with a “raw” result which follows immediately from Lemma 27.

Proposition 28. Let c be fixed. For any G ∈ Pc and any finite string s = (A1, . . . , An) of
elements of σ∞c , there exist ε(G, s) > 0 such that

c ⊢F c+
⋂

G∈Pc

⋃

s=(A1,...,An)
n∈N

Bε(G,s)

(
RA1,...,An(G)

)
. (1.21)

Proof. Recall that c ⊢F c′ if and only if G ⊢F c′ for all G ∈ Pc. The result is then a consequence
of Lemma 27.

The general theorem (Theorem 31) will consist in a refined (but at the same time simplified)
version of this raw result. Roughly speaking, it will be possible to replace the intersection over
G ∈ Pc with an intersection over a smaller set, to replace the union with a sum of vector subspaces
and to choose ε uniformly in (G, s). This will simplify the right-hand side, and will lead in the
end to a unique subspace of H1(M,R) encoding all the information. In fact, R(c) will be such a
subspace. Moreover, exploiting some semicontinuity, the result will be proved to hold for c′ close
enough to c. It will also be possible to replace the forcing relation ⊢F with the mutual forcing
relation ⊣⊢F , and to have a locally uniform control on the N appearing in its definition.

In order to motivate what follows, let us observe that the map G 7→ R(G) is by definition
non-increasing along the action of elements of Σ∞

c . More precisely,

R(Φ(G)) ⊆ R(G) ∀ G ∈ Pc,Φ ∈ Σ∞
c . (1.22)

This can be interpreted by saying that this map is a sort of multi-valued Lyapunov function for
the dynamics in (Pc,Σ

∞
c ). Since we are interested in the set R(c), which is the intersection of all

the sets R(G), it is natural to look at the minimal components of the dynamics, whose properties
have been analysed in Proposition 22.

For a minimal component M of (Pc,Σ
∞
c ) let us define

R(M) =
⋂

G∈M

R(G).

Proposition 29 (Equivalent expressions for R(c)).
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(i) We have:

R(c) =
⋂

M minimal

R(M).

(ii) We have the following equivalent expressions for R(M):

R(M) = R(G) =
∑

A1,...,An∈σ∞
c

n∈N

RA1,...,An(G) for any fixed G ∈M

= RA1,...,An(G) for some A1, . . . , An depending on G ∈M

=
∑

G∈M
A∈σ∞

c

RA(G).

In particular, R(M) is a vector subspace for every M, and the same holds for R(c).

Proof. Let us prove item (i). By the definition of R(c) and R(M), it is clear that R(c) ⊆ R(M)
for every minimal component M, hence R(c) ⊆ ∩MR(M). For the reverse inclusion, let us notice
that, since F is equi-semiconcave, by Proposition 22(ii) for every G ∈ Pc there exists Φ ∈ Σ∞

c

such that Φ(G) belongs to a minimal component. By (1.22),

R(G) ⊇ R(Φ(G)) ⊇
⋂

M

R(M).

By taking the intersection over all G ∈ Pc, one gets the desired inclusion.
Let us now prove item (ii). Thanks to relation (1.22) and the transitivity of minimal

components (Proposition 22(iii)), we get that the function G 7→ R(G) is constant on every minimal
component. This proves that R(M) = R(G) for any G ∈ M. Moreover, for every two strings
(A1, . . . , An) and (A′

1, . . . , A
′
n′) the following holds

RA1,...,An(G) +RA′
1,...,A

′

n′
(G) ⊆ RA1,...,An,Ā,A′

1,...,A
′

n′
(G) ⊆ R(G) (1.23)

where Ā is any cost in σ∞c such that ΦĀ ◦ ΦAn ◦ · · · ◦ ΦA1(G) = G. The existence of such cost Ā
is guaranteed once again by the transitivity of the minimal component. This proves that

R(G) ⊇
∑

A1,...,An∈σ∞
c

n∈N

RA1,...,An(G) ∀G ∈M

and the opposite inclusion is easy from the definitions. Moreover, since the dimension of H1(M,R)
is finite, we can write R(G) as a finite sum

R(G) = RA1
1,...,A

1
n1
(G) +RA2

2,...,A
2
n2
(G) + · · ·+RAN

1 ,...,AN
nN

(G)

and arguing as in (1.23) we get

R(G) = RA1,...,An(G) for some A1, . . . , An ∈ σ
∞
c , n ∈ N.

The equality R(M) =
∑

G∈M

∑

A∈σ∞
c
RA(G) follows by similar arguments.
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Let us mention that, starting from the last expression for R(M) above, one can show that
considering just the weaker version of Lemma 27 would eventually lead to the same results.

Remark 30. The function F 7→ RF (c) is increasing. This is natural in view of the interpretation
of RF (c) as a set of allowed directions for diffusion, and follows by an inspection of the definitions
(in fact, the map F 7→ Σ∞

c (F) is also increasing). In particular, let us point out that, since RF (c)
is a vector subspace,

RF (c) ⊇
∑

H∈F

R{H}(c).

The inclusion may be strict though: we will see that this is the case for two twist maps with
non-common non-contractible invariant circles of cohomology c.

We can now restate and prove Theorem 3 of the Introduction. It is a generalization of
Theorem 0.11 in [Ber08] to the polysystem case.

Theorem 31. Let F be a family of one-periodic Tonelli Hamiltonians defined on the cotangent
space of a boundaryless compact manifold M . Assume that F is equi-semiconcave in the sense of
Definition 19. Let c ∈ H1(M,R). Then there exist a neighborhood W of c in H1(M,R), ε > 0
and N ∈ N such that

c′ ⊣⊢N,F c′ +BεR(c) ∀ c′ ∈W.

Proof. We subdivide the proof into four steps.

Step 1. For every M ⊂ Pc minimal and every G ∈M there exist a neighborhood WG of G in
P, a natural number NG and εG > 0 such that

G′ ⊢NG ,F c(G′) +BεGR(c) ∀G′ ∈WG .

Let M be minimal and G ∈ M. Let A1, . . . , An ∈ σ
∞
c such that RA1,...,An(G) = R(M). This is

possible thanks to Proposition 29. Let us then apply Lemma 27 to G and to the composition
ΦAn ◦ · · · ◦ ΦA1 . Call WG , NG and εG the objects yielded by that Proposition. We have

G′ ⊢NG ,F c(G′) +BεGR(M) ∀G′ ∈WG .

In particular, since R(c) ⊆ R(M), we have

G′ ⊢NG ,F c(G′) +BεGR(c) ∀G′ ∈WG

as desired.

Step 2. For every G ∈ Pc there exist a neighborhood WG of G in P, a natural number NG and
εG > 0 such that

G′ ⊢NG ,F c(G′) +BεGR(c) ∀G′ ∈WG .

Let G ∈ Pc. By Proposition 22, there exists Φ ∈ Σ∞
c such that Φ(G) is in a minimal component.

Moreover, by Proposition 21 (iv) there exists A ∈ σ such that ΦA(G) ∈ WΦ(G). By continuity,
ΦA(G

′) ∈WΦ(G) if G′ is in a small enough neighborhood WG of G. By Proposition 18 and by Step
1, there exists NA ∈ N such that

G′ ⊢NA,F ΦA(G
′) ⊢NΦ(G),F c(G′) +BεΦ(G)

R(c) ∀G′ ∈WG .

Thus we can take NG = NA +NΦ(G) and εG = εΦ(G).
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Step 3. There exist a neighborhood W ′ of c in H1(M,R), a natural number N and ε′ > 0
such that

c′ ⊢N,F c′ +Bε′R(c) ∀ c′ ∈W ′.

Let us choose A0 in σ (no matter which one, for instance A0 = A1
L with L ∈ F will work). The

closure of ΦA0(Pc) is compact, thus we can extract a finite subfamily {Gj}j ⊆ ΦA0(Pc) such that
W = ∪jWGj

covers ΦA0(Pc). Moreover, it is true that W also covers ΦA0(PW ′) for a sufficiently
small neighborhood W ′ of c. Indeed, consider an arbitrary neighborhood W ′′ of c. The function
G 7→ c(G) is continuous on the compact set ΦA0(PW ′′) \W, hence its image is compact too. Since
c does not belong to this image, we can take as W ′ the intersection of W ′′ with the complement
of the image.

In other words, for any G′ ∈ PW ′ there exists j̄ such that ΦA0(G
′) ∈WGj̄

. Hence we obtain

G′ ⊢NA0
,F ΦA0(G

′) ⊢maxj NGj
,F c(G′) +Bminj εGj

R(c) ∀G′ ∈ PW ′ .

Thus we can take N = NA0 +maxj NGj
and ε′ = minj εGj

, and the Step 3 is proved.

Step 4. There exist a neighborhood W of c in H1(M,R), a natural number N and ε > 0 such
that

c′ ⊣⊢N,F c′ +BεR(c) ∀ c′ ∈W.

In order to obtain the mutual forcing relation starting from the one-side forcing relation of Step
3, it suffices to take W ⊆ W ′ and ε ≤ ε′ small enough in such a way that W + BεR(c) ⊂ W ′.
This makes possible to apply the one-side forcing in the opposite direction. This concludes the
proof of Step 4 (we keep the same N as in the Step 3) and of the Theorem.

Remark 32. A careful analysis of the proof of the above theorem shows that the multi-valued
function c 7→ R(c) is lower-semicontinuous: for any c there exists a neighborhood Z such that
R(c) ⊆ R(c′) for every c′ ∈ Z. Nevertheless, the statement of the theorem is somehow stronger,
because it yields semicontinuity also on N and ε.

In the remainder of this section we draw some relations between the subspace R(c) and the
underlying Hamiltonian polysystem dynamics.

Proposition 33. Assume F equi-semiconcave. If there exists a C1,1 c-weak Kam solution which
is common to all H ∈ F , then R(c) = {0}. If d = 1 the viceversa holds: if R(c) = {0} then all
the Hamiltonians in F have an invariant circle in common.

Proof. If there exists such a weak Kam solution as in the statement, we can identify it with
a pseudograph G ∈ Pc ∩ P̆c such that ΦAL

(G) = G for every Lagrangian L ∈ F . Since Σ∞
c is

generated by such operators, we get that every Φ ∈ Σ∞
c satisfies Φ(G) = Φ̆(G) = G. The singleton

{G} is thus a minimal set for Pc and, in view of formula (1.8), it satisfies R({G}) = {0}.
On the other hand, if d = 1 and R(c) = {0}, then there exists a minimal set M such that

∑

G∈M,A∈σ∞
c

[IA(G)
⊥] = {0},
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which means, thanks to the fact d = 1 and to (1.8), that G = Φ̆AΦA(G) for every G ∈ M and
A ∈ σ∞c . Let us apply this to the Peierls barrier hL,c of a Lagrangian L ∈ F . We get

G = Φ̆hL,c
ΦhL,c

(G) ∈ Im(Φ̆hL,c
) ∀L ∈ F

hence G is a dual weak Kam solution for every L ∈ F , which in addition belongs to P. This
implies the result, by Proposition 16.

We now can restate and prove the Corollary 4 about families of exact twist maps. The
condition of equi-semiconcavity on F is dropped.

Corollary 34. Let M = T = R/Z. Let F be an arbitrary family of one-periodic Tonelli
Hamiltonians on T ∗M ∼= T × R. Let us make the identification H1(T,R) ∼= R. If, for some
A < B ∈ H1(T,R), the family F does not admit an invariant common circle with cohomology in
[A,B], then:

(i) there exists an F-polyorbit (xn, pn)n∈Z satisfying p0 = A and pN = B for some N ∈ N;

(ii) for every H,H ′ ∈ F and every c, c′ ∈ [A,B] there exists an F-polyorbit α-asymptotic to
the Aubry set ÃH(c) and ω-asymptotic to ÃH′(c′)

(iii) for every sequence (ci, Hi, εi)i∈Z ⊂ [A,B]×F ×R+ there exists an F-polyorbit which visits
in turn the εi-neighborhoods of the Mather sets M̃Hi

(ci).

Proof. If F is finite, the conclusion is immediate: by Proposition 33, R(c) = R for every
c ∈ [A,B], hence by Theorem 31 [A,B] is contained in the same equivalence class for ⊣⊢F .
Therefore Proposition 7 applies, and allows to prove the results: for instance, in order to prove
item (i) one applies Proposition 7 (ii) with η ≡ A and η′ ≡ B.

If F is arbitrary, we just reduce to the case of F finite thanks to the following fact: if the
family F does not admit invariant common circles with cohomology in [A,B], then we can extract
a finite subfamily F ′ ⊂ F with the same property. Indeed, suppose on the contrary that every
finite subfamily F ′ admits an invariant common circle with cohomology in [A,B], and let us
arbitrarily pick H0 in F : then the set C(F ′) defined by

C(F ′) =
{
G ∈ P[A,B] : G is a C1,1 weak Kam solution for all H ∈ F ′ ∪ {H0}

}

=
⋂

H∈F ′∪{H0}

(

{G : ΦAH
(G) = G} ∩ {G : Φ̆AH

(G) = G}
)

∩ P[A,B]

is non-empty for all finite F ′ ⊆ F . Here AH denotes the time-one action of the Lagrangian
associated to H. The second line in the above expression tells us that C(F ′) is closed and
contained in the set ΦAH0

(P[A,B]), which is relatively compact by Remark 11(iii). Hence C(F ′)
is compact and not empty for every finite subfamily F ′. We deduce that the sets C(F ′) satisfy
the finite intersection property, because

C(F ′
1) ∩ · · · ∩ C(F

′
n) = C(F ′

1 ∪ · · · ∪ F
′
n) 6= ∅.
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By compactness, the whole intersection is non-empty too:
⋂

F ′⊆F
F ′finite

C(F ′) 6= ∅.

Its elements are the invariant circles common to all the Hamiltonians of the family F . This
contradicts the assumptions.

We end this section by discussing the application of Theorem 31 to some special cases.

- Case F = {L}. This is the case extensively treated in [Ber08]. In that paper, R(c) was
defined as

R(c) =
⋂

G c-weak Kam solution

[Ihc(G)
⊥], (1.24)

where hc is the c-Peierls barrier of L. Let us check that this definition coincides with the
one given here. From Section 1.4.6 we know that the minimal components in Pc are exactly
the c-weak Kam solutions for L, and that hc ◦ σ∞c = σ∞c ◦ hc = hc. Therefore,

IA(G) ⊇ Ihc◦A(G) = Ihc(G), ∀ G ∈ Pc, A ∈ σ
∞
c

(the first inclusion follows from 1.13). The equality of (1.24) with our definition of R(c) is
then easy to verify.

Note that in this case the obstruction to the diffusion via the Mather mechanism is the
homological size of Ihc(G), for every c-weak Kam solution G. This set is also called the
projected Aubry set of G (see Section 1.4.5), and taking the union over the c-weak Kam
solutions G one gets the projection on M of the Mañé set Ñ (c) ⊂ T ∗M . A relation between
R(c) and the homology (in T ∗M) of Ñ (c) is given in [Ber08, Lemma 8.2].

- Case d = 1. In this case the mutual forcing relation ⊣⊢F is well understood thanks to
Proposition 33 and Theorem 31: if B ⊆ H1(T,R) is the closed set of those cohomology
classes c for which there exists a common invariant circle of cohomology c, then the
equivalence classes for ⊣⊢F are the elements of B and the connected components of its
complement.

- Commuting hamiltonians. By the discussion in Section 1.4.6, we know that for every c
there exists a cost hc ∈ σ∞c such that hc ◦ σ∞c = σ∞c ◦ hc = hc. We also know that hc is the
common Peierls barrier of all the Hamiltonians in F , and that the minimal components in
Pc are exactly the c-weak Kam solutions for one (hence all) Hamiltonian in F . Arguing as
in the case of a single Hamiltonian, one gets

RF (c) =
⋂

G c-weak Kam solution

[Ihc(G)
⊥],

hence RF (c) = R{H}(c) for every H ∈ F . Thus the obstructions are the same than those
of each single Hamiltonian in F . Therefore, the polysystem does not present any new kind
of instability phenomena with respect to each system regarded separately (at least using
the Mather mechanism presented here).
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- General case. The general situation is more complicated. Nevertheless, some information
can still be extracted. For instance, let us suppose that V is a one-dimensional subspace of
H1(M,R) not contained in R(c). Then, there must exists a minimal component M such
that V is not contained in R(M). In particular, by Proposition 29 and by invariance of M,
we have that

V * RA1,...,An(G) ∀G ∈M, ∀A1, . . . , An ∈ σ
∞
c . (1.25)

By making different choices of G and A1, . . . , An, one in principle gets a plethora of
conditions on the dynamics of the family F . In the next proposition we prove two sample
statements, obtained by considering the two operators studied in Propositions 23 and 24.

Let us remark that the condition 1.25 above essentially boils down to a condition on the
various sets IA(G) = G ∧ Φ̆AΦA(G). By property (iv) in Proposition 23 we see that, at least
for some choices of G and A, we can interpret G as an unstable manifold of some switched
flow and Φ̆AΦA(G) as a stable manifold of another switched flow. Thus, at least for these
choices of G and A, the size of the obstruction IA(G) = G ∧ Φ̆AΦA(G) has an interpretation
as the size of the intersection between some unstable and stable manifolds.

Proposition 35. Let c ∈ H1(M,R). Suppose that V is a one-dimensional subspace of H1(M,R)
not contained in R(c).

(i) For every arbitrary finite string H1, . . . , Hk of Hamiltonians in F , there exists a subset
S ⊂ T ∗M such that: S is a Lipschitz graph over its projection on M , it is contained in a
pseudograph of cohomology c, it is invariant (both in past and in future) for the switched
flow

φ = φHk
◦ · · · ◦ φH1 ,

and its projection π(S) ⊆M satisfies

V * [π(S)⊥].

(ii) For every pair of Hamiltonians H0, H1 ∈ F there exists a c-weak Kam solution G0 for H0

and a dual c-weak Kam solution G1 for H1 such that

V *
[
(G0 ∧ G1)

⊥
]
.

Moreover, calling h0, h1 the Peierls barriers of H0 and H1, we can also suppose that
Φh0Φh1(G0) = G0 and Φ̆h1Φ̆h0(G1) = G1.

Proof. Let M be a minimal component in Pc such that (1.25) holds true.

(i) Call A1, . . . , Ak the time-one actions of H1, . . . , Hk, and consider the composition

A = Ak ◦ · · · ◦A1.

Let us apply (1.25) with n = 1 to the cost hAc and to a fixed point G of ΦhAc
belonging to

M (let us recall that, by invariance, every minimal component contains such a fixed point).
We get

V * [IhAc
(G)⊥].

Set S = G|IhAc
(G). By a natural generalization of Proposition 23, S is invariant for φ, thus

the conclusion of item (i) is achieved.



62 Chapter 1. Connecting orbits for families of Tonelli Hamiltonians

(ii) Call h0, h1 the Peierls barrier at cohomology c of H0 and H1 respectively. In (1.25) take
n = 1, A1 = h0 ◦ h1 and G a fixed point of ΦA1 in M. We get

V * [IA1(G)
⊥] = [G ∧ Φ̆A1(G)

⊥].

Note that G is a c-weak Kam solution for H0, because it belongs to the image of Φh0 . Note
also that Φ̆A1(G) is a dual c-weak Kam solution for H1, because it belongs to the image
of Φ̆h1 due to Φ̆A1 = Φ̆h0◦h1 = Φ̆h1 ◦ Φ̆h0 . Hence the first part of the statement follows by
setting G0 = G and G1 = Φ̆A1(G).

The second part of the statement follows by replacing, in the above argument, the cost
h0 ◦ h1 with its Peierls barrier h, i.e.

h = lim inf
m→∞

(h0 ◦ h1)
m +mαh0◦h1

where αh0◦h1 is the unique constant such that the lim inf is real valued. The conclusion
follows similarly as above, by taking in (1.25) n = 1, Φ1 = Φh and G a fixed point of Φh in
M, and then setting G0 = G, G1 = Φ̆1(G).



Chapter 2

Generic transitivity for couples of
Hamiltonians

All considered manifolds are separable, finite dimensional, smooth, connected and without
boundary, unless otherwise stated.

2.1 Introduction

In this paper we consider the switched system associated to a generic couple of Hamiltonians
H1, H2 on a symplectic manifold N . Our focus is to prove that orbits and reachable sets of such a
system are generically the whole of N . Our work is in the same spirit of a paper of Lobry [Lob72]
who proved that, for a Ck-generic (in the sense of Baire) couple of vector fields on a manifold M
and for k large enough, orbits are the whole of M .

We will come back later to our notion of genericity, which is given in terms of rectifiable
subsets of positive codimension in a Banach or Frechet space and which is stronger than the usual
one based on Baire Category. Let us now quickly recall the definitions of orbit and reachable set.

Let us denote by {φtH1
}t and {φtH2

}t the Hamiltonian (local) flows of H1 and H2 respectively.
We assume that H1 and H2 are at least C2. The orbit OH1,H2(z) ⊆ N of a point z ∈ N through
the switched system associated to H1 and H2 is obtained by applying to z the group1 generated
by the two flows. More explicitly,

OH1,H2(z) =
{

φtnHin
◦ · · · ◦ φt1Hi1

(z) : i1, . . . , in ∈ {1, 2}, t1, . . . , tn ∈ R, n ≥ 1
}

.

The reachable set of z, denoted by O+
H1,H2

(z), represents instead the “future” of z, and is obtained
by applying to z the (pseudo-)semigroup generated by {φtH1

}t>0 and {φtH2
}t>0. More explicitly,

O+
H1,H2

(z) =
{

φtnHin
◦ · · · ◦ φt1Hi1

(z) : i1, . . . , in ∈ {1, 2}, t1, . . . , tn > 0, n ≥ 1
}

.

1This should be more properly called a pseudogroup, since the flows may not be complete.
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By taking t1, . . . , tn < 0 in the expression above one gets the analogous definition for the negative
reachable set O−

H1,H2
(z), i.e. the “past” of z.

When interested in orbits, we say that we are in the time-unoriented case. We say that we
are in the time-oriented case when we are interested in reachable sets.

The main result of this paper is that for a Ck-generic couple H1, H2 and for k large enough
orbits are the whole of N , and the same is true for reachable sets provided that the manifold
N is compact. In fact, we prove something more accurate than Ck-genericity of couples: in a
first respect, we adopt the notion of rectifiable set of positive codimension in Banach or Frechet
spaces, which is a stronger notion2 than genericity in the sense of Baire: indeed, such a rectifiable
set is always Baire-meager whereas the viceversa is not always true (see [Ber10b] for a detailed
study; we shall recall the definition and some basic facts in Section 2.2.2, see Definition 41). In a
second respect, we make perturbations just in H2 leaving H1 fixed (apart from a small subset of
highly degenerate H1, see Assumption 1 below).

Let us set dimN = 2d. Recall that, for each k ∈ N , the space Ck(N) of Ck-real functions on
N is a Banach space when N is compact, and a Frechet space otherwise. Our main results are as
follows:

Main theorem 1 (Time-unoriented case). Let H1 ∈ C4d+1(N) satisfy the non-degeneracy
assumption 1 below. Let k ≥ 4d. Then, the set

{

H2 ∈ C
k(N) : OH1,H2(z) = N ∀ z ∈ N

}

has rectifiable complement of codimension ≥ 1 in Ck(N). In particular, it is Ck-generic.

Main theorem 2 (Time-oriented case). Assume that N is compact. Let H1 and k be as before.
Then, the set

{

H2 ∈ C
k(N) : O+

H1,H2
(z) = N ∀ z ∈ N

}

has rectifiable complement of codimension ≥ 1 in Ck(N), and in particular it is Ck-generic.

The two results above are proved in Section 2.3 (Theorems 46 and 47). They extend quite
naturally to time-dependent Hamiltonians as well, this is the content of the last Section 2.4.

The proofs make fundamentally use of three ingredients, namely the Rashevski-Chow Theorem,
the Thom transversality Theorem and the Hamiltonian flow-box Theorem. The exact statements
serving our purposes will be given in Section 2.2.

The Rashevski-Chow Theorem, as it is well-known, makes a link between the Lie algebra
spanned by two vector fields at a point and the orbit or reachable set of that point. The part
concerning reachable sets is more precisely called Krener Theorem. In Section 2.2.1 we recall
some local and global versions of these theorems. In the global time-oriented version we will
make the additional assumption that the flows of the considered vector fields have non-wandering
dynamics. Under the assumptions of Krener Theorem, this is a sufficient condition for concluding

2It is also stronger than some other notions of translational invariant “smallness” in infinite-dimensional
spaces, such as prevalence or Aronszajn-nullity, see [Ber10b].
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that reachable sets are equal to the whole manifold. On the other hand, every Hamiltonian flow
on a compact symplectic manifold is non-wandering by Poincaré recurrence Theorem; this is the
reason for the compactness assumption on N in the statement of the Main Theorem 2.

Concerning the Thom Transversality Theorem, we use a refined version of the classical result
which will be proved in Chapter 3 of this thesis (see also [BM]). Such a version yields that the
set of maps whose jet is transverse to a submanifold in a jet space not only is generic, but its
complement is rectifiable of positive codimension, which, as already mentioned, is a stronger
information. We recall the result in Section 2.2.2 along with the notion of rectifiable set of positive
codimension in Banach (or Frechet) spaces.

The last ingredient is the Hamiltonian flow-box Theorem, a normal form result which makes
computation of iterated Lie (or Poisson) brackets handleable. The exact statement is recalled in
Section 2.2.3.

We finish the introduction by stating the non-degeneracy assumption required to H1 in the
main results above. Let us first give a definition.

Definition 36. Let S ⊆M be a subset of the manifold M . We say that S has codimension c in
M , and we write codimMS = c, if

S ⊆
⋃

l∈N

Sl

for a countable family {Sl}l of C1-submanifolds of codimension ≥ c in M .

Note that, according to the above definition, a subset S of codimension c is also of codimension
c′ for every c′ ≤ c. In fact, in this paper we are interested in estimate the size of certain subsets,
and only lower bounds (rather than sharp values) for codimension will matter.

Assumption 1. The Hamiltonian H1 is continuously differentiable and the subset N0 ⊆ N
defined by

N0 = {z ∈ N : dzH1 = 0}

is contained in a countable union ∪l∈NN
l of C2-submanifolds of N of codimension greater or

equal than dimN
2 + 1. Given such a family3 {N l}l we define the tangent space TN0 as

TN0 =
⋃

l∈N

TN l.

Note that each TN l is a submanifold of class C1. According to Definition 36 we have

codimNN0 ≥
dimN

2
+ 1

codim TNTN0 ≥ 2 codimNN0 ≥ dimN + 2.

The Assumption 1 is generically satisfied, by an immediate application of the classical Thom
transversality Theorem.

3We will always assume that, given H1 as above, the family {N l}l has been chosen once for all. Such a
choice will never play any role.
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2.2 Notation and preliminaries

2.2.1 The Rashevski-Chow Theorem: time-unoriented and time-
oriented versions

We state here several versions of the Rashevski-Chow theorem for two (non-necessarily Hamil-
tonian) vector fields. For the proofs we refer to the books [Jur97, AS04]. The proofs in these
references are sometimes given for smooth vector fields, but they hold unchanged in the Ck case,
k ≥ 1.

Let us first establish some notation. Given two Ck vector fields X1, X2 (k ≥ 1) on a manifold
M , the orbit OX1,X2(z) and the reachable set O+

X1,X2
(z) of a point z ∈M are defined as in the

introduction, with the (local) flows of X1 and X2 playing the role of the Hamiltonian flows of H1

and H2 of the introduction.
We denote by Lie k(X1, X2) the vector space spanned by the vector fields

X1, X2, [Xi0 , [Xi1 , [. . . , [Xim−1 , Xim ], . . . ]]], 1 ≤ m ≤ k, i0, i1, . . . , im ∈ {1, 2}.

where [·, ·] denotes the usual bracket of vector fields. We also denote by Lie k
1(X1, X2) the vector

space obtained by bracketing just with X1, i.e. the span of the k + 2 vector fields

X1, X2, [X1, [X1, [. . . , [X1
︸ ︷︷ ︸

m times

, X2] . . . ]]], 1 ≤ m ≤ k.

We obviously have
Lie k

1(X1, X2) ⊆ Lie k(X1, X2).

Evaluating these vector spaces at a point z ∈M yields a vector subspace of TzM : we will use
the notation

Lie k
1(X1, X2)(z), Lie k(X1, X2)(z)

to denote these vector subspaces.
For two Hamiltonians H1, H2 defined on a symplectic manifold (N,ω), let us recall the basic

identity
X{H1,H2} = [XH1 , XH2 ]

where {·, ·} is the usual Poisson bracket of functions and XH1 , XH2 are the Hamiltonian vector
fields of H1, H2 defined by the usual formula, valid for any function H,

ιXH
ω = dH.

In the next sections we will tacitly use the following immediate consequence of the formulas above
and of the non-degeneracy of the symplectic form: for each z ∈ N ,

Lie k
1(XH1 , XH2)(z) = TzN

⇔ Span T ∗
z N

{

dzH1, dzH2, dz{H1, H2}, . . . , dz {H1, {H1, {. . . , {H1
︸ ︷︷ ︸

k times

, H2} . . . }}}
}

= T ∗
zN.

and of course in this case we also have Lie k(XH1 , XH2)(z) = TzN .
The part (ii) of the following statement is also known as Krener’s Theorem.
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Theorem 37 (Local Rashevski-Chow Theorem). Let X1, X2 be two Ck vector fields (k ≥ 1) on
the manifold M . Let z ∈M .

(i) (time-unoriented case) If Lie k−1(X1, X2)(z) = TzM , then z is contained in the interior of
its orbit OX1,X2(z):

z ∈ intOX1,X2(z).

(ii) (time-oriented case) If Lie k−1(X1, X2)(z) = TzM , then z is contained in the closure of the
interior of its positive reachable set O+

X1,X2
(z), as well as in the closure of the interior of

its negative reachable set O−
X1,X2

(z):

z ∈ cl intO+
X1,X2

(z) ∩ cl intO−
X1,X2

(z).

We are now going to state the global counterpart to the previous theorem. In the time-oriented
case we shall make the additional assumption that X1 and X2 are complete vector fields and that
all points of M are non-wandering for both X1 and X2. Let us recall the precise definition.

Definition 38. Let X be a complete C1 vector field on the manifold M with flow {φtX}t∈R. A
point z ∈M is said to be non-wandering for X if for every neighborhood U of z and every t > 0
there exists t′ > t such that

φt
′

X(U) ∩ U 6= ∅.

The set of non-wandering points is closed. Note that a point is non-wandering for X if and
only if it is non-wandering for −X. Note also that if M is compact then the flow of X is complete;
if, in addition, the flow of X preserve a measure of full support then each point is non-wandering
for X, by the Poincaré Recurrence Theorem. This is the case for an Hamiltonian vector field on
a compact symplectic manifold.

Theorem 39. Let X1, X2 be two Ck vector fields (k ≥ 1) on the manifold M .

(i) (time-unoriented case) If every z ∈M satisfies

z ∈ intOX1,X2(z)

then

OX1,X2(z) =M ∀ z ∈M.

(ii) (time-oriented case) Assume that X1 and X2 are complete and that all points of M are
non-wandering for both X1 and X2. If

z ∈ cl intO+
X1,X2

(z) ∩ cl intO−
X1,X2

(z) ∀ z ∈M (2.1)

then

O+
X1,X2

(z) =M and O−
X1,X2

(z) =M ∀ z ∈M.
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Proof. The part (i) is an immediate consequence of the connectedness of M . The part (ii) is a
consequence of the Orbit Theorem (see [AS04] or [Jur97]), and of Corollary 8.3 and Proposition
8.14 in [AS04] as we now quickly recall.

By the Orbit Theorem, the orbit of any point z ∈ N is an immersed submanifold of N . Since
the orbit OX1,X2(z) of every point z has non-empty interior (due to assumption (2.1)), we deduce
that the orbit of every z is an immersed submanifold of dimension equal to dimN , i.e. it is an
open subset of M for every z. By the part (i) of Theorem 39 we deduce

OX1,X2(z) =M ∀ z ∈M.

From Proposition 8.14 in [AS04] and the non-wandering assumption4 on X1 and X2 we have

OX1,X2(z) ⊆ clO+
X1,X2

(z) ∀ z ∈M.

Putting together the two above relations yields

M = clO+
X1,X2

(z) ∀ z ∈M.

The conclusion now follows by Corollary 8.3 in [AS04].

Note that Proposition 8.14 and Corollary 8.3 in [AS04] are therein stated under the assumption
that Lie (X1, X2)(z) = TzM for every z ∈M , but their proofs hold unchanged under the weaker
assumption (2.1). We will need this slightly more general formulation in the sequel.

Remark 40. We will use in the sequel the following basic fact: given two C1 vector fields X1, X2

on M and z ∈M , we have

z ∈ intOX1,X2(z) ⇔ intOX1,X2(z) 6= ∅.

Indeed, let us suppose that the orbit OX1,X2(z) has non-empty interior and let us prove that it
is open. By changing the point z if necessary, we can suppose that z belongs to the interior of
OX1,X2(z). Let now z′ be another point of OX1,X2(z). We want to prove that z′ belongs to the
interior of OX1,X2(z) as well. By definition of orbit, there exists φ = φtkXik

◦ · · · ◦ φt1Xi1
for some

k ∈ N, t1, . . . , tk ∈ R, i1, . . . , ik ∈ {1, 2}, such that

z ∈ Domφ and φ(z) = z′.

Since Domφ is open and z ∈ intOX1,X2(z), the set Domφ ∩ OX1,X2(z) is a neighborhood of z.
Since φ is a local diffeomorphism, the set φ(Domφ∩OX1,X2(z)) is a neighborhood of z′ contained
in OX1,X2(z). This proves that z′ ∈ intOX1,X2(z).

4In [AS04] the terminology ‘Poisson stable’ rather than ‘non-wandering’ is used.
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2.2.2 The Thom Transversality Theorem. Rectifiable sets of pos-
itive codimension

In this section we recall from [Ber10b] the notion of rectifiable set of positive codimension
in Banach and Frechet spaces. It is quite clear from the definitions below that such a set is
automatically Baire-meager (i.e. it is contained in a countable union of closed sets with empty
interior, or, equivalently, its complement is generic), but the viceversa is not true in general. In
this sense, the notion of rectifiable set of positive codimension is a stronger notion of “smallness”
than the one of having generic complement.

Let us first give the definition for Banach spaces. We shall present later the extension to
Frechet spaces.

Definition 41. The subset A in the Banach space F is a Lipschitz graph of codimension c ∈ N if
there exists a splitting F = E⊕G with dimG = c and E closed, and a Lipschitz map g : E −→ G
such that

A ⊆ {x+ g(x), x ∈ E}.

A subset A ⊆ F is rectifiable of codimension c ∈ N if it is a countable union A = ∪nϕn(An)
where

• ϕn : Un −→ F is a Fredholm map 5 of index in defined on an open subset Un in a separable
Banach space Fn.

• An ⊆ Un is a Lipschitz graph of codimension c+ in in Fn.

Finally, a subset A ⊆ F is rectifiable of positive codimension if it is rectifiable of codimension
c ∈ N for some c ≥ 1.

In this paper, the Banach spaces under consideration will mostly be the spaces Ck(M), k ∈ N,
of real functions of class Ck on a compact manifold M .

We shall occasionally consider the case of compact manifolds with boundary. More precisely,
if M is any such manifold, we will consider the space Ck(M) defined as

Ck(M) =
{

f : M → R : f is of class Ck in M \ ∂M , f is continuous up to the boundary and

all partial derivatives of f of order ≤ k extend by continuity to the boundary
}

The space Ck(M) is a separable Banach space when endowed with the norm

‖f‖Ck(M) = max
0≤|α|≤k

sup
x∈M\∂M

|∂αf(x)| (2.2)

the maximum being taken over all multi-indexes α = (α1, . . . , αm) ∈ Nd of length ≤ k. Here m is
the dimension of M . For a function f ∈ Ck(M), we will regard its k-jet jkf as a function from
M \ ∂M to Jk(M \ ∂M,R).

5A Fredholm map of index i between separable Banach spaces is a C1 map such that the differential is
Fredholm of index i at every point (recall that the index is locally constant).
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We will also consider the space Ck(M) when M is a non-compact manifold without boundary.
In this case Ck(M) is no more a Banach space, it is however a Frechet space in the usual way,

i.e. the Frechet topology is given by the family of seminorms
{

‖ · ‖Ck(Kn)

}

n∈N
, where Kn is any

increasing sequence of compact sets exhausting M and ‖ · ‖Ck(Kn) is defined as in (2.2). In fact it
is not restrictive to assume that each Kn is a smooth manifold with boundary.

The definition of rectifiable subset of positive codimension extends to Frechet spaces as follows
(cf. [Ber10b, Section 3], where a different terminology was used: we call ‘rectifiable’ here what
was called ‘countably rectifiable’ there):

Definition 42. The subset A of the Frechet space F is rectifiable of codimension c if it is
a countable union A = ∪nAn where each An satisfies: there exists a Banach space Bn and a
continuous linear map Pn : F → Bn with dense range such that Pn(An) is rectifiable of codimension
c in Bn.

Let us point out from [Ber10b, Prop. 16] the following useful compatibility property among
the spaces Ck(M) with respect to different values of k.

Proposition 43. Let M be a manifold. If A ⊆ Ck(M) is rectifiable of codimension c, and k′ > k,
then A ∩ Ck′(M) is rectifiable of codimension c in Ck′(M).

The next theorem can be seen as a finer version of the “avoiding case” of the classical Thom
transversality Theorem in jet spaces.

Theorem 44. Let M be a manifold, and W ⊆ Jk(M,R) a C1-submanifold such that

codimW ≥ dimM + 1.

Then, for every r ≥ 1 the set

{

f ∈ Ck+r(M) : jkf(M) ∩W 6= ∅
}

is rectifiable of codimension equal to codimW − dimM ≥ 1 in Ck+r(M).

Proof. Let B = {z ∈ Rd : |z| < 1} be the open unit disc in Rd, and let W be a C1 submanifold
of Jk(B,R) with codimW ≥ d+1. In Chapter 3 (Proposition 69) it will be proved that for every
r ≥ 1 the set {

f ∈ Ck+r(B̄) : jkf(B) ∩W 6= ∅
}

is rectifiable of codimension equal to codimW −d in the Banach space Ck+r(B̄) defined according
to (2.2).

The proof of Proposition 69 will actually yield, with essentially no modifications, the following
more general result: if M is a compact manifold with or without boundary, and W is a C1

submanifold of Jk(M \ ∂M,R) with codimW ≥ dimM + 1, then for every r ≥ 1 the set

{

f ∈ Ck+r(M) : jkf(M \ ∂M) ∩W 6= ∅
}

(2.3)
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is rectifiable of codimension codimW − dimM in the Banach space Ck(M). This proves the
present statement in the case of compact M .

In order to end the proof of the theorem it remains to consider the non-compact case. Let
M be a non-compact manifold (without boundary), and call A ⊆ Ck+r(M) the subset in the
statement, namely

A =
{

f ∈ Ck+r(M) : jkf(M) ∩W 6= ∅
}

.

Let Kn ⊆ M,n ∈ N, be a sequence of smooth compact sets exhausting M . Each of them is a
smooth manifold with boundary. Call Pn : C

k(M)→ Ck(Kn) the natural projection. Note that
the space Jk(Kn \ ∂Kn,R) is naturally included in Jk(M,R), and that A = ∪nAn where

An = P−1
n

({

f ∈ Ck+r(Kn) : j
kf(Kn \ ∂Kn) ∩W 6= ∅

})

.

For each n the set {

f ∈ Ck+r(Kn) : j
kf(Kn \ ∂Kn) ∩W 6= ∅

}

is rectifiable of codimension codimW −dimM in Ck+r(Kn), because we are in the same situation
of the set in (2.3). Moreover, each Pn is a surjective (cf. [Hes41, See64, Bie80] for more general
statements) continuous linear operator from the Frechet space Ck(M) to the Banach space
Ck(Kn) and, a fortiori, it has dense range. Hence, by Definition 42, the set A is rectifiable of
codimension codimW − dimM in the Frechet space Ck(M), as desired.

Clearly, the above theorem still holds true if one replaces W by a countable union of C1

submanifolds of codimension greater or equal than dimM + 1. In fact it is still true when W is a
rectifiable set of codimension greater or equal than dimM+1, which also follows from Proposition
69.

2.2.3 The Hamiltonian Flow-Box Theorem

Theorem 45. Let (N,ω) be a symplectic 2d-dimensional manifold, and H : N → R be a Ck

function, k ≥ 2. Let z ∈ N be such that dzH 6= 0. Then, there exist a Ck−1 chart ψ : U → R2d

defined in a neighborhood U of z such that

H ◦ ψ−1(x, p) = p1 and (ψ−1)∗ω0 = ω

where ω0 is the standard symplectic form on R2d and (x, p) = (x1, . . . , xd, p1, . . . , pd) are the
associated Darboux coordinates.

Proof. We refer to [AM78, Theorem 5.2.19], where in fact the function H is assumed to be
smooth. However, the diffeomorphism ψ is therein constructed using the flow of H , which is Ck−1

if H is Ck.
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2.3 The autonomous case

In this section we prove the main results presented in the introduction. For the convenience of
the reader, we restate them as Theorem 46 and Theorem 47 below.

Theorem 46 (Time-unoriented, autonomous case). Let N be a symplectic manifold of dimension
2d, and let H1 ∈ C

4d+1(N) satisfy the non-degeneracy assumption (1). Then, for every k ≥ 4d,
the set {

H2 ∈ C
k(N) : OH1,H2(z) = N ∀ z ∈ N

}

has rectifiable complement of codimension ≥ 1 in Ck(N).

Theorem 47 (Time-oriented, autonomous case). Let N be a compact symplectic manifold of
dimension 2d, and let H1 ∈ C

4d+1(N) satisfy the non-degeneracy assumption (1). Then, for
every k ≥ 4d, the set {

H2 ∈ C
k(N) : O+

H1,H2
(z) = N ∀ z ∈ N

}

has rectifiable complement of codimension ≥ 1 in Ck(N).

The proof of both theorems makes use of the following two results.

Lemma 48. Let N be a symplectic manifold, and let H1 be of class Ck+1 (k ≥ 2) and satisfy
the non-degeneracy Assumption (1). Let us set

N0 = {z ∈ N : dzH1 = 0}, N ′ = N \N0

and define subsets W ′,W0 ⊆ J
k−1(N,R) by

W ′=
{

j ∈ Jk−1(N,R) : if j = jk−1
z H2 then z ∈ N ′ and Lie k−2

1 (XH1 , XH2)(z) ( TzN
}

W0=
{

j ∈ Jk−1(N,R) : if j = jk−1
z H2 then z ∈ N0 and XH2(z) ∈ TN0

}

.6

We have:

codim Jk−1(N,R)W
′ = k − dimN + 1

codim Jk−1(N,R)W0 ≥ dimN + 2.

In particular,
codim (W ′ ∪W0) ≥ dimN + 1 as soon as k ≥ 2 dimN.

Proposition 49. Let H1, N0, N
′ be as in Lemma 48 and H2 ∈ C

k(N), k ≥ 2, satisfy

XH2(z) /∈ TN0 ∀ z ∈ N0.

Then, the set
{
t ∈ R : φtH2

(z) ∈ N0

}

has empty interior for every z ∈ N0. In particular, each z ∈ N0 is accumulated by points in
O+

H1,H2
(z) ∩N ′ as well as by points in O−

H1,H2
(z) ∩N ′.

6Recall that in Assumption 1 we defined TN0 as the union
⋃

l∈N
TN l where {N l}l is a once-for-all

fixed countable family of submanifolds of codimension greater or equal than codimN0 and whose union
covers N0.
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Proof of Theorem 46. First of all, let us notice that it suffices to prove the result for k = 4d,
thanks to Proposition 43.

Let W ′ and W0 be as in Lemma 48. By that Lemma and by the positive-codimension version
of the Thom transversality theorem (Theorem 44) we get that the set

{

H2 ∈ C
4d(N) : j4d−1H2(N) ∩

(
W ′ ∪W0

)
= ∅
}

has rectifiable complement of codimension ≥ 1 in C4d(N). Thus it is enough to prove that any
H2 belonging to the set above satisfies OH1,H2(z) = N for all z ∈ N .

Let H2 belong to the set above. If the set N0 = {z ∈ N : dzH1 = 0} is empty, then, recalling
the definition of W ′, the conclusion follows from Theorems 37 and 39. If N0 is not empty, the
argument can be adapted as follows.

By connectedness of N , it suffices to prove that the orbit of every point z ∈ N is open. By
Remark 40, an orbit is either open or with empty interior. Hence we are reduced to prove that the
orbit of every point z ∈ N has non-empty interior. This is true if z ∈ N ′ = N \N0, by definition
of W ′ and by the Rashevski-Chow Theorem. This is equally true if z ∈ N0, because in this case
we get by Proposition 49 that the orbit of z intersects (hence coincide with) the orbit of some
point in N ′, and we just proved that such an orbit has non-empty interior.

Proof of Theorem 47. The proof is analogous to the one of Theorem 46 above. As before, it
suffices to prove the result for k = 4d. By repeating the first part of that proof, we get that the
set {

H2 ∈ C
4d(N) : j4d−1H2(N) ∩

(
W ′ ∪W0

)
= ∅
}

(2.4)

has rectifiable complement of codimension ≥ 1 in C4d(N). Hence it suffices to prove that any H2

belonging to the set above satisfies the properties stated in the theorem.
Let H2 belong to the set above. If the set N0 = {z ∈ N : dzH1 = 0} is empty, then the

conclusion immediately follows from the time-oriented version of the Rashevski-Chow Theorem
(see Theorems 37 and 39). Note that any flow is complete on the compact manifold N , and any
Hamiltonian flow on N has the property that all points are non-wandering by Poincaré recurrence
Theorem, thus part (ii) of Theorem 39 is indeed applicable.

If N0 is not empty we adapt the argument as follows: by part (ii) of Theorem 39 it suffices to
prove that every z ∈ N satisfies

z ∈ cl intO+
X1,X2

(z) ∩ cl intO−
X1,X2

(z).

This is true if z ∈ N ′ = N \N0 by Krener’s Theorem, see part (ii) of Theorem 37. This is equally
true if z ∈ N0 as we now show. Indeed, in this case we get by Proposition 49 that z is accumulated
by a sequence (zn)n∈N of points in O+

H1,H2
(z) ∩ N ′. Since each zn belongs to N ′, we know by

the previous case that zn is accumulated by a sequence (zn,k)k∈N of points in intO+
H1,H2

(zn). By

definition of reachable set, we have intO+
H1,H2

(zn) ⊆ intO+
H1,H2

(z) for each n. Hence the subset

{zn,k}n,k∈N is contained in intO+
H1,H2

(z) and has z as an accumulation point. This proves that

z ∈ cl intO+
H1,H2

(z). The proof for O− is analogous.
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Proof of Lemma 48. Let us first prove the inequality about W ′. If k < 2d then the condition
Lie k−2

1 (XH1 , XH2) ( TzN is trivially satisfied because Lie k−2
1 (XH1 , XH2) is spanned by k vector

fields, and the conclusion is true. Let us then suppose k ≥ 2d.
The set W ′ is locally defined (above the open set N ′ ⊆ N) by the inequality

rank












dzH1

dzH2

dz{H1, H2}
...

dz {H1, {H1, {. . . , {H1
︸ ︷︷ ︸

k − 2 times

, H2} . . . }}}












< 2d. (2.5)

By the Hamiltonian Flow-box Theorem (Theorem 45) we can find, near any arbitrary point
of N ′, a local Ck symplectic chart ψ yielding identification with Darboux coordinates z =
(x, p) = (x1, . . . , xd, p1, . . . , pd) such that H1(z) = p1.7 A computation then shows that, in these
coordinates,

{H1, {H1, {. . . , {H1
︸ ︷︷ ︸

m times

, H2} . . . }}}(z) = ∂xm
1
H2(z),

for any function H2 differentiable enough. As a consequence,

dz {H1, {H1, {. . . , {H1
︸ ︷︷ ︸

m times

, H2} . . . }}}

=
(

∂xm+1
1

H2 , . . . , ∂xdx
m
1
H2 , ∂p1xm

1
H2 , . . . , ∂pdxm

1
H2

)

(z)

and the definition (2.5) for W ′ becomes more explicit:

rank








0 . . . 0 1 0 . . . 0
∂x1H2 . . . ∂xd

H2 ∂p1H2 ∂p2H2 . . . ∂pdH2
...

. . .
...

...
...

. . .
...

∂
xk−1
1

H2 . . . ∂
xdx

k−2
1

H2 ∂
p1x

k−2
1

H2 ∂
p2x

k−2
1

H2 . . . ∂
pdx

k−2
1

H2








(z) < 2d.

This is a k × 2d – matrix. The first row corresponds to dzH1. The other rows correspond to the
iterated Lie brackets computed above up to m = k − 2, and their entries are clearly independent
when regarded as jet-coordinates. We deduce that the codimension of the set W ′ is the same as
the codimension of the set of (k − 1)× (2d− 1) matrices with non-maximal rank. Since we are
assuming k ≥ 2d, this codimension is well-known to be

k − 2d+ 1

as desired.
7Note that ψ also induces a change of coordinates on Jk−1(N,R), which is of class C1 because

ψ is of class Ck. Hence the codimension of W ′ is the same as the codimension of its image under
this diffeomorphism. This legitimates the subsequent computations (and accounts for the requirement
H1 ∈ C

k+1 rather than just Ck).
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Let us now prove the inequality codim Jk−1(N,R)W0 ≥ 2d+ 2. By Assumption 1 we have

N0 ⊆
⋃

l∈N

N l

where each N l is a C2 submanifold of N of codimension greater or equal than d+1. Each tangent
space TN l is a C1 submanifold of TN and

codim TNTN
l ≥ 2(d+ 1).

Since the map

Jk−1(N,R)→ TN

jk−1
z H2 7→ XH2(z)

is a submersion for all k ≥ 2 (due to non-degeneracy of the symplectic form), and W0 is precisely
the preimage of TN0 = ∪l∈NTN

l via this map, we get

codim Jk−1W0 = codim TNTN0 ≥ 2(d+ 1),

as desired.

Proof of Proposition 49. Recall that N0 is contained in a countable union of submanifolds
{N l}l and, by definition, TN0 = ∪lTN

l. We want to prove that for each z ∈ N0 the set

{t ∈ R : φtH2
(z) ∈ N0}

has empty interior. By Baire’s Theorem, it suffices to prove that, for each fixed l, the closure of
the set

{t ∈ R : φtH2
(z) ∈ N l}

has empty interior. This is easily seen to be true: the assumption

XH2(z) /∈ TzN
l ∀ z ∈ N l

implies that the set above is constituted by isolated points, and the closure of such a set always
has empty interior.

2.4 The non-autonomous case

In this section we extend to the time-dependent case the results obtained in the previous section.
Let N be a symplectic manifold of dimension 2d, and H1, H2 : N×R→ R two time-dependent

Hamiltonians. They give rise to two time-dependent Hamiltonian vector fields on N denoted
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respectively by XH1 , XH2 . Equivalently, they give rise to two time-independent vector fields X̃H1

and X̃H2 on N × R defined by

X̃Hi
(z, t) = (XHi

(z, t), 1) ∈ T(z,t)(N × R) ∼= TzN × R, (z, t) ∈ N × R, i ∈ {1, 2}.

We shall occasionally denote by M the manifold N × R. If (z, t) ∈ N × R, in this section its
orbit OH1,H2(z, t) has to be intended as the orbit of (z, t) through X̃H1 and X̃H2 . It is therefore
a subset of N × R. We adopt the analogous definition for the reachable set O+

H1,H2
(z, t).

We will make the following assumption on H1:

Assumption 2. The Hamiltonian H1 is continuously differentiable and the subset M0 ⊆ N × R
defined by

M0 = {(z, t) ∈ N × R : dzH1(z, t) = 0},

is contained in a countable union ∪l∈NM
l of C2-submanifolds of N × R of codimension greater

or equal than dimN
2 + 1. Given such a family {M l}l we define the tangent space TM0 as

TM0 =
⋃

l∈N

TM l.

Note that each TM l is a submanifold of class C1 in T (N × R). According to Definition 36 we
have

codimN×RM0 ≥
dimN

2
+ 1

codim T (N×R)TM0 ≥ 2 codimN×RM0 ≥ dimN + 2.

As in the autonomous case, the above assumption is generic by an easy application of the
classical Thom transversality Theorem.

Let us now state the time-dependent versions of Theorems 46 and 47.

Theorem 50 (Time-unoriented, non-autonomous case). Let N be a symplectic manifold of
dimension 2d, and let H1 ∈ C

4d+2(N × R) satisfy the non-degeneracy assumption (2). Then, for
every k ≥ 4d+ 1 the set

{

H2 ∈ C
k(N × R) : OH1,H2(z, t) = N × R ∀ (z, t) ∈ N

}

has rectifiable complement of codimension ≥ 1 in Ck(N × R).

Since both vector fields X̃H1 and X̃H2 induce the equation ṫ = 1 on the t-variable, it is
obviously impossible for the reachable set of a point to be the whole of N × R. For this reason
we make the assumption that H1 and H2 are one-periodic in time, i.e. they are defined on N × T
where T = R/Z. We then regard the reachable set of a point (z, t) as a subset of N × T.

Theorem 51 (Time-oriented, periodic case). Let N be a compact symplectic manifold of dimension
2d, and let H1 ∈ C

4d+2(N × T) satisfy the non-degeneracy Assumption (2). For every k ≥ 4d+ 1
the set {

H2 ∈ C
k(N × T) : O+

H1,H2
(z, t) = N × T ∀ (z, t) ∈ N × T

}

has rectifiable complement of codimension ≥ 1 in Ck(N × T).
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Proof of Theorems 50 and 51. The proof is the same as in the autonomous case (Theorems
46 and 47), once the time-dependent counterpart to Lemma 48 has been established. This
is the content of Lemma 52 below. Note that for the time-oriented part one has to apply at
some point the part (ii) of Theorem 39 which makes the assumption that the two considered
flows have non-wandering dynamics. Since X̃H1 and X̃H2 preserve the measure µ ⊕ dt on the
compact manifoldN×T, this assumption is indeed fulfilled by the Poincaré Recurrence Theorem.

Lemma 52. Let N be a symplectic manifold of dimension 2d, and let H1 : N ×R be of class Ck+1

(k ≥ 2) and satisfy the non-degeneracy assumption (2). Let us define the subsets M0,M
′ ⊆ N ×R

by

M0 = {(z, t) ∈ N × R : dzH1(z, t) = 0}, M ′ = (N × R) \M0

and the subsets W ′,W0 ⊆ J
k−1(N × R,R) by

W ′=
{

j ∈ Jk−1(N × R,R) : if j = jk−1
(z,t)H2 then

(z, t) ∈M ′ and Lie k−2
1 (X̃H1 , X̃H2)(z, t) ( T(z,t)(N × R)

}

W0=
{

j ∈ Jk−1(N × R,R) : if j = jk−1
(z,t)H2 then (z, t) ∈M0 and X̃H2(z) ∈ TM0

}

.

We have:

codim Jk−1(N×R,R)W
′ = k − dimN

codim Jk−1(N×R,R)W0 ≥ dim(N × R) + 1.

In particular, codim (W ′ ∪W0) ≥ dimN + 1 as soon as k ≥ 2 dimN + 1.

Remark 53. The lemma above is stated in the non-periodic setting. It holds in the periodic
case as well by replacing the jet space Jk−1(N × R,R) with Jk−1(N × T,R). The proof remains
essentially unchanged.

Proof of Lemma 52. The proof is very similar to the one of Lemma 48. We start with proving
the inequality about W ′, for which we only consider the case k ≥ 2d+ 1. In the other cases the
result is trivial by a dimensional argument.

Let j0 be an arbitrary element of W ′. We are going to prove that in a neighborhood of j0
the codimension of W ′ is bounded below by the desired value k − dimN . The global bound on
the codimension of W ′ will then follow by standard arguments. The subset W ′ is defined by the
inequality

rank













X̃H1

X̃H2

[X̃H1 , X̃H2 ]
...

[X̃H1 , [. . . , [X̃H1
︸ ︷︷ ︸

k − 2 times

, X̃H2 ] . . . ]]













(z, t) < 2d+ 1 (2.6)
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which depends just on the (k − 1)-jet of H2. Note that, since H1 is of class Ck+1 and the matrix
involves up to k − 1 derivatives of H1, its entries are of class C2 in the variable j = jk−1

(z,t)H2 ∈

Jk−1(N × R,R).

Let us denote by (z0, t0) the source of the jet j0. Since j0 ∈ W ′, we have dzH1(z0, t0) 6= 0.
By the Hamiltonian Flowbox Theorem (Theorem 45) applied at H1(·, t0), there exists a local Ck

diffeomorphism ψ × id yielding identification with coordinates (z, t) = (x, p, t) on U × R,8 with
(x, p) = (x1, . . . , xd, p1, . . . , pd) being standard Darboux variables on the open set U ⊆ R2d, and
such that the Hamiltonian in the new coordinates satisfies at time t0

H1(z, t0) = p1 ∀ z ∈ U.

Using these coordinates it is easy to compute the restriction at t = t0 of the iterated Lie brackets
with X̃H1 . Indeed, for any m ≥ 1 and any function H2(z, t) differentiable enough, the computation
(which we omit) yields

[X̃H1 , [. . . , [X̃H1
︸ ︷︷ ︸

m times

, X̃H2 ] . . . ]](z, t0) =
(
XKm(z, t0), 0

)
∀ z = (x, p) ∈ U

where XKm is the Hamiltonian vector field on U associated to the function Km : U → R defined
by

z 7→ Km(z) = (∂x1 − ∂t)
mH2(z, t0) + (∂x1 − ∂t)

m−1∂tH1(z, t0).

Note that Km is a sum of two terms, with H2 appearing just in the first summand and H1 just
in the second.

Let us denote by j = (z, t, j′) the elements of Jk−1(U × R,R), where the variable j′ regroups
all variables other than the source (z, t), i.e. j′ regroups the value of H2 as well as all its partial
derivatives up to order k − 1. By using the explicit computation above we get that in the new
coordinates the inequality (2.6) defining W ′ becomes

rank
(

A(j′) +BH1(z, t0) + CH1(z, t, j
′)
)

< 2d+ 1

where:

• the matrix CH1(z, t, j
′) is a C1 matrix which is identically zero for t = t0 and its exact

expression does not play any role here;

8Note that ψ × id also induces a local diffeomorphism of class C1 from (a subset of) Jk−1(N × R,R)
to Jk−1(U × R,R), thus preserving codimensions of subsets.
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• the matrix A(j′) is given by9

A(j′) =

















1 ∂p1H2 ∂p1∂(x1−t)H2 . . . ∂p1∂(x1−t)k−2H2

0 ∂p2H2 ∂p2∂(x1−t)H2 . . . ∂p2∂(x1−t)k−2H2

...
...

...
. . .

...
0 ∂pdH2 ∂pd∂(x1−t)H2 . . . ∂pd∂(x1−t)k−2H2

0 −∂x1H2 −∂x1∂(x1−t)H2 . . . −∂x1∂(x1−t)k−2H2

...
...

...
. . .

...
0 −∂xd

H2 −∂xd
∂(x1−t)H2 . . . −∂xd

∂(x1−t)k−2H2

1 1 0 . . . 0

















(here the first two columns correspond to X̃H1 and X̃H2 , and the remaining columns account
for the H2-summand in the definition of Km, for m ranging from 1 to k − 2);

• the C1 matrix BH1(z, t0), depending just on z but not on t and j′, accounts for the
H1-summand in the definition of Km and its exact expression does not play any role.

From the expressions above it is clear that for t = t0 the variable j′ appears just in the matrix A.
Let us denote by Jk−1

(z0,t0)
the fiber of Jk−1(U × R,R) over (z0, t0). From the expression of A(j′)

above we deduce that the codimension of W ′ ∩ Jk−1
(z0,t0)

in Jk−1
(z0,t0)

is the same as the codimension
of the set of 2d× (k − 1) matrices with non-maximal rank. Since we are assuming k ≥ 2d+ 1,
this codimension is well-known to be

k − 2d.

Since BH1 and CH1 are of class C1, this fiberwise estimate allows to deduce the local bound

codim Jk−1(U×R,R)W
′ ≥ k − 2d in a neighborhood of j0,

which is what we wanted to prove.

Let us now prove the inequality about W0. The set W0 is the preimage of TM0 under the
map

Jk−1(N × R,R)→ T (N × R) ∼= TN × R× R

jk−1
(z,t)H2 7→

(
XH2(z), t, 1

)

Let us write TM0 = ∪l∈NTM
l with each M l being a C2 submanifold. It is not difficult to check

that the map above is transverse to the C1 submanifold TM l for each l. Recalling the Assumption
2 on H1, we then deduce

codim Jk−1(N×R,R)TM0 = codim T (N×R)

⋃

l∈N

TM l ≥ 2d+ 2.

9For reasons of page layout, the matrix A(j′) written here is rather the transpose of what it should be
in according to the matrix in (2.6).





Chapter 3

Some remarks on Thom’s transversality
Theorem

3.1 Introduction and a conjecture

It is well-known that “most” functions are Morse, which means that their critical points are
non-degenerate. Discussing this claim with some details will be an occasion to introduce and
motivate the present work. Let us fix some integer r > 2 and a dimension d. Let Bn be the open
unit ball in Rn, and B̄n the closed unit ball. We denote by Cr(B̄n,R) the space of functions
which are Cr on Bn, and whose differentials up to order r extend by continuity to the closed
ball B̄n. We endow it with the norm given as the sum of the supremums of the differentials of
order less or equal than r. It is then a separable Banach space. Let F be an affine subspace of
Cr(B̄n,R). In most cases F will just be the whole space Cr(B̄n,R), but it is sometimes useful to
consider finite-dimensional spaces F . The map

e1 : B
n × F −→ Rn

(x, f) 7−→ df(x)

is Cr−1, and, when F = Cr(B̄n,R) it is a submersion, see [AR67], Theorem 10.4. Recall that
a C1 map is a submersion if and only if its differential at each point is onto with a split kernel.
Then, it is locally equivalent (by left and right composition by C1 maps) to a projection with split
kernel. We will always assume that F is chosen such that e1 is a submersion (or at least that it is
transverse to {0}). Let us then denote by Σ1 the manifold e−1

1 (0), and consider the restriction
π|Σ1

to Σ1 of the projection on the second factor. This map is C1, and it is Fredholm of index 0.1

Moreover a map f0 ∈ F is Morse (on Bn ) if and only if it is a regular value of π|Σ1
, which means

that the differential of this map is onto at each point (x, f0) of Σ1. These claims are proved in
[AR67], Section 19, the argument is recalled in Section 3.2.2 for the convenience of the reader,
see Proposition 60. We have proved that the set N ⊂ F of non-Morse functions can be written

N = CV (π|Σ1
),

1The needed definitions and results about Fredholm maps will be recalled in Section 3.2.2.
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where CV denotes the set of critical values. By the theorem of Sard and Smale (see Section 3.2),
this set is Baire-meager, and it has zero measure in F , in a sense that will be made precise in
Section 3.2.

Let us now present, for r > 3, a slightly different approach which has the advantage of
avoiding the use of the Theorem of Sard and Smale. Denoting by Sn the set of symmetric d× d
matrices, we start with the evaluation map

e2 : B
n × F −→ Rn × Sn

(x, f) 7−→ (df(x), d2f(x))

which is Cr−2 and, when r > 3 and F = Cr(B̄n,R), is a submersion. Let us denote by
Ã ⊂ Rn × Sn the subset of points (0, H), with H singular. Note that Ã is an algebraic
submanifold of codimension n+ 1 in Rn × Sn, hence a finite union of smooth submanifolds of
codimension at least n+ 1. The set N ⊂ F of non-Morse functions can be written

N = π(Σ2), Σ2 = e−1
2 (Ã).

It is best here to first consider that F is finite dimensional (but that e2 is still a submersion). Then,
Σ2 is a finite union of manifolds of dimension less than dimF . This implies that N = π(Σ2) is
rectifiable of dimension less than dimF , or in other words it is rectifiable of positive codimension
in F . This implies that N has zero measure, but is a much more precise information, which was
obtained without the use of Sard Theorem. This reasoning can be extended to the case where
F is not finite dimensional with the help of an appropriate notion of rectifiable sets recalled in
Section 3.2. More precisely, we know that Σ2 is a finite union of manifolds of codimension at
least n+ 1. Since π is obviously Fredholm of index n, we conclude by Proposition 65 that π(Σ2)
is rectifiable of codimension 1. We obtain:

Theorem 54. Let N ⊂ Cr(B̄n,R) be the set of functions which are not Morse on Bn.
If r > 2, then N is a countable union of closed sets with empty interior, it has zero measure

(in the sense of Haar or Aronszajn).
If r > 3, it is rectifiable of positive codimension.

The concepts of sets of zero measure (Haar null or Aronszajn null sets) in separable Banach
spaces used in this statement are recalled in Section 3.2, together with the concept of rectifiable
set of positive codimension. Each point in the statement is the result of one of the strategies of
proof exposed above, notice that none of these statements contains the other.

As a second illustration, we consider a smooth manifold A ⊂ Rm and describe the set
NA ⊂ F = Cr(B̄n,Rm) of maps which are not transverse to A on Bn. We consider the evaluation
map

E0 : B
n × F −→ Rm

(x, f) 7−→ f(x).

This map is Cr and, for r > 1, it is a submersion. We then have

NA = CV (π|Σ0
), Σ0 = E−1

0 (A),
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and π|Σ0
is Cr and Fredholm of index i = n− c, where c is the codimension of A, as follows from

Proposition 60. If r > n− c+ 1, we can apply the theorem of Sard and Smale (see Section 3.2),
and obtain that this set is Baire-meager, and has zero measure in F , in a sense that will be made
precise in Section 3.2. When c > n, we also conclude that NA = π(Σ0) is rectifiable of positive
codimension.

The second approach, which is useful for c 6 n, consists in using the evaluation map

E1 : B
n × F −→ Rm × L(Rn,Rm)

(x, f) 7−→ (f(x), dfx).

This map is Cr−1, and, for r > 2, it is a submersion. Let us denote by Ã the set of pairs
(y, l) ∈ Rm × L(Rn,Rm) such that y ∈ A and l(Rn) + TyA ( Rm. We then have

NA = π(Σ̃1), Σ̃1 = E−1
1 (Ã).

We conclude as above that NA is rectifiable of positive codimension in view of the following
Lemma:

Lemma 55. The set Ã is a countable union of smooth manifolds of codimension more than n.

Proof. Locally, there exists a submersion F : Rm −→ Rc such that A = F−1(0). Then, the set Ã
is the preimage by the local submersion

Rm × L(Rn,Rm) ∋ (y, l) 7−→ (F (y), dFy ◦ l) ∈ Rc × L(Rn,Rc)

of the set B := {0}×LS(Rn,Rc) where LS is the set of singular linear maps from Rn to Rc (maps
of rank less than c). It is well-known that LS(Rn,Rc) is an analytic submanifold of codimension
n − c + 1 in L(Rn,Rc), hence B is an analytic submanifold of codimension n + 1. As a con-
sequence, B is a finite union of smooth submanifolds of codimension at least n+1, hence so is Ã.

As a conclusion, we obtain:

Theorem 56. Let A be a smooth submanifold of Rm of codimension c.

• For r > n− c+ 1, The set NA is Baire meager and Aronzajn null (hence Haar null) in
Cr(B̄n,Rm).

• For r > 2, the set NA is rectifiable of positive codimension in Cr(B̄n,Rm), it is thus Baire
meager and Aronszajn null.

It is worth observing that the second statement contains the first one, except for the case
where c = n and r = 1. Our goal in the present paper is to develop an analog of the second
strategy presented on the examples above to prove the Thom transversality Theorem in the space
of jets. This idea was suggested by Gromov, in [Gro86], page 33, and used in [EM02], Section 2.3.,
where it is reduced to an appropriate generalization of Lemma 55 above. This Lemma, which is
stated there without proof, is our Conjecture 72. The main novelty in the present paper consists
in giving a full proof of this conjecture in the analytic case. We also explain that this strategy, as
in the examples above, leads to a more precise statement of the Thom transversality Theorem
than the usual proof based on the Theorem of Sard:
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Theorem 57. Let A be a smooth submanifold of Jp(B̄n, Y ) of codimension c, where Y is a finite
dimensional separable manifold. For r ≥ p+ 1, let NA ⊂ Cr(B̄n, Y ) be the set of maps whose
p-jet is not transverse to A.

• If c > n+1 and r > p+1, then the set NA is rectifiable of codimension c−n in Cr(B̄n, Y ),
it is thus Baire meager and Aronszajn null.

• If c 6 n and r > p + 1 + n − c, the set NA is Baire meager and Aronszajn null (hence
Haar null) in Cr(B̄n, Y ).

• If c 6 n and r > p+ 2 and A is analytic, the set NA is rectifiable of codimension ≥ 1 in
Cr(B̄n, Y ), it is thus Baire meager and Aronszajn null.

Proof. For completeness, we first quickly recall the usual proof of the Thom transversality
Theorem, as given in [AR67], which yields the first and the second point of the Theorem. We
consider the evaluation map (with F = Cr(B̄n, Y )):

Ep : B
n × F −→ Jp(B̄n, Y )

(x, f) 7−→ jpxf.

This map is Cr−p, and it is a submersion, see [AR67], Theorem 10.4. We also have

NA = CV (π|Σ), Σ = E−1
p (A).

It follows from Proposition 60 below that the map π|Σ is Fredholm of index i = n − c. We
conclude from the Theorem of Sard and Smale (Theorem 71 below) that NA is Baire meager and
Aronszajn null. This proves the second point of the theorem. If, in addition, the codimension
of A is strictly larger than n, then so is the codimension of Σ, and we can conclude directly by
the “Easy Part” of the theorem of Sard and Smale that NA is rectifiable of positive codimension.
This proves the first point of the theorem.

We obtain the proof of the third point of the theorem by considering the evaluation map

Ep+1 : B
n × F −→ Jp+1(B̄n, Y )

(x, f) 7−→ jp+1
x f,

which is a Cr−p−1 submersion, and the set

Ã
def
=
{
jp+1
x f ∈ Jp+1(B̄n, Y ) : jpf is not transverse to A at x

}
⊆ Jp+1(B̄n, Y ).

By definition, we have
NA = π(Σ̃), Σ̃ = E−1

p+1(Ã).

The third point of the theorem, even without the additional restriction on A, would then be
a consequence of Conjecture 72 below. We are not going to prove this conjecture in its full
generality. Nevertheless, the cases of the conjecture that we will be able to prove (see Theorems
73 and 74) imply the third point of Theorem 57.
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Conjecture 58. If A is a smooth submanifold of Jp(B̄n, Y ) of codimension c 6 n, then Ã is a
countable union of smooth submanifolds of codimension strictly larger than n in Jp+1(B̄n, Y ).

In view of Proposition 69, it would even be enough for our applications to prove that Ã is
rectifiable of codimension n+ 1 (in the sense of Section 3.2.3). We come back to this conjecture
in Section 3.3, where we obtain some special cases, see Theorem 73 and 74, which are sufficient
to imply the third point of Theorem 57. In Section 3.2, we recall several mathematical notions
which have been used in this introduction.

3.2 Small sets, rectifiable sets, the theorem of Sard and
Smale

3.2.1 Some notions of small sets

Let F be a separable Banach space. We define below three translation invariant σ-ideals of
subsets of F . A σ-ideal is a family F of subsets of F such that

A ∈ F , A′ ⊂ A⇒ A′ ∈ F ,

∀n ∈ N, An ∈ F ⇒ ∪n∈NAn ∈ F .

A subset A ⊂ F is called Baire-meager if it is contained in a countable union of closed sets
with empty interior. The Baire Theorem states that a Baire-meager subset of a Banach space has
empty interior.

A subset A ⊂ F is called Haar-null if there exists a Borel probability measure µ on F such
that µ(A+ f) = 0 for all f ∈ F . The equality µ(A+ f) = 0 means that the set A+ f is contained
in a Borel set Ãf such that µ(Ãf ) = 0. A countable union of Haar-null sets is Haar-null, see
[Chr72, BL00] and [HSY92] for the non-separable case.

A subset A ⊂ F is called Aronszajn-null if, for each sequence fn generating a dense subset
of F , there exists a sequence An of Borel subsets of F such that A ⊂ ∪nAn and such that, for
each f ∈ F and for each n, the set

{x ∈ R : f + xfn ∈ An} ⊂ R

has zero Lebesque measure. A countable union of Aronszajn-null sets is Aronszajn-null, and each
Aronszajn-null set is Haar null, see [Aro76, BL00].

The notion of probe allows a simple criterion for proving that a Borel set A is Haar or
Aronszajn null. A probe for A is a finite dimensional vector space E ⊂ F such that (A+ f) ∩ E
has Lebesgue measure zero in E for each f ∈ F . It is easy to see that A is Haar null if there
exists a probe for A. In the sense of Aronszajn, we have (see [Zaj08], Proposition 4.3):

Lemma 59. Let A ⊂ F be a Borel set. If the set of probes for A contains a non-empty open set
in the space of finite dimensional subspaces of F , then A is Aronszajn null.

Proof. Let fn be a sequence of points of F generating a dense subspace. Under the hypothesis of
the lemma, there exists N ∈ N and a probe E such that E ⊂ Vect(fn, n 6 N). Then, the space
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FN := Vect(fn, n 6 N) is itself a probe for A. By standard arguments, (see [BL00], Proposition
6.29 or [Zaj08]), we conclude that A = ∪n6NAn, where each An is a Borel set such that the set

{x ∈ R : f + xfn ∈ An} ⊂ R

has zero measure for each f ∈ F . Since this holds for each sequence fn with dense range, we
conclude that A is Aronszajn null.

If X is a separable manifold modeled on a separable Banach space FX , we also have notions
of Baire meager, Haar null and Aronszajn null subsets of X. We say that A ⊂ X is Baire meager,
Haar null or Aronszajn null if, for each C1 chart ϕ : BX −→ X, the set ϕ−1(A) is Baire meager,
Haar null or Aronszajn null, where BX is the open unit ball in FX . Baire meager sets can also
be defined directly as subsets of countable unions of closed sets with empty interior in the Baire
topological space X.

The situation is slightly more problematic with Haar null or Aronszajn-null sets, because
these σ-ideals are not invariant by C1 diffeomorphisms. As a consequence, being Haar null or
Aronszajn null in the Banach space FX seen as a Banach Manifold is a stronger property than
being Haar null or Aronszajn null in FX seen as a Banach space. This ambiguity in terminology
should not cause problems in the sequel. Many other notions of sets of zero measure in nonlinear
spaces have been introduced, see for example the survey [HK10].

3.2.2 Fredholm maps

Given Banach spaces F and B, a continuous linear map L : F −→ B is called Fredholm if its
kernel is finite dimensional and if its range has finite codimension. This automatically implies that
the range of L is closed, see for this fact Lemma 4.38 in [AA02]). We say that L is a Fredholm
linear map of type (k, l) if k is the dimension of the kernel of L and l is the codimension of its
range. The index of L is the integer k − l. Recall that the set of Fredholm linear maps is open
in the space of continuous linear maps (for the norm topology), and that the index is locally
constant, although the integers k and l are not. They are lower semi-continuous. When F and B
have finite dimension n and m, then the index of all linear maps is i = n−m.

The following essentially comes from Section 19 of [AR67].

Proposition 60. Let F,X be Banach spaces such that X has finite dimension n. Let l : F×X −→
Rc be a surjective continuous linear map, let K be the kernel of l, and let k be the restriction to
K of the projection (f, x) 7−→ f .

Then k is Fredholm of index n− c. Moreover, it is onto if and only if the restriction l0 of l to
{0} ×X is onto.

Proof. Let us denote by X0 the space {0}×X, by F0 the space F×{0}, and by K0 the intersection
K ∩X0. To prove that the continuous linear map k is Fredholm, we write

F ×X = K1 ⊕K0 ⊕X1 ⊕ F1

where
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• F1 ⊂ F0 and F1 ⊕ (K + X0) = F × X. Such a space exists because K + X0 has finite
codimension, and because F0 +K +X0 = F ×X.

• K1 ⊕K0 = K.

• X1 ⊕K0 = X0.

Denoting by π : F ×X → F the projection on the first factor, we see that the restriction of π to
K1 ⊕ F1 is an isomorphism onto F . This implies that the map k is conjugated to the linear map:

K1 ⊕K0 −→ K1 ⊕ F1

κ1 + κ0 7−→ κ1 + 0,

which is Fredholm of index i = dimK0 − dimF1. We obtain that

i = (dimK0 + dimX1)− (dimX1 + dimF1) = n− c.

The linear Fredholm map k is onto if and only if its kernel K0 has dimension n− c. On the other
hand, the space K0 is also the kernel of l0, hence it has dimension n− c if and only if the map l0
is onto (X0 has dimension n). We have proved the second part of the statement.

We now recall a standard Lemma of differential calculus.

Lemma 61. Let X,Y be separable Banach manifolds modeled respectively on the Banach spaces
FX , FY . Let f : X −→ Y be a C1 map and x0 be a point such that dfx0 has a closed and
split range I ⊂ FY and a split kernel K ⊂ FX . Let G be a supplement of I in FY . Then,
for each local diffeomorphism φ : (Y, f(x0)) −→ (I × G, 0) there exists a local diffeomorphism
ϕ : (I ×K, 0) −→ (X,x0) such that

φ ◦ f ◦ ϕ(xi, xk) = (xi, ψ(xi, xk))

for some C1 local map ψ : I ×K −→ G.

This Lemma can be applied in particular to Fredholm maps.

Proof. Let E be a supplement of K in FX . By considering first an arbitrary local chart ϕ̃ :
(E ×K, 0) −→ (X,x0), we write

φ ◦ f ◦ ϕ̃ : (xe, xk) 7−→ (fi(xe, xk), fg(xe, xk)).

It follows from the definition of G and I that ∂xefi is an isomorphism, hence the mapping

(xe, xk) 7−→ (fi(xe, xk), xk)

is a local diffeomorphism between (BX , 0) and (I×K, 0). Denoting by ϕ̂(xi, xk) = (ϕ̂e(xi, xk), xk)
its inverse, we see that

φ ◦ f ◦ ϕ̃ ◦ ϕ̂(xi, xk) = (xi, ψ(xi, xk))

with ψ(xi, xk) = fg(ϕ̂e(xi, xk), xk).

We also recall the constant rank (or rather constant corank) theorem.
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Lemma 62. Let f : X −→ Y be a C1 map. Assume that there exists an integer c such that, for
each x ∈ X, dfx has a closed range I ⊂ FY of codimension c and a split kernel K ⊂ FX . Let G
be a supplement of I in FY . Then, near each point x0 ∈ X there exists a local diffeomorphism
φ : (Y, f(x0)) −→ (I ×G, 0) and a local diffeomorphism ϕ : (I ×K, 0) −→ (X,x0) such that

φ ◦ f ◦ ϕ(xi, xk) = (xi, 0).

Proof. We first apply Lemma 61 and find charts φ̃ and ϕ such that φ̃◦f◦ϕ(xi, xk) = (xi, ψ(xi, xk)).
The differential of this map has corank c (which is the dimension of G) if and only if ∂xk

ψ = 0.
We conclude that ψ does not depend on xk. We now set φ̂(xi, xg) = (xi, xg − ψ(xi)), and observe
that φ̂ ◦ φ̃ ◦ f ◦ ϕ(xi, xk) = (xi, 0).

In the sequel we shall make use of nonlinear Fredholm maps, according to the following
definition.

Definition 63. A Fredholm map of index i ∈ Z between two separable Banach manifolds X,Y is
a function ϕ : X → Y of class C1 enjoying the following property: for every x ∈ X the differential
dxϕ is a linear Fredholm map of index i.

In the above definition the index of dxϕ is assumed to be globally constant as a function of x.
Note that this is not very demanding: as we already recalled, the index is locally constant on the
set of linear Fredholm maps, which, in addition, is open in the set of continuous linear maps.

3.2.3 Rectifiable sets in Banach manifolds

We use here the definition of rectifiable sets of finite codimension given in [Ber10b], which
extrapolates on [Zaj08]. Our terminology, however, differs from that of [Ber10b] : we call
rectifiable here what we called countably rectifiable there.

The subset A in the Banach space F is a Lipschitz graph of codimension d if there exists
a splitting F = E ⊕G, with dimG = d and E closed, and a Lipschitz map g : E −→ G such that

A ⊂ {x+ g(x), x ∈ E}.

Let X be a separable manifold modeled on the separable Banach space FX . A subset A ⊂ X
is rectifiable of codimension d ∈ N if it is a countable union A = ∪nϕn(An) where

• ϕn : Un −→ X is a Fredholm map of index in defined on an open subset Un in a separable
Banach space Fn.

• An ⊂ Un is a Lipschitz graph of codimension d+ in in Fn.

Note that, by definition, if A ⊂ X is rectifiable of codimension d then it is rectifiable of
codimension d′ for all 0 ≤ d′ ≤ d. The following properties are proved in [Zaj08] or [Ber10b].

Proposition 64. A rectifiable set of positive codimension is Baire meager. More precisely, it
is contained in a countable union of closed rectifiable sets of positive codimension. It is also
Aronszanjn null, hence Haar null.
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Proposition 65. Let X and Y be separable Banach manifolds, and let f : X −→ Y be C1

Fredholm of index i, and let A ⊂ X be rectifiable of codimension d > i+ 1, then the direct image
f(A) is rectifiable of codimension d− i.

The following property is almost taken from [Ber10b].

Proposition 66. Let X and Y be separable Banach manifolds, let A ⊂ Y be rectifiable of
codimension d and let f : X −→ Y be a C1 map such that, at each point of f−1(A), the
differential df has the following properties with some integer k 6 d− 1:

• It has a split kernel.

• It has a closed image of codimension at most k.

Then, f−1(A) is rectifiable of codimension d− k. In particular, if f is a submersion, then f−1(A)
is rectifiable of codimension d.

Proof. In view of Lemma 61, it is enough to prove the statement for maps of the form
(xi, xk) 7−→ (xi, ψ(xi, xk)), where (xi, xk) ∈ I × K, and ψ takes value in G, a supplement
of I in BY (hence dimG 6 k). We also consider that A ⊂ I ×G is rectifiable of codimension d.
Then the projection AI of A on I is rectifiable of codimension d− k in I. In view of the special
form of the map we consider, the preimage of A is contained in AI ×K, which is rectifiable of
codimension d− k in I ×K because AI is rectifiable of codimension d− k in I.

We express the following results in the context of Banach spaces to avoid some technical
complications. If F is a separable Banach space, then we define the separable Banach spaces
Cp(B̄n, F ) as in the introduction. The following result was proved in [Ber10b]:

Proposition 67. If A ⊂ Cp(B̄n, F ) is rectifiable of codimension d, and p′ > p, then A∩Cp′(B̄n, F )
is rectifiable of codimension d in Cp′(B̄n, F ).

This results allows to define sets of positive codimension in the Frechet space C∞(B̄n, F ),
see [AR67]. The following result makes precise the simple fact that “most” n-parameter families
avoid sets of codimension d when d > n.

Proposition 68. Let F be a separable Banach space, and A ⊂ F a rectifiable set of codimension
d. For n < d, The set A ⊂ C1(B̄n, F ) of maps f such that f(Bn) ∩ A 6= ∅ is rectifiable of
codimension d− n.

Proof. This is just a variant of the methods of proof used in the introduction. We consider the
evaluation map

E0 : B
n × Cp(B̄n, F ) −→ F,

which is a C1 submersion. We conclude from Proposition 66 that E−1
0 (A) is rectifiable of codi-

mension d in Bn×Cp(B̄n, F ). The set A, which is the projection of E−1
0 (A) on the second factor,

is thus rectifiable of codimension d− n.

The “easy case” of the transversality theorem also has a natural analog in terms of rectifiable
sets.
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Proposition 69. Let F be a separable Banach space, and A ⊂ Jp(B̄n, F ) a rectifiable set of
codimension d. For n < d, The set A ⊂ Cp+1(B̄n, F ) of maps f such that jpf(Bn) ∩ A 6= ∅ is
rectifiable of codimension d− n.

Proof. It is the same as above, using the evaluation map Ep : (x, f) 7−→ jpxf .

3.2.4 The Theorem of Sard and Smale

Theorem 70. Let X be a smooth (separable) manifold of dimension n, Y a smooth manifold of
dimension m, and let f : X −→ Y be a Cr map. If r > 1 + (n−m), and m 6 n, then the set
CV (f) of critical values of f has zero measure in Y .

The theorem also holds in the case where r > 1 and n 6 m− 1, which is sometimes called
the easy case of Sard’s theorem. In this case, however, the set CV (f) is just the image f(X),
which is rectifiable of dimension n in Y . Since n < m, this implies the result, but it is a much
finer information. The theorem of Sard was extended by Smale to the infinite dimensional case.
We give below a more precise statement:

Theorem 71. Let X and Y be separable smooth manifolds modeled on separable Banach spaces,
and let f : X −→ Y be a Cr Fredholm map of index i.

• If i > 0 and r > 1 + i, then the set CV (f) of critical values of f is Aronszajn null (hence
Haar null) and Baire meager in Y .

• If i < 0 and r > 1, then the set f(X) = CV (f) is rectifiable of codimension −i in Y (It is
thus Aronszajn-null and Baire meager).

Proof. The second part of the statement (the “easy case”), is a special case of Proposition 65. Let
us focus on the first part. Let P be the set of critical points of f , so that CV (f) = f(P ).

We claim that each point x0 of P has a closed neighborhood P̃ in P such that f(P̃ ) is
Aronszajn null (hence of empty interior) and closed. Since P is a separable metric space, it
has the Lindelöf property, and it can be covered by countably many such local sets P̃ . As a
consequence, the claim implies the statement.

Let FX and FY be the separable Banach spaces on which X and Y are respectively modeled.
Let I be the range of dfx0 , and let G be a supplement of I in FY , note that G has finite dimension
l. Let φ be any local diffeomorphism between (Y, f(x0)) and (I ×G, 0).

By Lemma 61, there exists a local diffeomorphism ϕ : (I ×K, 0) −→ (X,x0) such that

φ ◦ f ◦ ϕ(xi, xk) = xi + ψ(xi, xk),

where K is the (finite-dimensional) kernel of dfx0 and ψ : I ×K −→ G is Cr. Let B ⊂ I ×K be
a bounded closed set containing 0 in its interior. Let us then set

P̃ = ϕ(B) ∩ P.
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Since ϕ is a local diffeomorphism, P̃ is a closed neighborhood of x0. Moreover, we have

φ(f(P̃ )) ⊂ CV (φ ◦ f ◦ ϕ) ⊂
⋃

xi∈I

(
xi + CV (ψxi

)
)

where ψxi
: K −→ G is the map xk 7−→ ψ(xi, xk). In view of the finite dimensional Sard theorem

(applied to ψxi
), we conclude that G is a probe for φ(f(P̃ )). Since it admits a probe, this set

is Haar-null. Moreover, since the set of supplements of I is open in the space of l-dimensional
subspaces of FY , we conclude from Lemma 59 that φ(f(P̃ )) is Aronszajn null. Since this holds
for each local chart φ, we have proved that f(P̃ ) is Aronszajn null in Y .

Finally, let us prove that f(P̃ ) is closed, or equivalently that φ(f(P̃ )) is closed. Let xn be
a sequence in P̃ , such that f(xn) has a limit y∞, we have to prove that y∞ ⊂ f(P̃ ). Let us
denote by (xni , x

n
k) the sequence ϕ−1(xn). Since K is finite dimensional and ϕ−1(P̃ ) ⊂ B is

bounded, we can assume by taking a subsequence that xnk has a limit x∞k . On the other hand,
since f(xn) −→ y∞, we conclude that

(xni , ψ(x
n
i , x

n
k)) = φ ◦ f ◦ ϕ(xni , x

n
k) = φ ◦ f(xn) −→ φ(y∞),

hence xni has a limit x∞i (which is the first component of φ(y∞)). The sequence (xni , x
n
k) is

thus convergent, hence so is xn = ϕ(xni , x
n
k). Since P̃ is closed, the limit x∞ belongs to P̃ , and

y∞ = f(x∞).

3.3 Some cases of the conjecture

In this section, we consider two finite dimensional smooth manifolds X and Y . For p ∈ N, we
denote by Jp(X,Y ) the space of p-jets of functions X −→ Y . See for example [Hir94, GG73]
for some details on jet bundles. Note that J0(X,Y ) = X × Y , and it will also be convenient to
consider that J−1(X,Y ) = X. For p 6 p′ we have a natural projection

πp
′

p : Jp′(X,Y ) −→ Jp(X,Y ).

When p = −1, this is just the source map jp
′

x f 7−→ x. When p ∈ N, the bundle

πp+1
p : Jp+1(X,Y ) −→ Jp(X,Y )

has a natural affine structure, we denote by Fp+1
p (a) the fiber (πp+1

p )−1(a), for a ∈ Jp(X,Y ).
Given a submanifold A ⊆ Jp(X,Y ) of class Cr, r ≥ 1, we define

Ã
def
=
{
jp+1
x f ∈ Jp+1(X,Y ) : jpf is not transverse to A at x

}
⊆ Jp+1(X,Y ). (3.1)

If jpxf is an element of Jp(X,Y ) and 0 ≤ k ≤ p− 1, we define the vector subspace Ek(jpxf) by

Ek(jpxf)
def
= d(jkxf)(TxX) ⊆ Tjkxf (J

k(X,Y )) (3.2)
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Here d(jkxf) is the tangent map at x of jkf : X → Jk(X,Y ). Note that the subspace Ek(jpxf)
depends just on jk+1

x f and that its dimension is always equal to dimX. We also extend the
definition to k = −1 in a trivial way by setting E−1(jpxf) = TxX. We have

Ã =
{
z ∈ Jp+1(X,Y ) : T

π
p+1
p z

A+ Ep(z) ( T
π
p+1
p z

Jp(X,Y )
}
.

Conjecture 72. The set Ã is a countable union of submanifolds of codimension more than
n = dimX.

This conjecture is stated as a Lemma in [EM02], but not proved. The statement is obvious
when the codimension c of A is larger than n, we assume from now on that c 6 n. We will use
the notation

Ãa = Ã ∩ Fp+1
p (a).

We say that the point a ∈ A is degenerate if

dπpp−1(TaA) + Ep−1(a) ( Tπp
p−1a

Jp−1(X,Y ). (3.3)

(for p = 0 the map π0−1 is the projection from J0(X,Y ) to X). If a is degenerate, then

Ãa = Fp+1
p (a). The manifold A can be decomposed as the disjoint unions A = A0 ∪A1, where

A0 is the set of degenerate points of A and A1 is the set of non-degenerate points (by definition,
the other points). The set A1 is an open submanifold of A, hence it is itself a submanifold of
Jp(X,Y ), and

Ã = (πp+1
p )−1(A0) ∪ Ã1. (3.4)

Let us first treat the special case where A = A1 (we then say that A is non-degenerate). Note
that this condition holds for example if A is transverse to the fibers of the projection πpp−1. This
condition also holds when p = 0. The following result also implies Lemma 55:

Theorem 73. Let A be a non-degenerate Cr submanifold in Jp(X,Y ). Then Ã is a countable
union of Cr−1 submanifolds of codimension larger than n = dimX in Jp+1(X,Y ).

This result implies that Ã1 is a countable union of submanifolds of codimension at least
n+ 1. In order to prove the conjecture, we would also need to prove that the manifold A0 has
codimension n+ 1. We are not able to prove this statement in the general case, hence we will
restrict to the analytic case. We say that the submanifold A ⊆ Jp(X,Y ) is analytic if for every
a = jpxf ∈ A there exist charts ψX and ψY on X and Y , respectively defined on a neighborhood
of x in X and a neighborhood of f(x) in Y , such that the induced chart ψ on Jp(X,Y ), defined
on a neighborhood Ua of a, makes A analytic, i.e.

ψ(A ∩ Ua) =
⋂

i

F−1
i (0)

for a finite family of analytic functions Fi : ψ(Ua)→ R. When A is analytic, we manage to study
A0 by recurrence using Theorem 73, and obtain:

Theorem 74. Let A be an analytic submanifold in Jp(X,Y ). Then Ã is a countable union of
analytic submanifolds of codimension larger than n = dimX in Jp+1(X,Y ).
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3.3.1 The non-degenerate case

We assume here that the Cr manifold A ⊂ Jp(X,Y ) is non-degenerate, which means that

dπpp−1(TaA) + Ep−1(a) = Tπp
p−1a

Jp−1(X,Y ) (3.5)

for each a ∈ A, and prove Theorem 73. To study the set Ãa, we define, more generally, the set

Za,V =
{
â ∈ Fp+1

p (a) : V + Ep(â) ( TaJ
p(X,Y )

}
⊆ Fp+1

p (a)

associated to a point a ∈ Jp(X,Y ) and a subspace V ⊂ TaJp(X,Y ). Then, we have

Ãa = Za,TaA.

We decompose Za,V as

Za,V =

dim Jp(X,Y )−1
⋃

r=dimV

Zr
a,V

where
Zr
a,V

def
=
{

â ∈ (Fp+1
p )(a) : dim

(

V + Ep(â)
)

= r
}

.

This decomposition obviously yields a decomposition Ã = ∪Ãr, where

Ãr
a := Ãr ∩ Fp+1

p (a) = Zr
a,TaA.

The following result implies that Ãr is a Cr−1 submanifold of codimension at least n+1−codimA
in (πp+1

p )−1(A), hence a submanifold of codimension at least n+ 1 in Jp+1(X,Y ), which proves
Theorem 73.

Proposition 75. Let a ∈ Jp(X,Y ) and V be a vector subspace of TaJ
p(X,Y ) of dimension m

and codimension c ≥ 1 such that

dπpp−1(V ) + Ep−1(a) = Tπp
p−1a

Jp−1(X,Y ). (3.6)

We have:

codim
Fp+1

p (a)
Za,V ≥ n+ 1− c.

More precisely, the set Zr
a,V is locally contained in the preimage F−1

a,V (0) of an algebraic submersion

Fa,V : Fp+1
p (a) −→ Rθ

whose coefficients depend smoothly on (a, V ), with θ = n+ 1− c+ 2(dim Jp(X,Y )− 1− r).

Proof. Since the result is of local nature, we can suppose without loss of generality that the jet
bundles are trivialized. Hence,

Jp+1(X,Y ) = Jp(X,Y )×Fp+1
p
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where Fp+1
p is the fiber of the projection πp+1

p : Jp+1(X,Y ) → Jp(X,Y ). We have thus the
identification Fp+1

p (a) ∼= F
p+1
p . Hence the sets Zr

a,V can be regarded as subsets of Fp+1
p : denoting

by z the elements of Fp+1
p , we have

Zr
a,V =

{

z ∈ Fp+1
p : dim

(

V + Ep(a, z)
)

= r
}

.

We assume from now on that m ≤ r ≤ dim Jp(X,Y ) − 1. Let us pick, for any z in Fp+1
p , a

function fz such that

jp+1
x fz = (a, z).

Here x ∈ X is the base-point of a. Let us also choose a basis v1, . . . , vm of V . Let us call Ma,V (z)
(or just M(z)) the matrix whose columns are, in the order, the following vectors (belonging to
TaJ

p(X,Y ))

v1, . . . , vm, ∂x1j
p
xfz, . . . , ∂xnj

p
xfz (3.7)

expressed in a convenient basis of TaJp(X,Y ) which we shall explicit shortly. Note that the
vectors ∂xj

jpxfz, 1 ≤ j ≤ n form a basis of Ep(a, z). It is then clear that

z ∈ Zr
a,V ⇔ rankMa,V (z) = r,

or equivalently

z ∈ Zr
a,V ⇔

{

detN(z) = 0 ∀ square submatrix N of Ma,V of size r + 1

detN(z) 6= 0 for some square submatrix N of size r.

We will now study more precisely these equations with the help of an appropriate system of local
coordinates. Locally, we have the identifications

Jp(X,Y ) = Jp−1(X,Y )×Fp
p−1

Jp+1(X,Y ) = Jp−1(X,Y )×Fp
p−1 ×F

p+1
p ,

(3.8)

and both Fp+1
p and Fp

p−1 can be identified with real vector spaces. More precisely, we fix once
for all local coordinates x1, . . . , xn and y1, . . . , yq on X and Y respectively, this induces the

identification Fp+1
p
∼= RdimFp+1

p = Rq(n+p
n−1) via the isomorphism

(
ysα
)

1≤s≤q, |α|=p+1
: Fp+1

p → Rq(n+p
n−1)

jpxf 7→
(
∂αf

s(x)
)

1≤s≤q, |α|=p+1
.

Here f s = ys ◦ f is the s-th component of f , α = (α1, . . . , αn) is a multi-index in Nn of length
|α| = p+ 1 and ∂α = ∂α1

x1
. . . ∂αn

xn
stands for the associated partial derivative. Note that for the

isomorphism to be rigorously defined, one should specify an order on the set of the involved
couples (s, α). Since this order will not play any role in the sequel, we do not specify it.
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Concerning Fp
p−1, we have the analogous identification Fp

p−1
∼= RdimFp

p−1 = Rq(n+p−1
n−1 ) via the

isomorphism

(
ysα
)

1≤s≤q, |α|=p
: Fp

p−1 → Rq(n+p−1
n−1 )

jpxf 7→
(
∂αf

s(x)
)

1≤s≤q, |α|=p

Here the order on the couples (s, α) will play an important role. For reasons which will become
clear in the Lemma 79, we adopt the following lexicographic order:2 if s, s′ ∈ {1, . . . , q} and
α = (α1, . . . , αn), α′ = (α′

1, . . . , α
′
n) are multi-indexes of length p, the variable ysα strictly precedes

the variable ys
′

α′ if and only if

s > s′ or

(

s = s′ and ∃ k ≥ 1 :

{

αh = α′
h for all 1 ≤ h ≤ k − 1

αk > α′
k

)

(3.9)

Summing up the above paragraphs, we will regard
(
ysα
)

1≤s≤q, |α|=p+1
and

(
ysα
)

1≤s≤q, |α|=p
as

coordinates respectively on Fp+1
p and Fp

p−1, compatible with the affine structure of these spaces.
The coordinates on Fp

p−1 are ordered according to (3.9). Since we denoted by z the elements of

Fp+1
p , we have

z =
(
ysα
)

1≤s≤q, |α|=p+1
∈ Fp+1

p
∼= RdimFp+1

p .

Let us now write more explicitly the vectors ∂xj
jpxfz appearing in (3.7). According to the

decomposition (3.8), an arbitrary p-jet jpxf writes

jpxf =
(

jp−1
x f, (∂αf

s(x))1≤s≤q, |α|=p

)

∈ Jp−1(X,Y )×Fp
p−1. (3.10)

The vectors ∂xj
jpxfz are elements of the vector space TaJp(X,Y ) = Tπp

p−1a
Jp−1(X,Y ) × Fp

p−1.

By taking the derivative of (3.10) with respect to xj we get:

∂xj
jpxfz =

(

∂xj
jp−1
x fz,

(
∂α+δjf

s(x)
)

1≤s≤q, |α|=p

)

=
(

∂xj
jp−1
x fz,

(
ysα+δj

)

1≤s≤q, |α|=p

)

where δj is the multi-index
(
0, . . . , 0, 1

︸︷︷︸

j-th

, 0, . . . , 0
)
∈ Nn. Note that the component ∂xj

jp−1
x fz

depends just on partial derivatives of order one of jp−1fz at x, i.e. it depends just on jpxfz = a.
This justifies the following notation:

ej(a)
def
= ∂xj

jp−1
x fz, 1 ≤ j ≤ n.

2What really matters for our purposes is the lexicographic order with respect to α at fixed s. There
are several orders satisfying this condition, but for the sake of definiteness we adopt the one described in
(3.9).
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Note that
Span {e1(a), . . . , en(a)} = Ep−1(a).

We have:
∂xj

jpxfz =
(

ej(a),
(
ysα+δj

)

1≤s≤q, |α|=p

)

. (3.11)

We can now write the matrix Ma,V (z) in the base of TaJp(X,Y ) = Tπp
p−1a

Jp−1(X,Y ) ×

Fp
p−1 obtained as the juxtaposition of an arbitrary base of Tπp

p−1a
Jp−1(X,Y ) and of the base

(
ysα
)

1≤s≤q, |α|=p
of Fp

p−1 in the order which has been specified before:

Ma,V (z) =













v1 . . . vm

e1(a) . . . en(a)

B(z)



















dim Jp−1(X,Y )






dimFp

p−1

Here the vectors v1, . . . , vm are a basis of V and the vectors e1(a), . . . , en(a), which have been
defined before, form a base of Ep−1(a). Finally, the block B(z) depends just on z and is given by

B(z) =











...
...

...
...

...
ysα+δ1

ysα+δ2
· · · ysα+δn−1

ysα+δn
← row corresponding to ysα

...
...

...
...

...
(3.12)

where the rows are ordered according to (3.9).
For later use, note that the first m columns of M(z) are linearly independent, as well as the first

dim Jp−1(X,Y ) rows, as follows from the hypothesis (3.6). Indeed, the first m columns are clearly
independent because they represent a basis of V . The fact that the first dim Jp−1(X,Y )-rows are
independent is equivalent to the assumption dπpp−1(V ) + Ep−1(a) = Tπp

p−1a
Jp−1(X,Y ).

An intermede of linear algebra. We prove, for an arbitrary matrix, the existence of a
non-singular square submatrix of maximum rank satisfying some special conditions.

Let M be an arbitrary m× n-matrix with real entries. Only in this intermede, m and n are
arbitrary integers ≥ 1, with no relation with the values assumed by the same symbols in the rest
of the paper.

Let us establish some notations for submatrices of M . The rows of M are R(M) =
{1, 2, . . . ,m} and its columns are C(M) = {1, 2, . . . , n}. A submatrix N of M is determined by
its rows

R(N) ⊆ {1, 2, . . . ,m}

and its columns
C(N) ⊆ {1, 2, . . . , n}.

We denote by |R(N)| and |C(N)| their cardinality. We also denote by i1(N), i2(N), . . . i|R(N)|(N)
the elements of R(N), and we always assume that the indexes are chosen in such a way that

i1(N) < i2(N) < . . . < i|R(N)|(N).
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Similarly, we denote C(N) = {j1(N), . . . , j|C(N)|(N)} with

j1(N) < j2(N) < . . . < j|C(N)|(N).

Given two sub-matrices N1 and N2, we say that N1 �R N2 if the rows of N1 come “before” the
rows of N2; more rigorously,

N1 �R N2
def
⇐⇒ |R(N1)| ≤ |R(N2)| and ik(N1) ≤ ik(N2) ∀ 1 ≤ k ≤ |R(N1)|.

We also give the analogous definition for columns:

N1 �C N2
def
⇐⇒ |C(N1)| ≤ |C(N2)| and ik(N1) ≤ ik(N2) ∀ 1 ≤ k ≤ |C(N1)|.

Note that �R and �C are preorders (i.e. reflexive and transitive) but not partial orders in general.
We write N1 ≺R N2 if N1 �R N2 and N1 6= N2. We define N1 ≺C N2 similarly.

It turns out that, when restricted to the set of square submatrices of rank equal to rank M ,
the relations �R and �C admit a unique common minimal element, in a sense made precise by
the following lemma.

Lemma 76. Let M be a m× n-matrix. There exists a submatrix M∗ of M such that rankM∗ =
rankM and which is minimal in the following sense: any submatrix N with rankN = rankM
satisfies

M∗ �R N and M∗ �C N. (3.13)

The submatrix M∗ is uniquely defined by this condition, and is a square matrix.

It is easy to check that if such a submatrix M∗ exists, then it is unique and square. Thus we
just focus on the existence. We will prove existence in a somehow constructive way, by giving
a procedure for finding M∗. In fact, we will give two different procedures and we will show
that they yield the same submatrix; as a consequence, this submatrix will satisfy the conditions
demanded to M∗.

As a first intermediate step, let us describe two constructions which allow to associate to
M two special (non-square in general) submatrices. We call these two sub-matrices V (M) and
H(M). Here V stands for vertical and H for horizontal.

Let us first describe how to construct V (M): it is uniquely defined by the properties

C(V (M)) = C(M) = {1, . . . , n}

i ∈ R(V (M))⇔ the i-th row of M is linearly independent from

the first i− 1 rows of M .

(If i = 0, we mean that i ∈ R(V (M)) if and only if the first row is not identically zero.) This
procedure ensures that V (M) is minimal with respect to rows among submatrices of M of maximal
rank. More precisely, V (M) satisfies

rankV (M) = rankM and V (M) �R N ∀ N submatrix of M with rankN = rankM.



98 Chapter 3. Some remarks on Thom’s transversality Theorem

The construction of H(M) is the same as for V (M), but with the roles of rows and columns
inverted. More precisely,

R(H(M)) = R(M) = {1, . . . ,m}

j ∈ C(H(M))⇔ the j-th row of M is linearly independent from

the first j − 1 rows of M .

Analogously,

rankH(M) = rankM and H(M) �C N ∀ N submatrix of M with rankN = rankM.

Now that we have introduced the two constructions, we can iterate them. In particular, we can
consider HV (M) and V H(M). We regard them as submatrices of M . By construction, they are
square non-singular submatrices of size equal to rankM . In fact, it turns out that they coincide,
and they are the submatrix M∗ which we are looking for. More precisely, the following two claims
are true:

(i) HV (M) = V H(M);

(ii) the matrix M∗ := HV (M) = V H(M) satisfies the conditions required in the statement.

Proof of (i). We want to prove that R(HV (M)) = R(V H(M)) and C(HV (M)) = C(V H(M)).
As already pointed out, HV (M) and V H(M) are square submatrices of equal size (equal to
rankM). Hence it suffices to prove that R(V H(M)) ⊆ R(HV (M)) and that C(HV (M)) ⊆
C(V H(M)). We focus just on the first inclusion, the second being analogous.

By the properties of the constructions H and V described above, we have:

k ∈ R(V H(M))⇒ the k-th row of H(M) is linearly independent

from the first k − 1 rows of H(M)

⇒ the k-th row of M is linearly independent

from the first k − 1 rows of M

⇒ k ∈ R(V (M)) = R(HV (M))

as desired.
Proof of (ii). Let N be a sub-matrix of M with rankN = rankM . By the properties of

V (M), V (M) �R N . From M∗ = HV (M) we deduce R(M∗) = R(HV (M)) = R(V (M)) and
thus M∗ �R N as well. The proof of M∗ �C N is similar.

Let us emphasize the following characterization of M∗ which follows directly from the proof
above:

i ∈ R(M∗)⇔ the i-th row of M does not belong to the linear span

of the first i− 1 rows of M .

j ∈ C(M∗)⇔ the j-th column of M does not belong to the linear span

of the first j − 1 columns of M .

(3.14)
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End of the proof of Proposition 75. We fix r between m and dim Jp(X,Y ) − 1 and
assume that Zr

a,V is not empty (otherwise we have nothing to prove). Let z0 be an arbitrary
element of Zr

a,V . Our goal will now be to find θ different square submatrices [Ma,V (z)]i of size r+1
in Ma,V (z) such that the equations det[Ma,V (z)]i = 0 are independent near z0. The functions
z 7−→ det[Ma,V (z)]i are then the components of the map Fa,V (z) mentioned in Proposition 75.
These functions are clearly polynomials in z, with coefficients depending smoothly on a and V .
From now on, we omit to explicitly mention a and V , and we note M(z) instead of Ma,V (z).

Let M∗
z0

be the square submatrix of size r associated to M(z0) by the Lemma 76. We take
the notational convention that the symbol M∗

z0
without further specifications stands for a pattern

of rows and columns, i.e. M∗
z0

is the datum (R(M∗
z0
), C(M∗

z0
)). We can also identify M∗

z0
to a

matrix-valued function of z, but in this case we explicitly write M∗
z0
(z) or M∗

z0
(·). This is in order

to avoid ambiguities and distinguish, for instance, between M∗
z0

and M∗
z0
(z0). We adopt the same

convention for all the submatrices encountered below, such as M̂z0 ,M
∗
z0,#(i,j), etc., which we shall

define shortly.
We have

detM∗
z0
(z0) 6= 0 and rankM∗

z0
(z0) = rankM(z0) = r.

Let us call M̂z0 the submatrix whose rows and columns are exactly the ones not appearing in
M∗

z0
, i.e.

R(M̂z0) = {1, . . . , dim Jp(X,Y )} \ R(M∗
z0
), C(M̂z0) = {1, . . . ,m+ n} \ C(M∗

z0
)

As already mentioned above, the first m columns of M are linearly independent as well as the first
dim Jp−1(X,Y )-rows. By the characterization (3.14) we deduce that M̂z0 is entirely contained in
the bottom-right block of M , i.e. it is a submatrix of B:

R(M̂z0) ⊆ R(B) = {dim Jp−1(X,Y ) + 1, . . . , dim Jp(X,Y )}

C(M̂z0) ⊆ C(B) = {m+ 1, . . . ,m+ n}.

Let us denote M∗
z0,#(i,j) the submatrix obtained by adding to M∗

z0
the i-th row and the j-th

column of M , i.e.

R(M∗
z0,#(i,j)) = R(M

∗
z0
) ∪ {i}, C(M∗

z0,#(i,j)) = C(M
∗
z0
) ∪ {j}.

We are interested to the case when (i, j) belongs to R(M̂z0)×C(M̂z0). In this case the submatrix
M∗

z0,#(i,j) is a square submatrix of size r + 1. We are in the following situation:

{

detM∗
z0
(z0) 6= 0

detM∗
z0,#(i,j)(z0) = 0 ∀ (i, j) ∈ R(M̂z0)× C(M̂z0)

Proposition 75 follows from the following two lemma:

Lemma 77. If (i1, j1), . . . , (iθ, jθ) are pairwise distinct couples in R(M̂z0)× C(M̂z0) such that

i1 ≤ i2 ≤ · · · ≤ iθ and j1 ≤ j2 ≤ · · · ≤ jθ, (3.15)
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then the differentials evaluated at z0

dz0detM
∗
z0,#(i1,j1)

(·), . . . , dz0detM
∗
z0,#(iθ,jθ)

(·)

are linearly independent.

Lemma 78. For θ = n+1− c+2
(
dim Jp(X,Y )− 1− r

)
, there do exist pairwise distinct couples

as above.

Proof of Lemma 78. One may for instance consider the couples of indexes successively
encountered along the following “path” in the matrix M̂z0 : starting from the upper-left corner of
the matrix, and then moving horizontally along the first row until the upper-right corner, and then
moving vertically along the last column until the bottom-right corner. It is clear that the couples
of indexes successively encountered along this path satisfy the condition (3.15). Their number is
the “semi-perimeter” of the matrix, or more rigorously

∣
∣R(M̂z0)

∣
∣+
∣
∣C(M̂z0)

∣
∣− 1. Recalling the

definition of M̂z0 , this is the same as

|R(M)| − |R(M∗
z0
)|+ |C(M)| − |C(M∗

z0
)| − 1 = (dim Jp(X,Y )− r) + (m+ n− r)− 1

= n+ 1− c+ 2
(
dim Jp(X,Y )− 1− r

)

This ends the proof of Lemma 78.

Proof of Lemma 77. For (i, j) ∈ R(B)× C(B), we recall that i is the index of a line of

B, hence it corresponds to a coordinate ys(i)
α(i) of Fp

p−1, while j is an integer between m+ 1 and

m+ n. Then, the coefficient of the matrix B(z) at line i and column j is just ys(i)
α(i)+δj−m

. It is
a component, that we denote by z[i,j], of z. Note however that the same component of z may
appear at several different places in the matrix B(z). It can happen that z[i,j] = z[i′,j′] with
(i, j) 6= (i′, j′), it is the case when s(i) = s(i′) and α(i) + δj−m = α(i′) + δj′−m. Our order on the
coordinates allows us to overcome this difficulty thanks to the following Lemma:

Lemma 79. Let (i, j) and (h, k) belong to R(B)× C(B), and satisfy

h ≥ i, k ≥ j, (i, j) 6= (h, k).

Then, z[h,k] 6= z[i,j] and, if (i, j) and (h, k) belong to R(M̂z0)× C(M̂z0), then

∂

∂z[i,j]
detM∗

z0,#(i,j)(z0) = ±detM
∗
z0
(z0) 6= 0

∂

∂z[h,k]
detM∗

z0,#(i,j)(z0) = 0.

Lemma 79 implies that z[i1,j1], . . . , z[iθ,jθ] are pairwise distinct components of z, and that the
square matrix










∂

∂z[i1,j1]
detM∗

z0,#(i1,j1)
(z0) . . .

∂

∂z[iθ,jθ]
detM∗

z0,#(i1,j1)
(z0)

...
. . .

...
∂

∂z[i1,j1]
detM∗

z0,#(iθ,jθ)
(z0) . . .

∂

∂z[iθ,jθ]
detM∗

z0,#(iθ,jθ)
(z0)









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has the form









±detM∗
z0
(z0) 0 0 . . . 0

∗ ±detM∗
z0
(z0) 0 . . . 0

∗ ∗ ±detM∗
z0
(z0) . . . 0

...
...

...
. . .

...
∗ ∗ ∗ . . . ±detM∗

z0
(z0)










(3.16)

hence is invertible, since detM∗
z0
(z0) 6= 0. This proves Lemma 77, using Lemma 79.

Proof of Lemma 79. Let us first prove that z[i,j] 6= z[h,k]. If s(i) 6= s(h), then the conclusion
holds. If s(i) = s(h), then α(i) > α(h) for the lexicographic order. On the other hand, the
inequality k > j implies that δk−m 6 δj−m for the lexicographic order. These two inequalities do
not sum to an equality because they are not both equalities (recall the hypothesis (i, j) 6= (h, k)),
hence α(i) + δj−m 6= α(h) + δk−m, and then z[i,j] 6= z[h,k].

To prove the equality
∂

∂z[h,k]
detM∗

z0,#(i,j)(z0) = 0, (3.17)

let us consider, for every (h′, k′) ∈
(

R(M∗
z0,#(i,j))× C(M

∗
z0,#(i,j))

)

, the submatrix Nh′,k′ defined

by

R(Nh′,k′) = R(M
∗
z0,#(i,j)) \ {h

′} =
(

R(M∗
z0
) ∪ {i}

)

\ {h′}

C(Nh′,k′) = C(M
∗
z0,#(i,j)) \ {k

′} =
(

C(M∗
z0
) ∪ {j}

)

\ {k′}.

We have
∂

∂z[h,k]
detM∗

z0,#(i,j)(z0) =
∑

(h′,k′)

±detNh′,k′(z0)

where the actual sign is irrelevant and the sum is taken over all couples (h′, k′) ∈
(

R(M∗
z0,#(i,j))×

C(M∗
z0,#(i,j))

)

such that z[h′,k′] = z[h,k].

We claim that each square matrix Nh′,k′ is singular, thus proving 3.17. In view of the
definition of M∗

z0
in Lemma 76, it is enough to observe that we can’t have both M∗

z0
�R Nh′,k′

and M∗
z0
�C Nh′,k′ . This would imply that we have both h′ 6 i and k′ 6 j and then that h′ 6 h

and k′ 6 k. As we have already seen, since z[h′,k′] = z[h,k], this would imply that (h′, k′) = (h, k).
Since h′ ≤ i ≤ h and k′ ≤ j ≤ k, we would finally have (h, k) = (i, j), in contradiction with our
hypotheses.

Finally, we have

∂

∂z[i,j]
detM∗

z0,#(i,j)(z0) = ±detM
∗
z0
(z0) +

∑

(i′,j′)

±detNi′,j′(z0)

where the sum is taken on all couples (i′, j′) ∈
(

R(M∗
z0,#(i,j)) × C(M

∗
z0,#(i,j))

)

such that

z[i′,j′] = z[i,j]. We conclude as above that all the terms in the sum vanish.
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3.3.2 The analytic case

We prove Theorem 74 by recurrence on p. First of all, note that if A is analytic then Ã is defined
by analytic conditions (at least in suitable charts). It is then a stratified set, and each stratum is
itself analytic.

When p = 0, A = A1 hence the statement follows from Theorem 73.
When p ≥ 1, the set A0 may be non-empty. However, since it is defined by analytic conditions

(at least in suitable charts), it is a stratified set. Hence it suffices to bound the codimension of
the stratum S ⊂ A0 of maximal dimension. Let us consider the restricted projection

(
πpp−1|S

)
: S → Jp−1(X,Y ).

and the associated rank map

S ∋ a 7→ rank da
(
πpp−1|S

)
∈
{

0, 1, . . . ,min{dimS, dim Jp−1(X,Y )}
}

.

Let us also consider an open subset U of S such that the rank map is constant on U . Such a
subset exists, for instance we can take as U the preimage of the maximum value attained by the
map (this preimage is open because the rank map is lower-semicontinuous).

It follows from the constant-rank theorem that, up to further restricting U if necessary,
πpp−1(U) is a submanifold of Jp−1(X,Y ). Let us call V this manifold. We claim that

U ⊆ Ṽ

where Ṽ ⊆ Jp(X,Y ) is defined according to (3.1), i.e.

Ṽ =
{
jpxf ∈ J

p(X,Y ) : jp−1f is not transverse to V at x
}
.

Since the conclusion of Theorem 74 is assumed to be true for p− 1, we have codim Ṽ ≥ n+ 1,
hence the claim implies codimU ≥ n+ 1. Since U is open in S and S is the stratum of maximal
dimension, we get

codimA0 = codimS = codimU ≥ n+ 1,

which proves that the conclusion of Theorem 74 is true for p, as desired. Let us now prove the
claim U ⊆ Ṽ . Given any a = jpxf ∈ U , we have

Tπp
p−1a

V =
(
dπpp−1|S

)
(TaU) ⊆ dπpp−1(TaA).

Here the first equality follows by the constant-rank theorem, while the inclusion follows from the
fact that U ⊆ S ⊆ A. Moreover, the very definition of A0 yields

dπpp−1(TaA) + Ep−1(a) ( Tπp
p−1a

Jp−1(X,Y ).

It follows that

Tπp
p−1a

V + Ep−1(a) ⊆ dπpp−1(TaA) + Ep−1(a) ( Tπp
p−1a

Jp−1(X,Y )

which implies that a ∈ Ṽ , as desired.
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