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Abstract

In this thesis we discuss possible ways to give quantitative measurement for two spaces not being
quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-
isometries and propose a notion of “quasi-isometric distortion growth” between two metric
spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given,
together with the dual variant which we call Anti-Morse Lemma, and their applications.

Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic met-
ric spaces. In this class, Lp-cohomology spaces provides useful quasi-isometry invariants and
Poincaré constants of balls are their quantitative incarnation. We study how Poincaré con-
stants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel.
We calculate Poincaré constants for locally homogeneous metrics of the form dt2 +

∑
i e

2µitdx2
i ,

and give a lower bound on quasi-isometric distortion growth among such spaces.
This allows us to give examples of different quasi-isometric distortion growths, including a

sublinear one (logarithmic).

Keywords. Hyperbolic space, quasi-isometrie, quasi-geodesic, Morse Lemma, Poincaré in-
equality, Poincaré constant, quasi-isometric distortion growth.



Résumé

Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative
du fait que deux espaces ne sont pas quasi-isométriques. De ce point de vue quantitatif, on
reprend la définition de quasi-isométrie et on propose une notion de “croissance de distorsion
quasi-isométrique” entre deux espaces métriques. Nous révisons notre article [32] où une borne
supérieure optimale pour le lemme de Morse est donnée, avec la variante duale que nous
appelons Anti-Morse Lemma, et leurs applications.

Ensuite, nous nous concentrons sur des bornes inférieures sur la croissance de distorsion
quasi-isométrique pour des espaces métriques hyperboliques. Dans cette classe, les espaces de
Lp-cohomologie fournissent des invariants de quasi-isométrie utiles et les constantes de Poin-
caré des boules sont leur incarnation quantitative. Nous étudions comment les constantes de
Poincaré sont transportées par quasi-isométries. Dans ce but, nous introduisons la notion de
transnoyau. Nous calculons les constantes de Poincaré pour les métriques localement homogènes
de la forme dt2 +

∑
i e

2µitdx2
i , et donnons une borne inférieure sur la croissance de distorsion

quasi-isométrique entre ces espaces.
Cela nous permet de donner des exemples présentant différents type de croissance de dis-

torsion quasi-isométrique, y compris un exemple sous-linéaire (logarithmique).

Mots-clefs. Espaces hyperbolique, quasi-isométrie, quasi-géodésique, Lemme de Morse, inéga-
lité de Poincaré, constante de Poincaré, croissance de distorsion quasi-isométrique.
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Chapter 1

Introduction - version française

1.1 Version quantitative du problème de quasi-isométrie

1.1.1 Idée générale

Le problème de classification des groupes de type fini à quasi-isométrie près [4] à donné lieu à des
travaux nombreux dont présenterons un survol en section 4. Lorsqu’on peut montrer que deux
groupes ne sont pas quasi-isométriques, on souhaiterait pouvoir le mesurer quantitativement.
Il y a sans doute des groupes assez voisins, et d’autres franchement éloignés. L’objet de cette
thèse est de mesurer un écart quasi-isométrique à l’échelle R, pour tout R > 0, et d’étudier
comment cet écart se comporte quand R tend vers l’infini.

Etant donnés deux espaces métriques X et Y , pointés en x0 et y0, notre mesure λ(R) de
l’écart à l’échelle est le plus petit λ tel qu’il existe un plongement (λ, λ)-quasi-isométrique de
la boule de rayon R BX(x0, R) dans Y envoyant x0 sur y0. Dans la thèse, on essaie quelques
autres choix, mais, pour cette introduction, nous nous tiendrons à celui-là.

1.1.2 Exemple : croissance polynômiale

Nous considérons le théorème suivant comme le prototype d’un résultat quantitatif. Y. Shalom
et T. Tao ont donné une version quantitative du célèbre théorème de Gromov affirmant que
tout groupe à croissance polynômiale est virtuellement nilpotent.

Théorème 1. (Y. Shalom, T. Tao [25]) Soit G un groupe engendré par une partie symétrique
finie S. Supposons qu’il existe un R > exp(exp(CdC)) tel que

|BS(R)| ≤ Rd.

Alors G possède un sous-groupes d’indice fini H qui est nilpotent de classe au plus Cd. Ici, C
est une constante absolue.

En voici un corollaire

8



Corollaire 1. Soit (G,S) un groupe de type fini. Supposons que G n’est pas virtuellement
nilpotent. Alors, pour tout R > 1/σ,

|BS(R)| ≥ Rσ(log logR)σ .

Ici, σ est une constante absolue.

Pour notre problème de quasi-isométrie quantitative, voici ce qu’il en résulte.
Exemple 1. Groupes nilpotent versus groupes non-nilpotents.

Soient G et H des groupes de type fini, avec H virtuellement nilpotent et G non virtuel-
lement nilpotent. Fixons des systèmes générateurs finis S ⊂ G et S ′ ⊂ H. On obtient des
graphes de Cayley GS et HS′ . Alors il existe une constante universelle σ et une constante
C = C(G,S,H, S ′) dépendant des groupes et des systèmes générateurs telles que, pour tout
plongement (λ, c)-quasi-isométrique de BGS(R) dans HS′ ,

λ+ c ≥ C(log logR)σ logR.

Le fait que G ne soit pas à croissance polynômiale donne seulement la borne λ(R) ≥
Ω(logR). Le théorème de Shalom et Tao permet de gagner le facteur (log logR)σ.

1.1.3 Exemple : arbres

Un espace dans lequel le complémentaire d’une boule est connexe nécessite une distorsion au
moins égale à

√
R pour être envoyé dans une droite ou un arbre.

Proposition 1. Soit X un espace métrique géodésique. On suppose que pour tous points x, y
et tous rayons R and R′ ≤ R/2 l’ensemble B(x,R) \ B(y,R′) est connexe. Soit Y un arbre,
soit f : B(x,R)→ Y un plongement (λ1, λ2, c1, c2)-quasi-isométrique. Alors R ≤ 12λ2c1 + 4c2.

Cette borne inférieure est optimale : Si X est le plan hyperbolique, une boule de rayon R
s’envoie de façon (

√
R,
√
R,
√
R,
√
R)-quasi-isométrique dans un arbre simplicial de valence 3.

1.2 Résumé des résultats

1.2.1 Lemme de Morse

Le Lemme de Morse affirme que, dans un espace métrique hyperbolique, une (λ1, λ2, c1, c2)-
quasi-géodésique (voir définitions 5, 16) γ est contenue dans le H(λ1, λ2, c1, c2)-voisinage de
toute géodésique de mêmes extrémités. Nous donnons une majoration optimale de H.

Théorème 2 (Morse lemma). Soitt γune (λ1, λ2, c1, c2)-quasi-géodésique dans un espace mé-
trique δ-hyperbolique E. Soit σ une géodésique de mêmes extrémités. Alors γ est contenue dans
le H-voisinage de σ, où

H = Aλ1λ2

(
c1 + c2 + δ + 1

)
,

et A est une constante absolue.



La preuve est donnée en Section 3.5.2. Ce résultat est optimal, i.e., il existe dans tout
espace métrique hyperbolique un exemple de quasi-géodésique γ possèdant un point situé à
une distance de toute géodésique σ de mêmes extrémités au moins égale à λ1λ2 min{c1, c2}/4
(voir en Section 3.6).

Le Lemme de Morse joue un rôle important dans l’étude des espaces métriques hyper-
boliques. Par exemple, on s’en sert pour montrer que l’hyperbolicté est invariante par quasi-
isométrie [1] (voir Chapitre 5.2, Théorème 12) : Soient E et F des espaces δ1- et δ2-hyperboliques
et géodésiques. S’il existe une (λ, c)-quasi-isométrie entre eux, alors

δ1 ≤ 8λ(2H + 4δ2 + c).

Nous espérons que notre borne optimale dans le Lemme de Morse sera utile pour le problème
de quasi-isométrie quantitative.

1.2.2 Le Lemme Anti-Morse

Voici une seconde illustration. Dans certains espace métriques hyperboliques, les quasi-isométries
fixant le bord à l’infini ne déplacent les points que d’une distance bornée. Une application di-
recte du Lemme de Morse donne une borne en λ2c, alors que les exemples connus ne réalisent
que λc. Nous parvenons à diminuer cet écart, en utilisant le fait suivant que nous avons baptisé
Lemme Anti-Morse.

Théorème 3 (Anti-Morse lemma). Soit γ une (λ1, λ2, c1, c2)-quasi-géodésique dans un espace
métrique δ-hyperbolique. Soit σ une géodésique de mêmes extrémités. Alors σ est contenue dans
le Ham-voisinage de γ, où Ham = A3 (δ lnλ1λ2 + δ + c1 + c2). Ici, A3 est une constante absolue.

La preuve se trouve en Section 3.7.
Dans la Section 3.10, nous définirons la classe des espaces métriques hyperboliques géodési-

quement riches (elle contient tous les groupes hyperboliques) qui possède la propriété suivante.

Théorème 4. Soit X un espace métrique δ-hyperbolique géodésiquement riche. Soit f une
(λ1, λ2, c1, c2)-quasi-isométrie qui fixe le bord à l’infini ∂X. Alors, pour tout point O ∈ X, le
déplacement d(O, f(O)) ≤ λ1(Ham + r1) + 2c1 +A4, où r1 et A4 sont des constantes dépendant
seulement de X.

Dans la deuxième partie de cette thèse, nous discuterons de la géométrie des espaces hyper-
boliques et prouverons un lemme important sur la contraction exponentielle des longueurs des
courbes par projection sur une géodésique. Muni de cet outil, nous démontrerons le Lemme de
Morse et le Lemme Anti-Morse. Nous définirons la classe des espaces métriques hyperboliques
géodésiquement riches et nous estimerons le déplacement des points par les quasi-isométries
fixant le bord à l’infini. Finalement, nous montrerons que cette classe contient les groupes
hyperboliques.



1.2.3 Bornes inférieures pour des espace localement homogènes à courbure néga-
tive

La troisième partie porte sur le transport des inégalités de Poincaré par les quasi-isométries. A
l’aide des résultats obtenus, on obtient une borne inférieure sur la distorsion quasi-isométrique
entre des espaces de la forme Zµ = Tn × R munis de métriques de la forme dt2 +

∑
i e

2µitdx2
i .

Notre théorème dit que cette distorsion croît linéairement avec le rayon pour les plongements
quasi-isométriques qui sont des équivalences d’homotopie.

Théorème 5. (Version sommaire. Pour un énoncé plus précis, voir Théorème 24.) Tout plon-
gement (λ, c)-quasi-isométrique d’une boule de rayon R de Zµ dans Zµ′, qui est une équivalence
d’homotopie, satisfait

λ+ c ≥
( ∑

µi
maxµi

−
∑
µ′i

maxµ′i

)
R.

La preuve utilise plusieurs résultats intermédiaires qui ont un intérêt indépendant. Nous
étudions d’abord le transport des inégalités de Poincaré par les quasi-isométries. Pour cela, nous
introduisons les transnoyaux, généralisant l’opération de composition d’une fonction, préala-
blement lissée par convolution, avec une quasi-isométrie.

Ensuite, nous établissons une majoration de la constante de Poincaré de la boule de rayon
R d’un espace Zµ,

Cp(µ) ≤ c
(
p,
∑

µi

)
e(maxµi)R,

où c(p,
∑
µi) est une constante dépendant seulement de n, p et de la somme des µi.

Un mot sur la preuve du Théorème 5. La particularité de l’espace Zµ′ , c’est qu’on peut
prendre comme fonction test la fonction à valeurs complexes e2πixn , dont le module vaut 1
partout. Son gradient est dans Lp si et seulement si p >

∑
µ′i/maxµ′i. En la transportant, on

obtient une fonction dont le module est partout proche de 1. Pour en faire une fonction test pour
l’inégalité de Poincaré sur une boule de Zµ, il faudrait que sa moyenne soit nulle. C’est là que
l’hypothèse que le plongement quasi-isométrique est une équivalence d’homotopie intervient.
Elle autorise à relever le plongement à des revêtements doubles Z̃µ et Z̃µ′ , à transporter une
fonction impaire eπixn sur le revêtement Z̃µ′ . La fonction transportée v étant impaire, elle est
d’intégrale nulle. Sa norme Lp croît comme eR

∑
µi/p, la norme Lp de son gradient est bornée,

d’où une minoration de la constante de Poincaré de la boule de rayon R de Zµ.
C’est en confrontant cette minoration avec la majoration obtenue plus haut (appliquée au

revêtement Z̃µ) que nous obtenons une minoration de l’écart quasi-isométrique λ(R). Cette
minoration est optimale, voir au paragraphe 1.2.4.

L’hypothèse homotopique est peut-être nécessaire.

1.2.4 Bornes supérieures

Dans la quatrième partie, nous donnons une construction de quasi-isométries entre boules
de même rayon d’espaces métriques hyperboliques. Pour cela, nous donnons une expression
approchée (erreur additive bornée) de la distance dans un espace métrique hyperbolique en



fonction de la distance visuelle sur le bord à l’infini vu d’un point P0. Si P1, P2 ∈ X sont à des
distances de P0 notées t1 et t2, alors

d(P1, P2) = t1 + t2 − 2 min{t1, t2, t∞},

où −t∞ est le logarithme de la distance visuelle entre les extrémités des géodésiques issues
de P0 et passant par P1 et P2. Cela permet de borner les constantes de quasi-isométrie des
extensions radiales des homéomorphismes entre bords à l’infini.

Théorème 6. Soient X, Y des espaces métriques hyperboliques. Soit θ : ∂X → ∂Y un homéo-
morphisme. Pour R > 0, notons

K(R) = sup

{∣∣∣∣log
dy0(θ(ξ1), θ(ξ2))

dx0(ξ1, ξ2)

∣∣∣∣ |dx0(ξ1, ξ2) ≥ e−R ∨ dy0(θ(ξ1), θ(ξ2)) ≥ e−R
}
.

Ici, dx0, dy0sont des métriques visuelles sur les bords à l’infini. Alors l’extension radiale de θ
est une (K(R), K(R))-quasi-isométrie de BX(x0, R) sur BY (y0, R).

Pour Zµ, Zµ′ = Tn × R, θ est l’identité sur Tn, Θ est l’identité sur Tn × R (c’est une
équivalence d’homotopie), on vérifie que K(R) = maxi |µi/µ′i−1|R, ce qui montre que la borne
inférieure du paragraphe précédent est optimale. Nous donnons ensuite un exemple de variété
homogène à courbure négative non quasi-isométrique à l’espace hyperbolique, mais donnant
lieu à une distorsion K(R) . logR.



Chapter 2

Introduction - English version

2.1 The quantitative quasi-isometry problem

2.1.1 General idea

Gromov’s quasi-isometry classification problem for groups [4] has given rise to a large amount
of works (for the reader’s convenience, we include a survey of the quasi-isometry classification
problem in Section 2.4). When two groups are shown to be non-quasi-isometric, it would be
desirable to give a quantitative measurement of this (we thank Itai Benjamini for bringing this
issue to our attention). The aim of our research is to measure quantitatively how far two spaces
are from being quasi-isometric at scale R > 0, and study on examples what may happen as R
tends to infinity.

Let X and Y be two metric spaces not quasi-isometric to each other. Given some positive
real number R, consider quasi-isometries between subsets in X and Y respectively of diameter
of the order of R. These subsets are bounded spaces so there exists a (λ, c)-quasi-isometry
with minimal λ = λ(R). For simplicity, we shall assume that additive constants c are much
less than λ(R). We want to study how λ(R) behaves as R goes to infinity. Later, we shall give
precise (and rather cumbersome) definitions, but in this introduction, we content ourselves
with a rather vague one.

2.1.2 Example

We consider the following theorem as the prototype of a quantitative result. Y. Shalom and
T. Tao gave a quantitative version of Gromov’s famous theorem stating that every finitely
generated group of polynomial growth is virtually nilpotent.

Theorem 1. (Y. Shalom, T. Tao [25]) Let G be a group generated by a finite (symmetric) set
S and suppose that one has a polynomial growth condition

|BS(R)| ≤ Rd

for some
R > exp(exp(CdC))
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for some sufficiently large absolute constant C. Then G contains a finite index subgroup H
which is nilpotent of step at most Cd.

A corollary of this theorem is

Corollary 1. Let (G,S) be a finitely generated group. Assume that G is not virtually nilpotent.
Then

|BS(R)| ≥ Rσ(log logR)σ

for any R > 1/σ, where σ > 0 is a sufficiently small absolute constant.

This has the following consequence for our quantitative quasi-isometry problem.
Example 1. Nilpotent versus non-nilpotent groups.

Let G and H be finitely generated groups, with H virtually nilpotent and G not virtually
nilpotent group. Pick finite generating systems S ⊂ G and S ′ ⊂ H and get metric spaces
GS and HS′ . If Θ : BGS(R) → HS′ is a (λ, c)-quasi-isometric embedding, then Θ(BGS(R)) ⊂
BHS′

(λR + c)). Let Λ be a λ+ c-lattice in BGS(R). One can pick Λ in such a way that

|Λ| ≥ |BGS(R)|
|BGS(λ+ c)|

≥ e−C(λ+c)|BGS(R)|,

here we estimate a number of points of Λ in BGs(R) as a ratio of volumes. On the other hand,
since Θ is injective on Λ,

|BHS′
(λR + c))| ≥ |Λ|.

Hence,
|BS′(λR + c))| ≥ e−C(λ+c)|BS(R)|,

where C = C(G,S).
Now as H is virtually nilpotent, |BS′(R

′))| ≤ K(R′)d where d depends on H only and K
depends on H and S ′. So Corollary 1 implies that

Rσ(log logR)σ ≤ |BS(λ+ c)|K(λR + c)d

and for R big enough we conclude that

λ+ c ≥ C(log logR)σ logR,

where C = C(G,S,H, S ′) is a constant depending on the groups and generating systems, but
σ is universal.

The fact that G does not have polynomial growth gives a mere λ(R) ≥ Ω(logR). Shalom
and Tao’s theorem gives an extra factor of (log logR)σ.

2.2 Summary of results

Here we will briefly discuss our results.



2.2.1 Morse Lemma

Roughly speaking, the Morse lemma states that in a hyperbolic metric space, a (λ1, λ2, c1, c2)-
quasigeodesic (see definitions 5, 16) γ belongs to a λ1λ2(c1 +c2)-neighborhood of every geodesic
σ with the same endpoints. Our aim is to prove the optimal upper bound for the Morse lemma.
Theorem 2 (Morse lemma). Let γ be a (λ1, λ2, c1, c2)-quasi-geodesic in a δ-hyperbolic space E
and let σ be a geodesic segment connecting its endpoints. Then γ belongs to an H-neighborhood
of σ, where

H = Aλ1λ2

(
c1 + c2 + δ + 1

)
,

and A is some universal constant.

We will prove this theorem in Section 3.5.2. This result is optimal, i.e., there exists
an example of a quasi-geodesic such that the distance of the farthest point of γ from σ is
λ1λ2 min{c1, c2}/4 (see Section 3.6).

The Morse lemma plays an important role in the geometry of hyperbolic spaces. For
example, it is used to prove that hyperbolicity is invariant under quasi-isometries between
geodesic spaces [1] (see Chapter 5.2, Theorem 12): let E and F be δ1- and δ2-hyperbolic
geodesic spaces. If there exists a (λ, c)-quasi-isometry between these two spaces, then

δ1 ≤ 8λ(2H + 4δ2 + c).

We expect our optimal bound in the Morse lemma to be a useful tool in the quantitative
quasi-isometric embedding problem for hyperbolic metric spaces.

2.2.2 Anti-Morse Lemma

We give a second illustration. In certain hyperbolic metric spaces, self-quasi-isometries fixing
the ideal boundary move points a bounded distance. Directly applying the Morse lemma yields
a bound of H ∼ λ2c, while the examples that we know achieve merely λc. For this problem,
we can fill the gap partially. Our argument relies on the following theorem, which we call the
anti-Morse lemma.
Theorem 3 (anti-Morse lemma). Let γ be a (λ1, λ2, c1, c2)-quasi-geodesic in a δ-hyperbolic
metric space and σ be a geodesic connecting the endpoints of γ. Then σ belongs to a Ham-
neighborhood of γ, where Ham = A3 (δ lnλ1λ2 + δ + c1 + c2), here A3 is some universal con-
stant.

We prove Theorem 3 in Section 3.7.
As an example of an application of Anti-Morse Theorem we show that the center of a ball

in a tree cannot be moved very far by a self-quasi-isometry.
Proposition 1. Let O be the center of a ball of radius R in a d-regular metric tree T (d ≥ 3).
Let f be (λ1, λ2, c1, c2)-self-quasi-isometry of this ball. Then

d(f(O), O) ≤ min{R, λ1Ham + c1 + λ1(c1 + C3)},
where C3 depends on d.



Because δ = 0 for a tree, we have d(f(O), O) . λ1(c1 + c2). We prove this proposition in
Section 3.8.

In Section 3.10, we define the class of geodesically rich hyperbolic spaces (it contains all
Gromov hyperbolic groups), for which we can prove the following statement.

Theorem 4. Let X be a geodesically rich δ-hyperbolic metric space and f be a (λ1, λ2, c1, c2)-
self-quasi-isometry fixing the boundary ∂X. Then for any point O ∈ X, the displacement
d(O, f(O)) ≤ λ1(Ham + r1) + 2c1 + A4, where r1 and A4 are constants depending on the
geometry of the space X.

In Part 2, we shall first discuss the geometry of hyperbolic spaces and prove a lemma on the
exponential contraction of lengths of curves with projections on geodesics. We then discuss
the invariance of the ∆-length of geodesics under quasi-isometries. Using these results, we
prove the quantitative version of the Morse and anti-Morse lemmas. We define the class of
geodesically rich spaces; for this class, we estimate the displacement of points by self-quasi-
isometries that fix the ideal boundary. Finally, we show that this class includes all Gromov
hyperbolic groups.

2.2.3 Lower bounds for negatively curved locally homogeneous spaces

The third part is devoted to the study of the transport of Poincaré inequalities by quasi-
isometries. Using these results we will give a lower bound for the (λ, c)-quasi-isometric distor-
tion between balls of radius R in spaces of the form Zµ = Tn × R with exponential metrics
dt2 +

∑
i e

2µitdx2
i and dt2 +

∑
i e

2µ′itdx2
i , where all µi, µ′i are assumed to remain bounded both

from below and above. Essentially our theorem states that the quasi-isometric distortion
growth function is linear.

Theorem 5. (Rough version. For a precise statement, see Theorem 24). Every (λ, c)-quasi-
isometric embedding of an R-ball in Zµ into Zµ′ satisfies

λ+ c ≥
(∑

µi
µn
−
∑
µ′n
µ′n

)
R.

The proof of this theorem involves several results which could have an independent inter-
est and more applications. First, we study the transport of Poincaré inequalities by quasi-
isometries. For this purpose we propose to use “cross-kernels”. These objects are naturally
obtained as follows. Let X and Y be two metric spaces, f : X → Y a quasi-isometry and
ψ(y1, y2) a kernel on Y . The composition relatively to the first argument ψ(f(x), y) is an
example of a cross-kernel. Cross-kernels help us to transport functions from Y to X and allow
us to control quantitatively their Poincaré constants.

Further, we establish an upper-bound for the Poincaré constant of ball in an exponential
metric dt2 +

∑
i e

2µitdx2
i ,

Cp(µ) ≤ c
(
p,
∑

µi

)
(1 + (max

i
µi)R),

where c(p,
∑
µi) is a constant depending only on p and the sum of µi.



2.2.4 Upper bounds

In Part 4, we shall give a construction of quasi-isometries between balls in hyperbolic metric
spaces. We begin with the approximation (up to an additive error depending on hyperbolicity
constant) of the distance between two points. Let (X,P0) be a hyperbolic metric space with
the base points P0. Let P1, P2 ∈ X be two points in this space, the distances to the base point
are d(P1, P0) = t1 and d(P2, P0) = t2. Now consider the geodesics P0P1 and P0P2, denote by
−t∞ the logarithm of visual distance between the ends at infinity of this geodesics. Then up
to an additive error

d(P1, P2) = t1 + t2 − 2 min{t1, t2, t∞}.

Using this formula we find quasi-isometry constants for the restriction on balls of a map
Θ between X and Y which is a kind of radial extension of a homeomorphism θ between ideal
boundaries. The following is a non technical statement of Theorem 25, see Section 5.1 for a
complete statement.

Theorem 6. Let X, Y be hyperbolic metric spaces. Let θ : ∂X → ∂Y be a homeomorphism.
We define the following function. For R > 0,

K(R) = sup

{∣∣∣∣log
dy0(θ(ξ1), θ(ξ2))

dx0(ξ1, ξ2)

∣∣∣∣ |dx0(ξ1, ξ2) ≥ e−R ∨ dy0(θ(ξ1), θ(ξ2)) ≥ e−R
}
.

Here dx0, dy0 denote visual metrics on ideal boundaries. Then there exists a (K(R), K(R))-
quasi-isometry between BX(x0, R) and BY (y0, R).

For Zµ, Zµ′ = Tn × R with exponential metrics we show that K(R) = maxi |µi/µ′i − 1|R.
Then we give an example of non-quasi-isometric negatively curved homogeneous manifolds
with K(R) . logR.

2.3 Statement of the quantitative quasi-isometry problem

2.3.1 Definition of quasi-isometry

Definition 1. Two metric spaces X and Y are said to be roughly quasi-isometric if there exists
two maps f : X → Y , g : Y → X and two constants λ > 0 and c ≥ 0 such that

• |f(x)− f(y)| ≤ λ|x− y|+ c for every x, y ∈ X,

• |g(x′)− g(y′)| ≤ λ|x′ − y′|+ c for every x′, y′ ∈ Y ,

• |g(f(x))− x| ≤ c for every x ∈ X,

• |f(g(x′))− x′| ≤ c for every x′ ∈ Y .

The word rough is often dropped away.



The first two conditions mean that f and g are nearly Lipschitz if we are looking from afar.
The two latter conditions provide that f and g are nearly inverse of each other. It is easy to
check that the composition of two quasi-isometries is also a quasi-isometry. So, quasi-isometries
provide an equivalence relation on the class of metric spaces.
Remark 1. Definition 1 is invariant under taking inverse maps.

Definition 2. A map f : E → F between metric spaces is a rough (λ, c)-quasi-isometric
embedding if for any two points x, y of E

1

λ
(|x− y|E − c) ≤ |f(x)− f(y)|F ≤ λ|x− y|E + c.

This definition follows from the definition for two spaces being quasi-isometric but it does
not include the existence of a nearly inverse map. We can easily transform Definition 2 to
make it equivalent to Definition 1 by adding the condition that f is nearly surjective. We ask
that the image of E is c-dense in F : for every point y of F there exists a point x of E such
that d(y, f(x)) < c.

We also provide here a definition of c-connected map.

Definition 3. A map f : X → Y between two metric space is called c-connected if for any
point x ∈ X and any real number δ > 0 there exists ε > 0 such that if a point x′ ∈ X satisfies
d(x, x′) < ε then d(f(x), f(x′)) < c+ δ,

Definition 4. 1. A metric spaceX is called c-connected if for any two open sets U, V ⊂ X such
thatX = U∪V , the intersection of a c-neighbourhood of U and V is not empty: (U+c)∩V 6= ∅.

2. A metric space X is called c-connected by an arc if for any two points x, x′ ∈ X there
exists a c-connected map f : [0, 1]→ X such that f(0) = x and f(1) = x′.

First and second definitions are evidently equivalent.

2.3.2 Choice of a class of maps

What do we exactly mean by quasi-isometric distortion at scale R ?
We propose three different settings. Let X and Y be metric spaces. Let x0, y0 be base

point in X and Y . Given R > 0, three families of maps can be considered.

1. Quasi-isometries of BX(x0, R) onto BY (y0, R).

2. Quasi-isometries of BX(x0, R) onto BY (y0, ρ(R)), for some function ρ : R+ → R+.

3. Quasi-isometric embeddings of BX(x0, R) to Y .

Neglecting the additive constant c for a while, these families give rise to distortion functions
λ1(R), λ2(R) and λ3(R).

λ1 has the advantage of letting X and Y play symmetric roles. We shall see next that lower
bounds on λ1 can be obtained easily. In fact, λ1 may tend to infinity even if X and Y are



quasi-isometric. It is therefore rather surprising that non trivial upper bounds on λ1 can be
given (Theorem 6).

λ2 seems to be appropriate in certain settings, as examples below will show.
λ3 is non-symmetric. It is natural in the sense that it stays bounded if and only if there exists

a quasi-isometric embedding of X to Y . It looks harder to estimate from below. Nevertheless,
this is what is done in Theorem 5.

2.3.3 Example illustrating the behaviour of λ1

Let X and Y be two regular trees Td1 and Td2 respectively, suppose that d1 < d2. Consider two
balls of radius R in both of these spaces, denote them by Bd1(R) and Bd2(R) respectively. What
is the lower bound for the constants of quasi-isometry between them? The volume of Bd1(R) is
roughly dR1 and the volume of Bd2(R) is dR2 . A (λR, cR)-quasi-isometry f ′R : Bd1(R)→ Bd2(R)
should preserve (in quasi-isometric sense) volumes. In our future calculations we will drop
some multiplicative constants (which are bounded constants which depend only on a whole
space and not on the particular radius R)

Divide Bd1(R) in balls of radius cR. The image of such a ball has maximal possible radius
(λR+ 1)cR and the number of such balls is V ol(Bd1(R))/V ol(Bd1(cR)) = dR1 /d

cR
1 . By definition

of a quasi-isometry Bd2(R) should be covered by images of these balls, hence V ol(Bd2(R)) ≤
dR1 /d

cR
1 V ol(Bd2((λR + 1)cR))

dR2 ≤ dR1 /d
cR
1 d

(λR+1)cR
2 .

From this relation we conclude that λRcR = Ω(R). On the other hand, we know from [26]
that two regular trees of degrees at least 4 are quasi-isometric.

2.3.4 Example illustrating the behaviour of λ2

Take a d-regular tree. Now transform it in a d(d − 1)-regular tree in a following way. Take
an origin, drop away all its neighbours and add edges to all their ancestors (all the points of
second level). Now we delete all points of third level and connect directly the points of second
levels with corresponding points of fourth level. As a result we get a new tree which is evidently
(2, 1)-quasi-isometric to the initial one. Moreover, any ball Bd(R) is (2, 1)-quasi-isometric to a
ball in a new tree of radius R/2.

2.3.5 Role of the additive parameter c

Quasi-isometry constants are pairs (λ, c). Up to now, we have neglected the additive constant
c. But this cannot be done with impunity, as the following examples show.
Example 2. Intervals.

Consider intervals IR = [0, 1], IλR = [0, λ] in R and IZ = [0, 1], IλZ = [0, λ] in Z. The λ times
stretching of IR to IλR is a (λ, 0)-quasi-isometry as inner points of IR fill the inner points of
an image. The natural embeddings of IZ in IR and IλZ in IλR are both (1, 1)-quasi-isometries,
though the stretching of IZ to IλZ is a (λ, λ)-quasi-isometry.



IR
(λ,0)−−→ IλR

(1, 1) ↓ ↓ (1, 1)

IZ
(λ,λ)−−−→ IλZ

Example 3. Line versus plane.

Consider R and R2. Here we will describe a (c1R, c2)-quasi-isometry between balls in these
spaces (c1 and c2 are two universal constants). A ball in R is just an interval of length 2R.
Stretch it R times and then fill a ball in R2 with a serpentine or a zigzag with width 1. It is
easy to check that this is indeed a (2R, 1)-quasi-isometry. Now change R by Z and R2 by Z2.
Though there exist evident (1, 1)-quasi-isometries between balls in R and Z and balls in R2

and Z2 provided by natural embeddings, there is no (c′1R, c
′
2)-quasi-isometry between balls in

Z and Z2. Moreover, the additive constant should be of order R with small constant c′2. The
reason is that by definition, the image should be c′2-dense. That is the range should be covered
by the balls of radius c′2 centered in the images of points of the departure space, hence

V ol(BZ2(R)) ≤ |BZ(R)|V ol(BZ2(c′2)).

In BZ(R) we have only 2R points and up to some universal multiplicative constants we get

R2 ≤ R(c′2)2

which leads to
c′2 ≥ R.

BR(R)
(2R,0)−−−→ IR(R2)

(1, 1) ↓ ↓ (1, 1)

IR(Z)
(2R,2R)−−−−→ IR(Z2)

We arrive at

Conclusion 1. In the quantitative problem both the multiplicative and the additive parameters
are important.

2.3.6 Choice of a numerical measurement of distortion

Here we want to present a form of definition of quasi-isometries which is more convenient for
quantitative problems and to study compositions of quasi-isometries. For this purpose, we
shall observe that, under composition, quasi-isometry constants behave like elements of the
affine group of the line. We shall introduce a natural distance on the affine group and prove
that it is a function of λ+ c2/λ+ 1/λ, where λ and c are quasi-isometry’s constants.

Sometimes it will be useful for us to distinguish constants as follows.



Definition 5. We say that a map f : X → Y is a quasi-isometric embedding if there exist
constants λ1, λ2, c1, c2 such that for any two points x1, x2 ∈ X

1

λ2

(dX(x1, x2)− c2) ≤ dY (f(x1), f(x2)) ≤ λ1dX(x1, x2) + c1.

We say that X and Y are quasi-isometric if the image f(X) is c3-dense in Y for some given
constant c3.

Study compositions of quasi-isometries. Let f : X → Y and g : Y → Z be (λ1, λ2, c1, c2)-
and (µ1, µ2, d1, d2)-quasi-isometries respectively (we use 5 here as definition of quasi-isometries).
x1, x2 are two points in X. Hence

dY (f(x1), f(x2)) ≤ λ1dX(x1, x2) + c1,

dX(f−1(y1), f−1(y2)) ≤ λ2dY (y1, y2) + c2.

and

dZ(g(y1), g(y2)) ≤ µ1dY (y1, y2) + d1,

dY (g−1(z1), g−1(z2)) ≤ µ2dZ(z1, z2) + d2.

hence for g ◦ f we have

dZ(g ◦ f(x1), g ◦ f(x2)) ≤ λ1µ1dX(x1, x2) + µ1c1 + d1,

dX((g ◦ f)−1(z1), (g ◦ f)−1(z2)) ≤ λ2µ2dZ(z1, z2) + λ2d2 + c2.

We see that the distortion of metrics by a quasi-isometry f can be encoded into two matrices

F1 =

(
λ1 c1

0 1

)
, F2 =

(
λ2 c2

0 1

)
,

and in matrix form we can write (
dY
1

)
≤ F1

(
dX
1

)
.

Encode g with matrices G1 and G2. Hence the composition h = g ◦ f is encoded by matrices

G1F1, F2G2.

Let D be a left-invariant distance on R o R. We set D(f) = D((λ1, c1), (1, 0)) the distance
to an isometry and D̃ = max{D(f), D(f−1)}. It is easily seen that D̃ satisfies the triangle
inequality from the following relation (which uses that D is left-invariant)

D(h) = D((µ1d1)(λ1, c1), (1, 0)) ≤ D((µ1d1)(λ1, c1), (µ1, d1)) +D((µ1, d1), (1, 0)) =

= D((λ1, c1), (1, 0)) +D((µ1, d1), (1, 0)) = D(f) +D(g).



2.3.7 An example of a left-invariant riemannian distance

Call the group of matrices encoding quasi-isometries by Aff

Aff+ =

{(
λ c
0 1

)
, λ > 0, c ∈ R

}
.

Fix the origin x0 ∈ H2. For A ∈ Aff+ we set

D(1, A) = d(x0, Ax0).

Now, H2 = SL(2,R)/SO(2) and x0 = [1]. The following classical formula for the hyperbolic
metric can be found in [8]: let G ∈ SL(2,R), let G = eSO be the polar decomposition of G,
that is S is a trace free symmetric

S =

(
a b
b −a

)
.

and O is orthogonal. Then d(x0, Gx0) = ||S|| =
√
tr(S2) =

√
2(a2 + b2). The action of Aff+

on H2 is the restriction of the action of GL+ on H2 = PSL(2,R)/PO(2) where PSL(2,R) =
GL+/R∗+.

Let A ∈ Aff+, then G = A/
√

detA ∈ SL(2,R) and Gx0 = Ax0. Therefore

D(1, A) = d(x0, Gx0) = ||S||

where

e
2

a b
b −a


= AAT =

1

λ

(
λ2 + c2 c

c 1

)
.

The matrix
1√

a2 + b2

(
a b
b −a

)
is orthogonal with trace being equal to 0, we conclude that the eigenvalues of its exponential
are e±2

√
a2+b2 . On the other hand eigenvalues of this matrix are roots of the equation

x2 − λ2 + c2 + 1

λ
x+ 1 = 0.

We conclude that the distance D =
√
a2 + b2 is a function of D′ = log(λ+ c2/λ+ 1/λ).

We will define the measurement of a (λ1, c1, λ2, c2)-quasi-isometric embedding f as

D0(f) = eD
′((λ1,c1),(1,0)) + eD

′((λ2,c2),(1,0)).

Let us check that D0 is submultiplicative.

D0(g ◦ f) = eD
′(g◦f(1,0)) + eD

′(f−1◦g−1(1,0)) =

eD
′(g(1,0))eD

′(f(1,0)) + eD
′(g−1(1,0))eD

′(f−1(1,0)) ≤ D0(g) ∗D0(f).



2.3.8 Statement of quantitative problem

We finally come up with a precise notion of quasi-isometric distortion growth.

Definition 6. Let (X, x0) be a space with a base point, Y be another space. Then we call
quasi-isometric distortion growth the function

DG(X, x0, Y )(R) = inf
{
d|∃f : BX

x0
(R)→ Y is a quasi-isometric embedding, d = D0(f)

}
,

where BX
x0

(R) is a ball in X centred at x0 of radius R.

2.3.9 Example : maps to trees

In the following proposition we can take for example a hyperbolic plane as the space X.

Proposition 2. Let X be a geodesic metric space. We suppose that for any points x, y and
any positive real numbers R and R′ ≤ R/2 the set Bx(R)\By(R

′) is connected and non-empty.
Let Y be a tree, let f : Bx(R) → Y be a (λ1, λ2, c1, c2)-quasi-isometric embedding. Then
R ≤ 12λ2c1 + 4c2.

Proof. We are going to prove that there exist three points x1, x2 and x such that x1, x2 ∈ Bx(R)
and the distance d(x1, x2) is at least R. Consider a ball of radius 2R centered in x1. By
hypothesis, the set Bx1(2R) \ Bx1(R) is non-empty, hence there exists a point x2 such that
2R > d(x1, x2) ≥ R. The space X is geodesic, hence now we can take the midpoint of x1x2 as
x.

Denote yi = f(xi) for i = 1, 2.
For any point y of a geodesic (y1, y2) ⊂ Y there exists a point z ∈ Bx(R) such that

d(f(z), y) ≤ c1. This follows from the fact that the image of (x1, x2) is c1-connected by
the definition of a quasi-isometric embedding and every c1-connected path between y1 and y2

includes the geodesic (y1, y2) in its c1-neighbourhood.
Now consider a chain of points {x̃i} connecting x1, x2 and such that d(x̃i, x̃i+1) < c1/λ1.

Hence, in the image d(f(x̃i), f(x̃i+1)) < 2c1 and so there exists i such that d(f(x̃i), y) ≤ 2c1.
Notice that Y \By(2c1) has several (4c1− 2)-connected components and the distance between
these components is at least 4c1.

Suppose that a point z is rather far from both x1 and x2: d(z, xi) > 4λ2c1 + c2, i =
1, 2. Suppose also that R > 2(4λ2c1 + c2) (if not there is nothing to prove). In the set
Bx(R)\Bz(4λ2c1+c2) we also find a c1/λ1-chain. Hence, there exists a point z′ /∈ Bz(4λ2c1+c2)
of this path such that d(f(z′), y) ≤ 2c1. Hence, d(f(z), f(z′)) ≤ 4c1 and by property of quasi-
isometry d(z, z′) ≤ 4λ2c1 + c2, so z′ ∈ Bz(4λ2c1 + c2). This leads to a contradiction with our
hypothesis. Hence, for any y ∈ (y1, y2) there exists z′ ∈ Bx1(4λ2c1 + c2)∪Bx2(4λ2c1 + c2) such
that d(f(z′), y) ≤ 2c1.

Consider two points y′, y′′ on the geodesic (y1, y2) which are close enough to each other
(more precisely d(y′, y′′) ≤ c2/λ2) and such that respective points z′ and z′′ (which minimise
distances to y′ and y′′, that is d(y′, f(z′)) ≤ 2c1 and d(y′′, f(z′′)) ≤ 2c1) lie in different balls
z′ ∈ Bx1(4λ2c1 + c2) and z′′ ∈ Bx2(4λ2c1 + c2). So, on the one hand d(z′, z′′) ≥ R− 8λ2c1− 2c2



and on the other by triangle inequality d(f(z′), f(z′′)) ≤ c2/λ2 + 4c1. Hence R− 8λ2c1− 2c2 ≤
λ2(c2/λ2 + 4c1) + c2 = 4λ2c1 + 2c2. So we get R ≤ 12λ2c1 + 4c2.

Example 4. Now we will construct an example of a (
√
R,
√
R,
√
R,
√
R)-quasi-isometry of a

R-ball in H2 to a
√
R-ball in a tree which is an illustration for the previous proposition. In

this example is that we will consider trees of variable degree which will depend on R.
Consider a ball BH2(R, z0) centered at z0. We will define a discrete set of point generation by

generation in the following way. The 0-generation is the origin z0. For each k we pick a regular
polygon of radius k

√
R and such that the length ek of its edges is bounded by

√
R ≤ ek ≤ 2

√
R.

The kth-generation is the set of vertices of this polygon. It is easy to show that every point
of (k + 1)th-generation is at distance const

√
R from at least one point of kth-generation. k

provides the order on our tree. We connect each point of (k+1)th-generation to a closest point
of kth-generation (if the choice is not unique we choose the ancestor arbitrary). Finally we set
lengths of all edges of the constructed tree T√R equal to 1. The radius of T√R is ∼

√
R.

Now we will give the sketch of the proof that the induced map f is a (
√
R,
√
R,
√
R,
√
R)-

quasi-isometry. By the construction the discrete set of points in BH2(R, z0) is const
√
R-dense.

We also notice that the right-hand quasi-isometric inequality is checked automatically because
the radius of T√R equals to the additive constant. So we need to show that if two points x, y
are far in the source, then their images are also far. The distance from any point to origin z0

is contracted by factor 1/
√
R because it is defined only by diameter of generation.

Take the point u ∈ xy which is δ-close to both z0x and z0y. Then ux and uy are δ-close to z0x
and z0y respectively. Let u1 and u2 be projections of u on ux and uy respectively. Then their
images are near in the tree two what means that d(f(x), f(y)) = d(f(x), f(u1)) + f(y), f(u2)
up to an additive error. We already have quasi-isometric inequalities for radial distances, so
we get immediately the needed result

d(x, y)− const
√
R√

R
≤ d(f(x), f(y)),

what finishes the proof.

2.4 Quasi-isometric classification - survey

One of the first appearances of quasi-isometries was the proof of the famous Mostow rigidity
theorem. It is proved by showing that equivariant quasi-isometries are within bounded distance
of isometries.

Theorem 7. (G. Mostow [9]) Suppose that n ≥ 3 and Γ,Γ′ ⊂ Isom(Hn) are lattices and
ρ : Γ→ Γ′ is an isomorphism. Then ρ is induced by an isometry, i.e. there exists an isometry
α ∈ Isom(Hn) such that α ◦ γ = ρ(γ) ◦ α for all γ ∈ Γ.

Mostow extended the previous theorem to all rank one symmetric spaces. In the course of
the proof, he establishes the following fact.



Theorem 8. (G. Mostow [9]) Let X and X ′ be two rank 1 symmetric Riemannian spaces of
negative curvature. If X and X ′ are quasi-isometric then they are homothetic.

Mostow’s theorem was followed by generalizations of P. Pansu [11] (case of rank one) and B.
Kleiner and B. Leeb [13] (higher ranks) (see for example the lecture notes of C. Drutu and M.
Kapovich [10] for a survey on quasi-isometric rigidity). These generalizations help to proceed
in quasi-isometric classification of some important classes of metric spaces.

Theorem 9. (B. Kleiner, B. Leeb [13]) For 1 ≤ i ≤ k, 1 ≤ j ≤ k′ let each Xi, X
′
j be either a

nonflat irreducible symmetric space of noncompact type (in addition assume that X has rank
2) or an irreducible thick Euclidean Tits building with cocompact affine Weyl group (in addition
assume that X has Moufang Tits boundary). Let X = En ×

∏k
i=1Xi and X = En

′ ×
∏k′

j=1 X
′
j

be metric products. If X and X ′ are quasi-isometric, then n = n′, k = k′ and there exists a
permutation σ : {1, 2, . . . , k} and homotheties Xi → X ′σ(i).

The quasi-isometric classification of 3-manifolds is a hard and open problem, only partial
results have been achieved yet. For example we do not know if the fundamental groups of all
(closed) graph manifolds are quasi-isometric. At least, the following result reduces the problem
to the case of non-positively curved manifolds.

Theorem 10. (M. Kapovich, B. Leeb [14]) Let M be a Haken manifold of zero Euler charac-
teristic (which is neither Nil nor Sol), equipped with a Riemannian metric. Then there exists
a compact non-positively curved 3-manifold N with totally geodesic flat boundary and a bilips-
chitz homeomorphism between the universal covers of M and N which preserves the canonical
decomposition. In particular, the fundamental groups π1(M) and π1(N) are quasi-isometric.

Also a special case of Schwartz’ theorem (with n = 3) gives some results for classification
of 3-manifolds.

Theorem 11. (R. Schwartz [16]) Let G 6= Isom(H2) be a rank one Lie group. Suppose that
Γ,Γ′ are non-uniform lattices in G which are quasi-isometric to each other. Then there exists
an isometry g ∈ Isom(Hn) such that the groups Γ′ and gΓg−1 are commensurable.

This theorem holds more generally for simple Lie groups of rank 1. For higher ranks we
have Wortman’s result.

Theorem 12. (K. Wortman [17]) Let K be a global field and S a finite nonempty set of
inequivalent valuations containing all of the Archimedean ones. Suppose G is a connected
simple K-group of adjoint type that is placewise not rank one with respect to S. Let Λ be
a finitely generated group, and assume there is a quasi-isometry φ : Λ → G(OS). If G is
K-isotropic and K is a number field, then there exists a finite index subgroup ΛS of Λ and a
homomorphism φ : ΛS → G(OS) with a finite kernel and finite co-image such that

sup
λ∈ΛS

d (φ(λ), ψ(λ)) <∞.



Wortman’s theorem also covers non K-isotropic fields and function fields, but the result is
not complete in this case.

Theorem 13. (U. Hamenstädt [31]) Two negatively curved homogeneous spaces are quasi-
isometric if and only if their isometry groups are cocompact subgroups of the same Lie group.

A lot of results are obtained for solvable groups. For nilpotent groups we have the following
theorems of P. Pansu and Y. Shalom.

Theorem 14. (P. Pansu [11]) Let Γ and Γ′ be two quasi-isometric finitely generated nilpotent
groups. The associated graded Lie groups gr(Γ⊗ R) and gr(Γ′ ⊗ R) are isomorphic.

Theorem 15. (Y. Shalom [27]) Quasi-isometric finitely generated nilpotent groups have the
same Betti numbers.

The theorem of B. Farb and L. Mosher deals with solvable Baumslag-Solitar groups BS(1, n)
(n is an integer) which are given by the presentations

BS(1, n) =< a, b|aba−1 = bn > .

Theorem 16. (B. Farb, L. Mosher [18]) Let m,n ≥ 2 be two integers, then BS(1, n) and
BS(1,m) are quasi-isometric if and only if they are commensurable. This holds if and only if
there exist integers r, i, j such that n = ri and m = rj.

Further, A. Eskin, D. Fisher and K. Whyte proved the following theorems for solvable
groups.

Theorem 17. (A. Eskin, D. Fisher, K. Whyte) Let Γ be a finitely generated group quasi-
isometric to Sol. Then Γ is virtually a lattice in Sol.

They launched a program for analyzing quasi-isometries of Lie groups of the form RmnM Rn

whose completion is still in progress. Here is an instance of the expected results.

Theorem 18. Suppose M , M ′ are diagonalisable matrices with no eigenvalues on the unit
circle, and G = R nM Rn, G′ = R nM ′ Rn. Then G and G′ are quasi-isometric if and only if
M ′ has the same absolute Jordan form as Mα for some α ∈ R.

Parts and special cases of this theorem are proved in different articles of A. Eskin, D. Fisher,
K. Whyte [19, 20, 21], T. Dymarz [22] and I. Peng [23, 24].

An alternate way of proving that two groups are not quasi-isometric is to show that certain
algebraic features are quasi-isometry invariants. Results of that kind for solvable groups appear
in Y. Shalom’s paper [27].



Chapter 3

Morse Lemma

Hyperbolic metric spaces have recently appeared in discrete mathematics and computer science
(see, e.g., [2]). The notion of δ-hyperbolicity turns out to be more appropriate than other
previously used notions of approximation by trees (e.g., tree width). This motivates our search
for optimal bounds for a cornerstone of hyperbolic group theory like the Morse lemma.

This part is devoted to the quantitative version of the Morse Lemma, its “anti”-variant and
their applications.

In the published article [32], a quasi-isometric embedding was defined as

Definition 7. A map f : E → F between metric spaces is a rough (λ, c)-quasi-isometric
embedding if for any two points x, y of E

1

λ
|x− y|E − c ≤ |f(x)− f(y)|F ≤ λ|x− y|E + c.

The difference is in the lower bound as the additive constant in it is c and not c/λ. We
revised all proofs and examples using our new definition. All previously obtained results
remain true. The main difference in our new proof of Morse Lemma appears in Lemma 10 on
exponential contraction. It was previously stated only for ∆-connected curves, see Lemma 9
in [32]. Now we do not need to substitute a given quasi-geodesic with a continuous one any
more.

3.1 Basics of hyperbolic geometry

The contemporary research on hyperbolic groups and hyperbolic spaces was started in 1987
by M.Gromov in his paper [Gr].

3.1.1 Metric definition

In this text we will use following notations for distances between points and sets. Let E be a
metric space with metric d. We write |x− y| for the distance d(x, y) between two points x and
y of the space E. For a subset A of E and a point x, d(x,A) denotes the distance from x to A.
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Definition 8. Let X be a metric space and x, y, z be three points in X. The Gromov product
(x|y)z of x and y at z is

(x|y)z =
1

2
(|x− z|+ |y − z| − |x− y|) .

To explain the geometrical meaning of this definition, we introduce tripods which are pre-
sented as three points in a metric tree with the branches connecting these points (it is possible
that the lengths of some edges is 0).

Proposition 3. Let x, y, z be three points in some metric space X. Then there exists a tripod
T and an isometry f : x, y, z → T such that f(x), f(y) and f(z) are the endpoints of the tripod
T . Moreover, the lengths of the branches of T are exactly equals to corresponding Gromov’s
product.

The proof is evident, verify it directly by the definition of Gromov’s product. Now we are
ready to give the definition of δ-hyperbolic spaces.

Definition 9. A metric space X is called δ-hyperbolic if for any four points x, y, z, w the
inequality

(x|z)w ≥ min (x, y)w, (y, z)w − δ
holds.

This definition can be rewritten in another form. There are three ways to divide these four
points into pairs. Introduce the corresponding sums of distances

p = |x− w|+ |z − y|
m = |x− y|+ |z − w|
g = |x− z|+ |y − w|.

Redenote the points to have that p ≤ m ≤ g. Then the definition can be rewritten in the
following form

g ≤ m+ 2δ.

That is the greatest sum cannot exceed the mean sum by more than by 2δ.

3.1.2 Case of geodesic metric spaces

Definition 10. A geodesic (geodesic segment, geodesic ray) σ in a metric space E is an
isometric embedding of a real line (real interval I, real half-line R+) in E.

We write xy for a geodesic segment between two points x and y (in general, there could
exist several geodesic paths between two points; we assume any one of them by this notation).
A geodesic metric space is a space such that there exists a geodesic segment xy between any
two points x and y. A geodesic triangle xyz is a union of three geodesic segments xy, yz, and
xz.

Geodesic δ-hyperbolic spaces can be described in terms of "thin triangles".



Definition 11. A geodesic triangle xyz is called δ-thin if the distance from any point p of xy
to the union of xz and yz does not exceed δ:

d(p, xz ∪ yz) ≤ δ.

Proposition 4. (See [1], Proposition 2.3.21)

• A geodesic metric space E is δ-hyperbolic if every geodesic triangle is δ′-thin, with δ ≤ 2δ′.

• If a geodesic metric space E is δ-hyperbolic, all geodesic triangles are δ′-thin for δ′ ≤ 2δ.

According to M. Bonk and O. Schramm [6], every δ-hyperbolic metric space embeds isomet-
rically into a complete δ-hyperbolic geodesic metric space. So, many theorems can be reduced
to the investigation of geodesic hyperbolic spaces using the definition of hyperbolicity in terms
of δ-thin triangles. Usually the factor 1

2
is dropped in the last definition.

Example 5. • One of the most important examples of δ-hyperbolic spaces are metric trees,
here δ = 0.

• Fundamental groups of compact Riemannian manifolds with negative (sectional) curva-
ture are δ-hyperbolic.

Take some finitely presented group G =< X,R >. Introduce a word metric on G. That is
the length of any element g is the minimal length of a word (of generators) which is needed to
write g in P . It is easy to check that it is indeed a metric. The next theorem shows that in
some sense most finite presentations are hyperbolic.

Theorem 19 (Gromov). Fix integers p and q. Consider all presentations P with p generators
(|X| = p) and q relators (|R| = q). Denote by Nhyp(n1, . . . , nq) the number of all hyperbolic
presentations with the lengths of relators equal to n1, . . . , nq, by N(n1, . . . , nq) the number of
all presentations with the same property. Then

Nhyp(n1, . . . , nq)

N(n1, . . . , nq)
→ 1

as ni →∞ (i = 1, . . . , q).

3.1.3 Divergence

Now we are going to introduce the notion of divergence function which allows us to estimate
lengths of paths which leave a ball together with two diverging geodesics. Later this approach
will help us show that the length of a curve lying far from a geodesic is very large.

Definition 12. Let F be a metric space. We say that e : N→ R is a divergence function for the
space F if any point x ∈ F and any two geodesic segments γ = (x, y) and γ′ = (x, z) it holds:
for any R, r ∈ N such that R + r does not exceed the lengths of γ, γ′ if d(γ(R), γ′(R)) > e(0)
and σ is a path from γ(R+r) to γ′(R+r) in the closure of the complement of the ball BR+r(x)

(that is in X \BR+r(x)) then the length of σ is at greater than e(r).



While two points move along two geodesic rays, the distance between them grows linearly
by the triangle inequality which is true in all metric spaces. Though we will see that if two
such geodesics leave some bounded tube then the lengths of paths connecting two points on
them and lying in the complement of the ball grow exponentially in any hyperbolic space (for
example the length of a circle grows exponentially with the radius). If e is an exponential
function then we say that geodesics diverge exponentially.

Theorem 20. In a hyperbolic space geodesics diverge exponentially.

An amazing fact is that the opposite statement is also true and even more: a non-linear
divergence in a geodesic space implies that the divergence function is exponential and, finally,
that the space is hyperbolic. Though here we are not going to prove this result. The reader
can find the proof in [7].

3.1.4 Isoperimetry

An other important property, characterizing hyperbolic spaces, is that the isoperimetric in-
equality is linear for them,

Area(D) ≤ Aipl,

where l is the length of a closed curve filled by an optimal disk D and Aip is some constant de-
pending on a particular space. Let us explain how isoperimetric inequalities can be generalized
to the case of groups.

Let G be a finitely presented group, P =< X|R > a finite presentation of G. Closed curves
in the Cayley polyhedron correspond to words w ∈ F (X) representing the unity of G and,
hence, they can be expressed in F (X) in the reduced form

w = (u−1
1 rα1

1 u1) . . . (u−1
n rαnn un)

where u1 ∈ F (X), ri ∈ R, αi ∈ {−1, 1}. Of course, in general there exists infinitely many of
such decompositions.

Definition 13. The least value of n is called the area of w.

Definition 14. The Dehn (or isoperimetric) function f : N→ N is

f(l) = max {Area(w)|w = 1, |w| = l} .

Any finitely presented group has different presentations with different Dehn functions. The
following lemma (see [15], Lecture 3, Lemma 5) helps us to establish the relation between them.

Lemma 1. Let G be a group and let P and Q be two finite presentations of G with Dehn
functions f and g respectively. Then there exist constants a1, a2, a3, a4 ∈ N such that for any
n ∈ N

f(n) ≤ a1g(a2n+ a3) + a4.



Now we can conclude that if for some presentation, Dehn function is bounded by a linear
(polynomial, exponential etc) function, then for any presentation of that group Dehn function
is also bounded by a function of the same type. Moreover, the type of isoperimetric inequalities
is invariant under quasi-isometries, see Definition 1.

3.1.5 Comparison with trees

A metric tree is one of the most important examples of hyperbolic spaces. Most properties
of hyperbolic spaces can be illustrated in trees and theorems in this subject should be first
verified for them. The following theorem ([1], theorem 2.12) establishes a close relation between
general hyperbolic spaces and trees. It says that a finite configurations in hyperbolic spaces
can be considered as belonging to a tree. We will write |x| for the distance from x to the base
point.

Theorem 21. Let X be a δ-hyperbolic metric space with a base point w and k be a positive
integer.

• If |X| ≤ 2k + 2 then there exist a finite metric tree with a base point t and a map
Φ : X → T such that

1. Φ preserves distances to the base point,

|Φ(x)− t| = |x|

for any point x of X.
2. |y − x| − 2kδ ≤ |Φ(y)− Φ(x)| ≤ |y − x| for any two points x, y of X.

• Let X be a union of rays Xi from points wi (i = 1, . . . , n;n ≤ 2k). Let c = maxi |wi−w|.
Then there exists a metric tree T with a base point t and a map Φ : X → T such that for
any two points x, y ∈ X

|y − x| − 2(k + 1)δ − c ≤ |Φ(y)− Φ(x)| ≤ |y − x|.

3.2 The geometry of δ-hyperbolic spaces

In this section we will give some lemmas on geometry of triangles, perpendiculars and projec-
tions in δ−hyperbolic metric spaces.

Definition 15. In a metric space, a perpendicular from a point to a curve (in particular, a
geodesic) is a shortest path from this point to the curve.

Of course, a perpendicular is not necessarily unique.
Here we state several evident but useful properties of geodesic δ-hyperbolic metric spaces.

Proposition 5. Let abc be a geodesic triangle in a geodesic δ-hyperbolic metric space.



• The function d(x, bc) of a point x ∈ ab is a continuous function.

• There exists a point x ∈ ac such that d(x, ab) = d(x, bc) ≤ δ.

• If ab is a perpendicular to bc then the function d(x, bc) of a point x ∈ ab is strictly
monotonous. If |a − b| > δ, then there exists a point x0 ∈ ab such that d(x0, b) = δ is
close to ac: d(x0, ac) ≤ δ.

Lemma 2. In a geodesic δ-hyperbolic space, let b be a point and σ be a geodesic. Let ba be a
perpendicular from b to σ, where a ∈ σ. Let c be a point of σ such that |b− c| = d(b, σ) + 2∆
for some ∆ > 0. Then |a− c| ≤ 2∆ + 4δ.

Figure 3.1: Illustration for Lemma 2.

Proof. The triangle abc (see Fig. 3.1) is δ-thin by the definition of a δ-hyperbolic space. Hence,
there exists a point t ∈ σ such that d(t, ba) ≤ δ and d(t, bc) ≤ δ. Let t1 and t2 be respective
projections of t on ba and bc. We defined ba as a perpendicular to σ, therefore, d(b, σ) =
|b − a| ≤ |b − t1| + |t1 − t| ≤ |b − t1| + δ and d(b, σ) ≤ |b − t2| + |t2 − t| ≤ |b − t2| + δ.
Hence, |a − t1| ≤ δ and |c − t2| ≤ 2∆ + δ. By the triangle inequality, we obtain |a − c| ≤
|a− t1|+ |t1 − t|+ |t− t2|+ |t2 − c| ≤ 2∆ + 4δ.

Remark 2. In particular, all orthogonal projections of a point to a geodesic lie in a segment of
length 4δ.



Lemma 3. In a geodesic δ-hyperbolic space, let two points b and d be such that |b − d| = ∆.
Let σ be a geodesic and a and c be respective orthogonal projections of b and d on σ. Let
|a − b| > ∆ + 3δ, and let d(d, σ) ≥ d(b, σ). Let two points x1 ∈ ab and x4 ∈ cd be such that
δ < d(x1, σ) = d(x4, σ) < |a− b| − (∆ + 2δ). Then |x1 − x4| ≤ 4δ and |a− c| ≤ 6δ.

Figure 3.2: Illustration for Lemma 3.

Proof. (See Fig. 3.2.)
Because d(x1, ac) = |x1 − a| > δ and triangle abc is δ-thin, d(x1, bc) ≤ δ. Let x2 denote

the point of bc nearest x1. Applying two times triangle inequality we get first |b − x2| ≥
|b − x1| − |x1 − x2| > ∆ + δ and then d(x2, bd) ≥ |b − x2| − |b − d| > δ, Because the triangle
bcd is also δ-thin, there exists a point x3 ∈ cd such that |x2 − x3| ≤ δ.

It follows from the triangle cx1x3 that |x3− c| ≥ |x1− c| − 2δ ≥ |x1− a| − 2δ. On the other
hand, because x3c is a perpendicular to σ, |x3− c| ≤ |x3− x1|+ |x1− a| ≤ |x1− a|+ 2δ. Now,
|a− x1| = |c− x4|, and hence |x4 − x3| ≤ 2δ. Finally, we obtain the statement in the lemma:
|x1 − x4| ≤ 4δ.

By the triangle inequality |a− c| ≤ |a− x1|+ |x1− x4|+ |x4− c|. So taking x1 and x4 close
to σ, we obtain that |a− c| ≤ 6δ.

Lemma 4. Let σ be a geodesic segment, a be a point not on σ, and c be a projection of a on
σ. Let b ∈ σ be arbitrary, and let d denote a projection of b on ac. Then the |c− d| ≤ 2δ.



Proof. By hypothesis, bdminimizes the distance of b to any point of ac, and because the triangle
bcd is δ-thin, there exists a point e ∈ bd such that d(e, ac) = |e − d| ≤ δ and d(e, bc) ≤ δ.
Because ac is a perpendicular to σ, |a− c| ≤ |a− d|+ |d− e|+ d(e, bc) ≤ |a− d|+ 2δ. Hence
|c− d| ≤ 2δ.

Lemma 5. As in the preceding lemma, let σ be a geodesic segment, a be a point not on σ,
c be a projection of a on σ, and b be some point on σ. Let d denote a point on ac such that
|d− c| = δ and e denote a point on bc such that |e− c| = 3δ. Then

• d(d, ab) ≤ δ, d(e, ab) ≤ δ, d(c, ab) ≤ 2δ, and

• the length of ab differs from the sum of the lengths of the two other sides by at most 8δ,

|a− c|+ |b− c| − 2δ ≤ |a− b| ≤ |a− c|+ |b− c|+ 8δ.

Proof. The triangle abc is δ-thin. Therefore, obviously, d(d, ab) ≤ δ (the distance from a point
of ac to ab is a continuous function). We take a point x ∈ bc such that d(x, ca) ≤ δ. Using
Lemma 4, we obtain |b− x|+ d(x, ca) ≥ |b− c| − 2δ, and hence |c− x| ≤ d(x, ca) + 2δ ≤ 3δ.

We now let d1 and e1 denote respective projections of d and e on ab. Then by the triangle
inequality, we have

• |a− d| − δ ≤ |a− d1| ≤ |a− d|+ δ,

• |b− e| − δ ≤ |b− e1| ≤ |b− e|+ δ, and

• 0 ≤ |d1 − e1| ≤ |d1 − d|+ |d− c|+ |c− e|+ |e− e1| ≤ 6δ.

Combining all these inequalities, we obtain the second point in the lemma.

Lemma 6. Let σ be a geodesic and a and b be two points not on σ. Further, let a and b have
a common projection c on σ. Let d be a point of σ and c1 be a projection of d on ab. Then

|d− c| ≤ |d− c1|+ 6δ.

Remark 3. Lemma 6 deals only with a geodesic segment ab, not a complete geodesic containing
those points. The statement is not true for a complete geodesic passing through a and b, as
can be seen from Fig. 3.3.

Proof. We take a point e ∈ bc such that |c− e| = δ and consider the triangle bcd (see Fig. 3.4).
Because bc is a perpendicular to dc, d(e, bd) ≤ δ. Let e1 denote a projection of e on bd. Let
e2 and e3 be a respective projections of e1 on the geodesic segments dc1 and bc1. Because the
triangle dbc1 is δ-thin, either |e1 − e2| ≤ δ or |e1 − e3| ≤ δ.

I. If |e1 − e2| ≤ δ, then |d− c| ≤ |c− e|+ |e− e1|+ |e1 − e2|+ |e2 − d| ≤ |d− c1|+ 3δ.
II. If |e1 − e2| > δ, then the length of the path cee3 is at most 3δ. We apply the same

arguments to ad (we assume that this is possible; otherwise, we could apply the first case to
it). We obtain the points g, g1, and g3 and the length of the path cgg3 is also at most 3δ. If



Figure 3.3: Illustration for Remark 3.

neither of these paths intersects cc1, then its length does not exceed 6δ (which follows from
consideration of the triangle ce3g3). e3 and g3 lies on the different size of c1 because by the
assumption e1e2 and g1g2 are rather long.

Remark 4. This lemma stays true if the distance between projections ca and cb of a and b on
σ are close enough. For example if |ca − cb| ≤ δ then |d− ca| ≤ |d− c1|+ 7δ.

Lemma 7. Let E be a geodesic δ-hyperbolic metric space and abc be a triangle in E. Then the
diameter of the set S of points of the side ab such that distance to bc and ac does not exceed d
is not greater than C(d+ δ), where C is a constant.

Proof. Let x be a point of ab such that d(x, bc) ≤ δ and d(x, ac) ≤ δ and y be a point of ab
such that d(y, bc) ≤ d and d(y, ac) ≤ d. Without loss of generality, we assume that y ∈ (a, x).
Because the triangle abc is δ-thin, one of these two distances does not exceed δ.

We first assume that d(y, ac) ≤ δ. Let x′ and y′ be points of ac such that d(x, x′) ≤ δ
and d(y, y′) ≤ δ. We let t, t′, s, and s′ denote respective projections of x, x′, y, and y′

on bc. Because x′t′ is a perpendicular to bc, |x′ − t′| ≤ |x′ − x| + |x − t| ≤ 2δ, and hence
|t− t′| ≤ 4δ. If y and y′ are sufficiently far from bc, i.e., if d(y, s) ≥ 4δ and d(y′, s′) ≥ 4δ, then
|s− s′| ≤ 6δ by Lemma 3. Otherwise, we can give a rough estimate by the triangle inequality:
|s− s′| ≤ |s− y|+ |y − y′|+ |y′ − s′| ≤ 9δ. Hence, in any case, |s− s′| ≤ 9δ. We consider two
cases.

If s is in the segment [b, t′], then by applying the triangle inequality several times, we obtain

|b−y| ≤ |b− s|+ |s−y| ≤ |b− t′|+ |s−y| ≤ |b−x|+ |x− t|+ |t− t′|+ |s−y| ≤ |b−x|+ 5δ+d.



Figure 3.4: Illustration for Lemma 6.

And because |b− y| = |b− x|+ |x− y|, we have |x− y| ≤ 5δ + d.
We apply the same arguments if s ∈ [t′, c]. We merely note that we can replace y with y′

and t with t′ with respective errors less than δ and 9δ:

|c− y′| ≤ |c− s′|+ |s′ − y′| ≤ |c− s|+ 9δ + |s− y|+ δ ≤ |c− t′|+ 10δ + d,

here we use that s′ is a projection of y′, hence |y′ − s′| ≤ |y′ − s| ≤ |y − y′|+ |y − s|.
If y′ ∈ cx′ (that is x′ ∈ ay′), we have on the one hand |a−y′| ≤ |a−y|+ |y−y′| ≤ |a−y|+δ.

On the other hand, |a−y′| = |a−x′|+|x′+y′| ≥ |a−x|−δ+|x′+y′| = |a−y|+|y−x|−δ+|x′+y′| ≥
|a− y|+ |x′ − y′| − 2δ − δ + |x′ + y′| = |a− y|+ 2|x′ − y′| − 3δ. Hence, combining these upper
and lower bounds for |a − y′| we arrive at |x′ − y′| ≥ 2δ. Now, suppose x′ ∈ cy′. Because



|c− t′| ≤ |c− x′|+ |x′ − t′| ≤ |c− x′|+ 2δ, we have

|c− x′|+ |x′ − y′| = |c− y′| ≤ |c− x′|+ 12δ + d,

hence |x′ − y′| ≤ 12δ + d. Finally, |x− y| ≤ |y − y′|+ |y′ − x′|+ |x− x′| ≤ 14δ + d.
The case d(y, bc) ≤ δ is treated identically with d and δ interchanged.

3.3 Quasi-geodesics and ∆-length

Definition 16. A (λ1, λ2, c1, c2)-quasi-geodesic in F is a (λ1, λ2, c1, c2)-quasi-isometric embed-
ding (in the sense of Definition 5) of a real interval I = [0, l] into F .

Let γ : I → F be a curve. We assume that the interval I = [a, a+ l] of length |I| = l gives
the parametrization of the quasi-geodesic γ. We take a subdivision T = (x0 = a, x1, . . . , xn(T ) =
a+l) and let yi, i = 0, 1, . . . , n(T ), denote γ(xi). The anti-mesh of T is d(T ) = min0<i≤n(T ) |yi−
yi−1|.

Definition 17 (∆-length). Let γ : I → F be a curve. The value

L∆(γ) = sup
T :d(T )≥∆

n(T )∑
i=1

|yi − yi−1|

is called the ∆-length of the quasi-geodesic γ.

We note that the values of ∆-length and classical length are the same for a geodesic.

Lemma 8. Let γ : I → F be a (λ1, λ2, c1, c2)-quasi-geodesic. For ∆ ≥ 2c1,

L∆(γ) ≤ 2λ1l.

Proof. By the definition of ∆-length, ∆ ≤ |yi − yi−1| ≤ λ1|xi − xi−1| + c1. Hence, because
∆ ≥ 2c1, we obtain |xi − xi−1| ≥ (∆− c1)/λ1 ≥ c1/λ1.

Now, by definition of a quasi-geodesic, we have (the supremum is taken over all subdivisions
T of I with anti-mesh at least ∆)

sup
T

∑
i

|yi − yi−1| ≤ sup
T

∑
i

(λ1|xi − xi−1|+ c1) ≤ sup
T

∑
i

2λ1|xi − xi−1| = 2λ1l,

where the last equality follows because the sum of |xi − xi−1| for every subdivision of the
interval I is exactly equal to the length of I.

Lemma 9. Let γ : I → F be a (λ1, λ2, c1, c2)-quasi-geodesic. Assume that the distance R
between the endpoints of γ is at least c2/λ2, and let ∆ ≥ 2c1. Then L∆(γ) ≤ 4λ1λ2R.

Proof. By definition of a quasi-isometry, (l− c2)/λ2 ≤ R ≤ λ1l+ c1. Hence, l ≤ λ2R+ c2. And
by Lemma 8, L∆(γ) ≤ 2(λ2R + c2)λ1. In particular, L∆(γ) ≤ 4λ1λ2R for R ≥ c2/λ2.



3.4 Exponential contraction

Lemma 10 (Exponential contraction). Let ∆ > 0. In a geodesic δ-hyperbolic space E, let γ
be a ∆/2-connected curve at a distance not less than R ≥ ∆ + 3δ from a geodesic σ. Let L∆

be the ∆-length of γ. Set

k =

⌈
R−∆− 42δ

19δ

⌉
(assume k =∞ if δ = 0, set k = 0 if the previous expression is negative). Then the diameter
of the orthogonal projection of γ on σ is not greater than

max

(
3δ

∆
e−k ln 2L∆, 6δ

)
.

Figure 3.5: Exponential contraction of the length of a curve γ under projection on a geodesic σ.

Proof. We will suppose that the projection of the curve lies between projections of its end-
points (otherwise consider a part of a curve between points which correspond to the border
of the projection). First assume that δ > 0. Let y0, y1, . . . , yn be points on γ such that
∆ ≤ |yi − yi−1| ≤ 2∆ for i = 1, 2, . . . , n and y0 and yn are the endpoints of γ. Let yk be the
point of this set that is nearest from σ. We take a perpendicular from yk to σ and a point xk on



it with |yk−xk| = ∆ + 3δ. Now, on the perpendiculars from all other points yi, we take points
xi such that d(xi, σ) = d(xk, σ) (see Fig. 3.5). By Lemma 3 applied to points yi, yi−1, xi, xi−1

and the geodesic σ, |xi − xi−1| ≤ 4δ for i = 1, 2, . . . , n. Therefore,
n∑
i=1

|xi − xi−1| ≤ n4δ ≤ n∆
4δ

∆
≤ 4δ

∆
L∆.

We set x̄0 = x0 and x̄n1 = xn and select points x̄i ∈ {x1, x2, . . . , xn−1} such that 8δ ≤
|x̄i − x̄i−1| ≤ 16δ. For each i = 0, 1, . . . , n1, we choose a perpendicular from x̄i to σ, move x̄i
along it a distance 19δ towards σ, and obtain x1

i . By Lemma 3 applied to points x̄i, x̄i−1, x
1
i , x

1
i−1

and the geodesic σ, |x1
i − x1

i−1| ≤ 4δ and
n1∑
i=1

|x1
i − x1

i−1| ≤ n14δ ≤ 1

2

n1∑
i=1

|x̄i − x̄i−1| ≤
1

2

n∑
i=1

|xi − xi−1| ≤
1

2

4δ

∆
L∆.

We can continue such a process until one of two events happens.
• at some step m the diameter of the set of points {xmi , i = 0, 1, . . . , nm} is small;

• at some step m the distance from the set of points {xmi , i = 0, 1, . . . , nm} to σ is small.
In the first situation we use the second result of Lemma 3 to estimate the diameter of

projection by 6δ.
Consider the second one. After k steps, we have

nk∑
i=1

|xki − xki−1| ≤
1

2k
4δ

∆
L∆ =

4δ

∆
e−k ln 2L∆.

If at some step m d(xmi , σ) ≤ 39δ, we do the projection Prσ of the subset {x̄mi } (we remind
that this subset is chosen so that 8δ ≤ |x̄mi − x̄mi−1| ≤ 16δ) on σ directly. By Lemma 3

|Prσx̄mi − Prσx̄mi−1| ≤ 6δ.

So at this step we gain the factor 3/4 for the diameter of the projection compared to the
diameter of {xmi }

diam{Prσx̄mi } ≤
3δ

∆
e−k ln 2L∆.

Now we have only to check the case δ = 0. Then our space E is a metric tree and we
immediately get that the projection of γ is just the only point.

3.5 Quantitative version of the Morse lemma

We are now ready to state and prove the quantitative version of the Morse lemma. In a δ-
hyperbolic space E, any (λ1, λ2, c1, c2)-quasi-geodesic γ belongs to the H-neighborhood of any
geodesic σ connecting its endpoints, where the constant H depends only on the space E (in
particular, on the constant δ) and the quasi-isometry constants λ1, λ2, c1 and c2.



3.5.1 Attempts

To motivate our method, we describe a sequence of arguments yielding sharper and sharper
estimates. Here, for simplicity, we will assume that λ1 = λ2 = λ and additive constants are
small relatively to λ. We start with the proof in [1], Chapter 5.1, Theorem 6 and Lemma 8,
where the upper bound H ≤ λ8c2δ was obtained (up to universal constants, factors of the
order log2(λcδ)). The first weak step in this proof is replacing a (λ, c)-quasi-geodesic with
a discrete (λ′, c)-quasi-geodesic γ′ parameterized by an interval [1, 2, . . . , l] of integers, where
λ′ ∼ λ2c. For a suitable R ∼ λ′2, we take an arc xuxv of γ′ and introduce a partition of that
arc xu, xu+N , xu+2N , . . . , xv for some well-chosen N ∼ λ′. The approximation of a δ-hyperbolic
space by a tree (see [1], Chapter 2.2, Theorem 12.ii) is used to obtain an estimate of the form
|yu+iN −y′u+(i+1)N | ≤ c′ ∼ lnλ′. By the triangle inequality, |xu−xv| ≤ |xu−yu|+ |yu−yu+N |+
· · · + |yv − xu| ≤ 2(R + λ′) + (N−1|u − v| + 1)c′. On the other hand, λ′−1|u − v| ≤ |xu − xv|.
Combining these two inequalities, we obtain an estimate for |u− v| and hence for the distance
from any point of the arc xuxv to the point xu. The second weak step in this argument is in
the estimate of the length of projections, which can be improved significantly.

Another proof was given in [7]. It allows to obtain the estimate λ2Ham, where Ham is
the constant of the anti-Morse lemma (see Section 3.7) and is given by the equation Ham '
lnλ + lnHam.1 It is very close to an optimal upper bound but still not sharp as the sharp
estimate for Ham ' lnλ. The proof uses the fact that in a hyperbolic space the divergence
function is exponential.

To prove the anti-Morse lemma, the authors of [7] take a point p of the geodesic σ that is
the distant from the quasi-geodesic γ and construct a path α between two points of γ such that
α is in the complement of the ball of radius d(p, γ) with the center p. Finally, they compare two
estimates of the length: one estimate follows from the hypothesis that α is a quasi-geodesic,
and the other is given by the exponential geodesic divergence. To prove the Morse lemma, they
take a (connected) part γ1 of γ that belongs to the complement of the Ham-neighborhood of the
geodesic σ, and they show that the length of γ1 does not exceed 2λ2Ham by the definition of a
quasi-geodesic. In [7], they also use another definition of a quasi-geodesic, which is less general
than our definition because, in particular, it assumes that a quasi-geodesic is a continuous
curve. Consequently, some technical work is needed to generalize their results.

To improve these bounds, we use Lemma 10 (exponential contraction) instead of exponential
geodesic convergence and Lemma 9, which do not require discretization as in [1] and provide
a much more precise estimate for a length of a projection. We can then take R = lnλ and
obtain H ≤ O(λ2 lnλ) by a similar triangle inequality.

Below, we prove the Morse and anti-Morse lemmas independently. We only mention that
arguments in [7] can be used to deduce the optimal bound for the Morse lemma from the
anti-Morse lemma. We can also obtain an optimal upper bound for H from Lemma 11.

We now sketch the proof of a stronger result (but still not optimal): H ≤ O(λ2 ln∗ λ), where
ln∗ λ is the minimal number n of logarithms such that ln . . . ln︸ ︷︷ ︸

n

λ ≤ 1.

1Be careful while reading [7] because a slightly different definition of quasi-geodesics is used there with λ1 = λ2;
cf. Lemma 9.



The preceding argument is used as the initial step. It allows assuming that the endpoints x
and x′ of γ satisfy |x− x′| ≤ O(lnλ). Then comes an iterative step. We prove that if xx′ is an
arc on γ and |x− x′| = d1, then there exist two points y and y′ at distance at most C2(c, δ)λ2

from a geodesic σ1 connecting x and x′ such that d2 := |y − y′| ≤ C3(c, δ) ln d1. Indeed, we
choose a point z of the arc xx′ that is farthest from σ1 and let σ′ denote a perpendicular from
z to σ1. If all points of the arc xx′ (on either side of z) whose projection on σ′ is at a distance
≤ λ2 from σ1 are at a distance not less than ln d1 from σ′, then Lemma 10 implies that the
length of the arc is much greater than λ2 ln d1, contradicting the quasi-geodesic assumption.
Hence, there are points y and y′ that are near σ′. We can arrange that their projections on σ′
are near each other, which yields |y− y′| ≤ ln d1. We apply this relation several times starting
with d1 = C1(c, δ) lnλ until di ≤ 1 for some i = ln∗ λ.

In summary, we use two key ideas to improve the upper bound ofH: exponential contraction
and consideration of a projection of γ on a different geodesic σ′.

3.5.2 Proof of the Morse lemma

We use the same ideas to prove the quantitative version of the Morse lemma, but we should
do it more accurately.

Remark 5. In Section 3.6 we will give examples (properly parametrized and discretized rays in
a tree) where H = λ1λ2 min{c1, c2}/4.

Figure 3.6: Illustration of proof of Theorem 2



Proof of Theorem 2. First, we notice that a (λ1, λ2, c1, c2)-quasi-geodesic γ is a c1-connected
curve. We will use Lemma 9 and Lemma 10 to get control on the ∆-length of γ with ∆ =
2 max{c1, δ}.

We introduce the following construction for subdividing the quasi-geodesic γ. We let z
denote the point of our quasi-geodesic that is farthest from σ. Let σ0 = σ be the geodesic
connecting the endpoints of γ. Let σ′0 be a geodesic minimizing the distance between z and σ0

(because σ0 is a geodesic segment, σ′0 is not necessarily perpendicular to the complete geodesic
carrying σ0). Let s0 denote the point of intersection of σ0 and σ′0. Let s′0 be the point of σ′0
such that the length of the segment [s0, s

′
0] is equal to 7δ. We consider the set of points of γ

whose orthogonal projections (at least one) on σ′0 belong to the segment [s0, s
′
0]. The point z

separates this set into two subsets γ+
0 and γ−0 (see Fig. 3.6).

Let d±0 denote the minimal distance of points of γ±0 to σ′0. We also introduce the following
notation:

• d0 = d+
0 + d−0 + δ;

• γ1 is the c1-connected component of γ \ (γ+
0 ∪γ−0 ) containing z ; it is also a quasi-geodesic

with the same constants and properties as γ;

• σ1 is a geodesic connecting the endpoints of the sub-quasi-geodesic γ1;

• L1 is the ∆-length of γ1.

Applying the same idea to the curve γ1, the same point z, and the geodesic σ1, we obtain
the geodesic σ′1, the parts γ±1 of the quasi-geodesic, and the distances d±1 . We have l(σ′0) ≤
l(σ′1) + 8c1 + 14δ. To show this, we will apply Lemma 6. If the projections onto σ′0 of the
endpoints of γ1 coincide with s′0, there is nothing to prove. Indeed, in the statement of Lemma
6 assume that c = s′0, d = z, and a and b are the endpoints of γ1. Otherwise we will show that
the same Lemma can be also applied to points at most c1 far away from the endpoints. Let
t+1 and t−1 be the endpoints of γ1. There exist points r±0 of γ±0 at distance at most c1 from t±1
because the quasi-geodesic γ is c1-connected. Then distances from orthogonal projections of
t±1 on σ′0 to s′0 are at most max{c1, 6δ} ≤ 6(c1 +δ). Find points u±1 of geodesic segments (r−0 t

−
1 )

and (r+
0 t

+
1 ) whose projections coincide with s′0 up to δ. Apply to them Lemma 6 (we remind

also the remark after this lemma). Now we notice that any point of (t+1 t
−
1 ) lies at distance at

most 2(c1 + δ) from (u+
1 u
−
1 ). Then l(σ′0) ≤ l(σ′1) + 6(c1 + δ) + 7δ + 2(c1 + δ).

Continuing the process, we obtain a sequence of subsets γ±i of γ and two families of geodesics
σi and σ′i. Finally, for some n, we obtain dn ≤ c2 + 2∆ + 4δ (the choice of such a bound will
allow us to apply Lemma 10 on exponential contraction for all i < n).

The quantity Li is the ∆-length of the subcurve γi, which is also a quasi-geodesic. Hence,
l(σ′n) ≤ Ln ≤ 4dnλ1λ2 by construction. Therefore,

l(σ′0) ≤
n∑
i=1

(8c1 + 15δ) + 4(c2 + 2∆ + 4δ)λ1λ2.

Our goal is to estimate n.



By Lemma 10, we obtain

L∆(γ+
i ∪ γ−i ) ≥ 7δ

∆

3δ
max(eln 2(d+i+1−∆−42δ)/19δ, eln 2(d−i+1−∆−42δ)/19δ) ≥

7∆

3
eln 2(di+1−δ−2∆−84δ)/38δ.

On the other hand, L∆(γ+
i ∪ γ−i ) ≤ Li − Li+1 + ∆. Hence, setting C0 = (3∆/7)e−5/2 ln 2, we

have
C0e

ln 2(di+1−∆)/38δ ≤ Li − Li+1 + ∆. (3.1)

Let g±i be a point of γ±i that minimizes the distance to σ′i. The part of the quasi-geodesic
γ between g+

i and g−i is also a quasi-geodesic with the same constants and properties. By the
triangle inequality, |g−i − g+

i | < d+
i + d−i + 7δ. Therefore, by construction (see the beginning of

the proof) and because di ≥ c2 + 2∆ + 4δ ≥ c2 for i < n,

Li ≤ 4λ1λ2di ≤ 8λ1λ2(di −∆). (3.2)

The function de−d is decreasing. Therefore, because di ≥ 1
4λ1λ2

Li, we obtain

ln 2

38δ
(di −∆)e− ln 2(di−∆)/38δ ≤ ln 2

2δ

1

8λ1λ2

Lie
−(ln 2/(304δλ1λ2))Li .

We are now ready to estimate n:

n =
n∑
i=1

1 =
1

C0

n∑
i=1

e− ln 2(di−∆)/38δC0e
ln 2(di−∆)/38δ

≤ 1

C0

16λ1λ2δ

ln 2

n∑
i=1

e−(ln 2/304δλ1λ2)Li
ln 2

16λ1λ2δ
(Li−1 − Li + 2∆).

Setting Xi = (ln 2/16λ1λ2δ)Li, we have
n∑
i=1

1 ≤ 16λ1λ2δ

C0 ln 2

n∑
i=1

e−Xi(Xi−1 −Xi) + 2∆/C0

n∑
i=1

e−Xi ,

and because the function e−X is decreasing for X ≥ 0, we can use the estimate
n∑
i=1

e−Xi(Xi−1 −Xi) ≤
∫ ∞

0

e−XdX = −e−x|∞0 = 1.

Summarizing all facts, we finally obtain the claimed result

H = 4λ1λ2

(
4δ

C0 ln 2
+ c2 + 4c1 + 8δ

)
+ 14/3e5/2 ln 2(8c1 + 15δ),

we recall that C0 = (3∆/7)e−5/2 ln 2. Lastly we notice that δ/∆ ≤ 1 and 14/3e5/2 ln 2(8c1+15δ) ≤
λ1λ214/3e5/2 ln 2(8c1 + 15δ).



3.6 Optimality of Theorem 2

Proposition 6. Let T be a geodesic ray. Then for any constants λ1, λ2 ≥ 1 and c1, c2 ≥ 0 there
exists a (λ1, λ2, c1, c2)-quasi-geodesic γ such that Morse constant H ≥ λ1λ2 min{c1, c2}/4 −
min{c1, c2}.

Proof. We will construct explicitly such a quasi-geodesic γ : I → T , where I is a parametriza-
tion interval.

Let s1 be the base point of T . Denote by c = min{c1, c2}. Let I be an interval of length
l = λ2c/2. Divide I by intervals I1, I2, . . . , In of length l1 = c/λ1. Let s2, . . . , sn be consequent
points of σ such that |si − si−1| = c/2 for i = 2, . . . , n. Set

• γ(Ii) = s2i−1 for any i ≤ n/2,

• γ(Ii) = s2(n−i+1) otherwise.

First, we check that γ is indeed a (λ1, λ2, c1, c2)-quasi-isometry. If two points x1, x2 of I are in
the same little interval Ii then

|x1 − x2| − c2

λ2

≤ l1 − c2

λ2

≤ |γ(x1)− γ(x2)| = 0 ≤ λ1|x1 − x2|+ c1.

If x1 and x2 are in different intervals Ii and Ik then the distance between their images is at
least c/2 and for the left-hand inequality we have

|x1 − x2| − c2

λ2

≤ l − c2

λ2

≤ c

2
≤ |γ(x1)− γ(x2)|.

Finally, we prove the right-hand inequality. We have (|i − k| − 1)l1 ≤ |x1 − x2| and also
|γ(x1)− γ(x2)| ≤ c|i− k|. Hence,

λ1|x1 − x2|+ c1 ≥ (|i− k| − 1)c+ c1 ≥ |γ(x1)− γ(x2)|.

We see easily that H ≥ 1/2 · c/2 · l/l1 − c = λ1λ2c/4− c.

3.7 Anti-Morse lemma

We have already proved that any quasi-geodesic γ in a hyperbolic space is at distance not more
than λ1λ2(c1+c2+δ) from a geodesic segment σ connecting its endpoints. This estimate cannot
be improved. But the curious thing is that this geodesic belongs to a (δ lnλ1λ2 + c1 + c2 + δ)-
neighborhood of the quasi-geodesic! We can therefore say that any quasi-geodesic is lnλ1λ2-
quasiconvex for δ > 0. In a particular case of a tree, any quasi-geodesic is c1 + c2-quasiconvex
in a tree!

The proof of Theorem 3 (see the introduction) that we give below is based on using

• Lemma 10 (exponential contraction) to prove that at the distance lnλ from the geodesic
the diameter of σ is at most λ2 lnλ and



• an analogue of Lemma 10 to prove that the length of a circle of radius R is at least eR
(up to some constants).

Lemma 11. Let X be a hyperbolic metric space, γ be a (λ1, λ2, c1, c2)-quasi-geodesic, and σ
be a geodesic connecting the endpoints of γ. Set ∆ = 2 max{c1, δ}. Let (yu, yv) be an arc of γ
such that no point of this arc is at distance less than

R =
19

ln 2
δ ln

(
24(λ1λ2)2

)
+ ∆ + 42δ

from σ and yu and yv are the points of the arc nearest from σ. Then the diameter of the
projection of the arc (yu, yv) on σ does not exceed max {6δ, C3 (δ lnλ1λ2 + δ + c1 + c2)} (with
a universal constant C3).

Proof. By the definition of a quasi-geodesic, we have

|u− v| − c2

λ2

≤ |yu − yv| ≤ λ1|u− v|+ c1,

where u and v stand for parameters of yu and yv respectively. On the other hand,

|yu − yv| ≤ |yu − y′u|+ |y′u − y′v|+ |y′v − yv|,

where y′u and y′v are the projections of yu and yv on σ. We notice that our choice of ∆ allows
applying Lemma 9. For simplicity of notations we will also suppose that d(yu, y

′
u) = d(yv, y

′
v).

We apply the lemma on exponential contraction (we assume that the length of the arc is rather
large for using the estimate with an exponential factor and not to treat the obvious case where
the diameter of the projection is 6δ). We let l(yu, yv) denote the ∆-length of the arc (yu, yv):

|y′u − y′v| ≤ l(yu, yv)
3δ

∆
e− ln 2(R−∆−42δ)/(19δ) =

3δ

∆
· 1

24(λ1λ2)2
l(yu, yv).

Combining all these inequalities and using Lemma 9 and the fact that δ/∆ < 1, we obtain

|u− v| − c2

λ2

≤ |yu − yv| ≤ 2R +
3δ

∆
· 1

24(λ1λ2)2
l(yu, yv)

≤ 2R +
1

8(λ1λ2)2
4λ1λ2|yu − yv|

≤ 2R +
1

2λ1λ2

(λ1|u− v|+ c1).

Hence
|u− v| ≤ 4Rλ2 + 2(c1 + c2).

We therefore conclude that |yu−yv| ≤ C1λ1λ2 (R + c1 + c2) ≤ C2λ1λ2 (δ lnλ1λ2 + δ + c1 + c2),
hence l(yu, yv) ≤ C3(λ1λ2)2 (δ lnλ1λ2 + δ + c1 + c2), where C1, C2 and C3 are universal con-
stants and, finally, the diameter of the projection of the arc (yu, yv) of γ does not exceed

max {6δ, C3 (δ lnλ1λ2 + δ + c1 + c2)} .



Proof of Theorem 3. The proof follows directly from Lemma 11. Because we have already
proved in the preceding lemma, for every point z′ ∈ σ, there exists a point z ∈ γ such that the
projection of z on σ is at distance not more than several times c1 + δ from z′. For simplicity,
we therefore assume that for any point of σ, there exists a point of γ projecting on this point.

Assume Ham = C4(δ lnλ1λ2 + δ + c1) where C4 is just a universal constant which can be
found from Lemma 11. If the distance between z and z′ is less than Ham, then the statement
is already proved. If not, then we take an arc (yu, yv) of γ containing the point z such that
the endpoints yu and yv are at the distance Ham from σ and these points are the points of
this arc that are nearest from σ. Hence, by Lemma 11, the length of the projection (which
includes z) of the arc (yu, yv) does not exceed max {6δ, C3 (δ lnλ1λ2 + δ + c1 + c2)}. Therefore,
the distance from z to yu (and yv) is not greater than C5 (δ lnλ1λ2 + δ + c1 + c2) with some
universal constant C5.

3.8 Application of Anti-Morse Lemma

Proposition 7. Let X, Y be two geodesic hyperbolic spaces, let f : X → Y be a (λ1, λ2, c1, c2)-
quasi-isometry. Let σ be a geodesic in X. Then the distance from γ̃ = f(σ) ⊂ Y to any
geodesic connecting its ends is at most λ1H

X
am + c1, where HX

am is a anti-Morse constant for
the space X.

We see that in case of a quasi-isometry instead of a quasi-isometric embedding we have a
stronger result than Morse Lemma.

Proof. Let σ̃ ⊂ Y be a geodesic connecting the ends of γ̃. Define also a quasi-geodesic γ =
f−1(σ̃) in X. Because σ and γ share their ends, we can apply the Anti-Morse Lemma to them,
so σ ⊂ UHam(γ) lies in HX

am-neighbourhood of γ. Now applying f to σ and γ we obtain that
γ̃ ⊂ Uλ1HX

am+c1(σ̃).

3.8.1 Proof of Proposition 1

Here, we prove Proposition 1 (see the introduction). We call any connected component of the
ball B = B(O,R) with deleted center O a branch. We call points that are sent to the branch
containing the image of the center f(O) green points and all other points of T red points.

Proof of Proposition 1. We show that there exist two red points r1 and r2 such that d(O, r1r2) ≤
r = C3 + 1 for some constant C3 which depends on the degree d (it will be defined later in
proof more precisely).

By Definition 1, a c-neighborhood of every point of the border should contain a point
of the image. We must have at least (d−1)dR−C3−1 red points near the border (we exclude
the green part). The number of points in each connected component of the complement
of the ball of radius r is less than dR−r. Therefore, there is a constant C3 depending on
the tree only such that if r ≥ C3, then one component contains an insufficient number of
points to cover the boundary of B. Hence, there exist two red points r1 and r2 in different
components of the complement of B(O, r), which means that the geodesic r1r2 passes at a



distance less than r from the center O. It follows that the quasi-geodesic f(r1r2) passes at
distance less than λ1r + c1 from f(O) and belongs to a (λ1Ham + c1)-neighborhood of the
geodesic f(r1)f(r2) by Proposition 7. Because every path from f(O) to f(r1)f(r2) passes
through O, we conclude that d(O, f(O)) < λ1(Ham + c1) + c1 + λ1r. We need only choose a
good value for r. Simply calculating the number of points in above mentioned components
gives the estimate 1 + d + d2 + · · · + dR−r ≤ (1/ ln d)dR−r+1. For r = C3 + 1, we have
(1/ ln d)dR−r+1 ≤ (d− 1)dR−C3−1, which completes the proof.

3.9 Geodesically rich spaces

Definition 18. A metric space X is said to be geodesically rich if there exist constants r0, r1,
r2 such that for every pair of points p and q with |p− q| ≥ r0, there exists a geodesic γ (with
ends at infinity) such that d(p, γ) < r1 and |d(q, γ)− |q − p|| < r2.

Remark 6. We introduced the notion of geodesically rich spaces in [32], see Definition 11.
Still now we do not need the second condition to estimate a displacement of points under
self-quasi-isometries fixing ideal boundary so we change the definition to a weaker form.
Example 6. A line and a ray are not geodesically rich.
Example 7. Nonelementary hyperbolic groups are geodesically rich. We prove this later.

Any δ-hyperbolic metric space H can be embedded isometrically in a geodesically-rich δ-
hyperbolic metric space G (with the same constant of hyperbolicity). Here we give a proof of
this fact. Take a 3-regular rooted tree (T,O), set G = H × T , and set the metric analogously
to a real tree. Let g1 = (h1, t1), g2 = (h2, t2) ∈ G, then set

d(g1, g2) = d(t1, O) + d(t2, O) + dH(h1, h2).

It is easy to show that the space G is δ-hyperbolic and geodesically rich. But such a procedure
completely changes the ideal boundary of the space. We, therefore, ask ourselves if it is always
possible to embed a δ-hyperbolic space in a geodesically rich δ-hyperbolic space with the same
ideal boundary. The answer is given in the following remark.
Remark 7. It is not always possible to embed a δ-hyperbolic metric space H isometrically in
a geodesically rich δ-hyperbolic metric space G with an isomorphic boundary. An example
can be provided by a δ-hyperbolic space with an isolated point at the ideal boundary. As an
illustration, consider a real line R. Its ideal boundary contains only two points. Now consider a
δ-hyperbolic space H with the same ideal boundary ∂H = {ξ1, ξ2} and an isometric embedding
γ : R → H (hence, γ is a geodesic). We will show that every point p ∈ γ lies at distance at
most 2δ from any infinite geodesic σ which means that H is not geodesically rich. Because H
is δ-hyperbolic, the triangle pξ1ξ2 with sides coinciding with γ and σ is δ-thin. Hence, there
exists a point q ∈ σ such that d(q, γ(ξ1, p)) ≤ δ and d(q, γ(ξ2, p)) ≤ δ. And we conclude that
d(p, σ) ≤ 2δ because γ is a geodesic.

Lemma 12. Let G be a nonelementary hyperbolic group. Then for every two points p and q
in the group G, there exists a geodesic γ such that d(p, γ) ≤ δ and ||p− q| − d(q, γ)| ≤ 7δ.



We are thankful to Prof. Peter Haïssinsky for pointing out this proof which is clearer and
simpler than the one given in [32].

Proof. Since G is not elementary group, there are three distinct points ξ1, ξ2, ξ3 on the ideal
boundary. Consider geodesic triangle ξ1ξ2ξ3 and a point p at distance at most δ from all three
sides ξ1ξ2, ξ2ξ3, ξ1ξ3. Take any point q. First we notice that in the tree the statement is evident.
Otherwise apply theorem 21 (second statement) to approximate configuration pξ1, pξ2, pξ3 and
pq with a tree T , denote corresponding map by Φ. The error of this approximation is 6δ.

In T for at least two of three points ξ1, ξ2, ξ3 d(Φ(q),Φ(p)Φ(ξi)) = d(Φ(p),Φ(q)). Without
loss of generality we can assume that they are ξ1 and ξ2. Then |d(q, ξ1p ∪ pξ2)− d(p, q)| ≤ 6δ.
By the choice of p |d(q, ξ1p ∪ pξ2)− d(q, ξ1ξ2)| ≤ δ. Hence,

|d(q, ξ1ξ2)− d(p, q)| ≤ 7δ.

Now we just notice that the action of G is cocopmpact, so the statement is true to any
point of G.

This Lemma proves that a nonelementary hyperbolic group satisfies the definition of geodesi-
cally rich space.

3.10 Quasi-isometries fixing the ideal boundary

We now give some estimates of the displacement of points in geodesically rich spaces under
quasi-isometries that fix the ideal boundary. We do not yet know whether these results are
optimal.

Theorem (see Theorem 4 in the introduction). Let X be a geodesically rich hyperbolic metric
space. Let f : X → X be a (λ1, λ2, c1, c2)-self-quasi-isometry fixing the boundary ∂X. Then
any point O ∈ X can be displaced at most at distance d(f(O), O) ≤ λ1(Ham+r1)+2c1 +r0 +r2.

Proof. Consider a point O and its image f(O). If d(O, f(O)) < r0, there is nothing to prove.
Otherwise, let γ be a geodesic such that d(O, γ) ≤ r1 and |d(f(O), γ)− d(O, f(O))| ≤ r2 and
in particular, d(f(O), γ) ≥ d(O, f(O))| − r2. Such a geodesic exists by definition of geodesic
ally rich.

Because f(γ) is a quasi-geodesic with the same endpoints as γ, the quasi-geodesic lies near γ:
f(γ) ⊂ Uλ1Ham+c1(γ) by Proposition 7. Also since d(O, γ) ≤ r1, in the image d(f(O), f(γ)) ≤
λ1r1 + c1. Combining all the arguments, we obtain

d(O, f(O)) ≤ d(f(O), γ) + r2 ≤ λ1Ham + c1 + r2 + λ1r1 + c1.

The property of being geodesically rich plays crucial role here. For example a translation
of a real line R (which is an isometry) fixes its ideal boundary but still moves its point to any
pregiven distance.



Chapter 4

Poincaré inequalities and quasi-isometries

4.1 Main ideas

4.1.1 The critical exponent for Lp-cohomology

Lp-cohomology groups provides invariants for quasi-isometries. The continuous first Lp-cohomology
group of a hyperbolic metric spaceX is

LpH1
cont(X) :=

{
[f ] ∈ LpH1(X)|f extends continuously to X ∪ ∂X

}
,

where X ∪ ∂X is Gromov’s compactification of X. Following the works of Pierre Pansu,
and Marc Bourdon and Bruce Kleiner [28], we define the following quasi-isometric numerical
invariant of X

p 6=0(X) = inf
{
p ≥ 1|LpH1

cont(X) 6= 0
}
.

If p 6=0 achieves different values for two spaces X and Y , then X and Y are not quasi-
isometric. We expect that the difference |p 6=0(X)− p 6=0(Y )| also bounds from below the quasi-
isometrical distortion growth. We are able to prove this only for a family of examples.

Let Zµ and Zµ′ be two variants of the space Tn × (−∞,∞) with metrics dt2 +
∑
e2µitdx2

i

and dt2 +
∑
e2µ′itdx2

i respectively. The main result of this part is a sharp lower bound for the
quasi-isometrical distortion growth between Zµ and Zµ′ , of the form

const (p 6=0(Zµ′)− p 6=0(Zµ))R.

4.1.2 Scheme of proof

Constants in Poincaré inequalities are the quantitative incarnation of Lp-cohomology.
Let X be a Riemannian manifold. Let p be a number in [1,∞]. Then the Lp-norm | · |p of

functions and vector fields make sense. We will say that C = C(X, p) is a Poincaré constant
for X and Lp if for any smooth function f in Lp there exists such a constant c (which is in fact
the mean value of f over X) such that the Poincaré inequality holds

|f − c|p ≤ C|∇f |p.
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Variants of this definition appear in the litterature. In an appendix 6.2, we shall check that
these definitions are equivalent, up to universal constants.

For the family of spaces Zµ, it is known that p 6=0(Zµ) =
∑
µi

maxµi
(unpublished result of

P.Pansu). In Theorem 24 we show that

• if p > p6=0(Zµ), then the Poincaré constant for a ball of radius R satisfies

Cp(B
Zµ(R)) ≥ const.(V olB(R))1/p;

• if p ≤ p 6=0(Zµ), then
Cp(B

Zµ(R)) = o
(
(V olB(R))1/p

)
.

Next, we show that under transport by a (λ, c)-quasi-isometry, Cp is multiplied or divided by
at most e(λ+c)/a for some positive constant a. Transport under quasi-isometric embeddings
is more delicate, this is why our arguments work only for a family of examples. For these
examples, we are able to get a lower bound. Roughly speaking, it states

Assume that p 6=0(Zµ′) < p < p 6=0(Zµ). If there exists a (λ, c)-quasi-isometric embedding
BZµ(R)→ Zµ′, which induces an isomorphism on fundamental groups, then

Cp(B
Zµ(R)) ≥ const.e−(λ+c)/aCp(B

Zµ′ (R)).

This yields

λ+ c ≥ a(log(Cp(B
Zµ′ (R)))− log(Cp(B

Zµ(R)))

∼ (p 6=0(Zµ′)− p 6=0(Zµ))R.

which is the announced lower bound on quasi-isometric distortion growth.

4.2 Regularisation and quasi-isometries

In this section we will study how Poincaré inequalities are transformed under quasi-isometries.
For this purpose we will introduce the notion of cross-kernels, which will help us to regularize
transported functions.

4.2.1 Kernels

First we recall what are classical kernels.

Definition 19. Let X be a geodesic space, dx a Radon measure on X. A kernel ψ is a
measurable non-negative function on X ×X such that

• ψ is bounded, ψ ≤ Sψ;

• for every x ∈ X
∫
X
ψ(x, x′)dx′ = 1;



• the support of ψ is concentrated near the diagonal: there exist constants εψ > 0, τψ > 0
and Rψ <∞ such that ψ(x, y) > τψ if d(x, y) ≤ εψ; ψ(x, y) = 0 if d(x, y) > Rψ.

Rψ is called a width, εψ a radius of positivity, Sψ a supremum and τψ a margin of ψ.

The convolution of two kernels is

ψ1 ∗ ψ2 =

∫
X

ψ1(x, z)ψ2(z, y) dz,

the result is also a kernel. The convolution of a kernel and a function is

g ∗ ψ(x) =

∫
X

g(z)ψ(x, z) dz.

Lemma 13. There exists a constant cτ (which depends on the local geometry of the space X)
such that for any ε > 0 there exists τ = cτe

−ε and a kernel ψ on X ×X such that for any two
points x1, x2 with d(x1, x2) < ε, we have ψ(x1, x2) > τ .

Proof. We start from kernel

ψ′(x, x′) = vol(B(x, 1))−11{d(x,x′)≤1}

with radius of positivity ε′ = 1 and margin τ ′ = v(1)−1, where, for r > 0, v(r) denotes the
infimum of volumes of balls of radius r in X. We know from the proof of Lemma 1.2 in [12]
that the m-th convolution ψ′∗m has radius of positivity ε′m ≥ m(ε′/2) = m/2 and margin
τ ′m ≥ τ ′mv(1

2
)m−1.

Definition 20. A cocycle on Y is a measurable map a : Y × Y → R such that for every
y1, y2, y3 in Y ,

a(y1, y2) = a(y1, y3) + a(y2, y3).

The convolution of a cocycle with a kernel is defined by

a ∗ φ(x, x′) =

∫
Y×Y

a(y, y′)φ(x, y)φ(x′, y′) dy dy′.

Definition 21. Let ψ be a kernel and a a cocycle on X. The semi-norm Np,ψ is defined by

Np,ψ(a) =

(∫
X×X

|a(x1, x2)|pψ(x1, x2) dx1 dx2

)1/p

.

The following facts are known, see [12].

Lemma 14. Let X be a geodesic metric space such that the infimum inf{volB(x, r)|x ∈ X}
of volume of balls of radius r is positive. Semi-norms Np,ψ are pairwise equivalent. More
precisely, let ψ1 and ψ2 be two kernels on X. Then

Nψ2 ≤ ĈNψ1 ,

where

Ĉ =
supψ1 supψ2

cτ

Rψ2

εψ1
(2e)R

ψ2/εψ1 .



Lemma 15. Let the space X be a Riemannian manifold and have the following properties: (1)
its injectivity radius is bounded below, (2) its Ricci curvature is bounded from below. Then the
volumes of balls are bounded below (Croke inequality [3]) and above (Bishop inequality).

1) For any function g define a cocycle u(x, y) = g(x)−g(y). Then for any p and any kernel
ψ′ with bounded derivatives there exists a kernel ψ1 such that the Lp-norm of ∇(g ∗ ψ′) (we
regularise g) is bounded from above by a ψ1-seminorm of the corresponding cocycle u

||∇(g ∗ ψ′)||p ≤ Np,ψ1(u)

with the kernel ψ1 defined as follows

ψ1 =
sup∇ψ′ supψ′

vol(B(z′, Rψ′))
1{d(z,z′)≤Rψ′}.

2) Conversely, there also exists a kernel ψ2 such that

Np,ψ2(u) ≤ C||∇g||p,

where C depends only on dimension. Here the kernel ψ2 can be taken as

ψ2(x, y) = max{1,Θ(x, y)−1}1{d(x,y)≤R},

where Θ(x, y) is the density of the volume element in polar coordinates with origin at x

Θ(x, y)−1dy = drdθ

and R > 0 can be chosen arbitrarily.

In the third hypothesis we propose to use R = 1, then ψ2 is bounded by 1 and the width
of its support is also 1. For reader’s convenience, we include the proof of the first statement of
the last Lemma, following [12].

Proof. Denote by α the cocycle u ∗ ψ′. Then for any y,

∇(u ∗ ψ′)(x) =
∂α(x, y)

∂x
=

∫
(g(z′)− g(z)) dxψ

′(z, x)ψ′(z′, y) dz dz′.

Choose y = x. Then we obtain

|∇(g ∗ ψ′(x))| ≤ sup∇ψ′ supψ

∫
B(x,Rψ)×B(x,Rψ)

|g(z′)− g(z)| dz dz′.

Now applying Hölder inequality we get the needed statement with the kernel

ψ1 =
sup∇ψ′ supψ′

vol(B(z′, Rψ′))
1{d(z,z′)≤Rψ′}.



This lemma gives us an idea how to generalize Poincaré inequalities for the case of arbitrary
metric spaces. Of course, such Poincaré inequality depends on a choice of a kernel ψ. Let f be
an Lp-function on X, ψ a kernel on X. The Poincaré inequalities for f associated to ψ with
constants cf and Cp(f) is

||f − cf ||p ≤ Cp(f)||Np,ψ(u)||.
The Poincaré constant Cp(X,ψ) is a constant such that for any Lp-function f Poincaré in-
equality is checked with Cp(f) = Cp(X,ψ). It follows from Lemma 14 that the existence of
Poincaré constant does not depend on the choice of a kernel.

4.2.2 Cross-kernels

Let X, Y be two metric spaces, let f : X → Y and f ′ : Y → X be (K, c)-quasi-isometries
between them such that for any x ∈ X, d(x, f ′ ◦ f(x)) ≤ c and vice versa (that is, they are
inverse in the quasi-isometrical sense). Let g be a measurable function on Y . We want to
find a way to transport g by our quasi-isometry (using the regularisation) to obtain a similar
measurable function on X. We will take

h(x) =

∫
Y

g(z)ψ(f(x), z) dz

as a function on X corresponding to g. This integral exists for all x because ψ is measurable
by the second variable by definition. Still we want h be also measurable. For that, it will be
sufficient if f is measurable too.

Proposition 8. Let f be a (λ1, λ2, c1, c2)-quasi-isometric embedding between metric spaces X
and Y . Then there exists a measurable (λ1, λ2, 3c1, c2 + 2c1/λ1)-quasi-isometric embedding g at
distance 2c1 from f .

Proof. Take a measurable partition P of X with a mesh c1/λ1. For each set A ∈ P we choose
a base point xA. We set g be constant on A

g|A = f(xA).

Take any two points x, x′ ∈ X. Assume x ∈ A and x′ ∈ A′ where A,A′ ∈ P . Then

d(g(x), g(x′)) = d(f(xA), f(xA′)) ≤ λ1d(xA, x
′
A) + c1

≤ λ1(d(x, x′) + d(x, xA) + d(x′, xA′)) + c1 ≤ λ1d(x, x′) + 3c1.

In the same way we prove the right-hand inequality.

This proposition gives us an idea that we can always pass to measurable quasi-isometries
without significant loss in constants. From now we will consider only measurable quasi-
isometries.

We are going to construct a numerical function on X × Y which will play the role of a
kernel. Indeed, a cross-kernel can be considered as the composition (relatively to the first
argument) of a quasi-isometry from X to Y and a kernel on Y × Y . Conversely, a cross-kernel
generates a quasi-isometry.



Definition 22. A cross-kernel is a measurable bounded non-negative function φ : X×Y → R
such that

• for all x ∈ X,
∫
Y
φ(x, y) dy = 1;

• for all R > 0 there exists Qφ
1 > 0 such that if d(y, y′) ≥ Qφ

1 and d(x, x′) ≤ R, then
φ(x, y)φ(x′, y′) = 0;

• for all R > 0 there exists Qφ
2 > 0 such that if d(y, y′) ≤ R and d(x, x′) ≥ Qφ

2 , then
φ(x, y)φ(x′, y′) = 0;

• there exists a constant Sφ such that for any y ∈ Y ,
∫
X
φ(x, y) dx ≤ Sφ;

• there exist τφ > 0, Dφ > 0 such that for any y ∈ Y the set {x ∈ X|φ(x, y) > τφ} contains
a ball of radius Dφ.

Remark 8. For our purposes, the third axiom could be replaced with a weaker one: there exists
R > 0 such that for any y ∈ Y there exist x0 ∈ X such that for any x ∈ X with d(x, x0) > R,
φ(x, y) = 0. But we prefer our definition as it is more symmetric and easier to apply.

Before we construct a cross-kernel from a quasi-isometry and a kernel, we will show that a
cross-kernel φ such that Qφ

1(R) = c11R + c12 and Qφ
2(R) = c21R + c22 depends linearly on R

(here c11, c12, c21, c22 are some constants) defines a quasi-isometry. Simply let f : X → Y be
defined as follows, x is mapped to a point of the set {y|φ(x, y) > 0} which is not empty by
the first hypothesis of cross-kernels. Let us check that f is quasi-surjective. First we notice
that for any y ∈ Y the set {x|φ(x, y) > 0} is non-empty because the last hypothesis. Now
suppose that for two different points y1, y2 there exists a point x such that both φ(x, y1) > 0
and φ(x, y2) > 0. We need only check that d(y1, y2) is bounded. We have φ(x, y1)φ(x, y2) > 0.
So, it follows from the second hypothesis that d(y1, y2) < Qφ

1(0) (the setting corresponds to
the case x = x′ that is R = 0).

We notice that if we remove the last hypothesis in the definition, we get a quasi-isometric
embedding instead of a quasi-isometry. Check that quasi-isometric inequalities are satisfied.
Let x1, x2 be two points and y1 = f(x1), y2 = f(x2) their images. We know that φ(x1, y1) 6= 0

and φ(x2, y2) 6= 0. Hence, d(y1, y2) ≤ Qφ
1(d(x1, x2)) = c1d(x1, x2) + c2. In the same way we

obtain the lower bound for d(y1, y2).

Lemma 16. If ψ is a kernel on Y × Y and f is a measurable (λ1, λ2, c1, c2)-quasi-isometry or
a quasi-isometric embedding from X to Y . In case of a quasi-isometry we also assume that
the radius of positivity of ψ is at least ζλ2 + c2 with ζ > 0, then φ(x, y) = ψ(f(x), y) is a
cross-kernel on X × Y and Qφ

1(R) ≤ 2Rψ + λ1R + c1, Qφ
2(R) ≤ λ2(2Rψ + R + c2) and Sφ ≤

supV olB(2λ2R
ψ + c2) supY×Y ψ. In case of a quasi-isometry Dφ ≥ ζ and τφ = τψ ≥ cτe

−εψ .

Proof. 1) Evidently, for any x ∈ X
∫
Y
φ(x, y) dy = 1 by the definition of kernels.

2) Check the second axiom. Take two points x1, x2 such that d(x1, x2) ≤ R1 and two
points y1, y2 such that d(y1, y2) ≥ 2Rψ + λ1R1 + c1. If d(f(x1), y1) ≥ Rψ, there is nothing
to prove as ψ(f(x1), y1) = 0. Otherwise d(f(x2), y2) ≥ d(y1, y2) − d(f(x2), y1) ≥ d(y1, y2) −



(d(f(x2), f(x1))+d(f(x1), y1)) ≥ d(y1, y2)−(λ1d(x1, x2)+c1+Rψ) ≥ Rψ. Hence, ψ(f(x2), y2) =
0.

3) Check the third axiom. Take two points y1, y2 such that d(y1, y2) ≤ Q1 and two points
x1, x2 such that d(x1, x2) ≥ λ2(2Rψ +Q1 + c2). If d(f(x1), y1) ≥ Rψ, there is nothing to prove
as ψ(f(x1), y1) = 0. Otherwise d(f(x2), y2) ≥ d(f(x1), f(x2))−d(f(x1), y2) ≥ d(f(x1), f(x2))−
(d(f(x1), y1) + d(y1, y2)) ≥ d(x1, x2)/λ2 − c2 − (Rψ +Q1) ≥ Rψ. Hence, ψ(f(x2), y2) = 0.

4) Check the fourth axiom. For any y ∈ Y , if d(f(x), y) > Rψ then ψ(f(x), y) = 0. Hence,
the diameter of the set of points Xy ∈ X such that for any x ∈ Xy d(f(x), y) ≤ Rψ, is less than
λ22Rψ+c2. Hence,

∫
X
φ(x, y)dx ≤ supV olB(2λ2R

ψ+c2) supY×Y ψ, here supV olB(2λ2R
ψ+c2)

stands for the supremum of volumes of all balls of radius 2λ2R
ψ + c2.

5) If d(f(x), y) < ζλ2 + c2 then φ(x, y) > τψ. Hence, the diameter of the set of points of X
with this property is at least 2ζ.

4.2.3 Transporting cocycles

Definition 23. Let a be a cocycle on Y and φ a cross-kernel on X × Y . The convolution of a
with φ is the cocycle defined on X by

a ∗ φ(x, x′) =

∫
Y×Y

a(y, y′)φ(x, y)φ(x′, y′) dy dy′.

Lemma 17. Let φ : X×Y → R be a cross-kernel, let a be a cocycle on Y and let ψ be a kernel
on X. Then

Nψ(a ∗ φ) ≤ CNψ̃(a),

where ψ̃ is a kernel on Y and

C ≤
(

supψ

τ

)1/p

(Sφ)2/p,

where τ = cYτ e
−Qφ1 (Rψ) (for the definition of constant cYτ see lemma 13, it depends on the local

geometry of the space Y only).
In particular, if φ is associated with a (λ1, λ2, c1, c2)-quasi-isometry or a quasi-isometric

embedding,

C ≤ 1

cYτ
(supψ)3/pe((2+λ1)Rψ+c1)/p(2λ1R

ψ + c1)2/p.

Proof.

(Nψ(a ∗ φ))p =

∫
X×X

|a ∗ φ(x, x′)|pψ(x, x′)dxdx′ =

=

∫
X×X

∣∣∣∣∫
Y×Y

a(y, y′)φ(x, y)φ(x′, y′)dydy′
∣∣∣∣p ψ(x, x′)dxdx′

By Hölder inequality



≤
∫
X×X

∫
Y×Y
|a(y, y′)p|φ(x, y)φ(x′, y′)dydy′ψ(x, x′)dxdx′

Let ψ′(y, y′) =
∫
X×X φ(x, y)φ(x′, y′)ψ(x, x′)dxdx′

=

∫
Y×Y
|a(y, y′)|pψ′(y, y′)dydy′.

Now we need to show that ψ′ is dominated by some kernel ψ′′.
First we will prove that ψ′(y, y′) = 0 if d(y, y′) > Rψ′ for some Rψ′ .
If d(x, x′) > Rψ then by the definition of kernels ψ(x, x′) = 0, hence

ψ′(y, y′) =

∫
X×X

φ(x, y)φ(x′, y′)ψ(x, x′)dxdx′ =

=

∫
(x,x′)∈X×X,d(x,x′)≤Rψ

φ(x, y)φ(x′, y′)ψ(x, x′)dxdx′.

If d(x, x′) < Rψ then by definition of cross-kernels there exists a number Qφ
1(Rψ) such that

if d(y, y′) > Qφ
1 we have φ(x, y)φ(x′, y′) = 0. We estimate ψ′(y, y′) from above in an evident

way

ψ′(y, y′) ≤ supψ

∫
X×X

φ(x, y)φ(x′, y′)dxdx′ ≤ supψ(Sφ)2.

By Lemma 13 we conclude that there exists a kernel ψ̃ such that ψ̃(y, y′) ≥ τ = cYτ e
−Qφ1

whenever the distance between y, y′ does not exceed Qφ
1 . Hence,

ψ′(y, y′) ≤ supψ

τ
(Sφ)2ψ̃(y, y′).

4.2.4 Transporting Poincaré constants

Theorem 22. Let X, Y be two geodesic metric spaces such that infimums vX(r) = inf{volB(x, r)|x ∈
X}, vY (r) = inf{volB(y, r)|y ∈ Y } of volume of balls of radius r are positive. Let also φ be a
cross-kernel on X × Y . Suppose that there exists a Poincaré constant CX = Cp(X,ψ) associ-
ated to a kernel ψ on X. Then the Poincaré constant Cp(Y, ψY ) for Y also exists and depends
on parameters characterizing φ, ψ, ψY and cτ (Y ) (which depends on local geometry of Y , see
Lemma 13 for definition).

Remark 9. Lemma 17 allows us to extend this proof to riemannian manifolds as it provides
the method to pass from a gradient to a cocycle and vice-versa.

Now we prove the theorem.



Proof. For any Lp-function g on Y , denote the cocycle associated with g by dg(z, y) = g(z)−
g(y). The idea of our proof is the following. By Minkowski inequality we will show that

||g||p ≤ Nψ(dg) + ||h||p

where h is a measurable function on X defined as before

h(x) =

∫
Y

g(z)φ(x, z)dz.

Then we will apply consequently Poincaré inequality to the function h and Lemma 17 on
transporting cocycles. Briefly,

||g||p ≤ Np,ψ(dg) + ||h||p ≤ Np,ψ′(dg) + Cpoincare(X)Np,ψ(dh)

≤ Np,ψ′(dg) + CcocycleCpoincare(X)Np,ψ′(dg)

for some well chosen kernel ψ′ on Y .
First step. Notice that for any z

∫
X
φ(x, z)dx ≥ τφ inf V olB(Dφ), where the supremum is

taken over all balls in X of radius Dφ. Denote Vφ = (τφ inf V olB(Dφ))−1 (we remind that the
infimum is non-zero by the assumption). We have∫

Y

|g(z)|pdz ≤ Vφ

∫
X×Y
|g(z)|pφ(x, z)dxdz.

Second step. Now by Minkowski inequality applied to (
∫
|g(z)|pφ(x, z)dxdz)1/p we get(∫

|g(z)|pφ(x, z)dzdx

)1/p

≤
(∫
|g(z)− h(x)|pφ(x, z)dzdx

)1/p

+

(∫
|h(x)|pφ(x, z)dzdx

)1/p

=

=

(∫
|g(z)− h(x)|pφ(x, z)dzdx

)1/p

+

(∫
|h(x)|pdx

)1/p

Third step. For any points z ∈ Y and x ∈ X we have

g(z)− h(x) = g(z)−
∫
Y

g(y)φ(x, y)dy =

by definition of cross-kernel
∫
Y
φ(x, y)dy = 1 so we go on

= g(z)

∫
Y

φ(x, y)dy −
∫
Y

g(y)φ(x, y)dy =

∫
Y

(g(z)− g(y))φ(x, y)dy.

Now we apply Hölder inequality

|g(z)− h(x)|p ≤
∫
Y

|g(z)− g(y)|pφ(x, y)dy.



So, (∫
|g(z)− h(x)|pφ(x, z)dzdx

)1/p

≤
(∫
|g(z)− g(y)|pφ(x, y)φ(x, z)dzdxdy

)1/p

.

Fourth step. Evidently,
∫
X
φ(x, y)φ(x, z)dx is uniformly bounded, and it vanishes outside

of a strip of width Qφ
1(0) (take R = 0 for the second property of cross-kernel). Hence, there

exists a kernel ψ′ on Y × Y and the constant C1 = C1(φ, Y ) such that(∫
|g(z)− g(y)|pφ(x, y)φ(x, z)dzdxdy

)1/p

≤ C1

(∫
|g(z)− g(y)|pψ′(z, y)dzdy

)1/p

= C1Np,ψ′(dg).

We will find ψ′ and C1 using the convolution of some model (or typical) kernel on Y with the
margin τ̃Y and the radius of positivity ε̃Y . Fix some r < ε̃Y . Assume m to be the least integer
such that m(ε̃Y − r) ≥ Qφ

1(0). Hence, if we take ψ′ = (ψY )∗m, we set

C1 =
(supφ)2

τ
m/p
Y v(r)(m−1)/p

,

where v(r) is the infimum of volumes of balls of radius r. We get also that

supψ′ ≤ (supψY )m.

Fifth step. We apply Poincaré inequality to h

||h||p ≤ Cp(X,ψ)Np,ψ(dh).

Now Lemma 17 allows us to transport cocycle dh to Y with a multiplicative constant Ctr
Np,ψ(dh) ≤ CtrNp,ψ̃′(dg).

We need to pass from the kernel ψ̃′ to the kernel ψ′. For this purpose we use Lemma 14

Np,ψ̃′(dg) ≤ ĈNp,ψ′(dg),

where Ĉ can be calculated from the mentioned lemma.
Note that if we return to definition of h, we obtain

dh(x, x′) = h(x)− h(x′) =

∫
Y

g(y) (φ(x, y)− φ(x′, y)) dy =

∫
Y

g(y)dXφ(y)(x, x′)dy.

Final step. Combining all these results we conclude that

||g||p ≤ Vφ(||h||p +Np,ψ′(dg)) ≤ Vφ(Cp(X,ψ)CtrĈNp,ψ′(dg) + C1Np,ψ′(dg)) =

= Vφ

(
Cp(X,ψ

′)CtrĈ + C1

)
Np,ψ′(dg).

Now summarizing all the results of this section we know that quasi-isometries preserve
Poincaré inequalities.



4.3 Poincare inequality for exponential metric

We will give an upper bound for the Poincaré constant in a ball of radius R in a space with
the metric dt2 +

∑
i e

2µitdx2
i .

Theorem 23. Let X̃ = R+ × Rn with the metric dt2 +
∑

i e
2µitdx2

i . Let X = X̃/Γ where Γ is
a lattice of translations in the factor Rn. Then the Poincaré constant for a ball B(R) in X is

Cp(µ) ≤ p

µ
+ (A(µ))1/pCp(T

n)eµnR,

where µ =
∑
µi, A(µ) is a constant depending only on µ, Cp(Tn) is a Poincaré constant for a

torus Tn.

First, we fix the direction θ = (x1, . . . , xn).

4.3.1 Poincaré inequality for fixed direction

Lemma 18. Let X̃ = R+ × Rn with the metric dt2 +
∑

i e
2µitdx2

i . Let X = X̃/Γ where Γ is
a lattice of translations in the factor Rn. Let R ∈ R+ ∪ {∞}. Then for any fixed direction
θ = (x1, . . . , xn) (∫ R

a

|f(t)− cθ|peµtdt
)1/p

≤ p

µ

(∫ R

a

|f ′(t)|peµtdt
)1/p

,

where cθ = f(R, θ) or cθ = limR→∞ f(R, θ).

Proof. Let f be a function such that its partial derivative ∂f/∂t is in Lp(eµtdt, [0,+∞)) where
p > 1. By Hölder inequality we get∫ +∞

0

∣∣∣∣∂f∂t
∣∣∣∣ dt ≤ (∫ +∞

0

∣∣∣∣∂f∂t
∣∣∣∣p eµtdt)1/p(∫ +∞

0

e−(µt/p)(p/(p−1))

)1−1/p

< +∞.

Hence, for every fixed direction θ there exists a limit limt→∞ f(t, θ).
First, if R = ∞, prove that |f(t) − cθ|peµt → 0 as t → ∞. Apply the Newton-Leibniz

theorem and then Hölder inequality to |f(t)− cθ|. We have

|f(t)− cθ| =
∣∣∣∣∫ ∞
t

∂f

∂s
ds

∣∣∣∣ ≤ ∫ ∞
t

∣∣∣∣∂f∂s
∣∣∣∣ ds ≤ (4.1)

≤
(∫ ∞

t

∣∣∣∣∂f∂s
∣∣∣∣p eµudu)1/p(∫ ∞

t

e−µs/(p−1)ds

)1−1/p

.

Calculate the last integral∫ ∞
t

e−µs/(p−1)ds = −p− 1

µ
e−

µs
p−1 |∞t =

p− 1

µ
e−

µt
p−1 .



Denote the constant D0 =
(
p−1
µ

)p−1

|f(t)− cθ|p ≤ D0e
−µt
∫ +∞

t

∣∣∣∣∂f∂s
∣∣∣∣p eµsds.

Hence

|f(t)− cθ|peµt ≤ D0

∫ +∞

t

∣∣∣∣∂f∂s
∣∣∣∣p eµsds→ 0

as t→ +∞.
Now we integrate by parts∫ R

a

|f(t)− cθ|peµtdt =

[
|f(t)− cθ|p

eµt

µ

]R
a

−
∫ R

a

f ′(t)p|f(t)− cθ|p−1 e
µt

µ
dt. (4.2)

As cθ = f(R)∫ R

a

|f(t)− cθ|peµtdt = −|f(a)− cθ|p
eµa

µ
− p

∫ R

a

f ′(t)|f(t)− cθ|p−1 e
µt

µ
dt.

We notice that the integral at the left is positive. At the right part, the first term is negative
(for this reason we will drop it soon). Hence, the second term should be positive. By Hölder
inequality∫ R

a

(−f ′(t))|f(t)− cθ|p−1 e
µt

µ
dt ≤

(∫ R

a

|f ′(t)|p e
µt

µ
dt

)1/p(∫ R

a

|f(t)− cθ|p
eµt

µ
dt

)(p−1)/p

. (4.3)

Introduce following notations

X =

∫ R

a

|f(t)− cθ|peµtdt,

Y =

∫ R

a

|f ′(t)|peµtdt.

Using this notations we return to 4.2. First we drop the term −|f(a)− cθ|peµa/µ and then we
apply 4.3

X ≤ p

µ
Y 1/pX(p−1)/p.

So, we get immediately that
X1/p ≤ p

µ
Y 1/p

which proves Poincaré inequality for fixed direction.



4.3.2 Poincaré inequality for exponential metric.

Here we will finish the proof of Theorem 23. Introduce the following notations f̃r(t, θ) = f(r, θ)
(the function is considered as a function of two variables), fr(θ) = f(r, θ) (the function is
considered as a function of one variable).

We have already proved that for any θ ∈ Tn∫ R

0

|f(t, θ)− f(R, θ)|peµtdt ≤
(
p

µ

)p ∫ R

0

∣∣∣∣∂f∂t
∣∣∣∣p eµtdt.

We integrate over θ and we introduce the volume element for X̃ dvol = drdθe
∑
µir∫

B(R)

|f − fR|pdvol ≤
(
p

µ

)p ∫
B(R)

|∇f |pdvol.

Denote the Euclidean gradient by∇e. By the form of the metric we write that e2µit|dx2
i | = 1.

Hence, ||∇efr|| ≤ eµnt|∇f |. Now we notice that∫ R

R−1

||∇efr||pLp(Tn)e
µtdt ≥ e

∑
µi(R−1)

∫ R

R−1

||∇efr||pLp(Tn)dt.

So we write

e
∑
µi(R−1)

∫ R

R−1

||∇efr||pLp(Tn)dt ≤ epµnR
∫
B(R)\B(R−1)

|∇f |pdvol. (4.4)

Fix r ∈ [R − 1, R]. Write Poincaré inequality on torus for the function fr(θ). There exists a
number cr such that ∫

Tn
|fr(θ)− cr|pdθ ≤ (Cp(T

n))p
∫

Tn
|∇efr(θ)|pdθ,

where Cp(Tn) is a Poincaré constant for Tn. Next we consider the function fr(θ) as a function
on the ball B(R) independent on t. We integrate this inequality over t∫

B(R)

|fr(θ)− cr|pdvol ≤ (Cp(T
n))p

∫ R

0

∫
Tn
|∇efr(θ)|pdθe

∑
µitdt

≤ e
∑
µiR∑
µi

(Cp(T
n))p

∫
Tn
|∇efr(θ)|pdθ.

We integrate over r from R− 1 to R and we remind the inequality 4.4. It gives∫ R

R−1

(∫
B(R)

|fr(θ)− cr|pdvol
)
dr ≤ A(µ)(Cp(T

n))pepµnR
∫
B(R)\B(R−1)

|∇f |pdvol,



where A(µ) is a constant which depends only on µi, i = 1, . . . , n. Now apply Hölder’s inequality∫ R

R−1

||fr − cr||Lp(B(R))dr ≤
(∫ R

R−1

∫
B(R)

|fr − cr|pdvoldr
)1/p

≤
(
A(µ)(Cp(T

n))pepµnR
∫
B(R)\B(R−1)

|∇f |pdvol
)1/p

≤ (A(µ))1/pCp(T
n)eµnR||∇f ||Lp(B(R))

Set c =
∫ R
R−1

crdr. In the following line of inequalities we will first apply a triangle inequality
and then we will use the fact that the norm of the integral is less or equal to the integral of
the norm (briefly ||

∫
fdr|| =

∫
||f ||dr)

||f − c||Lp(B(R)) =

∥∥∥∥∫ R

R−1

(f − cr)dr
∥∥∥∥

Lp(B(R))

≤
∥∥∥∥∫ R

R−1

(f − fr)dr
∥∥∥∥

Lp(B(R))

+

∥∥∥∥∫ R

R−1

(fr − cr)dr
∥∥∥∥

Lp(B(R))

≤
∫ R

R−1

(
||f − fr||Lp(B(R)) + ||fr − cr||Lp(B(R))

)
dr

≤ p

µ
||∇f ||Lp(B(R)) + (A(µ))1/pCp(T

n)eµnR||∇f ||Lp(B(R)).

4.4 Lower bound on Poincaré constant

Let Zµ denote Tn×R equipped with metrics dt2+
∑
e2µitdx2

i , where we suppose µ1 ≤ µ2 ≤ . . . ≤
µn. In this section we will give a lower bound for the quasi-isometric distortion growth between
two spaces Z = Zµ and Z ′ = Zµ′ , using our results on transported Poincaré inequalities. Let
O, O′ = (0, . . . , 0) be base points of Z and Z ′ respectively. First we notice that the "width"
of Tn× (−∞, 0] is finite so it is at finite distance from a ray (−∞, 0], so from now on, we shall
focus our attention on the part of BZ(O,R) where t ≥ 0.

Our method does not apply to a general quasi-isometric embedding. We will need quasi-
isometric embeddings be homotopy equivalences. Therefore we need a variant of the definition
of quasi-isometric distortion growth.

Definition 24. Let X, Y be metric spaces, x0, y0 their base points respectively. The homotopy
quasi-isometric distortion growth is the function

DhG(X, x0, Y, y0)(R) = inf{d|∃f : BX(x0, R)→ Y a quasi-isometric embedding such that
f(x0) = y0 and f is a homotopy equivalence, d = D0(f)},

where D0(f) is the quasi-isometric distortion growth, see Definition 6.



Theorem 24. Let Z,Z ′ be two locally homogeneous hyperbolic metric spaces with metrics
dt2 +

∑
e2µitdx2

i and dt2 +
∑
e2µ′itdx2

i respectively, 0 < µ1 ≤ µ2 ≤ . . . ≤ µn and 0 < µ′1 ≤ µ′2 ≤
. . . ≤ µ′n. Assume also that

∑
µi/µn >

∑
µ′i/µ

′
n. Suppose that there exist constants a and b

such that for any i b ≤ µi, µ
′
i ≤ a. Then there exist constants G0(a, b), G1(a, b) and G2(a, b)

such that the following holds.

• Let Θ : BZ(R) → Z ′ be a continuous (λ1, λ2, c1, c2)-quasi-isometric embedding, inducing
an isomorphism on fundamental groups. Suppose that Θ sends base point to base point,
Θ(O) = O′ and that R ≥ 8(λ1 + c1) + (λ2 + c2) + 1. If p >

∑
µ′i/µ

′
n, up to replacing Z

with a connected 2-sheeted covering, Poincaré constant Cp(µ) for a ball of radius R in the
space Z is bounded from below by

Cp(µ) ≥ (G0(a, b))1/p (λ1 + c1)−3/p−2/p2 e−(9/p+3/p2)(λ1+c1)e(
∑
µi/p)R

(
p−

∑
µ′i/µ

′
n

)1/p

.

• The homotopy distortion growth (see Definition 24) for quasi-isometrical embedding of
BZ(R) into Z ′ is bounded from below by

DG(R) ≥ min

{
G1

(∑
µi

µn
−
∑
µ′i

µ′n

)
R−G2,

1

8
R

}
.

We will prove this theorem in several steps. First we introduce non-trivial double-covering
spaces Z̃ and Z̃ ′ of Z and Z ′. We prove that Θ lifts to a (λ1, 2c1)-"quasi-lipschitz" map. Then
we take the test-function eπixn on Z̃ ′ which depends only on one coordinate xn. It varies very
slowly outside of some ball, so the absolute value of the transported and regularised function
v on Z̃ stays near to 1. Lemmas 15 and 17 help us to control how the lower bound of Poincaré
constant changes under transport. This helps us get a lower bound for Poincaré constant of
Z̃ in function of {µi}, {µ′i} and the constants of quasi-isometric embedding. We also have an
upper bound for the Poincaré constant of Z̃ by Theorem 23. The combination of these results
provides a lower bound for the homotopy distortion growth for Z and Z ′.

4.4.1 Quasi-isometric embeddings and fundamental groups

If dim(Z) ≥ 3, one may believe that the assumption that Θ be isomorphic on fundamental
groups is not that restrictive. Indeed, in Proposition 9, we shall show that this is automatic,
but unfortunately the argument introduces an ineffective constant R0, which makes it useless.
For instance, if it turns out that R0 = λ2

1, Proposition 9 does not help to remove the homotopy
assumption in Theorem 24. Nevertheless, it is included for completeness sake.

Proposition 9. Let Z,Z ′ be two spaces of the described form with equal dimensions n+1 ≥ 3.
Then for any λ1 ≥ 1, λ2 ≥ 1, c1 ≥ 0, c2 ≥ 0 there exists R0 = R0(λ1, λ2, c1, c2) such that
if R > R0 and a continuous map f : BZµ(O,R0) → Zµ′ is a (λ1, λ2, c1, c2)-quasi-isometric
embedding, then f induces an isomorphism on the fundamental groups π1(Zµ)→ π1(Zµ′).



Proof. We provide a proof by contradiction. Assume that for arbitrarily large values of R,
there exists a map fR : BZ(R)→ Z ′ which is a (λ1, λ2, c1, c2)-quasi-isometric embedding which
is not isomorphic on fundamental groups. Pick a 2c1/λ1-dense and c1/λ1-discrete subset Λ of
Z. Notice that if fR is a (λ1, λ2, c1, c2)-quasi-isometry, then fR is bi-Lipschitz on BZ(R) ∩ Λ.
Conversely, if a map defined on B(R)∩Λ is bi-Lipschitz, then it can be continuously extended
on B(R) as a quasi-isometric embedding. Indeed, away from a ball, Z ′ is contractible up to
scale c1.

Set ρ = d(O′, fR(O)). First, consider the case when ρ→∞. Set σ = (ρ/4− c1)/λ1. Then
fR(B(O, σ)) is contained in a ball B(fR(O), ρ/4) which lies in the complement of B(O′, ρ/2)

fR(B(O, σ)) ⊂ B(fR(O), ρ/4) ⊂ B(O′, ρ/2)c.

The diameter of the image of any loop in B(O, σ) is at most λ1σ+ c1. Because λ1σ+ c1 < ρ/4,
these loops are homotopic to 0 (diameters of loops are too short relatively to B(O′, ρ/2)c).
Hence, the restriction of fR on B(0, σ) is homotopic to 0. Hence fR lifts to f̃R : BZ(σ) →
Z̃ ′ = Xµ′ which is homogeneous. Now up to composing f̃R with an isometry we can suppose
that it preserves the center f̃R(O) = O′. By Ascoli’s theorem, we can find a sequence f̃Rj |Λ
which uniformly converges to f̃ |Λ : Z ∩ Λ → Z̃ ′ which is also bi-Lipschitz. We continuously
extend f̃|Λ to f̃ : Z → Z̃ ′, f̃ is a quasi-isometric embedding. Its extension to ideal boundaries
is continuous and injective. By the theorem of invariance of domain, ∂f̃ : T n ' ∂Xµ = Sn is
open, and thus a homeomorphism. This provides a contradiction if n ≥ 2.

If ρ = d(O′, fR(O)) stays bounded, we can directly use Ascoli’s theorem, and get a limiting
continuous quasi-isometric embedding f . Again, f extends to the ideal boundary, ∂f : ∂Z →
∂Z ′, the map ∂f is continuous and injective. Because ∂Z and ∂Z ′ have the same dimension, ∂f
is an open map by the theorem of invariance of domain and ∂f is a homeomorphism. Hence,
∂f induces an isomorphism on fundamental groups. If Rj is sufficiently large, then fRj is at
bounded distance from f and hence fRj also induces an isomorphism π1(BZ(R)) → π1(Z ′).
This contradiction completes the proof.

Remark 10. The proof does not provide an effective value of R0.

4.4.2 Lifting to a double covering space

Introduce a double covering of Z ′. Let Z̃ ′ = Rn−1/Zn−1 × R/2Z × [0; +∞) with the metric
defined by the same formula as for Z ′: dt2 +

∑
e2µitdx2

i . Consider the map Z̃ ′ → Z ′ defined by

(x1, x2, . . . , xn, t) 7→ (x1, x2, . . . , xn mod 1, t).

So we identify (x1, x2, . . . , xn, t) and (x1, x2, . . . , xn + 1, t) in Z̃ ′. Consider a complex function
u(x1, x2, . . . , xn, t) = eπixn on Z̃ ′.

Composition of u with deck transformation ι′ : Z̃ ′ → Z̃ ′

ι′ : (x1, x2, . . . , xn, t) 7→ (x1, x2, . . . , xn + 1, t)



gives u ◦ ι′ = −u.
We have Θ : Z → Z ′ which is a continuous map inducing an isomorphism in fundamental

groups, and we have Z̃ ′ which is a covering space of Z ′. We need to show that there exists a
non-trivial covering space Z̃ → Z such that the following diagram commutes.

Z̃
Θ̃−→ Z̃ ′

πZ ↓ ↓ πZ′
Z

Θ−→ Z ′

Define
Z̃ =

{
(z, z̃′)|z ∈ Z, z̃′ ∈ π−1

Z′ (Θ(z))
}
,

that is Z̃ ⊂ Z × Z̃ ′. Let [γ′] be a loop in Z ′ which does not lift to a loop in Z̃ ′. By hypothesis,
there exists a loop γ in Z such that Θ(γ) is homotopic to γ′. Then γ does not lift to a loop in
Z̃. There exists an isometry ι of order 2 on Z̃ such that Θ̃ ◦ ι = ι′ ◦ Θ̃.

4.4.3 Lifting of Θ

Here we will prove that in the constructed double coverings Θ lifts to a map satisfying the
right-hand inequality in the definition of quasi-isometry with constants λ1 and 2c1. We need
two preliminary lemmas concerning distances in two-fold coverings.

Lemma 19. Let Z = Zµ be a locally homogeneous space. There is an effective constant c0(µ)
with the following effect. Let z be a point in Z in the region where t ≥ c0. Let c = t(z). Every
loop based at z of length less than c is null-homotopic.

Proof. Let πs : Z → T n×{s} ⊂ Z denotes projection onto the first factor. This is a homotopy
equivalence. Note that πs is length decreasing on {(t, x) ∈ Z ; t ≥ s}. Moreover, on T n × {t},
πs decreases length by eµ1(s−t) at least. Let γ be a non null-homotopic geodesic loop at z.
Assume that its length is ≤ 2c. Then γ ⊂ {(t, x) ∈ Z ; t ≥ c

2
}, therefore

length(π c
2
(γ)) ≤ c,

thus

length(π0(γ)) ≤ c e−µ1
c
2 .

Since π0(γ) is not null-homotopic, its length is at least 1, this shows that

c ≥ eµ1
c
2 .

This can happen only for c ≤ c0(µ1).

Lemma 20. Let z1, z2 be two points in Z such that d(O′,Θ(z1)) > c1 or d(O′,Θ(z2)) > c1 and
d(z1, z2) ≤ c1/λ1. Then d(Θ̃(z̃1), Θ̃(z̃2)) = d(Θ(z1),Θ(z2)).



Proof. Let z̃1 ∈ Z̃ be such that d(Õ, z̃1) > c1. Set

W = {z̃2 ∈ Z̃|, d(z̃1, z̃2) ≤ c1},
U = {z̃2 ∈ W |d(Θ̃(z̃1), Θ̃(z̃2)) = d(Θ(z1),Θ(z2))} ⊂ W,

V = {z̃2 ∈ W |d(Θ̃(z̃1), ι′ ◦ Θ̃(z̃2)) = d(Θ(z1),Θ(z2))} ⊂ W.

By construction, W = U ∪ V . Let us show that the intersection of U and V is empty

U ∩ V = {z̃2 ∈ W |d(Θ̃(z̃1), ι′ ◦ Θ̃(z̃2)) = d(Θ̃(z̃1), Θ̃(z̃2))}.

If z̃2 ∈ U∩V , then the geodesic segments connecting Θ̃(z̃1) with Θ̃(z̃2) and Θ̃(z̃1) with ι′◦Θ̃(z̃2)
induce a loop γ in Z ′ of length 2d(Θ(z1),Θ(z2)) ≤ 2 (λ1(c1/λ1) + c1) = 4c1 which is not
homotopic to 0. According to Lemma 19, this is incompatible with the assumption that
d(O′,Θ(z1)) > c1. Hence, U ∩ V is empty. Since U is non-empty (it contains at least z̃1) and
closed in W , V is closed in W and W is connected, we conclude that U = W , which finishes
the proof.

Lemma 21. A (λ1, λ2, c1, c2)-quasi-isometric embedding Θ : Z → Z ′ lifts to a "quasi-lipschitz"
map Θ̃ : Z̃ → Z̃ ′ that is for any two points z̃1, z̃2 ∈ Z̃

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ λ1d(z̃1, z̃2) + 2c1.

Proof. Let γ̃ ⊂ Z̃ be a geodesic between z̃1 and z̃2. Let t1 be the first point such that
d(Θ̃γ(t), Õ′) ≤ c1 and t2 be the last point with such a property (if such points t1, t2 do not
exist, then we can apply the following arguments directly to d(Θ̃(z̃1), Θ̃(z̃2)) instead of cutting
the curve in three parts and considering d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2))). Then

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ d(Θ̃γ̃(t1), Θ̃γ̃(t2)) + d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2)).

By definition of t1 and t2 d(Θ̃γ̃(t1), Θ̃γ̃(t2)) ≤ 2c1. Now divide parts of γ between Θ̃(z̃1) and
Θ̃γ̃(t1) and between Θ̃(z̃1) and Θ̃γ̃(t2) by segments of length c1/λ1. We apply the previous
lemma to them, so

d(Θ̃(z̃1), Θ̃γ̃(t1)) + d(Θ̃(z̃1), Θ̃γ̃(t2)) ≤ N

(
λ1
c1

λ1

+ c1

)
,

where N ≤ d(z̃1, z̃2)/(c1/λ1) is the number of segments in the subdivision. So,

d(Θ̃(z̃1), Θ̃(z̃2)) ≤ 2c1 + 2λ1d(z̃1, z̃2).



4.4.4 Proof of the first statement of Theorem 24 - Part 1

Let ψ′ be a kernel on Z̃ invariant by isometry, that is for any isometry ι

ψ′(ι(z̃1), ι(z̃2)) = ψ′(z̃1, z̃2).

As an example of such a kernel we can consider a kernel depending only on the distance between
points. Let also φ be the cross-kernel constructed with the quasi-isometry Θ̃ and a kernel ζ on
Z̃ ′ which is also invariant by isometries. Define a complex function v on Z̃ as follows

v = (u ∗ φ) ∗ ψ′.

Then v ◦ ι = −v. Indeed,

v ◦ ι = (u ∗ φ) ∗ ψ′ ◦ ι = (u ∗ φ ◦ ι) ∗ ψ′.

On the other hand,

u ∗ φ ◦ ι =

∫
u(z̃′)φ(ιz̃, z̃′)dz̃′ =

∫
u(z̃′)ζ(ι′Θ̃(z̃), (ι′)2z̃′)dz̃′ =

=

∫
u(z̃′)ζ(Θ̃(z̃), ι′z̃′)dz̃′ =

∫
u(ι′z̃′)ζ(Θ̃(z̃), z̃′)dz̃′ = −u ∗ φ

hence, v is skewsymmetric with respect to ι. We get immediately that
∫
v = 0. Now we apply

successively Lemma 15 and Lemma 17.
Step 1. By Lemma 15 there exists a kernel ψ1 on Z̃ which is controlled by a and b and such

that (∫
|∇(u ∗ φ ∗ ψ′)|p

)1/p

≤ Nψ1(u ∗ φ),

where for ψ1 we have the width of support is Rψ1 = Rψ′ and

supψ1 ≤
sup∇ψ′ supψ′

infz volB(z̃, Rψ)
.

Step 2. By Lemma 17 there exists a kernel ζ1 on Z̃ ′ such that

Nψ1(u ∗ φ) ≤ C̃Nζ1(u),

where the width of support of ζ1 is 2Rζ + λ1R
ψ′ + c1, the supremum of ζ1 is

sup ζ1 =
supψ1

cYτ
e2Rζ+λ1Rψ

′
+c1(2λ1R

ζ + c1)2

and
C̃ =

1

cYτ
(supψ1)3/pe

(
(2+λ1)Rψ

′
+c1

)
/p
(

(2 + λ1)Rψ′ + c1

)2/p

.



Step 3. Applying Lemma 15 we get that there exists a kernel ζ2 on Z̃ ′ such that

Nζ2(u) ≤ C(n)||∇u||p,

we remind that the constant C(n) depends only on the dimension of Z̃ ′ if the Ricci curvature
is bounded from below, that is supµi is bounded.

Step 4. Here we merely need to pass from Nζ1 to Nζ2 . We apply Lemma 15 once more

Nζ1 ≤ ĈNζ2 ,

where

Ĉ =
sup ζ1 sup ζ2

cYτ

Rζ2

εζ2
(2e)(2Rζ+λ1Rψ

′
+c1)/εζ2 .

Choose ψ′ and ζ such that Rψ′ = 1 and Rζ = 1. Then supψ′ and sup ζ are controlled by a
and b. We note also that εζ2 = 1. So combining all inequalities we get∫

B(R)

|∇v|p ≤ C1(a, b) (λ1 + c1)3+2/p e(9+3/p)(λ1+c1)

∫
Tn×[0,+∞]

|∇u|p,

where C1(a, b) is a constant depending only on a, b and dimension n. Denote Q = λ1 + c1. The
distortion growth DG ≥ 1/2Q so we will establish a lower bound for Q now. Assume

C(Q) = (λ1 + c1)3+2/p e(9+3/p)(λ1+c1).

4.4.5 Proof of the first statement of Theorem 24 - Part 2

We will give a lower bound for the Lp-norm of the function v = (u∗φ)∗ψ′. Our aim is to prove
that the absolute value of v is nearly constant. For simplicity of notations we suppose first that
the volume growth of Zµ and Zµ′ is the same, that is

∑
µi =

∑
µ′i. We will write |µ| and |µ′|

for these sums respectively. We are going to show that there exists a subset A of a ball B(z0, R)
such that on the one hand the volume of A is rather big, that is V ol(A) ≥ V ol(B(z0, R))/2
and on the other hand its image lies rather far from the base point Θ(A)∩B(z′0, R− (λ1 + c1 +
λ2 + c2)) = ∅.

Denote r = λ2 + c2. We will construct a finite subset J in B(z0, R) ⊂ Zµ and its partition
{Jk}k=1,...,n of cardinality e|µ|r in subsets of cardinality |Jk| = e|µ|(R−r) with the following
property

• (P) For any k ∈ {1, . . . , n} if z1 and z2 are points of Jk then the open balls of radius r
centered at these points are disjoint.

So, let z1, z2 ∈ Jk be two different points. It follows from (P) that

2r ≤ d(z1, z2) ≤ λ2d(Θ(z1),Θ(z2)) + c2,



hence d(Θ(z1),Θ(z2)) ≥ 2 so the balls B(Θ(z1), 1) and B(Θ(z2), 1) are disjoint. Fix some d > 0
and denote by J ′k ⊂ Jk the set of points whoes images are not farther than R− d from z′0 that
is if z ∈ J ′k then d(z′0,Θ(z)) ≤ R− d. We obtain

|J ′k|V ol(B(Θ(z), 1)) ≤ V ol(B(z′0, R− d+ 1))

and we conclude that |J ′k| ≤ e|µ|(R−d). Denote the union of J ′k by J ′ then |J ′| ≤ e|µ|(R−d+r).
Hence, whenever d ≥ r + 1

|J ′|
|J |
≤ e|µ|(r−d) ≤ 1

2
.

So, we set d = r + 1. Now let A be the union of all 1-balls centered at points of J \ J ′
A = ∪z∈J\J ′B(z, 1). The volume V olA ≥ 1/2V ol(B(z0, R)). By definition of A for any point
z ∈ A there exists a point z′ ∈ J \ J ′ at most 1-far away from z d(z, z′) ≤ 1. Applying triangle
inequality we get d(z′0,Θ(z)) ≥ d(z′0,Θ(z′))− (λ1 + c1) ≥ R− (λ1 + c1 + λ2 + c2).

Here we describe the set J ⊂ {R} × Rn/Zn (we fix the first coordinate t = R). This is the
set of points z = (R, x1, . . . , xn) such that for any i = 1, . . . , n xi is a whole multiple of e−µiR
modulo 1. J0 is the subset of points such that for any i xi is a whole multiple of eµi(r−R). Let
K be the set of vectors k = (0, k1, . . . , kn) such that for any i the number eµiRki is a whole
number between 0 and eµi(r−R) − 1. For k ∈ K we define Jk = J0 + k. Then for any two
different points z1, z2 of Jk

d(z1, z2) = max log
(
|x1
i − x2

i |1/µi
)
≥ r.

We constructed the needed set. Now we notice that the lifting Ã ⊂ Z̃ of A has the same
properties relatively to Θ̃: the image Θ̃(Ã) lies at distance R − (λ1 + c1 + λ2 + c2) from the
base point and the volume of Ã is at least a half of the volume of the ball B(z̃0, R).

Now let us compute |v(z̃)| for z̃ ∈ Ã (in fact here we will give an upper bound for |v| which
is true for all z̃ ∈ B(z0, R) and a lower bound for z̃ ∈ Ã). We remind that by the construction
z̃ is sent far from the base point d(z̃′0, Θ̃(z̃)) ≥ R− (λ1 + c1 + λ2 + c2).

|(u ∗ φ) ∗ ψ′(z̃)| =

∣∣∣∣∫
X

∫
Y

u(z̃′)ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣
≥

∣∣∣∣∫
X

∫
Y

(u(z̃′)− u(Θ̃(z̃)) + u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣
≥

∣∣∣∣∫
X

∫
Y

(u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣
−
∣∣∣∣∫
X

∫
Y

(u(z̃′)− u(Θ̃(z̃)))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣
≥ 1−

∫
X

∫
Y

|u(z̃′)− u(Θ̃(z̃))|ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1. (4.5)



For the last inequality we use following properties: |u| = 1 and an integral of a kernel or a
cross-kernel over the second argument equals to 1∣∣∣∣∫

X

∫
Y

u(Θ̃(z̃))ζ(Θ̃(z̃1), z̃′)ψ′(z̃, z̃1)dz̃′dz̃1

∣∣∣∣
=

∣∣∣∣∫
X

u(Θ̃(z̃))ψ′(z̃, z̃1)

(∫
Y

ζ(Θ̃(z̃1), z̃′)dz̃′
)
dz̃1

∣∣∣∣
=

∣∣∣∣∫
X

u(Θ̃(z̃))ψ′(z̃, z̃1)dz̃1

∣∣∣∣ =
∣∣∣u(Θ̃(z̃))

∣∣∣ = 1.

We need to estimate the double integral at formula 4.5. ψ′(z̃, z̃1) is non-zero if d(z̃, z̃1) ≤
Rψ′ = 1 and ζ(Θ̃(z̃1), z̃′) is non-zero if d(z̃′, Θ̃(z1)) ≤ Rζ = 1. So the diameter of the set Ŝ
of points z̃′ such that the integrand is non-zero, is at most 2λ1 + c1 + 2 ≤ 4(λ1 + c1) because
λ1 ≥ 1. Hence Ŝ is contained in a ball BŜ of radius 4(λ1 + c1). Assume ẑ′ = Θ̃(z̃) ∈ Ŝ. Then
by the mean value theorem, for any point z̃′ ∈ Ŝ,

|u(z̃′)− u(ẑ′)| ≤ |z̃′ − ẑ′| sup
z̃′∈BŜ

|∇u(z̃′)| ≤ 8(λ1 + c1) sup
z̃′∈BŜ

∣∣∣∣ ∂u∂x̃n
∣∣∣∣ e−µ′nt ≤ 8π(λ1 + c1)e−µ

′
nt

≤ 8π(λ1 + c1) sup
ẑ′∈BŜ

e−µ
′
nd(O′,ẑ′) ≤ 8π(λ1 + c1)e−µ

′
n(R−(λ1+c1+λ2+c2)−2(λ1+c1)) ≤ 1

2

for R ≥ 8(λ1 + c1) + (λ2 + c2) = R0. Hence we have proved that

1

2
≤ |(u ∗ φ) ∗ ψ′(z̃)| if z̃ ∈ Ã

|(u ∗ φ) ∗ ψ′(z̃)| ≤ 1 if z̃ ∈ B(z̃0, R).

And we conclude from this relation that for R ≥ R0 + 1∫
B(R)

|v|p ≥ 1

2p
vol(B(R))− vol(B(R0)) ≥ e(

∑
µi)R/2p+1.

Let us compute the integral
∫
|∇u|p.∫

|∇u|p =

∫ ∣∣∣∣ ∂u∂xn
∣∣∣∣p e−µ′npte(∑µ′i)tdtdxn = π

∫ +∞

0

e(
∑
µ′i−pµ′n)tdt =

µ′nπ

−
∑
µ′i/µ

′
n + p

.

Hence the Poincaré constant Cp(µ) for Z satisfies

(Cp(µ))p ≥ ||v||p

||∇v||p
≥ ||v||p

C1(a, b)C(Q)||∇u||p

≥
(
µ′nπ2p+1C1(a, b)C(Q)

)−1
e(
∑
µi)R(p−

∑
µ′i/µ

′
n).

This proves the first claim in Theorem 24.



4.4.6 Proof of the second statement of Theorem 24

Let Θ : BZ(R) → Z ′ be a (λ1, λ2, c1, c2)-quasi-isometric embedding. By hypothesis, Θ is
isomorphic on fundamental groups. Lemma 19 implies that Θ moves the origin a bounded
distance away. Indeed, a non null-homotopic loop of length 1 based at O is mapped to a non
null-homotopic loop of length ≤ Q = λ1 + c1 based at Θ(O). This implies that t(Θ(O)) ≤ 4Q
and d(O′,Θ(O)) ≤ 4Q+ 1.

The space Z̃ is of the form T̃ × R where T̃ → T is a connected 2-sheeted covering space of
torus, that is T̃ is also a torus. Hence we can apply Theorem 23. We have Cp(µ) ≤ C2(a, b)eµnR.
If R ≤ 8(λ1 + c1) + (λ2 + c2) there is nothing to prove. Otherwise we arrive to(

µ′nπ2p+1C1(a, b)C(Q)
)−1/p

e(
∑
µi/p)R

(
p−

∑
µ′i/µ

′
n

)1/p

≤ C2(a, b)eµnR.

Hence with C3(a, b) = (µ′nπ2p+1C1(a, b))1/pC2(a, b),

C3(a, b)C(Q) ≥ e(
∑
µi/p−µn)R

(
p−

∑
µ′i

µ′n

)1/p

.

We have calculated that C(Q) = Q3+2/pe(9+3/p)Q. Combine these results and take the logarithm
(note that in the following calculations every constant depending on µ and µ′ can be estimated
using a and b.)(

3 +
2

p

)
logQ+

(
9 +

3

p

)
Q ≥ G′(a, b) +

(∑
µi
p
− µn

)
R +

1

p
log

(
p−

∑
µ′i

µ′n

)
with some constant G′ depending only on a, b. p ≥ 1 hence the left-hand part can we estimated
as 5 logQ+ 12Q < 24Q. Setting p =

∑
µ′i/µ

′
n + 1/R, we get

24Q ≥ G′(a, b) +
µn

(∑
µi

µn
−
∑
µ′i

µ′n
− 1

R

)
R∑

µ′i
µ′n

+ 1
R

+
1

p
log

1

R
.

For R ≥ G′′(a, b) with some well-chosen constant G′′

24Q ≥ G′(a, b) +
µnµ

′
n

4
∑
µ′i

(∑
µi

µn
−
∑
µ′i

µ′n

)
R− µ′n

2
∑
µ′i

logR

and finally we can rewrite our inequality under the desired form

Q ≥ G1(a, b)

(∑
µi

µn
−
∑
µ′n
µ′n

)
R−G2(a, b)

with G1(a, b) and G2(a, b) being constants depending only on a and b.
This finishes the proof of Theorem 24.



Chapter 5

Examples of different distortion growths

5.1 Approximation of distances and an example of QI

Let X, Y be two geodesic hyperbolic metric spaces with base points x0 ∈ X, y0 ∈ Y . Let
θ : ∂X → ∂Y be a homeomorphism between ideal boundaries.
Hypothesis 1. Assume that there exists a constant D such that for any x ∈ X there exists a
geodesic ray γ from the base point γ(0) = x0 and passing near x: d(x, γ) < D.

We are going to construct approximatively (up to D) a map Θ : X → Y extending the
boundary homeomorphism θ. Take some point x and a geodesic ray γ from x0 passing near
x: d(γ, x) < D. Then γ(∞) is a point on ideal boundary ∂X. The corresponding point
θ(γ(∞)) ∈ ∂Y defines a geodesic ray γ′ such that γ′(0) = y0 and γ′(∞) = θ(γ(∞)). Set
Θ(x) = γ′(d(x0, x)). So, by construction, Θ preserves the distance to the base point. Still, it
depends on the choices of γ and γ′.

Definition 25. Define the following quantity

K(R) = sup

{∣∣∣∣log
dy0(θ(ξ1), θ(ξ2))

dx0(ξ1, ξ2)

∣∣∣∣ |dx0(ξ1, ξ2) ≥ e−R ∨ dy0(θ(ξ1), θ(ξ2)) ≥ e−R
}
.

We are going to prove that the restriction of Θ on the ball B(R) ⊂ X of radius R is a(
1 + 2K(R)

D+δ
, D + δ + 2K(R)

)
-quasi-isometry. We begin with a Lemma which gives an approx-

imation (up to an additive constant) of the distance between two points in a hyperbolic metric
space. In its proof, all equalities hold with a bounded additive error depending linearly on δ.

Lemma 22. Let P1, P2 be two points in a hyperbolic metric space Z. Let P0 be a base point
(possibly at infinity). Let distances (horo-distances if P0 is at infinity) from P1 and P2 to P0

be d(P1, P0) = t1 and d(P2, P0) = t2. Assume that there exist points P∞1 and P∞2 such that P1

(resp. P2) belongs to the geodesic ray defined by P0 and P∞1 (resp. P∞2 ). Denote by

t∞ = − log visdistP0(P
∞
1 , P∞2 )1

1We define visdist(P∞1 , P∞2 ) of two points P∞1 , P∞2 at the ideal boundary as the exponential of minus Gromov’s
product of these points e−(P∞

1 |P
∞
2 ). Indeed, it is not a distance as it does not satisfy triangle inequality. But we will

never have more than two points at infinity at the same time in our setting, so we will not use this property.
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the logarithm of visual distance seen from P0. Then up to adding a multiple of δ,

d(P1, P2) = t1 + t2 − 2 min{t1, t2, t∞}.

Proof. Let P ′0 be a projection of P0 on the geodesic P∞1 P∞2 . By Lemma 5, P ′0 lies at distance
at most 2δ from both P0P

∞
1 and P0P

∞
2 . Hence, up to an additive constant bounded by 4δ

the distance between P0 and P ′0 is equal to Gromov’s product of P∞1 and P∞2 . It follows that
t∞ = d(P0, P

′
0) = − log visdist(P1, P2).

The triangle P0P
∞
1 P∞2 is δ-thin. Notice that if P1 (or P2) lies near the side P∞1 P∞2 then

t1 ≥ t∞. Otherwise, t1 ≤ t∞ (both inequalities are understood up to an additive error δ). This
follows from the definition of the point P ′0 as a projection and Lemma 5.

Hence, if t1, t2 ≥ t∞, d(P1, P2) = d(P1, P0) + d(P2, P0)− 2d(P0, P
′
0) = t1 + t2 − 2t∞.

If t1 ≤ t∞ ≤ t2, d(P1, P2) = d(P1, P
′
0) + d(P ′0, P2) = t2 − t1.

Finally, if t1, t2 ≤ t∞, we get d(P1, P2) = |t1 − t2| = t1 + t2 − 2 min{t1, t2} as P1 lies near
P0P

∞
2 .

Lemma 23. Let Z and Z ′ be two hyperbolic metric spaces. Let Θ be the radial extension of
a boundary homeomorphism θ, as described at the beginning of this section. Then for any two
points P1, P2 ∈ B(P0, R) ⊂ Z such that d(P1, P2) > c, we have

dZ′(Θ(P1),Θ(P2))

dZ(P1, P2)
≤ 1 + 2

K(R)

c
.

If d(P1, P2) < c,
dZ′(Θ(P1),Θ(P2)) < 2K(R) + c.

Proof. We will use the same notations as in Lemma 22. Visual distance d∞Z between P∞1
and P∞2 and the (horo-)distance t∞ from P0 to P∞1 P∞2 are connected by the relation e−t∞ =
d∞(P∞1 , P∞2 ). In the same way we define t′∞ as the (horo-)distance for corresponding images.

By Lemma 22 we know that d(P1, P2) = t1 + t2 − 2 min{t1, t2, t∞}.
Assume first d(P1, P2) > c. We will write dZ = d(P1, P2) for the distance between P1 and

P2 and dZ′ = d(Θ(P1),Θ(P2)) for the distance between their images.
We have to consider four cases depending on the relative sizes of t1, t2, t0 and t′∞ as they

determine values of minima defining dZ and dZ′ . Without loss of generality, we may assume
that t1 ≤ t2.

1st case If both t1 < t∞ and t1 < t′∞, then

dZ′

dZ
=
t2 − t1
t2 − t1

= 1,

and this case is trivial.
2nd case If t∞ < t1 and t′∞ < t1. We have to give an upper bound for

dZ′

dZ
=
t1 + t2 − 2t′∞
t1 + t2 − 2t∞0

.



Consider

t′∞ − t∞ = log
d∞(θ(P∞1 ), θ(P∞2 ))

d∞(P∞1 , P∞2 )
.

Because dZ > c, we have t1 + t2 − 2t∞ > c hence e(t1+t2)/2e−t∞ > ec/2. And as t1, t2 ≤ R we
obtain for visual distance d∞Z ≥ ec/2e−R ≥ e−R. We conclude that

|t′∞ − t∞| ≤ K(R).

Finally,
dZ′

dZ
=
dZ′ − dZ + dZ

dZ
= 1 +

t′∞ − t∞
t1 + t2 − t∞

≤ 1 +
1

c
|t′∞ − t∞|.

3d case Now let t∞ < t1 < t′∞. Then

dZ′ − dZ = t2 − t1 − (t1 + t2 − 2t∞) = 2(t∞ − t1) ≤ 0,

which leads to
dZ′

dZ
≤ 1.

4th case Finally if t′∞ < t1 < t∞0 then

dZ′ − dZ = (t1 + t2 − 2t′∞)− (t2 − t1) = 2(t1 − t′∞) ≤ 2(t∞0 − t′∞).

We know that t1 ≤ R and at the same time we have t′∞ < t1, hence t′∞ < R and visual
distance between P∞′1 and P∞′2 is at least e−R. Now as in the 2nd case we obtain that t∞0 −t′∞ ≤
K(R) and hence

dZ′

dZ
≤ 1 + 2

K(R)

c
.

Now assume that dZ(P1, P2) ≤ c (we still suppose t1 ≤ t2), hence the distance t∞ > t2 and
we are either in first or fourth situation. In the first case, t1 < t∞ and t1 < t′∞ so dZ′ = dZ ≤ c.
In the fourth case, we have still dZ′ − dZ ≤ 2K(R) and hence d′Z ≤ c+ 2K(R).

Applying the Lemma both to Θ and Θ−1, we get the following Theorem.

Theorem 25. Let X, Y be two geodesic hyperbolic metric spaces with base points x0 ∈ X,
y0 ∈ Y . Assume that there exists a constant D such that for any x ∈ X there exists a
geodesic ray γ from the base point γ(0) = x0 and passing near x: d(x, γ) < D (Hypothesis 1).
Let the restriction of Θ : ∂X → ∂Y be a homeomorphism between ideal boundaries. Then the
restriction of Θ on a ball B(x0, R) ⊂ X of radius R is a (λ,Cq)-quasi-isometry to B(y0, R) ⊂ Y ,
where λ = 1 + 2K(R)

c
and Cq = 2K(R) + c. The constant c can be chosen as c = D + δ where

δ is the hyperbolicity constant.



5.2 Examples

5.2.1 Bi-Hölder maps

Let θ be a bi-Hölder map:

d(θ(ξ1), θ(ξ2)) ≤ cd(ξ1, ξ2)α, α < 1,

d(θ(ξ1), θ(ξ2)) ≥ 1

c
d(ξ1, ξ2)β, β > 1.

Assume first that for two points ξ1, ξ2 of the ideal boundary, the visual distance d(ξ1, ξ2) >
e−R. Then we have

log
d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
≤ log cd(ξ1, ξ2)α−1 = −(1− α) log d(ξ1, ξ2) . (1− α)R.

Now, if the visual distance between images of ξ1 and ξ2 satisfy d(θ(ξ1), θ(ξ2)) > e−R, we get

d(ξ1, ξ2) ≥ 1

c1/α
e−R/α

and hence
log

d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
&

1− α
α

R.

We obtain the lower bound for log d(θ(ξ1),θ(ξ2))
d(ξ1,ξ2)

just in the same way as the upper-bound. If
d(ξ1, ξ2) > e−R

log
d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
≥ log

1

c
d(ξ1, ξ2)β−1 = −(1− β) log d(ξ1, ξ2) . (1− β)R.

If d(θ(ξ1), θ(ξ2)) > e−R

log
d(θ(ξ1), θ(ξ2))

d(ξ1, ξ2)
≥ log

1

c
d(θ(ξ1), θ(ξ2))(β−1)/β = −1− β

β
log d(θ(ξ1), θ(ξ2)) &

1− β
β

R.

This gives

K(R) . max{1− α, 1− β}R.

In particular, consider two variants of the space T n × [0,+∞) Z and Z ′ with metrics
dt2 +

∑
e2µitdx2

i and dt2 +
∑
e2µ′itdx2

i respectively. The visual distance between points P1 and
P2 is given by

d∞(P1, P2) ∼ max |x1
i − x2

i |1/µi .
Pick the identity map θ : ∂Z → ∂Z ′. Then

d∞(θ(P1), θ(P2))

d∞(P1, P2)
∼ maxi |x1

i − x2
i |1/µ

′
i

maxi |x1
i − x2

i |1/µi
≤ max

i
|x1
i − x2

i |1/µ
′
i−1/µi .



Suppose that d(P1, P2) > e−R. Then∣∣∣∣log
d∞(θ(P1), θ(P2))

d∞(P1, P2)

∣∣∣∣ ≤ ∣∣∣log max
i
|x1
i − x2

i |1/µ
′
i−1/µi

∣∣∣ =

= max
i

(
µi

∣∣∣∣ 1

µ′i
− 1

µi

∣∣∣∣ ∣∣log |x1
i − x2

i |1/µi
∣∣) ≤ max

i

∣∣∣∣µiµ′i − 1

∣∣∣∣R.
So, we conclude that K(R) = |maxi(µi/µ

′
i)− 1|R.

Remark 11. More generally, such bi-Hölder maps exist between boundaries of arbitrary sim-
ply connected Riemannian manifolds with bounded negative sectional curvature. The Hölder
exponent is controlled by sectional curvature bounds.

5.2.2 Unipotent locally homogeneous space

Now assume the space Z is a quotient R2/Z2 × R of the space R2 × R with the metric dt2 +
e2t(dx2 + dy2). Consider the space Z ′ = R2/Z2 nα R, quotient of the space R2 oα R, where α
is the 2× 2 matrix (

1 1
0 1

)
.

The locally homogeneous metric is of the form dt2 + gt where gt = (etα)∗g0

etα
(
x
y

)
=

(
et tet

0 et

)(
x
y

)
=

(
etx+ tety

ety

)
and so gt = d(etx+ tety)2 + d(ety)2 = e2t(dx2 + 2tdxdy + (t2 + 1)dy2).

Let θ : ∂Z → ∂Z ′ be the identity. Consider two points P1 = (x1, y1) and P2 = (x2, y2) in
Z. We will write x = x1 − x2 and y = y1 − y2. For the visual distance between P1, P2 we have

d∞(P1, P2) = max{|x|, |y|}.

For their images θ(P1) and θ(P2) (see section 5 of [29] and [30])

d∞(θ(P1), θ(P2)) = max{|y|, |x− y log |y|}.

First we will give an upper-bound for log(d∞(θ(P1), θ(P2))/d∞(P1, P2)). We have four different
cases.

1st case. If |x| < |y| and |x− y log |y|| < |y|,

d∞(θ(P1), θ(P2))

d∞(P1, P2)
= 1.

2nd case. If |x− y log |y|| < |y| < |x|,

d∞(θ(P1), θ(P2))

d∞(P1, P2)
< 1.



3d case. If |x| < |y| < |x− y log |y||.

d∞(θ(P1), θ(P2))

d∞(P1, P2)
=
|x− y log y|
|y|

≤ |x|
|y|

+ | log |y||.

If d∞(P1, P2) > e−R we have e−R < |y| ≤ 1 (the upper bound follows from the fact that y is a
coordinate of a point of a torus) and hence | log |y|| ≤ R and we finish as follows,

d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ |x|
|y|

+ | log |y|| ≤ 1 +R.

If d∞(θ(P1), θ(P2)) > e−R we will consider two situations.

• If |x| > |y log |y|| then |x− y log y| < 2|x| and as |x| < |y|

d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ 2.

• If |x| < |y log |y|| then e−R < |x− y log |y|| < 2|y log |y|| and hence | log |y|| < R, so

d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ 1 +R.

4th case. Let now |y| < |x| and |y| < |x− y log |y||

d∞(θ(P1), θ(P2))

d∞(P1, P2)
=
|x− y log |y||

|x|
≤ 1 +

|y log |y||
|x|

.

We will check two possibilities.

• If |y| ≤ |x|2 then
|y log |y||
|x|

=
|y|1/2

|x|
∣∣|y|1/2 log |y|

∣∣ ≤ 1.

• Now suppose that |y| ≥ |x|2. If d∞(P1, P2) > e−R, we see easily that |y| ≥ e−2R and hence

|y log |y||
|x|

≤ |x log |y||
|x|

≤ | log |y|| ≤ 2R.

If d∞(θ(P1), θ(P2)) > e−R we use the fact that |a + b| ≥ 2 max{|a|, |b|}. Hence, either |x| >
e−R/2 or |y log |y|| > e−R/2 and so |y| & e−R and we finish the estimation as earlier.

So in the fourth case we have also

d∞(θ(P1), θ(P2))

d∞(P1, P2)
≤ 2R.



Here, we have proved that log(d∞(θ(P1), θ(P2))/d∞(P1, P2)) ≤ logR. Now we proceed to
give also a lower bound for this expression.

1st case. If |x| < |y| and |x− y log |y|| < |y|

d∞(θ(P1), θ(P2))

d∞(P1, P2)
= 1.

2nd case. If |x− y log |y|| < |y| < |x|

d∞(θ(P1), θ(P2))

d∞(P1, P2)
=
|y|
|x|
.

Without loss of generality, assume x > 0. By the construction of Z, |y| < 1 hence log |y| < 0.
If 0 < x ≤ y log |y|, we have y < 0. Now transform x ≤ y log |y| as 1 ≤ − log |y|(−y)/x, hence

−y
x
≥ − 1

log |y|
.

Now either d∞(θ(P1), θ(P2)) = |y| > e−R or e−R ≤ d∞(P1, P2) = |x| ≤ y log |y| which also
means that |y| & e−R. So,

|y|
|x|
≥ 1

R
.

If on the contrary y log |y| ≤ x we have

x− y log |y| < |y| < x. (5.1)

First we notice that y log |y| > x−|y| > 0. As |y| < 1 for any point of our space, log |y| < 0 and
we conclude that y < 0. Now from (5.1) we obtain that x < −y(1− log |y|). As 1− log |y| > 0
we obtain

−y
x
>

1

1− log |y|
.

If d∞(θ(P1), θ(P2)) = |y| > e−R, we trivially get that

|y|
|x|

>
1

R
.

If e−R ≤ d∞(P1, P2) = |x| we write e−R < x < −y(1− log |y|) and hence y & e−R, so we obtain
the same result. So, in both cases we come to the same result∣∣∣∣log

|y|
|x|

∣∣∣∣ < R.

3d case. Assume |x| < |y| < |x− y log |y||, this case is trivial as

d∞(θ(P1), θ(P2))

d∞(P1, P2)
=
|x− y log y|
|y|

≥ 1.



4th case. Let now |y| < |x| and |y| < |x − y log |y||. We also suppose that x > 0 to save
notation.

d∞(θ(P1), θ(P2))

d∞(P1, P2)
=
|x− y log |y||

|x|
=

∣∣∣∣1− y log |y|
x

∣∣∣∣ . (5.2)

If (5.2) is greater than 1/2 then we have nothing to prove. So suppose that (5.2) is less than
1/2

−x
2
≤ x− y log |y| ≤ x

2

and so
x

2
≤ y log |y| ≤ 3x

2
.

The last inequality shows that if either d∞(θ(P1), θ(P2)) ≥ e−R or d∞(P1, P2) ≥ e−R, |y| & e−R

and so we have
|y log |y||

x
≥ |y log |y||

y
= | log |y|| ≥ 1

R
,

which completes our discussion of this example. We have proved that

K(R) . logR.



Chapter 6

Appendix

6.1 Poincaré inequality for Hn

Let Hn be n-dimensional hyperbolic space. The metric is written as dr2 + sinh2(r)dθ2 in polar
coordinates, this is very close to the exponentially growing metrics studied in section 4.3. From
the results of section 4.3, little effort is needed to get the Poincaré inequality for balls in Hn,(∫

BHn (R))

|f(x)− c|pdµ
)1/p

≤ Chyp
p (R)

(∫
BHn (R)

|∇f |pdµ
)1/p

.

Theorem 26. Let Hn be n-dimensional hyperbolic space. Then for a ball B(R) of Hn the
Poincaré constant does not exceed

Chyp
p (R) ≤ C(p, n)(1 + eR),

where C(p, n) depends only on p and dimension n.

Proof. We will provide the proof by comparing the hyperbolic metric with an exponential
metric dr2 + e2rdθ2. To pass from the exponential to sinh, we will divide the ball B(R) in
two parts: a little ball near the center and its complement. Finally we will compare the initial
inequality with the Euclidean Poincaré inequality on this small ball and with our "exponential"
inequality (Theorem 23) on the complement.

Let the volume element be dµ = sinhn−1 rdrdθ. We will also write dvolhyp for dµ, dvoleucl
for euclidean volume element and dvolexp for exponential volume element dµexp = e(n−1)rdrdθ.
The idea of the proof is following. First we notice that outside of a ball B(1) exponential and
hyperbolic metrics are equivalent. On the other hand inside of a ball B(2) hyperbolic metric
is equivalent with euclidean metric. This motivates us to use the partition of unity to prove
the initial Poincaré inequality for hyperbolic metric.

Let b =
∮
B(2)

fdvoleucl, χ be the continuos function

• χ(x) = 1 if x ∈ B(1)

• χ(x) = 0 if x ∈ H\B(2)
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• χ(x) = 2− r if x ∈ B(2)\B(1)

We notice that

• sinhn−1 r ≤ e(n−1)r for r ≥ 0,

• e(n−1)r ≤ ce sinhn−1 r for r ≥ 1 where the constant ce is equal to en−1/ sinhn−1 1,

• in B(2) (r ≤ 2) the hyperbolic and euclidean metrics are equivalent

1 ≤ sinhn−1 rdrdθ

rn−1drdθ
≤
(

sinh 2

2

)n−1

.

Now present f − b as follow f − b = χ(f − b)+(1−χ)(f − b). First we consider the function
b+ (1− χ)(f − b). We notice that ∇(b+ (1− χ)(f − b)) equals to 0 on B(1), hence

∫
B(R)

|∇(1− χ)(f − b)|p sinh(n−1) rdrdθ =

∫
B(R)\B(1)

|∇(1− χ)(f − b)|p sinh(n−1) rdrdθ.

And we can write

∫
B(R)

|b+ (1− χ)(f − b)− c1|p sinh(n−1) rdrdθ ≤
∫
B(R)

|b+ (1− χ)(f − b)− c1|pe(n−1)rdrdθ

≤
(
Cexp
p,n

)p ∫
B(R)

|∇(1− χ)(f − b)|pe(n−1)rdrdθ

≤ ce
(
Cexp
p,n (R)

)p ∫
B(R)

|∇(1− χ)(f − b)|p sinh(n−1) rdrdθ,

where the second inequality is a Poincaré inequality for exponential metric.
Now we will apply to the righthand part of the inequality the following formulas

∇(1− χ)(f − b) = (1− χ)∇f + (f − b)∇(1− χ).

and
||f1 + f2||pLp ≤ 2p(||f1||pLp + ||f2||pLp).

We get that

∫
B(R)

|b+ (1− χ)(f − b)− c1|p sinh(n−1) rdrdθ ≤

≤ ce2
p
(
Cexp
p,n

)p(∫
B(R)

|∇f |p sinh(n−1) rdrdθ +

∫
B(2)

|f − b|p sinh(n−1) rdrdθ

)



Now we write euclidean Poincare inequality in B(2) with euclidean constant Ceucl
p,n (it de-

pends only on dimension)

∫
B(2)

|f − b|pdvolhyp ≤
(

sinh 2

2

)n−1 ∫
B(2)

|f − b|pdvoleucl

≤
(

sinh 2

2

)n−1 (
Ceucl
p,n

)p ∫
B(2)

|∇f |peucldvoleucl

≤
(

sinh 2

2

)n−1 (
Ceucl
p,n

)p ∫
B(2)

|∇f |phypdvolhyp.

Consider the function χ(f − b). It equals to 0 on the complement of B(2) so we can easily
treat this case involving euclidean Poincaré ineqaulity as two metrics are equivalent there.

∫
B(2)

|χ(f − b)− c2|pdvolhyp ≤
(

sinh 2

2

)n−1 ∫
B(2)

|χ(f − b)− c2|pdvoleucl ≤

≤
(

sinh 2

2

)n−1 (
Ceucl
p,n

)p ∫
B(2)

|∇f |pdvoleucl ≤
(

sinh 2

2

)n−1 (
Ceucl
p,n

)p ∫
B(2)

|∇f |pdvolhyp.

Now we need to combine all these results. First, we have

∫
B(R)

|f − c1 − c2|pdµ ≤ p

∫
B(R)

(
|b+ (1− χ)(f − b)− c1|p + |χ(f − b)− c2|p

)
dµ,

remind that dµ = dvolhyp. Further, we note that for big enough R(
sinh 2

2

)n−1 (
Ceucl
p,n

)p ≤ ce2
p
(
Cexp
p,n (R)

)p
hence∫

B(R)

|f − c1 − c2|pdµ ≤ cep2
p
(
Cexp
p,n (R)

)p
2ce
(
Ceucl
p,n

)p(∫
B(R)

|∇f |pdµ+

∫
B(2)

|∇f |pdµ
)

≤ 4c2
ep
(
2Cexp

p,n (R)Ceucl
p,n

)p ∫
B(R)

|∇f |pdµ.

6.2 Equivalence of three forms of the Poincaré inequality

In the literature, we can meet three different definitions of Poincaré inequalities. We will show
that they are equivalent.



Definition 26. • There exists a constant C1
p such that for any function f with ∇f ∈ Lp

and its mean value c̃f =
∮
f

||f − c̃f ||Lp ≤ C1
p ||∇f ||Lp ;

• there exists a constant C2
p such that for any function f with ∇f ∈ Lp there exists a

constant cf
||f − c̃f ||Lp ≤ C2

p ||∇f ||Lp ;

• there exists a constant C3
p such that for any function f with ∇f ∈ Lp(∮ ∮

X×X
|f(x)− f(y)|pdxdy

)1/p

≤ C3
p

(∮
X

|∇f(x)|pdx
)1/p

.

Proposition 10. All three definitions are equivalent in the sense that C1
p , C

2
p and C3

p differs
only by universal multiplicative constants.

Proof. 1⇒ 2 Evident, just assume cf = c̃f .
2⇒ 3 Assume g = f − cf . Hence ∇g ∈ Lp and we have ||g||p ≤ C2

p ||∇g||p. So,∮
|f(x)− f(y)|pdxdy ≤ 2

(∮
|f(x)|pdx+

∮
|f(y)|pdy

)
≤ 4

∮
C2
p |∇f |p.

We just proved the third definition with C3
p ≤ 4C2

p .
3⇒ 1 Now consider ||f − c̃f ||Lp

||f − c̃f ||Lp =

(∫
X

∣∣∣∣f(x)−
∫
X
f(y)dy∫
X
dy

∣∣∣∣p dx)1/p

=

(∮
X

∣∣∣∣∫
X

(f(x)− f(y))dy

∣∣∣∣p dx)1/p

≤
(
V ol(x)

∮
|f(x)− f(y)|pdxdy

)1/p

≤
(
V ol(X)C3

p

∮
|∇f |pdx

)1/p

= C3
p ||∇f ||Lp .

Hence, C1
p ≤ C3

p .



Bibliography

[1] E. Ghys, P. de la Harpe, eds., Sur les groupes hyperboliques d’après Mikhael Gromov,
Progr. Math., vol. 83, Birkhäuser, Boston, 1990.

[2] V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxes, Diameters, centers, and ap-
proximating trees of delta-hyperbolic geodesic spaces and graphs, in: Symposium on
Computational Geometry, SoCG’2008, University of Maryland, 2008.

[3] Ch. Croke , Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ec.
Norm. Sup. Paris, 13 (1980) 419–535.

[4] M. Gromov, Infinite groups as geometric objects, Proc. Int. Congress Math. Warsaw
1983 1 (1984) 385–392.

[5] M. Gromov, Hyperbolic groups, in: Essays in group theory (S.M. Gersten, ed.), MSRI
Series 8 (1987) 75–263.

[6] M. Bonk, O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal.,
10 (2000) 266–306.

[7] J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, H. Short,
Notes on word hyperbolic groups, in: Group Theory from a Geometrical Viewpoint:
26 March–6 April, 1990 (A. Verjovsky, ed.), ICTP, Trieste, 1990.

[8] P. Eberlein, Geometry of Nonpositively Curved Manifolds, University of Chicago Press,
1997

[9] G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of mathematics
studies, vol. 78, Princeton University Press, Princeton, 1973.

[10] C. Drutu, M. Kapovich, Lectures on Geometric Group Theory,
http://www.math.ucdavis.edu/ kapovich/EPR/ggt.pdf, 2009.

[11] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces
symétriques de rang un, Ann. of Math., 129 (1989) 1–60.

[12] P. Pansu Cohomologie Lp des variétés à courbure négative, cas du degré 1, Rend.
Semin. Mat., Torino Fasc. Spec., (1989) 95–120.

84



[13] B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean
buildings, Math. Publ. of IHES, 86 (1998) 115–197.

[14] M. Kapovich, B. Leeb, Quasi-isometries preserve the geometric decomposition of Haken
manifolds, Inventiones Mathematicae, 128 (1997) 393–416.

[15] J. Howie, Hyperbolic groups lecture notes, Omades kai Efarmoges (Groups and Appli-
cations), edited by V. Metaftsis, Ekdoseis Ziti, Thessaloniki (2000) 137–160.

[16] R. Schwartz, The quasi-isometry classification of hyperbolic lattices, Math. Publ. of
IHES, 82 (1995) 133–168.

[17] K. Wortman, Quasi-isometric rigidity of higher rank S-arithmetic lattices, Geom.
Topol., 11 (2007) 995–1048.

[18] B. Farb, L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, In-
vent. Math., 131 (1998) 419–451.

[19] A. Eskin, D. Fisher, K. Whyte, Coarse differentiation of quasi-isometries I: spaces not
quasi-isometric to Cayley graphs, Ann. of Math, 176 (2012) 221–260.

[20] A. Eskin, D. Fisher, K. Whyte, Coarse differentiation of quasi-isometries II: Rigidity
for Sol and Lampligher groups, To appear in Ann. of Math.

[21] A. Eskin, D. Fisher, K. Whyte, Quasi-isometries and rigidity of solvable groups, Pure
Appl. Math. Q., 3 (2007) 927–947.

[22] T. Dymarz, Large scale geometry of certain solvable groups, Geom. Funct. Anal., 19
(2009) 1650–1687.

[23] I. Peng, The quasi-isometry group of a subclass of solvable Lie groups I, Preprint.

[24] I. Peng, The quasi-isometry group of a subclass of solvable Lie groups II, Preprint.

[25] Y. Shalom, T. Tao, A finitary version of Gromov’s polynomial growth theorem, Geom.
Funct. Anal., 20 (2010) 1502–1547.

[26] P. Papasoglu, Homogeneous trees are bilipschitz equivalent, Geometriae Dedicata, 54
(1995) 301–306

[27] Y. Shalom, Harmonic analysis, cohomology, and the large-scale geometry of amenable
groups, Acta Math., 192 (2004) 119–185.

[28] M. Bourdon, B. Kleiner, Some applications of Lp-cohomology to boundaries of Gromov
hyperbolic spaces, arxiv:1203.1233 (2012)

[29] N. Shanmugalingam, X. Xie, A rigidity property of some negatively curved solvable
Lie groups, to appear in Comment. Math. Helv.



[30] X. Xie, Quasisymmetric maps on the boundary of a negatively curved solvable Lie
group, arxiv:1001.0148 (2009), to appear in Mathematische Annalen

[31] U. Hamenstädt, Zur Theorie des Carnot-Caratheodory Metriken und ihren Anwendun-
gen, Bonner Math. Schriften, 180 (1987)

[32] V. Shchur, A quantitative version of the Morse lemma and quasi-isometries fixing the
ideal boundary, J. Funct. Anal., 264 (2013) 815–836.


	Remerciements
	Introduction - version française
	Version quantitative du problème de quasi-isométrie
	Idée générale
	Exemple : croissance polynômiale
	Exemple : arbres

	Résumé des résultats
	Lemme de Morse
	Le Lemme Anti-Morse
	Bornes inférieures pour des espace localement homogènes à courbure négative
	Bornes supérieures


	Introduction - English version
	The quantitative quasi-isometry problem
	General idea
	Example

	Summary of results
	Morse Lemma
	Anti-Morse Lemma
	Lower bounds for negatively curved locally homogeneous spaces
	Upper bounds

	Statement of the quantitative quasi-isometry problem
	Definition of quasi-isometry
	Choice of a class of maps
	Example illustrating the behaviour of 1
	Example illustrating the behaviour of 2
	Role of the additive parameter c
	Choice of a numerical measurement of distortion
	An example of a left-invariant riemannian distance
	Statement of quantitative problem
	Example : maps to trees

	Quasi-isometric classification - survey

	Morse Lemma
	Basics of hyperbolic geometry
	Metric definition
	Case of geodesic metric spaces
	Divergence
	Isoperimetry
	Comparison with trees

	The geometry of -hyperbolic spaces
	Quasi-geodesics and -length
	Exponential contraction
	Quantitative version of the Morse lemma
	Attempts
	Proof of the Morse lemma

	Optimality of Theorem 2
	Anti-Morse lemma
	Application of Anti-Morse Lemma
	Proof of Proposition 1

	Geodesically rich spaces
	Quasi-isometries fixing the ideal boundary

	Poincaré inequalities and quasi-isometries
	Main ideas
	The critical exponent for Lp-cohomology
	Scheme of proof

	Regularisation and quasi-isometries
	Kernels
	Cross-kernels
	Transporting cocycles
	Transporting Poincaré constants

	Poincare inequality for exponential metric
	Poincaré inequality for fixed direction
	Poincaré inequality for exponential metric.

	Lower bound on Poincaré constant
	Quasi-isometric embeddings and fundamental groups
	Lifting to a double covering space
	Lifting of 
	Proof of the first statement of Theorem 24 - Part 1
	Proof of the first statement of Theorem 24 - Part 2
	Proof of the second statement of Theorem 24


	Examples of different distortion growths
	Approximation of distances and an example of QI
	Examples
	Bi-Hölder maps
	Unipotent locally homogeneous space


	Appendix
	Poincaré inequality for Hn
	Equivalence of three forms of the Poincaré inequality

	Bibliography

