
HAL Id: tel-00867892
https://theses.hal.science/tel-00867892

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compliance of Web services over a high level
specification

Emad Elabd

To cite this version:
Emad Elabd. Compliance of Web services over a high level specification. Other [cs.OH]. Université
Claude Bernard - Lyon I, 2011. English. �NNT : 2011LYO10122�. �tel-00867892�

https://theses.hal.science/tel-00867892
https://hal.archives-ouvertes.fr

 i

N° d�ordre 122- 2011 Année 2011

THESE DE L�UNIVERSITE DE LYON

Délivrée par

L�UNIVERSITE CLAUDE BERNARD LYON 1

ECOLE DOCTORALE

Infomaths

DIPLOME DE DOCTORAT

(arrêté du 7 août 2006)

Soutenue publiquement le (13 Juillet 2011)

par

Emad ELABD

TITRE :

Compliance of Web Services Over a High Level

Specification
 « Conformité de services Web par rapport à des spécifications de

haut niveau »

Directeurs de thèse :

Mohand-Said HACID Prof., Université de Lyon 1

Emmanuel COQUERY Maître de Conférences, Université de Lyon 1

JURY

Rapporteurs : M. Farouk TOUMANI Prof., Université Blaise Pascale, France

 Mme.ȱFatihaȱZAIDIȱ Prof., Université Paris-Sud XI, France

Examinateurs : Mme.ȱDanielaȱGRIGORIȱ Prof., Université de Versailles St-Quentin
en Yvelines; France

 Mme. Salima BENBERNOU Prof., Université Paris Descartes, France

Directeurs : M. Mohand-Said HACID Prof., Université de Lyon 1, France

 M. Emmanuel COQUERY Maître de Conférences, Université de
Lyon1, France

 ii

AUTHOR BIOGRAPHY

Name : Emad Said ELABD

Occupation: Assistant lecturer in Information System Department

Occupation Place: Faculty of Computers and Information, Menoufia

University

Date of Birth: 21 January 1978

First University Degree: B.Sc. of Electronics Engineering, Computer Science

and Engineering Department.

Grade: Very Good with honor degree

Educational Institution: Faculty Of Electronic Engineering, Menoufia Univer-

sity.

Date of Educational Degree: May 2000.

Second University Degree M.Sc. In Computers and Information, Information
System Department.

Educational Institution: Faculty of Computers and Information, Menoufia

University.

Date of Educational Degree: July 2006.

Ph.D Registration Date: October 2007

 iii

ACKNOWLEDGMENT

First of all, I thank my God for helping me to achieve this work and

giving me the ability to finish this thesis in that satisfactory form.

Second, I would like to express my appreciation to my supervisor

Prof. Mohand-Said HACID for his continuous support and encour-

agement during the research study in this thesis. He really influenced

my way of thinking and developing the research ideas adopted in this

thesis. I am very grateful for his strong effort with me and his highly

useful advice throughout the development of this work.

Third, it is a great pleasure for me to express my sincere appreciation

and my thanks to Dr. Emmanuel Coquery for his supervision and

continuous encouragement and supporting throughout the whole pe-

riod of this work. Special acknowledgment is given to him.

Finally, this work is especially dedicated to my family especially my

father (Said), mother (Ehitimad), brother(Abdel-aleem), sisters, my

wife Nermine and her dead father and her mother, my children Min-

nat-Alla, Muhamad, and Ziyad and all my colleges in the database

team. Without their support, encouragement and patience I would not

have been able to finish this work.

Emad Elabd

iv

ABSTRACT

French

Actuellement, la technologie des services Web évolue rapidement, en étant
soutenue par les grands acteurs du domaine des systèmes d'information. Les
applications basés sur services Web sont faiblement couplées et utilisables
de façon automatique via l'utilisation d'un ensemble de normes basées sur
XML. Hormis la description syntaxique des messages, il est nécessaire
d�avoir une description sémantique du comportement des services. En effet,
lors de la conception d'un service ou lors d'une composition de services, il
est important de vérifier la conformité avec un cahier des charges.
L�enrichissement des descriptions des services par l�inclusion de leurs com-
portements est de plus en plus important. Ce comportement peut être décrit
par des protocoles métier représentant les séquences possibles d'échanges de
messages.
Les services Web utilisent des politiques de contrôle d'accès (ACP) pour
restreindre l'accès à des consommateurs autorisés. Ces politiques doivent
faire partie de la description du service. Dans cette thèse, l'analyse d'intero-
pérabilité en termes de contrôle d�accès après la formalisation des services
Web annotés avec les politiques de contrôle d�accès est réalisée. Nous pré-
sentons une approche pour intégrer les outils de vérification dans l'architec-
ture de contrôle d�accès de façon à garantir une interaction sans erreurs. Les
politiques et les crédits sont présentés comme une ontologie afin de bénéfi-
cier de la flexibilité offerte par subsomption sur des concepts.
 La chorégraphie des services Web est utilisée dans la phase de conception
d�applications pair à pair complexes dans lesquelles chaque pair peut être
implémenté par un service Web. Par conséquent, la sélection des services
Web pour l�implémentation de chorégraphie en utilisant l�approche de véri-
fication de compatibilité avec contrôle d'accès est l'un des objectifs de notre
recherche. Dans ce travail, les modèles de protocole métier du service Web
sont étendus en ajoutant des informations au message sur chaque transition
du service dans lequel ce message sera envoyé ou reçu. Nous définissons et
vérifions la compatibilité des services Web afin de voir si (et comment) plu-
sieurs services peuvent avoir des interactions en fonction de leurs protoco-
les. Cette approche aidera les concepteurs à choisir des services Web de
manière simple et à vérifier s�ils peuvent mettre en �uvre la chorégraphie
nécessaire en vérifiant la compatibilité avec notre approche.
En plus contrôle d�accès, le temps joue un rôle crucial dans de nombreux
comportements des services Web. Une des principales contributions de cette

v

thèse consiste la modélisation et l�analyse de service Web avec contraintes
de temps pour garantir la compatibilité et la remplaçabilité. L�un des ver-
rous fondamentaux rencontré avant l�analyse de compatibilité est
l�élimination des transitions implicites temporisées dans les protocoles mé-
tier. Nous présentions une approche pour éliminer ces implicites sans chan-
ger la sémantique de protocole. Après avoir enlevé les transitions implicites,
nos algorithmes de compatibilité et de remplaçabilité peuvent travailler
d'une manière simple.
Plus le service Web est complexe, plus les paramètres qui influent sur le
comportement de ce service sont nombreux. Enrichissement du comporte-
ment des services Web par certains paramètres comme le temps et les politi-
ques de contrôle d'accès peut être généralisé pour inclure d'autres paramè-
tres tels que l'information sur la les données privées, la signification du mes-
sage, etc. Dans ce contexte, l'une de nos contributions est de fournir un mo-
dèle général pour les protocoles métier annotés par des spécifications de
messages. Chaque spécification de message contient les contraintes et les
informations qui sont nécessaires au service fourni. Ainsi, l�algorithme de
vérification de compatibilité traite avec tous les types de contraintes et cha-
que service peut trouver le service le plus compatible avec lui en termes des
contraintes nécessaires et des valeurs fournies.
Pour conclure, cette thèse vérifie la conformité des services Web, y compris
après l�inclusion d�un ensemble de contraintes telles que la politique de
contrôle d'accès et de temps. Le formalisme des automates temporisés et les
contraintes sont utilisées pour représenter la spécification des services pour
lesquels la conformité des services doit être vérifiée. L�analyse de compati-
bilité et de remplaçabilité entre les services Web en utilisant leurs protocoles
métier est réalisée en présence de ces contraintes. Des algorithmes sont alors
développés pour la vérification de la conformité avec comme objectif d'as-
surer la conformité à ces spécifications de haut niveau.
Toutes ces techniques et algorithmes seront validés par leur intégration et
leur utilisation dans la plate-forme ServiceMosaic et au sein du projet
COMPAS.

Mots-clés. Services Web, des protocoles d'affaires, de compatibilité, inter-
changeabilité, contrôle d'accès, le temps, la chorégraphie, la spécification
chronométrés message automates, l'architecture orientée services.

vi

English

Currently, Web services technology is rapidly move forward supported by major

players in the field of information systems. Web services applications are loosely

coupled and usable in an automatic way via the use of a set of standards based

on XML. Beside the syntactic description of messages, there is a need for the se-

mantic description of the behavior of services. Indeed, whether in the design of a

service or composition of services, it is important to check compliance with a set of

specifications. Enriching services descriptions by including their behaviors is be-

coming more and more important. This behavior can be described by business pro-

tocols representing the possible sequences of message exchanges.

Web services use access control policies (ACP) to restrict the access to authorized

consumer. These policies should be a part of the service description. In this thesis,

the interoperability analysis in terms of AC after the formalization of the Web ser-

vices annotated with the access control (AC) is performed. In addition, we present

an approach for embedding the checking tools in the AC enforcement architecture

to guarantee the errors free interaction. The ACP and the credentials are presented

as ontology in order to benefit from the flexibility offered by subsumption on con-

cepts.

Web services choreography is used in the design phase of complex peer-to-peer

applications in which each peer can be implemented by a Web service. Therefore,

selecting Web services for choreography implementation using the compatibility

checking approach with access control is one of the objectives of our research. In

this work, the business protocol models of the Web service are extended by adding

information to the message on each transition about the service in which this mes-

sage will sent to or received from. We define and verify Web service compatibility

in order to see if (and how) several services can have interactions based on their

protocols. This approach will help the designers to select Web services in an easy

way and verify if they can implement the required choreography or not by check-

ing the compatibly using our approach.

In addition to AC, time has a crucial role in many of Web services behavior. There-

fore, modeling and analyzing Web services based on error free compatibility and

replaceability checking with time constraints is one of our major contributions in

this thesis. One of the fundamental challenges before checking the compatibility

and replaceability between timed business protocols is the removal of the implicit

vii

transition of the timed business protocols without changing the semantics of the

protocol. Therefore, we present a general approach for removing any form of im-

plicit transition without changing the semantics of the protocol. After removing the

implicit transitions, our compatibility and replaceability algorithms can work in a

straightforward way.

The more the Web service is complex, the more it has parameters that affects the

behavior of this service. Enriching the Web service behavior by certain parameters

such as time and ACP can be generalized to include any other parameter such as

privacy information, message meaning, etc. In this context, one of our contribu-

tions is to provide a general model for Web service business protocol annotated by

message specifications. Each message specification contains the constraints and the

information that are required of provided by the service. Thus, the compatibility

checking algorithm deals with all the types of constraints and each service can find

the most compatible service with it in terms of the required constraints and the

provided values.

To conclude, this thesis checks the compliance of Web services after including a

set of constraints such as the access control policy and time. The formalism of

timed automata and constraints are used to represent the services specification for

which the compliance of the services must be verified. Compatibility and replace-

ability analyses between the Web services using their business protocols are per-

formed in the presence of these constraints. Algorithms are then developed for the

verification of compliance with the aim of ensuring compliance with these high

level specifications. All of these techniques and algorithms will be validated

through their integration and use in the platform ServiceMosaic and in the COM-

PAS.

Keywords. Web Services, Business protocols, Compatibility,

Replaceability, Access control, time, choreography, timed auto-

mata, message specification, Service-oriented architecture.

 TABLE OF CONTENTS

viii

TABLE OF CONTENTS

AUTHOR BIOGRAPHY .. II

ACKNOWLEDGMENT ..III

ABSTRACT... IV

TABLE OF CONTENTS ..VIII

LIST OF TABLES ..X

LIST OF FIGURES .. XI

LIST OF ABBREVIATIONS ... XIV

NOMENCLATURES .. XVI

CHAPTER 1 . INTRODUCTION ...1

1.1 Background .. 1
1.2 Research objectives .. 2
1.3 Contributions.. 5
1.4 Outline of the Thesis .. 7

CHAPTER 2 . WEB SERVICES ..9

2.1 Web Service definitions ... 9
2.2 Service Oriented architecture... 11
2.3 Semantic Web .. 16
2.4 Semantic Web services... 17
2.5 Web service behavior description .. 19
2.6 Web service formalization and analysis... 22

CHAPTER 3 . TIMED WEB SERVICES..25

3.1 Timed Web services ... 25
3.2 Compatibility and replaceability .. 27
3.3 Implicit transition issue .. 30
3.4 One clock timed business protocols... 32
3.5 Multi-clocks timed protocol modeling... 41

3.5.1 Timed business protocol semantics ...46
3.6 Related work ... 51

CHAPTER 4 .IMPLICIT TRANSITION REMOVAL APPROACH...................56

4.1 Implicit transition constraint separation approach 56

 TABLE OF CONTENTS

ix

4.1.1 The separation approach.. 60
4.1.2 Analysis and proof .. 69

4.2 The conversion approach..70
4.2.1 Analysis and proof .. 75

CHAPTER 5 .WEB SERVICES ACCESS CONTROL... 78

5.1. Web Services AC models ...78
5.2. Informal scenario and architecture ...82
5.3. Ontology ...85
5.4. Related work ...87

CHAPTER 6 .WEB SERVICES ANALYSIS ... 90

6.1. Compatibility and replaceability definitions90
6.2. Compatibility and replaceability analysis after assigning time
and AC ...94
6.2.1. Compatibility ..95
6.2.1.1. Cumulative access control credentials ..99
6.2.1.2. Clocks synchronization ...103

6.2.2 Replaceability.. 115
6.3. Implementation ...122

CHAPTER 7 . GENERAL SPECIFICATION APPROACH.............................. 125

7.1. Introduction...125
7.2. Abstract interpretation ..125
7.3. Formalizations ..126
7.4. Adaptive compatibility ...142

CHAPTER 8 .WEB SERVICES CHOREOGRAPHY .. 144

8.1. Web service choreography with AC...144
8.2. Formalization and Algorithms..145

8.2.1 Modeling Web services choreography.. 145
8.3. The verification process..156
8.4. Related Work ..159

CHAPTER 9 .CONCLUSION AND FUTURE WORK....................................... 161

9.1 Conclusion ..161
9.2 Future work...162
9.3 Publications...163

BIBLIOGRAPHY ... 165

 LIST OF TABLES

x

LIST OF TABLES

Table 2-1: The evolution of information systems integration.13

 LIST OF FIGURES

xi

LIST OF FIGURES

Figure 2-1: An SOA and an SOA Request-Response pattern with a service registry..........15
Figure 2-2: Web service Stack ...15
Figure 2-3: The four versions of the semantic Web reference architecture (V1-V4) proposed

by Berners-Lee [25, 26, 27, 24, 75]..17
Figure 2-4: Authentication Web service business protocol..20
Figure 3-1: A Timed business protocol of book selling Web service.26
Figure 3-2:Two business protocols incompatible based on our compatibility definition and

fully compatabile based on the definition of Benatallah et al. [16, 19, 20, 114].29
Figure 3-3: Authentication Web service business protocol with implicit transition on a loop

and time constraint checking the implicit clock. ..29
Figure 3-4: Business protocol without implicit transition...29
Figure 3-5: One clock Web service business protocol with implicit transition....................35
Figure 3-6. One clock Web service business protocol without implicit transition...............36
Figure 3-7: Business protocol of Web service with implicitly transition.............................41
Figure 3-8: Business protocol of a Web service without implicit transitions.41
Figure 3-9: A Web service business protocol P with implicit and explicit transitions.........48
Figure 3-10: Business protocol contains dynamic interval time constraint on one of its

transitions. ..51
Figure 4-1: Two semantically equivalent protocols (P1 and P1�) and two semantically

nonequivalent protocols (P2 and P2�). ...59
Figure 4-2: An example of simple paths, path in a form of a loop, and PLP form60
Figure 4-3: Examples of overlapped paths...60
Figure 4-4: A part of business protocol has an implicit transition to show the effect of

applying the first three steps of the separation approach..61
Figure 4-5: Business protocol P1 and its equivalent protocol P2 after the execution of step

5.A..62
Figure 4-6: Protocol P1 and its equivalent protocol P1-new after applying the steps 5 and 6.

..66
Figure 4-7: Protocol P1 without clock reset in the loop and its equivalent protocol P2.67
Figure 4-8: Protocol P1 with a clock reset (x2) in the loop in the path between the states sil

and sol and its equivalent protocol P2. ..67
Figure 4-9: Protocol P1 with clock reset in the loop and its equivalent protocol P2 (this

clock reset is not on one of the output transitions of the state sol and in the path

between sol and sil) ...68
Figure 4-10: Protocol P1 with clock reset in the loop and its equivalent protocol P2 (this

clock is on one of the output transition of the state sol and in the path between sol and

sil). ..69

 LIST OF FIGURES

xii

Figure 4-11: Business protocol P1 and its equivalent protocol P2 after the execution of step

1. .. 70
Figure 4-12. Protocol P1 and its equivalent P2 after the execution of steps I, II, and III. ... 72
Figure 4-13. Protocol P1 and its equivalent P2 after the execution of steps C. 73
Figure 4-14. Protocol P1 and its new form (P2) after the execution of steps D.I. 73

Figure 4-15: Protocol P1 with clock reset (x3) and implicit time constraint (x1=1 ש x3=1)

checks this clock and its equivalent protocol P2 after the execution of the algorithm.

... 75
Figure 5-1: A XACML architecture. ... 79
Figure 5-2: Web service architecture for enforcing access control policies proposed by

Mecella et al. in [100]. ... 80
Figure 5-3: Informal scenario shows the problem of the traditional AC models................ 83
Figure 5-4: Informal scenario with a modified architecture to overecome the problem of

traditional Web services AC models.. 84
Figure 5-5: Access control architecture model with compatibility and replaceability

checking tools. ... 85
Figure 6-1: Two business protocols of compatible Web services (full compatibility). 93
Figure 6-2: Two business protocols of incompatible Web services. 93
Figure 6-3: Two protocols indicate the importance of calculating the cumulative access

control credentials.. 101
Figure 6-4: Three different business protocols P1, P2, and P3. P1 is compatible with P2 but

not compatible with P3. ... 101
Figure 6-5: P1 is compatible with P2 (this show the importance of calculating the

cumulative ACC after determining the transition which will be used in the interaction

and this is accomplished by calculating the product automata). 102
Figure 6-6: Business protocol of web service performs two operations............................ 114
Figure 6-7: Business protocol of a consumer needs to interact with the service in Figure

 6-6. ... 114
Figure 6-8: Product automata of the two protocols of Figure 6-6 and Figure 6-7 assigned

with AC.. 115
Figure 6-9: Graphical representation of resources ontology linked with the credential

ontology. .. 115
Figure 7-1.Two Web services business protocols with general constraints messages

specifications. .. 132
Figure 7-2. The product automata of the two business protocols P1 and P2 of Figure 7-1.

... 137
Figure 7-3.The product automata of the two business protocols P1 and P2 of Figure 7-1

after cumulating the credentials. .. 139
Figure 8-1: Web services choreography describing shopping process 147

 LIST OF FIGURES

xiii

Figure 8-2: Two business protocols assigned with access control and the message sender or

receiver. ..149
Figure 8-3: Two business protocols (P1 and P2) and their product automata P1 × P2.151
Figure 8-4: Set of business protocols of Web services can be used for implementing the

choreography of Figure 8-1. ...158
Figure 8-5: Graphical representation of a simple Credit Card ontology which is used in the

verification process. ...159

 LIST OF ABBREVIATIONS

xiv

LIST OF ABBREVIATIONS

Abbreviation Referenced Terms

2PC Two-Phase Commit

ASM Abstract State Machine

AC Access Control

ACES Access Control Enforcement System

ACP Access Control Policy

ACC Access Control Credentials

API Application Program Interface

B2B Business-to-Business

BP Business Protocol

BPEL Business Process Execution Language

CACC Cumulative Access Control Credentials

CORBA Common Object Request Broker Architecture

CWS-RBAC

Composite Web Services-Role Based Access Con-
trol

CGI Common Gateway Interface

DLs Description Logics

EAI Enterprise Application Integration

FO First Order

GCBP General Constraints Business Protocol

HTTP Hypertext Transfer Protocol

IT Information Technology

LTL Linear Temporal Logic

MCETBP Multi-Clocks Explicitly Time Business Protocol

MCTBP Multi-Clocks Timed Business Protocol

OCTBP

One-Clock Timed Business Protocol with Implicit
Transitions.

OCETBP One Clock Explicitly Time Business Protocol

OWL Ontology Web Language

 PAP Policy Administration Point

PEP Policy Enforcement Point

 LIST OF ABBREVIATIONS

xv

PDP Policy Decision Point

PIP Policy Information Point

PS Policy Selection

QoS Quality of Service

RBAC Role Based Access Control

SAML Security Assertion Markup Language

SAWSDL

Semantic Annotations Web Service Description
Language

SKU code Stock-Keeping Unit

SLA Service Level Agreements

SOA service-oriented architectures

SOAP Simple Object Access Protocol

SMTP Simple Mail Transfer Protocol

SPOCUS Semi Positive Cumulative State

SWS-RBAC Single Web Service-Role Based Access Control

SSL Secure Sockets Layer

TBP timed business protocol

TLA Trustworthiness Level Assignment

UDDI

Universal Description, Discovery and Integration
registry

URL Uniform Resource Locator

UPC Universal Product code

W3C World Wide Web consortium

WS- Web Service-

WSCL Web Services Conversation Language

WS-CDL Web Services Choreography Description Language

WSCI Web Service Choreography Interface.

WSDL Web Service Description language

WSTL Web Service Transition Language

XML eXtensible Markup Language

XACML eXtensible Access Control Markup Language

xvi

NOMENCLATURES

Nomenclature Referenced Terms

A
p
 The product automata of two business protocols

AR The atomic role on the ontology

CN The atomic concepts on the ontology

CR The set of clock reset in the BP

CRS(s) Clocks Reset Sequence of the state s in BP

CRV Clock reset value

CV Clock value

 The set of credentials on the transition between the state (si
1 and

si+1
1) of the BP P1

 The set of cumulative credentials on a transition i on the BP P1

ds The destination state of a transition in the BP

E The specification attribute domain

F The set of final states in the BP

I The set of time intervals

IP The implicit path in the BP

IT The interaction trace in the BP

k A variable obeying to the sequence of natural numbers

Li The number of the implicit transitions in the BP

Le The number of explicit transition in the BP

M The set of input/output messages

m An instance message in the BP

ms Message specification

MS The set of message specification

mt The message type

Na The state name in the BP

o The operation of the pd that invoked by ps and triggers the mes-
sage exchange

PA Path in the BP

xvii

pd The business protocol of the receiver of the message

PL The set of access control policies

PLP The Path-Loop-Path structure in the BP

ps is the business protocol of the message�s sender,

Թ

The set of real numbers.

RK The set of variables reset on the BP

s A state in the BP

S The set of the states in the BP

S0 The start state of the BP

sf a final state in the BP

ss Source state of a transition in the BP

SV Specification value

T A finite set of explicit transitions in BP

Tc The set of the time constraints on BP

Tc(ti) Time constraint on an implicit transition ti

Ti A set of implicit transition

tr Time trace

TS Non deterministic transition system

X A finite set of clocks on the BP

xg The global clock in the one clock BP

xm An xml message before annotation

xms An xml message sequence of messages before annotation

XM An annotated xml message after annotation

XMS An annotated xml message sequence after annotation

XML The set of all message in xml format

ı A sequence of timed BP

CHAPTER 1 INTRODUCTION

1

Chapter 1 . INTRODUCTION

This chapter presents an overview of the thesis. It starts by explaining the reasons

behind choosing the Web services as an effective solution for the business process

integration problems. After that, we discuss our main research objectives and con-

tributions. Finally, the outline of this thesis is listed.

1.1 Background

In the beginning of the Web, the Web users were restricted by static Web

pages in which users cannot affect on the contents of these pages. After that, a new

kind of pages allows the visitors not only to passively read the information, but

also to interact and modify this information is emerged. For example, commercial

services, such as airplane ticket reservations, hotel booking, etc., are offered via the

Web. Most of these services are based on a business-to-customer communication

where customers access the information systems via customer-oriented Web inter-

faces. For instance, an interface for books store is appeared on the Web browser as

a set of visual tools such as buttons and lists etc. in order to ease the selection and

buying of the books. Thus, most of the companies adopt the Web-based communi-

cation with customers. But, if we talk about the business-to-business communica-

tion, we will find that this type of communication tends to be less Web-enabled

than business-customer communication (Rutner et al., [122]). Thus, the business-

to-customer connection is established between the information system and a Web

browser (e.g., Firefox and Internet Explorer) but business-to-business connections

need integration operations between the information systems. Solving the integra-

tion problem between information systems is very costly using the traditional ap-

plication integration middleware (e.g., the Remote Procedure Call (RPC) and mes-

saging systems) because of the adapter development process.

Web services are loosely coupled applications designed to support interoperable

machine-to-machine interaction over a network. Thus, Web services can be one of

the solutions for this integration problem. The information systems are provided as

Web services with standard interfaces. This standardization that will be in terms of

description languages, coordination, and interaction protocols, will simplify the

integration process between the information systems (Papazoglou and Georga-

CHAPTER 1 INTRODUCTION

2

kopoulos [108]; Papazoglou et al. [109]; Papazoglou and van den Heuvel [110]).

Therefore, Web services are adapted as a framework for business-to-business inter-

action (Alonso et al. [4]).

Web services are loosely�coupled applications. This means that when the service

interface is developed, there is no information about the client interface in which

the service interacts with. They could interact with many clients and the client must

be aware of the functional and non functional properties of the service to interact

correctly with it. As a result, the information that is included in the service inter-

face is not sufficient for the client to check if he/she can interact correctly with the

service before interaction and there is a need for more information. This type of

information is called service description. Service description doesn�t not only de-

scribe the interface, but also the business protocol (BP) of the services by repre-

senting the possible sequences of message exchanges (Benatallah et al. [16]).

Recently, Web services protocol modeling and management gain a great impor-

tance. The existing tools that model Web service protocols such BPEL (Business

Process Execution Language) present service descriptions without studying the

interoperability properties (Alves et al. [6]). These interoperability properties in-

clude checking the compatibility, by checking if two services can interact correctly

or not?, and the replaceability, by checking if one of the two services can replace

the other one or not?, between the Web services. Many approaches have been de-

veloped in the direction of formal methods and software tools for modeling and

analyzing Web services protocols (Pong et al. [114]; Pong [113]; Benatallah et al.

[19, 20, 18] ; Dumas et al. [61]; Ramsokul et al. [117] ; Hamadi et al. [79]). They

presented a model for business protocol and a framework for protocol-based analy-

sis.

1.2 Research objectives

 Web service can be simple or complex depends on its functionality. The be-

havior of a Web service is affected by a set of parameters depends on the function

of the service. The types and the number of these parameters are different from one

service to another. One of these important parameters is the access control (AC)

which includes the access control policy (ACP) and the access control credentials

(ACC) of the Web service. Since a lot of Web services use access control policies

to restrict the access to authorized consumers, these policies should be a part of the

CHAPTER 1 INTRODUCTION

3

service description. Security technologies commonly adopted for Web sites and

traditional access control models are not satisfactory (Bertino et al. [29]). Currently,

there are two research directions in access control. One has focused on efforts to

develop new access control models to meet the policy needs of real world applica-

tion domains. These have led to several successful models such as the NIST Stan-

dard role based access control (RBAC) model (Ferraiolo et al. [67]), WS-AC1

(Bertino et al. [29]), and conversation-based Web services access control model by

(Mecella et al. [100]). In a parallel, researchers have developed policy languages

for access control. These include �eXtensible Access Control Markup Lan-

guage� (XACML) (Tim Moses [101]), WS-Policy (Bajaj et al. [11]) and finally to

semantic Web based languages such as Rei (Kagal et al. [85]) and KAoS (Tonti et

al. [131]).

 The majority of the current and future generations of Web services need a con-

versation-based Web services access control models. This is because the Web ser-

vice consists of a set of ordered operations and each operation could have an AC.

The service consumer must respect the order of the operations and by consequence

the order of the AC on these operations to interact correctly with the services. To

the best of our knowledge, the current conversation-based Web services access

control models such as the (Mecella et al. [100]) model does not perform interop-

erability and integration analysis in terms of AC. As a result, this kind of models

does not guarantee an error free interaction between the services in the runtime

because they did not perform any interoperability checking between the services

before their interaction in the design time. These interoperability checking includes

the compatibility checking using the business protocols annotated with the AC.

Thus, modeling and analyzing Web service after including the AC is one of the

objectives of this work.

There is a set of challenges raises during the analysis of the Web services business

protocols after including the AC. One of these significance challenges is the calcu-

lation of the cumulative access control credentials (CACC) on each transition on

the protocol (i.e., the calculation of the previous and the current credentials that are

annotated on the protocol on each transition).

 Web services choreography is used in the design phase of complex peer-to-peer

applications in which each peer can be implemented by a Web service. The behav-

ior of each peer must be specified in the choreography of the application. Any Web

service that would like to join the choreography would need to conform to that

CHAPTER 1 INTRODUCTION

4

specification. Several research efforts focus on the issue of determining whether

the behavior of the Web services implementing choreography matches the one

described by the choreography specification (Paci et al. [107], Busi et al. [43],

Kazhamiakin et al. [89]). Behavior conformance must include the satisfaction of

the AC between services. Therefore, selecting Web services for choreography im-

plementation using the compatibility checking approach with access control is one

of the objectives of our research.

 The second parameter that has a crucial role in many of Web services behavior

is the time. Time-related behaviors can be session timeouts or deadlines with dif-

ferent kinds of behaviors (e.g., the situation where Visa card must be provided

within n hours, otherwise the service will be cancelled). Recently, there are many

research works concentrate on time as an effective player on Web services behav-

iors. For instance, the work presented by (Pong et al. [113, 114]; Benatallah et al.

[17]; Berardi et al. [23]; Dyaz et al. [62], and Kazhamiakin et al. [88]). Some of

these works involve timing issues in the Web service behavior which is presented

by the business protocol (Pong et al. [113]). They perform nontraditional checking

analysis (compatibility and replaceability analysis) on business protocols. But their

compatibility and replaceability definition cannot be used in our analysis, for two

reasons. First, our definitions of compatibility and replaceability checking are

based on the error free interaction which is different from their definitions which

are based on the language inclusion. Second, the technique which they use with the

implicit transitions on the business protocol (i.e., the internal transition of the Web

service) is different from our approach. Their technique does not work with a wide

range of Web services business protocols. For example, the protocols which have

loops and one of the transitions on the loop is an implicit transition with time con-

straint. Furthermore, the implicit transition on the loop has a clock reset and the

time constraint on the implicit transition checks this clock.

As a result, modeling and analyzing Web services based on error free compatibility

and replaceability checking with time constraints is one of our research objectives

in this thesis.

The more the Web service is complex, the more it has parameters that affects the

behavior of this service. Enriching the Web service behavior by certain parameters

such as time and AC can be generalized to include any other parameter such as

privacy information, message meaning, etc. Therefore, the message on each transi-

tion in the protocol can include a set of constraints and each constraint can be satis-

CHAPTER 1 INTRODUCTION

5

fied be set of values of its type. In this context, one of our objectives is to provide a

general model for Web service business protocol annotated by message specifica-

tions. Each message specification contains the constraints and the information that

are required of provided by the service. Performing high level analyses between

Web services after enriching their behavior by adding the AC, time, etc., faces a set

of difficulties and challenges.

1.3 Contributions

 In this thesis, we present formal modeling and analysis of Web services behav-

iors. Compatibility and replaceability analyses between the Web services business

protocols are performed. In this context, a set of concepts and techniques for per-

forming compatibility and replaceability analysis between Web services using their

business protocols is provided. These concepts include the formal definitions of the

business protocols, product automat of two protocols, intersection automat of two

protocols, compatibility and replaceability between services using their business

protocols. All of these definitions and approaches are applied on the business pro-

tocols annotated with AC, time, and message specifications. After adding the AC,

time, etc, the definition of the resulted business protocol is a modified form of the

definition that is provided by (Benatallah et al. [19, 20, 18], Ponge et al. [113,

114]).

 Checking the compatibility between Web services with AC faces some chal-

lenges, such as the calculation of the cumulative access control credentials on the

transitions. Therefore, we present an algorithm for calculating the cumulative ac-

cess control credentials on each transition by determining the current and the pre-

vious set of credentials that can be sent by services when it reaches this transition

(Elabd et al. [63]).

 One of the steps of the compatibility and replaceability checking algorithm is

the comparison between the access control policy and the provided credentials. To

accomplish this step correctly, the ACP and the credentials are presented as ontol-

ogy in order to benefit from the flexibility offered by subsumption on concepts

together with the possibility to use ontology alignment in the context of the seman-

tic Web. This contribution enables us to make use of the reasoning power of the

ontology tools to determine the satisfaction between the provided set of credentials

and the ACP.

CHAPTER 1 INTRODUCTION

6

 Modeling Web service with time constraints is one of our major contributions.

Timed Web services can have one clock or more depends on the function of the

service. This thesis provides a set of algorithms for analyzing the business proto-

cols with one clock or set of clocks (i.e., multi-clocks protocols where the clocks

on the time constraints on any transitions are not necessary the clocks of the previ-

ous transitions but any clock for any transitions).

 One of the fundamental challenges before checking the compatibility and re-

placeability between timed business protocols is the removal of the implicit transi-

tion of the timed business protocols without changing the semantics of the proto-

col. We provide two algorithms for removing the implicit transitions from timed

business protocol. One for one clock business protocol and another one of multi

clock time protocols. The conversion process is a complex task and depends on the

implicit transition constraints, the clock resets on it, and if this transition is in-

cluded in a loop or not. For instance, the simplest conversion examples are those

for which implicit transitions do not have a clock reset and the hardest examples

are those for which implicit transitions have an implicit clock, a time constraint

using this clock and are included in a loop. Therefore, we present a general ap-

proach for removing any form of implicit transition without changing the semantics

of the protocol. After removing the implicit transitions, our compatibility and re-

placeability algorithms can work in a straightforward way.

 After modeling and analyzing Web service with Ac and time, it is important to

generalize the approach to include any type of constraints on the services behav-

iors. Therefore, we presented the analyses of Web service behaviors after annotated

the protocols with what is called �message specification�. Thus, the compatibility

checking algorithm deals with all the types of constraints and each service can find

the most compatible service with it in terms of the required constraints and the

provided values.

 Another major contribution is the selection of Web services for choreography

implementation using the compatibility and replaceability checking approach with

AC (Elabd et al. [64]). In this part, the business protocol models of the Web service

are extended by adding information to the message on each transition about the

service in which this message will sent to or received from. We define and verify

Web service compatibility in order to see if (and how) n services can have interac-

tions based on their protocols. This approach will help the designers to select Web

CHAPTER 1 INTRODUCTION

7

services in an easy way and verify if they can implement the required choreogra-

phy or not by checking the compatibly using our approach.

1.4 Outline of the Thesis

This thesis consists of the following chapters:

Chapter 1: Introduction. This chapter gives a generic view of the thesis by pre-

senting a brief background about the subject of the research, the objectives of it,

and our contributions.

Chapter 2: Web services. This chapter presents the definitions, architecture, se-

mantics, behavior description, and modeling of Web services. The first section

presents the various definitions of the Web services. The second section presents

an overview of the conventional middleware and the service oriented architecture.

The third section discusses the semantic Web and the semantic Web services. Fi-

nally, The Web service behavior description and modeling is discussed.

Chapter 3: Timed Web services. This chapter discusses modeling and analysis of

timed Web services. It starts by giving an overview about timed Web services with

concrete examples. Then, the compatibility and replaceability checking definitions

are explained. This chapter discusses in details modeling one-clock and multi-

clocks timed services. In addition, the problem of the implicit transitions in the

analysis process is presented. The last section lists the related work on modeling

timed Web services.

Chapter 4: Implicit transition removal approach. This chapter presents the con-

version approach of business protocols after removing the implicit transitions with-

out changing the semantics of the business protocols. It is divided to main parts;

the first part shows the separation approach and the second part shows the main

conversion approach.

Chapter 5: Web services access control: This chapter presents a set of Web ser-

vices security concepts and shows the approaches in which these security require-

ments are modeled and analyzed. Firstly, it explores the Web service access control

models. Secondly, an informal scenario and the proposed architecture are ex-

plained. Thirdly, the role of the ontology in the analysis is clarified. Finally, the

related work are listed and discussed.

CHAPTER 1 INTRODUCTION

8

Chapter 6: Web services analysis. This chapter discusses in details the interop-

erability analysis between Web services. It starts by explaining the different defini-

tions of compatibility and replaceability between services in details. These analyses

use the Web services business protocols for presenting the behavior of the services.

The next parts of this chapter provide the Web services analysis after including the

AC and time constraints

Chapter 7: General specification approach. In the previous chapters, we dis-

cussed the modeling and analyzing of Web services interoperability in the presence

of some important parameters such as time and AC. This chapter presents a general

approach in which we can perform our analysis in the presence of many parame-

ters. As much as the number of the parameters increases, the complexity increases

and in some cases will be undicidable. Therefore, this chapter proposes a fined-

grained compatibility checking approach.

Chapter 8: Web Services Choreography: This chapter shows an approach for

selecting the Web services from the Web for implementing choreography for a

complex process using compatibility and replaceability checking with access con-

trol. The verification process of the selected services is presented with the aid of

an informal scenario.

Chapter 9: Conclusion and perspectives: This chapter presents the conclusion of

this work and the proposed future work.

CHAPTER 2 WEB SERVICES

9

Chapter 2 . WEB SERVICES

 Day after day Web services become a good proposer as a standard middleware

between business-to-business applications. This chapter gives an overview of the

Web services and how they can be used as a middleware. It starts by listing the

various definitions of the Web services. Then, the service oriented architecture is

presented. After that, the semantic Web architectures and the semantic Web ser-

vices are discussed. The last two sections in this chapter describe the Web services

behavior description and an overview of the Web services formalization and analy-

sis, respectively.

2.1 Web Service definitions

Since the emergence of Web services, they have many definitions range from the

very generic to the very specific and restrictive. For example, defining Web service

as an application accessible to other applications over the Web is a very generic

definition (see e.g., Alonso et al. [4]). This definition is very open because it in-

cludes all the application that has a Uniform Resource Locator (URL) (e.g., it in-

cludes the Common Gateway Interface (CGI) scripts and all the programs accessi-

ble on the Web with a stable application program interface (API) which are pub-

lished with additional descriptive information on some service directory). Thus,

this definition is not precise enough.

The World Wide Web consortium (W3C, 2002)1 extended the previous definition

by another accepted definition for Web service states that �a software application

or component that can be accessed over the internet using a platform/language-

neutral data interchange format to invoke the service and supply the response,

using a rigorously defined message exchange pattern, and producing a result that

is sufficiently well-defined to be processed by a software application.�

1 http://www.w3.org/2002/ws/arch/2/wd-wsawg-reqs-03042002

CHAPTER 2 WEB SERVICES

10

A more precise definition concentrates on the technical details of the Web service

is provided by the (W3C, 2004)2, specifically the group involved in the Web Ser-

vice Architecture group: �A Web service is a software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically, the Web service descrip-

tion language WSDL (Christensen et al. [48]). Other systems interact with the Web

service in a manner prescribed by its description using SOAP3 messages, typically

conveyed using the Hypertext Transfer Protocol (HTTP) with an XML4 serializa-

tion in conjunction with other Web-related standards� (McCabe et al. [98]).

The previous W3C definition is a very precise definition because it defines the

Web service and shows how it works. It defines the Web services as software ap-

plications that are described using the WSDL and interacts with other services us-

ing the SOAP messages. This definition states that the XML is a part of the solu-

tion.

The Universal Description, Discovery and Integration registry (UDDI) consortium

defined the Web services as �self-contained, modular business applications that

have open, Internet-oriented, standards-based interfaces� (Bellwood et al. [15]).

This is a precise definition and declares the standardization of the application inter-

face as a major requirement. Furthermore, the service should be available over the

Web and can be invoked using its standard interface. But this definition does not

clarify enough what is meant by a modular, self contained business application.

IBM5 presents a more precise definition of the Web service states that� Web ser-

vices are a new breed of Web applications. They are self-contained, self-

describing, modular applications that can be published, located, and invoked

across the Web. Web services perform functions, which can be anything from sim-

ple requests to complicated business processes. Once a Web service is deployed,

other applications (and other Web services) can discover and invoke the deployed

service.� This definition shows the three main operations that could be applied to

the Web services (published, located, and invoked across the Web). But it does not

2 http://www.w3.org/TR/ws-gloss/
3 Simple Object Access Protocol, http://www.w3.org/TR/soap/
4 The Extensible Markup Language (XML) is a W3C Recommendation -
http://www.w3.org/XML/
5 http://www.redbooks.ibm.com/abstracts/sg246292.html

CHAPTER 2 WEB SERVICES

11

mention the standardization technology which is a main characteristic of the Web

services.

There is even more specific definition of Web services. For instance, the definition

on the Webopedia6, �a standardized way of integrating Web-based applications

using the XML, SOAP, WSDL, and UDDI open standards over an Internet protocol

backbone. XML is used to tag the data, SOAP is used to transfer the data, WSDL is

used for describing the services available, and UDDI is used for listing what ser-

vices are available�. This definition concentrates on the Web services standard

technologies and the integration ability which is a main target behind the use of the

Web services.

To conclude, the web services definitions can be categorized into two categories,

the high-level definitions and the technical definitions. In the high-level definitions,

they concentrate on the paradigm of the SOA, the interoperable framework for

message based and loosely-coupled interaction between software components and

the platform independent implementations (see UDDI and IBM definitions). In the

technical definitions, they concentrate on the use of the technologies such as the

XML, SOAP protocols, WSDL for service description, and UDDI for registering

the service (see Webopedia and W3C definitions).

2.2 Service Oriented architecture

The initial propose of the Web was to publish information using Web pages and

this information could be accessed in a reliable and simple way by consumers.

These Web pages are linked with each other and can be easily accessed and

browsed by the users around the world. As a result, the Web is used by the origina-

tions to manage, organize, and distribute their internal data to consumers and part-

ners. During that time period, the initial technologies associated with the Web

were not sufficient enough to implement business-to-customer and e-commerce

solutions. Therefore, additional functionality solutions were developed such as the

SSL (Secure Sockets Layer) protocol that was developed for transmitting private

documentation via the Internet. With the wide use of the Web, the number of cus-

tomers and business partners for real-time information increases. Thus, the organi-

6 http://www.webopedia.com/TERM/W/Web_services.html

CHAPTER 2 WEB SERVICES

12

zations were required to link their heterogeneous, autonomous and distributed sys-

tems to improve productivity and efficiency. This led to the development and de-

ployment of EAI (Enterprise Application Integration) solutions.

Incompatible and distributed systems were integrated using EAI platforms. The

problem was that many EAI frameworks required costly and proprietary protocols

and formats with technical difficulties when it was needed to integrate internal

systems with external systems running on partner�s computers. To overcome the

problem of integration between internal and external information systems, busi-

ness-to-business (B2B) solutions were developed. Business processes between

organizations were carried out more efficiently using the B2B infrastructures. Most

of B2B solution relied on the use of the XML as a language to represent data.

There are certain application integration scenarios that are costly when they are

performed by the B2B middleware. For example, two companies can use a central-

ized middleware for the B2B integration. This middleware is controlled by one of

the two companies and use a platform accepted by the two parties (e.g., this plat-

form uses a specific message broker, a specific workflow system, and a specific

name and directory server). Indeed, the centralized middleware hosted by one of

the participating companies or by a third party is not a preferable approach because

of the lack of trust between companies, the autonomy that each company wants to

preserve, and the confidentiality of the business transactions.

The mentioned limitations of the centralized B2B middleware can be overcome by

the using a point-to-point technique where the two parties agrees on using certain

middleware protocol and infrastructure hosts by each one (i.e., there is no third

parties). In practice, the company can integrate with more than one company;

therefore, it requires the use of different middleware platforms. Since there are

many middleware in the company, the cost of the integration between it and other

companies becomes high.

Consequently, organizations realized that their B2B strategies have led the devel-

opment of architectural solutions that often exhibited a tight-coupling among inter-

acting software applications which limited the flexibility and dynamic adaptation

of Information Technology (IT) systems.

CHAPTER 2 WEB SERVICES

13

The Web paved the way toward facilitating application integration and brought set

of standard such as standard interaction protocols (HTTP) and data formats (XML)

that were adapted by many companies. Therefore, the Web presents the idea of

common middleware infrastructures that reduce the heterogeneity among interfaces

and systems.

As a result, Web services are nominated to overcome the limitations of the busi-

ness-to-business integration conventional middleware. Nowadays, most enterprises

use Web services as a framework for facilitating application-to-application interac-

tion within and across them. There are three main aspects of Web service that push

toward resolving the limitations of conventional middleware: service-oriented ar-

chitectures, redesign of middleware protocols, and the standardization. Table 2-1

summarize the evolution of information systems integration with the new tech-

nologies.

Table 2-1: The evolution of information systems integration.

Architecture Integration Technology

Web Publish information Html

B2C Perform transactions SSL

EAI Integrate internally Propriety protocols

B2B Integrate externally XML

SOA Universal integration Web services

Web services technology is emerging as main pillar of service-oriented architec-

tures (SOA) (Papazoglou et al. [110]). This technology facilitates application inte-

gration by enabling programmatic access to applications through standard XML-

based languages and protocols. The service-oriented architectures (SOA) address

the requirements of the loosely coupled distributed information systems. An SOA

approach solves many problems between the distributed enterprises information

systems such as application integration, transaction management, and security poli-

cies (Alonso et al. [4]). Therefore, Web services in SOA can be shared and reused

(Kreger [91]). These facilities make the Web services indispensable for applica-

CHAPTER 2 WEB SERVICES

14

tions in the same enterprise or in different enterprises (Arsanjani [8]). In the SOA,

the services are presented as self-contained software modules. These services are

described using a standard Web service description language and provide a busi-

ness functionality. Web services use set of standards such as the WSDL, SOAP,

and UDDI. The main objective of a service in an SOA is to represent a reusable

unit of business-complete work. The service in the SOA is self-contained (i.e., the

service maintains its own state), platform independent (i.e., the service interface is

not constructed to work on a specific platform), and can be located, invoked and

(re-) combined (Papazoglou et al. [110]). Web services designers and developers

create autonomous and independent Web services which are different from the

exciting software integration solution such as the Common Object Request Broker

Architecture (CORBA) which develops the interacted component with the same

team.

 The Web service is characterized by its interface and its implementation. The ser-

vice interface is the part of the service which is seen by other services and contains

the invoke information. The service implementation performs the function of the

service and the service implementation is not shown to the other services. There-

fore, the services that are collected for business processes are independent of the

platform. The invocation information is always available for internal invocation or

external invocation.

The service requester and the service provider communicated using messages for-

matted according to the simple object access protocol (SOAP). The procedure

starts with a request from the service consumer by sending a SOAP message to the

service provider. This message can be carried using the internet transport protocols

such as the hypertext transfer protocol (HTTP) and the Simple Mail Transfer Pro-

tocol (SMTP). On the service provider side, the SOAP message is received by a

SOAP listener that extracts the body of the message, transforms the XML message

into native protocol, and delegate the request to the actual business process within

an enterprise. The implementation of the service can be hosted within a Web ser-

vices container (Dhesiaseenlan et al. [60]). The service containers help in the in-

vocation, location, routing, and management of the services. After the execution of

the service, the service provider sends back his response to the service requester in

the form of the SOAP envelope containing the XML message.

CHAPTER 2 WEB SERVICES

15

Figure 2-1 shows an SOA and an SOA request-response pattern where the services

registry (e.g., UDDI) services as intermediary that is interposed between service

requesters and service providers. The service providers publish the definitions of

the service they offer using the WSDL and the service requester find this informa-

tion by search the registry.

Figure 2-2 shows the web service stack in which the first layer is the transports

that uses the standard HTTP protocol. This stack shows that the web services use

the XML as a standard message format and as a metadata description format. It

shows also that the SOAP message should be secure, reliable, and transacted.

Figure 2-1: An SOA and an SOA Request-Response pattern with a service registry.

Figure 2-2: Web service Stack

CHAPTER 2 WEB SERVICES

16

Web service specifications are referred to as �WS-*� (Motahari et al. [105]). There

is a long list of �WS-*� specification such as WS-Addressing, WS-Security, WS-

Notification, WS-Transfer, WS-Eventing, and WS-Enumeration. Some of these

specifications are not necessary, because of the probable overlap and inconsisten-

cies among competing specifications that address the same functional areas (Vi-

noski [140]). For example, the WS-Eventing specification that is published by a

group included Microsoft that aims to support event-based Web services has an

overlap with the WS-Notification that is published by a group included IBM in the

conceptual level but different on the detailed level (Vinoski [139, 138]).

The protocols which are used in the conventional middleware and works with cen-

tral transaction coordinator, such as the Two-Phase Commit (2PC) protocol, are not

able to work with peer-to-peer fashion. Therefore, the function that is achieved by

these protocols in the centralized platform must be achieved by new protocol works

in a decentralized setting and across trust domain (Alonso et al. [4]). Standardiza-

tion in terms of the interface definition language and interaction protocols is the

key towards the adaptation of Web services as a promising integrating solution

between heterogeneous information systems applications.

2.3 Semantic Web

Nowadays, there are a lot of research efforts with the objective of adding more

meaning to Web content in order to have what is called semantic Web (Fensel et al.

[66]). Tim Berners-Lee et al. stated that � The semantic Web is not a separate Web

but an extension of the current one, in which information is given well-defined

meaning, better enabling computers and people to work in cooperation� [28].

The semantic Web architecture consists of a series of standards organized into a

certain structure express the interrelationships between these standards. The first

diagram for the semantic Web architecture was presented by (Tim Berners-Lee et

al. [28]). Figure 2-3 illustrates the different versions of the semantic Web reference

architecture (V1-V4) proposed by (Berners-Lee et al. [25, 26, 27, 24], Gerber et al.

[75]).

CHAPTER 2 WEB SERVICES

17

Unicode

Logic

Ontology vocabulary

XML + NS+ xmlschema

Proof

URI

Trust

RDF +rfdschema

Self

description

document

Data

Data

Rules

D
ig

it
a

l
S

ig
n

a
tu

re

URI

Ontology

RDF Schema

Namespaces

Rules

Unicode

Logic

framwork

RDF M&S

S
ig

n
a
tu

re

XML

Proof

Trust

E
n
c
ry

p
ti
o
n

URI

DLP bit of OWL/Rul

RDF Schema

Namespaces

Rules

Unicode

Logic

framwork

RDF Core

S
ig

n
a
tu

re

XML

Proof

Trust

E
n
c
ry

p
ti
o
n

OWL

S
p

a
rQ

L

URI

Ontology:

OWL

RDF-S

Rules:

RIF

Unicode

Unifying Logic

Data interchange RDF

XML

Proof

Trust

C
ry

p
toQuery:

SparQL

Version V1 Version V2

Version V3 Version V4

Figure 2-3: The four versions of the semantic Web reference architecture (V1-V4)

proposed by Berners-Lee [25, 26, 27, 24, 75]

2.4 Semantic Web services

Several researchers have recognized that Web service standards lack of semantics

(Cardoso [45]). Semantic description allows better performance in automatic service

discovery, composition, invocation and monitoring. Business applications whose

functionality is semantically described can be found and integrated more easily than

those without semantic descriptions. This presents opportunities for semantic Web

services in integrating enterprise systems.

Semantic Web services are Web services whose properties, capabilities, interfaces,

and effects are encoded in an unambiguous and machine-interpretable form (Mcil-

raith et al. [99]). The lifecycle of Web services can be divided to modeling, build-

time and deployment, and run-time. Semantics have an important role in the com-

CHAPTER 2 WEB SERVICES

18

plete lifecycle of Web services (Sheth et al. [125]). For example, in the modeling

phase, the Web service can be annotated by some information to explain the goal

of the service by the service provider. The terms which are used in the description

will be taken from a semantic model. After publishing the service in a registry, the

service requester can search for a service using terms from the semantic model and

reasoning techniques. As a result and due to the semantic model, there is an agree-

ment on the meaning and there will be less ambiguity in the intended semantics of

the provider.

Semantics Web service paves the way towards the automatic discovery of the Web

service. This automatic discovery involves finding a service that matches a given

set of functional and nonfunctional requirements in a repository of services. This

match includes the syntactic and/or semantic matching. There are four scenarios

after checking the matching between two services in terms of their syntax and se-

mantics. The first scenario, the two services are fully matched because they are

similar in their syntax and semantics. The second scenario, the two services are

poorly matched because they are similar in their syntax and different in their se-

mantics. The third scenario, the two services are poorly matched because they are

similar in their semantics and different in their syntax. The fourth scenario, the two

services are not matching because they are different in their semantics and syntax.

Semantics could help in the service invocation by providing a more detailed level

of matching to identify the actual interface mappings. For example, if there is a

service A that takes a �UPC code� as input and this service is matched semantically

with another service B that provides �SKU code�. However, there are differences

in the syntactic representation of these two codes (e.g., UPC may be a 14 digit code

while SKU is a 12 digit code). These differences information could be provided to

the service B before invocation to perform the conversion process itself or using

another conversion service. These types of information can be derived from a se-

mantic model and mappings can be generated and stored to facilitate invocation.

Many business domains require composing multiple services to deliver new func-

tionality. The semantics Web service is important in the composition process be-

cause it determines whether this composition gives the intended functionality or

not by checking the non functional aspects of the composed services. The select

and compose of services is based on the syntax and the semantic description of the

CHAPTER 2 WEB SERVICES

19

requirements and capabilities of the services. There are a lot of work is done to

compose Web services based on nonfunctional properties by modeling the quality

of service properties as constraints in mathematical programming (Zeng et al.

[144]; Agarwal et al. [3]).

In the run time phase of web service lifecycle, semantics is important in situations

that require automatic service discovery and binding to find suitable substitutable

services in case of Web service failure. Web processes or complex Web services in

the distributed interacting systems are modeled using the Finite State Machine

(FSM) (Arthur Gill [76]) and its variants such as Petri nets (Wolfgang Reisig

[118]), process algebra (Wan Fokkink [68]), situation calculus (Levesque et al.

[94]) and Pi Calculus (Davide Sangiorgi [124]). The semantic Web services repre-

sentation languages includes the languages for formal representations of ontologies

(e.g., the description logics (Baader et al. [9]), frame logics (Kifer et al. [90]) and

logic programming (Baral et al. [14])).

To summarize, finding and integration between business applications whose func-

tionality is semantically described are more easily than those without semantic

descriptions. This presents opportunities for semantic Web services in integrating

enterprise systems. Therefore, augmenting the Web service description with non-

functional properties such as the access control policy requirements is a contribution

towards semantic Web services.

2.5 Web service behavior description

There is a set of standards that are used in the Web services description. The first

standard is the XML which is adopted and commonly accepted as a standard com-

mon based language because its syntax is flexible enough to enable the definition

of service description languages and protocols. The second standard is the Web

services description language which is used for describing the Web services inter-

faces. WSDL is an XML vocabulary. It allows service authors to provide the essen-

tial information about the service so that others can use it. A WSDL document can

be divided into two parts: a reusable abstract part and a concrete part. The abstract

part of WSDL describes the operational behavior of Web services by describing the

messages that go in and out of services. The concrete part of WSDL describes how

and where to access the service implementation. The description of the semantic of

CHAPTER 2 WEB SERVICES

20

the service is not included in the WSDL document because it provides the syntactic

or structural term for the messages that go in and come out from a service. It does

not provide information on what the semantics of that exchange are.

 Simple interface description is not always enough in Web services interaction. The

only type of services where the interface description is sufficient is the Web ser-

vices that offer only one operation. In this type of Web services, the service is in-

voked once and the consumer gets the result in one step (i.e., he/she sends a request

and gets a response). But, this is not always the case of Web services. Most of Web

services offer a set of operations that consumers must invoke in a certain order to

achieve their functions. Such exchanges between the consumers and the Web ser-

vices are called conversations. Therefore, there is a need for describing the behav-

ior of the Web service by providing the set of message exchange between the Web

service and the consumer with the order of sending or receiving of these messages.

This set of message exchange rules is specified by the business protocol supported

by the service. This protocol model is presented using state chart which is a suit-

able model for describing behaviors.

Figure 2-4 shows an example of a business protocol of an authentication Web ser-

vice based on a specific identification card. In this model, states represent the vari-

ous stages that a service may go through while transitions are triggered when a

message is received or sent (e.g., examples of states include Start, Fail, Identifica-

tion, and WaitID and examples of messages include Opensession, IDrequest,

WaitID, and IDchecking). The positive polarity indicates that the message is an

incoming message and the negative polarity indicates that the message is an outgo-

ing message. There is a unique initial state (e.g., Start) and one or more final states

(e.g., Access and Fail).

Figure 2-4: Authentication Web service business protocol.

CHAPTER 2 WEB SERVICES

21

Indeed, the complete description of the service includes not only its interface but

also the business protocols that the Web service supports. There is a set of lan-

guages that can be used for defining business protocols such as Web Services Con-

versation Language (WSCL) (Banerji et al. [13]) and Business Process Execution

Language for Web services (BPEL) (Alves et al. [6]).

Description can also include non-functional properties of the service such as Qual-

ity of Service (QoS) (i.e., network performance and reliability characteristics), cost

of service, and Service Level Agreements (SLA). This information is important for

the consumer in helping him to take the decision of using the Web service or not.

This information includes the cost of service, the quality of service, and a textual

description of the service. Constraints over the service behavior are considered as

non-functional descriptions (Fensel et al. [49]). For example, in a hotel booking

Web service, invoking its functionality (booking a room in a hotel) might be con-

strained by using a secure connection (security as non-functional property) or by

actually performing the invocation of the services in a certain point in time (tempo-

ral availability as non-functional property). The non-functional properties can be

used in the discovery, selection and substitution of services. Non-functional proper-

ties suffer from the lack of support in terms of the languages, methodologies, and

tools due to various factors (Rosa et al. [120]; Christopher Van et al. [133]). These

factors include the complexity of modeling and the difficulty of formalization of

the non-functional properties. In addition, the non-functional properties are always

presented informally in an abstract way and sometimes conflicts and compete with

each others. Therefore, modeling Web services description with non-functional

properties become a fundamental challenge in service oriented architecture espe-

cially in a real business setting.

In Web services, such information can be attached to the description of a service by

using the repositories that the Web service publishes their services in it such as the

UDDI. This information is registered with the service providers and queried by the

consumers. Consumers could search for a service (Service discovery) during de-

sign-time, by browsing the directory and identifying the most relevant services, and

at run-time, using dynamic binding techniques.

In this thesis, we concentrate on the Web service access control policy and time

constraints as a part of the non-functional service description. After studying the

CHAPTER 2 WEB SERVICES

22

influence of including the AC and the time, a general approach is presented to

show the effect of including other parameter in the service description. Therefore,

we will study the business protocol of the Web service after including the AC and

the time.

2.6 Web service formalization and analy-

sis

The need for formal methods and software tools for automatically analyzing ser-

vice descriptions is widely recognized, and many approaches have been developed

to this end. Formalisms allow us to reason with the constructed models, analyzing,

and verifying some properties of interest of the described systems. There are three

common model families. The first family is the activity based models which are

used for representing systems in an executable form (e.g. workflow management

systems (Van der Aalst [134])). The second family is the rule-based models (Forgy

et al. [69, 70]) which define behaviour through a set of rules. The third family is

the state-based models which mainly used for describing behavioral abstractions of

a system. For instance, the UML models family (Rumbaugh et al. [121]).

Because state-based model is commonly used to model the behaviour of systems,

due to the fact that it is simple and intuitive, we choose it in our model. Activity-

based models are more suitable for creating executable models. Finally, rule-based

models are a natural fit for complex decision-making systems where the logic must

be frequently updated (e.g., by business analysts, accountants, etc.). They are how-

ever less suitable for describing behavior. Timed automata (Alur et al. [5]) are well

known formalisms for real-time systems and there are some well-known tools sup-

porting them as UPPAAL (Larsen et al. [92]). Therefore, it can be used for describ-

ing and analyzing the behavior of Web services, specifically those including time

restrictions.

Various Web services models have been proposed for capturing different types of

abstractions. For instance, (Dirk et al. [32]) define protocol interface formalism for

services which is similar to the timed model proposed by (Berardi et al. [23]) but

without time aspects. Bultan et al. [40] present a modelling for Web services inter-

actions and present further discussion in [72, 42]. They present formalism for

CHAPTER 2 WEB SERVICES

23

specification and verification of electronic services for composition purposes. The

set of services (peers) used in the model to present the different parts of the compo-

sition service.

Web services choreography and multi-party protocols formalism have been studied

also. For instance, Qiu et al. [116] propose a language for Web services choreo-

graphies called Chor as a simplification of the Web services choreography de-

scription language (WS-CDL) (Ritzinger et al. [87]) (the reference specification for

choreographies). Kang et al. [86] presents some tools enable WS-CDL for facilitat-

ing development of SOA systems. BPEL also offers abstract process for describing

the externally observable behavior of a service composition. Van der Aalst et al.

[136, 135] present YAWL, a general-purpose workflow language that has support

for Web services. Papazoglou M. et al. [96] have done some work on the formal-

ization of multi-party protocols with temporal constraints for service networks.

Some work consider timing abstractions have been done by Kazhamiakin et al.

[88] which mainly reuses well-known timed automata model-checking techniques

in service-based compositions.

Nowadays, databases provide the backbone for a wide range of electronic com-

merce applications. Modeling database-driven systems are based on extending the

classical model checking to infinite-state systems. There is some research works

show that the data is the source of infinity. For instance, petri nets with data associ-

ated to tokens (Lazic et al. [93]), rewriting systems with data (Bouajjani et al. [35,

36]), automata and logics over infinite alphabets (Bouyer et al. [38, 37], [104],

Demri et al. [57], Jurdzinski et al. [84], Bojanczyk et al. [33], Bouajjani et al. [36]),

and temporal logics manipulating data (Demri et al. [57], [58]).

There are some modeling approaches model and verify the data which are stored in

the database and can be used during the running of the business process in its

model. Relational transducer is an example of these modeling approaches (Abite-

boul et al. [1, 2]). They specified business models as relational transducers that

map sequences of input relations into sequences of output relations. They present a

restricted model, called a Semi Positive Cumulative State (SPOCUS) transducer.

Their work addresses three main issues, temporal properties verification, log vali-

dation, and the comparison between two relational transducers. This relational

transducer model has the ability to keep the history of the events in the system too.

CHAPTER 2 WEB SERVICES

24

This modeling approach can be used in cases where the historical data that is pro-

vided during the interaction is needed to be known in each state of the service. One

example of these data is the ACP and the credentials that can be provided during

the interaction. They defined the compatibility between two business process that

there exists a run which achieves some desired goals while satisfying both business

models. For unrestricted relational transducers, problem such as the compatibility

is undecidable (Abiteboul et al. [2]). However, the restricted use of data and the

particular properties verified have limited applicability to database-driven systems.

In particular, model checking Linear Temporal Logic (LTL) properties in the pres-

ence of data quickly becomes undecidable (Vianu [137]).

Spielmann [128] presents the business model as abstract state machine (ASM)

relational properties and perform the temporal properties verification, Log valida-

tion, and the comparison between two relational transducers. He proves that these

problems are decidable under some restrictions. If one of these restrictions is satis-

fied then the problem is decidable. These restrictions are

• All (static) database relations of a relational transducer are known

• The maximal input flow which a relational transducer is exposed to be a priori

limited

Deutsch et al. [59] extended the ASM transducer with two features: (i) the ability

to constrain inputs by a First Order (FO) formula, and (ii) allowing access to previ-

ous user inputs. They call the new transducer ASM+
.

To summarize, modelling and analyzing Web service behaviour is an important

issue specially after enriching the description of the service by including the AC

and time parameters. Thus, in the next chapter we present our contributions with

respect to the study of the Web service business protocols and the compatibility

and replaceability analysis after including a set of parameters.

CHAPTER 3 TIMED WEB SERVICES

25

Chapter 3 . TIMED WEB SERVICES

This chapter discusses modeling and analysis of timed Web services. It starts by

giving an overview about timed Web services with concrete examples. Then, the

compatibility and replaceability checking definitions are explained. This chapter

discusses in details modeling one-clock and multi-clocks timed services. In addi-

tion, the problem of the implicit transitions in the analysis process is presented. The

last section lists the related work on modeling timed Web services.

3.1 Timed Web services

For many real business processes temporal restrictions are essential. Temporal

constraints on Web services appear in many situations such as time-out for receiv-

ing a message from the consumer or performing an operation. For instance, some

Web services are made up of sessions having an associated time-out, as those that

allow a user to check her/his bank account or to participate in an online auction

(i.e., if an operation does not take place on a given time interval then its execution

on a further time can be insignificant). Therefore, incorporating time in Web ser-

vices that implement these business processes became a necessity. These time con-

straints specification should be included in the Web services description in order to

allow the consumer to check if he can correctly interact with theses services or not.

Modeling timed Web services is a major step towards their automated analysis. It

eases the integration process by checking the interoperability properties between

timed services. Web service behaviors can be modeled by business protocols rep-

resenting the possible sequences of message exchanges.

Figure 3-1 shows an example of a business protocol of books selling Web service

that has time constraints. The service starts by receiving a login message

(Login(+)), then a message contains the selected product (ChoosePRO(+)) from

the consumer. The first time constraint is appeared on the transition between the

state S3 and S5 (T2=5 min) which means that the consumer must get the price be-

fore five minutes after his/her selection of the book, otherwise he/her can cancel

the selected book (Cancel(+)) and login again. If the consumer received the price

message before the five minutes, then he/she will send a delivery request (Deliv-

eryREQ(+)). The confirmation of the delivery message will be sent to the con-

CHAPTER 3 TIMED WEB SERVICES

26

sumer based on the type of the delivery. If the consumer chooses the DHL, then the

confirmation message must be send to him/her before three days (DHL(-), T5 < 3

days) and if it is Normal, he/she will receive the confirmation message before five

days (Normal(-), T5 <5 days). Otherwise, if six days pass before receiving the

product, then the consumer can send failure message to renew the delivery request.

After the consumer got the confirmation delivery message, he will send another

confirmation message (confirm(+)) to the Web service.

Figure 3-1: A Timed business protocol of book selling Web service.

There are two types of transitions in timed business protocols, explicit transition

which expresses the change of the service from one state to another state according

to an interaction with it by sending or receiving a message (e.g., the transition be-

tween the states S1 and S2 that has the Login(+) message), and implicit transition

which is triggered by timeout and expresses the change from one state to another

without an interacting action with the service (i.e., there is no message sent or re-

ceived, e.g., the transition between the states S3 and S5 with the time constraint

T2=5 min). Based on this definition of the explicit transition, the messages are

presented with the explicit transitions only, and the implicit transitions are attached

with time constraints. Time in this model is presented by clocks in which each

clock is related to a transition. The number of clocks is based on the number of

transitions which are used in time constraints by checking its time of triggering.

CHAPTER 3 TIMED WEB SERVICES

27

For instance, the clock T2 is related to the transition between the states S2 and S3,

and reset when this transition is triggered. The implicit transition between the states

S3 and S5 has the constraint T2=5 min, which means that this transition must be

triggered when the value of the clock T2 equals to five minutes after the service

entering into the state S3. There is another type of time constraints on the explicit

transition which restrict the triggering of the transition to a specific time windows.

For instance, the time constraint (T5 < 3 days or T8 <3 days) on the transition be-

tween the states S7 and S9 means that the DHL(-) message can be sent only in the

time interval from zero to three days after the triggering of the transitions between

the states S4 and S7 or the transition between the states S8 and S7 respectively.

3.2 Compatibility and replaceability

Compatibility and replaceability analysis have been discussed in some recent

works [19, 20, 114, 34]. Bordeaux et al. in [34] present three different definitions

for compatibility: (a) two services A and B are compatible if they have opposite

behaviors; (b) two Web services are compatible if they do not have unspecified

reception, and (c) two services are compatible if there is at least one execution

leading to a pair of final states. There is a drawback in the first and in the second

definitions, that is they do not check whether the interaction will reach a final state

or not. The drawback of the third definition is that one execution does not guaran-

tee an error free interaction. The source of these errors is the incompatible possible

paths of the interacted service. In other words, during the interaction between two

services, we do not know which paths will be taken, the paths that produce errors

of the paths that do not make errors). The reason of the incompatibility in theses

paths is the messages which have unspecified reception. Therefore, we present a

new definition of compatibility (Elabd et al., [63]) by merging the second and the

third definition of Bordeaux et al. [34]. In our definition, two services are compati-

ble if and only if any potential message sent from one service can be received by

the other service during their interaction and vice versa, and any reachable state is

not in a deadlock, i.e., there is at least one execution leading to a pair of final states.

Based on this definition, if two protocols are compatible, we guarantee that no

error can happen during the interaction.

 A model for business protocols and a framework for protocol-based analysis had

been presented by Benatallah et al. [19, 20, 114]. This model captures all the con-

versations that are supported by a service. They studied the compatibility and re-

CHAPTER 3 TIMED WEB SERVICES

28

placeability issues. According to their definitions of compatibility, a Web service

(ws1) with a business protocol P1 is fully compatible with a Web service (ws2)

with a protocol P2, if all the executions of P1 can interoperate with P2 and if only

some of the executions of P1 can interoperate with P2, then ws1is said to be par-

tially compatible with ws2. The drawback of full compatibility is that one of the

two protocols (e.g., P1) accepts all the execution of the other protocol (e.g., P2) but

protocol P2 may not accept all the executions of protocol P1 and this produces

errors during the interaction.

Example 3.1: Figure 3-2 shows an example of two business protocols P1 and P2.

The compatibility checking using the definitions of Benatallah et al. [16, 19, 20,

114] shows that the Web service (ws1) presented by the protocol P1 is fully com-

patible with the Web service (ws2) presented by the protocol P2 because all the

conversation that can be established by the service ws1 can be understood by the

service ws2 but the service ws2 is partially compatible with ws1 because there is at

least one conversation can be established. Based on our definition of compatibility,

we say that the two protocols are not compatible because the protocol P2 shows

that there is a potential message CloseSession(-) that can be sent by the service ws2

and the protocol P1 shows that the other service ws1 will not able to receive this

message when the two services are in the state s�2 and s2 respectively. As shown in

Figure 3-2 , there is also time constraints on each protocol (X1[0,10]א in transition

between the states s1 and s2 in P1 and X1[0,5]א in transition between the states s�1

and s�2 in P2). The time interval values of the two constraints implies that the time

interval of the sent message IDrequest(-) is included in the time interval of the

received message, and as a result, there is a satisfaction in terms of time constraints

because the allowed time period for the sent message is included in the allowed

time period of the received message.

CHAPTER 3 TIMED WEB SERVICES

29

Figure 3-2:Two business protocols incompatible based on our compatibility

definition and fully compatible based on the definition of Benatallah et al. [16, 19,

20, 114].

Figure 3-3: Authentication Web service business protocol with implicit transition

on a loop and time constraint checking the implicit clock.

Figure 3-4: Business protocol without implicit transition.

CHAPTER 3 TIMED WEB SERVICES

30

3.3 Implicit transition issue

Example 3.1 shows that if the time constraints are presented explicitly on the tran-

sitions using time intervals, we can directly determine the satisfaction between the

corresponding transitions based on the direct comparison between the two time

intervals. But, there are some cases where time constraint on the explicit transitions

is not presented explicitly. For example in Figure 3-3, we can extract that the time

constraint on the enable-disable(-) message between the state s3 and s5 is (X1א

 This constraint is not explicitly presented on the transition but it .(]0,1]אX3 ש]0,1]

is extracted from the constraint on the implicit transition. Therefore, there are two

ways to deal with implicit transitions during the compatibility and replaceability

analysis. The first way is to use well known modeling tools such as the Timed

Automata (Alur and Dill [5]) and the second way is to remove these implicit transi-

tions. In the second solution, the protocol is reconstructed with only explicit transi-

tions annotated explicitly with the time constraints which present the semantics of

the removed implicit transitions.

Timed Automata are simple, powerful, and a widely known formalism. Therefore,

it can be used to capture a large class of Web services by implementing the busi-

ness protocols of these services. The main problem of using timed automata to

implement business protocols of Web services is implicit transitions. This is be-

cause this type of transitions has no equivalent transitions in the context of the

timed automata with the same semantics. The semantics of the epsilon transition on

the timed automata (silent transition) is different from the semantics of the implicit

transition on the business protocol. Ponge et al. [114] use the epsilon transition of

timed automata for representing the implicit transition and modify its semantics

with some additional time constraints. They convert the business protocol to timed

protocol automata to be used in the compatibility checking analysis based on the

CHAPTER 3 TIMED WEB SERVICES

31

language inclusion between the two protocols. For instance, if the conversations

that are presented by one protocol can be understood from the other protocol, then

they are fully compatible. This approach cannot be used in our analysis, for two

reasons. First, our definitions of compatibility and replaceability checking are

based on the error free interaction which is different from the previous definition

which is based on the language inclusion (as shown in example 3.1). Second, their

conversion technique does not work with a wide range of Web services business

protocols. For example, the protocol which has a loop and one of the transitions of

the loop is an implicit transition with time constraint. Furthermore, the implicit

transition on the loop has a clock reset and the time constraint on the implicit tran-

sition checks this clock (e.g., the implicit transition on Figure 3-3 has a clock reset

x3 and this clock is checked in its time constraint(x1=1 ש x3=1)).

The other way of dealing with the implicit transition is to remove it and preserve

the semantics of the protocol. The idea is to replace this transition, which is based

on time constraints related to explicit transitions, by time constraints reflecting its

effect on the semantics of the protocol on the explicit transitions. Figure 3-3 and

Figure 3-4 show two business protocols in which the first one has an implicit tran-

sition and the other not. As shown in example 3.1, compatibility checking in terms

of time constraints is based on the direct comparison between the two time con-

straints on each transition. But due to the implicit transition, there are some situa-

tions where the time constraint on each explicit transition is not explicitly anno-

tated. Therefore, during the checking process, for each explicit transition, we have

to calculate the time constraints which are deduced from the presence of implicit

transitions. As a result, the compatibility checking between the two protocols, in

Figure 3-3 and Figure 3-4, in this form is a very hard task because of the overhead

calculation of time constraint for each explicit transition and the different repre-

sentations of the two protocols. The difficulty in this example can also come from

the constraint on the implicit transition which checks the implicit clock x3. Fur-

thermore, checking the compatibility between the two protocols without the con-

version of the first protocol and using direct comparison for the time constraints,

without calculating the effect of the implicit transition on the explicit ones, shows

CHAPTER 3 TIMED WEB SERVICES

32

that the two protocols are not compatible (which is a false result). But after trans-

forming the first protocol into a new one without implicit transitions, the checking

result shows that the two protocols are compatible (which is the true result).

Timed Web services can have one clock or more depends on the function of the

service. In the one clock Web services, there is only one clock used by the service

and this clock is reset when a transition is triggered. But, multi-clocks Web ser-

vices use a set of clocks and each clock is associated with one of the transitions and

reset when this transition is triggered. Thus, the conversion process is a complex

task and depends on the following parameters

• The Web service uses one clock or multi-clocks

• The implicit transition constraints,

• The clock resets on the implicit transition

• The implicit transition is included in a loop or not.

 For timed Web services that use one clock, the conversion process is not hard. But

in the multi-clocks timed Web service, the simplest conversion examples are those

for which the implicit transitions do not have a clock reset and the hardest exam-

ples are those for which implicit transitions have an implicit clock, a time con-

straint using this clock, and these implicit transitions are included in loops.

Therefore, we first present the timed Web services business protocol that uses one

clock. After that, we present the multi-clock business protocols with a general ap-

proach for removing any form of implicit transition without changing the semantics

of the protocol. This solution deals with multi-clock protocols where the clocks on

the time constraints on any transitions are not necessary the clocks of the previous

transitions but any clock for any transition. After removing the implicit transitions,

compatibility and replaceability algorithms can work in a straightforward way.

3.4 One clock timed business protocols

The time constraints on the Web services that use one clock restrict the sending or

a message to specific time interval values of this clock. These time intervals con-

tain the possible values of the clock that permit the service to send or receive mes-

sages. This clock is reset each time the transition triggers. As a result, the value of

the clock at any time present the time passed since the triggering of last transition.

CHAPTER 3 TIMED WEB SERVICES

33

The problem of the type of one clock Web service is that the time constraints are

only depending on the last previous triggered transition. The definition of the timed

business protocol is based on the definition of Benatallah et al. [19]. This protocol is

deterministic (i.e., all the output transitions from any state are different and there is

no overlapping between the output messages).

Definition 3-1. A One-clock timed business protocol with implicit transitions

(OCTBP) is a 6-tuple P = (S;s0;xg;T;Ti;F) which consists of the following elements:

� S is a finite set of states.

� s0 א S, is the initial state.

� xg is a global clock.

� T ك S 2 × M × { + , - } × Tc, is a finite set of explicit transitions where M is a set

of input/output messages, { + , - } i s t h e polarity of the message where{+}

means input message and {�} means output message. Tc is the time constraint

which is in the form Tc ك (xg × Ɏ × a), or Tc ك (xgא I), where Ɏא

{<;>;<=;>=;=}, I is the set of time intervals in the form I =[a,b[or I=]a,b], and

a,bא Թ ׫ ሼλሽ.

CHAPTER 3 TIMED WEB SERVICES

34

�Ti ك S 2 × Tc, is a set of implicit transitions with time constraints tc {xg=a}.

 � F ك S is the set of final states. If F = ׎ then P is said to be an empty protocol.

�All states in the protocol are accessible and co-accessible.

The timed business protocol is represented as a state chart which consists of a set of

states containing an initial state and one or more of final states and a set of transi-

tions. States represent the various stages that a service may go through while transi-

tions can be implicit transition (i.e. an internal transition of the service from one

state to another without sending or receiving messages) or explicit transition which

are triggered when a message is received or sent. The implicit transitions could be

assigned with time constraints and clock reset only, and the explicit transition could

be assigned with messages, time constraints and clock reset. This protocol is deter-

ministic (i.e. all the outputs transition from any state are different) and does not

contain any cycle constituted with only implicit transitions

An example of one clock Web service business protocol is shown in Figure 3-5.

The clock xg is the clock used by the service which is reset with the triggering of

each transition. The transition between the states S2 and S3 is an implicit transition

with time constraint xg =a, where a is a time value. Based on the semantics of this

time constraint, after the triggering of the transition between the states S1 and S2,

the transition between the states S2 and S4 can be triggered in the time period [0,a[.

Otherwise, the transition between the states S2 and S3 will be triggered and by

consequence the transition between the states S3 and S4 can be triggered. It is clear

in this example that the value of the checked clock is based on the triggering of the

transition between the states S1 and S2.

CHAPTER 3 TIMED WEB SERVICES

35

Figure 3-5: One clock Web service business protocol with implicit transition.

In order to ease the analysis of such protocols, we perform the conversion of im-

plicit transitions to time constraints on explicit transitions. The new business proto-

col is called �one clock explicitly time business protocol�.

Definition 3-2. A one clock explicitly time business protocol (OCETBP) is a 5-

tuple P = (S; s0; xg; T; F) which consists of the following elements:

� S is a finite set of states.

� s0 א S, is the initial state.

� xg is a global clock.

� T ك S 2 × M × { + , - } × Tc, is a finite set of explicit transition where M is set of

input/output messages, { + , - } polarity of the message where { +} means input

message and {� } means output message. Tc is the time constraint which is in the

CHAPTER 3 TIMED WEB SERVICES

36

form (xgא I) where I is the set of time intervals in the form I =[a,b[or I=]a,b],

and a,b א Թ ׫ ሼλሽ..
� This protocol is deterministic (i.e., for each state, all the partial paths from any

state are unique).

� F ك S is a set of final states. If F = ׎ then P is said to be an empty protocol.

� All states in the protocol are accessible and co-accessible

Figure 3-6 shows an example of one clock Web service business protocol without

implicit transitions. This semantics of this protocol is the same as the sementics of

the protocol of Figure 3-5.

Figure 3-6. One clock Web service business protocol without implicit transition

We can perform this conversion using algorithm 3-1.

Algorithm 3-1: Conversion of timed business protocol P with implicit transition to explic-
itly business protocol.

CHAPTER 3 TIMED WEB SERVICES

37

//Updating the explicit transitions which share with an implicit transition the same source

state for each state Si א S

foreach state si א S do

If ׌(si; sj ; t) א Ti where sj א S then

forall (si; sk; ; Ik) א Te where sk אS , mk א M ,0≤ k ≤ n ,n is number of states in

protocol Pr, and m± means that the message either output or input do

 Ik = [0,t[ŀ Ik

 Else

forall (si; sk; ; Ik) א Te where sk אS , mk א M ,0≤ k ≤ n , n is number of states in

protocol P do

 Ik = [0;∞ [ŀ Ik

//Update explicit transitions which have preceding implicit transitions or paths (i.e. there is
an implicit transition or path before the source state of the explicit transition).

while ׌IT(s; s�; t) s.t IT(s"; s; t�) do

CHAPTER 3 TIMED WEB SERVICES

38

Com-

plexity

analy-

sis: Let

n, Li ,

and Le

are the

num-

bers of

states,

the numbers of the implicit transitions, and explicit transition respectively. The

conversion algorithm runs in time O(Le* Li).

Figure 3-7 shows an example of a business protocol with implicit transition and

Figure 3-8 shows its equivalent business protocol without implicit transition. We

explain the idea of the algorithm using these two protocols. It can be noticed from

the time business protocol with implicit transitions that the implicit transitions ef-

fect on the time constraints of two types of explicit transitions.

1- The explicit transitions which gets out from the same state of this implicit

transition. For example, in Figure 3-7 the implicit transition between the

states S1 and S3 has an effect on the explicit transition between the states S1

and S4. As a result, if we delete this implicit transition we have to add his

effect on the explicit transition, in this case the triggering of the transition

between the states (S1 and S4) is restricted by the time constraint xg 0]א,

t1[. The same process will be done for the implicit transition between the

states S4 and S5 with the time constraint xg =t3 which affects on the transi-

tion between the states S4 and S6 and the time constraint will be xg0]א, t3[.

foreach (s0; s"; ; I(x; y)) א Te do

Te = Te ׫ (s0; s"; ; I(x + t; y + t))

 Delete transition IT(s,s�,t)

Return P

CHAPTER 3 TIMED WEB SERVICES

39

2- Any explicit transition has an implicit path before its source states. For ex-

ample, in Figure 3-7:

A) The time constraint xg=t3 on the implicit transition between the states

S4 and S5 has an effect on the transition between the states S5 and S7

because it restricts its triggering to the time constraint xgא[t3,∞[if the

protocol takes the path (S1 ,S4,S5,S7) (i.e., there is an explicit transition

between S4 and S7 with time constraint xgא[t3,∞[).

B) The constraint xg=t2 on the implicit transition between the states S3 and

S4 has an effect on the transition between the states S4 and S6 because it

restrict its triggering to the time constraint xg א[t2,t2+t3[if the protocol

takes the path (S2 ,S3,S4,S6) (i.e., there is an explicit transition between

S3 and S6 with time constraint xgא[t2, t2 + t3[).

C) The constraint xg=t1 on the implicit transition between the states S1 and

S3 and the constraint xg=t2 on the transition between the states S3 and

S4 have an effect on the transition between the states S4 and S6 because

they restrict its triggering to the time constraint xgא[t1+t2, t1+t2 + t3[if

CHAPTER 3 TIMED WEB SERVICES

40

the protocol takes the path (S1 ,S3,S4,S6) (i.e., there is an explicit transi-

tion between S1 and S6 with time constraint xgא[t1+t2, t1+t2 + t3[).

D) The constraint xg=t2 on the implicit transition between the states S3 and

S4 and the constraint xg=t3 on the transition between the states S3 and

S4 have an effect on the transition between the states S4 and S6 because

they restrict its triggering to the time constraint xgא[t2+ t3,∞ [if the

protocol takes the path (S2 ,S3,S4,S5,S7) (i.e., there is an explicit transi-

tion between S3 and S7 with time constraint xgא[t2+ t3,∞ [).

E) The constraint xg=t1 on the implicit transition between the states S1 and

S3 and the constraint xg=t2 on the transition between the states S4 and

S5 have an effect on the transition between the states S5 and S7 because

they restrict its triggering to the time constraint xgא[t1+t2 + t3, ∞ [if the

protocol takes the path (S1 ,S3,S4,S5,S7) (i.e., there is an explicit transi-

tion between S1 and S7 with time constraint xgא[t1+t2 + t3, ∞ [).

CHAPTER 3 TIMED WEB SERVICES

41

Figure 3-7: Business protocol of Web service with implicitly transition.

Figure 3-8: Business protocol of a Web service without implicit transitions.

3.5 Multi-clocks timed protocol modeling

Many times Web services rely on multi-clocks for presenting their temporal con-

straints. Simply, multi-clocks services could assign to any transition a clock that is

reset when this transition is triggered and checked in any time during the interac-

tion with the Web service. This section presents the formal definitions of multi-

clocks timed business protocols and the approaches that are used for the automated

analysis. We will start by defining the static atomic time constraint on the timed

business protocols.

Definition 3-3 (Static atomic time constraint) A static atomic time constraint on a

timed business protocol (TBP) is either xא # a,b # or x=a where:

CHAPTER 3 TIMED WEB SERVICES

42

� x א X and X is a finite set of clocks.

� a, b א Թ are relative real time points.

 {[,]} א # �

The static atomic time constraint is the simplest form of time constraints that can be

annotated on the timed business protocol to restrict the triggering of the transitions

to specific time windows. This constraint can take two formats; the first format is

the time interval format which explicitly presents the time constraint in terms of

time interval which restricts the triggering of the transition to this time interval. For

example, x1 א [1,5[restricts the triggering of the transition to time values from one

to five. The second format is the equality format which restricts the triggering to a

fixed time point. For example, the constraint (x1=5) restricts the triggering of the

transition to time value 5.

Definition 3-4 (Multi-clocks timed business protocol) (MCTBP) multi-clocks

timed business protocol (MCTBP) is a 6-tuple P = (S;s0;X;T;Ti;F) which consists

of the following elements:

� S is a finite set of states

CHAPTER 3 TIMED WEB SERVICES

43

� s0 א S, is the initial state.

� X is a finite set of clocks with a set of clock reset CR א X.

� T ك S 2 × M × { + , - } × Tc × CR, is a finite set of explicit transitions where M is

a set of input/output messages, { + , - } i s t h e polarity of the message where

{+} means input message and {� } means output message. Tc is the time constraint

which is a disjunction of the conjunction of static atomic time constraints.

�Ti ك S 2 × Tc × CR, is a set of implicit transitions with time constraints having at

least one equality for each disjunction.

 � F ك S is the set of final states. If F = ׎ then P is said to be an empty protocol.

�All states in the automata are accessible and co-accessible.

The static atomic time constraint consists of the clocks names and the values for

these clocks that determined the allowed time interval for the triggering of the tran-

sition. This time interval is fixed time interval in each time of the transition trigger-

CHAPTER 3 TIMED WEB SERVICES

44

ing (i.e., each time the transition triggers it will obey to the fixed time values on the

interval). Therefore, we called this constraint static time constraint. There are some

cases where this time constraint interval is not static. This means that each time the

transition is triggered based on a different time constrains interval for the same

clock. We called this type of time constraint �dynamic time constraint�. In the dy-

namic time constraint the values on the time constraint intervals are presented by

variables in addition to constants. The transition that has a dynamic time constraint

is triggered using a different value of the variable in each triggering.

Definition 3-5 (Dynamic atomic time constraint) A dynamic atomic time con-

straint on a transition (t) is DAC ك X × {א} × [k*c+d; k*c�+d�[where c, c�, d, d�

are constants , and k is a variable obeying to the sequence of natural numbers.

An example for a dynamic atomic time constraint is the time constraint (x10]א,k[).

This time constraint means that in the first triggering of the transition the variable k

will be set to one (i.e., k=1) and the constraint becomes (x10,1]א[) and in the sec-

ond triggering the value of k is equal two and the constraint becomes (x10,2]א[)

and in the nth triggering the constraint becomes (x10]א,n[).

CHAPTER 3 TIMED WEB SERVICES

45

Definition 3-6 (Multi-clocks explicitly time business protocol) (MCETBP) An

explicitly time business protocol is a 5-tuple P = (S; s0; X; T; F) which consists of

the following elements:

� S is a finite set of states.

� s0 א S, is the initial state.

� X is a finite set of clocks with a set of clock reset CR א X.

� T ك S 2 × M × { + , - } × Tc × CR × RK, is a finite set of explicit transition

where M is set of input/output messages, { + , - } polarity of the message where {

+} means input message and {� } means output message. Tc is the time constraint

which is a disjunction of the conjunction of static and dynamic atomic time con-

straints. RK is the set of variables to reset, if there is no dynamic variable in the

protocol then this set is always empty.

� This protocol is deterministic (i.e., for each state, all the partial paths from any

state are unique).

� F ك S is a set of final states. If F = ׎ then P is said to be an empty protocol.

� All states in the protocol are accessible and co-accessible.

CHAPTER 3 TIMED WEB SERVICES

46

The previous definition shows that the explicitly timed business protocols do not

have implicit transition and the time constraint can contain dynamic time con-

straints. The RK set on each transition contains the variables that are used in the

dynamic constraints and reset when this transition is triggered.

3.5.1 Timed business protocol semantics

A timed business protocol expresses two types of constraints on the external behav-

ior of a given service. The first type is the conversations that a service supports

which is expressed in terms of sequences of message exchanges. This conversation

constraint can be characterized using the so-called linear time process semantics in

which a process is completely determined from the set of its (partial) observable

runs (or traces). By using this approach, the behavior of a protocol will be charac-

terized in terms of all its observable traces. For example, the sequence of message

exchange Opensession(+).IDrequest(-).IDresponse(+). Enable-disable(-) is al-

lowed by the protocol given in Figure 3-3.

The second type is the timing constraint which is specified when a given message

is enabled to occur inside a conversation. This constraint is characterized by ex-

tending the concept of trace to include timing constraints. A correct execution (or

simply execution) of timed protocol P is a sequence ı=s0 .(m0,t0).s1�sn-1.(mn-1,tn-

1).sn such that: (i)t0 ≤ t1 �≤ tn (ii) s0 is the initial state and sn is a final state of proto-

col P, and (iii) ׊j א[1,n], we have (sj-1,sj,mj-1,tcj-1) where the clock values at the

time tj-1 satisfy the time constraint tcj-1. As an example, the sequence ı�=

start.(login(+),0). Logged. (ReqCard(-),4). CardWait.(İ,54). Failure ACK.Access

denied(-),60).Fail is a correct execution of the protocol depicted at Figure 3-9. If

the execution ı� is a correct execution of protocol P, then the time trace tr(ı�) is

compliant with P. Continuing with the example, the execution ı� leads to the time

trace tr(ı�)=(login(+),0).(ReqCard(-),4).(İ,54).(Accessdenied(-),60). The timed

conversation of a protocol P is obtained by removing from the corresponding time

trace tr(ı) all the non observable events (i.e., all the pairs (mi,ti) with mi=İ). For

example, the timed conversation of the execution ı� is

CHAPTER 3 TIMED WEB SERVICES

47

con(ı�)=(login(+),0).(ReqCard(-),4).(Accessdenied(-),60). Another example of

time conversation is the sequence of timed message exchange: (Opensession(+),

0),(IDrequest(-),1.5), (IDrespose (+),1.8) ,(Enable-Disable(-),1.9) which can be

recognized by the protocol of Figure 3-3. Each term of this timed conversation

consists of the message and its polarity, and the time instance in which the message

occurs. We denote Tr(P) the, possibly infinite, set of timed conversation of P.

Two protocol P1 and P2 are semantically equivalent if Tr(P1)=Tr(P2). If there is a

clock reset when the message is sent or received, then the Clock Reset Value

(CRV) of this clock is equal to the time instance when the transition which has this

message is triggered. For example in Figure 3-3, the transition of the Openses-

sion(+) message has a clock reset x1 and the CRV(x1)=0. The function CRV(x)

determined time in which the clock x is reset during the interaction with the proto-

col. For example, CRV (x)=t� iff clock x has been reset at time t� after the start of

the interaction with the protocol. After resetting a clock x at time t (i.e., CRV(x)=t),

the value of this clock at any time t� after this resetting is equal to the difference

between the time value t� and the time value t represented by the CRV(x). This

difference which presents the clock value can be calculated by the Clock Value

function CVt(x):XåԹ, with x հt-CRV(x) that maps the set X into the set R by

mapping each clock x to its value t-CRV(x) that belongs to Թ. The satisfaction of

the time constraint tc with a clock value, which is calculated by CVt(x):, is referred

to by [tc]CV t(x):. The value of [tc]CVt(x):is true if the value of each clock x at the

time t satisfy the time constraint tc. Output (si) defines all the outgoing transitions

triggered from the state (si) and an Input(si) defines all the incoming transitions to

the state (si).

CHAPTER 3 TIMED WEB SERVICES

48

Figure 3-9: A Web service business protocol P with implicit and explicit transi-

tions.

Definition 3-7 (Implicit path) An implicit path IP (s,t,s�,t�) in a TBP (S; s0; X; T; Ti;

F) where s, sא� S, and t, tא� R, is

 Either an empty path (i.e., s=s� and t=t�),

Or there exist s��, t�� such that (s, t, s��, t��) is an implicit path in TBP and there

exist TC� and CR�, such that

o (s��,s�,TC�,CR�) א Ti , t��<=t�, there is no (s��,s���,TC���,CR���) א Ti , and no

t��<=t���<t� , such that =true.

o = true, x հ t� if x א CR.

The implicit path consists of one or more consecutive implicit transition. Because

of the deterministic property of the business protocol, there is no more than one

implicit transition as an output transition in any state of the protocol. Therefore,

this property is inherited by all paths in the protocols which include implicit paths.

CHAPTER 3 TIMED WEB SERVICES

49

Definition 3-8 (Time conversation of TBP) A time conversation trace (mi,ti)k≤i≤k� is

recognized by TBP (S; s0; X; T; Ti; F) from s,t if

Either

o There exist an implicit path (s,t,,s�,t�) where t�<=ti in TBP

o ׌s��, tc��,CR�� such that (s�,s��,mi, tc��,CR��) א T , where

)(x) =true , x հ ti if x א CR��

o There is no implicit path (s,t,s���,t����) in TBP such that t�<t���<t.

o ((mj,tj)k+1≤j≤k� is recognized by TBP from s��, ti .

Or

k�<k (empty trace) and there exist an implicit path (s,t,CRV,s�,t�, CRV�) in TBP

such that s� א F.

o The time conversation is complete if it starts by the state s0 and ends by sא F

Definition 3-9 (Time conversation of ETBP) A time conversation trace ((mi,ti)l≤i≤l�

is recognized by ETBP (S; s0; X; T; Ti; F) if

CHAPTER 3 TIMED WEB SERVICES

50

o There exist s�, tc�, CR� such that (si,s�,mi, tc�,CR�)א T

o)(x) =true, x հ ti if x א CR�

o ((mj,tj)l+1≤j≤l� is recognized by ETBP from state sj.

o The time conversation is complete if it starts by the state s0 and ends by the state

sא F.

A timed business protocol without implicit transitions (MCETBP) presents two

types of constraints, the sequence of message exchange and the time constraints.

The time constraints in the MCETBP and in MCTBP are presented in a different

manner. Two types of time interval constraints will be presented on the transition.

The first is the static time interval where the clock value is checked by a fixed time

interval with two constant limits (e.g., the time constraint x1א [1,7[checks if the

value of the clock x1 is between the two values one and seven). The second type of

time constraints is the dynamic interval time constraint where at each triggering of

the transition, the time interval constraint is different. The time constraint X1א

{[a,∞[, [a+b,∞[,]a+2*b,∞[,�.} with a=5,b=2 on the transition between the

CHAPTER 3 TIMED WEB SERVICES

51

states S and S� on Figure 3-10 is an example of the dynamic interval time con-

straint. Based on this constraint, the time interval constraint on the transition on the

first triggering is X15] א,∞[, in the second triggering is X17] א,∞[, and so on. This

constraint can be rewritten in another way x1א[a+k*b,∞[with a=5,b=2,and

k={0,1,2,�} where k+1 represent the triggering number (i.e., k=0 is used in the

first triggering). Therefore, the clock x1 will be checked against different time in-

tervals based on the sequences of value of the variable k in each triggering.

Figure 3-10: Business protocol contains dynamic interval time constraint on one of

its transitions.

3.6 Related work
Modeling Web services behavior for automated analysis has gaining a great impor-

tance. Based on the functionality of the Web service, it may contain a time con-

straints or not. For modeling Web service behavior without time aspects one can

refer to Beyer et al. [32], Bultan et al. [41], Bultan et. al. [40, 42], Fu et al. [71,

72], Honda et al. [81], and Gay et al. [73].

 Beyer et al. [32] define protocol interface formalism for services which is similar

to the timed model proposed by Berardi et al. [23] but without time aspects. A lan-

guage for specifying Web service interface is presented. They specified three kinds

of constraints by the interface on the users of the service; signature constraints,

CHAPTER 3 TIMED WEB SERVICES

52

consistency constraints, and protocol constraints. In signature constraints, the

interface specifies the methods that can be called by a client, together with types of

input and output parameters. In consistency constraints, the interface may specify

propositional constraints on method calls and output values that may occur in a

Web service conversation. In protocol constraints, the interface may specify

chronological constraints on the ordering of method calls. They use these interfaces

in checking compatibility and replaceability (substitutability). This work presents

protocol interface formalism supporting programming and modeling language con-

structs which are supported by Web service programming or modeling frameworks

like the .NET framework, or Web Service Choreography Interface (WSCI).

Bultan et al. [41] present a modeling for Web services interaction by specifying the

global behavior of e-services compositions. They present formalism for specifica-

tion and verification of electronic services for composition purposes. They extend

this work by studying the realizability problem [72]. Bultan et. al. [40, 42] present

three modeling formalism for interactions among Web software: 1) Collaboration

diagrams, 2) Message sequence charts, and 3) Conversation protocols and realiza-

bility and synchronizability problems. This work present modeling formalism but

does not define any compatibility and replaceability checking.

Analyzing and verifying properties of composite Web services specified as multi-

ple BPEL processes are performed by X. Fu et al. [71]. The services are specified

using automaton based formalism and the properties that needed to be checked are

expresses using temporal logic (Pnueli [112]). So, they present an approach that

analyzes some given properties in a given composition, whilst we are interested in

the compatibility analysis that can be used to build a composition.

Session types can be effectively used for describing protocols as shown by Honda

et al. [81] and Gay et al. [73]. Vallecillo et al. [132] use session types and theory of

subtyping (Gay and Hole [74]) to formalize compatibility and substitutability of

components. Carbone et al. [44] and Mostrous et al. [102] present formalism,

called global calculus, aims at representing global message flows as structured

communications. Session types offer a high-level abstraction and articulation for

complex communication behaviors presents Web service business protocols. They

show how session types allow the definition of powerful interoperability tests at the

protocol level such as compatibility and substitutability. However, time aspect is

not presented in all the previous work on session types.

CHAPTER 3 TIMED WEB SERVICES

53

Some works concentrate on time as an effective player on systems behaviors. For

instance, Maria et al. [97], Tiplea and Macovei [130], and Bettini et al. [31] studied

time as an important parameter in workflow systems. Maria et al. [97] discussed

the modeling and verification of workflows extended with time constraints. They

used the timed automata as an effective tool to specify workflow schemas with

time constraints and to check their consistency. Tiplea and Macovei [130] studied

the time workflow nets where a time interval is associated to each transition. Bet-

tini et al. [31] model advances temporal features for workflow. They enhance the

capabilities of the workflow systems by specifying and reasoning on temporal con-

straints about the duration and distance among activities that compose these sys-

tems. These constraints restrict the durations of activities using an execution dead-

line or a time window within which the activity must be performed. Furthermore,

workflow system participants can get information by reasoning about the time and

the allowed period in which they may engage in an activity due to the overall tem-

poral constraints.

 Berardi et al. [23], Dyaz et al. [62], and Kazhamiakin et al. [88] studied time in

Web services. Timing issues can be involved in many types of protocols that repre-

sent systems behaviors such as business protocols [19]. Time-related behaviors can

be session timeouts or deadlines with different kinds of behaviors (e.g., visa card

must be provided within n hours, otherwise the service will be cancelled). How-

ever, usual model checking verifications such as liveness, safety, and testing the

absence of deadlocks are performed by most of the approaches which consider time

[23, 62, 88].

Luca de Alfaro et al. [56, 55, 46] have presented rich interface formalisms for

software components whose correct interaction depends on timing, communication

protocols, or resource use. They presented timed interfaces and checked the com-

patibility between them for composition. In their game-based approach, input and

output play dual roles: two components are compatible if there is some input be-

havior such that, for all output behaviors, no incompatibility arises. This game-

based approach is based on software component with explicit transitions (action)

only and cannot handle implicit transitions based on time-out, which is the case in

Web service protocols. Also, they use one clock for each component in their for-

malization which is not always the case in Web services.

Berardi et al. [23] propose a language for representing e-services (electronic ser-

vices) behavior namely Web Service Transition Language (WSTL), taking time

CHAPTER 3 TIMED WEB SERVICES

54

constraints into account. This language integrates with standard language like

WSDL in order to specify e-services. The e-services behavior is represented as

finite state automata. They present time out constraints for input and output mes-

sages. Related to our work, they only present the time constraint concept on the

description of the behavior of e-service. But, they did not make any analysis in

terms of compatibility or replaceability.

Some work that considers timing abstractions has been done by Kazhamiakin et al.

[88]. They mainly reuse well-known timed automata model-checking techniques in

service-based compositions. However, this model does not consider data flow,

external constraints and constraints over counters and more generally constraints

over data. They present straightforward checking for Web service properties.

Moreover, this work does not consider the compatibility and replaceability analy-

sis.

In the same line with the work presented by Fu et al. [71], timed automata are used

to check the timed properties of a given composition by Dïaz et al. [54]. They

translate the descriptions written in WSCI-WSCDL [87] into timed automata. They

deal with the problem of verifying a given composition, whilst we are interested in

the compatibility analysis that can be used to build a composition.

Benatallah et al. [16] present an algorithm for calculating the time windows for

each explicit transition before checking the compatibility. This algorithm works

with simple business protocols which do not have implicit transition on loops with

implicit clock reset or implicit clock on the constraint.

Ponge et al. [114] handle temporal aspects and built their analysis on the definition

of compatibility (full compatibility and partial compatibility) given in [19, 20].

They converted the timed business protocol to a new class of timed automata called

protocol timed automata and defined a set of operators, such as composition, inter-

section, and projection. For instance, to check full compatibility between protocols

P1 and P2, they check if the projection by P1 of the composition between P1 and

P2 is equal to P1 (i.e., if ([P1 COMPOSITION P2] PROJECTION P1) = P1, then

P1 is fully compatible with P2). Guermouche et al. [78] studied the compatibility

checking by considering operations, messages, data associated with messages, and

conditions on data and temporal constraints.

The works reported in [114] and [78] use compatibility checking definitions differ-

ent from our definitions as explained in Section 3.2. Therefore, their way of model-

CHAPTER 3 TIMED WEB SERVICES

55

ing and analysis is not suitable with our approach because we have different defini-

tions based on transition-transition comparison.

To the best of our knowledge, all the mentioned works are not able to check com-

patibility and replaceability between business protocols which have the following

properties using our compatibility and replaceability checking definition: 1) The

implicit transition time constraints are complex 2) The time constraint on the im-

plicit transition contains implicit clocks in it 3)The implicit transition has an im-

plicit clock reset 4) The clock system of the protocol is based on the multi-clock

system where each clock is attached with a clock and this clock is reset when this

transition is triggered. Therefore, there is a need for removing implicit transitions

which is a crucial step towards a complete compatibility and replaceability check-

ing.

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

56

Chapter 4 .IMPLICIT TRANSITION

REMOVAL APPROACH

This chapter presents the conversion approach of business protocols after removing

the implicit transitions without changing the semantics of the business protocols. It

is divided in two main parts; the first part shows the separation approach and the

second part shows the main conversion approach [65].

4.1 Implicit transition constraint separation ap-

proach
The implicit transition is triggered when its time constraint is satisfied. The satis-

faction of its time constraint is achieved by the arrival of one of the clocks on the

constraint to a specified value. This value, which is in the equality condition (e.g.,

x1=2), is a triggering instance for this transition. The constraint on the implicit

transition can have more than one of the triggering instance values (e.g., the time

constraint (x1=2 ש x2=3) on an implicit transition means that this implicit transi-

tion can be triggered when the value of the clock x1 reaches to two or x2 reaches to

three). The implicit transition separation approach is used in the cases where the

implicit transition has more than one triggering instance value. This approach is

needed because we do not compare directly two clocks. It is used for replacing the

implicit transitions which are triggered by a time constraint in the form Tc(ti) =

(i.e., more than one atomic constraint separated by the logical operator

OR , e.g., TC={ x1=2 ש x2=5) to an equivalent n implicit transitions where each

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

57

transition can be triggered by only one atomic constraint of Tc(ti). The semantics of

the business protocol will not be changed after the replacement process. The idea

behind this approach is to get an equivalent protocol in which each implicit transi-

tion can only be triggered by one instance triggering value. In order to accomplish

this task, we have to track the effect of the implicit transition and its exact seman-

tics which can be substituted by the right time constraints. Figure 4-1 shows an

example of two semantically equivalent business protocols (P1 and P1�) and two

semantically nonequivalent business protocols (P2 and P2�). This example indi-

cates the importance of the separation approach as an important step in the ap-

proach of removing the implicit transition. The difference between the protocols P1

and P2 is that the implicit transition constraint between the states S1 and S2 of the

protocol P1 checks only the clock x1 (i.e., there is only one clock instance value

that can triggers this implicit transition) but the implicit transition constraint on the

protocol P2 checks two clocks (x1 and x2). On the protocol P1, the transition be-

tween the states S2 and S3 will be triggered only for all values of x1=>7 and the

transition between S1 and S5 will be triggered for all values of x1<7 if the value of

x1 is less than or equal 7 when the transition c triggers and for all values of x1>7 if

the value of x1 is greater than 7 when the transition c triggers. As a consequence ,

the effect of the implicit transition is to restrict the triggering of the transitions be-

tween the states S2 and S3 to x17]א,∞[and between the states S1 and S5 to

x10,7]א[or x1 א]7,∞ [. Therefore, protocol P1� is semantically equivalent with

protocol P1. On the protocol P2, the transition between the states S2 and S3 will be

triggered for all values of x1=>7 or x2=>5 and the transition between S1 and S5

for all values of x1<7 or x2<5. As a consequence, the effect of the implicit transi-

tion is to restrict the triggering of the transitions between the states S2 and S3 to

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

58

x17]א,∞[in some case and to x25]א,∞[in some cases and between the states S1

and S5 to x10,7]א[in some cases and to x20,5]א[in some cases. But, we cannot

delete the implicit transition on protocol P2 and put the time constraint x1א ש]∞,7]

x2א [5,∞[on the transition between S1 and S3 and the constraint x1א אx2 ש]0,7]
[0,5[on the transition between the states S1 and S5 as shown in the protocol P2�

because there are some time messages words that can be recognized by one of the

two protocol and cannot be recognized by the other protocol. For example, the time

word (d,0). (e,1). (f,3). (c,4). (h,6.5), can be recognized by the protocol P2� be-

cause the value of the clock X1, when the transition between S1 and S5 triggers , is

equal six and five time unit which satisfy the constraint on the transition

(x1ש]0,7]א x20,5]א[) but this word cannot be recognized by the protocol P2 be-

cause the clock X2 reaches to the value five when the time reaches six (i.e., x1=6)

and the implicit transition will be triggered and the transition between S1 and S5

will not be triggered after t=6 in this time word. Therefore, protocol P2 and P2� are

semantically nonequivalent and there is a need for a separation approach to make

the implicit transition triggers based on one clock time instance value.

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

59

Figure 4-1: Two semantically equivalent protocols (P1 and P1�) and two semanti-

cally nonequivalent protocols (P2 and P2�).

Definition 4-1 (Path) A path between two states si and sj in a TBP is defined as

PA(si, sj)=(si,mi,si+1,�,mj-1,sj) where si,..,sjא S and mi,..,mjא M. If si=sj (i.e., Path(si,

sj)=(s1,m1,s2,�sn ,mn,s1)) then this path is in a loop form.

Definition 4-2 (Path-Loop-Path (PLP)) A path-loop-path structure between two

states si and sj is PLP(si, sj)=(PA1,L(s1,s2),PA2) where PA1 is a path starts by the

state si and ends by the state s1, L(s1,s2) is a loop contains the states s1,s2 and PA2

is a path starts by the state s2 and ends by the state sj.

Example 4-1: Figure 4-2 shows an example of simple paths and loops and PLP.

The path between the state s0 and the state s3 is PA(s0,s3)=(s0,a,s1,b,s2,c,s3) is an

example of a simple path and the path (s2,c,s3,d,s4,f,s5,e,s2) is an example of a loop.

An example of a PLP is (s0,a,s1,b,s2,c,s3,d,s4,f,s5,e,s2,c,s3,d,s4,g,s6,h,s7) which is

consists of the path (s0,a,s1,b,s2), the loop (s2,c,s3,d,s4,f,s5,e,s2), and the path

(s4,g,s6,h,s7)

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

60

Figure 4-2: An example of simple paths, path in a form of a loop, and PLP form

The overlap between two paths is the shared path between the two paths. For ex-

ample in Figure 4-3 (A), the path between the states s0 and s7,

PA(s0,s7)=(s0,a,s1,b,s2,c,s3,d,s4,g,s6,h,s7) and the path between the states s8 and s7 ,

PA(s8,s7)=(s8,e,s2,c,s3,d,s4,g,s6,h,s7) have an overlap (s2,c,s3,d,s4,g,s6,h,s7). This

overlap can be a simple path or a loop or a PLP. We can separate this overlap with-

out changing the semantic of the protocol (see Figure 4-3 (B)). An example of the

overlap with PLP is shown in Figure 4-3 (C) and its equivalent part after the sepa-

ration is shown in Figure 4-3 (D).

Figure 4-3: Examples of overlapped paths.

4.1.1 The separation approach

Input: Business protocol P1 with implicit transition ti(ssi,dsi,tci,cri) where ssi is the

source state, dsi is the destination state, tci = (tci1 ש tci2� ש tcin) is the time con-

straint, and cri is the set of clocks reset when the transition ti triggers.

Output: Business protocol P2 semantically equivalent to the protocol P1 with a set

of n implicit transitions such that each implicit transition of the new n transitions is

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

61

in the form tij(ssij,dsij,tcij,cri) where tci = (tci1 ש tci2� ש tcin) (i.e., each implicit tran-

sition of the new n transitions has a time constraint that can be satisfied by only one

clock time instance value).

Begin:

For each implicit transition ti(ssi,dsi,tci,cri), where ssi is the source state, dsi is the

destination state, tci= is the time constraint, and cri is the set of clocks

reset when the transition ti triggers.

1. Create n copies of the implicit transition with new source states (ssi)l and the

same destination state dsi. The explicit output transitions of each new state (ssi)l

are copies of the explicit output transitions of the state (ssi) (See step one in

Figure 4-4).

2. Assign to each implicit transition one of the disjunctive time constraints (

) of tci and remove the implicit transition ti (See step two in Figure 4-4).

3. Create a new state (sa) with a copy of the explicit output transitions of the state

ssi of the implicit transition ti. The inputs transitions of each state (ssi)l and the

state (sa) will be created in the next steps of the approach. The state (ssi)l is the

source for the implicit transition (ti)l with time constraint . Figure 4-4

shows an example of a part of a protocol and the form of this part after applying

the three previous steps.

Figure 4-4: A part of business protocol has an implicit transition to show the effect

of applying the first three steps of the separation approach.

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

62

4. Let CK be the set of clocks that will be checked, with equality operator, on the

implicit transition ti.

5. For all paths starting from the start state s0 or the state dsi to the state ssi (i.e.,

PA(s0,ssi) and PA(dsi,ssi)) .

A. Arrange these paths by separating the overlapped paths. Figure 4-5 provides

an example of business protocol P1 and its equivalent protocol P2 after the

execution of this step. The path enters the loop through the state (sil) and exits

through the state (sol).

Figure 4-5: Business protocol P1 and its equivalent protocol P2 after the execution

of step 5.A.

B. For each state on the protocol, create an empty sequence called (Clocks Reset

Sequence) CRS(s)={ }. The elements that will populate the sequence are the

ordered clocks that are reset before this state and members of the CK set. The

ordering of the clocks on the sequence is based on the time remaining for each

clock to reach its constraint limit value on the implicit transition constraint tci.

For example, if tci ={x1=v1 ש x2= v2} where v1,v2 א Թ and CRS(s)={x1,x2},

then this means that for all values of the clocks x1 and x2, the values x1-v1

are always greater than the values x2-v2 in the state s (e.g., if the time con-

straint on the implicit transition is tci ={x1=5 ש x2=2} and the sequence on the

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

63

state s is CRS(s)={x1,x2} then the clock value of x1 will reach the value five

before the clock value of x2 reaches the value two). The function limit(x) re-

fers to the value in which the clock x is compared with on the implicit transi-

tion tci (e.g., on the previous example, limit(x1) =5 and limit(x2) =2) (See the

protocols P1 and P1-1 in Figure 4-6)

6. For each path pt� of the new paths that are not of the form PLP.

i. Start from the state s0 or the state dsi of each path and move towards the state

source state of the implicit transition ssi. (i.e., for all paths PA(s0,ssi) and

PA(dsi, ssi))

ii. For each transition t�(ss�, ds�, tc�, rc�), If this transition t� has a clock reset x�

-CK (e.g., the transition a and d in the protocol P1 in Figure 4-6 are two ex א

amples of the transition t� with clock reset x1 and x2 belongs to CK), then up-

date the clock reset sequence of its destination state (CRS(ds�)) by adding x�

as follow:

a. If CRS(ds�)={} (i.e., the clock reset sequence of the destination state is

empty), then

1. Add the clock x� to the sequence CRS(ds�) (i.e., set x� as the first

element of the sequence CRS(ds�), CRS(ds�)= {x�}) . For instance,

the update of CRS(s2) of the state s2 in the protocols P1-1 and P1-2

in Figure 4-6).

2. If ds�≠ ssi (i.e., the state ds� is not the end state of the path), then

For each state s on the path from ds� to ssi,

• Set CRS(s)= CRS(ds�). (e.g., the CRS(s3)={x1} and

CRS(s4)={x1} in the protocol P1-2 in Figure 4-6).

 Else

• Assign this transition as an input to the state (ssi)l where

 checks the clock x�.

b. Else

1. If any transition of the path from the state ss� to ssi has clocks reset

that belong to the sequence CRS (ss�), then delete these clocks from

the sequence CRS(ss�).

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

64

2. Create f copies of the path from the state ss� to ssi, where f is the

number of elements on the sequence CRS (ss�). The new paths have

the same start state (ss�) but the end states are the copies of the state

ssi which are created in the step number one of the approach (e.g., for

the transition d in the protocol P1-2 in Figure 4-6, f=1 because the

number of the elements on CRS(s2) is equal to one)

3. Update the CRS sets of the destination states of the new created tran-

sitions which have the source state ss� and the constraints on their

input transitions as follows:

¬ For b=1 to f+1, in which tb(ss�, dsb�, tcb�, rcb�) is an output transi-

tion of the state ss� (e.g., the transitions between the states s2 and s3

and s2 and s�3 in the protocol P1-new in Figure 4-6).

• Set CRS(dsb�)b= x�, where CRS(dsb�)b represents the bth element

of the sequence CRS(dsb�) (e.g., in the protocol P1-new in

Figure 4-6, the value of b is equal one in the state s3 and as a

result x2 is inserted as the first element on the CRS(s3) but b

equal to the value two in the state s�3 and as a result it is in-

serted as a second element after x1 on CRS(s�3)) .

• Set tcb�=[tc� ((CRS(dsb�)b-1 > (limit (CRS(dsb�)b-1) -

limit(CRS(dsb�)b)) ((CRS(dsb�)b+1 < (limit(CRS(dsb�)b+1 -

limit(CRS(dsb�)b)]. This step updates the constraint on the tran-

sition based on the order of clocks on the CRS. The first part tc�

represent the constraint before updating and the second part

constructs the constraint by setting the clock number b-1 in the

order in CRS of the destination state greater than the difference

between it and the clock number b and the third part set the

clock number b+1 to be less than the difference between the

limits of the clock b+1 and the clock number b. For example in

the protocol P1-new in Figure 4-6 the state s3 has the

CRS(s3)={x2,x1} and the resulted time constraint is x1<3 which

is resulted by the third part of the previous updating formula.

• If (dsb� = ssi) (i.e., the end of the path) then

Ü Create f-1 copy of the transition tb.

Ü Assign each (tb)l transition as an input to a state (ssi)l where

 checks the clock xb.

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

65

Ü Update the time constraint on each transition (tb)l, set tcb� =

tcb� xb<limit(xb) (CRS(dsb�)1 > limit(CRS(dsb�)1 �

CRS(dsb�)b-1 > limit(CRS(dsb�)b-1 . This update is based on

the clock xb that is checked by the on the output im-

plicit transition of the state (ssi)l which is the destination

state of this transition (tb)l.

Ü If rcb� ב CK, create an additional copy of the transition tb

and assign it as an input for the state (sa) which is created in

step 3 with time constraint tcb�= tcb� xb > limit(xb)

(CRS(dsb�) 1 > limit(CRS(dsb�) 1 � CRS(dsb�)f >

limit(CRS(dsb�)f.

• Else if (dsb� ≠ ssi), then

Ü for each state s on the path from dsb� to ssi,

Į Set CRS(s)= CRS(dsb�)

Į Set the path starting from the state dsb� to the state ssi

as pt� and repeat from step 6.ii (see the protocols P1-2

and P1-new in Figure 4-6).

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

66

Figure 4-6: Protocol P1 and its equivalent protocol P1-new after applying the steps

5 and 6.

7. For each path pt� of the new paths that are in the form PLP, where the path en-

ters the loop through state (sil) and exit through state (sol), we have two cases.

i. Case one: if all the transitions on the loop do not contain any clock reset that

belongs to CK. Then apply step 6 after considering the loop as one transition,

its source state is sil and destination state is sol (See Figure 4-7).

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

67

 Figure 4-7: Protocol P1 without clock reset in the loop and its equivalent proto-

col P2.

ii. Case Two: the loop has transitions with a clock reset that belongs to CK

a. If these transitions are only in the path starting from the state sil to the

state sol on the loop (i.e., the clock reset is not on the path from sol to sil)

then

• Apply the step 6 and add to the step 6.ii.b.2 a copy of the path starting

from sol to sil for the new f copies of the path (See Figure 4-8).

Figure 4-8: Protocol P1 with a clock reset (x2) in the loop in the path between the

states sil and sol and its equivalent protocol P2.

b. Else if these transitions are in the path starting from the state sol to the

state sil on the loop then

• Create a path from the state sol to the new state s�ol equivalent to the

loop starting form sol to the same state sol and delete the transitions

on the path PA(sol, sil).

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

68

• Create a path from the state s�ol to the state ssi equivalent to the path

PA(sol,ssi).

• Let t��� (sol , s���,tc���,rc���) be the first transition on the path

PA(sol,sil).

• Create a copy of the transition t��� where the source state of the new

transition is s�ol and the destination state is s��� (See Figure 4-9).

• After these operations we got a new path with a loop and another

path without loop.

Ü If clocks reset rc��� in t��� does not belong to CK, then use case

two for the path with the loop and step 6 for the other path.

Ü Else if clocks reset rc��� in t��� is belong to CK, then for the new

path that has a loop , use case two . After the execution of this

step, we get f loops where f is the number of clocks reset be-

fore the state (sil) of the loop.

X From each state (sol) of each loop of the f loops, create f

copies of the transition t���.

X The destination states for these copies are the input states

(sil) of the other f loops.

X Update the time constraint for the new created transition

t��� to be the same as the time constraint of the input tran-

sition to the state (sil) (See Figure 4-10).

Ü For the transitions of the path outside the loop, apply step 6.ii.

8. Delete ti the source state ssi of the implicit transition.

End

Figure 4-9: Protocol P1 with clock reset in the loop and its equivalent protocol P2

(this clock reset is not on one of the output transitions of the state sol and in the path

between sol and sil) .

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

69

Figure 4-10: Protocol P1 with clock reset in the loop and its equivalent protocol

P2 (this clock is on one of the output transition of the state sol and in the path be-

tween sol and sil).

4.1.2 Analysis and proof

The correctness of this approach can be verified by proving that the output protocol

represents the same semantics of the input protocol. The approach can be divided

into two main operations, (1) The overlapping separation operation, (2) Paths du-

plication operations. As shown in the approach, the overlapping separations proc-

ess does not change the time constraints and preserves the same set of the timed

conversation of the original protocol. As a result, this step does not change the

semantics of the protocol. The second operations are based on the following simple

rule: any explicit transition t(s,s�,m,tc,cr) can be separated to two transitions

t1(s,s�,m, x=>v1 tc,cr) and t2(s,s�,m, x<v1 tc,cr) where x א CR and v1א Թ. The

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

70

timed conversation of the original protocol can be presented by the new one after

applying these operations.

The complexity of this algorithm depends on the number of clocks that are checked

on the implicit transition and the number of transitions from the start state to the

source state of the implicit transition. Therefore, the complexity is O(n×m) where

n is the number of checked clocks on the implicit transition and m is the number of

the transition for the longest path from the start state to the input state of the im-

plicit transition.

4.2 The conversion approach
This approach is used to convert a business protocol with implicit transition to a

new one without implicit transitions [65].

Begin (Input: MCTBP, Output: MCETBP))

1. Check the destination state of the implicit transition, and if it has input transitions

other than the implicit transition, then create a copy of this state with its input

and output transitions without copying the implicit transition. This operation is

used because of the fact that deleting implicit transition and merging its source

state and destination state, while preserving the protocol�s semantics, cannot be

done if the destination state has other inputs. This step preserves the semantics of

the protocol because all the execution paths before this step can be executed after

it (See Figure 4-11).

Figure 4-11: Business protocol P1 and its equivalent protocol P2 after the execu-

tion of step 1.

2. If the time constraints on the implicit transition is not in a disjunctive normal

form (i.e., Tc(ti) = where n is the number of disjunction terms), then

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

71

rewrite it to be in this form. In Figure 4-11, Tc(ti)={x1=1 ש x2=1} is already in

disjunctive normal form. By using this operation, one knows which clock values

trigger the implicit transition and the time constraints assigned to explicit transi-

tion after removing the implicit transition.

3. Check the presence of clocks reset on the implicit transition, we will call this

clock �implicit clock�. After checking, we have three possible cases.

Case one: There is no clock reset (i.e., there is no clock reset on the implicit transi-

tion), such as in the previous example which is shown in Figure 4-11.

A. Apply the previous approach �separation approach� (Section 4.1.1) for re-

placing the implicit transition (ti) with n implicit transition (ti)l where l=1 to n

(where n is the number of the disjunctive terms on the implicit transition con-

straint).

B. Create n copies of the destination state of the implicit transition and its output

transitions.

C. Update the time constraints on the output transitions of the destination state of

the implicit transition (ti)l by time interval constraints restrict its triggering to

clock values greater than the triggering instance values on the implicit transi-

tion(e.g., if (ti)l={x1=1},then the time constraints is x11]א,∞[).

D. Update the time constraints on the output transitions of the source state of the

implicit transition (ti)l by time interval constraints restrict its triggering to

clock values less than the triggering instance values on the implicit transi-

tion(e.g., if (ti)l={x1=1},then the time constraints is x10,1]א[).

E. Delete the implicit transition.

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

72

Case two: There is a clock reset on the implicit transition and this clock is not

included in the time constraint of the implicit transition Tc(ti).

A. Use the previous approach� implicit transition constraint separation� for re-

placing the implicit transition (ti) with n implicit transition (ti)l where l=1 to

n.

B. Create n copies of the path from destination state of the implicit transition to

the destination state of the transition t��(ss��,sd��,tc��,rc��) that has a time con-

straint (tc��) contains the implicit clock (e.g., tc��={x3=1} and x3 is the clock

reset on the implicit transition (ti)l).

C. For each implicit transition (ti)l, if there is an explicit transition t���(

ss���,sd���,tc���,rc���) , where rc��� contains clocks reset and these clocks are in

the time constraint of the implicit transition (ti)l) in one of the created paths in

the previous step.

I. Create a copy of all the loops from the source state of this implicit transi-

tion (ti)l to the same state, and a copy of the output transitions of the

state which prior this source state.

II. Rename the explicit clock (e.g., x1 becomes x1�) on the original implicit

transition constraint and on tc��� on the new path.

III. Update the time constraint tc�� by replacing the implicit clock (e.g., x3) by

its equivalent from the implicit transition time constraint, Figure 4-12

shows an example after the execution of the steps I, II, and III.

D. Else, update the time constraint tc�� by replacing the implicit clock (e.g., x3)

by its expression deduced from the implicit transition time constraint tc(ti)l

(e.g., if tc(ti)l of implicit transition is {x1=2}, and the tc� is x3=1, then tc�� be-

comes x1-2=1).

E. Execute the steps C, D, and E of the case one.

Figure 4-12. Protocol P1 and its equivalent P2 after the execution of steps I, II,

and III.

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

73

Case three: There is a clock reset on the implicit transition and this clock is in-

cluded in time constraint Tc(ti).

A. Apply the �implicit transition constraint separation� approach without con-

sidering the implicit clock (i.e., remove the implicit clock from the implicit

transition constraint before applying the separation approach).

B. For each implicit transition til (ssl,dsl,tcl,rcl), do the following steps.

C. Starting by the state ds1, create paths equivalent to any loop from this state to

itself with new end states ds�l and new implicit transition (ti�)l with tc(ti�)l =

tc(ti) and remove the loop by removing the output transitions of the state dsl

which were in the loop (See Figure 4-13)

Figure 4-13. Protocol P1 and its equivalent P2 after the execution of steps C.

D. Check the paths from destination state of the implicit transition (ti)l to source

state of the new implicit transition (ti�)l

I. If it has an explicit transition t��� (ss���, sd���, tc���, rc���) where rc��� has

clock reset (e.g., x1) and these clocks are in the time constraint (tci)l of the

implicit transition (ti)l, Then rename the explicit clock (e.g., x1) on the tran-

sitions t��� and (ti�)l and update the time constraint tc(ti�)l by replacing the

implicit clock (e.g., x3) by its equivalent from the implicit transition time

constraint(see Figure 4-14).

Figure 4-14. Protocol P1 and its new form (P2) after the execution of steps D.I.

II. Else, update the time constraint tc(ti�)l by replacing the implicit clock (e.g.,

x3) by its expression deduced from the implicit transition time constraint

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

74

tc(ti)l (e.g., if tc(ti)l of implicit transition (ti)l is {x1=2 ש x3=1}, then tc(ti�)l

becomes{x1=2 ש x1-2=1}.

E. For the implicit transition (ti�)l , apply the implicit constraint separation ap-

proach.

F. After the separation process, for each new implicit transition (ti�)lz of the im-

plicit transition (ti�)l, compare the time constraint tc(ti�)lz on the implicit tran-

sition with tc(ti).

I. If (ti�)lz= (ti), then merge the two implicit transitions and update the

input transitions of the (ti�)lz by resetting the value of k to start from zero.

II. If the values of the constraints limit are different but they check the same

clocks (i.e., x(tc(ti�)lz)x= (tc(ti))x, then

The value of these constraints can be presented based on the two values of

the clock. The constraint will be x1א[a+k*(b-a),∞[with x1=a in the first

constraint tc(ti), x1=b in the next constraint tc(ti�)lz , and k={0,1,2,�}.

i. Merge the two implicit transitions,

ii. Update all the time constraints in the path after merging the two implicit

transitions by replacing the limit value of the clock (ti))x by k which

presents the arithmetic sequence.

III. In case (tc(ti�)lz)x≠ x(tc(ti))x then repeat the same procedure from step B in

this case with the new implicit transition (ti�)lz.

G. Execute steps C, D, and E of case one (See Figure 4-15).

 END

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

75

Figure 4-15: Protocol P1 with clock reset (x3) and implicit time constraint (x1=1 ש
x3=1) checks this clock and its equivalent protocol P2 after the execution of the

algorithm.

4.2.1 Analysis and proof

Deleting implicit transition and merging its source state and destination state, while

preserving the protocol�s semantics, cannot be done if the destination state has

inputs rather than the implicit transition. This operation is performed by step 1

which preserves the semantics of the protocol by preserving all the paths of the

protocol. Step two is for rewrite the time constraints on the implicit transition. By

using this operation, one knows precisely which clock values trigger the implicit

transition and the time constraints assigned to explicit transition after removing the

implicit transition. Step 3 manipulates three different cases of the implicit transi-

tions. The first case deals with implicit transition without clock reset. In this case,

there is no transition on the protocol has a time constraint depends on the time of

the triggering of the implicit transition. The next transitions after the implicit tran-

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

76

sition are the only affected transition after the triggering of the implicit transition.

Therefore, in this step, the separation technique is applied and then a new copy of

the next following transition for each one of the implicit transition is create and a

time constraint based on the checked clock on the implicit transition is assigned.

 The second case deals with implicit transition with clock reset (implicit clock)

on it and this clock is not checked in the time constraint of the implicit transition

constraint Tc(ti). This implicit clock will be checked in one or more on the time

constraints of the following transitions but it will not be checked on this implicit

transition. Consequently, the approach duplicates not only the next transition of the

implicit transition but also all the following transitions until reaching the transition

which has a time constraint checks the implicit clock. Then, it updates the time

constraint on the new paths based on the constraint on each implicit transition.

 The third case deals with a clock reset on the implicit transition and this clock is

included in the time constraint of the implicit transition Tc(ti). This case is the most

complicated case because the approach must preserve the semantics of the implicit

clock reset and it�s checking on the implicit constraint after deleting the implicit

transition. To replace the implicit clock with explicit one, we must know which

explicit clock triggers the implicit transition on its last triggering. Therefore, the

approach will present all the possible paths of the loop starting from the implicit

transition and ends with the same implicit transition in the next iteration with the

new time constraint. Each path of the new created paths will be treated separately

based on the time constraints on its two implicit transitions. The time constraint on

the explicit transitions on each path after deleting the implicit transitions is based

on the time constraints on the two implicit transitions in the path. For updating the

time constraint of the explicit transition which are affected by the deleting of the

implicit transition, the value of the limit of each clock on the two implicit transi-

tions is compared to see if this value is rest constant for each iteration or different

form one iteration to the other. If this value is always the same, the time constraint

on the explicit transition will base on this constant value. But if the value is differ-

ent, the set of values will be presented as an arithmetic sequence and the con-

straints will be based on this sequence. Therefore, the implicit clock is replaced by

the previous clock which triggers the implicit transition for each path and this is

based on the fact that the first triggering of the implicit transition cannot be done

by the implicit clock because the first reset of the implicit clock will be in the first

triggering.

CHAPTER 4 IMPLICIT TRANSITION REMOVAL APPROACH

77

 The complexity of this algorithm for the first case is O(m×n+L) where n is the

number of checked clocks on the implicit transition, m is the number of the transi-

tion for the longest path from the start state to the input state of the implicit transi-

tion, and L is the number of output transitions from the destination state of the im-

plicit transition. The complexity for the second case is O (m×n+L×H) where H is

the number of transitions for the longest path from the destination state of the im-

plicit transition to the explicit transition that is triggered based on a time constraint

contains the implicit clock. The complexity of the third case is O(f× (m×n+L×H)

×n) where f is the number of transitions on the loop that is reset using clocks from

the implicit transition constrains.

CHAPTER.5 WEB SERVICES ACCESS CONTROL

78

Chapter 5 .WEB SERVICES AC-

CESS CONTROL

Modeling and analyzing Web services after taking into account the security issues

has become an urgent necessity. Accordingly, this chapter presents a set of Web

services security concepts and shows the approaches in which these security re-

quirements are modeled and analyzed. Firstly, it explores the Web service access

control models. Secondly, an informal scenario and the proposed architecture are

explained. Thirdly, the role of the ontology in the analysis is clarified. Finally, the

related work are listed and discussed.

5.1. Web Services AC models

Due to the open nature of the Web, its security becomes a crucial requirement. The

main goal of access control is to restrict the access of the Web resources to specific

users with specific requirements (credentials). Because Web services are part of the

Web with special properties, development of suitable access control models able to

restrict access to Web services to authorized users is an important issue (i.e., access

control policies can be seen as conditions in which a Web service provider decides

to restrict the set of users who may access the functionalities offered by her Web

service). Traditional Web security approaches and technologies commonly adopted

for Web sites and traditional access control models are not satisfactory for securing

Web services (Bertino et al. [29]). Therefore, there is a need for new approaches

for enforcing Web services access control policies.

The eXtensible access control markup language (XACML) [101] is a reference

access control model proposed by OASIS. It presents mechanisms to define access

control policy. Different control policies and be defined using these mechanisms

under different security requirements. Figure 5-1 shows the XACML architecture

in which the component �recourses� corresponds to Web services. This architec-

ture has three main components, PDP (Policy Decision Point), PEP (Policy En-

forcement Point) and PAP (Policy Administration Point). The PAP writes policies

and policy sets to the Policy repository. Context handler do format exchange

among XACML components. With the control of XACML, when a requester re-

CHAPTER.5 WEB SERVICES ACCESS CONTROL

79

quests to access a resource, PEP takes control to determine whether the request

should be allowed or rejected. During this process, the Policy Information Point

(PIP) collects attributes such as resource name, the requester�s role, system time,

and operation type. The collected attributes are then sent to PDP, which makes

decision by checking whether the attributes fulfill the policies associated with the

invoked web service. The final decision is returned to PEP. If the request is al-

lowed, the requester can access the service. Otherwise, the request is rejected.

Figure 5-1: A XACML architecture.

Most of the existing Web services access control approaches, including the ap-

proach proposed by Ardagna et al. [7], assume a single operation model for Web

services where the invocation of operations are independent from each other. But,

Most of Web services are composed of a set of dependent operations. These opera-

tions are accessed in a particular order specified by the business protocols of the

services (Benatallah et al.[19], Berardi et al.[22], Aalst and Hofstede [136]). There-

fore, Mecella et al. in [100] present a Web service architecture for enforcing ac-

cess control policies for web services that are composed of a set of dependent op-

erations (See Figure 5-2).

CHAPTER.5 WEB SERVICES ACCESS CONTROL

80

Figure 5-2: Web service architecture for enforcing access control policies pro-

posed by Mecella et al. in [100].

The system architecture consists of two basic components, the access control en-

forcement system and the execution controller system (ECS). The access control

enforcement system contains the PEP, PDP, PAP, K-trust policies, and access poli-

cies which makes it compliant with the XACML standard. The PEP receives the

client requests with the operations names and credentials and passes it to the ECS

which receives the current states of the conversation and the table. Then, it refor-

mulates the access request by adding information about the current state of the

conversation and the table and sends it to the PDP. A trustworthiness level repre-

sents the length of a conversation, from a given state s in the transition system that

leads to a final state. The PDP consists of two modules, the k-Trustworthiness

Level Assignment (TLA) module and the Policy Selection (PS) module. The TLA

uses the table to select the trustworthiness levels k1, . . . ,kn contacts with the PAP

to get the k-trust policies associated with trustworthiness levels k1, . . . , kn . Then, it

evaluates if the credentials provided by the client in the request satisfy one of the

policies. If this is the case, the client is assigned to the trustworthiness level ki asso-

ciated with the ki-trust policy he/she is compliant with. The PS receives the associ-

ated conversations after assigning trustworthiness level ki and asks the PAP for the

access control policies related to the operations constituting the conversations that

CHAPTER.5 WEB SERVICES ACCESS CONTROL

81

the client may engage with the service on the basis of the assigned trustworthiness

level ki. The selected policies are combined to obtain the corresponding conversa-

tion access control policy. After that, the PEP receives the policies with ki. Then,

the PEP sends a request to the client asking for the credentials required by the poli-

cies and evaluates them against the policies. If the check is positive, the client can

perform any operation in the conversations related to the trustworthiness level ki.

When the client submits a request to perform an operation, which does not belong

to the allowed conversations, the PEP contacts the PDP, which assigns a new

trustworthiness level to the client. In this case, the PEP does not send again the

table of trustworthiness levels, but only the state of the conversation with the client,

which is necessary to select from the table the trustworthiness levels associated

with that state because it stores a copy of the table of trustworthiness levels and the

level ki assigned to the client

Because our work is based on Web service conversation model, there is a relation

between our work and the work which is done by Mecella et al. in [100]. Both of

us present the Web service access control as a state transition system but they do

not consider the business protocol of the consumer. They only consider consumer

credentials. There are some situations where the credentials of the consumer satisfy

the AC but based on the business protocols there is no conversation can be com-

pleted. Therefore, there is a need for a preliminary step for checking the compati-

bility after including the AC. This step can be integrated with the standard AC

model and the model which is presented by Mecella et al. in [100].

To the best of our knowledge, in most of access control enforcement models,

checking of the compatibility and replaceability after assigning AC is not included.

We will merge all the previous research issues by including the compatibility and

replaceability checking box in the enforcement model and talking time into ac-

count. This step can help basically in two scenarios:

• The consumer will invoke the service which is compatible with him in terms

of message exchange, time, and access control, (i.e. based on the set of cre-

dentials with the consumer he can access the service which accept his creden-

tials).

• With respect to replaceability, service can replace another service with the

guarantee that it has the same access control and it is compatible with all the

services which are compatible with the replaced service.

CHAPTER.5 WEB SERVICES ACCESS CONTROL

82

5.2. Informal scenario and architecture

Checking compatibility and replaceability between two Web services after assign-

ing the access control policy is important in many scenarios. For instance, the sce-

nario which can be happened with a consumer searching for a Web service:

1- Consumer searches the registry of services (e.g. UDDI) and found the service

with required operations and gets its binding information (See step 1 and 2 in

Figure 5-3).

2- The service provider asks for the credential C1 and the consumer sends it

(See steps 4 and 5 in Figure 5-3).

3- A set of request/response interaction is performed between the service and

the consumer without problems.

4- In the step i, the service asks for the credential Cn to access its operation and

the consumer has not this credential (See steps i and i+1 in Figure 5-3).

5- As a result, the interaction is terminated and the consumer starts again from

the beginning using another service (step i+2).

This scenario continues until the consumer gets the service compatible with him

in terms of access control and accepts his credentials which is a problem because

of the wasted time and the credentials which are provided by the consumer. To

solve the problem in this scenario, at the beginning, service provider shows the

access controls for the service operations by two approaches. In the first ap-

proach, a description of the policies for each operation is presented independ-

ently on each others. But this approach is not useful in the situation where service

consists of more than one operation and these operations are dependent on each

others. Therefore, the second approach proposes to present the AC as state transi-

tion model indicating the relation between these set of AC, as the model pre-

sented by Mecella in [100]. But this approach is enforced without considering the

business protocol of the consumer. They only consider consumer credentials.

There are some situations where the credentials of the consumer satisfy the AC

but based on the business protocols there is no conversation can be completed.

Therefore, there is a need for preliminary step for checking the compatibility and

considering the AC. Figure 5-4 shows an informal scenario with a modified

architecture to overecome the problem of the traditional AC models. This step

can be integrated with the standard AC model and the model which is presented

by Mecella in [100]. Also replaceability analysis is important in a situation which

CHAPTER.5 WEB SERVICES ACCESS CONTROL

83

needs satisfaction between the two protocols in terms of access control model.

For instance:

• Service provider wants to replace his old service with a new one which sup-

ports the same conversations with the same AC (i.e. the new service has more

functionality than the old one but all the functionalities of the old one must be

included in the new one).

• Consumer wants to replace Web service at which he interacts with a new one

supports the same conversations with the same AC (i.e. the new service has

more quality of service).

 As a result, a new definition of the compatibility taking into account the access

control policy is needed to guarantee the access of the required resources with the

provided credential during the analysis phase. Therefore, we merged the time busi-

ness protocol with AC model in checking the compatibility and replaceability

analysis.

Figure 5-3: Informal scenario shows the problem of the traditional AC models.

CHAPTER.5 WEB SERVICES ACCESS CONTROL

84

Microrepository(not part of the
service

BP1 + ACP

Service
providerConsumer

Repository

Wsdl1 Wsdl2...

Invoke

Response with credentials Cn

Register/update

Search

Binding info

executing the service

Request credentials Cn

Response with credentials C1

Request credentials C1

operations/BP

Compatabile or not

Figure 5-4: Informal scenario with a modified architecture to overecome the

problem of traditional Web services AC models.

The proposed architecture is shown in Figure 5-5. This access control enforcement

system (ACES) model is composed of PEP, PDP and PAP which make it compli-

ant with the XACML standard. The PEP realizes the interface with clients and the

checker unit. The checker has a set of tools for checking the compatibility and re-

placeability analysis using business protocols augmented with the access control

policies before the invocation of the service. It can also be used to keep track of

the state of the conversation between the consumer and the service during the in-

teraction (i.e. after invoking of the service). Furthermore, it uses the ACP ontology

in calculating the subsumption during the checking process. The PEP intercepts all

the access requests submitted by clients to access an operation that uses policy-

based access management, the PEP will describe the user's attributes to other enti-

ties on the system. The Policy PDP has the job of deciding whether or not to au-

thorize the user based on the description of the user's attributes provided by the

PEP. PAP can provide many enterprise SOA policy administration capabilities but

the end result of the policy administration point is to store or distribute policy up-

dates. As shown from the architecture, our contribution is mainly the checking unit

CHAPTER.5 WEB SERVICES ACCESS CONTROL

85

which can be used with many access control enforcement system models. The inte-

gration of these modifications with any access control enforcement system does not

require a big modification of these existing models and can be integrated easily to

them.

Figure 5-5: Access control architecture model with compatibility and

replaceability checking tools.

5.3. Ontology

 In our model, the ACP and credentials are presented in forms of ontology con-

cepts. There are two main advantages of using ontology in policy specification and

management [103]:

1. Ease policy specification and management by sharing policies for com-

mon attributes, composing and overriding policies.

2. Protect sensitive information by avoiding information leaking request and

answering unnecessary request.

Description logics (DLs) [9] are a set of knowledge representation languages that

can be used to represent the knowledge of an application domain in a structured

and formally well-understood way. The important notions of the domain are de-

scribed by descriptions (i.e., they are described by atomic concepts and atomic

roles) and equipped with a formal, logic-based semantics. In the syntax of descrip-

tion logics, concept expressions are variable-free and each concept expression de-

notes the set of all individuals satisfying the properties specified in the expression.

Concepts properties are expressed by roles. Semantically, a concept is interpreted

as a set of individuals and roles are interpreted as sets of pairs of individuals. The

PEP PDP PAP

ACP Ontology
Checker

WS BP

Client BP

Product Automata

Compatible/ Not
compatible

 Start based on Business
protocol(BP)

ACES

CHAPTER.5 WEB SERVICES ACCESS CONTROL

86

description can use set of Boolean constructors such as conjunction (ِ) and nega-

tion (¬), as well as the existential restriction constructor (׌AR.CN), where CN is an

atomic concepts and AR is an atomic role (e.g., ׌hasVisa.Human), value restriction

constructor (׊AR.CN) (e.g., ׊hasChild.Person), and the number restriction con-

structor (≥ n AR) (e.g., ≥ 5 haschildChild).

The description logics provide a well-defined semantics and powerful reasoning

tools such as tableau-based algorithms. Therefore, it is candidates for ontology

languages. Description logics had a strong influence on the design of OWL (Ontol-

ogy Web Language), particularly on the formalization of the semantics, the choice

of language constructors, and the integration of data types and data values. OWL is

the World Wide Web Consortium (W3C) recommended ontology language for the

semantic Web, and exploits many of the strengths of description logics, including

well defined semantics and practical reasoning techniques. Description logics can

be used for defining, integrating, and maintaining ontology, which provide the

semantic Web with a common understanding of the basic semantic concepts used

to annotate Web pages. Access control policy will be formalized using the DL. The

access control policies are presented as concepts describe set of credentials as indi-

CHAPTER.5 WEB SERVICES ACCESS CONTROL

87

viduals. We will perform subsumption (ك), union(׫), and intersection(ŀ) opera-

tions on the ontology during our algorithms.

Presenting the AC of Web services as ontology will enable us to use ontol-

ogy alignment tools to find classes of data that are �semantically equiva-

lent �. We can use the ontology of the service provider and the ontology of

the consumer and produce new global ontology. This new ontology can be

used on our analysis in checking the compatibility between Web service

and the consumer.

5.4. Related work

Currently, there are two research directions in access control. One has focused on

efforts to develop new access control models to meet the policy needs of real world

application domains. These have led to several successful models such as the NIST

standard RBAC model (Ferraiolo et al. [67]), the RBAC96 model (Sandhu et al.

[123]), WS-AC1 (Bertino et al. [30]), the RT model (Li et al. [95]) and conversa-

tion-based Web services access control model (Mecella et al. [100]). In a parallel,

researchers have developed policy languages for access control. These include

XACML (Moses [101]), Security Assertion Markup Language (SAML) [80], Pon-

der (Damianou et al. [53]), WS-Policy (Bajaj et al. [10]) and finally to semantic

Web based languages such as Rei (Kagal et al. [85]), DARPA agent markup lan-

guage for services (DAML-S), and KAoS (Tonti et al. [131]).

The XACML and SAML are two major standards. The XACML is an XML

framework for specifying access control policies for Web-based resources in gen-

eral and it has been extended to specify access control policies for Web services.

The SAML defines an XML framework for exchanging authentication and authori-

zation information for securing Web services. Other standards are the WS-Policy

and the WS-Security. WS-Policy is used to describe the security policies in terms

of their characteristics and supported features (such as required security tokens,

encryption algorithms, privacy rules, etc.). WS-Security is a specification for secur-

CHAPTER.5 WEB SERVICES ACCESS CONTROL

88

ing SOAP messages using XML encryption and XML signature standards and

attaching security credentials thereto.

Wonohoesodo and Tari [142] propose two access control models, SWS-RBAC (for

single services) and CWS-RBAC (for global services or composite services). They

divided the roles to global role and local role and the client is assigned to access

composite service with only global role, which is mapped onto local roles of the

service providers of the component Web services.

Bertino et al. [30] presents a flexible access control model (WS-AC1). The AC

polices are specified as a conditions on the values of the identity attributes and

service parameters that a consumer must provide to invoke the service. This model

has negotiation capabilities. These capabilities are related to the identity attributes

and service parameters. During the negotiation process, the consumer is guided

toward an access control request compliant with the service description and poli-

cies.

There are many works in the access control enforcement in business process work-

flow (Hwang et al. [83], Paci et al. [106]). Hwang et al. [83] present a Web service

selection approach in workflow, composed of set of tasks that dynamically chooses

a performer for each task in the workflow satisfying all access constraints currently

and increase the chance of completing the entire process in the future. They disal-

lowed delegation sequences to model many types of access control constraints.

Their access control enforcement process supposes that there are some steps in the

workflow are performed manually. Paci et al. [106] concentrate on the specifica-

tion of the authorization information associating users with human activities (ac-

tivities in WS-BPEL business process which requires human interaction) in WS-

BPEL business process and authorization constraints by using a role-based access

control model for WS-BPEL.

Skogsrud et al. [126] presented a model for trust negotiation policies for Web ser-

vices. They assign for each role (for instance, customer, reviewer, etc. in bookshop

service) the set of operations and the required credentials. State transition graph is

used where states present the roles and transitions present the operations and the

policy. This model is used in the access control trust negotiation during the interac-

tion between the services and the consumer. Another example for trust access con-

trol model for Web service is the model presented by Coetzee and Eloff [50]. This

CHAPTER.5 WEB SERVICES ACCESS CONTROL

89

model grants and adapts permissions assigned to both Web services requesters and

their respective users based on the current context of trust relationship that exist.

Access control models for Web services composition are gaining a lot of interest in

the area of Web services access control enforcement. There is a lot of work in this

area, for instance, Srivatsa et al. [129] and Cheikh et al. in [47]. In [47] they pre-

sent automatic Web services composition in trust-aware communities. This work

models Web services by state transition graph and assigns explicitly the access

control policy on the transition of the graph. This assignment helps them in per-

forming the composition without defect the AC. Our work uses the idea of assign-

ing the access control policy on the business protocol of the service but for the

purpose of checking compatibility and replaceability. In [129] they present access

control model and techniques for specifying and enforcing access control rules in

Web service compositions.

Paci et al. [107] present an approach to determine at the design time whether a

chorography can be implemented by a set of services based on their access control

policies and the disclosed policies regulating the release of their credentials.

Paurobally and Jennings [111] combined the two Web service languages, WS-

Conversation (WSCL) [13] and WS-Agreement. This combination is done after

extending the structure of the WS-Agreement and the structure of the WS-

Conversation languages (i.e., The WS-Agreement is extended to include the sender

and the recipients of messages for the specification of speech-acts and WS-

Conversation languages are extended to include states, sub-states, transitions and

WSCL processes. As a result, non-trivial conversations in which several messages

have to be exchanged before the service is completed can be specified and proto-

cols of realistic expressiveness (such as the Contract Net protocol (Smith [127])

can be specified in our WSCL/WS-Agreement extended language.

 All these models assume that a Web service provides just a single operation or that

all operations are independent. Business process workflow, Web service composi-

tion, trust negation between Web services, and multi-party protocols are out of the

scope of this work. We are very optimistic to integrate our work in these research

trends in the near future.

CHAPTER 6 WEB SERVICES ANALYSIS

90

Chapter 6 .WEB SERVICES

ANALYSIS

This chapter discusses in details the interoperability analysis between Web ser-

vices. It starts by explaining the different definitions of compatibility and replace-

ability between services in details. These analyses use the Web services business

protocols for presenting the behavior of the services. The next parts of this chapter

provide the Web services analysis after including the ACP and time constraints.

6.1. Compatibility and replaceability

definitions

Formal analysis of service protocols in terms of automated support to service inter-

operability at the business protocol level has been discussed in some recent works

(e.g. Benatallah et al. [18, 17], Ponge et al. [114], Bordeaux et al. [34], Hull et al.

[82], Bultan et al. [41], Wombacher et al. [141], and Ponnekanti and Fox [115]).

Compatibility and replaceability checking is one of the important interoperability

analysis. There are a set of definition for compatibility and replaceability between

services.

Bordeaux et al. [34] present three different definitions for compatibility and two

definitions for replaceability. For compatibility, the first definition says that: two

services A and B are compatible if they have opposite behaviours (i.e., A is equiva-

lent to . This means that for any reachable pair of states (s1, s2) we have: emis-

sions1(s1) = receptions2(s2) and emissions2(s2) = receptions1(s1)) (where emis-

sions1(s1) represents the outgoing messages from the state s1 and receptions1(s1)

represents the incoming messages to s1). There are some cases where two Web

services may be able to cooperate in a satisfactorily way even when one has slots

for receptions which the other one does not intend to use (Yellin and Strom [143],

Brand and Zafiropulo [39]). As a result, the second definition based on unspecified

receptions states that: Two Web services are compatible if they have no unspecified

reception. (i.e., if, for any reachable pair of states (s1, s2), we have that: emis-

CHAPTER 6 WEB SERVICES ANALYSIS

91

sions1(s1) ك receptions2(s2) and emissions2(s2) ك receptions1(s1)). But, There is

a drawback of the two previous definitions, they do not check whether the interac-

tion will reach a final state or not. For instance, these definitions consider that two

services which do not send any message and just do receptions are compatible. To

overcome this drawback, a new definition based on checking the reachability to

final state in the interaction trace by checking the deadlock is emerged. The dead-

lock is first defined as: A reachable pair of states (s1, s2) is a deadlock if it is im-

possible from these states to reach a final state. The interaction between two ser-

vices is deadlock-free if no reachable state is a deadlock. The third definition of

compatibility says that: Two services are compatible if the initial state is not a

deadlock, i.e., if there is at least one execution leading to a pair of final states.

A model for business protocols and a framework for protocol-based analysis had

been presented by Benatallah et al. [19, 20, 18] and Baina et al. [12]. They studied

the compatibility and replaceability issues. This model captures all of the conversa-

tions that are supported by a service. The model uses state chart and timed auto-

mata which are suitable models for describing behaviours.

 They provide two definitions of compatibility, full compatibility and Partial com-

patibility. In the full compatibility: A service presented by protocol P1 is fully

compatible with another service presented by protocol P2 if all the executions of

P1 can interoperate with P2 � that is, P2 can understand any conversation that P1

can generate. In the partial compatibility: A service presented by protocol P1 is

partially compatible with another service presented by protocol P2 if some execu-

tions of P1 can interoperate with P2� that is, if at least one possible conversation

can take place among a service supporting P1 and one supporting P2.

The drawback of the full compatibility definition is that if the service presented by

protocol P1 is compatible with the service presented by protocol P2 then P2 can

accept all the conversation from P1 and this means that P2 is not necessary to

accept all the conversation from P1 (i.e. the inverse is not true). This can result an

error during the interaction if the service presented by protocol P2 tries to send a

message and the service presented by the protocol P1 is not ready to receive it.

CHAPTER 6 WEB SERVICES ANALYSIS

92

Example 6-1: Figure 6-1 shows an example of two Web service business protocol

P1 and P2 [21]. According to the definition of compatibility defined by Benatallah

et al. [19, 20, 18], the two services supporting the protocols P1 and P2 in Figure

6-1 are fully compatible (i.e., all the executions of P1 can interoperate with P2).

Also, in Figure 6-2 the two services are partially compatible because there is at

least one possible conversation can take place among a service supporting P1 and a

service supporting P2. Figure 6-2 shows that the Web service supporting the proto-

col P2 has not the ability to receive the CancelOrder(-) message from the Web

service supporting P1. As a result, there is a potential conversation which will not

be accomplished and results in an error.

Therefore, in our work we will adapt a new definition of compatibility based on the

error free interaction. We merge the second and the third definition of Bordeaux et

al. [34]. In other words, two services are compatible if and only if any potential

send message from one service can be received by the other service during their

interaction and vice versa and there is no deadlock. Based on our definition, if two

services are compatible, we guarantee that no error can be happen during the inter-

action. As a result, the Web service supporting the two protocol of Figure 6-2 are

not compatible because, during the interaction, when the first protocol P1 is on the

state (OrderSend) and P2 is in the state (OrderMade) the message (CancelOr-

der) may be sent and in this case an error will happen because the Web service

supporting P2 cannot receive this message.

In terms of timed business protocol; Ponge et al. [114] handle timed protocols and

built their analysis on the definition of compatibility (full compatibility and partial

compatibility) of Benatallah et al. [19, 20, 18]. They formalized the C-Invoke con-

straints which define time windows of availability and M-Invoke constraints which

define expirations deadlines. Also, they converted the timed business protocol to

timed automata and defined a set of operators like composition, intersection, and

projection. For instance, to check full compatibility between two Web service sup-

porting protocol P1 and P2, if the projection by P1 of the composition between P1

and P2 is equal to P1, then the Web service supporting P1 and the Web service

supporting P2 are compatible (i.e. if [P1 composition P2] projection P1= P1, then

the Web service supporting P1 is fully compatible with the Web service supporting

P2).

CHAPTER 6 WEB SERVICES ANALYSIS

93

Figure 6-1: Two business protocols of compatible Web services (full compatibil-

ity).

OrderGoods(-) MakePayment(-)

OrderGoods(+) MakePayment(+)

CancelOrder(-)

P1

P2
OrderPaidOrderMadeStart

OrderCanceled

OrderPaidOrderSentStart

Figure 6-2: Two business protocols of incompatible Web services.

In replaceability analysis, Bordeaux et al. [34] present two definition of replaceabil-

ity (or substitutability). The first definition is context-dependent and state that: In a

particular application made of two compatible services A and B, service A� can

replace service A if A� is also compatible with B. The second definition is a context-

independent and state that: A service A� can replace a service A if it is compatible

with any service B which is compatible with A. Benatallah et al. [19, 20, 18] de-

fined set of classes of replaceability (e.g., protocol equivalence w.r.t. replaceability;

protocol subsumption w.r.t. replaceability; protocol replaceability w.r.t. a client

protocol; and protocol replaceability w.r.t. an interaction role).

CHAPTER 6 WEB SERVICES ANALYSIS

94

For replaceability, we will use the definitions of Bordeaux et al. [34] on our work

because they guarantee the error interaction free after replaceability due to its de-

pendency on compatibility.

The rest of this chapter is divided into two main parts. The first part discusses the

compatibility and replaceability after assigning the time and AC constraints. The

second part presents the interoperability analysis between Web services after assign-

ing message specifications constraints.

6.2. Compatibility and replaceability

analysis after assigning time and AC

In this section, we will start by defining the interaction traces between Web ser-

vices and compatibility between them in terms of interaction traces. Then, the

compatibility and the replaceability in terms of the product automata and in terms

of the intersection automata respectively are defined. We will present a set of for-

mal definitions leading to the definition of compatibility and replaceability, such as

the definition which is used to construct the product automata, intersection auto-

mata, and the definition which is used for checking the co-accessibility of a state in

automata. We will prove that the compatibility in terms of interaction traces is

equivalent to the compatibility in terms of product automata (see proof 6-1 and

proof 6-2 in the end of this chapter).

Firstly, we will recall our definition of the timed business protocol with AC. As

shown in the previous chapters, the one-clock time business protocol is a special

case of the multi-clocks timed business protocol. Therefore, the analysis of the

multi-clocks timed business can be applied on one-clock timed business protocols.

The protocol which is used in the analysis is the multi-clocks protocol after remov-

ing the implicit transitions. We will call it simply �timed business protocol with

ACP�.

Definition 6-1 (Time business protocol with AC) A time business protocol with AC

is a 5-tuple P = (S; s0; X; T; F) which consists of the following elements:

� S is a finite set of states.

CHAPTER 6 WEB SERVICES ANALYSIS

95

� s0 א S, is the initial state.

� X is a finite set of clocks with a set of clock reset CRك X.

� T ك S 2 × M × (({-} x 2c) ׫ ({+} x PL)) × Tc × CR × RK, is a finite set of ex-

plicit transition where M is set of input/output messages, { + , - } polarity of the

message where {+} means input message and {�} means output message. PL is the

set of access control policies, c is the set of credentials Tc is the time constraint

which is a disjunction of the conjunction of static and dynamic atomic time con-

straints and CR is the set of clock reset. RK is the set of variables reset, if there is

no dynamic variable in the protocol then this set is always empty.

� This protocol is deterministic (i.e., all the output transitions from any state are

different and there is no overlapping between the output messages).

� F ك S is a set of final states. If F = ׎ then P is said to be an empty protocol.

� All states in the automata are accessible and co-accessible.

6.2.1. Compatibility

In the following sections, we will refer to the Web service by its business protocol.

Therefore, when we say protocol P1 is compatible with protocol P2, we mean that

CHAPTER 6 WEB SERVICES ANALYSIS

96

the Web service supporting the protocol P1 is compatible with the Web service

supporting the protocol P2.

 Checking the compatibility and replaceability between explicitly timed business

protocols is a straightforward operation. Our compatibility checking definition is

based on the comparison between constraints on the explicit transitions. The time

constraints obtained after the conversion process can be static, the constraint time

interval values are fix (e.g., x12 ,0] א[), or dynamic in such case the time interval is

changeable (e.g., x10] א,k[) where k obeys to the sequence {1,2,4,� .}. The types

of the time constraints that are used in the comparison operation can be two static,

two dynamic, or one static and the other one is dynamic. For comparing two static

constraints, the inclusion between the two time intervals can be determined by

comparing the interval limits. For comparing a static time constraint with a dy-

namic time constraint, we check that for all values of the variable k, the static time

interval is included or not in one resulted static time intervals after substituting k by

its values. For comparing two dynamic constraint, we check the set of intersection

between the static time intervals of the dynamic time intervals of the two constraint

for each value of the used variable (e.g., the variable k in the previous example x1א

[0, k[).

Definition 6-2 (Intersection between time intervals) the intersection between two

time intervals I1 and I2 is denoted by (I1ŀI2) where:

� If I1=[a1,b1]and I2=[a2,b2] are static time interval then (I1ŀI2) =[a1,b1] if

a1>=a2 and b2>=b1, or (I1ŀI2) =[a2,b2] if a2>=a1 and b1>=b2, or(I1ŀI2)

CHAPTER 6 WEB SERVICES ANALYSIS

97

=Null if (a2>a1 and b1<a2) or (a1>a2 and b2<a1), or (I1ŀI2) =[a2,b1] if

a2>=a1 and b2>=b1 , or (I1ŀI2) =[a1,b2] if a2<=a1 and b2<=b1.

� If I1=[a1,b1] is a static time interval and I2=[a+k*b, c+k*d[with k={0,1,2,�}

is a dynamic time interval, where the dynamic time interval is a set of static

time intervals after the substitution of the variable k by its values, the intersec-

tion (I1ŀI2) is the set of intersection between the time interval I1 and each ele-

ment of the dynamic set where each element is calculated by the intersection be-

tween the time interval I1 and one of the static time intervals of the dynamic time

interval I2 which is calculated using the previous item.

� If I1=[a1+k*b1,c1+k*d1[with k={0,1,2,�} is a dynamic time interval and

I2=[a2+k*b2,c2+k*d2[with k={0,1,2,�} is a dynamic time interval, the inter-

section (I1ŀI2) is the set of intersection between the static time intervals of the

dynamic time interval I1 and the static time intervals of the dynamic time inter-

val I2, where each element on the intersection set is calculated by the intersec-

tion of the two static time interval on I1 and I1 having the same value of the vari-

able k.

Example 6-2:

• If I1=[3,6]and I2=[2,5] two static time intervals, then I1ŀI2=[3,5]

• If I1=[1,4] is a static time interval and I2=[a+k*b, c+k*d[with

k={0,1,2,� } is a dynamic time interval with a=2 , b=3, and c=∞ (i.e.,

I2={[2+0*3,∞[, [2+1*3,∞[,[2+2*3,∞[, ... }, then I1ŀI2={[2,4]}

• If I1=[a1+k*b1,c1+k*d1[with k={0,1,2,� } is a dynamic time interval

with a1=1 , b1=1, and c1=∞ (i.e., I2={[1+0*1,∞[, [1+1*1,∞[,[1+2*1,∞[, ...

} and I2=[a2+k*b2,c2[with k={0,1,2,� } is a dynamic time interval with

a2=2 , b2=3, and c2=∞ (i.e., I2={[2+0*3,∞[, [2+1*3,∞[,[2+2*3,∞[, ... }),

then I1ŀI2={[2,∞[, [5,∞[,[7,∞[, ... }

Definition 6-3: An interaction trace IT between a protocol P1 = (S1; s0
1; X1; T1; F1)

and a protocol P2 = (S2; s0
2; X2;T2; F2) is a finite sequence ((si

1; si
2 ; ; ci; pli ;ti;

si+1
1; si+1

2))i , where sn
S1 and sn א 1

-S2 , mi is a message instance with its direc א 2

tion (either ä or å). ci is the set of all credentials sent either in this message or

CHAPTER 6 WEB SERVICES ANALYSIS

98

in any previous message with the same direction and pli is the ACP. ti is the time

period since the previous message, or zero for the first message.

Definition 6-4: An interaction trace IT = ((si
1; si

2 ; ; ci; pli; ti; si+1
1; si+1

2))i

between a protocol P1 = (S1; s0
1; X1;T1; F1) and protocol P2 = (S2; s0

2;X2; T2; F2) is

correct if and only if for every tuple (s1; s2; ; c; pl; t; s�1; s�2) in IT (and sym-

metrically for every tuple (s1; s2; ; c; pl; t; s�1; s�2) :

� There are two transitions (s1; s�1; M-; C; tc1) אT1 and (s2; s�2; M+; P; tc2) א

T2; where m is an instance of M and tc1 and tc2 are the time constraint.

� The set of credentials instances c sent in the instance message m match the

access control policy pl;

� [tc1]CV(t) (x
1

) =true and [tc2]CV(t) (x
2

) =true for all clocks x1א Xͳ and x2א Xʹ.
� The set of correct interactions traces between P1 and P2 is noted IT(P1; P2).

� IT is said to be complete if for its last transition (sn-1
1 ; sn-1

2 ; ;

ci-1; pli-1;ti-1; sn
1; sn

2), sn
F1 and s2 א1

nא F2

Definition 6-5: (Compatibility in terms of interaction trace assigned with AC)

Two business protocols, P1 = (S1; s0
1; X1;T1; F1) and a protocol P2 = (S2; s0

2; X2;T2;

CHAPTER 6 WEB SERVICES ANALYSIS

99

F2) are compatibles in terms of interaction trace if ׊ tr א IT(P1; P2), its last tuple

(sn-1
1;sn-1

2; ;cn-1;pln-1 ;tn-1; sn
1; sn

2) verifies:

sn)׌ t if ׊ m׊�
1; sn+1

1; Mn
-; cn

1; tcn
T1 , such that [tcn א (1

1] CV(t) (x1) =true and m is

an instance of Mn then ׌ s2 א S2 such that tr.(sn
1, sn

2 , ;cn;pln;t; sn+1
1; sn+1

 א (2

IT(P1; P2), and the set of credentials instances cn sent in the message m satisfies

the policy pln..

sn)׌ t if ׊ m׊�
2; sn+1

2; Mn
-; cn

2; tcn
T2, such that [tcn א (2

2] CV(t) (x
2

) =true and m is

an instance of Mn then ׌s1 א S1 such that tr.(sn
1,sn

2 , , cn; pln; t; sn+1
1; sn+1

 א(2

IT(P1; P2), and the set of credentials instances cn sent in the message m satisfies

the policy pln.

6.2.1.1. Cumulative access control credentials

There is a difference in the methodology between checking the compatibility in

terms of message exchange and in terms of AC. Checking the compatibility in

terms of message exchange depends on the current message of each protocol and

CHAPTER 6 WEB SERVICES ANALYSIS

100

corresponding current message in the other protocol. But checking the compatibil-

ity in terms of AC depends on the current ACP and the current or the previous cre-

dentials of the corresponding transition. Therefore, there is a need to update each

transition with all the credentials that can be provided before reaching it (i.e. transi-

tion credentials updated to be all the credential resulted from the current credentials

and the previous provided credentials). We called this set of credentials cumulative

access control credentials.

Figure 6-3 shows an example of two business protocols P1 and P2 where P1 pro-

vide its Visa credential in the first transition but P2 asked for it in the third transi-

tion. If we compare the two protocols without calculating the cumulative ACC

(CACC) then we will find that they are incompatible but after calculating the

CACC for P1 we find that they are compatible. The question is then; in which step

in the checking process the satisfaction between ACP and credentials can be

checked? Figure 6-4 shows an example to answer this question. In this figure, P1 is

a client protocol and P2 is a service protocol and P1 is compatible with P2. P3 is

another service protocol which is not compatible with P1 because the policy (Visa,

Student-Card) in M7 in P3 can not satisfied by ((Visa,Student-Card) ש

(Visa,Prof-Card)) credentials in P1.

Figure 6-5 shows an example where protocol P2 has a policy (Visa, Student-

Card) not satisfied by ((Visa,Student-Card) ש (Visa, Prof-Card)) credentials in

P1 but the two protocols are compatible because there is a part of the credentials

(Visa,Prof-Card) will not provided by the protocol P1 if it interacts with P2 and

the provided credentials in M7 is (Visa, Student-Card) which satisfy the (Visa,

Student-Card) in P2. Therefore, we must not calculate the cumulative before de-

termining the transition which will be used in the interaction between the two pro-

tocols. Thus, when we update the CACC, we only consider the transition which

will potentially share in the interaction.

CHAPTER 6 WEB SERVICES ANALYSIS

101

Figure 6-3: Importance of calculating the cumulative access control credentials.

Figure 6-4: Three different business protocols P1, P2, and P3. P1 is compatible

with P2 but not compatible with P3.

CHAPTER 6 WEB SERVICES ANALYSIS

102

S0 S1 S2 S3 s4

M1(-),Visa M3(+) M7(-),(Visa,

Student-Card)

(Visa,Prof-Card)

M8(+)

P1

S5 S6 S7

M4(+) M5(-),Prof-Card

M2(+)

M6(+)

S0 S1 S2 S3 s4

M1(+) M3(-)
M7(+),(Visa,

Student-Card) M8(-)

P2

Policy

Figure 6-5: P1 is compatible with P2 (this show the importance of calculating the

cumulative ACC after determining the transition which will be used in the interac-

tion and this is accomplished by calculating the product automata).

Definition 6-6 (Product automata) The product automata Ap of two timed explic-

itly timed business protocols P1 = (S1; s0
1; X1;T1;F1) and a protocol P2 = (S2; s0

2;

X2;T2; F2)) is defined as Ap = (Sp; s0
p; Tp; Xp;Fp) where:

� Sp = S1 x S2

� sp = (s0
1 ; s0

2)

� Tp is the greatest subset of ((S1 × S2) (S1 × S2) × ((x 2c1 x pl2) ש (x 2c2 x

pl1))× X × tcP) such that for all transition ((si
1; si

2) ; (si+1
1; si+1

2); ; plp ; cp; tci
p)

Tp there exist two transitions (si א
1; si+1

1; mi ;(pl1 or c1) ; tci
T1 and (si א (1

2; si+1
2;

mi ;(pl2 or c2) ; tci
 :T2 with א (2

CHAPTER 6 WEB SERVICES ANALYSIS

103

� tci
p=(tci

1, tci
2)

� polarity(mi; P
1) ≠ polarity(mi; P

2) and

� If polarity (mi; P
1) = - then = , pli

p = pli
2 and ci

p = ci
1

� Otherwise (mi; P
2) = - then = , pli

p = pli
1 and ci

p = ci
2

� Xi
p=

 {Xi
1,

 Xi
2}

� Fp = F1 x F2

6.2.1.2. Clocks synchronization

In multi-clocks Web services, comparing two constraints from two different

protocols during the compatibility and replaceability checking must be per-

formed after clock synchronization process. In this process, the relations

between the clocks in each protocol are determined on each transition on the

product automata. It uses the same technique as for calculating the cumula-

tive access control credential.

Definition 6-7 (Clocks synchronization constraint): a clock synchronization con-

straint can be in the form:

• xi=xj + a , where xi , xj א X and a אR .
• xi < xj + a.

Definition 6-8 (Clocks synchronization in the product automata): Given Ap of two

protocols transition P1= (S1; s0
1; X1;T1;F1) and a protocol P2 = (S2; s0

2; X2;T2; F2)

), for each transition tp in Ap, let tc be time constraint and y be a clock variable,

SC(tc,y) is defined as:

• SC(x=a,y)={{y=x-a}}

• SC(x א ሾaǡbሿǡyሻൌሼሼxǦb ≤ y, y ≤x-a}}

CHAPTER 6 WEB SERVICES ANALYSIS

104

• SC(x א ሾaǡbሾǡyሻൌሼሼxǦb < y, y ≤x-a}}

• SC(x א ሿaǡbሿǡyሻൌሼሼxǦb ≤ y, y <x-a}}

• SC(x א ሿaǡbሾǡyሻൌሼሼxǦb < y, y <x-a}}

• SC(tc1 ר tc2 , y)={CSC1 ׫ CSC2 | CSC1 א SC (tc1,y) and CSC2 אSC (tc2,y)}

• SC(tc1 ש tc2 , y)= SC(tc1 ,y) ׫ SC(tc1 ,y)

Let the time constraint tcp=(tc1, tc2) and clock reset {x,y} are on the product tran-

sition tp
, then SCp is defined as {{x=y} ׫ csc | SC(tc1ר tc2)}

Definition 6-9 (Update and Merge operators) the update operator UPDATE

CHAPTER 6 WEB SERVICES ANALYSIS

105

• For two credentials sets is the union of the two set (AND operator) (i.e.,

C1 UPDATE C2= C1 AND C2, where C1 and C2 are credentials sets) .

• Let CSC be a set of synchrounous clocks constraints. We define CSC|x

={csc | csc אCSC and csc is of the form xൌy൅aǡ yൌx൅aǡ x≤y+a, y≤x+a},

UPDATE(SC, SC�,v)={(CSC\ |x) ׫CSCǯ | CSC א SCǡ CSCǯאSCǯ
Let t

p
 be a product transition with time constraint tc

p
=(tc

1
,tc

2
) and clock

reset {x,y}, UPDATE(SC, t
p
)=UPDATE(SC,SC

p
(t

p
),{x,y})

• for two credentials sets is the logical disjunction of the two set (OR opera-

tor)

• MERGE(SC1, SC1)= SC1 ׫ SC2

Definition 6-10. (Cumulative path in the product automata): PAp = ((si
1,si

2)

 (si+1
1,si+1

2) ; � ;(sn
1,sn

2) (sn+1
1,sn+1

2)) is a cumulative path in the

product automata Ap = (Sp; s0
p; Tp; Fp) where

� States (si
1 ; si

2); � ; (sn
1; sn

 .Sp א (2

CHAPTER 6 WEB SERVICES ANALYSIS

106

� Each cumulative value is the set of cumulative values which is the UP-

DATE of the previous set of cumulative values and the current set of

Value Vi where Vi is the set of values on the transition between the state ((si
1,si

2)

and (si+1
1,si+1

2)) and = V0.

� A complete cumulative path in the product automata is the cumulative path which

starts with the initial state (s0
1; s0

2) and ends with a final state (sf
1 ; sf

 .Fp א (2

Definition 6-11. (Co-accessibility of a state in the product of automata) Ap = P1 x

P2 =(Sp; s0
p; Tp; Fp) is the product of automata of two TBP, P1 and P2, state (;

)) = Sp is co-accessible if there exist two paths PA1 and PA2 where PA2 א (;

).PA1. (;)) and (.Fp א (;

Definition 6-12. (Compatibility in terms of product automata assigned with AC)

Protocols P1 = (S1; s0
1; T1; X1; F1), protocol P2 = (S2; s0

2; T2; X2;F2), and Ap = (Sp;

s0
p; Tp; Fp) is their product automata, we say that P1 and P2 are compatible using

their product automata if there is a relation R ك S1 x S2 where for all (si
1,si

 :R א (2

CHAPTER 6 WEB SERVICES ANALYSIS

107

si)׊�
1; si+1

1 ; m-; ci
1; tci

si) ׌ ,T1 א(1
2; si+1

2 ; m+; pli
2;tci

T2, where (si א (2
1; si

2 ;si+1
1 ;

si+1
2 ; ; ci

1 and pli
2 ; tci

p) א Tp and (si+1
1,si+1

 .R א (2

si)׊ �
2; si+1

2 ; m-;ci
2; xi

2; tci
si) ׌ ,T2 א (2

1; si+1
1 ; m+; pli

1; xi
1; tci

T1, where (si א (1
1;

si
2 ;si+1

1 ; si+1
2 ; ; ci

2 and pli
1 ; tci

p) א Tp and .(si+1
1,si+1

 R א (2

� (si+1
1,si+1

 SP is co-accessible, there is a path in the product automata from א (2

this state to final state.

� (s0
1,s0

 R א (2

� For all the complete cumulative paths PAp = ((s0
1,s0

2) (s1
1,s1

2); � ;(sn
1,sn

2

) (sn+1
1,sn+1

2)), in the product automata, in each transition, each policy is

satisfied by the set of cumulative credential values on this transition and the inter-

CHAPTER 6 WEB SERVICES ANALYSIS

108

section between the time constraints and the cumulative time constraint value is

equal to the time constraint of the sending transition.

The previous definition is used as a base for the compatibility checking algorithm

between two protocols in terms of product automata with time constraints and AC.

The algorithm which is used for checking the compatibility between two protocols

in terms of product automata with time and AC can be divided into two parts. The

first part is for checking compatibility in terms of message exchange. This algo-

rithm can be implemented by constructing the product automata and traversing

through it, starting by the initial state, using breadth first approach and checking

that if there is a state is not included in this relation set R (i.e. each state have two

corresponding states of the two protocol and all the outgoing messages from this

state in one protocol can be received by the another protocol and the time con-

straints satisfied), then the algorithm stops and the two protocols are not compati-

ble, else if all states in the product automata are included in this relation set then

the two protocols are compatible in terms of message exchange. This is shown in

Algorithm 6-1. The second part is for calculating the cumulative credentials and

time constraint on each transition on the product automata.

Algorithm 6-2 presents the second part of the algorithm. The idea of this algorithm

is to use the queue data structure to cumulate the credentials and the time con-

straints. Each element of the queue consists of the state, cumulative value (creden-

tials or time) corresponding the protocol P1 in this state, and the cumulative value

corresponding the protocol P2 in this state. The algorithm traverses through the

automata for updating these values of the states and in the same time updates the

cumulative value on the transitions. After calculating the cumulative values on

each transition, if any ACP related to one of the two protocols on any transitions is

not satisfied by the cumulative credentials on this transition related to the other

transition or the time intervals intersection is not equal to the time intervals of the

sending messages, then the two protocols are not compatible in terms of AC or

time.

Algorithm 6-1: Compatibility between two protocols using product automata in terms of

message exchange

Input: P1 = (S
1
; s0

1
; T

1
; F

1
) and P2 = (S

2
; s0

2
; T

2
; F

2
) and their product automata Ap

 = (S
p
; s0

p
;

CHAPTER 6 WEB SERVICES ANALYSIS

109

T
p
; F

p
)

Output: checking compatibility result: The protocol P1 and P2 are compatible or not.

Ec //set of compatible states in sp.

Eca // set of co-accessible states in Ec.

Cmessage // boolean variable set to true if the two protocols are compatible in terms of message

exchange and false otherwise.

modifiedEca ä true // Boolean variable used for verifying the co-accessibility, it is true each

time Eca changed.

Ec ä (s0
1; s0

2)

//finding the couples of compatible states in Sp

Foreach (si
1 ; si

 Sp do א (2

//verifying the output message from P1

si)׊
1; si+1

1 ; m-; tci
 T1 א (1

 If ׌ (si
2; si+1

2 ; m+; tci
T2 , where (si א (2

1; si
2 ;si+1

1 ; si+1
2 ; ; tci

Tp and (si+1 א (1
1,si+1

 R א (2

then

 Continue

Else

 Return false

End

//verifying the output message from P2

CHAPTER 6 WEB SERVICES ANALYSIS

110

si)׊
2; si+1

2 ; m-; tci
 T2 א (2

 If ׌ (si
1; si+1

1 ; m+; tci
T1 , where (si א (1

1; si
2 ;si+1

1 ; si+1
2 ; ; tci

Tp and .(si+1 א (2
1,si+1

 R א (2

then

 Continue

Else

 Return false

End

End

Ec ä Ec ׫ [(si
1 ,si

2)]

//verifying the co-accessibility of states in Ec

Eca = Ec ŀ (sf
1 ; sf

2)

While modifiedEca = true do

 modifiedEca = false

Forall (si
1 ; si

 Eca do ב Ec א (2

CHAPTER 6 WEB SERVICES ANALYSIS

111

If ׌(sj
1 ; sj

Eca and ((sj א (2
1 ; sj

2); (si
1 ; si

2);mi; tc
1
i) א Tp then

Eca ä Eca ׫ (si
1 ; si

2) and modifiedEca ä true

 End

 End

End

If Ec - Eca ≠ 0 then

 Return false

Else

 Cmessage =True (the protocols are compatible in terms of messages changes and time)

End

Complexity analysis: Let T1 and T2 be the number of transitions of the two proto-

cols P1 and P2 respectively, the construction of the product automata will take (T1

x T2). As a result, the complexity for the algorithm will be O(T1 x T2).

Algorithm 6-2: Compatibility between two protocols using cumulative product auto-

mata in terms of AC and time.

Input: P1 = (S1; s0
1; T1; F1) and P2 = (S2; s0

2; T2; F2), product automata Ap = (Sp; s0
p; Tp;

Fp)

Output: protocols P1 and P2 are compatible in terms of AC or not.

CHAPTER 6 WEB SERVICES ANALYSIS

112

1- Calculate the cumulative values on the automata.

: Cumulative value corresponding to protocol P1 and assigned to the state si.

 : Cumulative values corresponding to protocol P2 and assigned to the state si.

: Cumulative values corresponding to protocol P1 and assigned to the transition between

si and sj (i.e. union of set of values in those transitions).

: Cumulative values corresponding to protocol P2 and assigned to the transition between

si and sj .

: The policy on the transition ti in the protocol P1.

 : The cumulative credentials of the protocols P1 on the transition ti on the product

automata

tci
1: the cumulative time constraint of the protocols P1 on transition ti in the product auto-

mata.

for each state si א output(s0) do

 =

 =

ENQUEUE(si; ;)

while Q ≠ empty do

 Temp_Q = DEQUEUE(Q)

foreach sj אoutput(si) in (si; ;) = Temp_Q do

_ temp =

CHAPTER 6 WEB SERVICES ANALYSIS

113

 _temp =

if ≠ null then

=)

 else

=)

if ≠ null then

=)

 else

=)

 =

 =

if ¬ ((== temp) and ≠ null and (== temp) and ≠ null)) then

ENQUEUE(Q; sj ; ;)

2- if ׊ , satisfied and (tci
1 ŀ tci

2 =tci
1) , and ׊ , satisfied and

(tci
1 ŀ tci

2 =tci
2) where vi

1 which is calculated in step 1 for credentials,

vi
2(credentials), vi

1 which is calculated in step 1 for time, vi
2(time)

then

 The two protocols are compatible in terms of AC and time.

Else

 The two protocols are not compatible in terms of AC or time.

CHAPTER 6 WEB SERVICES ANALYSIS

114

Complexity analysis: Let T1 and T2 be the number of transitions of the two proto-

cols P1 and P2 respectively, the construction of the product automata will take (T1

x T2). The calculation of the cumulative credentials will take number of states in

the product automata |(S1 x S2)| multiplied by the size of the longest non looping

path multiplied by |(S1 x S2)| (i.e. cumulative credentials takes |(S1 x S2)|3) . As a

result, the complexity for the algorithm will be ((T1 x T2) + |(S1 x S2)|3).

Example 6-3: In this example, a business protocol of a web service performing two

operations with two different AC and a client service that interacts with this service

are presented in Figure 6-6 and Figure 6-7 respectively. Figure 6-8 and Figure 6-9

show the product automata of the two protocols and the graphical representation of

the used ontology. Note that the compatibility of the two protocols partially de-

pends on the subsumption relation between school and student cards. Using the

ontology, the two protocols are compatible because the (School student card) is a

(student card).

Figure 6-6: Business protocol of web service performs two operations.

Figure 6-7: Business protocol of a consumer needs to interact with the service in

Figure 6-6.

CHAPTER 6 WEB SERVICES ANALYSIS

115

Figure 6-8: Product automata of the two protocols of Figure 6-6 and Figure 6-7

assigned with AC.

Figure 6-9: Graphical representation of resources ontology linked with the creden-

tial ontology.

6.2.2 Replaceability

In our work we are interested in two types of replaceability analysis: full re-

placeability and replaceability in terms of interaction with specific consumer. Proto-

col P1 can be fully replaced by protocol P2 if and only if all the protocols that are

compatible with P1 are compatible with P2. Protocol P2 can replace P1 in terms of

interaction with consumer protocol P3 if and only if protocol P2 is compatible with

P3 which is compatible with P1.

Definition 6-13 (Intersection automata) The intersection automata Ai of two timed

business protocols with AC, P1 = (S1; s0
1; X1;T1; F1) and P2 = (S2; s0

2; X2;T2; F2))

is defined as Ai = (Si; s0
i; Ti; Xp;Fi) where:

CHAPTER 6 WEB SERVICES ANALYSIS

116

� Si = S1 x S2

� si = (s0
1 ; s0

2)

� Ti is the greatest subset of ((S1 x S2) (S1 x S2) × ((M-x 2c1) ש (M+ x pl1)) × X ×

I) such that for all transition ((si
1; si

2) ; (si+1
1; si+1

2)); ; pli; ci; tci
i) א Ti there

exist two transitions (si
1; si+1

1; mi ;(pl1 or c1) ; xi
1 ; tci

T1 and (si א (1
2; si+1

2; mi ;(pl2

or c2) ; xi
2 ; tci

 : T2 with א (2

� tci
i=(tci

1, tci
2)

� polarity(mi; P
1) = polarity(mi; P

2) and

� If polarity (mi; P
1,2) = - then ci

i =(ci
1 and ci

2)

� otherwise (mi; P
1,2) = + then pli

i =(pli
1 and pli

2)

� Fi = F1 x F2

Definition 6-14 (Replaceability in terms of intersection automata) Protocol P1 =

(S1; s0
1; T1; X1; F1), protocol P2 = (S2; s0

2; T2; X2;F2), and Ai =P1 ŀ P2 = (Si; s0
i; Ti;

Fi) is their intersection automata, we say that P1 can be fully replaced by P2 using

CHAPTER 6 WEB SERVICES ANALYSIS

117

their intersection automata if there is a relation R ك S1 x S2 where for all (si
1,si

2)

 :R א

si)׊�
1; si+1

1 ; mi
+; pli

1; tci
si) ׌ T1 א (1

2; si+1
2 ; mi

+; pli
2; tci

T2 ,where (si א (2
1;

si
2 ;si+1

1 ; si+1
2 ; pli

i ; tci
i) א Ti , and .(si+1

1,si+1
 R א (2

si)׊ �
2; si+1

2 ; mi
-; ci

2; ii
si) ׌ T2 א (2

1; si+1
1 ; mi

-; ci
1; ii

T1 , where (si א (1
1; si

2 ;si+1
1 ;

si+1
2 ; ; ci

i ; ii
Ti, and (si+1 א (2

1,si+1
 R א (2

� (si+1
1,si+1

 Si is co-accessible, there is a path in the product automata from this א (2

state to final state.

CHAPTER 6 WEB SERVICES ANALYSIS

118

� (s0
1,s0

 R א (2

� For all the complete cumulative paths PAi = ((s0
1,s0

2) (si+1
1,si+1

2) ; �

;(sn
1,sn

2) (sn+1
1,sn+1

2)), in the intersection automata, any set of credential

satisfy the cumulative policy can also satisfy the cumulative policy and

The algorithm for checking the replaceability uses the same mechanism which

is used in the compatibility algorithm. The idea is to traverse through the intersec-

tion automata starting from the initial state and checking the mentioned properties

of the relation R. The second part uses the same technique as algorithm 2 but in-

stead of calculating the cumulative credentials it calculates the cumulative policies

for the first protocol P1 and the cumulative credentials for the second protocol P2.

For all policies in the intersection automata, any set of credential satisfy can

also satisfy the cumulative policy and the set of credentials is a subset of

the set of cumulative credentials . The complexity of this algorithm is the same

as the complexity of the compatibility algorithm because they use the same mecha-

nism but with different way of manipulation.

Proof 6-1: Compatibility in terms of automata implies compatibility in terms

of interaction trace.

Given P(S,s0,T,X,F) and P�(S�,s�0,T�,X�,F�) are two TBP, and Ap = (Sp; s0
p; Tp; Xp;

Fp) is a product automata, suppose we have tr =(S0,S�0,m1,m�1, t1, S1, S�1),

(S1,S�1,m2,m�2, t2, S2, S�2) ,� , (Si-1,S�i-1,mi,m�i, ti, Si,S�i) is a partial interaction trace.

We have P and P� are compatible in terms of automata so there is a relation

RكS×S� where for all (Si,S�i) אR:

CHAPTER 6 WEB SERVICES ANALYSIS

119

I(Si, Si+1, m i ׌ output(Si), if polarity (mi,P) = - then א mi ׊ •
-,tc) א T and ׌

I�(S�i, S�i+1,m�i
+,tc�) א T� where Ci

-
pl�i ك

+ (Ci is the set of credentials and

pl is the ACP), and ׌ Ip(Si, S�i, , ti+1, Si+1 , S�i+1) אTP, and (Si+1,S�i+1) א

R, which implies that there is a new transition added to the partial interac-

tion trace tr is(Si, S�i, ,ti,Si+1,S�i+1) and because (Si+1,S�i+1) is co-

accessible (there is a path to the final state) then the interaction trace

IT(tr.(Si, S�i, ,ti,Si+1,S�i+1) can reach a final state. Therefore IT(tr.(Si,

S�i, ,ti,Si+1,S�i+1) is start by initial state and ends by final state so it is

included in a complete interaction trace.

I(Si, Si+1, mi ׌ output(S�i), if polarity (mi,P�) = - then א m�i ׊ •
+, tc) א T and

I�(S�i, S�i+1, mi ׌
-, tc�) אT� where C�i

-
pli ك

+ , and ׌ Ip(Si, S�i, , ti+1, Si+1 ,

S�i+1) אTp, and (Si+1,S�i+1) א R, which implies that there is a new transition

CHAPTER 6 WEB SERVICES ANALYSIS

120

added to the partial interaction trace tr is (Si, S�i, ,ti,Si+1,S�i+1) and be-

cause (Si+1,S�i+1) is co-accessible(there is a path to the final state) then the

interaction trace IT(tr.(Si, S�i, , ,ti,Si+1,S�i+1) can reach a final state.

Therefore, IT(tr.(Si, S�i, ,ti,Si+1,S�i+1) is start by initial state and ends by

final state so it is included in a complete interaction trace.

Proof 6-2: Compatibility in terms of interaction trace implies compatibility in

terms of automata.

Given two TBP P(S,s0,T,X,F) and P�(S�,s�0,T�,X�,F�) are compatibles in terms of

interaction trace IT.

• If ׊ IT that starts at (S0,S�0) and ends (Sn+1,S�n +1), (i.e ׊ tr א Trp(P,P�)

with tr =(S0,S�0,m1, t1, S1, S�1), � ., (Sn-1,S�n-1,mn,tn, Sn ,S�n))

o If ׊ mn+1 and ׊tn+1 if ׌ (Sn,Sn+1,m
-
n+1,tc(n+1)) א T then ׌ s�n+1 א S�,

where the interaction trace IT(tr.(Sn, S�n, ,tn+1,Sn+1,S�n+1) is

included in a complete interaction trace. Transition(Sn, S�n,

,tn+1,Sn+1,S�n+1) in the previous interaction trace implies that in all

partial interaction trace transition which resulted from the transi-

tion (Sn,Sn+1,m
-
n+1,tc(n+1)) א T where Ci

-
pl�i ك

+ . So, this presents

the first property of a relation R where (Sn,S�n) and (Sn+1,S�n+1) אR.

CHAPTER 6 WEB SERVICES ANALYSIS

121

Since IT(tr.(Sn, S�n, ,tn+1,Sn+1,S�n+1) is includes in a complete

interaction trace so (Sn,S�n) and (Sn+1,S�n+1) are co-accessible

which is a second property of the relation R. This interaction trace

is starts by the initial state, so there is a path from it to the final

state and because tr is included in complete interaction trace so

this state is co-accessible which is a third property of the relation

R.

o If ׊m�n+1 and ׊t�n+1 if ׌ (S�n,S�n+1,m�-
n+1,tc�(n+1)) א T� then ׌ sn+1 א

S, where the interaction trace IT(tr.(Sn,S�n, ,t�n+1,Sn+1,S�n+1) is

included in a complete interaction trace. Transition (Sn,S�n,

,t�n+1,Sn+1,S�n+1) in the previous interaction trace implies that in all

partial interaction trace transition which resulted from transition

(S�n,S�n+1,m�-
n+1,tc�(n+1)) אT� where C�i

-
pli ك

+. So this presents the

first property of a relation R where (Sn,S�n) and (Sn+1,S�n+1)אR.

Since IT(tr.(Sn,S�n, ,t�n+1,Sn+1,S�n+1) is included in a com-

plete interaction trace, so (Sn,S�n) and (Sn+1,S�n+1) are co-accessible

which is a second property the relation R. This interaction trace is

starts by the initial state, so there is a path from it to the final state

and because tr is included in complete interaction trace so this

state is co-accessible which is the third property of the relation R.

As a result, each state in the partial interaction trace is based on the previous defini-

tion of the compatibility in terms of interaction trace is belongs to the relation R.

CHAPTER 6 WEB SERVICES ANALYSIS

122

And all the properties required in R are satisfied by the definition of the compatibil-

ity in terms of interaction trace.

6.3. Implementation

The compatibility and replaceability algorithms are implemented and used as a

verification tools on the COMPAS7 (Compliance-driven Models, Languages, and

Architectures for Services) project. This software package consists of an eclipse

plug-in for editing business protocols and a library for checking compatibility and

replaceability between web services using their business protocols. The access

control specification, as an example of data constraints, is presented using the on-

tology in this package.

In our implementation, the ontology is created in a (*.owl). For example,

Figure 6-9 describe an ontology taxonomy and Listing 1 presenting the

(*.owl) file contents of this ontology. As it is possible to see in the last part

of the Listing 1, there are some individuals that belong to the class taxon-

omy.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns="http://www.owl-ontologies.com/prova.owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.owl-ontologies.com/prova.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Journal_papers">

<rdfs:subClassOf>

<owl:Class rdf:ID="Library_papers"/>

</rdfs:subClassOf>

 7eu.ict-compas.www://http.

CHAPTER 6 WEB SERVICES ANALYSIS

123

</owl:Class>

<owl:Class rdf:ID="card"/>

<owl:Class rdf:ID="Professor_card">

<rdfs:subClassOf rdf:resource="#card"/>

</owl:Class>

<owl:Class rdf:ID="University_student_card">

<rdfs:subClassOf>

<owl:Class rdf:ID="Student_card"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Conference_paper">

<rdfs:subClassOf rdf:resource="#Library_papers"/>

</owl:Class>

<owl:Class rdf:about="#Student_card">

<rdfs:subClassOf rdf:resource="#card"/>

</owl:Class>

<owl:Class rdf:ID="School_card">

<rdfs:subClassOf rdf:resource="#Student_card"/>

</owl:Class>

<owl:SymmetricProperty rdf:ID="hasCredential1">

<rdfs:range rdf:resource="#card"/>

<rdfs:domain rdf:resource="#Journal_papers"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

<owl:inverseOf rdf:resource="#hasCredential1"/>

</owl:SymmetricProperty>

<owl:SymmetricProperty rdf:ID="hasCredential">

<rdfs:domain rdf:resource="#Conference_paper"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

<owl:inverseOf rdf:resource="#hasCredential"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Professor_card"/>

<owl:Class rdf:about="#Student_card"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:SymmetricProperty>

<Library_papers rdf:ID="L1"/>

CHAPTER 6 WEB SERVICES ANALYSIS

124

<Student_card rdf:ID="S1"/>

<Journal_papers rdf:ID="J1"/>

<Conference_paper rdf:ID="C1"/>

<Professor_card rdf:ID="P1"/>

<card rdf:ID="c1"/>

<School_card rdf:ID="Sc1"/>

<University_student_card rdf:ID="U1"/>

</rdf:RDF>

Listing 1: Representation of the (*.owl) file of the AC ontology presented in

Figure 6-9

CHAPTER 7 GENERAL SPECIFICATION APPROACH

125

Chapter 7 . GENERAL SPECIFICA-

TION APPROACH

In the previous chapters, we discussed the modeling and analyzing of Web services

interoperability in the presence of some important parameters such as time and AC.

This chapter presents a general approach in which we can perform our analysis in

the presence of many parameters.

7.1. Introduction

The interaction between the Web services depends on the behavior of each service.

This behavior is presented by the business protocol. If the Web service is consid-

ered as a Web resource, then the business protocol of it can be seen as a general

constraint that must be satisfied during the interaction. The business protocol can

be simple and only includes the order of the messages that can be presented by the

service. But the majority of service includes more constraints such as the access

control policies and the time constraints. Therefore, there is a crucial need to enrich

the business protocol with all the possible constraints that are required during the

interaction. As a result, modeling and analyzing web service behaviors after includ-

ing all the possible constraints needs general approach. In this approach, we will

model and analyze the Web service behavior after including all types of the con-

straints. Thus, each transition in the business protocol is assigned by a message

with a set of constraints. We will call this �message specification�. The message

specification consists of a message name and a set of attributes such as

XMLSchema, ACP, credentials, privacy, meaning, and time.

7.2. Abstract interpretation

Model Checking technique takes into account every possible state of the system

and determines if it is consistent with the designer's specifications. But, this tech-

nique is limited by the size of the systems it can analyze. For example, the concrete

semantics model of a program (the set of all its possible executions in all execution

CHAPTER 7 GENERAL SPECIFICATION APPROACH

126

environments) is not computable. All the non trivial questions on the concrete pro-

gram semantic are undicidable.

Abstract Interpretation [52], by contrast, doesn't attempt to look at every possible

state of a system, but to develop a simplified approximation of a system that pre-

serves the particular properties that need to be assessed. This makes it possible to

analyze very large, complex systems, but with less precision than is possible with

model checking.

Each message specification constraint is an abstract domain for a set of instances

values (concrete values) and the relation between these constrains and its instance

values is a Galois connection relation [51] which is a part of the abstract interpreta-

tion theory.

Definition 7-1. Galois connection: (A, ≤) and (B,َ) are posets; a pair Į :AĺB

and Ȗ :BĺA is a Galois connection iff {׊u א A, ׊v א B, Į(u)َv Ł Ȗ(v)} and is

written as .

In the Galois connection, the functions Į and Ȗ are called concretization and ab-

straction functions respectively. In our approach, each specification value is pre-

sented as an abstract domain and the concrete domain is the set of the instances that

satisfy this specification.

7.3. Formalizations

Each message specification consists of a set of attributes presenting the different

types of the constraints. These specifications attributes have domains of specifica-

tions. There is a set of operations that can be applied on these attributes such as

subsumption, intersection, and composition.

Definition 7-2: Specification attribute domain E is consists of:

CHAPTER 7 GENERAL SPECIFICATION APPROACH

127

• A lattice (SV,ّSV ǡِSV, ك SV) of specification values (SV)

• A set I of instance values

• An instantiation morphism, fi : SV ĺ 2I

• Subsumption partial order ك on SV, such that f (sv) َ f (sv�) ֞ SV ك SV�

• An annotation function : fa : XML*ĺ (XML×I)*
, where XML refers to the

set of all message in an xml format.

• Annotates the last element of the sequence: if fa(xms.xm)=XMS.XM, then

fa(xms)=XMS, where xms refers to the sequence of messages before anno-

tation, xm refers to an xml message before annotation, XMS refers to the

sequence of messages after annotation, and XM refers to an xml message

after annotation.

The relation between the lattice (SV,ّSV ǡِSV, SV) of specification values and ك

the lattice (2I ,َ) of instances value is a Galois connection. If the specification

doesn�t contain some attributes, we will put default values for these attribute. The

credentials specification attribute domain E(Credentials) ={Visa, Master Card, ID

Card, Driver license,�.} is an example of a specification attribute domain. The set

of the specification values of the credentials is a poset and each specification value

has a set of instances. The subsumption between the specification values means

that the set of the instances of the subsumed specification value is included in the

CHAPTER 7 GENERAL SPECIFICATION APPROACH

128

set of the instances of the other specification value. The annotation process deals

with the instance values and in each transition the current instance value is anno-

tated to the message with the previous values that are provided in the previous tran-

sitions. For example, the credentials instance values on each transition are the cu-

mulated credentials which are provided in the previous transitions and instance

value in the current transition.

Each transition of the business protocol will have different specification attributes

such as the ACP and time. The specification attribute domain of these specification

attributes is the composition of them.

Definition 7-3: Composed specification attribute domain is a tuple (SVcas, Icas,

Ficas, Facas) where:

• Poset(SVcas,كScas)=(SVas1 × SVas2 × �..× SVasn, ك Scas)

Where (SVas1,..., SVasn) ك Scas (SV�as1,..., SV�asn)

Iff SVas1ك as1SV�as1 and � and SVasnك asnSV�asn

• Icas=Ias1 × � × Iasn , xm.y ĺ XM.(y,Ly)

• Ficas(SVas1� SVasn)=fias1(SVas1)×�..× fiasn(SVasn), xm ĺ XM

• Facas (xm)=(faas1(xm),�, faasn(xm), xm.y ĺLy

An example of a composed specification attribute domain is Ecas={ACP=(Visa, ID

Card, Master Card, Driver license, �), Time=(t11] א,∞[, t22,10] א[,�), Mean-

CHAPTER 7 GENERAL SPECIFICATION APPROACH

129

ing=(request ID , Response, confirmation ,�.), XMLSchema=(m1.xsd, m2.xsd,�),

(Credentials=(Student Card, Visa,�)}. This attribute domain Ecas contains a set of

specification attribute domains for a set of specification values such as the ACP,

Time, Meaning, XMLSchema, and Credentials. Each specification value has its

specification attribute domains. For example, the specification attribute domain of

the ACP specification value is (Visa, ID Card, Master Card, Driver license, �)

and the specification attribute domain of the XMLSchema specification value is

(m1.xsd, m2.xsd,�). The initiation function assign for each composed specification

value a set of instances by assigning to each specification value the set of instance

that satisfy this specification.

Definition 7-4: (Message specification (ms) and Message instance (m)) ms is a set

of specification values associated to the message and m is a concrete message that

matches certain message specification

An example of message specification is ms={ACP=(Visa), Time=(t11,10] א[),

Meaning = (confirmation), XMLSchema=(m1.xsd), (Credentials=(False)}. The

concrete message m is the message that satisfies all the previous constraints by

containing instance values satisfy all the specification values. In other words, the

message m must contains a visa card , the value of the clock t1 must be between the

one and the ten when this message is sent, the meaning is a confirmation, and the

structure of the message m must be compatible with the schema described in the

m1.xsd file.

Definition 7-5: Message annotation is the process of annotating sequence of mas-

sages matches a service protocol using annotation function fa: (XML × T) *ĺI.

Each attribute (constraint type) has a way of annotating; ACP attribute value of a

message is annotated as the union of all ACP declared in the previous messages

and did not receive its equivalent credentials from the other party. The credential

can be annotated as the sum of all the provide credentials in the previous message.

Definition 7-6: Annotated message as an instance of message specification, We

say that an annotated message m1 with attributes (A1 (v1), A2(v2), � An(vn)) , where

(A1 , A2, ..An) are attributes and v1,v2,v3 are annotated values for these attributes,

CHAPTER 7 GENERAL SPECIFICATION APPROACH

130

is an instance of message specification (n,SV1(c1),�., SVn(cn)), where n is the

specification name and c1,c2,..cn are the sets of instances values for each attribute ,

if cj=FEj(SVj) and vjא cj.

For example, the set of instances for the XMLSchema= (m1.xsd) includes all the

instance XML messages that can be validated by the XMLSchema which is present

in the m1.xsd file and the set of instances for the ACP =(Visa) is all the instance

that have a visa card and the composed instance set is all the instances that satisfy

the specification.

The new definition of the business protocol includes the constraints in terms of

message specification. We call this type of protocols �General Constraints Busi-

ness Protocols�. From the point of view of message specification definition, time is

considered as one of the attribute specification domain. Therefore; the definition of

the constrained business protocol does not explicitly mention the time but embeds

it in the message specification.

Definition 7-7: General Constraints Business Protocol (GCBP) is a tuple P= (S,

s0, T, X, F) where:

� S is a finite set of states.

� s0 is the start state of protocol P and S0 א S.

� X is a finite set of clocks with set of clock reset CR א X.

CHAPTER 7 GENERAL SPECIFICATION APPROACH

131

� T is a finite set of transitions with :T ك S2 ×MS × {-,+}× CR × RK, a finite

set of explicit transition where MS is the set of message specification (ms)

assigned to the explicit transitions and CR is the set of clock reset. RK is

the set of variables reset, if there is no dynamic variables in the protocol,

then this set is always empty.

� F ك S is the set of final states.

Definition 7-8: Attribute subsumption, attribute E with set of instances I1 is sub-

sumed by attribute E� with set of instances I2 if I1 is subset of I2. If the specification

doesn�t contain some attributes, we will put default values for these attributes.

The default values of the attribute depend on its type. For example, if there is no

ACP, the default value is �true� and for the credentials the default value is �False�.

In the case of time, the default value is the time interval from zero to infinity.

Figure 7-1 shows an example of two Web services business protocol with general

constraints messages specifications. Each business protocol is consists of a set of

states with a start state and an end state and a set of transitions with a set of clocks

reset and message specifications. The message specifications on each transition

consist of a set of attributes such as the ACP, credentials, time, XMLSchema, and

meaning. Each attribute is assigned with a specification value or a default value.

For instance, the transition between the states s2 and s3 in the protocol P1 has a

message specification value :(ResourceReqSent(-) (XMLSchema {m3.xsd}, Cre-

dentials{False,}, Meaning {resource request }, ACP{True}, time{t1[0,10[}) with a

default values for the ACP={True} and Credentials={False} which means that the

service in this transition does not require an access control policy and does not

provide credentials respectively.

CHAPTER 7 GENERAL SPECIFICATION APPROACH

132

Figure 7-1.Two Web services business protocols with general constraints mes-

sages specifications.

Definition 7-9: (Messages Specification subsumption) message specification ms1

with set of attribute (E1, E2�, En) is subsumed by message specification ms2 with set

of attributes (E�1, E�2�, E�n) if for each 1 ≤ i ≤n, and 1 ≤j ≤n, ׌ Ei ك E�j .

An example of message specification subsumption can be seen between the mes-

sage specification (ms1) on transition between the states s0 and s1 in the protocol

P1 and the message specification (ms1�) on the transition between the states s�0

and s�1 in the protocol P2 in Figure 7-1 where ms1 ms1�. We can notice that the

credentials attribute in the message specification ms is (Visa) but the ACP has the

default value (False) which means that the first service provides a credential and

the other service does not need credentials in this transition.

Definition 7-10: Messages specification intersection (ms ŀ ms�) is a message

specification ms� with a composed attribute specification such that each attribute

value in this specification is the lower attribute value of each pairs in the argument

messages ms and ms� by comparing the tuple of theses messages as to point com-

parison.

CHAPTER 7 GENERAL SPECIFICATION APPROACH

133

The message specifications intersection is used in the process of the product auto-

mata creation of two GCBP. This intersection produces a new message specifica-

tion with the set of instances that is included in the original specifications.

Definition 7-11: Conversation is a sequence of XML messages instances.

Definition 7-12: (Conversation w.r.t business protocol) a correct conversation

w.r.t BP is a sequence of XML messages instances that can be recognized by the

protocol where each message instance satisfies the corresponding message specifi-

cation.

Definition 7-13: Interaction trace between two protocols P and P�): Interaction

trace IT is a sequence of the form ((Si, S�i , , Si+1, S�i+1))i where Si, Si+1 א S of

protocol P, and S�i, S�i+1א S of protocol P� and , define the annotated mes-

sage on the transition and the two direction arrow means that it can be input or

output depending on the polarity of output messages from states Si and S�i.

 Definition 7-14: Correct interaction trace w.r.t two protocols: Interaction trace

IT is a sequence ((Si, S�i, , Si+1, S�i+1))i . An IT matches a conversation be-

tween two GCBP P(S, S0, T, F) and P�(S�,S�0,T�,F�) if ׊ (Sj,S�j, , Sj+1, S�j+1)

in IT where א (msj+1 ŀ ms�j+1).

• If = then

CHAPTER 7 GENERAL SPECIFICATION APPROACH

134

Sj,Sj+1,msj+1) ׌ •
 . T א (-

S�j,S�j+1,ms�j+1) ׌ •
 .�T א (+

• If then

Sj,Sj+1,msj+1) ׌ •
 . T א (+

S�j,S�j+1,ms�j+1) ׌ •
 .�T א (-

Definition 7-15:(Compatibility in Terms of Interaction Trace) Two constrained

business protocol, P(S, S0, T, X, F) and P�(S�, S�0, T�, X�, F�) are compatibles in

terms of interaction trace IT

If ׊ IT that starts by S0,S�0 and ends Sn,S�n,(i.e ׊ tr א Trp(P,P�) with tr

=(S0,S�0, , S1, S�1), �., (Sn-1,S�n-1, , Sn ,S�n)

CHAPTER 7 GENERAL SPECIFICATION APPROACH

135

-ms א mn+1 ׊ •
n+1, if ׌(Sn,Sn+1,ms-

n+1)א T then ׌ s�n+1 א S� and

+�S�n,S�n+1,ms)׌
n+1)א T� such that IT(Sn, S�n, ,Sn+1,S�n+1) א Trp(P,P�)

and and the interaction trace IT(tr.(Sn, S�n, ,Sn+1,S�n+1))

is included in a complete interaction trace

-�msא m�n+1 ׊ •
n+1||, if ׌ (S�n,S�n+1,ms�-

n+1)א T� then ׌sn+1 א S and ׌

(Sn,Sn+1,ms+
n+1)א T such that IT(Sn, S�n, ,Sn+1,S�n+1) א Trp(P,P�)

and and the interaction trace IT(tr.(Sn, S�n,

,Sn+1,S�n+1)) is included in a complete interaction trace.

The product automata definition supposes that the pre-processing operations such

as the removal operation of the implicit transitions of the business protocols are

performed.

Definition 7-16. (Product automata of two GCBP) P (S, S0, T, X, F) and P�(S�,S�0,

T�, X, F�) are two CBP, we construct product automata of P and P�, Ap=P ×P�

=(Sp,So
p,Tp, Fp) where:

• Spك S×S�

CHAPTER 7 GENERAL SPECIFICATION APPROACH

136

• So
pك(S0,S�0)

• Tpك ((S ×S�)×(S×S�)×(MS ŀ MS)) such that for all transition

((Si,S�i),(Si+1,S�i+1), Tp there exist two transitions (Si,Si+1,msi+1) א (

 :T� with א T and (S�i,S�i+1,ms�i+1) א

o = (msi+1ŀ ms�i+1) is the message specification which re-

sulted from the intersection of the msi+1 and ms�i+1 message speci-

fications.

o Polarity(msi+1,P) ≠ Polarity(ms�i+1,P�)

̇ If polarity(msi+1,P) = - then = , and polar-

ity(ms�i+1,P�) = + .

̇ If polarity(ms�i+1,P) = - then = , and po-

larity(msi+1,P) = +.

• Fp ك F×F�

CHAPTER 7 GENERAL SPECIFICATION APPROACH

137

Figure 7-2 shows the product automata of the two business protocols P1 and P2 of

Figure 7-1. In this automata, the name of each state is the names of the two states

of the corresponding states of the two protocols (e.g., the start state (s0,s�0)). Each

transition contains a message specification name and the message specification

which is the result of the intersection between the two corresponding message

specifications of the two protocols. The direction of the arrow on the message indi-

cates the sender and the receiver of the message from the two protocols in this tran-

sition. If the arrow is from left to right this means that the message will be sent

from the protocol which has the first state in the state name. For example in the

transition between the states (s0,s�0) and (s1,s�1) the arrow is from the left to right

which means that this message is sent from the protocol P1 to the protocol P2 and

vice-versa. The produced product automata in Figure 7-2 shows that the time inter-

section in the transition between the states (s2,s�2) and (s3,s�3) is ((t1,t1�)[0,10[).

The time intersection is calculated directly because the two clock reset t1 in P1 and

t�1 in P2 are corresponding to each other.

Before performing the compatibility checking, some attributes needs to be cumu-

lated. The most common example for these attributes is the credentials attribute.

The cumulating process enable the checker to identify in each transition what ex-

actly the provided information (credentials). For instance, in the protocol P1 in

Figure 7-1 the Visa credential is provided in the first transition and as a result this

credential is included implicitly in the credentials attributes in the next transitions.

Therefore, the credential attributes on the next transition that are used in the inter-

action must be updated by adding the previously provided credentials. This step is

performed after the creation of the product automata. The cumulating process for

credentials is explained in details in [63].

Figure 7-2. The product automata of the two business protocols P1 and P2 of

Figure 7-1.

 The algorithm for cumulating one attribute is different than the algorithm for

cumulating more than one attribute. In case of cumulating more than one attribute

CHAPTER 7 GENERAL SPECIFICATION APPROACH

138

on the message specification, the cumulating process cannot be applied on each

attribute separately. These attributes must be cumulated as combined attribute (i.e.,

the attributes that need cumulating in the message specifications will be put in a

tuple and treated together as one attribute during the cumulating process). Figure

7-3 shows the product automata of Figure 7-2 after cumulating the credentials.

Definition 7-17. (Cumulative path in the product automata with more than at-

tribute): PAp = ((si
1,si

2) (si+1
1,si+1

2) ; � ;(sn
1,sn

2)

 (sn+1
1,sn+1

2)) is a cumulative path in the product automata

Ap = (Sp; s0
p; Tp; Fp) where

� l is the number of the attributes that need cumulating on the message specifica-

tion.

� States (si
1 ; si

2); � ; (sn
1; sn

 .Sp א (2

� Each attributes is the set of cumulative attributes which is the

union of the previous set of cumulative attributes and the

current set of attributes where is the set of at-

tributes on the transition between the state (si
1 and si+1

1) of the protocol P1 and

= and each attribute is the set

of cumulative attributes which is the union of the previous set of cumulative attrib-

utes and the current set of attributes

where is the set of attributes on the transition between the state

(si
2 and si+1

2) of the protocol P2 and = .

� A complete cumulative path in the product automata is the cumulative path which

starts with the initial state (s0
1; s0

2) and ends with a final state (sf
1 ; sf

 .Fp א (2

CHAPTER 7 GENERAL SPECIFICATION APPROACH

139

Figure 7-3.The product automata of the two business protocols P1 and P2 of

Figure 7-1 after cumulating the credentials.

Definition 7-18:(path in the Product of Two GCBP), The Ap(Sp,So
p,Tp, Fp) is the

automat product of two CBP, the path C=S1,S2,�.,Sn is a succession of states of Sp

, where ׊Si and Si+1 א C , ׌ (Si, Si+1, mi+1) א Tp. Path is complete if it start by initial

state and ends by final state. The concatenation of two paths C1= S1,S2,�.,Si and

C2= Sj,Sj+1,�.,Sn if ׌ I(Si, Sj, mi) א Tp. This is can be written as C1.C2. If C and C�

are two paths in Sp where |C�| <=|C|, we say that C� is included path of C and can

be noted as Cك� C , if there exist two paths C1 and C2 of Sp such that C=C1.C�.C2

Definition 7-19. Each partial interaction trace is a path in the product automata.

Proof:

Put protocols P (S, S0, T, X, F) and P�(S�,S�0, T�, X�, F�) are two CBP and tr
=(S0,S�0,mt1,S1, S�1), (S1,S�1,mt2,, S2, S�2) ,�, (Si-1,S�i-1,mti, Si,S�i) is a partial inter-

action trace between two protocol, this partial interaction trace present the inter-

CHAPTER 7 GENERAL SPECIFICATION APPROACH

140

action between two sequence of states and their messages(input/output)

,conversation, between two protocols. For instance, In the first protocol this se-

quence is (S0$ S1$ �.Si. and in the second is S�0 $S�1, $�.S�i. if we determinate

the product automata of these two sequences, the result will be (S0,S�0, Mp1,S1, S�1),

(S1,S�1,M
p
2, S2, S�2) ,�, (Si-1,S�i-1,M

p
i, Si,S�i) , since from the definition of interaction

trace mt1א M1 ŀ M�1,�, mtiא Mi ŀ M�i and from the definition of product auto-

mata, the message specification M
p

1= M1ŀ M�1 ,�, Mp
i= Miŀ M�i which leads to

mtא Mp and that each partial interaction trace is a path in the product automata.

Definition 7-20. Co-accessibility of a State in the Product of Automata

Ap=(Sp,So
p,Tp,,F

p) is the product of automata of two CBP P and P�, state si
p א Sp

 is

co-accessible if there exist two paths c and c� where c�= si
p.c.sf

 and sf א Fp
.

The compatibility in terms of product automata definition supposes that all the pre-

processing operations are performed. These pre-processing operations include the

calculation of the cumulative ACP and the removal of the implicit transitions.

Therefore; the comparison operations between message specifications in the com-

patibility definition suppose that these message specifications are updated by all

the necessary pre-processing operations.

Definition 7-21. (Compatibility in terms of Product Automata) Protocols P (S, S0,

T,X, F) and P�(S�,S�0,T�, X�, F�) are two GCBP, and Ap=(Sp,So
p,Tp, Fp) is their

CHAPTER 7 GENERAL SPECIFICATION APPROACH

141

product automata, we say that P and P� are compatible using their product auto-

mata if there is a relation RكS×S� where for all (Si,S�i) אR :

Si, Si+1, msi) ׌ output(Si), if polarity (msi,P) = - then א msi ׊ •
 ׌ T and א (-

(S�i, S�i+1,ms�i
T� where ms i א (+

-
ms� i ك

+ and ׌ (Si, S�i, , Si+1 , S�i+1)

 .R א TP, and (Si+1,S�i+1)א

S�i, S�i+1, ms� i) ׌ output(S�i), if polarity (ms�i,P�) = - then א ms�i ׊ •
 �T א (-

and ׌ (Si, Si+1,msi
T where ms� i א (+

-
msi ك

+ and ׌ (Si, S�i, , Si+1 ,

S�i+1) א Tp
, and (Si+1,S�i+1) א R.

CHAPTER 7 GENERAL SPECIFICATION APPROACH

142

• (Si,S�i) א Sp is co-accessible (there is a path in the product automat from

this state to final state.

• (S0, S�0) א R.

7.4. Adaptive compatibility

The type of the constraint in each message on the Web services determines the way

of the annotations of the message for this type. Thus, we categorized the types of

constraints to more than one type. The first type is the constraints that are depend-

ing only on the instances values that will be provided in the current message. We

will call this type �history independent constraints�. The second type of constraints

depend on the instances values that are provided before this message. We will call

it �history dependent constraints�. In this type, the instances values can be cumula-

tive. For instance the ACP constraints on a message depend on the cumulative cre-

dentials of the previous messages. Time constraints are another type of constraints

which need a special treatment. Due to these different types of manipulations,

checking the compatibility with all of these different types of constraints in the

same time in terms of complexity is exponential and in some cases undecidable.

Therefore, we propose the fine-grained compatibility checking approach for mes-

sage specifications. In this approach, we decide before checking the compatibility

the types of the constraints which are needed to check and choose the algorithm

based on this. The choice of the compatibility checking algorithm depends on the

types of the constraints in which we want to check. The history independent con-

straints algorithm is applied in the first step. If the two services are compatible

then the other algorithms are applied.

The history independent constraints compatibility checking algorithms check the

message specification attribute constraints that do not depend on the history of the

provided instances. The message schema attribute constraint is an example of these

CHAPTER 7 GENERAL SPECIFICATION APPROACH

143

type constraints. The instance messages of these schemas depend only on the cur-

rent message. This algorithm is a simple form of the algorithm which is used for

checking the compatibility of Web service with AC after removing the AC part.

This means that there is no need for calculating the cumulative ACC.

In the history dependent constraints, the compatibility checking algorithms check

the message specifications after updating the set of possible messages instances.

The updating can be cumulative as in the case of the ACC. For all cumulative at-

tribute constraints we can use the previous algorithms for checking the compatibil-

ity and the replaceability with AC.

Time constraints in the message specification are a special case for compatibility

and replaceability because time analysis varies from simple computation complex-

ity to a very complex computation complexity. The algorithms for the time analysis

are discussed in details in the previous chapter.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

144

Chapter 8 .WEB SERVICES CHO-

REOGRAPHY

This chapter discusses the Web service selection for choreography implementation

based on the compatibility checking with access control. It starts by an overview

about the Web services choreography with AC. Then, it lists the formalizations

which includes the modeling of the Web services choreography and the compatibil-

ity checking analysis. Finally, the verification process is explained and the related

works are presented.

8.1. Web service choreography with AC

The standardization in the Web services makes them reusable in different ways

through the Web. For example, the Web service can be used alone or composed

with other services for performing a specific operation. Web services choreography

is used in the design phase of complex peer-to-peer applications in which each peer

can be implemented by a Web service. The behavior of each peer (service) must be

specified in the choreography of the application. The Web services that are needed

to join the choreography must conform to that specification. Several research ef-

forts focus on the issue of determining whether the behavior of the Web services

implementing choreography matches the one described by the choreography speci-

fication (Paci et al. [107]; Busi et al. [43] ;Kazhamiakin and Pistore[89].

Behavior conformance must include the satisfaction of the access control policies

(ACP) between Web services. In this chapter, Web service behavior description is

enriched by annotating the AC on the business protocols. Moreover, we assume

that the invocation of each Web service operation is controlled by access control

policies; such policies establish which credentials the invoker Web service must

possess in order to be able to invoke the operation.

A business protocol of a service is presented in the previous chapters but in this

chapter its definition is extended by specifying on each transition the name of the

service that will receive this message (if this message is an outgoing) or send this

message (if this message is incoming).

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

145

This chapter discusses the results of modeling and analyzing Web services business

protocols augmented with access control policies to verify the implementation of

Web services choreography. Access control policies are expressed using ontology

in order to benefit from the flexibility offered by subsumption on concepts together

with the possibility to use ontology alignment in the context of the semantic Web.

We define and verify Web service compatibility in order to see if (and how) n ser-

vices can have interactions based on their business protocols.

Ontology is an explicit specification of a conceptualization [77]. It defines a com-

mon vocabulary for researchers who need to share information in a domain. It in-

cludes machine-interpretable definitions of basic concepts in the domain and rela-

tions among them. We will use the ontology in presenting the ACP and credentials

(as shown in the previous chapters).

8.2. Formalization and Algorithms

8.2.1 Modeling Web services choreography

Web service choreography is modeled as a non deterministic transition system. In

this model, business protocol defines Web service behavior that must be followed

by the selected web service to participate on the choreography. Each state of the

model presents the status of each business protocol. The transitions between the

states of the model are annotated by the messages exchange between services with

ACP or credentials. Each message exchange is associated with an operation offered

by a service and implies an exchange of information between the invoker service

and the service providing the operation. The message�s sender and receiver are

also annotated on the transition. A conversation is a sequence of message ex-

changes starts by the start state and ends by a final state.

Definition 8-1: (WS-Choreography Transition System with AC) A choreography

is represented by a non deterministic transition system TS = (S, M, T, so, sf). S is a

set of choreography states. Each state is a tuple of the form (Na, (p1, state1),(p2,

state2),...,(pn, staten)) where Na is the state name and in each tuple (pi, statei), statei

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

146

represents the state of business protocol pi. s0 א S is the initial state and sf א S is the

final state. M is a set of message exchanges. Each message exchange is repre-

sented by a tuple (ps, pd, o, AC, c, mt), where ps is the business protocol of the mes-

sage�s sender, pd is the business protocol of the receiver of the message, o is the

operation of the pd that invoked by ps that triggers the message exchange, AC is the

access control policy, c is the set of credentials, and mt is the message type. T ك S

× M × S is the transition relation. A transition (s, m, s�) א T if m = (ps, pd, o, AC, c,

mt) and the tuples (ps, states) and (pd, stated) in state s are replaced by the tuples

(ps, state�s) and (pd, state�d) in state s� (respectively) due to the invocation of the

operation o.

Example 8-1: Figure 8-1 shows an example of Web service choreography de-

scribes shopping process between seller, buyer, and broker. Credit agency partner

is used for checking the credentials that are provided by the partners. Each state of

the choreography contains information about the current state of all the participants

(seller, buyer, credit agency, and broker). For example, the state (ARTICLE

SPECIFIATION SUBMIT) indicates that the buyer is in the start state, the seller

is in the Sent_Req state, the broker is in the Rec_Req state, and the credit agency

is in the start state. The process is based on a broker between the seller and the

buyer. The sellers send the articles to the broker and the buyers buy these articles

from the broker. Usually, this system is used when the sellers are not specialists

and they want to sell some articles.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

147

Figure 8-1: Web services choreography describing shopping process

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

148

The rest of this section presents the formal definitions of the business protocol and

the algorithms that are used in the analysis. The business protocol definition is the

same as the previous definition, augmented with the sender or the receiver of each

message. This protocol is deterministic (i.e. all the outputs transition from any state

are different).

Definition 8-2. (A business protocol assigned with AC) is a tuple P = (S; s0; T; F)

which consists of the following elements:

� S is a finite set of states and s0 א S is the initial state.

� T ك S × S × M × (({-} × 2c) ׫ ({+} × pl)) × P�, is a finite set of explicit tran-

sition, where M is a set of messages assigned to the transitions between the states,

pl is the set of access control policies, c is the set of credentials, and P� is the pro-

tocol which receives or sends the message on this transition.

� This protocol is deterministic (i.e. a message cannot correspond to more than

one output transition of a state).

� All states in the protocol are accessible and co-accessible (i.e. there a path from

the start state to this state and from this state to a final state).

� F ك S is a set of final states. If F = ׎ then P is said to be an empty protocol.

Figure 8-2 shows an example of two business protocols assigned with AC and the

message sender or receiver.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

149

Figure 8-2: Two business protocols assigned with access control and the message

sender or receiver.

Each protocol consists of set of states (e.g., start, Logged, FinishSUC) with one

start state (start) and one or more final states (e.g., Fail,FinishSUC) and set of

transitions. Each transition is guarded by either a message with a positive sign for

the messages that will be received (e.g., Login(+), CardRecieve(+)) or a message

with a negative sign for messages that will be sent (e.g., ReqCard(-), Resource-

Sent(-)). The positive message can be annotated with ACP (e.g., the ID with the

message Login(+) in the protocol P1) and the negative message can be annotated

with credentials(e.g., the Visa with message CardRecieve(-) in the protocol P2).

The transition is also annotated by the protocol name in which the message will be

sent to or received from. The protocol P1 models a Web service (W1) that receives

a login message with the ID of the service requester (W2) which is modeled by the

protocol P2, then the Web service W1 sends the ReqCard message and waits to

receive the CardRecieve with Visa credential from the Web service W2 and based

on the Visa provided, the Web service W1 can send the ResourceSent or the Ac-

cessdenied message to the Web service W2.

Definition 8-3. (The product automata A
p
 of n business protocols) P1 = (S1; s0

1;

T1; F1), �, Pn =(Sn; s0
n; Tn; Fn) is defined as Ap = (Sp; s0

p; Tp; Fp) where:

� Sp = S1 ×�× Sn,

 �s0
p = (s0

1 ; �; s0
n).

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

150

� Tp is the greatest subset of (Sp × Sp ×M× pl × 2c × Px × Py) such that for each

transition (si
p; si+1

p; mi; pli
p ; ci

p; px; py) א Tp there exist two transitions (si
x; si+1

x;

mi ; (pli
x or ci

x) ;py) א Tx and (si
y; si+1

y; mi ; (pli
y or ci

y) ; px) א Ty with :

¬ si
x
, si

y are in the states which composes si
p and si+1

x
, si+1

y are in the states

which composes si+1
p

 .

¬ Polarity(mi; T
x) ≠ polarity(mi; T

y) and

o If polarity(mi; P
x) = - then plx = True, plp

i = pli
y, ci

p= ci
x, ci

y =true

o Otherwise (mi; P
y) = - then y = True, plp

i = pli
x, ci

p= ci
y, ci

x =true

� Fp = F1 ×�× Fn.

Figure 8-3 shows an example of two business protocols (P1 and P2) and their

product automata P1 × P2. In the product automata model, each state refers to the

two corresponding states of the two protocols. The states and the transitions that

will never be visited during the probable interactions between the two protocols

will not be included in the product automata. For example, the state (ReqCan-

celed-1) in the protocol P1 will not be included because the message (Cancel-

Req(+)) of the P1 will never be triggered by the protocol P2. In terms of the ACP,

we present the policy and the credentials on the same common transition (i.e., in

the product automata P1 × P2, the transition between the states (CardWait-

1,CardWait-2) and (CardVerfiy-1, CardVerfiy-1) has a (Visa) as a policy and a

(MasterCard) as a credential.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

151

Login(+),ID,
P2

ReqCard(-),
P2

CardRecieve(+),Visa,
P2

ResourceSent(-),
P2

start-1 Logged-1 CardWait-1 CardVerfiy-1 FinishSUC-1

Fail-1
Accessdenied(-),

P2

P1

Login(-),ID,
P1

ReqCard(+),
P1

CardRecieve(-),
MasterCard,

P1

ResourceSent(+),
P1

start-2 Logged-2 CardWait-2 CardVerfiy-2 FinishSUC-2

Fail-2
Accessdenied(+),

P1

P2

Login ,ID,
P1,P2

ReqCard,
P1,P2

CardRecieve,
Visa, MasterCard

P1,P2

ResourceSent,
P1,P2

Accessdenied,
P1,P2

(start-1
,start-2)

(Logged-1
,Logged-2)

(CardWait-1,
CardWait-2)

(CardVerfiy-1,
CardVerfiy-1)

(FinishSUC-1
,FinishSUC-2)

(Fail-1,
Fail-2)

P1×P2

CancelReq(+),
P2

Accessdenied(-),
P2

ReqCanceled-1

Figure 8-3: Two business protocols (P1 and P2) and their product automata P1 ×

P2.

Definition 8-4. (Cumulative path in the product automata): PAp = si
P

si+1
p ; � ; sn

p sn+1
p is a cumulative path in the product automata Ap = (Sp; s0

p;

Tp; Fp) where

� is the set of cumulative credentials which is received from the

protocol Px to the protocol Py. is the union of the previous set of

cumulative credentials and the current set of credentials

where is the set of credentials on the transition between the state (si
x

and si+1
x) of the protocol Px where si

x is one of the states that produce si
p

and si+1
x is one of the states that produce si+1

p.

� =

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

152

� A complete cumulative path in the product automata is the cumulative path which

starts with the initial state s0
P and ends with a final state sf

P א Fp.

Definition 8-5. (Co-accessibility of a state in the product of automata): Ap =p1 × �

× pn =(Sp; s0
p; Tp; Fp) is the product of automata of n BP, state א Sp is co-

accessible if there exist two paths PA1 and PA2 where PA2 = .PA1. , and

 .Fp א

Definition 8-6. (Compatibility in terms of product automata assigned with AC)

Protocols P1 = (S1; s0
1; T1; F1), �, Pn = (Sn; s0

n; Tn; Fn) and Ap = (Sp; s0
p; Tp; Fp)

is their product automata assigned with AC, we say that the n protocols are com-

patible using their product automata if there is a relation R = S1 ×�× Sn where

for all (si
1,�,si

n) א R:

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

153

si)׊�
x; si+1

x ; m-; ci
x; py) א Tx, ׌ (si

y; si+1
y ; m+; pli

y; px) א Ty where (si
p ; si+1

p ;m; ci
x

; p
x ; pi

y) א Tp, and si+1
p א R

si)׊ �
y; si+1

y ; m-; ci
y; px) א Ty, ׌ (si

x; si+1
x ; m+; pli

x; py) א Tx where (si
p ; si+1

p ;m;

ci
y ; p

y ; pi
x) א Tp, and si+1

p א R.

� si
x
, si

y are in the states which composes si
p and si+1

x
, si+1

y are in the states which

composes si+1
p

 .

�si+1
p א SP is co-accessible

�s0
p א R

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

154

� For all the complete non looping cumulative paths PAp = s0
P s1

p ; � ; sn
p

sn+1
p , in the product automata, each policy is satisfied by the set of

cumulative credentials .

 The algorithm which is used for checking the compatibility between n protocols in

terms of product automata with AC can be divided into two parts. The first part is

for checking compatibility in terms of message exchange and this can be done by

constructing the product automata and traversing through it, starting by the initial

state, using breadth first approach and checking that if there is a state does not in-

cluded in this relation set R (i.e. each state have two corresponding states of the n

protocols and all the outgoing messages from this state in one protocol can be re-

ceived by one of the other protocols) then the algorithm stops and the n protocols

are not compatible, else if all states in the product automata are included in this

relation set then the two protocols are compatible in terms of message exchange

and go to the second part. The second part is for calculating the cumulative creden-

tials on each transition on the product automata.

Algorithm 8-1 presents the second part of the algorithm. The idea of this algorithm

is to use the queue data structure to cumulate the credentials. Each element of the

queue consists of the state, cumulative credentials which are corresponding to the n

protocols in this state. The algorithm traverses through the automata for updating

these credentials of the states and in the same time updates the cumulative creden-

tials on the transitions. After calculating the cumulative credentials on each transi-

tion, if any ACP related to one of the protocols on any transitions is not satisfied by

the cumulative credentials on this transition then the n protocols are not compatible

in terms of AC. The AND operator between two credentials in an ACP expression

means that these two credentials are required to satisfy this policy and the OR op-

erator between them means that one of these credentials is sufficient for satisfying

the policy.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

155

Algorithm 8-1: Compatibility between n protocols in terms of AC using

cumulative product automata.

Input: P1 = (S1; s0
1; T1; F1), � , Pn = (Sn; s0

n; Tn; Fn) and Ap = (Sp; s0
p; Tp; Fp) their product

automata Ap = (Sp; s0
p; Tp; Fp)

Output: The n protocols are compatible in terms of ACP or not.

1-Calculate the cumulative credentials on the automata.

: Cumulative credentials sent by protocol Px to the protocol Py before reaching to the
state si

p.

: Cumulative credentials sent by protocol Px to the protocol Py and assigned to the transi-
tion between si

p and sj
p (i.e. union of set of credentials in those transitions.

For each state si
p א output(s0

p) do

 =

ENQUEUE(si
p;)

While Q ≠ empty do

 Temp_Q = DEQUEUE(Q)

for each sj
p א output(si

p) in which (si
p;) = Temp_Q do

_ temp =

if ≠ null then

=)

 else

=)

 =

if ¬ ((== temp) and ≠ null then

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

156

ENQUEUE(Q; sj

p ;)

2- If ׊ ǡ in the cumulative product automata satisfying it then

 The n protocols are compatible in terms of ACP.

Else

 The n protocols are not compatible in terms of ACP.

 Complexity analysis: Let T1, ...,Tn be the number of transitions of the n protocols

P1, ..., Pn respectively, the construction of the product automata takes (T1 x T2 x... x

Tn). The calculation of the cumulative credentials will take number of states in the

product automata |SP | multiplied by the size of the longest non looping path which

equals the number of states |SP | multiplied by the maximum number of paths

which also equals |SP| (i.e. cumulative credentials takes |(Sp)|3). As a result, the

complexity for the algorithm will be ((T1 x T2 x... x Tn) + |(Sp)|3).

8.3. The verification process.

The verification process of Web service selection for choreography implementation

based on the compatibility checking with access control can be summarized in the

following steps:

1. Select the Web services and get its business protocols assigned with the ACP and

credentials.

2. Create the product automata between these protocols (as defined on Definition

8-3).

3. Calculate the cumulative ACC on the product automata (as defined on Definition

8-4).

4. Check the compatibility in terms of AC between these protocols (as defined on

Definition 8-6) using algorithm 8-1 for calculating and checking the ACP on the

product automata.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

157

5. If the business protocols are compatible in terms of message exchange and AC

and the product automata presents the same behaviour as the choreography then

the set of services which have these business protocols can implement this cho-

reography. Otherwise, this choreography cannot be implemented by these ser-

vices.

Example 8-2:

Figure 8-4 shows a set of business protocols of Web services for implementing the

choreography of Figure 8-1. The protocols are annotated with the AC. Figure 8-5

shows a graphical representation of a simple Credit Card ontology that will be

used on the verification process. During the compatibility checking algorithm, the

provided credentials are checked against the required ACP. The ontology is used

during this checking to calculate the subsumption between credentials. For instance

in

Figure 8-4, the Broker requires a Credit Card policy in the transition (Payemen-

tOrder(+),Credit Card, buyer) and the corresponding Buyer provides LCL Mas-

ter Card credential in the transition (PayementOrder(-), LCL Master Card,

Broker). The ontology of Figure 8-5 shows that the LCL Master Card is a Mas-

ter Card which is a Credit Card. As a consequence, the LCL Master Card satis-

fies the Credit Card policy. Without using the ontology, the two protocols are not

compatible because the checker will not detect the relation between the require

policy and the provided credentials.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

158

Figure 8-4: Set of business protocols of Web services can be used for implement-

ing the choreography of Figure 8-1.

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

159

Figure 8-5: Graphical representation of a simple Credit Card ontology which is

used in the verification process.

8.4. Related Work

Analyzing services description is presented in many research works. For instance,

Fu et al. [72] present a modeling for Web services interactions by formalizing the

specification and verification of electronic services for composition purposes. Qiu

et al. [116] propose a language for Web services choreographies called Chor as a

simplification of WSCDL [87]. Formal analysis of service protocols in terms of

automated support to service interoperability at the business protocol level has

been discussed in some recent works (e.g. [18, 114, 34, 82, 41, 17, 141, 115]). Fos-

ter et al. [8] present a formalization of Web services composition and Web services

choreographies based on finite state process algebra. Busi et al. [43] and Kazhami-

akin et al. [89] propose two formal calculi to model Web services orchestration and

Web services choreography. They investigate the interdependencies between cho-

reography and orchestration and propose a bisimulation-like notion of conformance

between choreography and orchestration of Web services. Robinson et al. [119]

investigate the problem of how to enforce access control in Web services choreo-

graphies. They propose a mechanism to derive access control policies to be en-

forced by each Web service covering a choreography role and architecture to en-

force such policies at runtime. Access control policies enforcement is enabled and

disabled in a just-in-time manner that matches the control flow described in the

choreography.

Paci et al. [107] present an approach to determine at the design time whether a

chorography can be implemented by a set of services based on their access control

policies and the disclosed policies regulating the release of their credentials. They

check in the design time that all the possible conversations going from the initial

CHAPTER 8 WEB SERVICES CHOREOGRAPHY

160

state to the final state in the choreography transition system can be implemented

according to the operation access control and disclosed policies of the selected

Web services. An equivalent scenario for this verification is to verify set of com-

posite services with access control against set of conversations of business process.

They use the idea of assigning AC on business protocol but not for checking the

compatibility. In our work, we assign the access control policy on the business

protocol of the Web service but for another type of analysis (checking compatibil-

ity and replaceability).

CHAPTER 9 CONCLUSION AND FUTURE WORK

161

Chapter 9 .CONCLUSION AND FU-

TURE WORK

This chapter concludes the dissertation by summarizing the main results that are

achieved by this work. Possible directions for further research and indications for

potential applications are given as well.

9.1 Conclusion
The high level interoperability operations analysis such as compatibility and re-

placeability checking analysis between Web services in the presence of different

constraints is the main goal of this thesis. In this respect, our research results can be

divided to three main parts. The first part deals with modeling and analyzing Web

services with time constraints. While doing so, we have proposed a number of new

algorithms and formalization. We started by defining the Web service business

protocol that presents its behavior and add the time as a part of this description

before analysis. Then, the compatibility and replaceability checking definitions are

presented. The implicit transitions in the business protocol are one of the problems

during the analysis. Therefore, this work presents two algorithms for removing

these transitions before performing the analysis. The first algorithm works with the

one-clock business protocols and the second algorithm works with the multi-clocks

business protocols (chapter 3 and chapter 4).

The second part deals with the Web services modeling and analyzing after annotat-

ing the ACP (chapter 5). Web services analysis after annotating the AC emerging

the problem of the ACP cumulating. We have discussed this problem and presented

the solution by calculating the cumulative AC on each transition after creating the

product automata. The research in part is extended to include the implementation

of a complex business processes by selecting compatible set of Web services in

terms of AC and in terms of message exchanged (chapter 8). In order to achieve

this task, the definition of the business protocol is extended to attach each message

on each transition with a parameter indicates the sender or receiver of it. We pre-

sent an approach for verifying that a set of Web services are compatible and im-

CHAPTER 9 CONCLUSION AND FUTURE WORK

162

plementing choreography of a complex business process in terms of message speci-

fications and AC.

The third part is the message specification approach which tries to give a general

approach for modeling and analyzing the different types of constraints. This ap-

proach tries to categorize these constraints and presents for each category the suit-

able manipulation. For example, the constraint that needs cumulating such as the

AC is one type of these categories. The adaptive compatibility approach is pro-

vided in conjunction with the general specification approach. The adaptive com-

patibility approach tries to avoid the undecidability problem for complex message

specifications constraints. It gives the consumer a wide range of choices and bal-

ance between the required properties that are needed for checking and the complex-

ity that can be accepted. The consumer can decide based on his Web service the

way in which the compatibility checking process takes. For instance, we can check

all the properties in the same time because we have a powerful machine or the Web

services have not complex specifications. In another situation, we can check first

the message Schema attributes and then if it is compatible we check the time and if

it is compatible we check the AC and continue until checking all the specifications

or halt due to incompatible attributes.

9.2 Future work
As the work for this thesis progressed, a number of areas deserving further research

revealed themselves. In particular, this work can be extended in four axes. The first

axis is the trust negotiation approaches between Web services based on compatibil-

ity and replaceability checking. Trust negotiation consists of a bilateral disclosure

of digital credentials and the trust is built incrementally by disclosing these creden-

tials according to the disclosure policies. Therefore; compatibility checking before

starting the disclosing of the credentials is an important step in the trust negotiation

process. In addition, the replaceability is important in case of the incompatible Web

service in terms of AC. For instance, the consumer or the service provider could

replace the services by others to achieve the trust negotiation process if this does

not disrupt the main functions. As a result, we will try to make a link between the

trust negotiation policy languages and the compatibility and replaceability check-

ing approach in order to enable the proposed integration.

The second axis is extending our work to include the time constraints and the gen-

eral specifications constraints in selecting Web services for choreography imple-

CHAPTER 9 CONCLUSION AND FUTURE WORK

163

mentation using compatibility checking approach. In terms of time constraints, we

will first remove the implicit transitions. The problem in compatibility checking is

the need for synchronization in not only for each two protocol but also for more

than one protocol in the same time. This situation is resulted because each Web

service can interact with more than one service in the process. Therefore, an intel-

ligent approach is needed to overcome this problem and the other problems which

can be emerged after assigning the message specification constraints.

The Third axis is the development of adaptors based on the incompatible properties

between web services. The adaptors will be different if each adaptor solves one

type of incompatibility. For instance, the adaptor for the incompatibility due to the

message order is different than the adaptor for AC or trust negotiation adaptor. The

problem with the adaptors is that the standardization of the Web service is emerged

to avoid adaptors. Therefore, there is a need for general adaptors not specific one.

These adaptors can be reused in solving all the incompatibility problems.

The Fourth axis is the development of a Web service behavior specification lan-

guage represents the Web service business protocols. This language expresses all

the types of specification and constraints that can be attached with the service. This

is a hope and I propose to adopt it as a big international project because this lan-

guage will deal with a very large scale of data domains and many research direc-

tions. For instance, this language should express the time constraints, AC, the mes-

sage meaning, privacy, and other constraints. This language can help in many di-

rections and can be passed in the standardization process to make use of this stan-

dardization in the future analysis. As a result, the Web service behavior description

is represented as a new standard part of the Web service.

9.3 Publications
International refereed conferences
 ̇ Emad Elabd, Emmanuel Coquery, Mohand-Said Hacid. Timed

Web services analysis after removing complex implicit transi-

tions In the IEEE International Conference on Web Services (ICWS)
(Acceptance Rate 14%), IEEE ed. Washington D.C, USA. 2011.

̇ Emad Elabd, Emmanuel Coquery, Mohand-said Hacid . Selecting

Web Services for Choreography Implementation: Compatibility

Checking Approach with Access Control. In the 22nd Interna-

CHAPTER 9 CONCLUSION AND FUTURE WORK

164

tional Conference on Software Engineering and Knowledge Engi-
neering(Acceptance Rate 33.0%) , Knowledge Systems Institute
Graduate School ed. San Francisco Bay, USA. 2010.

̇ Emad Elabd, Emmanuel Coquery, Mohand-Said Hacid. Checking

Compatibility and Replaceability in Web Services Business Pro-

tocols with Access Control. In the IEEE International Conference
on Web Services (ICWS) (Acceptance Rate 17.5%), IEEE ed. Mi-
ami,Florida,USA. pp. 409-416.

̇ Emad Elabd, Emmanuel Coquery, Mohand-Said Hacid.
Compatibility and Replaceability Analysis of Timed Web Ser-

vices Protocols. In the ICCEE, IEEE Computer Society ed. Dubai,
UAE. pp. 15-19. ISBN 978-0-7695-392. 2009.

National refereed conferences

̇ Emad Elabd, Emmanuel Coquery, Mohand-said Hacid, Sélection de
services Web pour l'implémentation de chorégraphies: vérification
de compatibilité avec contrôles d'accès. In the 26èmes journées Ba-
ses de Données Avancées,Toulouse, France. 2010.

Technical Reports and demonstration
 • Emad Elabd, Emmanuel Coquery, Mohand-said Hacid. Checking

Compatibility and Replaceability inWeb Services Business Pro-

tocols with Access Control. E. Elabd, E Coquery, M.

Hacid. Rapport de recherche RR-LIRIS-2009-030 2009.
 • COMPAS project the second review in Brussels • Poster in the third day of theses in Lyon

 BIBLIOGRAPHY

165

BIBLIOGRAPHY

[1] Serge Abiteboul, Victor Vianu, Brad Fordham, and Yelena Yesha.
Relational transducers for electronic commerce. In Proceedings of the

seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Princi-

ples of database systems, PODS �98, pages 179�187, New York, NY,
USA, 1998. ACM.

[2] Serge Abiteboul, Victor Vianu, Brad Fordham, and Yelena Yesha.
Relational transducers for electronic commerce. Journal of Computer

and System Sciences, 61:236�269, October 2000.
[3] Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, Neeran Karnik,

Arun Kumar, Sumit Mittal, and Biplav Srivastava. Synthy: A system
for end to end composition of web services. Web Semantics: Science,

Services and Agents on the World Wide Web, 3(4):311 � 339, 2005.
World Wide Web Conference 2005-Semantic Web Track.

[4] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machiraju.
Web Services-Concepts, Architectures and Applications. Data-Centric
Systems and Applications. Springer, 2004.

[5] Rajeev Alur and David L. Dill. Automata for modeling real-time sys-
tems. In Proceedings of the seventeenth international colloquium on

Automata, languages and programming, pages 322�335, New York,
NY, USA, 1990. Springer-Verlag New York, Inc.

[6] Alexandre Alves, Assaf Arkin, Sid Askary, Ben Bloch, Francisco
Curbera, Yaron Goland, Neelakantan Kartha, Sterling, Dieter König,
Vinkesh Mehta, Satish Thatte, Danny van der Rijn, Prasad Yendluri,
and Alex Yiu. Web services business process execution language ver-
sion 2.0. OASIS Committee Draft, May 2006.

[7] Claudio Agostino Ardagna, Ernesto Damiani, Sabrina De Capitani di
Vimercati, and Pierangela Samarati. A web service architecture for en-
forcing access control policies. Electronic Notes in Theoretical Com-

puter Science, 142:47�62, 2006.
[8] Ali Arsanjani. Introduction to special issue on developing and integrat-

ing enterprise components and services. Communications of the ACM,
45(10):30�34, 2002.

[9] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic

Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

 BIBLIOGRAPHY

166

[10] Siddharth Bajaj, Don Box, Dave Chappell, and al. Web services policy
1.2 - framework (ws-policy). Technical report, BEA Systems Inc,
http://www.w3.org/Submission/WS-Policy/, 25 April 2006.

[11] Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, Glen
Daniels, Phillip Hallam-Baker, Maryann Hondo, Chris Kaler, and etc.
Web services policy framework (ws-policy),
"http://www.verisign.com/corporate/research-ws-policy.pdf", 2006.

[12] Karim Baïna, Boualem Benatallah, Fabio Casati, and Farouk Toumani.
Model-driven web service development. In Advanced Information Sys-

tems Engineering, volume 3084 of Lecture Notes in Computer Sci-

ence, pages 527�543. Springer Berlin / Heidelberg, 2004.
10.1007/978-3-540-25975-6_22.

[13] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, and et. Web ser-
vices conversation language (wscl) 1.0, http://www.w3.org/tr/wscl10/.
Technical report, March 2002.

[14] Chitta Baral and Michael Gelfond. Logic programming and knowl-
edge representation. Journal of Logic Programming, 19:73�148, 1994.

[15] Tom Bellwood, Luc Clément, David Ehnebuske, Andrew Hately,
Maryann Hondo, and et al. "uddi version 3.0": Universal description,
discovery and integration (uddi) project, published specifica-
tion,"http://uddi.xml.org/",
"http://www.uddi.org/pubs/uddi_executive_white_paper.pdf", July
2002.

[16] Boualem Benatallah, Fabio Casati, Julien Ponge, and Farouk Toumani.
Compatibility and replaceability analysis for timed web service proto-
cols. In Bases de Données Avancées(BDA), 2005.

[17] Boualem Benatallah, Fabio Casati, Julien Ponge, and Farouk Toumani.
On temporal abstractions of web service protocols. In International

Conference on Advanced Information Systems Engineering (CAiSE)

Short Paper Proceedings, 2005.
[18] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis and

management of web service protocols. In International conference on

conceptual modeling (ER), pages 524�541, 2004.
[19] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Web service

conversation modeling: A cornerstone for e-business automation.
IEEE Internet Computing, 8(1):46�54, 2004.

[20] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Represent-
ing, analysing and managing web service protocols. Data & Knowl-

edge Engineering, 58(3):327�357, 2006.
[21] Boualem Benatallah, Fabio Casati, Farouk Toumani, Julien Ponge, and

Hamid R. Motahari Nezhad. Service mosaic: A model-driven frame-

 BIBLIOGRAPHY

167

work for web services life-cycle management. IEEE Internet Comput-

ing, 10(4):55�63, 2006.
[22] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio

Lenzerini, and Massimo Mecella. Automatic service composition
based on behavioral descriptions. International Journal of Cooperative

Information Systems, 14(4):333�376, 2005.
[23] Daniela Berardi, Fabio De Rosa, Luca De Santis, and Massimo Me-

cella. Finite state automata as conceptual model for e-services. Journal

of Integrated Design & Process Science, 8(2):105�121, 2004.
[24] Tim Berners-Lee. Artificial intelligence and the semantic web:

Aaai2006 keynote. w3c web site 2006. url: http://www.w3.org/2006/
talks/0718-aaai-tbl/overview.html. lastaccessed 27/09/2010.

[25] Tim Berners-Lee. Semantic web - xml2000. w3c web site 2000, url:
http://www.w3.org/2000/talks/1206-xml2k-tbl/slide10-0.html. last ac-
cessed 27/09/2010.

[26] Tim Berners-Lee. The semantic web and challenges. w3c web site
slideshow 2003. url: http://www.w3.org/2003/talks/01-sweb-
tbl/slide15-0.html. lastaccessed 27/09/2010.

[27] Tim Berners-Lee. Www past and future. w3c web site 2003. url:
http://www.w3.org/2003/talks/0922-rsoc-tbl/slide30-0.html. lastac-
cessed 27/09/2010.

[28] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):34�43, 2001.

[29] Elisa Bertino, Anna C. Squicciarini, Ivan Paloscia, and Lorenzo
Martino. Ws-ac: A fine grained access control system for web ser-
vices. World Wide Web, 9(2):143�171, 2006.

[30] Elisa Bertino, Anna Cinzia Squicciarini, Lorenzo Martino, and Fede-
rica Paci. An adaptive access control model for web services. Interna-

tional Journal of Web Services Research (JWSR), 3(3):27�60, 2006.
[31] Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Temporal

reasoning in workflow systems. Distributed and Parallel Databases,
11(3):269�306, 2002.

[32] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web
service interfaces. In Proceedings of the 14th ACM International

World Wide Web Conference (WWW 2005, Chiba, May 10-14), pages
148�159. ACM Press, New York (NY), 2005.

[33] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Se-
goufin, and Claire David. Two-variable logic on words with data. In
Proceedings of the 21st Annual IEEE Symposium on Logic in Com-

puter Science, pages 7�16, Washington, DC, USA, 2006. IEEE Com-
puter Society.

 BIBLIOGRAPHY

168

[34] Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Me-
cella. When are two web services compatible? In Technologies for E-

Services, volume 3324 of Lecture Notes in Computer Science, pages
15�28. Springer Berlin / Heidelberg, 2005. 10.1007/978-3-540-31811-
8_2.

[35] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, Yan Jurski, and
Mihaela Sighireanu. A generic framework for reasoning about dy-
namic networks of infinite-state processes. Logical Methods in Com-

puter Science, 5(2), 2009.
[36] Ahmed Bouajjani, Peter Habermehl, Yan Jurski, and Mihaela Sighire-

anu. Rewriting systems with data. In Proceedings of the 16th interna-

tional symposium on Fundamentals of Computation Theory, pages 1�
22, Berlin, Heidelberg, 2007. Springer-Verlag.

[37] Patricia Bouyer. A logical characterization of data languages. Informa-

tion Processing Letters, 84(2):75�85, 2002.
[38] Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic ap-

proach to data languages and timed languages. Information and Com-

putation, 182:137�162, May 2003.
[39] Daniel Brand and Pitro Zafiropulo. On communicating finite-state

machines. Journal of the ACM, 30(2):323�342, April 1983.
[40] Tevfik Bultan. Modeling interactions of web software. In Proceedings

of the 2nd Int�l. Workshop on Automated Specification and Verifica-

tion of Web Systems, pages 45�52, Washington, DC, USA, 2006. IEEE
Computer Society.

[41] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation
specification: a new approach to design and analysis of e-service com-
position. In WWW �03: Proceedings of the 12th international confer-

ence on World Wide Web, pages 403�410, New York, NY, USA,
2003. ACM.

[42] Tevfik Bultan, Jianwen Su, and Xiang Fu. Analyzing conversations of
web services. IEEE Internet Computing, 10(1):18�25, 2006.

[43] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and
Gianluigi Zavattaro. Choreography and orchestration conformance for
system design. In In COORDINATION, volume 4038 of Lecture Notes

in Computer Science, pages 63�81. Springer, 2006.
[44] Marco Carbone, Kohei Honda, and Nobuko Yoshida. A calculus of

global interaction based on session types. Electronic Notes in Theo-

retical Computer Science, 171(3):127�151, 2007.
[45] Jorge Cardoso. Semantic Web Services: Theory, Tools and Applica-

tions. IGI Global, 2007.
[46] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and

Mariïlle Stoelinga. Resource interfaces. In Embedded Soft-

 BIBLIOGRAPHY

169

ware(EMSOFT), volume 2855 of Lecture Notes in Computer Science,
pages 117�133. Springer, 2003.

[47] Fahima Cheikh, Giuseppe De Giacomo, and Massimo Mecella. Auto-
matic web services composition in trustaware communities. In SWS

�06: Proceedings of the 3rd ACM workshop on Secure web services,
pages 43�52, New York, NY, USA, 2006. ACM.

[48] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
services description language (WSDL) 1.1, http://www.w3.org/tr/wsdl.
W3c note, March 2001.

[49] Lawrence Chung. Representation and utilization of non-functional
requirements for information system design. In In Proceedings of the

3rd International Conference on Advanced Information Systems Engi-

neering - CAiSE�91, April 7-11, 1991 Trodheim, Norway, LNCS,

pages 5�30. Springer-Verlag., pages 5�30.
[50] Marijke Coetzee and Jan H. P. Eloff. A trust and context aware access

control model for web services conversations. In Trust, Privacy and

Security in Digital Business, volume 4657 of Lecture Notes in Com-

puter Science, pages 115�124. Springer, 2007.
[51] P. Cousot and R. Cousot. Comparing the Galois connection and wid-

ening/narrowing approaches to abstract interpretation, invited paper. In
Proceedings of the International Workshop Programming Language

Implementation and Logic Programming, PLILP�92,, Leuven, Bel-
gium, 13�17 August 1992, Lecture Notes in Computer Science 631,
pages 269�295. Springer-Verlag, Berlin, Germany, 1992.

[52] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Proceedings of the 4th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, POPL
�77, pages 238�252, New York, NY, USA, 1977. ACM.

[53] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-
man. The ponder policy specification language. In POLICY �01 Pro-

ceedings of the International Workshop on Policies for Distributed

Systems and Networks, volume 1995 of Lecture Notes in Computer

Science, pages 18�38. Springer, 2001.
[54] Gregorio Dïaz, Juan José Pardo, Marïa-Emilia Cambronero, Valentin

Valero, and Fernando Cuartero. Verification of web services with
timed automata. Electronic Notes in Theoretical Computer Science,
157(2):19�34, 2006.

[55] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
ESEC/FSE-9 Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT international sympo-

sium on Foundations of software engineering, pages 109�120, 2001.

 BIBLIOGRAPHY

170

[56] Luca de Alfaro, Thomas A. Henzinger, and Mariï¿½lle Stoelinga.
Timed interfaces. In Proceedings of the Second International Confer-

ence on Embedded Software(EMSOFT), volume 2491 of Lecture

Notes in Computer Science, pages 108�122. Springer, 2002.
[57] Stephane Demri and Ranko Lazic. Ltl with the freeze quantifier and

register automata. In Proceedings of the 21st Annual IEEE Symposium

on Logic in Computer Science, pages 17�26, Washington, DC, USA,
2006. IEEE Computer Society.

[58] Stéphane Demri, Ranko Lazic, and Arnaud Sangnier. Model checking
freeze ltl over one-counter automata. Ín Proceedings of the Theory and

practice of software, 11th international conference on Foundations of

software science and computational structures, FOS-
SACS�08/ETAPS�08, pages 490�504, Berlin, Heidelberg, 2008.
Springer-Verlag.

[59] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verifi-
cation of data-driven web applications. Journal of Computer and Sys-

tem Sciences, 73:442�474, May 2007.
[60] Arulazi Dhesiaseelan and Venkatavaradan Ragunathan. Web services

container reference architecture (wscra). In ICWS �04: Proceedings of

the IEEE International Conference on Web Services, page 806, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[61] Marlon Dumas, Boualem Benatallah, and Hamid R. Motahari Nezhad.
Web service protocols: Compatibility and adaptation. IEEE Data En-

gineering Bulletin, 31(3):40�44, 2008.
[62] Gregorio Dyaz, M. Emilia Cambronero, Juan J. Pardo, Valentin Va-

lero, and Fernando Cuartero. Automatic generation of correct web ser-
vices choreographies and orchestrations with model checking tech-
niques. In AICT/ICIW, page 186. IEEE Computer Society, 2006.

[63] Emad Elabd, Emmanuel Coquery, and Mohand-Said Hacid. Checking
compatibility and replaceability in web services business protocols
with access control. In Proceedings of the IEEE International Confer-

ence on Web Services (ICWS), pages 409�416, 2010.
[64] Emad Elabd, Emmanuel Coquery, and Mohand-Said Hacid. Selecting

web services for choreography implementation: Compatibility check-
ing approach with access control. In SEKE, 2010.

[65] Emad Elabd, Emmanuel Coquery, and Mohand-Said Hacid. Timed
web services analysis after removing complex implicit transitions. In
Proceedings of the IEEE International Conference on Web Services

(ICWS), pages 409�416, 2011.
[66] Dieter Fensel, Wolfgang Wahlster, and Henry Lieberman, editors.

Spinning the Semantic Web: Bringing the World Wide Web to Its Full

Potential. MIT Press, Cambridge, MA, USA, 2002.

 BIBLIOGRAPHY

171

[67] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn,
and Ramaswamy Chandramouli. Proposed nist standard for role-based
access control. ACM Transactions on Information and System Security

(TISSEC), 4(3):224�274, 2001.
[68] Wan Fokkink. Introduction to Process Algebra. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2000.
[69] Charles Forgy. Rete: A fast algorithm for the many pattern/many ob-

ject pattern match problem. Artificial Intelligences, 19(1):17�37, 1982.
[70] Charles Lanny Forgy. On the efficient implementation of production

systems. PhD thesis, Pittsburgh, PA, USA, 1979.
[71] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel

web services. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and
Craig E. Wills, editors, WWW, pages 621�630. ACM, 2004.

[72] Xiang Fu, Tevfik Bultan, and Jianwen Su. Conversation protocols: A
formalism for specification and verification of reactive electronic ser-
vices. In In Proc. Int. Conf. on Implementation and Application of

Automata (CIAA, pages 188�200. Springer, 2004.
[73] Simon Gay, Malcolm Hole, and Surrey Tw Ex. Types for correct

communication in client-server systems. Technical report, Department
of Computer Science, Royal Holloway, University of London, 2000.

[74] Simon J. Gay and Malcolm Hole. Types and subtypes for client-server
interactions. In S. Doaitse Swierstra, editor, ESOP, volume 1576 of
Lecture Notes in Computer Science, pages 74�90. Springer, 1999.

[75] Aurona Gerber, Alta van der Merwe, and Andries Barnard. A func-
tional semantic web architecture. In ESWC�08: Proceedings of the 5th

European semantic web conference on The semantic web, pages 273�
287, Berlin, Heidelberg, 2008. Springer-Verlag.

[76] Arthur Gill. Introduction to the Theory of Finite-State Machines.
McGraw Hill, 1962.

[77] Thomas R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing? International Journal of Human-

Computer Studies, 43(5-6):907�928, 1995.
[78] Nawal Guermouche, Olivier Perrin, and Christophe Ringeissen. Timed

specification for web services compatibility analysis. Electronic Notes

in Theoretical Computer Science, 200(3):155�170, 2008.
[79] Rachid Hamadi and Boualem Benatallah. A petri net-based model for

web service composition. In ADC �03: Proceedings of the 14th Aus-

tralasian database conference, pages 191�200, Darlinghurst, Austra-
lia, Australia, 2003. Australian Computer Society, Inc.

[80] Thomas Hardjono and Nathan Klingenstein. OASIS Security Services
(SAML) TC, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security.

 BIBLIOGRAPHY

172

[81] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo.
Language primitives and type discipline for structured communica-
tion-based programming. In ESOP �98: Proceedings of the 7th Euro-

pean Symposium on Programming, pages 122�138, London, UK,
1998. Springer-Verlag.

[82] Richard Hull, Michael Benedikt, Vassilis Christophides, and Jianwen
Su. E-services: a look behind the curtain. In PODS �03: Proceedings

of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 1�14, New York, NY, USA,
2003. ACM.

[83] San-Yih Hwang, Chuan Yin, and Chien-Hsiang Lee. Selecting web
services and participants for enforcing workflow access control. In
HICSS, pages 1�10. IEEE Computer Society, 2009.

[84] Marcin Jurdzinski and Ranko Lazic. Alternation-free modal mu-
calculus for data trees. In Proceedings of the 22nd Annual IEEE Sym-

posium on Logic in Computer Science, pages 131�140, Washington,
DC, USA, 2007. IEEE Computer Society.

[85] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a
pervasive computing environment. In POLICY �03: Proceedings of the

4th IEEE International Workshop on Policies for Distributed Systems

and Networks, page 63, Washington, DC, USA, 2003. IEEE Computer
Society.

[86] Zuling Kang, Hongbing Wang, and Patrick C. K. Hung. Ws-cdl+: An
extended ws-cdl execution engine for web service collaboration. In
Proceedings of the IEEE International Conference on Web Services

(ICWS), pages 928�935. IEEE Computer Society, 2007.
[87] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,

and Yves Lafon. Web services choreography description language ver-
sion 1.0 (wscdl). Technical report, W3C(MIT, ERCIM, Keio), http://-
www.w3.org/TR/ws-cdl-10/, 2005.

[88] Raman Kazhamiakin, Paritosh K. Pandya, and Marco Pistore. Timed
modelling and analysis in web service compositions. In ARES, pages
840�846, 2006.

[89] Raman Kazhamiakin and Marco Pistore. Choreography conformance
analysis: Asynchronous communications and information alignment.
In WS-FM, pages 227�241, 2006.

[90] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42:741�843,
1995.

[91] Heather Kreger. Fulfilling the web services promise. Communications

of the ACM, 46(6):29�ff, 2003.

 BIBLIOGRAPHY

173

[92] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer

(STTT), 1:134�152, 1997. 10.1007/s100090050010.
[93] Ranko Lazic, Tom Newcomb, Joël Ouaknine, A. W. Roscoe, and

James Worrell. Nets with tokens which carry data. In Proceedings of

the 28th international conference on Applications and theory of Petri

nets and other models of concurrency, ICATPN�07, pages 301�320,
Berlin, Heidelberg, 2007. Springer-Verlag.

[94] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the
situation calculus, 1998.

[95] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of
a role-based trust-management framework. In IEEE Symposium on Se-

curity and Privacy, pages 114�130, 2002.
[96] Michele Mancioppi, Manuel Carro, Willem-Jan van den Heuvel, and

Mike P. Papazoglou. Sound multi-party business protocols for service
networks. In ICSOC, pages 302�316, 2008.

[97] Elisabetta De Maria, Angelo Montanari, and Marco Zantoni. An
automaton-based approach to the verification of timed workflow
schemas. In TIME, pages 87�94. IEEE Computer Society, 2006.

[98] Francis McCabe, David Booth, Hugo Haas, Eric Newcomer, Michael
Champion, Chris Ferris, and David Orchard. Web services architecture
�w3c working group note. http://www.w3.org/tr/ws-arch/, February
2004.

[99] Sheila A. Mcilraith, Tran Cao Son, and Honglei Zeng. Semantic web
services. IEEE Intelligent Systems, 16:46�53, 2001.

[100] Massimo Mecella, Mourad Ouzzani, Federica Paci, and Elisa Bertino.
Access control enforcement for conversation-based web services. In
WWW �06: Proceedings of the 15th international conference on World

Wide Web, pages 257�266, New York, NY, USA, 2006. ACM.
[101] Tim Moses. extensible access control markup language (xacml) ver-

sion 2.0. Technical report, OASIS Standard, http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, Feb
2005.

[102] Dimitris Mostrous and Nobuko Yoshida. Two session typing systems
for higher-order mobile processes. In TLCA�07: Proceedings of the 8th

international conference on Typed lambda calculi and applications,
pages 321�335, Berlin, Heidelberg, 2007. Springer-Verlag.

[103] Wolfgang Nejdl, Daniel Olmedilla, Marianne Winslett, and Charles C.
Zhang. Ontology-based policy specification and management. In
ESWC, pages 290�302, 2005.

 BIBLIOGRAPHY

174

[104] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state ma-
chines for strings over infinite alphabets. ACM Transactions on Com-

putational Logic (TOCL), 5:403�435, July 2004.
[105] Hamid R. Motahari Nezhad, Boualem Benatallah, Fabio Casati, and

Farouk Toumani. Web services interoperability specifications. Com-

puter, 39(5):24�32, 2006.
[106] Federica Paci, Elisa Bertino, and Jason Crampton. An access-control

framework for ws-bpel. International Journal of Web Services Re-

search (JWSR), 5(3):20�43, 2008.
[107] Federica Paci, Mourad Ouzzani, and Massimo Mecella. Verification of

access control requirements in web services choreography. In SCC

�08: Proceedings of the 2008 IEEE International Conference on Ser-

vices Computing, pages 5�12, Washington, DC, USA, 2008. IEEE
Computer Society.

[108] Mike. P. Papazoglou and D. Georgakopoulos. Introduction. Communi-

cations of the ACM, 46(10):24�28, 2003.
[109] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank

Leymann. Service-oriented computing: State of the art and research
challenges. IEEE Computer, 40(11):38�45, 2007.

[110] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service oriented
architectures: approaches, technologies and research issues. The Inter-

national Journal on Very Large Data Bases, 16(3):389�415, 2007.
[111] Shamimabi Paurobally and Nicholas R. Jennings. Protocol engineering

for web services conversations. Engineering Applications of Artificial

Intelligence, 18(2):237�254, 2005.
[112] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium

on the Foundations of Computer Science (FOCS-77), pages 46�57,
Providence, Rhode Island, October MarchJanuary�November Febru-
ary 1977. IEEE, IEEE Computer Society Press.

[113] Julien Ponge. Model Based Analysis of Time-aware Web Services In-

teractions. PhD thesis, PhD Thesis, July 2008.
[114] Julien Ponge, Boualem Benatallah, Fabio Casati, and Farouk Toumani.

Fine-grained compatibility and replaceability analysis of timed web
service protocols. In ER, pages 599�614, 2007.

[115] Shankar R. Ponnekanti and Armando Fox. Interoperability among in-
dependently evolving web services. In Middleware �04: Proceedings

of the 5th ACM/IFIP/USENIX international conference on Middle-

ware, pages 331�351, New York, NY, USA, 2004. Springer-Verlag
New York, Inc.

[116] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards
the theoretical foundation of choreography. In WWW, pages 973�982,
2007.

 BIBLIOGRAPHY

175

[117] Pemadeep Ramsokul and Arcot Sowmya. An adaptable formal model
for web services protocols. In ICIW �07: Proceedings of the Second

International Conference on Internet and Web Applications and Ser-

vices, page 40, Washington, DC, USA, 2007. IEEE Computer Society.
[118] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of Mono-

graphs in Theoretical Computer Science. An EATCS Series. Springer,
1985.

[119] Philip Robinson, Florian Kerschbaum, and Andreas Schaad. From
business process choreography to authorization policies. In Ernesto
Damiani and Peng Liu, editors, Data and Applications Security XX,
volume 4127 of Lecture Notes in Computer Science, pages 297�309.
Springer Berlin / Heidelberg, 2006. 10.1007/11805588_21.

[120] N.S. Rosa, P.R.F. Cunha, and G.R.R. Justo. Processnfl: a language for
describing non-functional properties. In System Sciences, 2002.

HICSS. Proceedings of the 35th Annual Hawaii International Confer-

ence on, pages 3676 � 3685, jan. 2002.
[121] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Mod-

eling Language Reference Manual. Addison-Wesley, Boston, MA, 2.
edition, 2005.

[122] Stephen M. Rutner, Brian J. Gibson, and Susan R. Williams. The im-
pacts of the integrated logistics systems on electronic commerce and
enterprise resource planning systems. Transportation Research Part

E: Logistics and Transportation Review, 39:83�93, 2003.
[123] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based access control models. Computer, 29(2):38�47,
1996.

[124] Davide Sangiorgi. Asynchronous process calculi: the first- and higher-
order paradigms. Theoretical Computer Science - Special issues on

models and paradigms for concurrency, 253(2):311�350, 2001.
[125] Amit Sheth. Semantic web process life cycle. role of semantics in an-

notation, discovery, composition and execution. In Invited talk at

WWW 2003 Workshop on e-Services and the Semantic Web,Budapest,

Hungary., 2003.
[126] Halvard Skogsrud, Boualem Benatallah, and Fabio Casati. Trust-serv:

model-driven lifecycle management of trust negotiation policies for
web services. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and
Craig E. Wills, editors, WWW, pages 53�62. ACM, 2004.

[127] R. G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions on Com-

puters, 29(12):1104�1113, 1980.
[128] Marc Spielmann. Verification of relational tranducers for electronic

commerce. In Proceedings of the nineteenth ACM SIGMOD-SIGACT-

 BIBLIOGRAPHY

176

SIGART symposium on Principles of database systems, PODS �00,
pages 92�103, New York, NY, USA, 2000. ACM.

[129] Mudhakar Srivatsa, Arun Iyengar, Thomas A. Mikalsen, Isabelle Rou-
vellou, and Jian Yin. An access control system for web service com-
positions. In Proceedings of the IEEE International Conference on

Web Services (ICWS), pages 1�8, 2007.
[130] Ferucio Laurentiu Tiplea and Geanina Ionela Macovei. E-timed work-

flow nets. In Proceedings of the Eighth International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SY-

NASC), pages 423�429. IEEE Computer Society, 2006.
[131] Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Mon-

tanari, Niranjan Suri, and Andrzej Uszok. Semantic web languages for
policy representation and reasoning: A comparison of kaos. In Pro-

ceedings of the 2nd International Semantic Web Conference

(ISWC2003), pages 419�437. Springer, 2003.
[132] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typ-

ing the behavior of objects and components using session types. Elec-

tronic Notes in Theoretical Computer Science, 68(3):439 � 456, 2003.
Foclasa 2002, Foundations of Coordination Languages and Software
Architectures (Satellite Workshop of CONCUR 2002).

[133] Christopher Van, Eenoo Osama, Hylooz Khaled, and M. Khan. Ad-
dressing non-functional properties in software architecture using adl.
In In Proceedings of the 6th Australian Workshop on Software and

Systems Architectures - AWSA�05, Brisbane, Australia., page 6�13,
March 29 2005.

[134] W. M. P. van der Aalst. The application of petri nets to workflow
management. Journal of Circuits, Systems, and Computers, 8(1):21�
66, 1998.

[135] Wil van der Aalst, Lachlan Aldred, Marlon Dumas, and Arthur ter
Hofstede. Design and implementation of the yawl system. In Ad-

vanced Information Systems Engineering, volume 3084 of Lecture

Notes in Computer Science, pages 281�305. Springer Berlin / Heidel-
berg, 2004. 10.1007/978-3-540-25975-6_12.

[136] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245�275, 2005.

[137] Victor Vianu. Automatic verification of database-driven systems: a
new frontier. In Proceedings of the 12th International Conference on

Database Theory, ICDT �09, pages 1�13, New York, NY, USA, 2009.
ACM.

[138] Steve Vinoski. More web services notifications. IEEE Internet Com-

puting, 8(3):90�93, 2004.

 BIBLIOGRAPHY

177

[139] Steve Vinoski. Web services notifications. IEEE Internet Computing,
8(2):86�90, 2004.

[140] Steve Vinoski. Ws-nonexistent standards. IEEE Internet Computing,
8(6):94�96, 2004.

[141] Andreas Wombacher, Peter Fankhauser, Bendick Mahleko, and Erich
Neuhold. Matchmaking for business processes based on choreo-
graphies. In Proceedings of the 2004 IEEE International Conference

on e-Technology, e-Commerce and e-Service (EEE), pages 359�368,
Washington, DC, USA, 2004. IEEE Computer Society.

[142] Roosdiana Wonohoesodo and Zahir Tari. A role based access control
for web services. In Proceedings of the 2004 IEEE International Con-

ference on Services Computing (SCC), pages 49�56, Washington, DC,
USA, 2004. IEEE Computer Society.

[143] Daniel M. Yellin and Robert E. Strom. Protocol specifications and
component adaptors. ACM Transactions on Programming Languages

and Systems (TOPLAS), 19(2):292�333, 1997.
[144] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalag-

nanam, and Quan Z. Sheng. Quality driven web services composition.
In Proceedings of the 12th international conference on World Wide

Web(WWW), pages 411�421, New York, NY, USA, 2003. ACM.

