Keywords: Regularized Problems, II, Sparse Linear Discriminant Analysis

If this thesis has fallen into your hands and you have the curiosity to read this paragraph, you must know that even though it is a short section, there are quite a lot of people behind this volume. All of them supported me during the three years, three months and three weeks that it took me to finish this work. However, you will hardly find any names. I think it is a little sad writing people's names in a document that they will probably not see and that will be condemned to gather dust on a bookshelf. It is like losing a wallet with pictures of your beloved family and friends. It makes me feel something like melancholy.... Obviously, this does not mean that I have nothing to be grateful for. I always felt unconditional love and support from my family and I never felt homesick since my spanish friends did the best they could to visit me frequently. During my time in Compiègne, I met wonderful people that are now friends for life. I am sure that all this people do not need to be listed in this section to know how much I love them; I thank them every time we see each other by giving them the best of myself.

I enjoyed my time in Compiègne, It was an exciting adventure and I do not regret a single thing. I am sure that I will miss these days, but this does not make me sad because as the Beatles sang in "The end" or Jorge Drexler in "Todo se transforma", the amount that you miss people is equal to the love you gave them and received from them.

The only names I am including are my supervisors': Yves Grandvalet and Gérard Govaert. I do not think it is possible to have had better teaching and supervision and I am sure that the reason I finished this work was

List of Tables 6.1. Experimental results for simulated data, supervised classification 6.2. Average TPR and FPR for all simulations 6.3. Experimental results for gene expression data, supervised classification . .

Notation and Symbols

Throughout this thesis, vectors are denoted by lowercase letters in bold font and matrices by uppercase letters in bold font. Unless otherwise stated, vectors are column vectors and parentheses are used to build line vectors from comma-separated lists of scalars, or to build matrices from comma-separated lists of column vectors.

Sets prior probability or mixture proportion for cluster k µ k mean vector of cluster k Σ k covariance matrix of cluster k θ k parameter vector for cluster k θ k = (µ k , Σ k) θ (t) parameter vector at iteration t of the EM algorithm f (X; θ) likelihood function L(θ; X) log-likelihood function L C (θ; X, Y) complete log-likelihood function

N

Context and Foundations

1 This thesis is divided in three parts. In Part I, I am introducing the context in which this work has been developed, the project that funded it and the constraints that we had to obey. Generic are also detailed here to introduce the models and some basic concepts that will be used along this document. The state of the art of is also reviewed.

The first contribution of this thesis is explained in Part II where I present the supervised learning algorithm GLOSS and its supporting theory, as well as some experiments to test its performance compared to other state of the art mechanisms. Before describing the algorithm and the experiments, its theoretical foundations are provided.

The second contribution is described in Part III, with an analogue structure to Part II, but for the unsupervised domain. The clustering algorithm Mix-GLOSS adapts the supervised technique from Part II by means of a modified EM. This section is also furnished with specific theoretical foundations, an experimental section and a final discussion.

Context

The MASH project is a research initiative to investigate the open and collaborative design of feature extractors for the Machine Learning scientific community. The project is structured around a web platform (http:/mash-project.eu/) comprising collaborative tools such as wiki-documentation, forums, coding templates and an experiment center empowered with non-stop calculation servers. The applications targeted by MASH are vision and goal-planning problems, either in a 3D virtual environment or with a real robotic arm.

The MASH consortium is led by the IDIAP Research Institute in Switzerland. The other members are the University of Potsdam in Germany, the Czech Technical University of Prague, the National Institute for Research in Computer Science and Control (INRIA) in France and the National Centre for Scientific Research (CNRS) also in France through the laboratory of Heuristics and Diagnosis for Complex Systems (HEUDIASYC) attached to the the University of Technology of Compiègne.

From the point of view of the research, the members of the consortium must deal with four main goals:

1. Software development of website, framework and API's 2. Classification and goal-planning in high dimensional feature spaces 3. Interfacing the platform with the 3D virtual environment and the robot arm The work detailed in this text has been done in the context of goal 4. From the very beginning of the project, our role is to provide the users with some feedback regarding the feature extractors. At the moment of writing this thesis, the number of public feature extractors reaches 75. In addition to the public ones there are also private extractors that contributors decide not to share with the rest of the community. The last number I was aware of was about 300. Within those 375 extractors, there must be some of them sharing the same theoretical principles or supplying similar features. The framework of the project tests every new piece of code with some datasets of reference in order to provide a ranking depending on the quality of the estimation. However, similar performance of two extractors for a particular dataset does not mean that both are using the same variables.

Our engagement was to provide some textual or graphical tools to discover which extractors compute features similar to other ones. Our hypothesis is that many of them use the same theoretical foundations; that should induce a grouping of similar extractors. If we succeed discovering those groups, we would also be able to select representatives. This information can be used in several ways. For example, from the perspective of a user that develops feature extractors, it would be interesting comparing the performance of his code against the K representatives instead to the whole database. As another example, imagine a user wants to obtain the best prediction results for a particular dataset. Instead of selecting all the feature extractors creating an extremely high dimensional space he could select only the K representatives, foreseeing similar results with a faster experiment.

As there is no prior knowledge about the latent structure, we make use of unsupervised techniques. Below, there is a brief description of the different tools that we developed for the web platform.

• Clustering Using Mixture Models. This is a well-known technique that models the data as if it was randomly generated from a distribution function. This distribution is typically a mixture of Gaussian with unknown mixture proportions, means and covariance matrices. The number of Gaussian components matches the number of expected groups. The parameters of the model are computed using the EM algorithm and the clusters are built by maximum a posteriori estimation.

For the calculation, we use mixmod that is a c++ library that can be interfaced with matlab. This library allows working with high dimensional data. Further information regarding mixmod is given by [START_REF] Bienarcki | MIXMOD Statistical Documentation[END_REF]. All details concerning the tool implemented are given in deliverable "mash-deliverable-D7.1-m12" [START_REF] Govaert | Implementation baseline for clustering[END_REF]).

• Sparse Clustering Using Penalized Optimal Scoring. This technique intends, again, to perform clustering by modelling the data as a mixture of Gaussian distributions. However, instead of using a classic EM algorithm for estimating the components' parameters, the M-step is replaced by a penalized Optimal Scoring problem. This replacement induces sparsity improving the robustness and the interpretability of the results. Its theory will be explained later in this thesis.

All details concerning the tool implemented can be found in deliverable "mashdeliverable-D7.2-m24" [START_REF] Govaert | Implementations of original clustering[END_REF].

• Table Clustering Using The RV Coefficient. This technique applies clustering methods directly to the tables computed by the feature extractors instead creating a single matrix. A distance in the extractors space is defined using the RV coefficient that is a multivariate generalization of the Pearson's correlation coefficient on the form of an inner product. The distance is defined for every pair i and j as RV(O i , O j) where O i and O j are operators computed from the tables returned by feature extractors i and j. Once that we have a distance matrix, several standard techniques may be used to group extractors. A detailed description of this technique can be found in deliverables "mash-deliverable-D7.1-m12" [START_REF] Govaert | Implementation baseline for clustering[END_REF] and "mash-deliverable-D7.2-m24" [START_REF] Govaert | Implementations of original clustering[END_REF]).

I am not extending this section with further explanations about the MASH project or deeper details about the theory that we used to commit our engagements. I will simply refer to the public deliverables of the project where everything is carefully detailed [START_REF] Govaert | Implementation baseline for clustering[END_REF]2011).

Regularization for Feature Selection

With the advances in technology, data is becoming larger and larger resulting in high dimensional ensembles of information. Genomics, textual indexation and medical images are some examples of data that can easily exceed thousands of dimensions. The first experiments aiming to cluster the data from the MASH project (see Chapter 1) intended to work with the whole dimensionality of the samples. As the number of feature extractors rose, the numerical issues also rose. Redundancy or extremely correlated features may happen if two contributors implement the same extractor with different names. When the number of features exceeded the number of samples, we started to deal with singular covariance matrices whose inverses are not defined. Many algorithms in the field of Machine Learning make use of this statistic.

Motivations

There is a quite recent effort in the direction of handling high dimensional data. Traditional techniques can be adapted, but quite often large dimensions turn those techniques useless. Linear Discriminant Analysis was shown to be no better than a "random guessing" of the object labels when the dimension is larger than the sample size [START_REF] Bickel | Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations[END_REF]Levina 2004, Fan and[START_REF] Fan | High dimensional classification using features annealed independence rules[END_REF].

As a rule of thumb, in discriminant and clustering problems, the complexity of calculus increases with the numbers of objects in the database, the number of features (dimensionality) and the number of classes or clusters. One way to reduce this complexity is to reduce the number of features. This reduction induces more robust estimators, allows faster learning and predictions in the supervised environments and easier interpretations in the unsupervised framework. Removing features must be done wisely to avoid removing critical information.

When talking about dimensionality reduction, there are two families of techniques that could induce confusion.

• Reduction by feature transformations summarizes the dataset with fewer dimensions by creating combinations of the original attributes. These techniques are less effective when there are many irrelevant attributes (noise). Principal Component Analysis or Independent Component Analysis are two popular examples.

• Reduction by feature selection removes irrelevant dimensions preserving the integrity of the informative features from the original dataset. The problem comes out when there is a restriction in the number of variables to preserve and discarding the exceeding dimensions leads to a loss of information. Prediction with feature Figure 2.1.: Example of relevant features from [START_REF] Chidlovskii | Scalable feature selection for multi-class problems[END_REF] selection is computationally cheaper because only relevant features are used and the resulting models are easier to interpret. The Lasso operator is an example of this category.

As a basic rule, we can use the reduction techniques by feature transformation when the majority of the features are relevant and when there is a lot of redundancy or correlation. On the contrary, feature selection techniques are useful when there are plenty of useless or noisy features (irrelevant information) that needs to be filtered out. In the paper of [START_REF] Chidlovskii | Scalable feature selection for multi-class problems[END_REF] we find a great explanation about the difference between irrelevant and redundant features. The following two paragraphs are almost exact reproductions of their text.

"Irrelevant features are those which provide negligible distinguishing information. For example, if the objects are all dogs, cats or squirrels, and it is desired to classify each new animal into one of these three classes, the feature of color may be irrelevant if each of dogs, cats, and squirrels have about the same distribution of brown, black and tan fur colors. In such a case, knowing that an input animal is brown provides negligible distinguishing information for classifying the animal as a cat, dog or squirrel. Features which are irrelevant for a given classification problem are not useful, and accordingly a feature that is irrelevant can be filtered out.

Redundant features are those which provide distinguishing information, but are cumulative to another feature or group of features that provide substantially the same distinguishing information. Using previous example, consider illustrative "diet" and "domestication" features. Dogs and cats both have similar carnivorous diets, while squirrels consume nuts and so forth. Thus, the "diet" feature can efficiently distinguish squirrels from dogs and cats, although it provides little information to distinguish between dogs and cats. Dogs and cats are also both typically domesticated animals, while squirrels are wild animals. Thus, the "domestication" feature provides substantially the same information as the "diet" feature, namely distinguishing squirrels from dogs and cats but not distinguishing between dogs and cats. Thus the "diet" and "domestication" features are cumulative, and one can identify one of these features as redundant so as to be filtered out. However, unlike irrelevant features, care should be taken with redundant features to ensure that one retains enough of the redundant features to provide the relevant distinguishing information. In the foregoing example, on may wish to filter out either the "diet" feature or the "domestication" feature, but if one removes both the "diet" and the "domestication" features then useful distinguishing information is lost.

Categorization of Feature Selection Techniques

There are some tricks to build robust estimators when the number of features exceeds the number of samples. Ignoring some of the dependencies among variables and replacing the covariance matrix by a diagonal approximation are two of them. Another popular technique, and the one chosen in this thesis, is imposing regularity conditions.

Categorization of Feature Selection Techniques

Feature selection is one of the most frequent techniques in preprocessing data in order to remove irrelevant, redundant or noisy features. Nevertheless, the risk of removing some informative dimensions is always there, thus, the relevance of the remaining subset of features must be measured.

I am reproducing here the scheme that generalizes any feature selection process as it is shown by [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF]. Figure 2.2 provides a very intuitive scheme with the four key steps in a feature selection algorithm:

The classification of those algorithms can respond to different criteria. [START_REF] Guyon | An introduction to variable and feature selection[END_REF] propose a check list that summarizes the steps that may be taken to solve a feature selection problem guiding the user through several techniques. [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF] propose a framework that integrates supervised and unsupervised feature selection algorithms through a categorizing framework. Both references are excellent reviews to characterize feature selection techniques according to their characteristics. I am proposing a framework inspired by these references that does not cover all the possibilities but which gives a good summary about existing possibilities.

• Depending on the type of integration with the machine learning algorithm we have:

-Filter Models -The filter models work as a preprocessing step using an independent evaluation criteria to select a subset of variables without assistance of the mining algorithm.

-Wrapper Models -The wrapper models require a classification or clustering algorithm and use its prediction performance to assess the relevance of the subset selection. The feature selection is done in the optimization block while the feature subset evaluation is done in a different one. Therefore, the criterion to optimize and to evaluate may be different. Those algorithms are computationally expensive.

-Embedded Models -They perform variable selection inside the learning machine with the selection being made at the training step. That means that there is only one criterion; the optimization and the evaluation are a single block and the features are selected to optimize this unique criterion and do not need to be re-evaluated in a later phase. That makes them more efficient since no validation or test process are needed for every variable subset investigated. However, they are less universal because they are specific of the training process for a given mining algorithm.

• Depending on the feature searching technique:

-Complete -No subsets are missed from evaluation. Involves combinatorial searches.

-Sequential -Features are added (forward searches) or removed (backward searches) one at a time.

-Random -The initial subset or even subsequent subsets are randomly chosen to escape local optima.

• Depending on the evaluation technique:

-Distance Measures -Choosing the features that maximize the difference in separability, divergence or discrimination measures.

-Information Measures -Choosing the features that maximize the information gain, that is minimizing the posterior uncertainty.

-Dependency Measures -Measuring the correlation between features.

-Consistency Measures -Finding a minimum number of features that separate classes as consistently as the full set of features can.

-Predictive Accuracy -Use the selected features to predict the labels.

-Cluster Goodness -Use the selected features to perform clustering and evaluate the result (cluster compactness, scatter separability, maximum likelihood,...).

The distance, information, correlation and consistency measures are typical of variable ranking algorithms commonly used in filter models. Predictive accuracy and cluster goodness allow to evaluate subsets of features and can be used in wrapper and embedded models.

In this thesis, we developed some algorithms following the embedded paradigm, either in the supervised or the unsupervised framework. Integrating the subset selection problem in the overall learning problem may be computationally demanding, but it is appealing from a conceptual viewpoint: there is a perfect match between the formalized goal and the process dedicated to achieve this goal, thus avoiding many problems arising in filter or wrapper methods. Practically, it is however intractable to solve exactly hard selection problems when the number of features exceeds a few tenth. Regularization techniques allow to provide a sensible approximate answer to the selection problem with reasonable computing resources, and their recent study have demonstrated powerful theoretical and empirical results. The following section introduces the tools that will be employed in Part II and III.

Regularization

In the machine learning domain, the term "regularization", refers to a technique that introduces some extra assumptions or knowledge in the resolution of an optimization problem. The most popular point of view presents regularization as a mechanism to prevent overfitting, but it can also help to fix some numerical issues on ill-posed problems (like some matrix singularities when solving a linear system) besides other interesting properties like the capacity to induce sparsity, thus producing models that are easier to interpret.

An ill-posed problem violates the rules defined by Jacques Hadamard, according to whom, the solution to a mathematical problem has to exist, be unique and stable. For example, when the number of samples is smaller than their dimensionality and we try to infer some generic laws from such a low sample of the population. Regularization transforms an ill-posed problem into a well-posed one. To do that, some a priori knowledge is introduced in the solution through a regularization term that penalizes a criterion J with a penalty P . Below are the two most popular formulations:

min β J(β) + λP (β) , (2.1) min β J(β) s. t. P (β) ≤ t . (2.2)
In the expressions (2.1) and (2.2) the parameters λ and t have a similar function, that is, to control the trade-off between fitting the data to the model according to J(β) and the effect of the penalty P (β). The set such that the constraint in (2.2) is verified ({β : P (β) ≤ t}) is called the admissible set. This penalty term can also be understood as a measure that quantifies the complexity of the model (as in the definition of [START_REF] Sammut | Encyclopedia of Machine Learning[END_REF]. Note that regularization terms can also be interpreted in the Bayesian paradigm as prior distributions on the parameters of the model. In this thesis both views will be taken.

In this section, I am reviewing pure, mixed and hybrid penalties that will be used in the following chapters to implement feature selection. I first list important properties that may pertain to any type of penalty.

Important Properties

Penalties may have different properties that can be more or less interesting depending on the problem and the expected solution. The most important properties for our purposes here are convexity, sparsity and stability.

Convexity Regarding optimization, convexity is a desirable property that eases finding global solutions. A convex function verifies

∀(x 1 , x 2) ∈ X 2 , f (tx 1 + (1 -t)x 2) ≤ tf (x 1) + (1 -t)f (x 2) , (2.3)
for any value of t ∈ [0, 1]. Replacing the inequality by strict inequality we obtain the definition of strict convexity. A regularized expression like (2.2) is convex if function J(β) and penalty P (β) are both convex.

Sparsity Usually, null coefficients furnishes models that are easier to interpret. When sparsity does not harm the quality of the predictions, it is a desirable property which moreover entails less memory usage and computation resources.

Stability There are numerous notions of stability or robustness, which measure how the solution varies when the input is perturbed by small changes. This perturbation can be adding, removing or replacing few elements in the training set. Adding regularization, in addition to prevent overfitting, is a means to favor the stability of the solution.

Pure Penalties

For pure penalties, defined as P (β) = ||β|| p , convexity holds for p ≥ 1. This is graphically illustrated in Figure 2.3 borrowed from [START_REF] Szafranski | Pénalités Hiérarchiques pour l'Intégration de Connaissances dans les Modèles Statistiques[END_REF], whose Chapter 3 is an excellent review of regularization techniques and the algorithms to solve them. In Figure 2.4.: Two dimensional regularized problems with ||β|| 1 and ||β|| 2 penalties this figure, the shape of the admissible sets corresponding to different pure penalties is greyed out. Since convexity of the penalty corresponds to the convexity of the set, we see that this property is verified for p ≥ 1.

Regularizing a linear model with a norm like β p means that the larger the component |β j |, the more important the feature x j in the estimation. On the contrary, the closer to zero the more dispensable it is. In the limit of |β j | = 0, x j is not involved in the model. If many dimensions can be dismissed, then we can speak of sparsity.

A graphical interpretation of sparsity borrowed from Marie Szafranski is given in Figure 2.4. In a 2D problem, a solution can be considered as sparse if any of its components (β 1 or β 2) is null. That is, if the optimal β is located on one of the coordinate axis. Let us consider a search algorithm that minimizes an expression like (2.2) where J(β) is a quadratic function. When the solution to the unconstrained problem does not belong to the admissible set defined by P (β) (greyed out area), the solution to the constrained problem is as close as possible to the global minimum of the cost function inside the grey region. Depending on the shape of this region, the probability of having a sparse solution varies. A region with vertexes, as the one corresponding to a L 1 penalty has more chances of inducing sparse solutions than the one of an L 2 penalty. That idea is displayed in Figure 2.4, where J(β) is a quadratic function, represented with three isolevel curves whose global minimum β ls is outside the penalties' admissible region. The closest point to this β ls for the L 1 regularization is β l 1 and for the L 2 regularization it is β l 2 . Solution β l 1 is sparse because its second component is zero while both components of β l 2 are different from zero.

After reviewing the regions from Figure 2.3 we can relate the capacity of generating sparse solutions to the quantity and the "sharpness" of vertexes of the greyed out area. For example, a L 1 3 penalty has a support region with sharper vertexes that would induce a sparse solution even more strongly than a L 1 penalty; however, the non-convex shape of the L 1

To summarize, convex problem with a sparse solution is desired. But with pure penalties sparsity is only possible with L p norms with p ≤ 1 due to the fact that they are the only ones that have vertexes. On the other side, only norms with p ≥ 1 are convex, hence, the only pure penalty that builds a convex problem with a sparse solution is the L 1 penalty.

L 0 Penalties The L 0 pseudo norm of a vector β is defined as the number of entries different from zero, that is:

P (β) = β 0 = card{β j |β j = 0}: min β J(β) s. t. β 0 ≤ t , (2.4)
where parameter t represents the maximum number of non-zero coefficients in vector β. The larger the value of t (or the lower value of λ if we use the equivalent expression in (2.1)) the fewer the number of zeros induced in vector β. If t is equal to the dimensionality of the problem (or if λ = 0), then the penalty term is not effective and β is not altered. In general, the computation of the solutions relies on combinatorial optimization schemes. Their solutions are sparse but unstable.

L 1 Penalties The penalties built using L 1 norms induce sparsity and stability. It has been named the Lasso (Least Absolute Shrinkage and Selection Operator) by [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF].

       min β J(β) s. t. p j=1 |β j | ≤ t , (2.5)
Despite all the advantages of the Lasso, the choice of the right penalty is not so easy as a question of convexity and sparsity. For example, concerning the Lasso, Osborne et al. (2000a) have shown that when the number of examples n is lower than the number of variables p, then the maximum number of non-zero entries of β is n. Therefore, if there is a strong correlation between several variables, this penalty risks to dismiss all but one, resulting in a hardly interpretable model. In a field like genomics where n is typically some tens of individuals and p several thousands of genes, the performance of the algorithm and the interpretability of the genetic relationships are severely limited. Lasso is a popular tool that has been used in multiple contexts beside regression, particularly in the field of feature selection in supervised classification (Mai et al. 2012, Witten and[START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF] and clustering [START_REF] Roth | Feature selection in clustering problems[END_REF][START_REF] Pan | Semi-supervised learning via penalized mixture model with application to microarray sample classification[END_REF][START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], Zhou et al. 2009[START_REF] Guo | Pairwise variable selection for highdimensional model-based clustering[END_REF][START_REF] Witten | A framework for feature selection in clustering[END_REF], Bouveyron and Brunet 2012b;a).

The consistency of the problems regularized by a Lasso penalty is also a key feature. Defining consistency as the capability of making always the right choice of relevant variables when the number of individuals is infinitely large. [START_REF] Leng | A note on the lasso and related procedures in model selection[END_REF] have shown that when the penalty parameter (t or λ depending on the formulation) is chosen by minimization of the prediction error, the Lasso penalty does not lead into consistent models. There is a large bibliography defining conditions where Lasso estimators become consistent [START_REF] Knight | Asymptotics for lasso-type estimators[END_REF][START_REF] Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF][START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF][START_REF] Zhao | On model selection consistency of lasso[END_REF][START_REF] Bach | Bolasso: model consistent lasso estimation through the bootstrap[END_REF]). In addition to those papers, some authors have introduced modifications to improve the interpretability and the consistency of the Lasso, such as the adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF].

L 2 Penalties The graphical interpretation of pure norm penalties in Figure 2.3 shows that this norm does not induce sparsity due to its lack of vertexes. Strictly speaking, the L 2 norm involves the square root of the sum of all squared components. In practice, when using L 2 penalties, the square of the norm is used to avoid the square root and solve a linear system. Thus, a L 2 penalized optimization problem looks like:

min β J(β) + λ β 2 2 .
(2.6)

The effect of this penalty is the "equalization" of the components of the parameter that is being penalized. To enlighten this property let us consider a least squares problem min

β n i=1 (y i -x i β) 2 , (2.7)
with solution β ls = (X X) -1 X y. If some input variables are highly correlated, the estimator β ls is very unstable. To fix this numerical instability, [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF] proposed ridge regression that regularizes Problem (2.7) with a quadratic penalty:

min β n i=1 (y i -x i β) 2 + λ p j=1 β 2 j .
The solution to this problem is β l 2 = (X X + λI p) -1 X y. All eigenvalues, in particular the small ones corresponding to the correlated dimensions are now moved upwards by λ. This can be enough to avoid the instability induced by small eigenvalues. This "equalization" in the coefficients reduces the variability of the estimation, which may improve performances.

As with the Lasso operator, there are several variations of ridge regression. For example, [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF] proposed the nonnegative garrotte that looks like a ridge regression where each variable is penalized adaptively. To do that, the least square solution is used to define the penalty parameter attached to each coefficient min

β n i=1 (y i -x i β) 2 + λ p j=1 β 2 j (β ls j) 2 .
(2.8)

The effect is an elliptic admissible set instead of the ball of ridge regression. Another example is the adaptive ridge regression [START_REF] Grandvalet | Least absolute shrinkage is equivalent to quadratic penalization[END_REF][START_REF] Grandvalet | Adaptive scaling for feature selection in svms[END_REF] where the penalty parameter differs on each component. There, every λ j is optimized to penalize more or less depending on the influence of β j in the model. Although the L 2 penalized problems are stable, they are not sparse. That makes those models harder to interpret, mainly in high dimensions.

L ∞ Penalties A special case of L p norms is the infinity norm defined as x ∞ := max(|x 1 |, |x 2 |, ..., |x p |). The admissible region for a penalty like β ∞ ≤ t is displayed in Figure 2.3. For the L ∞ norm, the greyed out region fits a square containing all the β vectors whose largest coefficient is less or equal to the value of the penalty parameter t.

This norm is not commonly used as a regularization term itself, however it is a frequent norm combined in mixed penalties as it is shown in Section 2.3.4. In addition, in the optimization of penalized problems, there exists the concept of dual norms. Dual norms arise in the analysis of estimation bounds and in the design of algorithms that address optimization problems by solving an increasing sequence of small subproblems (working set algorithms). The dual norm plays a direct role in computing optimality conditions of sparse regularized problems. The dual norm β * of a norm β is defined as:

β * := max w∈R p β w s. t. w ≤ 1 .
In the case of an L q norm with q ∈ [1; +∞], the dual norm is the L r norm, such that 1 q + 1 r = 1. For example, the L 2 norm is self-dual and the dual norm of the L 1 norm is the L ∞ norm. Thus, this is one of the reasons why L ∞ is so important even if it is not so popular as a penalty itself, because L 1 is. An extensive explanation about dual norms and the algorithms that make use of them can be found in [START_REF] Bach | Convex optimization with sparsityinducing norms[END_REF].

Hybrid Penalties

There are no reasons for using pure penalties in isolation. We can combine them and try to obtain different benefits from any of them. The most popular example is the Elastic net regularization [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] with the objective of improving the Lasso penalization when n ≤ p. As recalled in Section 2.3.2, when n ≤ p, the Lasso penalty can select at most n non null features. Thus, in situations where there are more relevant variables, the Lasso penalty risks selecting only some of them. To avoid this effect, a combination of L 1 and L 2 penalties has been proposed. For the least squares example (2.7) from Section 2.3.2, the Elastic net is:

min β n i=1 (y i -x i β) 2 + λ 1 p j=1 |β j | + λ 2 p j=1 β 2 j .
(2.9)

The term in λ 1 is a Lasso penalty that induces sparsity in vector β; on the other side, the term in λ 2 is a ridge regression penalty that provides universal strong consistency [START_REF] De Mol | Elastic-net regularization in learning theory[END_REF], that is, the asymptotical capability (when n goes to infinity) of making always the right choice of relevant variables.

Mixed Penalties

Imagine a linear regression problem where each variable is a gene. Depending on the application, several biological processes can be identified by L different groups of genes. Let us identify as G the group of genes for the l process and d the number of genes (variables) in each group ∀l ∈ {1, ..., L}. Thus, the dimension of vector β will be the addition of the number of genes of every group: dim(β) = L =1 d . Mixed norms are a type of norms that take into consideration those groups. The general expression is showed below:

β (r,s) =      j∈G |β j | s   r s    1 r .
(2.10)

The pair (r, s) identifies the norms that are combined: a L s norm within groups and a L r norm between groups. The L s norm penalizes the variables in every group G , while the L r norm penalizes the within-group norms. The pair (r, s) is set so as to induce different properties in the resulting β vector. Note that the outer norm is often weighted to adjust for the different cardinalities the groups, in order to avoid favoring the selection of the largest groups.

Several combinations are available, the most popular is the norm β (1,2) known as group-Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF][START_REF] Leng | Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data[END_REF], Xie et al. 2008a;b, Meier et al. 2008[START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF][START_REF] Yang | Identifying main effects and epistatic interactions from large-scale snp data via adaptive group lasso[END_REF][START_REF] Sánchez Merchante | An efficient approach to sparse linear discriminant analysis[END_REF]. Figure 2.5 shows the difference between the admissible sets of a pure L 1 norm and a mixed L 1,2 norm. Many other mixing are possible, such as β (1,4/3) [START_REF] Szafranski | Hierarchical penalization[END_REF] or β (1,∞) [START_REF] Wang | Variable selection for model-based high-dimensional clustering and its application to microarray data[END_REF][START_REF] Kuan | A statistical framework for illumina DNA methylation arrays[END_REF][START_REF] Vogt | The group-lasso: l1, regularization versus l1,2 regularization[END_REF]. Modifications of mixed norms have also been proposed, such as the group bridge penalty [START_REF] Huang | A group bridge approach for variable selection[END_REF]), the composite absolute penalties [START_REF] Zhao | The composite absolute penalties family for grouped and hierarchical variable selection[END_REF], or combinations of mixed and pure norms such as Lasso and group-Lasso [START_REF] Friedman | A note on the group lasso and a sparse group lasso[END_REF][START_REF] Sprechmann | Collaborative hierarchical sparse modeling[END_REF] or group-Lasso and ridge penalty [START_REF] Ng | Generalized group sparse classifiers with application in fMRI brain decoding[END_REF].

Sparsity Considerations

In this chapter I have reviewed several possibilities that induce sparsity in the solution of optimization problems. However, having sparse solutions does not always lead to parsimonious models featurewise. For example, if we have four parameters per feature, we look for solutions where all four parameters are null for non-informative variables.

The Lasso and the other L 1 penalties encourage solutions such as the one in the left of Figure 2.6. If the objective is sparsity, then the L 1 norm do the job. However, if we aim at feature selection, and if the number of parameters per variable exceeds one, this type of sparsity does not target the removal of variables.

To be able to dismiss some features, the sparsity pattern must encourage null values for the same variable across parameters, as shown in the right of Figure 2.6. This can be achieved with mixed penalties that define groups of features. For example, L 1,2 or L 1,∞ mixed norms, with the proper definition of groups, can induce sparsity patterns such as 2.3.6. Optimization Tools for Regularized Problems

In [START_REF] Caramanis | Robust optimization in machine learning[END_REF], there is good collection of mathematical techniques and optimization methods to solve regularized problems. Another good reference is the thesis of [START_REF] Szafranski | Pénalités Hiérarchiques pour l'Intégration de Connaissances dans les Modèles Statistiques[END_REF] which also reviews some techniques classified in four categories. Those techniques, even if they belong to different categories, can be used separately or combined to produce improved optimization algorithms.

In fact, the algorithm implemented in this thesis is inspired by three of those techniques. It could be defined as an algorithm of "active constraints" implemented following a regularization path that is updated approaching the cost function with secant hyperplanes. Deeper details are given in the dedicated Chapter 5.

Subgradient Descent Subgradient descent is a generic optimization method that can be used for the settings of penalized problems where the subgradient of the loss function ∂J(β) and the subgradient of the regularizer ∂P (β) can be computed efficiently. On the one hand, it is essentially blind to the problem structure. On the other hand, many iterations are needed so the convergence is slow and the solutions are not sparse. Basically it is a generalization of the iterative gradient descent algorithm where the solution vector β (t+1) is updated proportionally to the negative subgradient of the function at the current point β (t) .

β (t+1) = β (t) -α(s + λs), where s ∈ ∂J(β (t)), s ∈ ∂P (β (t)) .
Coordinate Descent Coordinate descent is based on the first order optimality conditions of the criterion (2.1). In the case of penalties like Lasso, making zero the first order derivative with respect to coefficient β j gives:

β j = -λsign(β j) -∂J(β) ∂β j 2 n i=1 x 2 ij .
In the literature those algorithms can also be referred as "iterative thresholding" algorithms because the optimization can be solved by soft-thresholding in an iterative process.

As an example, [START_REF] Fu | Penalized regressions: the bridge versus the lasso[END_REF] implements this technique initializing every coefficient with the least squares solution β ls and updating their values using an iterative thresholding algorithm where β

(t+1) j = S λ ∂J(β (t)) ∂β j
. The objective function is optimized with respect to one variable at a time while all others are kept fixed.

S λ ∂J(β) ∂β j =                          λ -∂J(β) ∂β j 2 n i=1 x 2 ij if ∂J(β) ∂β j > λ -λ -∂J(β) ∂β j 2 n i=1 x 2 ij if ∂J(β) ∂β j < -λ 0 if | ∂J(β) ∂β j | ≤ λ .
(2.11)

The same principles define "block-coordinate descent" algorithms. In this case, first order derivative are applied to the equations of a group-Lasso penalty (Yuan andLin 2006, Wu and[START_REF] Wu | Coordinate descent algorithms for lasso penalized regression[END_REF].

Active and Inactive Sets Active sets algorithms are also referred as "active constraints" or "working set" methods. These algorithms define a subset of variables called "active set". This subset stores the indices of variables with non-zero β j . It is usually identified as set A. The complement of the active set is the "inactive set" noted Ā. In the inactive set we can find the indexes of the variables whose β j is zero. Thus, the problem can be simplified to the dimensionality of A. Osborne et al. (2000a) proposed the first of those algorithms to solve quadratic problems with Lasso penalties. His algorithm starts from an empty active set that is updated incrementally (forward growing). There exists also a backward view where relevant variables are allowed to leave the active set, however, the forward philosophy that starts with an empty A has the advantage that the first calculations are low dimensional. In addition, the forward view fits better in the feature selection intuition where few features are intended to be selected.

Working set algorithms have to deal with three main tasks. There is an optimization task where a minimization problem has to be solved using only the variables from the active set. Osborne et al. (2000a) solve a linear approximation of the original problem to determine the objective function descent direction but any other method can be considered. In general, as the solution of successive active sets are typically close to each other, It is a good idea to use the solution of the previous iteration as the initialization of the current one (warm start). Besides the optimization task, there is a working set update task, where the active set A is augmented with the variable from the inactive set Ā that violates the most the optimality conditions of Problem (2.1). Finally, there is also a task to compute the optimality conditions. Their expressions are essentials in the selection of the next variable to add to the active set and to test if a particular vector β is a solution of Problem (2.1).

This active constraints or working set methods, even if they were originally proposed to solve L 1 regularized quadratic problems, can also be adapted to generic functions and penalties. For example, linear functions and L 1 penalties [START_REF] Roth | The generalized lasso[END_REF], linear functions and L 1,2 penalties [START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF] or even logarithmic cost functions and combinations of L 0 , L 1 and L 2 penalties [START_REF] Perkins | Grafting: Fast, incremental feature selection by gradient descent in function space[END_REF]. The algorithm developed in this work belongs to this family of solutions.

Hyper-Planes Approximation Hyper-planes approximations solve a regularized problem using a piecewise linear approximation of the original cost function. This convex approximation is built using several secant hyper-planes in different points, obtained from the sub-gradient of the cost function at these points.

This family of algorithms implements an iterative mechanism where the number of hyper-planes increases at every iteration. These techniques are useful with large populations since the number of iterations needed to converge does not depend on the size of the dataset. On the contrary, if few hyper-planes are used, then the quality of the approximation is not good enough and the solution can be unstable.

This family of algorithms is not so popular as the previous one but some examples can be found in the domain of Support Vector Machines [START_REF] Joachims | Training linear svms in linear time[END_REF][START_REF] Smola | Bundle methods for machine learning[END_REF][START_REF] Franc | Optimized cutting plane algorithm for support vector machines[END_REF] or Multiple Kernel Learning [START_REF] Sonnenburg | Large scale multiple kernel learning[END_REF].

Regularization Path

The regularization path is the set of solutions that can be reached when solving a series of optimization problems of the form (2.1), where the penalty parameter λ is varied. It is not an optimization technique per se, but it is of practical use when the exact regularization path can be easily followed. [START_REF] Rosset | Piecewise linear regularized solution paths[END_REF] stated that this path is piecewise linear for those problems where the cost function is piecewise quadratic and the regularization term is piecewise linear (or vice-versa).

This concept was firstly applied to Lasso algorithm of Osborne et al. (2000b). However, it was after the publication of the algorithm called Least Angle Regression (LARS) developed by [START_REF] Efron | Least angle regression[END_REF] that those techniques become popular. LARS defines the regularization path using active constraint techniques.

Once that an active set A (t) and its corresponding solution β (t) have been set, looking for the regularization path means looking for a direction h and a step size γ to update the solution as β (t+1) = β (t) + γh. Afterwards, the active and inactive sets A (t+1) and Ā(t+1) are updated. That can be done looking for the variables that strongly violate the optimality conditions. Hence, LARS sets the update step size and which variable should enter in the active set from the correlation with residuals.

Proximal Methods Proximal Methods optimize on objective function of the form (2.1) resulting of the addition of a Lipschitz differentiable cost function J(β) and a nondifferentiable penalty λP (β).

min β∈R p J(β (t)) + ∇J(β (t)) (β -β (t)) + λP (β) + L 2 β -β (t) 2 2
(2.12)

They are also iterative methods where the cost function J(β) is linearized in the proximity of the solution β so that the problem to solve in each iteration looks like

Regularization for Feature Selection

(2.12) where the parameter L > 0 should be an upper bound on the Lipschitz constant of the gradient ∇J. That can be rewritten as:

min β∈R p 1 2 β -(β (t) - 1 L ∇J(β (t))) 2 2 + λ L P (β) (2.13)
The basic algorithm makes use of the solution to (2.13) as the next value of β (t+1) . However, there are faster versions that take advantage of information about previous steps as the ones described by [START_REF] Nesterov | Gradient methods for minimizing composite functions[END_REF] or the FISTA algorithm [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. Proximal methods can be seen as generalizations of gradient updates. In fact, making λ = 0 in equation (2.13), the standard gradient update rule comes up.

Part II.

Sparse Linear Discriminant Analysis

25

Abstract

Linear discriminant analysis (LDA) aims to describe data by a linear combination of features that best separates the classes. It may be used for classifying future observations or for describing those classes.

There is a vast bibliography about sparse LDA methods, reviewed in Chapter 3. Sparsity is typically induced regularizing the discriminant vectors or the class means by L 1 penalties (see Section 2). Section 2.3.5 discussed why this sparsity inducing penalty may not guarantee parsimonious models regarding variables.

In this part, we develop the group-Lasso Optimal Scoring Solver (GLOSS) that addresses a sparse LDA problem globally, through a regression approach of LDA. Our analysis, presented in Chapter 4, formally relates GLOSS to Fisher's discriminant analysis, and also enables to derive variants, such that LDA assuming diagonal within-class covariance structure [START_REF] Bickel | Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations[END_REF]. The group-Lasso penalty selects the same features in all discriminant directions, leading to a more interpretable low-dimensional representation of data. The discriminant directions can be used in their totality or the first ones may be chosen to produce a reduced rank classification. The first two or three directions can also be used to project the data to generate a graphical display of the data. The algorithm is detailed in Chapter 5 and our experimental results of Chapter 6 demonstrate that, compared to the competing approaches, the models are extremely parsimonious without compromising prediction performances. The algorithm efficiently processes medium to large number of variables, and is thus particularly well suited to the analysis of gene expression data.

Feature Selection in Fisher Discriminant Analysis

Fisher Discriminant Analysis

Linear discriminant analysis (LDA) aims to describe n labeled observations belonging to K groups by a linear combination of features which characterizes or separates classes. It is used for two main purposes: classifying future observations or describing the essential differences between classes, either by providing a visual representation of data, or by revealing the combinations of features that discriminate between classes. There are several frameworks in which linear combinations can be derived. [START_REF] Friedman | The Elements of Statistical Learning : Data Mining , Inference, and Prediction[END_REF] dedicate a whole chapter to linear methods for classification. In this part, we focus on Fisher's discriminant analysis, which is a standard tool for linear discriminant analysis whose formulation does not rely on posterior probabilities, but rather on some inertia principles [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF].

We consider that the data consist of a set of n examples, with observations x i ∈ R p comprising p features, and label y i ∈ {0, 1} K indicating the exclusive assignment of observation x i to one of the K classes. It will be convenient to gather the observations in the n × p matrix X = (x 1 , . . . , x n) and the corresponding labels in the n × K matrix Y = (y 1 , . . . , y n) .

Fisher's discriminant problem was first proposed for two-class problems, for the analysis of the famous iris dataset, as the maximization of the ratio of the projected betweenclass covariance to the projected within-class covariance. max

β∈R p β ΣB β β ΣW β , (3.1)
where β is the discriminant direction used to project the data and ΣB and ΣW are the p × p between-class covariance and within-class covariance matrices respectively, defined (for a K-class problem) as

ΣW = 1 n K k=1 i∈G k (x i -μk)(x i -μk) , ΣB = 1 n K k=1 i∈G k (μ -μk)(μ -μk) ,
where μ is the sample mean of the whole dataset, μk the sample mean of class k and G k indexes the observations of class k.

This analysis can be extended to the multi-class framework with K groups. In this case, K -1 discriminant vectors β k may be computed. Such a generalization was first proposed by [START_REF] Rao | The utilization of multiple measurements in problems of biological classification[END_REF]. Several formulations for the multi-class Fisher's discriminant are available, for example as the maximization of a trace ratio max

B∈R p×K-1 tr B ΣB B tr B ΣW B , (3.2)
where the B matrix is built with the discriminant directions β k as columns.

Solving the multi-class criterion (3.2) is an ill-posed problem, a better formulation is based on a series of K -1 subproblems

     max β k ∈R p β k ΣB β k s. t. β k ΣW β k ≤ 1 β k ΣW β = 0 , ∀ < k . (3.3)
The maximizer of subproblem k is the eigenvector of Σ-1 W ΣB associated to the kth largest eigenvalue (see Appendix C).

Feature Selection in LDA Problems

LDA is often used as a data reduction technique, where the K -1 discriminant directions summarize the p original variables. However, all variables intervene in the definition of these discriminant directions, and this behavior may be troublesome.

Several modifications of LDA have been proposed to generate sparse discriminant directions. Sparse LDA reveals discriminant directions that only involve a few variables. This sparsity has as main target to reduce the dimensionality of the problem (as in genetic analysis) but parsimonious classification is also motivated by the need of interpretable models, robustness in the solution or computational constraints.

The easiest approach to sparse LDA performs variable selection before discrimination. The relevancy of each feature is usually based on univariate statistics, which are fast and convenient to compute, but whose very partial view of the overall classification problem may lead to dramatic information loss. As a result, several approaches have been devised in the recent years to construct LDA with wrapper and embedded feature selection capabilities.

They can be categorized according to the LDA formulation that provides the basis to the sparsity inducing extension, that is, either Fisher's Discriminant Analysis (variancebased) or regression-based.

Inertia Based

The Fisher discriminant seeks a projection maximizing the separability of classes from inertia principles: mass centers should be far away (large between-class variance) and classes should be concentrated around their mass centers (small within-class variance). This view motivates a first series of Sparse LDA formulations. [START_REF] Moghaddam | Generalized spectral bounds for sparse LDA[END_REF] propose an algorithm for Sparse LDA in binary classification, where sparsity originates in a hard cardinality constraint. The formalization is based on the Fisher's discriminant (3.1) reformulated as a quadratically-constrained quadratic program (3.3). Computationally, the algorithm implements a combinatorial search, with some eigenvalue properties that are used to avoid exploring subsets of possible solutions. Extensions of this approach have been developed, with new sparsity bounds for the two class discrimination problem, and shortcuts to speed up the evaluation of eigenvalues [START_REF] Moghaddam | Fast pixel/part selection with sparse eigenvectors[END_REF].

Also for binary problems, [START_REF] Wu | Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection[END_REF] proposed a sparse LDA applied to gene expression data where the Fisher's discriminant (3.1) is solved as

     min β∈R p β ΣW β s. t. (μ1 -μ2) β = 1 p j=1 |β j | ≤ t ,
where µ 1 and µ 2 are vectors of mean gene expression values corresponding to the two groups. The expression to optimize and the first constraint match problem (3.1). The second constraint encourages parsimony.

Witten and Tibshirani (2011) describe a multi-class technique using the Fisher's discriminant rewritten on the form of K -1 constrained and penalized maximization problems

   max β ∈ k R p β k Σ k B β k -P k (β k) s. t. β k Σ W β k ≤ 1 .
The term to maximize is the projected between-class covariance matrix β k Σ B β k subject to an upper bound on the projected within-class covariance matrix β k Σ W β k . The penalty P k (β k) is added to avoid singularities and induce sparsity. The authors suggest weighted versions of regular Lasso and fused Lasso penalties for general purpose data. The Lasso shrinks to zero less informative variables and the fused Lasso encourages a piecewise constant β k vector. The R code is available from the website of Daniela Witten.

Cai and Liu (2011) use the Fisher's discriminant to solve a binary LDA problem. But instead perform separate estimation of Σ W and (µ 1 -µ 2) to obtain the optimal solution β = Σ-1 W (μ1 -μ2), they estimate the product directly through constrained L 1 minimization:

   min β∈R p β 1 s. t. Σβ -(μ1 -μ2) ∞ ≤ λ .
Sparsity is encouraged by the L 1 norm of vector β and the parameter λ is used to tune the optimization.

Most of the algorithms reviewed are conceived for the binary classification. And for those that are envisaged for multi-class scenarios, Lasso is the most popular way to induce sparsity; however, as we discussed in Section 2.3.5, Lasso is not the best tool to encourage parsimonious models when there are multiple discriminant directions.

Regression Based

In binary classification, LDA is known to be equivalent to linear regression of scaled class labels since [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF]. For K > 2, many studies show that multivariate linear regression of a specific class indicator matrix can be applied as a preprocessing step for LDA. However, directly casting LDA as a least squares problem is challenging for the multi-class case [START_REF] Duda | Pattern Classification[END_REF][START_REF] Friedman | The Elements of Statistical Learning : Data Mining , Inference, and Prediction[END_REF].

Predefined Indicator Matrix

Multi-class classification is usually linked with linear regression through the definition of an indicator matrix [START_REF] Friedman | The Elements of Statistical Learning : Data Mining , Inference, and Prediction[END_REF]). An indicator matrix Y is a n × K matrix with the class labels for all samples. There are several well-known types in the literature. For example, the binary or dummy indicator (y ik = 1 if the sample i belongs to class k and y ik = 0 otherwise) is commonly used in linking multi-class classification with linear regression [START_REF] Friedman | The Elements of Statistical Learning : Data Mining , Inference, and Prediction[END_REF]. Another "popular" choice is y ik = 1 if the sample i belongs to class k and y ik = -1/(K -1) otherwise. It was used for example in extending Support Vector Machines to multi-class classification [START_REF] Lee | Multicategory support vector machines[END_REF] or for generalizing the kernel target alignment measure [START_REF] Guermeur | Combining protein secondary structure prediction models with ensemble methods of optimal complexity[END_REF]).

There are some efforts which propose a formulation for the least squares problems based on a new class indicator matrix [START_REF] Ye | Least squares linear discriminant analysis[END_REF]. This new indicator matrix allows the definition of the LS-LDA (Least Squares Linear Discriminant Analysis) which holds a rigorous equivalence with a multi-class LDA under a mild condition which is shown empirically to hold in many applications involving high-dimensional data. [START_REF] Qiao | Sparse linear discriminant analysis with applications to high dimensional low sample size data[END_REF] propose a discriminant analysis in the high-dimensional low-sample setting which incorporates variable selection in a Fisher's LDA formulated as a generalized eigenvalue problem, which is then recast as a least squares regression. Sparsity is obtained by means of a Lasso penalty on the discriminant vectors. Even if this is not mentioned in the article, their formulation looks very close in spirit to Optimal Scoring regression. Some rather clumsy steps in the developments hinder the comparison so that further investigations are required. The lack of publicly available code also restrained an empirical test of this conjecture. If the similitude is confirmed, their formalization would be very close to the one of [START_REF] Clemmensen | Sparse discriminant analysis[END_REF] reviewed in the following section.

In a recent paper, [START_REF] Mai | A direct approach to sparse discriminant analysis in ultra-high dimensions[END_REF] take advantage of the equivalence between ordinary least squares and LDA problems to propose a binary classifier solving a penalized least squares problem with a Lasso penalty. The sparse version of the projection vector β is obtained by solving min

β∈R p ,β 0 ∈R n -1 n i=1 (y i -β 0 -x i β) 2 + λ p j=1 |β j | ,
where y i is the binary indicator of label for pattern x i . Even if the authors focus on the Lasso penalty, they also suggest any other generic sparsity-inducing penalty. The decision rule x β + β 0 > 0 is the LDA classifier when it is built using the resulting β vector for λ = 0, but a different intercept β 0 is required.

Optimal Scoring

In binary classification, the regression of (scaled) class indicators enables to recover exactly the LDA discriminant direction. For more than two classes, regressing predefined indicator matrices may be impaired by the masking effect, where the scores assigned to a class situated between two other ones never dominates [START_REF] Hastie | Flexible discriminant analysis by optimal scoring[END_REF]. Optimal scoring (OS) circumvents the problem by assigning "optimal scores" to the classes. This route was opened by [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] for binary classification and pursued for more than two classes by [START_REF] Breiman | Nonlinear discriminant analysis via ACE and scaling[END_REF], in the aim of developing a non-linear extension of discriminant analysis based on additive models. They named their approach optimal scaling, for it optimizes the scaling of the indicators of classes together with the discriminant functions. Their approach was later disseminated under the name optimal scoring by [START_REF] Hastie | Flexible discriminant analysis by optimal scoring[END_REF], who proposed several extensions of LDA, either aiming at constructing more flexible discriminants [START_REF] Hastie | Discriminant analysis by Gaussian mixtures[END_REF] or more conservative ones [START_REF] Hastie | Penalized discriminant analysis[END_REF].

As an alternative method to solve LDA problems [START_REF] Hastie | Penalized discriminant analysis[END_REF] proposed to incorporate a smoothness prior on the discriminant directions in the OS problem through a positive-definite penalty matrix Ω, leading to a problem expressed in compact form as:

min Θ , B YΘ -XB 2 F + λ tr B ΩB (3.4a) s. t. n -1 Θ Y YΘ = I K-1 , (3.4b)
where Θ ∈ R K×(K-1) are the class scores, B ∈ R p×(K-1) are the regression coefficients, and • F is the Frobenius norm. This compact form does not render the order that arises naturally when considering the following series of K -1 problems: min

θ k ∈R K , β k ∈R p Yθ k -Xβ k 2 + β k Ωβ k (3.5a) s. t. n -1 θ k Y Yθ k = 1 (3.5b) θ k Y Yθ = 0 , = {1, . . . , k -1} , (3.5c)
where each β k corresponds to a discriminant direction.

Several sparse LDA have been derived by introducing non-quadratic sparsity-inducing penalties in the OS regression problem [START_REF] Ghosh | Classification and selection of biomarkers in genomic data using lasso[END_REF][START_REF] Leng | Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data[END_REF][START_REF] Grosenick | Interpretable classifiers for fMRI improve prediction of purchases[END_REF][START_REF] Clemmensen | Sparse discriminant analysis[END_REF]. [START_REF] Grosenick | Interpretable classifiers for fMRI improve prediction of purchases[END_REF] proposed a variant of the lasso-based penalized OS of [START_REF] Ghosh | Classification and selection of biomarkers in genomic data using lasso[END_REF] by introducing an elastic-net penalty in binary class problems. A generalization to multi-class problems was suggested by [START_REF] Clemmensen | Sparse discriminant analysis[END_REF], where the objective function (3.5a) is replaced by min

β k ∈R p ,θ k ∈R K k Yθ k -Xβ k 2 2 + λ 1 β k 1 + λ 2 β k Ωβ k ,
where λ 1 and λ 2 are regularization parameters and Ω is a penalization matrix often taken to be the identity for the elastic net. The code for SLDA is available from the website of Line Clemmensen.

Another generalization of the work of [START_REF] Ghosh | Classification and selection of biomarkers in genomic data using lasso[END_REF] was proposed by [START_REF] Leng | Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data[END_REF], with an extension to the multi-class framework based on a group-lasso penalty in the objective function (3.5a). min

β k ∈R p ,θ k ∈R K K-1 k=1 Yθ k -Xβ k 2 2 + λ   p j=1 K-1 k=1 β 2 kj   2 , (3.6)
which is the criterion that was chosen in this thesis.

The following chapters present our theoretical and algorithmic contributions regarding this formulation. The proposal of [START_REF] Leng | Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data[END_REF] was heuristically driven and his algorithm followed closely the group-lasso algorithm of [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] which is not very efficient (the experiments of [START_REF] Leng | Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data[END_REF] are limited to small data sets with hundreds examples and 1000 preselected genes and no code is provided). Here, we formally link (3.6) to penalized LDA and propose a publicly available efficient code for solving this problem.

Formalizing the Objective

In this chapter, we detail the rationale supporting the Group-Lasso Optimal Scoring Solver (GLOSS) algorithm. GLOSS addresses a sparse LDA problem globally, through a regression approach. Our analysis formally relates GLOSS to Fisher's discriminant analysis, and also enables to derive variants, such that LDA assuming diagonal withinclass covariance structure [START_REF] Bickel | Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations[END_REF].

The sparsity arises from the group-Lasso penalty (3.6), due to [START_REF] Leng | Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data[END_REF], that selects the same features in all discriminant directions, thus providing an interpretable low-dimensional representation of data. For K classes, this representation can be either the complete, in dimension (K -1), or partial for a reduced rank classification. The first two or three discriminants can also be used to display a graphical summary of the data.

The derivation of penalized LDA as a penalized optimal scoring regression is quite tedious, but it is required here since the algorithm hinges on this equivalence. The main lines have been derived in several places [START_REF] Breiman | Nonlinear discriminant analysis via ACE and scaling[END_REF][START_REF] Hastie | Flexible discriminant analysis by optimal scoring[END_REF][START_REF] Hastie | Discriminant analysis by Gaussian mixtures[END_REF][START_REF] Hastie | Penalized discriminant analysis[END_REF] and already used before for sparsityinducing penalties [START_REF] Roth | Feature selection in clustering problems[END_REF]). However, the published demonstrations were quite elusive on a number of points, leading to generalizations that were not supported in a rigorous way. To our knowledge, we disclosed the first formal equivalence between the optimal scoring regression problem penalized by group-Lasso and penalized LDA (Sánchez Merchante et al. 2012).

From Optimal Scoring to Linear Discriminant Analysis

Following [START_REF] Hastie | Penalized discriminant analysis[END_REF], we now show the equivalence between the series of problems encountered in penalized optimal scoring (p-OS) problems and in penalized LDA (p-LDA) problems by going through canonical correlation analysis. We first provide some properties about the solutions of an arbitrary problem in the p-OS series (3.5).

Throughout this chapter, we assume that:

• there is no empty class, that is, the diagonal matrix Y Y is full rank;

• inputs are centered that is, X 1 n = 0;

• the quadratic penalty Ω is positive-semidefinite, and such that X X + Ω is full rank.

Penalized Optimal Scoring Problem

For the sake of simplicity, we now drop subscript k to refer to any problem in the p-OS series (3.5). First, note that Problems (3.5) are biconvex in (θ, β), that is, convex in θ for each β value and vice-versa. The problems are however non-convex. In particular, if (θ , β) is a solution, then (-θ , -β) is also a solution.

The orthogonality constraint (3.5c) inherently limits the number of possible problems in the series to K since we assumed that there are no empty classes. Moreover, as X is centered, the K -1 first optimal scores are orthogonal to 1 (and the Kth problem would be solved by β K = 0). All the problems considered here can be solved by a singular value decomposition of a real symmetric matrix, so that the orthogonality constraint are easily dealt with. Hence, in the sequel, we do not mention anymore these orthogonality constraints (3.5c) that apply along the route, so as to simplify all expressions. The generic problem solved is thus:

min θ∈R K , β∈R p Yθ -Xβ 2 + β Ωβ (4.1a) s. t. n -1 θ Y Yθ = 1 , (4.1b)
For a given score vector θ, the discriminant direction β that minimizes the p-OS criterion (4.1) is the penalized least squares estimator:

β os = X X + Ω -1 X Yθ (4.2)
The objective function (4.1a) is then

Yθ -Xβ os 2 + β os Ωβ os = θ Y Yθ -2θ Y Xβ os + β os X X + Ω β os = θ Y Yθ -θ Y X X X + Ω -1 X Yθ ,
where the second line stems from the definition of β os (4.2). Now, using the fact that the optimal θ obeys constraint (4.1b), the optimization problem is equivalent to

max θ:n -1 θ Y Yθ=1 θ Y X X X + Ω -1 X Yθ , (4.3)
which shows that the optimization of the p-OS problem with respect to θ k boils down to finding the kth largest eigenvector of

Y X X X + Ω -1 X Y. Indeed, Appendix C details that Problem (4.3) is solved by (Y Y) -1 Y X X X + Ω -1 X Yθ = α 2 θ , (4.4)
where α2 is the maximal eigenvalue.

1 n -1 θ Y X X X + Ω -1 X Yθ = α 2 n -1 θ (Y Y)θ n -1 θ Y X X X + Ω -1 X Yθ = α 2 . (4.5)

Penalized Canonical Correlation Analysis

As per [START_REF] Hastie | Penalized discriminant analysis[END_REF], the penalized Canonical Correlation Analysis (p-CCA) problem between variables X and Y is defined as follows:

max θ∈R K , β∈R p n -1 θ Y Xβ (4.6a) s. t. n -1 θ Y Yθ = 1 (4.6b) n -1 β X X + Ω β = 1 , (4.6c)
The solutions to (4.6) are obtained by finding saddle points of the Lagrangian:

nL(β, θ, ν, γ) = θ Y Xβ -ν(θ Y Yθ -n) -γ(β (X X + Ω)β -n) ⇒ n ∂L(β, θ, γ, ν) ∂β = X Yθ -2γ(X X + Ω)β ⇒ β cca = 1 2γ (X X + Ω) -1 X Yθ .
Then, as β cca obeys (4.6c), we obtain :

β cca = (X X + Ω) -1 X Yθ n -1 θ Y X(X X + Ω) -1 X Yθ , (4.7)
so that the optimal objective function (4.6a) can be expressed with θ alone:

n -1 θ Y Xβ cca = n -1 θ Y X(X X + Ω) -1 X Yθ n -1 θ Y X(X X + Ω) -1 X Yθ = n -1 θ Y X(X X + Ω) -1 X Yθ ,
and the optimization problem with respect to θ can be restated as:

max θ:n -1 θ Y Yθ=1 θ Y X X X + Ω -1 X Yθ . (4.8)
Hence the p-OS and p-CCA problems produce the same score optimal vectors θ . The regression coefficients are thus proportional, as shown by (4.2) and (4.7):

β os = α β cca , (4.9)
where α is defined by (4.5). The p-CCA optimization problem can also be written as a function of β alone, using the optimality conditions for θ:

n ∂L(β, θ, γ, ν) ∂θ = Y Xβ -2νY Yθ ⇒ θ cca = 1 2ν (Y Y) -1 Y Xβ (4.10)
Then, as θ cca obeys (4.6b), we obtain:

θ cca = (Y Y) -1 Y Xβ n -1 β X Y(Y Y) -1 Y Xβ , (4.11)
leading to the following expression of the optimal objective function

n -1 θ cca Y Xβ = n -1 β X Y(Y Y) -1 Y Xβ n -1 β X Y(Y Y) -1 Y Xβ = n -1 β X Y(Y Y) -1 Y Xβ .
The p-CCA problem can thus be solved with respect to β by plugging this value in (4.6):

max β∈R p n -1 β X Y(Y Y) -1 Y Xβ (4.12a) s. t. n -1 β X X + Ω β = 1 , (4.12b)
where the positive objective function has been squared compared to (4.6). This formulation is important since it will be used to link p-CCA to p-LDA. We thus derive its solution, and following the reasoning of Appendix C, β cca verifies

n -1 X Y(Y Y) -1 Y Xβ cca = λ X X + Ω β cca (4.13)
where λ is the maximal eigenvalue, shown below to be equal to α 2 :

n -1 β cca X Y(Y Y) -1 Y Xβ cca = λ ⇒ n -1 α -1 β cca X Y(Y Y) -1 Y X(X X + Ω) -1 X Yθ = λ ⇒ n -1 α β cca X Yθ = λ ⇒ n -1 θ Y X(X X + Ω) -1 X Yθ = λ ⇒ α 2 = λ ,
The first line is obtained by obeying constraint (4.12b), the second line by the relationship (4.7), where the denominator is α, the third line comes from (4.4), the fourth line uses again the relationship (4.7), and the last one the definition of α (4.5).

Penalized Linear Discriminant Analysis

Still following [START_REF] Hastie | Penalized discriminant analysis[END_REF], the penalized Linear Discriminant Analysis is defined as follows:

max β∈R p β ΣB β (4.14a) s. t. β (ΣW + n -1 Ω)β = 1 , (4.14b)
where ΣB and ΣW are respectively the sample between-class and within-class variances of the original p-dimensional data. This problem may be solved by an eigenvector decomposition as detailed in Appendix C.

As the feature matrix X is assumed to be centered, the sample total, between-class and within-class covariance matrices can be written in a simple form that is amenable to a simple matrix representation using the projection operator

Y Y Y -1 Y . ΣT = 1 n n i=1 x i x i = n -1 X X ΣB = 1 n K k=1 n k μk μ k = n -1 X Y Y Y -1 Y X ΣW = 1 n K k=1 {i:y ik =1} (x i -μk) (x i -μk) = n -1 X X -X Y Y Y -1 Y X .
Using these formulae, the solution to the p-LDA problem (4.14) is obtained as:

X Y Y Y -1 Y Xβ lda = λ X X + Ω -X Y Y Y -1 Y X β lda X Y Y Y -1 Y Xβ lda = λ 1 -λ X X + Ω β lda .
The comparison of the last equation with β cca (4.13) shows that β lda and β cca are proportional and that λ/(1 -λ) = α 2 . Using constraints (4.12b) and (4.14b), it comes that

β lda = (1 -α 2) -1/2 β cca = α -1 (1 -α 2) -1/2 β os ,
which ends the path from p-OS to p-LDA.

Summary

The three previous subsections considered a generic form of the kth problem in the p-OS series. The relationships unveiled above also hold for the compact notation gathering all problems (3.4) which is recalled below: min

Θ , B YΘ -XB 2 F + λ tr B ΩB s. t. n -1 Θ Y YΘ = I K-1 .
Let A represent the (K -1) × (K -1) diagonal matrix with elements α k being the square-root of the largest eigenvector of Y X X X + Ω -1 X Y, we have:

B LDA = B CCA I K-1 -A 2 -1 2 = B OS A -1 I K-1 -A 2 -1 2 , (4.15)
where I K-1 is the (K -1) × (K -1) identity matrix. At this point, the features matrix X, that in the input space has dimensions n × p, can be projected into the optimal scoring domain as a n × K -1 matrix X OS = XB OS or into the linear discriminant analysis space as a n × K -1 matrix X LDA = XB LDA . Classification can be performed in any of those domains if the appropriate distance (penalized within-class covariance matrix) is applied.

With the aim of performing classification, the whole process could be summarized as follows:

1. Solve the p-OS problem as

B OS = X X + λ Ω -1 X YΘ , where Θ are the K -1 leading eigenvectors of Y X X X + λ Ω -1 X Y .
2. Translate the data samples X into the LDA domain as:

X LDA = XB OS D where D = A -1 I K-1 -A 2 -1 2 3. Compute the matrix M of

Practicalities

The solution of the penalized optimal scoring regression and the computation of the distance and posterior matrices are detailed in Sections 4.2.1, Section 4.2.2 and Section 4.2.3 respectively.

Practicalities

Solution of the Penalized Optimal Scoring Regression

Following [START_REF] Hastie | Flexible discriminant analysis by optimal scoring[END_REF] and [START_REF] Hastie | Penalized discriminant analysis[END_REF] a quadratically penalized LDA problem can be presented as a quadratically penalized OS problem min

Θ∈R K×K-1 , B∈R p×K-1 YΘ -XB 2 F + λ tr B ΩB (4.16a) s. t. n -1 Θ Y YΘ = I K-1 , (4.16b)
where Θ are the class scores, B the regression coefficients, and • F is the Frobenius norm.

Though non-convex, the OS problem is readily solved by a decomposition in Θ and B: the optimal B OS does not intervene in the optimality conditions with respect to Θ and the optimization with respect to B is obtained in a closed form as a linear combination of the optimal scores Θ [START_REF] Hastie | Penalized discriminant analysis[END_REF]. The algorithm may seem a bit tortuous considering the properties mentioned above, as it proceeds in four steps:

1. Initialize Θ to Θ 0 such that n -1 Θ 0 Y YΘ 0 = I K-1 2. Compute B = X X + λ Ω -1 X YΘ 0 3. Set Θ to be the K -1 leading eigenvectors of Y X X X + λ Ω -1 X Y 4.
Compute the optimal regression coefficients

B OS = X X + λ Ω -1
X YΘ (4.17)

Defining Θ 0 in Step 1, instead of using directly Θ as expressed in Step 3, drastically reduces the computational burden of the eigen-analysis: the latter is performed on Θ 0 Y X X X + λ Ω -1 X YΘ 0 , which is computed as Θ 0 Y XB, thus avoiding a costly matrix inversion. The solution of the penalized optimal scoring as an eigenvector decomposition is detailed and justified in Appendix B. This four step algorithm is valid when the penalty is on the form B ΩB . However, when a L 1 penalty is applied in (4.16), the optimization algorithm requires iterative updates of B and Θ. That situation is developed by [START_REF] Clemmensen | Sparse discriminant analysis[END_REF] where a Lasso or an Elastic net penalty is used to induce sparsity in the OS problem. Furthermore, these Lasso and Elastic net penalties do not enjoy the equivalence with LDA problems.

Distance Evaluation

The simplest classification rule is the Nearest Centroid rule, where the sample x i is assigned to class k if sample x i is closer (in terms of the shared within-class Mahalanobis distance) to centroid µ k than to any other centroid µ . In general, the parameters of the model are unknown and the rule is applied with the parameters estimated from training data (sample estimators μk and ΣW). If μk are the centroids in the input space, sample x i is assigned to the class k if the distance

d(x i , μk) = (x i -μk) Σ-1 W,Ω (x i -μk) -2 log n k n , (4.18)
is minimized among all k. In expression (4.18), the first term is the Mahalanobis distance in the input space and the second term is an adjustment term for unequal class sizes that estimates the prior probability of class k. Note that this is inspired by the Gaussian view of LDA, and that another definition of the adjustment term could be used [START_REF] Friedman | The Elements of Statistical Learning : Data Mining , Inference, and Prediction[END_REF][START_REF] Mai | A direct approach to sparse discriminant analysis in ultra-high dimensions[END_REF]). The matrix ΣW,Ω used in (4.18) is the penalized withinclass covariance matrix that can be decomposed in a penalized and a non-penalized component

Σ-1 W,Ω = n -1 (X X + λΩ) -ΣB -1 = n -1 X X -ΣB + n -1 λΩ -1 = ΣW + n -1 λΩ -1 . (4.19)
Before explaining how to compute the distances, let us summarize some clarifying points.

• The solution B OS of the p-OS problem is enough to accomplish classification

• In the LDA domain (space of discriminant variates X LDA), classification is based on Euclidean distances

• Classification can be done in a reduced rank space of dimension R < K -1 by using the first R discriminant directions

{β k } R k=1
As a result, the expression of the distance (4.18) depends on the domain where the classification is performed. If we classify in the p-OS domain

(x i -µ k)B OS 2 ΣW,Ω -2 log(π k) ,
where πk is the estimated class prior, and • S is the Mahalanobis distance assuming within-class covariance S. If classification is done in the p-LDA domain

(x i -µ k)B OS A -1 I K-1 -A 2 -1 2 2 2 -2 log(π k) ,
which is a plain Euclidean distance.

Posterior Probability Evaluation

Let d(x, µ k) be a distance between x i and µ k defined as in (4.18), under the assumption that classes are Gaussians, the estimated posterior probabilities p(y k = 1|x) can be estimated as:

p(y k = 1|x) ∝ exp - d(x, µ k) 2 ∝ πk exp - 1 2 (x i -µ k)B OS A -1 I K-1 -A 2 -1 2 2 2 . (4.20)
Those probabilities must be normalized to ensure that their sum one. When the distances d(x, µ k) take large values, exp -d(x,µ k) 2 can take extremely small values generating underflow issues. A classical trick to fix this numerical issue is detailed below:

p(y k = 1|x) = πk exp -d(x,µ k) 2 π exp -d(x,µ) 2 = πk exp -d(x,µ k) 2 + dmax 2 π exp - d(x, µ) 2 + d max 2
,

where d max = max k d(x, µ k)

Graphical Representation

Sometimes, it can be useful to have a graphical display of the data set. Using only the two or the three most discriminant directions may not provide the best separation between classes but can suffice to inspect the data. That can be accomplished by plotting the first two or three dimensions of the regression fits X OS or the discriminant variates X LDA , depending if we are presenting the dataset in the OS or in the LDA domain. Other attributes, such as the centroids or the shape of the within-class variance can be represented.

From Sparse Optimal Scoring to Sparse LDA

The equivalence stated in Section 4.1 holds for quadratic penalties of the form β Ωβ under the assumption that Y Y and X X + λΩ are full rank (fulfilled when there are not empty classes and Ω is positive definite). Quadratic penalties have interesting properties, but, as recalled in Section 2.3, they do not induce sparsity. In this respect, L 1 penalties are preferable, but they lack a connection such as the one stated by [START_REF] Hastie | Penalized discriminant analysis[END_REF] between p-LDA and p-OS stated.

In this section, we introduce the tools used to obtain sparse models maintaining the equivalence between p-LDA and p-OS problems. We use a group-Lasso penalty (see section 2.3.4) that induces groups of zeroes to the coefficients corresponding to the same feature in all discriminant directions, resulting in real parsimonious models. Our derivation uses a variational formulation of the group-Lasso to generalize the equivalence drawn by [START_REF] Hastie | Penalized discriminant analysis[END_REF] for quadratic penalties. Therefore, we are intending to show that our formulation of group-Lasso can be written in the quadratic form B ΩB.

A Quadratic Variational Form

Quadratic variational forms of the Lasso and group-Lasso have been proposed shortly after the original Lasso paper of [START_REF] Hastie | Discriminant analysis by Gaussian mixtures[END_REF], as a means to address optimization issues, but also as an inspiration for generalizing the Lasso penalty (Grandvalet 1998, Canu and[START_REF] Canu | Outcomes of the equivalence of adaptive ridge with least absolute shrinkage[END_REF]. The algorithms based on these quadratic variational forms iteratively reweighs a quadratic penalty. They are now often outperformed by more efficient strategies [START_REF] Bach | Optimization with sparsityinducing penalties[END_REF].

Our formulation of group-Lasso is showed below:

min τ ∈R p min B∈R p×K-1 J(B) + λ p j=1 w 2 j β j 2 2 τ j (4.21a) s. t. j τ j -j w j β j 2 ≤ 0 (4.21b) τ j ≥ 0 , j = 1, . . . , p , (4.21c)
where B ∈ R p×K-1 is a matrix composed of row vectors β j ∈ R K-1 , B = β 1 , . . . , β p and w j are predefined nonnegative weights. The cost function J(B), in our context, is the OS regression YΘ + XB 2 2 ; by now, on behalf of simplicity, I leave J(B). Here and in what follows, b/τ is defined by continuation at zero as b/0 = +∞ if b = 0 and 0/0 = 0. Note that variants of (4.21) have been proposed elsewhere (see e.g. Canu andGrandvalet 1999, Bach et al. 2012, andreferences therein).

The intuition behind our approach is that using the variational formulation we recast a non quadratic expression into the convex hull of a family of quadratic penalties defined by variable τ j . That is graphically shown in Figure 4.1.

Let us start proving the equivalence of our variational formulation and the standard group-Lasso (there is an alternative variational formulation detailed and demonstrated in Appendix D).

Lemma 4.1. The quadratic penalty in β j in (4.21) acts as the group-Lasso penalty λ p j=1 w j β j 2 .

Proof. The Lagrangian of Problem (4.21) is: Thus, the first order optimality conditions for τ j are

L = J(B) + λ p j=1 w 2 j β j 2 2 τ j + ν 0 p j=1 τ j - p j=1 w j β j 2 - p j=1 ν j τ j
∂L ∂τ j (τ j) = 0 ⇔ -λw 2 j β j 2 2 τ j 2 + ν 0 -ν j = 0 ⇔ -λw 2 j β j 2 2 + ν 0 τ j 2 -ν j τ j 2 = 0 ⇒ -λw 2 j β j 2 2 + ν 0 τ j 2 = 0
The last line is obtained from complementary slackness, which implies here ν j τ j = 0. Complementary slackness states that ν j g j (τ j) = 0, where ν j is the Lagrange multiplier for constraint g j (τ j) ≤ 0. As a result, the optimal value of τ j :

τ j = λw 2 j β j 2 2 ν 0 = λ ν 0 w j β j 2 (4.22)
We note that ν 0 = 0 if there is at least one coefficient β jk = 0, thus the inequality constraint (4.21b) is at bound (due to complementary slackness):

p j=1 τ j - p j=1
w j β j 2 = 0 , (4.23) so that τ j = w j β j 2 . Using this value into (4.21a) it is possible to conclude that Problem (4.21) is equivalent to the standard group-Lasso operator: min

B∈R p×M J(B) + λ p j=1 w j β j 2 , (4.24)
So we have presented a convex quadratic variational form of the group-Lasso and demonstrate its equivalence with the standard group-Lasso formulation.

With Lemma 4.1, we have proved that under constraints (4.21b)-(4.21c), the quadratic problem (4.21a) is equivalent to the standard formulation for the group-Lasso (4.24). The penalty term of (4.21a) can be conveniently presented as λB ΩB where

Ω = diag w 2 1 τ 1 , w 2 2 τ 2 , ..., w 2 p τ p , (4.25) with τ j = w j β j 2 , resulting in Ω diagonal components (Ω) jj = w j β j 2 . (4.26)
And as stated at the beginning of this section, the equivalence between p-LDA problems and p-OS problems is demonstrated for the variational formulation. This equivalence is crucial to the derivation of the link between sparse OS and sparse LDA; it furthermore suggests a convenient implementation. We sketch below some properties that are instrumental in the implementation of the active set described in Section 5.

The first property states that the quadratic formulation is convex when J is convex, thus providing an easy control of optimality and convergence. In what follows, J will be a convex quadratic (hence smooth) function, in which case a necessary and sufficient optimality condition is that zero belongs to the subdifferential of the objective function whose expression is provided in the following lemma.

Lemma 4.3. For all B ∈ R p×K-1 , the subdifferential of the objective function of Problem (4.24) is

V ∈ R p×K-1 : V = ∂J(B) ∂B + λG , (4.27)
where G ∈ R p×K-1 is a matrix composed of row vectors g j ∈ R K-1 , G = g 1 , . . . , g p defined as follows: Let S(B) denote the columnwise support of B, S(B) = {j ∈ {1, . . . , p} : β j 2 = 0}, then, we have:

∀j ∈ S(B) , g j = w j β j -1 2 β j (4.28) ∀j ∈ S(B) , g j 2 ≤ w j (4.29)
This condition results in an equality for the "active" non-zero vectors β j , and an inequality for the other ones, which both provide essential building blocks of our algorithm.

Proof. When β j 2 = 0, the gradient of the penalty with respect to β j is

∂ (λ p m=1 w j β m 2) ∂β j = λw j β j β j 2 .
(4.30) At β j 2 = 0, the gradient of the objective function is not continuous, and the optimality conditions then make use of the subdifferential [START_REF] Bach | Convex optimization with sparsityinducing norms[END_REF].

∂ β j λ p m=1 w j β m 2 = ∂ β j λw j β j 2 = λw j v ∈ R K-1 : v 2 ≤ 1 . (4
∂β j + λw j β j -1 2 β j = 0 (4.32a) ∀j ∈ S , ∂J(B) ∂β j 2 ≤ λw j (4.32b)
where S ⊆ {1, . . . , p} denotes the set of non-zero row vectors β j and S(B) is its complement.

Lemma 4.4 provides a simple appraisal of the support of the solution, which would not be as easily handled with the direct analysis of the variational problem (4.21).

Group-Lasso OS as Penalized LDA

With all the previous ingredients, the group-Lasso Optimal Scoring Solver for performing sparse LDA can be introduced.

Proposition 4.1. The group-Lasso OS problem:

B OS = argmin B∈R p×K-1 min Θ∈R K×K-1 1 2 YΘ -XB 2 F + λ p j=1 w j β j 2 s. t. n -1 Θ Y YΘ = I K-1 ,
is equivalent to the penalized LDA problem:

B LDA = max B∈R p×K-1 tr B ΣB B s. t. B (ΣW + n -1 λ Ω)B = I K-1 ,
where

Ω = diag w 2 1 τ 1 , . . . , w 2 p τ p , with Ω j,j = +∞ if β j os = 0 w j β j os -1 2 otherwise (4.33) That is, B LDA = B OS diag α -1 k (1 -α 2 k) -1/2
, where α k ∈ (0, 1) is the kth leading eigenvalue of:

n -1 Y X X X + λ Ω -1 X Y ,
Proof. The proof simply consists in applying the result of [START_REF] Hastie | Penalized discriminant analysis[END_REF], which holds for quadratic penalties, to the quadratic variational form of the group-Lasso.

The proposition applies in particular to the Lasso-based OS approaches to sparse LDA [START_REF] Grosenick | Interpretable classifiers for fMRI improve prediction of purchases[END_REF][START_REF] Clemmensen | Sparse discriminant analysis[END_REF]) for K = 2, that is, for binary classification or more generally for a single discriminant direction. Note however that it leads to a slightly different decision rule if the decision threshold is chosen a priori according to the Gaussian assumption for the features. For more than one discriminant direction, the equivalence does not hold any more, since the Lasso penalty does not result in an equivalent quadratic penalty in the simple form tr B ΩB .

GLOSS Algorithm

The efficient approaches developed for the Lasso take advantage of the sparsity of the solution by solving a series of small linear systems, whose sizes are incrementally increased/decreased (Osborne et al. 2000a). This approach was also pursued for the group-Lasso in its standard formulation [START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF]. We adapt this algorithmic framework to the variational form (4.21), with J(B) = 1/2 YΘ -XB 2 2 . The algorithm belongs to the working set family of optimization methods (see Section 2.3.6). It starts from a sparse initial guess, say B = 0, thus defining the set A of "active" variables, currently identified as non-zero. Then, it iterates the three steps summarized below.

1. Update the coefficient matrix B within the current active set A, where the optimization problem is smooth. First, the quadratic penalty is updated, and then, a standard penalized least squares fit is computed.

2. Check the optimality conditions (4.32) with respect to the active variables. One or more β j may be declared inactive when they vanish from the current solution.

3. Check the optimality conditions (4.32) with respect to inactive variables. If they are satisfied, the algorithm returns the current solution which is optimal. If they are not satisfied, the variable corresponding to the greatest violation is added to the active set.

This mechanism is graphically represented in Figure 5.1 as a block diagram, and formalized in more details in Algorithm 1. Note that this formulation uses the equations from the variational approach detailed in Section 4.3.1. If we want to use the alternative variational approach from Appendix D, then, we have to replace Equations (4.21), (4.32a) and (4.32b) by (D.1), (D.10a) and (D.10b) respectively.

Regression Coefficients Updates

Step 1 of Algorithm 1 updates the coefficient matrix B within the current active set A. The quadratic variational form of the problem suggests a blockwise optimization strategy consisting in solving (K -1) independent card(A)-dimensional problems instead of a single (K -1) × card(A)-dimensional problem. The interaction between the (K -1) problems is relegated to the common adaptive quadratic penalty Ω. This decomposition is especially attractive as we then solve (K -1) similar systems:

X A X A + λΩ β k = X A Yθ 0 k , (5
β j 2 > 0 , Θ 0 : n -1 Θ 0 Y YΘ 0 = I K-1 , convergence ← false repeat // Step 1: solve (4.21) in B assuming A optimal repeat Ω ← diag Ω A , with ω j ← β j -1 2 B A ← X A X A + λΩ -1 X A YΘ 0 until condition (4.
Ā j = argmax j∈ Ā ∂J/∂β j 2 if ∂J/∂β j 2 < λ then convergence ← true // B is optimal else A ← A ∪ {j } end if until convergence (s, V) ←eigenanalyze(Θ 0 Y X A B), that is, Θ 0 Y X A BV k = s k V k , k = 1, . . . , K -1 Θ ← Θ 0 V, B ← BV, α k ← n -1/2 s 1/2 k , k = 1, . . . , K -1 Output: Θ , B , α
where X A denotes the columns of X indexed by A and β k and θ 0 k denote the kth column of B and Θ 0 respectively. These linear systems only differ in the right-hand-side term, so that a single Cholesky decomposition is necessary to solve all systems, whereas a blockwise Newton-Raphson method based on the standard group-Lasso formulation would result in different "penalties" Ω for each system.

Cholesky decomposition

Dropping the subscripts, and considering the (K -1) systems together, (5.1) leads to (X X + λΩ)B = X YΘ .

(5.2)

Defining the Cholesky decomposition as C C = (X X+λΩ), (5.2) is solved efficiently as follows:

C CB = X YΘ CB = C \X YΘ B = C\C \X YΘ , (5.3)
where the symbol "\" is the matlab mldivide operator that solves efficiently linear systems. The GLOSS code implements (5.3).

Numerical Stability

The OS regression coefficients are obtained by (5.2) where the penalizer Ω is iteratively updated by (4.33). In this iterative process, when a variable is about to leave the active set, the corresponding entry of Ω reaches important values, whereby driving some OS regression coefficients to zero. These large values may cause numerical stability problems in the Cholesky decomposition of X X + λΩ. This difficulty can be avoided using the following equivalent expression:

B = Ω -1/2 Ω -1/2 X XΩ -1/2 + λI -1 Ω -1/2 X YΘ 0 , (5.4)
where the conditioning of Ω -1/2 X XΩ -1/2 + λI is always well-behaved provided X is appropriately normalized (recall that 0 ≤ 1/ω j ≤ 1). This stabler expression demands more computation and is thus reserved to cases with large ω j values. Our code is otherwise based on expression (5.2).

Score Matrix

The optimal score matrix Θ is made of the K -1 leading eigenvectors of Y X X X + Ω -1 X Y. This eigen-analysis is actually solved in the form Θ Y X X X + Ω -1 X YΘ (see Section 4.2.1 and Appendix B). The latter eigenvector decomposition does not require the costly computation of X X + Ω -1 that 52

Optimality Conditions

involves the inversion of an n × n matrix. Let Θ 0 be an arbitrary K × (K -1) matrix whose range includes the K -1 leading eigenvectors of Y X X X + Ω -1 X Y. 1

Then, solving the K -1 systems (5.3) provides the value of B 0 = (X X+λΩ) -1 X YΘ 0 . This B 0 matrix can be identified in the expression to eigenanalyze as

Θ 0 Y X X X + Ω -1 X YΘ 0 = Θ 0 Y XB 0
Thus, the solution to penalized OS problem can be computed trough the singular value decomposition of the (K -1)

× (K -1) matrix Θ 0 Y XB 0 = VΛV . Defining Θ = Θ 0 V, we have Θ Y X X X + Ω -1 X YΘ = Λ and when Θ 0 is chosen such that n -1 Θ 0 Y YΘ 0 = I K-1 , we also have that n -1 Θ Y YΘ = I K-1
, holding the constraints of the p-OS problem. Hence, assuming that the diagonal elements of Λ are sorted in decreasing order, θ k is an optimal solution to the p-OS problem. Finally, once Θ has been computed, the corresponding optimal regression coefficients B satisfying (5.2) are simply recovered using the mapping from Θ 0 to Θ , that is, B = B 0 V. Appendix E details why the computational trick described here for quadratic penalties can be applied to the group-Lasso, for which Ω is defined by a variational formulation.

Optimality Conditions

GLOSS uses an active set optimization technique to obtain the optimal values of the coefficient matrix B and the score matrix Θ. To be a solution, the coefficient matrix must obey Lemmas 4.3 and 4.4. Optimality conditions (4.32a) and (4.32b) can be deduced from those lemmas. Both expressions require the computation of the gradient of the objective function 1 2 YΘ -XB 2 2 + λ p j=1 w j β j

2

(5.5)

Let J(B) be the data-fitting term 1 2 YΘ -XB 2 2 . Its gradient with respect to the jth row of B, β j is the (K -1)-dimensional vector ∂J(B) ∂β j = x j (XB -YΘ) , where x j is the column j of X. Hence, the first optimality condition (4.32a) can be computed for every variable j as

x j (XB -YΘ) + λw j β j β j 2 .
1 As X is centered, 1K belongs to the null space of Y X X X + Ω -1 X Y. It is thus sufficient to choose Θ 0 orthogonal to 1K to ensure that its range spans the leading eigenvectors of Y X X X + Ω -1 X Y. In practice, to comply with this desideratum and conditions (3.5b) and

(3.5c), we set Θ 0 = Y Y -1/2 U, where U is a K × (K -1) matrix whose columns are orthonormal vectors orthogonal to 1K .

The second optimality condition (4.32b) can be computed for every variable j as

x j (XB -YΘ) 2 ≤ λw j .

Active and Inactive Sets

The feature selection mechanism embedded in GLOSS selects the variables that provide the greatest decrease in the objective function. This is accomplished by means of the optimality conditions (4.32a) and (4.32b). Let A be the active set with the variables that have already been considered relevant. A variable j can be considered for inclusion into the active set if it violates the second optimality condition. We proceed one variable at a time, by choosing the one that is expected to produce the greatest decrease in the objective function:

j = max j x j (XB -YΘ) 2 -λw j , 0 .
The exclusion of a variable belonging to the active set A is considered if the norm β j 2 is small and if after setting β j to zero, the following optimality condition holds

x j (XB -YΘ) 2 ≤ λw j .
The process continue until no variable in the active set violates the first optimality condition and no variable in the inactive set violates the second optimality condition.

Penalty Parameter

The penalty parameter can be specified by the user, in which case GLOSS solves the problem with this value of λ. The other strategy is to compute the solution path for several values of λ. GLOSS looks then for the maximum value of the penalty parameter λ max such that B = 0 and solve the p-OS problem for decreasing values of λ, until a prescribed number of features are declared active.

The maximum value of the penalty parameter λ max corresponding to a null B matrix is obtained by computing the optimality condition (4.32b) at B = 0

λ max = max j∈{1...p} 1 w j x j YΘ 0 2 .
The algorithm then computes a series of solutions along the regularization path, defined by a series of penalties

λ 1 = λ max > • • • > λ t > • • • > λ T = λ min ≥ 0,
by regularly decreasing the penalty, λ t+1 = λ t /2, and using a warm-start strategy, where the feasible initial guess for B(λ t+1) is initialized with B(λ t). The final penalty parameter λ min is specified in the optimization process when the maximum number of desired active variables is attained (by default the minimum of n and p).

Options and Variants

Scaling Variables

As most penalization schemes, GLOSS is sensitive to the scaling of variables. It thus makes sense to normalize them before applying the algorithm, or equivalently, to accommodate weights in the penalty. This option is available in the algorithm.

Sparse Variant

This version replaces some matlab commands used in the standard version of GLOSS by the sparse equivalents commands. In addition, some mathematical structures are adapted for sparse computation.

Diagonal Variant

We motivated the group-Lasso penalty by sparsity requisites, but robustness considerations could also drive its usage, since LDA is known to be unstable when the number of examples is small compared to the number of variables. In this context, LDA has been experimentally observed to benefit from unrealistic assumptions on the form of the estimated within-class covariance matrix. Indeed, the diagonal approximation that ignores correlations between genes may lead to better classification in microarray analysis. [START_REF] Bickel | Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations[END_REF] shown that this crude approximation provides a classifier with best worst-case performances than the LDA decision rule in small sample size regimes, even if variables are correlated.

The equivalence proof between penalized OS and penalized LDA [START_REF] Hastie | Penalized discriminant analysis[END_REF]) reveals that quadratic penalties in the OS problem are equivalent to penalties on the within-class covariance matrix in the LDA formulation. This proof suggests a slight variant of penalized OS corresponding to penalized LDA with diagonal within-class covariance matrix, where the least square problems:

min B∈R p×K-1 YΘ -XB 2 F = min B∈R p×K-1 tr Θ Y YΘ -2Θ Y XB + nB ΣT B are replaced by min B∈R p×K-1 tr Θ Y YΘ -2Θ Y XB + nB (ΣB + diag (ΣW))B
Note that this variant only requires diag(ΣW)+ ΣB +n -1 Ω to be positive definite, which is a weaker requirement than ΣT + n -1 Ω positive definite.

Elastic net and Structured Variant

For some learning problems, the structure of correlations between variables is partially known. [START_REF] Hastie | Penalized discriminant analysis[END_REF] applied this idea to the field of handwritten digits recognition 7 8 9

4 5 6 1 2 3 d d d d d d d d E Ω L =               3 -1 0 -1 -1 0 0 0 0 -1 5 -1 -1 -1 -1 0 0 0 0 -1 3 0 -1 -1 0 0 0 -1 -1 0 5 -1 0 -1 -1 0 -1 -1 -1 -1 8 -1 -1 -1 -1 0 -1 -1 0 -1 5 0 -1 -1 0 0 0 -1 -1 0 3 -1 0 0 0 0 -1 -1 -1 -1 5 -1 0 0 0 0 -1 -1 0 -1 3               Figure 5
.2.: Graph and Laplacian matrix for a 3 × 3 image for their penalized discriminant analysis model to constrain the discriminant directions to be spatially smooth.

When an image is represented as a vector of pixels, it is reasonable to assume positive correlations between the variables corresponding to neighboring pixels. Figure 5.2 represents the neighborhood graph of pixels in an 3 × 3 image, with the corresponding Laplacian matrix. The Laplacian matrix Ω L is semi-positive definite and the penalty β Ω L β favors, among vectors of identical L 2 norms, the ones having similar coefficients in the neighborhoods of the graph. For example, this penalty is 9 for the vector (1, 1, 0, 1, 1, 0, 0, 0, 0) which is the indicator of the neighbors of pixel 1, and it is 17 for the vector (-1, 1, 0, 1, 1, 0, 0, 0, 0) with sign mismatch between pixel 1 and its neighborhood.

This smoothness penalty can be imposed jointly with the group-Lasso. From the computational point of view, GLOSS hardly needs to be modified. The smoothness penalty has just to be added to group-Lasso penalty. As the new penalty is convex and quadratic (thus smooth) there is no additional burden in the overall algorithm. There is however an additional hyperparameter to be tuned.

Experimental Results

This section presents some comparison results between the Group Lasso Optimal Scoring Solver algorithm and two other classifiers at the state of the art proposed to perform sparse LDA. Those algorithms are Penalized LDA (PLDA) [START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF], which applies a Lasso penalty into a Fisher's LDA framework, and the Sparse Linear Discriminant Analysis (SLDA) [START_REF] Clemmensen | Sparse discriminant analysis[END_REF], which applies an Elastic net penalty to the OS problem. With the aim of testing the parsimony capacities, the latter algorithm was tested without any quadratic penalty, that is, with a Lasso penalty. The implementation of PLDA and SLDA is available from the authors' website. PLDA is an R implementation and SLDA is coded in matlab. All the experiments used the same training, validation and test sets. Note that they differ significantly from the ones of [START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF] in Simulation 4 for which there was a typo in their paper.

Normalization

With shrunken estimates, the scaling of features has important outcomes. For the linear discriminants considered here, the two most common normalization strategies consist in setting either the diagonal of the total covariance matrix Σ T to ones, or the diagonal of the within-class covariance matrix Σ W to ones. These options can be implemented either by scaling the observations accordingly prior to the analysis, or by providing penalties with weights. The latter option is implemented in our matlab package.1

Decision Thresholds

The derivations of LDA based on the analysis of variance or on the regression of class indicators do not rely on the normality of the class-conditional distribution for the observations. Hence, their applicability extends beyond the realm of Gaussian data. Based on this observation, Friedman et al. (2009, chapter 4) suggest to investigate other decision thresholds than the ones stemming from the Gaussian mixture assumption. In particular, they propose to select the decision thresholds that empirically minimize training error. This option was tested using validation sets or cross-validation. -D 93.5 39.4 92.1 28.1 95.6 65.5 42.9 29.9 method that do not succeed in uncovering a low-dimensional representation in Simulation 3. The adequacy of the selected features was assessed by the True Positive Rate (TPR) and the False Positive Rate (FPR). The TPR is defined as the ratio of selected variables that are actually relevant. Similarly, the FPR, is the ratio of selected variables that are actually non relevant. The best algorithm would be the one that selects all the relevant variables and rejects all the others. That is, TPR = 1 and FPR = 0 simultaneously. PLDA has the best TPR but a terrible FPR, except in simulation 3 where it dominates all the other methods. GLOSS has by far the best FPR with overall TPR slightly below SLDA. Results are displayed in Figure 6.1 (both in percentages) (or in Table 6.2).

Gene Expression Data

We now compare GLOSS to PLDA and SLDA on three genomic datasets. The Nakayama2 dataset contains 105 examples of 22,283 gene expressions for categorizing 10 soft tissue tumors. It was reduced to the 86 examples belonging to the 5 dominant categories [START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF]. The Ramaswamy3 dataset contains 198 exam- Test error rates and the number of selected variables are presented in Table 6.3. The results for the PLDA algorithm are extracted from [START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF]. The three methods have comparable prediction performances on the Nakayama and Sun datasets, but GLOSS performs better on the Ramaswamy data, where the SparseLDA package failed to return a solution, due to numerical problems in the LARS-EN implementation. Regarding the number of selected variables, GLOSS is again much sparser than its competitors.

Finally, Figure 6.2 displays the projection of the observations for the Nakayama and Sun datasets in the first canonical planes estimated by GLOSS and SLDA. For the Nakayama dataset, groups 1 and 2 are well-separated from the other ones in both representations, but GLOSS is more discriminant in the meta-cluster gathering groups 3 to 5. For the Sun dataset, SLDA suffers from a high colinearity of its first canonical variables that renders the second one almost non-informative. As a result, group 1 is better separated in the first canonical plane with GLOSS.

Correlated Data

When the features are known to be highly correlated, the discrimination algorithm can be improved by using this information in the optimization problem. The structured variant of GLOSS presented in Section 5.6.4, S-GLOSS from now on, was conceived to introduce easily this prior knowledge.

The experiments described in this section are intended to illustrate the effect of combining the group-Lasso sparsity inducing penalty with a quadratic penalty used as a surrogate of the unknown within-class variance matrix. This preliminary experiment does not include comparisons with other algorithms. More comprehensive experimental results have been left for future works.

For this illustration, we have used a subset of the USPS handwritten digit dataset made of of 16 × 16 pixels representing digits from 0 to 9. For our purpose, we compare the discriminant direction that separates digits "1" and "0", computed with GLOSS and S-GLOSS. The mean image of every digit is showed in Figure 6.3.

As in Section 5.6.4, we have represented the pixel proximity relationships from Figure 5.2 into a penalty matrix Ω L , but this time, in a 256-nodes graph. Introducing this new 256 × 256 Laplacian penalty matrix Ω L in the GLOSS algorithm is straightforward.

The effect of this penalty is fairly evident in Figure 6.4 where the discriminant vector β resulting of a non-penalized execution of GLOSS is compared with the β resulting from a Laplace penalized execution of S-GLOSS (without group-Lasso penalty). We perfectly distinguish the center of the digit "0" in the discriminant direction obtained by S-GLOSS; that is probably the most important element to discriminate both digits.

Figure 6.5 display the discriminant direction β obtained by GLOSS and S-GLOSS for a non-zero group-Lasso penalty with an identical penalization parameter (λ = 0.3). Even if both solutions are sparse, the discriminant vector from S-GLOSS keeps connected pixels that allow to detect strokes and will probably provide better prediction results.

Discussion

GLOSS is an efficient algorithm that performs sparse LDA based on the regression of class indicators. Our proposal is equivalent to a penalized LDA problem. This is up to our knowledge the first approach that enjoys this property in the multi-class setting. This relationship is also amenable to accommodate interesting constraints on the equivalent penalized LDA problem, such as imposing a diagonal structure of the within-class covariance matrix.

Computationally, GLOSS is based on an efficient active set strategy that is amenable to the processing of problems with a large number of variables. The inner optimization problem decouples the p × (K -1)-dimensional problem into (K -1) independent pdimensional problems. The interaction between the (K -1) problems is relegated to the computation of the common adaptive quadratic penalty. The algorithm presented here is highly efficient in medium to high dimensional setups, which makes it a good candidate for the analysis of gene expression data.

The experimental results confirm the relevance of the approach, which behaves well compared to its competitors, either regarding its prediction abilities or its interpretability (sparsity). Generally, compared to the competing approaches, GLOSS provides extremely parsimonious discriminants without compromising prediction performances. Employing the same features in all discriminant directions enables to generate models that are globally extremely parsimonious, with good prediction abilities. The resulting sparse discriminant directions also allow for visual inspection of data from the lowdimensional representations that can be produced.

The approach has many potential extensions that have not yet been implemented. A first line of development is to consider a broader class of penalties. For example, plain quadratic penalties can also be added to the group-penalty to encode priors about the within-class covariance structure, in the spirit of the Penalized Discriminant Analysis of [START_REF] Hastie | Penalized discriminant analysis[END_REF]. Also, besides the group-Lasso, our framework can be customized to any penalty that is uniformly spread within groups, and many composite or hierarchical penalties that have been proposed for structured data meet this condition.

Part III.

Sparse Clustering Analysis

67

Abstract

Clustering can be defined as a grouping task of samples such that all the elements belonging to one cluster are more "similar " to each other than to the objects belonging to the other groups. There are similarity measures for any data structure, database records or even multimedia objects (audio, video,...). The similarity concept is closely related to the idea of distance, which is a specific dissimilarity.

Model-based clustering aims to describe an heterogeneous population with a probabilistic model that represent each group with a its own distribution. Here, the distributions will be Gaussians, and the different populations are identified with different means and common covariance matrix.

As in the supervised framework, the traditional clustering techniques perform worse when the number of irrelevant features increases. In this part, we develop Mix-GLOSS, which builds on the supervised GLOSS algorithm to address unsupervised problems, resulting in a clustering mechanism with embedded feature selection.

Chapter 7 reviews different techniques of inducing sparsity in model-based clustering algorithms. The theory that motivates our original formulation of the EM algorithm is developed in Chapter 8 followed by the description of the algorithm in Chapter 9. Its performance is assessed and compared to other model-based sparse clustering mechanisms at the state of the art in Chapter 10.

Feature Selection in Mixture Models

Mixture Models

One of the most popular clustering algorithm is K-means that aims to partition n observations into K clusters. Each observation is assigned to the cluster with the nearest mean [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. A generalization of K-means can be made through probabilistic models which represents K subpopulations by a mixture of distributions. Since their first use by [START_REF] Newcomb | A generalized theory of the combination of observations so as to obtain the best result[END_REF] for the detection of outlier points, and 8 years later by [START_REF] Pearson | Contributions to the mathematical theory of evolution[END_REF] to identify two separate populations of crabs, finite mixtures of distributions have been employed to model a wide variety of random phenomena. These models assume that measurements are taken from a set of individuals, each of which belongs to one out of a number of different classes, while any individual's particular class is unknown. Mixture models can thus address the heterogeneity of a population, and are especially well suited to the problem of clustering.

Model

We assume that the observed data X = (x 1 , . . . , x n) have been drawn identically from K different subpopulations in the domain R p . The generative distribution is a finite mixture model, that is, the data are assumed to be generated from a compounded distribution whose density can be expressed as

f (x i) = K k=1 π k f k (x i), ∀i ∈ {1, . . . , n} ,
where K is the number of components, f k are the densities of the components and π k are the mixture proportions (π k ∈]0, 1[∀k and k π k = 1). Mixture models transcribe that, given the proportions π k and the distributions f k for each class, the data is generated according to the following mechanism:

• y: each individual is allotted to a class according to a multinomial distribution with parameters π 1 , . . . , π K ;

• x: each x i is assumed to arise from a random vector with probability density function f k .

In addition, it is usually assumed that the component densities f k belong to a parametric family of densities φ(•; θ k). The density of the mixture can then be written as

f (x i ; θ) = K k=1 π k φ(x i ; θ k) , ∀i ∈ {1, . . . , n} ,
where θ = (π 1 , . . . , π K , θ 1 , . . . , θ K) is the parameter of the model.

Parameter Estimation: The EM Algorithm

For the estimation of parameters of the mixture model, Pearson (1894) used the method of moments to estimate the five parameters (µ 1 , µ 2 , σ 2 1 , σ 2 2 , π) of a univariate Gaussian mixture model with two components. That method required him to solve polynomial equations of degree nine. There are also graphic methods, maximum likelihood methods and Bayesian approaches.

The most widely used process to estimate the parameters is by maximizing the loglikelihood using the EM algorithm. It is typically used to maximize the likelihood for models with latent variables, for which no analytical solution is available [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF].

The EM algorithm iterates two steps called the expectation step (E) and the maximization step (M). Each expectation step involves the computation of the likelihood expectation with respect to the hidden variables, while each maximization step estimates the parameters by maximizing the E-step expected likelihood.

Under mild regularity assumptions, this mechanism converges to a local maximum of the likelihood. However, the type of problems targeted is typically characterized by the existence of several local maxima, and global convergence cannot be guaranteed. In practice, the obtained solution depends on the initialization of the algorithm.

Maximum Likelihood Definitions

The likelihood is is commonly expressed in its logarithmic version

L(θ; X) = log n i=1 f (x i ; θ) = n i=1 log K k=1 π k f k (x i ; θ k) , (7.1)
where n in the number of samples, K is the number of components of the mixture (or number of clusters) and π k are the mixture proportions

To obtain maximum likelihood estimates, the EM algorithm works with the joint distribution of the observations x and the unknown latent variables y which indicate the cluster membership of every sample. The pair z = (x, y) is called the complete data. The log-likelihood of the complete data is called the complete log-likelihood or

classification log-likelihood L C (θ; X, Y) = log n i=1 f (x i , y i ; θ) = n i=1 log K k=1 y ik π k f k (x i ; θ k) = n i=1 K k=1 y ik log (π k f k (x i ; θ k)) . (7.2)
The y ik are the binary entries of the indicator matrix Y, with y ik = 1 if the observation i belongs to the cluster k and y ik = 0 otherwise. Defining the soft membership t ik (θ) as

t ik (θ) = p(Y ik = 1|x i ; θ) (7.3) = π k f k (x i ; θ k) f (x i ; θ) . (7.4)
To lighten notations, t ik (θ) will be denoted t ik when parameter θ is clear from context. The regular (7.1) and complete (7.2) log-likelihood are related as follows:

L C (θ; X, Y) = i,k y ik log (π k f k (x i ; θ k)) = i,k y ik log (t ik f (x i ; θ)) = i,k y ik log t ik + i,k y ik log f (x i ; θ) = i,k y ik log t ik + n i=1 log f (x i ; θ) = i,k y ik log t ik + L(θ; X) , (7.5)
where i,k y ik log t ik can be reformulated as i,k

y ik log t ik = n i=1 K k=1 y ik log(p(Y ik = 1|x i ; θ)) = n i=1 log(p(Y ik = 1|x i ; θ)) = log (p(Y |X; θ)) .
As a result, the relationship (7.5) can be rewritten as

L(θ; X) = L C (θ; Z) -log (p(Y |X; θ)) . (7.6)

Likelihood Maximization

The complete log-likelihood cannot be assessed because the variables y ik are unknown. However it is possible to estimate the value of log-likelihood taking expectations conditionally to a current value of θ on (7.6)

L(θ; X) = E Y ∼p(•|X;θ (t)) [L C (θ; X, Y))] Q(θ,θ (t)) + E Y ∼p(•|X;θ (t)) [-log p(Y |X; θ)] H(θ,θ (t))
.

In this expression H(θ, θ (t)) is the entropy and Q(θ, θ (t)) is the conditional expectation of the complete log-likelihood. Let us define an increment of the log-likelihood as ∆L = L(θ (t+1) ; X) -L(θ (t) ; X). Then, θ (t+1) = argmax θ Q(θ, θ (t)) also increases the log-likelihood:

∆L = (Q(θ (t+1) , θ (t)) -Q(θ (t) , θ (t))) ≥0 by definition of iteration t+1 -(H(θ (t+1) , θ (t)) -H(θ (t) , θ (t)))
≤0 by Jensen Inequality . Therefore, it is possible to maximize the likelihood by optimizing Q(θ, θ (t)). The relationship between Q(θ, θ) and L(θ; X) is developed in deeper detail in Appendix F to show how the value of L(θ; X) can be recovered from Q(θ, θ (t)).

For the mixture model problem,

Q(θ, θ) is Q(θ, θ) = E Y ∼p(Y |X;θ) [L C (θ; X, Y))] = i,k p(Y ik = 1|x i ; θ) log(π k f k (x i ; θ k)) = n i=1 K k=1 t ik (θ) log (π k f k (x i ; θ k)) . (7.7)
Q(θ, θ), due to its similitude to the expression of the complete likelihood (7.2), is also known as the weighted likelihood. In (7.7), the weights t ik (θ) are the posterior probabilities of cluster memberships. Hence, the EM algorithm sketched above results in:

• Initialization (not iterated): choice of the initial parameter θ (0)

• E-Step: Evaluation of Q(θ, θ (t)) using t ik (θ (t)) (7.4) in (7.7);

• M-Step: Calculation of θ (t+1) = argmax θ Q(θ, θ (t)).

Gaussian Model

In the particular case of a Gaussian mixture model with common covariance matrix Σ and different vector means µ k , the mixture density is

f (x i ; θ) = K k=1 π k f k (x i ; θ k) = K k=1 π k 1 (2π) p 2 |Σ| 1 2 exp - 1 2 (x i -µ k) Σ -1 (x i -µ k) .
At the E-step, the posterior probabilities t ik are computed as in (7.4), with the current θ (t) parameters , then the M-Step maximizes Q(θ, θ (t)) (7.7), whose form is as follows:

Q(θ, θ (t)) = i,k t ik log(π k) - i,k t ik log (2π) p 2 |Σ| 1 2 - 1 2 i,k t ik (x i -µ k) Σ -1 (x i -µ k) = k t k log(π k) - np 2 log(2π) constant term - n 2 log(|Σ|) - 1 2 i,k t ik (x i -µ k) Σ -1 (x i -µ k) ≡ k t k log(π k) - n 2 log(|Σ|) - i,k t ik 1 2 (x i -µ k) Σ -1 (x i -µ k) , (7.8)
where

t k = n i=1 t ik .
(7.9)

The M-step, which maximizes this expression with respect to θ, applies the following updates defining θ (t+1) :

π (t+1) k = t k n (7.10) µ (t+1) k = i t ik x i t k (7.11) Σ (t+1) = 1 n k W k (7.12) with W k = i t ik (x i -µ k)(x i -µ k) (7.13)
The derivations are detailed in Appendix G.

Feature Selection in Model-Based Clustering

When common covariance matrices are assumed, Gaussian mixtures are related to LDA, with partitions defined by linear decision rules. When every cluster has its own covariance matrix Σ k , Gaussian mixtures are associated to quadratic discriminant analysis (QDA) with quadratic boundaries.

In the high-dimensional low-sample setting, numerical issues appear in the estimation of the covariance matrix. To avoid those singularities, regularization may be applied. A regularized trade-off between LDA and QDA (RDA) was proposed by [START_REF] Friedman | Regularized discriminant analysis[END_REF]. [START_REF] Bensmail | Regularized Gaussian discriminant analysis through eigenvalue decomposition[END_REF] extended this algorithm but rewriting the covariance matrix in terms of its eigenvalue decomposition [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF]). These regularization schemes address singularity and stability issues, but they do not induce parsimonious models.

Σ k = λ k D k A k D k
In this Chapter we review some techniques to induce sparsity with model-based clustering algorithms. This sparsity refers to the rule that assigns examples to classes: clustering is still performed in the original p-dimensional space, but the decision rule can be expressed with only a few coordinates of this high-dimensional space.

Based on Penalized Likelihood

Penalized log-likelihood maximization is a popular estimation technique for mixture models. It is typically achieved by the EM algorithm, using mixture models for which the allocation of examples is expressed as a simple function of the input features. For example, for Gaussian mixtures with a common covariance matrix, the log-ratio of posterior probabilities is a linear function of x:

log p(Y k = 1|x) p(Y = 1|x) = x Σ -1 (µ k -µ) - 1 2 (µ k + µ) Σ -1 (µ k -µ) + log π k π .
In this model, a simple way of introducing sparsity in discriminant vectors Σ -1 (µ kµ) is to constrain Σ to be diagonal and to favor sparse means µ k . Indeed, for Gaussian mixtures with common diagonal covariance matrix, if all means have the same value on dimension j, then, variable j is useless for class allocation and can be discarded. The means can be penalized by the L 1 norm

λ K k=1 p j=1 |µ kj | ,
as proposed by [START_REF] Pan | Semi-supervised learning via penalized mixture model with application to microarray sample classification[END_REF], [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF]. [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF] consider more complex penalties on full covariance matrices

λ 1 K k=1 p j=1 |µ kj | + λ 2 K k=1 p j=1 p m=1 |(Σ -1 k) jm | .
In their algorithm, they make use the graphical Lasso to estimate the covariances. Even if their formulation induces sparsity on the parameters, their combination of L 1 penalties does not directly target decision rules based on few variables, and thus does not guarantee parsimonious models. [START_REF] Guo | Pairwise variable selection for highdimensional model-based clustering[END_REF] propose a variation with a Pairwise Fusion Penalty (PFP)

λ p j=1 1 k k K |µ kj -µ k j | .
This PFP regularization is not shrinking the means to zero but towards to each other.

The jth feature for all cluster means are driven to the same value, that variable can be considered as non-informative.

A L 1,∞ penalty is used by [START_REF] Wang | Variable selection for model-based high-dimensional clustering and its application to microarray data[END_REF] and [START_REF] Kuan | A statistical framework for illumina DNA methylation arrays[END_REF] to penalize the likelihood encouraging null groups of features

λ p j=1 (µ 1j , µ 2j , ..., µ Kj) ∞ .
One group is defined for each variable j as the set of the K mean's jth component (µ 1j , . . . , µ Kj). The L 1,∞ penalty forces zeros at the group level, favoring the removal of the corresponding feature. This method seems to produce parsimonious models and good partitions within a reasonable computing time. In addition, the code is publicly available. Xie et al. (2008b) apply a group-Lasso penalty. Their principle describes a vertical mean grouping (VMG, with the same groups as Xie et al. (2008a)) and a horizontal mean grouping (HMG). VMG allows to get real feature selection because it forces null values for the same variable in all cluster means

λ √ K p j=1   K k=1 µ 2 kj   .
The clustering algorithm of VMG differs from ours but the group penalty proposed is the same, however no code is available on the authors' website that allows to test.

The optimization of a penalized likelihood by means of an EM algorithm can be reformulated rewriting the maximization expressions from the M-step as a penalized optimal scoring regression. [START_REF] Roth | Feature selection in clustering problems[END_REF] implemented it for two cluster problems using a L 1 penalty to encourage sparsity on the discriminant vector. The generalization from quadratic to non-quadratic penalties is quickly outlined in this work. We extend this works by considering an arbitrary number of clusters and by formalizing the link between penalized optimal scoring and penalized likelihood estimation.

Based on Model Variants

The algorithm proposed by [START_REF] Law | Simultaneous feature selection and clustering using mixture models[END_REF] takes a different stance. The authors define feature relevancy considering conditional independency. That is, the jth feature is presumed uninformative if its distribution is independent of the class labels. The density is expressed as

f (x i |φ, π, θ, ν) = K k=1 π k p j=1 [f (x ij |θ jk)] φ j [h(x ij |ν j)] 1-φ j ,
where f (•|θ jk) is the distribution function for relevant features and h(•|ν j) is the distribution function for the irrelevant ones. The binary vector φ = (φ 1 , φ 2 , ...φ p) represents relevance, with φ j = 1 if the jth feature is informative and φ j = 0 otherwise. The saliency for variable j is then formalized as ρ j = P (φ j = 1). So all φ j must be treated as missing variables. Thus, the set of parameters is {{π k }, {θ jk }, {ν j }, {ρ j }}. Their estimation is done by means of the EM algorithm [START_REF] Law | Simultaneous feature selection and clustering using mixture models[END_REF]).

An original and recent technique is the Fisher-EM algorithm proposed by Bouveyron and Brunet (2012b;a). The Fisher-EM is a modified version of EM that runs in a latent space. This latent space is defined by an orthogonal projection matrix U ∈ R p×K-1 which is updated inside the EM loop with a new step called the Fisher step (F-step from now on), which maximizes a multi-class Fisher's criterion (7.14) so as to maximize the separability of the data. The E-step is the standard one, computing the posterior probabilities. Then, the F-step updates the projection matrix that projects the data to the latent space. Finally, the M-step estimates the parameters by maximizing the conditional expectation of the complete log-likelihood. Those parameters can be rewritten as a function of the projection matrix U and the model parameters in the latent space such that the U matrix enters into the M-step equations.

tr (U Σ W U) -1 U Σ B U ,
To induce feature selection, Bouveyron and Brunet (2012a) suggest three possibilities. The first one results in the best sparse orthogonal approximation Û of the matrix U which maximizes (7.14). This sparse approximation is defined as the solution of min

Û∈R p×K-1 X U -X Û 2 F + λ K-1 k=1 ûk 1 ,
where X U = XU is the input data projected in the non-sparse space and ûk is the kth column vector of the projection matrix Û. The second possibility is inspired by [START_REF] Qiao | Sparse linear discriminant analysis with applications to high dimensional low sample size data[END_REF] and reformulates Fisher's discriminant (7.14), used to compute the projection matrix, as a regression criterion penalized by a mixture of Lasso and Elastic net min

A,B∈R p×K-1 K k=1 R - W H B,k -AB H B,k 2 2 + ρ K-1 j=1 β j Σ W β j + λ K-1 j=1 β j 1 , s. t. A A = I K-1 ,
where H B ∈ R p×K is a matrix defined conditionally to the posterior probabilities t ik satisfying H B H B = Σ B , and H B,k is the kth column of H B ; R W ∈ R p×p is an upper With those subsets, they defined two different models where Y is the partition to consider:

• M 1 : f (X|Y) = f X (1) , X (2) , X (3) |Y = f X (3) |X (2) , X (1) f X (2) |X (1) f X (1) |Y • M 2 : f (X|Y) = f X (1) , X (2) , X (3) |Y = f X (3) |X (2) , X (1) f X (2) , X (1) |Y
Model M 1 means that variables in X (2) are independent on clustering Y. Model M 2 shows that variables in X (2) depend on clustering Y. To simplify the algorithm, subset X (2) is only updated one variable at a time. Therefore, deciding the relevance of variable X (2) deals with a model selection between M 1 and M 2 . The selection is done via the Bayes factor

B 12 = f (X|M 1) f (X|M 2) ,
where the high-dimensional f (X (3) |X (2) , X (1)) cancels from the ratio

B 12 = f X (1) , X (2) , X (3) |M 1 f X (1) , X (2) , X (3) |M 2 = f X (2) |X (1) , M 1 f X (1) |M 1 f X (2) , X (1) |M 2 .
This factor is approximated since the integrated likelihoods f X (1) |M 1 and f X (2) , X (1) |M 2 are difficult to calculate exactly. [START_REF] Raftery | Variable selection for model-based clustering[END_REF] use the BIC approximation. The computation of f X (2) |X (1) , M 1 , if there is only one variable in X (2) , can be represented as a linear regression of variable X (2) on the variables in X (1) . There is also a BIC approximation for this term. Maugis et al. (2009a) have proposed a variation of the algorithm developed by Raftery and Dean. They define three subsets of variables: the relevant and irrelevant subsets (X (1) and X (3)) remains the same, but X (2) is reformulated as a subset of relevant variables that explains the irrelevance through a multidimensional regression. This algorithm also uses of a backward stepwise strategy instead of the forward stepwise used by [START_REF] Raftery | Variable selection for model-based clustering[END_REF]. Their algorithm allows to define blocks of indivisible variables that in certain situations improve the clustering and its interpretability.

Both algorithms are well motivated and appear to produce good results, however, the quantity of computation needed to test the different subset of variables requires a huge computation time. In practice, they cannot be used for the amount of data considered in this thesis.

Theoretical Foundations

In this chapter we develop Mix-GLOSS, which uses the GLOSS algorithm conceived for supervised classification (see Section 5), to solve clustering problems. The goal here is similar, that is, providing an assignements of examples to clusters based on few features.

We use a modified version of the EM algorithm whose M-step is formulated as a penalized linear regression of a scaled indicator matrix, that is, a penalized optimal scoring problem. This idea was originally proposed by [START_REF] Hastie | Discriminant analysis by Gaussian mixtures[END_REF] to perform reduced-rank decision rules, using less than K -1 discriminant directions. Their motivation was mainly driven by stability issues, no sparsity-inducing mechanism was introduced in the construction of discriminant directions. [START_REF] Roth | Feature selection in clustering problems[END_REF] pursued this idea by for binary clustering problems, where sparsity was introduced by a Lasso penalty applied to the OS problem. Besides extending the work of [START_REF] Roth | Feature selection in clustering problems[END_REF] to an arbitrary number of clusters, we draw links between the OS penalty and the parameters of the Gaussian model.

In the subsequent sections, we provide the principles that allow to solve the M-step as an optimal scoring problem. The feature selection technique is embedded by means of a group-Lasso penalty. We must then guarantee that the equivalence between the M-step and the OS problem holds for our penalty. As with GLOSS, this is accomplished with a variational approach of group-Lasso. Finally, some considerations regarding the criterion that is optimized with this modified EM are provided.

Resolving EM with Optimal Scoring

In the previous chapters, EM was presented as an iterative algorithm that computes a maximum likelihood estimate through the maximization of the expected complete loglikelihood. This section explains how a penalized OS regression, embedded into an EM algorithm, produces a penalized likelihood estimate.

Relationship Between the M-Step and Linear Discriminant Analysis

LDA is typically used in a supervised learning framework for classification and dimension reduction. It looks for a projection of the data where the ratio of between-class variance to within-class variance is maximized (see Appendix C). Classification in the LDA domain is based on the Mahalanobis distance

d(x i , µ k) = (x i -µ k) Σ -1 W (x i -µ k)
, where µ k are the p-dimensional centroids and Σ W is the p × p common within-class covariance matrix.

The likelihood equations in the M-Step (7.11) and (7.12) can be interpreted as the mean and covariance estimates of a weighted and augmented LDA problem [START_REF] Hastie | Discriminant analysis by Gaussian mixtures[END_REF], where the n observations are replicated K times and weighted by t ik (the posterior probabilities computed at the E-step).

Having replicated the data vectors, [START_REF] Hastie | Discriminant analysis by Gaussian mixtures[END_REF] remark that the parameters maximizing the mixture likelihood in the M-step of the EM algorithm (7.11) and (7.12) can also be defined as the maximizers of the weighted and augmented likelihood

2l weight (µ, Σ) = n i=1 K k=1 t ik d(x i , µ k) -n log(|Σ W |) ,
which arises when considering a weighted and augmented LDA problem. This viewpoint provides the basis for an alternative maximization of penalized maximum likelihood in Gaussian mixtures.

Relationship Between Optimal Scoring and Linear Discriminant Analysis

The equivalence between penalized optimal scoring problems and a penalized linear discriminant analysis has already been detailed in Section 4.1 in the supervised learning framework. This is a critical part of the link between the M-step of an EM algorithm and optimal scoring regression.

Clustering Using Penalized Optimal Scoring

The solution of the penalized optimal scoring regression in the M-step is a coefficient matrix B OS analytically related to the Fisher's discriminative directions B LDA for the data (X, Y), where Y is the current (hard or soft) cluster assignement. In order to compute the posterior probabilities t ik in the E-step, the distance between the samples x i and the centroids µ k must be evaluated. Depending wether we are working in the input domain, OS or LDA domain, different expressions are used for the distances (see Section 4.2.2 for more details). Mix-GLOSS works in the LDA domain, based on the following expression

d(x i , µ k) = (x -μk)B LDA 2 2 -2 log(π k) .
This distance defines the computation of the posterior probabilities t ik in the E-step (see Section 4.2.3). Putting together all those elements, the complete clustering algorithm can be summarized as:

1. Initialize the membership matrix Y (for example by K-means algorithm) 2. Solve the p-OS problem as

B OS = X X + λ Ω -1 X YΘ , where Θ are the K -1 leading eigenvectors of Y X X X + λ Ω -1 X Y .
3. Map X to the LDA domain:

X LDA = XB OS D, with D = diag(α -1 k (1 -α 2 k) -1 2)
4. Compute the centroids M in the LDA domain 5. Evaluate distances in the LDA domain 6. Translate distances into posterior probabilities t ik with

t ik ∝ exp -d(x, μk) -2 log(π k) 2 , (8.1)
7. Update the labels using the posterior probabilities matrix Y = T 8. Go back to step 2 and iterate until t ik converge Items 2 to 5 can be interpreted as the M-step and Item 6 as the E-step in this alternative view of the EM algorithm for Gaussian mixtures.

From Sparse Optimal Scoring to Sparse Linear Discriminant Analysis

In the previous section we schemed a clustering algorithm that replaces the M-step with penalized OS. This modified version of EM holds for any quadratic penalty. We extend this equivalence to sparsity-inducing penalties through the a quadratic variational approach to the group-Lasso provided in Section 4.3. We now look for a formal equivalence between this penalty and penalized maximum likelihood for Gaussian mixtures.

Optimized Criterion

In the classical EM for Gaussian mixtures, the M-step maximizes the weighted likelihood Q(θ, θ) (7.7), so as to maximize the likelihood L(θ) (see Section 7.1.2). Replacing the M-step by an optimal scoring is equivalent, replacing the M-step by a penalized optimal problem is possible, and the link between penalized optimal problem and penalized LDA holds, but it remains to relate this penalized LDA problem to a penalized maximum likelihood criterion for the Gaussian mixture.

This penalized likelihood cannot be rigorously interpreted as a maximum a posteriori criterion, in particular because the penalty only operates on the covariance matrix Σ (there is no prior on the means and proportions of the mixture). We however believe that the Bayesian interpretation provide some insight and we detail it in what follows.

A Bayesian Derivation

This section sketches a Bayesian treatment of inference limited to our present needs, where penalties are to be interpreted as prior distributions over the parameters of the probabilistic model to be estimated. Further details can be found in Bishop (2006, Section 2.3.6) and in Gelman et al. (2003, Section 3.6).

The model proposed in this thesis considers a classical maximum likelihood estimation for the means and a penalized common covariance matrix. This penalization can be interpreted as arising from a prior on this parameter.

The prior over the covariance matrix of a Gaussian variable is classically expressed as a Wishart distribution, since it is a conjugate prior:

f (Σ|Λ 0 , ν 0) = 1 2 np 2 |Λ 0 | n 2 Γ p (n 2) |Σ -1 | ν 0 -p-1 2 exp - 1 2 tr Λ -1 0 Σ -1 ,
where ν 0 is the number of degrees of freedom of the distribution, Λ 0 is a p × p scale matrix, and where Γ p is the multivariate gamma function, defined as

Γ p (n/2) = π p(p-1)/4 p j=1 Γ (n/2 + (1 -j)/2) .
The posterior distribution can be maximized, similarly to the likelihood, through the

Mix-GLOSS Algorithm

Mix-GLOSS is an algorithm for unsupervised classification that embeds feature selection, resulting in parsimonious decision rules. It is based on the GLOSS algorithm developed in Chapter 5 that has been adapted for clustering. In this chapter, I describe the details of the implementations of Mix-GLOSS and of the model selection mechanism.

Mix-GLOSS

The implementation of Mix-GLOSS involves three nested loops as schemed in Figure 9.1. The inner one is an EM algorithm that for a given value of the regularization parameter λ, iterates between an M-step, where the parameters of the model are estimated, and an E-step, where the corresponding posterior probabilities are computed. The main outputs of the EM are the coefficient matrix B, that projects the input data X onto the best subspace (in Fisher's sense), and the posteriors t ik .

When several values of the penalty parameter are tested, we give them to the algorithm in ascending order, and the algorithm is initialized by the solution found for the previous λ value. This process continues until all the penalty parameter values have been tested if a vector of penalty parameter was provided, or until a given sparsity is achieved as measured by the number of variables estimated to be relevant.

The outer loop implements complete repetitions of the clustering algorithm for all the penalty parameter values with the purpose of choosing the best execution. This loop alleviates the local minima issues by resorting to multiple initializations of the partition.

Outer Loop: Whole Algorithm Repetitions

This loop performs an user defined number of repetitions of the clustering algorithm. It takes as inputs:

• the centered n × p feature matrix X,

• the vector of penalty parameter values to be tried. An option is to provide an empty vector and let the algorithm to set trial values automatically

• the number of clusters K,

• the maximum number of iterations for the EM algorithm,

• the convergence tolerance for the EM algorithm,

• the number of whole repetitions of the clustering algorithm, For each algorithm repetition, an initial label matrix Y is needed. This matrix may contain either hard or soft assignments. If no such matrix is available, K-means is used to initialize the process. If we have an initial guess for the coefficient matrix B , it can also be fed into Mix-GLOSS to warm-start the process.

Penalty Parameter Loop

The penalty parameter loop goes through all the values of the input vector λ. These values are sorted in ascending order such that the resulting B and Y matrices can be used to warm-start the EM loop for the next value of the penalty parameter. If some λ value results in a null coefficient matrix, the algorithm halts. We have tested that the warm-start implemented reduce the computation time in a factor of 8 with respect to using a null B matrix and a K-means execution for the initial Y label matrix.

Mix-GLOSS may be fed with an empty vector of penalty parameters, in which case a first non-penalized execution of Mix-GLOSS is done, and its resulting coefficient matrix B and posterior matrix Y are used to estimate a trial value of λ that should remove about 10% of relevant features. This estimation is repeated until a minimum number of relevant variables is achieved. The parameter that measures the estimate percentage of variables that will be removed with the next penalty parameter can be modified to make feature selection more or less aggressive.

Algorithm 2 details the implementation of the automatic selection of the penalty parameter. If the alternate variational approach from Appendix D is used, we have to replace Equations (4.32b) by (D.10b).

Algorithm 2 Automatic selection of λ Input: X, K, λ = empty, minVAR Initialize:

B ← 0 Y ← K-means(X, K) Run non-penalized Mix-GLOSS: λ ← 0 (B, Y) ← Mix-GLOSS(X, K, B,Y,λ) lastLAMBDA ← false repeat Estimate λ: // Compute gradient at β j = 0 ∂J(B) ∂β j β j =0 = x j (m =j x m β m -YΘ)
// Compute λ max for every feature using (4.32b)

λ max j = 1 w j ∂J(B) ∂β j β j =0 2
// Choose λ so as to remove 10% of relevant features Run penalized Mix-GLOSS:

(B, Y) ← Mix-GLOSS(X, K, B,Y,λ) if number of relevant variables in B > minVAR then lastLAMBDA ← false else lastLAMBDA ← true end if until lastLAMBDA Output: { B, L(θ), t ik , π k , µ k , Σ, Y } for every λ in solution path

Inner Loop: EM Algorithm

The inner loop implements the actual clustering algorithm by means of successive maximizations of a penalized likelihood criterion. Once that convergence in the posterior probabilities t ik is achieved, the maximum a posteriori rule is applied to classify all examples. Algorithm 3 describes this inner loop. (2006) algorithm. SelvarClust (Maugis et al. 2009b) is a software implemented in C++ that make use of clustering libraries mixmod [START_REF] Bienarcki | MIXMOD Statistical Documentation[END_REF]. Further information can be found in the related paper Maugis et al. (2009a). The software can be downloaded from the SelvarClust project homepage. There is a link to the project from Cathy Maugis's website.

After several tests, this entrant was discarded due to the amount of computing time required by the greedy selection technique that basically involves two executions of a classical clustering algorithm (with mixmod) for every single variable whose inclusion needs to be considered.

The substitute of SelvarClust has been the algorithm that inspired it, that is, the method developed by [START_REF] Raftery | Variable selection for model-based clustering[END_REF]. There is a R package named Clustvarsel that can be downloaded from the website of Nema Dean or from the Comprehensive R Archive Network website.

• LumiWCluster. LumiWCluster is an R package available from the homepage of Pei Fen Kuan. This algorithm is inspired by [START_REF] Wang | Variable selection for model-based high-dimensional clustering and its application to microarray data[END_REF] who propose a penalty for the likelihood that incorporates group information through a L 1,∞ mixed norm. In [START_REF] Kuan | A statistical framework for illumina DNA methylation arrays[END_REF] they introduce some slight changes in the penalty term as weighting parameters that are particularly important for their dataset. The package LumiWCluster allows to perform clustering using the expression from [START_REF] Wang | Variable selection for model-based high-dimensional clustering and its application to microarray data[END_REF] (called LumiWCluster-Wang) or the one from [START_REF] Kuan | A statistical framework for illumina DNA methylation arrays[END_REF] (called LumiWCluster-Kuan).

• Mix-GLOSS. This is the clustering algorithm implemented using GLOSS (see

Results

Section 9). It makes use of an EM algorithm and the equivalences between the Mstep and an LDA problem and between an p-LDA problem and a p-OS problem. It penalizes an OS regression with a variational approach of the group-Lasso penalty (see Section 8.1.4) that induces zeros in all discriminant directions for the same variable.

Results

In Table 10.1 are shown the results of the experiments for all those algorithms from Section 10.1. The parameters to measure the performance are:

• Clustering Error (in percentage). To measure the quality of the partition with the a priori knowledge of the real classes, the clustering error is computed as explained in [START_REF] Wu | A local learning approach for clustering[END_REF]. If the obtained partition and the real labeling are the same, then the clustering error shows a 0%. The way this measure is defined allows to obtain the ideal 0% of clustering error even if the IDs for the clusters or the real classes are different.

• Number of Disposed Features. This value shows the number of variables whose coefficients have been zeroed, therefore, they are not used in the partitioning. In our datasets, only the first 20 features are relevant for the discrimination; the last 80 variables can be discarded. Hence, a good result for the tested algorithms should be around 80.

• Time of execution (in hours, minutes or seconds). Finally, the time needed to execute the 25 repetitions for each simulation setup is also measured. Those algorithms tend to be more memory and cpu consuming as the number of variables increases. This is one of the reasons why the dimensionality of the original problem was reduced.

The adequacy of the selected features was assessed by the True Positive Rate (TPR) and the False Positive Rate (FPR). The TPR is defined as the ratio of selected variables that are actually relevant. Similarly, the FPR, is the ratio of selected variables that are actually non relevant. The best algorithm would be the one that selects all the relevant variables and rejects all the others. That is, TPR = 1 and FPR = 0 simultaneously. In order to avoid cluttered results, we compare TPR and FPR for the four simulations, but only for the three algorithms. CS general cov and Clustvarsel were discarded due to high computing time and cluster error respectively. The two versions of LumiW-Cluster providing almost the same TPR and FPR, only one is displayed. The three remaining algorithms are Fisher EM by Bouveyron and Brunet (2012a), the version of LumiWCluster by [START_REF] Kuan | A statistical framework for illumina DNA methylation arrays[END_REF] and Mix-GLOSS.

Results in percentages are displayed in Figure 10.2 (or in Table 10.2).

Discussion

After reviewing Tables 10.1-10.2 and Figure 10.2, we see that there is no definitive winner in all situations regarding all criteria. According to the objectives and constraints of the problem, the following observations deserve to be highlighted:

LumiWCluster (Wang andZhu 2008, Kuan et al. 2010) is by far the fastest kind of method, with good behaviors regarding the other performances. At the other end of this criterion, CS general cov is extremely slow and Clustvarsel, though twice as fast, is also very long to produce an output. Of course, the speed criterion does not say much by itself: the implementations use different programming languages, different stopping criteria, and we do not know what effort has been spent on implementation. That being said, the slowest algorithm are not the more precise ones, so their long computation time is worth mentioning here.

The quality of the partition vary depending on the simulation and the algorithm. Mix-GLOSS has a small edge in Simulation 1, LumiWCluster [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF]) performs better in Simulation 2, while Fisher EM (Bouveyron and Brunet 2012a) does slightly better in Simulations 3 and 4.

From the feature selection point of view, LumiWCluster [START_REF] Kuan | A statistical framework for illumina DNA methylation arrays[END_REF]) and Mix-GLOSS succeed in removing irrelevant variables in all the situations. Fisher EM (Bouveyron and Brunet 2012a) and Mix-GLOSS discover the relevant ones. Mix-GLOSS consistently performs best or close to the best solution in terms of fall-out and recall.

Conclusions Summary

The linear regression of scaled indicator matrices or optimal scoring is a versatile technique with applicability in many fields of the machine learning domain. An optimal scoring regression, by means of regularization, can be strengthen to be more robust, avoid overfitting, counteract ill-posed problems or remove correlated or noisy variables.

In this thesis we have proved the utility of penalized optimal scoring in the fields of multi-class linear discrimination and clustering.

The equivalence between LDA and OS problems allows to take advantage of all the resources available on the resolution of regression to the solution of linear discrimination. In their penalized versions, this equivalence holds under certain conditions that have not always been obeyed when OS has been used to solve LDA problems.

In Part II, we have used a variational approach of group-Lasso penalty to preserve this equivalence, granting the use of penalized optimal scoring regressions for the solution of linear discrimination problems. This theory has been verified with the implementation of our Group Lasso Optimal Scoring Solver algorithm (GLOSS) that has proved its effectiveness inducing extremely parsimonious models without renouncing any predicting capabilities. GLOSS has been tested with four artificial and three real datasets outperforming other algorithms at the state of the art, in almost all situations.

In Part III, this theory has been adapted by means of an EM algorithm to the unsupervised domain. As for the supervised case, the theory must guarantee the equivalence between penalized LDA and penalized OS. The difficulty of this method resides in the computation of the criterion to maximize at every iteration of the EM loop, that is typically used to detect the convergence of the algorithm and to implement model selection of the penalty parameter. Also in this case, the theory has been put into practice with the implementation of Mix-GLOSS. By now, due to time constraints, only artificial datasets have been tested with positive results.

Perspectives

Even if the preliminary result are optimistic, Mix-GLOSS has not been sufficiently tested. We have planned to test it at least with the same real datasets that we used with GLOSS. However, more testing would be recommended in both cases. Those algorithms are well suited for genomic data where the number of samples is smaller than the number of variables, however, other high-dimensional low-sample setting (HDLSS) domains are also possible. Identification of male or female silhouettes, fungal species or fish species based on shape and texture [START_REF] Clemmensen | Sparse discriminant analysis[END_REF], Stirling faces [START_REF] Roth | Feature selection in clustering problems[END_REF], are only some examples. Moreover, we are not constrained to the HDLSS domain; the USPS handwritten digits database [START_REF] Roth | Feature selection in clustering problems[END_REF] or the well known Iris Fisher's dataset and six UCI's others (Bouveyron and Brunet 2012a) have also been tested in the bibliography.

At the programming level, both codes must be revisited to improve their robustness and optimize their computation because during the prototyping phase, the priority was achieving a functional code. An old version of GLOSS, numerically more stable but less efficient, has been made available to the public. A better suited and documented version should be made available for GLOSS and Mix-GLOSS in the short term.

The theory developed in this thesis and the programming structure used for its implementation allow easy alterations the the algorithm by modifying the within-class covariance matrix. Diagonal versions of the model can be obtained by discarding all the elements but the diagonal of the covariance matrix. Spherical models could also be implemented easily. Prior information concerning the correlation between features can be included by adding a quadratic penalty term, such as the Laplacian that describes the relationships between variables. That can be used to implement pair-wise penalties when the dataset is formed by pixels. Quadratic penalty matrices can be also be added to the within-class covariance to implement Elastic net equivalent penalties. Some of those possibilities have been partially implemented, as the diagonal version of GLOSS, however, they have not been properly tested or even updated with the last algorithmic modifications. Their equivalents for the unsupervised domain have not been yet proposed due to the time deadlines for the publication of this thesis.

From the point of view of the supporting theory, we didn't succeed finding the exact criterion that is maximized in Mix-GLOSS. We believe it must be a kind of penalized or even hyper-penalized likelihood, but we decided to prioritize the experimental results due to the time constraints. Ignorancing this criterion does not prevent from successful simulations of Mix-GLOSS. Other mechanisms have been used in the stopping of the EM algorithm and in model selection that do not involve the computation of the real criterion. However, further investigations must be done in this direction to assess the convergence properties of this algorithm.

At the beginning of this thesis, even if finally the work took the direction of feature selection, a big effort was done in the domain of outliers detection and block clustering. One of the most succsefull mechanism in the detection of outliers is done by modelling the population with a mixture model where the outliers should be described by an uniform distribution. This technique does not need any prior knowledge about the number or about the percentage of outliers. As the basis model of this thesis is a mixture of Gaussians, our impression is that it should not be difficult to introduce a new uniform component to gather together all those points that do not fit the Gaussian mixture. On the other hand, the application of penalized optimal scoring to block clustering looks more complex, but as block clustering is typically defined as a mixture model whose parameters are estimated by means of an EM, it could be possible to re-interpret that estimation using a penalized optimal scoring regression.

B. The Penalized-OS Problem is an Eigenvector Problem

In this appendix we answer the question why the solution of a penalized optimal scoring regression involves the computation of an eigenvector decomposition. The p-OS problem has this form min

L k (θ k , β k , λ k , ν k) = Yθ k -Xβ k 2 2 + β k Ω k β k + λ k (θ k Y Yθ k -1) + <k ν θ Y Yθ k . (B.2)
Making zero the gradient of (B.2) with respect to β k , gives the value of the optimal β k β k = (X X + Ω k) -1 X Yθ k .

(B.

3)

The objective function of (B.1) evaluated at β k is min

θ k Yθ k -Xβ k 2 2 + β k Ω k β k = min θ k θ k Y (I -X(X X + Ω k) -1 X)Yθ k = max θ k θ k Y X(X X + Ω k) -1 X)Yθ k . (B.4)
If the penalty matrix Ω k is identical for all problems Ω k = Ω, then (B.4) corresponds to an eigen-problem where the k score vectors θ k are then the eigenvectors of Y X(X X+ Ω) -1 X Y.

B.1. How to Solve the Eigenvector Decomposition

Making an eigen-decomposition of an expression like Y X(X X + Ω) -1 X Y is not trivial due to the p × p inverse. With some datasets, p can be extremely large making this inverse intractable. In this section we show how to circumvent this issue solving an easier eigenvector decomposition.

Let M be the matrix Y X(X X + Ω) -1 X Y such that we can rewrite expression (B.4) in a compact way If (B.5) is an eigenvector problem, it can be reformulated on the traditional way. Let the K -1 × K -1 matrix M Θ be Θ MΘ. Hence, the eigenvector classical formulation associated to (B.5) is

M Θ v = λv , (B.6)
where v is the eigenvector and λ the associated eigenvalue of M Θ . Operating:

v M Θ v = λ ⇔ v Θ MΘv = λ .
Making the variable change w = Θv, we obtain an alternative eigenproblem where w are the eigenvectors of M and λ the associated eigenvalue w Mw = λ . (B.7) Therefore, v are the eigenvectors of the eigen-decomposition of matrix M Θ and w are the eigenvectors of the eigen-decomposition of matrix M. Note that the only difference between the K -1 × K -1 matrix M Θ and the K × K matrix M is the K × K -1 matrix Θ in expression M Θ = Θ MΘ. Then, to avoid the computation of the p × p inverse (X X+Ω) -1 we can use the optimal value of the coefficient matrix B = (X X+ Ω) -1 X YΘ into M Θ M Θ = Θ Y X(X X + Ω) -1 X YΘ = Θ Y XB .

Thus, the eigen-decomposition of the (K -1) × (K -1) matrix M Θ = Θ Y XB , results in the v eigenvectors of (B.6). To obtain the w eigenvectors of the alternative formulation (B.7), the variable change w = Θv needs to be undone.

To summarize, we calcule the v eigenvectors computed as the eigen-decomposition of a tractable M Θ matrix evaluated as Θ Y XB. Then, the definitive eigenvectors w are recovered by doing w = Θv. The final step is the reconstruction of the optimal score matrix Θ using the vectors w as its columns. At this point, we understand what in the literature is called "updating the initial score matrix". Multiplying the initial Θ to the eigenvectors matrix V from decomposition (B.6) is reversing the change of variable to restore the w vectors. The B matrix also needs to be "updated" by multiplying B by the same matrix of eigenvectors V in order to affect the initial Θ matrix used in the first computation of B B = (X X + Ω) -1 X YΘV = BV .

B.2. Why the OS Problem is Solved as an Eigenvector Problem

In the Optimal Scoring literature, the score matrix Θ that optimizes Problem (B.1) is obtained by means of a eigenvector decomposition of matrix M = Y X(X X + Ω) -1 X Y.

By definition of eigen-decomposition, the eigenvectors of the M matrix (called w in (B.7)) form a base so that any score vector θ can be expressed as a linear combination of them

θ k = K-1 m=1 α m w m , s. t. θ k θ k = 1 . (B.8)
The score vectors orthogonality constraint θ k θ k = 1 can be expressed also as a function of this base As a summary, it can be concluded that the solution to the original problem (B.1) can be achieved by an eigenvector decomposition of matrix M = Y X(X X + Ω) -1 X Y.

C. Solving Fisher's Discriminant Problem

The classical Fisher's discriminant problem seeks a projection that better separates the class centers while every class remains compact. This is formalized as looking for a projection such that the projected data has maximal between-class variance under a unitary constraint on the within-class variance: A necessary optimality condition for β is that this derivative is zero, that is:

Σ B β = νΣ W β .
Provided Σ W is full rank, we have:

Σ -1 W Σ B β = νβ . (C.2)
Thus, the solutions β match the definition of an eigenvector of matrix Σ -1 W Σ B of eigenvalue ν. To characterize this eigenvalue, we note that the the objective function (C.1a) can be expressed as follows:

β Σ B β = β Σ W Σ -1 W Σ B β = νβ Σ W β from (C.2) = ν from (C.1b) .
That is, the optimal value of the objective function to be maximized is the eigenvalue ν. Hence, ν is the largest eigenvalue of Σ -1 W Σ B , and β is any eigenvector corresponding to this maximal eigenvalue.

D. Alternative Variational Formulation for the Group-Lasso

In this appendix, an alternative to the variational form of the group-Lasso (4.21) presented in Section 4.3.1 is proposed. Following the approach detailed in Section 4.3.1, its equivalence with the standard group-Lasso formulation is demonstrated here. Let B ∈ R p×K-1 be a matrix composed of row vectors β j ∈ R K-1 , B = β 1 , . . . , β p .

L(B, τ , λ, ν 0 , ν j) = J(B) + λ The starting point is the Lagrangian (D.2) that is differentiated with respect to τ j to get the optimal value τ j : ∂L(B, τ , λ, ν 0 , ν j) ∂τ j τ j =τ j = 0 ⇒ -λw 2 j β j 2 2 τ j 2 + ν 0 -ν j = 0 ⇒ -λw 2 j β j 2 2 + ν 0 τ j 2 -ν j τ j 2 = 0 ⇒ -λw 2 j β j 2 2 + ν 0 τ j 2 = 0

The last two expressions are related through one property of the Lagrange multipliers that states that ν j g j (τ) = 0 where ν j is the Lagrange multiplier and g j (τ) is the inequality Lagrange condition. Then, the optimal τ j can be deduced:

τ j = λ ν 0 w j β j 2 .
Placing this optimal value of τ j into constraint (D.1b): (D.3)

D.2. An Upper Bound on the Objective Function

This condition results in an equality for the "active" non-zero vectors β j , and an inequality for the other ones, which both provide essential building blocks of our algorithm. In particular, Lemma D.3 provides a well-defined appraisal of the support of the solution, which is not easily handled from the direct analysis of the variational problem (D.1). where we used the Cauchy-Schwarz inequality in the second line and the definition of the feasibility set of τ in the last one.

D.2. An Upper Bound on the Objective Function

E. Invariance of the Group-Lasso to Unitary Transformations

The computational trick described in Section 5.2 for quadratic penalties can be applied to group-Lasso provided that the following holds: if the regression coefficients B 0 are optimal for the score values Θ 0 , and if the optimal scores Θ are obtained by a unitary transformation of Θ 0 , say Θ = Θ 0 V (where V ∈ R M ×M is a unitary matrix), then B = B 0 V is optimal conditionally on Θ , that is, (Θ , B) is a global solution corresponding to the optimal scoring problem. To show this, we use the standard group-Lasso formulation and show the following proposition: where (E.4a) is obtained by multiplying both sides of Equation (E.3a) by V, and also uses that VV = I, so that, ∀u ∈ R M , u 2 = u V 2 . Equation (E.4b) is also obtained from the latter relationship. Conditions (E.4) are then recognized as the firstorder necessary conditions for B to be a solution to Problem (E.2). As the latter is convex, these conditions are sufficient, which concludes the proof.

F. Expected Complete Likelihood and Likelihood

Section 7.1.2 explains that with the maximization of the conditional expectation of the complete log-likelihood Q(θ, θ) (7.7) by means of the EM algorithm, log-likelihood (7.1) is also maximized. The value of the log-likelihood can be computed using its definition (7.1), but there is a shorter way to compute it from Q(θ, θ) when the latter is available.

L(θ) = n i=1 log K k=1 π k f k (x i ; θ k) (F.1) Q(θ, θ) = n i=1 K k=1 t ik (θ) log (π k f k (x i ; θ k)) (F.2) with t ik (θ) = π k f k (x i ; θ k) π f (x i ; θ) (F.3)
In the EM algorithm, θ is the model parameters at previous iteration, t ik (θ) are the posterior probability values computed from θ , at the previous E-Step. and θ without "prime" denotes the parameters of the current iteration to be obtained with the maximization of Q(θ, θ).

Using (F.3), we have

Q(θ, θ) = i,k t ik (θ) log (π k f k (x i ; θ k)) = i,k t ik (θ) log(t ik (θ)) + i,k t ik (θ) log π f (x i ; θ) = i,k
t ik (θ) log(t ik (θ)) + L(θ) .

In particular, after the evaluation of t ik in the E-step, where θ = θ , the log-likelihood can be computed using the value of Q(θ, θ) (7.7) and the entropy of the posterior probabilities:

L(θ) = Q(θ, θ) - i,k t ik (θ) log(t ik (θ)) = Q(θ, θ) + H(T) .

G. Derivation of the M-Step Equations

This appendix shows the whole process to obtain expressions (7.10), (7.11) and (7.12) in the context of a Gaussian mixture model with common covariance matrices. The criterion is defined as

Q(θ, θ) = max θ i,k t ik (θ) log(π k f k (x i , θ k)) = k log π k i t ik - np 2 log(2π) - n 2 log |Σ| - 1 2 i,k t ik (x i -µ k) Σ -1 (x i -µ k) ,
which has to be maximized, subject to

k π k = 1 .
The Lagrangian of this problem is

L(θ) = Q(θ, θ) + λ k π k -1 .
Partial derivatives of the Lagrangian are made zero to obtain the optimal values of π k , µ k and Σ.

G.1. Prior probabilities

∂L(θ) ∂π k = 0 ⇔ 1 π k i t ik + λ = 0 ,
where λ is identified from the constraint, leading to

π k = 1 n i t ik .

10. 1 .

 1 Experimental results for simulated data, unsupervised clustering 10.2. Average TPR versus FPR for all clustering simulations vii

4.

 Figure 1.1.: MASH project logo

Figure 2

 2 Figure 2.2.: The four key steps of feature selection according to[START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF]

Figure 2

 2 Figure 2.3.: Admissible sets in two dimensions for different pure norms ||β|| p

 Figure 2.5.: Admissible sets for the Lasso and Group-Lasso

Figure 2

 2 Figure 2.6.: Sparsity patterns for an example with 8 variables characterized by 4 parameters

 centroids μk from X LDA and Y 4. Evaluate the distance d(x, μk) in the LDA domain as a function of M and X LDA 5. Translate distances into posterior probabilities and affect every sample i to a class k following the maximum a posteriori rule 6. Graphical Representation

Figure 4

 4 Figure 4.1.: Graphical representation of the variational approach to Group-Lasso

 Lemma 4.2. If J is convex, Problem (4.21) is convex. Proof. The function g(β, τ) = β 2 2 /τ , known as the perspective function of f (β) = β 2 2 , is convex in (β, τ) (see e.g. Boyd and Vandenberghe 2004, Chapter 3), and the constraints (4.21b)-(4.21c) define convex admissible sets, hence Problem (4.21) is jointly convex with respect to (B, τ).

Figure 6

 6 Figure 6.1.: TPR versus FPR (in %) for all algorithms and simulations

Figure 6

 6 Figure 6.2.: 2D-representations of Nakayama and Sun datasets based on the two first discriminant vectors provided by GLOSS and SLDA. The big squares represent class means

 Figure 6.4.: Discriminant direction between digits "1" and "0"

Figure 9

 9 Figure 9.1.: Mix-GLOSS Loops Scheme

 Figure 9.2.: Mix-GLOSS model selection diagram

Figure 10

 10 Figure 10.1.: Class mean vectors for each artificial simulation

 θ k ,β k Yθ k -Xβ k 2 2 + β k Ω k β k (B.1) s.t. θ k Y Yθ k = 1 θ Y Yθ k = 0 , ∀ < k ,for k = 1, . . . , K -1.The Lagrangian associated to Problem (B.1) is

 . Θ Y YΘ = I K-1 .

 m = 1 , that as per the eigenvector properties can be reduced to multiplied by a score vector θ k that can be replaced by its linear combination of eigenvectors w m (B.8) Mw m .As w m are the eigenvectors of the M matrix, the relationship Mw m = λ m w m can be used to obtainMθ k = K-1 m=1 α m λ m w m .Multiplying right side by θ k and left side by its corresponding linear combination of eigenvectorsθ k Mθ k = m w m .This equation can be simplified using the orthogonality property of eigenvectors according to which w w m is zero for any = m, givingθ k Mθ k =One way of maximizing Problem (B.10) is choosing α m = 1 for m = k and α m = 0 otherwise. Hence, as θ k = K-1 m=1 α m w m , the resulting score vector θ k will be equal to the kth eigenvector w k .

 β Σ W β = 1 , (C.1b)where Σ B and Σ W are respectively the between-class variance and the within-class variance of the original p-dimensional data.The Lagrangian of Problem (C.1) isL(β, ν) = β Σ B β -ν(β Σ W β -1) ,so that its first derivative with respect to β is∂L(β, ν) ∂β = 2Σ B β -2νΣ W β .

 τ j ≥ 0 , j = 1, . . . , p .(D.1c)

 Lemma D.3. Problem (D.4) admits at least one solution, which is unique if J(B) is strictly convex. All critical points B of the objective function verifying the following conditions are global minima. Let S(B) denote the columnwise support of B, S(B) = {j ∈ {1, . . . , K -1} : β j 2 = 0}, and let S(B) be its complement then, we have:

Lemma D. 4 .

 4 The objective function of the variational form (D.1) is an upper bound on the group-Lasso objective function (D.4) and for a given B, the gap in these objectives is null at τ , such thatτ j = w j β j 2 p j=1 w j β j 2Proof. The objective functions of (4.21) and (4.24) only differ in their second term. Let τ ∈ R p be any feasible vector, we have:

≤

 Proposition E.1. Let B be a solution of min and let Ỹ = YV, where V ∈ R M ×M is a unitary matrix. Then, B = BV is a solution of min The first-order necessary optimality conditions for B are:∀j ∈ S(B) , 2x j x j βj -Y + λw j βj -λw j , (E.3b)where S(B) ⊆ {1, . . . , p} denotes the set of non-zero row vectors of B and S(B) is its complement.First, we note that, from the definition of B, we have S(B) = S(B). Then, we may rewrite the above conditions as follows: ∀j ∈ S(B) , 2x j x j βj -Ỹ + λw j βj -

 the set of natural numbers, N = {1, 2, . . . }

	Notation and Symbols
		Probability
		E [•]		expectation of a random variable
		var [•]		variance of a random variable
		N (µ, σ 2)	normal distribution with mean µ and variance σ 2
		W(W, ν)	Wishart distribution with ν degrees of freedom and W scale
				matrix
		H (X)		entropy of random variable X
		I (X; Y)	mutual information between random variables X and Y
	R		the set of reals
	|A| Ā	cardinality of a set A (for finite sets, the number of elements) Mixture Models complement of set A y ik hard membership of sample i to cluster k
	Data f k		distribution function for cluster k
	X	t ik	input domain posterior probability of sample i to belong to cluster k
	x G k	T π k	set of the indices of observations belonging to class k posterior probability matrix
	n		number of examples
	K		number of classes
	p		dimension of X
	i, j, k		indices, running over N
	Vectors, Matrices and Norms
	0		vector with all entries equal to zero
	1		vector with all entries equal to one
	I		identity matrix
	A		transposed of matrix A (ditto for vector)
	A -1		inverse of matrix A
	tr(A)		trace of matrix A
	|A|		determinant of matrix A
	diag(v)		diagonal matrix with v on the diagonal
	v 1		L 1 norm of vector v
	v 2		L 2 norm of vector v
	A F		Frobenius norm of matrix A
				ix

i input sample x i ∈ X X design matrix X = (x 1 , . . . , x n) x j column j of X y i class indicator of sample i Y

indicator matrix Y = (y 1 , . . . , y n) z complete data z = (x, y)

Table 6 .

 6 1.: Experimental results for simulated data: averages, with standard deviations, computed over 25 repetitions, of the test error rate, the number of selected variables and the number of discriminant directions selected on the validation set.

	Err. (%)	# Var.	# Dir.
	Sim. 1: K = 4, mean shift, ind. features

Table 6

 6

	.2.: Average TPR and FPR (in %) computed over 25 repetitions
		Simulation1 Simulation2 Simulation3 Simulation4
		TPR FPR TPR FPR TPR FPR TPR FPR
	PLDA	99.0 78.2 96.9 60.3 98.0 15.9 74.3 65.6
	SLDA	73.9 38.5 33.8 16.3 41.6 27.8 50.7 39.5
	GLOSS	64.1 10.6 30.0	4.6	51.1 18.2 26.0 12.1
	GLOSS			

Table 6 .

 6 3.: Experimental results for gene expression data: averages over 10 training/test sets splits, with standard deviations, of the test error rates and the number of selected variables ,063 gene expressions for categorizing 14 classes of cancer. Finally, the Sun 4 dataset contains 180 examples of 54,613 gene expressions for categorizing 4 classes of tumors.Each dataset was split into a training set and a test set with respectively 75% and 25% of the examples. Parameter tuning is performed by 10-fold cross-validation and the test performances are then evaluated. The process is repeated 10 times, with random choices of training and test set split.

		Err. (%)	# Var.
	Nakayama: n = 86, p = 22, 283, K = 5
	PLDA	20.95 (1.3)	10,478.7 (2,116.3)
	SLDA	25.71 (1.7)	252.5 (3.1)
	GLOSS 20.48 (1.4)	129.0 (18.6)
	Ramaswamy: n = 198, p = 16, 063, K = 14
	PLDA	38.36 (6.0)	14,873.5 (720.3)
	SLDA	-	-
	GLOSS 20.61 (6.9)	372.4 (122.1)
	Sun: n = 180, p = 54, 613, K = 4
	PLDA	33.78 (5.9)	21,634.8 (7,443.2)
	SLDA	36.22 (6.5)	384.4 (16.5)
	GLOSS 31.77 (4.5)	93.0 (93.6)
	ples of 16		

Table 10

 10

	.1.: Experimental results for simulated data
			Err. (%)	# Var.	Time
	Sim. 1: K = 4, mean shift, ind. features
	CS general cov		4.6% (1.5)	98.5 (7.2)	88.4h
	Fisher EM		5.8% (8.7)	78.4 (5.2) 16.45m
	Clustvarsel		60.2% (10.7) 37.8 (29.1) 38.3h
	LumiWCluster-Kuan	4.2% (6.8)	77.9 (4)	38.9s
	LumiWCluster-Wang	4.3% (6.9)	78.4 (3.9)	61.9s
	Mix-GLOSS		3.2% (1.6)	80 (0.9)	1.5h
	Sim. 2: K = 2, mean shift, dependent features
	CS general cov		15.4% (2)	99.7 (0.9)	78.3h
	Fisher EM		7.4% (2.3)	80.9 (2.8)	8m
	Clustvarsel		7.3% (2)	33.4 (20.7) 16.6h
	LumiWCluster-Kuan	6.4% (1.8)	79.8 (0.4)	15.5s
	LumiWCluster-Wang	6.3% (1.7)	79.9 (0.3)	14s
	Mix-GLOSS		7.7% (2)	84.1 (3.4)	2h
	Sim. 3: K = 4, 1D mean shift, ind. features
	CS general cov		30.4% (5.7)	55 (46.8)	131.7h
	Fisher EM		23.3% (6.5)	36.6 (5.5)	22m
	Clustvarsel		65.8% (11.5) 23.2 (29.1) 54.2h
	LumiWCluster-Kuan 32.3% (2.1)	80 (0.2)	83s
	LumiWCluster-Wang 30.8% (3.6)	80 (0.2)	129.2s
	Mix-GLOSS		34.7% (9.2)	81 (8.8)	2.1h
	Sim. 4: K = 4, mean shift, ind. features
	CS general cov		62.6% (5.5)	99.9 (0.2)	112h
	Fisher EM		56.7% (10.4)	55 (4.8)	19.5m
	Clustvarsel		73.2% (4)	2.4 (12)	76.7h
	LumiWCluster-Kuan 69.2% (11.2)	99 (2)	87.6s
	LumiWCluster-Wang 69.7% (11.9) 99.1 (2.1)	82.5s
	Mix-GLOSS		66.9% (9.1)	97.5(1.2)	1.1h
	Table 10.2.: TPR versus FPR (in %): average computed over 25 repetitions for the best
	performing algorithms			
	Simulation1 Simulation2 Simulation3 Simulation4
	TPR FPR TPR FPR TPR FPR TPR FPR
	MIX-GLOSS 99.2 0.15 82.8 3.35 88.4	6.7	78.0	1.2
	LUMI-KUAN 99.2	2.8 100.0 0.2 100.0 0.05	5.0	0.05
	FISHER-EM 98.6	2.4	88.8	1.7	83.8 58.25 62.0 40.75
	96				

results in difficulties during optimization that will not happen with a convex shape.

The awkward notation α

for the eigenvalue was chosen here to ease comparison with[START_REF] Hastie | Penalized discriminant analysis[END_REF]. It is easy to check that this eigenvalue is indeed non-negative (see Equation (4.5) for example).

The GLOSS matlab code can be found in the software section of www.hds.utc.fr/ ~grandval

http://www.broadinstitute.org/cancer/software/genepattern/datasets/

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2736

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1962

Acknowledgements

Simulated Data

We first compare the three techniques in the simulation study of [START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF], which considers four setups with 1200 examples equally distributed between classes. They are split in a training set of size n = 100, a validation set of size 100, and a test set of size 1000. We are in the small sample regime, with p = 500 variables, out of which 100 differ between classes. Independent variables are generated for all simulations except for Simulation 2 where they are slightly correlated. In Simulations 2 and 3, classes are optimally separated by a single projection of the original variables, while the two other scenarios require three discriminant directions. The Bayes' error was estimated to be respectively 1.7%, 6.7%, 7.3% and 30.0%. The exact definition of every setup, as provided in [START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF], is Simulation1. Mean shift with independent features. There are four classes. If sample i is in class k, then x i ∼ N (µ k , I), where µ 1j = 0.7 × 1 (1≤j≤25) , µ 2j = 0.7 × 1 (26≤j≤50) , µ 3j = 0.7 × 1 (51≤j≤75) , µ 4j = 0.7 × 1 (76≤j≤100) .

Simulation2. Mean shift with dependent features. There are two classes. If sample i is in class 1, then x i ∼ N (0, Σ), and if i is in class 2, then x i ∼ N (µ, Σ) with µ j = 0.6 × 1 (j≤200) . The covariance structure is block diagonal, with 5 blocks each of dimension 100 × 100. The blocks have (j, j) element 0.6 |j-j | . This covariance structure is intended to mimic gene expression data correlation.

Simulation3. One-dimensional mean shift with independent features. There are four classes, and the features are independent. If sample i is in class k, then X ij ∼ N (k-1 3 , 1) if j ≤ 100, and X ij ∼ N (0, 1) otherwise.

Simulation4. Mean shift with independent features and no linear ordering. There are four classes. If sample i is in class k, then x i ∼ N (µ k , I). With mean vectors defined as follows: µ 1j ∼ N (0, 0.3 2) for j ≤ 25 and µ 1j = 0 otherwise, µ 2j ∼ N (0, 0.3 2) for 26 ≤ j ≤ 50 and µ 2j = 0 otherwise, µ 3j ∼ N (0, 0.3 2) for 51 ≤ j ≤ 75 and µ 3j = 0 otherwise, µ 4j ∼ N (0, 0.3 2) for 76 ≤ j ≤ 100 and µ 4j = 0 otherwise. Note that this protocol is detrimental to GLOSS as each relevant variable only affects a single class mean out of K. The setup is favorable to PLDA in the sense that most within-class covariance matrix are diagonal. We thus also tested the diagonal GLOSS variant discussed in Section 5.6.3.

The results are summarized in Table 6.1. Overall, the best predictions are performed by PLDA and GLOS-D that both benefit of the knowledge of the true within-class covariance structure. Then, among SLDA and GLOSS that both ignore this structure, our proposal has a clear edge. The error rates are far away from the Bayes' error rates, but the sample size is small with regard to the number of relevant variables. Regarding sparsity, the clear overall winner is GLOSS, followed far away by SLDA, which is the only triangular matrix resulting from the Cholesky decomposition of Σ W ; Σ W and Σ B are the p × p within-class and between-class covariance matrices in the observations space; A ∈ R p×K-1 and B ∈ R p×K-1 are the solutions of the optimization problem such that B = [β 1 , . . . , β K-1] is the best sparse approximation of U.

The last possibility suggests the solution of the Fisher's discriminant (7.14) as the solution of the following constrained optimization problem min

whereΣ Bj is the jth column of the between covariance matrix in the observations space. This problem can be solved by a penalized version of the singular value decomposition proposed by [START_REF] Witten | A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis[END_REF], resulting in a sparse approximation of U.

To comply with the constraint stating that the columns of U are orthogonal, the first and the second options must be followed by a singular vector decomposition of U to get orthogonality. This is not necessary with the third option since the penalized version of SVD already guarantees orthogonality.

However, there is a lack of guarantees regarding convergence. Bouveyron states: "the update of the orientation matrix U in the F-step is done by maximizing the Fisher criterion and not by directly maximizing the expected complete log-likelihood as required in the EM algorithm theory. From this point of view, the convergence of the Fisher-EM algorithm cannot therefore be guaranteed". Immediately, after this paragraph, we can read that under certain suppositions, their algorithms converge: "the model [...] which assumes the equality and the diagonality of covariance matrices, the F-step of the Fisher-EM algorithm satisfies the convergence conditions of the EM algorithm theory and the convergence of the Fisher-EM algorithm can be guaranteed in this case. For the other discriminant latent mixture models, although the convergence of the Fisher-EM procedure cannot be guaranteed, our practical experience has shown that the Fisher-EM algorithm rarely fails to converge with these models if correctly initialized".

Based on Model Selection

Some clustering algorithms recast the feature selection problem as model selection problem. According to this, [START_REF] Raftery | Variable selection for model-based clustering[END_REF] model the observations as a mixture model of Gaussians distributions. To discover a subset of relevant features (and its superfluous complementary), they define three subsets of variables:

• X (1) : set of selected relevant variables • X (2) : set of variables being considered for inclusion or exclusion of X (1)

Details of these calculations can be found in textbooks (for example [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF][START_REF] Gelman | Bayesian Data Analysis[END_REF].

Maximum a Posteriori Estimator

The maximization of (8.2) with respect to µ k and π k is of course not affected by the additional prior term where only the covariance Σ intervenes. The MAP estimator for Σ is simply obtained by deriving (8.2) with respect to Σ. The details of the calculations follow the same lines as the ones for maximum likelihood detailed in Appendix G. The resulting estimator for Σ is

where S 0 is the matrix defined in Equation (8.2). The maximum a posteriori estimator of the within-class covariance matrix (8.3) can thus be identified to the penalized withinclass variance (4.19) resulting from the p-OS regression (4.16a) if ν 0 is chosen to be p + 1 and setting Λ -1 0 = λΩ, where Ω is the penalty matrix from the group-Lasso regularization (4.25).

π k , µ k and Σ as per (7.10),(7.11) and (7.12) E-step: t ik as per (8.1) L(θ) as per (8.2)

M-Step

The M-step deals with the estimation of the model parameters, that is, the cluster's means µ k , the common covariance matrix Σ, and the priors of every component π k . In a classical M-step, this is done explicitly by maximizing the likelihood expression. Here, this maximization is implicitly performed by penalized optimal scoring (see Section 8.1). The core of this step is a GLOSS execution that regress X on the scaled version of the label matrix ΘY. For the first iteration of EM, if no initialization is available, Y results from a K-means execution. In subsequent iterations, Y is updated as the posterior probability matrix T resulting from the E-step.

E-Step

The E-step evaluates the posterior probability matrix T using

The convergence of those t ik is used as stopping criterion for EM.

Model Selection

Here, model selection refers to the choice of the penalty parameter. Up to now, we have not conducted experiments where the number of clusters has to be automatically selected.

In a first attempt, we tried a classical structure where clustering was performed several times from different initializations for all penalty parameter values. Then, using the loglikelihood criterion, the best repetition for every value of the penalty parameter was chosen. The definitive λ was selected by means of the stability criterion described by [START_REF] Lange | Stability-based model selection[END_REF]. This algorithm took lots of computing resources since the stability selection mechanism required a certain number of repetitions that transformed Mix-GLOSS in a lengthy four nested loops structure.

In a second attempt, we replaced the stability based model selection algorithm by the evaluation of a modified version of BIC [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF]. This version of BIC looks like the traditional one [START_REF] Schwarz | Estimating the dimension of a model[END_REF]) but takes into consideration the variables that have been removed. This mechanism, even if it turned out to be faster, required also large computation time.

The third and definitive attempt (up to now) proceeds with several executions of Mix-GLOSS for the non-penalized case (λ = 0). The execution with best log-likelihood is chosen. The repetitions are only performed for the non-penalized problem. The coefficient matrix B and the posterior matrix T resulting from the best non-penalized execution are used to warm-start a new Mix-GLOSS execution. This second execution of Mix-GLOSS is done using the values of the penalty parameter provided by the user or computed by the automatic selection mechanism. This time, only one repetition of the algorithm is done for every value of the penalty parameter. This version has been tested

Experimental Results

The performance of Mix-GLOSS is measured here with the artificial dataset that has been used in Section 6.

This synthetic database is interesting because it covers four different situations where feature selection can be applied. Basically, it considers four setups with 1200 examples equally distributed between classes. It is an small sample regime, with p = 500 variables, out of which 100 differ between classes. Independent variables are generated for all simulations except for simulation 2 where they are slightly correlated. In simulation 2 and 3, classes are optimally separated by a single projection of the original variables, while the two other scenarios require three discriminant directions. The Bayes' error was estimated to be respectively 1.7%, 6.7%, 7.3% and 30.0%. The exact description of every setup has already been done in Section 6.3.

In our tests, we have reduced the volume of the problem because with the original size of 1200 samples and 500 dimensions, some of the algorithms to test took several days (even weeks) to finish. Hence, the definitive database was chosen to maintain approximately the Bayes' error of the original one but with five time less examples and dimensions (n = 240, p = 100). The Figure 10.1 has been adapted from [START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF] to the dimensionality of ours experiments and allows a better understanding of the different simulations.

The simulation protocol involves 25 repetitions of each setup generating a different dataset for each repetition. Thus, the results of the tested algorithms are provided as the average value and the standard deviation of the 25 repetitions.

Tested Clustering Algorithms

This section compares Mix-GLOSS with the following methods in the state of the art.

• CS general cov. This is a model-based clustering with unconstrained covariance matrices based on the regularization of the likelihood function using L 1 penalties followed of a classical EM algorithm. Further details can be found in [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF]. We use the R function available in the website of Wei Pan.

• Fisher EM. This method models and clusters the data in a discriminative and low-dimensional latent subspace (Bouveyron and Brunet 2012b;a). Feature selection is induced by means of the "sparsification" of the projection matrix (three possibilities are suggested by Bouveyron and Brunet 2012a). The corresponding R package "Fisher EM" is available from the web site of Charles Bouveyron or from the Comprehensive R Archive Network website.

Appendix

103

A. Matrix Properties

Property 1: By definition, ΣW and ΣB are both symmetric matrices:

With this value of τ j , Problem (D.1) is equivalent to:

This problem is a slight alteration of the standard group-Lasso, as the penalty is squared compared to the usual form. This square only affects the strength of the penalty, and the usual properties of the group-Lasso apply to the solution of problem D.4). In particular, its solution is expected to be sparse, with some null vectors β j . The penalty term of (D.1a) can be conveniently presented as λB ΩB where:

Using the value of τ j from (D.3), each diagonal component of Ω is:

(

In the following paragraphs, the optimality conditions and properties developed for the quadratic variational approach detailed in Section 4.3.1 are also computed here for this alternative formulation. In what follows, J will be a convex quadratic (hence smooth) function, in which case a necessary and sufficient optimality condition is that zero belongs to the subdifferential of the objective function whose expression is provided in the following lemma.

D.1. Useful Properties

Lemma D.2. For all B ∈ R p×K-1 , the subdifferential of the objective function of Problem (D.4) is

where G = (g 1 , . . . , g K-1) is a p × K -1 matrix defined as follows: Let S(B) denote the columnwise support of B, S(B) = {j ∈ {1, . . . , K -1} : β j 2 = 0}, then, we have: ∀j ∈ S(B) , g j = w j β j -1 2 β j , (D.8) ∀j ∈ S(B) , g j 2 ≤ w j . (D.9)

G.2. Means

as per property 5

= 0