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Zusammenfassung
Diese Dissertation befasst sich mit geometrischen und morphologischen Aspekten

bei Benetzungsproblemen und bei Packungsproblemen harter Kugeln. In den ersten
Kapiteln wird der Einfluss geometrischer Nanorauhigkeit auf den Benetzungswinkel
untersucht. In den letzten Kapiteln werden geometrsische Effekte bei amorphen Sys-
temen diskutiert.

Superhydrophobizität, d.h. sehr große Benetzungswinkel, sind von besonderem In-
teresse bei der Entwicklung von micro- und nanofluidischen Anwendungen, um
Durchflussraten zu erhöhen und den Durchflusswiderstand zu reduzieren. Hierfür
werden typischerweise zwei Einflussgrößen optimiert. Einerseits kann die Oberfläche
geometrisch strukturiert werden, andererseits wird über die Auswahl der chemischen
Paarung von Flüssigkeit und Substrat der Benetzungswinkel beeinflusst. Simulatio-
nen von Oberflächen mit Nanostrukturen gepaart mit makroskopischen Tropfen ist
im Allgemeinen eine besondere Herausforderung, da die Längenskalen von Tropfen
und Rauhigkeit sehr verschieden sind. Im ersten Teil wird daher eine sogenannte
Phasen-Feld-Simulations-Methode spezifiziert und getestet, die speziell diesen Län-
genskalenunterschied mit einbezieht und Phasenübergänge in in der Nähe der rauhen
Oberfläche berücksichtigt.

Mit dieser Methode werden statische, wie z.B. Benetzungswinkel, und dynami-
sche Eigenschaften, wie z.B. Reibung, untersucht. Im Widerspruch zu der klassischen
Cassie-Baxter-Wenzel Theorie, zeigen diese Simulationen, dass auch auf einfach struk-
turierten Oberflächen, d.h. Oberflächenstrukturen ohne Überhänge, Omniphobizität
erreicht werden kann. D.h. weitgehend unabhängig von der chemischen Paarung bil-
den alle Tropfen entnetzende Kontaktwinkel aus. Es wird gezeigt, dass linienförmige
Spannungsanteile an nadel- und klingenförmigen Oberflächenstrukturen zur Omni-
phobizität führen. Dynamische Simulationen erlauben das Verständnis von metasta-
bilen Benetzungszuständen und Durchflussoptimierung. Insbesondere Lufteinschüs-
se, die durch Nanostrukturierung erzeugt werden, vermindern den Reibwiderstand
enorm. In kürzlich durchgeführten Experimenten wurde Omniphobizität auf nano-
metrisch geätzten amorphen Siliziumoberflächen gefunden. Die durchgeführten Si-
mulationen dienen dem Verständnis solcher Experimente.

Geometrische Effekte sind von großer Bedeutung beim Verständnis von glasartigen
und jamming Systemen, z.B. bei amorphen Packungen von harten Kugeln im Limes
hoher Drücke. Ein solches System wird arretiert beim sogenannten jamming. In die-
ser Arbeit wird gezeigt, dass die lokale Struktur in solchen Systemen universal ist,



d.h. unabhängig vom Verfahren zur Erzeugung der amorphen Packung. Hierfür wer-
den robuste Ordnungsparameter benötigt - sogenannte Minkowski-Tensoren. Es wird
gezeigt, dass diese Methoden die Probleme (Mangel an Robustheit) von Standardord-
nungsparametern beheben. Dies führt letztendlich zu einem verallgemeinerten Bild
von lokalen Ordnungsparametern, die auf geometrisch basierten Prinzipien beruhen.
Desweiteren wird mit dieser Methode gezeigt, dass Kristallisierung bei Packungsdich-
ten jenseits von der sogenannten RCP-Packungsdichte (random close packing) eintritt.



Résumé
Cette thèse porte sur différents aspects géométriques et morphologiques concer-

nant des problèmes de mouillage et d’empilement de sphères. Les premiers chapitres
traitent du lien entre la rugosité nanométrique d’un substrat et l’angle de contact du
liquide placé au dessus, les derniers chapitres abordent les effets géométriques dans
les systèmes amorphes.

La superhydrophobicité (angles de contact très élevés) est une propriété très im-
portante en micro ou nanofluidique car elle permet de réduire considérablement la
friction d’un liquide sur une paroi, et d’augmenter ainsi le débit dans le système.
Cette propriété est obtenue de manière classique en combinant traitements chimiques
et structuration géométrique de la surface. La simulation numérique d’une goutte ma-
croscopique placée sur une surface texturée à l’échelle nanométrique est une tache
notoirement difficile a cause de l’énorme différence dans les échelles de longueur. La
première partie est ainsi dédiée à l’élaboration et au test d’une nouvelle méthode de
simulation : un modèle de champ de phase en lien avec la théorie de la fonctionnelle
de la densité dynamique. Cette méthode permet d’étudier les transitions de phases au
voisinage d’un substrat rugueux, et d’évaluer les angles de contact d’une goutte infi-
niment grande. Nous étudions les propriétés statiques (mouillage) mais aussi dyna-
miques (friction). Contrairement à la théorie macroscopique de Cassie-Baxter-Wenzel,
nous montrons qu’une surface monovaluée, i.e. sans constrictions, peut produire un
comportement omniphobe c’est à dire repousser tous les liquides. Nous avons étudié
de manière systématique l’influence des paramètres géométriques de la surface sur
l’omniphobicité et nous montrons que cet effet est contrôlé par les énergies de pointes.
Des études dynamiques sont conduites pour évaluer les effets de métastabilité et pour
mesurer le glissement introduit par ces structures en pointes, qui peuvent soutenir le
liquide en laissant un coussin d’air entre le liquide et la surface, même si la surface
est mouillante. Des expériences récentes on montré l’existence de ce type de surfaces
fabriquées à partir de silicium amorphe gravé.

La géométrie a également un effet considérable dans les milieux vitreux ou blo-
qués, comme les empilements de sphères dures dans la limite de pression infinie. Ces
empilements de sphères conduisent à des état bloqués ("jamming") et nous montrons
que la structure locale de ces systèmes est universelle, c’est à dire indépendante de
la méthode de préparation. Pour cela, nous introduisons des paramètres d’ordre - les
tenseurs de Minkowski - qui suppriment les problèmes de robustesse qu’ont les para-
mètres d’ordre utilisés classiquement. Ces nouveaux paramètres d’ordre conduisent à
une vision unifiée, basée sur des principes géométriques. Enfin, nous montrons grâce



aux tenseurs de Minkowski que les empilements de sphères se mettent à cristalliser
au delà du point d’empilement aléatoire le plus dense ("random close packing").





Contents

1. Introduction 11

1.1. Wetting, omniphobicity and simulation methods . . . . . . . . . . . . . . 12
1.2. Jamming, local geometry, order and disorder characterization . . . . . . 14

2. Phase-field models, DFT and dynamical DFT 17

2.1. Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2. Phase-field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3. Dynamical density functional theory . . . . . . . . . . . . . . . . . . . . . 25
2.4. PF/DDFT model for nanofluidics . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1. Thermodynamic properties . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2. Dynamics of the density profile . . . . . . . . . . . . . . . . . . . 31
2.4.3. Hydrodynamic transport equation . . . . . . . . . . . . . . . . . . 33
2.4.4. The numerical implementation . . . . . . . . . . . . . . . . . . . . 37
2.4.5. Comparison with lattice Boltzmann . . . . . . . . . . . . . . . . . 48
2.4.6. Comparison with molecular dynamics . . . . . . . . . . . . . . . 49
2.4.7. Discussion (limits, interfaces, wall-interaction) . . . . . . . . . . . 49

3. Nanowetting and omniphobicity 51

3.1. Classical wetting theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.1. Wenzel theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2. Cassie-Baxter theory . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3. Multivalued surfaces and omniphobicity . . . . . . . . . . . . . . 54
3.1.4. Metastability of the Cassie-Baxter state and superhydrophobicity 55

3.2. Experimental findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1. Superhydrophobicity . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2. Multivalued omniphobicity . . . . . . . . . . . . . . . . . . . . . . 61
3.2.3. Monovalued omniphobicity . . . . . . . . . . . . . . . . . . . . . . 61

3.3. Simulations in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4. PF simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1. Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5. Metastabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7



3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. Slip on nanorough substrates 81

4.1. Experiments and simulations . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.1. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.2. PF simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2. Apparent slip vs. intrinsic slip . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3. Capillary rise: Lucas-Washburn-law . . . . . . . . . . . . . . . . . . . . . 92

4.3.1. PF model test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4. Contact angle hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1. PF simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5. Minkowski functionals and Minkowski tensors 103

5.1. Minkowski functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.1. Integral geometry of Minkowski tensors . . . . . . . . . . . . . . 105
5.1.2. Computation of Minkowski functionals . . . . . . . . . . . . . . . 108

5.2. Minkowski tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.1. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.2. Invariants and shape descriptors . . . . . . . . . . . . . . . . . . . 114

5.3. Spinodal decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.1. Introduction to spinodal decomposition . . . . . . . . . . . . . . . 118
5.3.2. Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6. Local structure analysis and anisotropy in particulate matter 133

6.1. βr,s
ν as local order parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2. Alternative commonly used local order parameters . . . . . . . . . . . . 141
6.3. Jamming in athermal dissipative HS systems . . . . . . . . . . . . . . . 152

6.3.1. Anisotropy of jammed bead packs . . . . . . . . . . . . . . . . . . 154
6.3.2. Random ellipsoid packings . . . . . . . . . . . . . . . . . . . . . . 160
6.3.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4. Crystallization onset at RCP . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4.1. Crystallization identification with Minkowski tensors . . . . . . 165
6.4.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7. Spherical normal Minkowski tensors and bond order parameters 177

7.1. Irreducible tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2. Cartesian irreducible tensors . . . . . . . . . . . . . . . . . . . . . . . . . 179



7.3. Spherical Minkowski tensors . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4. Spherical Minkowski tensors and normal orientation order parameters (NOO)185
7.5. NOO of triply periodic minimal surfaces . . . . . . . . . . . . . . . . . . 187
7.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8. Summary 193

8.1. Nanowetting, nanoslip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2. Jamming, RCP, defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A. Details on the Parameters of the PF Model 199

B. Experiments and simulations of particulate matter 203

B.1. Monte-Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.2. Molecular dynamics simulations . . . . . . . . . . . . . . . . . . . . . . . 203
B.3. Supercooled liquids-MD simulations . . . . . . . . . . . . . . . . . . . . . 204
B.4. Lubachevsky-Stillinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
B.5. Monte-Carlo simulations of nearly jammed . . . . . . . . . . . . . . . . 205
B.6. DEM-simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.7. Dry acrylic experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
B.8. Fluidized bed experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

C. Minkowski tensors 209

C.1. MT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
C.2. Clebsch-Gordan transformation matrices for W0,r

1 . . . . . . . . . . . . . 212
C.3. Normal vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9





1. Introduction

This thesis deals with geometrical aspects in several domains of soft matter physics.
In the last decades, many experimental techniques and industrial processes appeared
to control surface structures on smaller and smaller scales, with a broad range of
interesting technological applications. From this, microfluidics emerged to a leading
interdisciplinary domain, bridging from physics over chemistry to engineering. The
smaller the structures become the more dominant are the surface properties, yielding
to new challenges when going beyond microsized devices to nanometric scales. New
subtleties breeze in, trying to apply macro- and mesoscopic rules on microscales. To
work out mainly geometrical effects from the complex interplay between fluids and
nanopatterned substrate we shall employ statistical mechanics tools in the first part
of this work. Systematical investigations of the geometry impact onto important fluid
dynamics quantities are performed, like contact angles, slip properties which allow
for flow enhancement and contact angle hysteresis. We shall show, how well-known
strategies to gain superhydrophobicity, i.e. strong water repellency, can be advanced
to yield omniphobicity or even superomniphobicity; this means liquid repellency, no
matter its chemistry. In the second part we go the other way round and shall see
how geometrical subtleties appears coming from microscale to macroscale. As new
experimental techniques become available, more detailed information on the nature
of the fluid state can be accessed. While in former years the local fluid structure was
only known from computer simulations, new scattering experiments reveal the local
ordering of fluids and confocal microscopy allows for individual particle tracking in
colloidal systems. Computed tomography provides structural data of even millimeter
sized particles, which got stuck in so-called jammed states. We shall exploit and refine
novel geometrical methods in order to get robust measures which allow for detailed
structure description of fluids, glasses and amorphous materials on all length scales.
Purely geometrical effects cause for example crystallization in particulate ensembles
beyond a certain packing fraction.
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1. Introduction

1.1. Wetting, omniphobicity and simulation methods

In nano- and microfluidic devices it is favorable to lower the friction for liquid trans-
port as much as possible. In particular the liquid–solid interface friction at the bound-
aries of the capillaries strongly contributes to the dissipation, due to the large surface
contact area per volume. It was recognized long time ago that high contact angles
mostly support efficient transport [77]. In nature the lotus effect, i.e. superhydropho-
bic behavior, was found in 1977 and studied by biologists [25, 26, 226]. Nowadays,
hundreds of examples in flora and fauna are known [226, 98], where extremely high
contact angles and low contact angle hysteresis appear, e.g. to yield self-cleaning sur-
faces [245]. For two decades now, nature is mimicked in microfluidic devices [38].
Superhydrophobicity arise from a combination of microstructured surface topogra-
phies with water repellent materials. Spreading water on a rough surface with pillars
or ridges may result in a penetrated homogeneous wetting state, where liquid en-
ters the grooves or a heterogeneous fakir state with air-pockets suspending the liquid
above. The former is referred to as Wenzel state [311], the latter as Cassie-Baxter state
[58] (see fig. 1.1). On micronic scales this behavior is very well described with the
Wenzel and Cassie-Baxter laws. According to this theory hydrophobic materials are
needed to obtain superhydrophobic states due to the roughness induced amplifica-
tion of hydrophobicity. Indeed, the air-supported wetting configuration is realized on
superhydrophobic substrates, like the lotus leaf.

Figure 1.1. Wenzel- and Cassie-Baxter wetting

In recent years, many experiments showed that even omniphobic behavior can be
achieved on appropriate surface structures [327, 154, 300, 301, 65, 66, 19, 142]. Marmur
[198] and Herminghaus [125, 126] gave explanations of these experiments within the
assumptions of the classical wetting theory of Wenzel and Cassie-Baxter. Overhangs of
the corrugations are needed, which hamper liquid intrusion into the indentions of the
roughness. More recently Ramos et al. [250] reported an experiment, which apparently

12



1.1. Wetting, omniphobicity and simulation methods

does not fit in this explanation scheme, since the roughness seems not to provide
sufficient overhangs. On a randomly rough etched hydrophobic substrate, even oil
drops displayed large contact angles. In chapter 3 we shall review this experiment
under the assumption of an overhang-free topography with simulations. To tackle this
problem, one have to account for the roughness of the etched structure, whose length
scale goes down to nanometers, while the drops are millimetric. To study generic
wetting properties widely used simulation methods may not be suitable. For example
standard lattice Boltzmann (LB) methods do not account for nanoscopic roughness
[63]. Molecular dynamics (MD) are to heavy if large drops are used.

We use therefore a so-called phase-field model approach, which is not as common
as MD and LB, but allows us to study infinite drops on surfaces with corrugation
length scales of only a few atomic diameters. This generic model is refined and tested
in chapter 2. With this model we can explain several wetting phenomena which might
appear in Ramos’ experiment, notably the wetting inversion, which is necessary for
omniphobicity. From our simulations we conclude, that the wetting inversion is also
found in the Wenzel state, contradicting the classical Wenzel law. This effect is rooted
in a subtle geometric effect which we shall call needle tip effect.

Our model allows also to study dynamic behaviors, connected to the flow enhance-
ment and friction reduction. In hydrodynamic descriptions, which are applicable to
surprisingly small scales [41], one has to assume a certain boundary condition between
the fluid and the wall. We shall demonstrate in chapter 4, that the thermodynamically
stable Wenzel state does not significantly contribute to large slip lengths. Slip is con-
sidered to enhance flow rates. On the other hand our metastability analysis of these
phenomena in chapter 3 show, that the favorable Cassie-Baxter state is supported.
Chapter 4 is completed by a study of contact angle hysteresis on corrugated substrates.
Due to the roughness, a drop can take a whole range of contact angles. Line pinning
leads to energy barriers between adjacent ridges. At sufficiently high driving forces,
the former sticking drop starts to move in a heterogeneous motion: slip—stick—jump.

A detailed introduction to each of these phenomena can be found in the mentioned
chapters.

13



1. Introduction

1.2. Jamming, local geometry, order and disorder

characterization

A very common model of a simple fluid is the hard sphere model. Individual classi-
cal particles are supposed to be non interacting at a distance larger than the sum of
their radii r1 and r2. Distances smaller than r1 + r2 are not allowed, due to the hard
repulsion at contact. This model has the merit, that the only relevant state variable is
the packing fraction φ, which is the volume occupied by spheres per volume of the
confining container. This purely geometrical based model already shows a first order
phase transition in 3D [106] 1, due to entropy. This microscopic model system can be
extended to macroscopic dissipative hard spheres, i.e. collisions lead to a loss of mo-
mentum and spheres in contact are subject to solid–solid friction. We shall discuss the
geometrical effects onto the local arrangements in large ensembles of frictional and
frictionless spheres in chapter 6. To do so, we use a rather novel class of morpho-
metric descriptors—the so-called Minkowski tensors [209, 28], which are introduced
in chapter 5.3. This class is validated against widely used methods, which—we shall
show—lack robustness. In particular in amorphous media the former methods might
lead to artefacts in the structure description.

In 1983 Steinhardt et al. [289] has proposed the widely used ql orientation order pa-
rameter family as 3D generalization of the ψ6 hexatic order parameter in 2D [289]. ql
and its derivates have become a fruitful instrument in identifying different crystalline
phases, notably fcc, hcp and bcc [294, 227, 319, 177, 302, 155, 308] or icosahedral nuclei
[309, 158, 133]. They have been used to study melting transitions [309, 59, 54] and flu-
ids [59, 127] too. In the literature of glasses and supercooled fluids q6 has arisen to the
most prominent order parameter [159] searching for glass-transitions [135, 220, 293]
and crystalline clusters [181, 227, 266, 158, 304, 155]. Similar to the bond-orientation
order parameter, most local parameter depend crucially on a definition of nearest
neighbor sites. Such local structure descriptors include the Edwards tensor [88] in
granular systems and texture tensors in cellular materials [86]. In crystallography
the number of nearest neighbors (also called coordination number) is used directly or
combined with other parameters to localize crystal defects [156, 2, 94].

We shall show in chapter 6 how these measures suffer from the nearest neighbor
definition when applied to amorphous media. The Minkowski tensors are an alterna-
tive approach, which we shall show is closely related to the Edwards tensor (chap. 6)
and the bond orientation order parameters (chap. 7) but omits the robustness deficien-

1the case in 2D is less clear
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1.2. Jamming, local geometry, order and disorder characterization

cies. Such robust order parameters are needed to characterize geometrical subtleties
in jammed hard sphere packings, i.e. an ensemble of spheres, where each sphere is
fixed by its neighboring spheres, so that no further motion is possible.

While fluids of spherical particles are usually globally isotropic, the local environ-
ments of the particles may be anisotropic. Our Minkowski analysis of jammed packs
reveals an universal local anisotropy. It is well-known that ellipsoidal particles pack
randomly denser than spherical ones [82]. We suppose that higher packing fractions
in ellipsoid packings can be understood by more efficient exploitation of the elongated
void space by elongated particles. The universal anisotropy is astonishing since each
jamming process is out of equilibrium and therefore a priori history dependent. These
findings are reported in chapter 6.

Bernal and Mason [33] pointed out—half a century ago—that packings of hard
spheres exhibit a critical packing fraction density around 0.64, widely referred to
in the literature as random close packing (RCP). They have made the conjecture that
this packing fraction must be mathematically determinable like e.g. the Kepler’s con-
jecture packing fraction proofed by Hales in 1998 [120]. Up to date a mathemati-
cal theory is lacking. Since Bernal and Mason many studies have found a packing
fraction limit, when compactifying spheres densely, with a large variety of protocols
[17, 278, 228, 244]. Up to now not even one experimental finding show densification
beyond RCP, except when nucleation seeds for crystallization were implanted [228].
Most simulation algorithms are also hampered to overcome RCP when trying to den-
sify hard sphere systems, except of two. The Jodrey-Tory algorithm [144, 145] and the
Lubachevsky- Stillinger algorithm [281]. Results from the latter one inspired Torquato
and others in a widely cited paper [297] to the conjecture that RCP is not well defined,
rather maximally random jammed (MRJ) configurations have to be taken into account,
which should be located at similar packing fraction around 0.64. This conjecture is
still heavily debated [247, 150, 149].

Recently several studies—experimental [228] and numerical [181, 8, 319] and theo-
retical [247, 11]—have conjectured that RCP is an onset of crystallization, but stringent
verification is missing. The resolution of these question relies on suitably defined or-
der parameters to quantify structural properties of the sphere configurations—like the
Minkowski tensors. We investigate and confirm this crystallization onset at a packing
fraction around 0.649 in chapter 6.
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1. Introduction

In chapter 7 we analyze the Minkowski tensor method in the framework of irre-
ducible tensors, and we demonstrate, that this novel method is a generalization of a
special case of the Steinhardt order parameter family, which strips off robustness de-
ficiencies and obeys all the strong theorems, which render the Minkowski tensors so
powerful.

This work is structured as follows: Chapters 2 provide the theoretical background for
chapters 3 4 and 5.3, where applications of the phase field model onto geometrical wet-
ting phenomena is discussed. Chapter 5 gives a theoretical introduction to Minkowski
functionals and tensors, and shows examples of applications in continuum fluid sim-
ulations. Applications of the Minkowski method are discussed in chapters 5.3 and 6.
In chapter 7 the calculus of spherical irreducible Minkowski tensors is demonstrated.
Chapter 8 is left for the conclusions and summary and outlook.
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2. Phase-field models, density functional

theory and dynamical density

functional theory

In this chapter we explain the theoretical background of our phase field model. Indeed,
this model borrows concepts from density functional theory (DFT), classical phase
field models (PF) and dynamical density functional theory (DDFT). For this, sections
2.1 to 2.3 describe some important aspects of these theories in order to establish a
basis for the wetting phase field model, which is explained in 2.4. Static properties are
tested there too, in order to study wetting phase diagrams in the following chapter.
Dynamic properties of our model are tested in chapter 4, right before we look at the
dynamical behavior of nanocorrugated surfaces.

2.1. Density functional theory

In this section we will give a brief introduction to the density functional theory (DFT)
since it shares a lot of similarities with phase field models. DFT was invented in
the 1960s to study non-uniform liquids/fluids [92, 122]. Non-uniform means in this
context, that the translational symmetry is broken—by an interface for example. It
turned out that the theory is very successful also to describe uniform liquids, which
means the bulk behavior [122].

This section aims to point out some key features of DFT and follows in great parts
introductions from Evans [92] and the textbook of Hansen and MacDonald [122]. Let
us consider a fluid with the N-particle phase-space distribution f (N)(r(N), p(N), t). The
reduced phase-space distribution of n < N particles is obtained by integrating out the
degrees of freedom (DOF) of N − n particles

f (n)(r(n), p(n), t) =
N!

(N − n)!

∫
dr(N−n)dp(N−n) f (N)(r(N), p(N), t) (2.1)
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2. Phase-field models, DFT and dynamical DFT

The one particle (space) distribution is recovered by integrating the phase space dis-
tribution over all momenta DOF and all but one spatial coordinates

ρ(r, t) = ρ(r1, t) =
∫

dp1 f
(1)(r1, p1, t). (2.2)

The N− particle Hamilton function H is assumed to have the form:

H(r(N), p(N)) = T̂(p(N)) + V̂ext(r
(N)) + Φ(r(N)), (2.3)

so that H can be decomposed in a kinetic part T̂ = ∑
N
i=1 p

2
i /m, where m is the parti-

cle mass, a particle-particle interaction part Φ = 1
2 ∑

N
i=1 ∑

N
j=1 ϕ(ri, rj) and an external

potential V̂ext = ∑
N
i=1Vext(ri). The grand canonical potential of the system Ω0 in equi-

librium can be derived from the partition function Ξ′

Ξ′ :=
∞

∑
N=0

1
N!

∫
dr(N)dp(N) exp(−β(H − µN)) = Tr′ exp(−β(H − µN)), (2.4)

Ω0 = −β ln Ξ′, (2.5)

where β = 1/kBT, T is the temperature and kB is the Boltzmann constant. The index
0 denotes equilibrium quantities, the prime indicates the full phase space quantities.
Since one wants to obtain functionals of the particle density, it is convenient to switch
to quantities which depend only on r(N) rather than (r(N), p(N)). From the full partition
function Ξ′ one can integrate out the momentain order to gain a reduced partition
function, which contains all real-space informations

Ξ :=
∞

∑
N=0

1
N!

∫
dr(N) exp(−β(Φ + V̂ext − µN)) = Tr exp(−β(Φ + V̂ext − µN)). (2.6)

In the full description, the equilibrium phase space distribution is given by

f ′0 = f ′0(r
(N), p(N)) = Ξ′ exp(−β(H − µN)), (2.7)

and in the spatial coordinates it reads

ρ0 = ρ0(r
(N)) = Ξ exp(−β(Φ + V̂ext − µN)), (2.8)

with the N particle distribution operator

ρN = ρN(r
(N)) =

N

∑
i=1

δ(ri − r). (2.9)

The equilibrium distribution can be recasted as follows:

ρ0 = Ξ exp(−β(Φ +
∫

(VextρN − µρN)d3r)). (2.10)
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2.1. Density functional theory

Comparing this formula with an uniform system, one recognizes its similarity when
defining the intrinsic chemical potential as the term in the brackets

µin(r) = µ −Vext(r). (2.11)

The internal energy U in bulk thermodynamics is a function of U(S,V,N), where
S is the entropy, V the confining volume and N the particle number. The volume
can be interpreted as a confining external potential, which is 0 inside the system and
infinite everywhere else. Thus, the external potential Vext(r) generalizes the volume V

in non-uniform systems.

Starting with a functional of the phase space distribution f ′ in the presence of an
external potential Vext

Ω′[ f ] = Tr′ f ′
(
H − µN + β−1 ln f ′

)
(2.12)

it can be shown that

Ω′[ f ′0] = −β−1 ln Ξ = Ω0, (2.13)

where Ω0 is the grand canonical potential. Note, that H contains the external potential.
And further it can be shown that (see ref. [92] or [213] for proves)

Ω′[ f ′] > Ω′[ f ′0] = Ω0; ∀ f ′ 6= f ′0. (2.14)

This important theorem is constructive to find the grand canonical potential Ω0 by
minimizing Ω′. As shown for example in ref. [92] Ω′ is minimized by minimizing the
spatial part only: Ω.

The equilibrium particle density ρ0 is the ensemble average ρ0 = 〈ρN〉 = TrρN .
Clearly this density ρ0 is a function of the external potential Vext, since f ′0 is a func-
tion of the external potential. Furthermore one can show (see ref. [92] for a prove)
that f ′0 is a functional of ρ0. The idea is to prove that for a given interaction poten-
tial Φ and known ρ0, V̂ext is uniquely determined, if existent. And V̂ext determines
f ′0. This powerful theorem (which is equivalent to the Hohenberg-Kohn theorem in
quantum density functional theory) states an one-to-one correspondence between the
one-particle density and the external potential.

The free energy F0 can be written in a form

F = F [ρ0] +
∫

ρ0Vext d3r, (2.15)
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2. Phase-field models, DFT and dynamical DFT

where F is the bulk free energy contribution. Inductive reasoning gives the free energy
functional

F[ρ] = F [ρ] +
∫

ρVext d3r. (2.16)

A deductive way can be found e.g. in ref. [92]. Eventually, we can write the grand
canonical potential functional as

Ω[ρ, µ] = F[ρ]−
∫

ρµd3r. (2.17)

From (2.16) classical thermodynamics (N =
∫

ρd3r) yield the important result

Vext −
δF [ρ]

δρ(r)
= µ, (2.18)

and we define

µin[ρ, r] =
δF [ρ]

δρ(r)
. (2.19)

Although this derivation is exact by now, in practice the functionals F [ρ] are not
known and approximations have to be used. Commonly used in liquid state theory
[31, 122] are functionals, which have the form

F [ρ] = Fid[ρ] +Fhs[ρ] +Fatt[ρ] = Fid[ρ] +Fex[ρ], (2.20)

where Fid[ρ] describes a non-interacting ideal gas term, Fhs[ρ] a repulsive part term
approximated by a hard sphere system (an accurate functional is known [257]) and
an attractive part Fatt[ρ], which has to be adjusted to the system under consideration.
Another common decomposition is to write Fex as the excess part of the intrinsic free
energy functional, which corrects the (local) ideal gas term. A merit of DFT is that it
describes features of liquids in the vicinity of a wall in a proper way (depending on
the choice of the intrinsic functionals and the external potential), i.e. a layering effect is
observed, that means in the vicinity of a substrate the density oscillates till it reaches
a bulk average apart from the wall [122]. This behavior is described by correlations of
the density, which can be derived from DFT too. We start from the partition function
in (2.6) and write the terms Φ and Vext in the Hamiltonian seperatately. This allows
for extraction of µin in Ξ. Using (2.14) one obtains

δΩ

δµin(r)
= −Ξ

∞

∑
N=0

1
N!

∫
dr(N) exp(−β(Φ −

∫
ρNµin d3r))

= −Tr exp(−β(Φ −
∫

ρNµin d3r))

= −〈ρN〉 = −ρ0. (2.21)
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2.2. Phase-field models

Differentiating again yields after some manipulations the density–density correlation
function

Υ(2)(r1, r2) = −β−1 δ2Ω[ρ]

δµin(r1)δµin(r2)
= β−1 δρ0(r1)

δµin(r2)
= −ρ0(r1)ρ0(r2) + 〈ρN(r1)ρN(r2)〉.

(2.22)
Υ(2)(r1, r2) can be expressed with the total correlation function h(2)(r1, r2)

Υ(2)(r1, r2) = ρ0(r1)ρ0(r2)h
(2)(r1, r2) + ρ0(r1)δ(r1 − r2), (2.23)

where δ is the Dirac δ-function. The total correlation function h(2)(r1, r2) is connected
to the the two particle distribution function g(r1, r2) by

h(2)(r1, r2) = g(r1, r2)− 1. (2.24)

Finally, the Ornstein-Zernike equation relates the total correlation function h(2)(r1, r2)
to the direct correlation function c(2)(r1, r2).

h(2)(r1, r2) = c(2)(r1, r2) + ρ0

∫
d3r3 c(2)(r1, r3)h(2)(r2, r3). (2.25)

The direct correlation function can expressed as a functional derivative of the excess
free energy, similar to the density–density correlation in eq. (2.21) [122]

c(2)(r1, r2) = −β
δ2Fex[ρ]

δρ(r1)δρ(r2)
. (2.26)

DFT proved to be an useful tool to study e.g. the phase diagram of liquid crystals
[183], colloidal systems [46] capillary condensation or evaporation [225], liquid–solid
interfaces [191] and wetting [31].

2.2. Phase-field models

It is a notoriously demanding task to tackle problems which involve undergoing phase
transitions. On microscopic level molecular dynamics (MD) can be used to simulate
systems with interfaces between two thermodynamic phases. But on larger scales,
where the computer power is not sufficient to explore the system with molecular sim-
ulations, one has to use continuummodels. This leads to moving interface problems—
so-called Stefan-type problems—due to phase transitions. This is mathematically dif-
ficult and an evolution equation for the boundary has to be derived. The complete
description of the problem needs a coupled description of the thermodynamics of
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2. Phase-field models, DFT and dynamical DFT

the phase transition with the large scale transport equations. In the 1980s by Fix,
Langner [113, and references therein], Collins and Levine [69] a new class of models
were proposed to omit this difficult moving boundary problem; the so-called phase-
field models (PF). The advantage of this models is that the location of the interface is
not modeled separately but obtained from the solution. This advantage is most wel-
come when topological changes of the interface occur or the moving boundary is a 2D
manifold in 3 dimensions [113]. Furthermore, numerical treatment of the partial dif-
ferential equations (PDE) in PF models are simpler than in sharp interface descriptions
[113, 37].

PF models are a class of very versatile models and used to study dentritic growth
[36], solidification from undercooled melt [69], phase-transitions in binary alloys [6,
42], pure substances [6] and growth of liquid crystals [184]. There is also a wide
literature on PF models to study fluid-fluid interfaces like viscous fingering [104, 105],
Maragoni convections [45], drop and vesicle dynamics [37].

In the reminder of this section, the principle ingredients of a PF model are intro-
duced. For this reason a simple melting scenario serves as an example.

A phase field model consists of two ingredients, first a thermodynamic model of the
phase transition and interfaces and second a model for the dynamics of the system
from out off equilibrium to equilibrium or to a steady state [69]. The thermodynamic
model is in the simplest case based on a scalar order parameter φ = φ(r, t) which indi-
cates one of either phases; e.g. φ = −1 defines a solid phase and φ = 1 a liquid phase.
Both phases are separated by an interface with a finite thickness κ, where φ varies
smoothly between −1 < φ < 1. Of course, such a description is an approximation of
the real microscopic nature of the system and is called a coarse-grained free energy
functional [242]. A thermodynamic potential, e.g. the free energy F, is modeled as
a functional of φ(r, t). A widely used choice for the bulk free energy fbulk is the φ4

model
fbulk = b(φ2 − 1)2 + c(T)φ, (2.27)

where c is called a diffusion field. c is proportional to the temperature difference w.r.t.
the melting temperature c ∝ (T − Tm). It is thus a model parameter to favor one
of both phases (see fig. 2.1). And b is a positive model parameter. The interface is
commonly modeled with a square gradient term [22, 303]

finterface = a |∇φ|2 . (2.28)

The interfacial thickness κ is related to the positive parameter a and the former pa-
rameter b, as we shall see below. This model is referred to as Ginzburg-Landau free
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2.2. Phase-field models

energy model [116, 242, 129].

We shall show the connection of the free energy ansatz

F[φ] =
∫

[ fbulk + finterface]d3r , (2.29)

with the surface tension γ of a planar interface and the corresponding density profile
in thermal equilibrium, i.e. c(T) = 0.

A minimal free energy profile of the density φ0 obeys the equation

φ0 = tanh

(√
b

a
(x− x0)

)
(2.30)

for the boundary conditions φ(z → ∞) = 1 and φ(z → −∞) = −1. This solution of
the order parameter profile is presented in fig. 2.1 in panel b) and the bulk free energy
fbulk in panel a). The surface tension is then defined as the excess free energy due to
the interface of φ0:

γ =
∫ ∞

−∞
a

(
dφ0(z)

dz

)2

+ b
(
φ2
0(z)− 1

)2
dz. (2.31)

Using eq. (2.30) we get

γ =
∫ 1

−1

√
4ab(φ2 − 1)2dφ =

8
3

√
ab. (2.32)

The thickness of interfacial region is in the order of κ =
√
a/b.

Several dynamical models are used for phase field equations. We shall first discuss
the commonly used “Model A”-type evolution equation [129], which is often referred
to as Ginzburg-Landau evolution equation or Allen-Cahn dynamics. It reads like

Γ−1 ∂φ

∂t
= −δF

δφ
, (2.33)

where F is the free energy from eq. (2.63).

An elemantary variation δφ produces a variation δF given by

δF[φ] =
∫ [

f ′(φ)δφ + 2κ∇φδ∇φ
]
d3r (2.34)

=
∫ [

f ′(φ)δφ + 2κ∇2φ
]

δφd3r (2.35)

and leads to
δF

δφ
= f ′(φ)− 2κ△φ (2.36)
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Figure 2.1. a) φ4 or W-potential b) density profile at two phase coexistence T = Tm. The

diffuse interface thickness in the order of κ =
√
a/b.

for the functional derivative.

In thermal equilibrium the condition δF[φ]/δφ = 0 is obeyed, and the relaxation
into the equilibrium is modeled with eq. (2.33) which can be written as

Γ−1 ∂φ

∂t
= −δF

δφ
= 2κ△φ − f ′(φ), (2.37)

where Γ−1 corresponds to the time-scale of the relaxation process. This is the simplest
form of an evolution equation, where the free energy necessarily decreases [242]:

d
dt

F =
∫

δF

δφ

∂φ

∂t
d3r (2.38)

= Γ

∫ (
δF

δφ

)2

d3r (2.39)

≤ 0. (2.40)

This model has no conserved variables and thus has not any hydrodynamic mode
[129]. It is used for example for the kinetic Ising model [112].

Another common model for the dynamics is described by the φ-conserving Cahn-
Hilliard equation

Γ−1 ∂φ

∂t
= △δF

δφ
= △

(
f ′(φ)− 2κ△φ

)
. (2.41)

Let us assume for the moment that the order parameter φ is proportional to the particle
density ρ. Starting from the continuity equation [116]

∂ρ

∂t
= −∇ · u, (2.42)
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2.3. Dynamical density functional theory

where u is a particle flux related to a chemical potential µ

u = −λ∇µ. (2.43)

The chemical potential is derived from the functional derivative of the free energy F[φ]

and thus µ = µ(r, t):

µ =
δF[ρ]

δ[ρ]
. (2.44)

Using eq. (2.41) yields the Cahn-Hilliard equation

∂ρ

∂t
= Γ△δF[ρ]

δ[ρ]
. (2.45)

Although the mass/particle density is used here as an order parameter to derive the
Cahn-Hilliard equation any conserved order parameter φ can be used in this model
equivalently ( ddt

∫
φd3r = 0).

Like the Allan-Cahn model, the evolution equation is of the simplest form to pre-
serve a steady decrease of the free energy [242], which obeys the conservation of the
order parameter:

d
dt

F =
∫

δF

δφ

∂φ

∂t
d3r (2.46)

= −
∫ (

δF

δφ
∇ · Γ∇δF

δφ

)
d3r (2.47)

= −
∫

Γ

(
∇δF

δφ

)2

d3r (2.48)

≤ 0. (2.49)

The right-hand side in eq. (2.46) makes use of the conservation equation written in an
Eulerian frame. This model was first suggested by Cahn and Hilliard [52] to study the
process of spinodal decomposition.

2.3. Dynamical density functional theory

Many studies of fluids are done with continuum mechanics. Indeed, hydrodynam-
ics works very well even at rather small length scales, ignoring that the fluid consists
of individual particles [41]. In systems where the particle diameters are at the same
length scale as the typical length scale of the imposed geometry the dynamics are
not well described by the Navier-Stokes equation. Thus other approaches are needed.
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2. Phase-field models, DFT and dynamical DFT

These limits are first reached when describing colloids in a suspension or blood cells
in capillaries [286]. During the last decade theories tackling this problem were de-
veloped and the first dynamical density function theory (DDFT) was formulated by
Marconi and Tarazona [194, 195] for Brownian particles suspended in a solvent and
neglecting hydrodynamic interactions. In the last years, also molecular fluids were
widely discussed in that framework [9, 193, 196]. We shall make a brief description of
these approaches in this section.

First the DDFT for Brownian particles is discussed here, as it was derived by Marconi
and Tarazona [194, 195]. Afterwards DDFT shall be discussed following recent studies
concerning molecular fluids.

Starting from a system with N Brownian particles at position ri(t) and momentum
pi(t) (1 ≤ i ≤ N). The microscopic equations of motion reads

dpi

dt
= −γpi −∇ϕi(ri, rj)−∇Vext(ri, t) + ηi(t) (2.50)

dri
dt

=
pi

m
, (2.51)

where ϕi(ri, rj) describes the inter-particle potential, Vext(ri, t) the external potential,
which is probably time-dependent, and a random noise force ηi, which is connected
to the friction term γpi by the fluctuation-dissipation theorem:

〈ηi,k(t)〉 = 0 (2.52)

〈ηi,k(t)ηj,l(t
′)〉 = 2γmkBTδijδklδ(t− t′), (2.53)

where i, j denotes the particle i resp. j and k, l run over x, y, z. Note that the ensemble
averages are taken over the realizations of the noise, since the system is not necessarily
in equilibrium [194]. Hydrodynamic interactions are not included in the Langevin
equation (2.50). In the limit of large γ, where the dynamics become overdamped, the
momenta are proportional to the instantaneous forces, thus dpi/dt vanishes [9]. And
eq. (2.50) simplifies to

γm
dri
dt

= −∇
[
ϕi(ri, rj) +Vext(ri, t)

]
+ ηi(t). (2.54)

Eq. (2.54) can be reformulated as a stochastic differential equation (SDE). Therefore
the density operator

ρN(r, t) :=
N

∑
i=1

δ(ri(t)− r) (2.55)
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2.3. Dynamical density functional theory

is needed, and following ref. [195] it obeys

γm
∂ρN

∂t
= ∇ ·

[
T∇ρN(r, t) + ρN(r, t)∇Vext

+
∫

ρN(r, t)ρN(r
′, t)∇ϕ(r, r′)d3r′

+ η(r, t)ρ
1
2
N(r, t)

]
. (2.56)

η(r, t) is a so-called global noise field (not to be confused with of the random force
ηi(t) of particle i). The global noise field has zero mean and is uncorrelated in time
and space

〈η(r, t)η(r′ , t′)〉 = 2γmkBTδ(r− r′)δ(t− t′). (2.57)

Averaging over the noise (ensemble average) eq. (2.56) gives

γm
∂ρ

∂t
= ∇ ·

[
T∇ρ(r, t) + ρ(r, t)∇Vext

+
∫
〈ρN(r, t)ρN(r

′ , t)〉∇ϕ(r, r′)d3r′
]
, (2.58)

where ρ(r, t) is the one particle density (〈ρN(r, t)〉 = ρ(r, t)). Eq. (2.58) connects the
one particle density ρ to the two particle density ρ(2) = 〈ρN(r, t)ρN(r

′, t)〉. Hence an
assumption for ρ(2) is needed to close this equation.

This local equilibrium approximation [252] is the cornerstone of the Brownian-
DDFT. The idea comes from the equilibrium-DFT, since it exists an one-to-one cor-
respondence of the density profile in equilibrium and the external potential Vext. The
external potential, in turn, contributes to the excess part of the free-energy functional
F[ρ]. Assuming, that the two particle density at time t in the non-equilibrium system
with instantaneous one particle density ρ(t) is the same as the equilibrium two particle
density in a system with the equilibrium one particle density ρ(t), the eq. (2.58) can
be closed with eq. (2.23) [194]. One obtains

∫
−ρ

(2)
eq ∇ϕd3r′ = kBTρ

∂c
(2)
eq

∂r
= −ρ∇δFex

δρ
, (2.59)

where c
(2)
eq is the direct correlation function, as defined in (2.26).

The first two parts on the right hand side of eq. (2.58) can also be recasted with the
other terms of the free energy functional F. The final equation reads than [194]

γm
∂ρ

∂t
= −∇ ·

(
ρ∇δF[ρ]

δρ

)
. (2.60)
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2. Phase-field models, DFT and dynamical DFT

It is noteworthy to mention that the assumption of overdamped dynamics (large γ) im-
plies that the system equilibrates on short time-scales, justifying the local equilibrium
assumption (which uses equilibrium descriptions from DFT).

In the development of a DDFT for molecular liquids, where the fluid is not damped
by a solvent (implying a Langevin-thermostat) this chain of arguments do not hold
any longer. However, there are recent contributions, e.g. from Archer [9, 193] to build
a DDFT for molecular fluids. Some of these results shall be discussed in the following
section.

2.4. PF/DDFT model for nanofluidics

In this section we formulate a model to study nanofluidic devices. As microscopic
simulations with molecular dynamics (MD) or Monte Carlo (MC) [107] algorithms are
used to study dynamical behavior in systems of a few nanometers, the droplets in
these studies are considered nanometric too. Length scales of microns are inaccessible
with standard computer power and time scales are also limited up to nanoseconds. On
the other side, macroscopic behavior of wetting is often studied with lattice Boltzmann
(LB) methods. In such studies, the roughness length scale is typically micrometric and
drops are one (up to two) orders of magnitude larger. However, systematically, there
is a gap in length scales of the roughness L between LB and MD methods.

Thus the model which is used in this study aims to bridge this gap between the
roughness length scale and the drop diameter. It takes explicitly account for a liquid-
vapor phase transition in the vicinity of a corrugated wall. While the roughness is
microscopic (Angstroms or nanometers) the drops might be much larger. For this
purpose the complex features of a solid-fluid interaction can not be treated as a simple
contact potential, neglecting a finite range of the wall potential. More realistic coupling
mechanisms are needed. Furthermore, the objective of such a PF model is to include
both: static behavior and dynamical behavior. The former is needed to study wetting
properties while the latter is needed for slip, contact angle hysteresis and other features
in nanofluidic devices. In hydrodynamic descriptions at short length scales, slippage
is an important issue [40]. While no-slip boundary conditions work rather well for
macroscopic systems, partial-slip is found in some microscopic setups [174]. For the
microscopic understanding it is thus required to define solid-liquid interfaces without
a macroscopic boundary condition. Combining methods from DFT, PF and DDFT
allows us to formulate such a model, as described below.
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Figure 2.2. Grand potential Ω = F − µN and p− v diagram (v = 1/ρ) of van der Waals

fluid. T = 0.9Tc

2.4.1. Thermodynamic properties

DFT describes the thermal equilibrium density profiles in an external potential, like a
solid wall. This framework provides in principle generic and exact access to wetting
properties, such as contact angles. Although this theory is free of approximations in
its roots, in practice the grand canonical potential functional Ω [ρ] is approximated for
all real systems. The simplest density functional theory for heterogeneous systems is
the square gradient theory, which accounts for phase boundaries [303, 258]. Together
with a bulk free energy ansatz the square gradient term is convenient to describe a
diffuse interface problem. This thickness w of the interface is in the order of a few
Angstroms. And the square gradient term gives a monotonic smooth change from
one phase to another (see fig. 2.3 on page 41). More complex functionals demonstrate,
that the real interface can be oscillatory [122]. This theory can therefore be considered
as a mean field theory for phase boundaries in general. Such a mean field description
is sufficient for the investigation of generic wetting properties. Specific systems might
need other functionals, which could be introduced in this model too. A widely used
fluid model, which exhibits liquid-vapor coexistence is the one-species van der Waals
gas. The free energy reads

fbulk(ρ) := kBT

(
ln
(

ρΛ3

1− ρb

)
− 1,

)
− aρ2 (2.61)

where kB is the Boltzmann constant, T the temperature and Λ the thermal de Broglie
wavelength. The constant a effectively accounts for the attractive forces between the
particles in a mean field way and the constant b models the excluded volume of one
particle. The particle density ρ is taken as a function of r.
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2. Phase-field models, DFT and dynamical DFT

Figure 2.2 shows the van der Waals grand canonical potential as a function of the
density in the left panel and the p − v-diagram. The phenomenological constants a

and b can be substituted with the critical point temperature Tc (kBTc = 8a/27b) and
the definition b = σ3 is used to rescale the variables in eq. (2.61) dimensionless. σ is in
the order of a few Angstroms and corresponds roughly to the particle diameter. This
bulk term is also called local density approximation, and the combination with the
square gradient term

finterface =
W2

2
|∇ρ(r)|2 (2.62)

provides a simple model for phase coexistence with interfaces.

F [ρ(r)] =
∫

( fbulk + finterface)d3r+ Fwall[ρ], (2.63)

where Fwall is the solid-fluid contribution to the free energy, if a substrate is present.
For the interaction between fluid particles and solid particles a 12-6 Lennard-Jones
interaction is assumed.

VLJ(|r− r′|) = εLJ

(
σ12

|r− r′|12 −
σ6

|r− r′|6
)
, (2.64)

where σ is the interaction range and εLJ is the interaction strength. For simplicity
we connect σ with the excluded volume b from the bulk term via σ3 = b. We have
therefore only 2 intrinsic length scales in the system: the interaction range σ and the
interfacial thickness W. Both are of the same order. With the Lennard-Jones potential
Fwall reads

Fwall [ρ(r)] =
∫ ∫

ρwall−fluid(r, r′)VLJ(|r− r′|)d3r′ d3r, (2.65)

where ρwall−fluid(r, r′) is the two particle distribution function of fluid and wall parti-
cles.

We can rewrite the two particle distribution function using the pair-correlation-
function gwall−fluid(r, r′)

ρwall−fluid = ρ (r) ρwall
(
r′
)
gwall−fluid

(
r, r′
)

(2.66)

and we know that gwall−fluid → 1 when r → ∞ and gwall−fluid → 0 for r → 0 in such a
way that ∫

d3r′ρwall
(
r′
)
gwall−fluid

(
r, r′
)
VLJ

(
|r− r′|

)
< ∞ (2.67)

everywhere. The r′ integral represents the effective wall potential Vwall. We assume
therefore a finite value V0 of the wall potential Vwall inside the wall. For numerical
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2.4. PF/DDFT model for nanofluidics

reasons this can be treated with a cut off radius rc in the wall–fluid Lennard-Jones
interaction

V#
LJ =




Vc = VLJ(rc) if r < rc

VLJ ifr > rc.
(2.68)

Thus

Fwall =
∫

ρ (r)Vwall (r) d3r. (2.69)

with Vwall(r) =
∫

ρwall(r
′)V#

LJ(|r − r′|)d3r. Eventually the free energy reads in a di-
mensionless form

F∗ [ρ] = =
∫ [

f ∗bulk +
w2

2
|∇∗ρ∗|2 + ρ∗V∗

wall

]
d3r∗, (2.70)

where ∗ denotes dimensionless quantities and w = W/
√

σ3kBTc. Rescaling removes
dimensions from the bulk free energy f ∗bulk = σ3

kBTc
fbulk, the wall potential V∗

wall =
1

kBTc
Vwall and the density ρ∗ = σ3ρ. For ease of notation, ∗ is droped below. The grand

canonical potential reads

Ω[ρ] = F[ρ]− µ
∫

ρd3r, (2.71)

where µ is the chemical potential of the system. For a given substrate potential, which
is entirely defined by ρwall and εLJ, the density profile in thermodynamically stable
states is obtained by minimizing Ω. The global minimum yields the equilibrium state,
local minima represent metastable states. Chemically homogeneous substrates are
modeled with a wall density ρwall taken as 1/σ3 inside the wall and 0 elsewhere.
Other system control parameters are the temperature T, the interface thickness w and
the chemical potential µ to tune the average density.

2.4.2. Dynamics of the density profile

In this paragraph the dynamical equations for the fluid density field ρ(r, t) and the
velocity field v(r, t) are developed. First we shall focus on the evolution equation for
the density profile. The formulation takes several forms depending on thermodynamic
constraints.
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2. Phase-field models, DFT and dynamical DFT

Isothermal and mass conserving dynamics To work at isothermal conditions (in space
and time) with a fixed number of particles the evolution equation reads [9, 252]

∂ρ

∂t
= −∇ · (ρv) +∇ ·

[
GDDFTρ∇

(
δΩ[ρ]

δρ

)]

= −∇ · (ρv) +∇ ·
[
GDDFTρ∇

(
δF[ρ]

δρ

)]
. (2.72)

The second equality comes from the fact that δF[ρ]
δρ and δΩ[ρ]

δρ only differs by the con-
stant µ. We recognize the convective flux −∇ · jhydro = −∇ · ρv at the right hand side
terms, as known from the continuity equation. The second term in this description is
less usual. It is known from the above discussed DDFT and accounts for a coupling to
a thermostat. In MD simulations often thermostats are used to equilibrate the system
faster. Several methods are used in the literature to fix the temperature [107]: Rescaling
of velocities with Nosé-Hover thermostat, effective friction or Langevin random forces.
The so-called shadow theorem ensures, that the precise method of thermostatting is
not very important to describe the collective behavior of the fluid at equilibrium. Only
the trajectories are strongly sensitive to forces of the thermostat, but not the ensemble
averages [107, 251]. Actually, this is the reason, why molecular simulations work so
well. The second terms on the right hand side models one method to thermalize the
system, and we expect therefore no influence of the precise method of thermostatting
onto the collective behavior of ρ and v. When the local equilibrium is reached δF

δρ van-
ishes and we recover at large time scale the actual hydrodynamic transport equations
∂ρ
∂t = −∇ · ρv.

Indeed, this second term we can interpret as a flux jthermo = −GDDFTρ∇
(

δF[ρ]
δρ

)
. The

continuity equation reads
∂ρ

∂t
= −∇ · j. (2.73)

And we decompose j = jhydro + jthermo. At molecular scales the local thermalization
process is very fast (in the order of picoseconds) and the jthermo plays only a role
in a short transient non-equilibrium regime, until the Ω is locally minimized. Mi-
croscopically, this is equivalent to the assumption of a local Maxwellian phase-space
distribution

f
(1)
local eq.(r, p, t) =

ρ(r)

(2πkBT)3/2
exp

(
− (p− p(t))2

(2mkBT)

)
, (2.74)

where p(t) = mv(t) [9]. Thus the correct long-time behavior is recovered j = jhydro.
Quite recently it has been shown from microscopic considerations that the relaxation
dynamics of an ensemble in contact with a heat reservoir can be remarkably well
described using equation (2.72) [9]. Equations like that one are now the corner stone
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2.4. PF/DDFT model for nanofluidics

of DDFT, as described above. One has to mention, that these equations fail to predict
subtle local arrangements (roughly comparable to the glassy cage effect) of fluids with
a pronounced hard core behavior in narrow confinements [252]. This is so, because fast
transients to equilibrium are assumed, which do not hold in glassy systems. Since the
typical confinement of our systems is in the order of ten or more particle diameters.
We do not expect such subtleties to appear when applying the DDFT thermostat. The
constant GDDFT describes the relaxation time scales to local equilibrium. In usual PF
models GDDFTρ is taken to be constant and the thermostat term reads △(GCHδF/δρ),
where the superscript CH reminds to the similarity with the Cahn-Hilliard equation
described above. We used this ansatz here for the sake of simplicity and we choose
GCH to reproduce the self-diffusion constant of water molecules. The time scale τ of
the local relaxation dynamics are therefore fixed by τ = σ2/GCH. One can check, that
e.g. an amplification of τ by one order of magnitude does not effect the long time
behavior. We use τ to define dimensionless times.

Isothermal dynamics and coupling to a particle reservoir Equations like (2.72) are
useful for two reasons. First, applying the thermodynamic constraints is convenient
and it takes explicitly the fast relaxation dynamics on small length scales into account.
To explore the phase diagram of a system, the DDFT or Cahn-Hilliard thermostat is
exchanged by a non-conserving Allen-Cahn thermostat, which couples the system to
a particle reservoir at chemical potential µ

∂ρ

∂t
= −∇ · (ρv)− GAC

(
δΩ[ρ]

δρ

)
. (2.75)

With this prescription, we can investigate phase coexistences quite easily by tuning the
chemical potential µ. Although the relaxation dynamics does not correspond to a real
system, the equilibrium states satisfy the macroscopic transport equation (2.73) and the
steady velocity field obtained in this case corresponds to the true hydrodynamic flow.
Quantities such as slip lengths can thus be obtained with this method as well. The
framework presented here is thus very generic and allows to model various physical
problems.

2.4.3. Hydrodynamic transport equation

The hydrodynamic transport is described by the momentum equation

m
∂ρv

∂t
+∇ · (ρmvv) = ∇ · Σ − ρ∇

(
δΩ[ρ]

δρ

)
+ fwall + fext, (2.76)
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where Σ = η
(
∇v+ (∇v) t

)
+ (ζ − 2/3η)(∇ · v)δ is the viscous stress tensor (with the

first/shear viscosity η, the second/bulk viscosity ζ and the unit matrix δ). The extra
contribution −ρ∇

(
δΩ[ρ]

δρ

)
= fthermo accounts for both: the pressure tensor and the

capillary force. The external force terms fwall + fext are discussed afterwards.

Thermodynamic force field We shall derive this force field applied by the fluid dis-
tribution ρ onto the flow by considering the free-energy variation due to a virtual
displacement of the fluid distribution. Using conserved dynamics constraints we de-
note the displacement field, which is applied to the fluid δr′(r). With the conservation
constraint, the proper thermodynamic potential is the free energy F and the corre-
sponding variation δρ(r) of the density field is a conservation law

δρ(r) +∇ · (ρ(r)δr′(r)) = 0. (2.77)

The free-energy variation of the full system is given by

δF =
∫

δF[ρ]

δρ(r)
δρ(r)dr. (2.78)

Using eq. (2.77) in (2.78) yields

δF = −
∫

δF[ρ]

δρ(r)
∇ · (ρ(r)δr′(r))dr. (2.79)

An integration by part (assuming vanishing values of δr′(r) at the boundaries of the
system or periodic boundary conditions as in our simulations) leads to

δF =
∫

ρ(r)∇
(

δF[ρ]

δρ(r)

)
δr′(r)dr. (2.80)

The functional derivative of F with respect to r′(r) is found to be

δF

δr′(r)
≡ ρ(r)∇

(
δF[ρ]

δρ(r)

)
(2.81)

and the resulting force field as:

fthermo(r) = − δF
δr′(r) = −ρ(r)∇

(
δF[ρ]
δρ(r)

)

= −ρ(r)∇
(

δΩ[ρ]
δρ(r)

) . (2.82)
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Pressure and Laplace Force obtained from the thermodynamic force field In this
paragraph it is proven that the thermodynamic force field −ρ∇

(
δΩ[ρ]

δρ

)
accounts for

both: the volume pressure contribution −∇P and the surface capillary force −Hγn̂,
where H is the local mean curvature of the interface (with the convention that it is
positive for a sphere), n̂ is the normal vector (pointing outside) and γ the liquid-vapor
surface tension.

First, the pressure tensor is extracted, using the identity

−ρ(r)∇
(

δΩ[ρ]

δρ(r)

)
≡ −ρ(r)∇

(
δF[ρ]

δρ(r)

)
≡ −∇ · P. (2.83)

The meaning of the first equality sign is already discussed (the functional derivatives
of F and Ω differs only by a constant) and the second equality states the definition of
the pressure tensor P. For the square gradient theory

F[ρ] ≡
∫ {

fbulk(ρ) +
W2

2
|∇ρ|2

}
d3r, (2.84)

and therefore the functional derivative reads

δF[ρ]

δρ(r)
= f ′bulk(ρ)−W2∆ρ. (2.85)

An ansatz for the pressure tensor [6]:

Pij =

(
ρ
d fbulk
dρ

− fbulk −W2ρ∆ρ − W2

2
|∇ρ|2

)
δij +W2∇iρ∇jρ (2.86)

satisfies the second identity in eq. (2.83). The pressure tensor can be rewritten as

Pij = Pnδij +W2 (∇iρ∇jρ − |∇ρ|2δij
)
, (2.87)

where Pn = ρ
d fbulk
dρ − fbulk −W2ρ∆ρ + W2

2 |∇ρ|2 is the normal pressure (i.e. in the direc-
tion of ∇ρ). For a planar interface, Pn is constant across the interface, but there is a
jump when the interface is curved. Plugging this last equation in the definition (2.83)
yields decomposition into the bulk pressure and the Laplace force

−ρ(r)∇
(

δΩ[ρ]

δρ(r)

)
= −∇Pn +W2(∇ρ · ∇(∇ρ)− ∆ρ∇ρ). (2.88)

The latter has not yet been proved. Let us denote tentatively L ≡ W2(∇ρ · ∇(∇ρ)−
∆ρ∇ρ) as the Laplace force. Since ρ varies in the normal direction only (by definition),
this force is normal by construction. The normal vector field reads

n̂ ≡ ∇ρ

|∇ρ| , (2.89)

35



2. Phase-field models, DFT and dynamical DFT

where the local curvature H of the interface is defined as

H(r) = ∇ · n̂ =
∆ρ

|∇ρ| −
∇ρ · (∇ρ · ∇)(∇ρ)

|∇ρ|3 , (2.90)

which is positive for a spherical drop. This expression can be rewritten as

H(r) = − n̂

|∇ρ|2 . (∇ρ · ∇(∇ρ)− ∆ρ∇ρ) = − n̂ · L
W2|∇ρ|2 (2.91)

from which we deduce that L is

L = −H(r)W2|∇ρ|2n̂ . (2.92)

To identify the Laplace force, we need to recall that for a planar interface the surface
tension can be written [258]:

γ =
∫

W2|∇ρ|2dz, (2.93)

where z is the normal coordinate. Equation (2.92) is thus a local expression for the
Laplace force.

External force fields We come back to the remaining forces in eq. (2.76). The term fext

can be gravity for instance or any other driving force. Such driving power is dissipated
in a system with a solid substrate by two types of non-reversible processes: first by
friction with the walls and second viscous dissipation due to shear and compression.
While the latter effect is covered by the viscous stress tensor in (2.76), the former is
modeled by the term fwall. This is a continuous force field applied by the walls, which
move with vwall (to simulate shear, e.g. the bottom wall is fixed and the top wall has
a constant velocity vwall = vtop, the wall-speed field is therefore discontinuous). A
heuristic friction ansatz is thus

fwall(r) = −kεLJρ(r) (v(r)− vwall(r))×
∫
dr′
(

ρwall(r
′) 1√

π
3
σ3
e−

(r′−r)2

σ2

) , (2.94)

where k is phenomenological parameter, which has to be adjusted to the requirements.
This force is proportional to the interaction energy εLJ of the fluid-solid interaction
potential and this prescription allows for correct intrinsic slip behavior reported in
MD studies [23, 24, 40]. In particular, we obtain a continuous change from an intrinsic
no-slip boundary condition (BC) in a wetting situation (θ ∼ 0◦) to a partial slip BC
with a slip length b ∼ 10nm (depending on the value of k) in a non-wetting situation
(θ ∼ 120◦). Details shall be discussed in chapter 4.
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2.4.4. The numerical implementation

This paragraph is dedicated to the numerical implementation of the nanofluidics PF
model. This model is solved with a mixed scheme of finite difference methods and
Fourier methods. Among a huge number of possible formulations for the differential
operators most lead to numerically unstable algorithms. Therefore, this paragraph
displays a compilation of robust schemes to solve equations (2.72)/(2.75) and (2.76).

The square gradient grand canonical potential/free energy variation can be com-
puted from equation (2.71)

δΩ[ρ]

δρ
= f ′bulk(ρ(r)) +Vwall(r)−W2∆ρ(r) − µ, (2.95)

where f ′bulk(ρ(r)), the derivative of the bulk free-energy with respect to ρ, which is
known analytically. To simplify the algebra, let us define:

ω′
local(r) = f ′bulk(ρ(r)) +Vwall(r)− µ (2.96)

The density field Using (2.96) and (2.95)

∂ρ

∂t
− GW2∆ρ(r) = −∇ · (ρv)− Gω′

local(r) (2.97)

(with G = GAC or −GCH∆). From here we derive a semi-implicit scheme

ρt+dt − ρt

dt
− GW2∆ρt+dt(r) = −∇ · (ρv)t − G

(
ω′

local(r)
)t , (2.98)

where the notation t indicates the time at which the quantity is evaluated. Rearranging
the terms leads to

(1− dtGW2∆)ρt+dt = ρt − dt
[
∇ · (ρv)t + G

(
ω′

local(r)
)t] . (2.99)

The operator in front of ρt+dt can be transformed into Fourier space, and the equation
solved for ρt+dt

ρt+dt
k =

ρtk − dt
[
∇ · (ρv)t + GAC

(
ω′

local(r)
)t]

k

1+ k2GACW2dt
, (2.100)

where the quantity between the brackets is evaluated in the direct space, and Fourier
transformed afterwards. For conserved dynamics, G needs to be replaced by −GCH∆

and the final expression writes

ρt+dt
k =

ρtk − dt
[
(∇ · (ρv))tk + GCHk2

(
ω′

local(r)
)t
k

]

1+ k4GCHW2dt
. (2.101)
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These schemes give quite a robust numerical stability.

Unfortunately this scheme does not strictly ensure positivity of ρ(r) at time t +

dt. While this is no problem when the occurring densities are sufficiently large at
low temperature in the vapor phase or in the vicinity of the substrate negative ρ can
occur. To prevent negative values in ρ(r) at each time step the semi-implicit scheme
written above provides an initial guess for ρt+dt(r) that we call ρt+dt

implicit(r). From this
intermediate step the actual value is generated with

ρt+dt(r) = ρt(r) exp

(
ρt+dt
implicit(r)

ρt(r)
− 1

)
. (2.102)

This first order finite difference scheme ensures the positivity, due to the exponen-
tial term. When ρt+dt

implicit(r)/ρt(r) is close to 1 (which is true for sufficiently small

time steps) a Taylor expansion yields ρt+dt(r) ≃ ρt+dt
implicit(r) as the leading order in

∆ρ(r)/ρt(r), where ∆ρ(r) ≡ ρt+dt
implicit(r)− ρt(r).

The velocity field To simulate shear the velocity field v is decomposed in two parts

v = u+ vapplied, (2.103)

where vapplied is the applied velocity profile. A jump of vapplied at one boundary of the
simulation box emulates shear. The remaining part is called u. Without gravity the
transport equation reads

m
∂ρv

∂t
+∇ · (ρmvv) = ∇ · Σ − ρ∇

(
δΩ[ρ]

δρ

)
+ fwall, (2.104)

which can be recasted as

ρm ∂v
∂t + v

∂ρm
∂t + v∇ · (ρmv) + (ρmv · ∇) (v)

= ∇ · Σ − ρ∇
(

δΩ[ρ]
δρ

)
+ fwall.

(2.105)

Multiplying the transport equation for the density with the molecular mass m, we get

m
∂ρ

∂t
+∇ · (ρmv) = −mG

(
δΩ[ρ]

δρ

)
. (2.106)

Plugging this equation into (2.105) yields

ρm ∂v
∂t + (ρmv.∇)v = vmG

(
δΩ[ρ]

δρ

)

+∇ · Σ − ρ∇
(

δΩ[ρ]
δρ

)
+ fwall.

(2.107)
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Since the applied velocity field is constant in time, ∂v/∂t = ∂u/∂t. We divide (2.107)
by ρm

∂u
∂t ≡ ∂v

∂t = −v.∇ (v) + vG
ρ

(
δΩ[ρ]

δρ

)

+ 1
ρm

{
∇ · Σ − ρ∇

(
δΩ[ρ]

δρ

)
+ fwall

}
.

(2.108)

When the local thermodynamic equilibrium is reached, δΩ[ρ]/δρ(r) vanishes and the
usual Navier-Stokes equation is recovered. This equation is solved in mixed direct
and Fourier space scheme. For first order differential operators isotropic stencils from
ref. [240] are used, i.e. the truncation error is quadratic in ∆r. Furthermore it has been
found that solving the second derivatives numerically is more stable in the Fourier
space. Periodic boundary conditions are applied at the edges of the simulation box
for the density field ρ(r) and the u(r) component of the velocity field.

Surface tension In this paragraph, the PF model and its implementation is analyzed
with respect for the wetting properties of a flat substrate and the liquid-vapor surface
tension. First, we follow a calculation of ref. [258] to obtain an analytic description
for the liquid-vapor surface tension γ of a planar phase boundary, where the capillary
force vanishes. It is also assumed, that the phase boundary does not move and both
phases coexist at equilibrium. The normal pressure is therefore constant in the entire
system and reads P = − f ′bulk(ρ) + µρ in either bulk phases. Minimizing F[ρ] under
the constraint of fixed number of particles yields

∂ fbulk
∂ρeq

−W2∆ρeq = µ. (2.109)

ρeq is the equilibrium profile normal to the interface, and let us orientate the normal
to the z axis.

In this case the Laplacian reduces to ∆ρeq = d2ρeq/dz2 ≡ ρ′′eq. Multiplying (2.109)
with ρ′eq and few manipulations leads to

d
dz

{
fbulk(ρeq)−

W2

2
|∇ρeq|2 − µρeq

}
= 0 (2.110)

and thus

fbulk(ρeq)−
W2

2
|∇ρeq|2 − µρeq = −P, (2.111)

where P is the bulk pressure. Using eq. (2.109), we can eliminate µ

P =
∂ fbulk
∂ρeq

ρeq − fbulk(ρeq)−W2ρeq∆ρeq +
W2

2
|∇ρeq|2 = Pn (2.112)

39



2. Phase-field models, DFT and dynamical DFT

γ in kBTc/σ2 units

Theoretical expectation 0.34203

h = 0.5w 0.34251

h = 0.25w 0.34202

h = 0.125w 0.34200

Table 2.1. Comparison between the theoretical expectation of γ and the values obtained from

the numerical minimization of the grand canonical potential. The numerical values

are obtained for three different lattice spacing h. The difference between all these

values is less than 0.2% (and even 0.01% if we exclude h = 0.5w). These results
are for T = 0.6 Tc and σ = 0.75w

.

This expression equals the normal pressure Pn, which we already found in (2.86). The
surface tension is defined as the excess grand-potential at the interface

γ =
∫ +∞

−∞

(
f (ρeq) +

W2

2
|∇ρeq|2 − µρeq + P

)
dz (2.113)

for a planar interface. From 2.111 we obtain

fbulk(ρeq)− µρeq + P =
W2

2
|∇ρeq|2 (2.114)

and thus
γ =

∫ +∞

−∞
W2|∇ρeq|2dz. (2.115)

Substituting W|∇ρeq| with
√

2( fbulk(ρeq)− µρeq + P) from (2.114) one gets

γ =
∫ +∞

−∞
W
√

2( fbulk(ρeq)− µρeq + P)

∣∣∣∣
dρeq

dz

∣∣∣∣ dz, (2.116)

where
∣∣∣ dρeq

dz

∣∣∣ dz can be replaced by dρeq. The gradient is taken positive. Finally one
ends up with

γ = W
∫ ρL

ρV

√
2( fbulk(ρ)− µρ + P)dρ, (2.117)

where ρV is the vapor density and ρL the liquid one. This integral can be evaluated
without knowing the precise shape of ρeq. The value computed from this expression
can be compared to the value determined by a direct minimization of the functional,
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Figure 2.3. Density profile for liquid vapor interface for different resolutions. T = 0.6Tc.

using explicitly ρ(r) and eq. (2.111). The latter numerical scheme is only very weakly
grid resolution dependent. The differences between the theoretical value and the simu-
lation result is less than 0.2% for a grid spacing h = 0.5w and temperature T = 0.6kBTc
(see Tab. 2.1).

Next we want to establish a scheme for computing the fluid-solid surface tension for
a flat surface at equilibrium. Thus the fluid is either in the liquid-like or the vapor-like
state. As the surface tension is the excess of the grand canonical potential Ω due to
the interface, we write

ΩV = −PV + γplanarA ⇐⇒ γplanar =
ΩV + PV

A
, (2.118)

where γplanar represents the solid-fluid surface tension. In concrete cases this is de-
noted either γSL or γSV for solid-liquid and solid-vapor phase boundaries resp. P is
again the bulk pressure of the fluid phase and V the volume. In practice, a box (aligned
with the interface and with volume V) is taken to determine γplanar (see sketch fig. 2.4).
Since the diffuse interface with the typical thickness w, the box height Lz must be suf-
ficiently large to separate the bulk phases (solid and fluid). A is the surface area of the
interface. In order to gain a more explicit equation for the numerical integration one
can derive from (2.118) by extending Lz to infinity:

γplanar =
∫ ∞

−∞
{P+ ω(ρ(z))} dz. (2.119)
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Figure 2.4. Intrinsic contact angle Γ = cos θ as a function of ε

where

ω(ρ(z)) = ωlocal(ρ(z)) +
W2

2
|∇ρ(z)|2

= fbulk(ρ(z)) +
W2

2
|∇ρ(z)|2 + ρ(z)Vwall(z)− µρ(z) (2.120)

is the grand-canonical potential density. Eq. (2.120) shows, that the surface tension
γplanar can be computed from the equilibrium profile ρ(z) and the bulk pressure (mea-
sured far away from the wall). This is done by minimization of Ω (as explained above)
for a box which is sufficiently large. Actually, box sizes much smaller than the drop
size are sufficient. To model a macroscopic drop with radius R → ∞ a thick film is
simulated, and Lz is chosen around 20w or larger. The contact angle θ at the triple line
is computed from the Young equation

Γ = cos θ =
γSV − γSL

γ
. (2.121)

Therefore γ, γSV and γSL are determined separately for the same substrate. Since γ

only depends on w and does not depend on the external potential, this value can be
precomputed. For computing the surface tension with eq. (2.118) correctly it is also
needful to use the same scheme for the gradient term as in eq. (2.99). The contact
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Figure 2.5. Left: Density profile of a cylindrical drop. Using the Young equation is the

most efficient way to compute the contact angles θ and θeff. The surface tensions

are evaluated with eq. 2.121. The boxes are only schematic sketches, γ can be

precomputed in the absence of a wall potential. The substrate (Vwall > 0) is drawn
black. Right: fluid density ρ (solid lines) and wall potential Vext of a planar wall

(dashed lines) for three different cos θ ≈ −0.5, 0.1, 0.7 (red, green, blue resp.)

angle θ depends besides w also on σ and εLJ (and formally on V0). In fig. 2.4 we
show the dependence of Γ = cos θ as a function of εLJ for fixed w and σ. Since
the numerical scheme is in principle grid spacing h dependent, it has to be checked,
that the combinations of w, σ, V0 and h lead to robust contact angles (in fig. 2.4:
V0 = 2kBTc, h = 0.5w and σ = 0.75w). This is discussed below. One have also
to check, that the measured Young contact angle meets the observed contact angle.
Indeed, both methods produce the same results, but the former has the merit of much
smaller computational effort, since small boxes compared to the drop are sufficient
(see fig. 2.5).

Adjusting parameters As discussed above, it is necessary to adjust several parame-
ters in the model to obtain simply tunable contact angles with εLJ. There is also one
parameter for the dynamical slip behavior, which have to be adjusted to recover correct
intrinsic slip behavior. The latter adjustment is discussed in chapter 4.

Among the five parameters, which have an influence onto the contact angle θ, the
potential cutoff V0 is introduced only for numerical simplicity of the scheme, and
should thus have no large impact to the wetting in a certain range of values. Indeed,
low values of V0 lead to unrealistic systems, where a significant amount of fluid en-
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Figure 2.6. cos θ as a function of εLJ. The potential cutoff is changed V0 from 1kBTc to 4kBTc.
T = 0.6Tc.

ters the space, which is occupied by the wall. Very high values result in numerical
instabilities, because of the nearly vanishing fluid densities at wall lattice sites. Thus,
it is favorable to tune V0 so that ρ inside the wall is some orders of magnitude lower
than in vapor phase but large enough (≈ 10−4) to prevent instabilities. In fig. 2.6 the
cos θ is shown as a function of εLJ for various V0. This diagram shows nicely that the
contact angles converges fast to a V0 independent curve for high values of V0. On the
other hand, the computation time grows, since the time steps have to be shortened to
prevent instabilities. As a compromise we fix V0 to 2kBTc.

The grid spacing has no noticeable influence onto the liquid-vapor interface in the
absence of an external field (see fig.2.3). This was already indicated by the comparison
of the surface tension with the analytic expression (2.117) (see Tab. 2.1). In contrary,
in the vicinity of a wall, the resolution becomes more important. Figure 2.8 shows the
density profile of a liquid phase on a solid substrate with εLJ = 4 (strongly wetting)
for three different resolutions. Deviations are clearly visible. A careful check of the
physical quantities is therefore needed.

The discretization scheme enters at several levels in the simulations. The wall po-
tential Vwall(r) =

∫
V

ρwall(r
′)V#

LJ (|r− r′|) dr′ is precomputed in Fourier space using the
convolution theorem. fig. 2.7 shows the potential obtained with three different dis-
cretization and the theoretical prediction of the 9− 3 Lennard-Jones potential, which
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Figure 2.7. Wall potential profile for liquid vapor interface for different resolutions.

results from an integration of the 12− 6 LJ potential over one half space filled with
solid. We clearly see deviations from the theoretical prediction. Unfortunately we can
not make use of the theoretical prediction for corrugated surfaces. Thus, we consider
the planar discrete potential as the real potential and compare it to corrugated wall
potentials with the same discretization scheme. This method captures fairly well the
nanometric features of rough surfaces consisting of single atoms as discussed later
(see fig. 3.16 on page 72). Other discretization effects are part of the minimization
scheme, and fig. 2.8 displays the results of the fluid density profile at a liquid-solid
interface at small contact angle (εLJ = 4). Again, discretization errors are visible. Since
this errors makes it difficult to compare data for several resolutions, as a function of
the remaining tuning parameter εLJ one should rather compare results for the same
θ for different resolutions. To predict experiments more precisely with more realistic
free energy functionals one needs more care about the discretization. At this level
of wetting description a robust set of fixed parameters and one tuning parameter is
sufficient.

Capillary condensation Since this model is made for nanoscopic devices, consisting
of cavities in the nanometer range, it has to account for capillary condensation. There-
fore, we check the model in a slit geometry against the macroscopic theory. Starting
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form the Gibbs-Duhem relation

−SdT−VdP+ Ndµ = 0, (2.122)

where S is the entropy and N the number of molecules in the system, it follows for
constant T (ρ = N/V)

∂µ

∂P

∣∣∣∣
T

=
1
ρ
. (2.123)

Integrating from the saturated quantities to the quantities in the vapor and the liquid
phase we obtain

µL − µsat =
1

ρL
(PL − Psat) (2.124)

and
µV − µsat = kBT ln

PV
Psat

. (2.125)

To get the first equation we assumed that the liquid is incompressible, for the second
we used the ideal gas equation of state. Since the triple line contact angle has to fulfill
the Young equation, the Laplace pressure (PLaplace = 2γH, H is the mean curvature)
in a slit with thickness D, reads

PV − PL =
2γ cos θ

D
. (2.126)
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Figure 2.9. (a)Grand canonical potential Ω over ∆µ ≡ µ − µsat for two values of the in-

trinsic contact angle: cos θ = −0.5, the non-wetting case, and cos θ = 0.6 the

wetting situation. For each case, the horizontal branch corresponds to a vapor-

phase and the falling branch to a liquid-phase inside the slit. The crossover of the

two branches determines the capillary condensation point ∆µc. For an intermedi-

ate range of ∆µ there are strong metastabilities observed.

(b) ∆µc over the thickness D of the slit. The positive values correspond to

cos θ = −0.5 and the negative ones to cos θ = 0.6. for each case, the solid

lines are the theoretical expression ∆µc = −2γLV cos θ/ρLD while the points

correspond to the simulations.

We use the approximation PL ≫ PV & Psat

PV − PL ≈ Psat − PL = −ρL∆µ =
2γLV cos θ

D
(2.127)

Dcrit = −2γLV cos θ

ρL∆µ
. (2.128)

µV(PV) = µL(PL) = µ = µsat + ∆µ is defined as the offset from the chemical potential
to the saturation µsat =

(
∂Fbulk(ρ)

∂ρ

)
T

∣∣∣
ρ=ρV

[60, 138]. Capillary condensation occurs when

D becomes smaller than a critical distance Dcrit which depends on the wetting angle θ

of the confining surfaces [60].

With non-conserved Allen-Cahn dynamics the PF model can be used to study this
transition. The left panel of fig. 2.9 shows the grand canonical potential of a fluid in a
slit. The green lines correspond to a wetting state (cos θ = 0.6) whereas the blue lines
correspond to a non-wetting situation (cos θ = −0.5). The points are simulation results
with either a vapor-phase as initial state or a liquid phase for various ∆µ. The branches
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on the right belong to a liquid equilibrium state whilst the branches on the left to a
vapor one. In between these two regimes one could probe metastable states (points
above the two branches). The cross-over between the regime where the liquid phase
is favored and the regime where the vapor-phase is favored is interpolated by the
crossing point (D, ∆µc) of the connecting lines. The right panel shows ∆µc for several
slit-widths D. For large D there is a good agreement with the theoretical curves where
as for very small D < 6σ the macroscopic theory assuming sharp interfaces become
insufficient. However it is remarkable that the macroscopic theory compares so well
to the simulations for values of D as small as 8σ, i.e. 8 particle diameters.

2.4.5. Comparison with lattice Boltzmann

In this paragraph we shall briefly discuss the lattice Boltzmann (LB) methods, which
play an important role in fluid dynamics—in particular in microfluidics—as a very ver-
satile and computationally efficient method. We omit recalling the details but rather
discuss same basic features. As LB is founded on kinetic theory it is different from
other approaches like continuum hydrodynamics simulations. First, the dynamics are
solved step wise, i.e. a streaming process is succeeded by collision process at each
time step. Second, the streaming process, which corresponds to the convection is
linear in phase space, and not quadratic as in the Navier-Stokes equation. Neverthe-
less, the combination with the collision step allows for non-linear advection through
multi-scale expansions. Third, the velocity space is discrete, i.e. only some velocities in
some directions are possible. This allows for simplified transformations of the phase
space distribution. Last but not least, in contrast to simple incompressible Navier-
Stokes descriptions, the pressure is modeled with an equation of state [63, 30, 62, 325].
Multiphase methods invented, e.g. by Shan and Chen [280] or by Swift and Yeomans
[291, 49, 50], are used to study contact angles hysteresis [168], capillary imbition to
pores [166, 218], drop collapse [164], small drop wetting [114], macroscopic wetting
[265], and apparent slip [29]. Despite that the LB method is one of the most common
simulation methods in microfluidics, with a lot of adaptions for special problem avail-
able, it has up to now some drawbacks that render it less useful for certain systems.
First, in many studies the density contrast between the gas and the liquid is rather
limited [164, 167], second the solid-fluid contact is typically modeled as an effective
contact potential without finite range into the fluid phase. This particular point limits
LB to macro- and mesoscopic problems. The microscopic details of the wall poten-
tials are not covered. A priori a no-slip boundary condition (BC) at the walls is used,
i.e. the tangential speed v⊥ at the wall is zero. In microfluidics a partial slip can be
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important. However, partial slip v⊥ 6= 0 can be implemented, but only in a limited
range [124, 162]. Thus, LB is somehow limited to macroscopic systems down to scales
of microns. On the other hand, large system sizes and long simulation time-scales are
accessible.

2.4.6. Comparison with molecular dynamics

Going to very small length scales, molecular simulations provide a versatile toolbox
to study bulk properties and non-uniform problems in nanofluidics at scales of ten or
less nanometers and time scales of hundreds of picoseconds. The aim of MD simula-
tions is to solve numerically Newton’s equation for classical particles allows for either
equilibrium investigations or studies of non-equilibrium problems, e.g. driven steady
state flows [107, 251]. To ensure isothermal conditions a variety of thermostatting
methods are available [107]. As in the other presented methods in this chapter, MD
deals with classical systems neglecting quantum mechanical details. MD is also use-
ful to study complex fluids and complex systems, with polymers or steric molecules.
So-called Boltzmann iteration methods allows for grouping monomers to accelerate
calculation with coarse graining [222]. MD is therefore used in plenty of studies to
investigate water flows or hydrocarbons with complex hydrogen bondings [76, 180].
Intrinsic wetting [136] and apparent wetting [188, 189, 190, 180, 321] is studied with
MD as well as intrinsic [130] and apparent slip [73, 74, 148, 322]. While MD takes into
account all the molecular details a major drawback of MD simulations is the small
size limits of the simulations box, due to nowadays computer power limits. Therefore,
in lots of MD studies droplets are at the same scale as roughness length scales and
applied flows are at similar velocities as the thermal velocities.

2.4.7. Discussion (limits, interfaces, wall-interaction)

The PF model bridges a gap between the microscopic MD simulations and the macro-
scopic LB simulations, in a sense, that the substrate is modeled with the essential
features of molecular theory and the fluid allows for phase transitions, diffuse inter-
faces and explicit relaxation processes. Modeling the free energy as a functional of
ρ gives direct access to the free energy or grand canonical potential landscape and
easy access to thermodynamic quantities like surface tensions. Therefore, we can eas-
ily probe macroscopic drops, modeled as an infinite thick film and make use of the
Young equation to get contact angles.
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Although we do not model the molecular details of the fluid, which would cause
e.g. layering effects of oscillating density at the wall, this details could be in principle
added. For the sake of simplicity we use the mean field square gradient model. In-
stead of applying a thermostat in the density transport equation, one could also use a
thermostatting term in the momentum transport equation, which is usually applied as
fluctuating stress tensor. This was tested also, but it is less stable in combination with
the wall boundary condition. Furthermore the analysis of slip and wetting angles is
much easier, when deterministic thermalization is used. Dropping the thermostat term
and adding temperature and energy flux equations, this model can be also enhanced
to study heat transfer mechanisms, but this is out of the scope of this work.

While the PF model is formulated as a fully 3 dimensional model, with available
computer power parallel codes are needed to solve 3 dimensional systems. Through-
out this work, we assume a translation invariant system in one spatial direction, so
that it is sufficient to solve an effective 2D problem. We shall use a serial solver for this
model to study nanowetting in chapter 3, dynamics in nanochannels in chapter 4 and
the morphology of spinodal decomposition in section 5.3.
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Designing omniphobic (or superhygrophobic) surfaces is a true challenge since usual
surfaces have affinities either for polar liquids like water or for non-polar liquids like
oils. Building a surface that repels all liquids requires therefore a careful adjustment
of its physico-chemical properties [300]. Among the possible ingredients which can
be used to control the wetting properties of surfaces is the geometry. This strategy
has already been used to amplify wetting and to design superhydrophobic surfaces
[245, 290] thanks to the Wenzel-Cassie-Baxter wetting/dewetting transition that oc-
curs when the roughness becomes large [58, 311]. In such a case, the surface energy
becomes very large due to the large contact area between the liquid and the substrate,
and the system prefers to expel the liquid from the surface. The liquid then floats on
the tips of the roughness, and this Cassie-Baxter state is often referred to as a “fakir”
state [245]. Natural superhydrophobic surfaces like lotus leaves are indeed working
in this way, and synthetic substrates made of pillars or ridges are widely used in mi-
crofluidics thanks to the lubricating effect produced by the gas layer trapped between
the surface and the liquid [40, 237, 67, 148, 322]. However, the Cassie-Baxter-Wenzel
framework does not allow for a wettability inversion. Roughness only amplifies the
natural wetting properties of a surface in this model. Beyond this classic theory Her-
minghaus explored the possibility of self-affine surfaces to become hydrophobic, what-
ever their natural wetting properties are [125, 126], taking advantage of the metastable
states. Combining roughness at various scale with surface chemistry and/or playing
with electric fields allowed experimental advances in the control of repellency by many
authors [300, 3, 56, 327]. Recently, the possibility of wettability inversion based on ge-
ometry has been discussed by Tuteja et al. [300] and by Marmur [198] who showed
that multivalued surfaces (re-entrant surfaces) are good candidates for omniphobicity.
These surfaces can indeed trap the gas phase inside the re-entrant cavities, by pin-
ning the triple contact line at the overhangs. The Cassie-Baxter states can thus become
metastable in a large region of the wetting diagram, in particular in the wetting region
(θ < 90◦), which is a possible mechanism for wetting inversion [147].

More intriguing are recent experimental observations that surfaces made by ion
etching techniques are able to produce wetting inversion, but their structure is not pre-
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senting multivalued cavities, as far as AFM measurements could show [250]. These
etched surfaces have fractal character. Berim et al. [31] also pointed out in a DFT
study that for nanowetting the Wenzel theory need not to be hold. Daub et al. [76]
and recently Leroy et al. [180] report similar results from MD simulations. Each of
these simulations deal with regular corrugations of the solid interface. It is the pur-
pose of this chapter to investigate the possibility of wetting inversion for monovalued
surfaces. In particular we have two experimental setups in mind which may described
by PF simulations: substrates made of tips, like carbon nanotube coated surfaces, or
substrates made of ridges, like the one obtained by ion-etching techniques. By play-
ing with various geometrical parameters (thickness, width, depth, disorder, . . .) we
investigate the wetting diagram of these surfaces and we discuss the contribution of
geometry to the metastability of the Cassie-Baxter states and to the Wenzel wetting
inversion. Rather than studying wetting on fractal surfaces, we shall focus on the
smallest physical length scales in the hierachy of length scales on real fractal surfaces.

3.1. Classical wetting theory

3.1.1. Wenzel theory

The classical wetting theory of Wenzel [311] and Cassie-Baxter [58] describes macro-
scopic wetting situations, where a large drop is spread over a corrugated surface. The
term macroscopic here specifies the lengthscale L of the roughness, i.e. microns and
larger. Also it is assumed that the drop radius Rd is much larger than the roughness
lengthscale L [198, 200, 203]. Further, it is assumed that line tensions are negligible.
The roughness factor r describes the ratio of the actual wetted surface A0 by the pro-
jected surface Ap in the homogeneous wetting regime. Under the assumption, that r
is homogeneous everywhere on the substrate, the Wenzel law can be derived from the
Young-Dupré equation for a flat surface γ cos θ = γSV − γSL, where θ is the contact
angle on a flat and homogeneous substrate, γ the liquid-vapor surface tension and
γSV and γSL are the solid-vapor solid-liquid surface tensions resp. The right-hand
term describes the energy needed to remove the solid-vapor interface and to build up
solid-liquid interface per unit area of the flat surface. For a rough wall the energy
is amplified by r > 1, since the total wetted surface area A0 is larger than the pro-
jected surface area Ap [311, 200, 245] and classical Wenzel wetting angle is given by
cos θWeff = r cos θ (see left panel in fig. 3.1).
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Figure 3.1. Corrugated substrate geometry: A0 is the total substrate surface area, Ap its pro-

jection, f is the fraction of the projected area, which is wetted, the total roughness

factor r = A0/Ap and the wetted roughness factor r f describes the roughness of

the wetted part only.

3.1.2. Cassie-Baxter theory

On some rough substrates there exist also heterogeneous Cassie-Baxter wetting states
(“fakir“-states). In this regime the parameter f denotes the fraction of the projected
area Ap which is wetted. In terms of the total wetted area ASL the roughness of the
wetted surface fraction is r f = ASL/( f Ap). From Laplace’s equation it follows that
the meniscus radius inside the roughness valleys is the same as the drop radius Rd

(assuming that the vapor pressure in the air pockets equals the ambient pressure).
Since Rd is much larger than L the liquid-vapor interface can be estimated by a flat
surface patch. Thus 1− f is the fraction of the projected area Ap which is non-wetted
and thus c1− f (1− f ) is the total area of the liquid-vapor interface below the drop. The
prefactor c1− f takes an inclined liquid-vapor surface into account. Thus the energy
needed to build up a heterogeneous wetting state spreading a drop on the surface is
r f fγ cos θ − c1− f (1− f )γ [200]. For simple regular pillars there is only one hetero-
geneous state possible with r f = 1 = c1− f and we get the well-known Cassie-Baxter
equation cos θCBeff = (cos θ + 1) f − 1. We shall denote the effective (apparent) wetting
angle θeff θWeff for homogeneous resp. θCBeff for heterogeneous wetting states, when dis-
tinction is necessary. The right panel of fig. 3.4 shows a schematic wetting diagram of
a monovalued substrate.
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Figure 3.2. Illustration of omniphobicity. A flat and chemically homogeneous surface of e.g. a

non-polar substrate material exhibits intrinsic contact angles (CA) θ less than

90◦ for non-polar liquids and CA greater than 90◦. An omniphobic substrate is

supposed to exhibit repellent behavior for both types of liquids, described by the

effective/apparent contact angle.

3.1.3. Multivalued surfaces and omniphobicity

Figure 3.2 illustrates the generic properties of an omniphobic substrate. A homoge-
neous substrate made of, for example, a non-polar material has a contact angle (CA)
less than 90◦ for a non-polar liquid, and larger than 90◦ for polar liquids (left states).
Apparent contact angles of a heterogeneous substrates typically enhance the intrinsic
wetting behavior, but do not show a wetting inversion, i.e. different signs of the cos θ

and cos θeff. However, certain surface treatments may render the surface omniphobic,
i.e. the apparent contact angles are larger than 90◦ for both types of liquids (right
states).

In the Wenzel- and Cassie-Baxter theory, it was presumed that the corrugation of
the substrate is monovalued, i.e. points on the projected area Ap correspond to an
unique point of the rough interface, or to a vertical wall. Multivalued surfaces exhibits
overhangs as it is illustrated in fig. 3.3. At the sharp corners of an overhang pinning
can appear. Inclined side walls with an overhang angle β < π/2 the flat liquid-vapor
interface has to be enlarged during the intrusion. E.g. for a symmetric multivalued
groove with angle β the energy to wet a surface patch dl at the side wall of a ridge
is (γSV − γSL)dl while the energy to increase the liquid-vapor interface is γ cos βdl.
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Figure 3.3. Examples of mono- and multivalued substrate geometries. Metastability is ex-

ploited to gain omniphobicity with multivalued geometries.

Thus intrusion is hampered when cos β < cos θ. We call this states fakir-states, too.
Comparing the energies of fakir states and the homogeneous wetting state shows that
fakir-states are metastable when cos θ > 0 for all substrate-shapes, as we shall demon-
strate below. Figure 3.4 (right panel) is a schematic wetting diagram of a multivalued
substrate. The metastable CB branch is prolonged to positive cos θ. Since intrusion
is blocked, the breakdown of the fakir state is driven by a nucleation process [147] at
some small CA θ = θm ≪ π/2.

3.1.4. Metastability of the Cassie-Baxter state and superhydrophobicity

The classical wetting theories mentioned above, were extended by Marmur [200, 198]
to answer the question whether a heterogeneous wetting state is possible or not. Start-
ing from the Gibbs energy of a drop (in analogy to the derivation of the Young equa-
tion)

G = γALV + γSLASL + γSVASV, (3.1)

where the surface areas ALV, ASL, ASV depend on the Young angle θ and the wetted
fraction f (see the left panel fig. 3.5). The latter is a representation of the intrusion
depth. As before, the roughness factor r f is a function of f . The wetting state is
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3. Nanowetting and omniphobicity

Figure 3.4. Left: The diagram shows a prototype of a wetting diagram for corrugated sub-

strates (non omniphobic/monovalued), which connects the effective contact an-

gles to the intrinsic one. The solid line in the center of the diagram is described

by the Wenzel (W) law cos θeff = r cos θ for homogeneous wetting states. On

the left bottom quarter the solid line (blue) obeys the Cassie-Baxter (CB) law

cos θeff = r f f cos θ + f − 1, which describes the heterogeneous wetting situa-

tions. In the top right quarter, the red solid line corresponds to an inverse Cassie-

Baxter state. Dotted lines describe metastable wetting states. Right: Schematic

wetting diagram of multivalued substrate (cf. Figure 3.2). Nucleation in the

grooves spawn a breakdown of the fakir state at some wetting angle θm. In the in-

verse Cassie-Baxter regime (iCB) crenels are filled liquid, independently whether

a drop is spread above or not.

therefore a function of f and θeff

ALV = 2πR2(1− cos θeff) + (1− f )πR2 sin2 θeff

ASL = πR2r f f sin2 θeff

ASV = −2πR2 sin2 θeff + r1− f (1− f )πR2 sin2 θeff + const. (3.2)

Plugging this into (3.1) one obtains a minimization problem in the two variables f

and θ, where the case f = 1 corresponds to the homogeneous wetting regime. The
heterogeneous CB-states are local minima or a border minimum at θeff = π. Marmur

proofed that the existence of such a local minimum if d2r f f

d f 2
> 0, θeff < π and the

Cassie-Baxter equation can be fulfilled [200]. In the case d2r f f

d f 2
< 0 no CB-states exists

56



3.1. Classical wetting theory

Figure 3.5. Left: Schematic sketch of the geometry in the heterogeneous wetting regime. Note

that in the Cassie-Baxter theory the drop is assumed to be much larger than the

length-sclaes of the roughness. Right: Heterogeneous wetting situation in an

arbitrary rough substrate. ACB
SL + ACB

SV = A0

for θeff < π. Finally the often discussed case d2r f f

d f 2
= 0 (e.g. crenels) is particular.

Thus the quantity r f f plays an important role, whether superhydrophobic CB-states
are supported or not.

In a 2008 paper Marmur extended this theory to multivalued surfaces [198]. Mar-
mur derived the necessary condition for the existence of heterogeneous states at hy-
drophilic Young angle θ as

d2 f

dz2
− cos θ

d2(r f f )

dz2
> 0, (3.3)

where z is the intrusion depth of the meniscus, f is again the fraction of the wetted
projected area and (r f f ) is the totally wetted area. In this study, for some examples
it was found that the Wenzel state is favored for hydrophilic intrinsic contact angles,
while the heterogeneous state is metastable.

Indeed, one can demonstrate, that in the classical wetting theory the homogeneous
W state is stable with respect to the heterogeneous CB state— whatever the geometry
is—when cos θ is positive (under the assumptions of section 3.1.1). To check whether
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3. Nanowetting and omniphobicity

the homogeneous wetting state is stable, one have to compare the Gibbs energies
G = ASLγSL + ASVγSV + ALVγ of all possible states. For the homogeneous wetting
state (only solid-liquid interface) the Gibbs energy is simply:

GW = AW
SLγSL = A0γSL. (3.4)

The heterogeneous wetting state (fakir-states only) Gibbs energy writes

GCB = ACB
SL γSL + ACB

SVγSV + ACB
LVγ. (3.5)

Using the Young equation cos θ = (γSV − γSL)/γ and the geometrical identity ACB
SL +

ACB
SV = A0 (see fig. 3.5), we get an equation to compare the unique homogeneous state

with all possible heterogeneous states:

g :=
GW − GCB

γ
= A0

γSL

γ
− ACB

SL
γSL

γ
− ACB

SV
γSV

γ
− ACB

LV (3.6)

Minimizing the Gibbs energy in the thermal equilibrium state tells, that the homoge-
neous state is stable, if g < 0 :

g = ACB
SV

γSL

γ
− ACB

SV
γSV

γ
− ACB

LV (3.7)

g = ACB
SV(− cos θ)− ACB

LV (3.8)

0 > −ACB
SV

ACB
LV

cos θ − 1 (3.9)

A stable W state has to be favored over all heterogeneous states, therefore we define

τmax := max(ACB
SV/A

CB
LV) > 1, (3.10)

maximized over all heterogeneous states. In the intrinsically partially non-wetting

states (cos θ < 0) it follows that 1 > − ACB
SV

ACB
LV

cos θ and finally we get that the homoge-
neous wetting state is the stable state, if τmax is small, so that

1 > −τmax cos θ (3.11)

is obeyed. If cos θ > 0 then the inequality (3.11) is always fulfilled, i.e. the homoge-
neous state is stable.
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3.1. Classical wetting theory

Fractal surfaces Herminghaus [125] proposed fractal surfaces to gain omniphobic
behavior. Supposing, that at very small length-scales the substrate consists of grooves
or holes (protrusions would be also possible), so that a Cassie-Baxter state can be
formed (see left panel of fig. 3.6). As discussed above, overhangs are needed in the case
θ < π/2. We shall discuss wetting on self-affine structures, i.e. similar grooves appear
at different length-scales. Two of this iterations are sketched in fig. 3.6. Herminghaus
assumed for the first member of the hierarchy roughly molecular dimensions so that
one can span several orders of magnitude up to the capillary length [125].

The Young contact angle is denoted θ0 = θ as the first member in a hierarchy of
apparent contact angles. The CB equation for a flat substrate with different Young
angles θi, due to the chemical nature of the substrate reads

cos θCBeff = ∑
i

fi cos θi, (3.12)

where ∑i fi = 1 and i runs over all substrate patch types with different chemical
properties. The geometrical CB equation is obtained in the case, where
i ∈ {liquid− air, solid− liquid} and the wetting angles θi ∈ {π, θ}. The CB-equation
of the grooves at the smallest length scales is

cos θ1 = f0 cos θ0 + (1− f0), (3.13)

where f0 denotes the wetted fraction of the surface. At the next level, it is argued,
that the wetting angle of the drop at the coarse-grained fraction of the wetted area f1

exhibits θ1 as ”intrinsic“ contact angle, and so on. On each level, the apparent contact
angle is therefore

cos θn+1 = fn cos θn + (1− fn). (3.14)

This sequence is monotonic, when 0 ≤ fn ≤ 1 and converges (since 0 ≤ cos θn ≤
1) to cos θ∞ = −1. Herminghaus showed also that for sufficiently large cos θn, the
sequence converges exponentially fast [125]. On the other hand, if θ < π/2 one can
construct a recursion relation for the inverse Cassie-Baxter states. This results to a
perfect wetting limit cos θn → 1. This is consistent to experiments, where liquid is
pressed into the grooves of superhydrophobic leaves. The soaked leaves showed a
wetting angle close to 1 [125]. Fractal surfaces and wetting is a long-standing topic
with theoretical contributions [68], simulation studies [321] and experiments [250].
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3. Nanowetting and omniphobicity

Figure 3.6. Self-affine substrate: Similar corrugation appears at several length-scales, from

molecular lengths to capillary length.

3.2. Experimental findings

In this section the experimental findings are briefly reviewed, starting with studies
of superhydrophobic behavior and the famous Lotus effect to more recent studies of
omniphobic substrates, either multivalued or monovalued.

3.2.1. Superhydrophobicity

First the Lotus effect i.e. superhydrophobic behavior was found in nature in 1977 and
studied by biologists [25, 26, 226]. For around two decades it is mimicked on artificial
substrates [38, 245]. While superhydrophobicity is connected to large contact angles
and small contact angle hysteresis, in this paragraph only the large contact angles
are considered, because these effects are captured by the Wenzel and Cassie-Baxter
equations, while no consistent theory for the contact angle hysteresis exists [201] (see
chapter 4). Lafuma and Quéré confirmed the low adhesion in the CB state [171] re-
flecting the typical low contact angle hysteresis.

There is a discussion in several papers, arguing that Wenzel- and Cassie-Baxter-laws
fail to predict experimental findings [109, 108, 93], while Marmur [201] and McHale
[203] resolved this misinterpretation of experiments. The experiments were made
with drops of sizes comparable to the lengths of the corrugations or chemical hetero-
geneities. The classical wetting laws therefore are not applicable to these problems. On
the other side Oener measured the maximal length scale of 32µm for superhydropho-
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3.2. Experimental findings

bicity [236]. In a nice paper of Barbieri et al. [21] the authors investigate systematically
the CB and W coexistence and transition on microstructured superhydrophobic sub-
strates. We are not aware of earlier studies confirming both laws as accurately.

3.2.2. Multivalued omniphobicity

Feng et al. [96] found for the first time omniphobic behavior with aligned carbon
nanotubes (CNT), which exhibit a multivalued surface. In a considerable amount of
experimental papers authors proposed a wide range of methods to produce multival-
ued structures and verified their omniphobic features. Tuteja et al. [300, 301] proposed
disordered polymer-fiber networks and micro-hoodoos (T-shaped silica posts), Chha-
tre and co-authors [65] proposed woven fiber-networks as cheap re-entrant substrates
and studied the break-through behavior as a function of pressure. Others produced
multivalued cellulose surfaces and showed the repellency for several liquids [19, 142].
Nanonails and honeycombs with overhangs were produced by Ahuja et al. [3] and om-
niphobic features of such substrates were checked with electro wetting. Silica nanon-
ails are also used in works of Karlsson [154]. Porous silica films with special etching
techniques were presented in a papers of Cao and others [56, 55]. Coaxial electrospin-
ning is used by Han and Steckl [121]. And Zimmermann et al. [327] exploited silica
coated nanofilament networks to demonstrate omniphobicity.

On probably multivalued surfaces Feng et al. [97] report the so-called petal effect,
i.e. drops exhibit a quite repellent apparent contact angle of more than 150◦, but with
high adhesion, so that drop sticks up side down. This was found on petals of red roses
(rosea Rehd).

3.2.3. Monovalued omniphobicity

One recent experiment differs quite a lot from those mentioned above. Ramos et
al. [250] report omniphobicity on probably monovalued surfaces and the apparent
contact angles are systematically studied for a variety of liquids. Figure 3.7 shows
AFM images of the fractal surface under consideration, which were obtained from
amorphous silica, treated with an iron-etching method. Then, the surface was grafted
with perfluorooctyltrichlorisilan (PFOTS), so that it became hydrophobic. From a for-
mer Ramos et al. paper [249] it is known that this surface is superhydrophobic with an
apparent water contact angle of 158◦. Oil drops were deposited on top and the appar-
ent contact angle was measured optically. The intrinsic contact angles were measured
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3. Nanowetting and omniphobicity

Figure 3.7. Roughness profiles of the Ramos experiments. Figures taken from ref. [250].

Figure 3.8. Wetting diagram of superhydrophobic and omniphobic fractal surface from the

Ramos experiment. Figure taken from ref. [250].

independently and the wetting diagram is reported. It is presented in fig. 3.8. It is
shown that a CB-like branch exists, even in the oleophilic part of the diagram and a
strong change of the slope indicates W-like states. It is concluded, that probably om-
niphobic behavior is explained by re-entrent (multivalued) surface structures. Though
multivalued topologies cannot be found with AFM measurements. Further, Ramos
refers that no condensation process is observed, but a progressive emergence of mixed
CB-W states is most likely. This intriguing results leaves the question, if a random
rough surface without re-entrant features can exhibit omniphobicity?

62



3.3. Simulations in the literature

Figure 3.9. Wetting diagram of alkylketene dimer fractal surfaces. Figure taken from

ref. [235]. Note, the apparent contact angle is denoted θf here.

Another paper discussing alkylketene dimer fractal surfaces was published by Onda
et al. [235]. Interestingly they present a wetting diagram with a smooth transition to a
Wenzel-like branch from both sides (see fig. 3.9). Further, one might guess that their
wetting diagram shows a slight Wenzel wetting inversion.

3.3. Simulations in the literature

DFT simulations Berim and Ruckenstein [31] published a 2D DFT analysis of nan-
odrops on chemically rough and also on geometrically rough surfaces. A free energy
functional for modeling Lennard-Jones like fluids were used, together with a Lennard-
Jones like fluid-solid coupling. Such an approach recovers also the layering effects in
the vicinity of the wall. The Wenzel and Cassie-Baxter equations were tested against
roughness variations, by changing the height of the ridges. The width of the pillars a

were fixed to 2σ and the spacing in between was 4σ. Nanodroplets were used and the
contact angle was determined by geometrical methods; a complex dependence of the
apparent contact angle on the nanodrop volume is reported. Intervals of the rough-
ness parameters were found, where the Wenzel contact angle increases, despite the
hydrophilic nature of the smooth interface.
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3. Nanowetting and omniphobicity

MD and MC simulations Most studies use nanodroplets and a geometric method to
find the contact angle [324, 188, 128, 160, 189, 190]. Ingebrigsten et al. [136] found that
even on smooth surfaces (9-3 Lennard-Jones potential) finite size effects (line tensions)
of the Young contact angle play a role, in particular on hydrophilic substrates. Werder
et al. [312] studied the SPC/E water model on graphite surfaces and report finite size
effects too.

A recent paper by Daub et al. [76] studies water molecules (SPC/E model) on top
of a (111) graphite layer with and without molecular asperity decoration on a broad
range of surface coverage factor f . The Cassie-Baxter law is checked. The roughness
depth is quite small with h ≈ 1 − 3σ and the drops are nanometric consisting of
2000/4000 atoms, which lead to drops bridging 2-5 times the periodicity length L

of the patterns. It is reported, that water cannot penetrate the grooves, when the
spacing is less than 10Å which is the size of a few water molecules. A clear impact
of the corrugation topology is reported, i.e. different topologies with the same f can
exhibit different apparent contact angles in heterogeneous states. However, qualitative
agreement with the CB law was found. Quantitative agreement cannot be expected
due to small size effects. Also, hydrogen-bonding effects are discussed, stating that
individual asperity atoms are covered, similar to small solutes. With MD simulations
one could also observe thermal motion of nanodrops, and interestingly the motion
diffusivity increases with hydrophilicity.

To overcome limits of nanodrops a very recent paper of Leroy et al. [180], applies
a so-called phantom wall method to perform a thermodynamic integration to obtain
the surface tension [178, 179]. They showed that at nanometric scale the details of
the corrugations are much more important, thus the Wenzel law cannot be applied
anymore and the CB equation only holds qualitatively. For this study, the SPC/E
water model was used, and the wall was made of graphite with certain regular defects,
bridging the parameter f from 0.5 to 1. Although only 2790 water molecules were
used, finite drop size effects (e.g. line tensions at the triple line or curvature dependent
pressure) is not at play, since the thermodynamic integration method leads directly to
surface tensions, similar to our approach. Furthermore, several realizations of f =

0.75 topographies were checked against the CB equation. Wenzel states are found
on certain topographies. It was further reported, in agreement with Daub’s findings,
that perturbations of the hydrogen bond network have a strong impact to the surface
tensions. While most of the MD studies on wetting are performed for highly specific
systems, we are not aware of any generic study of apparent contact angles at the scales
under consideration.
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Grzelak et al. [115] report in an MC study on the applicability of the Wenzel law at
nanoscale. A sinusoidal wall of distinct atoms interacting via a Lennard-Jones cutoff
potential with the fluid particles (the fluid is also modeled as Lennard-Jones fluid).
From the free energy the contact angle is recovered, so that they can work without
triple lines, similar two the latter MD study above. The authors state that Wenzel’s
equation underestimate the contact angle on small scale rough substrates. One have
to be aware, that the distinct wall atom configuration in a sinusoidal substrate leads
to heterogeneous ”intrinsic” structures, which might have an impact to an effective
roughness factor in the Wenzel formula. Effective roughness and geometrical rough-
ness cannot be defined on molecular scales without arbitrariness. A study of the
contact angle dependence of the Wenzel equation is not performed in this study.

LB simulations LB simulations are widely used to study two and three dimensional
wetting problems on scales of microns. Recently a LB model has become popular,
which takes into account a diffuse interface term, which is compareable to the square
gradient description in our model [164, 167, 291, 50, 49]. The wall interaction in this
LB model is described by a contact potential at the lattice adjacent to the wall. This
model is able to recover macroscopic wetting properties as well as dynamical behavior
like contact angle hysteresis. In the lattice Boltzmann equations, typically isothermal
conditions are assumed and the number of particles is conserved. Thus, the wetting
relaxation of drops is with respect of its volume. Often, this finite drop volumes cre-
ate additionally metastable states. Kusumaatmaja et al. [164] studied for example the
collapse transitions of small drops on superhydrophobic surfaces during quasistatic
evaporation. Two distinct collapse scenarios are reported. Either only few posts sup-
port the drop or the meniscus touches the ground surface. The same authors studied
in [169] the wetting and contact angle hysteresis in asymmetric corrugated stripes,
where partially suspended states occur. Further works have been done on 3D drops on
grooved substrates, reporting anisotropic drop shapes [167]. Interestingly they found
that parallel to the stripes, where no pinning occurs the Wenzel law holds, while per-
pendicular metastabilities lead to large contact angle hysteresis and the well-known
wetting laws can not applied. In ref. [265], Sbragaglia and others discuss LB applica-
tions of flows in nanochannels. A Shan-Chen multiphase description is used, and the
authors demonstrates that under the conserved-dynamics constraints the wetting state
is controlled by the pressure. Since the focus is more on apparent slip in that paper,
we shall come back to it, when we discuss slippage.
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3. Nanowetting and omniphobicity

3.4. PF simulations

In this section we shall discuss—based on findings in PF simulations—that omnipho-
bicity can be found also on monovalued substrates. This phenomena can be explained
with line tensions, which are not included in the theories above. It will be shown that
these line-contributions can be easily added to the Wenzel-law.

Random-rough surface simulations Monovalued random rough surfaces (RRS) ge-
ometries show a large variety of wetting phenomena. We present as an example in
fig. 3.10 a wetting diagram of simulated RRS (open symbols) and experimental RRS
from ref. [250] (solid dots). Comparing the simulation data and the experimental
results with the typical wetting diagram—shown in the insert—one notices that the
change from the apparent non-wetting (cosθeff < 0) substrate to the apparent wet-
ting substrate (cosθeff > 0) is found at quite small intrinsic wetting angles—far away
from θ = π/2. From the data it remains unclear whether the experiments show two
branches (W and CB) with a sharp transition or with a smooth change from one to the
other. Either hypothesis remains plausible from the experimental data. In the main
panel of fig. 3.10 the open squares represent the wetting states for the RRS geometry
(S1) that mimics experimental surfaces from ref. [250]. Details on the definition of S1
and S2 can be found in the appendix A. Although this choice (specified in app. A) is
simplistic, it reveals the physical phenomena observed in the experiments. From three
realizations of (S1) we estimate an error of ∆(cos θeff) = 0.05. The geometry (S2) is a
simplified version with regular pillars and random distributed crenel width chosen in
a way that the W branch of the S1 wetting diagram is reproduced. We can check in
fig. 3.10 that the wetting diagram of S1 is fairly well reproduced by S2. As it is a much
simpler geometry we shall use S2 and regular crenels for further investigation. Three
interesting features in the diagram are highlighted with boxes which we shall discuss
later in detail.

A: This box highlights the change from non-wetting to wetting (cos θWeff) which is
displaced from the origin. We call this effect Wenzel wetting inversion. It is in contrast
to Cassie-Baxter wetting inversion, which makes use of the metastability as discussed
above. The simulation results (S1, S2) indicate a change at the crossover contact angle
cos θWc ≈ 0.35 (inversion contact angle). The experiments of ref. [250] show even
a larger cos θc ≈ 0.6. B: S1: The transition from CB to W is smooth (due to the
roughness). The two branches follow the same curve in a quite broad interval. But a
distinct transition still exists as we shall discuss later. We call this a hidden wetting
transition. C: While at large θ the CB branch is stable, the W states exhibit a strongly
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Figure 3.10. Wetting diagram of monovalued S1 and S2 substrate geometries—obtained with

the PF model. The black dots are experimental results from ref. [250]. Three

nanowetting phenomena of the simulation results are highlighted and compared

to the typical wetting diagram of fig. 3.2: A: The change from non-wetting to

wetting (θWeff = 0) is found at hydrophilic intrinsic contact angles θ (wetting

inversion). B: For intermediate contact angles θ, a smooth transition from the

CB branch to W branch is observed. The wetting transitions itself is hidden

by the fact that both branches follow nearly the same curve whilst the wetting

situation is quite different. C: For large intrinsic contact angles θ the CB state is

stable and the W states show a strong roughness dependent metastable behavior.

roughness dependent metastable behavior. The first two effects are focused in this
section the latter in the next section.
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3. Nanowetting and omniphobicity

Corner energy In this paragraph we focus on theWenzel wetting inversion for monodis-
perse pillars. The Wenzel wetting inversion angle θc is defined as the root of W branch
(cos θWeff(θc) = 0) in the wetting diagram. The contact angle of the heterogeneous wet-
ting state is given by the Young-Dupré equation using the effective surface tensions
(γeff

SV: situation d in fig. 3.12 and γeff
SL: situation a ib.).

cos θeff = r cos θ + 2
ε

Lγ

r = 1+ 2h/L

ε = εU + εD

(3.15)

Figure 3.11. Corner Energies ε (line tensions) occur in W states. On mesoscopic scales

(. 100 particle diameters) a significant contribution to the W wetting angle

occurs [35].

We computed the wetting diagrams of crenels as a function of the nanometric pillar
widths a (for the geometry see fig. 3.11) and measured the inversion contact angle
θWc . This is shown in fig. 3.12. The main panel presents the W branches for various
nanometric pillar widths a and the experimental data from ref. [250]. As we can see
the smallest pillar width roughly corresponds to the experimental findings, but the W
wetting inversion decreases rapidly with increasing pillar width. The insert displays
the W wetting inversion angle as a function of a.

Apparent contact angles on mesoscopic scales (≈ 15-100 atomic diameters) already
show some mismatch to the classical Wenzel law cos θeff = r cos θ. This can be under-
stood as a line tension along the edges of the grooves [35]. In homogeneous wetting
state the liquid is convexly curved at the bottom corners and concavely curved at the
edges of the pillars. Compared to flat substrate the wall potential is less attractive at
an outer edge and more attractive at an inner corner (see fig. 3.11). Quantitatively
these line tensions can be estimated in the PF simulations in several ways. First we
notice that there are two distinct corner energies: εU at the upper corner and εD at the
lower corner.

These line tension can be interpreted as the “microscopic” correction to the “macro-
scopic” grand-canonical potential. Unfortunately the definition of the of the “macro-
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Figure 3.12. Wetting diagram: W branches of monodisperse pillars with pillar width a =

(0.67, 1.33, 2.67, 5.33, 10.67)σ; (L− a = h = 13.3σ). The insert shows the in-

trinsic cos θ, where the substrate changes from non-wetting to wetting (cos θWc )

as a function of the pillar width a. For pillars with only atomic thickness the

Wenzel wetting inversion angle θWc is comparable to the experimental findings

of ref. [250] (solid dots).

scopic“ grand potential is somewhat difficult. There are two microscopic effects: De-
viations due to the confinement and more important, the line tensions at the corners.
We used three different methods to measure this excess energies. First, if the crenel
is sufficiently large one can measure the “macroscopic” grand-potential in the middle
of the crenel flank and extrapolate it to the corners as sketched in fig. 3.14 (panel a)
We use this extrapolated grand-canonical potential (panel b) as a reference field and
subtract the real one. The excess-field (panel a-b) can be integrated around the edges
to obtain the corner energies εU and εD. Upper corners are repellent (εU > 0) and the
lower corners are attractive (εD < 0). Interestingly, these energies are θ-dependent and
the overall effect varies from attractive for large θ to repellent for small θ (see fig. 3.14).
To ensure that the corners are sufficiently large in fig. 3.14 three different values for
the corner heights h are used and no deviation for d/L = 3/4 and d/L = 1 are visible
[35].

A second way to define the corner energies is to use the Euclidean distance map
EDM(r). This is a mapping of each point r in the Euclidean space E (here the simu-
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lation box) to its (smallest) distance to the substrate. Then, on a planar wall the EDM

is mapped onto the grand canonical potential density ω(r) = ω(e), where e is the
distance to the substrate. Using the EDM method in the corrugated system yields a
reference field, which is independent of the confinement inside the crenels. Subtrac-
tion from the real grand-canonical potential gives the excess energy, which is again
integrated over subpatches to define the corner energies εU and εD. This method give
virtually the same results as the first method, but it is also useful in more complicated
geometries.

A third method is to use the classical Wenzel law as a reference and to subsume the
corner-energies as a deviation from the measured W contact angle to the ideal one in
a sufficiently large crenelated system. Using eq. (3.15) yields the total corner energies
ε. This handy method is useful only when no distinction between lower and upper
corners is necessary.

In fig. 3.15 the Wenzel-law plus the corner-energies (measured with the first (ex-
trapolation) method) is compared to the PF simulation results. The solid line is the
enhanced Wenzel-law (3.15), while the dotted lines show the classical Wenzel law.
Clearly, the agreement is significantly enhanced. These effects are already visible in

ε
U

D
ε

(a) (b) (a−b)

Figure 3.13. Corner energies. (a) Excess grand-canonical potential, as measured at equi-

librium; (b) Expected excess grand-canonical potential from macroscopic con-

siderations (a-b) difference between the two: white means positive values, black

corresponds to negative values. The gray background in all figures is the zero

level. The dashed lines in (a) represent the grand canonical potential profiles that

are propagated in the direction of the arrows to construct (b) [214].
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Figure 3.15. Measured wetting diagram for crenelated surfaces.

the wetting diagram for mesoscopic structures. Their quantitative contribution is quite
weak, when the corner density is small, as it is supposed for macroscopic structured
systems (i.e. the corner contributions scale like 1/L, where L is the periodicity of the
structure). Thus corner energies ε weakly contribute to the observed W wetting inver-
sion.
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Needle tip effect
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Figure 3.16. Attractive parts of the wall potential: Left: potential of the PF model, obtained

from a continuous wall particle density, Middle: microscopic potential of dis-

crete wall atoms. Repulsive parts are black colored. Top: pillar width a ≈ 3σ

Bottom: a ≈ 1σ Right: The continuous wall potential is a mean field model

of wall particles with density ρwall which interact via a Lennard-Jones potential

with the fluid particles distributed with density ρ.

For microscopic/nanometric pillars (a ≈ 1σ) there is an extra energy penalty which
can be even larger than the corner energy for mesoscopic pillars. This non-linear
effect is strong enough to render a substrate with an intrinsic contact angle of θ ≈ 60◦

non-wetting. One may think that this effect results from a less attractive interaction
potential at both sides of a thin pillar compared to a thick one. In that case the effect
should strongly be height-dependent. As we only observe weak h dependence (see
insert of fig. 3.18) we conclude that the energy penalty is mainly located at the needle
tip. It is noteworthy that this is not an effect of the higher surface tension for a curved
interface as it is described by the Tolman length δ [295]. δ is the distance between the
equimolar surface and the surface of tension and is connected to the leading correction
term of the surface tension for small curvature radii and can be written as γR =

γ(1− δ/R + . . .). For small pillars the curvature diameter 2R of the liquid phase is
in the order of the crenel width a (see sketch in fig. 3.17 and one realization of S2 in
fig. 3.10). The extra energy at the pillar top associated to the Tolman δ can be written
as (γR − γ)πR when assuming a half circle shaped liquid-solid interface. Thus the
1/R scaling is canceled by R in the arc length πR leading to a curvature independent
correction +γδπ which is already included in the corner energy term ε.

Thin lines in fig. 3.17 with dots show the simulation results from the homogeneous
wetting state for three different pillar widths a. After subtracting the corner energies ε

one gets the thick lines presenting the macroscopic plus the needle tip contributions.
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3.4. PF simulations

The displacement of the Wenzel branch root out of the origin stems from the needle
tip effect. The tip effect vanishes when the pillar width exceeds a ≥ 2.7σ. In fig. 3.16
we compare the wall potential of discrete atoms, which would be used in microscopic
simulations like MD with the wall potential used in the PF model. For pillars of one
atomic diameter there is a depletion layer of the attractive wall potential on the needle
tip (only bright red needle tip potential), which vanishes for slightly larger pillars.
Large pillars still have a depletion zone on the upper edges.
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Figure 3.17. Wetting diagram of regular crenel with L− a = h = 13.3σ. Thin lines with

crosses show the simulation results. After subtracting the corner energies one

gets the thick lines presenting the macroscopic plus the needle tip contributions.

The displacement between the origin and the thick lines stems from the needle

tip effect. The tip effect vanishes as soon as the pillar width exceeds a ≥ 2.7σ.

The sketch on the right-hand side illustrates the surface tension γR on curved

substrates. The Tolman contribution is included in the corner energies.
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Figure 3.18. Cosine of inversion contact angle cos θc as a function of 1) crenel depth h, 2)

crenel width L− a and 3) pillar width a. Nanometric pillars can show a large

wetting inversion angle. The W wetting inversion effect of narrow crenels is less

important (squares: L − a = a = 10.7σ, circles: h = a = 10.7σ, triangles:

h = L− a = 10.7σ). The insert shows cos θc as a function of crenel depth h for

fixed nanometric pillar width a = 1.3σ, where the W wetting inversion angle is

only very weakly height-dependent.

In summary we can consider this as a dewetting needle tip effect which stems from
the less attractive potential directly on the top of the pillar (needle). This effect can
be quantified by measuring the extra energy from the PF simulations, but since it
is strongly a dependent it must be calculated for every a under consideration (see
fig. 3.17).

Crenel geometry

Two other parameters are important in the crenel geometry: the crenel width L− a

and the pillar height h. The W wetting inversion angles θc in fig. 3.18 as a function of
a, h and L− a (the other parameters are constant at values where the wetting inversion
effect is already leveled) demonstrates that the W inversion angle depends only weakly
on the depth h of the crenels since for large depths both corner contributions at the
outer and inner corner separates. Thanks to this separation mesoscopic crenels are well
described by the CB-W theory plus corner energies. For a very small depth h the corner
terms vanish together (see fig. 3.18). The width L− a of the crenel plays only a minor
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3.4. PF simulations

role to tune the W wetting inversion. Very narrow crenels entail a nearly symmetric
wetting diagram but without W states. This confinement prevents the liquid phase to
enter the crenel. Only a small number of particles enter and produce an intermediate
density with large energy penalties in the bulk and the interface term. In slightly larger
crenels the corners are too close to separate the regions connected with the corner-
energies. The non-linear character of the corner terms results to a minor increase of
the W wetting inversion.

3.4.1. Randomness

fig. 3.10 (Box B) demonstrates a smooth transition from the CB branch to the W branch.
This is visible for the S1 geometry but hardly for the more regular S2 geometry. This
smoothing stems from the irregular roughness of the S1 geometry. To model this
smoothing effect we write the mesoscopic wetting theory of ref. [35] in a stochastic
way and assume for simplicity regular pillars with constant depth h and width a but
a randomly distributed crenel width d ≡ L− a (see fig. 3.11).

To calculate the effective contact angle θeff from the intrinsic contact angle θ, we first
calculate the energy of the thermodynamic equilibrium state. There is a critical width
dkr for the wetting transition from the CB state to the W state. Larger diameters favor
filled crenels. We assume that the drop is much larger than the typical L. The overall
energy per unit area is

E =
∫ dkr

0

ECB + exp(−β∆E)EW

1+ exp(−β∆E)
P(d)dd+

∫ ∞

dkr

EW + exp(−β∆E)ECB

1+ exp(−β∆E)
P(d)dd, (3.16)

where the crenel width d is randomly distributed with the probability density P(d),
∆E = |EW − ECB| and β = 1/(kBT). In this expression EW and ECB is the average
energy in the homogeneous and heterogeneous wetting state per crenel-pillar pairs,
resp.:

ECB = −(γSV − γSL)
a

L
+

L− a

L
γ (3.17)

EW = −(γSV − γSL)
L+ 2h

L
. (3.18)

The critical crenel width dkr is given by the equality EW = ECB, which leads to dkr =
−2h cos θ
1.0+cos θ . Finally the effective wetting angle is defined via an effective Young equation
which can be written as cos θeff = − E

γ , and E = γeff
SV − γeff

SL.

So far this model does only describe the macroscopic theory. This is based on the
assumption that the excess energy due to wetting or dewetting is proportional to the
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3. Nanowetting and omniphobicity

wetted/dewetted surface area but not to the curvature. On a mesoscopic scale this
need not longer to be true. Line tensions like the corner contributions occur when
the liquid interface is curved at the edges of the pillars. Please note that we do not
take into account the needle tip effect. Of course these contributions are small for
macroscopic structures since they scale with the density of edges. Equation (3.18)
turns to be

EW = −(γSV − γSL)
L+ 2h

L
+

ε

L
(3.19)

This extra term leads to a symmetry breaking of the wetting diagram or more precisely
to a displacement of the W wetting state in the origin of the diagram to the right. The
amplitude of the displacement depends on the corner-energies ε and also on P(d).
With this extra term we get for dkr

dkr =
−2h cos θ + ε

γ

1.0+ cos θ
. (3.20)

We checked that the model works quite accurately for mesoscopic crenels and re-
produces a smoothed CB→W transition that range over an interval of about 0.3 on the
cos θ-axis (see fig. 3.19) for S2 geometries, if the variance of the crenel width distribu-
tion is large enough ( ≈ three times larger than S2 in fig. 3.10). This model does not
account for line tensions of the three phase contact line like other authors do [314].
Nevertheless, it is straight forward to add line tensions to the CB energy too.

In RRS S1 geometry it is even possible that the metastable branch follows nearly
the stable branch in the wetting diagram. It is thus not possible on such substrates
to identify the wetting state only from the wetting diagram. Figure 3.20 shows two
possible wetting situation with nearly the same effective wetting angle θeff. The right
situation shows a clearly suspended state, thus we call it a CB state, while the left
density profile is partially penetrated. Although this is not a strictly homogeneous
wetting regime the shape of the wetting diagram is reminiscent to the W branch,
except for the wetting inversion.
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Figure 3.19. The lines are computed with eqs. (3.16) and (3.19) for several distributions of

the crenel width (uniform- U(interval half width), binomial- B and Poisson- P,

δ-distribution) with equal mean value < (L− a) >= 10.7σ. The broader the

variance of the distribution the smoother the transition. The black dots in the

insert are simulation results (crenelated surface with a = 10.7σ,h = 13.3σ

and equal distributed crenels with widths (6.7, 10.7, 14.7)σ) together with the

theoretical results for the same geometry.

Figure 3.20. Wenzel-like and fakir-like states in the S1 geometry for cos θ = 0.09. The

effective wetting angles are cos θeff,W = −0.59 and cos θeff,CB = −0.60. We

observe the same effective contact angle in a quite broad range (0.09 ≤ cos θ ≤
0.25) for the CB and the W range although the wetting states are reminiscent

to the CB-W transition. Thus this transition can be hardly seen in the wetting

diagram of fig. 3.10.
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Figure 3.21. Energy gap |∆Ω|: ∆Ω := ΩWenzel − ΩCassie as a function of cos θ for different

crenel widths (L − a). The Cassie state minimizes the grand potential Ω if

∆Ω > 0. The points in this half space rest in the metastable Wenzel state.

The energy gap lowers with increasing width (L − a) for fixed cos θ but the

cos θ, where the collapse of the metastability increases with d in a way that the

maximal |∆Ω| also increases with (L − a). The bottom half-space ∆Ω < 0
indicates configurations, where the W state minimizes the grand potential Ω.

The points in this region correspond to metastable CB states, whereas points on

the ∆Ω = 0 line indicate that no metastability occurs. It is noteworthy that

in the lower half-space the energy gap |∆Ω| increases with larger (L− a) while

there is a critical cos θm where all metastabilities (for a crenel width L− a & 5σ)

collapse.

3.5. Metastabilities

Marmur [198] and others [125] pointed out that metastabilities can play an important
role gaining omniphobic surfaces. Marmur consideredmultivalued surfaces where the
liquid is pinned at the top of the cavities. Even monovalued nanostructures can exhibit
strong metastabilities avoiding the W state due to corner energies/line tensions. The
macroscopic CB-W theory does not allow metastable states between the CB and the
W state for positive cos θ and monovalued surfaces like crenels. The corner energies
εU at the outer edges of the pillars can support a metastable CB state up to a critical
intrinsic wetting angle cos θm ≈ 0.1.

78



3.5. Metastabilities

Fig. 3.21 shows the energy gap |∆Ω| defined as a difference between grand canonical
potentials for W and CB state: ∆Ω := ΩWenzel − ΩCassie or in other words—the energy
difference between the stable and the metastable state. By definition ∆Ω = 0 indicates
that no metastable state exists. For mesoscopic crenels (& 5σ) a critical wetting angle
θm can be found in the simulations that is independent of the crenel width L− a and
is a result of the upper corner energy contribution. The same mechanisms as for the
wetting inversion can support larger θm for nanometric pillars with a in the range of
a few atomic diameters (see fig. 3.22). Our findings show θm ≈ θc for these crenels—
reflecting the common origin of the two effects.

On the left side of the wetting diagram the simulations show a crenel width depen-
dent critical dewetting angle θM for nanometric crenels but a constant θM for larger
crenels. This width sensitive dewetting metastability collapse lead to the rather com-
plex W branch in fig. 3.10 leading to an unique CB state for cos θ ≤ −0.4. Corner
contributions on the upper corners increase the energy barrier between the suspended
CB state and the penetrated W state. Thus they play a role even on larger scale. Con-
versely the inverse dewetting transition is not affected by the corner energies, since it
is a nucleation process building up a new liquid-vapor interface from the bottom of
the crenel.
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Figure 3.22. Wetting diagram of regular crenel with L − a = h = 13.3σ and a =

(0.7, 1.3, 10.7)σ. The steep W branches show the stable W state at cos θeff = 0,
the other branches are the CB states (metastable on the right of the crossover) For

small pillar widths a existence of metastable CB states is increased to quite high

contact angles up to θ ≈ 35◦.
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3.6. Conclusion

We showed that even monovalued substrates can show omniphobic behavior and stud-
ied the dependence of the Wenzel inversion contact angle cos θWc on random rough
substrates on nanometric scales. The study of the inversion angle guides the focus to
thermodynamically stable non-wetting states which is in contrast to most of the stud-
ies on omniphobicity. Furthermore in the spirit of roughness induced non-wetting of
Herminghaus [125], the inversion angle is the limit to exploit the roughness to gain
a stable superhygrophobic/superomniphobic state. It was shown that among several
structure parameters small pillar widths a are the most efficient route to increase om-
niphobicity. In our PF simulations W inversion angles up to θc ≈ 60◦ for monovalued
substrates were found. This effect is based on two distinct microscopic energy cor-
rections (line tensions) at the corners and tips of a nanorough substrate. From these
findings we conclude that the experiments of Ramos et al. [250] correspond rather to
a W wetting inversion than to a metastable wetting inversion of the CB branch. The
needle tip effect might be combined with the idea of hierachical roughness proposed
by Herminghaus [125] in order to obtain superomniphobicity. While these line ten-
sion effects do not contribute to macroscopic roughness (i.e. when the corner and
tip density is small) one should not conclude that they are negligible because of the
stabilizing effect on metastability. Further we showed that on random-rough surfaces
it is not sufficient to study the wetting diagram when searching for a wetting transi-
tion from vapor-suspended Cassie-Baxter states to penetrated Wenzel states, since the
random-rough substrate can smooth out the transition. Nevertheless a wetting transi-
tion still exists. The filling of the crenel goes stepwise when the Young angle is varied.
The phase field model used in this study is a versatile method to bridge the gap be-
tween microscopic MD and MC simulations and more macroscopic Lattice-Boltzmann
techniques.
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4. Slip on nanorough substrates

The continuum description of hydrodynamics with the Navier-Stokes equation is of-
ten complemented with a no-slip boundary condition (BC). I.e., the hydrodynamic
velocity field vanishes in tangential direction at the substrate-liquid interface (which
is assumed to be sharp). For long time, there was agreement, that this BC is correct
for any hydrodynamic problem, although there is no strict physical argument imply-
ing this BC [174]. It turned out in the last years, that in microfluidic devices this
assumptions is not necessarily fulfilled in experiments. Thus, recently a lot of studies
were performed to investigate the actual BC behavior. Navier already proposed in
1823 [224] the so-called (partial-)slip BC, which turned out to be very useful modeling
microfluidics with the Navier-Stokes equation. This BC is based on a friction force
between the wall and the fluid proportional to the tangential slip velocity. As a result,
this slip velocity is in general proportional to the local shear rate, and we can quantify
this effect with the help of a “slip length” b (see fig. 4.1). This condition for the tan-
gential velocity is accompanied by v⊥ = 0 at the boundary, assuming an impermeable
solid. One have to distinguish two types of slip. The intrinsic (or molecular) slip de-
scribes the possibility of non-vanishing tangential velocities at planar or ideal substrate
boundaries. Such slip phenomena are found in molecular simulations, depending on
the pressure P [24], the intrinsic contact angle θ [41, 130] and the commensurability of

Figure 4.1. Navier partial slip boundary condition, the no-slip limit and perfect slip limit
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liquid molecules and the crystal structure of the substrate [41, 95]. One may think, that
slip is also velocity dependent. Many studies showed in a broad range of velocities,
that the slip length does not vary with the velocity v [73, 124, 64, 27]. Apparent slip
describes the phenomenon, that on a heterogeneous wall (rough or chemically het-
erogeneous) slip-lengths at different scales can occur. For example, in Cassie-Baxter
states a no-slip BC or partial slip BC (b1) is observed at the direct surface-liquid contact
while there is a perfect slip (b2 → ∞) at the liquid-vapor interface. On length-scales,
where the rough wall can be approximated by a flat wall, one may have a slip length B

related to the roughness length scale L. B is called the apparent slip length. According
to Lauga et al. we denote any slip phenomena which is not related to the intrinsic slip
only as effective slip [174].

Assuming a certain velocity vslip, one expects a friction force acting on the liquid,
which is proportional to vslip [224]

ffriction = −λvslip. (4.1)

For simplicity we assume a linear flow profile between two plates in a Couette exper-
iment of an incompressible liquid with bulk viscosity η, one finds the viscous force at
the surface z0

fviscous = η
∂v

∂z
|z0 . (4.2)

In a steady state the force is balanced and yields vslip = λ/ηv′ , where v′ is the con-
stant velocity profile slope, i.e. the shear rate at the boundary. From (4.1) we find the
dimensions of λ as N/m3 so that λ/η has dimension 1/m, which can be interpreted as
the inverse slip length 1/b. From this arguments it becomes clear, that measurements
of slip lengths from the velocity profile need a steady state flow. At low Reynolds Re
number

Re = ρm
vl

η
≪ 1, (4.3)

when the dynamics are dominated by the linear viscous term in the Navier-Stokes
equation and the non-linear convective term is negligible, the flow field is laminar
(evolving to a steady state). The latter case is described by the Stokes equation

η△v = ∇P (4.4)

In the heterogeneous wetting state, where free liquid-vapor interfaces are present, a
steady state flow may deform the free interfaces at high velocities. Therefore we work
at low capillary number

Ca =
ηv

γ
, (4.5)

where v is the typical velocity in the channel.
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Apparent slip vs. intrinsic slip Philip [243], Lauga and Stone [175] gave a theory for
apparent slip on rough substrates with parallel ridges in the Cassie-Baxter state. The
intrinsic slip is assumed to be perfect at the liquid-vapor interface and no-slip at the
solid-liquid surface patches. The apparent slip parallel to the ridges B‖ is

B‖ =
L

π
ln
(

1
cos((1− f )π/2)

)
, (4.6)

where f is the wetted fraction in the CB theory and L the periodicity of the pattern.
Lauga and Stone derived a similar formula for the perpendicular flow

B⊥ =
L

2π
ln
(

1
cos((1− f )π/2)

)
. (4.7)

Notice the factor 2 between both directions. Indeed, apparent slip is in general a tenso-
rial quantity representing anisotropic behavior, if the substrate roughness exhibits pre-
ferred directions [99]. This theory was extended by Cottin-Bizonne and others [73] to
partial slip for either of the heterogeneous patches (stripes); in the case b1, b2 > 1/10L

B‖ =
1− f

b1
+

f

b2
, (4.8)

where b1 is the intrinsic slip of the liquid-solid patches which covers the fraction f of
the surface.

4.1. Experiments and simulations

For slip-length measurements in experiments and simulations different methods are
used. While in simulations the velocity profile is directly accessible, in most experi-
mental setups tracking the velocity is not possible. Thus indirect methods have to be
used. These methods are based on the comparison of the actual flow rates Q and the
expected no-slip flow rate QNS. Together with a model for Q as a function of b one
can fit the slip length, and this method is used for various geometries: e.g. circular
pipes [64, 269]. Variations of this method, using sedimentation velocity instead of Q
are also used in the literature [174]. In surface force apparatus (SFA) and atomic force
microscopy (AFM) experiments comparison of drainage and viscous force gives esti-
mations of the slip length [305]. In some recent experiments one tries to gain access to
the velocity profile with tracker particles [263, 299].

In simulations, when the full velocity profile in a microchannel is known, it is easy
to obtain slip. From Stokes equation one knows the profile of either Poiseuille- (POF)
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or Couette (COF) flow analytically. Fitting to the profile either a parabolic function or
a linear slope respectively and extrapolation to the wall position z0 gives access to b

with the Navier BC for a flat wall

b ∂zvx (z)|z=z0
= vx (z)|z=z0

. (4.9)

For a flat wall there is no ambiguity with the defintion of z0, but for a rough wall the
situation is more complex. Various prescriptions can be chosen: For example (i) the
top of the structure (z0 = 0), (ii) the average position of the roughness profile, and less
arbitrary, (iii) we can use z0 as a fitting parameter as well. We shall call the value of b
obtained by assuming z0 = 0 “1 parameter fit” and the values obtained by adjusting b

and z0 “2 parameter fit”.

Assuming a POF profile vx(z) = a0z
2 + b0z+ c0 and a COF profile vx(z) = a1z+ b1

one obtains for the slip length b

b =
±
√

a20b
2
1 − a0a1b1b0 + a0a

2
1c0

a0a1
(4.10)

and for the wall position z0

z0 =
−a0b1 ±

√
a20b

2
1 − a0a1b1b0 + a0a

2
1c0

a0a1
. (4.11)

This method is referred to as 2 parameter fit. Notice the quantity z0 − b = −b1/a1
depends on the COF profile only, and equals the 1 parameter fit result for z0 = 0.
In certain cases one have to take great care when using the 2 parameter fit to pre-
vent numerical inaccuracy, which stems from numerical errors estimating the second
derivatives of the POF profile and the square root term.

4.1.1. Simulations

MD simulations There are two possible ways to obtain slip in molecular simulations.
In non-equilibriumMD one can average the velocity profile and apply a fitting method.
Unfortunately due to the small sizes and short time scales accessible with nowadays
computer power, thermal noise velocity is quite large compared to the pressure driven
flow. Therefore unrealistically fast flows are needed to obtain a reliable speed profile
in a nanochannel (tens and hundreds of m/s) [40]. Since this is far from experiments
and the Reynolds numbers are large, slip lengths in non-equilibrium MD simulations
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Figure 4.2. Slip length b and wall position z0 for 1 parameter and two parameter fitting

method. Poiseuille and Couette flow give virtually the same result, 2 parameter

method (2p) displays wall positions different from 0 and according to this larger

slip lengths. Notice for the 2 parameter method: z0 − b = −b1/a1.

are a priori not a good reference. However, Bocquet et al. [41] compared the non-
equilibrium MD results of Huang et al. [130] to various experimental results in the
literature and found a good agreement on the reported θ-dependence. Barrat and
Bocquet demonstrated, that slip is in principle accessible with non-driven equilibrium
MD, using a Green-Kubo approach to calculate λ [40]:

λ =
1

AkBT

∫ ∞

0
dt〈Ff (t)Ff (0)〉, (4.12)

where A is the surface area of the substrate in the observation box and Ff (t) is the
total microscopic tangential force at the surface. Recalling, that b = η/λ gives the
slip length. However, this method has the disadvantage, that the viscosity at the wall
differs in general from the viscosity in the bulk [267]. We used MD simulation findings
to adjust the intrinsic slip behavior of the PF model.

LB simulations While most of the LB studies impose no-slip boundary conditions,
methods are known to reproduce intrinsic slip [124]. Kunert et al. [162] used these
methods to understand the apparent slip in random rough microchannels. They aim
to estimate the effective wall position in means of the roughness parameters. Ridges
with Gaussian height distribution show that the effective wall position is roughly at
the position heff = hmean + 3.1σh, where σh is the standard deviation of the Gaussian.
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This means in practice the slip is dominated by the largest posts. Sbragaglia et al. [265]
report in a study of apparent slip in microchannels with regular and non-regular dis-
tributed ridges, that the slip lengths decrease dramatically when the wetting situation
is Wenzel-dominated. In the vapor-supported state they report slip lengths of 15nm.

4.1.2. PF simulations

As already discussed in the model section, the PF model has the merit, that no BC
has to be defined explicitly. Indeed, the effective BC is obtained from the steady state
solution, when working at low Reynolds- and low capillary number. The effective
(macroscopic) slip comes from the friction force fwall, like in eq. (4.1) and (4.2). The
intrinsic slip is controlled by fwall, while the apparent slip depends also on the geome-
try. Before we can use our model to measure effective slip lengths, the free parameter
k of fwall has to be adjusted. We recall the definition of the friction force

fwall(r) = −kεLJρ(r) (v(r)− vwall(r))×
∫
dr′
(

ρwall(r
′) 1√

π
3
σ3
e−

(r′−r)2

σ2

) . (4.13)

As friction is an irreversible process, the ansatz is linear to the velocity difference
between the fluid and the wall. Further, it is reasonable that the friction increases
with higher fluid density at the wall. Barrat et al. confirmed this hypothesis in MD
simulations [23, 24]. The left panel of fig. 4.3 shows that the intrinsic slip b increases
with the Young’s contact angle [130, 306, 307] (diagram from ref [130]). Therefore,
the friction force is coupled to the Lennard-Jones parameter εLJ. Finally, the force is
proportional to the wall particle density ρwall. In (4.13) the wall density is smoothed
with a Gaussian, which allows for larger time steps in the numerical schemes than
a sharp friction force distribution. Indeed, due to thermal motion and the molecular
arragnement of the wall atoms, it is reasonable to model a diffuse friction field with a
thickness of approximately 1σ. The right panel of fig. 4.3 displays the slip length as a
function of cos θ, which corresponds quite well to the MD results alongside. (Notice
the different scaling θ and cos θ in both panels. See a selection of the 1 parameter slip
data in the left panel). Low contact angles give no-slip BC as expected. The parameter
k is chosen to be 100τσ to give agreement with the microscopic simulations. Higher
values of k can be used to model rather θ independent no-slip. The insert shows a
Poiseuille- and Couette-flow profile, and the definitions of b and z0 of the 2 parameters
slip measurement described above. The dashed line in the main panel indicates the
hydrodynamic wall position z0. Interestingly it slightly varies with cos θ and is about
1σ inside the fluid, which is consistent with the findings of ref. [24].
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Figure 4.3. Left MD simulation results of Huang et al. for the intrinsic slip length as a

function of the wetting angle θc. Figure taken from ref. [130]. The crosses mark

approximately a selection of the PF results from the right panel. Right: Slip length
b and position of substrate zs − zwall as a function of the intrinsic angle θ in a slit

geometry with a friction constant k = 100 τσ.

Insert: Velocity profile parallel to the slit with either flow-profiles. The linear and

quadratic fit parameters are used to compute the slip length b and the the position

zs where the slip boundary condition is applied. zwall is indicated by larger tics

(zwall = 31
3 σ and 222

3 σ ).

With this well adjusted model, we now investigate the slip on substrates with nano-
metric roughness. In particular we are interested if there is a noticeable slip enhance-
ment due to nanometric roughness features like the needle tips. Therefore we per-
formed PF simulations with the same crenels as in chapter 3. Figure 4.4 shows the
slip length b (1 parameter fit) for crenels with three different depths (h = 0.7σ − 10.7σ,
indicated by colors) and fixed pillar and crenel width L− a = a = 13.3σ. Simulations
were performed either with flow fields perpendicular (�) or parallel to the ridges (+).
Bifurcation occurs due to coexistence of Wenzel and Cassie-Baxter states. Larger b

corresponds to CB configurations. The slip in the Wenzel state is rather negligible
(b < 3σ) and significant apparent slip occurs in the CB state only. One may notice slip
anisotropy between perpendicular and parallel flow. Like in the Philip and Lauga-
Stone theory both directions exhibit different slip lengths by a factor of roughly 2,
when h > 5.3σ, even in the Wenzel state. Figure 4.5 displays again the slip length
b, but this time for different crenel widths L− a and fixed crenel depth h and pillar
width a (a = h = 13.3σ). For very tiny crenel width, where intrusion is hampered, no
significant differences from a Wenzel slip behavior is observed. Since the plotted data
are the direct measurements, the dependency of b on L− a is due to the larger fraction
1− f of the total area, which is not in contact with the wall. Again, rather small slip
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Figure 4.5. Like fig. 4.4 (see also caption there) but for various crenel width d (colors).

lengths are observed in the W state, noticeably larger in the CB state. Figure 4.6 shows
the same diagram for nanometric pillar width a. We recall that nanometric a < 2σ

exhibit the non-wetting amplifying needle tip effect, which renders the Wenzel contact
angle non-wetting even for intrinsic wetting behavior. Interestingly, there is no signifi-
cant effect on the slip length b due to needle tips in the W state, but enlarged range of
CB-supporting Young’s angles θ, makes needle decorated substrates good candidates
for efficient flow in nano-devices. The viscous dissipation in an incompressible fluid
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perpendicular parallel

Figure 4.7. Dissipation power density for PF in W wetting state: left: perpendicular flow

right: parallel flow

is given by

Pviscous =
∫

d3r
1
2η

Σ : Σ, (4.14)

where Σ is the viscous stress tensor and η the shear viscosity [172]. In the Wenzel state
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4. Slip on nanorough substrates

we can use this expression as an approximation to study, where dissipation in the flow
occurs. Figure 4.7 shows the dissipation in parallel and perpendicular flow direction.
Clearly, the dissipation signature is different. While in the parallel flow, the dissipation
is rather homogeneous distributed apart from the walls, in the perpendicular flow
profile the corrugations behave like obstacles and lead to extra dissipation between
the crenels.

4.2. Apparent slip vs. intrinsic slip

For a crenelated wall as e.g. considered in fig. 4.7 the slip length can be determined
as well by using the same prescription: a Couette- and a Poiseuille-flow are applied
and extrapolated inside the walls to measure the effective slip length B and Zs (see
eq. 4.8). We use capital letters for B and Zs here to distinguish between the effective
slip length of the textured wall and the intrinsic slip length b of the planar wall with
the same chemical nature. The main question for practical applications is to under-
stand which length scale controls the slip length: the intrinsic slip length b or the
periodicity of the structure L. Macroscopic calculations based on hydrodynamics have
been done in ref. [73] for a simplified geometry: the crenels in the Cassie-Baxter state
are represented by an alternation of stripes of two types: stripes with infinite slip
length represent the liquid-vapor interfaces sustained between the crenels while the
stripes with a slip length b are representing the top of the crenels, where the liquid
is in contact with the wall. The surface is planar for these calculations. It has been
shown in particular that a flow parallel to the stripes can exhibit quite a large slip
length B‖ which is proportional to the largest of the two length scales. If f ≡ a/L
denotes the fraction of the crenels in contact with the liquid in the Cassie-Baxter state,
an approximate relation between B‖, b and L can be written as:

B‖
L

≃ 1
f

b

L
+ c (4.15)

where c is a constant close to 0.1 for φs = 0.5, and between 0.1 and 0.3 for φs = 0.25
ref. [73]. We could check with our model (fig. 4.8) that the slip length measured for
the crenelated geometry in the Cassie-Baxter state agrees nicely with this expression.
This nice behavior is somehow a crosscheck between the PF model, that contains all
the complexity of the dynamically moving interfaces, and the simplified geometry
considered in ref. [73]. It is important to mention here that these results have been
obtained at low capillary number (i.e. the liquid-vapor interface is not affected by the

90



4.2. Apparent slip vs. intrinsic slip
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and φs = 0.5. It is remarkable that the obtained values of c are in quantitative

agreement with fig. 12 of ref. [73], though the geometries are different (see text).

flow). A deformation of the interface by the flow at large capillary number may change
the picture.
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4. Slip on nanorough substrates

4.3. Capillary rise: Lucas-Washburn-law

To test the dynamical behavior of the model the capillarity force is used to pump
the liquid phase into a pore with a slit geometry. In 1918 Lucas and independently
in 1921 Washburn gave a classical theory of the penetration of liquids into wetting
pores [310, 187]. Capillary rise occurs, when a pore with hydrophilic interior is in
contact with a fluid reservoir. The local contact angle in the capillary tries to gain
its thermodynamic equilibrium state: the Young’s angle. To fulfill this criterion the
meniscus is concavely curved and the Laplace pressure builds up a driving force,
which pumps the fluid inside the pore.

Considering a pore made from a perfectly wetting substrate the transport velocity
is proportional to the pressure gradient and to 1/η

v ∝
1
η

dp
dx

. (4.16)

The transport is driven by the Laplace pressure due to curvature H of the meniscus
which is −γH. Assuming the position of the meniscus as l the pressure gradient
dp
dx ∝

γH
l and noting v = dl

dt we get the well-known Washburn law for a slit geometry:

l2 =
Dγ cos θ

3η
t, (4.17)

where D is the distance between the confining planes in the slit geometry. This test is
well suited to check the coupling between the thermodynamic description of the model
and hydrodynamics. Without any external driving, we can compare the meniscus
position l with the theoretical expression (4.17).

With LB methods, the Lucas-Washburn scenario attracted recently interest since of
new experiments in microfluidics. Diotallevi et al. [80] derived a generalized version
of the Lucas-Washburn law incorporating intrinsic slip and finite viscosity of the sup-
planted gas and found good agreement with Shan-Chen like multiphase modelling. In
ref. [218] Mognetti et al. investigated capillary filling in patterned channels. Obstacles
and pinning lines can block the imbition, depending on the intrinsic contact angles
and the details of the geometry.

4.3.1. PF model test

To compute this capillary driven motion, we consider a system with a reservoir of
liquid connected to the pore, as depicted in fig. 4.9. This figure shows the meniscus
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4.3. Capillary rise: Lucas-Washburn-law
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Figure 4.9. Position l of the meniscus in the Washburn capillary over the time. The geometry

is indicated schematically on the left of the figure, a reservoir contains the liquid

that enters in the pore and climbs until it reaches the top (there is no gravity here).

A snapshot of the actual system is shown on the left, it corresponds to the point

indicated by the arrow. The simulation shows clearly the square-root relation

showed by Washburn in 1921 [310, 187], and the theoretical line is calculated

using the Washburn law with no adjustable parameter. l saturates when the

meniscus reaches the top of the pore.

position in the simulation plotted over the time, compared with the theoretical curve.
The agreement is quite good; all the parameters entering in the Washburn law have
been measured separately and there is no adjustable parameter here. The pore thick-
ness is D = 9.66 σ, γLV = 0.342 kBTc/σ2, cos θ = 0.6, and η = 1.78 10−3σ3/(kBTcτ)
for this simulation. The friction between the walls and the liquid is large enough to
ensure a no-slip boundary condition. This is a strong test of the performance of the
model since it couples the static properties of wetting to the dynamical penetration
process.
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4. Slip on nanorough substrates

4.4. Contact angle hysteresis

The term contact angle hysteresis describes the effect, that on rough surfaces (chem-
ically or geometrically) the observed apparent wetting angles are history dependent
and lie in some interval around the theoretically thermodynamic equilibrium angle.
The Young equation assumes a perfect planar and homogeneous surface, which in
reality is rarely found. Slight impurities or defects on the substrate might have a large
influence on the contact angle due to pinning. Indeed, this is the reason, why up
to now—more than one and a half century ago—no experimental verification of the
Young equation is reported [307]. Johnson and Dettre [146] were the first reporting
pinning at a chemical step from hydrophilic to hydrophobic patches, due to the free
energy cost of dewetting the former and wetting the latter. Oliver and others [234]
made first experiments with sharp edges, where line pinning occurred. This was al-
ready postulated by Gibbs [111] in is nowadays called Gibbs criterion. Figure 4.10
illustrates this criterion (panel b). It states: Assuming a hydrophilic contact angle and
increasing the volume of a drop, the contact line keeps pinned at the sharp edge, till
the contact angle with the inclined wall equals the Young angle.

Kusumaatmaja et al. [165, 167, 168, 169] studied contact angle hysteresis on chem-
ically and geometrical rough surfaces, symmetric and asymmetric grooves and on
square posts. For two dimensional drops on chemically rough surfaces the authors
refined a theory of Marmur [197] to describe the stick—slip—jump dynamics, i.e. al-
ternating hydrophilic and hydrophobic stripes (see panel c in fig. 4.10). The idea is to
analyze the Gibbs energy of the cylindrical drop when it is quasi statically increased.
The surface area of the cross section

S = R2
0

θ − sin θapp cos θapp

sin2 θapp
, (4.18)

Figure 4.10. a) Contact angle hysteresis during evaporation b) Illustration of the Gibbs cri-

terion c) Pinning on chemically rough surfaces
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4.4. Contact angle hysteresis

where θapp is the apparent contact angle. The liquid-vapor interface length is L =

2R0θapp/ sin θapp, so that the Gibbs energy reads

G = γL+
∫

(γSL(x)− γSV(x))dx, (4.19)

where the integral goes over the base line of the drop. For stripes with equal thickness
this formula simplifies (using the Young eq.) to

G/γ =
2R0θapp

sin θapp
− (2k+ 1) cos θ1 − 2k cos θ2 − 2x cos θ2, (4.20)

where 0 < x < 1 and k is the number of covered stripes. The hydrophilic and hy-
drophobic stripes have intrinsic contact angles θ1 and θ2 resp. Analysis of this Gibbs
energy equation shows stability at the pinning line: The triple line sticks at the bor-
der from the hydrophilic to the hydrophobic stripe, when advancing. At a certain
contact angle (given by the Gibbs criterion1) it slips over the hydrophobic stripe and
when reaching the next hydrophilic stripe, the contact line jumps to the next stripe
border. This is qualitatively found also in the 2D LB simulations, too [168]. The au-
thors emphasize, that in 3D the case is far more complicated and due to line pinning
no contact angle at the triple line can be defined, a rather heuristic solution is to define
an averaged contact angle from fitting the drop profile far away from the triple line.
Importantly they state that the precise details of the surface profile/patterning control
the contact angle hysteresis, thus strategies including averaging over the roughness
can not lead to satisfying results [168]. Recently the same authors reported that asym-
metric grooves as found on butterfly wings [169] yield preferred flow directions, due
to contact angle hysteresis. Drops in regularly patterned microchannels are studied by
Zhang and others [326]. They found on superhydrophobic substrates stick—jump—
slip dynamics when driving the drops with a body force through the channel. Surpris-
ingly, they found partial imbition to the grooves, indicating large capillary numbers.

Marmur studied the Gibbs energy systematically with a model similar to that one
described above. He reported results as a function of the drop volume and found
an oscillatory behavior of the apparent contact angle [199, 201]. The succession of
apparent contact angles was connected to a succession of the metastable states. The
conclusion of Marmur’s analysis is that the receding and advancing contact angles in
this scenario are volume dependent and the larger the drop is the closer are both angles
to the apparent thermodynamic contact angles from the classical wetting theories.
Formally the contact angle hysteresis can be defined as the interval from the lowest to

1The Gibbs criterion on chemically heterogeneous substrates allows local contact angles between θ1 and
θ2, when the triple line is pinned between the stripes
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4. Slip on nanorough substrates

Figure 4.11. Illustration of the contact angle hysteresis model of Joanny and de Gennes [143].

The triple line is distorted due to a pertubation field of the surface tensions

h(x, y), which leads to a distortion force fdis. Here, an example of a local de-

fect is sketched. The blue spot marks an area where h(x, y) is non-zero. An

elastic force fs acts to straighten the line. Stable contact angles are found when

both forces are balanced.

the highest contact angle in the succession of metastable states, while in experiments
only those are probed, for which energy is available to overcome the energy barriers
(e.g. vibrational energy).

Joanny et al. [143] proposed a model to described the hysteresis at a pronounced ge-
ometrical or chemical defect. Starting from a perturbation field of the surface tensions

h(x, y) = γSV(x, y)− γSL(x, y)− γ cos θ, (4.21)

where γ cos θ is the surface averaged wetting energy, one wants to derive the distortion
energy of the triple line, which is parametrized path g(x). The authors derive for weak
perturbations h, that the distortion energy is

Fdis =
∫ ∫ ∞

g(x)
h(x, y)dydx (4.22)

which is a functional of the triple line path. The local force fdis(x) is thus a function
of the g(x). On the other side an elastic force fs(x) (modeled with a spring constant)
arises from the minimization principle of the liquid-vapor interface. Thus, stable states
need a balance of both forces. Figure 4.11 illustrates this. An analysis of several types
of pertubations fields h(x, y) shows, that e.g. smooth Gaussian-like pertubations may
or may not lead to contact angle hysteresis at a single pronounced defect. Step-like
defects always show contact angle hysteresis.
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4.4. Contact angle hysteresis

Figure 4.12. Drop in a slit geometry with crenelated walls and a horizontal driving force.

The two images correspond to pinning situations: the left drop is pinned at the

rear (the pinning point is indicated by a circle), and the right drop at the front.

Pinning of an interface results in a deformation of its shape: pinning at the front

increases the contact angle at the pinning point, whereas pinning at the rear

decreases it. For contact angles between θr and θa the drop sticks at the pinning

point.

4.4.1. PF simulations

The synchronous solving of the density-evolution equation (2.72) and the transport
equation (2.76) enables us also the study of stick-slip transitions of droplets on a rough
wall. This paragraph demonstrates the ability of the model to investigate the contact
angle hysteresis.

When a sticking drop is spread over an inclined surface with certain spatial hetero-
geneities several contact angles are observed as a function of the inclination [245] or
more generally as a function of the driving force. If the driving force F overcomes a
certain threshold Fc the drop starts to move. At the point F = Fc the maximal advanc-
ing contact angle θa at the front line of the drop and the minimal retarding contact
angle θr at the rear of the drop define an interval around the equilibrium contact angle
θ for which the drop sticks.

For simplicity we consider a setup with regular heterogeneities as shown in fig.
4.12. The force F is applied through an uniform acceleration field ag similar to a
gravity field oriented in the direction of F (see fig. 4.12). Instead of measuring the
contact angle directly we used the more robust method of measuring the curvature
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4. Slip on nanorough substrates

radius of the drop around the centerline of the setup. Depending on the details of a
direct measurement method both methods differ typically between 5◦ and 10◦. Since
the setup is at low capillary number (Ca ≤ 0.1) we assume a circular shape of the drop
in the channel center and fit the curvature radius to points on an isodensity-contour
as it is shown in fig. 4.12. For further improvement of the estimation we averaged the
curvature radius R over the best fit results of three different isodensity profiles. The
contact angle is given by θ = π/2+ arcsin(D/2R).

When the drop is moving, the rear and the front interfaces oscillate and we can
follow the variation of their radii, Ra for the advancing front and Rr for the receding
one. The left panel of fig. 4.13 shows the curvature radius of the interfaces over the
position of the drop center of mass C for various accelerations ag. The x-axis is scaled
in the length unit of one crenel L, the periodicity of the system. Accelerations larger
than 0.67σ/τ2 are sufficient to move the drop over the heterogeneities, lower values
correspond to a drop trapped by the crenels (sticking drops). The two configurations
shown in fig. 4.12 correspond indeed to the sticking case, and two pinning situations
are possible in this case: a pinning of the rear line (left image) or a pinning of the
front line (right one). The front line pinning corresponds to ag = 0.33σ/τ2 while the
rear line pinning has been obtained for ag = 0.47σ/τ2. For these two cases the drop
sticks to the crenels and its center of mass is thus fixed. After a transient the drop
stops and the points corresponding to the steady configurations ag = 0.33σ/τ2 and
ag = 0.47σ/τ2 are indicated by the two arrows on fig. 4.13 (left). When ag ≥ 0.67σ/τ2

the drop moves and we can follow the variations of the front and rear radius as a
function of the position of the center of mass in fig. 4.13 (left). Interestingly, the
variations of Ra and Rr are only weakly sensitive to the value of ag in this regime, we
can only note a difference in the relaxation dynamics after overcoming the pinning:
The dynamics is slow as long as the meniscus is pinned, and the radius of curvature
is thus only fixed by the position of the center of mass of the drop in this regime,
while the dynamics is fast after unpinning, and we observe a dependence in ag in this
case. Unpinning occurs when the advancing (front) radius is minimal for a front line
pinning, while it occurs when the receding (rear) radius is maximal for a rear line
pinning. These extremal values of Ra and Rr can be converted in extremal values of
the corresponding contact angles: unpinning occurs when the force is large enough
to overcome a critical contact angle. We estimated these critical values by taking the
maximal retarding contact angles θr and the minimal advancing contact angles θa,
resp., for the moving drops and extrapolate the values to the zero velocity limit. The
results are printed in tab. 4.1. The receding contact angle cos θr = −0.51 we found
is around the equilibrium contact angle cos θ = −0.45. Other groups [219, 168, 326]
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Figure 4.13. (a/b) Advancing radius Ra and retarding radius Rr of the a drop driven along

a heterogeneous substrate as shown in fig. 4.12 plotted over the position of the

center of mass C for values of ag ranging from 0.33σ/τ2 to 1.33σ/τ2. The

center of mass is scaled by the period L. After overcoming the pinning point at

the front line the interfaces relax rapidly to a larger curvature radius and vice

versa for the retarding interface. The sticking drop marked in the bottom panel

belongs to the acceleration ag = 0.47σ/τ2, where the drop is pinned at the rear

line. The mark in the top left panel belongs to the acceleration ag = 0.33σ/τ2.

In this case the drop is pinned at the front. This curve is shifted by one period to

the right for better clarity.

(c) Grand canonical potential Ω of the system as a function of the center of mass

C. The gray highlighted regions show the jump/relaxation dynamics which can

differ slightly with the applied acceleration while the slip-stick dynamics (white

regions) are the same for different accelerations ag.

report that θr is equal to θ but the deviation we observe here is a consequence of
the microscopic structure we impose by the substrate (repelling corner-energies). The
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Figure 4.14. (a) Grand canonical potential Ω of drops with different sizes (shifted to be one

upon the other) as a function of time t. The ∆Ω barrier clearly varies strongly

with the size of the drops.

(b) Center of mass position C as a function of time. Due to the complex variations

of ∆Ω with the volume one observes moving drop and sticking drops alternating

when the volume is increased. The volume (α = −5%, 0%, 8%, 14%, 17%, 21%)

corresponding to the symbols in the main panel is indicated in the insert plot,

which shows the mean velocity over the volume parameter α = (S− S0)/S0.

advancing contact angle we found is cos θa = −0.87. This is also around the values,
the other groups found.

Figure 4.13 (right) shows the grand canonical potential Ω of the system plotted over
the center of mass of a drop with constant volume for several forces. If the drop is
pinned the system stays in a steady state at a constant potential whereas the moving
drops probe the full non-equilibrium profile of Ω. The figure presents a succession
of peaks: the grand canonical potential barriers that the drop needs to overcome in
order to move. The peaks look similar but are in fact not identical: two adjacent peaks
correspond to a successive pinning of the front meniscus and a pinning of the rear
meniscus (the difference is better seen if we look at the minima, the difference in the
maxima is indeed small in the case we consider in fig. 4.13). An interesting feature is
the very weak dependence of the grand canonical potential landscape with respect to
the force: for all forces which are sufficient to push the drop the potential is nearly the
same; This shows that a model of a drop moving in fixed potential should be sufficient
to describe the dynamics in this case.

Of course the pinning situation depends on the drop size. For certain drop sizes
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4.4. Contact angle hysteresis

ag v Ra cos θa Rr cos θr Ca

→0 19.5 -0.87 33.6 -0.51

0.67 1.05 19.4 -0.88 35.0 -0.49 0.02

0.80 1.75 19.3 -0.88 35.7 -0.48 0.03

1.00 2.48 19.3 -0.88 36.7 -0.46 0.05

1.33 3.57 19.1 -0.89 38.9 -0.45 0.07

Table 4.1. Average velocity v, advancing radius Ra, retarding radius Rr and the correspond-

ing contact angles θa, θr for different accelerations ag in σ/τ2 to extrapolate the

contact angle hysteresis at v → 0. v is the average velocity in σ/τ. The intrin-

sic equilibrium contact angle is cos θ = −0.45 an the effective contact angle is

cos θeff = −0.69.

the pinning at the front and at the rear occurs together, whilst in other cases only one
interface is pinned at the same time. Therefore the acceleration agc which is needed to
overcome the pinning varies but not the critical contact angle. We consider the influ-
ence of the drop size in fig. 4.14. This figure shows the grand canonical potential Ω for
drops with different volume but exposed to a constant acceleration to demonstrate the
effect of synchronous pinning. To show the sensitivity with respect to the drop size,
we introduce the parameter α = (S− S0)/S0 which indicates the variation of the drop
volume S with respect to the reference drop (S0) of fig. 4.12: e.g. α = 10% means that
we increased the drop volume by 10%. First we can see that the peak of the potential
which has to be overcome is quite sensitive to the drop size: the different curves in fig.
4.14 (left) are superimposed to illustrate the ∆Ω between the minimum and the maxi-
mum of the Ω-landscape. We selected the values of α that corresponds to a motion of
the droplet in fig. 4.14 (left), but changing the drop size for a given applied force can
also result in the sticking of the drop, when rear and front pinning occurs at the same
time. This effect is illustrated in fig. 4.14 (right) where we can observe a succession of
moving drops (pinning-unpinning motion of the drop) and trapped drops in a steady
state.
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4. Slip on nanorough substrates

4.4.2. Conclusion

Nanometric dynamics is an important feature of the PF/DDFT model. We checked
with the Washburn cell the correct interplay between the thermodynamic descrip-
tion of the model and the transport equations. We employed the model for testing
contact angle hysteresis on nanometric corrugated nanochannels and in agreement
with macroscopic LB simulations we find jump—slip—stick dynamics with cos θa =

−0.81 < cos θeff = −0.69 < cos θr = −0.51.

Since the complex nature of the pinning phenomenon itself, together with the dif-
ficult statistics of the spatial pinning point distribution contact angle hysteresis is a
challenging problem for experimentalists. Moreover, a consistent theory is still miss-
ing. Therefore, reliable simulation methods are needed to clarify the understanding of
the contact angle hysteresis.
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tensors

In many disciplines of science careful description of morphology is needed. The mor-
phology of complex spacial patterns can be roughly classified into certain structure
types. To cite some examples, foams are considered to be cellular patterns, limestones
or sandstones are porous, biopolymers build up network-like structure, surfactants can
create bicontinuous intertwined networks or lamellar phases (e.g. eutectic alloys) can
exhibit rod-like structures. Other classifications would be ordered—e.g. hexagonal,
cubic, icosahedral—or disordered, fractal, percolating etc. Often quantitative descrip-
tors are only relevant to one specific type; e.g. tangent vector distribution estimators
in networks or percolation diameters in porous media. Scalar Minkowski functionals
(MF) and Minkowski tensors (MT) are a class of morphology descriptors which apply
to nearly any kind of patterns in real-space.

In this chapter we will review the theory of Minkowski measures (scalar and tenso-
rial) which are used in the following to describe morphology in: first spinodal decom-
position patterns (2D) in section 5.3 of this chapter and second in sphere packings or
molecular ensembles (3D) in chapter 6. In this section we will therefore concentrate
on the special cases of 2D and 3D systems. With (5.1), (5.25) and (5.27) we define
morphological measures, which are employed in the chapters below.

MF are inspired by stochastic and integral geometry as robust and continuous struc-
ture descriptors and were introduced to physics to study point patterns [211, 206] and
porous media [207]. Nowadays they are established as concise morphology param-
eter and used to study spinodal decomposition [282] or to expand thermodynamic
potentials of confined fluids [170].

Tensor-valued generalizations of the scalar Minkowski functionals have been used to
investigate orientation in ice core drills [110], galaxy cluster formations [28], networks
of neurons [28] and orientation in F-actin networks [274]. MT have also proven useful
to develop free energy functionals (like the DFT-Rosenfeld functional of hard spheres)
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5. Minkowski functionals and Minkowski tensors

for non-spherical shapes [205] and to describe DNA-conformation [123]. MT have
been also used to model molecular motors [285].

5.1. Minkowski functionals

There are two possible routes to define Minkowski measures. We will first present an
approach which is based on differential geometry. This approach is more popular in
physics since it allows for a more intuitional understanding of MF and MT. For the
sake of comprehension, an equivalent approach based on fundamental measure theory
is briefly discussed in the second part of this section. This latter approach is useful to
prove some strong theorems, which make Minkowski measures such powerful shape
measures. We focus on these theorems in the last part of this section.

We will denote a compact set (body) P with non-empty interior in Euclidean space
Ed, where d = 2, 3 is the dimension. Assuming a sufficiently smooth bounding surface
∂P of P, the d+ 1 integrals

W0 =
∫

P
ddr (5.1)

Wν =
1
3

∫

∂P
Gν(κi(r))dd−1r (5.2)

are the scalar Minkowski functionals Wν, 0 ≤ ν ≤ d. Gν is the ν-th symmetrical poly-
nomial of the d − 1 principal curvatures κi of the bounding surface ∂P, i.e. in two
dimensions G1 = 1 and the curvature G2 = κ. In three dimensions Gν are: G1 = 1, the
mean curvature G2 =

1
2(κ1 + κ2) = H and the Gaussian curvature G3 = κ1κ2 = K. ddr

denotes the volume integration and dd−1r the scalar surface integration. This defini-
tion naturally applies to convex and non-convex bodies whatever their topology are,
when the surface is sufficiently smooth. It is noteworthy to mention that in spite of
the occurrence of local curvature measures in these integrals, they are well-defined
also for polyhedra with sharp edges. This fact is easy to understand in the frame-
work of fundamental measure theory and will be discussed below as a consequence
of the Steiner’s theorem. The prefactors in eq. (5.1) are chosen in a way that for an
unit sphere all MF give the same value 4π/3 in three dimensions and 2π in two di-
mensions. For the rest of this paragraph, we restrict ourselves for the sake of clarity
to d = 3. Equation 5.1 is (up to prefactors) equal to the volume, the surface area, the
surface-integrated mean curvature H and the surface-integrated Gaussian curvature
K. Therefore MF are motion-invariant. This means that MF are invariant under rota-
tions gr in the rotation group SO(3) and translations gt in the translation group T(3).
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5.1. Minkowski functionals

Before we turn to MT we shall use the integral geometrical approach to demonstrate
some useful features of MF in the next paragraph.

5.1.1. Integral geometry of Minkowski tensors

This paragraph gives a brief introduction of the way in which MF are properly defined
in mathematics. Minkowski measures have been known in mathematical disciplines
for decades, starting mainly with the works of Hadwiger [117] in 1957. Hadwiger al-
ready proved the strong completeness theorem for scalar Minkowski measures. For the
last 15 years scalar Minkowski measures have also become known in physics [211, 206].
Already Hadwiger [118] and Schneider [119] studied vector-valued Minkowski mea-
sures. First ideas onMinkowski tensors were published by Müller [223]. Completeness
theorems of tensor-valued Minkowski tensors were published in 1999 by Alesker [4]
and linear relationships among the tensors were proven by McMullen [204].

Starting with convex sets K in Euclidean space Rd with d = 2, 3 one defines the
convex characteristic function

χ̃(K) :=





1 if K 6= ∅

0 else
, (5.3)

where ∅ is the empty set. A ν dimensional plane in Rd which contains r is called
E(ν)(r). The integral over all 0-dimensional planes (points)

V(K) =
∫

dE(0) χ̃(E(0)(r) ∩ K) (5.4)

is nothing else than the volume of K. This integral can be interpreted as the integration
over the entire group of motions G, which rotates and moves the plane E(ν). Doing so
for d = 3 and ν = 1 gives the surface area A(K) of the convex set K. The meanings
of ν = 2, 3 for d = 3 were discussed above, i.e. in the three dimensional case ν = 2
gives the integrated mean curvature and ν = 3 the integrated Gaussian curvature. To
overcome the restrictions of convex sets, which is indeed a far too strong restriction
for practical use in physics, the definition range for integrals of the type, mentioned
above, the concept of additivity is used: A functional φ is called additive, when

φ(K1 ∪ K2) = φ(K1) + φ(K2)− φ(K1 ∩ K2), (5.5)

for two convex sets K1 and K2. The class P of sets P which can be decomposed in a
countable set of convex sets is called polyconvex ring. For polyconvex sets P =

⋃
i Ki
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5. Minkowski functionals and Minkowski tensors

(Ki convex) in P we define the Euler characteristic

χ(P) = ∑
i

χ̂(Ki)− ∑
i,j,i>j

χ̂(Ki ∩ Kj) + . . . , (5.6)

where . . . are three and more body intersecions. Indeed this functional equals the
well-known topological quantity with the same name [211, 57]. It is easy to see, that χ

is an additive functional.

Following the definition of Hadwiger [117] the Minkowski functionals are defined
as

Wν(P) := cdν

∫
χ(P ∩ E(ν))dE(ν) ν = 0, . . . , d− 1

Wd(P) := cdd χ(P),
(5.7)

with some prefactors cdν, ν = 1, . . . , d. dE(ν) denotes the integration over the group of
motion for the ν-dimensional planes E(ν) in Euclidean space Rd. For the rest of this
paragraph, we restrict ourselves to d = 3; the extension of the concepts to arbitrary
dimension is straightforward [131].

Continuity: A functional φ is called continuous when for an arbitrary sequence of
sets An with An → A 1 the sequence φ(An) converge: φ(An) → φ(A).

Motion invariance: A functional φ is called motion invariant, when it is translation
invariant φ(A) = φ(tA) and rotation-invariant φ(A) = φ(rA) for all rotations in the
group SO(3) and all translations in T(3). We also call a motion invariant functional
G-invariant, where G is the direct sum of SO(3) and T(3).

When φ is G-invariant, the integral

Iφ(A, B) =
∫

G
φ(A ∩ B)dA =

∫

G
φ(A∩ B)dB, (5.8)

where A, B ∈ P and dA, dB denotes the integration w.r.t. the Haar measure (which is
up to prefactors the only G-invariant measure [268]), then Iφ(A, B) is G-invariant.

It is easy to see that χ̃ is motion-invariant. χ is a countable sum of the motion-
invariant χ̃, thus χ is motion-invariant. Finally all MF as an integral of motion-
invariant χ-functional are G-invariant. The Minkowski measures Wν(A) read (ex-
pressed with the Lebesgue-measure)

Wν(A) = cdν

∫

3
dt
∫ π

0
sin θdθ

∫ 2π

0
dϕχ(A∩ E(ν)). (5.9)

1w.r.t. the Hausdorff metric
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5.1. Minkowski functionals

Since integration is additive, MF are additive.

Theorem of completeness: Hadwiger proved a strong theorem for the class of (i)
motion-invariant (ii) continuous and (iii) additive functionals. Such functionals φ can
be decomposed into the four MF with scalars cν, ν ≤ 0 ≤ 3, which are independent of
the convex argument A:

φ(A) = ∑
ν=0

cνWν(A). (5.10)

Thus the MF are a basis of the space M of the G-invariant, continuous and addi-
tive functionals. This theorem could be extended without any restrictions to the full
polyconvex ring P . A prove of this theorem can be found in ref. [117, 262].

Steiner’s formula: The calculation of MF as defined in integral geometry is rather
complicated, since an integration over motions g ∈ G is needed. A theorem which is
useful to compute MF for arbitrary sets P ∈ P is the Steiner’s formula, which connects
the MF of a parallel set Pε and P.

The Minkowski-sum A⊎ B is defined as A⊎ B := {x+ y|x ∈ A, y ∈ B}. The parallel
set Pε of a set P is the Minkowski-sum of P with a ε-sphere Bε centered at the origin:
Pε := P ⊎ Bε. Following the notation of Santalo [262] the Steiner’s formula reads for
convex sets K and ε > 0:

W0(K) =
3

∑
i=1

(
d

i

)
Wi(K)ε

i (5.11)

Wν(K) =
3−ν

∑
i=0

(
3− ν

i

)
Wν+i(K)ε

i, ν = 1, ..., 3. (5.12)

The Steiner’s formula is a particular case of the kinematic formula. This theorem can
be proven with the completeness theorem. Writing the integral

I(A, B) :=
∫

G
Wν(A ∩ gB)dg (5.13)

we know, that it fulfills the requirements of the completeness theorem and is an func-
tional of A and B. Thus it can be decomposed into a linear combination of

I(A, B) = ∑
i,j

cν
i,jWi(A)Wj(B). (5.14)

The prefactors cν
i,j are determined by homogeneity-relations and can be calculated

using arbitrary convex sets A and B. Thus we obtained the kinematic formula
∫

G
Wν(A ∩ gB)dg = ∑

i,j
cν
i,jWi(A)Wj(B). (5.15)
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5. Minkowski functionals and Minkowski tensors

Figure 5.1.

Using B ≡ Bε the kinematic formula turns into Steiner’s formula.

5.1.2. Computation of Minkowski functionals

Coming back to the differential geometric approach, we can now use Steiner’s theorem
to compute the MF for arbitrary polyhedra Q ∈ P . The idea is simple. We decompose
Q into convex polyhedra Ki. Since the MF Wν are continuous we take the parallel
bodies Ki,ε to compute with eq. (5.1) the MF and take the limit ε → 0.

Wν(Ki) = lim
εց0

Wν(Ki,ǫ) (5.16)

Using additivity one obtains Wν(Q).

5.2. Minkowski tensors

The concepts of the sections above can be generalized to tensor-valued quantities of ar-
bitrary rank. Here we will rather concentrate on rank-2. Rank-4 tensors are considered
in chapter 6.

The Minkowski tensors (MT) of a convex body K with the boundary ∂K are defined
as:

Wr,0
0 (K) := c0

∫

K
rr d3r

Wr,s
ν (K) := cν

∫

∂K
rrnsGν(κ(r))d2r, (5.17)
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5.2. Minkowski tensors

where n are the outer bound normal vectors and r the location vectors on the bound-
ary. In 3D the prefactors are 1/3 for ν > 0 and 1 for ν = 0. The abbreviated form rrns

denotes the power taken to be symmetric dyadic tensor product

rrns := r⊙ . . .⊙ r︸ ︷︷ ︸
r times

⊙ n⊙ . . .⊙ n︸ ︷︷ ︸
s times

(5.18)

(rrns)i1 ...ir+s
=

1
(r+ s)! ∑

σ∈Sr+s

rσ(i1) . . . rσ(ir)nσ(ir+1) . . . nσ(ir+s), (5.19)

where Sr+s is the (s+ r)-permutation group. This gives for the case of rank-2 tensors

(a⊙ b)ij :=
1
2
(aibj + ajbi) (5.20)

MF are a powerful tool because of their robustness, stemming from the continuity and
additivity. These features of the MF hold for the MT too.

Table 5.1 lists the Minkowski tensors of rank 2 in three dimensions and table 5.2
in 2D. In three dimensions, equation (5.17) gives 10 MT, another 4 trivial tensors can
be defined by the product of the scalar MF with an unit tensor. In 2 dimensions one
obtains from (5.17) 7 MT and 3 trivial tensors. The set of Minkowski tensors (defined
by eq. (5.17)) and the trivial tensors obtained from the Minkowski functionals is called
set of basic tensor valuations.

Clearly, MT are not motion-invariant, but motion-covariant (isometry covariant).
This means, that Wr,s

ν of rank n transform under translation P → P ⊎ t with the trans-
lation vector t and under rotation P → Û1P = {Û1x|x ∈ P}, Û1 ∈ SO(d) with the
rotation operator Û1 for vectors

Wr,s
ν (K ⊎ t) =

r

∑
p=0

(
r

p

)
tpW

r−p,s
ν (K) (5.21)

Wr,s
ν (Û1K) = Ûr+sW

r,s
ν (K).. (5.22)

Ur+s is a short version, which is defined by (UnTn)i1 ,...,in = ∑j1 ,...,jn Ui1j1 . . .Ui1 jnTj1 ,...,jn

for the rotation of the rank-n tensor Tn with the rotation matrix Uij.

For tensors which only depend on n, the transform under translations reduces to

W0,s
ν (K ⊎ t) = W0,s

ν (K), (5.23)

i.e. they are translation invariant. We shall see that also some tensors of the form W1,1
ν

are translation invariant. We use the term genuinely translation covariant for those tensors
which are translation covariant but do not obey (5.23). For simplicity we use also
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Homogeneity
[unit]

rank 0 rank 2 translation
behavior

λ5 [m5] – W2,0
0 genuinely t. cov.

λ4 [m4] – W2,0
1 genuinely t. cov.

λ3 [m3] W0 W2,0
2 genuinely t. cov.

– W0 E3 t. invariant

λ2 [m2] W1 W2,0
3 genuinely t. cov.

– W1 E3 t. invariant

– W0,2
1 t. invariant

λ1 [m1] W2 W0,2
2 t. invariant

– W2 E3 t. invariant

λ0 [1] W3 W3 E3 t. invariant

Table 5.1. Basic tensor valuations in 3D. The scalar Minkowski functionals are motion in-

variant and for the tensors or rank two the behavior under translation is specified

in the last column. The space of tensors of rank two decomposes in two complemen-

tary subspaces of genuinely translation covariant and translation invariant tensors.

The latter include tensors obtained by multiplying the scalar Minkowski function-

als Wν with the unit tensor E3 := e21 + e22 + e23 of rank two, where e1, e2, e3 is an
orthonormal basis of E3.

abbreviated version translation covariant. To study intrinsic shape characteristics with
translation-covariant tensors a specific choice of the origin is needed. Müller proved
the so-called envelope theorem. This states that rank-1 tensors (Minkowski vectors) of
the form W0,1

ν vanish for all polyconvex sets [223]. Since only these Minkowski vectors
appear in the expansion of W1,1

ν according to (5.21), these tensors are also translation-
invariant.

Similar to the Hadwiger’s theorem for MF, Alesker has proven [4] that for a given
rank the MT span a vector space of additive, continuous and isometry-covariant ten-
sors. But not all of the tensors in tables 5.1 and 5.2 are independent. McMullen found
some linear relationships among them [204]. The relationships in two and three di-
mensions read

EdWν = νW0,2
ν + (d− ν)W1,1

ν+1, (5.24)
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for ν = 0, . . . , d and Wr,s
ν = 0 for ν > d or ν = 0, s > 0. The particular relationship

EdW0 = dW1,1
1 is simply the Gauss’ theorem

∫
P div f(x)d

dr =
∮

∂P f · ndd−1r, where
div f = 1. With the McMullen theorem and Alesker theorem we could reduce the 14
MT in 3D and the 10 MT in 2D independent 10 MT in 3D and 7 independent MT in
2D resp. A basis for either case is given in tables 5.1 and 5.2.

5.2.1. Algorithm

This brief paragraph introduces some basic ideas of how MT are computed numeri-
cally. For detailed descriptions of the algorithm in 3D it is referred to ref. [274] and the
2D version is discussed in ref. [110]. The computation in 3D can be done for two types
of datasets, first voxalized data or second polyhedral meshes. How to approximate a
smooth boundary surface out of voxalized data is an active topic of mathematical re-
search [157]. One algorithm which transforms voxelized date into triangulated meshes
is the so-called marching cubes algorithm [182].

Homogeneity
[unit]

rank 0 rank 2 translation
behavior

λ4 [m4] – W2,0
0 genuinely t. cov.

λ3 [m3] – W2,0
1 genuinely t. cov.

λ2 [m2] W0 W2,0
2 genuinely t. cov.

– W0 E3 t. invariant

λ1 [m1] W1 W1 E3 t. invariant

– W0,2
1 t. invariant

λ0 [m0] W2 W2 E3 t. invariant

Table 5.2. Basic tensor valuations in 2D. The scalar Minkowski functionals are motion invari-

ant and for the tensors or rank two the behavior under translation is specified in the

last column. The space of tensors of rank two decomposes in two complementary

subspaces of genuinely translation covariant and translation invariant tensors. The

latter include tensors obtained by multiplying the scalar Minkowski functionals Wν

with the unit tensor E2 := e21 + e22 of rank two, where e1, e2 is an orthonormal

basis of E2.
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5. Minkowski functionals and Minkowski tensors

In 2D pixelized data or polytope contours can be used as input, while pixel data are
transformed to polytopes by a marching squares algorithm [110].

In 3D a polyhedra mesh structure consists of three types of surface elements: facets
(2 dim.), edges (1 dim.) and vertices (0 dim.). On the facets, mean curvature G2 = H =

0 and Gaussian G3 = K = 0 vanish trivially. As it has been discussed above, that the
differential geometric representation is also valid for polyhedra with sharp edges. We
recall the Steiner’s formula, which connects the MF of a convex set to MF of its parallel
surface. Thus, one can derive analytic formulas from Steiner’s formula to compute the
MF of polyhedra. On edges, one can show with local versions of the Steiner’s formula
that the Gaussian curvature K = 0 vanishes and the surface area on a zero set is
trivially zero. At vertices Steiner’s formula shows that only the Gaussian curvature K
is non-zero. Furthermore the contributions of each element depend only on its location
(center of area or center of a line), its orientation expressed by a normal vector and the
angles to the adjoint elements. Thus the computation for ν = 1 is simply a sum over
all facets, ν = 2 runs over all edges and ν = 3 over vertices only. The volume integrals
ν = 0 can be evaluated with an adapted version of Gauss’ integral theorem. Hence the
computation is linear in the number of surface elements. By analogy in 2D the sums
run over edges and vertices only. Some selected details on this algorithms in 3D can
be found in the appendix C.
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5.2. Minkowski tensors

A: Two-dimensional bodies

W2,0
0 – moment tensor solid W2,0

1 – moment tensor hollow

W2,0
2 – moment tensor wire frame W0,2

1 – normal distribution

B: Three-dimensional bodies

W2,0
0 – moment tensor solid W2,0

1 – moment tensor hollow

W2,0
2 – moment tensor wire frame W2,0

3 – moment tensor vertices

W0,2
1 – normal distribution W0,2

2 – curvature distribution

Figure 5.2. Different MT capture different morphological information
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5.2.2. Invariants and shape descriptors

Looking at orientation dependent quantities, the natural physical representation is
tensorial. It is convenient to reduce this tensorial information to a single scalar in order
to obtain a comparable descriptor. Furthermore these scalars should not dependent
on the choice of the coordinate system, thus functions of the rotation invariants are
a good choice for simple scalar shape descriptors. Rank-2 Minkowski tensors can
be used to quantify anisotropy of a spatial structure in a concise way. (µr,s

ν )α and
α = 1, . . . , d denote the eigenvalues of Wr,s

ν in descending order (by their absolute
values). A succinct descriptor of anisotropy is defined by

βr,s
ν :=

|(µr,s
ν )d|

|(µr,s
ν )1|

∈ [0, 1], (5.25)

where |(µr,s
ν )d| is the eigenvalue with the smallest absolute value and |(µr,s

ν )1| with the
largest absolute value. Please note, that for non-convex planar bodies W2,0

2 may have
negative eigenvalues. Clearly, βr,s

ν = 1 for sets, where all eigenvalues are identical, and
thus these tensors are called isotropic. Deviations from 1 indicate shape anisotropy.
This might appear qualitatively equivalent to the asphericity measure aS, which is
sometimes used in the literature [288]. Other measures are also imaginable to measure
asphericity, for example the isoperimetric ratio V2/A3, where V = W1 is the volume
and A ∝ W1 is the surface area. But asphericity quantifies deviations of the shape from
a sphere (at the same volume). Anisotropy rather quantifies orientation differences in a
tensorial sense, i.e. if the body appears identical w.r.t. a particular property from any
two planar or three spatial orthogonal directions, it is isotropic. Cubes, tetrahedra,
spheres, some regular polyhedra, etc. are isotropic w.r.t. rank-2 Minkowski tensors.

The fact that the set of anisotropy indices which can be derived from the Minkowski
tensors Wr,s

ν might be interpreted as some ambiguity of the anisotropy analysis. This
interpretation overlooks the merit of completeness theorem for Minkowski tensors.
Since the set of MT contain all relevant morphlogical information one can easily check
whether anisotropy is generic or subject to subset of morphological informations. Dif-
ferent MT measure different quantities, e.g. the distribution of surface normals or the
mass distribution. Figure 5.2 illustrates this fact. For example, the location vector
weight tensors measure in 3D the second moments of (1) mass distibution (W2,0

0 ), the
boundary surface distibution (W2,0

1 ) the wire frame distribution (W2,0
2 ) and the vertex

distibution (W2,0
3 ). The normal weighted tensors are the second moments of the nor-

mal distribution (W0,2
1 ) and the mean curvature distibution (W0,2

2 ) on an unit sphere.
On the other hand, analyzing the anisotropy with all MT in the basis, the analysis is
not restricted to any specific morphometric feature. If all anisotropy indices indicate

114



5.2. Minkowski tensors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

β ν
rs

 =
 µ

m
in

/µ
m

ax

lz/lx

β1
0,2

β1
2,0

β0
2,0

β3
2,0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8

β2
0,2

ly/lx=1.0

ly/lx=0.5

ly/lx=0.3

ly/lx=0.1

Figure 5.3. Eigenvalue ratio of the smallest and largest eigenvalues µmin = µ3 and µmax = µ1

of the Minkowski tensors Wr,s
ν of an ellipsoid with radii lx = 1 and lx = 1 ≥

ly ≥ lz as function of r = lz/lx. Each symbol in the main plot represents data

(hardly distinguishable) for three different intermediate radii ly = 0.1, 0.5, 0.9
indicating that for these four tensors the minimal to maximal eigenvalue ratio is

approximately the same for all values of the intermediate radius.

the same dependence, it clearly demonstrates that the anisotropy is generic and not
depending on the choice of the morphological quantities [276].

An 3D example of the anisotropy indices is shown in fig. 5.3 for ellipsoids given
by the three principle radii (x/lx)2 + (y/ly)2 + (z/lz)2 = 1. All surface integrals re-
sult in elliptic integrals and cannot be expressed in closed form. However, the scalar
Minkowski functional W0 =

π
6 lxlylz and the tensor W2,0

0 is diagonal with

(W2,0
0 )ii =

π

120
l3i ljlk, (5.26)

where {i, j, k} is {x, y, z} and cyclic permutations thereof. The integration of all
other tensors is easily obtained numerically by use of the ellipsoid parametrization
~r(u, v) = {lx cos(u) sin(v), ly sin(u) sin(v), lz cos(v)} which yields explicit expressions
for the metric tensor of the ellipsoidal surface, the normal vector, and the mean and
Gaussian curvatures. These are readily integrated numerically. Figure 5.3 shows the
minimal to maximal eigenvalue ratio of the Minkowski tensors of rank two of el-
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lipsoids with lx = 1 and 1 ≥ ly ≥ lz as function of r = lz/lx. Each symbol in
the main plot represents data (hardly distinguishable) for three different intermediate
radii ly = 0.1, 0.5, 0.9 indicating that for these four tensors the minimal to maximal
eigenvalue ratio is approximately the same for all values of the intermediate radius.
The solid curves are fits to the data giving β2,0

3 ≈ 1.210r3 − 0.235r2 + 0.024, β2,0
0 = r2,

β2,0
1 ≈ β0,2

1 ≈ −0.366r3 + 1.222r2 + 0.139r. The insert shows the eigenvalue ratio of
the tensor W0,2

2 as function of lz/lx. In contrast to the above four tensors, this ratio
depends strongly on the value of the intermediate radius ly. In particular, for lz = 0
the eigenvalue ratio only becomes zero if the intermediate radius is also ly = 0. For
the maximal ly = 1 the eigenvalue ratio converges to 0.5 for lz/lx → 0. Functions of
eigenvalues are not the only way to obtain invariants of a tensor. Other methods will
be part of chapters 6 and 7.

A second kind of anisotropy indices is obtained by projecting a rank-2 tensor onto
preferential directions, e.g. the unit vectors eα and α = x, y, z. As an example we define
the x− y-projector index

β∗r,s
ν :=

|exWr,s
ν ex| − |eyWr,s

ν ey|
|exWr,s

ν ex|+ |eyWr,s
ν ey|

. (5.27)

This kind of anisotropy descriptors converges to 0 in a truly isotropic distributed sys-
tem. In case of a preferred orientation β∗r,s

ν along one of the axes x or y β∗r,s
ν tends to 1

or −1 resp.

TheMinkowski analysis with scalar and tensorial descriptors is a versatile method to
quantify morphological properties. Strong theorems underline the signfication of this
method, i.e. (1) Minkowski functionals and Minkowski tensors are robust against noise
from a numerical and experimental point of view. (2) Due to the completeness theo-
rems of Hadwiger and Alesker it follows, that the set Minkowski functionals/tensors
capture all relevant morphological information for a given tensor rank. The latter
point is of great importance in the structure analysis, as we shall this see in chapter 6.
For example, with the set of βr,s

ν one could check whether order or disorder in a system
is a generic feature or subject to one morphological quantity only, e.g. the curvatures.
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5.3. Spinodal decomposition

5.3. Spinodal decomposition

To make an example of applications of MF and MT, in this section we shall study
the morphology of spinodal decomposition patterns which emerge from the van der
Waals phase fluid in the PF model. Spinodal decomposition occurs, when an over-
critical (T > Tc) vdW-fluid is quenched to temperatures below the critical point and
the average density is between the spinodal lines in the phase diagram. This means,
that the low temperature state with homogeneous density is neither globally nor lo-
cally stable. The homogeneous mixture separates therefore to a liquid and a vapor
phase (see the phase diagram in fig. 5.4) [47]. The phase separation process is driven
by local instabilities, this results in complex pattern formation. After an early stage
decomposition, where the homogeneous fluid separates in adjacent liquid/vapor do-
mains with a typical length scale there is a crossover to a domain growth regime,
where the small patches of either phase accumulate. The latter process is described
by the Lifschitz-Slyuzov-Wagner (LSW) theory [47]. In systems with an excess of va-
por domains the growth from small droplets to larger droplets is called the Ostwald
ripening, where small drops shrink and large drops grow. It will be demonstrated that
the PF model captures the correct time behavior of the pattern evolution. In particular
we investigate the influence of gravity onto the pattern formation. In real systems,
spinodal decomposition processes are exposed to gravity and confined by a small con-
tainer to provide good isothermal conditions after the quench. This container walls
exhibit a large impact to the local pattern formation. We shall show, that among the
controlling parameters the contact angle and the average density play a crucial role.
Layering processes in the vicinity of a substrate is observed. The results of this section
are still preliminary.
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 1  10  100  1000

T
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Figure 5.4. Phase diagram of a van der Waals fluid
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5. Minkowski functionals and Minkowski tensors

5.3.1. Introduction to spinodal decomposition

As mentioned above, at short times the spinodal decomposition process is governed
by the local instability when the fluid is quenched below the spinodal line. As we
work in our simulations at fixed volume and temperature we regard the free energy

F[ρ] =
∫

fbulk +
w2

2
|∇ρ|2d3r. (5.28)

We want to check the stability of the free energy of the system against tiny perturbation
δρ after a quench from a homogeneous density ρ0 above the critical point; ρ = ρ0 + δρ

[91]. Assuming for simplicity a plain wave perturbation field δρ = A cos(qx), which
vanishes at the boundaries, we can write the free energy

F[ρ] =
∫

fbulk(ρ) +
d fbulk
dρ

δρ +
1
2
d2 fbulk
dρ2

δρ2 +
w2

2
|∇δρ|2d3r. (5.29)

Note, that only δρ depends on the location, thus we obtain

F[ρ] = F0 +
1
2
d2 fbulk
dρ2

∫
δρ2 d3r+

w2

2

∫
|∇δρ|2d3r. (5.30)

We use the plain wave, so that the first integral reads VA2/2 and the second reads
VA2q2/2. The state is unstable, if the perturbation reduces the free energy:

1
2
f ′′bulk +

w2

2
q2 < 0, (5.31)

where f ′′bulk is the second derivative of fbulk w.r.t. the density. For positive f ′′bulk this
criterion is always invalidated, but negative f ′′bulk yields the critical wave number qc

√
− 1
w2 f

′′
bulk > qc. (5.32)

For wave numbers larger than qc the system gains energy and the decomposition is
triggered, if f ′′bulk < 0. The dynamics of spinodal decomposition of binary mixtures
can be described with the Cahn-Hilliard theory [53, 52, 51, 129].

5.3.2. Morphology

Below, we discuss the morphology of the liquid vapor phase separation in spinodal
decomposition processes with the PF model. First, to test our model, we want to check
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5.3. Spinodal decomposition

the time dependence of our model. The typical size of the liquid/vapor domains L

scales with an universal power law
L ∝ tα, (5.33)

where α is the growth exponent [75]. This exponent depends on the mechanism which
is dominant in the system, e.g. purely diffusive growth, viscous regimes or inertia
driven regimes. In our case after the initial phase separation, it is expected that α =

αviscous = 1 for the symmetric liquid-vapor system. This value was found in the LB
simulations of Cristea [75] and describes a viscous growth regime. The LSW theory for
high viscosity gives an exponent α = 1/3, for intermediate viscosity α = 1/2 and low
viscosity α = 2/3 [282]. An inertial regime is expected to have an exponent α = 2/3
[75].
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timestep=40k 50k

60k 70k

100k 1000k

Figure 5.5. Spinodal decomposition and Ostwald ripening in a liquid vapor mixture of a

van der Waals fluid after a temperature quench to T = 0.7Tc (without walls and
gravity). The average density is off-symmetric with < ρ >= 3

4ρv +
1
4ρl.
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time step=20k 30k

50k 75k

100k 500k

Figure 5.6. Spinodal decomposition and domain growth in a liquid vapor mixture of a van der

Waals fluid after a temperature quench to T = 0.7Tc (without walls and gravity).

The average density is symmetric with < ρ >= 1
2ρv +

1
2ρl.
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5. Minkowski functionals and Minkowski tensors

Typical patterns from vapor-dominated (off-symmetric) and symmetric liquid-vapor
systems are illustrated in fig. 5.5 and fig. 5.6 resp. Simulations were run in a box
with 256× 256 lattice sites, with w = 2h, without an external potential and periodic
boundary conditions at T = 0.7Tc. We see, that in the off-symmetric case, the initial
phase separation is significantly slower. The patterns from the symmetric and the
off-symmetric simulations are quite different. While the former show immediately an
interconnected network of liquid (gray) domains with similar thickness everywhere
the latter leads to droplets of similar diameter. For either situations it starts a growth
process of the typical thickness. To measure this characteristic domain length scale
several methods are proposed in the literature. Widely used is the density correlation
function or the structure factor [5]. This measures does not offer access to the morphol-
ogy, therefore Sofonea et al. [282, 210] proposed length-scale characterizations based
on Minkowsi-functionals: The density is transformed to a binary image of white and
black pixels and the morphology of the white phase is analyzed with the volume
F = W0, the perimeter U ∝ W1 and the Euler number χ ∝ W2 (in 2 dimensions). A
dimension argument connects these numbers naturally to an intrinsic length-scale L

of the pattern
F ∼ 1 U ∼ L−1 χ ∼ L−2 . (5.34)

We used this method to check our simulations against the lattice Boltzmann (LB) find-
ings of ref. [75]. Similarly, in ref. [75] the spinodal decomposition of a van der Waals
fluid is studied under the influence of gravity, where a scaling of α = 1 has been
found. Figure 5.7 evince the Minkowski functionals as a function of the simulation
time steps. After the early stage spinodal decomposition process the crossover to the
growth regime is clearly indicated by the maximum/minimum of the Minkowski func-
tionals W1 andW2. Although these maxima do not indicate exactly the same crossover
time, the difference is quantitatively not significant [282]. The volume of the liquid
domain F reaches around these times its long time average of F → ρ−ρv

ρl−ρv
. The maxi-

mum in the perimeterW1 comes from the large number of tiny droplets which emerge
from the early stage process, while in the domain growth regime small drops accu-
mulate to larger patterns, reducing the boundary. The Euler number (∼ W2), counting
the number of separated domains minus the number of holes is in the off-symmetric
system reaching a maximum, counting all the separated droplets and reduces with
the agglomeration process. In symmetric systems, where the liquid phase builds up
an interconnected network from merging droplets, this first maximum is followed by
a minimum, where the number of holes in the patterns exceed the number of sepa-
rated domains. Afterwards, the number of holes reduces, since they get blurred by the
surrounding liquid. Thus the Euler number increases, towards the value of only one
remaining drop or stripe.
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Figure 5.7. Time-evolution of the morphological measures W1, W2 and W3. See also fig. 5.5

and 5.6.
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Figure 5.8. Time-evolution of the morphological measures W1, W2 and W3 with gravity.

The time-scaling of the growth regime in the symmetric liquid-vapor system is in
good agreement with the results from ref. [75]. This can be seen in the figure 5.9
(left panel). L is measured here by the inverse perimeter W−1

1 (LU). The red points
indicate the length scale in the symmetric system and the green line is a reference
line with the scaling exponent α = 1. Interestingly, for the off-symmetric system we
find an other time scaling. The pink line represents a scaling of 1/3 which is clearly
a too large exponent. Fitting yields a scaling exponent of 0.1559. We are not aware
of such a scaling in the literature. This case is particularly interesting. So far we
only investigated the length scale L defined by the perimeter. Using the Euler number
∼ W2 to define the length scale L (Lχ) we find a scaling law of α = 1 in the first
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Figure 5.9. Left: Time scaling of the perimeter based length scale in symmetric and off-

symmetric liquid-vapor systems. Black line: best fit in the timestep range [70k :
700k] with α = 0.1559 ≈ 1/6. green line: α = 1 Right: Time scaling of the

off-symmetric system with the Euler-number based length scale. A scaling with

α = 1 (green line) is found in the first growth regime, followed by a α = 1/3 (red

line) regime in later stages. The late stage appears to grow with α = 2 (pink line).

regime (right panel of fig. 5.9 followed by a regime with α = 1/3. Comparing fig. 5.5
we see that the typical drop shape is not spherical for less than 106 timesteps. Thus
shape rearrangements due to surface fluxes also play a role in the time scaling LU.
This surface mechansim is not captured by Lχ. The connectivity scales as expect in the
early stage followed by a α = 1/3-regime. The late stage appears to grow with α = 2.
We are not aware that such a value has been reported in the literature. The data for the
symmetric case are extremly noisy in W2. Larger systems are needed to obtain reliable
data. Therefore the data are omitted in the right panel of fig. 5.9. However, we have
first indications, that the Lχ scales with α = 1.

The results for the same initial conditions with gravity (see figures 5.7 and 5.8) shows
nearly the same curves, indicating that the time-evolution is independent of the gravity
in the early regime and the beginning of the growth stage. Gravity without walls is
modeled by a body force, which is balanced by a volume force. In the early regime, the
impact of gravity is expected to be negligible, since in the nearly homogeneous system
a body force does not affect the particle distribution. Only when the system clearly
separats in two distinct phases with different mass densities gravity plays a role. Thus,
the time-evolution is affected in the late stage. While the scalar measures indicate
only a tiny difference in the cases with and without gravity, the projection index β∗0,2

1
derived form the MT W0,2

1 distinguishes quite early between a final stripe state or
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symmetric off-symmetric
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Figure 5.10. Time evolution x − y-projector index β∗,0,2
1 . β∗,0,2

1 = 0 indicates an isotropic

system, −1 an alignment of the boundary normals parallel to the y-axis. The

projection index β∗,0,2
1 = 0 indicates in the late stage even small rearrangements

like (just before) the pinch-off and (just before) coalescence of the droplet in lower

part of the snapshots. In the top left panel, the snapshots are marked with arrows.

After coalescence the drop shape becomes first spherical before the surface smooths

out. This causes the increase of β∗,0,2
1 after coalescence.

bubble/drop (see fig. 5.10). At this preliminary level of the analysis, we speculate,
that the different final situation (spherical or striped) depend on the initial state and

on gravity.

After we checked, that the model works correctly to capture the time behavior we
focus on the interplay of walls. Indeed in realistic systems, gravity and walls occur
always together, and in binary fluid mixture experiments layering effects at the sub-
strate are already reported [292]. We want to emphasize, that in contrast to ref. [75]
our walls are modeled as an attractive wall potential inside the cavity and repulsive
at the borders. Therefore, we expect to capture the layering effect. The wall potential
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controls the wetting in the late stage, when drops emerge. In the early stage, where
the interface term does not play an important role, particles are accumulated close to
the substrate. Therefore, even a partially non-wetting substrate can build up liquid
layering, at least in a transient time frame. Interestingly, if such a liquid layer is build
in the early stage, particles near the wall are moved closer, forcing a depletion layer
above the liquid layer. This depletion yields in turn a vapor phase. The phenomenol-
ogy is displayed in fig. 5.11 (page 127) and 5.12 (page 128). The former figure are
results from symmetric densities, the latter from off-symmetric ones. The left column
are snapshots at large contact angles and on the right the substrate is partially wetting.
The early occurrence of the accumulation layer is observed in fig. 5.11 in both wetting
situations (first row), even before the pattern in the channel center are formed. It de-
pends crucially on the wetting, whether the liquid layer sticks to the wall or is repelled
from the substrate. At symmetric densities, the first case occurs, when the potential is
strongly attractive, so that it is strong enough to compete with the emerging interface
energy. Else, the interface terms keeps the accumulated phase together, and produces
a depletion layer close to the wall. Indeed, this can only occur, if enough particles are
close to the wall to build up a strong liquid layer in sufficiently short time. Otherwise
(compare the off-symmetric case) a dense layer is formed directly at the substrate,
which is followed by a depletion layer. The thickness of the depletion layer can be
seen in fig. 5.13, where we plotted the volume W0|y per line of the lattice (parallel
to the x-axis). The depletion layer in the symmetric simulations are monotonuously
growing in time for wetting and non-wetting substrates. We do not expect this layers
to be long time stable, since noise, gravity or film rupture can drive drop building
or film coalesence. In the off-symmetric case after the creation of the depletion layer,
drops are attracted by the walls. Thus the depletion layer thickness decreases in time.
The time scale for the vanishing of the depletion layer depends on the contact angles.

Whether the first liquid layer is long-time stable or not, can not be answered in
general by deterministic simulations. Thermal noise driven dewetting mechanisms
has been reported in the literature [208]. For instance, we observe in the non-wetting
regime and off-symmetric density, that the potential is too weak to build up a homo-
geneous layer in at the upper wall. Film rupture can occur, even in our deterministic
model. In binary mixtures it is reported that layering effects only occur at transient
regimes [292].
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time step=15k 15k

25k 25k

60k 60k

Figure 5.11. Spinodal decomposition with walls in a liquid vapor mixture of a van der Waals

fluid after a temperature quench to T = 0.7Tc: left column cos θ ≈ −0.5 tight

column cos θ ≈ 0.6. The average density is symmetric with < ρ >= 1
2ρv +

1
2ρl.
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time step=15k 15k

25k 25k

60k 60k

Figure 5.12. Spinodal decomposition with walls in a liquid vapor mixture of a van der

Waals fluid after a temperature quench to T = 0.7Tc with walls: left column

cos θ ≈ −0.5 tight column cos θ ≈ 0.6. The average density is off-symmetric

with < ρ >= 3
4ρv +

1
4ρl. Wall position: ywall = 167σ
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Figure 5.13. Time-evolution of the layering, in particular the depletion layer. W1|y is the

volume W1 restricted to one line parallel to the x-axis at position y. The line

thickness is constantly one lattice spacing. The depletion layer corresponds to

the low W1|y values around the position x = 150 ∼ 160σ.

regime scaling exponent reference

diffusive 1/3 [47, 75]

viscous 1, 1/2 [75, and refer-
ences therein]

1/2 in some 2D
systems

intertial 2/3 [75]

Table 5.3. Growth exponents α for vapor-liquid systems.
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5.3.3. Discussion

Spinodal decomposition is an important mechanism in nanotechnology to exploit self-
organization to create spatial patterns [91]. Since at these scales the attractive part
of these potentials is of great importance, simulation techniques are needed which
account for all the mechanism at play: early stage decomposition, viscous and iner-
tial driven hydrodynamics and proper substrate coupling. We suggest therefore the
PF model, as convenient tool to study spinodal decomposition and domain growth
for liquid-vapor systems. Although studied for long times a fully understanding of
these phase-separation processes is still lacking [75], e.g. the crucial role of layering
effects at the boundaries [292]. Substrate walls break translation symmetry, and thus
motion-dependent morphological measures are needed to describe the morphology
sufficiently. The study of the substrate impact is still an open project, where descriptor
development and dynamical description are going hand in hand.

We found in the late stage of off-symmetric systems an exponent α = 2 which is so
far not connected to a dynamic mechanism. Also surface effects seem to lead to for-
merly unknown growth exponents when perimeter based lengthscales are measured.
Investigations of these regimes should be addressed in the futur.

In detail, it remains unclear, whether there is a sharp transition for the occurrence
of a transient liquid wetting layer or its production is history dependent. Empiri-
cally, this can be studied with more simulations and a large variety of initial noise.
Since, the preliminary results indicate a strong dependence on the average density,
this problem becomes heavy with respect to the computational costs. A reliable non-
wetting layer (depletion in contact with the wall) in liquid-vapor systems might be of
great importance in microfluidic transport problems e.g. to clean microchannels with
a heat—cool—pumping cycle. Therefore, the time-evolution and the θ-dependence
vapor layer at the wall is of great interest too.

We would like to investigate the question, whether and how the time-evolution
exponents are affected by the broken symmetry of an attractive wall potential. This
question is strongly connected with finite size effects in the simulations. While we
believe, that the phenomenology is already correctly captured in our simulation box,
a systematical check about finite size effects in systems with walls is still open.

Last but not least, wetting layers are known to be unstable under certain circum-
stances [208], due to thermal motion. Therefore, a PF model with thermal motion,
i.e. the thermostatting is done by a stochastic stress tensor instead of the DDFT or
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Cahn-Hilliard thermostat term. Numerical stability together with the wall-coupling in
our PF appeared to be a great challenge, which still remains unsolved.
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6. Local structure analysis and

anisotropy in particulate matter

In the former chapters we investigated the impact of the confining geometry onto the
phase behavior of liquid-vapor system with a mean-field description. Here we use a
microscopic perspective to study geometrical effects in the local arrangements of fluid
particles or grains onto the phase behavior.

Many studies in condensed matter science involve a careful local structure charac-
terization for crystal cluster characterization [133, 266, 294], precursor identification of
Lennard-Jones fluid crystallization [294, 266], order description in supercooled liquids
[293, 155], melting [241] or the emergence of order in glassy systems [220]. For in-
stance, Speedy et al. [284] connected the free volume and cavity volume in hard sphere
systems to the thermodynamical quantaties pressure and chemical potential. Sastry et
al. [264] proposed an algorithm based on Speedy’s formula to obtain these quantaties
fromMonte-Carlo simulations in hard spheres. In the literature many fruitful concepts
are available to describe local structure. Nevertheless some often used descriptors lack
robustness in its defintion, which may lead to misinterpretations and artefacts under
certain circumstances. Therefore, routine methods are needed which are robust and
easily evaluated.

In this chapter we shall use the tensorial Minkowski analysis to study the local or-
der of hard sphere (HS) systems with and without friction. Frictionless hard spheres
are the focus of many investigations to model simple liquids, colloidal suspensions or
jammed systems. With the Rosenfeld-functional a very accurate free energy functional
is known for equilibrium DFT calculations and thermalized HS ensembles are often
created with event driven molecular (EDMD) dynamics or Monte-Carlo (MC) simula-
tions [257, 161, 5]. It is well-known, that at low packing fractions φ (percentage of the
volume occupied by spheres) thermal1 hard spheres ensembles are amorphous and
disordered, whereas at high packing fractions a fcc-like (face centered cubic) phase is
entropically favored [315, 316, 43, 106]. In 3 dimensions a first order phase transition

1i.e. typical equilibrium configurations
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between the amorphous liquid and the crystalline solid phase is observed. Com-
pressing hard sphere fluids sufficiently fast one obtains a so-called supercooled liquid,
which exhibits slow relaxation times [122].

In the thermal and supercooled regime, the collisions of hard particles are assumed
to be infinitely short in time. Dissipative dynamics, as it is experienced for example in
powders or sand, lead to jammed packings, where all the degrees of freedom (DOF)
of momenta are dissipated and the system gets compactified till the number of con-
straints (contacts of spheres) exceeds the number of DOF. These systems are found in
experiments and simulations for packing fractions larger than a certain packing frac-
tion, widely referred to as random loose packing (RLP). But its precise definition and
value is still under debate [10]. In experiments there is also an upper limit for pack-
ing fractions of jammed beads2 packs, which is called random close packing (RCP). Its
precise definition and value is under debate too [247, 297]. Up to now, only simula-
tions are known that produce (quasi) jammed sphere packs beyond the RCP packing
fraction [144, 8, 186], without initial crystallization germs. Geometric studies reported
quasi jammed crystalline packings for low packing fractions too [100]. Figure 6.1 sum-
marizes HS systems which are mentioned above. In this chapter HS ensembles over
the full range of packing fractions are studied with Minkowski tensors, and the results
are compared to other local order measurements.

2The term bead is here used for spheres with dissipative dynamics
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Figure 6.1. Thermal HS systems range from the disordered ideal gas to the closed packed fcc

crystal. Non-thermal HS packings exhibit different configurations, from super-

cooled liquids to jammed. The vertical axis is not precised and can be considered

as an order parameter.

This chapter is organized as followed: In section 6.1 the application of Minkowski
tensors as local order parameters is discussed and compared to other common order
parameters in section 6.2. Afterwards the local structure of jammed states is analyzed
in detail (sec. 6.3), this leads to an investigation of the RCP point in section 6.4 and the
development of new techniques which are based on rank-4 Minkowski tensors.

6.1. βr,s
ν as local order parameter

In this section shall discuss, that local order measures, based on the anisotropy mea-
sure βr,s

ν are suitable in hard sphere (HS) systems, i.e. thermal equilibrium HS systems.
In next sections we shall employ this technique to study also jammed bead packs and
supercooled fluids.

In order to develop local order parameters based on the Minkowski functionals
and tensors for sphere packings we start with the Voronoi graph [233, 287] of a seed
point pattern, e.g. the set of sphere centers. The Voronoi tessellation is a subdivison
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of space into convex tiles (Voronoi cells) without overlap and every sphere k is en-
tirely embedded in its Voronoi cell Vk. Every point r of the Euclidean space E3 is
assigned to the nearest seed sk ( assuming pairwise disjoint seeds) of the point pat-
tern P = {sk|k = 1, . . . ,N}. The set of points r with more than one nearest neighbor
seed generate Voronoi cell structure (points on Voronoi facets have two nearest neigh-
bors, points on edges of Voronoi cells have three nearest neighbors,. . . ). The Voronoi
cells are therefore convex and each cell contains exactly one seed. Taking the centers
of the spheres as seeds, the Voronoi graph represents thus a fair partition of space.
Indeed, the Voronoi graph construction is just the simplest representation of a class
of tessellations, the so-called Laguerre- or power-tessellations, which can be used for
non-monodisperse systems [176]. Figure 6.2 shows an illustration of a Voronoi graph
(tessellation) in 2 dimensions. It is noteworthy to mention, that for any countable seed
pattern, with pairwise different seeds, Voronoi cells have a non-vanishing volume, but
Voronoi facets can exhibit zero surface area, thus we shall see below that the number
of Voronoi facets is not robust. Figure 6.3 shows typical hard disc sets at different
packing fractions and their inscribed Voronoi graphs.

Figure 6.2. 2D Voronoi graph of monodisperse hard discs. The seeds are the disc centers.

Each Voronoi cell V contains its seed and is convex.

The key idea of a local order parameter is to describe the shape of the Voronoi cells
with robust measures. Such shape descriptors can be for example the volume or the
surface area. Indeed local structure analysis based on this two measures have been
used often before [17, 181, 248, 287] and these correspond to the simplest Minkowski
functionals (up to prefactors).
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For instance, Rahman has used Voronoi tessellations to study the self diffusion
beyond Brownian theory and harmonic crystals in Lennard-Jones fluids [248]. He
has demonstrated that with the Voronoi graph it is possible to decompose the pair-
correlation function into a set of pair-correlation functions w.r.t. the number of coordi-
nation shells lying between the particles. The Voronoi graph has been used in several
papers to compute the so-called free volume and the cavity volume [264, 72, 284]. The
cavity volume is connected to the chemical potential of the hard sphere fluid [284]. In
recent studies the Voronoi volume has been connected to the thermodynamic molar
volume [132]. Furthermore the Voronoi graph is often used to define nearest neighbors
[319, 238, 317, 279, 181].

Going beyond the scalar measures, the rank-2 tensors explore the elongation of the
cells with the anisotropy measures βr,s

ν as defined in (5.25). This is a precise definition
of best fitting of an ellipsoid to a Voronoi cell w.r.t. a certain morphological feature,
which is expressed by a MT. To make an example we present in fig. 6.4 the mean
(left) and the standard deviation (right) of thermal hard sphere systems obtained from
MC and MD simulations 3. We shall compare the anisotropy of equilibrium HS sys-
tems with those of supercooled liquids and jammed states in sec. 6.2 and 6.3. All 6
anisotropy measures capture the first order phase transition and follow qualitatively
the same trend, showing that the local anisotropy of thermal HS systems is not subject
to special characteristics of the morphology. For the details of the diagram, see the
caption.

In fig. 6.4 the ideal gas limit φ → 0 (solid bullet), which is generated as a Poisson
point process is the limiting value for thermal systems. On the other side of the
diagram the fcc (face centered cubic) closed packed system (φ ≈ 0.74048) is an isotropic
system. Note, that the hcp (hexagonal closed packed) system, which is equally favored

3MC simulations by M. Spanner, MD simulations by T. Nogawa, see ref. [151]

Figure 6.3. Voronoi cells in a Poisson point pattern, a dilute hard disks fluid (φ = 32%), and

hard disks configurations below and above the phase transition (φ = 61%, 76%).
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Figure 6.4. Left: Average anisotropy indices 〈βr,s
ν 〉 for equilibrium ensembles of hard spheres

vs. packing fraction φ. In the limit φ → 0, the hard spheres anisotropy approaches

those of the Poisson process (solid bullets). All average 〈βr,s
ν 〉 display a disconti-

nuity at the first-order phase transition at φ ≈ 0.49 [253]. The inset shows

metastable states in or close to the coexistence region; symbols are MC results,

lines are MD simulations (see appendix B). Right: Standard deviations of the β

distribution for equilibrium hard spheres. A linear decrease as φ → φfcc as been

divided out. All data points are calculated from MC simulations. Data close to the

phase transition might not be fully equilibrated, therefore the standard deviations

are omitted in these range. The values of β2,0
2 are very close to those of β2,0

0 and

have been omitted for the sake of clarity.

from a geometric point of view—but dynamically not stable [315, 316, 43, 106]—results
in the same values βr,s

ν . The mean values 〈βr,s
ν 〉 show a discontinuity at the first order

phase transition point φ ≈= 0.49 [253]. The standard deviation σ(βr,s
ν ) goes almost

linearly to zero: σ(βr,s
ν ) ∝ φ − φfcc, where φfcc is the packing fraction of the fcc packing

(φfcc = 0.74048).

To further investigate the morphological information carried by the anisotropy in-
dices, figure 6.5 displays the correlation coefficients of corr(X,Y) of X = βr,s

ν with
(a) Y = βr′ ,s′

ν′ , (b) Y = γr,s
ν and (c) the isoperimetric ratio (also called “shape index”)

ζ = W3
1/W

2
0 ∝ A3/V2. The correlation coefficient of two random variates is defined
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corr(X,Y) = 〈(X − 〈X〉)(Y − 〈Y〉)〉/σ(X)σ(Y) ∈ [−1, 1], where σ( . ) is the standard
deviation. The βr,s

ν − βr′ ,s′
ν′ correlations in panel (a) for all combinations of ν, r, s and

ν′ , r′, s′ shows quite large positive values. Values close to one indicate strong posi-
tive correlation, this means βr,s

ν and βr′ ,s′
ν′ depent similarily on shape variations of the

Voronoi cells. These large values of the correlation coefficient verify that the anisotropy
signatures in the thermal system are generic and not subject to a specific property of
the morphology. Panel (b) shows the correlations of X = βνr, s with Y = γr,s

ν ( ratio
of the intermediate eigenvalue and the maximal eigenvalue). We find moderate posi-
tive values for all MT. The anisotropy measure βr,s

ν does not carry the full anisotropy
information, but captures already significant shape information. The correlations in
panel (c) of βr,s

ν with the isoperimetric ratio ζ [221, 287] are rather poor (values close to
zero), especially close to the phase transition. Low correlations between ζ and βr,s

ν un-
derlines the signification of the rank-2 tensors as shape descriptors beyond the scalar
MF, i.e. different charateristics are captured. ζ for example differs for a cube and a
sphere and can be interpreted as an asphericity index, βr,s

ν captures e.g. elongations
(depending on the choice of ν, r and s).

Conclusion We used the hard sphere model to validate rank-2 Minkowski tensors
as order parameters. Thanks to the completeness theorem for Minkowski tensors, we
can conclude that the local anisotropy of the Voronoi cells in equilibrium hard sphere
packings is generic. This means anisotropy is not dependent on a special choice of the
morphological characteristics under consideration. Furthermore, we demonstrated
that MT capture different information compared to the scalar MF.
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Figure 6.5. Correlations corr := 〈(X−〈Y〉)(Y−〈Y〉)〉
σ(X)σ(Y) ∈ [−1, 1]. a) X = βr,s

ν and Y = βr′ ,s′
ν′ for

all combinations of anisotropy indices: All anisotropy measures a quite strongly

correlated. b) X = βr,s
ν and Y = γr,s

ν for all ν and r + s = 2, where γr,s
ν :=

|(µr,s
ν )2|

|(µr,s
ν )1| ∈ [0, βr,s

ν ]: Both measures of eigenvalue ratios have only an intermediate

correlation. b) X = βr,s
ν and Y = ζ for all ν and r+ s = 2, where ζ = W2

0/W
3
1

is the isoperimetric ratio: In the vicinity of the phase transitions both measures

are quite poorly correlated. Because of the similarity of all curves, the legend is

suppressed.
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6.2. Alternative commonly used local order parameters

Structure descriptors for particle systems are already widely used in the literature.
Most of these measures depend crucially on how the set of nearest-neighbors is de-
fined. The most famous order-parameter family are the so-called bond orientation
order parameter (BOO) [217, 297, 177, 289]. Further measures are e.g. tensorial mea-
sures such as Edwards’ configurational tensor [88], quadrons [39] and fabric/texture
tensors [87]. While these structure indices are undoubtfully valuable, their applica-
tion need great care in the choice of a suitable neighborhood definition. Often, these
neighbors are referred by bonds, and clearly the number of neighbors is discontinuous
over the changes of the seed pattern. In crystallography the number of nearest neigh-
bors (also called coordination number) zNN is used directly or combined with other
parameters to localize crystal defects [156, 2, 94].

In this section we shall study BOO in the light of the neighborhood definition. As
a further example of nearest neighbor definition dependent structure parameters, we
shall disscus the Edwards tensor. We show, that the lack of continuity in the coordina-
tion number may lead to artefacts which adulterate the structure analysis.

Steinhardt bond orientation order parameters In the following the Steinhardt bond
orientation order parameter (BOO) [289] and the Edwards tensors [88] are defined
and compared to the Minkowski approach. In order to define the bond orientation
order parameter in a system of particles, a suitable set of nk nearest neighbors for each
particle k has to be chosen. Let θj and ϕj denote the spherical coordinate angles of the
vector connecting the center of k to the centers of its jth nearest neighbor. Then, the
bond orientation order parameter ql(k) of particle k is defined as

ql(k) =

√√√√ 4π

2l + 1

l

∑
m=−l

∣∣∣∣∣

〈
nk

∑
j=1

Yl
m

(
θj, ϕj

)
〉∣∣∣∣∣

2

, (6.1)

where Yl
m are spherical harmonics. The squared norm ensures that ql is rotationally

invariant. Third-order invariants can be constructed

wl(k) = ∑
m1,m2,m3

m1 +m2 +m3 = 0

(
l l l

m1 m2 m3

)
Yl
m1

Yl
m2

Yl
m3
, (6.2)
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where Yl
m = ∑

nk
j=1 Y

l
m

(
θj, ϕj

)
and

(
l l l

m1 m2 m3

)
is the Wigner 3j-symbol [289].

Although we will not use the global bond order parameter Ql we define it for com-
pleteness as

Ql =

√√√√ 4π

2l + 1

l

∑
m=−l

∣∣∣∣∣

〈
N

∑
k=1

nk

∑
j=1

Yl
m

(
θj , ϕj

)
〉∣∣∣∣∣

2

, (6.3)

where N is the number of particles. The average over all bonds is taken inside the

norm, and for disordered systems the sum over the Yl
m vanishes as 1/

√
∑

N
k=1 nk, while

it remains finite for common crystalline structures [289, 256] Usually, the case l = 6
is considered, which is sensitive to fcc, hcp and icosahedral bond orientation. In
equlibrium hard sphere systems hcp and fcc nuclei are found [43, 106].

Bond definition As noted above, the bond or neighborhood definition lies at the heart
of the definition of the local bond order. Some different definitions are illustrated in
fig. 6.6. Steinhardt proposed any suitable definition of nearest neighbor bonds for ql
and he used in his original work a cutoff radius of 1.2σ with the particle diameter
σ [289]. Widely used definitions of the coordination (bonds) are fixed cutoff radii
e.g. (1.2, 1.4)σ, used e.g. in refs. [220, 231, 202, 85, 158] or cutoff radii based on the first
minimum of the two-point correlation function g(r), as in [163, 54, 127, 1, 308]. This
most common definition in the literature assigns a bond between sphere k and sphere
j if the distance between the sphere centers is less or equal rc.

Alternatively, the Delaunay graph construction on the particle centers [20] is used
to define nearest neighbors [319, 238, 317, 279, 181]. Every sphere center connected to
k by a Delaunay edge is a neighbor of k. This parameter-free definition, solely based
on locations of particle centers, is equivalent to the definition of Voronoi neighbors.

A less commonly used definition is to assign a fixed number n of nearest neighbors
per seed k [78, 320]. We shall use the more precise symbols like qrc6 , q

D
6 or qn6 to specify

the definition of nearest neighbors.

Figure 6.6 summarizes these commonly used definitions in 2D. Panels a) and b)

show the relationship of the Voronoi graph and the Delaunay graph. The Voronoi
graph is plotted red and the Voronoi neighbors are indicated with blue bonds. Please
note, spheres share a bond, whenever there exists a shared facet in the Voronoi graph
(no matter the area of the facet). The diagram of these bonds is called Delaunay graph.
Panel c) is an example of a cutoff-radius coordination and depends on the arbitrary
choice of rc. The definition of a fixed number of nearest neighbors (panel d) follows the
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6.2. Alternative commonly used local order parameters

fact, that if a certain cluster configuration is searched for, the ideal cluster configuration
number is known. While usually no physical rule for bond coordination exists each of
these definitions cover (slightly) different aspects and is subject to artefacts.

The remainder of this section illustrates how sensitively q6 depends on the nearest
neighbor, by analysis of hard sphere systems and solid models. In figure 6.7 a) we
present the average local bond parameter

〈
qD6
〉
as function of the packing fraction φ for

several hard sphere systems. The Delaunay definition is used for the simple fact that
it is well defined for all packing fractions φ. The blue squares represent Monte-Carlo
(MC) simulations from above [151]. The snapshots (point pattern of sphere centers)
are taken in thermodynamical equilibrium in the fluid phase and the solid fcc phase.
One can clearly see a qualitative change from the fluid to the crystal at φ ≈ 0.53. The
black crosses are Lubachevsky-Stillinger (LS) simulations [186, 281] (see also app. B.4
for details of the simulations). These simulations generate jammed states between
packing fractions 0.55 > φ > 0.65. The orange bullets presents (MD) simulation
snapshots of supercooled liquid like states. The supercooled liquids are prepared by a
compression technique specified in app. B.3. Although it is numerically demanding to

a) b)
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c) d)

Figure 6.6. Widely used neighborhood definitions: a) Voronoi graph (red) and its dual Delau-

nay graph (blue) b) Delaunay bonds c) bonds via cutoff radius rc d) n = 6 nearest

neighbors bonds
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Figure 6.7. a) Local order of spherical particles, measured by qD6 . Blue squares: Monte Carlo

simulations, orange squares: MD supercooled fluid, black crosses: Lubachevsky-

Stillinger final (jammed) states. b) Local order of spherical particles, measured

with β0,2
1 . Symbols and colors match those of a)

drive the supercooled fluid towards packing fractions of RCP (φRCP ≈ 0.64) it appears
that the continuation of this branch reaches nearly the jammed states at RCP.

Figure 6.7 b) shows the same simulations as a) but with the anisotropy measure
β0,2
1 . One can clearly see a qualitative matching between the local order diagram with

q6. This coincidence underlines the interpretation of β as a local order parameter.
The jammed LS (black crosses) structures between packing fractions 0.55 > φ > 0.65
fall on a line for β(φ). In sec. 6.3 we shall show that this universal behavior is also
valid for other jamming protocols (simulations and experiments). The dense-LS (DLS)
packings beyond RCP do not continue the universal line of the jammed states φ < 0.65
and rather exhibit a kink at that point. These observations will be the subject of the
section 6.4.

A careful look at the q6 diagram a) exhibits two flaws of this measure that becomes
evident for the MC (blue squares) equilibrium simulations. The first but avoidable
defective appearance is the fcc limit which does not lead to the q6 value of an ideal fcc
crystal (A in fig. 6.7 b). Indeed in an ordered phase small perturbations of the seed
points end up in a quite large impact to the number of Voronoi facets (equivalent to the
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Delaunay neighbors) and thus q6 is calculated in general with more than the 12 nearest
neighbors in the fcc or hcp lattice [298, 255], while the ideal fcc and hcp configurations
have exactly 12 nearest neighbors at the same distance (See also the 2D example in
fig. 6.11) Some authors use additional criteria in order to refine the Delaunay bond
definition, e.g. a cutoff radius [319]. In a disordered phase no systematical degeneracy
in the Delaunay graph appears. In amorphous systems the Delaunay definition suits
therefore better. Furthermore this parameterless definition is rather independent from
the packing fraction (see below).

The second flaw can be found in the region of very diluted fluids (C in fig. 6.7 b). The
Poisson point process (ideal gas), which clearly is the least ordered state, nevertheless
has a higher qD6 than the HS equilibrium at φ ≈ 0.1. As these low packing fractions are
barely studied in the literature using local order parameters this flaw is not practically
relevant but conceptually interesting. In contrast β shows a well defined signature in
either case. In the zero packing fraction limit φ → 0 the local structure of the hard
sphere gas approaches in a monotonic behavior the one of an uncorrelated Poisson
point process marked with a black bullets.

In the other limit φ → φfcc the hard sphere crystal structure unambiguously leads to
that of an ideal fcc crystal (black bullet) with βr,s

ν = β0,2
1 = 1. The supercooled branch

(orange bullets) of q6(φ) follows a non-monotonic curve. We shall discuss in the next
paragraph that q6 leads to misinterpretation in this regime.

qD6 exhibits a local maximum (B in fig. 6.7 b) in the supercooled liquid branch, which
does not necessarily correspond to increased ordering. Instead, abnormal behavior
of q6 in this regime is due to the interplay between two competing effects. Such
local order anomalies are the focus of several studies [78, 90, 320]. First the number
of nearest neighbors is φ-dependent and second the ordering of the spheres around
a center sphere is also φ-dependent, since compressing the fluid changes the local
neighborhood. In a totally uncorrelated system q6 will scale with 1/

√
nk [256]. In a

supercooled fluid this effect is less strong in the first coordination shell up to nk ≈ 12
and stronger when the second shell is included (fig. 6.8).

Figure 6.9 (left panel) show the supercooled branch of Figure 6.7 with four differ-
ent definitions of coordination and the right panel the mean coordination number in
this samples. This example of a disordered system shows that a coordination number
dependent order/disorder parameter can give conflicting results depending on the
choice of coordination or bonds. Since the q6 order parameter is subject to artefacts
in this regime, it is not clear whether q6 correctly represents the physics of the sys-
tem, whether physical effects are obscured or whether observed anomalies are due
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Figure 6.8. Mean < qn6 > as function of n = zNN, i.e. the nearest neighbor definition detects

the set of zNN nearest spheres as bonds. The squares are MD simulations of the

supercooled fluid branch with φ = 0.6. The solid lines correspond to the perfectly

uncorrelated case (〈qn6 〉 ∝ 1/
√
n, see ref. [256]). The dotted lines are fits for the

first coordination shell for n < 12 and first and second shell n > 12. The first

shell exponent is −0.24 and the second shell exponent is −1.48.

to the definition of the order parameter. Since the discrete nature of the coordination
number leads to undesirable jumps some authors use weight functions to smooth the
parameters [323, 246]. The choice of weight functions is discussed in chapter 7.

Einstein solid A simple model of ordered structures is the so-called Einstein solid. It
is used here to generate point patterns continuously between a certain ordered crystal
structure and a fully disordered pattern. Placeing seeds on the ideal sites ri of a crys-
tal (fcc, hcp, . . . ) with lattice spacing a and displacing each seed by a random vector
~ε i = (εx, εy, εz), where ε i, i = x, y, z are independent random variates of a distribution
P. A common choice for P is a Gaussian distribution with zero mean. The root mean
square displacement (RMSD) is therefore ε =

√
< |~ε|2 >. Tuning the noise amplitude

ε from zero to infinity destroys the lattice order and changes continuously to an ideal
gas process (Poisson point process). While real solids exhibit strong correlations in the
particle positions and fluctuations around the average lattice sites, the simple Einstein
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Figure 6.9. Left panel: Local bond order parameter < q6 > in the supercooled fluid with sev-

eral definitions of the coordination neighbors: orange squares: rc = 1.2σ, green

bullets: rc = 1.4σ blue crosses: Delaunay-definition and black stars: n = 12.
Depending on the definition, q6 shows an overall rising or falling trend with or

without extrema. Right panel: Corresponding number of nearest neighbors. While

the Delaunay-neighbor definition stays rather constant, a fixed cutoff-radius re-

sults to a strong increase.

model shows decreasing correlations of the positions with an increase of ε and no cor-
relations in the fluctuations around the ideal seed points. An arbitrarily large overlap
for finite-sized particles is therefore allowed. The left panel of fig. 6.10 presents the
local bond order parameter q∗6 with different definitions of the neighborhood ∗. The
corresponding mean coordination number is shown in the right panel. While in the
ordered systems the definition is not very important (except for the Delaunay def-
inition, as discussed above) with increasing disorder the details of the definition of
zNN become more important. The use of neighborhood-dependent order parameter in
amorphous particulate media needs great care for the details of the bond definition.

Edwards tensor Edwards and others proposed a tensor construct for granular matter
which we shall call Edwards tensor C [88, 39]. They make use of C to investigate
stress transmission in grain packings and it is used e.g. to characterize isotropy of the
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Figure 6.10. Left: Local bond order parameter over the RMSD ε of an uncorrelated fcc

Einstein solid with 6 different definitions of bonds. Right: Corresponding coor-

dination numbers zNN. The dimensionless RMSD is normalized with the lattice

spacing a.

packing. As we will see, this tensorial measure is quite similar to one of the MT, but
lacks continuity. Let us denote the nk neighbors of sphere k (which is located at rk)
with 1 ≤ j ≤ nk and their position vectors with rj. The bond vectors are bkj = rj − rk.
The Edwards tensor is

C =
nk

∑
j=1

bjk ⊗ bjk. (6.4)

Similar to the MT, one can define an anisotropy measure βC by the ratio of the minimal
and the maximal eigenvalues (µC)d and (µC)1. In fig. 6.11 the average anisotropy mea-
sures < β0,2

1 > and < βC > for fcc-Einstein solids are compared, and three different
bond-definitions are used for the latter tensor (〈.〉 denotes the average over all seed
points). While the continuous defined MT varies monotonic with RMSD and meets
the correct fcc limit of 1, the Edwards tensor has some defective behavior, especially
close to degenerated configurations, i.e. close to the ideal fcc configuration. First we
shall concentrate on the Delaunay bonds, or equivalent the Voronoi facets: In perfect
hcp or fcc configurations, the second nearest neighbors create Voronoi facets with zero
surface area, and the Delaunay tetrahedra of four adjoint spheres, are not uniquely
defined. In 2D this degeneracy is the same for Delaunay triangles, as sketched be-
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Figure 6.11. Left: Anisotropy index for W0,2
1 (I) and Edwards’ configurational tensor C(i),

applied to a fcc Einstein solid. The noise amplitude is quantified by the root

mean square displacement RMSD of the germs from their ideal lattice sites. The

Minkowski tensor W0,2
1 (I) is computed from the Voronoi tessellation of the lat-

tice, C(i) is computed with the Delaunay neighborhood and distance cutoff neigh-

borhoods of the order of the noise amplitude. It is seen that, even for vanishingly

small levels of noise, C(i) of a single lattice site is not an isotropic tensor, while

W0,2
1 (I) is. Tensor isotropy is defined via the ratio of eigenvalues, as in eq. (5.25).

The x axis and cutoffs are in units of the fcc nearest neighbor distance a. Right:
Illustration of point configuration with a degenerate Delaunay triangulation.

A small perturbation (not drawn to scale) lifts the degeneracy and breaks the

isotropic 4-simplices into anisotropic triangles.

side the main panel of fig. 6.11. In the degenerated case it is therefore not possible
to choose one of either diagonal bonds. For any tiny distortion of the seed points,
the degeneracy is broken, and of course this is extremely sensitive to noise [255, 298].
Furthermore, since these additional bonds are the longest bonds of the center-sphere
the quadratic weight in C spoil the correct close-crystal behavior. This arguments ap-
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ply also to cutoff radius definitions of nearest neighbor sets. We find therefore equal
deficiencies (both, in the mean of βC and its fluctuations, see insert). Actually, the
discontinuous Edwards tensor with Delaunay bonds is similar to the MT W0,2

1 , which
is the normal weighted surface area tensor. But in contrast to the Edwards tensor only
the direction njk is taken, which is bjk/|bjk|, and this contribution is weighted with
the surface area of the Voronoi facet. While the number of Voronoi facets is discontin-
uous the surface area of the Voronoi cells is continuous. An infinitesimal seed-points
displacement might create a new facet, but it initially has infinitesimally small surface
area. The MTW0,2

1 is therefore robust against noise of the seed point pattern, although
it is similarly defined via the Voronoi graph. The mean anisotropy index 〈βr,s

1 〉 in
fig. 6.11 and the HS fcc crystal (fig. 6.7) look very similar (the former as a function of
RMSD, the latter as a function of φ).

However, the two systems are clearly quite different. The HS crystal involves high
correlations of the local arrangements and individual spheres, which are not covered
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Figure 6.12. Comparison of average anisotropy index β0,2
1 as a function of local normalized

densities d. The Voronoi cells are binned in density bins, and an average of

their anisotropy indices is computed separately for each bin. The plot shows

that the correlation of anisotropy index and cell volume distinguishes between

the Einstein solid and the equilibrium hard spheres structure (in the solid phase),

even though parameters are chosen such that the global averages 〈β0,2
1 〉 are equal.
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6.2. Alternative commonly used local order parameters

by the simple Einstein solid model. This structural differences are displayed by the
correlations of the local normalized density d = 1/(ρV) and the local anisotropy βr,s

ν . A
positive correlation for d and β is found for the HS crystal, while the Gaussian Einstein
model shows a negative correlation (see fig. 6.12). Also, the correlations are sensitive
to subtle changes of the random process in the Einstein model. Using uniform random
variates for the displacements~ε lead to rather uncorrelated behavior, displayed by the
U-shape of the correlation curve. Positive correlations indicate repulsive interactions.
It was also found for jammed bead packs and will be discussed in section 6.4, and
negative correlations has been found in foams [151]. In repulsive systems, such as HS,
high pressure (or high packing fractions) drive the system to local structure close to
the particle shape itself, and minimizing the void space. Thus a positive correlation
is expected. In the Einstein solid, no minimal distance is imposed, and high densities
stem from intrusion of seeds to the void space of an adjacent seed. This displacement
results in two oblate cells. In ref. [151] it was demonstrated, that the Minkowski
analysis is also useful for other systems, like Lennard-Jones fluids in 3D and hard
discs in 2D.

Conclusion Many common local structure parameters rely on a definition how the
set of nearest neighbors is chosen. The number of nearest neighbors is an integer
and thus not continuous. This can yield artefacts in the local structure analysis. We
demonstrated this for example in a system of amorphous HS fluids for the BOO and
in the so-called Einstein solid for the Edwards tensor. Conversely, MT of Voronoi cells
are continuous order parameters of the local arrangement and therefore robust against
noise in the seed point pattern.
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6. Local structure analysis and anisotropy in particulate matter

6.3. Jamming in athermal dissipative HS systems

In this section we shall discuss the local structure of jammed spheres. As a first work-
ing definition for jamming, we shall call a bead pack jammed when every (or at least
most) beads are confined by their neighbors so that no motion is possible. This is
called mechanically stable. Clearly, jammed states emerge from metastable states and
non-equilibrium processes. A priori one has to expect that the features of jamming are
history-dependent, i.e. the packing characteristics differ for each protocol and initial
configurations [239]. Often, jamming is regarded as an infinite pressure limit of glasses
[239, 296, 14, 149], Figure 6.13 presents a schematic hard sphere (HS) phase diagram
(fig. taken from ref. [239]). Upon slow compression hard spheres the ensemble follows
the solid line. Faster compression leads to metastable states, where the dynamics slow
down. An ideal glass transition in 3 (or in general in finite) dimension is subject of an
intense debate [239, and references therein]. A glassy state has an infinite relaxation
time and vanishing diffusivity.

Among several definitions of jamming, Donev and Torquato proposed a hierarchy
of jamming definitions, which is widely adopted for ideal packings [83]. Before quot-
ing the jamming conditions, one should note that experimental or simulated packings
are never ideal, e.g. often so-called rattlers can be found. Rattlers are sole spheres,

Figure 6.13. Schematic phase diagram of hard spheres as described by Parisi [239]. Compress-

ing hard spheres slowly, the ensemble will follow the solid line. However, fast

compression leads to metastable states, which, arguably, cannot be compressed

beyond a maximal packing fraction (φRCP) as the pressure converges.
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6.3. Jamming in athermal dissipative HS systems

trapped in a cage of jammed spheres, but free to move inside the cage. A sphere is
called locally jammed when it is fixed by its neighbors, i.e. 4 appropriate distributed
contacts in 3D. A packing is locally jammed, if each sphere is locally jammed. A
stricter condition is collectively jammed, this means that the packing is locally jammed
and no subset of spheres can be moved simultaneously so that any sphere lose con-
tacts. Finally, a packing is called strictly jammed, if the packing is collectively jammed
and a volume-conserving deformation of the boundary is not possible [296]. While
this formal definitions are hardly verifiable in experiments, jamming is often con-
sidered as the state where the packing got stuck after a compactification process,
e.g. sedimentation. Packing hard spheres densely is a purely geometrical problem.
The local structure analysis in jammed bead packs is a long-standing research sub-
ject. In 1960 Bernal [32] published his study of structure in liquids and discussed in
another paper in the same year the coordination in jammed bead packs [33]. In this
study he proposed the existence of random close packing (RCP). Since than, many
studies have focused on the preparation and structure analysis of jammed packings
[144, 150, 281, 275, 140, 181, 228, 163, 153, 238, 12].

Often, the structure analysis has focused onto Voronoi graph constructions and the
volumes of the Voronoi cells. Aste et al. [16] found a rescaled k-gamma distribution
for the Voronoi and Delaunay volumes in experimental packings. Further, the authors
showed, that the emergence of this distribution can be derived from minimal ingredi-
ents, namely, the assumption, that in any meaningful tiling of space a theoretical lower
limit exists for the cell volume. The k-gamma distribution reads

P(V) = P(V,Vmin, k) =
kk

(k− 1)!
(V −Vmin)k−1

(〈V〉 −Vmin)k
exp

(
−k

V −Vmin

〈V〉 −Vmin

)
, (6.5)

where P(V) is the probability of a Voronoi cell with volume V, 〈V〉 is the average
volume and Vmin = Vsphere/0.7546 is the Voronoi volume of an icosahedron center
sphere, which is the most compact configuration [18]. k is a free parameter of the
distribution, which was found to be 12 reflecting the fact, that in a dense packing the
number of neighbor spheres is approx. 12.

One of the experiments, which were used to verify the k-gamma-distribution theory
of Aste, are fluidized bed experiments of refs. [139, 140]. Beads settle under gravity
against a liquid flow and build a jammed packing in the bottom of the container. One
advantage of this experimental technique is, that the sedimentation time can be varied
in a very broad range, so that the slow sedimentation limit can be checked. For fric-
tional spheres this study gave empirical evidence of the existence of the random loose
packing RLP packing limit around φ ≈ 0.55. Song et al. [283] tried to clarify this point
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6. Local structure analysis and anisotropy in particulate matter

theoretically and proposed a theory of jamming. They have argued, that in the large
friction limit (µf → ∞) 4 contact points are sufficient to fix beads in a packing, while
frictionless spheres (µf → 0) need 6 contact points. It is argued, that disordered pack-
ings of frictional spheres show mean contact numbers between 4 and 6. The number Z
of mechanical contacts can be thus interpolated from both extreme values. The theory
from the Song paper is based on some fundamental considerations by Edwards and
Oakeshott [89]. In 1989 they proposed a statistical mechanics approach to powders
and grain packings, which follows some analogy to classical thermodynamics. They
argue that the system is governed by its overall volume V instead of a free energy in
standard thermodynamics, since the thermal motion vanishes in dissipative grain en-
sembles. Further a function W is considered, which connects the volume to the grain
positions. Therefore, it takes a role of a Hamiltonian function in classical mechanics.
In a microcanonic systems all possible states are chosen by the conservation of en-
ergy condition. An equivalent role takes a filter operator in the Edwards-Oakeshott
theory, which formally filters all the mechanically stable packings. This condition
function gives access to the entropy S(V,X,N), where X is the so-called compactivity
X = ∂V/∂S and plays a role comparable to temperature in thermodynamics. Based
on this formalism, Song et al. [283] derived a formula for RLP

φRLP ≈ Z

Z+ 3.46
, (6.6)

which leads to φRLP = φRCP for frictionless spheres, which makes this packing fraction
unique and it is also referred as to point-J φJ . Chaudhuri et al. [61] showed in a
simulation study of 50 : 50 binary sphere mixtures (radius ratio = 1.4), that frictionless
hard spheres can produce a continuous range of volume fractions for jamming. A
consistent theory of jamming is still lacking.

6.3.1. Anisotropy of jammed bead packs

In fig. 6.14 we present the mean anisotropy indices βr,s
ν of the Voronoi cells in jammed

bead packs of a number of different protocols. The solid squares indicate “dry acrylic”
(DA) experiments [13, 12, 17] of dry acrylic beads in a cylinder geometry. The “flu-
idized bed” (FB) experiments are point patterns obtained from glass beads in a vertical
cylinder [16, 275]. The discrete element method (DEM) simulations are relaxed pack-
ing of the original DA experiments, to remove small degrees of polydispersity [273].
Finally event-driven MD simulations with the Lubachevsky-Stillinger (LS) algorithm
were performed [273]. This algorithm allows to create quasi-jammed bead packs of
frictionless spheres, by continuous compression. Details of the experiments and the
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Figure 6.14. Average anisotropy of the Voronoi cells, measured by averaged eigenvalue ratios

〈βrs
ν 〉 of Minkowski tensors Wrs

ν , as function of packing fraction φ for jammed
bead configurations. Isotropic cells have βrs

ν = 1 and deviations from 1 measure

the degree of anisotropy. The straight lines are linear fits for φ < 0.64 and

φ > 0.64.

simulations can be found in the appendix B. The two vertical lines mark the jam-
ming limits RLP and RCP (values taken from the literature: φRLP = 0.55 [139] and
φRCP = 0.64 [33]). Significant deviations of all 〈βr,s

ν 〉 from 1 for all jammed bead packs
below RCP indicate a considerable typical anisotropy. Independent of the choice of
the MT, bead packs with packing fractions φ between RLP and RCP show a nearly
linear trend over φ and no significant differences between the several protocols can
be observed. For monodisperse bead packs this effect can be—at least on basis of
these experimental data—interpreted as an universal behavior for jamming. Please
note, that this holds for both, frictional beads in the experiments (DA, FB) and DEM
simulations and frictionless spheres in simulations (LS). With the DEM-relaxation (see
app. B.6) polydispersity is removed from the dry acrylic beads without substantially
modifying the packing configuration. The difference between the anisotropy in the
DA data and the DEM data is negligible. This demonstrates the robustness of our
analysis to small degrees of polydispersity. In the interval between RLP and RCP we
observe a nearly linear relationship between the mean anisotropy 〈βr,s

ν 〉 and the pack-
ing fraction φ for all protocols. The independence of the protocols is remarkable, since
a priori (non-equilibrium) realizations of jammed packings strongly depend on their
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Figure 6.15. Anisotropy index 〈β02
1 〉, as representative of the six 〈βr,s

ν 〉, for jammed and

unjammed configurations generated by the LS algorithm, after subtraction of the

linear trend T. The symbols (+) correspond to jammed LS configurations, the

same as in fig. 6.14 minus the linear fit T(φ) to all data points of 〈β02
1 〉 with

0.55 ≤ φ ≤ 0.64. A distinct change of the slope d〈β02
1 〉/dφ is evident at RCP

φ ≈ 0.64. The squares and circles correspond to unjammed configurations for

different growth rates g of the LS algorithm. MC simulations are displayed with

△-symbols. The data for all other 〈βrs
ν 〉, not shown for the sake of clarity, are

qualitatively similar.

history and each protocol follows a different class of paths into the jammed packing.
For instance LS uses non-equilibrium collisions with Newtonian dynamics. FB exper-
iments are sedimentation processes with hydrodynamic interactions and friction. DA
experiments dynamics involve dissipation via visco-elastic dissipation and friction of
dry acrylic beads in air.

The LS algorithm allows also to create sphere packings beyond RCP. The data in
fig. 6.14 clearly show a change in the slope in < β > as a function of φ close to
RCP. This change of the local structure will be discussed below in detail. This kink
is even more visible in fig. 6.15. The symbols + represent β0,2

1 for the jammed LS
packings in fig. 6.14, where the linear trend T(φ) is subtracted. The other symbols are
for unjammed LS and MC simulations. Unjammed LS packings are generated by a
standard LS compression, but the process is stopped before the packing jams.
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Figure 6.16. (a) Rescaled distribution of all six anisotropy indices βrs
ν for all experimental and

simulated bead packs with 0.55 < φ < 0.64, with r = (1/βrs
ν − 1)/(1/〈βrs

ν 〉 −
1)), showing a vanishing probability for isotropic cells (r = 0). (b) The same

distribution (with identical axes) for β20
0 of the Lubachevsky-Stillinger configura-

tions only with packing fractions φ = 0.644, 0.679, 0.698. The finite probability
for isotropic cells is an indication of the presence of semi-crystalline regions.

The MC simulation is a decompressing routine. Initializing a jammed bead pack
close to RCP, decreasing gradually the bead radius and jiggling around with MC
moves reduces the packing fraction φ. With both protocols unjammed configurations
show a significantly lower anisotropy, than the jammed bead packs. And the universal
curve consists of all jamming points (one for each respective jamming process). One
can conclude, that for this class of jamming protocols, the jammed states maximizes
the anisotropy for a given packing fraction φ. Thermal HS systems and supercooled
liquids are more isotropic (compare fig. 6.7).

In fig. 6.16 probability distributions f (r) of all experimental and simulation results
are presented in the left panel, where r is the rescaled anisotropy measure

r =
(βr,s

ν )−1 − 1
〈βr,s

ν 〉−1 − 1
. (6.7)

r = 0 presents the isotropic case. This rescaling leads to universal (at least very similar)
anisotropy distribution for all MT and all protocols with φ < 0.64. This distribution is
similar to a gamma distribution. Similar scaling was found for the volume of Voronoi
cells in jammed packings [16]. Looking at LS simulations above φ = 0.64 shows
qualitatively different distributions. Very close to φ = 0.64 the distribution still looks
the same as for lower packing fractions, but packings with φ = 0.679, 0.698 have
finite probability for isotropic cells (see right panel in fig. 6.14). This is an onset of
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Figure 6.17. Relationship between local packing fraction ϕ = (π/6)/W0 and anisotropy

index β20
0 . At the bottom (and using the right-hand scale) the distributions

P(ϕ) of the local packing fractions are plotted. At the top, the gray scattered

points are coordinate pairs
(

ϕ(K), β20
0 (K)

)
plotted individually, i.e. without any

averaging, for each Voronoi cell K in the six samples. The top data points with

errorbars represent the averages 〈β20
0 〉ϕ, computed individually for each of the

six data sets with a binning of ∆φ ≈ 0.01. The error bars represent the standard
deviations, i.e. the width of the distributions of β20

0 , and not the negligible small

error of the average. The six datasets shown here have global packing fractions

φ = 0.567 (FB), 0.598 (FB), 0.636 (DEM), 0.630 (DA), 0.617 (DA) and 0.585
(LS). Note that the global packing fraction φ is given as the average 〈(π/6)/W0〉
over all Voronoi cells.

crystallization and will be demonstrated below.

Before we turn to this transition point, the correlations of the jammed configurations
below RCP is discussed. Figure 6.17 shows the correlations of β and the local packing
fraction ϕ = Vsphere/W0 = π/(6W0), where W0 is the Voronoi cell volume and Vsphere

the sphere volume. The gray dots in the background correspond to each Voronoi cell
in all jammed point patterns with global packing fraction φ < 0.64. The symbols (for
6 different packings and different global packing φ) in the foreground are averages of
< β0,2

0 >ϕ in the interval [ϕ, ϕ + ∆ϕ] (bin) as a function ϕ. ∆ϕ ≈ 0.01. A positive slope
corresponds to positive correlations of the anisotropy and the local packing fraction
as expected for repulsive interactions. The errorbars indicate the standard deviation
in each bin. The curves on the bottom of the plot display the distributions of the
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6.3. Jamming in athermal dissipative HS systems

local packing fraction ϕ of the 6 datasets. All datasets (FB, DA, DEM, LS) fall onto
a common nearly linear correlation curve. This underlines the universal structure of
jammed bead packs. The linear trend does neither extrapolate to the isotropic fcc point
ϕfcc = 0.7405 nor to the isotropic icosahedral configuration at ϕico = 0.7546. Higher
anisotropy in globally less denser systems stems thus from more larger Voronoi cells
with higher anisotropy.
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6.3.2. Random ellipsoid packings

It was found that non-spherical particles such as ellipsoids (e.g. M&M candies) have
higher packing fraction than random packings of their spherical counterparts [82]. For
beads at φ = 0.64 the typical β2,0

0 ≈ 0.78, which gives a length ratio of λ ≈ 0.89 (see
fig. 6.18). This observed anisotropy of the void space suggests that commensurable
anisotropic particles can pack closer. A hypothetical substitution of spheres at φ in a
packing near RCP with ellipsoids filling more void space (see fig. 6.18) leads to global
packing fractions of φellipsoids ≈ 0.72, which is consistent with the experiments and the
simulations of ref. [82, 192].

6.3.3. Conclusion

In this section we demonstrate that the local arrangements of isotropic spheres in a
jammed packing is substantially anisotropic. This anisotropy is shown to be universal.

Figure 6.18. Left A subset of a jammed disordered packing of beads in 3D with the corre-

sponding Voronoi graph. The Voronoi cell is the region of space around a bead

that is closer to this bead than to any other in the packing. The configuration is a

subset of the DA dataset with packing fraction φ = 0.586. Right The same sub-

set of the Voronoi graph, however with the beads replaced by ellipsoids that match

the anisotropy and orientation of the Voronoi cells. The anisotropy is quantified

by the eigenvalue ratios β20
0 of W20

0 of the Voronoi cells. Colors represent the ra-

tio of the shortest and longest axis of the ellipsoid. An isotropic cell has β20
0 = 1

and deviations from 1 quantify anisotropy. An ellipsoid with axes (a, a, c) with
shortest-to-longest axis ratio a/c = 0.8 corresponds to β20

0 ≈ 0.65.
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6.3. Jamming in athermal dissipative HS systems

More precise, all employed jamming protocols—experiments and simulations—lead to
the same rescaled anisotropy distribution and the same (within small statistical errors)
mean local anisotropy as a function of the packing fraction in the packing fraction
interval from RLP to RCP. In jammed bead packs for packing fraction below RCP,
the probability to find isotropic cells vanishes. Beyond RCP however, we find a finite
probability for such cells. This effect is investigated in greater detail in the next section.
Furthermore, local anisotropy is maximal compared to thermal hard sphere systems,
metastable systems and compressed hard sphere ensembles with the same packing
fraction.

Substantial anisotropy in jammed bead packs may explain, why disordered packings
of ellipsoids pack denser than their spherical counterparts. The virtual replacement
of isotropic beads by anisotropic ellipsoids occupies the anisotropic void space more
efficiently.
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6.4. Crystallization onset at RCP

The results of this section are joint work with S. Kapfer from the University Erlangen-
Nürnberg.

In section 6.3 (see also fig.6.16 therein) it is discussed that at a certain packing frac-
tion roughly around φ ≈ 0.64 the distribution of anisotropy changes qualitatively:
from the universal jammed distribution with vanishing probability for isotropic cells
to a bimodal distribution with finite probability for isotropic cells. In this section we
shall demonstrate, that this change stems from a distinct structure transition, from to-
tally disordered to partially ordered. The partial order is connected to a minimization
of the volume. We shall analyse the packings for the occurence of hcp and fcc and
icosahedral Voronoi cells. In order to distinguish between these structures we shall
extend the MT method to tensors of rank 4, in particular to W0,4

1 . Beyond RCP the
emergence of hcp and fcc order is found, icosahedral structures are not observed.

In the non-ergodic jamming problem, three ordered configurations are of special
interest—structures that maximize the packing fraction. The fcc and hcp crystals struc-
tures are known [120] to fill space globally most efficiently with a packing fraction of
φ ≈ 0.7405 (see fig. 6.19). The fcc crystal is obtained as stacking of hexagonal ordered
layers with three (A− B− C− A− B− C) alternating displacements between sequent
layers. The hcp crystal consist equally of hexagonal ordered planes in a A− B− A− B

stacking. Between this both crystals with highest symmetry an infinite number of
closed packings can be generated by an arbitrary succession of the layers A, B,Cwhere
no two equal layers are adjacent (see fig.6.19).

Figure 6.19. Stacking of globally closed packed spheres

In three dimensions these globally densest packings are not the locally optimal pack-
ing. It is believed, while not yet proven, that the icosahedral structure (ico) is the limit
for local dense packing with a local packing fraction of ϕico ≈ 0.7546 [18]. With the
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6.4. Crystallization onset at RCP

term icosahedral a sphere configuration is meant, that consist of one sphere in the
center of gravity of an icosahedron and at every edge of this regular polyhedron a
satellite sphere is located. Figure 6.20 illustrates this most compact sphere packing.

Figure 6.20. Locally most dense packed sphere (orange) in icosahedral configuration. The

corresponding Voronoi cell is a dodecahedron (right panel)

The Voronoi cells of the sphere in hcp or fcc packing are isotropic. The same holds
for the center sphere in the icosahedral configuration. For the latter, the Voronoi cell
is the dual body of the icosahedron: the dodecahedron.

As discussed above, the RCP point was proposed by Bernal [32] as the largest pack-
ing fraction that one can obtain by jamming spheres randomly. Indeed this or similar
definitions are rather fuzzy, and Torquato et al. [297] raised the question, whether
RCP is ill-defined, or rather not definable. According to his argumentation, in several
experiments different limits were found [278, 228] furthermore computer simulations
[144] studies report different values as maximal packing fraction. Torquato argued
that this is not consistent with the definition from above. Therefore the authors rec-
ommended to use a more mathematical definition—the so-called maximally random
jammed (MRJ) packing fraction φMRJ. This packing fraction “minimizes ψ among all
statistically homogeneous and isotropic jammed structures” [297], where ψ is any or-
der parameter with a minimum. The authors argue that every order parameter ψk,
which exhibit a minimum is sensitive to ψMRJ. Though, this definition is not less fuzzy
than that one formerly given for RCP this paper released a broad discussion, whether
MRJ or RCP is the right definition [8, 149, 232, 318, 247].

Radin revisited the definition of RCP and proposed a non-thermodynamic first or-
der phase transition [247]. This transition has to be understood in the framework of
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Edwards, and can be understood as analogy to the freezing transition in HS fluids. Up
to a certain packing fraction φRCP the Edwards entropy S is higher in the disordered
phase avoiding any crystallization, compareable to thermal HS fluids below φ < 0.49.
Above that point a coexistence of ordered and disordered phase domains is expected.
This corresponds to the 0.49 < φ < 0.54 interval in the freezing/melting picture
[247]. The question of a phase transition in the classical thermodynamic picture as-
sums history independent systems. As we saw from the previous section—at least for
the disordered jamming—packings of several protocols show an universal structure in
all anisotropy measures. This is in agreement with earlier findings based on volume
distribution [16] and volume fluctuation and reversibility analysis [230, 244, 254, 275].

Anikeenko and Medvedev [8] investigated the structural order of LS and Jodrey-
Torey simulations. They looked for so-called polytetrahedral order, i.e. aggregates of
tetrahedral simplices, which are generalizations of a regular tetrahedra. The Delaunay
cell shape is analyzed w.r.t. the longest edge. Comparison with a regular tetrahe-
dron gives a quality factor for polyhedra. At a packing fraction of φ ≈ 0.646 it is
reported, that nearly every sphere participate in at least one tetrahedron simplice,
which qualifies for icosahedra, fcc or hcp. Approaching this point from lower pack-
ing fractions shows a monotonic increase in the frequency of in tetrahedral structure
involved spheres. Further densification would need other mechanisms. The volume
fraction of the polytetrahedra aggregates takes a maximum at φ = 0.646. This studies
shows nicely, a structural change of simulated HS systems at a point, which we shall
refer to as RCP. This findings support the proposal of Radin [247], but do not clarify
whether crystallization occurs.

In a recent study Xu et al. [319] investigated the local structure of LS simulations
below and above RCP. They used the local and global bond orientation order param-
eters q6 and Q6 to find clusters in the system and found evidence of fcc and hcp.
Furthermore, it is demonstrated that the compression parameter γ in the LS algorithm
determines the final packing fraction (within typical errors). The inverse parameter
γ−1 and the packing fraction φ display a structural transition.

While the Xu study [319] demonstrates clearly, that crystalline fcc and hcp structures
are created beyond a certain φ several questions remain, e.g.: Is there a critical packing
fraction below which crystalites are not found and above which crystalites must exist?
Are there icosahedral structures in the system? Does non-ergodicity allow even small
crystallites? Although fcc and hcp are equally favored in terms of packing efficiency
is there one type favored? At which precise value of φ does crystallization occur?

Indeed, for the latter question the term crystallization need to be specified: In equi-
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librium systems, where particles are thermally excited, crystallization is considered as
a persistent order which is not sharp but follows a clearly peaked distribution. For
example, this can be measured in a scattering experiment as Bragg peaks. Thus a
sufficiently large crystal cluster is needed to be identified. In the athermal packing
problem, crystallization is rather a state of local order. Only those symmetries in 3D
will be found, which maximizes the packing fraction. With local is meant, that even
a single sphere with minimal void space is ordered. Thus the methods to identify
sufficiently large crystalline clusters known from thermal systems are not necessarily
applicable to dissipative systems.

6.4.1. Crystallization identification with Minkowski tensors

We shall address the above questions in the following. Therefore the Minkowski anal-
ysis method is extended to a method capable of identifying or discerning different
crystal- or ordered4 structures. All rank-two MT become isotropic (proportional to
the unit tensor) for cubic-symmetry cells (fcc, bcc) and hexagonally close-packed (hcp)
cells. Consequently the ratio of eigenvalues βr,s

ν equals unity for all crystalline nu-
clei in monodisperse hard-sphere configurations, and even though detection of nucle-
ation clusters is noise-background-free, the distinction of different types is not possible
[34, 274]. But in the framework of the Minkowski analysis crystal structure identifi-
cation can be done in two ways. The direct extension to what was beforehand shown
(based on MT of rank 2) is extended to higher ranks, especially rank 4. A more so-
phisticated and systematical way is, to make use of spherical and irreducible tensor
representations and derive invariants from these measures. This shall be discussed in
chapter 7.

Cartesian rank 4 normal Minkowski tensors Equation (5.17) defines the so-called
Cartesian Minkowski tensors, since their representation is directly given in the canon-
ical representation. Reliable distinction of crystalline cells is not possible using Carte-
sian MT of rank two, since all cubic or hcp crystals have isotropic rank-2 MT. Robust
crystal identification can be made by extending the framework of Minkowski tensors
to rank-four tensors. The symmetry of lattice cells can be characterized without meth-
ods that rely on somewhat arbitrary definitions of nearest neighbors. Here, we shall
restrict the discussion to the simplest rank-four Minkowski tensor

Sijkl =
1
A
(Wr,s

1 )ijkl =
1
3A ·

∫

∂K
ninjnknld2r, (6.8)

4in particular the icosahedral structure
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6. Local structure analysis and anisotropy in particulate matter

where A is the surface area of the Voronoi cell K. Like the rank-two Minkowski
tensors, S0,41 is a continuous function of the particle positions. Due to its symmetry
under permutation of indices, the 81 components of this tensor can be represented by
a 6× 6 matrix, analogous to the theory of the elastic tensor [212, 173]. The S0,41 tensor
is even symmetric under permutation of all the indices, whereas the elastic tensor is
symmetric under exchange of the first two indices, and the first and second index
pair [173, 134]. The higher degree of symmetry leads to further restrictions on the
eigenvalues. In the case that β0,2

1 = 1, such as for the symmetric cells in table 6.1, one
can show that this restriction fixes one of the eigenvalues to 1/3 and the sum of the
remaining eigenvalues to 2/3.

M
(
S0,41

)
=




Sxxxx Sxxyy Sxxzz

√
2Sxxyz

√
2Sxxxz

√
2Sxxxy

Sxxyy Syyyy Syyzz
√
2Syyyz

√
2Syyxz

√
2Syyxy

Sxxzz Syyzz Szzzz
√
2Szzyz

√
2Szzxz

√
2Szzxy√

2Sxxyz

√
2Syyyz

√
2Szzyz 2Syzyz 2Syzxz 2Syzxy√

2Sxxxz

√
2Syyxz

√
2Szzxz 2Syzxz 2Sxzxz 2Sxzxy√

2Sxxxy

√
2Syyxy

√
2Szzxy 2Syzxy 2Sxyxz 2Sxyxy




(6.9)

The eigenvalues of this matrix are invariants of the tensor S0,41 , denoted ςi with i =

1, . . . , 6 and robustly characterize the shape of the Voronoi cell.

For symmetric Voronoi cells, some of the eigenvalues are degenerate. The six-tuple
of eigenvalues, ordered descendingly (by the absolute value), (ς1 ≥ · · · ≥ ς6) reflects
the symmetry of the Voronoi cell and is called symmetry fingerprint. Isotropic tensors
have a 1-fold non-degenerate eigenvalue ς1 and a 5-fold degenerate eigenvalue ς2. We
shall refer to this case as type (5, 1). A cubic tensor has three independent eigenvalues
with degeneracies 1, 2, and 3, referred to as (3, 2, 1). Hexagonal tensors are of type
(2, 2, 1, 1) [212]. Analytical values for the eigenvalues of ideal lattice Voronoi cells are
given in table 6.1.

The rotation and scale invariant symmetry fingerprint can be used to define a
symmetry index for any type of crystalline nucleus in a straightforward way. Let
ςfcc1 , . . . , ςfcc6 denote the symmetry fingerprint of an ideal fcc Voronoi cell. The scalar
fcc symmetry index

∆fcc :=

√√√√ 6

∑
i=1

(ςi − ςfcci )2 (6.10)

vanishes if the Voronoi cell characterized by ςi is perfect fcc. Unfortunately, the con-
verse of this statement is false, i. e. there are non-fcc cells with ∆fcc = 0 (In math-
ematical terms, ∆fcc is not related to a distance, but merely a pseudo-distance, thus
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6.4. Crystallization onset at RCP

structure ico fcc hcp bcc sc

symmetry

type (5,1) (3,2,1) (2,2,1,1) (3,2,1) (3,2,1)

ς1
1
3

1
3

1
3

1
3

1
3

ς2
2
15

1
6

1
6

8−4/
√
3

33
1
3

ς3
2
15

1
6

2
15

8−4/
√
3

33
1
3

ς4
2
15

1
6

2
15

8−4/
√
3

33 0

ς5
2
15

1
12

1
9

−1+2
√
3

33 0

ς6
2
15

1
12

1
9

−1+2
√
3

33 0

q6 0.66333 0.57452 0.48476 0.62854 0.35355

(z = 12) (z = 12) (z = 12) (z = 8) (z = 6)

0.51069

(z = 14)

Table 6.1. Ideal values of q6 (based on the set of z nearest neighbors) and analytic eigenvalues

of the normalized W0,4
1 rank-four Minkowski tensor and illustrations of fcc, hcp

Voronoi cells and the dodecahedron. Abbreviations ico: icosahedral configuration,
fcc: face centered cubic, hcp: hexagonal close packed, bcc: body centered cubic and

sc: simple cubic.

we shall call it a pseudo-metric). Such non-fcc cells with ∆fcc = 0 can be constructed
by deformation of the fcc-Voronoi cell facets, in a way, that the new body obeys the
same symmetries as the fcc Voronoi cell. These bodies do not occur as cells in Voronoi
graphs. Pseudo-metrics were used before for bond orientational order parameters too
[133].

Non-fcc cells with ∆fcc = 0 were not found to occur in practice. This makes ∆fcc

useful for the background-free detection of crystalline nuclei. We checked this with
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6. Local structure analysis and anisotropy in particulate matter

several methods. Figure 6.22 (left panel) shows the scatter plot of |qn=12
6 − qfcc6 | and

∆fcc, where qfcc6 is the reference value for ideal fcc configuration. The choice of the
12 nearest neighbors ensures, that q6 counts exactly all relevant neighbors when near
the ideal fcc configuration. By definition, both measures vanish when the cell is fcc-
like. Cells with low values in ∆fcc have also low values in |qn=12

6 − qfcc6 |. The inverse
statement is false, as shown in the diagram. Another method to test the robustness of
the pseudo-metric is the analysis of Voronoi cells in fcc-Einstein solids. Small RMSD ε

values lead to slightly distorted cells. Thus the average value of ∆fcc increases (linear)
in ε. The data are presented in figure 6.24 on page 171. The error bars represent
the standard deviation. In the double logarithmic scale, the errorbars (which indicate
the standard deviation) keep roughly constant. This indicates, the also the ∆fcc of the
cells with the highest fcc-indication grows linear with ε (for small RMSD). Further
we tested ∆fcc with a vertex distortion model, i.e. starting from an ideal fcc Voronoi
cell, we add a random displacement vector to each vertex of the cell. The wire frame
of the distorted cells have the same topology. We define RMSD in this model with
the random displacement vectors. Again, for small values of RMSD the mean of ∆fcc

Figure 6.21. Three-dimensional jammed packing of N = 4× 104 beads with φ = 0.656.
Crystalline local environments are marked by green (hcp, ∆hcp < 0.005) and red

(fcc, ∆fcc < 0.005) spheres; all other spheres are translucent.
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Figure 6.22. left |qn=12
6 − qfcc6 | vs. ∆fcc in LS simulations with γ = 0.0001 (red) and γ =

0.0003 (blue). right RMSD of vertex displacements of fcc Voronoi cell vs. ∆fcc.

The solid line represents the sliding mean and the dashed line is the reference

with slope 1.

grows linear with RMSD. The mean value minus standard deviation also grows linear
with RMSD (see right panel of figure 6.22).

Symmetry indices are defined in an analogous way for other types of nucleation
clusters (icosahedral-, bcc-, simple cubic- or hcp-symmetry), and for icosahedral bond
order (with the dodecahedron as the Voronoi cell), using the reference fingerprints in
tab. 6.1. Single beads embedded into an ordered environment can be marked using
the symmetry finger print in a robust manner with thresholding of the symmetry
index. Figure 6.21 illustrates a jammed LS packing where spheres in fcc (red) and hcp
(green) configuration are marked. Other spheres are translucent. We can see from this
picture that ordered spheres appear either in clusters (fcc, hcp or mixed) and as single
ordered beads. In arrested systems even a single bead can be found in locally/globally
packing-optimized structure.

Since S is a tensor and 6 of its invariants are used in the symmetry indices much
more shape information is taken into account than by the single scalar shape mea-
sure q6. Steinhardt [289] discussed the fcc identification and used two independend
invariants. Icovella et al. [133] used e.g. q4 and q6 to construct a pseudo-metric, for
reliable structure detection. The need of more than one member in the orientational
order parameter in order to identify doubtledd fcc or hcp is often neglected in the lit-
erature [216], e.g. in [319, 150]. To demonstrate the insufficiency of q6, when used as a
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Figure 6.23. Frequency distribution f (qn=12
6 ) of all cells (red) and of the subset (blue) of cells

that are identified as neither hcp nor fcc using Minkowski tensor analysis (i. e.

∆fcc > 0.015 and ∆hcp > 0.015) The cells depicted represent (a) an ideal hcp

cell, (b) an ideal fcc cell, and cells identified by qn=12
6 , but not by Minkowski

tensors, as (c) hcp and (d) fcc. The data is taken from ten configurations with

γ = 0.0001 combined, each consisting of N = 40000 spherical particles, with φ

between 0.656 and 0.660.

single scalar shape index, fig. 6.23 shows the distribution of qnk=12
6 for 10 independent

LS simulation (N = 40000 for each simulation) with γ = 0.0001. With ∆hcp and ∆fcc

it is now possible to separate the amorphous component of the q6 distribution from
the contribution of the crystalline nuclei by dropping all cells with small values of
∆fcc or ∆hcp (dashed line), that is those cells that are actually hcp or fcc. This shows
conclusively that, using Minkowski tensor analysis, is a more robust description of
the geometry is achieved than by q6 only, which is a scalar quantity. Combining q6

with other members of the BOO family may also remove the background in practice.
Searching for ordered clusters, the bond definition can be adjusted with ad-hoc meth-
ods; a proper adjustment in disordered systems is more challenging. Using a scalar
measure such as the l = 6 member of the BOO family is not sufficient to distinguish
more than one crystal type, since one have to deal with the noisy background. In fact,
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Figure 6.24. Average ∆fcc as a function of the RMSD ε in an fcc Einstein solid in units

of the lattice spacing. The errorbars indicate the standard deviation at constant

RMSD.

the highest q6 value for 12 neighbors is the icosahedral structure. A noisy realization
of an icosahedra can reduce q6 to values which are identical to qfcc6 . Also noisy realiza-
tions of fcc or the icosahedra may look like hcp in the q6 analysis. Clearly, distributions
of order parameters, which do not display ordered structures as peaks in regions with
vanishing background are prone to create type-II errors, i.e. structures that are not or-
dered but are accepted to identify order (also called: false-positive). Figure 6.16 shows,
that the identification of structures with β works robustly, since all kinds of crystalline
structures are found at one end of the distribution. Again, either more invariants of
the BOO family or tensorial shape-measures are needed to reduce the false-positives.

We want to answer the following question: How many of the cells in the LS sam-
ples are (almost) hcp and fcc cells, in particular for packing fractions beyond RCP.
Therefore a method is needed, which counts hcp and fcc cells with equal sensitivity.
A calibration of the suitable acceptance thresholds is done, by using the Einstein solid
model again (see sec. 6.2). A priori, the measures ∆fcc and ∆hcp can have different
sensitivity, requiering two different thersholds δfcc and δhcp. Figure 6.24 displays the
mean ∆fcc and ∆hcp for an fcc resp. an hcp Einstein solid. The errorbars indicate the
standard deviations. In the log-log plot, the slope equal 1 proves the linear correlation
of RMSD and the symmetry indices. The fact that the offset between both symmetry
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Figure 6.25. Occurrence frequency of isotropic, fcc-like, and hcp-like cells in the final states

of LS simulations. Frequencies are calculated as nfcc = Nfcc/N, where Nfcc

is the number of cells with ∆fcc < 0.005, Nfcc is ∆hcp < 0.005, and Niso is

β0,2
1 > 0.99. The occurrence frequency of crystalline cells in loose packings is

very small, and rises several orders of magnitude at φ ≈ 0.65.

indices in fig. 6.24 is very small, shows that either indices are equally sensitive in this
model. The choice of the same threshold value δfcc and δhcp is hence justified. We
assume the same behavior in the LS simulations.

An operative definition for φRCP now is the packing fraction, above which any infinite

jammed configuration necessarily includes a finite fraction of crystalline nuclei.

Figure 6.25 shows the fcc occurrence frequency nfcc = Nfcc/N and hcp occurrence
frequency nhcp = Nhcp/N in LS final configurations as a function of the packing frac-
tion φ, where Nfcc denotes the number of Voronoi cells in the configuration with
∆fcc < 0.005, Nhcp those with ∆hcp < 0.005, and N is the total number of particles;
the threshold values are empirical. It will be shown later that results are to a large
extent independent of the thresholds. Configurations are binned on the φ axis, with
the packing fraction range indicated by the horizontal error bars. The data point repre-
sents the median of n, and the vertical error bars show the upper and lower quartiles.
We use the median and the quartiles instead of the mean and the standard deviation
since these measures are more robust against outliers. This is of particular importance
when the number of sampled isotropic cells is very small.

In fig. 6.25, at a packing fraction of φ ≈ 0.65, nfcc and nhcp rise several orders of
magnitude, indicating the onset of crystallization. We simulated 3365 packings each
with N = 40000 in a packing fraction range of 0.5647 ≤ φ ≤ 0.66721. We found 3019
packing configurations with less than 3 crystalline cells in a packing fraction range
0.5647 ≤ φ ≤ 0.65142 and 346 packing configuration with more than 2 crystalline
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Figure 6.26. Scatterplot showing the first percentile of the ∆fcc distribution in the final states

of LS simulations as a function of the final packing fraction ϕ. Each data point

represents a single configuration of 40.000 or 10.000 particles. A qualitative

change of the distribution is observed at ϕ ≈ 0.65, where the first percentile

drops considerably, marking the onset of crystallization.

germs in a packing fraction range 0.64062 ≤ φ ≤ 0.66721. Some overlap of both
intervals can be understood from the pressure-determined jamming condition in the
LS algorithm, i.e. the system can be considered as jammed when the pressure exceeds a
certain threshold [319, 281]. That means, slight rearrangements might be still possible,
if the pressure threshold is increased even further.

The signature of crystallization is also visible using the qn=12
6 BOO parameter, al-

though a background of false positives is observed. It is invisible using e.g. qD6 .

Figure 6.25 may suggest that the use of a fitting routine fix φRCP. But fitting these
data is a notoriously hard job and the errors are quite large, because of the logarith-
mic singularity. To find the onset of closed packed crystallization, we search for the
structural change in the distributions of ∆fcc and ∆fcc. From the paragraph above, it
appears that for small ∆fcc/hcp the probability jumps to finite values. This feature is
captured, when one looks to the small percentiles of this distributions. Since for fully
random jammed systems, the most ordered cells (order is measured quantitatively by
∆fcc/hcp) are not very crystalline. At a certain point—the crystallization onset—when
tiny fractions of crystallites are created, the small percentile jumps to smaller values.
We show in fig. 6.26 that this method works robustly. Each point in this plot represents
one LS simulation of either N = 10000 and N = 40000. We define the quantile Pf of
the distibution of ∆fcc/hcp, which is defined as

Pf := ∆fcc with P(X < ∆fcc) = f . (6.11)

The 1% quantile is the first percentile P1%. The left panel presents data for the first
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Figure 6.27. Values for φc as an estimate for RCP obtained from fits of the kink in fig. 6.26

for different quantiles Pf . The black bars indicate values from refs. [8, 33, 283].

percentile P1% over the global packing fraction φ and the right panel the same data
for hcp. While both plots look qualitatively equal and indicating the same φ for the
kink, the slope for small packing fractions look different. Although both measures are
roughly equally sensitive in the ordered phase the symmetry indices have no particular
meaning in the disordered phase (they measure rather the absence of order than the
degree of disorder) and thus the slope is not necessarily the same. According to Xu
[319] finite size effects are small for LS packings with these sizes. This is consistent
with our data, as we do not observe differences for N = 10k and N = 40k. RCP can
be estimated as the kink in the P1% − φ planes. Other percentiles than 1%, namely
0.1%, 2%, 3% where analyzed as well, yielding about the same values for the kink (see
figure 6.27).

RCP for f = 1% is estimated with φc = 0.649. This is rather a high value compared
to values in the literature. Anikeenko reports 0.646 for RCP in LS and Jodrey-Torey
simulations [8], based on the simplicies method. From experiments values in the
range of 0.63 to 0.64 are reported [33, 259]. The Minkowski-method value is rather
an upper limit estimation, because of the limited statistics in the LS samples (parallel
computer code would be needed to perform larger samples in acceptable time). The
value reported here seems to be consistent with the kink in the γ−1− φ plane, reported
by Xu (see fig. 2 in ref. [319]).
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6.4. Crystallization onset at RCP

6.4.2. Conclusion

This analysis shows the occurrence of locally crystalline environments in Lubachevsky-
Stillinger hard sphere simulations. The fraction of cells with fcc and hcp order in-
creases by several orderes of magnitude at a critical packing fraction. We interprete
this packing fraction where the structural change occurs as the point of random close
packing (RCP). This findings support the conjecture of Radin [247] that RCP is the
point where phase coexistence of crystalline structure and the disordered phase oc-
curs. On the other hand Radin proposed to search for this transition by some response
functions rather than by structural analysis tools. We have shown how useful the
Minkowski tensor analysis is in order to identify the crystallization. It would be in-
teresting, to study the response function of packings with ordered and disordered
domains in comparison to jammed packings below RCP.

As shown above, this oberservations need new structure measures such as W0,4
1 and

the symmetry indices. Alternatively, one could use a set of independent invariants in
the BOO family, if suitable nearest neighbor definitions are available. Indeed, MT can
be interpreted as a special bond definition of BOO, which overcomes the robustness
deficiencies. This is discussed in the next chapter.
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7. Spherical normal Minkowski tensors

and bond order parameters

The results of this chapter are joint work with S. Kapfer from the University Erlangen-
Nürnberg.

Normal density, Gauss map and multipole expansion In this section we demonstrate
that the bond orientation order parameters (BOO) are closely related to Minkowski
tensors. To this end proper weight-functions are introduced, which render the classi-
cal BOO continuous. We shall briefly sketch the idea here and the full formalism is
explained below. Let us denote a Voronoi cell in the Voronoi graph with K. Further
this Voronoi cell has n facets with the surface area Ai and outer normal vectors ni,
i = 1, . . . , n. The Gauss map yields a normal density distribution ̺ (θ, ϕ) on the unit
sphere S2

̺ (θ, ϕ) =
1
A

n

∑
i=1

Aiδ (ni − n (θ, ϕ)) , (7.1)

where A is the total surface area of K and δ the Dirac delta function. From this
representation of K one can derive the multipole expansion of the boundary surface
normal density

̺ (θ, ϕ) =
∞

∑
l=0

l

∑
m=−l

αl
mY

l
m (θ, ϕ) (7.2)

where Yl
m are the spherical harmonics and αl

m are constant weights which only de-
pends on K. For convex K the monopole moment is 1 regardless of the shape of K.
Due to the envelope theorems (for MT in reads W0,1

ν = 0) the dipole moment van-
ishes [223]. Thus the first non-trivial multipole moment is of order l = 2. Eq. (7.2) is
reminiscent to eq. (6.1), which indicates the close relation between both approaches.
Already Steinhardt [289] recognized, that the BOO are exactly a multipole expansion
of bond densities.

In this chapter we demonstrate, that the family of W0,r
1 of (normal vector weighted

rank-r) Minkowski tensors are equivalent to a multipole expansion of the normal den-
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sity. The mathematical details are part of the following two sections. The results are
summarized in section 7.4.

7.1. Irreducible tensors

Tensorial methods combined with symmetry considerations are widely used in solid
state-, atomic- and molecular physics. Depending on the symmetry of the system
and the symmetry of the quantity of interest, one can find the non-vanishing parts
of the tensor [34]. But these methods leave the difficulty of choosing the reference
frame aligned to certain crystallographic axes [141]. It would be more convenient to
extract elements, which are rotation independent. Therefore the concept of irreducible
tensors was introduced by Racah [141]. A tensor T of rank r ≥ 2 is an element of a r-
dimensional product representation of special orthogonal group SO(3). This product
representation has an orthogonal basis. Thus, T can be decomposed in irreducible
tensors, which transform as the basis elements [71, 70, 141, 44]. For example, the
spherical harmonics Yl

m are the matrix elements of the irreducible representation of
the group SO(3), and build an orthognal basis of the irreducible representation.

First we want to find an irreducible decomposition of T in cartesian representation.
Indeed there are several ways to find such a decomposition. Coope et al. [71, 70] gave
an explicit reduction scheme to derive irreducible tensors T(q,l) directly from the carte-
sian representation Ti1i2 ...ir of the rank r tensor T. q is called the seniority and l the
weight. Andrews and others [7] derived the decomposition explicit for rank 4 tensors
in the Euclidean space E3

R
over R. While this reduction scheme is rather cumbersome

calculus, one can use another way by converting it the cartesian tensor into a spherical
tensor first. A spherical tensor Tm1m2 ...mr is the representation of the rank-r tensor T

in the spherical coordinate frame. The decomposition into irreducible parts Tl
m (in

the spherical representation) can be worked out with the Clebsch-Gordan coefficients
CBl;1...1

m;m1m2 ...mr—well-known from the angular momentum algebra in quantum mechan-
ics [313, 261]. Figure 7.1 illustrates the relationship among these representations. We
follow two distinct ways to obtain irreducible parts. From the spherical irreducible
parts of the normal Minkowski tensors W0,r

1 we derive a particular form of Steinhardt
bond orientation order parameters. The cartesian tensors are used to discuss the in-
variants ςi mentioned in chapter 6.
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Figure 7.1. Cartesian tensors, spherical tensors and the irreducible elements

7.2. Cartesian irreducible tensors

Any cartesian rank-r tensor Ti1 ...ir can be decomposed into a direct sum of irreducible
tensors T(q,l) with weights 0 ≤ l ≤ r and seniority 1 ≤ q ≤ Ql

r,

Ql
r =

⌊(n−j)/3⌋
∑
k=0

(−1)k
(
r

k

)(
2r− 3k− l − 2

n− 2

)
. (7.3)

Ql
r is called the multiplicity of l and ⌊.⌋ is the Gaussian floor function. The seniority

distinguishes between several irreducible tensors of the same weight. Each irreducible
tensor T(q,l) has 2l + 1 independent entries. While tensors in general do not obey
symmetries w.r.t. index permutation, many tensors in physics obey such symmetries.
The rank-4 elastic tensor e.g. is invariant under permutations of the first two indices
or the change of the first pair of indices with the second pair:

Ti1i2i3i4 = Ti2i1i3i4 = Ti3i4i1i2 . (7.4)

Minkowski tensors such as W0,r
1 are fully index symmetric. For r = 4 this reads

Ti1i2i3i4 = Ti2i1i3i4 = Ti3i4i1i2 = Ti1i3i2i4 (7.5)

Index permutation symmetry simplifies the decomposition: some T(q,l) may degener-
ate or vanish. For fully symmetric tensors, only the irreducible tensors with seniority
q = 1 do not vanish.

By definition, all T(q,l) transform under rotations of the reference frame as a basis
set of irreducible representations of SO(3). All rank-r tensors (r ≥ 2) are elements
of the product representation 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

r times

of SO(3). From a quantum mechanical

point of view, the tensor product space can be interpreted as a coupling of r spin 1
bosons [313].
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We concentrate here on the special case W0,4
1 or more precisely on fully symmetric

rank-4 tensors. The algebra for higher ranks are quite lengthy, but straightforward.
Therefore r ≥ 5 is omitted here. The reduction scheme for generic tensors of arbitrary
rank is given by Coope [71, 70], and explicitly for rank r ≤ 4 given in ref. [7] and the
results for r ≤ 4 are stated below. In the following we use the Einstein summation rule,
i.e. it is summed over all indices that appears two times or more often in a product
term. Further we define the fully symmetric tensor product

ai1 ...ir ⊙ bir+1...ir+s
= sr+s

(
ai1 ...irbir+1...ir+s

)
=

1
(r+ s)! ∑

σ∈Sr+s

aσ(i1)...σ(ir)bσ(ir+1)...σ(ir+s), (7.6)

where sr+s(.) is the full symmetrizer w.r.t. to the rank r+ s and Sr+s is the permutation
group of r+ s elements.

Rank 0 and rank 1: The reduction of W1 and W0,1
1 is trivial. We denote the tensors in

cartesian irreducible decomposition of Wr,s
1 as [Wr,s

1 ]q,l with seniority q and the weight
l.

[W1]
1,0 = W1 (7.7)

and with the envelope theorem [
W0,1

1

]1,1
= 0. (7.8)

Rank 2: A fully symmetric tensor T with even weight l decomposes in irreducible
tensors with even weight j ≤ l. All irreducible tensors with q > 1 vanish. Thus, the
rank-2 W0,2

1 tensor decomposes into the subspaces (l = 0)⊗ (l = 2).
[
W0,2

1

]1,0
=

1
3
W1 δ

[
W0,2

1

]1,0
= I0,21 , (7.9)

where I0,21 is the traceless interface tensor [81].
(
I0,21

)
ij
=
(
W0,2

1

)
ij
− 1

3W1δij.

Rank 3 For fully symmetric rank-3 tensors there is only one component of weight
l = 1 and one component of l = 3. Note that the l = 1 components vanish for
Minkowski tensors due to the envelope theorem.

[
W0,3

1

]1,1
= 0

[
W0,3

1

]1,3
= W0,3

1 . (7.10)

180



7.3. Spherical Minkowski tensors

Rank 4 According to Andrews [7], fully symmetric tensors can be decomposed in
(l = 0)⊗ (l = 2)⊗ (l = 4)

[
W0,4

1

]1,0
=

1
5

δ ⊙ δW1

[
W0,4

1

]1,2
=

6
7

δ ⊙ I0,21
[
W0,4

1

]1,4
= W0,4

1 − 6
7

δ ⊙ I0,21 − 1
5

δ ⊙ δW1. (7.11)

For the rank-4 tensors we deduce some invariants from the decomposition above.
A first invariant λ0 is obtained from l = 0, which is proportional to W1. Another 2
invariants are found for l = 2, since we have 2l + 1 = 5 degrees of freedom (DOF).
Three DOF are Euler angles θ1, θ2, θ3 and hence not of particular interest. The two
remaining ones are equivalent to β0,2

1 and γ0,2
1 , i.e. the ratios of the eigenvalues ofW0,2

1 .
Explicitly, these 2 invariants can be obtained from the three eigenvalues λ1, λ2, λ3 of
I0,21 and the relationship λ1 + λ2 + λ3 = 0 = µ1 + µ2 + µ3 −W1, where µi are the

eigenvalues of W0,2
1 . From eq. (7.11) is easy to see, that

[
W0,4

1

](1,2)
vanishes when

β0,2
1 = 1.

Similarily one can obtain invariants from
[
W0,4

1

](1,4)
, when writing the tensor in

the 6 × 6-matrix notation (analogous to the elastic tensor in continuum mechanics,
see also eq. (6.9)) and calculating the eigenvalues. This tensor (l = 4) has 2l + 1 =

9 independent entries. The subspace (l = 4) is orthogonal to (l = 2), consequently
it rotates independently with three Euler angles (θ4, θ5, θ6) and thus 6 DOF remain.[
W0,4

1

](1,4)
is traceless and therefore the sum of eigenvalues ∑

10
i=4 λi = 0 vanishes.

Furthermore one eigenvalue (λ4) is trivially 0 (with the eigenvector (1, 1, 1, 0, 0, 0, )),
and hence diagonalization gives up to 4 independent invariants. The deduction of the
remaining eigenvalues remains unfortunately unclear in this presentation. In the case
of genuine fcc, hcp or icosahedral cells, the eigenvalues ςi, which were used to define
∆fcc/hcp are identical to λ5, . . . λ10 and λ1, up to the normalization (see chapter 6).

7.3. Spherical Minkowski tensors

Up to now we always used the indices is for cartesian elements of the tensor T, where
is ∈ {x, y, z} or is ∈ {1, 2, 3}. Spherical representations of tensors are often more
convenient when considering T under rotations. A cartesian representation Ti1i2 ...ir of
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7. Spherical normal Minkowski tensors and bond order parameters

the rank-r tensor T is transformed to its spherical representation (representation in
spherical harmonics) with the transformation matrix Umi (see fig. 7.1)

Tm1m2...mr = Um1i1Um2i2 · · ·UmrirTi1i2...ir (7.12)

with the spherical indices m ∈ {−1, 0, 1}. Umi is defined as [141]

Umi =
1√
2

x y z︷ ︸︸ ︷


−1 −i 0

0 0
√
2

1 −i 0








m = +1

m = 0

m = −1

. (7.13)

For example, a vector (Ti) =
(
Tx, Ty, Tz

)t reads in spherical components
(Tm) = (T1, T0, T−1)

T±1 =
1√
2

(
∓Tx − iTy

)

T0 = Tz (7.14)

It is important to emphasize that reference frame transformations of cartesian ten-
sors are orthogonal transformations O and thus represented by orthogonal maatrices
(O−1 = Ot) with real entries. This makes their properties independent of the reference
frame of their definition. Spherical tensors, in contrary, are embedded in C3 = E3

C
and

the transformations U of the reference frame are unitary , U−1 = U†, i.e. for example,
that the ordinary scalar product of two vectors v · u writes in cartesian form viui but in
spherical representation it is a hermitian product (−1)m umv−m = umv

†
m = u†

mvm. This
means the indices of v and u appears in different positions [141]. This appears e.g. in
all kinds of contractions of tensors. The inverse transformation matrix U−1

im is

U−1
im =

1√
2

+1 0 −1︷ ︸︸ ︷


−1 0 1

i 0 i

0
√
2 0







i =

x

y

z

= U∗
mi = U∗t

im , (7.15)

i.e., U−1 = U†, so that we recover cartesian components by

Ti1 ...ir = U−1
i1m1

· · ·U−1
irmr

Tm1...mr

= (−1)m1+···+mrU−m1i1 · · ·U−mrirTm1 ...mr . (7.16)
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7.3. Spherical Minkowski tensors

The merit of the spherical tensors is that they can be easily decomposed into their
irreducible components with the Clebsch-Gordan coefficients CG

j;11
m;m1m2—well-known

from angular momentum algebra in quantum mechanics—for rank r ≥ 2, which reads

Tm1m2···mr = ∑
l,m

CGl;1···1
m;m1···mr

Tl
m, (7.17)

where Tl
m are the spherical irreducible tensors of a tensor T. For rank 0 and rank 1 one

finds special cases, where the Clebsch-Gordan coefficients are simply 1: scalar T = T0
0

and vector Tm = T1
m.

The Clebsch-Gordan coefficients perform orthogonal transformations, so that the
inversion of eq. (7.17) is

T
j
m = ∑

m1...mr

CG
j;1...1
m;m1...mr

Tm1 ...mr

= ∑
m1...mr

CGl;1...1
m;m1...mr

Um1i1 . . .UmrirTi1 ...ir

= (Cl
m)i1 ...irTi1 ...ir (7.18)

for a given weight j. (Cl
m)i1i2 are the Clebsch-Gordan transformation matrices

(Cl
m)i1i2 = ∑

m1 ...mr

CGl;1...1
m;m1...mr

Um1i1 . . .Umrir . (7.19)

The inversion of eq. (7.18) reads

Ti1···ir = U−1
i1m1

· · ·U−1
irmr

Tm1m2···mr = ∑
l,m

Tl
m (Cl

m)
†
i1···ir (7.20)

with

(Cl
m)

−1
i1···ir =

(
CGl;1···1

m;m1···mr

)†
U−1

i1m1
· · ·U−1

irmr

= (Cl
m)

†
i1···ir . (7.21)

The Clebsch-Gordan coefficients for fully symmetric tensors up to rank 4 can be found
in the appendix C.2.

Spherical and irreducible normal Minkowski tensors The paragraphs above are generic
calculus for arbitrary tensors. We restrict ourselves to derive spherical irreducible
Minkowski tensors. We define the normal rank-r tensor N(r) as the tensor product of
normal unit vectors n. We use this tensors below the boundary surface integral of the
normal weighted Minkowski tensors W0,r

1 .
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7. Spherical normal Minkowski tensors and bond order parameters

Its cartesian representation reads

Ni1i2 ...ir = ni1ni2 · · · nir , (7.22)

where n =
(
nx, ny, nz

)t
= (sin (θ) cos (φ) , sin(θ) sin(φ), cos(θ))t, with θ ∈ [0, π] and

φ ∈ [0, 2π]. This definition is used to write normal tensors as

Ni1···ir = sin fx+ fy(θ) cos fz(θ) sin fy(φ) cos fx(φ), (7.23)

where fx is the number of times that index x occurs in the set i1 · · · ir (analogously for
fy and fz). The spherical components are

Nm1m2···mr = (−1)(M+|M|)/22−|M|/2 sin|M|/2(θ) cosr−|M|/2(θ) eiMφ, (7.24)

where |M| =
r

∑
s=1

|ms| and M =
r

∑
s=1

ms. For example, Nm reads

(Nm) =




− 1√
2
sin(θ)eiφ

cos(θ)
1√
2
sin(θ)e−iφ


 =




√
4π
3 Y1

1√
4π
3 Y1

0√
4π
3 Y1

−1


 , (7.25)

with the spherical harmonics Yl
m. Notice the convention of the spherical harmonics

with the helicity as lower index. As an example the spherical components of rank 0
and rank 1 are listed below (see also app. C for rank-2)

N(0)
∣∣∣
0

0
= 1 =

√
4πY0

0

N(1)
∣∣∣
1

0
= N0 = Nz =

√
4π

3
Y1
0

N(1)
∣∣∣
1

±1
= N±1 =

1√
2
(∓Nx − iNy) =

√
4π

3
Y1
±1 (7.26)

It is convenient to use Racah’s definition of reduced spherical harmonics (called
Cl
m in ref. [44]). In order to avoid confusion with the Clebsch-Gordan transformation

matrices we denote the reduced spherical harmonics Nl
m, which are defined as

Nl
m =

√
4π

2l + 1
Yl
m, (7.27)

so that ∑
m
l=−m

(
Nl

m

)∗
Nl

m = 1 with
(
Nl

m

)∗
the complex conjucgation of

(
Nl

m

)
and

N(0)
∣∣∣
0

0
= N0

0

N(1)
∣∣∣
1

m
= N1

m

(7.28)
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7.4. Spherical Minkowski tensors and normal orientation order parameters (NOO)

Since Yl
m is an irreducible basis in the spherical tensor representation, the Nl

m are also
a spherical irreducible basis.

7.4. Spherical Minkowski tensors and normal orientation

order parameters (NOO)

In this section the main result of this chapter is discussed, namely the relationship be-
tween the bond orientational order parameters of Steinhardt and the normal Minkowski
tensors W0,r

1 .

Normal tensors are a particular case of Minkowski tensorsW0,r
1 which can be written

with the definitions from above as a decomposition of spherical irreducible tensors
W1|lm

W1|lm (K) :=
∫

∂K

d2r Nl
m(θ(r), φ(r)) =

√
4π

(2l + 1)

∫

∂K

d2r Yl
m(θ(r), φ(r)), (7.29)

where θ(r), φ(r) are the spherical representation of the normal vector n (r) at the point
r on the surface ∂K of the body K. W1|lm (K) is thus the multipole expansion com-
ponent for weight l and helicity m of the normal vector density of boundary surface
of K. Nl

m are reduced spherical harmonics defined in eq. (7.27). A rank-r tensor W0,r
1

decomposes in spherical representation into irreducible parts W1|lm up to l = r and
−l ≤ m ≤ l.

Voronoi cells—or convex polyhedra in general—with nk facets of area Aj one obtains
from eq. (7.29)

W1|lm =
nk

∑
j=1

AjN
l
m(θj , φj) =

√
4π

2l + 1

nk

∑
j=1

AjY
l
m(θj, φj) . (7.30)

Normalizing the area weights Aj with the total area A = ∑
nk
i=1 Aj and using the

Steinhardt bilinear order parameter definition one gets

qVl =

√√√√ l

∑
m=−l

∣∣∣∣∣
nk

∑
j=1

αj Nl
m(θj, φj)

∣∣∣∣∣

2

=

√√√√ 4π

2l + 1

l

∑
m=−l

∣∣∣∣∣
nk

∑
j=1

αj Yl
m(θj, φj)

∣∣∣∣∣

2

, (7.31)
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7. Spherical normal Minkowski tensors and bond order parameters

Figure 7.2. Comparison of bond and normal based order parameters. Left: Bonds are defined

by Vornoi facets and equally weighted Right: Bonds are defined by Voronoi facets

but weighted with the surface area (length in 2D).

where αj = Aj/A. The superscript V denotes the Voronoi-facet weights of the nor-
mal directions (bonds). We have derived with the calculus of spherical tensors a bond
orientation order parameter, which obeys the same robustness as known from carte-
sian Minkowski tensors. In analogy, one could decompose other Minkowski tensors
to capture different aspects of the morphology. Because of additivity and continuity
of Minkowski tensors it is clear, that one could use the NOO also for other attempts to
quantify symmetry.

qVl are bilinear invariants. According to the Steinhardt formalism, one can also write
down the multilinear invariants (such as wV

l ). This higher order invariants (3-forms)
can be derived from the eq. (7.30), as it is shown in the Steinhardt paper [289]. n-
forms in general are accessible, but the calculus becomes more and more cumbersome.
The spherical tensor representations give direct acces to high order invariants qVl and
wV

l (bi- and trilinear forms), while the computation of n-linear forms with n ≥ 3 is
cumbersome. Eigenvalues of irreducible cartesian tensors are simpler to evaluate, at
least up to l ≤ 4.

Figure 7.2 shows schematically the difference in the attempt of BOO and NOO. In
the left panel the neighbor hood is defined solely by the number of Voronoi facets. The
bond weight is represented by the length of the green lines. Misleadingly the regarded
sphere appears in a quite symmetric environment. Unlike, in the area weighted bonds
in the right panel clearly represents the asymmetric Voronoi cell. A asymmetric ap-
pearence seems to be more suitable for the considered sphere. Thus, we emphasize
the importance of using robust bond weights for BOO: An obvious method is to use
NOO which are based on Voronoi facet surface area.
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7.5. NOO of triply periodic minimal surfaces

Figure 7.3. Left: Three members of the tP family: r0 = 0.25, r0 = 0.5 and r0 = 0.75. Right:
translation unit cell of tP surface with triangulated mesh

7.5. NOO of triply periodic minimal surfaces

As an example, fig. 7.4 shows the first even invariants of some triply periodic mini-
mal surfaces (TPMS). Omitting the mathematical details, we note, that these surfaces
build up three dimensional periodic interwoven networks of two disjoint domains
[270, 103, 272]. As TPMS are minimal surfaces, their mean curvature vanishes ev-
erywhere. They are found in nature, e.g. in the structure of butterfly wings, which
gives them their colors [271, 260]. An interesting feature of TPMS is that they oc-
cur in families with one free parameter [101, 102]. Figure 7.3 shows three members
of the tP family. Each member of this family has tetragonal symmetry (P4/mmm in
Hermann-Mauguin notation). Some families have distinguished members, e.g. tG and
rG contain the cubic gyroid. Indeed, an analysis of the H surface (see fig. 7.4) with the
irreducible interface tensor I0,21 (qV2 is its bilinear invariant) showed, that the H surface
contains a special member (r0 = 0.678) that is likely to be realized in nature but due
to similarities in scattering experiments to cubic surfaces it may be overlooked in for-
mer investigations [277]. Vanishing of the qV2 marks the primitive surface (P) and the
diamant surface (D) in the tP and tD families, resp. The rPD familiy contains both the
P and the D surface.

Higher orders invariants mark special members in other families too, e.g. in the tG
q4 vanishes around 0.37. Unfortunately, no physical interpretation can yet be associ-
ated to these mathematically special cases. However, derivates of the surfaces lead
to structures with isotropic elasticity tensors [152], and might be successfully charac-
terized by irreducible Minkowski tensors. The NOO were calculated from triangular
meshes using eq. (7.31) (see fig. 7.3).

We want to stress the point that when qVl vanishes this also implies that W1|lm van-
ishes for all m. Thus the irreducible tensor with weight l vanishes. This indicates
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7. Spherical normal Minkowski tensors and bond order parameters

isotropy w.r.t. the weight l. For example the normal density of all Voronoi facets to-
gether in a Poisson process is isotropic. Thus, qVl vanishes for every l in the large
system limit (N → ∞), when qVl is used as a global order parameter (analogous to Ql

in chapter 6). But one could also find patterns of high symmetry, where some l vanish
and others do not [289]. E.g. the icosahedron is isotropic w.r.t. l = 2, l = 4 and l = 8
but anisotropic l = 6 and l = 10. Therefore isotropy can be considered as a concept of
vanishing of certain invariants. It is plausible, though speculative, that each symmetry
class obeys some isotropy, which uniquely determines its transformation group mem-
bers. Such invariants need not be of bilinear form, but may also be multilinear forms
and a mixture of certain weights [289, 216]. Finding appropriate invariants is a hard
job, therefore ad-hoc methods, e.g. pseudo-metrics of invariants have to fill the gap to
determine structures of surface patterns.
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Figure 7.4. qVl as a function of the free surface parameter for six families of TPMS. qV2 = 0
indicates the cubic gyroid (G) (right column bottom, from ref. [272]) in the tG and

rG family. Right column top shows the H surface with qV2 = 0 (from ref [277]).

The schematic diagram at the right, shows the interconnections between the TPMS

families (from ref. [103])
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7.6. Discussion

The analysis of the irreducible tensors, either in cartesian or in spherical representa-
tion, offers new insights into the inherent structure of the Minkowski analysis and
shows the natural connection between BOO and NOO. While the algebra in spheri-
cal coordinates leads to the direct decomposition in irreducible parts, and thus to the
n-linear invariants, the calculations in the spherical tensors might be tedious. Often,
the cartesian counterparts are easier to interpret, e.g. the interface tensor is the irre-
ducible element of W0,2

1 or the tensor of inertia is the irreducible element of W2,0
0 . This

dual picture completes the power of the systematic Minkowski framework. In many
cases, it seems sufficient to work with either eigenvalue invariants from the cartesian
representation or the bilinear form of the spherical irreducibles, and transformations
among them are not necessary. Indeed, Jerphagon [141] also gave formulas to derive
qVl from the irreducible cartesian tensors. The total contraction tensor norm

T : T = ‖T‖2 = ∑
J

∥∥∥T(J)
∥∥∥
2
= ∑

i1 ,...,ir

Ti1 ,...,irTi1,...,ir

= ∑
i1 ,...,ir,J

T
(J)
i1 ,...,ir

T
(J)
i1 ,...,ir

= ∑
m,J

(−1)r+J+mT J
m T J

−m, (7.32)

where r is the rank of the fully symmetric T and T J
i1 ,...,ir

the cartesian irreducible el-

ements of T. T J denotes the spherical irreducibles with the entries T J
m. The last two

lines, can be recasted as ∥∥∥T J
∥∥∥
2
= ∑

m

(−1)mT J
m T J

−m. (7.33)

Recalling that T J
m =

∥∥T J
∥∥Nl

m in the case of W0,r
1 , one gets a relation for the bilinear

invariants from the cartesian representation.

We want to emphasize the significantion of the weight l = 2 (βr,s
ν or q2) for local

order description in disordered materials. This weight is the lowest weight, where
the irreducible normal Minkwoski tensors are not trivial (when normalized with W1).
By Steinhardt this weight was omitted, since the corresponding invariants vanish all
together for any crystal order of monodisperse spheres. Indeed, this latter fact makes
this weight especially interesting to study disordered packings, so that all ordered
(crystalline) structures are at the border of the random distribution and not mixed up
with the random background. A clear separation of ordered and disordered domains
is therefore with only one scalar measure possible. We made use of this fact, when
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7.6. Discussion

studying the crystallisation onset at RCP. Furthermore, the merit of a low weight l
measure like βr,s

ν or q2 is, that (negative) interference of the normal vectors in the
multipole expansion is less likely.

Last but not least NOO are robust due to the area weights. The NOO order param-
eters preserve all the merits of the spherical harmonics approach originally proposed
by Steinhardt [289]. This makes them a superior local order descriptor than the Stein-
hardt BOO with the bond definitions based on discrete sets of nearest neighbors. NOO
combined with power tessellations (Laguerre-tessellations) or medial surfaces tessella-
tions are a straight forward generalization of the BOO in order to study polydisperse
sphere packings and non-spherical particle ensembles.
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8. Summary

In this work we investigated the geometry controlled phase behavior in the vicinity
of nanorough substrates and in jammed bead packs. With a phase field (PF) model
we are able to study the generic behavior of a vapor-liquid system down to sizes of a
few molecular diameters. Non-wetting, i.e. vapor suspended Cassie-Baxter drops are
favored over Wenzel drops due to geometrical corrugation at nanoscale. Geometrical
effects are also found in the simple hard sphere fluid model, in particular when dis-
sipative processes lead to jamming. A purely geometrical driven phase transition of
jammed sphere packings is found at the so-called random close packing point, which
marks the onset of crystallization.

8.1. Nanowetting, nanoslip

In the first chapters of this work we focus on the geometrical effects in wetting prob-
lems on nanometric length scales—or more precisely the wetting of macroscopic drops
on substrates with roughness length scales of a few nanometers. This gap between
length scales is a notoriously difficult problem in numerical simulations. Therefore,
we employed, refined and thoroughly tested a phase field model for nanowetting,
which allows for simulations of such systems. This model is designed to provide
an insight into the generic wetting behavior of a fluid in the vicinity of a corrugated
substrate. This model finds its place between the commonly used lattice Boltzmann
(LB) simulations and molecular dynamics simulations (MD). LB is used in many mi-
crofluidic studies, where large system sizes (compared to the particle diameter) and
large time scales are needed. MD simulations are very powerful when small system
sizes are under investigation and dynamical effects occur on short time scales (up to
nanoseconds).

With the PF model we studied the contact angles of macroscopic drops on nanomet-
ric corrugated monovalued surfaces made of chemically homogeneous materials. We
demonstrated that nanofeatures are of great importance to enhance non-wetting and
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hence allow for omniphobicity—i.e. the repellency of liquids, no matter the chemical
pairing—even on corrugations without overhangs. This effect is mainly driven by line
tensions at needle (or blade) shaped surface structures. These line tensions lead to a
thermodynamically stable wetting inversion in a homogeneous wetting regime, which
can not be explained with the classical Wenzel law. Generalizing the Wenzel formula
with a line tension contribution closes this deficiency in the classical theory. These
findings from simulations are in agreement with experiments of Ramos et al. [250].
Molecular simulations with water molecules [76, 180] find similar results for partic-
ular systems. Our results reveal rather the generic geometrical features that are at
play.

Further we regarded the impact of random-rough surfaces, which are a toy model
for fractal surfaces. We find qualitative agreement with the experimental results of
ref. [250], when considering the wetting transition from the Cassie-Baxter wetting
branch to the Wenzel-like wetting regime. The transition between both regimes is
smoothed out on such structures and can be modeled with a stochastic model. With
this model we can calculate the apparent wetting angle of the thermodynamically
stable wetting state. In our examples, we found that the Cassie-Baxter regime and
the Wenzel regime show remarkable similarities in the wetting diagram, though the
interface contact profiles with the wall are quite distinct.

To understand this complex transition a detailed understanding of the metastabilites
is needed. The PF model gives access to the free energy landscape and thus to the en-
ergy barriers between homogeneous and heterogeneous states. The transition process
from one state to another depends on the initial state. Dewetting a crenel from a cylin-
dric Wenzel drop to the Cassie-Baxter state needs a nucleation process of a bubble at
the bottom of the crenel, while the Cassie-Baxter to Wenzel transition is an intrusion
process. Line tensions along needle or blade shaped obstacles increase the energy
barrier between both states, so that the Cassie-Baxter state can be metastable up to
wetting angles of ≈ 60◦.

From intrinsic slip length studies, one may expect that large contact angles imply
large slip lengths. We showed with PF simulations that on nanocorrugated substrates,
even large apparent contact angles may have very small slip lengths when the crenels
are filled with liquid, i.e. in the Wenzel state. Large slip is found in the Cassie-Baxter
state. Therefore, the needle tip driven Wenzel-wetting inversion does not allow for
large flow enhancement. However, in the Cassie-Baxter state we showed that signifi-
cant slip can occur at intrinsic contact angles less than 90◦. This effect is based on the
stabilization of the Cassie-Baxter state due to the needle tips. This might be a practical
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8.1. Nanowetting, nanoslip

route to increase flow rates.

With the PF model we also studied contact angle hysteresis of driven drops in a
nanochannel. Contact angle hysteresis stems from pinning at heterogeneous sub-
strates. We found slip—stick—jump dynamics of the drop front line, i.e. the triple
line slips over the top layer of the pillar, till it sticks at the outer edge of the pillar. Liq-
uid of the drop is redistributed under the influence of the driving force (e.g. gravity)
to increase the wetting angle. If the force is large enough, jump dynamics of the front
line are observed, i.e. the drop crosses the crenel until it continues the cycle at the next
pillar. This is in agreement with findings from LB simulations. What is new is, that
the critical driving force does not affect the critical contact angle for depinning. In our
simulations we made use of synchronous/asynchronous rear and front line pinning to
vary the critical driving force. Synchronous or asynchronous depinning may explain
volume dependency for sticking drops. Free energy landscaping lead to the simple
picture that a drop on a heterogeneous substrate can be considered as a drop that
is driven in an external potential with fast motion in the potential valleys and slow
motion at the peaks.

As mentioned above, the dynamics of the 3D dewetting transition of crenels might
be different. In the same manner contact angle hysteresis and pinning becomes more
complex in three dimensions. Therefore, it would be fruitful to develop efficient algo-
rithms for the PF model in that case, i.e. parallelization and probably adaptive mesh
methods are needed in order to study sufficiently large 3D systems. Further concep-
tional work can tackle the question how to model non-isothermal problems including
heat transfer or to study stochastic problems including thermal motion. PF models are
known as versatile simulation techniques, which are capable of solving these problems
in general.

We hope that experimentalists may access these nanoscopic length scales in wetting
experiments and test the hypothesis of the needle tip effect and its practical relevance
in the future. One may think about flat substrate decorated with carbon nano tubes
or well controlled etching processes. In the meantime one may test the needle tip
hypothesis with molecular simulations, e.g. with phantom wall method that has been
recently developed in the Müller-Plathe group.

A consistent theory for contact angle hysteresis is still lacking. The PF model may
help to clarify the picture of the contact angle hysteresis, since the free energy land-
scape is directly accessible. For instance the question, whether there is a substantial
difference in dynamics of the front/rear line of driven drops in contrast to evaporating
or inflating drops should be addressed in future work. We currently run simulations to
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8. Summary

clarify this point. Furthermore, 3D PF simulations may be used to test the Joanny–de
Gennes theory of pinning.

8.2. Jamming, RCP, defects

In the latter chapters we employed the Minkowski analysis to gain structural infor-
mation about sphere packings of frictionless and frictional spheres. We used rank-2
Minkowski tensors to quantify local anisotropy in sphere packs and showed that local
mean anisotropy is a phase indicator in thermal fluids and also in metastable states
and jammed bead packs. The Minkowski analysis of sphere packs is the shape analy-
sis of the tessellation cells—Laguerre tessellations in general and Voronoi tessellations
in the special case which we used in this work. Many widely used order parameters
depend crucially on the arbitrary choice of a set of nearest neighbors. Commonly used
definitions for nearest neighbors are not robust against noise. Minkowski tensors in
turn are robust against noise by their definition. In particular, when investigating dis-
ordered systems of particulate matter robustness is an important issue. For instance
the common local order parameter q6 was found to lead to conflicting results, when
the set of nearest neighbors is redefined according to commonly used definitions.

We used the hard sphere model to validate rank-2 Minkowski tensors as order pa-
rameters and compared the results to commonly used order parameters, i.e. the Stein-
hardt bond orientational order parameter family and the Edwards tensor. Thanks to
the completeness theorem for Minkowski tensors, we found that the local anisotropy
of the Voronoi cells in equilibrium hard sphere packings is generic. This means
anisotropy is not dependent on a special choice of the morphological characteristics
under consideration.

The rank-2 Minkowski tensor analysis was also used to investigate the local struc-
ture in jammed bead packs from experiments and simulations in a packing fraction
interval between ≈ 0.55 and ≈ 0.64. In the literature the former is called random loose
packing and the latter random close packing. We found substantial local anisotropy,
which is maximal compared to thermal hard sphere systems, metastable systems and
compressed hard sphere ensembles with the same packing fraction. Furthermore,
anisotropy is universal in jammed packings. More precise, all employed jamming
protocols—experiments and simulations—lead to the same rescaled anisotropy dis-
tribution and the same (within small statistical errors) mean local anisotropy as a
function of the packing fraction. Also, the correlations between anisotropy and local
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8.2. Jamming, RCP, defects

packing fraction is universal. Universal behavior is astonishing, since the jamming
protocols are non-ergodic and thus, a priori, the final state is history dependent. Con-
versely, universal structure of jammed bead packs implies history-independence of the
arrested state. This is in agreement with findings of volume based structure analysis,
e.g. in ref. [16, 15].

Substantial anisotropy in jammed bead packs may explain, why disordered packings
of ellipsoids pack denser than their spherical counterparts. The virtual replacement
of isotropic beads by anisotropic ellipsoids occupies the anisotropic void space more
efficiently. We think the structural analysis of ellipsoidal packings can verify this
hypothesis in the future.

With the Lubachevsky-Stillinger (LS) algorithm arrested sphere packs with a large
range of packing fractions were created, especially below and above the so-called ran-
dom close packing point. The rank-2 Minkowski tensor analysis revealed a structural
change around this point: The universal distribution with vanishing probability for
isotropic cells breaks down for high packing fractions, including finite probability for
isotropic cells. This is a precursor of crystallization which was analyzed in great de-
tail with the W0,4

1 rank-4 Minkowski tensor. We developed pseudo-metrical symmetry
indices from W0,4

1 invariants to distinguish between several ordered phases. With this
method we clearly identified an onset of crystallization at a packing fraction around
0.649 in LS simulations and interpret this as the random close packing (RCP) point.
Crystallization is meant to be local ordering to hexagonal close packed (hcp) and face
centered cubic (fcc) clusters of different sizes. No icosahedral structures are found, al-
though the local packing fraction of the center sphere in such configurations is higher
than in hcp and fcc clusters. This is in agreement with findings in recent publications
from the Medvedev group [8, 181].

While we chose for this analysis the rank-4 Minkowski tensor W0,4
1 , which is repre-

sented in cartesian coordinates, the analysis can be done also with spherical Minkowski
tensors. Cartesian tensors have the merit that they are more intuitional while the latter
allows for easier systematic derivation of their invariants for abitrary rank. There-
fore, we made a comparison of cartesian and spherical representations of normal
Minkowski tensors and linked them to the Steinhardt bond orientational order param-
eter family (BOO). Indeed, the Minkowski and the Steinhardt approaches are quite
similar. However the latter lacks robustness. Thus, the Minkowski approach is a
method to enhance the BOO tool. Our analysis of disordered structures shows the
merit of descriptors with l = 2, e.g. q2 (which is virtually equivalent to the anisotropy
measure βr,s

ν ) to study disorder. While higher even values of l, e.g. q4 and q6 are sensi-
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Appendix

tive to several ordered configurations, some of these configurations suffer from a large
random background of disordered configurations. l = 2 leads to the first non-trivial
invariants, and all crystal symmetries found in monodisperse sphere packings yield
vanishing q2.

To avoid confusion we call the spherical Minkowski tensor method normal orienta-
tion order parameter (NOO). This reinterpretation of the BOO allows also to enrich the
field of applications. NOO can also be applied to investigate the structure of almost
arbitrary boundary surfaces.

A closed theory to identify the set of independent invariants of irreducible Minkowski
tensors is still lacking and has to be worked out in the future. Nevertheless, in order to
exploit this robust order measurement tool, a family of invariants has to be identified,
which allows for concise and reliable cluster identification. This might follow two dif-
ferent routes. First, from the independent Minkowski tensors on could derive a linear
combination of tensors which vanishes exclusively for a certain symmetry configura-
tion. Due to the continuity of Minkowski tensors, such an approach offers a systematic
way for robust cluster identification. A second route might be the definition of proper
pseudo metrics based on NOO as we did for the symmetry indices in the jamming
regime. We assume this approach to be numerically cheaper. Such a pseudo metric
has been worked out here for fcc, bcc, hcp, sc and icosahedral order.

The calculus of spherical Minkowski tensors might be also useful to connect struc-
ture properties to physical properties, e.g. elastic moduli of bicontinuous networks or
optical properties of optical crystals.

Last but not least, NOO combined with power tessellations (Laguerre-tessellations)
or medial surfaces tessellations are a straight forward generalization of the BOO in
order to study polydisperse sphere packings and non-spherical particle ensembles.
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A. Details on the Parameters of the PF

Model

Some details on the wall parameters

As discussed in chapter 2 the wetting angle is a function of εLJ. Other parameters
which may change the wetting angle are kept constant. Fig. A.1 shows the cos θ as
a function of εLJ for different resolutions and ratios w/σ. A w/σ = 4/3 appears
convenient to tune the full wetting range for εLJ ∈ [0, 4].
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Figure A.1.

199



A. Details on the Parameters of the PF Model

Parameters

We listed the parameters which are used in tables A.1 to A.3. The kinematic and
dynamical viscosity is roughly that of water at standard conditions. There are basically
to time-scales involved. Firstly the time-scale of the PF diffusion and secondly the
time-scale of the hydrodynamic equations determined by the viscosity. We chose the
smaller time-scale, the diffusion time-scale, to define the intrinsic unit-system.

Parameter Symbol Value

Cahn-Hilliard constant GCH 2.0 · 10−9m2/s

Allen-Cahn constant GAC 2.0 · 109s−1

particle diameter σ 1.0 · 10−9m

interfacial thickness w 1.33 · 10−9m

kinematic viscosity ν 1 · 10−6m2/s

mass per particle m 3.0 · 10−26kg

critical temperature Tc 500K

Boltzmann constant kB 1.38065 · 10−23J/K

Lennard-Jones prefactor ε [1.72, 6.9] · 10−21J

Table A.1. Model parameter in real units.

Scaling-parameter Symbol Value

length-scale σ 1.0 · 10−9m

time-scale τ = σ2/GCH 5.0 · 10−10s

energy-scale kBTc 6.9035 · 10−21J

Table A.2. Scaling parameters of the lattice model
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Parameter Symbol Value in (σ, τ, kBTc)

Cahn_Hilliard constant GCH∗ 1

Allen-Cahn constant GAC∗ 1

particle diameter σ∗ 1

interfacial thickness w∗ 4/3

kinematic viscosity ν∗ 500

dynamic viscosity η∗ 6.67 10−3

mass per particle m∗ 1.7382 · 10−5

Lennard-Jones prefactor ε∗ [0.3, 1.00]

friction parameter k∗ 100

temperature T∗ 0.6#, 0.7

liquid denisty ρ∗L 0.77

liquid denisty ρ∗V 0.02

Table A.3. Dimensionless parameters in the (σ, τ, kBTc)-unit-system, # default parameter

Nanorough wall parameters

Since we consider a geometry which is translation invariant in the direction of the
ridges, we can reduce the numerical solution to the x and y direction. The external
potential is integrated in z-direction. The bottom substrate is corrugated and the top
substrate is a planar reference surface. Figure 3.10 (top panel) on page 67 shows an
example of a wetting configuration on the random rough substrates (RRS).

The S1 geometry is defined as follows: A slab geometry is taken and at the bottom
we grow independently pillars on each lattice block (2x2 lattice sites). If the lattice
block below is already marked as wall, there is a 95% probability that the next block
belongs to the wall too. We use a cutoff for the maximal height of 30 lattice block and
the lattice block spacing is 1.33σ.

The more regular S2 geometry consists of pillars with constant width a = 1.33σ

while the crenel width is randomly distributed. L− a follows a binomial distribution
B(N, p): L − a = αX;X ∼ B(30, 0.3) with α = 0.67σ, the number of repetitions N

and the a priori probability p. The pillar height h = 13.3σ is constant. The internal
unit of length is one lattice site which is 0.67σ. All lengths under consideration are
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A. Details on the Parameters of the PF Model

integer-valued lattice spacings [214]. The liquid density ρL = 0.77σ−3 and the vapor
density ρL = 0.02σ−3 at a temperature T = 0.6Tc, where Tc is the critical temperature
of the van der Waals fluid (Tc = 500K).
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B. Experiments and simulations of

particulate matter

In this chapter we list protocols and details of the point-pattern generation in chapter 6.

B.1. Monte-Carlo simulations

The MC of equilibrium hard spheres simulations were performed by Spanner accord-
ing to a local Metropolis move and cluster flip algorithm [161, 84, 151]. This means
that the algorithm performs alternating single sphere move followed by a cluster flip
move. The clusters are identified by an inversion at a random pivot point. One ad-
vantage of this method is, that it works well around the liquid-solid transition point.
[84]. 16000 hard spheres are used in the MC simulations (4000 for densities φ > 0.6
in 3D) in a cubic simulation box with periodic BC (NV-ensemble). The equilibration
is checked the pair correlation function, which is in agreement with the Percus-Yevick
approximation and with the mean square displacement is analyzed [151].

B.2. Molecular dynamics simulations

Event-driven MD simulations of hard spheres were performed by Nogawa [251, 137,
151]. The number of spheres in the cubic simulation box is up to 256000 with periodic
BC (NV-ensemble). The same tests whether the system is equilibrated or not were
performed as for the MC simulations in the section above. Well equilibrate systems
were produced for small and large densities. In the region of the phase transition, the
ensemble lacks perfect equilibration (see marked interval for in fig. 6.4).
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B. Experiments and simulations of particulate matter

B.3. Supercooled liquids-MD simulations

The super-cooled HS liquid simulations were done in the group of Ito at the university
of Tokyo and performed by Nogawa [229]. A novel algorithm has been used, similar to
the LS algorithm (see also following section). A random point pattern is initialized and
decorated with spheres R = 0. This step is followed by a Voronoi graph computation.
Spheres are expanded up to the smallest distance between the center point and the
corresponding Voronoi facets or a certain final radius. This results into a polydisperse
packing. With event driven MD moves the system is relaxed for short time intervals
alternated with the radius expansion step till one ends up in a monodisperse system,
where all spheres have the final radius. This algorithm preserves the random character
of the initial state better than e.g. the LS algorithm (see description below), however
it becomes inefficient when approaching the RCP point. The simulations were run
with 160000 spheres in a periodic and cubic box. This algorithm is intended to avoid
crystallization and allows for efficient computation.

B.4. Lubachevsky-Stillinger

The LS simulations presented in Figs. 6.15, 6.14, 6.16 and 6.17 are done by Aste [273]
and the LS simulations presented in Figs. 6.4, 6.21, 6.22, 6.23, 6.25 and 6.26 are per-
formed by Kapfer.

The Lubachevsky-Stillinger algorithm [185] is an out-of-equilibrium event driven
molecular dynamics simulation. Packings with 10000 and 40000 hard spheres have
been simulated in a periodic cubic box. The system is initialized with a random point
pattern decorated with spheres which have radius R(t = 0) = 0 . The radius is time
dependent and increased linear in time with the expansion rate γ. The system is
simulated with Newtonian dynamics and an extra force acting at contact ensures that
spheres depart after the collision. The simulation is either terminated when a pressure
threshold is reached (jammed packing) or when a certain packing fraction threshold is
obtained (non-jammed/supercooled systems). The expansion rate γ controls roughly
the packing fraction at jamming. Jammed packings are found in an interval of roughly
0.55 ≤ φ ≤ 0.70. Large γ yields low packing fraction.
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B.5. Monte-Carlo simulations of nearly jammed

B.5. Monte-Carlo simulations of nearly jammed

The decompression MC jammed beads were performed by Schröder-Turk [273]. Start-
ing from a jammed bead pack (experimental packing A were used, see B.7), the radius
of the spheres is reduced in order to obtain a certain packing fraction. Thus the sys-
tems become unjammed. Then, canonical MC moves are applied (random direction
and random length between 0 and 20% of the sphere diameter). One million MC
moves are performed in our examples for each different packing fraction.

B.6. DEM-simulations

The discrete element method (DEM) simulations were performed by Delaney [273, 79].
DEM results are bead packs with almost monodisperse spheres, which are obtained
from numerically relaxation of experimental bead packs with some degree of poly-
dispersity. DEM integrates Newton’s equation including translational and rotational
degrees of freedom. Elasto-frictional behavior of spheres and gravity are also included.
In this study packings from the DA experiments were used as initial packing (see sec-
tion below).

Model The normal interaction force is modeled as a repulsive contact force (i.e. when
overlapping): Fn = knξ3/2, where ξ is the overlap, i.e. ξ = d− |ri − rj|. ri and rj are the
actual particle centers and d the ideal diameter of the spherical particle. The tangen-
tial interaction force describes friction and reads Ft = −min(|ktξ1/2n ξt|, |µFn|)sign(vt),
where vt is the tangential velocity and ξt is the tangential displacement
ξt :=

∫ t
t0
vt(t′)dt′. t0 is the time where the contact occurred. The displacement is thus

the velocity integrated over the lifetime of the contact. To fulfill the Coulomb friction
criteria Ft ≤ µFn with the friction coefficient µ, the tangential force is truncated as
written above.

Dissipative terms are also included, i.e. in order to account for visco-elastic dissipa-
tion the dissipative normal force reads Fd

n = −γnξ1/2n ξ̇n and in tangential direction the
friction force is Fd

t = −γtvt.

Parameter Realistic input parameters were used, i.e. for the acrylic beads the Young
modulus is E = 3.2 GPa, the Poisson ratio ν = 0.3 the static grain friction coefficient
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B. Experiments and simulations of particulate matter

is µ = 0.28 and the density 1150 kg/m3. d = 0.5mm in samples A and C and the
samples B,D,E and F have d = 0.795mm. For the glass beads the parameter are Young
modulus E = 70 GPa, a Poisson ratio ν = 0.2, density of 2500 kg/m3 grain static
friction coefficient µ = 0.9 and radius 0.125mm. [273].

The input parameter are connected to kn and kt by

kn =
d1/2E

3(1− ν2)
(B.1)

kt =
2
7
kn. (B.2)

For further details of the DEM simulation see ref. [79].

B.7. Dry acrylic experiments

The experiments and point-pattern extraction of the dry acrylic (DA) beads were done
by Aste, Senden and Saadatfar [17, 12, 13]. The experimental DA data consist of 6
individual realizations of dry acrylic beads in air, confined by a cylindrical container
( = 55mm). The filling height is around 75mm. Intermediate packing fractions were
obtained by slow pouring (C) of the beads into the container. Low packing fractions
(A,B) were obtained by placing a stick inside the container and removing the stick
slowly after the beads are poured into the cylinder. Higher packing fractions are
obtained by faster pouring (D), gently tapping the walls (E) and by a combination of
tapping and compressing from above (F). The compression piston was removed before
the structure were analyzed with computed tomography methods. Table B.1 list the 6
analyzed bead packs.

B.8. Fluidized bed experiments

The experiments and point-pattern extraction of the fluidized bed (FB) setups were
performed by Schröter et al. [16, 275]. Beads settle under gravity against a pulsed liq-
uid flow and build a jammed packing in the bottom of the container by sedimentation.
The flow rate controls the packing fraction. The container is cylindrical shaped with
a diameter of 12.8mm and a length of 230mm. The bead diameter is around 0.25mm

with a polydispersity of 3%. A list of individual realizations can be found in table B.2
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B.8. Fluidized bed experiments

name sample Ng minus sampling Na φ diameter polydispersity

DA A 102897 40000 0.586 1.00 0.05mm

DA B 34016 14986 0.596 1.59 0.05mm

DA C 142918 40000 0.619 1.00 0.05mm

DA D 35510 15699 0.626 1.59 0.05mm

DA E 35880 15825 0.630 1.59 0.05mm

DA F 36460 16223 0.640 1.59 0.05mm

Table B.1. Dry acrylic realizations from refs. [17, 12, 13]

name sample Ng minus sampling Na φ

FB 14 145719 40000 0.568

FB 15 146382 40000 0.571

FB 16 146615 40000 0.572

FB 17 145293 40000 0.567

FB 18 145180 40000 0.566

FB 19 147294 40000 0.575

FB 20 146100 40000 0.571

FB 21 147750 40000 0.579

FB 22 148106 40000 0.582

FB 23 150120 40000 0.591

FB 24 152843 40000 0.600

FB 27 153009 40000 0.600

Table B.2. Fluidized bed realizations from refs. [16, 275]
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C. Minkowski tensors

C.1. MT algorithm

In this paragraph the algorithm for MT of rank-2 is summarized for polyhedral meshes,
i.e. triangulated surfaces. The notation of the polyhedral surface is defined in fig. C.1
and the sum-rules for the MT are listed in Tab. C.1.

Figure C.1. (Left) Definition of geometric properties of a triangulated surface F2. For a tri-

angle T, nT is the normal vector of T, AT its area, and cT,1 to cT,3 its corners.

An edge e is defined by its vertices ce,1 and ce,2. The angle βT,c is the angle

between the two edges of the triangle T at the vertex c (Middle) Cross-sectional

view along a directed edge e. The normal vectors nT and nT ′ of the triangle

T (that contains e) and T′ (that is adjacent to T along edge e) span the angle

αe ∈] − π, π[. More precisely, a rotation by αe around e in counter-clockwise

direction maps the triangle normal nT of the triangle containing e onto the nT ′ .

A concave edge has a negative angle αe. The figure also shows the definition of

the local coordinate system used for the computation of W0,2
2 . The basis vectors

n′
e, n′′

e and ê are defined as ê = e/|e|, n′′
e = (ne,1 + ne,2)/|ne,1 + ne,2| and

n′
e = ê× n′′

e . (Right) Subdivision of a body K along a concave edge e.
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C. Minkowski tensors

scalar measures

W0
∫
K
dV 1

3 ∑
T∈F2

〈CT, nT〉AT

W1
1
3

∫
∂K dO 1

3 ∑
T∈F2

AT

W2
1
3

∫
∂K G2 dO 1

6 ∑
e∈F1

|e| αe

W3
1
3

∫
∂K

G3 dO 1
3 ∑
c∈F0

(2π − ∑
T∈F2(c)

βT,c)

tensorial measures

(W2,0
0 )ij

∫
K
rirj dV ∑

T∈F2

2AT JT,i,j,knT,k

(W2,0
1 )ij

1
3

∫
∂K rirj dO 1

18 ∑
T∈F2

3
∑

m=1
∑
l≤m

(
cT,l,icT,m,j + cT,m,icT,l,j

)
AT

(W2,0
2 )ij

1
3

∫
∂K G2 rirj dO 1

18 ∑
e∈F1

αe|e|×
(
ce,1,ice,1,j + ce,1,ice,2,j + ce,2,ice,2,j

)

(W2,0
3 )ij

1
3

∫
∂K

G3 rirj dO 1
3 ∑
c∈F0

(
2π − ∑

T∈F2(c)
βT,c

)
cicj

(W0,2
1 )ij

1
3

∫
∂K ninj dO 1

3 ∑
T∈F2

AT nT,inT,j

(W0,2
2 )ij

1
3

∫
∂K

G2 ninj dO 1
12 ∑

e∈F1

|e|
(
(αe + sin αe)n′′

e,in
′′
e,j +

(αe − sin αe)n′
e,in

′
e,j

)

Table C.1. Minkowski tensors in 3 dimensions of a body K with the triangulated surface ∂K.

The mean and Gaussian curvature are G2 and G3, respectively. The set of facets

of the triangulation of ∂K is F2, the set of edges is F1 and the set of vertices

F0. The subset of triangles that contain the vertex c is denoted by F2(c). The

nomenclature for triangulated surfaces is defined in fig. C.1 on the left side. AT is

the area, CT := ∑
3
i=0 ci/3 its center of mass and JT is given in Tab. C.2, see also

[48].

The volume integral W2,0
0 (K) can be computed using

JT,i,j,k =

1∫

0

da
1−a∫

0

db

[cT,1 + a(cT,2 − cT,1) + b(cT,3 − cT,1)]i ×
[cT,1 + a(cT,2 − cT,1) + b(cT,3 − cT,1)]j ×
[cT,1 + a(cT,2 − cT,1) + b(cT,3 − cT,1)]k , (C.1)
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C.1. MT algorithm

i, j ~fi,j Ji,j,k nk

x, x (0, 0, xxz)t Jx,x,z nz

y, y (0, 0, yyz)t Jy,y,z nz

z, z (0, zzy, 0)t Jz,z,y ny

x, y (0, 0, xyz)t Jx,y,z nz

x, z (0, xyz, 0)t Jx,y,z ny

y, z (xyz, 0, 0)t Jx,y,z nx

Table C.2. Utility functions for computing the ν = 0 Minkowski tensors.

finally the tensor may be expressed as

W2,0
0 (K) = ∑

T∈F2

2AT · JT,i,j,k · nT,k. (C.2)
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C.2. Clebsch-Gordan transformation matrices for W0,r
1

In this section we list the Clebsch-Gordan transformationmatrices for normal Minkowski
tensors up to rank r ≤ 4 [141] Using the Clebsch-Gordan coefficients and the trans-
formation matrices Umi one obtains for scalar Minkowski functionals, r = 0:

C0
0 = 1 (C.3)

for vectorial Minkowski functionals, r = 1:

(C1
0)i = (0, 0, 1)

(C1
±1)i =

1√
2
(∓1, −i, 0) (C.4)

(C.5)

for tensorial Minkowski functionals of rank r = 2:

(C0
0)i1i2 = − 1√

3
δi1i2

(C2
0)i1i2 = − 1√

6



1 0 0
0 1 0
0 0 −2




(C2
±1)i1i2 = −1




0 0 ±1
0 0 i

±1 i 0




(C2
±2)i1i2 =

1
2




1 ±i 0
±i −1 0
0 0 0


 (C.6)
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C.2. Clebsch-Gordan transformation matrices for W0,r
1

and for tensorial Minkowski functionals of rank r = 4:

(C0
0)i1i2i3i4 =

1√
5

δi1i2δi3i4δi1i3 +
2√
5

δi1i2δi3i4

(C2
0)i1i2i3i4 =

1√
7
Cxxxx +

1√
7
Cyyyy −

2√
7
Czzzz

+
2√
7
Cxxyy −

1√
7
Cyyzz −

1√
7
Czzxx

(C2
±1)i1i2i3i4 = ±

√
6
7
Cxxxz + i

√
6
7
Cyyyz ±

√
6
7
Czzzx

+i

√
6
7
Czzzy + i

√
6
7
Cxxyz ±

√
6
7
Cyyzx

(C2
±2)i1i2i3i4 = −

√
3
14

Cxxxx +

√
3
14

Cyyyy ∓ i2

√
3
13

Cxxxy

∓i2

√
3
14

Cyyyx +

√
3
14

Cyyzz −
√

3
14

Czzxx ∓ i2

√
3
14

Czzxy

(C4
0)i1i2i3i4 =

3
2
√
70

Cxxxx +
3

2
√
70

Cyyyy +
3

2
√
70

Czzzz

+
3√
70

Cxxyy −
12√
70

Cyyzz −
12√
70

Czzxx
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14
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3√
14
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14
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−i
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14
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1
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28
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C.3. Normal vectors

With the definitions of 7 one obtains for the normal tensors of weight l = 2.

N(2)
∣∣∣
0

0
= −

√
1
3
N0

0

N(2)
∣∣∣
1

m
= 0

N(2)
∣∣∣
2

0
=

√
2
3
N2

0

N(2)
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2

±1
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2
3
N2
±1

N(2)
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2
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2
3
N2
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0

0
= = − 1√

3
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)
− 1√

3
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√
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3
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1
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2
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1
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2
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6
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√
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√
2
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0
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(
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15
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Summary
This thesis is devoted to several aspects of geometry and morphology in wetting

problems and hard sphere packings. In the first chapters the influence of the nano-
metric surface corrugation on partial wetting contact angles is investigated and the
final chapters are dedicated to geometrical effects in amorphous systems.

Superhydrophobicity, i.e. very large contact angles, are of particular interest in the
development of micro- and nanofluidics in order to enhance flow rates and reduce fric-
tion. This is classically achieved by geometric surface optimization and a proper choice
of substrate and liquid chemicals. Simulations of nanorough patterns with macro-
scopic drops is a notoriously hard task, due to the large gap of lengthscales. The first
part is therefore dedicated to the refining and testing of a novel phase field/dynamic
density functional theory method. Indeed, this method allows for studying phase
transitions in the vicinity of a corrugated substrate and to evaluate the contact an-
gles of infinite large drops. We study static and dynamic properties with our model
(wetting and friction). In contradiction with the macroscopic Cassie-Baxter-Wenzel
theory the simulations give insight how monovalued surfaces, i.e. surfaces without
overhangs, can produce so-called omniphobicity, meaning repellency, no matter the
chemical properties of the liquid. We checked systematically the impact of the surface
parameters on omniphobic repellency, and we show that the key ingredient are line
tensions, which emerge from needle shaped surface structures. Dynamic studies are
done to understand the influence of metastability and the resulting slip enhancement
as well, showing that needle like structures support air pockets below the drops, which
yields large slip and low friction. Recently such omniphobic monovalued structures
are found in etched amorphous silica surfaces.

Geometrical effects have also an important influence on glassy or jammed systems,
for example amorphous hard sphere systems in infinite pressure limit. Such hard
sphere packings got stuck in a so-called jammed phase, and we shall demonstrate that
the local structure in such systems is universal, i.e. independent of the protocol of
the generation. For this, robust order parameters—so-called Minkowski tensors—are
developed, which overcome robustness deficiencies of widely used order parameters.
This leads to a unifying picture of local order parameters, based on geometrical prin-
ciples. Furthermore, we find with the Minkowski tensor analysis crystallization in
jammed sphere packs at the random closed packing point.


