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Résumé Détaillé

Introduction

Récemment, des nouvelles techniques expérimentales, notamment en biologie, ont permis
l’acquisition d’un très grand nombre de données concernant plusieurs systèmes complexes,
comme les réseaux neuronaux, les réseaux de régulation de gènes etc. Ces techniques souvent
consistent à enregistrer l’état des constituants de ces systèmes (neurones, taux d’expression
des gènes etc.) à des instantanés différents. Un exemple typique est l’enregistrement, à l’aide
d’électrodes, de l’activité de plusieurs neurones faisant partie d’un tissu neuronal, pendant
une période de temps. Ces données nous permettent de calculer facilement certaines quanti-
tés statistiques, comme les valeurs moyennes ou les corrélations des variables qui décrivent les
constituants du système en question. L’information contenue dans ces quantités ne reflète pas
la structure du système d’une façon évidente et est donc de valeur scientifique limitée. Affin
d’obtenir de l’information pertinente sur la structure de ces systèmes, comme la vraie connecti-
vité d’un réseau de neurones, ces données doivent subir un traitement particulier. Ce problème
est connu sous le nom problème d’Ising inverse affin de mettre en évidence le lien avec sa ver-
sion “duale” qui est d’inférer les quantités observables quand les paramètres du modèle sont
connues, appelée problème d’Ising direct.

Un nombre de méthodes pour résoudre ce problème d’Ising inverse existent déjà dans la
littérature. Méthodes qui permettent l’exploitation de ce genre de données de façon utile. Cette
thèse a comme but d’étudier ces méthodes et éventuellement de proposer des alternatives qui
pourront surpasser les approches déjà connues en ce qui concerne leur précision et leur efficacité
de calcul. La plupart des méthodes existantes sont basées sur une hypothèse de symétrie des
interactions. Au cours de cette thèse nous nous sommes aperçus que si les interactions ne sont
pas forcement symétriques, c’est-à-dire si la manière qu’un élément du réseau influence un de
ses voisins n’est pas forcement identique à la manière que son voisin l’influence, la solution du
problème de l’inférence peut s’écrire de façon simple ce qui conduit à une méthode qui est exacte
et efficace à la fois. De plus, le interactions asymétriques sont peut-être rarement utilisées en
physique statistique “traditionnelle” où les constituants des systèmes en question sont souvent
des atomes ou des molécules, mais en biologie elles abondent. En effet, dans plusieurs des
réseaux intéressants les interactions sont dirigées dans un sens seulement. Par exemple, dans
les réseaux de neurones les neurones individuels communiquent grâce à des signaux électriques
transmis le long de leur axone depuis le soma vers l’extérieur, voir fig. 1. Ceci veut dire que le
paramètre qui sera utilisé pour modéliser l’influence qu’un neurone A exerce vers un neurone
B aura une valeur différente pour le sens inverse.

D’autres exemples de réseaux biologiques à interactions asymétriques, comme les réseaux
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Figure 1 – Diagramme d’un neurone [AlbertsJL+ 02].

de régulation de gènes, sont exposés dans le manuscrit principal. Un autre aspect très impor-
tant qu’on retrouve dans la plupart de ces réseaux biologiques est qu’ils correspondent à des
graphes creux, c’est-à-dire chaque élément n’interagit qu’avec un petit sous-ensemble du reste
des éléments. Cette propriété peut être exploitée affin de créer des méthodes moins exigeantes
en nombre d’observations. Certaines des méthodes présentées dans cette thèse, ainsi que une
variante de nôtre algorithme principale (voir section Modèles creux), tiennent compte de ce fait.

Avant de procéder avec la présentation des méthodes de résolution du problème d’Ising
inverse nous allons introduire le modèle d’Ising. À la suite de ce résumé nous allons présenter
brièvement l’état de l’art des méthodes utiliser pour résoudre le problème d’Ising inverse et
puis, à la dernière partie, nous allons exposer une nouvelle méthode spécialement conçue pour
traiter les systèmes à interactions asymétriques. Cette méthode est la contribution originale de
cette thèse.

Le modèle d’Ising

Le modèle d’Ising a été proposé au départ comme un modèle de ferromagnétisme. Il consiste
du Hamiltonien suivant

H = −J
∑

<i,j>

sisj −H
∑

i

si , (1)

où J est l’énergie d’interaction entre deux spins et H est un champ magnétique externe. Les
spins sont des variables binaires prenant deux valeurs si = ±1. Ces variables vont nous per-
mettre de modéliser des systèmes biologiques, comme un réseau de neurones, en faisant les
correspondances si = +1→ neurone actif, et si = −1→ neurone inactif.

La probabilité d’une configuration est donnée par la distribution de Boltzmann

P (s1, . . . , sN) =
1
Z

e−βH(s1,...,sN ) , (2)
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où β = 1
kBT

est la température inverse multipliée avec la constante de Boltzmann kB. La
fonction de partition Z est donnée par

Z =
∑

σ

e−βH(σ1,...,σN ) . (3)

Pour toute quantité qui dépend par les spins A(s) on définit sa moyenne thermique

〈A(s)〉 =
1
Z

∑

s

A(s) eβH(s1,...,sN ) . (4)

Un cas intéressant et facilement soluble est le cas des interactions à porté infinie, autrement
le modèle Curie-Weiss. Dans ce cas la somme dans le Hamiltonien

∑
<i,j> est prise sur toutes

les paires de spins. Il peut être facilement démontré que l’aimantation dans ce cas est donnée
par

m = tanh (βJm+ βH) , (5)

forme qui signale l’existence d’une transition de phase entre une phase paramagnétique est une
phase ferromagnétique.

La version du modèle d’Ising la mieux adaptée aux systèmes complexes est celle qui cor-
respond aux verres de spins. Dans ce cas chaque paire de spin participe dans une interaction
portant une constante de couplage Jij différente et de plus chaque spin peut être exposé à un
champ local Hi diffèrent. Voici le Hamiltonien correspondant

H(s) = −
∑

〈i,j〉
Jijsisj −

∑

i

Hisi . (6)

Les valeurs différentes des couplages servent à modéliser la variation qu’on retrouve dans le
comportement de chaque synapse différente au sein d’un tissu neuronal.

Le problème inverse dans le modèle d’Ising symétrique

Formulation du problème

Affin de formuler le problème d’Ising inverse de façon précise nous devons d’abord introduire
une notion clé de la théorie de l’information, la divergence de Kullback-Leibler (KL)

DKL(P‖Q) ≡
∑

x∈X
P (x) log

P (x)
Q(x)

, (7)

qui est perçue comme une sorte de distance entre deux distributions P et Q. Plus précisément, la
divergence KL quantifie la perte d’information quand on utilise la distribution Q pour modéliser
un système qui obéit à la distribution P .

Désormais nous pouvons formuler le problème de la façon suivante : étant donné un ensemble
de p échantillons de spins S = {s(1), . . . , s(p)} générés par le système en question ou étant donnés
les aimantations et les corrélations des spins

mi =
1
p

p∑

µ=1

s
(µ)
i and Cij =

1
p

p∑

µ=1

s
(µ)
i s

(µ)
j −mimj , (8)
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trouver les paramètres d’un modèle d’Ising J et H tells que la divergence KL entre la vraie
distribution du système et du celle modèle soit minimale.

Par la suite nous allons présenter brièvement une série de méthodes qui ont été conçues
pour résoudre ce problème.

La machine de Boltzmann

La première tentative historiquement a aboutit à un algorithme connu sous le nom machine

de Boltzmann. La dérivation consiste à une simple réalisation de la minimisation décrite dans le
paragraphe précédant. Ceci résulte à des règles d’apprentissage pour les couplages et les champs
locaux

δJij = ǫ
(
〈sisj〉S − 〈sisj〉M

)
et (9)

δHi = ǫ (〈si〉S − 〈si〉M) , (10)

où les indices S et M signifient que les moyennes thermiques sont effectuées par rapport aux
données de spins et par rapport au modèle qu’on est en train d’inférer respectivement.

Si on itère la mise-à-jour de ces équations pour un nombre suffisant de pas on finira par
obtenir les valeurs correctes des couplages et des champs locaux. Cependant, le calcul des
moyennes thermiques par rapport au modèle qu’on retrouve à chaque pas de l’itération peut
s’avérer très exigeant puisque, dans le cas général, ce problème appartient à la classe NP. Pour
ça une série d’approximations ont vu le jour affin de pouvoir résoudre le problème d’Ising inverse
dans un temps de calcul raisonnable.

Inférence exacte dans les modèles arborescents

Une façon de diminuer la complexité du calcul est de restreindre le recherche dans un sous-
ensemble particulier de tous les modèles possibles. La classe de modèles la plus simple pour ce
genre de calculs est la classe des modèles arborescents. Les modèles probabilistes à plusieurs
variables peuvent être associés à un graphe dont les nœuds représentent les variables et les liens
représentent les interactions, c’est-à-dire les facteurs de la distribution du modèle de la forme
f(si, sj) regroupant une paire de variables. Les modèles arborescents sont donc des modèles
dont le graphe sous-jacent est un arbre, c’est-à-dire ne contient pas de boucles.

La distribution de ces modèles peut se factorise selon la structure de l’arbre

Pt(s) =
∏

(ij)∈Et

Pij(si, sj)
∏

i∈V

Pi(si)1−|∂i| , (11)

où Pij et Pi sont les marginaux à une et deux variables et où Et et V sont les ensembles des
liens et des nœuds respectivement. Cette propriété de factorisation signifie que les quantités
extensives comme l’entropie peuvent s’écrire comme une somme de termes locaux.

En prenant la divergence KL entre la distribution initiale et la distribution d’un modèle
arborescent on obtiens

D(P‖Pt) = −H(S) +
∑

i∈V

H(Si)−
∑

(ij)∈Et

Iij(Si, Sj) (12)
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où le premier terme est l’entropie du système et le deuxième est la somme des entropies des
variables individuelles, donc des quantités indépendantes du choix de l’arbre. Le troisième
terme par contre, qui est la somme des informations mutuelles entre les paires qui interagissent,
dépend de Et. Ceci veut dire que affin de trouver la structure de la distribution qui minimise
la divergence KL il suffit de trouver l’arbre qui maximise

∑
(ij)∈Et

Iij(Si, Sj). L’algorithme bien
connu du maximum spanning tree peut facilement résoudre ce problème en un temps polynomial.
Une fois que la structure du graphe a été trouvée les couplages et les champs locaux peuvent
aussi être calculés grâce à la méthodes des paires indépendantes (voir texte principal).

Si la distribution originale est arborescente, cette méthode est capable de retrouver le modèle
correcte à un coût de calcul très bas (O(N2)). Par contre, si ce n’est pas le cas, comme dans la
plupart des systèmes réels, les résultats ne sont qu’une approximation.

Méthodes champ moyen simples

Les deux méthodes précédentes montrent le jeu entre la précision de la méthode et sa
complexité de calcul. Une classe de méthodes qui atteint un bon compromis entre ces deux
aspects là est la classe des méthodes champ moyen. Guidés par l’intuition physique des systèmes
à un grand nombre de particules, ces méthodes là offrent un cadre pour transformer un problème
à N corps à un problème plus simple à 1 corps. Les détails de leur dérivation sont donnés dans
le texte principal. Ici nous donnons juste leurs équations

mi = tanh


Hi +

∑

j

Jijmj


 et (13)

mi = tanh


Hi +

∑

j 6=i

Jijmj −mi

∑

j 6=i

J2
ij(1−m2

j)


 . (14)

Le premier système d’équations provient de la version la plus simple de la théorie du champ
moyen et est donc appelé théorie champ moyen naïve (naïve mean-field theory). Les équations
suivants portent le nom TAP (Thouless, Anderson et Palmer) et sont mieux adaptées pour le cas
des verres de spins où elles prévoient un comportement correct dans la phase paramagnétique.

Des équations pour les corrélations peuvent être produits à partir de ces deux systèmes
d’équations grâce au théorème fluctuation-dissipation, équations qui peuvent être inversées
par la suite pour donner des méthodes permettant de calculer les couplages étant donné les
corrélations et les aimantations. Les équations qui résultent de cette procédure ont été largement
utilisées dans le cadre du problème d’Ising inverse.

Méthodes champ moyen avancées

En restant dans le cadre des théories champ moyen il y a moyen d’améliorer encore plus les
résultats des algorithmes. Deux autres méthodes plus avancées ont été proposées les dernières
années.

La première, un développement à petites valeurs des corrélations proposée par Vitor Sessak
et Rémi Monasson, est capable de donner de résultats qui sont meilleurs dans la phase à haute
température (phase paramagnétique).
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La deuxième est une méthode basée sur la théorie des méthodes de passage de message,
comme Belief Propagation. Elle porte le nom Susceptibility Propagation et a été proposée par
Marc Mézard et Thierry Mora. La méthode consiste à mettre à jour itérativement un système
d’équations qui sont interprétées comme des messages envoyés entre les paires de nœuds du
graphe sous-jacent. La procédure atteint éventuellement un point fixe et ces valeurs finales des
messages nous permettent de calculer les couplages. Ces deux méthodes là sont assez compli-
quées pour être décrits dans ce résumé, le lecteur peut donc se reporter dans le texte principal.

Inférence dans le régime p < N

Une importance particulière a été accordé dans cette thèse dans le cas où l’inférence doit
être faite à un nombre d’échantillons bas p < N . En effet, la plupart des méthodes présentées
jusqu’à présent comportent l’inversion de la matrice des corrélations, ce qui est faisable que
pour p > N . De plus, ces méthodes là produisent des erreurs de l’ordre de 1/

√
p à l’inférence

des couplages ce qui veut dire qu’ils ont besoin d’un grand nombre d’échantillons pour produire
des résultats acceptables.

Dans ce paragraphe nous allons présenter un méthode due à P. Ravikumar, M.J. Wainwright
et J.D. Lafferty qui permet d’inférer des modèles creux (sparse) à l’aide d’un petit nombre
d’échantillons (de l’ordre de logN).

Le premier pas de la dérivation est de considérer les voisinages entrant dans chaque spin
comme indépendants. Par la suite, en suivant l’approche Bayésienne pour l’inférence nous écri-
vons la log-vraisemblance négative pour le voisinage de chaque spin

L(i)(J\i, Hi) =
1
p

p∑

µ=1

f(J\i, s
(µ)
\i )−Himi −

∑

j∈V \i

JijC̃ij , (15)

avec

f(J\i, s
(µ)
\i ) ≡ log 2 cosh


Hi +

∑

j∈V \i

Jijx
(µ)
j


 , (16)

où C̃ij sont les corrélations non-connexes Cij + mimj. La minimisation de ces fonctions peut
nous donner les couplages du modèle sous certaines conditions. La clef pour traiter le cas des
modèles creux à l’aide d’un petit nombre d’échantillons est d’inclure encore un terme qui est la
norme ℓ1 de la matrice des couplages multipliée par un paramètre de contrôle λ‖J\i‖1. Ceci a
deux effets importants : ça nous permet d’inférer des résultats creux et ça nous permet de faire
de l’inférence dans le régime p < N pour des raisons qui sont exposées dans le texte principal.

Quelques simulations

Une série de simulations de Monte Carlo ont été effectués affin de comparer toutes ces
méthodes. Dans le texte principal le lecteur peut retrouver plusieurs graphes pour les courbes
des erreurs dans divers situations. Ici nous donnons juste deux figures pour le cas le plus
pertinent pour la biologie : le cas des modèles correspondant à des graphes creux.
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Figure 2 – Gauche : Erreur de l’inférence des couplages contre le température inverse β pour
un système creux de N = 100 nœuds et de connectivité moyenne de d = 10 fait en utilisant
p = 105 échantillons. Droite : La même chose mais cette fois contre le nombre d’échantillons p.
Le système a été simulé à une température inverse de β = 0.5

L’erreur de l’inférence des couplages dans les deux figures a été calculé par la formule

ǫJ = (βJ true
ij − βJ inferred

ij )2 =
2

N(N − 1)

∑

i<j

(βJ true
ij − βJ inferred

ij )2 . (17)

Théorie champ moyen exacte pour le modèle d’Ising asy-

métrique

Comme on a dit dans l’introduction, plusieurs systèmes qu’on retrouve en biologie n’ont
pas des interactions qui sont forcement symétriques. Or, toutes les méthodes qu’on a présenter
jusqu’à présent ont été conçues pour des systèmes à interactions symétriques. Toutes ces mé-
thodes sont ou bien des approximations ou des algorithmes exacts mais très exigeants en calcul
(machine de Boltzmann) et ces difficultés sont directement reliées à la symétrie des couplages.

Dans cette section, qui contient la grosse partie du travail original de cette thèse, nous
proposons une nouvelle méthode qui, en tenant compte de l’asymétrie des interactions des
éléments des systèmes en question, parvient à produire des solutions exactes à un temps de
calcul très raisonnable. Nous commençons par introduire les équations concernant le problème
direct et par la suite nous inversons ces équations pour obtenir une méthode de résolution du
problème inverse.

Le problème direct

Tout d’abord, le modèle utilisé dans cette section est diffèrent des précédents puisque c’est
forcement un modèle hors-équilibre à cause de l’asymétrie des couplages

P (s(t)|s(t− 1)) =
N∏

i=1

1
2 cosh(βhi(t))

eβsi(t)hi(t) , (18)
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où

hi(t) = Hi +
∑

j

Jijsj(t− 1) . (19)

Dans ce modèle chaque configuration de spins est conditionnée à la configuration précédente.
Une notion donc de l’écoulement du temps est pertinente, c’est pour ça que nous introduiront
des aimantations dépendantes du temps mi(t) ainsi que deux types de corrélations : les corré-

lations à temps égaux Cij(t) et les corrélations à temps décalés Dij(t), eux mêmes des fonctions
du temps.

L’idée centrale du travail de cette thèse repose sur la remarque suivante : les termes de la
somme dans l’équation 19 sont indépendants à cause de l’asymétrie des couplages. En effet,
toute corrélation entre ces termes qui pourrait provenir de la contribution des spins à deux pas
de temps en arrière est détruite à cause du fait que Jij 6= Jji. Autant que somme d’un grand
nombre de termes indépendants, le terme

∑
j Jijsj(t − 1) a une distribution Gaussienne avec

une moyenne et une variance donnés par

gi ≡
〈
∑

j

Jijsj(t)

〉
=
∑

j

Jijmj et (20)

∆i ≡
〈

∑

j

Jijsj(t)




2〉
−
〈
∑

j

Jijsj(t)

〉2

=
∑

j

J2
ij(1−m2

j) , (21)

ce qui nous permet de remplacer les moyennes thermiques par des intégrales Gaussiennes. Le
résultat pour les aimantations devient donc

mi =
∫
Dx tanh

[
β
(
Hi + gi + x

√
∆i

)]
. (22)

Un calcul similaire nous donne pour les corrélations la relation suivante sous forme matri-
cielle

D = A J C , (23)

où A est la matrice diagonale : Aij = aiδij, avec :

ai = β
∫
Dx

[
1− tanh2 β

(
Hi + gi + x

√
∆i

)]
. (24)

Dans le texte principal la validité de tout ces équations a bien été vérifiée grâce à des
simulations de Monte Carlo.

Le problème inverse

Une fois les relations pour le problème directe établies nous pouvons passer au problème
inverse. La première remarque est que on ne peut pas simplement inverser l’équation 23 puisque
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Figure 3 – Nuages de points. Couplages inférés contre les couplages réels de modèles de
taille N = 100 en utilisant p = 106 échantillons. Nôtre algorithme est en bleu. Les versions
hors-équilibre du champ moyen naïve (rouge) et du TAP (vert) ont aussi été incluses pour
comparer. Les échantillons ont été produits à β = 0.4, 1 et 2 de gauche à droite.

la matrice A dépend de J . On proposera donc une procédure itérative qui convergera à la valeur
correcte de J .

Un autre remarque importante est que puisque la matrice des couplages est asymétrique,
nous pouvons inférer chaque voisinage de spin entrant indépendemment. Ceci veut dire qu’on
peut laisser de côté les indices i. On réécris donc l’équation pour les aimantations comme

m =
∫
Dx tanh

[
H + g + x

√
∆
]
. (25)

Pour le calcul des vecteurs des couplages entrants Jj on introduit d’abord les vecteurs b(i)
j =∑

k DikC
−1
kj . Les couplages s’écrivent désormais comme

Jj = bj/a , (26)

avec

a =
∫
Dx

(
1− tanh2

[
H + g + x

√
∆
])

. (27)

Pour finir nous avons besoin d’une relation entre a et la variance des champs Gaussiens ∆

∆ =
1
a2

∑

j

b2
j(1−m2

j) ≡
γ

a2
(28)

Nous sommes prêts à introduire nôtre méthode itérative pour inférer les couplages d’un
système asymétrique. Il s’agit d’une itération pour trouver la valeur correcte de ∆ qui nous
permettra par la suite de calculer les couplages :

– Initialiser ∆
– En utilisant les valeurs empiriques de m trouver H + g en inversant (25)
– En utilisant H + g et ∆ calculer a par l’équation (27)
– Calculer la nouvelle valeur de ∆ par l’équation (28)
Il est garanti que, étant donné suffisamment d’échantillons, cette procédure convergera à la

valeur correcte de ∆. Une analyse sur le nombre d’échantillons nécessaire peut être trouvé dans
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le texte principal. Une fois ∆ calculé nous pouvons utiliser les équations données plus haut pour
trouver les couplages et les champs locaux facilement. Cet algorithme est asymptotiquement
exact pour p→∞ et a une complexité de calcul de O(N3).

Des résultat de la performance de cet algorithme sont exposés dans figure 3.

Modèles creux

En ce qui concerne les modèles définis sur des graphes creux nous avons adapter les idées
présentées dans le paragraphe Inférence dans le regime p < N dans le cas des systèmes à
interactions asymétriques. Encore une fois nous pouvons exploiter la Gaussianité du champ
effectif hi.

On arrive à écrire une paire de règles d’apprentissage comme on l’a fait pour la machine de
Boltzmann, adaptés cette fois à nôtre modèle hors-équilibre et qui utilise aussi les intégrales
Gaussiennes à la place des moyennes thermiques

δHi = ε
(
mi −

∫
Dx tanh

[
Hi + gi + x

√
∆i

])
(29)

et

δJij = ε
(
Dij − [JC]ij

∫
Dx

(
1− tanh2

[
Hi + gi + x

√
∆i

]))
. (30)

Comme on a fait pour la méthode du paragraphe sur l’inférence à petit p on peut ici aussi
introduire le terme avec la norme ℓ1 pour obtenir la règle suivante pour les couplages

δJij = ε
(
Dij − [JC]ij

∫
Dx

(
1− tanh2

[
Hi + gi + x

√
∆i

])
− λ signJij

)
. (31)

Ceci offre les mêmes avantages que ceux discutés dans ce paragraphe. Un série de simulations
nous ont confirmé que ce deuxième algorithme est capable d’inférer des modèles d’Ising asymé-
triques avec une très bonne précision même dans des régimes où p < N .

Pour finir notons que nôtre algorithme a été testé sur des données réelles provenant de
la rétine d’une salamandre. Les résultats sont clairement meilleurs que ceux obtenus par les
autres méthodes champ moyen, mais ne sont tout de même pas en accord avec les résultats de
l’algorithme exact (machine de Boltzmann). Plus de travail est nécessaire pour comprendre où
est due ce désaccord.
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Chapter 1

Motivation

Statistical physics is primarily concerned with establishing a link between the microscopic
and macroscopic scales of our world. In the microscopic level elementary particles are forming
simple structures such as atoms and molecules through their interactions and the collective
behavior of a huge number of them is creating the infinite variety of patterns that we observe
in macroscopic scales. The machinery of statistical physics made possible the theoretical under-
standing and prediction of observable quantities that emerge in the macroscopic level starting
from a description of the behavior of the elementary constituents of large systems. No realistic
system being exactly solvable, statistical physicists usually made symmetry and homogeneity
assumptions that enabled them to obtain solutions. In the last decades however the new field of
disordered systems arose, where the interest shifted to systems that completely lack the simple
kind of homogeneity that is present in the models of past works. In this new paradigm the
elementary components, or degrees of freedom as we generically call them, are no longer iden-
tical but each one of them might “see” a completely different environment from its neighbors.
Although initially the interest emerged from a particular type of materials, amorphous alloys of
magnetic and non-magnetic metals called spin glasses, the theoretical ideas that where used to
describe them proved to be much more promising than the materials themselves. Eventually,
the mathematical difficulties that arose from this new approach were solved by the celebrated
replica and cavity methods and a rich new set of behaviors emerged from these solutions,
notably the striking hierarchic structure of their state space.

In a nutshell spin glasses are magnetic systems whose magnetic moments (spins) interact
with each other in ways that tend to either align or oppose their direction in a random way.
The wandering of the system as it tries to satisfy as much interactions as possible lies at the
heart of its complex behavior. As it was immediately realized, a whole new class of systems
that used to be considered too “complex” to be treated by physics could now be approached
by the theory of spin glasses. Indeed, the fundamental assumption made in spin glasses is the
randomness of the interactions between the degrees of freedom and systems of many interacting
components with random interactions can be found everywhere in nature and in our techno-
logical world. In biology, examples can be found in networks of neural cells, gene regulatory
networks and networks of amino acid interactions within protein-protein interactions. In one
of the cornerstones of information theory, error-correcting codes, information for retrieving a
corrupted message can be stored in the structure of a network involving the bits of information.

3



4 CHAPTER 1. MOTIVATION

In theoretical computer science a problem of fundamental importance, the so called satisfiability

problem which was the first to be demonstrated to belong to the NP complexity class, can be
mapped to a spin glass and analyzed from a statistical physics point of view and so can a series
of other constraint satisfaction problems. What is common to all the above systems and what
makes them similar to a spin glass is that their components (spins, neurons, genes, amino-acids,
bits, logical propositions) take part in a non-trivial network of competing constrains.

The kinds of questions that one might ask may differ however from case to case especially
between biological systems on one hand (neural, gene or protein networks) and artificial ones
(constrain satisfaction problems). In the latter case one usually knows a priori the network
of interactions and is mainly interested in questions concerning the collective behavior of its
components. Typical questions in such cases might be to find the configuration of the system
which violates the least number of constrains or, in the case of probabilistic systems where
different configurations can appear with different probabilities, to determine the statistics of
the configurations such as the average values or correlations of the components of the system.
On the other hand, in many situations appearing in biology, one might be able to measure such
observable quantities, while the details of the network itself might be impossible to determine
experimentally. The information contained in the measurable quantities can be however of
limited scientific value without the proper processing since it doesn’t necessarily reveal the
actual structure of the system in an obvious way. Two variables might for example appear to be
strongly correlated without being in direct interaction with each other. In such cases, a method
that could predict the details of the network in question starting from the measured observables
could provide valuable information about the structure of such biological systems. For various,
mostly historical i reasons the epithet inverse is usualy applied to problems belonging to the
second class, as opposed to direct for the ones belonging to the first.

In recent years new experimental methods made possible the acquisition of an overwhelming
amount of data of precisely that nature for a number of different biological systems. Such
experiments, whether concerning assemblies of neurons, gene or protein networks, usually record
a big number of configurations of the system from which the average values and the correlations
of the variables representing the different components can be deduced easily. The aim of this
thesis is to investigate ways of exploiting such data usefully and to develop a method that
could predict the true network of interactions starting from the measured statistics. In the past
decades a series of methods for solving such inverse problems has been proposed with different
degrees of success. Most of those methods rely on the assumption that the interactions between
the components are symmetric in nature meaning that if element A influences element B in a
particular way then B also influences A in the same way.

This thesis is organised in the following way. In the introductive, first part we find a
description of some biological systems where such methods of inverse inference would be useful
on one hand and a short description of the main model used in such cases, the Ising Model, on
the other. A short section concerning the biological applicability of the Ising model was also
added. In the second part we review the state of the art algorithms for solving the Inverse Ising

Problem (IIP). All the existing methods for solving the IIP are presented in a compact way with
the emphasis placed in the core idea behind each method and their computational complexity.
In the end we find a chapter presenting numerical results obtained by the most important of

i. Problems in the second class where studied much more recently than problems in the first one.
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these methods, in order to compare them. All methods in this part are based on the Ising model
with symmetric interactions. It turns out that the symmetry of the interactions poses serious
computational limitations and as a result all methods are either not efficient computationally
or not exact. Finaly, in the third and last part, we study the IIP for a kinetic Ising model with
asymmetric interactions. A new method for solving this particular problem is presented and
compared, both theoreticaly and numericaly, with two other methods derived for the same kind
of systems. As we will explain the symmetry of the interactions is not a feature necessarily
present in biological contexts and models with asymmetric interactions might be much more
realistic from a biological point of view. As we will see, the asymmetry of the interactions
can lead to an inverse method that is is both efficient and exact, a feature not found in past
works. Besides the derivation of the algorithm a full analysis of its time complexity and sample

complexity ii is included. The main idea of the new method is applied to four variations of the
inverse asymmetric Ising problem yielding four different algorithms. One of these variations
concerns the case of sparse systems, where only a small number of components pairs actually
interact, which are of great importance in the study of biological systems. This last part
includes all the original contributions of this thesis, most of which can be also found in the
published articles [MezardS 11] and [SakellariouRMH 12] reprinted in part IV.

1.1 Neural Networks

Figure 1.1: Diagram of a neuron [AlbertsJL+ 02]. The length of the axon can reach, in some
cases, severals orders of magnitude higher than the size of other parts of the neuron.

One of the most complex objects in the known universe, the brain, remains a big mystery
to our days. Its understanding is widely seen as one of the top scientific challenges of the 21st

ii. Basically, how the performance of the algorithm is affected by the number of samples or configurations
used.
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century. The human brain is composed of around 1011 individual cells, called neurons, that
are connected with each other forming a total of around 1014 connections, called synapses. Its
connectivity pattern is not at all random. Millions of years of evolution have shaped it, creating
a very highly organized structure. It is accepted that complex functions of our organism
like memory, emotions, conscience, self-awareness and rational thought, not to mention the
hundreds of automated functions (control of breathing, heartbeat etc.) are carried by the brain
and are due to the collective activity of the individual neurons which reflects the particular way
they are organized.

One neuron is itself a complex object although its behavior can roughly be described in a
simple way. It is composed of three distinct parts: the cell body or soma, the dendrites and the
axon, see figure 1.1. Both the dendrites and the axon are connected to the cell body and are
responsible for receiving and sending electrical signals to other neurons respectively. The axon
is much longer than the dendrites as it can reach in some cases 1 m in length and is usually
connected to the dendrites of some other neuron, establishing a synapse via which the neurons
communicate by exchanging electrical signals.

Figure 1.2: Schematic representation of the neuron’s action potential together with the basic
steps of how ion flow transmits the action potential down the length of the axon.

The cell membrane of the axon and soma contain ion channels that allow the neuron to
generate and propagate an electrical signal. These signals are generated and propagated by
charge-carrying ions including sodium (Na+), potassium (K+), chloride (Cl−), and calcium
(Ca2+). The ion channels regulate the electrical potential difference between the cytoplasm
and the extracellular medium. When the neuron is not receiving any signal from other neurons
its potential difference is about -70 mV . If the voltage reaches a certain threshold (typically
about -50 mV ) a feedback mechanism makes ion channels to open thus increasing the voltage
up to 100 mV in a very short amount of time (of the order of 1 ms) after which it quickly falls
back to its initial levels, see figure 1.2. This process is called firing or spiking and the signal
output generated is called action potential.

When a neuron fires, the action potential is transmitted through the axon who then releases
neurotransmitters to the synapses. The neurotransmitters are causing the membrane potential
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of neighboring neurons to change and thus they might trigger a spike. Depending on the type of
the neurotransmitter the potential might increase, in which case we call the synapse excitatory,
or decrease, in which case we call it inhibitory. Since the effect on the membrane potential
might differ from case to case we usually assign a synaptic weight to each synapse, positive for
excitatory synapses and negative for inhibitory ones.

Two important features of neural networks that will be particularly relevant in modeling
them should be mentioned:

– They are sparse. As mentioned in the beginning of the section for N = 1011 neurons
contained in a human brain the total number of synapses is “only” around 1014 as opposed
to N(N − 1)/2 which would be the number for a fully connected network. This means
that each neuron is connected to only a small subset of the remaining neurons and many
of the possible connections are not present. These networks are called sparse and they
often present a number of advantages, from a computational point of view, as we will see
in later chapters.

– Neural networks are also directed. The action potential is transmitted along the axon in
one direction, from the body cell outwards. Thus, if neuron A is excites neuron B with
some synaptic weight the converse is not necessarily true: neuron B can excite neuron A
with a completely different synaptic weight or, more probably, its axon might not even
be connected to neuron A. In the physics jargon we say that their interaction is not
symmetric. This remark will play a very important role later in this thesis where we will
propose a new method for solving the inverse problem described in the beginning of this
chapter. As was already mentioned, we will show that a model lacking symmetry in the
interactions can be solved in a more efficient way.

1.1.1 Multi-neuron recording experiments

The complete understanding of the physiology and behavior of an individual neuron is al-
ready a challenging task. However, the mysteries of the brain’s complex behavior are locked
in the collective behavior of the neural network as a whole. In order to acquire information
about this collective behavior experimentalists have recently developed techniques for recording
simultaneously the electrical activity of multiple individual cells [MeisterPB 94]. In these ex-
periments a number of electrodes, up to a couple of hundreds, are placed in contact with a piece
of neural tissue and record the local changes in the membrane potential for a given time frame.
Then, a procedure known as spike sorting is applied to the data in order to distinguish the true
activity of each neuron from background electrical noise that can be caused from neighboring
neurons. The result of this procedure is a collection of time sequences, called spike trains, one
for each neuron, indicating the instantaneous state of the neuron in a binary way: firing or at
rest. An example of a spike train can be seen in figure 1.3.

Spike trains like the one depicted above contain a lot of information about statistical de-
pendencies between single neurons and can be used in principle to extract information about
the true synapses and their weight. This problem has been actively studied in recent years
[CoccoLM 09, SchneidmanBSB 06, ShlensFGG+ 06]. This cannot be done in a naive way, how-
ever, since neurons that appear to be correlated might not be directly connected but may
interact instead trough some other, intermediate neuron. These data must be approached in a
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Figure 1.3: Example of spike trains [PeyracheBK+ 09]. Each line corresponds to a single neuron
and is divided into time bins. Each vertical bar indicates if the corresponding neuron was firing
in the particular time bin.

global way, meaning that one must select the best network of synapses that can reproduce the
statistics of the given data as a whole.

1.2 Other biological systems

Apart from neural networks a number of other systems found in biology present similar
features and can be modeled in a similar way. We will make a short description of those
systems and highlight their complex network nature.

1.2.1 Gene-regulatory networks

Transcriptional gene regulation is one of the cornerstones of developmental biology. It
constitutes a feed-back mechanism in the transcription of genes to mRNA that allows the
genome to be expressed in different ways, thus allowing different patterns to emerge starting
from the same genetic information. This mechanism forms the basis for cell differentiation and
development. A simple example of such a procedure is transcriptional repression and activation

of a gene by one transcription factor (i.e. a regulatory protein). The molecular machine that
transcribes genes to mRNA, called RNA polymerase, has specific binding sites on the DNA from
where the transcription starts. It can happen that its binding site overlaps with the binding site
of a transcription factor and thus a high concentration of the transcription factor can repress

the transcription rate of the gene in question. On the other hand, other transcription factors
can act as activators. In these cases the binding sites of the transcription factor and of the
polymerase have close positions on the DNA and an attractive interaction between them can
exist. The result is a cooperation between the transcription factor and the polymerase which
means that high levels of the first can enhance the gene transcription.
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Figure 1.4: The transcriptional regulatory network of the E. coli [Freyre-GonzalezT 10]. Red
nodes represent genes and links represent regulatory interactions. The figure highlights the
extreme complexity of the GRN in such a simple organism.

The expression of transcription factors is regulated by other transcription factors. The set
of all genetic interactions of this kind, between transcription factors and genes is called a gene-

regulatory network (GRN), (see figure 1.4). Their understanding is of utmost importance in
developmental biology since they describe the complex mechanisms leading from the genome to
the formed organism. From a theoretical point of view they present similarities with the neural
networks of the previous sections. Instead of a set of neurons that can be active or at rest we
have a set of genes that can be expressed or not. The interactions between the elements of the
networks are similar in nature also, since each gene can repress or activate the expression of
others just like a neuron can inhibit or excite other neurons. Gene-regulatory networks also
exhibit the two important features of sparsity and directionality that we discussed in section
1.1 since each gene is regulated or regulates only a small number of other genes compared to
the total number of genes present in an organism and the regulation mechanism is such that
interactions don’t necessarily need to be symmetric.

Modern micro-array techniques enable the simultaneous measuring of the expression levels
of order 104 RNAs. Statistical methods have been proposed recently for inferring the structure
of gene-regulatory networks starting from those measurements [BraunsteinPWZ 08]. As in the
case of neural networks, those methods rely on the Ising model which will be introduced in the
next chapter.

1.2.2 Protein-protein interaction

Many of the most important molecular processes in a cell such as DNA replication or signal

transduction (i.e. the propagation of chemical signals from the exterior to the interior of the
cell) are carried out by large molecular complexes that are build from many interacting proteins.
The understanding of the precise way proteins interact with each other is one of the outstanding
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challenges in biology.
Proteins are large molecules formed of one or more chains of amino-acids folded in space

and thus have a three-dimensional structure. When two proteins interact some parts of the
first protein, thus some of its amino-acids, appear close in space with amino-acids of the second
protein. Understanding the interaction involves identifying which amino-acids interact with
which others and thus inferring the stereometry of the resulting protein complex. Again,
the availability of large databases in recent years has made the use of statistical methods an
attractive option as opposed to traditional methods such as crystallography. In recent works
[WeigtWS+ 09] it was proposed that the information on amino-acid interactions could be found
in evolution.

Homologous proteins are proteins with a common evolutionary origin and thus they usually
share a number of amino-acids in similar positions, which usually imply also a similar biological
function. However, a number of amino-acids underwent mutations and are differentiated from
one protein to another. When a mutation occurs in some part of a protein that interacts with
some other protein, the interaction might be affected and the particular function might be lost.
Hence either the mutation is not established in the population, either it is accompanied by a
compensatory mutation in the second protein. Thus, by observing which pairs of amino-acids
are correlated between two proteins one might deduce which pairs are interacting (the same
line of though can be applied to pairs within a protein since those also interact and are causing
the protein to fold in space).

As with the rest of the systems presented in this introduction, a statistical correlation doesn’t
necessarily imply a direct interaction. An element of a network (amino-acid, gene, neuron) A
might interact with a number of others C,D, . . . who in turn can interact with an other one
B so that A and B might appear correlated without being in direct interaction. The solution
is found in treating the system in a global way by trying to find a system of interactions that
reproduce the whole set of correlations. The authors of [WeigtWS+ 09] have shown that by
using a Potts model they where able to discern the direct from indirect interactions. The model
used follows the same principle as the models used in neural and gene networks (it will be
introduced in the next chapter) with the difference that instead of the variables taking binary
values, they can take 21 different values, one for each kind of amino-acid plus one for an empty
space.



Chapter 2

The Ising model

Systems with many interacting components, as the ones discussed in the previous chapter,
are often modeled using the celebrated Ising model. This model completely disregards the
details of the interacting elements and treats them as discrete, binary, variables. It is also a
probabilistic model in the sense that one doesn’t have to work with the coupled equations of
motion of all elements, an immensely complex task, but can examine their statistical equilibrium
properties instead. In this chapter we will introduce the Ising model and some of its variants
and review some classical results.

2.1 The ferromagnetic Ising model

The Ising model was invented by physicist Wilhelm Lenz in 1920 who gave it as a problem
to his student Ernst Ising. It was intended as a model for ferromagnetism that could account for
the ferromagnetic/paramagnetic phase transition occurring in ferromagnetic materials. Ising
was not able to solve the two-dimensional version of the model but gave the solution for the
one-dimensional one in his thesis in 1924. He showed that in one dimension there is no phase
transition in finite temperature and that long-range ferromagnetic order appears only in zero
temperature. The two-dimensional case is much harder and its solution was only found some
twenty years later by Lars Onsager, a solution that shows the existence of a phase transition
in a non-zero temperature.

The model supposes that the magnetic moments or spins, one from each atom of a ferromag-
net, are arranged in a lattice and they interact with their neighbors. The spins are described
by binary variables taking the values si = ±1, i = 1, . . . , N where N is the total number of
them. The energy of the system is given by the Hamiltonian

H = −J
∑

<i,j>

sisj −H
∑

i

si , (2.1)

where J is the energy of the interaction between two spins and H is an external field favoring
one one of the two directions: up or down. The notation

∑
<i,j> sisj means that the summation

is over the closest neighbors in the lattice.
The probability of a configuration is given by the Boltzmann distribution

P (s1, . . . , sN) =
1
Z

e−βH(s1,...,sN ) , (2.2)

11
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where β = 1
kBT

is the inverse temperature rescaled by the Boltzmann constant kB. The partition
function Z is given by

Z =
∑

σ

e−βH(σ1,...,σN ) (2.3)

where
∑

σ ≡
∑

σ1=±1

∑
σ2=±1 . . .

∑
σN =±1. For the rest of this work we will absorb the Boltzmann

constant in T . In fact, when treating the inverse Ising problem later in this thesis, we will
completely omit the factor β since it just re-scales the magnitude of the interactions through
J and H. For any quantity that depends on the spins A(s) we define its thermal average as

〈A(s)〉 =
1
Z

∑

s

A(s) eβH(s1,...,sN ) . (2.4)

In one dimension there is no phase transition and the ordered phase can only occur in T = 0.
It can be easily shown that the two-site correlation for a zero external field H = 0 is given by

〈sisj〉 = (tanh βJ)|i−j| . (2.5)

We see that is decays exponentially with the distance between the two spins signaling the
absence of long-range order.

In the two-dimensional case Onsager’s solution shows the existence of two phases, a ferro-
magnetic one where magnetizations m = 〈si〉 are non-zero and a paramagnetic one where they
are zero. The phase transition occurs at the critical temperature

Tc =
2J

ln(
√

2− 1)
. (2.6)

Another interesting case is the so called Curie-Weiss model [MezardM 09]. It is an Ising
model with infinite-range interactions (it can also be seen as describing an infinite dimensional
system). In this case the Hamiltonian is slightly different

H = − J
N

∑

i<j

sisj −H
∑

i

si . (2.7)

Now the summation runs over all N(N−1)/2 possible pairs and the factor 1/N has been intro-
duced in order to keep the energy extensive. Infinite-range interactions or infinite-dimensional
systems are not physical but the advantage of this model is that it is exactly solvable. In a
nutshell the infinite number of neighbors allows us to omit the fluctuations when taking a ther-
mal average in eq.(2.4) and to replace the average of a function by the function of the average
which in the case of the magnetization leads to

m = tanh (βJm+ βH) . (2.8)

The above equation can be solved numerically and the solution displays also two distinct phases,
see figure 8.11. For a zero external field H = 0 we have that for β ≤ 1/J ≡ βc the only solution
of eq.(8.11) is m(β) = 0. For β > 1/J however two new solutions appear at m±(β), with
m+(β) = −m−(β) > 0. It turns out that they are also the only stable solutions in this
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β>βc

β=βc

β<βc

Figure 2.1: The function tanh (βJm+ βH) plotted against m, for H = 0 and for three values
of β: above, equal and below the critical value βc = 1/J . In the low temperature regime (β >
βc) the curve intersects the diagonal (dashed line) and solutions with non-zero magnetization
appear.

phase. Their meaning is that below a given temperature the interactions between spins become
important enough to keep them aligned in either the up or down direction (the two directions
being equivalent since H = 0).

The Curie-Weiss model is an example of a very important family of models: the mean-field

models. The mean-field character of this model comes from the fact that one can omit the
fluctuations of the effective field felt by each spin h = J/N

∑
j sj + H and replace it with its

mean value h = Jm + H in the thermal average. This can be shown to yield exact results in
the limiting cases mentioned earlier: infinite-dimensional systems or infinite-range interactions.
However, this mean-field ansatz can be can also be used as an approximation in other cases.
Many of the methods described in later chapters are based on mean-field arguments.

2.2 The Sherrington-Kirkpatrick model

When the magnetic properties of the newly created spin-glasses where investigated in the 70s
theoreticians turned to the Ising model for answers. However, the simple model described in the
previous section had to be modified to account for the randomness of the interactions between
the spins. Spin-glasses consist basically of metallic materials hosting magnitic impurities in
random positions. Around the impurity, the spins have a polarization that oscillates at large
distances, rendering the sign of the interaction random since the distances between impurities
is a random variable.

In order to model the situation described above a modified version of the Ising model was
used where now each spin variable models an impurity and the interaction energy J is not
constant any more but takes a random value for each interaction. The short-range version
[EdwardsA 75] proved too difficult to be solved but results where obtained for the infinite-
range case [SherringtonK 75], the so called Sherrington-Kirkpatrick (SK) model which we will
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present here.
The Hamiltonian of the SK model is given by

H = −
∑

i<j

Jijsisj −H
∑

i

si . (2.1)

The coupling constants Jij (or simply the couplings), as they will be called from now on, are
chosen at random from a Gaussian distribution

P (Jij) =
N√
2πJ2

e− N

2J2 (Jij− J0
N )

2

, (2.2)

where J0 is a ferromagnetic bias of each interaction, J defines a typical scale for the couplings
and the scaling with

√
N is chosen so that the energy is extensive. In the infinite-range ferro-

magnet of the previous section the couplings had obviously to be rescaled by a factor N since
each spin interacted with O(N) others through a fixed coupling. Now the Jij’s are randomly
distributed around 0 so that their random signs create cancellations between the different terms.
Since the sum of a large number N of variables with random signs is of order O(

√
N) they have

to be rescaled by
√
N in order for the energy to be of order O(N).

Unlike in the ferromagnetic case, in the spin-glass case the simple mean-field method
described before doesn’t yield correct results. A more elaborated mean-field approach, the
Thouless-Anderson-Palmer (TAP) method, succeeds in providing correct results in the high
temperature phase by taking into account some peculiarity of spin-glasses. We won’t get into
the details of the TAP approach here since we will discuss it in details in the second part of this
thesis. Instead we will discuss very briefly the results yielded by the celebrated replica method.
For a more detailed analysis see [MezardPV 87, Nishimori 01].

As usual in statistical mechanics one needs to evaluate the free-energy F = − lnZ which
in the case of the SK model depends on the particular realization of the disorder, i.e. on
the particular sampling of the Jij’s. Since the free-energy is extensive we expect that it will
coincide with its average value in respect with the distribution of the couplings −lnZ, where the
overline is used to denote averages with respect to P (Jij) (as opposed to the thermal average
〈 · 〉). Now, because of the logarithm the above average is very difficult to evaluate but one can
instead evaluate Zn and then use the identity

lnZ = lim
n→0

Zn − 1
n

. (2.3)

For n integer the average Zn is much easier to compute since it is just the partition function
of n replicated systems. Then however one must analytically continue to the reals in order to
take the limit which is a very tricky matter from a rigorous point of view. The above approach,
known as the replica trick is widely used for solving statistical mechanics problems in the field
of disordered systems.

The partition function of the replicated system is

Zn =
∑

s

exp




n∑

α=1

∑

i<j

Jijs
α
i s

α
j +H

n∑

α=1

∑

i

sα
i


 . (2.4)
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Then, taking the average over the disorder

Zn ≡
∫ 

∏

i<j

dJijP (Jij)


Zn

= eN2J2n/4
∑

s

exp


 1
N

∑

i<j


J0

n∑

α=1

sα
i s

α
j +

J2

2

∑

1≤α<β≤n

sα
i s

α
j s

β
i s

β
j


+H

∑

i

n∑

α=1

sα
i




≈ eN2J2n/4
∑

s

exp


 J0

2N

n∑

α=1

(
∑

i

sα
i

)2

+
J2

2N

∑

1≤α<β≤n

(
∑

i

sα
i s

β
i

)2

+ H
∑

i

n∑

α=1

sα
i


 . (2.5)

In order to linearize the squared quantities
(∑

i s
α
i s

β
i

)2
and (

∑
i s

α
i )2 we introduce Gaussian inte-

grals, with integration variables qαβ and mα respectively, such that their linear term corresponds
to the above squared quantities.

Zn = eN2J2n/4
∫ ∏

α<β

dqαβ

∫ ∏

α

dmα exp


−NJ

2

2

∑

1≤α<β≤n

q2
αβ

−NJ0

2

∑

α

m2
α +N ln

∑

s

eL


 (2.6)

with

L = J2
∑

α<β

qαβs
αsβ +

∑

α

(J0mα +H)sα . (2.7)

Notice how we have dropped the spin index in the last expression since only a single index i
appears in the last line of eq.2.5. This is because the replica trick has the effect of decoupling
the spins and coupling the replicas. This is not just a technical detail: the quantity resulting
from this coupling between replicas, the overlap qαβ, plays an important role in characterizing
the spin-glass phase (together with the usual ferromagnetic order parameter mα).

Since the exponent of the integrand in eq.(2.6) is proportional to N we can evaluate the
integral by steepest descent. After some calculations it can be shown that the free-energy
averaged over the disorder is

F = N lim
n→0



−

J2

4n

∑

α 6=β

q2
αβ −

J0

2n

∑

α

m2
α +

1
4
J2 +

1
n

ln
∑

s

eL



 , (2.8)

where the variables qαβ and mα must be chosen such that they extremize the quantity in braces.
Since the replicas where introduced artificially in order to compute Zn one naively expects

that they are completely equivalent, i.e. qαβ = q for α 6= β and mα = m. It turns out
that this replica symmetric hypothesis yields correct results as long as the temperature is high
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enough. It is interesting to note that in the high temperature regime the equation of state of
the magnetization takes a Gaussian form [Nishimori 01]

m =
∫
Dx tanh [J0m+H + J

√
qx] , (2.9)

where Dx ≡ dx√
2π

e− x2

2 is a Gaussian measure. The comparison of the above equation with
eq.(8.11) suggest that the effective field felt by each spin has a Gaussian distribution due to
the randomness.

The replica symmetric hypothesis can be used to derive the phase diagram of the model.
Without going into details we will just describe the three phases: the simplest case m = q = 0
corresponds to a paramagnetic phase where the magnetization is zero because each spin spends
and equal amount of time pointing upwards and downwards. If m 6= 0 then we are in the
ferromagnetic phase where the spins have a tendency to be aligned. If H = 0 this can happen
only when the ferromagnetic component of the interactions J0 is important compared to the
typical scale of the random component of the couplings J . Finally, as opposed to the simple
ferromagnetic case of the previous section, there is a third scenario where m = 0 but q 6= 0,
the spin-glass phase. In this phase, the free-energy develops a complex landscape and the
system is “locked”, due to the low temperature, in some valley of this landscape. For a given
sampling of the couplings Jij the individual magnetizations mi ≡ 〈si〉 are non-zero but when the
average over the realization of the Jij’s is taken the overall magnetization vanishes. Interestingly

however, q is not zero since it reduces to 〈si〉2 in the replica symmetric situation which is an
average of a positive quantity since the spins are frozen in some configuration for each set of
Jij. The boundaries of the three phases can be seen in figure 2.2

Figure 2.2: Phase diagram of the Sherrington-Kirkpatrick model [SherringtonK 75]

The replica symmetric hypothesis, however, turns out to be wrong for low temperatures
since it predicts a negative entropy. The solution to this problem was given in a series of papers
in the late 70s by Giorgio Parisi with the famous replica symmetry breaking ansatz. The key
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idea is to abandon the equivalence of the replicas and to suppose that actually the quantity
qαβ depends on the replica indices α and β. His solution involves a hierarchic construction
where the qαβ matrix is builded by iteratively dividing diagonal and off-diagonal blocks and
assigning them different values. As we said before the spin-glass phase is characterized by
the existence of an infinite number of free-energy valleys separated by infinitely high barriers
(in the thermodynamic limit) that forces the system to stay frozen in some particular state.
The different values of the overlap matrix qαβ somehow reflect the varying similarities between
systems locked into different valleys. A striking property of the Parisi solution is the structure
of the overlaps between states: in the three possible overlaps between any triplet of states two
have to be equal and one strictly larger than the other two. One can use the overlap to define
a distance in state space. Because of the above property of the overlap the space acquires an
ultrametric structure where, as opposed to the usual metric space, the triangle inequality no
longer holds and is replaced by a stronger one stating that for any three points x, y and z the
distances must obey d(x, y) ≤ max{d(x, z), d(z, y)}.

2.3 On the biological applicability of the Ising model

The Ising model and its variations presented in the previous section has proved to yield a
very good description of magnetic systems such as ferromagnets and spin-glasses. Why should
we use it to model systems of much greater complexity such as the brain or a regulation
network of genes? The answer is essentially the same as to the question why it works when
applied to ferromagnets. In 1957 E.T. Jaynes wrote two papers [Jaynes 57a, Jaynes 57b] on
the link between statistical mechanics and Shannon’s newly formulated information theory. In
these works he offered a new way of understanding why the Gibbsian formulation of statistical
mechanics works. He realized that the thermodynamic entropy and the information entropy

are essentially the same thing. We will discuss the subject in greater depth in chapter 3 but
for the moment let us state, without explaining why, that the quantity

H ≡ −
∑

x

p(x) log p(x) , (2.1)

called entropy, is related to the concept of information. Precisely it quantifies one’s lack of
certainty on the outcome of the random variable x. With that remark Jaynes formulated what
is known as the maximum entropy principle: given some prior measurable information on a
probabilistic system (usually the average value of some function of its microstates, such as the
magnetization) of all the distributions that agrees with that data, the one that best represents
our state of knowledge is the one that maximizes the entropy. In other words, if we can measure
only a number of observable quantities of a system, the scientifically most “honest” choice for
a probability distribution for modeling that system is the one that, while agreeing with the
measurements, codifies our complete lack of further knowledge. For example, let’s say x is
some variable describing the microscopic state of our system and 〈H(x)〉, the average of some
function H, is an observable quantity. Then it can easily be shown with the help of Lagrangian
multipliers [Jaynes 57a, Jaynes 57b] that the maximum entropy distribution is

P (x) =
1
Z

e−H(x) with Z =
∑

x

e−H(x) . (2.2)
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The above distribution is nothing but the Boltzmann distribution found everywhere in sta-
tistical mechanics. Under this light the choice of the Boltzmann distribution becomes much
more understandable, as the distribution that contains no further information beyond what
was assumed we had.

So, in the case of neural networks, the quantities we can measure in experimental settings
as the one described in section 1.1.1 are the average values and pairwise correlations of the
states of the neurons, 〈si〉 and 〈sisj〉. It turns out that, using the above line of arguments, the
distribution we have to choose is the Ising distribution. The only difference with the magnetic
systems described in the previous sections is that in ferromagnets and spin-glasses we are able
to embed the system in a uniform magnetic field, hence the term H in the Hamiltonians of
eqns.(2.1,2.7,2.1), whereas in neural systems we choose to introduce different local fields to
account for different biases in the state of each neuron. Hence the Hamiltonian used in this
case is

H(s) = −
∑

〈i,j〉
Jijsisj −

∑

i

Hisi . (2.3)

This Hamiltonian sufficiently describes neural systems since the nature of the physical inter-
actions in such cases is pairwise. In GRN’s the situation is more complicated since different
combinations of genes or transcription factors can affect in different ways the expression of
some gene, and thus the above model is just approximative and modifications must be made,
such as the inclusion of three-body interactions Kijksisjsk.



Part II

The Symmetric Inverse Ising Problem
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Since the dawn of scientific thought, science is concerned primarily with two concepts, mod-

eling and prediction. These are really complementary and can be thought as two opposing
motions between the “world” of scientific models and the real world. Modeling is finding the
most adequate model that explains a given set of observable quantities and Prediction is com-
puting the values of the observables given some model. Traditionally statistical physicists have
concentrated most of their efforts in the second procedure. Starting from simplistic, yet pow-
erful, models the main effort was to develop a computational inventory suitable for computing
and understanding the behavior of observable quantities that quantify the collective behavior of
the system. This is why we will use the epithet Direct for this kind of problems and reserve the
word Inverse for the opposite procedure. In more recent decades, however, with the advent of
the disordered systems paradigm and the applicability of its ideas to biological, socio-economic
and other fundamentally complex systems, the modeling procedure has become itself complex
and computationally difficult. The older concepts of symmetry and homogeneity no longer
apply to disordered systems as they are described by a huge amount of different parameters
the particular values of which might play an important role in the collective behavior of the
system. Starting from measurements of observable quantities, inverse procedures, able to infer
models fitting the observables, could provide extremely valuable information about the struc-
ture of many systems such as brain connectivity, causal dependencies between gene expressions,
protein interaction patterns, DNA folding and even the details of financial networks. However,
because of the underlying complexity, such inverse methods are not trivial.

In this chapter we will outline and compare the most important methods used in the litera-
ture for solving the inverse Ising problem. Our main aim here is not to go into every detail but
to outline the derivation of the various methods and, most importantly, make a comparative
study of their various traits, i.e. their time complexity, sample complexity and the limiting
case where they are exact, if any exist. These methods vary a lot, ranging from the exact but
computationally infeasible Boltzmann machine, to physics inspired mean-field and high tem-
perature expansion methods and beyond to more sophisticated methods for treating particular
varieties of models e.g. sparse networks. All these methods have their advantages but they all
experience some regime where they become either infeasible or they fail to provide correct re-
sults. In part III we will propose a new method who is instead exact and efficient in any regime
given only one condition which is usually found in biological applications, the asymmetry of
the interactions. A direct comparison between our method and the ones found in this chapter
will therefore not be always possible since most of the methods presented here were originally
conceived for symmetric systems.

The process of inferring a model by analyzing a set of observed quantities is reminiscent of
the biological process of knowledge acquisition, where one observes the outcomes of real world
situations and figures out what kind of mechanisms are responsible for such outcomes. Hence
inverse problem methods are often found in the literature under the name learning. Notions
like knowledge and learning can be formalized with the help of a powerful tool, Information

Theory, born some sixty years ago in the works of Claude Shannon. In the next section we
will introduce some of the central ideas of information theory that will be used as the main
framework of all the methods discussed in this thesis.
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Chapter 3

Some information theory background

In order to quantify the notion of information, scientists have introduced a set of concepts
which have a close parallel with many statistical physics concepts. The central role is played
by the entropy of a random variable H(X). In information theoretic contexts it is usually
called Shannon entropy. When the random variable obeys a Boltzmann distribution its defini-
tion coincides with the statistical mechanics definition of the thermodynamic entropy up to a
multiplicative factor, the Boltzmann constant kB, who guarantees that the units match those
of other thermodynamic quantities. Since we will treat only models obeying the Boltzmann
distribution we will just use the name entropy throughout the rest of this thesis. The entropy
is defined with respect to the distribution of some random variable in the following way

HP (X) ≡ −
∑

x∈X
P (x) logP (x) = EP [log

1
P (x)

] , (3.1)

where log 1
P (x)

is called the self-information of the variable as it quantifies how much information
is represented in the outcome of the random variable. Although the above definition has the
same form as the one found in the works of Ludwig Boltzmann and J. Willard Gibbs in the 1870s,
it was not until Claude Shannon’s celebrated paper [Shannon 48] in 1948 that the connexion
between entropy and information was made clear. Shannon showed that, given a source that
assigns values to some variable at random, its entropy bounds the smallest average message
length that we can use in order to communicate the outcomes of the variable without losing
information. This means, informally, that the entropy quantifies our lack of certainty. The basic
properties of the entropy that justify its use as an measure of information are the following:

(a) H(X) ≥ 0.

(b) H(X) = 0 if and only if X is certain.

(c) For a given set of events X , H(X) is maximal when all events are equiprobable and takes
the value log |X |.

(d) For any pair of random variables H(X,Y ) ≤ H(X) +H(Y ).

(e) H(X,Y ) = H(X)+H(Y ) if and only if the two variables are independent, i.e. if P (x, y) =
P (x)P (y).

23
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(f) For some partition of the events set X = X1 ∪ X2 and X1 ∩ X2 = ∅, the entropy has two
contributions H(X) = H(Xi) +H(X|x ∈ Xi), where

H(Xi) = −


∑

x∈X1

P (x)


 log



∑

x∈X1

P (x)


−



∑

x∈X2

P (x)


 log



∑

x∈X2

P (x)




is the entropy associated with the choice of subset and

H(X|x ∈ Xi) = −


∑

x∈X1

P (x)



∑

x∈X1

P (x|x ∈ X1) logP (x|x ∈ X1)

−


∑

x∈X2

P (x)



∑

x∈X2

P (x|x ∈ X2) logP (x|x ∈ X2)

is a weighted sum of the entropies associated with the choice of the event inside each subset.

For a more detailed description of the entropy as well as proof of the above properties see for
instance [CoverT 91].

3.1 The Kullback-Leibler divergence...

The above definition of the entropy gives rise to a number of derived concepts. Here we will
focus on one of them of particular importance for inverse problems. As we have described in
the beginning of this chapter, inverse problems are about learning the model that generated
a particular set of measured data. Since we are interested in probabilistic models what we
need to learn is the distribution of the original model. That is to find a distribution which is
as “close” as possible to the distribution of the data. For this we need a notion of distance
between distributions. The interpretation of entropy as a measure of information leads to a
way to evaluate such a “distance” by means of the Kullback-Leibler divergence [KullbackL 51]

DKL(P‖Q) ≡
∑

x∈X
P (x) log

P (x)
Q(x)

= −
(
HP (X)− EP [log

1
Q(x)

]

)
. (3.1)

It is the negative difference between the entropy of the first distribution on one hand and the
average, with respect to the first distribution, of the self-information of the second distribution
on the other hand. Thus, it measures how well distribution Q captures the probabilistic struc-
ture of distribution P . It is not a true distance for a number of reasons, e.g. it is not symmetric
nor does it satisfy the triangle inequality, but can nonetheless be thought in a similar way since
DKL(P‖Q) ≥ 0, the equality holding only when P = Q. As for the entropy defined earlier, the
log is usually taken to base 2 in information theoretic contexts while the natural logarithm is
used in statistical physics contexts. Here we will use the natural logarithm.

The Kullback-Leibler divergence plays a central role in the context of inverse problems as
it is used to measure how well the inferred distribution Q models the original distribution P i.
In fact we will see that all the inverse Ising methods presented in this thesis can be viewed

as minimizing the Kullback-Leibler divergence between the original distribution P (s) and some

i. In this context we will use the words model or trial distribution for Q and true distribution for P .
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model distribution Q(s). The methods may differ in the order in which P and Q are placed in
DKL( · ‖ · ). The distribution occupying the first position is the one used to take the average
of log P

Q
. It is very often impossible to take averages with respect to an Ising distribution

theoretically. On the other hand, in the context of the inverse Ising problem, this is done
empirically by averaging over the measured data, which is easy. So, if one wants to build
directly an inverse method, one must use DKL(P‖Q) and minimize it over the models Q. As
an alternative, one can build a method for the direct problem, using a model distribution such
that averages can be carried easily ii and then inverse the equations to get an inverse method.
In that case, one must use DKL(Q‖P ). This second approach is used in the mean field methods
described later in this chapter.

An alternative way of looking at the Kullback-Leibler divergence is by means of the ther-
modynamic potentials. For instance DKL(Q‖P ) can be rewritten as

DKL(Q‖P ) = U [Q]− S[Q] + logZ ≡ F[Q]− F . (3.2)

The first functional is the internal energy defined as U [Q] ≡ 〈HP 〉Q. HP is the Hamiltonian
of the true distribution. The second functional is the entropy iii defined as usual as S[Q] ≡
〈− logQ〉Q. Their difference F[Q] ≡ U [Q] − S[Q] will be called the free energy functional to
distinguish it from the usual free energy F ≡ − logZ. The KL divergence can be expressed
as a difference of these two potentials which means that F is greater than F , in general, and
achieves its minimum value F = F when Q = P .

3.2 ...and its relation to the log-likelihood

Another widely used approach for inverse problems is the maximization of the log-likelihood.
We will briefly outline this method and demonstrate its equivalence to the Kullback-Leibler
divergence minimization. The main idea is to use Bayes theorem in order to write an expression
for the likelihood of a model given the fact that we have observed a number of outcomes. Writing
θ for the model parameters and x for one observed outcome we have

Q(θ|x) =
Q(x|θ)Q(θ)

Q(x)
. (3.1)

Q(x|θ) is just the distribution we want to infer. Q(θ) is a prior distribution over all models. It
can be just a uniform distribution over all sets of model parameters, but we will later see that
one can use it to restrict the search to a particular, relevant class of models and thus achieve
more efficient algorithms. Q(x) is of no consequence in the present case since it doesn’t depend
on the model parameters. The next step is to maximize the above function, with respect to
θ, in order to find the most likely model capable of generating the data we observed. If one
has a set of independent measurements the joint likelihood is just the product of the individual
one-measurement likelihoods. This is where the convenience of taking the logarithm of the

ii. Some particular classes of factorized distributions are usually used, where efficient inference can be done
either exactly or approximately.

iii. We respect the convention of noting H the entropy in information theory contexts and S in statistical
mechanics contexts.
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likelihood becomes apparent. The logarithm is a monotonically increasing function and thus
the logarithm of a function achieves its maximum in the same place as the function itself,
hence it does not affect maximum likelihood estimation. On the other hand the logarithm
transforms the product of the individual likelihoods in a sum of log-likelihoods which is easier
to manipulate. The log-likelihood for p independent measurements reads

L =
1
p

p∑

µ=1

logQ(θ|x(µ)) . (3.2)

It is easy to show that maximizing the above quantity is equivalent to minimize the Kullback-
Leibler divergence between two appropriate distributions: ideally, when p → ∞, the average
over the measurements in eq.(3.2) can be rewritten as an average over the unknown distribution

L =
∑

x∈X
P (x) logQ(θ|x) = EP [logQ(θ|x)] . (3.3)

Comparing the above equation with eq.(3.1) we conclude that maximizing the likelihood is
equivalent to minimize the Kullback-Leibler divergence between the unknown distribution and
the model distribution weighted by a prior distribution of models.

Because of their ultimate connexion with entropy, both the Kullback-Leibler divergence and
the likelihood function are measures of our knowledge about the probabilistic structure of the
unknown system, hence they provide a natural framework for inverse problems. All methods
presented in this thesis have either one of the two approaches as a starting point. They differ
only in the procedure used to find the extremum and in the restrictions about the target models.
However, we will see that these differences can be crucial to the performance of the respective
algorithms, both in terms of computational complexity and in terms of their precision. But
before reviewing all those methods, let us take a few more paragraphs to state the problem and
introduce some notation that will be used for the rest of this work.



Chapter 4

Formulation of the problem

The symmetric Ising model is defined by the distribution

P (s) =
1

Zβ(J,H)
e

β

(∑
i

Hisi+
∑

i<j
Jijsisj

)

(4.1)

Zβ(J,H) =
∑

σ

e
β

(∑
i

Hiσi+
∑

i<j
Jijσiσj

)

(4.2)

where s = (s1, . . . , sN) is the spin vector, J is the couplings matrix and H is the local fields

vector.
The inverse problem can be stated as follows. Given a set of p spin configurations S =

{s(1), . . . , s(p)} generated from a model M = (J,H), find parameters Jij and Hi.
In the present work we will focus only in Ising models with one and two body interactions

(local fields and couplings), thus the distribution can be fully characterized by the first and
second moments

mi ≡ 〈si〉 and Cij ≡ 〈sisj〉 −mimj . (4.3)

referred to hereafter as the magnetizations and correlations respectively. It is customary to
consider that the inverse Ising problem algorithms accept these quantities as inputs instead of
the raw data S. If the exact values of mi and Cij are known an inverse Ising algorithm could
potentialy yield exactly the values of Hi and Jij. When this is the case we say that those
algorithms are exact. In practice however, one cannot know a priori the exact magnetizations
and correlations so they must be estimated from the configurations S

mi =
1
p

p∑

µ=1

s
(µ)
i and Cij =

1
p

p∑

µ=1

s
(µ)
i s

(µ)
j −mimj . (4.4)

In this case, the noise due to the finite number of configurations used in the above estimation
will yield errors in the estimation of the model parameters, even if an exact algorithm is used.
We will still use the term “exact algorithm” however, understanding that it would yield exact
results if feeded with the exact mi’s and Cij’s.

The computation of the empirical correlation matrix takes O(N2p) time so any algorithm
using the correlations as a starting point will be at least that slow, but this is a harmless
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constrain since any algorithm that estimates N2 quantities (the couplings) using p measure-
ments will take at least that time. The inverse Ising problem can be written schematically as
(m,C)→ (H, J).

4.1 Graphical models

In many systems of interest, where a large number of random variables is involved, the
pattern of their mutual dependencies is often non-trivial. In mathematical language this means
that their joint distribution (the Boltzmann distribution of eq. (4.2) in our case) can be
decomposed into a product of different factors each containing a subset of variables. As we will
encounter in later sections of this chapter this decomposition might play an important role in
the solvability of both the direct and inverse problems. The physical origin of this feature is
the local nature of physical interactions. In real spin systems spins usually interact only within
some neighborhood of finite radius, neurons in the brain create synapses with a limited number
of other neurons, genes might influence the expression of a limited number of other genes and so
on. To highlight this property and treat it more easily it is convenient to represent graphically
the structure of the dependencies or interactions. This is done usually with the help of a graph.

A graph G is an set of nodes or vertices V together with a set of edges or links E which
themselves are sets of pairs of nodes i. The graph, written G = (V,E), is then associated with
a probability distribution that can be put in a factorized form. For pairwise systems we will
use the following notation

P (x) =
∏

i

ψi(xi)
∏

(ij)

ψij(xi, xj) , (4.1)

where we also allow the possibility for one-body interactions (local fields). The nodes in V are
in one to one correspondence with the variables in x = (x1, . . . , xN) and each edge, (ij) ∈ E
with i, j ∈ V , represent the factor ψij(xi, xj).

The structure of the interaction graph in real systems is, as we said before, non-trivial
this is why in theoretical works they are often treated as random objects themselves, besides
the randomness of the couplings and local fields. From the point of view of the inverse Ising
problem it might be an important question to infer the graph structure, i.e. the edge-set E,
as a first step before inferring the couplings and local fields J and H. We will see for instance
in section 6 that inferring the graph structure first can make the task of finding the couplings
particularly easy.

i. In general, a graph can contain more than one kind of nodes such as the case of factor graphs where factor
nodes together with variable nodes are used to represent multiple variables factors or, in the physics jargon,
many-body interactions see e.g. [MezardM 09]. In the present work only pairwise interactions are considered
so simple graphs with only variable nodes are sufficient.



Chapter 5

The Boltzmann machine and its

training

A Boltzmann machine is a type of stochastic network, invented by Geoffrey Hinton and
Terry Sejnowski [AckleyHS 85, Hinton 89], and named after the Boltzmann distribution. From
the perspective that we are interested in it is just an Ising model together with a Monte Carlo
dynamics. The introduction of the Hopfield model in 1982 [Hopfield 82] sparked interest in
networks capable of storing knowledge in the structure of their connexions. Both these models
use a Boltzmann distribution together with an Ising Hamiltonian for their purposes, the differ-
ence being that, whereas in a Hopfield network a deterministic gradient descent is performed in
order to retrieve a memorized “pattern”, in a Boltzmann machine the system is left to “wander”
stochastically in configuration space and thus generate sets of plausible configurations. This
“wandering” is done by the Metropolis algorithm [MetropolisRRT+ 53] so that the generated
configurations are distributed according to the desired Boltzmann distribution. The thermal
noise of the Metropolis algorithm enables the system to escape from local minima and hopefully
to find the global minimum of the energy function. In the Hopfield model this local minima
trapping is not a problem since the energy landscape has been designed so that the local min-
ima correspond to memorized patterns. In fact getting stuck in some local minimum amounts
in retrieving a memorized pattern in a Hopfield model so it is a desired behavior. However,
in constrain satisfaction problems, where one wants to minimize the total number of violated
constrains the search for the global minimum is essential, hence the stochastic nature of the
Boltzmann machine.

An other potential application of such systems would be to train them to generate data
similar to some particular dataset. For instance, once the system has been trained using a set
of pictures, it could be used to complete an other picture which is partially missing. This leads
us to the central problem of the Boltzmann machine applicability: its training. In this context
training means inferring the couplings and local fields (weights and biases in the Boltzmann
machine jargon) of the system that generated the particular dataset of interest. In other words
training means solving the inverse Ising problem. Moreover, if the original system was not an
Ising model, we could wish to find couplings and fields such that an Ising model would generate
similar examples as the ones we used in the training. It turns out that there is a simple set of
learning rules, as shown in [AckleyHS 85], that leads the system gradually to adopt the correct
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values of the couplings and fields. We will now outline the derivation of this procedure.
Let’s say that we have a set of data S = {s(1), . . . , s(p)} generated from an unknown distri-

bution P0(s). We want to find Ising model parameters M = (J,H) such that the distribution
of the inferred model PJ,H minimizes the Kullback-Leibler divergence

DKL(P0, PJ,H) =
∑

s

P0(s) log
P0(s)
PJ,H(s)

. (5.1)

We differentiate with respect to Jij

∂DKL(P0, PJ,H)
∂Jij

= −
∑

s

P0(s)


sisj −

1
Z

∑

σ

σiσje
∑

i<j
Jijσiσj+

∑
i

Hiσi


 (5.2)

= −
(
〈sisj〉S − 〈sisj〉M

)
, (5.3)

where 〈 · 〉S means average over the data and 〈 · 〉M average with respect to inferred model.
This leads to the following learning rule by gradient descent

δJij = ǫ
(
〈sisj〉S − 〈sisj〉M

)
. (5.4)

ǫ defines the rate of the learning process. This rule is very simple, it means that the learning
process adjust the couplings of the inferred model gradually until its correlations match the
empirical ones we have from the data. Similarly for the local fields we get

δHi = ǫ (〈si〉S − 〈si〉M) . (5.5)

After each update of the couplings and fields one must compute the theoretical predictions of the
model’s correlations and magnetizations in order to compute the next set of corrections. It can
be shown that, if there are no hidden spins i, DKL is a convex function of the model parameters
[AckleyHS 85, Hinton 89]. This guarantees that the simple gradient descent described above
will eventually reach the global minimum. If the data where generated by an Ising model
the global minimum has DKL = 0 and therefore the learning algorithm will recover the model
parameters exactly. However, computing the model correlations and magnetizations is not easy.
Since exact inference is NP-hard in the general setting [Cooper 90] one must turn to Monte
Carlo simulations. Therefore, after each update, the system is simulated for a number of steps
until it reaches thermal equilibrium. At low temperatures, the simulated system can get stuck
in some local minimum, and spend a lot of time until it escapes. Since there is an exponential
number of local minima [MezardPV 87] in the low temperature phase, we need an exponential
number of Monte Carlo steps in order to explore the phase space sufficiently. We see that we
have an exact algorithm at the cost of an unfeasibly high computational complexity. This is a
first example of the interplay between the precision of the method and its complexity. Shortly
we will encounter algorithms that have lower complexities but infer approximately the model
parameters.

i. Originally the Boltzmann machine was conceived with the possibility of having hidden “units” to account
for constrains in the data that cannot be explained solely with pairwise interactions.



Chapter 6

Exact learning on trees

The ambitious Boltzmann machine learning fails to provide a practical algorithm because of
the inefficiency of inference in general. The source of this hardness are the numerous loops of the
underlying factor graph i, who force us to treat the system globally. Precisely for that reason,
the exemplar class of “easy” models are tree models. Trees are the only structures that allow
exact inference through local computations [Pearl 88]. This is why they have been widely used
as approximations in inference problems. In this section we will show how restricting the target
models to trees decreases drastically computation time. Since in most potential applications of
inverse Ising methods the underlying networks are not trees, the method described here is just
meant to demonstrate how prior knowledge on the system can alter the complexity of a learning
algorithm. If the original system is not a tree, then the method described here guarantees to
find the optimal product approximation ii having the structure of a tree, although it is a crude
approximation since many interdependencies between variables will be ignored.

We can divide the problem into two parts. First, inferring the correct graph and, second,
inferring the couplings and local fields. For the first part we will present a particularly elegant
method invented by C. K. Chow and C. N. Liu in 1968 [ChowL 68], which makes use of a
well known graph theory algorithm, the Maximum Spanning Tree (MST) algorithm. We will
present their method in general, without a reference to a particular type of distribution and
then we will show a possible variation, specially adapted to Ising models.

6.1 The Chow-Liu Method

First we need to introduce the notion of mutual information of two variables Xi and Xj

Iij(Xi;Xj) ≡
∑

xi,xj

Pij(xi, xj) log
Pij(xi, xj)
Pi(xi)Pj(xj)

, (6.1)

where Pij and Pi, Pj are the two and one variable marginals of the total distribution. This
quantity is the Kullback-Leibler divergence between the joint distribution of Xi and Xj and
the product of their marginals, and thus quantifies their lack of independence.

i. see section 4.1
ii. A product approximation of a distribution is a product of several of its marginals
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First we need to introduce some facts about tree-graphical models. It is well known
[MezardM 09] that the joint probability distribution of a tree model can be factorized in terms
of local marginals. Precisely, for any tree

Pt(x) =
∏

(ij)∈Et

Pij(xi, xj)
∏

i∈V

Pi(xi)1−|∂i| , (6.2)

where the ensemble of edges Et is chosen such that |Et| = |V | − 1 and the graph is simply
connected. These two requirements guarantee that the graph contains no loops, i.e. that it is
a tree. As a consequence of this decomposition in local terms the entropy can be decomposed
as well

H[Pt] = −
∑

(ij)∈Et

∑

xi,xj

Pij(xi, xj) logPij(xi, xj)−
∑

i∈V

(1− |∂i|)
∑

xi

Pi(xi) logPi(xi) . (6.3)

Other extensive quantities can be decomposed in a similar way.
As we did for the Boltzmann machine in the previous section, we take the Kullback-Leibler

divergence between the true distribution P (x) and our tree model distribution Pt(x)

D(P‖Pt) =
∑

x

P (x) log
P (x)

∏
(ij)∈Et

Pij(xi, xj)
∏

i∈V Pi(xi)1−|∂i|

=
∑

x

P (x) logP (x)−
∑

x

P (x)



∑

(ij)∈Et

logPij(xi, xj)


+

∑

x

P (x)

[
∑

i∈V

(|∂i| − 1) logPi(xi)

]

= −H(X)−
∑

xi,xj

Pij(xi, xj)



∑

(ij)∈Et

log
Pij(xi, xj)
P (xi)P (xj)


+

∑

xi

Pi(xi)

[
∑

i∈V

(|∂i| − 1) logP (xi)

]

−
∑

(ij)∈Et



∑

xi

Pi(xi) logPi(xi) +
∑

xj

Pj(xj) logPj(xj)


 (6.4)

Now, it is clear that, in the last sum of the above equation, each variable will yield an entropic
term |∂i| times, so that some of the terms will cancel out with terms of the preceding sum.
Hence, the result is

D(P‖Pt) = −H(X) +
∑

i∈V

H(Xi)−
∑

(ij)∈Et

Iij(Xi, Xj) (6.5)

The first two terms are independent of any particular tree structure and, since I(xi, xj) is non
negative, minimizing the Kullback-Leibler divergence is equivalent to maximizing the quantity∑

(i,j)∈Et
I(xi, xj). Thus, the edge-set of the optimal tree is given by

E∗
t = arg max

Et=Tree





∑

(i,j)∈Et

I(xi, xj)



 (6.6)

Although the space of trees is much smaller than the space of all possible graphs, it is still huge.
We know from the Cayley formula that there are NN−2 distinct trees. Fortunately, we don’t
need to consider exhaustively all these possibilities to solve the above maximization problem.
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The important result of Chow and Liu is that the quantity to be maximized is a sum of local
terms, so that a simple greedy algorithm can solve the problem.

Given a weighted graph, the problem of finding a tree spanning all nodes and having maxi-
mum total weight is well known in graph theory. A popular algorithm is Prim’s one [Prim 57].
For a full description of the algorithm and the proof of its correctness we refer the reader to
the literature. Here we give only its description:

✓

✒

✏

✑

Algorithm 6.1.1: Maximum Spanning Tree(W )

V ← {1}, Any node can be used in the initialization without affecting the result
E ← ∅
while |V | 6= N

do





(ij)← arg max
i∈V, j 6∈V

Wij

V ← {V, j}
E ← {E, (ij)}

return (V,E)

Here W is the weights matrix. Returning to our problem, if we use the weights Wij =
I(xi, xj) the maximum weight tree will be the one minimizing the Kullback-Leibler divergence,
and hence the solution of our restricted inverse problem. In practice, one must compute the
empirical estimates of the mutual information from samples and then proceed with the above
algorithm, but we refer the reader to [ChowL 68] for the details.

In section 4 we stated that the usual starting point for the inverse Ising problem are the
correlations and magnetizations. These can be used also in the context of the Chow and Liu
method instead of the mutual information. Actually, in order for the MST algorithm to recover
the correct tree, one can use as the inputing weights any quantity, defined on a pair of nodes,
that is strictly decreasing with the distance between those nodes. The mutual information is
an example but one can show that also the correlations decrease in absolute value with the
distance. In general, although both quantities are measures of the dependence of two variables,
there are not always related as the correlation captures only linear dependence whereas mutual
information measures general dependence. In some special cases, however, there can be a
relation between the two. It has been show in [Wentian 90] that one such case is when the
variables are binary, as the spins in the Ising model. But it is quite easy to show that if
correlations are used as weights, the MST algorithm will recover the correct tree, without using
the above result. First we need to prove a lemma about correlation decay in Ising trees.

Lemma 6.1.1 Let G = (V,E), with V = {1, 2, 3} and E = {(12), (23)}, be a three nodes graph

and let θ = {J12, J23, H1, H2, H3} be a set of Ising parameters. Then, in the Ising model defined

by G and θ, |C12| ≥ |C13|, where Cij = 〈sisj〉 − 〈si〉 〈sj〉. Moreover, in any tree, |Cij| is a

decreasing function of dij, the distance between the nodes on the tree.

Proof The proof is a straightforward calculation of magnetizations and correlations. We start
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from their definitions

〈si〉 =

∑
s si exp

(∑
(kl)∈E Jklsksl +

∑
k∈V Hksk

)

∑
s exp

(∑
(kl)∈E Jklsksl +

∑
k∈V Hksk

) and

〈sisj〉 =

∑
s sisj exp

(∑
(kl)∈E Jklsksl +

∑
k∈V Hksk

)

∑
s exp

(∑
(kl)∈E Jklsksl +

∑
k∈V Hksk

) .

We then expand the sums and use the variables ζij ≡ tanh Jij and ηi ≡ tanhHi

〈s1〉 =
1
Z

(η1 + ζ23η1η2η3 + ζ12η2 + ζ12ζ23η3)

〈s2〉 =
1
Z

(η2 + ζ12η1 + ζ23η3 + ζ12ζ23η1η2η3)

〈s3〉 =
1
Z

(η3 + ζ12η1η2η3 + ζ23η2 + ζ12ζ23η1)

〈s1s2〉 =
1
Z

(ζ12 + η1η2 + ζ23η1η3 + ζ12ζ23η2η3)

〈s1s3〉 =
1
Z

(ζ12ζ23 + η1η3 + ζ12η2η3 + ζ23η1η2) .

Where Z is the partition function. Putting all that together we have

|C12

C13

| = 1− η2
3ζ

2
23

(1− η3
3)ζ2

23

≥ 1 . (6.7)

The equality holds when ζ23 = ±1 which means that J23 = ±∞, so for all practical purposes it
is a strict inequality.

To prove the second statement we first remark that a similar result holds for a chain of any
length. Indeed, by applying recursively the above formula one can show that, for any adjacent
pair (ij), |Cij| is greater than any |Cik| with k being on the same side as j. Moreover, the
magnetizations and correlations of any subgraph of a tree model can always be reproduced by
a model having the same structure as the subgraph, the same couplings and the appropriate
local fields iii. Therefore, since any path on a tree can be mapped to a chain with the same
couplings and different local fields, by the above result the correlations along the path will
decrease with the distance.

This leads us to the following proposition.

Proposition 6.1.2 Let T = (V,Et) be a tree and let θ = {{Jij : (ij) ∈ Et}, {Hi : i ∈ V }} be

Ising parameters defined on that tree. Suppose KW = (V,Ek = V ×V,W ) is a weighted complete

graph with the same node set as T and weights given by Wij = |Cij|. Then the maximum weight

spanning tree T ∗
W of KW is T .

iii. When performing averages in a tree, we can always start by summing the variables of the leaves and
gradually proceed towards the subgraph in question. It turns out that in the end we incorporate the influence
of the rest of the tree by just modifying the local fields of those variables that are connected with the rest of
the tree. This is a direct consequence of the fact that there are no loops in a tree.
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Proof For any partition of the complete graph V = V1∪V2 and V1∩V2 = ∅ we define a cut-set
as E12 = {(ij) : i ∈ V1, j ∈ V2}. First note that (ij)∗ ≡ arg max(ij)∈E12

Wij will be necessarily
in T ∗

W . Indeed, if another edge (kl) ∈ E12 was in T ∗
W then removing that edge and adding (ij)∗

would produce a tree of greater total weight. Now, from lemma 6.1.1 we have that the only
edge (ij) ∈ E12 ∩Et is (ij)∗ since all other edges in E12 link nodes with greater distance in Et.

6.2 The Independent Pair Approximation

The above proposition enables us to use the simpler |C| as weights in the MST algorithm
instead of the mutual information, confirming that, as with the Boltzmann machine learning,
all the information about Ising models can be found in the correlations and magnetizations. Of
course, we still need to find the precise values of the couplings and local fields but these also
can be found exactly from the correlations and magnetizations once the structure of the tree
has be found. It was mentioned earlier that, if effective local fields are chosen appropriately,
any subgraph of a tree will reproduce the same moments as the whole of the tree. We can thus
break down the tree to an ensemble of connected pairs and solve with respect to the couplings
each pair independently. We will now outline this method.

The distribution of a pair of spins is written

P (si, sj) =
1
Zij

eJijsisj+h
(j)
i

si+h
(i)
j

sj . (6.1)

In the context of the whole tree, the fields present in the above equation are the effective local
fields acting on each spin. They contain contributions form the actual local field and from the
remaining spins of the tree, not counting the second one of the pair in question. For instance,
h

(j)
i is the sum of the local field acting on i and the field felt by i from all other spins except
j. It can be interpreted thus as the total field i would feel if we remove spin j from the graph.
We can solve the above equation with respect to Jij

Jij =
1
4

ln

(
P++P−−
P+−P−+

)
, (6.2)

where P++ ≡ P (+1,+1), P+− ≡ P (+1,−1) etc. Then we can express those probabilities in
terms of magnetizations and correlations

Jij =
1
4

ln

[
((1 +mi)(1 +mj) + Cij) ((1−mi)(1−mj) + Cij)
((1 +mi)(1−mj)− Cij) ((1−mi)(1 +mj)− Cij)

]
. (6.3)

Once the couplings have been found we can compute the effective local fields for each pair by
a similar formula

h
(j)
i =

1
2

ln

[
(1 +mi)(1−mj)− Cij

(1−mi)(1−mj) + Cij

]
. (6.4)

Now it is easy to find the actual local fields. We first note that h(j)
i = h̃

(j)
i + Hi where h̃(j)

i is
the contribution on i’s total field from all spins except j without counting Hi. If we sum h̃

(j)
i
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over j we will over-count each spin’s contribution |∂i| − 1 times, where |∂i| is the number of
neighbors of spin i. Thus we can write

Hi +
1

|∂i| − 1

∑

j

h̃
(j)
i = atanh(mi) . (6.5)

On the other hand if we sum h
(j)
i we have

∑

j

h
(j)
i =

∑

j

h̃
(j)
i + |∂i|Hi . (6.6)

Combining the above equations we finally have

Hi =
∑

j

h
(j)
i − (|∂i| − 1)atanh(mi) . (6.7)

Equations (6.3,6.4,6.7) can be used to find the couplings and fields of the tree model once the
graph has been found. They form the so called Independent Pair approximation [RoudiTH 09,
RoudiAH 09].

Although exact only on trees, the method described in this chapter can be applied on
any model to find approximate solutions. The original paper proposes the MST method as
a way to find the best tree model approximating any kind of distribution. This can have
some advantages as trees allow efficient and exact inference. They can reproduce, however,
a very limited spectrum of behaviors. In many well known systems, such as the Hopfield
model or the Boltzmann machine, the richness of their behavior comes from the existence of
metastable states. Such states require the existence of frustrated loops and cannot be realized
in tree graphs. Moreover, since we are mostly interested in the inverse Ising problem as a
method for inferring the actual structure of biological networks, this method is not well suited
since such systems are typically not trees. As for the Chow-Liu method, the independent pair
approximation can also be used in cases where the underlying graph is not a tree but with
limited results. The assumption that every pair can be treated independently is valid only in
weak couplings (high temperature) settings, where the correlations decay importantly beyond
adjacent pairs.

In the next sections we will examine more realistic methods, able to capture the structure
of more complex networks. None of them is a panacea as they all have limited regimes of
applicability. Yet they are much more powerful as they can be be applied to more realistic
systems with satisfactory results. The first family of methods comes from the class of mean

field methods, well known in statistical physics.



Chapter 7

Mean field methods

Mean Field Theory (MFT) is a general term to describe a whole family of methods, primarily
in statistical mechanics, whose aim is to solve a many-body problem by replacing it with an
effective one-body one. In general, many-body problems are very difficult to solve exactly
because the combinatorial “explosion”, due to the great number of degrees of freedom, forbids
the full enumeration of states. In many cases, however, the lack of important fluctuations allows
a powerful simplification: since the “environment” seen by each degree of freedom doesn’t vary a
lot, on can replace the full system with a unique field acting on one degree of freedom. This field,
called effective or molecular field, is the average field created by the rest of the system, hence
the name. In some cases, despite the simplification, the main features of the system’s behavior
are reproduced by the mean field equations, thus MFT can provide important insights at a low
cost since one-body problems are usually much easier. For instance, in a ferromagnetic Ising
model, one can ignore the full system and study the behavior of one spin in the presence of the
combined field of all other spins, and still predict the existence of a paramagnetic/ferromagnetic
phase transition, although the predicted behavior around the critical point will be wrong.
By considering the average field created by the other spins, MFT completely ignores their
fluctuations and thus can be seen as a zeroth-order expansion of the Hamiltonian in fluctuations.
Moreover, dimensionality plays an important role in determining the applicability of MFT. In
high dimensional systems (or in the equivalent long range limit) spins “feel” the presence of
a great number of neighbors whose fluctuations thus become negligible. However, unlike the
ferromagnetic case, in the spin-glass Ising model fluctuations are important i and the naive mean
field theory fails. A much better result can be obtained by taking into account the first-order
term in fluctuations. The resulting equations are known as Thouless-Anderson-Palmer (TAP)
equations. Since many of the methods presented in this thesis are mean-field methods we will
reserve the name naive mean field (NMF) method for the simplest one, described in the next
section.

In this chapter we will outline the derivation of mean-field methods. We will then present
the way they have been used to solve the inverse Ising problem as was done in [KappenR 97,
KappenR 98, Tanaka 98]. The same rationale, as the one we find in NMF and TAP meth-
ods, has been used in a number of similar contexts such as kinetic models [KappenS 00,

i. Because of the cancellations due to the random couplings, the average field is much weaker and thus its
fluctuations are crucial in determining the behavior of the system.
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HertzRTT+ 10, RoudiH 11a, RoudiH 11b, ZengAAM 10] but we will introduce these results
in part III where we will discuss kinetic Ising models. For the sake of coherence with the previ-
ous sections we will derive the mean field equations starting from a Kullback-Leibler divergence
minimization problem, although they were originally derived using physical arguments. We will
first derive and discuss the equations for the direct problem and then inverse them and present
some results of their application to the inverse problem.

7.1 Naive Mean Field Approximation

In a mean field model we consider that each spin is independent of all others and feels a
local effective field composed of two terms

hi = h̃i +Hi . (7.1)

As in the previous section, Hi is the actual local field of the full model and h̃i is the contribution
of the other spins. The mean field measure thus reads

Pmf(s) =
∏

i

exp(hisi)
2 cosh(hi)

. (7.2)

The main advantage of having decoupled spins is that magnetizations can be computed easily.
The mean field magnetizations are just mi ≡ 〈si〉mf = tanh(hi). We need to fix the values of
the h̃i’s so that they agree as much as possible with the full model. This is done by minimizing
the Kullback-Leibler divergence between measure (7.2) and the one of the Ising model (4.2).
In this case we will derive a set of equations for solving the direct problem and then invert
them. Hence we will change the order of the trial and true distribution appearing in the KL
divergence DKL(p‖q) =

〈
log p

q

〉

p
, as it was explained in section 3.1.

We have

DKL(Pmf‖PIsing) =
∑

i

himi −
∑

i

log 2 cosh(hi)−
∑

i<j

Jijmimj −
∑

i

Himi + logZ

=
∑

i

h̃imi −
∑

i

log 2 cosh(hi)−
∑

i<j

Jijmimj + logZ (7.3)

The extremization then gives

∂DKL

∂h̃i

=
(
1−m2

i

)

h̃i −

∑

j 6=i

Jijmj


 = 0 . (7.4)

Hence the effective field is given by h̃i =
∑

j 6=i Jijmj and so the mean field equations read

mi = tanh


Hi +

∑

j

Jijmj


 , (7.5)

which is nothing but an approximation to the true magnetization
〈
tanh

(
Hi +

∑
j Jijsj

)〉
when

the fluctuations have been ignored. The naive mean field model eq.(7.2) predicts zero connected
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correlations since 〈sisj〉mf = mimj. However, there is a simple way of computing a non-
vanishing approximation for the connected correlations Cij = 〈sisj〉 − 〈si〉 〈sj〉, based on the
MF approach, by means of the fluctuation-response theorem, as was done in [KappenR 97,
KappenR 98, Tanaka 98]

Cij =
∂mi

∂Hj

=
∂

∂Hj

tanh


Hi +

∑

j

Jikmk




= (1−m2
i )

(
δij +

∑

k

JikCkj

)
, (7.6)

which in matrix notation reads

J = L−1 − C−1 , (7.7)

where Lij ≡ (1−m2
i )δij.

Equation (7.7) can be used to infer the couplings, in the inverse problem context, once
m and C have been computed from the data. Then, one can invert eq.(7.5) to find the
local fields. This procedure has been used in the contexts of Boltzmann machine learning
[KappenR 97, KappenR 98, Tanaka 98], extracting the connectivity from spike trains in corti-
cal models [RoudiTH 09], the Hopfield model [Huang 10b]. We have mentioned earlier that one
necessary condition for the correctness of the naive mean field method is high dimensionality,
where the average of a great number of contributions to the effective field, from the neighbors
of each spin, is a good approximation for the actual fluctuating value of the later. It is not
always a sufficient one, however. In the case of ferromagnets, the homogeneity of the couplings
makes that all spins tend to align with each other and individual fluctuations have negligible
influences in the effective field. One way to see that is to notice that, since Jij ∼ O(1/N),
the variance of the individual contributions is Var(Jijsj) ∼ 1/N2(1 − m2

j). Considering the
approximation that all spins are independent we have for the total variance of the effective field
Var(hi) ∼ O(1/N)→ 0, for N →∞. On the other hand, for spin-glasses and in order to keep
to effective field of order 1, we have that Jij ∼ O(1/

√
N) so that Var(Jijsj) ∼ 1/N(1 −m2

j).
This leads to a non negligible variance for the effective field Var(hi) ∼ O(1). We conclude that
naive mean field is far from correct in general for random couplings.

There is, nevertheless, a case where it is asymptotically correct: in the high temperature
limit. One way to see why this is true is to notice that limβ→0 DKL(Pmf‖PIsing) = 0 once the
effective fields have been fixed. Indeed, in all the aforementioned applications, naive mean field
provide correct results only in the high-temperature/weak-couplings limit. However, this is not
a particularly relevant case since it is the limit where a network is... not a network anymore
but a collection if independent spins.

7.2 The TAP equations

The failure of naive mean field in the case of spin glasses can be cured by the addition
of a suitable correction. This will lead eventually to another closed set of equations for the
magnetizations mi from where we can derive a relation for the correlations by applying once
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more the fluctuation-response theorem. These equations are called TAP in the literature, an
acronym for Thouless, Anderson and Palmer [ThoulessAP 77] who first derived them as a mean
field theory for an infinite range model with Gaussian couplings (SK model).

As we have mentioned in section 3.1 (eq.3.2), the KL divergence between a model distribu-
tion Q and the true distribution P can be written as

DKL(Q‖P ) = F[Q]− F , (7.1)

where F[Q] ≡ E[Q] − S[Q] is the free energy functional and F is the free energy of the true
distribution. The divergence is minimized when F[Q] achieves its minimum. We minimize F[Q]
(and thus minimize DKL(Q‖P )) by a two-stage minimization process:

The first step is to minimize F[Q], where the trial distributions Q are constrained by fixing
the magnetizations to a set of values m = 〈s〉Q. For this we define the following function

F
∗(m) = min

Q

{
F[Q] | 〈s〉Q = m

}
. (7.2)

The above constrained optimization problem can be transformed to an unconstrained one by
introducing a set of Lagrange multipliers hi. Now we need to minimize the following quantity

F[Q]−
∑

i

hi(〈si〉Q −mi) = E[Q]− S[Q]−
∑

i

hi(〈si〉Q −mi) . (7.3)

It can be easily shown that the minimizing distribution is written

Q(s) =
1

Z(h)
e−H(s)+

∑
i

hisi , (7.4)

where H(s) = −∑i<j Jijsisj −
∑

i Hisi is the standard Ising Hamiltonian.
The second step is to minimize F

∗(m) with respect to m. By introducing the minimizing
distribution of eq.(7.4) back in eq.(7.2) we get the dual optimization problem

F
∗(m) = max

h

{
∑

i

himi − logZ(h)

}
, (7.5)

where Z(h) =
∑

s exp(−H(s) +
∑

i hisi). It appears that F
∗(m) is nothing but the Legendre

transform of the free energy F (h) = − logZ(h) ii. The maximization in eq.(7.5) guarantees
that

mi =
∂ logZ(h)

∂hi

. (7.6)

The exact computation of F
∗(m) is as hard as the computation of the free energy F =

− log
∑

s exp(H(s)). It turns out, however, that we can make a perturbation expansion of
F

∗(m) around a null Hamiltonian (essentially a high temperature expansion). We replace the

ii. Usually F
∗(m) bears the name Gibbs free energy although some authors use that name for the functional

F[Q] in general.
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Hamiltonian in eq.(7.5) with λH(s) and expand. In the end we simply have to set λ = 1. The
expansion gives

F
∗(m) = F

∗
0(m) + F

∗
1(m)λ+ F

∗
2(m)λ2 +O(λ3) , (7.7)

with F
∗
n(m) = ∂n

∂λnF(m)
∣∣∣
λ=0

. The first two terms can be easily computed and yield

F
∗
0(m) =

∑

i

{1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

}
(7.8)

F
∗
1(m) = −

∑

i<j

Jijmimj (7.9)

They are the negative entropy and the internal energy of the naive mean field model. This is
easily shown by minimizing F

∗
0(m) + F

∗
1(m) with respect to the mi’s, which yields the set of

naive mean field equations (7.5). The second order term is

F
∗
2(m) = −1

2

∑

ij

J2
ij(1−m2

i )(1−m2
j) . (7.10)

When this term is also taken into account the resulting extremization condition yields

mi = tanh


Hi +

∑

j 6=i

Jijmj −mi

∑

j 6=i

J2
ij(1−m2

j)


 . (7.11)

Equations (7.11) are the TAP equations, well known in the spin-glass literature [ThoulessAP 77].
Their original derivation was based on a, much more intuitive, cavity type argument which we
will discuss soon. However, the above method recovers both naive mean field and TAP equa-
tions from a systematic expansion of the free energy, which in principle allows for improvements
by adding higher order terms. This method was first proposed by Plefka [Plefka 82] how also
showed the important result that, for the SK model, all terms beyond second order can be
neglected, as long as the system is not in the spin glass phase iii.

The TAP equations provide an important improvement compared to naive mean field as
they take into account the effect of the fluctuations which is non-negligible in spin glasses.
Indeed, in the paramagnetic phase the variance of the effective field felt by the ith spin is
Var(

∑
j Jijsj) =

∑
k,j JijJikCjk ≈

∑
j J

2
ij(1 − m2

j), which is the extra term appearing in the
TAP equations. If these fluctuations are neglected one simply recovers the naive mean field
equations.

The more intuitive way of looking at the TAP equations is the following: The naive mean
field equations (7.5) are not correct in the spin glass case since Hi +

∑
j 6=i Jijmj is not the true

average field felt by the ith spin. This field would be correct if we remove spin i from the system
so that it doesn’t influence the remaining ones. In spin glasses, where the effective field is weak
because of the random cancellations, the influence that one spin can have on his neighbors
cannot be neglected. Thus a shift in the remaining magnetizations mj would occur caused by

iii. For Gaussian couplings with zero mean and variance 1/N the paramagnetic/spin-glass phase transition
in the SK model occurs at βc = 1.
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the presence of spin i. The shift is determined by the magnetic susceptibility, i.e. the answer
of each spin in the variation of his effective field

χjj ≡
∂mj

∂hj

∣∣∣∣∣
hj=0

= 1−m2
j . (7.12)

Thus, each magnetization in the naive mean field equations (7.5) should be replaced by mj −
χjjJijmi which leads to the TAP equations (7.11).

Concerning the inverse problem, a relation involving the correlations based on the TAP
equations can be obtained by applying the fluctuation-response theorem as before. Differenti-
ating eq.(7.11) with respect to mj (j 6= i) gives

[C−1]ij ≡
∂Hi

∂mj

= −Jij − 2mimjJ
2
ij . (7.13)

Solving the above equations yields the couplings who can then be used in eq.(7.11) to find the
local fields.



Chapter 8

Small Correlations expansion

As long as we are in the high temperature phase and the model is fully connected (long range)
all terms in the high temperature expansion, described in the previous chapter can be neglected
[Plefka 82] and the TAP equations become asymptotically exact. As we depart, however, from
these conditions higher order terms become relevant. The application of a high temperature
expansion in disordered spin systems, first proposed by Plefka [Plefka 82], was extended up to
order O(β4) in [GeorgesY 91] and could be used to improve the accuracy of the TAP result.
Inspired by this work, V. Sessak and R. Monasson noticed that, when a similar expansion is
performed, a fraction of the resulting terms can be put in closed form [SessakM 09]. The central
object of their construction is not the Gibbs free energy of eq.(7.5) as in the derivation of the
TAP equations, but the entropy of the Ising model at fixed magnetizations and correlations.
It turns out that their result can be viewed as a corrected version of the independent pair
approximation of chapter 6. In this chapter we will outline the derivation of their result without
going into the details of the calculations. We refer the reader to the original paper [SessakM 09]
for the complete presentation.

The starting point is, as usual, the minimization of the KL divergence of eq.(7.1) through
the minimization of the free energy functional F[Q]. Except that now, instead of fixing just
the magnetizations and performing a high temperature expansion, we fix also the correlations
by an additional Legendre transform and then we perform a small correlations expansion. The
resulting potential is the following entropy

S(m,C) = min
J,H



logZ(J,H)−

∑

i<j

Jij(Cij +mimj)−
∑

i

Himi





= min
J,H



log

∑

s

exp



∑

i<j

Jij[(si −mi)(sj −mj)− Cij] +
∑

i

hi(si −mi)






 (8.1)

where hi = Hi +
∑

j Jijmj is the usual mean effective field. The minimization guarantees that

mi =
∂ logZ
∂Hi

and (8.2)

Cij =
∂ logZ
∂Jij

. (8.3)
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Of course, by the well known duality of the Legendre transform, we can infer the couplings and
fields using

Jij = − ∂S

∂Cij

and (8.4)

hi = − ∂S

∂mi

, (8.5)

once the entropy of eq.(8.1) has been computed. The minimization of S is, however, a tricky
mater. By analogy of the high temperature expansion of the previous chapter, Sessak and
Monasson have proposed to introduce a fictitious inverse temperature β i as a scale factor
of the correlations and to expand the resulting entropy S(m,βC) around β = 0. Neither this
expansion is trivial, but they succeed by introducing a modified entropy who is, by construction,
constant for any β while being related in a simple way with their original entropy. This allows
them to compute up to order O(β4) the entropy and then, using eq.(8.4,8.5), the couplings and
fields. After defining the auxiliary quantities

Li ≡ 1−m2
i and Kij ≡ (1− δij)

Cij

LiLj

(8.6)

their result for the entropy is given by

S = −
∑

i

[1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

]

− β2

2

∑

i<j

K2
ijLiLj +

2β3

3

∑

i<j

K3
ijmimjLiLj + β3

∑

i<j<k

KijKjkKkiLiLjLk

− β4

12

∑

i<j

K4
ij[1 + 3m2

i + 3m2
j + 9m2

im
2
j ]LiLj −

β4

2

∑

i<j

∑

k

K2
ikK

2
kjLiLjL

2
k

− β4
∑

i<j<k<l

[KijKjkKklKli +KikKkjKjlKli +KijKjlKlkKki]LiLjLkLl

+ O(β5) (8.7)

which leads to the following relation for the couplings

Jij = βKij − 2β2mimjK
2
ij − β2

∑

k

KjkKkiLk

+
β3

3
K3

ij[1 + 3m2
i + 3m2

j + 9m2
im

2
j ] + β3

∑

k 6=i,j

Kij[K2
jkLj +K2

kiLi]Lk

+ β3
∑

k 6=i
l 6=j

KjkKklKliLkLl

+ O(β4) . (8.8)

As we can see in the simulations run by the authors, the additional terms of the expansion
indeed improve the accuracy of the inferred couplings up to a particular value of the inverse

i. We will use the same symbol, although it doesn’t correspond to the standard inverse temperature of the
Ising model.
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temperature at which the data were generated. However, beyond that point the inference error
becomes worse as we take into account higher order terms. The reason is that the right hand
side of eq.(8.8) contains a series of alternating signs which diverges beyond some radius of
convergence. To make this point clear we must first identify the corresponding terms in the
expansion of the entropy eq.(8.7). If we write the expression of the entropy in terms of Feynman
diagrams, using vertices for spins and edges for the correlation terms Kij, we have

S(m,βC) = − − 1
2

+
2
3

+

− 1
12

− 1
2

− +O(β5) (8.9)

where the sums are implicit. If we isolate the terms containing simple loops we have the
alternating series we were looking for. Their contribution in the expression for the couplings
is the one that creates the divergence beyond some value of the inverse temperature. We can
rewrite this contribution for the couplings in terms of Feynman diagrams as

J
(loop)
ij = −


 −


 − . . .




 , (8.10)

where dashed lines corresponds to the correlation term that is missing because of the differen-
tiation (see eq.(8.4)). One possible interpretation of eq.(8.10) is the following: to a first-order
approximation the coupling is given by the correlation of the pair in question. But, that way,
we overestimate it because of the stronger correlation induced by neighboring spins, coupled
with that pair. So we must subtract the correlations of 3-spins paths. But again, we are
overestimating them because of the correlations of 4-spins paths and so on.

The authors noticed that this series can be re-summed. To clarify this point they give a
simple example from the Curie-Weiss model, where the mean field magnetization is given by

m = tanh (βJ0m+ βh) , (8.11)

where the couplings are all equal to Jij = J0

N
. Differentiating with respect to h we get an

expression for the correlation which we can then solve for J0 and get

J0 =
C

1 + C
= C − C2 + C3 − C4 + . . . (8.12)

where β was absorbed in the coupling J0. The above equation is just the simpler version of
eq.(8.10). By this analogy the authors were able to give the closed form of J (loop)

ij

J
(loop)
ij = (LiLj)−1/2

[
M · (I +M)−1

]

ij
, (8.13)

where M is defined by Mij = βKij

√
LiLj and Mii = 0.

Interestingly, the authors also noticed that the 2-spins diagrams (i.e. the diagrams contain-
ing only powers of Kij) can also be re-summed and the result is identical to the independent
pair approximation of chapter 6

J
(2-spins)
ij =

1
4

ln

[
((1 +mi)(1 +mj) + Cij) ((1−mi)(1−mj) + Cij)
((1 +mi)(1−mj)− Cij) ((1−mi)(1 +mj)− Cij)

]
. (8.14)
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The authors propose to use a combination of eq.(8.13,8.14) as a way to estimate the couplings
from the observed magnetizations and correlations, ignoring the remaining terms in eq.(8.4).
Their final formula for the couplings is

Jij = J
(2-spins)
ij + J

(loop)
ij − Kij

1−K2
ijLiLj

. (8.15)

The last term prevents double-counting of the terms present in both series for J (2-spins)
ij and

J
(loop)
ij .

If the graph of the model in question was a tree, we know from chapter 6 that the correct
result for the couplings is just the independent pair approximation J (2-spins)

ij for edges present in
the graph and zero for the others. This means that all other terms, corresponding to diagrams
with loops, in eq.(8.4) should cancel out. Under this light, the result of eq.(8.15) is a corrected
version of the independent pair approximation as we depart from trees and begin to have loops
in our model.

One can also compute the local fields by applying eq.(8.5) to the entropy expansion of
eq.(8.7) but no closed form has been found by the authors.



Chapter 9

Susceptibility Propagation

In chapter 6 we have exposed the advantages of working with tree models. Indeed, their
decomposition in terms of purely local quantities allowed an exact and very efficient (O(N2))
algorithm to be found. It would be very useful to find a way to generalize these concepts in
cases where the underlying graph is not a tree. The general form of a joint distribution of a
tree model is, as we have seen in chapter 6,

Pt(x) =
∏

(ij)∈Et

Pij(xi, xj)
∏

i∈V

Pi(xi)1−|∂i| . (9.1)

The restriction of the graph being a tree is hidden in the edge set Et. It is tempting to
use the above factorized form on graphs that contain loops. It is known, nonetheless, that
this form can be exact only for trees, so using it in loopy graphs is only approximative. It
turns out that, under some conditions, it can be a good approximation for a certain class of
graphical models. However, the simple MST algorithm 6.1.1 cannot be generalized to find
loopy graphs and a completely new strategy must be devised. The assumption that a more
general joint distribution can be approximated by a factorized form such as the above has led
to the discovery, independently in various disciplines, of a class of inference algorithms known
as message passing. Such algorithms, although exact only on trees, can be applied on loopy
graphs as well and, under certain conditions, they turn out to be very good approximations.

We will first introduce the celebrated Belief Propagation (BP) algorithm, an inference al-
gorithm suited for the direct problem, who operates in polynomial time. As we will show, this
algorithm also minimizes the KL divergence of the true distribution with a trial distribution of
the form (9.1). Then, using the fluctuation-response theorem, we will derive a set of equations
involving the correlations and the couplings who can be used as an algorithm for the inverse
problem, as we did for the mean field theories of chapter 7.

9.1 Belief Propagation

In the analysis that follows we will omit writing the normalization constants in equations
involving distributions and use the symbol ∼= to denote equality up to a normalization. We will
also need to introduce some notation. We will rewrite the distribution of the Ising model on a
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tree graph G = (V,E) as

P (s) ∼=
∏

(ij)∈E

ψij(si, sj)
∏

i∈V

φi(si) with ψij(si, sj) = eJijsisj and φi(si) = eHisi . (9.1)

Belief propagation is based on the following idea: in tree graphical models there is always
an efficient way of performing the sums needed to compute the marginal of some variable or
set of variables. One has to start by summing the variables corresponding to the leaves of the
tree, then proceed to the next level of variables and so on until he reaches the desired variables.
That way, one always does sums of a single variable which is a computationally easier task. It
turns out that the total computation time is proportional to the number of edges, i.e. it is of
order O(N), instead of the exponential time required to compute marginals naively.

For example, let’s say we have a 4-spins chain without local fields as the one depicted above.
If we were to compute the marginal of s4 we would do

P4(s4) ∼=
∑

s3

ψ34(s3, s4)
∑

s2

ψ23(s2, s3)
∑

s1

ψ12(s1, s2) , (9.2)

where it is understood that we begin by performing the rightmost sum and proceed towards
the left. That way, we end up summing 3 · 2 terms, for each value of s4, instead of 23.

Belief propagation is based on the view that, each time a variable is summed, a “message”
is sent to the next variable containing information about the distribution of the latter based
on the state of the former. More precisely, for a general tree-graph the messages are defined in
the following way

µi→j(sj) ∼=
∑

si

φi(si)ψij(si, sj)
∏

k∈∂i\j

µk→i(si) , (9.3)

where ∂i \ j is the neighborhood of si except sj. It can be checked that, if one starts form
the leaves and iteratively computes all the messages towards the bulk, then the one and two
variables marginals are given by

Pi(si) ∼= φi(si)
∏

k∈∂i

µk→i(si) and (9.4)

Pij(si, sj) ∼= ψij(si, sj)φi(si)φj(sj)
∏

k∈∂i\j

µk→i(si)
∏

l∈∂j\i

µl→j(sj) . (9.5)

Moreover, one benefits from the computational gain that was described in the 4-spins system
example above.

The interesting feature of equations (9.3) is that they don’t necessarily need to be restricted
by the precise update schedule described above (from the leaves to the bulk). One can update
every message at every time step, starting from any initial conditions, and then, after a number
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of steps i, compute all marginals from equations (9.4,9.5). In fact, this procedure doesn’t even
require the graph to be a tree. Messages can be defined on the edges of any graph and the
equations (9.3) can be iterated until, hopefully, convergence is met. One can then compute a
set of marginals that can be used as approximations of the true marginals.

Belief Propagation uses only local exchange of information, between variables, which con-
cerns consistent marginalization of the variables with their neighbors, i.e. it guarantees that
Pi(si) =

∑
sj
Pij(si, sj) for any pair of neighbors. Locally consistent marginals, like these, don’t

necessarily correspond to a global distribution, hence they will be called beliefs hereon and will
be denoted by the symbol b( · ).

Since BP is exact only on trees, its effectiveness on loopy graphs relies on some kind of
“resemblance” with tree-graphs. This idea can be described qualitatively in the following way:
If, after the removal of a node of the graph, its neighbors become weakly correlated BP provides
a good approximation for the marginals. A class of models where this property can be found
is the class of sparse random graphs. In such graphs, because of the rarity of edges and the
randomness of their position, small loops are rare. If, moreover, variables are weakly correlated
in long distances, e.g. if, in the Ising model, the temperature is high enough, the above condition
is fulfilled. It turns out that the breakdown of BP correctness occurs at the transition between
the paramagnetic (replica symmetric) and spin-glass (broken replica symmetry) phases. The
latter phase is characterized by the decomposition of the Boltzmann distribution in a great
number of Gibbs states, an so BP tries to find marginals which are locally consistent with
different such states but inconsistent in a global way.

But let’s look at BP from our information theoretic point of view. As we have stressed
numerous times already, a method whose aim is to compute approximate marginals (or equiv-
alently moments, as in the mean field methods) tries to find the minimum KL divergence
between some “easy” trial distribution and the true model distribution. In our case now, this
trial distribution has the factorized form we found in trees, cf. distribution (9.1), except for
the fact that, since BP only guarantees the local consistency of the inferred marginals, the true
marginals are replaced by beliefs.

b(s) =
∏

(ij)∈E

bij(si, sj)
∏

i∈V

bi(si)1−|∂i| . (9.6)

The minimization of the KL divergence between the above distribution and the true Ising
distribution yields, as usual, a free energy minimization problem for the following distribution

F[b] =
∑

(ij)∈E

∑

si,sj

bij(si, sj) log
bij(si, sj)
ψij(si, sj)

+
∑

i∈V

(1− |∂i|)
∑

si

bi(si) log bi(si) (9.7)

It can be shown [MezardM 09] that the minima of the above free energy functional, under
normalization and consistency constrains,

∑
si
bi(si) = 1 and

∑
sj
bij(si, sj) = bi(si), correspond

to the BP fixed points, i.e. to the sets of marginals given by equations (9.4,9.5) whose messages
are such that the BP iteration given by eq. (9.3) wouldn’t alter them. This doesn’t say, however,
that the BP iteration will converge in any case in one of those fixed points. As we said before, if
we are in the paramagnetic phase the above free energy has one minimum and BP will converge
to the correct marginals. But in the spin glass phase, convergence may not even occur.

i. In trees, the number of time steps needed is equal to the length of the longest path, i.e. the time needed
so that the variables which are further way from each other exchange information.
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9.2 Susceptibility Propagation

Belief Propagation, and its derivatives ii, has been used with success in a number of contexts,
like Bayesian inference [Pearl 88], decoding low density parity check codes [Gallager 62], turbo-
codes [BerrouG 96] and satisfiability [BraunsteinMZ 05]. For the inverse Ising problem, Mora
and Mézard [MoraM 09] have derived a message passing algorithm, based on BP, by means of
the fluctuation-response theorem in the same line of thought we saw in the mean field theories.
To outline the derivation of their algorithm we first need to introduce an alternative formulation
of BP suited for models with binary variables, like spin systems. We define the cavity fields as

hi→j ≡
1
2

log
µi→j(+1)
µi→j(−1)

. (9.1)

At the BP fixed point these quantities are interpreted as the total effective field the spin i would
feel if spin j would be removed from the graph. Using the cavity fields, the BP equations can
be written as

hi→j =
∑

k∈∂i\j

uk→i +Hi with (9.2)

uk→i = atanh (tanh Jki tanh hk→i) . (9.3)

For the messages hi→j and uk→i we define their derivatives

gi→j,l ≡
∂hi→j

∂Hl

and vk→i,l ≡
∂uk→i

∂Hl

. (9.4)

Then, from the BP equations (9.2,9.3), we have that

gi→j,l =
∑

k∈∂i\j

vk→i,l + δil with (9.5)

vk→i,l = gk→i,l tanh Jik
1− tanh2 hk→i

1− tanh2 uk→i

. (9.6)

From eq. (9.4), together with the definition of the cavity fields in eq. (9.1), we have the
following expression for the magnetizations

mi = tanh


Hi +

∑

k∈∂i

uk→i


 (9.7)

form where we can derive an expression for the correlations, using once more the fluctuation-
response theorem and the expressions for the messages derivatives in eqns. (9.5,9.6)

Cij = gj→i,jC̄ij + gi→j,j(1−m2
i ) with (9.8)

C̄ij ≡
tanh Jij + tanhhi→j tanh hj→i

tanh Jij tanh hi→j tanh hj→i

−mimj . (9.9)

ii. BP solves marginalization problems. In different contexts, similar and equally intractable problems may
arise, like finding the configuration that maximizes a distribution. Similar, message-passing procedures can
be derived from the BP algorithm, suited for these problems, like the Max-Product and Min-Sum algorithms
[MezardM 09].
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The above formula can easily be inverted to yield a relation for the couplings, to be used in the
inverse problem

tanh Jij =
C̃ij − tanh hi→j tanh hj→i

1− C̃ij tanh hi→j tanh hj→i

(9.10)

where we have used the disconnected part of C̄ij = C̃ij −mimj given by eqn (9.8)

C̃ij =
Cij − gi→j,j(1−m2

i )
gj→i,j

+mimj . (9.11)

Once the fixed point values of the cavity fields and cavity susceptibilities hi→j and gi→j,k are
found the couplings can be computed using eqn (9.10). The authors propose the following
iteration to find those fixed point values
✓

✒

✏

✑

Algorithm 9.2.1: Susceptibility Propagation(m,C)

Initialize all u’s to random values
Initialize all h’s, v’s and g’s to zero
while δh 6= 0 and δg 6= 0

do





for (ij) ∈ V 2

do hi→j ← atanh(mi)− uj→i

for (ijk) ∈ V 3

do update gi→j,k using eqn (9.5)
for (ij) ∈ V 2

do update Jij using eqn (9.10)
for (ij) ∈ V 2

do update ui→j using eqn (9.3)
for (ijk) ∈ V 3

do update vi→j,k using eqn (9.6)
for i ∈ V

do Hi ← atanh(mi)−
∑

j∈∂i uj→i

return (J,H)

The above algorithm has been studied in the context of the inverse Ising problem [AurellOR 10,
MarinariK 10, Huang 10b] and the general conclusion is that although it provides accurate re-
sults in high temperature settings, it suffers from convergence problems as the temperature is
lowered. We will see, however, in the next section that these problems can be circumvented.

9.3 Bethe Approximation Method

Although we chose to introduce the subject from an algorithmic point of view, the BP
algorithm is deeply connected with the well known Bethe Approximation of statistical physics.
This approximation has been used to solve the Ising problem and uses the following idea: one
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can replace the original model with a tree model that has the same local structure i.e. each spin
has the same number of neighbors. This amounts in replacing the true free energy of the system
with one that has the form of eq.(9.7) called Bethe Free Energy. Here a connexion with the naive
mean field (NMF) and TAP theories can be made. We showed how these methods are obtained
by the two first of the expansion of the free energy in small couplings at fixed magnetizations.
Continuing the expansion naturally leads to loop terms, like JijJjkJki, and higher powers of
single couplings Jn

ij. It has been showed [GeorgesY 91] that these latter terms can be re-
summed and lead to the Bethe Approximation (BA). Thus the Susceptibility Propagation (SP)
algorithm, clearly corresponding to the BA, can be seen as a further improving NMF and TAP
by taking into account also the higher powers of single couplings in the expansion of the true
but intractable free energy.

Concerning the inverse Ising problem, it has recently been shown [Ricci-Tersenghi 12] that
there exist an analytical expression for the fixed point of the SP algorithm. These allows one
to use the Bethe Approximation without having to cope with the serious convergence problems
of SP. Here we will simply give the expression used to infer the couplings and refer the reader
to the original paper for further details

JBA
ij = −atanh

[
1

2(C−1)ij

√
1 + 4(1−m2

i )(1−m2
j)(C−1)2

ij −mimj − (9.1)

1
2(C−1)ij

√
(
√

1 + 4(1−m2
i )(1−m2

j)(C−1)2
ij − 2mimj(C−1)ij)2 − 4(C−1)2

ij .

Latter, in chapter 12 it will be seen that the above formula is able to give results even for low
temperatures, below the critical temperature of the systems in question, a region where SP
clearly fails.



Chapter 10

Adaptive Cluster Expansion

Belief Propagation is based on the assumption that the probability distribution of the system
in question can be approximated by a factorized distribution of the form of distribution (9.1),
which is exact on trees. As we have seen in chapters 6 and 9, this form allows extensive
quantities, such as the entropy, to be computed efficiently as they are decomposed in a sum of
local terms. To illustrate this point we rewrite the entropy corresponding to the distribution
(9.1)

S = −
∑

(ij)∈E

∑

si,sj

Pij(si, sj) logPij(si, sj)−
∑

i∈V

(1− |∂i|)
∑

si

Pi(si) logPi(si) . (10.1)

One way of looking at the above relation is that we have approximated the true entropy by
a sum of terms which are themselves correct expressions of the entropies of subsets of spins.
These subsets, called clusters, are, in that case, of sizes one and two. They are combined in
that particular way in order to avoid multiple counting of the single spin contributions: if we
simply sum all the two spins entropies we are taking into account |∂i| times the contribution
of the ith spin [YedidiaFW 03].

This idea can be extended by using larger and larger clusters, where the entropy is computed
exactly, and combine them in order to get better approximations of the entropy (or the free
energy). This leads to the so called Kikuchi approximation [Kikuchi 51, YedidiaFW 03]. This
approximation is able to provide better results than the Bethe approximation in cases where
the graph deviates from the locally tree-like structure of sparse random graphs and may contain
some small loops. It does so by using the exact form of the entropy or free-energy for clusters
large enough to contain these small loops. Of course, a drawback of the method is its higher
computational complexity, since the computation of those cluster entropies is exponential in
the cluster size.

In many natural contexts, systems have structures which, despite being sparse, they are
not typical examples of sparse random graph ensembles. They may contain regions of high
connectivity, where lots of small loops are present, and regions of relative sparseness. In such
cases a scheme using small clusters wouldn’t be effective, as high connectivity regions would
generate big errors, while a scheme using large clusters, able to account for the highly connected
parts, would be inefficient due to the high computational complexity.

In order to optimize the performance of such an algorithm, while not missing the information
contained in highly connected parts, S. Cocco and R. Monasson [CoccoM 11, CoccoM 12] have

53
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devised an adaptive cluster expansion for the inverse Ising problem, where the algorithm adapts
to the data and cleverly chooses different cluster sizes, to be used in the inference, for different
parts of the system. The idea is that one starts form the set of all clusters of size one, and then
selectively combines them to form larger clusters using a criterion that shows if the information
gain is worth the extra computational effort.

Since they focus their work on the inverse Ising model, the starting point is the Legendre
transform of the free-energy at fixed magnetizations and correlations, the same as the one used
in chapter 8

S(m,C) = min
J,H



logZ(J,H)−

∑

i<j

Jij(Cij +mimj)−
∑

i

Himi



 . (10.2)

For any subset Γ ⊂ V with |Γ| = K one can compute the subset entropy SΓ(m,C) by restricting
the variables in above formula accordingly. The complexity is dominated by the computation
of the partition function Z(J,H) and is therefore of order 2K . A second notion is that of the
cluster entropy ∆SΓ(m,C), which is the remaining contribution to the subset entropy, once all
other cluster entropies of smaller clusters have been subtracted. The two quantities are related
through the identity

SΓ(m,C) =
∑

Γ′⊂Γ

∆SΓ′(m,C) . (10.3)

Note that the sum runs over 2K − 1 clusters of sizes |Γ′| < K.
Using the Möbius inversion formula one can show that the cluster entropies can be recur-

sively calculated from all subset entropies SΓ′ with Γ′ ⊂ Γ

∆SΓ(m,C) =
∑

Γ′⊂Γ

(−1)K′−KSΓ′(m,C) (10.4)

which is a generalization of the idea, found also in the Bethe entropy form, cf. eq.(10.1), that
in order to avoid multiple counting of smaller cluster contributions, one has to subtract from
each subset entropy of size K the corresponding subset entropies of sizes K − 1.

The authors maintain that, in many cases, a good approximation to the entropy can be
achieved using only a well-chosen set of small clusters L,

S(m,C) ≈ S0(m,C) +
∑

Γ∈L

∆SΓ(m,C) , (10.5)

where the expansion is actually carried around a reference entropy which is given by mean field
theory, S0(m,C) = 1

2
log detM with Mij ≡ Cij√

mi(1−mi)mj(1−mj)
.

One obvious way to chose the set L is by not taking into account all cluster entropies below
some threshold θ. In that way, however, one has to compute the 2N − 1 cluster entropies and
then discard all those for which |∆SΓ(m,C)| < θ. This is clearly not efficient, so the authors
propose a recursive method reminiscent of evolution. Starting from the set of all one spin
clusters, a combination process constructs new clusters by combining old ones and a selection

process eliminates the non relevant clusters, keeping only those for which |∆SΓ(m,C)| < θ. This
criterion also makes information theoretic sense since, as the authors show, the cluster entropy
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of a two spin system is equal to the Kullback-Leibler divergence between the joint probability
of the two spins and the probability of two independent spins with magnetizations equal to the
true ones. In other words, it is the mutual information of the two spins. The argument can
be recursively iterated for larger clusters and therefore the cluster entropies represent, in some
sense, the information gain of taking into account those larger clusters, instead of considering
their sub-clusters to be independent. It is asserted that when two clusters, sharing some spins,
are linked by additional paths in the true graphical model, then the cluster entropy of their
combination will be important, as opposed to the case where all the information about actual
edges can be already found in the separate clusters. This leads to the following algorithm for
finding the set L
✓

✒

✏

✑

Algorithm 10.0.1: Adaptive Cluster Expansion(m,C, θ)

Initialization: build the set of all clusters of size one L1 = {1, . . . , N}
while at least one cluster is selected

do





for Γi,Γj ∈ LK such that |Γi ∪ Γj| = K + 1

do





Γ← Γi ∪ Γj

if |∆SΓ(m,C)| ≥ θ
then LK+1 ← {LK+1,Γ}

K ← K + 1
return (L =

⋃Kmax
l=1 Ll)

The selection step requires the computation of the cluster entropy from the cluster entropies
of the previous iteration according to the formula

∆SΓ(m,C) = SΓ(m,C)− (S0)Γ(m,C)−
∑

Γ′⊂Γ
Γ′ 6=Γ

∆SΓ′(m,C) (10.6)

Finally, once L has been found, the entropy can be computed from eq (10.5). The couplings
and fields can then be found using eqns (8.4,8.5) i.

i. The authors propose a more clever method which doesn’t require symbolic differentiation of the above
expression. We won’t get into the details and refer the reader to the original paper for a full discussion
[CoccoM 12].
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Chapter 11

Inference in the p < N regime

In chapters 7, 8 and 9 we presented a series of methods based on standard mean field theory.
As we have mentioned there, one of the necessary conditions for those methods to yield correct
results is that the graphical model, on which they will be applied, has to be fully connected.
In such cases, and under some additional conditions related to the strength of the interactions,
those methods are able to correctly predict the model parameters asymptotically for p → ∞.
Moreover, all the aforementioned methods rely explicitly on the inversion of the correlation
matrix C so they are constrained to cases where the correlation matrix is invertible. This
condition is fulfilled if the number of measurements p is at least equal to the number of spins
N so that the rows and columns of C are linearly independent. If p < N those methods will
potentially lead to infinite couplings if no regularization is used. In fact other methods also,
like Susceptibility Propagation or Adaptive Cluster Expansion, although not implicitly, rely on
the invertibility of C since they actually solve a system of equations whose constant factors
(determined by C and m) have to be linearly independent. So SP will also lead to infinite
couplings if p < N .

On the other hand, the whole question of inferring in the p < N is irrelevant in the fully
connected case since the couplings are of order O(1/

√
N) and estimation with p measurements

yields errors of order O(1/
√
p). Nonetheless, the situation is different when the graphical

model in question is not fully connected. Intuitively, inferring a sparse system has to need less
information than inferring a fully connected one. So if a system is sparse enough it could in
principle be inferred using p < N samples. However, the methods described previously would
still be worthless, because of the implicit or explicit matrix inversion.

A standard approach to avoid infinities is the use of some regularizer, i.e. some sort of
potential that forces the couplings to stay in the vicinity of zero. In this chapter we will review
a particular class of regularizers, used extensively in the literature, the ℓp-norm regularizers.
We will discuss how they can be used in the context of an inverse Ising algorithm through
the example of a method introduced by P. Ravikumar, M.J. Wainwright and J.D. Lafferty, the
ℓ1-regularized logistic regression [RavikumarWL 10], which uses the particular value of p = 1 i

for the ℓp-norm, a value that presents a number of benefits and is thus a standard choice. The
introduction of ℓp-norm regularizers is not constrained in that particular method and can be

i. Unfortunately the standard choice for the norm parameter is p, the same symbol as the one we use for the
number of samples. The probability of confusion is low however, since they never coexist in the same expression.
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‖x‖2/3
‖x‖1 ‖x‖2 ‖x‖∞

Figure 11.1: Unit circles using ℓp-norms for various values of p. From left to right p = 2/3,
p = 1, p = 2, p→∞. Note that the circles are convex only for p ≥ 1 and they are not smooth
at xi = 0 only for p ≤ 1.

used in other contexts as well, e.g. S. Coco and R. Monasson discuss their use in their Adaptive
Cluster Expansion algorithm in [CoccoM 12]. In part III, where we will present our new method
for exactly inferring systems with asymmetric interactions, we will also show how this idea can
be used to obtain an algorithm better suited for sparse systems in the regime p < N .

11.0.1 ℓp-norm regularization

The usual Euclidean norm of a vector x = (x1, x2, . . . , xN) is an ℓp-norm with p = 2. The
generalization to any p is defined as

‖x‖p ≡ p

√
|x1|p + |x2|p · · ·+ |xN |p . (11.1)

Some other interesting values of p are p = 0 where the norm equals the number on non-zero
elements, p = 1 where it equals the sum of their absolute values and p =∞ where it equals the
value of the maximum element ii. In fig.(11.1) we see a series of unit circles in spaces where the
ℓp-norm defines the metric, for some values of p.

In the context of machine learning or inverse problems, an important property of any reg-
ularizer is that it should be convex so that the corresponding optimization problem remains
convex. Circles are convex only in metrics defined by ℓp-norms with p ≥ 1, cf fig. (11.1).
An other important feature of inference algorithms in such contexts is that they should set a
fraction of the inferred parameters exactly to zero. This is, anyway, a very important aspect
of every scientific explanation: data should be interpreted with the smallest set of arbitrary
parameters. Moreover, in the inverse Ising problem it also has practical benefits since the goal
is to create algorithms able to predict the actual structure of physical networks, where a null
coupling is interpreted as a missing link. ℓp-norms which are able to set a fraction of the pa-
rameters exactly to zero are those which are not smooth at xi = 0, i.e. those with p ≤ 1.
The only value of p having both features is p = 1 obviously. The idea of using the ℓ1-norm in
optimization was introduced by R. Tibshirani [Tibshirani 96]. Let us look at his example to
see why the ℓ1-norm is able to set a fraction of the parameters to zero.

Let’s say we have the following optimization problem

(η∗, θ∗) = arg min





p∑

µ

(
yµ − η −

N∑

i=1

θixµi

)2


 subject to

N∑

i=1

|θi| ≤ λ (11.2)

ii. The p = 0 and p =∞ are defined as limiting cases and hence the term pseudo-norm is often used.
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θ
∗

θ
∗

Figure 11.2: A quadratic form, with minimum at θ∗, is minimized subject to ‖θ‖2 ≤ λ (left)
and ‖θ‖1 ≤ λ (right). The red dots indicate the solutions, i.e. the first place where the contour
lines hit the circles.

for some data (x(µ), yµ), µ = 1, . . . , p. The constraint is nothing but ‖θ‖1 ≤ λ, where λ is a
tuning parameter which controls the number of parameters θi to be set to zero. The above
problem amounts to minimize the quadratic form under the constrain. As can be seen in fig.
(11.2), if the ℓ2-norm is used, the contour will hit the circle at a zero almost never, whereas if
the ℓ1-norm is used this will sometimes occur at a corner.

So the ℓ1 regularizer has the ability to infer sparse results. This will prove very useful for
our discussion since we are interested in the case where inference is done with p < N , something
that can be done in principle only when the graphical model is sparse. We will present a natural
way of incorporating the ℓ1 regularizer in our inverse Ising problem by turning to the Bayesian
formulation of the problem. As we have seen in section 3.2, in stead of minimizing a Kullback-
Leibler divergence, an equivalent way of formulating an inference problem is by means of Bayes
theorem

P (J,H|s) =
P (s|J,H)P (J,H)

P (s)
, (11.3)

formulated here for the inverse Ising problem. In order to penalize dense models, the prior
distribution can be set to decay exponentially with the number of non-zero elements of the
couplings matrix P (J,H) ∼= exp(−λ‖J‖0). The problem with that is the non-convexity of the
ℓ0-norm, hence the ℓ1-norm is preferred since it favors sparse models while being convex. The
likelihood of the couplings and fields, using P measurements, now reads

P (J,H) ∼=
[
e
∑

i<j
Jij(Cij+mimj)+

∑
i

Himi−log Z(J,H) e−λ
∑

i<j
|Jij |]p (11.4)

Taking the negative logarithm we get the following log-likelihood function, rescaled by a factor
1/p

L(J,H) = logZ(J,H)−
∑

i<j

JijC̃ij −
∑

i

Himi + λ
∑

i<j

|Jij| , (11.5)

where we used the non-connected correlation C̃ij ≡ 〈sisj〉 = Cij + mimj. Note that the
above function, without the regularizer, is identical to the entropy in eq. (8.1) that we en-
counter in chapters 8 and 10. The minimum of L yields a set of model parameters (J∗, H∗) =
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arg min{L(J,H)} which are able to reproduce the correct correlations and magnetizations while
being sparse. The regularizer, in this case, doesn’t impose a hard constrain as in the quadratic
form example, cf. eqn (11.2),but a probabilistic one. The parameter λ functions as a kind of
chemical potential that controls the presence of non-zero couplings.

11.1 ℓ1-regularized Logistic Regression

Minimizing eqn (11.5) leads to a Boltzmann machine learning algorithm, as in eqns (14.7,14.6)
modified by the presence of the regularizer, thus it suffers from the usual intractability of the
partition function Z. In stead, P. Ravikumar, M.J. Wainwright and J.D. Lafferty proposed in
[RavikumarWL 10] a way to obtain a tractable algorithm by treating independently the neigh-
borhood of each spin. By doing that they map the problem to a set of N independent problems
which, being defined on star graphs, have partition functions which are easy to compute. The
trade off is that their algorithm fails to provide correct results in the low temperature phase
where the correlations are long-range. Nonetheless, it can be applied with success to sparse
models with weak interactions (high temperature). More importantly, the presence of the regu-
larizer cures the infinities caused by the high level of noise in the data and succeeds in providing
correct results even in the p < N regime.

In order to treat each neighborhood independently one has to infer the couplings, adjacent
to each spin, given the combined knowledge of their state and the state of their neighbors,
found in the data. For that, one has to start from the conditional probabilities for a spin given
the remaining ones

P (si|s\i) =
exp

(
si(Hi +

∑
j∈V \i Jijsj)

)

2 cosh
(
Hi +

∑
j∈V \i Jijsj

) , (11.1)

which leads to the the following set of negative log-likelihoods, one for each spin

L(i)(J\i, Hi) =
1
p

p∑

µ=1

f(J\i, s
(µ)
\i )−Himi −

∑

j∈V \i

JijC̃ij + λ‖J\i‖1 , (11.2)

with

f(J\i, s
(µ)
\i ) ≡ log 2 cosh


Hi +

∑

j∈V \i

Jijx
(µ)
j


 , (11.3)

where J\i is a shorthand for the vector {Jij : j ∈ V \ i}.
Then N2 independent couplings and N fields are found by solving the N convex minimiza-

tion problems

(J∗
\i, H

∗
i ) = arg min

{
L(i)(J\i, Hi)

}
. (11.4)

The actual couplings should then be inferred by taking into account the, a priori different,
values found for each two symmetric entries of J , for example by taking their average.



11.1. ℓ1-REGULARIZED LOGISTIC REGRESSION 61

Let us examine the computational complexity of the above program. There are N minimiza-
tion problems in each of which N parameters have to be inferred. However, the computation
of the log-likelihood (or its derivatives) requires summing over the p samples and summing
over the N − 1 remaining parameters. Thus the computational complexity of the algorithm
is O(pN3). In the mean field algorithms for fully connected graphical models of the previous
sections the sample complexity was determined by the fact that the correlation matrix had to
be invertible, thus p was at least equal to N in which case the above algorithm would be at least
of order O(N4). The authors of [RavikumarWL 10] have shown that, when the model is sparse,
under some additional conditions concerning the couplings strength, correct inference can be
done with a sample complexity of the order of O(d3 logN), where d is the maximum degree
of the graph. The additional conditions for the success of the algorithm concern two things.
First, the values of the non-zero couplings have to be bounded from below in absolute value,
i.e. min(ij)∈E |Jij| ≡ J

(min)
ij 6= 0. If one lets the couplings to have values arbitrarily close to

zero then one must have p→∞ in order to correctly distinguish them from the zero couplings
since the inference errors are of the order of O(1/

√
p). This is not proper to the particular

algorithm, it is a general condition for any algorithm that wants to infer the structure of a
sparse graphical model by distinguishing zero from non-zero couplings. The second condition is
related with the region of validity of the basic assumption on which the method relies: the fact
that the neighborhoods can be inferred independently. J. Bento and A. Montanari have shown
in [BentoM 09] that there is a threshold in the temperature at which the data was generated
beyond which the algorithm fails to reconstruct the correct graph with high probability, even
for a great number of samples. This threshold is apparently related, but does not coincide,
with the critical temperature of the model. It is natural to expect that, in the low temperature
phase, the long-range correlations forbid the independent treatment of each spin neighborhood.
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Chapter 12

Comparative simulations

In this section we will present the results of a number of simulations in order to compare the
performances of the algorithms described earlier on the inverse Ising problem. All the examples
take the following form: an Ising system is generated at random, the system’s evolution is
simulated using a Monte Carlo dynamics for a number of steps, the inverse Ising methods
are used to infer the couplings from the configurations generated by the dynamics and then
the error made on the couplings is computed and plotted against parameters like the inverse
temperature at which the samples were generated (β), the number of samples p and others.
Various definitions of the error have been used depending on the situation. The details will be
fully explained for every case.

We didn’t include two methods in the presentation for a number of reasons. The Boltzmann

Machine (see chapter 5) and the Adaptive Cluster Expansion (see chapter 10). All other meth-
ods have a polynomial computational complexity i and it is therefore natural to compare them.
On the other hand the Boltzmann Machine has an exponential complexity and it is well known
that, given enough time, it will yield the correct results within the limits imposed by finite
sampling, of course. The Adaptive Cluster Expansion has a computational complexity which
is not well defined. Its running time depends on the choice of the parameter θ (see 10.0.1) and
so is the inference quality. One can choose a very small θ in which case the algorithm tends to
be exact and of exponential complexity. It is therefore not very relevant to compare them with
the remaining algorithms which are designed to have a clear computational advantage with the
drawback of an often higher error.

12.1 Mean Field methods on fully connected systems.

First we examine fully connected systems, the so called Sherrington-Kirkpatrick (SK) model
(see chapter 2.2). As we have already mentioned, the couplings Jij are Gaussian variables with
mean 0 and variance 1/N . For the local fields Hi we included two cases: one where all fields
are zero (upper row of fig.12.1) and one where they are chosen at random uniformly between
in [−0.5, 0.5] (lower row of fig.12.1). In this first example we are interested in the quality of

i. Most of them are of the mean-field type which is the reason of their low complexity.
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Figure 12.1: Couplings inference error (eq.(12.1)) versus beta for a N = 100 system for p = 104

(left) and p = 105 (right). The local fields are zero in the upper row and uniformly random in
[−0.5, 0.5] in the lower row.

the couplings inference hence we have used a simple mean squared error

ǫJ = (βJ true
ij − βJ inferred

ij )2 =
2

N(N − 1)

∑

i<j

(βJ true
ij − βJ inferred

ij )2 . (12.1)

The first procedure is to simulate the system using Monte Carlo for a number of steps. Then
the data are used to compute the magnetizations and correlations from where the couplings
are inferred using the methods described in the previous chapters. The Monte Carlo procedure
is done in the following way: starting from a random initial spin configuration, the system is
simulated for 2Np steps in total. In each step, one spin is picked at random and is updated in
place using the standard Metropolis-Hastings criterion. For every 2N steps, one configuration
is memorized and only those resulting p configurations are used in the end.

For two values of p = 104 and 105 we plot the error of the above equation versus the inverse
temperature β at which the simulation was conducted. The experiment is then repeated 50
times with different realizations of the couplings matrix and the local fields and the results
are averaged. At this point it is important to stress that we didn’t take into consideration the
different thermalization times needed in different temperatures. In order to have a curve for
the error as a function of β we kept the number of samples fixed even if in lower temperatures
(especially beyond βc) one would probably need a greater number of samples to correctly
represent the distribution.
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Figure 12.2: Upper row: Couplings inference error (eq.(12.1)) versus p for a N = 100 system
with zero local fields, for β = 0.6 (left) and β = 0.9 (right). Lower row: The same but with
non-zero local fields, uniformly drawn in [−0.5, 0.5], for β = 0.4 (left) and β = 0.8 (right).

The different curves seen in fig.12.1 represent the results for the Naive Mean-Field method
(red) found in chapter 7.1, the TAP method (green) of section 7.2, the Independent Pair method
(blue) of section 6.2, the Small Correlation Expansion (magenta) of chapter 8 and the Bethe
Approximation (cyan) of section 9.3.

The first remark concerns the error at low β. It can be clearly seen in fig.12.1 that for
high temperatures (low β) all methods are equivalent and produce an error very close to 1/p.
Indeed it can be shown [AmariKN 92] that the error of the exact Boltzmann Machine algorithm
becomes 1/p for high temperatures and since all the above methods are correct in the limit
β → 0 this coincidence is expected. This error is natural since when we estimate the correlations
and magnetizations from a finite number of samples then we commit errors of order O(1/

√
p).

In higher values of β the IP method is clearly by far the worst. This is not surprising since
it is also by far the simplest ii. The remaining methods are all very close to the value 1/p with
SCE and BA being the best followed by TAP and then NMF. Especially in the case of zero
external fields all methods are almost indistinguishable up to β ≈ 0.8. Then however the curves
begin to deviate one from the other. As we enter the spin-glass phase the error becomes much
more important. The BA method seems to perform quite well for low temperatures while the
SCE who had the lowest error in higher temperatures becomes a really bad choice.

ii. It has a computational complexity of O(N2) while all other methods are O(N3).
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Let us now see how the error behaves as a function of the number of samples (fig.12.2).
Again IP performs much worse than the rest in general, although it can outperform the other
methods if the number of samples is really low. This is a general principle: the simpler a method
is, the smaller the errors it produces when the data is very noisy. The reason is that in more
complex methods the larger number of operations involved magnifies the already important
errors in the estimation of the correlations due to the small number of samples.

Another important remark is that the rule ǫJ ∼ 1/p doesn’t apply to large values of p. As
was shown in the analysis of the NMF and TAP methods in [RoudiH 11a] iii the error takes the
form ǫJ = ǫ + ǫ∞ where ǫ ∼ 1/p and ǫ∞ ∼ 1/N . As we can see in the figure these finite size
effects are more important for higher values of β. Moreover, we note that the asymptotic term
ǫ∞ has different constants for each method and that the rank of the methods from better to
worse is compatible with what we see in fig.12.1. Also note that the asymptotic term is more
important in low temperatures.

12.2 Mean field methods on sparse systems.

Let’s see now what happens when the model that we want to infer is sparse, i.e. a lot
of its couplings are zero. The model used here for the underlying graphs is the Erdős-Rényi
model where each of the N(N − 1)/2 possible links appears in the graph with an independent
probability such that the average degree is d. In the upper row we have again the error given
by eq.(12.1) versus β and the picture is the same as the one we had in the fully connected case
although the difference between the methods is more pronounced with NMF and TAP being
clearly the worse choices, within the mean field methods, for sparse graphs. We known that
NMF and TAP are good approximations in infinite dimensions or infinite range systems so this
is not surprising. On the other hand we see that the Bethe Approximation is the better choice
although SCE slightly outperforms it for a small range of β. This is expected since sparse
Erdős-Rényi graphs are locally tree-like and the BA is well suited in such cases. The same
remarks apply to the lower left frame where the error is plotted against the number of samples.

In sparse systems we have an additional parameter to vary, the average degree d. It is
interesting to see the behavior of the inference error as a function of d also. However, we judged
that the error given by eq.(12.1) is not a good measure for this case, as it would increase with
d anyway because of the greater number of non-zero couplings. Instead we used a normalized
version

ǫJ =

√√√√
∑

i<j(βJ true
ij − βJ inferred

ij )2

∑
i<j(βJ true

ij )2
. (12.1)

In the lower right frame of fig.12.3 we see the inference error, computed with the above formula,
of systems of size N = 100 with d ranging from 1 to 20. It is interesting to note that the mean
field methods get better with higher d while the IP, which is exact when applied to the already
known edges of a tree, gets worse. We even see that for d close to 1 iv it outperforms NMF

iii. The analysis concern the non-equilibrium versions of the algorithms but the same results apply to the
equilibrium case.

iv. Any connected tree has average degree 1. Here however it doesn’t mean that for d = 1 the graph is a
tree. It is however a collection of tree-like subgraphs.
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Figure 12.3: Upper row: Couplings inference error (eq.(12.1)) versus beta for a sparse N = 100
system with average degree d = 10 for p = 104 (left) and p = 105 (right). Low left: Couplings
inference error (eq.(12.1)) versus p for a sparse N = 100 system with average degree d = 10 at
β = 0.5. Low right: Couplings inference error (this time given by eq.(12.1)) versus the average
degree d for systems of size N = 100 simulated at β = 0.5 using p = 104 samples.

and TAP. Interestingly, the BA method seems to perform equally good in sparse and dense
situations.

12.3 ℓ1-regularized Logistic Regression

In the above simulations we left out the last algorithm presented in this part of the thesis,
the ℓ1-regularized Logistic Regression (see chapter 11). The reason is that, as it is explained in
the original paper [RavikumarWL 10], the purpose of this algorithm is slightly different. The
presence of the ℓ1 norm in the log-likelihood in eq.(11.5) has the following advantages: it allows
sparse inference, i.e. it discerns the couplings who are exactly zero from others who might just
be small, and it manages noisy data much better than the mean field methods allowing efficient
inference in the p ≈ N regime. On the other hand there is a drawback, the ℓ1 norm displaces
the global minimum of the log-likelihood so that couplings, who might otherwise correctly be
identified as non-zero, are inferred with wrong values. The result is that this algorithm is better
suited for identifying the structure of the underlying graph, i.e. its edge-set, and not so much
the actual values of the couplings.
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Figure 12.4: Receiver Operating Characteristic obtained by ℓ1-regularized Logistic Regression
and by thresholding the BA and IP methods for a system of size N = 200, average degree
d = 5, simulated at β = 0.4 using p = 400 (left) and p = 4000 (right) samples.

In order to evaluate its performance we introduce an other kind of error better describing the
quality of the graph structure inference. We introduce two quantities, the True Positive Rate

(TPR) (aka the sensitivity) and the True Negative Rate (TNR) (aka the specificity) defined in
the following way.

TPR ≡ TP
TP + FN

, (12.1)

TNR ≡ TN
FP + TN

, (12.2)

where

TP (True Positives) ≡ Number of non-zero couplings correctly identified

TN (True Negatives) ≡ Number of zero couplings correctly identified

FP (False Positives) ≡ Number of non-zero couplings identified as zero

FN (False Negatives) ≡ Number of zero couplings identified as non-zero .

Obviously the optimal inference corresponds to TPR = 1 and TNR = 1.
By varying the parameter λ in the algorithm described in section 11.1 we get the parametric

curve TPR(λ),TNR(λ), call a Receiver Operating Characteristic (ROC). In order to compare
with the other methods in the task of inferring the graph of the model we chose to use the
BA method, which has the best overall performance, and the IP method, which performs well
in sparse systems when the number of samples is very low, and use a thresholding procedure
in order to obtain a parametric curve similar with the one described above. By varying the
parameter Jmin and by setting equal to zero all couplings such that ‖Jij‖ < Jmin we obtain a
ROC for the BA method and one for the IP. The results are plotted in fig.12.4.

In the left frame the number of samples is really low, p = 400. Interestingly we see that
the ℓ1-regularized Logistic Regression is able to infer the graph much better than BA but the
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simpler IP method provides even better results. When the number of samples becomes larger,
however, as in the right frame (p = 4000) the IP method becomes the worse choice, as expected,
and the ℓ1-regularized Logistic Regression the best one.
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Part III

Exact Mean Field Theory in the

Asymmetric Ising Model

71





Chapter 13

Asymmetric infinite-range model

As we have already discussed in part I, many biological systems are composed of a great
number of elementary components interacting in a complex, non-regular way. In two archetyp-
ical examples, neural networks (NN) and gene regulatory networks (GRN), the components
influence each other in a one-way fashion. A nerve signal is transmitted from the soma to the
dendrites through the axon and in GRNs causal links are usually directed. Moreover, the vari-
ation of external stimuli (modeled as time-varying local fields) makes that the system cannot
be described by an equilibrium measure. This has motivated the modeling of such systems by
means of asymmetric kinetic networks. Asymmetric spin-glasses have been studied in a num-
ber of contexts [Derrida 87, DerridaGZ 87, GutfreundM 88, HertzGS 87, Parisi 86]. Although
it has been shown that a dynamic phase transition occurs [Derrida 87, DerridaGZ 87] it is
accepted that no “spin-glass” phase exists and therefore the individual spins never get locked
in some particular configuration. As we will see soon this, together with the asymmetry of
the couplings, allows an important simplification: the effective field felt by each spin acquires a
Gaussian distribution and thus thermal averages can be replaced by a simple Gaussian integral.
This was already noted in [GutfreundM 88].

We will examin a widespread variation of the asymmetric kinetic Ising model. One where
time is discrete and spins are updated in parallel in every time step. We will establish two
equations, one governing the time evolution of magnetizations, i.e. the ensemble averages of
every spin, and an other governing the time evolution of correlations. These results have been
presented in [MezardS 11, SakellariouRMH 12] reprinted in part IV. These equations relate the
model parameters to the observable quantities in a simple way thus, they can be used in two
ways. First, one can predict the observables at any time step, given an initial state and the
values of the model parameters, i.e. one can solve the direct problem. Moreover, the relations
can be inverted, and solved with respect to the model parameters, allowing one to solve the
inverse problem, that is to infer the model that generated a given set of magnetizations and
correlations.

13.1 The direct problem

First, the fields and couplings are considered to be time independent which leads to a
stationary distribution. Including time dependent parameters in the direct problem would
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yield equations of the same form, but with a slightly different interpretation. Still, we will
present the two cases separately for clarity, since they yield different algorithms for the inverse
problem.

13.1.1 The model

The model used throughout this section is the same as the one used in [RoudiH 11a,
RoudiH 11b]. In these papers the authors adapt the naive mean-field and TAP theories, found
in sections 7.1 and 7.2, to the case of asymmetric couplings. We will use these approximations
in our simulations and compare their performances with our method. Interactions are infinite-
range, as in the well known Sherrington-Kirkpatrick (SK) model, Jij 6= 0,∀i, j. Time is discrete
and the N spins s(t) = {s1(t), . . . , sN(t)} evolve according to the following dynamics

P (s(t)|s(t− 1)) =
N∏

i=1

1
2 cosh(βhi(t))

eβsi(t)hi(t) , (13.1)

where

hi(t) = Hi +
∑

j

Jijsj(t− 1) . (13.2)

The couplings Jij are asymmetric, i.e. Jij 6= Jji,∀i 6= j and independent identically distributed
according to a Gaussian distribution with mean 0 and variance 1/N , as in the symmetric SK
model

ρ(J) =

√
N

2π
e−N J2

2 . (13.3)

The local fields are also independent and distributed uniformly in [−1, 1]. The inverse temper-
ature β can be seen simply as a parameter controlling the degree of independence of the spins,
since it doesn’t really correspond to the inverse physical temperature of the kinds of systems
we are interested in.

In this section we use parallel Glauber dynamics for the numerical simulations. Starting
from some random initial condition, in our case si(t = 0) = ±1 with probability 1/2, the spins
are updated in parallel for p time steps. Then we use every configuration of the in s ≡ {si(t) :
i = 1, . . . , N ; t = 1, . . . , p} to compute the empirical magnetizations and correlations, defined
later in this chapter.

For comparison, we will also present in this chapter numerical results from a symmetric
system. This system is exactly the same as the one described above with the only difference
being its symmetric couplings matrix, Jij = Jji.

13.1.2 Magnetizations

We begin by deriving the mean-field equations for the magnetizations

mi ≡ 〈si(t)〉 = 〈tanh βhi(t)〉 . (13.4)
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Figure 13.1: When the couplings matrix is asymmetric the in-coming and out-going couplings
of one spin are uncorrelated and thus the terms in the local field due to the other spins are
independent random variables, distributed according to the distribution of the couplings.

The local field on spin i due to the other spins,
∑

j Jijsj(t−1), is the sum of a large number
of terms. In the symmetric couplings case, these terms are correlated via the influence of the
spins at time t − 2. However, in the asymmetric case, the terms of the sum are independent
due to the independence of Jij and Jji (see fig.13.1). Thus, as a sum of a large number of
independent random variables,

∑
j Jijsj(t− 1) is a Gaussian random variable with mean

gi ≡
〈
∑

j

Jijsj(t)

〉
=
∑

j

Jijmj (13.5)

and variance

∆i ≡
〈

∑

j

Jijsj(t)




2〉
−
〈
∑

j

Jijsj(t)

〉2

(13.6)

=
∑

j,k

JijJik [〈sj(t)sk(t)〉 −mjmk] . (13.7)

The sum in eq.(13.7) is dominated by the diagonal elements , therefore the variance can be
written as

∆i =
∑

j

J2
ij(1−m2

j) . (13.8)

In fig.(13.2) we present some experimental evidence about the above claims. A N = 100
system is simulated according to the dynamics described by eq.(13.1,13.2) for p = 105 time-
steps, first with symmetric (top row) and then with asymmetric couplings (bottom row), at
three different values of β. What is plotted in every frame is a histogram of the different
values the effective local field of the first spin,

∑
j J1jst(t), takes in every time-step, as well

as the theoretical prediction of its distribution, i.e. a Gaussian with the appropriate mean
and variance (eq. 13.5 and 13.8). In the asymmetric case the curve matches really well the
experimental data: the contribution of every spin in the effective local field is independent of the
others. In the symmetric case, however, the prediction is clearly wrong. At high temperatures
(small β) the error is small because the spins still have some degree of independence due to the
thermal noise. On the other hand at low temperatures (high β) the Gaussian fails completely to
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Figure 13.2: Evidence for the fact that the effective local field acting on a spin, due to the
presence of the other spins, has a Gaussian distribution in the asymmetric case. Top row:
a asymmetric system of N = 100 spins is simulated, according to the dynamics described
by eq.(13.1) for p = 105 time-steps at three inverse temperatures β = 0.5, 1, 2 from left to
right. The histograms show the effective local field of the first spin scaled by β, β

∑
j J1jsj(t),

for the whole time series. The blue curve is the theoretical prediction 1√
2πβ2∆1

exp(−(x −
βg1)2/(2β2∆1)), where g1 and ∆1 are given by eq.(13.5,13.8). Bottom row: the same but for a
system with symmetric couplings. At high β the distribution is clearly not Gaussian and has
multiple modes, indicating the existence of metastable states, typical of the glassy phase.

describe the true distribution. The distribution develops multiple modes beyond βc = 1, which
is the inverse of the critical temperature of the SK model, indicating an ergodicity breaking,
typical of the glassy phase. The system is stuck in some local minimum of the free energy
and only explores a small sub-region of phase space. This creates one mode in the distribution
of the effective local field. Eventually the system escapes the local minimum and finds itself
trapped in some other region and so on. This creates the complex profile seen in the bottom
right frame of fig.(13.2). Lowering the temperature even more will eventually lead to a series
of delta peaks (not shown).

Using the above remarks we can replace the ensemble average of eq.(13.4) by a Gaussian
integral and thus obtain the magnetizations of each spin as a function of the remaining mag-
netizations

mi =
∫
Dx tanh

[
β
(
Hi + gi + x

√
∆i

)]
, (13.9)

where Dx ≡ dx√
2π

e− x2

2 is the measure of a Gaussian variable x with zero mean and variance
unity.

Equations (13.5,13.8,13.9) are our mean field equations. The abbreviation MF will be used
hereafter for any reference to these equations as well as others derived from those, as those
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describing the correlations and those used in the inverse problem found later in this chapter.
They rely only in the central limit theorem and are exact for asymmetric systems in the limit
N, p → ∞. They can also be used as an approximation for symmetric systems, as long as the
temperature is not too low.

It is important to state that in this form they have no predictive power. One cannot compute
any magnetization if he doesn’t have a priori knowledge of all the magnetizations. However
they are useful for the inverse problem since they relate the magnetizations with the parameters
of the model, and thus can be inverted to infer the model.

It is instructive to compare eq.(13.9) with the corresponding equations of naive mean field
theory (NMF) and the TAP approximation found in [RoudiH 11a, RoudiH 11b]. We rewrite
the two equations here using our notation.

mi = tanh [β (Hi + gi)] (13.10)

and

mi = tanh [β (Hi + gi −miβ∆i)] (13.11)

We expand the quantity φi ≡ 1
β
atanhmi in powers of ∆i using the Gaussian mean field expres-

sion for mi from eq.(13.9).

φi = ui − β∆i tanh(βui) + 2β3∆2
i tanh(βui)[1− tanh2(βui)] +O(∆3

i ) , (13.12)

where ui ≡ Hi+gi. We see that the first term is just the naive mean field equation (13.10). This
is a well known fact of mean field theory: by taking

〈
tanh(Hi +

∑
j sj)

〉
≈ tanh(Hi +

∑
j 〈sj〉)

we completely threw away the variance, i.e. ∆. We now do the same for the TAP equation
(13.11) and obtain

φi = ui − β∆i tanh(βui) + β3∆2
i tanh(βui)[1− tanh2(βui)] +O(∆3

i ) . (13.13)

They differ at order ∆2
i . Equations (13.12,13.13) are high temperature expansions, therefore

both NMF and TAP are high temperature (or weak couplings) approximations to the correct
result.

The interpretation of eq.(13.11) raises a small paradox. The improvement of TAP over
NMF is due to the Onsager reaction term, miβ

∑
j J

2
ij(1−m2

j). In symmetric systems there is
a physical, cavity-type, argument leading to this term. The idea is the following. In eq.(13.10)
the magnetizations appearing in gi =

∑
j Jijmj are not the actual ones, but the magnetizations

the spins would have in the absence of spin i. Eq.(13.10) would be correct if the spin i is
influenced by but does not influence the remaining spins. What actually happens is that the
magnetizations of the remaining spins are shifted by χjjJijmi, as we explained in section 7.2,
where

χjj ≡
∂mj

∂hj

∣∣∣∣∣
hj=0

= β(1−m2
j) , (13.14)

hence the form of eq.(13.11). Here, χjj is the magnetic susceptibility, i.e. the answer of
mj to a small change of the effective field hj. This is true for symmetric systems. How-
ever, in the asymmetric case the reaction term, following the same cavity argument, would be
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miβ
∑

j JijJji(1−m2
j). Since Jij 6= Jji and Jij ∼ O(1/

√
N) this term vanishes for N →∞ and

there is no reaction phenomenon. However, there is an alternative way of deriving the TAP
equations without the use of a cavity argument. This is done by a second order Plefka-type
expansion which yields the term miβ

∑
j J

2
ij(1 −m2

j) for both symmetric and asymmetric sys-
tems. In conclusion, although the physics that led originally to the TAP equations is not valid
for asymmetric systems, they are still a weak couplings expansion of the exact equations.

In fig.(13.3) we present a series of scatter plots depicting the results of the three mean
field methods, for both asymmetric (top row) and symmetric (bottom row) systems, at inverse
temperatures β =0.5, 1 and 2 (from left to right). In the asymmetric case Gaussian mean field
theory (denoted simply MF hereon) is always correct while NMF and TAP become worse at
high β. In the symmetric case all three methods are inexact. However both MF and TAP are
descent approximations in the high temperature region, β < 1. Note that in the bottom right
frame (β = 2) TAP predictions are closer to the true values of the magnetizations than those
predicted by MF. A more detailed numerical study comparing the results of the three mean-field
methods between symmetric and asymmetric systems can be found in [SakellariouRMH 12].

The behavior of the errors as a function of β can be better appreciated in the next set of fig-
ures (13.4). What is shown is the mean squared error of the magnetizations (mtrue

i −minferred
i )

made by the three mean field methods, as a function of β, for asymmetric (left) and symmetric
systems (right). The systems used have N = 100 spins and are simulated for p = 105 times.
The whole procedure is repeated 50 times for different realizations of the system and the curves
are the average over these realizations.

13.1.3 Correlations

We now turn to the problem of computing the correlations. We begin by defining the two
types of correlations suited for the study of non-equilibrium systems. Equal-time correlations
and time-delayed correlations,

Cij ≡ 〈δsi(t)δsj(t)〉 (13.15)

and

Dij ≡ 〈δsi(t+ 1)δsj(t)〉 , (13.16)

where δsi(t) is the fluctuation of the magnetization δsi(t) = si(t)−〈si(t)〉. We shall establish a
mean field relation between the matrices C and D using the same arguments as before, about
the Gaussianity of the effective field.

We start by writing
∑

j Jijsj(t) = gi +δgi(t), where δgi(t) is Gaussian distributed with mean
0 and variance ∆i. Now, by definition of Dij we have

Dij = 〈sj(t) tanh [β (Hi + gi + δgi(t))]〉 − 〈sj(t)〉 〈tanh [β (Hi + gi + δgi(t))]〉 . (13.17)

Multiplying by the couplings matrix J we have
∑

k

JjkDik = 〈(gj + δgj) tanh [β (Hi + gi + δgi)]〉 − gj 〈tanh [β (Hi + gi + δgi)]〉

= 〈δgj tanh [β (Hi + gi + δgi)]〉
(13.18)
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Figure 13.3: Scatter plots of inferred versus predicted magnetizations. Top row: a N = 103

spins system with asymmetric couplings matrix is simulated for p = 104 time-steps according to
the dynamics defined in eq.(13.1,13.2) at inverse temperatures β =0.5, 1, 2 (from left to right).
What is plotted are the magnetizations, inferred according to the three mean field equations
(13.9,13.10,13.11). The color scheme is: NMF red, TAP green, MF blue. The figures strongly
suggest that eq.(13.9) is exact for any choice of β, whereas NMF and TAP are only high tem-
perature approximations with TAP performing better than NMF. Bottom row: the same but
for a system with symmetric coupling matrix. At high temperatures (left panel) MF and TAP
are close to the correct result and they both outperform NMF. However, as the temperature is
lowered, they both give incorrect results, with TAP being a better approximation.

In order to evaluate the average we need the joint distribution of δgi and δgj. The crucial point
to keep in mind is that, as the couplings are of order 1/

√
N , each matrix element of C and D

is also small, of order 1/
√
N . Their covariance is therefore small:

〈δgiδgj〉 =

〈
∑

k

Jik (sk − 〈sk〉)
∑

l

Jjl (sl − 〈sl〉)
〉

=
∑

k,l

JikJjlCkl =
(
JCJT

)

ij
≡ ε , (13.19)

where ε is typically of order 1/
√
N . So the joint distribution of x = δgi and y = δgj takes the

form, in the large N limit (omitting terms of order ε2):

P (x, y) =
1

2π
√

∆i∆j

exp

(
− x2

2∆i

− y2

2∆j

+ ε
xy

∆i∆j

)
(13.20)
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Figure 13.4: Mean squared error in predicting the magnetizations (mtrue
i −minferred

i ), for the
three methods MF (blue), TAP (green) and NMF (red), as a function of β in a N = 100
asymmetric (left) and symmetric (right) system. p = 105 samples were used. Note: The error
bars for the asymmetric case are negligible. The same applies in the symmetric case for β < 1.
However in the glassy phase (β > 1) fluctuations become important, as the ergodicity of the
phase space trajectory, and thus the sampling quality, fluctuate a lot. We did not include the
large error bars as they do not show well in logarithmic scale, but used dashed lines to stress
that the results are only indicative. Despite that, the curves are still relevant because they
show the relative distance between the errors.

Using the small ε expansion of eq. (13.20) we can rewrite eq. (13.18) as

∑

k

JjkDik =
ε

∆i∆j

∫ dx√
2π∆i

dy
√

2π∆j

e
− x2

2∆i
− y2

2∆j xy2 tanh [β (Hi + gi + x)]

= εβ
∫ dx√

2π∆i

exp− x2

2∆i

(
1− tanh2 [β (Hi + gi + x)]

)
. (13.21)

Combining eq. (13.19) and eq. (13.21) we get:

(
DJT

)

ij
=
(
JCJT

)

ij
β
∫ dx√

2π∆i

e− x2

2∆i

(
1− tanh2 β (Hi + gi + x)

)
, (13.22)

which gives the explicit mean-field relation between C and D

D = A J C , (13.23)

where A is a diagonal matrix: Aij = aiδij, with:

ai = β
∫
Dx

[
1− tanh2 β

(
Hi + gi + x

√
∆i

)]
. (13.24)

Again, as in the case of magnetizations, the result takes the same form as the ones found by
the naive mean field and TAP approach. The difference is found in the diagonal matrix A and
comes from the evaluation of the ensemble average in eq.(13.16). The NMF and TAP results
are

anMF
i (t) = β

[
1−mi(t+ 1)2

]
, (13.25)
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Figure 13.5: Top row: A N = 100 asymmetric system is simulated for p = 105 time steps at
β=0.5, 1 ,2 form left to right. The plot shows AJC versus D for NMF (red), TAP (green) and
MF (blue), where the matrices C and D are estimated from Monte Carlo simulation. Bottom
row: the same but with symmetric couplings.

the ‘TAP’ approximation gives:

aT AP
i (t+ 1) = β

[
1−mi(t+ 1)2

] [
1− (1−mi(t+ 1)2)β2

∑

k

J2
ik(1−mk(t)2)

]
(13.26)

As in the case of magnetizations, eq.(13.23,13.24) are exact in the large N limit when the
couplings matrix is asymmetric. This result also relies solely in the central limit theorem. Figure
13.5 shows scatter plots of the three methods predictions for the correlations. A N = 100 spins
system with asymmetric couplings (top row) is simulated for p = 105 time steps at inverse
temperatures β =0.5, 1 and 2 and we plot the predicted values of the matrix D = AJC versus
the empirical, found in the simulation. We note again that MF is exact for all choices of
the temperature, whereas NMF and TAP are only high temperature approximations. TAP
outperforms NMF in high temperatures but overshoots at smaller ones making it completely
unsuitable as an approximation. In the bottom row we also give plots of symmetric systems
for the same set of N , p and β. Interestingly, unlike in the case of magnetizations, MF remains
by far the better approximation even in this case because of the overshooting of TAP. Its
predictions are in no way exact, but they are a descent approximation, especially in the β < βc

phase.
The above remarks can be better appreciated in fig. 13.6 where we plot the mean squared

error of the prediction of D, 1/N2∑
i,j(Dij − (AJC)ij)2 as a function of β. The system has

size N = 100 and the simulation spans p = 105 time steps. The curves are averaged over 50
realizations of the system.

The results for the correlations, presented above, are very important when it comes to the
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Figure 13.6: Mean squared error in predicting the time-delayed correlations (Dtrue
ij −Dinferred

ij ),
for the three methods MF (blue), TAP (green) and NMF (red), as a function of β in a N = 100
asymmetric (left) and symmetric (right) system. p = 105 samples were used. See caption of
fig. 13.4 about the error bars.

inverse problem. As we will see in the next section, we can have an efficient algorithm for
inferring the couplings matrix of an unknown model by inverting the matrix relation (13.23).
But before turning to the inverse problem let’s make a few comments on the applicability of the
above results in the non stationary case, where the model parameters are varying with time.

13.1.4 Non Stationary Case

In the general setting both the couplings J and the local fields H can vary with time.
In our simulations, however, we focused on the particular case where the couplings are time
independent and the local fields vary uniformly as

Hi(t) = H0 sin(ωt) . (13.27)

This can be used to model some interesting experimental situations in the context of neural
networks, where one observes a fixed structure (e.g. the retina) subject to a varying external
stimulus (e.g. an image of varying intensity). The generalization of time varying couplings is
straightforward and will be omitted from this presentation.

The dynamics used is, as before, given by eq.(13.1) with eq.(13.27) substituted in eq.(13.2).
The procedure, however, is slightly altered: Starting from some initial configuration s(0) we
run the parallel Glauber algorithm for tmax time steps. This will produce a time series {s(t) :
t = 1, . . . , tmax}, referred to as a run hereafter. Then, we set t = 0, initialize the spins back to
the same initial configuration and make another run, and so on until we have p runs. We end up
with a set of data which can be written s = {sr

i (t) : i = 1, . . . , N ; t = 1, . . . , tmax; r = 1, . . . , p}.
The averages are then taken separately for each time t with respect to the index r.

mi(t) ≡ 〈sr
i (t)〉r=1,...,p (13.28)

Cij(t) ≡
〈
sr

i (t)s
r
j(t)

〉

r=1,...,p
−mi(t)mj(t) (13.29)

Dij(t) ≡
〈
sr

i (t+ 1)sr
j(t)

〉

r=1,...,p
−mi(t+ 1)mj(t) (13.30)
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Figure 13.7: Time evolution of the magnetization of one spin for a N = 100 spins system
computed from p = 104 Monte Carlo runs of length tmax = 100 at inverse temperature β = 2
(black x’s), and their theoretical predictions based on NMF (red), TAP (green) and MF (blue)
theories. The external field is of the form of eq.(13.27) with H0 = 0.5 and ω = 2π/100 Left:
asymmetric couplings. Right: symmetric couplings.

The r index will be dropped hereafter.
The derivation of the mean field equations is straightforward. One only needs to keep track

of the time indices. The result for the magnetizations is

mi(t+ 1) =
∫
Dx tanh

[
β
(
Hi(t) + gi(t) + x

√
∆i(t)

)]
(13.31)

and for the correlations

D(t) = A(t) J C(t) , (13.32)

with Aij(t) = ai(t)δij and

ai(t) = β
∫
Dx

[
1− tanh2 β

(
Hi(t) + gi(t) + x

√
∆i(t)

)]
. (13.33)

In figure 13.7 we can see the predictions of the three methods in the non stationary case.
Not surprisingly MF matches perfectly the experimental data in the asymmetric case where
NMF and TAP fail to do so and fails in the symmetric one, where TAP performs better. Note
however that in the low temperature phase of the symmetric case, as in the right frame of figure
13.7, the results vary a lot from one example to another and TAP is just on average better that
MF, as opposed to the asymmetric case where MF performs always better than TAP.

13.2 The inverse problem

As mentioned in the beginning of this chapter, unlike in the traditional realm of statistical
mechanics where systems of atoms or molecules have always symmetric interactions, in many
biological systems components rarely interact in a symmetric way. Traditionally, in physics,
the microscopic details of systems of interest are postulated on the basis of symmetry and
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Figure 13.8: Graph representing 2 time steps of a 5 spins system. Highlighted in red are the
couplings corresponding to one row of J . In the asymmetric case (left) they represent all in-
coming couplings in one spin and can be inferred independently of the rest. In the symmetric
case however (right) they are related to the corresponding column of J and the in-coming
neighborhoods are not independent.

homogeneity arguments and on the understanding of the fundamental physical laws. In biology,
however, such a reasoning would be catastrophic since the complex details of living organism
are essential to their functioning and behavior. Hence the need for a method for inferring the
complex network of interacting components based on observations of their collective behavior.

In the previous section we introduced a set of relations describing the behavior of mag-
netizations and correlations which are asymptotically exact for asymmetric systems. These
relations will help us establish an algorithm for solving the inverse problem which will be both
numerically exact and efficient in terms of its time complexity.

13.2.1 Stationary case

Let’s start with the stationary case, where both couplings and local fields are independent
of time. We begin by rewriting the two main equations of the previous section in a simplified
way. First, the factor β representing the inverse temperature at which the data are generated,
will be absorbed in the couplings and local fields. It’s just a global scaling factor and cannot
be inferred separately. Second, we will notice that the inverse problem decouples in a set of
smaller problems: the in-coming couplings for each spin can be inferred independently. The
reason for that lies again in the asymmetry of the couplings. In the symmetric case the in-
coming couplings of one spin take the same values as the out-going ones. But the out-going
couplings of one spin are the in-coming of other spins and so on. In the asymmetric case,
however, this is not true and all the couplings of the system can be viewed as a collection of
independent sets of in-coming couplings, one for every spin. See figure 13.8. We are going to
further simplify the notation by dropping also the i index and write, for example, m = mi,
∆ = ∆i, Jj = Jij and so on. The equations for the magnetizations now read

m =
∫
Dx tanh

[
H + g + x

√
∆
]
. (13.1)

For the correlations some additional notation is necessary. We can obviously rewrite eq.(13.23)
as

J = [A(J)]−1DC−1 (13.2)
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where we have stressed the J dependence of A through gi and ∆i. We introduce the matrix
B = DC−1 with column vectors b(i)

j =
∑

k DikC
−1
kj . Now, dropping the i index, one can infer

each row of the J from

Jj = bj/a , (13.3)

with

a =
∫
Dx

(
1− tanh2

[
H + g + x

√
∆
])

. (13.4)

Additionally we have the following link between a and ∆

∆ =
1
a2

∑

j

b2
j(1−m2

j) ≡
γ

a2
(13.5)

Obviously one cannot compute Jj directly from eq.(13.3) because a depends on the Jj’s.
We therefore propose the following iterative procedure
✓

✒

✏

✑

Algorithm 13.2.1: Mean Field Inverse Ising, stationary case(m,C,D)

Invert C
for i← 1 to N



for j ← 1 to N
do bj ←

∑
k DikC

−1
kj

γ ← ∑
j b

2
j(1−m2

j)
∆̂← ∆0

while ∆ 6= ∆̂

do





∆← ∆̂
Using mi compute u ≡ Hi + g by inverting eq.(13.1)
Using u and ∆ compute a using eq.(13.4)
∆̂← γ/a2

for j ← 1 to N
do Jij = bj/a

g ← ∑
j Jijmj

Hi ← u− g
return (J,H)

The above algorithm takes as inputs the vector m and the matrices C and D, found exper-
imentally, and returns the parameters of the corresponding Ising model H and J . For every
spin it first computes γ and then, starting from some initial value for ∆, it iterates equations
(13.1,13.4,13.5) until the value of a that satisfies eq.(13.23) is found. One then founds the
couplings simply by using eq.(13.3) and the local fields by subtracting g =

∑
j Jijmj from the

total effective field u, also found during the iteration.
It is also important to realize that, in the N → ∞ limit, ∆ becomes independent of index

i. Therefore, for large systems, one can modify the above algorithm to run the while loop only
once and then use the same value for ∆ in the calculations of the remaining ai’s.
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Let’s now look at the time complexity of the algorithm. The inversion of C and the computa-
tion of B, through matrix multiplication, dominate the time complexity of the algorithm. The
while loop converges exponentially fast when some conditions are met, as we will see shortly.
The time complexity is therefore O(N3). (Actually, there exist O(N2.807) and O(N2.376) algo-
rithms for matrix multiplication and inversion, but we are not interested here). This is the case
when we already have m, C and D. In applications, however, one usually starts form the raw
data s = {si(t) : i = 1, . . . , N ; t = 1, . . . , p}. Then, the computation of m takes O(Np) time
and that of C and D O(N2p). Since p > N , as we will see shortly, this is the part that actually
dominates the whole procedure.

The second important remark concerns the convergence condition which is connected with
the sample complexity. First, the number of samples cannot be less thanN , otherwise the matrix
C wouldn’t be invertible. This is a well known fact and has to do with the linear independence
of its row vectors and column vectors. One cannot construct N linearly independent vectors
of the form v

(i)
j = 1

P

∑p
t=1 s

t
is

t
j with p < N . That’s a necessary condition but, unlike in the

NMF and TAP derived algorithms, it is not sufficient. A stronger condition must be imposed
and concerns the while loop. The procedure inside the while loop maps a value of ∆ to a new
one ∆̂ and halts when a fixed point is found. This can be described by a function ∆̂ = f(∆).
The fixed point exists if f intersects the diagonal y = x at some finite point and it is stable if
df/d∆ ∈]− 1, 1[. The function f can be written in a compact way as

f(∆) =
γ

a(u(∆),∆)2
(13.6)

where a is given by eq.(13.4) and u(∆) satisfies eq.(13.1) for given m and ∆. The value at the
origin is easily found f(0) = γ

(1−m2)2 , which is, as expected, nothing but the NMF result. We
can also compute the asymptotic behavior of f for ∆→∞ by noting that

tanh(u+ x
√

∆) ∼ 2θ(u+ x
√

∆)− 1 and (13.7)

1− tanh2(u+ x
√

∆) ∼ 2√
∆
δ(u+ x

√
∆) , (13.8)

where θ and δ are the usual Heaviside step and Dirac delta functions. Therefore we have that
equations (13.1,13.4) behave for large ∆ as

m ∼ erf(
u√
∆

) and (13.9)

a ∼
√

2
π∆

e−u2/2∆ . (13.10)

Combining all that we finally have

f ∼ π

2
γeû2

∆ , (13.11)

where we introduced the auxiliary variable û ≡ u√
∆

which is such that m = erf(û/
√

2).

Since, for finite temperature, γ > 0 we must have f ′
∞ = π

2
γeû2 ∈]0, 1[ in order for f to have

a stable fixed point. The term γ ≡ ∑
j b

2
j(1 −m2

j) can be easily computed from the data and
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Figure 13.9: Left: Average of the asymptotic value of the slope f ′
∞ as a function of the parameter

α = p/N for three values of the inverse temperature β =0.5 (red), 1 (green) and 2 (blue). The
system in question has N = 100, the simulation is repeated for 50 different systems and the
results are averaged over each spin and each system. Right: The probability that the algorithm
13.2.1 fails to converge as a function of α. The systems used have sizes N =100 (red), 200
(green), 400 (blue) and 800 (magenta) and are simulated at β = 1. The vertical line is drawn
at α ≈ 3.12 which is the point at which f ′

∞ becomes smaller than 1 (see frame to the left).

so can û. The left frame of figure 13.9 show numerical results for the asymptotic slope as a
function of the ratio of samples to spins α ≡ p/N . A system of size N = 100 is simulated at
β =0.5, 1 and 2 and then the value of f ′

∞ is averaged over all spins and over 50 repetitions of
the experiment. We see that the curves cross the line y = 1 at different values of α for different
inverse temperatures. We will name these values αc(β) since they are the critical values of
samples to spins ratio beyond which the algorithm converges. αc(β) is an increasing function
of β. This means that at lower temperatures we need more samples, which is logical since the
samples become more and more correlated and so their information content is smaller.

β αc(β)
0.5 2.758±.002
1.0 3.116±.002
1.5 3.420±.004
2.0 3.582±.008
2.5 3.696±.016

Table 13.1: αc for some val-
ues of β

In the right frame of figure 13.9 we see the probability that
the while loop in algorithm 13.2.1 fails to converge as a function
of α. The system into consideration is simulated at β = 1. The
cross-over becomes steeper for larger systems and we expect that
a phase transition takes place for N, p→∞. The vertical dashed
line corresponds to the value of αc(1) found by numerically solving
f ′

∞(α) = 1. The figure suggests that the sample complexity is
linear in the system size P = O(N), at least for the algorithm to
yield some result. This doesn’t say anything about the error of the
inferred couplings which behaves as 1/

√
p at high temperature.

The above table shows some values of αc for different β.
Let us now see how algorithm 13.2.1 actually reconstructs a given the model. For the

simulations of the inverse problem we first simulate a N spins system using Glauber dynamics
for p samples at inverse temperature β and compute m, C and D from the data. We then
run algorithm 13.2.1, along with the corresponding algorithms derived from NMF and TAP
approximations, and compare the output with the original model. One obvious way to do that
is to look at the scatter plots as we did for the magnetizations and correlations. In figure
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Figure 13.10: Scatter plots of inferred versus true couplings for a system of size N = 100 using
the three mean-field algorithms. The algorithm used p = 106 samples generated at β = 0.4, 1
and 2 from left to right. Note that at high β TAP fails.

13.10 the output of this procedure is shown for a N = 100 system inferred from p = 106

samples generated at three different temperatures. As expected, our algorithm gives results
well centered around the diagonal while the other two mean field algorithms are displaced. In
fact the result of TAP doesn’t even exist in the last to frames since it fails at high β (see chapter
7).

As a measure of the error, as we did for the correlations in the previous section, we take
the mean squared error ǫJ ≡ 1/N2∑

i,j(βJ true
ij − J inferred

ij )2. In figure 13.11 we can see ǫJ as a
function of the inverse temperature β (left frame) and as a function of p (right frame). At high
temperature the error is 1/p. On the other hand, at low temperature finite size effects begin
to appear and the error stops to improve after some value of p. Note also that the results for
TAP are only present for high temperatures since it fails at lower ones.
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Figure 13.11: Asymmetric couplings. LEFT: ǫJ as a function of the inverse temperature at
which the samples where generated. The system has size N = 100 and the number of samples
is 104, 105 and 106 from top to bottom. RIGHT: ǫJ as a function of p for inverse temperatures
β = 0.3, 1 and 2.

As we have mention earlier, the correlations predictions of our Gaussian mean field theory,
in the case of symmetric couplings where effective local fields are not strictly Gaussian, are still
better than that of the other mean field theories, although this is not true for the prediction of
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Figure 13.12: Symmetric couplings. LEFT: ǫJ as a function of the inverse temperature at which
the samples where generated. The system has size N = 100 and the number of samples is 105.
RIGHT: ǫJ as a function of p for inverse temperature β = 0.3. In both cases MF outperforms
NMF and TAP

magnetizations. The correlations relations are the corner stone of every inverse problem algo-
rithm because they characterize the structure of the interactions between spins. We therefore
expect that our MF algorithm outperforms the other two mean field algorithms even in the
case of symmetric couplings. This is indeed the case as can be seen in figure 13.12. The errors
of MF are higher than in the asymmetric case, especially in the low temperatures, but still
considerably lower than the NMF ones. It is interesting to note that TAP, even in the high
temperature region, performs slightly worse than MF.

13.2.2 Non stationary case

For the non-stationary model that we used in section 13.1.4, i.e. a model with constant
couplings but time varying local fields, like the ones in eq.(13.27), we need to modify the
algorithm. Had both couplings and local fields been time varying, then the same algorithm
could be used for every time step t = 1, . . . , tmax separately. However, since the couplings don’t
change with time, we can combine the information of every time step of every sample to achieve
a better precision than just applying algorithm 13.2.1.

We begin the description of the modified algorithm by taking time averages on both sides
of eq.(13.32)

〈Dij(t)〉t =
∑

k

Jik 〈ai(t)Ckj(t)〉t (13.12)

which gives

Jij =
∑

k

〈Dik(t)〉t [(K(i))−1] , (13.13)

where K(i)
kj ≡ 〈ai(t)Ckj(t)〉t. The averages here are taken over t = 1, . . . , tmax. Based on the
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above relation we derive the following algorithm
✓

✒

✏

✑

Algorithm 13.2.2: Mean Field Inverse Ising, non-stationary case(m,C,D)

D ← 〈D(t)〉t
for i← 1 to N



for t← 1 to tmax

do ∆̂(t)← ∆0

while δ∆ 6= 0

do





for t← 1 to tmax

do





∆(t)← ∆̂(t)
Using mi(t+ 1) compute u(t) by inverting eq.(13.1)
Using u(t) and ∆(t) compute a(t) using eq.(13.4)

for j ← 1 to N

do

{
for k ← 1 to N

do Kkj ← 〈a(t)Ckj(t)〉t
Invert K
for j ← 1 to N

do Jij ←
∑

k Dik[K−1]kj

for t← 1 to tmax

do ∆̂(t)← ∑
j J

2
ij(1−mj(t)2)

δ∆← maxt |∆(t)− ∆̂(t)|
for t← 1 to tmax

do

{
g ← ∑

j Jijmj(t)
Hi(t)← u(t)− g

return (J,H)

The non stationary problem is more complex and this is reflected to the fact that one has
to invert a matrix for every i. Additionally, since the computation of u(t), a(t) and ∆(t) has
to be done for every t = 1, . . . , tmax separately the computational complexity will have also a
factor tmax. Thus complexity of algorithm 13.2.2 is O(tmaxN

4).
For the simulations we used a uniform external field

Hi(t) = H0 sin(ωt) , (13.14)

with ω = 2π/100 and H0 = 0.5. In figure 13.13 we can see the predictions for Hi(t) averaged
over all the spins, for the MF and NMF methods (TAP fails at β = 0.5). In the left frame the
couplings are asymmetric and MF is exact while in the right one the couplings are symmetric
and MF is just an approximation, although a better one than NMF.
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Figure 13.13: Varying external field predictions according to NMF (red) and MF (blue) methods
averaged over all the spins. The black line shows the true value of the external field. LEFT:
The system has asymmetric couplings, size N = 100 and is inferred using p = 104 samples
obtained at inverse temperature β = 0.5. RIGHT: The same but with symmetric couplings.
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Chapter 14

Sparse models

All the previous results, in this chapter, actually rely only on one assumption. The Gaus-
sianity of the effective field

∑
j Jijsj(t). As we have seen, when the couplings are asymmetric,

this assumption is true and it can even provide some good results when they are not, as long as
the temperature is not too low. In this section we will apply this idea to a different approach
for solving the inverse problem, the so called Bayesian one. We have seen in chapter 5 that this
approach leads to the original Boltzmann machine algorithm which is, in general, inefficient
due to the intractability of the magnetizations and correlations in the direct problem. In the
light of the previous results, however, it is clear that this is the case only when the couplings
are symmetric. In the previous chapters we showed that there are exact and efficient ways of
computing both quantities when the couplings are asymmetric. In this chapter we will show
how, starting form the Bayesian formulation of the inverse problem, the Gaussianity of the
effective field can be used to yield an efficient version of the Boltzmann machine algorithm.
Subsequently, we will show that the two methods are equivalent in the sense that they lead
to the same results. However in the Bayesian approach, there is a natural way to include the
lp−norm regularization, introduced in chapter 11, so useful in a sparse network context. There-
fore we will focus more on sparse, rather than fully connected, systems for the simulations. As
before, we divide this section into stationary and non-stationary subsections.

14.1 Stationary case

We start from the full distribution of the spin trajectories s = {si : i = 1, . . . , N} where
si = {si(t) : t = 1, . . . , p}

P (s1, . . . , sN) =
N∏

i=1

p∏

t=1

eβsi(t+1)hi(t)

2 cosh(βhi(t))

∏

i

P 0
i (si(0)) , (14.1)

where

hi(t) ≡ Hi(t) +
∑

j

Jijsj(t) . (14.2)

We then use Bayes’ theorem to compute the likelihood of a model

P (M|s) =
P (s|M)P0(M)

P (s)
, (14.3)

93
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whereM is a shorthand for the model parameters J and H. For the time being we will ignore
the a priori probability over the models P0(M) and just attribute uniform probability over all
model space. The prior of the spins is just a constant factor, absorbed in the normalization.
We therefore rewrite the likelihood of a model given a set of measured spin configurations as

P (M) ∼=
N∏

i=1

p∏

t=1

esi(t+1)hi(t)−log 2 cosh(hi(t))
∏

i

P 0
i (si(0)) , (14.4)

where the ∼= symbol means equal up to a normalization. Taking then the log we have the
log-likelihood

L =
N∑

i=1

p∑

t=1

[si(t+ 1)hi(t)− log 2 cosh hi(t)] (14.5)

by which, performing a gradient ascent, we get the following learning rules

δHi = ε (〈si(t+ 1)〉t − 〈tanh hi(t)〉t) , (14.6)

δJij = ε
(
〈si(t+ 1)sj(t)〉t − 〈tanh hi(t)sj(t)〉t

)
. (14.7)

The idea, as in the usual Boltzmann machine, is then to substitute the first term of the left
hand side of the above equations with the experimental values of the magnetizations mi and
time-delayed correlations Dij and reevaluate their theoretical predictions at each step of the
algorithm until they become equal. The evaluation of the magnetizations and correlations
given a model is the time consuming part of the original Boltzmann machine algorithm as it
is usually done by Monte Carlo simulation. However, and given that we are still interested
mostly in systems with asymmetric couplings, we can replace the time averages with Gaussian
integrals as we did in the previous chapter. The resulting learning rules can now be written

δHi = ε
(
mi −

∫
Dx tanh

[
Hi + gi + x

√
∆i

])
(14.8)

δJij = ε
(
D̃ij −mj

∫
Dx tanh

[
Hi + gi + x

√
∆i

]
(14.9)

−[JC]ij
∫
Dx

(
1− tanh2

[
Hi + gi + x

√
∆i

]))
.

The tilde above the time-delayed correlations means that we use the non-connected ones
D̃ij ≡ 〈si(t+ 1)sj(t)〉t, as opposed to the connected correlations Dij ≡ 〈si(t+ 1)sj(t)〉t −
〈si(t+ 1)〉 〈sj(t)〉t. Notice that if we manage to reach the point where δHi = 0 we can drop the
second term in eq.(14.9) and use the connected correlations instead, since that term cancels
out with the difference D̃ij −Dij. This, simplified version of the equation is written

δJij = ε
(
Dij − [JC]ij

∫
Dx

(
1− tanh2

[
Hi + gi + x

√
∆i

]))
. (14.10)
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It is clearly visible that when the maximum of the log-likelihood is reached both equations
(13.9) and (13.23) are verified. Thus, the procedure described above has the same fixed point
as algorithm 13.2.1. The advantage, however, of the above procedure is that we can restrict
the search in some subregion of model space by choosing a particular prior distribution P0(M)
in eq.(14.3). One particularly relevant, for real world applications, class of models are sparse
models. That is models where only some random subset of couplings are non zero. As we have
seen in chapter 11 a natural choice for a prior, in such cases, is the distribution

P0(M) ∼= e−λ‖J‖1 . (14.11)

This modifies the equation for the couplings update (14.10) as

δJij = ε
(
Dij − [JC]ij

∫
Dx

(
1− tanh2

[
Hi + gi + x

√
∆i

])
− λ signJij

)
, (14.12)

where it is understood that sign0 = 0.
As before, the different in-coming neighborhoods of every spin decouple and the rows of

the matrix J can be inferred independently. Inspired by the algorithm 13.2.1 we propose the
following one

✓

✒

✏

✑

Algorithm 14.1.1: Gaussian Boltzmann Machine, stationary (m,C,D, λ)

Ξ← JC
for i← 1 to N



for j ← 1 to N
do Jij ← J0

ij

∆̂← ∑
j J

2
ij(1−m2

j)
while ∆ 6= ∆̂

do





∆← ∆̂
Using mi compute u ≡ Hi + g by inverting eq.(13.1)
for j ← 1 to N

do





Jold ← Jij

Jij ← Jij − ε
(
Dij − Ξij

∫
Dx

(
1− tanh2

[
u+ x

√
∆
])
− λ signJij)

∆̂← ∆̂ + (Jij − Jold)(1−m2
j)

for k ← 1 to N
do Ξik ← Ξik + (Jij − Jold)Cjk

g ← ∑
j Jijmj

Hi ← u− g
return (J,H)

It may appear as if one must multiply J and C after every Jij update but in fact only
a linear number of terms is affected after one Jij is changed. So with the proper treatment
(see the use of matrix Ξ and its update in the code above) the algorithm is still O(N3). The
algorithm is, nonetheless, a bit slower than algorithm 13.2.1 because of the greater number of
operations and the existence of the arbitrary parameter ǫ.
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One very important feature of the above algorithm is that it doesn’t need to invert the
matrix C. This means that results can be obtained even if p < N . In the fully connected case
this wouldn’t make much sense since one would estimate O(1/

√
N) couplings making O(1/

√
p)

errors, but when a system is sparse less information is needed to determine its structure. It has
been shown in numerical simulations that the above algorithm is indeed capable of recovering
much of the system structure using p < N . Even in the p & N regime, where algorithm 13.2.1
doesn’t fail, algorithm 14.1.1 performs much better. What actually happens is that the l1-norm
regularization ensures, as in the algorithm of chapter 11, that a fraction of all couplings will
be set to zero. The minimization of the log-likelihood, on the other hand, ensures that we find
the best combination of non-zero and zero couplings to fit the data. Then, since the data are
used for the estimation of the non-zero couplings only, we have a higher amount of information
for the estimation of each coupling. Of course, in the p → ∞ limit, both algorithms yield the
same results.

The model used in the simulations for this section is an Ising model defined on a directed
Erdős-Rényi graph. We define the average in-degree din as the average number of in-coming
couplings per spin. Then the distribution of the couplings reads

P (J) =
N − din

N
δ(J) +

din

N
ρ(J) . (14.13)

For the distribution of the non-zero couplings ρ(J) we used a Gaussian with a disconnected
support such that there is a minimum coupling strength Jmin ≡ min(i,j){|Jij| 6= 0}

ρ(J) = θ(J − Jmin)

√
din

2π
e−din(J−Jmin)2/2 + θ(−J − Jmin)

√
din

2π
e−din(J+Jmin)2/2 . (14.14)

In the simulations we used din = 10 and Jmin = 0.2. The motivation for the above choice is that,
as it has been shown in [RavikumarWL 10] and [BentoM 09], if one lets Jmin ≡ min(i,j){|Jij| 6=
0} come arbitrarily close to 0, then one must have p→∞ to correctly estimate the structure.

What we are interested in, in the simulations, is to correctly estimate the structure of the
network, i.e. correctly identify the zero and non-zero couplings. We will therefore use again
the error measure introduced in chapter 12. We rewrite the deffinition of these quantities here:
The True Positive Rate (TPR)

TPR ≡ TP
TP + FN

, (14.15)

and the True Negative Rate (TNR)

TNR ≡ TN
FP + TN

, (14.16)

where

TP ≡ Number of non-zero couplings correctly identified

TN ≡ Number of zero couplings correctly identified

FP ≡ Number of non-zero couplings identified as zero

FN ≡ Number of zero couplings identified as non-zero .
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Figure 14.1: ROC curves for algorithm 14.1.1 and algorithm 13.2.1 with thresholding. LEFT:
The system has size N = 1000 and average in-degree din = 10 and is inferred from p = 500
samples obtained at inverse temperature β = 0.5. The results are averaged over 20 realizations
of the system. Algorithm 13.2.1 is not shown as it fails to provide results for p < N . RIGHT:
The same system but this time inferred using p = 1500.

Obviously, perfect inference corresponds to TPR=1 and TNR=1. In figure 14.1, we used
for each system different values of the parameter λ and plotted the parametric ROC curve
TPR(λ), TPR(λ). In the left frame we see the ROC curve for a system of size N = 1000
inferred using p = 500 samples with λ ∈ [0.02, 0.1]. We see that even for such a small number
of samples compared to the system size, there is a value of λ for which almost 90% of the
system structure is inferred correctly. In the right frame we used the same system size but this
time we used p = 1500 samples for the inference. For comparison, we have included the results
of algorithm 13.2.1 with additionally truncating the smaller, in absolute value, couplings under
some threshold Jthres. By varying Jthres we also obtain a ROC curve. We clearly see that there
is no value of Jthres that achieves an error as small as the one that algorithm 14.1.1 achieves for
the optimal value of λ.

14.2 Non stationary case

For the non stationary case we use the same model as in section 13.2.2. The log-likelihood
is now

L =
N∑

i=1

tmax∑

t=1

p∑

r=1

[sr
i (t+ 1)hr

i (t)− log 2 cosh hr
i (t)] , (14.1)

where hr
i (t) = Hi(t) +

∑
j Jijs

r
j(t). The corresponding learning rules are

δHi(t) = ε
(
mi(t+ 1)−

∫
Dx tanh

(
Hi(t) + gi(t) + x

√
∆i(t)

))
, (14.2)

δJij = ε
(
〈Dij(t)〉t −

〈
[JC(t)]ij

∫
Dx

(
1− tanh2

(
Hi(t) + gi(t) + x

√
∆i(t)

))〉

t

)
, (14.3)
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where the averages are taken as usual over all time steps t = 1, . . . , tmax.
The generalization of algorithm 14.1.1 for the non stationary case is straightforward and

yields the following procedure
✓

✒

✏

✑

Algorithm 14.2.1: Gaussian Boltzmann Machine,non stationary(m,C,D, λ)

D ← 〈D(t)〉t
for t← 1 to tmax

do Ξ(t)← JC(t)
for i← 1 to N



for j ← 1 to N
do Jij ← J0

ij

for t← 1 to tmax

do ∆̂(t)← ∑
j J

2
ij(1−mj(t)2)

while δ∆ 6= 0

do





for t← 1 to tmax

do





∆(t)← ∆̂(t)
Using mi(t) compute u(t) ≡ Hi(t) + g(t) by inverting eq.(13.1)
Using u(t) and ∆(t) compute a(t) using eq.(13.4)

for j ← 1 to N

do





Jold ← Jij

Jij ← Jij − ε
(
Dij − 〈a(t)Ξij(t)〉t − λ signJij)

for t← 1 to tmax

do





∆̂(t)← ∆̂(t) + (Jij − Jold)(1−mj(t)2)
for k ← 1 to N

do Ξik(t)← Ξik(t) + (Jij − Jold)Cjk(t)
for t← 1 to tmax

do

{
g(t)← ∑

j Jijmj(t)
Hi(t)← u(t)− g(t)

return (J,H)



Chapter 15

Open questions

15.1 Application to neural data

It is clear from all numerical evidence presented in the previous chapters that the assumption
of a Gaussian effective field allows to solve the inverse Ising problem both efficiently and exactly.
An important question then arises: what happens when the data are not generated by an Ising
model? We have argued in the first chapter that the Ising model is, from an information
theoretical point of view, a good candidate for modeling biological systems while being at the
same time simple enough to allow important theoretical advancements. It is clear, however,
that it is a serious abstraction from the real world. It is natural to expect that data obtained
from a real biological system will not behave as the synthetic data that we used in simulations
throughout this thesis.

Recently our method has been applied to real spike trains obtained experimentally by J.
Tyrcha et al [TyrchaRMH 12]. The data set, provided by Michael Berry of Princeton University,
consist of the spike trains of 40 neurons recorded from the retina of a salamander under visual
stimulation. The activity of each neuron was recorder during 120 repetitions of a 26.5 sec movie
clip and was then divided in time-bins of length 20 ms. Then three algorithms were used to
infer the couplings of an Ising model agreeing with the data: the non-stationary version of our
algorithm i 13.2.2, a non-stationary version of the naive mean field algorithm (see [RoudiH 11a,
RoudiH 11b] for details) and also a version of the Boltzmann machine learning algorithm found
in chapter 5 also adapted to non-stationary systems (see [TyrchaRMH 12]). Following the
authors we will refer to the latter algorithm simply as the exact algorithm.

The results confirm our hypothesis that the MF algorithm is better than the simpler NMF.
However, the inferred couplings of MF and NMF are way closer to each other than to those
of the exact algorithm. This is not what we expected based on results on synthetic data. As
a measure of success of the three algorithms the authors compute the log-likelihoods on the
data (with an Akaike penalty to discourage over-fitting). The values are -0.062748, -0.062872,
and -0.062823 for the exact algorithm, NMF and MF respectively. It is important to stress
that the exact algorithm takes many hours to yield results as opposed to a few minutes for the
mean field ones. So, given the close values of the log-likelihood found by the three algorithms,

i. The external stimulus, in this case the movie clip, is evolving in time. To infer correctly the couplings one
must account for time-dependent local fields which is why the non-stationary version is needed.
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Figure 15.1: Taken from [TyrchaRMH 12]. LEFT: Scatter-plot of the inferred couplings from
the retinal data using MF versus the ones obtained from the exact one. RIGHT: The same but
this time comparing the MF and NMF algorithms.

the exact one doesn’t offer an important advantage. The authors also provide scatter-plots of
the inferred couplings, reprinted in fig.15.1. We see that for the majority of the couplings who
are close to zero all algorithms agree more or less. For those with stronger synaptic strengths,
which are the most important, the qualitative (inhibitory or excitatory) predictions agree but
the values deviate from the exact algorithm to the others.

In the right frame we see that NMF and MF are very close, which is strange given the
typical values of the couplings found. Indeed, looking at fig.13.11 we see that there are values
of β where NMF and MF agree but they correspond to much weaker synaptic strengths than
the ones found in the retinal data.

This leaves an important open question. What feature of the retinal data is causing the
disagreement between the exact and MF algorithms. In the synthetic data generated from an
Ising model there was no such disagreement. One obvious cause of the problem might be that
the effective fields are not Gaussian distributed for some reason. Further investigation is needed
in order to answer this and similar questions.

15.2 Systems with hidden variables

An other important question concerns systems with hidden variables. In the analysis of all
inverse Ising algorithms studied in this thesis we always silently assumed that we have access
to all the variables of our system. In practice, however, one often observes only a fraction of
the system. For instance, in the previous example of the salamander retina, only 40 neurons
where observed which is a tiny fraction of the total number of neurons found in the retina. Yet
the algorithms where used as such, without accounting for the interaction of those 40 neurons
with other, non observed, parts of the system. Let’s see what could go wrong in such a case
for our MF algorithm.
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We rewrite the basic relation between model parameters and the measured quantities

D = A J C (15.1)

Aij = δijβ
∫
Dx

[
1− tanh2 β

(
Hi + gi + x

√
∆i

)]
, (15.2)

where gi =
∑

j Jijsj and ∆i =
∑

j J
2
ij(1 − m2

j). When the above equations are applied to a
system with hidden variables there are two features that might lead to wrong results. Let’s
examine them.

The first concerns the equation for the matrix A. It is clear that having hidden variables
will be reflected in the values of gi and ∆i. We introduce the notation

gi = gO
i + gN

i and ∆i = ∆O
i + ∆N

i , (15.3)

where the superscripts O and N stand for the contributions of the observed and non-observed
parts of the system. When performing inference the term gN

i will be absorbed in the inferred
local field Hi and thus we expect that there is no way of inferring the correct values of the
local fields. However, there might be a possibility to say something about the couplings. In
the thermodynamic limit, and given that the couplings of the whole system follow the same
distribution, the parameter ∆i becomes an extensive quantity and independent of the subscript
i. We can thus estimate the correct value of the ∆’s statistically if we have a prior knowledge
on the size of the part that is not observed. For example, if we observe NO variables and we
known that we leave out of the observation NN others, we can compute the correct value of ∆
as

∆i =
NO +NN

NO ∆O
i . (15.4)

The algorithm 13.2.1 can be easily modified by replacing the line concerning the ∆ update by
∆̂← NO+NN

NO

γ
a2 .

The second problem concerns the first equation (15.1). Again dividing the matrices in four
blocks based on the division between observed and non-observed variables we have

DOO = AOOJOOCOO + AOOJONCN O . (15.5)

It is clear that naively applying our algorithm in partially observed data will lead to errors
because we completely omit the second term of the above equation since we don’t have access
to CN O. It is worth noting that from numerical evidence it seems that at high temperatures
the diagonal elements of C become so important that discarding the second term of the above
equation doesn’t lead to important errors. This shows, however, a regime where the spins are
quite independent and where even simple algorithms, such as NMF, could provide satisfactory
results.

There might be a way to compensate the lack of information due to the partial knowledge
of the correlation matrix C. It is important to state that what follows is just a suggestion for
future work and that we where not able to numerically verify our claims. Some of the missing
information might come from looking at k-step time-delayed correlation functions. Consider
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for example the matrix defined as Eij ≡ 〈δsi(t+ 2)δsj(t)〉. It can be shown that a relation
similar to eq.(15.1) holds

E = A J D . (15.6)

Decomposing the above relation in terms of observed and non-observed parts we have

EOO = A JOO DOO + A JON DN O (15.7)

= A JOO A JOO COO + A JOO A JON CN O
︸ ︷︷ ︸

A JOO DOO

(15.8)

+A JON A JN O COO + A JON A JN N CN O
︸ ︷︷ ︸

A JON DN O

Interestingly we see that the second term, although containing the non-measurable correlations
CN O, can be expressed, together with the first term, in terms of a quantity that is accessible
namely DOO. The fourth term is still not accessible and must be discarded. However since,
as we have supposed, all couplings follow the same distribution, it can be argued that we
have gained information compared with discarding the second term of eq.(15.5). Consider for
instance that we are observing half of the system, i.e. NO = NN , at low temperatures where
all parts of the correlation matrix C are equally important. Then discarding the last term of
eq.(15.8) amounts in discarding “one fourth” ii of the total information needed to correctly infer
the model, as opposed to discarding “half” of the information when one naively uses eq.(15.1).

Let’s rewrite eq.(15.8) using a lighter notation. We omit the superscript OO and use
J ′ = JON A JN O.

E = A J D + A J ′ C (15.9)

The above relation cannot be solved for J and J ′ obviously so we need to find a similar relation.
The answer is given by the correlations between spins of even greater temporal distance. The
above reasoning can be repeated for the 3-step time-delayed correlations Fij ≡ 〈δsi(t+ 3)δsj(t)〉
with the result

F = A J E + A J ′ D (15.10)

The system of the two equations (15.9,15.10) can be solved and yields

J = A−1
[
F − E C−1 D

] [
E −D C−1 D

]−1
. (15.11)

The above equation has the same structure with eq.(13.2) and so we can expect that it can be
solved iteratively by a similar procedure in algorithm 13.2.1. Unfortunately it is not so simple.
Problems arise because the last factor of eq.(15.11) is not invertible and alternative ways must
be found.

One might expect that the above argument, using k-step correlations to obtain information
about the hidden part of the system, might eventually lead to a method capable of overcoming
the difficulties attached to those cases.

ii. The word “information” is of course used informally here.
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15.3 Perspectives

The main idea of this thesis can be condensed in one phrase: whenever a system has
asymmetric interactions thermal averages can be replaced with averages over Gaussian variables
which leads to both exact and efficient algorithms for direct and inverse inference. This should
have a positive impact on the ability of future researchers, especially those working on systems
biology, to infer structural information about systems of their interest based on observed data.
We have already seen an implementation of our method to a real world situation with limited
success.

This work should also have an impact on the design of future algorithms aiming to solve
similar inverse problems. We have mentioned in the introduction that the asymmetry of the
interactions is widely found in the biological world. There is thus a great number of situations
where the main idea of this thesis could be used. Different situations might need the design of
new algorithms. One example is the gene regulation networks, described in the introduction,
where interactions are not only found between pairs of genes but a more complex image of
three or more genes interacting in a combinatorial way might be more accurate. In this case
the simple pairwise Ising model must be extended to include higher order interactions. The
fact is that there is no fundamental reason way the Gaussian assumption should only work for
binary, pairwise models. Thus, we have reasons to hope that the main idea of this work will
open new directions for future research and will lead to important results in the study of those
systems.
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Part IV

Reprints of publications
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❛❜✐❧✐t☎ t♦ ✐♥❢❡r t❤❡ str✉❝t✉r❡ ❛♥� ♣❛r❛♠❡t❡rs ♦❢ t❤❡ ✉♥�❡r❧☎✐♥❣ ♥❡t✇♦r❦s✳

❚❤✐s ❵♥❡t✇♦r❦ r❡❝♦♥str✉❝t✐♦♥✬ ♣r♦❜❧❡♠ ✐s t☎♣✐❝❛❧❧☎ ❛♥ ✐♥✂❡rs❡ ♣r♦❜❧❡♠ ✇❤✐❝❤ ❤❛s ♠♦t✐✂❛t❡� ❛ ❧♦t ♦❢ ❛❝t✐✂✐t☎ ✐♥

♠❛❝❤✐♥❡ ❧❡❛r♥✐♥❣ ❛♥� ✐♥ st❛t✐st✐❝❛❧ ♣❤☎s✐❝s❬✝④✹✱ ✾④✝✻✱ ✝✽④✷✝✱ ✷✸✱ ✷✻✱ ✷✽✱ ✷✾❪✳ ❯♥t✐❧ r❡❝❡♥t❧☎ t❤❡ ♠❛✐♥ ❡☛♦rts ❤❛✂❡

❜❡❡♥ �❡�✐❝❛t❡� t♦ r❡❝♦♥str✉❝t✐♥❣ ❡q✉✐❧✐❜r✐✉♠ ❇♦❧t③♠❛♥♥✲●✐❜❜s �✐str✐❜✉t✐♦♥s✳ ■♥ t❤❡ s♦✲❝❛❧❧❡� ✐♥✂❡rs❡ ■s✐♥❣ ♠♦�❡❧✱

♦♥❡ t☎♣✐❝❛❧❧☎ ❛ss✉♠❡s t♦ ❤❛✂❡ �❛t❛ ✐♥ t❤❡ ❢♦r♠ ♦❢ s♦♠❡ ❝♦♥✁❣✉r❛t✐♦♥s✱ ✇❤✐❝❤ ✇❡ s❤❛❧❧ ❝❛❧❧ ❵♣❛tt❡r♥s✬✱ ♦❢ ❛ ◆✲s♣✐♥ ■s✐♥❣

s☎st❡♠ �r❛✇♥ ❢r♦♠ t❤❡ ❇♦❧t③♠❛♥♥✲●✐❜❜s �✐str✐❜✉t✐♦♥ ✇✐t❤ ❛♥ ❡♥❡r❣☎ ❢✉♥❝t✐♦♥ ✐♥❝❧✉�✐♥❣ ♦♥❡✲❜♦�☎ ✭❧♦❝❛❧ ♠❛❣♥❡t✐❝

✁❡❧�s✮ ❛♥� t✇♦✲❜♦�☎ ✭❡①❝❤❛♥❣❡ ❝♦✉♣❧✐♥❣s✮ t❡r♠s✳ ❚❤❡ ♣r♦❜❧❡♠ ✐s t♦ r❡❝♦♥str✉❝t t❤❡ ❧♦❝❛❧ ✁❡❧�s ❛♥� t❤❡ ❡①❝❤❛♥❣❡

❝♦✉♣❧✐♥❣s ✭❝♦❧❧❡❝t✐✂❡❧☎ �❡♥♦t❡� ❜❡❧♦✇ ❛s ❵❝♦✉♣❧✐♥❣s✬✮ ❢r♦♠ t❤❡ �❛t❛✳ ❚❤✐s ♣r♦❜❧❡♠ ❤❛s ❜❡❡♥ ❛❝t✐✂❡❧☎ st✉�✐❡� ✐♥

r❡❝❡♥t ☎❡❛rs✱ ✐♥ ♣❛rt✐❝✉❧❛r ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ♥❡✉r❛❧ ♥❡t✇♦r❦ ✐♥❢❡r❡♥❝❡ ❜❛s❡� ♦♥ ♠✉❧t✐❡❧❡❝tr♦�❡ r❡❝♦r�✐♥❣s ✐♥ r❡t✐♥❛s

❬✹✱ ✷✷✱ ✷✺❪✳ ❚❤❡ st❛♥�❛r� s♦❧✉t✐♦♥ ♦❢ t❤✐s ♣r♦❜❧❡♠✱ ❦♥♦✇♥ ❛s t❤❡ ❇♦❧t③♠❛♥♥ ♠❛❝❤✐♥❡✱ ❝♦♠♣✉t❡s✱ ❢♦r s♦♠❡ ❣✐✂❡♥

❝♦✉♣❧✐♥❣s✱ t❤❡ ❧♦❝❛❧ ♠❛❣♥❡t✐③❛t✐♦♥s ❛♥� t❤❡ t✇♦✲s♣✐♥ ❝♦rr❡❧❛t✐♦♥s✱ ❛♥� ❝♦♠♣❛r❡s t❤❡♠ t♦ t❤❡ ❡♠♣✐r✐❝❛❧ ❡st✐♠❛t❡s ♦❢

♠❛❣♥❡t✐③❛t✐♦♥s ❛♥� ❝♦rr❡❧❛t✐♦♥s ❢♦✉♥� ❢r♦♠ t❤❡ ♣❛tt❡r♥s❬✝✱ ✝✵❪✳ ❚❤❡ ❝♦✉♣❧✐♥❣s ❛r❡ t❤❡♥ ✐t❡r❛t✐✂❡❧☎ ❛�❥✉st❡� ✐♥ ♦r�❡r

t♦ �❡❝r❡❛s❡ t❤❡ �✐st❛♥❝❡ ❜❡t✇❡❡♥ t❤❡ ❡♠♣✐r✐❝❛❧ ♠❛❣♥❡t✐③❛t✐♦♥s✴❝♦rr❡❧❛t✐♦♥s ❛♥� t❤❡ ♦♥❡s ❝♦♠♣✉t❡� ❢r♦♠ t❤❡ ♠♦�❡❧✳

❆ ❇❛☎❡s✐❛♥ ❢♦r♠✉❧❛t✐♦♥ s❤♦✇s t❤❛t t❤❡ ♣r♦❜❧❡♠ ♦❢ ✁♥�✐♥❣ t❤❡ ❝♦✉♣❧✐♥❣s ✐s ❛❝t✉❛❧❧☎ ❝♦♥✂❡①✱ s♦ t❤❛t t❤✐s ✐t❡r❛t✐✂❡

♣r♦❝❡�✉r❡ ✐s ❣✉❛r❛♥t❡❡� t♦ ❝♦♥✂❡r❣❡ t♦ t❤❡ ❝♦rr❡❝t ❝♦✉♣❧✐♥❣s✱ ♣r♦✂✐�❡� t❤❛t t❤❡ ♥✉♠❜❡r ♦❢ ♣❛tt❡r♥s ✐s ❧❛r❣❡ ❡♥♦✉❣❤

t♦ ❛❧❧♦✇ ❢♦r ❛ ❣♦♦� ❡st✐♠❛t❡ ♦❢ ❝♦rr❡❧❛t✐♦♥s✳ ❚❤❡ �r❛✇❜❛❝❦ ♦❢ t❤✐s ♠❡t❤♦� ✐s t❤❛t t❤❡ r❡❧✐❛❜❧❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡

♠❛❣♥❡t✐③❛t✐♦♥s✴❝♦rr❡❧❛t✐♦♥s✱ ❣✐✂❡♥ t❤❡ ❝♦✉♣❧✐♥❣s✱ ✇❤✐❝❤ ✐s �♦♥❡ ✉s✐♥❣ ❛ ▼♦♥t❡ ❈❛r❧♦ ♣r♦❝❡�✉r❡✱ ✐s ❡①tr❡♠❡❧☎ t✐♠❡

❝♦♥s✉♠✐♥❣✳ ❚❤❡r❡❢♦r❡ t❤✐s ❡①❛❝t ❛♣♣r♦❛❝❤ ✐s ❧✐♠✐t❡� t♦ s☎st❡♠s ✇✐t❤ ❛ s♠❛❧❧ ♥✉♠❜❡r ♦❢ s♣✐♥s✳ ▼♦st ♦❢ t❤❡ r❡❝❡♥t

✇♦r❦s ♦♥ t❤✐s ✐ss✉❡ ❤❛✂❡ �❡✂❡❧♦♣❡� ❛♣♣r♦①✐♠❛t❡ ♠❡t❤♦�s t♦ ✐♥❢❡r t❤❡ ❝♦✉♣❧✐♥❣s✳ ❆♠♦♥❣ t❤❡ ♠♦st st✉�✐❡� ❛♣♣r♦❛❝❤❡s

❛r❡ t❤❡ ♥❛✐✂❡ ♠❡❛♥ ✁❡❧� ♠❡t❤♦� ❬✾✱ ✝✸✱ ✷✻❪✱ t❤❡ ❚❆P ❛♣♣r♦❛❝❤ ❬✝✹✱ ✷✝✱ ✷✾❪✱ ❛ ♠❡t❤♦� ❜❛s❡� ♦♥ ❛ s♠❛❧❧ ♠❛❣♥❡t✐③❛t✐♦♥

❡①♣❛♥s✐♦♥ ❬✷✸❪✱ ❛♥� ❛ ♠❡ss❛❣❡✲♣❛ss✐♥❣ ♠❡t❤♦� ❝❛❧❧❡� s✉s❝❡♣t✐❜✐❧✐t☎ ♣r♦♣❛❣❛t✐♦♥❬✝✝✱ ✝✺✱ ✝✻❪✳ ❆♥♦t❤❡r ❛♣♣r♦❛❝❤ ✇❤✐❝❤

❤❛s ❜❡❡♥ �❡✂❡❧♦♣❡� ✐s t❤❛t ♦❢ ❧✐♥❡❛r r❡❧❛①❛t✐♦♥ ♦❢ t❤❡ ✐♥❢❡r❡♥❝❡ ♣r♦❜❧❡♠❬✝✽❪✳ ❚❤❡ ✐♥✂❡rs❡✲P♦tts ♣r♦❜❧❡♠ ✐s ❛ ✂❡rs✐♦♥

♦❢ t❤✐s s❛♠❡ ♣r♦❜❧❡♠✱ ✇✐t❤ ✂❛r✐❛❜❧❡s t❛❦✐♥❣ ✞ ♣♦ss✐❜❧❡ st❛t❡s✳ ❚❤❡ ❝❛s❡ ✞ ❂ ✷✵ ✐s r❡❧❡✂❛♥t ❢♦r ✐♥❢❡rr✐♥❣ ✐♥t❡r❛❝t✐♦♥

✐♥ ♣r♦t❡✐♥ ♣❛✐rs ❢r♦♠ �❛t❛ ♦♥ ❝♦✲❡✂♦❧✉t✐♦♥ ♦❢ t❤❡s❡ ♣❛✐rs✱ ❛♥� ✐ts s♦❧✉t✐♦♥ ❜☎ s✉s❝❡♣t✐❜✐❧✐t☎ ♣r♦♣❛❣❛t✐♦♥ ❤❛s ❣✐✂❡♥

❛♥ ❛❝❝✉r❛t❡ ♣r❡�✐❝t✐♦♥ ♦❢ ✐♥t❡r✲♣r♦t❡✐♥ r❡s✐�✉❡ ❝♦♥t❛❝ts❬✷✽❪✳ ❆♥♦t❤❡r ❝❛s❡ ✇❤✐❝❤ ❤❛s r❡❝❡✐✂❡� s♦♠❡ ❛tt❡♥t✐♦♥ ✐s t❤❡

♣r♦❜❧❡♠ ♦❢ r❡❝♦♥str✉❝t✐♦♥ ✐♥ ❇♦♦❧❡❛♥ ♥❡t✇♦r❦s ✭s❡❡ ❡✳❣✳❬✸❪ ❛♥� r❡❢❡r❡♥❝❡s t❤❡r❡✐♥✮✳

❍♦✇❡✂❡r✱ ✐♥ ♠❛♥☎ ❛♣♣❧✐❝❛t✐♦♥s t♦ ❜✐♦❧♦❣✐❝❛❧ s☎st❡♠s✱ ✐♥ ♣❛rt✐❝✉❧❛r t❤❡ ♦♥❡s ❝♦♥❝❡r♥✐♥❣ ♥❡✉r❛❧ ❛❝t✐✂✐t☎ ❛♥� ❣❡♥❡

❡①♣r❡ss✐♦♥ ♥❡t✇♦r❦✱ t❤❡ ❛ss✉♠♣t✐♦♥ t❤❛t t❤❡ ♣❛tt❡r♥s ❛r❡ ❣❡♥❡r❛t❡� ❜☎ ❛♥ ✉♥�❡r❧☎✐♥❣ ❡q✉✐❧✐❜r✐✉♠ ❇♦❧t③♠❛♥♥✲●✐❜❜s

♠❡❛s✉r❡ ✐s ♥♦t ✇❡❧❧ ❢♦✉♥�❡�✳ ❈♦✉♣❧✐♥❣s ❛r❡ t☎♣✐❝❛❧❧☎ ❛s☎♠♠❡tr✐❝✱ ❛♥� t❤❡☎ ♠❛☎ ✂❛r☎ ✐♥ t✐♠❡✱ s♦ t❤❡r❡ ✐s ♥♦ ❡q✉✐❧✐❜r✐✉♠

♠❡❛s✉r❡✳ ❚❤✐s ❤❛s ♣r♦♠♣t❡� t❤❡ r❡❝❡♥t st✉�☎ ♦❢ ✐♥❢❡r❡♥❝❡ ✐♥ ♣✉r❡❧☎ ❦✐♥❡t✐❝ ♠♦�❡❧s ✇✐t❤♦✉t ❛♥ ❡q✉✐❧✐❜r✐✉♠ ♠❡❛s✉r❡

❬✹✱ ✾✱ ✷✝✱ ✷✾❪✳ ❆ ❜❡♥❝❤♠❛r❦ ♦♥ t❤✐s �☎♥❛♠✐❝ ✐♥❢❡r❡♥❝❡ ♣r♦❜❧❡♠ ✐s t❤❡ ✐♥✂❡rs❡ ❛s☎♠♠❡tr✐❝ ❦✐♥❡t✐❝ ■s✐♥❣ ♠♦�❡❧✳ ❚❤❡

❢r❛♠❡✇♦r❦ ✐s t❤❡ s❛♠❡ ❛s t❤❡ ❡q✉✐❧✐❜r✐✉♠ ♦♥❡✿ ♦♥❡ tr✐❡s t♦ ✐♥❢❡r t❤❡ ♣❛r❛♠❡t❡rs ♦❢ t❤❡ �☎♥❛♠✐❝❛❧ ❡✂♦❧✉t✐♦♥ ❡q✉❛t✐♦♥

♦❢ ❛♥ ■s✐♥❣ s♣✐♥ s☎st❡♠s✱ ❣✐✂❡♥ ❛ s❡t ♦❢ ♣❛tt❡r♥s ❣❡♥❡r❛t❡� ❜☎ t❤✐s ❡✂♦❧✉t✐♦♥✳ ❚❤❡ r❡❝❡♥t ✇♦r❦s ❬✾✱ ✷✵✱ ✷✝✱ ✷✾❪ ❤❛✂❡

st✉�✐❡� t❤❡ ♣❡r❢♦r♠❛♥❝❡ ♦❢ t✇♦ ♠❡❛♥✲✁❡❧� ♠❡t❤♦�s ♦♥ t❤✐s ♣r♦❜❧❡♠✱ t❤❡ ♥❛✐✂❡ ♠❡❛♥ ✁❡❧� ✭♥▼❋✮ ❛♥� ❛ ✇❡❛❦✲❝♦✉♣❧✐♥❣

❡①♣❛♥s✐♦♥ ✇❤✐❝❤ t❤❡☎ �❡♥♦t❡ ❛s ❚❆P ♠❡t❤♦�✳ ❚❤❡☎ ❤❛✂❡ s❤♦✇♥ t❤❛t✱ ✐♥ t❤❡ ❝❛s❡ ♦❢ t❤❡ ❢✉❧❧☎ ❛s☎♠♠❡tr✐❝ ✐♥✁♥✐t❡

r❛♥❣❡ s♣✐♥ ❣❧❛ss ♣r♦❜❧❡♠✱ t❤❡ ✐♥❢❡r❡♥❝❡ ♣r♦❜❧❡♠ ❝❛♥ ❜❡ s♦❧✂❡� ❜☎ t❤❡s❡ ♠❡t❤♦�s ✐♥ t❤❡ ❝❛s❡ ✇❤❡r❡ t❤❡ s♣✐♥s ❛r❡ ✇❡❛❦❧☎

❝♦✉♣❧❡�✳ ■♥ t❤❡ ♣r❡s❡♥t ✇♦r❦ ✇❡ ♣r❡s❡♥t ❛ ✭♥♦♥✲♥❛✐✂❡✦✮ ♠❡❛♥ ✁❡❧� ❛♣♣r♦❛❝❤ ✇❤✐❝❤ s♦❧✂❡s t❤❡ ♣r♦❜❧❡♠ ❛t ❛❧❧ ✂❛❧✉❡s ♦❢

t❤❡ ❝♦✉♣❧✐♥❣s ✭❛♥� r❡�✉❝❡s t♦ t❤❡✐r ❚❆P ❛♣♣r♦❛❝❤ ❛t ✇❡❛❦ ❝♦✉♣❧✐♥❣✮✳

❚❤❡ ❦✐♥❡t✐❝ ■s✐♥❣ ♠♦�❡❧ ✇❤✐❝❤ ✇❡ s❤❛❧❧ st✉�☎ ✐s t❤❡ s❛♠❡ ❛s t❤❡ ♦♥❡ ♦❢ ❬✷✝❪✳ ◆ ■s✐♥❣ s♣✐♥s ✟✠ ❡✂♦❧✂❡ ✐♥ �✐s❝r❡t❡ t✐♠❡✱

✇✐t❤ ❛ s☎♥❝❤r♦♥♦✉s ♣❛r❛❧❧❡❧ �☎♥❛♠✐❝s✳ ●✐✂❡♥ t❤❡ ❝♦♥✁❣✉r❛t✐♦♥ ♦❢ s♣✐♥s ❛t t✐♠❡ ✡☞✝✱ ✟✭✡☞✝✮ ❂ ✌✟✶✭✡☞✝✮❀ ✍ ✍ ✍ ❀ ✟✎✭✡☞✝✮✏✱

t❤❡ s♣✐♥s ✟✠✭✡✮ ❛r❡ ✐♥�❡♣❡♥�❡♥t r❛♥�♦♠ ✂❛r✐❛❜❧❡s �r❛✇♥ ❢r♦♠ t❤❡ �✐str✐❜✉t✐♦♥✿

✑ ✭✟✭✡✮✒✟✭✡ ☞ ✝✮✮ ❂

✎❨

✠✓✶

✝

✷ ❝♦s❤✭✔✕✠✭✡✮✮
✖
✗✘✙✚✛✜✢✙✚✛✜ ✭✝✮

✇❤❡r❡

✕✠✭✡✮ ❂ ✣✠✭✡ ☞ ✝✮ ✰
❳

✤

❏✠✤✭✡ ☞ ✝✮✟✤✭✡ ☞ ✝✮ ✭✷✮

✥♦t❡ t❤❛t ❜♦t❤ t❤❡ ❧♦❝❛❧ ❡①t❡r♥❛❧ ✁❡❧�s ✣✠✭✡✮ ❛♥� t❤❡ ❡①❝❤❛♥❣❡ ❝♦✉♣❧✐♥❣s ❏✠✤✭✡✮ ♠❛☎ �❡♣❡♥� ♦♥ t✐♠❡✳ ❍❡r❡ ✇❡ ❛r❡

✐♥t❡r❡st❡� ✐♥ ❛ ❢✉❧❧☎ ❛s☎♠♠❡tr✐❝ ♠♦�❡❧✳ ❲❡ ❣❡♥❡r❛t❡ t❤❡ ❏✠✤ ❜☎ ❛♥ ❛s☎♠♠❡tr✐❝ ✂❡rs✐♦♥ ❬✺✱ ✽✱ ✝✼❪ ♦❢ t❤❡ ✐♥✁♥✐t❡ ✲

r❛♥❣❡ ❙❤❡rr✐♥❣t♦♥✲❑✐r❦♣❛tr✐❝❦ s♣✐♥ ❣❧❛ss ♠♦�❡❧ ❬✷✹❪✱ ✐♥ ✇❤✐❝❤ ❢♦r ❡❛❝❤ �✐r❡❝t❡� ❡�❣❡ ✭✧★✮ t❤❡ ❝♦✉♣❧✐♥❣ ✐s ❛ ❣❛✉ss✐❛♥

r❛♥�♦♠ ✂❛r✐❛❜❧❡ ✇✐t❤ ✂❛r✐❛♥❝❡ ✝✩◆✳ ✥♦t✐❝❡ t❤❛t ❏✠✤ ❛♥� ❏✤✠ ❛r❡ ✐♥�❡♣❡♥�❡♥t r❛♥�♦♠ ✂❛r✐❛❜❧❡s✳ ❲❡ �♦ ♥♦t ✐♥❝❧✉�❡

s❡❧❢✲✐♥t❡r❛❝t✐♦♥s ✭✇❡ t❛❦❡ ❏✠✠ ❂ ✵✮✱ ❛❧t❤♦✉❣❤ t❤✐s ❝♦✉❧� ❜❡ �♦♥❡ ✇✐t❤♦✉t ❝❤❛♥❣✐♥❣ t❤❡ r❡s✉❧ts✳ ❆s ✐♥✐t✐❛❧ ❝♦♥�✐t✐♦♥s ✇❡
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✸

t❛❦❡ s✐✭� ❂ ✵✮ ❂ ✝✶ ✇✁t❤ ♣r♦❜❛❜✁✂✁t② ✶✄✷✳ ❖✉r ♠❡t❤♦❞ ❛✂❧♦ ❛♣♣✂✁❡❧ t♦ t❤❡ ❝❛❧❡ ♦❢ ❛❧②♥❝❤r♦♥♦✉❧ ❞②♥❛♠✁❝❧✱ ❧t✉❞✁❡❞

✁♥ ❬✷✾❪ ✇✁t❤ t❤❡ ❚❆P ❛♣♣r♦❛❝❤✱ ❜✉t t♦ ❦❡❡♣ t❤❡ ♣r❡❧❡♥t❛t✁♦♥ ❧✁♠♣✂❡ ✇❡ ❧❤❛✂✂ ❧t✉❞② ♦♥✂② t❤❡ ❝❛❧❡ ♦❢ t❤❡ ❧②♥❝❤r♦♥♦✉❧

♣❛r❛✂✂❡✂ ❞②♥❛♠✁❝❧ ✁♥ t❤✁❧ ✂❡tt❡r✳

❲❡ ☞r❧t ❞❡r✁☎❡ t❤❡ ♠❡❛♥✲☞❡✂❞ ❡q✉❛t✁♦♥❧ ❢♦r t❤❡ ♠❛❣♥❡t✁✆❛t✁♦♥❧ ✞✐✭�✮ ❂ ✟s✐✭�✮✠✳ ❇❡❝❛✉❧❡ t❤❡ ❝♦✉♣✂✁♥❣❧ ❛r❡ ❛❧②♠✲

♠❡tr✁❝✱
✡

❥ ❏✐❥❏❥✐ ❂ ☛✭✶✄
✌
◆✮✱ t❤❡r❡❢♦r❡ t❤❡ ❖♥❧❛❣❡r r❡❛❝t✁♦♥ t❡r♠ ✁❧ ♥♦t ♣r❡❧❡♥t ✁♥ t❤✁❧ ♣r♦❜✂❡♠✳ ❚❤✁❧ ♠❛❦❡❧ t❤❡

❞❡r✁☎❛t✁♦♥ ♦❢ ♦✉r ❡q✉❛t✁♦♥❧✱ ✇❤✁❝❤ ✇❡ ❧❤❛✂✂ ❞❡♥♦t❡ ✍✉❧t ✬♠❡❛♥✲☞❡✂❞✬ ❡q✉❛t✁♦♥❧✱ ♣❛rt✁❝✉✂❛r✂② ❡❛❧②✳ ❚❤❡ ❛♣♣r♦①✁♠❛t❡

❡q✉❛t✁♦♥❧ ✉❧❡❞ ✁♥ ❬✷✶✱ ✷✾❪✱ ♦r✁❣✁♥❛✂✂② ❞❡r✁☎❡❞ ✁♥ ❬✶✸❪✱ ❤❛☎❡ ❜❡❡♥ ♦❜t❛✁♥❡❞ ❜② ❛ ❧❡❝♦♥❞ ♦r❞❡r ❡①♣❛♥❧✁♦♥ ✁♥ t❤❡ ❝♦✉♣✂✁♥❣❧✳

❲❤❡♥ t❤✁❧ ❡①♣❛♥❧✁♦♥ ✁❧ ❛♣♣✂✁❡❞ t♦ t❤❡ ❧②♠♠❡tr✁❝ ♣r♦❜✂❡♠ ✁t ❣✁☎❡❧ ❜❛❝❦ t❤❡ ❚❆P ❡q✉❛t✁♦♥❧ ❬✷✼❪ ✇✁t❤ t❤❡✁r ❖♥❧❛❣❡r

r❡❛❝t✁♦♥ t❡r♠✳ ■♥ t❤❡ ♣r❡❧❡♥t ❝❛❧❡ ♦❢ ❛❧②♠♠❡tr✁❝ ❝♦✉♣✂✁♥❣✱ ✁t ❦❡❡♣❧ t❤❡ ❝♦rr❡❝t✁♦♥ ♦❢ ♦r❞❡r
✡

❥ ❏✐❥❏✐❥ ✳ ❲❡ ❧❤❛✂✂ ❦❡❡♣

❢♦r t❤❡❧❡ ❧❡❝♦♥❞✲♦r❞❡r✲❡①♣❛♥❞❡❞ ❡q✉❛t✁♦♥❧ t❤❡ ♥❛♠❡ ❵❚❆P✬✲❡q✉❛t✁♦♥❧✱ ❛❧ ✉❧❡❞ ❜② ❬✶✸✱ ✷✶✱ ✷✾❪✳

❚❤❡ ✂♦❝❛✂ ☞❡✂❞ ♦♥ ❧♣✁♥ ✎ ❞✉❡ t♦ t❤❡ ♦t❤❡r ❧♣✁♥❧✱
✡

❥ ❏✐❥✭� ✏ ✶✮s❥✭� ✏ ✶✮✱ ✁❧ t❤❡ ❧✉♠ ♦❢ ❛ ✂❛r❣❡ ♥✉♠❜❡r ♦❢ t❡r♠❧✳

❚❤❡r❡❢♦r❡ ✁t ❤❛❧ ❛ ❣❛✉❧❧✁❛♥ ❞✁❧tr✁❜✉t✁♦♥ ✇✁t❤ ♠❡❛♥

✑✐✭� ✏ ✶✮ ❂
❳

❥

❏✐❥✞❥✭� ✏ ✶✮ ✭✸✮

❛♥❞ ☎❛r✁❛♥❝❡

✒✐✭� ✏ ✶✮ ❂
❳

❥

❏
✓
✐❥✭✶ ✏ ✞❥✭� ✏ ✶✮

✓
✮ ✭✹✮

✭✁♥ ♦r❞❡r t♦ ❞❡r✁☎❡ t❤✁❧ ✂❛❧t ❢♦r♠✉✂❛✱ ♦♥❡ ♠✉❧t ✉❧❡ t❤❡ ❢❛❝t t❤❛t t❤❡ t②♣✁❝❛✂ ❝♦♥♥❡❝t❡❞ ❝♦rr❡✂❛t✁♦♥ ✟s❥s✔✠ ✏ ✞❥✞✔ ✁❧

t②♣✁❝❛✂✂② ♦❢ ♦r❞❡r ✶✄
✌
◆❀ t❤✁❧ ✇✁✂✂ ❜❡ ❝❤❡❝❦❡❞ ❧❡✂❢✲❝♦♥❧✁❧t❡♥t✂② ❜❡✂♦✇✮✳ ❯❧✁♥❣ t❤✁❧ ♣r♦♣❡rt② ❛♥❞ t❤❡ ❞❡☞♥✁t✁♦♥ ♦❢ t❤❡

❞②♥❛♠✁❝❧ ✭✶✮✱ ♦♥❡ ♦❜t❛✁♥❧ t❤❡ ♠❛❣♥❡t✁✆❛t✁♦♥ ♦❢ ❧♣✁♥ ✎ ❛t t✁♠❡ �✿

✞✐✭�✮ ❂

❩

❉✕ t❛♥❤

✖

✗

✘

❍✐✭� ✏ ✶✮ ✰ ✑✐✭� ✏ ✶✮ ✰ ✕
✙

✒✐✭� ✏ ✶✮

✚✛

✜ ✭✺✮

✇❤❡r❡ ❉✕ ❂
✢✣✤
✓✥

❡✦
✧★
★ ✁❧ t❤❡ ♣r♦❜❛❜✁✂✁t② ❞❡♥❧✁t② ❢♦r ❛ ●❛✉❧❧✁❛♥ ☎❛r✁❛❜✂❡ ✕ ✇✁t❤ ✆❡r♦ ♠❡❛♥ ❛♥❞ ☎❛r✁❛♥❝❡ ✉♥✁t②✳

❊q✉❛t✁♦♥❧ ✭✸✱✹✱✺✮ ❛r❡ ♦✉r ♠❡❛♥ ☞❡✂❞ ✭▼❋✮ ❡q✉❛t✁♦♥❧ ❢♦r t❤✁❧ ♣r♦❜✂❡♠✱ ☎❛✂✁❞ ♦♥ ❛ ❣✁☎❡♥ ✁♥❧t❛♥❝❡✳ ❙✁♠✁✂❛r ❞②♥❛♠✁❝❛✂

❡q✉❛t✁♦♥❧ ❤❛☎❡ ❜❡❡♥ ♦❜t❛✁♥❡❞ ✁♥ t❤❡ ❧t✉❞② ♦❢ t❤❡ ❧❛♠♣✂❡✲❛☎❡r❛❣❡❞ ♦r❞❡r ♣❛r❛♠❡t❡r ✁♥ ❛❧②♠♠❡tr✁❝ ♥❡✉r❛✂ ♥❡t✇♦r❦❧❬✩✱ ✼❪

❛♥❞ ❧♣✁♥ ❣✂❛❧❧❡❧❬✺❪✳ ❚❤❡② ❝❛♥ ❜❡ ✁t❡r❛t❡❞ ❧t❛rt✁♥❣ ❢r♦♠ ❧♦♠❡ ✁♥✁t✁❛✂ ❝♦♥❞✁t✁♦♥ ✭✁♥ ♦✉r ❝❛❧❡ ✞✐✭✵✮ ❂ ✵✮ ✁♥ ♦r❞❡r t♦ ❣❡t

❛✂✂ t❤❡ ♠❛❣♥❡t✁✆❛t✁♦♥❧ ✞✐✭�✮ ❛t ❛♥② t✁♠❡✳ ❚❤❡② r❡✂② ♦♥✂② ♦♥ t❤❡ ❝❡♥tr❛✂ ✂✁♠✁t t❤❡♦r❡♠ ❛♥❞ t❤❡② ❛r❡ ❡①❛❝t ✁♥ t❤❡ ✂❛r❣❡

◆ ✂✁♠✁t✱ ❢♦r ❛♥② ❧❡t ♦❢ ❝♦✉♣✂✁♥❣❧ ❛♥❞ ❡①t❡r♥❛✂ ☞❡✂❞❧✱ ❡☎❡♥ ✁❢ t❤❡② ❛r❡ t✁♠❡✲❞❡♣❡♥❞❡♥t✳ ❚❤❡❧❡ ❞✁✪❡r ❢r♦♠ t❤❡ ❵❚❆P✬

❡q✉❛t✁♦♥❧ ♦❢ ❬✶✸✱ ✶✹✱ ✷✶✱ ✷✾❪ ✇❤✁❝❤ ❝❛♥ ❜❡ ✇r✁tt❡♥ ✁♥ ♦✉r ♥♦t❛t✁♦♥✿

✞✐✭�✮ ❂ t❛♥❤
✫
✗❍✐✭� ✏ ✶✮ ✰ ✗✑✐✭� ✏ ✶✮ ✏ ✞✐✭�✮✗

✓
✒✐✭� ✏ ✶✮

✯
✜ ✭✩✮

❛♥❞ ❢r♦♠ t❤❡ ♥❛✁☎❡ ♠❡❛♥ ☞❡✂❞ ✭♥▼❋✮ ❡q✉❛t✁♦♥❧✿

✞✐✭�✮ ❂ t❛♥❤ ❬✗ ✭❍✐✭� ✏ ✶✮ ✰ ✑✐✭� ✏ ✶✮✮❪ ✴ ✭✼✮

❚❤❡ ♥▼❋ ❡q✉❛t✁♦♥❧ ❛♥❞ t❤❡ ❵❚❆P✬ ❡q✉❛t✁♦♥❧ ❛❝t✉❛✂✂② ❣✁☎❡ t❤❡ ❧❛♠❡ r❡❧✉✂t ❛❧ ♦✉r ❡①❛❝t ▼❋ ❡q✉❛t✁♦♥❧✱ ✇❤❡♥ ❡①♣❛♥❞❡❞

✁♥ ♣♦✇❡r❧ ♦❢ ✒✐✱ r❡❧♣❡❝t✁☎❡✂② t♦ ♦r❞❡r ✒✻
✐ ❛♥❞ ✒✽

✐ ✱ ❜✉t t❤❡② ❞✁✪❡r ❛t ♦r❞❡r ✒✓
✐ ✳ ❚❤❡ ❢❛❝t t❤❛t ❵❚❆P✬ ❡q✉❛t✁♦♥❧ ❛❣r❡❡

✇✁t❤ t❤❡ ❡①❛❝t ▼❋ t♦ ❧❡❝♦♥❞ ♦r❞❡r ✁♥ ❛ ✇❡❛❦ ❝♦✉♣✂✁♥❣ ❡①♣❛♥❧✁♦♥ ✁❧ ❝♦♥❧✁❧t❡♥t ✇✁t❤ t❤❡✁r ❞❡r✁☎❛t✁♦♥ t❤r♦✉❣❤ ❧❡❝♦♥❞

♦r❞❡r P✂❡❢❦❛✲t②♣❡ ❡①♣❛♥❧✁♦♥❬✶✹❪✳ ❚❤❡ ❝♦rr❡❝t♥❡❧❧ ♦❢ t❤❡ ▼❋ ❡q✉❛t✁♦♥❧ ✭✺✱✸✱✹✮ ❝❛♥ ❜❡ ❡❛❧✁✂② ❝❤❡❝❦❡❞ ♥✉♠❡r✁❝❛✂✂② ❛❧

❧❤♦✇♥ ✁♥ t❤❡ ✂❡❢t ♣❛♥❡✂❧ ♦❢ ❋✁❣✳✶✳

❲❡ ♥♦✇ t✉r♥ t♦ t❤❡ ❝♦♠♣✉t❛t✁♦♥ ♦❢ ❝♦rr❡✂❛t✁♦♥❧✳ ❲❡ ❧❤❛✂✂ ❡❧t❛❜✂✁❧❤ t❤❡ ♠❡❛♥ ☞❡✂❞ r❡✂❛t✁♦♥ ❜❡t✇❡❡♥ t❤❡ t✁♠❡✲❞❡✂❛②❡❞

❛♥❞ t❤❡ ❡q✉❛✂✲t✁♠❡ ❝♦rr❡✂❛t✁♦♥ ♠❛tr✁❝❡❧✿

❉✐❥✭�✮ ❁ ✟❃s✐✭� ✰ ✶✮❃s❥✭�✮✠ ✭❄✮

❈✐❥✭�✮ ❁ ✟❃s✐✭�✮❃s❥✭�✮✠ ✜ ✭✾✮

✇❤❡r❡ ✇❡ ❞❡☞♥❡ ❃s✐✭�✮ ❛❧ t❤❡ ❅✉❝t✉❛t✁♦♥ ♦❢ t❤❡ ♠❛❣♥❡t✁✆❛t✁♦♥✿ ❃s✐✭�✮ ❂ s✐✭�✮ ✏ ✟s✐✭�✮✠ ✴

❲❡ ❧t❛rt ❜② ✇r✁t✁♥❣
✡

❥ ❏✐❥✭�✮s❥✭�✮ ❂ ✑✐✭�✮ ✰ ❃✑✐✭�✮✱ ✇❤❡r❡ ❃✑✐✭�✮ ✁❧ ❣❛✉❧❧✁❛♥ ❞✁❧tr✁❜✉t❡❞ ✇✁t❤ ♠❡❛♥ ✵ ❛♥❞ ☎❛r✁❛♥❝❡

✒✐✭�✮✳ ❑♦✇✱ ❜② ❞❡☞♥✁t✁♦♥ ♦❢ ❉✐❥ ✇❡ ❤❛☎❡

❉✐❥✭�✮ ❂ ✟s❥✭�✮ t❛♥❤ ❬✗ ✭❍✐✭�✮ ✰ ✑✐✭�✮ ✰ ❃✑✐✭�✮✮❪✠ ✏ ✟s❥✭�✮✠✟t❛♥❤ ❬✗ ✭❍✐✭�✮ ✰ ✑✐✭�✮ ✰ ❃✑✐✭�✮✮❪✠ ✭✶✵✮
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❍❡r❡❛❢t❡r ✐� ♦r❞❡r t♦ ❦❡❡♣ �♦t❛t✐♦�s s✐✁♣❧❡ ✐� t❤❡ ❞❡r✐✂❛t✐♦� ♦❢ t❤❡ r❡❧❛t✐♦� ❜❡t✇❡❡� ❉✭✄✮ ❛�❞ ❈✭✄✮ ✇❡ ✇♦r❦ ❛t ❛ ☞①❡❞

t✐✁❡ ✄ ❛�❞ ✇❡ t❤✉s ❞r♦♣ t❤❡ ❡①♣❧✐☎✐t t✐✁❡ ✐�❞✐☎❡s✿ ❛❧❧ t✐✁❡ ✐�❞✐☎❡s ✐� t❤✐s ❞❡r✐✂❛t✐♦� ❛r❡ ❡q✉❛❧ t♦ ✄ ✭❡✳✆✳ ❏✝❥ ❂ ❏✝❥✭✄✮✱

✍✞✝ ❂ ✍✞✝✭✄✮✱ ❣✝ ❂ ❣✝✭✄✮ ❡t☎✳✮ ❲❡ ✆❡t✿

❳

✟

❏❥✟❉✝✟ ❂ ✠✭❣❥ ✰ ✍❣❥✮ t❛�❤ ❬✡ ✭☛✝ ✰ ❣✝ ✰ ✍❣✝✮❪✌ ✎ ❣❥✠t❛�❤ ❬✡ ✭☛✝ ✰ ❣✝ ✰ ✍❣✝✮❪✌

❂ ✠✍❣❥ t❛�❤ ❬✡ ✭☛✝ ✰ ❣✝ ✰ ✍❣✝✮❪✌

✭✶✶✮

■� ♦r❞❡r t♦ ❡✂❛❧✉❛t❡ t❤❡ ❛✂❡r❛✆❡ ✇❡ �❡❡❞ t❤❡ ✏♦✐�t ❞✐str✐❜✉t✐♦� ♦❢ ✍❣✝ ❛�❞ ✍❣❥✳ ❚❤❡ ☎r✉☎✐❛❧ ♣♦✐�t t♦ ❦❡❡♣ ✐� ✁✐�❞

✐s t❤❛t✱ ❛s t❤❡ ☎♦✉♣❧✐�✆s ❛r❡ ♦❢ ♦r❞❡r ✶✑
✒
◆✱ ❡❛☎❤ ✁❛tr✐① ❡❧❡✁❡�t ♦❢ ❈ ❛�❞ ❉ ✐s ❛❧s♦ s✁❛❧❧✱ ♦❢ ♦r❞❡r ✶✑

✒
◆✳ ❚❤❡✐r

☎♦✂❛r✐❛�☎❡ ✐s t❤❡r❡❢♦r❡ s✁❛❧❧✿

✠✍❣✝✍❣❥✌ ❂ ✠
❳

✟

❏✝✟ ✭✞✟ ✎ ✠✞✟✌✮
❳

✓

❏❥✓ ✭✞✓ ✎ ✠✞✓✌✮✌ ✭✶✷✮

❂
❳

✟❀✓

❏✝✟❏❥✓❈✟✓ ❂
✔
❏❈❏

✕
✖

✝❥
✗ ✧ ✘ ✭✶✸✮

✇❤❡r❡ ✧ ✐s t②♣✐☎❛❧❧② ♦❢ ♦r❞❡r ✶✑
✒
◆✳ ❙♦ t❤❡ ✏♦✐�t ❞✐str✐❜✉t✐♦� ♦❢ ✙ ❂ ✍❣✝ ❛�❞ ✚ ❂ ✍❣❥ t❛❦❡s t❤❡ ❢♦r✁✱ ✐� t❤❡ ❧❛r✆❡ ◆

❧✐✁✐t ✭♦✁✐tt✐�✆ t❡r✁s ♦❢ ♦r❞❡r ✧✛✮✿

P ✭✙✘ ✚✮ ❂
✶

✷✜
✢
✣✝✣❥

❡①♣

✤

✎
✙✛

✷✣✝
✎

✚✛

✷✣❥
✰ ✧

✙✚

✣✝✣❥

✥

✭✶✹✮

❯s✐�✆ t❤❡ s✁❛❧❧ ✧ ❡①♣❛�s✐♦� ♦❢ ❡q✳ ✭✶✹✮ ✇❡ ☎❛� r❡✇r✐t❡ ❡q✳ ✭✶✶✮ ❛s

❳

✟

❏❥✟❉✝✟ ❂
✧

✣✝✣❥

❩
✦✙

✒
✷✜✣✝

✦✚
✢
✷✜✣❥

❡
★ ✩
✪
✪✫✬
★ ✯
✪
✪✫✲ ✙✚

✛
t❛�❤ ❬✡ ✭☛✝ ✰ ❣✝ ✰ ✙✮❪ ✭✶✺✮

❂ ✧✡

❩
✦✙

✒
✷✜✣✝

❡①♣
★ ✩
✪
✪✫✬

✔
✶ ✎ t❛�❤

✛
❬✡ ✭☛✝ ✰ ❣✝ ✰ ✙✮❪

✖
✴ ✭✶✻✮

✵♦✁❜✐�✐�✆ ❡q✳ ✭✶✷✮ ❛�❞ ❡q✳ ✭✶✺✮ ✇❡ ✆❡t✿

✔
❉❏

✕
✖

✝❥
❂
✔
❏❈❏

✕
✖

✝❥
✡

❩
✦✙

✒
✷✜✣✝

❡
★ ✩
✪
✪✫✬

✔
✶ ✎ t❛�❤

✛
✡ ✭☛✝ ✰ ❣✝ ✰ ✙✮

✖
✘ ✭✶✼✮

✇❤✐☎❤ ✆✐✂❡s t❤❡ ❡①♣❧✐☎✐t ✁❡❛�✽☞❡❧❞ r❡❧❛t✐♦� ❜❡t✇❡❡� ❈ ❛�❞ ❉✳ ✾✉tt✐�✆ ❜❛☎❦ t❤❡ t✐✁❡ ✐�❞✐☎❡s✱ ✇❡ ♦❜t❛✐� t❤❡ ☞�❛❧

r❡s✉❧t ✐� ✁❛tr✐① ❢♦r✁✿

❉✭✄✮ ❂ ❆✭✄✮ ❏✭✄✮ ❈✭✄✮ ✘ ✭✶❁✮

✇❤❡r❡ ❆✭✄✮ ✐s ❛ ❞✐❛✆♦�❛❧ ✁❛tr✐①✿ ❆✝❥✭✄✮ ❂ ❃✝✭✄✮✍✝❥ ✱ ✇✐t❤✿

❃✝✭✄✮ ❂ ✡

❩

❉✙

❄

✶ ✎ t❛�❤
✛
✡

❅

☛✝✭✄✮ ✰ ❣✝✭✄✮ ✰ ✙
✢
✣✝✭✄✮

❇❊

✴ ✭✶❋✮

❚❤❡ ☞�❛❧ r❡s✉❧t ✭✶❁✮ t❛❦❡s ❡①❛☎t❧② t❤❡ s❛✁❡ ❢♦r✁ ❛s t❤❡ ♦�❡ ❢♦✉�❞ ✇✐t❤ t❤❡ �❛✐✂❡ ✁❡❛� ☞❡❧❞ ❡q✉❛t✐♦� ❛�❞ ✇✐t❤

t❤❡ ❵❚●✾❑ ❛♣♣r♦❛☎❤✳ ❚❤❡ ♣r❡❞✐☎t✐♦�s ♦❢ ❛❧❧ t❤r❡❡ ✁❡t❤♦❞s✱ �▼▲✱ ❵❚●✾❑ ❛�❞ ♦✉r ▼▲ ✁❡t❤♦❞ ✐s ❛❧✇❛②s ❉✭✄✮ ❂

❆✭✄✮ ❏✭✄✮ ❈✭✄✮✱ ✇✐t❤ ❛ ❞✐❛✆♦�❛❧ ✁❛tr✐① ❆✭✄✮ ✇❤✐☎❤ ❞✐❖❡rs ✐� ❡❛☎❤ ☎❛s❡✳ ●s s❤♦✇� ✐� ❬✷✶❪✱ t❤❡ �▼▲ ❛♣♣r♦①✐✁❛t✐♦�

✆✐✂❡s✿

❃
♥◗❘
✝ ✭✄✮ ❂ ✡

❱
✶ ✎♠✝✭✄ ✰ ✶✮

✛
❨
✘ ✭✷❭✮

t❤❡ ❵❚●✾❑ ❛♣♣r♦①✐✁❛t✐♦� ✆✐✂❡s✿

❃
✕❫❴
✝ ✭✄ ✰ ✶✮ ❂ ✡

❱
✶ ✎♠✝✭✄ ✰ ✶✮

✛
❨
❝

✶ ✎ ✭✶ ✎♠✝✭✄ ✰ ✶✮
✛
✮✡
✛
❳

✟

❏
✛
✝✟✭✶ ✎ ♠✟✭✄✮

✛
✮

✈

✭✷✶✮

❛�❞ ♦✉r ✁❡❛� ☞❡❧❞ ♣r❡❞✐☎t✐♦� ✐s t❤❡ ♦�❡ ✆✐✂❡� ✐� ✭✶❋✮✳
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❲❡ ❝❧�✐✁ t❤�t✱ �s ✐✂ t❤❡ ❝�s❡ ♦❢ t❤❡ ✁�❣✂❡t✐✄�t✐♦✂s✱ ♦✉r ✁❡�✂ ☞❡❧☎ ❡q✉�t✐♦✂s ❝♦✂✂❡❝t✐✂❣ ❉ t♦ ❈ �r❡ ❡①�❝t ✐✂ t❤❡

�s②✁✁❡tr✐❝ ❙❑ ✁♦☎❡❧✱ ✐✂ t❤❡ ❧�r❣❡ ◆ ❧✐✁✐t✳ ❚❤✐s st�t❡✁❡✂t ❝�✂ ❜❡ ❝❤❡❝❦❡☎ ✂✉✁❡r✐❝�❧❧② ❜② ❝♦✁♣�r✐✂❣ ✭❆❏❈✮✆❥ ✇✐t❤

t❤❡ ❡①♣❡r✐✁❡✂t�❧ ✈�❧✉❡s ♦❢ ❉✆❥ ❢♦✉✂☎ ❜② ✁♦✂t❡ ❝�r❧♦ s✐✁✉❧�t✐♦✂s✱ �s s❤♦✇✂ ✐✂ ❋✐❣✳✝✳

❚❤❡s❡ r❡s✉❧ts ♦✂ t❤❡ ✁❡�✂ ☞❡❧☎ r❡❧�t✐♦✂ ❜❡t✇❡❡✂ ❈ �✂☎ ❉ ❝�✂ ❜❡ ✉s❡☎ ❢♦r t❤❡ ✐✂✈❡rs❡ ♣r♦❜❧❡✁✳ ●✐✈❡✂ P ❵♣�tt❡r✂s✬✱

✇❤✐❝❤ �r❡ t✐✁❡ s❡q✉❡✂❝❡s ♦❢ ❧❡✂❣t❤ ✞ ❣❡✂❡r�t❡☎ ❢r♦✁ t❤❡ ☎✐str✐❜✉t✐♦✂ ✭✝✮✱ ♦✂❡ ❝�✂ ❡st✐✁�t❡ ❢♦r ❡�❝❤ ✜ ❂ ✝❀ ✿ ✿ ✿ ❀ ✞✱ t❤❡

✁�❣✂❡t✐✄�t✐♦✂s ♠✆✭✜✮✱ t❤❡ ❡q✉�❧ t✐✁❡ ❝♦rr❡❧�t✐♦✂s ❈✆❥✭✜✮ �✂☎ t❤❡ t✐✁❡✲☎❡❧�②❡☎ ❝♦rr❡❧�t✐♦✂s ❉✆❥✭✜✮✳ ❚❤❡ ♣r♦❜❧❡✁ ✐s

t♦ ✐✂❢❡r ❢r♦✁ t❤❡s❡ ☎�t� t❤❡ ✈�❧✉❡s ♦❢ t❤❡ ❝♦✉♣❧✐✂❣s ❏✆❥✭✜✮ �✂☎ ♦❢ t❤❡ ❧♦❝�❧ ☞❡❧☎s ❍✆✭✜✮✳ ❲✐t❤♦✉t ❧♦ss ♦❢ ❣❡✂❡r�❧✐t②✱

✇❡ ❝�✂ ✉s❡ ✟ ❂ ✝ �s ✐t ✐s �❜s♦r❜❡☎ ✐✂ t❤❡ str❡✂❣t❤ ♦❢ ❝♦✉♣❧✐✂❣s �✂☎ ☞❡❧☎s t❤�t ✇❡ ✇�✂t t♦ ✐✂❢❡r✳ ❲❡ s❤�❧❧ s♦❧✈❡ t❤✐s

♣r♦❜❧❡✁ ✉s✐✂❣ t❤❡ ✁❡�✂ ☞❡❧☎ ❡q✉�t✐♦✂s✳

❚❤❡ ♣r♦❜❧❡✁s ❝♦rr❡s♣♦✂☎✐✂❣ t♦ ☎✐✠❡r❡✂t t✐✁❡s �✂☎ s✐t❡s ☎❡❝♦✉♣❧❡✳ ❙♦ ❧❡t ✉s ❝♦✂s✐☎❡r � ☞①❡☎ ✈�❧✉❡ ♦❢ ✡ �✂☎ ✜✱ �✂☎

✐✂❢❡r t❤❡ ❏✆❥✭✜✮ ❢♦r ☛ ❂ ✝❀ ✿ ✿ ✿ ❀ ◆✱ �✂☎ ❍✆✭✜✮✳ ❚♦ ❧✐❣❤t❡✂ ✂♦t�t✐♦✂ ✇❡ ☎r♦♣ t❤❡ ❡①♣❧✐❝✐t ✐✂☎✐❝❡s ✜ �✂☎ ✡✱ �✂☎ ✇❡ ☎❡✂♦t❡

❍ ❂ ❍✆✭✜✮✱ ♠❥ ❂ ♠❥✭✜✮✱ ♠ ❂ ♠✆✭✜ ✰ ✝✮✱ ✌ ❂ ✌✆✭✜✮✱ ✍ ❂ ✍✆✭✜✮✱ ❛ ❂ ❛✆✭✜✮✳ ❋♦❧❧♦✇✐✂❣ ❬✎✝❪✱ ♦✂❡ ❝�✂ ♦❜t�✐✂ ❏ ❜②

✐✂✈❡rt✐✂❣ t❤❡ r❡❧�t✐♦✂ ✭✝✽✮✳ ❚❤❡ ☞rst st❡♣ ✐s t♦ ✐✂✈❡rt t❤❡ ❡✁♣✐r✐❝�❧ ❈ ✁�tr✐① �✂☎ ❝♦✁♣✉t❡✏

✑❥ ❂
❳

✒

❉✆✒✭✜✮❈
✓✶
✒❥ ✭✜✮ ✿ ✭✎✎✮

■❢ ♦✂❡ ❦✂♦✇s t❤❡ ✂✉✁❜❡r ❛ ❂ ❛✆✭✜✮ ♦✂❡ ❝�✂ t❤❡✂ ✐✂❢❡r t❤❡ ❝♦✉♣❧✐✂❣s ❢r♦✁ ✭✝✽✮✏

❏✆❥✭✜✮ ❂ ✑❥✔❛ ✿ ✭✎✸✮

▲❡t ✉s ✂♦✇ s❡❡ ❤♦✇ ❛ ❝�✂ ❜❡ ❝♦✁♣✉t❡☎✳ ❚❤❡ ✁❡�✂ ☞❡❧☎ ❡q✉�t✐♦✂ ✭✺✮ ❢♦r t❤❡ ✁�❣✂❡t✐✄�t✐♦✂ r❡�☎s✏

♠ ❂

❩

❉✕ t�✂❤

✖

❍ ✰ ✌ ✰ ✕
✗
✍

✘

✿ ✭✎✹✮

❚❤❡ ❡q✉�t✐♦✂ ✭✝✾✮ ❢♦r ❛ ✐s

❛ ❂

❩

❉✕

✙

✝ ✚ t�✂❤
✷
✖

❍ ✰ ✌ ✰ ✕
✗
✍

✘✛

✿ ✭✎✺✮

❚❤❡ ❧✐✂❦ ❜❡t✇❡❡✂ ❛ �✂☎ ✍ ✐s ♦❜t�✐✂❡☎ ❢r♦✁ ✭✹✮✱ ✇❤✐❝❤ r❡�☎s✏

✍ ❂
✝

❛✷

❳

❥

✑
✷
❥ ✭✝ ✚ ♠

✷
❥✮ ❂

✢

❛✷
✿ ✭✎✻✮

❚♦ s♦❧✈❡ t❤✐s s②st❡✁ ♦❢ ❡q✉�t✐♦✂s✱ ✇❡ ♣r♦♣♦s❡ t❤❡ ❢♦❧❧♦✇✐✂❣ ✐t❡r�t✐✈❡ ♣r♦❝❡☎✉r❡✳ ❯s✐✂❣ t❤❡ ❡✁♣✐r✐❝�❧ ❝♦rr❡❧�t✐♦✂s

�✂☎ ✁�❣✂❡t✐✄�t✐♦✂s ❡st✐✁�t❡☎ ❢r♦✁ t❤❡ ♣�tt❡r✂s✱ ✇❡ ☞rst ❝♦✁♣✉t❡ ❢r♦✁ ✭✎✎✮ t❤❡ ✣✑❥✤✱ ☛ ✥ ✣✝❀ ✿ ✿ ✿ ❀ ◆✤✱ �✂☎ ✢ ❂
✦

❥ ✑
✷
❥ ✭✝ ✚ ♠✷❥✮✳

❚❤❡✂ ✇❡ ✉s❡ t❤❡ ❢♦❧❧♦✇✐✂❣ ✁�♣♣✐✂❣ t♦ ☞✂☎ ✍✳

✧ ❙t�rt ❢r♦✁ � ❣✐✈❡✂ ✈�❧✉❡ ♦❢ ✍✳

✧ ❯s✐✂❣ t❤❡ ❡✁♣✐r✐❝�❧ ✈�❧✉❡ ♦❢ ♠ �✂☎ t❤❡ ✈�❧✉❡ ♦❢ ✍✱ ❝♦✁♣✉t❡ ❍ ✰ ✌ ❜② ✐✂✈❡rt✐✂❣ ✭✎✹✮✳ ❚❤❡ r✐❣❤t✲❤�✂☎ s✐☎❡ ♦❢

t❤✐s ❡q✉�t✐♦✂ ✐s �✂ ✐✂❝r❡�s✐✂❣ ❢✉✂❝t✐♦✂ ♦❢ ❍ ✰ ✌ s♦ t❤✐s ✐✂✈❡rs✐♦✂ ✐s ❡�s②✳

✧ ❯s✐✂❣ ❍ ✰ ✌ �✂☎ ✍✱ ❝♦✁♣✉t❡ ❛ ✉s✐✂❣ ✭✎✺✮

✧ ★♦✁♣✉t❡ t❤❡ ✂❡✇ ✈�❧✉❡ ♦❢ ✍✱ ❝�❧❧❡☎ ❫✍✱ ✉s✐✂❣ ✭✎✻✮✳

■t ✐s ✇♦rt❤ ♣♦✐✂t✐✂❣ ♦✉t t❤�t ✐✂ t❤❡ t❤❡r✁♦☎②✂�✁✐❝ ❧✐✁✐t✱ ◆ ✩ ✪✱ t❤❡ ✈�❧✉❡ ♦❢ ✍ ❜❡❝♦✁❡s ✐✂☎❡♣❡✂☎❡✂t ♦❢ ✡✳ ❙♦✱ ✐❢

t❤❡ s②st❡✁ ✉✂☎❡r ❝♦✂s✐☎❡r�t✐♦✂ ✐s ❧�r❣❡ ❡✂♦✉❣❤✱ t❤❡ �❜♦✈❡ ✐t❡r�t✐♦✂ ❝♦✉❧☎ ❜❡ ♣❡r❢♦✁❡☎ ♦✂❧② ♦✂❝❡ ✐✂ ♦r☎❡r t♦ r❡☎✉❝❡

❝♦✁♣✉t�t✐♦✂ t✐✁❡✳

❚❤✐s ♣r♦❝❡☎✉r❡ ☎❡☞✂❡s � ✁�♣♣✐✂❣ ❢r♦✁ ✍ t♦ ❫✍ ❂ ✫✭✍✮✱ �✂☎ ✇❡ ✇�✂t t♦ ☞✂☎ � ☞①❡☎ ♣♦✐✂t ♦❢ t❤✐s ✁�♣♣✐✂❣✳ ■t t✉r✂s

♦✉t t❤�t � s✐✁♣❧❡ ✐t❡r�t✐✈❡ ♣r♦❝❡☎✉r❡✱ st�rt✐✂❣ ❢r♦✁ �✂ �r❜✐tr�r② ✍✵ ✭❢♦r ✐✂st�✂❝❡ ✍✵ ❂ ✝✮ �✂☎ ✉s✐✂❣ ✍♥✯✶ ❂ ✫✭✍♥✮✱

✉s✉�❧❧❧② ❝♦✂✈❡r❣❡s✳ ▼♦r❡ ♣r❡❝✐s❡❧②✱ ✐t ❝�✂ ❜❡ s❤♦✇✂ t❤�t ✫✭✴✮ ❂
✼

❁✶✓❃❄❅❄ �✂☎ t❤�t t❤❡ �s②✁♣t♦t✐❝ ❢♦r✁ ❢♦r t❤❡ s❧♦♣❡

♦❢ ✫ ❢♦r ✍ ❇ ✝ ✐s ✫ ❊ ❖
◗
✷ ✢❡①♣✭❫❘

✷✮✍♥✱ ✇❤❡r❡ ❫❘ ✐s s✉❝❤ t❤�t ♠ ❂ ❡r❢✭❫❘✔
✗
✎✮✳ ❲❡ ❤�✈❡ ❢♦✉✂☎ ✂✉✁❡r✐❝�❧❧② t❤�t ✇❤❡✂ t❤❡

✂✉✁❜❡r ♦❢ ♣�tt❡r✂s ✐s ❧�r❣❡ ❡✂♦✉❣❤ t❤❡ s❧♦♣❡ ✈❡r✐☞❡s✏ ❞✫✔❞✍ ✥❪✴❀ ✝❬✳ ❚❤❡r❡❢♦r❡ t❤❡ ✁�♣♣✐✂❣ ❝♦✂✈❡r❣❡s ❡①♣♦✂❡✂t✐�❧❧②

❢�st t♦ t❤❡ ✉✂✐q✉❡ ☞①❡☎ ♣♦✐✂t✳ ❚❤✐s ✁❡t❤♦☎ t❤❡r❡❢♦r❡ ✇♦r❦s ✇❤❡✂ t❤❡ ✂✉✁❜❡r ♦❢ ♣�tt❡r✂s ♣❡r s♣✐✂ P✔◆ ✐s ❧�r❣❡

❡✂♦✉❣❤✳ ■✂ t❤❡ ☎♦✉❜❧❡ ❧✐✁✐t P❀◆ ✩ ✪ �✂☎ P✔◆ ❧�r❣❡ ❡✂♦✉❣❤ t❤❡ �❜♦✈❡ ♣r♦❝❡☎✉r❡ t❤✉s �❧❧♦✇s t♦ ❣❡t t❤❡ ❡①�❝t r❡s✉❧t

❢♦r ✍❱ �✂☎ t❤❡r❡❢♦r❡ t♦ ☞✂☎ t❤❡ ❝♦✉♣❧✐✂❣s ❏✆❥✭✜✮ ❂ ✑❥✔❛✳ ❨✂❝❡ t❤❡ ❝♦✉♣❧✐✂❣s ❤�✈❡ ❜❡❡✂ ❢♦✉✂☎✱ ♦✂❡ ❝�✂ ❡�s✐❧② ❝♦✁♣✉t❡
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✻

❣ ❂
P

❥ ❏✐❥✭✜✮♠❥✭✜✮✱ ❛♥❞ t❤❡r❡❢♦r❡ �❡t t❤❡ ❧♦❝❛❧ ☞❡❧❞ ❍✭✜✮✳ ❚❤❡ ♥✉✁❜❡r ♦❢ ♦♣❡r❛t✂♦♥s ♥❡❡❞❡❞ ❢♦r t❤❡ ❢✉❧❧ ✂♥❢❡r❡♥❝❡ ♦❢

t❤❡ ❝♦✉♣❧✂♥�s ❛♥❞ ☞❡❧❞s ✂s ❞♦✁✂♥❛t❡❞ ❜② t❤❡ ✂♥✈❡rs✂♦♥ ♦❢ t❤❡ ❝♦rr❡❧❛t✂♦♥ ✁❛tr✂✄ ❈✱ ❛ t✂✁❡ ✇❤✂❝❤ ✂s t②♣✂❝❛❧❧② ❛t ✁♦st ♦❢

♦r❞❡r ◆✸✳ ■❢ t❤❡ ♥✉✁❜❡r ♦❢ ♣❛tt❡r♥s ✂s t♦♦ s✁❛❧❧✱ ✂t ✁❛② ❤❛♣♣❡♥ t❤❛t t❤❡r❡ ✂s ♥♦ s♦❧✉t✂♦♥ t♦ t❤❡ ☞✄❡❞ ♣♦✂♥t ❡q✉❛t✂♦♥

☎✭✆✮ ❂ ✆✳ ❚❤❡♥ ♦♥❡ ❝❛♥ ❞❡❝✂❞❡ t♦ ✉s❡ ✆ ❂ ☎✭✵✮✱ ✇❤✂❝❤ ✂s ♥♦t❤✂♥� ❜✉t t❤❡ ♥▼❋ ❡st✂✁❛t❡ ❢♦r ✝✐✭✜✮✳

❲❡ ❤❛✈❡ t❡st❡❞ ♦✉r ✁❡❛♥ ☞❡❧❞ ✂♥❢❡r❡♥❝❡ ✁❡t❤♦❞ ♦♥ t❤❡ ❛s②✁✁❡tr✂❝ ❙❑ ♣r♦❜❧❡✁✱ ✇❤❡r❡ t❤❡ ❝♦✉♣❧✂♥�s ❏✐❥ ❛r❡ t✂✁❡✲

✂♥❞❡♣❡♥❞❡♥t✱ �❛✉ss✂❛♥ ❞✂str✂❜✉t❡❞ ✇✂t❤ ✈❛r✂❛♥❝❡ ✞✷ ❛♥❞ t❤❡ ☞❡❧❞s ❛r❡ t✂✁❡ ✂♥❞❡♣❡♥❞❡♥t✱ ✉♥✂❢♦r✁❧② ❞✂str✂❜✉t❡❞ ♦♥

❬✟✞❀ ✞❪ ✳ ❋✂�✳✭✠✮ s❤♦✇s ❛ s❝❛tt❡r ♣❧♦t ♦❢ t❤❡ r❡s✉❧t ♦♥ ♦♥❡ �✂✈❡♥ ✂♥st❛♥❝❡ ❛t ✞ ❂ ✿✹ ❛♥❞ ✞ ❂ ✶✿✹✱ ❛♥❞ ❝♦✁♣❛r❡s ✂t t♦

t❤❡ ✂♥❢❡r❡♥❝❡ ✁❡t❤♦❞ ♦❢ ❬✠✶❪ ✉s✂♥� ♥▼❋ ❛♥❞ ❵❚❆✡✬ ✭t❤❡ ❵❚❆✡✬ ✂♥❢❡r❡♥❝❡ ✂s ❧✂✁✂t❡❞ t♦ s✁❛❧❧ ✈❛❧✉❡s ♦❢ ✞☛ ❛t ❧❛r�❡ ✞ ✂t

❢❛✂❧s✮✳ ❋✂�s✳ ✌ ❛♥❞ ✹ s❤♦✇ ❛ st❛t✂st✂❝❛❧ ❛♥❛❧②s✂s ♦❢ t❤❡ ♣❡r❢♦r✁❛♥❝❡ ♦❢ ▼❋ ✂♥❢❡r❡♥❝❡✳ ■t ❛❝❝✉r❛t❡❧② ✂♥❢❡rs t❤❡ ❝♦✉♣❧✂♥�s

❛♥❞ ☞❡❧❞s ❡✈❡♥ ✂♥ t❤❡ str♦♥� ❝♦✉♣❧✂♥� r❡�✂✁❡✳

❚❤❡ ✁❡t❤♦❞ t❤❛t ✇❡ ♣r♦♣♦s❡ ✂s ❡✄❛❝t ❛♥❞ ❛❧❧♦✇s ❢♦r ❛ ✈❡r② ♣r❡❝✂s❡ ✂♥❢❡r❡♥❝❡ ♦❢ t❤❡ ❝♦✉♣❧✂♥�s ✇❤❡♥ ❛♣♣❧✂❡❞ t♦ t❤❡

❢✉❧❧② ❛s②✁✁❡tr✂❝ ❙❑ s♣✂♥ �❧❛ss✱ ❛t ❛♥② t❡✁♣❡r❛t✉r❡✱ ✂❢ t❤❡ ♥✉✁❜❡r ♦❢ ♣❛tt❡r♥s ✂s ❧❛r�❡ ❡♥♦✉�❤✳ ❆t t❤❡ s❛✁❡ t✂✁❡✱ ✂t

✂s ❛♥ ❡❛s② ❛♥❞ ✈❡rs❛t✂❧❡ ✁❡t❤♦❞ ✇❤✂❝❤ ❝❛♥ ❜❡ ✉s❡❞ ❛s ❛♥ ❛♣♣r♦✄✂✁❛t❡ ✂♥❢❡r❡♥❝❡ ✁❡t❤♦❞ ✇❤❡♥ t❤❡ ♥✉✁❜❡r ♦❢ ♣❛tt❡r♥s

✂s ♥♦t ✈❡r② ❧❛r�❡ ✭❛❧t❤♦✉�❤ ♦♥❡ s❤♦✉❧❞ ❛t ❧❡❛st ❤❛✈❡ ✍ ❃ ◆ ✂♥ ♦r❞❡r ❢♦r ❈ t♦ ❜❡ ✂♥✈❡rt✂❜❧❡✮✱ ♦r ✇❤❡♥ t❤❡ ✉♥❞❡r❧②✂♥�
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✈❛❧✉❡s ♦❢ t❤❡ ❧♦❝❛❧ ✁❛�♥❡t✂③❛t✂♦♥s ❛♥❞ t❤❡ ❡✄❛❝t r❡❧❛t✂♦♥ ❜❡t✇❡❡♥ ❡q✉❛❧✲t✂✁❡ ❛♥❞ t✂✁❡✲❞❡❧❛②❡❞ ❝♦rr❡❧❛t✂♦♥s✳ ❚❤✂s

✁❡t❤♦❞ ❝❛♥ ❜❡ ✉s❡❞ t♦ s♦❧✈❡ ❡✚❝✂❡♥t❧② t❤❡ ✂♥✈❡rs❡ ♣r♦❜❧❡✁✱ ✂✳❡✳ ❞❡t❡r✁✂♥❡ t❤❡ ❝♦✉♣❧✂♥�s ❛♥❞ ❧♦❝❛❧ ☞❡❧❞s ❢r♦✁ ❛ s❡t

♦❢ ♣❛tt❡r♥s✳ ❆�❛✂♥ t❤✂s ✂♥❢❡r❡♥❝❡ ✁❡t❤♦❞ ✂s ❡✄❛❝t ✂♥ t❤❡ ❧✂✁✂t ♦❢ ❧❛r�❡ s✂③❡s ❛♥❞ ❧❛r�❡ ♥✉✁❜❡r ♦❢ ♣❛tt❡r♥s✱ ✂♥ t❤❡

❛s②✁✁❡tr✂❝ ❙❑ ❝❛s❡✳ ■t ❝❛♥ ❛❧s♦ ❜❡ ✉s❡❞ ✂♥ ❝❛s❡s ✇❤❡r❡ t❤❡ ✉♥❞❡r❧②✂♥� ✁♦❞❡❧ ✂s ❞✂✛❡r❡♥t✱ ❢♦r ✂♥st❛♥❝❡ ❢♦r ❞✂❧✉t❡❞
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❇✯✫❫❯❳⑧◗ ✃➁❾➦➁➡❐➁➛❼ ❺❻➡➡❻❒➙❾➙➨ ❻❽ ❮➡➝➠➠➟ ❰➟❽➝➨❾➃➠◗ ✪❯❅➏❶❇ ➎➉➍ ❯❷ ➷➁➃❿➙➛➁ ➶❻❿➁➠ ❾❽ ➞↔➟➠❾➃➠◗ ➔✩⑨❇⑧ ➍➲➌➊➍➈➋✴ ⑤➔❳✫❭⑨❇❳

❸❇❳❅✫❭ ➭ ✰❇✫✯❇❅→❇❳⑨◗ ✧➄➌➉✴ ✧➫✴✧➫➫➉➭❸Ï→➫➫➍➉➍➲➲✴

✥➄★ ④❯⑩❭ ✰❇❳❫❹◗ ➒✩⑧⑧❇❳ ➓❯➏✯✫◗ ✼❭✯❳❇✩⑧ ❴⑩❯❳❭✫❭⑨◗ ④❯✩❭❭✩ ❴●❳✽⑩✩◗ ❨❳✫❄ ✼➏❳❇❅❅◗ ✩❭✯ ✰❯❭⑨➯➽✫ ➺❇❭⑨✴ ➱❭❷❇❳❳✫❭⑨ ❭❇❫⑦❯❳❄ ✽❯❭❭❇✽➯

❫✫✪✫❫● ➏⑧✫❭⑨ ❄✫❭❇❫✫✽ ✫⑧✫❭⑨ ❶❯✯❇❅⑧✴ ➤➧❺ ➶➁➙➛❻➠➃❾➁❽➃➁◗ ✧✧➅⑤➏➔➔❅ ✧➆➇➳➍✧◗ ➎➫✧➫✴

✥✧➫★ ❘❇❯❱❳❇● ❨✴ ✰✫❭❫❯❭✴ ❉❇❫❇❳❶✫❭✫⑧❫✫✽ →❯❅❫❹❶✩❭❭ ❅❇✩❳❭✫❭⑨ ➔❇❳❷❯❳❶⑧ ⑧❫❇❇➔❇⑧❫ ✯❇⑧✽❇❭❫ ✫❭ ⑦❇✫⑨⑩❫➯⑧➔✩✽❇✴ ➶➁➙➛➝➡ ❺❻➨➜➙❿➝❿❾❻❽◗

✧➅✧➆➇✧➈➲➊✧➍➫◗ ✧➄➌➄✴

✥✧✧★ ✰✩✫➔✫❭⑨ ✰➏✩❭⑨✴ ➵❇⑧⑧✩⑨❇ ➔✩⑧⑧✫❭⑨ ✩❅⑨❯❳✫❫⑩❶⑧ ❷❯❳ ❫⑩❇ ⑩❯➔Ð❇❅✯ ❭❇❫⑦❯❳❄ ❳❇✽❯❭⑧❫❳➏✽❫✫❯❭➇ ❴⑩❳❇⑧⑩❯❅✯ →❇⑩✩✪✫❯❳ ✩❭✯ ❅✫❶✫❫✩❫✫❯❭✴
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✥✧➎★ ✰✩✫➔✫❭⑨ ✰➏✩❭⑨✴ ➓❇✽❯❭⑧❫❳➏✽❫✫❭⑨ ❫⑩❇ ⑩❯➔Ð❇❅✯ ❭❇❫⑦❯❳❄ ✩⑧ ✩❭ ✫❭✪❇❳⑧❇ ✫⑧✫❭⑨ ➔❳❯→❅❇❶✴ ➞↔➟➠➘ ➮➁➀➘ ↕◗ ➌✧➅➲➆➇➫➲➋✧➫➈◗ ➵✩❳ ➎➫✧➫✴

✥✧➲★ ✰✴ ④✴ Ñ✩➔➔❇❭ ✩❭✯ Ï✴ ❸✴ ➓❯✯❳➾Ò⑨➏❇❹✴ ❨➪✽✫❇❭❫ ❅❇✩❳❭✫❭⑨ ✫❭ →❯❅❫❹❶✩❭❭ ❶✩✽⑩✫❭❇⑧ ➏⑧✫❭⑨ ❅✫❭❇✩❳ ❳❇⑧➔❯❭⑧❇ ❫⑩❇❯❳●✴ ➶➁➙➛➝➡

❺❻➨➜➙❿➝❿❾❻❽◗ ✧➫➅➍➆➇✧✧➲➉➊✧✧➍➋◗ ✧➄➄➌✴
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t✐♠❡ st❡♣s ❛r❡ ♣❧♦tt❡❞ ✈❡rs✉s t❤❡ ❡①♣❡r✐♠❡♥t❛❧ ♦♥❡s ❢♦✉♥❞ ❜② ♠♦♥t❡ ❝❛r❧♦ s✐♠✉❧❛t✐♦♥✳ ❋♦r t❤❡ ♣❧♦ts ♦❢ t❤❡ r✐❣❤t ❝♦❧✉♠♥✱ t❤❡

❝♦rr❡❧❛t✐♦♥ ♠❛tr✐❝❡s ❈ ❛♥❞ ❉ ❛r❡ ♦❜t❛✐♥❡❞ ❛t ✁ ❂ ✸✵✳ ❚❤❡ s❝❛tt❡r ♣❧♦t s❤♦✇s ❢♦r ❡❛❝❤ ♣❛✐r ✂❥✱ t❤❡ ✈❛❧✉❡ ♦❢ ❉✄☎ ✐♥ ♦r❞✐♥❛t❡✱ ❛♥❞

t❤❡ ✈❛❧✉❡ ♦❢ ✭✆❏❈✮✄☎ ✐♥ ❛❜s❝✐ss❛✳ ❚❤❡ t❤r❡❡ ♠❡t❤♦❞s ❞✐☛❡r ✐♥ t❤❡✐r ♣r❡❞✐❝t✐♦♥s ❢♦r ✆✳ ❆t ❤✐❣❤ t❡♠♣❡r❛t✉r❡✱ ☞ ❂ ✿✸✱ ❛❧❧ ♠❡t❤♦❞s

❛r❡ ❣♦♦❞ ❢♦r ❜♦t❤ t❤❡ ♠❛❣♥❡t✐③❛t✐♦♥s ❛♥❞ ❝♦rr❡❧❛t✐♦♥s✝ t❤❡ ▼❋ ❛♥❞ ❵❚❆P✬ ♠❡t❤♦❞s ♥❡❛r❧② ❝♦✐♥❝✐❞❡ ❛♥❞ ❛r❡ s❧✐❣❤t❧② ❜❡tt❡r t❤❛♥

♥▼❋✳ ❆t ❧❛r❣❡r ❛♥❞ ❧❛r❣❡r ☞✱ t❤❡ ❵❚❆P✬ ❝♦rr❡❝t✐♦♥ t♦ ♥❛✐✈❡ ♠❡❛♥ ✞❡❧❞ ♦✈❡rs❤♦♦ts✱ ❛♥❞ ♦♥❧② t❤❡ ▼❋ r❡s✉❧ts ✐s ❝♦rr❡❝t✳ ❚❤❡ ❞❛t❛

s✉♣♣♦rts t❤❡ st❛t❡♠❡♥t t❤❛t ▼❋ ✐s ❡①❛❝t ❛t ❛❧❧ t❡♠♣❡r❛t✉r❡s✱ ✇❤✐❧❡ ♥▼❋ ❛♥❞ ❵❚❆P✬ ❛r❡ ♦♥❧② ❤✐❣❤ t❡♠♣❡r❛t✉r❡ ❛♣♣r♦①✐♠❛t✐♦♥s✳
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➜❤➠❡❡ ➢❡❛♥ ➥❡❧➝ ➢❡➜❤♦➝s ✉s❡➝ ➡♦➠ s♦❧✈✐♥❣ ➜❤❡ ➝✐➠❡❝➜ ❛♥➝ ✐♥✈❡➠s❡ ♣➠♦➦❧❡➢s ➡♦➠ ❣❡♥❡➠❛❧✐③❡➝
➧❤❡➠➠✐♥❣➜♦♥➨➩✐➠➫♣❛➜➠✐❝➫ ➢♦➝❡❧s➭ ➯♥ ➜❤✐s ❝♦♥➜❡➲➜✱ ➜❤❡ ➝✐➠❡❝➜ ♣➠♦➦❧❡➢ ✐s ♣➠❡➝✐❝➜✐♥❣ ➜❤❡ ♣♦➨
➜❡♥➜✐❛❧❧➞ ➜✐➢❡➨✈❛➠➞✐♥❣ ➢❛❣♥❡➜✐③❛➜✐♦♥s➭ ➳❤❡ ➜❤➠❡❡ ➜❤❡♦➠✐❡s ✐♥❝❧✉➝❡ ➜❤❡ ➥➠s➜ ❛♥➝ s❡❝♦♥➝ ♦➠➝❡➠
P❧❡➡➫❛ ❡➲♣❛♥s✐♦♥s✱ ➠❡➡❡➠➠❡➝ ➜♦ ❛s ♥❛✐✈❡ ➢❡❛♥ ➥❡❧➝ ➄♥▼➵➙ ❛♥➝ ➳➸P✱ ➠❡s♣❡❝➜✐✈❡❧➞✱ ❛♥➝ ❛ ➢❡❛♥
➥❡❧➝ ➜❤❡♦➠➞ ➟❤✐❝❤ ✐s ❡➲❛❝➜ ➡♦➠ ➡✉❧❧➞ ❛s➞➢➢❡➜➠✐❝ ❝♦✉♣❧✐♥❣s➭ ➛❡ ❝❛❧❧ ➜❤❡ ❧❛s➜ ♦➡ ➜❤❡s❡ s✐➢♣❧➞
▼➵ ➜❤❡♦➠➞➭ ➛❡ s❤♦➟ ➜❤❛➜ ➡♦➠ ➜❤❡ ➝✐➠❡❝➜ ♣➠♦➦❧❡➢✱ ♥▼➵ ♣❡➠➡♦➠➢s ➟♦➠s❡ ➜❤❛♥ ➜❤❡ ♦➜❤❡➠ ➜➟♦
❛♣♣➠♦➲✐➢❛➜✐♦♥s✱ ➳➸P ♦✉➜♣❡➠➡♦➠➢s ▼➵ ➟❤❡♥ ➜❤❡ ❝♦✉♣❧✐♥❣ ➢❛➜➠✐➲ ✐s ♥❡❛➠❧➞ s➞➢➢❡➜➠✐❝✱ ➟❤✐❧❡
▼➵ ➟♦➠➫s ➦❡➜➜❡➠ ➟❤❡♥ ✐➜ ✐s s➜➠♦♥❣❧➞ ❛s➞➢➢❡➜➠✐❝➭ ➵♦➠ ➜❤❡ ✐♥✈❡➠s❡ ♣➠♦➦❧❡➢✱ ▼➵ ♣❡➠➡♦➠➢s ➦❡➜➜❡➠
➜❤❛♥ ➦♦➜❤ ➳➸P ❛♥➝ ♥▼➵✱ ❛❧➜❤♦✉❣❤ ❛♥ ❛➝ ❤♦❝ ❛➝➺✉s➜➢❡♥➜ ♦➡ ➳➸P ❝❛♥ ➢❛➫❡ ✐➜ ❝♦➢♣❛➠❛➦❧❡
➜♦ ▼➵➭ ➵♦➠ ❤✐❣❤ ➜❡➢♣❡➠❛➜✉➠❡s ➜❤❡ ♣❡➠➡♦➠➢❛♥❝❡ ♦➡ ➳➸P ❛♥➝ ▼➵ ❛♣♣➠♦❛❝❤ ❡❛❝❤ ♦➜❤❡➠➭

➻➼➽➾➚➪➶➹➘ s♣✐♥ ❣❧❛ss✱ ➢❡❛♥ ➥❡❧➝ ➜❤❡♦➠➞✱ ✐♥✈❡➠s❡ ♣➠♦➦❧❡➢s

➴➷ ➬➮➱✃❐❒❮❰➱Ï❐➮

ÐÑÒÓÔÕÖÔ×Ø ÖÙÒ ÓÚ×ÛÜÔÕÛÝ ÞÑßÞÒÑÖÔÒà ßá Û ÓÔàßÑÓÒÑÒÓ àÚàÖÒÜ ØÔâÒ× Û àÞÒÕÔãÕ ÑÒÛÝÔä

àÛÖÔß× ßá ÔÖà ÞÛÑÛÜÒÖÒÑà Ôà Û× ßÝÓ Û×Ó ÔÜÞßÑÖÛ×Ö ÞÑßåÝÒÜ Ô× àÖÛÖÔàÖÔÕÛÝ ÜÒÕÙÛ×ÔÕàæ

çÙÔà Ôà èÙÛÖ ß×Ò ÕÛ× ÕÛÝÝ Û ÓÔÑÒÕÖ ÞÑßåÝÒÜæ éÞÛÑÖ áÑßÜ åÒÔ×Ø ÔÜÞßÑÖÛ×Ö ß× ÔÖà ßè×ê

àßÝâÔ×Ø ÖÙÒ ÓÔÑÒÕÖ ÞÑßåÝÒÜ Ôà ÛÝàß Û ÕÑëÕÔÛÝ àÖÒÞ Ô× àßÝâÔ×Ø ÖÙÒ Ô×âÒÑàÒ ÞÑßåÝÒÜì Ô×ä

áÒÑÑÔ×Ø ÖÙÒ ÞÛÑÛÜÒÖÒÑà ßá Û àÚàÖÒÜ áÑßÜ ÜÒÛàëÑÒÜÒ×Öà ßá ÔÖà ÓÚ×ÛÜÔÕàæ íÔÖÙ ÖÙÒ

ÑÛÞÔÓ ÛÓâÛ×ÕÒ ßá ÜÒÖÙßÓà áßÑ ßåàÒÑâÔ×Ø ÖÙÒ ÓÚ×ÛÜÔÕà ßá åÔßÝßØÔÕÛÝ àÚàÖÒÜà ÕßÜä

ÞßàÒÓ ßá ÜÛ×Ú ÒÝÒÜÒ×Öàê ÖÙÒ Ô×âÒÑàÒ ÞÑßåÝÒÜ ÙÛà ÑÒÕÒÔâÒÓ Û ÝßÖ ßá ÑÒÕÒ×Ö ÛÖÖÒ×ÖÔß×æ

çÙÔà ÝÔ×Ò ßá ÑÒàÒÛÑÕÙ ÙÛà ÛÝÝßèÒÓ Ô×áÒÑÑÔ×Ø áë×ÕÖÔß×ÛÝ Û×Ó ÞÙÚàÔÕÛÝ Õß××ÒÕÖÔß×à Ô×

×ÒëÑß×ÛÝ ×ÒÖèßÑîà ïðñòóê ØÒ×Ò ÑÒØëÝÛÖßÑÚ ×ÒÖèßÑîà ïôó Û×Ó ÞÑßÖÒÔ× ÑÒàÔÓëÒ Õß×ÖÛÕÖà

ïõóæ

é ëàÒáëÝ ÞÝÛÖáßÑÜ áßÑ àÖëÓÚÔ×Ø ÖÙÒ Ô×âÒÑàÒ ÞÑßåÝÒÜ Ôà Û ÓÚ×ÛÜÔÕÛÝ âÒÑàÔß× ßá ÖÙÒ

öÙÒÑÑÔ×ØÖß×ä÷ÔÑîÞÛÖÑÔÕî øö÷ù ÜßÓÒÝì Û àÒÖ ßá ú ÕÝÛààÔÕÛÝ àÞÔ×àê ûü ý þð àëåÿÒÕÖ

Öß Û ÞßÖÒ×ÖÔÛÝÝÚ ÖÔÜÒäâÛÑÚÔ×Ø Ò①ÖÒÑ×ÛÝ ãÒÝÓ ❤üøtù èÔÖÙ ÕßëÞÝÔ×Øà ❏ü❥ åÒÖèÒÒ× ÖÙÒÜ

Û×Ó Û àÖßÕÙÛàÖÔÕ ëÞÓÛÖÒ ÑëÝÒæ ■× ÖÙÒ ÓÔÑÒÕÖ ÞÑßåÝÒÜ ß×Ò ÖÑÔÒà Öß ÞÑÒÓÔÕÖ ÖÙÒ ÜÛØ×Òä

ÖÔ③ÛÖÔß×à ♠üøtù ØÔâÒ× ÖÙÒ ÕßëÞÝÔ×Ø Û×Ó ãÒÝÓàæ ■× ÖÙÒ Ô×âÒÑàÒ ÞÑßåÝÒÜ ß×Ò ÓßÒà ÖÙÒ

ßÞÞßàÔÖÒê ÔæÒæ ß×Ò Ô×áÒÑà ÖÙÒ ÕßëÞÝÔ×Øà Û×Ó ÖÙÒ ãÒÝÓà áÑßÜ ÜÒÛàëÑÒÓ ÜÛØ×ÒÖÔ③ÛÖÔß×à

Û×Ó ÕßÑÑÒÝÛÖÔß×àæ

íÙÒ× ÖÙÒ àÚàÖÒÜ Ôà Ô× ÒqëÔÝÔåÑÔëÜ Û×Ó ÖÙÒ ÓÔàÖÑÔåëÖÔß× ßá àÖÛÖÒà áßÝÝßèà ÖÙÒ

❇ßÝÖ③ÜÛ×× ÓÔàÖÑÔåëÖÔß×ê àÒâÒÑÛÝ ÛÞÞÑßÛÕÙÒà áßÑ åßÖÙ ÓÔÑÒÕÖ Û×Ó Ô×âÒÑàÒ ÞÑßåÝÒÜà

ÙÛâÒ åÒÒ× ÓÒâÒÝßÞÒÓæ çÙÒàÒ Ô×ÕÝëÓÒ åßÖÙ Ò①ÛÕÖ Û×Ó ÛÞÞÑß①ÔÜÛÖÒ ÔÖÒÑÛÖÔâÒ ÛÝØßä

ÑÔÖÙÜàê àëÕÙ Ûà ❇ßÝÖ③ÜÛ×× ÝÒÛÑ×Ô×Ø Û×Ó öëàÕÒÞÖÔåÔÝÔÖÚ ÞÑßÞÛØÛÖÔß× ï✽ê ✾ó ÑÒÝÛÖÔ×Ø

�❙❙◆✿ ✶✹✼✁✲✻✹✸✺ ♣r✐♥✂✴�❙❙◆ ✶✹✼✁✲✻✹✹✸ ♦♥❧✐♥❡
❃✌ ✷✵✵✄ ❚❀②❧♦r ✫ ❋r❀♥❃✐s
❉❖�✿ ✶✵✳✶✵✁✵✴✶✹✼✁✻✹✸✺✳✷✵✄✄✳✄✄✄✄✄✄
☎✂✂♣✿✴✴✇✇✇✳✐♥❢♦r✆❀✇♦r❧❉✳❃♦✆
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✷

t�✁ ♠✂✄☎✁t✆✝✂t✆✞☎✟ t✞ ♠✞❞✁✠ ✡✂r✂♠✁t✁r✟☛ ✂✟ ✇✁✠✠ ✂✟ ☞✠✞✟✁❞✲❢✞r♠ ✁q✌✂t✆✞☎✟ ❜✂✟✁❞ ✞☎

☎✂✆✍✁ ♠✁✂☎ ✎✁✠❞ ✭☎✏❋✮ ✂☎❞ ❚❆✑ ❬✒✓☛ ✒✒❪ ✁q✌✂t✆✞☎✟ ❢✞r t�✁ ❙❑ ♠✞❞✁✠✳ ✏✞t✆✍✂t✁❞

❜② t�✁ ❢✂☞t t�✂t ❜✆✞✠✞✄✆☞✂✠ ✟②✟t✁♠✟ ✂r✁ ✌✟✌✂✠✠② ✞✌t ✞❢ ✁q✌✆✠✆❜r✆✌♠☛ ✟✞♠✁ r✁☞✁☎t

✇✞r❦ �✂✟ ❢✞☞✌✟✁❞ ✞☎ r✁☞✞☎✟tr✌☞t✆☎✄ t�✁ ✡✂r✂♠✁t✁r✟ ✞❢ ✂ ❞②☎✂♠✆☞✂✠ ■✟✆☎✄ ✟✡✆☎ ✄✠✂✟✟

♠✞❞✁✠ ✞❜✁②✆☎✄ ✁✆t�✁r ✟②☎☞�r✞☎✞✌✟ ✞r ✂✟②☎☞�r✞☎✞✌✟ ✌✡❞✂t✆☎✄ ❢r✞♠ ✞❜✟✁r✍✆☎✄ ✆t✟

✞✌t✲✞❢✲✁q✌✆✠✆❜r✆✌♠ ❞②☎✂♠✆☞✟ ❬✔☛ ✒✕☛ ✒✖❪✳

■☎ t�✆✟ ✡✂✡✁r☛ ✇✁ ✆☎✍✁✟t✆✄✂t✁ �✞✇ t�r✁✁ r✁☞✁☎t✠② ✡r✞✡✞✟✁❞ ♠✁✂☎ ✎✁✠❞ ♠✁t�✞❞✟

❢✞r t�✁ ❞✆r✁☞t ✂☎❞ ✆☎✍✁r✟✁ ✡r✞❜✠✁♠✟ ✡✁r❢✞r♠ ✞☎ ♠✞❞✁✠✟ ✇✆t� ❞✆✗✁r✁☎t ❞✁✄r✁✁✟ ✞❢

✟②♠♠✁tr② ✆☎ t�✁✆r ☞✞✌✡✠✆☎✄ ♠✂tr✆☞✁✟✳ ❚�✁ t�r✁✁ ♠✁t�✞❞✟ ✂r✁ t�✁ ☎✏❋ ✂☎❞ ❚❆✑

✁q✌✂t✆✞☎✟☛ ❞✁r✆✍✁❞ ✌✟✆☎✄ t�✁ �✆✄�✲t✁♠✡✁r✂t✌r✁ ✑✠✁❢❦✂ ✁①✡✂☎✟✆✞☎✟ ✞❢ t�✁ ✄✁☎✁r✂t✆☎✄

❢✌☎☞t✆✞☎✂✠ t✞ ✎r✟t ✞r❞✁r ✂☎❞ ✟✁☞✞☎❞ ✞r❞✁r ❬✒✘❪☛ ✂☎❞ ✂ ♠✁✂☎ ✎✁✠❞ t�✁✞r② ✭❞✁☎✞t✁❞

✟✆♠✡✠② ✏❋✮ ❬✒✖❪ t�✂t ✆✟ ✁①✂☞t ❢✞r t�✁ ❙❑ ♠✞❞✁✠ ✇✆t� ❢✌✠✠② ✂✟②♠♠✁tr✆☞ ☞✞✌✡✠✆☎✄✟✳

✙✚ ✛✜✢✣✤✥✜✦✧ ✤✜ ✤★✩ ✪✥✫✩✬✤ ✯✦✪ ✥✦✰✩✫✧✩ ✴✫✜✻✢✩✼✧

❲✁ ☞✞☎✟✆❞✁r ✂ ♠✞❞✁✠ ✆☎ ✇�✆☞� t�✁ ✡r✞❜✂❜✆✠✆t② ✞❢ ❜✁✆☎✄ ✆☎ ✟t✂t✁ ✽ ✂t t✆♠✁ ✟t✁✡ ✾☛

❀❁✭✽✮☛ ✆✟ ✄✆✍✁☎ ❜②

❀❁❂✶✭✽✮ ❃

❳

❄❅

❇❁❬✽❈ ✽
❉
❪❀❁✭✽

❉
✮ ✭✒✂✮

❇❁❬✽❈ ✽
❉
❪ ❃

❨

❊

✁①✡✭●❊❍❊✮

✕ ☞✞✟� ❍❊
✭✒❜✮

❍❊✭✾✮ ❃ ▲❊✭✾✮ ◆

❳

❥

❖❊❥●
❉
❥✭✾✮◗ ✭✒☞✮

❋✞r t�✁ ☞�✞✆☞✁ ✞❢ ☞✞✌✡✠✆☎✄✟ ❖❊❥☛ ✇✁ ❢✞✠✠✞✇ ❬✒✔❪☛ t✂❦✆☎✄

❖❊❥ ❃ ❖
❘❯❱
❊❥ ◆ ❩❖

❭❘❯❱
❊❥ ✭✕✮

✇�✁r✁ ❖
❘❯❱
❊❥ ❃ ❖

❘❯❱
❥❊ ✆✟ t�✁ ✟②♠♠✁tr✆☞ ✡✂rt ✞❢ t�✁ ☞✞✌✡✠✆☎✄✟ ✇�✆✠✁ ❖

❭❘❯❱
❊❥ ❃ ❫❖

❭❘❯❱
❥❊ ✆✟

t�✁ ✂☎t✆②♠♠✁tr✆☞ ✡✂rt✳ ❆✠✠ t�✁ ☞✞✌✡✠✆☎✄✟ ❖
❘❯❱
❊❥ ✂☎❞ ❖

❭❘❯❱
❊❥ ✂r✁ ❞r✂✇☎ ✆☎❞✁✡✁☎❞✁☎t✠②

❢r✞♠ ✂ ✝✁r✞✲♠✁✂☎ ❴✂✌✟✟✆✂☎ ❞✆✟tr✆❜✌t✆✞☎ ✇✆t� ✍✂r✆✂☎☞✁

❬❖
❘❯❱❱
❊❥ ❪✷ ❃ ❬❖

❭❘❯❱
❊❥ ❪✷ ❃

❵✷

✭✒ ◆ ❩✷✮④
◗ ✭✖✮

❲✆t� ⑤q✟✳ ✕ ✂☎❞ ✖☛ t�✁ ☞✞✌✡✠✆☎✄✟ ❖❊❥ �✂✍✁ ✍✂r✆✂☎☞✁ ✞❢ ❵✷⑥④ ✂☎❞ t�✁ ❞✁✄r✁✁ ✞❢

✟②♠♠✁tr② ✆✟ ☞✞☎tr✞✠✠✁❞ ❜② ❩⑦ ❢✞r ❩ ❃ ✓ t�✁ ♠✞❞✁✠ ✆✟ ❢✌✠✠② ✟②♠♠✁tr✆☞ ✭❖❊❥ ❃ ❖❥❊✮

✇�✆✠✁ ❢✞r ❩ ❃ ✒☛ ✆t ✆✟ ❢✌✠✠② ✂✟②♠♠✁tr✆☞ ✭❖❊❥ ✆☎❞✁✡✁☎❞✁☎t ✞❢ ❖❥❊✮✳

❚�✁ ❞✆r✁☞t ✡r✞❜✠✁♠ ☞✞☎✟✆✟t✟ ✆☎ ✁✟t✆♠✂t✆☎✄ t�✁ ✆☎✟t✂☎t✂☎✁✞✌✟ ♠✂✄☎✁t✆✝✂t✆✞☎ ✞❢

✟✡✆☎ ⑧ ✂t t✆♠✁ ✾☛ ⑨❊✭✾✮✳ ❚�✁ ✁✟t✆♠✂t✆✞☎ ✞❜t✂✆☎✁❞ ❢r✞♠ t�✁ ☎✏❋☛ ❚❆✑ ✂☎❞ ✏❋ ✂r✁

r✁✟✡✁☞t✆✍✁✠②⑦

⑨❊✭✾ ◆ ✒✮ ❃ t✂☎�

⑩

▲❊✭✾✮ ◆

❳

❥

❖❊❥⑨❥✭✾✮

❶

✭✘✂✮
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✸

♠�✭t ✰ ✁✮ ❂ ✂✄☎✆

✝

✞�✭t✮ ✰

❳

❥

✟�❥♠❥✭t✮ ✠ ♠�✭t ✰ ✁✮

❳

❥

✟
✷
�❥✭✁ ✠ ♠

✷
❥✭t✮✮

✡

✭☛❜✮

♠�✭t ✰ ✁✮ ❂

❩
❞①
☞
✌✙

✍
✎✏✑✒✷

✂✄☎✆

✝

✞�✭t✮ ✰

❳

❥

✟�❥♠❥✭t✮ ✰ ①
✓
✔�✭t✮

✡

✭☛✕✮

✇✆✖r✖ ✗☎ ✂✆✖ ✘✄✚✂ ✖q✛✄✂✗✜☎

✔�✭t✮ ❂

❳

❥

✟
✷
�❥✭✁ ✠ ♠

✷
� ✭t✮✮ ✢ ✭✣✮

❋✜r ✤✖r✗✥✗☎✦ ❊q✚✳ ☛✄ ✄☎✤ ☛❜✧ ✗✳✖✳ ☎★❋ ✄☎✤ ❚❆✩✧ ✜☎✖ ✪r✚✂ ✇r✗✂✖✚ ✤✜✇☎ ✂✆✖ ✦✖☎✖r✲

✄✂✗☎✦ ❢✛☎✕✂✗✜☎✄✘ ❢✜r ✂✆✖ ✫r✜✕✖✚✚ ✤✖✪☎✖✤ ❜② ❊q✳ ✁✧ ✫✖r❢✜r✬✚ ✄ ▲✖✦✖☎✤r✖ ✂r✄☎✚❢✜r✬ ✂✜

✪✯ ✂✆✖ ✬✄✦☎✖✂✗✴✄✂✗✜☎✚ ✄☎✤ ✖✯✫✄☎✤✚ ✂✆✖ r✖✚✛✘✂✚ ❢✜r ✚✬✄✘✘ ✻ ✭✗✳✖✳ ✆✗✦✆ ✂✖✬✫✖r✄✂✛r✖✮✳

❚✜ ✂✆✖ ✪r✚✂ ✜r✤✖r✧ ✂✆✗✚ ✖✯✫✄☎✚✗✜☎ ✦✗✥✖✚ ✂✆✖ ☎★❋ ✖q✛✄✂✗✜☎✚✧ ❊q✳ ☛✄✳ ❑✖✖✫✗☎✦ ✂✖r✬✚

✛✫ ✂✜ ✂✆✖ ✚✖✕✜☎✤ ✜r✤✖r ②✗✖✘✤✚ ✄ ✕✜rr✖✕✂✗✜☎ ✂✜ ✂✆✖ ☎★❋ ✖q✛✄✂✗✜☎✚ r✖✚✛✘✂✗☎✦ ✗☎ ✂✆✖ ✂✆✖

❚❆✩ ✖q✛✄✂✗✜☎✚✧ ❊q✳ ☛❜✧ ❢✜r ✂✆✗✚ ✤②☎✄✬✗✕✄✘ ✬✜✤✖✘✳ ☎★❋ ✄☎✤ ❚❆✩ ✄r✖✧ ✂✆✖r✖❢✜r✖✧

✆✗✦✆ ✂✖✬✫✖r✄✂✛r✖ ✖✯✫✄☎✚✗✜☎✚ ❢✜r ✄☎ ✄r❜✗✂r✄r② ✚✖✂ ✜❢ ✕✜✛✫✘✗☎✦✚✧ ✇✗✂✆ ☎✜ ✄✚✚✛✬✫✂✗✜☎

✄❜✜✛✂ ✂✆✖✗r ✤✗✚✂r✗❜✛✂✗✜☎ ✜r ✗✂✚ ✤✖✦r✖✖ ✜❢ ✚②✬✬✖✂r②✳ ❚✆✖ ✂✆✗r✤ ✖q✛✄✂✗✜☎ ✗✚ ✤✖r✗✥✖✤

❢✜r ✄r❜✗✂r✄r② ✻✧ ❜✛✂ ✛☎✤✖r ✂✆✖ ✬✖✄☎✲✪✖✘✤ ✄✚✚✛✬✫✂✗✜☎ ✂✆✄✂ ✄✂ ✖✄✕✆ ✂✗✬✖ ✚✂✖✫ ✂✆✖

✪✖✘✤✚ ✄✕✂✗☎✦ ✜☎ ✂✆✖ ✚✫✗☎✚ ✄r✖ ✗☎✤✖✫✖☎✤✖☎✂ ●✄✛✚✚✗✄☎ ✥✄r✗✄❜✘✖✚✳ ❚✆✗✚ ✗✚ ✖✯✄✕✂ ❢✜r ✂✆✗✚

❙❑ ✬✜✤✖✘ ✇✆✖☎ ✂✆✖ ✕✜✛✫✘✗☎✦ ✬✄✂r✗✯ ✗✚ ❢✛✘✘② ✄✚②✬✬✖✂r✗✕ ✗✳✖✳ ✇✆✖☎ ❦ ❂ ✁✳

❚✆✖✚✖ ✤✗r✖✕✂ ✖q✛✄✂✗✜☎✚ ✕✄☎ ✄✘✚✜ ❜✖ ✛✚✖✤ ❢✜r ✚✜✘✥✗☎✦ ✂✆✖ ✗☎✥✖r✚✖ ✫r✜❜✘✖✬✳ ❚✆✖

✗✤✖✄ ✗✚ ✂✜ ✛✚✖ ✂✆✖ ✤✄✂✄ ✗☎ ✜r✤✖r ✂✜ ✬✖✄✚✛r✖ ✂✆✖ ✬✄✦☎✖✂✗✴✄✂✗✜☎✚ ♠�✭t✮✧ ✂✆✖ ✖q✛✄✘

✂✗✬✖ ✕✜rr✖✘✄✂✗✜☎✚ ❈�❥ ❂ ✼✽✾�✭t✮✽✾❥✭t✮❀✧ ✄☎✤ ✂✆✖ ✂✗✬✖✲✤✖✘✄②✖✤ ✕✜rr✖✘✄✂✗✜☎✚ ❉�❥ ❂

✼✽✾�✭t ✰ ✁✮✽✾❥✭t✮❀✧ ✇✆✖r✖ ✽✾�✭t✮ ❂ ✾�✭t✮ ✠ ♠�✭t✮✳ ❋✜r ✂✆✖ ✫r✜✕✖✚✚ ✗☎ ❊q✳ ✁✧ ✜☎✖ ✕✄☎

✇r✗✂✖ ✂✆✖ ✂✗✬✖✲✤✖✘✄②✖✤ ✕✜rr✖✘✄✂✗✜☎✚ ✄✚

❉�❥ ❂ ✼✂✄☎✆
❁
❃�✭t✮

❄
✾❥✭t✮❀ ✠ ✼✂✄☎✆

❁
❃�✭t✮

❄
❀✼✾❥✭t✮❀✢ ✭❅✮

❚✜ ✤✖r✗✥✖ ✂✆✖ ✗☎✥✖r✚✖ ❚❆✩ ✄☎✤ ☎★❋✧ ✜☎✖ ✂✆✖☎ ✛✚✖✚ ❊q✳ ❅✧ ✖✯✫✄☎✤✚ ✂✆✖ ✂✄☎✆ ✄r✜✛☎✤

♠� ✂✆✄✂ ✚✄✂✗✚✪✖✚ ✜☎✖ ✜❢ ✂✆✖ ✤✗r✖✕✂ ✖q✛✄✂✗✜☎✚ ☛✄ ✄☎✤ ☛❜✳ ■☎ ✂✆✖ ✕✄✚✖ ✜❢ ★❋✧ ✜☎✖ ✇r✗✂✖✚

✄☎ ✖✯✫r✖✚✚✗✜☎ ❢✜r ✂✆✖ ❇✜✗☎✂ ✤✗✚✂r✗❜✛✂✗✜☎ ✜❢ ❃�✭t✮ ✄☎✤ ❃❥✭t✮ ✂✆✄✂ ✗✚ ✖✯✄✕✂ ❢✜r ✄ ❢✛✘✘②

✄✚②✬✬✖✂r✗✕ ❙❑ ✬✜✤✖✘✳ ❚✆✗✚ ❇✜✗☎✂ ✤✗✚✂r✗❜✛✂✗✜☎ ✕✄☎ ✂✆✖☎ ❜✖ ✛✚✖✤ ✂✜ r✖✘✄✂✖ ❍◆ ✂✜ ❖

✗☎ ✂✆✖ ✘✗✬✗✂ ✜❢ ✚✬✄✘✘ ❈�❥◗ ❢✜r ✤✖✂✄✗✘✚ ✚✖✖ ❬✣✧ ✁❘❪✳ ❲✗✂✆✗☎ ✄✘✘ ✂✆r✖✖ ✄✫✫r✜✯✗✬✄✂✗✜☎✚✧

☎★❋✧ ❚❆✩✧ ✄☎✤ ★❋✧ ✂✆✖ r✖✚✛✘✂✗☎✦ ✖✯✫r✖✚✚✗✜☎ ✂✄❯✖✚ ✂✆✖ ❢✜r✬

◆ ❂ ❱❍❖ ❨ ✭❭✮

✇✆✖r✖ ✂✆✖ ✬✄✂r✗✯ ❫ ✗✚ ✄ ✤✗✄✦✜☎✄✘ ✬✄✂r✗✯ ✂✆✄✂ ✤✖✫✖☎✤✚ ✜☎ ✂✆✖ ✄✫✫r✜✯✗✬✄✂✗✜☎❴

❫
♥▼❵
�❥ ❂ ✽�❥✭✁ ✠ ♠

✷
� ✮ ❨ ✭④✄✮

❫
⑤⑥P
�❥ ❂ ✽�❥✭✁ ✠ ♠

✷
� ✮✭✁ ✠ ⑦�✮ ❨ ✭④❜✮

❫
▼❵
�❥ ❂ ✽�❥

❩
❞①
☞
✌✙

✍
✎✏✑✒✷

✝

✁ ✠ ✂✄☎✆
✷
✭✞�✭t✮ ✰

❳

❥

✟�❥♠❥ ✰ ①
✓
✔�✮

✡

✢ ✭④✕✮
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✹

■� ❊q✳ ✽❜ ❋✁ ✂✄t☎✂☞✆✂ ✄ ✝✞❜☎✝ ✆q✞✄t☎✟�✳ ✠✟r ❞✆t✄☎✡✂ ✂✆✆ ❬☛❪ ✄�❞ ❬✌✍❪✳ ◆✟t ✂✞r✎r☎✂☎�✏✡②✑

✆①✎✄�❞☎�✏ ❊q✳ ✽✝ t✟ ✡☎�✆✄r ✟r ✂✆✝✟�❞ ✟r❞✆r ☎� ✒✁❥ ②☎✆✡❞✂ ❆♥▼✓ ✄�❞ ❆❚✔P ☎� ❊q✂✳ ✽✄

✄�❞ ✽❜✑ r✆✂✎✆✝t☎✕✆✡②✳

❊q✳ ✼ ✝✄� ❜✆ ✂✟✡✕✆❞ ❢✟r ✖ ❂ ✗✘✶❉❈✘✶✑ ✎r✟✕☎❞✆❞ ✟�✆ ✙✄✂ ✆�✟✞✏✙ ❞✄t✄ ✂✟ t✙✄t

t✙✆ ✆✂t☎♠✄t☎✟� ✟❢ ✚ ☎✂ ✏✟✟❞✑ ✄✡✡✟✇☎�✏ ☎t✂ �✞♠✆r☎✝✄✡ ☎�✕✆r✂☎✟�✳

✛✜ ✢✣✤✥✦ ✧★ ❙✩✪✪✤✦✫✩

✬✂ ♠✆�t☎✟�✆❞ ❜✆❢✟r✆✑ ❢✟r t✙✆ ❞☎r✆✝t ✎r✟❜✡✆♠✑ ✇✆ ✆①✎✆✝t t✙✄t t✙✆ ✭✠ ❜✆✝✟♠✆✂ ✆①✄✝t

❢✟r ❦ ❂ ✌ ❢✟r ✄�② ✝✟✞✎✡☎�✏ ✂tr✆�✏t✙ ✮✳ ✯✬✰ ✆q✞✄t☎✟�✂ ✂✙✟✞✡❞ ✄✡✂✟ ❜✆✝✟♠✆ ✆①✄✝t

❢✟r ❦ ❂ ✲ ☎� t✙✆ ✡☎♠☎t ✟❢ ✇✆✄✴ ✝✟✞✎✡☎�✏✂✳ ✯✙☎✂ ☎✂ ✂✙✟✇� ☎� ✠☎✏✳ ✌✑ ✇✙✆r✆ ✇✆ ✎✡✟t

t✙✆ ♠✆✄� ✂q✞✄r✆❞ ✆rr✟r ☎� ✎r✆❞☎✝t☎�✏ t✙✆ ♠✄✏�✆t☎✻✄t☎✟�✂ ✄t t☎♠✆ ✾ ❀ ✌ ✏☎✕✆� t✙✆

♠✄✏�✆t☎✻✄t☎✟�✂ ✄t t☎♠✆ ✾✳ ✯✙☎✂ ☎✂ ❞✟�✆ ❜✟t✙ ❢✟r ✄ ✝✟�✂t✄�t ☞✆✡❞ ✄�❞ ❢✟r ✄� ✆①t✆r�✄✡

☞✆✡❞ t✙✄t ✕✄r☎✆✂ ✂☎�✞✂✟☎❞✄✡✡② ✇☎t✙ t☎♠✆✳ ✬✂ ✝✄� ❜✆ ✂✆✆� ☎� t✙☎✂ ☞✏✞r✆✑ ❢✟r ❜✟t✙ t②✎✆✂

✟❢ ✆①t✆r�✄✡ ☞✆✡❞✂✑ ✯✬✰ ✆q✞✄t☎✟�✂ ✟✞t✎✆r❢✟r♠ t✙✆ ✟t✙✆r t✇✟ ♠✆t✙✟❞✂ ❢✟r ✂♠✄✡✡ ❦✳

✬✂ t✆♠✎✆r✄t✞r✆ ☎✂ ☎�✝r✆✄✂✆❞✑ ✄✡✡ t✙r✆✆ ✄✎✎r✟①☎♠✄t☎✟�✂ ✎✆r❢✟r♠ ❜✆tt✆r ✄�❞ ❜✆✝✟♠✆

✄✡♠✟✂t ✆q✞✄✡✡② ✏✟✟❞✳ ✬✂ ❦ ☎�✝r✆✄✂✆✂✑ ✭✠ ✇☎�✂ ✟✕✆r ✯✬✰ ✇✙☎✡✆ �✭✠ ✎✆r❢✟r♠✂ ✇✟r✂✆

t✙✄� ❜✟t✙ ✟❢ t✙✆♠✳

✯✙✆ ✂☎t✞✄t☎✟� ❢✟r t✙✆ ☎�✕✆r✂✆ ✎r✟❜✡✆♠ ☎✂ ✂✡☎✏✙t✡② ♠✟r✆ ✝✟♠✎✡☎✝✄t✆❞✳ ✯✙☎✂ ☎✂ ❜✆❁

✝✄✞✂✆✑ ❢✟r ✂tr✟�✏ ✝✟✞✎✡☎�✏✂✑ t✙✆ ✝✞❜☎✝ ✆q✞✄t☎✟� t✙✄t ❋✁ ✂✟✡✕✆✂ ❞✆✕✆✡✟✎✂ ✝✟♠✎✡✆①

r✟✟t✂✳ ■� t✙☎✂ ✝✄✂✆ ✟�✆ ✝✄� t✄✴✆ t✙r✆✆ ✄✎✎r✟✄✝✙✆✂❃ ❄☎❅ t✄✴✆ t✙✆ �✭✠ r✆✂✞✡t✑ ❄☎☎❅ t✄✴✆

t✙✆ r✆✄✡ ✎✄rt ✟❢ t✙✆ ✂✟✡✞t☎✟�✑ ❄☎☎☎❅ t✄✴✆ t✙✆ ✂✟✡✞t☎✟� ❢✟r t✙✆ ✡✄r✏✆✂t ✮ ❢✟r ✇✙☎✝✙ t✙✆

✂✟✡✞t☎✟�✂ ✄r✆ r✆✄✡✳ ✯✙☎✂ ✕✄✡✞✆ ✝✄� ❜✆ ✂✙✟✇� t✟ ❜✆ ❋✁ ❂ ✌❇✍✳ ✯✙✆ r✆✂✞✡t✂ ❢✟r t✙✆

✡✄✂t t✇✟ ✂tr✄t✆✏☎✆✂ ✄✡♠✟✂t ✝✟☎�✝☎❞✆✑ ✇☎t✙ ✂tr✄t✆✏② ❄☎☎☎❅ ✎✆r❢✟r♠☎�✏ ✂✡☎✏✙t✡② ❜✆tt✆r ☎�

✡✟✇✆r t✆♠✎✆r✄t✞r✆✂✑ ✂✟ ✇✆ ✝✙✟✂✆ t✙☎✂ ✟�✆✳ ■� ✂tr✄t✆✏② ❄☎❅ t✙✆ r✆✂✞✡t✂ ●✞✂t ✝✟☎�✝☎❞✆

✇☎t✙ t✙✆ �✭✠ ✄✎✎r✟✄✝✙ ✄❢t✆r t✙✆ t✆♠✎✆r✄t✞r✆ ✄t ✇✙☎✝✙ t✙✆ ✝✞❜☎✝ ✆q✞✄t☎✟� ❢✟r ❋✁

❞✆✕✆✡✟✎✂ ✝✟♠✎✡✆① r✟✟t✂✳ ✯✙✆ r✆✂✞✡t✂ ❢r✟♠ ✂tr✄t✆✏② ❄☎☎☎❅ ✄r✆ ✂✙✟✇� ☎� ✠☎✏✳ ❍✳ ■t ☎✂

✝✡✆✄r ❢r✟♠ t✙☎✂ ☞✏✞r✆ t✙✄t �✭✠ ✄✡✇✄②✂ ✎✆r❢✟r♠✂ ✇✟r✂✆ t✙✄� t✙✆ ✟t✙✆r t✇✟ ✄�❞

t✙✄t t✙✆ ❞☎❑✆r✆�✝✆ ❜✆t✇✆✆� t✙✆ t✙r✆✆ ♠✆t✙✟❞✂ ✕✄�☎✂✙✆✂ ☎� t✙✆ ✙☎✏✙❁t✆♠✎✆r✄t✞r✆

✡☎♠☎t✳ ❖� t✙✆ ✟t✙✆r ✙✄�❞✑ ✭✠ ☎✂ ✂✞✎✆r☎✟r✑ ✄✂ ✆①✎✆✝t✆❞✑ ✇✙✆� ✟�✆ ✏✆t✂ ✝✡✟✂✆r t✟ t✙✆

✄✂②♠♠✆tr☎✝ ✝✄✂✆ ☎✳✆✳ ❢✟r ❦ ☎✂ ✝✡✟✂✆ t✟ ✌✳ ✯✙✆ ✯✬✰ r✆✂✞✡t ✙✄✂ ✄ ♠✟r✆ ✝✟♠✎✡☎✝✄t✆❞

❜✆✙✄✕☎✟r✑ ❞✞✆ t✟ t✙✆ ☎�tr☎�✂☎✝ ✡☎♠☎t✄t☎✟�✂ ☎♠✎✟✂✆❞ ❜② t✙✆ ✡✄✝✴ ✟❢ r✆✄✡ ✂✟✡✞t☎✟�✂ ✟❢

t✙✆ ✝✞❜☎✝ ✆q✞✄t☎✟� ✄t ✂tr✟�✏ ✝✟✞✎✡☎�✏✂✳ ▲✟✇✆✕✆r✑ ✟�✆ ✝✄� �✟t☎✝✆ t✙✄t✑ ✇✙✆� ❦ ☎✂

✝✡✟✂✆ t✟ ✻✆r✟✑ t✙✆r✆ ☎✂ ✄ r✄�✏✆ ✟❢ ✝✟✞✎✡☎�✏✂ ✮ ✇✙✆r✆ ✯✬✰ ❜✆✝✟♠✆✂ ❜✆tt✆r t✙✄� ✭✠

✄✂ ☎t ☎✂ ✆①✎✆✝t✆❞✳

✬✂ ✝✄� ❜✆ ✂✆✆� ☎� t✙✆ r☎✏✙t ✝✟✡✞♠� ✟❢ ✠☎✏✳ ❍✑ t✙✆ ♠✆✄� ✂q✞✄r✆❞ ✆rr✟r

❄✒✐♥◗❡❘❡❯✁❥ ❱ ✒❘❡❛❧✁❥ ❅✷ ❜✆✝✟♠✆✂ ✡✄r✏✆r ❢✟r �✟�❁✻✆r✟ ✆①t✆r�✄✡ ☞✆✡❞✂✳ ✯✙☎✂ ☎✂ ✄ ✏✆�✆r✄✡ ❢✆✄❁

t✞r✆ ✟❢ ✄✡✡ t✙r✆✆ ♠✆t✙✟❞✂✳ ❲✄r✏✆ ☞✆✡❞✂ ✄�❞❳✟r ✝✟✞✎✡☎�✏✂ ✄r✆ ✆✂t☎♠✄t✆❞ ✇☎t✙ ✡✄r✏✆r

✆rr✟r✂ t✙✄� ✂♠✄✡✡ ✟�✆✂✳ ✯✙☎✂ ☎✂ ❜✆✝✄✞✂✆ ✆rr✟r✂ ☎� t✙✆ ✆✂t☎♠✄t☎✟� ✟❢ t✙✆ ✆♠✎☎r☎✝✄✡

♠✄✏�✆t☎✻✄t☎✟�✂❳✝✟rr✆✡✄t☎✟�✂✑ ✇✙✆� t✙✆ ✡✄t✆r ✄r✆ ✝✡✟✂✆ t✟ ❨✌✑ ✎r✟❞✞✝✆ ✡✄r✏✆ ✆rr✟r✂

☎� t✙✆ ✆✂t☎♠✄t☎✟� ✟❢ t✙✆ ☞✆✡❞✂❳✝✟✞✎✡☎�✏✂ ❄✝✟�✂☎❞✆r ❢✟r ✆①✄♠✎✡✆✑ ☎� ✻✆r✟t✙ ✟r❞✆r

✄✎✎r✟①☎♠✄t☎✟�✑ ✄ ✂☎✏♠✟☎❞ ♠✄✎ ❜✆t✇✆✆� ❩✁ ✄�❞ ❭✁ ✑ ✄�❞ ❫✁❥ ✄�❞ ✒✁❥❅✳ ◆✞♠✆r☎✝✄✡

✂☎♠✞✡✄t☎✟�✂ ✂✙✟✇ t✙✄t✑ ❢✟r ✡✄r✏✆ ✆①t✆r�✄✡ ☞✆✡❞ ✄♠✎✡☎t✞❞✆✑ t✙✆✂✆ ✆rr✟r✂ ❜✆✝✟♠✆ ✂✟

☎♠✎✟rt✄�t t✙✄t t✙✆ ❞☎❑✆r✆�✝✆✂ ❜✆t✇✆✆� t✙✆ t✙r✆✆ ♠✆t✙✟❞✂ ✄r✆ ☎�✂☎✏�☎☞✝✄�t✳

❴✜ ❵✧④✥⑤⑥⑦⑧✧④⑦

⑨☎t✙☎� t✙✆ ♠✆✄� ☞✆✡❞ ✄✎✎r✟✄✝✙✆✂ t✙✄t ✇✆ ✙✄✕✆ ✂t✞❞☎✆❞✑ t✙✆ ✂✟✡✞t☎✟� ✟❢ t✙✆ ☎�✕✆r✂✆

✎r✟❜✡✆♠ ❞✆r☎✕✆✂ ❢r✟♠ t✙✆ ✂✟✡✞t☎✟� ✟❢ t✙✆ ❞☎r✆✝t ✎r✟❜✡✆♠✳ ⑨✆ ✙✄✕✆ ✂t✞❞☎✆❞ ✙✆r✆

t✙r✆✆ ♠✆t✙✟❞✂ t✙✄t ✎r✟✕☎❞✆ ✄� ✄✎✎r✟①☎♠✄t✆ ✂✟✡✞t☎✟� t✟ t✙✆ ❞☎r✆✝t ✎r✟❜✡✆♠ ☎� t✙✆

✝✄✂✆ ✟❢ ✂②✂t✆♠✂ ✇☎t✙ ☎�☞�☎t✆ r✄�✏✆ ☎�t✆r✄✝t☎✟�✂✳ ⑨✆ ✙✄✕✆ ✆①✎✡✟r✆❞ t✙✆☎r ❜✆✙✄✕☎✟r✂
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❘❊❋❊❘❊◆❈❊❙ ✺

�✁ ❜�t✂ t✂✄ ❞☎r✄✆t ✝✁❞ t✂✄ ☎✁✞✄r✟✄ ✠r�❜✡✄♠ ☎✁ t✂✄ ✆✝✟✄ �❢ ☛❑ ♠�❞✄✡✟ ✇☎t✂ ❞☎☞✄r✄✁t

❞✄✌r✄✄✟ �❢ ✟②♠♠✄tr② �❢ t✂✄ ☎✁t✄r✝✆t☎�✁✟✳ ❆✟ ✄①✠✄✆t✄❞✍ t✂✄ ✎✏ ✝✠✠r�✝✆✂ ☎✟ t✂✄ ❜✄✟t

�✁✄ ✇✂✄✁ t✂✄ ❞✄✌r✄✄ �❢ ✝✟②♠♠✄tr② ☎✟ ✡✝r✌✄ ✄✁�✑✌✂✍ ❜✑t t✂✄ ❚❆✒ ✝✠✠r�✝✆✂ t✑r✁✟

�✑t t� ❜✄ ✟✡☎✌✂t✡② ❜✄tt✄r ☎✁ ✟�♠✄ r✝✁✌✄ �❢ ✆�✑✠✡☎✁✌ ✟tr✄✁✌t✂ ✇✂✄✁ t✂✄ ✆�✑✠✡☎✁✌✟ ✝r✄

♠�r✄ ✟②♠♠✄tr☎✆✳ ❚✂✄ ✁✎✏ ✝✠✠r�✝✆✂ ☎✟ ❥✑✟t ✝ ✓r✟t �r❞✄r ✝✠✠r�①☎♠✝t☎�✁ t� ❜�t✂

✎✏ ✝✁❞ ❚❆✒ ✝✁❞ ☎✟ ✟②✟t✄♠✝t☎✆✝✡✡② ✇�r✟✄ t✂✝✁ t✂✄ �t✂✄r t✇� ♠✄t✂�❞✟✳

❆✟ ✁�t✄❞ ❜✄❢�r✄✍ t✂✄ ❞✄r☎✞✝t☎�✁ �❢ ☎✁✞✄r✟✄ ✁✎✏ ✝✁❞ ❚❆✒ r✄✡② �✁ ✄①✠✝✁❞☎✁✌ t✂✄

t✝✁✂ ☎✁ t✂✄ ✝r�✑✁❞ t✂✄ ✟�✡✑t☎�✁✟ �❢ t✂✄ ✁✎✏ ✝✁❞ ❚❆✒✳ ❚✂☎✟ ✄①✠✝✁✟☎�✁ ☎✟ ✁�t

r✄q✑☎r✄❞ ❢�r t✂✄ ✎✏ ✟�✡✑t☎�✁✔ ☎✁ t✂✄ ✆✝✟✄ ✇☎t✂ t✂✄ ✝✟✟✑♠✠t☎�✁ �❢ ❢✑✡✡ ✝✟②♠♠✄tr②✍

t✂✄ ❥�☎✁t ❞☎✟tr☎❜✑t☎�✁ �❢ t✂✄ ✡�✆✝✡ ✓✄✡❞ t� ✄✝✆✂ ✠✝☎r �❢ ✟✠☎✁✟ ✇☎✡✡ ❜✄ ●✝✑✟✟☎✝✁ ✝✁❞

✆✝✁ ❜✄ ✄✝✟☎✡② ✆✝✡✆✑✡✝t✄❞✳ ■t ☎✟ t✂✄r✄❢�r✄ ✠�✟✟☎❜✡✄ t� ✇r☎t✄ ✝✁ ✄①✝✆t ✄q✑✝t☎�✁ r✄✡✝t☎✁✌

❉✕✖ t� ✗✕✖ ✝✁❞ t✂✄ ✆�✑✠✡☎✁✌✟ ✇✂☎✆✂ ☎✁ t✂✄ ✡☎♠☎t �❢ ✟♠✝✡✡ ✗✕✖ ✆✝✁ ❜✄ ✡☎✁✄✝r☎✘✄❞ ✝✁❞

t✝❦✄✟ t✂✄ ❢�r♠ �❢ ✙q✳ ✼✳ ■t ✇�✑✡❞ ❜✄ ☎✁t✄r✄✟t☎✁✌ t� ✟✄✄ ☎❢ ✝ ✟☎♠☎✡✝r ✝✠✠r�✝✆✂ ✆✝✁ ❜✄

❞�✁✄ ✇☎t✂☎✁ t✂✄ ❚❆✒ ❢r✝♠✄✇�r❦✔ ✆✝✡✆✑✡✝t✄ t✂✄ ❥�☎✁t ❞☎✟tr☎❜✑t☎�✁ �❢ t✂✄ ✡�✆✝✡ ✓✄✡❞✟

☎✁ ✝ ✟②✟t✄♠✝t☎✆ ✟♠✝✡✡ ✆�✑✠✡☎✁✌ ✄①✠✝✁✟☎�✁✍ ✝✁❞ ✑✟✄ t✂✄ ✟✝♠✄ ✠r�✆✄❞✑r✄ ❞�✁✄ ☎✁ ✎✏

t� r✄✡✝t✄ ❉✕✖ t� ✗✕✖✳

■✁ r✄✝✡ ✝✠✠✡☎✆✝t☎�✁✟✍ ❢�r ☎✁✟t✝✁✆✄ ☎✁ ✁✄✑r✝✡ ❞✝t✝ ✝✁✝✡②✟☎✟ �r ✌✄✁✄ r✄✌✑✡✝t☎�✁ ✁✄t✲

✇�r❦ r✄✆�✁✟tr✑✆t☎�✁✍ �✁✄ ❞�✄✟ ✁�t ❞✄✝✡ ✇☎t✂ ❞✝t✝ ✌✄✁✄r✝t✄❞ ❢r�♠ ✝ ♠�❞✄✡ ✇☎t✂ t✂✄
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✟✂�✇✟ t✂✝t ❚❆✒ ✝✁❞ ✁✎✏ ✠✄r❢�r♠ ✝t t✂✄ ✟✝♠✄ ✡✄✞✄✡ ☎✁ ☎❞✄✁t☎❢②☎✁✌ t✂✄ ✆�✁✁✄✆t☎�✁✟

�❢ ✝ ✟☎♠✑✡✝t✄❞ ✁✄✑r✝✡ ✁✄t✇�r❦✍ ✝✁❞ t✂✄② ❜�t✂ ✠✄r❢�r♠ ✇�r✟✄ t✂✝✁ t✂✄ ✄①✝✆t ☎t✄r✲
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