
HAL Id: tel-00869819
https://theses.hal.science/tel-00869819

Submitted on 9 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Passive interoperability testing for communication
protocols

Nanxing Chen

To cite this version:
Nanxing Chen. Passive interoperability testing for communication protocols. Other [cs.OH]. Univer-
sité de Rennes, 2013. English. �NNT : 2013REN1S046�. �tel-00869819�

https://theses.hal.science/tel-00869819
https://hal.archives-ouvertes.fr

ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l�Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L�UNIVERSITÉ DE RENNES 1

Mention : INFORMATIQUE

Ecole doctorale MATISSE

présentée par

Nanxing Chen
Préparée à l�unité de recherche IRISA � UMR6074

 Institut de Recherche en Informatique et Système Aléatoires
Composante universitaire ISTIC

Passive
Interoperability
Testing for
Communication
Protocols

Thèse soutenue à Rennes
le 24.06.2013

devant le jury composé de :

Richard CASTANET
Professeur , Labri-ENSEIRB / rapporteur

Gérardo RUBINO
Directeur de recherche, INRIA / examinateur

Stephan MAAG
Maitre de conférences, Telecom Sud-Paris /
examinateur

Xiaohong HUANG
Maitre de conférences, BUPT / examinateur

César VIHO
Professeur, Universtité de Rennes 1 / directeur de
thèse

Yan MA
Professeur, BUPT / rapporteurs avant soutenance

Acknowledgement

I would like to express my gratitude to all those who helped me during the
thesis.

My deepest gratitude goes first and foremost to my beloved family and my
relatives by marriage for their loving considerations and great confidence in me
all through these years. Without their constant support and encouragement, this
thesis could not have succeeded.

Second, I would like to express my gratitude to Professor César Viho. Due to
his guidance and support all along my PhD thesis.

I am also greatly indebted to Anthony Baire, who have instructed and helped
me a lot in technical aspects.

Last my thanks would go to my colleagues, who are not only my work partners,
but also trustworthy friends.

Contents

1 Introduction 5

1.1 Background . 5
1.2 Scope, Motivations and Objectives 8
1.3 Organization of the Thesis . 10

2 Prerequisites 13

2.1 Introduction to Protocol Testing 13
2.1.1 The Needs of Interoperability Testing 14
2.1.2 Different Testing Techniques 16

2.1.2.1 Testing Techniques According to Accessibility . . 17
2.1.2.2 Testing Techniques According to Controllability . 17

2.2 Interoperability Testing Overview 18
2.2.1 Definition of Interoperability 18
2.2.2 Interoperability Testing Architectures 19
2.2.3 Interoperability Criteria 21
2.2.4 Interoperability Testing Process 22

2.2.4.1 Preliminary: Compatibility of Specifications . . . 22
2.2.4.2 Interoperability Testing Activities 23

2.3 State of the Art of Interoperability Testing 25
2.3.1 Active Interoperability Testing 26

2.3.1.1 Active Interoperability Testing Overview 26
2.3.1.2 Advantages and Drawbacks of Active Testing . . 28

2.3.2 Passive Interoperability Testing 29
2.3.2.1 Passive Testing Techniques 29
2.3.2.2 Advantages and Challenges of Passive Testing . . 31
2.3.2.3 Conclusions . 32

2.4 Conclusions . 33

3 A Method for Passive Interoperability Testing 35

3.1 Introduction . 35
3.2 Testing Architecture . 36

i

ii Contents

3.3 Formal Model . 37

3.4 Passive Interoperability Testing Method 39

3.4.1 Passive Interoperability Testing Method Overview 39

3.4.1.1 Formalizing Interoperability Test Purpose 41

3.4.1.2 Interoperability Test Case Generation 42

3.4.1.3 Passive Interoperability Test Case Derivation . . 46

3.4.2 Trace Verification . 47

3.4.3 Verdict Assignment . 49

3.5 Application on SIP Protocol . 52

3.5.1 SIP Protocol Overview . 52

3.5.2 Test Execution . 55

3.6 Conclusions . 56

4 A Passive Interoperability Testing Method for Request-Response

Protocols 59

4.1 Introduction . 59

4.2 Background and Motivation . 60

4.3 Passive Interoperability Testing Method for Request-response Pro-
tocols . 61

4.3.1 Testing Method Overview 61

4.3.2 Trace Verification . 64

4.4 A Passive Interoperability Testing Tool 67

4.4.1 Motivation . 67

4.4.1.1 TTCN-3 Overview 68

4.4.1.2 Main Issues . 71

4.4.2 Ttproto: A Testing Tool for Passive Interoperability Testing 71

4.4.2.1 Ttproto Overview 71

4.4.2.2 Description . 75

4.5 Application to the CoAP Protocol 76

4.5.1 CoAP Interoperability Testing Event 76

4.5.2 CoAP Protocol . 78

4.5.2.1 CoAP Protocol Overview 78

4.5.2.2 Test Purposes Selection and Test Cases Generation 79

4.5.3 Application in Industrial Context 85

4.5.3.1 CoAP Plugtest Overview and Testing Architec-
ture . 85

4.5.3.2 Test Execution with Ttproto 87

4.5.3.3 Results of the CoAP Plugtest 88

4.6 Conclusions . 90

Contents iii

5 Conclusions 93

5.1 Summary of Contributions . 93
5.2 Future Work . 95

5.2.1 Improve Trace Verification by Test Case Grouping 95
5.2.1.1 Motivation . 95
5.2.1.2 State of the Art 96
5.2.1.3 Grouping Passive Interoperability Test Cases . . 97
5.2.1.4 Trace Verification 101
5.2.1.5 Results . 104

5.2.2 Perspectives . 107

iv Contents

Résumé de la Thèse

Dans le domaine des réseaux, le test de protocoles de communication est une
activité importante afin de valider les protocoles applications avant de les mettre
en service. Généralement, les services qu’un protocole doit fournir sont décrits
dans sa spécification. Cette spécification est une norme ou un standard défini par
des organismes de normalisation tels que l’ISO (International Standards Organi-
sation), l’IETF (Internet Engineering Task Force), l’ITU (International Telecom-
munication Union), etc. Le but du test est de vérifier que les implémentations du
protocole fonctionnent correctement et rendent bien les services prévus.

Pour atteindre cet objectif, différentes méthodes de tests peuvent être util-
isées. Parmi eux, le test de conformité vérifie qu’un produit est conforme à sa
spécification. Le test de robustesse vérifie les comportements de l’implémentation
de protocole face à des événements imprévus. Dans cette thèse, nous nous in-
téressons plus particulièrement au test d’interopérabilité, qui vise à vérifier que
plusieurs composants réseaux interagissent correctement et fournissent les services
prévus.

L’architecture générale de test d’interopérabilité fait intervenir un système
sous test (SUT) composé de plusieurs implémentations sous test (IUT). Les ob-
jectifs du test d’interopérabilité sont à la fois de vérifier que plusieurs implémenta-
tions (basées sur des protocoles conçus pour fonctionner ensemble) sont capables
d’interagir et que, lors de leur interaction, elles rendent les services prévus dans
leurs spécifications respectives.

En général, les méthodes de test d’interopérabilité peuvent être classées en
deux grandes approches: le test actif et le test passif. Le test actif est une
technique de validation très populaire, dont l’objectif est essentiellement de tester
les implémentations (IUT), en pratiquant une suite de contrôles et d’observations
sur celles-ci. Cependant, une caractéristique fondamentale du test actif est que
le testeur possède la capacité de contrôler les IUTs. Cela implique que le testeur
perturbe le fonctionnement normal du système testé. De ce fait, le test actif
n’est pas une technique appropriée pour le test d’interopérabilité, qui est souvent
effectué dans les réseaux opérationnels, où il est difficile d’insérer des entrées

1

2 Contents

arbitraires sans affecter les services ou les fonctionnements normaux des réseaux.

A l’inverse, le test passif est une technique se basant uniquement sur les obser-
vations. Le testeur n’a pas besoin d’agir sur le SUT notamment en lui envoyant
des stimuli. Cela permet au test d’être effectué sans perturber l’environnement
normal du système sous test. Le test passif possède également d’autres avantages
comme par exemple, pour les systèmes embarqués où le testeur n’a pas d’accès
direct, de pourvoir effectuer le test en collectant des traces d’exécution du sys-
tème, puis de détecter les éventuelles erreurs ou déviations de ces traces vis-à-vis
du comportement du système décrit dans sa spécification. En outre, les tests peu-
vent être mises en place sur une longue période, et ainsi à tout moment traiter les
anomalies contrairement au test actif qui est généralement limité dans le temps
par une campagne de test. De ce fait, cette thèse vise à proposer les méthodes de
test basées sur la technique de test passif pour effectuer le test d’interopérabilité.

L’organisation de thèse est suivante:

Le chapitre 1 est l’introduction. Le contexte, les problématiques, les motiva-
tions ainsi que le plan de thèse y sont présentés.

Le chapitre 2 présente l’état de l’art du domaine. Les notions générales, les
architectures et les critères du test d’interopérabilité y sont décrits. Dans cette
thèse, on considère la configuration le plus souvent utilisée: L’architecture dite
"one-to-one" où le SUT contient deux IUTs. Chacune de ces IUTs est une boîte
noire, dont le comportement n’est connu que par les interactions à travers leurs
interfaces. Les différentes méthodes (actives et passives) pour effectuer le test
d’interopérabilité sont présentées et comparées. Les motivations pour le choix de
la méthode passive sont expliquées.

Les problématiques du test passif sont aussi exposées dans ce chapitre. En
effet, malgré le fait que le test passif s’avère être une technique prometteuse, peu
de travaux l’ont appliqué dans le domaine d’interopérabilité. Pourtant, il y a un
certain nombre de problèmes à résoudre à cause de la non-contrôlabilité du test
passif. Par exemple, la vérification de comportement des IUTs (trace), l’émission
des verdicts, etc. Pour faire face à ces problématiques, dans les chapitres suivants,
plusieurs contributions sont proposées.

Dans le chapitre 3, une approche pour effectuer le test d’interopérabilité en
utilisant la technique du test passif est proposée. Cette méthode est basée sur
les modèles formels. Elle commence par le choix d’un ensemble d’objectives de
test, qui décrit les propriétés à vérifier lors du test. Puis, pour chaque objectif de
test, un cas de test correspondant est généré, décrivant en détail le comportement
des IUTs à observer. Le cas de test est généré de la manière automatique avec

Contents 3

un algorithme de recherche en profondeur, considérant l’interaction asynchrone
partielle entre les spécifications par rapport à l’objectif de test. La manipulation
des entités considérées lors de la génération de test peut conduire à stocker un
nombre d’états trop important par rapport à la capacité des systèmes sur lesquels
sont exécutés les algorithmes de génération. Pour éviter le problème classique
d’explosion combinatoire des états lors du calcul, chaque objectif de test a des
attributs spécifiques pour limiter le calcul de l’interaction asynchrone. Le modèle
formel utilisé, les règles de calcul partiel, la dérivation de cas de test passifs sont
décrits dans ce chapitre.

Par ailleurs, en test passif, une difficulté est la vérification de trace. Le testeur
observe et collecte les messages échangés entre les entités protocolaires. Puis il
analyse les informations collectées (traces d’exécution) pour vérifier que les traces
sont conformes aux propriétés que l’on souhaite tester. Une problématique est
que le système de test n’a pas de connaissance de l’état où le système sous test
peut être par rapport au début de la trace. Pour surmonter le problème ci-dessus,
un algorithme de vérification a été proposé pour analyser le comportement des
IUTs ainsi qu’émettre les verdicts appropriés. L’algorithme vise à rechercher dans
la trace les cas de test qui correspondent aux observations contenues dans la trace.

Une autre contribution dans ce chapitre est l’émission de verdicts. Respec-
tivement, le verdict est Pass si l’objectif de test a été atteint et aucun erreur
n’a été observée, Fail si au moins une erreur a été observée, ou Inconclusive si
le comportement observé est correct par rapport à la spécification mais ne cor-
respond pas à l’objectif visé par le test. A cause de la non-contrôlabilité du test
passif, les règles d’attribution de verdicts sont différentes de ceux utilisés pour la
méthode active et doivent être assouplis. Dans ce chapitre, les règles d’attribuer
des verdicts Pass, Fail ou Inconclusive sont expliqués en détail.

Dans le chapitre 4, une autre approche du test d’interopérabilité passif a été
proposée. Ce chapitre se focalise sur les protocoles largement utilisé de type
requête/réponse, qui reste incontournable pour réaliser les services Web. Cette
approche commence aussi par le choix des objectifs de test. Pour chacun des
objectifs de test, un cas de test est généré (manuellement). Pour la vérification de
trace, l’idée est d’utiliser le modèle de transactions client-serveur requête/réponse
de ce type de protocoles. La stratégie consiste à décomposer la trace en un
ensemble de conversations entre le client et le serveur. Une fois que la trace
est découpée en une série de conversations, la prochaine étape est d’établir la
correspondance entre chaque cas de test et ces conversations. Pour chaque cas
de test présent dans la trace, l’algorithme proposé vérifie automatiquement si
celui-ci est satisfait et émet un verdict.

Dans ce chapitre, un outil de test nommé ttproto (testing tool prototype) a

4 Contents

été proposé pour automatiser le test pour les protocoles de type requête/réponse.
Plus précisément, après qu’une trace est découpée en conversations, l’outil de test
commence à exécuter la procédure de vérification. Pour ce faire, l’outil prend en
entrée deux fichiers: les cas de test et les conversations. L’étape suivante consiste
à analyser la trace capturée à l’aide d’un algorithme de vérification de trace. Cet
outil est inspiré de TTCN-3 (Testing and Test Control Notation Version 3), un
outil très utilisé dans le domaine de test, initialement conçu pour la méthode
active. Ttproto conserve certaines notions utiles de TTCN-3, mais intègre de
nouvelles fonctionnalités pour s’adapter au contexte de test passif.

La méthode et l’outil ont étés appliqués sur un protocole réel CoAP (Con-
strained Application Protocol) dans les évènements CoAP Plugtest organisés
par l’ETSI (European Telecommunications Standards Institute) dans le contexte
d’Internet des objets. Ces évènements ont eu lieu à Paris et Sophia Antipolis
en 2012. Les résultats lors de leurs applications sont présentés et montrent la
validité, la pertience et l’efficacité de cette approche.

Le chapitre 5 propose une synthèse des travaux réalisés, ainsi que des perspec-
tives pour des travaux futurs. Particulièrement, on s’intéresse à l’amélioration
de la vérification de traces. En effet, les algorithmes de vérifications présentés
auparavant fonctionnent de manière séquentielle. Cela implique une durée de
vérification potentiellement longue s’il y a beaucoup de cas de test à vérifier, ou
si la trace est très longue. Pour y faire face, dans ce chapitre, nous présentons
les premiers résultats de travaux visant à regrouper les cas de test. L’objectif du
groupement de cas de test est de permet qu’ils puissent être vérifiés en parallèle
sur la trace. Nous montrons qu’un cas de test obtenu en utilisant cette approche
rend la vérification plus efficace.

Dans ce chapitre, quelques pistes sont données concernant les autres travaux
long termes. Les méthodes proposées devront être étendues dans le contexte plus
général de l’interaction de plus de deux implémentations. A cause de la non-
contrôlabilité du test passif, les verdicts sont souvent Inconclusive. Une solution
doit être trouvée pour raffiner les verdicts. Dans le Chapitre 4, on s’intéresse
uniquement aux protocoles de type requête/réponse. La méthode et l’outil pro-
posés pour ce type de protocole devront être étendus aux autres types de proto-
coles plus complexes.

Chapter 1

Introduction

1.1 Background

The deregulation of the telecommunication industry has led to the rapid evolu-
tion of technologies and know-how in the field of communication systems. The
computer systems attached to a network communicate with each other using a
common set of conventions called protocols. In other words, protocols are the
rules that govern the communication between the different components within a
distributed computer system. In order to organize the complexity of these rules,
they are usually partitioned into a hierarchical structure of protocol layers, as ex-
emplified by the seven layers of the standardized Open Systems Interconnection
(OSI) model [54]. The layering concept was used to divide the communication
functions into sets which can be specified separately. This allows independent
development and implementation of standards at each layer.

A protocol, in general, is quite complex and takes a considerable effort to
implement on a system. The implementation of a protocol is usually derived
from a specification standard, which defines the required behavior for a protocol
entity, and can lead to several different applications. On one hand, the complex-
ity of protocols necessitates the thorough study of the specification, as well as
verification, development and testing. On the other hand, with the never-ending
changes and improvement of computer technologies, today’s network services and
applications are required to be rich, on-time, with high quality. These aspects,
consequently, call the needs of ensuring proper functionality of network-enabled
products in order to satisfy customer expectations. In this context, testing has
steadily become more and more important within the development of software
and systems, aiming at solving both new challenges imposed by the advancement
in various areas of computer science and long-standing problems.

To increase confidence in protocol products implemented according to inter-

5

6 Introduction

national standards, various protocol testing methodologies have been developed
and applied for different purposes. They can be generally classified into two
categories, Stress and Reliability Tests and Functional Tests (c.f. Fig.1.1).

Stress and reliability tests addresse the ability of a system or component to
perform its required functions under stated conditions for a specified period of
time. Typical stress and reliability tests are for example:

• Performance testing, which is conducted to evaluate the compliance of a
system or component with specified performance requirements.

• Stress testing, which is conducted to evaluate a system or component at or
beyond the limits of its specified requirements.

• Robustness testing determines the degree to which a system operates cor-
rectly in the presence of exceptional inputs or stressful environmental con-
ditions. etc.

Different from stress and reliability tests, functional tests focus on verifying
whether a system meets external requirements and achieve goals. Typical func-
tional tests include conformance testing and interoperability testing, etc., among
which interoperability testing is the topic of this thesis.

Figure 1.1: Protocol Testing

There is a close relationship between conformance testing and interoperabil-
ity testing. Conformance testing, as one of the most fundamental one, checks
whether an implementation is correct with respect to its relevant specifications.
The importance of conformance testing lies in: equipments from different vendors
conforming to the same standards have a higher likelihood of interoperability. In

Background 7

other words, protocol implementations are tested against the protocol specifica-
tion in order to assure compatibility with other implementations based on the
same protocol. It is important for both equipment suppliers and buyers that,
different vendors can independently implement standards with higher assurance
of product interoperability. Also, equipment buyers can have confidence that the
purchased equipments from different suppliers interoperate.

However, although the ISO 9646 standard [1] mentions that conformance test-
ing can increase the probability of interoperability, it cannot guarantee the suc-
cessful interaction between different implementations. It must be noted that
conformance testing is a necessary step to insure interoperability but it is not
enough. It is a known fact that, even following the same standards, two proto-
col implementations from different suppliers may still fail to interoperate due to
various reasons: lack of clarity of standards, poorly specified protocol options,
incompleteness of specifications, incoherence of protocol implementations, etc.
Nevertheless, on one hand, customer needs are growing and manufacturers per-
manently develop new equipments with improved quality of service. On the other
hand, these services must be very quickly validated so that the proposed solu-
tions are reliable and ready to work. Therefore, in parallel, efficient techniques
in communication systems engineering must be developed in order to reduce the
time-to-market. In this context, interoperability testing is holding a strategic po-
sition in the design of new technologies. Its role is to determine whether several
interconnected products from different product lines interoperate correctly and
provide the expected services. Indeed, conformance testing improves the chances
of interoperability while interoperability testing checks at a user level if interop-
erability has been achieved.

Despite its importance, contrary to conformance testing, much less atten-
tion has been paid to interoperability testing. Currently, interoperability testing
has not yet standardized. Moreover, test automation and reusability is difficult.
Therefore, this thesis focuses on interoperability testing, aiming at researching
methods and solutions to improve interoperability testing.

Looking into the literature, throughout the past twenty years or so, vari-
ous research works have been proposed to carry out interoperability testing (
[19, 36, 6, 18], etc.) So far, the conventional method is to generate a sequence
of tests from the specifications of the interconnected network equipments under
test. Then these tests will be run against the network equipments to check if
they work together properly. Generally, the tester has the ability to stimulate
the equipments and verify whether the outputs obtained for each test message
are as expected according to the specifications. This method is usually called
active testing, a technique based on gathering information actively. By “actively”

8 Introduction

we mean injecting test messages into the network. Although widely used, ac-
tive testing has some drawbacks. Its biggest drawback is that the tester has to
interact directly with the network components, which disturbs inevitably their
normal operations. Therefore, active testing does not fit certain situations such as
operational networks, where inserting arbitrary inputs disturbs the environment
and could in the worst case even provoke the crash of the services. Also, this
approach requires to deploy a specific testing environment to execute test cases
and to observe implementations reactions. Moreover, active testing may not be
always be applied due to the complexity of systems, for example, when the tester
is not provided with a direct interface to interact with the equipments.

Different from active testing, passive testing ([2], [3], [4], etc.) represents
another interesting alternative. It is a technique based only on observing the
behaviors of the system to be tested. The tester collects the interactive messages
of network equipments and analyzes them to draw a conclusion of interoperabil-
ity. Compared with active testing, the main advantage of passive testing is its
non-intrusive nature. It does not disturb the normal operation of the protocol
implementations, thus is suitable for interoperability testing in operational envi-
ronment. Also, passive testing has other advantages: by using passive testing,
no extra testing traffic overhead is introduced into the networks; no direct access
interface to control the system is required, etc. For these reasons, we feel that
passive testing is worth investigating, and consider in this thesis to use it for
interoperability testing.

1.2 Scope, Motivations and Objectives

The work described in this thesis pertains to the interoperability testing of com-
munication protocols, and by using passive testing technique in particular. Two
main reasons account for the scope of the thesis: First, contrary to conformance
testing which has been formalized in [1], interoperability testing, despite its im-
portance, remains informal and has many open issues to be solved. Second, we
find that the non-intrusive nature of passive testing makes it a suitable technique
to perform interoperability testing (as stated in Section1.1). As interoperability
focuses on the interworking of several protocol entities, verifying their behavior
without disturbing their interaction is necessary.

The notion of passive testing can trace its history to several decades. For
example it can be found in the early 70’s to test integrated circuit. But not until
the recent decade, the needs of network management [2] changes its research into
a hot topic. The authors of [38] proposed some basic principles and methods of
testing finite state machines using passive testing and presented a fault detection

Scope, Motivations and Objectives 9

algorithm in [3]. [40] adopted the model of communication finite state machine
(CFSM) for passive testing and did some research on the problem of fault location.
Later, passive testing is further applied in other areas such as network security
[39], communication protocol testing [4, 5], etc.

Though passive testing is sometimes mentioned as an alternative to active
testing, looking into the literature of interoperability testing, only few works [6]
consider using passive testing techniques. Currently, the field of interoperability
testing is dominated by active testing ([18, 19, 36], etc.). However, with the rapid
advancement of computer science and technology, there are needs of more effi-
cient and accurate testing procedure to help telecommunications suppliers achieve
faster time-to-market. This, consequently, requires that the interoperability of
protocol implementations be tested in operational environment. Different from
in isolated environment, equipments that are running in operational networks
cannot be shutdown or interrupted for a long period of time, and therefore call
for the needs of passive testing.

Moreover, most existing research works are not based on a rigorous defini-
tion of interoperability and leave many unsolved issues and challenges: First of
all, as interoperability testing involves at least two protocol implementations,
therefore the joint behavior of implementations under test should be taken into
account. But the calculation of the joint behavior often encounters the state
explosion[55], amounts to exploring in a systematic manner the complete state
space of a system. As a result, the number of generated global states is usually
“large”, making it difficult for practical use. Also, the non-controllable nature of
passive testing makes the verification of observed behavior complex. Indeed, the
tester has no idea about the state at which the implementations are when a trace
is produced. This factor may cause interoperability verdicts error-prone. More-
over, as passive testing is often carried out in operational networks, therefore the
conventional testing assumption of reliable testing environment (where there is
no packet loss), is more or less no longer suitable. Last but not least, currently
most interoperability testing is still carried out manually (test case generation
and verification), which is time consuming and error prone. Due to this reason,
interoperability testing is known to be costly, which calls a strong requirement
for test automation.

Our contributions, in response to the above issues, intend to give improve-
ments for more rigorous and better passive interoperability testing methods.

10 Introduction

1.3 Organization of the Thesis

The thesis is organized in five chapters. The remainder of this thesis is as follows:
Chapter 2 presents the necessary prerequisites. It begins with the introduction of
the basic concepts of protocol testing activities, and in particular interoperability
testing. Then the state of the art of interoperability testing, including different
testing methods, i.e., active and passive testing, as well as their advantages and
drawbacks are elaborated. In this chapter, we draw a conclusion on the needs of
using passive technique to test interoperability. Also, the issues and challenges
of passive interoperability testing are stated.

Chapter 3 proposes a formal specification-based approach for passive inter-
operability testing. Given the formal specifications of network equipments to be
tested and a test purpose, a passive test case is derived by partial asynchronous
interaction calculation to avoid unnecessary reachability analysis. In addition, a
trace analysis algorithm is proposed to check a recorded execution trace against
the passive test case in order to determine their interoperability relationship.
Moreover in this chapter, the verdict assignment issue is discussed. Different
from active testing, due to the uncontrollable nature of passive testing, verdict
attributed to each test case must be prudent.

In Chapter 4, a passive testing approach is proposed for request-response
protocols, which are widely used in the context of transactional communications.
According to the interaction pattern of request-response protocols, the observed
interaction between network components (trace) can be considered as a set of
conversations made between network components. Then, a procedure to map each
test case into the conversations is carried out in order to verify its occurrence, as
well as whether it is respected. This approach was successfully put into operation
during two CoAP Plugtest events in the context of the Internet of Things [22].
The results of case studies are also presented.

Moreover, Chapter 4 also presents the automation of passive interoperability
by using a new testing tool called ttproto. It is inspired from the widely used
tool Testing and Test Control Notation Version 3 (TTCN-3) [56] in the field of
testing. However, TTCN-3 is not adapted for passive testing for several reasons:
strong controllability, tedious templates, etc. To solve these problems, in ttproto,
we have developed new features that do not exist in TTCN-3 and make the
automation of passive interoperability testing feasible.

In the last chapter we draw a conclusion of the whole thesis and give perspec-
tives for future works. We classify the future work into short term and long term
work. Short term future work concerns mainly improving passive verification. We
will give the first results of improving trace verification by grouping test cases

Organization of the Thesis 11

that share some common prefix. In this way, passive verification (which often
involves a large number of traces to verify) can become more efficient. At the
end, long term future work will also be presented.

12 Introduction

Chapter 2

Prerequisites

This chapter aims at presenting the necessary prerequisites concerning the work
presented in this thesis.

The organization of the chapter is as follows: Section 2.1 presents the general
concept of protocol testing, including different testing methodologies and testing
techniques. The importance of interoperability is also underlined in this section.
Section 2.2 introduces the overview of interoperability testing, including the im-
portant elements, different testing architectures and testing process. In section
2.3, the state of the art of interoperability testing is described. As interoperabil-
ity testing can be performed in both active and passive way, in this section we
compare these two testing methods and develop in detail their advantages and
drawbacks. Finally, we draw the conclusion of the needs of passive testing, as
well as the various challenges and issues that might be encountered and to be
solved.

2.1 Introduction to Protocol Testing

Communication protocols are the rules that govern the communication between
the different components within a distributed computer system. Generally, a
protocol defines the syntax, semantics, synchronization of communication, as well
as specified behavior, which is independent of how it is to be implemented. Based
on protocols, network equipments exchange messages within a communication
system. In other words, protocols provide a reference for cooperation among
network components of a system.

In order to guarantee successful communication, first of all the design of pro-
tocols must be checked for logical correctness. Then, as a protocol can lead
to a variety of equipments, these implementations must be checked for compli-

13

14 Prerequisites

ance with the protocol standard. Moreover, the last decade in the history of
networking witnesses increasing heterogeneity, as existing networks evolved from
analog voice networks to digital voice networks, from circuit-switched to packed-
switched networks, from wire-line to wireless networks, from electronic to optical
networks. New technologies introduce heterogeneity and complexity. In conse-
quence, modern networks contain both legacy equipments and equipments based
on state-of-art technology. They typically come from dozens of vendors. In this
context, correct coordination and communication between different devices us-
ing a multitude of protocols are often problematic. As a result, implementations
are usually also tested for other properties such as interoperability, robustness,
performance, etc.

2.1.1 The Needs of Interoperability Testing

As introduced in Chapter 1, protocol testing can be classified into functional tests
and stress and reliability tests. In this thesis, we focus on functional tests, more
specifically interoperability testing.

Functional tests include typically conformance testing and interoperability
testing. The relation between conformance testing and interoperability testing is
illustrated in Fig.2.1. Compared to conformance testing that checks whether an
implementation conforms to its specification, interoperability testing is in check-
ing correct operation of multiple interconnected equipments.

Figure 2.1: Conformance testing and interoperability testing

Conformance testing [1] for computer networking protocols is defined in ISO
/ IEC 9646-1:1994(E) as "testing both the capabilities and behavior of an imple-
mentation, and checking what is observed against the conformance requirements
in the relevant International standards." Its main objective is to verify whether
a network component conforms to its specification. A specification is a detailed
document describing the required behavior, as well as interfaces and mechanism
of protocol entities. It is often defined by standards organizations such as ISO (In-

Introduction to Protocol Testing 15

ternational Standards Organization)1, IETF (Internet Engineering Task Force)2,
ITU (International Telecommunication Union)3, etc. It is an important step to
ensure compatibility of implementations. Nevertheless, it is widely agreed that
conformance testing has limitation in ensuring interoperability [35, 36]. Even
following the same standard, two different implementations might not be inter-
operable. In fact, since service provider networks may contain elements from
different vendors, it is possible that errors are introduced by differences in im-
plementations. Therefore, although much work in the standards arena has been
done to ensure interoperability, non-interoperation can still be caused by a variety
of reasons. For example, they may come from the following aspects (cf.Fig.2.2):

• Specifications. The specification of a protocol standard is in general, a
detailed document describing the expected behavior of the protocol enti-
ties. If the description technique used is not formal, it is possible that the
specification is ambiguous itself in some sense. The presence of ambiguities
can lead to different interpretations and consequently different implemen-
tations. Such implementations may fail to interoperate. Also, the different
options provided in a specification can be incompatible so that they defeat
interoperation.

• Implementations. It involves for example human errors, e.g. programmer
errors, different interpretations of the standard or different choice of options
allowed by the standard. Also, sometimes a new service will enter the
market before any standard exists for it, and the protocols involved may
not necessarily be formally specified.

• Incompleteness of conformance testing. Conformance test suites are not
complete so that they do not guarantee conformance to protocol standards.
In fact, they just detect non-conformance that may appear during the test
execution.

• Besides technical reasons, there are also business reasons that can account
for non-interoperability. For instance, businesses sometimes view features
that defeat interoperation as a competitive advantage, as it can lead to
monopoly in the market.

1http://www.iso.org/iso
2http://www.ietf.org/
3http://www.itu.int/en/pages/default.aspx

16 Prerequisites

To conclude, due to a variety of reasons, independently developed network
protocol entities may be different enough to communicate with each other. Or
sometimes they can communicate, but may not collaborate to provide the desired
services.

Figure 2.2: Needs of interoperability testing

However, poor interoperability can be expensive. Non-interoperability does
not only affect the reputation of vendors, but also bring annoyance to the end cus-
tomer, even cause the loss of investor confidence. Indeed, in a world of converging
diverse technologies, complex network systems must communicate and inter-work
on all levels in a multi-vendor, multi-network and multi-service environment. In-
teroperability ensures that users have a much greater choice of products and that
manufacturers benefit from the economies of scale that a wider market brings.
Interoperability testing is therefore a crucial factor in the success of modern tech-
nologies. This is one of our motivation in this thesis to suggest solutions that can
improve interoperability testing.

A detailed description of interoperability testing can be found in Section 2.2.

2.1.2 Different Testing Techniques

In order to perform protocol testing, overtime the IT industry and the testing
discipline have developed several techniques for analyzing and testing protocol
applications. In this thesis, these techniques are classified according to the acces-
sibility and controllability. Respectively, accessibility refers to whether the tester
has access to the internal structure of the protocol applications, while control-
lability means whether the tester can stimulate the components to be tested or

Introduction to Protocol Testing 17

not.

2.1.2.1 Testing Techniques According to Accessibility

Black-box Testing also known as input/output driven it is an important test-
ing strategy. Black-box testing technique treats the system as a "black-box", i.e.,
in stead of explicitly using knowledge of the internal structure, it focuses on test-
ing functional requirements by only accessing to the interfaces of the system.
Applying this approach, test data are derived only from the specifications.

White-box Testing allows the tester to access the internal code of a system,
and focuses specifically on using internal knowledge of the software to guide the
selection of test data. It is a method that tests internal structures or workings of
an application, as opposed to its functionality (i.e. black-box testing). In white-
box testing an internal perspective of the system, as well as programming skills,
are used to design test cases. The tester chooses inputs to exercise paths through
the code and determine the appropriate outputs.

Gray-box Testing is a combination of white-box testing and black-box test-
ing. It involves having knowledge of internal data structures and algorithms for
purposes of designing tests, while executing those tests at the user, or black-box
level. The tester is not required to have full access to the software’s source code.

2.1.2.2 Testing Techniques According to Controllability

Active Testing is often done by applying a series of control and observation
on the applications under test. Usually, the tester carries out the test in specific
test environment, sends carefully designed inputs to the applications, receives
what it responds and makes a conclusion.

Passive Testing consists in observing the input and output events of an
implementation in run-time. It should not disturb the natural run-time of a
protocol or service, that is why it is called passive testing. It is sometimes also
referred to as monitoring. The record of the event observation is called an event
trace. This event trace will be analyzed in order to determine the properties to
be verified.

In this thesis, we consider the black-box testing context, which is generally
used to perform functional tests. Moreover, we argue for the use of passive testing
technique. The reasons about this choice are explained in Section 2.3.

18 Prerequisites

2.2 Interoperability Testing Overview

2.2.1 Definition of Interoperability

Generally speaking, interoperability testing (iop for short in the sequel), assesses
the end-to-end service provision across two or more products from different ven-
dors. But when taking a closer look, interoperability testing can mean different
things to different people. A number of statements can be found:

the IEEE Glossary defines interoperability as the ability of two or more sys-
tems or components to exchange information and to use the information that has
been exchanged [47].

At ETSI, interoperability is defined as the ability of two systems to interoperate
using the same communication protocol, the ability of equipment from different
manufacturers (or different systems) to communicate together [48].

The definition of interoperability provided by Wikipedia is a property of a
product or system, whose interfaces are completely understood, to work with other
products or systems, present or future, without any restricted access or implemen-
tation.4

In [42], interoperability involves testing both, the capabilities and the behavior
of an implementation in an interconnected environment and checking whether an
implementation can communicate with another implementation of the same or of
a different type.

In [41], different definitions of interoperability are also provided from differ-
ent views of the product and the supplier network, and that of the user. The
general definition of interoperability is “the ability of two or more applications
to communicate using a specific mechanism in a known environment, in order to
achieve the objectives of the user.”

Many other different definitions of interoperability may still be found in a
number of research works. However, no matter what the definition is, the common
points between them have given several objectives, which are:

1. The ability of systems to communicate with each other.

2. The ability to render the services requested by users.

To sum up, interoperability testing aims at ensuring that two or more network
products communicate correctly while providing the required services.

4Wikipedia http://en.wikipedia.org/wiki/Interoperability

Interoperability Testing Overview 19

2.2.2 Interoperability Testing Architectures

Fig.2.3 illustrates the elements that compose the general architecture of interop-
erability testing. They are:

1. A Test System (TS) contains one or more test components that control or
observe the behavior of the implementations under test.

2. A System Under Test (SUT) composed of at least two interconnected Pro-
tocol Implementations Under Test (IUT) from different manufacturers or
product lines. Each IUT has interfaces name as Implementation Access
Points (IAP) to communicate with the environment or with other IUTs.

3. The interfaces between an IUT and its adjacent layers within the SUT are
referred to as points of control and observation (PCO). As the name sug-
gests, at these points the behavior of the IUT in performing communication
tasks can be controlled and observed. If an interface is only observable, it
is then called Points of Observation (PO). Information gathered from these
interfaces will be analyzed for verdict emission, which reveal the degree of
interoperability of the IUTs.

Figure 2.3: General interoperability testing architecture

According to the number of IUTs, interoperability testing can be done in
either of the following context [19]:

20 Prerequisites

• Multi-Component context where SUT has n (n > 2) IUTs. In this setting,
an IUT is supposed to communicate simultaneously with several real open
systems. A network of application relays, for instance, maintains commu-
nication links with several peers at the same time.

• One-to-One context where the test focuses particularly on the interoperabil-
ity between exactly two IUTs. It is the most common context in practice, ei-
ther by testing the interoperability of exactly two protocol implementations,
or by testing the interoperability between one protocol implementation and
a system already in proper operation composed of n implementations. For
this reason, in this thesis we focus mainly on this context. In the sequel,
the interoperability is by default one-to-one.

As IUTs communicate with other testing entities through interfaces, two kinds
of interfaces can be further classified as follows. In Fig.2.3, the direction of an
arrow represents the direction of messages transmission.

1. The lower interface LIAPi (i = 1, ...n, LIi for short in the sequel) is only
used for the interaction between two IUT. It is only observable but not
controllable. A tester connected to such interface through interface LPOi

(LPi for short in the sequel) can only observe the input/output events on
that interface but not send any message to it. Indeed, any message sent to
lower interfaces will disturb the normal operation of the IUTs.

2. The upper interface UIAPi (UIi for short in the sequel) are the interfaces
through which IUT communicates with its upper layer to provide the re-
quired services. In some testing architecture where upper interfaces are
accessible, they can be used to both observe and control the corresponding
IUT through interface UPCOi (UPi for short in the sequel).

According to different situations, it is possible that the test system does not
have the access to all interfaces of IUTs. In [19], different interoperability testing
architectures with respect to the accessibility to different interfaces are classified.
Respectively, an interoperability testing architecture is called:

• Lower architecture if TS has only access to the lower interfaces of the
IUT(s). This architecture is possible in case where the upper interfaces of
IUT(s) are embedded in its upper layer protocol. For example, in the test
of IP protocol in operational TCP/IP protocol stack, the test system does

Interoperability Testing Overview 21

not have access to the upper interfaces of IP, which are indeed encapsu-
lated in TCP. However, the lower IP interfaces can be observed by using
some network analysis tools, for instance, one of the most common tools
Wireshark5.

• Upper architecture if TS has only access to the upper interfaces of the
IUT(s). This situation is often encountered when the lower layer protocol
prevents the display of messages transmitted to it.

• Total architecture if TS can access to both lower and upper interfaces.
It is the most commonly used configuration in practice.

• Unilateral architecture if TS has only access to one of the IUTs. This
situation is possible for example one of the IUTs is embedded in a system
to which the tester does not have access. It can also be encountered for
reasons of confidentiality: sometimes a manufacturer does not allow access
to the interfaces of its implementation.

• Global architecture if TS has access to all the IUTs in a synchronous
way.

• Bilateral architecture if TS has access to the IUTs but not in a syn-
chronous way.

2.2.3 Interoperability Criteria

Before giving the definition of interoperability criteria we first underline the ob-
jectives of interoperability testing, which state that: n (n ≥ 2) protocol imple-
mentations must communicate properly while rendering services specified in the
corresponding specifications. Therefore, interoperability testing involves the fol-
lowing two aspects:

1. Verification of interaction: n implementations must communicate properly.
i.e., the outputs sent by all the network components must be correct w.r.t
the their specifications, and the messages sent by one network component
to the corresponding receivers must be correctly received by the latter.

5http://www.wireshark.org/

22 Prerequisites

2. Verification of service: the messages sent by the network components to
their upper layer must match the services described in the corresponding
specifications.

Based on the objectives, depending on different testing architectures, different
interoperability criteria are used to give formal definitions of the interoperability.
As we assume that interoperability testing is done in the context of black-box, the
tester has no knowledge of the inner structure of the SUT. Therefore, interoper-
ability can be only verified regarding the events produced by the IUT(s) from the
interfaces. According to different architectures, different iop criteria can be de-
fined [19]. Here we list the criteria of the most widely used testing architectures,
lower iop criterion and global iop criterion. Respectively:

• The lower iop criterion consider the events produced from the lower inter-
face(s) of the IUT(s) (according to the accessibility of the number of the
IUTs). It says that: at any moment, the observed outputs produced from
the lower interface(s) of the IUT(s) must be foreseen in the specification(s).
Also, the IUT(s) must correctly receive the packets sent to it via the lower
interface(s).

• The global iop criterion compares events executed by the IUTs during their
interaction with the events described in the interaction of their specifica-
tions. It says that: two IUTs are considered interoperable iff, at any mo-
ment, all outputs observed during the interaction of the implementations
are foreseen in the interaction of their specifications. Also, both IUTs must
correctly receive the packets sent to them.

2.2.4 Interoperability Testing Process

2.2.4.1 Preliminary: Compatibility of Specifications

As they are developed, protocols must be described for many purposes. Early
descriptions provide a reference for cooperation among designers of different parts
of a protocol system. Moreover, as interoperability is black-box testing, this
implies that a precise reference specification must be provided, which is the basis
for the derivation of the test cases and the analysis of the test results.

Besides, one of the aims of communications standardization is to ensure that
implementations of a single standard (or set of standards) will interoperate with-
out the need for complex proprietary interfacing equipment. In order to achieve

Interoperability Testing Overview 23

this goal, it is necessary to consider interoperability right from the start. It re-
quires that the specifications must be checked for logical correctness. Also, they
must anticipate all of the likely scenarios which could arise from the interchange of
commands and data between two implementations from different manufacturers.

In this sense, before any activity of interoperability testing, one preparatory
work is to check the specifications in order to get rid of incompatibility problems.
As described in [19], this property is called iop-compatibility. It aims to check that
the options implemented by one IUT are compatible with the ones implemented
by those IUTs interconnected to it in the used topology. For example, it is no use
testing a functionality if the client implements an option while the server does
not.

Another preparatory work requires the examination of both specifications and
ICS (Implementation Conformance Statement): The ICS stipulates the features
of the specification effectively implemented by the IUT. This step guarantees
that an IUT is conform to its standard according to some specific context of
conformance testing, which is considered a pre-requist for interoperability.

2.2.4.2 Interoperability Testing Activities

After the preparatory work, the test of the interoperability can be performed. In
the sequel, we present the different stages of testing activities and corresponding
objectives (c.f. Fig.2.4). They are:

1. The specification of the System Under Test SUT, which may be composed
of one or more implementations. This phase includes the specification of
one or more systems to be tested, the testing architecture, the description
of the objectives of the test, etc. Respectively, the testing architecture
represents the functional configuration in which the testing experiment will
be undertaken. Note that it does not provide information for a concrete
design of interfaces. This aspect is left to test laboratory and test execution
concern.

An objective of the test, also called interoperability test purpose (ITP) is de-
rived from the requirements stated in one or more base specifications that
define the implementation. It provides an essential abstraction of a test
that specifies what is to be tested without going into the details of how a
test is to be implemented. Test purposes are not test steps. They usually
describe a sequence of actions (not necessarily consecutive) to be observed
during the test run. Test purposes are written using the language and ter-
minology of the base specification(s) and are independent of any particular

24 Prerequisites

programming language, test system or platform on which corresponding
tests might eventually be executed. They need to be developed, discussed
and stabilized prior to any test case specification.

2. Generation of abstract Interoperability Test Cases (ITC). For each interop-
erability test purpose, an abstract test case is generated. A Test Case is the
detailed set of instructions (or steps) that need to be taken in order to per-
form the test. In the case where the test driver is a human operator, these
instructions will be in natural language. In the case where the tests are
automated, they may be written in a programming or test language. The
set of test cases is called a Test Suite (TS). A common test case includes a
preamble, a testbody and a postamble. The test body is the set of events
that are essential to achieve the test purpose. The preamble is the sequence
of test events which drive the implementations into a state from which the
test body can be performed. The postamble is the sequence of test events
which drive the implementations back into their initial states after the test
body is verified.

A test case contains also associated verdicts with its possible executions.
In detail, verdict Pass corresponds to the case where the expected behavior
to be observed which can satisfy the test purpose. Verdict Inconclusive
corresponds to the case where the behavior is allowed by the specifications,
but can not satisfy the test purpose. Indeed, as it is generally impossible to
completely control the SUT in a testing procedure, the observed behavior
can be allowed in the specifications, however does not correspond to the test
purpose. All other unexpected behavior is associated with Fail verdicts.

Test cases can be either automatically computed if formal models of refer-
ence specifications are available, or manually obtained by studying carefully
the specifications and specifying possible interactions that allow to satisfy
the ITPs. Currently, most of interoperability test cases are generated man-
ually.

3. Test deployment and execution. This stage involves of compilation and
execution of test cases on the system under test. The results of the execution
are then reflected by assigning a verdict Pass, Fail or Inconclusive.

State of the Art of Interoperability Testing 25

Figure 2.4: Interoperability Testing activities

2.3 State of the Art of Interoperability Testing

As systems used for most commercial service provisioning have evolved and in-
volve today hundreds of hardware and software components, interoperability is
one of the key factors to success when deploying new technologies for highly dis-
tributed systems. To ensure interoperability, efforts have been made by both
industrial and research fields.

Interoperability testing in industry has always been practiced in the context of
testing laboratories, field trials, and acceptance testing. Manual testing is today
the most dominant way to perform interoperability testing. Typical examples
using manual testing are interoperability testing events, which bring together
products from different vendors purely for the purpose of executing tests for a
period which may last from a couple of days to a couple of weeks. These events
enable developers from different (and competing) companies to get together to
test their companies’ own implementations and ensure interoperability between
products. Manual testing is however highly costly and leaves room for human
error simply considering its repetitive nature and the number of entities and
interfaces involved in the testing of these complex systems.

26 Prerequisites

In research domain, many works address the problems of interoperability test-
ing over the past decades, which put emphasize on test suite derivation.

No matter in industrial or research context, the two main approaches to inter-
operability testing can be broadly classified into two approaches: active testing
and passive testing. The difference is that active testing allows controlled er-
ror generation and a more detailed observation of the communication, whereas
passive testing on the other side involves observation the behavior only. In the
sequel, we present the state of the art of interoperability testing, including elab-
orating both active and passive testing methods, as well as their advantages and
drawbacks.

2.3.1 Active Interoperability Testing

Until now, the majority of research works on interoperability testing are based
on active testing. Generally, the active testing paradigm considers this activity
as consisting of three elements:

• Stimulating a SUT in order to place an IUT in one of the pre-defined con-
ditions (states);

• Observing the behavior of SUT as it appears under the influence of applied
stimuli.

• Analyzing the relation between the stimuli and observed behavior, in order
to decide if this relation is as predicted by a pre-difined reference.

2.3.1.1 Active Interoperability Testing Overview

The research work on interoperability testing can be roughly classified into three
categories: experimental results, general concepts and formal framework, and
systematic generation of interoperability test suites.

Most of the early work belongs to the first category. Bonnes [43] presented
their interoperability testing experiences at IBM. [44] describes their experiences
with interoperability testing of FTAM protocol that uses a single tester between
two IUTs that can observe and control the communication between two FTAM
entities. There are also studies that focus on interoperability testing of some
specific protocols or specific properties of the protocols tested. For example, [9]
focuses on testing the interoperability of the specific protocols TCP/IP based
system. Shin and Kang [59] proposed and applied a test derivation method

State of the Art of Interoperability Testing 27

suitable for testing interoperability for the class of communication protocols like
the ATM signaling protocol. [11] concentrates on time constraint in real-time
systems. Most of these works however, are not based on a rigorous definition of
interoperability.

Another testing method is based on formal framework and general concepts
of interoperability: [37] gives a comprehensive discussion of various aspects of
interoperability testing. [19] proposes a formal framework for iop testing and
also discussed iop test generation. One methodology is based on the fault models
[18] or the research of a particular error type [15]. Test suite design and derivation
is based on these typical problematic to have a clear vision of whether IUTs work
properly.

Most of the recent research work in the field is related to interoperability test
suite derivation. One approach is to apply conformance test generation tech-
niques on composed finite state machines, which are constructed from several
components systems via a reachability analysis. A finite set of test cases is then
selected to test the interoperability. [35] was one of the first papers in this field.
It proposes the test generation procedure and also an interoperability test ar-
chitecture. [17] reuses automatic generation of conformance test suites to define
an approach for automatic generation of interoperability test suites. [61] have
formalized the relation of interoperability by adapting the existing conformance
relations. [18] proposed a test generation technique for protocol control portion
of interoperability testing. Previous works can be classified as methods based on
reachability analysis, that often suffer from the well-known state space explosion
problem when applied to real case studies. To avoid state space explosion, some
strategies have also been proposed: Griffeth et al. [60] presented a method for au-
tomatic generation of test cases to test a system interface. In order to avoid state
space explosion, the method makes use of a single entity that interoperates with
the rest of the integrated communication systems. [19] proved the equivalence
between global and bilateral interoperability testing, and then used the feature
of bilaterial interoperability architecture to generate one test case for each IUT.
[62] proposed algorithms to generate a test suite that are based on stable states
of their composition algorithm.

All the above work is based on an active testing approach, where the tester
has the ability to stimulate the IUTs and verify whether the output obtained for
each input is according to the specification.

28 Prerequisites

2.3.1.2 Advantages and Drawbacks of Active Testing

As the most frequently used testing technique, active testing has several ad-
vantages: First, the strength of active testing method is its ability to focus on
particular aspects of SUT. Test cases can be for example a specific error type or
an important state of the specification. By sending well designed inputs to the
SUT, the test system is able to check whether the response to each stimulus is
consistent with the test cases.

Another advantage of active testing is the capability to control SUT. The
SUT can be set to an initial state to execute the test cases, and reset or brought
to a stable state afterward. Therefore, controllable test cases design is more
preferable in practice to avoid possible non-determinism. A controllable test case
means that in any state of the specification, if the state allows both a stimulus of
the test system and a message sent by the IUT, test case should always choose
to send the stimulus.

Although active testing is commonly used, it has some drawbacks:

First, the active testing technique does not suit protocol testing in operational
networks. In fact, the arbitrary inputs disturb inevitably the normal operations
of the SUT. Moreover, in the context where the network is in use, it is desired
to keep testing traffic overhead to a minimum. Therefore, active testing is rather
suitable for protocol testing in isolated environment. For example, in confor-
mance testing, where an IUT is tested off-line to insure that it conforms to its
specification. However, for interoperability testing, where at least two IUTs inter-
act with each other, it is difficult to insert arbitrary inputs without affecting their
normal functioning of the tested protocol applications as well as other services.

Second, active testing needs specific test environment and APIs so that the
tester can interact directly with the SUT. However, this condition may not be
necessarily satisfied. For example, for the testing between protocol layers, no
direct access to the embedded layer is given. Therefore, active testing may not
be feasible since the test system is not able to send stimuli to the SUT.

Moreover, with active testing, the test scope, the coverage and the duration are
all limited by the test suite design. Indeed, the cost and complexity of putting to-
gether an entire network for testing suggests that pair-wise testing would be more
cost-effective. But configuration of the network elements to obtain the required
connectivity is a difficult, error-prone and time-consuming process. Moreover, to
correctly draw the conclusion of interoperability, the model of the environment
must be accurate, which requires both variety and depth of expertise.

Although the active testing method can be done to promote the quality of

State of the Art of Interoperability Testing 29

network components, it can hardly cope with all these problems.

2.3.2 Passive Interoperability Testing

To cope with the limitations of active testing, passive testing has been studied
with interest over the past few years. The generic passive interoperability test-
ing architecture involves two interconnected IUTs. The communication between
the IUTs is monitored. Contrary to active testing, in passive testing, the test
system does not interact with the SUT, its role is limited to observing the be-
havior of the SUT (also name as trace) without controlling its inputs. Indeed,
the passive interoperability testing architecture is based on an accurate level of
observation in order to issue verdicts regarding the IUTs behavior with respect
to the specifications.

We now breifly survey the main concerns, approaches, and results of research
conducted on passive testing. In passive testing, the test system TS has two main
roles:

1. Observe and collect the information exchanged between two protocol enti-
ties in the SUT.

2. Trace verification. The captured trace will be analyzed in order to determine
whether the system operates correctly. Trace verification can be done either
online [8] or offline. The idea of online testing is that the execution of a
test pertains to behavior that the SUT genuinely exhibits during the test
experiment, and the verdicts are issued during the test execution. For
example, passive testing can be used to monitor the network for a long
time and deal with abnormalities at any time. Else-wise it can be done
offline. In offline testing, the behavior the the SUT is captured and then
be assessed. i.e, the traces during the test execution are stored in a file and
will be analyzed once the trace recording is finished [3], [6], [7].

2.3.2.1 Passive Testing Techniques

Currently, passive testing techniques can be broadly classified into two approaches:
The first approach consists of recording the trace produced by the implemen-
tation under test and trying to find a fault by comparing this trace with the
specification. The other approach explores relevant properties required for a cor-
rect implementation, which are named as invariants, and then check them on the
traces produced by the system under test.

30 Prerequisites

Trace matching approach is a passive testing technique which compares each
event in the trace produced by the SUT strictly with that in its specification. The
SUT is said to be faulty as soon as a deviation between the trace and the specifi-
cation is detected. This method is widely used for the network fault management
[2], [5], [7].

In [2], the trace matching technique was first proposed to realize the fault
management of signaling system SS7. The formal model used is Finite State
Machine (FSM) [49]. Trace matching technique was initially proposed for deter-
ministic FSM, and later extended to non-deterministic FSM [50]. In [7], trace
matching is used for fault detection in system modeled by communicating finite
state machine (CFSM).

The approach is composed of two stages: passive homing and fault detection
:

• Passive Homing

In passive testing, no assumption is made about the moment when the
recording of trace begins. Therefore, the state of the implementation at
that moment it is not necessarily its initial state. Thus, the aim of passive
homing is to find out the current state of the implementation. For doing
this, the transitions of the observed trace are studied one after the other to
narrow down the states the implementation can be in. At first, all states
in the specifications are regarded as possible candidate states. Then, by
checking each i/o pair in the trace. The states which accept the pair are
replaced by the destination state of the corresponding transition. While the
states that do not accept it are eliminated. After a number of iterations,
there are two possibilities:

(i) A single state is obtained: it is in fact the current state of the imple-
mentation machine.

(ii) The set of possible states becomes empty, it means that the behavior
of IUT does not correspond to the specification, a fault is detected.

• Fault Detection

Once the current state is found, the other transitions in the trace can be
followed from the current state in the specification. Once a state that does
accept a transition in the trace is reached, there is an error. Otherwise no
error is detected.

State of the Art of Interoperability Testing 31

Invariant approach The foundations of property verification approach can be
found in [4], [6], [12] etc. The idea is to study the specification so as to disclose
particular properties. The properties to be verified are called Invariants, which
means the selected properties should be true at any time. Once the invariants are
chosen, they will be verified against the trace to see whether they are satisfied
from the obtained trace. The verification approach is pattern matching such as
string searching algorithm [13].

An invariant contains two parts:

1. Test part, which is an input or an output.

2. Preamble part, which is a sequence that must be found in the trace before
verifying the test part.

The invariant is then used to process the trace: The correct behavior of the SUT
requires that the trace exhibits the whole invariant. This approach has been used
for conformance testing, network security, etc. [4], [12]. It is also used to perform
interoperability testing [6] and applied on a case study of two WAP protocol
(Wireless Application Protocol) 6 implementations.

Passive testing now proves to be a promising testing methods. However, in the
field of interoperability testing, few work has been done to testing interoperability
passively. In [6], the authors test the interoperability between two IUTs (a client
and a gateway WAP based protocol implementations) in a passive way. A set of
properties are chosen before the test. Two IUTs are judged to be interoperable if
the expected invariants are verified. However, this paper is not based on a rigorous
definition of interoperability. Moreover, no well described formal methodology
(property choice, testing architecture, rules of verdict emission, etc.) is given.

2.3.2.2 Advantages and Challenges of Passive Testing

Compared with active testing, the major advantage of passive testing is that it
detects the faults in the system without disrupting its normal operation. It is thus
non-intrusive as the internal behavior of the implementations is not influenced.
For this reason, passive testing is suitable to be deployed in operational networks,
where an arbitrary insert may trouble or in a worse case cause the crash of the
tested protocol services.

Passive testing also has another significant advantage: For embedded systems
where the test system has no direct access, test can still be carried out by col-

6http://www.wapforum.org/what/technical.htm

32 Prerequisites

lecting execution events of the SUT. Errors or deviations from these events will
be detected by comparing them with the specification.

Besides, passive testing has other advantages such as it does not introduce
extra testing overhead, which it makes a suitable technique to be deployed in
resource constrained environment such as today’s hot topic the Internet of Things.

Moreover, passive testing is less costly to deploy than active testing, as it does
not need complicated test configuration as is required for active testing. Also,
passive testing can be used to monitor operational networks for a very long period
and report abnormality at any moment, etc.

Nevertheless, passive testing also has challenges: the biggest issue of passive
testing is its the uncontrollable nature. A major difference between active testing
and passive testing is that, in active testing, the test system is aware of the states
of SUT during the test. Eventually, the test system has the ability to set the SUT
to a certain state. On the contrary, in passive testing, the tester is not aware of
the state in which the SUT was at the beginning of the trace. At the moment
when the trace began, SUT could be at any state of its specification and not
necessarily the initial state. This drawback makes it difficult for the test system
to analyze the implementation validity.

Uncontrollable nature also brings another issue of passive testing is: verdict
assignment. In fact, verdicts are based on the observed trace produced by the
IUTs. However, the trace may not be long enough to encompass the property to
be tested. In consequence, the tester does not know whether the properties to be
verified are satisfied on the trace or not.

Last but not least, as passive testing is based on observation and implies a
large quantity information to deal with, the needs of automation are necessary
to make testing efficient.

2.3.2.3 Conclusions

In the above subsections, we have elaborated the active and passive testing meth-
ods, including various testing methodologies, as well as their positive and negative
points. Active testing aims at detecting faults on SUT by applying a series of
control and observation, while passive testing detects faults by only observing
the behavior of the SUT. The following table shows the synthesis of different
characteristics of these two testing categories.

From the table, we can see that these two approaches are almost complemen-
tary. Actually, they can be used in different situations. By analyzing the advan-
tages and drawbacks of both methods, we realize that active testing approaches

Conclusions 33

are suitable for testing in specified environment, where the SUT is isolated, for
example conformance testing. On the contrary, passive testing is more suitable to
test interoperability, where the SUT contains at least two IUTs under interaction.
Also it is suitable for testing in operational networks with strong requirements
for proper cooperation of network devices.

Active Testing Passive Testing

Testing architecture Controllable
APIs are needed

Points of observation are needed

Impact on network
environment

Interference No interference

IUT controllability Controllable Non-controllable
Testing environment Known, isolated Operational
Deployment Costly Less expensive

Table 2.1: The comparison of active testing and passive testing

Indeed, current trends in protocol implementations deployment are to shorten
time-to-market and test their interoperability in operational environment. In this
sense, we argue for the application of passive approach on interoperability testing,
and propose solutions to the related various issues.

2.4 Conclusions

Regardless of the application domain – telecommunication, transportation, health
care, computation, or etc – end users today are mainly using services that are
provided by distributed systems composed of products from different vendors.
The overall system complexity is usually too high and costly for a single vendor
to develop or maintain one product for the complete distributed system. Another
challenge arises from the fact that multiple evolving technologies are continuously
integrated and need to interoperate in such systems. Service providers use prod-
ucts from different vendors to reduce their cost to build the system needed to
sell their service. In addition, service providers increasingly rely on working with
other service providers to offer their service, e.g., telecoms operators. Finally,
the end users expect to be able to use their services anytime from anywhere
regardless of the composition of the system they are using. These facts require
interoperability and without interoperability there is simply no chance to succeed
in today’s market place.

Currently in the field of interoperability testing, numerous work has been done
to develop the solutions for active testing. Despite many efforts, passive interop-

34 Prerequisites

erability testing contains a number of aspects that present difficult problems to
the tester.

First, due to the large amount of products and standards involved in complex
distributed systems, interoperability testing is a manual, extremely time consum-
ing, cost intensive, and repetitive task. The high amount of required test execu-
tions mainly comes from the fact that interoperability testing is not transitive: If
a product A interoperates with a product B and C, it does not necessarily mean
that B interoperates with C. Another issue is that technically each new product
release requires that all interoperability tests have to be re-executed again. This
results in a clear market need for a approach to automate interoperability testing.

Then, the multi-IUTs nature of interoperability testing makes existing passive
testing methodologies impractical. Typically, trace mapping approach does not
suit interoperability testing: As the SUT concerned in interoperability testing
involves several IUTs, to model the SUT by a single FSM encounters state ex-
plosion [35] - a drastic increase in the number of states and transitions in the
resulting FSM.

Also, although the invariant approach has been used to perform interoperabil-
ity testing, it is not based on a rigorous definition of interoperability.

Moreover, due to the uncontrollable nature of passive testing, it is not always
easy to draw a correct verdict. This issue however, in most of the works, is
neglected.

To conclude, there does not exist a well enough defined methodology for pas-
sive interoperability testing. To the best of our knowledge, there is no clearly
specified architecture or rule to carry out interoperability testing by using pas-
sive testing.

Corresponding to the above challenges, in the following of the thesis, we pro-
pose:

• Methodologies for interoperability test case generation based on passive
approach.

• Algorithms for trace verification.

• A testing tool to automate passive interoperability testing.

The methods, algorithms and tools have been applied to various experimenta-
tions on real protocols. The obtained results show the interests of our approaches.

Chapter 3

A Method for Passive

Interoperability Testing

3.1 Introduction

Today’s communication system, with the never-ending emergence of new proto-
cols and services, lead to heterogeneous networks that need to interoperate while
providing the required quality of service. In this context, interoperability testing
(iop for short in the sequel) is of a crucial importance to guarantee successful
integration of network components in communication networks.

To perform interoperability testing, nowadays the most widely used approaches
rely on the active testing method. As stated in Chapter 2, the strength of active
testing is its ability to control the IUTs and evaluate their behavior in particular
circumstances. Nevertheless, it has some limitations too: Test can be difficult or
even impossible to perform if the tester is not provided with a direct interface to
stimulate the IUTs, or in operational environment where the normal operation of
IUTs cannot be disturbed or interrupted for a long period of time.

To cope with the drawbacks of active testing, passive testing has been stud-
ied for the verification of network components by only observing their external
behavior. In Chapter 2, we have compared active testing and passive testing and
drawn a conclusion that passive testing is an appropriate technique to perform
interoperability testing. However, currently in the field of interoperability test-
ing, to our knowledge, not only few works consider the passive testing technique,
but also there lacks a well described methodology.

This chapter, arguing for the passive testing technique, presents a specification-
based methodology for passive interoperability testing. The approach first derives
a passive iop test case by calculating partially the interaction of the protocol im-

35

36 A Method for Passive Interoperability Testing

plementations’ specifications with respect to a given iop test purpose. Then, to
evaluate the network components’ behavior, a trace analysis algorithm is pro-
posed. The suggested methodology has been successfully performed on a Session
Initiation Protocol (SIP) case study, where some non-interoperability behaviors
were detected.

The chapter is organized as follows. Section 3.2 presents the used passive
testing architecture. In section 3.3, related preliminaries, the formal model and
passive interoperability testing criteria are presented. Section 3.4 presents the
methodology proposed to carry out passive interoperability testing . The appli-
cation of the proposed approach and the experimental results are exhibited in
section 3.5. Finally, section 3.6 gives the conclusions and the perspectives.

3.2 Testing Architecture

The passive interoperability architecture considered in this chapter (cf. Fig. 3.1)
involves a Test System (TS) and a System Under Test (SUT) composed of 2
Implementations Under Test (IUT) from different product lines.

The testing activities rely on observing the external behavior of IUTs (black
box testing). As required by passive testing, no test message is injected. Points of
observation (PO) are installed at different interfaces, which allow the test system
to capture the traffic carried by the communication medium:

Respectively, Upper Points of Observation (UPO) collect the messages sent
by the IUTs to their upper layer through their Upper Interface (UI), while Lower
Points of Observation (LPO) collect the messages exchanged between peer IUTs
through their Lower Interface (LI). In this chapter, we consider the TS is able
to reconstructs a global traces from the trace retrieved by different POs.

Moreover, in this thesis we consider that the interaction between two IUTs is
asynchronous [10], as messages may be actually exchanged by traversing several
protocol layers and networks. In consequence, the communication between two
IUTs can be modeled as two unidirectional FIFO (first in first out) queues [10].

Formal Model 37

Figure 3.1: Passive interoperability testing architecture

3.3 Formal Model

Specification languages for reactive systems can often be given a semantics in
terms of labeled transition systems. In this thesis, we use the IOLTS (Input-
Output Labeled Transition System) model [10], which allows differentiating input,
output and internal events while precisely indicating the interfaces specified for
each event. In our research, IOLTS is used to model the specifications, the
interaction among testing entities, etc.

Definition 3.1 An IOLTS is a tuple M = (QM , ΣM , ∆M , qM
0) where:

• QM is the set of states of M with qM
0 its initial state.

• ΣM is the set of observable events at the interfaces of M . In IOLTS model,
input and output actions are differentiated: We note p?a (resp. p!a) for an
input (resp. output) a at interface p.

• ∆M ⊆ QM × (ΣM ∪τ)×QM is the transition relation, where τ /∈ ΣM stands
for an internal action.

Other notations Let us consider an IOLTS M , and let an observable event
α ∈ ΣM with α = p · {?, !} · m, a succession of events σ ∈ (ΣM)∗, and states q,
q′∈ QM . We define the following notations:

• ΣM can be partitioned into: ΣM=ΣM
U ∩ ΣM

L , where ΣM
U (resp. ΣM

L) is
the set of events at the upper (resp. lower) interfaces. ΣM can also be
partitioned to distinguish input (ΣMI

) and output events (ΣMO

).

38 A Method for Passive Interoperability Testing

• The transition relation is noted as (q, α, q′) ∈ ∆M .

• q after σ is the set of states which can be reached from q by the sequence of
actions σ. By extension, all the states that can be reached from the initial
state of the IOLTS M are (qM

0 after σ) and will be noted by (M after σ).

• Out(q) is the set of possible outputs at state q. Similarly, In(q) is the set
of possible inputs and Γ(q) is the set of all possible events at state q. By
extension, Out(M, σ) is the set of executable events by the system M after
the trace σ.

• The projection of an IOLTS on a set of events is used to represent the be-
havior of the system reduced to specific events. For example, the projection
of M on the set of executable events on its lower (resp.upper) interfaces
ΣM

L (resp.ΣM
U) is noted M/ΣM

L (resp. M/ΣM
U). It is obtained by hiding

events (replacing by τ -transitions) that do not belong to ΣM
L (resp.ΣM

U),
followed by determinization. In the same way, OutX (M , σ) corresponds to
a projection of the set of outputs (M , σ) on the set of events X.

The testing theory we consider in this chapter is based on the notions of
specification, implementations and interoperability criterion. Both specifications
and IUTs are assumed to be IOLTS. Besides, we recall that our work is in the
context of black box testing: The test system has no knowledge of the IUTs’ inner
structure. Only their external behavior can be evaluated.

Asynchronous Interaction In this thesis, we consider that in interoperability
testing, the interaction between two IUTs is asynchronous [10], [19] as messages
may be actually exchanged by traversing several protocol layers. According to
[10], asynchronous interaction is usually modeled as two unidirectional FIFO
queues. Formally, asynchronous interaction is noted S1‖AS2 for two communi-
cating IOLTS S1 and S2. A state in S1‖AS2 is a four-tuple (q1, q2, f1, f2) where
q1∈QS1 , q2∈QS2 , while f1 (resp.f2) stands for the strings of messages in the in-
put channel of S1 (resp.S2). Informally, a state (q1, q2, f1, f2) means that the
execution of S1 and S2 have reached state q1 and q2 respectively, while the input
channels of S1 and S2 store the strings f1 and f2 respectively.

Passive one-to-one Interoperability Criterion says that: Two IUTs are
considered interoperable iff after a trace of the interaction of the IUTs, all outputs
observed must be foreseen in the corresponding interaction of their specifications.

Passive Interoperability Testing Method 39

The passive one-to-one interoperability criteria is stated in a more formal way in
the following (where=def means by definition):

Definition 3.2 I1iopI2=def∀σ ∈ Traces (S1 ‖A S2), Out (I1 ‖A I2, σ) ⊆ Out
(S1 ‖A S2, σ)

3.4 Passive Interoperability Testing Method

3.4.1 Passive Interoperability Testing Method Overview

As introduced in Section 2.3.2, the existing research on passive testing can be
broadly classified into two approaches: trace mapping and invariant approach.
However these approaches have some limitations to be used for interoperability
testing:

Trace mapping approach aims at evaluating the behavior of the SUT by com-
paring the trace produced by the SUT strictly with the specification. The spec-
ification of the SUT is modeled as a Finite State Machine (FSM). With each
observed message in the trace, the FSM is traversed to check if this message can
be accepted by the FSM: The correct behavior of the SUT implies that the whole
trace should be accepted by the specification. This approach has been applied
to protocol conformance testing [5], network management [2], etc. But it does
not suit interoperability testing. As the SUT concerned in interoperability test-
ing involves several IUTs, to model the SUT by a single FSM encounters state
explosion [35] - a drastic increase in the number of states and transitions in the
resulting FSM.

The invariant approach involves extracting a set of important properties of the
SUT (named as invariants) from the specification. Each invariant is composed
of a preamble and a test part, which are cause-effect events respectively w.r.t a
property. The invariant is then used to process the trace: The correct behavior of
the SUT requires that the trace exhibit the whole invariant. Invariant approach
has been used to perform interoperability testing [6] and applied on a case study
of two WAP protocol implementations: A range of invariants were chosen from
the specification of WAP. Two WAP IUTs are determined interoperable if the
invariants are satisfied on the recorded trace. However, the work is not based
on formal interoperability definitions. Moreover, in this work, no clearly defined
general method for passive interoperability testing is provided.

To overcome the problems above, in the sequel we will introduce an approach
to passive interoperability testing based on formal interoperability definitions.
The approach contains two main stages:

40 A Method for Passive Interoperability Testing

1. Passive interoperability test case generation.

2. Trace analysis.

The approach involves choosing a set of interoperability test purposes (ITP).
Then, for each ITP, a passive interoperability test case is derived which describes
in detail the expected observable behavior of the IUTs regarding the ITP. At last,
a trace analysis algorithm is proposed to evaluate the behavior of the IUTs w.r.t
the ITP.

The outlines of the passive interoperability testing are illustrated in the fol-
lowing figure. The start point is the interoperability test case (ITC) generation
algorithm. The inputs of the algorithm are the specifications (S1 and S2) on
which the IUTs are based, and an interoperability test purpose (ITP). The ITC is
obtained by carrying out partial asynchronous interaction calculation of S1 and
S2 with respect to the ITP, so that different ways of specifications’ interaction to
reach the ITP are obtained.

Then, a passive iop test case (PITC) is derived by only keeping the relevant
observable events w.r.t the ITP. Also, appropriate verdicts will be attributed to
corresponding states.

During test execution, the trace produced by two IUTs are recorded by a snif-
fer. Once the trace recording finishes, the verification of the ITP on the trace
is performed and an appropriate verdict Pass, Fail or Inconclusive, is emitted.
Respectively, Pass means that the ITP is successfully verified on the trace. Incon-
clusive means the behavior of the SUT is allowed in its specification, however does
not satisfies the ITP. Fail means that an non-interoperable behavior is detected.

Figure 3.2: Passive Interoperability Testing Methodology

Detailed description of each step can be found in the following subsections.

Passive Interoperability Testing Method 41

3.4.1.1 Formalizing Interoperability Test Purpose

The goal of passive interoperability testing is to test the valid behaviour of a SUT
[42]. However proving correctness is elusive as it is generally impossible to validate
all possible behavior described in specifications. Normally, the behavior of a SUT
can be obtained by computing the global behavior of the IUTs. But this technique
often encounters the state explosion problem [15]. i.e., the number of states of
the asynchronous specifications’ interaction is in the order of O((n.mf)2), where
n is the state number of the specifications, f the size of the input FIFO queue on
lower interfaces and m the number of messages in the alphabet of possible inputs
on lower interfaces. This result can be infinite if the size of the input FIFO queues
is unbounded.

To relief the state explosion problem, in this thesis, we argue for the use of iop
test purposes (ITP) to generate interoperability test case. An ITP is in general
informal, in the form of an incomplete sequence of actions representing a critical
property to be verified. It can be designed by experts or provided by standards
guidelines for test selection [24]. With an ITP, only the interesting parts of the
global behavior have to be computed: The interoperability test case generation
corresponds to partial asynchronous interaction calculation of S1 and S2 on the
fly with ITP.

Moreover, Each ITP is assigned with attributes Accept or Refuse to indicate
the important states to be explored as well as to inhibit unnecessary states ex-
ploration. The formal definition of an ITP is as follows:

Definition 3.3 an interoperability test purpose ITP is a partial (unnec-
essarily consecutive) sequence of actions representing a critical property to be
verified. Formally, an ITP is a deterministic complete acyclic IOLTS. ITP =
(QIT P , ΣIT P , △IT P , qIT P

0) where:

• ΣIT P ⊆ ΣS1∪ΣS2 . where S1 and S2 are the specifications on which the IUTs
are based.

• QIT P is the set of states. An ITP has two sets of trap states AcceptIT P and
RefuseIT P . AcceptIT P represents the state indicating that the iop test pur-
pose has been satisfied and is associated with attribute Accept. RefuseIT P

stand for possible options in specifications rather than the desired behavior
to be verified, and are associated with attribute Refuse. AcceptIT P and
RefuseIT P are only directly reachable by the observation of outputs pro-
duced by the IUTs. This is because in black box testing, the test system
can only know if a message has been sent to an IUT, but not whether this
IUT has actually processed the message.

42 A Method for Passive Interoperability Testing

• ITP is complete, which means that each state allows all actions. This is
done by inserting “∗” label at each state q of the ITP, where “∗ ” is an
abbreviation for the complement set of all other events leaving q. By using
“∗” label, ITP is able to describe a property without taking into account
the complete sequence of detailed specifications interaction.

An example of ITP can be found in Fig.3.5-(a).

3.4.1.2 Interoperability Test Case Generation

The interoperability test case ITC corresponds to partial asynchronous interac-
tion calculation S1‖AS2 w.r.t ITP: ITC calculate the different ways of specifica-
tions’ interactions that allow reaching ITP. Guided by the ITP, only the necessary
part of the global behavior of S1 and S2 is computed. Indeed, the attributes Ac-
cept and Refuse in each ITP inhibit the generation of unnecessary transitions. In
fact, asynchronous interaction calculation is stopped as soon as an attribute is
reached.

Definition 3.4 an interoperability test case is an IOLTS implementing the
detailed procedure to observe and control the IUTs for satisfying a given ITP. It
corresponds to partially calculating the asynchronous interaction of S1 and S2

w.r.t the ITP. Formally, ITC =(QIT C , ΣIT C , △IT C , qIT C
0) where:

• ΣIT C ⊆ ΣS1∪ΣS2 .

• QIT C is the set of the states. Each state (qS1 , qS2 ,qIT P ,f1,f2) ∈ QIT C is a
composite state such that qS1∈QS1 , qS2∈QS2 , qIT P ∈QIT P , where f1 (resp.f2)
represents the input queue of S1 (resp.S2). qIT C

0 =(qS1

0 , qS2

0 , qIT P
0 , ε, ε) is

the initial state of ITC, where qS1

0 , qS2

0 ,qIT P
0 are the initial states of S1, S2

and ITP respectively. ε denotes an empty input queue. AcceptIT C and
RefuseIT C are two sets of trap states in ITC, where AcceptIT C= QIT C

∩ (QS1 × QS2 × AcceptIT P , f1, f2). RefuseIT C= QIT C ∩ (QS1 × QS2 ×
RefuseIT P , f1,f2).

The set of transitions △IT C is obtained in the following way: Let qIT C =(qS1 ,
qS2 , qIT P , f1, f2) be a state in ITC, and a be a possible event at state qS1 or
qS2 or qIT P . A new transition (qIT C , a, pIT C) ∈ △IT C is created according to the
following conditions:

1. If ITP is in neither Accept nor Refuse state, check the asynchronous inter-
action operation rules below in Definition 3.5. If one rule is executable, a
new transition in ITC labeled by a is created according to the rule.

Passive Interoperability Testing Method 43

2. If ITP is in Accept or Refuse state, no new transition in created. i.e., Accept
and Refuse inhibit unnecessary global behavior calculation.

Definition 3.5 Asynchronous interaction operation rules

Rule1 If a an upper interface event of Si (i = {1, 2}) , a new transition in ITC
labeled by a is created. Upper interface event does not influence the com-
munication channels of the IUTs. q(qSi/pSi) represents that in the global
state qIT C , the local state qSi is change to pSi , and other local states keep
unchanged.

a∈Σ
Si
U

,(qSi ,a,pSi)∈△Si ,(qIT P ,a,pIT P)∈△IT P

(qIT C ,a,pIT C)∈△IT C ,pIT C=(q(qSi /pSi),pIT P ,f1,f2)

Rule2 If a is a lower interface output of Si , a new transition in ITC labeled by
a is created. a is put into the tail of the input queue of Sj (i,j={1,2}, iÓ=j).
f(fj.a)) represents that a is put into the tail of the input queue of Sj.

a∈Σ
SO

i
L

,(qSi ,a,pSi)∈△Si ,(qIT P ,a,pIT P)∈△IT P

(qIT C ,a,pIT C)∈△IT C ,pIT C=(q(qSi /pSi),pIT P ,f(fj .a))

Rule3 If a is a lower interface input, and a is the first element in the Si, a new
transition in ITC labeled by a is created. f(fi \ a)) represents that a is
removed from the head of the input queue of Si.

a∈Σ
SI

i
L

,a∈head(fi),(q
Si ,a,pSi)∈△Si ,(qIT P ,a,pIT P)∈△IT P

(qIT C ,a,pIT C)∈△IT C ,pIT C=(q(qSi /pSi),pIT P ,f(fi\a))

The asynchronous interaction operation rules allow building recursively the
ITC from its initial state qIT C

0 . At each state, a transition labeled by a can be
created in ITC if it is firable:

(i) in both S1 (or S2) and ITP, or

(ii) in S1 (or S2) only.

It means that the state exploration in S1, S2 and ITP always progresses but
the automaton ITC progresses only when one of the above rules is matched.

The ITC generation in fact, is based on partial reachability calculation. In
this thesis, the ITC generation algorithm uses a depth-first traversal to construct
a composition IOLTS of both specifications S1, S2 and the ITP to minimize
memory requirement:

From the initial state qIT C
0 =(qS1

0 , qS2

0 ,qIT P
0 ,ε,ε), at each step we check if a

transition could be created according to the asynchronous interaction operation
rules until no more state can be explored. Three cases are possible:

44 A Method for Passive Interoperability Testing

1. At state q, only one rule can be applied: The corresponding rule is applied
to generate a new transition in ITC.

2. At state q, several rules can be applied. Such q is called branching state
and stored in a stack. Then we choose one of the applicable rules to carry
out ITC construction until no more rules can be applied. i.e., a state in
AcceptIT C or RefuseIT C is reached. Then we backtrack to state q and
choose another possible rule to continue ITC construction. If all possible
rules at state q have been applied, q is removed from the stack.

3. At state q, no rule can be applied. Then, we check if the stack that stores
branching states is empty. If it is not empty, we move to the top of the stack
and continue ITC construction. Otherwise no more state can be explored,
the algorithm exits.

An example of ITC can be found in Fig. 3.6.

The ITC Construction algorithm is written below in a formal way:

Variables and Functions for depth-first ITC construction:

• Current : The current state under construction. Initially, Current:= qIT C
0 .

• Rules(q): Function Rules(q) returns two values q.succ and q. nb _ succ:
q.succ is the set of the successor states of state q that can be generated
according to the rules in Definition 3.5. q.nb_succ is the number of the
successor states of q.

• q.visited : The set of the transitions at state q that have already been
generated. The operation of this set involves: add (q.visited, (q→p)): add
a transition from q to p in q.visited.

• Create_transition (ITC, (q→ p)): Generate a transition from state q to
state p in ITC according to the rules in Definition 3.5.

• End_Exploration: Boolean equal to TRUE iff no more state can be ex-
plored.

• Branch: A stack to store branching states. The operations of Branch in-
volves: Push adds a new item to the top of Branch; Pop removes an item
from the top of Branch; Stacktop returns the value of the item from the
top most position of Branch without deleting it.

Passive Interoperability Testing Method 45

Algorithm 3.1 Depth-first ITC Construction
Input : S1, S2,ITP
Output : ITC
Initialization: Current=qST P

0 , Branch=∅, Current.visited =∅,
End_Exploration=False
while not End_Exploration do

Rules (Current)
// If only one rule can be applied

if Current.nb_succ ==1 then
Create_transition (ITC, (Current→ Next)) where Next ∈ Current.succ
Current = Next

end

// If at least two rules can be applied

if Current.nb_succ>=2 then

if Current /∈ Branch then
Push(Branch,Current)

end

if ∃ Next where Next ∈ Current.succ ∧ (Current→ Next) /∈ Current.visited
then

add (Current.visited, (Current→Next))
Create_transition (ITC, (Current→Next))
Current = Next

end

// All rules at current states have been checked
else

Pop(Branch, Current)
Current.visited=∅
if Branch Ó= ∅ then

Current =Stacktop (Branch)
end

else
End_Exploration = True

end

end

end

else

if Branch Ó= ∅ then
Current =Stacktop (Branch)

end

else
End_Exploration = True

end

end

end

46 A Method for Passive Interoperability Testing

3.4.1.3 Passive Interoperability Test Case Derivation

The Specifications - ITP asynchronous calculation product ITC is an acyclic
graph that exhibits the different ways of S1‖AS2 to reach ITP. In order to derive
a passive interoperability test case, the ITC should be processed.

Actually, the ITC obtained by Algorithm 3.1 can be divided into two parts:
the preamble and the testbody. Note that generally a complete active test case
includes a preamble, the testbody and a postamble. The preamble is used to bring
the SUT into a specific state before the verification of the test body. The test
body represents the detailed behavior related to the ITP. While the postamble
is used to bring the SUT to a stable state after the verification of the testbody.
However in passive testing it can not always be feasible as the test system has
no control over the SUT, consequently the test system can not always observe
the SUT to enter a desired stable state. Moreover, to obtain a postamble implies
further asynchronous interaction calculation. Therefore, in this thesis, we donot
calculate postamble. The ITC only contains a preamble and the testbody.

1. The preamble involves the states and transitions that begin from qIT C
0

to (not including) the state qIT C=
{

qS1 , qS2 , qIT P
0 , f1, f2

}

where (qIT C , a,

pIT C)∈△IT C and (qIT P
0 , a, qIT P

1) ∈△IT P . (a is the common lable in both
ITC and ITP). In other word, the preamble involves the states and tran-
sitions that traverse the initial state of ITC and (not include) the first
transition concerned by the test purpose.

2. The rest is the testbody, representing the relevant events that should be
performed by the IUTs, which are related to the chosen ITP.

Then, the derivation of a Passive Iop Test Case (PITC) consists of traversing
the ITC graph, applying the following operations to extract a sub-graph of ITC:

• Only the testbody is preserved. ITC calculates the different ways to reach
ITP from the initial state of S1 and S2. But in passive testing, the state
where SUT can be in w.r.t ITC at the beginning of a recorded trace is not
known. As a result, it is probable that the trace does not start from the
initial state of the SUT. In fact, the preamble is usually used in active testing
to put the SUT into a desired state to begin the verification of the testbody.
However passive testing is only based on observation. Consequently, the
preamble is not needed. i.e., PITC describes the detail events that are
relevant to the property to be verified (ITP), which should be performed
by the IUTs.

Passive Interoperability Testing Method 47

• Only observable events in ITC are preserved. The obtained ITC involves
both controllable events and observable events. Controllable events repre-
sent the stimuli sent by the upper layer of an IUT and should be removed,
as passive testing is only based on observation.

• Only output events sent by the IUTs are preserved. In black box testing, an
input of IUT is in fact an internal event that cannot be directly observed.

All the events that need to be removed in ITC are replaced by an undistin-
guished action denoted by τ . The other events in ITC are extracted by applying
τ - reduction, which hides internal actions τ from ITC followed by determiniza-
tion: Hiding τ actions means automatically reducing the state space of the ITC
by those states, i.e., a sequence of states. Then the ITC is determinized to get a
deterministic PITC.

Moreover, verdicts should be assigned to the trap states of PITC. The state
in AcceptIT C is associated with Pass verdict, while states in RefuseIT C are asso-
ciated with Inconclusive verdicts (traces that cannot be extended to AcceptIT P).

An example of PITC derivation can be found in Section 3.5.1.

3.4.2 Trace Verification

The derived passive iop test case PITC represents the expected behavior of the
IUTs w.r.t the ITP. Contrary to active testing, where test case is run on IUTs,
PITC will not be executed on the IUTs. In other words, PITC is only used
to analyze the observed trace (messages produced by the IUTs). The correct
behavior of IUTs implies that the trace produced by the IUTs should exhibit the
events described in the set of PITCs.

However, in passive testing, the test system has no knowledge of the state
where the SUT can be in w.r.t PITC at the beginning of the trace. In passive
testing, no assumption is made about the moment when the recording of trace
begins, and thus it is not necessarily the initial state of the PITC. Therefore
passive testing trace analysis is not merely comparing each event in the trace
with the PITC from its initial state. In order to realize the trace analysis, we
propose an algorithm, which aims at reading all branches in the PITC graph
in parallel and checking whether the recorded trace σ encompasses at least one
branch in PITC which is assigned with the Pass attribute. i.e., to check whether
the corresponding ITP is reached.

Let us consider the PITC graph, its initial state qP IT C
0 which may contain

several transitions to other states. The trap states of PITC are associated with

48 A Method for Passive Interoperability Testing

attributes Pass and Inconclusive. Note that there might be several Inconclusive
attributes in a PITC tree. The idea is to find which of the branches in PITC
are encompassed by the trace. Specifically, we call States_under_reading the list
of states in PITC under reading. Initially, States_under_reading contains only
the initial state qP IT C

0 . Then, for each event a taken in order from σ, we check
whether a can be accepted by the states in the set States_under_reading. If
it is the case, these states are replaced by the destination states led by a. The
states (except the initial state qP IT C

0) that can not be led to other states by a are
deleted for coherence reason. In fact, these states can not be taken into account
in the next step. Because it is possible, but not consistent, to have a transition
from these states with lable a’ (the next event to a in the trace). Moreover, we
require that the initial state is always in the list States_under_reading. This is
because a trace may contain several events that belong to Γ(qP IT C

0), however not
all of them will lead to Pass attribute.

The algorithm is written formally below:

Variables for trace analysis:

• States_under_reading: the list of states in PITC under reading.

• Pass_reached: Boolean value. Pass_reached == True means that the
trace encompasses a branch which is assigned with Pass attribute in the
PITC graph.

• Inc_reached: Boolean value. Inc_reached == True means that the trace
encompasses a branch which is associated with Inconclusive attribute in the
PITC graph. Note that in PITC, there could be several branches that are
associated with Inconclusive attribute.

• pick (σ): Take the first element from trace σ. i.e. σ=a.σ’, pick(σ) = a,
σ = σ’.

The trace analysis algorithm contains two loops. In the worst case, the
while loop will be executed M times where M is the size of the trace. The
same, the for loop will be executed N times where N is the number of states in
States_under_reading. Therefore, the complexity of the trace analysis algorithm
is O(M × N).

After the trace analysis, according to different values that can be obtained, an
appropriate verdict will be issued. Different from active testing, passive testing

Passive Interoperability Testing Method 49

verdict assignment should be more careful as the test system has no control over
the SUT. Therefore the usually used active testing verdict rules can not be directly
applied. Verdict assignment will be discussed immediately in the next section.

Algorithm 3.2 Trace verification algorithm
Input : Trace σ, PITC
Output : Pass_reached, Inc_reached
Initialization: State_under_reading = qP IT C

0 , Pass_reached = False,
Inc_reached = False
while σ Ó= ∅ and not Pass_reached do

pick (σ)
forall the state q in State_under_reading do

if a ∈ Out(q) then

if q == qP IT C
0 then

add (State_under_reading, p) where (qP IT C
0 , a, p) ∈△P IT C

end

else

q = p where (q, a, p)∈△P IT C

end

end

if a /∈ Out(q) and q Ó= qP IT C
0 then

remove(State_under_reading, q)
end

if q == Pass then
Pass_reached = True; exit //* exit from the for loop

end

if q == Inconclusive then
Inc_reached = True

end

end

Return Pass_reached, Inc_reached
end

3.4.3 Verdict Assignment

After the execution of the trace verification algorithm, according to the values
Pass_reached and Inc_reached returned by the trace analysis algorithm, an ap-
propriate verdict should be emitted. In this chapter, we have worked out the
verdict assignment rules for passive interoperability testing. Three cases are pos-
sible:

50 A Method for Passive Interoperability Testing

1. If Pass_reached=True, a Pass verdict is emitted as the ITP is satisfied.

2. If Pass_reached Ó=True ∧ Inc_reached=True, an Inconclusive verdict is
emitted. In fact, Inconclusive means the behavior of IUTs is correct, how-
ever does not allow reaching the ITP.

3. If Pass_reached Ó=True and Inc_reached Ó= True, i.e., the behavior of IUTs
does not match any branch in the PITC, an Inconclusive or Fail verdict is
emitted after post analysis according to different situations. This is because
in passive testing, Fail verdict is very severe and should be treated carefully.

The verdict assignment rules are different from the rules used in active testing.
In fact, in active interoperability testing, verdict is decided according to the con-
sistency between the behavior of IUT and the interaction of their specifications.
Transposing this mode of verdict assignment on passive test is trivial in case that
the behavior of the IUTs is as expected. On the contrary, in passive testing, the
reason for which an ITP is not reached can be due to several reasons:

• The state of SUT is unknown: In active testing, the test system is able to
bring the SUT to the desired states, as well as to restart and reconfigure the
SUT. Thus the behavior of the IUTs can be judged accurately. The slightest
deviation can be considered Fail. However, in the context of passive testing,
it is impossible for the test system to control the IUTs. Therefore the
observed behavior of the IUTs may be allowed by the specifications, however
does not correspond to the test case.

Moreover, the environment of SUT is not under control: Active testing is
usually executed in an environment where the topology of the network is
well known. Network can be isolated and dedicated exclusively to testing
without external perturbation. These conditions may not be satisfied in op-
erational environment where network implementations are in their normal
function. Moreover, delay and packet loss may take place.

• Recorded traces may be incomplete: If the traffic capture begins after the
start point of the PITC, then only the end of the PITC may be observable
in the traces. Similarly, if traffic capture is interrupted before the end of
the PITC, then only the beginning of the PITC maybe observable.

Fig.3.3 illustrates an example explaining why Fail verdict cannot be easily
assigned in passive testing.

Passive Interoperability Testing Method 51

Example 3.1 Let’s consider a passive interoperability “Ping” test. In this
example, the test purpose is “Ping” functionality, which operates by sending In-
ternet Control Message Protocol (ICMP) 1 EchoRequest packets to the target
host and waiting for an EchoReply. However in reality, destination host or in-
termediate router will send back an ICMP error message, i.e. “host unreachable”
or “TTL exceeded in transit”. In these cases, different verdicts can be assigned
as illustrated in Fig.3.3.

Figure 3.3: Different verdicts in passive interoperability “Ping” test execution

• Fig.3.3-(a) is the expected behavior of two IUTs where EchoRequest sent
by IUTA is followed by the EchoReply sent by IUTB.

• In Fig.3.3-(b), IUTB responds with a Destination Unreachable. This may

1http://www.ietf.org/rfc/rfc792.txt

52 A Method for Passive Interoperability Testing

be due to the non-configuration of destination address in the EchoRequest
on the IUTB.

• In Fig.3.3-(c), the EchoRequest sent by the IUTB is fragmented but only
one fragment is received. The second fragment of the packet may have
followed another path which was not under observation.

• In Fig.3.3-(d), no response is sent from the IUTB, (which can be detected by
a timer). EchoRequest may have followed a different non-observable path.
Or, trace capture was stopped before the observation of the EchoReply.

Nevertheless, none of the last three cases allows concluding an abnormality in
IUT. Therefore, all these three cases can lead to Fail in active testing while they
can only be assigned Inconclusive in passive testing.

To sum up, Fail verdict assignment in passive testing must be treat pru-
dentially. The non-satisfaction of an ITP on a trace does not always allow to
conclude an abnormality in the IUTs. thus this cannot be easily regarded as
non-interoperable behavior. Therefore, if the trace does not match any branch
in the PITC, an Inconclusive will be given. On the contrary, in case of obvious
erroneous message, an unspecified message or time-out, a badly-formatted packet
will be considered abnormal. Specific abnormal behavior can also be defined ac-
cording to different individual protocols. In these situations, a Fail verdict may
emitted. Indeed, we require that the PITC be sound, i.e., interoperable IUTs
cannot be rejected.

3.5 Application on SIP Protocol

3.5.1 SIP Protocol Overview

In order to test the usefulness of our approach we have chosen a real case study:
the Session Initiation Protocol (SIP).

The Session Initiation Protocol (SIP), as defined in [45], is an application-layer
control (signaling) protocol for creating, modifying and terminating sessions with
one or more participants. These sessions include Internet multimedia conferences,
Internet telephone calls, multimedia distribution and similar applications.

Under the SIP model, IUTs communicate with each other through asyn-
chronous messaging. Because SIP is a transport-independent signaling protocol,

Application on SIP Protocol 53

SIP messages can be transferred via UDP, TCP, or other transport protocols.
There are three types of messages: request, response and acknowledgment.

Fig.3.4 illustrates an example of a simplified Session Initiation Protocol (SIP):

S1 and S2 represent respectively a SIP Call Management Client (CMC) and a
SIP Call Management Server (CMS). They describe the basic behavior of CMC
and CMS: Initially, if the CMC user decides to initiate a connection, the CMC
will transmit an Invite request message (L1!Invite). After the reception of the
Invite request, CMS can either accept (U2?Accept) or refuse (U2?Decline) the
connection. CMC user can hang up at any time (U1?hangup). If the user de-
cides to hang up before the connection is established, the CMC will cancel the
Invite request (L1!Cancel). If the user decides to hang up after the connection is
established (L1!Ack is sent), the CMC needs to issue a Bye request towards the
CMS (L1!Bye).

Figure 3.4: Simplified SIP CMC and CMS specifications

Fig. 3.5-(a) illustrates the ITP, which aims at testing the hand-shake property
of SIP connection establishment: After that CMC sends out an Invite request,
after a number of interactions, CMC sends ACK to indicate that the handshake is
done and a call is going to be setup. Meanwhile, the possibility that CMC cancels
the Invite request (L1!Cancel) or CMS refuses the connection (L2!Decline) may
exist but they do not belong to the test objective. Thus they are associated
with Refuse attribute. Fig.3.6 illustrates the ITC built by Algorithm 3.1: The
interaction of S1 and S2 to reach the ITP is calculated. Then, by reducing the

54 A Method for Passive Interoperability Testing

state-space of ITC and determinization, the PITC is obtained and illustrated in
Fig. 3.5-(b).

Figure 3.5: Example of ITP and PITC

Figure 3.6: Example of an ITC

Application on SIP Protocol 55

3.5.2 Test Execution

To carry out passive SIP interoperability testing, two IUTs (SIP phones) are
interconnected. A sniffer is connected to the same link to capture all traffic
exchanged between the two IUTs. Sniffer must not emit any message which can
disturb the IUTs’ normal operations. Captured traces are formatted and stored
in a file, which will be read and analyzed by the test system.

To make the experiments, 4 SIP phones: Blink 2, Ekiga 3, Jitsi 4 and Linphone
5, have been installed.

The algorithms of ITC construction, passive iop test case derivation and trace
analysis were implemented in a testing tool prototype programmed in language
Python2.

To observe the messages exchanged by two SIP phones, a Wireshark6 sniffer
is used. 100 traces produced by the SIP phones during their interaction were
collected, filtered by Wireshark sniffer and stored in pcap format7. The traces
involve different duration (from 5 seconds to 5 minutes) and different pair wise
combinations of SIP phones.

We have chosen different ITPs concerning the basic functionalities of SIP: The
establishment of the media session, the call cancellation and the call termination.

(i) ITP1 - The call setup requested by one IUT should finish with the ac-
knowledgment sent by the peer IUT.

(ii) ITP2 - The cancellation requested by one IUT should finish with the
acknowledgment sent by the peer IUT.

(iii) ITP3 - Disconnection requested by one IUT should finish with the ac-
knowledgment sent by the peer IUT.

In the case of two IUTs from the same companies, almost all traces have
obtained the Pass verdicts. We obtained few Inconclusive verdict due to the fact
that of the length of the traces that were too short. For example, the trace was cut
too early so that the verification of call termination was not succeeded. During
the communication of two IUTs from different companies , respectively, ITP1

got 98% Pass, ITP2 got 86% Pass, while ITP3 got 90% Pass. The Inconclusive

2http://icanblink.com/
3https://www.ekiga.net/
4https://jitsi.org/
5http://www.linphone.org/
6http://www.wireshark.org/
7http://www.tcpdump.org/

56 A Method for Passive Interoperability Testing

verdicts are due to the following reasons:

• Short trace length: due to the fact that trace registration is cut before the
end of PITC Inconclusive attributes reached.

• Inconclusive verdicts are reached: due to the fact that the observed behav-
ior does not correspond to the passive test case, however allowed in the
specifications.

Moreover, a Fail verdict was obtained:

• Unexpected event: During the communication between Jtisi and Ekiga Si-
phones. After Jtisi sends Bye request, instead of an Ack_Bye, Ekiga Si-
phone replies 481 Call/Leg Transition. After post analysis, this behavior is
determined to be abnormal.

3.6 Conclusions

This chapter proposes an approach for passive interoperability testing. Given
the formal specifications of the IUTs and an iop test purpose ITP, a PITC can
be derived by partial asynchronous interaction calculation. In addition, a trace
analysis algorithm was proposed to check the recorded trace. The proposed al-
gorithms have been implemented and applied to a real protocol SIP. Moreover,
the verdict assignment issue, which is often problematic in passive testing, is
discussed.

The proposed passive testing method has the following features:

1. Testing architecture is simple, no upper tester is needed. Active test cases
need stimuli to set the SUT to a specific configuration. Stimuli must be well-
designed, however they can be also error prone and introduce extra overhead
in networks. Passive test case is only based on observation, which is able to
avoid these issues, perform interoperability testing without interfering with
the normal operations of the SUT.

2. Partial asynchronous interaction calculation alleviates states explosion. By
setting an iop test purpose ITP and using attributes, only the necessary
parts of joint behavior of IUTs need to be computed.

Conclusions 57

3. PITC describes in detail the expected interaction of IUTs that allow to
reach the given ITP, which can be used to evaluate the interoperability
degree of the SUT.

However, this method also have some drawbacks. In fact, this method requires
that the specification of a protocol must be formalized, which is difficult in prac-
tice, especially for complicated protocols or protocols designed in an evolutive
way.

Therefore, in the following, we will try to find another solution to carry out
passive interoperability testing. Future work will also concentrate on reducing
passive testing execution time: Executing test cases in parallel, i.e. each test case
is run independently on the same trace will be considered. Besides, aggregating
test cases with a similar preamble will be useful to reducing the time of test
derivation procedure to some extent. This part will be discussed in detail in
Chapter 5.

58 A Method for Passive Interoperability Testing

Chapter 4

A Passive Interoperability

Testing Method for

Request-Response Protocols

4.1 Introduction

With the development and increasing use of distributed systems, computer com-
munication mode has changed. There is increasing use of clusters of workstations
connected by a high-speed local area network to one or more network servers. In
this environment, resource access leads to the communications that are strongly
transaction oriented. This tendency resulted in a large amount of new protocols
designed for request-response communications. Typical examples are Hypertext
Transfer Protocol (HTTP)[27], Session Initiation Protocol (SIP), and very re-
cently the Constrained Application Protocol (CoAP) [20], etc. Due to the het-
erogeneous nature of distributed systems, the interoperability of these protocol
applications is becoming a crucial issue. In this context, interoperability testing
is required before the commercialization of the protocol applications to ensure
their correct collaboration and guarantee the expected quality of services.

This chapter proposes a methodology for the interoperability testing of request-
response protocols by using the technique of passive testing. The methodology
consists of the following main steps:

• Interoperability test purposes extraction from the protocol specifications.

• For each test purpose, an interoperability test case is generated, specifying
the detailed set of events that need to be observed.

59

60 A Passive Interoperability Testing Method for Request-Response Protocols

• Behavior analysis. In order to verify whether the test purposes are satisfied,
traces produced by protocol implementations are filtered and divided into a
set of conversations with respect to the special request/response interaction
model of request-response protocols. These conversations will help further
identifying the occurrence of test cases as well as emitting an appropriate
verdict.

Moreover, in this chapter, we will present a testing tool developed for au-
tomating passive interoperability testing tool. The proposed passive interoper-
ability testing method has been implemented and automated in this tool, which
was successfully put into operation during the CoAP Plugtests - the first formal
CoAP interoperability testing event held in Paris, Mars 2012 in the context of the
Internet of Things, and the other held in Sophia Antipolis in November, 2012.

This chapter is organized as follows: Section 4.2 introduces the background
and motivation. Section 4.3 proposes the methodology for passive interoperabil-
ity testing of request-response protocols. Section 4.4 presents a testing tool to
automate passive interoperability testing. Section 4.5 describes the application of
this method on CoAP Plugtest as well as the obtained experimental results. Fi-
nally, we conclude the chapter and suggest further research directions in Section
4.6.

4.2 Background and Motivation

The transaction oriented communication, also called request-response communi-
cation, is used in conjecture with the client-server paradigm to move the data and
to distribute the computations in the system by requesting services from remote
servers. The typical sequence of events in requesting a service from a remote
server is: a client entity, a process, task or thread of control, sends a request to
a server entity on a remote host, then a computation is performed by the server
entity, and, finally a response is sent back to the client.

Request-response communications are now common in the fields of networks.
Request/response exchange is typical for database or directory queries and oper-
ations, as well as for many signaling protocols, remote procedure calls or middle-
ware infrastructures. A typical example is REST (Representational State Trans-
fer) [30], an architecture for creating Web service. In REST, clients initiate
request to servers to manipulate resources identified by standardized Uniform
Resource Identifier (URI). The HTTP methods GET, POST, PUT and DELETE
are used to read, create, update and delete the resources. On the other hand,
servers process requests and return appropriate responses. REST is nowadays

Passive Interoperability Testing Method for Request-response Protocols 61

popular, which is applied in almost all of the major Web services on the Internet,
and considered to be used in the Internet of Things [22], aiming at extending the
Web to even the most constrained nodes and networks. This goes along the lines
of recent developments, such Constrained RESTful Environments (CoRE)1 and
CoAP, where smart things are increasingly becoming part of the Internet and the
Web, confirming the importance of request-response communication.

Promoted by the rapid development of computer technology, protocols using
the client-server request-response are increasing. Normally, protocol specifica-
tions are defined in a way that the clients and servers interoperate correctly
to provide Web services. On the one hand, customer needs are growing and
manufacturers permanently develop new equipments with improved quality of
service. On the other hand, with the rapid widespread commercial adoption of
complex and diverse technologies, interoperability is essential to provide cooper-
ative services. To ensure that they collaborate properly and consequently satisfy
customer expectations, interoperability testing is an important step to validate
request-response protocol implementations before their commercialization.

In this context, In this chapter, we will provide a passive interoperability
testing methodology for request-response protocols.

4.3 Passive Interoperability Testing Method for

Request-response Protocols

4.3.1 Testing Method Overview

As studied previously, currently used passive testing methods are trace mapping
and invariants approaches. But both of them have limitations: Trace mapping
suffers from state space explosion. Invariants on the other side, focus only on
expected properties, which limit the capacity of non-interoperability detection.
In Chapter 3, we proposed a solution based on partial formal specification cal-
culation on the fly with a test purpose. This method however, requires that the
specifications must be formalized. This rends it difficult to apply in practice,
especially when a protocol is complex or still in its early stage.

To solve the above problems, in this chapter, we propose another solution,
which allows performing passive interoperability testing while avoiding formaliz-
ing the whole specifications.

The testing procedure consists of the following main steps: interoperability

1http://datatracker.ietf.org/wg/core/charter/

62 A Passive Interoperability Testing Method for Request-Response Protocols

test purposes selecion, interoperability test case derivation and trace verification.
They are illustrated in Fig.4.1.

Figure 4.1: Passive interoperability testing procedure

1. Interoperability test purposes (ITP) selection from protocol specifications.
An ITP is in general informal, in the form of an incomplete sequence of
actions representing a critical property to be verified. Generally it can be
designed by experts or provided by standards guidelines for test selection
[24]. Test purpose is a commonly used method in the field of testing to focus
on the most important properties of a protocol, as it is generally impossible
to validate all possible behavior described in specifications. Nonetheless, it
should be emphasized that an ITP itself must be correct w.r.t the specifi-
cation to assure its validity.

Formally, an ITP can be represented by a deterministic and complete IOLTS
equipped with trap states used to select targeted behavior (c.f. Definition
3.3 in Chapter 3). Note that in this chapter we only focus on the desired
property to be verified. i.e. only Accept attribute is used. However other
events that can lead to Inconclusive or Fail verdicts will be specified in the
corresponding test case derived from the ITP.

2. Once the ITPs chosen, an iop test case (ITC) is generated for each ITP.
An ITC is the detailed set of instructions that need to be taken in order
to perform the test. In active testing, ITCs are usually controllable. i.e,
ITC contains stimuli that allow controlling the IUTs. On the contrary, in
passive testing, ITCs are only used to analyze the observed trace produced
by the IUTs. The correct behavior of IUTs implies that the trace produced
by the IUTs should exhibit the events described in the test cases. The
generation of iop test case can be either manually, as usually done in most
of the interoperability events. These interoperability testing events bring

Passive Interoperability Testing Method for Request-response Protocols 63

together products from different vendors purely for the purpose of executing
tests for a period which may last from a couple of days to a couple of weeks.

Also, manual ITC generation is usually applied for new protocols on draft
whose specifications are not yet stable. ITCs can also be generated au-
tomatically by using various formal description techniques existing in the
literature such as [19, 18]. However, due to the multi-implementations
nature of interoperability testing, the problem of state-space explosion is
inherent and can be only relived other than avoided. Moreover, formalizing
the whole specification of a protocol is not an easy task, when it involves
a huge number of events, options, etc. Especially nowadays, a protocol is
often designed in an extensive way. Thus the specification can change with
the evolution of new functions. Therefore in this chapter, we choose to use
manual ITC generation. It is done by carefully reading the specifications of
a protocol, and derive the detailed behavior to be verified, which is related
to the corresponding ITP.

Formally, an iop test case ITC is represented by: ITC = (QIT C , ΣIT C , ∆IT C ,
qIT C

0) where qIT C
0 is the initial state. {Pass, Fail, Inconclusive} ∈ QIT C are

the trap states representing interoperability verdicts. ΣIT C denotes the
observation of the messages from the interfaces. ∆IT C is the transition
relation. In this work, we underline the importance of specifying all the
behavior that can lead to Pass, Fail, Inconclusive verdicts to help draw a
conclusion of interoperability.

An example of ITP and ITC can be found in Section 4.5.2.2.

3. Analyze the observed behavior of the IUTs against the test cases ITC and
issuing a verdict Pass, Fail or Inconclusive.

In passive interoperability testing for request-response protocols, the test
system has two main roles:

(a) Observe and collect the information exchanged (trace) between the
protocol applications.

(b) Analyze the collected trace to check interoperability. Generally, trace
verification can be done online or offline. In this chapter we choose
to use offline testing method, where the test cases are pre-computed
before they are executed on the trace.

As passive testing does not apply any stimulus, testing activity is only
based on an accurate level of observation, relying on the set up of

64 A Passive Interoperability Testing Method for Request-Response Protocols

sniffer at point(s) of observation (PO) to observe the messages passing
through the system under test (composed of two IUTs, namely a client
and a server).

4.3.2 Trace Verification

As said above, in this thesis we choose the offline testing method. In passive inter-
operability testing for request-response protocols, the packets exchanged between
the client and server are captured by a packet sniffer. The collected traces are
stored in a file. They are key to conclude whether the protocol implementations
interoperate.

In passive testing, one issue is that the test system has no knowledge of the
global state where the system under test SUT can be in w.r.t a test case at the
beginning of the trace. In this chapter, we propose a solution. The idea is to
make use of the special interaction model of request/response protocols. As the
interoperability testing of this kind of protocol essentially involves verifying the
correct transactions between the client and the server, therefore each test case
consists of request and responses, and generally starts with a request from the
client. A strategy is as follows:

• The recorded trace is filtered to keep only the messages that belong to the
tested request/response protocol.

• Each event in the filtered trace will be checked one after another according
to the following rules, which correspond to the algorithm of trace verification
(c.f. Algorithm 4.1).

1. If the currently checked message is a request sent by the client, we verify
whether it corresponds to the first message of (at least one of) the test
cases (noted TCi) in the test suite TS. If it is the case, we keep track of
these test cases TCi, as the matching of messages implies that TCi might
be exhibited on the trace. We call these TCi candidate test cases. The
set of candidate test cases is noted TC. Specifically, the currently checked
state in each candidate test case is kept in memory (noted Currenti).

2. If the currently checked message is a response sent by the server, we check
if this response corresponds to an event of each candidate test cases TCi at
its currently checked state (memorized by Currenti). If it is the case, we

Passive Interoperability Testing Method for Request-response Protocols 65

further check if this response leads to a verdict Pass, Fail or Inconclusive.
If it is the case, the corresponding verdict is emitted to the related test
case. Otherwise we move to the next state of the currently checked state of
TCi, which can be reached by the transition label - the currently checked
message. On the contrary, if the response does not correspond to the event
at the currently checked state in a candidate test case TCi, we remove this
TCi from the set of the candidate test cases TC.

3. Besides, we need a counter for each test case. This is because in passive
testing, a test case can be met several times during the interactions between
the client and the server due to the non-controllable nature of passive test-
ing. The counter Counteri for each test case TCi is initially set to zero.
Each time a verdict is emitted for TCi, the counter increments by 1. Also,
a verdict emitted for a candidate test case TCi each time when it is met is
recorded, noted verdict.TCi.Counteri. For example, verdict.TC1.1=Pass
represents a sub-verdict attributed to test case TC1 when it is encountered
the first time in the trace. All the obtained sub-verdicts are recorded in a
set verdict.TCi. It helps further assigning a global verdict for this test case.

4. The global verdict for each test case is emitted by taking into account all
its sub-verdicts recorded in verdict.TCi.

The complexity of the algorithm is O(M×N), where M is the size of the trace,
N the number of candidate test cases. The trace verification procedure in fact,
involves looking for the possible test cases that might be exhibited in the trace
by checking each event taken in order from the trace. By taking advantage of the
transaction mode of request-response protocols, each filtered traces are in fact
composed of a set of conversations. The objective of the algorithm is intended
to map the test cases into the conversations, so that the occurrence of the test
cases in the trace is identified. Moreover, by comparing each message of the test
case with that of its corresponding conversation, we can determine whether the
behavior of IUTs interactions are as expected as they are described by the test
cases.

Moreover, the possibility that a test case can appear several times in the
trace is also taken into account. Therefore the global verdict for a given test case
is based on the set of subverdicts, increasing the reliability of interoperability
testing. Not only we can verify whether the test purposes are reached, but also
non-interoperable behavior can be detected due to the difference between obtained
subverdicts.

66 A Passive Interoperability Testing Method for Request-Response Protocols

Algorithm 4.1 Trace Verification Algorithm
Input : filtered trace σ, test suite TS
Output : verdict.TCi

Initialization: TC = ∅, Counteri = 0, Currenti = qT Ci
0 , verdict.TCi = ∅

while σ Ó= ∅ do
σ=α.σ′

if α is a request then

for TCi ∈ TS do

if α ∈ Γ(Currenti) then
TC = TC ∪ TCi

/*Candidate test cases are added into the candidate test case set*/
Currenti=Nexti where (Currenti, α, Nexti) ∈ ∆T Ci

end

end

end

else

for TCi ∈ TC do

if α ∈ Γ(Currenti) then

Currenti=Nexti where (Currenti, α, Nexti) ∈ ∆T Ci

if Nexti ∈ {Pass, Fail, Inconclusive} then
Counteri=Counteri+1
verdict.TCi.Counteri=Nexti /* Emit the corresponding ver-
dict to the test case*/
verdict.TCi= verdict.TCi ∪ verdict.TCi.Counteri

end

end

else
TC=TC \ TCi

end

end

end

end

return verdict.TCi

The rules to draw a global verdict is the following:

1. Fail if at least one of the subverdict is Fail.

2. Inconclusive if all the subverdicts are Inconclusive.

3. Pass if at least one of the subverdict is Pass, while no subverdict is Fail.

A Passive Interoperability Testing Tool 67

This is coherent with the verdict assignment rules defined in Chapter 3, except
that in this work, we choose to manually define all the behavior that can lead to
Pass, Fail or Inconclusive verdicts, therefore it is more easily to conclude a Fail
verdict to indicate none-interoperability.

Also we underline that in active testing, a Pass verdict need that all sub
verdicts must be Pass. However, due to the uncontrollable nature of passive
testing and non-deterministic behavior of protocol applications, the condition is
not always favorable (even often difficult) for the test system to observe all the
expected behavior. Therefore an Inconclusive verdict is not sufficient to draw
a conclusion of non-interoperability. On the contrary, a Pass verdict means the
ITP has been satisfied. In fact, transposing the verdict combination rule of active
testing is not suitable, as it will result in a huge amount of Inconclusive verdicts,
therefore decrease the meaning of passive testing.

4.4 A Passive Interoperability Testing Tool

4.4.1 Motivation

Interoperability testing is today one of the key activities in the development of
network systems. However, majority of interoperability testing and validation
is performed manually, which is labor intensive and error prone. Fig.4.2 shows
the time proportion of each activity spent on testing, where test execution and
verification occupy more than 50% of the time[58]. Among these four aspects, test
design and test specification is the innovative phase that cannot be automated.
The test runs and verifying the results and looking at problems of unsuccessful
test are the phases occupying by far the most time and should be automated.

Figure 4.2: The current test effort problem

68 A Passive Interoperability Testing Method for Request-Response Protocols

In order to automate testing, In the community of testing, TTCN (Testing
and Test Control Notation)2 is widely used. For example: ETSI, ITU for the test-
ing of telecommunication protocols. Conformance test cases of ETSI standards
like ISDN (integrated services data digital network), DECT (digital enhanced
cordless telecommunications), GSM (global system for mobile communications),
EDGE (enhanced data rate for GSM evolution), DSRC (dedicated short-range
communications) have also been written in TTCN. Recently it has also been
used for testing various protocol standards e.g. Bluetooth. TTCN was created
by leading experts from ETSI. The standards address not only the language for
specifying tests but also the interfaces that control and adapt a test to any given
environment. Two complementary parts of the standardized TTCN testing tech-
nology: a test specification language and a framework for building test systems,
jointly allow for the automatic execution of tests. The currently used version is
TTCN-3. Initially designed for conformance testing, TTCN-3 has nowadays been
expanded from purely functional conformance testing into load, performance and
interoperability testing.

However, TTCN applies the paradigm of active testing: A test case runs from
start to end as a single unit of test activity and expected to be executed as quickly
as possible. Active tests are performed in order to be able to obtain meaningful
information during a finite test campaign. In this thesis, after careful study, we
claim that, in addition to the traditional concept of active testing, also passive
testing and monitoring can benefit from the mature TTCN technology. We thus
propose a tool, called ttproto (testing tool prototype), which internally reuses
some features of TTCN technology, but which can also be used for empirical
investigation of system behavior, where passive observation is desirable or needed.

4.4.1.1 TTCN-3 Overview

TTCN-3 (Testing and Test Control Notation Language Version 3) is a test spec-
ification language used to define test procedures for reactive black-box testing
of distributed systems. The standardized specification of the language and its
environment is contained in the ETSI standard [57].

A TTCN-3 program is referred to as an Abstract Test Suite (ATS). It ex-
presses the configuration and behavior of an abstract test system, which is com-
posed of a set of concurrently executing test components (TC). TTCN-3 allows
the specification of dynamic and concurrent test systems. In fact, it offers a test
configuration system made of two kinds of test components: Main Test Compo-
nent (MTC) and Parallel Test Component (PTC). For each test case, an MTC
is created. PTCs can be created dynamically at any time during the execution

2http://www.ttcn-3.org/

A Passive Interoperability Testing Tool 69

of test case. Thus, test system can use any number of test components to realize
test procedures in parallel. Communications between the test system and the
SUT are established through ports. These ports, referred to as PCOs (Points of
Control and Observation) are the means of communication with a SUT/IUT.

The main notational unit of TTCN-3 is a module, which is composed of a
definition part and a control part. The definition part contains the definitions of
types, constants, templates, ports, components, and component behaviors: func-
tions and test cases. Syntactically, a test case defines the behavior of a MTC.
Dynamically, a MTC may create and start multiple PTCs, with their behav-
ior defined as functions. The control part governs the execution of individual
test cases, by means of language constructs that, in general, use the verdicts of
previous test cases as conditions for the execution of further tests. Despite the
shallow similarity to programming languages, TTCN-3 is specialized in its ability
to express a particular kind of programs: tests. To this end it includes:

• the send and receive operations for asynchronous message passing on a given
port.

• template: a particular kind of data structure that combines the features
of a variable. A template is used to explicitly define a concrete data value
for send operations, and to implicitly define a set of values (by allowing
wildcards), any of which will be accepted by a receive operation.

• timer: an expiration of a timer is recognized by means of an operation
similar to a receive. The use of timers includes for example, assuring a
limited execution time, and inferring a “no response” event.

• alternative behavior (alt): a list of alternatives, composed of a (possibly
guarded) operation and a following instruction block. Within an alt block,
each alternative is “tried” in the order of its syntactic appearance. If none
of them can be executed successfully (e.g., for a receive operation, if there
is no matching message awaiting reception), then the alt block is entered
again, with a new “snapshot” of the state of environment. According to the
pragmatics of active testing, within an alt block there is usually a list of
branches in which the awaited response is received and dealt with (i.e., the
receive operations for alternative SUT responses and the timeout operations
indicating the lack of response).

• verdicts: values {pass, fail, inconc, none, error} of a special verdict type; by
assigning a verdict, the outcome of a test case is made known to the control

70 A Passive Interoperability Testing Method for Request-Response Protocols

Figure 4.3: TTCN-3

part. Respectively, none is implicitly assigned in the beginning of every
test case by default and is reported as a final verdict in the absence of any
other verdict assignment during the test case execution. Pass means that
everything is OK. Inconc means that neither pass nor fail can be reliably
assigned, for example due to a network connection failure; fail means that
something definitely went wrong. Error means that there was an error in
the test harness, this verdict cannot be assigned by the end user directly.

One of the most important aspects of TTCN-3 standardization is that it also
covers the abstract architecture of a test system and its implementation-oriented
mappings. For each implementation, the ports must be properly connected to a
SUT. The implementation of such connection is hidden from a TTCN program
and delegated to a SUT Adapter (SA) module. Similarly, the functionality and
the interface of a Coder-Decoder (CD) module has been standardized. The joint
functionality of a SA and a CD is to deliver and handle the events expressed as
values of a TTCN-3 type system. This is the general scope of an event language.
The TTCN-3 technology allows a way in distributing this functionality among a
SA, a CD, and a test program expressed in TTCN. In particular, it is possible to
deliver a raw bitstring to a test program, if the templates for receive operations
are thus defined. However, in practice the message definitions in TTCN-3 are
structural, and a decoder will have to deliver data in chunks that reflect this
structure.

A Passive Interoperability Testing Tool 71

4.4.1.2 Main Issues

Although TTCN-3 is widely used nowadays in testing communities, it has some
limitations in the context of passive testing including the follwowing:

1. Initially, TTCN was developed strictly within the framework of confor-
mance testing of black-box implementations of communication protocols in
a layered (e.g., OSI) system. This framework only covers the logical behav-
ior and explicitly excludes other, mostly non-functional properties, such as
performance, robustness, and scalability. It was natural for a TTCN com-
munity to try and extend the applicability of the language, e.g., by propos-
ing its experimental modifications for performance testing (PerfTTCN[51],
TimedTTCN-3[52]), real-time properties (Real-Time TTCN), and inter-
operability testing. However, all these modifications respected the main
paradigm of active testing. As a result, it does not allow easily perform
passive testing as concerned by our work.

Therefore, in order to realize passive testing, some TTCN features especially
controllability must be modified.

2. Moreover, TTCN-3 also has other drawbacks, especially concerning tem-
plate proliferation, that make it “inconvenient” in practical use: For ex-
ample, it needs two different sets of templates for sending and receiving
messages; parametrization and re-use are not easy so that it results in te-
dious code duplication; etc. Therefore, we tend to find a solution to facil-
itate templates definition and reusing, so that to improve readability and
extensibility.

However, we find that, passive testing can benefit from the TTCN technology
by utilizing some of its concepts. Therefore, we have developed a tool called
ttproto, which is partly inspired by TTCN-3, however contains new features de-
signed with modularity and flexibility in mind, that make it more suitable for
passive testing.

4.4.2 Ttproto: A Testing Tool for Passive Interoperability

Testing

4.4.2.1 Ttproto Overview

In order to overcome the drawbacks of TTCN-3 and find a solution to automate
passive interoperability testing, in this work we introduce an experimental tool

72 A Passive Interoperability Testing Method for Request-Response Protocols

ttproto, which allows implementing new features and explore new concepts for
the TTCN-3 standard.

Ttproto is partly inspired from the concepts of TTCN-3: abstract model,
templates, snapshots, behavior trees, communication ports, logging. Therefore,
these concepts are implemented in the tool. However, ttproto is not a subset or a
replacement of the TTCN language. Ttproto is written in a high level language
– python33 . Python is chosen for the following reasons: simple, easy to learn,
widespread and which allows rapid prototyping new features. By using python,
implementing new features does not require any skills in language grammars and
parsers and to understand the sources of a real TTCN-3 compiler. The design
strategy is to maximize modularity and readability rather than performances or
realtime constraints. In this way, test developers can experiment and demonstrate
features they would like to integrate in TTCN-3, without having to modify the
language or dig into the sources of a TTCN-3 compiler.

Below is a short list of features of ttproto:

• Contrary to TTCN-3 in which a “test script” is available in a finite tangible
form, organizing the execution of tests in a finite test suite. A test script
runs from start to end as a single unit of test activity and expected to be
executed as quickly as reasonably possible, and perform active tests, in order
to be able to obtain meaningful information during a finite test campaign.
These preconceptions and patterns strongly influence the perception of the
needs of testing, which however can be challenged in the context of passive
testing.

In order to solve this problem, ttproto uses another philosophy, which is
proposed to decompose the methodology of empirical investigations of sys-
tem behavior into separate conceptual and technological elements modules.
In this way, each module is responsible for separate tasks.

In case of passive testing, a module may express a passive testing algorithm,
together with a data structure that encodes expected properties. Passive
test cases are then implicitly contained in such module. In this way, ttproto
is actually a device for the empirical investigation of the behavior of systems
that is not bound by preconceptions inherent in existing TTCN systems,
and thus can be used for passive testing.

Moreover, ttproto also provides some advantages over TTCN-3, and conse-
quently better help realizing passive testing.

3http://www.python.org/getit/releases/3.0/

A Passive Interoperability Testing Tool 73

Figure 4.4: TTCN send and receive templates

• Default values and template matching

In TTCN-3, templates are used to explicitly define a concrete data value for
send operations, and to implicitly define (or generate) a set of values, any
of which will be matched by a receive operation. Templates allow wildcards
to be used instead of an actual value. However, in TTCN-3, two separate
templates have to be used for the reason that wildcard can not be used
in templates for generating messages to be sent. As a result, the whole
number of templates is quite big. Code lines are so tedious that rend them
less readable. For example, to match an IPv6 message whose hop limit is
255, we could write in TTCN-3 in Fig.4.4-(a). The wildcard “?” indicates
that we can match any value. This is useful because in many cases one
only cares about a part of a message. But, Wildcard can not be used in
templates for generating messages to be sent. In that case we must define
a second template with all fields set to a value (cf. Fig.4.4-(b)).

In order to solve the issues, default values undef are introduced in ttproto
when defining a structured message type. Respectively, undef means “any
value or none” when receiving, while “use the default value” when sending.
Therefore the two previous templates written in TTCN-3 can be instanti-
ated in ttproto as a single template: IPv6 (hl = 255).

74 A Passive Interoperability Testing Method for Request-Response Protocols

Figure 4.5: Ttproto default values

The use of default values is useful in passive testing as it avoids creating a
large number of templates, thus decreases drastically the size of the code
and increases the readability of the test case.

• Message presentation formats

In ttproto, both a raw byte string or binary string representing the address
can be used. In sequence, an IP address can be presented in more human-
readable byte format instead of the tedious binary string. Moreover, byte
and binary type and can be converted at any time. This feature is important
for passive testing, as a large number of traces should be dealt, a more
readable format will help analysis.

• Template inheritance

In ttproto, messages types are represented using object-oriented model
(python3). Therefore, it allows template inheritance through the parametriza-
tion notion in stead of modifying keywords. Actually, in TTCN-3, modify-
ing keywords means changing the keywords. While in ttproto, more con-
straints can be added by template inheritance. This is important firstly, by
using object-oriented model, user-defined type (like TTCN-3’s subtypes and
structured types) can be inherited from a base type provided by ttproto.
Moreover, template inheritance is important especially for post analysis.
In passive interoperability testing for instance, if a template fails to be
matched, by checking the keywords we can quickly find the source of non-
interoperability.

• Encoding/Decoding framework

Encoding and decoding messages (i.e. converting between their abstract
representation in the test case and the actual binary message sent to the

A Passive Interoperability Testing Tool 75

system under test) is not addressed in the TTCN-3 language. The standard
defines instead an interface to implement this feature in an external module
(there are bindings in Java, C, C++ and C#). On the one hand the devel-
oper is free to implement his codecs and in the other hand the standards
provides no framework at all.

In ttproto we decided to integrate encoding and decoding mechanisms
within the tool, but with some latitude to allow implementing families
of codecs. In fact encoding rules are often very similar within a fam-
ily of protocols. For example in the Internet area, message-based proto-
cols are mostly encoded from left-to-right, using big endian integers, 32-bit
padding and ubiquitous patterns like TLV (Type-Length-Value). With en-
coding/decoding framework, users are able to reuse the existing codecs and
quickly develop new codecs if needed.

4.4.2.2 Description

A description of ttproto is given in Fig.4.6.

Figure 4.6: Passive interoperability testing tool

As illustrated in Fig.4.6, a web interface (HTTP frontend) was developed.
Traces produced by a client and a server implementation of a request-response
protocol, captured by the packet sniffer are submitted via the interface. Specifi-
cally in our work, the traces should be submitted in pcap format 4 by using tool
Wireshark5. Each time a trace is submitted, it is then dealt by a preprossesor
to filter only the messages relevant to the tested request-response protocol. In
this way, the trace contains only the conversations made between the client and
server.

4http://www.tcpdump.org/
5http://www.wireshark.org/

76 A Passive Interoperability Testing Method for Request-Response Protocols

The next step is trace verification, which is carried out by taking into two
files as input: the set of test cases and the filtered trace. The trace is analyzed
according to Algorithm 4.1, where test cases are verified on the trace to check
their occurrence and validity. Finally, unrelated test cases are filtered out, while
other test cases are associated with a verdict Pass, Fail or Inconclusive.

The results are then reported from the HTTP frontend: Not only the verdict
is reported, also the reasons in case of Fail or Inconclusive verdicts are explicitly
given, so that users can understand the blocking issues of interoperability (c.f. a
use case in Section 4.5.3.1).

The testing tool was put into operation in two interoperability testing events
for CoAP protocol. The application of this tool can be found in Section 4.5.

4.5 Application to the CoAP Protocol

4.5.1 CoAP Interoperability Testing Event

In the field of interoperability testing, interoperability testing events, often called
by ETSI plugtests are regularly organized especially in industrial context to guar-
antee the interoperability of products based on a protocol. Famous plugtests
events are for instance:

1. ETSI’s Plugtests6. ETSI hosts about 15 interoperability events per year.
Each focuses on different information and communication technologies.

2. IHE Connect-a-thons7: This week-long interoperability event is organized
each year by the International Healthcare Enterprise (IHE), an initiative
by healthcare professionals and industry to improve the way of sharing
information by computer systems in healthcare. This event provides an
opportunity to vendors to test their products. These events enable devel-
opers from different (and competing) companies to get together to test their
companies’ own implementations and ensure interoperability between prod-
ucts. In addition, these events are immensely valuable in validating a draft
standard, and identifying and removing ambiguities and misinterpretations
that may exist.

Recently, the Internet of Things (IoT) has become a hot topic. IoT an inte-
grated part of future Internet and could be defined as a dynamic global network

6http://www.etsi.org/Website/OurServices/Plugtests/home.aspx
7http://www.ihe.net/participation/

Application to the CoAP Protocol 77

infrastructure with self configuring capabilities based on standard and interop-
erable communication protocols where physical and virtual things use intelligent
interfaces, and are seamlessly integrated into the information networks. One of
the objectives of the IoT is using the captured information by smart objects (e.g.
automation systems, mobile personal gadgets, building-automation devices, cel-
lular terminals, the smart grid, etc.) to improve peoples life in a large range
of fields: healthcare, environment monitoring, smart energy control, industrial
automation and manufacturing, logistics, etc. Promoted by IoT, more and more
devices are becoming connected and benefit from interacting with each other to
achieve cooperative services. Over the next decade, this could grow to trillions of
embedded devices and will greatly increase the Internet’s size and scope. However,
the evolution of technologies also brings challenges: devices behind Machine-to-
Machine (M2M) applications are generally resource limited. Typically, they are
battery-powered and frequently asleep, limiting them to an average consump-
tion on the order of micro-watts. Power limitations also lead to constraints on
available networking. Most devices connect wirelessly as stringing wires are pro-
hibitively expensive. In consequence, many packet losses might occur during data
transfer.

To deal with these challenging issues, the IETF Constrained RESTful En-
vironments (CoRE) working group8 has worked out the Constrained Applica-
tion Protocol (CoAP) [20], an application-layer protocol to provide resource con-
strained devices with low overhead and low power consumption Web service func-
tionalities. Different from traditional Web services protocol, CoAP protocol in-
volves new performance engineering methods, tools, and benchmarking needs.
Especially, the ubiquitous nature of CoAP requires interoperability to ensure
that smart objects using CoAP work well together in low-power and lossy envi-
ronment without human intervention, while guaranteeing the services described
in the specifications. As one of the most important protocol for the future In-
ternet of Things, the number of smart objects using CoAP is expected to grow
quickly. In this context, the Probe-IT9 (Pursuing roadmaps and benchmarks for
the Internet of Things, an European project in the context of Internet of things),
the IPSO Alliance (Internet Protocol for Smart Object communications)10 and
ETSI11 (the European Telecommunication Standard Institute) co-organized the
CoAP interoperability event – CoAP Plugtest. The objective of this event is to
enable CoAP implementation vendors to test end to end interoperability with
each other.

8http://datatracker.ietf.org/wg/core/charter/
9http://www.probe-it.eu/

10http://www.ipso-alliance.org/
11www.etsi.org/

78 A Passive Interoperability Testing Method for Request-Response Protocols

4.5.2 CoAP Protocol

4.5.2.1 CoAP Protocol Overview

Most Internet applications today depend on the Web architecture, using HTTP
[27] to access information and perform updates. HTTP is based on Representa-
tional State Transfer (REST) [30], an architectural style that makes information
available as resources are identified by URIs (Uniform Resource Identifier): appli-
cations communicate by exchanging representations of these resources by using a
limited set of methods. This paradigm is quickly becoming popular, even spread-
ing to Internet of Things applications, aiming at extending the Web to constrained
nodes and networks. In this context, the IETF Constrained Application Protocol
(CoAP) has been designed, which is an application-layer protocol on keeping in
mind the various issues of constrained environment to realize interoperations with
constrained networks and nodes. CoAP adopts some HTTP patterns such as re-
source abstraction, URIs, RESTful interaction and extensible header options, but
with a lower cost in terms of bandwidth and implementation complexity. CoAP
has the following features:

Unlike HTTP over TCP, CoAP operates over UDP, with reliable unicast and
multicast support (c.f. Fig.4.7).

1. CoAP transaction layer is used to deal with UDP and the asynchronous
nature of the interactions. Within UDP packets, CoAP uses a four-byte
binary header, followed by a sequence of options. Four types of messages
are defined, which provide CoAP with a reliability mechanism: Confirmable
(CON, messages require acknowledgment), Non-Confirmable (NON, mes-
sages do not require acknowledgment), Acknowledgment (ACK, an acknowl-
edgment to a CON message), and Reset (RST, messages indicate that a
Confirmable message was received, but some context is missing to properly
process it. For example, the node has rebooted).

2. On top of CoAP’s transaction layer, CoAP Request/Response layer is re-
sponsible for the transmission of requests and responses for resource manip-
ulation and interoperation. The familiar HTTP request methods are sup-
ported: GET retrieves the resource identified by the request URI. POST
requests the server to update/create a new resource under the requested
URI. PUT requests that the resource identified by the request URI to be
updated with the enclosed message body. DELETE requests that the re-
source identified by the request URI to be deleted.

Application to the CoAP Protocol 79

Figure 4.7: Protocol stacks of HTTP and CoAP

CoAP supports built-in resource discovery, which allows discovering and ad-
vertising the resources offered by a device. A subscription option is provided
for client to request a notification whenever a resource changes. This is then
accomplished by the device with the resource of interest by sending the response
messages with the latest change to the subscribers.

CoAP supports block wise transfer. Basic CoAP messages work well for the
small payloads such as data from temperature sensors, light switches, etc. Occa-
sionally, applications need to transfer larger payloads – for instance, for firmware
updates. Instead of relying on IP fragmentation, CoAP is equipped with Block
options to support the transmission of large data by splitting the data into blocks.

Besides, CoAP also have other features like best-effort multicast, cachability,
HTTP mapping, etc. These characteristics of CoAP provide a flexible and ver-
satile application framework. Although CoAP is still a work in progress, many
famous embedded operating systems, e.g. Tiny OS12 and Contiki13, have already
released their CoAP implementations. It is slated to become one of the most
important ubiquitous application protocols for the future Internet of Things.

4.5.2.2 Test Purposes Selection and Test Cases Generation

Generally in an interoperability testing event, the organizers will study and dis-
cuss together to choose the important properties (ITP) to test. Then for each
ITP, an iop test case is derived and must be valided by all the members. Regard-
ing the specifications of CoAP [20, 23, 25, 26], the organizers of the plugtest event
were agree on focusing on a set of 27 interoperability test purposes concerning
the 4 aspects listed below. They represent the most important properties of the
protocol. To ensure that the ITPs are correct w.r.t the specifications, the ITPs
were chosen and cross-validated by experts from ETSI14, IRISA15 and BUPT16,

12http://www.tinyos.net/
13http://www.sics.se/contiki/
14http://www.etsi.org/WebSite/homepage.aspx
15http://www.irisa.fr/
16http://www.bupt.edu.cn/

80 A Passive Interoperability Testing Method for Request-Response Protocols

and reviewed by IPSO Alliance. The test purposes involve:

• Basic CoAP methods: Similar to HTTP, CoAP uses the Representational
State Transfer (REST) architectural style. Applications communicate by
exchanging resources using respectively RESTful methods GET, POST,
PUT, and DELETE. RESTful methods testing involves verifying that both
CoAP client and server react correctly to the received messages according
to [20]. Specifically, it requires to verify that each time the client sends a
request, it contains the correct method code and correct message type code
(CON or NON). Upon the reception of the request, the server sends pig-
gybacked reply to the client accordingly: (i) if the request is a confirmable
message, the server must send an acknowledgment ACK. (ii) If the request
is non-confirmable, the server also sends a nonconfirmable reply. An exam-
ple can be found in Fig.4.8-(a).

Sometimes however, a server cannot obtain immediately the resource re-
quested by the client. In this case, the server will first send an acknowledg-
ment with empty payload, which effectively is a promise that the request
will be acted. When the server finally has obtained the resource repre-
sentation, it sends the response in a confirmable mode to ensure that this
message not be lost. (c.f. an example in Fig. 4.8-(b))

The interoperability testing of CoAP RESTful methods involves verifying
that both CoAP client and server interoperate correctly w.r.t different meth-
ods as specified in [20]. Even in lossy context as often encountered by M2M
communication. Moreover, as CoAP protocol is designed for constrained
networks, where many packet losses will occur, therefore an important as-
pect is to show that CoAP application should still interoperate correctly
even in lossy context. Especially, they must correctly retransmit the re-
quest and response if they are lost.

• Resource discovery. As CoAP applications are considered to be M2M, they
must be able to discover each other and their resources. Thus, [26] standard-
izes a resource discovery format to discover the list of resources offered by
a device, or for a device to advertise or post its resources to a directory ser-
vice. In [26], path prefix for CoRE discovery is defined as /.well-known/core.
This description is then accessed with a GET request on that URI. The in-
teroperability of resource discovery involves verifying that: when the client
requests /.well-known/core resource, the server sends a response containing
the payload indicating all the available links. For example, GET /.well-

Application to the CoAP Protocol 81

known/core?rt=Temperature17 would request only resources with the name
Temperature. The interoperability of resource discovery involves verifying
that: when the client requests /.well-known/core resource, the server sends
a response containing the payload indicating all the available links.

• Block-wise transfer: CoAP is based on datagram transports such as UDP,
which limits the maximum size of resource representations that can be trans-
ferred. In order to handle large payloads, [25] defines an option Block,
in order that large sized resource representation can be divided in several
blocks and transferred in multiple request-response pairs. It supports the
transmission of larger amounts of data by splitting the data into blocks for
sending and manages the reassembly on the application layer upon receipt
in order to avoid fragmentation on the lower layers.

Block-wise transfer is in form of stop-and-wait mechanism. If the client
knows the large resource that it requires, it sends a GET request containing
Block option, indicating block number and desired block size. In return,
the server sends a response containing the requested block number and
size. The transaction repeats until the client obtains the whole resource. If
a response generated by a resource handler exceeds the client’s requested
block size, the server automatically divides the response and transfer it in a
block-wise manner. Then the client sends further requests until completely
receiving the resource and displaying it. Similarly, block options also make
it possible for the client to update or create a large size resource on the
server, by using PUT and POST request respectively.

The interoperability testing of this property therefore involves in verifying
that: when the client requests or creates large payload on the server, the
server should react correctly to the requests.An example can be found in
Fig.4.8-(c).

• Resource observation: The conventional communication model of REST
is that a client always initiate requiring resource representations from the
server. However, this model does not work well when a client is inter-
ested in having a current representation of a resource over a period of time.
Therefore, [23] extends the CoAP core protocol with a mechanism CoAP
Observe. It is an asynchronous approach to support pushing information
from servers to clients.

17
rt: Resource type attribute. It is a noun describing the resource.

82 A Passive Interoperability Testing Method for Request-Response Protocols

The interoperability testing of Observe consists of the following aspects: If
a client is interested in the current state of specific resource, it can register
its interest in this resource by issuing a GET request with an empty Observe
option to the resource. If the server accepts this option, it keeps track of
the client and sends a response whenever the observed resource changes. If
the client rejects a notification with a RST message or when it performs a
GET request without an Observe option for a currently observed resource,
the server will remove the client from the list of observers for this resource.
And the client will no longer receive any updated information about the
resource. If a client wants to receive notifications later, it needs to register
again. An example can be found in Fig.4.8-(d).

Example 4.1 The following figure demonstrates some typical examples of CoAP
transactions:

Figure 4.8: CoAP transaction examples

Fig.4.8-(a) illustrates a confirmable request sent by the client, asking for the

Application to the CoAP Protocol 83

resource of humidity. Upon the reception of the request, the server acknowledges
the message, transferring the payload while echoing the Message ID generated by
the client.

Fig.4.8-(b) is an example of a separate response: When a CoAP server receives
a request which it is not able to handle immediately, it first acknowledges the
reception of the message by an acknowledgment with empty payload, and later
sends back the response in a separate manner.

Fig.4.8-(c) illustrates a block-wise transfer of a large payload (humidity) re-
quested by the client. Upon the reception of the request, the server divides the
resource into 4 blocks and transfer them separately to the client. Each response
indicates the block number and size, as well as whether there are further blocks
(indicated by value m [25]).

Fig.4.8-(d) illustrates an example of resource observation, including registra-
tion and cancellation. At first, the client registers its interest in humidity resource
by indicating Observe option. After a period, it cancels its intention by sending
another GET request on the resource without Observe option.

Once the set of test purposes are defined, a test case is derived for each test
purpose which describes in detail the expected behavior of the CoAP implementa-
tions to be observed. In this work, test cases derivation is done manually by care-
fully studying the protocol specification document. They are also cross-validated
by experts from ETSI, IRSIA, BUPT and IPSO Alliance.

Example 4.2 Fig.4.9 shows an example of an iop test purpose and the corre-
sponding iop test case. The test purpose (Fig.4.9-(a)) focuses on the GET method
in confirmable transaction mode. i.e., when the client sends a GET request (with
parameters: a Message ID, Type=0 for confirmable transaction mode, Code=1
for GET method), the server’s response contains an acknowledgment, echoing the
same Message ID, as well as the resource presentation (Code=69(2.05 Content)).

The corresponding test case is illustrated in Fig.4.9-(b). The bold part of the
test case represents the expected behavior that leads to Pass verdict. Behavior
that is not forbidden by the specifications leads to Inconclusive verdict (for ex-
ample, response contains code other than 69. These events are noted by m in the
figure). However other behavior leads to Fail verdict (for example non-match of
Message ID. These events are labeled by otherwise). The test cases are derived
w.r.t the specifications of CoAP and implemented in ttproto.

Moreover, during the test, expected behavior to be observed is provided in
text form to the users as test specification document (Fig.4.9-(c)).

84 A Passive Interoperability Testing Method for Request-Response Protocols

Figure 4.9: CoAP request examples

Example 4.3 This example shows a test case implemented in the test tool
ttproto.

Figure 4.10: A CoAP test case example

The test case aims to test a request containing several URI-Path options [20].
CoAP uses the URI schemes for identifying CoAP resources and providing a
means of locating the resource. The syntax of URI schemes is as follows: coap-
URI = "coap:" "//" host [":" port] path-abempty ["?" query]. In this scheme,
Uri-Host specifies the Internet host of a resource; Uri-Port specifies the port of the
host; Uri-Path specifies the resource of the host; Uri-Query indicates additional

Application to the CoAP Protocol 85

options for the request. In this work we focus on the test of Uri-Path and Uri-
Query. Particularly in case of a request containing several URI-Path options
or URI-Query options, the test system verifies that the server send a response
message with the correct message type and code in corresponding to the previous
request, as well as the requested resource. The test case implemented in ttproto
specifies in detail the events that can lead to Pass, Fail or Inconclusive verdicts.

4.5.3 Application in Industrial Context

4.5.3.1 CoAP Plugtest Overview and Testing Architecture

The interoperability approach that we proposed for request-response protocol was
applied in the CoAP Plugtest event held in Paris, Mars 2012 18. It was the first
formal two-day’s event held for CoAP protocol in the scope of Internet of Things.
15 developers and vendors of CoAP implementations, such as Sensinode19, Wat-
teco20, Actility21, etc. participated in the event. Test sessions are scheduled by
ETSI so that each participant can test their products with all the other partners.
During the test event, CoAP implementations from different manufactures are
interconnected in pair-wise combinations. Test sessions are scheduled by ETSI so
that each participant can test their products with all the other partners (1 hour
per session). Fig.4.11 shows the test bed architecture provided by ETSI for this
event. Each company was given with a switch to connect their implementations
in the test bed. Communication were routed using layer 2 and layer 3 routers.

The test suite composed of 27 test cases (c.f. Section 4.5.2.2), concerning
the basic RESTful methods, Link format, Observation and Blockwise transfer of
CoAP were served as test reference.

Two test architectures have been defined for different purposes. The basic
test architecture is illustrated in Fig.4.12-(a). It involves a Test System (TS)
and a system under test (SUT) composed of 2 CoAP applications, namely a
CoAP client and a CoAP server. Since we apply the technique of passive testing,
a packet sniffer is used to capture the packets (traces) exchanged between the
IUTs. Moreover, as CoAP is designed for constrained networks, which imply
many packet loss, we also need to consider testing the interoperability of CoAP
applications in lossy environment. The corresponding architecture is as Fig.4.12-
(b): A UDP gateway is used in-between the client and server to emulate a lossy

18http://www.etsi.org/plugtests/coap/coap.htm
19http://www.sensinode.com/
20http://www.watteco.com/
21http://www.actility.com/

86 A Passive Interoperability Testing Method for Request-Response Protocols

Figure 4.11: CoAP Plugtest Test Bed

medium. The gateway does not implement the CoAP protocol itself (It is not a
CoAP proxy). It plays the following roles:

• It performs NAT-style UDP port redirection towards the server (thus the
client contacts the gateway and is transparently redirected towards the
server).

• It randomly drops packets that are forwarded between the client and the
server. In Plugtest, the gateway drops the packet randomly between Client
and the server which goes more than 50% packet loss, which corresponds
to the unreliable environment of the Internet of Things.

Figure 4.12: CoAP interoperability testing architectures

Application to the CoAP Protocol 87

4.5.3.2 Test Execution with Ttproto

The testing method is based on the technique of passive testing as described in
Section 4.3. During the test, the tool Wireshark was used to capture the packets
changed by the CoAP applications. It produces pcap files which contain the
traces. Participants then submit the traces to the trace validation tool ttproto.
Once a pcap file is submitted, a CoAP filtering is made using source IP address
and destination IP address to filter only the conversations made between the
client and the server. When the conversations are isolated, then trace verification
is executed by using the passive testing tool presented in Section 4.4.2. For CoAP
Plugtest, the tool was developed to support the message formats of the CoAP
drafts. CoAP test cases are implemented.

During the plugtest, 410 traces produced by the CoAP devices were captured
and then processed by the passive validation tool. Received traces are filtered,
parsed and analyzed against the test cases. And an appropriate verdict Pass,
Fail, or Inconclusive is issued for each test purpose. A snapshot of the tool is as
follows:

Figure 4.13: Passive testing trace verification tool

The top left image is the user interface of the tool. Users can submit their
traces in pcap format. Then, the tool will execute the trace verification algorithm
and return back the results as shown at the top right corner in the summary table.
In this table, the number of occurrence of each test case in the trace is counted, as

88 A Passive Interoperability Testing Method for Request-Response Protocols

Figure 4.14: Ttproto field description

well as a verdict Pass, Fail or Inconc(lusive) is given (For a test case which does
not appear in the trace, it is marked as “none” and will not be verified on the
trace). Moreover, users can view the details about the verdict for each test case.
In this example, test case TD_COAP_CORE_1 (GET method in CON mode)
is met 7 times in the trace. The verdict is Inconclusive, as explained by the tool:
CoAP.code ValueMismatch (cf. the bottom of Fig.4.13). This precision is thanks
to the value description function provided in ttproto. In ttproto, for values in
a field, descriptions are attached (c.f. Fig.4.14). It helps when analyzing test
logs, for example each Code field defined in CoAP protocol contains a different
meaning. the value description makes the result analysis easier to understand.
In this example, according to the test case, after that the client sends a request
(with Type value 0 and Code value 1 for a confirmable GET message), the server
should send a response containing Code value 69(2.05 Content). However in the
obtained trace, the server’s response contains Code value 80, indicating that the
request is successfully received without further information. This response is not
forbidden in the specification, however does not allow to satisfy the test case. In
fact, the same situation exists in all the other conversations that correspond to
this test case. Therefore, the verdict is Inconclusive.

4.5.3.3 Results of the CoAP Plugtest

During the CoAP Plugtest, a total of 3081 tests were executed during this two
days event within 234 test sessions. The feedback from participants on the testing
method and passive validation tool is positive, due to the following results:

• To our knowledge, it is the first time that an interoperability event is con-
ducted by passive testing. Conventional interoperability events rely on ac-
tive testing, which is done by actively stimulating the implementations and
verifying the corresponding outputs. However, most of stimulation of these
IUTs is manual, which need the intervention of experts for installation, syn-

Application to the CoAP Protocol 89

chronization, etc., Besides, according to our experience [28], active testing
cause many false negative verdicts: most of Fail verdicts are in fact due to
the inappropriate network configuration, synchronization and inappropri-
ate IUTs configuration. Also, the non-intrusive property of passive testing
allows to discover interoperability issues that may appear in operational
environment, where the normal operations of the IUTs are not disturbed,
as it was the case during the plugtest event.

• The automation of trace verification increases the efficiency. According to
ETSI, most of the time (about 60%) of interoperability testing is spent on
trace validation, including verifying the results and looking at the problems
of unsuccessful tests with the help of experts. Passive automated trace
analysis allows to considerably reduce the time. In consequence, within the
same time interval, the number of executed tests are drastically increased.
During the CoAP plugtest, 3081 tests were executed within two days. Com-
pared with past conventional plugtest event, e.g. IMS InterOp Plugtest22,
900 tests in 3 days, the number of test execution and validation benefited a
drastic increase. The re-usability of the test cases implemented by the tool
also, will contribute to increasing efficiency for future CoAP interoperabil-
ity tests. In fact, it has been the case for the second CoAP Plugtest held
in November 2012 in Sophia Antipolis, France. 23

• The passive testing tool is easy to use. In fact, the participants only need
to submit their traces via a web interface. Complicated test configuration is
avoided. The test reports provided by the validation tool makes the reason
of non-interoperable behavior be clear. Besides, another advantage of the
validation tool is that it can be used anytime and anywhere, not only during
an interoperability event. (It is hosted at http://senslab2.irisa.fr/coap/).
In fact, the participants started trying the tool one week before the event
by submitting more than 200 traces via internet. This allows the partici-
pants to prepare in advance the test event and to revise, if necessary, their
implementations.

• Moreover, the passive testing tool shows its capability of non - interop-
erability detection (c.f. the second column of Table 4.1): Among all the
tests, 5.9% show non-interoperability w.r.t basic RESTful methods; 7.8%
for Link Format, 13.4% for Block transfer and 4.3% for Observe. The re-
sults help the vendors uncover the blocking issues and to achieve higher

22http://www.etsi.org/plugtests/ims2/About_IMS2.htm
23http://www.ipso-alliance.org/nov-29-30-etsiipso-coap-plugtest-sophia-antipolis-france

90 A Passive Interoperability Testing Method for Request-Response Protocols

quality implementations.

Executed Tests Non-interoperable

RESTful Methods 2798 166 (5.9%)
Link Format 77 6 (7.8%)

Block transfer 112 15 (13.4%)
Observe 94 4 (4.3%)

Total 3081 191 (6.2%)

Table 4.1: CoAP Plugtest Results

4.6 Conclusions

In this chapter, we have proposed a passive testing methodology for request-
response protocols, including passive interoperability test case generation, meth-
ods of trace verification, a test tool and the application of the proposed solution
on a case study.

In this chapter, passive interoperability test cases are generally manually,
while more emphasize is put on test execution. According to the special interac-
tion mode of request-response protocols, the traces collected during the test were
filtered and analyzed to verify the occurrence of the test cases and their validity.
The trace verification procedure has been automated in a testing tool ttproto,
which was successfully put into operation in the interoperability testing events of
CoAP protocol.

The contributions and originality of the work presented in this chapter are
the following:

1. It provides a solution to carry out passive interoperability testing of request-
response protocols. The non-intrusive nature of passive testing makes it
appropriate for interoperability testing, especially in the context of IoT.

This approach, although targets for transactional protocols, contains other
important meanings: First of all, it realizes interoperability testing without
formal specification model. Moreover, based on property verification, the
approach improves the method of invariants in terms of accuracy, while
invariants only focus on the expected behavior to be verified.

Conclusions 91

2. Contrary to manual verification used in conventional interoperability testing
events, the verification procedure has been automatized by a test validation
tool, which increases considerably the efficiency. The tool is implemented
in language Python3 mainly for its advantages: easy to understand, rapid
prototyping and extensive library. The tool is influenced by TTCN-3, it
implements basic TTCN-3 snapshots, behavior trees, ports, timers, mes-
sages types, templates, etc. However it provides several improvements, for
example object-oriented message types definitions, automatic computation
of message values, interfaces for supporting multiple input and presentation
format, implementing generic codecs to support a wide range of protocols,
etc. These features makes the tool flexible, allowing to realize passive test-
ing.

3. As IoT implies providing services in lossy networks, we also take into ac-
count fundamental CoAP implementations interoperability testing in lossy
context. Lossy context is frequently met in operational networks, however
neglected in most of the current works.

Future work will consider improving the test method. In fact, due to the un-
controllable nature of passive testing, Inconclusive verdicts are frequently emitted,
which needs rerunning the test or post-analysis of experts. Therefore, a solution
to reduce Inconclusive verdicts is being worked on. Also, in this work, we have
chosen to use offline trace verification, i.e., traces are at first recorded and then
processed. Future work will consider online trace verification, in order to monitor
the network for a long time and report abnormalities at any time. Moreover, we
tend to improve the testing tool so that it can be adapted to a wider range of
protocols.

92 A Passive Interoperability Testing Method for Request-Response Protocols

Chapter 5

Conclusions

5.1 Summary of Contributions

In this thesis, we focus on interoperability testing, especially using the passive
testing technique. Currently, the field of interoperability testing is dominated by
active testing. After study and comparison, we find that active and passive testing
are complementary and they fit different situations. Respectively, active testing
aims at detecting faults on SUT by applying a series of control and observation
on it, while passive testing is based on observing the behavior of the SUT. After
studying the state of the art of interoperability testing, we feel that applying
passive approach on interoperability testing worth further work and research.
Based on the subject of the thesis, several contributions have been made:

In Chapter 2, the various testing methodologies of active and passive testing
were elaborated. The advantages and drawbacks of these two techniques were
compared. By analyzing both methods,we draw a conclusion that passive testing
is more suitable to test interoperability due to several reasons: The non-intrusive
nature of passive testing does not influence the normal operation of the IUTs. In
consequence it is suitable for testing in operational networks as it is often the case
for interoperability testing. Also, passive testing requires less complexity in terms
of network configuration, which however is not only time-consuming, but also may
be the source of error that may influence the verdicts. Besides, passive testing
is also appropriate for some specific context for example the Internet of Things,
where the environment is often resource limited. The fact the passive testing
does not introduce extra overhead is favorable for this kind of environment. Last
but not least, passive testing allows monitoring the behavior of a SUT, as the
analysis is only based on observation.

Despite of the advantages of passive testing, in interoperability testing, well
defined methodologies is missing. To the best of our knowledge, there is no clearly

93

94 Conclusions

specified architecture or rule to carry on interoperability testing in passive man-
ner. Neither the issue of verdict is well discussed. Moreover, as interoperability
testing and validation are a tedious task, there is strong requirement of tool sup-
port and automation. In order to solve these problems, in the rest of the thesis,
we have proposed several contributions.

In Chapter 3, a formal specification-based approach to perform passive inter-
operability testing is proposed. It includes two parts:

1. Automatic interoperability test cases generation. The method involves in
carrying out a partial asynchronous interaction calculation of the specifica-
tions of each implementation under test with respect to a preselected test
objective. To relieve state exploration, several techniques are applied: The
partial asynchronous calculation is carried out in a depth-first manner to
minimize the memory requirements. Each test objective is assigned with
attributes to indicate the important states to be explored as well as to
inhibit unnecessary states exploration. We also apply rules to avoid gener-
ating redundant transitions. The obtained graph intends to keep only the
events which are relevant to the test objective. We further apply verdict as-
signment and minimization rules to build an executable minimized passive
interoperability test case.

2. Trace verification. A trace analysis algorithm is proposed to check a recorded
execution trace against the passive test case. Also the verdict assignment
issue, which is often neglected, however important, is discussed. The pro-
posed approach has been successfully performed on a Session Initiation
Protocol (SIP) case study.

Also in this chapter, verdict assignement was discussed, which must be treated
carefully in passive interoperability testing.

In Chapter 4, another method for passive interoperability testing is proposed,
especially for request-response protocols in the context of client-server communi-
cations. According to the interaction pattern of request-response protocols, the
observed interactions (trace) between the network components under test can be
considered as a set of conversations between client and server. Then, a procedure
to map each test case into these conversations is carried out, which intends to
verify the occurrence of the generated test cases as well as to determine whether
interoperability is achieved. The trace verification procedure has been automated
in a passive testing tool ttproto, which analyzes the collected traces and deduces
appropriate verdicts.

Future Work 95

Although the solution aims at request response protocol, it has some impor-
tant meanings: First, it allows carrying out test with out formalizing specifica-
tions, which is generally a time-consuming task. Moreover, it allows to perform
test when a protocol is in its early stage (for example, when the specification is
still under draft version). Also it is appropriate for complex protocol designed
in a way that allows future evolution. Second, request response protocols repre-
sent a popular protocol family, which is widely used today and certainly in the
future. The testing procedure is automated in a testing tool and was put into
operation during the test events of CoAP protocol plugtests. Last but not least,
actually in field of interoperability, most of the work considers the assumption
of reliable environment where there is no loss or duplication. However in reality
this assumption is often challenged (for example in the context of the Internet
of Things). To solve this issue we take into account the lossy factor during the
interoperability testing event.

Also in this chapter, a new passive testing prototype ttproto to automate the
tests is introduced. It allows easy try-out of TTCN-3 and experimenting with
different language constructs. It is inspired from TTCN, but explores some new
features. Especially it proposes a concept of feasibility and modularity, which
jumps out the limitation of the active testing paradigm of TTCN. This makes
the tool feasible in the scope of this thesis, for passive testing. Its successful ap-
plication during the CoAP Plugtests showed its efficiency, flexibility and capacity
of property validation.

5.2 Future Work

Besides the contributions presented in Section 5.1, a list of future work has also
been identified and will be presented in the sections 5.2.1 and 5.2.2. The contribu-
tions concern the following aspects: improve trace verification, extending passive
interoperability to multi-iut context, refine verdict assignment, etc. Among these
aspects, we have began to work on a solution to make trace verification more effi-
cient by test case grouping. Section 5.2.1 will present the first result of improving
trace verification. Other long term future work will be presented in Section 5.2.2.

5.2.1 Improve Trace Verification by Test Case Grouping

5.2.1.1 Motivation

During the thesis, besides the proposed testing methods and verification algo-
rithms, we also feel some aspects that worth further study. One of them is trace
verification. Actually, the algorithms proposed previously in this thesis allow

96 Conclusions

verifying each time the trace against only one passive interoperability test case.
If there are n test cases to verify, trace verification will be executed n times. If
the trace is long, the time spent on verifying sequentially the n test cases will be
considerable.

To deal with this problem, this section suggests a solution to improve passive
interoperability trace verification. In fact, the main factors that influence trace
verification time are the length of the trace and the number of passive iop test
cases (PITC). As the length of the trace plays an important role in passive testing,
we try to reduce the number of PITCs to reduce the time of trace verification.
Therefore, the method aims at grouping adequately the individual passive iop test
cases into a global test case, so that the traversal of the trace is executed only once.
We also propose an associated trace verification algorithm, which allows verifying
the trace against the global test case. This method in fact, allows analyzing the
trace against all the passive test cases in parallel. In consequence, the time used to
carry out trace verification time is reduced. Nevertheless, using this method does
not reduce the performance of property verification: All the individual passive
iop test cases are adequately integrated into a global one without being removed.

5.2.1.2 State of the Art

Test suite reduction is a subject on which researchers work as testing and retesting
occur continuously during the software development life cycle. As software grows
and evolves, the accompanying test suites have to be generated and used to verify
the expected properties. Over time, the test suite may become huge and needs a
long time to verify each test case. Therefore, conventional test reduction focuses
mainly choosing a minimal subset of test cases from a large test suite, to avoid
executing all the test cases without sacrificing the fault coverage.

In many of the research papers (e.g. [31], [33], [34]), test suite reduction aims
to remove test cases from a test suite in such a way that redundant test cases
are eliminated. For example, a reduced test suite TS may provide the same
structural coverage as a test suite TS-reduced with significantly fewer test cases.
Particularly, test case minimization algorithm picks randomly a test case from a
test suite, and mark the corresponding coverage that it covers. Any test case that
improves the coverage is kept, while other test cases are considered as redundant
and are removed. In this way, the size of the test suite is often considerably
reduced, so as the time of test case execution.

Since test suite minimization removes test cases, minimized test suites may be
weaker at detecting faults than their unminimized counterparts. Over the past
years, studies show conflict results: in [31], it was shown that minimizing test

Future Work 97

suites could result in little loss in fault detection effectiveness. However, the em-
pirical study in [32] suggests that minimized test suites can severely compromise
the fault detection capability. As a result, a common way to solve this problem
is thus taking into account of several coverage requirements and criteria, keeping
some redundant test cases in stead of removing all of them.

5.2.1.3 Grouping Passive Interoperability Test Cases

The test suite reduction techniques introduced in Section 5.2.1.2 however, do not
fit for passive interoperability testing. This is due to the fact that interoperability
testing involves a SUT that contains at least two IUTs. Normally, the behavior
of the SUT can be obtained by computing the global behavior of the IUTs. But
due to state explosion, coverage based test suite reduction by global behavior
calculation is difficult to realize.

In this chapter, we choose to use another strategy. We study the following
issue: We have a large set of test cases and we want to reduce the time of trace
verification in passive interoperability testing without sacrificing the property
verification capability. In interoperability testing in fact, it happens frequently
that several test cases concern the similar functionality. So they often share the
same preamble. Therefore, the idea is that: In stead of removing test cases from
a test suite, the method aims at integrating adequately all the individual passive
iop test cases PITCi into a global one – PITCG.

Suppose we have a passive iop test suite TS, which contains n PITCs. Each
PITCi (1 6 i 6 n) is in the form of a deterministic acyclic tree, associated with
attributes Passi, Inconclusivei and/or Faili on their trap states. PITCs group-
ing procedure is in fact constructing a global PITCG tree, which are composed
of all the transitions of all the PITCs. i.e., it contains the all the information in
each individual PITCi derived from the corresponding iop test purpose. More-
over, the point is that in this way, the common prefix shared by several test cases
will appear only once in the PITCG. Trace verification is thus turning to check
whether the recorded trace σ contains one or more branches of the PITCG tree
which are associated with Pass attribute. In other words, trace verification is to
traversing the trace only once against the global test case, i,e, all the test cases in
parallel. Moreover, as no test case is removed, the global test case has the same
non-interoperability detection power as the original unminimized test suite.

The detailed PITC integration procedure is as follows: Initially, the PITCG

is empty. We start by creating an initial root node PITCG
0 . Then, we pick up

one PITCi from the test suite TS. Then, according to certain order (breath-first
or depth-first for example, in this work more precisely in depth-first order), we

98 Conclusions

check all the transitions of PITCi from its initial state to see how they can be
integrated into the PITCG. We require that the global passive iop test case
PITCG must be able to:

1. Identify and associate with appropriate state any attribute information. i.e,
all the attributes Pass/Inconclusive/Fail in each individual PITC must be
kept for verdict assignment reason.

2. Associate all the states and transitions in each individual PITC with ap-
propriate position in the global passive iop test case.

3. Take into account the common preamble shared by several individual PITCs
only once.

In order to respect the above obligations and generate correctly the PITC, we
use a tuple (PITCCurrent

i , PITCCurrent
G) to indicate the current state in PITCi

under checking, and its corresponding position (state) in the global PITC where a
transition at PITCCurrent

i could be integrated. The way of integrating a transition
is done according to the following rules:

Rule 1

For a tuple (PITCCurrent
i , PITCCurrent

G), if (PITCCurrent
i , α, PITCNext

i) ∈ △P IT Ci

and (PITCCurrent
G , α, PITCNext

G) ∈ △P IT CG . i.e., a transition labeled by α al-
ready exists in the global PITC (It must have been generated in the global
PITC some time before). In this case there is no need to generate another tran-
sition labeled by α in the global PITC (Common prefix appears only once in
the global PITC). However, if PITCNext

i is associated with an attribute Passi,
Inconclusivei, or Faili, the attribute must be kept and associated to its appro-
priate state (state PITCNext

G , which is led by the transition label α) in the global
passive iop test case.

The rule is expressed below, where PITCNext
G .Attribute(PITCNext

i) means
that according to the attribute Passi, Inconclusivei, or Faili associated to
PITCNext

i , the same attribute will be associated to PITCNext
G as well.

(PITCCurrent
i , α, PITCNext

i) ∈ △P IT Ci

(PITCCurrent
G , α, PITCNext

G) ∈ △P IT CG

Attribute(PITCNext
i) ∈ {Passi, Inconclusivei, Faili}

P IT CNext
G

.Attribute(P IT CNext
i

)

Rule 2

At (PITCCurrent
G , PITCCurrent

i), if (PITCCurrent
i , α, PITCNext

i) ∈△P IT Ci , how-
ever (PITCCurrent

G , α, PITCNext
G) /∈ △P IT CG . It means that a transition labeled

Future Work 99

by α has not been generated in the global PITC yet. Then a new transition is cre-
ated in PITCG at its appropriate position. The same, if PITCNext

i is associated
with an attribute Accept or Refuse, the attribute must be kept and associated to
its corresponding state in the global passive iop test case.

(PITCCurrent
i , α, PITCNext

i) ∈ △P IT Ci

(PITCCurrent
G , α, PITCNext

G) /∈ △P IT CG

Attribute(PITCNext
i) ∈ {Passi, Inconclusivei, Faili}

(P IT CCurrent
G

,α,P IT CNext
G

)∈△P IT CG ,P IT CNext
G

.Attribute(P IT CNext
i

)

Therefore, the traversal of each test case is in fact a tree traversal, that in-
tegrates an individual PITC into the global tree. The procedure continues until
all the PITCs have been examined. After all the test cases have been processed,
we can obtain a global passive iop test case PITCG.

The PITC integration algorithm is written formally below:

In this thesis, we use the depth-first method to traverse the states and the
transitions of each PITC.

• Variables and functions for PITC grouping

– Endi: Boolean value. Endi == True means that all the transitions in
PITCi have been checked.

– PITCCurrent
i .trans: Return the transitions at state PITCCurrent

i .

– |PITCCurrent
i .trans|: Returns the number of transitions at the state

PITCCurrent
i .

– PITCCurrent
i .visited: A set that stores all the transitions that have

been checked.

– Branch: A stack to store branching states (states which contain more
than one transition). Each item in Branch is composed of (PITCCurrent

i ,
PITCCurrent

G). i.e., it stores a branching state of PITCi and its cor-
responding state in PITCG. The operations of Branch involves: Push
adds a new item to the top of Branch; Pop removes an item from the
top of Branch; Stacktop returns the value of the item from the top
position of Branch without deleting it.

– transitiongeneration (PITCCurrent
i , PITCCurrent

G , α) is a fonction that
implements the two rules Rule 1 and Rule 2 introduced above to
add a new transition in PITCG labeled by α. It takes three inputs:
PITCCurrent

G , PITCCurrent
i , as well as the currently checked transition

label α, and adds the transition according to Rule 1 or Rule 2.

100 Conclusions

Algorithm 5.1 Global Passive Iop Test Case PITCG Construction

Input : Test suite TS, which contains n PITCi (1 ≤ i ≤ n)
Output : The global passive iop test case PITCG

Initialization: PITCG = ∅;
create_node(PITCG, PITC0

G) //*Create the initial node in PITCG

forall the i = 1, ...n do

PITCCurrent
i ← PITC0

i , PITCCurrent
G ← PITC0

G

//*Global PITC constructrion begins from the initial node
Endi = False, PITCCurrent

i .visited = ∅
while not Endi do

//*Each transition in PITCi must be checked
PITCCurrent

i .trans
if | PITCCurrent

i .trans |== 1 then

a ← Γ(PITCCurrent
i)

transitiongeneration (PITCCurrent
i , PITCCurrent

G , a)
end

if | PITCCurrent
i .trans | > 1 then

if PITCCurrent
i /∈ Branch then

Push(Branch,(PITCCurrent
i , PITCCurrent

G))
end

if ∃a where a ∈ PITCCurrent
i .trans and a /∈ PITCCurrent

i .visited then

add (PITCCurrent
i .visited, a)

transitiongeneration (PITCCurrent
i , PITCCurrent

G , a)
end

else

Pop(Branch,(PITCCurrent
i ,PITCCurrent

G)), PITCCurrent
i .visited ←

∅
if Branch Ó= ∅ then

Stacktop(Branch)
end

else
Endi = True

end

end

end

else

if Branch Ó= ∅ then
Stacktop(Branch)

end

else
Endi = True

end

end

end

end

Future Work 101

The function transitiongeneration is written below:

Algorithm 5.2 Transition Generation Function in PITCG

Input : PITCCurrent
i , PITCCurrent

G , a
Output : PITCCurrent

i , PITCCurrent
G , PITCG

if (PITCCurrent
i , a, PITCNext

i) ∈ △P IT Ci and (PITCCurrent
G , a, PITCNext

G) /∈
△P IT CG then

createtransition (PITCCurrent
G , a, PITCNext

G)
end

if PITCNext
i ∈ {Passi,Inconclusivei Faili } where (PITCCurrent

i , a, PITCNext
i)

∈ △P IT Ci then

PITCNext
G .Attribute(PITCNext

G) where (PITCCurrent
G , a, PITCNext

G) ∈
△P IT CG

//* attributes information must be kept
end

PITCCurrent
i ← PITCNext

i where PITCCurrent
i , a, PITCNext

i) ∈ △P IT Ci

PITCCurrent
G ← PITCNext

G where PITCCurrent
G , a, PITCNext

G) ∈ △P IT CG

Return PITCCurrent
i , PITCCurrent

G , PITCG

This PITCs integration algorithm needs to check each transition of each PITC
once. Therefore it takes time proportional to the length of each PITC. i.e., the
algorithm takes time O(L) where L is the total number of transitions of all the
PITCs.

From a constructive point of view, the composition tree PITCG allows to
integrate graphically all the transitions in each individual PITC: We construct
an integrated iop test purposes composition tree incrementally by adequate inte-
gration of the transitions in each individual PITC. At last we obtain a global tree
produced by arranging all the transitions into a structured hierarchy, where all
the information of each PITC are kept, as well as the associated attributes. The
grouped passive iop test case allows parallel trace verification, which is explained
in the next subsection.

5.2.1.4 Trace Verification

The constructed global passive iop test case PITCG completely represents the
transitions of each PITC in a structural hierarchy. The common prefix shared by
several PITCs appear only once in the global iop test case, while all the attribute
information is kept to help emitting a verdict for each individual ITP. Another
objective of constructing the global passive iop test case PITCG is to support
parallel trace verification. i.e., the recorded trace σ needs to be traversed only
once against the PITCG to check the number of satisfied given iop test purposes.

102 Conclusions

As explained before, in passive testing, no assumption is made about the
moment when the recording of trace begins, and thus it is not necessarily the
initial state of the PITCG. To deal with this issue, we propose an algorithm
that aims at realizing trace verification against the global PITCG tree. Let us
consider the PITCG tree, which is in the form of a directional acyclic determin-
istic tree. It has one initial state qP IT CG

0 which may contain several transitions
to other states. The trap states of PITCG are associated with attributes Passi,
Inconclusivei, Faili of each PITCi. The idea is to find which of the branches
in PITCG are encompassed by the trace. To realize the trace verification, we
call Currently_Checked_States the set of states in PITC under current checking.
Initially, Currently_Checked_States contains only the initial state qP IT CG

0 . Then,
for each event a taken in order from the trace σ, we check whether a can be ac-
cepted by the states in the set Currently_Checked_States. If it is the case, these
states are replaced by the destination states led by a. The states that can not
be led by a are deleted (except for the initial state qP IT CG

0 , which will always be
kept in the set). The algorithm stops if all the events in the trace are checked,
or all the Pass attributes are reached (All the ITPs are satisfied). Each time an
attribute Passi (resp. Inconclusivei, Faili) is reached, it will be recorded in a
set Pass_set (resp. Inc_set, Fail_set) to help verdict assignment.

The trace verification algorithm is written formally below:

• Variables for trace analysis:

– Passi_reached, (resp. Inconclusivei_reached, Faili_reached): Boolean.
Passi_reached (resp. Inconclusivei_reached, Faili_reached) = True
means that the trace encompasses a branch in PITCG which is asso-
ciated with Passi (resp. Inconclusivei,Faili) attribute in the PITCG

graph.

– pick (σ): Take the first element from a trace σ.

– Pass_set (resp.Inc_set,Fail_set): The set which stores value of the at-
tributes Passi (resp. Inconclusivei,Faili) when Passi_reached (resp.
Inconclusivei_reached,Faili_reached)= True.

– n: the number of PITCs

After the execution of the trace verification algorithm, the sets of Boolean
values Pass_set, Inc_set and Fail_set will be returned. According to the values
stored in the sets, an appropriate verdict should be emitted for each corresponding
ITPi. The rule for verdict assignment is the same as introduced in Chapter 3.

Future Work 103

Algorithm 5.3 Trace verification
Input : Trace σ, PITCG

Output : Pass_set, Inc_set, Fail_set
Initialization: Currently_Checked_States = qP IT CG

0 , Passi_reached =
False, Inconclusivei_reached = False, Pass_set = ∅, Inc_set =
∅,Fail_set = ∅
while σ Ó= ∅ and not | Pass_set |== n do

pick (σ)
forall the state q in Currently_Checked_States do

if a ∈ Out(q) then

if q == qP IT C
0 then

add (Currently_Checked_States, p) where (qP IT CG
0 , a, p)

∈△P IT CG

end

else

q = p where (q, a, p)∈△P IT CG

end

end

if a /∈ Out(q) and q Ó= qP IT C
0 then

remove(Currently_Checked_States, q)
end

if q == Passi then
Passi_reached = True, add(Pass_set, Passi_reached)
if | Pass_set |== n then

exist //* exit from the for loop
end

end

if q == Inconclusivei then
Inconclusivei_reached = True, add(Inc_set,
Inconclusivei_reached)

end

if q == Faili then
Faili_reached = True, add(Fail_set, Faili_reached)

end

end

end

Return Pass_set, Inc_set, Fail_set

104 Conclusions

5.2.1.5 Results

The proposed passive iop test cases grouping algorithm aims at constructing
a global passive iop test case incrementally by appropriate integration of the
transitions of each individual test case. It contains all the behavior to be observed,
which is calculated from different given test requirements. In interoperability
testing, common prefix appear very often when similar functionalities are to be
tested. One of the objectives of algorithm is therefore to merge the common
prefix shared by several PITCs. Moreover, the procedure of trace verification is
then executed only once to verify the number of the satisfied ITPs

By integrating individual passive iop test cases, the time for trace verification
is reduced.

If we analyze in a general way, the time complexity for verifying a trace σ
against one PITC is O(M×N), where M is the length of the trace, N the number
of states in the corresponding PITC which are currently under checking. There-
fore, if there are n PITCs to verify, we need time n×O(M×N). By integrating
adequately all the PITCs into a global one, in stead of executing n times trace
verification for n PITCs, trace verification is executed only once to verify if it
satisfies one or more ITPs. We need time O(L) for PITCs integration where L is
the sum of all the transitions contained in all the PITCs. The time complexity for
trace verification is still O(M×N). Therefore totally we need O(L) + O(M×N)
time by using this method, which is less than n×O(M×N) (i.e., the time needed
for verifying the trace against the PITCs one by one.)

If we analyze in a more detailed way. Suppose there are n PITCs to verify.
If the trace verification is carried out in a sequential way, n PITCs needs n
traversal of the trace. Let| Ti |be the number of the states that are actually
traversed in PITCi after it is executed on the trace σ. After n times trace
verification, the traversed states in all the PITCs are therefore

∑n
i=1(| Ti |). Then,

as the initial state of each PITC is checked at the beginning of trace verification,
we need n time units to read n initial states. At last, let | σi |be the time
needed for traversing the trace for verifying PITCi (the number of the events
in the trace that are traversed). The time used for n times trace traversing
is thus

∑n
i=1(| σi |). Therefore, the total time used for trace verification is:

T_sequential_trace_verification =
∑n

i=1(| Ti |) + n +
∑n

i=1(| σi |) . Note that it
is often that the whole trace has to be traversed. If the trace is long,

∑n
i=1(| σi |)

will be quite huge.

If we integrate the PITCs into a global PITCG. We first need time L for
PITCs integration where L is the sum of all the transitions contained in all the
PITCs. Then, let | TG | be the number of the transitions that are traversed in

Future Work 105

PITCG after it is executed on the trace σ. Indeed,| TG |is in the worst case
equal to

∑n
i=1(| Ti |) if no PITCs share the common prefix. On the contrary,

if several PITCs share some common prefix, the common prefix will be merged
and appears only once in the PITCG, therefore | TG | is necessarily smaller than
∑n

i=1(| Ti |). Moreover, as the global PITC has only initial state, at the beginning
we only need to read it once. At last, the time need for traversing the trace is
| pref(σ) |≤| σ | and in the worst case the length of the trace | σ |. The total time
used for trace verification is therefore T_global = L + | TG | + 1 +| pref(σ) |,
which is generally much smaller than T_sequential_trace_verification because:
(i)| pref(σ) |<<

∑n
i=1(| σi |). (ii) In passive iop testing, a trace is generally very

long, sometimes even lasts for days. L is normally smaller than the length of the
trace.

Moreover, the global passive iop test case PITCG has the same capability
of non interoperability detection as sequential PITC verification: In fact, the
global passive iop test case contains all the information (transitions, necessary
observations, etc) and attributes of each individual PITC. In other words, all the
behavioral information is integrated in a structural hierarchy in order to support
parallel verification. No test case is removed.

Example 5.1

Figure 5.1: An example of PITC grouping

To clarify the idea, Fig.5.1 shows an example: Fig.5.1-(a)illustrates three individ-
ual PITCs. The global PITCG aims at integrating all the states and transitions
in individual PITCs. More specifically, after the PITC grouping algorithm, the
three individual PITCs should be grouped into one global PITCG (cf. Fig.5.1-

106 Conclusions

(b)) in such a way that common prefix L1!a L2!b shared by PITC1 and PITC2

have been merged and appear only once in PITCG. Meanwhile, all the transi-
tions in each PITC and their attributes are preserved in the PITCG. In other
words, each PITC is a sub tree of PITCG. Their behavioral information is ar-
ranged compositionally that supports parallel trace verification. i.e., recorded
trace needs to be traversed only once to check how many iop test purposes are
satisfied.

In this example, suppose the recorded trace is: L1!a, L2!b, L1!e, L1!b, L1!a,
L2!g, L1!b, L2!e. The comparison of sequential trace verification (by using the
algorithm proposed in Chapter 3 for general protocols) against parallel trace
verification is shown in Table 5.1.

Currently
checked states

in PITC1

Currently
checked states

in PITC2

Currently
checked states

in PITC3

Currently
checked states

in PITCG

{0} {0} {0} {0}
L1!a {0,1} {0,1} {0} {0,1}
L2!b {0,2} {0,2} {0} {0,2}
L1!e {0,Pass1} {0} {0} {0,Pass1}
L1!b {0} {0,1} {0,3}
L1!a {0,1} {0} {0,1}
L2!g {0,Inc2} {0} {0,Inc2}
L1!b {0} {0,1} {0,3}
L2!e {0} {0,Pass3} {0,Pass3}

Table 5.1: Trace verification comparison

If we verify the three PITCs on the trace one by one, and suppose the time
to read each state is constant, and is equals to 1 time unit. we need 7 time
units for PITC1, 13 for PITC2, and 12 for PITC3. Therefore the total time
needed is 32 time units. But if we group the three PITCs and verify the trace
on the global PITCG, we need 27 time units (10 to group PITCs, 17 for trace
verification). In fact, the common prefix L1!a, L2!b shared by PITC1 and PITC2

are integrated and appear only once in PITCG. But as all the attributes are kept,
an appropriate verdict can be given to each PITC. In this example for instance,
after verifying the trace against the PITCG, Pass1= Pass3 = True. i.e., ITP1

and ITP3 are satisfied. Therefore the verdict Pass is emitted for both ITP1

and ITP3. For ITP2 however, as Pass2 Ó= True while Inconclusive2= True, an
Inconclusive verdict is given. The results are the same if individual PITCs are
executed on the trace in a sequential way.

Future Work 107

5.2.2 Perspectives

Future work concerns the following aspects:

• In the previous chapters of this thesis, the trace verification is executed in a
sequential trace way, which may sometimes need a long time to realize. We
feel that test case grouping will improve the efficiency of trace verification.
This theory, although introduced in Section 5.2.1, has not yet been put into
real use. Future work will consider putting the test case grouping theory
into practice.

• In this thesis, the context of passive interoperability testing is the mostly
widely used one-to-one architecture – where there are two network com-
ponents in interaction. Although one-to-one is the most common context,
it is only a special case of interoperability testing. In reality, one-to-one
architecture is not always sufficient to meet the needs of test. For instance,
currently many protocols (such as SIP, HTTP, CoAP, etc...) involve the
use of proxies. To assure protocol implementations work well with proxy,
at least three IUTs are needed. Another example is in mobile IPv6 protocol,
there exist three different kinds of nodes (correspondent node, home agent
and mobile node) that need correct interaction. Therefore, in practice the
interoperability of more than two IUTs is needed.

However, more the number of IUTs in a SUT is, more complex the SUT
topology can be. In this case, to have a control of the whole SUT might be
difficult. Consequently, passive testing may be an appropriate strategy to
observe the behavior of each IUT. Currently, the notion of interoperability
in multi-iut context is yet to our knowledge still not formally defined. Future
work will consider extending passive interoperability testing solutions into
multi-iut domain.

• Due to the uncontrollable nature of passive testing, passive testing verdicts
often encounter a large number of Inconclusive verdicts. This issue was
discussed in Section 3.4.3 in Chapter 3. In fact, this thesis requires that a
test case should be sound, in the sense that interoperable IUTs cannot be
rejected. However in practice, a large number of Inconclusive verdicts may
sometimes be time-consuming to the testers, as post analysis is often needed
to further identify abnormal behavior. Therefore, a solution to refine test
verdicts should be worked out to make passive interoperability testing more
accurate.

108 Conclusions

• The passive interoperability testing method introduced in Chapter 4 targets
mainly request-response protocols. It will be considered to be extended to
other kinds of protocols, where the exchanged message patterns are more
complicated than request response. As for the testing tool ttproto, we
are thinking of implementing more test suites concerning other request-
response protocols than CoAP. And its application in future plugtests will
be considered.

Glossary

• API application programming interface

• ATS abstract test suite

• BUPT Beijing university of post and telecomunications

• CD coder-decoder

• CoAP constrained application protocol

• CoRE IETF constrained RESTful environments working group

• DECT digital enhanced cordless telecommunications

• DSRC dedicated short-range communications

• EDGE enhanced data rate for GSM evolution

• ETSI European telecommunications standards institute

• FIFO first in first out

• FSM finite state machine

• GSM global system for mobile communications

• HTTP hypertext transfer protocol

• IAP implementation Access Points

• ICMP Internet control message protocol

• ICS implementation conformance statement

• IETF Internet engineering task force

• IOLTS input output labled transition system

109

110 Conclusions

• iop interoperability

• IoT Internet of things

• IPSO Internet protocol for smart object communications

• IRISA institut de recherche en informatique et systèmes aléatoires

• ISDN integrated services data digital network

• ISO international standards organization

• IT information technology

• ITC interoperability test case

• ITP interoperability test purpose

• ITS interoperability test suite

• ITU international telecommunication union

• IUT implementation under test

• LI lower interface

• MTC main test component

• NAT network address translation

• OSI open systems interconnection

• PCO point of control and observation

• PO point of observation

• PITC passive interoperability test case

• Probe-IT pursuing roadmaps and benchmarks for the Internet of things

• REST representational state transfer

• RFC request for comments

• PTC parallel test component

• SA SUT adapter

• SIP session initiation protocol

Future Work 111

• SS7 signaling system number 7

• SUT system under test

• TCP transmission control protocol

• TLV type length value

• TTCN-3 testing and test control notation version 3

• TTL time to live

• ttproto testing tool prototype

• TS test system

• UDP user datagram protocol

• UI upper interface

• URI uniform resource identifier

• WAP wireless application protocol

112 Conclusions

List of Publications

Conference

• Nanxing Chen, César Viho: Passive Interoperability Testing for Request-
Response Protocols: Method, Tool and Application on CoAP Protocol. In
24th IFIP Int. Conference on Testing Software and Systems (ICTSS’12):
87-102, Aalborg, 2012.

• Nanxing Chen, César Viho: A Passive Interoperability Testing Approach
Applied to Constrained Application Protocol. 15th CFIP (Colloque franco-
phone sur l’ingénierie des protocoles) and 11th NOTERE (Nouvelles Tech-
nologies de la Répartition) NOTERE/CFIP, Anglet, 2012.

• Nanxing Chen, César Viho: A Methodology for Passive Interoperability
Testing: Application to SIP protocol. 11th African Conference on Research
in Computer Science and Applied Mathematics, Algiers, 2012.

• Nanxing Chen, César Viho: IoT Interoperability Testing: A Successful
Experience on CoAP Protocol Testing. 3rd International Conference on
the Internet of Things (IoT2012), Wuxi, 2012.

• Anthony Baire, César Viho, Nanxing Chen: Long-Term Challenges in TTCN-
3: a Prototype to Explore New Features & Concepts. In TTCN-3 User
Conference, Bangalore, 2012.

• Nanxing Chen, César Viho: An Approach to Passive Interoperability Test-
ing. Short paper in 23th IFIP Int. Conference on Testing Software and
Systems (ICTSS’11), Paris, 2011.

Journal

• Nanxing Chen, César Viho: A Passive Interoperability Testing Approach
Applied to the Constrained Application Protocol (CoAP). (Extended ver-

113

114 Conclusions

sion of CFIP 2012 paper) To appear in RNTI journal (Revue Nouvelles
Technologies de l’Information), 2013.

• Nanxing Chen, César Viho, Anthony Baire, Xiaohong Huang, Jiexi Zha:
Interoperability Testing for Internet of Things: Application on CoAP Pro-
tocol. (Extended version of IOT 2012 paper) To appear in Automatika
journal (Journal for Control, Measurement, Electronics, Computing and
Communications), 2013.

Bibliography

[1] ISO. Information Technology-open system interconnection Confor-
mance Testing methodology and framework-Parts 1-7. International
Standard ISO/IEC 9646/1-7,1994.

[2] D.Lee, A.N.Netravali, K.K.Sabnani, B.Sugla and A.John. Passive
testing and applications to network management. In International
Conference on Network Protocols, ICNP’97, pages 113-122. IEEE
Computer Society Press, 1997.

[3] R.E.Miller and K.A.Arisha. Fault Identification in Networks by Pas-
sive Testing. In 34th Simulation Symposium, SS’01, pages 277-284.
IEEE Computer Society Press, 2001.

[4] E.Bayse, A.Cavalli, M. Núñez and F.Zaidi. A passive testing ap-
proach based on invariants: application to the WAP. In Computer
networks, vol. 48, no.2, pages 247-266, 2005.

[5] M. Tabourier and A.Cavalli. Passive testing and application to the
GSM-MAP protocol. In Journal of Information and Software Tech-
nology 41(11), pages 813-821, Elsevier, 1999.

[6] F.Zaidi, A.Cavalli and E.Bayse. Network Protocol Interoperability
Testing based on Contextual Signatures. The 24th Annual ACM
Symposium on Applied Computing SAC’09, Hawaii, USA, March
9-12, 2009.

[7] R.E.Miller. Passive Testing of Networks Using a CFSM Specifica-
tion. Proceedings of the IEEE International Performance, Com-
puting and Communications Conferences, pages 111-116, February
1998.

[8] Y.Zhao, J.Wu and X.Yin. Online Test System, an Application of
Passive Testing in Routing Protocols Test. Proceedings of the Ninth
IEEE International Conference on Networks. ICON’01, pages 190-
195 , 2001.

115

116 Bibliography

[9] T.Kato, T. Ogish, H. Shinbo, Y.Miyake, A.Idoue and K. Suzuki.
Interoperability testing system of TCP/IP based system in opera-
tional environment. In Hasan Ural, Robert L. Probert, and Gregor
von Bochmann, editors, TestCom, volume 176 of IFIP Conference
Proceedings, page 143. Kluwer, 2000.

[10] L. Verhaard, J. Tretmans and P. Kars, Ed. Brinksma. On asyn-
chronous testing. In Gregor von Bockmann, Rachida Dssouli, and
Anindya Das, editors, Protocol Test Systems, volume C-11 of IFIP
Transactions, pages 55-66. North-Holland, 1992.

[11] Z.Wang, J.Wu and X.Yin. Towards interoperability test generation
of time dependant protocols: a case study. In Global Telecommu-
nications Conference, GLOBECOM’04, Dallas, Texas, Etats-Unis,
volume 2, pages 589-594, 2004.

[12] J.A. Arnedo, A. Cavalli and M.Núñez. Fast Testing of Critical Prop-
erties through Passive Testing. Lecture Notes on Computer Science,
volume. 2644/2003, pages 295-310, Springer, 2003.

[13] R.S.Boyer and J.S.Moore. A fast string searching algorithm. In Com-
munications of ACM 20, pages 762-772, 1977.

[14] E.Brinksma. A Theory for the Derivation of Tests. In S. Aggarwal
and K.Sabnani, editors, Proceedings of the eighth international con-
ference on protocol Protocol Specification, Testing and Verification,
pages 63-74, North Holland, 1988.

[15] K.El-Fakih, V.Trenkaev, N.Spitsyna and N.Yevtushenko. FSM
based interoperability testing methods for multi stimuli model. In
roland Groz and Robert M. Hierons, editors, TestCom, volume 2978
of Lecture Notes in Computer Science, pages 60-65. Springer, 2004.

[16] O. Koné and R.Castanet. Test generation for interworking systems.
In Computer Communications, Volume 23, Issue 7, pages 642-652,
2000.

[17] J.C.Fernandez, C.Jard, T.Jeron and C.Viho. Using on-the-fly veri-
fication techniques for the generation of test suites. In Rajeev Alur
and Thomas A.Henzinger, editors, Proceedings of the Eighth Inter-
national Conference on Computer Aided Verification CAV, volume
1102, pages 348-359, New Brunswick, NJ, USA/1996. Springer Ver-
lag.

Bibliography 117

[18] S.Seol, M.Kim, S.Kang and S.T.Chanson. Interoperability test gen-
eration and minimization for communication protocols based on the
multiple stimuli principle. IEEE Journal on selected areas in Com-
munications, 22 (10), pages 2062-2074, december 2004.

[19] A.Desmoulin and C.Viho. Automatic Interoperability Test Case
Generation Based on Formal Definitions. Lecture Notes in Computer
Science, Volume 4916/2008, pages 234-250, 2008.

[20] Z. Shelby, K. Hartke and B. Frank. Constrained application protocol
(CoAP), draft-ietf-core-coap-08, 2011.

[21] W. Colitti, K. Steenhaut, and N. De Caro. Integrating Wireless Sen-
sor Networks with the Web, in Extending the Internet to Low power
and Lossy Networks (IP+SN 2011), 2011.

[22] L. Atzori, A. Iera and G. Morabito. The Internet of Things: A
survey, Comput. Netw., vol. 54, pages 2787–2805, 2010.

[23] K. Hartke. Observing Resources in CoAP, draft-ietf-core-observe-04,
2012.

[24] S.Schulz, A.Wiles and S.Randall. TPLan-A notation for expressing
test purposes. ETSI, TestCom/FATES, LNCS 4581, pages.292-304,
2007.

[25] C. Bormann and Z. Shelby. Blockwise transfers in CoAP. draft-
ietfcore- block-05, 2012.

[26] Z. Shelby. CoRE Link Format. draft-ietf-core-linkformat-09, 2011.

[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1, 1999.

[28] A.Sabiguero, A.Baire, A.Boutet and C.Viho. Virtualized Interop-
erability Testing: Application to IPv6 Network Mobility. 18th
IFIP/IEEE International Workshop on Distributed Systems: Oper-
ations and Management, DSOM 2007, Proceedings 01/2007, 2007.

[29] R.M.Fuhrer. Sequential Optimization of Asynchronous and Syn-
chronous Finite-State Machines, Ph.D. thesis, Department of Com-
puter Science, Columbia University, 1999.

[30] R.T.Fielding. Architectural Styles and the Design of Network-based
Software Architectures, Doctoral dissertation, University of Califor-
nia, Irvine, 2000.

118 Bibliography

[31] W.Wong, J.Horgan, A.Mathur and A.Pasquini. Test set size mini-
mization and fault detection effectiveness: A case study in a space
application. Proceedings of the 21th Annual International Computer
Software and Application Conference, pages 522-528, 1997.

[32] G.Rothermel, M.J.Harrold, J.Ostrin and C.Hong. An empirical
study of the effects of minimization on the fault detection capa-
bilities of test suites. International Conference on Software Mainte-
nance, pages 34-43, 1998.

[33] D.Jeffrey and N. Gupta. Test suite reduction with selective redun-
dancy. ICSM’05. Proceedings of the 21st IEEE International Con-
ference on Software Maintenance, pages 549-558, 2005.

[34] M.P.E.Heimdahl and D.George. Test-suite reduction for model based
tests: effects on test quality and implications for testing. 19th In-
ternational Conference on Automated Software Engineering, pages
176-185, 2004

[35] O. Rafiq and R. Castanet. From conformance testing to interoper-
ability testing, in: Proceedings of the 3rd International Workshop
on Protocol Test System, 1990.

[36] N.Arakawa, M.Phalippou, N.Risser and T.Soneoka. Combination of
conformance and interoperability testing, V (C-10), in: M. Diaz, R.
Groz (Eds.), Formal Description Techniques, Elsevier, Amsterdam,
1993.

[37] J.Gadre, C.Rohrer, C.Summers and S.Symington, A COS Study of
OIS Interoperability. Computer Standards & Interfaces, 9, 217-237,
1990.

[38] D.Lee and M.Yannakakis. Principles and methods of testing finite
state machines - a survey. Proc. of the IEEE, vol.84, 1996.

[39] A.R. Cavalli, A.Benameur, W.Mallouli and K.Li, A Passive Testing
Approach for Security Checking and its Practical Usage for Web
Services Monitoring, invited paper, NOTERE 2009, 29-June 3-July,
2009, Montréal, Canada, 2009.

[40] R.E.Miller and K.A.Arisha. On fault location in networks by passive
testing. Proc of IEEE IPCCC 2000, pages 281-287, 2000.

Bibliography 119

[41] J.P.Baconnet, C.Betteridge, G.Bonnes F.Van den Berghe and
T.Hopkinson. Scoping further EWOS activity for interoperability
testing. Technical report EGCT/96/130 R1, EWOS, 1996.

[42] T. Walter, I. Schieferdecker, and J. Grabowski. Test Architectures
for Distributed Systems - State of the Art and Beyond. Testing of
Communicating Systems, IFIP TC6 11th International Workshop on
Testing Communicating Systems (IWTCS). Vol 131 of IFIP Confer-
ence Proceedings, pages 149-174, Kluwer, 1998.

[43] G.Bonnes. IBM OSI interoperability verification services. In IFIP
TC6 WG6.1 The 3rd International Workshop on Protocol Test Sys-
tem, 1990.

[44] G.S.Vermeer and H.Blik. Interoperability testing: Basis for the
acceptance of communicating systems. In Protocol Test Systems,
VI(C-19). Elsevier Science PUblisher B.V, 1994.

[45] M.Handley, H.Shulzrinne, E.Schooler and J.Rosenberg: SIP: Session
Initiation Protocol. Request For Comments (Proposed Standard)
2543, Internet Engineering Task Force, 1999.

[46] S.T.Eckmann, G.Vigna and R.A.Kemmerer: An Attack Language
for State-based Intrusion Detection. In: JCS’02, 2002.

[47] U.Gasser and J.Palfrey. Breaking down digital barriers: when and
how ICT interoperability drives innovation. 2007-2008.

[48] H.Van der Veer and A.Wiles. Achieving Technical Interoperabil-
ity–the ETSI Approach. ETSI White Paper No. 3, Third edition,
2008.

[49] D.Lee and M. Yannakakis. Principles and methods of testing finite
state machines - A survey. In Proceedings of the IEEE, volume 84,
pages 1090 - 1126, 1996.

[50] A.Petrenko. Fault model-driven test derivation from finite state
models: Annotated bibliography. In Franck Cassez, Claude Jard,
Brigitte Rozoy, and Mark Dermot Ryan. Modeling and Verification
of parallel Processes, 4th Summer School, MOVEP 2000, Nantes,
France, June 19-23, 2000, volume 2067 of Lecture Notes in Com-
puter Science, pages 196-205. Springer, 2000.

120 Bibliography

[51] I. Schieferdecker, B. Stepien and A. Rennoch. PerfTTCN, a TTCN
language extension for performance testing. Testing of Communicat-
ing Systems IFIP — The International Federation for Information
Processing 1997, pages 21-36, 1997.

[52] ZR.Dai, J.Grabowski and H.Neukirchen. TimedTTCN-3–A Real-
Time Extension for TTCN-3. Proceedings of the IFIP TC6/WG6
1 (14), pages. 407-424, 2002.

[53] A.Baire, C.Viho and N.Chen. Long-Term Challenges in TTCN-3: a
Prototype to Explore New Features & Concepts. In T3UC Confer-
ence, 2012.

[54] JD.Day and H.Zimmermann. The OSI reference model. Proceedings
of the IEEE, 1983.

[55] FJ.Lin, PM.Chu and MT.Liu. Protocol verification using reachabil-
ity analysis: the state space explosion problem and relief strategies.
In SIGCOMM ’87 Proceedings of the ACM workshop on Frontiers
in computer communications technology. pages 126-135, 1987.

[56] J.Grabowski, D.Hogrefe and G.Réthy, I.Schieferdecker. An introduc-
tion to the testing and test control notation (TTCN-3). Computer
Networks, Vol. 42, Issue 3, pages 375–403, 2003.

[57] ETSI. Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core Lan-
guage

[58] ETSI whitepaper. After 14 Years of Manual Interoperability Testing,
Finally the Process has been Automated. Teraquant Corporation.
2009.

[59] J.Shin and S.Kang. Interoperability test suite derivation for the
ATM/B-ISDN signaling protocol. Testing of Communicating Sys-
tems, vol.11, Kluwer Academic Publishers, Dordrecht, pages 313-
330, 1998.

[60] N.Griffeth, R.Hao, D.Lee and R.K.Sinha. Integrated system interop-
erability testing with applications to VoIP, IFIP TC6 WG6.1 Joint
international conference on formal description techniques for dis-
tributed systems and communication protocols and protocol speci-
fication, testing and verification, Pisa, Italy, 2000.

Bibliography 121

[61] C.Viho, S.Barbin and L.Tanguy. Towards a Formal Framework for
Interoperability Testing. Formal Techniques for Networked and Dis-
tributed Systems IFIP International Federation for Information Pro-
cessing, vol. 69, pages 53-68, 2002.

[62] S. Kang and M. Kim. Interoperability test suite derivation for sym-
metric communication protocols. In FORTE/PSTV’97 , 1997.

❙✉♠♠❛$②

❚❤✐# $❤❡#✐# ❢♦❝✉#❡# ♦♥ ✐♥$❡+♦♣❡+❛❜✐❧✐$② $❡#$✐♥❣✱ ✇❤✐❝❤ ❛✐♠# ❛$ ✈❡+✐❢②✐♥❣ $❤❛$ ❞✐✛❡+❡♥$

♥❡$✇♦+❦ ❝♦♠♣♦♥❡♥$# ❝♦♦♣❡+❛$❡ ❝♦++❡❝$❧② ❛♥❞ ♣+♦✈✐❞❡ ❡①♣❡❝$❡❞ #❡+✈✐❝❡#✳ ❙♣❡❝✐✜✲

❝❛❧❧②✱ ✇❡ ❛+❣✉❡ ❢♦+ $❤❡ ✉#❡ ♦❢ $❤❡ ♣❛##✐✈❡ $❡#$✐♥❣ ❛♣♣+♦❛❝❤❡#✱ ✇❤✐❝❤ ✐# ❜❛#❡❞ ♦♥❧②

♦♥ ♦❜#❡+✈❛$✐♦♥✳ ❚❤❡ ♥♦♥✲✐♥$+✉#✐✈❡ ♥❛$✉+❡ ♦❢ ♣❛##✐✈❡ $❡#$✐♥❣ ✐# #✉✐$❛❜❧❡ ❢♦+ ✐♥$❡+♦♣✲

❡+❛❜✐❧✐$②✱ ❛# ✐$ ❞♦❡# ♥♦$ ❞✐#$✉+❜ $❤❡ ♥♦+♠❛❧ ♦♣❡+❛$✐♦♥ ♦❢ $❤❡ ✐♠♣❧❡♠❡♥$❛$✐♦♥# ✉♥❞❡+

$❡#$ ✭■❯❚✮✳ ❚❤✐# ❢❡❛$✉+❡ ♠❛❦❡# ✐$ ❛♥ ❛♣♣+♦♣+✐❛$❡ #♦❧✉$✐♦♥ ❢♦+ $❡#$✐♥❣ ✐♥ ♦♣❡+❛$✐♦♥❛❧

❡♥✈✐+♦♥♠❡♥$#✳ ❚❤✐# $❤❡#✐# ♣+♦♣♦#❡# ❛ ♣❛##✐✈❡ ✐♥$❡+♦♣❡+❛❜✐❧✐$② $❡#$✐♥❣ ♠❡$❤♦❞♦❧♦❣②

❤❛# ❜❡❡♥ ♣+♦♣♦#❡❞ ❜❛#❡❞ ♦♥ ❢♦+♠❛❧ ♠♦❞❡❧#✳ ❚❤✐# ♠❡$❤♦❞ ❛✐♠# ❛$ ❝❤❡❝❦✐♥❣ ❛ #❡$

♦❢ ♣+❡✲#❡❧❡❝$❡❞ $❡#$ ♣✉+♣♦#❡# ❛❣❛✐♥#$ ♦❜#❡+✈❡❞ ❜❡❤❛✈✐♦+# ♦❢ ✐♥$❡+❛❝$✐♥❣ ■❯❚#✳ ❆♥

❛✉$♦♠❛$✐❝ $❡#$ ❝❛#❡ ❣❡♥❡+❛$✐♦♥ ❛❧❣♦+✐$❤♠ ❛♥❞ ❛ $+❛❝❡ ✈❛❧✐❞❛$✐♦♥ ❛❧❣♦+✐$❤♠ ✇❡+❡

♣+♦♣♦#❡❞✳ ■$ ❛❧#♦ ❛❞❞+❡##❡# $❤❡ ✐##✉❡ ♦❢ ✈❡+❞✐❝$ ❛##✐❣♥♠❡♥$✳ ❋✉+$❤❡+♠♦+❡✱ ❢♦❝✉#✐♥❣

♦♥ +❡D✉❡#$✲+❡#♣♦♥#❡ ♣+♦$♦❝♦❧#✱ ✇❤✐❝❤ ❛+❡ ❛ ✇✐❞❡❧② ✉#❡❞ ❝❛$❡❣♦+② ♦❢ ♣+♦$♦❝♦❧#✱ ❛♥✲

♦$❤❡+ ♠❡$❤♦❞ ❤❛# ❜❡❡♥ ✇♦+❦❡❞ ♦✉$ $♦ ❝❛++② ♦✉$ ✐♥$❡+♦♣❡+❛❜✐❧✐$② $❡#$✐♥❣ ❜② ✉#✐♥❣

♣❛##✐✈❡ $❡❝❤♥✐D✉❡✳ ❆♥ ❛##♦❝✐❛$❡❞ $❡#$✐♥❣ $♦♦❧ ❤❛# ❛❧#♦ ❜❡❡♥ ♣+♦♣♦#❡❞ $♦ ❛✉$♦♠❛$❡

$❤❡ $❡#$#✳ ❚❤❡ $❡#$✐♥❣ ♠❡$❤♦❞ ❛♥❞ $♦♦❧ ❤❛✈❡ ❜❡❡♥ #✉❝❝❡##❢✉❧❧② ❛♣♣❧✐❡❞ ✐♥ $❤❡ ❊❚❙■

F❧✉❣$❡#$# ❡✈❡♥$# ♦♥ ❈♦♥#$+❛✐♥❡❞ ❆♣♣❧✐❝❛$✐♦♥ F+♦$♦❝♦❧ ✭❈♦❆F✮ ✐♥ $❤❡ ❝♦♥$❡①$ ♦❢

$❤❡ ■♥$❡+♥❡$ ♦❢ ❚❤✐♥❣#✳ ❘❡#✉❧$# #❤♦✇✐♥❣ $❤❡ ✐♥$❡+❡#$ ❛♥❞ ❡✣❝✐❡♥❝② ♦❢ $❤❡ ♣+♦♣♦#❡❞

#♦❧✉$✐♦♥# ❛♥❞ ❛##♦❝✐❛$❡❞ $♦♦❧# ❛+❡ ♣+❡#❡♥$❡❞✳

❑❡②✇♦%❞'✿ ❆✉$♦♠❛$✐❝ $❡#$ ❣❡♥❡+❛$✐♦♥✱ ❈♦❆F✱ ✐♥$❡+♦♣❡+❛❜✐❧✐$② $❡#$✐♥❣✱ ■❖▲❚❙✱

♣❛##✐✈❡ $❡#$✐♥❣✱

❘'(✉♠'

❈❡$$❡ $❤L#❡ $+❛✐$❡ ❞✉ $❡#$ ❞✬✐♥$❡+♦♣N+❛❜✐❧✐$N✱ D✉✐ ✈✐#❡ O ✈N+✐✜❡+ D✉❡ ❧❡# ❞✐✛N+❡♥$#

❝♦♠♣♦#❛♥$# ❞✬✉♥ +N#❡❛✉ ✐♥$❡+❛❣✐##❡♥$ ❝♦++❡❝$❡♠❡♥$ ❡$ ❢♦✉+♥✐##❡♥$ ❞❡# #❡+✈✐❝❡# ❛$✲

$❡♥❞✉#✳ F❧✉# ♣+N❝✐#N♠❡♥$✱ ♦♥ #✬✐♥$N+❡##❡ ❛✉① ❛♣♣+♦❝❤❡# ❞✐$❡# ❞❡ $❡#$ ♣❛##✐❢✱ D✉✐

#♦♥$ ❜❛#N❡# ✉♥✐D✉❡♠❡♥$ #✉+ ❧✬♦❜#❡+✈❛$✐♦♥✳ ▲❡ ❝❛+❛❝$L+❡ ♥♦♥ ✐♥$+✉#✐❢ ❞✉ $❡#$ ♣❛##✐❢

+❡♥❞ ❝❡$$❡ $❡❝❤♥✐D✉❡ ❛♣♣+♦♣+✐N❡ ♣♦✉+ ❧❡ $❡#$ ❞✬✐♥$❡+♦♣N+❛❜✐❧✐$N✱ ❝❛+ ✐❧ ♥❡ ♣❡+$✉+❜❡

♣❛# ❧❡ ❢♦♥❝$✐♦♥♥❡♠❡♥$ ♥♦+♠❛❧ ❞❡# ✐♠♣❧N♠❡♥$❛$✐♦♥# #♦✉# $❡#$ ✭■❯❚✮✳ ❈❡❧❛ ♣❡+♠❡$

❛✉ $❡#$ ❞✬P$+❡ ❡✛❡❝$✉N ❞❛♥# ❧❡# ❡♥✈✐+♦♥♥❡♠❡♥$# ♦♣N+❛$✐♦♥♥❡❧#✳ ❉❛♥# ❝❡$$❡ $❤L#❡✱

♥♦✉# ♣+♦♣♦#♦♥# ✉♥❡ ♠N$❤♦❞❡ ♣♦✉+ ❡✛❡❝$✉❡+ ❧❡ $❡#$ ❞✬✐♥$❡+♦♣N+❛❜✐❧✐$N ❡♥ ✉$✐❧✐#❛♥$

❧❛ $❡❝❤♥✐D✉❡ ❞✉ $❡#$ ♣❛##✐❢ ❡$ ❜❛#N❡ #✉+ ❧❡# ♠♦❞L❧❡# ❢♦+♠❡❧#✳ ❊❧❧❡ ✈✐#❡ O ✈N+✐✜❡+

✉♥ ❡♥#❡♠❜❧❡ ❞✬♦❜❥❡❝$✐❢# ❞❡ $❡#$ ♣+N#N❧❡❝$✐♦♥♥N# #✉+ ❧❛ $+❛❝❡ +N❡❧❧❡ ♦❜#❡+✈N❡ ❞❡# ✐♥✲

$❡+❛❝$✐♦♥# ❞❡# ■❯❚✳ ❯♥ ❛❧❣♦+✐$❤♠❡ ❞❡ ❣N♥N+❛$✐♦♥ ❞❡ ❝❛# ❞❡ $❡#$ ❛✉$♦♠❛$✐D✉❡ ❛✐♥#✐

D✉✬✉♥ ❛❧❣♦+✐$❤♠❡ ❞❡ ✈❛❧✐❞❛$✐♦♥ ❞❡ $+❛❝❡ #♦♥$ N❣❛❧❡♠❡♥$ ♣+♦♣♦#N#✳ ◆♦✉# $+❛✐$♦♥#

N❣❛❧❡♠❡♥$ ❧❡ ♣+♦❜❧L♠❡ D✉❡ ♣♦#❡ ❞❡ ❧✬N♠✐##✐♦♥ ❞❡# ✈❡+❞✐❝$#✳ F♦✉+ ❧❡# ♣+♦$♦❝♦❧❡#

❞❡ +❡D✉P$❡✲+N♣♦♥#❡✱ $+L# ❧❛+❣❡♠❡♥$ ✉$✐❧✐#N# ❛❝$✉❡❧❧❡♠❡♥$✱ ✉♥❡ ❛✉$+❡ ♠N$❤♦❞❡ ❛ N$N

♣+♦♣♦#N❡ ♣♦✉+ +N❛❧✐#❡+ ❞❡# $❡#$# ❞✬✐♥$❡+♦♣N+❛❜✐❧✐$N ❡♥ ✉$✐❧✐#❛♥$ ❧❛ $❡❝❤♥✐D✉❡ ♣❛##✐✈❡✳

❯♥ ♦✉$✐❧ ❞❡ $❡#$ ❛##♦❝✐N ❛ N❣❛❧❡♠❡♥$ N$N ❞N✈❡❧♦♣♣N ❛✜♥ ❞✬❛✉$♦♠❛$✐#❡+ ❧❡# $❡#$#✳ ▲❛

♠N$❤♦❞❡ ❞❡ $❡#$ ❡$ ❧✬♦✉$✐❧ ♦♥$ N$N ✉$✐❧✐#N# ❛✈❡❝ #✉❝❝L# ❧♦+# ❧❡# N✈N♥❡♠❡♥$# ♣❧✉❣$❡#$#

❞❡ ❧✬❊❚❙■ #✉+ ❧❡ ♣+♦$♦❝♦❧❡ ❈♦❆F ✭❈♦♥#$+❛✐♥❡❞ ❆♣♣❧✐❝❛$✐♦♥ F+♦$♦❝♦❧✮ ❞❛♥# ❧❡ ❝♦♥✲

$❡①$❡ ❞❡ ❧✬■♥$❡+♥❡$ ❞❡# ♦❜❥❡$#✳ ▲❡# +N#✉❧$❛$# ♠♦♥$+❛♥$ ❧✬✐♥$N+P$ ❡$ ❧✬❡✣❝❛❝✐$N ❞❡#

#♦❧✉$✐♦♥# ♣+♦♣♦#N❡# ❡$ ❞❡# ♦✉$✐❧# ❝♦++❡#♣♦♥❞❛♥$# #♦♥$ ♣+N#❡♥$N#✳

▼♦*'✲❝❧.'✿ ❈♦❆F✱ $❡#$ ❞✬✐♥$❡+♦♣N+❛❜✐❧✐$N✱ $❡#$ ♣❛##✐❢✱ ■❖▲❚❙✱ ❣N♥N+❛$✐♦♥ ❛✉$♦♠❛✲

$✐D✉❡

