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La segmentation d'images est un domaine important dans le traitement d'image et un grand nombre d'approches diérentes ont été développées pendant ces dernières décennies. L'approche des contours actifs est une des plus populaires. Dans ce cadre, cette thèse vise à développer des algorithmes robustes, qui peuvent segmenter des images avec des inhomogénéités d'intensité. Nous nous concentrons sur l'étude des énergies externes basées région dans le cadre des ensembles de niveaux. Précisément, nous abordons la diculté de choisir l'échelle de la fenêtre spatiale qui dénit la localité. Notre contribution principale est d'avoir proposer une échelle adaptative pour les méthodes de segmentation basées sur les statistiques locales. Nous utilisons l'approche d'Intersection des Intervalles de Conance pour dénir une échelle position-dépendante pour l'estimation des statistiques image. L'échelle est optimale dans le sens qu'elle donne le meilleur compromis entre le biais et la variance de l'Approximation polynomiale locale de l'image observée conditionnellement à la segmentation actuelle. De plus, pour le model de segmentation basé sur une interprétation Bayésienne avec deux noyaux locaux, nous suggérons de considérer leurs valeurs séparément. Notre proposition donne une segmentation plus lisse avec moins de délocalisations que la méthode originale. Des expériences comparatives de notre proposition à d'autres méthodes de segmentation basées sur des statistiques locales sont eectuées. Les résultats quantitatifs réalisés sur des images ultrasonores de simulation, montrent que la méthode proposée est plus robuste au phénomène d'atténuation. Des expériences sur des images réelles montrent également l'utilité de notre approche.

List of tables 2.1 Common exponential families studied in [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF]. See [START_REF] Wikipedia | Exponential family wikipedia, the free encyclopedia[END_REF] for more examples. .

Speed expressions of the examples of exponential distributions shown in

Table 2.1, when minimising the anti log-likelihood associated energy with the ML parameters estimation [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF]. . . . . . . . . . . . . . . . . . . . . . . 1, the optimal scale should be between σ p = 14 and 7 ; while for ini. 2, none of these scales led to an acceptable result. . . . . . . . . . . . . . . . . . . . 

4.2

Examples of optimal neighbourhoods obtained by the LPA-ICI rule using sectorial kernels [START_REF] Foi | A novel anisotropic local polynomial estimator based on directional multiscale optimizations[END_REF]. Any two dierent sectors overlap only in the central point. Notice that the shape and the size of estimated windows are well adapted to image content at dierent pixel locations. This anisotropic kernel ensures the LPA-ICI lter to average only i.i.d. observations. . . . . . . . . . 4.3 Image denoising example using the NLM and the anisotropic LPA-ICI. From left to right : the noisy image with SNR=14dB, the NLM and the anisotropic LPA-ICI denoising results. For the NLM, σ s = 2, the similarity window τ = 5, and σ 2 I = 0.9 σ 2 , where σ 2 is the estimated noise variance from the observed image. For the anisotropic LPA-ICI, the optimal scale is chosen from the set h = [START_REF] Adams | Seeded region growing[END_REF][START_REF] Amini | Using dynamic programming for solving variational problems in vision[END_REF][START_REF] Aubert | Mathematical problems in image processing : partial dierential equation and the calculus of variations[END_REF][START_REF]Phase-based level set segmentation of ultrasound images[END_REF][START_REF] Boukerroui | On the choice of band-pass quadrature lters[END_REF][START_REF] Brusseau | Fully automatic luminal contour segmentationin intracoronary ultrasound imaging a statistical approach[END_REF], the parameter Γ controls the trade-o between bias and variance is 1.05, and the directional resolution is 8. . . . . . . . . . . . . where x are within a narrow band. The colourbar indicates the values of h(x). Image size is 128 × 128, and h = [START_REF] Ayed | Multiregion level-set partitioning of synthetic aperture radar images[END_REF][START_REF] Belaid | Implicit active contours for ultrasound images segmentation driven by phase information and local maximum likelihood[END_REF][START_REF] Benz | Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[END_REF][START_REF] Blake | Active Contours[END_REF][START_REF] Bosch | Automatic segmentation of echocardiographic sequences by active appearance motion models[END_REF][START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF][START_REF] Boukerroui | Segmentation of echocardiographic data. multiresolution 2D and 3D algorithm based on gray level statistics[END_REF][START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF][START_REF] Bridal | Milestones on the road to higher resolution, quantitative, and functional ultrasonic imaging[END_REF][START_REF] Brusseau | Fully automatic luminal contour segmentationin intracoronary ultrasound imaging a statistical approach[END_REF][START_REF] Canny | A computational approach to edge detection[END_REF][START_REF] Chan | Active contours without edges[END_REF][START_REF] Chu | The integration of image segmentation maps using region and edge information[END_REF][START_REF] Comaniciu | Robust real-time myocardial border tracking for echocardiography : An information fusion approach[END_REF][START_REF] Demarcq | The color monogenic signal : Application to color edge detection and color optical ow[END_REF][START_REF] Dutt | Statistical anlysis of ultrasound echo envelop[END_REF][START_REF] Felsberg | The monogenic signal[END_REF][START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF][START_REF] Gong | Parametric shape modeling using deformable superellipses for prostate segmentation[END_REF][START_REF] Haris | Hybrid image segmentation using watersheds and fast region merging[END_REF][START_REF] Jehan-Besson | DREAM2S : deformable regions driven by an Eulerian accurate minimization method[END_REF][START_REF] Katkovnik | From local kernel to nonlocal multiple-model image denoising[END_REF]. . . . . . . . . . . . . . . . . . .

4.5

The kernels g h of the smoothing lters in Eq. (4.15). From left to right, g h are designed with a symmetric rectangular window and a Gaussian window (w h ) of the orders m = 0 (blue continues lines) and m = 2 (red dotted lines).

Notice that the increase of m reduces the bandwidth of these low-pass lters.

4. [START_REF] Amini | Using dynamic programming for solving variational problems in vision[END_REF] The contribution of bias m 2 J h and variance σ 2

J h
to the mean-square risk r J h .

The ideal scale h * corresponds to the minimal r J h . . . . . . . . . . . . . . . . Piovano's model [START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF], ε = 0.5. Bottom two rows : the proposed one [START_REF] Yang | Optimal spatial adaptation for local region-based active contours : An intersection of condence intervals approach[END_REF], Γ = 2.5. From left to right : the curve evolution from the initial contour to the nal contour with the corresponding estimated h. Image size 128 × 128, h is the same set used in Fig. 4.12. . . . . . . . . . . . . . . . . . . . . . . . 

Notations and Symbols

We tried to use, as much as possible, well-known notational symbology. Nevertheless, we declare some of them here below : partitioning Ω into disjoint subsets {Ω r }, r = 1, . . . , N , which satisfy [START_REF] Horowitz | Picture segmentation by a tree traversal algorithm[END_REF] :

1. N r=1 Ω r = Ω ; 2. Ω a Ω b = ∅, ∀a = b ; 3. P (Ω r ) = true, ∀r ; 4. P (Ω a Ω b ) = false, ∀a = b.
P (•) is a logical predicate dened on groups of connected pixels.

After segmentation, an observed image is converted to a more meaningful partition. Therefore, segmentation is considered as building a connection between low level information and objects, and in this sense it is closely related to the issue of object recognition in computer visions.

Image segmentation is usually considered as an initial and vital step to further image analysing and understanding in various application domains. For example, segmentation is used to classify earth surface images acquired by satellite into roads, forests, houses and so on [START_REF] Benz | Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[END_REF] ; in diagnostic imaging, segmentation helps to automate or facilitate the delineation of anatomical structures [START_REF] Pham | Current methods in medical image segmentation[END_REF][START_REF] Noble | Ultrasound image segmentation : A survey[END_REF] ; motion and spatio-temporal segmentation techniques are developed for moving objects [START_REF] Zhang | Segmentation of moving objects in image sequence : A review[END_REF]. Segmentation can also be used in content-based image retrieval [START_REF] Lew | Content-based multimedia information retrieval : State of the art and challenges[END_REF], machine recognition of faces [START_REF] Zhao | Face recognition : A literature survey[END_REF] and identifying ngerprints [START_REF] Maltoni | Handbook of ngerprint recognition[END_REF].

Generally speaking, the detection, extraction and analysis of objects of interest are inseparable from image segmentation. Image segmentation has been extensively researched, and the literature can be classied mainly based on image information on two major categories, namely edge-based methods and region-based methods [START_REF] Fu | A survey on image segmentation[END_REF][START_REF] Pal | A review on image segmentation techniques[END_REF][START_REF] Sonka | Image Processing, Analysis, and Machine Vision[END_REF][START_REF] Gonzalez | Digital image processing[END_REF][START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] 1 .

Edge-based methods : Edge-based segmentation methods, also known as edge detection, are somehow similar to the visual process of human, which is rst attracted by the fast changing area of a scene and by the intersection of dierent objects. The 1. The survey of this entire led is beyond the scope of this work. The proposed classication does not include hybrid techniques, most of which are based on the integration of edges and region-based methods [START_REF] Chu | The integration of image segmentation maps using region and edge information[END_REF][START_REF] Haddon | Image segmentation by unifying region and boundary information[END_REF][START_REF] Pavlidis | Integrating region growing and edge detection[END_REF][START_REF] Haris | Hybrid image segmentation using watersheds and fast region merging[END_REF][START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Szeliski | Computer Vision : Algorithms and Applications[END_REF].

position of an edge, in other words, the location of discontinuities in the geometry, is mathematically given by an extreme of the rst-order derivative of the image intensity function. Unfortunately, taking image derivatives leads to accentuate high frequencies, and hence amplies noise. It is therefore prudent to smooth the image with a low-pass lter prior to compute the gradient. Considering the response of edge detectors should be independent of orientation, an isotropic smoothing lter is desirable. The Gaussian lter is mostly used, while alternative ones are proposed by a number of literature [START_REF] Canny | A computational approach to edge detection[END_REF][START_REF] Deriche | Using Canny's criteria to derive a recursively implemented optimal edge detector[END_REF][START_REF] Freeman | The design and use of steerable lters[END_REF][START_REF] Ziou | Edge detection techniques : An overview[END_REF][START_REF] Papari | Edge and line oriented contour detection : State of the art[END_REF]. As an alternative approach to nd the maxima in the gradient magnitude, edges can be detected by looking for zero crossings of the second-order derivatives, for example using the Laplacian of Gaussian or the Dierence of Gaussians [START_REF] Marr | Theory of edge detection[END_REF]. Haralick's facet model also uses this detection mechanism [START_REF] Haralick | Digital step edges from zero-crossings of second directional derivative[END_REF]. It is also important to note that a more general formalism of features detection of any type of discontinuity (not only step edges) exists in the literature. Such model has been widely studied after the publication of the local energy model [START_REF] Morrone | Feature detection from local energy[END_REF]. It postulates that the discontinuities can be dened and classied by using their local phase. This observation led to the development of a number of detection algorithms based on the local phase information (see eg. [START_REF] Felsberg | The monogenic signal[END_REF][START_REF]The monogenic scale-space : A unifying approach to phase-based image processing in scale-space[END_REF][START_REF] Kovesi | Image features from phase congruency[END_REF][START_REF] Granlund | Signal processing for computer vision[END_REF][START_REF] Boukerroui | On the choice of band-pass quadrature lters[END_REF][START_REF] Wietzke | 2D image analysis by generalized Hilbert transforms[END_REF][START_REF] Demarcq | The color monogenic signal : Application to color edge detection and color optical ow[END_REF]).

Classical edge-based segmentation methods, however, cannot guarantee to have continuous and closed boundaries. Additionally, a fundamental property of edges operators is that they are dened with respect to certain spatial sizes. Therefore, to deal with noisy and physically corrupted data is usually a limitation of single scale methods. To gure out these diculties, common solutions may include for instance, scale selection and blur estimation algorithms [START_REF] Witkin | Scale-space ltering a new approach to multi-scale description[END_REF]125,[START_REF] Elder | Local scale control for edge detection and blur estimation[END_REF][START_REF] Olson | Adaptive-scale ltering and feature detection using range data[END_REF], statistical models based detection [START_REF] Konishi | Statistical edge detection : Learning and evaluating edge cues[END_REF], linear scale space methods [START_REF] Lindeberg | Scale-Space Theory in Computer Vision[END_REF] and non-linear diusion techniques that preserve edges [START_REF] Perona | Scale-space and edge detection using anisotropic diusion[END_REF][START_REF] Weickert | Anisotropic Diusion in Image Processing[END_REF][START_REF] Weickert | Ecient and reliable schemes for nonlinear diusion ltering[END_REF].

Region-based methods : Region-based segmentation methods concentrate on grouping image pixels based on a similarity measure of image features, rather than on detecting isolated points or discontinuities of image intensities. Most of these methods are statistical in nature. The simplest possible technique to segment a grey level image is histogram thresholding [START_REF] Gonzalez | Digital image processing[END_REF]. However, this algorithm, even with a globally optimised threshold, is rarely sucient as soon as the object of interest contains dierent grey level values or if the background is not uniform.

Formally, histogram thresholding belongs to a larger class of region-based segmentation methods called classication methods. They are based on the estimation of a density function of the observed image data or of a set of attributes (texture features for example) calculated from the observed image. This set of methods can also be classied based on the assumed probability density function, parametric or non-parametric, on the classication algorithm or whether prior is used to learn the classes. This class of methods is also called mode nding techniques and includes popular methods such as the k-means [START_REF] Macqueen | Some methods for classication and analysis of multivariate observations[END_REF][START_REF] Hartigan | Algorithm AS 136 : A k-means clustering algorithm[END_REF], mixture Models and Expectation-Minimisation methods (see eg. [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF]) and Mean shift methods [START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF][START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF].

An alternative to mode nding techniques, splitting algorithms [START_REF] Ohlander | Picture segmentation using a recursive region splitting method[END_REF] recursively divide an image into small pieces by region-based statistics, and region merginggrowing algorithms [START_REF] Brice | Scene analysis using regions[END_REF][START_REF] Chang | Adaptive image region-growing[END_REF][START_REF] Adams | Seeded region growing[END_REF] amalgamate pixels and regions in an hierarchical way.

Accordingly, it is possible to combine both splitting and merging in a medium-grain segmentation [START_REF] Horowitz | Picture segmentation by a tree traversal algorithm[END_REF][START_REF] Pavlidis | Integrating region growing and edge detection[END_REF], which partitions an image into connected subregions and groups neighbour parts sharing certain features. Recent contributions in this class of methods make also use of edge cues and generally exploit the image lattice as a graph [START_REF] Szeliski | Computer Vision : Algorithms and Applications[END_REF].

Region-and edge-based segmentation techniques rely on two dierent but complementary concepts. Schematically, region methods are less sensitive to noise and can model complex textures. Edge features are generally robust to low intensity inhomogeneities and have superior localisation properties. They are however very sensitive to image contrast and fail on images with a low signal to noise ratio or textured images. These observations have led to the development of new classes of methods that intrinsically integrates both region-and edge-based information. For instance, the introduction of active contour in segmentation has overcome many limitations of traditional methods. The following section will briey review their theories and developments.

Active contour models

The original formulation of active contour models, rst proposed in the late 80s [START_REF] Kass | Snakes : Active contour models[END_REF][START_REF] Terzopoulos | Constraints on deformable models : recovering 3D shape and nongrid motion[END_REF], is a mechanism to bring a certain degree of prior knowledge to bear on low-level image interpretation [START_REF] Morel | Variational Methods for Image Segmentation[END_REF][START_REF] Sethian | Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry[END_REF][START_REF] Osher | Geometric Level Set Methods in Imaging Vision and Graphics[END_REF]. These active contour models dene a simple closed curve C ⊂ Ω, and attempt to minimise an energy function associated to this current C as a sum of internal and external energies. Internal energies model the prior on the desirable solution in terms of smoothness, length, shapes and so on. External energies are imagedriven, which are supposed to be minimal when the regions inside and outside of C are statistically homogeneous. There exist two main families of external energies : edge-based and region-based. The latter relies on statistical modelling of the given image intensity.

It has been observed that region-based external energies outperform edge-based ones in most application domains. This is the case for example in medical applications. However, the snake model has several disadvantages because its external energy is basically an edge detector :

1. The capture range of the external force is small because the external force decreases rapidly at image positions far from the edges of objects of interest.

2. The external energy is sensitive to noise, which can lead to an undesirable local minimum.

Thus, it is necessary to place the initial contour close to the real boundaries. It is important to highlight that the choice of the sampling rule in space of the curve aects the performance of parametric active contours. A re-sampling step is necessary throughout the curve evolution process. Other limitations of parametric models include their inability to support topological changes and the increase of implementation diculties to their generalisation to higher dimensions. To solve these problems, many alternative parametric methods have been proposed [START_REF] Williams | A fast algorithm for active contours and curvature estimation[END_REF][START_REF] Mcinerney | Topologically adaptable snakes[END_REF][START_REF] Caselles | Geodesic active contours[END_REF][START_REF] Blake | Active Contours[END_REF].

A large number of researchers have studied the problem of sensitivity to the initial contour [START_REF] Cohen | On active contour models and balloons[END_REF][START_REF] Caselles | A geometric model for active contours in image processing[END_REF][START_REF] Malladi | Shape modeling with front propagation : A level set approach[END_REF][START_REF] Mcinerney | Topologically adaptable snakes[END_REF][START_REF] Xu | Snakes, shapes, and gradient vector ow[END_REF]. Among them, Cohen [START_REF] Cohen | On active contour models and balloons[END_REF] introduced a Balloon force in the external energy, which inates or deates the contour in order to prevent the contour being stuck at a local minima. This technique extends the external force to a much larger range over the image domain, and consequently the initial contour needs no longer to be very close to the desired solution. Xu and Prince [START_REF] Xu | Snakes, shapes, and gradient vector ow[END_REF] proposed the Gradient Vector Flow in order to make the information of the image gradient non-local. This method allows the image gradient to diuse. Thus, the active contour is able to segment non-convex objects.

Recent methods have also the ability to capture concavities and include the Charged-Particle Model [START_REF] Jalba | CPM : A deformable model for shape recovery and segmentation based on charged particles[END_REF], the Charged Active Contour based on Electrostatics [START_REF] Yang | A charged active contour based on electrostatics[END_REF] and the Vector Field Convolution (VFC) [START_REF] Li | Active contour external force using vector eld convolution for image segmentation[END_REF].

Regarding the second drawback of snakes, the combination of edge-based and regionbased external energies has been proposed by [START_REF] Ronfard | Region-based strategies for active contour models[END_REF][START_REF] Zhu | Region competition : Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation[END_REF]. Zhu and Yuille [START_REF] Zhu | Region competition : Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation[END_REF] presented a region competition method in a Bayesian framework which minimises a Minimum Description Length (MDL) criterion. As an alternative to the variational approach, Dynamic Programming minimisation strategies have also been applied. These techniques avoid the estimation of higher order derivatives and improve the numerical stability of the algorithm [START_REF] Amini | Using dynamic programming for solving variational problems in vision[END_REF][START_REF] Cohen | On active contour models and balloons[END_REF][START_REF] Williams | A fast algorithm for active contours and curvature estimation[END_REF][START_REF] Cohen | Finite-element methods for active contour models and balloons for 2D and 3D images[END_REF][START_REF] Ronfard | Region-based strategies for active contour models[END_REF][START_REF] Mcinerney | Topologically adaptable snakes[END_REF][START_REF] Zhu | Region competition : Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation[END_REF][START_REF] Xu | Snakes, shapes, and gradient vector ow[END_REF][START_REF] Giraldi | A boundary extraction method based on dual-T-snakes and dynamic programming[END_REF].

Geometric active contours

Geometric models implicitly represent the curve propagation as the zero level sets of a high-dimensional function. They allow for automatic topology changes, such as merging and splitting. The implicit formulation of snakes is introduced by Caselles et al. [START_REF] Caselles | A geometric model for active contours in image processing[END_REF] and Malladi et al. [START_REF] Malladi | Shape modeling with front propagation : A level set approach[END_REF]. These models are built on the curve evolution theory [START_REF] Sapiro | Ane invariant scale-space[END_REF]4,[START_REF] Kimia | Shapes, shocks, and deformations I : The components of two-dimensional shape and the reaction-diusion space[END_REF][START_REF] Kimmel | Finding shortest paths on surfaces using level sets propagation[END_REF] and level set methods [START_REF] Osher | Fronts propagating with curvature-dependent speed : Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Sethian | Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry[END_REF]. This implies that the evolution is independent of the parameterisation of the curve. The evolution speed of the curve is a function of the curvature and the image characteristics such as the gradient. Curvature acts as an internal force to regularise the contour. Oppositely, the data-driven external force makes the curve stop on the desired boundaries.

The authors in [START_REF] Caselles | Geodesic active contours[END_REF][START_REF] Yezzi | A geometric snake model for segmentation of medical imagery[END_REF] prove that the minimisation of the internal energy is equivalent to the minimal length of the contour in a Riemannian space. Niessen et al. [START_REF] Niessen | Geodesic deformable models for medical image analysis[END_REF] compared dierent level set methods in [START_REF] Malladi | Shape modeling with front propagation : A level set approach[END_REF][START_REF] Caselles | Geodesic active contours[END_REF][START_REF] Yezzi | A geometric snake model for segmentation of medical imagery[END_REF], and introduced a new geodesic active contour model to segment multiple objects. The method of Cohen and Kimmel [START_REF] Cohen | Global minimum for active contour models : A minimal path approach[END_REF] allows to nd the path, which is a global minimum energy between two points. The methods described in the articles [START_REF] Cremers | Statistical shape knowledge in variational image segmentation[END_REF][START_REF] Leventon | Statistical shape infuence in geodesic active contours[END_REF][START_REF] Chen | On the incorporation of shape priors into geometric active contours[END_REF][START_REF] Rousson | Shape priors for level set representations[END_REF][START_REF] Tsai | A shape-based approach to the segmentation of medical imagery using level sets[END_REF][START_REF] Bresson | A variational model for object segmentation using boundary information and statistical shape prior driver by the Mumord-Shah functional[END_REF][START_REF] Cremers | Review of statistical approaches to level set segmentation : Integrating color, texture, motion and shape[END_REF][START_REF] Rousson | Prior knowledge, level set representations & visual grouping[END_REF] are examples of using shape prior knowledge in the context of level sets active contours.

The main disadvantage of geometric active contour models is their high computational costs, due to the evolution and the re-initialisation of a high-dimensional surface. In order to accelerate these calculations, various techniques have been proposed [2,[START_REF] Weickert | Ecient and reliable schemes for nonlinear diusion ltering[END_REF][START_REF] Song | A fast algorithm for level set based optimization[END_REF][START_REF] Osher | Geometric Level Set Methods in Imaging Vision and Graphics[END_REF][START_REF] Li | Level set evolution without re-initialization : A new variational formulation[END_REF][START_REF] Leung | An alternating direction explicit (ADE) scheme for timedependent evolution equations[END_REF][START_REF] Bresson | Fast global minimization of the active contour/Snake model[END_REF][START_REF] Shi | A real-time algorithm for the approximation of level-set-based curve evolution[END_REF]. The narrow band method [2] updates the level set function, φ, in a small neighbourhood of interest around C instead of the whole image domain. Splitting Operators [START_REF] Weickert | Ecient and reliable schemes for nonlinear diusion ltering[END_REF][START_REF] Kimmel | Geometric Level Set Methods in Imaging, Vision, and Graphics[END_REF][START_REF] Paragios | Gradient vector ow fast geometric active contours[END_REF], whose basic idea is to decompose a multi-dimensional problem into one-dimensional cases, are very ecient methods as large time step can be used. In order to avoid solving the Euler-Lagrange equation of the underlying variational problem, Song and Chan [START_REF] Song | A fast algorithm for level set based optimization[END_REF] calculate the energy directly and check if the energy decreases when a point changes label from inside to outside or vice versa. In order avoid the re-initialisation procedure, Li et al. [START_REF] Li | Level set evolution without re-initialization : A new variational formulation[END_REF][START_REF] Li | Distance regularized level set evolution and its application to image segmentation[END_REF] have introduced an internal energy, which maintains the level sets close to a signed distance function. The Alternating Direction Explicit [START_REF] Leung | An alternating direction explicit (ADE) scheme for timedependent evolution equations[END_REF] method can be easily parallelised, and is also unconditionally stable, thereby it allows fast convergence. In order to avoid local minima of the energy function, an unication of segmentation and denoising into a global minimisation framework has been presented in [START_REF] Bresson | Fast global minimization of the active contour/Snake model[END_REF]. Shi and Karl [START_REF] Shi | A real-time algorithm for the approximation of level-set-based curve evolution[END_REF] have proposed a two-cycle algorithm to approximate level-setbased curve evolution without the need of solving partial dierential equations. A very recent approach studied the representation of the level set function using radial basis functions (RBFs) [START_REF] Gelas | Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation[END_REF][START_REF] Xie | Radial basis function based level set interpolation and evolution for deformable modelling[END_REF][START_REF] Barbosa | B-spline explicit active surfaces : An ecient framework for real-time 3D regionbased segmentation[END_REF]. Therefore these are parametric representations of the level set function but are still implicit representations of the contour. The main advantage is to the transform the initial PDE problem to an Ordinary Dierential Equation (ODE) problem, which is easier to solve.

Region-based external energies

The use of region-based external energies in active contour methods, mostly within the level set framework, led to a considerable improvement in eciency and robustness. For instance, the Chan and Vese model [START_REF] Chan | Active contours without edges[END_REF] considers an image's background and foreground as constant intensities represented by their mean values. This one of the simplest region energies that assumes that original image is piecewise constant. The mean separation method of Yezzi et al. [START_REF] Yezzi | A fully global approach to image segmentation via coupled curve evolution equations[END_REF] relies on the assumption that the object of interests should have maximally dierent intensities from the background. It is important to highlight that this model does not make such a strong assumption as a piecewise constant image as in [START_REF] Chan | Active contours without edges[END_REF].

More complex statistical models can also be used within this framework. A straightforward approach is to dene the external energy as minimisation the log likelihood of the observed image intensities within each region. Examples for the Gaussian distribution [START_REF] Rousson | Active unsupervised texture segmentation on a diusion based feature space[END_REF], the Rayleigh distribution [START_REF] Sarti | Maximum likelihood segmentation of ultrasound images with Rayleigh distribution[END_REF] and general models such as the exponential family [START_REF] Lecellier | Optimization of divergences within the exponential family for image segmentation[END_REF] exist.

Non-parametric region-based energies have also been proposed [START_REF] Kim | A nonparametric statistical method for image segmentation using information theory and curve evolution[END_REF][START_REF] Rousson | Ecient kernel density estimation of shape and intensity priors for level set segmentation[END_REF][START_REF] Michailovich | Image segmentation using active contours driven by the Bhattacharyya gradient ow[END_REF], which allow to model complex intensity distributions of observed images.

These region-based active contours, however, fail to segment images with strong intensity inhomogeneities, which is almost unavoidable in real data. Indeed, when the object of interests cannot be easily distinguished in terms of global image statistics, region-based external energies may lead to erroneous segmentations. To overcome this problem, some work has been recently carried out in utilising local image statistics within the level set paradigm [START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF][START_REF] Lankton | Localizing region-based active contours[END_REF][START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF][START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF]. The idea is to use local image statistics for the estimation of the image model parameters along the contour (inside and outside).

The locality is dened generally by an isotropic window of a given scale. It has been shown that localised segmentation methods have the ability to capture the boundaries of inhomogeneous objects. Such techniques, however, are found to be less robust to noise than global ones. Also, they could be sensitive to initialisations if the size of locality is not appropriate. Indeed, if the window size is small, the information might be insucient to locally evolve C ; a bigger window, however, might cause a bias estimation of local model parameters and make the segmentation algorithm lose its local advantages. Therefore, it brings out several problems that need to be addressed, such as :

1. Can global and local image statistics be combined in one model ? However, to our knowledge, hardly any of these works analysed the importance of choosing appropriate local scales.

Organisation of the dissertation

In this thesis, we aim at studying segmentation methods for images with intensity inhomogeneities. To solve this challenging problem, we begin by the review of some typical region-based segmentation techniques, and particularly the ones considering local image information. We will then focus on discussing the open questions that arose in the previous section. Finally, we will propose new methods that address these diculties.

The remaining parts of the thesis are organized as follows : Chapter 2 will introduce the state of the art on segmentation methods using parametric and geometric active contours. We will highlight the latter, and concentrate on region-based external energies within the level set framework, which are the basis for the succeeding chapters.

In Chapter 3, we will present and discuss recently proposed local region-based segmentation methods. General formulations for region-based segmentation models are explained, with the principles of using local image statistics to form the data energy term. For the algorithm based on a Bayesian interpretation with two local kernels, we suggest to consider their values separately.

In Chapter 4, we propose within the level set framework a segmentation method based on local image region statistics. Inspired by recent development by the image denoising community, we use the Intersection of Condence Intervals approach to dene a pixeldependent local scale for the estimation of image statistics. The obtained scale is based on estimated optimal scales, in the sense of the mean-square error of a Local Polynomials Approximation (LPA) of the observed image conditional on the current segmentation. In other words, the scale is optimal in the sense that it gives the best trade-o between the bias and the variance of the LPA of the local image patches (inside and outside) along the contour. Chapter 5 will rst review the methodology of ultrasound image segmentation. We will give some segmentation results on simulated and real ultrasound images. Quantitative evaluations of these tests are also presented, in order to demonstrate the improvement on robustness and accuracy of the proposed segmentation method.

Finally, conclusions of the present work will be summarized in the last chapter. We discuss a number of limitations of the proposed methods and point out directions of ongoing and future work.

Introduction

Classical image segmentation methods use mainly low level image features. They cannot account for prior knowledge to get a desirable solution. Due to this lack of constraints, their performances highly depend on image quality. Active contour models [START_REF] Blake | Active Contours[END_REF] can help to overcome these diculties. Their basic idea is to minimise an energy E that evolves a two-dimensional (2D) curve towards image features. It is a powerful mechanism to bring a certain degree of prior knowledge to low-level image interpretation. The general active contour model is described as :

E(C) = E D (C) + E R (C) dC , (2.1) 
where the curve C is a set of boundaries that separates dierent image components.

The external energy E D , also called delity term, is data-driven ; the internal energy E R models the regularisation of C. By minimising the above energy function, the propagation of C is driven by both external and internal forces. This model can use some high level information and can ensure the smoothness of C.

According to the representation of the curve C, active contour models are classied into two main types : parametric and geometric. Parametric active contours directly describe the curve C, which allows a real-time implementation ; and geometric ones use an implicit representation, which can naturally deal with topological changes of C. Even though these two methods have dierent forms in describing their image-driven and regularisation forces, they follow similar principles in curve evolution. In this chapter, we will briey review both with some typical examples.

The snake model

The snake model proposed by Kass et al. [START_REF] Kass | Snakes : Active contour models[END_REF] is the rst active contour model. It uses a parametric representation of the curve :

C(s) = (x(s)) : s ∈ [0, 1] → Ω ,
where x ∈ R 2 is the coordinate of the contour C, and s is the normalised arc length. The snake model deforms this continuous and elastic curve to t the nearest salient image characteristics. For any observed image I : Ω → R, the evolution of C is given by the minimisation of the following energy function : denote the derivatives with respect to the curve parameter, α(s) and β(s) are non-negative parameters, and ∇ represents the spatial gradient operator.

E snake (C) = 1 0 1 2 α(s) ∂C(s) ∂s 2 + β(s) ∂ 2 C(s) ∂s 2 2 E R -|∇I (C(s)) | 2 E D ds , (2.2 
The rst two terms here correspond to the internal energy in Eq. (2.1), which constraints the geometry of C. More specically, the rst-order dierential measures the rate of changes in the length of C ; the second-order one is a rigidity term that makes the snake maintain its original smoothness and shape. Their importance are adjusted by the weights α(s) and β(s) respectively. In the absence of other constraints, the internal energy of snakes simply makes C collapse to a point. The external energy term of the snake model is an edge term. It is used to control external attraction forces which drive C towards desired edges.

The segmentation problem now turns to nd a parametric curve that minimises both internal and external energies dened in Eq. (2.2), which can be solved by the Euler-Lagrange equation as follows :

dE snake dC = - ∂ ∂s α(s) ∂C(s) ∂s + ∂ 2 ∂s 2 β(s) ∂ 2 C(s) ∂s 2 -∇|∇I (C(s)) | 2 = 0 . (2.3) 
This partial dierential equation (PDE) expresses the balance of internal forces (rst two terms) and external forces (last term), when the contour rests at equilibrium. Under these two forces, C can be attracted to the boundary of the targeted object. For simplicity, α(s) and β(s) are usually assumed to be constants. Suppose an articial time t and a initial contour C 0 , the motion function to minimise the snake energy Eq. (2.2) by iterative gradient descent is given by :

∂C(s, t) ∂t = - dE snake dC = α ∂ 2 C(s) ∂s 2 -β ∂ 4 C(s) ∂s 4 + ∇|∇I (C(s)) | 2 .
(2.4)

C(s, 0) = C 0 .
The snake model can guarantee a smooth and continuous segmentation contour, but there still exits several limitations. The initial contour C 0 should be located in the vicinity of the real boundary ; otherwise, snakes may converge to a wrong result. Indeed, the external energy term in Eq. (2.4) is basically an edge detector, therefore its value is relatively large around the image boundaries and smaller in uniform regions. As illustrated in Fig. 2.1, the input image is a uniform grey square on a uniform white background. In order to create a suciently large basin of attraction, the input image is rst Gaussiansmoothed as shown in the middle of Fig. 2.1. Due to this procedure, the edge gradient is noticeable at a larger range. However, this smoothing process will lead to an oversmoothed biased segmentation, for instance without sharp corners and ne details, as illustrated on the example given in the right of Fig. 2.1.

Balloon force

As we have mentioned earlier in the last chapter, several methods have been proposed

to improve the performance of the snake model. One popular and simple solution consists on the addition of a new internal energy term to Eq. (2.2), in order to make the model behave like an inatable balloon [START_REF] Cohen | On active contour models and balloons[END_REF] :

E Ballons (C) = γ Ω i dx , (2.5) 
where Ω i represents the region inside of the closed curve C. The balloon force either shrinks (γ > 0) or expands (γ<0) the contour C constantly. Therefore, we need to know in advance whether the initial contour is located inside or outside of the object of interest.

Moreover, the magnitude of γ can lead to a biased segmentation, which, in practice, can be minimised by decreasing the magnitude of γ during the curve evolution.

Geodesic snakes

The original snake model Eq. (2.2) can be generalised by replacing its external energy -|∇I| 2 with a family of edge detectors g(|∇I|) 2 [38]. Let g : [0, +∞[→ R + be a strictly decreasing function, which satises lim s→∞ g(s) = 0. Assume the rigidity term here is not particularly important (β = 0). A smooth curve can also be obtained only with the rst internal term. Therefore, the energy function of the geodesic active contour (GAC) model Figure 2.1 Segmentation example using snake model [START_REF] Cremers | Statistical shape knowledge in variational image segmentation[END_REF]. From left to right : input image with the initial contour, Gaussian-smoothed input image, the nal segmentation.

is formed as [START_REF] Caselles | Geodesic active contours[END_REF] :

E GAC (C) = α 1 0 ∂C(s) ∂s 2 ds + 1 0 g(|∇I(C(s))|) 2 ds , (2.6) 
Caselles et al. also proved in [START_REF] Caselles | Geodesic active contours[END_REF] that by applying the Maupertuis' principle of least action, the minimisation of the above energy is equivalent to : (2.7)

This can be considered as searching a geodesic curve, for instance a curve of minimal distance path between given points, in a Riemannian space. The innitesimal contour length dC or ∂C(s) ∂s ds is weighted by the edge detector g(•). Using calculus of variations the Euler-Lagrange equation for the minimisation of Eq. (2.7) is given by :

∂C(s, t) ∂t = g(|∇I|)κ N -(∇g • N ) N , (2.8) 
where κ is the Euclidean curvature of C, and N denotes the unit inward normal. The rst term of the right hand side of this equation is a curve shortening ow, which smooths

C by means of decreasing its total length. Commonly, the rst term can be extended by replacing κ with κ + γ, so that a shrinking or an expansion force, similar to the balloon force, is included. The second term works in a neighbourhood, satisfying ∇g = 0, which provides an attraction to drive C towards the large image gradient. Hence, the function g does not need to be zero to stop the evolution of the snake. Since geodesic snakes also use an edge-based external energy, their performances also depend on the initial contour.

Implicit active contours 2.4.1 Level set methods

Parametric active contour models track the evolution curve explicitly, which are good at capturing ne and irregular details. They are topologically rigid, meaning that no contour splitting and merging is possible. Furthermore, if the shape of the curve varies dramatically, re-parameterisations may also be required during the evolution. To overcome these limitations, an implicit representation for such closed contours, the level set method, has been proposed by Osher and Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed : Algorithms based on Hamilton-Jacobi formulations[END_REF]. Level sets are mathematical tools to represent the front propagation. They track the curves as the zero crossing level of a higher-dimensional characteristic function, which can handle topological changes of evolving interfaces and can avoid the issues of contour parameterisations. Since their 

     ∂C(s, t) ∂t = F (κ) • N C(s, t = 0) = C 0 , (2.9) 
where F is the speed function which may depend on the curvature κ. In order to track this moving front implicitly, the level set function φ(x, t), x ∈ Ω is introduced to describe this problem.

φ(x, t) =          d(x, C(s, t)) x ∈ Ω i 0 x ∈ C(s, t) , -d(x, C(s, t)) x ∈ Ω o (2.10)
where d is a distance function, which measures the distance from a point x to C at time t ; Ω i and Ω o are the inside and the outside regions separated by the curve C.

For example in Fig. 2.2, the input grey level image has two objects, and the curve at time t is given by a red circle. The corresponding signed distance function and the implicit representation of C are illustrated in the right side of the same gure. The zero level set is represented by C(s, t) = {x| φ(x,t)=0 }. φ < 0 and φ > 0 divide the image into an inside and an outside of C respectively.

Curve evolution

Given the PDE that commands the deformation of the curve, one can derive the corresponding PDE with the level set function. By applying the chain rule to the expression of the zero level set in Eq. (2.10), i.e. φ(C, t) = 0, we get :

∂φ ∂C • ∂C ∂t + ∂φ ∂t = 0 .
Combining the above formula with Eq. (2.9), it can be rewritten as :

∇φ • F (κ) • N + ∂φ ∂t = 0 , where N = - ∇φ |∇φ| , =⇒ -F (κ) • |∇φ| + ∂φ ∂t = 0 .
This is a Hamilton-Jacobi type of equation, and ∇φ is the normal to C. Thus, the motion of C is represented by the evolution of the zero level set, which satises the following PDE :

∂φ ∂t = F (κ) • |∇φ| , (2.11) φ(x, t = 0) = d(x, C 0 ) = φ 0 .
Solving numerically the above PDE has been extensively studied [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF]. Cares must be taken when choosing the appropriate nite dierence schemes for the approximation of the derivatives of φ. Consequently, Sethian and Strain [START_REF] Sethian | Crystal growth and dendritic solidication[END_REF] have proposed to decompose the speed function F (κ) into two terms :

F (κ) = F 0 + F 1 (κ) , (2.12) 
where F 0 is a constant speed term (an advection term), thus an upwind discretisation scheme should be used ; F 1 depends on geometric properties of the curve C via the curvature κ, hence it can be approximated by a central dierence scheme.

Malladi et al. [START_REF] Malladi | Shape modeling with front propagation : A level set approach[END_REF] have proposed to modulate the above speed function with a data term, which is used to constrain the evolution of the curve C to stop at desired image feature. Specically, they proposed the use of one of the following edge stopping functions :

g I = 1 1 + |∇I σ | or g I = e -|∇I-σ| ,
where I σ denotes a Gaussian smoothed version of the observed image. The value of g I is close to unity in homogeneous regions, and it drops to zero at high gradient image locations. The image-based term g I is meaningful only on the curve C, i.e. at zero level of φ. The level set evolution equation however applies for the entire image domain Ω.

Consequently, g I is extended to other level of φ, and g I (x) is dened equal to value of g I on the closest point to x on the zero level set. The motion function Eq. (2.11) then becomes as follows [START_REF] Malladi | Shape modeling with front propagation : A level set approach[END_REF] :

∂φ ∂t = g I (F 0 + F 1 (κ))|∇φ| .

Numerical implementation

Lets take the geodesic snakes as an example. Using the tools presented in the previous section, the evolution equation Eq. (2.8) can be expressed within the Level set paradigm.

When adding also a balloon force, the contour evolution can be implicitly represented by the following equation :

∂φ ∂t = g div ∇φ |∇φ| F 1 (κ) |∇φ| + [(∇g • ∇φ) + γ g] F 0 |∇φ| . (2.13)
As mentioned in § 2.3, the rst term of this function moves the curve in the direction of its curvature under the inuence of the modulation function g(I), and acts as a curve smoothing term ; the second term encourages the curve to migrate towards minima of g(I). We also highlight here that, the balloon force is also modulated by the edge stopping function.

We will denote the discrete version of φ((i∆x, i∆y), n∆t) by φ n i,j , where ∆t is the time step and ∆x and ∆y are the spatial grid sizes. It is natural and hence common in the image processing community to use a uniform spatial grid (i.e. ∆x = ∆y = 1).

Right side : Considering the right side of Eq. 2.13 :

1. The rst term is approximated as :

g div ∇φ |∇φ| |∇φ| = g φ ii φ 2 i -2φ i φ j φ ij + φ jj φ 2 i φ 2 i + φ 2 j + ε , (2.14) 
where ε is a small positive constant, in order to avoid numerical instabilities. The rst and second derivatives of φ(x) are approximated by a central dierence scheme as follow :

φ i ≈ 1 2 (φ i+1,j -φ i-1,j ) , φ j ≈ 1 2 (φ i,j+1 -φ i,j-1 ) , φ ii ≈ (φ i+1,j -2φ i,j + φ i-1,j ) , φ jj ≈ (φ i,j+1 -2φ i,j + φ i,j-1 ) , φ ij ≈    2φ i,j + φ i-1,j + φ i+1,j + φ i,j-1 + φ i,i+1 -φ i-1,j+1 -φ i+1,j-1 , if φ i φ j ≥ 0 2φ i,j -φ i-1,j -φ j+1,i -φ i,j-1 -φ i,j+1 + φ i-1,i-1 + φ i+1,j+1 , otherwise . 
2. An upwind scheme is used for the discretisation of the second term :

(∇g • ∇φ)|∇φ| = max(g i , 0) (φ i+1,j -φ i,j ) D + i φ i,j + min(g i , 0) (φ i,j -φ i-1,j ) D - i φ i,j + max(g j , 0) (φ i,j+1 -φ i,j ) D + j φ i,j + min(g i , 0) (φ i,j -φ i,j-1 ) D - j φ i,j
.

(2.15)

3. Similarly, the above strategy is also applied for the approximation of |∇φ| at the point (x i , y j ). If γ g ≥ 0

|∇ + φ| i,j = max(D - i φ i,j , 0) 2 + min(D + i φ i,j , 0) 2 + max(D - j φ i,j , 0) 2 + min(D + j φ i,j , 0) 2 1/2 ; otherwise |∇ -φ| i,j = min(D - i φ i,j , 0) 2 + max(D + i φ i,j , 0) 2 + min(D - j φ i,j , 0) 2 + max(D + j φ i,j , 0) 2 1/2 .
Therefore, the third term is approximated by : γ g|∇φ| = max(γ g, 0)|∇ + φ| i,j + min(γ g, 0)|∇ -φ| i,j .

(2.16)

Left side : The left side of Eq. (2.13) can be discretized by using a forward dierence scheme for the time variable :

∂φ ∂t = φ n+1 i,j -φ n i,j ∆t , (2.17) 
Full scheme : Finally, combining the above two, a numerical implementation of Eq. (2.13) is obtained :

φ n+1 i,j = φ n i,j + t g n φ n ii (φ n j ) 2 -2φ n i φ n j φ n ij + φ n jj (φ n i ) 2 (φ n i ) 2 + (φ n j ) 2 + ε + max(g n i , 0)D + i φ n i,j + min(g n i , 0)D - i φ n i,j + max(g n j , 0)D + j φ n i,j + min(g n i , 0)D - y φ n i,j + max(γ g n , 0)|∇ + φ| n i,j + min(γ g n , 0)|∇ -φ| n i,j . (2.18) 
Remark : During the contour evolution, it is essential to periodically re-initialise the function φ, so that it remains a signed distance function. This numerical implementation can be easily extended to higher dimensions. Further details can be found in [START_REF] Osher | Fronts propagating with curvature-dependent speed : Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF].

Advantages and disadvantages

Major advantages of geometric active contour models are briey summarized :

1. The curve evolution Eq. (2.11) always remains a function as long as F (•) is smooth.

Therefore, topological changes, such as breaking, merging or forming sharp corners, are allowed. An illustrative example is show in Fig. 2.3.

Finite dierence approximations can be used to estimate these spatial and temporal

derivatives, because the level set function remains always dierentiable. 3. Geometric characteristics of the curve may be easily computed with the level set function. For example, the unit inward normal to the curve and its curvature are estimated by :

N = - ∇φ |∇φ| , κ = ∇ • N = -∇ • ∇φ |∇φ| .
4. The level set function can be easily generalised to higher dimensions. Furthermore, its basic form remains almost the same.

Level set methods also present some disadvantages. One main inconvenient is their large computational costs associated with embedding C into the higher-dimensional function φ. However, as we have already mentioned in § 1.2.2, many ecient algorithms have been proposed to speed up its calculation.

Region-based external energies

As discussed in § 2.2, the edge-based external energy for active contour models is sensitive to initialisation and is known to be less robust to noise. To overcome these problems, region-based external energies, used to model intensity statistics and homogeneity requirements, have been developed in the framework of geometric active contour models.

One of the rst works on using region-based energies within the level set framework was proposed by Paragios and Deriche [START_REF]A PDE-based level-set approach for detection and tracking of moving objects[END_REF][START_REF] Paragios | Geodesic active regions and level set methods for supervised texture segmentation[END_REF]. Since then, region-based energies have become very popular in this context. In the following section, we are going to review some important contributions related to our work. As discussed in § 2.2, the edge-based external energy for active contour models is sensitive to initialisation and are known to be less robust to noise. To overcome these problems, region-based external energies, used to model intensity statistics and homogeneity requirements, have been developed in the framework of geometric active contour models. One of the rst works on using regionbased energies within the level set framework was by Paragios and Deriche [START_REF]A PDE-based level-set approach for detection and tracking of moving objects[END_REF][START_REF] Paragios | Geodesic active regions and level set methods for supervised texture segmentation[END_REF].

Since then, region-based energies became very popular in this context. In the following section, we are going to review important contributions related to our work.

Mumford-Shah model

The Mumford-Shah (MS) model [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] was proposed to integrate image denoising with image segmentation. It searches for a piecewise smooth approximation µ and a minimal contour C for the purpose of separating a given image I into non-overlapping regions.

This idea can be expressed by the minimisation of :

E MS(µ,C) = Ω |I -µ| 2 dx + λ Ω-C |∇µ| 2 dx + ν|C| , (2.19) 
where λ ≥ 0 and ν ≥ 0 are constant weights. The rst term corresponds to the delity term of the general active contour model in Eq. (2.1), as it ensures µ to be similar to I in the L 2 -sense ; the second term controls the smoothness of the solution µ, but permits discontinuities across C ; the last term provides the regularisation on the length of C.

The minimisation of the above function is a very dicult problem. Some of the earliest attempts are based on so-called coarse to ne method [START_REF] Blake | Visual Reconstruction[END_REF], which minimises E MS by gradually decreasing a continuation parameter, while each level serves as an initialisation for the next level. Ambrosio and Tortorelli have presented a similar technique, by solving a sequence of simpler elliptic variational problems [5]. Recently, a primal-dual projection algorithm has proved the convergence for a convex relaxation of MS functional [START_REF] Pock | An algorithm for minimizing the Mumford-Shah functional[END_REF].

Within the level set framework, solutions to simplied versions have been proposed by Tsai et al. [START_REF] Tsai | Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnication[END_REF] and Chan-Vese [START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford-Shah functional[END_REF]. The last two works are motivated mainly in solving the segmentation problem.

Segmentation as Bayesian inference

Region-based image segmentation can also be examined under the Bayes' rule. It states that a posterior distribution p(a|b) over the unknowns a given the measurements b can be obtained by multiplying the likelihood p(b|a) by the prior distribution p(a).

The segmentation can then be obtained in the Bayesian sens by the minimisation of a risk function. Dierent risk functions lead to dierent estimators [START_REF] Li | Markov random eld modeling in computer vision[END_REF]. The maximum a posteriori (MAP) estimator is probably the most popular. Traditionally, Markov random elds (MRF) are used to model the prior distribution [START_REF] Geman | Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images[END_REF], and the segmentation problem is solved as classication problem. Stochastic and deterministic minimisation methods exist [START_REF] Li | Markov random eld modeling in computer vision[END_REF]. Here, we will be reviewing how this modelling can be used within the level set framework.

Image segmentation can be considered as seeking for a optimal partition, given by the curve C that maximises, p(C|I) = p(I|C)p(C) p(I) .

(2.20)

The denominator p(I) is a normalising constant, which is independent of C and usually can be neglected. p(I|C) is a delity term, dened by the observed statistics of the current partition. p(C) models our prior knowledge about the desired solution in terms of size, shape or motion, and it acts as a regularisation term on the contour C. For example, a prior constraint on the length of the curve C is commonly modelled as :

p(C) = exp(-ν|C |) .
(2.21)

The conditional probability p(I|C), is a likelihood term. It is generally assumed that the observed image intensities at points x ∈ Ω are independent observation of random variables. It is also assumed that they are identically distributed within each of the N region, obtained by the partition C. Thereby, p(I|C) can be factorized as follow :

p(I|C) = x∈Ω p(I(x)|C, x) dx = N r x∈Ωr p(I(x)|x ∈ Ω r ) dx , (2.22) 
where dx is an innitesimal bin size. The probability density function (pdf ) p(I(x)|x ∈ Ω r )

denotes the probability of observed I(x) when Ω r is a region of interest. The maximisation of the posteriori probability in Eq. (2.20) is equivalent to the minimisation of the anti log-likelihood, which can be rewritten as :

E = N r Ωr -log p(I(x)|x ∈ Ω r )dx anti log-likelihood + ν|C| extra constraint . (2.23)
The above energy is the basis of many region-based segmentation methods. For instance, if the weight λ of the MS functional in Eq. (2.19) increases, the smoothing constraint becomes more important. Therefore, when λ → ∞, the approximation µ is no longer a function but collapses into a single value for each separated region. Accordingly, embedding a Gaussian distribution with a xed standard deviation into Eq. (2.23) can be seen as a simplied version of Eq. (2.19), known as the cartoon limit.

The pdf p(I(x)|x ∈ Ω r ) can be estimated with parametric or non-parametric methods.

In the parametric case, such as the Chan-Vese (CV) model [START_REF] Chan | Active contours without edges[END_REF], the pdf family is assumed to be known. Therefore, one or more parameters should be estimated in order to well model the characteristic of each region in the image. On the other hand, the non-parametric case does not require the image regions to have a particular type of probability distribution.

The underlying distribution is estimated from the given image, for example by the Parzen windows technique [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF]. In the rest of this chapter, we will consider only a two phase image segmentation problem for both parametric and non-parametric algorithms.

Parametric models 2.5.3.1 The Chan & Vese model

Suppose the noise model of the observed image is additive and follows a Gaussian distribution with zero mean and a variance σ 2 . The conditional probability is as follow :

p(I|Ω r ) = 1 √ 2πσ exp - (I(x) -µ r ) 2 2σ 2 ,
where µ r represents the mean value of image intensities inside of the region Ω r . In the particular case of a binary segmentation, r = {i, o}, and up to a multiplicative factor and an additive constant term, Eq. (2.23) becomes the formula of the CV model [START_REF] Chan | Active contours without edges[END_REF], whose external energy function is given by :

E CV = Ω (I(x) -µ i ) 2 H (φ(x)) dx + Ω (I(x) -µ o ) 2 H (-φ(x)) dx , (2.24) 
where H(•) is the Heaviside function, and it is dened as :

H(φ) =    1, φ ≥ 0 0, φ < 0 .
The two constants µ i and µ o , are obtained by the minimisation of E CV with respect to the µ r 2 :

µ i = Ω H (φ(x)) I(x)dx A i , µ o = Ω H (-φ(x)) I(x)dx A o , (2.25) 
2. These actually correspond to maximum likelihood estimates.

where A i is the area of the inside region Ω i :

A i = Ω H (φ(x)) dx, and A o is the area of the outside region Ω o : A i = Ω [1 -H (φ(x))]dx.
Keeping µ i and µ o xed and minimising Eq. (2.24) with respect to φ, the associated Euler-Lagrange equation for φ has been deduced [START_REF] Chan | Active contours without edges[END_REF]. Parameterizing the descent direction by a time t ≥ 0, the level set function φ(x, t) moves according to :

∂φ ∂t = - ∂E CV (φ) ∂φ = δ(φ) (I -µ o ) 2 -(I -µ i ) 2 , (2.26) 
where δ(•) is the Dirac function. The optimisation of E CV nds its minimum energy when the interior and exterior are respectively best approximated by their means µ i and µ o .

Therefore, the CV model is a binary and piecewise constant model.

Remark : In practice a regularised approximation of the Heaviside function is needed.

Two popular approximations exist in the literature :

1. The rst approximation of the Heaviside function is given [START_REF] Zhao | A variational level set approach to multiphase motion[END_REF] :

H 1,ε (φ) =          0, φ < -ε 1 2 1 + φ ε + 1 π sin φπ ε |φ| ≤ ε 1, φ > ε , (2.27) 
which corresponds to the following Dirac function :

δ 1,ε (φ) =    0, |φ| > ε 1 2ε 1 + cos φπ ε |φ| ≤ ε . (2.28)
2. The second one, rst appeared in [START_REF] Chan | Active contours without edges[END_REF],

H 2,ε (φ) = 1 2 1 + 2 π arctan φ ε , (2.29) δ 2,ε (φ) = 1 π ε φ 2 + ε 2 . (2.30) As ε → 0, both H 1,ε (φ) and H 2,ε (φ) converge to H(φ). A dierence is that δ 1,ε (φ) is dened on the small interval [-ε, ε], while δ 2,ε (φ) is non zero everywhere. Therefore, in
the latter all the level set of φ have the potential to be important [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF]. When all the levels are updated, not limited in a narrow band, new segmentation region can appear.

The re-initialisation to the distance function is not considered to be a good idea [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF].

Doing so, the model has tendency to converge to better optimums, but requires more computational eort.

The Gaussian Model

Rousson and Deriche [START_REF] Rousson | A variational framework for active and adaptative segmentation of vector valued images[END_REF] supposed that the noise model follows a Gaussian distribution with dierent variances inside and outside of the contour C. Therefore, the conditional probability of the observed image follows :

p(I|Ω r ) = 1 √ 2πσ r exp - 1 2 (I(x) -µ r ) 2 σ 2 r ,
which leads to the following external energy function :

E D = Ω H(φ(x)) (I(x) -µ i ) 2 2σ 2 i + 1 2 log(2πσ 2 i ) dx + Ω H(-φ(x)) (I(x) -µ o ) 2 2σ 2 o + 1 2 log(2πσ 2 o ) dx , (2.31) 
where the estimates of the means µ i and µ o are given in Eq. (2.25). The two variances can be estimated by :

σ 2 i = Ω H(φ(x))I 2 (x)dx A i -µ 2 i , σ 2 o = Ω H(-φ(x))I 2 (x)dx A o -µ 2 o . (2.32) 
Similar to the CV model, the associated level set ow of Eq. (2.31) is expressed as : 

∂φ ∂t = δ(φ) log σ 2 o σ 2 i + (I -µ o ) 2 σ o 2 - (I -µ i ) 2 σ 2 i . ( 2 

The Rayleigh Model

The Rayleigh distribution have been extensively used to model scattering phenomena.

For example, Backscattering is the origin of the speckle noise, which characterizes ultrasound imaging with a granular appearance. The speckle is a multiplicative noise, strongly correlated and more importantly, with non-Gaussian statistics. For this reason, several probability density functions were used to model image grey levels statistics in medical echography [START_REF] Nadarajah | Statistical distributions of potential interest in ultrasound speckle analysis[END_REF]. Namely the Rayleigh model holds when the speckle noise is fully developed [START_REF] Burckhardt | Speckle in ultrasound B-mode scans[END_REF][START_REF] Wagner | Statistics of speckle in ultrasound B-scans[END_REF]. Such model has been used for the rst time, within the levels set framework, by Sarti et al. [START_REF] Sarti | Maximum likelihood segmentation of ultrasound images with Rayleigh distribution[END_REF]. The Rayleigh probability distribution function is dened by :

p(I|Ω r ) = I(x) θ 2 r exp - I(x) 2 2θ 2 r .
Then, according to Eq. (2.23), its likelihood is given by :

l = Ω i log I(x)dx - Ω i I 2 (x)/(2θ 2 i )dx -A i log(θ 2 i ) + Ωo log I(x)dx - Ωo I 2 (x)/(2θ 2 o )dx -A o log(θ 2 o ) .
(2.34)

The maximum likelihood estimation (MLE) of the parameters θ i and θ o are the values that maximise l. They are obtained by equating to zero the rst derivative with respect to θ 2 i and θ 2 o :

∂l ∂θ 2 i = Ω i I 2 (x)/(2θ 4 i )dx -A i /θ 2 i = 0 , ∂l ∂θ 2 o = Ωo I 2 (x)/(2θ 4 o )dx -A o /θ 2 o = 0 .
Then the estimation for these parameters are given by :

θ 2 i = Ω H(φ(x))I 2 (x)dx 2A i , θ 2 o = Ω H(-φ(x))I 2 (x)dx 2A o . (2.35)
Substitute the estimated parameters θ 2 i and θ 2 o back in Eq. (2.34), the likelihood is rewritten as :

l = Ω log I(x)dx -(A i + A o )(1 -log 2) -A i log 1 A i Ω I(x) 2 H(φ)dx -A o log 1 A o Ω I(x) 2 H(-φ)dx .
(2.36)

All the terms independent on the partition can be omitted. Consequently, the maximisation of this likelihood can be addressed as the gradient ow with respect to φ [START_REF] Sarti | Maximum likelihood segmentation of ultrasound images with Rayleigh distribution[END_REF] ∂φ ∂t =δ(φ) log

Ω I 2 H(φ)dx A i + A i I 2 -Ω I 2 H(φ)dx Ω I 2 H(φ)dx (2.37) -log Ω I 2 H(-φ)dx A o - A o I 2 -Ω I 2 H(-φ)dx Ω I 2 H(-φ)dx
.

More details about this derivation using the Gâteaux derivative are given in Appendix B.

The Exponential family

The multi-parameter exponential family is naturally indexed by a k-dimensional real parameter vector η(θ) and a k-dimensional natural statistic vector T(y). It is formally dened as follows (see eg. [START_REF] Wikipedia | Exponential family wikipedia, the free encyclopedia[END_REF][START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF]) :

Denition 2.1. The family of distributions of a Random Variable {p η (y) :

η ∈ Θ ⊆ R k },
is said a k-parameter canonical exponential family, if there exists real-valued functions :

η(θ) = [η 1 , ..., η k ] T : R k → R h : R → R A : Θ → R T = [T 1 , ..., T k ] T : R k → R
such that the pdf p θ (y) may be written as :

p η (y) = h(y) exp [ η(θ), T(y) -A(η)] , (2.38) 
where •, • represents the scalar product in R k . The term T is called the natural sucient statistic, η is the natural parameter vector and the natural parameter space is dened as

Θ = {η ∈ R k ; -∞ < A(η) < ∞} with A(η) = log h(y) exp [ η(θ), T(y) ] dy .
In the context region-based active contours, Lecellier et al. [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF] have recently proposed that the distribution of image features belongs to some exponential families in Eq. (2.38). Thereby, exponential families can cover most noise models encountered in acquired images, including the previous discussed Gaussian and Rayleigh cases. Table 2.1 provides a synthetic description of some common distributions of exponential families with its parameters θ and associated functions. Take for example the normal distribution,

p(I|µ, σ) = 1 σ √ 2π exp - 1 2 (I -µ) 2 σ 2 = exp - 1 2 log(2πσ 2 ) - I 2 2σ 2 + µI σ 2 - µ 2 2σ 2 ,
which corresponds to :

h = 1, θ = [µ, σ 2 ] T , T (I) = [I, I 2 ] T , η = [ µ σ 2 , - 1 2σ 2 ] T , A(η) = 1 2 µ 2 2σ 2 + log(2πσ 2 ) = - 1 2 η 2 1 2η 2 + log -η 2 π .
There exists dierent methods to estimate the parameters η, and the ML estimation is usually preferred when it exists in a close form.

Using the shape derivative tools developed in [START_REF] Jehan-Besson | DREAM2S : deformable regions driven by an Eulerian accurate minimization method[END_REF][START_REF] Aubert | Image segmentation using active contours : Calculus of variations or shape gradients ?[END_REF], Lecellier et al. [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF] derived general expression for the speed function for the exponential family. When the ML is used for the estimation of the model parameters for the minimisation of the anti log-likelihood in Eq. (2.23), the curve evolution in the direction of φ is given by [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF] :

∂E D ∂φ = C log p(y(x)), η(Ω) (φ • N )da(x) , (2.39) 
where da(x) is the line element. For the common members of exponential families in 

Distribution θ T η(θ) T T(y) T A(η) Θ Normal (µ, σ 2 ) ( µ σ 2 , -1 2σ 2 ) (y, y 2 ) -1 2 η 2 1 2η 2 + log -η 2 π R×] -∞, 0[ Gamma (λ, p) (-λ, p -1) (y, log y) -(η 2 + 1) log(-η 1 ) ] -∞, 0[×]1, +∞[ + log Γ(η 2 + 1) Poisson µ log µ y e η R Exponential λ -λ y -log(-η) ] -∞, 0[ Rayleigh θ 2 -1 2θ 2 y 2 -log(-2η) ] -∞, 0[ Table 2.
1 Common exponential families studied in [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF]. See [START_REF] Wikipedia | Exponential family wikipedia, the free encyclopedia[END_REF] for more examples. 

log σ i + (I-µ i ) 2 2σ 2 i -log σ o -(I-µo) 2 2σ 2 o Gamma (λ, p) log (Γ(p i )λ p i i ) + I λ i -p i log(I) -log (Γ(p o )λ po o ) -I λo + p o log(I) Poisson µ -I log(µ i ) + µ i + log(µ o ) + µ o Exponential λ -log(λ i ) + λ i I + log(λ o ) -λ o I Rayleigh θ 2 I 2 2θ 2 i -log I θ 2 i -I 2 2θ 2 i + log I θ 2 i Table 2.
2 Speed expressions of the examples of exponential distributions shown in Table 2.1, when minimising the anti log-likelihood associated energy with the ML parameters estimation [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF]. For simplicity, here we use µ to represent its estimator µ.

In addition, image-driven energy for region-based segmentation can be modelled as the maximisation of relative entropy, for instance the Kullback-Leibler divergence (KLD), between the pdfs of image intensities in Ω i and Ω o :

E D = p i (x, η i ) log p i (x, η i ) p o (x, η o ) dx .
(

This KLD-based segmentation searches for the conguration that maximises the loglikelihood of the data under their actual model p i , while minimising the plausibility of the same data under p o . Therefore, the KLD acts as a region competition criterion. Using the MLE for these parameters η i and η o , the evolution speed obtained by the Eulerian derivative of the above energy is given by [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF] :

∂E D ∂φ = -∇ φ T(y) i , η i -η o + ∇ φ T(y) o , ∇A( η o ) -∇A( η i ) Ä( η o ) , (2.41) 
where T(y) is the mean of T(y), and Ä is the Hessian matrix of A calculated as Ä(x) =

∂ 2 A ∂η 1 ∂η 2 .
The use of this parametrisation of the exponential family appears to be a exible tool.

The work of Lecellier et al. [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF] can be used to solve dicult segmentation problems which involves various noise models in the external energy. The reader is refereed to [START_REF] Lecellier | Region-based active contours with exponential family observations[END_REF][START_REF] Lecellier | Les contours actifs basés région avec a priori de bruit, de texture et de forme : Application à l'échocardiographie[END_REF] for further details.

Maximal discrepancy methods

The means separation algorithm, proposed by Yezzi et al. [START_REF] Yezzi | A fully global approach to image segmentation via coupled curve evolution equations[END_REF], relies on the assumption that foreground and background regions should have maximally dierent mean intensities. It uses the distance between µ i and µ o to measure how well the curve C has separated the foreground from the background. Mathematically, the data energy term is given by :

E D = - 1 2 (µ i -µ o ) 2 .
(2.42)

The mean values are approximated by their ML estimates given in Eq. (2.25). Then, the gradient ow of E D can be expressed by :

∂φ ∂t = ( µ i -µ o ) I -µ i A i + I -µ o A o |∇φ| .
(

2.43)

There is no restriction on how well the regions are modelled by µ i and µ o . In other words, the above model do not assume a piecewise constant image model as the CV model.

Eq. (2.42) can be further generalised by using other statistics. For instance when the image to segment has regions with identical means but dierent variances, we can use the following alternative energy functional [START_REF] Yezzi | A fully global approach to image segmentation via coupled curve evolution equations[END_REF] :

E D = - 1 2 (σ 2 i -σ 2 o ) 2 .
(2.44)

Similarly, the evolution of this variances separation algorithm via the gradient ow is :

∂φ ∂t = ( σ 2 i -σ 2 o ) (I -µ i ) 2 -σ 2 i A i + (I -µ o ) 2 -σ 2 o A o |∇φ| .
(2.45)

Although the underling assumption on the image model are less restrictive for the above two energies, in comparison to the CV model, they have not yet attracted more attention.

Non-parametric models

In the non-parametric region-based segmentation, the chosen image characteristics, commonly pixel intensities, are assumed to be independent identically distributed in each region. The foreground and background are distinct in the sense that they have dierent pdfs of the observed image intensities over the sub-domains Ω i and Ω o :

{I(x)|x ∈ Ω i } ∼ p i , {I(x)|x ∈ Ω o } ∼ p o .
Given a level set function φ, non-parametric approaches dene a kernel-based estimation of the above pdfs :

p r (z|φ(x)) = Ωr K ρ z -I(x) dx A r , r = {i, o} , (2.46) 
where K ρ (•) is a tonal kernel which should satisfy the following properties :

K ρ (-a) = K ρ (a) ; K ρ (a) ≥ K ρ (b), if |a| < |b|. lim |a→∞| K ρ (a) = 0 ; K ρ (x)dx = 1.
One typical choice of K ρ (•) is the normalised Gaussian kernel. Based on the above dened estimator of the pdfs, several data energies derived from information theory have been derived in the literature to solve a segmentation problem.

The core idea is to maximise the discrepancy between the distributions inside and outside of the current segmentation [START_REF] Freeman | Active contours for tracking distributions[END_REF][START_REF] Kim | A nonparametric statistical method for image segmentation using information theory and curve evolution[END_REF][START_REF] Michailovich | Image segmentation using active contours driven by the Bhattacharyya gradient ow[END_REF][START_REF] Ayed | Level set image segmentation with a statistical overlap constraint[END_REF]. In other words, it assumes the optimal contour should minimise the mutual information between these subsets. A number of measures can be used to dene the distance between distributions [START_REF] Cover | Elements of information theory[END_REF]. For example, the Bhattacharyya distance between two probability densities is dened as -log B, where B is the Bhattacharyya coecient that measures the amount of overlap, given by :

B(p i , p o ) = z p i (z|φ(x)) p o (z|φ(x))dz , (2.47) 
where p i and p o are estimated by Eq. (2.46). The values of B(p i , p o ) are always conned within the interval [0, 1], where 0 indicates no overlap and 1 means a perfect match. The rest of this subsection will give two examples of the non-parametric active contour models using the Bhattacharyya coecient.

Histogram separation method

In the histogram separation active contour, the optimal segmentation is achieved when the Bhattacharyya distance between the pdfs is the maximum, which equivalents to minimise the corresponding Bhattacharyya coecient described in Eq. (2.47). Therefore, the data-driven energy functional is dened as E D = B(p i , p o ) in [START_REF] Michailovich | Image segmentation using active contours driven by the Bhattacharyya gradient ow[END_REF]. In order to contrive a numerical scheme to minimise this external energy, its rst variation with respect to φ should be computed :

∂E D ∂φ(x) = 1 2 z ∂p i (z|φ(x)) ∂φ(x) p o (z|φ(x)) p i (z|φ(x)) + ∂p o (z|φ(x)) ∂φ(x) p i (z|φ(x)) p o (z|φ(x)) dz , (2.48) 
where

∂p r (z|φ(x)) ∂φ(x) = δ(φ(x)) p r (z|φ(x)) -K ρ (z -I(x)) A r .
Accordingly, by combination of the above two equations, the gradient ow of the level set function that minimises the above external energy is given by [START_REF] Michailovich | Image segmentation using active contours driven by the Bhattacharyya gradient ow[END_REF] :

∂φ ∂t = - ∂E D ∂φ , = 1 2 δ (φ(x)) B(p i , p o )(A -1 o -A -1 i ) + K ρ (z -I(x))L (z|φ(x)) dz , (2.50) 
where

L (z|φ(x)) = 1 A i p o (z|φ(x)) p i (z|φ(x)) - 1 A o p i (z|φ(x)) p o (z|φ(x)
) .

The rst term in the above speed function is independent of the spatial position x, and it results in increasing or decreasing the mean value of φ by a constant amount. The second term can be viewed as a smoothed version of L(z|φ(x)), which is dened as the dierence between the square roots of the likelihood ratios p i /p o and p o /p i weighted by their corresponding areas.

Statistical overlap with a prior

An equivalent idea, as the histogram separation methods, has been used to introduce prior information on the pdf(s) of the object(s) of interest. An interesting example was proposed by Ayed et al. [START_REF] Ayed | Level set image segmentation with a statistical overlap constraint[END_REF], who introduced a statistical overlap constraint. This constraint imposes that the desired segmentation is optimal when the region's pdf has an overlap statistically similar to learned prior. Suppose the pdf of Ω i is characterized by a known model M i (z). The minimisation of E D with respect to φ is given by the following PDE [START_REF] Ayed | Level set image segmentation with a statistical overlap constraint[END_REF] :

E D = -log N (B(M i , p o ), µ B , σ 2 B ) .
∂E D ∂φ = - B(M i , p o ) -µ B 2σ 2 B E D ∂B(M i , p o ) ∂φ , (2.52) 
where

∂B(M i , p o ) ∂C = 1 2 
M i p o ∂p o ∂φ .
(2.53) By embedding Eq. (2.49) into the above equations, the curve evolution is given by the following gradient ow [START_REF] Ayed | Level set image segmentation with a statistical overlap constraint[END_REF] : 

∂φ ∂t = δ (φ(x)) B -µ B 2σ 2 B E D oc 1 2A o K ρ (z -I(C)) M i /p o dz

Conclusion

In this chapter, after a brief introduction of the principle of classical active contour models, we have introduced geometric active contours and their implicit representation using the levels set tool. We focused on the latter, since they can naturally handle topological changes and can be easily generalised to higher dimension. Then, within this framework, we introduced typical region-based external energies, parametric and nonparametric, that are commonly used in segmentation nowadays.

It is well known that active contours driven by region-data terms are quite robust to initialisations. We have also seen that region-based tools oer a larger choice to model the statistical nature of the observed image intensities. It is important, however, to highlight that they are build on the assumption that each region should be statistically homogeneous. In other words, that the random observed intensities within a region are identically distributed and follow a certain pdf. Therefore, the performances of parametric models can be severely aected when the assumed model is not correct ; or when the identically distributed assumption does not hold. In the next chapter, we will further concentrate on parametric region-based segmentation algorithms, and particularly on the ones based on local image statistics. In order to accurately segment these inhomogeneous objects, some work, utilising local image statistics within the level set framework, has been recently carried out. For these methods, an appropriate spatial window K should be introduced in order to dene the locality. Suppose x and y to be two distinct points in image domain Ω. The local region can be dened, for example, by the following kernel [START_REF] Lankton | Localizing region-based active contours[END_REF] : A Gaussian kernel with a scaling parameter σ p is often chosen to dened this locality, and for eciency reasons, it can be truncated outside the interval h = 3σ p [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF][START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] :

K(x, y) =    1 x -y < h 0 otherwise . ( 3 
K(x, y) =    exp -(x-y) 2 2σ 2 p x -y < h 0 otherwise . (3.2)
It is not necessary to normalise the above function, because this will be done implicitly in later procedures.

In the following, the local region, at a given point x along the curve C, will be denoted by O(x) = {y : xy < h}. It is represented by the area inside of the blue circle shown in Fig. 3.3. Then, the local neighbourhood of x is divided into a local interior and exterior by the curve C, as a result of the intersections between O(x) and Ω r with r = {i, o}.

Thereby, global image statistics, such as µ r and σ r , become local and pixel-dependent : µ r (x) and σ r (x). Similar to the ML estimates given previously in Eq. (2.25) and Eq. (2.32) for the global models, estimation of these local image statistics can be achieve by :

µ r (x) = Ωr K(x -ζ)I(ζ)dζ Ωr K(x -ζ)dζ , (3.3) 
σ 2 r (x) = Ωr K(x -ζ) |I(ζ) -µ r (x)| 2 dζ Ωr K(x -ζ)dζ . (3.4)
The above formulas can be seen as normalised convolutions of image features with the kernel K(•).

In this chapter, we will focus on analysing some important contributions on local region-based segmentation methods. We will start with the work of Brox and Cremers [START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF][START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF]. The authors derived a straightforward local Gaussian model from an interpretation of the piecewise smooth MS functional. We then review Li's and colleagues' contributions.

Data tting energies, namely a binary tting and a Gaussian tting, to locally approximate the observed image intensities have been proposed in [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF][START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF]. Based on a local intensity clustering property, a segmentation method with a bias eld correction is introduced in [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF]. We will also consider the region-based framework proposed by Lankton and Tannenbaum [START_REF] Lankton | Localizing region-based active contours[END_REF], which allows to reformulate a given global external energy in a local way. Finally, we conclude the data-driven energies by a general Bayesian interpretation with two local kernels.

Brox and Cremers model

The idea of incorporating local region statistics in a variational framework begins with the work of Brox and Cremers [START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF]. They have derived the Euler-Lagrange equation of a local Gaussian model. The data delity term of Brox and Cremers's (BC) model is expressed by [START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF][START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] :

E BC = r Ω H r (φ) I(x) -µ r (x) 2 2σ 2 r (x) + 1 2 log σ 2 r (x) dx , (3.5) 
where the Heaviside function H r (φ) denes the region Ω r . The data-driven energy of a point x is characterized by its local mean µ r (x) and local variance σ 2 r (x). The exact shape gradient of E BC with respect of the contour can be computed by the Gâteaux derivative, where the usual implementation is a coordinate descent. For simplicity, the minimisation of the external energy for one region Ω i can be expressed by [START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] :

∂E BC (Ω i ) ∂φ = δ(φ(x)) I(x) -µ i (x) 2 2 σ 2 i (x) + log σ i (x) - 1 2 I 2 (x)F 4 (x) + I(x)F 5 (x) + F 6 (x) , (3.6) 
with the following abbreviations :

F 1 (x) = K * H i (φ) (x) , F 2 (x) = K * H i (φ)I (x) → µ i (x) = F 2 (x) F 1 (x) , F 3 (x) = K * H i (φ)I 2 (x) → σ 2 i (x) = F 3 (x) F 1 (x) -µ 2 i (x) , F 4 (x) = K * H i (φ)(I -µ i ) 2 -σ 2 i σ 4 i F 1 (x) , F 5 (x) = K * H i (φ) [2I σ 2 i -2 µ i (I -µ i ) 2 ] σ 4 r F 1 (x) , F 6 (x) =    K * H i (φ) σ 2 i ( F 3 F 1 -2I µ r ) -(I -µ i ) 2 ( σ 2 i -µ 2 i ) σ 4 i F 1    (x) .
Here, K is the mirrored kernel of K and * is a convolution operation. The estimation of µ r (x) and σ r (x) in Eq. (3.3)(3.4) now are function of F 1 , F 2 , F 3 . More details on the derivation of the above shape gradient equations can be found in Appendix A.2 and [START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF].

In order to dene the locality, the BC model uses an isotropic Gaussian kernel with a standard deviation σ p . This choice of local kernel leads to a fast implementation using recursive ltering. This has the advantage of a computational complexity that is independent from the choice of the scale of the local spatial kernel. Notice that, the convolutions the local scale σ p is small, and they could be ignored in the evolution function.

F 1 , F 2 , F 3 
As exhibited in Fig. 3.5, we use the BC model to segment the same test image for the global models in Fig. 3.2. Three dierent scales are examined here, aiming at studying the inuence of the kernel scale σ p in this local method. As expected, the BC model is more appropriate for the segmentation of images with inhomogeneities than global ones. For the rst initialisation, two of the three results, obtained with the smaller kernel sizes, are much better than the global ones. Also notice that if an appropriate scale is chosen, here between σ p = 14 and 7 for the rst initialisation, the BC model is able to distinguish the parts with a very low contrast between the background and the foreground. For the second row in Fig. 3.2, however, all three scales are unable to lead to a good result. Therefore, Remarks :

1. According to [START_REF] Nielsen | Regularization, scale-space, and edge detection lters[END_REF] the outcomes of some linear lters are exact minimisers of certain energy functional with an innite sum of penalised terms of arbitrarily high order.

For a spatial position x = (x, y) T , Brox and Cremers [START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] have proposed that the convolution result for estimating local image statistics in Eq. (3.3) equals to nding the minimisation of the following energy function :

E(µ r ) = Ωr (I(x) -µ r (x)) 2 + ∞ k=1 λ k k! k 1 +k 2 =k ∂ k µ r (x) ∂x k 1 ∂y k 2 2 dx . (3.7) 
Neglecting all penalised terms of order k > 1, the energy with some boundary constraints, for example the regularisation on the length of C, can be written as :

E = r E(µ r ) + ν|C| , ≈ r Ωr (I(x) -µ r (x)) 2 + λ|∇µ r (x)| 2 dx + ν|C| , (3.8) 
which corresponds exactly to the MS functional given in Eq. (2.19). The main eect of ignoring the higher order terms is that, the local mean function µ r (x) in Eq. (3.8) is less smooth than the exact minimiser of Eq. (3.7). This impact can be further reduced by choosing a slightly larger weight λ for the rst-order approximated energy Eq. (3.7) than the one used in the regularisation term containing the innite sum of penalisations in Eq. (3.8) [START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] .

2. The Bayesian model given in Eq. (2.23) can be directly generalised to local cases.

For example, by substituting the conditional probability p(I|C) ∼ N (µ r (x), σ 2 r (x))

with a local Gaussian probability density, we obtain the local version of the Gaussian model and CV model expressed by :

E = r Ωr (I(x) -µ r (x) 2 ) 2σ 2 r (x) + 1 2 log(σ 2 r (x)) dx + ν|C| E = r Ωr (I(x) -µ r (x)) 2 dx + ν|C| + const , for σ 2 r = 0.5 .
Consequently, this Bayesian a-posteriori maximisation based on local Gaussian model is exactly the BC model in Eq. (3.5).

3. Brox and Cremers [START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] have also proposed a general solution for non-parametric local models in Eq. (2.23), whose Gâteaux derivative is as follows :

∂E(φ) ∂φ = δ(φ(x)) log p(I(x), x) + δ(φ(x)) Ω K(y -x)H r (φ(y)) (K ρ (I(y) -I(x)) -p(I(y), y)) p(I(y), y) Ω K(y -z)H r (φ(z))dz dy .
Notice here the locality K with the scale σ p is dierent from the tonal kernel in the Parzen estimator K ρ (•). By using estimated intensity histograms, this evolution function can be implemented through convolutions, which are similar to the parametric external model shown in Eq. (3.6).

Local intensity tting model

Li et al. [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF] have proposed a local data tting energy for the purpose of handling intensity inhomogeneity. For a given point x ∈ Ω, its tting function locally approximates the image intensity [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF] :

E t (x) = r Ωr K σe (x -y)|I(y) -µ r (x)| 2 dy , (3.9) 
where the local kernel K σe satises Eq. (3.2). Due to the contribution of this assigned coecient K σe , intensities I(y) are eectively involved in the above energy within a local region O(x). Therefore, E t (x) can be seen as a weighted mean square error (MSE) of the approximation of the image intensities for each region Ω r .

In order to obtain the segmentation, E t (x) is minimised for all pixels x in the whole image domain Ω. Hence, the external energy using this intensity model is dened as the following double integral functional [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF] :

E Li = Ω E t (x)dx = Ω r Ωr K σe (x -y)|I(y) -µ r (x)| 2 dy dx . (3.10) 
For a binary segmentation, the above function corresponds to the global tting energy in the CV model. Wang et al. [START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF] have extended Eq. (3.10) by taking the local variances into account. Therefore ) can be achieved by the following gradient descent equation [START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF] : assumed that all partitions p(y ∈ Ω r O(x)) have a priori equal probabilities.

E Wang = Ω r Ωr K σe (x -y) |I(y) -µ r (x)| 2 2σ 2 r (x) + 1 2 log(σ 2 r (x)) dy dx (3.
∂E Wang (φ) ∂t = - r δ(φ) Ωr K σe (y -x) I(x) -µ r (y)
Hence this term has been ignored. In practice, this assumption is not always true.

As illustrated in Fig. 3.7, p(y

∈ Ω i O(x 1 )) = p(y ∈ Ω o O(x 1 )) = 1/2, however, clearly p(y ∈ Ω i O(x 2 )) < p(y ∈ Ω o O(x 2 )
). In addition, we check that for the

point x 3 , p(y ∈ Ω i O(x 3 )) = p(y ∈ Ω o O(x 3 
)) = 1/2 because the size of the local kernel is very small. Therefore, this underlying assumption is reliable only when σ e is extremely small and when the image boundary does not have sharp corners.

3. According to [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF][START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF], the local kernel K σe is chosen to be a Gaussian one, and K = K σe is assumed to calculate the local region statistics. Notice that σ p should be large in order to better estimate the local image model parameters. This is the case when the initial contour is in a comparatively homogeneous region or when the image noise is important. On the other hand, increasing the value of σ e will bring more bias to the energy function (because of the above point). This problem will be discussed later in § 3.5.2.

Local intensity tting with bias correction

Li et al. [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF] have recently combined the local intensity tting models introduced in § 3.3 with a bias eld estimation technique. They considered a multiplicative model of intensity inhomogeneity, thus the observed image I can be expressed by :

I(x) = bJ(x) + n , (3.13) 
where J(x) is the true image, b refers to a bias eld or a shading image, and n is the additive noise which is normally assumed to be zero mean Gaussian noise. In order to establish a local external energy for this model, two assumptions are made as follows :

1. The bias eld b is varying slowly, which means b(x) can be well approximated by a constant in the neighbourhood of x. 

(x) = {I r c r H r (φ)} * K σe { r c 2 r H r (φ)} * K σe , r = 1, 2, . . . , N . (3.16) 
Alternatively, minimising with respect to c r for xed φ and b gives :

c r = Ω H r (φ)(b * K σe )Idx Ω H r (φ)(b 2 * K σe )dx
, r = 1, 2, . . . , N .

(3.17 guarantees that F operates on local image information about x. Therefore, the total energy is the sum of values for every neighbourhood along the zero level set.

By taking the partial derivative of the energy E LT (φ) with respect to φ, the evolution function is given by [START_REF] Lankton | Localizing region-based active contours[END_REF] :

∂E LT (φ) ∂t = δ (φ(x))
Oy K σe (x, y) ∇ φ(y) F (I(y), φ(y)) dy .

(3.20)

Thus, the only restriction on the function F is that its rst variation with respect to φ can be computed. For example, the local binary tting model has :

F (I(y), φ(y)) = H(φ(y))(I(y) -µ i (x)) 2 + H(-φ(y))(I(y) -µ o (x)) 2 ⇒ ∇ φ(y) F (I(y), φ(y)) = δ (φ(x)) (I(y) -µ i (x)) 2 -(I(y) -µ o (x)) 2 .
After the estimation of the local means for current segmentation, the above function can be substituted directly into Eq. 

Localised Bayesian interpretation

The segmentation problem can be described as the minimisation of the following localised Bayesian interpretation [START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF] : Li et.al [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF] σ p = a σ e = σ p local Gaussian local Wang et.al [START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF] σ p = a σ e = 0 

E = Ω r Ωr K σe (x -y)log p(I(y)|y ∈ Ω r )dy dx + ν|C| , (3.21 

Conclusion

In this chapter, we focused on several recently developed algorithms based on local region statistics, including the BC model [START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF], local intensity tting model [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF][START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF] and the local tting model with bias eld correction [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF]. We also gave some segmentation examples of synthetic images with intensity inhomogeneities. We also reviewed the general framework for local region-based segmentation models proposed in [START_REF] Lankton | Localizing region-based active contours[END_REF]. Finally, we presented a synthesis of most local methods base on a variant of the Bayesian interpretation in [START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF]. Although local image statistics outperforms global ones for the segmentation of inhomogeneous images, their results are still sensitive, mainly to the initialisation. The results are also highly dependent on the choice of size of the locality. The following chapter will introduce several possible solutions to these problems, such as the combination of global and local image information as well as scale selection strategies for local active contours.

Introduction

Local region-based segmentation models are surely better alternatives to global ones for images in the presence of intensity inhomogeneities. However, they are found to be more sensitive to initialisations if the local spatial scale is not chosen appropriately. A decrease of robustness to noise is also observed when small neighbourhoods are used. Therefore, this brings out two problems : the combination of global and local image statistics in one model and the selection of optimal pixel-dependent scales for local methods. Facing with these problems, the rest of this chapter will be organized as the following three parts.

We can learn a lot from the progress of denoising methods [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF][START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF][START_REF] Katkovnik | From local kernel to nonlocal multiple-model image denoising[END_REF], which aim at smoothing images while preserving edges. Conventional denoising techniques, such as ltering, are based on local averaging. Therefore, these problems of choosing locality also exist in image denosing area. An increase of the size of the averaging window does not solve the problem, as it brings bias into image regions where the noise free data are not constant. In this perspective, the possible solution is to use an adaptive number of image pixels assigned with data-dependent contributions in the ltering process.

A rst segmentation model, which uses both global and local information within the level set framework, has been proposed by Wang et al. [START_REF] Wang | Active contours driven by local and global intensity tting energy with application to brain MR image segmentation[END_REF]. Their approach is straightforward in the sense that it adds two energy functions of the same nature, where the region-based statistics are estimated globally in one and locally in the other. In fact, this is not the rst time that global and local image statistics are combined together for the purpose of solving a segmentation problem. To our knowledge, the rst proposition has been introduced in [START_REF] Boukerroui | Segmentation of echocardiographic data. multiresolution 2D and 3D algorithm based on gray level statistics[END_REF][START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF] within the Bayesian framework. The authors focus on the adaptive character of a MAP algorithm and discuss how global and local region statistics are utilised in order to control the adaptive properties of the segmentation process.

Similar to image denoising, an appropriate size of the local kernel can help in obtaining a meaningful segmentation than using an empirically xed one. Two pixel-dependent scale selection strategies have been recently introduced in local region-based active contours.

The rst was by Piovano and Papadopoulo, which denes the local scale as the smallest one inducing an evolution speed superior to a given threshold [START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF]. The second one is by us, where we proposed an optimal scale in the sense of the MSE minimisation of a Local Polynomials Approximation of the observed image conditional on the current segmentation [START_REF] Yang | Optimal spatial adaptation for local region-based active contours : An intersection of condence intervals approach[END_REF] 6 .

6. Although the work of Piovano and Papadopoulo was published before ours, we were not aware of it until the beginning of year 2012.

Denoising methods

Suppose the independent random observations I(x s ) are given in the form :

I(x s ) = J(x s ) + n(x s ) , s = 1, . . . , m , (4.1)
where the observations coordinates x s are known. The original noise free image J is corrupted by a zero-mean white Gaussian noise n(•). The goal of image denoising methods is to recover the unknown image J from the noisy measurement I(x s ). In order to search for ecient denoising algorithms, several popular solutions exist in the literature [START_REF] Tomasi | Bilateral ltering for gray and color images[END_REF][START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Kindermann | Deblurring and denoising of images by nonlocal functionals[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF][START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF][START_REF] Protter | Generalizing the non-local-means to super-resolution reconstruction[END_REF][START_REF] Katkovnik | From local kernel to nonlocal multiple-model image denoising[END_REF][START_REF] He | Guided image ltering[END_REF].

Image denosing techniques through ltering assume that images typically vary slowly over space. So adjacent pixels are likely to have similar values, and it is appropriate to average them together. However, this assumption fails at edges, which are consequently blurred by low-pass ltering. Tomasi and Manduchi [START_REF] Tomasi | Bilateral ltering for gray and color images[END_REF] have proposed the bilateral lter for edge preserving smoothing. This lter is a normalised weighted average of a neighbourhood around x s , given by :

J(x s ) = x∈O(xs) w[x s , x]I(x) x∈O(xs) w[x s , x] . (4.2)
The weights w[x s , x] are dened by multiplying a spatial closeness function w c with an intensity similarity function w s :

w[x s , x] = f ( x s -x , σ s ) wc exp - (I(x s ) -I(x)) 2 2σ 2 I ws . (4.3) 
Therefore, the weights w[x s , x] includes two ingredients. The rst term measures the geometric proximity x s -x . The function f is monotonically non-increasing, which may take many forms, such as a Gaussian with a variance σ 2 s . This way, close-by samples inuence the nal result more than distant ones. The second weight is the proximity among the observed intensities I(x s ) and I(x). The parameter σ I controls the eect of the grey-level dierence between the two pixels. This way, when two pixels are dierent, the corresponding weight is very small. Thereby, this neighbour should not be trusted in averaging.

The non-local means (NLM) lter [START_REF] Buades | A non-local algorithm for image denoising[END_REF] could be seen as a generalisation of the bilateral ltering [START_REF] Protter | Generalizing the non-local-means to super-resolution reconstruction[END_REF]. The radiometric part in the weights of the NLM is computed by the Euclidean distance between two image patches, which are centred at the involved two pixels :

w[x s , x] = f ( x s -x , σ s ) wc exp - R I xs -R I x 2 2σ 2 I ws . (4.4)
Here, R I xs is an operator which extracts a patch of a xed and pre-determined size (τ × τ ) from the observed image. For instance,

R I xs (l) = I(x s + l) , ∀ l ∈ [-τ /2, τ /2] 2 . (4.5)
Obviously, when R I xs extracts only a single pixel, the bilateral lter emerges as a special case of the NLM algorithm.

The choice of σ s suers from the same problem as the scale σ p in local image statistics estimations for segmentation. A variant of the NLM lter optimises explicitly the size of the local window in order to achieve the best trade-o between a minimum bias and a minimum variance of the estimates [START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF]. The selection of the best parameters of the NLM lter is also addressed in [START_REF] Duval | A bias-variance approach for the nonlocal means[END_REF]. Their approach is based on a popular method of risk estimation, namely the Stein Unbiased Risk Estimate (SURE) [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF]. Thus, it is also a bias and variance trade-o method, but diers from the work in [START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF]. This is because the SURE method focuses on the choice of the smoothing parameter σ I and the latter on the size of the searching window σ s .

Anisotropic LPA-ICI denoising

An alternative approach to the above mentioned denoising techniques is based on a

Local Polynomial Approximation (LPA) of image patches. Katkovnik et al. [START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF] have proposed a selection mechanism based on a bias and variance trade-o to optimise the size of the local spatial window. Formally, the selection algorithm is based on the Intersection of Condence Intervals (ICI) rule, rst proposed in [START_REF] Goldenshluger | Adaptive de-noising of signals satisfying dierential inequalities[END_REF][START_REF] Katkovnik | A new method for varying adaptive bandwidth selection[END_REF]. The most general formulation of the LPA-ICI method can estimate not only the size of the local window, but also its shape when it is used in its anisotropic form. This method uses a starshaped estimation of the neighbourhood at each point. The starshape kernel oers enough geometrical exibility to t to edges in a large number of natural images. Examples of the ideal neighbours are labelled by the grey regions in Fig. 4.1. In order to describe these starshapes, a directional adaptive scale estimator has been introduced by Katkovnik et al. [START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF]. The authors use a set of sectors characterized by a direction and an optimal scale obtained by the anisotropic LPA-ICI approach. Denoising example : Finally, gure 4.3 shows the denoising example obtained by the NLM and the anisotropic LPA-ICI. Both methods appear to be promising, which successfully reduce the noise and preserve the edge information.

In the rest of this chapter, we will rst introduce three typical segmentation methods, which use both global and local image statistics. Then, our main contributions will be detailed in § 4.4. Alternative to using a xed local scale, we will concentrate on nding the optimal window size for local region-based segmentation method. Motivated by the anisotropic LPA-ICI algorithm, we have proposed a local region-based segmentation method with an adaptive scale selection strategy. Finally, we will discuss the performances of our approach in dealing with image intensity inhomogeneities. For the NLM, σ s = 2, the similarity window τ = 5, and σ 2 I = 0.9 σ 2 , where σ 2 is the estimated noise variance from the observed image. For the anisotropic LPA-ICI, the optimal scale is chosen from the set h = [START_REF] Adams | Seeded region growing[END_REF][START_REF] Amini | Using dynamic programming for solving variational problems in vision[END_REF][START_REF] Aubert | Mathematical problems in image processing : partial dierential equation and the calculus of variations[END_REF][START_REF]Phase-based level set segmentation of ultrasound images[END_REF][START_REF] Boukerroui | On the choice of band-pass quadrature lters[END_REF][START_REF] Brusseau | Fully automatic luminal contour segmentationin intracoronary ultrasound imaging a statistical approach[END_REF], the parameter Γ controls the trade-o between bias and variance is 1.05, and the directional resolution is 8.

Combination of global and local image statistics 4.3.1 A MAP-MRF framework

Boukerroui et al. [START_REF] Boukerroui | Segmentation of echocardiographic data. multiresolution 2D and 3D algorithm based on gray level statistics[END_REF][START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF] have proposed a region-based segmentation method and discussed how global and local image statistics can be utilised within a Bayesian framework.

Their approach introduced an enhancement in controlling the adaptive properties of the segmentation process. Thus, its data-driven energy function to be minimised is given by [START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF] : 

E D = xs∈Ω ϕ(w r (x s ), a) I(x s ) -µ r (x s ) √ 2σ r (x s ) 2 + log(σ r (x s )) .

Local and global intensity tting energy

Within the level set framework, a region-based model, including local and global image information, has been proposed in [START_REF] Wang | Active contours driven by local and global intensity tting energy with application to brain MR image segmentation[END_REF]. Its external energy term is a direct linear combination of a local intensity tting term [START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF], which is responsible for attracting the contour towards boundaries, and an equivalent global tting one, which improves the robustness :

E D = (1 -ω) Ω r Ωr K σe (x -y)|I(y) -µ r (x)| 2 dy dx E Li +ω r Ωr (I(x) -µ r ) 2 dx E CV , (4.7) 
where the positive weighting parameter ω belongs to [0, 1]. Clearly, the evolution equation of the gradient descent of the energy is also a linear combination of the corresponding forces of Li and CV given respectively in Eq. (3.10) and Eq. (2.24).

The inuence of these two energies on the curve evolution is complementary. Indeed, it is well known that global image statistics are more robust to initialisations. If the initial contour is far away from the true boundaries, the local energy will be unable to drive the contour to an acceptable result. In such cases, the global energy should be dominant, thus a relatively large ω should be used. On the contrary, the accuracy of a segmentation of an image with inhomogeneities relies on local image statistics. Local region statistics should be essential for images with severe inhomogeneities, which means a small ω should be chosen. Otherwise the global force may prevent the segmentation contour from stopping at true boundaries. In the original local and global intensity tting model [START_REF] Wang | Active contours driven by local and global intensity tting energy with application to brain MR image segmentation[END_REF], the value of ω is a constant, which is chosen according to the degree of inhomogeneity. Alternatively, authors of [START_REF] Yu | Active contour method combining local tting energy and global tting energy dynamically[END_REF][START_REF] Wu | Local-and global-statistics-based active contour model for image segmentation[END_REF] proposed that the contribution of global energy term ω could be dened dynamically by local contrast of the image.

Non-local active contours

Non-local methods, originally proposed by Buades et al. for denoising, have been explored in many papers because they are well adapted to texture. The idea has been extended to image segmentation by [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF][START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs : A framework for image and manifold processing[END_REF][START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF][START_REF] Jung | Nonlocal active contours[END_REF]. For example, Jung et al. [START_REF] Jung | Nonlocal active contours[END_REF] have recently proposed a novel class of segmentation energies that imposes a local homogeneity of patch features. This method is based on comparisons between pairs of patches within each region [START_REF] Jung | Nonlocal active contours[END_REF] :

d(R I x , R I y ) = l K a (l) R I x (l) -R I y (l) 2 dl , (4.8) 
where K a is used to give more inuence to the central pixel, and a truncated Gaussian kernel is commonly applied. R I x and R I y , satisfying Eq. (4.5), are two patches of the obser- ved image centred at image points x and y respectively. The non-local interaction d(•, •)

measures the similarity between these patches. This weighted distance only constrains the local homogeneity, which is crucial to capture regions with smoothly spatially varying features.

The data-driven energy dened by the similarity of each local region is measured by considering all possible pairwise patch interactions at a given scale b > 0 [START_REF] Jung | Nonlocal active contours[END_REF] :

E D = r E N L (Ω r ) = r Ωr Ωr K b (x, y)d(R I x , R I y )dy
Ωr K b (x, y)dy dx . 

Local region-based methods with adaptive scales

In order to segment an image with intensity inhomogeneities, local image statistics should be used. However, for local region-based methods as well as the one combining both global and local image statistics, their segmentation results depend upon the choice of the scale of the local window 7 . In certain controlled situation, appropriate scales may be known as a priori. But under most circumstances, it may not be obvious at all to determine in advance the proper scale. To cope with this problem, in this section, we aim to nd the suitable scale for each point along the contour. First, we will briey recall the scale selection method proposed by Piovano and Papadopoulo [START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF]. Then, we will introduce our main contributions.

Piovano-Papadopoulo scale selection strategy

In [START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF], the authors proposed a scale selection strategy when using local region statistics in active contours. Their idea is to nd the most salient scale for each point [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF]. In this thesis, the window size and the scale are interchangeable concepts. We recall that we denote by h the half widows size and by σ p , σ e the kernel standard deviation. in order to make the contour evolved locally. As mentioned earlier, it is desirable that the contour should evolve even in locally homogeneous area. Therefore, the pixel-dependent scale is dened as the smallest one inducing an evolution speed superior to a given threshold ξ [START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF] : 

h * (x) = inf

LPA-ICI rule

In the following section, we will introduce an alternative approach, in order to choose a good value for the spatial scale at every pixel location along the contour. The LPA is a powerful non-parametric estimation in a point-wise manner based on a mean square polynomial tting in a sliding window. Similar to local segmentation method, the selection of an appropriate window size is of great interest for the LPA, in order to obtain the most natural and relevant approximation. Here, we mean by natural approximation a smooth one and relevant a non-biased one. The ICI rule [START_REF] Katkovnik | A new method for varying adaptive bandwidth selection[END_REF][START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF]] is an adaptation algorithm, which searches for the largest local window size where LPA assumptions t well to the observations. The ICI rule can be applied with many existing linear and non-linear lters where a bias-variance trade-o is a good criterion for the parameter selection. The optimal window size is dened by a compromise between the bias and the variance of estimation.

Basis of LPA

Recall the noisy observation model dened in Eq. (4.1). The LPA assumes the true image J can be well approximated locally by a polynomial function in some neighbourhoods of the point of interest. It provides estimations in a point-wise manner, which nds the weighted least-square tting in a sliding window. The LPA for the point x = (x, y) T in a neighbourhood of the centre x s = (x s , y s ) T is of the form : where h is a scaling parameter. C = [C 1 , C 2 , . . . , C M ] T is a vector of the parameters, and ψ is a vector of linearly independent 2D polynomials :

J h (x, x s ) = C T ψ h (x -x s ) , (4.11) ψ h (x) = ψ(x/h) , ψ(x) = ψ 1 (x), ψ 2 (x), . . . , ψ M (x) T , m M ψ h (x, y) 0 1 ψ 1 = 1 1 3 ψ 2 = -x ψ 3 = -y 2 6 ψ 4 = x 2 /2 ψ 5 = y 2 /2 ψ 6 = xy
ψ = (-1) k 1 +k 2 x k 1 k 1 ! y k 2 k 2 ! , with k 1 + k 2 = 0, 1, . . . , m .
(4.12)

The total number of polynomials is equal to M = (m + 2)(m + 1)/2. For example, the above polynomials for the order m ∈ {0, 1, 2, 3} are shown in Table 4.1. For an order m, the set of the polynomials includes the row corresponding to m as well as all rows with smaller values of m.

The standard LPA minimises the following weighted least-square criteria with respect to the coecient C [START_REF] Fan | Local Polynomial Modelling and Its Applications[END_REF] :

LS h (x) = xs∈Ω w h (x s -x) I(x s ) -J h (x, x s ) 2 .
(4.13)

The window w h (x) = 1 h 2 w x h satises the conventional properties of kernel estimates and h is a scaling parameter. The Taylor series for I(x s ) with the reference point x is :

I(x s ) =J h (x) -∂ x J h (x)(x -x s ) -∂ y J h (x)(y -y s ) + 1 2 ∂ 2 x J h (x)(x -x s ) 2 + 1 2 ∂ 2 y J h (x)(y -y s ) 2 + ∂ x ∂ y J h (x)(x -x s )(y -y s ) + • • • .
Consider the model J h (x, x s ) in Eq. (4.11) with the polynomials of the corresponding powers :

J h (x, x s ) =C 1 - C 2 h (x -x s ) - C 3 h (y -y s ) + C 4 2h 2 (x -x s ) 2 + C 5 2h 2 (y -y s ) 2 + C 6 2h 2 (x -x s )(y -y s ) + • • • .
Therefore, the residuals in Eq. (4.13) can be given in the following form :

I(x) -J h (x, x s ) =(J h (x) -C 1 ) + C 2 h -∂ x J h (x) (x -x s ) + C 3 h -∂ y J h (x) (y -y s ) + 1 2 ∂ 2 x J h (x) - C 4 2h 2 (x s -x) 2 + 1 2 ∂ 2 y J h (x) - C 5 2h 2 (y s -y) 2 + ∂ x ∂ y J h (x) - C 6 2h 2 (x s -x)(y s -y) + • • • .
Because all the polynomials in the above equation are linearly independent, minimisation of Eq. (4.13) is equivalent to minimise (J h (x)-C 1 ), C 2 h -∂ x J h (x) and so on. In this way, the estimate of the function J h is given as J h (x) = C 1 (x, h) and similarly its derivative is given by :

∂ x J h (x) = C 2 h , ∂ y J h (x) = C 3 h , • • •
The estimate given by the LPA can be written as the kernel operator on the observations [START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF] :

J h (x) = xs∈Ω g h (x, x s )I(x s ) , (4.14) 
where the kernel is given by : When the grid is assumed to be regular, the LPA kernel g h (x, x s ) becomes shift-invariant on x, thereby, the solution of the above estimation is given by a convolution operation.

g h (x, x s ) = w h (x -x s )ψ T h (x -x s )Ψ -1 h ψ h (0) , (4.15) Ψ h = xs∈Ω w h (x -x s )ψ h (x -x s )ψ T h (x -x s ) .
The kernel g h is dened by the window w h and the set of polynomials ψ h . 

Ideal scale

Let the accuracy of the LPA can be measured by the pointwise mean-square risk :

r J h (x, h) = E{(e J h (x, h)) 2 } = E{(J(x) -J h (x)) 2 } ,
where e J h (x, h) is the error of estimation. This function can be written as the sum of the squared bias and the variance of the estimation :

r J h (x, h) = E{ J h (x)} -J(x) 2 + E J h (x) -E{ J h (x)} 2 + 2E E{ J h (x)} -J(x) J h (x) -E{ J h (x)} , = m 2 J h (x, h) + σ 2 J h (x, h) + 0 . (4.16)
Assume the given image is sampled by a small interval ∆, and the sampling grid is regular.

Let the noise in the observation model in Eq. (4.1) be white with variance σ 2 . Omitting the higher-order terms in the estimation of bias and variance, the upper bound of the above mean-square risk r J h is given by [98, 99] :

r J h (x, h) ≤ h m+1 J (m+1) (x)A g 2 m 2 J h + σ 2 ∆ 2 h 2 B g σ 2 J h = r J h (x, h) , (4.17) 
with

A g = 1 (m + 1)! g(u)u m+1 du , B g = g 2 (u)du ,
where J (m+1) is the (m + 1) th derivatives of the noise free data.

The window size h is crucial for the accuracy of the LPA. Figure 4.6 demonstrates the inuence of the h on the 1D LPA of a noise degraded signal. Obviously, using a small kernel size, generally leads to a small bias in estimation, but a large variance is caused by the noise. On the contrary, a big one brings a smooth estimation, which has a very larger bias for inhomogeneous parts and a small variance. Analyse the expression of meansquare risk in Eq. (4.17) and the above example of the LPA, we notice that : the bias of the estimation m J h is a monotonically increasing function of h, while the variance σ 2 J h is a to the mean-square risk r J h . The ideal scale h * corresponds to the minimal r J h . monotonically decreasing one. Therefore, it exists a bias and variance balance giving the ideal scale h * (x), which can be found by the minimisation of the r J h (x). This idea leads to following inequality [START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF] :

|m J h (x, h)| ≤ γ • σ J h (x, h) if h ≤ h * , > γ • σ J h (x, h) if h > h * , (4.18) 
which means the ideal bias-variance trade-o is achieved when the ratio between the absolute value of the bias to the variance is equal to γ. Under the assumption of an additive Gaussian noise, the following inequality holds with probability p = (1 -α) [START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF] :

|e J h (x, h)| ≤ |m f h (x, h)| + z (1-α/2) σ J h (x, h) , (4.19) 
where z (1-α/2) is the (1 -α/2) th quantile of the standard Gaussian distribution. σ J h is the standard deviation of the estimates, which can be estimated given the noise model and its variance :

σ 2 J h (x, h) = σ 2 xs∈Ω g 2 h (x -x s ) .
The above function relies on the preliminary estimation of the noise variance σ 2 , which can robustly be estimated from the input data [START_REF] Lebrun | Secrets of image denoising cuisine[END_REF]. More details can be found in Appendix C.

The ICI Rule

The two inequalities Eq. (4.18) and Eq. (4.19) are the starting point for the development of a hypothesis testing, on which the data-driven scale selection method is built.

Combine the rst inequality of the former with the latter inequality, the estimation error satises : This determines the condence intervals Q(h) of the estimate :

|e J h (x, h)| ≤ (γ + z (1-α/2) ) Γ σ J h (x, h) , ∀h ≤ h * (x) .
Q(h) = J h (x) -Γ • σ J h (x, h), J h (x, h) + Γ • σ J h (x, h) . (4.21)
Denote the sequence of the Q i as follows :

Q i = Q(h i ) = [L i , H i ] , h i ∈ h ,
where L i and H i respectively represent lower and upper bounds of the condence interval.

Eq. (4.21) is equivalent to : ∀h i ≤ h * (x), J h i (x) ∈ Q i holds with certain probability p, related to the threshold Γ. Therefore, for all h i < h * , the intervals Q i have a point in common, namely J(x). On the contrary, if the ICI is empty, it indicates h i > h * . In this way, the ICI rule can be used to test the existence of this common point and to obtain the adaptive window size.

The ICI rule aims at searching for the largest local window size (minimising local variances) where the LPA ts well to the observations (minimising local bias). The estimates J h (x) are calculated for h i ∈ h and compared. The ICI rule, which uses the estimates and their variances, identies a scale closest to the ideal one, h ≈ h * . Figure 4.7 illustrates graphically the ICI rule. Assuming the intersection with h n+1 is empty, the adaptive scale is h = h n .

The following algorithm implements the ICI rule [START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF] :

1. Dene a sequence of condence intervals Q i , ∀h i ∈ h as in Eq. (4.21) with their lower bounds L i and upper bounds U i .

For

i = 1, 2, . . . , u -1, let L 1 = L 1 , L i+1 = max{L i , L i+1 } ; U 1 = U 1 , U i+1 = min{U i , U i+1 } .
According to these formulas, L i+1 and U i+1 are respectively non-decreasing and non-increasing sequences.

3. Find the largest value i, when

L i ≤ U i , i = 1, 2, . . . , u ,
is still satised. Denote this value by n. As was discussed above, the ICI adaptive scale is h = h n .

These calculations are point-wise repeated for each x.

Remark :

The ICI depends on the estimates J h i (x) giving a centre position of the Q i and on the width of the interval Γ•σ J h (x, h). This thresholding parameter Γ plays an important role in the ICI algorithm. Assuming α = 0.05 or 0.01 [START_REF] Katkovnik | Adaptive window size image de-noising based on intersection of condence intervals (ICI) rule[END_REF][START_REF]Local approximation techniques in signal and image processing[END_REF], the theoretical values of Γ are given by : In practice, if the signal I is piecewise smooth with rare and slow variations, larger Γ is recommended for better noise reduction ; otherwise, smaller Γ is used to preserve more details of the data. windows decrease for that part, while the right one behaves oppositely. The anisotropic method combines these two kernels sizes in the denoising process, therefore, it leads to a large improvement with a RMSE = 5.8462. In order to study the relation of these data adaptive scales with the position of the segmentation contour, we picked out several typical points for analysis. As we are only interested in a narrow band of C, within which we select four pairs of neighbours P 1 to P 4 .

m = 0 , Γ =    3 

1D denoising example

For each pair, one point locates inside and the other is outside of C, marked with green `+' and blue `•' respectively in the left image of Fig. 4.11. The corresponding estimated scales are illustrated by the sizes of circles, shown in the same gure.

The leftmost pair P 1 is around a region with very low contrast between Ω i and Ω o , where the local region statistics for inside and outside are very similar. Also the contour near P 1 is the correct boundary, where locally the segmentation has been achieved. In order to maintain this partition, we tend to consider more image information, which corresponds to the large kernel size obtained by LPA-ICI algorithm.

For the pair P 2 around the top of C, the inside one, laying between C and the true boundary, has a small kernel size. This is expected as larger windows, in that position, will introduce greater estimation bias. However, its symmetric point has larger scale estimates, because the image is relatively homogeneous in this neighbouring region within Ω o .

The pairs P 3 and P 4 are laying on the foreground. Thus, they have larger window size inside and smaller one outside, which are opposite to P 2 .

Therefore, if we directly use these kernel sizes h in the segmentation algorithm, as the curve C evolves closer to the real boundary, the local regions of points between them should be decreased, and so will be the estimated local scale. This brings out the problem that the closer C is to the correct segmentation, slower the evolution speed is. Analysing the case P 2 (or P 3 ), the spatial scale for the local inside (outside) need to be at least as big as the outside (inside), in order to increase the force driving the segmentation process.

To overcome this problem, we smooth the estimated local scales h inside and outside of C respectively, and run a max lter of a small size, 3 × 3 for example. So for the points near C, their estimated scales have similar values. Indeed, the estimated scales are very appropriate as it can be seen on the correct segmentation of P 1 . This ltering operation is necessary only when the algorithm is in progress. For the purpose of maintaining the accuracy, we run a few iterations by replacing the maximum with an average ltering and then by using the estimated scales directly.

As a summary, the proposed segmentation method using adaptive windows sizes selected by the LPA-ICI algorithm has following basic steps :

1. Initialisation : Give an image I, an initial segmentation C 0 or φ 0 , a nite set of win-dow sizes h = {h i , i = 1, 2, . . . , u}, a vector of 2D polynomials ψ, a threshold Γ and the weights of internal and external energies for the local region-based segmentation.

(a) Estimate the noise variance σ 2 from the observed image 8 .

(b) For each h ∈ h, build the set of linear lters g h for the LPA. (c) For the inside and the outside regions, smooth the obtained h(x) respectively.

When the algorithm is in process, run a maximum ltering locally for all the smoothed h(x) ; otherwise, use an average ltering for few iterations, then use directly the smoothed h(x). The proposed method utilises an adaptive size of the local kernel at every image location. Thus, it combines the advantage of using local region statistics with the consideration of relatively global information.

Segmentation examples and discussions

Figure 4.12 shows the segmentation of three images with inhomogeneities obtained using the proposed scale selection strategy. As expected, our segmentation method leads 8. The noise variance may be estimated respectively for the regions inside and outside of the current segmentation, and be updated after a xed number of iterations.

to very satisfactory results. The values of colour maps correspond to the dynamically selected local kernel sizes. Notice that the estimated window sizes for the local inside are smaller than those for the local outside for all three images. This can be explained by the fact that the inhomogeneity in Ω i is relatively stronger than in Ω o . This dierence of scales, between Ω i and the Ω o , is important for the forces in competition around low contrasted boundaries.

In order to further consider the inuence of the noise level on the estimation of the spatial kernel size, we use a synthetic image and study the LPA-ICI behaviour on two pairs of points. A number in `1' to `4' is assigned to each point as shown in Fig. 4.13. Figure 4.12 Segmentation example of images with inhomogeneities using the proposed method. From left to right : noise free images with initialisations, noise degraded images with segmentation results and the estimated kernel sizes for the nal contour. The size of three images is 128 × 128, and the local optimal scales are selected from the same h used in Fig. 4.4.

The study is carried out for the special case of an ideal segmentation, in other words, we discard the inuence of bias estimation. In order to obtain statistically meaningful estimations, we run the experiment 20 times and for 7 dierent SNR values. The means and the standard deviations, calculated with the 20 estimated kernel sizes, are visualised as error bars versus decreasing SNR values on Fig. 4.13, one curve for each point.

We observe that the kernel sizes for these estimations are inversely proportional to the SNR values. It implies that, when the image noise increases, the corresponding optimal kernel size also increases, and the proposed segmentation method tends to be more global.

We also notice that the scales of the inside point `1' are always smaller than those of the outside point `2'. But point `3' and point `4', in the regions with low contrast between foregrounds and background, have similar kernel size for SNR values lower than 16dB. The role of the threshold parameter Γ is to dene the reliability of the adaptive estimate J h . At rst glance, it may seem that Γ should be as small as possible, so as to minimise the risk of the adaptive-scale estimate. However, a too small Γ makes the probabilities of the condence intervals too small to have any practical signicance. In order to study the eects of Γ on the estimated local windows sizes, we do a similar test to the one shown in Fig. 4.13 for the same labelled points. Figure 4.14 illustrates that the estimated kernel sizes are proportional to the values of Γ. For both noise levels, the estimated scales for the outside points (red dotted curves) are generally larger or equal to their corresponding inside ones (green continuous curves), which corresponds our former discussions. However, when the inside and outside regions have very low contrast, here points `3' and `4', the estimations for Γ = 3.1 for SNR = 16dB and at Γ = 1.3 for SNR = 4dB do not follow the others patterns. Therefore, when the image noise is less important, we tend to use a smaller threshold Γ in order to increase the sensitivity of the ICI rule. On the contrary, if the noise is very important, a larger Γ should be used in segmentation.

Finally, we compare the behaviour of the proposed automatic scale selection algorithm with the Piovano and Papadopoulo's method. Figure 4.15 shows the contour evolution and the estimated scale maps. In the rst column, both h(x) for the initial contour reect clearly the degradation of image intensity. From the values of local kernels shown by the colour maps, we observe that the Piovano and Papadopoulo's method initially gets higher scales, and then uses smaller size when the algorithm approaches to convergence. in this method, the evolution speed is small when C is in an homogeneous region, thus large h(x) are selected ; while C approaches the ideal boundary, h(x) decreases in order to keep the same evolution speed ξ ; once C reaches the boundary, all the h(x) are almost equal to the smallest value in the set h. For the proposed algorithm, h(x) aims to well balance the bias-variance trade-o. When x belongs to an homogeneous region, local image statistics of its neighbours are very similar, thus larger h(x) are obtained by the LPA-ICI algorithm.

Here, h(x) denes the optimal region that represents well the image statistics at point x. Piovano's model [START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF], ε = 0.5. Bottom two rows : the proposed one [START_REF] Yang | Optimal spatial adaptation for local region-based active contours : An intersection of condence intervals approach[END_REF], Γ = 2.5. From left to right : the curve evolution from the initial contour to the nal contour with the corresponding estimated h. Image size 128 × 128, h is the same set used in Fig. 4.12.

Conclusion

In this chapter, we discussed possible solutions for two problems in the local regionbased segmentation. We have recalled the denoising algorithms which have similar difculties. We reviewed three segmentation models, which make use of both global and local image statistics. Then, we proposed a local region-based segmentation method with adaptive kernel scales within the level set framework. These optimal scales, derived by the LPA-ICI rule, are determined respectively for interior and exterior regions around the segmentation contour. Through some segmentation examples of synthetic images, we found that the proposed method is quite promising in the segmentation of images with inhomogeneities. More experiments and further analysis will be presented in the following chapter.

Chapitre 5

Ultrasound image segmentation Chapter summary

This chapter will rst review the methodology of ultrasound image segmentation. We will present the development of segmentation algorithms, in the consideration of ultrasound physics and prior information. Then, a more rigorous analysis of our proposed segmentation method will be given. We will use comparative experiments to verify the interest of our contribution. Complete analysis on these results will be demonstrated. Finally, we will provide some application examples on segmentation of real medical images.

Contents

Introduction

Medical ultrasonography is a non-invasive imaging technique used for the visualisation of subcutaneous body structures, and has steady progresses in the last decades [START_REF] Bridal | Milestones on the road to higher resolution, quantitative, and functional ultrasonic imaging[END_REF][START_REF] Vogt | Ultrasonic miscroscanning[END_REF].

It helps the diagnosing process and is involved in all stages of disease treatment. Segmentation, quantication and analysis of ultrasound images could ultimately improve the comprehension of diseases, the early detection of degradations and the interventional therapy. In a standard ultrasound system, there are three basic types of data available for analysis [START_REF] Noble | Ultrasound image segmentation and tissue characterization[END_REF] : radio-frequency (unprocessed) signals, envelope (magnitude) detected signals, and B-mode (log-compressed) images. In this study, we will focus on the segmentation of ultrasound B-mode images, because B-mode ones are traditionally available on commercial ultrasound systems.

Ultrasound image segmentation, largely driven by clinical needs, is a particularly challenging task. The echography has advantages in studying the function of moving structures in real-time. However, its segmentation result is strongly inuenced by the quality of the acquired data [START_REF] Noble | Ultrasound image segmentation : A survey[END_REF]. Ultrasound B-mode images are known to have a low SNR, a low contrast between areas of interest and high amounts of speckle. Furthermore, the presence of characteristic artefacts, such as non-linear attenuation, shadows and signal dropout, also complicate the segmentation task. Finally, the orientation dependence of acquisition can result in missing boundaries [START_REF] Noble | Ultrasound image segmentation : A survey[END_REF]. Therefore, the appearance of geometric boundaries in ultrasound images is dependent on the acoustic impedance dierence between tissues and on the above mentioned factors. Thus, conventional segmentation methods, which assume strong-intensity edges, often perform poorly on ultrasound images. Facing with this problem, numerous studies have been carried out [START_REF] Shao | Prostate boundary detection from ultrasonographic images[END_REF][START_REF] Noble | Ultrasound image segmentation : A survey[END_REF][START_REF] Noble | Ultrasound image segmentation and tissue characterization[END_REF]. These methods can be broadly dened in terms of those that make use of imaging physics constraints and those that make use of anatomical shape or temporal constraints.

In the rest of this chapter, we will rst briey recall used intensity models for the speckle noise. Then we will review several ultrasound image segmentation methods in consideration of prior constraints, such as intensities, phase, texture and shape. After that, we will give the justication of the proposed local region-based method with the scale selection strategy. In order to demonstrate the usefulness of our approach, segmentation results on simulated and real ultrasound images will be presented. We will further analyse its performance in comparison with several previously introduced segmentation methods based on local image statistics. Finally, we will present few results when applied on CT images. This signal dependent eect has been well studied in ultrasound-based imaging. The speckle can be seen either as a noise introduced by the sensor or as a signal carrying some information about the observed tissues. Regarding the former, there exist an extensive literature on speckle reduction. Recent works include [START_REF]Adaptive speckle reduction lter for log-compressed B-scan images[END_REF][START_REF] Zong | Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing[END_REF][START_REF] Yu | Speckle reducing anisotropic diusion[END_REF][START_REF] Abd-Elmoniem | Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diusion[END_REF][START_REF] Eltoft | Modeling the amplitude statistics of ultrasonic images[END_REF][START_REF] Yu | Ultrasound speckle reduction by a SUSAN-controlled anisotropic diusion method[END_REF]. This denoising step can be considered as a preprocessing step before performing segmentation.

In the latter, speckle is used as a valuable information and is used as a feature in order to separate dierent tissues.

The statistical properties of the received echo signal depend on the density and the spatial distribution of the scatters [START_REF] Wagner | Statistics of speckle in ultrasound B-scans[END_REF]. A suitable model of the observed speckle is useful not only for segmentation, and several distribution families have been proposed in the literature [START_REF] Dutt | Statistical anlysis of ultrasound echo envelop[END_REF][START_REF] Nadarajah | Statistical distributions of potential interest in ultrasound speckle analysis[END_REF][START_REF] Noble | Ultrasound image segmentation and tissue characterization[END_REF][START_REF] Destrempes | A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope[END_REF]. When there is a large number of randomly located scatterers, known as the case of fully developed speckle, the statistics of the envelope signal follow a Rayleigh distribution [START_REF] Wagner | Statistics of speckle in ultrasound B-scans[END_REF][START_REF] Brusseau | Fully automatic luminal contour segmentationin intracoronary ultrasound imaging a statistical approach[END_REF] ; if there is an additional non-random coherent component in the echo signal, the Rice distribution is an appropriate model [START_REF] Wagner | Statistics of speckle in ultrasound B-scans[END_REF]. Both models suppose the presence of a large number of scatterers in the tissue. In practice, the eective number of scatterers is nite, thus the K-distribution is proposed for this case of partially developed speckle [START_REF] Jakeman | Generalized K-distribution : A statistical model for weak scattering[END_REF][START_REF] Shankar | Use of non-Rayleigh statistics for the identication of tumors in ultrasonic B-scans of the breast[END_REF]. More generalisations, namely the homodyned K-distribution [START_REF] Dutt | Ultrasound echo envelope analysis using a homodyned K-distribution signal model[END_REF][START_REF] Prager | Decompression and speckle detection for ultrasound images using the homodyned K-distribution[END_REF], the Nakagami distribution [START_REF] Shankar | A general statistical model for ultrasonic backscattering from tissues[END_REF], the Gamma distribution [START_REF] Ayed | Multiregion level-set partitioning of synthetic aperture radar images[END_REF] and the Rician inverse of Gaussian distribution [START_REF] Eltoft | Modeling the amplitude statistics of ultrasonic images[END_REF], have been proposed for dierent scattering conditions. A recent critical review of most existing models is provided in [START_REF] Destrempes | A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope[END_REF].

The work of Nillesen et al. on modelling envelope statistics of blood and myocardium for the segmentation of echocardiographic image is also of interest [START_REF] Nillesen | Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images[END_REF].

As it has been already pointed out by several researchers, for instance in [START_REF] Lin | Combinative multi-scale level set framework for echocardiographic image segmentation[END_REF][START_REF] Noble | Ultrasound image segmentation : A survey[END_REF][START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF], it is important to highlight that all these statistical models only give the speckle probability density function at the transducer output. Meaning that the models are valid only for the unltered envelope of the received RF signal (i.e. before interpolation, log-compression and Time-Gain-Compensation). Thus, the validity of such models on ultrasound images acquired under clinical conditions is questionable [START_REF] Lin | Combinative multi-scale level set framework for echocardiographic image segmentation[END_REF][START_REF] Tao | Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images[END_REF][START_REF] Zhu | A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint[END_REF]. Empirical models of speckle in clinical log-compressed images have been reviewed and compared in [START_REF] Tao | Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images[END_REF].

Prior information

The resolution of ultrasound B-mode images is quite poor, in comparison with other clinical imaging techniques. In addition, ultrasound images have the problem of missing boundaries. Therefore, the utilisation of prior knowledge is a good way to characterize the object of interest, and helps solving the segmentation problem of ultrasound images. Here, we will briey introduce three main categories of constraints [START_REF] Noble | Ultrasound image segmentation : A survey[END_REF][START_REF] Noble | Ultrasound image segmentation and tissue characterization[END_REF] : the intensitybased, the geometric and temporal priors.

1. Intensity derivatives : Similar to edge-based segmentation method, this prior is appropriate if the goal is to nd acoustic (impedance) discontinuities in ultrasound images. As speckle gives a strong gradient response, intensity derivatives methods work only at high SNR observations. Therefore, speckle reduction techniques are usually necessary [START_REF] Pathak | Edge-guided boundary delineation in prostate ultrasound images[END_REF]. Some specic edge operators, which take into account the presence the multiplicative nature of speckle noise, have been proposed (see eg. [START_REF]Edge detection in ultrasound imagery using the instantaneous coecient of variation[END_REF]). This constraint works well when there is a strong boundary between dierent tissues. One of its limitations is caused by the anisotropy of ultrasound image acquisition. In real images the object of interest usually has missing edges.

2. Phase information : As a robust alternative to intensity gradient, the local phase has been proposed for acoustic boundary detection in [START_REF] Mulet-Parada | 2D+T acoustic boundary detection in echocardiography[END_REF]. The most important advantage of this method is its theoretical contrast invariance. Therefore, it is in principle robust to attenuation. Generally, phase is estimated by means of a quadrature lter bank [START_REF] Boukerroui | On the choice of band-pass quadrature lters[END_REF]. Recently, phase information has attracted a lot of interest and an increase of its application in the processing of ultrasound images is observed.

See for instance [START_REF]Phase-based level set segmentation of ultrasound images[END_REF][START_REF] Belaid | Implicit active contours for ultrasound images segmentation driven by phase information and local maximum likelihood[END_REF] for recent examples of image segmentation within the level set framework.

3. Grey level distribution : As introduced earlier, various intensity distributions can be employed to describe the speckle in the envelope signal. The Rayleigh model has been popularly used in segmentation, for example it is incorporated into the level set framework in [START_REF] Sarti | Maximum likelihood segmentation of ultrasound images with Rayleigh distribution[END_REF][START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF]. The Gaussian [START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF][START_REF] Lin | Combinative multi-scale level set framework for echocardiographic image segmentation[END_REF] and the Gamma [START_REF] Tao | Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images[END_REF] distributions have also been applied for the segmentation of ultrasound images. This parametric pdf constraint works well for region-based methods. Global model parameter estimation decreases the robustness as it ignores eects such as signal attenuation, shadowing and signal drop-out. 4. Image texture : Texture analysis methods have been proved capable in the extraction of relevant ultrasound image characteristics, and have been utilised in segmentation methods with some success [START_REF] Muzzolini | A multiresolution texture segmentation approach with application to diagnostic ultrasound images[END_REF][START_REF] Hao | Segmenting high-frequency intracardiac ultrasound images of myocardium into infracted, ischemic and normal regions[END_REF][START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF][START_REF] Papadogiorgaki | Kompatsiaris, Image analysis techniques for automated ivus contour[END_REF]. However, this constraint is intrinsically a descriptor of the microstructure of the observed tissue and the imaging system. Thus, dierent system parameters lead to dierent texture patterns and the true characterisation of physical properties of tissues is still an issue. Texture characterisation is also strongly limited to the chosen spatial scale. Therefore, multiresolution approaches are commonly considered [START_REF] Muzzolini | A multiresolution texture segmentation approach with application to diagnostic ultrasound images[END_REF][START_REF] Noble | Ultrasound image segmentation : A survey[END_REF].

The above mentioned intensity-based priors generally use the features extracted from the given ultrasound image, which are often insucient for a reliable segmentation. Therefore, geometric and temporal information are often introduced to improve segmentation results.

5. Shape : Such constraint can be embedded in segmentation algorithms in several forms. To our knowledge, the shape constraint used in ultrasound image is rst given by a parametric shape in [START_REF] Hill | Model-based image interpretation using genetic algorithms[END_REF]. With this prior, one major problem in segmentation is how to choose a general model, which is valid for all objects even those with pathological tissues. Thus, the shape information is commonly obtained from a training process [START_REF] Jacob | A shapespace-based approach to tracking myocardial borders and quantifying regional leftventricular function applied in echocardiography[END_REF][START_REF] Comaniciu | Robust real-time myocardial border tracking for echocardiography : An information fusion approach[END_REF][START_REF] Gong | Parametric shape modeling using deformable superellipses for prostate segmentation[END_REF]. Alternatively, the shape prior may be dened simply as a boundary regularisation, which corresponds to the internal energy in active contour methods. The shape information can be represented explicitly as a point distribution model [START_REF] Cootes | Active shape models � their training and application[END_REF], or implicitly as a signed distant transform [START_REF] Leventon | Statistical shape infuence in geodesic active contours[END_REF]. Note that the shape constraint is only as good as the training samples from which it was built and the chosen shape-space model framework. Also, texture and shape information can be combined in a single model, known as the Active Appearance Models (AAM) [START_REF] Mitchell | 3-D active appearance models : segmentation of cardiac MR and ultrasound images[END_REF].

6. Motion : Since ultrasound is a real time imaging modality, it is useful to consider the temporal information in segmentation when available. The segmentation solution may simply require global [START_REF] Chalana | A multiple active contour model for cardiac boundary detection on echocardiographic sequences[END_REF] or local [START_REF] Sarti | Nonlinear multiscale analysis of 3D echocardiographic sequences[END_REF] temporal coherence. Image segmentation can also be formalised as a motion estimation problem. Typical examples are using optical ow estimation [START_REF] Mikié | Segmentation and tracking in echocardiographic sequences : active contours guided by optical ow estimates[END_REF] or block matching velocity estimation [START_REF] Boukerroui | Velocity estimation in ultrasound images : A block matching approach[END_REF]. More complex models exist in the literature, which extend the AAMs to include motion, namely the Active Appearance Motion Models (AAMM) [START_REF] Bosch | Automatic segmentation of echocardiographic sequences by active appearance motion models[END_REF].

In practice, a number of image segmentation methods combine two or more of the above mentioned constraints. Here, the review and organisation is not an exhaustive list of all forms of priors that appeared in the image segmentation literature. We may for example use the incompressibility constraint on echocardiographic image segmentation [START_REF] Zhu | A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint[END_REF], the volume conservation constraint [START_REF] Garson | Guiding automated left ventricular chamber segmentation in cardiac imaging using the concept of conserved myocardial volume[END_REF] or the statistical overlap constraint [START_REF] Ayed | Level set image segmentation with a statistical overlap constraint[END_REF].

Justication of our approach

The segmentation of images with intensity inhomogeneities is quite a challenging problem. Our main objective is to provide an acceptable solution to these degraded images, such as the attenuation problem in ultrasound images. In order to well segment these images, there exists many methods that take the advantage of prior information.

According to the ndings in the previous section, these prior constraints can overcome some diculties, like the low contrast and missing boundaries. For instance, a statistical model, which exploits knowledge of image formation, has been proposed for magnetic resonance images [START_REF] Wells | Adaptive segmentation of MRI data[END_REF] and then adapted for ultrasound images segmentation [START_REF] Xiao | Contrast enhancement and segmentation of ultrasound imagesa statistical method[END_REF]. The underlying model can simultaneously enhance image contrast and help the segmentation.

In this work, we focus on studying the external energy, and use a length term as an internal constraint for regularisation. The combination of other prior information is beyond the scope of our current study.

We mainly concentrate on handling the segmentation of images with intensity inhomogeneities using local region-based methods. Indeed, segmentation methods based on global image statistics are known to fail on this type of data, mainly because of the intensity inhomogeneities. Region-based methods using local image statistics have better results. Through our study presented in Chapter 3, it is clear that the size of the spatial window appears to be important for local methods. Therefore, in order to build a more robust model to handle images with intensity inhomogeneities, we have proposed to use a pixel-dependent adaptive local scale. More specically, this scale value is dened using the LPA-ICI scale selection strategy conditional on the current segmentation. From the segmentation examples in Chapter 3, we have found out that the method using optimal locality leads to better results than applying a single scale.

Note that the LPA method assumes an additive Gaussian noise for the observed image. This assumption is not valid in practice, for example for displayed ultrasound data. However, some literature [START_REF] Ashton | Multiple resolution Bayesian segmentation of ultrasound images[END_REF][START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF] takes the advantage of the Central Limit Theorem, which states that the average of a large number of random variables must tend toward a Gaussian distribution around their collective mean. This proposition is reasonably acceptable for low-pass ltered and decimated images that are originally governed by non-Gaussian statistics [START_REF] Ashton | Multiple resolution Bayesian segmentation of ultrasound images[END_REF][START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF]. Alternatively to the multi-resolution implementation used in [START_REF] Ashton | Multiple resolution Bayesian segmentation of ultrasound images[END_REF][START_REF] Boukerroui | Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics[END_REF], our approach is based on local region statistics with optimal window sizes. The proposed segmentation model can be implemented very eciently using recursive Gaussian ltering [START_REF] Piovano | Handbook of Medical Imaging[END_REF][START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF], although its performance may decrease when the local Gaussian approximation is violated.

Experiments and discussion

In this section, we will test the previously introduced segmentation algorithms based on local image statistics. Within the level set framework, we will use six models from two categories, which include (5.2)

9. In all subsequent experiments, we will refer to these local region-based segmentation algorithms by method (a) to (f ).

Simulated ultrasound images

First, we will show experiments on realistic ultrasound simulations. To this end, we have used the simulation program Field-II [START_REF] Jensen | Calculation of pressure elds from arbitrarily shaped, apodized, and excited ultrasound transducers[END_REF][START_REF] Jensen | Field : A program for simulating ultrasound systems[END_REF], to synthesize phantom data with known ground truth. A linear scan of a rst phantom (PH1) was done with a 290 elements transducer using 64 active elements. The scatterers in the phantom were randomly distributed within the phantom of 80 × 80 × 15 mm cube size. The scatters amplitudes follow a Gaussian distribution with dierent standard deviations for each homogeneous tissue. A single transmit focus was placed at 70 mm, and receive focusing was done at 10 mm intervals from 30 mm from the transducer surface. 128 lines were simulated at 5

Mhz. The second phantom (PH2) of size 100 × 100 × 15 mm cube was placed at 10 mm depth from the transducer surface, and was scanned with a 7 MHz 128 elements phased array transducer. A single transmit focus at 60 mm from the transducer was used, and focusing during reception is at 10 to 150 mm in 1 mm increments. The images consist of 128 lines with 0.7 degrees between lines. Hanning apodisation in transmit and receive was used in all experiments. Three levels of tissue attenuations were simulated for both phantoms. We also used dierent dB ranges for the envelope log compression to simulate dierent image contrasts.

For the following experiments, we use the weighted length term ν|C| as the internal energy, where ν = 650 for method (c) and ν = 2 for all the other segmentation models. The maximal time step ∆t is set to 0.2. For the Heaviside function, we use the approximation given by Eq. (2.30) with ε = 0.7. For method (e) and (f), the set of local windows sizes is h = [START_REF] Ayed | Multiregion level-set partitioning of synthetic aperture radar images[END_REF][START_REF] Belaid | Implicit active contours for ultrasound images segmentation driven by phase information and local maximum likelihood[END_REF][START_REF] Benz | Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[END_REF][START_REF] Blake | Active Contours[END_REF][START_REF] Bosch | Automatic segmentation of echocardiographic sequences by active appearance motion models[END_REF][START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF][START_REF] Boukerroui | Segmentation of echocardiographic data. multiresolution 2D and 3D algorithm based on gray level statistics[END_REF][START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF][START_REF] Bridal | Milestones on the road to higher resolution, quantitative, and functional ultrasonic imaging[END_REF][START_REF] Brusseau | Fully automatic luminal contour segmentationin intracoronary ultrasound imaging a statistical approach[END_REF][START_REF] Canny | A computational approach to edge detection[END_REF][START_REF] Chan | Active contours without edges[END_REF][START_REF] Chu | The integration of image segmentation maps using region and edge information[END_REF][START_REF] Comaniciu | Robust real-time myocardial border tracking for echocardiography : An information fusion approach[END_REF][START_REF] Demarcq | The color monogenic signal : Application to color edge detection and color optical ow[END_REF][START_REF] Dutt | Statistical anlysis of ultrasound echo envelop[END_REF][START_REF] Felsberg | The monogenic signal[END_REF][START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF][START_REF] Gong | Parametric shape modeling using deformable superellipses for prostate segmentation[END_REF][START_REF] Haris | Hybrid image segmentation using watersheds and fast region merging[END_REF][START_REF] Jehan-Besson | DREAM2S : deformable regions driven by an Eulerian accurate minimization method[END_REF][START_REF] Katkovnik | From local kernel to nonlocal multiple-model image denoising[END_REF]. We will test on 60 simulated ultrasound images of size 192 × 192 with 3 dierent initialisations. i) Single scale methods This experiment clearly shows that the size of the local spatial kernel σ p aects the segmentation. When using a very large scale value, the top row in Fig. 5.1, the algorithm's behaviour is similar to the global method. For σ p = 70, this method is quite robust to noise (ini. 2) but can not deal with the weak boundary (ini. 1) and the attenuation (ini.

3). As expected, the smaller scales σ p = 20, 12 lead to satisfactory results. Notice that for the rst initialisation, σ p = 20 performs poorly at a part of the inside boundary. Small local scales generally decrease the capture range of the active contour and increase the number of local minima. This is the case, for example, for the results of the last row when σ p = 6. Therefore, the selection of an appropriate kernel scale should be determined by the very specic cases, such as the position of the initial curve C, the noise level and the size of the target. locaisation issues for the outsider contour, and the inside contour disappears totally. On the other hand, the small ones σ e = σ p ∈ {3, 1} perform comparatively better for the outside contours (ini. 1). Still both scales are inappropriate, particularly when the initial curves are far from the true boundaries (ini.2 and 3). ii) Local region-based methods with adaptive scales Figure 5.5 shows the corresponding results to gures 5.1 to 5.4, when method (e) and (f) are applied. Both models obtain the appropriate inside and outside boundaries, because they use scale selection procedures to set an optimal scale for each pixel. In order to understand better the behaviour of these two automatic scale selection algorithms, Figure 5.6 shows the contour evolution and the estimated scale maps for the two approaches on the third image of Fig 5 .5. As it has been reported recently in [START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF], the interpretation of the threshold ξ in Piovano and Papadopoulo's method is more dicult than that of α in the ICI algorithm. The proposed approach is based on a compromise between bias and variance for the LPA conditional on the current segmentation. Top : Piovano and Papadopoulo's method, ξ = 1 ; bottom : our proposed method, Γ = 2.5. ν = 2.

For the nal scales map, the method (e) uses the minimal value of h for almost every point, and the proposed one can better reect the local image information around the segmentation contour. iii) Quantitative comparison

We will quantitatively compare our approach with the Piovano and Papadopoulo's scale selection method, as well as the above mentioned algorithms with single local scales.

We use 60 simulated ultrasound images with the 3 initialisations shown in previous experiments. The quantitative evaluations are summarized in kernel. From top to bottom : method (a) σ e = 0, method (c) with σ e = 1 and σ p σ e , method (e) for ξ = 1 and method (f) when Γ = 2.5.

Q 1 Q 2 Q 3 max IQR min Q 1 Q 2 Q 3 max IQR method (a) σ p =70 5 
10. A similar comparison was previously used in [START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF]. [START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] is equivalent to the local Gaussian tting model [START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF] with σ e = 0. The bottom part of table 5.1 shows the statistics of the segmentation results obtained by two scale selection methods : the Piovano and Papadopoulo's algorithm and the proposed one. Notice that both approaches performed pretty well on this dataset. Among all the listed models, our approach generally leads to the smallest minimal and Q 1 to Q 3 values. The interpretation of these measurements indicates a superiority of our algorithm on Piovano and Papadopoulo's.

From Table 5.1, we found out that method (d) has quite robust results for the segmentation of ultrasound images. Indeed, its bias correction strategy has the advantage of dealing with the attenuation. In practice, a very large value should be used for its internal term, because its internal energy is not normalised. However, this may ignore small details and decrease the accuracy of the segmentation. Additionally, method (d) supposes the bias eld is smooth. If the true bias eld is piecewise smooth, the corresponding segmentation can not grantee a good result. 

Echocardiographic images

Ultrasound imaging is the most widely used technique in cardiology, because of its good temporal resolution and relatively low cost. In this part, we will apply local regionbased methods for the segmentation of echocardiographic image. In practice, the prior information is frequently introduced in segmentation in order to obtain more precise partitions. We believe that the combination of our data-based energy with certain priors can provide more accurate segmentation results.

CT images

In this subsection, we will show segmentation examples of liver in 2D CT scans.

The liver segmentation is not an easy task. Indeed, inspecting the lower left part of the rst image shown in Fig. 5.10, for instance, the contrast between the liver tissue and its surroundings is very low. Thus, leakage problems often appear. The results of the single scale local method, are shown in the top two rows of Fig. 5.10, for two scales σ p ∈ {10, 5}. A local window of scale σ p = 10 is already considered as too big when the curve arrived to the most blurred part of the liver, even with strong regularisation. In these cases, method (a) suers from the same drawback as the global region-based model.

If, however, a smaller kernel is used, the method suers from slow convergence, when the initial curve is too far from the true boundary of the liver tissue. It even moves inwards before its convergence. Ultimately, it does converge after 200 more iterations than using σ p = 10 and the other approaches with scale selection strategies.

The Piovano and Papadopoulo's and the proposed segmentation methods outperform the BC model, which uses a single scale. This is expected as they can adaptively choose the local kernel size. Therefore, they generally can well segment the liver after fewer iterations.

Notice that, the quality of the CT image is much better than the ultrasound one, thus a smaller Γ is used for our approach.

Conclusion

In this chapter, we have briey reviewed the state of the art for the segmentation of Chapter 2 started with an introduction of parametric and geometric active contours.

We focused on principles and implementations of the latter and considered methods with an implicit representation of the contours. The segmentation task is achieved via a minimisation of a two terms energy function. We choose to use the conventional length measure as a regularisation term and we limit our analysis to statistical region-based models for the data term. Global segmentation methods are quite robust to initialisations.

Also, their external energies can be designed by various statistical models in order to t the distribution of image intensities. However, they are not valid when the region is statistically inhomogeneous.

In We proposed that their sizes should be dened dierently. Thus, most existing regionbased energies can be incorporated into this model. Additionally, our analysis and test results illustrated that using a very small σ e with σ p σ e has certain advantages in the segmentation.

In order to improve the robustness of localised segmentation methods, Chapter 4 gave 101 several possible solutions which can be organized in two categories : 1) combination of global and local image information 2) utilisation of scale selection strategies. We have highlighted that formally these original problems have strong links with image denoising and recent techniques are of interest to our study. Our main contribution was to propose a local region-based segmentation method with adaptive scales. The ICI rule was used to derive a pixel-dependent scale for interior and exterior points along the current segmentation contour. This value is dened in the sense of the MSE minimisation for a LPA of the observed image intensities, inside and outside respectively. The proposed method was successfully applied for the segmentation of some simulated images. We discussed the estimated scales under dierent SNR levels and probabilities of condence intervals.

These analyses proved that our method outperforms the Piovano and Papadopoulo's scale selection technique.

Finally, Chapter 5 began with a brief review of the state of the art on ultrasound image segmentation. It thereby provides certain foundations of using local region-based segmentation methods. Then, we have evaluated the previously presented segmentation methods using xed local scales (the BC model [START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF], the local intensity tting model of Wang et al. [START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF] and our modied version with σ p σ e , the local tting model with bias eld correction [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF]) and methods with adaptive scales selection (Piovano and Papadopoulo's [START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF] and our LAP-ICI based approach). Experiments on simulated ultrasound images showed that, the local tting model with bias eld correction performs better than other algorithms with a single scale. And as expected, the methods using adaptive scales generally obtained the best possible segmentation. Our approach works quite reliably on images in the presence of intensity inhomogeneities.

Future works

There are still several issues that need to be further developed in the future.

The quantitative experiments in Chapter 5 have proven that, the local tting method using the bias correction [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[END_REF] can handle the attenuation problem in ultrasound images, and may lead to promising segmentation results. Therefore, more discussions and comparisons should be made between this segmentation method and the proposed one with the scale selection strategy. And we may extend our scale selection technique in order to nd the optimal local scales for the estimation of local region statistics and bias eld compensations.

In Chapter 3, recent local region-based segmentation methods have been introduced.

We noticed that all these algorithms assume a Gaussian distribution in the calculation of local image statistics. In practice, for instance the ultrasound image, the intensity of the observed image does not follow a Gaussian model. For global region-based segmentation methods, a large number of literature has extensively studied the non-Gaussian case.

However, their utilisation in local segmentation techniques is quite limited so far [START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF].

Therefore, there is still a room for further research.

Finally, a very little attention was given to the internal energy. It will be very interesting to combine our data driven energy with an application dependent prior, such as recent non-linear (kernel-based) active shape models, in order to objectively assess the new developments in comparison to the state of the art on ultrasound image segmentation. .

(A.1)

If the limit exists for all u ∈ X, E is Gâteaux dierentiable at u. The Gâteaux derivative can be used in the optimisation of integral function.

Remarks :

1. At each point u, there is a Gâteaux derivative for each direction ψ. In one dimension, there are two Gâteaux dierentials for every u, namely forward and backward ; in two or more dimensions, there are innitely many Gâteaux dierentials.

2. The Gâteaux derivative is a one-dimensional calculation along a specied direction ψ. Therefore, ordinary one-dimensional calculus and the chain rule work for Gâteaux derivative.

A.2 Gâteaux derivative of the BC model's energy functional

As proposed by Brox and Cremers [START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF], the data-driven energy of the BC model can be expressed by : The expressions of the second and the third integrals are rather complex. However, one can verify that for a kernel of innite width these terms can be cancelled. This indicates that the last two terms are only important if the kernel width is very small. In order to allow for a more ecient implementation, the above function is rearranged and rewritten as [START_REF] Brox | On the statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF] : The maximisation of this likelihood can be expressed using the rst variation of the functional with respect to φ. 

E =
∂E

Noise estimation methods

Noise estimation methods have been proposed in many studies. A recent review [START_REF] Lebrun | Secrets of image denoising cuisine[END_REF] has classied them as Block [START_REF] Mastin | Adaptive lters for digital image noise smoothing : An evaluation[END_REF], Average or Median [START_REF] Olsen | Estimation of noise in images : An evaluation[END_REF], Pyramid [START_REF] Meer | A fast parallel algorithm for blind estimation of noise variance[END_REF] based methods and so on. The commonly used observation model supposes a piecewise constant image with additive white noise I(x). Thereby, it is possible to estimate the statistics of the noise, for example by the following dierence function :

d(i, j) = 2I(x i,j ) -I(x i-1,j ) -I(x i,j-1 ) , Var(d(i, j)) = 4Var(I(x i,j )) + Var(I(x i-1,j )) + Var(I(x i,j-1 )) 6Var(I(x i,j )) = 6σ 2 .

(C.1)

Meanwhile, the variance of d can be empirically obtained by :

σ 2 d = 1 nm -1 i,j d(i, j) -d 2 .
(C.2)

Combining the above two results, σ can be estimated by : σ = σ d √ 6 .

(C.3)

Suppose the additive noise is Gaussian, the median of the absolute deviation [START_REF] Hampel | The inuence curveand its role in robust estimation[END_REF] can be simply calculated as : 
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 10 1D denoising using the anisotropic LPA-ICI approach. From top to bottom : adaptive windows sizes obtained respectively by the right and left Gaussian kernels, and the fused denoising result. m = 1, Γ = 1, h = [1, 2, . . . , 100], RMSE = 5.8462. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Demonstration of kernel sizes selection. Four pairs of points P 1 , . . . , P 4 are studied. For each pair, one point locates inside and the other is outside of C (marked by green + and blue • respectively). The circle centred at each labelled point represents the size of local kernel. Left : scale estimations obtained by the LPA-ICI rule. Right : scale estimations after the maximum ltering operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 4.12 Segmentation example of images with inhomogeneities using the proposed method. From left to right : noise free images with initialisations, noise degraded images with segmentation results and the estimated kernel sizes for the nal contour. The size of three images is 128 × 128, and the local optimal scales are selected from the same h used in Fig. 4.4. . . . . . . . . . 4.13 Inuence of the noise level on the estimation of local scales. Top : noisy image with SNR = 32dB, 8dB and 4dB. Point `1' and `3' (green +) belong to the foreground, and point `2' and `4' (red •) belong to the background. Bottom : the plot shows the estimated kernel sizes versus the image SNR values. The error bars are drawn from 20 repeated experiments when Γ = 2.2. The numbers `1',`2',`3',`4' on the left side of each curve represent the point number shown in the top image. Image size is 128 × 128, and h is the same set used in Fig. 4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14 Inuence of Γ on the estimation of local scales. The plot shows the estimation kernel size versus the Γ values. The error bars are drawn from 20 repeated experiments. Each curve represents the estimated kernel sizes for a point shown in Fig. 4.13. Left : SNR=16dB. Right : SNR=4dB. h is the same set used in Fig. 4.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.15 Comparison of the behaviour of two scale selection strategies. Top two rows :

5. 1 5 . 4 90 5. 5 91 5. 6 94 5. 8 98 5. 9 100 C. 1
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A

  natural and common way to solve the minimisation problem is the use of a gradient decent algorithm. Variational tools are generally utilised and the minimisation leads to solve a Partial Dierential Equation (PDE) iteratively. Although global optimisations have been introduced recently [26, 214], the evolution of the active contour stops generally at a local minimum of the energy function. Hence, initialisations and the design of energies with few local minima or convex energies have always been a concern. According to dierent representations of C, there are two main categories within the family of active contour models : parametric and geometric. 1.2.1 Parametric active contours Parametric active contour models use an explicit description of the curve C during its deformation. Originally introduced by Kass et al. [96], the snake model allows to move the curve by the inuence of the internal and the external energies. The internal ones constrain the regularisation of snakes ; while the external ones, traditionally based on the gradient magnitude of a Gaussian smoothed version of the observed image, push the snake toward salient image features. The snake model has the advantage of obtaining closed segmentation curve, and also benets from ecient algorithms in searching for a minimal energy state.

2 .

 2 Is it possible to dene a pixel-dependent local scale while estimating image statistics ? These two questions are extremely important when local image statistics are utilised in image segmentation. There has been an increasing number of literature which uses local region-based external energies in level set methods, since their rst introduction in 2007.

Figure 2 . 2

 22 Figure 2.2 An example of an image with an active contour (left) and its implicit representation by a signed distance function (right). The contour C is shown in both images by the red curve.

Figure 2 . 3

 23 Figure 2.3 Natural change of topology in the curve evolution when it is represented implicitly by a level set function. The top row shows the curve evolution, and the bottom row shows the associated level set function. The initial contour is the one shown in Fig. 2.2.

. 33 )

 33 Notice that one immediate advantage of the above Gaussian model versus the CV model Eq. (2.24) is the possibility to distinguish regions which have similar mean values but dier by their variances.

Figure 2 . 4

 24 Figure 2.4 Segmentation example of a noisy image with global region-based methods. From the left to right : the noisy image and initialisation ; segmentation result using the CV model after 500 iterations ; result obtained by the Gaussian model. The image foreground and the background have the same mean but dierent variances. The red circle is the initial contour, and the magenta curve represents the nal segmentation. Hereafter and unless otherwise specied, all the subsequent results use these two colours to label the initial and nal contour.

Figure 2 .

 2 Figure 2.4 shows a segmentation example obtained by the CV model and the Gaussian model. The input image is corrupted by an additive Gaussian noise with two dierent variances. As expected, the CV model fails to segmented this image. Indeed, as the two regions have very similar mean values, the region-based gradient ow is zero, and the contour C shrinks by the curvature driven regularisation force.

(2. 51 )

 51 Notice that µ B and σ B here are not the statistics of certain sub-regions. They are learned from a set of relevant training images. In the particular case of µ B = 0, the overlap between M i and p o should be minimal. Distributions other than the Gaussian model can be employed to model B(M i (z), p o (z|φ(x)).

Figure 3 .

 3 1 demonstrates some images with inhomogeneous characteristics. In these cases, the object to be segmented cannot be distinguished appropriately in terms of global image statistics. Therefore, active contours driven by global region-based forces lead inevitably to erroneous segmentation.

Figure 3 . 1

 31 Figure 3.1 Examples of images with intensity inhomogeneities. From left to right : synthetic images corrupted by gradual intensity changes and by an additive Gaussian noise ; realistic ultrasound simulations 3 ; echocardiographic images with the presence of attenuation, shadows and signal dropout 4 .

Figure 3 . 2

 32 Figure 3.2 Segmentation examples of synthetic images with inhomogeneities using global regionbased methods 5 . Two initialisations are tested for the rst image. Top : results of the CV model ; bottom : the Gaussian model.

. 1 ) 5 .

 15 Unless otherwise specied, the experiments in this chapter use the length term ν|C| as the internal energy, and use the same weight ν = 1.

Figure 3 . 3

 33 Figure 3.3 Graphical representation of local region. The locality of point x ∈ C is dened by the interior of the blue circle. All points within this neighbourhood are classied as local interiors O(x) Ω i and local exteriors O(x) Ω o .

  are already needed when we use the coordinate descent. The remaining terms F 4 , F 5 , F 6 take into account the dependency of the means and standard deviations on φ.

Figure 3 . 1 ini. 2 σ p = 20 σ p = 14 σ p = 7 Figure 3 . 4

 312734 Figure 3.4 demonstrates that, normally, these additional terms are important only when

Figure 3 . 5

 35 Figure 3.5 Segmentation examples with the local BC model. The gure illustrates the importance of the choice of an appropriate size for the local kernel. For ini. 1, the optimal scale should be between σ p = 14 and 7 ; while for ini. 2, none of these scales led to an acceptable result.

Figure 3 .

 3 Figure 3.5 suggests that the segmentation achieved by the BC model is rather sensitive to initialisations and to the choice of the size of the local kernel.

11 )

 11 is used to t the local Gaussian distribution. By minimising the above energy with respect to µ r (x) and σ r (x), we obtain the same estimation of local model parameters given in Eqs. (3.3) and (3.4), with σ e = σ p . Within the level set framework, minimisation of Eq.(3.11

2 2 σ 2 r 1 ini. 2 σ

 212 (y) + log σ r (y) dy . (3.12) ini. e = σ p = 6 σ e = σ p = 4 σ e = σ p = 2

Figure 3 . 6

 36 Figure 3.6 Segmentation examples with the Gaussian tting model Eq. (3.11). The gure illustrates the importance of the choices of kernel's sizes when σ e = σ p . The best scales are 2 for ini. 1 and 4 for ini. 2. Even these best results have mis-localisation problems at sharp corners.

Figure 3 . 1 .Figure 3 . 7

 3137 Figure 3.6 shows the segmentation results using the local Gaussian tting method when σ e = σ p on the test image shown previously. For the rst column σ e = σ p = 6, the obtained segmentations have serious mis-localisation issues. When the estimation of the model parameters becomes more local, σ e = σ p = 2 for the rst initialisation and 4 for the second initialisation, this local Gaussian model gives its best result. The over-smoothing of the contour however, still remains at sharp corners. If the locality shrinks further, suchas σ e = σ p = 2 in the second row, only the partial boundary close to the initial contour can be found. Therefore, similar to the BC model, picking an optimal scale for E wang is required in order to achieve a satisfactory segmentation result.

2 .

 2 The true image J(x) is approximated by N distinct constant values {c r } N r=1 in dierent regions {Ω r } N r=1 . In a circular neighbourhood O(x), the values b(y) for all y are close to b(x). In other words, b(y) ≈ b(x), when |K σe (y -x)| > 0. Then, in each subregion O(x) Ω r , b(y)J(y) approximates b(x)c r . Therefore, the image model in Eq. (3.13) is locally equivalent to : I(y) = b(x)c r + n(y) , y ∈ O(x) Ω r . (3.14) In the view of a clustering problem, the observed image intensities could be seen as N clusters with centres b(x)c r . Note that the cluster centres are function of image position x. This is what the authors have denoted as a "local intensity clustering property". Thus given a local clustering criterion, Li and colleagues proposed a global energy function to achieve the segmentation. For instance assuming that the variance is constant, the L 2 norm is used as a local clustering criterion which leads to the following energy data term [119] : E D = Ω r Ωr K σe (x -y)|I(y) -b(x)c r | 2 dy dx .(3.15) Minimising the above energy with respect to b for xed φ and c r gives : where b

)K

  Given the estimates b and c r , the minimisation of Eq. (3.15) with respect to φ can be obtained by means of the Gâteaux derivative : σe (x -y)|I(y) -b(x) c r | 2 dy .

(3. 18 )

 18 When b = 1, this local clustering function reduces to the data tting term. This term, which can be seen as a generalised CV model, aims at nding piecewise constant means. The energy in Eq. (3.15) evaluates the classication of the intensities in the neighbourhood O(x) given by the current partition.

Figure 3 . 8

 38 Figure 3.8 Inuence of the scale of the local kernel and the initialisation on the segmentation method using bias correction. From top to bottom : segmentation results and corresponding bias eld estimations. ν = 650.

Figure 3 .

 3 Figure 3.8 is a segmentation example of the degraded noisy image using Eq.(3.18). At each time step, the contour and the bias eld are updated according to Eq.(3.16). Thus, the segmentation and the bias eld estimation are jointly performed while minimising this data-driven energy. Notice that the bias correction energy function Eq. (3.15) is not normalised, thus the corresponding weight for internal energy should be important. In this test, we choose a very large ν for the length term |C|, in order to avoid the over-segmented problem. However, this could prevent the curve C to reach the sharp boundary. Indeed, for both initialisations, using the large scale σ p = 20 can not obtain the left corner of the object of interest. To summarize this experiment, the bias correction procedure is more signicant for smaller local scales, and can help in the segmentation of inhomogeneous objects, to a certain degree.

( 3 .

 3 20) to form the evolution of a completely localised energy. With this framework, more examples such as the local mean separation and the local histogram separation methods are derived in [109].

Chan & Vese [ 40 ]

 40 )where the pdf p(I(y)|y ∈ Ω r ) models the distribution of local image intensities.The scale σ p controls the size of region used for estimating the local image statistics, and σ e decides the contribution points in curve evolution. Here, we rst eliminate the assumption that σ p = σ e in[START_REF] Li | Minimization of region-scalable tting energy for image segmentation[END_REF][START_REF] Lankton | Localizing region-based active contours[END_REF][START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF], and consider their values separately. Then, it can be shown that, based on the above energy function, most existing region-based segmentation methods can be included as special cases. For instance, when σ e = 0 and p(I(y)|y ∈ Ω r ) follows the local Gaussian distribution, the energy function Eq.(3.21) degrades into the BC model Eq.(3.5). It can be simplied further by setting to a constant the standard deviation σ r = √ 0.5 for the whole image domain ; the method becomes a piecewise smooth one. Moreover, if µ r is no longer a function but collapses into a single value, which is known as the cartoon limit. In the particular case of a binary segmentation, σ p = +∞ σ e = 0 global Gaussian global Rousson & Deriche[START_REF] Rousson | A variational framework for active and adaptative segmentation of vector valued images[END_REF] 

1 ini. 2 σ

 12 σ e = 1 by dierent σ p . According to the obtained results shown in Fig.3.9, we notice that a very small σ e causes less mislocalisation and gives a smoother segmentation, also using σ p >> σ e has the potential to give a better estimation of local image statistics when intensity inhomogeneity is less strong.ini. p = 20 σ p = 14 σ p = 7

Figure 3 . 9

 39 Figure 3.9 Segmentation results of Eq. (3.21) when σ e = 1. From left to right, the kernel size σ p changes for the estimation of local region statistics. The above results are to be compared to Fig. 3.6

Figure 4 .

 4 2 shows examples of estimations of sectorial kernels for image denoising, where the directional resolution polar coordinates is 16.

Figure 4 . 1

 41 Figure 4.1 Examples of ideal starshaped neighbourhoods [66]. From left to right : true image, illustration of ideal spatial neighbourhoods used for denoising at four dierent pixel locations.

Figure 4 . 2

 42 Figure 4.2 Examples of optimal neighbourhoods obtained by the LPA-ICI rule using sectorial kernels [66]. Any two dierent sectors overlap only in the central point. Notice that the shape and the size of estimated windows are well adapted to image content at dierent pixel locations. This anisotropic kernel ensures the LPA-ICI lter to average only i.i.d. observations.

Figure 4 . 3

 43 Figure 4.3 Image denoising example using the NLM and the anisotropic LPA-ICI. From left to right : the noisy image with SNR=14dB, the NLM and the anisotropic LPA-ICI denoising results. For the NLM, σ s = 2, the similarity window τ = 5, and σ 2 I = 0.9 σ 2, where σ 2 is the estimated noise variance from the observed image. For the anisotropic LPA-ICI, the optimal scale is chosen from the set h =[START_REF] Adams | Seeded region growing[END_REF][START_REF] Amini | Using dynamic programming for solving variational problems in vision[END_REF][START_REF] Aubert | Mathematical problems in image processing : partial dierential equation and the calculus of variations[END_REF][START_REF]Phase-based level set segmentation of ultrasound images[END_REF][START_REF] Boukerroui | On the choice of band-pass quadrature lters[END_REF][START_REF] Brusseau | Fully automatic luminal contour segmentationin intracoronary ultrasound imaging a statistical approach[END_REF], the parameter Γ controls the trade-o between bias and variance is 1.05, and the directional resolution is 8.

(4. 6 )

 6 µ r (x s ) and σ r (x s ) are local region statistics of the segmentation class r, whose similarity to global image statistics are measured by the weighting coecient w r (x s ). The weight w r (x s ) can be determined by any similarity measure. For instance, the authors used the Kolmogorov-Smirnov distance between the global images statistics and the local one.The idea behind this mechanism is to favour the expansion of homogeneous region. The positive parameter a controls the contribution of the global region statistics, i.e. for large values of a the function ϕ = 1 for all r. Meaning the global data-driven information is not taken into account. However, for small a values, inhomogeneous regions are penalised by increasing their contribution in the energy function.

(4. 9 )

 9 K b is a decaying function of xy . The parameter b is important since it controls the scale of the local homogeneity required for the segmented object. The minimisation of the above energy function enforces the similarity features within each region. By designing an appropriate d(•, •), this energy can be adapted to various segmentation problems.

(4. 10 )Figure 4 . 4

 1044 Figure 4.4 Inuence of the threshold ξ on the scale selection strategy proposed by Piovano and Papadopoulo. Top row : initial (red) and nal (magenta) contour for three values of ξ. Bottom row : estimated sizes of the local kernels h(x), where x are within a narrow band. The colourbar indicates the values of h(x). Image size is 128 × 128, and h =[START_REF] Ayed | Multiregion level-set partitioning of synthetic aperture radar images[END_REF][START_REF] Belaid | Implicit active contours for ultrasound images segmentation driven by phase information and local maximum likelihood[END_REF][START_REF] Benz | Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[END_REF][START_REF] Blake | Active Contours[END_REF][START_REF] Bosch | Automatic segmentation of echocardiographic sequences by active appearance motion models[END_REF][START_REF] Boukerroui | A local rayleigh model with spatial scale selection for ultrasound image segmentation[END_REF][START_REF] Boukerroui | Segmentation of echocardiographic data. multiresolution 2D and 3D algorithm based on gray level statistics[END_REF][START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF][START_REF] Bridal | Milestones on the road to higher resolution, quantitative, and functional ultrasonic imaging[END_REF][START_REF] Brusseau | Fully automatic luminal contour segmentationin intracoronary ultrasound imaging a statistical approach[END_REF][START_REF] Canny | A computational approach to edge detection[END_REF][START_REF] Chan | Active contours without edges[END_REF][START_REF] Chu | The integration of image segmentation maps using region and edge information[END_REF][START_REF] Comaniciu | Robust real-time myocardial border tracking for echocardiography : An information fusion approach[END_REF][START_REF] Demarcq | The color monogenic signal : Application to color edge detection and color optical ow[END_REF][START_REF] Dutt | Statistical anlysis of ultrasound echo envelop[END_REF][START_REF] Felsberg | The monogenic signal[END_REF][START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF][START_REF] Gong | Parametric shape modeling using deformable superellipses for prostate segmentation[END_REF][START_REF] Haris | Hybrid image segmentation using watersheds and fast region merging[END_REF][START_REF] Jehan-Besson | DREAM2S : deformable regions driven by an Eulerian accurate minimization method[END_REF][START_REF] Katkovnik | From local kernel to nonlocal multiple-model image denoising[END_REF].
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Figure 4 . 5

 45 Figure 4.5 The kernels g h of the smoothing lters in Eq. (4.15). From left to right, g h are designed with a symmetric rectangular window and a Gaussian window (w h ) of the orders m = 0 (blue continues lines) and m = 2 (red dotted lines). Notice that the increase of m reduces the bandwidth of these low-pass lters.

Figure 4 . 5

 45 shows examples of the kernel g h for 1D LPA. The g h based on Gaussian model is smoother than the corresponding one based on a rectangular window.

Figure 4 . 6 2 J h and variance σ 2 J

 4622 Figure 4.6 The contribution of bias m 2 J h and variance σ 2 J h

Figure 4 . 7

 47 Figure 4.7 Illustration of the idea and implementation of the ICI rule. Left image : the condence intervals Q i = [L i , U i ] are labelled by thick vertical lines. Right image : the successive intersections, marked by thick vertical lines, are decreasing with the increasing h i .

Figure 4 .

 4 Figure 4.8 is an example of 1D denoising using the LPA-ICI method. Here we use the LPA estimator of order m = 1 with the symmetric Gaussian window. The denoised curve demonstrates that the LPA-ICI lter generally preserves the jumps of signal and smooths the piecewise constant parts. Compared with the noisy free signal, there still exists oversmoothing problems. The root mean square error (RMSE) is 9.073. The bottom row of Fig. 4.8 shows the optimal windows sizes estimated by the ICI rule. We notice that

Figure 4 .

 4 Figure 4.9 shows the denoisnig results of the same noisy signal with polynomials of the order m = 2. As expected, the higher order estimation has a relatively smaller RMSE than that in Fig. 4.8. Also, the corresponding computation cost improves largely. Therefore, we use m = 1 for the following test.Figure 4.10 provides more details about the anisotropic

Figure 4 .

 4 Figure 4.8 1D denoising example using the LPA-ICI rule. From top to bottom : the noisy observation ; the noise free signal (red dotted line) and the LPA estimation (blue continuous line) of the order m = 1 with the symmetric Gaussian window, while the RMSE = 9.073 ; the corresponding adaptive window sizes h obtained by the ICI rule for Γ = 1. The set of local windows size is h = [1, 2, . . . , 100].

Figure 4 . 9

 49 Figure 4.9 1D LPA-ICI denoising using higher order m = 2. The LPA estimations use symmetric Gaussian window. The RMSE is 8.6956. Γ = 1, h = [1, 2, . . . , 100].

Figure 4 .

 4 Figure 4.10 1D denoising using the anisotropic LPA-ICI approach. From top to bottom : adaptive windows sizes obtained respectively by the right and left Gaussian kernels, and the fused denoising result. m = 1, Γ = 1, h = [1, 2, . . . , 100], RMSE = 5.8462.

4. 4 . 3

 43 Proposed segmentation algorithm 4.4.3.1 Local region-based segmentation using the LPA-ICI rule In [210], we have proposed applying the ICI approach to optimise the spatial adaptation for local region-based active contours. For each point, the ICI nds an optimal kernel size that meets the trade-o between the bias and the variance of the LPA. This optimal local scale is then used for the estimation of local image statistics used in the segmentation model.Suppose we are given a noisy image with intensity inhomogeneities. We dene an initial zero level set C, as the red contour shown in Fig.4.11. Given a nite set of window sizes h, we calculate g h for each element. Then utilise the LPA Eq. (4.14) to get the local estimations of the regions inside Ω i and outside Ω o , respectively. This means that if a point x is inside of C, its approximation uses only observed image pixels in O(x) Ω i , and vice versa. As introduced in the previous section, we can calculate the condence intervals Q h of these estimations, then apply the ICI algorithm for each point. After that, we obtain the optimal kernel sizes that well balance the trade-o between bias and variances.

Figure 4 .

 4 Figure 4.11 Demonstration of kernel sizes selection. Four pairs of points P 1 , . . . , P 4 are studied. For each pair, one point locates inside and the other is outside of C (marked by green + and blue • respectively). The circle centred at each labelled point represents the size of local kernel. Left : scale estimations obtained by the LPA-ICI rule. Right : scale estimations after the maximum ltering operation.

2 .

 2 Spatial kernel size estimation by the LPA-ICI algorithm : Consider the pixels x within a narrow band of the current segmentation C.(a) For the inside points x ∈ Ω i and the outside points x ∈ Ω o respectively, calculate the LPA estimation J h (x), ∀g h . (b) According to Eq. (4.21), determine the lower bounds L i and upper bounds U i of the condence intervals Q i for the estimation J h i (x). Loop on i, update the bounds of intersections. Test the existence of the ICI, and get the adaptive window sizes { h(x), ∀x}.

3 .

 3 Local region-based segmentation : Compute the internal energy of C, and the external energy, for example, proposed by Brox and Cremers Eq. (3.5). (a) For all x, their optimal neighbourhoods O(x) are dened by h(x). Calculate the local image statistics by the ML estimation for Ω i O(x) and Ω o O(x) regions. (b) By the obtained local region statistics, the external energy is calculated. Together with the internal energy, update the contour C.

4 .

 4 Repeat steps 2 and 3 until convergence.

Figure 4 .

 4 Figure 4.13 Inuence of the noise level on the estimation of local scales. Top : noisy image with SNR = 32dB, 8dB and 4dB. Point `1' and `3' (green +) belong to the foreground, and point `2' and `4' (red •) belong to the background. Bottom : the plot shows the estimated kernel sizes versus the image SNR values. The error bars are drawn from 20 repeated experiments when Γ = 2.2. The numbers `1',`2',`3',`4' on the left side of each curve represent the point number shown in the top image. Image size is 128 × 128, and h is the same set used in Fig. 4.12.

Figure 4 .

 4 Figure 4.14 Inuence of Γ on the estimation of local scales. The plot shows the estimation kernel size versus the Γ values. The error bars are drawn from 20 repeated experiments. Each curve represents the estimated kernel sizes for a point shown in Fig. 4.13. Left : SNR=16dB. Right : SNR=4dB. h is the same set used in Fig. 4.12.

Figure 4 .

 4 Figure 4.15 Comparison of the behaviour of two scale selection strategies. Top two rows :Piovano's model[START_REF] Piovano | Local statistic based region segmentation with automatic scale selection[END_REF], ε = 0.5. Bottom two rows : the proposed one[START_REF] Yang | Optimal spatial adaptation for local region-based active contours : An intersection of condence intervals approach[END_REF], Γ = 2.5. From left to right : the curve evolution from the initial contour to the nal contour with the corresponding estimated h. Image size 128 × 128, h is the same set used in Fig.4.12.

5. 2

 2 State of the art on ultrasound image segmentation 5.2.1 Statistics of speckle Speckle is caused by the backscattered echoes of either randomly or coherently distributed scatterers in the tissue. It gives the granular texture appearance of ultrasound images.

9 i)

 9 Local region-based methods with a single scale (a) the straightforward local Gaussian model : Brox and Cremers[START_REF]On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional[END_REF], § 3.2, Eq. (3.5), (b) the local intensity tting energies : Wang et. al[START_REF] Wang | Active contours driven by local Gaussian distribution tting energy[END_REF], § 3.3, Eq. (3.11), (c) the local intensity tting energies with σ p σ e : proposed in § 3.5.2, Eq. (3.21), (d) the local intensity tting with a bias correction technique : Li et. al [119], § 3.4, Eq. (3.15) ; ii) Local region-based methods with adaptive scales (e) Piovano and Papadopoulo's scale selection strategy [163] : § 4.4.1, Eq. (4.10), (f) our scale selection strategy based on the LPA-ICI rule : proposed in § 4.4.3. We will present comparative experiments of these methods on images with intensity inhomogeneities. To this end, the results will be compared qualitatively and quantitatively. For the latter one, we will use two distance measures, namely the Dice Similarity Coecient (DSC) and the Mean Average Distance (MAD). The DSC is dened as : DSC(S, S true ) = 2 |S S true | |S| + |S true | , (5.1) where S and S true represent the segmentation and the true boundary respectively. The closer the DSC values to 1, the better is the segmentation. The MAD computes the average distances between two curves C 1 and C true , which are described as a set of points C 1 = {a 1 , a 2 , . . . , a n } and C true = {b 1 , b 2 , . . . , b m }. The distance between a point a i and its nearest one on C true is calculated by : d(a i , C true ) = min b j ∈Ctrue b j -a i . These distances are averaged for all the points of the two curves. Thus, the MAD of C 1 and C true is given by : MAD(C 1 , C ture ) i , C ture ) + 1 m m j=1 d(b j , C 1 ) .

Figure 5 .

 5 Figure 5.1 shows the behaviour of the BC model (method (a)) when dierent sizes of the local spatial kernel and dierent initialisations were used. Notice the low contrast between tissues, the speckle and the attenuation in these simulated ultrasound images.

Figure 5 . 1

 51 Figure 5.1 Segmentation results of the BC model (method (a)) on simulated ultrasound images with 3 dierent initialisations. From left to right column : images `PH1_45dB', `PH2_35dB' and `PH2_ATT_60dB'. Here, `45dB' means a range of 45dB is used in log envelope compression.`Att' means with images with attenuation simulation. ν = 2.

Figure 5 .Figure 5 . 2

 552 Figure 5.2 shows the segmentation results of method (b) on the same simulated ultrasound images of Fig. 5.1. In the work of Wang et al., σ e = σ p = 3 is applied for testing. However, this setting fails on our data. Clearly, local Gaussian tting energy with σ p = σ e can not nd the correct image boundaries for all initialisations. The rst image shows that, the large window size, for instance σ e = σ p = 5, leads to serious mis-

Figure 5 .Figure 5 . 3

 553 Figure 5.3 shows the segmentation results of method (c). Recall the dilemma of method (b) discussed in § 3.5.2. We suggest to use a very small σ e and set σ p σ e . Therefore, this small σ e can help to obtain a smoother segmentation with less mis-localisations, and the locality dened by σ p can better estimate the local region statistics. With σ e = 1, all the outcomes of Fig. 5.3 are more appropriate in comparison with these of the method (a) and (b) shown in gures 5.1 and 5.2.

Finally, we segment 3 σ p = 20 σ p = 12 σ p = 6 Figure 5 . 4

 32012654 Figure 5.4 Segmentation results of the local intensity tting energy with bias correction algorithm (method (d)). From left to right column : images with 3 dierent initialisations used in Fig. 5.1. ν = 650.

Figure 5 .Figure 5 . 5

 555 Figure5.6 clearly shows that our algorithm uses higher scale values than method (e), when the algorithm converges. For the last few iterations, we no longer apply the max lter, thus the scale maps are reduced in order to increase the accuracy of segmentation.

Figure 5 . 6

 56 Figure 5.6 Behaviour of the automatic scale selection algorithms for method (e) and (f). From left to right : the evolution of the segmentation and its corresponding local scales. The top two rows : Piovano and Papadopoulo's method, ξ = 1 ; bottom two rows : our approach, Γ = 2.5. ν = 2.

  The largest value of local scale, here σ p = 70, for the BC model leads to the worst results. In this case, the local region-based method behaves similarly as the global Gaussian tting model presented in § 2.5.3.2.With the proposed setting σ e = 1, we notice that the segmentation errors of method (c) are smaller than those of the BC model. The maxima of DSC errors and MAD are much smaller for the method (d) in comparison to method (a) and (c), while the rest of the quantitative measures are nearly equivalent. It means that, segmentation results with the help of bias correction algorithm have less outliers in their DSC and MAD.Considering the statistics of all three methods, we can conclude that the decreasing of windows sizes, for example from σ p = 40 to 12, could probably improve the performance of segmentation algorithms for these tested images. If the local scale is too small, here σ p = 6, the segmentation errors would increase. This reects exactly the problem of segmentation methods using local image statistics with a single scale.

σ p = 20 σ p = 12 σ p = 6 Figure 5 . 7

 657 Figure 5.7 Segmentation of a synthetic image by the intensity tting model with bias correction (method (d)). The top row : segmentation results using σ p ∈ {20, 12, 6}. Bottom row : the estimated bias led corresponding to the above results. Image size 128 × 128, ν = 650. See gures 4.4 and 4.12 for the results obtained by method (e) and (f).

Figure 5 .

 5 7 shows an example, where the image foreground and background are degraded separately. The estimated bias eld fails to model this piecewise smooth case, thus the segmentation results show no advantage than other local region-based methods with a single local scale.

  Fig.5.8, if the size of the spatial window is large, method (d) performs better than (a) ; if the size of spatial window is smaller, for example σ p = 7, the segmentation results of method (d) are usually over-smoothed. This is because of the large regularisation term applied for the method with bias correction technique.

Figure 5 .

 5 Figure 5.9 shows the segmentation results of the same echocardiographic images in Fig. 5.8, as well as three more examples. It veries that the Piovano and Papadopoulo's and our approaches with scale selection methods can handle this problem. Both methods lead to more acceptable outcomes than the above single scale ones. Therefore, they have the potential to well segment the real ultrasound images. In practice, the prior information

Figure 5 . 8

 58 Figure 5.8 Segmentation of echocardiographic images using local region-based segmentation methods. Top three rows : the BC model, ν = 2. Bottom two rows : the intensity tting model with bias correction. Image size 208 × 208, ν = 650.

Figure 5 . 9

 59 Figure 5.9 Segmentation of echocardiographic images using local region-based segmentation methods with scale selection strategies. Top : Piovano and Papadopoulo's model, ξ = 0.5 ; bottom : our approach, Γ = 2.5.

Figure 5 .

 5 Figure 5.10 Segmentation examples of liver in 2D scans. The top two rows : the BC model with σ p = 10 after 200 iterations and σ p = 5 after 400 iterations. The bottom two rows : the Piovano and Papadopoulo's method (ξ = 0.5) and the proposed method (Γ = 1.5) after 200 iterations. Image size is 256 × 256. ν = 2.

  Chapter 3, we investigated the recent developed segmentation algorithms using local image statistics. Through some segmentation examples of simulated images, we have experimentally veried that : 1) local region-based methods outperform global ones in dealing with images with intensity inhomogeneities ; 2) their results are dependent on the choice of the size of the locality. Moreover, we investigated a general functional based on a Bayesian interpretation of the energy function. Originally, it uses the same spatial scale, for the curve evolution (σ e ) and for the estimation of local image statistics (σ p ).

6. 3

 3 Publications Q. Yang and D. Boukerroui, Ultrasound image segmentation using local statistics with an adaptive scale selection, IEEE Int. Symposium on Biomedical Imaging : From Nano to Macro, Barcelona, Spain, pp. 1096-1099, May, 2012. Q. Yang and D. Boukerroui, Optimal spatial adaptation for local region-based active contours : An intersection of condence Intervals approach, Int. Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Algarve, Portugal, pp. 8793, March, 2011 Annexe A Minimisation of local region-based BC energy A.1 Gâteaux derivative The Gâteaux derivative [9] is a generalisation of the concept of directional derivative in dierential calculus. Suppose X and Y are locally convex topological vector spaces, U ⊂ X, E : X → Y . The Gâteaux dierential of E at u ∈ U in the direction ψ ∈ X is dened as : dE(u; ψ) = lim τ →0 E(u + τ ψ) -E(u) τ = d dτ E(u + τ ψ) τ =0

2 r

 2 r Ω H r (φ) I(x) -µ r (x) (x) dx .

  Substitute x → y and ζ → x in the second integral of Eq. (A.4) :∂E(φ(x) + τ ψ(xy) -µ(y) σ 2 (y) Ω K(y -x)δ(φ(x))ψ(x) I(x) -µ(y) dx Ω K(x -z)H(φ(z))dz dy -) -µ(y) 2 -σ 2 (y) Ω K(y -x)δ(φ(x))ψ(x) I 2 (x) -σ 2 (y) -µ 2 (y) -2µ(y) I(x) -µ(y) dx Ω K(x -z)H(φ(z))dz dy .Then, change the order of integration :∂E(φ(x) + τ ψ(x)) ∂τ y) -µ(y) σ 2 (y)K(y -x) I(x) -µ(y) Ω K(x -z)H(φ(z))dz dydx -) -µ(y) 2 -σ 2 (y) K(y -x) I 2 (x) -σ 2 (y) -µ 2 (y) -2µ(y) I(x) -µ(y) ) Ω K(x -z)H(φ(z))dz    dydx .Therefore, the shape gradient of the external energy of the BC model can be given by : y))K(y -x)σ 4 (y) Ω K(x -z)H(φ(z))dz 2 I(y) -µ(y) σ 2 (y) I(x) -µ(y) dy y))K(y -x) σ 4 (y) Ω K(x -z)H(φ(z))dz I(y) -µ(y) 2 -σ 2 (y)I 2 (x) -σ 2 (y) -µ 2 (y) -2µ(y) I(x) -µ(y) dy .

2 F 1 F 3 F 1 -

 2131 (x)F 4 (x) + I(x)F 5 (x) + F 6 (x) , (x) = Ω K(x -y)H(φ(y))dy = K * H(φ) (x) , F 2 (x) = Ω K(x -y)H(φ(y))I(y)dy = (K * (H(φ)I))(x) → µ(x) = F 2 (x) F 1 (x) , F 3 (x) = Ω K(x -y)H(φ(y))I 2 (y)dy = K * (H(φ)I 2 ) (x) → σ 2 (x) = F 3 (x) F 1 (x) -µ 2 (x) , F 4 (x) = Ω K(y -x)H(φ(y)) I(y) -µ(y) 2 -σ 2 (y) σ 4 (y)F 1 (y) dy = K * H(φ)(I -µ) 2 -σ 2 σ 4 F 1 (x) , F 5 (x) = Ω K(y -x)H(φ(y)) σ 4 (y)F 1 (y) 2 I(y) -µ(y) σ 2 (y) -2µ(y) I(y) -µ(y) 2 -σ 2 (y) dy = K * H(φ) [2Iσ 2 -2µ(I -µ) 2 ] σ 4 F 1 (x) , F 6 (x) = Ω K(y -x)H(φ(y)) σ 4 (y)F 1 (y) 2 I(y) -µ(y) -µ(y) σ 2 (y) + I(y) -µ(y) 2 -σ 2 (y) -σ 2 (y) + µ 2 (y) dy = 2Iµ) -(I -µ) 2 (σ 2 -µ 2 ) σ 4 F 1    (x) ,where K denotes the mirrored kernel K. Therefore, the Gâteaux derivative of Eq. (A.3) can be implemented eciently using recursive lters.Annexe BMaximum likelihood segmentation with a Rayleigh distributionRecall the likelihood function with a Rayleigh distribution introduced in § 2.5.3.3 :l = -A i log 1 A i Ω I(x) 2 H(φ)dx -A o log 1 A o Ω I(x) 2 H(-φ)dx .

where i = 1 , 2 ,

 12 • • • , n , j = 1, 2, • • • , m, x i,j ∈ Ω ⊂ R 2 .Thus, d mainly contains information about the noise as well as image discontinuities. The mathematical expectation and the variance of d can be estimated as : E[d(i, j)] = 2E[I(x i,j )] -E[I(x i-1,j )] -E[I(x i-1,j-1 )] 2E[I(x i,j )] -E[I(x i,j )] -E[I(x i,j )] 0 .

  σ M = median(|dmedian(d)|) 0.6745 , (C.4) 111where d = (d(i, j)) is a vector formed by the dierences between adjacent samples of the noisy observations. The constant 0.6745 is the approximation of Φ -1 (3/4), where Φ -1 is the inverse of the cumulative distribution function for the standard normal distribution. In other words, for a symmetric distribution with zero mean, the population median absolute deviation is the 75 th percentile of the distribution.

Figure C. 1

 1 Figure C.1 shows images degraded by an additive Gaussian noise (the top two rows) and by a Rayleigh noise (the bottom two rows). From left to right, this gure presents the noisy observations at four dierent noise levels. Using Eq. (C.3) and Eq. (C.4) respectively for these images, we achieve the estimated image noise variances listed in Table C.1. For

Table C. 1

 1 The values of real standard deviations and the estimated ones for the noisy images shown in Fig. C.1.

Figure C. 1

 1 Figure C.1 Original images and their noisy observations. Top two rows : noise free images and observations at four levels of an additive Gaussian noise with standard derivations σ = {2, 15, 25, 35} ; bottom two rows : Rayleigh noise with σ = {4.63, 13.86, 23.03, 32.74}.

  

Table 2 .

 2 

1, their evolution speeds are summarized in Table

2

.2. It is important to highlight that Lecellier et al. also showed that, complicated additive terms appear in the evolution speed when the model parameters are estimated by using an alternative method, like the moment method.

  -B B decides the sign of the overlap constraint inuence, which keeps B close to its most likely value µ B . For example, if the overlap B is superior to µ B , this coecient is negative and leads to a curve evolution which decreases B. The learned variance σ 2

	,	(2.54)
	ow optimising B	
	where we have denoted dy `oc' the overlap constraint speed coecient. The learned mean
	µ	

B aects the weight of this overlap constraint. A small σ B means that µ B is a reliable estimation, such that it gives a higher weight to the overlap constraint and less importance to the other functional terms (not shown here) and vice-versa.

Table 3 .

 3 .(3.21) becomes the formula of the CV model. Table3.1 gives a summary of the above discussion.The outer integral of the former equation includes the contributions from the points nearby the zero level set, while the latter integrates over all the x in the image domain Ω. Regarding the locality, Eq. (3.19) uses σ p = σ e , thus, it has the same problem in xing the size of local kernel as the local tting models introduced in § 3.3. Facing with this dilemma, we suggest that σ e should be much smaller than σ p . Therefore, on one hand, the model becomes more general and is capable to include more energies. On the other hand,

	The general frameworks in Eq. (3.19) and Eq. (3.21) are dierent in several aspects.

1 Region-based Segmentation Methods. a ∈ R + . Eqa larger local window can be used in order to estimate the local model parameters. For instance, we tested minimising Eq. (3.21) with a xed

Table 4 .

 4 1 2D polynomials ψ for the order m ∈ {0, 1, 2, 3}.

Table 5

 5 .1. It shows statistics of the DCS errors (1-DSC) and the MAD values. Indeed, the table lists the minimum, the three quartiles, the maximum and the interquartile range (IQR) of these two measurements, for ve local region-based methods. The closer these statistics to 0, the better is the segmentation. The Q 3 and the maximal values of the DSC error and the MAD indicate the worst cases. Notice that the IQR values is a robust measure of dispersion.

	10

Table 5 .

 5 1 Statistics of the DSC errors and the MAD measures obtained on 60 simulated ultrasound images with 3 dierent initialisations. σ p is the standard deviation of its spatial

Table 5 .

 5 1 clearly shows that local image statistics should be used for images in the presence of intensity inhomogeneities. Recall that the BC model

  Introducing a function ψ of the same type of φ, it is necessary to solve the following Gâteaux derivative :This function can be rewritten as the inner product •, ψ . Therefore, maximisation of the likelihood evolutes best following the direction : A i -Ω I 2 H(φ)dxΩ I 2 H(φ)dx -log Ω I 2 H(-φ)dx A o -I 2 A o -Ω I 2 H(-φ)dx

							Annexe C
				∂l(φ) ∂φ	= -δ(φ) log Ω I 2 H(φ)dx A i	+	I 2 Ω I 2 H(-φ)dx	.	(B.3)
	∂l(φ + τ ψ)			
		∂τ	τ →0		
	= -	τ →0 log Ω dx log Ω I 2 H(φ)dx A i -A i τ ∂τ log τ →0 dx log Ω I 2 H(-φ)dx A o -A o ∂ ∂τ δ(φ)ψdx log Ω I 2 H(φ)dx A i
	-A i	A i Ω I 2 H(φ)dx	Ω I 2 δ(φ)ψdx A i	-Ω I 2 H(φ)dx Ω δ(φ)ψdx A 2 i
	+	Ω	δ(φ)ψdx log Ω I 2 H(-φ)dx A o
	-A o	A o Ω I 2 H(-φ)dx	-Ω I 2 δ(φ)ψdx A o	+ Ω I 2 H(-φ)dx Ω δ(φ)ψdx A 2 o
	= -					

Ω ∂H(φ + τ ψ) ∂τ Ω I 2 H(φ + τ ψ)dx Ω H(φ + τ ψ)dx τ →0 -Ω ∂H(-(φ + τ ψ)) ∂τ Ω I 2 H(-(φ + τ ψ))dx Ω H(-(φ + τ ψ))dx τ →0 = -Ω δ(φ) log Ω I 2 H(φ)dx A i + I 2 A i -Ω I 2 H(φ)dx Ω I 2 H(φ)dx -log Ω I 2 H(-φ)dx A o -I 2 A o -Ω I 2 H(-φ)dx Ω I 2 H(-φ)dx ψdx . (B.2)
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  TableC.1. For the images with high SNR, both σ and σ M over estimate the true noise variance ; and for the severely degraded images, the estimations are quite accurate. Also, we notice that σ is comparatively better than σ M . This is because of the accuracy of the median absolute deviation method depends highly on the noise model, although the median has been proven to be robust with respect to outliers.

	Noise		House			Lena	
	Gaussian								
	σ	5.00	15.00	25.00	35.00	5.00	15.00	25.00	35.00
	σ	6.46	15.95	25.64	35.47	7.44	16.87	26.37	36.17
	σ M	8.22	16.37	25.83	35.70	11.49	18.21	27.06	36.58
	Rayleigh								
	σ	4.60	13.84	22.81	32.03	4.63	13.86	23.03	32.74
	σ	6.16	14.86	23.82	33.21	7.13	15.90	24.74	33.80
	σ M	8.04	15.38	24.07	33.42	11.37	17.37	25.37	34.41
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 Chapitre 4Optimal spatial adaptation for local region-based segmentation

Chapter summary

In this chapter, we will concentrate on discussing local region-based segmentation methods. More specically, we aim to give answers to two questions. i) How global and local image information can be combined ? ii) How to estimate an appropriate size of the spatial kernel that denes locality ? First, we will briey review several algorithms that solve similar issues in image denoising. Then, we consider segmentation methods that use both global and local image information. Finally, our main contributions will be presented in more details.

Contents

For better readability, omit the subindex r, and simply replace µ, σ, H with µ r , σ r , H r .

Therefore, the external energy of Eq. (A.2) for a single region is written as :

where the expressions for µ(x) and σ 2 (x) in dependence of φ are given by :

For computing the minimisation of Eq. (A.3), Brox and Cremers seek its Gâteaux derivative for any direction function ψ(x) :

Notice that : the rst integral in Eq. (A.4) is the usual part considered when applying coordinate descent ; the rest integral takes charge in the changes in the distribution by