Elastographie et retournement temporel des ondes de cisaillement : application à l'imagerie des solides mous - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

Elastography and time reversal of shear waves : application to the elasticity imaging of soft solids

Elastographie et retournement temporel des ondes de cisaillement : application à l'imagerie des solides mous

Résumé

The interaction between wave and matter has long been studied in Physics. In particular, regarding medical applications, wave propagation through the human body resulted in several imaging modalities, each of which uses a specific type of wave linked to a given physical property. The elasticity of soft biological tissues is directly linked to its shear wave speed. Thus, in Elastography, shear waves are tracked for non-invasive assessment of the mechanical properties of soft tissues. In this context, this thesis proposes a study of different elastography techniques from a basic point of view, as well as from its potential applications. Firstly, in this manuscript, the use of 1D transient elastography for the quantitative elasticity assessment of thin layered soft tissues is proposed. Experiments on three phantoms with different elasticities and plate thicknesses were performed. Experimental shear wave speed estimations inside the plate were obtained and validated with finite difference simulation. In addition, the Supersonic Shear Imaging (SSI) technique was performed. For the SSI technique, the propagating wave inside the plate is guided as a Lamb wave. Experimental SSI dispersion curves were fitted using a generalized Lamb model to retrieve the plate bulk shear wave speed. Finally both techniques resulted in similar shear wave speed estimations. The main advantage of 1D transient elastography is that the bulk shear wave speed can be directly retrieved from a time of flight measurement without requiring a dispersion model. Secondly, throughout this thesis, two novel quantitative imaging modalities for extracting the soft tissue's elasticity from a complex reverberated diffuse elastic field are deepen: Time Reversal Elastography (TRE) and the passive inverse filter. The goal of both techniques is to locally estimate the tissue's elasticity, by measuring the focal spot size in a virtual time reversal experiment involving shear waves. By studying the Physics of a time reversal process in soft solids, the feasibility of both techniques as a quantitative imaging techniques is demonstrated in vitro in bi-layer phantoms and in vivo in the liver-belly muscle, by using the physiological noise due to heartbeats and muscular activity. The efficiency of TRE decreases in the presence of a non-isotropic diffuse field. The use of the inverse filter adapted to a passive source configuration, restores the isotropy of the field. As a consequence, the resolution of the elasticity images is improved, leading to a better detection of small inclusions. In addition, the passive inverse filter allows to control the frequency dominating the time reversed field. This is exploited in the last part of the manuscript to conduct the first passive wave spectroscopy experiment in the volume of a soft solid. Two situations are considered: dispersion due to guided wave propagation in thin plates and wave dispersion due to viscosity effects.
L'interaction onde-matière a toujours été un sujet d'étude en Physique, c’est le cas de la propagation des ondes élastiques dans le corps humain qu’a conduit à plusieurs modalités d'imagerie. En particulier, les techniques d'elastographie reposent sur l'utilisation des ondes de cisaillement pour obtenir une image élastique des tissus mous. Dans ce contexte, cette thèse présente une étude des différentes techniques d'élastographie, en prêtant particulier attention aux aspects plus fondamentaux comme à ces potentielles applications.Tout d'abord, cette thèse montre que l'élastographie impulsionnelle unidimensionnelle (1D) peut être utilisée pour évaluer l'élasticité des couches de tissue d'épaisseur inférieure à la longueur d'onde utilisée. A cet effet, des simulations et des expériences ont été réalisées avec différents fantômes formés par une couche mince immergée dans un milieu d'élasticité différente. La concordance entre expériences et simulations, ainsi que le valeur de l'élasticité obtenue par élastographie 1D et le valeur de l'élasticité intrinsèque de la couche permettent de valider cette technique. Au même temps ces résultats ont été comparés avec ceux obtenus par la technique de Supersonic Shear Imaging (SSI), où l'onde est guidée le long de la plaque. On ajustant la courbe de dispersion expérimentale obtenue par SSI avec un modèle de Lamb, l'élasticité intrinsèque de chaque plaque est estimée. Les résultats obtenus par élastographie 1D et SSI montrent un bon accord entre eux. Le principal avantage de l'élastographie 1D est qu’il n'est pas nécessaire d'utiliser un modèle pour estimer l'élasticité de la plaque. Deuxièmement, deux nouvelles modalités d'imagerie quantitative pour l'extraction de élasticité des tissus mou à partir d'un champ élastique complexe sont approfondies: l'Elastographie par Retournement Temporel et le filtre inverse passif. Le but de ces deux techniques est d'estimer localement l'élasticité des tissus, par la mesure de la taille de la tâche focale dans une expérience virtuelle de retournement temporel avec des ondes de cisaillement. A partir de l'étude du processus de retournement temporel dans les solides mous, la faisabilité de ces deux techniques est démontrée in vitro dans des échantillons "bi-couche" et in vivo dans le foie et les muscles, en utilisant le bruit physiologique naturel crée par l'activité cardiaque et musculaire. L'efficacité de l'élastographie par retournement temporel diminue dans le cas d'un champ diffus non isotrope. L'emploie du filtre inverse adaptée à une configuration de source de bruit, permet de rétablir l'isotropie du champ et d'améliorer la résolution pour la détection de petites inclusions. Le filtre inverse passif permet, de surcroît, de contrôler la fréquence qui domine le champ de retournement temporel. Ceci est exploité, dans la dernière partie du manuscrit, pour mener la première expérience de spectroscopie passive en volume. Deux situations sont envisagées: la dispersion due à la propagation d'ondes guidées dans des plaques minces et la dispersion des ondes due à la viscosité.
Fichier principal
Vignette du fichier
30434_BRUM_2012_archivage.pdf (6.51 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-00870362 , version 1 (07-10-2013)

Identifiants

  • HAL Id : tel-00870362 , version 1

Citer

Javier Brum. Elastographie et retournement temporel des ondes de cisaillement : application à l'imagerie des solides mous. Autre [cond-mat.other]. Université de Grenoble; Universidad de la Republica URUGUAY, 2012. Français. ⟨NNT : 2012GRENY078⟩. ⟨tel-00870362⟩
568 Consultations
493 Téléchargements

Partager

Gmail Facebook X LinkedIn More