
HAL Id: tel-00870437
https://theses.hal.science/tel-00870437v1

Submitted on 7 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Commande robuste avec relâchement des contraintes
temps-réel

Patrick Andrianiaina

To cite this version:
Patrick Andrianiaina. Commande robuste avec relâchement des contraintes temps-réel. Autre. Uni-
versité de Grenoble, 2012. Français. �NNT : 2012GRENT091�. �tel-00870437�

https://theses.hal.science/tel-00870437v1
https://hal.archives-ouvertes.fr

THÈSE
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité: Automatique Productique
Arrêté ministériel : 7 août 2006

Présentée par

Patrick Jocelyn ANDRIANIAINA

Thèse dirigée par Daniel SIMON et

codirigée par Alexandre SEURET

préparée au sein de
l’INRIA GRENOBLE RHÔNE-ALPES

dans l’École Doctorale:EEATS

Commande robuste avec relâchement
des contraintes temps-réel

Robust control under slackened
real-time constraints

Thèse soutenue publiquement le 26 septembre 2012,

devant le jury composé de:

Michel DAMBRINE
Professeur, Université de Valenciennes, Rapporteur

Arben CELA
Professeur associé ESIEE Noisy-le-Grand, Rapporteur

Sophie TARBOURIECH
Directeur de Recherche CNRS, LAAS Toulouse, Présidente

David POWELL
Directeur de Recherche CNRS, LAAS Toulouse, Membre

Jean-Claude LAPERCHE
Ingénieur AIRBUS, Toulouse, Membre

Daniel SIMON
Chargé de Recherche INRIA, Grenoble, Membre

Alexandre SEURET
Chargé de Recherche CNRS, LAAS Toulouse, Invité

Guilhem PUYOU
Ingénieur AIRBUS, Toulouse, Invité

ii

Contents

General introduction 1

1 Framework and Problems statements 7
1.1 Introduction to Chapter 1 . 8
1.2 Useful definitions . 8
1.3 Context and motivation . 9

1.3.1 System considerations and avionics functions 9
1.3.2 Flight Control Systems and the computer era 11

1.4 Safety critical systems . 12
1.4.1 Development process life cycle 12
1.4.2 Legislation, regulations and certification 14
1.4.3 Fly by Wire System Certification Background 14
1.4.4 Dependability issues . 15
1.4.5 Fault tolerance and robustness implementation in Flight Control

Systems . 16
1.5 Real-time Control . 19

1.5.1 Real-time systems . 20
1.5.2 Dynamic systems . 24
1.5.3 Computer-controlled systems . 25

1.6 Problem Statements . 27
1.6.1 Hard Real-time paradigm . 27
1.6.2 Challenging issues . 28

1.7 Control and scheduling co-design . 30
1.7.1 Control Systems hard deadline . 31
1.7.2 Control and scheduling integration 32
1.7.3 Co-design approaches: methods and tools 34

1.8 Conclusion of Chapter 1 . 38

2 Robust control under slackened real-time constraints 41
2.1 Introduction to Chapter 2 . 42
2.2 Weakened real-time systems . 43

2.2.1 Weakened scheduling scenario proposals 45
2.2.2 Robustness considerations . 50
2.2.3 Challenging implementation problems 50

2.3 Dynamic models of computer-controlled systems 51
2.3.1 Systems under consideration . 51
2.3.2 Identification of the difficulties . 52
2.3.3 Control Objectives . 52

2.4 State of the art in networked control systems 53
2.4.1 Systems with delays . 54

ii Contents

2.4.2 Asynchronous sampled-data systems 59
2.4.3 Stability criteria . 63

2.5 Examples . 68
2.6 Conclusion to Chapter 2 . 68

3 Case Study : Aircraft pitch-rate control 71
3.1 Introduction to chapter 3 . 71
3.2 Models for simulation and control . 72

3.2.1 Frames and rotation parameters definition 73
3.2.2 Non-linear dynamics . 75
3.2.3 Aircraft Linearized Equation of Motion 80
3.2.4 Aircraft control systems . 83
3.2.5 The aircraft rigid body modes . 83

3.3 Case study: pitch rate control of a F16 aircraft 84
3.3.1 The F16 lateral and longitudinal numerical models 84
3.3.2 The pitch rate control system . 87
3.3.3 Description and results of the case study 89

3.4 Validation of the approach by simulation 91
3.4.1 Truetime simulation . 93
3.4.2 The Simulink model . 94
3.4.3 Simulation using linear plant . 95
3.4.4 Nonlinear simulation . 98

3.5 Conclusion of Chapter3 . 99

4 Conclusion 101
4.1 Summary . 101
4.2 Perspectives . 102

A Worst Case Execution Method: State of Art 105
A.1 Introduction to WCET Methods . 105
A.2 Dynamic Methods . 106
A.3 Static Analysis Methods . 107
A.4 Hybrid methods . 110
A.5 Probabilistic methods . 110
A.6 Construction and interpretation of the probability distribution: 112

B Weakened real-time control framework 115

C Sampled-data models 119
C.1 Computer-control theory . 119
C.2 Advantages and drawbacks of using computers 119
C.3 Mathematical models . 121

Contents iii

D Résumé en français 125
D.1 Introduction . 125

D.1.1 Contexte . 125
D.1.2 Notations . 126

D.2 Problématique . 126
D.2.1 Les systèmes à considérer et les problèmes d’ordonnancement . . . 126
D.2.2 Ordonancement basée sur le pire temps d’execution 127
D.2.3 Robustesse des systèmes bouclés 129
D.2.4 Formulation du problème . 130

D.3 Allègement des contraintes temps réels . 131
D.3.1 Mise en évidence de la séparation d’interêt 131
D.3.2 Objectifs généraux de la thèse . 133
D.3.3 Analyse de stabilité . 136

D.4 Les scénarii d’allègement des contraintes 137
D.5 Etudes de cas . 142

D.5.1 Application analytique de la méthode 142
D.5.2 Validation par simulation . 144

D.6 Conclusion . 150

Bibliography 153

General Introduction

Foreword

The works presented in this thesis are the results of a CIFRE grant (Convention Industrielle
de Formation par la REcherche) between Airbus Operations SAS (formerly Airbus France)
and INRIA (Institut National de Recherche en Informatique et Automatique) Grenoble
Rhône-Alpes. It has been financially supported by the ANRT (Association Nationale de
la Recherche et de la Technologie) and Airbus Operations SAS. The thesis works have
resulted in the following publications and patents :

• Patrick Jocelyn Andrianiaina, Alexandre Seuret and Daniel Simon. Robust control
under weakened real-time constraints. In 50th IEEE Conference on Decision and
Control and European Control Conference CDC/ECC, Orlando, United States, De-
cember 2011 [Andrianiaina 2011a]

• Patrick Jocelyn Andrianiaina, Daniel Simon and Alexandre Seuret. Commande ro-
buste avec relâchement des contraintes temps-réel. In Conférence Internationale
Francophone d’Automatique CIFA2012, Grenoble, France, Jul 2012 [Andrianiaina 2012]

• Patrick Jocelyn Andrianiaina, Daniel Simon and Alexandre Seuret. Robust system
control method with short execution deadlines, Sep 2011. (Patent n◦ EP11306103.0
claimed by Airbus Operations SAS) [Andrianiaina 2011b]

• Patrick Jocelyn Andrianiaina, Daniel Simon, Alexandre Seuret, Jean-Michel Crayssac
and Jean-Claude Laperche. Weakening Real-time Constraints for Embedded Con-
trol Systems. Rapport de recherche RR-7831, INRIA, December 2011 [Andriani-
aina 2011c]

Context : Real-time control and embedded systems

Over the last decades, the evolution of computer technologies has made that our society
more and more reliant on embedded systems [Moravec 1998]. In transport systems this
trend has resulted in the computerization of systems, leading to X-by-wire systems, where
fly-by-wire and brake-by-wire are well-known instances as far as avionics (and automotive)
systems are concerned. In systems that are qualified to be X-by-wire the conventional
mechanical control components are replaced by computing devices and software functions.
In the transport domains these embedded systems are considered to be critical in terms of
behavior, safety considerations and fault-tolerance.

A successful design and implementation of a computer-controlled system requires a
good understanding and integration of both control theory and real-time computing. From
a practical point of view, many control systems are embedded systems where the control

2 Contents

functions are implemented using a set of microprocessors, some kind of real-time oper-
ating systems and programming languages. The traditional approach for the design of a
computer-controlled system is based on the separation of concerns between control and
computing. In particular it is assumed that the computing resources platform are able to
provide deterministic, predictable and equidistant sampling, which fit with the well estab-
lished theory of control of sample-data systems.

On one hand, real-time control is an inter-disciplinary area that include mostly aspects
of control engineering and computer science [Årzén 1999, Törngren 1998]. On the other
hand, the need for safety-critical systems requires to meet very stringent guarantees on the
capacity of the computing resources to process workloads within predefined bounds.

Currently, the demonstration of the capacity of the computing resource to handle work-
loads within a given deadline is done through the WCET (Worst Case Execution Times)
determination. The WCET is defined as the longest time taken for the computer to process
a given task, considered at the worst possible conditions. While the first objective is to
ensure safety, the correctness and soundness of the WCET is of great importance in clas-
sical design methodology because it allows for the sizing of the overall system. However,
worst case approaches induce a systematic conservatism due to idle states and bandwidth
wasting, which means an over-dimensioning of resources and increased energy consump-
tion, weight and overall costs w.r.t. the average conditions case. As weight is of particular
interest in avionics, and energy is a limited resource is most embedded systems, it is worth
to search for new methods and find cost-effective solutions w.r.t. the specified safety re-
quirements.

While technologies develop, avionic systems manufacturers such as Airbus need to op-
timize the cost and performance ratio. It has been shown in recent works [Louise 2002,
Thesing 2004], that the complexity of new computing node technologies (processors and
multicore computing units) increases the difficulty of WCET evaluations, and that the
spreading of control tasks execution times over large intervals even enlarges the conser-
vatism of worst case based scheduling methods. Therefore the traditional separation of
concerns between control and computing deserves to be revisited, and a better understand-
ing of the interaction between these two domains is expected to provide cost-effective trade-
offs between control robustness, computing resources efficiency and safety requirements.

This thesis focuses on the joint design and implementation of real-time control sys-
tems, with application in avionics. More especially, this thesis examines the timing aspects
of computer-controlled systems by revisiting the usual design and implementation based
on the WCET. Its result allows for a less conservative choice of the allocated times for
the control tasks by taking into account the robustness of feedback control, using some
flexibility in the control tasks scheduling schemes.

A simplified view of an avionics control systems is shown in Figure 1. Here, the focus
is to study the control performance and robustness of the control application in relation
with the temporal behavior of the computer implementation. Conversely with the classical
approach based on the separation of concern (see section 1.7), this thesis approaches the
problematic from a more holistic point of view. In fact, the goal of the real-time control sys-
tem consists in achieving an end-to-end control objective, i.e. ensuring the aircraft stability
and control performance for all conditions (including occasional worst cases conditions).

Contents 3

Figure 1: Flight control system schematic

In this scheme, the FCS_C box represents the embedded controller composed of a
processing unit and a set of control tasks.

The final objective is to improve the resource utilization while keeping the control
performance inside the safety requirements.

Problem description and objectives

Real-time control system design presents two separate aspects. From the control point of
view, the main objective is to design control laws that are stable and robust. From the
implementation point of view, the goal is to provide physical computers and programs that
respond to the safety critical requirements.

The usual way is to specify the system requirements and the corresponding models in
the control domain and forward them to the implementation community. This approach has
been used for long using assumptions such as pre-determined constant delays and sampling
periods.

The step of implementation of control systems, is based, on hardware and software
technologies that generate other constraints that combine with those of the control sys-
tem designers. These constraints include functional aspects and legal aspects based on
certification processes and safety guidelines. Functional constraints include different con-
straints such as the respect of the initial assumptions (constant delays, equidistant sam-
pling) while the legal aspects consist of different constraints based on the methods of im-
plementations, the ability or not to use some components. The main goal is to be able to
produce the required system with respect to all of these constraints. Well-known guidelines
include the RTCA-Do178B [DO-178B 1993] for safety-critical software development, the
DO254 [DO-254 2005] for hardware system development. Among other verifications, tim-
ing analysis, segregation of development in order to ensure redundancy are also required
by these guidelines.

When all these design and implementation constraints are all blended together, the
design and realization of a system becomes a huge challenge. Consider the RTCA DO-

4 Contents

178B standard, which, among others imposes an additional requirement which is to ensure
a predictable timing behavior on the software component of the system. Such requirement
has led implementation and manufacturers to turn toward worst case analysis.

Currently, the aerospace industries such as Airbus (and likely BOEING) and many
automotive industries require their equipment suppliers to provide analysable systems as
far as worst case execution time analysis is concerned.

However, approaches based on worst case execution time are likely to meet their lim-
its due to technological evolutions of computing hardware and programming languages.
[Mueller 2006] presents these limits and the associated efforts to overcome them. In par-
ticular the RTCA DO-178B guideline is not absolutely rigid, in fact the equipment manu-
facturers have degrees of freedom to follow their specific method to achieve a certification
level, as long as they prove to be compliant with the requirements.

During the last few years, the embedded hardware has evolved from dedicated proces-
sors and field-bus (enhancing determinism) towards shared components. A considerable
amount of effort was undertaken in the area of avionics systems (such as integrated modu-
lar avionic (IMA) [Parr 1999] or digital communication based on AFDX switch [Li 2010])
to minimize aircraft wiring and to provide weight and cost reduction, while keeping high
operational reliability and maintainability.

The real-time control software side is to consider a flexible timing behavior of con-
trol tasks. Feedback control is expected to provide a control performance which is robust
against timing deviations such as sampling jitter and occasional samples loss.

The usual hard real-time scheduling approach (necessarily based on worst-case con-
siderations), considers that temporal faults (i.e. deadline misses) are totally forbidden and
that the occurrence of such a fault must lead to an emergency behavior (e.g. switching
to a spare system). The control robustness based approach considers that a specified set
of timing faults can be safely handled (following the “weakly-hard” real time approach as
in [Bernat 2002, Bernat 2001]), provided that the real-time scheduler is equipped with the
corresponding exception handlers. The consequence is that the computing system can be
proportioned according to computing loads below the WCET of the control tasks, inducing
gains in processing power and associated costs.

By challenging current industrial applications and traditional methods, we show in this
thesis that control feedback loops are robust enough to bear timing deviations. The timing
deviations are changes from the ideal timing patterns that were scheduled for control tasks.

We also show that it is possible to enhance resources utilization and to reduce the con-
servatism of worst-case based implementations. A method is proposed to improve utiliza-
tion and availability of computing resources, while ensuring system stability and quality
of control. Indeed, with traditional design, control systems were as rigid as software hard-
deadlines, and a deadline violation of a software inevitably led to the system unavailability.

Specifically, this thesis demonstrates that it possible to slacken the hard real-time ap-
proach by tolerating a specified number of deadline overrun from the control tasks while
keeping the performance and stability of the system. This leads to a better performance
and schedulability, while permitting to prospect on the use more flexible and fault-tolerant
systems.

This idea allows to demonstrate that enhancements of the overall utilization of comput-

Contents 5

ing resources can be gained, by accepting a temporary degradation of performance. This
process of accepting a temporary degradation of performance is called “Graceful perfor-
mance degradation”. On one hand, the computing loads are alleviated to allow saving for
computing power, while the control performance is degraded by deadline misses. On the
other hand, the control performance degradation is controlled by an offline analysis in order
to keep the system stable and safe.

The work is based on a control and scheduling co-design approach, in which the fea-
tures and constraints of one domain (e.g. task triggering and deadlines in the real-time
domain) are translated into the other domain (e.g. sampling rate and delays in the con-
trol domain). A Quality of Control (QoC) metrics is based on the tolerable numbers of
consecutive timing faults that can be safely beared by the control system : it is computed
analytically, to be further used to implement the timing faults handlers. Hence flexible tim-
ing constraints with fault compensation principles are also among the contributions of the
thesis.

Thesis outline

The organization of the document is as follows:

• Chapter 1 gives the general context and the motivation of the work. A concise review
of the different states of the art of the domains that are covered by this thesis.

These states of the art range from that of safety-critical systems to computer-controlled
systems. In order to introduce the different safety constraints that are imposed by cer-
tification guidelines and specification in the development of highly critical systems,
a state of art of safety critical system is given in 1.4. A state of art of computer-
controlled systems, is also reviewed in section 1.5.

One of the objectives of this thesis is to show the inefficiency of the current design
and implementation methodologies (which are based on worst case execution time
considerations), mainly in terms of computing resources utilization.

The idea is to pull out the problematics linked with the robustness of the implemented
system and to show that it is possible to have a better computing- aware methodology.

The problem statement is presented in section 1.6. An overview of control and
scheduling co-design is finally presented in Section 1.7.

• Chapter 2 starts with the presentation of a robust weakened real-time system, in
which the motivation for the need of a more flexible framework is proposed.

In section 2.2 the notion of weakened real-time framework is presented as well as
the different possible scheduling scenarii that can be associated with it. As the in-
troduction of this new idea, on weakening the real-time constraints, has risen new
problems, the theoretical basis to solve these new problems are discussed in section
2.4.2. In section 2.4.1 and it is shown how to handle these different problems.

Then, section 2.4.2 shows how to apply the presented tools with systems having
sampled-data inputs because such models are used all along this thesis to model

6 Contents

computer-controlled systems. Finally, generalization of the approach are considered
and stability conditions in the form of Linear Matrix Inequalities (LMI) are given in
section 2.4.3.

• Chapter 3 is divided into two main parts. The first part describe the simulation of
model of the case study, the aircraft model, in section 3.2. This section describes the
nonlinear aircraft equations, the linearized ones and the decoupled equations such
as the longitudinal motion models versus the lateral motion models, and also more
fine-grain decoupling such as the short period and the so-called phugoïd. This section
is not intended to be a reference on aircraft modeling, but instead a summary of the
different sub-models of a 6 degree-of- freedom aircraft system as well as the different
control systems that compose it. This description of aircraft model is not exhaustive
and only parts and sub-models of interests were considered in this chapter.

The second part of this chapter discusses the application of the new ideas and so-
lutions in Chapter 2 with an aircraft control system. Most naturally, the pitch-rate
control system has been chosen to conduct experimentation and simulation for var-
ious reasons and motivations that are explained in section 3.3.2. Finally, comments
and guidelines on how to read the results are given in section 3.3.3.

A conclusion is given in chapter 4, where a summary of the thesis and new perspectives
of research are presented.

CHAPTER 1

Framework and Problems
statements

Contents
1.1 Introduction to Chapter 1 . 8

1.2 Useful definitions . 8

1.3 Context and motivation . 9

1.3.1 System considerations and avionics functions 9

1.3.2 Flight Control Systems and the computer era 11

1.4 Safety critical systems . 12

1.4.1 Development process life cycle 12

1.4.2 Legislation, regulations and certification 14

1.4.3 Fly by Wire System Certification Background 14

1.4.4 Dependability issues . 15

1.4.5 Fault tolerance and robustness implementation in Flight Control Sys-
tems . 16

1.5 Real-time Control . 19

1.5.1 Real-time systems . 20

1.5.2 Dynamic systems . 24

1.5.3 Computer-controlled systems . 25

1.6 Problem Statements . 27

1.6.1 Hard Real-time paradigm . 27

1.6.2 Challenging issues . 28

1.7 Control and scheduling co-design . 30

1.7.1 Control Systems hard deadline . 31

1.7.2 Control and scheduling integration 32

1.7.3 Co-design approaches: methods and tools 34

1.8 Conclusion of Chapter 1 . 38

8 Chapter 1. Framework and Problems statements

1.1 Introduction to Chapter 1

This chapter motivates the thesis and the general context in which it can be applied. This
mainly deals with avionics and computer-controlled systems, taken in the very stringent
context of highly safety-critical avionics systems. These points will be covered in section
1.3 after section 1.2 which presents a preliminary definitions of some technical terms used
all along the thesis.

A concise presentation of the framework of safety-critical avionics systems follows in
Section 1.4. This presentation presents generalities on safety-critical systems, which will
later permit us to introduce some elements of constraints that make it difficult to develop
safety-critical real-time systems such as flight control systems or braking control systems.

Then we develop a section dedicated to real-time control, in which, classical continuous-
time control theory will be rapidly revisited with its classical assumptions. This section is
followed by a section on computer-controlled systems and its classical problematics, which
include timing parameters settings problems.

The problem statement of the thesis is presented in section 1.6, where the problem-
atics of resource utilization and separation of concern are developed. At the end of this
section, one would understand that the problematic is directed more toward robustness and
performance with respect to timing constraints.

Finally, section 1.7 sets the relation between control and scheduling communities and
the mutual impact on these domains. This section is directed toward the demonstration that
control system are robust enough to tolerate timing deviations from the ideal hard- deadline
pattern.

1.2 Useful definitions

Before going into the contents of this chapter, it is necessary to give some definitions.
These definitions will be used throughout this thesis.

• System: A system can be defined as the combination of different coherent structures,
whose elements contribute to achieve a goal. In the context of this thesis, a control
system is a combination of different elements such as controllers, sensors, ... to
achieve a goal which to control and stabilize the plant. Another example: avionics
systems can be seen as the combination of different sub-systems which achieve the
goal of flying the aircraft safely.

• Error is the execution of a fault (or more precisely a passive fault) which may lead to
failure.

• Faults are potential flaws in a system, which can be later activated to produce an
error.

• Failure is the fact that a system has an erronous behavior (for instance an incorrect
state). that does not meet its intended and desirable objective.

1.3. Context and motivation 9

• Critical systems are systems whose failure may lead in serious injury to people, large
loss or severe damage to equipments or very severe environmental harms.

• Dependability of a system is its ability to deliver specified services to the end users
so that they can justifiably rely on and trust the services provided by the considered
system.

• Reliability is associated to a period of time. The reliability of a system considered in
for a period (0, t) is the probability that the system is continuously operational (i.e.,
does not fail) in time interval (0, t) given that it is operational at time 0.

• Robustness is the persistence of a system’s characteristic behavior under perturba-
tions or conditions of uncertainty. It means that a robust system is a system that can
tolerate deviation from the ideal case for which it has been designed, while providing
a reliable service without failure.

• Safety of a system for a period (0, t) is the probability that the system will not incur
any catastrophic failures in time interval (0, t).

• Fault-tolerance describes system designed so that, in the event that a component
fails, a backup component or procedure can immediately take its place with no loss
of service. Fault tolerance can be provided with software, or embedded in hardware,
or provided by some combination.

1.3 Context and motivation

1.3.1 System considerations and avionics functions

Aircraft systems and subsystems development is a complex task. There are hundreds and
even thousands of subsystems based on various expertises. This complexity is shown by
figure 1.1. From this complexity, this thesis will focus on elements such as the Avionics
Systems and Equipments.

Avionics systems’ main essence is to provide aircraft functions [Cary 2001]. These
functions satisfy very specific needs and requirements on the aircraft. Among these func-
tions, we can list for instance, flight control systems, navigation and tracking systems, flight
management systems or synthetic vision and display tools. Those functions are coded
as ATA (Air Transport Association) chapters by the FAA (Federal Aviation Administra-
tion) [Cary 2001]. The unique aspect of the ATA chapter numbers is its relevance for all
aircraft. Thus a chapter reference number for an Airbus 380 will be the same for a Boeing
747 or a BAe 125. Examples of this include Oxygen (ATA chapter 35), Electrical Power
(ATA Chapter 24) and Doors (ATA Chapter 52). Each function is associated to a level
of criticity and dependability. For instance, the subsystem responsible for Light functions
(ATA 33) would not be as critical as the one responsible for flight control functions (ATA
27) or the one for the Autopilot (ATA 22) function, as the loss of the light functions would
not be as catastrophic as the loss of the flight control functions, in some senses.

10 Chapter 1. Framework and Problems statements

Figure 1.1: Aircraft Systems and subsystems

For such critical applications, the probability of losing the functions or the occurrence
of a failure in such functions and leading to its loss, must be less than 10−9 per hour
of flight. These systems have to meet stringent requirements of dependability but also re-
quirements on performance and usability and so, are submitted to severe regulations. At the
higher level of an aircraft for instance, these guarantees are achieved through strategies like
redundancy (see [Goupil 2010] and [Bertrand 2009]). However, the above-cited works do
not consider the system at a single equipment level, where, things happen quite differently.
Indeed, equipment (i.e software and hardware) designers also have stringent requirements
to meet in order to guarantee determinism and to achieve certifications of their products.
They are constrained by the high level avionics requirements, certification regulations but
also by implementation limitations. These constraints lead equipment designers and man-
ufacturers to set determinism and predictability as a priority and not take into account fault
tolerance and robustness [Bedin França 2011,Souyris 2005] at some levels. This approach
is known to be very conservative because apart from being long and difficult in implemen-
tation, designers and manufacturers of equipments must consider taking some spare safety
margins, especially in timing analysis, to guarantee required timing objectives is reached.

The case study in this thesis is the flight control systems (ATA 27, ATA22) , although
the proposed approach works with any system integrating a control loop, such as Landing
Gear (ATA 32) braking.

1.3. Context and motivation 11

1.3.2 Flight Control Systems and the computer era

For many decades now, computers have made their way into our daily life. It is nowadays
classical to find computer as a controller of a given process by using complex control
laws implemented as software tasks. This evolution has increased the possible applications
of computer systems and when conjugated with the relatively low cost and the relative
reliability of computers components, it is not surprising that almost every system that we
see nowadays is computer-controlled.

Then the notion of X-by- wire started to show up (in reference to the computerization
meaning that the usual mechanical links are replaced by electrical wires).

To give examples, we can mention the brake-by-wire for example to represents the re-
placement of traditional mechanical component links into electronic sensors and actuators,
the drive by wire or even the Fly-by- wire (FBW), which is commonly called the Electrical
Flight Control System (EFCS) which replaces replaces the conventional mechanical links
of aircrafts with an electronic interfaces, networked links and digital devices.

Figure 1.2: Mechanical Flight Control vs Fly-by-wire

Figure 1.2 shows a typical comparison between the classical mechanical flight control
systems and a typical computer-based flight control, the fly-by-wire. The Electrical Flight
Control System (EFCS) was first developed in the 1960s by Aerospatiale and installed on
the Concorde in 1969 as an analogue system. Much later, digital EFCS was introduced
first on the A310 around 1982, on the spoilers, slats and flaps control surfaces only, and
then was generalized on all control surfaces (the 3-axis aircraft) on the A320 in 1987. This
was rapidly followed by installation of EFCS on the A340 aircraft, certified at the end of
1992 [Briére 1993]. The FBW systems started then to constitute an industrial standard
not only for commercial aircrafts [Favre 1994] while it has already been implemented on
military aircrafts from 1965 on the F-8 Crusader.

The fly-by-wire principles consist in the fact that the pilot commands are sensed elec-
trically and processed by a computer to compute the equivalent actuation of the control
surfaces. In earlier times, this system simply provided electrical signals to the control
actuators, without any form of enhancement. With the improvements of computer-based

12 Chapter 1. Framework and Problems statements

systems (more processing power, more memory, performing chip-sets, ...), the EFCS has
also been improved taking benefits of these changes. These changes include the incorpora-
tion of more complex control laws in the flight control software and hardware, that provide
extensive stability and control augmentation systems and more and more complex control
laws [Favre 1994, Philippe 2011]. The positions of the control surfaces are no longer a
direct reflection of the pilot’s control inputs and conversely, the natural aerodynamic char-
acteristics of the aircraft are not fed back directly to the pilot. Figure 1.3 shows a diagram
summary of a simple control law.

Figure 1.3: Flight Control Laws

1.4 Safety critical systems

1.4.1 Development process life cycle

According to [Falla 1997], a system is classified as critical , if a malfunction of the system
leads to:

1. loss of life

2. injury or illness

3. serious environmental damage

4. significant loss of, or damage to, property

5. failure of an important mission

6. major economic loss

Of these classes of systems, the reference gives a classification describing, systems
of class 1-5, as " safety-critical" , class 5 as "mission-critical" and systems of class 4- 6
as "business-critical". The boundaries between each description is not sharp, thus experts
would argue that a system is safety critical if its malfunction could lead to major economic
loss, and conversely, a system which causes loss of life could have a severe economical
consequences for involved operators.

The massive introduction of computer-controlled systems by means of X-By -Wire sys-
tems, have introduced new failure modes, new processes of development and new methods

1.4. Safety critical systems 13

of validation. A need for standardization has emerged in terms of safety, dependability
and development processes of these systems. The way to insure safety and dependabil-
ity of developed systems, in some way, is to insure that the designers and manufacturers
have followed a given and known process when developing the system. This permits and
somehow forces the manufacturers to follow some safety recommendations and to do the
required verification.

Consequently, industrial systems such as aircraft, automotive and railways industries
had to adopt a regulated way of doing their developments processes. As far as avionics
systems are concerned, the overall development processes are integrated into a life cycle
of a product. It sets clearly and step by step, the places of the different industrial activities
such as system design and modeling, design and concept verification, code and hardware
implementation and prototyping, verification of the prototypes... until the final product that
is intended to be safe.

For avionics products ,this life cycle is shown in figure 1.4 [Philippe 2011] for aircraft
development.

Figure 1.4: V-Life cycle for aircraft development

In many industries coping with embedded systems problematics, the respect of the
different activities and the different processes governed by this life cycle is crucial to ob-
tain certification and qualification of the products. Indeed, in highly critical and complex
projects, such as, aircraft development, the final stage is to convince external regulating
organizations that the system is safe, and that the process of development has been fol-
lowed. Strictly following this life cycle already achieves and demonstrates a form of fault-
tolerance [Philippe 2011] at some levels of the product.

14 Chapter 1. Framework and Problems statements

This type of life cycle permits to track the development process of the aircraft from
its specification to the validation. The first branch of the V- cycle is the development
phase. It starts with the aircraft specification corresponding to the "top-level requirements":
the definition of the needs, the choice of concepts, control laws, technologies, etc. The
aircraft is decomposed into functional sub-parts, which are specified in the next step and
decomposed into "equipments" (e.g. a computer systems, meaning hardware and software),
which provide the specified functions.

The other part of the life cycle consists of verification and validation. A severe cam-
paign of validation is undertaken after the integration of the equipments. This validation
phases ends with a flight test campaign [Philippe 2011].

1.4.2 Legislation, regulations and certification

Almost all aspects of the design, production, and operation of civil aircraft are subject
to extensive regulation by authorities. This section describes the most significant regula-
tory involvement a developer is likely to encounter in the certification of avionics systems.
Certification is a critical element in the safety-conscious culture on which civil aviation is
based. The legal purpose of avionics certification is to document a regulatory judgment
that a device meets all applicable regulatory requirements and can be manufactured and
operate properly.

The regulating organizations are the FAA (Federal Aviation Administration) in the
USA or the JAA (Joint Aviation Authorities) and the EASA (European Aviation Safety
Agency) from 2003 in Europe. They act primarily through the publications and the en-
forcement of the Federal Aviation Regulations (the FARs) or the Joint Aviation Regulation
(the JARs).

In the scope of this thesis, as foretold the requirements that interest us consist of those
which are in relation with computer-controlled systems (hardware, software and control
laws) as we consider the EFCS as our case study.

1.4.3 Fly by Wire System Certification Background

From [Cary 2001], it is stated that no airplane can fly unless this airplane has a type cer-
tificate issued by the aviation authorities of the airline country (FAA or JAA. See section
1.4.2). Each country has their own regulatory material although the common core content
is basically the same.

This common part is basically composed of two main parts [Cary 2001]:

• the requirements: An example of such requirements is "The airplane system must
be designed such that the occurrence of any failure condition, which would prevent
the continued safe flight and the landing of the airplane, is extremely improbable"
(from the Federal and Joint Aviations Requirements 25.1309 or EASA Certification
Specifications 25.1309 [EASA 2009]).

Remark: The Certification Specification (CS and the JAR / FAR) 25 are the specifi-
cations for large airplanes. As so, there exist many others Certification Specifications

1.4. Safety critical systems 15

for other aircraft types. An exhaustive list can be found at http:// www.easa.eu.int/agency-
measures/certification- specifications.php.

• a set of interpretations and acceptable means of compliance: A part of the regulation
(called Advisory Circular) gives the meaning and discusses the terms such as "failure
conditions" and "extremely improbable". Moreover, a guidance on how to achieve
compliance is given.

These aviation regulations are evolving to be able to consider the scope of new tech-
nologies (such as the use of fly-by-wire) [Cary 2001]. This is mostly done by the use of
special conditions targeting a specific aircraft and by modification of the general regulatory
material in later times. Many new topics were addressed such as the notions of flight enve-
lope, the side-stick-controller, safety assessments, etc etc (for details see [Cary 2001]). The
result of this operations was the integration of new regulatory materials in the core regula-
tory material consisting of numbers of documents, and mainly: the ARP4754 [of Automo-
tive Engineers (SAE) 1996a], the DO178B [RTCA-EUROCEAE 1992, DO-178B 1993],
the DO254 [DO-254 2005] or the ARP4761 [of Automotive Engineers (SAE) 1996b].
More details on the specificities of these guidelines are presented in section 1.4.5.

1.4.4 Dependability issues

The EFCS is a critical system, as far as safety and dependability is concerned, in the
sense that a failure or a loss of this function would lead to catastrophic consequences.
[Philippe 2011] gives some examples of the faults that could lead to catastrophic events
such as control surface runaway or jam, loss of control over pitch axis or oscillatory fail-
ure at a frequency critical for the aircraft structures. All the aforementioned fault types
must be extremely improbable (i.e: with a probability of less than 10−9 per hour of flight
and considering qualitative requirements (FAR/JAR 25.1309) . It is also required by the
FAR/CS25.1309 and FAR/CS 25.671 that, specifically for flight control systems, the oc-
currence of failure must not be due to a single failure.

Designing and implementing systems are limited at first sight to satisfying requirements
and specifications. But then, the performance level of the product varies as a function of
noise and external perturbations. A product can be considered robust as long as its intended
response is not altered (or barely altered) by non controlled perturbations and modeling
uncertainties. An optimized product that only works in very particular known conditions is
not robust. The objective of robust design is to optimize product performance along with
minimizing sensibility to perturbations and uncertainties. Robustness is (and must be) a
general concern that grows with system complexity and its associated uncertainty.

In order to be compliant with the Airworthiness requirements, there are industrial prac-
tices based on the guidelines documents that have been presented in section 1.4.2.

16 Chapter 1. Framework and Problems statements

1.4.5 Fault tolerance and robustness implementation in Flight Control Sys-
tems

Current industrial practices include well-known and well-mastered implementations of ro-
bustness and fault-tolerance at the system level.

An overview of industrial practice is given in [Philippe 2011].

Safety System Assessment

It is an analytic approach based on a type of fault-tree to analyze the effects of each func-
tional failure on the system. It is intended to provide an exhaustive study of all the com-
binations of failures in order to determine the probability of occurrence of an undesirable
events. The probabilities of elementary failures are given by equipment manufacturers and
confirmed by adequate experiences. This safety analysis contributes to a design of fault-
tolerant systems, and is compliant with the safety requirements in the regulations.

The operation includes:

• Safety criteria and a hazard classification procedure.

• Results of safety analyses performed.

• Identified risks still existing and constituting a hazard to operators and maintenance
personnel.

• A hazards list and recommendations for their elimination or reduction to an accept-
able level.

• An assessment of the system compliance with the safety requirements.

Because safety analysis is present in every step of the life cycle thanks to regulatory
processes, this analytic method is valid for any system (final or intermediate systems).

Development processes mapped on regulatory guidelines

The development process of a critical system, and mainly a flight control system is very
stringent, in terms of process constraints, quality and safety.

The following paragraph give different examples of guidelines that are mapped to the
development processes for the critical avionics systems.

• ARP4754 [of Automotive Engineers (SAE) 1996a]: A guideline document on sys-
tem design, verification and validation, configuration management, quality insur-
ance. This document is the certification considerations for highly-integrated or com-
plex aircraft systems

• DO178B [RTCA-EUROCEAE 1992]: A guideline document on software design,
verification, configuration management, quality assurance. The level of rigor and
processes applied to the software is based on the DAL (Design Assurance Level)

1.4. Safety critical systems 17

level. At the present time, the DO-178B is about to be update with the Do-178C.
In the software development process, the dedicated guidelines DO 178B does not
involve in the content of the software but instead in the processes of the development
to comply with (planning, programming model, verification and tests to be done
including timing, quality insurance, ...) in order to ensure compliance and to obtain
equipment and aircraft certification.

• DO254 [DO-254 2005]: A guideline document on hardware design, verification,
configuration management, quality assurance. The level of rigor and processes ap-
plied to the hardware is based on the DAL (Design Assurance Level) level.

• ARP4761 [of Automotive Engineers (SAE) 1996b]: A document giving guidelines
and methods for conducting the safety assessment process on civil airborne systems
and equipments.

Hardware redundancy

In the context of real systems, it might happen that, in order to ensure the availability of a
given function, it is implemented many times inside the global system. It is the case, for
instance, in flight control computers, which include many computer units to do the same
function. Thus, it is ensured that if a computer fails in completing its role, the function of
flight control can be done by one of the other computers that are left.

In the case of EFCS, these computers are in charge of control law computation as a
function of the pilot and sensor inputs. There are some specific knowledge from the man-
ufacturer and system designers to implement redundancy in real systems. Therefore, the
system incorporates sufficient redundancies to provide the nominal performance in terms
of availability of the function and in terms of safety with one (or two) failing computer,
while it is still possible to execute the aircraft function safely with one single computer ac-
tive. The use of multiple fly-by-wire computers (a total of 5 on the Long Range A330/340
aircraft, up to 6 on the A380 or some other, triplex or quadruplex redundancy architec-
ture for other aircrafts such as Boeing) and the use of different power sources for control
surfaces actuation are variant of redundant architecture in practical case.

At the level of a equipment architecture, there is still another level of redundancy called
dissimilarity. First, the fly-by-wire computers do not all have the same internal architec-
ture in terms of components and software. In fact those computers are divided at least into
two categories: the primary (PRIM) computer or the FCPC (Flight Control Primary Com-
puters) and the secondary (SEC) or the FCSC (Flight Control Secondary Computers).
Those different computers are developed by different teams to dissimilarity is ensured.
Again, this fact illustrates the fact that following the development process and guidelines
implement fault tolerance because, in the case where the development process requires
that different teams design the redundant computers, it helps very much in avoiding the
so-called "common-mode failures" . This type of redundancy is also implemented at the
software level where the software function of the redundant computers are developed in
other languages allowing to avoid common-mode failures.

18 Chapter 1. Framework and Problems statements

Figure 1.5: Command Monitoring internal architecture

Moreover, in each computer, the internal architecture is still divided into two channels:
the command (COM) channel and the monitoring (MON) channel (figure 1.5). Each
channel monitors the other but each channel has a specific task. The COM channel provides
the main functions allocated to the computer (flight control law computation and sending
commands to control surfaces) while the MON channel ensures (mainly) the permanent
monitoring of all the components of the flight control system (sensors, actuators, other
computers, sensors, probes, etc.) . It is designed to detect failure cases and to trigger
reconfiguration by signaling the failure to the COM channel and to the other redundant
computers of the same function.

Reconfiguration management

If despite all the measures taken to implement robustness to the system, a fault occurs, then
a measure must be taken in order to handle this fault. Among the many ways to handle
faults, one of the most practical is a reconfiguration of the system.

Reconfiguration management is defined as the automatic operation following a failure
that allows the system to cope up with faults that have occurred. Reconfiguration consists
of the operations made in the system to change itself in order to handle perturbation and
uncertainties. In flight control systems, there are basically two levels of reconfiguration:

The first level of system reconfiguration consist of handling actuator faults. In trans-
port aircraft, the different control surfaces (rudder, ailerons, slats, flaps, spoilers, eleva-
tor) are controlled with redundant actuators. This mechanism is illustrated by figure 1.6
from [Cary 2001,Traverse 2004] (the same reference presents the same architecture for the
A320 aircraft).

The flight control computer act on each actuators of each control surface in a redun-
dant manner. In the figure 1.6, the actuators are denoted by colors (Y: Yellow, G=Green,
B=Blue). The principle of this type of reconfiguration consist of a robust choice between
the computer that is in charge of updating the actuator states. This choice consist of des-
ignating off -line the scenarii of the actuators that are designed to act in passive mode and

1.5. Real-time Control 19

Figure 1.6: A A330/340 flight control architecture

active mode on the different control surfaces.
The second level of reconfiguration is the flight envelope, defined as a system of recon-

figuration of the control laws. It implies the existence of numbers of control laws that can
be switched from one to another depending on the situation (see Figure 1.7)

In normal conditions, the aircraft is protected against critical forbidden states signaled
by events. These events include, for instance, the aircraft protection against stall, excessive
altitude (pitch, bank), excessive speed or excessive load factors, etc The corresponding
flight control law is called the " normal law". It requires a high level of integrity and the
redundancy of the computers. Should any protection be lost because of a case of failure
(e.g: loss of a control surface, Air Data Reference, Inertial Reference System, loss of the
flight control computer FCC), a lower-level control law, called " alternate law " is activated.
Flight is still possible but full protection is no longer guaranteed (for instance, there might
be no more comfort of the passengers). The last level of control law is called "direct law"
which requires manual trim of the aircraft.

1.5 Real-time Control

Real-time control is an interdisciplinary area that include aspects of Control Engineering
and Computer Science . In fact, references such as [Årzén 1999, Törngren 1998] show
that there is a link between these domains and considering only one domain with a single
point of view is a poor approach to real-time control. Thus, this section considers a brief
reminder of real- time systems in general, the design and properties which make them
critical. It is followed by a brief reminder on continuous-time control systems. It references
the different models and analysis tools that is used by the control community. Then a
subsection on computer controlled systems looks more closely at these tools and models

20 Chapter 1. Framework and Problems statements

Figure 1.7: Flight Envelope

and makes a link between computers and control systems, and also between computer
science and control community. This should allow to convince the reader that the subject
is a indeed an interdisciplinary problem.

1.5.1 Real-time systems

Real-time systems architecture

They are systems in which temporal aspects of their behavior are part of their specifications.
In fact, the correctness of the system depends not only on the logical correctness of the
results of computations but also on the timed arrival or the timed ending of the computation
results [Stankovic 1988], implying that time is also considered as a shared resource of the
system. Real- time systems are mainly systems that need to have intensive interactions
with their external environment which also evolves with time. Avionics systems include
many instances of real-time systems, namely flight control systems and braking systems.

The real-time aspects allows to ensure the timing behavior of the control system very
precisely.

The simplest architecture of a real-time system is presented as in figure 1.8.
The plant is the controlled system and the controller which interacts with update its

states by computing control laws. It is a real-time control system.
In the early age of control, analogue computers were used to work out the control sig-

nals, firstly from mechanical devices, and then from electronic amplifiers and integrators :
both the plant and the controller remained in the realm of continuous time, while frequency
analysis and Laplace transform were the main tools at hand. Nowadays, due to the spread-
ing of computers, most control systems are computer-based systems [Årzén 1999]. The
sampling theory and the Z-transform became the standard tools for digital control systems

1.5. Real-time Control 21

Figure 1.8: Real-time system

analysis and design. A successful design and implementation of a computer-controlled sys-
tem requires a good understanding of both control theory and real-time scheduling theory.

Real-time control design and implementation

Many real-time control systems are embedded systems. An embedded system is a com-
puter system designed for specific control functions within a larger system, often with a
set of constraints such as real-time constraints [Heath 2003]. Those physical constraints
arise through interactions of the computational processes with physical world. An classic
example of such interactions consist of the stabilization of an aircraft while flying through
the airflow where the timed action of the control surfaces permits to keep the aircraft stable.

The traditional design of a computer-controlled system involves mainly two steps. At
first step, the control law (or algorithm) is either discretized from its continuous-time equiv-
alent, or directly by using discrete-time control design theory. The second step consists of
converting the discrete- time controller into a real-time software tasks, scheduled to execute
on computing target platform, where real-time scheduling algorithms based on the worst
case execution time is generally used to guarantee the timely behavior. The controller sys-
tem is then composed of the combination of the control software tasks (constructed from
the discrete-time controller), the device drivers and the hardware on which they run, while
the physical plant is still in continuous- time.

The design process and verification process of such systems must be compliant and
conform to regulatory safety requirements (e.g: the DO178B and the DO254) for safety-
critical embedded control systems.

Figure 1.9 shows a schematic of such design and implementation for a flight control
system, in which the Reference signal symbolizes the pilot signal and the FCS_C (here
meaning the Flight Control System Computer) samples and computes the control value
based on a given control law. The sensors capture the states and the outputs of the con-
trolled system.

22 Chapter 1. Framework and Problems statements

Figure 1.9: Flight Control Systems

Real-time scheduling and task constraints

Real-time scheduling is an important subject in the domain of real-time control systems, as
the controller is composed of control software tasks and the hardware processor. It consists
of defining the execution orders and the execution timings of each task on the processing
units of a given architecture. These parameters are called the scheduling parameters. The
main objective is to foresee with precision the temporal behavior of the considered system.

Tasks have parameters that characterizes themselves and that allow scheduling. For a
given task τi, those parameters are:

• Arrival time ai is the time at which a task becomes ready for execution. It is also
referred to as activation time or release time (denoted by ri).

• Start time si is the time at which a task starts executing.

• Finishing time fi is the time at which a task finishes its execution.

• Absolute deadline di is the time before which a task should complete its execution.

• Worst-case execution time (WCET) Ci is the maximum time needed for the pro-
cessor to execute the task without preemption.

• Relative deadline Di is the deadline with respect to the arrival time, that is Di =

di − ai.

Figure 1.10: A typical real-time task

Figure 1.10 illustrates the characterization of a typical real-time task.

1.5. Real-time Control 23

Depending on the system criticality, the tasks are designed to be:

• Hard real-time, in which the system must operate within the confines of a hard
deadlines. Such systems must guarantee that tasks complete on time. A missed
deadline in a hard-real-time system is considered catastrophic.

• Soft real-time, meaning that only the critical tasks get priority to get completed,
over other tasks and retains that priority until it completes. The objective is also
to meet deadlines, but the difference resides on the fact that soft-real-time systems
allows a few deviations from the expected timing constraints and a few deadlines
are accepted, because, in opposition to hard-real-time, it is not considered to be
catastrophic. However, it is important to understand that in soft-real-time systems
deadlines can be missed (or latency can be added) in a non-predictable way.

• Weakly-hard. This is less common that the two strategies above. However, it is
known and demonstrated that most hard-real-time systems can miss some deadlines
provided that it happens in a known pattern and in a predictable way. In weakly-hard
real-time systems, would be similar to the soft-real-time systems, with the difference
that deadlines misses happen in a predictable and mastered way. For instance, a
deadline miss can happen but it is mastered and its consequences have been awaited
for.

WCET-based scheduling

Traditional control design considers constant sampling rates with equidistant samples (e.g.
no jitter) and negligible, or fixed and known delays. On the other hand real-time schedul-
ing theory has mainly focused on how to dimension resources for meeting deadlines (or
equivalently, on the schedulability analysis for a given resource) [Sha 2004]. Therefore the
computer science and real-time scheduling communities do their best to implement con-
trol tasks considering fixed periods and hard deadlines, and assuming that the Worst-Case
Execution Time (WCET) is precisely known. This assumption has served the separation
between control and scheduling designs, but leads to an under utilization of CPU resources,
and such approach faces both technical, economical, and industrial challenges.

One of the toughest challenges in the current approach is the determination of the
WCET, in order to correctly size the system. The tightness of the result is related to the
predictability of the processing unit. The future generations of processors seems to go
apart from the predictability and determinism objectives of the execution time. Process-
ing speeds and performances grow up very fast thanks to accelerating but unpredictable
mechanisms of new processors. However it becomes difficult to foresee their effects on
the execution time considered in the worst case. Nowadays, even if many attempts are
proposed to give an upper bound of the WCET (e.g. [Rochange 2007]), both the traditional
and current approaches are difficult to be applied to modern processor generations and pro-
duce values which are pessimistic [Puschner 2008]. Appendix A provides an overview of
methods currently used for the evaluation of the WCET.

24 Chapter 1. Framework and Problems statements

Considering the WCET as a reference to implement the control laws, the hard and
costly way consists in building a highly deterministic system so that the actual implemen-
tation parameters meet the ideal ones. By essence, implementations purely based on WCET
and hard deadlines considerations are conservative and lead to a large under-utilization of
the computing and networking resources and finally ending to an oversizing of both elec-
trical supplies, cooling systems and aircraft weight.

In summary, we state that either WCET analysis become more and more difficult and
more especially for modern processors, in which the probabilistic plot of the execution
time is expected to spread larger and larger.

1.5.2 Dynamic systems

The basic assumption in control theory is the causality effect relationship for the compo-
nents in a system. Therefore, a simple system represented by a block-diagram (as in figure
1.11), accepts inputs and produces outputs.

Figure 1.11: A simple block diagram

From the input/output point of view, the system forms the open-loop system. However,
in this form, the control system usually fails to achieve the desired purpose if very precise
information about the interaction of the plant with the environment is not available (for
instance, if there are some noisy disturbances). Another point to take care of, is the fact
that the model may not be perfect as well. Among others, uncertain linear plants with the
following structure are considered in the sequel :

ẋ(t) = (A+ ∆µA(t))x(t) + (B + ∆µB(t))u(t) (1.1)

where x is the state vector and u is the control vector. Uncertainties are modeled as :

∆µA(t) = µ
M∑
i=1

λi(t)Ai ∆µB(t) = µ
M∑
i=1

λi(t)Bi (1.2)

λi(t) ≥ 0
M∑
i=1

λi(t) = 1

The considered controllers are linear state (or output) feedbacks such as :

u(t) = Kx(tk′ − Tslot), ∀t ∈ [tk′ , tk′+1] (1.3)

1.5. Real-time Control 25

The major problems that are solvable with control system problems are numerous
nowadays. This schema, known as the feedback structure of a control system, is, at the
basis of automatic control theory.

It contains all the basic components of a control system and show an ideal abstract
model. In practice, there might be some other components in a more realistic system such
as, the sensors, the actuators, the different estimation filters and other interfaces.

Systems may be described by many ways but in the thesis, we focus on systems de-
scribed by the classical state model (see 1.1).

The main objectives of such systems are dealing mainly with the notions of stability,
performance.

To conclude this section, a slight reminder on the overall aim of this thesis. It does
not consists in developing a new type of controller for dynamical systems, nut instead
the objective is to consider and prospect solutions for the dual problems coming from
automatic control and their computer implementation. These problems will be described
more precisely in the following sections.

1.5.3 Computer-controlled systems

Realistic model: Sampled-Data systems

As the plant is a physical continuous-time system, the system would need to integrate an
additional interface between the discrete-time computer and the plant. The system con-
tains:

• An analog (continuous-time) process symbolizing the system to be controlled. It’s a
dynamical system whose model can be described by Ordinary Differential Equation
or Partial Differential Equation.

• The input u(t) and the output y(t) of the process are continuous- time signals.

• A sampler made of an Analog-to-Digital (A-D) converter converts the analog output
signal of the process into a discrete- time signal. It paced by an internal sampling
clock. Depending on the need of the system, in terms of precision, the sampled can
be coded in a finite precision number depending on how many bits the computer
needs. This is the sampling process.

• A Computer is made of an internal clock and the software tasks implementing the
control algorithms. It takes the discretized values yk from the A-D and computes
new values of control signals uk using the control algorithm. Then the computed
control uk signal is transferred to the DA.

• A Digital-to-Analog (D-A) converter with a hold circuit does the opposite action
of the A-D. It takes a finite precision number from the computer controller, which
are the newly-computed control signals, and converts them into a continuous-time
signal. The hold circuit is in charge of the value of the signal between two sample
times. When the hold device is a ZOH (Zero Order Hold), the signal between two
sample times is piece-wise constant.

26 Chapter 1. Framework and Problems statements

Figure 1.12: Realistic sampled-data model

Such a model is described by figure 1.12. This kind of system is then a mixture of a
continuous-time system and a discrete-time system: it is called a sampled-data system.

The sampling process and time-dependence

From a purely analytic point of view, the mixture of a continuous-time signal and a discrete-
time signal is problematic. This can be solved by looking at the whole system only at
discrete-instants (which is the instants of the discrete-time signal). Theses instants, where
the measured variables are converted into discrete sequences, are called the the sampling
instants.

Also,the fact that computer-controlled systems are clock-driven (by the internal clock
of the computer), makes the system to be time-dependent. Assuming that a timing distur-
bance (for instance response delay), appears at the output of the plant. Time-invariance
implies that a shift of the input of the computer (which is the output of the plant), should
result in a similar shift at the output of the computer. However, as the internal clock of
the computer is not aware of this delay induced by the output of the process, the computer
reacts differently when the disturbance is shifted in time. It is stated by [Wittenmark 2003]
that the response of the system to and external stimulus depends on how that stimulus is
synchronized with the internal clock of the computer. Thus, under synchronization assump-
tions on the inputs, the outputs and the eventual disturbances, the system will somehow stay
time-independent.

Zero Order Hold (ZOH) reconstruction

The most commonly used hold model in the signal reconstruction is the ZOH. It consists of
taking a sample value in the sampling instants and setting the inter-sample as a piece-wise
constant value until the next sample value is obtained.

Assuming a sampling period h, the reconstruction of x(t) from its sampled equivalent
x(sk) (for k ∈ N) is given by:

1.6. Problem Statements 27

∀k ∈ N, x(t) = x(kh) k.h ≤ t < (k + 1).h (1.4)

Figure 1.13 shows the reconstructed signal.

Figure 1.13: ZOH reconstruction

This shows that the sampling mechanisms and the reconstructions introduces a loss of
information. This is among the numerous issues that computer-controlled system domain
has to deal with.

1.6 Problem Statements

1.6.1 Hard Real-time paradigm

From the real-time scheduling side, modeling and analysis have been initiated in the illus-
trious seminal paper [Liu 1973]. This first schedulability analysis was based on restrictive
assumptions, one of them being the periodicity of all the real-time tasks in the system.

Even if more general assumptions have been progressively introduced to cope with
more realistic problems and tasks sets, the periodicity assumption remains very popular.
This can be seen in the use of classical scheduling theory in practice which are based
on the periodicity of the tasks such as Rate Monotonic, Fixed Priority...). The combina-
tion of these popular modeling and analysis methods and tools have likely reinforced the
understanding that computer-controlled systems are basically periodic and hard real-time
systems.

This description has shaped the computer-controlled theory during more than three
decades. It is however questionable if this is true for all control system.

Currently many control systems, e.g. flight control, braking control systems, are con-
sidered to be hard real-time that is to say it is most often assumed at design time that
control tasks must be executed strictly periodically. Therefore control tasks executions are
bounded to fixed time-slots, and deadline misses or jitter are forbidden. It is assumed that
any deviation from the ideal timing pattern inevitably leads to a failure of the system. The
implementation of such control tasks relies on a safe evaluation of the WCET of each task,
which is used to dimension the size of the time slot allocated for the execution of the control
tasks.

As for the domain of safety-critical system, integrating fault-tolerance in those systems
is difficult without massive redundancy, as it is the case nowadays in flight control systems.
In fact, in this kind of application, fault -tolerance is achieved by using many computer in

28 Chapter 1. Framework and Problems statements

a redundant way, while at the level of each computer, timing behavior is still defined using
the classical hard-real-time assumptions leading to a rigid and non-robust implementation.

Moreover, as program and software get larger and more complex, there is a permanent
desire to optimally use the available hardware. According to [Bedin França 2011], it is
a challenging problem to try to meet both performance and safety, from the software im-
plementation point of view because these two characteristics may appear as contradictory
goals.

In this context, the execution schedule of a single real-time tasks that is based on the
respect of the WCET is presented in figure 1.14

Sampling sensors data

Computation slots
dedicated to control

Effective computing
times

Application of control
to the actuators

WCET WCET

Latency

Tex Tex

Tslot = WCET

sk
sk+1

T T

tk

x(sk) x(sk+1)

tk+1

Uimp(tk) = U(x(sk)) Uimp(tk+1) = U(x(sk+1))

Figure 1.14: WCET based control task execution pattern

A task execution is strictly periodic : a time slot Tslot = WCET is allocated to the task
execution, it is triggered at a period sk − sk−1 = T by the occurrence of measurements
x(sk) at time sk. The controller computation takes a time Tex which is, by definition,
always smaller than the WCET . To avoid output jitter, the control signal U(x(sk)) is
applied to the actuators at the end of the slot, i.e. at time sk +WCET :

∀t ∈ [sk +WCET, sk+1 +WCET [, U = U(x(sk))

. Therefore it is a periodic control system, with constant period T , subject to a constant
delay Tslot = WCET .

This implementation fits well with the hard real- time assumption, and should be ap-
plied when the controller tasks’ timing constraints are really hard e.g. if it is a Finite State
Machine which may fail in an unpredicted state in case of deadline miss and interrupted
transition.

1.6.2 Challenging issues

As the time slots are allocated based on the WCET of the control tasks, the computations
always finish before the end of the slot : therefore a fraction of the computing power is
unused. The wasted computing power is all the more important as the WCET is far from
the average value of the observed execution time Tex. Indeed, due to an increasing demand
on services, new control systems are more and more based on networked architectures and
shared off-the- shelf computing devices. However enhancement of computing power are

1.6. Problem Statements 29

often based on the usage of multiple levels of cache and pipe-lines, lowering the determin-
ism of the processors and increasing the difficulty of searching for the program’s WCET,
which are in fact approached by increasingly conservative upper bounds [Souyris 2005].

Indeed the execution times distribution plot (as shown in Figure 1.15 for a dedicated
embedded processor [Hansen 2009]) is expected to spread out, so that approaching the
worst case execution time is foreseen to become a rare event.

Figure 1.15: Typical execution time distribution

Therefore the amount of wasted computing power is expected to increase, leading to
the over-sizing of embedded computers, power supplies and cooling systems, among other
issues.

Nowadays, even if many attempts are proposed to give an upper bound of the WCET
(e.g: [Rochange 2007]), both the traditional and current approaches are difficult to apply to
modern processor generations and produce values which are more and more pessimistic.

Lately, a new approach to improve the robustness of the task scheduling has been pro-
posed in [Midonnet 2010]) where on a temporal fault occurrence, the slack time (the dif-
ference between the allocated time and the real execution time) can be dynamically deter-
mined and assigned to the faulty task in order to complete its treatment. As the authors
mean " deadline miss" when they talk about "faults", this approach implies that the com-
puting resource has enough spare resource to add more time slack. This approach has two
drawbacks in practice. First, the dynamic addition of the time slack will cause indetermi-
nacy and worsen the predictability of the system. Second, from a control system point of
view, it is known that delays decrease the control performance and moreover, as the time
slack is dynamically added, it will result into a control system with time-varying and non
bounded delay, leading to more difficulties in the analysis. On the other hand, the method
proposed in this thesis allows for the enhancement of predictability and determinism of the
system while enhancing control performance. This is achieved by " weakening real-time
constraints".

30 Chapter 1. Framework and Problems statements

Hence it is worth to discuss and revisit the "hard real-time" assumption and examine
how it can be weakened in the particular case of feedback control systems.

Choice of sampling period

An adequate selection of sampling period is very important in computer controlled systems.
Two configurations can be considered:

• Too large, the sampling period would alleviate the computation loads of the proces-
sors, but would also present problems, related to the reconstruction of the signal,
according to the schema we have mentioned previously in this section.

• Too short, it will cause an overloading in the computer in terms of computing load
because shortening the sampling period would increase the number of samples within
a considered frame of time. It would lead to an increased probability of deadline vio-
lations, which would inevitably lead to certification problems. but on the other side,
shortening the sampling period, would also enhance control performance. Indeed,
while the sampling period is shorter, it is also closer to the continuous time systems
in terms of control performance.

Rules of thumb are proposed to choose approximate bounds for the sampling interval
h as in [Wittenmark 2003]. For example practitioners often begin with h values such that
the plant is sampled between 3 and 10 times the smallest time constant of the system ,τ ,
such that: τ

10 ≤ h ≤
τ
3 .

The essence of this section is obviously the considerations of sampling interval choices.
Regarding the previous statements, it is not the most relevant approach to consider too small
values or too large values of the sampling period. Indeed, considering these two extreme
values would be considered as privileging only one point of view: either privileging the
control performance point of view (for short sampling period) or privileging the imple-
mentation side (the computing performance) at the expenses of control performance. In
this thesis, we argue that the best approach is a joint consideration of both subject (control
and scheduling domains) and a trade-off between them is the objective of this thesis.

1.7 Control and scheduling co-design

The overall objective of control and scheduling co-design is to achieve better control per-
formance with better resource utilization. As it is implied from previous sections, control
performance is a vision of the considered system (mainly feedback systems) from the con-
trol theoretical view. On the other side, better resource utilization can be achieved from the
scheduling theory point of view. In order to clearly present these aspects, it is important to
understand the impact of the scheduling on the control performance and vice versa. It is
also needed to introduce the different constraints and different metrics.

1.7. Control and scheduling co-design 31

1.7.1 Control Systems hard deadline

Control systems are often cited as examples of so-called "Hard real-time systems" where,
any deviations from the ideal pattern and trajectory that has been designed off-line are
strictly unauthorized. From safety considerations, these terms means that a non respected
deadline in a single task, can have catastrophic consequences, due to the eventual loss of
the considered function. This means that the criteria used to establish these hard deadlines
are safety- based.

As presented in Section 1.5, computer-controlled systems based on the WCET paradigm
are hard real-time. Indeed, if a computer is part of a hard-real-time system, the control tasks
running on it are subject to its hard constraints. Thus, all software components have to be
tuned to satisfy those deadlines.

Section 1.4.5 has also presented that integrating fault- tolerance techniques in real-time
safety-critical control systems is difficult without a massive redundancy, because any kind
of upset can lead to a deadline being missed. Thus, the approaches based on hard deadlines
is justified in terms of safety but not in terms of performance and quality of control.

A historical reflection can be found with the notion of "Allowed State Space" and "hard
deadlines for control systems" presented by [Shin 1992] and [Shin 1985]. The idea behind
the allowed state space consist of determining a space in which the value of the state space
representation of the system stays stable.

This reflection, combined with those proposed by [Shin 1992] and [Shin 1985] permits
us to derive a definition for a hard deadline as far as control systems are concerned.

Recently, works such as [Aubrun 2010], [Silva 1993] and [Andrianiaina 2011c] show
that control systems are not meant to work close to a "hard deadline" as it would be un-
derstood from the perspective of task scheduling. It means that the hard deadline of the
control software is not the hard deadline of the control system seen from end-to end. More
specifically, we mean that it is not right to assume that the deadline of a software task would
be the timing limits of a control system, as the software task is only a part of the system.

Instead, it is argued in those papers that control systems are supposed to work to a
more relaxed "performance deadlines" and that the source of constraints are more from
the computing system. It is also argued in those papers that control systems can have a
so-called "grace-time", which is the difference between the control system performance
deadline and its hard deadline.

A hard deadline for a control system is defined, for a computer- controlled system
(integrating feedback control loops), as the critical value of the computation-time jitter
beyond which the system leaves it allowed state space and becomes unstable.

This notion of hard deadline and performance deadline (and grace time) can be found
at the basis of linear control system theory with similar notions as phase margins, delay
margins and module margins, which permit to quantify the system robustness. It appears
that a phase margin (when it exists) implies a delay margin (i.e. the maximum unmodeled
constant extra delay that can be suffered before instability) and certainly a jitter margin,
which is more difficult to quantify ([Cervin 2004]) but which can be experimentally shown
([Cervin 2000]). The interesting point is that a feedback control system which is robust
with respect to the plants parameters uncertainties is also robust, to some extent, with

32 Chapter 1. Framework and Problems statements

Figure 1.16: Classical control design from computer point of view

respect to timing deviations. Hence a feedback control system is not as hard as it is often
considered in the literature, but should be better considered as "weakly hard", that is to say,
it is able to tolerate a predefined amount of timing deviations before leaving their specified
allowed performance set ([Bernat 2001]).

1.7.2 Control and scheduling integration

Interaction between scheduling and control

Timing parameters is of a capital importance when discussing about real-time control.
There are the timing requirements (as introduced in the previous subsection) that are de-
rived from control design. This subsection’s objective is to show that these timing re-
quirements imposed by discrete-time design theory on the software implementation are not
realistic with respect to the behavior of the implemented system.

However, it is clear that while control theory allows to define the closed- loop require-
ments, the implementations approaches purely based on WCET and hard deadlines are also
by essence very conservative, leading to the definition of more stringent constraints on the
computing and networking resources in order to satisfy the corresponding schedulability
analysis and leading to oversized systems [Andrianiaina 2011c].

Moreover, works such as [Shin 1999,Shin 1995,Shin 1992] show with different notions
such as "‘ Hard Deadlines for Control Systems" and "‘Allowed State Space"’, that control
systems are supposed to be more flexible and less constrained.

From the control point of view, the operation schemes can be divided into three parts:

• sampling

• control computation

• actuation

Figure 1.17 illustrates such division. A detailed description about the different com-
ponents of this schema has been proposed in section 1.5.3. The sampling is classically
known to be performed at equidistant instants with a given sampling period denoted h or

1.7. Control and scheduling co-design 33

Figure 1.17: Sampled-Data System

T . The time between the sample captures and the actuation operation is also considered to
be constant.

The control software computes the input values as soon as the samples are available.
These events are synchronized by the real-time clock of the computer.

Remark: Recalling the idea of using digital computers as components of a control
system beginning around the 1950s [Wittenmark 2003].

The notion of zero-execution time, used mainly in synchronous approaches of real-time
programming, has led to the assumption that computing resources are perfectly determin-
istic. However, in practice, it is almost never the case. This is especially the case for COTS
(Commercial Off The Shelf) material and software, which are optimized to achieve good
average-case performance rather than worst-case performance. For this reason it is impos-
sible to use them in highly safety-critical systems such as flight control systems without
very specific considerations and studies.

As the computation inevitably takes some physical time, the zero-execution time as-
sumption is incomplete and more realistic assumptions have been introduced. From the
point of view of real-time computing community, the Worst Case Execution Time approach
has been used . From the point of view of the control community, time-delay systems (see
2.4.1) have been deeply studied to provide more formal models and less conservative ap-
proaches.

The general idea is to consider the computing time as equal to a quantity τ instead of
zero, where τ is set to be equal to the WCET of that software task. Time-delay systems
theory considers many approaches (for instance by assuming that τ is constant or time-
varying).

A combination of these different parameters have been used in practice for long. Until
recently, the most common and the most realistic is the combination of constant sampling
with constant delay.

These different assumptions have provided a separation of concern between control
community and scheduling community. This fact has allowed the control community to be
independent from any implementation problems and then to concentrate on control prob-

34 Chapter 1. Framework and Problems statements

lems and conversely, it has freed the scheduling community from the need to understand
the impact of their scheduling on the system.

One of the means to guarantee this achievement is to avoid timing variability and de-
viations. The source of the variability of the delay is mainly the computation time of the
control laws. To avoid variability, it becomes necessary to bound this value with an upper
bound, the WCET (Worst Case Execution Time), in order to keep it constant.

This approach is not realistic because it generates many constraints on the equipments
and on the methods of development (e.g: to restrain on the choice processor and the real-
time software programming methods in order to improve analyzability at worst case).

In the previous section, we have seen that applying standard timing requirements ob-
tained from classical discrete-time control theory to express the timing parameters of the
tasks leads to hard-to-meet constraints and poor schedulability (only decidable for non
multi-tasks systems if an acceptable control performance is to be ensured [Martí 2002]).
This is caused by the fact that tasks are assigned time slot equal to their WCET and this
implies that each time a control tasks is launched, it has to run its execution immediately.
One way to improve and to permit multi-task scheduling is to relax the strict deadline as-
signment of control tasks and allow to use some kind of scheduling strategies. However, it
has been shown that enhancing performance by using dynamic scheduling generates jitter
(time-varying delays) which are hard to cope with, when considering a joint real-time and
control system analysis.

Therefore, real-time scheduling theory has mainly focused on how to dimension re-
sources to meet deadlines, or equivalently, on the schedulability analysis for a given re-
source. New paradigms were introduced from real-time community in order to consider
control tasks with constant sampling periods, hard deadlines and scheduling based on worst
case execution times. Well-known scheduling policies (EDF, RM, ...) have been proposed
to enhance scheduling performance. The main idea is to avoid resource waste and to im-
prove processor utilization.

These policies assign priorities to tasks according to timing parameters such as their
periodicity or their deadlines.

They optimize resources in terms of number of treated task jobs (for instance: maxi-
mizing the number of schedulable tasks jobs)

Unfortunately, they hardly take into account control constraints such as precedence
and synchronization. In particular, precedence and synchronization between parts of the
control algorithm can be used to minimize the I/O latency on some stability-critical paths
of the control loop [Simon 2009]. These features are not handled by traditional real-time
scheduling policies, which consequently do not comply well with feedback control pur-
pose.

1.7.3 Co-design approaches: methods and tools

In the previous section, we have discussed about the separation of concerns between control
and scheduling communities. Some sources of problems from one community to another
have also been discussed. It has been shown that a new approach based on unification of

1.7. Control and scheduling co-design 35

concern could be interesting in order to solve the problems of performance and complex-
ity based on separation of concerns. Generally speaking, after looking at the interaction
between control and scheduling, there are two ways of achieving an efficient control sys-
tem design and implementation. The two new notions are respectively Control-aware
computing and Computing aware control. These two notions respectively consider taking
into account computing and scheduling implementation constraints from the perspective of
control theory and conversely the consideration of control performance while implement-
ing systems. These notions are generally called co- design approaches. They encompass
control loop applications and their implementation. From centralized control system to dis-
tributed networked systems point of view [Aubrun 2010] , these notions aims, for instance,
to consider data-loss and implementation- induced delays (or jitters) by using robust ap-
proaches.

Control-aware computing

In industrial problematics, this idea is almost unknown. In fact, in many industrial ap-
plication, the position of control design in placed before the implementation in order to
reduce development costs, and this without taking into account eventual implementation
constraints. However, it is known that in real -time control system development, control
and real-time computing implementation have been associated activities for long. The idea
consist of the integration of control performance awareness in the scheduling parameters’
assignment. Briefly speaking, from the control perspective, the objective to be reached is
performance and stability (as would imply figure 1.18).

Figure 1.18: Performance of a computer-controlled system.

Many approaches based on existing works can be listed, and namely off-line approaches
and QoS-based approaches.

Off-line approaches

Off-line approaches consist of methods that permit to set the scheduling parameters
of the associated control tasks during control design. These parameters are supposed to
ideally maximize control performance under scheduling constraints. Computational tasks
that realize the control algorithms are usually scheduled by treating their execution times
and periods as unchangeable parameters. Most of the proposed methods are based on the

36 Chapter 1. Framework and Problems statements

selection of the sampling period while taking into account the scheduling constraints. An
adequate choice of the sampling period is known to be one of the most important control
parameter as explained in [Simon 2009] . Moreover, as the controller design primarily de-
pends on the continuous dynamics, the resulting sets of tasks may not be schedulable with
the limited resources available in embedded systems. In brief, too small the sampling pe-
riod, the computer will be overloaded with too many workloads generated by too numerous
but not necessarily useful computations, and too large, the control system will have poor
performance or even go unstable.

Among the first works on off-line sampling period choice is found in [Seto 1996]. Even
if a set of tasks if schedulable , the performance from control point of view, might not be
optimal, in the sense that the resources are not fully and efficiently used (see section 1.6.
In this references works, the tasks periods are allowed to vary within a given range in order
to optimize resources use, while the main objective is to guarantee that critical control
functions such as stability is not affected by this change. The problem of optimizing the
performance index was stated as an optimization of a cost function with respect to some
given constraints. Tasks scheduling (using algorithms such as Earliest Deadline First or
Rate Monotonic) with respect to optimized processor utilization were also assessed.

Reflection on joint optimization of control and off-line scheduling has already been
brought long ago. [Krishna 1983] has proposed the notion of performance measurement
in control systems based on multiprocessor computer. The idea also considered the use of
a performance index as in [Seto 1996]. However, their performance index was computed
based on the controller response time. The main goal was to compare the performance
of two rival computers by having metrics that permits to have an objective measure. One
of the important ideas in the reference was the consideration of different classes of tasks:
critical ones and non-critical ones.

This has been confirmed in [Aubrun 2010], where the authors stated that current in-
dustrial practice mainly implements controller as a single real- time task that is executed
sequentially in a single loop, while, it appears that all the components of the algorithm do
not require the same timing parameters and the same weight in terms of urgency. In fact,
in order to minimize the latency, a control law can be basically implemented as different
real-time blocks of software From a purely scheduling theory point of view, a quasi-similar
approach was proposed in [Ayav 2006] (TAFT: Time Aware Fault Tolerance), where the
task was divide into two parts: the urgent part and the non urgent part. Case studies, having
to do with aircraft systems, were reported in these articles.

A beginning of reflection on delays with consideration to practical real-time control
systems has also been proposed in [Shin 1993]. The idea in this work was focused on the
tolerance of fault derived from SEU (Single Event Upset) or Electromagnetic interference
leading to value fault of the computed controls and thus forcing to restart the computing
from scratch.

Quality Of Service oriented control and scheduling

The main idea of those approaches consist of giving a quality (or performance) mea-
surement indices based on a function of the sampling periods that can be adaptable at

1.7. Control and scheduling co-design 37

run-time. The work presented in [Abdelzaher 2000], presents an online adaptation of the
Quality of Services of the system based on the use of a middle-ware service on top of
a best-effort operating system (or a scheduler). The mechanism is supposed to be an al-
ternative for worst-case based systems, which considers off-line analysis of the reserved
resources under the constraint of resource sufficiency.

Other significant analysis methods based on the adaptation of the sampling period
and theoretically based on the well-known Optimal Control Theory , has been proposed
in [Shin 1999]. This work has provided different algorithms for adaptive processor utiliza-
tion allocation that can be used to make a graceful degradation of the Quality of Service.
One algorithm considers independent tasks while the other take into account tasks that are
related to each other. However, finding a systematic and non subjetive way of determining
the perfomance index is difficult. This difficulty makes it hard to apply such approaches
with safety-critical systems. A concise and well-described state of the art of the different
methods on the problematics has been furnished in [Aubrun 2010].

Afterwords
Off-line approaches are more oriented in ensuring predictability in real-time systems,

while QoS-oriented methods consider graceful degradation ensures the ability to cope with
changing load and failure conditions, while maximizing system utility.

Computing-aware control

While control-aware computing consist of the control system’s determination of the equiva-
lent scheduling parameters or the graceful adaptation of the QoS with respect to the control
requirements, computing-aware control consist the converse approach. It deals with the
achievement of a good control under comupting system constraints. It then leads to con-
sidering the different hardware and software implementation limitations within the control
design process. These consideration can include for instance robustness of the control
system with respect to variable computing loads, control under time-varying sampling in-
tervals (see section 1.7.2).

Although the assumptions based on constant sampling and constant and pre- fixed de-
lays have been thoroughly studied, taking into account some realistic delay patterns and
sampling jitters in practical operations brought new interesting results. The main objec-
tives are to adapt computation constraints while preserving control objectives.

This section will include the notion of hard deadlines for control systems, then we will
see the different effects of delays on real-time control systems in which some robustness
issues are recalled.

Impact of time-delays on Control

One of the means to understand timing deviations consist of prospecting the sources of
delays and jitters. Implementation-induced delays and jitters are inevitable in computer-
controlled systems.

In this thesis, we will mainly focus on delays sources for centralized controller, while
there exist subtleties for networked and distributed control systems.

38 Chapter 1. Framework and Problems statements

In a given control system, latencies have several sources:

• Computation time: In older times, the computation times were quasi-constant and
bounding the delays with the constant sum of times taken by the different instructions
composing the software was enough to evaluate the value of the delay [Souyris 2005].
However, [Souyris 2005] states that the new challenging hardware render this method-
ology difficult to apply because of variability.

• Preemption: Most of the times, the CPU is shared between several activities (not
all having to do with control tasks). The switching between tasks, the preemption
and also the insertion of sporadic tasks generates jitter and asynchronous delays (and
even sampling) from the control system point of view.

As we already know, one way to attack the problem consist of the WCET-based ap-
proach but the delay is maximized in this case and thus leading to poor control performance
and poor schedulability performance (as see in section 1.6).

The most severe form of delay for the performance and stability of the system is time-
varying delay.

Different problems happen when it comes to consider delays in a system loop. We will
look more closely at time delays in section 2.4.1 with chapter 2.

Diverse methods
More methods have been presented in the context of computing-aware control. Some

methods based on adaptive sampling methods consider online- reallocation of resources
are proposed in [Seto 1996] , performance indices-oriented solutions (the performance
index is computed online and not off-line) such as those proposed by [Cervin 2003b] ,
[Cervin 2006] , [Cervin 2006] and [Seto 1996], a robust online approach is provided by the
H∞/LPV (Linear Parameter Variant) [Robert 2010],

In this last method, he approach considers the sampling interval as a varying parameter
of the system to get a H∞ based design, where the requested control performance also
varies according to the expected sampling rate. The advantage is that the sampling period
may vary at any time and speed inside predefined bounds while preserving the system’s
stability, and still have a coherent mathematical model to work with. This fact is important
because with such a mathematical model, it is possible to demonstrate results theoreti-
cally, and then experimentally. According to our inquiries, some enhancements would be
provided in terms of fault modeling. In fact, as in the Jitterbug tool, timing faults could
be modeled as a Markov chain through probability density associated with a LPV model
and robust control synthesis. This kind of fault model could be used to have a pattern of
fault as an input of the model (taken from a processor characteristics’ book or probabilistic
experimentation for instance) and as output the behavior of the control system.

1.8 Conclusion of Chapter 1

In this chapter, safety-critical control system has been revisited in different aspects. The
current state of art of system design and the different constraints that are related were also

1.8. Conclusion of Chapter 1 39

recalled. The different motivations of this thesis were also recalled with the context of
avionics systems and mainly within flight control systems. Then, safety- critical systems
state of art has been proposed in order to derive the source of constraints, which are related
to certification and safety models. It has been shown that the most stringent constraints
derive from the certification side and the need to satisfy the regulations.

With older continuous-time systems, things were quite different. Thus, the effects and
consequences of computerization was also studied in this chapter. This study has shown
that the computer trend has led to new problematics, involving mainly safety. Sampling
operations induce variability in the computer task execution and leads to give computers a
time-varying property.

The variability that computers induce, has been for long, bounded by an upper bound
which is the worst case execution time, leading to the notion of hard deadline. This value
in itself is difficult to determine, as shown in Apppendix A, and even if there was a way
for an evaluation of this quantity, the occurrence of this value (in terms of probability is so
rare), that it becomes conservative to base the design of system upon this assumption.

Thus, a solution is called for to solve the problem of variability induced by the sam-
pling, while using computer systems. Another problem to be solved is also the reduction
of conservatism.

An direct method would be to consider jointly computer-science and automatic con-
trol, instead of working separately in cascade. This would lead to the methodology called
control and scheduling co-design (which include computing-aware control and/or control-
aware computing).

This idea takes back some points reviewed in this chapter about the problems of sam-
pling period choice, requiring the dual consideration and trade-off between the control
performance obtained by reducing the sampling period or implementation performance by
choosing, instead, a larger sampling period.

In the sequel, this new idea will be developed, and a presentation of a weakened imple-
mentation which relaxes the hard real-time constraints will be exposed, as well as solutions
proposed by real-time control theory to ensure the robustness and stability of the new im-
plementation.

CHAPTER 2

Robust control under slackened
real-time constraints

Contents
2.1 Introduction to Chapter 2 . 42
2.2 Weakened real-time systems . 43

2.2.1 Weakened scheduling scenario proposals 45

2.2.2 Robustness considerations . 50

2.2.3 Challenging implementation problems 50

2.3 Dynamic models of computer-controlled systems 51
2.3.1 Systems under consideration . 51

2.3.2 Identification of the difficulties . 52

2.3.3 Control Objectives . 52

2.4 State of the art in networked control systems 53
2.4.1 Systems with delays . 54

2.4.2 Asynchronous sampled-data systems 59

2.4.3 Stability criteria . 63

2.5 Examples . 68
2.6 Conclusion to Chapter 2 . 68

42 Chapter 2. Robust control under slackened real-time constraints

2.1 Introduction to Chapter 2

It has been exposed in Chapter 1, that computer-controlled systems are more and more
ubiquitous by means of X-by-wire systems. In terms of applicability, computer-controlled
systems and more especially those having real-time aspects cover a large spectrum going
from very simple micro- controller-based systems to highly complex systems such as flight
control systems.

During the last decades, the increasing demands and complexity have led to the emer-
gence of new ways of approaching complex and safety-critical systems. It concerns analy-
sis and conception methods, new languages, more and more powerful hardware on one side
but also new standards and new regulations stregthening safety regulations and implemen-
tation constraints. In this Chapter, we will recall how these facts have led to the separation
of concern between the involved communities (control and scheduling community), such
that those communities became completely independent (as it is usually seen in the certi-
fication process). Indeed each community did not have to care about each others’ issues.
The previous chapter has also shown that the relation between performance and scheduling
is difficult to find while using the traditional approaches of design and implementation.
Some aspects of fault -tolerance and robustness have also been assessed.

In the present Chapter 2, an innovative solution to the previous problem statement is
proposed.

This solution is argued to be robust enough to provide flexibility with respect to real-
time control systems based on the current methods of designs and implementation. Another
aim of this new methodology is to provide fault-tolerance. In fact, as explained in 1.6.1,
designs and implementations of systems based on the paradigm of hard real-time is not ro-
bust and tolerant enough to accept timing faults. Such a property is currently non-existant
in traditional computer-controlled system implementations based on the WCET.

The main challenge is to prove that the proposed solution provides the same safety and
availability requirements with additional operational reliability and added value. From this
perspective, the newly-presented “weakened real-time approach” encounters some prob-
lems, that requires the introduction of new domains of study such as the mathematical
model of sampled-data system and time-delay systems.

In fact, the reason is simple: the more we want to reduce the allocated time, the more
the system is prone to miss its deadline. But as soon as the system misses its deadline, it
is necessary to handle this event in order to implement fault tolerance. Thus, there is need
for a formal model to prove that the resulting system is safe and robust enough to continue
its mission as required.

This chapter will then be divided into three sections:

• Section 2.2 recalls the motivation for a more flexible framework in the context of
real-time systems design and implementation. Then the notion of weakened real-
time system is given. As new solutions also lead to new problematics, the resulting
new issues are also visited.

• Section 2.3 considers a concise study of the mathematical modelling of computer-
controlled systems, while drawing the different problems and limitations that make

2.2. Weakened real-time systems 43

that this thesis’ problematic is challenging. Classical analysis methods and tools
will be exposed as well. The control objectives corresponding to weakened real-time
systems are also formalized in this section.

• Section 2.4 is a state of art of time-delays systems. As the proposed approach in this
thesis involve time-delay systems, it is interesting to formulate the relation between
the models described in section 2.3 and the different delay formulations, as proposed
by litterature. This section also uses classical tools such as LMI (Linear Matrix
Inequalities) to formalize the proposed stability criteria.

• Section 2.5 gives results of the stability criteria tested on different academic exam-
ples in order to show the efficiency of the method so as to provide a comparison basis
with existing results provided by the literature.

• Section 2.6 will draw a summary of this chapter.

2.2 Weakened real-time systems

Unlike, traditional implementation with mechanical machinery, computer-controlled sys-
tems implementation is supposed to provide more flexibility, more performance and much
more efficiency (see section 1.5.3). However, as exposed in section 1.6, concerning prob-
lems statements, it has been seen, either from practice or from deep analysis that there are
still improvements on this sector.

The hard real-time paradigm, presented in 1.6.1, shows the different limitations of
current implementations. A new design and implementation co-design approach is the
base of this solution proposal. This approach is based on a flexible, dynamic and interactive
combination of computing-aware control and control-aware computing with the following
features.

Some features can be listed such as:

• Reduction of the latencies in the processor.

• Relaxation the WCET paradigm.

• Robustness with respect to timing variations and uncertainties of the system param-
eters.

To improve the efficiency of embedded computers while preserving the control stabil-
ity and performance, and relying on the robustness of feedback control laws, it is proposed
to weaken the usual real-time constraints (commonly known as the worst-case-based as-
sumption which has been already presented in section 1.6.1). The most difficult challenge
in this objective is to ensure the same degree of safety and performance as in the initial de-
sign approaches. However, experiences and lessons learnt from past projects, have shown
that the WCET-based approach is prohibitively rigid and completely conservative. The
requirement to meet a worst case objective, that is considered as a rare event, leads to an

44 Chapter 2. Robust control under slackened real-time constraints

overestimation and an oversizing of the system resources (cooling, memory needs, mass,
energy consumption...).

The idea is to spread fault tolerance ability through end-to-end component of the func-
tional system. This end-to-end component is seen at the control loop level. Instead of
looking at the timing problems at a fine-grain level as it has been the traditional case, for
the software timing problems, it is now worth prospecting at a coarser-grain level which is
the control loop.

In the classical case, a specification of all the functions embedded in flight control was
provided in the form of a graphical formalism (SCADE, SAO, ...) [Goupil 2010]. These
specifications are translated into compilable source code by automatic code generation
tools to be directly implemented in the flight control computer system. Such tools has
as input the functional specification and as output a C or assembly source code that can
directly be embedded in the computer. Then this code is compiled to produce executable
program which is analyzed in terms of timing in order to ensure that the computing platform
has enough computing resources (which can be translated as "enough computation time")
to handle the different software task. This show that the WCET analysis is done at a fine-
grain level of software, tasks and computer-controller.

Truly, all these subsystems are part of a bigger system, which is the control system
loop. And in order to achieve an acceptable required safety, performance and quality of
service, this bigger system needs resources.

Most of the time, control loops usually run in nominal mode. Neither the execution
resource parameters (available computing resources, actual execution time, slack time due
to the scheduling algorithm...), nor the uncertainties which the process might be subject to,
can be perfectly known or modelled off-line.

The resources required for the control loop cannot be modelled by the WCET for many
reasons. For instance, in section 1.7.3 and mainly subsection 1.7.1, it has been shown that
the hard deadline of a control system is not the same hard deadline considered in real-time
software systems.

Another point to be cited would be the effects of delays in a control loop, presented in
section 1.7.3. . In brief, from a control perspective, software deadlines are primarily used
to bound the input-output latency of the controllers. Assuming that the sampling and the
signal reconstruction take place, respectively, before task start and after task completion,
figure 2.1 gives a relation between the response time, the latency and the deadline.

For controlled plants with unstable dynamics (plant that are naturally unstable), bounded
latency makes some sense and even is absolutely necessary

in order to guarantee the stability of the closed loop system [Cervin 2001]. Never-
theless, the smaller the latency can be made, the better are the control performance and
robustness that can be achieved. Thus, it is not justified to assign deadlines that are much
larger or much tighter than what is dictated by stability considerations. It means that it is
necessary to choose the deadlines with stability objectives first.

However, more severe for control performance is the jitter (time-varying delays). In
[Buttazzo 2007], a comparative assessment of delays and jitters has been done. The objec-
tive of the paper was to compare the performance of different schemes. Among evaluated
scheme include the reduction of jitter by forcing the execution of input arrival and output

2.2. Weakened real-time systems 45

Figure 2.1: Relation between Deadline (D), response-time and input-output latency for
control tasks

sending at the boundaries of the sampling period, thus trading jitter for pure constant delay
as it is the case in the fashion of worst case execution time approach. Conclusions have
been drawn that such approach is considered to be a "safe" choice of implementation for
systems that are considered non-robust (e.g: with very small phase and delay margins).
However, for other kinds of systems, it is considered as the worst approach in terms of con-
trol performance issues and this approach would not perform any better unless in systems
which are severely under-dimensioned.

We believe that our idea combined with the usual safety approaches (see 1.4.5) as it is
clearly explained in [Goupil 2010], will allow to reduce conservatism in the implementa-
tion, to weaken the legendary hard real-time constraints, while achieving at least the same
dependability, performance and availability objectives.

Following [Shin 1995,Cervin 2000,Simon 2009], what is called for is a procedure that
allows to specify and evaluate a controller dependability range and performance enabling
systematic application and providing objective results that lend themselves to a formal
analysis.

2.2.1 Weakened scheduling scenario proposals

On one hand, as already observed and reported (e.g. [Cervin 2002]), it is likely that a robust
feedback control systems can keep stability despite timing disturbances such as jitter and
occasional data samples losses. However, a formal approach is necessary and is called for.
Indeed, the approaches proposed in [Cervin 2002] is not formal enough to be applied in
safety critical systems such as avionics.

On the other hand, the previously presented weakened analysis framework is supposed
to provide an analytical process to be applied on the control system in order to justify the
choice of the allocated time for control tasks.

Several scheduling patterns are then proposed in the sequel, for control tasks executions
under weakened real-time constraints. All these scheduling scenario rely on the allocation
of periodic time slots Tslot, which is smaller than the WCET of the control tasks (Figure
2.2).

46 Chapter 2. Robust control under slackened real-time constraints

Figure 2.2: Reduced computing slot

To keep the context as close as possible to current practice, the control tasks’ triggering
is assumed to be done periodically (although asynchronous sampling might be accounted
as presented in [Seuret 2011a]) by the occurrence of equidistant sensors inputs. Reducing
the time slot to be smaller than the WCET of the task allows to the reduction of the number
of wasted CPU cycles at the price of occasional deadlines misses (see 1.6.1). However, it
also induces potential reductions of both the control period and of the Input/Output latency,
leading to performance improvements.

It is expected that the disturbances introduced within the control loops by the timing
faults would be compensated by the gains obtained by reducing the sampling intervals and
the overall delay.

However, this affirmation must be considered with caution, more especially, for the
case where the system is submitted to timing perturbation and state perturbation. That is
why, later in this thesis, uncertainty models have been integrated to the analytical model,
so as to permit to consider both uncertainties.

1 Abort The sensors data are still expected to occur at a fixed period T , and their oc-
currence trigger the control tasks. The time slot allocated to a given task Tslot <
WCET is now smaller than the worst case. As usual the control signal is sent to the
actuators at the end of the slot, i.e. U(x(sk)) is sent at time sk + Tslot, and the delay
is equal to Tslot

∀t ∈ [sk + Tslot, sk+1 + Tslot[, U = U(x(sk)).

But now it may happen that occasionally a control task deadline is missed : in that
case it is proposed to stop the current computation, hold the current value of the
control signal for the next period and start a fresh computation with the next sensor
value. In that case, the control signal U(x(sk)) is hold for one extra period, i.e. if
the deadline miss occur at time sk + Tslot:

∀t ∈ [sk + Tslot, sk+2 + Tslot[, U = U(x(sk))

and for N consecutive deadline misses:

2.2. Weakened real-time systems 47

Tslot Tslot

Tex

sk
sk+1

T T

x(sk) x(sk+1)

t
k′

Sampling sensors

Computation slots
dedicated to control

Effective computing
times

Application of control
to the actuators

Tslot < WCET

t
k′+1

Tslot

TexTex

Deadline miss
Abort computation

sk+2

x(sk+2)

U(x(sk)) U(x(sk+2))

Figure 2.3: Abort scheduling pattern

∀t ∈ [sk + Tslot, sk+N + Tslot[, U = U(x(sk))

In other words a newly computed control signal is sent to the actuators at non -
equidistant instants tk′ only if the control computation has not been successfully
carried out:

tk′ = sk + Tslot if Tex ≤ Tslot,

where k′ is a positive integer representing the total number of sampling intervals
between an input capture and a successful actuation.

Then, the control input may be aperiodic since the difference between two sampling
instant tk′+1 − tk′ is time-varying but bounded by T and NT . Hence tk′+1 − tk′ =

αT , where the integer α ∈ [1, ..., N] and the aperiodic sampling is determined by
the couple (T,N).

The value ofN is computed by the LMIs in 2.4.3. It defines the number of successive
admissible deadline violation. If it is exceeded, then a specific overrun management
system shall be activated. This approach is definitely less contrained than the worst-
case-based approach.

2 Abort’ Again, a time slot Tslot < WCET is allocated to the control task, but the sys-
tem’s period is now also reduced by the same value, while the time remaining for
computing other activities remains Tothers as in the initial scheme. In that case con-
trol improvement is expected from both the latency and sampling period reduction
(Figure 2.4) .

where Tinit is the initial sampling interval that is used in the WCET-based case.
From the computing point of view, these two schemes might not be as simple to im-

plement, as they seem, at first glance. Indeed, in case of deadline miss it is necessary to
instantaneously abort the running instance of the control task and cleanly restart a new in-
stance with the new sensors data, and with cleanly re-initialized internal variables, filters
and other related data structures. This scheduling pattern may be difficult to implement,

48 Chapter 2. Robust control under slackened real-time constraints

Tinit Tinit

Wcet Wcet

Tslot Tslot

Tslot = WCET

Tslot < WCET

CASE 1

CASE 2

Tslot < WCET
T < Tinit

T = Tinit

T = Tinit

Initial case

Tinit Tinit

Tnew Tnew

Tslot TslotTothers

Tothers

Tothers

Tothers_new

Figure 2.4: Abort and Abort’ scheduling cases

e.g. in Posix threads written in C where a thread’s function (used to implement a periodic
control task) cannot be easily aborted and immediately restarted.

The following scheduling patterns are in such cases easier to carry out.

3 Skip For the nominal case this pattern is similar to Case 1, where the period of the
control task is kept equal to the initial case. However, in case of deadline miss, rather
than aborting the running instance, the running task continues its computation until
reaching its completion. The execution of the task which begun during slot Tslotk
continues during the following slot allocated for this task (Tslotk+1

), and possibly on
the following allocated slots Tslotk+n , until completion. The last computed control
signal is hold on the actuator input until a new one has been produced and sent to
the actuators, as in Figure 2.5 where U(x(sk) is hold until sk+2 + Tslot due to the
deadline miss during slot Tslotk+1. Note that, in the case given in figure 2.5 the
control signal sent at time sk+2 + Tslot is U(x(sk+1)) computed using the sensor’s
value sk+1 received one period and one slot before.

Tslot Tslot

Tex

sk
sk+1

T T

x(sk) x(sk+1)

t
k′

Sampling sensors

Computation slots
dedicated to control

Effective computing
times

Application of control
to the actuators

Tslot < WCET

t
k′+1

Tslot

Tex

sk+2

x(sk+2)

U(x(sk)) U(x(sk+1))

Tex

Deadline miss

Figure 2.5: Skip scheduling pattern

2.2. Weakened real-time systems 49

4 Spare Note that some spare computing time can be reserved inside the Tothers slots.
Usually this spare time is used for housekeeping activities, but it could also be used
to handle the extra computation cycles needed to fulfill the computation of an over-
running control task which slides to the spare slots (Figure 2.6). In that case, if the
spare slot is long enough to finish the running computation, the control signal can be
sent either just at the end of the spare slot (to minimize the I/O latency) or at the end
of the period (to minimize the output jitter). The remaining computations may slide
until the next available spare slots until completion (or In both cases the nominal
scheduling pattern can be recovered at the next received sensor signal.

Tslot Tslot

Tex

sk
sk+1

T T

x(sk) x(sk+1)

t
k′

Sampling sensors

Computation slots
dedicated to control

Effective computing
times

Application of control
to the actuators

Tslot < WCET

Tslot

Tex

x(sk+2)

U(x(sk+2))

Tex

U(x(sk))

t
k′+1

sk+2

Deadline miss

U(x(sk+1))

Spare
Slot

Spare
Slot

Figure 2.6: Slipping on a spare slot

5 Skip’ Combining the previous cases 2 and 3, it is proposed to reduce the control period
according to the reduction of Tslot (as in the Abort’ case), and to adopt the Skip
overrun handler in case of deadline miss.

6-> Just-in-time In all the previous cases, the newly computed control signal is sent to
the actuator waiting the end of the allocated Tslot to allow for minimal jitter and
equidistant sampling at the actuator’s input. However, the control signal can also be
sent to the actuator immediately after the computation completion. In that case it
is expected (e.g. following [Buttazzo 2007]) that the disturbance due to the output
jitter can be compensated by the average lowered value of the I/O latency, there-
fore probably increasing the control performance. This Just-in-time control sending
strategy can be associated with any of the previously described scheduling patterns
and overrun handlers.

. . .

Indeed the combination of possible scheduling schemes (including fully aperiodic or
event-based control laws) with various overrun handlers is potentially very large. The
right combination is the result of a trade-off to be evaluated for each case study between
control algorithms, controlled plants, execution resources, operating systems capabilities
and certification constraints. . .

50 Chapter 2. Robust control under slackened real-time constraints

2.2.2 Robustness considerations

The design of critical systems must satisfy requirements, specifications and certification
levels. Robustness is a general concern that grows with system complexity. For instance,
it is known that small task core execution time modifications in systems with complex
performance dependencies can have drastic non-intuitive effects on the overall system per-
formance, and might lead to constraint violations. [Hamann 2006] claims that robustness
evaluation using simulation is a tedious tasks and practically impossible for the reason that
simulation models do not support many of the possible property changes (for instance,
increased processor execution times or modified communication volumes). This thesis
proposes an interesting formal approach to robustness of embedded real-time systems with
definition of robustness metrics. However the present work uses recent developments and
moreover is more dedicated to practical industrial problems.

Robustness in control usually deals with the plant’s parameters uncertainties, but in the
present case the insensitivity or adaptability w.r.t. timing deviations from the theoretical
pattern, such as jitter or deadlines misses, is also investigated. A feedback control sys-
tem can be even robust enough to tolerate missed samples, e.g. in [Felicioni 2010], where
selective data dropping is applied to lighten the computing and networking burden while
preserving closed -loop stability. The interesting point is that a feedback control system
which is robust with respect to the plants parameters uncertainties is also robust, to some
extent, w.r.t. timing deviations. Hence a feedback control system is not as hard as it is often
considered in the literature, but should be better considered as weakly-hard, i.e. able to tol-
erate specified timing deviations without leaving its requested performance [Bernat 2001].

2.2.3 Challenging implementation problems

Within the presented framework, it is indeed obvious, that things are not so simple. Differ-
ent problems arise. In the traditional (and most current methods), control laws are designed
and sent to computer science community to be implemented into hardware and software.
These operations are done completely within a context of separation of concern.

The fact of reducing the task allocated time, from the worst-case execution time to a
smaller time Tslot will definitely lead to an occasional deadline miss. In fact, according
to figure 2.2, while allocating the time slots to the control tasks for their execution, it is
seen that timing violation is a rare event. However, when reducing this allocated slot to a
muh smaller time as Tslot, this event is no more considered as a rare event and in terms of
probability, becomes more frequent. From the computer science perspective, a processor
time has been gained by reducing the allocated time for the task, while from the perspective
of control theory, performance is enhanced due to the reduction of sampling period and the
overall latency.

However, in terms of safety of execution, a specific deadline overrun management sys-
tem shall be considered and the main difficulty is to find ways to cope with the combination
of constraints from both the side of computer science and classical control theory.

Thus, advances in automatic control theory are needed. The domain that need to be
involved in the problem resolution consist of the sampled-data theory and time-delay the-

2.3. Dynamic models of computer-controlled systems 51

ory. These tools will give the necessary tools to model and solve the problems of sample
loss while still considering latency within systems. These tools will provide formal ways
to implement the framework proposed in Annex B and to prove that the system is safe and
robust.

Thus, in the sequel, a presentation of sampled-data models and time-delay system is
considered necessary.

2.3 Dynamic models of computer-controlled systems

2.3.1 Systems under consideration

Consider the linearized system representing a plant with a sampled and delayed input.
The following model include aggregated uncertainty modelling for the system param-

eters:

ẋ(t) = [A+ ∆µA(t)]x(t) + [B + ∆µB(t)]u(t)

y(t) = [C + ∆µC(t)]x(t)
(2.1)

where x ∈ Rn and u ∈ Rm represent the state variable and the input vector. The
matrices A and B are constant and of appropriate dimension. The matrices ∆µA and ∆µB

represent the uncertainties of the model which can be constant or time varying. The (time-
varying) uncertainties are given in a polytopic representation:

∆µA(t) = µ
∑M

i=1 νi(t)Ai,

∆µB(t) = µ
∑M

i=1 νi(t)Bi,

∆µC(t) = µ
∑M

i=1 νi(t)Ci,

where M corresponds to the numbers of vertices. The matrices Ai, Bi and Ci are constant
and of appropriate dimension. The scalar µ ∈ R characterizes the size of the uncertain-
ties. Note that when µ = 0, no parameter uncertainty is disturbing the system. However
the greater the µ , the greater the disturbances. The functions λi(.) are weighted scalar
functions which follow a convexity property, ie. for all i = 1, ..,M and for all t ≥ 0:

νi(t) ≥ 0,
M∑
i=1

νi(t) = 1

The control law is a piecewise-constant static state-feedback of the form:

u(t) = Kx(tk′ − Tslot), tk′ ≤ t < tk′+1,

where the gain K in Rn×m is given.
These instants tk′ represent the instants where the control input is updated. According

to the previous problem formulation, the time interval between two successive sampling
instants is time-varying and characterized by:

52 Chapter 2. Robust control under slackened real-time constraints

Tk′ = tk′+1 − tk′ = η(k′)T (2.2)

where η(k′) is a time-varying integer which belongs to the interval [1 N]. The closed
loop system is thus rewritten as:

ẋ(t) = Ā(t)x(t) + B̄(t)Kx(tk′ − Tslot) ∀t ∈ [tk′ , tk′+1] (2.3)

where Ā(t) = A+ ∆µA(t) and B̄(t) = B + ∆µB(t).

2.3.2 Identification of the difficulties

Considering the closed-loop systems defined in equation (2.3), the main difficulties for the
stability analysis of this class of systems comes from three phenomena listed below

• A constant delay Tslot

• An aperiodic sampling characterized by T

• Time varying uncertainties in the systems dynamics νi

Each of these difficulties have been intensively studied in the literature separately. Here
the novelty of the thesis aims at considering all these phenomena together in a stability
analysis.

2.3.3 Control Objectives

Considering a plant, a known distribution of the execution times and a weakened real-time
scheduling pattern, the problem to solved can be informally stated as follows:

• Find N , the maximum value of consecutive sample loss before loosing the closed-
loop stability;

• Find an adequate value of Tslot to fulfill a given trade-off between the control and
the computing performances.

• Evaluate the weakly-hard closed-loop robustness with respect to the plant’s parame-
ters uncertainties.

2.4. State of the art in networked control systems 53

In order to analyze the stability of such class of systems, one has to look into the
framework of Automatic Control. Indeed existing results on the stability analysis of time-
delay systems, sampled-data systems and robust analysis fit perfectly with the problem
described above.

Nowadays time-delays and sampled-data systems are very popular in the field of Au-
tomatic Control. One of the reason of its popularity comes from the fact that these two
phenomena arise in the context of Networked Control Systems (NCS) [Hespanha 2007],
[Zampieri 2008] and the references therein.

This area of research is concerned by the stabilization of processes in a situation where
the controller and the process are looped over a network and digital hardwares and soft-
wares. The main issues are to take into account the induced dynamics generated by the
execution delays (i.e. computation and networking). As it was mentioned earlier in the
document, ones of the most considered effect of a network are the time-discretization of
the information (related to sampled-data systems) and the induced delay which is due to the
transmission process of the time to perform the control computation (related to time-delay
systems).

In order to facilitate the understanding of the thesis, we will present some basic con-
siderations on both problems.

2.4 State of the art in networked control systems

Recall the system under consideration in the thesis. As it is noted in the previous section,
this problem can be rewritten as a problem of ensuring stability of a networked control
systems of the form given by:

ẋ(t) = Ā(t)x(t) + B̄(t)Kx(tk′ − Tslot) ∀t ∈ [tk′ , tk′+1] (2.4)

In order to have a better understanding of the difficulties induced by this class of sys-
tems, we will consider the following situations

(a) “T → 0”: Systems with constant delay. In this situation, the systems dynamics (2.4)
become:

ẋ(t) = Ā(t)x(t) + B̄(t)Kx(t− Tslot) (2.5)

(b) “Tslot → 0” : Systems with aperiodic sampling,

ẋ(t) = Ā(t)x(t) + B̄(t)Kx(tk′) ∀t ∈ [tk′ , tk′+1] (2.6)

(c) Systems with constant delay and aperiodic sampling:

ẋ(t) = Ā(t)x(t) + B̄(t)Kx(tk′ − Tslot) ∀t ∈ [tk′ , tk′+1] (2.7)

54 Chapter 2. Robust control under slackened real-time constraints

2.4.1 Systems with delays

Delays generally appear in the modelling of physical plants. Many types of delays can be
distinguished, according to figure 2.7, in a simple control loop:

Figure 2.7: Time-delay location in a control loop

Time-delay generally occurs for different reasons and from different sources. One of
these sources can be the nature of the system or the way it works. For instance, in a
flight control computer, the control laws are being computed and delays can appear due to
the task scheduling (preemption for instance) or due to the internal functions of the target
processor (cache memories effects, pipelines,...). Another source of delays is the transport
delay, for some material to travel through a given system. An example can be the actuation
delay, where the time from the actual computation of the control signals and their arrival
at the actuator. This can be comprised as another type of delay: communication delays. In
fact, time is needed for the signal to travel from point to point as shown in figure 2.7.

The interests of a number of community of researchers [Richard 2003,Niculescu 2001,
Gu 2003, Sipahi 2011] comes from the fact that delays modify the structure, the dynamics
and the stability properties and the performance of control systems. Here, we are consid-
ering this framework since time-delays appear in real-time systems as a critical factor as
shown in the previous section.

2.4.1.1 Basic definitions of time-delay systems

From mathematical perspectives, time-delay systems, also called systems with after-effects
or dead-time, hereditary systems, equations with deviating arguments or differential-difference
equations, belong to the class of Functional Differential Equations (FDE).

In a general way, a time-delay system is a class of dynamical system represented by
differential equations, in some unknown functions (see [Niculescu 2001]) and some of its
derivatives, evaluated at arguments which are distributed over some intervals in the past.

2.4. State of the art in networked control systems 55

A general model of a time-delay systems is shown, as presented in [Richard 2003,
Kolmanovskii 1999, Gu 2003, Niculescu 2001]:{

ẋ(t) = f(t, xt, ut), ∀t ≥ t0
y(t) = g(t, xt, ut)

where the initial conditions need to be specified as:{
xt0 = φ(θ) whereθ ∈ [t0 − h, t0]

ut0 = ζ(θ) whereθ ∈ [t0 − h, t0]
(2.8)

and where the function xt represent the state vector at time t and the function ut the input
vector at time t and are defined by:

xt =

{
[−h, 0] 7−→ Rn,

θ 7−→ xt(θ) = x(t+ θ),
(2.9)

ut =

{
[−h, 0] 7−→ Rm,

θ 7−→ ut(θ) = u(t+ θ),
(2.10)

The initial conditions φ(.)andζ(.) must be prescribed as piecewise functions of the
initial instant, t0, and the delay h and defined by:

φ : [t0 − h, t0] 7−→ Rn

and

ζ : [t0 − h, t0] 7−→ Rm.

It has to be noticed that the class of differential equations described above differs from
the case of ordinary differential equations in many aspects. First, as it was described earlier,
the initial conditions of delayed differential systems is a function defined over an interval
of the form [−h, 0]. Since the set of functions from [−h, 0] to Rn is of infinite dimension,
it implies that the solutions of this differential equations also are of infinite dimension.

A by product of the previous remark concerns the state of such differential equations.
The state of a time-delay system is not only the vector x considered at a given instant t but
the function xt which gathers all the vectors x(t) where t belongs to the interval [−h, 0].

Coming back to the problem exposed in the previous section, we will further consider
a time-delay system of the form

ẋ(t) = Ā(t)x(t) + B̄(t)Kx(t− Tslot) (2.11)

2.4.1.2 General assumptions on the time-delay functions

Constant delays: This corresponds to the simplest and initially studied case. This can
be a good model that works fairly well in practice. One way to achieve a constant delay,
in practice, is the introduction of timed buffers after each computation (or transfer). By
overestimating the time buffer size to a longer value than the estimated delay case, the

56 Chapter 2. Robust control under slackened real-time constraints

delay can be regarded as a constant value. A perfect illustration of this case is proposed
in figure 1.14. This case can also be called, the case of overestimated constant delays.
This model can be assumed as the existence of Tslot > 0, such that in equations 2.8, the
functionals are valid in the interval [−Tslot, 0].

If the systems does not contain uncertainties, relevant and accurate stability analy-
sis can be obtained using a frequential approach. For instance the reader may refer to
[Sipahi 2011] to have a good overview of the recent advances in the domain.

However in the situation of uncertain of time-varying parameters, the frequential ap-
proach fails ensuring stability. In this situation a continuous-time approach is more conve-
nient as it is be shown in the next section.

Before entering into stability analysis based on a continuous-time approach, let us re-
mark that other delay functions has been considered in the literature.

• Bounded time-varying delays: The assumptions on constant delay is too con-
servative in practical applications. It is seldom verified and not justified to oversize
resources (to cite an example, applying this strategy in embedded avionics computers
lead to overweight and increased power consumptions). Then the notion of bounded
and time-varying delay has been introduced. It consist of allowing the delay to vary
from sample to sample but within an upper maximum value not to be exceeded. This
type of delay is defined as a function h(t), for which, there exists an upper value
h2 > 0 and such that:

0 ≤ h(t) ≤ h2 (2.12)

Related works on the analysis of systems subject to this type of delay can be found
in [Busenberg 1991]. This delay can be known in advance (meaning that each
discrete value of the delay can be known, as proposed in the section on Discrete-
Time Delays in [Busenberg 1991], where the delays are modelled by a time-varying
delay ht) but whose values are taken out from any finite number of discrete delays
h1, · · · , h2 unknown and uncertain as shown in [Kao 2007]).

• Interval time-varying delays or non-small delays: This type of delay can be de-
rived from the previous type. In fact, results on the previous type of delays admit
that delays can vary from [0, τ2]. However, this assumption needs to be tightened in
order to fit physical reality. When looking at the example of the computation time
in a flight control system, allowing the delay to take the 0 value, means considering
that the computation has been made instantaneously, which does not model the sub-
tleties of the reality. Thus, tightening the delay function to exclude the zero value is
relevant. The conditions on the delay become as follows: There exist two positive
scalars τ1 and τ2 such that:

0 < τ1 ≤ τ(t) ≤ τ2 (2.13)

Ways to tackle with this type delay consist of decomposing the delay τ(t) into two
parts: a nominal part and a residual part, which is considered as a perturbation with

2.4. State of the art in networked control systems 57

respect to the nominal delay. In [Fridman 2004a], stability conditions of such sys-
tems, obtained from a Lyapunov-Krasovskii approach, are given in terms of Linear
Matrix Inequalities.

• First Derivative-constrained delays: This type of delay allow the designer to take
into account the variability of the delay, which is modelled by the speed of variation
and thus the conditions require that the delay function can vary arbitrarily. An addi-
tional condition can then be inserted in the delay specification. This condition is a
condition defined on the derivative of the delays function, τ̇(t) as:

˙τ(t) ≤ d < 1 (2.14)

This condition enforces the causality of the function f(t) = t − τ(t) such that this
function always grows slower than the time t.

2.4.1.3 Stability of time-delay systems

This section gives an overview of the theoretical approaches concerning the stability analy-
sis of time-delay systems. The scope of this thesis will include only time-domain approach
and the second method of Lyapunov.

The second method of Lyapunov

Consider the following model of time-delay system:

ẋ(t) = f(t, x(t), xt),

xt0(λ) = φ(λ), pour tout λ ∈ [−τ, 0]
(2.15)

where xt denotes a functional as Supposing that equation 2.15, has a unique solution and
an equilibrium state xt = 0 (If the equiibrium is non-zero, an equivalent condition can be
achieved by coordinate change).

The second method of Lyapunov is based on the existence of a function of the state
variable xt, denoted V , such that V is positive definite along the trajectories of equation
2.15 ans such that dVdt < 0, while x(t) 6= 0.

This method, is only valid for some reduced classes of time- delay systems. The reason
is that dV

dt depends on the variable xt. It is then very hard to apply this approach to the
stability of the general case of time-delay systems.

Then, two extensions of the second method of Lyapunov have been provided especially
for the case of functional differential equations.

In the case of ordinary differential equations (i.e. without delays), a candidate for
a Lyapunov function is of the form V = V (t;x(t)) which only depends on the current
"position" (the current state of the system).

In the retarded case, two approaches are possible: V = V (t;x(t)) or V = V (t;xt).
Practically, the first case leads to difficulties related to the fact that the derivatives are

58 Chapter 2. Robust control under slackened real-time constraints

dependant on past instants. The second case report this difficulty in the construction of the
functional.

These two approaches have been proposed for the retarded cases described with func-
tional differential equations: the Lyapunov-Razumikhin method and the Lyapunov-Krasovskii
method.

In this thesis, we only consider the Lyapunov-Krasovskii method, which is based on a
functional of the form V = V (t, xt), instead of a simple function V .

The Lyapunov-Krasovskii method

This method is an extension of the Lyapunov theorem for functional differential equa-
tions. It consist of the research of a functional of the form V(t, xt), which is a decreasing
functional along the trajectories of 2.15. Similarly, V is called a functional because it de-
pends on the delayed state vector xt, which is a vector function considered in the interval
[t− τ, t].

Theorem 1 [Kolmanovskii 1996]
Let u, v and w : R+ 7−→ R+ , be continuous and increasing functions, such that

∀ λ > 0, u(λ) > 0 and v(λ) > 0 and u(0) = v(0) = 0. Assuming that the vector field
f (in 2.15 is bounded for bounded values of its arguments. Then there exists a functional
V : R× C 7−→ R+ such that:

1. u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖)

2. V̇(t, φ) ≤ −w(‖φ(0)‖) for all trajectories of 2.15

Then the solution xt = 0 of 2.15 is uniformly stable.
Moreover, if ∀λ > 0, w(λ) > 0, the solution xt = 0 of 2.15 is uniformly aymptotically
stable.

If V satisifes for the following conditions:

1. u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖)

2. V̇(t, φ) ≤ −w(‖φ(0)‖), for ∀t ≥ t0 and w(λ) > 0, ∀λ > 0

3. V is Lipschitz, with respect to its second argument.

then, the solution xt of 2.15 is exponentially stable and the functional V is called a
Lyapunov-Krasovkii functional.

COMMENT: In the previous theorem , the derivative V̇(t, φ) refers to the derivative
in the sense of Dini, that is to say :

lim
ε→0+

sup
V(t+ ε, xt+ε)− V(t, xt)

ε

2.4. State of the art in networked control systems 59

The main idea of the Lyapunov-Krasovskii approach consist of determining a positive
definite functional V , whose derivative functional V̇ , considered along the system trajecto-
ries is negative- definite. However, a pain point in this approach is the design of such func-
tional V when it exists. Classical form of such functional V is given in [Kolmanovskii 1996]
(section 2.2.2, page 24):

V(t, φ) =φT (0) P (t)φ(0) + 2φT (0)

(∫ 0

−τ
Q(t, σ) φ(σ)dσ

)
+

∫ 0

−τ

∫ 0

−τ
φT (σ R(t, σ, ρ)φ(ρ)dσ dρ) +

∫ 0

−τ
φT (ς)S(ς)φ(ς)dς (2.16)

where, P , Q, R and S are quare matrix functions of dimensions n× n. P (t) and S(ς)

are symmetric and positive definite matrices, while R satisfies R(t, σ, ρ) = RT ((t, σ, ρ).
It assumed that each matrix element is bounded and that their derivatives are piecewise
continuous functions.

In practice, the determination of these functionals set difficult problems due to the
time-varying aspects of the matrices. It is preferable to restrain to the use of functionals
in which the matrix functions P , Q, R, and S are constant. Under such restriction, the
Lyapunov-Krasovskii functional becomes:

V(t, φ) =φT (0) Pφ(0) +

∫ 0

−Tslot
φT (σ) S φ(σ)dσ

+ 2φT (0)

∫ 0

−Tslot
Q φ(σ)dσ (2.17)

+

∫ 0

−Tslot

∫ 0

−Tslot
φT (σ)R φ(σ)dσ dρ (2.18)

+

∫ 0

−Tslot

∫ 0

θ
φ̇T (σ)R φ̇(σ)dσ dθ (2.19)

This class of Lyappunov-Krasovksii functionals has been widely used in the literature
in order to assess stability of the system for the delay Tslot.

2.4.2 Asynchronous sampled-data systems

In this section we consider the problem of stability analysis of sampled-data systems. This
class of systems is governed by the following dynamics:

ẋ(t) = A(t)x(t) +B(t)Kx(tk′) ∀t ∈ [tk′ , tk′+1] (2.20)

Sampled-data systems have been extensively studied in the literature [Chen 1995,Frid-
man 2004b,Fujioka 2009,Zhang 2001a,Zhang 2001b] and the references therein. It is now
reasonable to study the guarantee of the robustness of the solutions of the closed-loop sys-
tem under periodic samplings. However the case of aperiodic samplings still leads to sev-
eral open problems. This corresponds to the realistic situation where the difference between

60 Chapter 2. Robust control under slackened real-time constraints

two successive sampling instants is time-varying. Several articles drive the problem of
time-varying periods based on a discrete-time approach [Suh 2008,Oishi 2009,Hetel 2006].

In this framework the dynamics of the systems are rewritten in term of the discretized
version of the system.

Indeed, using the ZOH integration method shown in equation C.1 and C.3, we obtain:

x(tk′ + τ) = Ã(τ)x(tk′) + B̃(τ)Kx(tk′), (2.21)

where

Ã(τ) = eĀτ and B̃(τ) =

∫ τ

0
eĀ(τ−θ)dθB̄

Using this framework, a stability analysis can be performed by exploiting the properties
of the exponential matrices. The objectives are to create convex hull which depends on the
sampling interval tk′+1− t′k and to ensure stability for all possible combinaison of matrices
which belongs to this convex hull. This method leads to very interesting results with a very
low degree of conservatism. However extensions to uncertain or time-varying systems
is hard because the uncertainties and the time-varying terms appears in the exponential
matrices. Thus defining a convex hull which encloses all the possible uncertainties on the
systems and on the sampling periods is a really difficult problem.

On the other side, an input delay approach was provided in [Fridman 2004b]. The
main interest is to rewrite a sampled-data systems into a continuous-time systems with a
particular time-delay function. The admissible discrete control law can be modelled as a
delayed continuous control law, as follows:

∀t ∈
[
tk
′, tk′+1

[
, u(t) = ud(tk′) = ud [t− (t− tk′)] = ud [t− τ(t)] , (2.22)

and τ(t) = t− tk′

in which ud is the discrete control law and τ(t) is the piecewise continuous time-
varying delays function, whose derivative is τ̇(t) = 1, for t 6= tk′ . Moreover, it is assumed
that the delay τ(t) is always smaller than the sampling period tk′+1 − tk′ . To illustrate
this method of modelling, figure 2.8 shows the sampling of a continuous-time signal at two
different rates T = 0.2s and T = 0.5s and the associated sampling delays.

This formulation was already introduced in [Fridman 1988] but the first stability analy-
sis was developed later by [Fridman 2004b]. The main interest of such method remains
in the fact that some previously results on the stability analysis of systems subject to
time-varying delays can be also applied to systems with a sampled input. More par-
ticularly, it allows using the Lyapunov-Krasovskii theorem which can be found in [Kol-
manovskii 1999, Gu 2003, Seuret 2006].

Improvements are provided in [Fujioka 2009, Mirkin 2007], using the small gain the-
orem and in [Naghshtabrizi 2008] based on the analysis of impulsive systems. Recently

2.4. State of the art in networked control systems 61

Figure 2.8: Illustration of a sampling delay

[Fridman 2010,Liu 2010,Seuret 2009] refined those approaches and obtained tighter condi-
tions. These approaches are relevant to the problem considered in this thesis, because they
cope with time-varying sampling periods as well as with uncertain systems in a simpler
manner. Nevertheless, these sufficient conditions are still more conservative than discrete-
time approaches.

More recently a novel approach was introduced in [Seuret 2012] . The main interest of
this method is the definition of a new class of functionals, depicting the exact behavior of
sampled-data systems.

After integration, the dynamics of the system in 2.20, satisfies:

∀t ∈ [tk′ , tk′+1], x(t) = Γ(t− tk′)x(tk′),

∀τ ∈ [0, Tk′], Γ(τ) =
[
eĀτ +

∫ τ
0 e

Ā(τ−θ)dθB̄K
]
.

(2.23)

This equality leads naturally to the introduction of the following notation.

For any integer k′ ∈ N, define the function χk′ ∈ K, such that, for all τ ∈ [0, Tk′]:{
χk(τ) = x(tk′ + τ) = Γ(τ)χk′(0),

χ̇k′(τ) = d
dτ χk′(τ) = Aχk′(τ) +BKχk′(0).

(2.24)

The definition of χk′ yields x(tk′+1) = χk(Tk′) = χk′+1(0).
Using this new notations, the following theorem is derived.

62 Chapter 2. Robust control under slackened real-time constraints

Theorem 2 Let 0 < T1 ≤ T2 be two positive scalars and V : Rn → R+ be a differentiable
function for which there exist positive scalars µ1 < µ2 and p such that:

∀x ∈ Rn, µ1|x|p ≤ V (x) ≤ µ2|x|p. (2.25)

Then the two following statements are equivalent.

(i) The increment of the Lyapunov function is strictly negative for all k′ ∈ N and Tk′ ∈
[T1, T2], i.e,

∆0V (k′) = V (χk′(Tk′))− V (χk′(0)) < 0;

(ii) There exists a continuous and differentiable functional V0 : [0, T2] × K → R which
satisfies for all z ∈ K

∀T ∈ [T1, T2] V0(T, z(·)) = V0(0, z(·)), (2.26)

and such that, for all (k′, Tk′ , τ) ∈ N× [T1, T2]× [0 Tk′],

Ẇ0(τ, χk′) =
d

dτ
[V (χk′(τ)) + V0(τ, χk′)] < 0. (2.27)

Moreover, if one of these two statements is satisfied, then the solutions of the system
(2.24) are asymptotically stable.

Proof 1 Let k′ ∈ N, Tk′ ∈ [T1, T2] and τ ∈ [0, Tk′]. Assume that (ii) is satisfied. In-
tegrating Ẇ0 with respect to τ over [0, Tk′] and assuming that (2.26) holds, this leads to∫ Tk′

0 Ẇ0(τ, χk′)dτ = ∆0V (k′). Then ∆0V (k′) is strictly negative since Ẇ0 is negative
over [0, Tk′].

Assume that (i) is satisfied. Introduce the functional V0(τ, χk′) = −V (χk′(τ)) +

τ/Tk′∆0V (k′), as in Lemma 2 in [Peet 2009]. By simple computations, it is easy to see
that it satisfies (2.26) and Ẇ0(τ, χk′) = ∆0V (k′)/Tk′ . This proves the equivalence be-
tween (i) and (ii).

The function Γ(·) is continuous and consequently bounded over [0, T2]. Then Equation
(2.21) proves that x(t) and the continuous Lyapunov function uniformly and asymptotically
tend to zero.

Remark: This theorem is the same as in [Seuret 2011a]. In fact, this thesis is
an application of the theorem (Even if other approaches such as [Naghshtabrizi 2009,
Naghshtabrizi 2008, Fridman 2006] could have been used) in order to provide stability
conditions for the considered systems. The main contribution of the thesis lays in the
proposition of a weakened implementation scheme for real-time feedback controllers in
order to reduce the conservatism due to traditional worst-cases considerations, while pre-
serving the stability and control performance.

2.4. State of the art in networked control systems 63

Figure 2.9: Illustration of Theorem 2 with V0(Tk′ , χk′) = V0(0, χk′) = 0.

A graphical illustration of the proof of Theorem 2 is shown in Figure 2.9. The main
contribution of the theorem is the introduction of a new kind of Lyapunov functionals for
sampled-data systems.

The main interest of such approach relies on the fact that the stability conditions are not
related to the Lyapunov-Krasovskii Theorem. Indeed, using this theorem, the functional V
is not needed to be definite positive. The only contraint is to satisfy the boundary conditions
proposed in conditions (2.26). This is the main contribution of the previous theorem.

This theorem has already been extended to the stability analysis of sampled-data using
Sum Of Squares [Seuret 2011b], Impulsive systems [Briat 2012].

In the present thesis we will show how the previous theorem can be adapted to the
problem under consideration in the thesis.

2.4.3 Stability criteria

System without uncertainties

In this section, a study of the asymptotic stability of the solutions of sampled-data systems
presented in 2.1 with µ = 0 is provided. There exist several results in the literature (e.g:
[Fridman 2004b, Hespanha 2007]) to ensure asymptotic stability of linear systems with
input delay and sampling.

The contribution of this section is based on the asymptotic stability conditions devel-
oped in [Seuret 2011a].

Theorem 3 LetN be a positive integer and Tslot and T , two non-negative scalars. Assume
that there exist Q > 0, R1 > 0 and R2 > 0 ∈ Sn, P > 0, U > 0 and S1 ∈ S2n and S2

and X ∈ R2n×2n, Y ∈ R5n×2n that satisfy for j = 1, 2 :

Ψ1(A,B) = Π1(Tslot) + TjΠ2 + TjΠ3 < 0,

Ψ2(A,B) =

[
Π1(Tslot)− TjΠ3 TjY

TjY
T −TjU

]
< 0,

(2.28)

64 Chapter 2. Robust control under slackened real-time constraints

where T1 = T , T2 = NT and

Π1(Tslot) = NT
1 PN0 +MT

1 QM1 −MT
2 QM2 +MT

0 (R1 + Tslot R2)M0

− 1
Tslot

[
MT

12R2M12

]
−MT

5 R1M5 −NT
12S1N12 − Y N12 −NT

2 S2N12

Π2 = NT
0 UN0 +NT

0 (S1N12 + ST2 N2)

Π3 = NT
2 XN2

(2.29)
and

M0 = [A 0 0 BK 0] M1 = [I 0 0 0 0]

M2 = [0 I 0 0 0] M3 = [0 0 I 0 0]

M4 = [0 0 0 I 0] M5 = [0 0 0 0 I]

N0 = [MT
0 MT

5]T N1 = [MT
1 MT

2]T

N2 = [MT
3 MT

4]T M12 = M1 −M2

N12 = N1 −N2.

Systems described by equation (2.3) are thus asymptotically stable for any aperiodic
sampling period lying in [T,NT] and the constant delay Tslot.

Remark: The asynchrony in the sampling is considered with a discrete step. The
changes must only be a multiple of the initial sampling period. This means that the sam-
pling period can take different value from th set {T, 2T, · · · , NT} where N is a positive
integer.

Proof 2 Consider the functional:

V (t, xt, ẋt) = yT (t)Py(t) +
∫ t
t−Tslot x

T (s)Qx(s)ds

+
∫ t
t−Tslot ẋ

T (s)(R1 + (Tslot − t+ s)R2)ẋ(s)ds
(2.30)

where y(t) = [xT (t) xT (t−Tslot)]T . Note that V corresponds to a classical Lyapunov-
Krasovskii functional type to cope with the stability of systems with constant time-delay.

The objective of the proof is to ensure that the variation of the of V between two suc-
cessive sampling instants is negative (as Theorem2 implies).

This means that:

∆V = V (tk′+1, xtk′+1
, ẋtk′+1

)− V (tk, xtk′ , ẋtk′) < 0

meaning that ∆V is negative definite for all positive integer k′. This relation can be
easily demonstrated by using the following conditions.

For t = tk′ , ζ0(tk) = 0, and θ = τ(t) = t− tk′ , we can say that τ(tk) = 0) and also,
we can thus say that

∫ t
tk
ẏT (s)Uẏ(s)ds = 0 and (Υk′ − θ)θyT (tk)Xy(tk)

Also t = tk′ + 1 leads to (Υk′ − θ) = 0, thus, it leads to satisfy the condition of
equation 2.26. Moreover, this allows to show that V is continuous and differentiable over
[tk′ ; tk′ + 1[

2.4. State of the art in networked control systems 65

Now, the next step is of the proof consist of ensuring that condition 2.26 is verified on
the additional functional V .
For any integer k′, the sampling period is denoted Υk′ = tk′+1− tk′ . Now, considering the
following additional functional:

V(t, χTslotk) = (Υk′ − θ)ζT0 (t)[S1ζ0(t) + 2S2y(tk)]

+(Υk′ − θ)
∫ t
tk
ẏT (s)Uẏ(s)ds

+(Υk′ − θ)θyT (tk)Xy(tk)

(2.31)

where:
ζ0(t) = y(t)− y(tk′)

ξ(s) =
[
yT (s) yT (tk′) ẋ

T (s− Tslot)
]T

As suggested in the theorem, no additional constraint is introduced on S1, S2, U and
X and V is not necessarily positive definite within two sampling instants. This corre-
sponds to the improvement with respect to the previous approaches exposed in [Liu 2009,
Naghshtabrizi 2009]. Note that the positivity of U is not required but we will be introduced
in the next steps.

The rest of the proof consists in ensuring Ẇ < 0 over [0 T̄k′ [.
The computation of the derivative of Ẇ leads to:

Ẇ(τ, χk′) = 2χ̄Tk′(τ)P ˙̄χk′(τ) + χ̇Tk′(τ, 0)(R1 + hR2)χ̇k′(τ, 0)

+χTk′(τ, 0)Qχk′(τ, 0)− χTk′(τ,−h)Qχk′(τ,−h)

−χ̇Tk′(τ,−h)R1χ̇k′(τ,−h)−
∫ 0
−h χ̇

T
k′(τ, s)R2χ̇k′(τ, s)ds

+(Tk′ − τ) ˙̄χTk′(τ)[U ˙̄χk′(τ) + 2S1ζk′(τ) + 2S2χ̄k′(0)]

−ζTk′(τ)[S1ζk′(τ) + 2S2χ̄k(0)]−
∫ τ

0
˙̄χTk′(s)U ˙̄χk′(s)ds

+(Tk′ − 2τ)χ̄Tk′(0)Xχ̄k′(0).

(2.32)

Applying Jensen inequality [Jensen 1906] to the first integral, we have that

−
∫ 0
−h χ̇

T
k′(τ, s)R2χ̇k′(τ, s)ds ≤ −(χk′(τ, 0)− χk′(τ,−h))T R2

h (χk′(τ, 0)− χk′(τ,−h))

Consider the augmented vector ξk′(τ) = [χ̄Tk′(τ)χ̄Tk′(0) χ̇Tk′(τ,−h)]T and a matrix
Y ∈ R5n×2∗n. The following equality holds

2ξTk′(τ)Y [χ̄k′(τ)− χ̄k′(0)] =

∫ τ

0

[
2ξTk′(τ)Y ˙̄χk′(s)

]
ds. (2.33)

66 Chapter 2. Robust control under slackened real-time constraints

Since U is assumed to be positive definite and thus non singular, a classical bounding
ensures that for all τ ∈ [0, Tk′] and for all s ∈ [0, τ]

2ξTk′(τ)Y ˙̄χk′(s) ≤ ξTk′(τ)Y U−1Y T ξk′(τ) + ˙̄χTk′(s)U ˙̄χk′(s).

Integrating the previous inequality over [0, τ], the following inequality is obtained

−
∫ τ

0
˙̄χTk′(s)U ˙̄χk′(s)ds ≤ −2ξTk′(τ)Y (χ̄k′(τ)− χk′(0)) + τξTk′(τ)Y U−1Y T ξk′(τ).

(2.34)
By identifying the following relations:

χ̇k′(τ, 0) = Aχk′(τ, 0) +Adχk′(0,−h) = M0ξk′(τ),

χk′(τ, 0) = M1ξk′(τ), χk′(τ,−h) = M2ξk′(τ),

χk′(τ, 0)− χk′(τ,−h) = M12ξk′(τ), χ̄k′(τ) = N1ξk′(τ),

χ̄k′(0) = N2ξk′(τ), ζk′(τ)

χ̄k′(τ)− χk′(0) = N12ξk′(τ)
˙̄χk′(τ) = [(M0ξk′(τ))T χ̇Tk′(τ,−h)]T = N0ξ(τ)

and substituting (2.34) into (2.32), the following inequality is obtained for all τ ∈
[0, Tk′ [

Ẇ(τ, χk′) ≤ ξTk′(τ)[Π1(h) + (Tk′ − τ)Π2 + (Tk′ − 2τ)NT
2 XN2 + τNU−1NT]ξk′(τ).

(2.35)
Based on a convexity argument on θ, the right hand-side term is negative definite if and

only if
Π1(h) + Tk′(Π2 +NT

2 XN2) < 0,

and
Π1(h) + Tk′(Y U

−1Y T −NT
2 XN2) < 0.

Using the same convexity argument on Tk′ ∈ [T1, T2], the LMI’s (2.28) and (2.29) are
retrieved. By virtue of Theorem 3, the asymptotic stability of the system (2.3) is guaranteed.

Note that the conditions from Theorem 3 include the robust stability properties with
respect to the input delay Tslot. This means that (2.28) requires the system to be stable at
least for the transmission delay Tslot and T = Ti.

Uncertain systems

In this section we will consider the case of µ 6= 0 for systems of the form 2.1. Then
we want to extend the previous theorem to the case of time-varying uncertainties. In the
previous stability theorem , the conditions depends almost linearly on the matrices defining
the continuous -time model. Then the following corollary presents an extension of the
previous theorem to uncertain and time-varying model.

Corollary 1 Consider an integerN and there non negative scalars Tslot, T and µ. Assume
that there exist: Q > 0, R1 > 0 and R2 > 0 ∈ Sn, P > 0, U > 0 and S1 ∈ S2n and three
matrices S2 and Xi ∈ R2n×2n, Y ∈ R5n×2n that satisfy, for i = 1, . . . ,M and j = 1, 2:

2.4. State of the art in networked control systems 67

Ψ1i(Ai, Bi) = Π1i(Tslot) + TjΠ2i + TjΠ3i < 0 (2.36)

Ψ2i(Ai, Bi) =

[
Π1i(Tslot)− TjΠ3i TjYi

TjY T
i −TjU

]
< 0, (2.37)

where
Π1i(Tslot) = 2He{NT

1 PN0i}+MT
1 QM1 −MT

2 QM2

+MT
0i(R1 + TslotR2)M0i −MT

12R2/TslotM12

−MT
5 R1M5 −NT

12S1N12 − 2He{YiN12}
−2He{NT

2 S2N12}
Π2i = NT

0iUN0i + 2He{NT
0i(S1N12 + ST2 N2)},

Π3i = NT
2 XiN2

and

M0i = [Ai 0 0 BiK 0] , N0i = [MT
0i M

T
5]T ,

Ai = A+ µAi Bi = B + µBi

System (2.3) is thus asymptotically stable for for the periodic sampling defined by T
and the delay Tslot.

Proof 3 Consider the stability conditions from Theorem 3. By noting that

M0(t) =
[
Ā(t) 0 0 B̄(t)K 0

]
=
∑M

i=1 λi(t)M0i

N0(t) =
[
MT

0 (t)MT
5

]
=
∑M

i=1 λi(t)N0i

and by introducing the matrices variables

Y (t) =
∑M

i=1 λi(t)Yi
X(t) =

∑M
i=1 λi(t)Xi

Remark:
Most of the terms defined in Ψ1(Ā(t), B̄(t)) and Ψ2(Ā(t), B̄(t)) are linear with re-

spect to the time-varying terms. However the terms MT
0 (t)(R1 + TslotR2)M0(t) and

NT
0 (t)UN0(t) are still not linear with respect to the matrices M0(t) and N0(t). How-

ever the Schur complement allows obtaining expressions which become linear with respect
to this two time-varying matrices.

Then this proves that

Ψ1(Ā(t), B̄(t)) =
∑M

i=1 νi(t)Ψ1i(Ai, Bi),

Ψ2(Ā(t), B̄(t)) =
∑M

i=1 νi(t)Ψ2i(Ai, Bi)

Then if all the LMI’s Ψ1i(Ai, Bi) and Ψ2i(Ai, Bi) are satisfied for i = 1, . . . ,M ,
whereM is the number of vertices of the polytopic model, then the conditions of Theorem 3
are also verified for the time-varying system (2.24).

68 Chapter 2. Robust control under slackened real-time constraints

Ex.1 Tslot 10−3 0.2 0.4 0.6
[Naghshtabrizi 2009] 1.111 0.714 0.469 0.269

[Millán 2009] 1.043 0.846 0.650 0.456
[Liu 2009] 1.638 1.063 0.786 0.541
[Liu 2012] 1.36 1.18 1.08 0.82

Th. 2 1.717 1.435 1.149 0.858

Table 2.1: Maximal sampling period at the actuator T for several constant delays using
Theorem 2 for example 1.

2.5 Examples

Example 1 [Fridman 2004b, Naghshtabrizi 2008]

ẋ(t) =
[

0 1
0 −0.1

]
x(t) +

[
0 0

−0.375 −1.15

]
x(sk′).

The results are summarized in Table 2.1 for time-varying sampling and constant delay.
When the constant computation delay Tslot indicated obtained by solving Theorem 3

using T̄1 = T1 = 0. It can be seen in Table 2.1 that it delivers less conservative results than
the existing ones based on a continuous time-approach.

2.6 Conclusion to Chapter 2

In this chapter, a weakened real-time implementation was studied. Different scenarii to
relax the implementation of real-time controllers were proposed. Then a stability analysis
based on Lyapunov-Krasovskii and looped functionals was developed. They have been
tested on academic examples in order to show the efficiency of the method so as to provide
a comparison basis with existing results in the literature.

The idea of a weakened real-time system consist of allowing the reduction of the allo-
cated time in order to improve resource utilization.

Moreover, the weakened real-time system would allow some flexibility and implement
robustness at the same time.

It has been observed that the robustness of a control system would allow to handle
timing and model uncertainties and lead to a better performance and quality of control.

From the control system perspective, the act of reducing the allocated time for run-
ning control tasks lead to control robustness and quality of control enhancement due to
the reduction of the overall latency and eventually the reduction of sampling period. On
the contrary, from the computing resource perspective, reducing this parameter lead to an
occasional occurrence of deadline violation, and thus to a degradation of performance due
to the occasional sample loss (if the retarded computation sample is aborted for instance).

As far as stability analysis is concerned, several improvements can be viewed. Indeed,
potential improvements were proposed in [Liu 2012] by considering the Wirtinger inequal-

2.6. Conclusion to Chapter 2 69

ities. The combinaison of the two methods could potentially reduce the conservatism of
the stability conditions.

Applying the delay definitions in this chapter, notice that each of the proposed scenarii
requires a dedicated stability analysis which were not all studied in the present report.

However they represent a relevant direction for future researches in order to relax con-
traints related to real-time implementation. However, this thesis is limited to implementa-
tions related to avionics systems.

CHAPTER 3

Case Study : Aircraft pitch-rate
control

Contents
3.1 Introduction to chapter 3 . 71
3.2 Models for simulation and control . 72

3.2.1 Frames and rotation parameters definition 73

3.2.2 Non-linear dynamics . 75

3.2.3 Aircraft Linearized Equation of Motion 80

3.2.4 Aircraft control systems . 83

3.2.5 The aircraft rigid body modes . 83

3.3 Case study: pitch rate control of a F16 aircraft 84
3.3.1 The F16 lateral and longitudinal numerical models 84

3.3.2 The pitch rate control system . 87

3.3.3 Description and results of the case study 89

3.4 Validation of the approach by simulation 91
3.4.1 Truetime simulation . 93

3.4.2 The Simulink model . 94

3.4.3 Simulation using linear plant . 95

3.4.4 Nonlinear simulation . 98

3.5 Conclusion of Chapter3 . 99

3.1 Introduction to chapter 3

The previous chapter has focused on the theoretical part of the holistic timing analysis
approach. The objective of that chapter is to show how the robustness of a feedback con-
trol system w.r.t. timing variabilities and plant uncertainties can be evaluated through a
case study. The weakly-hard nature of feedback has been advocated by theoretical ap-
proaches based on discrete-time and time-delay theories, applied in the framework of real-
time control and scheduling co-design. This chapter is aimed at supporting these theoretical
schemes through a case study related to aircraft control design and implementation.

By following the steps shown of Figure B.1, the goal is to find an adequate allocated
time that allows for an enhanced resource utilization while keeping the stability of the

72 Chapter 3. Case Study : Aircraft pitch-rate control

considered control system. It is first needed to get a Mathematical model of the controlled
system, which can be given using a state space representation. In this case study, this model
represents the aircraft dynamics, or a significant part of the aircraft. The control algorithm
is first designed as a function used to compute the control actions from the measurements
(states or outputs) of the system. As this thesis is not focused on control design, we use
existing controllers that can be obtained from classical control design methods, for instance
using pole placement.

Instead, the focus of the thesis is more on providing a complete framework that can be
used to analyze the effects of deadline misses and to compute the robustness of a safety
critical realtime control system.

The estimated WCET is also needed. In fact, the model used for this part is an empiric
statistical plot of the execution time probability, as given by figure 1.15. Appendix A.6
provides current methods used to model the probability functions of the execution times of
real-time control tasks.

In the remainder, it is described how to drive the analysis process as described in figure
B.1 and how to analyze the corresponding results, as well as how to use them.

This chapter is divided into four main parts:

• Section 3.2 describes several models of an aircraft’s dynamics, starting from the non-
linear equations derived from first principles of aerodynamics. These equations are
then linearized for control design purpose, and the subsystem needed for the pitch
rate control case study is extracted from the full model.

An instantiation of the formal model is done for the F-16 aircraft’s set of param-
eters, this is an adequate choice since this particular model is available and well-
documented.

• In section 3.3 several weakly-hard scheduling schemes defined in chapter 2 are ap-
plied to the implementation of a pitch-rate controller for the F16 model. For each
of the proposed implementation scenario, various ranges of parameters, i.e. reduced
computing slots and plant’s uncertainties, have been evaluated through LMIs solv-
ing, until loosing stability conditions. For all cases it is possible to use computing
slots smaller than the WCET while keeping the control system’s stability.

• Section 3.4.4 describes the validation of the results using a non-linear model based
simulation. Such a simulation allows the validation of the analytic result (based
on a linearized plant) by using a more realistic full non-linear model of the aircraft
augmented with uncertainties on the system’s parameters.

3.2 Models for simulation and control

This section gives a concise overview of aircraft control systems.
Building an analytic and simulation model starts with setting up the equations of the

six-degree-of-freedom (6-DOF) dynamic aircraft model. These equations are well-known
and can be found in many textbooks [Stengel 2004, Stevens 2003, McLean 1990].

3.2. Models for simulation and control 73

A precise knowledge of the control derivatives together with aerodynamic and me-
chanical parameters is essential to develop a high fidelity simulation model including all
the items relevant for flight analysis. On the other hand, simplified models, which only
need to capture the essential modes of the aircraft’s dynamics, must be derived for control
design purpose.

3.2.1 Frames and rotation parameters definition

Before giving the aircraft equations, it is necessary to define the different frames within
which these equations are expressed. In fact, various reference frames are used to describe
flight dynamics(e.g. [McLean 1990], [Peters 2003]), the four following are used in the
sequel :

• Earth-fixed reference frame FE

• Body-fixed reference frame FB

• Stability reference frame FS

• Flight-path or wind reference frame FW

The earth-fixed reference frame (also called inertial frame) is fixed on a point of the
earth surface and is aligned so that, its positive x -axis points to the true North direction,
its y-axis points to the East and its z-axis points down and is normal to the surface of the
earth (the earth being assumed to be flat). This reference frame is depicted in figure 3.1 (a)
where the x, y and z axes are respectively denoted also as xi, yi and zi.

Figure 3.1: Inertial reference frame (a) body-fixed reference frame (b)

The body-fixed reference frame is a frame fixed on the aircraft, whose origin is at the
center of gravity. Its x-axis points its positive direction toward the nose of the aircraft and
is aligned with the axis of the body, the y-axis direction points out along the right-hand
side of the aircraft when looking forward and its z-axis points down to complete a right
-handed coordinate system. This reference frame is depicted in figure 3.1 (b) where the x,
y and z axes are respectively denoted as xb, yb and zb.

74 Chapter 3. Case Study : Aircraft pitch-rate control

Euler angles The definition of those two reference frames allows to express the attitude
or orientation of the aircraft in the body- fixed frame with respect to the inertial frame. The
relationship between the two reference frames are depicted in figure 3.2.

Figure 3.2: Relationship between body and inertial reference frame [Peters 2003]

This attitude information is described by a system of Euler angles. This defines three
angles ψ (yaw), θ (pitch) and φ (roll) which are respectively the rotation of the aircraft
around the inertial xi, yi and zi axis, to an intermediate axis system one step at a time.
This means that the first rotation ψ about the zI axis leads to an expression of the attitude
of the aircraft into an intermediate reference frame (here arbitrarily denoted with the "1"
subscript), the next rotation, about the y1 axis of the newly defined intermediate leads to
a expression of the attitude into another intermediate reference frame denoted "2" and the
last rotation allows about the x2 axis of the newly defined reference frame.

These rotations are respectively described in figure 3.3.

Figure 3.3: The Euler sequence of rotations to express the aircraft attitude

Thus the conversion between the inertial frame and the body frame of the aircraft is ac-
complished easily using specific direction cosine matrices constructed from such sequence
of rotations. Such matrices are given in [Stengel 2004, Peters 2003].

For a reference use, the aircraft forces equation 3.1 and 3.3 were given in the body-axis.

3.2. Models for simulation and control 75

However, new additional references frames are needed to express the relationship between
the body-axes forces XA,YA and ZA and the commonly known aerodynamic forces of lift
L (not the rolling moment), drag D and the side force SF . These reference frames are
the stability-axes and the wind-axes reference frames. These reference frames characterize
the relationship of the aerodynamic angles with the body-axis reference frame. These
aerodynamic angles are composed of the angle of attack α and the side-slip angle β, which
is the angle formed by the stability frame and the wind frame angle . They are expressed
by means of coordinate rotations.

The stability-axis reference frame: It allows to define the stability-axis reference frame,
and allows to define the angle of attack, by completing a coordinate rotation around the yb
axis of the body-axis system. Assuming that there is no side-slip angle, the angle of attack
is the angle between xb and the aircraft velocity vector relative to the surrounding air.

The wind-axis reference frame: A coordinate rotation around the zb -axis allows to
define the wind-axis reference frame. The wind- axis reference frame’s xw-axis is aligned
with the aircraft velocity vector which is the vector sum of the velocities expressed in the
body-axis.

The orientations of the different axes and the new frames with respect to the body-axes
system is depicted in figure 3.4.

Figure 3.4: Stability and wind axis reference frames

3.2.2 Non-linear dynamics

The standard 6-DOF equations of motions for a conventional aircraft are used for prelimi-
nary modeling, control design and first simulations. The aircraft is assumed to be rigid, all

76 Chapter 3. Case Study : Aircraft pitch-rate control

flexible modes are neglected, and the dynamics of the actuators is also simplified (or even
neglected).

The body-axes equations are as follows:
Forces equations:

u̇ = rv − q w − g sinθ +
(XA +XT)

m
(3.1)

v̇ = −ru+ p w + g sinφ cosθ +
(YA + YT)

m
(3.2)

ẇ = qu− p v + g cosφ cosθ +
(ZA + ZT)

m
(3.3)

Kinematic equations:

φ̇ = p+ tanθ (q sinφ+ r cosφ) (3.4)

θ̇ = q cosφ− r sinφ (3.5)

ψ̇ =
(q sinφ+ r cosφ)

cosθ
(3.6)

Navigation equations:

ṗN = u cosθ cosψ + v (−cosφ sinψ + sinφ sinθ cosψ) + w (sinφ sinψ + cosφ sinθ cosψ)

(3.7)

ṗE = u cosθ sinψ + v (cosφ cosψ + sinφ sinθ sinψ) + w (−sinφ cosψ + cosφ sinθ sinψ)

(3.8)

ṗD = −usinθ + vsinφ cosθ + wcosφ cosθ (3.9)

Moment equations:

ṗ =
Jz L+ Jxz N −

[
Jxz (Jy − Jx − Jz) p+

(
J2
xz + Jz {Jz − Jy}

)
r
]
q

Jx Jz − J2
xz

(3.10)

q̇ =

[
M − (Jx − Jz) p r − Jxz

(
p2 − r2

)]
Iy

(3.11)

ṙ =
Jxz L+ Jx N −

[
Jxz (Jy − Jx − Jz) r +

(
J2
xz + Jx {Jx − Jy}

)
p
]
q

Jx Jz − J2
xz

(3.12)

where the definition of each state variable, according to [Stevens 2003, Stengel 2004],
are defined as:

x = [xT1 x
T
2 x

T
3 x

T
4]T

where:
x1 = [u v w]T

x2 = [φ θ ψ]T

x3 = [pN pE pD]T

x4 = [p q r]T

3.2. Models for simulation and control 77

in which x1, x2, x3 and x4 are respectively the translational velocity, the attitude, the
position and the rotational velocity sub-vectors.

The standard notation for describing the motion of the aircraft and the forces and mo-
ments acting upon it are described in figure 3.5, where each components of these sub-
vectors and some other elements of the nonlinear aircraft are defined as follows:

• u is the translational velocity along the xb-axis of the body-axes reference frame.

• v is the translational velocity along the yb-axis of the body-axes reference frame.

• w is the translational velocity along the zb-axis of the body-axes reference frame,
and where XT , YT and ZT are the thrusting effects components of the engine along
the x, y and z axes respectively.

• φ is the roll angle.

• θ is the pitch angle.

• ψ is the yaw angle. each angle is described by figure 3.3.

• pN is the position vector component on the xi inertial-axis reference frame but ex-
pressed in the body-axis.

• pE is the position vector component on the yi inertial-axis reference frame but ex-
pressed in the body-axis.

• pD is the position vector component on the zi inertial-axis reference frame but ex-
pressed in the body-axis.

• p is the roll speed.

• q is the pitch speed.

• r is the yaw speed, in which, the variables L, M , and N respectively represent the
rolling, the pitching and the yawing moment.

Remark: Although not represented in this figure, the variables φ , θ, ψ represent the
angular rotations relative to the equilibrium state, around the x, y, and z axes, respectively.
Thus, p = φ̇, q = θ̇ and r = ψ̇.

In the body-axes frame, forces equations equations are expressed as sums of aerody-
namic (XA, YA and ZA) and thrusting (XT , YT , and ZT) effects in equations 3.1. It is
possible to express these aerodynamic forces in the wind axis system, which result in the
expression of the drag force D along the x-axis, the side force SF along the y-axis and the
lift L along the z-axis.

xT =
[
u v w φ θ ψ pN pE pD p q r

]T
(3.13)

and the input vector is

78 Chapter 3. Case Study : Aircraft pitch-rate control

Figure 3.5: Standard notation for aerodynamic forces, moments, linear and rotational ve-
locities in body axis-system; the origin is the center of mass C.

uT = [δt δe δa δr]
T (3.14)

where the elements are respectively, the engine throttle setting, the elevator deflection,
the aileron deflection and the rudder deflection.

The aerodynamic forces and moments are obtained from the dimensionless aerodynam-
ics coefficients at a given flight condition:

XA = CX q̄ S

YA = CY q̄ S

ZA = CZ q̄ S

L = Cl q̄ S b

M = Cm q̄ S c̄

N = Cn q̄ S b

(3.15)

where the quantities in the above expressions are defined as follows:

• CX , XY , CZ are the aerodynamic force coefficients

• Cl, Cn, Cm are the moment coefficients

• q̄ def
=

ρ(z) V 2
A

2 is the dynamic pressure

• ρ(z) is the air density and it is a function of the altitude z

• VA is the true airspeed which allows to compute the mach numberM = VA
a(z) .

3.2. Models for simulation and control 79

• S is the reference area (which is usually the wing area).

• b is a reference value called the Standard Mean Chord (or wing span).

• c is a the Mean Aerodynamic Chord.

• XA, YA, and ZA are the aerodynamic forces components along the x, y and z axes,
respectively.

• L, M , and N represent the rolling, the pitching and the yawing moment.

These various dimensionless coefficients CX , XY , CZ ,Cl, Cn, Cm are primarily de-
pendent on the aerodynamic angles α and β, and more or less dependent on a number of
other variables. [Stevens 2003] also describes the dependence on the rate of changes on the
aerodynamic angles and the components p, q, r of the center of gravity angular velocity.

The analysis of the aerodynamic behavior of the aircraft is better understood in the
stability axis, or the wind axis system. More importantly, the aerodynamic forces are easily
handled in the wind axes system, which is used to express the forces equations in terms of
the total airspeed VT , the angle of attack α and the side slip angle β. These two angles
allows to express the orientation of the velocity vector with respect to body axis, which
plays an important role in determining the aircraft’s aerodynamic forces and moments.

It is possible thus, to express the equation as function of the following new state vector

xT =
[
VT α β φ θ ψ p

N pE pD p q r
]T

(3.16)

which allow to express the forces equations as functions of the variables vT , β, and α
as follows:

m V̇T = FT cos (α+ αT) cosβ −D +m g1

m β̇ VT = −FT cos (α+ αT) sinβ − Cw +m g2 −m VT rs
m α̇ VT cosβ = −T sin (α+ αT)− L+m g3 +m VT (q cosβ − ps sinβ)

(3.17)

and where VT is the total airspeed, ps and rs are the roll and yaw rates projected on the
wind axes, q is the pitch rate, m is the mass of the aircraft, g1 and g2 are the projections of
the gravitational acceleration on the wind axis system.

The aerodynamic forces are the lift L, the drag D, the cross wind force Cw and the
engine thrust T . It is clear that aerodynamic axial, lateral and vertical forces components
XA, YA and ZA have been expressed using drag (D), side force (SF) and lift (L). We must
beware of the use of variables because here L is not the rolling moment, as expressed in
equation 3.15 but instead the lift force. From now on, we will then denote the lift as Li.

The transformation described in 3.17 induces transformations in equation 3.15. It can
thus be rewritten as the following:

80 Chapter 3. Case Study : Aircraft pitch-rate control

−D = CD q̄ S

SF = CSF q̄ S

Li = CL q̄ S

L = Cl q̄ S b

M = Cm q̄ S c̄

N = Cn q̄ S b

(3.18)

whereCD,CSF andCL are respectively the drag, the side force and the lift coefficients.
The expressions of the different dimensionless coefficients in analytic form allows to

see clearly the effects of control variables on the aircraft equations because these coeffi-
cients are also dependent on control surface deflections, δt, δe, δa, δr in order to provide
control inputs to the aircraft. The relations can be described as the following.

The side force coefficient can be written as a function of side-slip angle β as:

CSF = CSF0 + CSFββ

However, for most aircraft and intended flight conditions, side force coefficients and deriva-
tives are small [Stengel 2004]. Thus, lift and drag coefficients are left to be described. Lift
and drag coefficients are typically described as a functions of several motion and control
variables as follows:

CL = CL(α,M, δf) + CLq̂(α,M, δf) + CLδe (α,M, δf)δe
CD = CD(α,M, δf) + CDq̂(α,M, δf) + CDδe (α,M, δf)δe

(3.19)

where q̂ = q c̄
2V . δf is the wing flap setting and δe is the elevator angle.

Remark: The wing flap deflection δf is only considered for a special flight condition.
Here it is given to keep the general form of the formula. In a steady level flight, the flap
deflection is zero.

The aerodynamic coefficients are typically modeled as linear functions of the airflow
angles, angular rates and control inputs δa, δe and δr.

They are given by:

Cl = Cl0 + Clββ + Clp̂ p̂+ Clr̂ r̂ + Clδa δa + Clδr δr
Cm = Cm0 + Cmαα+ Cmq̂ q̂ + Clδe δe
Cn = Cn0 + Cnββ + Cnp̂ p̂+ Cnr̂ r̂ + Cnδa δa + Cnδr δr

(3.20)

where p̂ = p b
2V and r̂ = r b

2V

For the analytic transformation from the body-axes equations 3.1- 3.12 to wind-axis
equations. A detailed derivation of the final wind-axes non-linear equations can be found
in [Stevens 2003] as well as a body-axes to wind-axes transformation matrix.

3.2.3 Aircraft Linearized Equation of Motion

For the final use in the analytic process, it is necessary to transform these sets of non-
linear equations into linear ones. The process and the different assumptions used to obtain

3.2. Models for simulation and control 81

the equations will be explained briefly in the next section. Details can be found in the
references such as [Stevens 2003, Stengel 2004]

The linearization process involve the use of "small-perturbation equations", which are
linear equations derived from the nonlinear ones (3.1- 3.12). In these equations, the nonlin-
ear aerodynamic coefficients are replaced by terms involving the quantities called stability
derivatives.

The derivation of the linear model involve the examination of the different flight con-
ditions and the concept of equilibrium or singular points.

The coordinate of the singular point is given by the solution X = Xe of the following
equation 3.21 (assuming that it is state equation of steady state flight)

f(ẋ, x, U) = 0 (3.21)

On the other hand, steady state flight is defined by [Stevens 2003] as a condition in
which all the motion variables (linear and angular velocity components) are constant or
zero.

The steady state flight is restrictive and thus induces some simplifying assumptions (e.g
the mass of the aircraft remains constant...,). By assuming that the flat-earth assumption is
satisfactory for control purposes, the definition allows for a steady state flight.

In this case, the navigation equations of 3.7 -3.9 are not coupled with the overall equa-
tion and thus are useless.

Thus, there are only nine (9) equations left and indeed they can be used to define the
steady-state conditions .

Remark: The 9 remaining states, considered in the wind-axis frame, are thus the fol-
lowing

x = [VT α β φ θ ψ ps q rs]
T

The steady-state flight condition is defined as follows:

ṗ, q̇, ṙ, V̇T , β̇, α̇ ≡ 0, U = constant (3.22)

The following additional constraints can be considered according to the flight condi-
tions:

Steady wings level flight: φ, φ̇, θ̇, ψ̇ ≡ 0, (∴ p, q, r) ≡ 0

Steady turning flight: φ̇, θ̇ ≡ 0, ψ̇ ≡ turn rate
Steady pull-up: φ, φ̇, ψ̇ ≡ 0, θ̇ ≡ pull-up rate
Steady roll: θ̇, ψ̇ ≡ 0, φ̇ ≡ rollrate

(3.23)

In our case study, we will look at the steady wings level flight conditions. However,
the models are easily generated for other conditions by programs such as those presented
in [Stevens 2003].

The implicit nonlinear equation is written as 3.21, while the linear equation can be
written implicitly in a state-variable form as follows:

82 Chapter 3. Case Study : Aircraft pitch-rate control

E ẋ = F x+G u (3.24)

Decoupling equations means separating the equations into two sets that are more or
less independent. A set describes the longitudinal motion (pitching and translation), while
the other set describes the lateral-directional motion (rolling, side slipping and yawing).
The decoupled linearized equations are given directly because they are easier to handle for
analytic studies.

The longitudinal states and controls are thus:

x = [VT α θ q]T u = [δe δt]
T (3.25)

Using these variables, the longitudinal model of the linearized aircraft is given by 3.24,
in which:

E =

VTe − Zα̇ 0 0 0

−Mα̇ 1 0 0

0 0 1 0

0 0 0 1

 B =

Zδe −Xδt sin (αe + αT)

Mδe Mδt

Xδe Xδt cos (αe + αT)

0 0

A =

Zα VTe + Zq ZV −XTV sin (αe + αT) −gD sinγe

Mα +MTα Mq MV +MTV 0

Xα 0 XV +XTV cos (αe + αT) −gD cosγe
0 1 0 0

(3.26)

And the lateral/directional states and controls are:

x = [β φ ps rs]
T u = [δa δr]

T (3.27)

Using these variables, the lateral model of the linearized aircraft is given by 3.24,
where:

E =

VTe 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 B =

Yδa Yδr
0 0

L′δa Lδr
N ′δa N ′δr

A =

Yβ gD cosθe Yp Yr − VTe
0 0 cosγe/cosθe sinγe/cosθe
L′β 0 L′p L′r
N ′β 0 N ′p N ′r

(3.28)

where the primed moment derivatives are defined in [McRuer 1974].

3.2. Models for simulation and control 83

3.2.4 Aircraft control systems

In the previous section, we have introduced aircraft models and we have prospected the
different parts of such model. In this section, the objective is to use these models to apply
the innovative ideas of this thesis in order to relax the hard-real-time assumptions based on
the Worst Case Execution Time.

There are many characteristics in the aircraft that need to be controlled or stabilized,
such as the responsiveness of the aircraft to maneuvering commands. Also there are dif-
ferent modes in the aircraft that determine this responsiveness. These modes are the short
period, phugoïd, roll, dutch roll and the spiral modes.

The frequencies of these different modes tend to be sufficiently high that the pilot would
find it difficult or impossible to control the aircraft if the modes were lightly damped or
even unstable. Therefore it is necessary to provide automatic control systems to provide
these modes with suitable damping and natural frequencies. Such control systems are
called stability augmentation systems (SAS) [Stevens 2003, Stengel 2004]. Moreover, the
augmentation systems provide the pilot with a particular type of response to the control
inputs, it is called a control augmentation systems (CAS). An example of this would be the
pitch rate CAS, in which the pilot’s inputs are intended to control the pitch rate variable.

As it is undesirable for a pilot to have to pay a constant attention to the control of all
of the modes simultaneously, an automatic control system is needed to provide pilot relief
functions. This is implemented special control system that control different variables but
also provides with other special functions such as automatic landing for instance.

The table 3.1 shows the different control functions that involve the three types of air-
craft automatic control .

SAS CAS Autopilots
Roll damper Roll rate Pitch attitude hold
Pitch damper Pitch rate Altitude hold
Yaw damper Normal acceleration Speed / Mach hold

Automatic landing
Roll-angle hold

Turn coordination
Heading hold / VOR hold

Table 3.1: Aircraft automatic control systems

However, in this thesis, only the pitch rate control system is modelled and experi-
mented.

3.2.5 The aircraft rigid body modes

When the longitudinal and lateral decoupling occurs (as in the previous section), it be-
comes feasible to manipulate the aircraft transformed state equation algebraically. Both
sub-models are still of fourth-order and so the different rigid-body modes are obtained
from the roots of the fourth-order dynamics’ characteristic polynomials.

84 Chapter 3. Case Study : Aircraft pitch-rate control

It has been shown in [Stevens 2003] that it was possible to extract separately the lon-
gitudinal aircraft modes: the short period and phugoïd modes. This implies additional
decoupling in the dynamic longitudinal equation. Here, we will not show the mathematical
demonstration of this decoupling; instead, the different modes equations are given directly
in the following.

Note that, the lateral/directional equation does not separate into factors that clearly
define each mode. Thus in practical case, approximations are derived that may describe an
individual mode reasonably well and they need to be verified for applicability in any given
case.

In the next paragraphs, the models of the different modes from longitudinal models are
given.

The short period mode: From 3.26, the algebraic model of the short period is obtained
as: [

VT − Zα̇ 0

−Mα̇ 1

] [
α̇

q̇

]
=

[
Zα VT + Zq
Mα Mq

] [
α

q

]
+

[
Zδe
Mδe

]
δe (3.29)

The phugoïd mode: The algebraic model of the phugoïd mode is given by:

v̇T
θ̇

 =

XV +XTV cos(αe + αT)− Xα[Mq{ZV −XTV sin(αe+αT)}−(VTe+Zq)(MV +MTV)]
Mq Zα−Mα(VTe+Zq)

−gD

Mα(ZV −XTV sin(αe+αT))−Zα(MV +MTV)
Mq Zα−Mα(VTe+Zq)

0

vT
θ

(3.30)

3.3 Case study: pitch rate control of a F16 aircraft

The considered case study will investigate only some of the aircraft control system shown
in 3.2.4. This thesis considers only the pitch rate control augmentation system. The exper-
iments on the other control system components can be applied in a similar way.

3.3.1 The F16 lateral and longitudinal numerical models

The generation of the numerical model of the F-16 can be done from the previous algebraic
equations, under very specific conditions. There are many variants of these conditions that
allow for instance to investigate the steady-state performance of the aircraft such as the
specific fuel consumption rate, the rate of climb, various critical speeds for takeoff and
landing, radius of turns and so on...

In the example, we will examine the trimmed level flight conditions over a range of
speed.

3.3. Case study: pitch rate control of a F16 aircraft 85

Different set of trimmed conditions for level flight at sea level (h = pD = 0) are given
in table 3.2 for the F-16 aircraft. These values, and mainly the nominal conditions will
be used for the simulation examples to illustrate the effectiveness of the analytic approach
presented in this thesis.

Variable Nominal xcg = 0.3c̄ xcg = 0.38c̄

VT (ft/s) 502.0 502.0 502.0
α(rad) 0.03691 0.03936 0.03544
β(rad) 4, 0.10−9 4, 1.10−9 3, 1.10−9

φ(rad) 0 0 0
θ(rad) 0.03691 0.03936 0.03544
P (rad/s) 0 0 0
Q (rad/s) 0 0 0
R (rad/s) 0 0
Thtl (0-1) 0.1385 0.1485 0.1325
El (deg) -0.7588 -1.931 -0.05590
Ail (deg) −1, 27.10−7 −7, 0.10−8 −5, 1.10−7

Rdr (deg) 6, 2.10−7 8, 3.10−7 4, 3.10−6

Nominal conditions: h = 0, q̄ = 300 psf, xcg = 0.35c̄, φ̇ ≡ θ̇ ≡ ψ̇ ≡ γ ≡ 0

Table 3.2: Trimmed flight conditions for the F-16 simulation model [Stevens 2003]

In order to facilitate the model generation, [Stevens 2003] propose a set of program to
compute the different derivatives and generate the Jacobian matrices of the system.

The complete equation in 3.1 to 3.10 can be generated under the nominal condition
described by the tabular 3.2. The generated aircraft model can be linearized and divided
into two sets of equations which are respectively the longitudinal and the lateral dynamics.

They are described in the following paragraphs.

Description of a longitudinal control system: This gives the complete longitudinal
model and allows to write the dynamical model for control design and analysis as a state
model,

ẋ = A x+B u

y = C x
(3.31)

and where the matrices A and B and C are given in 3.32. The states and inputs for the
longitudinal model are as defined in 3.25.

86 Chapter 3. Case Study : Aircraft pitch-rate control

A =

−1, 93134E − 02 4, 27761E + 01 −3, 16936E + 01 −5, 74869E − 01

−2, 53929E − 04 −1, 19825E + 00 2, 16840E − 18 9, 05037E − 01

0, 00000E + 00 0, 00000E + 00 0, 00000E + 00 1, 00000E + 00

6, 30022E − 20 2, 33148E + 00 0, 00000E + 00 −1, 07769E + 00

B =

0 1, 73762E − 01

0 −2, 15050E − 03

0 0, 00000E + 00

0 −1, 75598E − 01

 ,

C =

3, 98135E − 03 1, 92185E + 01 0, 00000E + 00 1, 48133E + 00

0, 00000E + 00 5, 72958E + 01 0, 00000E + 00 0, 00000E + 00

0, 00000E + 00 0, 00000E + 00 0, 00000E + 00 5, 72958E + 01

 .
(3.32)

These states x are defined as given in 3.25 as x = [VT α θ q]T . The output vector y is
composed of [an, α, q] , where an is the normal acceleration, α defines the angle of attack
and q the pitch rate.

The entries of the second and third line of the C matrix are only composed of conver-
sion to units of degree for the angle, in order to keep consistency with the inputs. The first
line is composed of the normal acceleration component with respect to the longitudinal
states.

According to the considered flight conditions (see table 3.2), it is assumed that there is
another regulator keeping VT constant using the throttle input δt. Thus, in the model, the
input δt is not considered and, as it is seen in 3.32 (Matrix B), the only single input is the
elevator δe.

Description of a lateral control system: In an analog way, the lateral model of the
aircraft is given in the same form as 3.31 with the system matrices defined as follows:

3.3. Case study: pitch rate control of a F16 aircraft 87

A =

−3, 07126E − 01 6, 30912E − 02 3, 65420E − 02 −9, 91683E − 01

0, 00000E + 00 0, 00000E + 00 1, 00000E + 00 3, 70820E − 02

−2, 31417E + 01 0, 00000E + 00 −3, 66944E + 00 6, 63794E − 01

8, 98989E + 00 0, 00000E + 00 −2, 55144E − 02 −4, 75260E − 01

B =

2, 94369E − 04 8, 03674E − 04

0, 00000E + 00 0, 00000E + 00

−7, 31610E − 01 1, 31217E − 01

−3, 17866E − 02 −6, 18718E − 02

 ,

C =

−5, 02565E + 00 0, 00000E + 00 −8, 12311E − 03 1, 19341E − 01

0, 00000E + 00 0, 00000E + 00 5, 72958E + 01 0, 00000E + 00

0, 00000E + 00 0, 00000E + 00 0, 00000E + 00 5, 72958E + 01

 .
(3.33)

The state vector x and the control vector u are defined in 3.27. The output vector y is
composed of [ay, p, r],where ay is the lateral acceleration, p and q are respectively the roll
rate and the yaw rate.

3.3.2 The pitch rate control system

A pitch control system is composed of three components, the pitch damper, the pitch at-
titude hold and the pitch rate control augmentation system. In fact, when the aircraft is
under manual control (as opposed to auto-flight control or autopilot), the stability augmen-
tation systems are in most case the only flight control systems needed. However, for high
performance aircraft, specialized control augmentation systems (CAS) are needed. This is
admitted to be of a crucial importance in a phase where maneuverability and "agility" in
the aircraft are needed.

Another common mode of operation for a pitch-axis CAS is a pitch-rate control system.
When a situation requires precise tracking of a target (missile for instance), it has been
found that a deadbeat response to pitch-rate commands suits well to the task. Moreover,
control of pitch rate is also the preferred systems for approaches and landing.

Thus, we have chosen among the different control systems presented in table 3.1, the
pitch rate CAS.

The block diagram of the pitch rate control system is shown in figure 3.6.
The longitudinal dynamics corresponding to the nominal flight condition in table 3.2 is

used. Thus, the numerical longitudinal model is given by 3.32.
By taking the short period approximation as shown in 3.29, we obtain the pitch axis

plant. In reality, the longitudinal equations in the considered condition do not exhibit a
short period mode, but the α and q equations are only loosely coupled to vT ad θ (as seen
in the longitudinal model 3.32, they are coupled only by value approaching 0.

The complete pitch control system is shown in the figure 3.6, where the actuator input is
u, and r is the reference input corresponding to the desired pitch rate. Thus the performance
output is z corresponds to the pitch rate q. The measured outputs are q and α. In practice,

88 Chapter 3. Case Study : Aircraft pitch-rate control

Figure 3.6: Pitch control block-diagram

the measured values of α are quite noisy and the role of the α-filter is to provide filtered
measurements αF of the angle of attack. To ensure zero steady state error, an integrator
was added in the feed-forward channel. β is the output of the integrator.

The elevator actuator for the δe inputs and α-filter dynamics will be those of the figure
3.6 and their values have been taken from the original F-16 model report [Nguyen 1979]
as both simple-lag filters with time constants respectively equal to τa = 1

20,2 and τf = 1
10 .

The states and outputs of the augmented system (plant plus compensators) are:

x = [α q δe αF β]T y = [αF q β]T (3.34)

The plant (reduced to the short period approximation for the pitch-rate control system)
augmented with the actuator dynamics, the α-filter dynamics can be obtained in the form
of 3.31 a classical state space model, where the short period dynamics are extracted from
3.32 by taking the α and q components (or computed directly from 3.29 at the considered
flight conditions), and where the system matrices are defined as:

A =

−1.01887 0.90506 −0.00215 0 0

0.82225 −1.07741 −0.17555 0 0

0 0 −20.2 0 0

10.0 0 0 −10 0

0 −57.2958 0 0 0

B =

0

0

20.2

0

0

 , C =

0 0 0 57.2958 0

0 57.2958 0 0 0

0 0 0 0 1

 .
(3.35)

3.3. Case study: pitch rate control of a F16 aircraft 89

The final closed loop analytic model is a state space model augmented with the addi-
tional dynamics of the α-filter, the actuator and the integrator and taking into account the
reference signal. The control law is an output-feedback of the form:

u = Ky = −kααF − kqq − kiβ

The different feedback gains kα, kq and kI are selected to yield a good closed-loop
response to a step. They are obtained by classical LQ output feedback techniques as K =

[−0.0807;−0.475; 1.361]. However, the details of the computation of these controller
gains are out of the scope of this thesis, but can be found in [Stevens 2003]. The equivalent
digital controller matrix, K = [−0.04238;−0.4098; 0.8426], is obtained through a Tustin
transform for a nominal sampling period T = 0.02 sec.

3.3.3 Description and results of the case study

In this work, we only present the application of some of the weakened scheduling sce-
narii proposed in section 2.2.1 on the system above. The parts that we have done, were
the Abort, Abort’ and Skip cases. However, other scenarii can be done by doing minor
modifications in the LMIs proposed for the stability conditions.

To describe correctly the experimentation, let us define ε = Tslot
WCET , where Tslot is the

reduced allocated time andWCET is the allocated time base don the worst case execution
time.

It is important to mention that the reduction of the allocated time slot from theWCET

value to Tslot will inevitably lead to a performance gain (measured by an increased robust-
ness) due to the reduction of the overall latency for case 1 ("Abort") and also due to the
reduction of both the sampling period and the overall latency for case 2 ("Abort’") and at
last, we will look at the case 3 called ("skip"). However, the counterpart is the fact that, the
probability of deadline overrun while executing the software control task is higher, as fig-
ure 2.2 shows. Thus, according to the deal-line overrun handler strategies, the objective is
to consider a value of the execution time where the resource utilization is enhanced without
threatening the stability.

For the three cases, the stability conditions of Theorem 3 are used to find the rela-
tionships between the allocated computing time slots for the software control tasks, Tslot
and the maximum number of consecutive deadline misses before unstability occurs. This is
done for different value of the uncertainty factor µ in order to take into account a simplified
aggregated uncertainty on the system’s parameters.

The results of the computation are plotted in figure 3.7.
The analysis of Case 1 (top of Figure 3.7) show that the tolerance of the feedback

controller w.r.t. deadlines misses, measured by N , increases when Tslot is decreased
(therefore also decreasing the systematic latency). It also shows that increasingly uncertain
systems, with growing values of µ, are less tolerant w.r.t. deadlines misses.

In Case 2 the number N of sustainable consecutive deadline misses is even improved,
as the reduction of Tslot induces a decrease in both the delay and the sampling interval. In
case 2, when the delay is reduced of a quantity δ, we also reduce the sampling interval by
the same amount. The main difference between case 1 and case 2 is the fact that in case 1,

90 Chapter 3. Case Study : Aircraft pitch-rate control

Figure 3.7: Maximum allowed consecutive deadline misses for the three cases

3.4. Validation of the approach by simulation 91

only the delay Tslot has been reduced while in case 2, both the delay Tslot and the sampling
interval T have been reduced. This is expected to enhance the performance of control and
the QoC but also provides an improvement of the computing resource utilization.

Now, assume that a distribution of the execution time of the control task is given as
in figure 1.15. This distribution is plotted in black in figure 3.8, in which the probability
of reaching deadlines decreases from 1 to 0 as the scheduling factor ε decreases from 1
(meaning Tslot = WCET) to a minimum corresponding to Tslot = BCET , which is the
Best Case Execution Time. By assuming that the execution time of task instances are inde-
pendent from sample to sample, the probability of reaching the maximum tolerable number
of consecutive deadline misses (and thus become unstable), are computed gathering the ex-
ecution time distribution and the N number of allowed deadlines miss. For example, in case
1, ε = 0.5 leads to a deadline miss probability p = 0.92 on the black plot. For µ = 0 and
ε = 0.5, the green plot for Case 1 in Figure 3.7 gives N = 23. Therefore, assuming that
the consecutive execution times are independent, the probability of missing N consecutive
deadlines is 0.9223 = 0.147 (on the green plot in Figure 3.8). The results for the full data
range are given in the same figure for the different values of the uncertainty factor µ.

Thus, for a given scheduling scheme, a probability function of the execution times
and an uncertainty assumption, it is easy to apply this approach to the safety analysis of
the execution time. This would involve for instance, the computation of ε, the scheduling
factor corresponding to a given failure rate. Thus, it would permit to compute the failure
probability for a given value of ε (or Tslot) and µ.

In figure 3.9, we see for case 1, that for a value of the uncertainty µ = 0.25, we have
a failure probability of 2.3610−9, that is to say, to see the system going unstable, when
ε = 0.857, which means that the allocated execution Tslot has been reduced to about
85.7% of the worst case execution time.

3.4 Validation of the approach by simulation

In this section, we approach the validation of the proposed approach in two steps:
The first step consist of verifying the numerical results obtained by the LMI of section

2.4.3 by using simulation tools that allow to simulate execution time overrun. The objective
is to verify whether the obtained results are the same or otherwise fairly near the numerical
results . Thus this first part will be applied on the same linearized pitch control model
which was used in the numerical analysis.

The second step consist of a nonlinear simulation which should allow for the validate
the approach by verifying the correctness of the obtained results using the same controller
and simulation tools as in the first steps but this time using the nonlinear complete aircraft.
In fact, the output of the framework is composed of a value of the allocated time slot
for the execution of the control tasks. This value has been analytically and numerically
determined. However, non-linearities in the system model and the coupling of the different
aircraft axis, may induce some changes in the results. Modeling these phenomenon would
help provide a more realistic value of the allocated time slot, Tslot for the task.

92 Chapter 3. Case Study : Aircraft pitch-rate control

Figure 3.8: Probability of reaching the maximum tolerable consecutive deadline misses

3.4. Validation of the approach by simulation 93

Figure 3.9: Zoomed P (NMax) vs Execution Time: case1

3.4.1 Truetime simulation

Truetime kernel Truetime [Cervin 2009] is a Matlab/Simulink-based simulator for real-
time control systems. TrueTime facilitates co-simulation of controller task execution in
real-time kernels, network transmissions, and continuous plant dynamics. The interests of
using Truetime is the fact that the blocks composing its subsystems can be connected with
standard Simulink block diagrams in order to form a real-time control system. the main
feature of Truetime is also its possibility of co-simulation of the interaction of continuous-
time systems (real-world physical models) and computer systems in the form of control
software tasks and network communication. The API (Application Programming Inter-
face) provided by Truetime also provides many possibilities that allows to simulate inter-
rupts and event handlers such as deadline misses handlers or WCET overrun handlers, or
network and execution time latencies.

Figure 3.10 shows the Truetime simulator, which is composed of different Simulink
libraries with complex functionalities which are provided by a collection of C-MEX files.

In this library, the TrueTime Kernel is of interest for our simulation because this allows
us to simulate an embedded operating system or a real- time kernel, which allows to imple-
ment task execution. Among others, this block offers very interesting functionalities such
as A/D and D/A converters, a network interface, external interrupt channels (for external
connections) which all should allow us to simulate a complete computer-controlled system.

Internally, the kernel has the ability to execute user-defined tasks, many interrupt han-
dlers and offers many useful data structures that are ready- to- use like time FIFO, timers,
monitors, semaphores, mailboxes, etc etc.

Configuring the Truetime kernel blockset involves specifying the control system by
specifying the number of inputs and output of the considered controller, the scheduling
policy of the control tasks and creating these tasks and their associated interrupt handlers.

The TrueTime kernel allows to create different types of tasks such as periodic tasks

94 Chapter 3. Case Study : Aircraft pitch-rate control

Figure 3.10: The Truetime library

or sporadic tasks. It also provides different real-time primitives that allow to manipulate
software tasks such as creating a new sporadic tasks at runtime, killing a running task,
waiting for a task to finish using semaphores or monitors or primitive that allow to make
tasks non preemptible.

Among many functionalities, the tool provides means to implement or to use pre -
defined priority functions for classical scheduling algorithms such as fixed- priority, dead-
line monotonic or earliest deadline first [Cervin 2006].

In brief, Truetime makes it possile to investigate the impact of delays, jitters lost sam-
ples, etc, on control performance.

Details on the packages and their functionalities can be found in [Cervin 2009].

3.4.2 The Simulink model

To test our results, we implement the control system presented in 3.6 with classical Simulink
block diagrams as presented in figure 3.11.

The slight difference between the model is the insertion of a transport delay block in
our Simulink model. This transport delay will help us simulate computation delay.

Although the model presented in figure 3.11 may respond to our needs, it is extremely
difficult to simulate phenomenon such as execution times, input output, control tasks di-
rectly in Simulink.

Therefore, in the remainder of this chapter, we have integrated the linearized plant into
a Truetime controller. In order to obtain the same basis for the analysis, we have used the
same controller as that used for the computation shown in section 3.3.2

3.4. Validation of the approach by simulation 95

Figure 3.11: Pitch rate Control system implemented in Simulink

Figure 3.12, shows the final simulation model, when integrated with a TrueTime kernel
block-set.

Figure 3.12: Pitch Control System with a TrueTime Controller

The added value of the simulation model as presented in figure 3.11 is that the True-
Time system already provides a base framework to apply some simulation parameters such
as sampling periods, time-delays and latencies. Truetime also provides some primitives for
the management of deadline misses and deadline overruns, the management of computing
loads simulations.

3.4.3 Simulation using linear plant

The simulation using the linearized plants are interesting because they should be able to
confirm the numerical results obtained by the LMI, as the plant is strictly the same but with
the controllers are in the form of software tasks simulated by the TrueTime Kernel. The
values of these controllers stay the same as those used in the LMIs computations.

Moreover, it greatly eases the nonlinear simulation because, it can be done by only
changing the plant into the nonlinear plant model without changing any controller param-
eters.

Although many cases have been analyzed in section 3.3.3, we provide here, only the
Case 1 results. The other cases, such as case 2 (Abort ′) or the case 3 (Skip) can be derived
by modifying the simulation parameters of the Truetime controller and the software tasks.

96 Chapter 3. Case Study : Aircraft pitch-rate control

µ = 0 The first case to be presented is the one where the plant parameters are perfectly
known without uncertainties, combined with the different values of NMAX . The poly-
topic model introduced in chapter 2 would only have one vertex. Thus, only the number of
sample losses NMAX are displayed for this case.

Figure 3.13: No sample loss Figure 3.14: 20 consecutive sample losses

Figure 3.15: 22 consecutive sample losses Figure 3.16: 24 consecutive sample losses

Figure 3.17: Simulation results for µ = 0

By analyzing the different plots shown in figure 3.17, it can be seen that the numerical
and analytic results obtained in section 3.3.3 are confirmed, as illustrated in figures 3.7 and
3.8. However, although the system seems to be asymptotically stable, it is noticed that the
performance and quality of control of the system is very poor for large values of N . Also,
note that the pessimism of the analytic results compared with the stability limits found by
simulations show the conservatism due to the Lyapunov-based analysis.

µ = 0.25 and µ = 0.5 The results associated with the other values of µ are also con-
firmed. In these results, the simulation was run all over the different models composing the
polytopic model with the values of µ = 0.25 and µ = 0.5.

It may be seen in the comparison of these figures also that the effects plant uncertainty
µ are not as severe as those of the delays. On one hand, in the case where the system has
no sample loss, the performance of the system is good. On the other hand, even if the
uncertainty of the plant is zero, the performance degrades very fast when subject to sample
losses.

The result of the linear simulation for the case of µ = 0.50 is presented in figure 3.27.
By looking at the result of the linear simulation for a value of µ = 0.50, we see that

indeed, the control performance is acceptable for the case where the system is not subject
to sample loss, even if the plant uncertainty is quite large.

3.4. Validation of the approach by simulation 97

Figure 3.18: No sample loss Figure 3.19: 20 consecutive sample losses

Figure 3.20: 22 consecutive sample losses Figure 3.21: 24 consecutive sample losses

Figure 3.22: Simulation results for µ = 0.25

Figure 3.23: No sample loss Figure 3.24: 20 consecutive sample losses

Figure 3.25: 22 consecutive sample losses Figure 3.26: 24 consecutive sample losses

Figure 3.27: Simulation results for µ = 0.50

98 Chapter 3. Case Study : Aircraft pitch-rate control

3.4.4 Nonlinear simulation

In this section, the idea is to apply all the analysis done in the previous sections on the
nonlinear model of aircraft. To do so, it is necessary to develop a nonlinear aircraft model
based on the equations studied in section 3.2.

The aircraft nonlinear model is a C-language program which implements all the motion
equations that have been exposed in section 3.2.2.

The nonlinear system is depicted in figure 3.28 and has been directly linked with the
same pitch-rate controller which has been used in the previous simulation of section 3.4.1.
Moreover, an engine controller has been added to the model. The inputs of the nonlin-
ear aircraft, corresponding to the other aircraft axis and modes (mainly lateral axis and
phugoïd), have been set to constant or zero, although, internally, they were set to the
trimmed value computed from the flight conditions.

Figure 3.28: Nonlinear simulation of aircraft control systems

In order to respect the assumptions of constant velocity and to delete undesirable cou-
pling effects of the different aircraft axis (pitch, roll and yaw), a throttle controller based
on a hand-tuned PID has been integrated to the system. The initial value of the other inputs
(apart from the elevator input) has been initialized to 0, although internally, these inputs
are initialized at the flight trim condition values (see table 3.2).

This nonlinear simulation is intended to demonstrate that with the same parameters,
it is possible to confirm the results of the LMIs, giving the computed values of NMAX .
Moreover the nonlinear model allows to integrate many aspects of the real model into the
simulation model, such as the plant non-linearities, axis coupling, actuators saturations and
bandwidth,

The associated nonlinear simulation results for the case 1 is presented in figure 3.33.

3.5. Conclusion of Chapter3 99

Figure 3.29: No sample loss Figure 3.30: 20 consecutive sample losses

Figure 3.31: 22 consecutive sample losses Figure 3.32: 24 consecutive sample losses

Figure 3.33: Nonlinear simulation results

3.5 Conclusion of Chapter3

This chapter was dedicated to the application of the analytic process proposed in chapter
2 with a realistic control system. It has been shown in chapter 2 that the timing prob-
lems of computing control tasks and control robustness should be considered jointly. The
case study presented in this chapter can be used as a practical basis to support this idea,
where both analysis and simulations show the effects of timing and deadline misses on the
robustness and performance of control systems under timing uncertainties.

For this objective, the pitch-rate control system included in an aircraft control system
have been considered. A detailed description of these control systems have been presented
at this beginning of the chapter, while in the second part the analytic method was applied
to the particular aircraft control system. The third section of the chapter confirmed these
results using simulations based on both the linear and nonlinear models of the aircraf, to be
compliant with the framework presented in section B and depicted in figure B.1.

CHAPTER 4

Conclusion

Contents
4.1 Summary . 101
4.2 Perspectives . 102

4.1 Summary

In this thesis, a new approach for the analysis of real-time computer-controlled systems has
been proposed. The main problem focuses on the determination of the allocated time for
control tasks, a problem arising at the frontier between real-time computing and control
design. The proposed framework provides an analytic approach to correctly evaluate the
time slots allocated for the execution of periodic control tasks, taking into consideration the
real-time capabilities and fault tolerance requirements of the computer-controlled system.

The allocation of time for critical control tasks is of prime interest in domains such as
embedded avionics systems because they govern the real-time programs implementation
constraints, with further consequences at the overall system design level (weight, electri-
cal supplies, cooling capabilities, obsolescence management, ...). Traditionally, the tasks
scheduling is performed according to hard real-time constraints, and the time allocated for
the execution of control tasks is chosen equal to the Worst Case Execution Time (WCET)
of the executable control code on the target processor. This worst-case based approach
induces several drawbacks.

Firstly, the WCET must be evaluated through computation methods which complexity
are growing with modern processors architectures. Secondly, even when the WCET is
correctly evaluated, the dispersion in execution times makes the worst case a rare case, so
that this scheduling scheme inevitably results in a systematic waste of computing power
due to idle cycles at the end of the allocated slot.

Taking into account the robustness of feedback control, an analytic framework and
methodology is proposed to improve the real-time scheduling scheme of control tasks and
to decrease the over-dimensioning of the computing resources. The approach is grounded
on recent advances in the domain of networked controlled systems and time-delay systems.
The methodology allows to improve the resource utilization rate, by off-line computing the
value of the allocated time for control tasks, which ensures the stability of the plant despite
computing slots smaller than the WCET.

A special type of model was examined, where control is done on a discrete-time scale
while the plant is still considered as a continuous-time system. The control task durations

102 Chapter 4. Conclusion

are considered as a special type of delay in the system, namely the input delay. From an
uncertain linear model of the plant, the determination of delays (hence time-slots) compli-
ant with the system stability is carried out using the Lyapunov Krasovskii stability analysis.
In this framework, the stability condition allows for computing the maximum number of
consecutive deadline misses which can be tolerated by an uncertain system while keeping
stability.

An important characteristics of the methodology is that it includes fault-tolerance capa-
bility. In fact, its objective is to keep control stability while managing the computing loads
and resource utilization at a specified level. Using the knowledge about the distribution of
execution times for a given control task, a trade-off can be carried out between the required
control performance for the system and the resource utilization.

It is an example showing that feedback control systems are robust with respect to tim-
ing uncertainties and deviations from a rigid pre-defined scheduling pattern. In fact the
approach gathers in a single framework robustness w.r.t. timing uncertainties (such as oc-
casional samples misses) and robustness w.r.t. the plant’s parameters uncertainties. There-
fore, relying on feedback control robustness allows for slackening the commonly-used
hard-real time constraints while preserving the control system performance and improv-
ing the computing resources use.

The effectiveness of the methodology is illustrated through a case study based on the
flight control system of the F16 aircraft, and more especially on the pitch control. Beyond
the analytic studies, the method has been successfully evaluated on a simulation model of
the F-16 aircraft, under Matlab and TrueTime. Moreover, although the example focus on
the allocation of time slots for control tasks in flight control systems, it can be applica-
ble to other computer-controlled systems involving feedback controllers implemented by
software tasks.

4.2 Perspectives

The following research directions represent possible extensions of the present work.
Real-time implementation feasibility. In this work, the problem of time allocation

for control tasks was considered among others. As the allocated times for the control
tasks are smaller than the WCET, it may happen that overruns occur occasionally. Several
overrun handling strategies were proposed in this thesis but the real-time implementation
feasibility of the various handlers was not examined. For example, the “Abort” solution
proposed in case 1 (see section 2.2.1) is easy to handle from the control stability point
of view. However, this solution may be difficult to implement, as it requires that, when
aborted and restarted, the control task is correctly re-initialized. In particular, the context
of the task, e.g., including the registers of recursive filters, must be restored coherently
with the management of the new sensors inputs. On the other hand, the “Skip” case, where
the control task runs to completion and skips the next execution in case of overrun, seems
far simpler to implement using current software tools. However, as the execution time of
the currently running control task can be sometimes several times larger than the allocated
slot, the overrun handler must be guarded by a upper limit for acceptable successive skips,

4.2. Perspectives 103

which must be itself evaluated and implemented. Once again, trade-offs between the gains
from the control point of view and the computing feasibility need to be carried out to find
cost-effective solutions.

Finally the compatibility of this kind of flexible scheduling approach w.r.t. the cur-
rent certification approach must be investigated. Conversely, considering the robustness of
feedback controllers w.r.t. timing disturbances, new degrees of freedom for real-time con-
trol implementation appear, and the resulting new viewpoints about fault-tolerant control
are expected to provide new inputs in the certification process.

Quality of Service statement As seen, the final part of the methodology and the ana-
lytic process consists in finding a trade-off between the gain in computing power that can
be obtained from the reduction of the time allocated to control tasks and the loss of per-
formance due to the occasional loss of samples. Solving a too general control/scheduling
co-design problem in closed form is out of range of analysis, but restricted assumptions
sets can be used to investigate more specific case studies. It is expected that well formal-
ized cost functions might model the behavior of a real-time control system, and might lead
to design effective and convincing flexible scheduling schemes, even for critical control
systems. The idea is to gather the control performance (as a Quality of Control function)
and the computing/networking performance (as a Quality of Service function) to minimize
a unique cost function, able to capture both the control and computing requirements.

Improvements of the stability condition. In this work, the stability conditions are
expressed in terms of asymptotic stability. This means that stability is guaranteed asymp-
totically with no consideration of other criteria. An extension of these conditions to express
exponential stability would allow to consider integrating more QoS criteria. As any expo-
nential stable system is also asymptotic stable, the exponential stability condition would
moreover guarantee an exponential decay rate which can be interpreted as a speed of con-
vergence of the system.

Handling of non-linearities and uncertainties In the current work the model uncer-
tainties are aggregated in a unique multiplicative factor in the linearized model. In reality
the error margin on the plant parameters are not equal, in particular because the various
parameters represent different physical objects. As the plant uncertainties have a direct im-
pact on the control robustness margin, it is worth studying more elaborated models, and to
adapt the stability analysis method, to better discriminate the knowledge about the different
parameters of a complex and heterogeneous plant.

Besides parametric uncertainties, complex systems such aircrafts are non-linear sys-
tems. In fact some non-linearities can be considered as varying parameters of a Linear
Parameter Varying System (LPV). A main advantage of LPV systems is that well estab-
lished control theory for linear systems, e.g. robust control design, can still be used for
some non-linear plants. Compared with classical linearization, LPV modeling enlarges
the range of validity of linearized models. Therefore it is appealing to apply our flexible
real-time control and scheduling methodology to LPV models of complex systems.

APPENDIX A

Worst Case Execution Method: State
of Art

Contents
A.1 Introduction to WCET Methods . 105
A.2 Dynamic Methods . 106
A.3 Static Analysis Methods . 107
A.4 Hybrid methods . 110
A.5 Probabilistic methods . 110
A.6 Construction and interpretation of the probability distribution: 112

The methods used to evaluate the WCET of a program is divided into 3 main parts.
There are dynamics methods based on measurements or on probability patterns of execu-
tion time, static methods based on the analysis of the code and/or the executable software,
and hybrid methods based on more or less the combination of both methods. We will give
concise details on each methods in the following paragraphs.

A.1 Introduction to WCET Methods

In terms of control implementation, one of the most important requirement is about safety
(looking back at the different legislation and requirement for safety critical systems pre-
sented 1.4). Among the many different regulations required to be done in the stringent
development process of safety critical software, a timing analysis if required. However,
the approach based on worst case is only a mean to attain the objective because it was the
most viable and the requirements have not explicitly required that the analysis must use
worst case execution time. This happens because it avoids to implement fault tolerance
to deadline which might be more difficult. However, based on the design requirements of
the designers of high-level system (meaning the whole control system from the end-to-end
point of view), software designers and testers use the WCET (Worst Case Execution Time)
leading to an overestimation of the need of the system in terms of size, computing power
etc etc.

But before that, we will have a look at the different methods used for the computation
of WCET. The chief characteristic of hard real-time systems is the requirement to complete
the computation within a given time or by given deadline. To ensure reliability of execution,
and ability to guarantee that the computing units (microprocessors or microcontrollers) are

106 Appendix A. Worst Case Execution Method: State of Art

able to hold the workload which they are assigned to, it is necessary to make a timing
analysis. However, if working with WCET-based assumptions, finding a tight upper bound
is important to avoid conservative implementations. This problem is in general undecidable
due to the halting problem, there must be some conditions and constraints to satisfy to make
it decidable.

In major practical cases, WCET-based approaches are used. There are three main ap-
proaches to WCET computation.

A.2 Dynamic Methods

Dynamic methods are the most commonly used method in the determination of WCET.
This methods utilize a real program execution to obtain the estimated WCET. This method
is called dynamic because of the use of real software with different input datas. The general
principle is straightforward: the software to be analysed is executed with all possible set of
input datas, and for every execution the running time is measured. This is why this method
is also called "Measurement method". It is important to notice that the measurements
must be done while running the software on the real microprocessor target or an adequate
simulator of the target. In this context, "input data", means the data which the program is
waiting for to run correctly. For instance, if the code is a given subprogram, the input datas
are the parameters of this subprogram. [Deverge 2007] give a comprehensive introduction
to the measurement method for the WCET estimation. At first sight, many problems can
occur in this methodology, but we will only give some of them:

• During the generation of all possible software input, it is hard to guarantee that every
possible case has been taken into account. This leads to a problem of safety insurance
and confidence. Moreover, if all cases were to be taken into account, the possibili-
ties grow so fast that the resulting combinatorial explosion will render this analysis
impossible. A solution to this problem is proposed by [Colin 2003] as to rely on
the human expertise to generate the relevant test cases in order to obtain the WCET.
However, we think that this is solution may be error prone and not safe. Another
solution to this problem is to consider automatic test case generations. One of the
related work on this field is proposed by [Wegener 2001] where the authors propose
to choose the test cases according to special criteria automatically using a method
called Evolutionary Testing. However, results are promising but not yet mature for
safety critical systems. On the other hand, the practical interest of this work is that
it permits to eliminate test cases by finding a lower bound of the WCET. It allows
then a complementary association with static methods which give instead an upper
pessimistic bound. Other application in many industrial practice solve this problem
of test coverage issue by associating unit testing and timing analysis. This consider
using the unit test cases (which are supposed to cover every execution path of the
software if the test cases are well defined) along with an instrumented version of the
program (for e.g a timer...) so as to permit measuring its execution time while the
test cases are running.

A.3. Static Analysis Methods 107

• It is also difficult to demonstrate formally that at least one of every single execution
based on each input has gone through the longest (worst case feasible) execution
path of the program.

• Real conditions for a realistic execution is difficult to mock up. This means that for
every execution context of the program, there can be a worse case that can happen
in the real use. It becomes very expensive, in terms of resources to mock up these
different conditions, compared to the obtained precision.

• The variability of the execution-time when the target processor is a complex proces-
sor (for e.g: with a cache memory) because the cache latency can be very small com-
pared to the central memory latency. This leads either to an overestimation (which
may not be bad) or to an over-optimistic execution time (which can be dangerous for
safety critical).

• Adequate and precise hardware/simulators are not always available. An alternative
can be the use of Instruction Set Simualtors ([Ratsiambahotra 2010] for precision
on ISS).

Many variations and improvements of this method has been proposed to solve some
of the issues above (for e.g [Lindgren 2000]. Among different issues, the main improve-
ments can reside in the automatic generation of adequate test cases to ensure that these
test cases can really cover the Worst case execution scenario but also to avoid a brute
force approach based on generating all possible datas because it is know to be impossi-
ble [Colin 2003, Lokuciejewski 2011]. Improvements were also done (but mainly in many
industrial practice as this method was greatly used in the) in the choice of a correct safety
margin in order to improve the level of confidence that can be put this method without
being too conservative [Lokuciejewski 2011].

A.3 Static Analysis Methods

Static program analysis is a generic method to determine properties of the dynamic behav-
ior of a given task [Wilhelm 2008a]. The principle of static analysis is to make an off-line
analysis of the program without executing it. The key idea is to compute the WCET from
the structure of the code when it is combined with an abstract model of the hardware that
models the internal structure of the execution. Unlike the measurement method, the static
analysis considers all the possible values of the input data of the program, but envelops
it using an abstraction. Thus, the large number of input, usually leading to combinatory
explosion, is reduced into a smaller values envelopped inside the abstraction. Using the
same type of abstraction, the worst case path of the code execution can also be determined.

(NB: it might be the source code as proposed in [Colin 2001], the executable code as
suggested in [Wilhelm 2008b] or some intemediate code as in [Schoeberl 2006]. The basic
concepts for static analysis include:

108 Appendix A. Worst Case Execution Method: State of Art

• the flow analysis: The aim of the flow analysis is to gather information about the
exeuction path of the program. The exact path cannot in general be exactly deter-
mined [Wilhelm 2008a]. The input of this flow analysis step is a representation of
the program such as its syntaxic tree graph and its CFG (control flow graph).

Basic blocks and Control Flow Graph: Basic blocks are blocks of code the
program for which the execution time can be computed easily because they are only
composed of sequential instructions with one input and output path. The control flow
graph describes all the possible relations between the basic blocks. In the example of
figure A.1, the basic blocs are the boxes denoted by BBx (where x is the id number
of the block). The generation of the CFG is done at the level of the object code
because the object furnishes the information on the execution time. (In figure A.1
an example of CGF determines the possible execution paths for the simple example
given in this same figure).

Figure A.1: Control Flow Graph Example

The set of basic blocks must be finite-numbered [Wilhelm 2008a] because termina-
tion of the program must be guaranteed.

A.3. Static Analysis Methods 109

Figure A.2: Control Flow Graph Example

Syntaxic tree: this is a tree for which nodes represent the control structures of
the high level code and the leaves represent basic blocks. For the same example
presented in figure A.2. As seen, it contains more information than the CFG and
then is more useful.

• Low-level analysis which evaluates the impact of the architecture of the hardware on
the WCET. It contains steps such as the determination of some basic blocks in the
code.

• the overall computation of the estimated WCET by combining the result of all pre-
vious components

This method is known to give a safe but overly pessimistic estimation [Colin 2003].
Many difficulties can be found currently:

• The success of this approach is based on the abstract hardware model. If correctly
modelled, a safe upper bound of the WCET is found. However, it is known that
the verification of correctness of the abstract models is hard [Lokuciejewski 2011].
Moreover, in some systems, it might be mandatory to take into account other pa-
rameters such as the I/O (Input Output) access time, the cache memory access time
vs the central memory access. All of these considerations lead to a very complex
and long process. However, these works have been done partly or fully (see for in-
stance [Louise 2002] concerning multiple cache level considerations in the WCET
and works having to do with the processor pipelines for WCET computing can be
found in [Thesing 2004])

• The production of an overestimated result. In fact, static methods are known to be
safe but not tight.

• Complexity: The method may work on a simple prototype program but as soon as the
size of the program increases, the run time analysis can be very high. This difficulty
also embeds complexity of hardwares. It is also a concern in this approach because
the more complex the hardware, the more probable, the problem is undecidable.

110 Appendix A. Worst Case Execution Method: State of Art

• Undecidability of the problem [Thesing 2004]: This problems is acutally undecid-
able except for some restricted set of programs that satisfy some conditions linked
with the method of programming (e.g: loop iterations must be known, no recursion).
A solution has been proposed for some types of programs by applying a so-called
timing schemes [Shaw 1989]

• Some implementations of static methods use annotation in order to simplify the pro-
cess of computing the WCET. These annotations are human-made and thus error-
prone.

A.4 Hybrid methods

The idea behind hybrid approaches is to use the safeness property provided by static anal-
ysis with the relative applicability of the dynamic methods. In fact, measurement method
at least provides a lower bound of the WCET, as seen in section A.2 and the static method
provides an upper bound. The key approach is to identify the so-called single feasible
paths (SFP), which are execution paths that are specific in a term that they are invariant to
changes of input data [Lokuciejewski 2011]. This identification is a static method using an
abstract syntaxic tree. The execution times of these SFP is measured using a real hardware
(or an adequate simulators). For input-dependant paths, the input data must be supplied for
complete coverage of the paths. The execution times of these paths are also determined by
dynamic method, and in order to be safe in the determination, the usual safety margin for
measurement method is added. Finally all information is combined with techiniques from
static methods to determine the worst case path. The real advantage is that it does not use
abstract hardware models. Instead, the problems of measurements still exist.

On one hand, static methods, when facing the different aforementionned problems, pro-
duce no results or overly pessimistic results. On the other hand, the complexity of modern
processors including complex features make cycle true simulation (needed for measure-
ments) infeasible. As a result of all of those elements, this imposes either impractical
limitations on the code (we have seen examples such as loop iterations must be known to
permit analysability, no recursive function in order no to run the risk to have stack overflow,
etc etc) Those constraints exist also on the hardware. It is possible with some hardware pro-
cessor to force the system not to use the whole cache or part of it, to constrain a variable
by annotation. One possibility to get around is to use statistical methods.

A.5 Probabilistic methods

It is a specific variation of the measurement method. Instead of giving a single value as
the WCET, this method consist of providing a probability density function for the different
execution time and the assumed WCET. While the probability values tend to approach zero,
the absolute safety (100% guarantee) is reached only with a huge degree of conservatism.
To cope with this problem, to have a certain degree of tolerance can be useful. This notion
of risk is quite conform to what has been mentionned in section 1.4 where the notion of

A.5. Probabilistic methods 111

appearance of fault in avionics critical systems was expressed by a probability (10−9per
hour of flight). In our case, the 100% guarantee is not physically achievable and a certain
amount of risk is acceptable. This risk is constrained to be very small. A major problem in
this method is the assumptions’ validity. It has to be assumed that the method provides a
description of the program behavior which correctly covers all the execution times for all
modes of execution.

The principles of the method is as follows. The program to be analysed is run several
times with random-input data and the end-to-end execution-time (meaning the time from
task launches until the task ends) is measured. It is clear that this would not give the WCET
value on the target processor in the general case. So the use of Extreme Value statistics is
proposed by [Petters 2002]. The simplest instance of a solution is to approximate the
probability density of an execution by a Gumbel Probability function. The formula is quite
complex and we recommend to look at the reference for detail.

Possible use mainly focuses on approaches using test cases and then to use the existing
results to deduce in a probabilistic manner other execution times not detected during the
tests. The experiments done by the authors have given the following approximation.

Figure A.3: Sample Measurement Data and Extreme Value Approximation

The major disadvantage of using this special density function is its nonzero probability
except for time ±∞. It has been shown that the while the execution time exceeds 20σ (σ
is the standard error) beyond the mean, and the probability is 2.06 × 10−9 then the "risk"
still exist. Experiments show that probability reaches quickly 1.0× 10−20 and at this time,
the overestimation is around 10%

Interpreting a deadline overrun of an assumed value of the WCET as a fault, it becomes

112 Appendix A. Worst Case Execution Method: State of Art

possible to assess the deadline miss probability of a software system. This approach can
bring solutions to some of the problems aforementionned but moreover, can be used also
to insert some sort of fault- tolerance in the system as seen from end-to end. This has been
used throughout this thesis for the case study.

A.6 Construction and interpretation of the probability distri-
bution:

Some assumptions need to be clarified concerning these probability values. [Petters 2002]
proposes to use similar techniques as in hardware systems dependability analysis, where a
100% guarantee is physically impossible and a certain amount of extremely small risk is
acceptable.

Also, probabilistic analysis provides a continuum of worst-case execution times for
different confidence levels. Thus a system may have a probability of 10−8 per hour of
exceeding an execution time of 1.5 ms for instance, and probabilities of 10−9 per hour of
exceeding 1.505 ms.

Now, the most difficult assumption to be satisfied is to justify the classical formulation
"per hour". The construction of this probability is considered as follows.

Considering the abstract processor used in the case study, in which the execution times
of basic are considered independent and identically distributed (iid), it is possible to de-
rive easily a probability rate. Of course this assumption is quite difficult to assume on
new generations of processors considering the effects of caches memories and speculative
executions.

Following [Burns 2011], let us take the simplest case, where all the execution time
of all the abstract machine’s instructions is either 1 unit of time (the Best Case Execution
Time which could be equivalent to the execution time cost fo a cache hit) or 10 units of time
(for the WCET). We note that the difference between the BCET and the WCET is 9 units
of time, which is quite optimistic with respect to the reality. Let us also suppose that the
probability of the execution to be equal to the WCET is of 10 % (again very optimistic, as
in reality the WCET is considered as a rare event). Thus, the average instruction execution
time for the considered abstract processor is computed as 1.9 unit of times.

A relevant and adequate formulation would be modelled as follows [Burns 2011]:

proba(A > E) ≤ p (A.1)

where A is an instance of the execution time of the task and E is the estimated worst
case execution time of such task. Thus the formula A.1 would be interpreted as the prob-
ability proba of an instance A to exceed the worst case E is less that p. Now practically
speaking, if the reliability threshold p = 10−5 (the probability that any execution time ex-
ceeds the estimated WCET E) then, by solving the equation A.1 with a given probability
function proba, it possible to give a fixed value of E according to the desired reliability.

To illustrate this, let us give a table constructed in [Burns 2011] for such fictitious
processor.

A.6. Construction and interpretation of the probability distribution: 113

N = 105 N = 106 N = 107 N = 108

Average ET 190000 1900000 19000000 190000000

WCET for p = 10−3 192639 1908344 19026385 190083437

Average ET 190000 1900000 19000000 190000000

WCET for p = 10−5 193642 1911516 19036415 190115153

Average ET 190000 1900000 19000000 190000000

WCET for p = 10−7 194440 1914039 19044393 190140383

Average ET 190000 1900000 19000000 190000000

WCET for p = 10−9 195122 1916195 19051211 190161941

Table A.1: Estimated WCET based on N measurements and a reliability objectve p

[Burns 2011]

Without going into deep details about the constructions of the data of this table, the
objective when giving this table was to show the relative proximity of a probabilistic esti-
mated WCET of the execution time considered and the average case execution time. The
analysis presented in this table also allows to justify once again that strictly considering
worst case assumptions is very penalizing. More details on the construction of the proba-
bility distribution proba is given in [Burns 2011] and will not be give in this work.

Example: Consider a control task that is composed of a N number of instruction and the
previously mentionned assumptions on the processor. Thus the case where N = 100000

instructions (thus N number of measurements). Assuming that the code is linear thus the
execution time is obtained by summing the cost of each instruction, then for a standard
definition of the worst case, it leads to a worst case execution time of 100000 × 10 =

1000000 units of time, while the average being 19000. The probabilistic approach allows
to implement a property of flexibility and tolerance by using probability laws such as the
one constructed in [Burns 2011] and whose results are illustrated in table A.1.

Now the construction of the probability of deadline over an hour of execution is ex-
plained as follows. Let us consider a control task whose execution period is 10 ms meaning,
that over an hour, the number of execution is equal to 360000 times. Now, if we take the
case where the software task is composed of N = 105 basic instructions, in table A.1, the
estimated WCET for such task should be 195122 in order to insure a failure rate of 10−9.
Now if we need to insure a failure rate of 10−9 within an hour of utilization, we need to
consider a single execution (let us denoted it X the probability that the single execution
would overrun its estimated WCET). Thus X is given by the solution of the equation:

1− (1−X) = 10−9 (A.2)

Again, this solution gives approximately a value of X = 10−13 for the failure rate of
a single instruction execution overan hour, which is equivalent to an estimated WCET of
196275 as given in [Burns 2011] using the probability distribution proba. The next step of

114 Appendix A. Worst Case Execution Method: State of Art

this analysis would be to map this type of approach over a real software and processor so
that the presented analytical method be appliable in real-life applications.

The analysis described in this section was done on an abstract machine which had only
two types of execution times (1 or 10 units of time). Thus, also the probability distribution
of these execution times was quite simple. If instead, a more reaistic processor is taken,
this technique can still be applied. The main information that is needed, according to
[Burns 2011] is the variance of the instruction’s execution time.

APPENDIX B

Weakened real-time control
framework

To improve the average efficiency of embedded computers while preserving the control
stability and performance, and relying on the robustness of feedback control laws, it is
proposed to weaken the usual real-time constraints. An analysis framework is proposed in
the sequel in order to fully achieve the analysis that will result in the optimal choice of the
execution time that should be allocated to the control task of a considered control loop.

Final Result
Validation

Evaluation of
Efficiency of

resources
usage

Analysis of QoC
(Quality of Control
(Safety, Stability,

Perf.)

Challenge System
limitations

(overrun deadlines to
degrade service until

unstability)

Initial
Scheduling

Mode of operation
definition

Reduce
Execution

Time

Ribustness
Evaluation

using
LMI

conditions Satisfactory
Trade-Off?

Confirm
results

on a
nonlinear

model.
Integrate

« non
linearities +
uncertainties

No

Yes

Practical
value of

time
allocated to
each control

tasks

Mathematical
model of the

control system

Control
algorithm

Estimated WCET
(ETP, WCET,
Measures)

Safety and Performance
Objective Specifications

Time-Delay Systems
Stability

(Lyapunov theory)

ETP
Execution Time Profile

(probability density)

QoC
(Quality Of Control)

Theorème de Lyapunov
(Stabilité des Systèmes à
retards

Toolchain
(stability conditions, Linear Matrix Ineqqualities (LMI), Time-delay

models)

Robustness Analysis Intermediate results

INPUT
Information

Mathematical
TOOLS

END-TO-END TIMING ANALYSIS CONCEPT

Certification
requirements

Compatibility

Computing
Power

evaluation

«Trade-offs» between
computing Power Gain &

Qualité de Contrôle
(QoC).

FINAL
OUTPUT

Figure B.1: Weakened analysis framework

Figure B.1, illustrates the overall analytical process that should be followed to derive
the timing needs of a control loop.

In the preliminary phase of the analysis, the following elements need to be determined
or specified:

116 Appendix B. Weakened real-time control framework

• the mathematical model of the control system are determined. This model can be
expressed as classical control system models such as state space models, transfer
functions, ...

• The control algorithm is also necessary.

• The WCET estimation based on statistical studies of the processor target (for in-
stance the Extreme Value approximation of the execution times as presented in sec-
tion A) [Petters 2002].

• The performance and safety specifications that the system has to meet. This element
allows to define the objectives of the system in terms of trade-off between safety and
quality of control for instance. This may also include the certification specifications,
meaning that certification bodies may ask for the achievable performance and safety
at the worst case. However, instead of ensuring that the controller timing is respected
at the worst possible case (the hard deadline paradigm), it would be more efficient in
terms of control performance to formally that the system can allow for instance N
numbers of deadline overruns (which can be managed by different safety procedures)
without having any effects on safety.

The next step would be to work on the initial scheduling (which might be the usual
worst case scheduling as presented in figure 1.14), where each task is allocated a processor
time resource. In the worst possible case, this time as at least equal to the WCET of the
task. During the next sequences of activites, the execution times are shortened until the
system reaches unstability. The resulting robustness and stability of the system are then
evaluated with respect to the computing time that has been gained. Then the quality of
control and performance is analyzed and the trade-off between the quality of control and
the processing resources usage resulting from the degradation of the system’s performance
is evaluated. It is checked whether the system stays in a satisfactory bound with respect to
the performance and safety criterion intially specified.

If the trade-off is not satisfactory, then the whole step is performed again with the
allocated time for the control tasks respectively increased on reduced, depending on the
case. Two cases may appear, depending on the following situations. For instance, if the
system after trade-off analysis is found wasting too much computing power, the whole
procedures are repeated with a smaller allocated time. Conversely, if the system is no more
compliant with safety specifications (e.g: it goes unstable without respecting the safety
specifications. For instance the probability of going unstable should be less than 10−9 per
hour of use), then the steps are repeated with larger allocated time.

Therefore at the end of the process, for a given control system, a known dicstribution
of the execution times and a weakened real-time contraints, the problem to solved can be
informally stated as follows:

• find N , the maximum value of consecutive data loss before loosing the closed-loop
stability;

• find an adequate value of Tslot to fulfill a given trade-off between the control and the
computing performances.

117

• evaluate the weakly-hard closed-loop robustness with respect to the plant’s parame-
ters uncertainties.

APPENDIX C

Sampled-data models

Contents
C.1 Computer-control theory . 119

C.2 Advantages and drawbacks of using computers 119

C.3 Mathematical models . 121

C.1 Computer-control theory

The most basic structure of a computer-controlled system has been introduced in 1.5.3.
A schema proposed in section 1.5.3 has introduced the ideal case which would give the
best performance. However, this schema is not realistic because of the difference be-
tween continuous- time design and discrete-time design. Indeed, physical systems typi-
cally evolve in continuous-time domain whereas computers and signal processing devices
invariably operate in discrete -time domain.

A sampled-data system is defined simply as a control system where continuous- time
plant is controlled with a digital device such as computer.

Looking back at figure 1.12 (reproduced in figure C.1), we see that the system is dif-
ferent from a classical continuous-time systems. From an architectural point of view, new
subsystem elements have appeared (as compared to figure 1.17) and different types of sig-
nals are manipulated. It is remarked that a computer-controlled system contains both digital
and continuous signal.

C.2 Advantages and drawbacks of using computers

From the perspective of figure C.1, such systems might be viewed as only an approximation
of the continuous-time system by means of a set of points approximating the state (or the
output) at a given time, and it may also be viewed as if the computer-control system’s per-
formance results would be only as good as those of the equivalent analog control. This im-
plies that if the sampling period is very small, then the computer-controlled system would
behave as the continuous system. The so- called naive approach to computer-controlled
system, presented in [Wittenmark 2003], show that this statement is only true in very rea-
sonnable assumption and that computer controlled systems have more potential that need
to be fully understood and they present many subtantial advantages. Many problems with

120 Appendix C. Sampled-data models

Figure C.1: Realistic sampled-data model

analog system implementations can be avoided by using computers, for instance the prob-
lems linked to the accuracy or drift of the mechanical or electronical components due to
fatigue or elderness. Also, it becomes very easy to try new sophisticated calculations and
complex control laws (because of the flexibility of the computer softwares for instance), as
well as , it is easy to include logics and non-linear functions. On the other hand, the mem-
ory effects that computer provide by means of data structures such as tables, can be used
to store data in order to accumulate a more or less long-term knwoledge about the system’s
properties. Moreover, there are phenomena that do not appear in continuous- time models
that show up in computer-controlled systems.

On the other side, the future trend of computer systems lead some authors to spec-
ulate about the future [Wittenmark 2003], mainly about technological improvements of
computers. Spectacular developments (such as the introduction of complex VLSI circuits,
multicore, multiple-level caches...)as presented in [Louise 2002, Thesing 2004] have made
it difficult to improve temporal analyazability. This means that, first: the ratio of price
to performance is dropping subtantially. According to [Louise 2002] the enhancements
brought to new generations of processors increases the uncertainty and decrease determin-
ism and predictability of the execution timings of instructions. In fact, the execution time
of a given instruction, when run on these processors, is no longer constant but variable.
That means, using new processor generations doom designers to take even longer spare
margins penalizing the system on resource usage.

From schdeuling and programming perspectives, these facts have made that program-
ming and scheduling theory become the bottleneck of control system design (see Section
1.7).

From the control perspectives, theory has made significant advances since 1955 but
only very few of those advances have made their way into the problematics of computer-
controlled systems.

And from practical and industrial context, using a package provided by a vendor (pro-
cessor and software COTS) requires little development effort in comparison to develop-
ing everything, which requires a major effort. However, those systems are optimized for

C.3. Mathematical models 121

average-case performance and are difficult to validate for worst-case performance. In many
cases, for instance, personal computer are starting to be used in conjunction with high level
programming languages for process control. However, it would be very hard ,even im-
possible to write safe real-time systems that will be compliant with the safety directives
presented in section 1.4.

The mixture of two signals cause practical and theoretical difficulties. In many cases,
the vision of the system’s behavior at the sampling instants is more than sufficient. This
means that the whole system is only considered at the sampling instants. Such systems are
called discrete-time systems. Again, as introduced in section 1.5.3, discrete models deal
with a finite sequence of finite precision number while continuous-time systems deal with
a non-countable sequence of numbers.

For a detailed explanation of the system and the signals presented in figure C.1, see
section 1.5.3. Such systems, were traditionnaly called Sampled-data systems. All along
this thesis, this term is used as a synonym for Computer-controlled systems.

C.3 Mathematical models

Physical laws allows to elaborate mathematical models of a physical plant. This model is
precise enough to allow the evaluation of dynamical characteristics of the studied system.
In control theory, synthesis of control laws, performance analysis and stability analysis are
done on such models. On the other side, implementators also use such models as bases for
the computer implementations.

The power and use of a model lies in the fact that it can be analyzed and simulated
under hypothetical assumptions while these basis can afterward be used for synthesis of
controllers. In a general case, any dynamical system can be represented by the state space
representation (or state equations). In the standard form the mathematical description of
the system is expressed as a set of n coupled first-order ordinary differential equations (or
difference equations for discrete-time systems). It then facilitates numerical solutions to
various problems.

From continuous-time to discrete-time systems

The sampling process has been defined as the act of taking a small part or a small quantity of
something. In the context of signal processing and control system, sampling means taking
the continuous-time signal and converting it by a sequence of numbers, as explained clearly
in section 1.5.3. It is a fundamental property for computer- controlled systems because of
the discrete- time nature of the digital computer.

Assuming that the plant is represented by the LTI continuous system.

{
ẋ(t) = A x(t) +B u(t)

y(t) = C x(t) +D u(t)
(C.1)

122 Appendix C. Sampled-data models

where:
x(·) is the state vector, x(.) ∈ Rn

y(·) is the output vector, y(.) ∈ Rq
u(·) is the input (or control) vector, u(.) ∈ Rp
A(·) is the state matrix, dim[A(·)] = n× n
B(·) is the input matrix, dim[B(·)] = n× p
C(·) is the output matrix,dim[C(·)] = q × n
D(·) is the feedthrough (or feedforward) matrix, dim[D(·)] = q × p

In this general formulation, all matrices are allowed to be time-variant (i.e., their el-
ements can depend on time). However, in the common LTI (Linear Time Invariant) case,
matrices will be constant.

The system is assumed to have n states, r inputs, and p outputs and where the variable
t denotes the continuous time variable.

As seen in figure C.1, the input yk = y[sk] and the output uk = u[sk] of the computers
are discrete-time signals while the input u(t) and the ouput y(t) of the plant are continuous-
time signal.

As previously, explained, the main problem of computer-controlled systems is the mix-
ture of continuous-time and discrete-time signals and the relationship between these se-
quences of values uk and yk. This problem can be solved bu observing the whole system
only at the sampling instants sk. This implies also that even the continuous-time plant is
also looked upon from this perspective, that is to say by considering the discrete sequences
uk and yk.

It is however emphasized that the physical plant is still in the continuous- time domain
and getting the intersample behavior is impossible.

Such models are also called stroboscopic model as it gives only a snapshoot of the
behavior of the whole system at timed instants. From this assumption, it is quite straight-
forward to get the desciption of the sampled-data system as a state spate model (this model
can also be used to derive other equivalent models such as input/ouput models).

Before going straight into the equation of the sampled model, it is interesting to clarify
some assumptions for simplicity. It assumed that periodic sampling is used, that the sam-
pling period is denoted h and sampling instants are denoted sk = kh (meaning the sk is
the kth sampling instant and for instance u[sk] denotes the kth input sequence). It is also
assumed that the hold device is a zero-order hold (see Section 1.5.3).

The explicit integration solution of the continuous-time linear state equation C.1 is
given by:

x(t) = eA(t−t0 x(t0)) +

∫ t

t0

eA(t−τ) Bu(τ)dτ (C.2)

where x(t0) is the initial state.
If we assume that the input of the plant u(t) is generated by a zero-order hold device

from a sequence u[k]. This implies that u(t) = u[sk] sk ≤ t < tk+1.
Using this assumption and the result of equation C.2, it is obtained that:

C.3. Mathematical models 123

x(t) = eA(t−sk) x[sk] +

∫ t

sk

eA(t−τ)Bu(τ)dτ

= eA(t−sk) x[sk] +

∫ t

sk

eA(t−τ)dτBu[sk]

= eA(t−sk) x[sk] +

∫ t−sk

0
eA(τ)dτBu[sk]

= Φ(t, sk) x[sk] + Γ(t, sk) u[sk]

(C.3)

The second line holds because u(t) is piecewise constant between sampling instants
and takes the value of u(sk). Moreover, if the A-D and the D -A converters (refer to figure
C.1) are perfetcly synchronized and the conversion times are assumed to be negligible,
then the plant input u(t) and the plant ouput y(t) can be regarded as sampled at the same
instants. This gives the equation of the discrete-time system as a function of the sampling
instants sk and ts+1. Moreover, equation C.3, give the changes of the state over a sampling
interval. then by considering things at the next sampling instant, tk+1, we obtain:

x(tk+1) = Φ(ts+1, sk) x[sk] + Γ(tk+1, sk) u[sk]

y(sk) = C x[sk] +D u[sk]
(C.4)

Where

Φ = Φ(tk+1, sk) = eA(tk+1−sk)

Γ = Γ(tk+1, sk) =

∫ tk+1−sk

0
eAτdτ B

Notice that equation C.4 does not involve any approximations and gives the exact val-
ues of the state variable x[ts+1] and the output variable y[sk] at the sampling instants. This
is the ZOH sampling of a discrete-time system. The less commonly used FOH (First Order
Hold) sampling can be is rapidly presented in [Wittenmark 2003]. However, this type of
hold device will not be addressed in this manuscript.

For a constant sampling period h, let’s denote sk = kh = k (only the index of the
sampling instant is enough to represent itself) and x[sk] = x(k), y[tk] = y(k) and u[tk] =

u(k). Also denote that as h is constant, tk+1 − tk = h

This leads to a simplified expression of equation C.4.

x(k + 1) = Φ x(k) +Γ u(k)

y(k) = C x(k) +D u(k)
(C.5)

Where

Φ = eA h

Γ =

∫ h

0
eAτdτ B

124 Appendix C. Sampled-data models

Remark:

The state vector between sampling times can be dervied from equation C.3, which
makes it possible to investigate the intersample behavior of the system.

Note that in most cases, the D matrix equals to 0, because, in computer- controlled
systems, the output y is measured first and the control signal u(k) is then generated as a
function of y(k).

Also, it is common that, in a practical case, there is a significant delay between the A-D
and the D-A operations.

Solution of the discrete-time systems

The previous section has exposed the manner to transform a continuous-time system into
a discrete-time system. This step goes into the goal of this chapter which aims to clarify
the timing problematics of computer-controlled system, because as previously explained,
these systems are a mixture of continuous and discrete-time systems. In this paragraph,
the objective is to show how to find the solution of such discrete-time equation for analysis
purposes.

Considering a discrete-time system of the form C.5. Assuming that the initial state
x(k0) and the input sequences u(k0), u(k0 + 1), are knwon, the solution of such system
can be derived by recursive appproach:

x(k0 + 1) = Φx(k0) + Γu(k0) = Φ x(k0) + Γ u(k0)

x(k0 + 2) = Φx(k0 + 1) + Γu(k0 + 1) = Φ2 x(k0) + ΦΓ u(k0) + Γ u(k0 + 1)

. = .

. = .

. = .

x(k) . = Φk−k0x(k0) + Φk−k0−1Γ u(k0) + ...+ Γ u(k − 1)

. = Φk−k0x(k0) +

k−1∑
j=k0

Φk−j−1Γ u(j)

(C.6)
The solution consists of two distinct parts:

• one part, depending on the initial value of the state x(t0)

• another part, depending on a weighted sum of the inputs over the interval [k0, k − 1].

It shows that the matrix Φ (implying mainly its eigenvalues which are obtained through
the charactersitic equation) will determine the properties of the solutions.

APPENDIX D

Résumé en français

D.1 Introduction

D.1.1 Contexte

Le processus de développement des systèmes avioniques suit des réglementations de sûreté
de fonctionnement très strictes, incluant l’analyse du déterminisme et de la prédictibilité
temporelle des systèmes. L’approche est basée sur la séparation des étapes de conception
et d’implémentation ([Årzén 2000, Xia 2006]). D’une part, le concepteur utilise des hy-
pothèses de périodes d’échantillonnages fixes (sans gigue et sans pertes) et des retards fixes
et connus d’avance. D’autre part, la théorie de l’ordonnancement se concentre principale-
ment sur la problématique du dimensionnement des ressources d’exécution pour respecter
les contraintes de temps-réel fournies par les concepteurs ([Sha 2004]). L’approche la plus
répandue consiste ainsi à considérer des périodes d’échantillonnage fixes et des échéances
dures basées sur une hypothèse de connaissance du pire temps d’exécution (WCET pour
Worst Case Execution Time en anglais) des tâches informatiques constituant le logiciel
embarqué.

Un inconvénient majeur de cette hypothèse est la sous-utilisation des ressources de
traitement induisant des difficultés à la fois techniques, économiques et industrielles. Une
des plus grandes difficultés dans l’approche actuelle se trouve dans la détermination du
WCET, qui est nécessaire pour prouver la satisfaction des contraintes de temps-réel dur du
système. La précision du résultat dépend de la prédictibilité de l’unité de calcul utilisé.
Cependant les nouvelles générations de processeurs ont une architecture peu déterministe
rendant difficile la prédiction des durées d’exécution. Ainsi, simplement estimer le temps
d’exécution d’un simple bloc de base n’est pas trivial à cause des anomalies temporelles
qui peuvent résulter de l’ordonnancement dynamique des instructions, de l’influence sur
l’état du pipeline des blocs de base exécutés avant et après ([Barre 2006]). Actuellement,
plusieurs travaux se proposent de définir des méthodes de plus en plus fiables pour déter-
miner le WCET (e.g. [Khan 2009]) sans toutefois éliminer le conservatisme des résultats
pour les nouvelles générations de processeurs ([Puschner 2008]).

De plus, en supposant la détermination des WCET résolue, cette approche basée unique-
ment sur le “pire cas” est fondamentalement pénalisante du point de vue de l’utilisation des
ressources d’exécution et conduit à un sur- dimensionnement du système dont l’utilisation
moyenne peut être très inférieure à sa capacité maximale. En fait, les systèmes de com-
mande par rétroaction possèdent des propriétés de robustesse et de tolérance aux aléas
temporels d’exécution remettant en cause les considérations de “temps-réel dur” utilisées
habituellement. L’exploitation des ces propriétés de robustesse doit permettre de relâcher

126 Appendix D. Résumé en français

les contraintes d’ordonnancement des tâches de commande et de mieux exploiter les ca-
pacités des ressources d’exécution des contrôleurs.

Pourtant, les méthodes de conception et d’analyse existantes actuelles ne fournissent
pas de modèle assez flexible pour résoudre ce problème dans la conception de systèmes.
De plus, la théorie de l’automatique classique ne propose pas de solution sur le problème
d’utilisation efficace des ressources et la prise en compte des aspects de sûreté de fonction-
nement pour les systèmes qualifiés de “critiques”. Cependant, en considérant les systèmes
de contrôle-commande en boucle fermée, des solutions plus flexibles peuvent être envis-
agées en exploitant les fonctionalités de base de la boucle de commande.

Ce résumé de thèse est organisé comme suit : le chapitre D.2 expose le problème
d’ordonnancement flexible de boucles de commande.

Le chapitre D.3 formalise le problème de séparation d’interêt entre la communauté au-
tomatique et informatique. Ce même chapitre propose de nouvelles conditions de stabilité
pour des systèmes soumis à des incertitudes paramétriques, à des retards et à des variations
de la période d’échantillonnage et propose différents mécanismes de gestion de dépasse-
ment d’échéances.

Le chapitre D.5 présente un cas d’étude où la méthodologie exposée est appliquée au
contrôle de l’axe de tangage d’un avion F-16. Enfin le chapitre D.6 conclut l’article et
propose quelques pistes pour les travaux futurs.

D.1.2 Notations

Dans le reste de ce document, l’ensemble R+, Rn×n et Sn dénoteront respectivement
l’ensemble des réels positifs, l’ensemble des matrices carrées d’ordre n et l’ensemble des
matrices symétriques de Rn×n. L’exposant ‘T ’ indiquera la transposition des matrices. La
notation P > 0, pour P ∈ Sn, signifiera que P est une matrice symétrique définie positive.
Pour toute matrice A ∈ Rn×n, la notation He{A} > 0 signifiera que A+AT > 0.

D.2 Problématique

D.2.1 Les systèmes à considérer et les problèmes d’ordonnancement

Le but d’un système de contrôle-commande est de commander un processus pour l’amener
dans un état répondant aux besoins de l’utilisateur. La majorité de ce type de systèmes est
considérée comme systèmes "embarquée ou enfouis". Ce sont des systèmes qui doivent
réagir à des évènements extérieurs avec ou sans des contraintes temporelles (auquel cas, ils
sont alors appelés systèmes embarqués temps réel) entre autres.

La structure classique de tels systèmes est représentée par la figure D.1
La procédure de commande est composée de 3 phases distinctes: les acquisitions des

mesures, le calcul des signaux de commande et le rafraichissement des actionneurs. Ainsi
ces opérations sont des séquences et sont donc des opérations parfaitement périodiques
dans le cas idéal.

Dans le cas decrit ci-dessus où le contrôleur est un ordinateur embarqué, la loi de com-
mande est un algorithme qui est implémenté sous forme de logiciel. Diverses méthodes

D.2. Problématique 127

Figure D.1: Schéma d’un système de controle-commande digital

sont connues pour l’élaboration des lois de commandes en l’occurence les méthodes tradi-
tionnelles où les lois sont conçues en temps continu et ensuite discrétisés et la conception
directement en temps discret. Toutefois, dans les deux cas, l’échantillonnage et les autres
paramètres temporels sont supposés être parfaitement périodique et la latence est supposée
être inexistante.

Cependant, dans la pratique, plusieurs considérations doivent être pris en compte lors
de l’implémentation en particulier la notion d’ordonnancement.

Comme la loi de commande est pratiquement implémentée sous la forme de tâches
logicielles, il est nécessaire de savoir comment organiser la séquence d’execution des dif-
férentes tâches afin de garantir le bon fonctionnement et le respect des contraintes tem-
porelles.

En effet, le problème d’ordonnancement consiste à organiser dans le temps la réalisa-
tion de tâches, compte tenu de contraintes temporelles (délais, contraintes d’enchaînement,
...) et de contraintes portant sur l’utilisation et la disponibilité de ressources requises. Les
méthodes utilisées pour l’élaboration d’une solution à un problème d’ordonnancement vise
le plus souvent à satisfaire un ou plusieurs objectifs (par ex: coût, délais, qualités de ser-
vice, optimisation de l’utilisation des ressources, stabilité, ...). Ces différents critères sont
appelés des critères de performances.

Les approches traditionnelles de conception et d’implémentation considèrent la con-
naissance du pire temps d’execution: le WCET (Worst Case Execution Time). Un premier
problème qui se pose est la difficulté de determination de cette grandeur (cf [Kirner 2005,
Thesing 2004]).

Dans la section suivante, l’ordonnancement basée sur la connaissance du WCET est
expliquée.

D.2.2 Ordonancement basée sur le pire temps d’execution

Actuellement, les systèmes de commande, comme les commandes de vols ou de freinages,
sont généralement considérés comme des systèmes temps-réel durs. Il est souvent supposé

128 Appendix D. Résumé en français

dès la phase de conception que les tâches logicielles devront s’exécuter de manière stricte-
ment périodique et determinisite. Des créneaux de temps préfixés sont alloués aux tâches
de contrôle, et les dépassements d’échéances et le phénomène de gigue sont interdits. On
considère que toute déviation par rapport à cet ordonnancement idéal est une panne du sys-
tème. La connaissance supposée sûre des WCET est utilisée pour dimensionner le système.
La figure D.2 montre un schéma d’exécution des tâches de contrôle dans ce contexte.

Instants
d’échantillonnage

Temps alloué aux
tâches de commande

Durée pratique
des traitements

Mise à jour
des actionneurs

WCET WCET

Latency

Tex Tex

Tslot = WCET

sk
sk+1

T T

tk

x(sk) x(sk+1)

tk+1

Uimp(tk) = U(x(sk)) Uimp(tk+1) = U(x(sk+1))

Figure D.2: Diagramme temporel d’exécution de tâche basé sur le WCET

Une tâche donnée s’exécute périodiquement sur une fenêtre de temps Tslot = WCET

allouée à son exécution. La tâche est déclenchée à une période sk−sk−1 = T par l’arrivée
des mesures sk, qui représentent l’état du système à l’instant sk. La durée de traitement est
de Tex, qui est toujours inférieure au WCET . Pour éviter la gigue, le signal de contrôle
U(sk)) est seulement appliqué aux actionneurs à la fin de la période, c’est- à-dire à l’instant
sk +WCET .

∀t ∈ [sk +WCET, sk+1 +WCET [, U = U(sk)).

Ainsi, il s’agit d’un système de commande périodique soumis à un retard constant
Tslot = WCET et une période de T . Ce schéma d’exécution implémente bien l’hypothèse
"temps-réel dur". Cependant, le traitement est achevé toujours avant la fin du temps al-
loué et une fraction de la puissance de calcul disponible est inutilisée. La perte en temps
processeur est d’autant plus importante que le WCET s’écarte de la valeur moyenne des
temps d’exécution Tex observés. En effet, les hautes performances des nœuds de calculs
modernes sont dues à l’introduction de mécanismes architecturaux tels que les pipelines,
les mécanismes d’exécution spéculatifs et l’utilisation des mémoires caches à plusieurs
niveaux qui réduisent le déterminisme temporel des processeurs. L’estimation du WCET
devient de plus en plus difficile, et l’étalement de la distribution des temps d’exécution rend
l’approche “pire cas”encore plus conservatrice. ([Souyris 2005]).

Une courbe typique de distribution du temps d’exécution (figure D.3) pour un pro-
cesseur embarqué donné ([Hansen 2009]) montre que l’on s’attend à ce qu’une exécution
proche du WCET soit un événement plutôt rare et qu’un ordonnancement basé sur une
occupation moyenne du CPU plutôt que sur le pire cas donnerait des gains substantiels en
terme de dimensionnement des équipements embarqués.

La validité de l’hypothèse habituelle de temps-réel "dur" mérite donc d’être réexaminée

D.2. Problématique 129

Figure D.3: Distribution caractéristique du temps d’exécution

soigneusement en tenant compte de la robustesse des systèmes de commande par rétroac-
tion. C’est avec cette idée que la prochaine section aborde de la robustesse des systèmes à
boucle de retour.

D.2.3 Robustesse des systèmes bouclés

La robustesse d’un système définit sa capacité à conserver sa stabilité ainsi que des per-
formances spécifiées en dépit de déviations des paramètres réels par rapport au modèle
nominal, c’est une préoccupation constante dans la conception de systèmes de commande.

L’évaluation de la robustesse en utilisant la simulation peut difficilement donner des ré-
sultats exhaustifs pour des systèmes complexes, en raison du nombre important de paramètres
mal connus, susceptibles de varier dans le temps, et de la large combinatoire induite.
La théorie de la commande robuste en automatique est une approche formelle perme-
ttant de concevoir des commandes robustes aux incertitudes des paramètres du modèle
du procédé commandé. Cette notion de robustesse est moins courante en informatique :
[Hamann 2006] propose par exemple une approche formelle d’évaluation de la robustesse
des systèmes embarqués temps-réel, en définissant des métriques de performance informa-
tique de systèmes sur puce.

Cependant le problème de la robustesse de systèmes commandés par rétroaction aux
variations et incertitudes des paramètres temporels d’exécution est jusqu’ici peu abordé.

Il s’agit ici, en complément de la robustesse aux incertitudes du procédé, de prendre en
compte les phénomènes de gigue ou de dépassements d’échéances d’exécution.

Pour des systèmes linéaires SISO, la robustesse est classiquement quantifiée par les
notions de marge de phase, marge de retards et de marge de module. Il apparaît que la
marge de phase implique une marge de retard (c’est-à-dire le retard maximum non modélisé
que le système peut tolérer avant de devenir instable) mais aussi une marge de gigue qui est
plus difficile à quantifier ([Cervin 2004]) mais qui peut être montrée expérimentalement
([Cervin 2003a]).

La robustesse des systèmes asservis peut adresser les perturbations dues aux pertes
d’échantillons, comme expliqué dans [Felicioni 2010], où des pertes sélectives d’échantillons

130 Appendix D. Résumé en français

sont causées volontairement afin d’alléger la charge des unités de traitement et l’engorgement
du réseau de communication tout en préservant la stabilité en boucle fermée du système.

Le point intéressant est qu’un système robuste aux incertitudes de paramètres est aussi,
de manière générale, robuste aux incertitudes temporelles. Les systèmes en boucle fermée,
alors qu’ils sont souvent classés comme systèmes temps-réel durs, sont donc plutôt des sys-
tèmes temps-réel "faiblement durs" (weakly hard real-time systems). Selon [Bernat 2001],
ce sont des systèmes capables de supporter des déviations spécifiées des paramètres temps-
réel d’exécution, tout en maintenant le niveau désiré de performance de commande.

D.2.4 Formulation du problème

Considérons le système linéaire représentant un système de commande avec une entrée
échantillonnée et retardée :

ẋ(t) = (A+ ∆µA(t))x(t) + (B + ∆µB(t))u(t), (D.1)

où x ∈ Rn et u ∈ Rm sont respectivement les vecteurs d’états et d’entrée. Les matrices
A et B sont supposées constantes et connues. Les matrices ∆µA and ∆µB représentent
les incertitudes du modèle qui peuvent être constantes ou variant dans le temps. Ces incer-
titudes sont données sous la représentation polytopique suivante :

∆µA(t) = µ
∑M

i=1 λi(t)Ai, ∆µB(t) = µ
∑M

i=1 λi(t)Bi,

où M correspond au nombre de sommets du polytope. Les matrices Ai et Bi sont
constantes. Le scalaire µ ∈ R, caractérise la grandeur de l’incertitude. Notons que si
µ = 0, alors, il n’existe aucune incertitude sur le système. La fonction λi(.) est une
fonction de pondération convexe, c’est-à-dire que, pour tout i = 1, ..,M et pour tout t ≥ 0,
λi(t) ≥ 0 et

∑M
i=1 λi(t) = 1. On suppose que l’ordonnancement des tâches de commande

induit un délai de calcul Tslot et un échantillonnage du signal de commande. Pour un
gain donné, K ∈ Rn×m, la loi de commande est un retour d’état statique, constant par
morceaux, et de la forme u(t) = Kx(tk′ − Tslot),∀t ∈ [tk′ , tk′+1].

Les instants tk′ représentent les instants où la sortie du contrôleur est actualisée. Le
système en boucle fermée peut ainsi s’écrire :

∀t ∈ [tk′ , tk′+1]ẋ(t) = Ā(t)x(t) + B̄(t)Kx(tk′ − Tslot) (D.2)

où Ā(t) = A+ ∆µA(t) et B̄(t) = B + ∆µB(t).
Plusieurs travaux ont contribué à garantir la stabilité de ce type de système. Dans [Frid-

man 2004b], [Millán 2009] et [Liu 2009], les auteurs ont proposé une formulation agrégée
des retards. Ils ont ensuite développé des critères de stabilité prenant en considération les
effets du retard. Toutefois, ils n’ont pas considéré les différentes natures des retards de
temps de calcul et d’échantillonnage. Quand µ = 0, la discrétisation de ce type de système
est facilement obtenue par l’intégration de l’équation différentielle (D.2) sur l’intervalle
[tk′ , tk′ + τ]. Ainsi, ∀τ ∈ [0, T̄], on obtient :

D.3. Allègement des contraintes temps réels 131

x(tk′ + τ) = Ã(τ)x(tk′) + B̃(τ)Kx(tk′ − Tslot),
Ã(τ) = eĀτ , B̃(τ) =

∫ τ
0 e

Ā(τ−θ)dθB̄.
(D.3)

On définit alors pour tout entier k′, la fonction χTslotk′ : [0, NT] × [−Tslot, 0] → Rn
telle que ∀τ ∈ [0, NT] et θ ∈ [−Tslot, 0], χk′(τ, θ) = x(tk′ + τ + θ). L’ensemble KTslot

NT

représente l’ensemble des fonctions définies par χTslotk , continues de [0, NT]× [−Tslot, 0]

vers Rn.
Toutefois, la même méthode de discrétisation conduit à d’importantes difficultés quand

le système contient des intervalles d’échantillonnage variables et des paramètres variants
dans le temps. Ceci montre la nécessité d’introduire de nouvelles conditions de stabilité qui
soient adaptées à ce type de problèmes. Dans la thèse, une méthode innovante est proposée
pour évaluer la stabilité des systèmes soumis à des échantillonnages variables, à des retards
constants et à des incertitudes de paramètres variants dans le temps.

D.3 Allègement des contraintes temps réels

Dans la partie précédente, les problématiques des ordonnancements basés sur le pire temps
d’éxécution ont été mises en évidence. Une proposition de solution consiste à alléger
les contraintes temps réel. Dans ce chapitre, il sera exposé le principal motivation de
cette thèse qui conduit directement à définir ses objectifs généraux suivi d’une description
simplifiée des contributions.

D.3.1 Mise en évidence de la séparation d’interêt

Cette section est intéressante car elle permettra de mettre en valeur les différentes contri-
butions de la thèse.

Dans le cadre des systèmes de contrôle-commande, les méthodes de developpement
mise en oeuvre sont des méthodes classiques qui consistent en plusieurs étapes séparées.
Les différentes étapes classiques utilisées actuellement dans le monde industriel sont com-
posées d’une étape de conception, et d’une étape d’implémentation, suivie ensuite de
plusieurs étapes de vérification et de tests comme le montre la figure D.4.

Cependant, lors du developpement du système, il y a traditionnellement une forte sé-
paration d’interêt entre la conception et l’implémentation.

D’une part, la communauté automaticienne suppose que les paramètres temporels sont
parfaitement connus et constants. Ces hypothèses de départ ne reflètent pas correctement la
réalité mais toutefois, conviennent parfaitement aux outils d’analyse et de synthèse dédiés
aux systèmes échantillonnés.

Ces hypothèse ont conduit la communauté temps réel, d’autre part, à considérer les sys-
tèmes de contrôle commande comme étant des systèmes temps réel dur. L’implémentation
la plus classique consiste à implementer physiquement les lois de commande avec des
tâches périodiques. Un mapping entre les paramètres temporels de ces tâches sont faits
avec les paramètres temporels de la loi de commande. Un exemple classique, dans un cas

132 Appendix D. Résumé en français

Figure D.4: V-Life cycle for aircraft development

simpliste, consiste à considérer la période d’échantillonnage du système comme étant égale
à la périodicité de la tâche dans le cas d’une tâche périodique [Liu 1973].

Cette séparation a comme avantage de permettre à chaque communauté de se concen-
trer sur leur domaines respectives et s’est avéré être viable dans plusieurs situations.

Cependant, cette manière de faire a conduit à une incompréhension mutuelle des be-
soins et contraintes de chaque communauté. Les conséquences directes impactent les per-
formances des systèmes implémentés et la difficulté de mise en oeuvre. En effet, avec
l’évolution et le développement de la technologie, de la connaissance et des composants,
des exigences et des contraintes sans cesse grandissantes existent. Ceci conduit à la com-
plexité des systèmes et requiert l’adaptation des méthodes. Dans la réalité, le fait de con-
sidérer que l’échantillonnage est parfait et qu’on peut complètement ignorer la variabilité
des retards (et/ou considérer clairement que ces retards sont inexistants) n’est qu’une vision
hypothétique et simplifié de la réalité.

Il a été montré (ex: [Louise 2002, Thesing 2004]) que la complexité des unités de cal-
culs (pipeline à plusieurs niveaux, mémoire caches,...) introduite pour augmenter les per-
formances de traitements augmente les difficultés pour calculer le WCET et des temps
d’éxecution effective des tâches executées. Or, il est connu qu’un retard non considéré
entre la mesure et le rafraichissement de la commande, une variation non prise en compte
dans l’échantillonnage dégradent la qualité et la performance de la commande.

Pour pallier ces problèmes, la théorie de l’automatique a évolué en prenant en compte
différents types de variabilités (retards, échantillonnages, pertes de paquets, ...).

Plusieurs travaux ([Seuret 2006, Naghshtabrizi 2006] proposent des approches inno-

D.3. Allègement des contraintes temps réels 133

vantes et intéressantes. Toutefois, ces travaux sont plus orientés vers les analyses de stabil-
ité et ne considèrent pas la problématique de l’implémentation sur calculateur.

D’un autre côté, la communauté informatique temps réel s’efforce à réduire les variabil-
ités des paramètres d’execution sur une cible donnée en améliorant les méthodes d’analyse
de temps d’éxecution (par exemple: analyse des algorithmes de remplissage des mémoires
caches [Louise 2002,Thesing 2004] , analyse statique de programmes [Reineke 2007,Cull-
mann 2010, Burguière 2006], ...

Il est donc souhaité d’intégrer la prise en compte de ces perturbations à la fois dans la
conception et l’implémentation. C’est ainsi que des notions comme la conception conjointe
commande-ordonnancement [Simon 2006a,Xia 2006] , le "control-aware computing" et le
"computing-aware control" (cf: [Aubrun 2010]) ont vu le jour.

Ces notions mettent en avant la prise en compte de des contraintes d’implémentation
informatique d’un système lors de la conception des lois de commande et vice versa con-
sidère lors de l’implémentation des contraintes de paramètres qui peuvent influer sur la
performance de commande

D.3.2 Objectifs généraux de la thèse

Nous souhaitons améliorer l’utilisation des ressources de calcul tout en préservant la sta-
bilité et les performances du système. Nous proposons donc de relâcher les contraintes
temps-réel selon l’ordonnancement et les objectifs de commande suivants (Figure D.5) :

Reduced Computing Slot

BCET
(Best Case Exec. Time)

Tslot WCET
(Worst Case Exec. Time)

Execution Time
Tex

h1 h2

Tslot Tslot

Tex

sk
sk+1

T T

x(sk) x(sk+1)

t
k′

Instants
d’échantillonnage

Temps alloué aux
tâches de commande

Durée pratique
des traitements

Mise à jour
des actionneurs

Tslot < WCET

t
k′+1

Tslot

TexTex

Dépassement de
l’échéance
Arrêt des calculs

sk+2

x(sk+2)

U(x(sk)) U(x(sk+2))

Figure D.5: Proposition de diagramme temporel d’exécution de tâche

L’échantillonnage des données capteurs est toujours effectué périodiquement (de péri-

134 Appendix D. Résumé en français

ode T). Un temps Tslot < WCET est maintenant alloué à la tâche de contrôle. Le signal
de contrôle obtenu est envoyé aux actionneurs à la fin du temps Tslot, c’est-à-dire que
U(sk)) est envoyé à l’instant sk + Tslot, où Tslot représente le retard tel que :

∀t ∈ [sk + Tslot, sk+1 + Tslot[, U = U(sk).

Cependant, avec une allocation de temps d’exécution réduite, il peut arriver que occa-
sionnellement une tâche de contrôle dépasse son échéance. Il est alors proposé d’arrêter
le traitement en cours, de maintenir la précédente valeur de commande U(sk)) pendant la
prochaine période, et de lancer un nouveau traitement utilisant la nouvelle mesure. Ainsi,
si le non respect de l’échéance se fait à l’instant sk + Tslot, le signal de contrôle est :

∀t ∈ [sk + Tslot, sk+2 + Tslot[, U = U(sk),

et pour N violations d’échéance consécutives :

∀t ∈ [sk + Tslot, sk+N + Tslot[, U = U(sk).

En d’autres termes, un nouveau signal de commande est envoyé aux actionneurs, si et
seulement si l’exécution de la tâche de contrôle s’est terminée correctement. La commande
est appliquée à des instants non équidistants tk′ tels que :

tk′ = sk + Tslot si Tex ≤ Tslot,

où k′ est un entier positif qui représente le nombre des entrées calculées avant sk =

kT . Ainsi, les entrées du système peuvent être asynchrones puisque l’intervalle entre deux
instants d’échantillonnage tk′+1 − tk′ varie dans le temps mais reste toutefois bornée entre
T et NT . Les nouveaux instants d’échantillonnage sont alors tk′+1 − tk′ = αT , où α est
un entier [1, ..., N]. L’échantillonnage asynchrone est déterminé par le couple (T,N).

Comme il a déjà été observé et exploité ([Cervin 2002, Felicioni 2010]), un système
de commande en boucle fermée peut rester stable malgré des aléas temporels d’exécution,
au prix d’une dégradation contrôlable des performances. Ainsi, étant donnés un système
LTI, une loi de commande, une distribution des temps d’exécution sur l’unité de calcul et
une spécification des paramètres d’ordonnancement nominaux, les problèmes à résoudre
peuvent être formulés comme suit :

• Trouver N , le nombre maximal de dépassements d’échéances consécutifs avant in-
stabilité du système en boucle fermée;

• Trouver une valeur adéquate de Tslot pour gérer le compromis entre qualité de com-
mande et utilisation des ressources;

• Évaluer la robustesse du système en boucle fermée asynchrone par rapport aux in-
certitudes sur les paramètres du processus.

La méthodologie à appliquer afin d’atteindre les objectifs fixés sont résumés dans la
figure D.6.

D.3. Allègement des contraintes temps réels 135

Pour améliorer l’efficacité de l’utilisation des ressources des ordinateurs embarqués,
tout en maintenant la stabilité et la performance de commande, la thèse propose d’alléger
les contraintes temps réel en se basant sur la robustesse des lois de commande en boucle
fermée. Le processus d’analyse complète est proposé dans la suite afin de formaliser la
manière de faire qui résultera au choix optimal du temps d’exécution qui sera alloué à une
tâche de commande pour un système donné.

Figure D.6: Méthodologie d’analyse

Dans la phase préliminaire de l’analyse, les éléments suivants doivent être spécifiés:

• Le modèle mathématique du système. Ce modèle peut être exprimé sous des formes
classiques (modèles d’état ou fonctions de transfert)

• les lois de commande

• une estimation du WCET afin d’avoir un temps alloué de référence pour les tâches de
commande (remarque: une approche statistique comme présentée dans [Bernat 2003]
du problème est idéale.

• une spécification des performances de commande et de la sureté que le système doit
avoir. Ces éléments permettent de définir les objectifs du système sur le compromis
qui doit être fait entre la sureté d’exécution (la sureté d’exécution peut être consid-
éré comme étant la garantie de ne pas dépasser les échéances) et les performances
de commande. Un autre exemple serait les spécifications de certification. En ef-
fet, les organismes de certification pourraient demander des justificatifs sur les per-
formances atteignables, les quantifications des taux d’évènements indésirables, le
fonctionnement au pire cas. . . . Ces genres d’informations permettront de définir les
objectifs à atteindre par le système et ainsi permettront de formaliser le processus de

136 Appendix D. Résumé en français

compromis à faire (à remarquer que cette formalisation n’a pas été faite dans le cadre
de cette thèse et donc fera partie des perspectives de recherche [cf D.6]).

D.3.3 Analyse de stabilité

D.3.3.1 Systèmes nominaux

Dans cette section, une étude de la stabilité asymptotique des solutions du système échan-
tillonné (D.1) avec µ = 0 est présentée. Ici, la contribution est basée sur les conditions de
stabilité asymptotique développées dans [Seuret 2011a].

Theorem 4 Considérons un entier N et deux réels positifs Tslot et T . Supposons qu’il
existe Q > 0, R1 > 0 et R2 > 0 ∈ Sn, P > 0, U > 0, S1 ∈ S2n et S2, X ∈ R2n×2n,
Y ∈ R5n×2n qui satisfont aux conditions suivantes, pour j = 1, 2, :

Ψ1(A,B) = Π1(Tslot) + TjΠ2 + TjΠ3 < 0,

Ψ2(A,B) =

[
Π1(Tslot)− TjΠ3 TjY

TjY
T −TjU

]
< 0,

(D.4)

où T1 = T , T2 = NT et

Π1(Tslot) = He{NT
1 PN0 − Y N12 −NT

2 S2N12}
+MT

1 QM1 −MT
2 QM2 −MT

5 R1M5 −NT
12S1N12

+MT
0 (R1 + TslotR2)M0 −MT

12R2/TslotM12

Π2 = NT
0 UN0 + He{NT

0 (S1N12 + ST2 N2)},
Π3 = NT

2 XN2,

et

M0(A,B) = [A 0 0 BK 0] , M1 = [I 0 0 0 0] ,

M2 = [0 I 0 0 0] , M3 = [0 0 I 0 0] ,

M4 = [0 0 0 I 0] , M5 = [0 0 0 0 I]

N0 = [MT
0 (A,B) MT

5]T , N1 = [MT
1 MT

2]T ,

N2 = [MT
3 MT

4]T , M12 = M1 −M2,

N12 = N1 −N2.

Le système (D.2) est alors asymptotiquement stable pour tout échantillonnage asyn-
chrone et retard définis respectivement par (T,N) et Tslot

Proof 4 La preuve de ce théorème ne sera pas détaillée dans ce résumé mais est disponible
dans [Seuret 2011a].

Il est à noter que les conditions du théorème 4 incluent les propriétés de stabilité robuste
par rapport au retard en entrée Tslot. Ceci signifie que (D.4) requiert que le système soit
stable au moins pour un retard de transmission Tslot et une période T = Ti.

D.4. Les scénarii d’allègement des contraintes 137

D.3.3.2 Systèmes soumis à des incertitudes

Dans cette section, nous considérons que µ n’est pas nul. Nous allons donc étendre le
théorème précédent pour couvrir le cas des systèmes soumis à des incertitudes variant dans
le temps. Dans le théorème précédent, les conditions dépendent linéairement des matrices
du modèle continu du système. Le corollaire suivant présente une extension de ce théorème
au cas des système incertains ou à temps variant.

Corollary 2 Soient un entier N et les scalaires positifs Tslot, T et µ. Soient les matrices
Q, R1, R2, P , U , S1 et S2 comme dans le théorème 4 et Xi ∈ R2n×2n, Yi ∈ R5n×2n qui
satisfont aux conditions suivantes, pour i = 1, . . . ,M et j = 1, 2 :

Ψ1(Ai, Bi) < 0, Ψ2(Ai, Bi) < 0, (D.5)

où les éléments du polyto-pe Ai = A + µAi et Bi = B + µBi. Le système (D.2) est
alors asymptotiquement stable pour la période d’échantillonnage définie par T et le retard
défini par Tslot.

Proof 5 Considérons les conditions de stabilité décrites dans le théorème 4. En notant que

M0(Ā(t), B̄(t)) =
∑M

i=1 λi(t)M0(Ai, Bi),

et en introduisant les matrices variables Y (t) =
∑M

i=1 λi(t)Yi et t) =
∑M

i=1 λi(t)Xi et
en utilisant le complément de Schur, on remarque que les deux conditions sont linéaires par
rapport aux matricesM0i andN0i et donc, pour j = 1, 2, Ψj(Ā(t), B̄(t)) =

∑M
i=1 λi(t)Ψj(Ai, Bi).

D.4 Les scénarii d’allègement des contraintes

Comme il a été mentionné précédemment, et reporté dans [Cervin 2002], les systèmes de
commandes sont cités comme étant des systèmes temps réel durs. Toutefois, cette affir-
mation est donnée sans argumentation tangible. Or, selon [Cervin 2003a, Cervin 2005, Si-
mon 2006b], les systèmes en boucle fermée présentent une robustesse naturelle vis à vis
des incertitudes liées aux paramètres du processus. Ces travaux, affirmations et experimen-
tations nous permettent d’affirmer qu’un système en boucle fermée peut garder sa stabilité
malgré la présence d’incertitudes ou la présence de perturbations.

Les perturbations temporelles et incertitudes de modèles sont considérés dans ce travail
de thèse.

Afin de pallier à ces perturbations, la thèse propose des scénarii de gestion de violation
de deadline. Comme mentionné dans [Cervin 2005], plusieurs modèles de gestion de dé-
passement sont proposés dans cette thèse, par exemple Skip, Abort ou Queue. Tous ces
scénarii supposent que les tâches s’éxécutent de manière périodique et que les temps de
calculs des lois Tslot sont plus petits que le WCET (voir figure D.7).

Pour être le plus proche possible des pratiques classiques, il faut que les tâches de con-
trôles soient périodiques et soient lancées au moment de l’arrivée des nouvelles mesures.
En réduisant le temps alloué aux tâches en dessous de la valeur maximale, WCET, on per-
met l’utilisation plus efficace des ressources de calculs. De plus, comme les temps Tslot

138 Appendix D. Résumé en français

Figure D.7: Reduced computing slot

sont modélisés dans les systèmes en boucle fermée comme des latence d’E/S (Entrées-
Sorties de bout en bout), la réduction de cette grandeur résultera naturellement aussi à de
meilleures performances de commandes. Toutefois, la réduction de la latence occasionnera
aussi des dépassements d’échéances ce qui entrainera la perte "des calculs en cours" dans
le cas où on prend le scénario "Abort" (expliqué ci-dessous).

Il est attendu que les perturbations dûes à la variabilité des temps d’éxecution et aux
pertes d’échantillons occasionnelles dans la boucle de commande soient compensés par le
gain obtenus par la réduction du retard de bout en bout (et éventuellement de la réduction
de la période d’échantillonnage qui s’ensuit).

1 Abort Les mesures sont supposées être toujours périodiques de période T , et leur arrivée
activent le lancement des tâches de commandes. Le temps Tslot que l’on alloue main-
tenant aux tâches de commande est dans ce cas-ci strictement inférieur au WCET (
Tslot < WCET). L’envoie des nouvelles commandes aux actionneurs arrivent à la
fin de temps Tslo, c’est à dire U(x(sk)) est envoyé à l’instant sk + Tslot, et le retard
est égal à une valeur constante Tslot

∀t ∈ [sk + Tslot, sk+1 + Tslot[, U = U(x(sk)).

Tslot Tslot

Tex

sk
sk+1

T T

x(sk) x(sk+1)

t
k′

Instants
d’échantillonnage

Temps alloué aux
tâches de commande

Durée pratique
des traitements

Mise à jour
des actionneurs

Tslot < WCET

t
k′+1

Tslot

TexTex

Dépassement de
l’échéance
Arrêt des calculs

sk+2

x(sk+2)

U(x(sk)) U(x(sk+2))

Figure D.8: Abort scheduling pattern

D.4. Les scénarii d’allègement des contraintes 139

Toutefois, dans le cas présent, il arrive qu’occasionnellement une échéance tem-
porelle est manquée : dans ce genre de cas, le scénario propose d’avorter ("de tuer"
et non pas préempter) la tâche actuelle, de maintenir les anciennes valeurs des entrées
(résultats de calculs pour la mise à jour des actionneurs) pour la prochaine période
et recommencer un calcul propre avec les nouvelles mesures des capteurs. Dans ce
cas, le signal de commande U(x(sk)) est gardé pour une période en plus si le dé-
passement d’échéance arrive à l’instant sk+Tslot. Ceci implique qu’un dépassement
d’échéances entraine la perte de l’échantillon en cours.

∀t ∈ [sk + Tslot, sk+2 + Tslot[, U = U(x(sk)),

et pour N dépassements consecutives d’échéances:

∀t ∈ [sk + Tslot, sk+N + Tslot[, U = U(x(sk)).

En d’autres mots, un signal de commande nouvellement calculé est envoyé aux ac-
tionneurs à des instants non équidistants tk′ et ne sera envoyé que si et seulement si
le calcul a été mené à termes avec succès.

tk′ = sk + Tslot if Tex ≤ Tslot,

où k′ est un entier positif représentant le nombre de valeurs d’entrée avant sk = kT .

Alors, l’entrée de la commande est considéré comme asynchrone (au sens signifiant
non périodique) parce que la durée entre deux instants d’échantillonnage successifs
tk′+1 − tk′ devient variant dans le temps. Cependant cette grandeur est aussi bornée
par T et NT . Ainsi, tk′+1 − tk′ = αT , dans lequel l’entier α ∈ [1, ..., N] et les
paramètres d’échantillonnage est déterminé par le couple (T,N).

2 Abort’ Là encore, une fenêtre de temps Tslot < WCET est allouée à l’exécution de la
tâche de commande. Cependant, la période d’échantillonnage est réduite de la même
quantité. Ainsi le reste du temps, qu’on notera Tothers sera plus grande. Dans ce cas,
une attente d’amélioration de la performance de commande est attendue à la fois par
la réduction de latence mais aussi par la réduction de la période d’échantillonnage
(Figure D.9).

A première vue, du point de vue de l’implémentation en informatique, ces deux scénarii
peuvent être difficile à implémenter. En effet, dans le cas d’un dépassement d’échéances,
il est nécéssaire d’avorter instantanément la tâche de commande en cours et de recom-
mencer proprement une nouvelle instance dans la prochaine périodicité avec des nouvelles
mesures. Ce modèle de fonctionnement est difficile à implémenter dans un cas pratique
(ex: dans le cas d’un thread POSIX en langage C), dans lequel le corps de la thread est
la fonction implémentant la loi de commande, ne peut pas être aussi facilement " tué" et
recommencé dans les contextes des besoins des scénarii décrits.

140 Appendix D. Résumé en français

Tinit Tinit

Wcet Wcet

Tslot Tslot

Tslot = WCET

Tslot < WCET

CAS 1

CAS 2

Tslot < WCET
T < Tinit

T = Tinit

T = Tinit

Cas Initial

Tinit Tinit

Tnouv Tnouv

Tslot TslotTautres

Tautres

Tothers

Tautres_nouv

Figure D.9: Abort and Abort’ scheduling cases

3 Skip Pour le cas nominal ce scénario est similaire au Cas 1, où la période d’échantillonnage
de la tâche de commande est maintenue égale au cas initial. Cependant, en cas de dé-
passement d’échéances, plutôt que d’abandonner l’execution de l’instance en cours ,
la tâche continue son calcul à termes.

L’exécution de la tâche qui a commencé pendant l’intervalle de Tslotk continue pen-
dant la tranche suivante affecté à cette tâche (Tslotk+1

) , et éventuellement sur les
créneaux suivants Tslotk+n , jusqu’à sa finition.

Le dernier signal de commande calculé est maintenu comme valeur de rafraichisse-
ment des actionneurs jusqu’à ce qu’un nouveau signal de commande ait été envoyé
aux actionneurs.

La figure D.10 montre le cas où U(x(sk) est maintenu jusqu’à sk+2 +Tslot en raison
du dépassement d’échéance dans l’intervalle de Tslotk+1, ce qui a pour conséquence
que le calcul d’un nouveau signal de commande n’est pas fini.

Notez qu’ici le signal de commande envoyé à l’instant sk+2 + Tslot est U(x(sk+1))

et est calculée en utilisant les mesures sk+1 obtenu une période avant.

Tslot Tslot

Tex

sk
sk+1

T T

x(sk) x(sk+1)

t
k′

Sampling sensors

Computation slots
dedicated to control

Effective computing
times

Application of control
to the actuators

Tslot < WCET

t
k′+1

Tslot

Tex

sk+2

x(sk+2)

U(x(sk)) U(x(sk+1))

Tex

Deadline miss

Figure D.10: Skip scheduling pattern

D.4. Les scénarii d’allègement des contraintes 141

4 Spare Notez qu’une certaine réserve de temps de calcul peut être faite à l’intérieur de
la fenêtre de temps Tothers. Usuellement, ce temps en réserve peut être utilisé pour
des activités annexes de l’unité de calcul, mais peut aussi être utilisé pour gérer des
activités sporadiques, comme la gestion de dépassement d’échéances (Figure D.11).

Dans ce cas, si la fenêtre de temps libre est suffisamment grande pour terminer le
calcul en cours d’exécution, le signal de commande peut être envoyé soit juste à la
fin de la fenêtre de temps (cela pour minimiser la latence d’E/S) où à la fin de la
période (dans l’idée de minimiser la gigue de sortie).

Les calculs qui ne sont pas finis dans cette fenêtre de temps pourront continuer dans
la fenêtre de temps disponible dans la prochaine périodicité jusqu’à leurs complé-
tions.

Tslot Tslot

Tex

sk
sk+1

T T

x(sk) x(sk+1)

t
k′

Sampling sensors

Computation slots
dedicated to control

Effective computing
times

Application of control
to the actuators

Tslot < WCET

Tslot

Tex

x(sk+2)

U(x(sk+2))

Tex

U(x(sk))

t
k′+1

sk+2

Deadline miss

U(x(sk+1))

Spare
Slot

Spare
Slot

Figure D.11: Slipping on a spare slot

5 Skip’ En combinant les deux cas précédent (2 et 3), on peut proposer de réduire la
période d’échantillonage selon la réduction Tslot (comme dans le cas Abort’), et
d’adopter le schéma Skip pour la gestion des dépassements d’échéance.

7-> Just-in-time Dans les cas précédents, le signal de commande nouvellement calculé
est envoyé aux actionneurs et ensuite l’unité de calcul attend la fin du temps al-
loué Tslot. Ceci pour permettre la minimisation des gigue mais surtout pour assurer
l’équidistance de l’échantillonage aux niveaux des actionneurs. Cependant, une al-
ternative consiste à envoyer directement le signal de commande, dès sa disponibilité,
aux actionneurs. En suivant l’idée exposé dans [Buttazzo 2007], le résultat attendu
consiste en la compensation des perturbations dues aux gigues de sortie. Ce scénario
Just-in-time peut être combiné avec un ou plusieurs des scénarii présentés aupara-
vant dans cette section.

. . .

En réalité, la combinaison des différents scénarii avec différents gestionnaire de dé-
passement d’échéance est potentiellement nombreuse. La meilleure combinaison est le
résultat d’un compromis à évaluer au cas par cas selon les algorithmes de commande pro-
posés, les caractéristiques des processus à contrôler, les caractéristiques des ressources
d’éxécution (processeur, mémoire, ...), des contraintes de sécurité et des différentes con-
traintes de certification

142 Appendix D. Résumé en français

Variable Nominal xcg = 0.3c̄ xcg = 0.38c̄

VT (ft/s) 502.0 502.0 502.0
α(rad) 0.03691 0.03936 0.03544
θ(rad) 0.03691 0.03936 0.03544

Q (rad/s) 0 0 0
Thtl (0-1) 0.1385 0.1485 0.1325
El (deg) -0.7588 -1.931 -0.05590

Table D.1: Conditions de vols pour la simulation

D.5 Etudes de cas

D.5.1 Application analytique de la méthode

Cette étude de cas utilise l’approche précédente de robustesse à l’ordonnancement temps-
réel relâché de la commande de tangage d’un avion. Nous considérerons seulement un des
modes longitudinaux de l’avion, que l’on appelle “le mode oscillatoire à courte période”.

Ce modèle est linéarisé avec des conditions nominales de vols données fournis par un
ouvrage de référence du domaine ([Stevens 2003]) :{

Eẋ = Fx+Gu,

y = Cx.
(D.6)

Le vecteur d’état est x =
[
α θ q

]
où α est l’angle d’attaque, θ est l’angle de tangage,

q est la vitesse de tangage, le vecteur d’entrée u = δE contient uniquement la déflection de
la gouverne de profondeur de l’avion, dont les paramètres sont résumés dans le tableau D.1.

E =

VT − Zα̇ 0 0

0 1 0

−Mα̇ 0 1

, H =

180
π 0 0

0 180
π 0

0 0 1

,
G =

Zδe0

Mδe

, F =

Zα −g′0sinγe VT + Zq
0 0 1

Mα 0 Mq

. (D.7)

On note que la matrice E est toujours inversible dans les conditions normales de vols.
Les paramètres du modèle sont données à partir du modèle standard d’avion fourni par
([Stevens 2003]).

En pratique, un filtre passe-bas est systématiquement rajouté à la lecture de l’angle
d’attaque α. La dynamique de la gouverne de profondeur ainsi qu’un intégrateur agissant
sur la consigne (pour assurer une erreur nulle en régime permanent) sont ajoutés au système
initial. Le vecteur d’état devient[

α q δE αF β
]

où αF est la mesure de α filtré, et β est la sortie de l’intégrateur.
Le modèle d’état complet est : {

ẋ = Ax+Bu,

y = Cx,
(D.8)

D.5. Etudes de cas 143

où A = E−1F et B = E−1G. Dans ce cas d’étude, les paramètres sont ceux d’un avion
F16 bien documenté dans la littérature ([Stevens 2003] par exemple).

Les paramètres de vol nominaux à altitude nulle donnent le modèle numérique suivant :

A =

−1.01887 0.90506 −0.00215 0 0

0.82225 −1.07741 −0.17555 0 0

0 0 −20.2 0 0

10.0 0 0 −10 0

0 −57.2958 0 0 0

,

B =

0

0

20.2

0

0

, C =

0 0 0 57.2958 0

0 57.2958 0 0 0

0 0 0 0 1

.
(D.9)

Un contrôleur par retour de sortie u = Ky = −kααF −kqq−kiβ est conçu en utilisant
les techniques de placement de pôle classique, donnantK = [−0.04238;−0.4098; 0.8426].
La période d’échantillonnage du contrôleur est fixée à T = 0.08sec et le temps d’exécution
d’une tâche de contrôle supposé égal à WCET = 0.02 sec (en supposant qu’il existe 4
contrôleurs qui se partagent l’unité de traitement). Les matrices Ai et Bi, éléments de la
combinaison convexe ∆µA(t) et ∆µB(t) sont définies dans un polytope à deux sommets
définis parAi = (−1)iA etBi = (−1)iB pour i = 1, 2. Le principe consiste à commencer
l’analyse en partant des hypothèses classiques “au pire cas” décrites dans la figure D.2, où
une fenêtre de temps égale au WCET est allouée à la tâche de contrôle avec une période
T et ensuite à réduire pas à pas cette grandeur. Deux scénarios sont alors considérés dans
l’étude (Figure D.12) :

Cas 1 : Une fenêtre de temps Tslot < WCET est allouée à la tâche, et la période du
système garde sa valeur initiale Tinit. Dans ce cas, un gain en temps de traitement est
obtenu (qui pourra être utilisé pour d’autres activités du processeur) avant l’arrivée de
la prochaine activation. Des améliorations sont alors attendues grâce à la réduction
du retard de WCET à Tslot;

Cas 2 : Un temps Tslot < WCET est alloué à la tâche de contrôle, mais cette fois la
période du système est aussi réduite de la même quantité, soit Tnouv = Tinit −
(WCET − Tslot). Dans ce cas, des améliorations sont attendues à la fois par la
réduction du retard et de l’intervalle d’échantillonnage.

Les conditions de stabilité du théorème 4 sont utilisées pour trouver des liens entre le
gain en temps de traitement (que l’on note ε = Tslot

WCET) et N , le nombre maximum de
dépassements d’échéances (et donc de perte d’échantillon) consécutifs tolérables avant in-
stabilité du système. L’analyse du Cas 1 (partie gauche de la figure D.13), montre que
la tolérance aux dépassements d’échéance du contrôleur, mesurée par N , croît quand
Tslot et donc le retard sont réduits. Cette expérience montre aussi qu’une grande incer-
titude des paramètres du système (µ croissant)réduit la robustesse du contrôleur aux pertes
d’échantillons. Dans le Cas 2, (partie droite de la figure D.13), la robustesse du système aux

144 Appendix D. Résumé en français

Tinit Tinit

Wcet Wcet

Tslot Tslot

Tslot = WCET

Tslot < WCET

CAS 1

CAS 2

Tslot < WCET
T < Tinit

T = Tinit

T = Tinit

Cas Initial

Tinit Tinit

Tnouv Tnouv

Tslot TslotTautres

Tautres

Tothers

Tautres_nouv

Figure D.12: Ordonnancements proposés

dépassements d’échéances est encore améliorée du fait que ce scénario d’ordonnancement
induit à la fois une réduction de l’intervalle d’échantillonnage et du retard.

Cependant, la réduction de Tslot augmente manifestement le risque de perte d’échantillon.
Pour une distribution de temps d’exécution donnée, la probabilité de dépasser une échéance
varie de 1 à 0 lorsque le facteur d’ordonnancement ε varie de 1 (Tslot = WCET) à une
valeur minimale Tslot = BCET (Best Case Execution Time).

En supposant que les durées d’exécution des tâches sur des intervalles successifs sont
des variables indépendantes, la probabilité d’occurrence d’un évènement où l’on atteint le
nombre maximal de dépassements d’échéances consécutives admissibles est donnée dans
la figure D.14 pour les deux scénarios décrits et pour différentes valeurs de µ.

La propriétés d’indépendance est requise par les différents hypothèses considérés dans
de la méthode de construction du profil d’exécution sur l’unité de calcul considéré (figure
D.14). Cette méthode se base théoriquement sur la notion de EVT (Extreme Value Theory),
comme présenté dans [Petters 2007].

Cependant cette propriété d’indépendance des temps de calcul est à vérifier. En effet, il
est possible que des jeux d’entrées identiques donnent des temps d’exécution semblables.
Seul une validation expérimentale permettra de valider ou non cette hypothèse.

Cette valeur peut être utilisée comme métrique de conception en alternative à l’approche
du pire cas. Ainsi, pour un scénario d’ordonnancement considéré et une hypothèse sur les
incertitudes du système, il est facile de calculer la valeur de ε correspondant à un taux de
défaillance spécifié.

D.5.2 Validation par simulation

Selon la figure D.6, il est important de vérifier que les résultats obtenus tout au long du pro-
cessus d’analyse sont corrects. Ces vérifications se feront en premier lieu par simulation,
et ensuite de préférence par experimentation sur cible directe.

La première étape consiste à vérifier que les résultats obtenus dans le calcul des LMI

D.5. Etudes de cas 145

Figure D.13: Nombre maximum de dépassements d’échéances consécutifs admissibles

146 Appendix D. Résumé en français

Figure D.14: Probabilité d’atteindre le nombre maximum de dépassement d’échéance con-
sécutive admissible

D.5. Etudes de cas 147

dans la section D.3.3 appliqués à l’étude de cas présenté dans la section D.5.1. L’outil
TrueTime [Cervin 2009]a été choisi pour faire la simulation. Le choix est justifié par le fait
que cet outil est orienté conception conjointe conception ordonnancement ([Cervin 2003a].
De plus les fonctionnalités disponible de l’outil permettent de simuler, par programmation,
des pertes d’échantillonnage, des avortements de tâches temps réels,

Simulation sur modèle linéaire

Le modèle de simulation est exactement le même modèle que celui utilisé pour les calculs.
La différence réside dans le fait que cette fois, il est implémenté sous l’outil Mathworks
Simulink.

Figure D.15: Pitch Control System with a TrueTime Controller

Le modèle de simulation en TrueTime & Simulink est donné par la figure D.15
Ce modèle intègre un objet TrueTime Kernel pour simuler l’ordinateur embarqué et par

le biais duquel, il est possible d’implémenter des tâches de commandes avec les paramètres
d’éxecution nécéssaires et les scénarios de gestion de dépassement d’échéances souhaités.

Le modèle de processus à contrôler intégré dans ce modèle est composé d’un com-
posant simulink "State Space Blockset". Cet objet permet d’insérer directement les matri-
ces d’états du systèmes dont les valeurs ont été reprise à partir du modèle numérique de la
section D.5.1.

Les différents cas de figure exposés dans la section D.5.1 ont été relancés. Dans ce
résumé, il ne sera présenté que le cas où µ = 0. Le reste de la simulation étant présente
dans le rapport de thèse complet.

Ce premier cas avec µ = 0 présente la simulation dans le cas où les paramètres
du processus ne présente aucune incertitude. Ainsi, seuls le nombre maximal de pertes
d’échantillons admissibles est analysé par les figures.

En analysant les différentes figures, D.20, on peut voir que les résultats des calculs
analytiques sont plus ou moins conformes. Toutefois, on peut aussi noter que même si
le système est asymptotiquement stable, les performances sont insatisfaisantes pour des
valeurs trop grandes de N . Il est à noter que le pessimisme des résultats analytiques com-
parés aux valeurs obtenus par la simulations proviennent du conservatisme des critères de
stabilité obtenus par la méthode de Lyapunov Krasovskii.

148 Appendix D. Résumé en français

Figure D.16: No sample loss Figure D.17: 20 consecutive sample losses

Figure D.18: 22 consecutive sample losses Figure D.19: 24 consecutive sample losses

Figure D.20: Simulation results for µ = 0

Simulation sur modèle non linéaire

L’idée de cette section est de comprendre les limites du système étudié auparavant par rap-
port aux incertitudes liées aux non linéarités du modèle, aux couplages avec les différents
axes de l’avion et aux interferences lors de l’intégration du modèle de tangage étudié dans
un modèle d’avion complet.

Le modèle d’avion considéré est toujours celui du F-16. Il a été écrit en langage C
avec interfaçage Matlab/Simulink afin d’être réutilisé avec le modèle étudié dans la section
D.5.2.

Ce modèle est présenté par la figure D.21

Pour respecter les hypothèses de vitesse constante et pour éviter des couplage indésir-
ables entre les axes (tangage, roulis et lacet), un contrôleur de poussée moteur simulé avec
un PID a été intégré au modèle. Les valeurs intiales des autres entrées ont été mis à neutre
(valeur 0) vu de l’exterieur pour ne pas les mettre en l’air, mais les états internes des ces
entrées sont initialisés à la valeur d’équilibre de l’avion dans les conditions nominales de
vols données par le tableau D.2:

Dans cette simulation nonlinéaire, il est possible de confirmer les résultats obtenus par
les LMIs et la simulation linéaire, en prenant en compte les perturbations exterieures et les
nonlinéarités du système.

Les résultats pour le cas 1 sont présentés par la figure D.26

D.5. Etudes de cas 149

Figure D.21: Nonlinear simulation of aircraft control systems

Variable Nominal xcg = 0.3c̄ xcg = 0.38c̄

VT (ft/s) 502.0 502.0 502.0
α(rad) 0.03691 0.03936 0.03544
β(rad) 4, 0.10−9 4, 1.10−9 3, 1.10−9

φ(rad) 0 0 0
θ(rad) 0.03691 0.03936 0.03544
P (rad/s) 0 0 0
Q (rad/s) 0 0 0
R (rad/s) 0 0
Thtl (0-1) 0.1385 0.1485 0.1325
El (deg) -0.7588 -1.931 -0.05590
Ail (deg) −1, 27.10−7 −7, 0.10−8 −5, 1.10−7

Rdr (deg) 6, 2.10−7 8, 3.10−7 4, 3.10−6

Nominal conditions: h = 0, q̄ = 300 psf, xcg = 0.35c̄, φ̇ ≡ θ̇ ≡ ψ̇ ≡ γ ≡ 0

Table D.2: Trimmed flight conditions for the F-16 simulation model [Stevens 2003]

150 Appendix D. Résumé en français

Figure D.22: No sample loss Figure D.23: 20 consecutive sample losses

Figure D.24: 22 consecutive sample losses Figure D.25: 24 consecutive sample losses

Figure D.26: Nonlinear simulation results

D.6 Conclusion

Dans cette thèse, une nouvelle méthodologie pour analyser les systèmes de contrôle com-
mande numérique a été proposée. La problématique principale consiste en la détermination
au plus précis du temps alloué pour chaque tâche composant le logiciel de commande. Il a
été montré que ce problème est à la limite du domaine de l’automatique (ex: la conception
des lois de commandes et la définition de leur paramètre temporels) et de l’informatique
temps réel (l’implémentation par logiciel et l’implantation sur calculateur de ces lois de
commandes).

L’allocation de temps pour les tâches de commandes de systèmes sûrs est d’un grand
interêt dans des domaines comme l’avionique, l’automobile car cela implique des enjeux
légaux (ex: pour la certification), des enjeux commerciaux (ex: parce que le marché des
composants évoluent et que l’entreprise doit y faire face) et impliquent des conséquences
sur le système final (masse, consommation electrique, technologie de refroidissement, ges-
tion d’obsolescence,...). Traditionnellement, les concepteurs de lois de commande avaient
une approche classique qui consistait à considérer que les paramètres temporelles des lois
de commandes sont connus et constants. Ainsi la communauté informaticienne qui im-
plémentait ces lois sur calculateurs allouait à chaque tâche le maximum de temps possi-
ble, le WCET. Cela permettait de respecter les exigences des concepteurs en matière de
paramètres temporels, mais rendait l’utilisation du système non optimum en matière de
performance et d’utilisation efficace des ressources.

En considérant la robustesse naturelle des systèmes de commandes en boucle fermée

D.6. Conclusion 151

(feedback loop), cette approche de conception et de réalisation a été revisitée dans cette
thèse. Un modèle spécifique de système a été considéré: les systèmes échantillonnés. En
effet, ces systèmes modélisent très précisement les modèles à temps discrèt (computer-
controlled systems), car les ordinateurs effectuent leurs calculs en temps discret tout en
gardant un procédé en temps continu. Ce type de systèmes permet aussi d’étudier les re-
tards de différents types (variable ou constants). c’est ainsi que les temps d’éxécution des
tâches de commandes sont considérés comme un type très spécial de retards: les retards
en entrée du système. En se basant sur des travaux récents [Seuret 2011a], la nouvelle
méthodologie proposée a été étoffé avec une nouvelle méthode d’analyse de stabilité util-
isant la méthode de Lyapunov Krasovskii.

Une caractérisitique importante de la méthode est l’intégration de tolérance aux fautes.
En effet, contrairement aux systèmes conçus avec la méthode classique de séparation
d’interêt [Xia 2006, Simon 2006b],

l’objectif général est d’assurer la stabilité du système tout en gardant une utilisation
efficace des ressources de calculs. Cela implique des méthodes de gestion de charges
proposées dans le chapitre D.3.

Un cas d’étude a été proposé pour vérifier l’applicabilité et l’efficacité de la méthodolo-
gie. Le système considéré est l’axe de tangage d’un avion F16. Au delà des études ana-
lytiques de modélisation, la méthode a été évaluée avec succès en suivant le processus
d’analyse proposé par la figure D.6.

• La faisabilité des scénarios de gestion de dépassement. Divers scénarios ont été
proposés dans la section D.4 mais la faisabilité de ces scénarii dans le cadre d’une
implémentation n’a pas été étudié. A titre d’exemple, la solution "Abort" proposée
dans le cas 1 est la plus simple à implémenter du point de vue pratique. Toutefois,
ce scénario peut être difficile à implémenter correctement sous forme de logiciel.

D’un point de vue de l’implémentation informatique, le cas d’un dépassement d’échéances
où il est nécéssaire d’avorter instantanément la tâche de commande en cours et de
recommencer proprement une nouvelle instance dans un nouveau contexte peut être
difficile à implémenter

Ce modèle de fonctionnement est difficile à implémenter dans un cas pratique (ex:
dans le cas d’un thread POSIX en langage C). En effet, suivant le langage, il n’est
pas forcément facile de tuer et de relancer des tâches.

Ce type d’analyse de faisabilité devra donc être appliqué pour chaque scénario en-
visagé afin de donner des perspectives d’application directe.

• Formalisation du "QoS". Là encore, la séparation d’interêt est mise en évidence.
En effet, la communauté automatique se concentre plus sur l’analyse de stabilité
et la stabilisation des systèmes tandis que la communauté informatique s’efforce
d’améliorer le determinisme du système en poussant plus loin les méthodes d’obtention
du WCET.

Comme il a été vu tout au long la thèse, la solution finale n’est pas du domaine du
temps réel dur (ni du temps réel souple) mais un compromis entre le gain en perfor-
mance que l’on peut avoir en réduisant le temps alloué aux tâches de commandes

152 Appendix D. Résumé en français

tout en acceptant des dégradations de performances de temps en temps par la perte
d’échantillons. L’idée maîtresse est de formaliser la notion de performance de com-
mande (comme une fonction mathématique) qui permettra de donner un coût objectif
capable de capturer les besoins à la fois en qualité de commande et en puissance de
calcul. Une telle fonction devra en plus intégrer la notion de sureté de fonction (par
exemple pour permettre la mesure de la sureté du système dans une configuration
donnée).

Bibliography

[Abdelzaher 2000] Tarek F. Abdelzaher, Ella M. Atkins and Kang G. Shin. QoS Negotia-
tion in Real-Time Systems and Its Application to Automated Flight Control. IEEE
Transactions on Computers, vol. 49, no. 11, pages 1170–1183, 2000. (Cited on
page 37.)

[Andrianiaina 2011a] Patrick Jocelyn Andrianiaina, Alexandre Seuret and Daniel Simon.
Robust control under weakened real-time constraints. In 50th IEEE Conference
on Decision and Control and European Control Conference CDC/ECC, Orlando,
United States, December 2011. (Cited on page 1.)

[Andrianiaina 2011b] Patrick Jocelyn Andrianiaina, Daniel Simon and Alexandre Seuret.
Robust system control method with short execution deadlines, Sep 2011. (Patent n◦

EP11306103.0 claimed by Airbus Operations SAS). (Cited on page 1.)

[Andrianiaina 2011c] Patrick Jocelyn Andrianiaina, Daniel Simon, Alexandre Seuret,
Jean-Michel Crayssac and Jean-Claude Laperche. Weakening Real-time Con-
straints for Embedded Control Systems. Rapport de recherche RR-7831, INRIA,
December 2011. (Cited on pages 1, 31 and 32.)

[Andrianiaina 2012] Patrick Jocelyn Andrianiaina, Daniel Simon and Alexandre Seuret.
Commande robuste avec relâchement des contraintes temps-réel. In Conférence In-
ternationale Francophone d’Automatique CIFA2012, Grenoble, France, Jul 2012.
(Cited on page 1.)

[Årzén 1999] K.-E. Årzén, B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Pers-
son and L. Sha. Integrated Control and Scheduling. Technical Report ISRN
LUTFD2/TFRT--7586--SE, Department of Automatic Control, Lund Institute of
Technology, Sweden, August 1999. (Cited on pages 2, 19 and 20.)

[Årzén 2000] K.-E. Årzén, A. Cervin, J. Eker and L. Sha. An Introduction to Control and
Scheduling Co-Design. In 39th IEEE Conference on Decision and Control, Sydney,
Australia, December 2000. (Cited on page 125.)

[Aubrun 2010] Christophe Aubrun, Daniel Simon and Ye-Qiong Song. Co-design ap-
proaches to dependable networked control systems. ISTE Wiley, 2010. (Cited on
pages 31, 35, 36, 37 and 133.)

[Ayav 2006] Tolga Ayav, Pascal Fradet and Alain Girault. Implementing Fault-Tolerance
in Real-Time Systems by Program Transformations. Research Report RR-5919,
INRIA, 2006. (Cited on page 36.)

[Barre 2006] Jonathan Barre, Cédric Landet, Christine Rochange and Pascal Sainrat. Mod-
eling Instruction-Level Parallelism for WCET Evaluation. In 12th IEEE Confer-
ence on Embedded and Real-Time Computing Systems and Applications (RTCSA

154 Bibliography

2006), pages 61–67, Sydney, Australia, August 2006. IEEE Computer Society.
(Cited on page 125.)

[Bedin França 2011] Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pan-
tel and Jean Souyris. Towards Formally Verified Optimizing Compilation in Flight
Control Software. In Philipp Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer
and Reinhard Wilhelm, editeurs, Predictability and Performance in Embedded Sys-
tems : PPES 2011, volume 18 of OpenAccess Series in Informatics (OASIcs),
pages 59–68, Grenoble, France, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. (Cited on pages 10 and 28.)

[Bernat 2001] Guillem Bernat, Alan Burns and Albert Llamosí. Weakly Hard Real-Time
Systems. IEEE Trans. Computers, vol. 50, no. 4, pages 308–321, 2001. (Cited on
pages 4, 32, 50 and 130.)

[Bernat 2002] G. Bernat, A. Colin and S-M. Petters. WCET Analysis of Probabilistic
Hard Real-Time Systems. In 23rd IEEE Real-Time Systems Symposium RTSS’02,
Washington DC, USA, 2002. (Cited on page 4.)

[Bernat 2003] Guillem Bernat, Antoine Colin and Stefan Petters. pWCET: a Tool for Prob-
abilistic Worst-Case Execution Time Analysis of Real-Time Systems. Technical re-
port, University of York, Department of Computer Science, January 2003. (Cited
on page 135.)

[Bertrand 2009] D. Bertrand, S. Faucou and Y. Trinquet. An analysis of the AUTOSAR OS
timing protection mechanism. In 14th IEEE international conference on Emerg-
ing technologies & factory automation ETFA’09, Palma de Mallorca, Spain, 2009.
(Cited on page 10.)

[Briat 2012] Corentin Briat and Alexandre Seuret. Robust stability of impulsive systems:
A functional-based approach. In Proceedings of the 4th IFAC conference series on
Analysis and Design of Hybrid Systems (ADHS’2012), page 6, Eindhoven, Pays-
Bas, June 2012. (Cited on page 63.)

[Briére 1993] Dominique Briére and Pascal Traverse. AIRBUS A320/A330/A340 electrical
flight controls - A family of fault-tolerant systems. In Proceedings of the 23rd IEEE
International Symposium on Fault-Tolerant Computing (FTCS) 1993, pages 616 –
623, Toulouse, France, June 1993. IEEE Computer Society. (Cited on page 11.)

[Burguière 2006] C. Burguière and Ch. Rochange. History-based Schemes and Implicit
Path Enumeration. In 6th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis, Dagstuhl, Germany, 2006. (Cited on page 133.)

[Burns 2011] A. Burns and D. Griffin. Predictability as an Emergent Behaviour. In
Robert I. Davis and Linh T.X. Phan, editeurs, 4th Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems, pages 27–29, Vienna,
Austria, November 2011. (Cited on pages 112, 113 and 114.)

Bibliography 155

[Busenberg 1991] S.N. Busenberg and M. Martelli. Delay differential equations and dy-
namical systems: proceedings of a conference in honor of kenneth cooke held in
claremont, california, jan. 13-16, 1990. Lecture notes in mathematics. Springer-
Verlag, 1991. (Cited on page 56.)

[Buttazzo 2007] G. Buttazzo and A. Cervin. Comparative Assessment and Evaluation of
Jitter Control Methods. In Proc. 15th International Conference on Real-Time and
Network Systems, Nancy, France, March 2007. (Cited on pages 44, 49 and 141.)

[Cary 2001] Cary and Virginia Williamsburg, editeurs. The Avionics Handbook. CRC
Press, 2001. (Cited on pages 9, 14, 15 and 18.)

[Cervin 2000] A. Cervin. Towards the integration of control and real-time scheduling
design. Licentiate thesis tfrt-3226, Dpt. of Automatic Control, Lund University,
Sweden, May 2000. (Cited on pages 31 and 45.)

[Cervin 2001] Anton Cervin. Analyzing of the Effects of Missed Deadlines in Control
Systems. In ARTES Graduate Student Conference, Uppsala, Sweden, March 2001.
(Cited on page 44.)

[Cervin 2002] A. Cervin, J. Eker, B. Bernhardsson and K.-E. Årzén. Feedback-
Feedforward Scheduling of Control Tasks. Real-Time Systems, vol. 23, no. 1–2,
pages 25–53, July 2002. (Cited on pages 45, 134 and 137.)

[Cervin 2003a] A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis, Dpt
of Automatic Control, Lund Inst. of Technology, Sweden, April 2003. (Cited on
pages 129, 137 and 147.)

[Cervin 2003b] A. Cervin. Using Jitterbug to Derive Control Loop Timing Requirements.
In CERTS’03 – Co-Design of Embedded Real-Time Systems Workshop, Porto,
Portugal, July 2003. (Cited on page 38.)

[Cervin 2004] A. Cervin, B. Lincoln, J. Eker, K.-E. Årzén and G. Buttazzo. The Jitter
Margin and Its Application in the Design of Real-Time Control Systems. In 10th
International Conference on Real-Time and Embedded Computing Systems and
Applications, Göteborg, Sweden, August 2004. (Cited on pages 31 and 129.)

[Cervin 2005] Anton Cervin. Analysis of Overrun Strategies in Periodic Control Tasks. In
Proc. 16th IFAC World Congress, Prague, Czech Republic, July 2005. (Cited on
page 137.)

[Cervin 2006] A. Cervin, K-E. Årzén, D. Henriksson, M. Lluesma Camps, P. Balbastre,
I. Ripoll and A. Crespo. Control Loop Timing Analysis Using TrueTime and Jitter-
bug. In 2006 IEEE Computer Aided Control Systems Design Symposium, October
2006. (Cited on pages 38 and 94.)

[Cervin 2009] Anton Cervin, Dan Henriksson and Martin Ohlin. TRUETIME 2.0 beta
Reference Manual, January 2009. http://www.control.lth.se/truetime. (Cited on
pages 93, 94 and 147.)

156 Bibliography

[Chen 1995] T. Chen and B.A. Francis. Optimal sampled-data control systems. Springer-
Verlag, Berlin, Germany, 1995. (Cited on page 59.)

[Colin 2001] A. Colin and I. Puaut. A modular and retargetable framework for tree-based
WCET analysis. In Proc. of the 13th Euromicro Conference on Real-Time Systems,
pages 37–44, Delft, The Netherlands, June 2001. (Cited on page 107.)

[Colin 2003] Antoine Colin, Isabelle Puaut, Christine Rochange and Pascal Sainrat. Cal-
cul de majorants de pire temps d’exécution : état de l’art . Technique et Science
Informatique, vol. 22, no. 5, pages 651–677, 2003. (Cited on pages 106, 107
and 109.)

[Cullmann 2010] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel
Grund, Claire Maiza, Jan Reineke, Benoît Triquet, Simon Wegener and Reinhard
Wilhelm. Predictability Considerations in the Design of Multi-Core Embedded
Systems. Ingénieurs de l’Automobile, vol. 807, pages 36–42, September 2010.
(Cited on page 133.)

[Deverge 2007] Jean-François Deverge and Isabelle Puaut. Safe measurement-based
WCET estimation. In Reinhard Wilhelm, editeur, 5th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, Dagstuhl, Germany, 2007. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany. (Cited on page 106.)

[DO-178B 1993] DO-178B. Rtca, inc., document rtca/do-178b [electronic resource]. U.S.
Dept. of Transportation, Federal Aviation Administration, [Washington, D.C.] :,
1993. (Cited on pages 3 and 15.)

[DO-254 2005] DO-254. Rtca, inc., document rtca/do-254, design assurance guidance for
airborne electronic hardware [electronic resource]. U.S. Dept. of Transportation,
Federal Aviation Administration, [Washington, D.C.] :, 2005. (Cited on pages 3,
15 and 17.)

[EASA 2009] EASA. Certification Specifications for Large Aeroplanes CS-25. Technical
Report Amendment 7, European Aviation Safety Agency, 2009. (Cited on page 14.)

[Falla 1997] Mike Falla. Advances in Safety Critical Systems - Results and Achievements
from the DTI/EPSRC R&D Programme in Safety Critical Systems. Technical re-
port, School of Computing and Communication - Lancaster University (compiled
and edited by Mike Falla), 1997. (Cited on page 12.)

[Favre 1994] C. Favre. Fly-by-wire for commercial aircraft: the Airbus experience. In-
ternational Journal Of Control, vol. 59, no. 1, pages 139–157, 1994. (Cited on
pages 11 and 12.)

[Felicioni 2010] Flavia Felicioni, Ning Jia, Françoise Simonot Lion and Ye-Qiong Song.
Overload Management Through Selective Data Dropping. In Co-design Ap-
proaches for Dependable Networked Control Systems, pages 187–224. ISTE - Wi-
ley, 2010. (Cited on pages 50, 129 and 134.)

Bibliography 157

[Fridman 1988] Emilia Fridman, Yu V. Micheev and Sobolev V.A. Asymptotic analysis
of digital control systems. Automation and Remote Control, vol. 49, no. 9, pages
1175–1180, 1988. (Cited on page 60.)

[Fridman 2004a] E. Fridman. Stability of linear functional differential equations: A new
Lyapunov technique. In Proceedings of Mathematical Theory of Networks and
Systems, September 2004. (Cited on page 57.)

[Fridman 2004b] Emilia Fridman, Alexandre Seuret and Jean-Pierre Richard. Robust
sampled-data stabilization of linear systems - An input delay approach. Auto-
matica, 2004. (Cited on pages 59, 60, 63, 68 and 130.)

[Fridman 2006] E. Fridman and U. Shaked. Input-output approach to stability and L2-
gain analysis of systems with time-varying delays. Systems and Control Letters,
vol. 55, pages 1041–1053, 2006. (Cited on page 62.)

[Fridman 2010] E. Fridman. A refined input delay approach to sampled-data control. Au-
tomatica, vol. 46, no. 2, pages 421–427, 2010. (Cited on page 61.)

[Fujioka 2009] H. Fujioka. Stability analysis of systems with aperiodic sample-and-hold
devices. Automatica, vol. 45, no. 3, pages 771–775, 2009. (Cited on pages 59
and 60.)

[Goupil 2010] Ph. Goupil and A. Marcos. Fault tolerant flight control, chapitre ch. 19: In-
dustrial Review, pages 521–536. Numeéro 399 de LNCIS. Springer-Verlag, 2010.
(Cited on pages 10, 44 and 45.)

[Gu 2003] K. Gu, V. Kharitonov and J. Chen. Stability of time-delay systems. Control
engineering. Birkhäuser, 2003. (Cited on pages 54, 55 and 60.)

[Hamann 2006] Arne Hamann, Razvan Racu and Rolf Ernst. A formal approach to robust-
ness maximization of complex heterogeneous embedded systems. In Proceedings of
the 4th International Conference on Hardware/Software Codesign and System Syn-
thesis, (CODES+ISSS 2006, Seoul, Korea, October 2006. ACM Journal. (Cited on
pages 50 and 129.)

[Hansen 2009] Jeffery Hansen, Scott Hissam and Gabriel A. Moreno. Statistical-based
WCET estimation and validation. In 9th International Workshop on Worst-Case
Execution Time (WCET) Analysis ECRTS’09, Dagstuhl, Germany, 2009. (Cited
on pages 29 and 128.)

[Heath 2003] S. Heath. Embedded systems design. EDN series for design engineers.
Newnes, 2003. (Cited on page 21.)

[Hespanha 2007] J.P. Hespanha, P. Naghshtabrizi and Y. Xu. A survey of recent results
in networked control systems. Proceedings of the IEEE, vol. 95, pages 138–162,
2007. (Cited on pages 53 and 63.)

158 Bibliography

[Hetel 2006] L. Hetel, J. Daafouz and C. Iung. Stabilization of Arbitrary Switched Linear
Systems With Unknown Time-Varying Delays. IEEE Trans. on Automatic Control,
vol. 51, no. 10, pages 1668–1674, 2006. (Cited on page 60.)

[Jensen 1906] J. Jensen. Sur les fonctions convexes et les inégalités entre les
valeurs moyennes. Acta Mathematica, vol. 30, pages 175–193, 1906.
10.1007/BF02418571. (Cited on page 65.)

[Kao 2007] Chung-Yao Kao and Anders Rantzer. Stability analysis of systems with uncer-
tain time-varying delays. Automatica, vol. 43, pages 959–970, June 2007. (Cited
on page 56.)

[Khan 2009] Usman Khan and Iain Bate. WCET Analysis of Modern Processors Using
Multi-Criteria Optimisation. In Proceedings of the 2009 1st International Sympo-
sium on Search Based Software Engineering, SSBSE ’09, pages 103–112, Wash-
ington, DC, USA, 2009. IEEE Computer Society. (Not cited.)

[Kirner 2005] R. Kirner and P. Puschner. Classification of WCET Analysis Techniques.
In 8th IEEE International Symposium on Object-oriented Real-time distributed
Computing ISORC’05, pages 190–199, Seattle, Washington, May 2005. (Cited
on page 127.)

[Kolmanovskii 1996] Vladimir Borisovich Kolmanovskii and Leonid Efimovich Shaïkhet.
Control of systems with aftereffect. Translations of mathematical monographs.
American Mathematical Society, 1996. (Cited on pages 58 and 59.)

[Kolmanovskii 1999] V.B. Kolmanovskii and A.D. Myshkis. Applied theory of functional
differential equations. Kluwer, 1999. (Cited on pages 55 and 60.)

[Krishna 1983] C. Mani Krishna and Kang G. Shin. Performance Measures for Multi-
processor Controllers. In Performance ’83, Proceedings of the 9th International
Symposium on Computer Performance Modelling, Measurement and Evaluation,
pages 229–250, College Park, Maryland USA, 1983. (Cited on page 36.)

[Li 2010] Xiaoting Li, Jean-Luc Scharbarg and Christian Fraboul. Improving end-to-end
delay upper bounds on an AFDX network by integrating offsets in worst-case anal-
ysis. In Proceedings of 15th IEEE International Conference on Emerging Technolo-
gies and Factory Automation, ETFA 2010, pages 1–8, Bilbao, Spain, September
2010. IEEE. (Cited on page 4.)

[Lindgren 2000] Markus Lindgren, Hans Hansson and Henrik Thane. Using Measure-
ments to Derive the Worst-Case Execution Time. In 7th International Workshop on
Real-Time Computing and Applications Symposium (RTCSA 2000), 12-14 De-
cember 2000, Cheju Island, South Korea, pages 15–22. IEEE Computer Society,
December 2000. (Cited on page 107.)

Bibliography 159

[Liu 1973] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. J. ACM, vol. 20, no. 1, pages 46–61, January
1973. (Cited on pages 27 and 132.)

[Liu 2009] K. Liu and E. Fridman. Stability analysis of networked control systems: a dis-
contiuous Lyapunov functional approach. In Joint 48th IEEE Conference on De-
cision and Control and 28th Chinese Control Conference, Shanghai, China, 2009.
(Cited on pages 68 and 130.)

[Liu 2010] K. Liu, V. Suplin and E. Fridman. Stability of linear systems with general
sawtooth delay. IMA J. of Math. Control and Information, vol. 27, no. 4, pages
419–436, 2010. (Cited on page 61.)

[Liu 2012] K. Liu and E. Fridman. Wirtinger’s Inequality and Lyapunov-Based Sampled-
Data Stabilization. Automatica, vol. 48, 2012. (Cited on page 68.)

[Lokuciejewski 2011] Paul Lokuciejewski and Peter Marwedel. Worst-case execution
time aware compilation techniques for real-time systems. Springer, 2011. (Cited
on pages 107, 109 and 110.)

[Louise 2002] S. Louise. Calcul de majorants sûrs de temps d’exécution au pire pour
des tâches d’application Temps-réel critique pour des sytèmes disposant de caches
mémoire. PhD thesis, Paris XI Orsay, 2002. (Cited on pages 2, 109, 120, 132
and 133.)

[Martí 2002] Pau Martí. Analysis and Design of real-time scheduling in Control Systems.
PhD thesis, Universitat Politèchnica de Catalunya, june 2002. (Cited on page 34.)

[McLean 1990] D. McLean. Automatic flight control systems. Prentice-Hall international
series in systems and control engineering. Prentice Hall, 1990. (Cited on pages 72
and 73.)

[McRuer 1974] D.T. McRuer, I.L. Ashkenas and D. Graham. Aircraft dynamics and auto-
matic control. Princeton University Press, 1974. (Cited on page 82.)

[Midonnet 2010] Serge Midonnet, Damien Masson and Rémi Lassalle. Slack-Time Com-
putation for Temporal Robustness in Embedded Systems. IEEE embedded systems
letters, vol. 2, no. 4, pages 119–122, December 2010. (Cited on page 29.)

[Millán 2009] P. Millán, L. Orihuela, C. Vivas and F.R. Rubio. Improved delay-dependent
stability criterion for uncertain networked control systems with induced time-
varying delays. In 1rst IFAC Workshop on Distributed estimation and Control
of Networked control Systems, Necsys’09, Venise, Italy, 2009. (Cited on pages 68
and 130.)

[Mirkin 2007] L. Mirkin. Some remarks on the use of time-varying delay to model sample-
and-hold circuits. IEEE Trans. on Automatic Control, vol. 52, no. 6, pages 1009–
1112, 2007. (Cited on page 60.)

160 Bibliography

[Moravec 1998] Hans Moravec. When will computer hardware match the human brain.
Journal of Transhumanism, vol. 1, 1998. Received Dec. 1997. (Cited on page 1.)

[Mueller 2006] Frank Mueller. Challenges for Cyber-Physical Systems: Security, Tim-
ing Analysis and Soft Error Protection. In High-Confidence Software Plat-
forms for Cyber-Physical Systems (HCSP-CPS) Workshop, Alexandria, Virginia,
November-December 2006. (Cited on page 4.)

[Naghshtabrizi 2006] P. Naghshtabrizi, J.P. Hespanha and A.R. Teel. On the robust sta-
bility and stabilization of sampled-data systems: A hybrid system approach. In
Proceedings of the 45th IEEE Conference on Decision and Control, San Diego,
CA, USA, 2006. (Cited on page 132.)

[Naghshtabrizi 2008] P. Naghshtabrizi, J.P. Hespanha and A.R. Teel. Exponential stability
of impulsive systems with application to uncertain sampled-data systems. Systems
and Control Letters, vol. 57, no. 5, pages 378–385, 2008. (Cited on pages 60
and 68.)

[Naghshtabrizi 2009] P. Naghshtabrizi, J.P. Hespanha and A.R. Teel. Stability of Delay
Impulsive Systems with Application to Networked Control Systems. Trans. of the
Inst. of Measurement and Control, Special Issue on Hybrid and Switched Systems,
2009. (Cited on pages 62, 65 and 68.)

[Nguyen 1979] L T Nguyen, M E Ogburn, W P Gilbert, K S Kibler, P W Brown and
P L Deal. Simulator study of stall/post-stall characteristics of a fighter airplane
with relaxed longitudinal static stability, volume 12854. National Aeronautics and
Space Administration, Langley Research Center, December 1979. (Not cited.)

[Niculescu 2001] S.I. Niculescu. Delay effects on stability: a robust control approach,
volume 269 of Lecture notes in control and information sciences. Springer, 2001.
(Cited on pages 54 and 55.)

[of Automotive Engineers (SAE) 1996a] Society of Automotive Engineers (SAE). SAE
ARP4754 Certification Considerations for Highly-Integrated Or Complex Aircraft
Systems, nov 1996. (Cited on pages 15 and 16.)

[of Automotive Engineers (SAE) 1996b] Society of Automotive Engineers (SAE). SAE
ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment, December 1996. (Cited on pages 15
and 17.)

[Oishi 2009] Y. Oishi and H. Fujioka. Stability and Stabilization of Aperiodic Sampled-
Data Control Systems: An Approach Using Robust Linear Matrix Inequalities. In
Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference, pages 8142 – 8147, December 16-18 2009. (Cited on page 60.)

[Parr 1999] Gordon R. Parr and R. Edwards. Integrated modular avionics. Air and Space
Europe, vol. 1, no. 2, pages 72 – 75, 1999. (Cited on page 4.)

Bibliography 161

[Peet 2009] M.M. Peet, A. Papachristodoulou and S. Lall. Positive Forms and Stability of
Linear Time-Delay Systems. SIAM Journal on Control and Optimization, vol. 47,
no. 6, pages 3227–3258, 2009. (Cited on page 62.)

[Peters 2003] Mark Peters and Micheal A. Konyak. The engineering analysis and design
of the aircraft dynamics model for the faa target generation facility. Federal Avia-
tion Administration System Resources Cooporation. Seagull Tecnology, Inc., 2003.
(Cited on pages 73 and 74.)

[Petters 2002] Stefan M. Petters. How much Worst Case is Needed in WCET Estima-
tion? In 2nd International Workshop on Worst Case Execution Time Analysis
2002, Vienna, Austria, Jun 18 2002. Satellite Workshop of 14th Euromicro Inter-
national Conference on Real-Time Systems (ECRTS2002). (Cited on pages 111,
112 and 116.)

[Petters 2007] Stefan M. Petters. Execution-Time Profiles. Technical report, NICTA, Syd-
ney, Australia, Jan 2007. (Cited on page 144.)

[Philippe 2011] Goupil Philippe. AIRBUS state of the art and practices on FDI and FTC
in flight control system. In 7th IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, pages 524 – 539, Barcelona, Spain, July 2011.
(Cited on pages 12, 13, 14, 15 and 16.)

[Puschner 2008] P. Puschner and M. Schoeberl. On Composable System Timing, Task Tim-
ing, and WCET Analysis. In 8th International Workshop on Worst-Case Execution
Time (WCET) Analysis, Prague, Czech Republic, July 2008. (Cited on pages 23
and 125.)

[Ratsiambahotra 2010] Tahiry Ratsiambahotra. Contribution à la simulation de pro-
cesseur : conception d’un générateur de librairie de simulateurs fonctionnels.
Thèse de doctorat, Université de Toulouse, Toulouse, France, septembre 2010. (Not
cited.)

[Reineke 2007] Jan Reineke, Daniel Grund, Christoph Berg and Reinhard Wilhelm. Tim-
ing Predictability of Cache Replacement Policies. Real-Time Systems, vol. 37,
no. 2, pages 99–122, November 2007. (Cited on page 133.)

[Richard 2003] J Richard. Time-delay systems: an overview of some recent advances and
open problems. Automatica, vol. 39, no. 10, pages 1667–1694, 2003. (Cited on
pages 54 and 55.)

[Robert 2010] D. Robert, O. Sename and D. Simon. An H∞/LPV design for sampling
varying controllers : experimentation with a T inverted pendulum. IEEE Trans. on
Control Systems Technology, vol. 18, no. 3, pages 741–749, May 2010. (Cited on
page 38.)

[Rochange 2007] Ch. Rochange, editeur. 7th intl. workshop on worst-case execution time
(wcet) analysis, Pisa, Italy, jul 2007. (Cited on pages 23 and 29.)

162 Bibliography

[RTCA-EUROCEAE 1992] RTCA-EUROCEAE. DO-178B/ED-12B - Software consider-
ations in airborne systems and equipment certification considerations sur le logi-
ciel en vue de la certification des systemes et equipements de bord, 1992. (Cited
on pages 15 and 16.)

[Schoeberl 2006] Martin Schoeberl and Rasmus Pedersen. WCET analysis for a Java
processor. In Proceedings of the 4th international workshop on Java technologies
for real-time and embedded systems, JTRES ’06, pages 202–211, New York, NY,
USA, 2006. ACM. (Cited on page 107.)

[Seto 1996] D. Seto, J.P. Lehoczky, L. Sha and K.G. Shin. On task schedulability in real-
time control systems. In Proceedings of the 17th IEEE Real-Time Systems Sym-
posium (RTSS ’96), pages 13 –21, Washington DC, USA, December 1996. IEEE
Computer Society. (Cited on pages 36 and 38.)

[Seuret 2006] Alexandre Seuret. Commande et observation des systèmes à retards vari-
ables : théorie et applications. PhD thesis, École centrale de Lille, 2006. (Cited
on pages 60 and 132.)

[Seuret 2009] A. Seuret. Stability analysis for sampled-data systems with a time-varying
period. In Joint 48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, pages 8130 – 8135, December 2009. (Cited on page 61.)

[Seuret 2011a] Alexandre Seuret. Stability analysis of networked control systems with
asynchronous sampling and input delay. In Proceedings of the 2011 American
Control Conference - ACC 2011, page 6, San Francisco, Californie, États-Unis,
June 2011. (Cited on pages 46, 62, 63, 136 and 151.)

[Seuret 2011b] Alexandre Seuret and Matthew M. Peet. SOS for sampled-data systems. In
18th IFAC World Congress, page 6, Milan, Italie, August 2011. (Cited on page 63.)

[Seuret 2012] Alexandre Seuret. A novel stability analysis of linear systems under asyn-
chronous samplings. Automatica, pages 177–182, January 2012. (Cited on
page 61.)

[Sha 2004] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky and A. K. Mok. Real-Time Scheduling Theory:
A Historical Perspective. Real-Time Systems, vol. 28, no. 2–3, pages 101–155,
November 2004. (Cited on pages 23 and 125.)

[Shaw 1989] Alan Shaw. Reasoning about Time in Higher-Level Language Software.
IEEE Transactions on Software Engineering, vol. 15, pages 875–889, 1989. (Cited
on page 110.)

[Shin 1985] K.-G. Shin, C.M. Krishna and Y.-H. Lee. A unified Method for Evaluating
realtime computer controllers and its application. IEEE Trans. on Automatic Con-
trol, vol. 30, no. 4, april 1985. (Cited on page 31.)

Bibliography 163

[Shin 1992] K.-G. Shin and H. Kim. Derivation and Application of Hard Deadlines for
Realtime Control Systems. IEEE Trans. on Systems, Man and Cybernetics, vol. 22,
no. 6, november/december 1992. (Cited on pages 31 and 32.)

[Shin 1993] K.G. Shin and H. Kim. Hard deadlines in real-time control systems. Control
Engineering Practice, vol. 1, no. 4, pages 623 – 628, 1993. (Cited on page 36.)

[Shin 1995] Kang G. Shin and Xianzhong Cui. Computing Time Delay and Its Effects on
Real-Time Control Systems. IEEE Trans. on Control Systems Technology, vol. 3,
pages 218–224, June 1995. (Cited on pages 32 and 45.)

[Shin 1999] K.G. Shin and C.L. Meissner. Adaptation and Graceful Degradation of Con-
trol System Performance by Task Reallocation and Period Adjustment. In 11th
Euromicro Conference on Real-Time Systems, York, England, 1999. (Cited on
pages 32 and 37.)

[Silva 1993] João Gabriel Silva, Mario Rela and Antonio Magalhães. Are deadlines that
hard? In Fifth European Workshop on Dependable Computing, Dependability,
Decentralization and Distribution, Lisboa, Portugal, 1993. (Cited on page 31.)

[Simon 2006a] Daniel Simon, David Robert and Olivier Sename. Control and Real-time
Scheduling Co-design : Application to Robust Robot Control. In 3rd Taiwanese-
French Conference on Information Technology TFIT’06, Nancy, France, 2006.
(Cited on page 133.)

[Simon 2006b] Daniel Simon, Olivier Sename and David Robert. Conception conjointe
commande/ordonnancement et ordonnancement régulé. In Nicolas Navet, editeur,
Systèmes temps-réel, volume tome 2: Ordonnancement, Réseaux, Qualité de Ser-
vice of IC2. Hermes, 2006. (Cited on pages 137 and 151.)

[Simon 2009] D. Simon, A. Seuret, P. Hokayem, J. Lygeros and E. Camacho. State of the
art in control/computing co-design. Technical Report Public Deliverable D04-01,
FeedNetBack IST FP7 project, 2009. (Cited on pages 34, 36 and 45.)

[Sipahi 2011] R. Sipahi, S.-I. Niculescu, C.T. Abdallah, W. Michiels and K. Gu. Stability
and Stabilization of Systems with Time Delay. Control Systems, IEEE, vol. 31,
no. 1, pages 38 – 65, 2011. (Cited on pages 54 and 56.)

[Souyris 2005] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu and Guil-
laume Borios. Computing the worst case execution time of an avionics program
by abstract interpretation. In 5th Intl. Workshop on Worst-Case Execution Time
(WCET2005) Analysis, pages 21–24, Palma de Mallorca, Balearic Islands, Spain,
July 2005. (Cited on pages 10, 29 and 38.)

[Stankovic 1988] John A. Stankovic. Real-Time Computing System: The Next Generation.
Technical report, University of Massachusetts, Amherst, MA, USA, 1988. (Not
cited.)

164 Bibliography

[Stengel 2004] R.F. Stengel. Flight dynamics. Princeton University Press, 2004. (Cited
on pages 72, 74, 76, 80, 81 and 83.)

[Stevens 2003] B.L. Stevens and F.L. Lewis. Aircraft control and simulation. Wiley-
Interscience, October 2003. (Cited on pages 72, 76, 79, 81, 83, 85, 89, 142, 143
and 149.)

[Suh 2008] Y.S. Suh. Stability and stabilization of nonuniform sampling systems. Auto-
matica, vol. 44, no. 12, pages 3222–3226, 2008. (Cited on page 60.)

[Thesing 2004] Stephan Thesing. Safe and Precise WCET Determination by Abstract In-
terpretation of Pipeline Models. PhD thesis, Saarland University, jul 2004. (Cited
on pages 2, 109, 110, 120, 127, 132 and 133.)

[Traverse 2004] Pascal Traverse, Isabelle Lacaze and Jean Souyris. Airbus fly-by-wire -
A total approach to dependability. In Building the Information Society, IFIP 18th
World Computer Congress, Topical Sessions, pages 191–212, Toulouse, France,
August 2004. (Cited on page 18.)

[Törngren 1998] Martin Törngren. Fundamentals of implementing Real-Time Control Ap-
plications in Distributed Computer Systems. J. of Real-Time Systems, vol. 14,
pages 219–250, 1998. (Cited on pages 2 and 19.)

[Wegener 2001] Joachim Wegener and Frank Mueller. A Comparison of Static Analysis
and Evolutionary Testing for the Verification of Timing Constraints. In IEEE Real
Time Technology and Applications Symposium, volume 21, pages 144–154, Nor-
well, MA, USA, November 2001. IEEE. (Cited on page 106.)

[Wilhelm 2008a] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Rein-
hold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan
Staschulat and Per Stenström. The worst-case execution-time problem: Overview
of methods and survey of tools. ACM Transaction on Embedded Computing Sys-
tems, vol. 7, pages 36:1–36:53, May 2008. (Cited on page 108.)

[Wilhelm 2008b] Reinhard Wilhelm and Björn Wachter. Abstract Interpretation with Ap-
plications to Timing Validation. In Aarti Gupta and Sharad Malik, editeurs, Com-
puter Aided Verification, volume 5123 of Lecture Notes in Computer Science,
pages 22–36. Springer Berlin Heidelberg, 2008. (Cited on page 107.)

[Wittenmark 2003] Björn Wittenmark, Karl Johan Åström and Karl-Erik Årzén. Computer
Control: An Overview. Technical report, Lund Institute of Technology, Sweden,
2003. (Cited on pages 26, 30, 33, 119, 120 and 123.)

[Xia 2006] F. Xia and Y. Sun. Control-Scheduling Codesign: A Perspective on Integrating
Control and Computing. Dynamics of Continuous, Discrete and Impulsive Systems
- Series B, vol. Special Issue on ICSCA 06, pages 1352–1358, 2006. (Cited on
pages 125, 133 and 151.)

Bibliography 165

[Zampieri 2008] S. Zampieri. A survey of recent results in Networked Control Systems.
In Proc. of the 17th IFAC World Congress, pages 2886–2894, Seoul, Korea, July
2008. (Cited on page 53.)

[Zhang 2001a] W. Zhang and MS. Branicky. Stability of networked control systems with
time-varying transmission period. In Proceedings Of The Annual Allerton Confer-
ence On Communication Control And Computing, volume 21, pages 1205–1214,
Monticello, Illinois, October 2001. (Cited on page 59.)

[Zhang 2001b] W. Zhang, M.S. Branicky and S.M. Phillips. Stability of Networked Con-
trol Systems. IEEE Control Systems Magazine, no. 21, pages 84–99, 2001. (Cited
on page 59.)

Robust control under slackened real-time constraints

Abstract:

The development process of critical avionics products are done under
strict safety regulations. These regulations include determinism and
predictability of the systems’ timing. The overall approach is based on a
separation of concerns between control design and implementation. One
of the toughest challenges in the current approach is the determination
of the WCET, in order to correctly size the system. In this thesis, a
weakened implementation scheme for real-time feedback controllers is
proposed to reduce the conservatism due to traditional worst-case
considerations, while preserving the stability and control performance.
The methodology is tested to the pitch control of an aircraft model,
showing that weakening the real-time constraints allows for saving
computing power while preserving the system’s stability and quality of
control.

Keywords:
Control systems, avionics, architecture, worst case execution time, time-

delay system, fault tolerance, real-time contraints

Commande robuste avec relâchement des contraintes
temps-réel

Abstract:

Le processus de développement des systèmes avioniques suit des
réglementations de sûreté de fonctionnement très strictes, incluant
l’analyse du déterminisme et de la prédictibilité temporelle des systèmes.
L’approche est basée sur la séparation des étapes de conception et
d’implémentation. Une des plus grandes difficultés dans l’approche
actuelle se trouve dans la détermination du WCET, qui est nécessaire
pour prouver la satisfaction des contraintes de temps-réel dur du
système. Dans cette thèse, une méthodologie de relâchement de
contraintes temps-réels pour les systèmes de commandes digital est
proposé. L’objectif est de réduire le conservatisme des approches
traditionnelles basés sur le pire temps d’exécution, tout en préservant la
stabilité et les performances de commandes. L’approche a été appliqué
au système de commande de tangage d’un avion, ce qui a permi de
montrer que le relâchement des contraintes temps réels améliore
l’utilisation de la puissance de calcul disponible tout en préservant la
stabilité et la qualité de commande du système.

Mots-clés:
Systèmes de commandes, systèmes avioniques, architecture, pire temps

d’éxécution, systèmes à retards, tolerance aux fautes, temps-réels

168 Bibliography

	General introduction
	Framework and Problems statements
	Introduction to Chapter 1
	Useful definitions
	Context and motivation
	System considerations and avionics functions
	Flight Control Systems and the computer era

	Safety critical systems
	Development process life cycle
	Legislation, regulations and certification
	Fly by Wire System Certification Background
	Dependability issues
	Fault tolerance and robustness implementation in Flight Control Systems

	Real-time Control
	Real-time systems
	Dynamic systems
	Computer-controlled systems

	Problem Statements
	Hard Real-time paradigm
	Challenging issues

	Control and scheduling co-design
	Control Systems hard deadline
	Control and scheduling integration
	Co-design approaches: methods and tools

	Conclusion of Chapter 1

	Robust control under slackened real-time constraints
	Introduction to Chapter 2
	Weakened real-time systems
	Weakened scheduling scenario proposals
	Robustness considerations
	Challenging implementation problems

	Dynamic models of computer-controlled systems
	Systems under consideration
	Identification of the difficulties
	Control Objectives

	State of the art in networked control systems
	Systems with delays
	Asynchronous sampled-data systems
	Stability criteria

	Examples
	Conclusion to Chapter 2

	Case Study : Aircraft pitch-rate control
	Introduction to chapter 3
	Models for simulation and control
	Frames and rotation parameters definition
	Non-linear dynamics
	Aircraft Linearized Equation of Motion
	Aircraft control systems
	The aircraft rigid body modes

	Case study: pitch rate control of a F16 aircraft
	The F16 lateral and longitudinal numerical models
	The pitch rate control system
	Description and results of the case study

	Validation of the approach by simulation
	Truetime simulation
	The Simulink model
	Simulation using linear plant
	Nonlinear simulation

	Conclusion of Chapter3

	Conclusion
	Summary
	Perspectives

	Worst Case Execution Method: State of Art
	Introduction to WCET Methods
	Dynamic Methods
	Static Analysis Methods
	Hybrid methods
	Probabilistic methods
	Construction and interpretation of the probability distribution:

	Weakened real-time control framework
	Sampled-data models
	Computer-control theory
	Advantages and drawbacks of using computers
	Mathematical models

	Résumé en français
	Introduction
	Contexte
	Notations

	Problématique
	Les systèmes à considérer et les problèmes d'ordonnancement
	Ordonancement basée sur le pire temps d'execution
	Robustesse des systèmes bouclés
	Formulation du problème

	Allègement des contraintes temps réels
	Mise en évidence de la séparation d'interêt
	Objectifs généraux de la thèse
	Analyse de stabilité

	Les scénarii d'allègement des contraintes
	Etudes de cas
	Application analytique de la méthode
	Validation par simulation

	Conclusion

	Bibliography

