N

N

Corrélations d’appariement proton-neutron dans le
noyau atomique

Daniel Négréa

» To cite this version:

Daniel Négréa. Corrélations d’appariement proton-neutron dans le noyau atomique. Autre [cond-
mat.other|. Université Paris Sud - Paris XI; Universitatea Bucuresti, 2013. Francais. NNT:
2013PA112138 . tel-00870588

HAL Id: tel-00870588
https://theses.hal.science/tel-00870588
Submitted on 7 Oct 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00870588
https://hal.archives-ouvertes.fr

University of Bucharest

and

University Paris-Sud XI

PuD THESIS IN COTUTELLE

by
Daniel C. NEGREA

September 10, 2013

Proton-Neutron Pairing
Correlations in Atomic Nuclei

Thesis Supervisor: Nicolae SANDULESCU (IFIN-HH)

Thesis Co-Supervisor: Elias KHAN (University Paris-Sud XI)

Members of the jury:

Rapporteur: Virgil Baran (University of Bucharest)
Rapporteur: Doru Delion (IFIN-HH)

Rapporteur: Denis Lacroix (GANIL)

Rapporteur: Van Giai Nguyen (IPN-Orsay)

Thesis Co-Supervisor: Elias Khan (University Paris-Sud XI)
Thesis Supervisor: Nicolae Sandulescu (IFIN-HH)



Contents

Introduction 1
1 Pairing in nuclei: overview of BCS-type models 7
1.1 BCS approximation for like-particle pairing . . . . . . . . . .. 8
1.2 Isovector proton-neutron pairing in the BCS approximation . . 13
1.3 Isovector and isoscalar pairing in BCS-like models . . . . . . . 16
1.4 TIsovector pairing in the PBCS approximation . . . . . . . . .. 20
2 Isovector pairing and quartet condensation in N=Z nuclei 23
2.1 Quartet condensation model: formalism . . . . . . ... .. .. 24
2.2 Quartet condensation model: recurrence relations for N=7
nuclei . . ... 27
2.3 Application of quartet condensation model to N=Z7 nuclei . . . 31
3 Isovector pairing and quartet condensation in nuclei with
N>Z 35
3.1 Extension of quartet condensation model (QCM) for N>Z nuclei 35
3.2 Solution of QCM equations: recurrence relations . . . . . . . . 37
3.3 Application: coexistence of quartets and pairs in nuclei with
N>7Z o o 39
4 Quartet condensation for isovector and isoscalar pairing 45
4.1 Extension of QCM for treating isoscalar pairing . . . . .. . . 45
4.2 Solution of QCM equations for isovector and isoscalar pairing 48
4.3 Application: competition between isovector and isoscalar pair-
ingin N=Znuclei . ... ... ... ... ... ... 52
Summary and conclusions 53
Appendix: Numerical solution of QCM equations 56
Bibliography 58



Introduction

In the last years a lot of work has been dedicated to the proton-neutron
pairing in nuclei. The revival of this fundamental issue of nuclear struc-
ture is related to the recent advances in experimental techniques and to the
development of radioactive beams facilities which open the possibility to ex-
plore the spectroscopic properties of heavy nuclei close to N=Z line, in which
the proton-neutron pairing is expected to play an important role. Thus, in
these nuclei the proton-neutron pairing can contribute with additional bind-
ing energy which could be essential to their stability and, implicitely, to the
location of the proton drip line.

Proton-neutron pairing is also expected to play a significant role in
decays, such as neutrinoless double g decay, which has fundamental conse-
quences for particle physics.

Another nuclear property which can be affected by the proton-neutron
pairing is the nuclear mass of nuclei with NaZ. The experimental masses and
their extrapolation far from stability show that the nuclei with N=Z have
an additional binding compared with other nuclei. This additional binding
energy is commonly referred to as the Wigner energy and it is introduced in
the phenomenological mass formulas through a term proportional to |N-Z|.
There is a long debate about the origin of the Wigner energy (e.g., see [1]
and references quoted therein). Although this issue is not yet settled down,
many studies indicate that, at least partially, the Wigner energy is related
to the additional binding energy caused by proton-neutron pairing, which
becomes stronger in N=Z nuclei [2].

In N=Z7 nuclei there are, in principle, two channels in which proton-
neutron interaction can generate important pairing correlations. Here by
pairing correlations we mean the formation of collective pairs which act co-
herently by forming a pair condensate, such as the BCS condensate. Thus,
in N=7 nuclei are commonly considered collective proton-neutron pairs of
total angular momentum J=0 and J=1. By analogy with infinite systems,
instead of pairs with J=0 and J=1 are sometimes considered pairs with the
total spin S=0 and S=1 and total orbital momentum L=0. The total isospin



of the proton-neutron pairs with S=0 (S=1) is T=1 (T=0). More precisely,
the proton-neutron (pn) pairs with S=0 correspond to T=1 and T, = 0.
The other two components of the isospin T=1 are associated to the neutron-
neutron (nn) and proton-proton (pp) pairs. Since the nuclear forces are, with
a good approximation, invariant to the isospin projections, one expects that
the correlations associated to the nn, pp and np pairs to be of equal strength
in N=7 nuclei. All three kinds of collective pairs with T=1 are commonly
called isovector pairs. On the other hand, the pairs with S=1 and T=0 are
called isoscalar pairs; all of them are proton-neutron pairs with S=1 but
with different values of S,. The isoscalar pairs with S, = 0, in which the
protons and the neutrons are in time-conjugate states (have opposite spins) is
commonly considered the counterpart of the isovector proton-neutron pairs.

One of the most debated issues in nuclear structure is the competition
between the isovector and isoscalar pairing in open shell nuclei with N~xZ.
Thus, many studies are trying to answer the following questions: (a) does
exist a condensate of isoscalar proton-neutron pairs in the ground state of
N=Z nuclei; (b) do the isovector and isoscalar proton-neutron pairing coexist;
(c) how persistent are the isovector and isoscalar pn pairing when one moves
away of N=Z line; (d) what is the contribution of isoscalar and isovector
pairing to Wigner energy; (e) how the isovector and the isoscalar pairing are
affecting the excitation spectra and how these spectra can be eventually used
to pin down the fingerprints of isoscalar pairing.

From the theoretical point of view, the majority of studies on proton-
neutron pairing have been done in the framework of quasiparticle models of
BCS-type. Thus, in Refs. [3, 4, 5] the BCS theory for like-particle pairing
was extended to treat simultaneously all the components of isovector T=1
pairing, i.e., nn, pp and np pairing. The isoscalar pn pairing, considering
only the pn pairs in time-reversed states (i.e., with J, = 0), was first treated
in a BCS approach by Goswami and Kisslinger [6]. Later on, making use of
a generalized Bogoliubov transformation, the BCS model was extended to
include both the isovector and the isoscalar J, = 0 pairing [7, 8]. The most
general BCS model, which includes the isovector pairing and all possible J=1
isoscalar pairs, was proposed by Goodman in Ref. [9]. Finally, Goodman
has considered a HFB model in which all types of pairing have been treated
simultaneously with the mean field properties [10]. With this model it was
studied the competition between isovector and isoscalar pn pairing in both
ground and excited states [10]. The great advantage of these calculations is
that they can be done for any nucleus, allowing a careful study of how various
types of pairing correlations depend on the atomic mass and on the relative
numbers of protons and neutrons. However, as shown in exactly solvable
models [11, 12, 13] and in some schematic calculations [14], the predictions
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of the BCS/HFB models on the competition of isovector and isoscalar pairing
are affected significantly by the fact that these models do not conserve exactly
the particle number and the isospin.

How much are affected the results of BCS calculations by breaking the
particle number conservation is quite well-documented for the like-particle
pairing. Thus, as has been shown more than 40 years ago by Richardson [15]
using the exact solution of the BCS pairing Hamiltonian, the BCS model
gives errors of about 40% for the correlation pairing energies in the ground
state of nuclei. These large errors can be eventually compensated by fitting
the pairing strength to experimental data, such as odd-even mass difference
and/or moment of inertia. However, these types of adjustments are difficult
to be controlled when the proton-neutron pairing is considered. Indeed,
as shown by the majority of BCS/HFB calculations, the balance between
various types of pairing is very sensitive to slight changes in the effective
pairing forces [10].

For the like-particle pairing the errors of the BCS can be considerably
reduced by performing particle-number projected-BCS (PBCS) calculations
(for a recent study, see [16]). However, this is not the case for the proton-
neutron BCS models. Thus, as shown in a few studies [7, 17], the PBCS
calculations with pn pairing give quite large errors. This is mainly because
in PBCS applyed for pn pairing there is another symmetry which should be
restored: the isospin symmetry. Indeed, as shown in [7], restoring both the
particle number and the isospin symmetries the PBCS results become closer
to the exact calculations, but not as much as in PBCS calculations for like-
particle pairing. To increase further the accuracy one needs to go beyond
BCS/PBCS. In Ref.[7] this is done by applying the framework of generator
coordinate method (GCM). However, this is an approach which does not
give a simple understanding of the types of correlations present in the GCM
trial function and, in addition, it is not clear how to extend this method for
treating both the isovector and isoscalar pairing.

The alternative approach to treat the pn pairing, presented in this thesis,
is to use as building blocks alpha-like quartets instead of Cooper pairs. The
fact that one could use quartets in order to restore the isospin symmetry
when pn pairing is treated was suggested many years ago by Lane [18].

Alpha-like structures in nuclei are one of the most discussed topics in
nuclear physics (see [19] for a recent review), mainly due to its connection to
alpha-radioactivity. However, there are also other observables which can be
related to the existence of alpha-like structures, such as specific regularities
in the masses of light nuclei and in the low-energy excitations of N=Z7 nuclei
[19, 20, 21, 22].

One of the first treatments of pn pairing in terms of alpha-type quar-
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tets have been done by Flowers and Vujicic [23]. They have considered a
BCS-type condensate of alpha-like quartets in order to describe the isovector
pairing in the ground state of N=Z nuclei. Recently in Ref. [24] this model
has been extended by considering a BCS-type condensate formed by alpha-
like quartets and pairs. However, due to the complication of the variational
equations, no applications have been done yet for realistic proton-neutron
systems. In fact, a theory of quartet correlations based on a BCS-like func-
tion is expected to be not accurate when applied to finite nuclear systems
as atomic nuclei. This is due to the large fluctuation in the particle num-
ber, which in the case of a BCS-like condensate of quartets is fluctuating in
units of four. A different alpha-type approach, conserving the particle num-
ber, has been proposed in Ref.[25]. This approach is based on non-collective
alpha-like quartets, constructed for each single-particle state. This formal-
ism was applied for a schematic model of two levels and appears difficult to
be extended for realistic calculations. An alpha-type condensate constructed
with collective quartets was introduced by Talmi in his generalization of the
seniority model [26], but he discussed only schematic Hamiltonians which
fulfill the generalized seniority rule. First realistic calculations with an alpha
condensate have been done in Ref.[27]. In these calculations the collective
alpha-type quartet is constructed with all possible intermediate couplings,
i.e.; considering not only J=0 and J=1 pairs. However, since the use of such
complex quartets is a difficult task, the calculations have been done using
bosonic type approximations for systems with more than two quartets. A
fully bosonic approach for alpha condensate was considered in Ref. [28] using
the framework of IBM model.

In the present thesis it is discussed a new quartet model which, compared
with the previous models mentioned above, has the following characteristics:
1) the particle number and the total isospin are exactly conserved; 2) it
is based on collective quartets built by scattering protons and neutrons in
single-particle states around the Fermi levels; 3) the variational equations are
solved by preserving exactly the Pauli principle for any number of quartets;
4) the alpha-type quartets are built only with J=0 and J=1 pairs, which
make them appropriate for the description of the isovector and the isoscalar
pairing but not for all types of correlations contained in a full shell model
interaction.

To present the main studies we have done during the PhD programme, we
have chosen the following structure of the thesis. First, to set the stage, in the
first chapter we review shortly how the proton-neutron pairing is traditionally
treated in BCS-type models. Thus, after we recall briefly the BCS model for
like-particle pairing, we discuss how BCS is being employed for treating the
isovector nn, pp and pn pairing. For that we have used the linearization



method of Ginocchio et al. [32], which is less known than other methods
usually presented in textbooks or review papers. This method of treating the
isovector pairing presents the great advantage of simplicity, showing clearly
that a BCS-theory is not able to take into account properly the pn pairing.
Then, in the next section we summarized how both the isovector and the
isoscalar pairing are treated in the generalized BCS approach by using the
method of Bogoliubov transformation. Finally, making use of the results of
Ref.[17], we illustrate how the particle number could be restored in the case
of isovector pairing. It is thus concluded that the errors remain still large
due to the isospin symmetry breaking.

Then, in the next chapters we discussed the original work we have done
during the PhD programme, which has been published in Refs. [29, 30, 31].
Thus, in Chapter IT we introduce the quartet condensation model (QCM) for
describing the isovector pairing correlations in N=7 nuclei. In Chapter III,
we extend the QCM for the nuclei with N>Z7 and we discuss the coexistence
between the quartet condensate and the pair condensate of excess neutrons.
Finally, in Chapter IV, we show how QCM can be generalized to include
both the isovector and the isoscalar pairing and we discuss the competition
between the two pairing modes. In all chapters we present in quite details how
are solved the QCM equations by using the method of recurrence relations. In
each chapter we present also realistic calculations of the pairing correlation
energies for three relevant chains of nuclei with the valence protons and
neutrons moving outside the closed cores 60, 4°Ca and °Sn and we check
the accuracy of QCM results by comparing them with the results obtained
by the exact shell model calculations.



Chapter 1

Pairing in nuclei: overview of
BCS-type models

The existence of pairing correlations in nuclei was suggested more than 50
years ago by Bohr, Mottelson and Pines [33]. Their suggestion was based
on the analogy between the gap in the excitation spectra of superconducting
metals and the gap in the excitation spectra of even-even nuclei. Since the
bare nucleon-nucleon interaction is repulsive at small distances, it was not
clear from the begining that a BCS-type condensate can be formed in nuclear
systems. This issue was first investigated by Cooper, Mills and Sessler for
infinite nuclear matter [34]. They have shown that in nuclear matter a BCS
condensate can exist only for densities smaller than the saturation density
but their prediction of the pairing gap was not based on a self-consistent
microscopic approach. In fact, an ab-initio calculation of the pairing gap
in nuclear matter, starting from bare nucleon-nucleon interaction and treat-
ing self-consistently the in-medium effects, is still missing [35]. In nuclei,
due to finite size effects, the pairing problem is even more difficult to solve
self-consistently. Thus, in nuclei it was used from the very begining a phe-
nomenological BCS approach [36], postulating the existence of Cooper pair-
ing and employing effective pairing forces adjusted to observables related to
the pairing correlations, such as odd-even mass differences and moments of
inertia. The phenomenological BCS model has been applied with a great
success in nuclear structure, mainly together with mean field models such as
Skyrme-HF, Hartree-Fock-Bogoliubov [37] and Relativistic Mean Field [38].
However, in spite of its success, BCS has an important drawback which in-
troduces important errors when is applied to nuclei: the particle number is
conserved only in average. This drawback is mainly noticed when BCS is
applied to describe pairing in nuclei with a few nucleons in the valence shell,
such as nuclei close to the magic numbers. A better approximation, proposed



already many years ago [39], is the so-called particle-number projected BCS
(PBCS) approximation. This approximation is quite easy to apply for a
given single-particle spectrum [40], but becomes much more difficult when
it is extended to mean field models of Skyrme-HFB type (e.g., see [41] and
references quoted therein).

The BCS approximations mentioned above will be shortly reviewed in
Section 1.1. They have been applied initially to describe the pairing correla-
tions between neutrons or protons. This is the case of semi-magic nuclei, with
only one open shell, or heavy nuclei in which the neutrons and the protons
are moving in different valence shells.

A different class of pairing correlations, which we are dealing with in the
present thesis, are the pairing correlations between neutrons and protons.
These correlations are important in nuclei with the neutrons and protons
moving in the same open shell. Usually the proton-neutron pairing is consid-
ered in two channels, that is, the isovector and the isoscalar proton-neutron
pairing, in which the protons and neutrons are coupled to the total spin S=0
and, respectively, S=1. The isovector and the isoscalar proton-neutron pair-
ing are commonly described with the generalized BCS/HFB models. These
models are reviewed in Sections 1.2-1.3.

1.1 BCS approximation for like-particle pair-
ing

For reasons of consistency, we shall start with a short review of the BCS
model [42]. Here we shall follow the Ref. [37], in which the BCS approach is
presented with notations appropriate for the applications to nuclei.

In nuclei the pairing is associated to a residual two-body force which
scatters pairs of nucleons in time-reversed states. Thus, the standard pairing
Hamiltonian is written as

Q Q
H= Z €;(a; a; + a a;) — Z vija; af aza;. (1.1)
i i>j
In the first term ¢; is the energy of the single-particle state i, generated by
phenomenological or self-consistent mean field models. The second term is
the pairing interaction which scatters the pairs in time-reversed states (i,1%).
The most common pairing interaction is the one in which it is considered that
the matrix elements of the force do not depend on the states, i.e., v;; = g.

In the BCS approximation it is supposed that the ground state of the
system can be well described by the trial wave function:



1BCS) = [ [(w + vearaz ™)), (1.2)

k>0

where u; and vy are variational parameters and |—) stands for the pair
vacuum. From the normalization condition one gets that these parameters
should satisfy the relation:

|uk]2 —+ ‘Uk‘z =1. (13)

Explicitely, the BCS state can be written as

v 1 VR,
[BCS) o |[=) + > Faptap|-) + 5 > katagtaptapt-) +
k0 Uk kk'>0 Rk

(1.4)
It can be seen that the BCS wave function is a superposition of components
with various number of pairs. The particle number is conserved only in
average by imposing the condition

(BCS|N|BCS) =2 v} = N. (1.5)

k>0

One can thus notice that the variational parameters v? are related to the

occupation probabilities of the single-particle levels.

The variational parameters are derived from the minimization of the aux-
iliary Hamiltonian H' = H — AN, where X is the Lagrange multiplier corre-
sponding to the condition of particle number conservation (in average). One
thus gets:

1 €
=1 —f ), 1.6
=3 "

' ~
i S (1.7)
2 Ve + A2

where €, = ¢; — A\, while

Ak = — ka7k/uk/vk/, (18)
k/

is the so-called gap equation.

The equations which define the occupation probabilities together with
the gap equation and the equation for the particle number average are the
so-called BCS equations. They are a set of non-linear equations which are



solved iteratively up to the convergence. Solving the BCS equations one thus
gets the occupation probabilities of the single-particle states and the pairing
gap. The latter is commonly associated with the odd-even mass difference.
Moreover, the quantities F; = /€2 + A? are associated to the quasiparticle
excitations of the system. Thus, taking into account that an even system is
described by an even number of quasiparticle excitations, it can be seen that
2A (considering that the gap does not depend on the state) can be associated
to the minimal energy necessary to excite a paired even system.

The BCS model can be also formulated in terms of the Bogoliubov quasi-
particles defined as

of = ugay — vpag, (1.9)
Oég = uka/,%r + vpag. (1.10)

The new quasiparticle operators a; are also fermionic operators satisfying
the anti-commutation relations:

{ag, s} = 0; {ak,a:,} = Opper- (1.11)

As we shall discuss below, the Bogoliubov transformation is particularly
suited to generalize the BCS model in order to treat the proton-neutron
pairing.

By construction, the BCS theory does not conserve exactly the particle
number. A theory of Cooper pairing which conserves exactly the particle
number is the so-called particle-number projected-BCS (PBCS) [39, 43]. In
its simplest formulation, it amounts in keeping from the BCS wave function
(1.4) only the component with the right number of particles. Thus, one gets

|PBCS) oc (I'F)Nwair| ), (1.12)
where I't = )", xiafa; is the operator which creates a collective Cooper
pair. The parameters z; are determined variationally from the minimization
of the pairing Hamiltonian with the |PBCS) wave function.

We end this section with a few comments related to the accuracy of BCS
and PBCS approximations for like-particle pairing. The accuracy of these
models can be probed by the exact solution of the pairing Hamiltonian, given
by Richardson [15] many years ago. Thus, the exact wave function for the
ground state of the pairing Hamiltonian (1.1) with v;; = ¢ is given by

Npai'r

w) = 1] B (1.13)
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where Ny is the number of pairs, while the operators B} are

1
Bf = ——aat. 1.14
v Zz: 262' — EV v ( )
These operators depend on the parameters E, which are determined solving
the set of non-linear equations:

1 1 2
PPy D Dy ey

v

0. (1.15)

The parameters F, are related to the ground state energy of the system, F,
through the relation £ =) FE,.

From Eq. (1.13) one can see that the exact solution is not a product
of identical collective pairs, as in the BCS and PBCS approximations. The
question is how accurate are the predictions of these approximations relative
to the exact solution. To discuss this issue we use the results of Ref.[16].

100¢= = . I
i H.J-:J A ~ \ — N:g
o - LY B -
L RN N == N=16]
L @ - J
s} ~ N:32
= [s] ~
= 60F ~_| © N=80{
i r "o :
(:; ':_'I‘. oy o~
o 40r s - -
5] 3.0 . -
i Q':!'::_j
ML “Cog _
20 hfbc{":"-"f_:rﬁ:r
i PHR00000050000
0 1 | 1 |
0.2 0.4 0.6
g

Figure 1.1: Errors in correlation energies for the BCS model. The results are
given for a system of N particles distributed in N equally-spaced and double-
degenerate levels. The strength g of the force and the correlation energy are
given in units of single-particle energies. This figure is taken from Ref. [16].

Thus, in Fig. 1.1 are presented the errors of BCS approximation relative
to the exact results for the pairing correlation energy defined by:

Ecorr(Q) = EHF - E(Q)? (116)

where Fyp is the ground state energy of the system in the HF state while
E(g) is the energy containing the pairing correlations. The results presented
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in Fig. 1.1 correspond to a system of N particles distributed in N equally-
spaced and double-degenerate single-particle levels. The results are given for
all coupling regimes, starting from weak to the strong coupling. For the phys-
ical values of the pairing strength (e.g., g &~ 0.7 for N=16) one can see that
the BCS approximation gives very large errors for the correlation energies, of
about 40%. Increasing the particle number to N=80, but renormalizing the
strength as for N=16 (in this case the strength is going from 0.7 to about
0.25), does not improve the accuracy of BCS. In fact, BCS becomes exact
only in the thermodynamic limit, which is quite far for small systems such
as nuclei.

Going from BCS to PBCS the errors in correlation energies are reduced
drastically. This can be seen in Fig. 1.2. For instance, for N=16 and g=0.7
the errors drop from about 40% to less than 5%. On the other hand, one
observes that for N=80 and g=0.25 the error of PBCS is still very large. This
shows that PBCS does not work properly if it is applied for states very far
from the Fermi level. This fact can be understood from the structure of the
exact solution. Indeed, only the pairs B, built mainly upon states close to
the Fermi level can be considered approximatively identical in structure and
forming a PBCS type condensate.

ZU | CD\D,: T T |
- [«] o — N=8 -
5 o O — - N-16
] o N=32 | 7]
s | o 0 o N-80 | |
e - o
2102 0 -
= -:j:s" =}
E 1_ (] a
S —_ - L';:‘ S —
| — o S,
L e ——— S o 4
ETT—
0 | A | %'\Q—C“lﬂﬂﬂ e
0.2 0.4 0.6

Figure 1.2: The same as in Fig. 1.1 but for PBCS approximation.
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1.2 Isovector proton-neutron pairing in the
BCS approximation

In nuclei with neutrons and protons in the same major shell one can have
collective neutron-neutron (nn) and proton-proton (pp) Cooper pairs with
J=0. In addition, due to the isospin invariance of the nuclear forces, one
expects to have also important correlations coming from proton-neutron (pn)
pairs of J=0. In fact, in N=Z nuclei (nuclei with equal number of protons
and neutrons) the nn, pp and pn pairing should generate the same amount of
pairing correlations. Since these pairs have the isospin T=1, they are referred
to as isovector pairs.

The isovector pairing is commonly described within the BCS approxima-
tion generalized to include on equal footing nn, pp and np pairs. The BCS
equations are obtained either in the framework of Bogoliubov transforma-
tion [3], or using the linearization method [32]. The latter method will be
reviewed below. This method has the great advantage of reducing the isovec-
tor pairing problem to a product of standard BCS functions for neutron and
proton-like degrees of freedom.

Thus, following Ref. [32], we start with the isovector pairing Hamiltonian:

H = ij e][ajmajm —|—b bim)
—3 255 G A (=Y a0l [ (=) ™ g ]
[ (Y b [ (< T g b
2030, (=) bl () T b}

where a™ and 0" denote, respectively, the neutron and the proton creation
operators. The first term is the single-particle Hamiltonian, described by
the single-particle energies ¢;. The next three terms are the nn, pp and np
pairing interactions for the pairs coupled to J=0 and T=1. As can be seen, all
the interactions have the same matrix elements G/, which is a requirement
imposed by the isospin invariance of the nucleon-nucleon force (the Coulomb
interaction is not considered in the studies discussed in this thesis).

The linearization method for treating the pairing consists in replacing
two-body operators by one-body operators according to the Wicks theorem:

ala jakal <a;raj+>akal—|—ai+aj<akal> (a ;rak>a a; + a; al<aj+ak>. (1.17)
One can see that in this approximation it is implicitely supposed that the
average of two creation or two anihilation operators is non-zero, which is the

case of a BCS-like state. Neglecting the one-body terms of the form a™a,
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which can be assimilated into the single-particle Hamiltonian, the isovector
pairing Hamiltonian can be written as

H Z]m €j [a]majm + b b ]
—3 Xjm Am[( )] mafmaf mt (—)’ ")
_% Z]m Anpj[( )] ma’jmb;r m + ( )j mb] ma]m]

where the pairing gaps A are defined by

Anj =) G (Y (=) "ty -majm), (1.18)
7 m

ZG” Z ) "™ b, (1.19)
Anp; ZG]J Z ]_mb’ mj'm)- (1.20)

In Ref. [32] the solution of the linearized Hamiltonian is searched for in
a form which does not involve the coupling term ab. To achieve that, it is
performed a rotation in the isospin space as follows:

Qjm = COSQjQjr, — SINP;bjm, (1.21)

bjm = smqﬁjajm + COS¢jbjm. (122)

In the rotated isospin frame the gaps are expressed by:

Agj = cos2<bjAnj + sz'n2<bjApj — 5in2¢0; A5, (1.23)
Ay = sind; Ay + cos’ iy + sin2¢; A, (1.24)

1 1
A&Ej = 552n2¢]Am — 55in2¢jApj + COSQ¢jAnpj. (125)

Now it can be seen that the ab coupling can be removed by choosing a rotating
angle for which Ag;;=0. This angle is defined by the equation

c082¢; B Api — Ay

(1.26)

It can be observed that the rotating angle is expressed in terms of the gaps in
the non-rotated frame. For a separable pairing interaction, i.e., G = g;g;,
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the gaps are independent of single-particle state. In this case the rotation
angle can be written as:

1

Since n; # 0 brings just a phase, one can consider ¢; = ¢.

Because by applying the linearization method the particle number con-
servation was broken, it is imposed its conservation in average. However,
compared to the BCS for like-particle pairing, here one should impose the
conservation in average of both the neutron and proton numbers. Alterna-
tively, one can use two conditions,that is, the average conservation of the
total number of particle and of the isospin projection on z axis:

N = Z( ]majm + b+ B ) Z(N@j + NB])’ (128)

Jm J

. 1 o = _
T, = 520032@(&%(1@ b+ bim)+ = Zsm2q§] Jm—i-b]ma]m) (1.29)

It can be noticed that the average of the total number of particles (protons
and neutrons) can be expressed as a sum of the particle operators in the
rotated space. This is not the case with the average of the isospin operator,
which contains also mixed terms (a,b). Therefore, in Ref.[32] it is used the
following operator for imposing the conservation of the isospin average:

o1 - - 1 — -
T= 5 Z(N&] + NB]) = 5 Z(a’;—ma]m - b;rmb]m) (130)
J jm
Using the approximations mentioned above it can be shown that the
ground state of the isovector pairing Hamiltonian can be written as a direct
product of the BCS wave functions for rotated neutrons and protons, i.e.,

|\D> = H [Uaj+( )] m‘/:l]a]m j— m] [UEj ( )] m‘/;;]b;_mb;_ m] (131)

jm>0

So, in the rotated isospin space, the isovector pairing problem is reduced
to the solution of two standard BCS equations for the rotated protons and
neutrons.

It is important to remember that, at variance with the like-particle pair-
ing, there are here two chemical potentials which should be determined, Ay
and \,, corresponding to the average conservation of the total number of
particle and isospin. They are given by the equations:

(5V +20)) = S(N +2r) = 32 + )V, (1.32)

J
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1, . 1 .
(GIN =28)) = 5N =27) = 3 _(2j + )V, (1.33)
j
Of special interest for systems with proton-neutron pairing is the isospin
quantum number. The average of the projection of the isospin on z axis can
be written as

T. = (U|T.|0) = cos2p(T|7|T) = (cos2¢). (1.34)
On the other hand, the average of the total isospin is given by:

(UIT2|W) =7+ [N = > (25 + D)(V7 + Vi2)). (1.35)

J

It can be seen that actually 72 is not the average of the total isospin of the
system. However, taking into account that the second term in the equation
above is usually a small quantity, one can consider that

T? = 72, (1.36)

Thus, in this approximation, 7 can be interpreted as the average of the total
isospin of the system.

The possible values of the isospin put straightforward constraints on the
proton-neutron pairing correlations. This is simply seen in the case of even-
even N=Z7 nuclei. These nuclei have T=0 in the ground state. Imposing
the conditions T=0 and 7,=0 it can be shown [17] that the system have
in this case two independent and excluding solutions i.e., a solution with
A, =A, #0and A,, =0 or a solution with A,, = A, =0 and A,, # 0.

Another important case is the one for even-even nuclei with N>7 and
mass larger than 40. These nuclei have a ground state with T'=T,. As can
be seen from Eq. (1.34), this condition can be fulfilled when the rotation
angle is zero. Thus, in this case the ground state can be also described
as independent BCS condensates of protons and neutrons, without having
contributions from proton-neutron pairing.

1.3 Isovector and isoscalar pairing in BCS-
like models

In nuclei with neutrons and protons in the same major shell one can have,
in addition to the isovector (T=1) pairing, isoscalar (T=0) proton-neutron

pairing. The standard T=0 isoscalar pairing refers to the proton-neutron
pairs with total angular momentum J=1, or total spin S=1. In principle,
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one can have also isoscalar pn pairing with J > 1 . However, it is expected
that, in general, these pairs are less collective than the pairs with J=1.
Both the isovector and isoscalar pairing correlations are commonly de-
scribed in generalized BCS or HFB models [44]. In this section, following
Ref. [10], we summarize the generalized BCS model.
The generalized BCS calculations are done usually with the two-body
Hamiltonian

=Y ecrc;+ 411 S il ) CFCHOC, (1.37)
j ikl
where e; are the single-particle energies and v, is the antisymmetrized effec-
tive interaction. By 7 are denoted the quantum numbers of the single- particle
states, e.g., nljmr, where 7 = £1/2 are the isospin quantum numbers for
neutrons and protons. Below it is also used the notation o = {nljm} while
the proton and neutron states are labelled explicitely by n and p instead of
T = £1/2. The isovector and the isoscalar pairing is studied by considering
in the two-body interaction the terms with (T=1,J=0) and (T=0,J=1).
The pairing correlations are commonly treated by the generalized Bo-
goliubov transformation. For like-particle pairing the special Bogoliubov
transformation has the form:

()=o) (@), 139

where a™, a are the quasiparticle operators. In order to take into account the
proton-neutron pairing, both isovector and isoscalar, the Bogoliubov trans-
formation is extended as follows:

()-(C0 ) (Eg). o

where a™(«) and C*(a) are vectors with four components:

+

a;rl C;—p
+ +

+ _ %) + _ Ccm

a(a) = ot | CM(a) = ch |- (1.40)
&;2 Cojz_n

The quantities u(a)) and v(«) are four-dimensional matrices of the following
form:

0 Va1 Va2 Va3
—Val 0 UVhg  —Ua2
u(a) = ugly, v(a) = . 8‘ . : (1.41)
Va2  TUus Va1
—VUa3 Va2  —Ump 0
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Uy, Voo are real and v,1, V43 are complex.
In the generalized BCS the trial wave function is taken as a superposition
of all possible isovector and isoscalar pairs and has the expression:

|CI)0> = Ha>0 (ua + Uzzlccirpcin + UO&QO;pC;p + v;3cotpogn)

(ua + vangprO—Tn - UQQC;_ Cgcrn + Ua3C(i_nCo_Tp) ’0>

n

From the normalization condition of the BCS wave function one gets
Ui = ‘Ua1’2 + ”Uo&‘z + |Ua3’25 (142)

where v2 plays the role of the occupation probability of the orbital . The
equations for the variational parameters are obtained from the minimization
of the average of the pairing Hamiltonian. One thus gets [10]:

1 € — A 1/2 1 €q — A 1/2
T = | IO | R
Va1l = _UQ(AZp,an/AOé)7 (144)
Va2 = _Ua<Aap,07p/Aa)7 (145)
Va3 = —Va (A%, an/Da)- (1.46)
The pairing gaps entering in the expressions above are defined by:
Aapap = Y _(aaT = 1|0, BFT = Lyugvgs, (1.47)
B>0
Re Agnap = Z(adT = 1|v,|BBT = 1)ugRe vgs, (1.48)
B8>0
Im Dongp = Y (06T = 0lvg| BT = 0)uslm vgs, (1.49)
B>0
1 _
Re Appon = 5 Z[(aaT = 0]|v,|BBT = 0)+({aaT = 0lv,|BBT = 0)|ugRe vg,
B8>0
(1.50)
1 __
Im Appon = 5 Z[(—aaT = 0]|v,|BBT = 0)+(aaT = Olv,|BLT = 0)|uglm vgs.
B8>0
(1.51)

It can be observed that the real part of A,, s, is related to the isovector
(I' = 1) pairing while the imaginary part of A,, s, stands for the isoscalar
(T = 0) pairing.
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The quasiparticle energies can be written, formally, as in the BCS theory
for like-particle pairing, i.e.,

E, = [(ea — \)? + A2]Y/2, (1.52)

The pairing gap includes now the contributions coming from all types of
pairing and has the expression:

Ai = |Aap707p|2 + |Aap,07n|2 + |Aap,0m|2- (1'53)

Finally, the chemical potential is obtained from the average conservation of
the particle number. For the systems with equal number of protons and
neutrons one thus have:
N=27Z=2) . (1.54)
a>0

The equations above represent the generalized BCS equations for isovec-
tor and isoscalar pairing. As can be seen, they have a much more complicated
structure than in the case of like-particle pairing.

The generalized BCS approximation summarized above contains only the
pairing correlations obtained from pairs in time-reversed states. A more
general theory, which includes pairs in states which are not time-reversed, is
the generalized HFB [44]. The generalized HFB has been applied extensively
for the study of the competition between the isovector and isoscalar pairing,
both in the ground and excited states (e.g., see [10] and the references quoted
therein). In many calculations it appears that the isovector and the isoscalar
pairing do not coexist together. However, as indicated by some studies (e.g.,
see [14]), it appears that this conclusion is affected by the fact that HFB does
not conserve exactly the particle number and the isospin. The restoration of
these two symmetries was never done in the generalized HFB calculations.
As an example, in the following section we shall discuss how the particle
number restoration affects the BCS results for isovector pairing.
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1.4 Isovector pairing in the PBCS approxi-
mation

As we have already mentioned in the previous section, the BCS/HFB treat-
ment of proton-neutron pairing has the disavantage of not conserving exactly
the particle number and the isospin. The question we shall discuss in this
section is how much one can improve the BCS results if one restores the par-
ticle number conservation. As an example we take the case of the isovector
pairing analysed in Ref. [17] .

Thus, following Ref. [17], we consider the isovector pairing described with
a pairing force of constant strength, i.e., a force with all the matrix elements
equal to a constant. The corresponding Hamiltonian is:

H= Z Eia;—aiT —4g Z}iji’PiiIDi/T7 (1-55)

0,47

+_ L [,+,+101 : : :
where P = \/5[% a; Jo; are the isovector pair creation operators for neutron-

neutron (7 = 1), proton-proton (7 = —1) and proton-neutron pairs (7 = 0).
This Hamiltonian has the SO(5) symmetry and can be solved exactly by the
Richardson-Gaudin method (e.g., see [45]).

The common approximation used to treat the Hamiltonian (1.55) is the
BCS. As we have already mentioned in Section 1.2, the BCS gives for the
isovector pairing two independent and degenerate solutions, one correspond-
ing to A, = A and A, = A, = 0 and the other to A, = A, = A and
Ay, =0 (see [17]).

Restoring the particle number in BCS is commonly done with the pro-
jection operators. In the case of isovector pairing this approach is rather
complicated and does not provide a simple understanding of the projected
wave function. As an alternative, in Ref.[17] are constructed explicitely the
PBCS wave functions corresponding to the two degenerate BCS solutions
mentioned above. Thus, for a nucleus with N=Z it is considered a PBCS
wave function formed by N collective proton-neutron pairs of the following
form:

1
|PBCS0) = m(rg)N\O), (1.56)
where I'{ is the collective neutron-proton pair operator defined by
L
Ty =Y Py, (1.57)

i=1
For even-even N=Z nuclei there is another possibility to construct a PBCS
state, which corresponds to the second BCS solution. This wave function is
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a product of two PBCS condensates, one formed by nn pairs and the other

by pp pairs, i.e.
1

(M1)?
where M is the number of nn and pp pairs, i.e., M = N/2 = Z/2. T} and
Fl‘f are the collective pair operators for neutrons and protons:

|PBCS1) =

(TaT)M0), (1.58)

L L
Ty =Y wPl, Tj=> yP, (1.59)
=1 =1

Since for N=Z nuclei the system is unchanged by the interchange of protons
and neutrons, the mixing amplitudes for the proton and neutron collective
pairs are the same.

To determine the mixing amplitudes it is minimized the energy functional
(PBCS|H|PBCS) under the condition (PBCS|PBCS) = 1. The calcula-
tions are done using the method of recurrence relations.

100

co
°

60

40+

telative errors (%)

Figure 1.3: Errors for the correlation energies obtained in PBCS0, PBCS1
and BCS approximations. The results are given for seven and eight pn pairs

distributed in N equidistant and double-degenerate levels. This figure is
taken from Ref. [17].

As a numerical example, here we summarize some results of Ref.[17] ob-
tained for systems formed by N pn pairs distributed in N double-degenerate
single-particle states with energies ¢; =i ( i=1,2,..,N). Thus, in Fig. 1.3 are
shown the errors of PBCS1 and PBCS0O approximations as well as of BCS
model relative to the exact results for pairing correlation energies. The re-
sults are given for seven and eight pn pairs and for a pairing strength g going
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from 0 to 1, covering all the pairing regimes, from weak to strong coupling.
The pairing strength and the correlation energies are measured in units of
single-particle levels spacing.

Two important informations can be extracted from Fig. 1.3. Thus, one
can see that for N=8 (N=7) the PBCS1 (PBCS0) gives much better results
than BCS. In fact, the two PBCS solutions, PBCS1 and PBCSO0, give the
minimum energy for N=even and, respectively, N=odd systems. One can
thus conclude that for even systems the minimum is obtained with the PBCS1
solution which does not contain pn pairs. Moreover, from Fig. 1.3 one
can also notice that the errors associated to the PBCS1 solution are much
larger than in the case of PBCS applied to the like-particle pairing [16].
The reason is that for isovector pairing there is another symmetry broken,
in addition to the particle number, the isospin symmetry. Indeed, as can
be seen from the structure of PBCS1 condensate, this state has the right
number of particles, the right value of the isospin projection on z axis but
has not a well-defined total isospin. Isospin restoration is expected to bring
additional pairing correlations. However, in order to restore the isospin one
should go beyond BCS or PBCS approximations. This is the main issue of
this thesis which will be discussed in the next chapters.
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Chapter 2

Isovector pairing and quartet
condensation in N=7 nuclei

In the previous introductory chapter it was seen that the BCS-type models
are not able to describe accurately the proton-neutron pairing correlations
in the ground state of even-even self-conjugate nuclei. The main reason
why the BCS-type models fail to take into account properly the isovector
pairing interaction is the fact that these models are built by independent
Cooper pairs of isospin T=1. Thus, since the pairs are independent, the
total isospin is not well-defined. The restoration of the total isospin can
be achieved by using standard projection techniques. Because the isospin is
a vector operator, this task is much more complicated than projecting out
the particle number. However, the most important drawback is that the
standard isospin projection is not able to improve too much the accuracy of
the pairing calculations compared to the generalized BCS or PBCS models
(see the discussion in Section 2.3 below). This failure shows that one needs
to go beyond the BCS-type models. One alternative, explored in Ref. [46], is
to do generator coordinate method (GCM) calculations using as generating
function the projected-BCS state and as dynamical coordinates the neutron
and the proton gaps. The GCM approximation seems to work very well for
N=Z nuclei [46]. However, due to the complicated structure of the trial wave
function, the GCM calculations do not provide a clear understanding of the
types of correlations induced by the isovector pairing correlations. Moreover,
GCM becomes very difficult to apply for nuclei with N>7 and for treating
both the isovector and isoscalar pairing correlations.

The alternative which we follow here is to treat the isovector pairing not
in terms of Cooper pairs but with alpha-like quartets formed by two neutrons
and two protons coupled to the total isospin T=0. The idea of using quartets
for treating the isovector pairing is quite old [18]. However, the quartets have
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been used either with BCS-type states which violate the particle number
conservation [23, 24] or with approximations which are strictly valid only for
a limited number of quartets [27]. Here we present the quartet model we
have proposed in Ref. [30].

2.1 Quartet condensation model: formalism

The physical system we are going to describe in terms of quartets is formed
by a certain number of protons and neutrons distributed in a set of single-
particle states of energies ¢; and interacting by an isovector pairing force.
The corresponding Hamiltonian is:

H= Zel (N? + NF) +ZVU > PLP (2.1)

7=0,%+1

In the single-particle term the operators N/ and N[ are, respectively, the
neutron and proton number operators. The pairing interaction is written in
terms of the pair operators:

P = laf a J3E%T=" (2.2)

As usual, by ¢ we denote the time conjugate of the state i. By 7 we label
the three projections of the isospin T=1 corresponding to nn (7 = 1), pp
(1 = —1) and pn (7 = 0) pairs. Explicitely, the three pair operators are:

1
Pl = E iy 2.3
(D \/_ /2jz ]zmzyjz m;? ( )

pt + 2.4
7’771 \/_ \/T Z szzﬂ-jz m;? ( )

+ +
Pi70 A /2]1 Z ]zmzﬂ-]z —m;® (25)
It can be seen that all these operators describe pairs with J=0.

As we have mentioned, the solution of the pairing Hamiltonian will be
formulated in terms of quartets. Let’s first introduce the following non-
collective quartet operators formed by two isovector pairs coupled to the
total isospin T=0:

A =[PP (PP

7,—1

FPEPE - PLPL). (26)

w
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Then, with the non-collective quartets we define a collective quartet operator
i?j

In analogy to the PBCS models, we construct now a condensate of collective
quartets of the form:

W) = (A7)™|0). (2.8)

The question we address is whether or not this state can reasonably de-
scribe the isovector pairing interaction in the ground state of even-even self-
conjugate nuclei. As in the BCS model, we treat as active only the nucleons
from a finite energy window around the Fermi level. More precisely, in the
quartet condensate written above n, is the number of quartets which can be
formed by the pairing active protons and neutrons and the ”vaccum” state
|0) denotes the non-active nucleons from a closed core with equal number of
protons and neutrons. Thus, we shall further denote by N and Z the number
of pairing active neutrons and protons and by n, the number of quartets,
equal to (N+Z)/4 (with N=Z=even).

Since the collective quartet has the same quantum numbers as the alpha
particle (i.e., *He), the quartet A* will be called alpha-like. It should however
be kept in mind that the quartet A™ is not a boson operator and it does not
describe a bound system such as an alpha particle.

The collective quartet is defined in terms of the mixing amplitudes x;;,
which should be determined variationally. The calculations can be greatly
simplified if one supposes that the amplitudes are separable in indices i and
j, 1-€.,

Tij R LT (2.9)

In this approximation the quartet operator A™ can be written as:

+_ + + + + + +
AT =D wBh ) Pl ) Pl ) jaPh = ) wiBl ) aiPl
i j i j i j

(2.10)
In the equation above we recognize the collective nn (7 = 1), pp (1 = —1)
and pn (7 = 0) pair operators we have introduced in the previous chapter
(see Section 1.4), i.e.,

I => Pt (2.11)

It can be seen that the mixing amplitudes for the collective pair operators
are the same for nn, pp and pn pairs, which is the consequence of the isospin
invariance and of the equality between neutrons and protons.
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Thus, assuming the separability of the mixing amplitudes, the collective
quartet operator can be written as

AT =2T{TH, — (TF)2 (2.12)

Using this expression of the collective quartet operator, the quartet conden-
sate gets the form:

W) = 20{TE, —T3%)"(0) = (’}2) (=1 R 2RO T )T 0).
k
(2.13)
One can observe that the quartet condensate is a coherent superposition,
defined by the binomial expansion, of condensates formed by nn, pp and np
collective pairs. By construction, the quartet condensate has a total angular
momentum J=0 and a total isospin T=0. It is worth mentioning that in
principle there are many other possibilities to form a wave function with
the same quantum numbers, i.e., J=0,T=0. The question is whether or not
the particular coupling scheme of the quartet condensate is able to take into
account a large part of the correlations induced by the isovector pairing.
In the expansion (2.13) one can notice that there are two terms, corre-
sponding to the two PBCS approximations discussed in the previous chapter
(see Section 1.4). Thus, one is formed by a product of nn and pp pairs, i.e.,

|PBCS1) = (TFDT,)M=N/2=2/2)), (2.14)

The other one is formed by a condensate of neutron-proton pairs and has the
form

|PBCS0) = (IH)N=4/2|0). (2.15)

As we have discussed in Section 1.4, the condensate PBCS1, when it is taken
alone, gives for N=Z=even systems more correlations than the condensate
PBCSO0. It means that, at the level of PBCS, there are no proton-neutron
pairing correlations in the trial wave function. One might think that pn
correlations can be introduced by using a linear combination between the
states PBCS1 and PBCS0. This is not the case because this combination
does not restore the isospin symmetry, except for the case N=72=2. In fact,
as seen from Eq. (2.13), in order to obtain an isospin conserving function
one needs to combine all possible PBCS1 and PBCS0 condensates compatible
with the particle number conservation and the binomial expansion.

The alpha-type condensate (2.13) is considered as a trial wave function for
the ground state of even-even N=7 systems interacting with isovector pairing
and described by the Hamiltonian (2.1). The condensate depends on the

26



mixing amplitudes x; which define the collective pair operators. The mixing
amplitudes are considered as variational parameters which are determined
by minimizing the average of the Hamiltonian (U|H|¥) with the constraint
(¥|¥) = 1. The average of the Hamiltonian and the norm are calculated
using the method of recurrence relations which is presented in Section 2.2
below.

2.2 Quartet condensation model: recurrence
relations for N=Z nuclei

The calculation of the average of the Hamiltonian and of the norm with the
quartet condensation wave function is not a trivial task. The calculation
scheme we have used is based on the set of auxiliary states:

Iny,ng,nz) = LM TT2TE™0). (2.16)

As seen above, these states are defined for an arbitrary number of nn, pp
and pn collective pairs. Similar auxiliary states, but for non-collective pairs,
have been introduced in Ref. [25]. It can be observed that the condensate
(2.13) can be written as a particular superposition of these states:

RESY (Zq) (—1)™ 2%k, k, 2(ny — k). (2.17)

k

To calculate the matrix elements of the Hamiltonian in the basis defined
by the auxiliary states one needs to know how the operators of the SO(5)
algebra, which defines the isovector pairing Hamiltonian, act on these states.
These operators are the isovector pair operators P;;, the particle number
operators and the isospin operators

T = [of a0 (2.18)
The commutation relations of these basic operators, which are necessary to
do the calculation of the matrix elements, are given below. Thus, it can be
shown that the pair operators satisfy the following commutation relations:

1
[Pi,Oa Pj—:’_o] = 5@(1 - §Ni,0)a []Di,Oa Pj—j_l] = 6ijﬂ,17 [Pi,07 Pj—fll] = _61']'7_;,—17
(2.19)
[Pia, Ph] = 0i5(1 = Nin), [Pin, P 3] =0, [Py, Piy] = 045(1 — N 1),
(2.20)
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One can thus see that in order to close the SO(5) algebra one needs to
include also the commutations involving the particle number and the isospin
operators. These commutators are:

[Nio, P},] = 20, P}

2,77

(2.21)

[Ni1, Pioy] = 0, [Ny, Piay] = 205 Py, [N, Prlg) = 0P (2:22)
[T41, Pl = F0i; Py, [Tin, P y] = =0 Py, [Tio1, Pyl = 635 P. (2.23)

With the commutation relations given above and using the operator
equality

M(M -1
A4.8"] =58+ M =V g e o)
one can deduce the following actions:
Z1|7’L> = D3 (n23 1) 2P IanLQTLg — 2> + ’I’Lll'i|7’bl — 1n2n3>

—ningxi Prglng — Ingng — 1) — ny(ny — 1)z P [ny — 2nons),

P, _4n) = w QPJr 1 ninang — 2) + naxining — Ing)

—ngnax? P 0|n1n2 —1ng — 1> —ng(ng — 1)z? PJr ning — 2n3),

n3(n3*1) 2 +0|n1n2n3 . 2>

10’n> = ngxi\nlngng — 1> —
—ninox? P, O|nl — 1ng — 1ng) — ninsz; P 1|n1 —ngng — 1)

—nangxy P |ning — Ing — 1),

Ni70|n> = 2n3xiP;[)|n1n2n3— 1>+2n1$1.P7j—1 |TL1 —1n2n3>—|—2n2xiPit1 |7Z1’I'L2— 1n3>

(2.25)

Nian) = nsa; P;g|ningng — 1) + 2n12, Py [ny — Ingns), (2.26)

Ni7,1|n> = ngxl-Pimnlngng — 1> -+ 2n2xiPi+_1|n1n2 — 17’L3> (227)
Tialn) = —now;Prglning — Ing) — naa; P [nangns — 1), (2.28)

T; —1|n) = mxiPllng — 1ngns) + ngz; P Inangns — 1). (2.29)

The equations above can be further used to calculate the matrix elements
of the Hamiltonian. For illustration we give here the matrix elements for the
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two-body operator Pfl P; 1 which defines the pairing interaction for neutrons.
The matrix elements are:
(nynyns| Py Pyi|ninans) = ma;(ng — Inans| Py ninyns)
—zr5(nynins(ny — Ingng — 1| Pjo|n} — Inhnk)
+n/1n1(n1 - 1)<TL1 - 2n2n3|Pj71|n’1 — 1n’2ng>
+inins(ns — 1)(nanang — 2|Pj_1|n} — 1njn}))
+xiai[nfnfnyns[(n] — Ingnk — 1| PP, o|ny — 1ngng — 1)
+0;;((n}y — Inhny — 1jng — Ingng — 1)
+ni(nf — 1)nang[(n} — 2n4ny| P Pia|ng — Ingng — 1)
—(5w<n’1 — 271/271;)‘7}7,1’711 — 1712713 — 1>]
+3n5(nf — V)nyng[(ninhny — 2| Pf Py _1|ny — Ingng — 1)
+(5l]<n’1n’2ng - 2|ﬂ’1|n1 - 1712713 — ].)]
+ningni(ny — 1)[(ny — 2nang| P Pj1|ny — 1nhnf — 1)
—52‘]‘(711 - 2n2n3|TZ~7_1|n’1 - 1n’2ng — 1>]
+ni(n) — Dna(ng — 1)[(n] — 2nyng| Py Py — 2nans)
+0;;({n} — 2nhngng — 2nang) — (n} — 204Nk N;1Ing — 2nang))]
+ang(ns — Dna(ny — 1)(ninyng — 2| PP, 1|y — 2nang)
+5ningns(ng — 1)[(ninong — 2| Py Pj _y|n} — Injng — 1)
+0;j(ninang — 2|T; 1 |n} — Inhnf — 1)]
+5ni(n) — Dng(ng — 1)(nngng — 2| P Py _1|nf — 2n4ns)
+yns(ns — Dng(ng — D[(nyngng — 2| P P fninang — 2)
+0;;((nnhnly — 2Inyngns — 2) — (ninbhns — 2|N; _1|ninang — 2))]].
It can be seen that the matrix elements of P; P;; depend on the matrix

elements of the basic SO(5) operators P; ;, Pt N, and T; ,—14, but also on

2,77

the matrix elements of all other two-body operators P;Pjﬁ/. In particular,
it can be observed that in order to evaluate recursively the matrix elements
of the pairing interaction one needs also to calculate the matrix elements of
two-body operators with 7 # 7/, which are not operators appearing in the
two-body pairing interaction. This fact makes the calculations not trivial.

To calculate the norm of the quartet condensate one needs the overlaps
of the auxiliary states, i.e., (ninjns|ninons). They are expressed in terms of
the matrix elements of the pair operators. For example one can write

(nynynglningng) = >, xi(”i”’z“émﬁml — 1ngng)

=" wi(ny — Inong| Py |nfnhnk)™.
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Similar relations can be written in terms of the operators P;_; and P, .
Since the recurrence relations for the pair operators involve the overlaps of
the auxiliary states, the latter should be iterated together with the former.

In applying the recursive method one needs to provide the initial starting
values for the matrix elements. They should be analytically derived as func-
tions of the mixing amplitudes. As an example, we give below the matrix
elements between auxiliary states with zero and one collective pair. For the
state with no pairs we use the notation |—) = |n; = 0,ny = 0,n3 = 0). It
should be remembered that here the number of pairs refers to the pairing ac-
tive particles, usually the ones outside the double magic core N=7. We start
by presenting an example of how the calculations are done for the matrix
elements of P :

(~IP,l001) = ([P0, T{11=) = X3, 2,0~ [Pro, Po]I-)
= % 10 (1 = ANio)l =) = X2, a8 (—]-) — X, b~ Vool ) =

In the same way are calculated the following matrix elements:

(—|P;1]100) = (—|P; -1]010) = z;, (2.30)
(001|T;,,]010) = (100|T;,|001) = —x7, (2.31)
(001|N;0|001) = (010|N; 0|010) = (100|N;0]100) = 222 (2.32)

For the calculation of the norm we need the initial value:

(001]001) = Zm (2.33)

Finally, below we give the initial values for the matrix elements of the pairing
interactions:

(001| P, P;0|001) = (010| P, P;_1]|010) = (100| P, P;1|100) = x;z;. (2.34)

Starting from the initial values of the matrix elements one gets, recur-
sively, the matrix elements of the Hamiltonian and the norm for the actual
number of pairs. Then, from the matrix elements in the auxiliar basis states
one gets the average of the Hamiltonian on the quartet condensate wave
function, i.e., E(x) =< V|H|¥ >. Finally, the functional E(z) is minimized
numerically with the constraint < W|W >= 1. The details about the numer-
ical calculations are given in Appendix. As a result, we get the ground state
energy and the occupation probabilities of the single-particle states.
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2.3 Application of quartet condensation model
to N=Z nuclei

The calculation scheme presented above can be applied for describing the
isovector pairing correlations in any even-even self-conjugate nuclei. One
important question is how accurate are the predictions of the quartet con-
densation model. In order to analyse this issue we take as examples systems
for which exact shell model calculations can be done. Thus, we analyse the
isovector pairing correlations for three types of N=7 nuclei with the valence
nucleons moving outside the closed cores 0, “°Ca and '°°Sn, considered as
inert. For these nuclei we have done two types of calculations, supposing
that the nucleons are moving in a spherical or in a deformed mean field. We
start by presenting the calculations done in the spherical symmetry. In this
case the isovector pairing force is extracted from the (T=1, J=0) part of
the standard shell model (SM) interactions. More precisely, we consider the
following input for the interaction and the single-particle energies:

(1) nuclei with the core °0: the universal sd-shell interaction (USDB) [47]
and the single-particle energies: €14;,=-3.926, €o5, ,,=-3.208 and €14, ,,=2.112;

(2) nuclei with the core *°Ca: the monopole-modified Kuo-Brown inter-
action (KB3G) [48] and the energies: €17, , = 0.0, €gp, ,=2.0, €3, ,,=4.0 and
€1fs /2 :65,

(3) nuclei with the core °Sn: the effective G-matrix interaction from
Ref. [49] and the energies: €2d5,,=0.0, €14,,=0.2, €34,,=1.5 and €3, ,=2.8.
Here and above, all single-particle energies are expressed in MeV.

In order to be able to do exact SM calculations, for the second and the
third type of nuclei are neglected, respectively, the single-particle levels 1gg /o
and 1hy1 /5. However this limitation is not necessary for doing QCM calcula-
tions, which can be performed in the full valence shells.

It is worth mentioning that for zero values of the single-particle energies ¢;
and for an interaction of constant strength the isovector pairing Hamiltonian
has an analytical solution. Thus, the ground state energy is given by

3 1 1

E:—g[N(Q+§—§N)—§TZ(TZ—1)—5(TZ+1)], (2.35)
where N is the number of pairs, ) is the number of the states, T, is the
projection of the isospin and ¢ is 0 for even-even (7" = T,) systems and 1
for odd-odd (7" = T + 1) systems [13]. We have used this particular case
for testing the recurrence relations and the numerical code which solves the

QCM equations.
The QCM results obtained for the three types of nuclei are presented in
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Table 2.1. In this table are given the correlation pairing energies defined by:
Ecorr = EO - E7 (236)

where Fj is the energy calculated without the pairing interaction and E is the
energy of the ground state with the isovector pairing included. In brackets
are given the errors relative to the shell model results, shown in the second
column. In the last two columns are given the correlation energies obtained
with the two PBCS approximations defined in Egs. (2.14, 2.15).

Table 2.1: Correlation energies calculated for spherical single-particle states.
The results are given for the exact shell model diagonalizations (SM), for the
quartet condensation model (QCM) and for the two PBCS approximations
defined in Egs. (2.14, 2.15). In brackets are given the errors relative to the
exact SM results.

| | SM | QCM | PBCS1 | PBCS0 |

2MNe | 9.173 | 9.170 (0.033%) | 8.385 (8.590%) | 7.413 (19.187%)
24Mg | 14.460 | 14.436 (0.166%) | 13.250 (8.368%) | 11.801 (18.389%)
2881 | 15.787 | 15.728 (0.374%) | 14.531 (7.956%) | 13.102 (17.008%)
828 | 15.844 | 15.795 (0.309%) | 14.908 (5.908%) | 13.881 (12.389%)

T | 5.973 | 5.964 (0.151%) | 5.487 ( 8.134%) | 4.912 (17.763%)
BCOr | 9.593 | 9.569 (0.250%) | 8.799 (8.277%) | 7.885 (17.805%)
52Fe | 10.768 | 10.710 (0.539%) | 9.815 (8.850%) | 8.585 (20.273%)
01Te | 3.831 | 3.829 (0.052%) | 3.607 (5.847%) | 3.356 (12.399%)
08Xe | 6.752 | 6.696 (0.829%) | 6.311 (6.531%) | 5.877 (12.959%)
12B, | 8.680 | 8.593 (1.002%) | 8.101 (6.670%) | 13.064 (13.064%)

As it can be seen, the approximation PBCS1 gives much smaller errors
than PBCS0. Since PBCS1 is composed only from nn and pp pairs, it can
be concluded that the PBCS approximation is not able to take into account
the pn correlations. This fact was already noticed for the case of a schematic
isovector pairing model (see Section 1.4).

The most important fact which can be seen in Table 2.1 is that QCM
gives very small errors, under 1% for all the isotopes considered. We can
thus see that even in the case of 32S, where there are four quartets above
160, QCM gives excellent results. Excellent results are also obtained for the
nuclei with the core 1%°Sn.

An interesting question is whether or not the very good accuracy of QCM
is just a consequence of particle number and isospin symmetry restoration.
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To answer this question we made a comparison between the QCM results and
the results given by the particle number and isospin projected-BCS state

|PBCS(N,T)) = PrPy|BCS), (2.37)

where Pr is the isospin projection operator and Py is the particle number
projection operator. For comparison we have used the results provided by
PBCS(N,T) for the isotope *?Fe, given in Ref. [46]. These calculations
have been done with an isovector pairing interaction of constant strength
(9 = —24/A, A being the mass of the nucleus) acting on spherical single-
particle states (for details, see Ref.[46]). Thus, with PBCS(N,T) is obtained
for 52Fe a correlation energy of 7.63 MeV. The exact result is 8.29 MeV,
which shows that PBCS(N,T) is a rather poor approximation. On the other
hand, QCM gives for the correlation energy the value 8.25 MeV, which is a
very accurate result. From this example one can conclude that the standard
isospin projection is not accurate enough for getting a good description of the
isovector pairing correlations. But the most important conclusion which can
be drawn from this comparison is the fact that, compared to PBCS(N,T),
QCM takes into account additional correlations, of four-particle type.

In the calculations presented up to now we have treated the N=7 nuclei
as being spherical. This is not a very good approximation because for these
nuclei the deformation plays a very important role. The question we are ad-
dresing now is how the deformation is going to affect the quartet correlations.
To analyse this issue we have considered that the deformation can be treated
reasonably well working in the intrinsic frame of an axially deformed mean
field. The deformed mean field and the corresponding single-particle energies
have been calculated with the Skyrme-HF approach using the Skyrme force
SLy4 [50] and neglecting the Coulomb interaction.

For the QCM calculations done with the single-particle energies generated
by the axially deformed mean field we have used an isovector pairing force
of seniority type with a constant pairing strength ¢ = —24/A. Since the
pairing force is of finite range, we have employed in the QCM calculations
only a limited number of single-particle states around the Fermi level. More
precisely, in the QCM calculations done for the three types of nuclei shown in
Table 2.1 we have used the lowest seven, nine, and, respectively, ten deformed
single-particle levels above the closed cores. The results obtained for the
deformed nuclei are given in Table 2.2. As can be seen from this table QCM
gives very accurate results for deformed single-particle states as well.

Thus, we conclude that QCM gives very accurate results for the correla-
tion energies induced by the isovector pairing interaction in the ground state
of N=Z7 nuclei. It should be also mentioned that the QCM calculations are
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Table 2.2: Correlation energies calculated for axially deformed single-particle

states.
| | SM | QCM \ PBCS1 \ PBCS0 |

PNe | 6.55 | 6.539 (0.168%) | 5.752 (12.183%) | 4.781 (27.008%)
Mg | 8.423 | 8.388 (0.415%) | 7.668 (8.963%) | 6.829 (18.924%)
BSi | 9.661 | 9.634 (0.279%) | 9.051 (6.314%) | 8.384 (13.218%)
325 110.263 | 10.251 (0.117%) | 9.854 (3.985%) | 9.372 (18.682%)
MTi | 3.147 | 3.142 (0.159%) | 2.750 ( 12.615%) | 2.259 (28.217%)
BCr | 4.248 | 4.227 (0.494%) | 3.854 (9.275%) | 3.423 (19.421%)
2Fe | 5.453 | 5.426 (0.495%) | 5.033 (7.702%) | 4.582 (15.973%)
104Te | 1.084 | 1.082 (0.184%) | 0.964 (11.070%) | 0.832 (23.247%)
108Xe | 1.870 | 1.863 (0.374%) | 1.697 (9.264%) | 1.514 (19.037%)
2B | 2.704 | 2.688 (0.592%) | 2.532 (6.361%) | 2.184 (19.230%)

very fast (a few minutes run on an ordinary laptop) and applicable for nuclei
with more active nucleons and levels than can be treated by the present SM

codes.

34



Chapter 3

Isovector pairing and quartet
condensation in nuclei with

N>7Z

3.1 Extension of quartet condensation model
(QCM) for N>Z nuclei

As we have seen in the previous chapter, the isovector pairing corelations in
the ground state of N=Z nuclei are very accurately described by a quartet
condensate. The issue we address here is how the quartet condensate model
can be extended for nuclei which have in the valence space a different number
of protons and neutrons. In these nuclei only a part of the active nucleons
can be coupled in quartets. The question is whether or not the quartets
can coexist with the excess neutrons or protons and how the latter can be
properly treated.

The Hamiltonian describing the isovector pairing in nuclei with different
number of protons and neutrons in the valence shell is the same as for N=7
systems. Thus, as in the previous chapter, we consider the Hamiltonian:

H=> e(N/+N)+> Vy> PLP., (3.1)
i i,j T

where, as above, the pair operators are given by
J=0,T=1
P, = [t |00 (3.2

We shall now proceed to extend the QCM to nuclei with N # Z. Here
we consider the case of nuclei with N>Z7, with both N and Z even numbers.
The nuclei with Z > N can be treated in a similar way.
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First we suppose that all the proton-neutron (pn) pairs which can be
formed in the valence space are coupled to form a quartet condensate. Thus,
as in the case of N=7 nuclei we introduce the quartet collective operator:

AT =TT, — (T2 (3.3)

With this quartet operator we then construct a quartet condensate which
includes all the pn pairs from the valence space.

Next, we consider that the remaining number of neutrons are described
by a PBCS condensate of collective neutron-neutron (nn) pairs:

IT =Y P (3.4)

Finally, we suppose that the valence nucleons are described by a product
of two condensates, of quartets and of neutron pairs in excess. This state is
written as

) = (7)™ (A%)"|0) = (I)™ (20{ T, — Tg?)™]0). (3.5)

In the equation above ny = (N — Z)/2 is the number of neutron pairs
which cannot be included in the quartets and n, = (N — 2ny + Z)/4 is the
maximum number of quartets which can be constructed with the valence
nucleons. It is worth mentioning that the state (3.5) becomes the exact
solution of the isovector pairing Hamiltonian when all the single-particle
levels are degenerate [13].

In writing the state for the N>Z system we considered that the neutron
collective pairs in excess, described by the operator ff, have a structure
which is different from the structure of the collective neutron pairs included
in the quartets,i.e.

rf =) =P (3.6)

This is a requirement imposed by the Pauli principle in the HF limit.

The mixed condensate (3.5) has the total isospin given by the neutrons
in excess (since the isospin of the quartets is T=0), i.e., T'= T, = ny. This
is, in fact, the isospin expected for the ground state of even-even nuclei with
N>7 and N+Z> 40.

As in the case of N=Z nuclei, the mixed condensate (3.5) contains two
terms which can be associated to the PBCS approximation. Thus, one term
contains a product of two pair condensates, one of nn pairs in excess and one
of pn pairs:

|PBCS0) = ()™ (I§)*"[0). (3.7)
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The other term is a product of two condensates formed by nn and pp pairs
|PBCS1) = (TH)N?(I1,)7/%|0). (3.8)

These two states represent the generalization of the PBCS approximation
for the systems with N>Z. In contrast to the system with N=Z, the state
PBCS0 contains both like-particle pairs (nn) and pn pairs.

The state (3.5) is used here to describe the isovector pairing correlations
in nuclei with N>7. The parameters z; and y; are determined variationally
imposing the minimization of the average of the pairing Hamiltonian. Since
now the number of variational parameters is twice than in the case of N=Z7
nuclei, the QCM calculations become much more difficult. How the recur-
rence relations can be extended to solve the QCM equations for N>7 systems
is shown in the next section.

3.2 Solution of QCM equations: recurrence
relations

The solutions of the QCM equations are obtained by expanding the conden-
sate wave function (3.5) in the basis of auxiliary states

|7L1’I"L27’L3TL4> == anlrir;ml“arn?yf‘f?u |0> (39)

It can be seen that, compared to the case of N=Z7 nuclei, the auxiliary states
depend on a new index, ny, associated to the neutron pairs in excess relative
to the proton pairs.

As in the case of N=Z nuclei, one first needs to evaluate how the basic op-
erators, i.e., pair operators, particle number operator, and isospin operators,
act on the auxiliary states. For that we use the same commutation relations
as the ones given in the previous chapter. As an example, we give below the
action of the neutron pair operator P;; on the auxiliary state (3.9):

P, 1|ningnsng) = —nz(ng — 1):1:22Pitl|n1n2ng — 2ny)
+ny25|ng — Ingngng) — inngx?Pimnl — 1ngng — 1ny)
—2ny(ny — 1)%31’?1\%1 — 2ngngng) + ngyi|ningnsng — 1)
—2n3n4xiyiﬂg|n1n2n3 —1ng — 1)

—4n1n4x2szZmn1 — 1712713714 — 1> — 2714(714 — 1)yi2]3;r1|n1n2n3n4 — 2>

It can be observed that, because the extra neutron pairs, this equation is
more complicated than the corresponding equation for N=Z7 systems.
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Next we show how the matrix elements of two-body operators are calcu-
lated. We take as example the matrix elements of the operator P, P;;. They
can be written as

(| PPyl na) = (m,mal PRPY |, na) + nagym, mal Py, ng — 1)
—2n4yj(m,m4\P+N \n ny — 1) — 2n4(ng — 1)y7(m, my| P P |n, ny — 2).

In the equation above we abreviated the set of indices ny,ny,n3 by n. The
operators labeled by P means that they act only on the set of the first
three indices and not on the forth one. This action can be calculated using
the relations given for N=Z7 systems. As an illustration, we show the results
for the first term of the previous equation:

(m, m4]Pfl ]n ny) = —nz(ns — 1)a3(m, my| P P [ningng — 2,n4)
+nyx;(m, my| P, 1|n1 - 1n2n3,n4)
—2n1n3xj (m, m4|P+P 0|n1 — 1ngng — 1,ny)

—2ny(ny — 1)aF(m, my| P P [ny — 2nong, ny).

From this expression we choose again the first term for illustrating the next
step of the derivation. This time we have to act with P} on the left side of
the matrix element. One thus gets:

n) + 1|7’Ll7’LQ’I’L3 — 2 7’L4> =

(m,my| P P

—mgz(ms — 1)z <m1m2m3 —2,my|P; 1 P; _1|n1n2n3 —2,ny)
myx;(my — 1m2m3,m4\P 71]n1n2n3 —2,n4)

—2mymaazi(my — Imamg — 1, my|P;, obP; _1|n1n2n3 —2,ny)

—2m1 (m1 — 1).1312 (m1 — 2m2m3, m4|Pz’1Pj7_1|n1n2n3 — 2, n4>.

Now the final step is to rearrange all the above terms in order to reproduce the
matrix elements already known. Thus, the first term from the above equation
represents the matrix elements of P; ,1P _,, but what we know actually are
the matrix elements of P;" P ;. Makmg use of the commutator between
P;_1 and P;_; one obtains

(mimamg — 2, my|P; _1 P Iningng — 2,m4) =
(mimoms — 2, m4|Pj—j;1Pi,—1|n1n2n3 —2,n4)
+5i,j <m1m2m3 — 2, m4|n1n2n3 — 2, n4>

—25173‘ (m1m2m3 — 2, m4|Ni7,1]n1n2n3 — 2, 7”L4>.

In a similar way one can treat progressively all the matrix elements of the
two-body operators untill the recurrence relations are obtained.
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The norm of the condensate state (3.5) is calculated in a similar way as
has been explained for the systems with N=7. The only difference is that now
one needs to consider the matrix elements which involve the extra neutron
pairs. They have, however, the same structure, as seen in the following
example:

<m1m2m3m4|n1n2n3n4> = Zz yi<m1m2m3m4|PZﬁ|n1n2n3n4 — 1>
= Zl Yi (n1n2n3n4 - 1’Pi,1’mlm2m3m4>*-

The recurrence relations are iterated starting from the matrix elements
of the system with one pair. These matrix elements should be derived until
they become analytical expressions in the mixing amplitudes x; and y;. We
give here a few examples of such matrix elements involving a neutron pair in
excess:

(=[£:110001) = y;,
(0001|7;1|0100) = —z;y;, (0010|7;-1]0001) = x;y;,
(1000|V; 0|0001) = (0001|N; 0|0001) = 2y2.
To evaluate the overlap of auxiliary states we need, in addition to the initial
values already given in the previous chapter, the following matrix elements:

(0001[1000) =) " a;y;,  (0001/0001) = > 7.

The initial values for the matrix elements of the two-body operators,
involving the extra neutron pair, are:

(0001|PZF1P]-,1|0001) = Ui, (1000|P;7“1Pj,1|0001> = T,;Y;,
(()010|PZ-J75P]»,1|0001> = T,;Y;, <0001|.P:_1.Pj7_1|0100> = T,V
From the recurrence relations, using the initial values of the matrix el-
ements, are obtained the average of the pairing Hamiltonian and the norm
of the condensate. The mixing parameters z; and y; are then derived by
minimizing the average of the Hamiltonian and imposing the normalization

condition for the condensate state. The minimization is performed numeri-
cally, as explained in Appendix.

3.3 Application: coexistence of quartets and
pairs in nuclei with N>Z

The QCM calculations presented here have a two-fold aim: to check the
accuracy of QCM against exact shell model calculations and to study the
competition between the quartet and pair correlations in nuclei with N>Z.
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The calculations are done for nuclei with valence nucleons above the cores
160, 40Ca and '9°Sn. Thus, we start with the N=Z7 isotopes studied in the pre-
vious chapter and then we add as many neutrons as can be treated exactly by
shell model diagonalization. As in the case of N=Z nuclei, for the QCM cal-
culations we use two inputs, based on spherical and deformed single-particle
states.

Table 3.1: Correlation energies for sd-shell nuclei calculated with axially
deformed single-particle states. The results are shown for the exact Shell
Model (SM) diagonalization, the quartet condensate model and the PBCS1
approximation (Eq. 3.8). In brackets are given the errors relative to the
exact SM results.

| | Exact | QCM \ PBCS1 |
2Ne | 6.550 | 6.539 (0.17%) | 5.752 (12.18%)
2Ne | 6.997 | 6.969 (0.40%) | 6.600 (5.67%)
2Ne | 7.467 | 7.426 (0.55%) | 7.226 (3.23%)
2%Ne | 7.626 | 7.592 (0.45%) | 7.486 (1.84%)
%Ne | 7.692 | 7.675 (0.22%) | 7.622 (0.91%)
30Ne | 7.997 | 7.994 (0.04%) | 7.973 (0.30%)
30Si | 9.310 | 9.296 (0.15%) | 9.064 (2.64%)
Mg | 8.423 | 8.388 (0.41%) | 7.668 (8.96%)
%Mg | 8.680 | 8.654 (0.30%) | 8.258 (4.86%)
Mg | 8.772 | 8.746 (0.30%) | 8.531 (2.75%)
Mg | 8.672 | 8.656 (0.18%) | 8.551 (1.39%)
Mg | 8.614 | 8.609 (0.06%) | 8.567 (0.55%)
2881 | 9.661 | 9.634 (0.28%) | 9.051 (6.31%)
3281 | 9.292 | 9.283 (0.10%) | 9.196 (1.03%)

We shall present first the results obtained considering deformed single-
particle states. They are obtained from deformed Skyrme-HF calculations
with the Skyrme force SLy4 [50]. For the QCM calculations we chose again
the lowest 7, 9 and 10 states above the cores mentioned above. The single-
particle energies for neutrons and protons are considered to be equal (the
Coulomb interaction is neglected in the mean field calculations) for all the
isotopes, including the ones with N>Z. As shown in Ref. [2], the isospin
dependence of the single-particle states can be eventually simulated with a
term dependent on 72, where T is the total isospin of the nucleus in the
ground state. For the isovector pairing interaction we have taken a constant
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strength force with g = 24/A.

The results obtained with the input presented above are shown in Tables
3.1 and 3.2. In these tables are given the correlation energies obtained with
QCM, SM and PBCS1. The results for the approximation PBCSO are not
displayed here because they have much larger errors than PBCS1. This
show again that at PBCS level the pn correlations are not properly taken into
account. As can be seen in Tables 3.1 and 3.2, QCM predicts very accurately
the correlation energies for all calculated isotopes. Thus, the errors remain
below 1% even when many neutrons are added to the N=Z7 isotopes. From
the fact that PBCS1 gives larger errors than QCM one concludes that the
quartet correlations are not destroyed by the extra neutrons.

Table 3.2: The same results as in the previous Table, but for isotopes having
as core 1°Ca and '*Sn.

| [Exact | QCM | PBCS1 |
UTi [ 3.147 | 3.142 (0.16%) | 2.750 (12.61%)
6Ti | 3.526 | 3.509 (0.48%) | 3.308 (6.18%)
BTi | 3.882 | 3.853 (0.75%) | 3.735 (3.79%)
0Ti | 3.973 | 3.956 (0.43%) | 3.889 (2.11%)
104Te | 1.084 | 1.082 (0.18%) | 0.964 (11.07%)
06T | 1.324 | 1.321 (0.23%) | 1.250 (5.59%)
08T | 1.713 | 1.698 (0.88%) | 1.642 (4.14%)
10Te | 1.892 | 1.880 (0.63%) | 1.843 (2.59%)
BCr | 4.248 [ 4.227 (0.49%) | 3.854 (9.27%)
0Cr | 4.461 | 4.444 (0.38%) | 4.230 (5.18%)
2Cr | 4.743 | 4.721 (0.46%) | 4.582 (3.39%)
“Cr | 4.869 | 4.855 (0.29%) | 4.772 (1.99%)
108Xe | 1.870 | 1.863 (0.37%) | 1.697 (9.25%)
H0Xe | 2.191 | 2.185 (0.27%) | 2.058 (6.07%)
H2Xe | 2.449 | 2.437 (0.49%) | 2.348 (4.12%)
HXe | 2.964 | 2.954 (0.34%) | 2.887 (2.60%)

To analyse how the accuracy of QCM depends on the input used for the
isovector pairing Hamiltonian, we have also done calculations with spherical
single-particle states and a pairing interaction extracted from the standard
shell model calculations. This input was already presented in detail in the
previous chapter. As an example of calculations done with this input, in
Table 3.3 are given the results for the isotopes having as core 1°°Sn. One can
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notice that the accuracy of the QCM is similar to the one observed in the
calculations based on a deformed mean field.

Table 3.3: Correlation energies for isotopes having as core '°°Sn calculated
with spherical single-particle states.

| | Exact | QCM | PBCS1 |
104Te | 3.831 | 3.829 (0.05%) | 3.607 (5.85%)
106Te | 5.156 | 5.130 (0.50%) | 4.937 (4.25%)
108Te | 5.970 | 5.930 (0.67%) | 5.768 (3.38%)
10Te | 6.664 | 6.616 (0.72%) | 6.485 (2.69%)
12Te | 6.815 | 6.764 (0.75%) | 6.665 (2.20%)
108Xe | 6.752 | 6.696 (0.83%) | 6.311 (6.53%)
10Xe | 7.578 | 7.509 (0.91%) | 7.184 (5.20%)
12Xe | 8.285 | 8.208 (0.93%) | 7.944 (4.12%)
iXe | 8.446 | 8.368 (0.92%) | 8.167 (3.30%)
16Xe | 8.031 | 7.947 (1.05%) | 7.810 (2.75%)

An interesting issue is how fast the proton-neutron correlations are sup-
pressed by adding extra neutron pairs. This information can be extracted
from the proton-neutron pairing energy defined as E}, = (9>, Py Pio)-
How E,fp evolves when one goes far from N=Z line by adding more neutrons
is illustrated in Figs. 3.1 and 3.2 for the isotopes of Ne and 7. The results
correspond to the calculations presented in Tables 3.1 and 3.2. In the figures
are plotted also the pairing energies for the protons and neutrons given by
Ey = (9>, PiP;) and B} = (g3, P P; 1). Tt can be seen that,
as expected, all the pairing energies are equal when N=Z7. Then, by adding
more neutrons the pn pairing energy is decreasing while the nn pairing en-
ergy is increasing. However, contrary to what it is generally believed, the pn
correlations remain significantly large even for large number of extra neutron
pairs.

To check further the accuracy of the QCM ansatz we have calculated also
the occupation probabilities of the single-particle states for neutrons and
protons. As an example, in Table 3.4 we show the occupation probabilities
for the deformed single-particle states of 3°Mg. It can be noticed that the
predictions of QCM for the occupation probabilities are very close to the
exact results.

Finally, in order to understand better the correlations described by QCM,
we have studied the entanglement properties of the collective pairs. The
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Figure 3.1: Proton-neutron, neutron-neutron and proton-proton pairing en-
ergies as a function of mass number for Ne isotopes. The results correspond
to the calculations shown in Table 3.1.
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Figure 3.2: The same as in Fig. 3.1, but for Ti isotopes.

entanglement is measured with the so-called Schmidt number [51] defined by
K= w)?/ Y wi, (3.10)

where w; are the amplitudes which define the two-body entanglement. In the
case of pairing the mixing amplitudes are z; and y;. As an example we take
the isotope 3°Mg, where the valence particles are distributed in two quartets
and three neutron-neutron pairs. The Schmidt number for the protons inside
the quartets, calculated with QCM, is K = 1.88. On the other hand, the
Schmidt number for protons in the PBCS1 condensate is K = 1.79, showing
that QCM is more effective in building correlations. For the neutrons in
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Table 3.4: Occupation probabilities for neutrons (n) and proton (p) single-
particle states in 3°Mg obtained by QCM and SM calculations.

| & [ Exact(n) | QCM(n) | Exact (p) | QCM(p) |

-16.45 0.995 0.995 0.983 0.983
-13.94 | 0.993 0.993 0.961 0.963
-10.39 0.987 0.987 0.028 0.026
-8.08 0.971 0.972 0.012 0.017

-6.09 0.921 0.923 0.007 0.007
-3.89 0.087 0.085 0.005 0.005
-2.61 0.045 0.045 0.004 0.004

excess the entanglement is stronger compared to the neutron pairs included
in the quartets.

In conclusion, the results presented here and in the previous chapter show
that QCM is able to describe with very high accuracy the pairing correlations
induced by the isovector pairing in the ground state of N > Z nuclei. This
fact suggests that QCM can be used to describe accurately the isovector
pairing in self-consistent mean-field calculations. In fact, combining Skyrme-
HF and QCM we have proposed recently a calculation scheme for analyzing
the role of isovector pairing on symmetry and Wigner energy [52].
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Chapter 4

Quartet condensation for
isovector and isoscalar pairing

4.1 Extension of QCM for treating isoscalar
pairing

In open shell nuclei with N=7 are usually considered, in addition to isovec-
tor proton-neutron pairs, proton-neutron pairs with J=1. Since the proton-
neutron pairs with J=1 should have T=0, they are commonly called isoscalar
pairs. In principle one can form also isoscalar pairs with J > 1, but these
pairs are expected to be less collective, except the particular case when neu-
trons and protons are sitted together in a partially filled high-degenerate
state.

In many studies are discussed the isoscalar pairs with the total spin S=1
instead of J=1. The spin-triplet pairing S=1 is usually contrasted with the
isovector spin-singlet S=0 pairing. This is a picture which is common for
infinite systems. In nuclei one needs to take into account also the role played
by the orbital angular momentum, L, of the pair. However, many calculations
indicate that the pairing correlations are mainly generated by the L=0 part
of the two-body interaction.

The question addressed in many studies is whether or not the isoscalar
J=1 (or S=1) pairing does really exist in N=Z nuclei and, if so, how it does
compete with the isovector pairing. These issues are commonly studied in
the framework of generalized BCS or HFB theories, summarized in Chapter
I. As pointed out in some studies [14], the competition between the isovector
and isoscalar pairing described by BCS/HFB models appears to be affected
significantly by the non-conservation of particle number.

In this chapter we shall treat the isovector and the isoscalar pairing in a
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quartet model similar to the one we have used for the treatment of isovector
pairing. The model will be formulated for the description of the ground state
of the isovector-isoscalar pairing Hamiltonian

H=>"e(N/+NO)+Y_ V> pr JT+Z V=N DE D, (40)
7 1,7 T

g

In the first term ¢; are the single-particle energies for protons and neutrons,
supposed to be equal in N=Z systems (as usual, the Coulomb interaction is
neglected) while N and N[ are, respectively, the operators for the neutron
and proton numbers. The second term is the isovector interaction, discussed
in the previous chapters, and the last term is the isoscalar pairing interaction
(T=0). As we have mentioned above, the isoscalar pairing can be considered
for S=1 or J=1 pairs. For the case of S=1 pairs the operators D appearing
in the last term of the Hamiltonian are given by

D;f [a+af“]fz g 5=1,T=0 (4.2)

0',7'0

When the isoscalar pairs have J=1, the pairing operator is

Dy = afal)y 1) (4.3)

This operator is the analogous of the isovector pair operator

P1+ = [a+ajr]1{/1 00 T’T E (4.4)
As can be seen, the isovector and the isoscalar pair operators have formally
the same structure and can be interchanged by replacing the isospin with the
spin. This symmetry is used below for extending the quartet model to the
isoscalar pairing.

The formal analogy between the isovector and isoscalar pairing can be
seen better for double-degenerate levels, e.g., spherical single-particle levels
with j=1/2 or axially deformed single-particle levels. In such a case the
isovector and the isoscalar operators are given by:

P =vivS, P, =nn", (4.5)
1

P = —2(V m + ), (4.6)

D= vint, Di,=vint, w7)
1

Dy = —=(vn —mfvh). (4.8)



From the equations above one can grasp immediately the formal analogy
between the isovector and the isoscalar pairs.

In the case of isovector pairing the quartets have been introduced as a
simple manner to construct wave functions with the total isospin T=0 from
isovector pairs of T=1. For isoscalar pairing we employ a similar procedure
to construct a wave function of total J=0 from isoscalar pairs of J=1. Thus,
using this analogy we define the non-collective isoscalar quartet operators

B = [Df DF17=°. (4.9)
With this operators we construct a collective isoscalar quartet:

Bt = ;B (4.10)
1,3

As in the isovector case, we make the assumption that the mixing amplitudes
are separable in the indices i and j. It can be easily seen that in this case the
collective isoscalar quartet can be written as

Bt =2ATAT, — (A})?, (4.11)
where A are the collective isoscalar pair operators

AY =Y aDfy,. (4.12)

We can thus see that the collective isoscalar quartets have formally the same
structure as the isovector quartets.

Finally, we suppose that the isovector and the isoscalar pairing correla-
tions can be described by the quartet condensate:

W) = (@A™ — BBT)™|0). (4.13)

It can be observed that now the quartet which is used to construct the
condensate is taken as a linear superposition between the isovector and the
isoscalar quartets. As a consequence, the wave function becomes a nontrivial
superposition of isovector and isoscalar condensates. This can be seen by
writing explicitely the binomial expansion in Eq. (4.13):

n n ng—k k / " Ny — !
W) = (@A* — BBH)m|0) = S0t YT h Sk ()RR g ng =k k)

CECK O - o™ gk (DFTH )RR (D)2 (AF AT )R (AY >2'“"(!0>' )
4.14
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The condensate (4.13) depends on the mixing amplitudes z; which mea-
sure the collectivity of the pair operators. It should be noticed that, due to
the symmetry between the isospin and spin degrees of freedom and because
we treat here N=Z systems, the isovector and isoscalar pairs are described
by the same mixing amplitudes. In addition, the condensate depends on
the parameters a and [, which take into account the mixing between the
isoscalar and isovector correlations. Using the normalization of the wave
function, one can take o = /1 — 32. The amplitudes x; and the parameter
[ are determined variationally from the minimization of the average of the
Hamiltonian (4.1). The average is calculated with the method of recurrence
relations which is described in the next section.

4.2 Solution of QCM equations for isovector
and isoscalar pairing

To calculate the average of the isovector-isoscalar pairing Hamiltonian and
the norm of the quartet condensate we use the auxiliary states:

|7’Ll7’LQ7’Z3, m1m2m3> = Fi&—nlrt?zrgngA;—mlAi—TQAa-mg|O> (415)

The states above depend on 6 parameters which count all types of isovector
and isoscalar pairs. For the calculations we consider all the possible combi-
nations of the 6 parameters compatible with the total number of pairs.

The calculation scheme is similar to the one used for the isovector pairing.
Thus, we calculate first all the relevant commutation relations between the
basic operators which define the Hamiltonian. In fact, in order to close the
commutation relations between the pair operators one needs all the operators
of SO(8) algebra associated with the isovector-isoscalar Hamiltonian. Thus,
one needs to consider, in addition to the operators we have used in the case
of isovector pairing, the operators

Sim = [afaz-]ﬁfi;ﬁzo, (4.16)

Wirr = laf a7 (4.17)

The necessity of introducing the operators W can be seen from the com-
mutation relations between the isovector and isoscalar pair operators:

[Diar, P = (=)83(=) " Wons. (4.18)

In order to calculate the action of the pair operators on the auxiliary states
one needs also to consider the commutators:

[VVi,Mm Pj—j_r'] = 5ij5T,—T’(_)TD;,_Ma (4-19)
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and
(Wint e, D apl = 010 —aa (=) P (4.20)

The commutation relations involving the spin operator S are similar to
the ones for the isospin operator T', which are given in Chapter II.

Using the commutation relations for the SO(8) algebra one calculates the
action of the basic operators on the auxiliary states. How the calculations
can be done is illustrated below. Thus, the action of the pair operator P,
on the auxiliary states can be written as:

n m 1 m
P1n,m) = Péﬂ]n,m) + Pfl )]n, m) — §n1xiNi(,0 )\nl — 1ngng,m). (4.21)
The index (n) or (m) on the operators denotes the fact that they act only
on the isovector states |n) = |njngong) or only on the isoscalar states |m) =
|mymamg). The action of P, on the |n) states is already known and it was
given in Chapter II. The action of P, ; on the isoscalar states |m) is given by:

m3(m3 — 1)

Fialm) = _m1m2$§]3if—1‘m1—1m2—1m3>+ 5

a:?P;’[)\mlmgmg)—Q).
(4.92)

It remains to write down the action of IV; o on the isoscalar states, which is
given by:

Ni’0’m> = 2m3xiDi+’0|m1m2m3 — 1> =+ 2m1xiD;fl\m1 — 1m2m3)

+2mox; D} |lmimy — 1ms). (4.23)

We consider now the action of D;; on the auxiliary states:
(n) (m) 1 (n)
D;1|ln,m) = D;; |n, m) + D;; |n,m) — §m1:vl-NZ-70 |n, my — Imgmsg). (4.24)

The action of D;; on the isovector states is similar to the action of F;; on
the isoscalar states and can be written as:

ns(ns — 1)

5 27D Iningng — 2).

(4.25)

The action of D;; on the isoscalar states is again similar with the action of
P, 1 on the isovector states, and has the expression:

Din) = —7117129312133,1\%1 —1ngy — Ing) +

D;qlm) = —fol?:_ﬂmlQOg —2) + myx;|my — Imaoms)

—mymgz; Djglmy — Imyms — 1) — my(my — 1)a7 D} [my — 2mams).
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The action of V; o on the isovector states |n) is already known from Chapter
I1.

In a similar way we calculate the action of the operators S and W. Some
of these expressions are given below.

Si7l\m> = —mQxin,O|m1m2 - 1m3> — mgxz-D;ﬂmlQOg — 1>, (426)

Wooln, m) = msxz; Pygln, mymams — 1) + nsz; D}y [ninons — 1,m),  (4.27)

Wialn,m) = —nyx; D Ining — Ing, m) — max; P [n, mymg — 1msg), (4.28)
W_1_1|n,m) = —mx; D |ny — Ingng, m) — myx; P |n, my — Lmams).
(4.29)

Having all the expressions for the action of the basic operators on the aux-
iliary states we calculate the matrix elements of the pairing interaction. Be-
low we illustrate this calculation for the matrix element (n/, m’|Df, D;1|n, m).
Thus, first we act with D;; on the right hand side, we write all the terms
which come out of it, then we continue by acting with the operator D;f , on
the left hand side. In this way one generates many terms which are calcu-
lated by applying the same procedure. How this can be done we illustrate
for the following term:

(n, m’]DZl(ml)Dﬁfl\nl —1ny — Inz,m) =

ma(mg=1) oy 4 ;. +
—=t =i (0, mymymyy — 2|D; 1D} |ng — 1ng — 1ng, m)
/ / / / / +
+mix;(n’,m| — 1m2m3|Dj771|n1 — 1ny — 1Ing, m)
! on? 22 /0! / ! +
—mymyx;(n',m| — Imhymy — 1|D; oD} |ny — 1ng — 1ng,m)

—miy(m} — Da(n', my = 2mymy| Diy D[y — Ing — Ing, m).

The first, the third and the fourth terms in the righ hand side should be
further changed in order to get matrix elements for two-body operators Dt D.
Thus, the third term becomes:

(n',m} — Imym}y — 1|D; oDy |ny — 1ng — Ing,m) =
(ny — 1ng — Ing, m| D} D; _1|n',m} — Imhymy — 1)
—0;;(n',m} — Imbmf — 1|S; _1|n1 — 1ng — Ins, m).
The recurrence relations involve also the matrix elements for the products
of isovector and isoscalar pair operators. They are essentially generated by

the matrix elements of the products between the particle number and pair
operators. An example is given below:

"ml — 1m! /N(n’)D-l- e — 1 _
(n',m} miymy| 3,0 j,71|n1 2 nz,m) =
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/ I ol oo/ / ! on! +

2nyxi(nyngny — 1,my — Imymy| P oD} [y — 1ng — Ing, m)
/ / !5 / / / +

2nyxi(ny — Inhny, my — Imoyms| P DY [ny — 1ng — 1ng, m)

/ I / / ! o/ +
2nhx(nyny — Ing, m — Imoymy| Py 1D} |ng — 1ng — 1ng, m).

To obtain in the terms above the matrix elements of the operators D' P, one
needs to interchange the order of the pair operators, which can be done using
the commutation relations between them. Thus, for the first term one gets:

Il o0/ / ! on! + —
(ninyng — 1,my — Imymy| P oD Ing — Ing — 1ng,m) =

(ningyny — 1,m}y — Imymy| DS P g|ny — 1ng — 1ng,m)

—0;;(ninhnt — 1, my — Imim4|W; 1 o|n1 — 1ng — Ing, m).

We stop here the illustration of the recurrence relations for isovector-
isoscalar pairing calculations. As can be observed from the examples pre-
sented above, they are much more complicated than the recurrence relations
for isovector pairing.

We end this section by providing some of the initial values of the matrix
elements which are needed to iterate the recurrence relations for isovector-
isoscalar pairing. For the auxiliary states with zero pairs we use the notation
|=) = |n1 = 0,ny = 0,n3 = 0;my = 0,my = 0, m3 = 0). The notation ”-" is
used also to indicate zero isovector or isoscalar pairs.

First, we show explicitely how to get the initial matrix elements for the
operator Dy. Thus, for a state with an isoscalar pair ms = 1 one gets:

(=, =[Dio|=,001) = (=, —|[Dio, Ad]l—, =) = 22, z(—, [ [Dio, Djyll— —)
=3 7i{= —0;(1 = 5Nio)|—, =)
:ijj(sij(_v_ _=_> _Z IJ2< |N20|_ _> = Zi-

In the same way we have calculated the initial values for the matrix
elements of other basic operators. The results are:

(=, —|Dji1|—, 100) = (—, —|D; _1]|—,010) = z;,
(—,001|8;1|—,010) = (—,100/S;,|—,001) = —a2,
(=, 001|N;o|—,001) = (—,010|N;o|—,010) = (—,100|N; |-, 100) = 227,

(=, 100[W;1,1(010, =) = (=, 010[W; 1 _1[100, =) = —a7

7
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(001, —| Wi 0,0|100, =) = z7.

7

Finally, we give the initial values for some two-body operators which enter
in the definition of the pairing interaction:

<—, 001|D;?0Dj,0|—, OOl) = <001, —’PZi)P]’()’OOl, —> = TiTj.

Providing all the initial values of the matrix elements one can get, recur-
sively, the average of the Hamiltonian. The mixing amplitudes x; and the
parameter [, which express the contribution of the isoscalar quartets, are
calculated variationally from the minimization of the Hamiltonian average
and from the norm of the quartet condensate.

4.3 Application: competition between isovec-
tor and isoscalar pairing in N=Z nuclei

With the QCM formalism presented above we have studied the competition
between the isovector and the isoscalar pairing in N=Z7 nuclei. As an example,
we present the calculations done for #4Ti and *®Cr. In these calculations are
taken into account the valence nucleons moving in the pf-shell, above the
closed core °Ca. The isovector and the isoscalar pairing interactions have
been extracted from the (J=0,T=1) and (J=1,T=0) part of the monopole-
modified Kuo-Brown interaction (KB3G).

Table 4.1: Correlation energies for *Ti and *®Cr calculated with the
isovector-isoscalar pairing Hamiltonian. In the brackets are given the errors
of the QCM results in comparison with the exact SM calculations. The last
column shows the values of the parameter 3, which indicates the contribution
of the isoscalar correlations.

| Nuclei | Shell Model | Quartets (errors) | 52 |

T 1.261 4221 (0.38 %) | 0.0094
BCy 6.303 6.271 (0.50 %) | 0.075

The results for the pairing correlation energies and for the amplitude
[ are given in Table 4.1. First, one can see that the condensate model
gives very accurate results compared to the exact shell model calculations.
Second, it can be noticed that for both isotopes the parameter g is very small,
indicating a very small contribution of the isoscalar pairing correlations to
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the wave function. As shown in some studies (e.g., see [53, 54]) the isoscalar
pairing force gives small pairing correlations because it is suppressed by the
spin-orbit interaction.

Table 4.2: Correlation energies for pf-shell nuclei calculated with the
isovector-isoscalar pairing Hamiltonian and using in QCM only the isovector
quartet.

| Nuclei | Shell Model | Quartets (errors) |

T 1.261 1169 (2.2 %)
BCOy 6.303 6.119 (2.9 %)
52Fe 5.978 5.737 (4.0 %)

To see how important is the contribution of the isoscalar pairing corre-
lations in these nuclei, we have also performed QCM calculations neglecting
the contribution of the isoscalar quartet in the quartet condensate state, i.e.,
taking 8 = 0. The results are presented in Table 4.2. It can be seen that the
errors compared to SM remain resonably small. This fact demonstrates that,
in the first approximation, the isoscalar pairing correlations can be neglected
in pf-shell nuclei with N=Z.

Finally, we would like to stress the fact that the calculations presented
in this chapter are done with the isoscalar pairs built by time-reversed state.
However, isoscalar J=1 pairs can be also constructed with neutrons and
protons belonging to single-particle states which are not time-reversed. How
much these pairs are contributing in the ground state of N=Z nuclei is an
interesting subject we are presently investigating [55].
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Summary and conclusions

In this thesis we have discussed the theoretical treatment of proton-neutron
pairing in atomic nuclei. We have started by a short review of the BCS-like
models which are commonly used to describe proton-neutron correlations in
nuclei. Taking as an example the treatment of isovector pairing by BCS and
PBCS models, we have emphasized that these models are not able to describe
properly the proton-neutron correlations, mainly due to the fact that they
break the isospin invariance. Then, in the next chapters we have presented
the main results of our PhD studies. Thus, in Chapter II we have introduced
our approach for the treatment of the isovector pairing correlations, which, in
contrast to the BCS-type models, conserves exactly the particle number and
the isospin. In this approach, called quartet condensation model (QCM), the
isovector pairing correlations in N=7 nuclei are described in terms of alpha-
like quartets formed by two isovector pairs coupled to the total isospin T=0.
The ground state is built as a condensate of the collective alpha-like quartet,
i.e., by applying the same quartet operator many times, according to the
number of quartets which can be formed with the valence neutrons and neu-
trons. The quartet condensate model is applied for N=Z7 nuclei with valence
nucleons outside the cores %0, 4°Ca and °°Sn. The QCM calculations are
done first with single-particle energies and isovector pairing interactions ex-
tracted from commonly used shell model (SM) forces. The comparison with
exact SM calculations shows that QCM gives a very accurate description of
the isovector pairing correlations in N=7 nuclei. Thus, for all calculated iso-
topes, the errors for the pairing correlation energies are less than 1%. The
same high accuracy we have obtained for the QCM calculations done with
an input corresponding to an axially deformed mean field, which takes into
account, in an effective way, the quadrupole degree of freedom, important in
N=Z nuclei.

Next, in Chapter III we have extended the QCM approach in order to
treat N>Z7 nuclei. For these nuclei we considered a ground state formed by
a product of two condensates, one of quartets and the other of neutron pairs
in excess relative to the proton pairs. It is shown that this ansatz gives a
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very accurate description of the isovector pairing correlations in N>Z nuclei,
better than the PBCS models based on a product of neutron and proton pairs.
This indicates that the quartets do coexist with the neutron pairs in N>7
nuclei. In particular, the QCM calculations show that the proton-neutron
pairing correlations remain important when one goes away from N=Z line,
which is contrary to what BCS calculations usually predict.

In the last chapter we have presented how the QCM approach is extended
to take into account both the isovector and the isoscalar pairing correlations.
Using the analogy suggested by the spin-isospin symmetry, the isoscalar pair-
ing is described by a quartet formed by coupling two isoscalar pairs with J=1
to a total J=0. Then, we have introduced a generalized quartet formed by a
linear combination of isoscalar and isovector quartets. With the generalized
quartet we constructed a quartet condensate which we have further used to
describe the competition between the isoscalar and the isovector pairing in
N=Z nuclei. As an illustration we have considered the isotopes **Ti and
48Cr. The comparison with exact SM calculations shows that the extended
QCM describes with a very high accuracy the isovector-isoscalar pairing cor-
relations. For these isotopes the QCM calculations show also that in these
nuclei the isoscalar pairing correlations play a minor role in comparison with
the isovector pairing correlations. This conclusion should be further checked
by including in the calculations the isoscalar proton-neutron pairs built on
states which are not time-reversed. However, these additional pairs are not
expected to change much the present results: since, as shown in some recent
studies [53, 54|, the isoscalar pairing is strongly suppressed by the spin-orbit
interaction.

Finally we would like to make a few clarifying comments relative to the
quartet condensation model which we have used in our thesis. Here the name
7 quartet condensate” is used in the same sense as it is used ” pair condensate”
in BCS theory, namely as a state formed by applying many times the same
quartet operator. Since the quartet operator is not a boson, the quartet
condensate is not a bosonic condensate. In addition, should be kept in mind
that the alpha-like quartet is not describing an alpha particle (*He) localized
in the space. Alpha-like quartet means here a four-body structure of two
neutrons and two protons correlated in spin and isospin and not necessarily
in coordinate space.

It is also worth mentioning that in all the calculations presented in this
thesis we focused only on the pairing part of the two-body interaction. Thus,
when we compare QCM with the SM calculations, the latter refer in fact to
the exact diagonalization of the pairing interactions and not to the calcula-
tions done with the full shell model interaction. Therefore the QCM has to
be used as are commonly used the BCS-type models, i.e., for treating only
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the effects induced by the pairing interaction. The other very important de-
grees of freedom, such as quadrupole, can be eventually taken into account
through the mean field approximation, e.g., as usually done in HF+BCS cal-
culations. In fact, using the analogy with the HF+BCS calculations, we have
designed recently a HF+QCM calculation scheme for taking into account the
influence of proton-neutron pairing correlations on ground state properties
of nuclei with protons and neutrons moving in the same valence shell [52].
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Appendix: Numerical solution
of QCM equations

The QCM calculations require the determination of the parameters which
define the quartet condensate function. These parameters are the mixing am-
plitudes of the collective pairs and they are determined variationally. Thus,
denoting by |¥(x)) the QCM state and by x the variational parameters, one
needs to perform the minimization of the functional

(V| H|¥)

E(x) Wy (4.30)
where H is the pairing Hamiltonian. The minimization should be done by
imposing the normalization condition, i.e., N(x) = (V|¥) = 1.

The main difficulty of QCM calculations is to obtain analytically the av-
erage of the Hamiltonian as a functional of the parameters z. As explaind
in Chapters II-IV, this task is performed by using the method of recurrence
relations. The derivation of the recurrence relations is long and not trivial,
especially for the case of isovector-isoscalar pairing. Once derived analyti-
cally, the recurrence relations are included in the numerical code together
with the initial matrix elements necessary to start the iteration procedure.

To do the minimization we have employed the subroutine E0O4UCF ex-
tracted from NAG library [56]. This subroutine is called in the following
form:

call e0ducf(nx, nclin,nenln, lda, ldcj, ldr, a, bl, bu, con fun, obj fun, iter,
1state, ¢, cjac, clambda, obj f, objgrd, r, x, 1work, liwork, work, lwork,
iuser, user,ifail).
where x(n,) is a vector of dimension n, which stores the variational param-
eters. obj fun is a function which returns, for a given x, the average of the
Hamiltonian, FE(z), while confun is the function which returns the value of

the norm N(z). The subroutine provides the variational parameters deter-
mined with the required precision.

57



The arhitecture of the code is quite complex because one needs to store
in an efficient way the matrix elements of all basic operators which define the
SO(5) or SO(8) algebras, associated to the isovector and isovector-isoscalar
pairing Hamilonians, together with the matrix elements of the pairing in-
teractions. As explained in Chapters II-IV, the calculations are done in
the basis of auxiliary vectors defined for an arbitrary number of collective
pairs. Thus, for the isovector-isoscalar pairing the auxiliary vectors depend
on 6 variables, i.e., |ninang, mymoms). In order to keep track of the ma-
trix elements of the operators in this basis, we need to calculate all the
possible configurations compatible with a given number of total pairs, i.e.,
n = ny + ng + n3z + my + mo + mg. This job is done in the first subroutine
of the code. In the next subroutine we calculate the recurrence relations for
the basic operators, i.e., P,D, N,T,S and W (see the notations in Chapters
II-IV) together with the recurrence relations for the norm. The third sub-
routine contains the recurrence relations for the two-body operators PTP
and DT D, as well as the matrix elements for all the combinations between
these operators. In the following subroutine are calculated, in terms of the
matrix elements of the auxiliary states, the average of the Hamiltonian and
the norm of the quartet condensate function. These results are then used to
construct the function ”objun” and ”confun” called by the subroutine which
does the minimization.

The code, which contains a few thousand lines in the case of isovector-
isoscalar pairing, was tested using exactly solvable models for the pairing
problem. More precisely, we verified the code in the case of degenerate levels,
for which the pairing problem can be solved exactly.

Finally we would like to mention that, in spite of its complexity, the code
is running quite fast. For example, to calculate the ground state energy of a
nucleus with N=Z it takes a few minutes on an ordinary laptop.
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