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Résumé

Analyse de la dynamique non-linéaire et du contrôle des instabilités
de combustion fondée sur la “Flame Describing Function” (FDF)

Cette thèse de doctorat se concentre sur l’étude des instabilités de combus-
tion dans un brûleur prémélangé. Le sujet des instabilités est étudié depuis de
nombreuses années mais nécessite des développements constants en fonction
notamment des progrès réalisés dans les technologies utilisées pour la propul-
sion ou pour la production d’énergie. Les instabilités sont généralement issues
d’un couplage entre la combustion et les modes propres du système. La mise
en résonance qui en résulte peut avoir des conséquences qui sont souvent dom-
mageables, entraînant des vibrations, une fatigue des matériaux soumis à des
charges acoustiques élevées et une intensification des flux de chaleur vers les
parois de la chambre. Un premier objectif de cette thèse est de poursuivre le
développement de méthodes de prévision des instabilités et des phénomènes
non-linéaires qui en résultent comme par exemple le développement de cy-
cles limites, les processus de déclenchement (“triggering”), la commutation de
modes. Il s’agit à cet effet de comprendre les mécanismes physiques et de
développer des méthodes analytiques de prévision. Le cadre général adopté
est celui de l’“équivalent harmonique” bien connu dans le domaine du contrôle
et qui a été exploré dans le domaine des instabilités de combustion dans des
travaux récents du laboratoire EM2C. Par le biais de ce concept il est possible
de tenir compte de l’évolution de la réponse de la flamme suivant l’amplitude
à laquelle elle est soumise. Cette réponse de flamme en fréquence et ampli-
tude généralise la notion de fonction de transfert et elle est désignée sous le
nom de “Flame Describing Function” (FDF). On poursuit ici le développement
des méthodes fondées sur la FDF. Le système envisagé est générique puisqu’il
comporte sous une forme idéalisée tous les éléments que l’on trouve dans des
configurations réelles : un conduit d’alimentation qui fournit un prémélange
de méthane et d’air, un système d’injection multipoint composé d’une plaque
perforée qui permet d’accrocher une collection de petites flammes coniques et
un tube à flamme en quartz qui confine la zone de combustion. Le système
est ouvert à son extrémité aval. Cette géométrie permet de simplifier l’analyse
et d’obtenir une large gamme de configurations au moyen d’une variation con-
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tinue de la longueur du conduit d’alimentation qui est limité en amont par
un piston. On peut aussi échanger le tube à flamme et utiliser des longueurs
différentes de cet élément. Une comparaison systématique entre des calculs
théoriques et des expériences bien contrôlées est effectuée. Suivant la géométrie
le système présente une très grande richesse de modes instables. Une étude ex-
haustive est réalisée pour répertorier les oscillations observées et déduire leurs
propriétés. On utilise à cet effet les outils de la dynamique des systèmes.
On montre que les cycles limites qui possèdent une amplitude constante sont
bien décrits par la méthode unifiée fondée sur la FDF. Pour certaines config-
urations l’expérience fait apparaître des cycles limites dont l’amplitude et la
fréquence ne se stabilisent pas au cours du temps. On observe notamment
des oscillations plus complexes couplées par plusieurs modes pouvant soit don-
ner lieu à des variations régulières ou à des fluctuations plus irrégulières avec
un caractère “galopant” dans le temps. Pour ces oscillations particulières, la
FDF fournit des indications sur les domaines d’apparition mais n’est pas en
mesure de décrire complètement ces cycles limites complexes. Il faut dans ce
cas recourir à une représentation temporelle qui n’est pas développée dans ce
document. La base de données expérimentales pourra être utilisée pour guider
ultérieurement ce type d’analyse. Le deuxième grand objectif de cette thèse
est de rechercher des méthodes de contrôle des instabilités. On considère plus
particulièrement des systèmes dynamiques utilisant des plaques perforées po-
larisées par un écoulement (BFP : “bias flow perforate”). Ces systèmes sont
particulièrement intéressants pour atténuer les oscillations basse fréquence qui
sont difficiles à réduire par des systèmes passifs. La conception de ces BFPs est
fondée sur des travaux récents menés au laboratoire EM2C avec notamment
l’objectif de robustesse, c’est-à-dire la possibilité de couvrir une large bande
de fréquences. L’étude expérimentale et les calculs fondés sur la FDF menés
en parallèle permettent de voir les possibilités de tels systèmes et de compren-
dre les conditions nécessaires à leur efficacité. Cette étude peut permettre de
guider les applications qui pourraient être envisagées en pratique.

Mots-clés : instabilités de combustion, couplage thermoacoustique, cycles
limites, régime non-linéaire, fréquences multiples, méthode de
l’équivalent harmonique, contrôle des instabilités, plaques per-
forées polarisées.



Abstract

Nonlinear dynamics and control analysis of combustion instabilities
based on the “Flame Describing Function” (FDF)

This doctoral thesis is concerned with an investigation of combustion instabil-
ities in premixed combustors. This problem has been the subject of a contin-
uous effort in relation with the many issues encountered in practical systems
like those used in propulsion and energy production. Combustion instabilities
usually arise from the coupling between combustion and acoustic eigenmodes of
the system. In most cases such resonances lead to vibrations, structural fatigue
and intensified heat fluxes to the chamber walls. The first part of this thesis
pursues the development of prediction methods for combustion instabilities
and the associated nonlinear phenomena such as limit cycles establishment,
triggering, mode switching and hysteresis. The aim is to delineate physical
mechanisms and develop analytical methods dedicated to prediction. The the-
oretical framework relies on the “harmonic balance” formalism well known in
the domain of control and which has been adopted more recently in combus-
tion instability studies carried out at EM2C, CNRS laboratory. Through this
concept, it is possible to take into account the evolution of the flame response
as a function of amplitude. This flame response, depending on frequency and
amplitude, extends the flame transfer function principle and is designated as
the “Flame Describing Function” (FDF). The development of the FDF frame-
work is pursued in the present study. The experimental setup which exemplifies
combustion instabilities and serves to validate the method has generic features
as it comprises in an idealized version, all the parts found in practical systems
: a feeding manifold delivering a mixture of methane and air, a multipoint
injector made of a perforated plate anchoring a collection of small laminar
conical flames and a flame tube made of quartz which confines the combustion
zone. The downstream boundary of the system is open. This device allows a
simplified analysis and provides a wide variety of configurations through the
continuous modification of the feeding manifold length which is bounded by a
piston on the upstream and through changes of the flame tube lengths. Sys-
tematic comparison between theoretical results and well controlled experiments
is undertaken. Depending on the geometry, the setup exhibits a large variety



viii Abstract

of unstable modes which are classified in terms of their limit cycle behavior
using tools from dynamical system theory. It is shown that limit cycles with
constant amplitude are well predicted by the unified FDF methodology. For
some configurations, the experiment reveals limit cycles characterized by time
variable amplitude and frequency. One finds situations where the oscillation
is coupled by multiple modes leading either to regular amplitude variations or
more irregular evolutions with a “galloping” pattern as a function of time. For
this special type of limit cycle, the FDF indicates the range of the onset, but is
not able to fully describe these complex limit cycles. These oscillations require
a time domain state space analysis which is not addressed in this manuscript.
The experimental database may be of value for further work in this direction.
The second part of this thesis deals with control methods for instabilities. One
specifically considers damping systems relying on perforated plates biased by a
flow (BFP : “Bias Flow Perforate”). These systems are particularly interesting
because they can be used to cancel low frequency oscillations which are oth-
erwise difficult to reduce through passive control methods. This BFP design
relies on recent work carried out at EM2C, CNRS laboratory which extends the
frequency range where the system is effective. The experimental study and the
associated FDF calculations are used to delineate the possibilities of such sys-
tems and uncover conditions required for an effective damping of oscillations.
This study provides indications on the practical application of BFPs.

Keywords : combustion instabilities, thermoacoustic coupling, limit cycles,
nonlinear regime, multiple frequencies, Describing Function,
Flame Describing Function, control of instabilities, bias flow per-
forated screens.
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· Time derivative
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FDF Flame Describing Function
FTF Flame Transfer Function
GLC Galloping Limit Cycle
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NLUM NonLinearly Unstable Mode
PM PhotoMultiplier
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SPL Sound Pressure Level
TF Transfer Function
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Introduction

Flame modeling constitutes a key element in combustion instability analysis.
This issue is considered in the present thesis which is specifically focused on the
development of suitable representations of the flame dynamics and their appli-
cation in the analysis of instabilities in a generic configuration. One objective
is to devise a prediction tool which could be used to define regions of instability,
obtain instability characteristics, estimate limit cycle amplitudes and interpret
the many nonlinear features which are manifested in practical systems such as
mode switching, nonlinear triggering, frequency shifting. A second objective is
to explore the possible suppression or reduction of instabilities which could be
achieved with a special type of damper relying on bias flow perforates (BFP)
backed by a cavity. These systems have interesting low frequency characteris-
tics and have potential for practical applications. It is however necessary to see
if dampers based on these principles can be effectively used. To reach these two
objectives we combine experimentation with analysis and modeling and try to
establish a dialog between theory and experiments. This can be achieved by
making use of a well controlled generic configuration which represents in an
idealized fashion the complex geometries found in practice which two examples
are shown in Fig. 1.

The experimental system comprises the essential elements found in typical
combustion installations but allows in addition variations of the geometrical
dimensions, a feature which is extremely useful if one wishes to understand
what is generally being observed for a fixed geometry. The resemblance be-
tween the experimental system and an aero-engine combustor is illustrated in
Fig. 2 by placing side by side the Pratt & Whitney JT9D and the generic con-
figuration of the present study. It is possible to see that the generic burner,
shown on the right of this figure, involves the three main elements found in
jet engines, i.e. a feeding manifold (1), an injector and combustion zone (2)
and a flame tube (3). Jet engine combustors sometimes feature an annular
cavity (2b) surrounding the flame, which changes the flame plane position in
the exhaust tube. This is also found in the multiple flame combustor due to
the thickness of the perforated plate, as shown in Fig. 2. A last part concerns
the annular cavity surrounding the flame tube. This element can be seen in



2 Introduction

(a) (b)

Figure 1: Typical combustion systems used in industry. (a) : 9FA model of the heavy
duty gas turbines series from General Electric (GE). (b) : Flare station used to burn
landfill gas. At 50 % of its maximum capacity, the system experienced a low frequency
rumbling, from Pun (2001).

the JT9D combustor appearing on the left of Fig. 2, but is not present in the
model scale system used in the present study. Effects of the restriction for the
cross section area, accelerating the flow at the combustor outlet of practical
systems, are also not considered in the present thesis.

The thesis is a logical continuation of a work initiated by Noiray (2007); Noiray
et al. (2008). It pursues the development of the flame describing function
(FDF) framework explored in these previous studies. The FDF is used in what
follows as the central tool for the description of the flame nonlinear dynamics.

At this point it is worth examining the state of the art in the field of combustion
instability. An exhaustive review will not be attempted because the subject is
already covered in many papers, for example in Candel (2002), in the book of
Poinsot et al. (2012) or in a recent collection of papers edited by Lieuwen et al.
(2005). We only give some historical highlights and consider more specifically
work dealing with the flame dynamics and with the influence of oscillation
amplitude on the flame response.

General background

The problem of combustion instability has been encountered in many com-
bustion systems and more specifically in high performance devices. This is
illustrated in Fig. 3 which exhibits different systems which underwent impor-
tant failures due to combustion oscillations. Instability issues were identified
during the early development of liquid rocket engines (see Crocco (1951)). It
was rapidly found that there are many different types of oscillations in such
systems. In this variety one may distinguish three main classes (Barrere et al.
(1969)) :
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Figure 2: Pratt & Whitney JT9D’s jet engine combustor and the generic burner of
the present study. The two configurations share the same essential components, i.e.
a feeding manifold (1), a combustion zone (2) and a flame tube (3). The annular
cavity (2b) surrounding the flame and changing its plane position in the exhaust tube
is sometimes found in aero-engine combustors.
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• Chamber instabilities which essentially affect the combustion cham-
ber are coupled by acoustic longitudinal or transverse modes. These
instabilities generally occur in the high frequency range and the associ-
ated wavelength is smaller than the typical transverse dimension of the
chamber λ < D ;

• System instabilities which involve the various components in the com-
bustion configuration including upstream manifold, chamber and ex-
haust duct. These instabilities are usually coupled by longitudinal
modes, the wavelength is larger than the typical transverse dimension
of the system λ > D and they feature lower frequencies ;

• Instrinsic instabilities which correspond to motions induced by the
flame in its own field like the Darrieus-Landau or the thermo-diffusive
instabilities.

We focus in the present study on system instabilities and use to this purpose
a configuration which comprises three components and typifies what is found
in many practical devices.

Prediction of combustion instabilities has been a major issue for many decades
(Candel (2002)). The problem has been tackled in various ways but it is
possible to identify three broad classes of methods :

• Methods based on a modal expansion, used extensively in the rocket
engine field, rely on a Galerkin projections on the eigenmodes of the
system. This approach was developed in the 1970’s (B. Zinn et al.
(1971); F. Culick (1994)) and has mainly focused on the nonlinearity
introduced by gas dynamics. One obtains a coupled set of nonlinear
differential equations for the modal amplitudes and one can examine in
this way the evolution of the system and the dynamics of the various
modes. Culick has extensively contributed to the analysis of limit cycles
using the modal expansion technique.

• Methods based on a frequency domain analysis. The acoustics of the
system are described by a network analysis or by full Helmholtz solver
calculations and the combustion response is represented by various
models. This framework has been used in the rocket engine field by
representing the combustion process with the so-called sensitive time
lag model, also designated as the n−τ model. The more recent applica-
tions to aero-engines and gas turbines have focused on the combustion
process unsteady response (Candel et al. (1996)) as the key mechanism
and much effort has been expanded to document the flame response
in terms of flame transfer functions (FTF) and characterize the flame
unsteady behavior as a function of amplitude. It is known that com-
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(a) (b)

(c) (d)

Figure 3: Combustion systems which underwent important failures due to combustion
oscillations. (a) and (b) : Rocket engines from NASA at Lewis research center (now
Glenn research center, Cleveland). (a) is damaged by explosion on start, while (b)
shows an engine producing 20000 lbf of thrust shattered by blowout. (c) : Gas turbine
combustor damaged after 6 months on the right and new burner assembly on the left,
from Huang et al. (2009). (d) : A gas turbine transition piece destroyed by high
thermal stresses and combustion driven oscillations, from Lieuwen et al. (2003).



6 Introduction

bustion instabilities also designated as “thermoacoustic instabilities”
induce relative pressure oscillations p′/pmean which are generally less
than 10 %, whereas the velocity fluctuations u′ may be of the order of
the mean flow velocity ū. These velocity fluctuations induce heat release
rate fluctuations which are such that the total reaction rate cannot be-
come negative. This already induces a nonlinearity in the combustion
response which corresponds to a saturation in amplitude of the heat
release fluctuations. There are many other causes of nonlinearity and
it is important to take them into account in the analysis of combustion
instabilities. This point was made for example in Poinsot et al. (1989)
where the study was aimed at the active control of combustion insta-
bilities. Using the controller it was possible to obtain a stable regime
and switch-off the driver unit to observe the oscillation growth from a
stable operation. This indicated that the heat release rate fluctuation
could be made to vanish during the unsteady motion but that the fluc-
tuation in heat release rate were saturated leading to a limit cycle. It
was concluded that the nonlinear effects are mainly caused by reacting
flow processes and that the link to acoustic nonlinearity was less proba-
ble. Flame nonlinearities were studied independently by Lang (1991) in
another multiple flame combustor controlled by a loudspeaker. It was
found that harmonic frequencies arise when the oscillation amplitude
increased indicating that energy is transferred to harmonics leading to a
well defined limit cycle. The nonlinear flame response is known to play
a key role in the triggering of oscillations in rocket engines but it was
difficult to explain this phenomenon in terms of nonlinear gas dynamics
(Wicker et al. (1996); Ananthkrishnan et al. (2005)). One possible ex-
tension of the frequency domain approach is offered by methods based
on the harmonic balance approximation also designated as the describ-
ing function. These methods are used in the present work and related
studies are reviewed in what follows.

• Methods based on numerical simulations. The simulation of combustion
instabilities has been a long term goal in this field but the new devel-
opments in large eddy simulation have allowed considerable progress in
this direction. There are many conditions to fulfill to devise methods
which can be used in high fidelity simulations of combustion instabili-
ties. It is in particular necessary to rely on tools which can be used to
represent the flame motion and associated unsteady rate of heat release
(Kaufmann et al. (2002); Giauque et al. (2005); Sensiau et al. (2009);
Roux et al. (2009); Duchaine et al. (2011); Tay-Wo-Chong et al. (2010);
Tay-Wo-Chong et al. (2011); Tay-Wo-Chong et al. (2012)) and acoustic
field (Boudier et al. (2009); Gullaud et al. (2009)). Examples of this
approach can be found in the recent literature (Selle et al. (2006); Wolf
et al. (2012); Franzelli et al. (2012); Poinsot et al. (2012)).
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Figure 4: Feedback loop representing the interaction of the flame with the acoustics
of the system. The combustion response is either described by a Transfer Function
(F(ω)) or a Describing Function (F(ω, |u′|)). The FTF or FDF are combined with
an acoustic network representation of the wave motion in the system.

The second approach is used in the present investigation which relies on the
FDF concept in combination with an acoustic network description of the wave
motion in the system. It is therefore logical to examine the literature dealing
with the flame response in terms of transfer function (TF) and describing
function (DF). This is done in the next section.

Flame transfer functions and describing functions

Under self-sustained combustion oscillations, the flame is subjected to velocity
fluctuations and one can consider the interaction of the combustion process
with the acoustics of the system as shown in Fig. 4. Thus, in many situations
it is important to look at the flame response to harmonic oscillations in a broad
range of frequencies. It is then natural to define a transfer function (the FTF)
determined by taking the ratio of the fundamental normalized component of
heat release rate fluctuations ( ˜̇Q/Q̇) to the fundamental normalized component
of velocity fluctuations (u′/ū) at the flame base :

F(ω) =
˜̇Q(ω)/Q̇

u′/ū

In addition, the flame is submitted to a broad range of oscillation amplitudes
and its response changes with the input level. One may then use an extension
of the linear concept of transfer function and define an FDF which depends on
frequency and on the amplitude of the input :

F(ω, |u′|) =
˜̇Q(ω, |u′|)/Q̇

u′/ū

This nonlinear dependence of the flame with respect to the input level produces
the limit cycles observed in experiments. In addition, this nonlinearity gives
access in many cases to the nonlinear features observed in practice as already
shown in a range of previous studies and as will be confirmed in this inves-
tigation. There are some interesting indications on the processes which lead
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to nonlinearities in the flame response for example in Schuller et al. (2003b),
where variations of the rate of heat release are linked to the interaction be-
tween a “V”-flame and a wall or where a strong change in flame surface area is
induced by the collapse of neighboring sheets in an “M”-flame. One may note
that effects of amplitude of oscillation are generally not well documented and
when they are, the description is often only qualitative. There are systematic
investigation of the flame response to different amplitudes in some pioneering
studies like Bourehla et al. (1998) where a conical (Bunsen) flame was subjected
to a wide range of amplitudes. Light emission (chemiluminescence) was not
recorded in this experiment but flame front analysis revealed that a convective
wave was wrinkling the flame in a symmetric fashion for small amplitude levels
(u′/Ū ≤ 0.3) whereas an asymmetric pattern was formed under more intense
velocity perturbations. By operating at a higher frequency and using large
amplitudes of modulation, the flame cone could be transformed into a hemi-
spherical surface which became essentially insensitive to velocity fluctuations.
This latter case was examined in further detail in Durox et al. (1997). Mea-
surements of the flame response to different amplitude have been attempted in
other studies (Lieuwen et al. (2002); Lee et al. (2003)) but they remain limited
to a few frequencies.

The flame transfer function (FTF) of conical configurations was measured by
Ducruix et al. (2000) and more recently for different forcing amplitudes by
Durox et al. (2009b) and Karimi et al. (2009). This transfer function features a
progressive drop in the gain as the perturbation amplitude is increased, whereas
the phase is more sensitive to the amplitude and saturates for a certain level
of modulation. Experiments and further analysis were carried out to include
effects of the anchoring device on the flame response (see for example De Goey
et al. (2011) for a recent review).

Nonlinear issues are considered in Baillot et al. (1996); Schuller et al. (2003a);
Preetham et al. (2008). One may note that the analysis carried out in Preetham
et al. (2008) essentially retrieves results obtained previously in the unified
framework devised in Schuller et al. (2003a). These previous studies have
stimulated work on nonlinearities in the flame response. Configurations inves-
tigated theoretically were also studied experimentally in Durox et al. (2005);
A. Birbaud et al. (2007); Durox et al. (2009b) where a “V”-flame, an “M”-
flame and a collection of small conical flames are considered. The “V”-flame
(Durox et al. (2005)) features nonlinearities in the transfer function for increas-
ing amplitude with a drop in the gain. This is linked to the vortices shed by
the burner lip and interacting with the flame. On the other hand, the phase
remains insensitive to amplitude. A further study (A. Birbaud et al. (2007))
reports effects of different confinement diameters and describes the possible
interference between the flame and the side wall when the ratio of the injec-
tor diameter to the tube diameter exceeds a certain value. By decreasing the
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tube diameter, the vortex interaction is modified and the nonlinear response
is changed. The different flame geometries examined in Durox et al. (2009b)
exhibit variations in gain as a function of amplitude, whereas only the collec-
tion of small conical flames features a phase sensitivity. A turbulent “V”-flame
is analyzed in Balachandran et al. (2005). From measurements of heat release
rate, it is concluded that the flame response is nonlinear even for low perturba-
tion amplitudes and in the absence of local extinctions. It is found that leakage
of energy takes place from the fundamental frequency to its harmonics as am-
plitude is increased. Numerical simulations with a URANS code in Armitage
et al. (2006) indicate that the transition to the nonlinear regime occurs when
well defined vortices are shed from the lips of the bluff body and distort the
flame front.

Many current investigations concern swirling flames which are found in most
gas turbine and aero-engine technologies. Dynamics of a premixed swirled
combustor is considered for example in Bellows et al. (2003). The flame is
submitted to various levels of modulation amplitudes for various air-fuel ratios.
This reveals a saturation phenomenon in the FTF gain whereas the phase
evolves linearly with frequency and is less sensitive to the fluctuation amplitude.
This article also contains a list of potential processes which may be responsible
for the saturation of the flame response.

Important features of swirling flames originate from the dynamics of the swirler.
When this unit interacts with incident acoustic waves it generates a vorticity
wave which is accompanied by transverse velocity oscillations. These in com-
bination with the acoustic perturbations define the flame response. Acoustic
velocity perturbations induce vortex roll-up from the injector lip, whereas az-
imuthal velocity fluctuations generated by the swirler are convected by the flow.
The swirl number is modulated and this in combination with the vortex roll-up
mechanism leads to flame surface area fluctuations and correspondingly heat
release rate fluctuations (see for example Palies et al. (2010)). These mecha-
nisms are sensitive to amplitude and heat release rate fluctuations are modified
as the level of modulation is augmented. All these studies lead to the conclu-
sion that the flame is sensitive to velocity fluctuations. Perturbations in real
systems exciting one of the resonance frequencies may reach high amplitude
levels. Wrinkling caused by acoustic modulations and convected azimuthal
perturbations lead to separate contributions to heat release rate fluctuations
and this affects the gain and phase of the transfer function.

Flame transfer functions (FTFs) have been used in linear stability analysis of
complete systems. This provides predictions of unstable frequencies for small
disturbances and yields exponential growth rates. The FTF is deduced from a
model, from measurements (by making use of finite amplitude perturbations)
or from simulations. The linear framework cannot be used to predict the limit
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cycle amplitudes or to explain many features observed in practice and it only
provides rough estimates of the oscillation frequency. This is exemplified in
a linear stability analysis of an unconfined flame stabilized at the boundary
of a burner (Noiray et al. (2006)). The unstable band was predicted, but it
was not possible to explain mode switching arising when the burner geometry
was modified. In addition the range of parameters corresponding to instability
was overestimated. Similar issues are considered in another investigation due
to Kim et al. (2009). Predictions are made for the first acoustic eigenmode
of a swirled burner by using a FTF measured with a low modulation level
u′/ū = 0.10. Frequency prediction relies on the phase of the FTF by consid-
ering an unstable frequency band. This provides an oscillation band which
approximately matches experimental data but the level of oscillation is not
available and the analysis provides no clues on the higher modes of the sys-
tem. The flame response has also been measured under full engine conditions
in Schuermans et al. (2010) and these data were used in a linear analysis to
identify unstable ranges of a gas turbine combustor and predict staging effects
and their influence on the regime of operation. In all these studies, the linear
analysis is useful but incomplete. It was already mentioned by Crocco (1969)
that “oscillations cannot grow indefinitely” and that predictions of amplitude
and triggering need to be carried out in a nonlinear framework. The nonlinear
flame response causes the bifurcations observed in practical devices an issue
which is examined for example in Huang et al. (2009) in an extensive review
of swirling flame dynamics. Bifurcations are revealed by changing combustor
parameters (feeding manifold length, equivalence ratio, preheating tempera-
ture, etc.) (Lieuwen (2002)) and this can be used to identify self-sustained
frequency-amplitude regimes and test prediction methods.

It is next logical to examine investigations of nonlinear combustion dynam-
ics. One possible saturation mechanism giving rise to limit cycles is envisaged
in Dowling (1997) to interpret experiments on a ducted flame stabilized on a
bluff-body (Langhorne (1988)). In this analysis based on the describing func-
tion (DF) methodology borrowed from control theory, the flame gain saturates
when the flow at the bluff-body is reversed. A more advanced model of the
flame motion (Dowling (1999)) analyzed in the DF framework yields predic-
tions of the unstable amplitude and frequency. The nonlinear transfer function
concept is also used in Peracchio et al. (1999) to analyze the dynamics of a com-
bustor submitted to equivalence ratio fluctuations. The transfer function was
calibrated by making use of experimental data and suitable estimates of limit
cycles were obtained by considering the mean air-fuel ratio as a bifurcation
parameter. Observations of bifurcations in a swirled combustor are reported
in J. Moeck et al. (2008) and interpreted with the nonlinear model defined in
Peracchio et al. (1999). Describing function theory originates from nonlinear
control theory developed during the second world war. Detailed presentation
and applications can be found in Gelb et al. (1968). This theory is also known
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as the “equivalent harmonic” and one also uses the term “harmonic balance”
to designate methods based on this concept. In general the validity of this ap-
proach lies on the fact that there is a single nonlinear element (in the present
case, this component is the flame) and that the other elements in the system
filter out higher order harmonics so that the system stability is essentially gov-
erned by the fundamental component. The describing function is constituted
by a family of transfer functions measured or calculated for a set of amplitudes
(Schuller et al. (2003a); Bellows et al. (2003); Durox et al. (2005); A. Birbaud
et al. (2007); Durox et al. (2009b); Karimi et al. (2009); Palies et al. (2010)).

A unified framework using the “Flame Describing Function” (FDF) concept
was devised by Noiray et al. (2008) and applied to the analysis of the multiple
open flame burner already examined with linear methods (Noiray et al. (2006)).
The FDF model includes nonlinearities due to the flame and their impact
on gain G and phase ϕ. The different amplitude-frequency couples found by
changing the upstream size (used as a bifurcation parameter) of the open flame
burner where well retrieved from calculations for the whole range of sizes.
Experimental observations of hysteresis, triggering and mode switching were
well predicted by calculations. Results found by Noiray et al. (2008) can be
used to highlight the poor quality of a linear analysis. In essence, it comes down
to narrow the full view of the whole amplitude range. The bifurcation diagram
calculated by Noiray et al. (2008) is reproduced in Fig. 5. The comparison
between predictions and experiments (open symbols) is drawn on the right
hand side of the figure. By using the FDF, one obtains the positive growth rate
(ωi) regions plotted in the center of Fig. 5. These regions reveal the unstable
range of the geometry and the associated unstable mode. By considering a
linear analysis, one would obtain the result shown in Fig. 6. The FTF used
to calculate the unstable range (for infinitesimally small amplitude here) gives
positive growth rates (ωi) on a narrow band of the whole amplitude panel.
The gray area shows the hidden growth rates missed by the linear framework
calculations. In this latter case, one would predict a first mode oscillation
from L = 0.10 m to 0.15 m, followed by the second mode until L = 0.22 m.
The second mode would also exist from L = 0.25 m to 0.43 m and would be
followed by the third one until L = 0.76 m. This is depicted by horizontal
colored lines at low amplitude (u′

rms/ū) on the right hand side of Fig. 6. It is
then possible to see that the experimental points do not match the calculations
where one expects a first mode oscillation from L = 0.10 m to 0.25 m followed
by the second mode between L = 0.29 m and 0.63 m before switching to the
third one until L = 0.76 m. The FDF methodology has also been applied to a
turbulent swirled flame (Palies et al. (2011)) and calculations succeeded fairly
well in predicting the limit cycles observed on the burner. In this latter study,
the bifurcation parameter was the flame tube size. The system considered in
Palies et al. (2011), operates like a Helmholtz resonator, and does not feature
triggering and hysteresis characteristics.
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Figure 5: Bifurcation diagram calculated by Noiray et al. (2008). The positive growth
rate (ωi) regions reveal the unstable range of the burner geometry. The three different
colors are linked to the three first eigenmodes. On the right hand side, the bifurcation
contours corresponding to ωi = 0 are compared with experiments data plotted as open
symbols.

Figure 6: The bifurcation diagram from Noiray et al. (2008) shows the results that
one would find by using a linear analysis with a FTF measured for infinitesimally small
amplitudes. The gray area shows that much of the system response is missed, giving
access to a narrow region in the diagram and hiding the real dynamics of the burner.
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The present study is aimed at testing the FDF methodology in a generic config-
uration where the flame is confined and is therefore closer to real systems. Ex-
periments and calculations have already been reported in Boudy et al. (2011b)
and Boudy et al. (2011a). Two confinement tubes featuring different lengths
have been mounted on the open burner investigated by Noiray et al. (2008). It
was found that amplitude, frequency, hysteresis, triggering and mode switch-
ing, observed by changing the burner feeding manifold length were fairly well
retrieved for the different confinement tube sizes. The FDF framework was
however less successful in predicting the unstable behavior observed with the
longest confinement tube (Boudy et al. (2011b)). Systematic experiments and
calculations considered in what follows by making use of confinement tubes
up to L2 = 0.40 m exhibit many types of limit cycles including variable am-
plitude oscillations featuring special sound signatures. This is illustrated in
Fig. 7 which shows typical signals encountered during various experiments on
the multiple flame combustor equipped with different confinement tube sizes.
It is worth noting that similar characteristics were observed for example in
Sterling (1993) and a nonlinear modeling was proposed by introducing an n-τ
flame response with an amplitude dependent gain n or delay τ . It was sug-
gested that the quasi-periodic oscillations observed were linked to interactions
of two acoustic eigenmodes. A more recent investigation (Kabiraj et al. (2012))
reports observations of different types of oscillations in a multiple flame com-
bustor equipped with a perforated plate comprising a small number of holes.
The flame tube size is used as bifurcation parameter providing access to a vari-
ety of limit cycles. J. P. Moeck et al. (2012) recently analyzed the dynamics of
a combustor featuring multiple linearly unstable modes and defined conditions
for the existence and stability of single or multiple mode oscillations by using
the describing function framework.

(a) (b) (c)

Figure 7: Typical signals found in experiments on self-sustained combustion oscilla-
tions with the multiple flame combustor equipped with different sizes of confinement
tube. (a) : Signal usually recorded for most of the burner geometries with a nearly
constant amplitude. The signal envelope is drawn in green. (b) and (c) : Variable
amplitudes of different kinds arising for certain ranges of the upstream manifold size.
The signal envelope, drawn in red, reveals variations in amplitude.
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Thesis objectives and organization

As already indicated this investigation addresses issues in nonlinear combustion
dynamics. These issues may be subdivided in two groups :

• The first group aims at extending the Flame Describing Function (FDF)
methodology to generic configurations and provide an interpretation of
the various types of limit cycles encountered in experiments.

• The second group deals with control methods and is intimately linked
to predictions derived from the FDF framework. It centers on the
reduction of oscillations by means of a bias flow perforated plate backed
by a cavity (BFP). This control method is used in both experiments
and calculations. The FDF analysis allows to interpret experimental
data and predict system effectivness.

The first part of this document describes the experimental setup. The second
part gives a detailed account of the FDF model. Results of calculations are
compared with the experimental data in part three. Reduction of combustion
oscillations using optimized bias flow perforates is envisaged in part four. A
more detailed description of the successive chapters is given in what follows.

Chapters details

• The first chapter describes the experimental configuration which com-
prises a feeding manifold of length L1 connected to a multipoint injector
which anchors a collection of small laminar conical flames. These flames
are enclosed in a quartz tube of length L2 open to the atmosphere.

• Typical regimes of operation of this device are reported in the second
chapter. Various flow rate and geometrical parameters are considered.
This shows that the burner is flexible and allows a continuous variation
of the feeding manifold size L1 and discrete changes in confinement tube
length L2.

• The third chapter presents two other setups used to investigate the
acoustic signature of the burner and the flame response.

• The analysis of the generic burner system is carried out in Chapter 4.
The configuration is represented as two connected ducts and can be
analyzed as an acoustic network by specifying boundary conditions and
matching conditions at the duct interface.

• The flame model is introduced in Chapter 5 by closely following the
presentation proposed by Noiray et al. (2008). Two flow rates are in-
vestigated and the flame responses are measured by making use of har-
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monic perturbations generated by a driver unit (loudspeaker). A link is
made at the end of the chapter with the flame reflection coefficient and
an impedance tube methodology based on multiple microphones is used
to determine this reflection coefficient under reacting flow conditions.

• The acoustic network and the flame response are combined to model the
system in Chapter 6. Two models are derived. The first considers ideal
boundary and matching conditions and is named “model A”, while the
second entitled “model B” includes the characteristics of these elements.
The models emphasize the use of the FDF and include the injection
element composed of a perforated plate. This latter is represented with
a relation derived from Melling (1973).

• The basic model entitled “Model A” is applied in Chapter 7 to predict
unstable combustion regimes observed with two configurations of the
burner. This chapter is a combination of two articles presented at
the ASME turbo expo of 2010 held in Glasgow, UK (Boudy et al.
(2011b)) and at the 33rd International Symposium on Combustion held
in Beijing, China (Boudy et al. (2011a)). These two papers report
calculations carried out for short and intermediate confinement tube
sizes up to L2 = 0.20 m. Systematic comparisons are carried out with
experimental data. These results generally match with a few differences
arising in the switching zone between mode 1 and mode 2.

• The same procedure is used in a modified configuration examined in
Chapter 8. In the new configuration, the confinement tube length L2

covers a broader range. The flame holder is thickened to increase the
damping in the system (it was shown previously that a thicker injection
system enhances damping Noiray et al. (2007)). It allows to measure
FDF values in a confined environment with a small quartz tube of L2

= 0.10 m without loosing loudspeaker efficiency. It is shown that the
mismatch observed between experimental data and analytical results
is not caused by the FDF and that the model accuracy is enhanced
by a better representation of boundary and matching conditions. A
better estimate of frequencies and amplitudes measured in the burner
is obtained in this way.

• By doing the analysis of combustion regimes with different configura-
tions of the burner, a new class of limit cycles is uncovered. This class
is typified by a variable amplitude of oscillation. These unsteady ampli-
tudes take different forms and require some dynamical systems analysis.
This is reported in Chapter 9 where experimental results are those de-
scribed in Chapter 8. The analysis in Chapter 9 is based on two papers
presented at the 3rd INCA conference held in Toulouse, France in 2011
(Boudy et al. (2013)) and at the ASME turbo expo of 2012 held in
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Copenhagen, Denmark (Boudy et al. (2012)). The describing function
methodology is used to identify conditions giving rise to phenomena
observed in experiments.

• Chapter 10 of the manuscript is dedicated to control issues. A bias
flow perforated plate backed by a cavity (BFP) is tested in order to
cancel the self-sustained combustion oscillations. The analysis relies on
the FDF framework and is based on calculations and systematic ex-
periments which are carried out to understand the physical processes.
This investigation uses the possibility to easily modify the geometry
of the system to identify the potential and limitations of the bias flow
perforated plate controller. It is shown that damping is accessible for a
broad range of frequencies by optimizing the plate in the low Strouhal
number approximation devised in Scarpato et al. (2012). The damping
bandwidth is broader than that obtained in the high Strouhal number
regime examined in Hughes et al. (1990). This latter method yields
a more compact system, but is only effective in a narrow band of fre-
quencies. The chapter is fairly long because it accounts for experiments
and calculations. It also contains interpretations of various phenomena
observed in practice, like the occurrence of self-sustained oscillations
at frequencies which should be damped. This interpretation is made
possible by the FDF methodology which provides a useful account of
flame behavior as the oscillation frequency changes.

• The dynamics of the system is profoundly modified by the presence
of the control device. Calculations confirm the ability of the flame to
oscillate on a shifted frequency. This highlights the difficulty to antici-
pate the real behavior of the system even if the acoustic eigenmodes are
known. This is the reason why we consider an idealized configuration
in Chapter 11 to identify possible decoupling effects. This phenomenon
is induced by the upstream boundary condition when the reflection co-
efficient is close to zero. This is used to explain observations reported
in Chapter 10 indicating that it is not always possible to act on in-
stabilities which are coupled by resonances in the confining tube and
decoupled from the feeding manifold. Another interesting point is also
investigated. It deals with particular geometries which promote the de-
coupling of the flame tube even if the reflection coefficient is not close
to zero.

The various parts of the thesis are illustrated synthetically in Tab. 1. The main
pictures picked up from each part allow to have a preview of the elements or
results which will be exposed.
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Table 1: Illustration of the thesis content for each part of the manuscript.

Part I
Burner geometry

Part II
Relevant elements

Part III
Nonlinear stability

analysis

Part IV
Passive control approach

➡ Experimental setup
➡ Combustion regimes

➡ Burner acoustics
➡ Flame dynamics
➡ Modeling strategy

➡ Basic model
➡ Detailed model
➡ Variable amplitudes

➡ Bias Flow Perforates
➡ Cavity decoupling



18 Introduction

Publications associated with the thesis

Boudy, F.∗, D. Durox, T. Schuller, G. Jomaas, and S. Candel. 2011. “Describ-
ing function analysis of limit cycles in a multiple flame combustor” J. Eng.
Gas Turb. Power 133 (6): 061502.1–061502.8. doi:10.1115/1.4002275

Boudy, F.∗, D. Durox, T. Schuller, and S. Candel. 2011. “Nonlinear mode
triggering in a multiple flame combustor.” Proc. Combust. Inst. 33 (1): 1121–
28. doi:10.1016/j.proci.2010.05.079

Duchaine, F., F. Boudy∗, D. Durox, and T. Poinsot. 2011. “Sensitivity analysis
of transfer functions of laminar flames.” Combust. Flame 158 (12): 2384–94.
doi:10.1016/j.combustflame.2011.05.013

Boudy, F.∗, D. Durox, T. Schuller, and S. Candel. 2012. “Nonlinear flame
describing function analysis of galloping limit cycles featuring chaotic states
in premixed combustors.” In Proceedings of the ASME Turbo Expo, paper
GT2012-68998, New York: American Society of Mechanical Engineers.

Boudy, F.∗, D. Durox, T. Schuller, and S. Candel. 2013. “Analysis of limit
cycles sustained by two modes in the flame describing function framework.” C.
R. Mec. 341 (1–2): 181–90. doi:10.1016/j.crme.2012.10.014

∗ Permanent email : frederic.boudy@graduates.centraliens.net

http://dx.doi.org/10.1115/1.4002275
http://dx.doi.org/10.1016/j.proci.2010.05.079
http://dx.doi.org/10.1016/j.combustflame.2011.05.013
http://dx.doi.org/10.1016/j.crme.2012.10.014


Part I

Thermoacoustic coupling in a
premixed combustion

chamber equiped with a
multipoint injector





Chapter 1

Experimental setup

Combustion instabilities are usually examined in configurations which
represent in an ideal fashion industrial systems. The configuration used
in the present study has generic features allowing an analysis of funda-
mental interest. In this configuration the flame is confined in an open
ended tube. The aim of experiments carried on this system is to provide
a data base for the analysis and and prediction of self-sustained combus-
tion oscillations. The burner offers a wide variety of settings through
easily adjustable feeding manifold and flame tube lengths. Combustion
oscillations are characterized as the geometry is changed by varying the
position of a piston defining the boundary of the upstream manifold.
This chapter describes the experimental configuration and associated
diagnostics.

1.1 Burner geometry and operating conditions

The experimental setup is sketched in Fig. 1.1. It is derived from a previ-
ous burner used by Kagiya 2000. The FDF framework was initially devel-
oped on a similar configuration but with an unconfined flame (Noiray et al.
(2008)). These previous studies were motivated by industrial applications of
radiant burners in which self-sustained combustion oscillations are often ob-
served. Thanks to its generic arrangement, the system facilitates a theoretical
analysis and has been modified with the aim of acquiring detailed insights on
combustion instabilities for a confined combustion geometry. In most practical
configurations combustion takes place in a closed environment as exemplified
in gas turbines. It is then interesting to examine a system having similar fea-
tures. While there are many studies of combustion dynamics and instabilities
there is a need for systematic experimentation and modeling.
The burner can be divided in three parts. A feeding manifold of radius R1 =
0.035 m ended by a perforated plate which delivers the premixed streams. A
perforated plate anchors a collection of small laminar conical flames. The third
element is an open ended quartz tube of radius R2 = 0.065 m, enclosing the
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Confinement
tube

Feeding
manifold
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Air CH4

L1
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l

Figure 1.1: Experimental setup used to characterize self-sustained combustion oscilla-
tions in a confined combustion environment. Reactants are premixed inside a movable
piston used to change the feeding manifold length L1. A perforated plate anchors a
collection of small laminar conical flames. The flame tube L2, made of quartz confines
the combustion zone. Four flame tube sizes L2 are used in the present investigation.

combustion zone. Reactants are premixed in the piston before being injected
in the feeding manifold through six apertures machined on the head periphery
(see Fig. 1.1).
Combustion instabilities involve a resonant feedback between the heat release
rate fluctuations and the acoustics of the burner. Experiments on the same
configuration but with an unconfined combustion zone have already shown a
variety of couplings between the unsteady flame and the injection manifold
(Janardan et al. (1976); Schuller et al. (2003b); Durox et al. (2005); Noiray
et al. (2008); Durox et al. (2009a)). With confined combustion, it was demon-
strated in some early studies that the injection manifold or the flame tube
influences the “singing” character of a flame (Putnam (1971), p. 9-16). The
piston used in the present investigation facilitates the length modification of
the feeding manifold. This length L1 measured between the upstream side of
the perforated plate and the head of the piston, can be varied in discrete steps
all the way from L1 = 0.11 m to 0.55 m. By using an additional tube, it is
possible to sweep the feeding manifold length from L1 = 0.11 m to 0.77 m. The
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Table 1.1: Geometrical parameters of the perforated plates (dimensions in mm).

Plate #1 #2 #3 #4

Thickness l 3 15

Holes radius rp 0.85 1.5 1

Number of holes N 601 189 421

Porosity P 0.35 0.34

head of the piston is designed to offer a nearly perfect reflecting boundary for
acoustic waves. It is machined with a shoulder and 6 holes on its periphery to
allow flow of the reactants to be injected through the piston. The flame tube
of size L2, can also be changed. Four quartz tubes of different lengths are used
ranging from L2 = 0.10 m to L2 = 0.40 m by steps of 0.10 m.
The perforated plate located at the top of the feeding manifold and confined
within the quartz tube, anchors a collection of small laminar conical flames.
The different geometries of this element are gathered in table 1.1. The main
configuration examined in the present study pertains to plate #4. It has a
thickness l = 15 mm and a diameter 2R = 70 mm. It is made of stainless steel
and comprises N = 421 holes of diameter 2rp = 2 mm arranged on a 3 mm
square mesh, resulting in a global porosity P = Nπr2

p/πR2 of 0.34.
In a first exploration, the feeding manifold length is swept in both ways with a
confinement tube L2 = 0.10 m. Then, another flame tube is used in a second
set of tests and so on until L2 = 0.40 m. For all confinement tubes, the flame
oscillates for a wide range of feeding manifold lengths L1 and is only stable in
some narrow intervals. Three operating conditions have been tested depending
on the perforated plate set in this investigation. These flow rates are gathered
in Tab. 1.2 for each perforated plate. The air is delivered by a filtered network
at a pressure of 6 bars. The G20 methane is stored on site.

Table 1.2: Flow rate conditions used with the different perforated plates anchoring
the small laminar conical flames.

Plate #1 #2 #3 #4

Flow rate ṁ (g.s−1) 3.65 3.65 or 2.2 4.7

Equivalence Ratio φ 0.9 1.03

Power P (kW) 9.1 9.1 or 5.4 13.3

1.2 Diagnostics

The experimental setup is equipped with different probes allowing measure-
ments of velocity, pressure and heat release rate fluctuations. Figure 1.2 shows
the burner and associated diagnostics and sensors.
Five quantities are measured in this experiment. Velocity fluctuations are de-
termined by means of a hot wire probe 3 cm below the perforated plate. Three
microphones are used to record pressure fluctuations at different locations on
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PM
+OH∗ filter
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M2

M3

Wave Guide

Hot wire

Figure 1.2: Experimental setup used to characterize self-sustained combustion oscil-
lations and associated diagnostics. Three microphones are used to measure the pressure
fluctuations. Microphone M1 is located 25 cm away from the burner axis while micro-
phones M2 and M3 are connected on 25 m waveguides. Hot wire probe measures the
velocity fluctuations in the feeding manifold. A photomultiplier equipped with an OH∗

filter views the flame from outside the quartz tube and measures the hydroxyl radical
fluctuations radiated by the flame.

the burner. Microphone M1 acquires the sound radiated by the burner, 25
cm away from the burner axis. In experiments carried out in the present con-
figuration, walls, ceiling and floor are sufficiently distant from the flame to
assume that the records are weakly influenced by acoustics reflections. Two
microphones are connected on 25 m waveguides to measure pressure fluctua-
tions inside the burner. The waveguides are sufficiently long to avoid reflection
of the wave. Microphone M2 is connected to the feeding manifold while M3

is plugged on the waveguide connected to the flame plane. This latter allows
measurements of combustion noise. Feeding manifold plugs are separated by
5 cm from each other and microphone M2 is plugged on the first one facing
the hot wire. The length of the waveguide between the plug location and
the microphone M2 is 12 cm while the one of microphone M3 is 11.5 cm. A
photomultiplier equipped with an OH∗ filter (λ=308 nm) records free radicals
emissions from the flame which are almost proportional to the heat release rate
(Hurle et al. (1968); Higgins et al. (2001)). It is important to note that this
can be assumed with a perfectly premixed flame under lean or stoichiomet-
ric condition. Measurements are processed with LabVIEW R© and Matlab R©.
Characteristics of the different diagnostics are gathered in Tab. 1.3.
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Table 1.3: Materials and diagnostic tools characteristics.

Equipment Manufacturer Reference

Flow-controller (Air) Bronkhorst F202AC-FAC55V, 5 Nm3h−1 with C3H8

Flow-controller (CH4) Bronkhorst F201AC-FAC33V, 50 Nl min−1 with N2

Microphone (5Hz-20kHz, 50mV/Pa) Brüel & Kjaer 4189
Microphone preamplifier Brüel & Kjaer 2669
Microphone amplifier Brüel & Kjaer Nexus Conditioning Amplifier

Hot wire probe Dantec Dynamics 55P16
Power supply Dantec Dynamics Mini CTA 54T30

Photomultiplier Electron Tubes Limited 91295B
Current to voltage convertor Electron Tubes Limited Transimpedance Amplifier A1

Loudspeaker Focal 4K211
Sinusoidal wave generator Hameg HM8040
Loudspeaker amplifier Europsonic PA-9402





Chapter 2

Dynamical behavior of the
combustion system

The system examined throughout this study exhibits a variety of com-
bustion regimes. These are revealed by changing the geometry and flow
rate conditions. Typical regimes are described in this chapter. The
experimental procedure is explained in a second step. A special com-
bustion regime is considered in the last part of this chapter. Phenomena
which are here briefly reviewed will be analyzed in further detail in the
following chapters.

2.1 Typical combustion regimes

The experimental investigation begins by setting a confinement tube L2 with
the head of the piston L1 close to the perforated plate. Then, the system is
ignited and the piston can be moved from minimum to maximum extension
with a predefined step. Another sweep can be done by retracting it in the
reverse direction. Depending on the piston position L1 and the confinement
tube L2 selected, combustion is either stable or unstable.
In a stable case, flames exhibit a conical shape with a low level of noise reaching
about 100 dB at microphone M2 (reference pressure 2×10−5 Pa). This is
illustrated in Fig. 2.1. In this case, L1 = 0.25 m and L2 = 0.10 m and the
burner is equipped with the perforated plate #3 (l = 3 mm see Tab. 1.1). The
flow rate is fixed to ṁ = 4.71×10−3 kg.s−1 at an equivalence ratio φ = 1.03,
providing a thermal power of 13.3 kW. These conditions induce a bulk velocity
Ub = 3.1 m.s−1 in each channel of the perforated plate.
In the unstable case, all the flames move in a regular fashion with formation
and collapse of fresh reactant pockets as illustrated in Fig. 2.1. In this latter
case, the combustion chamber features the same perforated plate (#3) and
L2 = 0.10 m but the feeding manifold length L1 = 0.29 m. This oscillation
exhibits a frequency f = 750 Hz and induces a strong level of noise which
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Figure 2.1: Stable and unstable combustion regimes for an equivalence ratio φ = 1.03.
These records illustrate typical flame behaviors. They are recorded for L2 = 0.10 m
with the perforated plate #3. Stable combustion corresponds to feeding manifold length
L1 = 0.25 m while the unstable one is acquired for L1 = 0.29 m.

exceeds 140 dB at microphone M2 (reference pressure 2×10−5 Pa). For longer
flame tubes, larger oscillation levels may be reached during unstable operation
and the flame motion is often more complex.
In these experiments, the pressure is essentially harmonic, indicating that the
acoustic field remains in the linear range. Typical pressure and heat release rate
fluctuations recorded in the system are plotted in Fig. 2.2. The pressure signal
remains sinusoidal whereas OH* radicals light intensity, corresponding to the
heat release rate, shows asymmetrical oscillations, revealing the nonlinearity
of the flame response.

2.2 Frequency-amplitude sweep

The protocol used to determine the stability margins is the same for all flame
tubes. The experimental procedure is initiated with the head of the piston
close to the perforated plate (minimum extension) and consists of recording
the sensor signals at limit cycles. Then, the piston is retracted in increments
of one centimeter all the way to a manifold length L1 = 0.55 m (maximum
extension) with signals being acquired for each step. The piston is then moved
in the reverse direction (maximum to minimum extension) using the same
increment and acquiring the same set of signals. As a result, the oscillation
frequencies and the amplitudes of pressure oscillations are obtained for a range
of manifold lengths. These experiments are repeated for the different flame
tubes L2 = 0.10 m, 0.20 m, 0.30 m and 0.40 m. An unconfined combustion
layout is also investigated.
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Figure 2.2: Pressure signal from microphone M2 (left vertical axis) and OH* radicals
light intensity (right vertical axis) under self-sustained oscillations. The burner is
equipped with the thin perforated plate l = 3 mm (#3). The feeding manifold is adjusted
to L1 = 0.51 m with the flame tube L2 = 0.20 m.

Sweeps of the piston in two directions have been done for conditions presented
in Tabs. 1.1 and 1.2. Typical evolutions of frequency and amplitude are dis-
played in Fig. 2.3. The plate #1 (601 holes of diameter 2rp = 1.7 mm, thickness
l = 3 mm) is used in all the confined and unconfined conditions. Frequency
and amplitude are plotted as a function of the burner size for L1 between 0.16
m and 0.55 m. The amplitude is determined by integrating the pressure signal
which provides the root mean square (rms) value of the oscillation and allows
calculation of the Sound Pressure Level (SPL). The power spectral density of
the pressure is calculated by using Welch’s method of averaging with a Hanning
windowing.
Regarding the amplitude, one finds that it mostly evolves around 140 dB, in-
dicating that the flame is strongly unstable. The spectrum shows the peak
frequency of the oscillation. One should note that the combustion process in-
duces oscillations at frequencies which lie in the neighborhood of the acoustic
eigenmodes of the system. These eigenmodes are calculated by considering a
network of coupled cavities. Ideal boundary conditions and different tempera-
tures inside each element are considered for the calculation of the eigenmodes.
The feeding manifold temperature is fixed to T1 = 300 K while the flame tube
value T2 depends on the length L2 of the flame tube. This mean temperature
T2 is estimated from measurements by using a K-thermocouple. One finds T2

= 900 K for L2 = 0.10 m, T2 = 1100 K for L2 = 0.20 m, T2 = 1300 K for L2

= 0.30 m and finally T2 = 1400 K for L2 = 0.40 m. It is important to note
that the perforated plate used as a flame holder and the unsteady behavior of
the flame are not included in the calculation of these eigenmodes.
A stable band appears for the unconfined case between L1 = 0.23 m and 0.27
m. A narrower stable band, between L1 = 0.30 and 0.31 m, is retrieved for
the confined case with L2 = 0.20 m. Stable combustion is characterized by a
“low” level of noise around 100 dB at microphone M2. For unconfined or small
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confinement tube situations, the oscillation frequency is not precisely locked
on the eigenmode but lies in its vicinity. Nevertheless, as the flame tube size is
greater than 0.10 m the frequency is displaced away from the eigenmode. This
is exemplified in the case L1 = 0.20 m to 0.35 m with L2 = 0.30 m in Fig. 2.3.
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Figure 2.3: Amplitude and frequency evolution for the different confinement tube sizes L2. Multipoint injector and operating conditions
are set with plate #1 (601 holes of diameter 2rp = 1.7 mm, see Tabs. 1.1 and 1.2). Top subfigure displays the Sound Pressure Level (SPL)
measured by microphone M2. Lower subfigure shows the main frequency peak observed in the power spectral density of the pressure signal
measured by microphone M2. The feeding manifold length is swept from L1 = 0.16 m to 0.55 m. The three first acoustic eigenmodes
calculated in the absence of a flame response and without taking into account the perforated plate are also shown as bold lines. The flame
tube temperature T2 differs from that assigned to the feeding manifold T1. T1 = 300 K, T2 = 900, 1100, 1300 and 1400 K correspond
respectively to L2 = 0.10, 0.20, 0.30 and 0.40 m.
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Similar experiments have been carried out for the other plates listed in Tab. 1.1.
Figures 2.4 and 2.5 show the burner behavior in an amplitude-frequency chart
for plate #2 (189 holes of diameter 2rp = 3 mm, thickness l = 3 mm) with the
two flow rates given in Tab. 1.2, i.e. ṁ = 2.2 and 3.65 g.s−1. It is interesting
to note that the amplitude evolution is roughly different from the preceding
plate investigated. The lower flow rate experiment, shown in Fig. 2.4, reveals
stable combustion for all the feeding manifold lengths L1 in the unconfined
and first confined (L2 = 0.10 m) conditions. For longer flame tubes, unstable
combustion is retrieved with the levels as observed for plate #1 (see Fig. 2.3).
This is not the case in Fig. 2.5 where the increased flow rate induces unstable
combustion for unconfined and confined situations, but this time with lower
amplitudes. Regarding the frequencies, the shift with respect to the acoustic
eigenmodes is observed for the two flow rates. It is also interesting to see that
frequencies between two modes exist for the highest flow rate with L2 = 0.30
m (see Fig. 2.5).
It is found from these experiments that the system exhibits various types of
self-sustained combustion oscillations. Amplitudes and frequencies depend on
the injector type, the feeding manifold length, the flame tube length and on
the mass flow rate.
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Figure 2.4: Amplitude and frequency evolution for the different confinement tube sizes L2. Multipoint injector and operating conditions
are set with plate #2 (189 holes of diameter 2rp = 3 mm, see Tab. 1.1). The flow rate is set to 2.2 g.s−1. Top subfigure indicates
the Sound Pressure Level (SPL) measured by microphone M2. Lower subfigure displays the main frequency peak observed on the power
spectrum density of the pressure signal measured by microphone M2. The feeding manifold length is swept from L1 = 0.16 m to 0.55 m.
The three first acoustic eigenmodes calculated in the absence of a flame response and without taking into account the perforated plate are
also shown as bold lines. T1 = 300 K, T2 = 900, 1100, 1300 and 1400 K correspond respectively to L2 = 0.10, 0.20, 0.30 and 0.40 m.



34
C

h
a
p
t
e
r

2
-

D
y

n
a

m
ic

a
l

b
e
h

a
v

io
r

o
f

t
h

e
c

o
m

b
u

st
io

n
sy

st
e
m

0.2 0.4 0.6
200

400

600

800

100

140

180

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
200

400

600

800

100

140

180

Unconfined L2 = 0.10 m L2 = 0.20 m L2 = 0.30 m L2 = 0.40 m

SP
L

(d
B

)
f

(H
z)

SP
L

(d
B

)
f

(H
z)

L1 (m)L1 (m)L1 (m)L1 (m)L1 (m)

Figure 2.5: Amplitude and frequency evolution for the different confinement tube sizes L2. Multipoint injector and operating conditions
are set with plate #2 (189 holes of diameter 2rp = 3 mm, see Tab. 1.1). The flow rate is set to 3.65 g.s−1. Top subfigure indicates
the Sound Pressure Level (SPL) measured by microphone M2. Lower subfigure displays the main frequency peak observed on the power
spectrum density of the pressure signal measured by microphone M2. The feeding manifold length is swept from L1 = 0.16 m to 0.55 m.
The three first acoustic eigenmodes calculated in the absence of a flame response and without taking into account the perforated plate are
also shown as bold lines. T1 = 300 K, T2 = 900, 1100, 1300 and 1400 K correspond respectively to L2 = 0.10, 0.20, 0.30 and 0.40 m.
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Figure 2.6: Typical limit cycles recorded by means of microphone M2 with plate #4
and confinement tube L2 = 0.20 m. (a) L1 = 0.18 m. The frequency shift reaches 100
Hz with respect to the acoustic eigenmode. (b) Limit cycle acquired for L1 = 0.21 m.
The amplitude evolves in an irregular manner as a function of time.

2.3 Amplitude modulations

Figures 2.3, 2.4 and 2.5, discussed in the preceding section, show the evolution
of the oscillation frequency as a function of the burner geometry. By analyzing
results corresponding to the different flame tube sizes L2, one finds that the
frequency lies in all cases in the vicinity of the acoustic eigenmodes of the
geometry but one also notes that for certain values of L1 the frequency shift
between the eigenmode and the observed oscillation is quite large. This is
exemplified for flame tubes L2 = 0.30 m and 0.40 m in Figs. 2.3, 2.4, 2.5 ; see
for example L1 = 0.35 m to 0.38 m with the flame tube L2 = 0.30 m in Fig. 2.3.
These cases are characterized by a noisy sound signature which notably differs
from the pure tone radiated in most other cases.
This behavior is well revealed by time traces of the pressure signal detected by
microphone M2. Two cases are plotted in Fig. 2.6. These pressure evolutions
have been measured for feeding manifold lengths L1 = 0.18 m and 0.21 m by
using plate #4 with the flame tube L2 = 0.20 m. It is seen that the amplitude,
recorded in Fig. 2.6(a), is almost constant, while the one in the lower graph (b)
is perturbed in a more random fashion. In this case, the main frequency ob-
served in the pressure spectrum is displayed in the amplitude-frequency chart
(see for example L1 = 0.35 m to 0.38 m with the flame tube L2 = 0.30 m in
Fig. 2.3). In examining these situations, one notes that time trace analysis
is essential to characterize the oscillations observed in the burner. The corre-
sponding limit cycles can be roughly divided in two classes. In the first one,
the amplitude is nearly constant as observed in many previous investigations
(Schuller et al. (2003b); Durox et al. (2005); Noiray et al. (2008); Durox et al.
(2009a)), whereas in the other class, the amplitude is variable a feature which
is also noted in various other thermoacoustic coupling studies (Sterling (1993);
Lamraoui et al. (2011); Kabiraj et al. (2012); J. P. Moeck et al. (2012)).
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In the following chapters, the analysis will focus on these two classes of limit
cycles. The stable amplitude case will be characterized experimentally and
investigated theoretically in order to predict the amplitude value for all the
geometries considered. Then, situations exhibiting a broader band of sound
with unstable amplitude will be examined in the same way. It will be seen
that there are many distinct types of oscillation featuring a broad spectral
band of frequencies, regularly modulated signal sustained by two modes or
even multiple well defined frequencies. In these cases, the comparison between
model and experiments indicates that some predictions are possible but that
the interpretation is less easy.



Part II

Analysis of the setup





Chapter 3

Setup for diagnostics

The burner presented in Chapter 1 is typified by specific conditions
on its boundaries and the connection between the two ducts. These
specificities need the use of other devices to determine the reflection
coefficient of the combustor outlet or the flame response when the flow is
submitted to disturbances. These systems are described in this chapter.

3.1 Impedance tube device

The boundary conditions can be modeled or characterized experimentally. In
the present case this latter method has been applied. An experimental setup,
presented in Fig. 3.1, is used to estimate the reflection coefficient. It is derived
from the “ITHACA impedance tube” apparatus developed by Tran (2009) to
characterize the acoustic response of perforated plates.
In the present configuration, it is specifically used to estimate the reflection
coefficient of the piston head. This latter is submitted to acoustic waves of in-
creasing amplitude levels. The configuration comprises a long cylindrical man-
ifold connected to a loudspeaker at the end and a set of plug holes equipped
with flush mounted microphones M1 to M3. The loudspeaker, fed by a wave
generator and an amplifier, is used to produce harmonic modulations of the
upstream flow which leaks from holes located near the loudspeaker. Assum-
ing plane wave propagation, the impedance Z1(0) located at z = 0 can be
measured for different forcing levels imposed by the loudspeaker using a three
microphones measurement technique described by Chung and Blaser (Chung
et al. (1980a); Chung et al. (1980b)). In the configuration displayed in Fig. 3.1,
the specific acoustic impedance ζ1(0) = Z1(0)/(ρ1c1) at the location z = 0 can
be obtained from the pressure traces measured by microphones M1 and M2 :

ζ1(0)(ω) = i
sin (ωL2m/c1) − H12(ω) sin (ωL1m/c1)
H12(ω) cos (ωL1m/c1) − cos (ωL2m/c1)

(3.1)

where H12 stands for the transfer function between microphones M1 and M2.
The quantities L1m and L2m are the distances of microphones M1 and M2 with
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Figure 3.1: Impedance tube device used to measure the reflection coefficient of the
piston with an air flow condition equivalent to the methaneair premixture.

respect to the piston head. The transfer function is estimated with the mea-
surements of microphones M1 and M2 as H12 = S12/S11, where S12 designates
the cross power spectral density between the two microphones at the forcing
angular frequency ω and S11 the power spectral density of microphone M1.
The loudspeaker is located 0.17 m from microphones M2 and M3. The sound
level is controlled by a microphone Mspl mounted on a waveguide at the piston
head plane. The three microphones M1, M2 and M3 are flush mounted on the
tube.
The reflection coefficient is measured with the same flow rate as the one used in
the exploration of self-sustained combustion oscillations, i.e. 4.7 g.s−1. Never-
theless, as the flame is not present, the methane air premixture is replaced by
an equivalent flow rate of air. Air flows through the tube and is evacuated from
radial orifices near the loudspeaker. As explained in Scarpato et al. (2012), two
criteria have been considered to set positions L1m and L2m of the three mi-
crophones M1, M2 and M3. Firstly, the interspace between microphones M1

and M2 should be chosen to set less than an half wavelength between the 2
microphones, i.e. L2m − L1m ≤ c/2fmax. For 1.1 kHz, L2m − L1m ≤ 0.15 m.
In the present case, it is set to 0.05 m to ensure accurate measurements on a
frequency range up to 3.4 kHz. The second criterion concerns the maximum
length for L1m. It is fixed by the first pressure node and thus the shorter
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wavelength established in the tube. For a frequency f = 1.1 kHz one has to
set L1m ≤ 0.31 m. In the measurements performed here L1m = 0.23 m. The
fourth microphone Mspl mounted on a waveguide at the piston plane z = 0 is
used to control the Sound Pressure Level (SPL) imposed by the loudspeaker.
It ensures measurements of the reflection coefficient at the same amplitude for
all frequencies. For each forcing condition, a total of 65536 data points are
acquired with a sampling frequency of fs = 16384 Hz. Data are post processed
with Matlab R© and Welch’s method of averaging with a Hanning windowing.
The determination of the impedance defined by Eq. (3.1) is quite sensitive to
errors on distances L1m and L2m, which must be precisely determined. It is
also important to have a correct estimate of the sound speed c1 in the mani-
fold, which was taken here equal to c1 = 346 m.s−1 and the fluid characteristic
impedance Z0 = ρ1c1 taken equal to Z0 = 410 kg.m−2.s−1 in these experi-
ments. Accurate determination of the transfer function H12 requires a suitable
calibration in both gain and phase of the data acquisition system. While cal-
ibration in gain is quite straightforward, phase distorsions are more difficult
to reduce. The difficulty may be overcome with a microphone switching tech-
nique (Chung et al. (1980b)). A first transfer function Ho

12 is computed for an
experiment with all microphones set at their original location. The same exper-
iment is then repeated in a switched configuration where the microphone M2 is
placed at L1m and M1 at L2m (all other parameters remaining fixed). A second
transfer function Hs

12 is computed in the switched configuration. The transfer
function H12 appearing in Eq. (3.1) is then determined as the geometric mean
of these transfer functions H12 = (Hs

12Ho
12)1/2. The signal to noise ratio can

be further improved using an additional microphone M3 located at L2m. A
coherence factor C is evaluated between the three microphones M1 to M3 in
the original (n = o) and switched (n = s) configurations : Cn = Cn

23/(Cn
12Cn

31),
where Cxy = |Sxy|2/(SxxSyy). The transfer function H12 in Eq. (3.1) is in this
case replaced by the following expression : H12 = [CoHo

12CsHs
12]1/2 (Chung

et al. (1980a)). This last expression is useful for a precise determination of the
impedance resistive and reactive parts in noisy environments as can be the case
in a turbulent burner under unstable regimes (Tran et al. (2009a); Tran et al.
(2009b)). The reflection coefficient of the element set at z = 0 is given here as
a function of the specific acoustic impedance as defined later in Eq. (4.6):

R1(0) =
ζ1(0) + 1
ζ1(0) − 1

(3.2)

where ζ1(0) corresponds to the specific acoustic impedance defined in Eq. (3.1).
The impedance measurement setup and the corresponding processing tools are
first validated using a known impedance before measuring the piston response
to ensure accurate measurements of the reflection coefficient. The experimental
procedure consists in replacing the piston with a rigid plate to obtain the
response of a closed end duct. Measurements with the closed end tube are
performed by increments of 100 Hz on a frequency range comprised between 100
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Figure 3.2: Reflection coefficient of the closed end tube measured with the impedance
tube device. ⋄ symbols indicate measurements, whereas bold lines correspond to the
theoretical expected values. One can see that the modulus |R| nearly matches the theory
with |R| = 1 while the phase is perfectly equal to 0.

Hz and 1000 Hz. Figure 3.2 shows measurements executed with an amplitude
of 110 dB controlled by Mspl.
Measurements yield values for the modulus of the reflection coefficient ranging
between 0.96 and 0.98 and matching well the expected theoretical value of a
rigid plate |R| = 1. The phase of the reflection coefficient does not exceed 0.01
radian. One can thus safely use this setup to measure the reflection coefficient
of the piston head for frequencies lower than 1000 Hz.

3.2 Setup for the flame response

3.2.1 Materials and working conditions

The experimental setup sketched in Fig. 3.3 is used to measure the flame re-
sponse for different amplitudes.
This burner corresponds to a reduced version of the one used in the study
by keeping the same ratio between the perforated plate and the confinement
tube diameters. These reduced sizes allow Laser Doppler Velocimetry (LDV)
measurements as the laser beams cannot cross at the flame base in the real
case. A perforated plate of thickness l = 3 mm or 15 mm is set to anchor a
collection of small laminar conical flames. It comprises 129 holes of diameter
2rp = 2 mm placed on a 3 mm square mesh. A methane/air mixture feeds
the burner at the bottom (see Fig. 3.3). The flow rate has been adapted to
keep the same mean flow velocity Ub and equivalence ratio φ of 1.03, as the
one used in the experiments presented in Chapter 2. The length of the quartz
tube L2 is set to 0.10 m and the diameter to 0.07 m. It allows to keep the
control through the loudspeaker, as longer confinement tube induces start of
self-sustained combustion oscillations.
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Figure 3.3: Experimental setup used to measure the FDF. A loudspeaker is placed
at the bottom of the burner and subjects the flame to harmonic fluctuations. Velocity
is measured by means of LDV at the base of one flame 0.6 mm above the hole. A
photomultiplier equipped with an OH∗ filter collects free radicals emissions.

The loudspeaker produces velocity oscillations in a chosen frequency range
which is swept between 0 and 1600 Hz. The relative fluctuation amplitude
urms/Ub is varied from 0.065 to 0.516 for l = 3 mm (plate #3) and 0.065 to
0.774 for l = 15 mm (plate #4). In the experiments, the flame is enclosed
with a quartz tube and a confined FDF is therefore acquired. Nevertheless,
these measurements with a quartz tube were only achieved with the thickest
perforated plate l = 15 mm. This latter adds some damping in the system
and avoids start of self-sustained oscillations. In the other case l = 3 mm, the
FDF is only estimated in an unconfined configuration. Finally, it is interesting
to compare the influence of the confinement tube on the FDF. This is done
with the thickest perforated plate by measuring the flame response without the
quartz tube.

3.2.2 Diagnostics

Velocity oscillations are measured by means of LDV at the base of one flame
0.6 mm above the hole. The hole of crossing is selected as close to the center
as possible by avoiding reflexions (see Fig. 3.3). A continuous laser, with a
beam at 514.5 nm and a mixing with a Bragg cell set to 10 kHz, is used to
ensure the LDV measurements. Micro-metric oil droplets (diameter ≈ 2 µm)
are created with a perfume atomizer to seed the premixture (Durox et al.
(1999)). A photomultiplier is used to detect the droplets passing in the volume
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where the laser beams cross. A convex lens focuses the light emitted to the
photomultiplier equipped with a pin hole and a filter centered on the laser
wavelength. The counting rate is around 50 kHz with a validation of 60 % for
plate #3 and 35 kHz with a validation of 40 to 47 % for plate #4. For the
unconfined configuration with plate #4, the mixing of the Bragg cell is set to
0.2 MHz. The counting rate is in this case between 30 and 35 kHz with 35 to
40 % of validation.
A photomultiplier, equipped with an OH∗ filter (λ = 308 nm) measures free
radicals emissions. It gives an estimate of heat release rate fluctuations through
the fluctuations of light intensity (Hurle et al. (1968); Higgins et al. (2001)).
The flame frequency response linked to a set of FTFs obtained at different am-
plitudes is called the Flame Describing Function (FDF) which is defined as the
ratio of the relative heat release rate fluctuations to the relative velocity fluc-
tuations. Signals are acquired with a sampling frequency fs = 32768 Hz over
a duration of 2 seconds. The measurements are processed with LabVIEW R© to
obtain the gain and the phase of the FDF which can be written as follow :

F (ωr, urms/Ub) =
˜̇Q/ ¯̇Q

urms/Ub
=

ĨOH∗/ĪOH∗

urms/Ub

= G (ωr, urms/Ub) eiϕ(ωr,urms/Ub)

(3.3)

where ωr indicates the angular forcing frequency and urms the root mean square
velocity fluctuation measured by LDV.



Chapter 4

Acoustical key points

It is first useful to consider the acoustics of the burner configuration.
This is accomplished by examining the different parts of the system
separately. The duct acoustics is examined in a first step. Due to the
system dimensions and the frequencies observed experimentally, only
plane waves are considered to travel in the system. Then, boundary
and matching conditions between the tubes are examined. Boundary
conditions reveal that the piston head and the open-ended flame tube
feature non-ideal reflection coefficients i.e. that the piston has a reflec-
tion coefficient which differs from a perfectly reflecting wall and that
the open end differs from a pressure node. A model is proposed for
the matching conditions in the injection zone hinged on the perforated
plate which takes into account the ring cavity which surrounds the mul-
tipoint injection unit. This configuration is often found in practice (for
example in gas turbine combustors), where the flame is not located at
the junction plane between upstream and downstream cavities and it
is therefore interesting to consider this aspect in further detail. An
expression is derived for this specific geometry.

4.1 Duct acoustics

Thermoacoustic instabilities observed in the system under investigation involve
unsteady combustion coupled to acoustic disturbances. It is then natural to
begin the analysis by examining the burner acoustics. The system is charac-
terized by low frequency unstable modes (see Chapter 2) and one may thus
consider that the wave motion is longitudinal and takes place in the axial di-
rection z. The pressure oscillations detected remain relatively weak compared
to the mean pressure (p′/p ≈ 1 %) and the analysis may be carried out by
assuming that acoustic disturbances are linear. Moreover, the system operates
at a low Mach flow number (Ub/cu ≤ 0.01) so that flow effects can be neglected
in the analysis of acoustic propagation.
In each referenced tube n, temperature, density, velocity and pressure are all
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Figure 4.1: Acoustic waves propagating in the nth tube section.

subscripted with their respective tube number. Flow variables are decomposed
in terms of a mean and a fluctuating component : a(z, t) = ā(z) + a′(z, t). The
mean temperature Tn and density ρn are considered uniform in each section n.
Pressure and velocity disturbances associated to sound waves propagate in the
two directions as illustrated in Fig. 4.1. These perturbations are considered as
harmonic functions of time, a′(z, t) = ã(z) exp(−iωt), where ω stands for the
angular frequency ω = 2πf . The modal distribution associated to these waves
for the nth tube is given by :

ũn(zn) =
1

ρncn

(
A+

n eiknzn − A−
n e−iknzn

)

p̃n(zn) = A+
n eiknzn + A−

n e−iknzn

(4.1)

where zn stands for the position, kn = ω/cn denotes the wave number and
cn corresponds to the speed of sound which differs in the feeding manifold
and the flame tube. It is worth noting that the signals detected by various
sensors correspond only to the real component of these complex quantities. In
the expressions developed in this manuscript, the longitudinal position in each
tube is referenced with respect to the beginning of the element. The use of
different origins avoids writing lengthy expressions in acoustic relations. This
is illustrated in Fig. 4.2 with two tubes connected at their extremities. In the
case of a single origin corresponding to the first element, the sound pressure in
the second tube would be given by :

p̃2(z2) = A+
2 eik2(z2−z1) + A−

2 e−ik2(z2−z1) (4.2)

Using different origins, it is possible to replace z2−z1 in Eq. (4.2) by z2 yielding
simpler expressions.
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Figure 4.2: Acoustic waves propagating in two ducts.
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Figure 4.3: Acoustic waves propagating in a duct and reflection coefficient defined at
a location zn.

4.2 Interactions with the system boundary

Interaction of sound waves with the extremities of the combustor are character-
ized by the impedance of this section defined as the ratio of acoustic pressure
to acoustic velocity (Morse et al. (1986), p. 261) :

Zn(zn) =
p(z, t)
u(z, t)

= ρncn
A+

n eiknzn + A−
n e−iknzn

A+
n eiknzn − A−

n e−iknzn
(4.3)

By considering the characteristic impedance of the medium defined by ρncn,
one can define the specific acoustic impedance in a given section by:

ζn(zn) =
Zn(zn)
ρncn

=
A+

n eiknzn + A−
n e−iknzn

A+
n eiknzn − A−

n e−iknzn
(4.4)

Using the convention defined in Fig. 4.3, the reflection coefficient Rn of the nth

tube at zn is given by (Rienstra et al. (2010)) :

Rn(zn) =
A+

n eiknzn

A−
n e−iknzn

(4.5)

The reflection coefficient and the specific acoustic impedance of Eq. (4.4) are
linked by the following expression :

Rn(zn) =
ζn(zn) + 1
ζn(zn) − 1

(4.6)

4.2.1 Upstream boundary condition

The piston head response has been characterized by making use of an impedan-
ce tube testing as described in Chapter 3. The piston is set in the feeding
manifold as depicted in Fig. 3.1 and its reflection coefficient is measured in
two cases. The first series of measurements is carried out without flow. The
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second set of data corresponds to the nominal flow condition in which the
mass flow rate is fixed at 4.7 g.s−1. Results obtained for the piston reflection
coefficient without flow are displayed in Fig. 4.4. Regarding the modulus |R|, it
is confirmed that the head does not fully reflect the incoming sound waves. For
some frequencies, the modulus |R| is less than 0.8. The phase also differs from
zero, indicating that the piston head induces a small time lag in the reflected
waves. It is interesting to see that the larger deviations, with respect to a
perfectly reflecting boundary, take place at low frequencies.
Effects of the mean flow in the perforations are now examined in Fig. 4.5. The
modulus still features a wavy shape over the frequency range investigated. Its
values evolve between |R| = 0.6 and 1, but this variation is more regular than
in the absence of flow. Deviations of the phase lag with respect to zero are also
attenuated. These experiments indicate that the piston head does not fully
reflect incoming waves. This is taken into account in the stability analysis
carried out in the following chapters by linking the amplitude of the reflected
pressure wave A+

1 at the piston head, to the incoming wave amplitude A−
1 by

the reflection coefficient R1(0) :

A+
1 = A−

1 |R1(0)| eiφ1(0) (4.7)

where |R1(0)| and φ1(0) are defined by the data presented in Fig. 4.5. Ad-
ditional measurements have been carried out to determine the input level in-
fluence on the reflection coefficient values of the piston head. The range of
frequencies presented in Fig. 4.5 was swept by increasing the amplitude up to
130 dB at the location of microphone Mspl. Results were found to be indepen-
dent of the input level, indicating that the modulus |R1(0)| and phase φ1(0)
of the reflection coefficient only depend on the frequency as shown in Fig. 4.5.
These values will be considered to be applicable in the whole amplitude range
and used as such in the nonlinear stability analysis of the system.

4.2.2 Downstream boundary condition

The combustion zone is enclosed in quartz tubes of different lengths which
are open to atmospheric conditions. Different approximations can be used to
model this open outlet, which are briefly presented below.
Considering an open duct as shown in Fig. 4.6, a first possibility is to neglect the
inertia of the column of gas at the exit of the confinement tube by considering
that the tube outlet constitutes a pressure node p̃2(L2) = 0. This crude model
however does not take into account the part of acoustic energy which is radiated
outside the tube. When sound is radiated at the tube outlet, the internal
acoustic field is modified in turn. One generally uses an end correction to take
this phenomenon into account. In this model, the pressure node is slightly
displaced to a point which is further away from the tube outlet : p̃2(L2 + δ2)
= 0. For long tubes, the end correction corresponds to a fraction of the tube
radius and depends on the Mach number of the flow, Strouhal and Helmholtz
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Figure 4.4: Reflection coefficient of the piston head measured with the impedance
tube in the absence of flow. Filled circle symbols ( •) indicate measurements. One can
see that the modulus |R| does not correspond to |R| = 1 while the phase differs from
0. Large differences pertain to low frequencies.
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Figure 4.5: Reflection coefficient of the piston head measured with the impedance tube
for a nominal flow rate of 4.7 g.s−1. Filled circle symbols ( •) indicate measurements.
One can see that the modulus |R| does not correspond to |R| = 1 while the phase
slightly differs from 0.
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Figure 4.6: Open-ended duct with two waves propagating in the two directions. The
speed of sound is designated as c2.

numbers (Rienstra et al. (2010)). For an unflanged pipe traversed by a low
Mach number flow, one generally uses δ2 = 0.61 R2, where R2 designates the
radius of the tube (Levine et al. (1948)) as depicted in Fig. 4.6. This model
has been used as a first approximation in many calculations carried out in the
present work. It was then reconsidered when detailed comparisons between
experiments and predictions indicated that it was more adequate to use at the
flame tube outlet, a condition varying as a function of frequency.
The radiation impedance was used to this purpose. For low frequency sound
waves in an unflanged open pipe, one can use a first approximation valid in
the limit k2R2 ≪ 1 (Levine et al. (1948); Rienstra et al. (2010))1 :

ζ2(L2) =
1
4

(
ωR2

c2

)2

− i 0.61
ωR2

c2
(4.8)

The corresponding reflection coefficient writes :

R2(L2) =
A−

2 e−ik2L2

A+
2 eik2L2

=
ζ2(L2) − 1
ζ2(L2) + 1

(4.9)

The reflection coefficient is plotted in Fig. 4.7 for the frequency range of interest
when the temperature in the flame tube is set to T2 = 900 K. It will be
shown in the following chapters that this mean temperature pertains to small
confinement tubes.
This figure indicates that the amplitude of the reflected waves is reduced as
the frequency increases. Low frequency waves are reflected with a phase lag
of −π with respect to the incoming waves that is progressively reduced when
the frequency increases. At 1000 Hz, the phase lag of the reflected wave lies
around −π/2 while the amplitude equals 0.8 times that of the incoming wave.

1It should be noted that the imaginary component is negative here, while the formula
given in Rienstra et al. (2010) considers a positive value. This is due to different conventions
used for the acoustic waves (p(x, t) = ℜ(p̃ exp(iωt)) instead of p(x, t) = ℜ(p̃ exp(�iωt)) used
here).
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Figure 4.7: Reflection coefficient R2(L2) of the confinement tube outlet. The temper-
ature is fixed to T2 = 900 K. For the increasing frequency, the modulus |R2(L2)| drops
down regularly while the phase lag φ2(L2) is reduced.

4.3 Multipoint injection zone

The methane/air mixture is injected in the flame tube through a perforated
plate of thickness l which is used to anchor a collection of small laminar conical
flames. A schematic of this injection unit is presented in Fig. 4.8. Acoustic
propagation in this element is considered in the present section. It is first im-
portant to note the location of the combustion zone in the flame tube. Combus-
tion takes place at the perforation outlets in a plane which is slightly different
than that corresponding to the bottom of the flame tube. The perforated plate
protrudes in the flame tube and forms a ring cavity around the combustion
zone. The upstream and downstream cavities feature distinctive temperatures
T1 and T2 while the ring cavity could be considered to have a different value
Tr. For the sake of simplicity in modeling, it is assumed in what follows that Tr

= T2. The second aspect that should be considered in the model is the effect
of the perforated plate.

4.3.1 The ring cavity

Acoustic propagation in the ring cavity is taken into account in the modal
analysis of the system. The cavity extends over a length l equal to the thickness
of the perforated plate located in the center of the flame tube (see Fig. 4.8).
The acoustic pressure in the ring cavity is noted p̃r. The sound pressure above
the perforated plate is noted p̃p. It is possible to build a one dimensional
representation of these elements by matching the acoustic pressure and the
acoustic flowrate.
The acoustic pressure is considered uniform over the section area S2 :

p̃r(l) = p̃p(l) = p̃2(0) (4.10)
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Figure 4.8: Details of the injection zone. The perforated plate and the shoulder
supporting the quartz tube decrease the confinement tube length Lquartz seen by the
flame. In the anchoring flame plane, the confinement length L2 corresponds to Lquartz

- (l + ∆).

A balance for the acoustic volume flow rate inside the flame tube yields :

S2ũ2(0) = S2rũr(l) + S2pũp(l) (4.11)

where S2r and S2p respectively designate the ring cavity surface area and the
perforated plate surface area. Thus, the flame can be introduced by consider-
ing a balance for the acoustic volume flow rate between the downstream and
upstream parts. The balance takes place between S2pũp(l) and S1ũ1(L1). This
point will be examined in the following chapter. It is useful to combine these
expressions to determine the corresponding impedance ζ2(0) of these elements
that will be used in the one dimensional modal analysis with a compact treat-
ment of the flame tube inlet. One obtains :

S2

ζ2(0)
=

S2r

ζr(l)
+

S2p

ζp(l)
(4.12)

where ζr(l) is the specific impedance of the ring cavity and ζp(l) denotes the
specific impedance at the perforated plate outlet. This latter component will
be examined in the next section. The specific acoustic impedance of the ring
cavity corresponds to that of an annular duct perfectly closed at one extremity
and open on the other one. At the bottom of the ring cavity, the acoustic
velocity must vanish yielding :

ũr(0) = 0 (4.13)
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Using Eq. (4.13) to determine velocity and pressure fluctuations at z = l, one
obtains the following expression for the specific acoustic impedance of the ring
cavity :

ζr(l) =
eik2l + e−ik2l

eik2l − e−ik2l
=

−i

tan(k2l)
(4.14)

4.3.2 The perforated plate

The mean flow injected from the piston head in the feeding manifold passes
through the small circular channels of the perforated plate used to anchor
the flame. This latter element influences the relation of pressure and velocity
disturbances across the perforations. Different models were proposed to con-
sider pressure and velocity relations across perforations (Howe (1979); Crandall
(1926); Melling (1973)). The model devised by Howe (1979) takes into account
a vortex street shed at the perforation outlet which is responsible for sound
absorption. It is well appropriate for the design of acoustic dampers (see for
example Scarpato et al. (2012)). In the present case, flames are anchored on
the perforated plate and hinder the creation of vortices (Schuller et al. (2009)).
Acoustic dissipation does not take place at the perforation outlet but it is
merely due to viscous effects inside the channels. Crandall (1926) derived a
model for acoustic perturbations in a single channel that was later used by
Melling (1973) to analyze sound absorption by perforated plates by taking into
account dissipation in the shear layer of the perforations. This model was
adapted by Noiray (2007) to represent the dynamics of a perforated plate with
a set of flames anchored on the top. The reflection coefficient of this arrange-
ment comprising a perforated plate and a set of flames was later characterized
by Schuller et al. (2009). Experiments confirmed predictions over the low fre-
quency range up to 1000 Hz and for different forcing levels. The same model
is used in the present study to link acoustic disturbances across the perforated
plate. As the wavelength of disturbances considered are long compared to the
perforated plate thickness, the acoustic velocity perturbations oscillate in a
bulk mode in the perforations. Pressure fluctuations across the perforations
are linked by :

p̃p(l) − p̃p(0) = i ωρ1l

[
1 +

lν
rp

(1 + i)

]
ũp (4.15)

where lν = (2ν/ω)1/2 designates the acoustic boundary layer thickness, ũp

denotes the bulk velocity oscillation in the perforation of radius rp and length
l. A balance for the acoustic flow rate also yields :

S1ũ1(L1) = NSpũp ⇔ ũ1(L1) = Pũp (4.16)

where N denotes the number of perforations, Sp = πr2
p is the cross section area

for one hole and P stands for the perforated plate porosity. It is worth noting
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that the pressure disturbances at the perforation extremities also correspond
by continuity to the pressure oscillation in the feeding manifold p̃p(0) = p̃1(L1)
and the pressure fluctuation at the flame tube inlet p̃p(l) = p̃2(0). Combining
Eqs. (4.15) and (4.16), the specific acoustic impedance of the perforated plate
can be determined as follows :

ζp(l) =
p̃p(l)

ρ2c2ũp
=

P
ρ2c2

{
i ωρ1l

P
[
1 +

lν
rp

(1 + i)
]

+
p̃1(L1)
ũ1(L1)

}
(4.17)



Chapter 5

Flame dynamics and
“harmonic equivalent”
formalism

The determination of the Flame Describing Function (FDF) is dis-
cussed in this chapter. The setup presented in Chapter 3 is first used to
measure the velocity profile in a perforation of the flame holder. FDF
measurements are then carried out in confined and unconfined envi-
ronments. The FDFs are determined in situations where self-sustained
oscillations are absent. Such oscillations would hinder any control from
the loudspeaker. FDF data obtained in confined and unconfined situ-
ations are then compared. It is found that the gain G and phase ϕ
are nearly identical in the two cases. The two FDFs considered for
the study of plate #3 and #4 are consequently presented. Finally, the
reflection coefficient of the flame is introduced. This quantity is mea-
sured for some selected situations and compared to the one deduced
from the FDF. This indicates that it is possible to determine the flame
response with two different techniques and confirms that the presence
of the flame tube does not influence the response.

5.1 Flame dynamics and velocity profile

The experiments presented in Chapter 2 indicate that the flame is suscepti-
ble to self-sustained oscillations by coupling with the acoustics of the system.
Energy derived from the flame oscillations feeds the acoustic modes, closing
the loop of the self-sustained oscillations as shown in Fig. 4 presented in the
introduction of this document. To represent the link between the flow pertur-
bations and the heat release rate fluctuations one may use the concept of flame
transfer function (FTF). Considering the sensitivity of the flame to velocity
oscillations, it is possible to determine its response in term of heat release rate
fluctuations for various frequencies. The FTF is defined as the fundamental
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normalized component of heat release rate fluctuations ( ˜̇Q/Q̇) over the funda-
mental normalized component of velocity fluctuations (urms/Ub) at the flame
base:

F(ω) =
˜̇Q(ω)/Q̇

urms/Ub
(5.1)

Nevertheless, as explained in the introduction of the manuscript the flame
response changes with the amplitude of oscillation. It is important to take this
into account and use the FDF which depends on frequency and amplitude of
the input :

F(ω, |urms/Ub|) =
˜̇Q(ω, |urms/Ub|)/Q̇

urms/Ub
(5.2)

The FDF is determined experimentally by using the setup presented in Chap-
ter 3, Fig. 3.3. In a first step, it is important to estimate the bulk velocity
Ub inside the perforations of the flame holder. This gives the dimensionless
parameter urms/Ub for the FDF. This velocity ratio sets the position for each
series of measurements acquired in the frequency range of interest and defines
the FDF evolution as a function of the amplitude urms/Ub. A laser Doppler
velocimeter (LDV) system is used to measure velocities above a perforation
and allows to determine the velocity profile along the radius of one hole. Fig-
ures 5.1 and 5.2 exhibit the profiles respectively acquired on the thin and the
thick perforated plates 0.7 mm above the hole. The flame is present and flow
rate is set according to the conditions defined in Sec. 3.2.1. The loudspeaker is
turned off and no harmonic forcing is applied to the flow. Measurements are
carried out upstream the flame front in the volume of fresh gas.
It is interesting to note the effect of the boundary layer thickness on the veloc-
ity profile. For the thickest perforated plate, the boundary layer is developed
as viscous effects are more important in the longer channels. This yields a
parabolic mean profile reaching 6 m.s−1 in the center. For the thinner per-
forated plate, the profile is flattened in the center, limiting the amplitude to
4.8 m.s−1. Nevertheless, the distribution over the surface area is almost the
same in the two cases, and one calculates a bulk velocity of 3.03 m.s−1 for the
thin perforated plate and 3.23 m.s−1 for the thick one. By considering the flow
rate for a channel of the flame holder determined from the massflow controller
indications, one finds Ub = 3.1 m.s−1, which allows to estimate a relative error
to measurements. One finds 2 % for the thin perforated plate and 4 % for the
thick one. Based on that, the bulk velocity inside the perforations is fixed to
Ub = 3.1 m.s−1 for the rest of the study.
Regarding the rms values, it is seen that the fluctuation amplitude is located at
the edges of the hole for the thin perforated plate, where the velocity gradient
is the steepest. Thus, one may argue that the flame surface will move in a
different fashion between the thin and the thick perforated plate, indicating a
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Figure 5.1: Velocity profile above one
hole for the thin perforated plate l =
3 mm. The bold line indicates the
mean velocity profile while dashed line is
linked to the remanent rms value in this
unforced situation. The dash-dotted line
is used to mark the mean value calcu-
lated from the mean profile on the com-
plete hole surface area.
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Figure 5.2: Velocity profile above one
hole for the thick perforated plate l =
15 mm. The bold line indicates the
mean velocity profile while dashed line is
linked to the remanent rms value in this
unforced situation. The dash-dotted line
is used to mark the mean value calcu-
lated from the mean profile on the com-
plete hole surface area.

change in the flame response. This point will be examined in the next section
with the FDF measurements.

5.2 FDF measurements

The FDF has been determined for forcing frequencies ranging from 0 to 1600
Hz. A first examination is carried out by comparing gain and phase between the
unconfined and confined configurations equipped with the thickest perforated
plate l = 15 mm. Results for gain and phase are plotted in Fig. 5.3. Six
amplitudes urms/Ub have been considered. The unconfined values appear as
gray lines (�) while the confined case is displayed as black lines (�).
First of all, one finds that the gain and phase nearly match in all cases. It
should be noted that whilst the amplitude level is increased, the frequency
range where measurement are feasible diminishes. This is due to a lack of
efficiency of the loudspeaker at high amplitude and high frequency. Regarding
the gain, the agreement is well marked for lower fluctuation levels. The bounce
above unity between 0 and 550 Hz exhibits higher values in the unconfined case
from urms/Ub = 0.32 to the largest amplitudes. Nevertheless, the decreasing
part above 550 Hz is close to the confined case. The phase is almost the same
for all amplitudes over the range of frequencies between 0 to 850 Hz. The lower
fluctuation level allowing measurements at higher frequencies, it is possible to
distinguish higher phase values in the unconfined situation beyond 850 Hz.
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Figure 5.3: FDF measurements in confined and unconfined situations. The black
line (�) pertains to the confined configuration with L2 = 0.10 m while the unconfined
flame measurements are plotted as gray lines (�). Different amplitudes have been
considered. Each relative fluctuation level urms/Ub is indicated on the phase graph
(b). The corresponding gain is displayed on the left hand side (a).
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However, this difference is negligible. Based on that, one may consider that
the flame response remains the same and does not depend on the upstream
condition. It must be stressed that this case corresponds to a flame response
with a collection of small laminar conical flames embedded in a confinement
tube of larger diameter. One might not infer the same conclusions for other
configurations. For example, the nonlinear flame response of A. Birbaud et
al. (2007) is modified in case C when the flame tube diameter is decreased
and interacts with the flame front. The flame response is also modified when
the burnt gases cannot fully expand as demonstrated in the recent analysis of
Cuquel et al. (2013).
It is now interesting to examine measurements of the flame response over a
range of fluctuation amplitudes. Two FDF are considered in what follows.
The first relates to the perforated plate of small thickness l = 3 mm, while the
second is linked to the thick flame holder l = 15 mm. Figure 5.4 displays the
different series of data for the thin perforated plate l = 3 mm. The fluctuation
level urms/Ub is indicated in the center. The measurements have been carried
out without confinement tube to prevent the establishment of self-sustained
combustion oscillation. The gain G is drawn on the left (a) while the phase ϕ
appears on the right (b).
When the amplitude increases, the gain G drops and phase lag ϕ is shifted
and increases its slope, confirming the nonlinear behavior of the flame. As it
is shown in Fig. 5.3, FDF data are limited due to a lack of efficiency of the
loudspeaker at high amplitude and high frequency. The flame acts as a low
pass filter with a significant overshoot at higher frequencies and low fluctuation
amplitudes. This behavior was demonstrated to result from interfering phe-
nomena (Schuller et al. (2003a); Durox et al. (2009b); Kornilov et al. (2009)).
The phase evolves in a quasi linear fashion with the frequency and is sensitive
to the fluctuation level.
The second FDF is drawn in Fig. 5.5. Measurements have been carried out
with a small flame tube L2 = 0.10 m and the perforated plate of thickness l =
15 mm. On the one hand, phase and gain evolution feature the same trends
as the one observed with the thin perforated plate. The gain drops while the
phase shifts as a function of the increasing amplitude. On the other hand,
it is possible to note some differences. Regarding the gain curve for the first
amplitude with l = 3 mm, a minimum is reached at 900 Hz (see Fig. 5.4). This
minimum is found for 1200 Hz with the thick perforated plate l = 15 mm.
Hence, the finite gain covers a wider frequency range. Besides, the phase slope
is smaller. It reaches 4π at 1600 Hz, while this value is passed around 1200
Hz with the thin perforated plate. Concerning the amplitude, one can see that
the phase sensitivity is less visible.
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Figure 5.4: FDF measurements for the whole range of amplitudes and frequencies.
The perforated plate thickness is set to l = 3 mm in an unconfined situation. A
gray scale shows the increasing level of fluctuations. (a) shows the gain G, while (b)
corresponds to the phase ϕ. One can see that the gain drops and the phase shifts as
the amplitude grows. This is indicated by the arrows in the graphs.
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Figure 5.5: FDF measurements for the whole range of amplitudes and frequencies.
The perforated plate thickness is set to l = 15 mm with a small flame tube L2 = 0.10
m. A gray scale shows the increasing level of fluctuations. (a) shows the gain G, while
(b) corresponds to the phase ϕ. The decrease of the gain as a function of frequency
is more spread compared to data obtained for the thinner perforated plate, while the
phase slope is smaller and its amplitude sensitivity less visible.
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5.3 Jump condition between two sections of the bur-
ner and FDF

The acoustic jump condition between the upstream and downstream compo-
nents of the combustor includes the flame located at the interface of the two
cavities. This jump condition can be derived from an integration of the wave
equation for a compact reacting flows. A simple analysis can be found in
Blackshear Jr. (1953), but a more detailed derivation is presented in Le Helley
(1994) or Poinsot et al. (2012) (Chapter 8). By considering the characteris-
tics of the present configuration, the wave equation is linearized in the same
way. In addition, it is well known that for low Mach number reactive flows,
pressure disturbances remain unchanged across the reaction zone. Thus, from
this isobaric condition, the integration of the linearized wave equation leads to
the condition between the two sections separated by the flame. The acoustic
volume flow rate experiences a jump through the flame region fixed by :

S2ũ2(0) − S1ũ1(L1) =
γ − 1
ρ1c2

1

˜̇Q (5.3)

where S1 represents the surface area of the upstream part linked to the feeding
manifold and S2 the surface area of the flame location. For the present burner,
which features a change of surface area between the upstream and downstream
parts, it is important to note that the flame location can be modeled in two
manners. This has been examined in Chapter 4 where it was shown that
the ring cavity surrounding the flame location could be included by dividing
S2 in two surface areas. This induces two different jump conditions for the
conservation of the acoustic volume flow rate. In the first one, the surface area
S2 corresponds to the section of the confinement tube and does not involve the
ring cavity. The jump condition for the acoustic volume flow rate is devised as
detailed in Eq. (5.3). In the other case, one divides the acoustic volume flow
rate of the downstream part in two components as shown in Eq. (4.11) of the
preceding chapter. So, the value S2ũ2(0) of Eq. (5.3) is replaced by S2pũp(l),
limiting the flame influence to the perforated plate :

S2pũp(l) − S1ũ1(L1) =
γ − 1
ρ1c2

1

˜̇Q (5.4)

where γ is the specific heat ratio and ˜̇Q denotes heat release rate fluctuations.
The right hand side term of Eq. (5.3) can be expressed by taking into account
the response of the flame to velocity fluctuations with a Flame Describing
Function (FDF). FDF measurements are plotted in Figs. 5.4 and 5.5 in terms
of gain G and phase ϕ defined as :

F (ωr, urms/Ub) =
˜̇Q/Q̇

urms/Ub
= G (ωr, urms/Ub) eiϕ(ωr,urms/Ub) (5.5)
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where Q̇ stands for the mean value of the heat release rate and Ub denotes the
bulk flow velocity in a perforation. The FDF depends on both the angular
frequency ωr = 2πf and the relative fluctuation amplitude urms/Ub. The
modifications of the gain and phase with the amplitude emphasize the need of
a nonlinear stability analysis. The nonlinear behavior of the gain corresponds
to a transfer of energy to higher harmonics as the amplitude increases. For a
fixed forcing frequency, the phase lag increases with the forcing level indicating
that the flames become more compact at high forcing amplitudes and that
the time lag describing the interaction with incoming velocity disturbances is
reduced.
To use the FDF measurements for a stability analysis, one has to interpolate
and extrapolate the available data to cover missing areas. Considering the
right hand side in Eq. (5.3) and the FDF representation in Eq. (5.5), these
quantities are linked by :

γ − 1
ρ1c2

1

˜̇Q =
γ − 1
ρ1c2

1

˜̇Q
/

Q̇

ũrms/Ub

ũrms/Ub

1
/

Q̇

=
γ − 1
ρ1c2

1
Q̇ F (ωr, urms/Ub)

ũrms

Ub

(5.6)

where the bulk velocity in the perforation Ub is determined from the mass flow
rate across one hole. In the present study, air and methane are considered
to be ideal gases. In this case, the speed of sound is given by c2

1 = γrT1 and
the specific heat at constant pressure writes cp = γr/(γ − 1). In these expres-
sions, r is assumed to be constant. This approximation is reasonable for air
combustion systems due to the large dilution of the reactants and products by
nitrogen. The specific heat cp and specific heat ratio γ are in principle functions
of temperature. A mean value is considered in the present calculations with
γ = 1.4. The mean heat release rate may be written as Q̇ = ṁcp(Tf − T1),
where ṁ = ρ1NSpUb denotes the mixture mass flowrate in the set of perfo-
rations and Tf is the adiabatic flame temperature (equal to Tf = 2000 K for
the equivalence ratio used in these experiments). Combining these expressions,
one obtains a matching condition for the acoustic volume flow rate. The jump
across the flame sheet depends on both FDF gain G and phase ϕ :

S2ũ2(0) − S1ũ1(L1) = G eiϕ S1

(
Tf

T1
− 1

)
ũ1(L1) (5.7)

where G and ϕ depend on both angular frequency ωr and relative amplitude
urms/Ub.

5.4 FDF and flame reflection coefficient

Another interesting approach to characterize the flame response to flow pertur-
bations is linked to the reflection coefficient R1(L1) of the flame anchored on its
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Figure 5.6: Impedance tube configuration used to measure the reflection coefficient of
the flame with its perforated plate. The system is fed with a methane-air mixture at the
nominal flow rate used in the experiments on self-sustained combustion oscillations,
i.e 4.7 g.s−1.

perforated plate. The reflection coefficient is related to the impedance of the
device and defines the ratio between the reflected and incoming waves. This
point has already been considered by B. T. Zinn et al. (1982) to measure the
response of solid propellant by adapting an impedance tube. The unconfined
version of the present burner has also been characterized for some amplitudes
by Noiray (2007) to initiate a linear analysis of the combustion-acoustic cou-
pling. Results indicate that the flame response was fairly well obtained by
means of this technique and it is therefore considered in the confined version
of the burner.

5.4.1 Experimental setup

The experimental setup relies on an impedance tube configuration like the one
presented in Chapter 3, Sec. 3.1. Nevertheless, microphones are placed in a
different manner because one wishes to determine the reflection coefficient of
the perforated plate and flame. This is shown schematically in Fig. 5.6.
The experimental procedure remains the same, compared to the one applied
in Sec. 3.1. One determines the transfer function H12 by using the three mi-
crophones M1, M2 and M3 (Tran (2009)). This transfer function is then used
to compute the specific acoustic impedance ζ1(0) and deduce the reflection
coefficient R1(0) of the flame with its perforated plate.
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The three microphones are placed at positions which are in agreement with the
two criteria mentioned in Sec. 3.1. The distance between microphone M1 and
M2 is not changed and still satisfies L2m −L1m ≤ 0.15 m. The second criterion
L1m ≤ 0.31 m is also fulfilled as L1m = 0.06 m.
The flame response evolves with the amplitude and one expects the same for the
flame reflection coefficient. Measurements have to be controlled in amplitude
to ensure the same perturbation level for all frequencies. This is done by
using a hot wire probe placed 3 cm below the perforated plate (see Fig. 5.6).
This sensor is used during the frequency sweep from 100 Hz to 1000 Hz to
keep the same level of disturbances from the loudspeaker. Once sweeping has
been done for one amplitude, another can be used for the same frequency
range. The precise level is however controlled after the frequency exploration
by using a reconstruction technique of the velocity signal u′

1(0) by means of
the microphones and the transfer function H12. This reconstruction uses the
harmonic signal p̃1(L1m) at microphone M1 location and the transfer function
H12 between microphones M1 and M2 (M3 in front of M2 is used to improve
the signal to noise ratio). This yields :

u′
1(0) = ℜ

{
i

ρ1c1

H12 cos(k1L1m) − cos(k1L2m)
sin[k1(L1m − L2m)]

p̃1(L1m) e−iωt
}

(5.8)

where p̃1(L1m) e−iωt stands for the Hilbert transform of the pressure measure-
ment. Then, the records of the three microphones are processed to obtain the
flame reflection coefficient and results are compared to the reflection coefficient
calculated from the FDF as done in Noiray (2007) and Schuller et al. (2009).

5.4.2 Flame reflection coefficient

The acoustic relations describing the burner acoustics introduced in Chap-
ter 4 allow to write the flame reflection coefficient depending on the FDF. The
FDF value is taken at the amplitude calculated from Eq. (5.8). One derives
the reflection coefficient of the flame R1(0) by using the downstream zone of
the burner. It comprises the flame tube L2, the ring cavity and the outlet
impedance ζ2(L2) defined in Chapter 4. Equations (4.11), (4.15) and (4.9) are
combined to obtain an expression which may be cast in the following form :

R1(L1) =

Ξ

[
1 + Geiϕ

(
Tf

T1
− 1

)]
+ A1

[
R + i

(
1 − S1

S2

)
tan(k2l)

]

Ξ

[
1 + Geiϕ

(
Tf

T1
− 1

)]
− A2

[
R + i

(
1 − S1

S2

)
tan(k2l)

]

(5.9)

where Ξ = (S1/S2)(ρ2c2/ρ1c1), A1 and A2 stand for the terms in Melling’s
relation and R is a ratio involving the reflection coefficient of the flame tube
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outlet R2(L2) defined by :

A1 = 1 +
iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
, A2 = 1 − iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
,

R =
R2(L2)eik2L2 − e−ik2L2

R2(L2)eik2L2 + e−ik2L2

(5.10)

It should be noted that the reflection coefficient is designated differently be-
tween measurements made with the multiple flame combustor presented in
Chapter 1 and calculations done here. This is linked to a modification in the
origin of the longitudinal coordinates. The origin used in the impedance tube
device is located at the perforated plate and named R1(0), while it is on the
piston head in the experiment used to characterize self-sustained combustion
oscillations. In this latter case, the flame reflection coefficient is designated as
R1(L1). Nevertheless, by using the suitable system of coordinates, one retrieves
the expression given in Eq. (5.9).

Table 5.1: Values of the coefficients used for the coupling factor to determine the
impedance of the unconfined flame.

Variable Value Units
Ā 1.9 10−5 m2

α 104 -
E 6.67 -
h 6.5 mm
P 0.344 -
ρ1 1.18 kg m−3

SL 0.35 m s−1

Ub 3.1 m s−1

Two configurations have been investigated. The first is linked to the flame
reflection coefficient of the unconfined burner. The second deals with the con-
finement tube set to L2 = 0.20 m. The main trend of this experiment concerns
the possibility to compare a reflection coefficient calculated from the FDF and
one measured with three microphones without any optical diagnostic. This
point has also been considered by Schuermans et al. (2010) in a more complex
configuration and it was shown that a good agreement could be achieved with
optical measurement methods.
In addition, a second important point centers around the use of a unique FDF
to obtain the flame reflection coefficient of the confined and unconfined burners.
Indeed, it has been seen in Sec. 5.2 that the FDF does not change with the flame
tube. Thus, it is interesting to see if it is possible to calculate the reflection
coefficient for these two burners with the same flame response. The FDF has
been measured in a confined configuration with a small tube L2 = 0.10 m while
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Figure 5.7: Flame reflection coeffici-
ent measured on the unconfined burner
for an amplitude urms/Ub = 0.6. Cal-
culations from the FDF appear as a bold
line while measurements are shown as
open circle symbols ( ◦).
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Figure 5.8: Flame reflection coeffici-
ent measured on the unconfined burner
for an amplitude urms/Ub = 0.8. Cal-
culations from the FDF appear as a bold
line while the measurements are shown
as open circle symbols ( ◦).

the one used here is longer L2 = 0.20 m. Hence, on the basis of the previous
FDF data, the flame response is supposed to remain the same with this longer
tube. One will be able to verify this fact by using the flame reflection coefficient.
It is important to note that this comparison is made up to urms/Ub = 0.8 due
to a lack of efficiency from the loudspeaker at higher amplitudes. The flame
reflection coefficient of the unconfined burner is calculated with the impedance
of the flame anchored on its perforated plate. This relation has been derived
by Noiray (2007) and is recalled here for completeness :

Z1(L1) =
p̃1(L1)
ũ1(L1)

= −iωα
ρ1 (E − 1) SL

4πh

Ā
UbP

G eiϕ

−i
ωρ1l

P
(
1 +

lν
rp

(1 + i)
) (5.11)

where values used in the coupling factor of the combustion noise are given in
Tab. 5.1.
The unconfined results are presented in Figs. 5.7 and 5.8. They display evolu-
tions of the reflection coefficient for urms/Ub = 0.6 and urms/Ub = 0.8 between
0 Hz and 1100 Hz. One observes a perfect match for the phase φ1(L1) over the
whole frequency range in both cases. In addition, the modulus |R1(L1)| reveals
a fairly good agreement. There are some differences between 500 Hz and 900
Hz for urms/Ub = 0.6, but the main trend is retrieved for all frequencies. The
reflection coefficient is now examined for a confined flame, using L2 = 0.20 m.
The results are attempted for the same amplitudes, but due to a noisy signal,
a precise value with the hot wire probe is less easy to obtain and the pressure
post-processing reveals slight deviations from the expected level. It was found
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Figure 5.9: Flame reflection coeffi-
cient measured on the confined burner
with L2 = 0.20 m for an amplitude
urms/Ub = 0.4. Calculations from the
FDF appear as a bold line while the
measurements are shown as open circle
symbols ( ◦).
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Figure 5.10: Flame reflection coeffi-
cient measured on the confined burner
with L2 = 0.20 m for an amplitude
urms/Ub = 0.7. Calculations from the
FDF appear as a bold line while the
measurements are shown as open circle
symbols ( ◦).

that measurements could be carried out for urms/Ub = 0.4 and urms/Ub =
0.7, which remain close enough to 0.6 and 0.8. This is respectively shown in
Figs. 5.9 and 5.10.
Regarding the modulus, one obtains a good agreement in both cases, except
around 600 Hz for the lowest amplitude urms/Ub = 0.4, where the calculated
value is 30 % lower than the measured quantity. The phase also agrees fairly
well and there is a perfect match until 600 Hz. Beyond 600 Hz, the trend is
still good and differences arise around 900 Hz for the lowest amplitude.
In light of these two cases, it is seen that the reflection coefficient can be used
to retrieve the flame response with a good agreement. This has been done for
confined and unconfined situations without any optical diagnostic. Besides, it
is interesting to see that a unique FDF can be handled in these two situations.
This indicates the reliability of this FDF when other flame tubes are fitted on
the same burner. It also shows that the FDF can be measured by making use of
the small confinement tube L2 = 0.10 m. This reflection coefficient technique
needs the determination of the oscillation level on the flame plane to fix the
measurements on the amplitude scale. It has been demonstrated that this can
be anticipated with a hot wire probe placed in the upstream cavity and cross
checked by microphone measurements.



Chapter 6

Modeling strategy

The analysis of the different elements of the burner − undertaken in
the two previous chapters − is now used to model the burner dynamics.
The purpose of this model is to reproduce the different unstable regimes
recorded in the experiments. The objective is to develop predictions of
oscillation for a given geometry and operating conditions and possibly
avoid this phenomenon. Two models are delineated. The first imple-
ments simplified conditions while the second aims to take into account
the detailed response of the different elements composing the burner.
This gives rise to nonlinear dispersion relations. Methods providing
the roots of these relations are explained. It is then shown that the cal-
culated eigenfrequencies are notably influenced by the temperature T2

of the burnt gases in the different flame tubes of the study. This tem-
perature needs to be estimated to obtain an accurate modeling of the
system. It is found, and this may be counterintuitive that the average
temperature in the flame tube takes larger values when the length of the
tube is augmented.

6.1 Modal analysis

The acoustic response of the different elements composing the burner have
been analyzed in Chapters 4 and 5. It is then possible to analyze the response
of the complete system.
The system is modeled as an acoustic network of compact elements. This
method is widely used to analyze thermoacoustic coupling (see for example
Keller (1995); Poinsot et al. (2012)). The configuration retained is presented
in Fig. 6.1. The burner comprises two cylindrical cavities, a flame zone with its
ring cavity between these two elements, and two boundary conditions at the
system inlet and exhaust. Two models with different levels of approximation
are examined. The first one corresponds to a simplified version of the burner
acoustics and is named “model A”. It does not account for the real value of
the piston head reflection coefficient which is replaced here by a perfectly rigid
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Figure 6.1: Burner and symbol convention used for the theoretical acoustic analysis.

wall constituting a velocity node. Acoustic radiation of the flame tube outlet
is also neglected and this section is represented by a pressure node. The flame
response is characterized by a jump condition of the acoustic variables without
taking into account the effect of the ring cavity surrounding the flame. Dis-
sipation within the perforations of the flame holder is however included by a
relation derived from Melling (Melling (1973)). The second model designated
as “model B” includes an improved description of the inlet and outlet bound-
ary conditions, and it accounts for the effect of the ring cavity surrounding the
flame. The characteristics of these two models are gathered in Tab. 6.1.

Table 6.1: Details of the two models devised for the acoustic analysis of the burner.

R piston R outlet
Pressure

jump
Velocity jump

model A R1(0) = 1 R2(L2) = −1 Melling model No ring cavity

model B
R1(0) = R(f)

(measured)
R2(L2) = R(f)

(modeled)
Melling model Ring cavity

6.1.1 The simplified model : “model A”

In model A, the reflection coefficient of the piston head is R1(0) = 1 and the
pressure is assumed to vanish at the flame tube outlet R2(L2) = −1. These two
assumptions are idealized versions of reality. It is known from measurements
shown in Fig. 4.5, that the value of R1(0) is nearly constant beyond 600 Hz
and lies around 0.8 for the modulus while the phase almost equals 0. Thus, the
approximation of R1(0) = 1 can be used for a burner featuring high frequencies
of oscillation. This is precisely the case for the thin perforated plate l = 3 mm
and the small confinement tubes. The effect of sound radiation at the outlet
can partly be accounted for by including in the description the imaginary
contribution of the radiation impedance. This leads to artificially increasing
the size of the flame tube with an end correction. This is achieved by replacing
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L2 by Lc
2 = L2+0.61R2. The previous conditions applied at the inlet and outlet

define the ratios of the wave amplitudes in the upstream manifold and flame
tube :

R1(0) =
A+

1

A−
1

= 1

R2(L2) =
A−

2 e−ik2L2

A+
2 eik2L2

= −1

(6.1)

The acoustic response of the flame zone is modeled without taking into account
the effect of the ring cavity surrounding the flame. In this case, the jump
condition for the acoustic volume flow rate across this region corresponds to
Eq. (5.3) which may be cast in the following form :

S2ũ2(0) − S1ũ1(L1) =
γ − 1
ρ1c2

1

˜̇Q (6.2)

This is a reasonable approximation when the plate thickness is small compared
to the acoustic wavelengths of interest (the frequency encountered in calcula-
tions does not exceed 1300 Hz). This approximation is valid for the thin flame
holder l = 3 mm, but it will be shown that it is advisable to include the effect
of the ring cavity when l = 15 mm. Equation (5.5) is then used to link the

heat release rate fluctuation ˜̇Q to the FDF presented in Chapter 5, as shown
previously in Eq. (5.6).
The pressure also experiences a jump across the perforated plate used as a
flame holder. Viscous dissipation takes place in the channels of this perforated
plate. This is described by using a relation derived from Melling (1973) which
is detailed in Eq. (4.15). By considering the acoustic pressure p̃1(L1) at the
feeding manifold outlet and the pressure p̃2(0) one obtains :

p̃2(0) − p̃1(L1) =
i ωρ1l

P
[
1 +

lν
rp

(1 + i)
]
ũ1(L1) (6.3)

where P denotes the perforated plate porosity of thickness l with holes of radius
rp, while lν = (2ν/ω)1/2 is the acoustic boundary layer thickness.

Equations (6.1) to (6.3) combined with the FDF, as shown in Eq. (5.6), may
be written in a matrix form to describe the dynamics of the system :




1 −1 0 0
0 0 eik2L2 e−ik2L2

A1eik1L1 A2e−ik1L1 −1 −1
Beik1L1 −Be−ik1L1 −1 1







A+
1

A−
1

A+
2

A−
2


 = 0 (6.4)
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where A1, A2 and B correspond to :

A1 = 1 +
iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
, A2 = 1 − iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
,

B =
S1

S2

ρ2c2

ρ1c1

[
1 + Geiϕ

(
Tf

T1
− 1

)]

where Ξ = (S1/S2)(ρ2c2/ρ1c1) designates the acoustic coupling index between
the cavities separated by the perforated plate and the flame (Schuller et al.
(2012)). For the present conditions, the index lies between Ξ = 0.13 and 0.17,
depending on the flame tube temperature T2. This indicates that the cavities
remain coupled.
A trivial solution of the system Eq. (6.4) is obtained by setting A+

n and A−
n to

0. Nontrivial solutions are sought by cancelling the determinant of this system.
Model A features a fairly simple matrix form to develop the determinant. It
is then possible to obtain an explicit dispersion relation which describes the
dynamics of the system :

S1

S2

ρ2c2

ρ1c1

[
1 + Geiϕ

(
Tf

T1
− 1

)]
sin(k1L1) sin(k2L2)

− cos(k1L1) cos(k2L2) (6.5)

+
ωl

Pc1

[
1 +

lν
rp

(1 + i)

]
cos(k2L2) sin(k1L1) = 0

In this expression, the FDF represents the flame response in terms of a gain
and a phase G exp(iϕ), and this relation depends on the perturbation ampli-
tude urms/Ub. The objective is to find complex roots ω = ωr + iωi yielding
oscillation frequencies f = ωr/2π and growth rates ωi of perturbations as a
function of this amplitude. This is done by solving the dispersion relation for
each FDF amplitude. Positive values of ωi indicate that perturbations grow,
while negative ones correspond to decaying disturbances. The burner can be
equipped with different confinement tube sizes L2 and a continuously variable
feeding manifold lengths L1 allowing to follow unstable frequencies with re-
spect to this parameter. This provides a considerable insight as compared to a
fixed geometry which only gives partial indications the behavior of the system.
Solutions of the nonlinear dispersion relation are considered in four cases, cor-
responding to four confinement tubes L2. For one flame tube L2, an iterative
algorithm is used to find the set of solutions for the angular frequency ωr and
growth rate ωi as a function of the following parameters :

• The feeding manifold length L1 ;

• The amplitude of perturbation urms/Ub ;
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Figure 6.2: Sequential solution of the nonlinear dispersion relation including the
FDF. (urms/Ub)n designates the nth amplitude of the FDF. This algorithm is used
for each flame tube L2 treated separately. This loop is effected for each eigenmode
calculated in the absence of unsteady combustion and handled one by one. The feeding
manifold length L1 is varied for the eigenmodes under consideration. The loop is then
repeated for another flame tube size L2.

• For each acoustic eigenmode of the system in the absence of unsteady
combustion.

This procedure is repeated for each flame tube configuration L2 and each eigen-
mode, following the algorithm presented in Fig. 6.2 where the methodology is
described as a sequential chart. Roots of the dispersion relation Eq. (6.5) are
first determined in the absence of unsteady combustion (G = 0), leading to a
set of acoustic eigenmodes (the three first modes for instance) for a fixed geo-
metrical configuration, i.e. for a flame tube L2 and a set of feeding manifold
lengths L1. The chart in Fig. 6.2 is then repeated for each of these eigenmodes
calculated separately while taking into account unsteady combustion effects.
A new root associated to a certain acoustic eigenmode is calculated by ac-
counting for the FTF (the FDF at a certain amplitude) determined for a small
perturbation level F = F(urms/Ub)1. This leads to a new complex angular
frequency ω = ω(urms/Ub)1 associated to this perturbation level (urms/Ub)1,
which serves now as an initial state to find the solution of the dispersion re-
lation for a higher amplitude ((urms/Ub)2). One considers an increasing level
until the maximum amplitude (urms/Ub)n is reached. This yields a set of roots
changing as a function of the amplitude ω = ω(urms/Ub) for each eigenmode.
The geometrical configuration is then modified by changing the feeding mani-
fold length L1 and the procedure from small to high amplitudes is repeated as
indicated in Fig. 6.2.
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Solutions of the dispersion relation are determined numerically by finding min-
ima of the modulus of the left hand side of Eq. (6.5). This problem is solved
with Matlab R© and the Nelder-Mead simplex algorithm by using the function
“fminsearch”. A starting point for the angular frequency ωr and the growth
rate ωi is necessary to initiate the algorithm. As indicated previously, this is
done by setting G = 0 in Eq. (6.5) to obtain the acoustic eigenmodes of the
system in the absence of a flame response.
This first step corresponding to G = 0 is treated with the same optimization
algorithm (“fminsearch”). Initial solutions are taken to be the quarter wave
modes (2n − 1)c/4L (n ∈ N) of the burner. A few iterations yield the acoustic
eigenmodes of the burner corresponding to the bold lines in Figs. 2.3, 2.4
and 2.5 of Chapter 2. These eigenmodes are then used to start the continuation
methodology described in Fig. 6.2.
It should be noted that the algorithm presented in Fig. 6.2 is used differently for
some confined configurations L2. When the roots of the dispersion relation,
determined for the small perturbation level (urms/Ub)1, are largely shifted
from the acoustic eigenmodes (G = 0), the solving for the growing amplitude
(Fig. 6.2) is reversed. The acoustic eigenmode still serves as an initial state
but the first root is sought for the highest amplitude (urms/Ub)n. Then, this
latter solution serves as an initial state for a lower level (urms/Ub)n−1 and so
on until the lowest value. The roots are easily found in this way. This is linked
to the decrease of gain G for the highest amplitudes. As the gain falls, the
frequency shift decreases, which helps the software algorithm to determine the
minima of the dispersion relation modulus. This procedure is more suitable
for the longest confinement tubes L2 where the roots of the dispersion relation
are more prone to shift.

6.1.2 An improved model

Model B aims to improve predictions of the combustor dynamics by including
a better description of the boundary and matching conditions between the two
cavities. Measurements gathered in Chapter 4 for the reflection coefficient of
the piston head (see Fig. 4.5) are included in this “model B”. The reflection
coefficient of the outlet is represented by taking into account sound radiation
from an unflanged open pipe (see Eqs. (4.8) and (4.9)).
The contribution from the ring cavity surrounding the flame is taken into
account and this modifies the jump condition on the acoustic volume flow rate
at the flame :

S2pũp(l) − S1ũ1(L1) =
γ − 1
ρ1c2

1

˜̇Q

S2ũ2(0) = S2rũr(l) + S2pũp(l)

(6.6)

The pressure experiences the same jump as the one derived in model A from the
relation of Melling. Combining the two reflection coefficients and the different
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matching conditions for pressure and velocity, one obtains the following system
of equations written in a matrix form :




1 −R1(0) 0 0
0 0 R2(L2)eik2L2 −e−ik2L2

A1eik1L1 A2e−ik1L1 −1 −1
Beik1L1 −Be−ik1L1 C1 C2







A+
1

A−
1

A+
2

A−
2


 = 0 (6.7)

where the complex coefficients A1, A2, B, C1 and C2 correspond to :

A1 = 1 +
iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
, A2 = 1 − iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
,

B =
S1

S2

ρ2c2

ρ1c1

[
1 + Geiϕ

(
Tf

T1
− 1

)]
,

C1 = i

(
1 − S1

S2

)
tan(k2l) − 1, C2 = i

(
1 − S1

S2

)
tan(k2l) + 1

The same algorithm is used to determine nontrivial solutions of this system of
equations but it is more difficult to derive an analytical form of the determinant.
Thus, it is calculated numerically with Matlab R©.
The procedure described in Fig. 6.2 is also used for the present model.
The two models developed in this Chapter are applied to different configura-
tions of the burner in the next chapters. It is however interesting to examine
the acoustic eigenmodes of the system in the absence of combustion coupling
by setting G = 0 in the dispersion relation while the temperature T2 in the
flame tube is varied.

6.2 Influence of the flame tube temperature

The temperature T2 inside the flame tube differs from the temperature T1 in
the feeding manifold. Using different temperatures between the confinement
tube and the feeding manifold, acoustic eigenmodes will slightly differ with
respect to uniform temperature calculations. This is exemplified in Fig. 6.3 for
the smallest flame tube L2 = 0.10 m. The three first eigenmodes of the system
calculated in the absence of unsteady combustion with model B are represented
for two flame tube temperatures T2. Bold lines correspond to calculations with
a uniform temperature in the burner fixed to T1 = T2 = 300 K pertaining to
the fresh gas. Dashed lines correspond to calculations where the burnt gas
temperature is raised to T2 = 900 K to illustrate modifications induced by
increasing T2.
This figure shows that the modal distribution is quite sensitive to the temper-
ature chosen for the burnt gases. Differences between calculations carried out
for 300 K and 900 K may lead to a shift of the order of 100 Hz for the modal
frequency. It is thus important to have a good estimate of the gas temperature
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Figure 6.3: The first three acoustic eigenmodes of the burner without unsteady com-
bustion process calculated by using “model B”. The feeding manifold temperature T1 is
set to 300 K. Bold lines (�) correspond to calculations with T2 = 300 K while dashed
lines (- -) are used for T2 = 900 K.

T2 inside the flame tube. This temperature was therefore measured with a
K-thermocouple at different locations to estimate a mean value. These values
are gathered in Tab. 6.2 for each flame tube L2 explored. They indicate that
an increase of the flame tube length L2 is associated to a temperature increase
for T2.

Table 6.2: Mean temperature of the hot gases in the different confinement tubes L2.

Tube length (m) 0.10 0.20 0.30 0.40

Temperature (K) 900 1100 1300 1400
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Chapter 7

Basic modeling of stable limit
cycles and triggering

Nonlinear stability of the combustion system presented in Part I is now
examined theoretically with model A devised in Chapter 6. In a first
step, the model is used to predict experimentally observed combustion
oscillations in terms of frequency and amplitude at the limit cycle. In
a second section, frequency shift during transients, nonlinear instability
triggering, hysteresis and mode switching observed in the experiments
are compared to results of calculations.

7.1 Describing Function analysis of stable limit cy-
cles in a multiple flame combustor

This section corresponds to a publication presented at the ASME Turbo expo
2010 and published in Journal of engineering for gas turbine and power in
2011 :

Boudy, F., D. Durox, T. Schuller, G. Jomaas, and S. Candel. 2011. “Describing
function analysis of limit cycles in a multiple flame combustor” J. Eng. Gas
Turb. Power 133 (6): 061502.1–061502.8. doi:10.1115/1.4002275

For the sake of clarity, the present chapter has been shortened compared to the
journal publication. The introduction has been reduced to the organization of
the work carried out in this chapter. The abstract, description of the experi-
mental setup and the model derivation were kept to allow an easier reading of
the contents, but these sections can be skipped since they are described in the
preceding chapters.

http://dx.doi.org/10.1115/1.4002275
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7.1.1 Abstract

A recently developed nonlinear Flame Describing Function (FDF) is used to
analyze combustion instabilities in a system where the feeding manifold has
a variable size and where the flame is confined by quartz tubes of variable
length. Self-sustained combustion oscillations are observed when the geometry
is changed. Regimes of oscillation are characterized at the limit cycle and
also during the onset of oscillations. Theoretical predictions of the oscillation
frequencies and levels are obtained using the FDF. This generalizes the concept
of flame transfer function by including a dependence on the frequency and on
the level of oscillation. Predictions are compared with experimental results for
two different lengths of the confinement tube. These results are in turn used
to predict most of the experimentally observed phenomena and in particular
the correct oscillation levels and frequencies at limit cycles.

7.1.2 Introduction

The present work focuses on the prediction of combustion instabilities using
the FDF framework. This is applied to a generic configuration comprising
a feeding manifold, an injection unit, a flame anchoring system and a con-
finement tube. The flame holder comprises a thin perforated plate l = 3 mm.
Emphasis will be put on the prediction of oscillation limit cycle frequencies and
levels as a function of modifications of the burner geometry. The experimental
set-up is described in Section 7.1.3. Self-sustained combustion oscillations are
characterized in section 7.1.4. The nonlinear analysis with model A is devel-
oped in Section 7.1.5. This section also provides the FDF data determined in
forced flow experiments. These data are used in a thermoacoustic model of
the combustor to obtain the unstable frequencies and amplitude levels at the
limit cycles. Theoretical predictions are systematically compared with exper-
iments in Section 7.1.6 by changing the length of the upstream manifold and
by making use of two flame tube sizes.

7.1.3 Experimental setup and combustion regimes

This section describes the experimental setup and the combustion regimes de-
tailed in Part I of the present manuscript. The reader can skip this section but
it is worth recalling that the thin flame holder l = 3 mm is used in the present
study.

The experimental setup is sketched in Fig. 7.1. The three main elements of
the burner are the feeding manifold, a perforated plate which delivers the
premixed streams and anchors the flames and the quartz confinement tube.
The combustion zone is placed in this quartz tube. The reactants are premixed
in the piston before they are injected inside the enclosing manifold. The piston
also facilitates changes in the length of the feeding manifold. The perforated
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Figure 7.1: Experimental setup used to characterize self-sustained instabilities.

plate, which is confined within a quartz tube at the top of the feeding manifold,
anchors an ensemble of small laminar conical flames. It has a thickness of l = 3
mm and a diameter of 2R = 70 mm. It is made of stainless steel and comprises
N = 421 holes of diameter 2rp = 2 mm placed on a 3 mm square mesh, resulting
in a global porosity P = Nπr2

p/πR2 of 0.34. Four quantities are measured in
this experiment. The fluid velocity in the feeding manifold is determined with
a hot wire probe 3 cm below the perforated plate. A photomultiplier equipped
with an OH∗ filter (λ = 308 nm) views the flames from outside the confinement
and provides a signal almost proportional to the heat release rate (Hurle et al.
(1968)). The pressure fluctuations are measured inside the feeding manifold
with the microphone M2 placed in a waveguide in front of the hot wire and
another microphone M1 outside the confinement tube 24.5 cm away from the
burner axis detects the radiated sound pressure level. The length of the feeding
manifold, as measured between the upstream side of the perforated plate and
the head of the piston, can be varied in discrete steps all the way from L1 =
0.15 m to 0.54 m. The piston head is designed to offer a quasi-perfect reflecting
boundary for acoustic waves. Two lengths of confinement tubes are used in the
present study. In the first set of experiments, the length of the feeding manifold
is swept with a confinement tube L2 = 0.10 m. Then, another tube L2 = 0.20
m is used in a second set of exploration. The flow rate of the methane/air
mixture is ṁ = 4.71×10−3 kg/s at an equivalence ratio φ = 1.03, providing a
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Figure 7.3: Pressure signal from mi-
crophone M2 (left vertical axis) and
OH* radicals light intensity (right verti-
cal axis) for one length of feeding man-
ifold L1 and flame tube L2 = 0.20 m
under self-sustained oscillations.

thermal power of 13.3 kW.
For both confinement tubes, the system is unstable for a wide range of feeding
manifold lengths (L1) and only stable for some values. In a stable case, as
shown in Fig. 7.2, flames have a conical shape. In the unstable cases, all the
flames move in a regular fashion with formation and collapse of fresh reac-
tant pockets as illustrated in Fig. 7.2. This behavior causes a strong level of
noise, which can exceed 110 dB measured by microphone M1 (with a reference
pressure 2×10−5 Pa). The experimental procedure is initiated with the head
of the piston at L1 = 0.15 m from the perforated plate (minimum extension)
and consists of recording the sensor signals at limit cycles. Then, the piston is
retracted in increments of one centimeter all the way to a manifold length L1

= 0.54 m (maximum extension) with signals being acquired for each step. The
piston is then moved in the reverse direction (maximum to minimum extension)
using the same increment and acquiring the same set of signals.
As a result, the oscillation frequencies and the amplitudes of pressure oscil-
lations are obtained for a range of manifold lengths. These experiments are
repeated for the two flame confinement tubes L2 = 0.10 m and 0.20 m.
In these experiments, the pressure is essentially harmonic, indicating that the
acoustic field remains in the linear range. Typical pressure and heat release rate
fluctuations recorded in the system are plotted in Fig. 7.3. The pressure signal
remains sinusoidal whereas OH* radicals light intensity, corresponding to the
heat release rate, shows asymmetrical oscillations, revealing the nonlinearity
of the flame response.
Another set of experiments is conducted to get the response of the flame ensem-
ble to velocity fluctuations and determine the FDF (Noiray et al. (2008); Durox
et al. (2009b)). This system, shown in Fig. 7.4, allows measurements of heat
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Figure 7.4: Forced flow setup used to determine the FDF. The forced flow fluctuations
are created by a loudspeaker placed at the bottom of the burner. Velocity fluctuations
are measured by LDV at the base of one flame, 0.6 mm above the hole and heat release
rate fluctuations are deduced from I ′

OH∗ measured by the photomultiplier.

release rate fluctuations through the values of the light emission fluctuations
of the OH∗ radical recorded by a photomultiplier (PM). Velocity fluctuations
are obtained from LDV (Laser Doppler Velocimetry) measurements inside one
flame 0.6 mm above the hole.

7.1.4 Experimental results

The first set of data correspond to the L2 = 0.10 m flame confinement tube.
Figure 7.5 illustrates the evolution of frequency and pressure for different
lengths of feeding manifold. The dashed lines represent the acoustic eigen-
modes evolution for a variable feeding manifold length L1. For a range, be-
tween L1 = 0.23 m and 0.27 m, the system is stable and the pressure measured
by microphone M2 falls under 120 dB which is the noise level corresponding to
that of the flow and combustion alone. The sound pressure level, 24.5 cm away
from the center of the burner (M1), reaches 120 dB for the unstable regimes
and 95 dB in the stable cases. It is noteworthy that the frequency evolves
differently for the two directions of piston movement (min to max vs. max to
min). When the feeding manifold cavity length L1 is increased (min to max)
the frequency evolves around the first mode (L1 = 0.15 m to 0.22 m), reaches
a stable band, and then switches to the second mode (L1 = 0.27 m to 0.54
m). In the reverse direction (max to min) the frequency remains close to that
of the second mode between L1 = 0.54 m to 0.26 m, as it should, reaches a
stable band, and then continues on the second mode from L1 = 0.22 to 0.18
m before finally switching to the first mode for L1 = 0.17 m to 0.15 m. It is
therefore established that unstable modes present a hysteresis in this confined
configuration when the feeding manifold geometry is changed. In a second
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Figure 7.5: Frequency and pressure
level evolution with the L2 = 0.10 m
confinement tube, swept from 0.15 m to
0.54 m (◦) and from 0.54 m to 0.15
m ( ×) of feeding manifold. The acous-
tic eigenmodes without combustion are
plotted as dashed lines.
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Figure 7.6: Frequency and pressure
level evolution with the L2 = 0.20 m
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0.54 m (◦) and from 0.54 m to 0.15 m
( ×) of the feeding manifold. The acous-
tic eigenmodes without combustion are
plotted as dashed lines.
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set of experiments, the flame confinement tube was changed to L2 = 0.20 m.
The evolution of the oscillation frequency and pressure level are presented in
Fig. 7.6. The stable zone still exists in this configuration but its appearance is
delayed until the length of the manifold reaches L1 = 0.26 m and the system
remains stable until L1 = 0.30 m. Thus, the change of the downstream confine-
ment length has altered the system stability. For the short manifold lengths
L1 = 0.15 m to 0.25 m, the frequency evolution still closely matches the first
mode, and after the stable zone, the second mode arises for L1 = 0.31 m to
0.54 m. The reverse evolution of the piston gives the same set of data, which
indicates that there is no hysteresis for this confinement tube length L2 = 0.20
m. Features of this type, like the oscillation level and hysteresis phenomena
cannot be anticipated if one only uses classical linear stability analysis. The
data can be used to validate the FDF nonlinear analysis.

7.1.5 Nonlinear analysis

This section describes model A derived in Chapter 6 to analyze the dynamics
of the system. The reader can skip this section.

A nonlinear analytical model is needed to capture the rich physics behind the
observed phenomena. In addition, such a model will be of value for predicting
and understanding mechanisms of frequency switching or hysteresis in this sys-
tem. In the following analysis, fluctuating quantities are written as a sum of a
mean quantity and a fluctuation : a = ā+a′. The analysis is carried out in the
frequency domain and each fluctuating quantity takes the form : a′ = ãe−iωt

where ω = ωr+iωi, ωr corresponds to the angular frequency (2πf) and ωi is the
growth rate. A perturbation grows for positive values of growth rate while it
decays for negative ones. The analytical work carried out in this section follows
that developed previously by Noiray et al. (2009) where a dispersion relation
is derived and combined with the FDF to analyze the dynamics of a confined
system. Given the low unstable frequencies observed in the experiments, the
wavelengths are long compared to the dimensions of the system to consider
other acoustic waves than longitudinal ones. The flame is thus compact. The
different elements of the system are modeled as an acoustic network. The in-
fluence of the flames is taken into account in the matching condition between
the feeding manifold and the confinement tube through the expansion of gases.
This method is widely used to analyze thermoacoustic coupling phenomena
(see for example Poinsot et al. (2012); Dowling et al. (2003); F. E. C. Culick
(2006)). The burner is modeled as illustrated in Fig. 7.7. In each tube sec-
tion, temperature, density, velocity and pressure are all subscripted with their
respective numbers and mean quantities (T̄ , ρ̄) are considered uniform. The
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Figure 7.7: Burner and symbol convention used for the analytical model.

pressure and velocity fluctuations are written as follows for the nth tube :

ũn(zn) =
1

ρncn

(
A+

n eiknzn − A−
n e−iknzn

)

p̃n(zn) = A+
n eiknzn + A−

n e−iknzn

(7.1)

where zn stands for the position within the system, kn = ω/cn denotes the
wave number and cn indicates the speed of sound which differs in the premixer
c1 = 340 m/s and in the flame tube c2 = 850 m/s.
These relations are completed by matching and boundary conditions. The
head of the piston offers a quasi-perfect reflecting boundary condition which
gives ũ1(0) = 0. At the combustor outlet, sound radiation is neglected and
the pressure fluctuation vanishes , which yields p̃2(L2) = 0. In this model,
no end correction is taken into account, but it would be easy to include as
all it does is to augment the length of the confinement tube by a factor of
0.61 times the radius. The unsteady flow in the perforated plate is considered
with bulk oscillations of velocity in the apertures. Based on Melling’s work
(Melling (1973)), a relation that links the pressure between the upstream and
downstream sides of the perforated plate can be derived :

p̃p(l) − p̃p(0) = i ωρ1l

(
1 +

lν
rp

(1 + i)

)
ũp (7.2)

where lν = (2ν/ω)1/2 stands for the viscous acoustic boundary layer thickness
and ν the kinematic viscosity. Pressures and velocities on each side of the per-
forated plate are linked with the sound waves in the upstream and downstream
cavities by :

p̃p(0) = p̃1(L1) , p̃p(l) = p̃2(0) , S1ũ1(L1) = NSpũp (7.3)

where S1 is the surface area of the feeding manifold section, Sp is the surface
area of one aperture and N corresponds to the number of holes. Combining
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Eqs. (7.2) and (7.3) it is possible to find the pressure jump condition between
the upstream and downstream cavities :

p̃2(0) − p̃1(L1) = i ωρ1l

(
1 +

lν
rp

(1 + i)

)
ũ1(L1)

P (7.4)

As the perforated plate is thin with a high porosity, one expects that its in-
fluence on the acoustic field will be weak. The acoustic volume flow rate
experiences a jump through the unsteady flame region :

S2ũ2(0) − NSpũp =
γ − 1
ρ1c2

1

˜̇Q (7.5)

where S2 represents the confinement section surface area, γ is the heat capacity
ratio and ˜̇Q denotes the heat release rate fluctuation. The right hand side term
of Eq. (7.5) can be expressed by taking into account the response of the flame to
velocity fluctuations with a Flame Describing Function (FDF). This quantity is
obtained with the setup presented in Fig. 7.4. The conical flames are subjected
to harmonic oscillation of increasing rms fluctuation levels up to 51 % of the
bulk velocity in the perforation for a range of frequencies up to 1600 Hz. FDF
measurements are plotted in Fig. 7.8 in terms of gain G and phase ϕ defined
as :

F (ωr, urms/Ub) =
˜̇Q/ ¯̇Q

urms/Ub

= G (ωr, urms/Ub) eiϕ(ωr,urms/Ub)

(7.6)

where Q̇ stands for the mean value of the heat release rate fluctuation and Ub

the mean flow velocity in one hole. The FDF depends on both the frequency
ωr and the fluctuation amplitude urms/Ub as shown in Fig. 7.8. When the
amplitude increases, the gain G drops and the phase ϕ shifts confirming the
nonlinear behavior of the flame. This is the key point of the nonlinear stability
analysis. As shown in this figure, the FDF data are limited by the lack of
efficiency from the loudspeaker at high frequency and amplitude. The forcing
root mean square velocity level urms is determined by a Fourier transform and
Ub stands for the mean value of the velocity profile measured 0.7 mm above
one hole by means of LDV. It is equal to Ub = 3.1 m.s−1. The normalized
ratio between the fluctuation of OH∗ radical light intensity and the velocity
yields the gain G and phase ϕ of the flame response. The flame acts as a low
pass filter with a significant overshoot for higher frequencies and low fluctua-
tion amplitudes. This behavior is also noted by other authors (Schuller et al.
(2003a); Durox et al. (2009b); Kornilov et al. (2009)). The phase evolves in a
quasi linear fashion with the frequency and is sensitive to the fluctuation level.
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Figure 7.8: Experimental measurements of the gain G and phase ϕ of the FDF.
urms corresponds to the rms value of the fluctuation amplitude and Ub the mean flow
velocity within one hole.

With the aim of using these measures for stability analysis, data are interpo-
lated and extrapolated in missing areas. Considering the right hand side of
Eq. (7.5) and the FDF Eq. (7.6), one can write :

γ − 1
ρ1c2

1

˜̇Q =
γ − 1
ρ1c2

1

˜̇Q
/

Q̇

ũp/up

ũp/up

1
/

Q̇
(7.7)

In the present study, air and methane are considered to be ideal gases yielding,
c1 =

√
γrT1, Q̇ = ṁcp(Tf − T1), cp = γr/(γ − 1), ṁ = ρ1NSpup, where r is the

specific gas constant for dry air, ṁ is the mixture mass flow rate in one hole,
cp denotes the specific heat at constant pressure and Tf is the adiabatic flame
temperature. Combining Eqs. (7.5) to (7.7), the velocity relation of Eq. (7.3)
and the ideal gas relations, one obtains an expression for the acoustic volume
flow rate jump condition across the flame sheet depending on the FDF :

S2ũ2(0) − S1ũ1(L1) = GeiϕS1

(
Tf

T1
− 1

)
ũ1(L1) (7.8)

The preceding set of equations can be used to obtain the following linear system
:




1 −1 0 0
0 0 eik2L2 e−ik2L2

A1eik1L1 A2e−ik1L1 −1 −1
Beik1L1 −Be−ik1L1 −1 1







A+
1

A−
1

A+
2

A−
2


 = 0 (7.9)
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where A1, A2 and B corresponds to :

A1 = 1 +
iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
, A2 = 1 − iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
,

B =
S1

S2

ρ2c2

ρ1c1

[
1 + Geiϕ

(
Tf

T1
− 1

)]

The determinant of this system must equal zero, to obtain non-trivial solutions.
This condition provides the dispersion relation describing the dynamics of the
system :

S1

S2

ρ2c2

ρ1c1

[
1 + Geiϕ

(
Tf

T1
− 1

)]
sin(k1L1) sin(k2L2)

− cos(k1L1) cos(k2L2) +
ωl

Pc1

[
1 +

lν
rp

(1 + i)

]

cos(k2L2) sin(k1L1) = 0

(7.10)

The objective is to find complex roots ω = ωr + iωi yielding oscillation frequen-
cies f = ωr/2π and growth rates ωi of perturbations.

7.1.6 Theoretical and experimental comparison

The nonlinear analysis described in the previous section is now used to investi-
gate the stability of the system. It is interesting to compare the experimental
results from the self-sustained instabilities described in Sec. 7.1.4 with the the-
oretical predictions of the oscillation frequencies and amplitudes at the limit
cycle. Therefore, the FDF is used to calculate roots of the dispersion relation
Eq. (7.10) for each driving amplitude. This yields ωr and ωi couples for each
burner geometry and driving amplitude. For the different lengths of feeding
manifold and the L2 = 0.10 m confinement tube, calculations for the three
first oscillation modes give the growth rate evolutions displayed in Fig. 7.9.
This figure represents positive values of growth rate corresponding to unsta-
ble regions. Negative growth rates corresponding to stable zone are displayed
through white color regions. Each color is dedicated to an oscillation mode;
the first mode is drawn in yellow, the second in blue, and the third in red. Red
dashed lines indicate the limit cycle corresponding to vanishing values of the
growth rate.
From the different growth rate trajectories, it is possible to find, for each ge-
ometry, the evolution of the oscillation frequency of an instability up to the
limit cycle. As presented in Fig. 7.9, the growth rates reveal three types of
evolution. The first type of trajectory (for example dashed line “A” obtained
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Figure 7.9: Positive values of the growth rate (in s−1) for the L2 = 0.10 m con-
finement as function of the length of the feeding manifold and the relative fluctuation
level, u’rms/Ubulk.
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Figure 7.10: Experimental and predicted oscillation frequencies of self-sustained in-
stabilities for the L2 = 0.10 m confinement tube for increasing (a) and decreasing (b)
sweeps of the feeding manifold length L1.
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for L1 = 0.15 m) is positive for a small level of perturbation (urms/Ub = 0.1)
and vanishes for a finite amplitude (urms/Ub = 0.6), and, as such, defines the
limit cycle of the system. In this case, the system is linearly unstable. For
the second type (for example dashed line “B” obtained for L1 = 0.20 m), the
growth rate of the first mode (yellow zone) is negative for small perturbation
amplitudes but becomes positive at an amplitude of urms/Ub = 0.3 and finally
vanishes for a higher amplitude (urms/Ub = 0.65). This yields a limit cycle
that can be triggered by a finite level of perturbation. Indeed, a small level
of perturbation cannot trigger an instability whereas a high oscillation level
can. These limit cycles are nonlinearly unstable and linearly stable. The last
type (for example dashed line “C” obtained for L1 = 0.25 m) yields negative
values of growth rate for all perturbation levels. In this case, the system is
unconditionally stable. Moreover, it can be deemed as both linearly and non-
linearly stable. In summary, it is found that the calculations show three types
of growth rate evolutions.
By analyzing the growth rate for each length of feeding manifold L1 it is possi-
ble to find the limit cycle obtained when ωi = 0 and extract at the same time
the oscillation frequency using the angular frequency ωr. The limit cycle is
reached when the growth rate is equal to zero. The acoustic damping α is not
taken into account in these calculations. For systems featuring large damping,
limit cycles are reached when ωi − α = 0. In the present case, the influence
of α is weak because growth rates take high values typically about 500 s−1

whereas α in this system was estimated to be around 10 to 50 s−1 and does
not significantly influence the results.
Figure 7.10 displays the evolution of the predicted oscillation frequencies and
the experimental measurements. These predictions were obtained by analyzing
the growth rate as detailed herein. In these figures, the acoustic eigenmodes,
without flame (G = 0 in the dispersion relation of Eq. (7.10)), are drawn as thin
dashed lines. The frequencies predicted at the limit cycle using the nonlinear
analysis are represented by bold lines and the measurements are plotted as
diamond signs. For each length of feeding manifold, (L1), the frequency is
extracted from the oscillations of the pressure signal (M2). As presented in
Fig. 7.5, for the L2 = 0.10 m confinement case there are two types of frequency
evolutions. When the manifold length is increased (min to max) (Fig. 7.10(a)),
the oscillation frequency evolves around the first eigenmode with a change
around the second eigenmode after the stable zone between L1 = 0.24 m and
0.26 m. In the reverse movement (max to min) (Fig. 7.10(b)), the frequency
lies close to the second eigenmode until it becomes stable at L1 = 0.26 m, but
resumes around the second eigenmode for L1 = 0.23 m to 0.18 m before it
finally switches to the first mode for the last three lengths L1 = 0.17 m to 0.15
m.
This behavior, defined as hysteretic, is well described by the growth rate anal-
ysis (see Fig. 7.9). When the piston is moved in the reverse direction (L1

decreasing), the oscillation vanishes for three lengths of feeding manifold L1
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Figure 7.11: Experimental and predicted oscillation frequencies of self-sustained in-
stabilities for the L2 = 0.20 m confinement tube. Increasing and decreasing L1 has the
same influence on the frequency evolution.

= 0.26, 0.25 and 0.24 m. After the stable zone, linearly unstable trajectories
for the second mode yield a weak limit cycle between L1 = 0.23 m and 0.18 m
(blue zone). For shorter lengths L1 < 0.18 m, the system is unstable on the
first mode (yellow zone) as presented in Fig. 7.10(b). At the beginning, when
the manifold cavity was increased from L1 = 0.15 m to 0.54 m, the system
oscillates at high amplitudes for the first length interval L1 = 0.15 m to 0.17
m. In this case, the instability remains on the first mode even if the growth
rate trajectories of this mode become nonlinearly unstable between L1 = 0.18
m and 0.23 m. The nonlinear impulse, needed to trigger the first mode, comes
from the high oscillation amplitude reached at the previous length.
The origin of this hysteresis is linked to the nonlinear behavior of the flame.
Indeed, it is possible to predict the hysteresis by analyzing the FDF phase at
the acoustic eigenmodes frequencies around the stable zone. If the phase of the
FDF is comprised between π and 2π modulo 2π, the instability may develop
(Durox et al. (2009a); Noiray et al. (2009)). For the L2 = 0.10 m confinement
case, when the instability evolves on the first mode at high amplitude (increas-
ing L1) the phase is in the right band between π and 2π (see Fig. 7.8) at L1

= 0.23 m where f = 400 Hz whereas this is not the case for the second mode
f = 1100 Hz. When the cavity length L1 decreases, as the system leaves the
stable zone at L1 = 0.23 m, the phase for low oscillation amplitude lies in the
right band for the high frequency f = 1100 Hz of the second mode. This is the
reason why the instability frequency takes on second mode values.

The growth rate evolution was also computed for the L2 = 0.20 m confine-
ment tube and its reading yields the different limit cycle oscillation frequencies.
These results are presented in Fig. 7.11. For this second confinement case, the
evolution is simpler. When the feeding manifold length L1 is increased, the in-
stability frequency changes from the first mode between L1 = 0.15 m to 0.25 m
to the second mode between L1 = 0.32 m to 0.54 m after a stable zone. When
L1 is decreased, the instability evolves in the same way. Thus, in this case, no
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Figure 7.12: Experimental and predicted amplitudes of the instabilities for the L2 =
0.10 m confinement tube for increasing (a) and decreasing (b) sweeps of the feeding
manifold length L1.

hysteresis is observed. The theoretical analysis in terms of phase shows that
the frequency of the second mode does not yield phase values in the right band
at low or at high amplitude after the stable band at L1 = 0.25 m. This is the
reason why the system lies always on the first mode for perturbations at high
or low amplitude. In this case, calculations are less reliable, as some oscillation
frequencies are predicted in the stable zone. By analyzing the growth rate, it
is shown that the model gives positive values for these lengths. These discrep-
ancies can be linked to the accuracy on the experimental determination of the
FDF, showing the importance of getting the right flame response.

One advantage of the FDF methodology, is that, in addition to providing the
limit cycle frequency, the growth rate analysis also predicts the amplitude.
For each length of feeding manifold L1 and each confinement tube length L2,
it is possible to find the oscillation amplitude when the instability oscillation
is established. These results are presented in Fig. 7.12 for the L2 = 0.10 m
confinement tube. The predictions are plotted as dashed lines whereas the
experimental values, obtained by the hot wire probe, appear as diamond signs.
Fig. 7.12(a) represents the evolution of the amplitude when L1 is increased.
The oscillation evolves at high amplitude for L1 comprised between 0.15 m
and 0.23 m. After the stable zone L1 = 0.24, 0.25 and 0.26 m, the oscillation
grows from a level around urms/Ub = 0.2 to 0.7 for the longer feeding manifold
length at L1 = 0.54 m. By decreasing L1, the oscillation evolves in the same
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Figure 7.13: Experimental and predicted amplitudes of the instabilities for the L2 =
0.20 m confinement tube. Increasing and decreasing L1 has the same influence on the
amplitude evolution.

way until the stable zone at L1 = 0.26, 0.25 and 0.24 m. Then, the amplitude
switches to a very low level around urms/Ub = 0.10, or nearly close to zero for
the hot wire values at L1 = 0.23 m and 0.22 m. After L1 = 0.18 m, the level
increases abruptly to urms/Ub = 0.7. The dashed lines, which represent the
results of calculations, are in good agreement with the levels measured in the
expriments.
For the longer confinement tube L2 = 0.20 m, the evolution is drawn in
Fig. 7.13. In this case, the evolution is the same when the feeding mani-
fold length L1 is increased or decreased. From L1 = 0.15 m to 0.25 m the
amplitude lies around urms/Ub = 0.6. It falls to 0 from L1 = 0.26 m to 0.32
m. Then, the instability appears again with an increasing amplitude until it
reaches urms/Ub = 0.7 for the longer cavities. Predictions are again in agree-
ment with experimental data except in a range of L1 = 0.26 m to 0.40 m. This
is probably due to the fact that the predicted self-sustained oscillations occur
in a frequency band where the gain drops rapidly and the phase of the FDF is
less well defined with the consequence that the stability analysis becomes less
reliable. It should be noted however that this only affects a small interval of
feeding manifold sizes.

7.2 Nonlinear mode triggering in a multiple flame
combustor

This section corresponds to a second publication presented at the 33rd inter-
national symposium on combustion and published in the Proceedings of the
Combustion Institute in 2011 :

Boudy, F., D. Durox, T. Schuller, and S. Candel. 2011. “Nonlinear mode
triggering in a multiple flame combustor.” Proc. Combust. Inst. 33 (1): 1121–
28. doi:10.1016/j.proci.2010.05.079

http://dx.doi.org/10.1016/j.proci.2010.05.079
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The experimental setup and model (model A) used in this analysis are the
same as those presented in Sec. 7.1. Thus, only experimental results revealing
triggering in the system are presented together with the comparison between
measurements and predictions delineated from model A. The abstract is kept
to highlight the highlights of this section. Then, the text jumps directly to the
experimental results.

7.2.1 Abstract

A nonlinear analysis of combustion instability is carried out by making use of
the Flame Describing Function (FDF) framework. Predictions are compared
with data obtained from experiments on a multipoint injection combustor.
The burner comprises a premixer manifold of variable length, an injection
system and a flame tube. This device features several types of self-sustained
oscillation and its dynamics is characterized by nonlinearities like transient
frequency shifting, mode switching, mode triggering and hysteresis phenomena
which cannot be anticipated from a classical linear stability analysis. It is
shown that many of these phenomena can be suitably predicted by including
the amplitude dependent response of the flame in a matrix analysis of the
system dynamics. More specifically, the present work centers on processes
which cannot be anticipated from linear analysis such as mode switching linked
to a triggering by the nonlinear flame response.

7.2.2 Experimental results

Experiments were carried out with the flame tube L2 = 0.10 m. The mea-
surements of the oscillation frequencies and the corresponding sound levels are
plotted in Fig. 7.14 as a function of the feeding manifold length L1.
Open circles correspond to data gathered when the manifold length is aug-
mented (from 0.15 m to 0.54 m) while cross symbols correspond to data col-
lected when L1 is diminished (0.54 m to 0.15 m). The dashed lines show the
first three acoustic eigenfrequencies of the burner calculated by taking into ac-
count the temperature difference between the upstream manifold and the flame
tube. The system features self-sustained oscillations for all cavity lengths L1

except between 0.24 and 0.26 m where combustion is stable. Results obtained
by increasing the manifold length indicate that the oscillation frequency lies
around the first acoustic mode when L1 ranges from 0.15 m to 0.23 m, then the
oscillation vanishes in the band L1 = 0.24 m to 0.26 m. The peak frequency
then evolves around the second acoustic mode for longer cavity depths (L1 =
0.27 m to 0.54 m). The corresponding pressure level at M2 lies around 142
dB when the system is unstable and is roughly independent of L1. When the
piston is moved in the reverse direction, the peak oscillation frequency remains
locked to the second mode from L1 = 0.54 m to 0.26 m and the oscillation
level is about equal to that found in the previous case. The oscillation then
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Figure 7.14: Frequency and pressure level evolution obtained by sweeping L1 from
0.15 m to 0.54 m (◦) and from 0.54 m to 0.15 m ( ×). Flame tube size L2 = 0.10
m. Acoustic eigenmodes determined by taking into account the temperature variation
in the system are plotted as dashed lines.
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vanishes in the stable band, but from L1 = 0.22 m to 0.18 m the frequency
is still locked on the second acoustic mode with a moderate amplitude level.
The peak frequency finally switches to the first acoustic mode for the shortest
cavity sizes L1 = 0.17 m to 0.15 m with an oscillation level equal to that found
in the first set of experiments. The system clearly features an hysteresis for the
range of feeding manifold lengths comprised between 0.18 and 0.22 m where the
oscillation frequency and level depend on the manifold length variation history.
Such features cannot be anticipated from a linear stability analysis and they
constitute a good benchmark for validation of the FDF nonlinear methodology.
As indicated in section 7.1.3, acoustic oscillations remain in the linear range
and the only nonlinearity considered in the following stability analysis is that
of the flame response.

7.2.3 Triggering and limit cycles analysis

The nonlinear stability analysis developed in section 7.1.5 is now used to ob-
tain oscillation frequencies and associated limit cycle amplitudes and compare
these predictions to experimental data. Figure 7.15 maps the growth rates de-
termined from the dispersion relation Eq. (7.10) where only positive values are
indicated and plotted as a function of the manifold size L1 and the perturba-
tion amplitude urms/Ub. This map has been plotted by subtracting a damping
α = 20 s−1 from ωi to account for acoustic attenuation in the system. The
value of α comes from a measurement not presented in this study. Regions
indicated by different gray levels correspond to one of the oscillation modes,
which are calculated separately. Light, medium and dark gray respectively
correspond to oscillation frequencies lying around the first, second and third
acoustic modes. The dark bold lines delimiting the contour of these regions
indicate stable oscillation equilibria, i.e. the limit cycle reached for ωi = α,
whereas the dashed part of these lines designates unstable equilibria for the
same modes considered separately.
Figure 7.15 indicates that regions associated to different oscillation modes can
be superimposed depending on the size L1 of the feeding manifold. Thus two
unstable modes may coexist for the same feeding manifold length and the
observed mode will be determined by examining the growth rate evolution as a
function of perturbation level. This can be easily analyzed by plotting vertical
cuts in Fig. 7.15 at different manifold lengths. The growth rate then follows
three types of trajectories :

• The first type of trajectory always yields negative growth rates for all
perturbation levels (line B in Fig. 7.15). In this case, the system is
linearly and nonlinearly stable. This is for example the case for L1 =
0.24 m to 0.26 m as shown in Fig. 7.14 where the system is effectively
stable.

• The second type, illustrated for L1 = 0.10 m (corresponding to the y-
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Figure 7.15: Positive values of growth rate (ωi −α in s−1) calculated from the disper-
sion relation as function of the feeding manifold length, L1 and the relative fluctuation
level, u’rms/Ubulk. A damping α of 20 s−1 is considered in this figure. Two slices in
the growth rate are plotted on the right. The first “A” corresponds to L1 = 0.18 m
and the second “C” pertains to L1 = 0.54 m.

axis in Fig. 7.15), features positive growth rates for small perturbation
levels and a vanishing growth rate for a finite amplitude urms/Ub =
0.45. This corresponds to a supercritical bifurcation where the system
is linearly unstable. The instability grows from an infinitesimal pertur-
bation and reaches a limit cycle with an oscillation frequency locked
around the first acoustic mode.

• The third type of trajectory is illustrated by taking a slice through the
growth rate map at point A. In this case, mode 1 is linearly stable. A
linear analysis would predict a stable operation for this mode. A deeper
analysis of the subplot A in Fig. 7.15 shows that mode 1 features positive
growth rates for perturbation levels urms/Ub higher than 0.20 and then
reaches a limit cycle around urms/Ub ≃ 0.65. Mode 1 corresponds to a
subcritical bifurcation with a system linearly stable on this mode, but
nonlinearly unstable. This type of mode can be triggered by another
supercritical mode or by an external perturbation if the threshold level
is exceeded as detailed in the following part.

Subcritical bifurcations can now be used to explain some of the experimen-
tal observations and in particular the nonlinear mode triggering phenomenon.
This is illustrated for two lengths L1 = 0.18 m and 0.54 m. For L1 = 0.18
m, the subplot A in Fig. 7.15 shows that the first mode features a subcritical
bifurcation (nonlinear instability) and the second mode a supercritical bifurca-
tion (linear instability). The two trajectories cross for urms/Ub ≃ 0.25 close to
ωi = α. The following scenario can be predicted. An infinitesimal oscillation
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Figure 7.16: Temporal signals of the self-sustained instability for L1 = 0.18 m.
Upper boxes display normalized velocity measured by the hot wire probe and pressure
of microphone M2. Lower box corresponds to the short-time Fourier spectral density
of the pressure signal.

starts to grow with an oscillation frequency locked on mode 2 and reaches an
oscillation level urms/Ub ≃ 0.25. The mode trajectory then crosses that of
mode 1 which features growth rates values around α. In this case, by adding
a perturbation, mode 1 growth rate is greater than the damping α and the
oscillation frequency switches to mode 1 until the mode reaches a new limit
cycle for urms/Ub ≃ 0.65 when ωi = α. Figure 7.16 displays the temporal
signals recorded by the different sensors for this manifold length L1 = 0.18 m.
The velocity fluctuation signal measured by the hot wire below the perforated
plate is displayed in the upper subfigure.
The signal measured by microphone M2 is plotted in the central subfigure. The
lower plot shows the short-time Fourier power spectral density of the pressure
signal as a function of time. From t = 0 to 0.08 s, the frequency found in
the pressure trace (f2 ≃ 1290 Hz) corresponds to the calculated oscillation
frequency f2 = 1292 Hz determined from the dispersion relation Eq. (7.10)
for mode 2 with a small oscillation amplitude. At t = 0.08 s, an external
perturbation is introduced by blowing on the flame and the system quickly
switches to a new limit cycle with a lower oscillation frequency f1 ≃ 449 Hz and
a larger fluctuation amplitude. It can be seen in Fig. 7.14 that this frequency
closely matches that calculated. This corresponds to the scenario deduced from
the nonlinear analysis, where an external perturbation was required to initiate
the transition from mode 2 to mode 1. This is so because trajectories cross at
a point where growth rates are close to the damping value α.
It is thus worth examining if nonlinear triggering may also take place with-
out requiring an external disturbance. This can be obtained for a manifold
cavity length L1 = 0.54 m. The growth rates trajectories for modes 2 and 3,
plotted in subfigure C in Fig. 7.15, feature subcritical and supercritical bifur-
cation. Their trajectories cross for a positive growth rate ωi − α of 13 s−1.



100 Chapter 7 - Basic modeling of stable limit cycles and triggering

−1

0

1

−500

0

500

0 0.05 0.1 0.15
0

400

800

p
′

(P
a)

u
′ −

ū
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Figure 7.17: Temporal signals of the self-sustained instability for L1 = 0.54 m.
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An oscillation then naturally develops from an infinitesimal perturbation and
is locked on mode 3 which is linearly unstable. When the velocity oscillation
amplitude reaches urms/Ub ≃ 0.30, the oscillation switches on mode 2 which is
nonlinearly unstable and features higher growth rates than mode 3 for higher
perturbation levels. It then reaches a limit cycle urms/Ub ≃ 0.60 and remains
locked on mode 2 with a predicted oscillation frequency f2 = 465 Hz deduced
from Eq. (7.10). Figure 7.17 shows the corresponding temporal evolutions
of the measured signals. The time-frequency analysis shows that a switch in
frequency occurs during the onset of oscillation. From t = 0 to 0.09 s an os-
cillation slowly grows with a frequency corresponding to that calculated for
the third mode f3 ≃ 765 Hz. At time t ≃ 0.09 s, the oscillation level reaches
urms/Ub ≃ 0.20 and the frequency suddenly switches to the second mode in
about 0.015 s without external actuation. The system then evolves to a new
limit cycle with an oscillation frequency f3 = 465 Hz in agreement with that
predicted, and with fluctuation level urms/Ub of the order of 0.6 comparable
to the fluctuation predicted thanks to the dispersion relation for L1 = 0.54 m.

7.2.4 Conclusion

Calculations of limit cycles based on the FDF framework for combustion in-
stability analysis have been undertaken with “model A” in order to predict
these thermoacoustic oscillations. The system studied herein is close to a real
configuration in the sense that it features a feeding manifold that is used to
feed a multipoint injector and features a combustion region in a confined envi-
ronment. The FDF, determined experimentally, exhibits nonlinearities of the
flame response. This is used to derive a nonlinear dispersion relation providing
predictions of the stable or unstable behavior of the combustor as a function of
amplitude. Comparison with systematic experiments carried out by changing
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the feeding manifold length and flame tube size are in agreement with experi-
ments over a broad range of parameters. Calculations are quite reliable in the
case of a short flame tube but they are slightly off in the case of a longer tube
where a difference is observed in a finite range of feeding manifold lengths. This
may be corrected by improving the procedure to determine the FDF but also by
refining the model which includes simplifications of the boundary and match-
ing conditions. It remains that the FDF analysis provides a suitable account
of limit cycle amplitudes, hysteresis and mode switching observed in practice
as demonstrated in the short flame tube case. Comparisons with systematic
experiments on triggering and mode switching indicate that predictions of limit
cycle amplitudes and mode switching are in good agreement with experimental
data and highlight the necessity of a nonlinear analysis. It is demonstrated in
particular that some of the unstable oscillation frequencies corresponding to
large amplitude levels observed experimentally would not have been predicted
with a linear analysis. This is illustrated in a case where the limit cycle oscilla-
tion is locked on a mode around 465 Hz with a large level of oscillation, whereas
a linear stability analysis would have predicted an unstable mode around 765
Hz. This indicates that the stability map cannot be completely determined
without taking into account the nonlinear flame response but that it is possi-
ble to keep a linear description of the other elements in the system. While the
nonlinear gain influences the limit cycle prediction, the nonlinear phase also
plays an important role. It controls hysteresis, mode switching and triggering
and modifies the amplitude of the limit cycles. This latter point is studied
in further detail in Appendix A, where one calculates a bifurcation diagram
by using a FDF with a linear phase. Such calculation illustrates the phase
influence with the loss of the nonlinearly unstable modes.





Chapter 8

Detailed dynamical analysis

The various modeling elements presented up to now are used in this
chapter to study the dynamics of the burner configuration described in
Chapter 1. The model uses a network formed by two ducts with a flame
located at the interface. This model has been devised in Chapter 6. It
was shown in Sec. 7.1.6 that there are differences between experiments
and predictions. The initial model is improved by taking into account
all the burner elements analyzed in Chapter 4. This includes upstream
and downstream boundary conditions and the change in the surface area
between the two cavities. A FDF measured under confined conditions
is also considered. Predictions of this advanced model allow to retrieve
frequencies and amplitudes experimentally observed with an improved
agreement for a variety of geometrical ranges. This allows reconstruc-
tions of pressure and velocity in the burner. There are however cases
where the limit cycles arising in experiments feature amplitude and fre-
quency variations which are less well represented by this advanced FDF
model and which need to be considered separately.

8.1 Experimental investigation for different flame
tube sizes

Configurations examined in this chapter correspond to four different flame tube
sizes progressively increased from L2 = 0.10 m to 0.40 m by steps of 0.10 m. The
exploration is carried out for different feeding manifold lengths L1 by moving
the piston in both directions for each flame tube configuration. The perforated
plate of thickness l = 15 mm is used in all experiments. The FDF is slightly
modified compared to that used in Chapter 7 with the thin perforated plate.
This is to account for the change in velocity profile in the perforations which was
seen to depend on the flame holder thickness. This change influences the flame
front dynamics and its response to harmonic perturbations (see Chapter 5).
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Figure 8.1: Frequency and sound pressure level evolutions for a confinement tube L2

= 0.10 m. The feeding manifold length L1 is swept from 0.11 m to 0.55 m (◦) and
from 0.55 m to 0.11 m ( ×). Dashed lines indicate acoustic eigenmodes calculated
without unsteady combustion. Upper frame on the top of the figure shows limit cycle
ranges with variable amplitude and frequency. The cross is linked to the regular beating
range, whereas the case of multiple modes corresponds to the hatched area.

8.1.1 Flame tube L2 = 0.10 m

The first set of results is presented in Fig. 8.1 for the smallest confinement
tube (L2 = 0.10 m). Frequencies and rms pressure amplitudes are plotted
for the different lengths of feeding manifold L1 explored. Open circle symbols
(◦) correspond to data gathered when L1 is increased from 0.11 m to 0.55 m.
Cross symbols (×) indicate the behavior obtained by diminishing L1 from 0.55
to 0.11 m. The upper window above the frequency plot indicates limit cycle
ranges where the amplitude features a fickle value whether it is regular or not.
The different instabilities observed are examined in the present section. When
the feeding manifold length L1 is increased, oscillations evolve around the first
acoustic eigenmode from L1 = 0.11 m to 0.15 m. At L1 = 0.16 m, one finds a
stable band until L1 = 0.24 m. For L1 = 0.25 m, the system meets enters in an
unstable range around the second mode. These oscillations are found from L1
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Figure 8.2: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.11 m and flame tube L2 = 0.10 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).

= 0.25 m to 0.49 m. For L1 = 0.40 and 0.41 m, the flame cannot stabilize on a
well defined limit cycle. For the last range, L1 = 0.50 m to 0.55 m, the system
exhibits an unstable range around the third mode. In this case, the instability
frequency is not a pure tone from L1 = 0.51 m to 0.55 m. Frequencies and
amplitudes represented in Fig. 8.1 for L1 = 0.40 m and 0.41 m and L1 = 0.51 m
to 0.55 m correspond to the main peaks in the spectrum of the pressure signal
detected by microphone M2. These unstable amplitudes will be analyzed in a
detailed fashion in Chapter 9.
In a second series of experiments, the feeding manifold length L1 is decreased.
In this way, oscillations first lie around the third mode from L1 = 0.55 m to
0.46 m. As in the first direction of exploration, the flame does not oscillate on a
pure tone from L1 = 0.55 m to 0.51 m. At L1 = 0.45 m flame oscillations nearly
vanish. By diminishing L1, mode 2 is triggered with a non negligible amplitude
for L1 = 0.44 m and 0.43 m. It is important to highlight that the second mode
triggered for L1 = 0.44 m and 0.43 m is slightly higher in frequency and lower
in amplitude than in the first exploration direction. The limit cycle retrieved
for L1 = 0.40 m and 0.41 m is not well defined. An oscillation at the pure
tone associated to mode 2 frequency is obtained until L1 = 0.25 m. The stable
band is found again from L1 = 0.24 m to 0.16 m. Finally, the system switches
again to the first mode at L1 = 0.15 m. One can see that this time, as noted
for L1 = 0.44 m and 0.43 m, frequency and amplitude exhibit different values
for L1 = 0.15 m and 0.14 m. In summary this configuration (L2 = 0.10 m)
exhibits two hysteresis intervals.
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Limit cycles with pure tone oscillations were found for most of feeding manifold
lengths L1 when L2 is set to 0.10 m, but oscillations characterized by multiple
frequencies were also identified for a set of conditions for mode 2 and mode 3.
Pure tone oscillations are typified by a flame oscillation at a single frequency.
This has been checked experimentally by analyzing pressure time traces and
flame shapes recorded by means of high speed imaging. A typical case is
displayed in Fig. 8.2 for pressure and photomultiplier (PM) signals when L1

= 0.11 m. The time traces of these signals appear in the upper plots. The
lower plot shows the power spectral densities estimated by means of Welch’s
method of averaging combined with a Hanning windowing. These spectral
densities have been normalized by the amplitude reached by the main peak to
exhibit the importance of harmonics. Acoustic eigenmodes, calculated without
unsteady flame and different temperatures in each cavity (300 K in the feeding
manifold and 900 K in the downstream flame tube), are shown as vertical solid
lines in the lower window below the pressure spectrum. Time traces indicate
that the flame oscillates in a nonlinear fashion whereas the pressure remains
in the linear range. This is confirmed by analyzing the PM spectrum. The
harmonics observed in the flame response feature a large amplitude compared
to the ones noted on pressure spectrum.
One finds multiple frequency cases, for L1 = 0.40 m and 0.41 m and for L1 =
0.51 m to 0.55 m. In these ranges the pressure spectra show multiple peaks
with high amplitudes. This is illustrated in Figure 8.3 for the pressure and PM
signals for L1 = 0.40 m. These signals exhibit modulations because oscillation
frequencies are close. The flame spectrum is typified by a series of concentrated
peaks around the main instability frequency. One can easily distinguish three
main components with a main peak at 604 Hz, a lower peak at 570 Hz and
a third component at 638 Hz. These three frequencies lie around the second
acoustic mode of the system. The pressure signal is further analyzed by us-
ing the continuous wavelet transform with a complex Morlet mother wavelet
to characterize the frequency evolution with time. The resulting analysis is
presented in Fig. 8.4. This indicates that the instability frequency oscillates
around a mean value and that the oscillation frequency reaches a maximum
when the pressure oscillation reaches a minimum and conversely.
A second band featuring multiple frequencies is now investigated. The feeding
manifold length L1 = 0.52 m is chosen to illustrate this phenomenon. Result
presented in Fig. 8.5 show that the power spectral densities of pressure and
OH* signals exhibit two main peaks around mode 2 and mode 3 indicating that
the system is locked on these modes. Oscillations may occur simultaneously
or in an alternative fashion. By using the wavelet analysis, it is possible to
shed light on this point. Figure 8.6 indicates that the main frequency 759
Hz associated to mode 3 is always present in the pressure signal. The same
analysis around mode 2 shows the same type of signal, indicating that the
flame oscillates simultaneously on mode 2 and mode 3.
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Figure 8.3: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.40 m and flame tube L2 = 0.10 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).
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Figure 8.4: Pressure signal from microphone M2 for L1 = 0.40 m and flame tube L2

= 0.10 m. Time frequency signal analysis using a continuous wavelet transform with
a complex Morlet mother wavelet to extract the evolution of frequency. This allows to
see which frequency appears as the amplitude grows or decreases.
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At this point, it is interesting to use phase plane portraits to associate what
has been found previously with a representation of limit or pseudo-limit cycle.
Figure 8.7 represents three phase planes (a, b, c) respectively corresponding to
L1 = 0.11 m, 0.40 m and 0.52 m. Figure 8.7(a) is typified by a circular pat-
tern corresponding to periodic oscillations. Modulation of the fixed amplitude
induces a torus pattern in Fig. 8.7(b) for L1 = 0.40 m. Period deformations
lead to multiple circular patterns as displayed in Fig. 8.7(c).
In summary, one finds that unstable modes in the short confinement tube
configuration present three types of limit cycle. The first is well defined
(Fig. 8.7(a)), the second is linked to regular beating (Fig. 8.7(b)) while the
last one features a period deformation with the simultaneous presence of two
modes (Fig. 8.7(c)).

8.1.2 Flame tube L2 = 0.20 m

A similar analysis is now carried out for a slightly longer flame tube L2 =
0.20 m. The instability frequencies and corresponding amplitudes are shown
in Fig. 8.8 when the feeding manifold length L1 is first increased and then
decreased. Oscillations lie around the first acoustic eigenmode from L1 = 0.11
m to 0.19 m. The system then reaches a multiple frequency band between L1

= 0.20 m and 0.25 m. In this latter band, the main frequency appearing in
the pressure spectrum measured by microphone M2 is displayed in the graph.
A stable band follows for three lengths and an instability lying around the
second mode is retrieved from L1 = 0.29 m to 0.55 m. In this case, there is no
hysteresis when the piston is moved in one direction or the other.
The same type of limit cycles with fixed or variable amplitude highlighted for
L2 = 0.10 m are retrieved in this configuration. The multiple frequency range
appears between L1 = 0.20 m and 0.25 m where the flame oscillation does not
stabilize on a single frequency. This does not depend on the direction used to
bring the piston to its position.
There are different types of limit cycles with variable amplitude as observed
for the short flame tube L2 = 0.10 m. One needs to analyze time traces
to delineate these differences. Figure 8.9 shows the pressure and PM signals
with their respective power spectral densities and the corresponding acoustic
eigenmodes for L1 = 0.20 m. This operating condition lies at the beginning of
the multiple frequency band. The pressure signal is slightly distorted due to
the presence of the second mode. It is interesting to note that in this case the
second acoustic mode of the system is a harmonic of the first mode. In this
special configuration a harmonic of a mode coincides with another eigenmode
of the system.
Another interesting case is considered in Fig. 8.10 showing measurements for L1

= 0.22 m. The oscillations are now characterized by irregular bursts galloping
along the time axis. This instability features a broad main peak centered
between mode 1 and mode 2 in the pressure spectrum and a second broad peak
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Figure 8.5: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.52 m and flame tube L2 = 0.10 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).
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Figure 8.6: Pressure signal from microphone M2 for L1 = 0.52 m and flame tube L2

= 0.10 m. A time frequency analysis is done by using a continuous wavelet transform
with a complex Morlet mother wavelet to extract the evolution of frequency along time.
This allows to see which frequency appears as the amplitude grows or decreases.
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Figure 8.7: Phase plane portraits of pressure signal from microphone M2, determined
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Figure 8.8: Frequency and pressure level evolutions with the L2 = 0.20 m confinement
tube. The feeding manifold length L1 is swept from 0.11 m to 0.55 m (◦) and from
0.55 m to 0.11 m ( ×). Dashed lines indicate acoustic eigenmodes calculated without
unsteady combustion. Upper frame on the top of the figure reveals limit cycle ranges
with variable amplitude and frequency.
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Figure 8.9: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.20 m and flame tube L2 = 0.20 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).
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Figure 8.10: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.22 m and flame tube L2 = 0.20 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).
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located on mode 3. By analyzing this signal by means of a wavelet transform,
as illustrated in Fig. 8.11, it is possible to see the frequency evolution along
the bursts. The oscillation amplitude grows at a relatively constant oscillation
frequency near 500 Hz, decreasing a little bit at high amplitudes, and suddenly
switches to a higher frequency of about 1000 Hz. It is seen that this higher
frequency component appears when the amplitude drops. This high frequency
value corresponds to the harmonic of the signal. For example, at t = 0.11 s, the
frequency reaches 500 Hz and suddenly switches to 1000 Hz. This phenomenon
occurs when the amplitude is maximum and the frequency lies around 500 Hz.
As already indicated for L1 = 0.20 m, this peculiar configuration appears when
one harmonic of the main instability frequency, here equal to 500 Hz, matches
another eigenfrequency of the system. This occurs here for 1000 Hz which is
linked to the third acoustic eigenmode.
A phase space reconstruction is undertaken for L1 = 0.20 m and L1 = 0.22 m
in Fig. 8.12. Figure 8.12(a) shows that the period deformation, which is very
slight in the present case, leading to the creation of a small cusp in the circular
pattern without creation of a second form as noted in Fig. 8.7(c). Regard-
ing the irregular burst sequences in Fig. 8.12(b), one can see that the phase
space reconstruction fills a region of the embedding space without any regular
structure. One can distinguish two remaining circles on the outer edge and
in the center. The trajectory travels randomly in a three-dimensional volume
indicating that the oscillation is chaotic in nature. In essence, the multiple
frequencies noted for this confinement tube are linked to period deformations
(Fig. 8.12(a)) or a new type of limit cycle with irregular bursts (Fig. 8.12(b))
which can be qualified as galloping limit cycle GLC. This type of oscillation
is observed in various other fields like civil engineering and we have adopted
the terminology introduced by Scanlan et al. (2004) in his analysis of velocity
fluctuations in the wake of cables submitted to wind.

8.1.3 Flame tube L2 = 0.30 m

A third configuration is now explored with a still longer flame tube L2 = 0.30
m. The multiple frequency band is now broadened. Results are presented in
Fig. 8.13 for increasing and decreasing feeding manifold lengths L1. When
combustion is initiated, oscillations evolve around the first mode from L1 =
0.11 m to 0.22 m. For feeding manifold lengths larger than L1 = 0.22 m, an
unstable range with multiple frequencies appears. The main frequency of the
pressure spectrum is presented in Fig. 8.13. This behavior persists until L1

= 0.32 m. At L1 = 0.33 m, the instability features a single frequency located
between the first and the second acoustic eigenmode calculated in the absence
of unsteady combustion. A switching to the second mode is observed for L1

= 0.36 m which is sustained until L1 = 0.55 m. By diminishing the feeding
manifold length L1, the system exhibits a hysteresis. The instability frequency
evolves around the second mode from L1 = 0.55 m to 0.34 m. From L1 = 0.35 m
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Figure 8.11: Pressure signal from microphone M2 for L1 = 0.22 m and flame tube
L2 = 0.20 m. A time frequency analysis is carried out by using a continuous wavelet
transform with a complex Morlet mother wavelet to extract the evolution of frequency
along time. This allows to see which frequency appears as the amplitude grows or
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Figure 8.12: Phase plane portraits of pressure signal from microphone M2 determined
for two feeding manifold sizes L1. (a) is linked to the limit cycle slightly destabilized
at L1 = 0.20 m, (b) illustrates the irregular bursts noted for L1 = 0.22 m.



Part III - Nonlinear modeling of combustion-acoustic coupling 115

400

800

1200

1600

110

120

130

140

150

0.1 0.2 0.3 0.4 0.5

80

90

100

110

120

130

Fr
eq

ue
nc

y
(H

z)
M

2
rm

s
P

re
ss

ur
e

(d
B

)
M

1
SP

L
(d

B
)

Feeding Manifold L1 (m)

Figure 8.13: Frequency and pressure level evolutions with the L2 = 0.30 m confine-
ment tube. The feeding manifold length L1 is swept from 0.11 m to 0.55 m (◦) and
from 0.55 m to 0.11 m ( ×). Dashed lines indicate acoustic eigenmodes calculated
without unsteady combustion. Upper frame on the top of the figure reveals limit cycle
ranges with unfixed amplitude and frequency.

to 0.34 m one finds a stable point. Oscillations take place at a lower amplitude
and higher frequency than in the other direction of the piston motion. At L1

= 0.33 m, the system switches to a single oscillation frequency between the
first and the second mode. The multiple frequency zone appears just beyond
that value for L1 = 0.32 m until L1 = 0.23 m. At L1 = 0.22 m, the first mode
is retrieved until L1 = 0.11 m.
Outside the multiple frequency band, pressure and light emission signals show
respectively linear and nonlinear behaviors as observed before. In the multiple
frequency band, typical pressure and PM time traces plotted in Fig. 8.14 for
L1 = 0.32 m reveal irregular bursts with three main frequencies (390 Hz, 452
Hz and 515 Hz) appearing on the spectral densities. This is reminiscent of
the beating structure observed previously with L2 = 0.10 m. In this mode,
spectral analysis exhibits a main peak with two side peaks. It is interesting
to examine the PM trace presented in Fig. 8.14(b). Oscillations take place
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Figure 8.14: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.32 m and flame tube L2 = 0.30 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).

at different amplitudes with an irregular increase and decrease in level. This
variation highlights fluctuations of the flame motion amplitude during the os-
cillation cycle which can be examined with a high speed imaging camera at
6000 images/s. A sequence is presented in Fig. 8.15 for L1 = 0.32 m. The up-
per window shows the PM signal linked to the images appearing in the lower
part of the figure. The two symbols (⋄ and ◦) drawn on the time traces point
out the phase of the image taken in the oscillation cycle. This figure indicates
how the amplitude of the flame motion is stretched during the successive cycles
(a), (b) and (c).
At the end of the multiple frequency band, the instability lies on a single
frequency between mode 1 and mode 2 from L1 = 0.33 m to 0.35 m. This
phenomenon is illustrated in Fig. 8.16 for L1 = 0.33 m. By using the phase
plane representation, one is able to distinguish two types of limit cycles. The
first, corresponding to a well defined oscillation amplitude, leads to a circular
pattern as already observed in Fig. 8.7(a). The multiple frequency range no-
ticed between L1 = 0.23 m and 0.32 m features a perturbed pattern like the
one observed in Fig. 8.12(b) for the flame tube L2 = 0.20 m. It is typified by a
circular structure as shown in Fig. 8.17. This third configuration is character-
ized by well defined limit cycles and a multiple frequency band with irregular
pressure variations close to a regular beating.
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Figure 8.15: Flame sequences during oscillation cycles for a feeding manifold length
L1 = 0.32 m and L2 = 0.30 m. Three cycles (a),(b) and (c) are displayed in this
figure. They correspond to a burst with a growing amplitude. Each cycle is displayed
with three images where one is taken at the beginning ( ⋄) of the cycle and one (◦)
at the end.
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Figure 8.16: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.33 m and flame tube L2 = 0.30 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).
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Figure 8.17: Phase plane portrait of pressure signal from microphone M2 estimated
for L1 = 0.32 m and L2 = 0.30 m.

8.1.4 Flame tube L2 = 0.40 m

In the last configuration explored, the flame tube has the longest length L2 =
0.40 m. Figure 8.18 shows the main instability frequency and the amplitude
evolutions in the two way exploration when the piston position is modified. The
hatched area above the frequency plot reveals the feeding manifold lengths L1

where the instability amplitude and frequency do not take well defined values.
It is worth noting that this confined case only features narrow bands of stable
amplitude limit cycles and also no stable band. Due to the different types of
instability observed, two different kinds of lines have been used in the hatched
area. These various cases are examined in the following paragraph.
By increasing the feeding manifold length L1, the pressure spectrum features
multiple peaks with irregular acoustic beating from L1 = 0.11 m to 0.14 m.
Pressure and PM traces corresponding to this range are presented in Fig. 8.19
for L1 = 0.12 m. The pressure signal exhibits an irregular beating accompanied
by a fluctuation of the PM mean value. In this case, variations of the PM
oscillation amplitude is less marked than that noticed in Fig. 8.14 for L2 = 0.30
m and L1 = 0.32 m. It indicates that flame stretching occurs more regularly
from cycle to cycle. A flame sequence corresponding to L1 = 0.12 m is presented
in Fig. 8.20. It reveals a very large stretching of the flame during an oscillation
cycle, but also merging and near destruction of the flame collection at some
point in the cycle.
For a feeding manifold length L1 = 0.15 m, the instability takes place around
mode 1 at a single oscillation frequency until L1 = 0.20 m. At L1 = 0.21 m,
multiple frequencies appear again. In this case, the shape of the pressure signal
exhibits irregular bursts. Pressure and PM time traces, corresponding to L1 =
0.29 m, are presented in Fig. 8.21. The mean value of the PM signal is still not
constant. The oscillation level varies from cycle to cycle, revealing a variation
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Figure 8.18: Frequency and pressure level evolutions with the L2 = 0.40 m confine-
ment tube. The feeding manifold length L1 is swept from 0.11 m to 0.55 m (◦) and
from 0.55 m to 0.11 m ( ×). Dashed lines indicate acoustic eigenmodes calculated
without unsteady combustion. Upper frame on the top of the figure reveals limit cycle
ranges with unfixed amplitude and frequency.
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Figure 8.19: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.12 m and flame tube L2 = 0.40 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).

of flame stretching. High speed imaging is displayed for this case in Fig. 8.22.
One is able to distinguish three kinds of cycles. The first is characterized by
a relatively weak stretching of conical flames (a), a second leads to a longer
flame deformation (b) and the third one is accompanied by a destruction of the
flame sheet (c) before anchoring and starting again a small oscillation cycle.
An irregular motion with a beating pattern is recovered at L1 = 0.35 m until L1

= 0.43 m. Within this range, the PM signal is still characterized by sequences
where the amplitude increases and then decreases, but these variations are
smoother. The mean value of the PM signal still features slight variations.
High speed imaging also reveals an irregular stretch of the flame motion from
cycle to cycle with phases of flame surface destruction that still takes place. At
L1 = 0.44 m, the flame oscillates at a single frequency located between mode
1 and mode 2 as observed for the preceding confinement tube L2 = 0.30 m.
The flame oscillation switches on a frequency around mode 2 at L1 = 0.46 m.
Instabilities characterized by multiple frequencies appear for L1 = 0.47 m with
irregular beating. This is exemplified for L1 = 0.49 m in Fig. 8.23. One should
note that small fluctuations of the PM mean value occur in this case, while the
variation of the oscillation amplitude is quite regular. The same observations
hold for the other lengths until L1 = 0.51 m. The instability then switches to
a frequency associated to mode 2 for L1 = 0.52 m until 0.55 m.
In the second phase of the exploration when the feeding manifold length L1 is
decreased (crosses in Fig. 8.18), the instability remains locked on the second
mode until L1 = 0.52 m. At L1 = 0.51 m, the instability is characterized by two
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Figure 8.20: Flame sequence during an oscillation cycle for a feeding manifold length
L1 = 0.12 m and L2 = 0.40 m.
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Figure 8.21: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.29 m and flame tube L2 = 0.40 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).



122 Chapter 8 - Detailed dynamical analysis

Figure 8.22: Flame sequences during oscillation cycles for a feeding manifold length
L1 = 0.29 m and L2 = 0.40 m. Three cycles (a),(b) and (c) are displayed in this
figure. They correspond to a phase with a growing amplitude of the burst. Each cycle
is displayed with three images where one is taken at the beginning (⋄) of the cycle and
the other one ( ◦) is captured at the end.
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Figure 8.23: Pressure signal recorded by microphone M2 and OH* light emission
for L1 = 0.49 m and flame tube L2 = 0.40 m. Corresponding spectral densities are
shown below. The window under the pressure spectrum shows the acoustic eigenmodes
positions as vertical solid lines (calculated by assuming that unsteady combustion is
absent).
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main frequencies creating irregular acoustic beats. This persists until L1 = 0.46
m. After that, the system presents a small hysteresis by oscillating on a single
frequency close to the second mode for L1 = 0.45 m and 0.44 m. It is worth
noting that during the first phase of the exploration, the system lied around the
first mode for these two lengths. At L1 = 0.43 m, irregular beats are retrieved
and persist until L1 = 0.35 m. The PM time trace and high speed imaging show
large oscillations of the flame with large flame surface destruction taking place
at some phase of the cycle as observed during the first way of the exploration.
From L1 = 0.36 m to 0.21 m a multiple frequency domain is sustained. As
shown previously, this domain is characterized by an intense destruction of
the flame structure. This process disappears for L1 = 0.20 m until L1 = 0.16
m. In this range, the instability oscillation is locked on mode 1 with a well
anchored flame. It is replaced by a multiple frequency oscillation from L1 =
0.15 m to 0.11 m, with the same kind of behavior as the one observed during
the first phase of exploration. Phase plane portraits correspond either to a
circular pattern for periodic oscillations as drawn in Fig. 8.7(a) or to irregular
structures as displayed in Fig. 8.12(b). Instabilities with this last flame tube
present well defined limit cycles, or multiple frequencies with either irregular
beating or bursts.

Regarding the four confined configurations investigated, it is interesting to
note that instabilities with three flame tubes have highlighted hysteresis in the
oscillation when the piston length L1 is swept in the two directions. Besides,
increasing the flame tube length L2 gave rise to a large number of new phenom-
ena that were not observed in the past experiments from Noiray et al. (2008)
and Boudy et al. (2011b). It was shown that oscillations may reach very high
amplitudes. It was also observed that the instability may feature multiple fre-
quencies without fixed limit cycles for certain lengths of the feeding manifold
L1. Five types of limit cycles have been identified. This is gathered in Tab. 8.1
for the four flame tubes L2. For each burner, a tick indicates the oscillation
type encountered during the exploration with L1.

8.2 Nonlinear modeling

A nonlinear dynamic model is briefly summarized in this section. It is based
on the model B derived in Chapter 6. This model allows to examine the insta-
bilities presented in the previous section. It is used to predict and understand
the mechanisms of frequency switching, hysteresis or multiple frequencies ob-
served in the system. For short flame tubes L2, it has been seen previously
that the system is unstable with mode switching and hysteresis phenomena. In
addition, the flame does not oscillate on a single frequency for certain ranges of
the feeding manifold lengths L1. The multiple frequencies ranges widen when
the confinement tube length L2 is augmented. These phenomena cannot be
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Table 8.1: Limit cycles characterized for each flame tube L2. Limit cycles with stable
or unstable amplitudes correspond to the different phase space reconstructions indicated
in the lower row. A tick indicates the types of limit cycle encountered for each flame
tube L2 by sweeping the feeding manifold length L1.

L2 (m)
Single
Freq.

Beating
Irregular
Beating

Irregular
Bursts

Multi-
modes

0.10 ✔ ✔ ✔

0.20 ✔ ✔ ✔

0.30 ✔ ✔

0.40 ✔ ✔ ✔
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Figure 8.24: Burner and symbol convention used for the analytical model.

understood through a linear analysis and need to be modeled differently.
In the following analysis, fluctuating quantities are written as a sum of a mean
and a fluctuation : a = ā + a′. The analysis is carried out in the frequency
domain and each fluctuating quantity takes the form : a′ = ãe−iωt where
ω = ωr + iωi designates the complex angular frequency with ωr = 2πf the
angular frequency and ωi the growth rate. A perturbation grows for positive
values of growth rate while it decays for negative ones.
The burner is modeled as illustrated in Fig. 8.24. In each tube section, temper-
ature, density, velocity and pressure are all subscripted with their respective
numbers. Mean temperature and density (T̄ , ρ̄) are considered uniform. It
must be stressed that the temperature of the flame tube T2 is not uniform for
all the flame tubes lengths L2. This has been underlined in Chapter 6. This
temperature has been estimated by measurements with a K-thermocouple and
these values are included in the calculations.
Model B is now considered. It provides an enhanced description of the acoustics
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of the burner which yields to the following difference compared to model A :

• A better description of the reflection coefficient of the piston head.

• An improved description of the sound radiation at the flame tube outlet.

• A FDF measured with the thick perforated plate l = 15 mm used as
flame holder and a small confinement tube L2 = 0.10 m.

• An improved description of the acoustics in the connection between the
two ducts with the ring cavity surrounding the flame.

Model B is derived in Chapter 6. By considering boundary and matching
conditions between the two cavities. It leads to a set of four equations which
can be written in a matrix form. This matrix is recalled here for completness :




1 −R1(0) 0 0
0 0 R2(L2)eik2L2 −e−ik2L2

A1eik1L1 A2e−ik1L1 −1 −1
Beik1L1 −Be−ik1L1 C1 C2







A+
1

A−
1

A+
2

A−
2


 = 0 (8.1)

where the complex coefficients A1, A2, B, C1 and C2 correspond to :

A1 = 1 +
iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
, A2 = 1 − iωl

Pc1

[
1 +

lν
rp

(1 + i)

]
,

B =
S1

S2

ρ2c2

ρ1c1

[
1 + Geiϕ

(
Tf

T1
− 1

)]
,

C1 = i

(
1 − S1

S2

)
tan(k2l) − 1, C2 = i

(
1 − S1

S2

)
tan(k2l) + 1

The reflection coefficient of the piston head presented in Fig. 4.5 is included in
the model. As this boundary condition is insensitive to the amplitude, one uses
the same reflection coefficient for all levels. The outlet of the flame tube is also
considered with the radiation impedance detailed in Eqs. (4.8) and (4.9). This
condition is also applied for all the amplitudes. The pressure jump depends on
the analytical relation derived from Melling. The FDF measurements are plot-
ted in Fig. 5.5 in terms of gain G and phase ϕ. To use these measurements for
stability analysis, one has to interpolate and extrapolate FDF data in missing
areas. The values considered for calculations are shown in Fig. 8.25.
The determinant of this system must equal zero to obtain non-trivial solutions.
This condition provides the dispersion relation describing the dynamics of the
system. This relation will be solved for the different FDF amplitudes with
the continuation methodology described in Chapter 6, in the aim of finding
complex roots ω = ωr + iωi for each length of feeding manifold L1 by treating
separately each flame tube L2.
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Figure 8.25: Gain G (a) and Phase ϕ (b) of the interpolated and extrapolated FDF.
urms corresponds to the rms value of the fluctuation amplitude and Ub the mean flow
velocity within one hole. Experimental measurements are displayed as small spheres.

8.3 Limit cycle prediction

The model B is now used to determine the frequencies and growth rates of the
four confined configurations examined in Sec. 8.1. Roots of the dispersion rela-
tion are calculated with the continuation methodology detailed in Chapter 6.
The dispersion relation is solved for increasing perturbation levels and each
feeding manifold length L1. This procedure yields a set of angular frequencies
ωr = 2πf and growth rates ωi for each feeding manifold length L1 evolving as
a function of the perturbation level urms/Ub. The feeding manifold length L1

is used as a bifurcation parameter for each confinement tube L2.
Thus, it is possible to follow the evolution of frequency and growth rate from
infinitesimally small amplitudes to the highest ones. When the growth rate
vanishes, it is assumed that a limit cycle is reached. As mentioned in Sec. 8.1,
there are many configurations typified by variable amplitudes and multiple
frequencies. In the aim of understanding the different phenomena involved in
these complex states of oscillation, the frequency associated to the main peak
of the spectrum is considered to characterize the limit cycle and compared with
predictions, but this is admittedly a simplification.
In the following figures, calculated growth rates ωi are presented in a bifurca-
tion diagram for each confinement tube L2. These bifurcation diagrams are
then used to predict flame oscillations as the feeding manifold length L1 is
modified. Figure 8.26 presents growth rate results for the shortest flame tube
L2 = 0.10 m and for the different lengths of feeding manifold L1 as the per-
turbation amplitude urms/Ub grows. This bifurcation diagram shows positive
values of ωi for the three first eigenmodes of the system. These unstable bands
are depicted by a yellow area for the first mode, the second unstable band
being represented in blue and the third one in red. Light yellow is linked to
the highest growth rate of the first mode approaching 500 s−1, whereas dark
yellow pertains to vanishing growth rates. Mode 2 and mode 3 color panels are
inverted and the highest growth rate values appear respectively in dark blue
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Figure 8.26: Bifurcation diagram for the L2 = 0.10 m confinement tube. The evolu-
tion of positive growth rate trajectories ωi is presented for different lengths of feeding
manifold between L1 = 0.10 m and 0.55 m. Each trajectory evolves along the growing
amplitude urms/Ub. The three first eigenmodes are displayed using different colors.
The first mode corresponds to the yellow area, while the second and the third are dis-
played with blue and red.

and dark red. By changing the feeding manifold length L1, it is possible to
obtain the amplitude and frequency reached at limit cycle by reading in the
bifurcation diagram the value of the perturbation level urms/Ub corresponding
to a vanishing growth rate ωi. In the present investigation, it must be stressed
that the main contributions to acoustic damping were taken into account in
model B as most of the dissipation is associated with the piston head where
reflection is not perfect, sound radiation at the flame tube outlet and in the
perforated plate channels due to viscosity. It is then not necessary to include
damping in the stability analysis by subtracting the measured damping rate α
from the calculated growth rate ωi−α as it was done for example in Palies et al.
(2011). In addition, relevance of this assumption will be tested by considering
that limit cycles occur for ωi = 0 s−1.
It is possible to determine the oscillation frequency at limit cycle by retaining
the value calculated at the amplitude where growth rate ωi vanishes. Fig-
ure 8.26 reveals different growth rate trajectories. Depending on the length L1

considered, the growth rate ωi is positive or negative for small perturbation
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Figure 8.27: State space trajectories ωi encountered in the present study. (a), (b),
(c) and (d) correspond to L1 = 0.12 m, 0.175 m, 0.19 m and 0.22 m. Flame tube L2

= 0.10 m. Bold line is linked to the growth rate of the first mode, while dashed line
displays the second mode. The third mode also appears as dashed dotted line. Limit
cycle (•) and triggering point ( �) separate positive and negative growth rates.

amplitudes urms/Ub. Results obtained for four fixed feeding manifold lengths
L1 are analyzed in Fig. 8.27 to illustrate the different possibilities. This figure
synthesizes the different types of trajectory found by solving the dispersion
relation. It shows the various possibilities encountered in this study with the
different confinement tubes L2 tested.
Figure 8.27(a) illustrates the case of a linearly unstable mode at L1 = 0.12 m.
This supercritical bifurcation is typified by a positive growth rate for infinites-
imally small perturbation amplitudes, leading to a limit cycle at urms/Ub ≈
1.5 in this case.
A new type of trajectory that was not identified in the preceding studies (Noiray
et al. (2008); Boudy et al. (2011b)) has been found in the present work. It is
shown in Fig. 8.27(b) for L1 = 0.175 m. The bifurcation diagram reveals a cusp
bifurcation with two possible limit cycles for the same mode. Calculations ex-
hibit a first mode (bold line) with positive growth rate for small perturbation
amplitudes. A limit cycle is thus reached at urms/Ub ≈ 0.2 where ωi = 0.
Nonetheless, ωi grows again from urms/Ub ≈ 0.3 until it decreases leading to
a new limit cycle found at urms/Ub ≈ 1.4. When oscillations are stabilized at
urms/Ub = 0.2 and a small finite impulse is introduced in the system, the os-
cillation amplitude increases again and the growth rate becomes positive. This
leads to an oscillation growth with a new limit cycle reached at a much higher
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level than the original oscillation. It should be noted that the high amplitude
limit cycle urms/Ub ≈ 1.4 is more stable than the initial one urms/Ub ≈ 0.2.
This latter situation was observed experimentally and it is reached by leaving
the stable band during the reverse exploration with the piston, as presented in
Sec. 8.1, Fig. 8.1. It is interesting to note that due to the peculiar frequency
evolution with the perturbation level, the same unstable mode is able to re-
veal two oscillation frequencies which are very different. In this case, the shift
between the two frequencies reaches 120 Hz.
A third situation is depicted in Fig. 8.27(c). It presents a positive growth
rate for the first mode at L1 = 0.19 m. These positive values only exist for
a certain range of amplitudes. In this situation, one deals with a subcritical
bifurcation and the system is linearly stable but nonlinearly unstable. A certain
threshold of oscillation is needed to trigger an instability. In the last situation,
corresponding to L1 = 0.22 m and displayed in Fig. 8.27(d), all growth rate
trajectories remain negative. This evolution is typical of a stable system. It is
deemed to be linearly and nonlinearly stable.
Figure 8.26 reveals various bifurcation possibilities. By reading the bifurca-
tion diagram, it is possible to predict mode switching when the bifurcation
parameter L1 is modified. This enables to predict triggering and hysteresis in
the system. This particularity, made possible with this burner, has been ob-
served in Sec. 8.1. These phenomena have been thoroughly investigated with
the simplified model A in Chapter 7, Sec. 7.2.
Experiments and predictions are now compared in terms of amplitude and fre-
quency at limit cycle. Figure 8.28(a) illustrates these evolutions by increasing
the feeding manifold length L1 after ignition at L1 = 0.11 m. The reverse
exploration, from L1 = 0.55 m to 0.11 m, is displayed on the right hand side
in Fig. 8.28(b). Bold lines correspond to predictions while square symbols
(�) indicate self-sustained oscillations observed in experiments. The acoustic
eigenmodes calculated without unsteady combustion are drawn as dashed lines
when the temperatures in the feeding manifold and the flame tube are respec-
tively fixed to T1 = 300 K and T2 = 900 K. Two colors have been used for
the experiments. Open symbols indicate instabilities with a limit cycle of fixed
amplitude and frequency. Gray symbols correspond to limit cycles featuring
an unstable amplitude. In this latter case, the main frequency peak appearing
on the pressure spectrum has been chosen for the diagram. One can draw four
conclusions from the model :

• It is possible to predict mode switching when L1 is modified. This is
well verified in predictions of limit cycle frequencies. In addition, one
is able to follow the frequency shift from the acoustic eigenmodes when
the instability grows and reaches a limit cycle. Differences between the
acoustic eigenmode frequency and the value reached at limit cycle by
the instability may be large for certain operating conditions.
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Figure 8.28: Comparison between measurements and predictions for the shortest
confinement tube L2 = 0.10 m. The feeding manifold length L1 is swept in both ways
from L1 = 0.11 m to 0.55 m (a) and L1 = 0.55 m to 0.11 m (b). Bold lines indicate
limit cycle predictions. Amplitudes and frequencies observed in the experiment are
indicated by means of square symbols (�). Open symbols pertain to stable cases, while
the gray ones reveal situations with unstable amplitude and frequency. In this latter
case, the main frequency peak of the pressure spectrum has been chosen for the diagram.
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• Oscillation amplitudes at limit cycle are well predicted except for a
few cases with a slight overestimate. This may be linked to the rough
extrapolation of data for the FDF in the high amplitude range where
it was difficult to measure it.

• The stable band is well retrieved between L1 = 0.21 m and 0.23 m,
which is embedded in the experimental range found from L1 = 0.16 m
to 0.24 m.

• Hysteresis is reproduced by the model when the bifurcation parameter
L1 is swept along the two ways of exploration. A small difference be-
tween predictions and experiments is noted. It is linked to the position
L1 corresponding to the calculated transition. In experiments, hystere-
sis was identified for L1 = 0.14 m while in the calculations, it appears
for L1 = 0.17 m. As it was shown in Fig. 8.27(b), two limit cycles exist
for the same mode when L1 = 0.17 m. By leaving the stable band in
the reverse way of exploration, from L1 = 0.55 m to 0.11 m, a limit
cycle with a small amplitude and a high frequency is well retrieved at
L1 = 0.17 m. In the first way of exploration when the feeding manifold
length is increased from L1 = 0.11 m to 0.55 m, the instability evolves
on the first mode with a high amplitude. Then, if one considers L1 =
0.17 m during the increase of L1, the disturbance needed to trigger the
high amplitude limit cycle is given by the high oscillation level of the
previous length L1 = 0.16 m.

These observations underline the effect of the amplitude on the evolution of the
flame response to flow perturbations, i.e the FDF. By taking into account this
amplitude dependency, it is possible to explain changes of flame oscillations
observed in the burner.
The same type of analysis is conducted for the other flame tubes. The bi-
furcation diagram for L2 = 0.20 m is presented in Fig. 8.29. First of all, the
diagram exhibits larger growth rates for mode 1 and mode 2 than for mode
3. Mode 3 drawn in red is always overlapped by mode 2 which is typified by
higher growth rate amplitudes. According to model B, third mode oscillations
are not feasible in the range of feeding manifold length L1 considered for this
flame tube L2. It is also worth noting that the growth rate values are higher
compared to the calculations made with the short flame tube L2 = 0.10 m for
the two first modes. Comparisons between predictions and measurements at
limit cycles are presented in Fig. 8.30.
Figure 8.30 indicate that prediction of limit cycle frequency are quite accurate.
The oscillation amplitude is also well predicted for mode 1, but some differences
arise for mode 2 at low amplitudes. The most important deviation appears
around L1 = 0.26 m, where switching occurs between the first and the second
mode. A first difference concerns the stable band observed in the experiments
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Figure 8.29: Bifurcation diagram for the L2 = 0.20 m confinement tube. The evolu-
tion of positive growth rate trajectories ωi is represented for different lengths of feeding
manifold between L1 = 0.10 m and 0.55 m. Each trajectory is a function of the per-
turbation level urms/Ub. Unstable bands for the three first eigenmodes are displayed
using different colors. The first mode corresponds to the yellow area, while the second
and the third are displayed with blue and red.
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Figure 8.30: Comparison between measurements and predictions for the L2 = 0.20
m confinement tube. The feeding manifold length L1 is swept in both ways from L1

= 0.11 m to 0.55 m (a) and L1 = 0.55 m to 0.11 m (b). Bold lines indicate limit
cycle predictions. Amplitudes and frequencies observed in the experiment are indicated
by means of square symbols (�). Open symbols pertain to stable cases, while the gray
ones reveal situations with unstable amplitude and frequency. In this latter case, the
main frequency peak of the pressure spectrum has been chosen for the diagram.
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from L1 = 0.26 m to 0.28 m. In the calculations this band is unstable with
oscillations locked on mode 2. A second issue is linked to the amplitude of the
predicted limit cycle. From L1 = 0.29 to 0.38 m, the predicted oscillation level
is overestimated for mode 2. Frequency predictions show a better agreement
with experiments, except in the multiple frequency band between L1 = 0.21 m
and 0.25 m. In this range, mode 1 is predicted unstable with a large oscillation
level, but the system does not operate on a stable limit cycle and never reaches
this prediction.
Results for the third flame tube with the length L2 = 0.30 m are displayed
in Fig. 8.31. Comparison between predictions and measurements of instability
frequencies and amplitudes observed at limit cycles are shown in Fig. 8.32.
First, one can note that frequencies and amplitudes are fairly well predicted.
It is interesting to see that the large frequency shift between the acoustic eigen-
mode and the limit cycle frequency observed in the experiment is well captured
by calculation from L1 = 0.17 m to 0.22 m. As already observed with the flame
tube L2 = 0.20 m, switching from mode 1 to mode 2 is predicted at higher
amplitudes compared to those observed in the experiments. This deviation is
significant between L1 = 0.34 m and 0.49 m. The hysteresis found by sweeping
the piston in both directions is not predicted by the model because the asso-
ciated unstable band for mode 1 fully overlaps that corresponding to mode 2
in Fig. 8.31. By examining the limit cycle frequencies in Fig. 8.32 it is seen
that they are well predicted. An issue bears on the multiple frequency band
between L1 = 0.23 m and 0.32 m, where one expects an instability associated
to the first mode using the FDF model.
The bifurcation diagram for the last confinement tube L2 = 0.40 m is presented
in Figs. 8.33. Comparisons with measurements are presented in Fig. 8.34. For
many feeding manifold lengths L1, the oscillation amplitude and frequency
recorded are not fixed while predictions yield defined limit cycles. Thus, it
is more difficult to distinguish differences with calculations in this case. One
should delineate situations with a fixed amplitude (open symbols) from the
unsteady cases (gray symbols).
Feeding manifold lengths corresponding to an oscillation at a single frequency
are embedded from L1 = 0.15 m to 0.20 m, 0.44 m to 0.46 m and 0.52 m
to 0.55 m. The predicted amplitude and frequency match fairly well with
measurements for the first mode. Nevertheless, deviations arise for the second
one. In the multiple frequency cases, the flame motion does not stabilize on a
well defined limit cycle hindering quantitative comparisons with calculations.
The hysteresis noticed for L1 = 0.45 m and 0.44 m in the experiments is not
predicted. Growth rate trajectories remain positive during the switch from
mode 1 to mode 2 and no gap exists in the bifurcation diagram for both way
of sweeping L1.
Regardless the problem of single or multiple frequencies, oscillations associated
with mode 1 are predicted by the model until L1 = 0.42 m in Fig. 8.33. An
oscillation associated to mode 2 follows between L1 = 0.43 m and 0.55 m. The
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Figure 8.31: Bifurcation diagram for the L2 = 0.30 m confinement tube. The evolu-
tion of positive growth rate trajectories ωi is represented for different lengths of feeding
manifold between L1 = 0.10 m and 0.55 m. Each trajectory is a function of the pertur-
bation level urms/Ub. Unstable bands for the first two eigenmodes are displayed using
different colors. The unstable band associated to mode 1 is drawn in yellow, while the
second one linked to mode 2 appears in blue. In this range of lengths L1, the third
mode is always stable.
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Figure 8.32: Comparison between measurements and predictions for the L2 = 0.30
m confinement tube. The feeding manifold length L1 is swept in both ways from L1

= 0.11 m to 0.55 m (a) and L1 = 0.55 m to 0.11 m (b). Bold lines indicate limit
cycle predictions. Amplitudes and frequencies observed in the experiment are indicated
by means of square symbols (�). Open symbols pertain to stable cases, while the gray
ones reveal situations with unstable amplitude and frequency. In this latter case, the
main frequency peak of the pressure spectrum has been chosen for the diagram.
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dynamics of the system associated to this longer flame tube is complex. The
origin of this issue lies in the roots of the dispersion relation. In this case,
the eigenmodes calculated in the absence of unsteady combustion are found
at very close frequencies. Recognizing that the solution corresponding to the
instability may be shifted from its acoustic eigenmode, which was for example
shown with the preceding flame tubes L2 = 0.20 m and 0.30 m, and recognizing
that roots of the dispersion relation are very close in the present configuration,
it is more difficult to track the evolution of an unstable mode as the flame tube
is lengthened. This is the reason why the transition from mode 1 to mode 2
presented in Fig. 8.33 is less clear as the feeding manifold length L1 is increased.
By examining the oscillation amplitude, it is interesting to see that switching
from mode 1 to mode 2 is well defined for L1 = 0.43 m in the bifurcation
diagram. The oscillation level reached by the instability is higher than in the
previous confined configurations. This is linked to the low frequency range of
the instabilities. The unstable modes lie around 400 Hz and the FDF gain G
takes very large values which overcomes unity in this frequency range. The
flame continuously amplifies the instability and the gain does not fall to zero
even at very large perturbation amplitudes urms/Ub. The limit cycle reached
in these cases only depends on the change of phase lag ϕ of the FDF with the
amplitude. Predictions yield a cancellation of growth rate when the phase lag
is equal to π.

8.4 Predictions synthesis

A nonlinear stability analysis based on the FDF description was carried out
for four different confined configurations with 45 feeding manifold lengths L1.
Considering all these cases, a good agreement between predictions and exper-
iments has been found. It has been possible to estimate the amplitude and
frequency of the observed limit cycles. The agreement with experiments is
good for the shortest confinement tube L2 = 0.10 m and for most of the feed-
ing manifold lengths L1 of the three longer flame tubes L2. As the flame tube
L2 is lengthened, the instability amplitude increases and larger differences with
experiments are observed.
It was shown that it is possible to predict limit cycle amplitudes and frequen-
cies, mode switching when the feeding manifold depth L1 is modified, trigger-
ing, frequency shift from the acoustic eigenmodes and hysteresis observed in
experiments. Two difficulties were also identified in these calculations. First,
the instability amplitude is often overestimated by the model for the long con-
finement tubes. Then, the multiple frequency bands found in the experiments
show that FDF model predictions are not necessarily attained. These disrupted
limit cycles correspond to flame oscillations occurring either with beating or
irregular bursts, or even with period modifications which were described in
Sec. 8.1.
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Figure 8.33: Bifurcation diagram for the L2 = 0.40 m confinement tube. The evolu-
tion of positive growth rate trajectories ωi is presented for different lengths of feeding
manifold between L1 = 0.10 m and 0.55 m. Each trajectory is a function of the pertur-
bation level urms/Ub. Unstable bands for the first two eigenmodes are displayed using
different colors. The unstable band associated to mode 1 is drawn in yellow, while the
second one linked to mode 2 appears in blue. In this range of lengths L1, the third
mode is always stable.
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Figure 8.34: Comparison between measurements and predictions for the L2 = 0.40
m confinement tube. The feeding manifold length L1 is swept in both ways from L1

= 0.11 m to 0.55 m (a) and L1 = 0.55 m to 0.11 m (b). Bold lines indicate limit
cycle predictions. Amplitudes and frequencies observed in the experiment are indicated
by means of square symbols (�). Open symbols pertain to stable cases, while the gray
ones reveal situations with unstable amplitude and frequency. In this latter case, the
main frequency peak of the pressure spectrum has been chosen for the diagram.
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To shed light on prediction failures, the model and its results are thoroughly
examined. Regarding amplitude overestimations and also the unexplained hys-
teresis found for the L2 = 0.30 m and 0.40 m confinement tubes, two elements
have been investigated. First of all, if one reconsiders the thermoacoustic model
defined in Eq. (8.1), only the temperatures in the cavities and the reflection co-
efficient at the combustor outlet remain potential parameters which may have
been roughly estimated. The reflection coefficient of the piston head R1(0)
was determined experimentally for different forcing amplitudes up to 130 dB.
It remains uniform over the whole range of perturbation levels explored. The
flame temperature Tf was chosen in agreement with the adiabatic flame tem-
perature and stays constant. Thus, only the temperature T2 in the flame tube
and the reflection coefficient taken for the outlet R2(L2) can be questioned.
Calculations were conducted with a higher flame tube temperature T2 or with
different models for the outlet reflection coefficient R2(L2).
Modifications of the temperature T2 and the reflection coefficient R2(L2) reveal
variations in the bifurcation diagram. It was for example possible to reproduce
the stable zone observed in the experiments for the L2 = 0.20 m flame tube.
By changing the temperature T2 inside the flame tube, one was able to re-
produce a stable band for certain ranges of L1 for all the flame tubes L2 of
the study. Increasing the temperature T2 decreases the growth rate ωi which
reaches negative values in the zone of switching from mode 1 to mode 2. The
amplitude urms/Ub where the growth rate vanishes around this zone is also
diminished. On the other hand, switching from mode 1 to mode 2 is shifted
to shorter feeding manifold lengths L1 from 0.02 to 0.03 m. This may explain
the failure in predicting the hysteresis for the L2 = 0.30 m and 0.40 m con-
finement tubes. The reverse exploration is made once the maximum extension
L1 has been reached several minutes after ignition. When experiments in the
reverse direction are carried out the combustor is hotter than at the beginning
of the exploration with the sliding piston. This temperature increase should
be reflected in the calculations. This may be the reason why the calculations
retrieve the small band of L1 where oscillation almost stops in the reverse
exploration for the L2 = 0.30 m and 0.40 m flame tubes.
The reflection coefficient of the flame tube outlet R2(L2) is more prone to
change at high amplitudes and high frequencies. Thus, by considering modifi-
cation of the outlet impedance at high frequency, leading to a decrease in the
modulus of the reflection coefficient and a phase lying closer to −π/2 instead
of −π, it is possible to reduce the amplitude of perturbations corresponding to
vanishing growth rates. While this occurs at high frequency, it is interesting to
see that it matches with the zone of switching from mode 1 to mode 2 where
mode 2 frequencies take their larger values and show the worst agreement in
amplitude prediction.
This parametric analysis highlights that prediction failures leading to over-
estimated amplitudes, the absence of hysteresis or even the absence of stable
zone, in some of the calculated bifurcation diagrams, are probably linked to the
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rough estimate of the flame tube temperature T2 and the need of an improved
model or measure for the outlet reflection coefficient R2(L2).
Regarding the multiple frequency bands, the close roots of the dispersion re-
lation mentioned herein are thoroughly examined in the following chapter. It
will be seen that these close roots may be related to the unstable oscillations.

8.5 Mode shape inside the combustor

The calculations undertaken in the preceding section yield the frequency f and
amplitude urms/Ub of the different instabilities at limit cycle. These values can
be injected back in the matrix (Eq. (8.1)) to determine the amplitudes A+

n and
A−

n and therefore evaluate pressure p′
n(zn) and velocity u′

n(zn) fluctuation along
the geometry of the combustor. By using different microphones the pressure
signal has been measured at different locations along the feeding manifold
L1. In addition, it is possible to obtain the pressure in the flame plane with
microphone M3 plugged on a waveguide (see Fig. 1.2). It is then possible to
compare these values to calculations made by injecting back frequency and
amplitude in the matrix. Besides, pressure measurements can also be used to
estimate the velocity fluctutation by using a reconstruction of the signal by
means of the reflection coefficient of the piston head R1(0).

8.5.1 Estimation of pressure and velocity

The calculations of the previous section yield frequency f , growth rate ωi and
amplitude urms/Ub of the self-sustained combustion oscillations. These values
are used to evaluate the matrix Eq. (8.1) but they allow also to read the gain G
and phase ϕ of the flame response from the FDF which need to be injected back
in Eq. (8.1). It should be noted that the values considered in these calculations
correspond to the ones found with the model. One does not use the limit cycle
frequency and amplitude measured in the burner.
The matrix M(ω) Eq. (8.1) is fully determined and the vector X of amplitudes
A+

n and A−
n satisfaying to the system M(ω)X = 0 can be evaluated. This is

done by estimating the eigenvalues λn and eigenvectors Vn of the system. The
eigenvector solution of the system M(ω)X = 0 is linked to the eigenvalue
λn = 0. This returns the eigenvector (A+

1 , A−
1 , A+

2 , A−
2 ). Multiplying this

vector by a coefficient α, one obtains a non-trivial family of solutions for the
system M(ω)X = 0. But there is a single value α satisfying to the oscillation
level urms/Ub reached at limit cycle.
This value is determined by using the value urms/Ub computed with model B
in the flame plane in the previous section. This allows to calculate a theoretical
mode shape with the limit cycle obtained from the FDF framework. This mode
shape is compared to the results obtained from measurements on the multiple
flame combustor by means of the different microphones. The pressure and
velocity fluctuations are therefore obtained in two steps :
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• In the first step, the system M(ω)X = 0 is solved. Once the eigenvector
corresponding to λn = 0 is determined, the pressure and velocity time
traces are estimated at different locations zn inside the combustor.

• In the second step, pressure and velocity found in the first step at
each location zn of the burner, are made dimensionless by the velocity
fluctuation calculated on the flame plane ũ1(L1). Then, it is multiplied
by the amplitude urms found with the FDF calculations in this plane
when ωi = 0.

The following expressions are linked to the second step and provide the pressure
and velocity distribution at each location in the combustor :

p′
n(zn) =

p′
th(zn)

u′
th(L1)

urms

Ub
Ubn

u′
n(zn) =

u′
th(zn)

u′
th(L1)

urms

Ub

(8.2)

where p′
th(zn) and u′

th(zn) designate the reconstructed signals and Ubn
denotes

the bulk velocity inside the cavity considered. In the feeding manifold Ub1 =
1.05 m.s−1. The flame tube velocity is calculated by using the conservation of
the mass flow rate Ub2 = (ρ1S1Ub1)/(ρ2S2).

8.5.2 Comparison between measurements and reconstruction

The reconstruction of the mode shape is now compared to measurements in
some configurations. The plugs regularly spaced along the feeding manifold L1

and the microphone M3 with its waveguide connected on the plate supporting
the flame tube L2 (see Fig. 1.2) are used for these comparisons. These micro-
phones provide the pressure oscillation inside the burner at different locations
by setting a certain feeding manifold length L1 and a flame tube L2. Measure-
ments are done with a sampling frequency fs = 16384 Hz, with a duration of 4
s. These pressure signals are post-processed to obtain the corresponding veloc-
ity fluctuations. This is done by means of the reflection coefficient of the piston
head R1(0). This enables to determine the velocity signal at the locations of
pressure measurements. This may be written as follows :

u′
1(z1) = ℜ

{
1

ρ1c1

R1(0) eik1z1 − e−ik1z1

R1(0) eik1z1 + e−ik1z1
p̃1(z1) e−iωt

}
(8.3)

where z1 stands for the position in the tube, R1(0) is the reflection coefficient
of the piston head and p̃1(z1) e−iωt indicates the Hilbert transform of the mi-
crophone pressure signal. The velocity corresponds to the real part of this
expression (ℜ). In this estimation, the angular frequency ω is taken from the
observed instability at limit cycle. One can see that all the values involved in
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Figure 8.35: Modal structure of pres-
sure and velocity inside the combustor
for L2 = 0.20 m and L1 = 0.32 m. The
maximum pressure envelope is displayed
in the upper part, while the velocity ap-
pears on the lower part. The multipoint
injector is located between the two ver-
tical dashed lines. Measurements made
along the system are drawn by means of
gray circle symbols on both graphs.
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Figure 8.36: Modal structure of pres-
sure and velocity inside the combustor
for L2 = 0.20 m and L1 = 0.48 m. The
maximum pressure envelope is displayed
in the upper part, while the velocity ap-
pears on the lower part. The multipoint
injector is located between the two ver-
tical dashed lines. Measurements made
along the system are drawn by means of
gray circle symbols on both graphs.

this reconstruction depend on experiments contrary to calculations of pressure
and velocity with Eq. (8.2), where all the terms come from the FDF model.
The distribution of pressure and velocity fluctuations at limit cycle are calcu-
lated and measured in three configurations. Results for two feeding manifold
lenghts L1 = 0.32 m and 0.48 m of the confinement tube L2 = 0.20 m are
firstly considered. A third case is considered with a longer flame tube L2 =
0.30 m and a feeding manifold length L1 = 0.37 m.
The results for the first flame tube L2 = 0.20 m are presented in Figs. 8.35
and 8.36 for L1 = 0.32 m and 0.48 m. The mode shape is drawn for its
maximum amplitude at each location along the combustor. Gray symbols
correspond to the measurements, while calculations are drawn with bold lines.
These two cases show the second longitudinal eigenmode which establishes
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in the system. Pressure measurement reaches its maximum amplitude on the
piston head with a rms level of 600 Pa in the first case and 760 Pa in the second
one. The velocity fluctuation is maximum inside the feeding manifold for L1 =
0.32 m. Calculations indicate a maximum level urms/Ub = 2.7 reached in the
middle of the feeding manifold. This maximum is also found inside the feeding
manifold for L1 = 0.48 m with urms/Ub = 1.9. Calculations with the FDF
model enable to retrieve the mode shape inside the combustor. By comparing
the two cases, one notes a better agreement between theory and measurements
for L1 = 0.48 m. In particular, the velocity discontinuity on the flame plane is
fairly well retrieved at z1 = 0.495 m. In this latter case, some differences appear
for the velocity distribution at L1 = 0.15 m and 0.225 m. This is probably
linked to the single measurement of pressure at this location typified by a low
pressure level (pressure antinode). For these two lengths, it would be better to
set another microphone in front of the one used in this experiment to reduce
measurement incertitudes.
Differences appear between measurements and calculations for L1 = 0.32 m in
Fig. 8.35. In this case, the FDF calculations overestimate the limit cycle am-
plitude compared to the experiment. As mentioned above, the values injected
back in the matrix Eq. (8.1) correspond to these calculations and therefore
influence the results. It is interesting to see that velocity and pressure fluctu-
ations take large values inside the flame tube L2 for L1 = 0.32 m. This is not
the case for L1 = 0.48 m where velocity and pressure fluctuations are more
important inside the feeding manifold L1.
Results for the longer flame tube L2 = 0.30 m and L1 = 0.37 m are presented
in Fig. 8.37. In this experiment, the limit cycle amplitude does not exceed
urms/Ub = 0.82, which is largerly overestimated by the FDF calculations. This
induces differences for the mode shape between measurements and calculations
as shown in Fig. 8.37. In addition, it is important to note that the predicted
frequency at limit cycle is lower than the one observed in experiment. This
deviation reaches 36 Hz while it was limited to 15 Hz with the preceding flame
tube L2 = 0.20 m at L1 = 0.32 m. The pressure fluctuation is maximum on
the piston head with a rms level of 400 Pa, while the larger velocity fluctuation
is found in calculations at the flame tube outlet with urms/Ub = 5.4. The
velocity fluctuation remains limited inside the feeding manifold while the flame
tube exhibits higher levels of oscillation. Regardless the differences between
calculations and measurements, the mode shape is again well retrieved by the
model.
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Figure 8.37: Modal structure of pressure and velocity inside the combustor for L2 =
0.30 m and L1 = 0.37 m. The maximum pressure envelope is displayed in the upper
part, while the velocity appears on the lower part. The multipoint injector is located
between the two vertical dashed lines. Measurements made along the system are drawn
by means of gray circle symbols on both graphs.





Chapter 9

Limit cycles of variable
amplitude

This chapter focuses on limit cycles of variable amplitude observed in
the experiments. These dynamical behavior was reported in two pub-
lications which are reproduced here in sections 9.1 and 9.2. The first
analysis deals with limit cycles sustained by the simultaneous oscilla-
tion of two modes. The second concentrates on oscillations without
organized structure reminiscent of chaotic oscillations. The complete
model “model B” is involved in the following calculations. This model
takes into account the non ideal reflection coefficients of the system in-
let and outlet and effects of the ring cavity surrounding the injection
system.

9.1 Analysis of limit cycles sustained by two modes
in the flame describing function framework

This section corresponds to a publication presented at the 3rd INCA workshop
and published in Comptes Rendus Mécanique de l’Académie des Sciences in
2013 :

Boudy, F., D. Durox, T. Schuller, and S. Candel. 2013. “Analysis of limit
cycles sustained by two modes in the flame describing function framework.” C.
R. Mec. 341 (1–2): 181–90. doi:10.1016/j.crme.2012.10.014

For the sake of clarity, the present section has been shortened compared to the
journal publication. The introduction is reduced and centers around the un-
stable amplitudes. The experimental setup was kept to allow an easier reading
of the contents, but it can be skipped since it is described in Chapter 1.

http://dx.doi.org/10.1016/j.crme.2012.10.014
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9.1.1 Abstract

The Flame Describing Function (FDF) framework, developed for the nonlinear
instability analysis of combustors, has been validated more recently in a generic
configuration comprising an upstream manifold, an injection unit and a flame
tube. It was shown that it is possible to predict limit cycles which exhibit a
nearly stable amplitude and a single frequency. This system featuring a wide
variety of dynamical phenomena, is used here to explore a new range of self-
sustained flame oscillations. Depending on the geometry, the system exhibits
stable or variable amplitude limit cycles. In the first case, oscillations have
an essentially constant amplitude and are well retrieved with the FDF frame-
work, whereas in the second case, limit cycles feature different types of ampli-
tude unsteadiness and require some further consideration. The present article
is concerned with one type of unstable oscillation in which a regular period
modification occurs in the presence of two modes, leading to frequency hetero-
dyning. It is found from the FDF analysis that such oscillations sustained by
two modes may occur when there is an overlap between modes corresponding
to super and subcritical bifurcations. An additional condition which has to be
fulfilled to obtain this behavior is inferred from experiments.

9.1.2 Introduction

In the prediction of self-sustained combustion oscillations, problems arise when
the limit cycle amplitude cannot be considered constant but evolves as a func-
tion of time. In some cases the amplitude modulations are irregular giving
rise to “Galloping limit cycles” (GLCs), a term borrowed from civil engineer-
ing (Scanlan et al. (2004)) to define cable oscillations with varying amplitude.
In the present case the limit cycle amplitude is modulated in a more regular
fashion and the oscillation is sustained by two modes and will be designated
in what follows as TMLC (Two Modes Limit Cycle). This behavior was not
observed in the unconfined situation investigated in Noiray et al. (2008) but
TMLCs arise in the generic system considered in the present study in a limited
range of the bifurcation parameter.
In the analysis and calculation of thermoacoustic coupling it is generally as-
sumed that the amplitude and frequency are fixed. It is known however that
limit cycles are not always locked on an amplitude at a fixed frequency. This
is for example found in the premixed laboratory combustor used by Sterling
(1993) where quasi-periodic oscillations were identified and linked to the in-
teraction of two acoustic eigenmodes. More recent experimental investigations
in a multiple flame combustor equipped with a perforated plate comprising
seven orifices have also revealed variable amplitude limit cycles (Kabiraj et al.
(2011b); Kabiraj et al. (2011a)) which were uncovered by examining different
combustion chamber lengths.
The present work complements our previous investigation of a multiple in-
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jection combustor (Boudy et al. (2011b)). It specifically deals with TMLCs
appearing in this system in which the multiple flame region is confined in
a tube. This variable amplitude oscillation state, which can be qualified as
“buzzing-blown” combustion due to its sound signature, is analyzed in the
special case where two different modes coexist. The test rig is briefly presented
in Sec. 9.1.3. Experimental results are reported in Sec. 9.1.4. The situation
is examined with the FDF framework in Sec. 9.1.5. It is shown that TMLCs
arise in a region where the domains of instability of two modes overlap.

9.1.3 Burner geometry and operating conditions

This section describes the experimental setup detailed in Part I of the present
manuscript. The reader can skip this part which concerns the thickest flame
holder l = 15 mm.

The experimental setup used in the present work is sketched in Fig. 9.1. Except
for a thickened perforated plate, it features the elements used in our previous
investigations (Boudy et al. (2011b); Boudy et al. (2011a)). An adjustable
feeding manifold length L1 of diameter D1 = 0.07 m allows injection of a
methane/air mixture. This mixture flows through a piston used to change the
feeding manifold length L1 and delivers the fresh stream through a peripheri-
cally holed flat head. Flames are anchored on a perforated plate. The thickness
of this plate is l = 15 mm and there are N = 421 holes of diameter dp = 2
mm. A confinement tube of length L2 = 0.10 m and diameter D2 = 0.13 m
encloses the combustion region. Regimes of combustion are characterized at
limit cycle by means of velocity and pressure measurements. Heat release rate
fluctuation is estimated by measuring free radicals emissions. The mass flow
rate is set here to ṁ = 4.71×10−3 kg.s−1 for an equivalence ratio of φ = 1.03,
providing a thermal power of 13.3 kW. This flow induces a bulk velocity Ub =
3.1 m.s−1 in each perforated plate channel.
Three microphones are used for pressure measurements. The first one M1 is
located 24.5 cm away from the burner axis. The second M2 is connected to
a waveguide which is plugged in the same section as a hot wire located 3 cm
below the perforated plate. Microphone M3 is also connected on a waveguide
to scan the pressure evolution in the flame region. Free radical light emission is
measured by a photodiode equipped with an OH∗ filter. This sensor placed at
a distance from the flame tube collects the light radiated by the flame region.
Another set of experiments has been used to characterize the flame response
subjected to harmonic velocity perturbations of different amplitudes. The flow
is excited by a loudspeaker placed at the bottom of the burner. It modulates
the flow from 0 to 1300 Hz in a relative amplitude range (urms/Ub) swept from
6 to 77 % where Ub indicates the bulk flow velocity in the perforation. Loud-
speaker efficiency bounds the amplitude and frequency range covered in these
experiments. Nevertheless, thanks to the forced flame response measurements
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Figure 9.1: Experimental setup and diagnostics used to characterize self-sustained
instabilities.

and the burner self-sustained combustion oscillations, the flame response is
interpolated and extrapolated in missing areas. This flame response linked to
a set of Flame Transfer Function at different amplitudes is designated as the
Flame Describing Function (FDF). It is defined as the ratio of the relative heat
release rate fluctuations to the relative velocity fluctuations :

F (ωr, urms/Ub) =
˜̇Q/ ¯̇Q

urms/Ub
= G (ωr, urms/Ub) eiϕ(ωr,urms/Ub) (9.1)

where ωr indicates the angular forcing frequency and urms denotes the root
mean square velocity fluctuation measured by LDV at 0.7 mm above one hole
of the perforated plate.

9.1.4 Experimental analysis

The system described in Sec. 9.1.3 is now used to obtain the bifurcation diagram
of self-sustained combustion oscillations for a confinement tube length L2 =
0.10 m by varying the feeding manifold length L1 between 0.11 m and 0.77 m.
The experimental exploration consists of increasing L1 by steps of 1 cm. Once
the maximum extension has been reached the length of the upstream manifold
is reduced from L1 = 0.77 m to 0.11 m. Regimes of combustion oscillation are
either stable or unstable. In the unstable case, a frequency and amplitude are
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deduced from pressure, velocity and heat release rate records. In the stable
case, the flame does not oscillate and a low level of noise is mainly generated
by the fresh stream flowing in the duct.
Oscillatory combustion regimes present different types of limit cycles. One
may distinguish two groups. The first features stable oscillation amplitudes
which have already been documented in previous articles (Noiray et al. (2008);
Boudy et al. (2011b); Boudy et al. (2011a); Palies et al. (2011)). In the second
group, one finds GLCs where the oscillation exhibits either regular or irregular
envelope modulations. These modulations result from the presence of multi-
ple frequencies which are revealed by a spectral analysis of the signals. One
surprising issue is that there is some variability in the limit cycles. The sound
signal which is perceived under such conditions has the general character of a
“buzzing” but with some irregular quasi-periodic low frequency modulations
and it is designated as “buzzing-chugged” combustion.
The configuration used in the present work with a short flame tube exhibits
variable amplitude limit cycles in two ranges of length L1. Figure 9.2 shows
the frequency evolution obtained by increasing the feeding manifold length L1

from 0.11 m to 0.77 m. Two graphs display the frequencies corresponding
to the major components in the velocity spectrum for each feeding manifold
length L1. The upper graph (Fig. 9.2(a)) shows the main frequency of the limit
cycle whereas the lower graph (Fig. 9.2(b)) indicates the next most important
spectral components in the multiple frequency cases. When these spectral
components are close sidebands of the central frequency the two sideband fre-
quencies are indicated. Otherwise, the lower plot only shows the frequency of
the second most important component. An examination of Fig. 9.2(b), indi-
cates the range of lengths L1 corresponding to TMLCs, which is embedded
between L1 = 0.52 m and 0.64 m.
As L1 is increased from its initial value of 0.11 m, oscillations appear around
the first mode and remain in the vicinity of this mode until L1 = 0.15 m. The
system then reaches a stable band from L1 = 0.16 m to 0.24 m. At L1 = 0.25
m the system features a new unstable range around the second mode. This
single mode oscillation persists until L1 = 0.51 m. A first range of variable
amplitude limit cycles is found for L1 = 0.40 m and 0.41 m. In this interval
the signal is regularly modulated as shown in Fig. 9.3, for L1 = 0.40 m. The
pressure spectrum features two side peaks located near the main frequency.
This side band situation is marked by two black circle symbols plotted in
Fig. 9.2(b). Phase space reconstruction provides some additional insight on
the oscillation behavior. The time series analysis (Small (2005)) requires an
embedding dimension de and an optimal time delay τ which are then used to
plot the trajectories in phase space. The “False Nearest Neighbours” method
provides de. As explained in Abarbanel et al. (1993), the time delay τ may be
chosen by examining the signal autocorrelation function and finding the time
value where it drops to zero. For L1 = 0.40 m one finds τ = 7 periods of
the sampling frequency (fs = 16384 Hz), i.e. almost one quarter of the main
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Figure 9.2: Frequency evolution by increasing the feeding manifold length L1 for
the L2 = 0.10 m flame tube. The six first acoustic eigenmodes calculated without
an unsteady flame and different temperatures in each cavity are drawn with dashed
lines. The feeding manifold temperature is fixed to T1 = 300 K, while the flame tube
is set to T2 = 900 K. Top graph (a) represents the main frequency appearing on
the velocity signal spectrum ( ◦). Lower graph (b) shows the other frequencies found
in multiple frequency cases. Two black circles ( •) are used in the case of sidebands
frequencies (first band of variable amplitude limit cycles) whereas only one circle shows
the presence of another mode in the second multiple frequency band. The small arrows
indicate the lengths studied and mentioned in the text.
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frequency period found at 600 Hz. The embedding dimension is estimated to be
de = 4. It indicates the need to track the phase portrait in a four dimensional
space. Nevertheless, it would be difficult to follow the trajectory in a such
dimension. In this case, it is standard to consider a three-dimensional phase
space. In addition, the rate of “false neighbours” is not so high with de = 3.
The “False Nearest Neighbours” technique relies on the points evolution in the
phase space when the dimension is progressively increased. When these points
are “false neighbours”, they move one from another with the increment. This
gives a percentage of moving points decreasing along the dimension growth. A
rate of 10 % is assumed to give the pattern exhibiting the proper dynamical
behavior. In the present case, the use of three dimensions is a compromise
between the difficulty to read the phase space reconstruction of higher value
and the fact that the rate of false nearest neighbours falls to 20% when de = 3.
One obtains a ring like structure confirming that the amplitude is modulated
with a certain steadiness. This pattern features a flat ring which indicates
that the frequencies of the different amplitudes are close. In the case of big
differences this ring would have not been flat.
Beyond L1 = 0.51 m, the third mode arises until L1 = 0.77 m. This oscillation
features multiple frequencies for L1 = 0.52 m to 0.64 m as is well illustrated by
analyzing the signal recorded for a particular value of L1 = 0.58 m belonging
to this range (Fig. 9.4). The pressure oscillates at a frequency corresponding
to the third mode fm3 = 690 Hz. Its amplitude is modulated with a period
which is equal to three times that corresponding to the fundamental frequency
fc = fm3. The spectrum reveals the presence of modes 2 and 3. One also
finds a low frequency at 234 Hz which corresponds to the difference between
fm3 − fm2. In the present case this gives rise to a period tripling phenomenon
observed in the pressure record where one finds that three fundamental peri-
ods are necessary to recover the same signal value. Phase space reconstruction
is obtained with the methodology described previously. One obtains an em-
bedding dimension de = 4 while the optimal time delay τ corresponds to 6
periods of the sampling frequency fs, i.e. 25.3 % of the fm3 frequency period.
A three-dimensional space is used once more and the reconstruction exhibits
three circular patterns corresponding to three amplitude levels induced by the
period tripling characterizing this case. The phase space reconstruction allows
to confirm a different behavior in comparison to the one analyzed before with
L1 = 0.40 m. Indeed with L1 = 0.58 m, the circular patterns are not in the
same plane. It reveals that the frequency changes largely with the amplitude
compared to the previous case. This analysis is especially useful for the other
lengths L1 where the spectrum is not always as clear as the one presented here.
It allows to delineate different circular patterns and helps to clarify the system
dynamics.

In a nutshell, this configuration exhibits stable and variable amplitude limit
cycles. In the first band of unstable oscillation amplitudes, between L1 = 0.40
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Figure 9.3: Pressure evolution recorded by microphone M2 (top) for L2 = 0.10 m and
L1 = 0.40 m. The spectrum (left) and phase space reconstruction (right) are displayed
below. Acoustic eigenmodes calculated without the flame but by assuming different
temperatures in each cavity are drawn as vertical lines below the pressure spectrum.
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Figure 9.4: Pressure evolution recorded by microphone M2 (top) for L2 = 0.10 m and
L1 = 0.58 m. The spectrum (left) and phase space reconstruction (right) are displayed
below. Acoustic eigenmodes calculated without the flame but by assuming different
temperatures in each cavity are drawn as vertical lines below the pressure spectrum.
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m and 0.41 m, the signal is regularly modulated and this corresponds to the
presence of two side-peaks around the central frequency. In the second band
pertaining to L1 = 0.52 m to 0.64 m, two modes are simultaneously present
and generate a frequency difference which in the range of observation produces
a period tripling phenomenon. The study is now focused on this second kind
of limit cycles sustained by two modes (TMLCs).

9.1.5 Theoretical interpretation

It is natural to seek an explanation for oscillations of the type described pre-
viously. We focus on unstable oscillations sustained by two modes which are
probably the most commonly observed in practice. To this purpose we use the
FDF framework to determine the growth rates of specific modes of oscillation.
The analysis relies on the nonlinear dispersion relation derived by combining an
acoustic network description of the system with a flame response represented
by a family of transfer functions corresponding to different amplitude levels
(the Flame Describing Function).
The model of the system is sketched in Fig. 9.5. A reflection coefficient defines
the inlet and outlet of the combustion system. This can be represented as
an acoustic network as in many studies of combustion instability (see Keller
(1995); Paschereit et al. (2001)). A model of the perforated plate, used to an-
chor small conical flames, is also considered with a dynamical relation adapted
from Melling (Melling (1973)) to link the pressure difference and the flow ve-
locity in each channel. By considering boundary and matching conditions of
acoustic variables between the upstream manifold and flame tube, one obtains
the following system of equations written in a matrix form :




1 −R1(0) 0 0
0 0 R2(L2)eik2L2 −e−ik2L2

A1eik1L1 A2e−ik1L1 −1 −1
Beik1L1 −Be−ik1L1 C1 C2







A+
1

A−
1

A+
2

A−
2


 = 0 (9.2)

where A1, A2, B, C1 and C2 correspond to :

A1 = 1 +
iωl

Pc1

[
1 +

lν
rp

(1 + i)
]
, A2 = 1 − iωl

Pc1

[
1 +

lν
rp

(1 + i)
]
,

B =
S1

S2

ρ2c2

ρ1c1

[
1 +

(
Tf

T1
− 1

)
Geiϕ

]
,

C1 = i
(
1 − S1

S2

)
tan(k2l) − 1, C2 = i

(
1 − S1

S2

)
tan(k2l) + 1

In this expression, |R1(0)| exp(iφ1(0)) and |R2(L2)| exp(iφ2(L2)) pertain to
the reflection coefficients at the burner inlet and outlet. The FDF appears
as G exp(iϕ) and Tf denotes the flame temperature. The perforated plate
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Figure 9.5: Burner and symbol convention used for the analytical model.

used as a flame holder is taken into account with a model due to Melling
(Melling (1973)), where lν = (2ν/ω)1/2 stands for the thickness of the acoustic
boundary layer in each channel. The porosity appears as P = Nπr2

p/πR2
1

where rp and R1 respectively designate the radius of a hole of the perforated
plate and the one of the feeding manifold. Its surface area is noted S1 while the
one of the confinement tube corresponds to S2. The determinant of the system
must vanish to obtain non trivial solutions. This provides a dispersion relation
which depends nonlinearly on the amplitude in a way defined by the FDF.
The complex angular frequency ω = ωr + iωi solution of the dispersion relation
gives the angular frequency ωr = 2πf and the growth rate ωi of the oscillation.
This solution is computed for each length L1 belonging to the experimental
range. This calculation is carried out for different amplitude levels and it is
thus possible to follow the solution as a function of the amplitude.
By considering all the roots of the dispersion relation for a range of amplitudes
and for each feeding manifold length L1, it is possible to plot the bifurcation
diagram shown in Fig. 9.6 which presents growth rate contours calculated for
the first three eigenmodes. The growth rates are displayed with three different
colors corresponding to the first three modes as indicated at the top of the
figure. Contours plotted in the three domains provide the growth rates as a
function of amplitude for each feeding manifold length L1. When the growth
rate vanishes ωi = 0 s−1 one obtains a boundary contour which possibly defines
a limit cycle. It is interesting to note that there are regions where a single mode
prevails and other regions where there is a modal overlap. When there is an
overlap one expects to find a more complex behavior than in the situation
featuring an isolated mode.
At this point it is useful to examine the experimentally observed amplitudes of
oscillation. Oscillation amplitudes associated to the first mode are displayed as
open circle symbols (◦) while the second mode oscillation amplitudes appear
as open square symbols (�). Amplitudes corresponding to the third mode are
represented by open triangle symbols (△), but in the multiple frequency case
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Figure 9.6: Growth rate evolution for the L2 = 0.10 m confinement tube and the
sweeps of feeding manifold L1 from 0.11 m to 0.77 m. Three colors are used for each
eigenmode. The first is displayed in yellow, the second in blue and the third in red.
Scale is given above to graph. Symbols correspond to experiments. ◦ stands for the
first mode while � corresponds to the second one and △ to the third. Gray triangle
symbols depict the sum of the 2 modes values in the multiple frequency band (L1 =
0.52 m to 0.64 m).

it is first necessary to separate the components corresponding to the different
frequencies. This is accomplished by digital filtering of the record by setting
two bandpass filters around the two main frequencies appearing in the power
spectrum. This signal filtering is used to display the amplitudes associated to
the two modes found in the multiple frequency range between L1 = 0.52 m
and 0.64 m. It is also interesting to calculate the sum of these two amplitudes
without taking into account a possible phase shift. This defines the maximum
amplitude which can be reached when the two components are mixed. This
amplitude is marked by gray triangle symbols.
In the region where a single mode prevails one finds that the amplitude evolu-
tion observed experimentally by changing the feeding manifold length L1 can
be retrieved theoretically by reading this diagram. There is a reasonable match
between the experimental points and the amplitude found for a vanishing ωi.
For these points one expects a stable amplitude limit cycle which is indeed ob-
served almost everywhere. The first branches of the oscillation amplitude, i.e.
mode 1 and mode 2 between L1 = 0.10 m and 0.51 m, are well predicted. The
last part between L1 = 0.65 m and 0.77 m is also fairly well retrieved. There is
however a small range of L1 between 0.40 and 0.41 m where the system features
a central frequency and two side bands giving rise to a modulated amplitude
at limit cycle (see Fig. 9.2). It is possible to show that this particular behavior
is related to the dependence of the boundary reflection coefficient with respect
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to the amplitude level but this will not be examined here. For the stable limit
cycle cases the real part of ω provides the oscillation frequency corresponding
to the amplitude determined in the bifurcation diagram.
It is now interesting to examine the multiple frequency band between L1 =
0.52 m and 0.64 m. One may first consider that the oscillation would behave
as before and that the limit cycle would correspond to ωi = 0 s−1. If this
were so, one would expect a limit cycle around the second mode between L1

= 0.52 m and 0.58 m followed by a limit cycle around the third mode between
L1 = 0.58 m and 0.64 m. However, as observed in Fig. 9.4 for L1 = 0.58
m, the oscillation is not locked on a single frequency. Pressure or velocity
records feature two principal frequency components as observed in the power
spectrum. By filtering the pressure or velocity signals, one finds that modes 2
and 3 coexist both with a nearly constant amplitude. One then finds that mode
3, represented by open triangle symbols (△), stands for 50 % - or more - of the
expected oscillation amplitude at ωi = 0 s−1. This is found by processing the
signal in the range L1 = 0.55 m to 0.62 m. Mode 2, represented by open square
symbols (�), also appears in this range. Its amplitude is found to be equal to
the difference between the value calculated for the limit cycle at ωi = 0 s−1

and the amplitude of mode 3. One can see in Fig. 9.6 that the combined
amplitude of the two modes (gray triangle symbols) closely matches the limit
cycle boundary. This phenomenon appears in a case where mode 3 features a
supercritical bifurcation (is linearly unstable) while mode 2 has a subcritical
bifurcation and is nonlinearly unstable in the range of interest. There is an
overlap region where mode 3 has a higher growth rate than mode 2. The third
mode amplitude dominates that of the second mode but the third mode does
not take over and oscillations at the second mode frequency persist. There is
a crossing point in amplitudes which corresponds to coinciding growth rates of
the two modes.
In addition to the growth rate ωi it is interesting to examine the corresponding
values of the angular frequency ωr. Figure 9.7 displays the frequency calculated
from the dispersion relation at the limit cycle amplitude predicted by reading
the bifurcation diagram.
The frequencies are compared with experimental values plotted as symbols.
Open circle symbols (◦) correspond to the first mode frequencies while the
second and the third modes are respectively displayed by means of open square
(�) and open triangle symbols (△). Predictions corresponding to ωi = 0 s−1

are plotted as dark bold lines, whereas frequencies calculated in the multiple
frequency cases are displayed as red bold lines. In this last condition, mode 2
and mode 3 frequencies are read at the amplitude where growth rates intersect.
The multiple frequency cases clearly arise from a combination of two modes.
In addition one finds that the frequencies mix and produce a signal with a
difference frequency which is reminiscent of a similar situation found in wire-
less telecommunications where it is designated as frequency “heterodyning”.
Heterodyning gives rise to the sum or difference of the two original frequencies
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Figure 9.7: Theoretical and experimental frequency at limit cycle. Open circle sym-
bols ( ◦) are linked to the first mode while the second mode appears as open square
symbols (�) and the third mode as open triangle symbols ( △). The dark bold lines
represent predictions for ωi = 0 s−1 whereas the red ones correspond to the frequencies
of the two modes limit cycles.

input in a nonlinear system. There are some theoretical calculations indicat-
ing the possibility of double mode oscillations. For example, Culick and his
co-workers (Awad et al. (1986)), show that this can happen if two modes ex-
ist of which one is stable and the other is unstable. This is only found for
certain ranges of values of the growth rates but has not been observed in the
present experiments and the double mode of oscillation arises when some other
conditions are fulfilled as explained in what follows.
To predict the occurrence of multi-mode oscillations, it is natural to examine
growth rate trajectories and derive conditions which gives rise to this behavior.
First, it is found that dual mode oscillations appear when there is a modal
overlap i.e. when the regions of positive growth rates of two modes intersect.
A detailed examination reveals two types of overlap. The first type corresponds
to two linearly unstable modes as shown in Fig. 9.6 between L1 = 0.43 m and
0.48 m. In this case, exemplified in Fig. 9.8 for L1 = 0.45 m, the second
mode dominates over the whole amplitude range. By reading the bifurcation
diagram, one expects that the oscillation will be locked on the mode which
has the highest growth rate. This is well observed experimentally and in the
corresponding range the second mode of oscillation prevails with an amplitude
which closely matches that determined from the FDF calculation. It is well
verified in this case that the third mode does not arise in the power spectrum.
This kind of modal overlap has already been considered in previous calculations
and experiments which all confirm that the mode with the highest growth rate
values is dominant. For example, in Boudy et al. (2011b) two linearly unstable
modes exist for a short flame tube of 0.10 m and a feeding manifold length L1
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Figure 9.8: Theoretical growth rate trajectories calculated with the FDF for the L2 =
0.10 m confinement tube and L1 = 0.45 m. The dashed line (- -) indicates the second
mode growth rates whereas the bold line (�) corresponds to the third mode.

between 0.28 m and 0.38 m (see Fig. 8 in Boudy et al. (2011b)). In this range,
the second mode takes over and oscillations at the limit cycle correspond to a
single frequency.
The second type of overlap is found in the present experiments when L1 > 0.48
m, in the range where the second mode becomes nonlinearly unstable while the
third mode is linearly unstable. In this range, the two modes are sustained.
The existence of linearly and nonlinearly unstable modes is a necessary condi-
tion for a dual mode of oscillation but this is not sufficient. Indeed, previous
experiments indicate that when this condition is verified the two modes do not
always persist simultaneously. In the unconfined geometry discussed in Noiray
et al. (2008) and in the confined configuration explored in Boudy et al. (2011a)
it was found that the oscillation begins at the third mode frequency and that
as the amplitude increases mode switching takes place and the second mode
prevails. The final outcome is a limit cycle corresponding to a vanishing growth
rate of the nonlinearly unstable mode (ωi = 0 s−1). It is then necessary to find
the additional condition which distinguishes situations where a single mode
takes over from that where the two modes are sustained. This is accomplished
by examining the growth rate trajectories obtained by plotting this quantity
with respect to the amplitude of oscillation.
An example is given in Figure 9.9 which shows two configurations where the
trajectory of a linearly unstable mode (LUM) crosses that of a nonlinearly un-
stable mode (NLUM). The first case examined in Fig. 9.9(a) corresponds to
experiments reported previously (Boudy et al. (2011a)) in which mode switch-
ing was observed and predicted for different operating conditions. The second
case, shown in Fig. 9.9(b), pertains to the present investigation for L1 = 0.52
m. The amplitude level where the linearly unstable mode (LUM) trajectory
crosses the horizontal axis ωi = 0 is plotted as a vertical bold line in these
two diagrams. Two arrows denote the tangent lines to the growth rate trajec-
tories at this particular amplitude level designated as a0. In the case shown
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Figure 9.9: Theoretical growth rate trajectories calculated with the FDF. The dashed
line (- -) shows the second mode growth rate whereas the bold line (�) corresponds to
the third mode. (a) pertains to calculations from previous work (Boudy et al. (2011a))
for L1 = 0.54 m and a confinement tube of L2 = 0.10 m. In this case, the crossing of
trajectories leads to a mode switching during the growth of oscillation. (b) is obtained
from the present investigation at L1 = 0.52 m with the L2 = 0.10 m confinement tube.
Experiments reveal a dual mode oscillation. The first trajectory crossing ωi = 0 is
indicated by means of a vertical line. Gray arrows at this point represent the tangent
lines and provide the signs of the slopes for the two modes.

in Fig. 9.9(a) which gives rise to mode switching, the slope of the third mode
(LUM) growth rate is negative while the slope of the second mode (NLUM)
growth rate is positive :

(dωi3/da)a0 < 0 and (dωi2/da)a0 > 0 (9.3)

In contrast, when the two modes are simultaneously sustained, the growth rate
slopes are both negative as illustrated in Fig. 9.9(b) :

(dωi3/da)a0 < 0 and (dωi2/da)a0 < 0 (9.4)

The present experiments indicate that when there is a modal overlap involving
a linearly unstable mode (LUM) and a nonlinearly unstable mode (NLUM)
and when condition Eq. (9.4) is satisfied the oscillation takes place at the two
frequencies. On the other hand, when condition Eq. (9.3) is satisfied, mode
switching takes place and the nonlinearly unstable mode prevails.
By applying the previous criterion it is possible to delineate the region where
one expects oscillations at two modal frequencies. This can be simply done
by calculating the growth rate differentials with respect to the amplitude in
the region of modal overlap. The region where the criterion has to be satisfied
appears in gray in Fig. 9.10. For L1 < 0.50 m the first condition on the
existence of linearly and nonlinearly unstable modes is not fulfilled. Condition
Eq. (9.4) is satisfied for 0.50 ≤ L1 ≤ 0.61 m and one expects to find a double
mode oscillation. The boundaries of this range nearly match that found in
the experiment which is located between 0.52 m and 0.64 m. Except for this
small difference due to uncertainties in the FDF determination, the criterion
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Figure 9.10: Rates of change (slope) of the growth rates corresponding to mode
2 (dashed line - -) and mode 3 (bold line �). The calculation is carried out in the
region of overlap of the LUM and NLUM. The slope of each mode is determined at the
amplitude where the linearly unstable mode (LUM) crosses ωi = 0. Gray area indicates
the lengths where dual mode oscillation has been found in the experiment.

stated previously suitably provides the range where two modes are sustained
simultaneously.
In summary, it appears that double mode oscillations can be expected when
a linearly and a nonlinearly unstable modes overlap and when in addition
condition (9.4) on the rates of change of the growth rates is satisfied.

9.1.6 Conclusion

Thermoacoustic coupling is investigated in a generic combustion system fea-
turing a feeding manifold, a multipoint injector and a small length flame tube
confining the combustion region. Two classes of limit cycle have been identi-
fied. The first features a nearly stable oscillation amplitude, whereas the second
shows an amplitude unsteadiness. These variations are of different kinds. In
the present experiment, two types arise indicating that TMLCs can occur in
different parametric ranges. The present study concentrates on a range of
parameters where oscillations are sustained by two modes also giving rise to
frequency mixing. In this range the limit cycle is regularly distorted via a low
frequency formed by heterodyning. It is shown that such a process can be
expected by examining FDF calculations. It is first observed that a nonlin-
ear dispersion relation including a flame describing function provides predicted
amplitudes and frequencies which are in good agreement with experimental
values for stable limit cycle cases. In the TMLC cases, a double mode oscilla-
tion is shown to occur when two conditions are fulfilled. The first condition is
an overlap between a supercritical bifurcation mode (LUM) and a subcritical
bifurcation mode (NLUM). The second condition requires that the slopes of
growth rate trajectories of these two modes have negative signs at the point
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where the LUM would reach its limit cycle. In contrast when the signs of these
slopes are distinct, i.e. the slope of the NLUM growth rate is positive, mode
switching takes place and a single mode prevails at the limit cycle.

9.2 Analysis of galloping limit cycles featuring chao-
tic states

This section corresponds to a publication presented at the ASME Turbo Expo
2012 :

Boudy, F., D. Durox, T. Schuller, and S. Candel. 2012. “Nonlinear flame
describing function analysis of galloping limit cycles featuring chaotic states
in premixed combustors.” In Proceedings of the ASME Turbo Expo, paper
GT2012-68998, New York: American Society of Mechanical Engineers.

The experimental setup and model (model B) used in this analysis are the same
as those presented in Sec. 9.1. Thus, after the introduction which is shortened
and focused on the unstable amplitudes, the experimental results are shown
and followed by results of calculations carried out with model B. The abstract
is kept to underline highlights of this section.

9.2.1 Abstract

Nonlinear prediction of combustion instabilities in premixed systems is un-
dertaken on a generic configuration featuring an adjustable feeding manifold
length, a multipoint injector composed of a perforated plate and a flame con-
finement tube. By changing the feeding manifold or flame tube lengths, the
system exhibits different types of combustion regimes for the same flow operat-
ing conditions. Velocity, pressure and heat release rate measurements are used
to examine oscillations during unstable operation. For many operating condi-
tions, a limit cycle is reached at an essentially fixed oscillation frequency and
quasi-constant amplitude. In another set of cases, the system features other
types of oscillations characterized by multiple frequencies, amplitude modula-
tion and irregular bursts which can be designated by “galloping” limit cycles
or GLC. These situations are explored in this article. Imaging during GLCs
indicates that the flame is globally oscillating but that the cycle is irregular.
Prediction of these special oscillation states is tackled within the Flame De-
scribing Function (FDF) framework. It is shown that it is possible to predict
with a reasonable degree of agreement the ranges where a quasi-constant am-
plitude limit cycle will be established and ranges where the oscillation will be
less regular and take the form of a galloping limit cycle. It is found that the
FDF analysis also provides indications on the bounding levels of the oscillation
envelope in the latter case.
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9.2.2 Introduction

In combustion instabilities, there are few studies in which the oscillation on an
unstable amplitude is characterized and calculations are attempted. This is for
example found in the premixed laboratory combustor used in Sterling (1993)
where quasi-periodic oscillations were identified and linked to the interaction
of two acoustic eigenmodes. In the swirled combustor studied in Lamraoui
et al. (2011) two unstable modes simultaneously present were associated to
different triggering mechanisms of the flame response to flow perturbations. A
theoretical investigation based on a multiple inputs and outputs flame model
was used in J. P. Moeck et al. (2012) to examine limit cycles with multiple
frequencies. A dual oscillator model was proposed in this study where en-
ergy transfer occurs and leads to an oscillating limit cycle between two modes.
Nevertheless, no experimental comparison was carried out. More recent experi-
mental investigations in a multiple flame combustor equipped with a perforated
plate comprising seven orifices also revealed different states of limit cycles with
modulated amplitudes (Kabiraj et al. (2011b); Kabiraj et al. (2011a)) which
were uncovered by examining different combustion chamber lengths. In these
studies, various types of unstable combustion regimes were identified and char-
acterized including quasi-periodic as well as chaotic oscillations, but the flame
response to flow perturbations was not considered.
The present work complements our previous investigation of a multiple in-
jection combustor (Boudy et al. (2011b)). It specifically deals with GLCs
(Galloping Limit Cycles) appearing in this system when the flame region is
confined in a longer tube. Two types of GLCs can be distinguished. The first
features a regular amplitude modulation, while the second exhibits irregular
variations. An analysis of unstable oscillations featuring multiple frequencies
was carried out in Boudy et al. (2013). The present study considers the case of
GLCs featuring a richer spectral content and corresponding to time evolving
amplitudes. This variable amplitude oscillation state is now analyzed in the
special case of chaotic oscillations where the amplitude fluctuates in an irreg-
ular fashion. This analysis is based on the Flame Describing Function (FDF)
framework. It is shown that this allows to delineate ranges where the limit
cycle will have a special behavior and to obtain predictions for the peak and
minimum amplitudes of oscillation. This article begins with a short descrip-
tion of the test rig and instrumentation. Experimental results are reported
next. The model, including the FDF, is then briefly presented. Results of
calculations are then discussed and the chaotic oscillations are interpreted on
this theoretical basis. It is shown in particular that amplitude variable limit
cycles arise when the nonlinear dispersion relation of the system feature roots
with closely matching real parts.
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9.2.3 Self-sustained combustion regimes

Experiments were carried out with the flame tubes L2 = 0.20 m and 0.30 m.
The measurements of the oscillation frequencies are plotted in Fig. 9.11 as a
function of the feeding manifold length L1.
Self-sustained combustion oscillation regimes are examined here when the feed-
ing manifold length is varied. Combustion is initiated for L1 = 0.11 m and the
feeding manifold length L1 is increased by steps of 1 cm until L1 = 0.55 m. By
increasing L1, it is found that the flame oscillates around one of the acoustic
eigenmodes of the system. This phenomenon takes place for most of the lengths
L1. Two flame tubes L2 = 0.20 m and L2 = 0.30 m are specifically examined.
Thanks to these experiments, one can distinguish two classes of limit cycles.
The first relies on oscillations at an essentially constant amplitude revealed in
time traces and spectral analysis. In the second class, the oscillation amplitude
can be regularly or irregularly modulated, leading to multiple frequencies in the
power spectral densities of the different signals. The present study focusses on
oscillations characterized by irregular variations in amplitude which give rise
to what can be designated as a “galloping” limit cycle (GLC). These unstable
amplitudes occur around the first mode in the two configurations explored with
different flame tubes. Thus, for the sake of simplicity, only oscillations around
this first acoustic eigenmode of the system are examined in this analysis.
Figure 9.11 displays oscillation frequencies observed for a limited range of feed-
ing manifold lengths L1 and for the two different confinement tubes L2 = 0.20
m and 0.30 m. In the first case presented in Fig. 9.11(a) for L2 = 0.20 m,
oscillations associated to the first mode prevail from L1 = 0.11 m to 0.25 m. A
stable band is then found between L1 = 0.26 m and 0.28 m. Beyond that value,
the system switches to the second mode until L1 = 0.55 m. In the second case
presented in Fig. 9.11(b) for L2 = 0.30 m, oscillations evolve around the first
mode between L1 = 0.11 m and 0.35 m. At that point the system switches to
the second mode until L1 = 0.55 m and there is no stable band.

9.2.4 Stable limit cycle

Analysis initiated in the present experiment reveals two types of limit cycles.
Stable limit cycles are indicated in Fig. 9.11 as open circle symbols (◦). One can
see that the frequency lies close to the first acoustic mode of the combustor for
the shortest lengths of feeding manifold L1 between 0.11 m and 0.14 m. This
appears for both flame tubes. For sizes greater than L1 = 0.14 m, the oscillation
frequency is shifted with respect to the acoustic eigenmode. It is interesting
to note that this frequency shift may reach 100 Hz. It clearly shows that
linear stability analyses only yield a rough estimate of the frequencies which
may develop in the system. One can see in Fig. 9.11(a) that the oscillation
frequency is shifted, but the limit cycle remains stable until L1 = 0.20 m for
the L2 = 0.20 m flame tube. In Fig. 9.11(b), L1 = 0.22 m represents the last
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Figure 9.11: Instability frequency evolution as a function of the feeding manifold
length L1. (a) and (b) are respectively linked to experiments conducted with L2 = 0.20
m and 0.30 m flame tubes. Dashed lines correspond to the acoustic eigenmodes calcu-
lated without the flame but with 300 K in the feeding manifold and 1100 K in the L2 =
0.20 m flame tube. The other case L2 = 0.30 m is calculated with 1300 K. ( ◦) symbols
represent the peak frequency of the pressure spectrum measured by microphone M2 for
stable limit cycles. ( •) symbols indicate the main frequency appearing in the spectrum
of GLCs.

stable limit cycle for this longer confinement tube (L2 = 0.30 m). One example
of stable limit cycle is presented in Fig. 9.12. Pressure measurements recorded
with microphone M2 for L1 = 0.16 m and L2 = 0.20 m are indicated together
with the corresponding spectral distribution and phase space reconstruction.
Welch’s method of averaging combined with a Hanning windowing is used to
estimate the power spectral densities. The phase space has been reconstructed
using the methods presented in Abarbanel et al. (1993).
This reconstruction is divided in two steps. The first is devoted to the de-
termination of the optimal embedding dimension de. In essence, one seeks to
represent the signal time series in a space where trajectories do not cross (or
do not come close) because the choice of the number of dimensions is too low.
In a second step, one calculates the optimal time lag τ used to shift the values
of the time series.
In practice, the embedding dimension de is deduced by using the so-called
“False Nearest Neighbours” technique well explained in Small (2005). For the
present case with L1 = 0.16 m and L2 = 0.20 m, de takes a low order of 2.
The optimal time delay τ is determined with the autocorrelation function of
the time series. As explained in Abarbanel et al. (1993), τ may be chosen by
examining the signal autocorrelation function and finding the time lag where
it drops to zero. For L1 = 0.16 m and L2 = 0.20 m, this gives τ ≃ 9/fs, where
fs = 16384 Hz indicates the sampling frequency.
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Figure 9.12: Pressure evolution of microphone M2 (top) for L2 = 0.20 m and L1

= 0.16 m. the corresponding spectrum is displayed below on the left and the phase
plane is shown on the right. The acoustic eigenmodes calculated without the flame but
with 300 K in the feeding manifold and 1100 K in the flame tube are drawn below the
pressure spectrum.

One can see that the pressure oscillation evolves with a quasi constant am-
plitude. The spectrum reveals a well marked peak at f = 440 Hz together
with a few harmonics featuring a significantly reduced amplitude. The phase
plane exhibits a circular pattern confirming the stability of this limit cycle.
Galloping limit cycles are now analyzed in the same way. It is interesting to
note that GLCs occur for an almost equal frequency shift observed in the two
geometrical configurations investigated. This happens for L1 = 0.20 m for the
small flame tube L2 = 0.20 m where the frequency shift is 118 Hz with respect
to the acoustic eigenmode. In the second case with the longer flame tube L2

= 0.30 m, this arises for L1 = 0.22 m and the frequency shift reaches 117 Hz.

9.2.5 Chaotic limit cycles

Phase space reconstruction and spectral analysis give insight on the periodic-
ity and chaotic behavior of the system dynamics. As explained in Henry et al.
(2000) the “grassy appearance” of a pressure spectrum and the non periodic
character of the autocorrelation function reveal the chaotic nature of the os-
cillation. The phase space reconstruction enables to follow trajectories and
reveals possible periodic patterns or a less organized chaotic motion. It might
be worth using system dynamics theoretical tools to define the attractor type
and the route to chaos by calculating Lyapunov exponents or fractal dimension
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Figure 9.13: Pressure evolution of microphone M2 (top) for L2 = 0.20 m and L1

= 0.21 m. The corresponding spectrum is displayed below on the left and the phase
plane is shown on the right. The acoustic eigenmodes calculated without the flame but
with 300 K in the feeding manifold and 1100 K in the flame tube are drawn below the
pressure spectrum.

but this will not be pursued here because the aim is to interpret the dynamical
behavior of GLCs in terms of FDF calculations.
The analysis of the microphone M2 pressure signal is now considered. Fig-
ure 9.13 presents the time trace recorded for L1 = 0.21 m and L2 = 0.20 m.
This unstable operating condition observed at the beginning of the GLCs band
is characterized by a pressure oscillation between 0 and 100 Pa. The instability
starts and stops randomly. By analyzing the pressure spectrum, one observes
a wide peak base stretching over approximately 200 Hz. To characterize this
limit cycle one uses the time series analysis presented in the previous section.
False Nearest Neighbours method reveals an embedding dimension of de = 4.
The optimal time delay τ takes 6 periods of the sampling frequency τ ≃ 6/fs.
In such a case it is standard to examine a three-dimensional phase space. It
should be noted that the embedding dimension, determined for the other GLCs
appearing between L1 = 0.22 m and 0.25 m, is also de = 4. One can see in
Fig. 9.13 that the phase space reconstruction fills a region of the embedding
space without any regular structure. The oscillation travels randomly in a
three-dimensional volume indicating that its is chaotic in nature. The same
behavior is observed for the whole range of lengths L1 where GLCs prevail.
Galloping limit cycles are now explored for the longer flame tube L2 = 0.30
m. Figure 9.14 displays the pressure signal of microphone M2 for L1 = 0.28 m.
In this case, the time trace shows almost periodic patterns with growth and
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Figure 9.14: Pressure evolution of microphone M2 (top) for L2 = 0.30 m and L1

= 0.28 m. The corresponding spectrum is displayed below on the left and the phase
plane is shown on the right. The acoustic eigenmodes calculated without the flame but
with 300 K in the feeding manifold and 1300 K in the flame tube are drawn below the
pressure spectrum.

decay of the oscillation amplitude. Nevertheless, this regularity is not well de-
fined as shown in the spectrum which now features a wide peak. There is also
a broader base indicating that the different oscillation frequencies are being
swept around the modal frequency as the amplitude is continuously changing.
Regarding the phase space reconstruction, the embedding dimension is esti-
mated to be de = 5. The time lag represents about 8 periods of the sampling
frequency τ ≃ 8/fs. However, a three dimensional representation is adopted
to view the trajectories. The reconstruction is not limited to a single plane
and occupies a flattened volume in the embedding space. The structure tends
to be more regular, but remains distinct from the closed trajectories observed
for stable amplitude limit cycles (see Fig. 9.12). Based on these elements, one
may consider that this oscillator also belongs to the chaotic category. Phase
space reconstructions, and the pressure spectral densities, provide similar indi-
cations for the other feeding manifold lengths. It is found that the embedding
dimension remains equal to 5 and the phase space reconstructions in three di-
mensions show flattened volume patterns typical of chaotic dynamics from L1

= 0.23 m to 0.32 m.
Finally, it is interesting to investigate the recorded oscillation in a time-frequen-
cy representation for the limit cycle cases presented herein. This is carried
out by using the continuous wavelet transform with a complex Morlet mother
wavelet (Mallat (1998)). Wavelet scalograms are processed to determine the
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Figure 9.15: Velocity time trace with the L2 = 0.20 m and 0.30 m flame tubes. Each
signal has been analyzed by continuous wavelet transform to obtain the scalogram of
the frequencies. This scalogram is processed to draw the evolution of the peak frequency
at each instant. This frequency is represented below each velocity time trace. (a) and
(b) are respectively linked to L1 = 0.16 m and 0.21 m with the L2 = 0.20 m flame
tube. The L1 = 0.28 m case with L2 = 0.30 m flame tube is shown in (c).

evolution of the main oscillation frequency of the velocity signal as a function
of time. Figure 9.15 displays this frequency on the bottom graph which evolves
in a synchronized fashion with the velocity time trace represented on the top.
Figures 9.15(a), (b) respectively correspond to L1 = 0.16 m and 0.21 m for
the L2 = 0.20 m confinement tube. Figure 9.15(c) corresponds to L1 = 0.28
m and L2 = 0.30 m. For a stable limit cycle oscillation when L2 = 0.20 m and
L1 = 0.16 m (Fig. 9.15(a)), the frequency is nearly constant as expected from
the previous analysis of the spectral content. For the GLC at L1 = 0.21 m
with the L2 = 0.20 m flame tube, the frequency evolves with amplitude. One
can see in Fig. 9.15(b) that high oscillation frequencies always match with low
oscillation amplitudes. Conversely, a low oscillation frequency characterizes
the highest velocity fluctuation levels. In the last case corresponding to L1 =
0.28 m and L2 = 0.30 m presented in Fig. 9.15(c), the frequency also evolves
with amplitude. In this case, it is interesting to note that a low frequency
around 350 Hz follows the signal amplitude climax.
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In summary the examination of pressure and velocity time traces, indicates
that some of the limit cycles feature nearly constant amplitudes while others
(designated as galloping limit cycles) are characterized by a variable amplitude
which evolves in an irregular fashion. While stable amplitude limit cycles are
well defined and easy to typify, the interpretation of galloping limit cycles
requires a more elaborate analysis to characterize their dynamical behavior.
It is in particular instructive to exploit nonlinear time series analysis tools
(Small (2005)). In addition the wavelet transform can be used to track the
peak frequency evolution as a function of time. Using these various tools, it
has been shown that the GLCs identified in this study can be qualified as
chaotic due to the randomness of their oscillations.

9.2.6 Instability predictions

Instability predictions are obtained with the same dynamical model (model B)
used in Sec. 9.1.
Results are examined for the first acoustic eigenmode corresponding to the
oscillations characterized experimentally. Calculations indicate that in this
range of feeding manifold length L1, positive growth rates exist only for the
first mode and this is true for both confinement tube lengths L2. Results for
the growth rate ωi, displayed in Fig. 9.16, are first examined. This figure shows
positive growth rate values in the range of lengths L1 investigated for the two
flame tubes L2 = 0.20 m and 0.30 m explored. It is assumed here that the
limit cycle is reached when the growth rate vanishes ωi = 0. Figure 9.16(a)
represents calculations for the L2 = 0.20 m flame tube and Fig. 9.16(b) shows
results for the second flame tube L2 = 0.30 m. Measurements are depicted
with the convention used in Fig. 9.11. Open circle symbols (◦) indicate the
oscillation amplitude of stable limit cycles. For GLCs, the main frequency of
the pressure spectrum is considered and one filters the modulated signal with
a Butterworth bandpass filter and extracts the amplitude which is represented
by dark circle symbols (•).
One first notes that the growth rates ωi reach large values and that ωi is only
slightly lower than ωr = 2πf presented in Fig. 9.11. The fact that these two
quantities are close indicates that the mode is quite unstable and that one
can expect to find a rapid growth to a large amplitude. It would then be
difficult to measure such growth rates because the system almost immediately
reaches a limit cycle. This underlines the necessity of a nonlinear analysis of the
system dynamics as is carried out in the present article. The transitional states
calculated by the FDF method may only be approximate, but the limit cycles
are reached at the predicted amplitudes when the oscillation level remains
quasi-constant. Thus, the final amplitude is suitably obtained from the FDF
analysis and the open circle symbols (◦) follow growth rate contours at ωi =
0 s−1. For the GLC cases, one observes however that the amplitude does not
reach the expected value. For the L2 = 0.20 m flame tube, the amplitudes
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Figure 9.16: Growth rate evolution for the two flame tubes (a) L2 = 0.20 m and
(b) L2 = 0.30 m. Experiments are depicted by means of symbols. Open circle symbols
( ◦) indicate stable limit cycles. Filled circle symbols ( •) represent the peak amplitude
of galloping limit cycles.

of the GLCs reach values close urms/Ub = 0.8 while predictions yield higher
values. The situation is roughly the same for the longer flame tube L2 = 0.30
m, where the predicted value for the amplitude coincides with the observed
oscillation level for stable limit cycles but is overestimated when the system
operates in the GLC range.
In addition to the growth rate, it is possible to read the associated angular
frequency ωr = 2πf calculated at ωi = 0 and deduce the limit cycle frequency.
This is represented in Fig. 9.17 which compares measurements, drawn as open
circle symbols (◦) for stable limit cycles and dark circle symbols (•) for GLCs.
Calculations are represented with dark bold lines. Figure 9.17(a) presents this
comparison for the flame tube L2 = 0.20 m. Results for L2 = 0.30 m are
depicted in Fig. 9.17(b). One can see, first of all, that constant amplitude
limit cycle frequencies are perfectly predicted. In addition, the frequency shift
experimentally observed which reaches about 120 Hz, is also well retrieved.
However, the observed GLC frequencies feature large differences with the ei-
genmodes of the combustor and the predictions obtained with the FDF in
Fig. 9.17(a). The observed frequency lies around 520 Hz for the feeding mani-
fold lengths L1 which produce GLCs. Since the measured oscillation amplitude
is not obtained in the predictions, it is also natural to find a different frequency.
However, by analyzing the calculated frequencies for lower oscillation levels, it
is possible to show that the observed frequency suitably matches calculations
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Figure 9.17: Frequencies predicted for the two flame tubes investigated (a) L2 =
0.20 m and (b) L2 = 0.30 m. Experiments are depicted by means of symbols. Open
circle symbols ( ◦) indicate stable limit cycle amplitudes. Filled circle symbols ( •) rep-
resent galloping limit cycle amplitudes. Predicted frequencies are displayed by means
of dark bold lines, while acoustic eigenmodes calculated without the flame but different
temperatures in each cavity are indicated through dashed lines.

when the amplitude level is fixed to the correct value. For the second flame
tube L2 = 0.30 m, the oscillation amplitude reaches higher levels. Thus, pre-
dicted and experimental frequencies are expected to be closer than before as
frequency found for ωi = 0 in Fig. 9.16 almost corresponds to the amplitude of
the GLC. This is the case as one can see in Fig. 9.17(b). Dark circle symbols al-
most coincide with predictions in this case. The range where chaotic states are
manifested is considered in the next section by analyzing calculations obtained
with the FDF.

9.2.7 Chaotic states and FDF calculations

The continuation methodology employed to solve the nonlinear dispersion re-
lation can be used to track the roots of this equation as a function of amplitude
urms/Ub and for each length of feeding manifold L1. This reveals some distinct
features of the roots giving rise to oscillations around the first mode in the
form of a GLC.
For unstable operating conditions characterized by positive growth rates ωi >
0, the solution of the dispersion relation normally features one or sometimes two
modes with positive growth rates for each feeding manifold length L1 and small
disturbance amplitude levels urms/Ub. By solving the dispersion relation for
increasing amplitudes, the solutions generally feature an imaginary component
ωi dropping to zero and defining the limit cycle. There are however cases
where multiple solutions arise with nearly equal angular frequencies ωr. It
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Figure 9.18: Growth rate and frequency evolutions for the two solutions of the first
mode calculated at L1 = 0.23 m with L2 = 0.20 m. (a) represents the growth rates ωi.
(b) corresponds to the frequencies. Dashed lines are linked to the negative growth rate
solution whereas the bold line corresponds to the positive one.

is then more difficult to track the roots in the complex plane as a function
of amplitude. Multiple solutions may feature positive and negative ranges of
growth rates ωi. These multiple solutions are now examined and it is shown
that they are present when one observes a chaotic limit cycle.
The evolution of the instability frequency and growth rate are examined here as
a function of amplitude. Multiple solutions with positive and negative growth
rates can be ignored when their oscillation frequencies differ. When the os-
cillation frequency ωr of two solutions coincide or nearly coincide, one has to
consider that the oscillation can grow (ωi > 0) or decay (ωi < 0).
Calculations reveal two types of such solutions. The first type is characterized
by roots featuring a negative and a positive growth rate evolving at nearly the
same frequency for all perturbation amplitudes. In the second type consid-
ered, the roots feature a positive and a negative growth rate with coinciding
frequencies in a finite range of amplitudes. These two types of solutions are
depicted in Figs. 9.18 and 9.19.
The overlap of the oscillation frequency in an amplitude interval for the two so-
lutions corresponding to mode one is presented in Fig. 9.18 for a case where L2

= 0.20 m and L1 = 0.23 m. Analysis of the growth rates plotted in Fig. 9.18(a)
shows that even if the negative contribution is of the same order as the positive
one at low amplitude, it becomes more important when the perturbation level
increases. This indicates a higher damping rate than a growth rate along the
trajectory for urms/Ub > 1. The frequency evolution plotted in Fig. 9.18(b)
shows that the overlap is quasi-perfect for oscillation amplitudes lower than
urms/Ub = 0.35. The largest difference between the two frequency trajectories
reaches 87 Hz. This type of multiple solutions with frequency match occurs for
operating conditions between L1 = 0.22 m to 0.27 m which includes the stable
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Figure 9.19: Growth rate and frequency evolutions for the two solutions of the first
mode calculated at L1 = 0.25 m with L2 = 0.30 m. (a) represents the growth rates
ωi. (b) Corresponds to the frequencies. Dashed lines are linked to the negative growth
rate solution whereas the bold line corresponds to the positive one.

band. In addition, it is also instructive to note that the dual solution band
includes the chaotic limit cycles which occur between L1 = 0.21 m and 0.25
m. Considering the overlap in oscillation frequency for the whole amplitude
range, one expects that velocity disturbances will grow from urms/Ub = 0 to
the limit cycle. However perturbations do not reach a constant amplitude limit
cycle, because there is another modal solution at the same frequency which fea-
tures a negative growth rate. A possible scenario is that of an energy transfer
taking place between the modes, the growth rate becoming negative and the
amplitude of the limit cycle dropping down.
For the second flame tube L2 = 0.30 m, the predicted dual solution frequencies
only overlap over a certain range of amplitudes as shown in Fig. 9.19. One first
notes that the calculated overlap of frequency trajectories with dual solutions
occurs between L1 = 0.17 m and 0.31 m, while chaotic oscillations are found
between L1 = 0.23 m and 0.32 m. The solution amplitude corresponding to
positive growth rate first increases to reach a limit cycle at ωi = 0, but a sec-
ond solution with a matching frequency co-exists beyond urms/Ub = 0.8 (see
Fig. 9.19) with a negative growth rate. In this case, the frequency difference
between the two trajectories does not exceed 35 Hz. The scenario is that the
oscillation amplitude of the unstable mode remains bounded in a finite inter-
val with a lower bound defined by the perturbation amplitude where the two
modal frequencies match. This scenario can be further analyzed by comparing
the minimum and maximum oscillation levels reached in the experiments and
calculations for all the GLCs of the two confinement tubes.
This is synthesized in Fig. 9.20 where growth rates have been plotted for the
two flame tubes as in Fig. 9.16. One should note that only GLCs are con-
sidered in Fig. 9.20. Experiments are depicted by means of symbols. Black
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circle symbols (•) pertain to the maximum amplitude reached while minimum
amplitudes appear as open circle symbols (◦). These amplitudes have been
determined by calculating the rms values of each velocity time trace at the
minimum and maximum reached during the modulation. Calculated values
from the model are plotted as bold and dashed lines. The minimum amplitude
where frequency trajectories overlap pertain to the dark dashed lines. The
expected limit cycle where ωi = 0 is shown by the dark bold line. By exam-
ining the amplitudes reached, one can see that predictions and experimental
data roughly match. For the L2 = 0.20 m flame tube, the frequency trajecto-
ries nearly overlap for all oscillation amplitudes and one expects that urms/Ub

will drop to about 0 because the negative damping rate is always higher than
the positive growth rate. This phenomenon is well retrieved experimentally
where the minimum oscillation amplitude vanishes. The same phenomenon
highlighted for L2 = 0.20 m is observed for L2 = 0.30 m except that the min-
imum oscillation level now differs from 0. This minimum is well retrieved by
considering the parameter values where the frequency trajectories, associated
to negative and positive growth rates, overlap in a certain range of amplitudes.
The scenarios described previously may not give the full picture because at
very high perturbation levels which prevail in these experiments, the flame
evolves significantly giving rise to rapid departures in its response which might
not be well accounted for in the FDF framework. It should be kept in mind
that the FDF description assumes that the flame is perturbed around a mean
state defined by the steady flow and that this may not quite reflect what is
observed experimentally.

9.2.8 Conclusion

The present study is focused on the prediction of unstable combustion regimes
in a generic configuration, comprising a variable size upstream manifold, a mul-
tipoint injector and a flame tube confining the combustion region. The stability
of this system is analyzed for two confinement tube lengths L2 by varying the
feeding manifold length L1 over a broad range of values. Experiments reveal
two classes of limit cycles. In the first group, oscillations occur at an essentially
constant amplitude, while in the second, oscillation amplitudes vary in an ir-
regular fashion and the pressure and velocity signal envelopes are modulated
accordingly. The last type of amplitude modulated limit cycles correspond to
an irregular occurrence of starts and stops in the oscillation. These “galloping”
or chaotic limit cycles (GLCs) occur in the present experiments when the sys-
tem resonates in the vicinity of its first mode for small sizes L1 of the feeding
manifold cavity. On the theoretical level, calculations are carried out within
the flame describing function (FDF) framework. It is found that the constant
amplitude limit cycles are well retrieved and that the calculated amplitudes
and frequencies agree well with measurements, thus confirming previous appli-
cations of the FDF framework. The interpretation of the GLCs is less easy but
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Figure 9.20: Growth rate evolution for the two flame tubes (a) L2 = 0.20 m and (b)
L2 = 0.30 m. The boundary amplitudes of the experimental galloping limit cycles are
represented by means of symbols while the boundary amplitudes where frequency tra-
jectories overlap in calculations pertain to bold and dashed lines. Open circle symbols
( ◦) indicate the minimum amplitude reached in the experiments. Filled circle symbols
( •) show the maximum amplitude attained. The overlap of the frequency trajectories,
found in calculations, occurs for all or a part of the amplitude range. The predicted
minimum amplitude is depicted through a dashed line ( - -) while the bold line (�)
shows the limit cycle amplitude expected at ωi = 0 s−1.
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it is found that their range of occurrence corresponds to parameter values for
which the nonlinear dispersion relation of the system features roots which are
closely matched in angular frequencies but have positive and negative growth
rates. By determining the parameter values for which such unstable and stable
modes with nearly similar eigenfrequencies simultaneously exist, it is possible
to define ranges where one can expect to find GLCs. This can be used to
explain the galloping features observed. It is shown that the calculated ranges
nearly correspond to those identified experimentally. It is also shown that the
FDF can be used to obtain some estimates of the maximum and minimum
levels in the signal envelope.
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Chapter 10

Acoustic damping with bias
flow perforates (BFP)

This chapter is concerned with oscillation control by means of a damp-
ing system inserted in the multiple flame combustor investigated previ-
ously. This system comprises a perforated plate backed by a cavity and
traversed by a bias flow (BFP : bias flow perforate). Of the two such
devices considered in what follows, one has been designed to operate in
the so called low Strouhal regime. BFP systems feature a sufficiently
high mean flow velocity in the perforations to avoid reverse motion dur-
ing unsteady operation. Theoretical aspects are covered first. Design
of a BFP for the multiple flame combustor are described in a second
stage. A nonlinear analysis based on the FDF framework is carried
out to interpret experimental observations. It is shown that damping
systems based on BFP can effectively damp oscillations over a wide
frequency range and that they can be used to reduce large amplitude
pressure perturbations. Cases where the BFP damping system could
not reduce oscillations are also documented. In general, this occurs
when the system shifts its resonance frequency outside the range where
the damper effectively provides a low reflection coefficient. The impor-
tant question of controller robustness is also analyzed by making use of
non optimal set of parameters for the damper.

10.1 Introduction

Perforated liners are often used to control combustion instabilities. Such sys-
tems can be found in jet engine and industrial gas turbine combustors (Richards
et al. (2003)). In general the perforated liner or plate is traversed by a bias
flow and is backed by a cavity.
The acoustic damping is linked to the creation of vortices from the perforations
edge as sketched in Fig. 10.1 for a single hole. These vortices are convected
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Figure 10.1: Bias flow orifice backed by a cavity. A vortex is created at the edge of
the perforation, while left and right acoustic waves propagate in the main tube and in
the back cavity.

away by the flow and they are eventually dissipated. Energy is transferred
from the acoustic wave to the vortices, removing energy from the acoustic
wave. This mechanism was theoretically explained by Howe (1979).
BFP systems do not always work as planned (Tran et al. (2009b)). The FDF
framework is here used to analyze configurations equipped with a BFP damper.
This is used to explain successes and failures in damping of self-sustained oscil-
lations. It is specifically interesting to examine the different situations analyzed
in Part III which have been systematically characterized in the absence of a
damper and include a BFP. At this point it is important to review previous
work concerned with BFP design and practical demonstrations.
Work which is closely linked to the present study is reported by Tran (2009)
where it is shown that the nonlinearity in the BFP response induces a loss
in damping characteristics. As the acoustic wave amplitude increases, the
generation of vortices becomes less effective and damping is reduced when the
oscillation reaches large amplitude levels.
Modeling and sizing of BFP systems is considered for a particular regime of
operation by Hughes et al. (1990). The analysis based on Howe’s theory (Howe
(1979)) only considers acoustic plane waves. An optimum absorption is identi-
fied at low Helmholtz numbers He = kL ≪ 1 and for a resonance parameter Q
= 1. This latter quantity is defined as Q = (k/kHe)2 where kHe = [2ra/(Ld2)]1/2

is the wave number of the back cavity of volume Ld2. The cavity acts in this
regime as a Helmholtz resonator and the resonance parameter indicates that
the unsteady flow in the perforation operates at large Strouhal number St ≫ 1
as shown by Scarpato et al. (2012). These set of conditions define compact
dampers, designated in what follows as “A-dampers”, which are characterized
by a relatively narrow bandwidth of interest. This requires an accurate knowl-
edge of the frequency to damp and one can immediately see that A-dampers
will be difficult to tailor in practice because the frequency of unstable pertur-
bations may feature excursions with respect to its nominal value.
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Another interesting regime is considered by Scarpato et al. (2012) where the
frequency band of interest is widened by operating at low Strouhal numbers St
≪ 1 with a quarter wave mode in the back cavity. This allows to design robust
low frequency dampers designated in what follows as “B-dampers” which are
better suited than A-dampers for thermoacoustic instability suppression. This
is specifically so when the oscillation has reached a limit cycle with a frequency
shifted with respect to the acoustic eigenmode. It is shown here that the
frequency may vary with the oscillation amplitude (Noiray et al. (2008); Boudy
et al. (2011a)) and this has the consequence that cancellation provided by A-
dampers in a narrow range is not robust.
All these studies indicate two important points concerning the control of ther-
moacoustic oscillations which are linked to the amplitude :

• The system can loose its damping characteristics under large amplitude
levels because the damper orifices have a nonlinear response

• The frequency band of influence has to be widened to avoid a possible
initiation of oscillation with a frequency varying with the amplitude in
the vicinity of the acoustic eigenfrequency.

The detailed characterization of the multiple flame combustor will be used in
what follows to select specific regimes of operation and analyze the instability
in the whole range of amplitudes within the FDF framework. Two major topics
will be considered in what follows.
The first is concerned with the cancellation of large amplitude limit cycles, up
to relative values urms/Ub = 1.5. This is used to investigate the influence of the
damper nonlinear response. Self-sustained oscillations of different amplitudes
but almost similar frequencies will be considered. This is achieved by changing
the confinement tube size L2. The damper efficiency will be checked in this way
for large oscillation levels and this will be interpreted with the FDF framework
providing an understanding of experimental data. The present study thus
differs from Tran (2009) where the FDF of the swirled burner was not available.
The second topic concerns the frequency bandwidth of the damping device and
its ability to handle frequency shifts, with respect to the eigenmode resonances.
The damper robustness will be tested by examining the special case of an
oscillation sustained by two modes as described in Chapter 9. Modification of
the back cavity size Lc is used to examine if a change in the optimal frequency
can bring the system into an oscillatory state.
In what follows the BFP damper constitutes the boundary condition of the
upstream manifold. Its reflection coefficient is derived from the impedance of
the perforated plate which relies on the Rayleigh conductivity deduced from
Howe’s theory. The BFP is placed in the multiple flame combustor and the
piston creates a back cavity. The model derived by Scarpato et al. (2012) is
summarized and combined with the description of the multiple flame combustor
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in the following sections. This model is then used to obtain predictions for
selected geometries. These predictions are finally compared to experimental
data.

10.2 Theoretical analysis of bias flow perforates

It is first useful to give a few details on the modeling of BFP. In a first step,
the model is presented by closely following Scarpato et al. (2012). One has to
recall however that the piston head is not a perfect rigid wall and the reflection
coefficient of this head is taken into account in a second stage of modeling.

10.2.1 The ideal case of back cavity terminated by a rigid wall

The configuration is the same as the one sketched in Fig. 10.1 for a single
hole. The perforated plate is backed by a cavity terminated by a rigid wall.
Assuming harmonic disturbances for pressure p′, velocity u′ and flow rate q′,
one can write :

p′ = ℜ{p̃ exp(−iωt)} ; u′ = ℜ{ũ exp(−iωt)} ; q′ = ℜ{q̃ exp(−iωt)}
(10.1)

Using conventions defined in Fig. 10.1, the specific acoustic impedance on the
downstream side of the perforated plate is :

ζ1(0+) =
p̃1(0+)

ρ0c0ũ1(0+)
(10.2)

The back wall at the longitudinal coordinate z = −Lc is perfectly rigid and
one can write the specific acoustic impedance ζc(0−) on the upstream side of
the perforation :

ζc(0−) =
p̃c(0−)

ρ0c0ũc(0−)
=

eikLc + e−ikLc

eikLc − e−ikLc
(10.3)

Using the conservation of the acoustic volume flow rate and a momentum
balance between upstream and downstream sections one has :

q̃ = ũc(0−)d2 = ũ0πr2
a = ũ1(0+)d2

iρ0ωũc(0−) = iρ0ωũ1(0+) =
KR

d2 [p̃1(0+) − p̃c(0−)]
(10.4)

where d designates the square mesh separation of orifices of diameter da = 2ra

as illustrated in Fig. 10.2 and KR is the Rayleigh conductivity of an aperture.
This quantity links the pressure fluctuation difference between the two sides of
the plate and the unsteady acoustic volume flow rate across the hole (Morse
et al. (1986)).
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Figure 10.2: Geometrical definitions of the perforated plate. The holes of diameter
da = 2ra are equally spaced in a square pattern with a mesh size d.

Combining Eqs. (10.3) and (10.4) one obtains the specific acoustic impedance
on the downstream side :

ζ1(0+) =
p̃1(0+)

ρ0c0ũ1(0+)
= i

(
kd2

KR
− 1

tan(He)

)
(10.5)

The response of the perforate submitted to an incident acoustic wave requires
the determination of the Rayleigh conductivity. This can be obtained from
Howe (1979), where an analytical expression is derived for a circular aperture
with an initially irrotational jet emerging :

KR = 2ra(γ − iδ) (10.6)

where γ and δ take the following form1 :

γ − iδ = 1 +
(π/2) I1(St) exp(−St) − iK1(St) sinh(St)

St [(π/2) I1(St) exp(−St) + iK1(St) cosh(St)]
(10.7)

In the previous expression I1 and K1 are modified Bessel functions of the first
and second kinds. The Strouhal number St is defined as St = ωra/ucv where
ra designates the perforation radius and ucv is the vortex convection velocity
taken equal to one half of the jet velocity in the contraction section of the
vortex.
If the system operates in the low Strouhal number range (St ≪ 1), it is pos-
sible to reduce Eq. (10.7) and obtain a simpler expression for the Rayleigh
conductivity :

KR ≃ 2ra

(
1
3

St2 − i
π

4
St
)

(10.8)

1It should be noted that the Rayleigh conductivity defined in Hughes et al. (1990) takes
a different form. However by factorizing the equation given in Hughes et al. (1990), one
retrieves the simple formula of Eq. (10.7) used by Scarpato et al. (2012).
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Using this relation one finds an analytical expression for ζ1(0) which yields the
reflection coefficient on the downstream side of the perforated plate :

R1(0) =
ζ1(0) + 1
ζ1(0) − 1

(10.9)

Maximum damping is obtained when the reflection coefficient is led to vanish.
This can be attained by searching the zeros of Eq. (10.9), which corresponds
to solving ζ1(0) + 1 = 0. Combining Eqs. (10.5) and (10.8), and limiting the
analysis to second order, one has to solve :

Mc

σd

8
3π

St − 1
tan(He)

+ i

(
2

Mc

σd
− 1

)
= 0 (10.10)

where Mc = ucv/c designates the Mach number based on the convective veloc-
ity of the vortices. In this case, the convection velocity ucv is taken equal to the
bulk velocity ucv = Ub in each perforation. As one can see, the low Strouhal
approximation yields a simple relation which defines a vanishing reflection co-
efficient. This corresponds to :

Mc =
σd

2
(10.11)

1
tan(He)

=
4

3π
St (10.12)

The reflection coefficient on the upstream side of the combustor vanishes when
two conditions are fulfilled. The first regards the porosity of the perforated
plate as shown in Eq. (10.11), the second is linked to the size of the back cavity
Lc found from Eq. (10.12). The system operating in the low Strouhal number
range St ≪ 1, induces a small value on the right hand side of Eq. (10.12),
yielding :

1
tan(He)

≃ 0 (10.13)

One obtains a solution for He = (ωLc)/c = π/2 corresponding to a certain
length Lc of the back cavity :

Lc =
c

4f
(10.14)

On the basis of this low Strouhal number analysis and on Howe’s modeling
of the Rayleigh conductivity, Scarpato et al. (2012) designed dampers which
feature two positive characteristics :

• The cancellation frequency band is widened,

• The frequency to damp is only determined by selecting the size of the
back cavity as defined in Eq. (10.14)
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10.2.2 Model including the reflection coefficient of the piston
head

The piston head is typified by a reflection coefficient Rc(−Lc) which can be
written as follow :

Rc(−Lc) =
A+

c e−ikLc

A−
c eikLc

(10.15)

It is then possible to modify Eq. (10.3), and obtain :

p̃c(0−)
ρ0c0ũc(0−)

=
Rc(−Lc)eikLc + e−ikLc

Rc(−Lc)eikLc − e−ikLc
(10.16)

The specific acoustic impedance is deduced from Eq. (10.4) in combination
with the acoustic volume flow rate and the momentum balance :

ζ1(0) =
p̃1(0+)

ρ0c0ũ1(0+)
= i

kd2

KR
+

Rc(−Lc)eikLc + e−ikLc

Rc(−Lc)eikLc − e−ikLc
(10.17)

It is found that the second term in the right hand side changes when one rep-
resents the piston behavior. For a perfectly reflecting boundary with Rc(−Lc)
= 1, one retrieves the expression 1/ tan(He) given in Eq. (10.5).
Using the low Strouhal approximation for the Rayleigh conductivity KR, it is
possible to write a new equation which yields a vanishing value of the reflection
coefficient, i.e. ζ1(0) + 1 = 0. Limiting the analysis to second order, one finds :

Mc

σd

8
3π

St − i
Rc(−Lc)eikLc + e−ikLc

Rc(−Lc)eikLc − e−ikLc
+ i

(
2

Mc

σd
− 1

)
= 0 (10.18)

This equation is very close to that introduced previously (Eq. (10.10)). The
influence of the reflection coefficient of the piston head Rc(−Lc) only affects
one term. This will be examined later on. It is first useful to measure the
damper response and see if it agrees with the theoretical prediction.

10.3 Damping system design

10.3.1 Methodology

The model presented in the previous section is now used to design a damper
comprising a perforated plate backed by a cavity. One considers the config-
uration of the multiple flame combustor illustrated in Fig. 10.3. The burner
sketched on the left of this figure corresponds to the configuration investigated
in previous chapters. For a certain feeding manifold length L1 where an oscil-
lation occurs at a fixed amplitude and frequency, one is able to determine the
back cavity length Lc to suppress the oscillation. In this case, the perforated
plate is set up at the position of the piston head and the back cavity size Lc
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Figure 10.3: Experimental setup equipped with the damper comprising a bias flow
perforated plate backed by a cavity. (a) The left figure shows the burner used to char-
acterize and predict self-sustained combustion oscillations. (b) The burner equipped
with the perforated plate is sketched on the right. The piston has a dual use. It injects
the methane-air mixture and defines the cavity back wall.
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Figure 10.4: Algorithm for the determination of the damper characteristics. Dimen-
sions of the perforated plate are determined independently of the size of the back cavity.
This design implies that three conditions are satisfied : St ≤ 0.2, the number N of holes
is compatible with the size D and ra

√
π ≤ 0.2d. These conditions are underlined in

the graph.

is adjusted by displacing the piston as shown in Fig. 10.3(b). To design the
damper, one has to define the porosity σd, the number of holes N of the perfo-
rated plate and independently, the back cavity size Lc. As shown in Sec. 10.2
with Eq. (10.14), the size of the back cavity solely depends on the frequency
of oscillation. Figure 10.4 summarizes the methodology used to determine the
dimensions for the perforated plate and the back cavity. In the present case,
all the flow traverses the perforated plate. Thus, in a first step, one has to link
the mean velocity in the feeding manifold Um and the bulk velocity Ub in the
damper perforations. These two velocities are coupled by the porosity of the
perforated plate :

Um = σdUb (10.19)

where σd = (Nπr2
a)/(πD2/4) corresponds to the porosity. However, as the

reflection coefficient is cancelled for Mc = Ub/c = σd/2, one has to take into
account the following relation :

Ub =
σdc

2
(10.20)
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Combining Eqs. (10.19) and (10.20), one obtains an expression for σd and Ub

depending on the mean flow velocity Um :

σd =

√
2Um

c

Ub =

√
Um c

2

(10.21)

In a second step, the porosity σd is used to calculate the number of holes. In this
case, two conditions underlined in Fig. 10.4 must be fulfilled. The first regards
the holes diameter. It is arbitrarily fixed, keeping in mind that the Strouhal
number St has to be small (St ≪ 1). It is safe to stay below a value of 0.2.
The second condition is linked to technological possibilities. One determines a
number of holes N which has to be drilled inside the limited diameter D of the
perforated plate. In the present case, this dimension is that of the upstream
manifold D = 0.07 m. As the square mesh for the holes position is not known
at this stage, one has to see whether the number of holes is too large or not.
Finally, the last step concerns the calculation of the distance between the
perforations d. The holes are located on a regular square mesh as illustrated in
Fig. 10.4. Holes of diameter da are located on a square of side d. This pattern
defines for the porosity σd = πd2

a/(4d2), providing the distance d between
the holes. One is therefore able to see if the number of holes N fits in a
circle of diameter D. In addition, a last criteria has to be verified to assure
that no interactions take place between holes and that vortex shedding occurs
independently. According to Melling (1973), interaction are weak if ra

√
π/d ≤

0.2.
Having defined the perforated plate dimensions, one may determine the back
cavity length Lc and the damper can be manufactured and tested.

10.3.2 Damping system for the multiple flame combustor

The damper is defined as explained in the previous subsection. Experiments
are carried out with a mean flow velocity Um = 1.05 m.s−1. This yields a
porosity σd = 0.0782 and a bulk velocity Ub = 13.4 m.s−1 in the perforations.
The diameter da is set to 1 mm. This gives a Strouhal number St = 0.12 for a
frequency of 500 Hz. This value is typical of the instability frequencies observed
in the experiments. Using the porosity σd, one finds the number of holes N
= 383 and the spacing d = 3.2 mm between the holes. The interaction index
ra

√
π/d = 0.28 slightly exceeds 0.2 which is acceptable. One finds however

that the number of holes N cannot fit in the limited diameter D = 0.07 m. An
iterative process is used to obtain the final values gathered in Tab. 10.1.
The main change concerns the number of holes. It is decreased to 357 leading
to a slight increase in bulk velocity Ub which becomes 14.4 m.s−1. The Strouhal
number is now 0.11 at 500 Hz. This ensures that the system operates in the
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Table 10.1: Damper geometrical parameters and corresponding Strouhal and spacing
numbers. Nominal design and practical application.

N ra (mm) d (mm) St ra

√
π

d

Nominal Design 383 0.5 3.2 0.12 0.28

Application 357 0.5 3 0.11 0.3

Upper Lower

Lower

Upper

Figure 10.5: Image of the machined perforated plate. Details on the right reveal
the hole characteristics. The lower side of the perforations has been countersunk, a
characteristic which was not initially planned. Experiments indicate that this does not
modify the plate reflection response. The flow direction is indicated with an arrow.

low Strouhal number range with a higher bulk velocity Ub. The higher velocity
also allows a better handling of large amplitude oscillations retarding reverse
flow in the damper channels (Scarpato et al. (2011)). On the other hand, the
interaction coefficient ra

√
π/d rises to 0.3 which is not far from 0.2.

The damper geometry is shown in Fig. 10.5. As indicated in the right hand side
of the figure, the perforations are countersunk on the lower side, a characteristic
which was not planned at the beginning, because sharp edges are better suited
to generate vortices. While this was not initially planned it was decided to keep
this geometry and examine the influence of these chamfers on the reflection
response of the damper.

10.3.3 Measurement of the reflection coefficient

The damper reflection response is now characterized experimentally in the
impedance tube represented schematically in Fig. 10.6. Its response is deter-
mined with the method described in Sec. 4.2.1.
Pressure is recorded by three microphones M1 to M3. The back cavity is
defined by the piston position with respect to the perforated plate. The transfer
function H12 between microphones M1 and M2 is measured to estimate the
specific acoustic impedance ζ1(0) and subsequently the reflection coefficient
R1(0). The loudspeaker subjects the perforated plate to harmonic fluctuations
between 50 and 1100 Hz by steps of 50 Hz. A B-type damper is tested in this
section. It is designated as “B-SH” for Small Holes. This system was designed
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Figure 10.6: Impedance tube used to measure the reflection coefficient of the BFP.
An air flow rate equivalent to the methane-air mixture is used in these experiments.
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Figure 10.7: Reflection coefficient of the damper B-SH. The back cavity is terminated
by the piston. Measurements are displayed as open symbols ( ◦). Two models are used
to retrieve the reflection coefficient of the damper. Predictions from the first model
plotted as a continuous line (�) correspond to the low Strouhal regime of Scarpato
et al. (2012). Predictions from the second model appear as a dashed line ( - -). It uses
the low Strouhal approximation but accounts for the reflection coefficient of the piston.

to cancel combustion oscillations around 500 Hz and the back cavity size is set
to Lc = c1/(4f) = 0.173 m.
The modulus |R1(0)| and phase φ1(0) of the reflection coefficient R1(0) =
|R1(0)| exp(iφ1(0)), calculated using Eqs. (10.5), (10.8) and (10.9), are plotted
in Fig. 10.7 as a function of the modulation frequency. The improved model
Eq. (10.17) yields values displayed as dashed lines. Measurements by means
of the three microphones technique are shown as open circle symbols (◦) for a
fixed sound pressure level SPL = 132 dB controlled by the microphone Mspl.
One notes that the expected behavior is well retrieved. The damping system
has been designed to cancel oscillations at a frequency f = 500 Hz and the
reflection coefficient features a low modulus |R1(0)| with a phase shift φ1(0) in
the frequency range of interest.
Predictions from the first model of Scarpato et al. (2012) correspond to the bold
line. The general shape is well retrieved. The modulus decreases and the phase
increases around 500 Hz. There are some differences between predictions and
experiments. The modulus |R1(0)| is higher than the measured value between
50 Hz and 200 Hz and lower between 500 Hz and 800 Hz. The phase indicates a
greater shift between 300 Hz and 700 Hz. This can be attributed to the piston
head which does not perfectly close the back cavity. The second model takes
into account the reflection coefficient of the piston head and yields improved
predictions. The low frequency range perfectly matches measurements up to
300 Hz. Some differences remain between 300 Hz and 900 Hz for the modulus
and between 300 Hz and 500 Hz for the phase. This is may be due to vortex
interactions which are not taken into account in the model. Such interactions
are possible since the interaction index exceeds the limiting value of 0.2 in the
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Figure 10.8: Reflection coefficient of the damper B-SH. The back cavity is closed by
the piston. There is no bias flow in the system. Measurements are displayed as open
symbols ( ◦). The low Strouhal approximation of Scarpato et al. (2012) is shown as
a continuous line (�). Measurements indicate that the bias flow is essential if one
wishes to reduce the reflection response.

system as holes are close and do not quite satisfy the weak interaction condition
defined by ra

√
π/d ≤ 0.2.

By switching off the flow rate, it is clearly shown that damping is linked to
the bias flow velocity as illustrated in Fig. 10.8. Without flow, the reflection
coefficient is modified and takes large values with a modulus around 0.8.
It is now interesting to estimate the influence of the chamfers machined on
the lower side of the perforations presented in Fig. 10.5. The perforated plate
is turned upside down and the evaluation of the reflection coefficient is re-
peated. Results are displayed in Fig. 10.9 and compared with measurements
corresponding to the standard position of the perforations.
A large deviation appears at 400 Hz for the phase. Apart from this, one can
see that the modulus |R1(0)| and the phase φ1(0) are close for all frequencies,
indicating that the chamfer has a minor influence. The sharp edges needed to
obtain vortices on the perforations is not a critical point for this damper. The
holes countersink does not influence the reflection coefficient. The plate is used
in what follows with the countersink placed on the lower side.
Finally, a second perforated plate is considered to illustrate the likelihood of an
interaction phenomenon between vortices. The perforations are further apart
and the measurement of the reflection coefficient is repeated. This perforated
plate has been used to damp combustion instabilities in the unconfined config-
uration studied by Noiray (2007). This new damper, designated as “B-BH” for
Big Holes, features 21 holes of diameter 2ra = 4 mm placed on a d = 14 mm
square mesh. The flow rate remains the same and the bulk velocity Ub in the
perforations reaches 15.3 m.s−1. For a frequency of 500 Hz, the Strouhal num-
ber is now St = 0.41. The low Strouhal approximation is not valid anymore
and the complete formula for the Rayleigh conductivity, given in Eq. (10.7),
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Figure 10.9: Reflection coefficient of the damper B-SH. The back cavity is closed
by the piston which is represented in the model. Predictions are plotted as a dashed
line ( - -). Measurements are displayed as symbols. Open circle symbols ( ◦) show
measurements corresponding to the standard plate installation on the first side. Cross
symbols ( ×) exhibit values obtained when the plate is set upside down.
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Figure 10.10: Reflection coefficient of the damper B-BH (ra = 2 mm). Measure-
ments are displayed as open circle symbols ( ◦). Two models are used to determine
the reflection coefficient. The first plotted as a bold line (�) uses the Rayleigh con-
ductivity derived by Howe (1979) but assumes that the piston is perfectly rigid. The
second shown as a dashed line ( - -) involves the same model but uses a finite reflec-
tion response for the piston. The convection velocity ucv used in the Strouhal number
corresponds to half of the bulk velocity Ub/2 = 7.65 m.s−1.
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Table 10.2: Characteristics of the two dampers used to suppress self-sustained oscil-
lations. These dampers pertain to “B” type.

Name N ra (mm) d (mm) St (1 to 1000 Hz)

B-SH 357 0.5 3 2.2 10−4 - 0.22

B-BH 21 2 14 8.2 10−4 - 0.82

is used to calculate ζ1(0). This provides the reflection coefficient R1(0). The
interaction coefficient ra

√
π/d is in this case 0.25 which is closer to 0.2.

The ideal or imperfect closure of the back cavity is integrated to determine the
specific acoustic impedance ζ1(0) by using either Eq. (10.5) or Eq. (10.17). In
their experiments, Noiray (2007) found a better agreement between modeling
and measurements when the convection velocity ucv is taken equal to half of
the bulk velocity Ub. Thus, it was decided to estimate the reflection coefficient
with the same approximation (ucv = Ub/2) with this damper.
Figure 10.10 displays results obtained with ucv = Ub/2. Comparing the two
models, one can see that the reflection coefficient of the piston head allows to
obtain a perfect match between predictions and measurements. There are only
small differences beyond 600 Hz for the modulus |R1(0)|.
The characteristics of the two dampers presented in this section are summa-
rized in Tab. 10.2. For the two systems B-SH and B-BH, Howe’s model of
the Rayleigh conductivity is used to determine the reflection coefficient of the
BFPs. A good agreement with experiments is obtained by modeling all the
system components, and in particular the piston head which does not act as
a perfectly rigid wall. Some differences subsist, but experiments on damper
B-BH indicate that this may be linked to the interaction between adjacent
vortices.

10.3.4 Influence of oscillation level

The two dampers devised previously are tested in the multiple flame combustor.
It is known from Tran (2009) that the performances of a BFP drop down as
the oscillation amplitude increases. The modulus tends to 1 and the phase to
0. A threshold exists where the system response is influenced by the sound
pressure level. It has been demonstrated that this phenomenon occurs when
the root mean square value of the acoustic velocity fluctuation u′

p(0) within the
perforation is of the order of the bias flow velocity u′

p(0)/Ub ≃ 1 (Tran (2009);
Scarpato et al. (2011)).
In the present study, the velocity fluctuation level within the perforations of
the damping system is not directly measured. This quantity is reconstructed
from the reflection coefficient Rc(−Lc) and the pressure signal measured by
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Figure 10.11: Evolution of the relative velocity fluctuation ũp(0)/Ub within the holes
( 2ra = 4 mm) for the frequency range of interest. Three sound pressure levels (SPLs)
are considered. The first of 132 dB corresponds to the level applied during the calibra-
tion of the damper in the impedance tube. The two other levels are used to define the
SPL for which the oscillation overcomes the mean flow velocity in the perforation.

the microphone Mspl as follows :

ℜ{ũp(0) e−iωt} =

ℜ
{

1
σdρc(Rc(−Lc) + 1)

(Rc(−Lc)eikLc − e−ikLc)p̃c(−Lc) e−iωt
} (10.22)

where p̃c(−Lc) e−iωt represents the Hilbert transform of the pressure time trace
measured by microphone Mspl.
It is then possible to determine the relative velocity fluctuation level ũp(0)/Ub

within a perforation. This is shown in Figs. 10.11 and 10.12 for the two perfo-
rated plates considered previously. These figures also display an extrapolation
of the velocity fluctuation level by considering two higher pressure amplitudes
at microphone Mspl. This helps to define the SPL threshold for which ũp(0)/Ub

= 1 is overcome.
For a value of 145 dB, the rms velocity fluctuation reaches the mean value Ub

at a frequency f = 500 Hz in both cases. It should be noted that almost all
relative velocity fluctuations are above unity when the SPL reaches 156 dB.
For the perforated plate with small holes of diameter da = 1 mm, shown in
Fig. 10.12, a safe zone exists above 900 Hz. In this range, relative velocity
fluctuations are lower than unity.
Regarding the three SPL for the two systems, velocity oscillations within the
perforations remain smaller than the bias flow velocity when the SPL is below
145 dB. The damping system response can be anticipated using the model
defined in Eqs. (10.9) and (10.17). For larger values of the pressure level,
velocity fluctuations exceed the bias flow value and the reflection coefficient
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Figure 10.12: Evolution of the relative velocity fluctuation ũp(0)/Ub within the holes
( 2ra = 1 mm) for the frequency range of interest. Three sound pressure levels (SPLs)
are considered. The first of 132 dB corresponds to the level applied during the calibra-
tion of the damper in the impedance tube. The two other levels are used to define the
SPL for which the oscillation overcomes the mean flow velocity in the perforation.

deviates from the linear model. It is worth noting however that Tran (2009)
showed that damping properties really deteriorate for a ratio ũp(0)/Ub above
3, with some degradation when ũp(0)/Ub exceeds unity. Finally, it is found
that the damping systems feature robust characteristics because of the high
value of their bias flow velocity Ub and that their reflection response will not
deviate from the linear regime up to a level of 156 dB.

10.4 Nonlinear stability analysis

The configuration investigated in this section accounts for the interaction of
two nonlinear elements. The first is the set of conical flames described with the
FDF. The response of these flames has been examined in detail in the preceding
chapters. Using the FDF, it has been possible to predict growth rates and
frequencies of unstable modes as well as amplitudes reached at limit cycles.
This investigation also reveals limit cycles with variable amplitude sustained
by multiple modes. The flame was treated as the only nonlinear element,
while the piston head response was described by a linear reflection coefficient
R1(0). Different amplitudes were tested and did not modify its response. This
boundary condition is now replaced by the dampers devised previously. The
back cavity is set to a length Lc depending on the frequency to damp. This new
configuration now comprises two nonlinear elements at the two boundaries of
the feeding manifold L1 as represented schematically in Fig. 10.13. This typifies
more complex situations were the dynamics of the reactive region interferes
with the response of the chamber boundaries. A similar system was analyzed
by Schuller et al. (2009) when the flame is unconfined. Nevertheless, in the
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Figure 10.13: Burner geometry and conventions used in the analytical model of the
system response.

present case the flame is confined by the quartz tube.
The reflection coefficient of the bias flow perforated plate R1(0) and the flame
are sensitive to velocity fluctuations. Thus, it is more consistent to also use
velocity fluctuations to characterize the damper reflection coefficient R1(0).
This response is measured for incident waves at a reference level of 132 dB.
The velocity fluctuations inside the perforations ũp(0) can be estimated with
Eq. (10.22). It is also possible to link the velocity fluctuation in the perforations
ũp(0) to those existing at the base of the flame ũ1(L1). The reflection coefficient
R1(0) is needed and may be written as :

R1(0) =
A+

1

A−
1

(10.23)

Thus, the link between the two velocities ũ1(L1) and ũ1(0) can be made. This
takes the form :

ũ1(0) =
R1(0) − 1

R1(0)eik1L1 − e−ik1L1
ũ1(L1) (10.24)

Microphone M2, placed 3 cm below the multipoint injection plate (see Fig. 1.2)
can be used to determine the velocity fluctuation ũ1(L1). One uses Eq. (8.3)
presented in Chapter 8 to compute velocity fluctuations as a function of feeding
manifold length L1. The Hilbert transform of this velocity signal is introduced
in Eq. (10.24), giving the velocity fluctuation u′

1(0) in the plane of the damping
system. The velocity perturbation in the perforations is deduced by taking into
account the porosity of the damper σd : u′

1(0) = σdu′
p(0).

It was noted in Sec. 10.3.4 that the relative fluctuation amplitude ũp(0)/Ub has
to lie below unity to avoid nonlinear effects. Moreover, the system is more prone
to these nonlinearities when the velocity ratio exceeds 3 (Tran (2009); Scarpato
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et al. (2011)). The amplitude of the self-sustained combustion oscillations are
calculated in the perforations of the damping system using Eq. (10.24). This
indicates that the relative fluctuation amplitude ũp(0)/Ub does not exceed 2.4
at this location for the L2 = 0.20 m confinement tube. By examining the short
confinement tube L2 = 0.10 m, the maximum amplitude lies around ũp(0)/Ub

= 1.8 for the damping system with small holes and 2.1 for the one with larger
holes da = 4 mm. One may then use the linear damper response in calculations
carried out for all amplitudes.
The nonlinear analysis based on the FDF carried out in this section focuses
on several different points. It is aimed at interpreting successes and failures
sometimes encountered in damping the oscillations. One first examines the
reliability of the BFP at high amplitude. In this context, the perforated plates
feature a high bulk velocity Ub in each perforation to avoid flow reversal and
deterioration of the damping characteristics. The two dampers are tested in
the multiple flame combustor which provides a set of instabilities covering a
wide variety of amplitudes and frequencies mapped in the preceding chapters.
It is particularly interesting to consider configurations discussed in Chapter 8
which exhibit the same instability frequency at different amplitudes. These
conditions are realized by changing the flame tube size L2.
Another objective is to examine the benefits of the large frequency bandwidth
obtained with damper B-SH but also with B-BH. This is examined by ana-
lyzing situations where a frequency shift occurs or in the situation where two
unstable modes exist simultaneously in the burner. In a second step, the work
investigates the influence of a change in the back cavity length Lc. The system
is operated in its optimal arrangement and the back cavity size Lc is dimin-
ished in a progressive manner. By considering the damping response, this leads
to move the optimal absorption frequency to a higher value. It is shown that
B-type dampers characterized by a broad frequency absorption bandwidth of-
fer more flexibility compared to A-dampers based on design rules derived by
Hughes et al. (1990).
In what follows, we consider two frequencies. The first one lies around 600 Hz
and is treated with the damper B-BH, while the second is 500 Hz and it is
reduced by the damper B-SH. Table 10.3 synthesizes the geometrical configu-
rations calculated with the FDF framework and investigated experimentally.

10.4.1 Damping of combustion instabilities for different ampli-
tudes

The damper B-BH with the largest holes of diameter da = 4 mm is first con-
sidered. Flames are anchored on the perforated plate of thickness l = 15 mm.
The system is investigated with the protocol adopted in Chapter 8. The model
devised in Eq. (8.1) is applied to calculate complex roots ω = ωr + iωi of the
dispersion relation as a function of the feeding manifold length L1. The reflec-
tion coefficient of the piston head R1(0) is replaced by the reflection coefficient
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Table 10.3: Configurations investigated with the multiple flame combustor equipped
with the dampers B-BH and B-SH. The two lower lines show values observed during
self-sustained combustion oscillations without damper, while the upper part gathers the
geometrical characteristics of the configurations.

Damper B-BH B-SH

Flame holder l (mm) 15 3 15

L2 (m) 0 0.10 0.20 0 0.10 0.30 0.10

L1 (m) 0.35 0.34 0.43 0.35 0.50

f (Hz) 683 652 603 715 537 455 795

urms/Ub 0.27 1.20 1.02 0.35 1.45 0.78 0.7

of the perforated plate backed by the cavity, i.e. the damper. This is calculated
with Eq. (10.17).
The first test is carried out in the unconfined version of the burner. This config-
uration offers a condition with self-sustained oscillations at low amplitude. The
limit cycle is recorded for a frequency f = 683 Hz and an amplitude urms/Ub

= 0.28 for L1 = 0.35 m. The perforated plate is installed at this length and
the back cavity is adjusted to Lc = 0.125 m to cancel the oscillation at 683 Hz.
Calculations with the FDF framework and reflection coefficient are presented
in Fig. 10.14. Calculations are shown on the left hand side of the figure. The
growth rate ωi appears in the upper box as a function of increasing amplitude
urms/Ub. The frequency appears in the lower box. These trajectories pertain
to the second mode. Growth rates computed for the first and third modes
remain negative for all amplitudes and are not included in this figure. The
growth rates and frequencies of the first mode are plotted as bold lines for
the undamped burner. Dashed lines show the trajectories when the damper is
placed in the system.
One finds negative growth rates for all amplitudes when the passive damper
is placed in the system. This effectively leads to a stable combustion regime.
Regarding the undamped burner, the limit cycle occurs at urms/Ub = 1.06 and
f = 672 Hz. While frequency is well predicted, the amplitude is overestimated
as found in Chapter 8 for other configurations. Under real test conditions one
obtains the power spectral density of the signal recorded by microphone M2

displayed in Fig. 10.15 in the absence or presence of a damper.
The power spectral density of the pressure in the absence of the BFP plotted
as a dark bold line in subfigure (a) features a well marked peak at 683 Hz.
The damper suppresses the instability as can be seen in the PSD plotted in
subfigure (b). Other frequencies do not emerge. This confirms the results found
in calculations and the burner is deemed to operate with a stable combustion
process.
The previous case features a low amplitude combustion instability. This oscil-
lation can be damped out by means of the BFP placed in the feeding manifold.
The BFP is designed to avoid reverse flow in its perforations. This would lead
to a nonlinear regime with degraded damping characteristics. The reflection
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Figure 10.14: Left : Evolution of growth rate ( ωi) and frequency ( f) deduced from
the FDF framework. Bold line (�) pertains to prediction of self-sustained oscillations
without damper. Dashed line ( - -) corresponds to calculations including the damper.
Damper B-BH (da = 4 mm), back cavity size Lc = 0.125 m. The confinement tube is
removed and the feeding manifold length is fixed to L1 = 0.35 m. Without the damper,
the system features self-sustained oscillations on the second mode at a frequency f =
683 Hz and the oscillation amplitude urms/Ub = 0.27. Limit cycle found at ωi = 0
for the undamped burner is shown as an open square symbol (�). Right : Reflection
coefficient of the perforated plate backed by its cavity. (�) indicates the limit cycle
frequency found in calculations for the system without damper.
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Figure 10.15: Power spectral density of microphone M2. This microphone is plugged
on the feeding manifold. (a) The black bold line corresponds to an undamped condition
(without the BFP). (b) The red bold line, shows results obtained when the damper is
inserted in the burner. The feeding manifold length L1 = 0.35 m while L2 = 0 m
(unconfined condition).

coefficient does not deviate from the linear regime as the amplitude is grow-
ing and calculations with the FDF can be carried out with a fixed boundary
condition R1(0).
It is now interesting to consider another instability around the same frequency
but leading to a higher amplitude and see if the damper can be relied upon
in this more difficult case. This analysis is motivated by previous studies
where a BFP fails to cancel combustion acoustic coupling (Tran et al. (2009b)).
The latter analysis is carried out with two BFPs, one of which is typified by
a nonlinear response with degraded damping properties as the amplitude is
growing, while the other is still adequate up to 140 dB. We are here following
Tran et al. (2009b) analysis where it was shown that oscillations could be
suppressed with a BFP designed to deal with large amplitudes. This was
demonstrated experimentally, but not verified by calculations, as the flame
response was not available in this study. It should be noted that the effective
perforated plate does not suppress a higher frequency appearing in the system
when the targeted one is cancelled. It is also interesting to examine why
the damper which is not supposed to deviate from its linear regime does not
effectively damp oscillations and prevent their growth to a high amplitude limit
cycle. This question is investigated experimentally as in Tran et al. (2009b),
but also theoretically within the present FDF framework. It will be shown
that a BFP with diminishing damping characteristics reduces the growth rates
in a limited range, creating a cusp in the bifurcation diagram as explained
schematically in Fig. 10.16.
The cases considered in this figure idealize calculations with and without a
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Figure 10.16: Effect of a damper on positive growth rates (ωi>0). The system fea-
tures similar instabilities to those found for the multipoint injection device considered
in the present investigation. The damper features a nonlinear regime with a deterio-
ration of its properties at high amplitudes. The operating length is indicated with the
dashed-dotted line in the right part of the graph. One may distinguish three possible sce-
narios. (a) A linearly unstable mode (left) becomes nonlinearly unstable (right) when
the damper operates. (b) Two modes exhibit positive growth rates indicated by the two
different hatched areas. The damping system, acts on one mode, which becomes non-
linearly unstable while the other mode is unaffected. (c) The damper influences one of
these modes. The smaller feeding manifold lengths are influenced and small amplitude
limit cycles are suppressed but another mode which is linearly unstable prevails.
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nonlinear damping system, respectively drawn on the right and left parts of
the figure. The first example (a) shows the influence of the damper at low
amplitudes. The growth rates ωi drops to a negative level (right graph) and
the oscillation will occur if it is triggered. Considering that the unsteady flame
flow interaction never reaches a perfectly null amplitude, the instability can
start by itself. The right graph of (a) indicates that the amplitude needed to
obtain positive growth rates may not be that high. In the second case (b),
the target mode is not the only one featuring positive growth rates. Thus,
another mode, with a different frequency, keeps its growth capacity and can
trigger the target mode giving rise to a high amplitude limit cycle. Finally, in
subfigure (c), two modes are present, but this time, one of the linearly unstable
modes is completely suppressed but the other mode corresponding to a different
frequency prevails.
Using the multipoint injection combustor, it is easy to select the desired com-
bustion regime and test the damper. This is used to verify the scenarios shown
in Fig. 10.16 and thus to explain failures in suppressing instabilities.
The confined version of the burner is more prone to self-sustained oscillations
at high amplitude. Such regimes are found by confining the flame with a
tube of length L2 = 0.10 m. The feeding manifold length is fixed to L1 =
0.35 m and the damper is introduced in the upstream part. The back cavity
length Lc is adapted to the target frequency, which is not exactly the same
as that investigated up to now. It is now f = 652 Hz instead of f = 683 Hz.
The amplitude features a huge increase to urms/Ub = 1.2. Predictions of self-
sustained combustion oscillations are carried out by successively considering
undamped and damped systems. Results are presented in Fig. 10.17.
Examining the burner dynamics without damper, the limit cycle is predicted
for f = 652 Hz and urms/Ub = 1.26, which match experimental data. When
the BFP is inserted, calculations still predict a limit cycle at a lower ampli-
tude urms/Ub = 0.54 with a higher frequency f = 732 Hz. It is interesting
to see that the second unstable mode at f = 652 Hz shifts to a higher fre-
quency with a larger reflection coefficient |R1(0)| = 0.45 instead of 0.29. The
phenomenon illustrated in this calculation reflects changes in frequency with a
growing amplitude. This also occurs when the boundary condition is modified
by the presence of a damper. When the damper is centered on a specified fre-
quency, the flame dynamics may adapt itself and the resonant frequency might
be shifted in a range where the reflection response is less influential.
This raises an important issue for passive control solutions. If the control
device has a reduced frequency bandwidth, it may not be able to cancel the
thermoacoustic oscillation. This is typical of A-type dampers. B-type dampers
designed according to Scarpato et al. (2012) extend the band of influence and
will be more effective.
To illustrate this fact, calculations have been carried out in the case L1 =
0.35 m and L2 = 0.10 m. One uses the damper B-SH featuring 357 holes of
da = 1 mm. This system works at low Strouhal number and exhibits a large
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Figure 10.17: Left : Growth rate ( ωi) and frequency ( f) deduced from the FDF
framework. Bold line (�) pertains to predictions of self-sustained oscillations without
damper. Dashed line ( - -) corresponds to calculations including the damper. Damper
B-BH (da = 4 mm), back cavity size Lc = 0.133 m. A short confinement tube L2 = 0.10
m is used and the feeding manifold length is fixed to L1 = 0.35 m. Without damper the
burner features self-sustained oscillations near the second modal eigenfrequency at f
= 652 Hz leading to an amplitude urms/Ub = 1.2. Limit cycles found at ωi = 0 for the
undamped and damped burners are respectively displayed as open square symbols (�)
and open triangle symbols (▽). Right : damper reflection coefficient. (�) and (▽)
respectively indicate the limit cycle frequency found in calculations for the undamped
and damped burners.
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Figure 10.18: Left : Growth rate ( ωi) and frequency ( f) deduced from FDF cal-
culations. Bold line (�) pertains to predictions of self-sustained oscillations without
damper. Dashed line ( - -) corresponds to calculations with an A-damper. Results for
a B-damper (B-SH) which features 357 holes (da = 1 mm) are shown as a dashed-
dotted line ( ·-), the cavity size Lc = 0.138 m is used to cancel the frequency found
without damper, i.e. f = 629 Hz. The feeding manifold length L1 = 0.35 m while
the confinement tube L2 = 0.10 m. Limit cycles found at ωi = 0 for the undamped
and damped systems are respectively displayed by open square symbols (�) and open
triangle symbols (▽). Right : Reflection coefficient of the A-damper dashed line ( - -)
and B-damper dashed-dotted line ( ·-). Open symbols (�) and (▽) respectively indi-
cate the limit cycle frequency found in calculations for the undamped burner and for
burner equipped with an A-damper.

damping bandwidth. Results are compared to those obtained by considering
an A-type damper designed with the method of Hughes et al. (1990) which
features a smaller band of interest. Results for these two cases are displayed
in Fig. 10.18.
When a B-damper is used, the growth rate ωi dives in the negative part,
indicating that the oscillations will be cancelled. This is not the case when one
uses an A-damper. Even if the lowest reflection coefficient centers around the
target frequency, the flame adapts its frequency and shifts to a higher value.
The oscillation persists and the amplitude is only slightly diminished.
Experiments are now considered. By placing the B-BH damper (da = 4 mm),
one observes the suppression of the oscillation even if calculations presented in
Fig. 10.17 indicate that oscillations will persist at a lower amplitude urms/Ub

= 0.54. This is shown by analyzing the pressure records of microphone M2 in
Fig. 10.19.



208 Chapter 10 - Acoustic damping with bias flow perforates (BFP)

0 400 800 1200 1600 2000
60

80

100

120

140

160

P
SD

(d
B

)

f (Hz)

(a)

(b)

Figure 10.19: Power spectral density of microphone M2 plugged on the feeding man-
ifold. The black bold line (a) corresponds to the undamped condition (without BFP).
The red bold line (b) is obtained when the damper is placed in the burner. In both
cases, the feeding manifold length L1 = 0.35 m while L2 = 0.10 m (short flame tube).

The power spectrum indicates that control is effective. The unstable frequency
is completely suppressed and the other modes do not arise. This indicates
that the method is applicable in a case where the limit cycle would reach a
very high amplitude. The slight difference in prediction may be linked to the
phenomenon evoked in Chapter 8 and is probably related to uncertainties in
the natural damping or in the temperature T2 estimate.
In the two cases investigated, control has been applied with a robust damper
when the system features small and high amplitude limit cycles. In each case,
the oscillation is cancelled. In addition, calculations reveal the ability of the
flame to shift its frequency of oscillation. The failure scenarios proposed in
Fig. 10.16 do not arise in the present experiment. The BFP operates effectively
at the high oscillation amplitudes under consideration.
It is however possible to demonstrate the mechanism sketched in Fig. 10.16(c)
with another configuration. This is found in the unconfined version of the
burner. The configuration retained was studied by Noiray (2007). In this latter
case, the perforated plate is also effective for all amplitudes, but a length L1

featuring two modes can be explored. These two modes are linearly unstable.
Without damper, this length exhibits a second mode instability with a constant
amplitude. The damper B-BH (da = 4 mm) is set up and one aims to cancel this
second mode frequency at 715 Hz. The result, shown in Fig. 10.20, indicates
that this frequency is eliminated, but a higher frequency appears at 1283 Hz.
The bifurcation diagram obtained in Noiray (2007) is recalculated by making
use of the flame response and parameters used in this experiment. The damper
B-BH (da = 4 mm) backed by a cavity Lc = 0.12 m, is then included and a
new bifurcation diagram is determined. The damper geometry is fixed while
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Figure 10.20: Reflection coefficient (upper part) and power spectral density of the
microphone signal (lower part). The microphone is located 35 cm away from the burner
axis. The dark bold line corresponds to the unconfined flame configuration without
damper, while red bold line corresponds to the burner when the damper is placed in the
feeding manifold. In both cases L1 = 0.34 m. From Noiray (2007).

the feeding manifold length L1 is varied. Results without and with damper are
plotted in Fig. 10.21.
The length investigated L1 = 0.34 m is marked as a dash-dotted line. By ex-
amining the diagram of Noiray (2007) also shown in Fig. 10.21(a), one observes
positive growth rates until urms/Ub = 0.2 for the third mode (red area). These
growth rates have lower values around 100 s−1 when compared to those of the
second mode. They are hidden behind the blue area. By using the damper,
one retrieves the scenario shown in Fig. 10.16(c). The second mode is com-
pletely suppressed while the third one remains as shown in Fig. 10.21(b). This
explains the result found by Noiray (2007). By considering the predicted fre-
quency, one finds that f = 1270 Hz, which is close to the experimental value f
= 1283 Hz. The amplitude in the feeding manifold is not available and hinders
any further comparison with theory. It is however possible to determine the
amplitude in Fig. 10.20, retrieved from Noiray (2007). This value is recorded
by a microphone located 35 cm away from the burner axis. One finds a lower
amplitude for the high frequency f = 1283 Hz than for the one without the
damper. This indicates that the lower amplitude found in calculations may be
in agreement with the experimental value.
The flame tube configuration treated previously is relatively short (L2 = 0.10
m), while that investigated by Tran et al. (2009b) on a different system is
much longer L = 0.50 m. Another configuration with a longer confining tube
L2 = 0.20 m is therefore tested. The feeding manifold length is set to L1 =
0.35 m with the same damper B-BH (da = 4 mm). The back cavity length
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Figure 10.21: Bifurcation diagrams calculated for the configuration of Noiray (2007).
Left graph (a) corresponds to the burner with a perfectly reflecting boundary condition
for the upstream boundary. Right graph (b) shows results obtained by replacing this
boundary condition with damper B-BH (da = 4 mm) set with a back cavity Lc = 0.12
m. This damping system is not modified when the length is swept from L1 = 0.10
m to 0.75 m. The dashed-dotted line drawn on each graph corresponds to the length
examined L1 = 0.34 m.

Lc is adapted to maximize absorption at the frequency f = 603 Hz. This
yields Lc = 0.145 m. The amplitude to damp reaches urms/Ub = 1.02 which
lies in the same range as that studied with the short flame tube L2 = 0.10 m
(where an oscillation amplitude urms/Ub = 1.2 was suppressed). Calculations
and reflection coefficient are displayed in Fig. 10.22.
Results obtained in this case reveal an unexpected behavior. While the limit
cycle without the damper is fairly well predicted, a strong oscillation persists
when the damper is included. Its amplitude lies around 0.98 for a frequency f
= 462 Hz. This behavior is confirmed by experiments. One observes a strong
oscillation with a significant amplitude urms/Ub = 0.55 at f = 592 Hz. This
experimental result is depicted in Fig. 10.23. It indicates that the damper
hardly modifies the pressure spectrum and is unable to control the system.
The loss of effectiveness is well predicted through the FDF framework. The
model highlights three important points. The first one centers around the
perforated plate efficiency. The frequency does not change to a value corre-
sponding to a higher reflection coefficient as observed with the small confine-
ment tube L2 = 0.10 m. It is shifted to a value where |R1(0)| is lower (see
the open triangle symbol in the right part of Fig. 10.22). The second point
is linked to the prediction of self-sustained oscillations. While the prediction
agrees with experiment, there are some differences. The amplitude is overesti-
mated although it is reduced when compared to the calculated value without
the perforated plate. The frequency appears to be lower than that found in
the experiment. Finally, one is surprised to see that control is not achieved
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Figure 10.22: Left : Evolution of growth rate ( ωi) and frequency ( f) deduced from
the FDF framework. Bold line (�) pertains to predictions of self-sustained oscillations
without damper. Dashed line ( - -) corresponds to calculations including the damper.
Damper B-BH (da = 4 mm), back cavity size Lc = 0.145 m. The feeding manifold
length L1 = 0.35 m while the confinement tube L2 = 0.20 m. Without the damper, the
system features self-sustained oscillations at the second mode frequency f = 603 Hz
for an amplitude urms/Ub = 1.02. The limit cycle found at ωi = 0 for the undamped
burner is shown as an open square symbol (�) while the limit cycle corresponding
to the damped burner is displayed as an open triangle symbol (▽). In spite of the
damper, the experiment reveals self-sustained oscillations at a frequency f = 592 Hz
and an amplitude urms/Ub = 0.55. This is shown as an open circle symbol ( ◦).
Right : Reflection coefficient of the perforated plate backed by its cavity. (�) and (▽)
respectively indicate the limit cycle frequency found in calculations for the undamped
and damped burners.



212 Chapter 10 - Acoustic damping with bias flow perforates (BFP)

0 400 800 1200 1600 2000
60

80

100

120

140

160

P
SD

(d
B

)

f (Hz)

(a)
(b)

Figure 10.23: Power spectral density of microphone M2 plugged on the feeding man-
ifold. The black bold line (a) corresponds to the undamped condition (without BFP).
The red bold line (b) shows the result when the damper is inserted in the burner. In
both conditions, the feeding manifold length L1 = 0.35 m while L2 = 0.20 m.

in this situation where the oscillation level remains moderate. Indeed, for the
small confinement tube L2 = 0.10 m and without damper, self-sustained com-
bustion oscillations reach a level urms/Ub = 1.2 and they are suppressed by
the damper. In the present situation with L2 = 0.20 m, it is found that the
fluctuation level urms/Ub = 1.02 but the damper is ineffective. This cannot
be attributed to the nonlinearity of its response. This unexpected behavior
is linked to the acoustic response of the burner when the damping system is
introduced in the upstream. This induces a cavity decoupling effect which will
be investigated in Chapter 11.
The other damper B-SH (da = 1 mm) is now tested in the same way. This
device operates in the low Strouhal number range and offers the benefits of
a broad frequency absorption bandwidth with a low reflection coefficient. By
using the back cavity length Lc, it is possible to tune its response with a min-
imum modulus and a maximum phase. The work centers around the same
guideline and aims to damp out an almost equal frequency at different ampli-
tudes. In addition, the confinement tube L2, used to obtain a high amplitude
of oscillation, is increased to a length L2 = 0.30 m. Three configurations are
examined and their respective conditions are gathered in Tab. 10.4.
The damper effectively suppresses self-sustained oscillations up to urms/Ub =
1.45. This is found for L1 = 0.43 m with the flame tube L2 = 0.10 m. The
suppression of all the eigenmodes is obtained both in calculations and exper-
iments. The damper also suppresses an oscillation for the same confinement
tube at L1 = 0.50 m. Nevertheless, it was not possible to cancel the instability
for the longer confinement tube L2 = 0.30 m. By considering experiments with
the small confinement tube L2 = 0.10 m at L1 = 0.50 m, one notes the presence
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Table 10.4: Configurations examined with the damper B-SH (da = 1 mm) used as
control device in the multiple flame combustor. The lower line indicates the success or
failure to damp the self-sustained oscillations considered.

L2 (m) 0.10 0.10 0.30

L1 (m) 0.5 0.43 0.35

Frequency (Hz) 795 537 455

Amp. urms/Ub 0.7 1.45 0.78

Damped out ? ✔ © ✔ © ✖ §

of two modes. This situation studied in Chapter 9 was obtained for L1 = 0.52
m, while in the present experiment, the two modes exist at L1 = 0.50 m. This
is linked to the burner temperature T2. As mentioned at the end of Chapter 6,
the flame tube temperature T2 modifies the eigenmodes distribution and so,
the bifurcation diagram. Thus, as the experimental points are acquired in an-
other series of experiments, the behavior slightly changes in the transition zone
where the two modes appear. The back cavity is set up by considering the fre-
quency of the third mode f = 795 Hz. Results of calculations are displayed in
Fig. 10.24. One observes that growth rate ωi trajectories represented by dashed
lines become negative indicating full suppression of oscillation. This indicates
that the damper stabilizes the flame in this configuration. This phenomenon
is well retrieved experimentally.
Stabilization is not feasible anymore for the longer confinement tube L2 = 0.30
m where one wishes to cancel a frequency f = 455 Hz featuring an oscillation
amplitude urms/Ub = 0.78. Oscillations persist but amplitude is lowered. This
is reminiscent of what is found previously with the L2 = 0.20 m flame tube and
the damper B-BH. This latter system, without nonlinearities in its response,
was not able to suppress an instability at a moderated amplitude. Damper B-
SH leads to the same result. It is found effective for an oscillation level urms/Ub

= 1.45 when L2 = 0.10 m. Thus, by using the L2 = 0.30 m confinement tube
which features oscillations at lower amplitude urms/Ub = 0.78, one would have
expected the suppression of the instability. Experiment and calculations reveal
that this is not attained. This surprising result comes from the decoupling effect
mentionned before when L2 = 0.20 m and will be explained in Chapter 11.

10.4.2 Influence of the back cavity length

The back cavity length Lc is set to an optimal value to obtain a vanishing
reflection coefficient. This is accomplished by setting He = π/2 where He
designates the Helmholtz number. This method allows to lower the reflection
coefficient on a wide frequency band and it is interesting to modify the back
cavity size Lc to see the sensitivity of the system. The wide frequency band
of the damper is supposed to keep the reflection coefficient at low values and
avoid the initiation of self-sustained oscillations even if the back cavity Lc is
modified.
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Figure 10.24: Left : Growth rate ( ωi) and frequency ( f) deduced from the FDF
framework. Bold line (�) pertains to predictions of self-sustained oscillations without
damper. Dashed line ( - -) corresponds to calculations including the damper. Damper
B-SH (da = 1 mm), back cavity size Lc = 0.109 m. Black color represents the second
mode while the gray lines are linked to the third mode. The feeding manifold length L1

= 0.50 m while the confinement tube L2 = 0.10 m. Without damper the burner features
oscillations sustained by two modes. Limit cycles found at ωi = 0 for the second and
third modes of the undamped burner are respectively displayed as open and gray square
symbols. Right : Reflection coefficient of the damper. Open and gray square symbols
respectively indicate the second and third mode frequency found at limit cycle for the
undamped condition.
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The modification is considered in two configurations. The first corresponds to
the small confinement tube L2 = 0.10 m and the second to a longer tube L2 =
0.20 m, a situation where the damper does not suppress the oscillations. The
two configurations are investigated by calculations and experiments.
In the first case the flame tube is set to L2 = 0.10 m and the damper B-SH
(da = 1 mm) is inserted in the feeding manifold L1. The point of operation
examined corresponds to L1 = 0.50 m. The optimal back cavity length is set to
Lc = 0.109 m. In this situation, one obtains a minimum reflection coefficient
for f = 764 Hz. This is displayed in Fig. 10.24 of the previous section. One
is able in this case to avoid modes 2 and 3. The modulus R1(0) remains lower
than 0.5 from f = 285 Hz to 1000 Hz and the phase φ1(0) exhibits a big shift
of π/2 in this range. It is interesting to see if this broad band allows to move
the piston without initiating oscillations. Calculations are done with the FDF
by sweeping the back cavity length Lc by steps of 1 cm.
One observes that frequency trajectories are almost the same for the growing
amplitudes urms/Ub of each damper. The piston is moved until Lc = 0.039
m. These calculations indicate that the system is effective until Lc = 0.079
m. Below this length, the growth rate trajectories enter in the positive range.
The two targeted frequencies lie around 750 Hz and 500 Hz. Regarding the
reflection coefficient R1(0) for the optimal cavity depth Lc, it is seen that the
frequency around 500 Hz exhibits the highest value for the modulus |R1(0)|. If
one examines this value during the reduction of the back cavity, the modulus
reaches 0.5 for Lc = 0.079 m. The experiment has been done by diminishing
the back cavity with the same steps and shows a stable combustion regime
for the lengths found in calculations. This regime persists until Lc = 0.049 m
which slightly differs from the predicted value.
This analysis reveals that the damping methodology is robust and does not
require a fine tuning of the back cavity length Lc. This is due to the wide
frequency band of action for the damper. It is however required to calculate
or measure the reflection coefficient to keep a sufficiently low value for the
modulus.
The same analysis has been undertaken in the confined configuration L2 = 0.20
m, where the damping device shows its inefficiency. The burner is equipped
with damper B-BH (da = 4 mm). The case studied corresponds to the feeding
manifold length L1 = 0.21 m. The back cavity is fixed to Lc = 0.206 m. By
reducing this length, one finds an insensitive condition for the self-sustained
oscillations. The frequency evolves slightly around 600 Hz. This is represented
in Fig. 10.25. This indicates that the flame oscillation is weakly influenced by
upstream conditions. This agrees with what was found previously for the L2

= 0.20 m flame tube. In this latter case, the damper was not able to cancel a
self-sustained oscillation of moderate amplitude. In the present configuration,
by using the modification of the back cavity Lc, it is possible to see that
the damping system does not act on the instability. This confirms that the
oscillations observed in this case are insensitive to damping in the upstream
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Figure 10.25: Evolution of the frequency of self-sustained combustion oscillations
obtained by sweeping the size Lc from 0.206 m to 0.07 m. Damper B-BH (da = 4
mm). The confinement tube is set to L2 = 0.20 m and the feeding manifold length is
L1 = 0.21 m.

manifold. This point is considered in the next chapter.

10.5 Chapter summary

A passive control of the self-sustained combustion oscillations characterized in
Chapter 8 was undertaken by using bias flow perforates.
A suitable model was obtained by using the Rayleigh conductivity derived by
Howe (1979). It is chosen to work at low Strouhal number, a regime studied
by Scarpato et al. (2012), which widens the frequency bandwidth and allows
to determine independently the back cavity size Lc for the peak absorption
frequency. This low order modeling was improved by taking into account the
imperfect closure of the back cavity made with the piston in the present ex-
periment.
Two dampers were designed for the multiple flame combustor. The mean flow
velocity inside the perforations is set to a high value to avoid nonlinear effects.

• The first one B-SH works at low Strouhal numbers and its response is
fairly well predicted by the improved model of Scarpato et al. (2012).
It is seen that chamfers of the holes, not planned at the design stage,
do not change the response.

• The second damper B-BH works at higher Strouhal numbers but is
typified by a wide frequency bandwidth. Its optimal peak absorption
frequency is fairly well tuned with the back cavity size Lc. In this latter
case, it was possible to obtain a perfect match between modeling and
experiments.
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• An uncertainty persists with the convection velocity ucv of the vortices.
It is generally considered that the value is one half of the jet velocity
in the vena contracta (Howe (1979)).

A nonlinear analysis based on the FDF was finally undertaken. The goal
was to investigate the cancellation of self-sustained combustion oscillations
with the two dampers and explain failures in damping combustion oscillations
encountered in some cases. This was done through the analysis of two points
: cancellation of large oscillation levels and the benefits of the large frequency
bandwidth. This leads to the following results :

• The two dampers were able to suppress instabilities featuring large
velocity fluctuations up to urms/Ub = 1.45.

• Even if the amplitude does not exceed large values, it was not pos-
sible to cancel the self-sustained oscillations encountered in the long
confinement tubes L2 = 0.20 m and 0.30 m.

• In all the cases, the FDF was able to predict the observed results with
some differences for some configurations.

• The large frequency bandwidth allowed to suppress oscillations sus-
tained by two modes identified in Chapter 9.

By using the FDF and the detailed characterization of the multiple flame com-
bustor, it has been possible to understand why damping sometimes fails. This
is due to different reasons. Some of these reasons were deduced from the FDF
framework but not verified experimentally, while others were investigated for
both. This list may not be exhaustive :

• The nonlinearity of the damper induces that a linearly unstable mode
becomes nonlinearly unstable. This mode can be triggered by another
mode, itself or a finite impulse. This was not found in the present
experiments.

• The nonlinearity of the damper does not avoid the suppression of a
moderate limit cycle amplitude but self-sustained oscillations persist
with another mode. This was found in calculation and experiments
with a configuration examined by Noiray (2007).

• The frequency variation with the growing amplitude allows the initi-
ation of oscillations if the damper frequency bandwidth is too sharp.
The large frequency bandwidth of the dampers used in the present study
circumvented this issue.

• For a damper characterized by a narrow frequency bandwidth, the flame
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is able to oscillate on a shifted frequency regarding the optimal absorp-
tion value, which precludes the cancellation of oscillations.

• In the case of long confinement tube when L2 = 0.20 m or 0.30 m, the
oscillations seem to be insensitive to the damper. By using another
study (Tran (2009)) it has been possible to delineate that it may be
linked to a flame tube oscillation. In this latter situation a nonlinear
damper does not prevent the start and the establishment of an unstable
mode in the whole burner. For a robust BFP, which is the case here, the
oscillation persists if the flame is able to feed energy to the eigenmode
of its cavity. This has been characterized by experiments and FDF
calculations with some differences between the two.

It is found that the passive control of self-sustained combustion oscillations
from the upstream part of a combustor is an efficient technique when it is well
designed. Nevertheless, it was seen that it can fail in various cases and that
this narrows its relevance. In the absence of a nonlinear damper, one is able
to suppress large amplitudes of oscillation but the frequency bandwidth with
a low reflection coefficient has to be widened. A worst case is that where the
flame is in a long confinement tube, a situation usually found in applications.
This features oscillations which are essentially localized in the flame tube and
are insensitive to upstream damping.



Chapter 11

Decoupling cavities

Dans ce chapitre, on s’intéresse à l’effet d’un découplage acoustique des
cavités amont et aval du brûleur MIC (Multiple Injection Combustor)
étudié dans ce manuscrit. Il s’agit ici de mieux comprendre le change-
ment de comportement associé à une modification de la condition à
l’entrée du brûleur. On s’intéresse notamment à l’effet d’un change-
ment du coefficient de réflexion sur les fréquences de résonance du sys-
tème. La possibilité de découpler l’analyse acoustique de cavités a déjà
fait l’objet d’une étude qui traite de l’influence de la géométrie (Schuller
et al. (2012)). Afin de simplifier le problème, un modèle comportant
deux tubes et possédant des conditions aux limites idéales est envisagé.
Il est montré que l’amortissement de l’onde dans le tube d’alimentation
permet de découpler les cavités avec un fonctionnement autonome dans
le tube de confinement de la flamme. Ce résultat assez logique se dé-
montre facilement par l’analyse de la relation de dispersion de deux
cavités couplées. Il est possible dans ces conditions de déterminer la
fréquence d’oscillation de l’instabilité dans le tube à flamme lorsque le
système est bien découplé et de s’intéresser à sa dynamique propre. On
montre dans cette situation que le fonctionnement autonome du tube
aval L2 perdure quel que soit le coefficient de réflexion amont R1(0).
Ceci se produit dans le cas où la longueur de la géométrie amont L1

possède une dimension de l’ordre de celle du tube à flamme L2.

11.1 Découplage de cavité dans un brûleur

L’analyse effectuée dans les chapitres précédents a montré qu’une modélisation
au moyen d’éléments compacts (voir par exemple Poinsot et al. (2012) pour
une explication de la méthode) permet de déterminer les modes propres des
différentes géométries considérées. La méthode de l’équivalent harmonique
(FDF) est utilisée pour prendre en compte la réponse non-linéaire de la flamme.
Elle fournit également les fréquences et les amplitudes d’oscillation au cycle
limite (Noiray et al. (2008); Boudy et al. (2011b)). Enfin, il est important
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de noter que l’amortissement α peut être inclus dans ces analyses en tenant
compte des vrais conditions aux limites comme expliqué dans le Chapitre 8.
Ainsi, dans ces conditions, il a été montré qu’il est possible de retrouver par le
calcul les amplitudes et les fréquences mesurées. Le décalage en fréquence par
rapport aux modes acoustiques est également bien estimé par ce biais.
Ce chapitre vise à montrer qu’un découplage de cavité peut survenir dans le
brûleur lorsqu’un système d’amortissement est utilisé dans la partie amont.
Cela se produit dans le cas où l’impédance amont est adaptée pour supprimer
l’oscillation qui apparaît dans le système. Le découplage des éléments com-
posant le système de combustion a déjà été examiné sur différentes configura-
tions par Schuller et al. (2012). Dans cette étude les auteurs se penchent sur le
découplage induit par la géométrie et les différences de température dans le sys-
tème. Suivant la valeur d’un paramètre Ξ, faisant intervenir les températures
des différentes sections Tn ainsi que leur surface Sn, la relation de dispersion
peut être modifiée. Comme cela a déjà été exposé dans les chapitres précédents,
cette relation décrit la dynamique du brûleur et permet de calculer les modes
propres du système. Lorsque le paramètre Ξ prend des valeurs petites, la re-
lation se simplifie et permet de montrer que les cavités du brûleur possèdent
chacune leur propre fréquence. Ces solutions spécifiques, révèlent le découplage
des cavités. Ceci permet d’expliquer les phénomènes d’oscillation rencontrés
dans certaines chambres de combustion présentant des fréquences différentes
de celles liées aux modes des cavités couplées. Cette notion de découplage peut
avoir un intérêt pour la conception, car elle peut être utilisée pour supprimer
les instabilités auto-entretenues. Ceci est utilisé par exemple dans les moteurs
fusées (F. Culick et al. (1995)) où une perte de charge est volontairement in-
troduite entre les lignes d’injection et la chambre de combustion. Cette perte
de charge empêche le couplage entre cette dernière et les parties supérieures.
De plus, comme mentionné par Schuller et al. (2012), connaître les conditions
de découplage permet de dimensionner un système afin d’éviter une réponse
de la flamme aux fréquences propres de la chambre.
Comme il l’a été montré dans les chapitres précédents, les modes propres du
brûleur peuvent être calculés à l’aide d’un réseau de cavités couplées. Ainsi,
un modèle à deux cavités est utilisé dans une première section afin d’identifier
les conditions de découplage acoustique sur le foyer MIC. La seconde partie
décrit une expérience et des calculs dans des conditions plus réalistes. Ce type
d’analyse, de l’influence du coefficient de réflexion de la cavité amont sur les
instabilités de combustion, a déjà été envisagé avec une mise en oeuvre concrète
dans le cas d’un brûleur swirlé par Tran et al. (2009a); Tran et al. (2009b).
Dans ces études, le coefficient de réflexion du système de prémélange a été
diminué jusqu’à une valeur suffisamment basse pour atténuer les instabilités
observées dans le foyer. On peut trouver un travail détaillé sur ces phénomènes
dans les manuscrits de thèse de Tran (2009) et Lamraoui (2011) en l’absence de
combustion instationnaire. L’étude développée ci-dessous suit celles engagées
par Lamraoui et al. (2011) et Richecoeur et al. (2013) dans des configurations
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Figure 11.1: Modèle de brûleur utilisé pour l’analyse du découplage sous l’influence
de la condition amont. Une flamme est positionnée à l’interface entre les 2 tubes de
longueur L1 et L2.

similaires, mais où l’influence de la flamme n’a pas été prise en compte.

11.2 Modes couplés sur deux cavités idéales

Le cas de deux cavités couplées au travers d’un changement de section est
tout d’abord considéré. On peut facilement déduire dans ce cas l’effet des
modifications de l’impédance amont sur les modes propres du système. Le
modèle est présenté dans le paragraphe suivant et l’analyse est effectuée dans
un deuxième temps.

11.2.1 Modèle à deux cavités

Le brûleur est présenté à la Fig. 11.1. Le modèle correspond à une version
simplifiée des équations détaillées dans le Chapitre 8. La grille d’injection ainsi
que sa cavité annulaire ne sont pas prises en compte. Le coefficient de réflexion
à la sortie du confinement est idéal R2(L2) = −1. Un coefficient de réflexion
R1(0) est appliqué à l’extrémité de la partie amont. Ce coefficient inclut le
piston et le système d’amortissement. La matrice M , décrivant la dynamique
du système, peut donc s’écrire sous la forme suivante :




1 −R1(0) 0 0
0 0 eik2L2 e−ik2L2

eik1L1 e−ik1L1 −1 −1
Beik1L1 −Be−ik1L1 −1 1







A+
1

A−
1

A+
2

A−
2


 = 0 (11.1)
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où le terme B correspond à :

B =
S1

S2

ρ2c2

ρ1c1

[
1 + Geiϕ

(
Tf

T1
− 1

)]
(11.2)

La relation de dispersion se déduit en calculant le déterminant de la matrice
M dont les racines (det(M) = 0) déterminent les solutions non triviales du
système à 4 équations. Cette relation peut s’écrire sous cette forme :

eik2L2

{
e−ik1L1 − Ξ

[
1 + Geiϕ

(
Tf

T1
− 1

)]
e−ik1L1

}

+e−ik2L2

{
e−ik1L1 + Ξ

[
1 + Geiϕ

(
Tf

T1
− 1

)]
e−ik1L1

}

+R1(0) eik2L2

{
eik1L1 + Ξ

[
1 + Geiϕ

(
Tf

T1
− 1

)]
eik1L1

}

+R1(0) e−ik2L2

{
eik1L1 − Ξ

[
1 + Geiϕ

(
Tf

T1
− 1

)]
eik1L1

}
= 0

(11.3)

Cette relation permet de calculer les modes propres du brûleur composé de
deux cavités. Ces modes propres prennent une forme particulière lorsque le
coefficient de réflexion R1(0) est réglé pour amortir les oscillations qui peuvent
apparaître.
On peut tout d’abord examiner la relation de dispersion dans le cas d’une
réflexion parfaite au niveau de la cavité amont, R1(0) = 1. Ainsi, l’Eq. (11.3)
se simplifie comme suit :

cos(k1L1) cos(k2L2)−

Ξ

[
1 +

(
Tf

T1
− 1

)
Geiϕ

]
sin(k1L1) sin(k2L2) = 0

(11.4)

Dans le cas où un système d’amortissement est mis en place dans la par-
tie amont à la même position que la tête du piston, comme étudié dans le
Chapitre 10, Fig. 10.3, le coefficient de réflexion diminue et l’amplitude de
l’onde réfléchie (A+

1 ) est réduite par rapport à celle de l’onde incidente (A−
1 ).

Si on considère le cas idéal où R1(0) = 0, la relation de dispersion prend une
forme très particulière :

e−ik1L1

{
cos(k2L2) − i Ξ

[
1 + Geiϕ

(
Tf

T1
− 1

)]
sin(k2L2)

}
= 0 (11.5)

Cette nouvelle forme révèle un comportement qui diffère de celui de l’Eq. (11.4).
En effet, les seules solutions s’obtiennent grâce au deuxième terme de l’équation
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:

cos(k2L2) − i Ξ
[
1 + Geiϕ

(
Tf

T1
− 1

)]
sin(k2L2) = 0 (11.6)

Cette relation ne dépend que de la longueur du confinement L2 et n’est plus
influencée par une modification de la longueur amont L1. Ainsi, il apparaît que
l’impédance amont supprime complètement la possibilité d’une oscillation dans
la cavité d’alimentation mais l’instabilité subsiste dans le tube de confinement
de manière autonome (Lamraoui (2011)).
Ce phénomène est analysé dans la section suivante qui présente les calculs
effectués au moyen de cette relation de dispersion en tenant compte de la
réponse de flamme mesurée pour la grille d’épaisseur l = 15 mm.

11.2.2 Analyse non-linéaire des instabilités amorties

L’analyse non-linéaire de la dynamique du brûleur composé de deux cavités
couplées avec ou sans système d’amortissement consiste à effectuer les mêmes
calculs que dans le Chapitre 8. La relation de dispersion (Eq. (11.3)) est
résolue pour différentes longueurs d’alimentation L1 après avoir réglé une taille
de confinement L2. La dynamique de flamme est représentée par la réponse
mesurée sur la grille d’épaisseur l = 15 mm. Les courbes sont données à la
Fig. 5.5. L’influence de la grille d’épaisseur 15 mm n’est pas considérée dans
la modélisation développée dans la partie précédente.
Le cas du confinement L2 = 0.10 m est d’abord analysé. Le balayage en L1

est effectué entre 0.10 m et 0.55 m. Sans système d’amortissement, le com-
portement du brûleur se rapproche du cas plus réel traité dans le Chapitre 8.
Le calcul du diagramme de bifurcation est présenté à la Fig. 11.2. On peut
d’abord constater que trois modes sont toujours présents quand on fait varier
L1. Cependant, ces résultats diffèrent par rapport à ceux du Chapitre 8 du fait
de l’idéalisation des conditions aux limites qui ne tiennent plus compte d’un
amortissement. En effet, le piston est parfaitement réfléchissant R1(0) = 1 et
la fluctuation de pression est supposée nulle en sortie de confinement p′

2(L2)
= 0, associée à un coefficient de réflexion idéal R2(L2) = −1. En lisant le
diagramme de bifurcation, on constate que le mode 1 est instable de L1 = 0.10
m à 0.27 m. Aucune bande stable n’existe et le passage au mode 2 s’effectue
à L1 = 0.27 m jusqu’à L1 = 0.55 m. La présence sous-jacente du mode 3 de
L1 = 0.40 m à 0.55 m, avec une amplitude identique à celle du mode 2 de L1

= 0.48 m à 0.55 m, indique la possibilité d’une oscillation simultanée sur deux
modes comme étudié dans le Chapitre 9.
Cette configuration est maintenant étudiée avec le système d’amortissement
idéal placé dans la cavité amont L1. Le coefficient de réflexion est fixé à
R1(0) = 0 pour observer l’effet sur les calculs d’instabilités. Le calcul est
tout d’abord effectué pour la plus petite amplitude d’oscillation, c’est-à-dire
urms/Ub = 0.0638. En considérant la plage de fréquence des trois premiers
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Figure 11.2: Taux de croissance ωi pour la configuration confinée à L2 = 0.10 m. Le
calcul est effectué pour des longueurs L1 allant de 0.10 m à 0.55 m. Les conditions aux
limites sont idéales et la plaque perforée supportant la flamme n’est pas représentée.
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modes, une seule solution existe pour la relation de dispersion. Cette solution
est située à plus haute fréquence f = 1301 Hz pour un taux de croissance
négatif ωi = -208 s−1. Lorsque l’amplitude urms/Ub augmente, la fréquence
f et le taux de croissance ωi de la solution de la relation de dispersion ne
changent presque pas. L’oscillation ne peut pas démarrer, ce qui paraît normal
étant donné que le gain s’effondre pour les hautes fréquences, traduisant ainsi
l’absence d’un apport d’énergie par la flamme. Cette solution à plus haute
fréquence correspond au mode 1 de la cavité aval L2 (le tube de confinement)
qui fonctionne indépendamment de la partie amont L1. Cette fréquence est
proche de celle que l’on peut calculer en représentant la partie confinée L2 par
un tube fermé-ouvert c2/4L2 = 1503 Hz.
Le découplage semble logique dans la mesure où l’onde réfléchie dans le tube
amont de longueur L1 est complètement supprimée car le coefficient de réflexion
est nul R1(0) = 0. Ces calculs ont aussi été effectués pour les autres confinement
L2 et permettent de trouver les fréquences de résonance. Il apparaît que dans
les autres cas de confinement L2, la première racine de la relation de dispersion
possède un taux de croissance ωi positif et une fréquence f qui décroît lorsque
la longueur du tube L2 augmente. Les résultats pour les quatre confinements
sont présentés à la Fig. 11.3. On retrouve ainsi le comportement du brûleur
avec une condition R1(0) = 0 optimale. Il est maintenant intéressant d’utiliser
le modèle pour estimer la limite au-delà de laquelle les cavités ne peuvent plus
être considérées comme découplées.
Le coefficient de réflexion est augmenté par pas de 0.1 afin d’observer l’appari-
tion des solutions correspondants aux cavités couplées dans la relation de dis-
persion. Le tube de confinement court L2 = 0.10 m est d’abord analysé. Pour
L1 = 0.10 m les modes des cavités couplées apparaissent lorsque le système
d’amortissement présente un module |R1(0)| = 0.1 quelle que soit la phase
φ1(0) utilisée. Néanmoins, la solution du tube de confinement L2 subsiste
de manière séparée. La cavité aval est découplée du reste du brûleur. Pour
|R1(0)| = 0.2 la solution dans la cavité aval existe pour certaines phases φ1(0).
Cependant, pour |R1(0)| = 0.3 cette séparation n’existe plus et la racine re-
joint la valeur trouvée pour un système couplé. Dans cette configuration de
confinement, il apparaît que le découplage persiste jusqu’à |R1(0)| = 0.2.
En analysant les autres longueurs du tube d’alimentation L1, on peut observer
que la séparation des solutions n’existe plus à partir de L1 = 0.12 m dès que
le coefficient de réflexion devient non nul, c’est-à-dire lorsque |R1(0)| = 0.1.
Ainsi, le découplage constaté pour L1 = 0.10 m n’apparaît que lorsque L1 ≈
L2. Dans le but d’expliciter ce phénomène, les autres tubes à flamme L2 sont
examinés.
Le tube L2 = 0.20 m est utilisé et le coefficient de réflexion R1(0) est aug-
menté de 0 à 0.1. Les solutions présentent le même comportement que celui
observé précédemment. Une racine apparaît pour un coefficient de réflexion
nul |R1(0)| = 0 et persiste lorsque le coefficient de réflexion est augmenté à 0.1.
De plus, contrairement au cas précédent, la solution séparée subsiste quelle que
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Figure 11.3: Fréquence f et taux de croissance ωi de la cavité aval L2 calculés avec
un coefficient de réflexion R1(0) = 0 dans la cavité amont. Les différentes couleurs
indiquent la longueur L2 du tube de confinement. Le plus court L2 = 0.10 m correspond
au bleu (�), L2 = 0.20 m est tracé en vert (�), L2 = 0.30 m apparaît en rouge (�)
et le plus grand L2 = 0.40 m est représenté par une ligne noire (�). Un symbole
circulaire (◦) indique la fréquence f du cycle limite à ωi = 0 s−1. Cette fréquence f
est indiquée au-dessus du symbole.

soit la valeur du coefficient de réflexion mis en place dans la cavité amont L1

(les calculs sont effectués pour un niveau d’amplitude faible urms/Ub = 0.0638).
On retrouve le même comportement pour les deux derniers tubes à flamme L2

= 0.30 m et 0.40 m. Ce comportement est illustré dans les Figs. 11.4 et 11.5
qui présentent le module de la relation de dispersion dans le plan fréquence,
taux de croissance (f en fonction de ωi) pour le tube à flamme L2 = 0.20 m
et un coefficient de réflexion amont R1(0) = 1. La Figure 11.4 correspond au
cas L1 = 0.10 m alors que la Fig. 11.5 présente l’évolution du module pour L1

= 0.20 m. Le coefficient de réflexion R1(0) = 1 est maximum afin de montrer
que la solution séparée subsiste quelle que soit la valeur de celui-ci.
Ces deux figures montrent les racines de la relation de dispersion correspon-
dant aux fréquences propres du brûleur. L’échelle de couleur, présentée sur la
droite, indique l’amplitude du module de la relation de dispersion. Les minima
du module, représentant les racines de la relation de dispersion, apparaissent
en blanc au creux des zones décroissantes bleues. L’utilisation de la couleur
blanche pour indiquer les minima a été effectuée afin de distinguer les min-
ima globaux des minima locaux qui ne passent pas par zéro. Ces derniers ne
représentent pas une racine de la relation de dispersion et ne correspondent pas
à des modes propres du système. Sur la première figure (Fig. 11.4), une solu-
tion présente un taux de croissance positif lorsque la flamme oscille à urms/Ub

= 0.0638. Un autre minimum ayant presque la même fréquence apparaît dans
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Figure 11.4: Module de la relation de dispersion présentant les racines correspondant
aux modes propres d’oscillation dans le brûleur. La fréquence f est située sur l’axe des
ordonnées, tandis que le taux de croissance ωi se trouve en abscisse. Chaque graphique
correspond à une amplitude urms/Ub indiquée en haut à gauche. Les cas représentés
ici sont liés à la géométrie L2 = 0.20 m et L1 = 0.10 m. Le coefficient de réflexion
amont R1(0) = 1 correspond à une surface parfaitement réfléchissante. L’échelle de
l’amplitude du module est indiquée sur la droite. Les minima du module de la relation
de dispersion passant par 0 sont coloriés en blanc, en modifiant l’échelle de couleur,
afin d’être différenciés des minima locaux ne passant pas par 0.
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Figure 11.5: Module de la relation de dispersion présentant les racines correspondant
aux modes propres d’oscillation dans le brûleur. La fréquence f est située sur l’axe des
ordonnées, tandis que le taux de croissance ωi se trouve en abscisse. Chaque graphique
correspond à une amplitude urms/Ub indiquée en haut à gauche. Les cas représentés
ici sont liés à la géométrie L2 = 0.20 m et L1 = 0.20 m. Le coefficient de réflexion
amont R1(0) = 1 correspond à une surface parfaitement réfléchissante. L’échelle de
l’amplitude du module est indiquée sur la droite. Les minima du module de la relation
de dispersion passant par 0 sont coloriés en blanc, en modifiant l’échelle de couleur,
afin d’être différenciés des minima locaux ne passant pas par 0.
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la zone des taux de croissance négatif. Néanmoins, ce minimum ne passe pas
par zéro et ne représente donc pas un mode propre. Lorsque l’amplitude aug-
mente à urms/Ub = 1, cette solution tend vers ωi = 0. La solution apparaît
à une fréquence de 561 Hz, proche de celle trouvée dans l’analyse de la cavité
aval L2 présentée dans la Fig. 11.3.
Si on analyse la deuxième géométrie L2 = 0.20 m de la Fig. 11.5, on observe
un comportement très différent. En effet, dans la zone de fréquence située aux
alentours de f = 500 Hz, on remarque que les solutions sont beaucoup plus
nombreuses. Pour l’amplitude urms/Ub = 0.0638, le premier mode des cavités
couplées correspond à f = 280 Hz et ωi = −720 s−1. Le second mode se trouve
à f = 840 Hz et ωi = −90 s−1. Contrairement à la longueur précédente L1 =
0.10 m, deux autres solutions existent. La première se positionne à f = 546 Hz
et ωi = 3130 s−1, alors que la deuxième présente un taux de croissance négatif
ωi = −3122 s−1 à f = 476 Hz. Là aussi, la fréquence caractérisée par un
taux de croissance positif correspond à la fréquence de la cavité aval analysée
précédemment dans la Fig. 11.3. Néanmoins, l’existence de solutions multiples
indique que la cavité aval L2 est indépendante des solutions des cavités couplées
situées dans la zone de taux de croissance négatif.
Le comportement détaillé ci-dessus se retrouve pour les tubes de confinement
plus longs L2 = 0.30 m et 0.40 m.

11.2.3 Analyse théorique de la relation de dispersion

La relation de dispersion est analysée pour le modèle des deux cavités couplées
idéales et on envisage le cas particulier L1 = L2. Ce modèle est considéré
lorsque le coefficient de réflexion amont est R1(0) = 1. La relation de dispersion
obtenue correspondant à l’Eq. (11.4) est rappelée ci-dessous :

cos(k1L1) cos(k2L2)−

Ξ

[
1 +

(
Tf

T1
− 1

)
Geiϕ

]
sin(k1L1) sin(k2L2) = 0

(11.7)

Compte tenu des températures dans les deux cavités, T1 = 300 K et T2 = 1100
K (L2 = 0.20 m), on va aussi supposer que c1 ≈ c2/2. Comme L1 = L2, la
relation 11.7 prend la forme suivante :

cos(2k2L2) cos(k2L2)−

Ξ

[
1 +

(
Tf

T1
− 1

)
Geiϕ

]
sin(2k2L2) sin(k2L2) = 0

(11.8)
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Ainsi, les termes qui apparaissent en 2k2L2 peuvent être développés et con-
duisent à la relation suivante :

cos(k2L2)

{
cos2(k2L2)−

{
1 + 2 Ξ

[
1 +

(
Tf

T1
− 1

)
Geiϕ

]}
sin2(k2L2)

}
= 0

(11.9)

On constate que la relation de dispersion se décompose en un produit de trois
termes. Le terme situé à l’intérieur de la parenthèse est de la forme a2 − b2

et peut être factorisé. Finalement, on trouve que les racines de la relation de
dispersion sont données par :

cos(k2L2) = 0

cos(k2L2) −

√√√√1 + 2 Ξ

[
1 +

(
Tf

T1
− 1

)
Geiϕ

]
sin(k2L2) = 0

cos(k2L2) +

√√√√1 + 2 Ξ

[
1 +

(
Tf

T1
− 1

)
Geiϕ

]
sin(k2L2) = 0

(11.10)

La décomposition de la relation de dispersion aux alentours d’une géométrie
mettant en jeu une longueur de cavité amont L1 du même ordre que celle
de la cavité aval L2 a permis de montrer que les cavités du système peuvent
fonctionner de manière indépendante, conduisant à des solutions multiples.
Ces solutions multiples ont été étudiées au Chapitre 9. Ainsi, il a été trouvé
que les cycles limites ne peuvent pas osciller à amplitude constante lorsqu’une
même fréquence d’oscillation apparaît avec des taux de croissance ωi positif et
négatif.
Dans le présent chapitre, l’amortissement par la cavité amont L1 a montré que
le tube de confinement peut entrer en oscillation de manière indépendante, dans
la mesure où sa fréquence de résonance se situe dans une zone où la flamme
peut apporter de l’énergie.
Cette analyse, montre que la fréquence instable aux alentours de 500 Hz, trou-
vée dans le Chapitre 9 pour les confinements L2 = 0.20 m et 0.30 m, est liée à
la partie aval du brûleur. Dans certain cas, cette cavité agit indépendamment
du reste du brûleur, expliquant les observations du Chapitre 9.
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The present study is focused on combustion instabilities resulting from a reso-
nant coupling between the acoustic eigenmodes of a system and the flame. This
phenomenon, also designated as thermoacoustic coupling, is commonly found
in practical devices and in particular in gas turbine combustors, aero-engines,
industrial burners or rocket engines.
The two milestones of the present investigation concern the prediction of such
phenomena and their control. This investigation pursues a range of studies
initiated in recent years at EM2C laboratory which have relied on various
experiments to highlight a wide variety of physical processes of combustion
dynamics. Previous research can be found in doctoral theses Ducruix (1999),
Schuller (2003), A.-L. Birbaud (2006), Noiray (2007) and Palies (2010) and
in many articles published by the combustion dynamics team. The present
investigation is more closely linked to the thesis of Noiray (2007) where the
unified FDF framework was devised and exploited to predict nonlinear fea-
tures of combustion instabilities of an open flame configuration comprising an
upstream manifold of variable size and a multipoint injection element. The
work of Noiray is continued here to predict the limit cycles recorded in various
configurations involving a confined combustion zone. The system comprises
the same upstream manifold but the flame region is now confined by tubes of
different sizes. As in the works carried out previously the present investigation
relies on experimentation and theoretical and numerical modeling. The use
of experiments in parallel to modeling efforts allows to check analytical tools
devised in this research. The present study extends previous work in many
different ways :

• The FDF framework is applied to confined configurations for a range of
geometries. This is achieved with a piston, allowing an easy change of
feeding manifold length L1. The analysis relies on systematic comparisons
between modeling results and experiments. Changes in geometries allow to
test calculations in a generic configuration and for a large set of experiments.

• An improved description of the combustor acoustics is developed by ac-
counting for the complex acoustic boundaries and details of the burner
geometry in the modeled system.
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• The broad experimental range reveals new kinds of limit cycles which are
essentially typified by a variation of their amplitude and frequency as a
function of time. This variety is sometimes described in the literature, but
not in a systematic fashion.

• Tools of dynamical system theory, including nonlinear time series analysis,
are applied to these variable amplitude limit cycles.

• FDF calculations are considered to examine ranges where such limit cycles
arise and are used to uncover the subtending processes.

• A passive control method, involving a bias flow perforated plate backed by
a cavity (BFP), is then used as a damper and its influence on combustion
instability is investigated. This perforated plate operates in a flow regime
which was recently studied by Tran (2009) and Scarpato et al. (2012). In
this application to control self-sustained combustion instabilities, the FDF
framework is used to understand the various oscillations or stable states
encountered.

The experimental setup comprises a feeding manifold of variable length L1.
This length is obtained with a piston used to premix reactants and deliver the
mixture to the system. The head is machined to offer a quasi perfect reflecting
boundary condition. At the top of the feeding manifold, a perforated plate
is set to anchor a collection of small laminar conical flames. Two perforated
plates of different thickness have been considered. One features a thickness l =
3 mm while the other is increased to l = 15 mm. The flame region is enclosed in
a quartz tube of length L2 open to the atmosphere. Four lengths were available
stretching from L2 = 0.10 m to 0.40 m by steps of 10 cm. The feeding manifold
length L1 has been swept from 0.10 m to 0.55 m by steps of 1 cm. In addition,
it has been possible to extend this feeding manifold to L1 = 0.77 m with
an additional tube. By setting a feeding manifold length L1 with a certain
confinement tube L2, the burner features combustion regimes which are either
stable or unstable. The unstable combustion regime is typified by amplitude-
frequency couples. In some cases, the amplitude-frequency couple never reaches
a fixed value. The various kinds of limit cycles are analyzed theoretically by
making use of the FDF framework. This enables to take into account the
nonlinearity of the flame, which is considered as the central mechanism of
oscillation in the present study. The particularity of the burner is to allow a
continuous sweep of feeding manifold length L1 for each confinement tube L2.
This enables to obtain various combustion regimes and follow their evolution
by sweeping L1. It has the advantage to provide a cluster of data and not an
isolated point which is often difficult to interpret.
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Main contributions

• In terms of flame response :

− The flame response is acquired on a separate set of experiments. Two
flame holders are successively set in the burner and the corresponding
FDFs are measured. One of the two FDFs is characterized with a small
confinement tube L2 = 0.10 m. The confined and unconfined FDFs
indicate that the confinement tube does not influence the gain G and
phase ϕ. The quartz tube diameter is sufficiently large to preclude any
interaction with the flame sheet.

− It is found that the flame response cannot be considered as a separate
module grafted on the perforated plate, because the perforations of the
thin and thick flame holders do not feature the same velocity profile and
therefore the same flame front deformations.

− The flame response is also represented in terms of reflection coefficient.
This technique allows to measure this important characteristic without
any optical access. Nevertheless, one has to measure the velocity fluc-
tuation level to obtain the reflection coefficient amplitude.

• In terms of prediction of limit cycles with constant amplitude :

− A basic model has been devised and the amplitude-frequency couples
are suitably predicted. Some differences appear but predictions remain
reliable for most of the feeding manifold lengths L1. This work has
been presented during the ASME Turbo Expo, Glasgow, UK (2010)
and published in the Journal of Engineering for Gas Turbines and Power
(Boudy et al. (2011b)).

− The basic model allows to predict specific phenomena like mode switch-
ing during the growth of oscillation. Calculations can be used to examine
the influence of the FDF. While the evolution of the gain G with the
amplitude modifies the oscillation level of limit cycle, the phase ϕ influ-
ences some special features like triggering, hysteresis, mode switching
and also modification of the limit cycle amplitude. This work has been
presented during the 33rd International Symposium on Combustion, Bei-
jing, China (2010) and published in the Proceedings of the Combustion
Institute (Boudy et al. (2011a)).

− A detailed model with the second flame holder has been derived by
taking into account an improved description of the burner acoustic re-
sponse to flow perturbations. It is found that : (1) Predictions match
reasonably the experiments in all the confined configurations, (2) A fre-
quency shift from the acoustic eigenmodes up to 100 Hz is observed and
retrieved by calculations for some geometries, (3) Mode shape recon-
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struction confirms the choice of Melling’s model (Melling (1973)) in the
description of the flame holder dynamics. (4) It is also shown that a
new triggering range exists for some geometries.

− The detailed system model yields improved predictions for frequency-
amplitude couples. The analysis of growth rate ωi overlapping trajecto-
ries indicates that three factors are important in order to have a good
estimate of the trajectories evolution as a function of amplitude : (1)
The flame tube gas temperature T2, (2) The flame temperature Tf which
differs from the value of the gas temperature T2 in the flame tube, (3)
The nonlinear response of the boundary condition which influences the
damping in the system.

• In terms of prediction of limit cycles with variable amplitude :

− It is first shown that in certain ranges the system features Galloping
Limit Cycles (GLCs) conveying the idea of a traveling amplitude vari-
ation as a function of time. The GLCs are easily identified from their
specific auditive signature, but best analyzed by using dynamical tools
in addition to the classical spectral analysis. The wavelet and the non-
linear time series analysis provide additional informations. It is shown
that the variable amplitude limit cycles observed in the present experi-
ments belong to four general categories.

− One kind of GLCs is sustained by two modes and the FDF allows to
delineate conditions for the occurrence of such oscillations. This work
has been presented during the 3rd INCA workshop, Toulouse, France
(2011) and published in Comptes Rendus Mécanique de l’Académie des
Sciences (Boudy et al. (2013)).

− Another kind featuring irregular variations of the amplitude is qualified
as chaotic oscillation and is observed for small lengths of the feeding
manifold L1 and involves a low frequency instability around the first
acoustic eigenmode. The FDF calculations allow to find the feeding
manifold lengths L1 where these states exist and also the minimum and
maximum of the signal envelope observed in experiments. This work has
been presented during the ASME Turbo Expo, Copenhagen, Denmark
(2012) (Boudy et al. (2012)).

• In terms of control of instability:

− The analysis is concerned with two bias flow perforates (BFPs). One
of the two devices is designed to operate in the so-called low Strouhal
number range. It is shown that the reflection coefficients of the BFPs are
suitably retrieved with theoretical models. One of the two BFPs features
chamfers but it is found that its perforation edges do not influence the
response of the system.
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− It is shown that the use of a well designed perforated baffle allows to
cancel large velocity fluctuations up to urms/Ub = 1.45.

− It is confirmed that a broad frequency bandwidth of the damper is ob-
tained by operating at low Strouhal numbers leading to the cancellation
of various oscillations. This is also obtained when the oscillation is sus-
tained by two modes or when the frequency is shifted from the target
value.

− The role of the nonlinear response in the failure to suppress oscillations
is investigated. As the system should damp low amplitude perturba-
tions, the growth rate ωi must be reduced, hindering any initiation of
instability. In certain cases, it is found that the damper fails to suppress
the oscillation for various reasons. On the one hand, the oscillation may
be driven by another mode characterized by a frequency which is suffi-
ciently different from the target frequency used in the damper design.
On the other hand, it is shown that some of the combustion dynam-
ics are decoupled from the response of the upstream manifold and are
therefore insensitive to the damper. This decoupling is in fact the result
from the change in boundary condition induced by the damper.

Perspectives

The analysis of combustion instabilities in the generic multiple flame combustor
has allowed to answer various questions, but gives rise to new issues which need
to be tackled in the future. Two guidelines emerge from the present study :

• Firstly, it would be interesting to close various remaining questions con-
cerning the geometry under investigation :

− As mentioned in Chapter 8, prediction of frequencies and amplitudes
relies on a good estimate of the damping in the burner. This damping
is mainly linked to the boundary conditions in the present system. It
would be interesting to have a nonlinear model to represent the response
of the outlet of the flame tube which features large velocity fluctuations.

− The temperature T2 also influences the predictions in the system. Thus,
it would be important to have a better estimate of what is happening
in this zone of hot combustion products.

− Concerning the flame response one would like to have values for large
oscillation levels. From a technical point of view, this response has
been measured in a limited range of amplitudes and extrapolated to the
higher levels. It would be interesting to try to measure the FDF in a
wider range of amplitudes and frequencies.
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− By analyzing predictions, it is found that the growth rate ωi features
large values compared to the ones found, for example, in an unconfined
geometry. Thus, it would be interesting to undertake a comparison
of the growth rates with the calculations by using for example active
control methods. This would give access to the growth rate which could
then be compared with predictions.

• The second point is linked to the next steps in the application of the FDF.
This framework is deemed to be an efficient and reliable tool for the predic-
tion of combustion instabilities. It provides a full view on the combustion
dynamics in a burner.

− It would be worth applying this framework to other well controlled
systems and generalize the method to full annular configurations with
multiple injectors featuring azimuthal instabilities. More specifically it
would be interesting to test the use of the same FDF for each flame
which may interact and thus modify the response. Besides, the use of
small laminar conical flames as done here could be of value. These flames
present advantages for combustion instability study. They are typified
by a phase evolution of their response for growing amplitudes and they
are able to provide energy at high frequency. This could be used in the
annular configuration now being studied at EM2C.

− The FDF could be included in an Helmholtz solver to calculate more
complicated systems. This work is already engaged in collaboration
with the “Institut de Mathématiques et de Modélisation” of Montpellier
(I3M), France and the AVSP code for two experimental configurations
studied at EM2C. The first concerns the analysis of the swirled burner
used by Palies et al. (2011) and the other deals with the multiple flame
combustor of the present study, which is a part of the PhD thesis of
Cuquel (2013).

− The simultaneous oscillation of two modes and the chaotic states have
been analyzed through the frequency domain representation of the FDF
framework. The overlap of positive growth rate ωi trajectories or the
presence of one mode with two solutions has to be considered in the time
domain. It is worth deriving a dynamical nonlinear model reflecting
the evolution of the oscillation as a function of time by using the FDF
calculation results. This would help in the interpretation of the FDF
calculations and confirm the origins of the variable amplitude states.
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Appendix A

Influence of the nonlinearity
of the FDF phase lag

This appendix examines changes in the bifurcation diagrams predicted
with two different FDF. The first one features a gain and a phase lag
which are a function of frequency and perturbation level as shown in
Chapter 5, while the second FDF is typified by a frequency dependent
phase lag. The phase lag of this modified FDF is taken equal to the
value measured for the smallest perturbation amplitude. Then, two bi-
furcation diagrams are calculated with these two FDF for the small
confinement tube L2 = 0.10 m. These calculations reveal changes in-
duced in the bifurcation diagram. As mentioned in the second part of
Chapter 7, when the phase lag does not change with the perturbation
level, it is shown that nonlinearly unstable modes do not exist. The
nonlinear behavior of the phase lag is responsible for the appearance of
nonlinearly unstable modes and this is shown to give rise to hysteresis,
mode switching and triggering.

Model B presented in Chapter 6 is used to calculate the bifurcation diagram
of the burner equipped with the smallest confinement tube L2 = 0.10 m by
sweeping the feeding manifold between L1 = 0.10 m and 0.77 m. This config-
uration was studied in Chapters 8 and 9. The FDF corresponds to the values
measured with the thick perforated plate l = 15 mm drawn in Fig. 5.5, Chap-
ter 5. In the following analysis, two FDF are used. These two flame responses
are presented in Fig. A.1. In the upper graph, the flame response corresponds
to the FDF used in the preceding chapters, while in the lower graph, the FDF
features a phase lag independent of the input level. This latter component is
locked to the first amplitude of perturbation urms/Ub = 0.065.
The bifurcation diagrams calculated with the two different FDF are plotted in
Fig. A.2. This figure shows the positive growth rate areas found for the first
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Figure A.1: FDF measurements for the whole range of amplitudes and frequencies.
The perforated plate thickness is set to l = 15 mm with a small flame tube L2 = 0.10
m. A gray scale shows the increasing level of fluctuations. (a) shows the gain G, while
(b) corresponds to the phase ϕ. The upper graph displays the FDF measured on the
experimental setup while the lower graph corresponds to the same FDF with a phase
independent of the input level.
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Figure A.2: Growth rate evolution for the L2 = 0.10 m confinement tube and the
sweeps of feeding manifold L1 from 0.11 m to 0.77 m. Three colors are used for each
eigenmode. The first displayed in yellow, the second in blue and the third in red. Scale
is given above to graph. The dashed lines indicate results of calculations at ωi = 0
s−1 by using the FDF with its nonlinear gain and phase. It allows to distinguish the
nonlinearly unstable modes. The three arrows, linked to each eigenmode, show the
changes brought by the use of a linear phase.

three eigenmodes. The first mode is drawn in yellow, the second one in blue
and the third in red. The dashed line contours shows results of calculations
presented in Chapter 9 by using the complete FDF (Fig. A.1 upper graph).
These three contours correspond to vanishing growth rates (ωi = 0 s−1). It is
possible to distinguish the ranges of feeding manifold L1 typified by nonlinearly
unstable modes (L1 = 0.17 m to 0.22 m for mode 1 and L1 = 0.49 m to 0.64
m for mode 2). The three arrows highlight changes induced by the use of the
modified FDF (Fig. A.1 lower graph).
This configuration synthesizes results obtained in the absence of a nonlinear
evolution of the phase lag. The nonlinearly unstable modes vanish when the
phase lag does not depend on the amplitude of perturbation urms/Ub. Thus,
in the absence of a nonlinear evolution of the phase lag, hysteresis, mode
switching and triggering phenomena, found in the preceding chapters, do not
exist. This is due to the loss of superposition between a linearly unstable mode
and a nonlinearly unstable mode. Nevertheless, the bifurcation diagram reveals
possible interactions between two linearly unstable modes between L1 = 0.44
m and 0.50 m. These two modes vanish around the same oscillation amplitude
urms/Ub. This is reminiscent of what was found for the limit cycles examined
in Chapter 9 which featured a simultaneous oscillation of two modes.





Appendix B

Sensitivity analysis of
instability predictions

This appendix examines changes in stability predictions resulting from
the different elements included in the thermoacoustic model B. The
analysis is carried out for the small confinement tube L2 = 0.10 m.
In a first stage, bifurcation diagrams obtained with models A and B
are compared. Then, model A is used by examining one by one the
influence of the different acoustic boundary and matching conditions
between the feeding manifold and the flame tube. Finally, the same
calculations are undertaken with model B by analyzing one by one the
same parts of the model.

B.1 Model A versus Model B

Two bifurcation diagrams are calculated in this section. The first corresponds
to the results obtained with model B detailed in Chapter 6. This model in-
cludes more realistic conditions at the boundaries and in the matching rela-
tions between the upstream manifold and downstream combustion chamber.
The second diagram is calculated with model A which considers ideal reflec-
tion coefficients at the boundaries and simplified jump relations between the
manifold and the chamber. These different conditions are gathered in Tab. 6.1
which is reproduced here for completeness.

Table B.1: Details of the two models devised for the acoustic analysis of the burner.

R piston R outlet
Pressure

jump
Velocity jump

model A R1(0) = 1 R2(L2) = −1 Melling model No ring cavity

model B
R1(0) = R(f)

(measured)
R2(L2) = R(f)

(modeled)
Melling model Ring cavity

Comparisons between predictions and measurements are displayed in Figs. B.1
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and B.2. When model A is employed, results reveal two important features :

• The limit cycles amplitudes and frequencies are approximately pre-
dicted

• The predicted unstable modes do not always correspond to the ones
observed experimentally.

In the aim of finding the most influential parameters, two series of calculations
are undertaken. The first series is presented in the next section. In this series,
model A is considered and one parameter is modified toward a more realistic
condition. Results are examined by considering the amplitude and frequency
of limit cycles.

B.2 Sensitivity analysis with model A

The bifurcation diagram is calculated on the basis of the thermoacoustic model
A. One of the following conditions is changed :

• The reflection coefficient of the piston R1(0)

• The reflection coefficient of the flame tube outlet R2(L2)

• The matching condition with the ring cavity.

Predictions are then compared to experiments carried out at limit cycle.

B.2.1 The piston reflection coefficient

Calculations are first carried out by inserting in model A the reflection coef-
ficient of the piston head instead of using R1(0) = 1 (Fig. 4.5, Chapter 4).
Results plotted in Fig. B.3 reveal a strong influence on the predicted limit
cycles. It is seen that the predicted amplitude is too small. Predictions also
show second mode oscillations around L1 = 0.15 m and third mode oscillations
around L1 = 0.25 m, while these instabilities are not observed in experiments.

B.2.2 The reflection coefficient of the flame tube outlet

Calculations are next carried out by changing the reflection coefficient of the
flame tube outlet. The ideal condition R2(L2) = −1 is replaced by the ra-
diation impedance of an unflanged open pipe (Fig. 4.7, Chapter 4). Results
obtained are displayed in Fig. B.4. In this case, amplitudes of oscillation are
overestimated and the frequency difference between prediction and measure-
ment increases. The stable zone is not obtained, but the correct unstable
modes are retrieved.
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(a)

(b)

Figure B.1: Growth rate evolution for the L2 = 0.10 m confinement tube and the
sweeps of feeding manilfold L1 from 0.11 m to 0.77 m. Three colors are used for each
eigenmode. The first displayed in yellow, the second in blue and the third in red. Scale
is given above to graph. Symbols correspond to experiments : ◦ stands for the first
mode, � corresponds to the second one and △ to the third mode. Gray triangle symbols
depict the sum of the 2 mode values (see Chapter 9) in the multiple frequency band (L1

= 0.52 m to 0.64 m). (a) corresponds to calculations with model B while (b) shows
results with model A.
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Figure B.2: Theoretical and measured frequencies at limit cycle. Open circle symbols
( ◦) are linked to the first mode while the second mode appears as open square symbols
(�) and the third mode as open triangle symbols ( △). Dark bold lines represent pre-
dictions at ωi = 0 s−1. The red lines correspond to the dual mode frequencies limit
cycle examined in Chapter 9. (a) corresponds to calculations with model B while (b)
shows results by considering model A.
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Figure B.3: Theoretical and measured amplitudes (a) and frequencies (b) of unstable
modes at limit cycle. Calculations are done with model A and the measurements of
R1(0). Experiments are represented by symbols. Open circle symbols ( ◦) are linked
to the first mode while the second mode appears as open square symbols (�) and the
third mode as open triangle symbols ( △). Gray triangle symbols depict the sum of the 2
mode amplitudes (see Chapter 9) in the multiple frequency band (L1 = 0.52 m to 0.64
m). For the frequency plot (b), the dark bold lines represent predictions for ωi = 0 s−1

whereas the red ones correspond to the frequencies of the two modes limit cycles.
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Figure B.4: Theoretical and measured amplitudes (a) and frequencies (b) of unstable
modes at limit cycle. Calculations are done with model A and the reflection coefficient
of an unflanged open pipe ( R2(L2)). Experiments are represented by symbols. Open
circle symbols ( ◦) are linked to the first mode while the second mode appears as open
square symbols (�) and the third mode as open triangle symbols ( △). Gray triangle
symbols depict the sum of the 2 mode amplitudes (see Chapter 9) in the multiple
frequency band (L1 = 0.52 m to 0.64 m). For the frequency plot (b), the dark bold
lines represent predictions for ωi = 0 s−1 whereas the red ones correspond to the
frequencies of the two modes limit cycles.
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B.2.3 The ring cavity

In the third set of calculations, the ring cavity around the flame holder is in-
cluded in model A. Results are plotted in Fig. B.5. The bifurcation diagram
shows a rough prediction of limit cycles amplitudes and frequencies. In ad-
dition, other modes not seen in the experiments appear with positive growth
rates.
The conclusion of this analysis is that the most influential parameter of model
A corresponds to the reflection coefficient of the piston head R1(0). This
reflection coefficient allows to reduce the difference between predictions and
measurements both in frequency and amplitude. Nevertheless, by taking into
account the measurements of the reflection coefficient R1(0), it is seen that the
predicted growth rates are too small. Besides, one predicts positive growth
rates for the second and third modes respectively around L1 = 0.15 m and
L1 = 0.25 m, while these instabilities are not observed in the experiments for
these geometries.

B.3 Sensitivity analysis with model B

In the second series of calculations model B is used to calculate the bifurcation
diagram and compare predictions to experiments. The framework remains the
same as the one used in the previous section, i.e. that the model B is succes-
sively modified by changing one by one boundary and matching conditions.

B.3.1 The piston reflection coefficient R1(0)

Predictions with model B are analyzed with a perfect reflecting boundary con-
dition for the piston head R1(0) = 1. The calculations are displayed in Fig. B.6.
Results indicate that the limit cycle amplitudes are overestimated and the
stable band is not predicted. In addition, the oscillation frequencies remain
roughly predicted in this case.

B.3.2 The reflection coefficient of the flame tube outlet

Model B is now employed with a perfect reflection coefficient at the flame
outlet R2(L2) = −1. The predicted amplitudes and frequencies of the unstable
modes are displayed in Fig. B.7. On the one hand, this figure shows the weak
influence of this condition without big changes on the predicted frequencies
(see Fig. B.2(a) for the full model). On the other hand, the ideal condition for
the flame tube outlet R2(L2) and the measured values of R1(0) (not modified
here) induce too much damping for the growth rates and the prediction of
unstable modes being not observed in the experiment. This is found for the
second mode around L1 = 0.15 m and the third mode around L1 = 0.25 m.
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Figure B.5: Theoretical and measured amplitudes (a) and frequencies (b) of unstable
modes at limit cycle. Calculations are done with model A and the ring cavity between
the two tubes. Experiments are represented by symbols. Open circle symbols ( ◦) are
linked to the first mode while the second mode appears as open square symbols (�) and
the third mode as open triangle symbols ( △). Gray triangle symbols depict the sum of
the 2 mode amplitudes (see Chapter 9) in the multiple frequency band (L1 = 0.52 m
to 0.64 m). For the frequency plot (b), the dark bold lines represent predictions for
ωi = 0 s−1 whereas the red ones correspond to the frequencies of the two modes limit
cycles.
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Figure B.6: Theoretical and measured amplitudes (a) and frequencies (b) of unstable
modes at limit cycle. Calculations are done with model B and a perfect condition for
the reflection coefficient of the piston head ( R1(0) = 1). Experiments are represented
by symbols. Open circle symbols ( ◦) are linked to the first mode while the second
mode appears as open square symbols (�) and the third mode as open triangle symbols
( △). Gray triangle symbols depict the sum of the 2 mode amplitudes (see Chapter 9) in
the multiple frequency band (L1 = 0.52 m to 0.64 m). For the frequency plot (b), the
dark bold lines represent predictions for ωi = 0 s−1 whereas the red ones correspond
to the frequencies of the two modes limit cycles.
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Figure B.7: Theoretical and measured amplitudes (a) and frequencies (b) of unstable
modes at limit cycle. Calculations are done with model B and a perfect reflecting
condition for the flame tube outlet ( R2(L2) = −1). Experiments are represented by
symbols. Open circle symbols ( ◦) are linked to the first mode while the second mode
appears as open square symbols (�) and the third mode as open triangle symbols
( △). Gray triangle symbols depict the sum of the 2 mode amplitudes (see Chapter 9)
in the multiple frequency band (L1 = 0.52 m to 0.64 m). For the frequency plot (b), the
dark bold lines represent predictions for ωi = 0 s−1 whereas the red ones correspond
to the frequencies of the two modes limit cycles.
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B.3.3 The ring cavity

In the last calculations, model B is used without considering the ring cavity
around the flame holder in the matching conditions between the two tubes.
Predictions, presented in Fig. B.8, match fairly well experiments. The small
differences between results obtained with model B (see Fig. B.1(a)) and the
ones without the ring cavity reveal a slight influence of this element. The pre-
dicted oscillation amplitudes diminish slightly while the frequencies are nearly
the same in the two calculations.

B.4 Appendix synthesis

All things considered, the predicted amplitudes and frequencies of limit cycles
are influenced by a set of conditions included in the model.
By using model A and a more realistic model for the different parts of the
burner, it is seen that oscillation amplitudes and frequencies are strongly in-
fluenced by the reflection coefficient of the piston head R1(0). Predictions of
oscillation frequencies are improved, but the growth rates and the amplitudes
of limit cycles are too small. In addition, two modes which are not observed
in the experiments do appear in these predictions, indicating that the model
remain incomplete.
Stability diagrams calculated with model B and different conditions for the
boundaries and the matching conditions indicate that the reflection coefficient
of the piston head R1(0) has also a strong impact on predictions. This latter
case is characterized by some differences with calculations obtained from model
A set with the same boundary condition R1(0). It is however possible to show
that predictions are in good agreement with experiments by using model B
including the measurements of the reflection coefficient R1(0) and the radiation
impedance of the flame tube outlet R2(L2) without considering the ring cavity.
In this latter case, even if the ring cavity is not included in the model, results are
nearly the same as those calculated with the full model B. Thus, it is possible
to conclude that the acoustic boundaries are the most influential parameters
which need to be taken into account in the thermoacoustic model.
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Figure B.8: Theoretical and measured amplitudes (a) and frequencies (b) of unstable
modes at limit cycle. Calculations are done with model B by discarding the ring cavity
between the two tubes. Experiments are represented by symbols. Open circle symbols
( ◦) are linked to the first mode while the second mode appears as open square symbols
(�) and the third mode as open triangle symbols ( △). Gray triangle symbols depict the
sum of the 2 mode amplitudes (see Chapter 9) in the multiple frequency band (L1 =
0.52 m to 0.64 m). For the frequency plot (b), the dark bold lines represent predictions
for ωi = 0 s−1 whereas the red ones correspond to the frequencies of the two modes
limit cycles.
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